From 93963f019b634d014dc739cb5c51b67fb47bfa26 Mon Sep 17 00:00:00 2001
From: Michael Charles Berutti <mberutti-temp@igsascewlt-MMD2.gs.doi.net>
Date: Fri, 12 Jul 2019 16:39:57 -0500
Subject: [PATCH 1/7] Preliminary unit test framework and some simple unit
 tests made.

---
 test/test_random.py | 147 ++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 147 insertions(+)
 create mode 100644 test/test_random.py

diff --git a/test/test_random.py b/test/test_random.py
new file mode 100644
index 0000000..f721f5d
--- /dev/null
+++ b/test/test_random.py
@@ -0,0 +1,147 @@
+import unittest
+
+import h5py
+import numpy as np
+import os
+
+from fluegg.random import *
+
+
+class TestNormalRandomNumbers(unittest.TestCase):
+
+    def test_output_type(self):
+
+        number = NormalRandomNumbers().random(50, 25)
+        self.assertTrue(isinstance(number, float))
+
+    def test_wrong_argument_quantity_input(self):
+
+        with self.assertRaises(TypeError):
+            number = NormalRandomNumbers().random(50)
+
+        with self.assertRaises(TypeError):
+            number = NormalRandomNumbers().random(50, 25, 12.5)
+
+    def test_wrong_type_input(self):
+
+        with self.assertRaises(ValueError):
+            number = NormalRandomNumbers().random('fifty', 25)
+
+        with self.assertRaises(ValueError):
+            number = NormalRandomNumbers().random(50, 'twenty-five')
+
+        with self.assertRaises(ValueError):
+            number = NormalRandomNumbers().random('fifty', 'twenty-five')
+
+    def test_output_type_array(self):
+
+        numbers = NormalRandomNumbers().random_array(50, 25, 12)
+        self.assertTrue(isinstance(numbers, np.ndarray))
+        self.assertTrue(isinstance(numbers[0], float))
+
+    def test_wrong_argument_quantity_input_array(self):
+
+        with self.assertRaises(TypeError):
+            numbers = NormalRandomNumbers().random_array(50, 25)
+
+        with self.assertRaises(TypeError):
+            numbers = NormalRandomNumbers().random_array(50, 25, 12, 6.25)
+
+    def test_wrong_type_input_array(self):
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array('fifty', 25, 12)
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array(50, 'twenty-five', 12)
+
+        with self.assertRaises(TypeError):
+            numbers = NormalRandomNumbers().random_array(50, 25, 'twelve')
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array('fifty', 'twenty-five', 12)
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array(50, 'twenty-five', 'twelve')
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array('fifty', 25, 'twelve')
+
+        with self.assertRaises(ValueError):
+            numbers = NormalRandomNumbers().random_array('fifty', 'twenty-five', 'twelve')
+
+        with self.assertRaises(TypeError):
+            numbers = NormalRandomNumbers().random_array(50, 25, 12.5)
+
+
+class TestNonRandomNumbers(unittest.TestCase):
+
+    pass
+
+
+class TestHDF5NormalRandomNumbers(unittest.TestCase):
+
+    def setUp(self):
+
+        self._remove_test_saves()
+
+    def _create_HDF5_file(self):
+
+        with h5py.File('UNIT TEST HDF5 TEST FILE.hdf', 'w') as f:
+            f.create_dataset('TEST DATA SET', (100,))
+
+    def _get_file_path(self):
+
+        cwd = os.getcwd()
+        return cwd + r'\UNIT TEST HDF5 TEST FILE.hdf'
+
+    def _remove_test_saves(self):
+        # Removes all saved results with 'UNIT TEST' in its file name.
+        if os.path.isdir(r'.\results'):
+            for file in os.listdir(r'.\results'):
+                if 'UNIT TEST' in file:
+                    # print("Removed {}\n".format(file))
+                    os.remove(r'.\results\{}'.format(file))
+
+    def test_HDF5_input(self):
+        ''' Needs way to validate the results
+        '''
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+        arr = np.random.normal(25, 50, 100)
+
+        with self.assertRaises(TypeError):
+            numbers = HDF5NormalRandomNumbers(
+                18, 'TEST DATA SET').random(
+                arr, 70)
+
+        with self.assertRaises(AttributeError):
+            numbers = HDF5NormalRandomNumbers(file_path, 53).random(arr, 70)
+
+        with self.assertRaises(AttributeError):
+            numbers = HDF5NormalRandomNumbers(
+                file_path, 'TEST DATA SET').random(
+                'arr', 70)
+
+        with self.assertRaises(TypeError):
+            numbers = HDF5NormalRandomNumbers(
+                file_path, 'TEST DATA SET').random(
+                arr, 'seventy')
+
+        numbers = HDF5NormalRandomNumbers(
+            file_path, 'TEST DATA SET').random(
+            arr, 70)
+
+    def test_HDF5_array(self):
+        ''' Needs way to validate the results
+        '''
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+        arr = np.random.normal(25, 50, 100)
+        numbers = HDF5NormalRandomNumbers(
+            file_path, 'TEST DATA SET').random_array(
+            arr, 70, 100)
+
+    def tearDown(self):
+
+        self._remove_test_saves()
-- 
GitLab


From 3ce334392abbe227fbae3aa920c10ebb9b46ed5b Mon Sep 17 00:00:00 2001
From: Michael Charles Berutti <mberutti-temp@igsascewlt-MMD2.gs.doi.net>
Date: Mon, 15 Jul 2019 10:34:00 -0500
Subject: [PATCH 2/7] Refined HDF5 tests and added Nonrandom Numbers tests

---
 test/test_random.py | 63 ++++++++++++++++++++++++++++++++++++++-------
 1 file changed, 54 insertions(+), 9 deletions(-)

diff --git a/test/test_random.py b/test/test_random.py
index f721f5d..b78ea76 100644
--- a/test/test_random.py
+++ b/test/test_random.py
@@ -76,7 +76,24 @@ class TestNormalRandomNumbers(unittest.TestCase):
 
 class TestNonRandomNumbers(unittest.TestCase):
 
-    pass
+    def test_non_random_numbers(self):
+
+        self.assertEqual(NonRandomNumbers().random([5], 1), [5])
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random(5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random(5, 1, 5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5, 1)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5, 1, 5, 1)
 
 
 class TestHDF5NormalRandomNumbers(unittest.TestCase):
@@ -85,10 +102,18 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
 
         self._remove_test_saves()
 
+    def _average(self, numbers):
+
+        sum = 0
+        for number in numbers:
+            sum += number
+        return float(sum) / len(numbers)
+
     def _create_HDF5_file(self):
 
         with h5py.File('UNIT TEST HDF5 TEST FILE.hdf', 'w') as f:
-            f.create_dataset('TEST DATA SET', (100,))
+            arr = np.random.normal(0, 1, 1000)
+            f.create_dataset('TEST DATA SET', data=arr)
 
     def _get_file_path(self):
 
@@ -104,8 +129,7 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
                     os.remove(r'.\results\{}'.format(file))
 
     def test_HDF5_input(self):
-        ''' Needs way to validate the results
-        '''
+
         self._create_HDF5_file()
         file_path = self._get_file_path()
         arr = np.random.normal(25, 50, 100)
@@ -132,15 +156,36 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
             file_path, 'TEST DATA SET').random(
             arr, 70)
 
-    def test_HDF5_array(self):
-        ''' Needs way to validate the results
-        '''
+    def test_HDF5_array_output_dimensions(self):
+
         self._create_HDF5_file()
         file_path = self._get_file_path()
-        arr = np.random.normal(25, 50, 100)
         numbers = HDF5NormalRandomNumbers(
             file_path, 'TEST DATA SET').random_array(
-            arr, 70, 100)
+            0, 70, 100)
+
+        self.assertEqual(len(numbers), 100)
+
+    def test_HDF5_array_output_value(self):
+
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+        numbers = HDF5NormalRandomNumbers(
+            file_path, 'TEST DATA SET').random_array(
+            0, 1, 100)
+        avg = self._average(numbers)
+
+        self.assertTrue(-1 < avg < 1)
+
+    def test_HDF5_array_size(self):
+
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+
+        with self.assertRaises(ValueError):
+            numbers = HDF5NormalRandomNumbers(
+                file_path, 'TEST DATA SET').random_array(
+                0, 70, 2500)
 
     def tearDown(self):
 
-- 
GitLab


From 46e9992510a65bfe4caeff49552ed7c2fcbb6f54 Mon Sep 17 00:00:00 2001
From: Michael Charles Berutti <mberutti-temp@igsascewlt-MMD2.gs.doi.net>
Date: Thu, 18 Jul 2019 16:40:04 -0500
Subject: [PATCH 3/7] Merged with origin.

---
 coverage_report/coverage_html.js              |  584 +++++
 coverage_report/fluegg___init___py.html       |   89 +
 coverage_report/fluegg_asiancarpeggs_py.html  | 1305 ++++++++++++
 coverage_report/fluegg_drift_py.html          |  393 ++++
 coverage_report/fluegg_gui___init___py.html   |   89 +
 coverage_report/fluegg_gui_gui_layout_py.html |  665 ++++++
 coverage_report/fluegg_gui_gui_py.html        |  923 ++++++++
 .../fluegg_gui_hecras_dialog_py.html          |  337 +++
 coverage_report/fluegg_hydraulics_py.html     | 1883 +++++++++++++++++
 coverage_report/fluegg_kml_py.html            |  907 ++++++++
 coverage_report/fluegg_random_py.html         |  271 +++
 coverage_report/fluegg_ras_py.html            | 1007 +++++++++
 coverage_report/fluegg_simclock_py.html       |  361 ++++
 coverage_report/fluegg_simulation_py.html     |  723 +++++++
 coverage_report/fluegg_transporter_py.html    | 1809 ++++++++++++++++
 coverage_report/index.html                    |  230 ++
 .../jquery.ba-throttle-debounce.min.js        |    9 +
 coverage_report/jquery.hotkeys.js             |   99 +
 coverage_report/jquery.isonscreen.js          |   53 +
 coverage_report/jquery.min.js                 |    4 +
 coverage_report/jquery.tablesorter.min.js     |    2 +
 coverage_report/keybd_closed.png              |  Bin 0 -> 112 bytes
 coverage_report/keybd_open.png                |  Bin 0 -> 112 bytes
 coverage_report/status.json                   |    1 +
 coverage_report/style.css                     |  375 ++++
 coverage_report/test_fluegg_py.html           |  165 ++
 notebooks/vertical transporter - Copy.ipynb   |  326 +++
 .../ras/unsteadyflume/HEC-RASFlumeCase.dsc    |  308 +++
 .../ras/unsteadyflume/HEC-RASFlumeCase.rasmap |  187 ++
 test/test_transporter.py                      |    9 +
 30 files changed, 13114 insertions(+)
 create mode 100644 coverage_report/coverage_html.js
 create mode 100644 coverage_report/fluegg___init___py.html
 create mode 100644 coverage_report/fluegg_asiancarpeggs_py.html
 create mode 100644 coverage_report/fluegg_drift_py.html
 create mode 100644 coverage_report/fluegg_gui___init___py.html
 create mode 100644 coverage_report/fluegg_gui_gui_layout_py.html
 create mode 100644 coverage_report/fluegg_gui_gui_py.html
 create mode 100644 coverage_report/fluegg_gui_hecras_dialog_py.html
 create mode 100644 coverage_report/fluegg_hydraulics_py.html
 create mode 100644 coverage_report/fluegg_kml_py.html
 create mode 100644 coverage_report/fluegg_random_py.html
 create mode 100644 coverage_report/fluegg_ras_py.html
 create mode 100644 coverage_report/fluegg_simclock_py.html
 create mode 100644 coverage_report/fluegg_simulation_py.html
 create mode 100644 coverage_report/fluegg_transporter_py.html
 create mode 100644 coverage_report/index.html
 create mode 100644 coverage_report/jquery.ba-throttle-debounce.min.js
 create mode 100644 coverage_report/jquery.hotkeys.js
 create mode 100644 coverage_report/jquery.isonscreen.js
 create mode 100644 coverage_report/jquery.min.js
 create mode 100644 coverage_report/jquery.tablesorter.min.js
 create mode 100644 coverage_report/keybd_closed.png
 create mode 100644 coverage_report/keybd_open.png
 create mode 100644 coverage_report/status.json
 create mode 100644 coverage_report/style.css
 create mode 100644 coverage_report/test_fluegg_py.html
 create mode 100644 notebooks/vertical transporter - Copy.ipynb
 create mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
 create mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
 create mode 100644 test/test_transporter.py

diff --git a/coverage_report/coverage_html.js b/coverage_report/coverage_html.js
new file mode 100644
index 0000000..f6f5de2
--- /dev/null
+++ b/coverage_report/coverage_html.js
@@ -0,0 +1,584 @@
+// Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
+// For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt
+
+// Coverage.py HTML report browser code.
+/*jslint browser: true, sloppy: true, vars: true, plusplus: true, maxerr: 50, indent: 4 */
+/*global coverage: true, document, window, $ */
+
+coverage = {};
+
+// Find all the elements with shortkey_* class, and use them to assign a shortcut key.
+coverage.assign_shortkeys = function () {
+    $("*[class*='shortkey_']").each(function (i, e) {
+        $.each($(e).attr("class").split(" "), function (i, c) {
+            if (/^shortkey_/.test(c)) {
+                $(document).bind('keydown', c.substr(9), function () {
+                    $(e).click();
+                });
+            }
+        });
+    });
+};
+
+// Create the events for the help panel.
+coverage.wire_up_help_panel = function () {
+    $("#keyboard_icon").click(function () {
+        // Show the help panel, and position it so the keyboard icon in the
+        // panel is in the same place as the keyboard icon in the header.
+        $(".help_panel").show();
+        var koff = $("#keyboard_icon").offset();
+        var poff = $("#panel_icon").position();
+        $(".help_panel").offset({
+            top: koff.top-poff.top,
+            left: koff.left-poff.left
+        });
+    });
+    $("#panel_icon").click(function () {
+        $(".help_panel").hide();
+    });
+};
+
+// Create the events for the filter box.
+coverage.wire_up_filter = function () {
+    // Cache elements.
+    var table = $("table.index");
+    var table_rows = table.find("tbody tr");
+    var table_row_names = table_rows.find("td.name a");
+    var no_rows = $("#no_rows");
+
+    // Create a duplicate table footer that we can modify with dynamic summed values.
+    var table_footer = $("table.index tfoot tr");
+    var table_dynamic_footer = table_footer.clone();
+    table_dynamic_footer.attr('class', 'total_dynamic hidden');
+    table_footer.after(table_dynamic_footer);
+
+    // Observe filter keyevents.
+    $("#filter").on("keyup change", $.debounce(150, function (event) {
+        var filter_value = $(this).val();
+
+        if (filter_value === "") {
+            // Filter box is empty, remove all filtering.
+            table_rows.removeClass("hidden");
+
+            // Show standard footer, hide dynamic footer.
+            table_footer.removeClass("hidden");
+            table_dynamic_footer.addClass("hidden");
+
+            // Hide placeholder, show table.
+            if (no_rows.length > 0) {
+                no_rows.hide();
+            }
+            table.show();
+
+        }
+        else {
+            // Filter table items by value.
+            var hidden = 0;
+            var shown = 0;
+
+            // Hide / show elements.
+            $.each(table_row_names, function () {
+                var element = $(this).parents("tr");
+
+                if ($(this).text().indexOf(filter_value) === -1) {
+                    // hide
+                    element.addClass("hidden");
+                    hidden++;
+                }
+                else {
+                    // show
+                    element.removeClass("hidden");
+                    shown++;
+                }
+            });
+
+            // Show placeholder if no rows will be displayed.
+            if (no_rows.length > 0) {
+                if (shown === 0) {
+                    // Show placeholder, hide table.
+                    no_rows.show();
+                    table.hide();
+                }
+                else {
+                    // Hide placeholder, show table.
+                    no_rows.hide();
+                    table.show();
+                }
+            }
+
+            // Manage dynamic header:
+            if (hidden > 0) {
+                // Calculate new dynamic sum values based on visible rows.
+                for (var column = 2; column < 20; column++) {
+                    // Calculate summed value.
+                    var cells = table_rows.find('td:nth-child(' + column + ')');
+                    if (!cells.length) {
+                        // No more columns...!
+                        break;
+                    }
+
+                    var sum = 0, numer = 0, denom = 0;
+                    $.each(cells.filter(':visible'), function () {
+                        var ratio = $(this).data("ratio");
+                        if (ratio) {
+                            var splitted = ratio.split(" ");
+                            numer += parseInt(splitted[0], 10);
+                            denom += parseInt(splitted[1], 10);
+                        }
+                        else {
+                            sum += parseInt(this.innerHTML, 10);
+                        }
+                    });
+
+                    // Get footer cell element.
+                    var footer_cell = table_dynamic_footer.find('td:nth-child(' + column + ')');
+
+                    // Set value into dynamic footer cell element.
+                    if (cells[0].innerHTML.indexOf('%') > -1) {
+                        // Percentage columns use the numerator and denominator,
+                        // and adapt to the number of decimal places.
+                        var match = /\.([0-9]+)/.exec(cells[0].innerHTML);
+                        var places = 0;
+                        if (match) {
+                            places = match[1].length;
+                        }
+                        var pct = numer * 100 / denom;
+                        footer_cell.text(pct.toFixed(places) + '%');
+                    }
+                    else {
+                        footer_cell.text(sum);
+                    }
+                }
+
+                // Hide standard footer, show dynamic footer.
+                table_footer.addClass("hidden");
+                table_dynamic_footer.removeClass("hidden");
+            }
+            else {
+                // Show standard footer, hide dynamic footer.
+                table_footer.removeClass("hidden");
+                table_dynamic_footer.addClass("hidden");
+            }
+        }
+    }));
+
+    // Trigger change event on setup, to force filter on page refresh
+    // (filter value may still be present).
+    $("#filter").trigger("change");
+};
+
+// Loaded on index.html
+coverage.index_ready = function ($) {
+    // Look for a cookie containing previous sort settings:
+    var sort_list = [];
+    var cookie_name = "COVERAGE_INDEX_SORT";
+    var i;
+
+    // This almost makes it worth installing the jQuery cookie plugin:
+    if (document.cookie.indexOf(cookie_name) > -1) {
+        var cookies = document.cookie.split(";");
+        for (i = 0; i < cookies.length; i++) {
+            var parts = cookies[i].split("=");
+
+            if ($.trim(parts[0]) === cookie_name && parts[1]) {
+                sort_list = eval("[[" + parts[1] + "]]");
+                break;
+            }
+        }
+    }
+
+    // Create a new widget which exists only to save and restore
+    // the sort order:
+    $.tablesorter.addWidget({
+        id: "persistentSort",
+
+        // Format is called by the widget before displaying:
+        format: function (table) {
+            if (table.config.sortList.length === 0 && sort_list.length > 0) {
+                // This table hasn't been sorted before - we'll use
+                // our stored settings:
+                $(table).trigger('sorton', [sort_list]);
+            }
+            else {
+                // This is not the first load - something has
+                // already defined sorting so we'll just update
+                // our stored value to match:
+                sort_list = table.config.sortList;
+            }
+        }
+    });
+
+    // Configure our tablesorter to handle the variable number of
+    // columns produced depending on report options:
+    var headers = [];
+    var col_count = $("table.index > thead > tr > th").length;
+
+    headers[0] = { sorter: 'text' };
+    for (i = 1; i < col_count-1; i++) {
+        headers[i] = { sorter: 'digit' };
+    }
+    headers[col_count-1] = { sorter: 'percent' };
+
+    // Enable the table sorter:
+    $("table.index").tablesorter({
+        widgets: ['persistentSort'],
+        headers: headers
+    });
+
+    coverage.assign_shortkeys();
+    coverage.wire_up_help_panel();
+    coverage.wire_up_filter();
+
+    // Watch for page unload events so we can save the final sort settings:
+    $(window).unload(function () {
+        document.cookie = cookie_name + "=" + sort_list.toString() + "; path=/";
+    });
+};
+
+// -- pyfile stuff --
+
+coverage.pyfile_ready = function ($) {
+    // If we're directed to a particular line number, highlight the line.
+    var frag = location.hash;
+    if (frag.length > 2 && frag[1] === 'n') {
+        $(frag).addClass('highlight');
+        coverage.set_sel(parseInt(frag.substr(2), 10));
+    }
+    else {
+        coverage.set_sel(0);
+    }
+
+    $(document)
+        .bind('keydown', 'j', coverage.to_next_chunk_nicely)
+        .bind('keydown', 'k', coverage.to_prev_chunk_nicely)
+        .bind('keydown', '0', coverage.to_top)
+        .bind('keydown', '1', coverage.to_first_chunk)
+        ;
+
+    $(".button_toggle_run").click(function (evt) {coverage.toggle_lines(evt.target, "run");});
+    $(".button_toggle_exc").click(function (evt) {coverage.toggle_lines(evt.target, "exc");});
+    $(".button_toggle_mis").click(function (evt) {coverage.toggle_lines(evt.target, "mis");});
+    $(".button_toggle_par").click(function (evt) {coverage.toggle_lines(evt.target, "par");});
+
+    coverage.assign_shortkeys();
+    coverage.wire_up_help_panel();
+
+    coverage.init_scroll_markers();
+
+    // Rebuild scroll markers after window high changing
+    $(window).resize(coverage.resize_scroll_markers);
+};
+
+coverage.toggle_lines = function (btn, cls) {
+    btn = $(btn);
+    var hide = "hide_"+cls;
+    if (btn.hasClass(hide)) {
+        $("#source ."+cls).removeClass(hide);
+        btn.removeClass(hide);
+    }
+    else {
+        $("#source ."+cls).addClass(hide);
+        btn.addClass(hide);
+    }
+};
+
+// Return the nth line div.
+coverage.line_elt = function (n) {
+    return $("#t" + n);
+};
+
+// Return the nth line number div.
+coverage.num_elt = function (n) {
+    return $("#n" + n);
+};
+
+// Return the container of all the code.
+coverage.code_container = function () {
+    return $(".linenos");
+};
+
+// Set the selection.  b and e are line numbers.
+coverage.set_sel = function (b, e) {
+    // The first line selected.
+    coverage.sel_begin = b;
+    // The next line not selected.
+    coverage.sel_end = (e === undefined) ? b+1 : e;
+};
+
+coverage.to_top = function () {
+    coverage.set_sel(0, 1);
+    coverage.scroll_window(0);
+};
+
+coverage.to_first_chunk = function () {
+    coverage.set_sel(0, 1);
+    coverage.to_next_chunk();
+};
+
+coverage.is_transparent = function (color) {
+    // Different browsers return different colors for "none".
+    return color === "transparent" || color === "rgba(0, 0, 0, 0)";
+};
+
+coverage.to_next_chunk = function () {
+    var c = coverage;
+
+    // Find the start of the next colored chunk.
+    var probe = c.sel_end;
+    var color, probe_line;
+    while (true) {
+        probe_line = c.line_elt(probe);
+        if (probe_line.length === 0) {
+            return;
+        }
+        color = probe_line.css("background-color");
+        if (!c.is_transparent(color)) {
+            break;
+        }
+        probe++;
+    }
+
+    // There's a next chunk, `probe` points to it.
+    var begin = probe;
+
+    // Find the end of this chunk.
+    var next_color = color;
+    while (next_color === color) {
+        probe++;
+        probe_line = c.line_elt(probe);
+        next_color = probe_line.css("background-color");
+    }
+    c.set_sel(begin, probe);
+    c.show_selection();
+};
+
+coverage.to_prev_chunk = function () {
+    var c = coverage;
+
+    // Find the end of the prev colored chunk.
+    var probe = c.sel_begin-1;
+    var probe_line = c.line_elt(probe);
+    if (probe_line.length === 0) {
+        return;
+    }
+    var color = probe_line.css("background-color");
+    while (probe > 0 && c.is_transparent(color)) {
+        probe--;
+        probe_line = c.line_elt(probe);
+        if (probe_line.length === 0) {
+            return;
+        }
+        color = probe_line.css("background-color");
+    }
+
+    // There's a prev chunk, `probe` points to its last line.
+    var end = probe+1;
+
+    // Find the beginning of this chunk.
+    var prev_color = color;
+    while (prev_color === color) {
+        probe--;
+        probe_line = c.line_elt(probe);
+        prev_color = probe_line.css("background-color");
+    }
+    c.set_sel(probe+1, end);
+    c.show_selection();
+};
+
+// Return the line number of the line nearest pixel position pos
+coverage.line_at_pos = function (pos) {
+    var l1 = coverage.line_elt(1),
+        l2 = coverage.line_elt(2),
+        result;
+    if (l1.length && l2.length) {
+        var l1_top = l1.offset().top,
+            line_height = l2.offset().top - l1_top,
+            nlines = (pos - l1_top) / line_height;
+        if (nlines < 1) {
+            result = 1;
+        }
+        else {
+            result = Math.ceil(nlines);
+        }
+    }
+    else {
+        result = 1;
+    }
+    return result;
+};
+
+// Returns 0, 1, or 2: how many of the two ends of the selection are on
+// the screen right now?
+coverage.selection_ends_on_screen = function () {
+    if (coverage.sel_begin === 0) {
+        return 0;
+    }
+
+    var top = coverage.line_elt(coverage.sel_begin);
+    var next = coverage.line_elt(coverage.sel_end-1);
+
+    return (
+        (top.isOnScreen() ? 1 : 0) +
+        (next.isOnScreen() ? 1 : 0)
+    );
+};
+
+coverage.to_next_chunk_nicely = function () {
+    coverage.finish_scrolling();
+    if (coverage.selection_ends_on_screen() === 0) {
+        // The selection is entirely off the screen: select the top line on
+        // the screen.
+        var win = $(window);
+        coverage.select_line_or_chunk(coverage.line_at_pos(win.scrollTop()));
+    }
+    coverage.to_next_chunk();
+};
+
+coverage.to_prev_chunk_nicely = function () {
+    coverage.finish_scrolling();
+    if (coverage.selection_ends_on_screen() === 0) {
+        var win = $(window);
+        coverage.select_line_or_chunk(coverage.line_at_pos(win.scrollTop() + win.height()));
+    }
+    coverage.to_prev_chunk();
+};
+
+// Select line number lineno, or if it is in a colored chunk, select the
+// entire chunk
+coverage.select_line_or_chunk = function (lineno) {
+    var c = coverage;
+    var probe_line = c.line_elt(lineno);
+    if (probe_line.length === 0) {
+        return;
+    }
+    var the_color = probe_line.css("background-color");
+    if (!c.is_transparent(the_color)) {
+        // The line is in a highlighted chunk.
+        // Search backward for the first line.
+        var probe = lineno;
+        var color = the_color;
+        while (probe > 0 && color === the_color) {
+            probe--;
+            probe_line = c.line_elt(probe);
+            if (probe_line.length === 0) {
+                break;
+            }
+            color = probe_line.css("background-color");
+        }
+        var begin = probe + 1;
+
+        // Search forward for the last line.
+        probe = lineno;
+        color = the_color;
+        while (color === the_color) {
+            probe++;
+            probe_line = c.line_elt(probe);
+            color = probe_line.css("background-color");
+        }
+
+        coverage.set_sel(begin, probe);
+    }
+    else {
+        coverage.set_sel(lineno);
+    }
+};
+
+coverage.show_selection = function () {
+    var c = coverage;
+
+    // Highlight the lines in the chunk
+    c.code_container().find(".highlight").removeClass("highlight");
+    for (var probe = c.sel_begin; probe > 0 && probe < c.sel_end; probe++) {
+        c.num_elt(probe).addClass("highlight");
+    }
+
+    c.scroll_to_selection();
+};
+
+coverage.scroll_to_selection = function () {
+    // Scroll the page if the chunk isn't fully visible.
+    if (coverage.selection_ends_on_screen() < 2) {
+        // Need to move the page. The html,body trick makes it scroll in all
+        // browsers, got it from http://stackoverflow.com/questions/3042651
+        var top = coverage.line_elt(coverage.sel_begin);
+        var top_pos = parseInt(top.offset().top, 10);
+        coverage.scroll_window(top_pos - 30);
+    }
+};
+
+coverage.scroll_window = function (to_pos) {
+    $("html,body").animate({scrollTop: to_pos}, 200);
+};
+
+coverage.finish_scrolling = function () {
+    $("html,body").stop(true, true);
+};
+
+coverage.init_scroll_markers = function () {
+    var c = coverage;
+    // Init some variables
+    c.lines_len = $('td.text p').length;
+    c.body_h = $('body').height();
+    c.header_h = $('div#header').height();
+    c.missed_lines = $('td.text p.mis, td.text p.par');
+
+    // Build html
+    c.resize_scroll_markers();
+};
+
+coverage.resize_scroll_markers = function () {
+    var c = coverage,
+        min_line_height = 3,
+        max_line_height = 10,
+        visible_window_h = $(window).height();
+
+    $('#scroll_marker').remove();
+    // Don't build markers if the window has no scroll bar.
+    if (c.body_h <= visible_window_h) {
+        return;
+    }
+
+    $("body").append("<div id='scroll_marker'>&nbsp;</div>");
+    var scroll_marker = $('#scroll_marker'),
+        marker_scale = scroll_marker.height() / c.body_h,
+        line_height = scroll_marker.height() / c.lines_len;
+
+    // Line height must be between the extremes.
+    if (line_height > min_line_height) {
+        if (line_height > max_line_height) {
+            line_height = max_line_height;
+        }
+    }
+    else {
+        line_height = min_line_height;
+    }
+
+    var previous_line = -99,
+        last_mark,
+        last_top;
+
+    c.missed_lines.each(function () {
+        var line_top = Math.round($(this).offset().top * marker_scale),
+            id_name = $(this).attr('id'),
+            line_number = parseInt(id_name.substring(1, id_name.length));
+
+        if (line_number === previous_line + 1) {
+            // If this solid missed block just make previous mark higher.
+            last_mark.css({
+                'height': line_top + line_height - last_top
+            });
+        }
+        else {
+            // Add colored line in scroll_marker block.
+            scroll_marker.append('<div id="m' + line_number + '" class="marker"></div>');
+            last_mark = $('#m' + line_number);
+            last_mark.css({
+                'height': line_height,
+                'top': line_top
+            });
+            last_top = line_top;
+        }
+
+        previous_line = line_number;
+    });
+};
diff --git a/coverage_report/fluegg___init___py.html b/coverage_report/fluegg___init___py.html
new file mode 100644
index 0000000..40a6073
--- /dev/null
+++ b/coverage_report/fluegg___init___py.html
@@ -0,0 +1,89 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\__init__.py: 100%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\__init__.py</b> :
+            <span class="pc_cov">100%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            0 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">0 run</span>
+            <span class="mis shortkey_m button_toggle_mis">0 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+
+            </td>
+            <td class="text">
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_asiancarpeggs_py.html b/coverage_report/fluegg_asiancarpeggs_py.html
new file mode 100644
index 0000000..8838376
--- /dev/null
+++ b/coverage_report/fluegg_asiancarpeggs_py.html
@@ -0,0 +1,1305 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\asiancarpeggs.py: 92%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\asiancarpeggs.py</b> :
+            <span class="pc_cov">92%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            226 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">209 run</span>
+            <span class="mis shortkey_m button_toggle_mis">17 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="pln"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="pln"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="pln"><a href="#n27">27</a></p>
+<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="stm run hide_run"><a href="#n33">33</a></p>
+<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
+<p id="n35" class="stm run hide_run"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
+<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
+<p id="n41" class="pln"><a href="#n41">41</a></p>
+<p id="n42" class="pln"><a href="#n42">42</a></p>
+<p id="n43" class="stm run hide_run"><a href="#n43">43</a></p>
+<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
+<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
+<p id="n49" class="stm run hide_run"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="pln"><a href="#n51">51</a></p>
+<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="pln"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="stm run hide_run"><a href="#n57">57</a></p>
+<p id="n58" class="stm run hide_run"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="stm run hide_run"><a href="#n65">65</a></p>
+<p id="n66" class="stm run hide_run"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="pln"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
+<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
+<p id="n74" class="pln"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="stm run hide_run"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="stm run hide_run"><a href="#n78">78</a></p>
+<p id="n79" class="stm run hide_run"><a href="#n79">79</a></p>
+<p id="n80" class="pln"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="pln"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="stm run hide_run"><a href="#n84">84</a></p>
+<p id="n85" class="stm run hide_run"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="stm run hide_run"><a href="#n94">94</a></p>
+<p id="n95" class="stm run hide_run"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
+<p id="n98" class="pln"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="pln"><a href="#n100">100</a></p>
+<p id="n101" class="pln"><a href="#n101">101</a></p>
+<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
+<p id="n103" class="stm run hide_run"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
+<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
+<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
+<p id="n112" class="pln"><a href="#n112">112</a></p>
+<p id="n113" class="stm mis"><a href="#n113">113</a></p>
+<p id="n114" class="pln"><a href="#n114">114</a></p>
+<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
+<p id="n120" class="pln"><a href="#n120">120</a></p>
+<p id="n121" class="stm mis"><a href="#n121">121</a></p>
+<p id="n122" class="pln"><a href="#n122">122</a></p>
+<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+<p id="n125" class="stm mis"><a href="#n125">125</a></p>
+<p id="n126" class="pln"><a href="#n126">126</a></p>
+<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="stm mis"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="stm run hide_run"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="pln"><a href="#n134">134</a></p>
+<p id="n135" class="pln"><a href="#n135">135</a></p>
+<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
+<p id="n137" class="stm run hide_run"><a href="#n137">137</a></p>
+<p id="n138" class="pln"><a href="#n138">138</a></p>
+<p id="n139" class="stm run hide_run"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="stm run hide_run"><a href="#n141">141</a></p>
+<p id="n142" class="stm run hide_run"><a href="#n142">142</a></p>
+<p id="n143" class="pln"><a href="#n143">143</a></p>
+<p id="n144" class="stm run hide_run"><a href="#n144">144</a></p>
+<p id="n145" class="pln"><a href="#n145">145</a></p>
+<p id="n146" class="pln"><a href="#n146">146</a></p>
+<p id="n147" class="stm run hide_run"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="pln"><a href="#n149">149</a></p>
+<p id="n150" class="stm mis"><a href="#n150">150</a></p>
+<p id="n151" class="pln"><a href="#n151">151</a></p>
+<p id="n152" class="pln"><a href="#n152">152</a></p>
+<p id="n153" class="stm run hide_run"><a href="#n153">153</a></p>
+<p id="n154" class="pln"><a href="#n154">154</a></p>
+<p id="n155" class="stm run hide_run"><a href="#n155">155</a></p>
+<p id="n156" class="pln"><a href="#n156">156</a></p>
+<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
+<p id="n158" class="pln"><a href="#n158">158</a></p>
+<p id="n159" class="pln"><a href="#n159">159</a></p>
+<p id="n160" class="pln"><a href="#n160">160</a></p>
+<p id="n161" class="pln"><a href="#n161">161</a></p>
+<p id="n162" class="stm run hide_run"><a href="#n162">162</a></p>
+<p id="n163" class="stm run hide_run"><a href="#n163">163</a></p>
+<p id="n164" class="pln"><a href="#n164">164</a></p>
+<p id="n165" class="stm run hide_run"><a href="#n165">165</a></p>
+<p id="n166" class="pln"><a href="#n166">166</a></p>
+<p id="n167" class="stm run hide_run"><a href="#n167">167</a></p>
+<p id="n168" class="stm run hide_run"><a href="#n168">168</a></p>
+<p id="n169" class="pln"><a href="#n169">169</a></p>
+<p id="n170" class="stm run hide_run"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="pln"><a href="#n172">172</a></p>
+<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
+<p id="n174" class="stm mis"><a href="#n174">174</a></p>
+<p id="n175" class="pln"><a href="#n175">175</a></p>
+<p id="n176" class="stm mis"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="stm run hide_run"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="stm run hide_run"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="stm run hide_run"><a href="#n183">183</a></p>
+<p id="n184" class="pln"><a href="#n184">184</a></p>
+<p id="n185" class="pln"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="pln"><a href="#n187">187</a></p>
+<p id="n188" class="pln"><a href="#n188">188</a></p>
+<p id="n189" class="pln"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="pln"><a href="#n191">191</a></p>
+<p id="n192" class="pln"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="pln"><a href="#n195">195</a></p>
+<p id="n196" class="pln"><a href="#n196">196</a></p>
+<p id="n197" class="stm run hide_run"><a href="#n197">197</a></p>
+<p id="n198" class="stm mis"><a href="#n198">198</a></p>
+<p id="n199" class="stm run hide_run"><a href="#n199">199</a></p>
+<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
+<p id="n201" class="stm run hide_run"><a href="#n201">201</a></p>
+<p id="n202" class="pln"><a href="#n202">202</a></p>
+<p id="n203" class="pln"><a href="#n203">203</a></p>
+<p id="n204" class="stm run hide_run"><a href="#n204">204</a></p>
+<p id="n205" class="pln"><a href="#n205">205</a></p>
+<p id="n206" class="pln"><a href="#n206">206</a></p>
+<p id="n207" class="pln"><a href="#n207">207</a></p>
+<p id="n208" class="pln"><a href="#n208">208</a></p>
+<p id="n209" class="pln"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="pln"><a href="#n211">211</a></p>
+<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
+<p id="n213" class="pln"><a href="#n213">213</a></p>
+<p id="n214" class="stm run hide_run"><a href="#n214">214</a></p>
+<p id="n215" class="pln"><a href="#n215">215</a></p>
+<p id="n216" class="stm run hide_run"><a href="#n216">216</a></p>
+<p id="n217" class="pln"><a href="#n217">217</a></p>
+<p id="n218" class="pln"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="pln"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="pln"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="pln"><a href="#n228">228</a></p>
+<p id="n229" class="pln"><a href="#n229">229</a></p>
+<p id="n230" class="stm mis"><a href="#n230">230</a></p>
+<p id="n231" class="stm mis"><a href="#n231">231</a></p>
+<p id="n232" class="pln"><a href="#n232">232</a></p>
+<p id="n233" class="stm mis"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="stm mis"><a href="#n235">235</a></p>
+<p id="n236" class="pln"><a href="#n236">236</a></p>
+<p id="n237" class="stm run hide_run"><a href="#n237">237</a></p>
+<p id="n238" class="stm run hide_run"><a href="#n238">238</a></p>
+<p id="n239" class="stm run hide_run"><a href="#n239">239</a></p>
+<p id="n240" class="stm mis"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="stm run hide_run"><a href="#n242">242</a></p>
+<p id="n243" class="stm run hide_run"><a href="#n243">243</a></p>
+<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="pln"><a href="#n246">246</a></p>
+<p id="n247" class="stm run hide_run"><a href="#n247">247</a></p>
+<p id="n248" class="pln"><a href="#n248">248</a></p>
+<p id="n249" class="pln"><a href="#n249">249</a></p>
+<p id="n250" class="pln"><a href="#n250">250</a></p>
+<p id="n251" class="pln"><a href="#n251">251</a></p>
+<p id="n252" class="pln"><a href="#n252">252</a></p>
+<p id="n253" class="pln"><a href="#n253">253</a></p>
+<p id="n254" class="pln"><a href="#n254">254</a></p>
+<p id="n255" class="pln"><a href="#n255">255</a></p>
+<p id="n256" class="pln"><a href="#n256">256</a></p>
+<p id="n257" class="stm run hide_run"><a href="#n257">257</a></p>
+<p id="n258" class="pln"><a href="#n258">258</a></p>
+<p id="n259" class="stm run hide_run"><a href="#n259">259</a></p>
+<p id="n260" class="pln"><a href="#n260">260</a></p>
+<p id="n261" class="pln"><a href="#n261">261</a></p>
+<p id="n262" class="pln"><a href="#n262">262</a></p>
+<p id="n263" class="pln"><a href="#n263">263</a></p>
+<p id="n264" class="pln"><a href="#n264">264</a></p>
+<p id="n265" class="stm run hide_run"><a href="#n265">265</a></p>
+<p id="n266" class="pln"><a href="#n266">266</a></p>
+<p id="n267" class="pln"><a href="#n267">267</a></p>
+<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
+<p id="n269" class="pln"><a href="#n269">269</a></p>
+<p id="n270" class="pln"><a href="#n270">270</a></p>
+<p id="n271" class="pln"><a href="#n271">271</a></p>
+<p id="n272" class="pln"><a href="#n272">272</a></p>
+<p id="n273" class="pln"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="stm run hide_run"><a href="#n275">275</a></p>
+<p id="n276" class="pln"><a href="#n276">276</a></p>
+<p id="n277" class="pln"><a href="#n277">277</a></p>
+<p id="n278" class="pln"><a href="#n278">278</a></p>
+<p id="n279" class="pln"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="pln"><a href="#n281">281</a></p>
+<p id="n282" class="pln"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="stm run hide_run"><a href="#n284">284</a></p>
+<p id="n285" class="stm run hide_run"><a href="#n285">285</a></p>
+<p id="n286" class="stm run hide_run"><a href="#n286">286</a></p>
+<p id="n287" class="stm run hide_run"><a href="#n287">287</a></p>
+<p id="n288" class="pln"><a href="#n288">288</a></p>
+<p id="n289" class="stm run hide_run"><a href="#n289">289</a></p>
+<p id="n290" class="pln"><a href="#n290">290</a></p>
+<p id="n291" class="pln"><a href="#n291">291</a></p>
+<p id="n292" class="pln"><a href="#n292">292</a></p>
+<p id="n293" class="pln"><a href="#n293">293</a></p>
+<p id="n294" class="pln"><a href="#n294">294</a></p>
+<p id="n295" class="pln"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="pln"><a href="#n297">297</a></p>
+<p id="n298" class="stm run hide_run"><a href="#n298">298</a></p>
+<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
+<p id="n300" class="stm run hide_run"><a href="#n300">300</a></p>
+<p id="n301" class="stm run hide_run"><a href="#n301">301</a></p>
+<p id="n302" class="pln"><a href="#n302">302</a></p>
+<p id="n303" class="stm run hide_run"><a href="#n303">303</a></p>
+<p id="n304" class="pln"><a href="#n304">304</a></p>
+<p id="n305" class="pln"><a href="#n305">305</a></p>
+<p id="n306" class="pln"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="pln"><a href="#n308">308</a></p>
+<p id="n309" class="pln"><a href="#n309">309</a></p>
+<p id="n310" class="pln"><a href="#n310">310</a></p>
+<p id="n311" class="stm run hide_run"><a href="#n311">311</a></p>
+<p id="n312" class="stm run hide_run"><a href="#n312">312</a></p>
+<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
+<p id="n314" class="stm run hide_run"><a href="#n314">314</a></p>
+<p id="n315" class="pln"><a href="#n315">315</a></p>
+<p id="n316" class="stm run hide_run"><a href="#n316">316</a></p>
+<p id="n317" class="pln"><a href="#n317">317</a></p>
+<p id="n318" class="pln"><a href="#n318">318</a></p>
+<p id="n319" class="pln"><a href="#n319">319</a></p>
+<p id="n320" class="pln"><a href="#n320">320</a></p>
+<p id="n321" class="pln"><a href="#n321">321</a></p>
+<p id="n322" class="pln"><a href="#n322">322</a></p>
+<p id="n323" class="pln"><a href="#n323">323</a></p>
+<p id="n324" class="stm run hide_run"><a href="#n324">324</a></p>
+<p id="n325" class="stm run hide_run"><a href="#n325">325</a></p>
+<p id="n326" class="stm run hide_run"><a href="#n326">326</a></p>
+<p id="n327" class="pln"><a href="#n327">327</a></p>
+<p id="n328" class="stm run hide_run"><a href="#n328">328</a></p>
+<p id="n329" class="pln"><a href="#n329">329</a></p>
+<p id="n330" class="pln"><a href="#n330">330</a></p>
+<p id="n331" class="pln"><a href="#n331">331</a></p>
+<p id="n332" class="pln"><a href="#n332">332</a></p>
+<p id="n333" class="pln"><a href="#n333">333</a></p>
+<p id="n334" class="pln"><a href="#n334">334</a></p>
+<p id="n335" class="pln"><a href="#n335">335</a></p>
+<p id="n336" class="stm run hide_run"><a href="#n336">336</a></p>
+<p id="n337" class="stm run hide_run"><a href="#n337">337</a></p>
+<p id="n338" class="stm run hide_run"><a href="#n338">338</a></p>
+<p id="n339" class="stm run hide_run"><a href="#n339">339</a></p>
+<p id="n340" class="pln"><a href="#n340">340</a></p>
+<p id="n341" class="stm run hide_run"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="pln"><a href="#n343">343</a></p>
+<p id="n344" class="pln"><a href="#n344">344</a></p>
+<p id="n345" class="pln"><a href="#n345">345</a></p>
+<p id="n346" class="pln"><a href="#n346">346</a></p>
+<p id="n347" class="pln"><a href="#n347">347</a></p>
+<p id="n348" class="pln"><a href="#n348">348</a></p>
+<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
+<p id="n350" class="stm run hide_run"><a href="#n350">350</a></p>
+<p id="n351" class="stm run hide_run"><a href="#n351">351</a></p>
+<p id="n352" class="stm run hide_run"><a href="#n352">352</a></p>
+<p id="n353" class="pln"><a href="#n353">353</a></p>
+<p id="n354" class="stm run hide_run"><a href="#n354">354</a></p>
+<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
+<p id="n356" class="pln"><a href="#n356">356</a></p>
+<p id="n357" class="pln"><a href="#n357">357</a></p>
+<p id="n358" class="pln"><a href="#n358">358</a></p>
+<p id="n359" class="pln"><a href="#n359">359</a></p>
+<p id="n360" class="pln"><a href="#n360">360</a></p>
+<p id="n361" class="pln"><a href="#n361">361</a></p>
+<p id="n362" class="stm run hide_run"><a href="#n362">362</a></p>
+<p id="n363" class="stm run hide_run"><a href="#n363">363</a></p>
+<p id="n364" class="pln"><a href="#n364">364</a></p>
+<p id="n365" class="stm run hide_run"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="pln"><a href="#n367">367</a></p>
+<p id="n368" class="stm run hide_run"><a href="#n368">368</a></p>
+<p id="n369" class="stm run hide_run"><a href="#n369">369</a></p>
+<p id="n370" class="pln"><a href="#n370">370</a></p>
+<p id="n371" class="pln"><a href="#n371">371</a></p>
+<p id="n372" class="pln"><a href="#n372">372</a></p>
+<p id="n373" class="pln"><a href="#n373">373</a></p>
+<p id="n374" class="pln"><a href="#n374">374</a></p>
+<p id="n375" class="pln"><a href="#n375">375</a></p>
+<p id="n376" class="pln"><a href="#n376">376</a></p>
+<p id="n377" class="pln"><a href="#n377">377</a></p>
+<p id="n378" class="pln"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="stm run hide_run"><a href="#n380">380</a></p>
+<p id="n381" class="stm run hide_run"><a href="#n381">381</a></p>
+<p id="n382" class="stm run hide_run"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="stm run hide_run"><a href="#n384">384</a></p>
+<p id="n385" class="pln"><a href="#n385">385</a></p>
+<p id="n386" class="pln"><a href="#n386">386</a></p>
+<p id="n387" class="stm run hide_run"><a href="#n387">387</a></p>
+<p id="n388" class="pln"><a href="#n388">388</a></p>
+<p id="n389" class="pln"><a href="#n389">389</a></p>
+<p id="n390" class="pln"><a href="#n390">390</a></p>
+<p id="n391" class="pln"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="pln"><a href="#n393">393</a></p>
+<p id="n394" class="stm run hide_run"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="pln"><a href="#n396">396</a></p>
+<p id="n397" class="pln"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="pln"><a href="#n399">399</a></p>
+<p id="n400" class="pln"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="pln"><a href="#n402">402</a></p>
+<p id="n403" class="stm run hide_run"><a href="#n403">403</a></p>
+<p id="n404" class="stm run hide_run"><a href="#n404">404</a></p>
+<p id="n405" class="stm run hide_run"><a href="#n405">405</a></p>
+<p id="n406" class="stm run hide_run"><a href="#n406">406</a></p>
+<p id="n407" class="pln"><a href="#n407">407</a></p>
+<p id="n408" class="stm run hide_run"><a href="#n408">408</a></p>
+<p id="n409" class="pln"><a href="#n409">409</a></p>
+<p id="n410" class="pln"><a href="#n410">410</a></p>
+<p id="n411" class="pln"><a href="#n411">411</a></p>
+<p id="n412" class="pln"><a href="#n412">412</a></p>
+<p id="n413" class="pln"><a href="#n413">413</a></p>
+<p id="n414" class="pln"><a href="#n414">414</a></p>
+<p id="n415" class="pln"><a href="#n415">415</a></p>
+<p id="n416" class="pln"><a href="#n416">416</a></p>
+<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
+<p id="n418" class="stm run hide_run"><a href="#n418">418</a></p>
+<p id="n419" class="stm run hide_run"><a href="#n419">419</a></p>
+<p id="n420" class="stm run hide_run"><a href="#n420">420</a></p>
+<p id="n421" class="pln"><a href="#n421">421</a></p>
+<p id="n422" class="stm run hide_run"><a href="#n422">422</a></p>
+<p id="n423" class="pln"><a href="#n423">423</a></p>
+<p id="n424" class="pln"><a href="#n424">424</a></p>
+<p id="n425" class="pln"><a href="#n425">425</a></p>
+<p id="n426" class="pln"><a href="#n426">426</a></p>
+<p id="n427" class="pln"><a href="#n427">427</a></p>
+<p id="n428" class="pln"><a href="#n428">428</a></p>
+<p id="n429" class="pln"><a href="#n429">429</a></p>
+<p id="n430" class="stm run hide_run"><a href="#n430">430</a></p>
+<p id="n431" class="stm run hide_run"><a href="#n431">431</a></p>
+<p id="n432" class="stm run hide_run"><a href="#n432">432</a></p>
+<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
+<p id="n434" class="pln"><a href="#n434">434</a></p>
+<p id="n435" class="stm run hide_run"><a href="#n435">435</a></p>
+<p id="n436" class="pln"><a href="#n436">436</a></p>
+<p id="n437" class="pln"><a href="#n437">437</a></p>
+<p id="n438" class="pln"><a href="#n438">438</a></p>
+<p id="n439" class="pln"><a href="#n439">439</a></p>
+<p id="n440" class="pln"><a href="#n440">440</a></p>
+<p id="n441" class="pln"><a href="#n441">441</a></p>
+<p id="n442" class="pln"><a href="#n442">442</a></p>
+<p id="n443" class="stm run hide_run"><a href="#n443">443</a></p>
+<p id="n444" class="stm run hide_run"><a href="#n444">444</a></p>
+<p id="n445" class="stm run hide_run"><a href="#n445">445</a></p>
+<p id="n446" class="pln"><a href="#n446">446</a></p>
+<p id="n447" class="stm run hide_run"><a href="#n447">447</a></p>
+<p id="n448" class="pln"><a href="#n448">448</a></p>
+<p id="n449" class="pln"><a href="#n449">449</a></p>
+<p id="n450" class="pln"><a href="#n450">450</a></p>
+<p id="n451" class="pln"><a href="#n451">451</a></p>
+<p id="n452" class="pln"><a href="#n452">452</a></p>
+<p id="n453" class="pln"><a href="#n453">453</a></p>
+<p id="n454" class="pln"><a href="#n454">454</a></p>
+<p id="n455" class="stm run hide_run"><a href="#n455">455</a></p>
+<p id="n456" class="stm run hide_run"><a href="#n456">456</a></p>
+<p id="n457" class="stm run hide_run"><a href="#n457">457</a></p>
+<p id="n458" class="stm run hide_run"><a href="#n458">458</a></p>
+<p id="n459" class="pln"><a href="#n459">459</a></p>
+<p id="n460" class="stm run hide_run"><a href="#n460">460</a></p>
+<p id="n461" class="pln"><a href="#n461">461</a></p>
+<p id="n462" class="pln"><a href="#n462">462</a></p>
+<p id="n463" class="pln"><a href="#n463">463</a></p>
+<p id="n464" class="pln"><a href="#n464">464</a></p>
+<p id="n465" class="pln"><a href="#n465">465</a></p>
+<p id="n466" class="pln"><a href="#n466">466</a></p>
+<p id="n467" class="pln"><a href="#n467">467</a></p>
+<p id="n468" class="stm run hide_run"><a href="#n468">468</a></p>
+<p id="n469" class="stm run hide_run"><a href="#n469">469</a></p>
+<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
+<p id="n471" class="stm run hide_run"><a href="#n471">471</a></p>
+<p id="n472" class="pln"><a href="#n472">472</a></p>
+<p id="n473" class="stm run hide_run"><a href="#n473">473</a></p>
+<p id="n474" class="stm run hide_run"><a href="#n474">474</a></p>
+<p id="n475" class="pln"><a href="#n475">475</a></p>
+<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
+<p id="n477" class="stm run hide_run"><a href="#n477">477</a></p>
+<p id="n478" class="pln"><a href="#n478">478</a></p>
+<p id="n479" class="stm run hide_run"><a href="#n479">479</a></p>
+<p id="n480" class="pln"><a href="#n480">480</a></p>
+<p id="n481" class="pln"><a href="#n481">481</a></p>
+<p id="n482" class="stm run hide_run"><a href="#n482">482</a></p>
+<p id="n483" class="stm run hide_run"><a href="#n483">483</a></p>
+<p id="n484" class="pln"><a href="#n484">484</a></p>
+<p id="n485" class="pln"><a href="#n485">485</a></p>
+<p id="n486" class="pln"><a href="#n486">486</a></p>
+<p id="n487" class="pln"><a href="#n487">487</a></p>
+<p id="n488" class="pln"><a href="#n488">488</a></p>
+<p id="n489" class="pln"><a href="#n489">489</a></p>
+<p id="n490" class="pln"><a href="#n490">490</a></p>
+<p id="n491" class="pln"><a href="#n491">491</a></p>
+<p id="n492" class="pln"><a href="#n492">492</a></p>
+<p id="n493" class="stm run hide_run"><a href="#n493">493</a></p>
+<p id="n494" class="stm run hide_run"><a href="#n494">494</a></p>
+<p id="n495" class="stm run hide_run"><a href="#n495">495</a></p>
+<p id="n496" class="stm run hide_run"><a href="#n496">496</a></p>
+<p id="n497" class="pln"><a href="#n497">497</a></p>
+<p id="n498" class="pln"><a href="#n498">498</a></p>
+<p id="n499" class="stm run hide_run"><a href="#n499">499</a></p>
+<p id="n500" class="pln"><a href="#n500">500</a></p>
+<p id="n501" class="pln"><a href="#n501">501</a></p>
+<p id="n502" class="pln"><a href="#n502">502</a></p>
+<p id="n503" class="pln"><a href="#n503">503</a></p>
+<p id="n504" class="pln"><a href="#n504">504</a></p>
+<p id="n505" class="pln"><a href="#n505">505</a></p>
+<p id="n506" class="stm run hide_run"><a href="#n506">506</a></p>
+<p id="n507" class="pln"><a href="#n507">507</a></p>
+<p id="n508" class="pln"><a href="#n508">508</a></p>
+<p id="n509" class="pln"><a href="#n509">509</a></p>
+<p id="n510" class="pln"><a href="#n510">510</a></p>
+<p id="n511" class="pln"><a href="#n511">511</a></p>
+<p id="n512" class="pln"><a href="#n512">512</a></p>
+<p id="n513" class="pln"><a href="#n513">513</a></p>
+<p id="n514" class="pln"><a href="#n514">514</a></p>
+<p id="n515" class="stm run hide_run"><a href="#n515">515</a></p>
+<p id="n516" class="stm run hide_run"><a href="#n516">516</a></p>
+<p id="n517" class="stm run hide_run"><a href="#n517">517</a></p>
+<p id="n518" class="stm run hide_run"><a href="#n518">518</a></p>
+<p id="n519" class="pln"><a href="#n519">519</a></p>
+<p id="n520" class="stm run hide_run"><a href="#n520">520</a></p>
+<p id="n521" class="pln"><a href="#n521">521</a></p>
+<p id="n522" class="pln"><a href="#n522">522</a></p>
+<p id="n523" class="pln"><a href="#n523">523</a></p>
+<p id="n524" class="pln"><a href="#n524">524</a></p>
+<p id="n525" class="pln"><a href="#n525">525</a></p>
+<p id="n526" class="pln"><a href="#n526">526</a></p>
+<p id="n527" class="pln"><a href="#n527">527</a></p>
+<p id="n528" class="pln"><a href="#n528">528</a></p>
+<p id="n529" class="stm run hide_run"><a href="#n529">529</a></p>
+<p id="n530" class="stm run hide_run"><a href="#n530">530</a></p>
+<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
+<p id="n532" class="stm run hide_run"><a href="#n532">532</a></p>
+<p id="n533" class="pln"><a href="#n533">533</a></p>
+<p id="n534" class="stm run hide_run"><a href="#n534">534</a></p>
+<p id="n535" class="pln"><a href="#n535">535</a></p>
+<p id="n536" class="pln"><a href="#n536">536</a></p>
+<p id="n537" class="pln"><a href="#n537">537</a></p>
+<p id="n538" class="pln"><a href="#n538">538</a></p>
+<p id="n539" class="pln"><a href="#n539">539</a></p>
+<p id="n540" class="pln"><a href="#n540">540</a></p>
+<p id="n541" class="pln"><a href="#n541">541</a></p>
+<p id="n542" class="stm run hide_run"><a href="#n542">542</a></p>
+<p id="n543" class="stm run hide_run"><a href="#n543">543</a></p>
+<p id="n544" class="stm run hide_run"><a href="#n544">544</a></p>
+<p id="n545" class="stm run hide_run"><a href="#n545">545</a></p>
+<p id="n546" class="pln"><a href="#n546">546</a></p>
+<p id="n547" class="stm run hide_run"><a href="#n547">547</a></p>
+<p id="n548" class="pln"><a href="#n548">548</a></p>
+<p id="n549" class="pln"><a href="#n549">549</a></p>
+<p id="n550" class="pln"><a href="#n550">550</a></p>
+<p id="n551" class="pln"><a href="#n551">551</a></p>
+<p id="n552" class="pln"><a href="#n552">552</a></p>
+<p id="n553" class="pln"><a href="#n553">553</a></p>
+<p id="n554" class="pln"><a href="#n554">554</a></p>
+<p id="n555" class="stm run hide_run"><a href="#n555">555</a></p>
+<p id="n556" class="stm run hide_run"><a href="#n556">556</a></p>
+<p id="n557" class="stm run hide_run"><a href="#n557">557</a></p>
+<p id="n558" class="pln"><a href="#n558">558</a></p>
+<p id="n559" class="stm run hide_run"><a href="#n559">559</a></p>
+<p id="n560" class="pln"><a href="#n560">560</a></p>
+<p id="n561" class="pln"><a href="#n561">561</a></p>
+<p id="n562" class="pln"><a href="#n562">562</a></p>
+<p id="n563" class="pln"><a href="#n563">563</a></p>
+<p id="n564" class="pln"><a href="#n564">564</a></p>
+<p id="n565" class="pln"><a href="#n565">565</a></p>
+<p id="n566" class="pln"><a href="#n566">566</a></p>
+<p id="n567" class="stm run hide_run"><a href="#n567">567</a></p>
+<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
+<p id="n569" class="stm run hide_run"><a href="#n569">569</a></p>
+<p id="n570" class="stm run hide_run"><a href="#n570">570</a></p>
+<p id="n571" class="pln"><a href="#n571">571</a></p>
+<p id="n572" class="stm run hide_run"><a href="#n572">572</a></p>
+<p id="n573" class="pln"><a href="#n573">573</a></p>
+<p id="n574" class="pln"><a href="#n574">574</a></p>
+<p id="n575" class="pln"><a href="#n575">575</a></p>
+<p id="n576" class="pln"><a href="#n576">576</a></p>
+<p id="n577" class="pln"><a href="#n577">577</a></p>
+<p id="n578" class="pln"><a href="#n578">578</a></p>
+<p id="n579" class="pln"><a href="#n579">579</a></p>
+<p id="n580" class="stm run hide_run"><a href="#n580">580</a></p>
+<p id="n581" class="stm run hide_run"><a href="#n581">581</a></p>
+<p id="n582" class="stm run hide_run"><a href="#n582">582</a></p>
+<p id="n583" class="stm run hide_run"><a href="#n583">583</a></p>
+<p id="n584" class="pln"><a href="#n584">584</a></p>
+<p id="n585" class="stm run hide_run"><a href="#n585">585</a></p>
+<p id="n586" class="stm run hide_run"><a href="#n586">586</a></p>
+<p id="n587" class="pln"><a href="#n587">587</a></p>
+<p id="n588" class="stm run hide_run"><a href="#n588">588</a></p>
+<p id="n589" class="stm run hide_run"><a href="#n589">589</a></p>
+<p id="n590" class="pln"><a href="#n590">590</a></p>
+<p id="n591" class="stm run hide_run"><a href="#n591">591</a></p>
+<p id="n592" class="pln"><a href="#n592">592</a></p>
+<p id="n593" class="pln"><a href="#n593">593</a></p>
+<p id="n594" class="stm run hide_run"><a href="#n594">594</a></p>
+<p id="n595" class="stm run hide_run"><a href="#n595">595</a></p>
+<p id="n596" class="pln"><a href="#n596">596</a></p>
+<p id="n597" class="pln"><a href="#n597">597</a></p>
+<p id="n598" class="pln"><a href="#n598">598</a></p>
+<p id="n599" class="pln"><a href="#n599">599</a></p>
+<p id="n600" class="pln"><a href="#n600">600</a></p>
+<p id="n601" class="pln"><a href="#n601">601</a></p>
+<p id="n602" class="pln"><a href="#n602">602</a></p>
+<p id="n603" class="pln"><a href="#n603">603</a></p>
+<p id="n604" class="pln"><a href="#n604">604</a></p>
+<p id="n605" class="stm run hide_run"><a href="#n605">605</a></p>
+<p id="n606" class="stm run hide_run"><a href="#n606">606</a></p>
+<p id="n607" class="stm run hide_run"><a href="#n607">607</a></p>
+<p id="n608" class="stm run hide_run"><a href="#n608">608</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">drift</span> <span class="key">import</span> <span class="nam">DriftingParticle</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">random</span> <span class="key">import</span> <span class="nam">NormalRandomNumbers</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run"><span class="key">class</span> <span class="nam">CarpEggs</span><span class="op">(</span><span class="nam">DriftingParticle</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln">    <span class="str">"""Class representing a collection of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="str">    initial_position : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">        Must be an n by 3 array, where n is the number of eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">    simulation_clock : simulation.SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="str">        Simulation clock</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t20" class="pln"><span class="str">    random_numbers : fluegg.random.RandomNumbers, optional</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln"><span class="str">        Random number source</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln"><span class="str">    characteristic_temperature : float, optional</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="str">        The default is None</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t28" class="stm run hide_run">    <span class="nam">_reference_temperature</span> <span class="op">=</span> <span class="num">22</span>  <span class="com"># degrees Celsius</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln">                 <span class="nam">characteristic_temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm run hide_run">        <span class="key">if</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">==</span> <span class="num">3</span> <span class="key">and</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_eggs</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm run hide_run">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'Initial position array must be n by 3'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm run hide_run">        <span class="key">if</span> <span class="nam">random_numbers</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm run hide_run">            <span class="nam">random_numbers</span> <span class="op">=</span> <span class="nam">NormalRandomNumbers</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t42" class="pln">        <span class="com"># Note: Diameters internally stored in mm, diameter() outputs in m</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_init_diameter_array</span><span class="op">(</span><span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_density_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_init_reference_density_array</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln">            <span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hatching_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hatching_time</span><span class="op">(</span><span class="nam">characteristic_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_gas_bladder_inflation_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln">            <span class="nam">characteristic_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln">    <span class="key">def</span> <span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="pln">                                         <span class="nam">characteristic_temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm run hide_run">        <span class="key">if</span> <span class="nam">characteristic_temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm run hide_run">            <span class="nam">characteristic_temperature</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln">        <span class="com"># gas bladder inflation time in hours to seconds</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="stm run hide_run">        <span class="key">return</span> <span class="nam">meanctu_gas_bladder</span><span class="op">/</span><span class="op">(</span><span class="nam">characteristic_temperature</span> <span class="op">-</span> <span class="nam">tmin2</span><span class="op">)</span> <span class="op">*</span> <span class="num">3600</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t78" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="pln">        <span class="str">"""Returns the hatching time (hours) of the collection of eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t82" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t84" class="stm run hide_run">        <span class="key">if</span> <span class="nam">temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm run hide_run">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm run hide_run">        <span class="key">return</span> <span class="num">3600</span> <span class="op">*</span> <span class="op">(</span><span class="nam">a</span> <span class="op">*</span> <span class="nam">temperature</span> <span class="op">**</span> <span class="nam">b</span> <span class="op">+</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the collection</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln"><span class="str">        of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the collection</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln"><span class="str">        of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t101" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t115" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="pln">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t127" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_init_diameter_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln">        <span class="str">"""Returns an array of the diameter (mm) of the collection</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="str">        of carp eggs at each time step pulled from a normal distribution</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t135" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm run hide_run">        <span class="nam">mean_diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="stm run hide_run">        <span class="nam">diameter_std</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_std</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t138" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t139" class="stm run hide_run">        <span class="nam">diameter_array</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="nam">mean_diameter</span><span class="op">,</span> <span class="nam">diameter_std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t141" class="stm run hide_run">        <span class="nam">low_outliers</span> <span class="op">=</span> <span class="nam">mean_diameter</span> <span class="op">-</span> <span class="nam">diameter_std</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="stm run hide_run">        <span class="nam">high_outliers</span> <span class="op">=</span> <span class="nam">mean_diameter</span> <span class="op">+</span> <span class="nam">diameter_std</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t144" class="stm run hide_run">        <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">diameter_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="pln">            <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t147" class="stm run hide_run">        <span class="key">while</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">outlier_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">            <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="pln">                <span class="nam">mean_diameter</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">,</span> <span class="nam">diameter_std</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="stm mis">            <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">diameter_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="pln">                <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t153" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm run hide_run">        <span class="key">return</span> <span class="nam">diameter_array</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t157" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_init_reference_density_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="pln">        <span class="str">"""Returns an array of the density (kg/m**3) of the collection</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="pln"><span class="str">        of carp eggs at each time step pulled from a normal distribution</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t161" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="stm run hide_run">        <span class="nam">mean_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_density</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="stm run hide_run">        <span class="nam">density_std</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density_std</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t165" class="stm run hide_run">        <span class="nam">density_array</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="nam">mean_density</span><span class="op">,</span> <span class="nam">density_std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t167" class="stm run hide_run">        <span class="nam">low_outliers</span> <span class="op">=</span> <span class="nam">mean_density</span> <span class="op">-</span> <span class="nam">density_std</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="stm run hide_run">        <span class="nam">high_outliers</span> <span class="op">=</span> <span class="nam">mean_density</span> <span class="op">+</span> <span class="nam">density_std</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t170" class="stm run hide_run">        <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">density_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln">            <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t173" class="stm run hide_run">        <span class="key">while</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">outlier_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="stm mis">            <span class="nam">density_array</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t175" class="pln">                <span class="nam">mean_density</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">,</span> <span class="nam">density_std</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="stm mis">            <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">density_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln">                <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t179" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="stm run hide_run">        <span class="key">return</span> <span class="nam">density_array</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t183" class="stm run hide_run">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t184" class="pln">        <span class="str">"""Returns the density of the collection of eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t187" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="pln"><span class="str">        temperature : float</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="pln"><span class="str">            the temperature of the eggs (Celsius)</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t191" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="str">        float</span><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t195" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t197" class="stm run hide_run">        <span class="key">if</span> <span class="nam">temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="stm mis">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="stm run hide_run">        <span class="nam">density_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm run hide_run">        <span class="nam">reference_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_density_array</span><span class="op">[</span><span class="nam">density_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="stm run hide_run">        <span class="key">return</span> <span class="nam">reference_density</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t202" class="pln">            <span class="op">+</span> <span class="num">0.20646</span><span class="op">*</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_reference_temperature</span> <span class="op">-</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t204" class="stm run hide_run">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="pln">        <span class="str">"""Returns the diameter of the collection of eggs in m</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t207" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="pln"><span class="str">        float</span><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t211" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="stm run hide_run">        <span class="nam">diameter_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="pln">        <span class="com"># Convert from mm to m</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_array</span><span class="op">[</span><span class="nam">diameter_index</span><span class="op">]</span> <span class="op">/</span> <span class="num">1000</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t216" class="stm run hide_run">    <span class="key">def</span> <span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="pln">        <span class="str">"""Returns fall velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln"><span class="str">        hydraulic_results : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="pln"><span class="str">            Hydrauilc results</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t226" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t228" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t230" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time</span><span class="op">(</span><span class="op">)</span> <span class="op">></span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hatching_time</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="stm mis">            <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="stm mis">            <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t235" class="stm mis">        <span class="key">return</span> <span class="nam">fall_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t237" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t247" class="stm run hide_run">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="pln">        <span class="str">"""Returns the 3D positions of the collection of eggs in meters</span><span class="strut">&nbsp;</span></p>
+<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t250" class="pln"><span class="str">        The shape of the returned array is (number_of_eggs, 3)</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t252" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t253" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t256" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t259" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t260" class="pln">        <span class="str">"""Sets the 3D positions of the collection of eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t262" class="pln"><span class="str">        :param: positions of the colllection of eggs (m)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="pln"><span class="str">        :type: numpy.ndarray(number_of_eggs, 3)</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">position</span><span class="strut">&nbsp;</span></p>
+<p id="t266" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t268" class="stm run hide_run"><span class="key">class</span> <span class="nam">BigheadCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="pln">    <span class="str">"""Class representing a collection of Bighead carp egg</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t271" class="pln"><span class="str">    See CarpEggs for accurate signature.</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t273" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1040.4</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.5357</span><span class="strut">&nbsp;</span></p>
+<p id="t286" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t289" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
+<p id="t292" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t294" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t295" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t297" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">7.1334</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.5970</span><span class="strut">&nbsp;</span></p>
+<p id="t300" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t303" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t305" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t310" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">30.58</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1716</span><span class="strut">&nbsp;</span></p>
+<p id="t313" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.4</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t315" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t316" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t317" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t318" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t320" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t321" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t323" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t324" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">5.82</span><span class="strut">&nbsp;</span></p>
+<p id="t325" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">3506.7</span><span class="strut">&nbsp;</span></p>
+<p id="t326" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t328" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t329" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t330" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t331" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t332" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t333" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t335" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">63.12</span><span class="strut">&nbsp;</span></p>
+<p id="t337" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">595</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.6292</span><span class="strut">&nbsp;</span></p>
+<p id="t339" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t341" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t343" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t344" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t345" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t347" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t348" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t349" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.1788</span><span class="strut">&nbsp;</span></p>
+<p id="t350" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">13570.0</span><span class="strut">&nbsp;</span></p>
+<p id="t351" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.44</span><span class="strut">&nbsp;</span></p>
+<p id="t352" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t354" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t355" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t357" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t358" class="pln"><span class="str">        :param temperature:</span><span class="strut">&nbsp;</span></p>
+<p id="t359" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t360" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t361" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t362" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.4</span><span class="strut">&nbsp;</span></p>
+<p id="t363" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1161.07</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t365" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t367" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t368" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t369" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t370" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t373" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
+<p id="t374" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
+<p id="t375" class="pln"><span class="str">        :return: hatching time of eggs (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t376" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t377" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t378" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t380" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">35703</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">2.223</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t384" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t386" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t387" class="stm run hide_run"><span class="key">class</span> <span class="nam">SilverCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t388" class="pln">    <span class="str">"""Class representing a collection of Silver carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t389" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t390" class="pln"><span class="str">    See CarpEggs for accurate signature</span><span class="strut">&nbsp;</span></p>
+<p id="t391" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t394" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t396" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
+<p id="t397" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t399" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t400" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t402" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1036.1</span><span class="strut">&nbsp;</span></p>
+<p id="t404" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.7680</span><span class="strut">&nbsp;</span></p>
+<p id="t405" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
+<p id="t406" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
+<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t408" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t409" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t410" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
+<p id="t411" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t413" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t414" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t415" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t416" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t417" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">5.6000</span><span class="strut">&nbsp;</span></p>
+<p id="t418" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.6980</span><span class="strut">&nbsp;</span></p>
+<p id="t419" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t420" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t421" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t422" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t423" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t424" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t425" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t426" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t427" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t428" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t429" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t430" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">25.2</span><span class="strut">&nbsp;</span></p>
+<p id="t431" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2259</span><span class="strut">&nbsp;</span></p>
+<p id="t432" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.3</span><span class="strut">&nbsp;</span></p>
+<p id="t433" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t434" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t435" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t436" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t437" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t438" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t439" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t440" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t441" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t442" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t443" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">4.66</span><span class="strut">&nbsp;</span></p>
+<p id="t444" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2635.9</span><span class="strut">&nbsp;</span></p>
+<p id="t445" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t446" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t447" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t448" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t449" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t451" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t452" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t453" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t454" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t455" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">22.4</span><span class="strut">&nbsp;</span></p>
+<p id="t456" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1894</span><span class="strut">&nbsp;</span></p>
+<p id="t457" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.4103</span><span class="strut">&nbsp;</span></p>
+<p id="t458" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t459" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t460" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t461" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t462" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t463" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t464" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t465" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t466" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t467" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t468" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.2631</span><span class="strut">&nbsp;</span></p>
+<p id="t469" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">22410</span><span class="strut">&nbsp;</span></p>
+<p id="t470" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.3073</span><span class="strut">&nbsp;</span></p>
+<p id="t471" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t472" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t473" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t474" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t475" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t476" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.3</span><span class="strut">&nbsp;</span></p>
+<p id="t477" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1084.59</span><span class="strut">&nbsp;</span></p>
+<p id="t478" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t479" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t480" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t481" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t482" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t483" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t484" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t485" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t486" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t487" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
+<p id="t488" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
+<p id="t489" class="pln"><span class="str">        :return: hatching time of eggs (hr)</span><span class="strut">&nbsp;</span></p>
+<p id="t490" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t491" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t492" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t493" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">1.2087e+7</span><span class="strut">&nbsp;</span></p>
+<p id="t494" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">4.2664</span><span class="strut">&nbsp;</span></p>
+<p id="t495" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">10.242</span><span class="strut">&nbsp;</span></p>
+<p id="t496" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t497" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t498" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t499" class="stm run hide_run"><span class="key">class</span> <span class="nam">GrassCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t500" class="pln">    <span class="str">"""Class representing a collection of Grass carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t501" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t502" class="pln"><span class="str">    See CarpEggs for accurate signature</span><span class="strut">&nbsp;</span></p>
+<p id="t503" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t504" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t505" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t506" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t507" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t508" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
+<p id="t509" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t511" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t512" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t513" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t514" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t515" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1.0473e+3</span><span class="strut">&nbsp;</span></p>
+<p id="t516" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.4118</span><span class="strut">&nbsp;</span></p>
+<p id="t517" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
+<p id="t518" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
+<p id="t519" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t520" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t521" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t522" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
+<p id="t523" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
+<p id="t524" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t525" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t526" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t527" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t528" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t529" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">5.6750</span><span class="strut">&nbsp;</span></p>
+<p id="t530" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.2250</span><span class="strut">&nbsp;</span></p>
+<p id="t531" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t532" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t533" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t534" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t535" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t536" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t537" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t538" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t539" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t540" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t541" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t542" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">29.09</span><span class="strut">&nbsp;</span></p>
+<p id="t543" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1812</span><span class="strut">&nbsp;</span></p>
+<p id="t544" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.8</span><span class="strut">&nbsp;</span></p>
+<p id="t545" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t546" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t547" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t548" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
+<p id="t549" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t550" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t551" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t552" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t553" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t554" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t555" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">4.56</span><span class="strut">&nbsp;</span></p>
+<p id="t556" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2314</span><span class="strut">&nbsp;</span></p>
+<p id="t557" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t558" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t559" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t560" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t561" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t562" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t563" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t564" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t565" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t566" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t567" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">19.28</span><span class="strut">&nbsp;</span></p>
+<p id="t568" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1973</span><span class="strut">&nbsp;</span></p>
+<p id="t569" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">1.029</span><span class="strut">&nbsp;</span></p>
+<p id="t570" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t571" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t572" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t573" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
+<p id="t574" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t575" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t576" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t577" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t578" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t579" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t580" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.4759</span><span class="strut">&nbsp;</span></p>
+<p id="t581" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">14150</span><span class="strut">&nbsp;</span></p>
+<p id="t582" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.4586</span><span class="strut">&nbsp;</span></p>
+<p id="t583" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t584" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t585" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t586" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t587" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t588" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.3</span><span class="strut">&nbsp;</span></p>
+<p id="t589" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1100.82</span><span class="strut">&nbsp;</span></p>
+<p id="t590" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t591" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t592" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t593" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t594" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t595" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t596" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t597" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t598" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t599" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
+<p id="t600" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
+<p id="t601" class="pln"><span class="str">        :return: hatching time of eggs (hr)</span><span class="strut">&nbsp;</span></p>
+<p id="t602" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t603" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t604" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t605" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">3.677e+7</span><span class="strut">&nbsp;</span></p>
+<p id="t606" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">4.788</span><span class="strut">&nbsp;</span></p>
+<p id="t607" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">18.87</span><span class="strut">&nbsp;</span></p>
+<p id="t608" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_drift_py.html b/coverage_report/fluegg_drift_py.html
new file mode 100644
index 0000000..a4b7b4c
--- /dev/null
+++ b/coverage_report/fluegg_drift_py.html
@@ -0,0 +1,393 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\drift.py: 89%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\drift.py</b> :
+            <span class="pc_cov">89%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            56 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">50 run</span>
+            <span class="mis shortkey_m button_toggle_mis">6 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="pln"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="pln"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
+<p id="n32" class="stm run hide_run"><a href="#n32">32</a></p>
+<p id="n33" class="stm run hide_run"><a href="#n33">33</a></p>
+<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
+<p id="n35" class="stm run hide_run"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
+<p id="n40" class="pln"><a href="#n40">40</a></p>
+<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
+<p id="n42" class="pln"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="pln"><a href="#n44">44</a></p>
+<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
+<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="stm mis"><a href="#n50">50</a></p>
+<p id="n51" class="pln"><a href="#n51">51</a></p>
+<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm mis"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="stm run hide_run"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="stm run hide_run"><a href="#n69">69</a></p>
+<p id="n70" class="stm run hide_run"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
+<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
+<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="pln"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="stm run hide_run"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm mis"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="stm run hide_run"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="stm mis"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="stm run hide_run"><a href="#n96">96</a></p>
+<p id="n97" class="pln"><a href="#n97">97</a></p>
+<p id="n98" class="stm run hide_run"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
+<p id="n101" class="stm run hide_run"><a href="#n101">101</a></p>
+<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
+<p id="n103" class="pln"><a href="#n103">103</a></p>
+<p id="n104" class="stm run hide_run"><a href="#n104">104</a></p>
+<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
+<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
+<p id="n111" class="pln"><a href="#n111">111</a></p>
+<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="stm mis"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="pln"><a href="#n117">117</a></p>
+<p id="n118" class="stm run hide_run"><a href="#n118">118</a></p>
+<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
+<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
+<p id="n123" class="pln"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+<p id="n125" class="pln"><a href="#n125">125</a></p>
+<p id="n126" class="pln"><a href="#n126">126</a></p>
+<p id="n127" class="pln"><a href="#n127">127</a></p>
+<p id="n128" class="stm run hide_run"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="stm run hide_run"><a href="#n130">130</a></p>
+<p id="n131" class="pln"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="pln"><a href="#n134">134</a></p>
+<p id="n135" class="pln"><a href="#n135">135</a></p>
+<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="stm run hide_run"><a href="#n138">138</a></p>
+<p id="n139" class="pln"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="pln"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="pln"><a href="#n143">143</a></p>
+<p id="n144" class="stm run hide_run"><a href="#n144">144</a></p>
+<p id="n145" class="pln"><a href="#n145">145</a></p>
+<p id="n146" class="stm run hide_run"><a href="#n146">146</a></p>
+<p id="n147" class="pln"><a href="#n147">147</a></p>
+<p id="n148" class="pln"><a href="#n148">148</a></p>
+<p id="n149" class="pln"><a href="#n149">149</a></p>
+<p id="n150" class="pln"><a href="#n150">150</a></p>
+<p id="n151" class="pln"><a href="#n151">151</a></p>
+<p id="n152" class="stm run hide_run"><a href="#n152">152</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t6" class="stm run hide_run"><span class="key">class</span> <span class="nam">DriftingParticle</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln">    <span class="key">def</span> <span class="nam">_dietrich_equation</span><span class="op">(</span><span class="nam">water_viscosity</span><span class="op">,</span> <span class="nam">water_density</span><span class="op">,</span> <span class="nam">particle_diameter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln">                           <span class="nam">particle_density</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln">        <span class="str">"""Returns the settling velocity (cm/s) of particles</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="str">        calculated using the Dietrich equation.</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="str">        :param water_viscosity: water viscosity (cm**2/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="str">        :param water_density: water density (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="str">        :param particle_diameter: particle diameter (cm)</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="pln"><span class="str">        :param particle_density: particle density (kg/m**3)</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln"><span class="str">        :return: settling velocity of particle in water (cm/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln">        <span class="com"># Specific gravity of particle</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">        <span class="nam">specific_gravity</span> <span class="op">=</span> <span class="nam">particle_density</span> <span class="op">/</span> <span class="nam">water_density</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln">        <span class="com"># Gravitational acceleration (cm/s**2)</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm run hide_run">        <span class="nam">gravity</span> <span class="op">=</span> <span class="num">981</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln">        <span class="com"># Constants</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm run hide_run">        <span class="nam">b1</span> <span class="op">=</span> <span class="num">2.891394</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="stm run hide_run">        <span class="nam">b2</span> <span class="op">=</span> <span class="num">0.95296</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm run hide_run">        <span class="nam">b3</span> <span class="op">=</span> <span class="num">0.056835</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm run hide_run">        <span class="nam">b4</span> <span class="op">=</span> <span class="num">0.002892</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="stm run hide_run">        <span class="nam">b5</span> <span class="op">=</span> <span class="num">0.000245</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln">        <span class="com"># Particle Reynold's number</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm run hide_run">        <span class="nam">temporary</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="op">(</span><span class="nam">specific_gravity</span> <span class="op">-</span> <span class="num">1</span><span class="op">)</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln">                            <span class="nam">gravity</span> <span class="op">*</span> <span class="nam">particle_diameter</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm run hide_run">        <span class="nam">reynolds_number</span> <span class="op">=</span> <span class="op">(</span><span class="nam">particle_diameter</span> <span class="op">*</span> <span class="nam">temporary</span><span class="op">)</span> <span class="op">/</span> <span class="nam">water_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="pln">        <span class="com"># Rf = Dimensionless terminal particle settling velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm run hide_run">        <span class="nam">Rf</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">b1</span> <span class="op">+</span> <span class="op">(</span><span class="nam">b2</span> <span class="op">*</span> <span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span><span class="op">)</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="pln">                    <span class="op">(</span><span class="nam">b3</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="op">)</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln">                    <span class="op">(</span><span class="nam">b4</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">3</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="pln">                    <span class="op">(</span><span class="nam">b5</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">4</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm run hide_run">        <span class="nam">settling_velocity</span> <span class="op">=</span> <span class="nam">Rf</span> <span class="op">*</span> <span class="nam">temporary</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm run hide_run">        <span class="key">return</span> <span class="nam">settling_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t56" class="stm run hide_run">    <span class="key">def</span> <span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln">        <span class="str">"""Wrapper for the dietrich equation, returns fall velocity of</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">        particles (m/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="str">        :return: settling velocity of particle in water (m/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln">        <span class="com"># Calculate the fall velocity using Dietrich Equation based on</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln">        <span class="com"># particle data</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="stm run hide_run">        <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">temperature</span><span class="op">(</span><span class="op">)</span>  <span class="com"># Celsius</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm run hide_run">        <span class="nam">water_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln">        <span class="op">)</span> <span class="op">*</span> <span class="num">100</span> <span class="op">**</span> <span class="num">2</span>  <span class="com"># Convert from m**2/s to cm**2/s</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm run hide_run">        <span class="nam">water_density</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_density</span><span class="op">(</span><span class="op">)</span>  <span class="com"># kg/m**3</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm run hide_run">        <span class="nam">particle_diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span> <span class="op">*</span> <span class="num">100</span>  <span class="com"># Convert from m to cm</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm run hide_run">        <span class="nam">particle_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span>  <span class="com"># kg/m**3</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln">        <span class="com"># calculate fall velocity as cm/s</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_dietrich_equation</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln">            <span class="nam">water_viscosity</span><span class="op">,</span> <span class="nam">water_density</span><span class="op">,</span> <span class="nam">particle_diameter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln">            <span class="nam">particle_density</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln">        <span class="com"># change fall velocity sign to coordinate system</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="op">-</span><span class="nam">fall_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln">        <span class="com"># convert fall velocity from cm/s to m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm run hide_run">        <span class="key">return</span> <span class="nam">fall_velocity</span> <span class="op">/</span> <span class="num">100</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t96" class="stm run hide_run"><span class="key">class</span> <span class="nam">ConstantDriftingParticle</span><span class="op">(</span><span class="nam">DriftingParticle</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">density</span><span class="op">,</span> <span class="nam">diameter</span><span class="op">,</span> <span class="nam">initial_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm run hide_run">        <span class="nam">initial_position</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm run hide_run">        <span class="nam">density</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">density</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">diameter</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t104" class="stm run hide_run">        <span class="key">if</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">==</span> <span class="num">3</span> <span class="key">and</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_eggs</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'Initial position array must be n by 3'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm run hide_run">        <span class="nam">number_of_particles</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm run hide_run">        <span class="key">if</span> <span class="nam">density</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">!=</span> <span class="nam">number_of_particles</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln">                <span class="key">or</span> <span class="nam">diameter</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">!=</span> <span class="nam">number_of_particles</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln">                <span class="str">'The zero axis of density, diameter, and initial_position '</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln">                <span class="str">'must be consistent'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t118" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_density</span> <span class="op">=</span> <span class="nam">density</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter</span> <span class="op">=</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm run hide_run">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t125" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t128" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t130" class="stm run hide_run">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t138" class="stm run hide_run">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t141" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t144" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t149" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t152" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">position</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_gui___init___py.html b/coverage_report/fluegg_gui___init___py.html
new file mode 100644
index 0000000..f798c84
--- /dev/null
+++ b/coverage_report/fluegg_gui___init___py.html
@@ -0,0 +1,89 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\gui\__init__.py: 100%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\gui\__init__.py</b> :
+            <span class="pc_cov">100%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            0 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">0 run</span>
+            <span class="mis shortkey_m button_toggle_mis">0 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+
+            </td>
+            <td class="text">
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_gui_gui_layout_py.html b/coverage_report/fluegg_gui_gui_layout_py.html
new file mode 100644
index 0000000..78a11f3
--- /dev/null
+++ b/coverage_report/fluegg_gui_gui_layout_py.html
@@ -0,0 +1,665 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\gui\gui_layout.py: 1%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\gui\gui_layout.py</b> :
+            <span class="pc_cov">1%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            276 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">4 run</span>
+            <span class="mis shortkey_m button_toggle_mis">272 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="pln"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="pln"><a href="#n3">3</a></p>
+<p id="n4" class="pln"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
+<p id="n13" class="stm mis"><a href="#n13">13</a></p>
+<p id="n14" class="stm mis"><a href="#n14">14</a></p>
+<p id="n15" class="stm mis"><a href="#n15">15</a></p>
+<p id="n16" class="stm mis"><a href="#n16">16</a></p>
+<p id="n17" class="stm mis"><a href="#n17">17</a></p>
+<p id="n18" class="stm mis"><a href="#n18">18</a></p>
+<p id="n19" class="stm mis"><a href="#n19">19</a></p>
+<p id="n20" class="stm mis"><a href="#n20">20</a></p>
+<p id="n21" class="stm mis"><a href="#n21">21</a></p>
+<p id="n22" class="stm mis"><a href="#n22">22</a></p>
+<p id="n23" class="stm mis"><a href="#n23">23</a></p>
+<p id="n24" class="stm mis"><a href="#n24">24</a></p>
+<p id="n25" class="stm mis"><a href="#n25">25</a></p>
+<p id="n26" class="stm mis"><a href="#n26">26</a></p>
+<p id="n27" class="stm mis"><a href="#n27">27</a></p>
+<p id="n28" class="stm mis"><a href="#n28">28</a></p>
+<p id="n29" class="stm mis"><a href="#n29">29</a></p>
+<p id="n30" class="stm mis"><a href="#n30">30</a></p>
+<p id="n31" class="stm mis"><a href="#n31">31</a></p>
+<p id="n32" class="stm mis"><a href="#n32">32</a></p>
+<p id="n33" class="stm mis"><a href="#n33">33</a></p>
+<p id="n34" class="stm mis"><a href="#n34">34</a></p>
+<p id="n35" class="stm mis"><a href="#n35">35</a></p>
+<p id="n36" class="stm mis"><a href="#n36">36</a></p>
+<p id="n37" class="stm mis"><a href="#n37">37</a></p>
+<p id="n38" class="stm mis"><a href="#n38">38</a></p>
+<p id="n39" class="stm mis"><a href="#n39">39</a></p>
+<p id="n40" class="stm mis"><a href="#n40">40</a></p>
+<p id="n41" class="stm mis"><a href="#n41">41</a></p>
+<p id="n42" class="stm mis"><a href="#n42">42</a></p>
+<p id="n43" class="stm mis"><a href="#n43">43</a></p>
+<p id="n44" class="stm mis"><a href="#n44">44</a></p>
+<p id="n45" class="stm mis"><a href="#n45">45</a></p>
+<p id="n46" class="stm mis"><a href="#n46">46</a></p>
+<p id="n47" class="stm mis"><a href="#n47">47</a></p>
+<p id="n48" class="stm mis"><a href="#n48">48</a></p>
+<p id="n49" class="stm mis"><a href="#n49">49</a></p>
+<p id="n50" class="stm mis"><a href="#n50">50</a></p>
+<p id="n51" class="stm mis"><a href="#n51">51</a></p>
+<p id="n52" class="stm mis"><a href="#n52">52</a></p>
+<p id="n53" class="stm mis"><a href="#n53">53</a></p>
+<p id="n54" class="stm mis"><a href="#n54">54</a></p>
+<p id="n55" class="stm mis"><a href="#n55">55</a></p>
+<p id="n56" class="stm mis"><a href="#n56">56</a></p>
+<p id="n57" class="stm mis"><a href="#n57">57</a></p>
+<p id="n58" class="stm mis"><a href="#n58">58</a></p>
+<p id="n59" class="stm mis"><a href="#n59">59</a></p>
+<p id="n60" class="stm mis"><a href="#n60">60</a></p>
+<p id="n61" class="stm mis"><a href="#n61">61</a></p>
+<p id="n62" class="stm mis"><a href="#n62">62</a></p>
+<p id="n63" class="stm mis"><a href="#n63">63</a></p>
+<p id="n64" class="stm mis"><a href="#n64">64</a></p>
+<p id="n65" class="stm mis"><a href="#n65">65</a></p>
+<p id="n66" class="stm mis"><a href="#n66">66</a></p>
+<p id="n67" class="stm mis"><a href="#n67">67</a></p>
+<p id="n68" class="stm mis"><a href="#n68">68</a></p>
+<p id="n69" class="stm mis"><a href="#n69">69</a></p>
+<p id="n70" class="stm mis"><a href="#n70">70</a></p>
+<p id="n71" class="stm mis"><a href="#n71">71</a></p>
+<p id="n72" class="stm mis"><a href="#n72">72</a></p>
+<p id="n73" class="stm mis"><a href="#n73">73</a></p>
+<p id="n74" class="stm mis"><a href="#n74">74</a></p>
+<p id="n75" class="stm mis"><a href="#n75">75</a></p>
+<p id="n76" class="stm mis"><a href="#n76">76</a></p>
+<p id="n77" class="stm mis"><a href="#n77">77</a></p>
+<p id="n78" class="stm mis"><a href="#n78">78</a></p>
+<p id="n79" class="stm mis"><a href="#n79">79</a></p>
+<p id="n80" class="stm mis"><a href="#n80">80</a></p>
+<p id="n81" class="stm mis"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="stm mis"><a href="#n83">83</a></p>
+<p id="n84" class="stm mis"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="stm mis"><a href="#n86">86</a></p>
+<p id="n87" class="stm mis"><a href="#n87">87</a></p>
+<p id="n88" class="stm mis"><a href="#n88">88</a></p>
+<p id="n89" class="stm mis"><a href="#n89">89</a></p>
+<p id="n90" class="stm mis"><a href="#n90">90</a></p>
+<p id="n91" class="stm mis"><a href="#n91">91</a></p>
+<p id="n92" class="stm mis"><a href="#n92">92</a></p>
+<p id="n93" class="stm mis"><a href="#n93">93</a></p>
+<p id="n94" class="stm mis"><a href="#n94">94</a></p>
+<p id="n95" class="stm mis"><a href="#n95">95</a></p>
+<p id="n96" class="stm mis"><a href="#n96">96</a></p>
+<p id="n97" class="stm mis"><a href="#n97">97</a></p>
+<p id="n98" class="stm mis"><a href="#n98">98</a></p>
+<p id="n99" class="stm mis"><a href="#n99">99</a></p>
+<p id="n100" class="stm mis"><a href="#n100">100</a></p>
+<p id="n101" class="stm mis"><a href="#n101">101</a></p>
+<p id="n102" class="stm mis"><a href="#n102">102</a></p>
+<p id="n103" class="stm mis"><a href="#n103">103</a></p>
+<p id="n104" class="stm mis"><a href="#n104">104</a></p>
+<p id="n105" class="stm mis"><a href="#n105">105</a></p>
+<p id="n106" class="stm mis"><a href="#n106">106</a></p>
+<p id="n107" class="stm mis"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="stm mis"><a href="#n109">109</a></p>
+<p id="n110" class="stm mis"><a href="#n110">110</a></p>
+<p id="n111" class="stm mis"><a href="#n111">111</a></p>
+<p id="n112" class="stm mis"><a href="#n112">112</a></p>
+<p id="n113" class="stm mis"><a href="#n113">113</a></p>
+<p id="n114" class="stm mis"><a href="#n114">114</a></p>
+<p id="n115" class="stm mis"><a href="#n115">115</a></p>
+<p id="n116" class="stm mis"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="stm mis"><a href="#n118">118</a></p>
+<p id="n119" class="stm mis"><a href="#n119">119</a></p>
+<p id="n120" class="stm mis"><a href="#n120">120</a></p>
+<p id="n121" class="stm mis"><a href="#n121">121</a></p>
+<p id="n122" class="stm mis"><a href="#n122">122</a></p>
+<p id="n123" class="stm mis"><a href="#n123">123</a></p>
+<p id="n124" class="stm mis"><a href="#n124">124</a></p>
+<p id="n125" class="stm mis"><a href="#n125">125</a></p>
+<p id="n126" class="stm mis"><a href="#n126">126</a></p>
+<p id="n127" class="stm mis"><a href="#n127">127</a></p>
+<p id="n128" class="stm mis"><a href="#n128">128</a></p>
+<p id="n129" class="stm mis"><a href="#n129">129</a></p>
+<p id="n130" class="stm mis"><a href="#n130">130</a></p>
+<p id="n131" class="stm mis"><a href="#n131">131</a></p>
+<p id="n132" class="stm mis"><a href="#n132">132</a></p>
+<p id="n133" class="stm mis"><a href="#n133">133</a></p>
+<p id="n134" class="stm mis"><a href="#n134">134</a></p>
+<p id="n135" class="stm mis"><a href="#n135">135</a></p>
+<p id="n136" class="stm mis"><a href="#n136">136</a></p>
+<p id="n137" class="stm mis"><a href="#n137">137</a></p>
+<p id="n138" class="stm mis"><a href="#n138">138</a></p>
+<p id="n139" class="stm mis"><a href="#n139">139</a></p>
+<p id="n140" class="stm mis"><a href="#n140">140</a></p>
+<p id="n141" class="stm mis"><a href="#n141">141</a></p>
+<p id="n142" class="stm mis"><a href="#n142">142</a></p>
+<p id="n143" class="stm mis"><a href="#n143">143</a></p>
+<p id="n144" class="stm mis"><a href="#n144">144</a></p>
+<p id="n145" class="stm mis"><a href="#n145">145</a></p>
+<p id="n146" class="stm mis"><a href="#n146">146</a></p>
+<p id="n147" class="stm mis"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="stm mis"><a href="#n149">149</a></p>
+<p id="n150" class="stm mis"><a href="#n150">150</a></p>
+<p id="n151" class="stm mis"><a href="#n151">151</a></p>
+<p id="n152" class="stm mis"><a href="#n152">152</a></p>
+<p id="n153" class="stm mis"><a href="#n153">153</a></p>
+<p id="n154" class="stm mis"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="stm mis"><a href="#n156">156</a></p>
+<p id="n157" class="stm mis"><a href="#n157">157</a></p>
+<p id="n158" class="stm mis"><a href="#n158">158</a></p>
+<p id="n159" class="stm mis"><a href="#n159">159</a></p>
+<p id="n160" class="stm mis"><a href="#n160">160</a></p>
+<p id="n161" class="stm mis"><a href="#n161">161</a></p>
+<p id="n162" class="stm mis"><a href="#n162">162</a></p>
+<p id="n163" class="stm mis"><a href="#n163">163</a></p>
+<p id="n164" class="stm mis"><a href="#n164">164</a></p>
+<p id="n165" class="stm mis"><a href="#n165">165</a></p>
+<p id="n166" class="stm mis"><a href="#n166">166</a></p>
+<p id="n167" class="stm mis"><a href="#n167">167</a></p>
+<p id="n168" class="stm mis"><a href="#n168">168</a></p>
+<p id="n169" class="stm mis"><a href="#n169">169</a></p>
+<p id="n170" class="stm mis"><a href="#n170">170</a></p>
+<p id="n171" class="stm mis"><a href="#n171">171</a></p>
+<p id="n172" class="stm mis"><a href="#n172">172</a></p>
+<p id="n173" class="stm mis"><a href="#n173">173</a></p>
+<p id="n174" class="stm mis"><a href="#n174">174</a></p>
+<p id="n175" class="stm mis"><a href="#n175">175</a></p>
+<p id="n176" class="stm mis"><a href="#n176">176</a></p>
+<p id="n177" class="stm mis"><a href="#n177">177</a></p>
+<p id="n178" class="stm mis"><a href="#n178">178</a></p>
+<p id="n179" class="stm mis"><a href="#n179">179</a></p>
+<p id="n180" class="stm mis"><a href="#n180">180</a></p>
+<p id="n181" class="stm mis"><a href="#n181">181</a></p>
+<p id="n182" class="stm mis"><a href="#n182">182</a></p>
+<p id="n183" class="stm mis"><a href="#n183">183</a></p>
+<p id="n184" class="stm mis"><a href="#n184">184</a></p>
+<p id="n185" class="stm mis"><a href="#n185">185</a></p>
+<p id="n186" class="stm mis"><a href="#n186">186</a></p>
+<p id="n187" class="stm mis"><a href="#n187">187</a></p>
+<p id="n188" class="stm mis"><a href="#n188">188</a></p>
+<p id="n189" class="stm mis"><a href="#n189">189</a></p>
+<p id="n190" class="stm mis"><a href="#n190">190</a></p>
+<p id="n191" class="stm mis"><a href="#n191">191</a></p>
+<p id="n192" class="stm mis"><a href="#n192">192</a></p>
+<p id="n193" class="stm mis"><a href="#n193">193</a></p>
+<p id="n194" class="stm mis"><a href="#n194">194</a></p>
+<p id="n195" class="stm mis"><a href="#n195">195</a></p>
+<p id="n196" class="stm mis"><a href="#n196">196</a></p>
+<p id="n197" class="stm mis"><a href="#n197">197</a></p>
+<p id="n198" class="stm mis"><a href="#n198">198</a></p>
+<p id="n199" class="stm mis"><a href="#n199">199</a></p>
+<p id="n200" class="stm mis"><a href="#n200">200</a></p>
+<p id="n201" class="stm mis"><a href="#n201">201</a></p>
+<p id="n202" class="stm mis"><a href="#n202">202</a></p>
+<p id="n203" class="stm mis"><a href="#n203">203</a></p>
+<p id="n204" class="stm mis"><a href="#n204">204</a></p>
+<p id="n205" class="stm mis"><a href="#n205">205</a></p>
+<p id="n206" class="stm mis"><a href="#n206">206</a></p>
+<p id="n207" class="stm mis"><a href="#n207">207</a></p>
+<p id="n208" class="stm mis"><a href="#n208">208</a></p>
+<p id="n209" class="stm mis"><a href="#n209">209</a></p>
+<p id="n210" class="stm mis"><a href="#n210">210</a></p>
+<p id="n211" class="stm mis"><a href="#n211">211</a></p>
+<p id="n212" class="stm mis"><a href="#n212">212</a></p>
+<p id="n213" class="stm mis"><a href="#n213">213</a></p>
+<p id="n214" class="stm mis"><a href="#n214">214</a></p>
+<p id="n215" class="stm mis"><a href="#n215">215</a></p>
+<p id="n216" class="stm mis"><a href="#n216">216</a></p>
+<p id="n217" class="stm mis"><a href="#n217">217</a></p>
+<p id="n218" class="stm mis"><a href="#n218">218</a></p>
+<p id="n219" class="stm mis"><a href="#n219">219</a></p>
+<p id="n220" class="stm mis"><a href="#n220">220</a></p>
+<p id="n221" class="stm mis"><a href="#n221">221</a></p>
+<p id="n222" class="stm mis"><a href="#n222">222</a></p>
+<p id="n223" class="stm mis"><a href="#n223">223</a></p>
+<p id="n224" class="stm mis"><a href="#n224">224</a></p>
+<p id="n225" class="stm mis"><a href="#n225">225</a></p>
+<p id="n226" class="stm mis"><a href="#n226">226</a></p>
+<p id="n227" class="stm mis"><a href="#n227">227</a></p>
+<p id="n228" class="stm mis"><a href="#n228">228</a></p>
+<p id="n229" class="stm mis"><a href="#n229">229</a></p>
+<p id="n230" class="stm mis"><a href="#n230">230</a></p>
+<p id="n231" class="stm mis"><a href="#n231">231</a></p>
+<p id="n232" class="stm mis"><a href="#n232">232</a></p>
+<p id="n233" class="stm mis"><a href="#n233">233</a></p>
+<p id="n234" class="stm mis"><a href="#n234">234</a></p>
+<p id="n235" class="stm mis"><a href="#n235">235</a></p>
+<p id="n236" class="stm mis"><a href="#n236">236</a></p>
+<p id="n237" class="stm mis"><a href="#n237">237</a></p>
+<p id="n238" class="stm mis"><a href="#n238">238</a></p>
+<p id="n239" class="stm mis"><a href="#n239">239</a></p>
+<p id="n240" class="stm mis"><a href="#n240">240</a></p>
+<p id="n241" class="stm mis"><a href="#n241">241</a></p>
+<p id="n242" class="stm mis"><a href="#n242">242</a></p>
+<p id="n243" class="stm mis"><a href="#n243">243</a></p>
+<p id="n244" class="stm mis"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="stm mis"><a href="#n246">246</a></p>
+<p id="n247" class="stm mis"><a href="#n247">247</a></p>
+<p id="n248" class="stm mis"><a href="#n248">248</a></p>
+<p id="n249" class="stm mis"><a href="#n249">249</a></p>
+<p id="n250" class="stm mis"><a href="#n250">250</a></p>
+<p id="n251" class="stm mis"><a href="#n251">251</a></p>
+<p id="n252" class="pln"><a href="#n252">252</a></p>
+<p id="n253" class="stm mis"><a href="#n253">253</a></p>
+<p id="n254" class="stm mis"><a href="#n254">254</a></p>
+<p id="n255" class="pln"><a href="#n255">255</a></p>
+<p id="n256" class="stm run hide_run"><a href="#n256">256</a></p>
+<p id="n257" class="stm mis"><a href="#n257">257</a></p>
+<p id="n258" class="stm mis"><a href="#n258">258</a></p>
+<p id="n259" class="stm mis"><a href="#n259">259</a></p>
+<p id="n260" class="stm mis"><a href="#n260">260</a></p>
+<p id="n261" class="stm mis"><a href="#n261">261</a></p>
+<p id="n262" class="stm mis"><a href="#n262">262</a></p>
+<p id="n263" class="stm mis"><a href="#n263">263</a></p>
+<p id="n264" class="stm mis"><a href="#n264">264</a></p>
+<p id="n265" class="stm mis"><a href="#n265">265</a></p>
+<p id="n266" class="stm mis"><a href="#n266">266</a></p>
+<p id="n267" class="stm mis"><a href="#n267">267</a></p>
+<p id="n268" class="stm mis"><a href="#n268">268</a></p>
+<p id="n269" class="stm mis"><a href="#n269">269</a></p>
+<p id="n270" class="stm mis"><a href="#n270">270</a></p>
+<p id="n271" class="stm mis"><a href="#n271">271</a></p>
+<p id="n272" class="stm mis"><a href="#n272">272</a></p>
+<p id="n273" class="stm mis"><a href="#n273">273</a></p>
+<p id="n274" class="stm mis"><a href="#n274">274</a></p>
+<p id="n275" class="stm mis"><a href="#n275">275</a></p>
+<p id="n276" class="stm mis"><a href="#n276">276</a></p>
+<p id="n277" class="stm mis"><a href="#n277">277</a></p>
+<p id="n278" class="stm mis"><a href="#n278">278</a></p>
+<p id="n279" class="stm mis"><a href="#n279">279</a></p>
+<p id="n280" class="stm mis"><a href="#n280">280</a></p>
+<p id="n281" class="stm mis"><a href="#n281">281</a></p>
+<p id="n282" class="stm mis"><a href="#n282">282</a></p>
+<p id="n283" class="stm mis"><a href="#n283">283</a></p>
+<p id="n284" class="stm mis"><a href="#n284">284</a></p>
+<p id="n285" class="stm mis"><a href="#n285">285</a></p>
+<p id="n286" class="stm mis"><a href="#n286">286</a></p>
+<p id="n287" class="stm mis"><a href="#n287">287</a></p>
+<p id="n288" class="pln"><a href="#n288">288</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="pln"><span class="com"># -*- coding: utf-8 -*-</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="pln"><span class="com"># Form implementation generated from reading ui file 'gui_layout.ui'</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln"><span class="com"># Created by: PyQt5 UI code generator 5.11.3</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="com"># WARNING! All changes made in this file will be lost!</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">class</span> <span class="nam">Ui_MainWindow</span><span class="op">(</span><span class="nam">object</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">MainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="num">334</span><span class="op">,</span> <span class="num">523</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"centralwidget"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setWhatsThis</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_11"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">.</span><span class="nam">setWhatsThis</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_14"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_csv"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setReadOnly</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_csv"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_hecras"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setReadOnly</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_hecras"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_browse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_parabolic_constant"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_parabolic"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_constant"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">        <span class="nam">spacerItem</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="stm mis">        <span class="nam">font</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QFont</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm mis">        <span class="nam">font</span><span class="op">.</span><span class="nam">setBold</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="stm mis">        <span class="nam">font</span><span class="op">.</span><span class="nam">setWeight</span><span class="op">(</span><span class="num">50</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setFont</span><span class="op">(</span><span class="nam">font</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_x"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_x"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_y"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_y"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_z"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_z"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="stm mis">        <span class="nam">spacerItem1</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_number_of_eggs"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_number_of_eggs"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="stm mis">        <span class="nam">spacerItem2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t138" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_grass"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t141" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_silver"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_bighead"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm mis">        <span class="nam">spacerItem3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t153" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_12"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t157" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_10"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_varying_dd"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_constant_dd"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="stm mis">        <span class="nam">spacerItem4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t165" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_10"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t173" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t175" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_13"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t181" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_forward"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t184" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_reverse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t187" class="stm mis">        <span class="nam">spacerItem5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t191" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t194" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_duration"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t195" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_duration"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="stm mis">        <span class="nam">spacerItem6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t202" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_time_step"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_time_step"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t210" class="stm mis">        <span class="nam">spacerItem7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t211" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_11"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_simulation_name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_simulation_name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t221" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="stm mis">        <span class="nam">spacerItem8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t226" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_15"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t228" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_run"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t230" class="stm mis">        <span class="nam">spacerItem9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t235" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setCentralWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QMenuBar</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">setGeometry</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QRect</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">334</span><span class="op">,</span> <span class="num">22</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"menubar"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QMenu</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"menuAbout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setMenuBar</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QStatusBar</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"statusbar"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setStatusBar</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QAction</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"actionVersion"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t247" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QAction</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"actionHelp"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t249" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t250" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">menuAction</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t253" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="stm mis">        <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QMetaObject</span><span class="op">.</span><span class="nam">connectSlotsByName</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t256" class="stm run hide_run">    <span class="key">def</span> <span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">MainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="stm mis">        <span class="nam">_translate</span> <span class="op">=</span> <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QCoreApplication</span><span class="op">.</span><span class="nam">translate</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"MainWindow"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t259" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"1) Hydraulic Channel"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t260" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"CSV"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setPlaceholderText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"path/to/hydraulics.csv"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"HECRAS"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setPlaceholderText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"hecras project"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Browse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Parabolic-Constant"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Parabolic"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Constant"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t268" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"2) Eggs"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Initial Position (m): X"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Y"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t271" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Z"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Number of Eggs"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Grass"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Silver"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Bighead"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Varying &#961; / d"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Constant &#961; / d"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"3) Simulation"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Forward"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t280" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Reverse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Duration (s)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"&#916;t (s)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Simulation Name"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Run"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"About"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t286" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Version"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Help"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_gui_gui_py.html b/coverage_report/fluegg_gui_gui_py.html
new file mode 100644
index 0000000..67e6762
--- /dev/null
+++ b/coverage_report/fluegg_gui_gui_py.html
@@ -0,0 +1,923 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\gui\gui.py: 11%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\gui\gui.py</b> :
+            <span class="pc_cov">11%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            254 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">29 run</span>
+            <span class="mis shortkey_m button_toggle_mis">225 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="pln"><a href="#n1">1</a></p>
+<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="stm run hide_run"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="stm mis"><a href="#n19">19</a></p>
+<p id="n20" class="stm mis"><a href="#n20">20</a></p>
+<p id="n21" class="stm mis"><a href="#n21">21</a></p>
+<p id="n22" class="stm mis"><a href="#n22">22</a></p>
+<p id="n23" class="stm mis"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="stm mis"><a href="#n29">29</a></p>
+<p id="n30" class="stm mis"><a href="#n30">30</a></p>
+<p id="n31" class="stm mis"><a href="#n31">31</a></p>
+<p id="n32" class="stm mis"><a href="#n32">32</a></p>
+<p id="n33" class="stm mis"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="stm mis"><a href="#n36">36</a></p>
+<p id="n37" class="stm mis"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="stm mis"><a href="#n40">40</a></p>
+<p id="n41" class="stm mis"><a href="#n41">41</a></p>
+<p id="n42" class="stm mis"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="pln"><a href="#n44">44</a></p>
+<p id="n45" class="stm mis"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="pln"><a href="#n48">48</a></p>
+<p id="n49" class="stm mis"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="stm mis"><a href="#n51">51</a></p>
+<p id="n52" class="pln"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="stm mis"><a href="#n56">56</a></p>
+<p id="n57" class="stm mis"><a href="#n57">57</a></p>
+<p id="n58" class="stm mis"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="stm mis"><a href="#n63">63</a></p>
+<p id="n64" class="stm mis"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="stm mis"><a href="#n67">67</a></p>
+<p id="n68" class="stm mis"><a href="#n68">68</a></p>
+<p id="n69" class="stm mis"><a href="#n69">69</a></p>
+<p id="n70" class="stm mis"><a href="#n70">70</a></p>
+<p id="n71" class="stm mis"><a href="#n71">71</a></p>
+<p id="n72" class="stm mis"><a href="#n72">72</a></p>
+<p id="n73" class="stm mis"><a href="#n73">73</a></p>
+<p id="n74" class="stm mis"><a href="#n74">74</a></p>
+<p id="n75" class="stm mis"><a href="#n75">75</a></p>
+<p id="n76" class="stm mis"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="stm mis"><a href="#n78">78</a></p>
+<p id="n79" class="stm mis"><a href="#n79">79</a></p>
+<p id="n80" class="stm mis"><a href="#n80">80</a></p>
+<p id="n81" class="stm mis"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="stm mis"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="pln"><a href="#n85">85</a></p>
+<p id="n86" class="stm mis"><a href="#n86">86</a></p>
+<p id="n87" class="stm mis"><a href="#n87">87</a></p>
+<p id="n88" class="stm mis"><a href="#n88">88</a></p>
+<p id="n89" class="pln"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="stm mis"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="stm run hide_run"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="stm mis"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
+<p id="n98" class="pln"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="stm mis"><a href="#n100">100</a></p>
+<p id="n101" class="stm mis"><a href="#n101">101</a></p>
+<p id="n102" class="pln"><a href="#n102">102</a></p>
+<p id="n103" class="stm mis"><a href="#n103">103</a></p>
+<p id="n104" class="stm mis"><a href="#n104">104</a></p>
+<p id="n105" class="pln"><a href="#n105">105</a></p>
+<p id="n106" class="pln"><a href="#n106">106</a></p>
+<p id="n107" class="stm mis"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="pln"><a href="#n110">110</a></p>
+<p id="n111" class="stm mis"><a href="#n111">111</a></p>
+<p id="n112" class="stm mis"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="stm mis"><a href="#n118">118</a></p>
+<p id="n119" class="pln"><a href="#n119">119</a></p>
+<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="stm mis"><a href="#n122">122</a></p>
+<p id="n123" class="stm mis"><a href="#n123">123</a></p>
+<p id="n124" class="stm mis"><a href="#n124">124</a></p>
+<p id="n125" class="stm mis"><a href="#n125">125</a></p>
+<p id="n126" class="pln"><a href="#n126">126</a></p>
+<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="stm mis"><a href="#n130">130</a></p>
+<p id="n131" class="stm mis"><a href="#n131">131</a></p>
+<p id="n132" class="stm mis"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="stm mis"><a href="#n134">134</a></p>
+<p id="n135" class="stm mis"><a href="#n135">135</a></p>
+<p id="n136" class="pln"><a href="#n136">136</a></p>
+<p id="n137" class="stm mis"><a href="#n137">137</a></p>
+<p id="n138" class="stm mis"><a href="#n138">138</a></p>
+<p id="n139" class="pln"><a href="#n139">139</a></p>
+<p id="n140" class="stm run hide_run"><a href="#n140">140</a></p>
+<p id="n141" class="pln"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="pln"><a href="#n143">143</a></p>
+<p id="n144" class="pln"><a href="#n144">144</a></p>
+<p id="n145" class="stm mis"><a href="#n145">145</a></p>
+<p id="n146" class="stm mis"><a href="#n146">146</a></p>
+<p id="n147" class="stm mis"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="stm mis"><a href="#n149">149</a></p>
+<p id="n150" class="stm mis"><a href="#n150">150</a></p>
+<p id="n151" class="stm mis"><a href="#n151">151</a></p>
+<p id="n152" class="pln"><a href="#n152">152</a></p>
+<p id="n153" class="pln"><a href="#n153">153</a></p>
+<p id="n154" class="stm mis"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="pln"><a href="#n156">156</a></p>
+<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
+<p id="n158" class="pln"><a href="#n158">158</a></p>
+<p id="n159" class="stm mis"><a href="#n159">159</a></p>
+<p id="n160" class="stm mis"><a href="#n160">160</a></p>
+<p id="n161" class="stm mis"><a href="#n161">161</a></p>
+<p id="n162" class="stm mis"><a href="#n162">162</a></p>
+<p id="n163" class="pln"><a href="#n163">163</a></p>
+<p id="n164" class="stm mis"><a href="#n164">164</a></p>
+<p id="n165" class="pln"><a href="#n165">165</a></p>
+<p id="n166" class="stm mis"><a href="#n166">166</a></p>
+<p id="n167" class="stm mis"><a href="#n167">167</a></p>
+<p id="n168" class="stm mis"><a href="#n168">168</a></p>
+<p id="n169" class="stm mis"><a href="#n169">169</a></p>
+<p id="n170" class="stm mis"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="stm mis"><a href="#n172">172</a></p>
+<p id="n173" class="stm mis"><a href="#n173">173</a></p>
+<p id="n174" class="pln"><a href="#n174">174</a></p>
+<p id="n175" class="pln"><a href="#n175">175</a></p>
+<p id="n176" class="stm run hide_run"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="pln"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="stm run hide_run"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="stm mis"><a href="#n183">183</a></p>
+<p id="n184" class="stm mis"><a href="#n184">184</a></p>
+<p id="n185" class="stm mis"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="pln"><a href="#n187">187</a></p>
+<p id="n188" class="stm mis"><a href="#n188">188</a></p>
+<p id="n189" class="stm mis"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="pln"><a href="#n191">191</a></p>
+<p id="n192" class="stm mis"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="stm mis"><a href="#n195">195</a></p>
+<p id="n196" class="stm mis"><a href="#n196">196</a></p>
+<p id="n197" class="pln"><a href="#n197">197</a></p>
+<p id="n198" class="pln"><a href="#n198">198</a></p>
+<p id="n199" class="stm mis"><a href="#n199">199</a></p>
+<p id="n200" class="stm mis"><a href="#n200">200</a></p>
+<p id="n201" class="stm mis"><a href="#n201">201</a></p>
+<p id="n202" class="stm mis"><a href="#n202">202</a></p>
+<p id="n203" class="stm mis"><a href="#n203">203</a></p>
+<p id="n204" class="stm mis"><a href="#n204">204</a></p>
+<p id="n205" class="pln"><a href="#n205">205</a></p>
+<p id="n206" class="pln"><a href="#n206">206</a></p>
+<p id="n207" class="stm mis"><a href="#n207">207</a></p>
+<p id="n208" class="stm mis"><a href="#n208">208</a></p>
+<p id="n209" class="stm mis"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="pln"><a href="#n211">211</a></p>
+<p id="n212" class="pln"><a href="#n212">212</a></p>
+<p id="n213" class="stm mis"><a href="#n213">213</a></p>
+<p id="n214" class="stm mis"><a href="#n214">214</a></p>
+<p id="n215" class="pln"><a href="#n215">215</a></p>
+<p id="n216" class="stm mis"><a href="#n216">216</a></p>
+<p id="n217" class="stm mis"><a href="#n217">217</a></p>
+<p id="n218" class="pln"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="stm mis"><a href="#n221">221</a></p>
+<p id="n222" class="stm mis"><a href="#n222">222</a></p>
+<p id="n223" class="stm mis"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="stm mis"><a href="#n225">225</a></p>
+<p id="n226" class="stm mis"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="pln"><a href="#n228">228</a></p>
+<p id="n229" class="stm mis"><a href="#n229">229</a></p>
+<p id="n230" class="pln"><a href="#n230">230</a></p>
+<p id="n231" class="pln"><a href="#n231">231</a></p>
+<p id="n232" class="stm mis"><a href="#n232">232</a></p>
+<p id="n233" class="stm mis"><a href="#n233">233</a></p>
+<p id="n234" class="stm mis"><a href="#n234">234</a></p>
+<p id="n235" class="stm mis"><a href="#n235">235</a></p>
+<p id="n236" class="stm mis"><a href="#n236">236</a></p>
+<p id="n237" class="pln"><a href="#n237">237</a></p>
+<p id="n238" class="pln"><a href="#n238">238</a></p>
+<p id="n239" class="stm mis"><a href="#n239">239</a></p>
+<p id="n240" class="stm mis"><a href="#n240">240</a></p>
+<p id="n241" class="stm mis"><a href="#n241">241</a></p>
+<p id="n242" class="stm mis"><a href="#n242">242</a></p>
+<p id="n243" class="stm mis"><a href="#n243">243</a></p>
+<p id="n244" class="stm mis"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="pln"><a href="#n246">246</a></p>
+<p id="n247" class="pln"><a href="#n247">247</a></p>
+<p id="n248" class="stm mis"><a href="#n248">248</a></p>
+<p id="n249" class="pln"><a href="#n249">249</a></p>
+<p id="n250" class="stm run hide_run"><a href="#n250">250</a></p>
+<p id="n251" class="pln"><a href="#n251">251</a></p>
+<p id="n252" class="stm mis"><a href="#n252">252</a></p>
+<p id="n253" class="pln"><a href="#n253">253</a></p>
+<p id="n254" class="stm run hide_run"><a href="#n254">254</a></p>
+<p id="n255" class="pln"><a href="#n255">255</a></p>
+<p id="n256" class="stm mis"><a href="#n256">256</a></p>
+<p id="n257" class="pln"><a href="#n257">257</a></p>
+<p id="n258" class="stm run hide_run"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="pln"><a href="#n260">260</a></p>
+<p id="n261" class="stm mis"><a href="#n261">261</a></p>
+<p id="n262" class="stm mis"><a href="#n262">262</a></p>
+<p id="n263" class="stm mis"><a href="#n263">263</a></p>
+<p id="n264" class="stm mis"><a href="#n264">264</a></p>
+<p id="n265" class="stm mis"><a href="#n265">265</a></p>
+<p id="n266" class="stm mis"><a href="#n266">266</a></p>
+<p id="n267" class="pln"><a href="#n267">267</a></p>
+<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
+<p id="n269" class="pln"><a href="#n269">269</a></p>
+<p id="n270" class="stm mis"><a href="#n270">270</a></p>
+<p id="n271" class="pln"><a href="#n271">271</a></p>
+<p id="n272" class="stm mis"><a href="#n272">272</a></p>
+<p id="n273" class="stm mis"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="pln"><a href="#n275">275</a></p>
+<p id="n276" class="stm mis"><a href="#n276">276</a></p>
+<p id="n277" class="pln"><a href="#n277">277</a></p>
+<p id="n278" class="stm mis"><a href="#n278">278</a></p>
+<p id="n279" class="pln"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="stm mis"><a href="#n281">281</a></p>
+<p id="n282" class="stm mis"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="pln"><a href="#n284">284</a></p>
+<p id="n285" class="stm mis"><a href="#n285">285</a></p>
+<p id="n286" class="pln"><a href="#n286">286</a></p>
+<p id="n287" class="pln"><a href="#n287">287</a></p>
+<p id="n288" class="stm mis"><a href="#n288">288</a></p>
+<p id="n289" class="stm mis"><a href="#n289">289</a></p>
+<p id="n290" class="stm mis"><a href="#n290">290</a></p>
+<p id="n291" class="stm mis"><a href="#n291">291</a></p>
+<p id="n292" class="pln"><a href="#n292">292</a></p>
+<p id="n293" class="stm run hide_run"><a href="#n293">293</a></p>
+<p id="n294" class="pln"><a href="#n294">294</a></p>
+<p id="n295" class="pln"><a href="#n295">295</a></p>
+<p id="n296" class="stm mis"><a href="#n296">296</a></p>
+<p id="n297" class="pln"><a href="#n297">297</a></p>
+<p id="n298" class="stm mis"><a href="#n298">298</a></p>
+<p id="n299" class="pln"><a href="#n299">299</a></p>
+<p id="n300" class="pln"><a href="#n300">300</a></p>
+<p id="n301" class="stm mis"><a href="#n301">301</a></p>
+<p id="n302" class="pln"><a href="#n302">302</a></p>
+<p id="n303" class="stm mis"><a href="#n303">303</a></p>
+<p id="n304" class="pln"><a href="#n304">304</a></p>
+<p id="n305" class="stm mis"><a href="#n305">305</a></p>
+<p id="n306" class="pln"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="stm mis"><a href="#n308">308</a></p>
+<p id="n309" class="stm mis"><a href="#n309">309</a></p>
+<p id="n310" class="stm mis"><a href="#n310">310</a></p>
+<p id="n311" class="pln"><a href="#n311">311</a></p>
+<p id="n312" class="pln"><a href="#n312">312</a></p>
+<p id="n313" class="stm mis"><a href="#n313">313</a></p>
+<p id="n314" class="stm mis"><a href="#n314">314</a></p>
+<p id="n315" class="pln"><a href="#n315">315</a></p>
+<p id="n316" class="pln"><a href="#n316">316</a></p>
+<p id="n317" class="stm mis"><a href="#n317">317</a></p>
+<p id="n318" class="stm mis"><a href="#n318">318</a></p>
+<p id="n319" class="stm mis"><a href="#n319">319</a></p>
+<p id="n320" class="stm mis"><a href="#n320">320</a></p>
+<p id="n321" class="pln"><a href="#n321">321</a></p>
+<p id="n322" class="stm mis"><a href="#n322">322</a></p>
+<p id="n323" class="stm mis"><a href="#n323">323</a></p>
+<p id="n324" class="pln"><a href="#n324">324</a></p>
+<p id="n325" class="stm mis"><a href="#n325">325</a></p>
+<p id="n326" class="stm mis"><a href="#n326">326</a></p>
+<p id="n327" class="stm mis"><a href="#n327">327</a></p>
+<p id="n328" class="stm mis"><a href="#n328">328</a></p>
+<p id="n329" class="stm mis"><a href="#n329">329</a></p>
+<p id="n330" class="stm mis"><a href="#n330">330</a></p>
+<p id="n331" class="stm mis"><a href="#n331">331</a></p>
+<p id="n332" class="stm mis"><a href="#n332">332</a></p>
+<p id="n333" class="stm mis"><a href="#n333">333</a></p>
+<p id="n334" class="stm mis"><a href="#n334">334</a></p>
+<p id="n335" class="pln"><a href="#n335">335</a></p>
+<p id="n336" class="stm mis"><a href="#n336">336</a></p>
+<p id="n337" class="stm mis"><a href="#n337">337</a></p>
+<p id="n338" class="pln"><a href="#n338">338</a></p>
+<p id="n339" class="pln"><a href="#n339">339</a></p>
+<p id="n340" class="stm mis"><a href="#n340">340</a></p>
+<p id="n341" class="stm mis"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="stm mis"><a href="#n343">343</a></p>
+<p id="n344" class="stm mis"><a href="#n344">344</a></p>
+<p id="n345" class="pln"><a href="#n345">345</a></p>
+<p id="n346" class="stm mis"><a href="#n346">346</a></p>
+<p id="n347" class="stm mis"><a href="#n347">347</a></p>
+<p id="n348" class="pln"><a href="#n348">348</a></p>
+<p id="n349" class="stm mis"><a href="#n349">349</a></p>
+<p id="n350" class="stm mis"><a href="#n350">350</a></p>
+<p id="n351" class="pln"><a href="#n351">351</a></p>
+<p id="n352" class="stm mis"><a href="#n352">352</a></p>
+<p id="n353" class="pln"><a href="#n353">353</a></p>
+<p id="n354" class="stm mis"><a href="#n354">354</a></p>
+<p id="n355" class="stm mis"><a href="#n355">355</a></p>
+<p id="n356" class="stm mis"><a href="#n356">356</a></p>
+<p id="n357" class="pln"><a href="#n357">357</a></p>
+<p id="n358" class="stm mis"><a href="#n358">358</a></p>
+<p id="n359" class="stm mis"><a href="#n359">359</a></p>
+<p id="n360" class="pln"><a href="#n360">360</a></p>
+<p id="n361" class="stm mis"><a href="#n361">361</a></p>
+<p id="n362" class="stm mis"><a href="#n362">362</a></p>
+<p id="n363" class="pln"><a href="#n363">363</a></p>
+<p id="n364" class="stm mis"><a href="#n364">364</a></p>
+<p id="n365" class="stm mis"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="stm mis"><a href="#n367">367</a></p>
+<p id="n368" class="stm mis"><a href="#n368">368</a></p>
+<p id="n369" class="pln"><a href="#n369">369</a></p>
+<p id="n370" class="stm mis"><a href="#n370">370</a></p>
+<p id="n371" class="stm mis"><a href="#n371">371</a></p>
+<p id="n372" class="pln"><a href="#n372">372</a></p>
+<p id="n373" class="stm mis"><a href="#n373">373</a></p>
+<p id="n374" class="stm mis"><a href="#n374">374</a></p>
+<p id="n375" class="pln"><a href="#n375">375</a></p>
+<p id="n376" class="pln"><a href="#n376">376</a></p>
+<p id="n377" class="stm mis"><a href="#n377">377</a></p>
+<p id="n378" class="stm mis"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="stm mis"><a href="#n380">380</a></p>
+<p id="n381" class="stm mis"><a href="#n381">381</a></p>
+<p id="n382" class="pln"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="stm mis"><a href="#n384">384</a></p>
+<p id="n385" class="stm mis"><a href="#n385">385</a></p>
+<p id="n386" class="pln"><a href="#n386">386</a></p>
+<p id="n387" class="stm mis"><a href="#n387">387</a></p>
+<p id="n388" class="stm mis"><a href="#n388">388</a></p>
+<p id="n389" class="pln"><a href="#n389">389</a></p>
+<p id="n390" class="stm mis"><a href="#n390">390</a></p>
+<p id="n391" class="stm mis"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="stm mis"><a href="#n393">393</a></p>
+<p id="n394" class="stm mis"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="stm mis"><a href="#n396">396</a></p>
+<p id="n397" class="stm mis"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="stm mis"><a href="#n399">399</a></p>
+<p id="n400" class="stm mis"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="stm mis"><a href="#n402">402</a></p>
+<p id="n403" class="stm mis"><a href="#n403">403</a></p>
+<p id="n404" class="pln"><a href="#n404">404</a></p>
+<p id="n405" class="pln"><a href="#n405">405</a></p>
+<p id="n406" class="stm mis"><a href="#n406">406</a></p>
+<p id="n407" class="pln"><a href="#n407">407</a></p>
+<p id="n408" class="stm mis"><a href="#n408">408</a></p>
+<p id="n409" class="stm mis"><a href="#n409">409</a></p>
+<p id="n410" class="stm mis"><a href="#n410">410</a></p>
+<p id="n411" class="stm mis"><a href="#n411">411</a></p>
+<p id="n412" class="pln"><a href="#n412">412</a></p>
+<p id="n413" class="stm mis"><a href="#n413">413</a></p>
+<p id="n414" class="stm mis"><a href="#n414">414</a></p>
+<p id="n415" class="stm mis"><a href="#n415">415</a></p>
+<p id="n416" class="pln"><a href="#n416">416</a></p>
+<p id="n417" class="stm mis"><a href="#n417">417</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="pln"><span class="com"># Import PyQT for gui</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">sys</span><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">traceback</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">datetime</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">platform</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span><span class="op">.</span><span class="nam">QtWidgets</span> <span class="key">import</span> <span class="nam">QMainWindow</span><span class="op">,</span> <span class="nam">QApplication</span><span class="op">,</span> <span class="nam">QMessageBox</span><span class="op">,</span> <span class="nam">QDialog</span><span class="op">,</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln">    <span class="nam">QAction</span><span class="op">,</span> <span class="nam">QWidget</span><span class="op">,</span> <span class="nam">QDesktopWidget</span><span class="op">,</span> <span class="nam">QFileDialog</span><span class="op">,</span> <span class="nam">QProgressBar</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">uic</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">gui</span><span class="op">.</span><span class="nam">gui_layout</span> <span class="key">import</span> <span class="nam">Ui_MainWindow</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">gui</span><span class="op">.</span><span class="nam">hecras_dialog</span> <span class="key">import</span> <span class="nam">Ui_HecrasDialog</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">simulation</span> <span class="key">import</span> <span class="nam">from_input_dict</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">ras</span> <span class="key">import</span> <span class="nam">RASProject</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm run hide_run"><span class="key">def</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">buttons</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln">    <span class="str">"""Given a list of grouped radio buttons, returns the checked one"""</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm mis">    <span class="nam">checked</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm mis">    <span class="key">for</span> <span class="nam">button</span> <span class="key">in</span> <span class="nam">buttons</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm mis">        <span class="key">if</span> <span class="nam">button</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm mis">            <span class="nam">checked</span> <span class="op">=</span> <span class="nam">button</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm mis">    <span class="key">return</span> <span class="nam">checked</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm run hide_run"><span class="key">class</span> <span class="nam">HecrasDialog</span><span class="op">(</span><span class="nam">QDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">main_window</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln">        <span class="com"># Initialization</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm mis">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span> <span class="op">=</span> <span class="nam">Ui_HecrasDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="str">"Hecras Settings"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span> <span class="op">=</span> <span class="nam">main_window</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln">        <span class="com"># Set line edit validators</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QDoubleValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln">        <span class="com"># Push button handles</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_ok</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_cancel</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t44" class="pln">        <span class="com"># Combo box handles</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentIndexChanged</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_plan_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="pln">        <span class="com"># Radio button handles</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_steadiness_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_steadiness_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setup</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln">        <span class="str">"""Initial setup of dialog"""</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_plans</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_ok</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln">        <span class="str">"""Handle function for clicking OK"""</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln">        <span class="com"># Initialize variables</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="stm mis">        <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="stm mis">        <span class="nam">error_message</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln">        <span class="com"># Check to ensure all fields filled</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS project.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS plan.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS profile.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="stm mis">        <span class="nam">steadiness_buttons</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">steadiness_buttons</span><span class="op">)</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a steadiness type.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input a valid temperature.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t85" class="pln">        <span class="com"># Save inputs if valid input</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="stm mis">        <span class="key">if</span> <span class="nam">valid_inputs</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">save_hecras_settings</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="pln">        <span class="com"># Display error message if invalid inputs</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm mis">            <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">error_message</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t93" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_cancel</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln">        <span class="str">"""Handle function for clicking Cancel"""</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_browse</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="pln">        <span class="str">"""Handle function for clicking Browse"""</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln">        <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm mis">        <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="pln">            <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span> <span class="str">"HECRAS Project File (*.prj)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="stm mis">            <span class="key">return</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t106" class="pln">        <span class="com"># Update line edits</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t110" class="pln">        <span class="com"># Populate dialog with ras options</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_plans</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_plan_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln">        <span class="str">"""Handle function for changing current plan"""</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln">        <span class="com"># Populate profile based on current plan in ras project</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">hasFocus</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_steadiness_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln">        <span class="str">"""Handle function for changing steadiness option (steady vs. unsteady)"""</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t127" class="stm run hide_run">    <span class="key">def</span> <span class="nam">populate_plans</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln">        <span class="str">"""Populates the plans combo box"""</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln">        <span class="com"># Populate plans using current project</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="stm mis">            <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln">                <span class="com"># Clear and populate plans</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">clear</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">addItems</span><span class="op">(</span><span class="nam">rp</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="pln">                <span class="com"># Set current plan to 1st plan</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="stm mis">                <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t138" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">setCurrentIndex</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t140" class="stm run hide_run">    <span class="key">def</span> <span class="nam">populate_profiles</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t141" class="pln">        <span class="str">"""Populates the profiles combo box</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln"><span class="str">        enables the combo box when steady is checked</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="pln"><span class="str">        disables the combo box when unsteady is checked"""</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="pln">        <span class="com"># Populate profiles using current project</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">            <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="stm mis">                <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">clear</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">addItems</span><span class="op">(</span><span class="nam">rp</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t153" class="pln">        <span class="com"># Disable profiles when unsteady button is checked</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t157" class="stm run hide_run">    <span class="key">def</span> <span class="nam">save_hecras_settings</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="pln">        <span class="str">"""Saves settings from hecras dialog to main window"""</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="stm mis">        <span class="nam">mw</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_project</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_plan</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="stm mis">        <span class="nam">steadiness_buttons</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_steadiness</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t165" class="pln">            <span class="nam">steadiness_buttons</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="stm mis">            <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="stm mis">            <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="str">'Unsteady'</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_temperature</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln">        <span class="com"># Get datetime</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="stm mis">        <span class="nam">dt</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">.</span><span class="nam">dateTime</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t173" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_start_time</span> <span class="op">=</span> <span class="nam">dt</span><span class="op">.</span><span class="nam">toPyDateTime</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t175" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t176" class="stm run hide_run"><span class="key">class</span> <span class="nam">AppWindow</span><span class="op">(</span><span class="nam">QMainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln">    <span class="str">"""Class that defines the main window of the ui.</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="str">    It links the pre-generated ui created by the .ui to .py GUI files</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="pln"><span class="str">    with the functionality of the main_functions methods"""</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln">        <span class="com"># Initialization of ui window</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="stm mis">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t184" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span> <span class="op">=</span> <span class="nam">Ui_MainWindow</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t187" class="pln">        <span class="com"># FluEgg version</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">version</span> <span class="op">=</span> <span class="str">'FluEgg 0.0 - Python3.7'</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t191" class="pln">        <span class="com"># FluEgg help message</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">help</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln">        <span class="com"># Input validators</span><span class="strut">&nbsp;</span></p>
+<p id="t195" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">intV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QIntValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QDoubleValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t198" class="pln">        <span class="com"># Set line edit validators</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t202" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t206" class="pln">        <span class="com"># Scale ui window to half desktop size</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="stm mis">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">QDesktopWidget</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">availableGeometry</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">size</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">width</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="stm mis">        <span class="nam">height</span> <span class="op">=</span> <span class="nam">QDesktopWidget</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">availableGeometry</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">size</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">height</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="nam">int</span><span class="op">(</span><span class="nam">width</span><span class="op">*</span><span class="num">.2</span><span class="op">)</span><span class="op">,</span> <span class="nam">int</span><span class="op">(</span><span class="nam">height</span><span class="op">*</span><span class="num">0.4</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t211" class="pln">        <span class="com"># Define connections between ui events and handle functions</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="pln">        <span class="com"># Menu Buttons</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">triggered</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">triggered</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_help</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="pln">        <span class="com"># Hydraulic Channel</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_hydraulic_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_hydraulic_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln">        <span class="com"># disable ras options if not on Windows</span><span class="strut">&nbsp;</span></p>
+<p id="t221" class="stm mis">        <span class="key">if</span> <span class="key">not</span> <span class="nam">RASProject</span><span class="op">.</span><span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t225" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t226" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln">        <span class="com"># Eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t228" class="pln">        <span class="com"># Simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_run</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t230" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t231" class="pln">        <span class="com"># default selection</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t235" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t238" class="pln">        <span class="com"># Hecras saved information</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_project</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_plan</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_steadiness</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_temperature</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_start_time</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t247" class="pln">        <span class="com"># Display the ui</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">show</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t250" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_version</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="pln">        <span class="str">"""Handle function for clicking About > Version"""</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="stm mis">        <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">about</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Version'</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t253" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t254" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_help</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="pln">        <span class="str">"""Handle function for clicking About > Help"""</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="stm mis">        <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">about</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Help'</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">help</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t258" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_hydraulic_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln">        <span class="str">"""Handle function for changing the Hydraulic Channel input"""</span><span class="strut">&nbsp;</span></p>
+<p id="t260" class="pln">        <span class="com"># self.ui.pushButton_browse.setEnabled(True)</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t268" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_browse</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="pln">        <span class="str">"""Handle function for clicking Browse"""</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t271" class="pln">            <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="stm mis">            <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln">                <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t275" class="pln">                <span class="str">"CSV File (*.csv)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t278" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln">            <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="stm mis">            <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln">                <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="pln">                <span class="str">"HECRAS Project File (*.prj)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t286" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t287" class="pln">            <span class="com"># Hecras dialog</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span> <span class="op">=</span> <span class="nam">HecrasDialog</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t289" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">show</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">setup</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t292" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t293" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_run</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t294" class="pln">        <span class="str">"""Handle function for clicking Run"""</span><span class="strut">&nbsp;</span></p>
+<p id="t295" class="pln">        <span class="com"># Radio button groups</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="stm mis">        <span class="nam">hydraulic_inputs</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t297" class="pln">                            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="stm mis">        <span class="nam">diffusitvities</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="pln">                          <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t300" class="pln">                          <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="stm mis">        <span class="nam">species</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="pln">                   <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t303" class="stm mis">        <span class="nam">varying_dd</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="pln">                      <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t305" class="stm mis">        <span class="nam">direction</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln">        <span class="com"># Initialize input and error flag</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="stm mis">        <span class="nam">d</span> <span class="op">=</span> <span class="op">{</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="stm mis">        <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="stm mis">        <span class="nam">error_message</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t312" class="pln">        <span class="com"># Fill dictionary and perform input error checking</span><span class="strut">&nbsp;</span></p>
+<p id="t313" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">hydraulic_inputs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t315" class="pln">                <span class="nam">hydraulic_inputs</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t316" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t317" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'csv'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t318" class="stm mis">                <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t320" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t321" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="stm mis">                    <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Load the hydraulic csv file.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t323" class="stm mis">                    <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t324" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t325" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'hecras'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t326" class="stm mis">                <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t328" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t329" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_project'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_project</span><span class="strut">&nbsp;</span></p>
+<p id="t330" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_plan'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_plan</span><span class="strut">&nbsp;</span></p>
+<p id="t331" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_profile'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_profile</span><span class="strut">&nbsp;</span></p>
+<p id="t332" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_steadiness'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_steadiness</span><span class="strut">&nbsp;</span></p>
+<p id="t333" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_temperature'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t334" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_start_time'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_start_time</span><span class="strut">&nbsp;</span></p>
+<p id="t335" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="stm mis">                    <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Load the hydraulic hecras project.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t337" class="stm mis">                    <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t339" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a hydraulic data type.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t341" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t343" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">diffusitvities</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t344" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t345" class="pln">                <span class="nam">diffusitvities</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'parabolic_constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t347" class="stm mis">                <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">=</span> <span class="str">'parabolic-constant'</span><span class="strut">&nbsp;</span></p>
+<p id="t348" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t349" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a diffusivity profile.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t350" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t351" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t352" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span> <span class="key">and</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="pln">            <span class="op">!=</span> <span class="str">''</span> <span class="key">and</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t354" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t355" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t357" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t358" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input X,Y,Z values.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t359" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t360" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t361" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t362" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t363" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input number of eggs.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t365" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t367" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">species</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t368" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">species</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t369" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t370" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose species.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t373" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">varying_dd</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t374" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t375" class="pln">                <span class="nam">varying_dd</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">-</span><span class="num">3</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t376" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t377" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose varying or constant density/diameter.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t378" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t380" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">direction</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="pln">                <span class="nam">direction</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t384" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose simulation direction.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t385" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t386" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t387" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t388" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t389" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t390" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation duration.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t391" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t393" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t394" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t396" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation time step.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t397" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t399" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t400" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t402" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation name.\n'</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t405" class="pln">        <span class="com"># Run simulation OR show gui error message.</span><span class="strut">&nbsp;</span></p>
+<p id="t406" class="stm mis">        <span class="key">if</span> <span class="nam">valid_inputs</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t407" class="pln">            <span class="com"># Show error message from backend gui so gui doesn't crash</span><span class="strut">&nbsp;</span></p>
+<p id="t408" class="stm mis">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t409" class="stm mis">                <span class="nam">sim</span> <span class="op">=</span> <span class="nam">from_input_dict</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t410" class="stm mis">                <span class="nam">results</span> <span class="op">=</span> <span class="nam">sim</span><span class="op">.</span><span class="nam">run</span><span class="op">(</span><span class="nam">configuration</span><span class="op">=</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t411" class="stm mis">                <span class="nam">results</span><span class="op">.</span><span class="nam">save_results</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t413" class="stm mis">            <span class="key">except</span> <span class="nam">Exception</span> <span class="key">as</span> <span class="nam">e</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t414" class="stm mis">                <span class="nam">traceback</span><span class="op">.</span><span class="nam">print_exc</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t415" class="stm mis">                <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">str</span><span class="op">(</span><span class="nam">e</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t416" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t417" class="stm mis">            <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">error_message</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_gui_hecras_dialog_py.html b/coverage_report/fluegg_gui_hecras_dialog_py.html
new file mode 100644
index 0000000..b01c1e2
--- /dev/null
+++ b/coverage_report/fluegg_gui_hecras_dialog_py.html
@@ -0,0 +1,337 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\gui\hecras_dialog.py: 4%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\gui\hecras_dialog.py</b> :
+            <span class="pc_cov">4%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            112 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">4 run</span>
+            <span class="mis shortkey_m button_toggle_mis">108 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="pln"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="pln"><a href="#n3">3</a></p>
+<p id="n4" class="pln"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
+<p id="n13" class="stm mis"><a href="#n13">13</a></p>
+<p id="n14" class="stm mis"><a href="#n14">14</a></p>
+<p id="n15" class="stm mis"><a href="#n15">15</a></p>
+<p id="n16" class="stm mis"><a href="#n16">16</a></p>
+<p id="n17" class="stm mis"><a href="#n17">17</a></p>
+<p id="n18" class="stm mis"><a href="#n18">18</a></p>
+<p id="n19" class="stm mis"><a href="#n19">19</a></p>
+<p id="n20" class="stm mis"><a href="#n20">20</a></p>
+<p id="n21" class="stm mis"><a href="#n21">21</a></p>
+<p id="n22" class="stm mis"><a href="#n22">22</a></p>
+<p id="n23" class="stm mis"><a href="#n23">23</a></p>
+<p id="n24" class="stm mis"><a href="#n24">24</a></p>
+<p id="n25" class="stm mis"><a href="#n25">25</a></p>
+<p id="n26" class="stm mis"><a href="#n26">26</a></p>
+<p id="n27" class="stm mis"><a href="#n27">27</a></p>
+<p id="n28" class="stm mis"><a href="#n28">28</a></p>
+<p id="n29" class="stm mis"><a href="#n29">29</a></p>
+<p id="n30" class="stm mis"><a href="#n30">30</a></p>
+<p id="n31" class="stm mis"><a href="#n31">31</a></p>
+<p id="n32" class="stm mis"><a href="#n32">32</a></p>
+<p id="n33" class="stm mis"><a href="#n33">33</a></p>
+<p id="n34" class="stm mis"><a href="#n34">34</a></p>
+<p id="n35" class="stm mis"><a href="#n35">35</a></p>
+<p id="n36" class="stm mis"><a href="#n36">36</a></p>
+<p id="n37" class="stm mis"><a href="#n37">37</a></p>
+<p id="n38" class="stm mis"><a href="#n38">38</a></p>
+<p id="n39" class="stm mis"><a href="#n39">39</a></p>
+<p id="n40" class="stm mis"><a href="#n40">40</a></p>
+<p id="n41" class="stm mis"><a href="#n41">41</a></p>
+<p id="n42" class="stm mis"><a href="#n42">42</a></p>
+<p id="n43" class="stm mis"><a href="#n43">43</a></p>
+<p id="n44" class="stm mis"><a href="#n44">44</a></p>
+<p id="n45" class="stm mis"><a href="#n45">45</a></p>
+<p id="n46" class="stm mis"><a href="#n46">46</a></p>
+<p id="n47" class="stm mis"><a href="#n47">47</a></p>
+<p id="n48" class="stm mis"><a href="#n48">48</a></p>
+<p id="n49" class="stm mis"><a href="#n49">49</a></p>
+<p id="n50" class="stm mis"><a href="#n50">50</a></p>
+<p id="n51" class="stm mis"><a href="#n51">51</a></p>
+<p id="n52" class="stm mis"><a href="#n52">52</a></p>
+<p id="n53" class="stm mis"><a href="#n53">53</a></p>
+<p id="n54" class="stm mis"><a href="#n54">54</a></p>
+<p id="n55" class="stm mis"><a href="#n55">55</a></p>
+<p id="n56" class="stm mis"><a href="#n56">56</a></p>
+<p id="n57" class="stm mis"><a href="#n57">57</a></p>
+<p id="n58" class="stm mis"><a href="#n58">58</a></p>
+<p id="n59" class="stm mis"><a href="#n59">59</a></p>
+<p id="n60" class="stm mis"><a href="#n60">60</a></p>
+<p id="n61" class="stm mis"><a href="#n61">61</a></p>
+<p id="n62" class="stm mis"><a href="#n62">62</a></p>
+<p id="n63" class="stm mis"><a href="#n63">63</a></p>
+<p id="n64" class="stm mis"><a href="#n64">64</a></p>
+<p id="n65" class="stm mis"><a href="#n65">65</a></p>
+<p id="n66" class="stm mis"><a href="#n66">66</a></p>
+<p id="n67" class="stm mis"><a href="#n67">67</a></p>
+<p id="n68" class="stm mis"><a href="#n68">68</a></p>
+<p id="n69" class="stm mis"><a href="#n69">69</a></p>
+<p id="n70" class="stm mis"><a href="#n70">70</a></p>
+<p id="n71" class="stm mis"><a href="#n71">71</a></p>
+<p id="n72" class="stm mis"><a href="#n72">72</a></p>
+<p id="n73" class="stm mis"><a href="#n73">73</a></p>
+<p id="n74" class="stm mis"><a href="#n74">74</a></p>
+<p id="n75" class="stm mis"><a href="#n75">75</a></p>
+<p id="n76" class="stm mis"><a href="#n76">76</a></p>
+<p id="n77" class="stm mis"><a href="#n77">77</a></p>
+<p id="n78" class="stm mis"><a href="#n78">78</a></p>
+<p id="n79" class="stm mis"><a href="#n79">79</a></p>
+<p id="n80" class="stm mis"><a href="#n80">80</a></p>
+<p id="n81" class="stm mis"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="stm mis"><a href="#n83">83</a></p>
+<p id="n84" class="stm mis"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="stm mis"><a href="#n86">86</a></p>
+<p id="n87" class="stm mis"><a href="#n87">87</a></p>
+<p id="n88" class="stm mis"><a href="#n88">88</a></p>
+<p id="n89" class="stm mis"><a href="#n89">89</a></p>
+<p id="n90" class="stm mis"><a href="#n90">90</a></p>
+<p id="n91" class="stm mis"><a href="#n91">91</a></p>
+<p id="n92" class="stm mis"><a href="#n92">92</a></p>
+<p id="n93" class="stm mis"><a href="#n93">93</a></p>
+<p id="n94" class="stm mis"><a href="#n94">94</a></p>
+<p id="n95" class="stm mis"><a href="#n95">95</a></p>
+<p id="n96" class="stm mis"><a href="#n96">96</a></p>
+<p id="n97" class="stm mis"><a href="#n97">97</a></p>
+<p id="n98" class="stm mis"><a href="#n98">98</a></p>
+<p id="n99" class="stm mis"><a href="#n99">99</a></p>
+<p id="n100" class="stm mis"><a href="#n100">100</a></p>
+<p id="n101" class="stm mis"><a href="#n101">101</a></p>
+<p id="n102" class="stm mis"><a href="#n102">102</a></p>
+<p id="n103" class="stm mis"><a href="#n103">103</a></p>
+<p id="n104" class="stm mis"><a href="#n104">104</a></p>
+<p id="n105" class="stm mis"><a href="#n105">105</a></p>
+<p id="n106" class="stm mis"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="stm mis"><a href="#n109">109</a></p>
+<p id="n110" class="pln"><a href="#n110">110</a></p>
+<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
+<p id="n112" class="stm mis"><a href="#n112">112</a></p>
+<p id="n113" class="stm mis"><a href="#n113">113</a></p>
+<p id="n114" class="stm mis"><a href="#n114">114</a></p>
+<p id="n115" class="stm mis"><a href="#n115">115</a></p>
+<p id="n116" class="stm mis"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="stm mis"><a href="#n118">118</a></p>
+<p id="n119" class="stm mis"><a href="#n119">119</a></p>
+<p id="n120" class="stm mis"><a href="#n120">120</a></p>
+<p id="n121" class="stm mis"><a href="#n121">121</a></p>
+<p id="n122" class="stm mis"><a href="#n122">122</a></p>
+<p id="n123" class="stm mis"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="pln"><span class="com"># -*- coding: utf-8 -*-</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="pln"><span class="com"># Form implementation generated from reading ui file 'hecras_dialog.ui'</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln"><span class="com"># Created by: PyQt5 UI code generator 5.11.3</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="com"># WARNING! All changes made in this file will be lost!</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">class</span> <span class="nam">Ui_HecrasDialog</span><span class="op">(</span><span class="nam">object</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">HecrasDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="num">258</span><span class="op">,</span> <span class="num">295</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_project"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_project"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_browse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm mis">        <span class="nam">spacerItem</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_steady"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_unsteady"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm mis">        <span class="nam">spacerItem1</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm mis">        <span class="nam">spacerItem2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">60</span><span class="op">,</span> <span class="num">60</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_plan"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QComboBox</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"comboBox_plan"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="stm mis">        <span class="nam">spacerItem3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">60</span><span class="op">,</span> <span class="num">60</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_profile"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QComboBox</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">16777215</span><span class="op">,</span> <span class="num">16777215</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"comboBox_profile"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="stm mis">        <span class="nam">spacerItem4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setSizeConstraint</span><span class="op">(</span><span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLayout</span><span class="op">.</span><span class="nam">SetDefaultConstraint</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_temperature"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_temperature"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">        <span class="nam">spacerItem5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_start_time"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QDateTimeEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"dateTimeEdit_start_time"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="stm mis">        <span class="nam">spacerItem6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_6"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_cancel"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_ok"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm mis">        <span class="nam">spacerItem7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="stm mis">        <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QMetaObject</span><span class="op">.</span><span class="nam">connectSlotsByName</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm run hide_run">    <span class="key">def</span> <span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">HecrasDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm mis">        <span class="nam">_translate</span> <span class="op">=</span> <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QCoreApplication</span><span class="op">.</span><span class="nam">translate</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Dialog"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Project"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Browse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Steady"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Unsteady"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Plan"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Profile"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Temperature (C)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Start Time"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Cancel"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Ok"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_hydraulics_py.html b/coverage_report/fluegg_hydraulics_py.html
new file mode 100644
index 0000000..39d8387
--- /dev/null
+++ b/coverage_report/fluegg_hydraulics_py.html
@@ -0,0 +1,1883 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\hydraulics.py: 87%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\hydraulics.py</b> :
+            <span class="pc_cov">87%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            287 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">250 run</span>
+            <span class="mis shortkey_m button_toggle_mis">37 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
+<p id="n3" class="pln"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
+<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
+<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
+<p id="n24" class="stm run hide_run"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
+<p id="n27" class="pln"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="pln"><a href="#n37">37</a></p>
+<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="pln"><a href="#n40">40</a></p>
+<p id="n41" class="pln"><a href="#n41">41</a></p>
+<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="pln"><a href="#n44">44</a></p>
+<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="pln"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="stm run hide_run"><a href="#n51">51</a></p>
+<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
+<p id="n53" class="stm run hide_run"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="stm run hide_run"><a href="#n55">55</a></p>
+<p id="n56" class="stm run hide_run"><a href="#n56">56</a></p>
+<p id="n57" class="stm run hide_run"><a href="#n57">57</a></p>
+<p id="n58" class="stm run hide_run"><a href="#n58">58</a></p>
+<p id="n59" class="stm run hide_run"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="stm run hide_run"><a href="#n61">61</a></p>
+<p id="n62" class="stm mis"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="stm run hide_run"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="pln"><a href="#n70">70</a></p>
+<p id="n71" class="stm run hide_run"><a href="#n71">71</a></p>
+<p id="n72" class="pln"><a href="#n72">72</a></p>
+<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
+<p id="n74" class="pln"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="stm run hide_run"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="pln"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="pln"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="stm run hide_run"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="pln"><a href="#n97">97</a></p>
+<p id="n98" class="stm run hide_run"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
+<p id="n101" class="pln"><a href="#n101">101</a></p>
+<p id="n102" class="pln"><a href="#n102">102</a></p>
+<p id="n103" class="pln"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="pln"><a href="#n105">105</a></p>
+<p id="n106" class="pln"><a href="#n106">106</a></p>
+<p id="n107" class="stm run hide_run"><a href="#n107">107</a></p>
+<p id="n108" class="pln"><a href="#n108">108</a></p>
+<p id="n109" class="stm run hide_run"><a href="#n109">109</a></p>
+<p id="n110" class="pln"><a href="#n110">110</a></p>
+<p id="n111" class="pln"><a href="#n111">111</a></p>
+<p id="n112" class="pln"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="pln"><a href="#n114">114</a></p>
+<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="stm run hide_run"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="pln"><a href="#n119">119</a></p>
+<p id="n120" class="pln"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="pln"><a href="#n122">122</a></p>
+<p id="n123" class="pln"><a href="#n123">123</a></p>
+<p id="n124" class="stm run hide_run"><a href="#n124">124</a></p>
+<p id="n125" class="pln"><a href="#n125">125</a></p>
+<p id="n126" class="stm run hide_run"><a href="#n126">126</a></p>
+<p id="n127" class="pln"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="pln"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="stm run hide_run"><a href="#n133">133</a></p>
+<p id="n134" class="pln"><a href="#n134">134</a></p>
+<p id="n135" class="stm run hide_run"><a href="#n135">135</a></p>
+<p id="n136" class="pln"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="pln"><a href="#n138">138</a></p>
+<p id="n139" class="pln"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="pln"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="stm run hide_run"><a href="#n143">143</a></p>
+<p id="n144" class="pln"><a href="#n144">144</a></p>
+<p id="n145" class="stm run hide_run"><a href="#n145">145</a></p>
+<p id="n146" class="pln"><a href="#n146">146</a></p>
+<p id="n147" class="pln"><a href="#n147">147</a></p>
+<p id="n148" class="pln"><a href="#n148">148</a></p>
+<p id="n149" class="pln"><a href="#n149">149</a></p>
+<p id="n150" class="pln"><a href="#n150">150</a></p>
+<p id="n151" class="pln"><a href="#n151">151</a></p>
+<p id="n152" class="pln"><a href="#n152">152</a></p>
+<p id="n153" class="stm mis"><a href="#n153">153</a></p>
+<p id="n154" class="stm mis"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="stm mis"><a href="#n156">156</a></p>
+<p id="n157" class="stm mis"><a href="#n157">157</a></p>
+<p id="n158" class="pln"><a href="#n158">158</a></p>
+<p id="n159" class="pln"><a href="#n159">159</a></p>
+<p id="n160" class="stm run hide_run"><a href="#n160">160</a></p>
+<p id="n161" class="pln"><a href="#n161">161</a></p>
+<p id="n162" class="pln"><a href="#n162">162</a></p>
+<p id="n163" class="pln"><a href="#n163">163</a></p>
+<p id="n164" class="pln"><a href="#n164">164</a></p>
+<p id="n165" class="pln"><a href="#n165">165</a></p>
+<p id="n166" class="pln"><a href="#n166">166</a></p>
+<p id="n167" class="pln"><a href="#n167">167</a></p>
+<p id="n168" class="pln"><a href="#n168">168</a></p>
+<p id="n169" class="pln"><a href="#n169">169</a></p>
+<p id="n170" class="pln"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="pln"><a href="#n172">172</a></p>
+<p id="n173" class="pln"><a href="#n173">173</a></p>
+<p id="n174" class="pln"><a href="#n174">174</a></p>
+<p id="n175" class="pln"><a href="#n175">175</a></p>
+<p id="n176" class="pln"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="pln"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="pln"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="pln"><a href="#n183">183</a></p>
+<p id="n184" class="pln"><a href="#n184">184</a></p>
+<p id="n185" class="pln"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="pln"><a href="#n187">187</a></p>
+<p id="n188" class="pln"><a href="#n188">188</a></p>
+<p id="n189" class="pln"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="pln"><a href="#n191">191</a></p>
+<p id="n192" class="pln"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="stm run hide_run"><a href="#n195">195</a></p>
+<p id="n196" class="pln"><a href="#n196">196</a></p>
+<p id="n197" class="pln"><a href="#n197">197</a></p>
+<p id="n198" class="pln"><a href="#n198">198</a></p>
+<p id="n199" class="pln"><a href="#n199">199</a></p>
+<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
+<p id="n201" class="pln"><a href="#n201">201</a></p>
+<p id="n202" class="stm run hide_run"><a href="#n202">202</a></p>
+<p id="n203" class="stm run hide_run"><a href="#n203">203</a></p>
+<p id="n204" class="stm run hide_run"><a href="#n204">204</a></p>
+<p id="n205" class="stm run hide_run"><a href="#n205">205</a></p>
+<p id="n206" class="stm run hide_run"><a href="#n206">206</a></p>
+<p id="n207" class="stm run hide_run"><a href="#n207">207</a></p>
+<p id="n208" class="stm run hide_run"><a href="#n208">208</a></p>
+<p id="n209" class="stm run hide_run"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
+<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
+<p id="n213" class="pln"><a href="#n213">213</a></p>
+<p id="n214" class="pln"><a href="#n214">214</a></p>
+<p id="n215" class="pln"><a href="#n215">215</a></p>
+<p id="n216" class="pln"><a href="#n216">216</a></p>
+<p id="n217" class="pln"><a href="#n217">217</a></p>
+<p id="n218" class="stm run hide_run"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="pln"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="pln"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="pln"><a href="#n228">228</a></p>
+<p id="n229" class="pln"><a href="#n229">229</a></p>
+<p id="n230" class="pln"><a href="#n230">230</a></p>
+<p id="n231" class="pln"><a href="#n231">231</a></p>
+<p id="n232" class="pln"><a href="#n232">232</a></p>
+<p id="n233" class="pln"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="pln"><a href="#n235">235</a></p>
+<p id="n236" class="pln"><a href="#n236">236</a></p>
+<p id="n237" class="pln"><a href="#n237">237</a></p>
+<p id="n238" class="pln"><a href="#n238">238</a></p>
+<p id="n239" class="pln"><a href="#n239">239</a></p>
+<p id="n240" class="pln"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="pln"><a href="#n242">242</a></p>
+<p id="n243" class="pln"><a href="#n243">243</a></p>
+<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
+<p id="n245" class="pln"><a href="#n245">245</a></p>
+<p id="n246" class="pln"><a href="#n246">246</a></p>
+<p id="n247" class="pln"><a href="#n247">247</a></p>
+<p id="n248" class="stm run hide_run"><a href="#n248">248</a></p>
+<p id="n249" class="pln"><a href="#n249">249</a></p>
+<p id="n250" class="stm run hide_run"><a href="#n250">250</a></p>
+<p id="n251" class="stm run hide_run"><a href="#n251">251</a></p>
+<p id="n252" class="stm run hide_run"><a href="#n252">252</a></p>
+<p id="n253" class="stm run hide_run"><a href="#n253">253</a></p>
+<p id="n254" class="stm run hide_run"><a href="#n254">254</a></p>
+<p id="n255" class="stm run hide_run"><a href="#n255">255</a></p>
+<p id="n256" class="stm run hide_run"><a href="#n256">256</a></p>
+<p id="n257" class="stm run hide_run"><a href="#n257">257</a></p>
+<p id="n258" class="stm run hide_run"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="stm run hide_run"><a href="#n260">260</a></p>
+<p id="n261" class="pln"><a href="#n261">261</a></p>
+<p id="n262" class="stm run hide_run"><a href="#n262">262</a></p>
+<p id="n263" class="pln"><a href="#n263">263</a></p>
+<p id="n264" class="stm run hide_run"><a href="#n264">264</a></p>
+<p id="n265" class="pln"><a href="#n265">265</a></p>
+<p id="n266" class="stm run hide_run"><a href="#n266">266</a></p>
+<p id="n267" class="pln"><a href="#n267">267</a></p>
+<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
+<p id="n269" class="stm run hide_run"><a href="#n269">269</a></p>
+<p id="n270" class="pln"><a href="#n270">270</a></p>
+<p id="n271" class="stm run hide_run"><a href="#n271">271</a></p>
+<p id="n272" class="pln"><a href="#n272">272</a></p>
+<p id="n273" class="stm run hide_run"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="stm run hide_run"><a href="#n275">275</a></p>
+<p id="n276" class="pln"><a href="#n276">276</a></p>
+<p id="n277" class="stm run hide_run"><a href="#n277">277</a></p>
+<p id="n278" class="pln"><a href="#n278">278</a></p>
+<p id="n279" class="stm run hide_run"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="pln"><a href="#n281">281</a></p>
+<p id="n282" class="stm run hide_run"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="stm run hide_run"><a href="#n284">284</a></p>
+<p id="n285" class="pln"><a href="#n285">285</a></p>
+<p id="n286" class="stm run hide_run"><a href="#n286">286</a></p>
+<p id="n287" class="stm run hide_run"><a href="#n287">287</a></p>
+<p id="n288" class="stm run hide_run"><a href="#n288">288</a></p>
+<p id="n289" class="stm run hide_run"><a href="#n289">289</a></p>
+<p id="n290" class="stm run hide_run"><a href="#n290">290</a></p>
+<p id="n291" class="stm run hide_run"><a href="#n291">291</a></p>
+<p id="n292" class="stm run hide_run"><a href="#n292">292</a></p>
+<p id="n293" class="pln"><a href="#n293">293</a></p>
+<p id="n294" class="stm run hide_run"><a href="#n294">294</a></p>
+<p id="n295" class="stm run hide_run"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="stm run hide_run"><a href="#n297">297</a></p>
+<p id="n298" class="pln"><a href="#n298">298</a></p>
+<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
+<p id="n300" class="stm run hide_run"><a href="#n300">300</a></p>
+<p id="n301" class="pln"><a href="#n301">301</a></p>
+<p id="n302" class="stm run hide_run"><a href="#n302">302</a></p>
+<p id="n303" class="pln"><a href="#n303">303</a></p>
+<p id="n304" class="stm run hide_run"><a href="#n304">304</a></p>
+<p id="n305" class="pln"><a href="#n305">305</a></p>
+<p id="n306" class="stm run hide_run"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="stm run hide_run"><a href="#n308">308</a></p>
+<p id="n309" class="stm run hide_run"><a href="#n309">309</a></p>
+<p id="n310" class="pln"><a href="#n310">310</a></p>
+<p id="n311" class="pln"><a href="#n311">311</a></p>
+<p id="n312" class="pln"><a href="#n312">312</a></p>
+<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
+<p id="n314" class="pln"><a href="#n314">314</a></p>
+<p id="n315" class="stm run hide_run"><a href="#n315">315</a></p>
+<p id="n316" class="pln"><a href="#n316">316</a></p>
+<p id="n317" class="pln"><a href="#n317">317</a></p>
+<p id="n318" class="stm run hide_run"><a href="#n318">318</a></p>
+<p id="n319" class="pln"><a href="#n319">319</a></p>
+<p id="n320" class="pln"><a href="#n320">320</a></p>
+<p id="n321" class="pln"><a href="#n321">321</a></p>
+<p id="n322" class="pln"><a href="#n322">322</a></p>
+<p id="n323" class="pln"><a href="#n323">323</a></p>
+<p id="n324" class="pln"><a href="#n324">324</a></p>
+<p id="n325" class="pln"><a href="#n325">325</a></p>
+<p id="n326" class="pln"><a href="#n326">326</a></p>
+<p id="n327" class="pln"><a href="#n327">327</a></p>
+<p id="n328" class="stm mis"><a href="#n328">328</a></p>
+<p id="n329" class="pln"><a href="#n329">329</a></p>
+<p id="n330" class="pln"><a href="#n330">330</a></p>
+<p id="n331" class="stm run hide_run"><a href="#n331">331</a></p>
+<p id="n332" class="pln"><a href="#n332">332</a></p>
+<p id="n333" class="pln"><a href="#n333">333</a></p>
+<p id="n334" class="pln"><a href="#n334">334</a></p>
+<p id="n335" class="pln"><a href="#n335">335</a></p>
+<p id="n336" class="pln"><a href="#n336">336</a></p>
+<p id="n337" class="pln"><a href="#n337">337</a></p>
+<p id="n338" class="pln"><a href="#n338">338</a></p>
+<p id="n339" class="pln"><a href="#n339">339</a></p>
+<p id="n340" class="pln"><a href="#n340">340</a></p>
+<p id="n341" class="pln"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="pln"><a href="#n343">343</a></p>
+<p id="n344" class="stm run hide_run"><a href="#n344">344</a></p>
+<p id="n345" class="pln"><a href="#n345">345</a></p>
+<p id="n346" class="pln"><a href="#n346">346</a></p>
+<p id="n347" class="stm run hide_run"><a href="#n347">347</a></p>
+<p id="n348" class="pln"><a href="#n348">348</a></p>
+<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
+<p id="n350" class="pln"><a href="#n350">350</a></p>
+<p id="n351" class="stm run hide_run"><a href="#n351">351</a></p>
+<p id="n352" class="pln"><a href="#n352">352</a></p>
+<p id="n353" class="pln"><a href="#n353">353</a></p>
+<p id="n354" class="stm run hide_run"><a href="#n354">354</a></p>
+<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
+<p id="n356" class="pln"><a href="#n356">356</a></p>
+<p id="n357" class="stm run hide_run"><a href="#n357">357</a></p>
+<p id="n358" class="pln"><a href="#n358">358</a></p>
+<p id="n359" class="stm run hide_run"><a href="#n359">359</a></p>
+<p id="n360" class="stm run hide_run"><a href="#n360">360</a></p>
+<p id="n361" class="stm run hide_run"><a href="#n361">361</a></p>
+<p id="n362" class="pln"><a href="#n362">362</a></p>
+<p id="n363" class="stm run hide_run"><a href="#n363">363</a></p>
+<p id="n364" class="pln"><a href="#n364">364</a></p>
+<p id="n365" class="stm run hide_run"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="pln"><a href="#n367">367</a></p>
+<p id="n368" class="stm mis"><a href="#n368">368</a></p>
+<p id="n369" class="pln"><a href="#n369">369</a></p>
+<p id="n370" class="stm run hide_run"><a href="#n370">370</a></p>
+<p id="n371" class="pln"><a href="#n371">371</a></p>
+<p id="n372" class="pln"><a href="#n372">372</a></p>
+<p id="n373" class="pln"><a href="#n373">373</a></p>
+<p id="n374" class="stm run hide_run"><a href="#n374">374</a></p>
+<p id="n375" class="pln"><a href="#n375">375</a></p>
+<p id="n376" class="stm run hide_run"><a href="#n376">376</a></p>
+<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
+<p id="n378" class="pln"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="stm run hide_run"><a href="#n380">380</a></p>
+<p id="n381" class="pln"><a href="#n381">381</a></p>
+<p id="n382" class="pln"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="pln"><a href="#n384">384</a></p>
+<p id="n385" class="pln"><a href="#n385">385</a></p>
+<p id="n386" class="stm run hide_run"><a href="#n386">386</a></p>
+<p id="n387" class="pln"><a href="#n387">387</a></p>
+<p id="n388" class="stm run hide_run"><a href="#n388">388</a></p>
+<p id="n389" class="stm run hide_run"><a href="#n389">389</a></p>
+<p id="n390" class="pln"><a href="#n390">390</a></p>
+<p id="n391" class="stm run hide_run"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="pln"><a href="#n393">393</a></p>
+<p id="n394" class="stm run hide_run"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="stm run hide_run"><a href="#n396">396</a></p>
+<p id="n397" class="pln"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="stm run hide_run"><a href="#n399">399</a></p>
+<p id="n400" class="pln"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="pln"><a href="#n402">402</a></p>
+<p id="n403" class="stm run hide_run"><a href="#n403">403</a></p>
+<p id="n404" class="pln"><a href="#n404">404</a></p>
+<p id="n405" class="stm run hide_run"><a href="#n405">405</a></p>
+<p id="n406" class="pln"><a href="#n406">406</a></p>
+<p id="n407" class="stm run hide_run"><a href="#n407">407</a></p>
+<p id="n408" class="pln"><a href="#n408">408</a></p>
+<p id="n409" class="pln"><a href="#n409">409</a></p>
+<p id="n410" class="pln"><a href="#n410">410</a></p>
+<p id="n411" class="stm run hide_run"><a href="#n411">411</a></p>
+<p id="n412" class="stm run hide_run"><a href="#n412">412</a></p>
+<p id="n413" class="stm run hide_run"><a href="#n413">413</a></p>
+<p id="n414" class="stm run hide_run"><a href="#n414">414</a></p>
+<p id="n415" class="pln"><a href="#n415">415</a></p>
+<p id="n416" class="stm run hide_run"><a href="#n416">416</a></p>
+<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
+<p id="n418" class="pln"><a href="#n418">418</a></p>
+<p id="n419" class="stm run hide_run"><a href="#n419">419</a></p>
+<p id="n420" class="pln"><a href="#n420">420</a></p>
+<p id="n421" class="stm run hide_run"><a href="#n421">421</a></p>
+<p id="n422" class="pln"><a href="#n422">422</a></p>
+<p id="n423" class="pln"><a href="#n423">423</a></p>
+<p id="n424" class="stm run hide_run"><a href="#n424">424</a></p>
+<p id="n425" class="stm run hide_run"><a href="#n425">425</a></p>
+<p id="n426" class="pln"><a href="#n426">426</a></p>
+<p id="n427" class="stm run hide_run"><a href="#n427">427</a></p>
+<p id="n428" class="pln"><a href="#n428">428</a></p>
+<p id="n429" class="stm run hide_run"><a href="#n429">429</a></p>
+<p id="n430" class="stm run hide_run"><a href="#n430">430</a></p>
+<p id="n431" class="pln"><a href="#n431">431</a></p>
+<p id="n432" class="stm run hide_run"><a href="#n432">432</a></p>
+<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
+<p id="n434" class="stm run hide_run"><a href="#n434">434</a></p>
+<p id="n435" class="stm run hide_run"><a href="#n435">435</a></p>
+<p id="n436" class="stm run hide_run"><a href="#n436">436</a></p>
+<p id="n437" class="stm run hide_run"><a href="#n437">437</a></p>
+<p id="n438" class="stm run hide_run"><a href="#n438">438</a></p>
+<p id="n439" class="pln"><a href="#n439">439</a></p>
+<p id="n440" class="stm run hide_run"><a href="#n440">440</a></p>
+<p id="n441" class="pln"><a href="#n441">441</a></p>
+<p id="n442" class="pln"><a href="#n442">442</a></p>
+<p id="n443" class="pln"><a href="#n443">443</a></p>
+<p id="n444" class="pln"><a href="#n444">444</a></p>
+<p id="n445" class="pln"><a href="#n445">445</a></p>
+<p id="n446" class="pln"><a href="#n446">446</a></p>
+<p id="n447" class="pln"><a href="#n447">447</a></p>
+<p id="n448" class="stm run hide_run"><a href="#n448">448</a></p>
+<p id="n449" class="pln"><a href="#n449">449</a></p>
+<p id="n450" class="stm run hide_run"><a href="#n450">450</a></p>
+<p id="n451" class="pln"><a href="#n451">451</a></p>
+<p id="n452" class="stm run hide_run"><a href="#n452">452</a></p>
+<p id="n453" class="pln"><a href="#n453">453</a></p>
+<p id="n454" class="pln"><a href="#n454">454</a></p>
+<p id="n455" class="pln"><a href="#n455">455</a></p>
+<p id="n456" class="pln"><a href="#n456">456</a></p>
+<p id="n457" class="stm run hide_run"><a href="#n457">457</a></p>
+<p id="n458" class="stm run hide_run"><a href="#n458">458</a></p>
+<p id="n459" class="stm run hide_run"><a href="#n459">459</a></p>
+<p id="n460" class="pln"><a href="#n460">460</a></p>
+<p id="n461" class="pln"><a href="#n461">461</a></p>
+<p id="n462" class="stm run hide_run"><a href="#n462">462</a></p>
+<p id="n463" class="stm run hide_run"><a href="#n463">463</a></p>
+<p id="n464" class="stm run hide_run"><a href="#n464">464</a></p>
+<p id="n465" class="stm run hide_run"><a href="#n465">465</a></p>
+<p id="n466" class="stm run hide_run"><a href="#n466">466</a></p>
+<p id="n467" class="pln"><a href="#n467">467</a></p>
+<p id="n468" class="stm run hide_run"><a href="#n468">468</a></p>
+<p id="n469" class="pln"><a href="#n469">469</a></p>
+<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
+<p id="n471" class="pln"><a href="#n471">471</a></p>
+<p id="n472" class="stm run hide_run"><a href="#n472">472</a></p>
+<p id="n473" class="stm run hide_run"><a href="#n473">473</a></p>
+<p id="n474" class="pln"><a href="#n474">474</a></p>
+<p id="n475" class="pln"><a href="#n475">475</a></p>
+<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
+<p id="n477" class="pln"><a href="#n477">477</a></p>
+<p id="n478" class="stm run hide_run"><a href="#n478">478</a></p>
+<p id="n479" class="pln"><a href="#n479">479</a></p>
+<p id="n480" class="stm run hide_run"><a href="#n480">480</a></p>
+<p id="n481" class="stm run hide_run"><a href="#n481">481</a></p>
+<p id="n482" class="stm run hide_run"><a href="#n482">482</a></p>
+<p id="n483" class="pln"><a href="#n483">483</a></p>
+<p id="n484" class="pln"><a href="#n484">484</a></p>
+<p id="n485" class="pln"><a href="#n485">485</a></p>
+<p id="n486" class="pln"><a href="#n486">486</a></p>
+<p id="n487" class="stm run hide_run"><a href="#n487">487</a></p>
+<p id="n488" class="pln"><a href="#n488">488</a></p>
+<p id="n489" class="stm run hide_run"><a href="#n489">489</a></p>
+<p id="n490" class="pln"><a href="#n490">490</a></p>
+<p id="n491" class="stm run hide_run"><a href="#n491">491</a></p>
+<p id="n492" class="pln"><a href="#n492">492</a></p>
+<p id="n493" class="pln"><a href="#n493">493</a></p>
+<p id="n494" class="pln"><a href="#n494">494</a></p>
+<p id="n495" class="pln"><a href="#n495">495</a></p>
+<p id="n496" class="pln"><a href="#n496">496</a></p>
+<p id="n497" class="pln"><a href="#n497">497</a></p>
+<p id="n498" class="pln"><a href="#n498">498</a></p>
+<p id="n499" class="pln"><a href="#n499">499</a></p>
+<p id="n500" class="pln"><a href="#n500">500</a></p>
+<p id="n501" class="pln"><a href="#n501">501</a></p>
+<p id="n502" class="pln"><a href="#n502">502</a></p>
+<p id="n503" class="pln"><a href="#n503">503</a></p>
+<p id="n504" class="pln"><a href="#n504">504</a></p>
+<p id="n505" class="pln"><a href="#n505">505</a></p>
+<p id="n506" class="pln"><a href="#n506">506</a></p>
+<p id="n507" class="pln"><a href="#n507">507</a></p>
+<p id="n508" class="pln"><a href="#n508">508</a></p>
+<p id="n509" class="pln"><a href="#n509">509</a></p>
+<p id="n510" class="pln"><a href="#n510">510</a></p>
+<p id="n511" class="pln"><a href="#n511">511</a></p>
+<p id="n512" class="pln"><a href="#n512">512</a></p>
+<p id="n513" class="pln"><a href="#n513">513</a></p>
+<p id="n514" class="pln"><a href="#n514">514</a></p>
+<p id="n515" class="pln"><a href="#n515">515</a></p>
+<p id="n516" class="pln"><a href="#n516">516</a></p>
+<p id="n517" class="pln"><a href="#n517">517</a></p>
+<p id="n518" class="pln"><a href="#n518">518</a></p>
+<p id="n519" class="pln"><a href="#n519">519</a></p>
+<p id="n520" class="pln"><a href="#n520">520</a></p>
+<p id="n521" class="pln"><a href="#n521">521</a></p>
+<p id="n522" class="pln"><a href="#n522">522</a></p>
+<p id="n523" class="pln"><a href="#n523">523</a></p>
+<p id="n524" class="pln"><a href="#n524">524</a></p>
+<p id="n525" class="pln"><a href="#n525">525</a></p>
+<p id="n526" class="pln"><a href="#n526">526</a></p>
+<p id="n527" class="pln"><a href="#n527">527</a></p>
+<p id="n528" class="pln"><a href="#n528">528</a></p>
+<p id="n529" class="pln"><a href="#n529">529</a></p>
+<p id="n530" class="stm run hide_run"><a href="#n530">530</a></p>
+<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
+<p id="n532" class="stm run hide_run"><a href="#n532">532</a></p>
+<p id="n533" class="stm run hide_run"><a href="#n533">533</a></p>
+<p id="n534" class="pln"><a href="#n534">534</a></p>
+<p id="n535" class="stm mis"><a href="#n535">535</a></p>
+<p id="n536" class="pln"><a href="#n536">536</a></p>
+<p id="n537" class="stm run hide_run"><a href="#n537">537</a></p>
+<p id="n538" class="pln"><a href="#n538">538</a></p>
+<p id="n539" class="stm run hide_run"><a href="#n539">539</a></p>
+<p id="n540" class="pln"><a href="#n540">540</a></p>
+<p id="n541" class="pln"><a href="#n541">541</a></p>
+<p id="n542" class="pln"><a href="#n542">542</a></p>
+<p id="n543" class="pln"><a href="#n543">543</a></p>
+<p id="n544" class="pln"><a href="#n544">544</a></p>
+<p id="n545" class="pln"><a href="#n545">545</a></p>
+<p id="n546" class="pln"><a href="#n546">546</a></p>
+<p id="n547" class="pln"><a href="#n547">547</a></p>
+<p id="n548" class="pln"><a href="#n548">548</a></p>
+<p id="n549" class="pln"><a href="#n549">549</a></p>
+<p id="n550" class="pln"><a href="#n550">550</a></p>
+<p id="n551" class="pln"><a href="#n551">551</a></p>
+<p id="n552" class="pln"><a href="#n552">552</a></p>
+<p id="n553" class="pln"><a href="#n553">553</a></p>
+<p id="n554" class="pln"><a href="#n554">554</a></p>
+<p id="n555" class="pln"><a href="#n555">555</a></p>
+<p id="n556" class="pln"><a href="#n556">556</a></p>
+<p id="n557" class="pln"><a href="#n557">557</a></p>
+<p id="n558" class="pln"><a href="#n558">558</a></p>
+<p id="n559" class="pln"><a href="#n559">559</a></p>
+<p id="n560" class="pln"><a href="#n560">560</a></p>
+<p id="n561" class="pln"><a href="#n561">561</a></p>
+<p id="n562" class="pln"><a href="#n562">562</a></p>
+<p id="n563" class="pln"><a href="#n563">563</a></p>
+<p id="n564" class="pln"><a href="#n564">564</a></p>
+<p id="n565" class="stm run hide_run"><a href="#n565">565</a></p>
+<p id="n566" class="pln"><a href="#n566">566</a></p>
+<p id="n567" class="stm run hide_run"><a href="#n567">567</a></p>
+<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
+<p id="n569" class="pln"><a href="#n569">569</a></p>
+<p id="n570" class="stm run hide_run"><a href="#n570">570</a></p>
+<p id="n571" class="pln"><a href="#n571">571</a></p>
+<p id="n572" class="stm run hide_run"><a href="#n572">572</a></p>
+<p id="n573" class="pln"><a href="#n573">573</a></p>
+<p id="n574" class="stm run hide_run"><a href="#n574">574</a></p>
+<p id="n575" class="pln"><a href="#n575">575</a></p>
+<p id="n576" class="stm run hide_run"><a href="#n576">576</a></p>
+<p id="n577" class="pln"><a href="#n577">577</a></p>
+<p id="n578" class="stm run hide_run"><a href="#n578">578</a></p>
+<p id="n579" class="pln"><a href="#n579">579</a></p>
+<p id="n580" class="stm run hide_run"><a href="#n580">580</a></p>
+<p id="n581" class="pln"><a href="#n581">581</a></p>
+<p id="n582" class="pln"><a href="#n582">582</a></p>
+<p id="n583" class="stm run hide_run"><a href="#n583">583</a></p>
+<p id="n584" class="stm run hide_run"><a href="#n584">584</a></p>
+<p id="n585" class="pln"><a href="#n585">585</a></p>
+<p id="n586" class="stm run hide_run"><a href="#n586">586</a></p>
+<p id="n587" class="stm run hide_run"><a href="#n587">587</a></p>
+<p id="n588" class="pln"><a href="#n588">588</a></p>
+<p id="n589" class="stm run hide_run"><a href="#n589">589</a></p>
+<p id="n590" class="stm run hide_run"><a href="#n590">590</a></p>
+<p id="n591" class="stm run hide_run"><a href="#n591">591</a></p>
+<p id="n592" class="pln"><a href="#n592">592</a></p>
+<p id="n593" class="pln"><a href="#n593">593</a></p>
+<p id="n594" class="pln"><a href="#n594">594</a></p>
+<p id="n595" class="pln"><a href="#n595">595</a></p>
+<p id="n596" class="pln"><a href="#n596">596</a></p>
+<p id="n597" class="pln"><a href="#n597">597</a></p>
+<p id="n598" class="stm run hide_run"><a href="#n598">598</a></p>
+<p id="n599" class="stm run hide_run"><a href="#n599">599</a></p>
+<p id="n600" class="pln"><a href="#n600">600</a></p>
+<p id="n601" class="stm run hide_run"><a href="#n601">601</a></p>
+<p id="n602" class="pln"><a href="#n602">602</a></p>
+<p id="n603" class="pln"><a href="#n603">603</a></p>
+<p id="n604" class="pln"><a href="#n604">604</a></p>
+<p id="n605" class="pln"><a href="#n605">605</a></p>
+<p id="n606" class="pln"><a href="#n606">606</a></p>
+<p id="n607" class="stm run hide_run"><a href="#n607">607</a></p>
+<p id="n608" class="pln"><a href="#n608">608</a></p>
+<p id="n609" class="stm run hide_run"><a href="#n609">609</a></p>
+<p id="n610" class="pln"><a href="#n610">610</a></p>
+<p id="n611" class="pln"><a href="#n611">611</a></p>
+<p id="n612" class="pln"><a href="#n612">612</a></p>
+<p id="n613" class="pln"><a href="#n613">613</a></p>
+<p id="n614" class="pln"><a href="#n614">614</a></p>
+<p id="n615" class="pln"><a href="#n615">615</a></p>
+<p id="n616" class="pln"><a href="#n616">616</a></p>
+<p id="n617" class="stm mis"><a href="#n617">617</a></p>
+<p id="n618" class="pln"><a href="#n618">618</a></p>
+<p id="n619" class="stm mis"><a href="#n619">619</a></p>
+<p id="n620" class="pln"><a href="#n620">620</a></p>
+<p id="n621" class="pln"><a href="#n621">621</a></p>
+<p id="n622" class="stm mis"><a href="#n622">622</a></p>
+<p id="n623" class="pln"><a href="#n623">623</a></p>
+<p id="n624" class="stm mis"><a href="#n624">624</a></p>
+<p id="n625" class="pln"><a href="#n625">625</a></p>
+<p id="n626" class="stm mis"><a href="#n626">626</a></p>
+<p id="n627" class="stm mis"><a href="#n627">627</a></p>
+<p id="n628" class="stm mis"><a href="#n628">628</a></p>
+<p id="n629" class="stm mis"><a href="#n629">629</a></p>
+<p id="n630" class="stm mis"><a href="#n630">630</a></p>
+<p id="n631" class="stm mis"><a href="#n631">631</a></p>
+<p id="n632" class="stm mis"><a href="#n632">632</a></p>
+<p id="n633" class="stm mis"><a href="#n633">633</a></p>
+<p id="n634" class="pln"><a href="#n634">634</a></p>
+<p id="n635" class="stm mis"><a href="#n635">635</a></p>
+<p id="n636" class="stm mis"><a href="#n636">636</a></p>
+<p id="n637" class="stm mis"><a href="#n637">637</a></p>
+<p id="n638" class="pln"><a href="#n638">638</a></p>
+<p id="n639" class="stm mis"><a href="#n639">639</a></p>
+<p id="n640" class="pln"><a href="#n640">640</a></p>
+<p id="n641" class="stm mis"><a href="#n641">641</a></p>
+<p id="n642" class="pln"><a href="#n642">642</a></p>
+<p id="n643" class="stm mis"><a href="#n643">643</a></p>
+<p id="n644" class="stm mis"><a href="#n644">644</a></p>
+<p id="n645" class="pln"><a href="#n645">645</a></p>
+<p id="n646" class="pln"><a href="#n646">646</a></p>
+<p id="n647" class="pln"><a href="#n647">647</a></p>
+<p id="n648" class="pln"><a href="#n648">648</a></p>
+<p id="n649" class="pln"><a href="#n649">649</a></p>
+<p id="n650" class="stm mis"><a href="#n650">650</a></p>
+<p id="n651" class="pln"><a href="#n651">651</a></p>
+<p id="n652" class="stm mis"><a href="#n652">652</a></p>
+<p id="n653" class="pln"><a href="#n653">653</a></p>
+<p id="n654" class="stm run hide_run"><a href="#n654">654</a></p>
+<p id="n655" class="pln"><a href="#n655">655</a></p>
+<p id="n656" class="pln"><a href="#n656">656</a></p>
+<p id="n657" class="pln"><a href="#n657">657</a></p>
+<p id="n658" class="pln"><a href="#n658">658</a></p>
+<p id="n659" class="stm mis"><a href="#n659">659</a></p>
+<p id="n660" class="pln"><a href="#n660">660</a></p>
+<p id="n661" class="pln"><a href="#n661">661</a></p>
+<p id="n662" class="stm run hide_run"><a href="#n662">662</a></p>
+<p id="n663" class="pln"><a href="#n663">663</a></p>
+<p id="n664" class="pln"><a href="#n664">664</a></p>
+<p id="n665" class="pln"><a href="#n665">665</a></p>
+<p id="n666" class="pln"><a href="#n666">666</a></p>
+<p id="n667" class="pln"><a href="#n667">667</a></p>
+<p id="n668" class="pln"><a href="#n668">668</a></p>
+<p id="n669" class="pln"><a href="#n669">669</a></p>
+<p id="n670" class="pln"><a href="#n670">670</a></p>
+<p id="n671" class="pln"><a href="#n671">671</a></p>
+<p id="n672" class="pln"><a href="#n672">672</a></p>
+<p id="n673" class="pln"><a href="#n673">673</a></p>
+<p id="n674" class="stm run hide_run"><a href="#n674">674</a></p>
+<p id="n675" class="pln"><a href="#n675">675</a></p>
+<p id="n676" class="pln"><a href="#n676">676</a></p>
+<p id="n677" class="pln"><a href="#n677">677</a></p>
+<p id="n678" class="pln"><a href="#n678">678</a></p>
+<p id="n679" class="pln"><a href="#n679">679</a></p>
+<p id="n680" class="pln"><a href="#n680">680</a></p>
+<p id="n681" class="pln"><a href="#n681">681</a></p>
+<p id="n682" class="pln"><a href="#n682">682</a></p>
+<p id="n683" class="pln"><a href="#n683">683</a></p>
+<p id="n684" class="stm run hide_run"><a href="#n684">684</a></p>
+<p id="n685" class="pln"><a href="#n685">685</a></p>
+<p id="n686" class="pln"><a href="#n686">686</a></p>
+<p id="n687" class="stm run hide_run"><a href="#n687">687</a></p>
+<p id="n688" class="pln"><a href="#n688">688</a></p>
+<p id="n689" class="pln"><a href="#n689">689</a></p>
+<p id="n690" class="stm run hide_run"><a href="#n690">690</a></p>
+<p id="n691" class="pln"><a href="#n691">691</a></p>
+<p id="n692" class="pln"><a href="#n692">692</a></p>
+<p id="n693" class="stm run hide_run"><a href="#n693">693</a></p>
+<p id="n694" class="pln"><a href="#n694">694</a></p>
+<p id="n695" class="pln"><a href="#n695">695</a></p>
+<p id="n696" class="pln"><a href="#n696">696</a></p>
+<p id="n697" class="pln"><a href="#n697">697</a></p>
+<p id="n698" class="stm run hide_run"><a href="#n698">698</a></p>
+<p id="n699" class="pln"><a href="#n699">699</a></p>
+<p id="n700" class="pln"><a href="#n700">700</a></p>
+<p id="n701" class="stm run hide_run"><a href="#n701">701</a></p>
+<p id="n702" class="pln"><a href="#n702">702</a></p>
+<p id="n703" class="pln"><a href="#n703">703</a></p>
+<p id="n704" class="pln"><a href="#n704">704</a></p>
+<p id="n705" class="pln"><a href="#n705">705</a></p>
+<p id="n706" class="stm run hide_run"><a href="#n706">706</a></p>
+<p id="n707" class="stm mis"><a href="#n707">707</a></p>
+<p id="n708" class="pln"><a href="#n708">708</a></p>
+<p id="n709" class="pln"><a href="#n709">709</a></p>
+<p id="n710" class="stm run hide_run"><a href="#n710">710</a></p>
+<p id="n711" class="pln"><a href="#n711">711</a></p>
+<p id="n712" class="pln"><a href="#n712">712</a></p>
+<p id="n713" class="stm mis"><a href="#n713">713</a></p>
+<p id="n714" class="pln"><a href="#n714">714</a></p>
+<p id="n715" class="pln"><a href="#n715">715</a></p>
+<p id="n716" class="pln"><a href="#n716">716</a></p>
+<p id="n717" class="pln"><a href="#n717">717</a></p>
+<p id="n718" class="stm mis"><a href="#n718">718</a></p>
+<p id="n719" class="pln"><a href="#n719">719</a></p>
+<p id="n720" class="pln"><a href="#n720">720</a></p>
+<p id="n721" class="stm run hide_run"><a href="#n721">721</a></p>
+<p id="n722" class="pln"><a href="#n722">722</a></p>
+<p id="n723" class="pln"><a href="#n723">723</a></p>
+<p id="n724" class="pln"><a href="#n724">724</a></p>
+<p id="n725" class="pln"><a href="#n725">725</a></p>
+<p id="n726" class="pln"><a href="#n726">726</a></p>
+<p id="n727" class="pln"><a href="#n727">727</a></p>
+<p id="n728" class="pln"><a href="#n728">728</a></p>
+<p id="n729" class="pln"><a href="#n729">729</a></p>
+<p id="n730" class="pln"><a href="#n730">730</a></p>
+<p id="n731" class="pln"><a href="#n731">731</a></p>
+<p id="n732" class="pln"><a href="#n732">732</a></p>
+<p id="n733" class="pln"><a href="#n733">733</a></p>
+<p id="n734" class="pln"><a href="#n734">734</a></p>
+<p id="n735" class="pln"><a href="#n735">735</a></p>
+<p id="n736" class="pln"><a href="#n736">736</a></p>
+<p id="n737" class="pln"><a href="#n737">737</a></p>
+<p id="n738" class="pln"><a href="#n738">738</a></p>
+<p id="n739" class="pln"><a href="#n739">739</a></p>
+<p id="n740" class="pln"><a href="#n740">740</a></p>
+<p id="n741" class="pln"><a href="#n741">741</a></p>
+<p id="n742" class="pln"><a href="#n742">742</a></p>
+<p id="n743" class="pln"><a href="#n743">743</a></p>
+<p id="n744" class="pln"><a href="#n744">744</a></p>
+<p id="n745" class="pln"><a href="#n745">745</a></p>
+<p id="n746" class="pln"><a href="#n746">746</a></p>
+<p id="n747" class="pln"><a href="#n747">747</a></p>
+<p id="n748" class="pln"><a href="#n748">748</a></p>
+<p id="n749" class="pln"><a href="#n749">749</a></p>
+<p id="n750" class="pln"><a href="#n750">750</a></p>
+<p id="n751" class="pln"><a href="#n751">751</a></p>
+<p id="n752" class="pln"><a href="#n752">752</a></p>
+<p id="n753" class="pln"><a href="#n753">753</a></p>
+<p id="n754" class="pln"><a href="#n754">754</a></p>
+<p id="n755" class="pln"><a href="#n755">755</a></p>
+<p id="n756" class="pln"><a href="#n756">756</a></p>
+<p id="n757" class="pln"><a href="#n757">757</a></p>
+<p id="n758" class="pln"><a href="#n758">758</a></p>
+<p id="n759" class="stm run hide_run"><a href="#n759">759</a></p>
+<p id="n760" class="pln"><a href="#n760">760</a></p>
+<p id="n761" class="stm run hide_run"><a href="#n761">761</a></p>
+<p id="n762" class="stm run hide_run"><a href="#n762">762</a></p>
+<p id="n763" class="stm mis"><a href="#n763">763</a></p>
+<p id="n764" class="stm mis"><a href="#n764">764</a></p>
+<p id="n765" class="pln"><a href="#n765">765</a></p>
+<p id="n766" class="stm mis"><a href="#n766">766</a></p>
+<p id="n767" class="pln"><a href="#n767">767</a></p>
+<p id="n768" class="stm run hide_run"><a href="#n768">768</a></p>
+<p id="n769" class="pln"><a href="#n769">769</a></p>
+<p id="n770" class="pln"><a href="#n770">770</a></p>
+<p id="n771" class="stm run hide_run"><a href="#n771">771</a></p>
+<p id="n772" class="pln"><a href="#n772">772</a></p>
+<p id="n773" class="pln"><a href="#n773">773</a></p>
+<p id="n774" class="pln"><a href="#n774">774</a></p>
+<p id="n775" class="pln"><a href="#n775">775</a></p>
+<p id="n776" class="pln"><a href="#n776">776</a></p>
+<p id="n777" class="pln"><a href="#n777">777</a></p>
+<p id="n778" class="pln"><a href="#n778">778</a></p>
+<p id="n779" class="pln"><a href="#n779">779</a></p>
+<p id="n780" class="pln"><a href="#n780">780</a></p>
+<p id="n781" class="pln"><a href="#n781">781</a></p>
+<p id="n782" class="pln"><a href="#n782">782</a></p>
+<p id="n783" class="pln"><a href="#n783">783</a></p>
+<p id="n784" class="stm run hide_run"><a href="#n784">784</a></p>
+<p id="n785" class="pln"><a href="#n785">785</a></p>
+<p id="n786" class="pln"><a href="#n786">786</a></p>
+<p id="n787" class="stm run hide_run"><a href="#n787">787</a></p>
+<p id="n788" class="pln"><a href="#n788">788</a></p>
+<p id="n789" class="stm run hide_run"><a href="#n789">789</a></p>
+<p id="n790" class="stm run hide_run"><a href="#n790">790</a></p>
+<p id="n791" class="stm run hide_run"><a href="#n791">791</a></p>
+<p id="n792" class="stm run hide_run"><a href="#n792">792</a></p>
+<p id="n793" class="stm run hide_run"><a href="#n793">793</a></p>
+<p id="n794" class="stm run hide_run"><a href="#n794">794</a></p>
+<p id="n795" class="stm run hide_run"><a href="#n795">795</a></p>
+<p id="n796" class="stm run hide_run"><a href="#n796">796</a></p>
+<p id="n797" class="stm run hide_run"><a href="#n797">797</a></p>
+<p id="n798" class="pln"><a href="#n798">798</a></p>
+<p id="n799" class="stm run hide_run"><a href="#n799">799</a></p>
+<p id="n800" class="pln"><a href="#n800">800</a></p>
+<p id="n801" class="pln"><a href="#n801">801</a></p>
+<p id="n802" class="pln"><a href="#n802">802</a></p>
+<p id="n803" class="pln"><a href="#n803">803</a></p>
+<p id="n804" class="pln"><a href="#n804">804</a></p>
+<p id="n805" class="pln"><a href="#n805">805</a></p>
+<p id="n806" class="pln"><a href="#n806">806</a></p>
+<p id="n807" class="pln"><a href="#n807">807</a></p>
+<p id="n808" class="pln"><a href="#n808">808</a></p>
+<p id="n809" class="stm run hide_run"><a href="#n809">809</a></p>
+<p id="n810" class="pln"><a href="#n810">810</a></p>
+<p id="n811" class="stm run hide_run"><a href="#n811">811</a></p>
+<p id="n812" class="pln"><a href="#n812">812</a></p>
+<p id="n813" class="pln"><a href="#n813">813</a></p>
+<p id="n814" class="pln"><a href="#n814">814</a></p>
+<p id="n815" class="pln"><a href="#n815">815</a></p>
+<p id="n816" class="pln"><a href="#n816">816</a></p>
+<p id="n817" class="pln"><a href="#n817">817</a></p>
+<p id="n818" class="pln"><a href="#n818">818</a></p>
+<p id="n819" class="pln"><a href="#n819">819</a></p>
+<p id="n820" class="stm run hide_run"><a href="#n820">820</a></p>
+<p id="n821" class="pln"><a href="#n821">821</a></p>
+<p id="n822" class="stm run hide_run"><a href="#n822">822</a></p>
+<p id="n823" class="pln"><a href="#n823">823</a></p>
+<p id="n824" class="pln"><a href="#n824">824</a></p>
+<p id="n825" class="pln"><a href="#n825">825</a></p>
+<p id="n826" class="pln"><a href="#n826">826</a></p>
+<p id="n827" class="pln"><a href="#n827">827</a></p>
+<p id="n828" class="pln"><a href="#n828">828</a></p>
+<p id="n829" class="pln"><a href="#n829">829</a></p>
+<p id="n830" class="pln"><a href="#n830">830</a></p>
+<p id="n831" class="stm run hide_run"><a href="#n831">831</a></p>
+<p id="n832" class="pln"><a href="#n832">832</a></p>
+<p id="n833" class="stm run hide_run"><a href="#n833">833</a></p>
+<p id="n834" class="pln"><a href="#n834">834</a></p>
+<p id="n835" class="pln"><a href="#n835">835</a></p>
+<p id="n836" class="pln"><a href="#n836">836</a></p>
+<p id="n837" class="pln"><a href="#n837">837</a></p>
+<p id="n838" class="pln"><a href="#n838">838</a></p>
+<p id="n839" class="pln"><a href="#n839">839</a></p>
+<p id="n840" class="pln"><a href="#n840">840</a></p>
+<p id="n841" class="pln"><a href="#n841">841</a></p>
+<p id="n842" class="stm run hide_run"><a href="#n842">842</a></p>
+<p id="n843" class="pln"><a href="#n843">843</a></p>
+<p id="n844" class="stm run hide_run"><a href="#n844">844</a></p>
+<p id="n845" class="pln"><a href="#n845">845</a></p>
+<p id="n846" class="pln"><a href="#n846">846</a></p>
+<p id="n847" class="pln"><a href="#n847">847</a></p>
+<p id="n848" class="pln"><a href="#n848">848</a></p>
+<p id="n849" class="pln"><a href="#n849">849</a></p>
+<p id="n850" class="pln"><a href="#n850">850</a></p>
+<p id="n851" class="pln"><a href="#n851">851</a></p>
+<p id="n852" class="pln"><a href="#n852">852</a></p>
+<p id="n853" class="stm run hide_run"><a href="#n853">853</a></p>
+<p id="n854" class="pln"><a href="#n854">854</a></p>
+<p id="n855" class="stm run hide_run"><a href="#n855">855</a></p>
+<p id="n856" class="pln"><a href="#n856">856</a></p>
+<p id="n857" class="pln"><a href="#n857">857</a></p>
+<p id="n858" class="pln"><a href="#n858">858</a></p>
+<p id="n859" class="pln"><a href="#n859">859</a></p>
+<p id="n860" class="pln"><a href="#n860">860</a></p>
+<p id="n861" class="pln"><a href="#n861">861</a></p>
+<p id="n862" class="pln"><a href="#n862">862</a></p>
+<p id="n863" class="pln"><a href="#n863">863</a></p>
+<p id="n864" class="stm run hide_run"><a href="#n864">864</a></p>
+<p id="n865" class="pln"><a href="#n865">865</a></p>
+<p id="n866" class="stm run hide_run"><a href="#n866">866</a></p>
+<p id="n867" class="pln"><a href="#n867">867</a></p>
+<p id="n868" class="pln"><a href="#n868">868</a></p>
+<p id="n869" class="pln"><a href="#n869">869</a></p>
+<p id="n870" class="pln"><a href="#n870">870</a></p>
+<p id="n871" class="pln"><a href="#n871">871</a></p>
+<p id="n872" class="pln"><a href="#n872">872</a></p>
+<p id="n873" class="pln"><a href="#n873">873</a></p>
+<p id="n874" class="pln"><a href="#n874">874</a></p>
+<p id="n875" class="stm run hide_run"><a href="#n875">875</a></p>
+<p id="n876" class="pln"><a href="#n876">876</a></p>
+<p id="n877" class="stm run hide_run"><a href="#n877">877</a></p>
+<p id="n878" class="pln"><a href="#n878">878</a></p>
+<p id="n879" class="pln"><a href="#n879">879</a></p>
+<p id="n880" class="pln"><a href="#n880">880</a></p>
+<p id="n881" class="pln"><a href="#n881">881</a></p>
+<p id="n882" class="pln"><a href="#n882">882</a></p>
+<p id="n883" class="pln"><a href="#n883">883</a></p>
+<p id="n884" class="pln"><a href="#n884">884</a></p>
+<p id="n885" class="pln"><a href="#n885">885</a></p>
+<p id="n886" class="stm run hide_run"><a href="#n886">886</a></p>
+<p id="n887" class="pln"><a href="#n887">887</a></p>
+<p id="n888" class="stm run hide_run"><a href="#n888">888</a></p>
+<p id="n889" class="pln"><a href="#n889">889</a></p>
+<p id="n890" class="pln"><a href="#n890">890</a></p>
+<p id="n891" class="pln"><a href="#n891">891</a></p>
+<p id="n892" class="pln"><a href="#n892">892</a></p>
+<p id="n893" class="pln"><a href="#n893">893</a></p>
+<p id="n894" class="pln"><a href="#n894">894</a></p>
+<p id="n895" class="pln"><a href="#n895">895</a></p>
+<p id="n896" class="pln"><a href="#n896">896</a></p>
+<p id="n897" class="stm run hide_run"><a href="#n897">897</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="stm run hide_run"><span class="key">from</span> <span class="nam">datetime</span> <span class="key">import</span> <span class="nam">timedelta</span><span class="strut">&nbsp;</span></p>
+<p id="t3" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">scipy</span><span class="op">.</span><span class="nam">stats</span> <span class="key">import</span> <span class="nam">beta</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="stm run hide_run"><span class="key">import</span> <span class="nam">pandas</span> <span class="key">as</span> <span class="nam">pd</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">=</span> <span class="num">0.41</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">def</span> <span class="nam">calc_water_density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln">    <span class="str">"""Calculate the temperature-dependent density of water</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="str">    :param temperature: Water temperature in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">    :return: Density of water in kg/m**3</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm run hide_run">    <span class="nam">a_0</span> <span class="op">=</span> <span class="num">999.842594</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run">    <span class="nam">a_1</span> <span class="op">=</span> <span class="num">6.793952e-2</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm run hide_run">    <span class="nam">a_2</span> <span class="op">=</span> <span class="op">-</span><span class="num">9.09529e-3</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm run hide_run">    <span class="nam">a_3</span> <span class="op">=</span> <span class="num">1.001685e-4</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm run hide_run">    <span class="nam">a_4</span> <span class="op">=</span> <span class="op">-</span><span class="num">1.120083e-6</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="stm run hide_run">    <span class="nam">a_5</span> <span class="op">=</span> <span class="num">6.536332e-9</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm run hide_run">    <span class="key">return</span> <span class="nam">a_0</span> <span class="op">+</span> <span class="nam">a_1</span><span class="op">*</span><span class="nam">temperature</span> <span class="op">+</span> <span class="nam">a_2</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">2</span> <span class="op">+</span> <span class="nam">a_3</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">3</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="pln">        <span class="nam">a_4</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">4</span> <span class="op">+</span> <span class="nam">a_5</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">5</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm run hide_run"><span class="key">def</span> <span class="nam">calc_water_viscosity</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln">    <span class="str">"""Calculate the temperature-dependent viscosity of water</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="str">    :param temperature: Water temperature in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="str">    :return: Viscosity of water in m**2/s</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t38" class="stm run hide_run">    <span class="key">return</span> <span class="num">1.79e-6</span> <span class="op">/</span> <span class="op">(</span><span class="num">1</span> <span class="op">+</span> <span class="op">(</span><span class="num">0.03368</span> <span class="op">*</span> <span class="nam">temperature</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln">                      <span class="op">(</span><span class="num">0.00021</span> <span class="op">*</span> <span class="op">(</span><span class="nam">temperature</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t41" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm run hide_run"><span class="key">class</span> <span class="nam">HydraulicCell</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln">    <span class="str">"""Abstract base class for hydraulic cell data type. Do not initialize."""</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="pln"><span class="str">        :param args:</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t61" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">__class__</span> <span class="op">==</span> <span class="nam">HydraulicCell</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="stm mis">            <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t64" class="stm run hide_run">    <span class="key">def</span> <span class="nam">depth</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln">        <span class="str">"""Returns the depth of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="str">        :return: Depth of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t70" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm run hide_run">    <span class="key">def</span> <span class="nam">discharge</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="pln">        <span class="str">"""Returns the water discharge in this hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="str">        :return: Water discharge in this cell in m**3/s</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm run hide_run">    <span class="key">def</span> <span class="nam">length</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln">        <span class="str">"""Returns the longitudinal length of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t85" class="pln"><span class="str">        :return: Length of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln">        <span class="str">"""Returns the mean cross-section velocity for this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln"><span class="str">        :return: Mean cross-section velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t97" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_lat_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="pln">        <span class="str">"""Returns the mean lateral (y direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t103" class="pln"><span class="str">        :return: Mean lateral velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t106" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t109" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_long_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="pln">        <span class="str">"""Returns the mean longitudinal (x direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t112" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t114" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_vert_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln">        <span class="str">"""Returns the mean vertical (z direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t120" class="pln"><span class="str">        :return: Mean vertical velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t123" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t126" class="stm run hide_run">    <span class="key">def</span> <span class="nam">shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="pln">        <span class="str">"""Returns the shear velocity of this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln"><span class="str">        :return: Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm run hide_run">    <span class="key">def</span> <span class="nam">temperature</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="pln">        <span class="str">"""Returns the temperature of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t138" class="pln"><span class="str">        :return: Temperature of this cell in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t141" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t143" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t145" class="stm run hide_run">    <span class="key">def</span> <span class="nam">width</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="pln">        <span class="str">"""Returns the lateral width of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t148" class="pln"><span class="str">        :return: Width of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t151" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t153" class="stm mis">        <span class="nam">discharge</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">discharge</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="stm mis">        <span class="nam">mean_xs_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="stm mis">        <span class="nam">area</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">discharge</span> <span class="op">/</span> <span class="nam">mean_xs_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t157" class="stm mis">        <span class="key">return</span> <span class="nam">area</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t159" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t160" class="stm run hide_run"><span class="key">class</span> <span class="nam">SteadyStateHydraulicCell</span><span class="op">(</span><span class="nam">HydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="pln">    <span class="str">"""Data type representing a steady-state hydraulic cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t163" class="pln"><span class="str">    A hydraulic cell typically represents a cell in a series of cells within a</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="pln"><span class="str">    river reach. This class implementation represents steady-state hydraulic</span><span class="strut">&nbsp;</span></p>
+<p id="t165" class="pln"><span class="str">    conditions.</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t167" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="pln"><span class="str">    length : float</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="pln"><span class="str">        Length of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t172" class="pln"><span class="str">    depth : float</span><span class="strut">&nbsp;</span></p>
+<p id="t173" class="pln"><span class="str">        Depth of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t175" class="pln"><span class="str">    discharge : float</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="pln"><span class="str">        Discharge in this cell in m**3/s</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="str">    mean_xs_velocity : float</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="pln"><span class="str">        Mean cross section velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="pln"><span class="str">    mean_lat_velocity : float</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln"><span class="str">        Mean lateral velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t184" class="pln"><span class="str">    mean_vert_velocity : float</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="pln"><span class="str">        Mean vertical velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t187" class="pln"><span class="str">    shear_velocity : float</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="pln"><span class="str">        Shear velocity within this cell in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln"><span class="str">    temperature: float</span><span class="strut">&nbsp;</span></p>
+<p id="t191" class="pln"><span class="str">        Temperature of water within this cell in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t195" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">length</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span> <span class="nam">discharge</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="pln">                 <span class="nam">mean_lat_velocity</span><span class="op">,</span> <span class="nam">mean_vert_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="pln">                 <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t202" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="nam">length</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="nam">discharge</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="nam">mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="nam">mean_lat_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="nam">mean_vert_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="nam">temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t211" class="stm run hide_run">        <span class="nam">flow_direction</span> <span class="op">=</span> <span class="nam">discharge</span><span class="op">/</span><span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">discharge</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="pln">            <span class="nam">flow_direction</span><span class="op">*</span><span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">mean_xs_velocity</span><span class="op">**</span><span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="pln">                                   <span class="nam">mean_lat_velocity</span><span class="op">**</span><span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="pln">                                   <span class="nam">mean_vert_velocity</span><span class="op">**</span><span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t217" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t218" class="stm run hide_run"><span class="key">class</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">(</span><span class="nam">HydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln"><span class="str">    length : float</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln"><span class="str">        Length of this cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="str">    temperature : float</span><span class="strut">&nbsp;</span></p>
+<p id="t226" class="pln"><span class="str">        Temperature of water within this cell in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln"><span class="str">    property_time_series : pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
+<p id="t228" class="pln"><span class="str">        Pandas DataFrame containing a time series with the following columns</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t230" class="pln"><span class="str">            Depth_m             Depth of the cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="pln"><span class="str">            Q_cms               Discharge of the cell in m**3/s</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="pln"><span class="str">            Vmag_mps            Cross-section average velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="pln"><span class="str">            Vvert_mps           Vertical component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln"><span class="str">            Vlat_mps            Lateral component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t235" class="pln"><span class="str">            Ustar_mps           Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="pln"><span class="str">            Temp_C              Temperature in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t238" class="pln"><span class="str">    start_time : numpy.datetime64</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="pln"><span class="str">    simulation_clock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="pln"><span class="str">    simulation : fluegg.simulation.Simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">length</span><span class="op">,</span> <span class="nam">property_time_series</span><span class="op">,</span> <span class="nam">start_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="pln">                 <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">simulation</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
+<p id="t247" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t248" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t250" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="nam">length</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t253" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t260" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span> <span class="op">=</span> <span class="nam">property_time_series</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="nam">deep</span><span class="op">=</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_start_time</span> <span class="op">=</span> <span class="nam">start_time</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t264" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t268" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_update_properties</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="stm run hide_run">        <span class="nam">simulation</span><span class="op">.</span><span class="nam">add_time_step_function_call</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_update_properties</span><span class="op">,</span> <span class="op">[</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t271" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_current_simulation_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm run hide_run">        <span class="nam">simulation_time_delta</span> <span class="op">=</span> <span class="nam">timedelta</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln">            <span class="nam">seconds</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">current_time</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm run hide_run">        <span class="nam">current_simulation_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_start_time</span> <span class="op">+</span> <span class="nam">simulation_time_delta</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t277" class="stm run hide_run">        <span class="nam">times</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">index</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t279" class="stm run hide_run">        <span class="nam">current_time_index</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">nonzero</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln">            <span class="nam">times</span> <span class="op">&lt;=</span> <span class="nam">current_simulation_time</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">.</span><span class="nam">max</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t282" class="stm run hide_run">        <span class="key">return</span> <span class="nam">times</span><span class="op">[</span><span class="nam">current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t284" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_update_properties</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t286" class="stm run hide_run">        <span class="nam">depth_key</span> <span class="op">=</span> <span class="str">'Depth_m'</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="stm run hide_run">        <span class="nam">discharge_key</span> <span class="op">=</span> <span class="str">'Q_cms'</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="stm run hide_run">        <span class="nam">vmag_key</span> <span class="op">=</span> <span class="str">'Vmag_mps'</span><span class="strut">&nbsp;</span></p>
+<p id="t289" class="stm run hide_run">        <span class="nam">vvert_key</span> <span class="op">=</span> <span class="str">'Vvert_mps'</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="stm run hide_run">        <span class="nam">vlat_key</span> <span class="op">=</span> <span class="str">'Vlat_mps'</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="stm run hide_run">        <span class="nam">shear_velocity_key</span> <span class="op">=</span> <span class="str">'Ustar_mps'</span><span class="strut">&nbsp;</span></p>
+<p id="t292" class="stm run hide_run">        <span class="nam">temperature_key</span> <span class="op">=</span> <span class="str">'Temp_C'</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t294" class="stm run hide_run">        <span class="nam">last_current_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="strut">&nbsp;</span></p>
+<p id="t295" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_simulation_time</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t297" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">!=</span> <span class="nam">last_current_time</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t299" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">depth_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t300" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">discharge_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t303" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vmag_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t305" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vlat_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vvert_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="stm run hide_run">            <span class="nam">flow_direction</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">/</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="nam">flow_direction</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="pln">                <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">**</span> <span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="pln">                        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">**</span> <span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="pln">                        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t313" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="pln">                                                         <span class="nam">shear_velocity_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t315" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t316" class="pln">                                                      <span class="nam">temperature_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t317" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t318" class="stm run hide_run">    <span class="key">def</span> <span class="nam">to_data_frame</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="pln">        <span class="str">"""Time series information from this cell in a Pandas DataFrame.</span><span class="strut">&nbsp;</span></p>
+<p id="t320" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t321" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t323" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
+<p id="t324" class="pln"><span class="str">            DataFrame containing time series information from this cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t325" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t326" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t328" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="nam">deep</span><span class="op">=</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t329" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t330" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t331" class="stm run hide_run"><span class="key">class</span> <span class="nam">SeriesOfHydraulicCells</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t332" class="pln">    <span class="str">"""Data type for hydraulic geometry represented by a series of hydraulic</span><span class="strut">&nbsp;</span></p>
+<p id="t333" class="pln"><span class="str">    cells.</span><span class="strut">&nbsp;</span></p>
+<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t335" class="pln"><span class="str">    Instantiate from a CSV file with from_csv.</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t337" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t339" class="pln"><span class="str">    list_of_cells : list</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="pln"><span class="str">        List containing HydraulicCell elements.</span><span class="strut">&nbsp;</span></p>
+<p id="t341" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t343" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t344" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t345" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t347" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span> <span class="op">=</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
+<p id="t348" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t349" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_cell_edges</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t351" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t352" class="pln">    <span class="key">def</span> <span class="nam">_calc_cell_edges</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t354" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t355" class="stm run hide_run">        <span class="nam">cell_edges</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t357" class="stm run hide_run">        <span class="nam">cell_edges</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="nam">cumulative_distance</span><span class="strut">&nbsp;</span></p>
+<p id="t358" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t359" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t360" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">+=</span> <span class="nam">cell</span><span class="op">.</span><span class="nam">length</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t361" class="stm run hide_run">            <span class="nam">cell_edges</span><span class="op">[</span><span class="nam">i</span><span class="op">+</span><span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">cumulative_distance</span><span class="strut">&nbsp;</span></p>
+<p id="t362" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t363" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cell_edges</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t365" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t367" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t368" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t369" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t370" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_longitudinal_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="pln">                                    <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t372" class="pln">                                    <span class="nam">lateral_location</span><span class="op">,</span> <span class="nam">width</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t373" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t374" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_location</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t375" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t376" class="stm run hide_run">        <span class="nam">minimum_distance_above_bed</span> <span class="op">=</span> <span class="num">0.00001</span><span class="strut">&nbsp;</span></p>
+<p id="t377" class="stm run hide_run">        <span class="nam">distance_above_bed</span><span class="op">[</span><span class="nam">distance_above_bed</span> <span class="op">&lt;</span> <span class="nam">minimum_distance_above_bed</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t378" class="pln">            <span class="nam">minimum_distance_above_bed</span><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t380" class="stm run hide_run">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="pln">                <span class="nam">distance_above_bed</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln">                <span class="nam">viscosity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t384" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t385" class="pln">        <span class="com"># enforce the no-slip condition</span><span class="strut">&nbsp;</span></p>
+<p id="t386" class="stm run hide_run">        <span class="nam">log_law_velocity</span><span class="op">[</span><span class="nam">log_law_velocity</span> <span class="op">&lt;</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t388" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">2.51</span><span class="strut">&nbsp;</span></p>
+<p id="t389" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2.47</span><span class="strut">&nbsp;</span></p>
+<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t391" class="stm run hide_run">        <span class="nam">streamwise_velocity</span> <span class="op">=</span> <span class="nam">log_law_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln">            <span class="nam">beta</span><span class="op">.</span><span class="nam">pdf</span><span class="op">(</span><span class="nam">lateral_location</span><span class="op">/</span><span class="nam">width</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t394" class="stm run hide_run">        <span class="key">return</span> <span class="nam">streamwise_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t396" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_cell_number_by_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t397" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln">        <span class="com"># Digitize egg positions</span><span class="strut">&nbsp;</span></p>
+<p id="t399" class="stm run hide_run">        <span class="nam">position_cell_number</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">digitize</span><span class="op">(</span><span class="nam">location</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t400" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln">        <span class="com"># Eggs have travelled before the first hydraulic cell</span><span class="strut">&nbsp;</span></p>
+<p id="t402" class="pln">        <span class="com"># (reverse simulation)</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="stm run hide_run">        <span class="nam">position_cell_number</span><span class="op">[</span><span class="nam">location</span> <span class="op">&lt;</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t405" class="stm run hide_run">        <span class="key">return</span> <span class="nam">position_cell_number</span><span class="strut">&nbsp;</span></p>
+<p id="t406" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t407" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">,</span> <span class="nam">location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t408" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t409" class="pln">        <span class="com"># make the extend the cell depth array by one cell to virtually extend</span><span class="strut">&nbsp;</span></p>
+<p id="t410" class="pln">        <span class="com"># the reach with the properties from the last cell</span><span class="strut">&nbsp;</span></p>
+<p id="t411" class="stm run hide_run">        <span class="nam">cell_property</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t412" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t413" class="stm run hide_run">            <span class="nam">cell_property</span><span class="op">[</span><span class="nam">i</span><span class="op">]</span> <span class="op">=</span> <span class="nam">getattr</span><span class="op">(</span><span class="nam">cell</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">)</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t414" class="stm run hide_run">        <span class="nam">cell_property</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">getattr</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">)</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t415" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t416" class="stm run hide_run">        <span class="nam">location_cell_number</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_number_by_position</span><span class="op">(</span><span class="nam">location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t417" class="stm run hide_run">        <span class="nam">location_property</span> <span class="op">=</span> <span class="nam">cell_property</span><span class="op">[</span><span class="nam">location_cell_number</span> <span class="op">-</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t418" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t419" class="stm run hide_run">        <span class="key">return</span> <span class="nam">location_property</span><span class="strut">&nbsp;</span></p>
+<p id="t420" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t421" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t422" class="pln">    <span class="key">def</span> <span class="nam">_list_of_steady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t423" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t424" class="stm run hide_run">        <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t425" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t426" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t427" class="stm run hide_run">        <span class="key">for</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">row</span> <span class="key">in</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">iterrows</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t428" class="pln">            <span class="com"># convert kilometers to meters</span><span class="strut">&nbsp;</span></p>
+<p id="t429" class="stm run hide_run">            <span class="nam">cell_length</span> <span class="op">=</span> <span class="num">1000</span><span class="op">*</span><span class="op">(</span><span class="nam">row</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">-</span> <span class="nam">cumulative_distance</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t430" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t431" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t432" class="stm run hide_run">            <span class="nam">cell_depth</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t433" class="stm run hide_run">            <span class="nam">cell_discharge</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t434" class="stm run hide_run">            <span class="nam">cell_longitudinal_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t435" class="stm run hide_run">            <span class="nam">cell_lateral_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t436" class="stm run hide_run">            <span class="nam">cell_vertical_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t437" class="stm run hide_run">            <span class="nam">cell_shear_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t438" class="stm run hide_run">            <span class="nam">cell_temperature</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t439" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t440" class="stm run hide_run">            <span class="nam">hydraulic_cell</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t441" class="pln">                <span class="nam">SteadyStateHydraulicCell</span><span class="op">(</span><span class="nam">cell_length</span><span class="op">,</span> <span class="nam">cell_depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t442" class="pln">                                         <span class="nam">cell_discharge</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t443" class="pln">                                         <span class="nam">cell_longitudinal_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t444" class="pln">                                         <span class="nam">cell_lateral_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t445" class="pln">                                         <span class="nam">cell_vertical_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t446" class="pln">                                         <span class="nam">cell_shear_velocity</span><span class="op">,</span> <span class="nam">cell_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t447" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t448" class="stm run hide_run">            <span class="nam">list_of_cells</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">hydraulic_cell</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t449" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t450" class="stm run hide_run">        <span class="key">return</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
+<p id="t451" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t452" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t453" class="pln">    <span class="key">def</span> <span class="nam">_list_of_unsteady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t454" class="pln">        <span class="str">"""Returns a list of UnsteadyHydraulicCell instances."""</span><span class="strut">&nbsp;</span></p>
+<p id="t455" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t456" class="pln">        <span class="com"># unpack the keyword arguments</span><span class="strut">&nbsp;</span></p>
+<p id="t457" class="stm run hide_run">        <span class="nam">start_time</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'start_time'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t458" class="stm run hide_run">        <span class="nam">simulation_clock</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'simulation_clock'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t459" class="stm run hide_run">        <span class="nam">simulation</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'simulation'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t460" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t461" class="pln">        <span class="com"># get the cell cumulative distance</span><span class="strut">&nbsp;</span></p>
+<p id="t462" class="stm run hide_run">        <span class="nam">grouped_by_time</span> <span class="op">=</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">groupby</span><span class="op">(</span><span class="nam">axis</span><span class="op">=</span><span class="num">0</span><span class="op">,</span> <span class="nam">level</span><span class="op">=</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t463" class="stm run hide_run">        <span class="nam">initial_time_step</span> <span class="op">=</span> <span class="nam">list</span><span class="op">(</span><span class="nam">grouped_by_time</span><span class="op">.</span><span class="nam">groups</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t464" class="stm run hide_run">        <span class="nam">initial_group</span> <span class="op">=</span> <span class="nam">grouped_by_time</span><span class="op">.</span><span class="nam">get_group</span><span class="op">(</span><span class="nam">initial_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t465" class="stm run hide_run">        <span class="nam">initial_group</span><span class="op">.</span><span class="nam">index</span> <span class="op">=</span> <span class="nam">initial_group</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">droplevel</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t466" class="stm run hide_run">        <span class="nam">cumulative_distance_series</span> <span class="op">=</span> <span class="nam">initial_group</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t467" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t468" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t469" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t470" class="stm run hide_run">        <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t471" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t472" class="stm run hide_run">        <span class="nam">grouped_by_cell</span> <span class="op">=</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">groupby</span><span class="op">(</span><span class="nam">axis</span><span class="op">=</span><span class="num">0</span><span class="op">,</span> <span class="nam">level</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t473" class="stm run hide_run">        <span class="key">for</span> <span class="nam">cell_number</span> <span class="key">in</span> <span class="nam">grouped_by_cell</span><span class="op">.</span><span class="nam">groups</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t474" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t475" class="pln">            <span class="com"># get the cell length and add it to the cumulative distance</span><span class="strut">&nbsp;</span></p>
+<p id="t476" class="stm run hide_run">            <span class="nam">cell_length</span> <span class="op">=</span> <span class="num">1000</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t477" class="pln">                <span class="op">(</span><span class="nam">cumulative_distance_series</span><span class="op">[</span><span class="nam">cell_number</span><span class="op">]</span> <span class="op">-</span> <span class="nam">cumulative_distance</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t478" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="nam">cumulative_distance_series</span><span class="op">[</span><span class="nam">cell_number</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t479" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t480" class="stm run hide_run">            <span class="nam">cell_time_series</span> <span class="op">=</span> <span class="nam">grouped_by_cell</span><span class="op">.</span><span class="nam">get_group</span><span class="op">(</span><span class="nam">cell_number</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t481" class="stm run hide_run">            <span class="nam">cell_time_series</span><span class="op">.</span><span class="nam">index</span> <span class="op">=</span> <span class="nam">cell_time_series</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">droplevel</span><span class="op">(</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t482" class="stm run hide_run">            <span class="nam">hydraulic_cell</span> <span class="op">=</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">(</span><span class="nam">cell_length</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t483" class="pln">                                                   <span class="nam">cell_time_series</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t484" class="pln">                                                   <span class="nam">start_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t485" class="pln">                                                   <span class="nam">simulation_clock</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t486" class="pln">                                                   <span class="nam">simulation</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t487" class="stm run hide_run">            <span class="nam">list_of_cells</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">hydraulic_cell</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t488" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t489" class="stm run hide_run">        <span class="key">return</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
+<p id="t490" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t491" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t492" class="pln">    <span class="key">def</span> <span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t493" class="pln">        <span class="str">"""Creates an instance of this class from a Pandas DataFrame.</span><span class="strut">&nbsp;</span></p>
+<p id="t494" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t495" class="pln"><span class="str">        This method handles the creation of a steady or unsteady series of</span><span class="strut">&nbsp;</span></p>
+<p id="t496" class="pln"><span class="str">        cells, depending on the DataFrame passed. For an unsteady model, level</span><span class="strut">&nbsp;</span></p>
+<p id="t497" class="pln"><span class="str">        0 of the MultiIndex is the time, and level 1 is the cell number.</span><span class="strut">&nbsp;</span></p>
+<p id="t498" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t499" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t500" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t501" class="pln"><span class="str">        data_frame : pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
+<p id="t502" class="pln"><span class="str">            Pandas DataFrame containing hydraulic information</span><span class="strut">&nbsp;</span></p>
+<p id="t503" class="pln"><span class="str">        **kwargs</span><span class="strut">&nbsp;</span></p>
+<p id="t504" class="pln"><span class="str">            These keyword arguments are required when initializing a series of</span><span class="strut">&nbsp;</span></p>
+<p id="t505" class="pln"><span class="str">            unsteady cells.</span><span class="strut">&nbsp;</span></p>
+<p id="t506" class="pln"><span class="str">            start_time : numpy.datetime64</span><span class="strut">&nbsp;</span></p>
+<p id="t507" class="pln"><span class="str">                Simulation start time.</span><span class="strut">&nbsp;</span></p>
+<p id="t508" class="pln"><span class="str">            simulation_clock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t509" class="pln"><span class="str">            simulation : fluegg.simulation.Simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t511" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t512" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t513" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t514" class="pln"><span class="str">        SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t515" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t516" class="pln"><span class="str">        See Also</span><span class="strut">&nbsp;</span></p>
+<p id="t517" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
+<p id="t518" class="pln"><span class="str">        SteadyStateHydraulicCell</span><span class="strut">&nbsp;</span></p>
+<p id="t519" class="pln"><span class="str">        UnsteadyHydraulicCell</span><span class="strut">&nbsp;</span></p>
+<p id="t520" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t521" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t522" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
+<p id="t523" class="pln"><span class="str">        The method initializes steady or unsteady cells based on the number of</span><span class="strut">&nbsp;</span></p>
+<p id="t524" class="pln"><span class="str">        levels in the index of `data_frame`. Steady cells are initialized if</span><span class="strut">&nbsp;</span></p>
+<p id="t525" class="pln"><span class="str">        there is one level, and unsteady cells are initialized if there are</span><span class="strut">&nbsp;</span></p>
+<p id="t526" class="pln"><span class="str">        two.</span><span class="strut">&nbsp;</span></p>
+<p id="t527" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t528" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t529" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t530" class="stm run hide_run">        <span class="key">if</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">nlevels</span> <span class="op">==</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t531" class="stm run hide_run">            <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_list_of_steady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t532" class="stm run hide_run">        <span class="key">elif</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">nlevels</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t533" class="stm run hide_run">            <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_list_of_unsteady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t534" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t535" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unrecognized DataFrame format"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t536" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t537" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t538" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t539" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t540" class="pln">        <span class="str">"""Returns the results of a hydraulic simulation at the given positions</span><span class="strut">&nbsp;</span></p>
+<p id="t541" class="pln"><span class="str">        in space.</span><span class="strut">&nbsp;</span></p>
+<p id="t542" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t543" class="pln"><span class="str">        Position is an n by 3 numpy array, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t544" class="pln"><span class="str">        requested (along axis=0).</span><span class="strut">&nbsp;</span></p>
+<p id="t545" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t546" class="pln"><span class="str">        The indices along axis=1 are:</span><span class="strut">&nbsp;</span></p>
+<p id="t547" class="pln"><span class="str">            0 - The position in the longitudinal, or x, direction in m. The</span><span class="strut">&nbsp;</span></p>
+<p id="t548" class="pln"><span class="str">                positive direction is downstream.</span><span class="strut">&nbsp;</span></p>
+<p id="t549" class="pln"><span class="str">            1 - The position in the lateral, or y, direction in m. The positive</span><span class="strut">&nbsp;</span></p>
+<p id="t550" class="pln"><span class="str">                direction is from the right bank.</span><span class="strut">&nbsp;</span></p>
+<p id="t551" class="pln"><span class="str">            2 - The position in the vertical, or z, direction in m. The</span><span class="strut">&nbsp;</span></p>
+<p id="t552" class="pln"><span class="str">                positive direction is away from the bed.</span><span class="strut">&nbsp;</span></p>
+<p id="t553" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t554" class="pln"><span class="str">            In this coordinate system, the datum (0, 0, 0) is the point at the</span><span class="strut">&nbsp;</span></p>
+<p id="t555" class="pln"><span class="str">            upstream, right bank, water surface of the first cell.</span><span class="strut">&nbsp;</span></p>
+<p id="t556" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t557" class="pln"><span class="str">        position[:, 0] is the position in the longitudinal, or x, direction,</span><span class="strut">&nbsp;</span></p>
+<p id="t558" class="pln"><span class="str">        position[:, 1] is the position in the lateral, or y, direction, and</span><span class="strut">&nbsp;</span></p>
+<p id="t559" class="pln"><span class="str">        position[:, 2] is the position in the vertical, or z, direction.</span><span class="strut">&nbsp;</span></p>
+<p id="t560" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t561" class="pln"><span class="str">        :param position: Array containing position of results</span><span class="strut">&nbsp;</span></p>
+<p id="t562" class="pln"><span class="str">        :return: HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t563" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t564" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t565" class="stm run hide_run">        <span class="nam">longitudinal_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t566" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t567" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="str">'depth'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t568" class="stm run hide_run">        <span class="nam">discharge</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t569" class="pln">            <span class="str">'discharge'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t570" class="stm run hide_run">        <span class="nam">mean_xs_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t571" class="pln">            <span class="str">'mean_xs_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t572" class="stm run hide_run">        <span class="nam">mean_lat_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t573" class="pln">            <span class="str">'mean_lat_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t574" class="stm run hide_run">        <span class="nam">mean_long_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t575" class="pln">            <span class="str">'mean_long_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t576" class="stm run hide_run">        <span class="nam">mean_vert_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t577" class="pln">            <span class="str">'mean_vert_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t578" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t579" class="pln">            <span class="str">'shear_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t580" class="stm run hide_run">        <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t581" class="pln">            <span class="str">'temperature'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t582" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t583" class="stm run hide_run">        <span class="nam">area</span> <span class="op">=</span> <span class="nam">discharge</span> <span class="op">/</span> <span class="nam">mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t584" class="stm run hide_run">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">area</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t585" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t586" class="stm run hide_run">        <span class="nam">viscosity</span> <span class="op">=</span> <span class="nam">calc_water_viscosity</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t587" class="stm run hide_run">        <span class="nam">density</span> <span class="op">=</span> <span class="nam">calc_water_density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t588" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t589" class="stm run hide_run">        <span class="nam">lateral_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t590" class="stm run hide_run">        <span class="nam">vertical_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t591" class="stm run hide_run">        <span class="nam">streamwise_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t592" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_longitudinal_velocity</span><span class="op">(</span><span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t593" class="pln">                                             <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_long_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t594" class="pln">                                             <span class="nam">viscosity</span><span class="op">,</span> <span class="nam">lateral_location</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t595" class="pln">                                             <span class="nam">width</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t596" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t597" class="pln">        <span class="com"># set the streamwise velocities above the water surface to nan</span><span class="strut">&nbsp;</span></p>
+<p id="t598" class="stm run hide_run">        <span class="nam">above_water_surface</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="nam">vertical_location</span><span class="strut">&nbsp;</span></p>
+<p id="t599" class="stm run hide_run">        <span class="nam">streamwise_velocity</span><span class="op">[</span><span class="nam">above_water_surface</span><span class="op">]</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="strut">&nbsp;</span></p>
+<p id="t600" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t601" class="stm run hide_run">        <span class="nam">hydraulic_data</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">stack</span><span class="op">(</span><span class="op">[</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">width</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t602" class="pln">                                   <span class="nam">density</span><span class="op">,</span> <span class="nam">streamwise_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t603" class="pln">                                   <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">mean_lat_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t604" class="pln">                                   <span class="nam">mean_vert_velocity</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t605" class="pln">                                  <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t606" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t607" class="stm run hide_run">        <span class="key">return</span> <span class="nam">HydraulicResults</span><span class="op">(</span><span class="nam">hydraulic_data</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t608" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t609" class="stm run hide_run">    <span class="key">def</span> <span class="nam">to_data_frame</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t610" class="pln">        <span class="str">"""Create a Pandas DataFrame from information in this instance.</span><span class="strut">&nbsp;</span></p>
+<p id="t611" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t612" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t613" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t614" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
+<p id="t615" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t616" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t617" class="stm mis">        <span class="key">if</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="nam">SteadyStateHydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t618" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t619" class="stm mis">            <span class="nam">columns</span> <span class="op">=</span> <span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">,</span> <span class="str">'Depth_m'</span><span class="op">,</span> <span class="str">'Q_cms'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t620" class="pln">                       <span class="str">'Vmag_mps'</span><span class="op">,</span> <span class="str">'Vvert_mps'</span><span class="op">,</span> <span class="str">'Vlat_mps'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t621" class="pln">                       <span class="str">'Ustar_mps'</span><span class="op">,</span> <span class="str">'Temp_C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t622" class="stm mis">            <span class="nam">data_dict</span> <span class="op">=</span> <span class="nam">dict</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">columns</span><span class="op">,</span> <span class="op">[</span><span class="op">[</span><span class="op">]</span> <span class="key">for</span> <span class="nam">_</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="nam">len</span><span class="op">(</span><span class="nam">columns</span><span class="op">)</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t623" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t624" class="stm mis">            <span class="key">for</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t625" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t626" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">length</span><span class="op">(</span><span class="op">)</span> <span class="op">/</span> <span class="num">1000</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t627" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t628" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">discharge</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t629" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t630" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_vert_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t631" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_lat_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t632" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t633" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">temperature</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t634" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t635" class="stm mis">            <span class="nam">cell_numbers</span> <span class="op">=</span> <span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t636" class="stm mis">            <span class="nam">df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DataFrame</span><span class="op">(</span><span class="nam">data</span><span class="op">=</span><span class="nam">data_dict</span><span class="op">,</span> <span class="nam">index</span><span class="op">=</span><span class="nam">cell_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t637" class="stm mis">            <span class="nam">df</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">df</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">cumsum</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t638" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t639" class="stm mis">            <span class="nam">df</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">name</span> <span class="op">=</span> <span class="str">'CellNumber'</span><span class="strut">&nbsp;</span></p>
+<p id="t640" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t641" class="stm mis">        <span class="key">elif</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t642" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t643" class="stm mis">            <span class="nam">frames</span> <span class="op">=</span> <span class="op">[</span><span class="nam">cell</span><span class="op">.</span><span class="nam">to_data_frame</span><span class="op">(</span><span class="op">)</span> <span class="key">for</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t644" class="stm mis">            <span class="nam">df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">concat</span><span class="op">(</span><span class="nam">frames</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t645" class="pln">                           <span class="nam">keys</span><span class="op">=</span><span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">frames</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t646" class="pln">                           <span class="op">.</span><span class="nam">swaplevel</span><span class="op">(</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t647" class="pln">                           <span class="op">.</span><span class="nam">sort_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t648" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t649" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t650" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"Unknown subclass of HydraulicCell"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t651" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t652" class="stm mis">        <span class="key">return</span> <span class="nam">df</span><span class="strut">&nbsp;</span></p>
+<p id="t653" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t654" class="stm run hide_run">    <span class="key">def</span> <span class="nam">cell_edges</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t655" class="pln">        <span class="str">"""Returns the edges of each of the cells</span><span class="strut">&nbsp;</span></p>
+<p id="t656" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t657" class="pln"><span class="str">        :return: Edges of the hydraulic cells</span><span class="strut">&nbsp;</span></p>
+<p id="t658" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t659" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span><span class="strut">&nbsp;</span></p>
+<p id="t660" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t661" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t662" class="stm run hide_run"><span class="key">class</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="op">(</span><span class="nam">SeriesOfHydraulicCells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t663" class="pln">    <span class="str">"""Series of hydraulic cells with velocity velocity calculated under a</span><span class="strut">&nbsp;</span></p>
+<p id="t664" class="pln"><span class="str">    rough bottom assumption</span><span class="strut">&nbsp;</span></p>
+<p id="t665" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t666" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t667" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t668" class="pln"><span class="str">    list_of_cells : list</span><span class="strut">&nbsp;</span></p>
+<p id="t669" class="pln"><span class="str">        List containing HydraulicCell elements.</span><span class="strut">&nbsp;</span></p>
+<p id="t670" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t671" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t672" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t673" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t674" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t675" class="pln">    <span class="key">def</span> <span class="nam">_calc_roughness_height</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t676" class="pln">        <span class="str">"""Calculate roughness height (kc), in meters</span><span class="strut">&nbsp;</span></p>
+<p id="t677" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t678" class="pln"><span class="str">        :param depth: Depth of water column in m</span><span class="strut">&nbsp;</span></p>
+<p id="t679" class="pln"><span class="str">        :param mean_xs_velocity: Mean cross-section velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t680" class="pln"><span class="str">        :param shear_velocity: Shear velocity in ms/</span><span class="strut">&nbsp;</span></p>
+<p id="t681" class="pln"><span class="str">        :return: Roughness height in m</span><span class="strut">&nbsp;</span></p>
+<p id="t682" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t683" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t684" class="stm run hide_run">        <span class="key">return</span> <span class="num">11</span> <span class="op">*</span> <span class="nam">depth</span> <span class="op">/</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">(</span><span class="nam">mean_xs_velocity</span> <span class="op">*</span> <span class="nam">VON_KARMAN_CONSTANT</span><span class="op">)</span> <span class="op">/</span><span class="strut">&nbsp;</span></p>
+<p id="t685" class="pln">                                   <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t686" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t687" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t688" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t689" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t690" class="stm run hide_run">        <span class="nam">roughness_height</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_roughness_height</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t691" class="pln">            <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t692" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t693" class="stm run hide_run">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t694" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="num">1</span><span class="op">/</span><span class="nam">VON_KARMAN_CONSTANT</span><span class="op">)</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
+<p id="t695" class="pln">                              <span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">vertical_location</span> <span class="op">/</span> <span class="nam">roughness_height</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t696" class="pln">                              <span class="num">8.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t697" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t698" class="stm run hide_run">        <span class="key">return</span> <span class="nam">log_law_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t699" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t700" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t701" class="stm run hide_run"><span class="key">class</span> <span class="nam">SmoothBottomSeriesOfHydraulicCells</span><span class="op">(</span><span class="nam">SeriesOfHydraulicCells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t702" class="pln">    <span class="str">"""Not implemented. Fails unit tests.</span><span class="strut">&nbsp;</span></p>
+<p id="t703" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t704" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t705" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t706" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t707" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="op">(</span><span class="str">"This class is not implemented."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t708" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t709" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t710" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">distance_above_bed</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t711" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t712" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t713" class="stm mis">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t714" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">/</span> <span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">shear_velocity</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
+<p id="t715" class="pln">                                              <span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">viscosity</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t716" class="pln">             <span class="num">5.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t717" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t718" class="stm mis">        <span class="key">return</span> <span class="nam">log_law_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t719" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t720" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t721" class="stm run hide_run"><span class="key">def</span> <span class="nam">from_csv</span><span class="op">(</span><span class="nam">path</span><span class="op">,</span> <span class="nam">bed_roughness</span><span class="op">=</span><span class="str">'rough'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t722" class="pln">    <span class="str">"""Construct a SeriesOfHydraulicCells from a CSV file.</span><span class="strut">&nbsp;</span></p>
+<p id="t723" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t724" class="pln"><span class="str">    The CSV file must contain the following columns</span><span class="strut">&nbsp;</span></p>
+<p id="t725" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t726" class="pln"><span class="str">    Column name         Description</span><span class="strut">&nbsp;</span></p>
+<p id="t727" class="pln"><span class="str">    -----------         -----------</span><span class="strut">&nbsp;</span></p>
+<p id="t728" class="pln"><span class="str">    CellNumber          Cell number, integer 1 to inf</span><span class="strut">&nbsp;</span></p>
+<p id="t729" class="pln"><span class="str">    CumlDistance_km     Cumulative distance along the channel of the end of the</span><span class="strut">&nbsp;</span></p>
+<p id="t730" class="pln"><span class="str">                        cell in km</span><span class="strut">&nbsp;</span></p>
+<p id="t731" class="pln"><span class="str">    Depth_m             Depth of the cell in m</span><span class="strut">&nbsp;</span></p>
+<p id="t732" class="pln"><span class="str">    Q_cms               Discharge of the cell in m**3/s</span><span class="strut">&nbsp;</span></p>
+<p id="t733" class="pln"><span class="str">    Vmag_mps            Cross-section average velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t734" class="pln"><span class="str">    Vvert_mps           Vertical component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t735" class="pln"><span class="str">    Vlat_mps            Lateral component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t736" class="pln"><span class="str">    Ustar_mps           Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t737" class="pln"><span class="str">    Temp_C              Temperature in degrees Celsius</span><span class="strut">&nbsp;</span></p>
+<p id="t738" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t739" class="pln"><span class="str">    The contents of a CSV file representing a reach may look like this.</span><span class="strut">&nbsp;</span></p>
+<p id="t740" class="pln"><span class="str">        CellNumber,CumlDistance_km,Depth_m,Q_cms,Vmag_mps,Vvert_mps,Vlat_mps,</span><span class="strut">&nbsp;</span></p>
+<p id="t741" class="pln"><span class="str">            Ustar_mps,Temp_C</span><span class="strut">&nbsp;</span></p>
+<p id="t742" class="pln"><span class="str">        1,20,1,10,1,0,0,0.08,19</span><span class="strut">&nbsp;</span></p>
+<p id="t743" class="pln"><span class="str">        2,40,2,20,2,0,0,0.08,20</span><span class="strut">&nbsp;</span></p>
+<p id="t744" class="pln"><span class="str">        3,60,3,30,3,0,0,0.08,21</span><span class="strut">&nbsp;</span></p>
+<p id="t745" class="pln"><span class="str">        4,80,4,40,4,0,0,0.08,22</span><span class="strut">&nbsp;</span></p>
+<p id="t746" class="pln"><span class="str">        5,100,5,50,5,0,0,0.08,23</span><span class="strut">&nbsp;</span></p>
+<p id="t747" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t748" class="pln"><span class="str">    This 100 km reach has 5 cells and the discharge (Q_cms) increases from 10</span><span class="strut">&nbsp;</span></p>
+<p id="t749" class="pln"><span class="str">    to 50 m**3/s.</span><span class="strut">&nbsp;</span></p>
+<p id="t750" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t751" class="pln"><span class="str">    :param path: Path to CSV file</span><span class="strut">&nbsp;</span></p>
+<p id="t752" class="pln"><span class="str">    :type path: str</span><span class="strut">&nbsp;</span></p>
+<p id="t753" class="pln"><span class="str">    :param bed_roughness: 'rough' or 'smooth'</span><span class="strut">&nbsp;</span></p>
+<p id="t754" class="pln"><span class="str">    :type bed_roughness: str</span><span class="strut">&nbsp;</span></p>
+<p id="t755" class="pln"><span class="str">    :return: SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t756" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t757" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t758" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t759" class="stm run hide_run">    <span class="nam">input_df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">read_csv</span><span class="op">(</span><span class="nam">path</span><span class="op">,</span> <span class="nam">index_col</span><span class="op">=</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t760" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t761" class="stm run hide_run">    <span class="key">if</span> <span class="nam">bed_roughness</span> <span class="op">==</span> <span class="str">'rough'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t762" class="stm run hide_run">        <span class="nam">cls</span> <span class="op">=</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t763" class="stm mis">    <span class="key">elif</span> <span class="nam">bed_roughness</span> <span class="op">==</span> <span class="str">'smooth'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t764" class="stm mis">        <span class="nam">cls</span> <span class="op">=</span> <span class="nam">SmoothBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t765" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t766" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown bed roughness"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t767" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t768" class="stm run hide_run">    <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">input_df</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t769" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t770" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t771" class="stm run hide_run"><span class="key">class</span> <span class="nam">HydraulicResults</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t772" class="pln">    <span class="str">"""Data structure containing hydraulic results from a hydraulic model</span><span class="strut">&nbsp;</span></p>
+<p id="t773" class="pln"><span class="str">    simulation.</span><span class="strut">&nbsp;</span></p>
+<p id="t774" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t775" class="pln"><span class="str">    Instantiated from SeriesOfHydraulicCells.hydraulic_results(). Not to be</span><span class="strut">&nbsp;</span></p>
+<p id="t776" class="pln"><span class="str">    instantiated elsewhere.</span><span class="strut">&nbsp;</span></p>
+<p id="t777" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t778" class="pln"><span class="str">    See Also</span><span class="strut">&nbsp;</span></p>
+<p id="t779" class="pln"><span class="str">    --------</span><span class="strut">&nbsp;</span></p>
+<p id="t780" class="pln"><span class="str">    SeriesOfHydraulicCells.hydraulic_results()</span><span class="strut">&nbsp;</span></p>
+<p id="t781" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t782" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t783" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t784" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_data</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t785" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
+<p id="t786" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t787" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span> <span class="op">=</span> <span class="nam">hydraulic_data</span><span class="strut">&nbsp;</span></p>
+<p id="t788" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t789" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t790" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_width_index</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t791" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature_index</span> <span class="op">=</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t792" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_viscosity_index</span> <span class="op">=</span> <span class="num">3</span><span class="strut">&nbsp;</span></p>
+<p id="t793" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_density_index</span> <span class="op">=</span> <span class="num">4</span><span class="strut">&nbsp;</span></p>
+<p id="t794" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_streamwise_velocity_index</span> <span class="op">=</span> <span class="num">5</span><span class="strut">&nbsp;</span></p>
+<p id="t795" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity_index</span> <span class="op">=</span> <span class="num">6</span><span class="strut">&nbsp;</span></p>
+<p id="t796" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_velocity_index</span> <span class="op">=</span> <span class="num">7</span><span class="strut">&nbsp;</span></p>
+<p id="t797" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_velocity_index</span> <span class="op">=</span> <span class="num">8</span><span class="strut">&nbsp;</span></p>
+<p id="t798" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t799" class="stm run hide_run">    <span class="key">def</span> <span class="nam">depth</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t800" class="pln">        <span class="str">"""Returns the depth of the water column at a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t801" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t802" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t803" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t804" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t805" class="pln"><span class="str">        :return: Depth of water column in m</span><span class="strut">&nbsp;</span></p>
+<p id="t806" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t807" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t808" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t809" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_depth_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t810" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t811" class="stm run hide_run">    <span class="key">def</span> <span class="nam">lateral_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t812" class="pln">        <span class="str">"""Returns the lateral (y-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t813" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t814" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t815" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t816" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t817" class="pln"><span class="str">        :return: Lateral velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t818" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t819" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t820" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t821" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t822" class="stm run hide_run">    <span class="key">def</span> <span class="nam">shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t823" class="pln">        <span class="str">"""Returns the shear velocity corresponding to a position.</span><span class="strut">&nbsp;</span></p>
+<p id="t824" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t825" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t826" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t827" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t828" class="pln"><span class="str">        :return: Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t829" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t830" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t831" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t832" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t833" class="stm run hide_run">    <span class="key">def</span> <span class="nam">streamwise_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t834" class="pln">        <span class="str">"""Returns the streamwise (x-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t835" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t836" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t837" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t838" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t839" class="pln"><span class="str">        :return: Streamwise velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t840" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t841" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t842" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_streamwise_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t843" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t844" class="stm run hide_run">    <span class="key">def</span> <span class="nam">temperature</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t845" class="pln">        <span class="str">"""Returns the temperature for a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t846" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t847" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t848" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t849" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t850" class="pln"><span class="str">        :return: Temperature in deg C</span><span class="strut">&nbsp;</span></p>
+<p id="t851" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t852" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t853" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t854" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t855" class="stm run hide_run">    <span class="key">def</span> <span class="nam">water_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t856" class="pln">        <span class="str">"""Returns the density of the water at a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t857" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t858" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t859" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t860" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t861" class="pln"><span class="str">        :return: Water density in kg/m**3</span><span class="strut">&nbsp;</span></p>
+<p id="t862" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t863" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t864" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t865" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t866" class="stm run hide_run">    <span class="key">def</span> <span class="nam">water_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t867" class="pln">        <span class="str">"""Returns the viscosity of water at a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t868" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t869" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t870" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t871" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t872" class="pln"><span class="str">        :return: Viscosity in m**2/s</span><span class="strut">&nbsp;</span></p>
+<p id="t873" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t874" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t875" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_viscosity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t876" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t877" class="stm run hide_run">    <span class="key">def</span> <span class="nam">width</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t878" class="pln">        <span class="str">"""Returns the width of the channel at a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t879" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t880" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t881" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t882" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t883" class="pln"><span class="str">        :return: Width in m</span><span class="strut">&nbsp;</span></p>
+<p id="t884" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t885" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t886" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_width_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t887" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t888" class="stm run hide_run">    <span class="key">def</span> <span class="nam">vertical_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t889" class="pln">        <span class="str">"""Returns the vertical (z-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
+<p id="t890" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t891" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
+<p id="t892" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
+<p id="t893" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t894" class="pln"><span class="str">        :return: Vertical velocity in m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t895" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t896" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t897" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_kml_py.html b/coverage_report/fluegg_kml_py.html
new file mode 100644
index 0000000..b85f228
--- /dev/null
+++ b/coverage_report/fluegg_kml_py.html
@@ -0,0 +1,907 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\kml.py: 13%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\kml.py</b> :
+            <span class="pc_cov">13%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            130 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">17 run</span>
+            <span class="mis shortkey_m button_toggle_mis">113 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="pln"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="pln"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="stm mis"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="stm mis"><a href="#n39">39</a></p>
+<p id="n40" class="stm mis"><a href="#n40">40</a></p>
+<p id="n41" class="stm mis"><a href="#n41">41</a></p>
+<p id="n42" class="stm mis"><a href="#n42">42</a></p>
+<p id="n43" class="stm mis"><a href="#n43">43</a></p>
+<p id="n44" class="stm mis"><a href="#n44">44</a></p>
+<p id="n45" class="pln"><a href="#n45">45</a></p>
+<p id="n46" class="stm mis"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="stm mis"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="stm mis"><a href="#n51">51</a></p>
+<p id="n52" class="pln"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="stm mis"><a href="#n69">69</a></p>
+<p id="n70" class="stm mis"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="stm mis"><a href="#n72">72</a></p>
+<p id="n73" class="pln"><a href="#n73">73</a></p>
+<p id="n74" class="stm mis"><a href="#n74">74</a></p>
+<p id="n75" class="stm mis"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="stm mis"><a href="#n77">77</a></p>
+<p id="n78" class="stm mis"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="stm mis"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="stm mis"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="stm mis"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="pln"><a href="#n89">89</a></p>
+<p id="n90" class="stm run hide_run"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="pln"><a href="#n97">97</a></p>
+<p id="n98" class="pln"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="pln"><a href="#n100">100</a></p>
+<p id="n101" class="pln"><a href="#n101">101</a></p>
+<p id="n102" class="pln"><a href="#n102">102</a></p>
+<p id="n103" class="pln"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="pln"><a href="#n105">105</a></p>
+<p id="n106" class="pln"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="pln"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="pln"><a href="#n110">110</a></p>
+<p id="n111" class="pln"><a href="#n111">111</a></p>
+<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="pln"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="stm mis"><a href="#n119">119</a></p>
+<p id="n120" class="pln"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="stm mis"><a href="#n122">122</a></p>
+<p id="n123" class="pln"><a href="#n123">123</a></p>
+<p id="n124" class="stm mis"><a href="#n124">124</a></p>
+<p id="n125" class="pln"><a href="#n125">125</a></p>
+<p id="n126" class="stm run hide_run"><a href="#n126">126</a></p>
+<p id="n127" class="pln"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="pln"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="pln"><a href="#n134">134</a></p>
+<p id="n135" class="stm mis"><a href="#n135">135</a></p>
+<p id="n136" class="stm mis"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="stm mis"><a href="#n138">138</a></p>
+<p id="n139" class="stm mis"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="stm mis"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="stm mis"><a href="#n143">143</a></p>
+<p id="n144" class="stm mis"><a href="#n144">144</a></p>
+<p id="n145" class="pln"><a href="#n145">145</a></p>
+<p id="n146" class="stm run hide_run"><a href="#n146">146</a></p>
+<p id="n147" class="pln"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="stm mis"><a href="#n149">149</a></p>
+<p id="n150" class="pln"><a href="#n150">150</a></p>
+<p id="n151" class="stm mis"><a href="#n151">151</a></p>
+<p id="n152" class="stm mis"><a href="#n152">152</a></p>
+<p id="n153" class="pln"><a href="#n153">153</a></p>
+<p id="n154" class="pln"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="pln"><a href="#n156">156</a></p>
+<p id="n157" class="pln"><a href="#n157">157</a></p>
+<p id="n158" class="stm mis"><a href="#n158">158</a></p>
+<p id="n159" class="stm mis"><a href="#n159">159</a></p>
+<p id="n160" class="pln"><a href="#n160">160</a></p>
+<p id="n161" class="pln"><a href="#n161">161</a></p>
+<p id="n162" class="stm mis"><a href="#n162">162</a></p>
+<p id="n163" class="stm mis"><a href="#n163">163</a></p>
+<p id="n164" class="pln"><a href="#n164">164</a></p>
+<p id="n165" class="pln"><a href="#n165">165</a></p>
+<p id="n166" class="stm mis"><a href="#n166">166</a></p>
+<p id="n167" class="stm mis"><a href="#n167">167</a></p>
+<p id="n168" class="pln"><a href="#n168">168</a></p>
+<p id="n169" class="pln"><a href="#n169">169</a></p>
+<p id="n170" class="stm mis"><a href="#n170">170</a></p>
+<p id="n171" class="stm mis"><a href="#n171">171</a></p>
+<p id="n172" class="pln"><a href="#n172">172</a></p>
+<p id="n173" class="pln"><a href="#n173">173</a></p>
+<p id="n174" class="stm mis"><a href="#n174">174</a></p>
+<p id="n175" class="stm mis"><a href="#n175">175</a></p>
+<p id="n176" class="pln"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="stm mis"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="stm mis"><a href="#n181">181</a></p>
+<p id="n182" class="stm mis"><a href="#n182">182</a></p>
+<p id="n183" class="stm mis"><a href="#n183">183</a></p>
+<p id="n184" class="stm mis"><a href="#n184">184</a></p>
+<p id="n185" class="pln"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="stm mis"><a href="#n187">187</a></p>
+<p id="n188" class="pln"><a href="#n188">188</a></p>
+<p id="n189" class="stm run hide_run"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="pln"><a href="#n191">191</a></p>
+<p id="n192" class="pln"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="pln"><a href="#n195">195</a></p>
+<p id="n196" class="pln"><a href="#n196">196</a></p>
+<p id="n197" class="pln"><a href="#n197">197</a></p>
+<p id="n198" class="pln"><a href="#n198">198</a></p>
+<p id="n199" class="pln"><a href="#n199">199</a></p>
+<p id="n200" class="pln"><a href="#n200">200</a></p>
+<p id="n201" class="pln"><a href="#n201">201</a></p>
+<p id="n202" class="stm mis"><a href="#n202">202</a></p>
+<p id="n203" class="pln"><a href="#n203">203</a></p>
+<p id="n204" class="pln"><a href="#n204">204</a></p>
+<p id="n205" class="stm mis"><a href="#n205">205</a></p>
+<p id="n206" class="pln"><a href="#n206">206</a></p>
+<p id="n207" class="pln"><a href="#n207">207</a></p>
+<p id="n208" class="pln"><a href="#n208">208</a></p>
+<p id="n209" class="stm mis"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
+<p id="n212" class="pln"><a href="#n212">212</a></p>
+<p id="n213" class="pln"><a href="#n213">213</a></p>
+<p id="n214" class="pln"><a href="#n214">214</a></p>
+<p id="n215" class="pln"><a href="#n215">215</a></p>
+<p id="n216" class="pln"><a href="#n216">216</a></p>
+<p id="n217" class="pln"><a href="#n217">217</a></p>
+<p id="n218" class="pln"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="pln"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="pln"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="pln"><a href="#n228">228</a></p>
+<p id="n229" class="pln"><a href="#n229">229</a></p>
+<p id="n230" class="pln"><a href="#n230">230</a></p>
+<p id="n231" class="pln"><a href="#n231">231</a></p>
+<p id="n232" class="pln"><a href="#n232">232</a></p>
+<p id="n233" class="pln"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="pln"><a href="#n235">235</a></p>
+<p id="n236" class="pln"><a href="#n236">236</a></p>
+<p id="n237" class="stm mis"><a href="#n237">237</a></p>
+<p id="n238" class="pln"><a href="#n238">238</a></p>
+<p id="n239" class="stm mis"><a href="#n239">239</a></p>
+<p id="n240" class="stm mis"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="stm mis"><a href="#n242">242</a></p>
+<p id="n243" class="stm mis"><a href="#n243">243</a></p>
+<p id="n244" class="pln"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="stm mis"><a href="#n246">246</a></p>
+<p id="n247" class="pln"><a href="#n247">247</a></p>
+<p id="n248" class="pln"><a href="#n248">248</a></p>
+<p id="n249" class="stm mis"><a href="#n249">249</a></p>
+<p id="n250" class="pln"><a href="#n250">250</a></p>
+<p id="n251" class="stm mis"><a href="#n251">251</a></p>
+<p id="n252" class="pln"><a href="#n252">252</a></p>
+<p id="n253" class="stm mis"><a href="#n253">253</a></p>
+<p id="n254" class="pln"><a href="#n254">254</a></p>
+<p id="n255" class="stm mis"><a href="#n255">255</a></p>
+<p id="n256" class="stm mis"><a href="#n256">256</a></p>
+<p id="n257" class="stm mis"><a href="#n257">257</a></p>
+<p id="n258" class="stm mis"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="pln"><a href="#n260">260</a></p>
+<p id="n261" class="stm mis"><a href="#n261">261</a></p>
+<p id="n262" class="pln"><a href="#n262">262</a></p>
+<p id="n263" class="stm mis"><a href="#n263">263</a></p>
+<p id="n264" class="pln"><a href="#n264">264</a></p>
+<p id="n265" class="stm mis"><a href="#n265">265</a></p>
+<p id="n266" class="stm mis"><a href="#n266">266</a></p>
+<p id="n267" class="pln"><a href="#n267">267</a></p>
+<p id="n268" class="pln"><a href="#n268">268</a></p>
+<p id="n269" class="stm mis"><a href="#n269">269</a></p>
+<p id="n270" class="stm mis"><a href="#n270">270</a></p>
+<p id="n271" class="pln"><a href="#n271">271</a></p>
+<p id="n272" class="stm mis"><a href="#n272">272</a></p>
+<p id="n273" class="stm mis"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="stm mis"><a href="#n275">275</a></p>
+<p id="n276" class="pln"><a href="#n276">276</a></p>
+<p id="n277" class="stm mis"><a href="#n277">277</a></p>
+<p id="n278" class="pln"><a href="#n278">278</a></p>
+<p id="n279" class="stm run hide_run"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="pln"><a href="#n281">281</a></p>
+<p id="n282" class="pln"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="pln"><a href="#n284">284</a></p>
+<p id="n285" class="pln"><a href="#n285">285</a></p>
+<p id="n286" class="pln"><a href="#n286">286</a></p>
+<p id="n287" class="pln"><a href="#n287">287</a></p>
+<p id="n288" class="pln"><a href="#n288">288</a></p>
+<p id="n289" class="pln"><a href="#n289">289</a></p>
+<p id="n290" class="pln"><a href="#n290">290</a></p>
+<p id="n291" class="pln"><a href="#n291">291</a></p>
+<p id="n292" class="stm mis"><a href="#n292">292</a></p>
+<p id="n293" class="stm mis"><a href="#n293">293</a></p>
+<p id="n294" class="pln"><a href="#n294">294</a></p>
+<p id="n295" class="stm mis"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="stm run hide_run"><a href="#n297">297</a></p>
+<p id="n298" class="pln"><a href="#n298">298</a></p>
+<p id="n299" class="pln"><a href="#n299">299</a></p>
+<p id="n300" class="pln"><a href="#n300">300</a></p>
+<p id="n301" class="pln"><a href="#n301">301</a></p>
+<p id="n302" class="pln"><a href="#n302">302</a></p>
+<p id="n303" class="pln"><a href="#n303">303</a></p>
+<p id="n304" class="pln"><a href="#n304">304</a></p>
+<p id="n305" class="pln"><a href="#n305">305</a></p>
+<p id="n306" class="pln"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="pln"><a href="#n308">308</a></p>
+<p id="n309" class="pln"><a href="#n309">309</a></p>
+<p id="n310" class="pln"><a href="#n310">310</a></p>
+<p id="n311" class="pln"><a href="#n311">311</a></p>
+<p id="n312" class="pln"><a href="#n312">312</a></p>
+<p id="n313" class="pln"><a href="#n313">313</a></p>
+<p id="n314" class="pln"><a href="#n314">314</a></p>
+<p id="n315" class="pln"><a href="#n315">315</a></p>
+<p id="n316" class="stm mis"><a href="#n316">316</a></p>
+<p id="n317" class="pln"><a href="#n317">317</a></p>
+<p id="n318" class="stm mis"><a href="#n318">318</a></p>
+<p id="n319" class="pln"><a href="#n319">319</a></p>
+<p id="n320" class="stm mis"><a href="#n320">320</a></p>
+<p id="n321" class="pln"><a href="#n321">321</a></p>
+<p id="n322" class="pln"><a href="#n322">322</a></p>
+<p id="n323" class="stm mis"><a href="#n323">323</a></p>
+<p id="n324" class="pln"><a href="#n324">324</a></p>
+<p id="n325" class="stm mis"><a href="#n325">325</a></p>
+<p id="n326" class="stm mis"><a href="#n326">326</a></p>
+<p id="n327" class="stm mis"><a href="#n327">327</a></p>
+<p id="n328" class="stm mis"><a href="#n328">328</a></p>
+<p id="n329" class="stm mis"><a href="#n329">329</a></p>
+<p id="n330" class="stm mis"><a href="#n330">330</a></p>
+<p id="n331" class="stm mis"><a href="#n331">331</a></p>
+<p id="n332" class="stm mis"><a href="#n332">332</a></p>
+<p id="n333" class="stm mis"><a href="#n333">333</a></p>
+<p id="n334" class="pln"><a href="#n334">334</a></p>
+<p id="n335" class="stm mis"><a href="#n335">335</a></p>
+<p id="n336" class="stm mis"><a href="#n336">336</a></p>
+<p id="n337" class="stm mis"><a href="#n337">337</a></p>
+<p id="n338" class="stm mis"><a href="#n338">338</a></p>
+<p id="n339" class="pln"><a href="#n339">339</a></p>
+<p id="n340" class="pln"><a href="#n340">340</a></p>
+<p id="n341" class="stm mis"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="stm mis"><a href="#n343">343</a></p>
+<p id="n344" class="pln"><a href="#n344">344</a></p>
+<p id="n345" class="stm mis"><a href="#n345">345</a></p>
+<p id="n346" class="pln"><a href="#n346">346</a></p>
+<p id="n347" class="stm run hide_run"><a href="#n347">347</a></p>
+<p id="n348" class="pln"><a href="#n348">348</a></p>
+<p id="n349" class="pln"><a href="#n349">349</a></p>
+<p id="n350" class="pln"><a href="#n350">350</a></p>
+<p id="n351" class="pln"><a href="#n351">351</a></p>
+<p id="n352" class="pln"><a href="#n352">352</a></p>
+<p id="n353" class="pln"><a href="#n353">353</a></p>
+<p id="n354" class="pln"><a href="#n354">354</a></p>
+<p id="n355" class="pln"><a href="#n355">355</a></p>
+<p id="n356" class="pln"><a href="#n356">356</a></p>
+<p id="n357" class="pln"><a href="#n357">357</a></p>
+<p id="n358" class="pln"><a href="#n358">358</a></p>
+<p id="n359" class="pln"><a href="#n359">359</a></p>
+<p id="n360" class="pln"><a href="#n360">360</a></p>
+<p id="n361" class="pln"><a href="#n361">361</a></p>
+<p id="n362" class="pln"><a href="#n362">362</a></p>
+<p id="n363" class="pln"><a href="#n363">363</a></p>
+<p id="n364" class="pln"><a href="#n364">364</a></p>
+<p id="n365" class="pln"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="pln"><a href="#n367">367</a></p>
+<p id="n368" class="pln"><a href="#n368">368</a></p>
+<p id="n369" class="pln"><a href="#n369">369</a></p>
+<p id="n370" class="pln"><a href="#n370">370</a></p>
+<p id="n371" class="pln"><a href="#n371">371</a></p>
+<p id="n372" class="stm mis"><a href="#n372">372</a></p>
+<p id="n373" class="pln"><a href="#n373">373</a></p>
+<p id="n374" class="stm mis"><a href="#n374">374</a></p>
+<p id="n375" class="stm mis"><a href="#n375">375</a></p>
+<p id="n376" class="pln"><a href="#n376">376</a></p>
+<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
+<p id="n378" class="pln"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="pln"><a href="#n380">380</a></p>
+<p id="n381" class="pln"><a href="#n381">381</a></p>
+<p id="n382" class="pln"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="pln"><a href="#n384">384</a></p>
+<p id="n385" class="pln"><a href="#n385">385</a></p>
+<p id="n386" class="stm mis"><a href="#n386">386</a></p>
+<p id="n387" class="pln"><a href="#n387">387</a></p>
+<p id="n388" class="stm mis"><a href="#n388">388</a></p>
+<p id="n389" class="stm mis"><a href="#n389">389</a></p>
+<p id="n390" class="pln"><a href="#n390">390</a></p>
+<p id="n391" class="stm run hide_run"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="pln"><a href="#n393">393</a></p>
+<p id="n394" class="pln"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="pln"><a href="#n396">396</a></p>
+<p id="n397" class="pln"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="pln"><a href="#n399">399</a></p>
+<p id="n400" class="pln"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="pln"><a href="#n402">402</a></p>
+<p id="n403" class="pln"><a href="#n403">403</a></p>
+<p id="n404" class="pln"><a href="#n404">404</a></p>
+<p id="n405" class="pln"><a href="#n405">405</a></p>
+<p id="n406" class="stm mis"><a href="#n406">406</a></p>
+<p id="n407" class="pln"><a href="#n407">407</a></p>
+<p id="n408" class="stm mis"><a href="#n408">408</a></p>
+<p id="n409" class="stm mis"><a href="#n409">409</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">xml</span><span class="op">.</span><span class="nam">etree</span><span class="op">.</span><span class="nam">ElementTree</span> <span class="key">as</span> <span class="nam">ElementTree</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">from</span> <span class="nam">matplotlib</span><span class="op">.</span><span class="nam">cm</span> <span class="key">import</span> <span class="nam">jet</span> <span class="key">as</span> <span class="nam">jet_cm</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">simplekml</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="key">def</span> <span class="nam">kml_linestring_coordinates</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln">    <span class="str">"""Return lat, lon coordinates from a LineString contained in a KML file</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln"><span class="str">    This function looks for a LineString under the coordinates tag in the</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="str">    following structure.</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="str">    &lt;kml xmlns="http://www.opengis.net/kml/2.2" ...></span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">    &lt;Document></span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="str">        &lt;Placemark></span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">            &lt;LineString></span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="str">                &lt;coordinates></span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="str">                    "lat1,lon1,z1 lat2,lon2,z2 ..."</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="pln"><span class="str">                &lt;/coordinates></span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln"><span class="str">            &lt;/LineString></span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln"><span class="str">        &lt;/Placemark></span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln"><span class="str">    &lt;/Document></span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="str">    &lt;/kml></span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="str">    kml_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln"><span class="str">        Path to KML file containing a LineString</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln"><span class="str">    Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="str">    -------</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="str">    numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm mis">    <span class="nam">ns</span> <span class="op">=</span> <span class="op">{</span><span class="str">'og'</span><span class="op">:</span> <span class="str">'http://www.opengis.net/kml/2.2'</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm mis">    <span class="nam">tree</span> <span class="op">=</span> <span class="nam">ElementTree</span><span class="op">.</span><span class="nam">parse</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm mis">    <span class="nam">xml_root</span> <span class="op">=</span> <span class="nam">tree</span><span class="op">.</span><span class="nam">getroot</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm mis">    <span class="nam">document</span> <span class="op">=</span> <span class="nam">xml_root</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:Document'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm mis">    <span class="nam">placemark</span> <span class="op">=</span> <span class="nam">document</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:Placemark'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="stm mis">    <span class="nam">linestring</span> <span class="op">=</span> <span class="nam">placemark</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:LineString'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm mis">    <span class="nam">coordinates</span> <span class="op">=</span> <span class="nam">linestring</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:coordinates'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm mis">    <span class="nam">list_coordinates</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln">        <span class="op">[</span><span class="nam">cset</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">','</span><span class="op">)</span> <span class="key">for</span> <span class="nam">cset</span> <span class="key">in</span> <span class="nam">coordinates</span><span class="op">.</span><span class="nam">text</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">' '</span><span class="op">)</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm mis">    <span class="nam">flt_coordinates</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln">        <span class="op">[</span><span class="op">[</span><span class="nam">float</span><span class="op">(</span><span class="nam">cset</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">)</span><span class="op">,</span> <span class="nam">float</span><span class="op">(</span><span class="nam">cset</span><span class="op">[</span><span class="num">1</span><span class="op">]</span><span class="op">)</span><span class="op">]</span> <span class="key">for</span> <span class="nam">cset</span> <span class="key">in</span> <span class="nam">list_coordinates</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm mis">    <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">flt_coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run"><span class="key">def</span> <span class="nam">great_circle_dist</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln">    <span class="str">"""Computes great circle distance</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="str">    coordinates : np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="str">        N x 2 ndarray, with column 0 as longitude and column 1 as latitude</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="str">    Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="str">    -------</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="str">    numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="str">        Cumulative distance of array, in meters</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t69" class="stm mis">    <span class="nam">LATT_COLUMN</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm mis">    <span class="nam">LONG_COLUMN</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm mis">    <span class="nam">rads</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">radians</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm mis">    <span class="nam">start_latt</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="op">:</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="nam">LATT_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm mis">    <span class="nam">end_latt</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="op">,</span> <span class="nam">LATT_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm mis">    <span class="nam">d_latt</span> <span class="op">=</span> <span class="nam">end_latt</span> <span class="op">-</span> <span class="nam">start_latt</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="stm mis">    <span class="nam">d_long</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="op">,</span> <span class="nam">LONG_COLUMN</span><span class="op">]</span> <span class="op">-</span> <span class="nam">rads</span><span class="op">[</span><span class="op">:</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="nam">LONG_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm mis">    <span class="nam">a</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sin</span><span class="op">(</span><span class="nam">d_latt</span><span class="op">/</span><span class="num">2</span><span class="op">)</span><span class="op">**</span><span class="num">2</span> <span class="op">+</span> <span class="nam">np</span><span class="op">.</span><span class="nam">cos</span><span class="op">(</span><span class="nam">start_latt</span><span class="op">)</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln">        <span class="nam">np</span><span class="op">.</span><span class="nam">cos</span><span class="op">(</span><span class="nam">end_latt</span><span class="op">)</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sin</span><span class="op">(</span><span class="nam">d_long</span><span class="op">/</span><span class="num">2</span><span class="op">)</span><span class="op">**</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">    <span class="nam">c</span> <span class="op">=</span> <span class="num">2</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arcsin</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">a</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t84" class="stm mis">    <span class="nam">dist</span> <span class="op">=</span> <span class="num">6371e3</span> <span class="op">*</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">    <span class="nam">cum_dist</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">insert</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">cumsum</span><span class="op">(</span><span class="nam">dist</span><span class="op">)</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm mis">    <span class="key">return</span> <span class="nam">cum_dist</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t89" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t90" class="stm run hide_run"><span class="key">class</span> <span class="nam">FluEggKML</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln">    <span class="str">"""Manages KML file output for FluEgg.</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="str">    centerline_kml_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="str">        Path to stream centerline KML. The centerline KML must have uniform</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="pln"><span class="str">        spacing between the points.</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="pln"><span class="str">    spawing_location : float</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln"><span class="str">        Streamwise distance downstream of spawning location.</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t101" class="pln"><span class="str">    Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="pln"><span class="str">    -----</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="pln"><span class="str">    Particle streamwise distances are mapped to geographic coordinates under</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="str">    the assumption the points in the centerline KML are spaced equally along</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="pln"><span class="str">    the streamline.</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln"><span class="str">    The first coordinate in the KML centerline is assumed to be the upstream-</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="pln"><span class="str">    most point. The streamwise distance at this point is 0.</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t110" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">centerline_kml_path</span><span class="op">,</span> <span class="nam">spawning_location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln">        <span class="str">"""see help(self) for initialization details"""</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln">        <span class="com"># coordinates and stream distances corresponding to the centerline</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln">        <span class="com"># points</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="nam">coordinates</span> <span class="op">=</span> <span class="nam">kml_linestring_coordinates</span><span class="op">(</span><span class="nam">centerline_kml_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm mis">        <span class="nam">dist</span> <span class="op">=</span> <span class="nam">great_circle_dist</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln">        <span class="com"># dist, lat, lon</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">hstack</span><span class="op">(</span><span class="op">(</span><span class="nam">dist</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">np</span><span class="op">.</span><span class="nam">newaxis</span><span class="op">]</span><span class="op">,</span> <span class="nam">coordinates</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t124" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_spawning_location</span> <span class="op">=</span> <span class="nam">spawning_location</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t126" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">kml</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="pln">        <span class="str">"""Add the spawning location to a KML</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="pln"><span class="str">        kml : simplekml.Kml</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm mis">        <span class="nam">spawning_style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln">            <span class="str">'http://maps.google.com/mapfiles/kml/shapes/fishing.png'</span><span class="strut">&nbsp;</span></p>
+<p id="t138" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="str">'ffffff00'</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="num">1.2</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t141" class="stm mis">        <span class="nam">spawning_coords</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_spawning_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t143" class="stm mis">        <span class="nam">spawning_location</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="nam">spawning_coords</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="stm mis">        <span class="nam">spawning_location</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">spawning_style</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">shape</span><span class="op">,</span> <span class="nam">color</span><span class="op">,</span> <span class="nam">scale</span><span class="op">,</span> <span class="nam">alphaint</span><span class="op">=</span><span class="num">128</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">        <span class="key">if</span> <span class="nam">shape</span> <span class="op">==</span> <span class="str">'dot'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="stm mis">            <span class="nam">icon_shape</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="pln">                <span class="str">'http://maps.google.com/mapfiles/kml/shapes/shaded_dot.png'</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="stm mis">        <span class="key">elif</span> <span class="nam">shape</span> <span class="op">==</span> <span class="str">'square'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="stm mis">            <span class="nam">icon_shape</span> <span class="op">=</span> <span class="str">'http://maps.google.com/mapfiles/kml/shapes/'</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t153" class="pln">                <span class="str">'placemark_square.png'</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown shape: {}"</span><span class="op">.</span><span class="nam">format</span><span class="op">(</span><span class="nam">shape</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t157" class="pln">        <span class="com"># blue</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="stm mis">        <span class="key">if</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'b'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">blue</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t161" class="pln">        <span class="com"># red</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'r'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">red</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t165" class="pln">        <span class="com"># yellow</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'y'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">yellow</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t169" class="pln">        <span class="com"># magenta</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'m'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">magenta</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t173" class="pln">        <span class="com"># black</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'k'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t175" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">black</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln">        <span class="com"># assume color is passed as a KML hex value</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">color</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="nam">scale</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="nam">icon_shape</span><span class="strut">&nbsp;</span></p>
+<p id="t184" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="pln">            <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">changealphaint</span><span class="op">(</span><span class="nam">alphaint</span><span class="op">,</span> <span class="nam">icon_color</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t187" class="stm mis">        <span class="key">return</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t189" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t191" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t192" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln"><span class="str">        point_dist : float, numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t195" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t196" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="pln"><span class="str">        latitude, longitude : float, numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t200" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t202" class="stm mis">        <span class="nam">latitude</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">interp</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="pln">                             <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="pln">                             <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="stm mis">        <span class="nam">longitude</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">interp</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t209" class="stm mis">        <span class="key">return</span> <span class="nam">latitude</span><span class="op">,</span> <span class="nam">longitude</span><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t211" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_particle_locations</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="pln">        <span class="str">"""KML text containing georeferenced points</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t214" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="pln"><span class="str">        depth_fraction : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln"><span class="str">            Depth fraction of points. Depth fraction is the fractional height</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t226" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln"><span class="str">        Particles with depth fractions greater than or equal to 0.05 are</span><span class="strut">&nbsp;</span></p>
+<p id="t228" class="pln"><span class="str">        shown as suspended particles.</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t230" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="pln"><span class="str">        write_locations : Write points to a KML file</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t235" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t236" class="pln">        <span class="com">#  eggs greater than suspended_depth_fraction are shown as suspended</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="stm mis">        <span class="nam">suspended_depth_fraction</span> <span class="op">=</span> <span class="num">0.05</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm mis">        <span class="key">if</span> <span class="nam">point_dist</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">!=</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"point_dist must be a one-dimensional array"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm mis">        <span class="key">if</span> <span class="nam">depth_fraction</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">!=</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"depth_fraction must be a one-dimensional array"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t244" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">        <span class="key">if</span> <span class="key">not</span> <span class="nam">point_dist</span><span class="op">.</span><span class="nam">shape</span> <span class="op">==</span> <span class="nam">depth_fraction</span><span class="op">.</span><span class="nam">shape</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"point_dist and depth_fraction must have "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t247" class="pln">                             <span class="str">"the same shape"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t249" class="stm mis">        <span class="nam">suspended_index</span> <span class="op">=</span> <span class="nam">suspended_depth_fraction</span> <span class="op">&lt;=</span> <span class="nam">depth_fraction</span><span class="strut">&nbsp;</span></p>
+<p id="t250" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t251" class="stm mis">        <span class="nam">latitude</span><span class="op">,</span> <span class="nam">longitude</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t253" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t255" class="stm mis">        <span class="nam">point_shape</span> <span class="op">=</span> <span class="str">'dot'</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="stm mis">        <span class="nam">point_scale</span> <span class="op">=</span> <span class="num">0.4</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="stm mis">        <span class="nam">suspended_color</span> <span class="op">=</span> <span class="str">'y'</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="stm mis">        <span class="nam">bottom_color</span> <span class="op">=</span> <span class="str">'m'</span><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t260" class="pln">        <span class="com">#  add suspended points</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">point_shape</span><span class="op">,</span> <span class="nam">suspended_color</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t262" class="pln">                                      <span class="nam">point_scale</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="stm mis">        <span class="key">for</span> <span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span> <span class="key">in</span> <span class="nam">zip</span><span class="op">(</span><span class="nam">latitude</span><span class="op">[</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="pln">                            <span class="nam">longitude</span><span class="op">[</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t268" class="pln">        <span class="com">#  add non-suspended (bottom) points</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">point_shape</span><span class="op">,</span> <span class="nam">bottom_color</span><span class="op">,</span> <span class="nam">point_scale</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="stm mis">        <span class="key">for</span> <span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span> <span class="key">in</span> <span class="nam">zip</span><span class="op">(</span><span class="nam">latitude</span><span class="op">[</span><span class="op">~</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t271" class="pln">                            <span class="nam">longitude</span><span class="op">[</span><span class="op">~</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t277" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t279" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln">        <span class="str">"""KML text containing georeferenced spawning location</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t282" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t286" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="pln"><span class="str">        write_locations : Write points to a KML file</span><span class="strut">&nbsp;</span></p>
+<p id="t289" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t290" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t292" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t294" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t295" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t297" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_quantiles</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="pln">        <span class="str">"""KML text containing georeferenced quantiles of particle locations.</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t300" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t303" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t305" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t309" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="pln"><span class="str">        Locations for the 0, 0.10, 0.25, 0.50, 0.75, 0.90, and 1 quantiles are</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="pln"><span class="str">        included in the KML string.</span><span class="strut">&nbsp;</span></p>
+<p id="t313" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t314" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t315" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t316" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t317" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t318" class="stm mis">        <span class="nam">quantiles</span> <span class="op">=</span> <span class="op">[</span><span class="num">0</span><span class="op">,</span> <span class="num">0.10</span><span class="op">,</span> <span class="num">0.25</span><span class="op">,</span> <span class="num">0.50</span><span class="op">,</span> <span class="num">0.75</span><span class="op">,</span> <span class="num">0.90</span><span class="op">,</span> <span class="num">1.</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t320" class="stm mis">        <span class="nam">computed_quantiles</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">quantile</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span> <span class="nam">quantiles</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t321" class="pln">                                         <span class="nam">interpolation</span><span class="op">=</span><span class="str">'nearest'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t323" class="stm mis">        <span class="nam">la</span><span class="op">,</span> <span class="nam">lo</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">computed_quantiles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t324" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t325" class="stm mis">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">la</span><span class="op">,</span> <span class="nam">lo</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t326" class="stm mis">            <span class="nam">q</span> <span class="op">=</span> <span class="nam">quantiles</span><span class="op">[</span><span class="nam">i</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">name</span><span class="op">=</span><span class="nam">str</span><span class="op">(</span><span class="nam">q</span><span class="op">)</span><span class="op">,</span> <span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t328" class="stm mis">            <span class="nam">X</span> <span class="op">=</span> <span class="num">1</span> <span class="op">-</span> <span class="nam">abs</span><span class="op">(</span><span class="nam">q</span> <span class="op">-</span> <span class="num">0.5</span><span class="op">)</span><span class="op">/</span><span class="num">0.5</span><span class="strut">&nbsp;</span></p>
+<p id="t329" class="stm mis">            <span class="nam">rgba</span> <span class="op">=</span> <span class="nam">jet_cm</span><span class="op">(</span><span class="nam">X</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t330" class="stm mis">            <span class="nam">red_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t331" class="stm mis">            <span class="nam">green_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t332" class="stm mis">            <span class="nam">blue_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">2</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t333" class="stm mis">            <span class="nam">color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">rgb</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t334" class="pln">                <span class="nam">red_value</span><span class="op">,</span> <span class="nam">green_value</span><span class="op">,</span> <span class="nam">blue_value</span><span class="op">,</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t335" class="stm mis">            <span class="nam">style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="num">1.25</span><span class="strut">&nbsp;</span></p>
+<p id="t337" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="nam">color</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t339" class="pln">                <span class="str">'http://maps.google.com/mapfiles/kml/shapes/'</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="pln">                <span class="str">'placemark_square.png'</span><span class="strut">&nbsp;</span></p>
+<p id="t341" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t343" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t344" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t345" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t347" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_locations</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t348" class="pln">        <span class="str">"""Write particle locations to a KML file</span><span class="strut">&nbsp;</span></p>
+<p id="t349" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t350" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t351" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t352" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
+<p id="t354" class="pln"><span class="str">        depth_fraction : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t355" class="pln"><span class="str">            Depth fraction of points. Depth fraction is the fractional height</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="pln"><span class="str">            above the bed.</span><span class="strut">&nbsp;</span></p>
+<p id="t357" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t358" class="pln"><span class="str">            Path to write KML file to.</span><span class="strut">&nbsp;</span></p>
+<p id="t359" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t360" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t361" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
+<p id="t362" class="pln"><span class="str">        Particles with depth fractions greater than or equal to 0.05 are</span><span class="strut">&nbsp;</span></p>
+<p id="t363" class="pln"><span class="str">        shown as suspended particles.</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t365" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
+<p id="t367" class="pln"><span class="str">        kml_particle_locations : KML text containing georeferenced particle</span><span class="strut">&nbsp;</span></p>
+<p id="t368" class="pln"><span class="str">            locations.</span><span class="strut">&nbsp;</span></p>
+<p id="t369" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t370" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t372" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_particle_locations</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t373" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t374" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t375" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t376" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t377" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t378" class="pln">        <span class="str">"""Write spawning location to a KML file</span><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t380" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t384" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t386" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_spawning_location</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t388" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t389" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t391" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_quantiles</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t394" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t396" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t397" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t399" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
+<p id="t400" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln"><span class="str">        kml_quantiles : KML text containing georeferenced quantiles of particle</span><span class="strut">&nbsp;</span></p>
+<p id="t402" class="pln"><span class="str">            locations.</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t404" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t405" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t406" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_quantiles</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t408" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t409" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_random_py.html b/coverage_report/fluegg_random_py.html
new file mode 100644
index 0000000..1726c11
--- /dev/null
+++ b/coverage_report/fluegg_random_py.html
@@ -0,0 +1,271 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\random.py: 50%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\random.py</b> :
+            <span class="pc_cov">50%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            36 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">18 run</span>
+            <span class="mis shortkey_m button_toggle_mis">18 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="stm mis"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
+<p id="n20" class="pln"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="stm mis"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
+<p id="n37" class="pln"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="pln"><a href="#n40">40</a></p>
+<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
+<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
+<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="pln"><a href="#n51">51</a></p>
+<p id="n52" class="pln"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="pln"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="stm mis"><a href="#n62">62</a></p>
+<p id="n63" class="stm mis"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="stm mis"><a href="#n65">65</a></p>
+<p id="n66" class="stm mis"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="stm mis"><a href="#n70">70</a></p>
+<p id="n71" class="stm mis"><a href="#n71">71</a></p>
+<p id="n72" class="pln"><a href="#n72">72</a></p>
+<p id="n73" class="stm mis"><a href="#n73">73</a></p>
+<p id="n74" class="pln"><a href="#n74">74</a></p>
+<p id="n75" class="stm mis"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="stm mis"><a href="#n79">79</a></p>
+<p id="n80" class="stm mis"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="stm mis"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="pln"><a href="#n85">85</a></p>
+<p id="n86" class="stm mis"><a href="#n86">86</a></p>
+<p id="n87" class="stm mis"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm mis"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="stm mis"><a href="#n91">91</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">h5py</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="stm run hide_run"><span class="key">class</span> <span class="nam">RandomNumbers</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm run hide_run"><span class="key">class</span> <span class="nam">NormalRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln">    <span class="str">"""Returns normally distributed random numbers.</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="pln">        <span class="str">"""Returns a normally distributed random number</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="str">        Calls numpy.random.normal for random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="op">(</span><span class="nam">loc</span><span class="op">=</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">scale</span><span class="op">=</span><span class="nam">std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln">        <span class="str">"""Returns an array of normally distributed random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="stm mis">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="op">(</span><span class="nam">loc</span><span class="op">=</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">scale</span><span class="op">=</span><span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">=</span><span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm run hide_run"><span class="key">class</span> <span class="nam">NonRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="pln">    <span class="str">"""Returns means instead of random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm run hide_run">        <span class="key">return</span> <span class="nam">mean</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="stm run hide_run">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm run hide_run"><span class="key">class</span> <span class="nam">HDF5NormalRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln">    <span class="str">"""Returns normal random numbers from an HDF5 file.</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t51" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="str">    file_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t54" class="pln"><span class="str">        Path to HDF5 file</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln"><span class="str">    data_set : str</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="str">        Data set containing standard normal random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">file_path</span><span class="op">,</span> <span class="nam">data_set</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t62" class="stm mis">        <span class="key">with</span> <span class="nam">h5py</span><span class="op">.</span><span class="nam">File</span><span class="op">(</span><span class="nam">file_path</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="stm mis">            <span class="nam">dset</span> <span class="op">=</span> <span class="nam">f</span><span class="op">[</span><span class="nam">data_set</span><span class="op">]</span><span class="op">[</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span> <span class="op">=</span> <span class="nam">dset</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">></span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"No remaining random numbers"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t73" class="stm mis">        <span class="nam">size</span> <span class="op">=</span> <span class="nam">mean</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">random_array</span><span class="op">(</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t79" class="stm mis">        <span class="nam">first_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm mis">        <span class="nam">last_index</span> <span class="op">=</span> <span class="nam">first_index</span> <span class="op">+</span> <span class="nam">size</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">        <span class="key">if</span> <span class="nam">last_index</span> <span class="op">></span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln">                <span class="str">"`size` exceeds the number of remaining random numbers"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t86" class="stm mis">        <span class="nam">standard_values</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">[</span><span class="nam">first_index</span><span class="op">:</span><span class="nam">last_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm mis">        <span class="nam">scaled_values</span> <span class="op">=</span> <span class="nam">standard_values</span> <span class="op">*</span> <span class="nam">std</span> <span class="op">+</span> <span class="nam">mean</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">=</span> <span class="nam">last_index</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="stm mis">        <span class="key">return</span> <span class="nam">scaled_values</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_ras_py.html b/coverage_report/fluegg_ras_py.html
new file mode 100644
index 0000000..c68a2ca
--- /dev/null
+++ b/coverage_report/fluegg_ras_py.html
@@ -0,0 +1,1007 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\ras.py: 25%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\ras.py</b> :
+            <span class="pc_cov">25%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            197 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">49 run</span>
+            <span class="mis shortkey_m button_toggle_mis">148 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="stm run hide_run"><a href="#n13">13</a></p>
+<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
+<p id="n15" class="stm run hide_run"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="stm mis"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="stm run hide_run"><a href="#n25">25</a></p>
+<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
+<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
+<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
+<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
+<p id="n41" class="pln"><a href="#n41">41</a></p>
+<p id="n42" class="stm mis"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
+<p id="n45" class="pln"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="stm run hide_run"><a href="#n47">47</a></p>
+<p id="n48" class="pln"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="stm run hide_run"><a href="#n50">50</a></p>
+<p id="n51" class="stm mis"><a href="#n51">51</a></p>
+<p id="n52" class="pln"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="pln"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="pln"><a href="#n72">72</a></p>
+<p id="n73" class="pln"><a href="#n73">73</a></p>
+<p id="n74" class="pln"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="stm run hide_run"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm mis"><a href="#n82">82</a></p>
+<p id="n83" class="stm mis"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="pln"><a href="#n87">87</a></p>
+<p id="n88" class="stm mis"><a href="#n88">88</a></p>
+<p id="n89" class="stm mis"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="stm mis"><a href="#n92">92</a></p>
+<p id="n93" class="stm mis"><a href="#n93">93</a></p>
+<p id="n94" class="stm mis"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="stm mis"><a href="#n97">97</a></p>
+<p id="n98" class="stm mis"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="stm mis"><a href="#n100">100</a></p>
+<p id="n101" class="stm mis"><a href="#n101">101</a></p>
+<p id="n102" class="pln"><a href="#n102">102</a></p>
+<p id="n103" class="stm mis"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="stm mis"><a href="#n105">105</a></p>
+<p id="n106" class="stm mis"><a href="#n106">106</a></p>
+<p id="n107" class="stm mis"><a href="#n107">107</a></p>
+<p id="n108" class="stm mis"><a href="#n108">108</a></p>
+<p id="n109" class="stm mis"><a href="#n109">109</a></p>
+<p id="n110" class="stm mis"><a href="#n110">110</a></p>
+<p id="n111" class="stm mis"><a href="#n111">111</a></p>
+<p id="n112" class="stm mis"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="stm mis"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="stm mis"><a href="#n116">116</a></p>
+<p id="n117" class="stm mis"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="stm mis"><a href="#n119">119</a></p>
+<p id="n120" class="stm mis"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
+<p id="n123" class="stm mis"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+<p id="n125" class="stm run hide_run"><a href="#n125">125</a></p>
+<p id="n126" class="stm mis"><a href="#n126">126</a></p>
+<p id="n127" class="pln"><a href="#n127">127</a></p>
+<p id="n128" class="stm run hide_run"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="stm mis"><a href="#n130">130</a></p>
+<p id="n131" class="stm mis"><a href="#n131">131</a></p>
+<p id="n132" class="stm mis"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="stm mis"><a href="#n134">134</a></p>
+<p id="n135" class="pln"><a href="#n135">135</a></p>
+<p id="n136" class="stm mis"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="pln"><a href="#n138">138</a></p>
+<p id="n139" class="stm mis"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="stm run hide_run"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="pln"><a href="#n143">143</a></p>
+<p id="n144" class="stm mis"><a href="#n144">144</a></p>
+<p id="n145" class="stm mis"><a href="#n145">145</a></p>
+<p id="n146" class="stm mis"><a href="#n146">146</a></p>
+<p id="n147" class="pln"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="stm mis"><a href="#n149">149</a></p>
+<p id="n150" class="pln"><a href="#n150">150</a></p>
+<p id="n151" class="stm mis"><a href="#n151">151</a></p>
+<p id="n152" class="pln"><a href="#n152">152</a></p>
+<p id="n153" class="stm run hide_run"><a href="#n153">153</a></p>
+<p id="n154" class="pln"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="pln"><a href="#n156">156</a></p>
+<p id="n157" class="pln"><a href="#n157">157</a></p>
+<p id="n158" class="stm mis"><a href="#n158">158</a></p>
+<p id="n159" class="pln"><a href="#n159">159</a></p>
+<p id="n160" class="stm mis"><a href="#n160">160</a></p>
+<p id="n161" class="pln"><a href="#n161">161</a></p>
+<p id="n162" class="stm mis"><a href="#n162">162</a></p>
+<p id="n163" class="stm mis"><a href="#n163">163</a></p>
+<p id="n164" class="pln"><a href="#n164">164</a></p>
+<p id="n165" class="pln"><a href="#n165">165</a></p>
+<p id="n166" class="stm mis"><a href="#n166">166</a></p>
+<p id="n167" class="pln"><a href="#n167">167</a></p>
+<p id="n168" class="stm mis"><a href="#n168">168</a></p>
+<p id="n169" class="stm mis"><a href="#n169">169</a></p>
+<p id="n170" class="pln"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="stm mis"><a href="#n172">172</a></p>
+<p id="n173" class="pln"><a href="#n173">173</a></p>
+<p id="n174" class="stm mis"><a href="#n174">174</a></p>
+<p id="n175" class="stm mis"><a href="#n175">175</a></p>
+<p id="n176" class="pln"><a href="#n176">176</a></p>
+<p id="n177" class="stm mis"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="stm mis"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="stm mis"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="stm run hide_run"><a href="#n183">183</a></p>
+<p id="n184" class="pln"><a href="#n184">184</a></p>
+<p id="n185" class="stm mis"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="stm mis"><a href="#n187">187</a></p>
+<p id="n188" class="pln"><a href="#n188">188</a></p>
+<p id="n189" class="pln"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="stm mis"><a href="#n191">191</a></p>
+<p id="n192" class="pln"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="stm mis"><a href="#n195">195</a></p>
+<p id="n196" class="stm mis"><a href="#n196">196</a></p>
+<p id="n197" class="pln"><a href="#n197">197</a></p>
+<p id="n198" class="pln"><a href="#n198">198</a></p>
+<p id="n199" class="pln"><a href="#n199">199</a></p>
+<p id="n200" class="stm mis"><a href="#n200">200</a></p>
+<p id="n201" class="pln"><a href="#n201">201</a></p>
+<p id="n202" class="stm mis"><a href="#n202">202</a></p>
+<p id="n203" class="stm mis"><a href="#n203">203</a></p>
+<p id="n204" class="stm mis"><a href="#n204">204</a></p>
+<p id="n205" class="stm mis"><a href="#n205">205</a></p>
+<p id="n206" class="stm mis"><a href="#n206">206</a></p>
+<p id="n207" class="pln"><a href="#n207">207</a></p>
+<p id="n208" class="stm mis"><a href="#n208">208</a></p>
+<p id="n209" class="pln"><a href="#n209">209</a></p>
+<p id="n210" class="stm mis"><a href="#n210">210</a></p>
+<p id="n211" class="stm mis"><a href="#n211">211</a></p>
+<p id="n212" class="stm mis"><a href="#n212">212</a></p>
+<p id="n213" class="stm mis"><a href="#n213">213</a></p>
+<p id="n214" class="pln"><a href="#n214">214</a></p>
+<p id="n215" class="stm mis"><a href="#n215">215</a></p>
+<p id="n216" class="stm mis"><a href="#n216">216</a></p>
+<p id="n217" class="pln"><a href="#n217">217</a></p>
+<p id="n218" class="stm mis"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="stm run hide_run"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="stm mis"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="stm mis"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="pln"><a href="#n226">226</a></p>
+<p id="n227" class="stm mis"><a href="#n227">227</a></p>
+<p id="n228" class="stm mis"><a href="#n228">228</a></p>
+<p id="n229" class="stm mis"><a href="#n229">229</a></p>
+<p id="n230" class="stm mis"><a href="#n230">230</a></p>
+<p id="n231" class="stm mis"><a href="#n231">231</a></p>
+<p id="n232" class="stm mis"><a href="#n232">232</a></p>
+<p id="n233" class="pln"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="stm mis"><a href="#n235">235</a></p>
+<p id="n236" class="stm mis"><a href="#n236">236</a></p>
+<p id="n237" class="pln"><a href="#n237">237</a></p>
+<p id="n238" class="pln"><a href="#n238">238</a></p>
+<p id="n239" class="stm mis"><a href="#n239">239</a></p>
+<p id="n240" class="pln"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="stm mis"><a href="#n242">242</a></p>
+<p id="n243" class="pln"><a href="#n243">243</a></p>
+<p id="n244" class="stm mis"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="pln"><a href="#n246">246</a></p>
+<p id="n247" class="stm mis"><a href="#n247">247</a></p>
+<p id="n248" class="pln"><a href="#n248">248</a></p>
+<p id="n249" class="stm run hide_run"><a href="#n249">249</a></p>
+<p id="n250" class="pln"><a href="#n250">250</a></p>
+<p id="n251" class="stm mis"><a href="#n251">251</a></p>
+<p id="n252" class="pln"><a href="#n252">252</a></p>
+<p id="n253" class="stm mis"><a href="#n253">253</a></p>
+<p id="n254" class="pln"><a href="#n254">254</a></p>
+<p id="n255" class="pln"><a href="#n255">255</a></p>
+<p id="n256" class="stm mis"><a href="#n256">256</a></p>
+<p id="n257" class="stm mis"><a href="#n257">257</a></p>
+<p id="n258" class="pln"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="stm mis"><a href="#n260">260</a></p>
+<p id="n261" class="pln"><a href="#n261">261</a></p>
+<p id="n262" class="stm mis"><a href="#n262">262</a></p>
+<p id="n263" class="pln"><a href="#n263">263</a></p>
+<p id="n264" class="stm run hide_run"><a href="#n264">264</a></p>
+<p id="n265" class="pln"><a href="#n265">265</a></p>
+<p id="n266" class="stm mis"><a href="#n266">266</a></p>
+<p id="n267" class="stm mis"><a href="#n267">267</a></p>
+<p id="n268" class="pln"><a href="#n268">268</a></p>
+<p id="n269" class="stm mis"><a href="#n269">269</a></p>
+<p id="n270" class="stm mis"><a href="#n270">270</a></p>
+<p id="n271" class="stm mis"><a href="#n271">271</a></p>
+<p id="n272" class="pln"><a href="#n272">272</a></p>
+<p id="n273" class="stm mis"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="stm mis"><a href="#n275">275</a></p>
+<p id="n276" class="stm mis"><a href="#n276">276</a></p>
+<p id="n277" class="stm mis"><a href="#n277">277</a></p>
+<p id="n278" class="pln"><a href="#n278">278</a></p>
+<p id="n279" class="stm mis"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="stm run hide_run"><a href="#n281">281</a></p>
+<p id="n282" class="pln"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="pln"><a href="#n284">284</a></p>
+<p id="n285" class="pln"><a href="#n285">285</a></p>
+<p id="n286" class="stm mis"><a href="#n286">286</a></p>
+<p id="n287" class="stm mis"><a href="#n287">287</a></p>
+<p id="n288" class="pln"><a href="#n288">288</a></p>
+<p id="n289" class="stm mis"><a href="#n289">289</a></p>
+<p id="n290" class="stm mis"><a href="#n290">290</a></p>
+<p id="n291" class="pln"><a href="#n291">291</a></p>
+<p id="n292" class="stm run hide_run"><a href="#n292">292</a></p>
+<p id="n293" class="pln"><a href="#n293">293</a></p>
+<p id="n294" class="pln"><a href="#n294">294</a></p>
+<p id="n295" class="pln"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="pln"><a href="#n297">297</a></p>
+<p id="n298" class="pln"><a href="#n298">298</a></p>
+<p id="n299" class="pln"><a href="#n299">299</a></p>
+<p id="n300" class="stm mis"><a href="#n300">300</a></p>
+<p id="n301" class="pln"><a href="#n301">301</a></p>
+<p id="n302" class="stm mis"><a href="#n302">302</a></p>
+<p id="n303" class="pln"><a href="#n303">303</a></p>
+<p id="n304" class="stm run hide_run"><a href="#n304">304</a></p>
+<p id="n305" class="pln"><a href="#n305">305</a></p>
+<p id="n306" class="pln"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="pln"><a href="#n308">308</a></p>
+<p id="n309" class="pln"><a href="#n309">309</a></p>
+<p id="n310" class="pln"><a href="#n310">310</a></p>
+<p id="n311" class="pln"><a href="#n311">311</a></p>
+<p id="n312" class="pln"><a href="#n312">312</a></p>
+<p id="n313" class="stm mis"><a href="#n313">313</a></p>
+<p id="n314" class="pln"><a href="#n314">314</a></p>
+<p id="n315" class="stm mis"><a href="#n315">315</a></p>
+<p id="n316" class="pln"><a href="#n316">316</a></p>
+<p id="n317" class="stm run hide_run"><a href="#n317">317</a></p>
+<p id="n318" class="pln"><a href="#n318">318</a></p>
+<p id="n319" class="pln"><a href="#n319">319</a></p>
+<p id="n320" class="pln"><a href="#n320">320</a></p>
+<p id="n321" class="pln"><a href="#n321">321</a></p>
+<p id="n322" class="pln"><a href="#n322">322</a></p>
+<p id="n323" class="pln"><a href="#n323">323</a></p>
+<p id="n324" class="pln"><a href="#n324">324</a></p>
+<p id="n325" class="pln"><a href="#n325">325</a></p>
+<p id="n326" class="stm mis"><a href="#n326">326</a></p>
+<p id="n327" class="pln"><a href="#n327">327</a></p>
+<p id="n328" class="stm mis"><a href="#n328">328</a></p>
+<p id="n329" class="pln"><a href="#n329">329</a></p>
+<p id="n330" class="stm run hide_run"><a href="#n330">330</a></p>
+<p id="n331" class="pln"><a href="#n331">331</a></p>
+<p id="n332" class="pln"><a href="#n332">332</a></p>
+<p id="n333" class="pln"><a href="#n333">333</a></p>
+<p id="n334" class="pln"><a href="#n334">334</a></p>
+<p id="n335" class="pln"><a href="#n335">335</a></p>
+<p id="n336" class="pln"><a href="#n336">336</a></p>
+<p id="n337" class="pln"><a href="#n337">337</a></p>
+<p id="n338" class="pln"><a href="#n338">338</a></p>
+<p id="n339" class="pln"><a href="#n339">339</a></p>
+<p id="n340" class="pln"><a href="#n340">340</a></p>
+<p id="n341" class="pln"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="pln"><a href="#n343">343</a></p>
+<p id="n344" class="pln"><a href="#n344">344</a></p>
+<p id="n345" class="pln"><a href="#n345">345</a></p>
+<p id="n346" class="pln"><a href="#n346">346</a></p>
+<p id="n347" class="pln"><a href="#n347">347</a></p>
+<p id="n348" class="pln"><a href="#n348">348</a></p>
+<p id="n349" class="stm mis"><a href="#n349">349</a></p>
+<p id="n350" class="pln"><a href="#n350">350</a></p>
+<p id="n351" class="stm mis"><a href="#n351">351</a></p>
+<p id="n352" class="stm mis"><a href="#n352">352</a></p>
+<p id="n353" class="stm mis"><a href="#n353">353</a></p>
+<p id="n354" class="stm mis"><a href="#n354">354</a></p>
+<p id="n355" class="pln"><a href="#n355">355</a></p>
+<p id="n356" class="stm mis"><a href="#n356">356</a></p>
+<p id="n357" class="pln"><a href="#n357">357</a></p>
+<p id="n358" class="stm mis"><a href="#n358">358</a></p>
+<p id="n359" class="pln"><a href="#n359">359</a></p>
+<p id="n360" class="stm run hide_run"><a href="#n360">360</a></p>
+<p id="n361" class="pln"><a href="#n361">361</a></p>
+<p id="n362" class="pln"><a href="#n362">362</a></p>
+<p id="n363" class="pln"><a href="#n363">363</a></p>
+<p id="n364" class="pln"><a href="#n364">364</a></p>
+<p id="n365" class="pln"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="pln"><a href="#n367">367</a></p>
+<p id="n368" class="pln"><a href="#n368">368</a></p>
+<p id="n369" class="stm mis"><a href="#n369">369</a></p>
+<p id="n370" class="stm mis"><a href="#n370">370</a></p>
+<p id="n371" class="pln"><a href="#n371">371</a></p>
+<p id="n372" class="stm mis"><a href="#n372">372</a></p>
+<p id="n373" class="pln"><a href="#n373">373</a></p>
+<p id="n374" class="pln"><a href="#n374">374</a></p>
+<p id="n375" class="stm mis"><a href="#n375">375</a></p>
+<p id="n376" class="pln"><a href="#n376">376</a></p>
+<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
+<p id="n378" class="pln"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="pln"><a href="#n380">380</a></p>
+<p id="n381" class="pln"><a href="#n381">381</a></p>
+<p id="n382" class="pln"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="pln"><a href="#n384">384</a></p>
+<p id="n385" class="pln"><a href="#n385">385</a></p>
+<p id="n386" class="stm mis"><a href="#n386">386</a></p>
+<p id="n387" class="stm mis"><a href="#n387">387</a></p>
+<p id="n388" class="pln"><a href="#n388">388</a></p>
+<p id="n389" class="stm mis"><a href="#n389">389</a></p>
+<p id="n390" class="pln"><a href="#n390">390</a></p>
+<p id="n391" class="stm mis"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="stm run hide_run"><a href="#n393">393</a></p>
+<p id="n394" class="pln"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="pln"><a href="#n396">396</a></p>
+<p id="n397" class="pln"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="pln"><a href="#n399">399</a></p>
+<p id="n400" class="pln"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="stm mis"><a href="#n402">402</a></p>
+<p id="n403" class="pln"><a href="#n403">403</a></p>
+<p id="n404" class="stm run hide_run"><a href="#n404">404</a></p>
+<p id="n405" class="pln"><a href="#n405">405</a></p>
+<p id="n406" class="stm mis"><a href="#n406">406</a></p>
+<p id="n407" class="pln"><a href="#n407">407</a></p>
+<p id="n408" class="stm run hide_run"><a href="#n408">408</a></p>
+<p id="n409" class="pln"><a href="#n409">409</a></p>
+<p id="n410" class="pln"><a href="#n410">410</a></p>
+<p id="n411" class="pln"><a href="#n411">411</a></p>
+<p id="n412" class="pln"><a href="#n412">412</a></p>
+<p id="n413" class="pln"><a href="#n413">413</a></p>
+<p id="n414" class="pln"><a href="#n414">414</a></p>
+<p id="n415" class="pln"><a href="#n415">415</a></p>
+<p id="n416" class="pln"><a href="#n416">416</a></p>
+<p id="n417" class="stm mis"><a href="#n417">417</a></p>
+<p id="n418" class="stm mis"><a href="#n418">418</a></p>
+<p id="n419" class="pln"><a href="#n419">419</a></p>
+<p id="n420" class="stm mis"><a href="#n420">420</a></p>
+<p id="n421" class="pln"><a href="#n421">421</a></p>
+<p id="n422" class="pln"><a href="#n422">422</a></p>
+<p id="n423" class="stm mis"><a href="#n423">423</a></p>
+<p id="n424" class="pln"><a href="#n424">424</a></p>
+<p id="n425" class="stm run hide_run"><a href="#n425">425</a></p>
+<p id="n426" class="pln"><a href="#n426">426</a></p>
+<p id="n427" class="pln"><a href="#n427">427</a></p>
+<p id="n428" class="pln"><a href="#n428">428</a></p>
+<p id="n429" class="pln"><a href="#n429">429</a></p>
+<p id="n430" class="pln"><a href="#n430">430</a></p>
+<p id="n431" class="pln"><a href="#n431">431</a></p>
+<p id="n432" class="pln"><a href="#n432">432</a></p>
+<p id="n433" class="pln"><a href="#n433">433</a></p>
+<p id="n434" class="stm mis"><a href="#n434">434</a></p>
+<p id="n435" class="stm mis"><a href="#n435">435</a></p>
+<p id="n436" class="pln"><a href="#n436">436</a></p>
+<p id="n437" class="stm mis"><a href="#n437">437</a></p>
+<p id="n438" class="pln"><a href="#n438">438</a></p>
+<p id="n439" class="stm mis"><a href="#n439">439</a></p>
+<p id="n440" class="pln"><a href="#n440">440</a></p>
+<p id="n441" class="stm run hide_run"><a href="#n441">441</a></p>
+<p id="n442" class="pln"><a href="#n442">442</a></p>
+<p id="n443" class="pln"><a href="#n443">443</a></p>
+<p id="n444" class="pln"><a href="#n444">444</a></p>
+<p id="n445" class="pln"><a href="#n445">445</a></p>
+<p id="n446" class="pln"><a href="#n446">446</a></p>
+<p id="n447" class="pln"><a href="#n447">447</a></p>
+<p id="n448" class="pln"><a href="#n448">448</a></p>
+<p id="n449" class="pln"><a href="#n449">449</a></p>
+<p id="n450" class="pln"><a href="#n450">450</a></p>
+<p id="n451" class="stm mis"><a href="#n451">451</a></p>
+<p id="n452" class="stm mis"><a href="#n452">452</a></p>
+<p id="n453" class="pln"><a href="#n453">453</a></p>
+<p id="n454" class="stm mis"><a href="#n454">454</a></p>
+<p id="n455" class="pln"><a href="#n455">455</a></p>
+<p id="n456" class="stm mis"><a href="#n456">456</a></p>
+<p id="n457" class="stm mis"><a href="#n457">457</a></p>
+<p id="n458" class="pln"><a href="#n458">458</a></p>
+<p id="n459" class="stm mis"><a href="#n459">459</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">datetime</span> <span class="key">import</span> <span class="nam">timedelta</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">glob</span><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">platform</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">re</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="key">import</span> <span class="nam">pandas</span> <span class="key">as</span> <span class="nam">pd</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">def</span> <span class="nam">_load_ras_controller</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t13" class="stm run hide_run">    <span class="key">if</span> <span class="nam">platform</span><span class="op">.</span><span class="nam">system</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">'Windows'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm run hide_run">        <span class="key">import</span> <span class="nam">winreg</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="stm run hide_run">        <span class="key">import</span> <span class="nam">win32com</span><span class="op">.</span><span class="nam">client</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm mis">        <span class="key">return</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln">    <span class="com"># find the version of RAS that are installed</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run">    <span class="nam">ras_controller_pattern</span> <span class="op">=</span> <span class="str">r'^RAS[0-9]{3}.HECRASController$'</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm run hide_run">    <span class="key">with</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">OpenKey</span><span class="op">(</span><span class="nam">winreg</span><span class="op">.</span><span class="nam">HKEY_LOCAL_MACHINE</span><span class="op">,</span> <span class="str">r"SOFTWARE\Classes"</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln">            <span class="key">as</span> <span class="nam">classes_key</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t25" class="stm run hide_run">        <span class="nam">ras_controller_prog_ids</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm run hide_run">        <span class="nam">n_keys</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">QueryInfoKey</span><span class="op">(</span><span class="nam">classes_key</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="nam">n_keys</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm run hide_run">            <span class="nam">object_name</span> <span class="op">=</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">EnumKey</span><span class="op">(</span><span class="nam">classes_key</span><span class="op">,</span> <span class="nam">i</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm run hide_run">            <span class="key">if</span> <span class="nam">re</span><span class="op">.</span><span class="nam">match</span><span class="op">(</span><span class="nam">ras_controller_pattern</span><span class="op">,</span> <span class="nam">object_name</span><span class="op">)</span> <span class="key">is</span> <span class="key">not</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm run hide_run">                <span class="nam">ras_controller_prog_ids</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">object_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln">    <span class="com"># use the latest version of RAS installed</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm run hide_run">    <span class="nam">ras_controller_prog_ids</span><span class="op">.</span><span class="nam">sort</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm run hide_run">    <span class="key">if</span> <span class="nam">len</span><span class="op">(</span><span class="nam">ras_controller_prog_ids</span><span class="op">)</span> <span class="op">></span> <span class="num">0</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm run hide_run">        <span class="nam">prog_id</span> <span class="op">=</span> <span class="nam">ras_controller_prog_ids</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln">        <span class="com"># start the RAS controller</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm run hide_run">        <span class="nam">ras_controller</span> <span class="op">=</span> <span class="nam">win32com</span><span class="op">.</span><span class="nam">client</span><span class="op">.</span><span class="nam">Dispatch</span><span class="op">(</span><span class="nam">prog_id</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm mis">        <span class="nam">ras_controller</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm run hide_run">    <span class="key">return</span> <span class="nam">ras_controller</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t47" class="stm run hide_run"><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="nam">_load_ras_controller</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t50" class="stm run hide_run"><span class="key">def</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm mis">    <span class="key">return</span> <span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">not</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run"><span class="key">class</span> <span class="nam">RASProject</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln">    <span class="str">"""RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="str">    After use, call close() to keep the RAS process from lingering. The</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">    RASProject interface facilitates the use of the with-statement. See</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="str">    below for an example.</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="str">    ```</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="str">    with RASProject(project_file_path) as rp:</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="str">        hydrauilc_data = rp.hydraulic_model_data('Unsteady')</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="str">    ```</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="str">    project_file_path : str</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="pln"><span class="str">        Path to RAS project file</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t72" class="pln"><span class="str">    Notes</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="pln"><span class="str">    -----</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="pln"><span class="str">    The values in the output of hydraulic_model_data are in metric units. If</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln"><span class="str">    the quantities in the RAS project are in English units, the output will be</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="str">    converted.</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t80" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">project_file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm mis">        <span class="key">if</span> <span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"RAS controller not found"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="nam">_ras_controller</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="pln">        <span class="com"># open the project</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="stm mis">        <span class="nam">absolute_project_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">abspath</span><span class="op">(</span><span class="nam">project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Project_Open</span><span class="op">(</span><span class="nam">absolute_project_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln">        <span class="com"># set the units</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="stm mis">        <span class="nam">current_project_file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentProjectFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">current_project_file_path</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="stm mis">            <span class="nam">project_file_contents</span> <span class="op">=</span> <span class="nam">f</span><span class="op">.</span><span class="nam">readlines</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln">        <span class="com"># set the current plan number</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm mis">        <span class="nam">current_plan_line</span> <span class="op">=</span> <span class="nam">project_file_contents</span><span class="op">[</span><span class="num">1</span><span class="op">]</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm mis">        <span class="nam">current_plan_name</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_current_plan_name</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln">            <span class="nam">current_plan_line</span><span class="op">,</span> <span class="nam">current_project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span> <span class="op">=</span> <span class="nam">plan_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">current_plan_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm mis">        <span class="nam">units</span> <span class="op">=</span> <span class="nam">project_file_contents</span><span class="op">[</span><span class="num">3</span><span class="op">]</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm mis">        <span class="key">if</span> <span class="nam">units</span> <span class="op">==</span> <span class="str">'English Units'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">=</span> <span class="str">'English'</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span> <span class="op">=</span> <span class="num">32.2</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span> <span class="op">=</span> <span class="num">1.4859</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="stm mis">        <span class="key">elif</span> <span class="nam">units</span> <span class="op">==</span> <span class="str">'SI Units'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">=</span> <span class="str">'metric'</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span> <span class="op">=</span> <span class="num">9.81</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown units in project file"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__enter__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__exit__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t128" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">cell_data</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t130" class="stm mis">        <span class="nam">manning_values</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Mann Wtd Chnl'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm mis">        <span class="nam">hydraulic_radius</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="stm mis">        <span class="nam">channel_velocity</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Vel Chnl'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm mis">        <span class="nam">ks</span> <span class="op">=</span> <span class="op">(</span><span class="num">8.1</span> <span class="op">*</span> <span class="op">(</span><span class="nam">manning_values</span> <span class="op">/</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="pln">              <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span><span class="op">)</span><span class="op">)</span><span class="op">**</span><span class="num">6</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln">            <span class="nam">channel_velocity</span> <span class="op">/</span> <span class="op">(</span><span class="num">8.1</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">hydraulic_radius</span> <span class="op">/</span> <span class="nam">ks</span><span class="op">)</span> <span class="op">**</span> <span class="op">(</span><span class="num">1</span> <span class="op">/</span> <span class="num">6</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t138" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t139" class="stm mis">        <span class="key">return</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t141" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln">    <span class="key">def</span> <span class="nam">_get_current_plan_name</span><span class="op">(</span><span class="nam">current_plan_line</span><span class="op">,</span> <span class="nam">current_project_file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t144" class="stm mis">        <span class="nam">plan_file_extension</span> <span class="op">=</span> <span class="nam">current_plan_line</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">'='</span><span class="op">)</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t145" class="stm mis">        <span class="nam">path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">current_project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm mis">        <span class="nam">plan_file_list</span> <span class="op">=</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">path</span> <span class="op">+</span> <span class="str">'/*.'</span> <span class="op">+</span> <span class="nam">plan_file_extension</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">plan_file_list</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="stm mis">            <span class="nam">plan_name_line</span> <span class="op">=</span> <span class="nam">f</span><span class="op">.</span><span class="nam">readline</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t151" class="stm mis">        <span class="key">return</span> <span class="nam">plan_name_line</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">'='</span><span class="op">)</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t153" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_data_from_ras</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">output_var_names</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_Variables</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="pln">            <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t157" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t158" class="stm mis">        <span class="nam">var_name</span> <span class="op">=</span> <span class="op">[</span><span class="str">'Hydr Depth C'</span><span class="op">,</span> <span class="str">'Q Channel'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="pln">                    <span class="str">'Vel Chnl'</span><span class="op">,</span> <span class="str">'Mann Wtd Chnl'</span><span class="op">,</span> <span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="stm mis">        <span class="nam">var_values</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t162" class="stm mis">        <span class="nam">channel_dist</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="stm mis">        <span class="nam">n_river_stations</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t165" class="pln">        <span class="com"># get the variable for the entire channel length</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="stm mis">        <span class="key">for</span> <span class="nam">name</span> <span class="key">in</span> <span class="nam">var_name</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t168" class="stm mis">            <span class="nam">var_number</span> <span class="op">=</span> <span class="nam">output_var_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="stm mis">            <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">n_river_stations</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">channel_dist</span><span class="op">,</span> <span class="nam">values</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_ReachOutput</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln">                <span class="nam">var_number</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="stm mis">            <span class="nam">var_values</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">values</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t173" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t174" class="stm mis">        <span class="nam">var_name</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="str">'ChannelDist'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t175" class="stm mis">        <span class="nam">var_values</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">channel_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t177" class="stm mis">        <span class="nam">data_dict</span> <span class="op">=</span> <span class="nam">dict</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">var_name</span><span class="op">,</span> <span class="nam">var_values</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t179" class="stm mis">        <span class="nam">cell_numbers</span> <span class="op">=</span> <span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">n_river_stations</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DataFrame</span><span class="op">(</span><span class="nam">data_dict</span><span class="op">,</span> <span class="nam">index</span><span class="op">=</span><span class="nam">cell_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t183" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_profile_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t184" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t185" class="stm mis">        <span class="nam">ras_data</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_data_from_ras</span><span class="op">(</span><span class="nam">profile_number</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t187" class="stm mis">        <span class="nam">column_map</span> <span class="op">=</span> <span class="op">{</span><span class="str">'Hydr Depth C'</span><span class="op">:</span> <span class="str">'Depth_m'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="pln">                      <span class="str">'Q Channel'</span><span class="op">:</span> <span class="str">'Q_cms'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="pln">                      <span class="str">'Vel Chnl'</span><span class="op">:</span> <span class="str">'Vmag_mps'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln">                      <span class="str">'ChannelDist'</span><span class="op">:</span> <span class="str">'CumlDistance_km'</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
+<p id="t191" class="stm mis">        <span class="nam">profile_data</span> <span class="op">=</span> <span class="nam">ras_data</span><span class="op">.</span><span class="nam">rename</span><span class="op">(</span><span class="nam">mapper</span><span class="op">=</span><span class="nam">column_map</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="op">.</span><span class="nam">drop</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="pln">            <span class="op">[</span><span class="str">'Mann Wtd Chnl'</span><span class="op">,</span> <span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln">        <span class="com"># convert from RAS distances to FluEgg distances</span><span class="strut">&nbsp;</span></p>
+<p id="t195" class="stm mis">        <span class="nam">number_of_cells</span> <span class="op">=</span> <span class="nam">profile_data</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="stm mis">        <span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="nam">number_of_cells</span> <span class="op">-</span> <span class="num">1</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="pln">            <span class="num">0.5</span> <span class="op">*</span> <span class="op">(</span><span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="nam">number_of_cells</span> <span class="op">-</span> <span class="num">1</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="pln">                   <span class="op">+</span> <span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">2</span><span class="op">:</span><span class="nam">number_of_cells</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">/</span><span class="num">1000</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t202" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_shear_velocity</span><span class="op">(</span><span class="nam">ras_data</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t203" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t208" class="stm mis">        <span class="nam">feet_to_meters</span> <span class="op">=</span> <span class="op">(</span><span class="num">2.54</span> <span class="op">*</span> <span class="num">12</span><span class="op">)</span> <span class="op">/</span> <span class="num">100</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t210" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">==</span> <span class="str">'English'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t211" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="op">**</span><span class="num">3</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="pln">            <span class="com"># already converted from m to km</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t218" class="stm mis">        <span class="key">return</span> <span class="nam">profile_data</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t220" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_time_series_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t222" class="stm mis">        <span class="nam">hydraulic_times</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t224" class="stm mis">        <span class="key">for</span> <span class="nam">name</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t226" class="pln">            <span class="com"># convert string to Datetime instance</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="stm mis">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t228" class="stm mis">                <span class="nam">day</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="op">:</span><span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="stm mis">                <span class="nam">month</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">2</span><span class="op">:</span><span class="num">5</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t230" class="stm mis">                <span class="nam">year</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">5</span><span class="op">:</span><span class="num">9</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="stm mis">                <span class="nam">hour</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">10</span><span class="op">:</span><span class="num">12</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="stm mis">                <span class="nam">minute</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="num">14</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln">                <span class="com"># if the hour is midnight, convert to midnight at 00</span><span class="strut">&nbsp;</span></p>
+<p id="t235" class="stm mis">                <span class="key">if</span> <span class="nam">int</span><span class="op">(</span><span class="nam">hour</span><span class="op">)</span> <span class="op">==</span> <span class="num">24</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="stm mis">                    <span class="nam">date_time</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">to_datetime</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="pln">                        <span class="str">''</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="op">[</span><span class="nam">day</span><span class="op">,</span> <span class="nam">month</span><span class="op">,</span> <span class="nam">year</span><span class="op">,</span> <span class="str">' 00'</span><span class="op">,</span> <span class="nam">minute</span><span class="op">]</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> <span class="nam">timedelta</span><span class="op">(</span><span class="nam">days</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm mis">                    <span class="nam">date_time</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">to_datetime</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="pln">                        <span class="str">''</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="op">[</span><span class="nam">day</span><span class="op">,</span> <span class="nam">month</span><span class="op">,</span> <span class="nam">year</span><span class="op">,</span> <span class="str">' '</span><span class="op">,</span> <span class="nam">hour</span><span class="op">,</span> <span class="nam">minute</span><span class="op">]</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm mis">                <span class="nam">hydraulic_times</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">date_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm mis">            <span class="key">except</span> <span class="nam">ValueError</span><span class="op">:</span>  <span class="com"># skip profile name if ValueError is raised</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">                <span class="key">continue</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t247" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DatetimeIndex</span><span class="op">(</span><span class="nam">hydraulic_times</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t249" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_unsteady_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t250" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t251" class="stm mis">        <span class="nam">profile_data</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t253" class="stm mis">        <span class="nam">profile_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t255" class="pln">        <span class="com"># the first profile is the maximum water surface elevation, so skip it</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="stm mis">        <span class="key">for</span> <span class="nam">profile_number</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="num">2</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">profile_names</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="stm mis">            <span class="nam">profile_data</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_get_profile_data</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="pln">                <span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">.</span><span class="nam">transpose</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t260" class="stm mis">        <span class="nam">time_steps</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_time_series_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">concat</span><span class="op">(</span><span class="nam">profile_data</span><span class="op">,</span> <span class="nam">keys</span><span class="op">=</span><span class="nam">time_steps</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="op">.</span><span class="nam">transpose</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t264" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_ras_set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">plan_name</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Plan_SetCurrent</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Project_Save</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t268" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t269" class="stm mis">        <span class="nam">current_steady_file</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentSteadyFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="stm mis">        <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">isfile</span><span class="op">(</span><span class="nam">current_steady_file</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t271" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm mis">        <span class="nam">current_unsteady_file</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentUnSteadyFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="stm mis">        <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">isfile</span><span class="op">(</span><span class="nam">current_unsteady_file</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t281" class="stm run hide_run">    <span class="key">def</span> <span class="nam">close</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="pln">        <span class="str">"""Close the RAS controller</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t284" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t286" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t289" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">QuitRas</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t292" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_plan_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="pln">        <span class="str">"""Returns the current plan name</span><span class="strut">&nbsp;</span></p>
+<p id="t294" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t295" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t297" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t300" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t302" class="stm mis">        <span class="key">return</span> <span class="nam">plan_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t303" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t304" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_reach_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t305" class="pln">        <span class="str">"""Returns the current reach name</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t311" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t313" class="stm mis">        <span class="nam">reach_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">reach_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t315" class="stm mis">        <span class="key">return</span> <span class="nam">reach_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t316" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t317" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_river_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t318" class="pln">        <span class="str">"""Returns the current river name</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t320" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t321" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t323" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t324" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t325" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t326" class="stm mis">        <span class="nam">river_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">river_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t328" class="stm mis">        <span class="key">return</span> <span class="nam">river_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t329" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t330" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hydraulic_model_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_name</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="num">22</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t331" class="pln">        <span class="str">"""Returns a pandas.DataFrame containing hydraulic data for the specified profile.</span><span class="strut">&nbsp;</span></p>
+<p id="t332" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t333" class="pln"><span class="str">        If 'Unsteady' is specified for profile_name, the index of the DataFrame will be a pandas.MultiIndex</span><span class="strut">&nbsp;</span></p>
+<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t335" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t337" class="pln"><span class="str">        profile_name : str</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="pln"><span class="str">            Name of profile. The name must be in the list of profiles or 'Unsteady'. If 'Unsteady', the</span><span class="strut">&nbsp;</span></p>
+<p id="t339" class="pln"><span class="str">            RAS profile must have an associated unsteady file.</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="pln"><span class="str">        temperature : float</span><span class="strut">&nbsp;</span></p>
+<p id="t341" class="pln"><span class="str">            Water temperature</span><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t343" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t344" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t345" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t347" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t348" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t349" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">current_plan_name</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t351" class="stm mis">        <span class="key">if</span> <span class="nam">profile_name</span> <span class="op">==</span> <span class="str">'Unsteady'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t352" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="stm mis">                <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Current plan does not have an unsteady file"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t354" class="stm mis">            <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_unsteady_data</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t355" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="stm mis">            <span class="nam">profile_number</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t357" class="pln">                <span class="nam">profile_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span>  <span class="com"># add one to profile_name index for RAS</span><span class="strut">&nbsp;</span></p>
+<p id="t358" class="stm mis">            <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_profile_data</span><span class="op">(</span><span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t359" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t360" class="stm run hide_run">    <span class="key">def</span> <span class="nam">plan_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t361" class="pln">        <span class="str">"""Returns a list of plan names in this RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t362" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t363" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t365" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t367" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t368" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t369" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t370" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t372" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">plan_names</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Plan_Names</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t373" class="pln">            <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t374" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t375" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">plan_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t376" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t377" class="stm run hide_run">    <span class="key">def</span> <span class="nam">profile_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t378" class="pln">        <span class="str">"""Returns a list of profile names in this RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t380" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t384" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t386" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t387" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t388" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t389" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">profile_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_GetProfiles</span><span class="op">(</span><span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t391" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">profile_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t393" class="stm run hide_run">    <span class="key">def</span> <span class="nam">project_units</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t394" class="pln">        <span class="str">"""Returns the RAS project units.</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t396" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t397" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
+<p id="t399" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t400" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t402" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t404" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t405" class="pln">    <span class="key">def</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t406" class="stm mis">        <span class="key">return</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t408" class="stm run hide_run">    <span class="key">def</span> <span class="nam">reach_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t409" class="pln">        <span class="str">"""Returns a list of reach names in this RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t410" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t411" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t412" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t413" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
+<p id="t414" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t415" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t416" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t417" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t418" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t419" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t420" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">reach_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Geometry_GetReaches</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t421" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t422" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t423" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">reach_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t424" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t425" class="stm run hide_run">    <span class="key">def</span> <span class="nam">river_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t426" class="pln">        <span class="str">"""Returns a list of river names in this RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t427" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t428" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t429" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t430" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
+<p id="t431" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t432" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t433" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t434" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t435" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t436" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t437" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">river_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Geometry_GetRivers</span><span class="op">(</span><span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t438" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t439" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">river_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t440" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t441" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">plan_name</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t442" class="pln">        <span class="str">"""Sets the current plan name for this RAS project.</span><span class="strut">&nbsp;</span></p>
+<p id="t443" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t444" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t445" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t446" class="pln"><span class="str">        plan_name : str</span><span class="strut">&nbsp;</span></p>
+<p id="t447" class="pln"><span class="str">            Plan name. The plan name must be in the list of plan names of this project.</span><span class="strut">&nbsp;</span></p>
+<p id="t448" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t449" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t451" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t452" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t453" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t454" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t455" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t456" class="stm mis">        <span class="key">if</span> <span class="nam">plan_name</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">plan_names</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t457" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Invalid plan name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t458" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t459" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span> <span class="op">=</span> <span class="nam">plan_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_simclock_py.html b/coverage_report/fluegg_simclock_py.html
new file mode 100644
index 0000000..1ad0185
--- /dev/null
+++ b/coverage_report/fluegg_simclock_py.html
@@ -0,0 +1,361 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\simclock.py: 89%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\simclock.py</b> :
+            <span class="pc_cov">89%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            46 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">41 run</span>
+            <span class="mis shortkey_m button_toggle_mis">5 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="pln"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="pln"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="pln"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="stm run hide_run"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
+<p id="n37" class="pln"><a href="#n37">37</a></p>
+<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="pln"><a href="#n40">40</a></p>
+<p id="n41" class="pln"><a href="#n41">41</a></p>
+<p id="n42" class="pln"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
+<p id="n45" class="pln"><a href="#n45">45</a></p>
+<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="pln"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="pln"><a href="#n51">51</a></p>
+<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="stm run hide_run"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="stm run hide_run"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
+<p id="n73" class="pln"><a href="#n73">73</a></p>
+<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="pln"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
+<p id="n83" class="stm run hide_run"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="pln"><a href="#n87">87</a></p>
+<p id="n88" class="stm run hide_run"><a href="#n88">88</a></p>
+<p id="n89" class="pln"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
+<p id="n98" class="pln"><a href="#n98">98</a></p>
+<p id="n99" class="stm run hide_run"><a href="#n99">99</a></p>
+<p id="n100" class="pln"><a href="#n100">100</a></p>
+<p id="n101" class="stm run hide_run"><a href="#n101">101</a></p>
+<p id="n102" class="pln"><a href="#n102">102</a></p>
+<p id="n103" class="stm run hide_run"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
+<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="stm run hide_run"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
+<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
+<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="stm run hide_run"><a href="#n116">116</a></p>
+<p id="n117" class="pln"><a href="#n117">117</a></p>
+<p id="n118" class="stm run hide_run"><a href="#n118">118</a></p>
+<p id="n119" class="pln"><a href="#n119">119</a></p>
+<p id="n120" class="pln"><a href="#n120">120</a></p>
+<p id="n121" class="stm run hide_run"><a href="#n121">121</a></p>
+<p id="n122" class="pln"><a href="#n122">122</a></p>
+<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
+<p id="n124" class="stm mis"><a href="#n124">124</a></p>
+<p id="n125" class="stm mis"><a href="#n125">125</a></p>
+<p id="n126" class="pln"><a href="#n126">126</a></p>
+<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="pln"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="pln"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="stm mis"><a href="#n134">134</a></p>
+<p id="n135" class="stm mis"><a href="#n135">135</a></p>
+<p id="n136" class="pln"><a href="#n136">136</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">class</span> <span class="nam">SimulationClock</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln">    <span class="str">"""Class representing a simulation clock</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln"><span class="str">    time_step_size : int</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="pln"><span class="str">        Number of seconds per time step</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="str">    total_simulation_time : int</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="str">        Number of total seconds in the simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t19" class="stm run hide_run">        <span class="key">if</span> <span class="nam">total_simulation_time</span> <span class="op">%</span> <span class="nam">time_step_size</span> <span class="op">==</span> <span class="num">0</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run">            <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arange</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="nam">total_simulation_time</span> <span class="op">+</span> <span class="nam">time_step_size</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln">                                   <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">dtype</span><span class="op">=</span><span class="nam">float</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm run hide_run">            <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arange</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln">                                   <span class="nam">dtype</span><span class="op">=</span><span class="nam">float</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span> <span class="op">=</span> <span class="nam">time_array</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_size</span> <span class="op">=</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t30" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln">        <span class="str">"""Returns the current simulation time in seconds</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="str">        :return: sim time (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t38" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln">        <span class="str">"""Returns the current simulation time index</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t41" class="pln"><span class="str">        :return: sim time index</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="pln"><span class="str">        :rtype: int</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm run hide_run">    <span class="key">def</span> <span class="nam">number_of_time_steps</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln">        <span class="str">"""Returns the total number of time steps in the simultaion</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln"><span class="str">        :return: num time steps</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="str">        :rtype: int</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">size</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time_array</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln">        <span class="str">"""Returns the array of all time steps in seconds (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="str">        :return: array of all time steps (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t62" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time_step_size</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln">        <span class="str">"""Returns the simulation time step size in seconds</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="str">        :return: time step size (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_size</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t70" class="stm run hide_run">    <span class="key">def</span> <span class="nam">iter_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t72" class="stm run hide_run">        <span class="key">return</span> <span class="nam">TimeStepIterable</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln"><span class="str">        :param time_index:</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln"><span class="str">        :type time_index: int</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="str">        :return: None</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t82" class="stm run hide_run">        <span class="key">if</span> <span class="op">(</span><span class="num">0</span> <span class="op">&lt;=</span> <span class="nam">time_index</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">time_index</span> <span class="op">&lt;</span> <span class="nam">self</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="nam">time_index</span><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">            <span class="key">raise</span> <span class="nam">IndexError</span><span class="op">(</span><span class="str">"Time index out of bounds"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t88" class="stm run hide_run"><span class="key">class</span> <span class="nam">TimeStepIterable</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="str">    simulation_clock : SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t99" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t101" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_time_steps</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t102" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__iter__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__next__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm run hide_run">        <span class="nam">time_step_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm run hide_run">        <span class="key">if</span> <span class="nam">time_step_index</span> <span class="op">==</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_time_steps</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm run hide_run">            <span class="key">raise</span> <span class="nam">StopIteration</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span> <span class="op">+=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t116" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">set_time_index</span><span class="op">(</span><span class="nam">time_step_index</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t118" class="stm run hide_run">        <span class="key">return</span> <span class="nam">time_step_index</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t121" class="stm run hide_run"><span class="key">class</span> <span class="nam">ReverseSimulationClock</span><span class="op">(</span><span class="nam">SimulationClock</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="stm mis">        <span class="nam">SimulationClock</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">-</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t127" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln">        <span class="str">"""Increments the simulation time by one time step (s) backwards</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln"><span class="str">        :return: time index, time (s)</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="pln"><span class="str">        :rtype: float, float</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">-=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">,</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_simulation_py.html b/coverage_report/fluegg_simulation_py.html
new file mode 100644
index 0000000..410e1c5
--- /dev/null
+++ b/coverage_report/fluegg_simulation_py.html
@@ -0,0 +1,723 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\simulation.py: 42%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\simulation.py</b> :
+            <span class="pc_cov">42%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            132 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">56 run</span>
+            <span class="mis shortkey_m button_toggle_mis">76 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
+<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
+<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
+<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
+<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
+<p id="n15" class="stm run hide_run"><a href="#n15">15</a></p>
+<p id="n16" class="stm mis"><a href="#n16">16</a></p>
+<p id="n17" class="stm mis"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="pln"><a href="#n21">21</a></p>
+<p id="n22" class="pln"><a href="#n22">22</a></p>
+<p id="n23" class="pln"><a href="#n23">23</a></p>
+<p id="n24" class="pln"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="pln"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
+<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
+<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
+<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
+<p id="n45" class="pln"><a href="#n45">45</a></p>
+<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
+<p id="n49" class="stm run hide_run"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="stm run hide_run"><a href="#n51">51</a></p>
+<p id="n52" class="pln"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="pln"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="stm run hide_run"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="stm run hide_run"><a href="#n63">63</a></p>
+<p id="n64" class="pln"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="pln"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="pln"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="pln"><a href="#n72">72</a></p>
+<p id="n73" class="pln"><a href="#n73">73</a></p>
+<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
+<p id="n75" class="pln"><a href="#n75">75</a></p>
+<p id="n76" class="stm run hide_run"><a href="#n76">76</a></p>
+<p id="n77" class="pln"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="pln"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="pln"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="pln"><a href="#n84">84</a></p>
+<p id="n85" class="pln"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="stm run hide_run"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="stm run hide_run"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
+<p id="n98" class="pln"><a href="#n98">98</a></p>
+<p id="n99" class="pln"><a href="#n99">99</a></p>
+<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
+<p id="n101" class="pln"><a href="#n101">101</a></p>
+<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
+<p id="n103" class="stm mis"><a href="#n103">103</a></p>
+<p id="n104" class="pln"><a href="#n104">104</a></p>
+<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
+<p id="n106" class="pln"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="stm run hide_run"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
+<p id="n111" class="stm mis"><a href="#n111">111</a></p>
+<p id="n112" class="stm mis"><a href="#n112">112</a></p>
+<p id="n113" class="pln"><a href="#n113">113</a></p>
+<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
+<p id="n115" class="pln"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="pln"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="pln"><a href="#n119">119</a></p>
+<p id="n120" class="pln"><a href="#n120">120</a></p>
+<p id="n121" class="stm run hide_run"><a href="#n121">121</a></p>
+<p id="n122" class="pln"><a href="#n122">122</a></p>
+<p id="n123" class="stm mis"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+<p id="n125" class="pln"><a href="#n125">125</a></p>
+<p id="n126" class="stm mis"><a href="#n126">126</a></p>
+<p id="n127" class="pln"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="stm mis"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="stm mis"><a href="#n131">131</a></p>
+<p id="n132" class="stm mis"><a href="#n132">132</a></p>
+<p id="n133" class="stm mis"><a href="#n133">133</a></p>
+<p id="n134" class="stm mis"><a href="#n134">134</a></p>
+<p id="n135" class="stm mis"><a href="#n135">135</a></p>
+<p id="n136" class="stm mis"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="pln"><a href="#n138">138</a></p>
+<p id="n139" class="stm mis"><a href="#n139">139</a></p>
+<p id="n140" class="pln"><a href="#n140">140</a></p>
+<p id="n141" class="pln"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="stm mis"><a href="#n143">143</a></p>
+<p id="n144" class="pln"><a href="#n144">144</a></p>
+<p id="n145" class="pln"><a href="#n145">145</a></p>
+<p id="n146" class="stm mis"><a href="#n146">146</a></p>
+<p id="n147" class="pln"><a href="#n147">147</a></p>
+<p id="n148" class="stm mis"><a href="#n148">148</a></p>
+<p id="n149" class="pln"><a href="#n149">149</a></p>
+<p id="n150" class="stm mis"><a href="#n150">150</a></p>
+<p id="n151" class="stm mis"><a href="#n151">151</a></p>
+<p id="n152" class="stm mis"><a href="#n152">152</a></p>
+<p id="n153" class="stm mis"><a href="#n153">153</a></p>
+<p id="n154" class="stm mis"><a href="#n154">154</a></p>
+<p id="n155" class="stm mis"><a href="#n155">155</a></p>
+<p id="n156" class="stm mis"><a href="#n156">156</a></p>
+<p id="n157" class="pln"><a href="#n157">157</a></p>
+<p id="n158" class="stm mis"><a href="#n158">158</a></p>
+<p id="n159" class="pln"><a href="#n159">159</a></p>
+<p id="n160" class="pln"><a href="#n160">160</a></p>
+<p id="n161" class="pln"><a href="#n161">161</a></p>
+<p id="n162" class="pln"><a href="#n162">162</a></p>
+<p id="n163" class="pln"><a href="#n163">163</a></p>
+<p id="n164" class="pln"><a href="#n164">164</a></p>
+<p id="n165" class="pln"><a href="#n165">165</a></p>
+<p id="n166" class="stm mis"><a href="#n166">166</a></p>
+<p id="n167" class="stm mis"><a href="#n167">167</a></p>
+<p id="n168" class="pln"><a href="#n168">168</a></p>
+<p id="n169" class="pln"><a href="#n169">169</a></p>
+<p id="n170" class="stm mis"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="pln"><a href="#n172">172</a></p>
+<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
+<p id="n174" class="pln"><a href="#n174">174</a></p>
+<p id="n175" class="pln"><a href="#n175">175</a></p>
+<p id="n176" class="pln"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="pln"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="pln"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="pln"><a href="#n183">183</a></p>
+<p id="n184" class="pln"><a href="#n184">184</a></p>
+<p id="n185" class="pln"><a href="#n185">185</a></p>
+<p id="n186" class="stm run hide_run"><a href="#n186">186</a></p>
+<p id="n187" class="stm run hide_run"><a href="#n187">187</a></p>
+<p id="n188" class="stm run hide_run"><a href="#n188">188</a></p>
+<p id="n189" class="stm run hide_run"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="pln"><a href="#n191">191</a></p>
+<p id="n192" class="stm run hide_run"><a href="#n192">192</a></p>
+<p id="n193" class="pln"><a href="#n193">193</a></p>
+<p id="n194" class="stm run hide_run"><a href="#n194">194</a></p>
+<p id="n195" class="pln"><a href="#n195">195</a></p>
+<p id="n196" class="stm run hide_run"><a href="#n196">196</a></p>
+<p id="n197" class="stm run hide_run"><a href="#n197">197</a></p>
+<p id="n198" class="pln"><a href="#n198">198</a></p>
+<p id="n199" class="stm run hide_run"><a href="#n199">199</a></p>
+<p id="n200" class="pln"><a href="#n200">200</a></p>
+<p id="n201" class="pln"><a href="#n201">201</a></p>
+<p id="n202" class="pln"><a href="#n202">202</a></p>
+<p id="n203" class="pln"><a href="#n203">203</a></p>
+<p id="n204" class="pln"><a href="#n204">204</a></p>
+<p id="n205" class="pln"><a href="#n205">205</a></p>
+<p id="n206" class="pln"><a href="#n206">206</a></p>
+<p id="n207" class="pln"><a href="#n207">207</a></p>
+<p id="n208" class="pln"><a href="#n208">208</a></p>
+<p id="n209" class="pln"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="pln"><a href="#n211">211</a></p>
+<p id="n212" class="pln"><a href="#n212">212</a></p>
+<p id="n213" class="pln"><a href="#n213">213</a></p>
+<p id="n214" class="pln"><a href="#n214">214</a></p>
+<p id="n215" class="pln"><a href="#n215">215</a></p>
+<p id="n216" class="pln"><a href="#n216">216</a></p>
+<p id="n217" class="stm run hide_run"><a href="#n217">217</a></p>
+<p id="n218" class="pln"><a href="#n218">218</a></p>
+<p id="n219" class="stm run hide_run"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="pln"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="pln"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="stm run hide_run"><a href="#n228">228</a></p>
+<p id="n229" class="pln"><a href="#n229">229</a></p>
+<p id="n230" class="stm run hide_run"><a href="#n230">230</a></p>
+<p id="n231" class="pln"><a href="#n231">231</a></p>
+<p id="n232" class="pln"><a href="#n232">232</a></p>
+<p id="n233" class="stm mis"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="pln"><a href="#n235">235</a></p>
+<p id="n236" class="stm mis"><a href="#n236">236</a></p>
+<p id="n237" class="stm mis"><a href="#n237">237</a></p>
+<p id="n238" class="stm mis"><a href="#n238">238</a></p>
+<p id="n239" class="stm mis"><a href="#n239">239</a></p>
+<p id="n240" class="stm mis"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="pln"><a href="#n242">242</a></p>
+<p id="n243" class="pln"><a href="#n243">243</a></p>
+<p id="n244" class="stm mis"><a href="#n244">244</a></p>
+<p id="n245" class="stm mis"><a href="#n245">245</a></p>
+<p id="n246" class="stm mis"><a href="#n246">246</a></p>
+<p id="n247" class="stm mis"><a href="#n247">247</a></p>
+<p id="n248" class="pln"><a href="#n248">248</a></p>
+<p id="n249" class="pln"><a href="#n249">249</a></p>
+<p id="n250" class="stm mis"><a href="#n250">250</a></p>
+<p id="n251" class="pln"><a href="#n251">251</a></p>
+<p id="n252" class="stm mis"><a href="#n252">252</a></p>
+<p id="n253" class="stm mis"><a href="#n253">253</a></p>
+<p id="n254" class="stm mis"><a href="#n254">254</a></p>
+<p id="n255" class="stm mis"><a href="#n255">255</a></p>
+<p id="n256" class="pln"><a href="#n256">256</a></p>
+<p id="n257" class="pln"><a href="#n257">257</a></p>
+<p id="n258" class="pln"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="stm mis"><a href="#n260">260</a></p>
+<p id="n261" class="stm mis"><a href="#n261">261</a></p>
+<p id="n262" class="stm mis"><a href="#n262">262</a></p>
+<p id="n263" class="stm mis"><a href="#n263">263</a></p>
+<p id="n264" class="pln"><a href="#n264">264</a></p>
+<p id="n265" class="pln"><a href="#n265">265</a></p>
+<p id="n266" class="stm run hide_run"><a href="#n266">266</a></p>
+<p id="n267" class="pln"><a href="#n267">267</a></p>
+<p id="n268" class="pln"><a href="#n268">268</a></p>
+<p id="n269" class="pln"><a href="#n269">269</a></p>
+<p id="n270" class="pln"><a href="#n270">270</a></p>
+<p id="n271" class="pln"><a href="#n271">271</a></p>
+<p id="n272" class="stm mis"><a href="#n272">272</a></p>
+<p id="n273" class="stm mis"><a href="#n273">273</a></p>
+<p id="n274" class="pln"><a href="#n274">274</a></p>
+<p id="n275" class="stm mis"><a href="#n275">275</a></p>
+<p id="n276" class="stm mis"><a href="#n276">276</a></p>
+<p id="n277" class="pln"><a href="#n277">277</a></p>
+<p id="n278" class="stm mis"><a href="#n278">278</a></p>
+<p id="n279" class="stm mis"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="stm mis"><a href="#n281">281</a></p>
+<p id="n282" class="pln"><a href="#n282">282</a></p>
+<p id="n283" class="pln"><a href="#n283">283</a></p>
+<p id="n284" class="stm mis"><a href="#n284">284</a></p>
+<p id="n285" class="pln"><a href="#n285">285</a></p>
+<p id="n286" class="pln"><a href="#n286">286</a></p>
+<p id="n287" class="stm mis"><a href="#n287">287</a></p>
+<p id="n288" class="stm mis"><a href="#n288">288</a></p>
+<p id="n289" class="stm mis"><a href="#n289">289</a></p>
+<p id="n290" class="stm mis"><a href="#n290">290</a></p>
+<p id="n291" class="stm mis"><a href="#n291">291</a></p>
+<p id="n292" class="stm mis"><a href="#n292">292</a></p>
+<p id="n293" class="pln"><a href="#n293">293</a></p>
+<p id="n294" class="stm mis"><a href="#n294">294</a></p>
+<p id="n295" class="stm mis"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="stm mis"><a href="#n297">297</a></p>
+<p id="n298" class="pln"><a href="#n298">298</a></p>
+<p id="n299" class="pln"><a href="#n299">299</a></p>
+<p id="n300" class="stm mis"><a href="#n300">300</a></p>
+<p id="n301" class="pln"><a href="#n301">301</a></p>
+<p id="n302" class="stm mis"><a href="#n302">302</a></p>
+<p id="n303" class="stm mis"><a href="#n303">303</a></p>
+<p id="n304" class="pln"><a href="#n304">304</a></p>
+<p id="n305" class="stm mis"><a href="#n305">305</a></p>
+<p id="n306" class="stm mis"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="stm mis"><a href="#n308">308</a></p>
+<p id="n309" class="pln"><a href="#n309">309</a></p>
+<p id="n310" class="stm mis"><a href="#n310">310</a></p>
+<p id="n311" class="pln"><a href="#n311">311</a></p>
+<p id="n312" class="stm mis"><a href="#n312">312</a></p>
+<p id="n313" class="pln"><a href="#n313">313</a></p>
+<p id="n314" class="stm mis"><a href="#n314">314</a></p>
+<p id="n315" class="pln"><a href="#n315">315</a></p>
+<p id="n316" class="stm mis"><a href="#n316">316</a></p>
+<p id="n317" class="stm mis"><a href="#n317">317</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="stm run hide_run"><span class="key">from</span> <span class="nam">copy</span> <span class="key">import</span> <span class="nam">deepcopy</span><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">import</span> <span class="nam">from_csv</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">import</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">simclock</span> <span class="key">import</span> <span class="nam">SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">BigheadCarpEggs</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">SilverCarpEggs</span><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">GrassCarpEggs</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">transporter</span> <span class="key">import</span> <span class="nam">init_transporter</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="stm run hide_run"><span class="key">import</span> <span class="nam">h5py</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="stm run hide_run"><span class="key">import</span> <span class="nam">datetime</span><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t14" class="stm run hide_run"><span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="stm run hide_run">    <span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">ras</span> <span class="key">import</span> <span class="nam">RASProject</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="stm mis"><span class="key">except</span> <span class="nam">ModuleNotFoundError</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="stm mis">    <span class="key">pass</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run"><span class="key">class</span> <span class="nam">Simulation</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="pln">    <span class="str">"""Class that controls the simulation by incrementing time</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="pln"><span class="str">    steps and calling simulation functions correctly.</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t24" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln"><span class="str">    particles : fluegg.drift.DriftingParticles</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="pln"><span class="str">        Particles being drifted through the simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln"><span class="str">    transporter : fluegg.transporter.Transporter</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln"><span class="str">        Class that physically transports each egg for each time step</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="str">    simclock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="str">        Clock that keeps track of the time during the simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">transporter</span><span class="op">,</span> <span class="nam">simclock</span><span class="op">,</span> <span class="nam">hydraulic_cells</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t39" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_cells</span><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_transporter</span> <span class="op">=</span> <span class="nam">transporter</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simclock</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t44" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span> <span class="op">=</span> <span class="op">{</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t46" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_call_time_step_functions</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t48" class="stm run hide_run">        <span class="key">for</span> <span class="nam">fun</span><span class="op">,</span> <span class="nam">args</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span><span class="op">.</span><span class="nam">items</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="stm run hide_run">            <span class="nam">fun</span><span class="op">(</span><span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t51" class="stm run hide_run">    <span class="key">def</span> <span class="nam">add_time_step_function_call</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">fun</span><span class="op">,</span> <span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t52" class="pln">        <span class="str">"""Adds a function that will be called at the beginning of a time step.</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln"><span class="str">        fun : function</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="str">        args : list</span><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t61" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span><span class="op">[</span><span class="nam">fun</span><span class="op">]</span> <span class="op">=</span> <span class="nam">args</span><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t63" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_model</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t64" class="pln">        <span class="str">"""Sets the hydraulic model used in this instance.</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t66" class="pln"><span class="str">        Required before calling run().</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="pln"><span class="str">        hydraulic_model : fluegg.hydraulics.SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t72" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t74" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_model</span><span class="strut">&nbsp;</span></p>
+<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t76" class="stm run hide_run">    <span class="key">def</span> <span class="nam">run</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">=</span><span class="op">{</span><span class="op">}</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t77" class="pln">        <span class="str">"""Runs the simulation and returns the time-stamped positions</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln"><span class="str">        of the particles throughout the simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t80" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="pln"><span class="str">        SimulationResults</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t84" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln">        <span class="com"># Initialize simulation results</span><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm run hide_run">        <span class="nam">simulation_results</span> <span class="op">=</span> <span class="nam">SimulationResults</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm run hide_run">        <span class="nam">simulation_results</span><span class="op">.</span><span class="nam">record_result</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln">        <span class="com"># Run through all time steps</span><span class="strut">&nbsp;</span></p>
+<p id="t92" class="stm run hide_run">        <span class="key">for</span> <span class="nam">_</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">iter_time_index</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t94" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_call_time_step_functions</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln">            <span class="com"># record the result in the current state</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="stm run hide_run">            <span class="nam">simulation_results</span><span class="op">.</span><span class="nam">record_result</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t98" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t99" class="pln">            <span class="com"># Get positions and hydraulic results</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="stm run hide_run">            <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t101" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm run hide_run">            <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">all</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">isnan</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="stm mis">                <span class="key">break</span><span class="strut">&nbsp;</span></p>
+<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t105" class="stm run hide_run">            <span class="nam">hydraulic_results</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span><span class="op">.</span><span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t108" class="stm run hide_run">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln">                <span class="com"># Increment positions</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="stm run hide_run">                <span class="nam">self</span><span class="op">.</span><span class="nam">_transporter</span><span class="op">.</span><span class="nam">increment_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="stm mis">            <span class="key">except</span> <span class="nam">ValueError</span> <span class="key">as</span> <span class="nam">e</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t112" class="stm mis">                <span class="key">raise</span> <span class="nam">e</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t114" class="stm run hide_run">        <span class="key">return</span> <span class="nam">simulation_results</span><span class="strut">&nbsp;</span></p>
+<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln">        <span class="com"># Raise error if time step is too large</span><span class="strut">&nbsp;</span></p>
+<p id="t117" class="pln">        <span class="com"># if user_step > max_step:</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln">        <span class="com">#     raise ValueError('User time step is', user_step, '. Must be at less than', max_step)</span><span class="strut">&nbsp;</span></p>
+<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t121" class="stm run hide_run"><span class="key">def</span> <span class="nam">from_input_dict</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t122" class="pln">    <span class="str">"""Creates a Simulation object from an input dictionary"""</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm mis">    <span class="nam">input_dict_validator</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t125" class="pln">    <span class="com"># Simulation Clock</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="stm mis">    <span class="nam">simulation_clock</span> <span class="op">=</span> <span class="nam">SimulationClock</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln">    <span class="com"># Drifting Particles</span><span class="strut">&nbsp;</span></p>
+<p id="t129" class="stm mis">    <span class="nam">initial_position</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln">        <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="op">[</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">]</span><span class="op">)</span><span class="op">,</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span><span class="op">,</span> <span class="num">1</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'grass'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">GrassCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="stm mis">    <span class="key">elif</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'silver'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">SilverCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm mis">    <span class="key">elif</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'bighead'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">BigheadCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t138" class="pln">    <span class="com"># Transporter</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="stm mis">    <span class="nam">transporter_model</span> <span class="op">=</span> <span class="nam">init_transporter</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="pln">        <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">drift</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t141" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln">    <span class="com"># Simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t143" class="stm mis">    <span class="nam">sim</span> <span class="op">=</span> <span class="nam">Simulation</span><span class="op">(</span><span class="nam">drift</span><span class="op">,</span> <span class="nam">transporter_model</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t145" class="pln">    <span class="com"># Hydraulic cells (csv vs. hecras)</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'csv'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t147" class="pln">        <span class="com"># Hydraulic channel (CSV)</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="stm mis">        <span class="nam">hydraulic_cells</span> <span class="op">=</span> <span class="nam">from_csv</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="pln">    <span class="com"># Hecras Mode</span><span class="strut">&nbsp;</span></p>
+<p id="t150" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'hecras'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="stm mis">        <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="stm mis">            <span class="nam">plan_name</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_plan'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t153" class="stm mis">            <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="stm mis">            <span class="nam">profile_name</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_profile'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="stm mis">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_temperature'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="stm mis">            <span class="nam">hydraulic_data_frame</span> <span class="op">=</span> <span class="nam">rp</span><span class="op">.</span><span class="nam">hydraulic_model_data</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t157" class="pln">                <span class="nam">profile_name</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="stm mis">            <span class="nam">hydraulic_cells</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="pln">                <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="op">.</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="pln">                <span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">hydraulic_data_frame</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="pln">                                <span class="nam">start_time</span><span class="op">=</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_start_time'</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="pln">                                <span class="nam">simulation_clock</span><span class="op">=</span><span class="nam">simulation_clock</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t163" class="pln">                                <span class="nam">simulation</span><span class="op">=</span><span class="nam">sim</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t165" class="pln">    <span class="com"># Update sim &amp; transporter with  hydraulic cells</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="stm mis">    <span class="nam">sim</span><span class="op">.</span><span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">hydraulic_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="stm mis">    <span class="nam">transporter_model</span><span class="op">.</span><span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">hydraulic_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t168" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t169" class="pln">    <span class="com"># Return simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="stm mis">    <span class="key">return</span> <span class="nam">sim</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t173" class="stm run hide_run"><span class="key">class</span> <span class="nam">SimulationResults</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="pln">    <span class="str">"""Data structure containing simulation results during a simulation run</span><span class="strut">&nbsp;</span></p>
+<p id="t175" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t176" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="str">    simclock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="pln"><span class="str">        Representation of a simulation clock</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t181" class="pln"><span class="str">    particles : fluegg.drift.DriftingParticle</span><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln"><span class="str">        Particles that were are being drifted through the simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t184" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t186" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simclock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t187" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simclock</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln">            <span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="op">(</span><span class="nam">simclock</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t191" class="pln">                     <span class="nam">particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="num">3</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span> <span class="op">=</span> <span class="nam">configuration</span><span class="strut">&nbsp;</span></p>
+<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t194" class="stm run hide_run">    <span class="key">def</span> <span class="nam">record_result</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t195" class="pln">        <span class="str">"""Records the current particle positions in the positions array."""</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="stm run hide_run">        <span class="nam">time_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t197" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="op">[</span><span class="nam">time_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t198" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t199" class="stm run hide_run">    <span class="key">def</span> <span class="nam">results</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t200" class="pln">        <span class="str">"""Returns the positions of the particles logged throughout the</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="pln"><span class="str">        simulation.</span><span class="strut">&nbsp;</span></p>
+<p id="t202" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t203" class="pln"><span class="str">        The returned array is structured as</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t205" class="pln"><span class="str">            Axis    Values              Size</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="pln"><span class="str">            0       Time step           Number of time steps (N_t)</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="pln"><span class="str">            1       Particle number     Number of eggs (N_e)</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="pln"><span class="str">            3       Position (x, y, z)  3</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln"><span class="str">        The shape of the array is (N_t, N_e, 3).</span><span class="strut">&nbsp;</span></p>
+<p id="t211" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t212" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t216" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t219" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln">        <span class="str">"""Returns time array</span><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t222" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t226" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t228" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t230" class="stm run hide_run">    <span class="key">def</span> <span class="nam">save_results</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">file_path</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t231" class="pln">        <span class="str">"""Save the results of a simulation to an hdf time-stamped file"""</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t233" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t235" class="pln">            <span class="com"># Create results folder</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="stm mis">            <span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">realpath</span><span class="op">(</span><span class="nam">__file__</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t237" class="stm mis">            <span class="nam">p</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">abspath</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">os</span><span class="op">.</span><span class="nam">pardir</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="stm mis">            <span class="nam">p</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">p</span><span class="op">,</span> <span class="str">'results'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">exists</span><span class="op">(</span><span class="nam">p</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm mis">                <span class="nam">os</span><span class="op">.</span><span class="nam">makedirs</span><span class="op">(</span><span class="nam">p</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="pln">            <span class="com"># Check if sim_name exists in configuration, if not use current</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="pln">            <span class="com"># time</span><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="op">(</span><span class="str">'sim_name'</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="stm mis">                <span class="nam">now</span> <span class="op">=</span> <span class="nam">datetime</span><span class="op">.</span><span class="nam">datetime</span><span class="op">.</span><span class="nam">now</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t246" class="stm mis">                <span class="nam">date_string</span> <span class="op">=</span> <span class="nam">now</span><span class="op">.</span><span class="nam">strftime</span><span class="op">(</span><span class="str">'%Y-%m-%d-%H-%M-%S'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t247" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span> <span class="op">=</span> <span class="str">'fluegg_'</span> <span class="op">+</span> <span class="nam">date_string</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t249" class="pln">            <span class="com"># Check if results file already exists</span><span class="strut">&nbsp;</span></p>
+<p id="t250" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="pln">                <span class="nam">p</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">)</span> <span class="op">+</span> <span class="str">'.h5'</span><span class="strut">&nbsp;</span></p>
+<p id="t252" class="stm mis">            <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">exists</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t253" class="stm mis">                <span class="nam">now</span> <span class="op">=</span> <span class="nam">datetime</span><span class="op">.</span><span class="nam">datetime</span><span class="op">.</span><span class="nam">now</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="stm mis">                <span class="nam">date_string</span> <span class="op">=</span> <span class="nam">now</span><span class="op">.</span><span class="nam">strftime</span><span class="op">(</span><span class="str">'%Y-%m-%d-%H-%M-%S'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="stm mis">                <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="pln">                    <span class="nam">p</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">)</span> <span class="op">+</span> <span class="nam">str</span><span class="op">(</span><span class="nam">date_string</span><span class="op">)</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="pln">                    <span class="str">'.h5'</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln">        <span class="com"># Save simulation results</span><span class="strut">&nbsp;</span></p>
+<p id="t260" class="stm mis">        <span class="key">with</span> <span class="nam">h5py</span><span class="op">.</span><span class="nam">File</span><span class="op">(</span><span class="nam">file_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'simclock'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'positions'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'configuration'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">str</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm run hide_run"><span class="key">def</span> <span class="nam">input_dict_validator</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="pln">    <span class="str">"""Validates a list of simulation inputs and runs the simlation if inputs</span><span class="strut">&nbsp;</span></p>
+<p id="t268" class="pln"><span class="str">    are valid</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t271" class="pln">    <span class="com"># Hydraulic Input Mode</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t273" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'hydraulic_mode must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="pln">    <span class="com"># CSV path</span><span class="strut">&nbsp;</span></p>
+<p id="t275" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'csv_path must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="pln">    <span class="com"># Hecras path</span><span class="strut">&nbsp;</span></p>
+<p id="t278" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'hecras_path must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln">    <span class="com"># Diffusivity</span><span class="strut">&nbsp;</span></p>
+<p id="t281" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'parabolic'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'constant'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t283" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'parabolic-constant'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="pln">            <span class="str">'diffusivity must be parabolic, constant, or parabolic-constant'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t286" class="pln">    <span class="com"># XYZ Position</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t288" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'x must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t289" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'y must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t292" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'z must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="pln">    <span class="com"># Number of eggs</span><span class="strut">&nbsp;</span></p>
+<p id="t294" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t295" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'num_eggs must be type int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln">    <span class="com"># Species</span><span class="strut">&nbsp;</span></p>
+<p id="t297" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'grass'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t298" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'silver'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'bighead'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t300" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'species must be grass, silver, or bighead'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t301" class="pln">    <span class="com"># Varying density &amp; diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'constant'</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'varying'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t303" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'varying_dd must be constant or varying.'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="pln">    <span class="com"># Direction of simulation</span><span class="strut">&nbsp;</span></p>
+<p id="t305" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'forward'</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'reverse'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'direction must be forward or reverse.'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln">    <span class="com"># Duration</span><span class="strut">&nbsp;</span></p>
+<p id="t308" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="pln">            <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'duration must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="pln">    <span class="com"># Time step</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t313" class="pln">            <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'time_step must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t315" class="pln">    <span class="com"># Simulation name</span><span class="strut">&nbsp;</span></p>
+<p id="t316" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t317" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'sim_name must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/fluegg_transporter_py.html b/coverage_report/fluegg_transporter_py.html
new file mode 100644
index 0000000..85a1edf
--- /dev/null
+++ b/coverage_report/fluegg_transporter_py.html
@@ -0,0 +1,1809 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for fluegg\transporter.py: 80%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>fluegg\transporter.py</b> :
+            <span class="pc_cov">80%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            285 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">229 run</span>
+            <span class="mis shortkey_m button_toggle_mis">56 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="pln"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="pln"><a href="#n4">4</a></p>
+<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
+<p id="n6" class="pln"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="pln"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="pln"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="pln"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
+<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
+<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
+<p id="n24" class="stm mis"><a href="#n24">24</a></p>
+<p id="n25" class="pln"><a href="#n25">25</a></p>
+<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
+<p id="n27" class="pln"><a href="#n27">27</a></p>
+<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
+<p id="n29" class="pln"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="pln"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="pln"><a href="#n34">34</a></p>
+<p id="n35" class="pln"><a href="#n35">35</a></p>
+<p id="n36" class="pln"><a href="#n36">36</a></p>
+<p id="n37" class="pln"><a href="#n37">37</a></p>
+<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
+<p id="n39" class="pln"><a href="#n39">39</a></p>
+<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
+<p id="n41" class="pln"><a href="#n41">41</a></p>
+<p id="n42" class="pln"><a href="#n42">42</a></p>
+<p id="n43" class="pln"><a href="#n43">43</a></p>
+<p id="n44" class="pln"><a href="#n44">44</a></p>
+<p id="n45" class="pln"><a href="#n45">45</a></p>
+<p id="n46" class="pln"><a href="#n46">46</a></p>
+<p id="n47" class="pln"><a href="#n47">47</a></p>
+<p id="n48" class="pln"><a href="#n48">48</a></p>
+<p id="n49" class="pln"><a href="#n49">49</a></p>
+<p id="n50" class="pln"><a href="#n50">50</a></p>
+<p id="n51" class="pln"><a href="#n51">51</a></p>
+<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
+<p id="n53" class="pln"><a href="#n53">53</a></p>
+<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
+<p id="n55" class="pln"><a href="#n55">55</a></p>
+<p id="n56" class="pln"><a href="#n56">56</a></p>
+<p id="n57" class="pln"><a href="#n57">57</a></p>
+<p id="n58" class="pln"><a href="#n58">58</a></p>
+<p id="n59" class="pln"><a href="#n59">59</a></p>
+<p id="n60" class="pln"><a href="#n60">60</a></p>
+<p id="n61" class="pln"><a href="#n61">61</a></p>
+<p id="n62" class="pln"><a href="#n62">62</a></p>
+<p id="n63" class="pln"><a href="#n63">63</a></p>
+<p id="n64" class="stm mis"><a href="#n64">64</a></p>
+<p id="n65" class="pln"><a href="#n65">65</a></p>
+<p id="n66" class="stm run hide_run"><a href="#n66">66</a></p>
+<p id="n67" class="pln"><a href="#n67">67</a></p>
+<p id="n68" class="pln"><a href="#n68">68</a></p>
+<p id="n69" class="pln"><a href="#n69">69</a></p>
+<p id="n70" class="pln"><a href="#n70">70</a></p>
+<p id="n71" class="pln"><a href="#n71">71</a></p>
+<p id="n72" class="pln"><a href="#n72">72</a></p>
+<p id="n73" class="pln"><a href="#n73">73</a></p>
+<p id="n74" class="pln"><a href="#n74">74</a></p>
+<p id="n75" class="stm run hide_run"><a href="#n75">75</a></p>
+<p id="n76" class="pln"><a href="#n76">76</a></p>
+<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
+<p id="n78" class="pln"><a href="#n78">78</a></p>
+<p id="n79" class="pln"><a href="#n79">79</a></p>
+<p id="n80" class="pln"><a href="#n80">80</a></p>
+<p id="n81" class="pln"><a href="#n81">81</a></p>
+<p id="n82" class="pln"><a href="#n82">82</a></p>
+<p id="n83" class="pln"><a href="#n83">83</a></p>
+<p id="n84" class="stm run hide_run"><a href="#n84">84</a></p>
+<p id="n85" class="stm mis"><a href="#n85">85</a></p>
+<p id="n86" class="pln"><a href="#n86">86</a></p>
+<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
+<p id="n88" class="pln"><a href="#n88">88</a></p>
+<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
+<p id="n90" class="pln"><a href="#n90">90</a></p>
+<p id="n91" class="pln"><a href="#n91">91</a></p>
+<p id="n92" class="pln"><a href="#n92">92</a></p>
+<p id="n93" class="pln"><a href="#n93">93</a></p>
+<p id="n94" class="pln"><a href="#n94">94</a></p>
+<p id="n95" class="pln"><a href="#n95">95</a></p>
+<p id="n96" class="pln"><a href="#n96">96</a></p>
+<p id="n97" class="pln"><a href="#n97">97</a></p>
+<p id="n98" class="stm mis"><a href="#n98">98</a></p>
+<p id="n99" class="stm mis"><a href="#n99">99</a></p>
+<p id="n100" class="pln"><a href="#n100">100</a></p>
+<p id="n101" class="pln"><a href="#n101">101</a></p>
+<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
+<p id="n103" class="pln"><a href="#n103">103</a></p>
+<p id="n104" class="stm run hide_run"><a href="#n104">104</a></p>
+<p id="n105" class="pln"><a href="#n105">105</a></p>
+<p id="n106" class="pln"><a href="#n106">106</a></p>
+<p id="n107" class="pln"><a href="#n107">107</a></p>
+<p id="n108" class="pln"><a href="#n108">108</a></p>
+<p id="n109" class="pln"><a href="#n109">109</a></p>
+<p id="n110" class="pln"><a href="#n110">110</a></p>
+<p id="n111" class="pln"><a href="#n111">111</a></p>
+<p id="n112" class="pln"><a href="#n112">112</a></p>
+<p id="n113" class="stm run hide_run"><a href="#n113">113</a></p>
+<p id="n114" class="pln"><a href="#n114">114</a></p>
+<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
+<p id="n116" class="pln"><a href="#n116">116</a></p>
+<p id="n117" class="stm run hide_run"><a href="#n117">117</a></p>
+<p id="n118" class="pln"><a href="#n118">118</a></p>
+<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
+<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
+<p id="n121" class="pln"><a href="#n121">121</a></p>
+<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
+<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
+<p id="n124" class="pln"><a href="#n124">124</a></p>
+<p id="n125" class="stm run hide_run"><a href="#n125">125</a></p>
+<p id="n126" class="pln"><a href="#n126">126</a></p>
+<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
+<p id="n128" class="pln"><a href="#n128">128</a></p>
+<p id="n129" class="stm run hide_run"><a href="#n129">129</a></p>
+<p id="n130" class="pln"><a href="#n130">130</a></p>
+<p id="n131" class="stm run hide_run"><a href="#n131">131</a></p>
+<p id="n132" class="pln"><a href="#n132">132</a></p>
+<p id="n133" class="pln"><a href="#n133">133</a></p>
+<p id="n134" class="stm run hide_run"><a href="#n134">134</a></p>
+<p id="n135" class="stm run hide_run"><a href="#n135">135</a></p>
+<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
+<p id="n137" class="pln"><a href="#n137">137</a></p>
+<p id="n138" class="stm run hide_run"><a href="#n138">138</a></p>
+<p id="n139" class="pln"><a href="#n139">139</a></p>
+<p id="n140" class="stm run hide_run"><a href="#n140">140</a></p>
+<p id="n141" class="pln"><a href="#n141">141</a></p>
+<p id="n142" class="pln"><a href="#n142">142</a></p>
+<p id="n143" class="stm run hide_run"><a href="#n143">143</a></p>
+<p id="n144" class="pln"><a href="#n144">144</a></p>
+<p id="n145" class="stm run hide_run"><a href="#n145">145</a></p>
+<p id="n146" class="pln"><a href="#n146">146</a></p>
+<p id="n147" class="stm run hide_run"><a href="#n147">147</a></p>
+<p id="n148" class="pln"><a href="#n148">148</a></p>
+<p id="n149" class="pln"><a href="#n149">149</a></p>
+<p id="n150" class="pln"><a href="#n150">150</a></p>
+<p id="n151" class="pln"><a href="#n151">151</a></p>
+<p id="n152" class="pln"><a href="#n152">152</a></p>
+<p id="n153" class="pln"><a href="#n153">153</a></p>
+<p id="n154" class="pln"><a href="#n154">154</a></p>
+<p id="n155" class="pln"><a href="#n155">155</a></p>
+<p id="n156" class="pln"><a href="#n156">156</a></p>
+<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
+<p id="n158" class="stm run hide_run"><a href="#n158">158</a></p>
+<p id="n159" class="stm run hide_run"><a href="#n159">159</a></p>
+<p id="n160" class="stm run hide_run"><a href="#n160">160</a></p>
+<p id="n161" class="stm run hide_run"><a href="#n161">161</a></p>
+<p id="n162" class="pln"><a href="#n162">162</a></p>
+<p id="n163" class="stm run hide_run"><a href="#n163">163</a></p>
+<p id="n164" class="stm run hide_run"><a href="#n164">164</a></p>
+<p id="n165" class="stm run hide_run"><a href="#n165">165</a></p>
+<p id="n166" class="pln"><a href="#n166">166</a></p>
+<p id="n167" class="pln"><a href="#n167">167</a></p>
+<p id="n168" class="pln"><a href="#n168">168</a></p>
+<p id="n169" class="stm run hide_run"><a href="#n169">169</a></p>
+<p id="n170" class="pln"><a href="#n170">170</a></p>
+<p id="n171" class="pln"><a href="#n171">171</a></p>
+<p id="n172" class="pln"><a href="#n172">172</a></p>
+<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
+<p id="n174" class="pln"><a href="#n174">174</a></p>
+<p id="n175" class="stm run hide_run"><a href="#n175">175</a></p>
+<p id="n176" class="pln"><a href="#n176">176</a></p>
+<p id="n177" class="pln"><a href="#n177">177</a></p>
+<p id="n178" class="pln"><a href="#n178">178</a></p>
+<p id="n179" class="pln"><a href="#n179">179</a></p>
+<p id="n180" class="pln"><a href="#n180">180</a></p>
+<p id="n181" class="pln"><a href="#n181">181</a></p>
+<p id="n182" class="pln"><a href="#n182">182</a></p>
+<p id="n183" class="pln"><a href="#n183">183</a></p>
+<p id="n184" class="stm run hide_run"><a href="#n184">184</a></p>
+<p id="n185" class="pln"><a href="#n185">185</a></p>
+<p id="n186" class="pln"><a href="#n186">186</a></p>
+<p id="n187" class="stm run hide_run"><a href="#n187">187</a></p>
+<p id="n188" class="pln"><a href="#n188">188</a></p>
+<p id="n189" class="pln"><a href="#n189">189</a></p>
+<p id="n190" class="pln"><a href="#n190">190</a></p>
+<p id="n191" class="stm run hide_run"><a href="#n191">191</a></p>
+<p id="n192" class="pln"><a href="#n192">192</a></p>
+<p id="n193" class="stm run hide_run"><a href="#n193">193</a></p>
+<p id="n194" class="pln"><a href="#n194">194</a></p>
+<p id="n195" class="stm run hide_run"><a href="#n195">195</a></p>
+<p id="n196" class="pln"><a href="#n196">196</a></p>
+<p id="n197" class="pln"><a href="#n197">197</a></p>
+<p id="n198" class="stm run hide_run"><a href="#n198">198</a></p>
+<p id="n199" class="pln"><a href="#n199">199</a></p>
+<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
+<p id="n201" class="pln"><a href="#n201">201</a></p>
+<p id="n202" class="pln"><a href="#n202">202</a></p>
+<p id="n203" class="pln"><a href="#n203">203</a></p>
+<p id="n204" class="pln"><a href="#n204">204</a></p>
+<p id="n205" class="pln"><a href="#n205">205</a></p>
+<p id="n206" class="pln"><a href="#n206">206</a></p>
+<p id="n207" class="pln"><a href="#n207">207</a></p>
+<p id="n208" class="pln"><a href="#n208">208</a></p>
+<p id="n209" class="pln"><a href="#n209">209</a></p>
+<p id="n210" class="pln"><a href="#n210">210</a></p>
+<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
+<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
+<p id="n213" class="stm run hide_run"><a href="#n213">213</a></p>
+<p id="n214" class="stm run hide_run"><a href="#n214">214</a></p>
+<p id="n215" class="stm run hide_run"><a href="#n215">215</a></p>
+<p id="n216" class="stm run hide_run"><a href="#n216">216</a></p>
+<p id="n217" class="stm run hide_run"><a href="#n217">217</a></p>
+<p id="n218" class="stm run hide_run"><a href="#n218">218</a></p>
+<p id="n219" class="pln"><a href="#n219">219</a></p>
+<p id="n220" class="pln"><a href="#n220">220</a></p>
+<p id="n221" class="pln"><a href="#n221">221</a></p>
+<p id="n222" class="stm run hide_run"><a href="#n222">222</a></p>
+<p id="n223" class="pln"><a href="#n223">223</a></p>
+<p id="n224" class="pln"><a href="#n224">224</a></p>
+<p id="n225" class="pln"><a href="#n225">225</a></p>
+<p id="n226" class="stm run hide_run"><a href="#n226">226</a></p>
+<p id="n227" class="pln"><a href="#n227">227</a></p>
+<p id="n228" class="stm run hide_run"><a href="#n228">228</a></p>
+<p id="n229" class="pln"><a href="#n229">229</a></p>
+<p id="n230" class="pln"><a href="#n230">230</a></p>
+<p id="n231" class="pln"><a href="#n231">231</a></p>
+<p id="n232" class="pln"><a href="#n232">232</a></p>
+<p id="n233" class="pln"><a href="#n233">233</a></p>
+<p id="n234" class="pln"><a href="#n234">234</a></p>
+<p id="n235" class="pln"><a href="#n235">235</a></p>
+<p id="n236" class="pln"><a href="#n236">236</a></p>
+<p id="n237" class="stm run hide_run"><a href="#n237">237</a></p>
+<p id="n238" class="pln"><a href="#n238">238</a></p>
+<p id="n239" class="pln"><a href="#n239">239</a></p>
+<p id="n240" class="stm run hide_run"><a href="#n240">240</a></p>
+<p id="n241" class="pln"><a href="#n241">241</a></p>
+<p id="n242" class="stm run hide_run"><a href="#n242">242</a></p>
+<p id="n243" class="pln"><a href="#n243">243</a></p>
+<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
+<p id="n245" class="pln"><a href="#n245">245</a></p>
+<p id="n246" class="pln"><a href="#n246">246</a></p>
+<p id="n247" class="stm run hide_run"><a href="#n247">247</a></p>
+<p id="n248" class="pln"><a href="#n248">248</a></p>
+<p id="n249" class="stm run hide_run"><a href="#n249">249</a></p>
+<p id="n250" class="pln"><a href="#n250">250</a></p>
+<p id="n251" class="pln"><a href="#n251">251</a></p>
+<p id="n252" class="pln"><a href="#n252">252</a></p>
+<p id="n253" class="pln"><a href="#n253">253</a></p>
+<p id="n254" class="pln"><a href="#n254">254</a></p>
+<p id="n255" class="pln"><a href="#n255">255</a></p>
+<p id="n256" class="pln"><a href="#n256">256</a></p>
+<p id="n257" class="pln"><a href="#n257">257</a></p>
+<p id="n258" class="pln"><a href="#n258">258</a></p>
+<p id="n259" class="pln"><a href="#n259">259</a></p>
+<p id="n260" class="stm mis"><a href="#n260">260</a></p>
+<p id="n261" class="stm mis"><a href="#n261">261</a></p>
+<p id="n262" class="stm mis"><a href="#n262">262</a></p>
+<p id="n263" class="stm mis"><a href="#n263">263</a></p>
+<p id="n264" class="stm mis"><a href="#n264">264</a></p>
+<p id="n265" class="stm mis"><a href="#n265">265</a></p>
+<p id="n266" class="stm mis"><a href="#n266">266</a></p>
+<p id="n267" class="stm mis"><a href="#n267">267</a></p>
+<p id="n268" class="pln"><a href="#n268">268</a></p>
+<p id="n269" class="pln"><a href="#n269">269</a></p>
+<p id="n270" class="pln"><a href="#n270">270</a></p>
+<p id="n271" class="stm mis"><a href="#n271">271</a></p>
+<p id="n272" class="pln"><a href="#n272">272</a></p>
+<p id="n273" class="pln"><a href="#n273">273</a></p>
+<p id="n274" class="stm mis"><a href="#n274">274</a></p>
+<p id="n275" class="pln"><a href="#n275">275</a></p>
+<p id="n276" class="pln"><a href="#n276">276</a></p>
+<p id="n277" class="pln"><a href="#n277">277</a></p>
+<p id="n278" class="stm mis"><a href="#n278">278</a></p>
+<p id="n279" class="pln"><a href="#n279">279</a></p>
+<p id="n280" class="pln"><a href="#n280">280</a></p>
+<p id="n281" class="stm run hide_run"><a href="#n281">281</a></p>
+<p id="n282" class="pln"><a href="#n282">282</a></p>
+<p id="n283" class="stm run hide_run"><a href="#n283">283</a></p>
+<p id="n284" class="pln"><a href="#n284">284</a></p>
+<p id="n285" class="pln"><a href="#n285">285</a></p>
+<p id="n286" class="pln"><a href="#n286">286</a></p>
+<p id="n287" class="pln"><a href="#n287">287</a></p>
+<p id="n288" class="pln"><a href="#n288">288</a></p>
+<p id="n289" class="pln"><a href="#n289">289</a></p>
+<p id="n290" class="pln"><a href="#n290">290</a></p>
+<p id="n291" class="pln"><a href="#n291">291</a></p>
+<p id="n292" class="pln"><a href="#n292">292</a></p>
+<p id="n293" class="pln"><a href="#n293">293</a></p>
+<p id="n294" class="pln"><a href="#n294">294</a></p>
+<p id="n295" class="pln"><a href="#n295">295</a></p>
+<p id="n296" class="pln"><a href="#n296">296</a></p>
+<p id="n297" class="pln"><a href="#n297">297</a></p>
+<p id="n298" class="pln"><a href="#n298">298</a></p>
+<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
+<p id="n300" class="pln"><a href="#n300">300</a></p>
+<p id="n301" class="stm run hide_run"><a href="#n301">301</a></p>
+<p id="n302" class="pln"><a href="#n302">302</a></p>
+<p id="n303" class="stm run hide_run"><a href="#n303">303</a></p>
+<p id="n304" class="pln"><a href="#n304">304</a></p>
+<p id="n305" class="stm run hide_run"><a href="#n305">305</a></p>
+<p id="n306" class="stm run hide_run"><a href="#n306">306</a></p>
+<p id="n307" class="pln"><a href="#n307">307</a></p>
+<p id="n308" class="stm run hide_run"><a href="#n308">308</a></p>
+<p id="n309" class="stm run hide_run"><a href="#n309">309</a></p>
+<p id="n310" class="pln"><a href="#n310">310</a></p>
+<p id="n311" class="stm run hide_run"><a href="#n311">311</a></p>
+<p id="n312" class="pln"><a href="#n312">312</a></p>
+<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
+<p id="n314" class="pln"><a href="#n314">314</a></p>
+<p id="n315" class="stm run hide_run"><a href="#n315">315</a></p>
+<p id="n316" class="pln"><a href="#n316">316</a></p>
+<p id="n317" class="stm run hide_run"><a href="#n317">317</a></p>
+<p id="n318" class="pln"><a href="#n318">318</a></p>
+<p id="n319" class="pln"><a href="#n319">319</a></p>
+<p id="n320" class="stm run hide_run"><a href="#n320">320</a></p>
+<p id="n321" class="stm run hide_run"><a href="#n321">321</a></p>
+<p id="n322" class="stm run hide_run"><a href="#n322">322</a></p>
+<p id="n323" class="pln"><a href="#n323">323</a></p>
+<p id="n324" class="stm run hide_run"><a href="#n324">324</a></p>
+<p id="n325" class="pln"><a href="#n325">325</a></p>
+<p id="n326" class="stm run hide_run"><a href="#n326">326</a></p>
+<p id="n327" class="pln"><a href="#n327">327</a></p>
+<p id="n328" class="pln"><a href="#n328">328</a></p>
+<p id="n329" class="stm run hide_run"><a href="#n329">329</a></p>
+<p id="n330" class="pln"><a href="#n330">330</a></p>
+<p id="n331" class="pln"><a href="#n331">331</a></p>
+<p id="n332" class="stm run hide_run"><a href="#n332">332</a></p>
+<p id="n333" class="pln"><a href="#n333">333</a></p>
+<p id="n334" class="stm run hide_run"><a href="#n334">334</a></p>
+<p id="n335" class="pln"><a href="#n335">335</a></p>
+<p id="n336" class="pln"><a href="#n336">336</a></p>
+<p id="n337" class="pln"><a href="#n337">337</a></p>
+<p id="n338" class="pln"><a href="#n338">338</a></p>
+<p id="n339" class="pln"><a href="#n339">339</a></p>
+<p id="n340" class="pln"><a href="#n340">340</a></p>
+<p id="n341" class="pln"><a href="#n341">341</a></p>
+<p id="n342" class="pln"><a href="#n342">342</a></p>
+<p id="n343" class="pln"><a href="#n343">343</a></p>
+<p id="n344" class="pln"><a href="#n344">344</a></p>
+<p id="n345" class="pln"><a href="#n345">345</a></p>
+<p id="n346" class="pln"><a href="#n346">346</a></p>
+<p id="n347" class="pln"><a href="#n347">347</a></p>
+<p id="n348" class="stm run hide_run"><a href="#n348">348</a></p>
+<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
+<p id="n350" class="pln"><a href="#n350">350</a></p>
+<p id="n351" class="pln"><a href="#n351">351</a></p>
+<p id="n352" class="stm run hide_run"><a href="#n352">352</a></p>
+<p id="n353" class="stm run hide_run"><a href="#n353">353</a></p>
+<p id="n354" class="pln"><a href="#n354">354</a></p>
+<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
+<p id="n356" class="pln"><a href="#n356">356</a></p>
+<p id="n357" class="stm run hide_run"><a href="#n357">357</a></p>
+<p id="n358" class="pln"><a href="#n358">358</a></p>
+<p id="n359" class="pln"><a href="#n359">359</a></p>
+<p id="n360" class="pln"><a href="#n360">360</a></p>
+<p id="n361" class="pln"><a href="#n361">361</a></p>
+<p id="n362" class="pln"><a href="#n362">362</a></p>
+<p id="n363" class="pln"><a href="#n363">363</a></p>
+<p id="n364" class="pln"><a href="#n364">364</a></p>
+<p id="n365" class="pln"><a href="#n365">365</a></p>
+<p id="n366" class="pln"><a href="#n366">366</a></p>
+<p id="n367" class="pln"><a href="#n367">367</a></p>
+<p id="n368" class="stm run hide_run"><a href="#n368">368</a></p>
+<p id="n369" class="stm run hide_run"><a href="#n369">369</a></p>
+<p id="n370" class="stm run hide_run"><a href="#n370">370</a></p>
+<p id="n371" class="pln"><a href="#n371">371</a></p>
+<p id="n372" class="pln"><a href="#n372">372</a></p>
+<p id="n373" class="stm run hide_run"><a href="#n373">373</a></p>
+<p id="n374" class="pln"><a href="#n374">374</a></p>
+<p id="n375" class="stm run hide_run"><a href="#n375">375</a></p>
+<p id="n376" class="pln"><a href="#n376">376</a></p>
+<p id="n377" class="pln"><a href="#n377">377</a></p>
+<p id="n378" class="pln"><a href="#n378">378</a></p>
+<p id="n379" class="pln"><a href="#n379">379</a></p>
+<p id="n380" class="pln"><a href="#n380">380</a></p>
+<p id="n381" class="pln"><a href="#n381">381</a></p>
+<p id="n382" class="stm mis"><a href="#n382">382</a></p>
+<p id="n383" class="pln"><a href="#n383">383</a></p>
+<p id="n384" class="stm run hide_run"><a href="#n384">384</a></p>
+<p id="n385" class="pln"><a href="#n385">385</a></p>
+<p id="n386" class="pln"><a href="#n386">386</a></p>
+<p id="n387" class="pln"><a href="#n387">387</a></p>
+<p id="n388" class="pln"><a href="#n388">388</a></p>
+<p id="n389" class="pln"><a href="#n389">389</a></p>
+<p id="n390" class="pln"><a href="#n390">390</a></p>
+<p id="n391" class="stm mis"><a href="#n391">391</a></p>
+<p id="n392" class="pln"><a href="#n392">392</a></p>
+<p id="n393" class="stm run hide_run"><a href="#n393">393</a></p>
+<p id="n394" class="pln"><a href="#n394">394</a></p>
+<p id="n395" class="pln"><a href="#n395">395</a></p>
+<p id="n396" class="pln"><a href="#n396">396</a></p>
+<p id="n397" class="pln"><a href="#n397">397</a></p>
+<p id="n398" class="pln"><a href="#n398">398</a></p>
+<p id="n399" class="pln"><a href="#n399">399</a></p>
+<p id="n400" class="stm mis"><a href="#n400">400</a></p>
+<p id="n401" class="pln"><a href="#n401">401</a></p>
+<p id="n402" class="stm run hide_run"><a href="#n402">402</a></p>
+<p id="n403" class="pln"><a href="#n403">403</a></p>
+<p id="n404" class="pln"><a href="#n404">404</a></p>
+<p id="n405" class="pln"><a href="#n405">405</a></p>
+<p id="n406" class="pln"><a href="#n406">406</a></p>
+<p id="n407" class="pln"><a href="#n407">407</a></p>
+<p id="n408" class="pln"><a href="#n408">408</a></p>
+<p id="n409" class="pln"><a href="#n409">409</a></p>
+<p id="n410" class="pln"><a href="#n410">410</a></p>
+<p id="n411" class="pln"><a href="#n411">411</a></p>
+<p id="n412" class="pln"><a href="#n412">412</a></p>
+<p id="n413" class="pln"><a href="#n413">413</a></p>
+<p id="n414" class="stm run hide_run"><a href="#n414">414</a></p>
+<p id="n415" class="stm run hide_run"><a href="#n415">415</a></p>
+<p id="n416" class="stm run hide_run"><a href="#n416">416</a></p>
+<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
+<p id="n418" class="stm run hide_run"><a href="#n418">418</a></p>
+<p id="n419" class="pln"><a href="#n419">419</a></p>
+<p id="n420" class="stm run hide_run"><a href="#n420">420</a></p>
+<p id="n421" class="pln"><a href="#n421">421</a></p>
+<p id="n422" class="stm run hide_run"><a href="#n422">422</a></p>
+<p id="n423" class="stm mis"><a href="#n423">423</a></p>
+<p id="n424" class="pln"><a href="#n424">424</a></p>
+<p id="n425" class="pln"><a href="#n425">425</a></p>
+<p id="n426" class="pln"><a href="#n426">426</a></p>
+<p id="n427" class="stm run hide_run"><a href="#n427">427</a></p>
+<p id="n428" class="pln"><a href="#n428">428</a></p>
+<p id="n429" class="stm run hide_run"><a href="#n429">429</a></p>
+<p id="n430" class="pln"><a href="#n430">430</a></p>
+<p id="n431" class="stm run hide_run"><a href="#n431">431</a></p>
+<p id="n432" class="pln"><a href="#n432">432</a></p>
+<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
+<p id="n434" class="pln"><a href="#n434">434</a></p>
+<p id="n435" class="pln"><a href="#n435">435</a></p>
+<p id="n436" class="stm run hide_run"><a href="#n436">436</a></p>
+<p id="n437" class="pln"><a href="#n437">437</a></p>
+<p id="n438" class="pln"><a href="#n438">438</a></p>
+<p id="n439" class="stm run hide_run"><a href="#n439">439</a></p>
+<p id="n440" class="pln"><a href="#n440">440</a></p>
+<p id="n441" class="pln"><a href="#n441">441</a></p>
+<p id="n442" class="pln"><a href="#n442">442</a></p>
+<p id="n443" class="pln"><a href="#n443">443</a></p>
+<p id="n444" class="pln"><a href="#n444">444</a></p>
+<p id="n445" class="pln"><a href="#n445">445</a></p>
+<p id="n446" class="stm run hide_run"><a href="#n446">446</a></p>
+<p id="n447" class="pln"><a href="#n447">447</a></p>
+<p id="n448" class="stm run hide_run"><a href="#n448">448</a></p>
+<p id="n449" class="pln"><a href="#n449">449</a></p>
+<p id="n450" class="pln"><a href="#n450">450</a></p>
+<p id="n451" class="pln"><a href="#n451">451</a></p>
+<p id="n452" class="pln"><a href="#n452">452</a></p>
+<p id="n453" class="pln"><a href="#n453">453</a></p>
+<p id="n454" class="pln"><a href="#n454">454</a></p>
+<p id="n455" class="pln"><a href="#n455">455</a></p>
+<p id="n456" class="pln"><a href="#n456">456</a></p>
+<p id="n457" class="pln"><a href="#n457">457</a></p>
+<p id="n458" class="pln"><a href="#n458">458</a></p>
+<p id="n459" class="pln"><a href="#n459">459</a></p>
+<p id="n460" class="pln"><a href="#n460">460</a></p>
+<p id="n461" class="pln"><a href="#n461">461</a></p>
+<p id="n462" class="pln"><a href="#n462">462</a></p>
+<p id="n463" class="stm run hide_run"><a href="#n463">463</a></p>
+<p id="n464" class="pln"><a href="#n464">464</a></p>
+<p id="n465" class="pln"><a href="#n465">465</a></p>
+<p id="n466" class="stm run hide_run"><a href="#n466">466</a></p>
+<p id="n467" class="pln"><a href="#n467">467</a></p>
+<p id="n468" class="pln"><a href="#n468">468</a></p>
+<p id="n469" class="pln"><a href="#n469">469</a></p>
+<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
+<p id="n471" class="pln"><a href="#n471">471</a></p>
+<p id="n472" class="stm run hide_run"><a href="#n472">472</a></p>
+<p id="n473" class="pln"><a href="#n473">473</a></p>
+<p id="n474" class="stm run hide_run"><a href="#n474">474</a></p>
+<p id="n475" class="pln"><a href="#n475">475</a></p>
+<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
+<p id="n477" class="pln"><a href="#n477">477</a></p>
+<p id="n478" class="pln"><a href="#n478">478</a></p>
+<p id="n479" class="pln"><a href="#n479">479</a></p>
+<p id="n480" class="pln"><a href="#n480">480</a></p>
+<p id="n481" class="pln"><a href="#n481">481</a></p>
+<p id="n482" class="pln"><a href="#n482">482</a></p>
+<p id="n483" class="pln"><a href="#n483">483</a></p>
+<p id="n484" class="pln"><a href="#n484">484</a></p>
+<p id="n485" class="stm run hide_run"><a href="#n485">485</a></p>
+<p id="n486" class="pln"><a href="#n486">486</a></p>
+<p id="n487" class="stm run hide_run"><a href="#n487">487</a></p>
+<p id="n488" class="pln"><a href="#n488">488</a></p>
+<p id="n489" class="stm run hide_run"><a href="#n489">489</a></p>
+<p id="n490" class="pln"><a href="#n490">490</a></p>
+<p id="n491" class="stm run hide_run"><a href="#n491">491</a></p>
+<p id="n492" class="pln"><a href="#n492">492</a></p>
+<p id="n493" class="pln"><a href="#n493">493</a></p>
+<p id="n494" class="pln"><a href="#n494">494</a></p>
+<p id="n495" class="stm run hide_run"><a href="#n495">495</a></p>
+<p id="n496" class="stm run hide_run"><a href="#n496">496</a></p>
+<p id="n497" class="stm mis"><a href="#n497">497</a></p>
+<p id="n498" class="stm mis"><a href="#n498">498</a></p>
+<p id="n499" class="stm mis"><a href="#n499">499</a></p>
+<p id="n500" class="pln"><a href="#n500">500</a></p>
+<p id="n501" class="stm run hide_run"><a href="#n501">501</a></p>
+<p id="n502" class="pln"><a href="#n502">502</a></p>
+<p id="n503" class="stm run hide_run"><a href="#n503">503</a></p>
+<p id="n504" class="pln"><a href="#n504">504</a></p>
+<p id="n505" class="pln"><a href="#n505">505</a></p>
+<p id="n506" class="stm run hide_run"><a href="#n506">506</a></p>
+<p id="n507" class="pln"><a href="#n507">507</a></p>
+<p id="n508" class="stm run hide_run"><a href="#n508">508</a></p>
+<p id="n509" class="pln"><a href="#n509">509</a></p>
+<p id="n510" class="pln"><a href="#n510">510</a></p>
+<p id="n511" class="pln"><a href="#n511">511</a></p>
+<p id="n512" class="pln"><a href="#n512">512</a></p>
+<p id="n513" class="pln"><a href="#n513">513</a></p>
+<p id="n514" class="pln"><a href="#n514">514</a></p>
+<p id="n515" class="pln"><a href="#n515">515</a></p>
+<p id="n516" class="pln"><a href="#n516">516</a></p>
+<p id="n517" class="pln"><a href="#n517">517</a></p>
+<p id="n518" class="stm run hide_run"><a href="#n518">518</a></p>
+<p id="n519" class="stm run hide_run"><a href="#n519">519</a></p>
+<p id="n520" class="pln"><a href="#n520">520</a></p>
+<p id="n521" class="pln"><a href="#n521">521</a></p>
+<p id="n522" class="stm run hide_run"><a href="#n522">522</a></p>
+<p id="n523" class="pln"><a href="#n523">523</a></p>
+<p id="n524" class="pln"><a href="#n524">524</a></p>
+<p id="n525" class="pln"><a href="#n525">525</a></p>
+<p id="n526" class="stm run hide_run"><a href="#n526">526</a></p>
+<p id="n527" class="stm run hide_run"><a href="#n527">527</a></p>
+<p id="n528" class="stm run hide_run"><a href="#n528">528</a></p>
+<p id="n529" class="pln"><a href="#n529">529</a></p>
+<p id="n530" class="pln"><a href="#n530">530</a></p>
+<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
+<p id="n532" class="pln"><a href="#n532">532</a></p>
+<p id="n533" class="stm run hide_run"><a href="#n533">533</a></p>
+<p id="n534" class="pln"><a href="#n534">534</a></p>
+<p id="n535" class="pln"><a href="#n535">535</a></p>
+<p id="n536" class="pln"><a href="#n536">536</a></p>
+<p id="n537" class="pln"><a href="#n537">537</a></p>
+<p id="n538" class="pln"><a href="#n538">538</a></p>
+<p id="n539" class="pln"><a href="#n539">539</a></p>
+<p id="n540" class="pln"><a href="#n540">540</a></p>
+<p id="n541" class="pln"><a href="#n541">541</a></p>
+<p id="n542" class="pln"><a href="#n542">542</a></p>
+<p id="n543" class="pln"><a href="#n543">543</a></p>
+<p id="n544" class="stm run hide_run"><a href="#n544">544</a></p>
+<p id="n545" class="stm run hide_run"><a href="#n545">545</a></p>
+<p id="n546" class="pln"><a href="#n546">546</a></p>
+<p id="n547" class="stm run hide_run"><a href="#n547">547</a></p>
+<p id="n548" class="pln"><a href="#n548">548</a></p>
+<p id="n549" class="stm run hide_run"><a href="#n549">549</a></p>
+<p id="n550" class="pln"><a href="#n550">550</a></p>
+<p id="n551" class="stm run hide_run"><a href="#n551">551</a></p>
+<p id="n552" class="pln"><a href="#n552">552</a></p>
+<p id="n553" class="pln"><a href="#n553">553</a></p>
+<p id="n554" class="pln"><a href="#n554">554</a></p>
+<p id="n555" class="pln"><a href="#n555">555</a></p>
+<p id="n556" class="pln"><a href="#n556">556</a></p>
+<p id="n557" class="pln"><a href="#n557">557</a></p>
+<p id="n558" class="pln"><a href="#n558">558</a></p>
+<p id="n559" class="pln"><a href="#n559">559</a></p>
+<p id="n560" class="pln"><a href="#n560">560</a></p>
+<p id="n561" class="pln"><a href="#n561">561</a></p>
+<p id="n562" class="pln"><a href="#n562">562</a></p>
+<p id="n563" class="stm run hide_run"><a href="#n563">563</a></p>
+<p id="n564" class="stm run hide_run"><a href="#n564">564</a></p>
+<p id="n565" class="pln"><a href="#n565">565</a></p>
+<p id="n566" class="stm run hide_run"><a href="#n566">566</a></p>
+<p id="n567" class="pln"><a href="#n567">567</a></p>
+<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
+<p id="n569" class="pln"><a href="#n569">569</a></p>
+<p id="n570" class="pln"><a href="#n570">570</a></p>
+<p id="n571" class="stm run hide_run"><a href="#n571">571</a></p>
+<p id="n572" class="pln"><a href="#n572">572</a></p>
+<p id="n573" class="stm run hide_run"><a href="#n573">573</a></p>
+<p id="n574" class="pln"><a href="#n574">574</a></p>
+<p id="n575" class="pln"><a href="#n575">575</a></p>
+<p id="n576" class="pln"><a href="#n576">576</a></p>
+<p id="n577" class="pln"><a href="#n577">577</a></p>
+<p id="n578" class="pln"><a href="#n578">578</a></p>
+<p id="n579" class="pln"><a href="#n579">579</a></p>
+<p id="n580" class="pln"><a href="#n580">580</a></p>
+<p id="n581" class="pln"><a href="#n581">581</a></p>
+<p id="n582" class="pln"><a href="#n582">582</a></p>
+<p id="n583" class="stm mis"><a href="#n583">583</a></p>
+<p id="n584" class="stm mis"><a href="#n584">584</a></p>
+<p id="n585" class="stm mis"><a href="#n585">585</a></p>
+<p id="n586" class="stm mis"><a href="#n586">586</a></p>
+<p id="n587" class="pln"><a href="#n587">587</a></p>
+<p id="n588" class="stm mis"><a href="#n588">588</a></p>
+<p id="n589" class="pln"><a href="#n589">589</a></p>
+<p id="n590" class="pln"><a href="#n590">590</a></p>
+<p id="n591" class="stm mis"><a href="#n591">591</a></p>
+<p id="n592" class="stm mis"><a href="#n592">592</a></p>
+<p id="n593" class="pln"><a href="#n593">593</a></p>
+<p id="n594" class="pln"><a href="#n594">594</a></p>
+<p id="n595" class="stm mis"><a href="#n595">595</a></p>
+<p id="n596" class="stm mis"><a href="#n596">596</a></p>
+<p id="n597" class="stm mis"><a href="#n597">597</a></p>
+<p id="n598" class="pln"><a href="#n598">598</a></p>
+<p id="n599" class="pln"><a href="#n599">599</a></p>
+<p id="n600" class="pln"><a href="#n600">600</a></p>
+<p id="n601" class="pln"><a href="#n601">601</a></p>
+<p id="n602" class="stm mis"><a href="#n602">602</a></p>
+<p id="n603" class="stm mis"><a href="#n603">603</a></p>
+<p id="n604" class="stm mis"><a href="#n604">604</a></p>
+<p id="n605" class="pln"><a href="#n605">605</a></p>
+<p id="n606" class="pln"><a href="#n606">606</a></p>
+<p id="n607" class="stm mis"><a href="#n607">607</a></p>
+<p id="n608" class="pln"><a href="#n608">608</a></p>
+<p id="n609" class="stm run hide_run"><a href="#n609">609</a></p>
+<p id="n610" class="pln"><a href="#n610">610</a></p>
+<p id="n611" class="pln"><a href="#n611">611</a></p>
+<p id="n612" class="pln"><a href="#n612">612</a></p>
+<p id="n613" class="pln"><a href="#n613">613</a></p>
+<p id="n614" class="pln"><a href="#n614">614</a></p>
+<p id="n615" class="pln"><a href="#n615">615</a></p>
+<p id="n616" class="pln"><a href="#n616">616</a></p>
+<p id="n617" class="pln"><a href="#n617">617</a></p>
+<p id="n618" class="pln"><a href="#n618">618</a></p>
+<p id="n619" class="pln"><a href="#n619">619</a></p>
+<p id="n620" class="stm mis"><a href="#n620">620</a></p>
+<p id="n621" class="stm mis"><a href="#n621">621</a></p>
+<p id="n622" class="stm mis"><a href="#n622">622</a></p>
+<p id="n623" class="stm mis"><a href="#n623">623</a></p>
+<p id="n624" class="pln"><a href="#n624">624</a></p>
+<p id="n625" class="stm mis"><a href="#n625">625</a></p>
+<p id="n626" class="pln"><a href="#n626">626</a></p>
+<p id="n627" class="stm mis"><a href="#n627">627</a></p>
+<p id="n628" class="pln"><a href="#n628">628</a></p>
+<p id="n629" class="pln"><a href="#n629">629</a></p>
+<p id="n630" class="stm mis"><a href="#n630">630</a></p>
+<p id="n631" class="pln"><a href="#n631">631</a></p>
+<p id="n632" class="stm run hide_run"><a href="#n632">632</a></p>
+<p id="n633" class="pln"><a href="#n633">633</a></p>
+<p id="n634" class="pln"><a href="#n634">634</a></p>
+<p id="n635" class="pln"><a href="#n635">635</a></p>
+<p id="n636" class="pln"><a href="#n636">636</a></p>
+<p id="n637" class="pln"><a href="#n637">637</a></p>
+<p id="n638" class="pln"><a href="#n638">638</a></p>
+<p id="n639" class="pln"><a href="#n639">639</a></p>
+<p id="n640" class="pln"><a href="#n640">640</a></p>
+<p id="n641" class="pln"><a href="#n641">641</a></p>
+<p id="n642" class="pln"><a href="#n642">642</a></p>
+<p id="n643" class="pln"><a href="#n643">643</a></p>
+<p id="n644" class="stm mis"><a href="#n644">644</a></p>
+<p id="n645" class="stm mis"><a href="#n645">645</a></p>
+<p id="n646" class="pln"><a href="#n646">646</a></p>
+<p id="n647" class="stm mis"><a href="#n647">647</a></p>
+<p id="n648" class="pln"><a href="#n648">648</a></p>
+<p id="n649" class="pln"><a href="#n649">649</a></p>
+<p id="n650" class="stm mis"><a href="#n650">650</a></p>
+<p id="n651" class="pln"><a href="#n651">651</a></p>
+<p id="n652" class="pln"><a href="#n652">652</a></p>
+<p id="n653" class="stm run hide_run"><a href="#n653">653</a></p>
+<p id="n654" class="pln"><a href="#n654">654</a></p>
+<p id="n655" class="stm run hide_run"><a href="#n655">655</a></p>
+<p id="n656" class="pln"><a href="#n656">656</a></p>
+<p id="n657" class="pln"><a href="#n657">657</a></p>
+<p id="n658" class="pln"><a href="#n658">658</a></p>
+<p id="n659" class="pln"><a href="#n659">659</a></p>
+<p id="n660" class="pln"><a href="#n660">660</a></p>
+<p id="n661" class="pln"><a href="#n661">661</a></p>
+<p id="n662" class="pln"><a href="#n662">662</a></p>
+<p id="n663" class="pln"><a href="#n663">663</a></p>
+<p id="n664" class="pln"><a href="#n664">664</a></p>
+<p id="n665" class="stm run hide_run"><a href="#n665">665</a></p>
+<p id="n666" class="stm run hide_run"><a href="#n666">666</a></p>
+<p id="n667" class="stm run hide_run"><a href="#n667">667</a></p>
+<p id="n668" class="stm run hide_run"><a href="#n668">668</a></p>
+<p id="n669" class="stm run hide_run"><a href="#n669">669</a></p>
+<p id="n670" class="pln"><a href="#n670">670</a></p>
+<p id="n671" class="stm run hide_run"><a href="#n671">671</a></p>
+<p id="n672" class="pln"><a href="#n672">672</a></p>
+<p id="n673" class="stm run hide_run"><a href="#n673">673</a></p>
+<p id="n674" class="pln"><a href="#n674">674</a></p>
+<p id="n675" class="pln"><a href="#n675">675</a></p>
+<p id="n676" class="stm run hide_run"><a href="#n676">676</a></p>
+<p id="n677" class="stm run hide_run"><a href="#n677">677</a></p>
+<p id="n678" class="pln"><a href="#n678">678</a></p>
+<p id="n679" class="pln"><a href="#n679">679</a></p>
+<p id="n680" class="pln"><a href="#n680">680</a></p>
+<p id="n681" class="stm run hide_run"><a href="#n681">681</a></p>
+<p id="n682" class="stm run hide_run"><a href="#n682">682</a></p>
+<p id="n683" class="stm run hide_run"><a href="#n683">683</a></p>
+<p id="n684" class="pln"><a href="#n684">684</a></p>
+<p id="n685" class="pln"><a href="#n685">685</a></p>
+<p id="n686" class="stm run hide_run"><a href="#n686">686</a></p>
+<p id="n687" class="stm run hide_run"><a href="#n687">687</a></p>
+<p id="n688" class="stm run hide_run"><a href="#n688">688</a></p>
+<p id="n689" class="pln"><a href="#n689">689</a></p>
+<p id="n690" class="pln"><a href="#n690">690</a></p>
+<p id="n691" class="pln"><a href="#n691">691</a></p>
+<p id="n692" class="pln"><a href="#n692">692</a></p>
+<p id="n693" class="pln"><a href="#n693">693</a></p>
+<p id="n694" class="pln"><a href="#n694">694</a></p>
+<p id="n695" class="stm run hide_run"><a href="#n695">695</a></p>
+<p id="n696" class="stm run hide_run"><a href="#n696">696</a></p>
+<p id="n697" class="stm run hide_run"><a href="#n697">697</a></p>
+<p id="n698" class="pln"><a href="#n698">698</a></p>
+<p id="n699" class="pln"><a href="#n699">699</a></p>
+<p id="n700" class="stm run hide_run"><a href="#n700">700</a></p>
+<p id="n701" class="pln"><a href="#n701">701</a></p>
+<p id="n702" class="stm run hide_run"><a href="#n702">702</a></p>
+<p id="n703" class="pln"><a href="#n703">703</a></p>
+<p id="n704" class="pln"><a href="#n704">704</a></p>
+<p id="n705" class="pln"><a href="#n705">705</a></p>
+<p id="n706" class="pln"><a href="#n706">706</a></p>
+<p id="n707" class="pln"><a href="#n707">707</a></p>
+<p id="n708" class="pln"><a href="#n708">708</a></p>
+<p id="n709" class="pln"><a href="#n709">709</a></p>
+<p id="n710" class="pln"><a href="#n710">710</a></p>
+<p id="n711" class="pln"><a href="#n711">711</a></p>
+<p id="n712" class="pln"><a href="#n712">712</a></p>
+<p id="n713" class="stm run hide_run"><a href="#n713">713</a></p>
+<p id="n714" class="stm run hide_run"><a href="#n714">714</a></p>
+<p id="n715" class="stm run hide_run"><a href="#n715">715</a></p>
+<p id="n716" class="stm run hide_run"><a href="#n716">716</a></p>
+<p id="n717" class="stm run hide_run"><a href="#n717">717</a></p>
+<p id="n718" class="pln"><a href="#n718">718</a></p>
+<p id="n719" class="stm run hide_run"><a href="#n719">719</a></p>
+<p id="n720" class="pln"><a href="#n720">720</a></p>
+<p id="n721" class="pln"><a href="#n721">721</a></p>
+<p id="n722" class="stm run hide_run"><a href="#n722">722</a></p>
+<p id="n723" class="pln"><a href="#n723">723</a></p>
+<p id="n724" class="stm run hide_run"><a href="#n724">724</a></p>
+<p id="n725" class="stm run hide_run"><a href="#n725">725</a></p>
+<p id="n726" class="pln"><a href="#n726">726</a></p>
+<p id="n727" class="stm run hide_run"><a href="#n727">727</a></p>
+<p id="n728" class="stm run hide_run"><a href="#n728">728</a></p>
+<p id="n729" class="pln"><a href="#n729">729</a></p>
+<p id="n730" class="pln"><a href="#n730">730</a></p>
+<p id="n731" class="pln"><a href="#n731">731</a></p>
+<p id="n732" class="stm run hide_run"><a href="#n732">732</a></p>
+<p id="n733" class="pln"><a href="#n733">733</a></p>
+<p id="n734" class="stm run hide_run"><a href="#n734">734</a></p>
+<p id="n735" class="pln"><a href="#n735">735</a></p>
+<p id="n736" class="pln"><a href="#n736">736</a></p>
+<p id="n737" class="pln"><a href="#n737">737</a></p>
+<p id="n738" class="pln"><a href="#n738">738</a></p>
+<p id="n739" class="pln"><a href="#n739">739</a></p>
+<p id="n740" class="pln"><a href="#n740">740</a></p>
+<p id="n741" class="pln"><a href="#n741">741</a></p>
+<p id="n742" class="pln"><a href="#n742">742</a></p>
+<p id="n743" class="pln"><a href="#n743">743</a></p>
+<p id="n744" class="pln"><a href="#n744">744</a></p>
+<p id="n745" class="pln"><a href="#n745">745</a></p>
+<p id="n746" class="stm run hide_run"><a href="#n746">746</a></p>
+<p id="n747" class="stm run hide_run"><a href="#n747">747</a></p>
+<p id="n748" class="stm run hide_run"><a href="#n748">748</a></p>
+<p id="n749" class="stm run hide_run"><a href="#n749">749</a></p>
+<p id="n750" class="stm run hide_run"><a href="#n750">750</a></p>
+<p id="n751" class="pln"><a href="#n751">751</a></p>
+<p id="n752" class="stm run hide_run"><a href="#n752">752</a></p>
+<p id="n753" class="pln"><a href="#n753">753</a></p>
+<p id="n754" class="pln"><a href="#n754">754</a></p>
+<p id="n755" class="stm run hide_run"><a href="#n755">755</a></p>
+<p id="n756" class="pln"><a href="#n756">756</a></p>
+<p id="n757" class="stm run hide_run"><a href="#n757">757</a></p>
+<p id="n758" class="stm run hide_run"><a href="#n758">758</a></p>
+<p id="n759" class="pln"><a href="#n759">759</a></p>
+<p id="n760" class="stm run hide_run"><a href="#n760">760</a></p>
+<p id="n761" class="stm run hide_run"><a href="#n761">761</a></p>
+<p id="n762" class="pln"><a href="#n762">762</a></p>
+<p id="n763" class="pln"><a href="#n763">763</a></p>
+<p id="n764" class="pln"><a href="#n764">764</a></p>
+<p id="n765" class="stm run hide_run"><a href="#n765">765</a></p>
+<p id="n766" class="pln"><a href="#n766">766</a></p>
+<p id="n767" class="pln"><a href="#n767">767</a></p>
+<p id="n768" class="stm run hide_run"><a href="#n768">768</a></p>
+<p id="n769" class="pln"><a href="#n769">769</a></p>
+<p id="n770" class="pln"><a href="#n770">770</a></p>
+<p id="n771" class="pln"><a href="#n771">771</a></p>
+<p id="n772" class="pln"><a href="#n772">772</a></p>
+<p id="n773" class="pln"><a href="#n773">773</a></p>
+<p id="n774" class="pln"><a href="#n774">774</a></p>
+<p id="n775" class="pln"><a href="#n775">775</a></p>
+<p id="n776" class="pln"><a href="#n776">776</a></p>
+<p id="n777" class="stm run hide_run"><a href="#n777">777</a></p>
+<p id="n778" class="stm mis"><a href="#n778">778</a></p>
+<p id="n779" class="stm run hide_run"><a href="#n779">779</a></p>
+<p id="n780" class="stm mis"><a href="#n780">780</a></p>
+<p id="n781" class="stm run hide_run"><a href="#n781">781</a></p>
+<p id="n782" class="stm run hide_run"><a href="#n782">782</a></p>
+<p id="n783" class="pln"><a href="#n783">783</a></p>
+<p id="n784" class="stm mis"><a href="#n784">784</a></p>
+<p id="n785" class="pln"><a href="#n785">785</a></p>
+<p id="n786" class="pln"><a href="#n786">786</a></p>
+<p id="n787" class="stm run hide_run"><a href="#n787">787</a></p>
+<p id="n788" class="stm run hide_run"><a href="#n788">788</a></p>
+<p id="n789" class="stm mis"><a href="#n789">789</a></p>
+<p id="n790" class="stm mis"><a href="#n790">790</a></p>
+<p id="n791" class="pln"><a href="#n791">791</a></p>
+<p id="n792" class="stm mis"><a href="#n792">792</a></p>
+<p id="n793" class="pln"><a href="#n793">793</a></p>
+<p id="n794" class="pln"><a href="#n794">794</a></p>
+<p id="n795" class="stm run hide_run"><a href="#n795">795</a></p>
+<p id="n796" class="pln"><a href="#n796">796</a></p>
+<p id="n797" class="pln"><a href="#n797">797</a></p>
+<p id="n798" class="pln"><a href="#n798">798</a></p>
+<p id="n799" class="pln"><a href="#n799">799</a></p>
+<p id="n800" class="pln"><a href="#n800">800</a></p>
+<p id="n801" class="pln"><a href="#n801">801</a></p>
+<p id="n802" class="pln"><a href="#n802">802</a></p>
+<p id="n803" class="pln"><a href="#n803">803</a></p>
+<p id="n804" class="pln"><a href="#n804">804</a></p>
+<p id="n805" class="pln"><a href="#n805">805</a></p>
+<p id="n806" class="pln"><a href="#n806">806</a></p>
+<p id="n807" class="pln"><a href="#n807">807</a></p>
+<p id="n808" class="stm run hide_run"><a href="#n808">808</a></p>
+<p id="n809" class="pln"><a href="#n809">809</a></p>
+<p id="n810" class="pln"><a href="#n810">810</a></p>
+<p id="n811" class="pln"><a href="#n811">811</a></p>
+<p id="n812" class="pln"><a href="#n812">812</a></p>
+<p id="n813" class="pln"><a href="#n813">813</a></p>
+<p id="n814" class="pln"><a href="#n814">814</a></p>
+<p id="n815" class="pln"><a href="#n815">815</a></p>
+<p id="n816" class="pln"><a href="#n816">816</a></p>
+<p id="n817" class="pln"><a href="#n817">817</a></p>
+<p id="n818" class="stm run hide_run"><a href="#n818">818</a></p>
+<p id="n819" class="pln"><a href="#n819">819</a></p>
+<p id="n820" class="pln"><a href="#n820">820</a></p>
+<p id="n821" class="stm run hide_run"><a href="#n821">821</a></p>
+<p id="n822" class="stm run hide_run"><a href="#n822">822</a></p>
+<p id="n823" class="pln"><a href="#n823">823</a></p>
+<p id="n824" class="pln"><a href="#n824">824</a></p>
+<p id="n825" class="pln"><a href="#n825">825</a></p>
+<p id="n826" class="stm run hide_run"><a href="#n826">826</a></p>
+<p id="n827" class="pln"><a href="#n827">827</a></p>
+<p id="n828" class="stm run hide_run"><a href="#n828">828</a></p>
+<p id="n829" class="pln"><a href="#n829">829</a></p>
+<p id="n830" class="pln"><a href="#n830">830</a></p>
+<p id="n831" class="pln"><a href="#n831">831</a></p>
+<p id="n832" class="pln"><a href="#n832">832</a></p>
+<p id="n833" class="stm run hide_run"><a href="#n833">833</a></p>
+<p id="n834" class="pln"><a href="#n834">834</a></p>
+<p id="n835" class="pln"><a href="#n835">835</a></p>
+<p id="n836" class="pln"><a href="#n836">836</a></p>
+<p id="n837" class="pln"><a href="#n837">837</a></p>
+<p id="n838" class="stm run hide_run"><a href="#n838">838</a></p>
+<p id="n839" class="pln"><a href="#n839">839</a></p>
+<p id="n840" class="stm run hide_run"><a href="#n840">840</a></p>
+<p id="n841" class="pln"><a href="#n841">841</a></p>
+<p id="n842" class="pln"><a href="#n842">842</a></p>
+<p id="n843" class="stm run hide_run"><a href="#n843">843</a></p>
+<p id="n844" class="pln"><a href="#n844">844</a></p>
+<p id="n845" class="pln"><a href="#n845">845</a></p>
+<p id="n846" class="pln"><a href="#n846">846</a></p>
+<p id="n847" class="pln"><a href="#n847">847</a></p>
+<p id="n848" class="pln"><a href="#n848">848</a></p>
+<p id="n849" class="pln"><a href="#n849">849</a></p>
+<p id="n850" class="pln"><a href="#n850">850</a></p>
+<p id="n851" class="pln"><a href="#n851">851</a></p>
+<p id="n852" class="pln"><a href="#n852">852</a></p>
+<p id="n853" class="pln"><a href="#n853">853</a></p>
+<p id="n854" class="pln"><a href="#n854">854</a></p>
+<p id="n855" class="pln"><a href="#n855">855</a></p>
+<p id="n856" class="stm mis"><a href="#n856">856</a></p>
+<p id="n857" class="pln"><a href="#n857">857</a></p>
+<p id="n858" class="pln"><a href="#n858">858</a></p>
+<p id="n859" class="pln"><a href="#n859">859</a></p>
+<p id="n860" class="stm mis"><a href="#n860">860</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">as</span> <span class="nam">hydraulics</span><span class="strut">&nbsp;</span></p>
+<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="key">class</span> <span class="nam">Transporter</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t10" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t13" class="pln"><span class="str">        :param simulation_clock:</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="str">        :param particles:</span><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="str">        :param hydraulic_model:</span><span class="strut">&nbsp;</span></p>
+<p id="t16" class="pln"><span class="str">        :param random_numbers:</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="str">        :type: fluegg.random.RandomNumbers</span><span class="strut">&nbsp;</span></p>
+<p id="t18" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm run hide_run">        <span class="key">if</span> <span class="nam">random_numbers</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random_array</span><span class="strut">&nbsp;</span></p>
+<p id="t27" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t28" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_random_num</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t29" class="pln">        <span class="str">"""Returns an array of random numbers pulled from</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln"><span class="str">        a normal distribution (mean=0, std=1)</span><span class="strut">&nbsp;</span></p>
+<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="str">        :param size: Number of random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="str">        :type: int</span><span class="strut">&nbsp;</span></p>
+<p id="t34" class="pln"><span class="str">        :return: random numbers</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t38" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">1</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t39" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t40" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t41" class="pln">    <span class="key">def</span> <span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t42" class="pln">        <span class="str">"""Returns the horizontal turbulent diffusion</span><span class="strut">&nbsp;</span></p>
+<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t44" class="pln"><span class="str">        :param depth: depth of water (m)</span><span class="strut">&nbsp;</span></p>
+<p id="t45" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t46" class="pln"><span class="str">        :param shear_velocity: shear velocity of water at depth (m/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t47" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t48" class="pln"><span class="str">        :return: horizontal turbulent diffusion at input depth (m**2/s)</span><span class="strut">&nbsp;</span></p>
+<p id="t49" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t50" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t52" class="stm run hide_run">        <span class="key">return</span> <span class="num">0.6</span> <span class="op">*</span> <span class="nam">depth</span> <span class="op">*</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t54" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t55" class="pln">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t56" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
+<p id="t57" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t58" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t59" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t60" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t62" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t64" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t66" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_model</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t67" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t68" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t69" class="pln"><span class="str">        :param hydraulic_model:</span><span class="strut">&nbsp;</span></p>
+<p id="t70" class="pln"><span class="str">        :type hydraulic_model: fluegg.hydraulics.SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
+<p id="t71" class="pln"><span class="str">        :return: None</span><span class="strut">&nbsp;</span></p>
+<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t73" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t75" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_model</span><span class="strut">&nbsp;</span></p>
+<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t77" class="stm run hide_run">    <span class="key">def</span> <span class="nam">max_time_step</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t78" class="pln">        <span class="str">"""Finds the maximum time step required for an accurate simulation.</span><span class="strut">&nbsp;</span></p>
+<p id="t79" class="pln"><span class="str">        Default is at infinity (i.e. no maximum time step)</span><span class="strut">&nbsp;</span></p>
+<p id="t80" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t81" class="pln"><span class="str">        :return: maximum time step criterion given the current time step</span><span class="strut">&nbsp;</span></p>
+<p id="t82" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t84" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t85" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"hydraulic_model attribute is set to None"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t87" class="stm run hide_run">        <span class="key">return</span> <span class="nam">float</span><span class="op">(</span><span class="str">"inf"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t89" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t90" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t91" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t92" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
+<p id="t93" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
+<p id="t94" class="pln"><span class="str">        hydraulic_results : fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t96" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t97" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t98" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t99" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"hydraulic_model attribute is set to None"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t101" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t102" class="stm run hide_run"><span class="key">class</span> <span class="nam">LateralTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t103" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t104" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">next_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t105" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t106" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t107" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
+<p id="t108" class="pln"><span class="str">        :param next_position:</span><span class="strut">&nbsp;</span></p>
+<p id="t109" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t110" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t112" class="pln">        <span class="com"># Check lateral position</span><span class="strut">&nbsp;</span></p>
+<p id="t113" class="stm run hide_run">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">width</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t115" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t116" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t117" class="stm run hide_run">        <span class="nam">boundary_length</span> <span class="op">=</span> <span class="nam">width</span> <span class="op">-</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t119" class="stm run hide_run">        <span class="nam">shifted_next_lateral_position</span> <span class="op">=</span> <span class="nam">next_position</span> <span class="op">-</span> <span class="nam">diameter</span> <span class="op">/</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t120" class="stm run hide_run">        <span class="nam">shifted_boundary_location</span> <span class="op">=</span> <span class="nam">boundary_length</span><span class="strut">&nbsp;</span></p>
+<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t122" class="stm run hide_run">        <span class="nam">right_of_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_lateral_position</span> <span class="op">&lt;</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t123" class="stm run hide_run">        <span class="nam">left_of_boundary</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t124" class="pln">            <span class="nam">shifted_next_lateral_position</span> <span class="op">></span> <span class="nam">shifted_boundary_location</span><span class="strut">&nbsp;</span></p>
+<p id="t125" class="stm run hide_run">        <span class="nam">out_of_bounds</span> <span class="op">=</span> <span class="nam">right_of_boundary</span> <span class="op">|</span> <span class="nam">left_of_boundary</span><span class="strut">&nbsp;</span></p>
+<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t127" class="stm run hide_run">        <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">out_of_bounds</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t129" class="stm run hide_run">            <span class="nam">reflections</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">floor_divide</span><span class="op">(</span><span class="nam">shifted_next_lateral_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t130" class="pln">                                          <span class="nam">shifted_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t131" class="stm run hide_run">            <span class="nam">remainder</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">shifted_next_lateral_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t132" class="pln">                               <span class="nam">shifted_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t134" class="stm run hide_run">            <span class="nam">reflection_mod_2</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">reflections</span><span class="op">,</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t135" class="stm run hide_run">            <span class="nam">odd_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">1</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
+<p id="t136" class="stm run hide_run">            <span class="nam">even_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">0</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
+<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t138" class="stm run hide_run">            <span class="nam">shifted_next_lateral_position</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t139" class="pln">                <span class="nam">remainder</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t140" class="stm run hide_run">            <span class="nam">shifted_next_lateral_position</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t141" class="pln">                <span class="nam">boundary_length</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">-</span> <span class="nam">remainder</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t143" class="stm run hide_run">            <span class="nam">next_position</span> <span class="op">=</span> <span class="nam">shifted_next_lateral_position</span> <span class="op">+</span> <span class="nam">diameter</span> <span class="op">/</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t145" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_position</span><span class="strut">&nbsp;</span></p>
+<p id="t146" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t147" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t148" class="pln">        <span class="str">"""Returns incremented lateral particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t149" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t150" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t151" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t152" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t153" class="pln"><span class="str">        :return: next lateral particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t154" class="pln"><span class="str">        :rtype: numpy.ndarray(num_particles)</span><span class="strut">&nbsp;</span></p>
+<p id="t155" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t156" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
+<p id="t157" class="stm run hide_run">        <span class="nam">lateral_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t158" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">lateral_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t159" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t160" class="stm run hide_run">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t161" class="stm run hide_run">        <span class="nam">lateral_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">lateral_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t162" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t163" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t164" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t165" class="stm run hide_run">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t166" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t167" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t168" class="pln">        <span class="com"># Calculate incremented lateral positions</span><span class="strut">&nbsp;</span></p>
+<p id="t169" class="stm run hide_run">        <span class="nam">next_lateral_position</span> <span class="op">=</span> <span class="nam">lateral_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t170" class="pln">            <span class="op">+</span> <span class="nam">lateral_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t171" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t173" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_lateral_position</span><span class="strut">&nbsp;</span></p>
+<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t175" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t176" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
+<p id="t177" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t178" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t179" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t180" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t181" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t182" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t184" class="stm run hide_run">        <span class="nam">next_lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t185" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t187" class="stm run hide_run">        <span class="nam">next_lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t188" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t189" class="pln">                                          <span class="nam">next_lateral_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t191" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t192" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t193" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_lateral_positions</span><span class="strut">&nbsp;</span></p>
+<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t195" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t196" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t197" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t198" class="stm run hide_run"><span class="key">class</span> <span class="nam">LongitudinalTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t200" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t201" class="pln">        <span class="str">"""Returns incremented longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t202" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t203" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t204" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t205" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t206" class="pln"><span class="str">        :return: next longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t207" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t208" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t210" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
+<p id="t211" class="stm run hide_run">        <span class="nam">longitudinal_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t212" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">longitudinal_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t213" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t214" class="stm run hide_run">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t215" class="stm run hide_run">        <span class="nam">longitudinal_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">streamwise_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t216" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t217" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t218" class="stm run hide_run">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t219" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t221" class="pln">        <span class="com"># Calculate incremented longitudinal positions</span><span class="strut">&nbsp;</span></p>
+<p id="t222" class="stm run hide_run">        <span class="nam">next_longitudinal_position</span> <span class="op">=</span> <span class="nam">longitudinal_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t223" class="pln">            <span class="op">+</span> <span class="nam">longitudinal_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t224" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t226" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_longitudinal_position</span><span class="strut">&nbsp;</span></p>
+<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t228" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t229" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
+<p id="t230" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t231" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t232" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t233" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t235" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t236" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t237" class="stm run hide_run">        <span class="nam">next_longitudinal_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t238" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t239" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t240" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t242" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_longitudinal_positions</span><span class="strut">&nbsp;</span></p>
+<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t244" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t245" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t247" class="stm run hide_run"><span class="key">class</span> <span class="nam">ReverseLongitudinalTransporter</span><span class="op">(</span><span class="nam">LongitudinalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t249" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_next_longitudinal_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t250" class="pln">        <span class="str">"""Returns incremented longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t251" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t252" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t253" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t254" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t255" class="pln"><span class="str">        :return: next longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t256" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t257" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t259" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
+<p id="t260" class="stm mis">        <span class="nam">longitudinal_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">get_position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t261" class="stm mis">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">longitudinal_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t262" class="stm mis">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t263" class="stm mis">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">get_time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t264" class="stm mis">        <span class="nam">longitudinal_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">streamwise_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t265" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t266" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t267" class="stm mis">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t268" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t269" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t270" class="pln">        <span class="com"># Reverse the advection direction</span><span class="strut">&nbsp;</span></p>
+<p id="t271" class="stm mis">        <span class="nam">reversal</span> <span class="op">=</span> <span class="op">-</span><span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t273" class="pln">        <span class="com"># Calculate incremented longitudinal positions</span><span class="strut">&nbsp;</span></p>
+<p id="t274" class="stm mis">        <span class="nam">next_longitudinal_position</span> <span class="op">=</span> <span class="nam">longitudinal_position</span> <span class="op">+</span> <span class="nam">reversal</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t275" class="pln">            <span class="nam">longitudinal_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t276" class="pln">            <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t277" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t278" class="stm mis">        <span class="key">return</span> <span class="nam">next_longitudinal_position</span><span class="strut">&nbsp;</span></p>
+<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t280" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t281" class="stm run hide_run"><span class="key">class</span> <span class="nam">VerticalTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t282" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t283" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t284" class="pln">                                  <span class="nam">next_vertical_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t285" class="pln">        <span class="str">"""Checks whether positions are within the hydraulic boundary.</span><span class="strut">&nbsp;</span></p>
+<p id="t286" class="pln"><span class="str">        If not, returns the positions reflected on the boundary</span><span class="strut">&nbsp;</span></p>
+<p id="t287" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t288" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t289" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t290" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t291" class="pln"><span class="str">        :param next_vertical_position: incremented vertical positions of</span><span class="strut">&nbsp;</span></p>
+<p id="t292" class="pln"><span class="str">            particles</span><span class="strut">&nbsp;</span></p>
+<p id="t293" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t294" class="pln"><span class="str">        :return: boundary-checked incremented position of a particle</span><span class="strut">&nbsp;</span></p>
+<p id="t295" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t296" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t297" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t298" class="pln">        <span class="com"># Check vertical position</span><span class="strut">&nbsp;</span></p>
+<p id="t299" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t300" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t301" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t302" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t303" class="stm run hide_run">        <span class="nam">boundary_length</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">-</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
+<p id="t304" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t305" class="stm run hide_run">        <span class="nam">shifted_next_vertical_position</span> <span class="op">=</span> <span class="nam">next_vertical_position</span> <span class="op">+</span> <span class="nam">diameter</span><span class="op">/</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t306" class="stm run hide_run">        <span class="nam">shifted_bottom_boundary_location</span> <span class="op">=</span> <span class="op">-</span><span class="nam">boundary_length</span><span class="strut">&nbsp;</span></p>
+<p id="t307" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t308" class="stm run hide_run">        <span class="nam">above_top_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_vertical_position</span> <span class="op">></span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
+<p id="t309" class="stm run hide_run">        <span class="nam">below_bottom_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_vertical_position</span> <span class="op">&lt;</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t310" class="pln">            <span class="nam">shifted_bottom_boundary_location</span><span class="strut">&nbsp;</span></p>
+<p id="t311" class="stm run hide_run">        <span class="nam">out_of_bounds</span> <span class="op">=</span> <span class="nam">above_top_boundary</span> <span class="op">|</span> <span class="nam">below_bottom_boundary</span><span class="strut">&nbsp;</span></p>
+<p id="t312" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t313" class="stm run hide_run">        <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">out_of_bounds</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t314" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t315" class="stm run hide_run">            <span class="nam">reflections</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">floor_divide</span><span class="op">(</span><span class="nam">shifted_next_vertical_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t316" class="pln">                                          <span class="nam">shifted_bottom_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t317" class="stm run hide_run">            <span class="nam">remainder</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">shifted_next_vertical_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t318" class="pln">                               <span class="nam">shifted_bottom_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t320" class="stm run hide_run">            <span class="nam">reflection_mod_2</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">reflections</span><span class="op">,</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t321" class="stm run hide_run">            <span class="nam">odd_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">1</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
+<p id="t322" class="stm run hide_run">            <span class="nam">even_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">0</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
+<p id="t323" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t324" class="stm run hide_run">            <span class="nam">shifted_next_vertical_position</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t325" class="pln">                <span class="nam">remainder</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t326" class="stm run hide_run">            <span class="nam">shifted_next_vertical_position</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t327" class="pln">                <span class="op">-</span><span class="nam">boundary_length</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">-</span> <span class="nam">remainder</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t328" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t329" class="stm run hide_run">            <span class="nam">next_vertical_position</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t330" class="pln">                <span class="nam">shifted_next_vertical_position</span> <span class="op">-</span> <span class="nam">diameter</span><span class="op">/</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
+<p id="t331" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t332" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_vertical_position</span><span class="strut">&nbsp;</span></p>
+<p id="t333" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t334" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t335" class="pln">    <span class="key">def</span> <span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t336" class="pln">        <span class="str">"""Returns the factor beta used in calculation of the vertical</span><span class="strut">&nbsp;</span></p>
+<p id="t337" class="pln"><span class="str">        eddy diffusivity</span><span class="strut">&nbsp;</span></p>
+<p id="t338" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t339" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t340" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t341" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t342" class="pln"><span class="str">        :param fall_velocity:</span><span class="strut">&nbsp;</span></p>
+<p id="t343" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t344" class="pln"><span class="str">        :return: beta factor for calculating eddy diffusivity</span><span class="strut">&nbsp;</span></p>
+<p id="t345" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t346" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t347" class="pln">        <span class="com"># Calculate beta coefficient</span><span class="strut">&nbsp;</span></p>
+<p id="t348" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t349" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="num">1</span> <span class="op">+</span> <span class="num">2</span> <span class="op">*</span> <span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="op">(</span><span class="nam">fall_velocity</span> <span class="op">/</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t351" class="pln">        <span class="com"># set the values out of the function range to 3</span><span class="strut">&nbsp;</span></p>
+<p id="t352" class="stm run hide_run">        <span class="nam">out_of_range</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">fall_velocity</span><span class="op">)</span><span class="op">/</span><span class="nam">shear_velocity</span> <span class="op">></span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
+<p id="t353" class="stm run hide_run">        <span class="nam">beta</span><span class="op">[</span><span class="nam">out_of_range</span><span class="op">]</span> <span class="op">=</span> <span class="num">3</span><span class="strut">&nbsp;</span></p>
+<p id="t354" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t355" class="stm run hide_run">        <span class="key">return</span> <span class="nam">beta</span><span class="strut">&nbsp;</span></p>
+<p id="t356" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t357" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_diffusivity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t358" class="pln">        <span class="str">"""Returns the eddy diffusivity second derivative at the positions in</span><span class="strut">&nbsp;</span></p>
+<p id="t359" class="pln"><span class="str">        hydraulic_results</span><span class="strut">&nbsp;</span></p>
+<p id="t360" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t361" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t362" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t363" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t364" class="pln"><span class="str">        :return: eddy diffusivity second derivative</span><span class="strut">&nbsp;</span></p>
+<p id="t365" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t366" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t367" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t368" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t369" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t370" class="stm run hide_run">        <span class="nam">second_derivative</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t371" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t373" class="stm run hide_run">        <span class="key">return</span> <span class="nam">second_derivative</span><span class="strut">&nbsp;</span></p>
+<p id="t374" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t375" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t376" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t377" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t378" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t379" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
+<p id="t380" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t381" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t382" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t384" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t385" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t386" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t388" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
+<p id="t389" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t390" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t391" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t393" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
+<p id="t394" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t395" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t396" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t397" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
+<p id="t398" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t399" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t400" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
+<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t402" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t403" class="pln">        <span class="str">"""Returns incremented vertical particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t405" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t406" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t407" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t408" class="pln"><span class="str">        :return: next vertical particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t409" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
+<p id="t410" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t411" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t413" class="pln">        <span class="com"># Initialize necessary variables for equation</span><span class="strut">&nbsp;</span></p>
+<p id="t414" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t415" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t416" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t417" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t418" class="stm run hide_run">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t419" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t420" class="stm run hide_run">        <span class="nam">max_time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">max_time_step</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t421" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t422" class="stm run hide_run">        <span class="key">if</span> <span class="op">(</span><span class="nam">max_time_step</span> <span class="op">&lt;</span> <span class="nam">time_step_size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t423" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Time step size is greater than maximum time "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t424" class="pln">                             <span class="str">"step of {}"</span><span class="op">.</span><span class="nam">format</span><span class="op">(</span><span class="nam">max_time_step</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t425" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t426" class="pln">        <span class="com"># Calculate fall velocity</span><span class="strut">&nbsp;</span></p>
+<p id="t427" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t428" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t429" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t430" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t431" class="stm run hide_run">        <span class="nam">vertical_eddy_diffusivity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t432" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t433" class="stm run hide_run">        <span class="nam">vertical_eddy_diffusivity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t434" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t435" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t436" class="stm run hide_run">        <span class="nam">vertical_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">vertical_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t437" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t438" class="pln">        <span class="com"># Calculate the next step's vertical position</span><span class="strut">&nbsp;</span></p>
+<p id="t439" class="stm run hide_run">        <span class="nam">next_vertical_position</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t440" class="pln">            <span class="op">+</span> <span class="nam">vertical_velocity</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t441" class="pln">            <span class="op">+</span> <span class="nam">fall_velocity</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t442" class="pln">            <span class="op">+</span> <span class="nam">vertical_eddy_diffusivity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t443" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">vertical_eddy_diffusivity</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
+<p id="t444" class="pln">                                   <span class="nam">time_step_size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t445" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t446" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_vertical_position</span><span class="strut">&nbsp;</span></p>
+<p id="t447" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t448" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t449" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
+<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t451" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t452" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t453" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t454" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t455" class="pln"><span class="str">        Raises</span><span class="strut">&nbsp;</span></p>
+<p id="t456" class="pln"><span class="str">        ------</span><span class="strut">&nbsp;</span></p>
+<p id="t457" class="pln"><span class="str">        ValueError</span><span class="strut">&nbsp;</span></p>
+<p id="t458" class="pln"><span class="str">            If the simulation clock time step is greater than the maximum time</span><span class="strut">&nbsp;</span></p>
+<p id="t459" class="pln"><span class="str">            step defined by self.max_time_step()</span><span class="strut">&nbsp;</span></p>
+<p id="t460" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t461" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t462" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t463" class="stm run hide_run">        <span class="nam">next_vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t464" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t465" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t466" class="stm run hide_run">        <span class="nam">next_vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t467" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t468" class="pln">                                           <span class="nam">next_vertical_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t469" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t470" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t471" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t472" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_vertical_positions</span><span class="strut">&nbsp;</span></p>
+<p id="t473" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t474" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t475" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t476" class="stm run hide_run">    <span class="key">def</span> <span class="nam">max_time_step</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t477" class="pln">        <span class="str">"""Finds the maximum time step required for an accurate simulation.</span><span class="strut">&nbsp;</span></p>
+<p id="t478" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t479" class="pln"><span class="str">        This is based on the the time step being &lt;= 1/abs(vertical eddy</span><span class="strut">&nbsp;</span></p>
+<p id="t480" class="pln"><span class="str">        diffusivity second derivative)</span><span class="strut">&nbsp;</span></p>
+<p id="t481" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t482" class="pln"><span class="str">        :return: maximum time step criterion given the current time step</span><span class="strut">&nbsp;</span></p>
+<p id="t483" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t484" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t485" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">max_time_step</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t486" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t487" class="stm run hide_run">        <span class="nam">particle_positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t488" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t489" class="stm run hide_run">        <span class="nam">hydraulic_results</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t490" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span><span class="op">.</span><span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">particle_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t491" class="stm run hide_run">        <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_diffusivity_second_derivative</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t492" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t493" class="pln">        <span class="com"># Minimum inverse vertical eddy diffusivity second derivative is</span><span class="strut">&nbsp;</span></p>
+<p id="t494" class="pln">        <span class="com"># maximum time step</span><span class="strut">&nbsp;</span></p>
+<p id="t495" class="stm run hide_run">        <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">criteria</span><span class="op">[</span><span class="nam">criteria</span> <span class="op">></span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t496" class="stm run hide_run">        <span class="key">if</span> <span class="nam">len</span><span class="op">(</span><span class="nam">criteria</span> <span class="op">></span> <span class="num">0</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t497" class="stm mis">            <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">power</span><span class="op">(</span><span class="nam">criteria</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t498" class="stm mis">            <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">absolute</span><span class="op">(</span><span class="nam">criteria</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t499" class="stm mis">            <span class="nam">criterion</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">amin</span><span class="op">(</span><span class="nam">criteria</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t500" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t501" class="stm run hide_run">            <span class="nam">criterion</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">inf</span><span class="strut">&nbsp;</span></p>
+<p id="t502" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t503" class="stm run hide_run">        <span class="key">return</span> <span class="nam">criterion</span><span class="strut">&nbsp;</span></p>
+<p id="t504" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t505" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t506" class="stm run hide_run"><span class="key">class</span> <span class="nam">ConstantVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t507" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t508" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t509" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t511" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t512" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t513" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t514" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t515" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t516" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t517" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t518" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t519" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t520" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t521" class="pln">        <span class="com"># constant portion of profile</span><span class="strut">&nbsp;</span></p>
+<p id="t522" class="stm run hide_run">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="num">1</span><span class="op">/</span><span class="num">15</span> <span class="op">*</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t523" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t524" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
+<p id="t525" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t526" class="stm run hide_run">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t527" class="stm run hide_run">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t528" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t529" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t530" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t531" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t532" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t533" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t534" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t535" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t536" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t537" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t538" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t539" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t540" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t541" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t542" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t543" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t544" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t545" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t546" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
+<p id="t547" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t548" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t549" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
+<p id="t550" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t551" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t552" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
+<p id="t553" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
+<p id="t554" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t555" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t556" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t557" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t558" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
+<p id="t559" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t560" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t561" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t562" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t563" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t564" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t565" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
+<p id="t566" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t567" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t568" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
+<p id="t569" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t570" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t571" class="stm run hide_run"><span class="key">class</span> <span class="nam">ParabolicVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t572" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t573" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t574" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t575" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t576" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t577" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t578" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t579" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t580" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t581" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t582" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t583" class="stm mis">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t584" class="stm mis">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t585" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t586" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t587" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t588" class="stm mis">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">+</span> <span class="nam">vertical_position</span><span class="strut">&nbsp;</span></p>
+<p id="t589" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t590" class="pln">        <span class="com"># parabolic portion of profile</span><span class="strut">&nbsp;</span></p>
+<p id="t591" class="stm mis">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t592" class="stm mis">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t593" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t594" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t595" class="stm mis">        <span class="nam">offset_distance</span> <span class="op">=</span> <span class="num">0.5</span> <span class="op">*</span> <span class="nam">eddy_viscosity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
+<p id="t596" class="stm mis">        <span class="nam">distance_above_bed_offset</span> <span class="op">=</span> <span class="nam">distance_above_bed</span> <span class="op">+</span> <span class="nam">offset_distance</span><span class="strut">&nbsp;</span></p>
+<p id="t597" class="stm mis">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t598" class="pln">            <span class="nam">distance_above_bed_offset</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">distance_above_bed_offset</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t599" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t600" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
+<p id="t601" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t602" class="stm mis">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t603" class="stm mis">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t604" class="stm mis">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t605" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t606" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t607" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t608" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t609" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t610" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t611" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t612" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t613" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t614" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t615" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t616" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t617" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t618" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t619" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t620" class="stm mis">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t621" class="stm mis">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t622" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t623" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t624" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t625" class="stm mis">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t626" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t627" class="stm mis">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t628" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="num">2</span><span class="op">*</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t629" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t630" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
+<p id="t631" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t632" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t633" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
+<p id="t634" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
+<p id="t635" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t636" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t637" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t638" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t639" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
+<p id="t640" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t641" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t642" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t643" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t644" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t645" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t646" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t647" class="stm mis">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="op">-</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t648" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="num">2</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t649" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t650" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
+<p id="t651" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t652" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t653" class="stm run hide_run"><span class="key">class</span> <span class="nam">ParabolicConstantVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t654" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t655" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t656" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t657" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t658" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t659" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t660" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t661" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t662" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t663" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t664" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t665" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t666" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t667" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t668" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t669" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t670" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t671" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">+</span> <span class="nam">vertical_position</span><span class="strut">&nbsp;</span></p>
+<p id="t672" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t673" class="stm run hide_run">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t674" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t675" class="pln">        <span class="com"># constant portion of profile</span><span class="strut">&nbsp;</span></p>
+<p id="t676" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t677" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.25</span> <span class="op">*</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t678" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">*</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t679" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t680" class="pln">        <span class="com"># parabolic portion of profile</span><span class="strut">&nbsp;</span></p>
+<p id="t681" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t682" class="stm run hide_run">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t683" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t684" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t685" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t686" class="stm run hide_run">        <span class="nam">offset_distance</span> <span class="op">=</span> <span class="num">0.5</span> <span class="op">*</span> <span class="nam">eddy_viscosity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
+<p id="t687" class="stm run hide_run">        <span class="nam">distance_above_bed_offset</span> <span class="op">=</span> <span class="nam">distance_above_bed</span> <span class="op">+</span> <span class="nam">offset_distance</span><span class="strut">&nbsp;</span></p>
+<p id="t688" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t689" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t690" class="pln">            <span class="nam">distance_above_bed_offset</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t691" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">distance_above_bed_offset</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t692" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t693" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
+<p id="t694" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t695" class="stm run hide_run">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t696" class="stm run hide_run">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t697" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t698" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t699" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t700" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
+<p id="t701" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t702" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t703" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
+<p id="t704" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t705" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t706" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t707" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t708" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
+<p id="t709" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t710" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t711" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t712" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t713" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t714" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t715" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t716" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t717" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t718" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t719" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t720" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t721" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
+<p id="t722" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t723" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t724" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t725" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
+<p id="t726" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t727" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t728" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t729" class="pln">            <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t730" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="num">2</span><span class="op">*</span><span class="nam">distance_above_bed</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">/</span><span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t731" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t732" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
+<p id="t733" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t734" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t735" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
+<p id="t736" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
+<p id="t737" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t738" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t739" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
+<p id="t740" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t741" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
+<p id="t742" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
+<p id="t743" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t744" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t745" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
+<p id="t746" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t747" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t748" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t749" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t750" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t751" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t752" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
+<p id="t753" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t754" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
+<p id="t755" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t756" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t757" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t758" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
+<p id="t759" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t760" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t761" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t762" class="pln">            <span class="op">-</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t763" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="num">2</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t764" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t765" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
+<p id="t766" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t767" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t768" class="stm run hide_run"><span class="key">def</span> <span class="nam">fluegg_transporter_class_factory</span><span class="op">(</span><span class="nam">vertical_turbulence</span><span class="op">=</span><span class="str">'parabolic-constant'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t769" class="pln">                                     <span class="nam">advection_direction</span><span class="op">=</span><span class="str">'forward'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t770" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t771" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t772" class="pln"><span class="str">    :param vertical_turbulence:</span><span class="strut">&nbsp;</span></p>
+<p id="t773" class="pln"><span class="str">    :param advection_direction:</span><span class="strut">&nbsp;</span></p>
+<p id="t774" class="pln"><span class="str">    :return: class</span><span class="strut">&nbsp;</span></p>
+<p id="t775" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t776" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t777" class="stm run hide_run">    <span class="key">if</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t778" class="stm mis">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ConstantVerticalTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t779" class="stm run hide_run">    <span class="key">elif</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'parabolic'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t780" class="stm mis">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ParabolicVerticalTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t781" class="stm run hide_run">    <span class="key">elif</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'parabolic-constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t782" class="stm run hide_run">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ParabolicConstantVerticalTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t783" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t784" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"vertical_turbulence must be \'constant\' "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t785" class="pln">                         <span class="str">"\'parabolic\' or \'parabolic-constant\'."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t786" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t787" class="stm run hide_run">    <span class="key">if</span> <span class="nam">advection_direction</span> <span class="op">==</span> <span class="str">'forward'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t788" class="stm run hide_run">        <span class="nam">longitudinal_base_class</span> <span class="op">=</span> <span class="nam">LongitudinalTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t789" class="stm mis">    <span class="key">elif</span> <span class="nam">advection_direction</span> <span class="op">==</span> <span class="str">'reverse'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t790" class="stm mis">        <span class="nam">longitudinal_base_class</span> <span class="op">=</span> <span class="nam">ReverseLongitudinalTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t791" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t792" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"advection_direction must be \'forward\' or "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
+<p id="t793" class="pln">                         <span class="str">"\'reverse\'."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t794" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t795" class="stm run hide_run">    <span class="key">class</span> <span class="nam">FluEggTransporter</span><span class="op">(</span><span class="nam">vertical_base_class</span><span class="op">,</span> <span class="nam">LateralTransporter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t796" class="pln">                            <span class="nam">longitudinal_base_class</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t797" class="pln">        <span class="str">"""This class transports particles through hydraulic cells</span><span class="strut">&nbsp;</span></p>
+<p id="t798" class="pln"><span class="str">        using a parabolic-constant diffusivity profile.</span><span class="strut">&nbsp;</span></p>
+<p id="t799" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t800" class="pln"><span class="str">        :param LateralTransporter: A lateral transporter model</span><span class="strut">&nbsp;</span></p>
+<p id="t801" class="pln"><span class="str">        :type: transporter.LateralTranslporter</span><span class="strut">&nbsp;</span></p>
+<p id="t802" class="pln"><span class="str">        :param longitudinal_base_class: A longitudinal transporter model</span><span class="strut">&nbsp;</span></p>
+<p id="t803" class="pln"><span class="str">        :type: transporter.Translporter</span><span class="strut">&nbsp;</span></p>
+<p id="t804" class="pln"><span class="str">        :param vertical_base_class: A vertical transporter model</span><span class="strut">&nbsp;</span></p>
+<p id="t805" class="pln"><span class="str">        :type: transporter.Transporter</span><span class="strut">&nbsp;</span></p>
+<p id="t806" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
+<p id="t807" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t808" class="stm run hide_run">        <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t809" class="pln">            <span class="str">"""Increments particle positions to the next time step</span><span class="strut">&nbsp;</span></p>
+<p id="t810" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t811" class="pln"><span class="str">            :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
+<p id="t812" class="pln"><span class="str">                positions</span><span class="strut">&nbsp;</span></p>
+<p id="t813" class="pln"><span class="str">            :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
+<p id="t814" class="pln"><span class="str">            """</span><span class="strut">&nbsp;</span></p>
+<p id="t815" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t816" class="pln">            <span class="com"># Calculate new particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t817" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t818" class="stm run hide_run">            <span class="nam">longitudinal_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t819" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t820" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t821" class="stm run hide_run">            <span class="nam">lateral_positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t822" class="stm run hide_run">            <span class="nam">lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t823" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t824" class="pln">                                              <span class="nam">lateral_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t825" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t826" class="stm run hide_run">            <span class="nam">vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t827" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t828" class="stm run hide_run">            <span class="nam">vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t829" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t830" class="pln">                                               <span class="nam">vertical_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t831" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t832" class="pln">            <span class="com"># [s, n, z]</span><span class="strut">&nbsp;</span></p>
+<p id="t833" class="stm run hide_run">            <span class="nam">next_positions</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">stack</span><span class="op">(</span><span class="op">(</span><span class="nam">longitudinal_positions</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t834" class="pln">                                       <span class="nam">lateral_positions</span><span class="op">,</span> <span class="nam">vertical_positions</span><span class="op">)</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t835" class="pln">                                      <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t836" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t837" class="pln">            <span class="com"># Increment particle positions</span><span class="strut">&nbsp;</span></p>
+<p id="t838" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">next_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t839" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t840" class="stm run hide_run">    <span class="key">return</span> <span class="nam">FluEggTransporter</span><span class="strut">&nbsp;</span></p>
+<p id="t841" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t842" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t843" class="stm run hide_run"><span class="key">def</span> <span class="nam">init_transporter</span><span class="op">(</span><span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t844" class="pln">                     <span class="nam">vertical_turbulence</span><span class="op">=</span><span class="str">'parabolic-constant'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t845" class="pln">                     <span class="nam">advection_direction</span><span class="op">=</span><span class="str">'forward'</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t846" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
+<p id="t847" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t848" class="pln"><span class="str">    :param simulation_clock:</span><span class="strut">&nbsp;</span></p>
+<p id="t849" class="pln"><span class="str">    :param particles:</span><span class="strut">&nbsp;</span></p>
+<p id="t850" class="pln"><span class="str">    :param vertical_turbulence:</span><span class="strut">&nbsp;</span></p>
+<p id="t851" class="pln"><span class="str">    :param advection_direction:</span><span class="strut">&nbsp;</span></p>
+<p id="t852" class="pln"><span class="str">    :return:</span><span class="strut">&nbsp;</span></p>
+<p id="t853" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t854" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
+<p id="t855" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t856" class="stm mis">    <span class="nam">FluEggTransporter</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t857" class="pln">        <span class="nam">fluegg_transporter_class_factory</span><span class="op">(</span><span class="nam">vertical_turbulence</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
+<p id="t858" class="pln">                                         <span class="nam">advection_direction</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t859" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t860" class="stm mis">    <span class="key">return</span> <span class="nam">FluEggTransporter</span><span class="op">(</span><span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/index.html b/coverage_report/index.html
new file mode 100644
index 0000000..f97afe9
--- /dev/null
+++ b/coverage_report/index.html
@@ -0,0 +1,230 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    <title>Coverage report</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.ba-throttle-debounce.min.js"></script>
+    <script type="text/javascript" src="jquery.tablesorter.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.index_ready);
+    </script>
+</head>
+<body class="indexfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage report:
+            <span class="pc_cov">47%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <form id="filter_container">
+            <input id="filter" type="text" value="" placeholder="filter..." />
+        </form>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">n</span>
+        <span class="key">s</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        
+        <span class="key">c</span> &nbsp; change column sorting
+    </p>
+    </div>
+</div>
+
+<div id="index">
+    <table class="index">
+        <thead>
+            
+            <tr class="tablehead" title="Click to sort">
+                <th class="name left headerSortDown shortkey_n">Module</th>
+                <th class="shortkey_s">statements</th>
+                <th class="shortkey_m">missing</th>
+                <th class="shortkey_x">excluded</th>
+                
+                <th class="right shortkey_c">coverage</th>
+            </tr>
+        </thead>
+        
+        <tfoot>
+            <tr class="total">
+                <td class="name left">Total</td>
+                <td>2060</td>
+                <td>1084</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="976 2060">47%</td>
+            </tr>
+        </tfoot>
+        <tbody>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg___init___py.html">fluegg\__init__.py</a></td>
+                <td>0</td>
+                <td>0</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="0 0">100%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_asiancarpeggs_py.html">fluegg\asiancarpeggs.py</a></td>
+                <td>226</td>
+                <td>17</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="209 226">92%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_drift_py.html">fluegg\drift.py</a></td>
+                <td>56</td>
+                <td>6</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="50 56">89%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_gui___init___py.html">fluegg\gui\__init__.py</a></td>
+                <td>0</td>
+                <td>0</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="0 0">100%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_gui_gui_py.html">fluegg\gui\gui.py</a></td>
+                <td>254</td>
+                <td>225</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="29 254">11%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_gui_gui_layout_py.html">fluegg\gui\gui_layout.py</a></td>
+                <td>276</td>
+                <td>272</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="4 276">1%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_gui_hecras_dialog_py.html">fluegg\gui\hecras_dialog.py</a></td>
+                <td>112</td>
+                <td>108</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="4 112">4%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_hydraulics_py.html">fluegg\hydraulics.py</a></td>
+                <td>287</td>
+                <td>37</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="250 287">87%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_kml_py.html">fluegg\kml.py</a></td>
+                <td>130</td>
+                <td>113</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="17 130">13%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_random_py.html">fluegg\random.py</a></td>
+                <td>36</td>
+                <td>18</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="18 36">50%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_ras_py.html">fluegg\ras.py</a></td>
+                <td>197</td>
+                <td>148</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="49 197">25%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_simclock_py.html">fluegg\simclock.py</a></td>
+                <td>46</td>
+                <td>5</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="41 46">89%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_simulation_py.html">fluegg\simulation.py</a></td>
+                <td>132</td>
+                <td>76</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="56 132">42%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="fluegg_transporter_py.html">fluegg\transporter.py</a></td>
+                <td>285</td>
+                <td>56</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="229 285">80%</td>
+            </tr>
+            
+            <tr class="file">
+                <td class="name left"><a href="test_fluegg_py.html">test_fluegg.py</a></td>
+                <td>23</td>
+                <td>3</td>
+                <td>0</td>
+                
+                <td class="right" data-ratio="20 23">87%</td>
+            </tr>
+            
+        </tbody>
+    </table>
+
+    <p id="no_rows">
+        No items found using the specified filter.
+    </p>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:49
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/coverage_report/jquery.ba-throttle-debounce.min.js b/coverage_report/jquery.ba-throttle-debounce.min.js
new file mode 100644
index 0000000..648fe5d
--- /dev/null
+++ b/coverage_report/jquery.ba-throttle-debounce.min.js
@@ -0,0 +1,9 @@
+/*
+ * jQuery throttle / debounce - v1.1 - 3/7/2010
+ * http://benalman.com/projects/jquery-throttle-debounce-plugin/
+ *
+ * Copyright (c) 2010 "Cowboy" Ben Alman
+ * Dual licensed under the MIT and GPL licenses.
+ * http://benalman.com/about/license/
+ */
+(function(b,c){var $=b.jQuery||b.Cowboy||(b.Cowboy={}),a;$.throttle=a=function(e,f,j,i){var h,d=0;if(typeof f!=="boolean"){i=j;j=f;f=c}function g(){var o=this,m=+new Date()-d,n=arguments;function l(){d=+new Date();j.apply(o,n)}function k(){h=c}if(i&&!h){l()}h&&clearTimeout(h);if(i===c&&m>e){l()}else{if(f!==true){h=setTimeout(i?k:l,i===c?e-m:e)}}}if($.guid){g.guid=j.guid=j.guid||$.guid++}return g};$.debounce=function(d,e,f){return f===c?a(d,e,false):a(d,f,e!==false)}})(this);
diff --git a/coverage_report/jquery.hotkeys.js b/coverage_report/jquery.hotkeys.js
new file mode 100644
index 0000000..09b21e0
--- /dev/null
+++ b/coverage_report/jquery.hotkeys.js
@@ -0,0 +1,99 @@
+/*
+ * jQuery Hotkeys Plugin
+ * Copyright 2010, John Resig
+ * Dual licensed under the MIT or GPL Version 2 licenses.
+ *
+ * Based upon the plugin by Tzury Bar Yochay:
+ * http://github.com/tzuryby/hotkeys
+ *
+ * Original idea by:
+ * Binny V A, http://www.openjs.com/scripts/events/keyboard_shortcuts/
+*/
+
+(function(jQuery){
+
+	jQuery.hotkeys = {
+		version: "0.8",
+
+		specialKeys: {
+			8: "backspace", 9: "tab", 13: "return", 16: "shift", 17: "ctrl", 18: "alt", 19: "pause",
+			20: "capslock", 27: "esc", 32: "space", 33: "pageup", 34: "pagedown", 35: "end", 36: "home",
+			37: "left", 38: "up", 39: "right", 40: "down", 45: "insert", 46: "del",
+			96: "0", 97: "1", 98: "2", 99: "3", 100: "4", 101: "5", 102: "6", 103: "7",
+			104: "8", 105: "9", 106: "*", 107: "+", 109: "-", 110: ".", 111 : "/",
+			112: "f1", 113: "f2", 114: "f3", 115: "f4", 116: "f5", 117: "f6", 118: "f7", 119: "f8",
+			120: "f9", 121: "f10", 122: "f11", 123: "f12", 144: "numlock", 145: "scroll", 191: "/", 224: "meta"
+		},
+
+		shiftNums: {
+			"`": "~", "1": "!", "2": "@", "3": "#", "4": "$", "5": "%", "6": "^", "7": "&",
+			"8": "*", "9": "(", "0": ")", "-": "_", "=": "+", ";": ": ", "'": "\"", ",": "<",
+			".": ">",  "/": "?",  "\\": "|"
+		}
+	};
+
+	function keyHandler( handleObj ) {
+		// Only care when a possible input has been specified
+		if ( typeof handleObj.data !== "string" ) {
+			return;
+		}
+
+		var origHandler = handleObj.handler,
+			keys = handleObj.data.toLowerCase().split(" ");
+
+		handleObj.handler = function( event ) {
+			// Don't fire in text-accepting inputs that we didn't directly bind to
+			if ( this !== event.target && (/textarea|select/i.test( event.target.nodeName ) ||
+				 event.target.type === "text") ) {
+				return;
+			}
+
+			// Keypress represents characters, not special keys
+			var special = event.type !== "keypress" && jQuery.hotkeys.specialKeys[ event.which ],
+				character = String.fromCharCode( event.which ).toLowerCase(),
+				key, modif = "", possible = {};
+
+			// check combinations (alt|ctrl|shift+anything)
+			if ( event.altKey && special !== "alt" ) {
+				modif += "alt+";
+			}
+
+			if ( event.ctrlKey && special !== "ctrl" ) {
+				modif += "ctrl+";
+			}
+
+			// TODO: Need to make sure this works consistently across platforms
+			if ( event.metaKey && !event.ctrlKey && special !== "meta" ) {
+				modif += "meta+";
+			}
+
+			if ( event.shiftKey && special !== "shift" ) {
+				modif += "shift+";
+			}
+
+			if ( special ) {
+				possible[ modif + special ] = true;
+
+			} else {
+				possible[ modif + character ] = true;
+				possible[ modif + jQuery.hotkeys.shiftNums[ character ] ] = true;
+
+				// "$" can be triggered as "Shift+4" or "Shift+$" or just "$"
+				if ( modif === "shift+" ) {
+					possible[ jQuery.hotkeys.shiftNums[ character ] ] = true;
+				}
+			}
+
+			for ( var i = 0, l = keys.length; i < l; i++ ) {
+				if ( possible[ keys[i] ] ) {
+					return origHandler.apply( this, arguments );
+				}
+			}
+		};
+	}
+
+	jQuery.each([ "keydown", "keyup", "keypress" ], function() {
+		jQuery.event.special[ this ] = { add: keyHandler };
+	});
+
+})( jQuery );
diff --git a/coverage_report/jquery.isonscreen.js b/coverage_report/jquery.isonscreen.js
new file mode 100644
index 0000000..0182ebd
--- /dev/null
+++ b/coverage_report/jquery.isonscreen.js
@@ -0,0 +1,53 @@
+/* Copyright (c) 2010
+ * @author Laurence Wheway
+ * Dual licensed under the MIT (http://www.opensource.org/licenses/mit-license.php)
+ * and GPL (http://www.opensource.org/licenses/gpl-license.php) licenses.
+ *
+ * @version 1.2.0
+ */
+(function($) {
+	jQuery.extend({
+		isOnScreen: function(box, container) {
+			//ensure numbers come in as intgers (not strings) and remove 'px' is it's there
+			for(var i in box){box[i] = parseFloat(box[i])};
+			for(var i in container){container[i] = parseFloat(container[i])};
+
+			if(!container){
+				container = {
+					left: $(window).scrollLeft(),
+					top: $(window).scrollTop(),
+					width: $(window).width(),
+					height: $(window).height()
+				}
+			}
+
+			if(	box.left+box.width-container.left > 0 &&
+				box.left < container.width+container.left &&
+				box.top+box.height-container.top > 0 &&
+				box.top < container.height+container.top
+			) return true;
+			return false;
+		}
+	})
+
+
+	jQuery.fn.isOnScreen = function (container) {
+		for(var i in container){container[i] = parseFloat(container[i])};
+
+		if(!container){
+			container = {
+				left: $(window).scrollLeft(),
+				top: $(window).scrollTop(),
+				width: $(window).width(),
+				height: $(window).height()
+			}
+		}
+
+		if(	$(this).offset().left+$(this).width()-container.left > 0 &&
+			$(this).offset().left < container.width+container.left &&
+			$(this).offset().top+$(this).height()-container.top > 0 &&
+			$(this).offset().top < container.height+container.top
+		) return true;
+		return false;
+	}
+})(jQuery);
diff --git a/coverage_report/jquery.min.js b/coverage_report/jquery.min.js
new file mode 100644
index 0000000..d1608e3
--- /dev/null
+++ b/coverage_report/jquery.min.js
@@ -0,0 +1,4 @@
+/*! jQuery v1.11.1 | (c) 2005, 2014 jQuery Foundation, Inc. | jquery.org/license */
+!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k={},l="1.11.1",m=function(a,b){return new m.fn.init(a,b)},n=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,o=/^-ms-/,p=/-([\da-z])/gi,q=function(a,b){return b.toUpperCase()};m.fn=m.prototype={jquery:l,constructor:m,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=m.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return m.each(this,a,b)},map:function(a){return this.pushStack(m.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},m.extend=m.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||m.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(m.isPlainObject(c)||(b=m.isArray(c)))?(b?(b=!1,f=a&&m.isArray(a)?a:[]):f=a&&m.isPlainObject(a)?a:{},g[d]=m.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},m.extend({expando:"jQuery"+(l+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===m.type(a)},isArray:Array.isArray||function(a){return"array"===m.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return!m.isArray(a)&&a-parseFloat(a)>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==m.type(a)||a.nodeType||m.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(k.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&m.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(o,"ms-").replace(p,q)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=r(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(n,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(r(Object(a))?m.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=r(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),m.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||m.guid++,e):void 0},now:function(){return+new Date},support:k}),m.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(a,b){h["[object "+b+"]"]=b.toLowerCase()});function r(a){var b=a.length,c=m.type(a);return"function"===c||m.isWindow(a)?!1:1===a.nodeType&&b?!0:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var s=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+-new Date,v=a.document,w=0,x=0,y=gb(),z=gb(),A=gb(),B=function(a,b){return a===b&&(l=!0),0},C="undefined",D=1<<31,E={}.hasOwnProperty,F=[],G=F.pop,H=F.push,I=F.push,J=F.slice,K=F.indexOf||function(a){for(var b=0,c=this.length;c>b;b++)if(this[b]===a)return b;return-1},L="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",M="[\\x20\\t\\r\\n\\f]",N="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",O=N.replace("w","w#"),P="\\["+M+"*("+N+")(?:"+M+"*([*^$|!~]?=)"+M+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+O+"))|)"+M+"*\\]",Q=":("+N+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+P+")*)|.*)\\)|)",R=new RegExp("^"+M+"+|((?:^|[^\\\\])(?:\\\\.)*)"+M+"+$","g"),S=new RegExp("^"+M+"*,"+M+"*"),T=new RegExp("^"+M+"*([>+~]|"+M+")"+M+"*"),U=new RegExp("="+M+"*([^\\]'\"]*?)"+M+"*\\]","g"),V=new RegExp(Q),W=new RegExp("^"+O+"$"),X={ID:new RegExp("^#("+N+")"),CLASS:new RegExp("^\\.("+N+")"),TAG:new RegExp("^("+N.replace("w","w*")+")"),ATTR:new RegExp("^"+P),PSEUDO:new RegExp("^"+Q),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+L+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/^(?:input|select|textarea|button)$/i,Z=/^h\d$/i,$=/^[^{]+\{\s*\[native \w/,_=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ab=/[+~]/,bb=/'|\\/g,cb=new RegExp("\\\\([\\da-f]{1,6}"+M+"?|("+M+")|.)","ig"),db=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)};try{I.apply(F=J.call(v.childNodes),v.childNodes),F[v.childNodes.length].nodeType}catch(eb){I={apply:F.length?function(a,b){H.apply(a,J.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function fb(a,b,d,e){var f,h,j,k,l,o,r,s,w,x;if((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,d=d||[],!a||"string"!=typeof a)return d;if(1!==(k=b.nodeType)&&9!==k)return[];if(p&&!e){if(f=_.exec(a))if(j=f[1]){if(9===k){if(h=b.getElementById(j),!h||!h.parentNode)return d;if(h.id===j)return d.push(h),d}else if(b.ownerDocument&&(h=b.ownerDocument.getElementById(j))&&t(b,h)&&h.id===j)return d.push(h),d}else{if(f[2])return I.apply(d,b.getElementsByTagName(a)),d;if((j=f[3])&&c.getElementsByClassName&&b.getElementsByClassName)return I.apply(d,b.getElementsByClassName(j)),d}if(c.qsa&&(!q||!q.test(a))){if(s=r=u,w=b,x=9===k&&a,1===k&&"object"!==b.nodeName.toLowerCase()){o=g(a),(r=b.getAttribute("id"))?s=r.replace(bb,"\\$&"):b.setAttribute("id",s),s="[id='"+s+"'] ",l=o.length;while(l--)o[l]=s+qb(o[l]);w=ab.test(a)&&ob(b.parentNode)||b,x=o.join(",")}if(x)try{return I.apply(d,w.querySelectorAll(x)),d}catch(y){}finally{r||b.removeAttribute("id")}}}return i(a.replace(R,"$1"),b,d,e)}function gb(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function hb(a){return a[u]=!0,a}function ib(a){var b=n.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function jb(a,b){var c=a.split("|"),e=a.length;while(e--)d.attrHandle[c[e]]=b}function kb(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||D)-(~a.sourceIndex||D);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function lb(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function mb(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function nb(a){return hb(function(b){return b=+b,hb(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function ob(a){return a&&typeof a.getElementsByTagName!==C&&a}c=fb.support={},f=fb.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},m=fb.setDocument=function(a){var b,e=a?a.ownerDocument||a:v,g=e.defaultView;return e!==n&&9===e.nodeType&&e.documentElement?(n=e,o=e.documentElement,p=!f(e),g&&g!==g.top&&(g.addEventListener?g.addEventListener("unload",function(){m()},!1):g.attachEvent&&g.attachEvent("onunload",function(){m()})),c.attributes=ib(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ib(function(a){return a.appendChild(e.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=$.test(e.getElementsByClassName)&&ib(function(a){return a.innerHTML="<div class='a'></div><div class='a i'></div>",a.firstChild.className="i",2===a.getElementsByClassName("i").length}),c.getById=ib(function(a){return o.appendChild(a).id=u,!e.getElementsByName||!e.getElementsByName(u).length}),c.getById?(d.find.ID=function(a,b){if(typeof b.getElementById!==C&&p){var c=b.getElementById(a);return c&&c.parentNode?[c]:[]}},d.filter.ID=function(a){var b=a.replace(cb,db);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(cb,db);return function(a){var c=typeof a.getAttributeNode!==C&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return typeof b.getElementsByTagName!==C?b.getElementsByTagName(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return typeof b.getElementsByClassName!==C&&p?b.getElementsByClassName(a):void 0},r=[],q=[],(c.qsa=$.test(e.querySelectorAll))&&(ib(function(a){a.innerHTML="<select msallowclip=''><option selected=''></option></select>",a.querySelectorAll("[msallowclip^='']").length&&q.push("[*^$]="+M+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+M+"*(?:value|"+L+")"),a.querySelectorAll(":checked").length||q.push(":checked")}),ib(function(a){var b=e.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+M+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=$.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ib(function(a){c.disconnectedMatch=s.call(a,"div"),s.call(a,"[s!='']:x"),r.push("!=",Q)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=$.test(o.compareDocumentPosition),t=b||$.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===e||a.ownerDocument===v&&t(v,a)?-1:b===e||b.ownerDocument===v&&t(v,b)?1:k?K.call(k,a)-K.call(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,f=a.parentNode,g=b.parentNode,h=[a],i=[b];if(!f||!g)return a===e?-1:b===e?1:f?-1:g?1:k?K.call(k,a)-K.call(k,b):0;if(f===g)return kb(a,b);c=a;while(c=c.parentNode)h.unshift(c);c=b;while(c=c.parentNode)i.unshift(c);while(h[d]===i[d])d++;return d?kb(h[d],i[d]):h[d]===v?-1:i[d]===v?1:0},e):n},fb.matches=function(a,b){return fb(a,null,null,b)},fb.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(U,"='$1']"),!(!c.matchesSelector||!p||r&&r.test(b)||q&&q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return fb(b,n,null,[a]).length>0},fb.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},fb.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&E.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},fb.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},fb.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=fb.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=fb.selectors={cacheLength:50,createPseudo:hb,match:X,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(cb,db),a[3]=(a[3]||a[4]||a[5]||"").replace(cb,db),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||fb.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&fb.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return X.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&V.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(cb,db).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+M+")"+a+"("+M+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||typeof a.getAttribute!==C&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=fb.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h;if(q){if(f){while(p){l=b;while(l=l[p])if(h?l.nodeName.toLowerCase()===r:1===l.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){k=q[u]||(q[u]={}),j=k[a]||[],n=j[0]===w&&j[1],m=j[0]===w&&j[2],l=n&&q.childNodes[n];while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if(1===l.nodeType&&++m&&l===b){k[a]=[w,n,m];break}}else if(s&&(j=(b[u]||(b[u]={}))[a])&&j[0]===w)m=j[1];else while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if((h?l.nodeName.toLowerCase()===r:1===l.nodeType)&&++m&&(s&&((l[u]||(l[u]={}))[a]=[w,m]),l===b))break;return m-=e,m===d||m%d===0&&m/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||fb.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?hb(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=K.call(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:hb(function(a){var b=[],c=[],d=h(a.replace(R,"$1"));return d[u]?hb(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),!c.pop()}}),has:hb(function(a){return function(b){return fb(a,b).length>0}}),contains:hb(function(a){return function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:hb(function(a){return W.test(a||"")||fb.error("unsupported lang: "+a),a=a.replace(cb,db).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return Z.test(a.nodeName)},input:function(a){return Y.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:nb(function(){return[0]}),last:nb(function(a,b){return[b-1]}),eq:nb(function(a,b,c){return[0>c?c+b:c]}),even:nb(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:nb(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:nb(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:nb(function(a,b,c){for(var d=0>c?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=lb(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=mb(b);function pb(){}pb.prototype=d.filters=d.pseudos,d.setFilters=new pb,g=fb.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){(!c||(e=S.exec(h)))&&(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=T.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(R," ")}),h=h.slice(c.length));for(g in d.filter)!(e=X[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?fb.error(a):z(a,i).slice(0)};function qb(a){for(var b=0,c=a.length,d="";c>b;b++)d+=a[b].value;return d}function rb(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=x++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j=[w,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(i=b[u]||(b[u]={}),(h=i[d])&&h[0]===w&&h[1]===f)return j[2]=h[2];if(i[d]=j,j[2]=a(b,c,g))return!0}}}function sb(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function tb(a,b,c){for(var d=0,e=b.length;e>d;d++)fb(a,b[d],c);return c}function ub(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(!c||c(f,d,e))&&(g.push(f),j&&b.push(h));return g}function vb(a,b,c,d,e,f){return d&&!d[u]&&(d=vb(d)),e&&!e[u]&&(e=vb(e,f)),hb(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||tb(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:ub(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=ub(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?K.call(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=ub(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):I.apply(g,r)})}function wb(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=rb(function(a){return a===b},h,!0),l=rb(function(a){return K.call(b,a)>-1},h,!0),m=[function(a,c,d){return!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d))}];f>i;i++)if(c=d.relative[a[i].type])m=[rb(sb(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;f>e;e++)if(d.relative[a[e].type])break;return vb(i>1&&sb(m),i>1&&qb(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(R,"$1"),c,e>i&&wb(a.slice(i,e)),f>e&&wb(a=a.slice(e)),f>e&&qb(a))}m.push(c)}return sb(m)}function xb(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,m,o,p=0,q="0",r=f&&[],s=[],t=j,u=f||e&&d.find.TAG("*",k),v=w+=null==t?1:Math.random()||.1,x=u.length;for(k&&(j=g!==n&&g);q!==x&&null!=(l=u[q]);q++){if(e&&l){m=0;while(o=a[m++])if(o(l,g,h)){i.push(l);break}k&&(w=v)}c&&((l=!o&&l)&&p--,f&&r.push(l))}if(p+=q,c&&q!==p){m=0;while(o=b[m++])o(r,s,g,h);if(f){if(p>0)while(q--)r[q]||s[q]||(s[q]=G.call(i));s=ub(s)}I.apply(i,s),k&&!f&&s.length>0&&p+b.length>1&&fb.uniqueSort(i)}return k&&(w=v,j=t),r};return c?hb(f):f}return h=fb.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=wb(b[c]),f[u]?d.push(f):e.push(f);f=A(a,xb(e,d)),f.selector=a}return f},i=fb.select=function(a,b,e,f){var i,j,k,l,m,n="function"==typeof a&&a,o=!f&&g(a=n.selector||a);if(e=e||[],1===o.length){if(j=o[0]=o[0].slice(0),j.length>2&&"ID"===(k=j[0]).type&&c.getById&&9===b.nodeType&&p&&d.relative[j[1].type]){if(b=(d.find.ID(k.matches[0].replace(cb,db),b)||[])[0],!b)return e;n&&(b=b.parentNode),a=a.slice(j.shift().value.length)}i=X.needsContext.test(a)?0:j.length;while(i--){if(k=j[i],d.relative[l=k.type])break;if((m=d.find[l])&&(f=m(k.matches[0].replace(cb,db),ab.test(j[0].type)&&ob(b.parentNode)||b))){if(j.splice(i,1),a=f.length&&qb(j),!a)return I.apply(e,f),e;break}}}return(n||h(a,o))(f,b,!p,e,ab.test(a)&&ob(b.parentNode)||b),e},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ib(function(a){return 1&a.compareDocumentPosition(n.createElement("div"))}),ib(function(a){return a.innerHTML="<a href='#'></a>","#"===a.firstChild.getAttribute("href")})||jb("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ib(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||jb("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),ib(function(a){return null==a.getAttribute("disabled")})||jb(L,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),fb}(a);m.find=s,m.expr=s.selectors,m.expr[":"]=m.expr.pseudos,m.unique=s.uniqueSort,m.text=s.getText,m.isXMLDoc=s.isXML,m.contains=s.contains;var t=m.expr.match.needsContext,u=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,v=/^.[^:#\[\.,]*$/;function w(a,b,c){if(m.isFunction(b))return m.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return m.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(v.test(b))return m.filter(b,a,c);b=m.filter(b,a)}return m.grep(a,function(a){return m.inArray(a,b)>=0!==c})}m.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?m.find.matchesSelector(d,a)?[d]:[]:m.find.matches(a,m.grep(b,function(a){return 1===a.nodeType}))},m.fn.extend({find:function(a){var b,c=[],d=this,e=d.length;if("string"!=typeof a)return this.pushStack(m(a).filter(function(){for(b=0;e>b;b++)if(m.contains(d[b],this))return!0}));for(b=0;e>b;b++)m.find(a,d[b],c);return c=this.pushStack(e>1?m.unique(c):c),c.selector=this.selector?this.selector+" "+a:a,c},filter:function(a){return this.pushStack(w(this,a||[],!1))},not:function(a){return this.pushStack(w(this,a||[],!0))},is:function(a){return!!w(this,"string"==typeof a&&t.test(a)?m(a):a||[],!1).length}});var x,y=a.document,z=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,A=m.fn.init=function(a,b){var c,d;if(!a)return this;if("string"==typeof a){if(c="<"===a.charAt(0)&&">"===a.charAt(a.length-1)&&a.length>=3?[null,a,null]:z.exec(a),!c||!c[1]&&b)return!b||b.jquery?(b||x).find(a):this.constructor(b).find(a);if(c[1]){if(b=b instanceof m?b[0]:b,m.merge(this,m.parseHTML(c[1],b&&b.nodeType?b.ownerDocument||b:y,!0)),u.test(c[1])&&m.isPlainObject(b))for(c in b)m.isFunction(this[c])?this[c](b[c]):this.attr(c,b[c]);return this}if(d=y.getElementById(c[2]),d&&d.parentNode){if(d.id!==c[2])return x.find(a);this.length=1,this[0]=d}return this.context=y,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):m.isFunction(a)?"undefined"!=typeof x.ready?x.ready(a):a(m):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),m.makeArray(a,this))};A.prototype=m.fn,x=m(y);var B=/^(?:parents|prev(?:Until|All))/,C={children:!0,contents:!0,next:!0,prev:!0};m.extend({dir:function(a,b,c){var d=[],e=a[b];while(e&&9!==e.nodeType&&(void 0===c||1!==e.nodeType||!m(e).is(c)))1===e.nodeType&&d.push(e),e=e[b];return d},sibling:function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c}}),m.fn.extend({has:function(a){var b,c=m(a,this),d=c.length;return this.filter(function(){for(b=0;d>b;b++)if(m.contains(this,c[b]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=t.test(a)||"string"!=typeof a?m(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&m.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?m.unique(f):f)},index:function(a){return a?"string"==typeof a?m.inArray(this[0],m(a)):m.inArray(a.jquery?a[0]:a,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(m.unique(m.merge(this.get(),m(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function D(a,b){do a=a[b];while(a&&1!==a.nodeType);return a}m.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return m.dir(a,"parentNode")},parentsUntil:function(a,b,c){return m.dir(a,"parentNode",c)},next:function(a){return D(a,"nextSibling")},prev:function(a){return D(a,"previousSibling")},nextAll:function(a){return m.dir(a,"nextSibling")},prevAll:function(a){return m.dir(a,"previousSibling")},nextUntil:function(a,b,c){return m.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return m.dir(a,"previousSibling",c)},siblings:function(a){return m.sibling((a.parentNode||{}).firstChild,a)},children:function(a){return m.sibling(a.firstChild)},contents:function(a){return m.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:m.merge([],a.childNodes)}},function(a,b){m.fn[a]=function(c,d){var e=m.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=m.filter(d,e)),this.length>1&&(C[a]||(e=m.unique(e)),B.test(a)&&(e=e.reverse())),this.pushStack(e)}});var E=/\S+/g,F={};function G(a){var b=F[a]={};return m.each(a.match(E)||[],function(a,c){b[c]=!0}),b}m.Callbacks=function(a){a="string"==typeof a?F[a]||G(a):m.extend({},a);var b,c,d,e,f,g,h=[],i=!a.once&&[],j=function(l){for(c=a.memory&&l,d=!0,f=g||0,g=0,e=h.length,b=!0;h&&e>f;f++)if(h[f].apply(l[0],l[1])===!1&&a.stopOnFalse){c=!1;break}b=!1,h&&(i?i.length&&j(i.shift()):c?h=[]:k.disable())},k={add:function(){if(h){var d=h.length;!function f(b){m.each(b,function(b,c){var d=m.type(c);"function"===d?a.unique&&k.has(c)||h.push(c):c&&c.length&&"string"!==d&&f(c)})}(arguments),b?e=h.length:c&&(g=d,j(c))}return this},remove:function(){return h&&m.each(arguments,function(a,c){var d;while((d=m.inArray(c,h,d))>-1)h.splice(d,1),b&&(e>=d&&e--,f>=d&&f--)}),this},has:function(a){return a?m.inArray(a,h)>-1:!(!h||!h.length)},empty:function(){return h=[],e=0,this},disable:function(){return h=i=c=void 0,this},disabled:function(){return!h},lock:function(){return i=void 0,c||k.disable(),this},locked:function(){return!i},fireWith:function(a,c){return!h||d&&!i||(c=c||[],c=[a,c.slice?c.slice():c],b?i.push(c):j(c)),this},fire:function(){return k.fireWith(this,arguments),this},fired:function(){return!!d}};return k},m.extend({Deferred:function(a){var b=[["resolve","done",m.Callbacks("once memory"),"resolved"],["reject","fail",m.Callbacks("once memory"),"rejected"],["notify","progress",m.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return m.Deferred(function(c){m.each(b,function(b,f){var g=m.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&m.isFunction(a.promise)?a.promise().done(c.resolve).fail(c.reject).progress(c.notify):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?m.extend(a,d):d}},e={};return d.pipe=d.then,m.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=d.call(arguments),e=c.length,f=1!==e||a&&m.isFunction(a.promise)?e:0,g=1===f?a:m.Deferred(),h=function(a,b,c){return function(e){b[a]=this,c[a]=arguments.length>1?d.call(arguments):e,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(e>1)for(i=new Array(e),j=new Array(e),k=new Array(e);e>b;b++)c[b]&&m.isFunction(c[b].promise)?c[b].promise().done(h(b,k,c)).fail(g.reject).progress(h(b,j,i)):--f;return f||g.resolveWith(k,c),g.promise()}});var H;m.fn.ready=function(a){return m.ready.promise().done(a),this},m.extend({isReady:!1,readyWait:1,holdReady:function(a){a?m.readyWait++:m.ready(!0)},ready:function(a){if(a===!0?!--m.readyWait:!m.isReady){if(!y.body)return setTimeout(m.ready);m.isReady=!0,a!==!0&&--m.readyWait>0||(H.resolveWith(y,[m]),m.fn.triggerHandler&&(m(y).triggerHandler("ready"),m(y).off("ready")))}}});function I(){y.addEventListener?(y.removeEventListener("DOMContentLoaded",J,!1),a.removeEventListener("load",J,!1)):(y.detachEvent("onreadystatechange",J),a.detachEvent("onload",J))}function J(){(y.addEventListener||"load"===event.type||"complete"===y.readyState)&&(I(),m.ready())}m.ready.promise=function(b){if(!H)if(H=m.Deferred(),"complete"===y.readyState)setTimeout(m.ready);else if(y.addEventListener)y.addEventListener("DOMContentLoaded",J,!1),a.addEventListener("load",J,!1);else{y.attachEvent("onreadystatechange",J),a.attachEvent("onload",J);var c=!1;try{c=null==a.frameElement&&y.documentElement}catch(d){}c&&c.doScroll&&!function e(){if(!m.isReady){try{c.doScroll("left")}catch(a){return setTimeout(e,50)}I(),m.ready()}}()}return H.promise(b)};var K="undefined",L;for(L in m(k))break;k.ownLast="0"!==L,k.inlineBlockNeedsLayout=!1,m(function(){var a,b,c,d;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="display:inline;margin:0;border:0;padding:1px;width:1px;zoom:1",k.inlineBlockNeedsLayout=a=3===b.offsetWidth,a&&(c.style.zoom=1)),c.removeChild(d))}),function(){var a=y.createElement("div");if(null==k.deleteExpando){k.deleteExpando=!0;try{delete a.test}catch(b){k.deleteExpando=!1}}a=null}(),m.acceptData=function(a){var b=m.noData[(a.nodeName+" ").toLowerCase()],c=+a.nodeType||1;return 1!==c&&9!==c?!1:!b||b!==!0&&a.getAttribute("classid")===b};var M=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,N=/([A-Z])/g;function O(a,b,c){if(void 0===c&&1===a.nodeType){var d="data-"+b.replace(N,"-$1").toLowerCase();if(c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:M.test(c)?m.parseJSON(c):c}catch(e){}m.data(a,b,c)}else c=void 0}return c}function P(a){var b;for(b in a)if(("data"!==b||!m.isEmptyObject(a[b]))&&"toJSON"!==b)return!1;return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeType,j=i?m.cache:a,k=i?a[h]:a[h]&&h;
+if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||m.guid++:h),j[k]||(j[k]=i?{}:{toJSON:m.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=m.extend(j[k],b):j[k].data=m.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[m.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[m.camelCase(b)])):f=g,f}}function R(a,b,c){if(m.acceptData(a)){var d,e,f=a.nodeType,g=f?m.cache:a,h=f?a[m.expando]:m.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){m.isArray(b)?b=b.concat(m.map(b,m.camelCase)):b in d?b=[b]:(b=m.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!P(d):!m.isEmptyObject(d))return}(c||(delete g[h].data,P(g[h])))&&(f?m.cleanData([a],!0):k.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}m.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?m.cache[a[m.expando]]:a[m.expando],!!a&&!P(a)},data:function(a,b,c){return Q(a,b,c)},removeData:function(a,b){return R(a,b)},_data:function(a,b,c){return Q(a,b,c,!0)},_removeData:function(a,b){return R(a,b,!0)}}),m.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=m.data(f),1===f.nodeType&&!m._data(f,"parsedAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=m.camelCase(d.slice(5)),O(f,d,e[d])));m._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){m.data(this,a)}):arguments.length>1?this.each(function(){m.data(this,a,b)}):f?O(f,a,m.data(f,a)):void 0},removeData:function(a){return this.each(function(){m.removeData(this,a)})}}),m.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=m._data(a,b),c&&(!d||m.isArray(c)?d=m._data(a,b,m.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=m.queue(a,b),d=c.length,e=c.shift(),f=m._queueHooks(a,b),g=function(){m.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return m._data(a,c)||m._data(a,c,{empty:m.Callbacks("once memory").add(function(){m._removeData(a,b+"queue"),m._removeData(a,c)})})}}),m.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?m.queue(this[0],a):void 0===b?this:this.each(function(){var c=m.queue(this,a,b);m._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&m.dequeue(this,a)})},dequeue:function(a){return this.each(function(){m.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=m.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=m._data(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=["Top","Right","Bottom","Left"],U=function(a,b){return a=b||a,"none"===m.css(a,"display")||!m.contains(a.ownerDocument,a)},V=m.access=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===m.type(c)){e=!0;for(h in c)m.access(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,m.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(m(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},W=/^(?:checkbox|radio)$/i;!function(){var a=y.createElement("input"),b=y.createElement("div"),c=y.createDocumentFragment();if(b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",k.leadingWhitespace=3===b.firstChild.nodeType,k.tbody=!b.getElementsByTagName("tbody").length,k.htmlSerialize=!!b.getElementsByTagName("link").length,k.html5Clone="<:nav></:nav>"!==y.createElement("nav").cloneNode(!0).outerHTML,a.type="checkbox",a.checked=!0,c.appendChild(a),k.appendChecked=a.checked,b.innerHTML="<textarea>x</textarea>",k.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue,c.appendChild(b),b.innerHTML="<input type='radio' checked='checked' name='t'/>",k.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,k.noCloneEvent=!0,b.attachEvent&&(b.attachEvent("onclick",function(){k.noCloneEvent=!1}),b.cloneNode(!0).click()),null==k.deleteExpando){k.deleteExpando=!0;try{delete b.test}catch(d){k.deleteExpando=!1}}}(),function(){var b,c,d=y.createElement("div");for(b in{submit:!0,change:!0,focusin:!0})c="on"+b,(k[b+"Bubbles"]=c in a)||(d.setAttribute(c,"t"),k[b+"Bubbles"]=d.attributes[c].expando===!1);d=null}();var X=/^(?:input|select|textarea)$/i,Y=/^key/,Z=/^(?:mouse|pointer|contextmenu)|click/,$=/^(?:focusinfocus|focusoutblur)$/,_=/^([^.]*)(?:\.(.+)|)$/;function ab(){return!0}function bb(){return!1}function cb(){try{return y.activeElement}catch(a){}}m.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m._data(a);if(r){c.handler&&(i=c,c=i.handler,e=i.selector),c.guid||(c.guid=m.guid++),(g=r.events)||(g=r.events={}),(k=r.handle)||(k=r.handle=function(a){return typeof m===K||a&&m.event.triggered===a.type?void 0:m.event.dispatch.apply(k.elem,arguments)},k.elem=a),b=(b||"").match(E)||[""],h=b.length;while(h--)f=_.exec(b[h])||[],o=q=f[1],p=(f[2]||"").split(".").sort(),o&&(j=m.event.special[o]||{},o=(e?j.delegateType:j.bindType)||o,j=m.event.special[o]||{},l=m.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&m.expr.match.needsContext.test(e),namespace:p.join(".")},i),(n=g[o])||(n=g[o]=[],n.delegateCount=0,j.setup&&j.setup.call(a,d,p,k)!==!1||(a.addEventListener?a.addEventListener(o,k,!1):a.attachEvent&&a.attachEvent("on"+o,k))),j.add&&(j.add.call(a,l),l.handler.guid||(l.handler.guid=c.guid)),e?n.splice(n.delegateCount++,0,l):n.push(l),m.event.global[o]=!0);a=null}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m.hasData(a)&&m._data(a);if(r&&(k=r.events)){b=(b||"").match(E)||[""],j=b.length;while(j--)if(h=_.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=m.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,n=k[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),i=f=n.length;while(f--)g=n[f],!e&&q!==g.origType||c&&c.guid!==g.guid||h&&!h.test(g.namespace)||d&&d!==g.selector&&("**"!==d||!g.selector)||(n.splice(f,1),g.selector&&n.delegateCount--,l.remove&&l.remove.call(a,g));i&&!n.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||m.removeEvent(a,o,r.handle),delete k[o])}else for(o in k)m.event.remove(a,o+b[j],c,d,!0);m.isEmptyObject(k)&&(delete r.handle,m._removeData(a,"events"))}},trigger:function(b,c,d,e){var f,g,h,i,k,l,n,o=[d||y],p=j.call(b,"type")?b.type:b,q=j.call(b,"namespace")?b.namespace.split("."):[];if(h=l=d=d||y,3!==d.nodeType&&8!==d.nodeType&&!$.test(p+m.event.triggered)&&(p.indexOf(".")>=0&&(q=p.split("."),p=q.shift(),q.sort()),g=p.indexOf(":")<0&&"on"+p,b=b[m.expando]?b:new m.Event(p,"object"==typeof b&&b),b.isTrigger=e?2:3,b.namespace=q.join("."),b.namespace_re=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=d),c=null==c?[b]:m.makeArray(c,[b]),k=m.event.special[p]||{},e||!k.trigger||k.trigger.apply(d,c)!==!1)){if(!e&&!k.noBubble&&!m.isWindow(d)){for(i=k.delegateType||p,$.test(i+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),l=h;l===(d.ownerDocument||y)&&o.push(l.defaultView||l.parentWindow||a)}n=0;while((h=o[n++])&&!b.isPropagationStopped())b.type=n>1?i:k.bindType||p,f=(m._data(h,"events")||{})[b.type]&&m._data(h,"handle"),f&&f.apply(h,c),f=g&&h[g],f&&f.apply&&m.acceptData(h)&&(b.result=f.apply(h,c),b.result===!1&&b.preventDefault());if(b.type=p,!e&&!b.isDefaultPrevented()&&(!k._default||k._default.apply(o.pop(),c)===!1)&&m.acceptData(d)&&g&&d[p]&&!m.isWindow(d)){l=d[g],l&&(d[g]=null),m.event.triggered=p;try{d[p]()}catch(r){}m.event.triggered=void 0,l&&(d[g]=l)}return b.result}},dispatch:function(a){a=m.event.fix(a);var b,c,e,f,g,h=[],i=d.call(arguments),j=(m._data(this,"events")||{})[a.type]||[],k=m.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=m.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,g=0;while((e=f.handlers[g++])&&!a.isImmediatePropagationStopped())(!a.namespace_re||a.namespace_re.test(e.namespace))&&(a.handleObj=e,a.data=e.data,c=((m.event.special[e.origType]||{}).handle||e.handler).apply(f.elem,i),void 0!==c&&(a.result=c)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&(!a.button||"click"!==a.type))for(;i!=this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(e=[],f=0;h>f;f++)d=b[f],c=d.selector+" ",void 0===e[c]&&(e[c]=d.needsContext?m(c,this).index(i)>=0:m.find(c,this,null,[i]).length),e[c]&&e.push(d);e.length&&g.push({elem:i,handlers:e})}return h<b.length&&g.push({elem:this,handlers:b.slice(h)}),g},fix:function(a){if(a[m.expando])return a;var b,c,d,e=a.type,f=a,g=this.fixHooks[e];g||(this.fixHooks[e]=g=Z.test(e)?this.mouseHooks:Y.test(e)?this.keyHooks:{}),d=g.props?this.props.concat(g.props):this.props,a=new m.Event(f),b=d.length;while(b--)c=d[b],a[c]=f[c];return a.target||(a.target=f.srcElement||y),3===a.target.nodeType&&(a.target=a.target.parentNode),a.metaKey=!!a.metaKey,g.filter?g.filter(a,f):a},props:"altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){return null==a.which&&(a.which=null!=b.charCode?b.charCode:b.keyCode),a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,b){var c,d,e,f=b.button,g=b.fromElement;return null==a.pageX&&null!=b.clientX&&(d=a.target.ownerDocument||y,e=d.documentElement,c=d.body,a.pageX=b.clientX+(e&&e.scrollLeft||c&&c.scrollLeft||0)-(e&&e.clientLeft||c&&c.clientLeft||0),a.pageY=b.clientY+(e&&e.scrollTop||c&&c.scrollTop||0)-(e&&e.clientTop||c&&c.clientTop||0)),!a.relatedTarget&&g&&(a.relatedTarget=g===a.target?b.toElement:g),a.which||void 0===f||(a.which=1&f?1:2&f?3:4&f?2:0),a}},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==cb()&&this.focus)try{return this.focus(),!1}catch(a){}},delegateType:"focusin"},blur:{trigger:function(){return this===cb()&&this.blur?(this.blur(),!1):void 0},delegateType:"focusout"},click:{trigger:function(){return m.nodeName(this,"input")&&"checkbox"===this.type&&this.click?(this.click(),!1):void 0},_default:function(a){return m.nodeName(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}},simulate:function(a,b,c,d){var e=m.extend(new m.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?m.event.trigger(e,null,b):m.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},m.removeEvent=y.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){var d="on"+b;a.detachEvent&&(typeof a[d]===K&&(a[d]=null),a.detachEvent(d,c))},m.Event=function(a,b){return this instanceof m.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?ab:bb):this.type=a,b&&m.extend(this,b),this.timeStamp=a&&a.timeStamp||m.now(),void(this[m.expando]=!0)):new m.Event(a,b)},m.Event.prototype={isDefaultPrevented:bb,isPropagationStopped:bb,isImmediatePropagationStopped:bb,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=ab,a&&(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=ab,a&&(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=ab,a&&a.stopImmediatePropagation&&a.stopImmediatePropagation(),this.stopPropagation()}},m.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){m.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return(!e||e!==d&&!m.contains(d,e))&&(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),k.submitBubbles||(m.event.special.submit={setup:function(){return m.nodeName(this,"form")?!1:void m.event.add(this,"click._submit keypress._submit",function(a){var b=a.target,c=m.nodeName(b,"input")||m.nodeName(b,"button")?b.form:void 0;c&&!m._data(c,"submitBubbles")&&(m.event.add(c,"submit._submit",function(a){a._submit_bubble=!0}),m._data(c,"submitBubbles",!0))})},postDispatch:function(a){a._submit_bubble&&(delete a._submit_bubble,this.parentNode&&!a.isTrigger&&m.event.simulate("submit",this.parentNode,a,!0))},teardown:function(){return m.nodeName(this,"form")?!1:void m.event.remove(this,"._submit")}}),k.changeBubbles||(m.event.special.change={setup:function(){return X.test(this.nodeName)?(("checkbox"===this.type||"radio"===this.type)&&(m.event.add(this,"propertychange._change",function(a){"checked"===a.originalEvent.propertyName&&(this._just_changed=!0)}),m.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1),m.event.simulate("change",this,a,!0)})),!1):void m.event.add(this,"beforeactivate._change",function(a){var b=a.target;X.test(b.nodeName)&&!m._data(b,"changeBubbles")&&(m.event.add(b,"change._change",function(a){!this.parentNode||a.isSimulated||a.isTrigger||m.event.simulate("change",this.parentNode,a,!0)}),m._data(b,"changeBubbles",!0))})},handle:function(a){var b=a.target;return this!==b||a.isSimulated||a.isTrigger||"radio"!==b.type&&"checkbox"!==b.type?a.handleObj.handler.apply(this,arguments):void 0},teardown:function(){return m.event.remove(this,"._change"),!X.test(this.nodeName)}}),k.focusinBubbles||m.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){m.event.simulate(b,a.target,m.event.fix(a),!0)};m.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=m._data(d,b);e||d.addEventListener(a,c,!0),m._data(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=m._data(d,b)-1;e?m._data(d,b,e):(d.removeEventListener(a,c,!0),m._removeData(d,b))}}}),m.fn.extend({on:function(a,b,c,d,e){var f,g;if("object"==typeof a){"string"!=typeof b&&(c=c||b,b=void 0);for(f in a)this.on(f,b,c,a[f],e);return this}if(null==c&&null==d?(d=b,c=b=void 0):null==d&&("string"==typeof b?(d=c,c=void 0):(d=c,c=b,b=void 0)),d===!1)d=bb;else if(!d)return this;return 1===e&&(g=d,d=function(a){return m().off(a),g.apply(this,arguments)},d.guid=g.guid||(g.guid=m.guid++)),this.each(function(){m.event.add(this,a,d,c,b)})},one:function(a,b,c,d){return this.on(a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,m(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return(b===!1||"function"==typeof b)&&(c=b,b=void 0),c===!1&&(c=bb),this.each(function(){m.event.remove(this,a,c,b)})},trigger:function(a,b){return this.each(function(){m.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];return c?m.event.trigger(a,b,c,!0):void 0}});function db(a){var b=eb.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}var eb="abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",fb=/ jQuery\d+="(?:null|\d+)"/g,gb=new RegExp("<(?:"+eb+")[\\s/>]","i"),hb=/^\s+/,ib=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,jb=/<([\w:]+)/,kb=/<tbody/i,lb=/<|&#?\w+;/,mb=/<(?:script|style|link)/i,nb=/checked\s*(?:[^=]|=\s*.checked.)/i,ob=/^$|\/(?:java|ecma)script/i,pb=/^true\/(.*)/,qb=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g,rb={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],area:[1,"<map>","</map>"],param:[1,"<object>","</object>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:k.htmlSerialize?[0,"",""]:[1,"X<div>","</div>"]},sb=db(y),tb=sb.appendChild(y.createElement("div"));rb.optgroup=rb.option,rb.tbody=rb.tfoot=rb.colgroup=rb.caption=rb.thead,rb.th=rb.td;function ub(a,b){var c,d,e=0,f=typeof a.getElementsByTagName!==K?a.getElementsByTagName(b||"*"):typeof a.querySelectorAll!==K?a.querySelectorAll(b||"*"):void 0;if(!f)for(f=[],c=a.childNodes||a;null!=(d=c[e]);e++)!b||m.nodeName(d,b)?f.push(d):m.merge(f,ub(d,b));return void 0===b||b&&m.nodeName(a,b)?m.merge([a],f):f}function vb(a){W.test(a.type)&&(a.defaultChecked=a.checked)}function wb(a,b){return m.nodeName(a,"table")&&m.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function xb(a){return a.type=(null!==m.find.attr(a,"type"))+"/"+a.type,a}function yb(a){var b=pb.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function zb(a,b){for(var c,d=0;null!=(c=a[d]);d++)m._data(c,"globalEval",!b||m._data(b[d],"globalEval"))}function Ab(a,b){if(1===b.nodeType&&m.hasData(a)){var c,d,e,f=m._data(a),g=m._data(b,f),h=f.events;if(h){delete g.handle,g.events={};for(c in h)for(d=0,e=h[c].length;e>d;d++)m.event.add(b,c,h[c][d])}g.data&&(g.data=m.extend({},g.data))}}function Bb(a,b){var c,d,e;if(1===b.nodeType){if(c=b.nodeName.toLowerCase(),!k.noCloneEvent&&b[m.expando]){e=m._data(b);for(d in e.events)m.removeEvent(b,d,e.handle);b.removeAttribute(m.expando)}"script"===c&&b.text!==a.text?(xb(b).text=a.text,yb(b)):"object"===c?(b.parentNode&&(b.outerHTML=a.outerHTML),k.html5Clone&&a.innerHTML&&!m.trim(b.innerHTML)&&(b.innerHTML=a.innerHTML)):"input"===c&&W.test(a.type)?(b.defaultChecked=b.checked=a.checked,b.value!==a.value&&(b.value=a.value)):"option"===c?b.defaultSelected=b.selected=a.defaultSelected:("input"===c||"textarea"===c)&&(b.defaultValue=a.defaultValue)}}m.extend({clone:function(a,b,c){var d,e,f,g,h,i=m.contains(a.ownerDocument,a);if(k.html5Clone||m.isXMLDoc(a)||!gb.test("<"+a.nodeName+">")?f=a.cloneNode(!0):(tb.innerHTML=a.outerHTML,tb.removeChild(f=tb.firstChild)),!(k.noCloneEvent&&k.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||m.isXMLDoc(a)))for(d=ub(f),h=ub(a),g=0;null!=(e=h[g]);++g)d[g]&&Bb(e,d[g]);if(b)if(c)for(h=h||ub(a),d=d||ub(f),g=0;null!=(e=h[g]);g++)Ab(e,d[g]);else Ab(a,f);return d=ub(f,"script"),d.length>0&&zb(d,!i&&ub(a,"script")),d=h=e=null,f},buildFragment:function(a,b,c,d){for(var e,f,g,h,i,j,l,n=a.length,o=db(b),p=[],q=0;n>q;q++)if(f=a[q],f||0===f)if("object"===m.type(f))m.merge(p,f.nodeType?[f]:f);else if(lb.test(f)){h=h||o.appendChild(b.createElement("div")),i=(jb.exec(f)||["",""])[1].toLowerCase(),l=rb[i]||rb._default,h.innerHTML=l[1]+f.replace(ib,"<$1></$2>")+l[2],e=l[0];while(e--)h=h.lastChild;if(!k.leadingWhitespace&&hb.test(f)&&p.push(b.createTextNode(hb.exec(f)[0])),!k.tbody){f="table"!==i||kb.test(f)?"<table>"!==l[1]||kb.test(f)?0:h:h.firstChild,e=f&&f.childNodes.length;while(e--)m.nodeName(j=f.childNodes[e],"tbody")&&!j.childNodes.length&&f.removeChild(j)}m.merge(p,h.childNodes),h.textContent="";while(h.firstChild)h.removeChild(h.firstChild);h=o.lastChild}else p.push(b.createTextNode(f));h&&o.removeChild(h),k.appendChecked||m.grep(ub(p,"input"),vb),q=0;while(f=p[q++])if((!d||-1===m.inArray(f,d))&&(g=m.contains(f.ownerDocument,f),h=ub(o.appendChild(f),"script"),g&&zb(h),c)){e=0;while(f=h[e++])ob.test(f.type||"")&&c.push(f)}return h=null,o},cleanData:function(a,b){for(var d,e,f,g,h=0,i=m.expando,j=m.cache,l=k.deleteExpando,n=m.event.special;null!=(d=a[h]);h++)if((b||m.acceptData(d))&&(f=d[i],g=f&&j[f])){if(g.events)for(e in g.events)n[e]?m.event.remove(d,e):m.removeEvent(d,e,g.handle);j[f]&&(delete j[f],l?delete d[i]:typeof d.removeAttribute!==K?d.removeAttribute(i):d[i]=null,c.push(f))}}}),m.fn.extend({text:function(a){return V(this,function(a){return void 0===a?m.text(this):this.empty().append((this[0]&&this[0].ownerDocument||y).createTextNode(a))},null,a,arguments.length)},append:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wb(this,a);b.appendChild(a)}})},prepend:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wb(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},remove:function(a,b){for(var c,d=a?m.filter(a,this):this,e=0;null!=(c=d[e]);e++)b||1!==c.nodeType||m.cleanData(ub(c)),c.parentNode&&(b&&m.contains(c.ownerDocument,c)&&zb(ub(c,"script")),c.parentNode.removeChild(c));return this},empty:function(){for(var a,b=0;null!=(a=this[b]);b++){1===a.nodeType&&m.cleanData(ub(a,!1));while(a.firstChild)a.removeChild(a.firstChild);a.options&&m.nodeName(a,"select")&&(a.options.length=0)}return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return m.clone(this,a,b)})},html:function(a){return V(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a)return 1===b.nodeType?b.innerHTML.replace(fb,""):void 0;if(!("string"!=typeof a||mb.test(a)||!k.htmlSerialize&&gb.test(a)||!k.leadingWhitespace&&hb.test(a)||rb[(jb.exec(a)||["",""])[1].toLowerCase()])){a=a.replace(ib,"<$1></$2>");try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(m.cleanData(ub(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=arguments[0];return this.domManip(arguments,function(b){a=this.parentNode,m.cleanData(ub(this)),a&&a.replaceChild(b,this)}),a&&(a.length||a.nodeType)?this:this.remove()},detach:function(a){return this.remove(a,!0)},domManip:function(a,b){a=e.apply([],a);var c,d,f,g,h,i,j=0,l=this.length,n=this,o=l-1,p=a[0],q=m.isFunction(p);if(q||l>1&&"string"==typeof p&&!k.checkClone&&nb.test(p))return this.each(function(c){var d=n.eq(c);q&&(a[0]=p.call(this,c,d.html())),d.domManip(a,b)});if(l&&(i=m.buildFragment(a,this[0].ownerDocument,!1,this),c=i.firstChild,1===i.childNodes.length&&(i=c),c)){for(g=m.map(ub(i,"script"),xb),f=g.length;l>j;j++)d=i,j!==o&&(d=m.clone(d,!0,!0),f&&m.merge(g,ub(d,"script"))),b.call(this[j],d,j);if(f)for(h=g[g.length-1].ownerDocument,m.map(g,yb),j=0;f>j;j++)d=g[j],ob.test(d.type||"")&&!m._data(d,"globalEval")&&m.contains(h,d)&&(d.src?m._evalUrl&&m._evalUrl(d.src):m.globalEval((d.text||d.textContent||d.innerHTML||"").replace(qb,"")));i=c=null}return this}}),m.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){m.fn[a]=function(a){for(var c,d=0,e=[],g=m(a),h=g.length-1;h>=d;d++)c=d===h?this:this.clone(!0),m(g[d])[b](c),f.apply(e,c.get());return this.pushStack(e)}});var Cb,Db={};function Eb(b,c){var d,e=m(c.createElement(b)).appendTo(c.body),f=a.getDefaultComputedStyle&&(d=a.getDefaultComputedStyle(e[0]))?d.display:m.css(e[0],"display");return e.detach(),f}function Fb(a){var b=y,c=Db[a];return c||(c=Eb(a,b),"none"!==c&&c||(Cb=(Cb||m("<iframe frameborder='0' width='0' height='0'/>")).appendTo(b.documentElement),b=(Cb[0].contentWindow||Cb[0].contentDocument).document,b.write(),b.close(),c=Eb(a,b),Cb.detach()),Db[a]=c),c}!function(){var a;k.shrinkWrapBlocks=function(){if(null!=a)return a;a=!1;var b,c,d;return c=y.getElementsByTagName("body")[0],c&&c.style?(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:1px;width:1px;zoom:1",b.appendChild(y.createElement("div")).style.width="5px",a=3!==b.offsetWidth),c.removeChild(d),a):void 0}}();var Gb=/^margin/,Hb=new RegExp("^("+S+")(?!px)[a-z%]+$","i"),Ib,Jb,Kb=/^(top|right|bottom|left)$/;a.getComputedStyle?(Ib=function(a){return a.ownerDocument.defaultView.getComputedStyle(a,null)},Jb=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ib(a),g=c?c.getPropertyValue(b)||c[b]:void 0,c&&(""!==g||m.contains(a.ownerDocument,a)||(g=m.style(a,b)),Hb.test(g)&&Gb.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f)),void 0===g?g:g+""}):y.documentElement.currentStyle&&(Ib=function(a){return a.currentStyle},Jb=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ib(a),g=c?c[b]:void 0,null==g&&h&&h[b]&&(g=h[b]),Hb.test(g)&&!Kb.test(b)&&(d=h.left,e=a.runtimeStyle,f=e&&e.left,f&&(e.left=a.currentStyle.left),h.left="fontSize"===b?"1em":g,g=h.pixelLeft+"px",h.left=d,f&&(e.left=f)),void 0===g?g:g+""||"auto"});function Lb(a,b){return{get:function(){var c=a();if(null!=c)return c?void delete this.get:(this.get=b).apply(this,arguments)}}}!function(){var b,c,d,e,f,g,h;if(b=y.createElement("div"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=d&&d.style){c.cssText="float:left;opacity:.5",k.opacity="0.5"===c.opacity,k.cssFloat=!!c.cssFloat,b.style.backgroundClip="content-box",b.cloneNode(!0).style.backgroundClip="",k.clearCloneStyle="content-box"===b.style.backgroundClip,k.boxSizing=""===c.boxSizing||""===c.MozBoxSizing||""===c.WebkitBoxSizing,m.extend(k,{reliableHiddenOffsets:function(){return null==g&&i(),g},boxSizingReliable:function(){return null==f&&i(),f},pixelPosition:function(){return null==e&&i(),e},reliableMarginRight:function(){return null==h&&i(),h}});function i(){var b,c,d,i;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),b.style.cssText="-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;display:block;margin-top:1%;top:1%;border:1px;padding:1px;width:4px;position:absolute",e=f=!1,h=!0,a.getComputedStyle&&(e="1%"!==(a.getComputedStyle(b,null)||{}).top,f="4px"===(a.getComputedStyle(b,null)||{width:"4px"}).width,i=b.appendChild(y.createElement("div")),i.style.cssText=b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:0",i.style.marginRight=i.style.width="0",b.style.width="1px",h=!parseFloat((a.getComputedStyle(i,null)||{}).marginRight)),b.innerHTML="<table><tr><td></td><td>t</td></tr></table>",i=b.getElementsByTagName("td"),i[0].style.cssText="margin:0;border:0;padding:0;display:none",g=0===i[0].offsetHeight,g&&(i[0].style.display="",i[1].style.display="none",g=0===i[0].offsetHeight),c.removeChild(d))}}}(),m.swap=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e};var Mb=/alpha\([^)]*\)/i,Nb=/opacity\s*=\s*([^)]*)/,Ob=/^(none|table(?!-c[ea]).+)/,Pb=new RegExp("^("+S+")(.*)$","i"),Qb=new RegExp("^([+-])=("+S+")","i"),Rb={position:"absolute",visibility:"hidden",display:"block"},Sb={letterSpacing:"0",fontWeight:"400"},Tb=["Webkit","O","Moz","ms"];function Ub(a,b){if(b in a)return b;var c=b.charAt(0).toUpperCase()+b.slice(1),d=b,e=Tb.length;while(e--)if(b=Tb[e]+c,b in a)return b;return d}function Vb(a,b){for(var c,d,e,f=[],g=0,h=a.length;h>g;g++)d=a[g],d.style&&(f[g]=m._data(d,"olddisplay"),c=d.style.display,b?(f[g]||"none"!==c||(d.style.display=""),""===d.style.display&&U(d)&&(f[g]=m._data(d,"olddisplay",Fb(d.nodeName)))):(e=U(d),(c&&"none"!==c||!e)&&m._data(d,"olddisplay",e?c:m.css(d,"display"))));for(g=0;h>g;g++)d=a[g],d.style&&(b&&"none"!==d.style.display&&""!==d.style.display||(d.style.display=b?f[g]||"":"none"));return a}function Wb(a,b,c){var d=Pb.exec(b);return d?Math.max(0,d[1]-(c||0))+(d[2]||"px"):b}function Xb(a,b,c,d,e){for(var f=c===(d?"border":"content")?4:"width"===b?1:0,g=0;4>f;f+=2)"margin"===c&&(g+=m.css(a,c+T[f],!0,e)),d?("content"===c&&(g-=m.css(a,"padding"+T[f],!0,e)),"margin"!==c&&(g-=m.css(a,"border"+T[f]+"Width",!0,e))):(g+=m.css(a,"padding"+T[f],!0,e),"padding"!==c&&(g+=m.css(a,"border"+T[f]+"Width",!0,e)));return g}function Yb(a,b,c){var d=!0,e="width"===b?a.offsetWidth:a.offsetHeight,f=Ib(a),g=k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,f);if(0>=e||null==e){if(e=Jb(a,b,f),(0>e||null==e)&&(e=a.style[b]),Hb.test(e))return e;d=g&&(k.boxSizingReliable()||e===a.style[b]),e=parseFloat(e)||0}return e+Xb(a,b,c||(g?"border":"content"),d,f)+"px"}m.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Jb(a,"opacity");return""===c?"1":c}}}},cssNumber:{columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":k.cssFloat?"cssFloat":"styleFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=m.camelCase(b),i=a.style;if(b=m.cssProps[h]||(m.cssProps[h]=Ub(i,h)),g=m.cssHooks[b]||m.cssHooks[h],void 0===c)return g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:i[b];if(f=typeof c,"string"===f&&(e=Qb.exec(c))&&(c=(e[1]+1)*e[2]+parseFloat(m.css(a,b)),f="number"),null!=c&&c===c&&("number"!==f||m.cssNumber[h]||(c+="px"),k.clearCloneStyle||""!==c||0!==b.indexOf("background")||(i[b]="inherit"),!(g&&"set"in g&&void 0===(c=g.set(a,c,d)))))try{i[b]=c}catch(j){}}},css:function(a,b,c,d){var e,f,g,h=m.camelCase(b);return b=m.cssProps[h]||(m.cssProps[h]=Ub(a.style,h)),g=m.cssHooks[b]||m.cssHooks[h],g&&"get"in g&&(f=g.get(a,!0,c)),void 0===f&&(f=Jb(a,b,d)),"normal"===f&&b in Sb&&(f=Sb[b]),""===c||c?(e=parseFloat(f),c===!0||m.isNumeric(e)?e||0:f):f}}),m.each(["height","width"],function(a,b){m.cssHooks[b]={get:function(a,c,d){return c?Ob.test(m.css(a,"display"))&&0===a.offsetWidth?m.swap(a,Rb,function(){return Yb(a,b,d)}):Yb(a,b,d):void 0},set:function(a,c,d){var e=d&&Ib(a);return Wb(a,c,d?Xb(a,b,d,k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,e),e):0)}}}),k.opacity||(m.cssHooks.opacity={get:function(a,b){return Nb.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?.01*parseFloat(RegExp.$1)+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=m.isNumeric(b)?"alpha(opacity="+100*b+")":"",f=d&&d.filter||c.filter||"";c.zoom=1,(b>=1||""===b)&&""===m.trim(f.replace(Mb,""))&&c.removeAttribute&&(c.removeAttribute("filter"),""===b||d&&!d.filter)||(c.filter=Mb.test(f)?f.replace(Mb,e):f+" "+e)}}),m.cssHooks.marginRight=Lb(k.reliableMarginRight,function(a,b){return b?m.swap(a,{display:"inline-block"},Jb,[a,"marginRight"]):void 0}),m.each({margin:"",padding:"",border:"Width"},function(a,b){m.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];4>d;d++)e[a+T[d]+b]=f[d]||f[d-2]||f[0];return e}},Gb.test(a)||(m.cssHooks[a+b].set=Wb)}),m.fn.extend({css:function(a,b){return V(this,function(a,b,c){var d,e,f={},g=0;if(m.isArray(b)){for(d=Ib(a),e=b.length;e>g;g++)f[b[g]]=m.css(a,b[g],!1,d);return f}return void 0!==c?m.style(a,b,c):m.css(a,b)},a,b,arguments.length>1)},show:function(){return Vb(this,!0)},hide:function(){return Vb(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){U(this)?m(this).show():m(this).hide()})}});function Zb(a,b,c,d,e){return new Zb.prototype.init(a,b,c,d,e)}m.Tween=Zb,Zb.prototype={constructor:Zb,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")
+},cur:function(){var a=Zb.propHooks[this.prop];return a&&a.get?a.get(this):Zb.propHooks._default.get(this)},run:function(a){var b,c=Zb.propHooks[this.prop];return this.pos=b=this.options.duration?m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Zb.propHooks._default.set(this),this}},Zb.prototype.init.prototype=Zb.prototype,Zb.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Zb.propHooks.scrollTop=Zb.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Zb.prototype.init,m.fx.step={};var $b,_b,ac=/^(?:toggle|show|hide)$/,bc=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),cc=/queueHooks$/,dc=[ic],ec={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bc.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bc.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fc(){return setTimeout(function(){$b=void 0}),$b=m.now()}function gc(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hc(a,b,c){for(var d,e=(ec[b]||[]).concat(ec["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ic(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fb(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fb(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ac.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fb(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hc(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jc(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kc(a,b,c){var d,e,f=0,g=dc.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=$b||fc(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:$b||fc(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jc(k,j.opts.specialEasing);g>f;f++)if(d=dc[f].call(j,a,k,j.opts))return d;return m.map(k,hc,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kc,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],ec[c]=ec[c]||[],ec[c].unshift(b)},prefilter:function(a,b){b?dc.unshift(a):dc.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kc(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cc.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gc(b,!0),a,d,e)}}),m.each({slideDown:gc("show"),slideUp:gc("hide"),slideToggle:gc("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for($b=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),$b=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_b||(_b=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_b),_b=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lc=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lc,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mc,nc,oc=m.expr.attrHandle,pc=/^(?:checked|selected)$/i,qc=k.getSetAttribute,rc=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nc:mc)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rc&&qc||!pc.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qc?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nc={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rc&&qc||!pc.test(c)?a.setAttribute(!qc&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=oc[b]||m.find.attr;oc[b]=rc&&qc||!pc.test(b)?function(a,b,d){var e,f;return d||(f=oc[b],oc[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,oc[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rc&&qc||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mc&&mc.set(a,b,c)}}),qc||(mc={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},oc.id=oc.name=oc.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mc.set},m.attrHooks.contenteditable={set:function(a,b,c){mc.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sc=/^(?:input|select|textarea|button|object)$/i,tc=/^(?:a|area)$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sc.test(a.nodeName)||tc.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var uc=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(uc," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(uc," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(uc," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vc=m.now(),wc=/\?/,xc=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xc,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yc,zc,Ac=/#.*$/,Bc=/([?&])_=[^&]*/,Cc=/^(.*?):[ \t]*([^\r\n]*)\r?$/gm,Dc=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,Ec=/^(?:GET|HEAD)$/,Fc=/^\/\//,Gc=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hc={},Ic={},Jc="*/".concat("*");try{zc=location.href}catch(Kc){zc=y.createElement("a"),zc.href="",zc=zc.href}yc=Gc.exec(zc.toLowerCase())||[];function Lc(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mc(a,b,c,d){var e={},f=a===Ic;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nc(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Oc(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pc(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zc,type:"GET",isLocal:Dc.test(yc[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jc,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nc(Nc(a,m.ajaxSettings),b):Nc(m.ajaxSettings,a)},ajaxPrefilter:Lc(Hc),ajaxTransport:Lc(Ic),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cc.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zc)+"").replace(Ac,"").replace(Fc,yc[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gc.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yc[1]&&c[2]===yc[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yc[3]||("http:"===yc[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mc(Hc,k,b,v),2===t)return v;h=k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Ec.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wc.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bc.test(e)?e.replace(Bc,"$1_="+vc++):e+(wc.test(e)?"&":"?")+"_="+vc++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jc+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mc(Ic,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Oc(k,v,c)),u=Pc(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qc=/%20/g,Rc=/\[\]$/,Sc=/\r?\n/g,Tc=/^(?:submit|button|image|reset|file)$/i,Uc=/^(?:input|select|textarea|keygen)/i;function Vc(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rc.test(a)?d(a,e):Vc(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vc(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vc(c,a[c],b,e);return d.join("&").replace(Qc,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Uc.test(this.nodeName)&&!Tc.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sc,"\r\n")}}):{name:b.name,value:c.replace(Sc,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)$/i.test(this.type)&&Zc()||$c()}:Zc;var Wc=0,Xc={},Yc=m.ajaxSettings.xhr();a.ActiveXObject&&m(a).on("unload",function(){for(var a in Xc)Xc[a](void 0,!0)}),k.cors=!!Yc&&"withCredentials"in Yc,Yc=k.ajax=!!Yc,Yc&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wc;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xc[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xc[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zc(){try{return new a.XMLHttpRequest}catch(b){}}function $c(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _c=[],ad=/(=)\?(?=&|$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_c.pop()||m.expando+"_"+vc++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ad.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ad.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ad,"$1"+e):b.jsonp!==!1&&(b.url+=(wc.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_c.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bd=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bd)return bd.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cd=a.document.documentElement;function dd(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dd(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cd;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cd})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dd(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=Lb(k.pixelPosition,function(a,c){return c?(c=Jb(a,b),Hb.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ed=a.jQuery,fd=a.$;return m.noConflict=function(b){return a.$===m&&(a.$=fd),b&&a.jQuery===m&&(a.jQuery=ed),m},typeof b===K&&(a.jQuery=a.$=m),m});
\ No newline at end of file
diff --git a/coverage_report/jquery.tablesorter.min.js b/coverage_report/jquery.tablesorter.min.js
new file mode 100644
index 0000000..64c7007
--- /dev/null
+++ b/coverage_report/jquery.tablesorter.min.js
@@ -0,0 +1,2 @@
+
+(function($){$.extend({tablesorter:new function(){var parsers=[],widgets=[];this.defaults={cssHeader:"header",cssAsc:"headerSortUp",cssDesc:"headerSortDown",sortInitialOrder:"asc",sortMultiSortKey:"shiftKey",sortForce:null,sortAppend:null,textExtraction:"simple",parsers:{},widgets:[],widgetZebra:{css:["even","odd"]},headers:{},widthFixed:false,cancelSelection:true,sortList:[],headerList:[],dateFormat:"us",decimal:'.',debug:false};function benchmark(s,d){log(s+","+(new Date().getTime()-d.getTime())+"ms");}this.benchmark=benchmark;function log(s){if(typeof console!="undefined"&&typeof console.debug!="undefined"){console.log(s);}else{alert(s);}}function buildParserCache(table,$headers){if(table.config.debug){var parsersDebug="";}var rows=table.tBodies[0].rows;if(table.tBodies[0].rows[0]){var list=[],cells=rows[0].cells,l=cells.length;for(var i=0;i<l;i++){var p=false;if($.metadata&&($($headers[i]).metadata()&&$($headers[i]).metadata().sorter)){p=getParserById($($headers[i]).metadata().sorter);}else if((table.config.headers[i]&&table.config.headers[i].sorter)){p=getParserById(table.config.headers[i].sorter);}if(!p){p=detectParserForColumn(table,cells[i]);}if(table.config.debug){parsersDebug+="column:"+i+" parser:"+p.id+"\n";}list.push(p);}}if(table.config.debug){log(parsersDebug);}return list;};function detectParserForColumn(table,node){var l=parsers.length;for(var i=1;i<l;i++){if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)){return parsers[i];}}return parsers[0];}function getParserById(name){var l=parsers.length;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==name.toLowerCase()){return parsers[i];}}return false;}function buildCache(table){if(table.config.debug){var cacheTime=new Date();}var totalRows=(table.tBodies[0]&&table.tBodies[0].rows.length)||0,totalCells=(table.tBodies[0].rows[0]&&table.tBodies[0].rows[0].cells.length)||0,parsers=table.config.parsers,cache={row:[],normalized:[]};for(var i=0;i<totalRows;++i){var c=table.tBodies[0].rows[i],cols=[];cache.row.push($(c));for(var j=0;j<totalCells;++j){cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));}cols.push(i);cache.normalized.push(cols);cols=null;};if(table.config.debug){benchmark("Building cache for "+totalRows+" rows:",cacheTime);}return cache;};function getElementText(config,node){if(!node)return"";var t="";if(config.textExtraction=="simple"){if(node.childNodes[0]&&node.childNodes[0].hasChildNodes()){t=node.childNodes[0].innerHTML;}else{t=node.innerHTML;}}else{if(typeof(config.textExtraction)=="function"){t=config.textExtraction(node);}else{t=$(node).text();}}return t;}function appendToTable(table,cache){if(table.config.debug){var appendTime=new Date()}var c=cache,r=c.row,n=c.normalized,totalRows=n.length,checkCell=(n[0].length-1),tableBody=$(table.tBodies[0]),rows=[];for(var i=0;i<totalRows;i++){rows.push(r[n[i][checkCell]]);if(!table.config.appender){var o=r[n[i][checkCell]];var l=o.length;for(var j=0;j<l;j++){tableBody[0].appendChild(o[j]);}}}if(table.config.appender){table.config.appender(table,rows);}rows=null;if(table.config.debug){benchmark("Rebuilt table:",appendTime);}applyWidget(table);setTimeout(function(){$(table).trigger("sortEnd");},0);};function buildHeaders(table){if(table.config.debug){var time=new Date();}var meta=($.metadata)?true:false,tableHeadersRows=[];for(var i=0;i<table.tHead.rows.length;i++){tableHeadersRows[i]=0;};$tableHeaders=$("thead th",table);$tableHeaders.each(function(index){this.count=0;this.column=index;this.order=formatSortingOrder(table.config.sortInitialOrder);if(checkHeaderMetadata(this)||checkHeaderOptions(table,index))this.sortDisabled=true;if(!this.sortDisabled){$(this).addClass(table.config.cssHeader);}table.config.headerList[index]=this;});if(table.config.debug){benchmark("Built headers:",time);log($tableHeaders);}return $tableHeaders;};function checkCellColSpan(table,rows,row){var arr=[],r=table.tHead.rows,c=r[row].cells;for(var i=0;i<c.length;i++){var cell=c[i];if(cell.colSpan>1){arr=arr.concat(checkCellColSpan(table,headerArr,row++));}else{if(table.tHead.length==1||(cell.rowSpan>1||!r[row+1])){arr.push(cell);}}}return arr;};function checkHeaderMetadata(cell){if(($.metadata)&&($(cell).metadata().sorter===false)){return true;};return false;}function checkHeaderOptions(table,i){if((table.config.headers[i])&&(table.config.headers[i].sorter===false)){return true;};return false;}function applyWidget(table){var c=table.config.widgets;var l=c.length;for(var i=0;i<l;i++){getWidgetById(c[i]).format(table);}}function getWidgetById(name){var l=widgets.length;for(var i=0;i<l;i++){if(widgets[i].id.toLowerCase()==name.toLowerCase()){return widgets[i];}}};function formatSortingOrder(v){if(typeof(v)!="Number"){i=(v.toLowerCase()=="desc")?1:0;}else{i=(v==(0||1))?v:0;}return i;}function isValueInArray(v,a){var l=a.length;for(var i=0;i<l;i++){if(a[i][0]==v){return true;}}return false;}function setHeadersCss(table,$headers,list,css){$headers.removeClass(css[0]).removeClass(css[1]);var h=[];$headers.each(function(offset){if(!this.sortDisabled){h[this.column]=$(this);}});var l=list.length;for(var i=0;i<l;i++){h[list[i][0]].addClass(css[list[i][1]]);}}function fixColumnWidth(table,$headers){var c=table.config;if(c.widthFixed){var colgroup=$('<colgroup>');$("tr:first td",table.tBodies[0]).each(function(){colgroup.append($('<col>').css('width',$(this).width()));});$(table).prepend(colgroup);};}function updateHeaderSortCount(table,sortList){var c=table.config,l=sortList.length;for(var i=0;i<l;i++){var s=sortList[i],o=c.headerList[s[0]];o.count=s[1];o.count++;}}function multisort(table,sortList,cache){if(table.config.debug){var sortTime=new Date();}var dynamicExp="var sortWrapper = function(a,b) {",l=sortList.length;for(var i=0;i<l;i++){var c=sortList[i][0];var order=sortList[i][1];var s=(getCachedSortType(table.config.parsers,c)=="text")?((order==0)?"sortText":"sortTextDesc"):((order==0)?"sortNumeric":"sortNumericDesc");var e="e"+i;dynamicExp+="var "+e+" = "+s+"(a["+c+"],b["+c+"]); ";dynamicExp+="if("+e+") { return "+e+"; } ";dynamicExp+="else { ";}var orgOrderCol=cache.normalized[0].length-1;dynamicExp+="return a["+orgOrderCol+"]-b["+orgOrderCol+"];";for(var i=0;i<l;i++){dynamicExp+="}; ";}dynamicExp+="return 0; ";dynamicExp+="}; ";eval(dynamicExp);cache.normalized.sort(sortWrapper);if(table.config.debug){benchmark("Sorting on "+sortList.toString()+" and dir "+order+" time:",sortTime);}return cache;};function sortText(a,b){return((a<b)?-1:((a>b)?1:0));};function sortTextDesc(a,b){return((b<a)?-1:((b>a)?1:0));};function sortNumeric(a,b){return a-b;};function sortNumericDesc(a,b){return b-a;};function getCachedSortType(parsers,i){return parsers[i].type;};this.construct=function(settings){return this.each(function(){if(!this.tHead||!this.tBodies)return;var $this,$document,$headers,cache,config,shiftDown=0,sortOrder;this.config={};config=$.extend(this.config,$.tablesorter.defaults,settings);$this=$(this);$headers=buildHeaders(this);this.config.parsers=buildParserCache(this,$headers);cache=buildCache(this);var sortCSS=[config.cssDesc,config.cssAsc];fixColumnWidth(this);$headers.click(function(e){$this.trigger("sortStart");var totalRows=($this[0].tBodies[0]&&$this[0].tBodies[0].rows.length)||0;if(!this.sortDisabled&&totalRows>0){var $cell=$(this);var i=this.column;this.order=this.count++%2;if(!e[config.sortMultiSortKey]){config.sortList=[];if(config.sortForce!=null){var a=config.sortForce;for(var j=0;j<a.length;j++){if(a[j][0]!=i){config.sortList.push(a[j]);}}}config.sortList.push([i,this.order]);}else{if(isValueInArray(i,config.sortList)){for(var j=0;j<config.sortList.length;j++){var s=config.sortList[j],o=config.headerList[s[0]];if(s[0]==i){o.count=s[1];o.count++;s[1]=o.count%2;}}}else{config.sortList.push([i,this.order]);}};setTimeout(function(){setHeadersCss($this[0],$headers,config.sortList,sortCSS);appendToTable($this[0],multisort($this[0],config.sortList,cache));},1);return false;}}).mousedown(function(){if(config.cancelSelection){this.onselectstart=function(){return false};return false;}});$this.bind("update",function(){this.config.parsers=buildParserCache(this,$headers);cache=buildCache(this);}).bind("sorton",function(e,list){$(this).trigger("sortStart");config.sortList=list;var sortList=config.sortList;updateHeaderSortCount(this,sortList);setHeadersCss(this,$headers,sortList,sortCSS);appendToTable(this,multisort(this,sortList,cache));}).bind("appendCache",function(){appendToTable(this,cache);}).bind("applyWidgetId",function(e,id){getWidgetById(id).format(this);}).bind("applyWidgets",function(){applyWidget(this);});if($.metadata&&($(this).metadata()&&$(this).metadata().sortlist)){config.sortList=$(this).metadata().sortlist;}if(config.sortList.length>0){$this.trigger("sorton",[config.sortList]);}applyWidget(this);});};this.addParser=function(parser){var l=parsers.length,a=true;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==parser.id.toLowerCase()){a=false;}}if(a){parsers.push(parser);};};this.addWidget=function(widget){widgets.push(widget);};this.formatFloat=function(s){var i=parseFloat(s);return(isNaN(i))?0:i;};this.formatInt=function(s){var i=parseInt(s);return(isNaN(i))?0:i;};this.isDigit=function(s,config){var DECIMAL='\\'+config.decimal;var exp='/(^[+]?0('+DECIMAL+'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)'+DECIMAL+'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*'+DECIMAL+'0+$)/';return RegExp(exp).test($.trim(s));};this.clearTableBody=function(table){if($.browser.msie){function empty(){while(this.firstChild)this.removeChild(this.firstChild);}empty.apply(table.tBodies[0]);}else{table.tBodies[0].innerHTML="";}};}});$.fn.extend({tablesorter:$.tablesorter.construct});var ts=$.tablesorter;ts.addParser({id:"text",is:function(s){return true;},format:function(s){return $.trim(s.toLowerCase());},type:"text"});ts.addParser({id:"digit",is:function(s,table){var c=table.config;return $.tablesorter.isDigit(s,c);},format:function(s){return $.tablesorter.formatFloat(s);},type:"numeric"});ts.addParser({id:"currency",is:function(s){return/^[£$€?.]/.test(s);},format:function(s){return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));},type:"numeric"});ts.addParser({id:"ipAddress",is:function(s){return/^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);},format:function(s){var a=s.split("."),r="",l=a.length;for(var i=0;i<l;i++){var item=a[i];if(item.length==2){r+="0"+item;}else{r+=item;}}return $.tablesorter.formatFloat(r);},type:"numeric"});ts.addParser({id:"url",is:function(s){return/^(https?|ftp|file):\/\/$/.test(s);},format:function(s){return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));},type:"text"});ts.addParser({id:"isoDate",is:function(s){return/^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);},format:function(s){return $.tablesorter.formatFloat((s!="")?new Date(s.replace(new RegExp(/-/g),"/")).getTime():"0");},type:"numeric"});ts.addParser({id:"percent",is:function(s){return/\%$/.test($.trim(s));},format:function(s){return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));},type:"numeric"});ts.addParser({id:"usLongDate",is:function(s){return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));},format:function(s){return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"shortDate",is:function(s){return/\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);},format:function(s,table){var c=table.config;s=s.replace(/\-/g,"/");if(c.dateFormat=="us"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$1/$2");}else if(c.dateFormat=="uk"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$2/$1");}else if(c.dateFormat=="dd/mm/yy"||c.dateFormat=="dd-mm-yy"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/,"$1/$2/$3");}return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"time",is:function(s){return/^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);},format:function(s){return $.tablesorter.formatFloat(new Date("2000/01/01 "+s).getTime());},type:"numeric"});ts.addParser({id:"metadata",is:function(s){return false;},format:function(s,table,cell){var c=table.config,p=(!c.parserMetadataName)?'sortValue':c.parserMetadataName;return $(cell).metadata()[p];},type:"numeric"});ts.addWidget({id:"zebra",format:function(table){if(table.config.debug){var time=new Date();}$("tr:visible",table.tBodies[0]).filter(':even').removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0]).end().filter(':odd').removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);if(table.config.debug){$.tablesorter.benchmark("Applying Zebra widget",time);}}});})(jQuery);
\ No newline at end of file
diff --git a/coverage_report/keybd_closed.png b/coverage_report/keybd_closed.png
new file mode 100644
index 0000000000000000000000000000000000000000..db114023f096297a23a7b1266b469d0ce4556b0a
GIT binary patch
literal 112
zcmeAS@N?(olHy`uVBq!ia0vp^%0SG+!2%?mw9Xg;DRWO3$B+uf<OAIQgt<8-oJACl
z%`j0oqGGRjBSos&^U~$u9kEP}A;xY03|qMZk7$~=otvj5#>5cj*13AM(ls%l5e%NL
KelF{r5}E+1W**4^

literal 0
HcmV?d00001

diff --git a/coverage_report/keybd_open.png b/coverage_report/keybd_open.png
new file mode 100644
index 0000000000000000000000000000000000000000..db114023f096297a23a7b1266b469d0ce4556b0a
GIT binary patch
literal 112
zcmeAS@N?(olHy`uVBq!ia0vp^%0SG+!2%?mw9Xg;DRWO3$B+uf<OAIQgt<8-oJACl
z%`j0oqGGRjBSos&^U~$u9kEP}A;xY03|qMZk7$~=otvj5#>5cj*13AM(ls%l5e%NL
KelF{r5}E+1W**4^

literal 0
HcmV?d00001

diff --git a/coverage_report/status.json b/coverage_report/status.json
new file mode 100644
index 0000000..979aadc
--- /dev/null
+++ b/coverage_report/status.json
@@ -0,0 +1 @@
+{"format":1,"version":"4.5.3","settings":"96ec3e5ac0985973daa480a4cb530dd7","files":{"fluegg___init___py":{"hash":"182b2dca469bf063cbcf996d517b03da","index":{"nums":[1,0,0,0,0,0,0],"html_filename":"fluegg___init___py.html","relative_filename":"fluegg\\__init__.py"}},"fluegg_asiancarpeggs_py":{"hash":"6a15084dab764d4e69da1fc42441f485","index":{"nums":[1,226,0,17,0,0,0],"html_filename":"fluegg_asiancarpeggs_py.html","relative_filename":"fluegg\\asiancarpeggs.py"}},"fluegg_drift_py":{"hash":"c421fa5d25182dc2751b107f19299a5f","index":{"nums":[1,56,0,6,0,0,0],"html_filename":"fluegg_drift_py.html","relative_filename":"fluegg\\drift.py"}},"fluegg_gui___init___py":{"hash":"182b2dca469bf063cbcf996d517b03da","index":{"nums":[1,0,0,0,0,0,0],"html_filename":"fluegg_gui___init___py.html","relative_filename":"fluegg\\gui\\__init__.py"}},"fluegg_gui_gui_py":{"hash":"874671f4d929f7c304b348540ea4ae3c","index":{"nums":[1,254,0,225,0,0,0],"html_filename":"fluegg_gui_gui_py.html","relative_filename":"fluegg\\gui\\gui.py"}},"fluegg_gui_gui_layout_py":{"hash":"b38c2ed9ab163d31b97cf75f2df4611a","index":{"nums":[1,276,0,272,0,0,0],"html_filename":"fluegg_gui_gui_layout_py.html","relative_filename":"fluegg\\gui\\gui_layout.py"}},"fluegg_gui_hecras_dialog_py":{"hash":"5014d0bda5dfd4419eebc1a501e499dd","index":{"nums":[1,112,0,108,0,0,0],"html_filename":"fluegg_gui_hecras_dialog_py.html","relative_filename":"fluegg\\gui\\hecras_dialog.py"}},"fluegg_hydraulics_py":{"hash":"9f98060f27ff015d762cc84986dc03c1","index":{"nums":[1,287,0,37,0,0,0],"html_filename":"fluegg_hydraulics_py.html","relative_filename":"fluegg\\hydraulics.py"}},"fluegg_kml_py":{"hash":"234de0dd5fdbf84eae22ef237ef5c791","index":{"nums":[1,130,0,113,0,0,0],"html_filename":"fluegg_kml_py.html","relative_filename":"fluegg\\kml.py"}},"fluegg_random_py":{"hash":"238d2b6b55a9e18485cfba6e00a28480","index":{"nums":[1,36,0,18,0,0,0],"html_filename":"fluegg_random_py.html","relative_filename":"fluegg\\random.py"}},"fluegg_ras_py":{"hash":"bb289bde42e8ee2f59e968d5cf384872","index":{"nums":[1,197,0,148,0,0,0],"html_filename":"fluegg_ras_py.html","relative_filename":"fluegg\\ras.py"}},"fluegg_simclock_py":{"hash":"282dd17e459a0fa0bcf9b990b1e99dd7","index":{"nums":[1,46,0,5,0,0,0],"html_filename":"fluegg_simclock_py.html","relative_filename":"fluegg\\simclock.py"}},"fluegg_simulation_py":{"hash":"b3d2202737c3926729f5bf6b0815bdb0","index":{"nums":[1,132,0,76,0,0,0],"html_filename":"fluegg_simulation_py.html","relative_filename":"fluegg\\simulation.py"}},"fluegg_transporter_py":{"hash":"b2fbe495502b86f1518fa62bbd6933c0","index":{"nums":[1,285,0,56,0,0,0],"html_filename":"fluegg_transporter_py.html","relative_filename":"fluegg\\transporter.py"}},"test_fluegg_py":{"hash":"d068ed21aa14efabe55f32f7ad03d61e","index":{"nums":[1,23,0,3,0,0,0],"html_filename":"test_fluegg_py.html","relative_filename":"test_fluegg.py"}}}}
\ No newline at end of file
diff --git a/coverage_report/style.css b/coverage_report/style.css
new file mode 100644
index 0000000..86b8209
--- /dev/null
+++ b/coverage_report/style.css
@@ -0,0 +1,375 @@
+/* Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 */
+/* For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt */
+
+/* CSS styles for coverage.py. */
+
+/* Page-wide styles */
+html, body, h1, h2, h3, p, table, td, th {
+    margin: 0;
+    padding: 0;
+    border: 0;
+    outline: 0;
+    font-weight: inherit;
+    font-style: inherit;
+    font-size: 100%;
+    font-family: inherit;
+    vertical-align: baseline;
+    }
+
+/* Set baseline grid to 16 pt. */
+body {
+    font-family: georgia, serif;
+    font-size: 1em;
+    }
+
+html>body {
+    font-size: 16px;
+    }
+
+/* Set base font size to 12/16 */
+p {
+    font-size: .75em;           /* 12/16 */
+    line-height: 1.33333333em;  /* 16/12 */
+    }
+
+table {
+    border-collapse: collapse;
+    }
+td {
+    vertical-align: top;
+}
+table tr.hidden {
+    display: none !important;
+    }
+
+p#no_rows {
+    display: none;
+    font-size: 1.2em;
+    }
+
+a.nav {
+    text-decoration: none;
+    color: inherit;
+    }
+a.nav:hover {
+    text-decoration: underline;
+    color: inherit;
+    }
+
+/* Page structure */
+#header {
+    background: #f8f8f8;
+    width: 100%;
+    border-bottom: 1px solid #eee;
+    }
+
+#source {
+    padding: 1em;
+    font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
+    }
+
+.indexfile #footer {
+    margin: 1em 3em;
+    }
+
+.pyfile #footer {
+    margin: 1em 1em;
+    }
+
+#footer .content {
+    padding: 0;
+    font-size: 85%;
+    font-family: verdana, sans-serif;
+    color: #666666;
+    font-style: italic;
+    }
+
+#index {
+    margin: 1em 0 0 3em;
+    }
+
+/* Header styles */
+#header .content {
+    padding: 1em 3em;
+    }
+
+h1 {
+    font-size: 1.25em;
+    display: inline-block;
+}
+
+#filter_container {
+    display: inline-block;
+    float: right;
+    margin: 0 2em 0 0;
+}
+#filter_container input {
+    width: 10em;
+}
+
+h2.stats {
+    margin-top: .5em;
+    font-size: 1em;
+}
+.stats span {
+    border: 1px solid;
+    padding: .1em .25em;
+    margin: 0 .1em;
+    cursor: pointer;
+    border-color: #999 #ccc #ccc #999;
+}
+.stats span.hide_run, .stats span.hide_exc,
+.stats span.hide_mis, .stats span.hide_par,
+.stats span.par.hide_run.hide_par {
+    border-color: #ccc #999 #999 #ccc;
+}
+.stats span.par.hide_run {
+    border-color: #999 #ccc #ccc #999;
+}
+
+.stats span.run {
+    background: #ddffdd;
+}
+.stats span.exc {
+    background: #eeeeee;
+}
+.stats span.mis {
+    background: #ffdddd;
+}
+.stats span.hide_run {
+    background: #eeffee;
+}
+.stats span.hide_exc {
+    background: #f5f5f5;
+}
+.stats span.hide_mis {
+    background: #ffeeee;
+}
+.stats span.par {
+    background: #ffffaa;
+}
+.stats span.hide_par {
+    background: #ffffcc;
+}
+
+/* Help panel */
+#keyboard_icon {
+    float: right;
+    margin: 5px;
+    cursor: pointer;
+}
+
+.help_panel {
+    position: absolute;
+    background: #ffffcc;
+    padding: .5em;
+    border: 1px solid #883;
+    display: none;
+}
+
+.indexfile .help_panel {
+    width: 20em; height: 4em;
+}
+
+.pyfile .help_panel {
+    width: 16em; height: 8em;
+}
+
+.help_panel .legend {
+    font-style: italic;
+    margin-bottom: 1em;
+}
+
+#panel_icon {
+    float: right;
+    cursor: pointer;
+}
+
+.keyhelp {
+    margin: .75em;
+}
+
+.keyhelp .key {
+    border: 1px solid black;
+    border-color: #888 #333 #333 #888;
+    padding: .1em .35em;
+    font-family: monospace;
+    font-weight: bold;
+    background: #eee;
+}
+
+/* Source file styles */
+.linenos p {
+    text-align: right;
+    margin: 0;
+    padding: 0 .5em;
+    color: #999999;
+    font-family: verdana, sans-serif;
+    font-size: .625em;   /* 10/16 */
+    line-height: 1.6em;  /* 16/10 */
+    }
+.linenos p.highlight {
+    background: #ffdd00;
+    }
+.linenos p a {
+    text-decoration: none;
+    color: #999999;
+    }
+.linenos p a:hover {
+    text-decoration: underline;
+    color: #999999;
+    }
+
+td.text {
+    width: 100%;
+    }
+.text p {
+    margin: 0;
+    padding: 0 0 0 .5em;
+    border-left: 2px solid #ffffff;
+    white-space: pre;
+    position: relative;
+    }
+
+.text p.mis {
+    background: #ffdddd;
+    border-left: 2px solid #ff0000;
+    }
+.text p.run, .text p.run.hide_par {
+    background: #ddffdd;
+    border-left: 2px solid #00ff00;
+    }
+.text p.exc {
+    background: #eeeeee;
+    border-left: 2px solid #808080;
+    }
+.text p.par, .text p.par.hide_run {
+    background: #ffffaa;
+    border-left: 2px solid #eeee99;
+    }
+.text p.hide_run, .text p.hide_exc, .text p.hide_mis, .text p.hide_par,
+.text p.hide_run.hide_par {
+    background: inherit;
+    }
+
+.text span.annotate {
+    font-family: georgia;
+    color: #666;
+    float: right;
+    padding-right: .5em;
+    }
+.text p.hide_par span.annotate {
+    display: none;
+    }
+.text span.annotate.long {
+    display: none;
+    }
+.text p:hover span.annotate.long {
+    display: block;
+    max-width: 50%;
+    white-space: normal;
+    float: right;
+    position: absolute;
+    top: 1.75em;
+    right: 1em;
+    width: 30em;
+    height: auto;
+    color: #333;
+    background: #ffffcc;
+    border: 1px solid #888;
+    padding: .25em .5em;
+    z-index: 999;
+    border-radius: .2em;
+    box-shadow: #cccccc .2em .2em .2em;
+    }
+
+/* Syntax coloring */
+.text .com {
+    color: green;
+    font-style: italic;
+    line-height: 1px;
+    }
+.text .key {
+    font-weight: bold;
+    line-height: 1px;
+    }
+.text .str {
+    color: #000080;
+    }
+
+/* index styles */
+#index td, #index th {
+    text-align: right;
+    width: 5em;
+    padding: .25em .5em;
+    border-bottom: 1px solid #eee;
+    }
+#index th {
+    font-style: italic;
+    color: #333;
+    border-bottom: 1px solid #ccc;
+    cursor: pointer;
+    }
+#index th:hover {
+    background: #eee;
+    border-bottom: 1px solid #999;
+    }
+#index td.left, #index th.left {
+    padding-left: 0;
+    }
+#index td.right, #index th.right {
+    padding-right: 0;
+    }
+#index th.headerSortDown, #index th.headerSortUp {
+    border-bottom: 1px solid #000;
+    white-space: nowrap;
+    background: #eee;
+    }
+#index th.headerSortDown:after {
+    content: " ↓";
+}
+#index th.headerSortUp:after {
+    content: " ↑";
+}
+#index td.name, #index th.name {
+    text-align: left;
+    width: auto;
+    }
+#index td.name a {
+    text-decoration: none;
+    color: #000;
+    }
+#index tr.total,
+#index tr.total_dynamic {
+    }
+#index tr.total td,
+#index tr.total_dynamic td {
+    font-weight: bold;
+    border-top: 1px solid #ccc;
+    border-bottom: none;
+    }
+#index tr.file:hover {
+    background: #eeeeee;
+    }
+#index tr.file:hover td.name {
+    text-decoration: underline;
+    color: #000;
+    }
+
+/* scroll marker styles */
+#scroll_marker {
+    position: fixed;
+    right: 0;
+    top: 0;
+    width: 16px;
+    height: 100%;
+    background: white;
+    border-left: 1px solid #eee;
+    }
+
+#scroll_marker .marker {
+    background: #eedddd;
+    position: absolute;
+    min-height: 3px;
+    width: 100%;
+    }
diff --git a/coverage_report/test_fluegg_py.html b/coverage_report/test_fluegg_py.html
new file mode 100644
index 0000000..2a68b53
--- /dev/null
+++ b/coverage_report/test_fluegg_py.html
@@ -0,0 +1,165 @@
+
+
+
+<!DOCTYPE html>
+<html>
+<head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+    
+    
+    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
+    <title>Coverage for test_fluegg.py: 87%</title>
+    <link rel="stylesheet" href="style.css" type="text/css">
+    
+    <script type="text/javascript" src="jquery.min.js"></script>
+    <script type="text/javascript" src="jquery.hotkeys.js"></script>
+    <script type="text/javascript" src="jquery.isonscreen.js"></script>
+    <script type="text/javascript" src="coverage_html.js"></script>
+    <script type="text/javascript">
+        jQuery(document).ready(coverage.pyfile_ready);
+    </script>
+</head>
+<body class="pyfile">
+
+<div id="header">
+    <div class="content">
+        <h1>Coverage for <b>test_fluegg.py</b> :
+            <span class="pc_cov">87%</span>
+        </h1>
+
+        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
+
+        <h2 class="stats">
+            23 statements &nbsp;
+            <span class="run hide_run shortkey_r button_toggle_run">20 run</span>
+            <span class="mis shortkey_m button_toggle_mis">3 missing</span>
+            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
+
+            
+        </h2>
+    </div>
+</div>
+
+<div class="help_panel">
+    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
+    <p class="legend">Hot-keys on this page</p>
+    <div>
+    <p class="keyhelp">
+        <span class="key">r</span>
+        <span class="key">m</span>
+        <span class="key">x</span>
+        <span class="key">p</span> &nbsp; toggle line displays
+    </p>
+    <p class="keyhelp">
+        <span class="key">j</span>
+        <span class="key">k</span> &nbsp; next/prev highlighted chunk
+    </p>
+    <p class="keyhelp">
+        <span class="key">0</span> &nbsp; (zero) top of page
+    </p>
+    <p class="keyhelp">
+        <span class="key">1</span> &nbsp; (one) first highlighted chunk
+    </p>
+    </div>
+</div>
+
+<div id="source">
+    <table>
+        <tr>
+            <td class="linenos">
+<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
+<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
+<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
+<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
+<p id="n5" class="pln"><a href="#n5">5</a></p>
+<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
+<p id="n7" class="pln"><a href="#n7">7</a></p>
+<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
+<p id="n9" class="pln"><a href="#n9">9</a></p>
+<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
+<p id="n11" class="pln"><a href="#n11">11</a></p>
+<p id="n12" class="pln"><a href="#n12">12</a></p>
+<p id="n13" class="stm run hide_run"><a href="#n13">13</a></p>
+<p id="n14" class="pln"><a href="#n14">14</a></p>
+<p id="n15" class="pln"><a href="#n15">15</a></p>
+<p id="n16" class="stm run hide_run"><a href="#n16">16</a></p>
+<p id="n17" class="pln"><a href="#n17">17</a></p>
+<p id="n18" class="stm run hide_run"><a href="#n18">18</a></p>
+<p id="n19" class="pln"><a href="#n19">19</a></p>
+<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
+<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
+<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
+<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
+<p id="n24" class="stm run hide_run"><a href="#n24">24</a></p>
+<p id="n25" class="stm run hide_run"><a href="#n25">25</a></p>
+<p id="n26" class="pln"><a href="#n26">26</a></p>
+<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
+<p id="n28" class="pln"><a href="#n28">28</a></p>
+<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
+<p id="n30" class="pln"><a href="#n30">30</a></p>
+<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
+<p id="n32" class="pln"><a href="#n32">32</a></p>
+<p id="n33" class="pln"><a href="#n33">33</a></p>
+<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
+<p id="n35" class="stm mis"><a href="#n35">35</a></p>
+<p id="n36" class="stm mis"><a href="#n36">36</a></p>
+<p id="n37" class="stm mis"><a href="#n37">37</a></p>
+<p id="n38" class="pln"><a href="#n38">38</a></p>
+
+            </td>
+            <td class="text">
+<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
+<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">glob</span><span class="strut">&nbsp;</span></p>
+<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">importlib</span><span class="strut">&nbsp;</span></p>
+<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">unittest</span><span class="strut">&nbsp;</span></p>
+<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t6" class="stm run hide_run"><span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">realpath</span><span class="op">(</span><span class="nam">__file__</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t8" class="stm run hide_run"><span class="nam">module_paths</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t9" class="pln">    <span class="op">[</span><span class="nam">path</span> <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="str">'test'</span><span class="op">,</span> <span class="str">'*.py'</span><span class="op">)</span><span class="op">)</span> <span class="key">if</span> <span class="str">'__init__.py'</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">path</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t10" class="stm run hide_run"><span class="nam">nonrandom_test_module_paths</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
+<p id="t11" class="pln">    <span class="op">[</span><span class="nam">path</span> <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="str">'test'</span><span class="op">,</span> <span class="str">'nonrandom'</span><span class="op">,</span> <span class="str">'*.py'</span><span class="op">)</span><span class="op">)</span> <span class="key">if</span> <span class="str">'__init__.py'</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">path</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
+<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t13" class="stm run hide_run"><span class="nam">module_paths</span><span class="op">.</span><span class="nam">extend</span><span class="op">(</span><span class="nam">nonrandom_test_module_paths</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t14" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t15" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t16" class="stm run hide_run"><span class="key">def</span> <span class="nam">load_tests</span><span class="op">(</span><span class="nam">loader</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t17" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t18" class="stm run hide_run">    <span class="nam">suite</span> <span class="op">=</span> <span class="nam">unittest</span><span class="op">.</span><span class="nam">TestSuite</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t20" class="stm run hide_run">    <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">module_paths</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t21" class="stm run hide_run">        <span class="nam">_</span><span class="op">,</span> <span class="nam">module_file_name</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t22" class="stm run hide_run">        <span class="nam">module_name</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">splitext</span><span class="op">(</span><span class="nam">module_file_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t23" class="stm run hide_run">        <span class="nam">spec</span> <span class="op">=</span> <span class="nam">importlib</span><span class="op">.</span><span class="nam">util</span><span class="op">.</span><span class="nam">spec_from_file_location</span><span class="op">(</span><span class="nam">module_name</span><span class="op">,</span> <span class="nam">path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t24" class="stm run hide_run">        <span class="nam">module</span> <span class="op">=</span> <span class="nam">importlib</span><span class="op">.</span><span class="nam">util</span><span class="op">.</span><span class="nam">module_from_spec</span><span class="op">(</span><span class="nam">spec</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t25" class="stm run hide_run">        <span class="nam">spec</span><span class="op">.</span><span class="nam">loader</span><span class="op">.</span><span class="nam">exec_module</span><span class="op">(</span><span class="nam">module</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t26" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t27" class="stm run hide_run">        <span class="nam">tests</span> <span class="op">=</span> <span class="nam">loader</span><span class="op">.</span><span class="nam">loadTestsFromModule</span><span class="op">(</span><span class="nam">module</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t29" class="stm run hide_run">        <span class="nam">suite</span><span class="op">.</span><span class="nam">addTest</span><span class="op">(</span><span class="nam">tests</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t30" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t31" class="stm run hide_run">    <span class="key">return</span> <span class="nam">suite</span><span class="strut">&nbsp;</span></p>
+<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t33" class="pln"><span class="strut">&nbsp;</span></p>
+<p id="t34" class="stm run hide_run"><span class="key">if</span> <span class="nam">__name__</span> <span class="op">==</span> <span class="str">'__main__'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
+<p id="t35" class="stm mis">    <span class="nam">test_loader</span> <span class="op">=</span> <span class="nam">unittest</span><span class="op">.</span><span class="nam">defaultTestLoader</span><span class="strut">&nbsp;</span></p>
+<p id="t36" class="stm mis">    <span class="nam">test_suite</span> <span class="op">=</span> <span class="nam">load_tests</span><span class="op">(</span><span class="nam">test_loader</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t37" class="stm mis">    <span class="nam">unittest</span><span class="op">.</span><span class="nam">TextTestRunner</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">run</span><span class="op">(</span><span class="nam">test_suite</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
+<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
+
+            </td>
+        </tr>
+    </table>
+</div>
+
+<div id="footer">
+    <div class="content">
+        <p>
+            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
+            created at 2019-07-09 15:15
+        </p>
+    </div>
+</div>
+
+</body>
+</html>
diff --git a/notebooks/vertical transporter - Copy.ipynb b/notebooks/vertical transporter - Copy.ipynb
new file mode 100644
index 0000000..95df8cf
--- /dev/null
+++ b/notebooks/vertical transporter - Copy.ipynb	
@@ -0,0 +1,326 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>CumlDistance_km</th>\n",
+       "      <th>Depth_m</th>\n",
+       "      <th>Q_cms</th>\n",
+       "      <th>Vmag_mps</th>\n",
+       "      <th>Vvert_mps</th>\n",
+       "      <th>Vlat_mps</th>\n",
+       "      <th>Ustar_mps</th>\n",
+       "      <th>Temp_C</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>CellNumber</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>20</td>\n",
+       "      <td>1</td>\n",
+       "      <td>10</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.08</td>\n",
+       "      <td>19</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>40</td>\n",
+       "      <td>2</td>\n",
+       "      <td>20</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.08</td>\n",
+       "      <td>20</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>60</td>\n",
+       "      <td>3</td>\n",
+       "      <td>30</td>\n",
+       "      <td>3</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.08</td>\n",
+       "      <td>21</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>80</td>\n",
+       "      <td>4</td>\n",
+       "      <td>40</td>\n",
+       "      <td>4</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.08</td>\n",
+       "      <td>22</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>100</td>\n",
+       "      <td>5</td>\n",
+       "      <td>50</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.08</td>\n",
+       "      <td>23</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
+       "CellNumber                                                                   \n",
+       "1                        20        1     10         1          0         0   \n",
+       "2                        40        2     20         2          0         0   \n",
+       "3                        60        3     30         3          0         0   \n",
+       "4                        80        4     40         4          0         0   \n",
+       "5                       100        5     50         5          0         0   \n",
+       "\n",
+       "            Ustar_mps  Temp_C  \n",
+       "CellNumber                     \n",
+       "1                0.08      19  \n",
+       "2                0.08      20  \n",
+       "3                0.08      21  \n",
+       "4                0.08      22  \n",
+       "5                0.08      23  "
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import os\n",
+    "\n",
+    "import pandas as pd\n",
+    "\n",
+    "\n",
+    "# show the hydraulic data contained in the CSV file\n",
+    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
+    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
+    "hydraulic_data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from fluegg.hydraulics import from_csv\n",
+    "\n",
+    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
+    "hydraulic_model = from_csv(hydraulic_csv_path)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
+    "from fluegg.simclock import SimulationClock\n",
+    "\n",
+    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
+    "total_simulation_time = 1000  # seconds\n",
+    "time_step_size = 1  # seconds\n",
+    "\n",
+    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "\n",
+    "\n",
+    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
+    "\n",
+    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
+    "first_cell_z_midpoint = -depth/2\n",
+    "\n",
+    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
+    "width = area/depth\n",
+    "first_cell_y_midpoint = width/2\n",
+    "\n",
+    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
+    "\n",
+    "number_of_eggs = 10\n",
+    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
+    "\n",
+    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from fluegg.transporter import ParabolicConstantVerticalTransporter\n",
+    "\n",
+    "transport_model = ParabolicConstantVerticalTransporter(simulation_clock, carp_eggs)\n",
+    "transport_model.set_hydraulic_model(hydraulic_model)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from fluegg.simulation import Simulation\n",
+    "\n",
+    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
+    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
+    "\n",
+    "simulation_results = fluegg_simulation.run()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8nGWd///X555J0qaHND2f0qaF0lIOPTAcBEGUg6j8xHXB825FpOvpu+iuB/T3VVf96lddd9VdXFlEpPpTBJGTJwQBBRcoJC09QOmBNm3aJm3apuk5mZn78/tj7qRpmrZJSXPPXd7Px6OPzNxzzcxn5sp9z3uu67pTc3dEREREpLgFcRcgIiIiIsem0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmQjruAvjZy5Eivrq6OuwwRERGRY6qtrd3m7qN60vakC23V1dXU1NTEXYaIiIjIMZnZ+p621fSoiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkwAkPbWZ2h5ltNbPlnbYNN7NHzWx19LPyKPcfamabzOyWE12riIiISLHqj5G2O4Grumy7GXjM3acBj0XXj+RrwF9OTGkiIiIiyXDCQ5u7Pwns6LL5GmBBdHkB8I7u7mtm5wBjgEdOWIEiIiIiCRDXmrYx7t4AEP0c3bWBmQXAvwGfOdaDmdl8M6sxs5qmpqY+L1ZEREQkbsV8IsLHgN+7e/2xGrr7be6ecffMqFGj+qE0ERERkf6Vjul5t5jZOHdvMLNxwNZu2rwOuNjMPgYMBkrNbI+7H239m4iIiMhJKa7Q9hAwD/hm9PPBrg3c/f3tl83sg0BGgU1EREReq/rjT37cBTwDTDezjWZ2A4WwdoWZrQauiK5jZhkzu/1E1yQiIiKSNObucdfQpzKZjNfU1MRdhoiIiMgxmVmtu2d60raYT0QQERERkYhCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCnPDQZmZ3mNlWM1veadtwM3vUzFZHPyu7ud9sM3vGzF40s6Vm9u4TXauIiIhIseqPkbY7gau6bLsZeMzdpwGPRde72gf8vbufEd3/e2Y27EQWKiIiIlKsTnhoc/cngR1dNl8DLIguLwDe0c39Vrn76ujyZmArMOoElioiIiJStOJa0zbG3RsAop+jj9bYzM4DSoFX+qE2ERERkaJT9CcimNk44GfA9e4eHqHNfDOrMbOapqam/i1QREREpB/EFdq2RGGsPZRt7a6RmQ0Ffgf8b3d/9kgP5u63uXvG3TOjRmkGVURERE4+cYW2h4B50eV5wINdG5hZKXA/8FN3/1U/1iYiIiJSdPrjT37cBTwDTDezjWZ2A/BN4AozWw1cEV3HzDJmdnt013cBlwAfNLMXon+zT3S9IiIiIsXI3D3uGvpUJpPxmpqauMsQEREROSYzq3X3TE/aFv2JCCIiIiKi0CYiIiKSCAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIglwwkObmd1hZlvNbHmnbcPN7FEzWx39rDzCfedFbVab2bwTXauIiIhIsUr3w3PcCdwC/LTTtpuBx9z9m2Z2c3T9c53vZGbDgS8DGcCBWjN7yN2b+6Hmo7ppwbd5cvxM9lp5j+9TQo6Bvp/9NpBsv7ztqiWJdagW1aJaTq5aiqUO1XJ8tQxiP5dsepHvz/tsTNUdqsfvlJnNdPeXumy71N3/fLT7ufuTZlbdZfM1wKXR5QXAn+kS2oA3A4+6+47ouR4FrgLu6mnNJ8JNC77N3VVXxFmCiIiI9INdVHJ31XhY8O2iCG69ibf3mNnPgG8DA6KfGeB1x/G8Y9y9AcDdG8xsdDdtJgD1na5vjLYdxszmA/MBJk2adBzl9NyysVXtT3pCn0dERESKgPvBz/6Y9Sa0nQ98C3gaGAL8HLjoRBQV6S4VeXcN3f024DaATCbTbZu+clZjPS9VzQA/oU8jIiIiReKsxvpjN+oHvQltWWA/MJDCSNs6dw+P83m3mNm4aJRtHLC1mzYbOTiFCjCRwjRqrL4/77OgNW0nXS3FUodqUS2q5eSqpVjqUC3HV0ti17QBzwMPAucCI4D/NrNr3f3a43jeh4B5wDejnw920+aPwDc6nVl6JfD543iuPlcsnSciIiIn2tviLqBDb/7kxw3u/iV3z7p7o7tfQ/dh6xBmdhfwDDDdzDaa2Q0UwtoVZrYauCK6jpllzOx2gOgEhK9RCIvPA19tPylBRERE5LXG/CRbm5XJZLympibuMkRERESOycxq3T3Tk7b6HxFEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZnaTmS03sxfN7JPd3F5hZr8xsyVRm+vjqFNEREQkbrGFNjM7E7gROA+YBVxtZtO6NPs48JK7zwIuBf7NzEr7tVARERGRIhDnSNvpwLPuvs/dc8BfgL/p0saBIWZmwGBgB5Dr3zJFRERE4hdnaFsOXGJmI8ysHHgrUNWlzS0Uwt1mYBlwk7uHXR/IzOabWY2Z1TQ1NZ3oukVERET6XWyhzd1XAN8CHgUeBpZw+Cjam4EXgPHAbOAWMxvazWPd5u4Zd8+MGjXqxBYuIiIiEoNYT0Rw9x+7+1x3v4TC1OfqLk2uB+7zgjXAOmBGf9cpIiIiEre4zx4dHf2cBLwTuKtLkw3AZVGbMcB0YG1/1igiIiJSDNIxP/+vzWwEkAU+7u7NZvYRAHe/FfgacKeZLQMM+Jy7b4uvXBEREZF4xBra3P3ibrbd2unyZuDKfi1KREREpAjpf0QQERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEiDW0mdlNZrbczF40s08eoc2lZvZC1OYv/V2jiIiISDFIx/XEZnYmcCNwHtAGPGxmv3P31Z3aDAP+C7jK3TeY2eh4qhURERGJV5wjbacDz7r7PnfPAX8B/qZLm/cB97n7BgB339rPNYqIiIgUhThD23LgEjMbYWblwFuBqi5tTgMqzezPZlZrZn/f3QOZ2XwzqzGzmqamphNctoiIiEj/i2161N1XmNm3gEeBPcASINelWRo4B7gMGAg8Y2bPuvuqLo91G3AbQCaT8RNdu4iIiEh/i/VEBHf/sbvPdfdLgB3A6i5NNgIPu/ted98GPAnM6u86RUREROIW99mjo6Ofk4B3And1afIgcLGZpaMp1POBFf1bpYiIiEj8YpsejfzazEYAWeDj7t5sZh8BcPdboynUh4GlQAjc7u7LY6xXREREJBaxhjZ3v7ibbbd2uf6vwL/2W1EiIiIiRUj/I4KIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAuXvcNfQpM2sC1vfDU40EtvXD80jPqU+Kk/ql+KhPipP6pfj0R59MdvdRPWl40oW2/mJmNe6eibsOOUh9UpzUL8VHfVKc1C/Fp9j6RNOjIiIiIgmg0CYiIiKSAAptx++2uAuQw6hPipP6pfioT4qT+qX4FFWfaE2biIiISAJopE1EREQkARTaRERERBJAoa2XzOwqM1tpZmvM7Oa463ktMbMqM3vCzFaY2YtmdlO0fbiZPWpmq6OfldF2M7P/iPpqqZnNjfcVnLzMLGVmi83st9H1KWa2MOqTu82sNNpeFl1fE91eHWfdJyszG2Zm95rZy9H+8jrtJ/Ezs09Fx67lZnaXmQ3QvtL/zOwOM9tqZss7bev1/mFm86L2q81sXn/UrtDWC2aWAn4AvAWYCbzXzGbGW9VrSg74Z3c/HbgA+Hj0/t8MPObu04DHoutQ6Kdp0b/5wA/7v+TXjJuAFZ2ufwv4btQnzcAN0fYbgGZ3PxX4btRO+t73gYfdfQYwi0LfaD+JkZlNAP4RyLj7mUAKeA/aV+JwJ3BVl2292j/MbDjwZeB84Dzgy+1B70RSaOud84A17r7W3duAXwLXxFzTa4a7N7j7oujybgofRBMo9MGCqNkC4B3R5WuAn3rBs8AwMxvXz2Wf9MxsIvA24PbougFvAu6NmnTtk/a+uhe4LGovfcTMhgKXAD8GcPc2d9+J9pNikAYGmlkaKAca0L7S79z9SWBHl8293T/eDDzq7jvcvRl4lMODYJ9TaOudCUB9p+sbo23Sz6KpgjnAQmCMuzdAIdgBo6Nm6q/+8T3gs0AYXR8B7HT3XHS98/ve0SfR7S1Re+k7U4Em4CfRlPXtZjYI7SexcvdNwHeADRTCWgtQi/aVYtHb/SOW/UahrXe6+5ajv5nSz8xsMPBr4JPuvutoTbvZpv7qQ2Z2NbDV3Ws7b+6mqffgNukbaWAu8EN3nwPs5eBUT3fUJ/0gmjq7BpgCjAcGUZh660r7SnE5Uj/E0j8Kbb2zEajqdH0isDmmWl6TzKyEQmD7ubvfF23e0j6dE/3cGm1Xf514FwFvN7M6CssF3kRh5G1YNAUEh77vHX0S3V7B4dMU8upsBDa6+8Lo+r0UQpz2k3hdDqxz9yZ3zwL3AReifaVY9Hb/iGW/UWjrneeBadHZPqUUFpE+FHNNrxnReo4fAyvc/d873fQQ0H7mzjzgwU7b/z46++cCoKV9+Fv6hrt/3t0nuns1hf3hcXd/P/AEcG3UrGuftPfVtVF7jR70IXdvBOrNbHq06TLgJbSfxG0DcIGZlUfHsvZ+0b5SHHq7f/wRuNLMKqNR1CujbSeU/keEXjKzt1IYSUgBd7j712Mu6TXDzF4PPAUs4+D6qS9QWNd2DzCJwoHxOnffER0Yb6GwOHQfcL271/R74a8RZnYp8Gl3v9rMplIYeRsOLAY+4O6tZjYA+BmF9Yg7gPe4+9q4aj5ZmdlsCieGlAJrgespfEnXfhIjM/sK8G4KZ8IvBj5MYR2U9pV+ZGZ3AZcCI4EtFM4CfYBe7h9m9iEKn0EAX3f3n5zw2hXaRERERIqfpkdFREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQB0sdukiwjR4706urquMsQEREROaba2tpt7j6qJ21PutBWXV1NTY3+BxYREREpfma2vqdtNT0qIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgDpOJ/czOqA3UAeyLl7psvt7wc+F13dA3zU3Zf0a5EiIiIiRSDW0BZ5o7tvO8Jt64A3uHuzmb0FuA04v/9KExERESkOxRDajsjdn+509VlgYly1iIiIiMQp7jVtDjxiZrVmNv8YbW8A/tDdDWY238xqzKymqampz4sUERERiVvcI20XuftmMxsNPGpmL7v7k10bmdkbKYS213f3IO5+G4WpUzKZjJ/IgkVERETiEOtIm7tvjn5uBe4HzuvaxszOBm4HrnH37f1boYiIiEhxiC20mdkgMxvSfhm4Eljepc0k4D7g79x9Vf9XKSIiIlIc4pweHQPcb2btdfzC3R82s48AuPutwJeAEcB/Re0O+7MgIiIiIq8FsYU2d18LzOpm+62dLn8Y+HB/1iUiIiJSjOI+e1REREREekChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZlZnZsvM7AUzq+nm9hlm9oyZtZrZp+OoUURERKQYpOMuAHiju287wm07gH8E3tGP9YiIiIgUnaKeHnX3re7+PJCNuxYRERGROMUd2hx4xMxqzWz+8T6Imc03sxozq2lqaurD8kRERESKQ9yh7SJ3nwu8Bfi4mV1yPA/i7re5e8bdM6NGjerbCkVERESKQKyhzd03Rz+3AvcD58VZj4iIiEixii20mdkgMxvSfhm4ElgeVz0iIiIixSzOs0fHAPebWXsdv3D3h83sIwDufquZjQVqgKFAaGafBGa6+664ihYRERGJQ2yhzd3XArO62X5rp8uNwMT+rEtERESkGMV9IoKIiIiI9IBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCxBrazKzOzJaZ2QtmVtPN7WZm/2Fma8xsqZnNjaNOERERkbil4y4AeKO7bzvCbW8BpkX/zgd+GP2M1U0Lvs2T42ey18p7fJ8Scgz0/ey3gWRjfttVS/HWoVpUi2o5uWopljpUy/HVMoj9XLLpRb4/77MxVXeoPnmnzOwTwM/dvbkvHq+Ta4CfursDz5rZMDMb5+4Nffw8PXbTgm9zd9UVcT29iIiI9JNdVHJ31XhY8O2iCG59FW/HAs+b2SLgDuCPUdA6FgceMTMH/tvdb+ty+wSgvtP1jdG2Q0Kbmc0H5gNMmjTp+F5BDy0bW9X+pCf0eURERKQIuB/87I9Zn4Q2d//fZvZF4ErgeuAWM7sH+LG7v3KUu17k7pvNbDTwqJm97O5Pdrq9u2R0WBiMwt5tAJlMpidh8bid1VjPS1UzoEeZVERERJLurMb6YzfqB302kezubmaNQCOQAyqBe83sUXfvdkzR3TdHP7ea2f3AeUDn0LYR6BxvJwKb+6rm4/H9eZ8FrWk76WopljpUi2pRLSdXLcVSh2o5vlpO1jVt/wjMA7YBtwOfcfesmQXAauCwV2tmg4DA3XdHl68Evtql2UPAJ8zslxROQGiJcz1bu2LpPBERETnR3hZ3AR36Kt6OBN7p7us7b3T30MyuPsJ9xgD3W2FtWBr4hbs/bGYfie57K/B74K3AGmAfhalXERERkdcc69n5AsmRyWS8puawP/kmIiIiUnTMrNbdMz1pq/8RQURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEiD20GZmKTNbbGa/7ea2yWb2mJktNbM/m9nEOGoUERERiVvsoQ24CVhxhNu+A/zU3c8Gvgr8336rSkRERKSIxBraopGztwG3H6HJTOCx6PITwDX9UZeIiIhIsYl7pO17wGeB8Ai3LwH+Nrr8N8AQMxvRH4WJiIiIFJPYQpuZXQ1sdffaozT7NPAGM1sMvAHYBOS6eaz5ZlZjZjVNTU0npmARERGRGJm7x/PEZv8X+DsKIWwAMBS4z90/cIT2g4GX3f2oJyNkMhmvqanp63JFRERE+pyZ1bp7pidtYxtpc/fPu/tEd68G3gM83jWwmdlIM2uv8fPAHf1cpoiIiEhRiHtN22HM7Ktm9vbo6qXASjNbBYwBvh5bYSIiIiIxim169ETR9KiIiIgkRSKmR0VERESk5xTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAWIPbWaWMrPFZvbbbm6bZGZPRLcvNbO3xlGjiIiISNxiD23ATcCKI9z2v4F73H0O8B7gv/qtKhEREZEiEmtoM7OJwNuA24/QxIGh0eUKYHN/1CUiIiJSbNIxP//3gM8CQ45w+78Aj5jZ/wIGAZd318jM5gPzASZNmtT3VYqIiIjELLaRNjO7Gtjq7rVHafZe4E53nwi8FfiZmR1Ws7vf5u4Zd8+MGjXqBFUsIiIiEp84p0cvAt5uZnXAL4E3mdn/16XNDcA9AO7+DDAAGNmfRYqIiIgUg9hCm7t/3t0nuns1hZMMHnf3D3RptgG4DMDMTqcQ2pr6tVARERGRIlAMZ48ewsy+amZvj67+M3CjmS0B7gI+6O4eX3UiIiIi8Yj7RAQA3P3PwJ+jy1/qtP0lCtOoIiIiIq9pRTfSJiIiIiKHU2gTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEsJPt/183syZgfT881UhgWz88j/Sc+qQ4qV+Kj/qkOKlfik9/9Mlkdx/Vk4YnXWjrL2ZW4+6ZuOuQg9QnxUn9UnzUJ8VJ/VJ8iq1PND0qIiIikgAKbSIiIiIJoNB2/G6LuwA5jPqkOKlfio/6pDipX4pPUfWJ1rSJiIiIJIBG2kREREQSQKFNREREJAEU2nrJzK4ys5VmtsbMbo67ntcSM6sysyfMbIWZvWhmN0Xbh5vZo2a2OvpZGW03M/uPqK+WmtnceF/BycvMUma22Mx+G12fYmYLoz6528xKo+1l0fU10e3VcdZ9sjKzYWZ2r5m9HO0vr9N+Ej8z+1R07FpuZneZ2QDtK/3PzO4ws61mtrzTtl7vH2Y2L2q/2szm9UftCm29YGYp4AfAW4CZwHvNbGa8Vb2m5IB/dvfTgQuAj0fv/83AY+4+DXgsug6FfpoW/ZsP/LD/S37NuAlY0en6t4DvRn3SDNwQbb8BaHb3U4HvRu2k730feNjdZwCzKPSN9pMYmdkE4B+BjLufCaSA96B9JQ53Ald12dar/cPMhgNfBs4HzgO+3B70TiSFtt45D1jj7mvdvQ34JXBNzDW9Zrh7g7svii7vpvBBNIFCHyyImi0A3hFdvgb4qRc8Cwwzs3H9XPZJz8wmAm8Dbo+uG/Am4N6oSdc+ae+re4HLovbSR8xsKHAJ8GMAd29z951oPykGaWCgmaWBcqAB7Sv9zt2fBHZ02dzb/ePNwKPuvsPdm4FHOTwI9jmFtt6ZANR3ur4x2ib9LJoqmAMsBMa4ewMUgh0wOmqm/uof3wM+C4TR9RHATnfPRdc7v+8dfRLd3hK1l74zFWgCfhJNWd9uZoPQfhIrd98EfAfYQCGstQC1aF8pFr3dP2LZbxTaeqe7bzn6myn9zMwGA78GPunuu47WtJtt6q8+ZGZXA1vdvbbz5m6aeg9uk76RBuYCP3T3OcBeDk71dEd90g+iqbNrgCnAeGAQham3rrSvFJcj9UMs/aPQ1jsbgapO1ycCm2Oq5TXJzEooBLafu/t90eYt7dM50c+t0Xb114l3EfB2M6ujsFzgTRRG3oZFU0Bw6Pve0SfR7RUcPk0hr85GYKO7L4yu30shxGk/idflwDp3b3L3LHAfcCHaV4pFb/ePWPYbhbbeeR6YFp3tU0phEelDMdf0mhGt5/gxsMLd/73TTQ8B7WfuzAMe7LT976Ozfy4AWtqHv6VvuPvn3X2iu1dT2B8ed/f3A08A10bNuvZJe19dG7XX6EEfcvdGoN7MpkebLgNeQvtJ3DYAF5hZeXQsa+8X7SvFobf7xx+BK82sMhpFvTLadkLpf0ToJTN7K4WRhBRwh7t/PeaSXjPM7PXAU8AyDq6f+gKFdW33AJMoHBivc/cd0YHxFgqLQ/cB17t7Tb8X/hphZpcCn3b3q81sKoWRt+HAYuAD7t5qZgOAn1FYj7gDeI+7r42r5pOVmc2mcGJIKbAWuJ7Cl3TtJzEys68A76ZwJvxi4MMU1kFpX+lHZnYXcCkwEthC4SzQB+jl/mFmH6LwGQTwdXf/yQmvXaFNREREpPhpelREREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAdLHbpIsI0eO9Orq6rjLEBERETmm2trabe4+qidtT7rQVl1dTU2N/ts8ERERKX5mtr6nbWOdHjWzq8xspZmtMbObu7m9zMzujm5faGbV/V+liIiISPxiC21mlgJ+ALwFmAm818xmdml2A9Ds7qcC3wW+1b9VioiIiBSHOKdHzwPWuPtaADP7JXAN8FKnNtcA/xJdvhe4xczM3b0/Cy1W9fX11NXVUV1dTVVV1Ql9rtb1u2hd20LZ1ArKJg89oc91JPsWL2bfc8+zadownh+1i8yYDAA1W2rIjMkwe/TsQ9q/sPUFnluyjPEtp5KZO5OxUyviKFuOoD9/f49HX9fX/vtbft65lM+Z0+P7xbnvvbD1BWq21DDEp7Nt+zgumDqCcyZXnrDnq2nZy9M793DhsMFkKgb16D4tLYtobl5IZeX5VFTMPe7n/sOyF3m8fjNvqhrPW846o+O1d3ds6au6Fv/PU6xYtozTzzqLORddfNy1H4++et+6erXv27Ecaz863v0sKeIMbROA+k7XNwLnH6mNu+fMrAUYAWzrlwpfhdr1zTy7dvshB7nO2ybkAzatambCaZVHDBONa1uO2Ka+vp4FCxaQz+dJWcB733Idp5w7o+P23h7oj7ajta7fxbbbl+G5EEsHjPzwWf324dH+HozwJg58fj5hWxsehDz83jQ/nFQKwPCWCTwR85CGAAAgAElEQVS9eyUfvCLLJZlzO17PF+79Gm9efiPrwj3U/7mWS949nQN7s0d9z9tfb28/JDevWkH9i8uoOuMsxp92+qt/4TG4e+lTPLL2aa6ceiHvPvsoHyD1z0HdU1B9MVSdd9Q2+/aNY1/dHsqrB1Ne3gDVF9MyNE1d3SM88cRmWlpGkEqlmDdv3qsKRjUte3m6bgUXbvojmXAbzHrvkWvrgc77VxAEzJkzh1mzZlFVVUXr+l3s+esK8ttWserCM1k0evwxQ8a+xYvZcP2H8LY2rLSUST+5o0cfKN3te/kdr9DywIN4OJSyGRcx+PWn99n+2B5UsxVZ/mfv//DAmgfIhjnC0Mi2ZPjP5ybw3teN5JoZF/f5B3JNy16ufWEN2dApCYx7Z596zODW0rKIRYv/jjBsIwhKmTvnZ4cFkGOFiJqWvfzk5Vd4YHcbYdlw7mrcx5d3P8xta79IW76N0lQpP7ryR716vZ3rCilh6IQfcv70N3TcvnnVCp555I8s27oDzFi1uZEVf/0zl/7Ntf1y/OjJ+9ahJ/t75IWtL3DjIzfSmm8lZSm+cP4XuG76dX1W97H2o9WPPcayW/+bUQ0NjPzP/2TY+z+OBaMYOHcyFVdk+qyOOMUZ2qybbV1H0HrSBjObD8wHmDRp0quv7FWqXd/M+29/lrZcSGk64OcfvoDdG/fyo/teoi7I86vUGt69pwzPO6l0wDWfmsOmVHhIyGtc28ID/76IfM5JpY13/NPcQ4JGXV0d+XwedycX5nn8N48AcMq5M7o90K8YuPaoI1I3PnJjxwHqU6//EdtsHBcOG8xZO/Ns+v1ySrJ5DCPMhfzP039i+MCpJ+RbVGeNa1t48LuLyedCAs8zu2w8lDo7hk3j7A1rWDlxA2N2V/O2lz5GKkyx7M4WThvewtipFdRsqWHUzskEYYqAFGHOefKuVbgffM/HTq04LBgfT0Bd+qc/8NgdtxKGIemSEq774tdPyIH31Yy4HO0LABQC29dq/xdYnoW1dwH/eWhwaz9wDxwBD98M+TZIlcK8hw4/kNc/Bwvezr4tzobHK3EPMAuZ9KZmsqf8G4tmVRB6lplnBCxbegV79oymrq7uuENbTcte3rl4FW1hQKrszXxz9Xf5u8VXwwd/e9zBrfP+lc/nqamp4YXaGv5m/LlUrBuK5/IsrZjEx5pzZPdspjQIOkJGd+/1vueex9vaIAzxbLYwEtAltHUX/Pct2oJnQwA8F7LnryvY+q35BIMmUn7RP7FvyX72v7SEUfNndfxO9HQEpb1dE8NZsns3U30qf33wafL5HKHlWTJ8CVPCKTQNaGJ72Q5Khi0E4N51xm83/PSYQabrF9fuvsi2q2nZy3fWNdIWOiFA6Dy9c89RQ1tNy15+t66etvBidjOYmeEKpjQvPOQ1dz22da25PSi25kM8SIEZeeDxjY205dsICcmGWZ6tfYTWA6t6/KWsuXkh+bANI8TDLD9/8n7SA87mnMmVbF61gl997f9l75ARMGo8WOFjrm79eu75yhd415e/0avjx/GMmDU3LyQM24CQMMzS3OV961D/HNx5dWF/D9Iw9++O+oWoZksNrflWHCfnOb6x8BtMq5zWZ58VR9uP6uvr+eVTT5GfeTrBjOlc9vxKBm+fBkGK7CMtQM1JEdziDG0bgc5H6YnA5iO02WhmaaAC2NH1gdz9NuA2gEwmE9/UafTB1rIhzw2+hmc4nSW50/jN4+sY/txO3ji8joGjVrGs+VTCnacBkMuF3HH/y9zZvINcPmRWkOYbmSm0bGslnyu8lHzOefnZhkM+bKurq0lZQC7MA7DJdvDz393NNX99PRNGjCXMhZhDmAupW7aCG3d+4ojffmq21HQcoPamJ/G5dXlCGigx4wfP7eHMHVkgIE9Ijhz/vfOnrH1kU7cH7aMdmHujcW0Lz/12LblcCA75EBpGn0vj2AsIgxTDgjxjdv+A8btOJRUFM/KwaVUzY6dWkBmT4b5hfyDcmIcQUkGK0L3wWPmQTauaATpCYXuQK1+/C4+e03NhISQdJSBtXrWiENjyhX7IZ7PUv7isz0Nbb8Nk5+DQ3evsGtx+vepBsDxm4OT59aoHD4a2KISRbyt8wHhY+JdvKwS5rgfwuqcg38a+LQPxPIDjBvu2pNkz2wk9CziBhQwbtoX9+8fxav5Mzz2NO2hzwALyGDdP+xSn71tHprvaeqi6uppUKkUul+vYlg9hXd12ZodDsCBF7Yg02VSKECMbhYyJ23Pdvtfl552LlZbi2SxWUkL5eece8nwdwT+fJ0iluOxDH2H6tIvYW7PlYKOUkd+2CrJZSqougFQaswDy3vF7umnTXaxc9S+4h4eMoLSPNs0aMoRR7KCkZBirVv8fwrCNtjDkoaaBDGw6g+n50wkAc2P29sK+HVrIk2OeonngDgoLU5xsmKVmS80RP4y7fnH90tVn8NXfvnjIF9n240N7cGoPbFZ4qVw4bPAR+6cjbIWTcPsHzENKLMeMkhKqO7V7bskyZm64mE1DV7NtaP1hNT+9cw9toeNm4A4ekgpDzqgMePlAAA5jd5az/5Fn+GvuKYIg4LIPfYSzL3/LUX9/trTOJJtPkTLIeYqXtp/Ks2u3c87kSupfXEYumyW9bxdtPhYIwB3L58jnc706fvRqxKyTysrzCYJSwjBLEJRQWdl1kiuy5C7ItxYuh1mo+Qm8cFfHl7XW9btoXbycsmAZZXPmkBmTIWUpcl7Yb0IPj/p70ltH24+WLFlCHsCMMAiom3oKk4IUFqTwEPYvWq/Q9io9D0wzsynAJuA9wPu6tHkImAc8A1wLPF6069naP9hyrbyRkDekjLZUCR9o+wIvL0lz+fD1TH7Dv7MmmMoeUmxdVMHotWPIufPsxmbmeMC0dJoPp8tILdzCIIO1KaM53/3LHR1WcMm4c3h843OFDQahOyu2r2X4llLyRCGCPI9b7VG//WTGZEgHabJhltyAmeRJdXzbra1IMWtHSI48Lwxayc9H/o6Xy9eRClOH7Iy165v59aKN3Fu7kVz+8ANzb7SPsOWyIYX05JiH7Kw4lTAoATPMYfyuU2kY+goehOAB6XSqI6TMHj2bb1z7RZ6bVljTNmXMJP56z2ry+ZBUKmDCaZVsWtVMPhfiXgjPLz/bwOsuGk90pIWUUXaMdXD1Ly4jDMNDtg0cMqTXr/lYWte29DhMdh6hTKUDpr9ubMfrbA+sXUPb2KFlvLTn0OsdohCG58GtENwsKIy0VXczjVp9MaRKKR+Tw1KFfGcBlI/JUbI7RWAlhJ7DAuOUU2Zx5ZXHOTXaMfr3BiBV2GZGSMDTlRky3dXWje6+aFRVVTFv3jyWLFnC4toawtAJSDEuHA6Ae8g529somZomFxglQcCFwwaz6Zmmbt/r8jlzmPSTO7pda7P0T3/gT7f/F+2HtjCf57E7bmX4lSOg0/5ffs4YrG0TwYhTKJl0EWC4Oxb9nra0LIoCW/SBGbbR3LyQda0BNz5yI+NS+5kwaj+7gvYJjMJjpwxOKcuxqKyRaXYauOE4hhEQgBujDoxmx4CD35dTlupYU9qdZ9dupy0XEjpkcyF3P7+B1myIU7jeHmDgYHBq34sKVXU3yXLQ0zv3kA0LVRa+FKTIE7A0N55LozaNa1vIPziBTG4sc4Mr+eOZPzqs5pHegIdtGCmCMOTMlYu5rCLkV/Zj8p5nzM6BXL3lTFqzmw/pm5GTqo8arGo2T+C+mk8wffhqVu6YRt2uKWTGb6Ku7lG2+X5wJ7V/L2Vb6mkdOwnMaB1TRUkuS9UZZx31tXfW0HA/YdgK+BFHzLobwa2omMvcOT/rwQhd188fLxwLlvyC1sWLaXpmOoWOO4VRiz/N7A99hy+c/wW+sfAbhB5Smio96u9Jbx1tP+oqPNAC5fnCK/A8A+dO7rM64hRbaIvWqH0C+COFI+4d7v6imX0VqHH3h4AfAz8zszUURtjeE1e9x9T+wUYYfVN0SjzH+cEKHkjPYOCoVTwRvIEFwY2EGOlznA+07GPs9iyX7S9hZMp4fVmaADhQsYZ9w19mZOM0mhumkkoZMy4Y1/FU7aMur/jawjt32PHNCTB+P+yvrBuwkddtu4CZ+0/hxYFrgKN/+yltXUlJlFnSoXPOjjyOE1rYEdgCAkqCko6dsf1bdftBGQ4/MPdE++jQ7h0HyOeiQ3gYMmTPBnYPrmLfoPb3wHELaRj6Co1D1vGbmT+gavd0PnjFuw4JI7NHz2b2FbM7Hvf175p22Jq2IDDy+cII3MtPNzB9ytCDx6nQWflsA6PzfsQ1cFVnnEW6pIRcW1tUGTyx4EfHPKj3VtnUih6Hya5hdN+uNlLp4JDA2lnt+mYqwteRDv5A3nOUBGk+NLvTOpTqiwtTI/l84RU6EKTgqm92P5JVdR7Me4jyJb9gkt3DvsaA8rF5yq98H8x6L6cFr3SMBjm/ZOjQt3HooPuRdUwRD95E2R/fAfk23jXst/zi7H8nF9VW4s6ske+jNZxB2TEer7ulDJ2DGwB7tpB7+Rkmtb6V0T4YcCxoYs6BDfy88o0sGj2euSufpvqb36F+8jsxG4bjh73X5XPmdDsl+tgdt9L1u+jwkrGEK/cXQhNAykgNbqHhM9+kZNIbIQiwaFqt/NyxlE0eSkPdQrwwtAmAWUBl5fn8aUNhJP2U8hwpA/Dog6zQLgTWtAbsGLCDJ8c8yagDo2gNWpndPAu8cERryI0CXi7kdYx3nPqOo46eXDB1BKXpgLZoanf55paO3SqVCrhg6oiOtpXpFGGX+2fduadxxxGnRy8cNpiSwPDQCTEC6AjO7TataibMQUCKIAz42OhPH1bzvt01nLPoLwzIn8mkzXVM2FIPgTH0fHBKuHzhCFrDQmDbNKaK+vFTqGqoO+Zo2AVTR/D9P03llZYpAFw68Wl2b/oVuz0kPThg4JiJ7N9SjqfS0fSogaU4/ep39mqUbXPDvXQOViUlww5p0z4Vm8/lSKXThyzdqKiYe+xRuVnvg0U/g/DgiDMW0LLml2wqmUV6yHWU75qOh7CnZSZldU9x3cX/zLTKaSzb+ACnloVMKevauz3X3clA3e1HALNmzWLx4sXROm9jauN2snuehiBg6JWnU3HFZb1+/hN9UsXxiPWP67r774Hfd9n2pU6XDwB9t4rxRIpGF8i1AiEhAVnSPBuezuZ0yM/sbJYGMwkprJvI4dSNTjN+exYDRqUDDDhQ8Qr1mW/jlsWnpln97Cd5x5uuPiQ0tK5toTHfzIaSTudjeCG7TcuPwyh8Ux6eH8pVje8m1ZhiTupTfK7qu6wYuPawbz81W2rIhTkcJ926inlDVzC45RzOrGni7JaQEGdt2UYAAgIuGH8BH531UWa3tsFT/8a67VNozZZ1HDoMKEkfemA+lkPWrwUWrQVxAs8zZHc9u4dM7lj7ATBy+kCmTh/H1s3raRyyjqahG7iwbDqXcO4RH7fr1ODYqRXMuGgcLz4ZfYsOnZ1LtzEkbB/xcBqfaeCZvzZ0O6UIMP6007nui1/niZ/+lMbVy8GdfK53UxzH0rp+F3sXbYH2D/ZjjDVPOK2S8pFrKRvxMvuaprNhuXHxu0/r9iSMXyzcwJceXA5lGyitnMvlM8bwodnXdXOA8kMvu8P+7Ucuouq8whcZzwPRlGrFRKg6j2xdLe4h3a2nOdoZm4dMEVuekekplAUvkdm5hAf2/557djr5cAiX18/ilJaAbc8tO+Y0ctcRoc5fNOrr61lw508KYTeo4rQJLbBxZCFg5SvZ88zPmfvONzL35cfY8E9fZc2gKSyeNZAwFRIEAa9/17RjnrHc3UgtZowprybwTn+RKXRaX1qBt7WRa1pJ6fQ8EGAlKQbNHQO0f2Af7KdJVR+iomIumTEBpalS1raFuGcLg6UQjc7DS/sC6toKI5XNA3dgBqMOjGLp8KUMbxtObs/p+J7pMOJZAsuTDtI4zgtbXzjiB9k5kyv50tVn8KUHl5MPveNX14Brz5l4yJe55lyeAA4Jbg78smEH7xo7vNvglqkYxL2zT+XpnXuoTKdozuUPOxlkwKCSzm8qU8YU1jt3PrswMyHDgsonGLCt/VkLP8Y3DyQfhgRh4ZizaUwV91x9PflUilQYcsXY8m5fNxwcub10+mgefWkLUyvW8b4ZdxdmDAxSQZ4h4/axf8tASvftIu9jCYM0qVSaszM9n85vbl7YMapakGfV6v/D4MHTD+5PLy4jn8vhYdjj41LnNXIMTdN83uuofPFZKnZnAaOlejqLxjUQ2hrMv8PE5z/DwB1TyG9fA9UfAmBKWUjzrl+xL2xjUdOvezxt29khJ9t1Plmpy4kR9fX1LFmyBIAL585h80vLGfvMCibNnA9BCksZA844jb88sZbayhSXTBnZozOTj7UeMi4n3f+IEJtodKF9sXZDw0Y+tXAwi3waAMuGTe0IbHjhIDZ+x04ODN6KhSXUpXMMD4ZTMvxl3LIQOEGYY8ikp3mx7fKOIX8ojLo0pncWDjHtOcZgko3uaGOpgAv2nI1RCIOp0PjKxJt5avKyQ741vLD1BRr2NJAO0uQ9T0lQwjsnns6+QcN4bORO8CxntcC0A5P55oab+PKUH/Kx1GVMuPPX7Nt0BwOH7+PtlPAL+zyLvLBO74qZY/iHN5zSq1G2zqNDoTunzRjAnieeoDU1iLayiiiweEdwGz96NB+d9VEWbVlENsweMvJ3pMftbmpwxgXjWPlMY8co1LCzRxJu3E2YDQmBbVkn787W5xspX7+r25MAgvR4WradBawA8gSpdK+mOI6mI6hkO32khX7U6dGBI16h6tJ/xT2Hhyk2/OUzHNg7hXOuqj6kXe36Zr744HK8rI7ySbeD5XiysYQPcd2hU4YbnoIw3+meduSp0U72bTxQOBEhD5aCSVePo5zCehqzNO6FtZLLH61k74xNDK0Ouz9It78XnaeIPaDVz6LMXoZUaeGM0cbneHzIB/BoqrQnaxLbR4SyufCwLxp1S54in8/hBOTDPGsb04yzFhpSOxmbH0plxVSeXrqC51u3M23SNAblpxIGhaFvD0PW//YBmpdlmXr5mwnS47s9EaRjpDabJQgCznnbOygrH8TEUTPw3+8qpKpIauRpWGkp4a717H/+FkbcePMhZ45mszsLfVMYCiWdLmyfPXo235n2RZYt/iulE1Pk237VMbJnwMzykOo9eeraUgw/MJyLGy8m8MJIXmABoe/nFGvjtMnX05p+kt80rOLXq37Nb175zVE/yJr3tRG6HxL3U4Fx5vhDg+yFwwZTGhTWBQK0/6blo9G2I/0JkPbrR7r9wN7swbfDCtfbzz4M29oI0wErvvd1Npz6GdZMDXkmn+fMlYs4c/VSWkuWsH3wAcJgKEFo1I+fQj6VwoMUoQWsHjqS7la11a5v5lP/+QCj92xkS/kESsrHceH45wjM2w/9AOxpKIS+WWVrmGHLqBv/dqqv+kSvlgkcXJfWSnvg7PolqOqMs0il0x0jbcc6LnVeI1dYRg5emiU4eyhzl7ZQsTtH8/ixhNYQfRfLs3/4SgY2T6Hs4rd3jLz3+ESHbrSPpq/Zs7IQOIF8LkddXR0jXnqKfT/5AuWj9lM+5l+pv2oBd/7hOfLRmmLCkPINKxk54sxCYAsK6zOefHwtHz23nOx2+I+dO7l3zrHPTO681vtYazj7k0JbX6o6r+OXdgLwubObufUvr9Dwyk7WpdN0HZfYM/QV9lph6x6gweu4cOcIAk/hnsPMef2EZxk2fhNwasf9yiYPZcb/k2HxH9YVTkRwCDA2+FY2lm7jb6ddzrhBo9i7sPHgk5lRfdbpTJ98cMFp59Ozc6XTmDDmLVw/NUOubBrva1xD9pRSSqaU8l/P7+XsnWCU8MXgevKf+gJb2toIU0MIrwg5Y+gBLghWsCh/GoHBrKphvV7LNuG0SlLpgFwuxDDKq8ayevxFhO0fWmG+MFqDEVghbI0dXcGPrvzRUc+KrU0tw1ITCicjpAIGDCrhz794GYgeY2pF4ezdTh+oLXs2s/HHj7CsMkNzaIwoTTN8aRO7Qu/2JIBNq5rBxlI65FrC/EbOPf98Bm8aTGvZrlf9pxg6gkonlg6OOj3a0HA/WC6adckzdPLTDBj01sPa3bdoI/nQKS1fG7V33HM8+PJT3PVoQ8eU4bcur6BpWAWZ/fuZnc3DnA90nEHW7d/Vqn8OlvyCfQ/ch+fLKay9ssKf/uhSQ5gL2VK3m/W1K6mYvYt8rjAdn8/nDzujtGxqBZYOCiNt3kaZLS0slrvqm9Tky7l2wLvJWgnBlIC3b2rl6sYsbzrGSNc5kyv5+Ycv6PbkmWo2kopWh6YcysI0vy9dXBhHTwdMnDyMr0w6nTaHkk+ex1duv4MgzOMBhG0bWbn294TroOavf6Zk8LUQjCNFyFXXDKP0lMEd64yu++LXu/1zMXtKGtj54CuFEZp0wODXn87AmUdez1P4EC87bHH55lUreOGWO8nnciz9nzSzPvqPrNt1C1UlhRNPUsBpA6CurTDCFngQrWUrjD6bweDBjYwOf4Zl8/zDSPjB1jLqs3bUD7LK8tLDVm7kQi+M7ALvO78w8tV11OyLazaRDZ0AuGvTdvIGpd38CZBj/YmQCadVku6yLGDfo48QtrVhYQjZkF8uW0j27Em4BeRTxpKZ5/HiaXP429/9mG2Da3jk/CbG7RjAzgFLML8UIyAdGBsPtFHTsvewD/6nn67hrRsfJOV58jtT7Lvsw5xddeiU5c66wezbMhBrX1O4bzcXN/4E+FugqsdTcu3r0hoa7mfT5nuAPGapQ04qaJ8JePEvj3dsO9rJYp3XyBW+VAE4ocHayeVMXX+AyrZBBCVGaAHmacqbT8eCAMseHNns8YkOXXQeTa9I7SOVypM3I0Wesav/zIbv3o1nB2CpMia9aSd1K2oPBjYozGKVD2HL7g2c4f8/e28eH8dVpvt/T1V1t9RaWvtqWbJkSZa82/KCsRNnX52EAIEwQAI3zL3DBe4AGbY7cJkZhh3mxzBsSSAJQwgQZ3c2sniLHS+yJS+yrH1pba2t1VpavVTVuX9Ud6tbkh0n8IP53E/ef6yWW9XVVafOec/zPs/zWlxnENRnqYQFmIogLOOUyRexM6nLr8Ou2i8KCvw14p2k7c8dcYOg6bQLUT9OTZqDhrwIu0ZG0SLJYEYWhVNzqZxEctg/y87xGvTcMwBowsAlXwEsj5/oLmRJeRF3fexuWl47xWjbIC1qP1JYfLXekX6KsgoSTit1e5Fl+3FmbjI40/cU251TNJrVNGd+gXE0vtwNHwiOEzYlBiCFpD5bY7UvhFQk4wPHSQuFUCVIQ/DETCZPLAtwzJsNs6Cpb60sGo2Cchfb76jkwKOtmFJy6hU3VtUoMu0LhaKB10kK++jclc59nsPcknqLxVtbJFl7tuNZnmp/Ct3UKa5dzifz7mVZ/lIO/q7V4rBhcdgWKxuGO0+inH6EstTXcWVWU7V9J/izFogAogRfZ0Y5qqaAKCLPtoSlbo3Jnu4/i6ddfKKCIkipy8e5If/NjynjLh3CQh0WeQuA7i/HLjUQBnbVju5fFisZGloX/6fnl8iMNOyZLu4vu4N1whrLiy6ak00RQU4AZ66GUJMtIYKqxpReg4NPRhYEiVAkztwWAmMVjDaBzIoQy6UgzZ6TeC1K08m5ZzXB1/bg6PoxDqUZpApDjRwekYRLKzCEiiElT5Q4eG6pg90ZKm93qi1Zu5O7Gj5Bt5FPkbBzXq3ExIw9Z8fXbCWMwBSg22wMbnRyp/tf6J1ey/BgDz0ZWBYSho4I9qIlF2GYcPInv8LtGsQwzRjPaMt77ljw+albCrEVpCTavJQuzueBC5PL55fIkj0FrFr/L0x0fg0w0E1Ja8A6xrBjjBXCjNAtlNg4yc/vQETUxZqETU6dgcnkCy5kJ3q8/POeJhbTUUUTt+qCtFjSUOdKiSVANanJvNQ5ystNHs4X2QBB0JA82jZEXV1F7DhRMYIBi1qELLYh82/ehKkpELLuY7qvCbideCGLrmr0F5ZTNH6Os8unGM4MABOUdv6AzJz3cjazikcGxvjD0PjCRDEwQIc0UJAgDdZpY1y18W5OnPgjpgwjDcHI6WyISCjOTBRyzpfP+0ub4I09HNv/Bj8f/z2Drhnsqp3vrPkONp/tggbP7RPLaBzYRJl47KK0iXMHXqU3q5D7vQHOO5bjTc7AUd/N7+/YGLsHCzlyKkIoSBkCAeOZNiZcNjaEBdUNGxlxleIcryXZVwHCwOF5BNwboWTzWxA6JEZ0kzqb3o6a1cwuXx+T/mHK6CP5WB4jhjWxSRP8I8mU1WxE7Y5D2qREm53BZ84SEn04KEUIhY3jBjZpjT2bGuE+xqviF7EvWpe37qKgwF8r3kna/pwRNwgGwrVMjH6d1agcztMwFWKlUaTEbkpKJua5l0RIwnrG4ijVfNuHvHtWk7fzMs62HaCNQUxpoqCQO5LM9MhAwnE95gif+OOnYvX5n26/lyLf7yhwhQlTSbPQQKgEpclIKIwmwDANTKlz1P4IWm4yp5JbkN4uvqICBugqnClVaEtPQaa9hNpbwvvW7HjbVh+BmbBVtomUSK2IEN+lCULQntPGfak90ApPtz/NL6/7ZcLDFI8eRgszA6kdDFU3UdhfGEvYwLJSOfBoq6UMVASX3VnFyh3FMVm5a6aXjNAgOVv/hukDwdh1d5S7FhB8K279e3o8aaxIcUCL95JUnpcSsUTlLfizFRa+h4GB3ZgyhDQ1Zvq3kVRj48SL3QnJ6Xs3LGF3vZvwbCnhvk/woct1bl2xA2O2lMcOHbFKhmldmNLiO4alpL7hftZN+EC1c3jXHsKmFlk0TQ43vkDd4JOgB4hO/K6yWVBUXJ/6Gs716xcsDFIq+EeqCdsmCSQNYQ9YY0eRdkZ6pxbYbTtK03FcvRwe7gJDtRRZomAAACAASURBVCZbBNu89dhK7sQUIIWCFIIwvKnX18WECG4KOVX5GaZHB/DlFJOTtQz1jW4M00BBYduYwvORHMKmqlxz+4coa5XkdU9w6HGLliClRFEUVKUQTANFGpihXnTdyqjfjGfkKE1fcM+DPZP0HmpixD9Cel0xq9ZtjP3fYuTy+SWy7OUaGh6Kqr/O4b6X+XXnUbpDVoI2njTGaynjrJouppAwQlgM3fkh4aJihCdO9hEMX5iAbkp5QaFSnSuFF0f6aCmMIDeREutjE5O8t2WYbdUWDSQqRiCyaVjMIqSg3JVQjnauX4/5mbsRP3gAxYR7f99C7/YQLSI5Nj8LYOlANzkr1zI0foy8MRsBu8GWc1PUr+0mvGk5UlEWTRS3vnszPa8+janraJrG1ndvxuWqIWn6v9HR9DjTg078niQKkqbxBNKQCAwpaPIVcO6Z0+i6zhUig8MbnbhEEQeeOoCQYlG6QHTsXrXkVUoqdFRFIqWxoBTpbjpDb1Yhv7/pLnRVtdBpIGxKdncOx+5BIkdOUFx0B2lptZxv+RoI616aqsCbV0zh8dfxG1cxk3UOMCic+SMOcY7G849TP3E6kuRcgtBhXjjKXQSyOnCvs3jdipRsOD2Ba0rHf/lHEEd2W8a6qsD5sW+SU3cdd+fXxjhtxZkuRs9ZHE85aMC0iZSSNWNh/v3ZRlp2beXK9VXWPTsdp4q/gH3RYqDAXzveSdr+nHHqUdBnARgIVFl+RwhKh3VUEwwkqgm3DIS5eSBM3mQZx7Ezxgy6fRIARdMoWfYB+vqPIGUYIWxki2uZ3OvGmAgssH1Iv6KEVZ+4jKSDWTS5WzBn9EiSI5EKMUuA18QbsUQmbIbpG/gD6TKMImClbOIJTEypgBC8OjbFu9RG6r2t2ALNuOngd9kWElg9DgdWKZhIDqxWaFsSLYDo2FO6EOzgRI/3bSVu8SXSuV2jJGOyE19aKQOF25DKFvKnfoInrXtRnkGUhxBN2ASCoukKMo+uwKNPoqhz9CyhECu/mqaVwGUXp1KwiKw8qSrR2Nb95Isx9EIPhXnluUc5mlFHg6OEr8qkyIINM0kqf+mmXy7XBjZufITejv34R6oounqdZXcyT4yxsTSTR//2XZFSyTY2lmbSONxIw+Tj/NP7qznVkYFX38qxwF4MqaNJ2Oj3xya5bb4GVLEZU5qoZphtDf8Gk1bpyz9qo3dvDtIUCJuGK89KSuYvDObsZUxP5TKRdYr5UMEbzcOscBcuRBjm8UcZaqRu+jy7T3+OPxTcwO+KbsaQXHAhj48LCRHcbjcPPfTQ3A5+tBfoZUl+MepgkGTTQdV0mN8WFVGfJNkW7KWu9RFo+C2TgXJaK/47SrAVIQTbr6oj/IuH8KYuI3OijcmkCRQlJ2L0fGGeURRVl7qHcOdJnJs3oWZVMHzfKZIMSYnMQG/3cZYTCYnb/IiWyNxNZ8heruEe+yrmiOXrVVb2NfpaGoA5QvuYdNJkVLLE3opp6JiYDHnKImiblcKdDjj5asWuRT/vRI+Xx+rdiwI/UbcR+yJCpWip3RfW+alt1uJ/RTe6QmAIyesDE7GkLb6s+lbaXuW6p/BGhFs2A25oqqdl1Y4Y4azu1EGKh/uwFZdyTWMOiimQQjKYt5TJVBeKaSKFmENs4mLQUYB2099RHBggo6KGJ/ttZHp7GXHnE260kGOBZCQpBxEKg5SoqgbVN2Aca7Dm9qRU1k5Vx/i7F6ILRMfu+fFKbi7XUDBQI6XI+BJoycrV9LW7MVTVUn1Hqz0CzMw5ffX8kmZh4Xvweo8S/1wKoZJZ9j4Cd9bidv8LJgaKCXlnfDTqTj4x9DKhgRffNnHfUZoO13iR4zogMSV4l5bhWvZpnHV3s3TFjQvoASUlJZSUlOB2uzldf4zzR98gJ5xKZf4dWMQ7Sb13P/tuqsOhDYLHBNemOfFgFGmbx9F9Oy3V/hLxTtL25wr3MTj569jLYvtZQGJgwfdLe2ZJlwo7ekOscarUZ6mUCTvDsx6ilpJJswVs3LSedK2alND3cea2UpBSR+g3CkG925rxVAGGZFibpG26heVuKFEGSc94ndbOAIZq0qYOcoOxgSfyXsQZTuZcaifNY52xREYVKrnJeQQDc6cv4xQNYSk5OdqOc/JZVviXcZXvAyhC0Bo8yof/0IrNFBgq9Lx7KZ1iAFOaCDRCs+U8eqyXx0/2vS2Ptmg549ieTtznLPNbTIkww0hFA+b82Txp3Qk8gygPxGV3xXgIqlC5MfAh8k+vZYgQMAoCCpe7yCpKIbckLYa0WR8lE3y14stQ8xGPkpWrURQFw7S85Ir9bm6dHaQt6zYOiVJyNMGYKanyhZgza3nr8fZNdStYvcHa5Z54sfuCYoyNpZmx+xSvltIUG/7eewjrJvbMdWwszcJ3VmNF6H50BIoQ4HDBbEQgEhWKRMLXFTXWxXIuf/kJnOvXR0QINkwjhCkVmjuTKdpq4G1duMSbpsGpU6cWJ2dHd8SRUixI6iabqJtp54666znsWHpJk+2FhAjRjgjzo8/TDwqgQLvq4S7nGuyzQxw+9BvwHqfOCHJucjmBqaexKPUq7e4tbPnqVyk98hwjs7Uc7W/HNAyEEJStte7RfC+teAGKNEL4Dz/D6M9+Ru4//ByMiMmFAE2qTBw8AxdJ2uLDHzyTQBDPZTzBV0tTbbxn9U4uyy6nv8tPz2QPh83DGNJgsH0lS1JmCMoy/uf6Oy+4IB/pHEOPF1Ao1sJpi5jsev2hBXyq+Qa7xCdsgCIlmoTtRYn8sPiy6tuN1Dfu4zPX7ODYuELGq8+w5txxVJuNPGcubrMLBUFfXgmP3fxxDNXyc3tPisrHVlQkfHY8aqspudAxRlgfodzVxZXJ+8nM9zPrcSKAOlsH6gc/j2ImUbJyNaO93Zw93ghCINMyUYSacI6qqi4woI6O3e7JZfx746f5x2uCrFq2k/aJZQvQ47uvv57Dw0FL7BHZUdoUwQ2543R3vxArYS5W0rR4kiFrAzx0FbZOwXDmFKaw5j5TFXSur+WsspJQ9yFMTEJGiJ+d+hn3VF5JLuOXXCIN9kzi6C1HODUkIRQpyewfhK21+Bsa8D319KJ/F1Wa6roOReUsGbOhCKu8eyodPnPdrYQVASb8zh3mCY5TVxW3+ZvHaYsfjyoG31mm8qGy/xqI2ztJ258ruhMVdoX2Fq5at4/vBm7kxVXJSCFQTCjyGvx8vRNDAUXmcvMpFwVTXmvHZTpIUbMiFhXJqNp6du0sQOpD1iRmSpybCxgWPp4/sx9n2xBdIx62TzbjmSjCYCtSWCjY8eWdPCcOYmIR+6PradRjaXX5TZw4uQ8pwzSLNUhh4YLWe0y0wDlW+Jfx7Z6/xx4ZJtfzLvzp30eOdyJN2Px8Nz3bFdqKFAKemwnPWMTit+PRFo2Cchebby5noPk4hmFZfuQNn8SXWYkpNExhMJDejoLC9uLtwEJp9hc2fQFfyIdzNJvRP6TEvhcAEoY6fFRvKWDljmKAGI9O0xZ6mF085o6rAEgDYfbh00qZCC/uifZW408x1Y0ialEE82I+bUc6xxhVDyaopaSznqSMkyB0GscVwil1/L2xi/8wngJpcPjcIYyySktdKVQOu9ZTN9mEf8zBRFd0MbOI7M48y1Xd5dqAqvwDXZ3PMTGRz/R0NoV5gIzK/BIuK9PT01wwIsh2ffpKDrvWsc3XCAgOD/awbV0tda6UhNZf0esZX2ZeTIgQ7JkkdywZVVExzIWJWzR0Q+ehw8d4ILcMvfSj2EruZPfpz9GiaxwpfjclA50Ue9wMthzlJc+13PrZzzJ76iWMP7RaSLiUtB8/QldDPSAwTSPGcUvtT50ToAgVLauS0EQ34YEeIH/O1800yPIvaBKTEPGl/NTCIMt3aUhpxAji73dtoDKzkqfPH0T3L6PcAYde+AOmaWIKE6VIoTKjEue5XHwR7tfrva9TmVm5aEI9PxG+UKIWH1F+WqygGoWqASGh1FSoSk/GXvCnIx6u225l/IndyLCBrsL+VYLrwvU8te0eBnLsuJuqY+jn7482YuhheouXoWsqCBUpBIWaWJAsJqC2hrWJKXd18fm6/0ATOqIWOvaUEBxOosw5zhL1JNz6/zHQ2szeh++PJfKr1q7n1NDoon1v4yNx7G6LXdsjJ9sXoMf/84qVfHhvC79pG0IGTYRD4ePLZ5Ftn6djXjeF+OQqmsgNNz2J/ztPIdv202t/g8z7vxgxyQ4BknE5QJE5zPIkB+0BBROTwdFDjIpXmFSUS+rWEOyZZOS+0wgjixLXP+DPOoc2dYzT00kUPPcE+k9fgIgfpu/xx1j6g/+N8zrLjz9hkyUEQ6oXUxoIKTmRZUMXxJDLMBqHT79AXbJMEA/Gx+GJaYKmjC67/FPjE9Q6+S9RKn0naftzRdkOUG1ghGJ4Q/XwfSy56kZkQIAiMJGcX2JDV0AqFplyICOX/EkvAgU16KLxld4YaGEYJqO6SXZUMacppGzIZ6R3CGfKEKtW/xFFMXCbgpLT3ShTmzFQUFSF6g2rsJ+eQ5yAmKXHropduFzr2LjhEbzeo9xu28Iz7SohU6II+GSBwuN9PazxX4ENlTMulRNZGuvHw1Qv3UpwvBMFWN0lqXEbPPAJA1fxIY7IPDp8yxaYZ77VKCh3ceV6Hx2PHyTT24prsovUmUHar72BhwtexpPWDcBr7r283n+I5c6dBI0QMpJs+EI+7ll9Dz9/aDdCiphvXTQlldJK1MDi0V125+IeZhcLd9OZBUiMIgS3XlnDproNnHv9BKbei6nnY3Vfe3uRoJh8E9XofHuTnrbXCSi9ZGZvWUDIjsaJHi8f/s3vMe3tKKSSlK8hpY4qNIv6ElWVYqBlHOWoS+H0oI2NoQDbvMexlX4EhIZNVdlWuQ7WbsL/+KvACSJ1elKKwviHHdDQgHP9esrLr+bgwf6YtUeWrYRMr8qsYwhTDRNyzIlzWlvbcLvdC5MD9zFo+A316St535ofElY0VNOwymimDdvJ8/w27KZ0XwZSqhZKLQBjoQI4Hm2MIlypuslN2gZ6a4MM+YYZGhpisaifCRLKFdamR0gezLqZZ1Zfja6oqMbl3LHnQYo9TYQCtfS3lsX4ZXo4HEtKDMOY+znCcVu34fo5AYo00L3tqLmV6N7CaA8AkCaBc49R9o2/TTineJ+trqDCgScfiJk/Tw3aSZr6OEVrUhPQD2O2lEdfHkTXuljr2sdKc0VMQZrpzyRFS0FBsTaAgGmYF+wXezFF7oUi0Sw3EtHyoIAuRdLl97O3oZ0nLsGu4WLhXL8e/Udf46nH/pWzJZLupY4YYl9UVZPAL9zw6Y9xat8fqUkzOColhjRQTAPfIw8xkPZ3Ce+NT1ZVxeocsiKrDU1YfDMTQc3yQZYnTVOUPIV54tcMGSU8f2yImbQsNP8U6uwM7a+9wE3/816mTS4oQIjGxtJMlmd04fW+jM9n3c+t5dloauQ8InNxvW8GM9OBwxdGjgexaQrXbm4mMH5pthyhvj7QdTAt5FwcDlMS+gIjpU/iz26yOG/S4N5Vt/DQgIcjA0eocAQjZs6XZvsR7PTFOoAk+yqZnMzhWbsTQ4A6JLg8PZ2cUcubdMSVQffTj7IyO5uSuutibeeMSBu4iooixp77ORnJJawaCKEtv4uwtMaTTeps630Ozv948d7JWIbPMsqnRsE0Jt6x/Ph/Lko2w93PMf30vThHTqEIMAydbRMNPJyyg7CUaEJQ0xemN9cW4bdJbGM6E6F8igNpGHYfdl1QmjWKP6uFidFq8jZtJHNrYQJCUKaU0dY+jKIYEVsHyZTLBVNzp1OZWZmgfAEWqGCiu6oyYHfqXP0eYHLDLwn0NnDqlMKn6pyEBdiknR9zOUr4KGVNHahAaKnJLTU6itrNzoIf8cSJ9/Dq1M4/6VL6Gxowf/oNygJz9VvXZBfrml6kfdTN6RJJa7FACEnQCHGqdwItQ0VVSCiZ1q4qpeHYGJgQsk1i2qewhTKwhdNjHLb5DeQvNZwZ5RE5uaVmEhH+YOezj1Ca5eTMy/dj6DpNe5/6kxrIvxUhQjyilpLbyYz9h3R0hmO73I3XL5wwn2o+hFp0H6rQQWr4B3aBOgOBCgxToqafRGIpT4WweJknnclsDAWom2xi9+nPc/iKH7CtrIa6yTB0H8S58wbEC2etxs4CZjw2ph96AvHbPSx98FeUrF/PXXfdFTPRtYXT6TzgxzaTjkDgS20lkGz5QJnmBZKDCLJ92LWOsKJhCA0z0l5LRlxjX+8ZZKkZKafFCVAuhljGI5t5ejrLC8o4taQ7IWlbsWIF4XCYzs5OCidGUM0qTAU0adAxnYWuWH5eBuAuWkaxpw+p90US5rKYBUPTvlcwDH2uFAgoisLk6AhjwX5y7lnN9OvNBM8fJ/2qjdirbmD2TChyL6zvmvWhuxPK+PE+WwiNR9pTqD6ZhxpNtpCE86spK7sl4XtHUSItvZORpGEkK5ARQsWEc4Kbq26mvad9jmKxSLkuPuIT4UuJeH6aL6zzc/cIi2GcCXYNlxiLWWisvfIOWosFA72vcMfSqxddjB9reYz7jnyfqxuyccku7mjpw124jJKBTgpH+hcVkNy+YQki8i9AY0cYhZeRhJFCw+1bgsM/ELOPe/TJI0wvXQG5xYSkibO3FRHwExoeZMciiuL5sVjvUVgW2wQgJc2BIP/Y2EvIlIi6HK7HzifLC1mekc/JiV9e1JYjdvycEOLTJtk/tuHoU1Fzqkg6EyRHvw13ZoslGlBUapfcxtVaB8cGjzFjzlFuLsX2I9r1ZTa1DX/Webomk9FnLNGEAQwXFJAzOspodhb7rrgCU1Wof/4N7sqvjbWd6+7uxt7vxn+qgdTbLsM17WGdLcgHn3uQMxUWevq/JndTF2oCBOz7Fuz88oLEzasb1mZfANJAUTPesfz4fzJKNvN00ocoHfNR6vSSkzzLTLiIX1ca7B9xs44cBntC5PkMOgp0skJN5M2MIe0Cv30YkGjpoyhrXiFVGKQpNpKzN+BwbUjkU5WUsP3dH8fde8oqyUkNz9gtmJFpLrrQ7dixI2EyWmxiiu7KKzO3UFe6gXrfDO9taCMkJfbk9QSuTiM8OYkpBLopaciyUbCqhtLWLqRuEK4yURWL2CqEwedyHmFkspAjnVVvW0XqP3bcWvDnhdrWy/vPG9ymCP75TpXWJRKkRvboNkoHriandpQdW/Op99QDcFndJuA4jfXNzAx3W9w12UuGdw0O3bWggfxbSdpCwRzsae/DCJ7DNIaRhgewuiG0Hj2cYLHQtP+1RX24LjUWUxAuFlFOYE/b68i0vcwEwrzZLldzdsWhaTqoMwTHrogtKv7ee7Bn7UdLO4+UEodqZ1PpFTDxJCCp852hbnI/TJox5bRTtbP0i5/Gf/o8YZ/OxN5TVjkwHLZIxOvXx8jD0YgigUkpNl593Ecg2QPSRNUSk4O5NlbvxqHa2eY7jc3UQVFQFctX3zCtFnLbfQeAqrgvq8WQNke5K6F0Gr2+iyGbZUoZmqbFylWOQIDk4REEUDjp5dbTh8iuWk5F/a84PZ7L2aoNFpvNMCgZ6AIENYUpsfE1nBGkZ6uDypwbOf/7Z7HgC+sUTVNy5rWXOHfgVXZ94C5C3/u6pZaz2yn83s0xTuusqx1/znmK6m6Ofb3+/kfp6XkgzmcrxBZNY4o5tLkvd5Ys53DEQGguoihR5kwJy8wp0iYrQJjY9HS+evMu1laq1KtnON9lkqKt4aqtV729frEXiSg/7d97PBd8j8RCQeIjHlmcP8Yv5GrfONzId49/l5AR4qTnZEIv5ujfffPoN6lzp6FG0PrioV6WDFudYeYLSKJ8tszpAZaGBvFlX8uVl21mY+kt+HxLONu1j5eOC1Kb9jIsyzgqTGpdHkJOl6WIEgJQ0J1pOIxL7z+6mIntka509EhpzzAlzw2ME2IOwXxJhPi7DPsl2XLEH19qEm37LEuHplBzOpk1c0nyLmPJ0c8xpv2CpKoyWr1tfPf491liC/GejJAFcAuVqsp/XBxli7PIcpRuxvFRSWvf95CESTcFaaevYWoqF0VVqbnpRpLCfnyZGqaqWN56JrFNXUlJCeFTJ3n68d9gCkFjexO35rTRYaZTMFFAwUAPApOs3EHIiYymzn3Q88YCxG1bRioORVicNgH/Z93t/yVQNngnafvzhfsYp/f8Ds+BdgbNEo6IEpqXbOJva7Lxt32E7ZGdUPrOb2C86iIr0MtM6liklYyMbbbTXYNIoSMUy9zwQottVdX1pLZ8hZGBszjHa5mczERNOm0heG+yCwZrohscfJKBwd1Iqcd2abv7FIKmZWEfNA282hR2RSFsmJZ60GdQ9p4PUn7bh/C//ATZSwY4Jw5gmgaKhCxfiG3aebaW3/22L+X00vX0lF1PxngLrukekmpq0PLymN67F0VKVAOqT2/kXFIWeRMruX1sKSqgnMjjwdmf0J/SHpugL6vbhJgN8JqnC5AIBQrWKqyuqlrQQP6thN0xihluxgg1EfVwF0KgahpVW7bR19yEIXWEUGja90oCX+lPaW+1WKIRH8nZHfh7v4AZiLqkKxfd5d66YgfP9DxM2AxbXTFIxZG9FwIVyGAZJqCltiGEiSpUvrT5i6xzlkLTC4mqq/im8noQZ9sPcTpM/IqKT8mxHFu0Oa+2+RG1Zhjq9GEPu8gYX4Pu8HH1+zfHkoMFooxbnqIucIjd+SqHHcVsy0gl1HyWA2da2ez1sGbSYMK6M6AqZOyqwPTrsRLzYgKPBcimcp6S7oPcdf0mTg2FaTh5klOdnXP2EFJyw6t/ZPmvH8L++bvxtr7CHXsetHpUDnRR7OlHta/HpwQ5/coLdA61xny41nZmsFamJVwHGeHQGbpO54vPUxwMxhLecOdJcv/2gwyf2os75XtIEWZ8cA8bCv6T6ekWzrf8Y8KxBLBsiZ/2/FlmPZatcSjJMg2NJjqeYC31A8VsLc/mx7eUcuiFepgtxJ/WQ8b4GuxGOkF3C8d93wB0agrsbNzwYVyuPy1hu5jB66Kl0kgoWChINBZDmqLz5VCnjyMH2smYLmQorStBbf5MxzMJavrFVOiGNBL4lQDlGzZTuLxqwQbsSOcYmVMD3Dr0LKo0qP9ZPfAVrrxsM+0Ty/jYY0OsHjvBVikjNh8WImz3+wjJQuubSUl17Srede11lzxHLGZiu1UkcgpvKsri4OBQrLmGKeescOI5bIslv/FdFxQpWWKfxpklYfgPpAVHGe3eSCDpFLMfm8BvP43ZeZZC1UaFw0AVUWqijHTrmBeL+KTNOM5aHYEwEULgyhhiaiqX1UuWoPzo3wmEQriys1CWmJgKKKZJQShEx/HzdJ1rJ3z+TARxF5hA01gWHSJrbvwIKHH6Iq8ESHNRu4+3q0z+S8Q7SdufIQYOPk7TI9/hjDcHGd3VSkFZZhb67ImEnVBefivVzq30GBnMYJXXVFWJ+JNJJn2FCNkEpoWgGX0VULb452YXVCMPFSNRSQbuqK3DU5CWwINYbJGfm+gWtj+xBzNAllsfIHWSZ97go+nZ6MFqrgtksPUDFThK02kcbqSl3EbtOQe1s6uZFcfImAiSMiO4cdf7WfE2UbahTh8vPT+DUXoTSukNXH+Li6TqKrr3NSFO9ZHubUfVNHK33YQ56qRwWrESNgTSkOROlOJOaSVgBPju8e/yhU1fSOA7qKrKu69dT0lJMdnFqYvyvACmjw4ye3aU5FU5pG5J1H8OtDbz2q++iR4Kx64fCFKLl7FsRTXaVBa12R/D4+9lPDSAHjwD8tJ7/10oLkVJOrczthK2rMx3U17+GVyuDXHK0rnvuy5vHb+87oGY8vbbx74TcQDfxxfW/ht/7JziuM+IfUtfyAfVF1BdReTz/lEbfo8NZ14AZ06YpVeM4h924NxUfUFj2Og4be7uZSqpB1soA6e/BMObPPee+aKM6aU4rvg8dUBd5Bgjz4b5sFEGlDIhNmEtG5ZqzPTrpC8fhO4/MDn2rgsKPGLIZtyiUqLa6V73Q0zDBMVaYFEUME2CdgfPbNzGHkcl8qpcNp06yNaG11HtKxHJVeiz++lp0+lp2wfAlUomL24JMpA1y1rFBbHeoxExkJCoioLz+Mk5Mn7EnNhRms74RDNyzLrHphlkcPBJZmfdi15XRRGkFVtJm1BV7nzv37PMYcYSnZCh8uSJT/Hj1yr4VI0eJ6YyCTsmUA1Br/dpStMtzzbDCHHm7OOkVipv23Q0ikoFwxb3659vXcWHtixNsFjYvW453+8a4oB3Kpa4CazOCPE2G/EO/qYZ5sBgE10TxVT7ofunzRh6FjeLT/Lcyp/hdQ1Ql19H43AjT7c/naCmn1/6qsuvo8iXipCWebIqAVUh87I1qCuuYvfENNviOiJkOu0UBQZQI8a6pmnws0dfYshRgNcfImxI+pOKMIQK0kAKhZPpdQxphVQlO0h2aKzbspX83BzcTZax+qXME+0Ty+g0v8WKrHZWLdtp2f24WMAplKkaX27rw5QLryFcOPmNoXHdu8nc+xCuaWk95zW34ur5Ejazla5iJ9KmAiYKUJ0MrQEbhgyjiotsGuM3epHEKXPNFZEkMYSUgklfIaqqEh4ZYSQtlZyRUXJGRti5dy/DefnkjYwwLdLZo1iqVcWukJdexvRkN0JKQkkaRmhOZLdyzXKKcgOgJUFfPZj6BVvy/TmUyf9/xDtJ258YA63NPPbzh9H13MhvotwRwfOjTg6/HODeOhtIqzG8cjbMCodCtchhdOsuplOnY6jYoT82kNosKQluYDa7haSxakLZBbB94ee63W66z79GvtaKU78LEKQ0OCl6Ty7d3d0A5JmuRRf5xIXdOufog3W7U+Gp9m/hty0nKdTGkVAHuqljV+3cce39OPLKaRxu5JFv38VHXwyhmDCsSczrBGVXWO2NVixCBT50dgAAIABJREFU7LzUSOhBqih0e9NoiTaSX/sZdlb0UXrFahwTaeh/bMGtWTiXRGIiGUzviB3rzOgZPvbSx3jwugcTOFTRhHa+8WY0po8OMvFkOwDBtglmm7sxPANouQLCo3Qafgxdj10/CRgoePt7sI+GqMyvYUWSi6qk1Rzy5eIJNSGRKIr6J/UkvRQlafzOG6nhcnw8lrAtpiwFK3EzZkv5acN9lmoUE0PqTIkWPr3tOj7xx92EjBCgkiarrQ8q2WypNiem2dZ6nDrPQbj+2/jPnqP38ReQoTBCTWXpFaM4c8I4c8Iwsw/qH4K6uxO/VyQZHTK8vG47iZFqAgrZk2sTENA3E2XEE5mtXbQlAIq2gXKk9sPDt4ERwsEqhPqvVl9UTUFxakzudSeqTKcacMTQwwAFbftRzHz6M7IZyMihyDtC8cQop5ZWcN+tloqNnEI6Sqv44DO/otSXjjRGmPNAs/iPignL+9M4sWaK2fdVU9SYzGSPjmqvRdUUqjbrFI0OIBr+EwAlq4LUK96LmlWB2+1m794BalcKFEUikAwM7mZpyd2Mew/GroUuo7oLScmOO6mqKoihQ93dP4ttJFUBVZlttE8s4z+b/FyjCRQkmqqybkstYbuP5vY8SkpUhDCRUuHoUR8vnLuXYfswNsW2wOD6zeJI5xjBsIlkrjuCmWHnH4c8Cd017l1WwJGJacKGiSLhlkGdv9lcGltI5xs1t4kVfHtoFWE5iCrhb1wKS0ZNNOzcnvIRtl67nHV563jgzAPoph4ZJWJRk+C8CQfXHcvH1MOgKLQtmaataIqHex7BN7sUPeIDGO2I4PWHGIhLygyh4nYU8dC+Z/nktkmqMtNp8ZbxVMEuSoIDyLR0apMnSEcyHNa5+ZprGHD38NqDv0DMTF4SKj9nMaJi12p45J5lbIw8EvM5hR8pziFn3MNr7gGuLClierqFr7adY519hKtLL79or1BbpyD1WBm2mu+DcxBffj5e+xSZd3wfl8fDkvx8hge+FUP77lj3VU5NTRGQE0zPnqMs/7rFS6OL+KTFl2xDoWWEgjoNDQ2c8/s5f/nl7Ny3l5zxUXLGx8gZs1TTLcMTmAX2WKeS5LIqxgdCqP4peoMaxOG1+ctroPUP1mcqKlTfAKl5C88tEv8VvdreSdr+xLBUhNZkHFXLIRT2Z29HqEW4+hUGq++hKO0XSGngqXwEu6+Y5Mnl5PtTMUUmtnA6BeUudl6Rzuu9jzGT1YpzbAVJvuXYr8hZ+JkRTxrD0FHVUm4wJsmXWQzh44UXHsOQJqqq8r5V15O6yCIfv7ALoVJU+D4KC9+Dy7WBdcCvd36Zek89A9MOHm9tiVlAtJ89S7nIZuzYU9z1QgglavljCJ6aSkM67Kz7ExI2YIE9BRDXSB5mai/Dub6MrT1e7JrCoDT5Q2qIEl1hMKWfiYiyNBq6qfNMxzN87V1fu2QOzuzZ0YTXgeYQyGzCIwb+w79CNUdQKwojyaLgbIqVyKycaibPsQRFqJaPmZTk2JIYinlWLWY3eulxKUpSl2sDpXk/o/7VZ5keqqJ90uTWz/oWKEv7W730q5YdwIzo4KGTr6CHkrHnzwk6XHYX9Z56PljxKX75xln0UDL/NPoMABWlG3hfQ6u1yJoGu08/SZ2/Hb/9ExGrCgttHkkuRJaMkDkRxjWlQ8OvFyRt5/afpd/sZFoJWO77kc4gFTudCUn1BUUZEV6MI/XdMc4XAJpIKIk6eu8HIwjSxCHOkLP5HMG0G1GcGr49nbFWYTGVqVpLjlaDA8tz0dXQRlnNrdy3tgBdCESpyT3P/o4DayJjPiImMBUVd1E5pVMaRuBI3L2P6pcFFdoSZtt72Zu5j8lq+MGtP0U/N4Wp91G7fRP215vxVd6AGZwkafUHkIad0QfOcL7cjW8iC4+ngsLCNis3NXSYtrOi+hsMD79ESziF33bsp8Kh0xmysWulk3u2zZHa459/Qwo6jEmU5B48s6W8ZK6gSJ3kivWruOa2zdTX13O8MY8zp6/B5RrC5yvAN5VNhpqBx+4hZIZ4puOZt5S0bS3PRlVEzMvNMCWPdngIJye2pPpMaT4PyzQOdIywcUxnzaRJ+pIgRPYNUaPmNqo4xyoCzq2E/cI6hoDefBsl4zqqqnDrZddQkGeNpfiekjUDCuu7pnjgla+TmZnBu669juGMIK+/9ltMPSISMU2mHCGGMwPM2pYTipQ44zsibC3P5kcphTxVsIviwAD9SUWk5M/y2Q3/gS1k8A91KidG72XSvoUUTzOBwXPEXChMg+effx7TNKGoHGdvCwRn3xSVv5Ax9GIx0NpM63e/SqGuc6g2n1+/+x50atCo5CtjX2dX1Z2L9gr1NzTQ+7GPx3iVmfd/kXMD/xJBNxUqHHdT5vGwoejLeO1TjJDFqakpXHYX3zz+C4tL2HaG+53VC8dIyeKIfTTB83qPkpaWhGlYSL+pacysyWKj2k7LSCmdoSXkeYaxeQegwBJfCATd+gRmbhFIE2dvG+psxDZICGb7m+PQPQmtL1poduOjC3htb9bb9q8V7yRtf2KUrFyNarNhhMMoimDlpg2oG2/i2efHuWPChgpo3YPIVZYRoRQ6/qzzJE9XcvBAP2OhOeTDHzhF5mXfYxyDcalSlvRjHPkpC9oPtTe2RBprgyEEQ+oE+UYWQ9oEhrTadhiGwaA6QZWWvGCRn09AbaOahyem2YYF90dbd7x2+jXO+c7hSfJQTDZbXitlUu+mytiBP+M4prfTSlMFnC0VFCclEf9YXoy3cqGY3y8QoOWNoQXcs6itwOMn+9h9og+PoePIbkZdJDGK2hS43e4FaNtikbwqh2BblIMRKU8p1pG17EpcHV1cs3YrU5XlzGSXcf/LY2RND1Az3UrAnAUkprT4OMOzbqydnsQ0zbdcHp1f3s65ZzUzJz3zqTYJ4e1dyui5Gyzjc8VK0DKX9pJT+wLTnirCvkqm0jT+xwNH0LUukpY+gJKlY5caIc/N7FiRwvU15TGithAaeugm7Pl7QOh8q/E1Nsx8j6CZEWkZpfH90o9yb8+vqc0KIux2ZChEaJnJ4DWzSMWJshQ2nPbhGmiEPZ+NNZxveKGBZzteQWrxRTCLl7l6w4oF322BKCOuhOlQ7eTe9hQzfdkIWNijdSTb4rCAlbgVOXDUlTC51x1DMBNUpgYEiz+Mw/Nl65xyqujKzEQXwrLskQoP3PyBueNHSpmqlFxVtpkiRyttR+JZWdGxpKD1TLLGSGOVksrLW0c5N7KX4MtHMHSd/v2H2Zn/fuzVN2PxMC3ivT+lFcfIU6Q7Cxn2lJOf34kiTBSp4RyvoWjd9RQX34kYbmSw9Ri903ONrufzlTas/0/2N/+e+ztfoN95AufSU/h772F0tpQpkc7X1q/A7Xbz4osvIqXEN5WLbyoXJJjCZCRpJPatxEVG4/w5IPr6nu3LuP9gJ0bEVaH57Ajq5lyipq/VfssUusqVxHK3vuhGJTNzC+2ilm/Kr6ALDc2voEY2SzZF8NGry8mpnI3NnXP0gGXcf+39tBx4htS9Bzm+xQFS0jc8Rsd3/pnX1vYQNsNcK/LQhIKiaozlWpxOZ7idsBAxpC1aZox2F3n8ZB8NPV6Ghqa4MeuPqBGRj2lKcmdeYtN4B4fP+1AycmNJvjV0oh6FAiMl/ZLECBcyhl5MLRvff7a/tBgdDVOo6FJyTlZzfXhiUVFCVBSmuMrQ8lYw0vYaZkGEViMNOmYfJKXRRW6gj67bfsi3m75FqS2I3xTscEraggJ3WFzYLmOeT1qwZ5KxjsO0iM9hyjBCqqQ7dzI5nYdimlRceRtjSTt47uQsum4gai26ghSWpVOmK5Mx33hM2GGmpmMPB2Oc4pK6y2F/BGkTEU7bBXhtb9bb9q8Vf5WkTQiRBfwei63VDdwhpfTOe8864GdAOlYF7F+llL//y57ppUXtZVcBkL+snNmpKUoK0vjc2jTc+wcB8A9XgbSB0FFUDQq3cWDGjnc8FFMvnj8yyLj/IdKX6REbDx2f/RVe+Td7QkkrUxW4jgVRIr5vqqax4qYtpE+nsCI1l4aXLJNBoQrOpbWQ+96tLPXmLSCuR/kKv+1u5Itd5zFQsQm4K72Z25fUkB3M5vDTh1lhrCDTtQ1nxXrOjCusmTAts8+cKoLeTkwBD16rWF5H1e+JHf9iPR3fLOaXLbffUUlHwzAV6/MSfh9/PAGsqbiF75/el9B31K7Y2VWxK6Etkaqq3H333QmJWwLfK8Jhmz07Cuo0gSY/Ulj9r0KjbZiqRvk118X4WY+UWgvRlv4a8s7qRESpNPoNJnBhNaO2jDOT0xKJ5xeLxThsALMnh5G6if/k8KK8tvloZebSXnqG/47slSGya20sK/w5L3gCMYuHePWoZp/lk+s/S8Pk4zGjXUXq2NLPxt4XtJXy0my6hTZIiSlUDmRu5IhrDbuXqlQEchj69wcJLjeQQloehabEm2HDNTUL9Q9C46MEr3uK/kNtSNWM89aVIAUpvnJs4UtoADaPF3Nm9gyHN9yyeDljdgyLN2aVX63XcQjm/F6ZqsBRtx5eSmI6cDl60ibqJizejhFpBSQVCw22mnSaZJlBvlxbyUeuymGgNZfO+ucwdIv7WJzsI9sRwJ+5mvauUZQI1255fwoF2Q46I4tqrqMYITSGlSkGxRiFMot01yjujd9BEma12cTpM9dw5vQ1ZLqGqR2/jOwPbIud9vxG1/EctihfqX1iGV86No6SbpkfS3Q0ZydGsIyPX6XQMPk46X3p6IZVRvSkZ9CUp+EY0wk7nsabZJWmNKGx6yLtrOLngK/dvJJ/3tMUe31VTT4vn/NYGKQ3yN/IJArLM2J8tI7IvHfLh6pICRgL5rA2j8HL/HfCwoZEwQD+pjCLJUn2uftfYz3b+357nvOHBzH0uT7DV40V8EReXqJ605FC9ojC6eUBXt46wm2Ondx+5ce4IiMYu56DHluszBg/xqIlyZ/sbafF00LLeCVmuYowDaRUmPDmMDjUipD5cVdJUlqQRf+wFwNQFJUlS9awbuu7MJJTOXjw4EU3mfEWI9E2dIupZceXr+TohstZ0tdJcU8/2hIdXUo0DGpFC5mZdy7at9a5eRNqXhXJmz4FQsV0d0DeXsvxOIKIj7kyyZ3p5Ez3Y9yTPYUqIGqGdI2EB8bsl2SXEZ3vRpfsxawIg2IikayfOMJYczl5o6NklizldEYphtlsJWvR5y/yeWO+OaNpRVG47s6PxHiCMfFIWclcC7wXv3TBNlbbMlJRLUAVVfCmLfH+UvHXQtq+BLwqpfy2EOJLkddfnPceP/BRKWWbEKIIOCGEeElKuYgM5a8T8U7jiqLQtG/O1fzKj3+FQZu1cIZ9lSwr/DmKswlPsJYP/MZPdmCM90s7NiFQVQW/L4QZr2SXMOUbwrV8DzPD1QS9FfS3enE6VPL0dG5kA4OKl6LSINL2AkPFNXg8KVx//fV0jnRyf9/9DPcM81DfQ5EHd+FD3zjcyD81PkE4/VYQEDQNfttzlhfO/ZAv2j+PoesMuTLZs3obpqKyuw5+cnyateMGodFWpKpw9uPFrKyc4E5KWBecs+m4ZOg+TvId3eXEJ1BArG/mYJvP6g0aSdziCc02Zy+9ShfbiraRnZxNTVYNvpAvttvcs2dPzAzXMBLbIy3K99pSiGIfwn/sDL7iNM43+WgJTTFTXM37/9sXEgj1G0szWYXKyMtDWERyy8+sLdmg0Z7HbZs+QN/+32GaJnsfvp+cpWWXhLYtxmEDLqlDQvW7CgDILUljsO9hTM3iqyB0FGcTW8tXY9cUDH85SA0hDFRF48tX38LG0kzU4bq4dmAaK7MuoynYA+iYyausJNYyUrP+ESohVeFHg+f4wsGfo5l2HK2CqahJuSlI7iHaOgKMEMGznRSamSiqghFFwCy5GRlqmKYn2uD2ygW8wwT0MY4XU5+xlveZdYQ7BxcvZ5TtAM2xYJKOIpgTz3YQ7pvrwOCsFjgCh5he8k9MnK/BI3yYU518emQ5/5GXZD3r0TGFgilUJrQk/rGtD/PEYdY7bUg5hyAOBVzUZvp4pXecud64UNmXRvm1VfRo+9FDIYZnexnK8vKS/TQmJqrSw3VrgkglomYUkvQMD319a5iazOFEehNJyZ2sI9HeJ4psxHPYonylB453oaQdt8aTBKSK7i9HdXTz295fInt08kJ5bBPbGErLZM+a7RiKQCk0WdXZTVagAW+Sl9srL2yFMH8OeOHsYMLrnDQHDtscUvS+8jwLjXuxm464Uv6AL8TG68sSjl3fepz39RqElHxL/CUkQghWpybzkeIcTvR4+cnJQVzhfnzPhEGfW9yjHo037FpP8fBjDCwrtwamNNGCMzFUzZct2X7thyjKq6Eock0HWpvZ/93/TaGu06pprF2Ed1ajjrNpsgF3oJDn227msvxjjA6X4J/KolY9ytCkQjgjG1BQhOTqkV+BGeaMuYG2yfcyGUznNU8fk9kvWmPsIs3iowlw1Bcu2ns5Smmp99QzONnN/xgtJlx3BdrGK/hFroOrs4K8OhjltH39gqa34XKJ/vc1BJp7AIGv4DBJExUEMjoAiTA10vonQbOzPDePqWkrwZHWXg2bENy76pZLKp9H5zvn+ApEuYZERxEamU0G+e2tCJsNNcOF/ee/QHn3NgxFscRAEE/PBqCiooKdO3da18x9jIFsH7tnZyzxSDy6l1+7aBuruYjuJi9W2/jLxl8rabsV2Bn5+WFgH/OSNilla9zPA0KIYSAX+C+TtLmbzsSczQ1zbpdu6Dr+iU5u/ex1nD9ioW3OpEIKyi7jub3thPQW+lXYnRbizrI8tq8p4ODvWrFlvAvXskOg6AihYajHyVkZJrtGY+DQvRRXbcShCoSmkB92kZ46grvkB3hHwxhS4eyZa/D7C8ncnsmwfTj24B45vp/xyU7yakoTGkvXe+pRZs9C2k3WL6QOxiTelGvpHZtGQWHQlYOhKEghCCuSB0o6KA8/TuqaHrwr4cbaDrIETJqj+B67Cddl34O6uy8I3SdewIWS76FwdSyBUhRBdklqrIH8fD+1KKFZJPdgL7mPBq+BmLDQtVuuu7SJAhZ2Euhv9TL4RjPnnz1JyYybQptB7U03k046BatyWbOlOOHvhzp9eF/uIc2cEyaYwD5F57xqsHl6IqYOfisK0gtx2C7Ga2s62B9ry6UqgvNiELsrl5LLVRRtTnBS5rLKy081G/iUGwGJy3wXZQ6T7u6fsSxzC/dfez9Pnz/I7w7aODJdgiP1E3xwR5jKpTv4So8gbFoefRKBLk2kDFM/tJtv1iTx1QYTe5cg50cawSqJo1Uw3pOFfaOPzIoZUFQcq8op6DTYGq7ikO080YunIFijZJEz4mf/jxq4/H/NiSYWVdBGeDGH0y8nPC4uXM64AIcmGuHBmbkXCtjbfspki5NZYwse4eN5e4OFPJ7v4h/StzLmSOGywR6SCpP5DzWdAzILE0HIMHiuuYXxU69jxrpmCAwJZ8z1mIaXuS4dAmmazE5NceXHv8LpPU/jcTdweGY/hsMV2wD4U5ajGJrFQzUVprx5YJqYisnZ1Gae7Xh20fE+0NrMwPlpSLWwDxM4MZbEvp4jqDlmrL2nMbkRESjFlrsPU+pITDx2D/vzDzCbtgtDEVYLJylwKHVsHkjlaNHRC6JssLB8d8OqQo53j8dev3fDEt67YckCCsXF2q5FieF9Ax7CSiGmUBGmjhAqpoSvtvcjpnW+8X/Ze+/wuMoz7//znHNmRhpJM+q9V3dLslwwNgbTTO+QhCSwCyTZbNhdQnbfkA1Z0khCIMmym7YJSUggJKb3FjBgjJuaq4rVex+N+syc8zy/P85oJNmGhH3fTfZ3Xbmvi8vC0shnzpzznPv53t/ySB2m0c4ZehsbzAvtvQJhCFwIpFLU9AaoWV5KbF8zs54oCrMLuPDjX+GCRajayed08Zhx8b08P/Zdro9x5GffZkPI5Oz0OUqXdQMmCfFDbA8cJs0aRM8fpW+wCzOUxtpVpeQ0dQMWh4Jb0OZiAUFA99nGy/CBYfEnb4oX8/UcmoOVDh+PdTUS4qNIoWEJxSujsxS+dpCsqip6U87nBLHM42CLx+iAjdB6glAVxs608PUsdbw9ZxFzJIXJ155n5v7v0WcEcKs3mVeRKiUQwiBBV/j9tX80e3R+vYueKCan9v9gru4muehsYu6JjWSOzh1vIGlwkLN3vUV7YQGdRUURE2YNYZul6zorE7KZePYwvbm1dLY8ycfW3E5oVODwNfPjJCdD7a10ZxWwo3glVVtPz8N+b3wKM2zHZf03TJ3/p+ov1bSlKaX6AZRS/UKI95dvAEKIDYATaH2f738K+BRAbm7u/+NDff+KjouL8FgANN1AKbnEeLFp7wCWKWnaO8AVd1QsWchGomDTpYX0HThh2xxMpND11hco2NBPZlmI3r7fITSFEBaVV0xGHlzeSwuZeKOLmcRG29NGUwgp8XhtTxsxJtCEHUGzYraI899dhaF0zMPjHKUm0rhVpVURe+iniOH7MKNWYIlophJvBgTf91jcO5JB7OgMdXkQ1Cw0AW3Ol+nI70bkOzgndhZdhHdWGvi8Ot6X7oS0FazL2/DHo2xOI/nunU5d1EAphjrCMQ8CdF1jMs7gh7ta2FSYFCE0695aEFaEIrLYd2me31GYW4het2D7sXbt2shhnPyQCMyY1O2eJiFxGdl5q9BRuE7ACjGJap/it31+yiozWJeXwLs736H25fdIchWyxZuOJuyx9e8IcgyLnOAQKWKWIU1Hcqop5wfV+xHv34/XNtDmtxu2eYK3ZQsCZkeL6Hr7TpZtG2bVxh0RNWl/bSM1Q7+kJ6YFKXUyfILN+hNM6hZ6eIyWbF1EYKoJqSA4lUOyVcbH8ospTbAfnsmqn2/v/ybTjmIccw0YoVYasjWOXD7DWcc05vTlzL3WPg/nMFAdh8sbxJ0mcKVrTJ/poqtuDAIL76PUzCRdxSNRJAiWNOqnVdCeY++cN/uncYy3QJg4fNpxxvtkDS5VnkIDPXSo9eTLVJarDPr1biT2GNdC4jvwHk6hk1l0LkVlq/hCvM6++haClkSTFtm9bXbDtmh9EAIGBuw95zzSJlEIXScUSufdxyeR6hxc8WUkRR1nUrO9pnRdJ9PMZe6XOcgz1xDtW0aMNkV93ovsNiYZYzry+xbX/CTAlThB0aUWQlNYWDzc/D1w5zMf6aYLB3efcxMjoxkkJ3m479AugjKElDDiGsUUu0GdiUCgK0mWfxRDGdyWfdsHboxOF2dVFN9OW+9uCrO2RtaEk9eGk3mt85/9YmI4ZNnnTlno4WZUAqF5M9nw6L8vqhnZez5CaYhwwzb/mfTtayNpshewMKan6TszjW8Ov0Frg0HpUD8la1LhpPeXs3I1mqZhKUV/ei6v5y7nRNMA33ikjqApWT9Rx4aQCUoSlz4JKmSPElH0pufRkxJECYmrdJxi/Qb62qE3tJGZqCJOeGcQExZI0EKxYdBeoGkavb29vPDCC5EM0k2FSZQldlDoaaZtopRNhfZ4/OTRuOr9ASsYxMAeh2pIeObXdCjJ46urkG19ODWNXxVbpE8u9e3MSL86gtCi25vOyKKjWTjmkojVLmAm7jCt+9/l6/n7yTaclBNPSfe5uBO6iS94j96+39E/8NQfzR5dzNmlRsDuIgJ7IKTtYuLZp1GmCYaBMAySx8dJOXKUM26+mZ4ZhfdAAGUpBoxx0kvSSXxHoYlYQl2SN4o+Q3A+MUVK/n33exwtXos1HuRntU08WVl22mbMOdKEZrlRQkMoRVFg+jRH/eev/7GmTQjxByD9NN/61w/5ezKA3wA3qYVZw5JSSv0X8F8AVVVV/3cSvQ9Rs5OTIATu1GliM2dJz9yOJ25tZHZe80rHQgMSMumsfZqo0n38ZEcfPYHzWF70CVK1KV5qfA0r1gQ09Im1rFh9PTNzh0A9CSIEOIiJshutQOcE48+1gqVwi2WIQgdKhlBKY2I8FSEUT48+TYmZy9rZMtY6V2AoHR0dpWCooRPK1+H31xI/s58fbfkChyYnccdV8YV2mIeCQwh+uDrIjuldnDn0Cgei04gKNPOdrI/j6pEEsjVeqf8yxIZsk0MFCeMhm9QZJnT+0SibkyTfA8ZmBjsmFhDp+RKQszwBz7oUPvPKkSU8uU9doPPrdjsBIUwzipCvF/M7sqaL+WTerXi8Bqsrl+EIeZYIPK64oyKCivY2+wBBssP2gBPC9tET2ErWhv29fK22k/vXxtD05PcAi4GZfRzWb2JtnK32vQ4njYFBVg8+x0Cf7aS/evuFrNy2/UMJEU6XhhAamGbm4CAotYTX1tvsizRstgWKXJIXaTjt+fv8ONg0LS4Ut/H8ih8yENvBisxd6JqJCHte+Xz72VT4kdMipvMeRj8/8jxirhH3XGNYvQUOoVN27g1k/P01zIw46PzEJ+3cQiCYL2nPiibbNcvI7v38rmkMOT8qFKDrBsWhjIiQYySkyIpxLJyPk9HH2F6q33mF97wVbM5ffqohZvcBOPRb+yIKix9OV5p7YSls0HrZ42iyrwVtHEKCHDVGPbZ5x4AngT5vMlnjI7Q1tOJplKy+bQ1PlBfzSksb/kceIn2oB00IVvQM449yEnTGMZK8GitoqwYlgq7UaXwJJudkfpLDu8yF/k7PpOTcLZy5Uo8IZ6JfepmJ0Fk4OrYyF9/GzLqfUKyFKLTg3S4X53vMCJoxv1FJPjSNZZrEpE+Fx4f2fVrkCtHm7rD/LaVxQcanuGGNPSqu6UxiputWUuQIWdPpDGW+yKCnFe/g/WzK+Byxx46QOjmObhicseqMP3r9Ll4D/P5aZvo/SypBZvofYz8/ihj7/il81yXE8DANAQTnObt4y8wnFBYHXJKeSJ3RiTVTyGDymzSlHmDlwBmEs+ZASdLVbt4BAAAgAElEQVSCnfTKIazoKIKeRBBQ1z7Be/HrIdbgaLSF+O1DAGzbePlJRyLoTc1m58U3IScstIkB9BgDMR6k25nBBk1HKJgZ8iDUGEqaSAnDw6MkJ9ubS4lk//4nCB1bxdlp/4wwNfKExX1FO5kNuOnztHBW0XoqrUpqa2tpbLSR6Lq6Om6++WaK44f5QtUPUSqEEK9THH8GcOo5TE29kBLfl7lL3UMDKwk0CjQl2Vt1DqZuUxxCUvJ08+NcrnZGXielHV0375kWsc2Y10tIAz0Ux1jRyxgTKRxPGEAqk86QRkLPRtK6z8LpegUhbI39n5I9CuDSGgmMt4CVY2/MQhazjT0LCTmWhffaa3FkZuLesB53RQW5nRNMm/YmdlVlGi3P70YTsTZwAVSOKRzKtpcxACUVlm5HzYWkxXsdDVStXcq5qx+q5609P+IScxP93hQy/SN4XJVQWviBx//nqP+xpk0pdd77fU8IMSiEyAijbBnA0Pv8nAd4EfiyUmrf6X7mL1k5K1cTlxmkYEcXQlPAE0w5lvN0r4NNLh9Z3n50AljoxCSdYMr7PaaGAQHpHGPfni4GRlaHg66BsM0BwOs/lhieO3CnNDEzXBaxbnB3TiwK1S0mp/pfmM56DFNrZ53WwNHKVBK7Y/hm1+04lG4jAyLcOAqL1OV59PY+RlPzPSgl0TQn11X8hofHM5D0s3h23xGdxy+ib+Kf5T1MDe/FPV7CisNedGXAUSh8t5jZmAaCZYo8zyReTYLuOq1R4elP4MK4asDYzDOPzGFZs/b3hG0MasPdGvGbTR7ueRTTiEOG8iIjgcTkbrTOBZxhdfJq/mX9v0T8mIJWkJTJXC48fhujyoHf0MlL1Hh351IOGyygonYpAvMNkFr40xRQi0XIlLQerGHeJQ4sHGoKVFJEwbbDtOiTJircgHiSU/6v0hAg3LQ/28q8vfliXltWaQKxaW04ExqZGi6mUc6S71tNdFIbudseYMqyqK37Ne7AfVhmNCiBpnQyJ0qISmwlMXo4HO1lj8LeaMuivGjBqLNo+mHq3v42ev6FlJ/1Jar907RoVaioZeizDehKccXUDJevvY3ys74EgDsH0u/+MgNf/wbBvBCjt1sow2BIxTHROWo/CsJNerL0sOOSi5luEzTu7WckpPBJxdx0KPL+l6CPsb0cee8url35rcjo44mKUv4hL81u1nb/FmofgfADiLpHCex4jsBU1imkdjljRr7u0Ici1yDK/v+qjGxu2rCcp4YEP3cmYWmCWqk4s3oUxhWBNj9V5+SQGWewc6jXFipoGnGBELljEzSVnofPVYgVbLKvGSFoKJ5G6OlMH8qzzVvDJQTEHH+HpLTVJMXGMvPSy+BIxpFbDAhmEhrs1JQwyr0tL8DM4GPUDj9JbP5X+Oy795Ohz1Kh6aSnpTDV70ZJgRQKqUC1xpHqkAwn2OFGLx5r4SPLfKzLS7DvqfE8rp4sseUz43/PU1n76JOJbMjIonRzCvXHmylfUfqhY6xO9gJ79J2neaHt/FOESu/nKThPDF8ARO0PqDfo5y5xD/7Mf2N7uo2aaJeu5OWjiawuKCI+ewjzKYWyLASK0hO/J2V5Ft1WJjNppREVZzChBIUB4dzY3oxCjtS9u6Rp6z52BCktujMLbNpI+O+NZBe6P8hYbCYVV92F1XQQc2QEx48HmCpTdEwmg4CkUr/9zymNyZ4olsWsQheGPSZXkIuH32e9ikNzcPm6y5lsmrStQMK1MCo9iu39KUGZkYbodEKEfv6R4OirjA86OTK2huFLizB1LYI66kKyXB065fOKi1tBRsZVtLU9yNjYbsK7DRy9USROXMfQskft67AICpNvxXWsm6AVZDC+A61fY3akDCUNhCb/pOzRebqMK1iAUF9H4QBlYQ43RW4M4XDgvfKKCKd4an+/vR7Ok+gAb14GZtc4hFX8a/0WPz44Q02izrpsJ7taD3GstByLcHi8/zCwtGmrHqxm0DVIsW+EtImxPyll6M9Vf6nx6HPATcC3w38+e/IPCCGcwNPAr5VSj/95D+9Pq8zS5Wz62GaG/K1h9bBJz94f8chggN2xU/w053Xy82N507OVSve+MIk4/GIFqc599I/GYiHQNYHXO4pD20VDzRSW6cUcLWJutAhYsG5YtTxxSaiubsbhy+5GotCyBtlQsIKJEwEcYXRNKslwWZDJqBlSl+eRUyCoqb0HpeyHlJRBfL79bE74JE4BwSWETo2Q0nlWXE+G+ylW9BajzYcAWxLDW4iruQkhYOSGMzBz4+kzEjh8YoBy6Tvt7vmUqJTwuKrxt41YVt/CDypYfmYGcYlRNGid/MPxzyCVSVSuTqDrVnSzgOSkfpqn+nFoBpaycGiOSMMGC35MWROlaNLeVVqWpLVu6BQOGyz4waEskkeOEJ+UDe40G2mTFiH3HP8cEjRKC4ehUbR2HU0db2M3bjqj0mWbe8zzIEJRoGxT0g8zFv2gCrT5Iw2b/TmJCK8tOqmV7G33o1SIJAVNg5nIPctxpzYhNBOEveN1pzSjGxVYlsTQdIpKp/hofCCilHpvNJ+9nVdxwqfj3LWPR2/dRNH0w9w9/BRBIXC2PspVMpsfsQZLgZ76RbZN/JKyrhe5fHqG8ncehILzIqhWwg034Cotpf3EgyiHvfhLNBwpI9C94EOYJONImYohZr2Hve/2YymFYZwaMRZBH3fv5L24FeHAeB2UtHknE8dsrqQ5x2LINhAqYOTpOZTqOCVRosOt4dFAl5CvUukVY5GX5qs03JdcQILWiJjuQlopKGE3Qe0JXs6eDOKafAm6K+g+1oEMpwpIy2LU7SJhepropACakWnn1Ya66UnzMRTfQXlvEUItGnQLKDuxE3Goh/7dR7BGT2CNnMBZdjHOkksQQjDry0YpHTEfNq/BfCPUMfgqGfosf5cyiyGAi6c58UIuzS/m4toUxdy+ObIGosnQFK9sGGQ4IYTUfDzTsId1eZeyqTCJPVbrQsoIkDG6nl63xeRsiNvf7CRoOnC2dPJoasaHyhde7A8nMTg+WnxaodLpOKbzI9KVsW7qJmfCv9HmqG1gL8WqgSLXfvK9ldR0+iIq1YMdGl+9Lp+HV/+ATcdzyR2cIrD9HLxVZaQ9+jP8IiPStGX6R9GUREk7Nzarv43V59h832r/NE/0nECP9pGs6+T2d6JLidJ0HJrgG1tL8RdNsakwiYzAAI//7A3MYBBNy2LFWyPMZUUhhaD9lQI23bgFd9cAff4Q+Wmrw+9EIYWkcsOZpMWX4XV6eb71eax+a8nkYb558HhiEMIII216pCFaLESY1LO5Zf9erkm6hF8fKSFkSqyiOCzDiKidxUSIyrF3oUDxLFexgmOU0AxYNDd9jcLu68lcsYNxsR9pBcEC71Maxu0hlLBAKBQaKQneyFi2NLAWmRAHZJKbXYbmPva+2aZLKkyXcWnHSXbezZT3bxh9/mXkRCc4ncRfdVWkYZupq2PqnaMEB/IXbnFLMb1/AISEkiCTAQuvZkCXizV+wRp/CE+apPzq7ax64zt0p+exY/YgVVtvOeVQvE4vI1Ej7E7fTcpcCpdVXfb/PGv3v1t/qabt28BOIcQtQBdwHYAQogr4jFLqVuB64CwgSQhxc/h1Nyul6v8Cx3tK1XT6aKrtZ6Vejoj5LUqZKCmY7oviXP/b3OLYTdNUBp9e92WCwsHv1EbuUmOUqMbINTYynIsGNFtJrM+aZVXBYwhhYrqewp3yBaaHCyPClXlCrivPsyRUVwgR5rMopLJw+tspySpncMRPquXFFBb/Hvo5X7jky6xKLaej48cotZDdJ4QWJqbH8FRFCTsHxhgOhnhj1E9IWSh0jmlraIpbxWWO/0CEmz2EwppoJ1gEo7cHUc7DDEiFDAgy5Yt86Xe3U1V6VkSKDu8flTLQ5qdxT/+S86sbgmWbMujVJfc++QJaYgghFJoGZ62d5ILCWO47dEdY3ahzdcnVXF60VHwwz+84cOgIVp9uL8a6RlFFKv0n/KcQnXVDwwpZCGmR1/0HEvo12HwHSrNdzmMThvnylZcu4ejkJbk5+vZ+xvrjGRfJvO0fwG3MMWdGMUEyTs+1ZJVMs+nKs5YQlj+Mdx0sKCY1t4FwhO0pNEH8FUWRxqO//2kgFEFgdmT0Y3xylGj/OUzrL4W5Kg5yi7aRckdRhDPUPvsWkwP2awDi3WWc8OVHHqhP1vYg2l8hmCiQQjDtLOY/rRXIsHDLVLBPejgaF8PzsW7ub5sj6olHyLkkLoIsuisqyC68naG6AxEDz+Lll1JTfwB37CDx3kEKfcm4Cr148jzkf3Y5b/b42J59asRYpPK3srn2BTswXoBD16maE7xd00tN+mc4a+I1qiaOEZDLCMjVWKShlH6K8ram08c3njvKudI2Rd5y2VYu1Ys5VnuEophs1m/ZiGv4KXjpTjbHLsO55gFCuguHEJwZL0kZ+FdcdUfhsJOBkm+xv3wr2b1tZPd3kjQ1Cwjy5vbQ6jobYaQjHCk05P0Uh+ZgwNuG1Cw0qaNpgsqsQeIP9+A+4w7bsb3IYmbP9zAHG3AW7WBA8/P63Dgxh88j3tNH4dFO5EV+lFNDCAPdt5y1xmF0MWuHQWiKuIwZBuqTaHl3jsyR6IjVSPpoFMPxFkb8AV4arueaoWzW5ZVTujoFa78vPGKHbkNiScVPj/Rg5rgRo0HERPADzVxPV4v9IQcDK+iZnkEXpwqVTidEmOezBRcZVWsoLhHPs13tokUspyawke3+afafRNJ/re09QjLEQFICXmsH030GPS9Ns2rTFloGmpG6TRvImBzjzInn6ZNxrBwZ4eqPXcK2jZfzm94RvtjcYyucHeWUnP0Od0aVcl66mxOe5IVRfNj0d//Tr4cTU0AKQdBhUDYeZHjLGaw57wLWVG2FtANEHXgkTNYXSCTW6mgu2rqdNw+/yU9f/SkzYoa1Y2vRlIYmNJaVLePMM89kSMbyWk0d+afhMValVaEJjYCjkPHULzIuDB6c8fEPF5US19nGpL+ZH1rlWLpuW9bEOZibc3Ev92BiYGDyJe6hhGakDNLX8VsSvutgxT0XMJHpwXlCI+rvo/HpexBoKLVY3FRO+lQBz/5XHZY5iW5oLNtUQXr+WX/S9RGIOpOAdT0uDuFytuO6vpzo7euZOXAwMgqFBcNfR+45OJflRHwM50tZCuvlNym4+6Po3QcY7iwKf8fEpTXh2fppboqehJfutOk8r3zRVpEuok40jDVEvhYIpkJT/G+pv0jTppQaBc49zd9XA7eGv34EeOTPfGh/UtV0+vj6fx3gfisa0ztqI6vh8SZA/NwYz3UtY7JwGUHhQGo6Iano7fks5a5fMRs1QsNAJgMDJUgErVYKO9yHEOGgeLDIXdeH13UeUTEO5qZDSwi5i0N1FVqYc2UrdXbt6mN8fI6jTtCcAY7EH+NEVFeEmD9MIhIdDQshdMpK7wFsW4CShI3cV2bvhqr903yjsY79M24UOlJodOmJlO/5HnpCGZa/lZQLU+nLWY5yHgkfC2hCoQuLovhmfrs/nydreyKjj1OiUjqewDuxi97ejREuFkBqfhxbry8lvdDLk7taCE4WEJVgRJrUHcsLOT5YT8AKIoQiJBUqlHBaUnR5ajnl55dT72mg8egJlq0qYeXG0+eOXnFHhZ1x+ov/wDPdhdR1Zg/8B3pCEZa/jaSPfYWMwACbuxtJHcklQAmrz6li9TlVDLT5Of5uDfWvPsaIaZLkyqbYexHjrmw2X2uPd/673nUnKya9lxYuuPyfxu5joRSuuCY2bvoafn/GEoTT6yXyvqP9V1I99DhKhdA1B2eUXs9PDsxEeGy500cRM9E4E2YIAcGo5Qv+SGGBgWOuASkEXp+LmhN5KNWGUX0X1/3btyKN28mmzl5vJTd8FLq7/wmwmC48zmhrMR1zldw2OEDQUDwy0M+3PTqfyDo1GYScDVRd/R2eaD/Ee94KqqKy8D/Xymcq8gmJfB5UF/Pbww+SO3wLKN0en4Tna4uVt021/XzXisbAbkAP9Pn52FVVVFWFRybdB+wFXppUTRzlicN38t66O9hcfhFVh38CjUdBWbwbWsY/xK8gtM5Ar9jG1356PwmzcyAUoalOPJUvMetcydjUUbakF1G26qP4g35KNyYRM5JCVmkCc03NjDRfils37PsaMFKXEWz/A7MH/oOeZcuxMpxMTKYwOZlCZlw2FVoWA0mwa1cffv8Mid5NkPiaHXguBZP9bqSm6EibJn3MZeewaor+WA+ISYRQWMqMrBGXbS/gjoZBMoIa3Yakz5BIr5PguiQboSlUOOvGTq8If59a2KwUsC6/knzg0VtPv4FZLESIinHQ2+zj1TRBKBwgr6E4y1fDFzp+RYnWxjtb7uRbU9sJ9Ql+NNDCNzLTlvAwz3FvYvT4WjRphPmdAtOUDDQFOLv2LTry80FAS3wnjZPjaGjUxTr5bMFHqfZPc9eJHiyUzYnDoD8pn5HiGG5dvZKLTvNec1auRjcMLNNE1zS8Oy7lnZCJpRTdu94mOTefIVnCHj2Vqy07Dk/DIjepj+7ubHY/u5syqyyiLtawRWVZWVkMyVhu/Pk+zs1+g5wi01ZvKysyHi1PLSc3toSjFIMwQOigWRwe6eeMl37MSGI6KfFpDKRm25+lUDTGrCGIA4SGqeA4qylRzSBgZpPEvd9E3/kEqZ//O/pXdtE6/geUtAGtrITzSFDbCf2umpkNgt7BBCxT4kpsJSa1ic4T06QXXvJHr49A5wQjz1ko80aE+AjJl0XhytmAO4dT8ornDX/N4SacZRYwP+qVKKlAWphDDXazlx/HzPwzy9eEtf3j9i+ZHY3wG0821p3Ppk2cS2Rb/zY0BGPvjNJd1P2/Am37ayLCf6Oequ1hlaVhANOJTbZyUQOEIC7TDme2lEZOXxtGsSQkNTQJ7vY4vJl3IyvT2RfbTc9kE5M+nTFiiUrYgJJPARZK6uSXnE3hinwCnRO2UvDQEIEwFOJsK0ATDmQYOSkt+TKh0DidnVGMj3faB6nACjgZ0SfRhU7fVB+PNz3Otw/cR6ZhUBZlcEPFV4iNLTkt+lUy+DQXTf+OWu7GFAY6Go1JW1FrJJsOHSR5bATrUC3ZMZKhHC9SmQgklhJYSqdprATF0tHH4vGIJnQSdv0K/HNkmSvR9a9ihZGw+YYNbNsA480CgoOX4kx/FpDcd/A+NnhuBmV7+aA0jg93Uj9Uv6Rxm/d70xNmeeH1J7EsixN9h+gZrmDt2rWneD+lF3pJ0Fcx5boLa6SZ2LNWAYR3eh9nPCaKA/c/RmXCdiymGK4/RMqn1uLKs2PIOg+NgLRIcmVwdvp16JqB0DUSwp/bh4mdWYyszR4dWaKYlDMmnnNOXTwyMq6it28nYJPaTeA7R57m+qEKygIVSE8aHR2/JzNziNLSHZHXeb2VVFU+Gmmm2gMaHz3/MOZMATcmOSh95Z+o06F/yo1PxVGSmsr9QhCQEqUkcb5f4wi2oCFY3RGNkjZJ3AyFaPvDq2SWLmemri4i20+98grc+fZC7HS2g7CYb+SHW3fxaG8iwWwnYA+ev9jcw/LY6NPL7XM2UJWzgSpgYlc3/+7VCAmQmiCkHOzOuY0bh8K8BAlRyxJw5niWNLwVGDgAPTyHqjh5WezYvSjUHaqmGqkqzAVvzBIxze6odYR0A6nrKCGovuojrE/NoLsNPIMnyPn9W+wvakZTAscRxUO9e7hr4xdx9bWTsTIWSODVl6bJ8paBNsGANk6GkUDO9nJiz7IfNoF393DUN2ZH1akQzui3ef64H8/Arfj9SSilmPCn0DZxJc3qeYZHnFjeAAOFfoa8JuNxg6SPRTGYNEdO7sVMTg9jKTMi3gFbPHD3dXm8XXOMZC2euPFmzHwXx7Tk8FgNzjojZ8m129fcsNTAdFG932Zl/r9q/zQPdg4uMUSev//nuW2zqQ6MczygFA4kX+j4FVUTRwCN9h4IesO5I1IxFiWWqFZp8LNPtS39TBUMBPLxOMuoqnmPkA7PfMymUCz2OJvxZITZCGHVqVKsaOuhJPNUftbic3Dd3d+MfN06OIL15puRpJpDhw6xr2eWGNHPmPseRrS1pKp6jN2SPS0mylJoaHakm31noGka+fn5PNdiryGNYyVcWmiEN9+GzT8VNs2juXUFRtYhmJ+KSMWa/kY6E9LYecnNYQECCGmPgufccRHQwdA0tiVmwHySnwbBUoXlMTky9SvkfHahECih0LsG8H3tO5GYq6Rv/RcxqW1knvkAQjOZ1l/C7884dTR6kj/nElU4us075TR0GmzDX+F0Iic6mT34nyTd9kVkVZDR7tewnhrAODyEmurBvcFG6ayxTqyRdnyx0fS+VUdZQQWZi0Vwmg69tZGklurxw5jSZMVkKZrS7KXDkrTUN/21afv/aw1PBujFwgRcY2W2ghMLTdOZHfIghEDH4vy5GtJrHuDXUZ8ldxgS/ZKuj6Tx6YF+goaOtm4ZyTXdKB/cs8/Fdzf/G3JiL5mZZ+OOWsvh3zeReGgoItyZPjBgowUyhpzEf4HzfaQUbItczLrezdtv/dImrgoQSnCJuJDHeJwnm59EILCw6AhqdATB299MCmOnBgVPmPj23EVxroMviXt4R53NbnEeL6YV8PLVeVyZn89Hn3+CvNQR3H6LSu1GfHmFOBzxdAz3s7srh+7p2FNGH0uQls42vP6HQFmkG8e4YnsTve6LliBfsGAb8KO6wxz029yPkAyRGi+xjnwK5a7GiK+hYep1bnvt7YgD+GIy82xsN1aMhcJeNKurq6mvrz/FsHIpolWInrgwepw5cJATI4qK+O0INHssbSkan24h7fIi0gu9kR12anQemtDtXb1UC5mvbqedSYp6f++6xcdxskO/4H0zR+fPb9W6x3jz2Dc5MnyUgzM6s6P5DL8TzVTKM+Rv+RGaZtHR+TTw4JLGDWBuro8jbT/j+817aZlTOHUn1+jbOewQfCYtiaAQOITG3+SmsemNz/Ne7AqSZ4/TmpvJSOJ2kqKTOKdjguq+4zYiohSJU3PM1NXRedPNEFaA+Z9+mtyHf8VocjKdnVEIYSughTJwjy2DKCK0ALA9kl5tG6Gq4oM9klyFXqqqeyJKMYcG69trWEwyPp20vLAynaGaIaSp0A2Nwkpb9D7f9GdaZxAjb8BFPS7jBFz8wMIoJWcDvuTPM/naa6zbnIIuLWTY1/C5jDziE68gU1po0iKp40E0JcLXBZx10KBm389B2VYwRRs/RZx0keqZ4uWwJ5yu69x09c2khq/T1RUVxFe/Ssd7TxFUu3k526Ip4GZ24jW2aueBFOi6TmnRDh46vItQVAi9dI4riq/gxNAU9eIVRhKDaGh8rCSPO9N+TvVgNXGqjD3HYrFmfaRqU+x/9SkclsXajBauqtpPsyrmBKsJKgcoSFvQhiwxGT9d0PkHbVY+KN9xMbctczjENwMxjC2LY3Ogi6o9LcynWyT3PI+K2wLCQCmLZNXPuvzyyL9xrGsmYsUT9m62S2i8tuUqBuPWkTR8iPGYasC+RnWhU5VWhemKxakJglIhhGL7uy9SfnyM+vpfMeMuioxHMwe7TjkHG6+y816t6G50XceyTDQUdbW16FIyYyTzPXc+nbFHSJnOYsP4BYgWAR4NhEQKyaHEQ7iVm0+f/Wnb6kPamcsdEwU8WH87f7fhBDVdPvb0dvHdXfu4pjKbwNh6NEsSF/gFoajlJHe6cB1+he41Z9pjUU0HKXENTxIK6Fg5C9Y45yZ5OC93G7VjP0daAYSU5HommM0TETqEfSMpNAnO/kxmgq0gJSoUIrarjsorphnyhflui0QSkTqNP6ercNkSVbgyB2l87Fv0pf0BhVoCKLgrKsj95S8iY9NQoaK27m+RWhDtWoPCjdeTsuZrjMdE0WbNoHticcRk4y8sZ6ivh8Nf/1eu+9SNTGVchn+4h8rAAfTGF+xjq3uUqqt+gIpeRn/aFjQxQerEKBoaGVb8By0/f7b6a9P2Iaum08dbTUMEUfwjM1zkz2Pb6NeJXtZNSsE2lmVFc+zJB1nue4FM9ySZsy8D8Obqm8lfU0GTG4JhmF8B2UnTDPp0NAuaG/bg9fbT2vUmWqeGIzGJ0TwHVWMWa/xLsxGjxorw+PLxlC80HTk5OWwvPoM3mt+zVZdoFOtZmNJEIjk5I1ChlqJf8wqfw7tI8M2hZTsoEU00aKswlUAJDSmgOymVvjO9bIkKoRTU9KTgzf8I67ISyMqCM8shN62Ll4/2c9GqpWTlSFSKfgB2/yZy46avX0d6Tn7k52bq6iI35bqKCm6PvpBbXn084tBfNLeGT0RF0eae44B2kNTJXLImSjlw6Ajl55cvWfCNgBcRZ4sJ5suyLI7UNjJ0zIo0iqfzALPGWiOByc4Nf4dIszko82KDYyf87P1eLVd+vpLM0uVcd/c3GdzXCA22gadCse/wr5HTfn7TkIcl89E1wVcuXfn+KNv8cZxUruJ4Oxc1nIxwutGo11tJQfHdfK3lbzCVScVEMZrUiUo7iqbZdgNCSPr6dkWaNr+/lpraG1EqiAJuS4YfDrnszMCoKIiOJihsPpuJorrtVW711VPlq6Xe5eT7o0MEfTpO3cUVW/+ZTS/vZsRlkBwwyf/ShcwcOAihhae8CoVofXcPz/rHsSwLr/c8Nue7SWgoI9pfzCWEeCbbsWCaqST+Z48z4I1/f35buDYWJ/PLGYv63Giqmg9S5vMQwmKezR1o9hFoGFsiRHDleUi9bc0SP7z5pt+jFMkxOpa4EaGFxzZVmyL/nu8n9zHwg18CkHP8Ya786iqeSMlCCYGlBG0pTjJHg0gBupGDohsAQypy+xU9ifYGKxQM0lpTx3LPJgY134InnJRLjVW7D5Dzyk14oi0OrI3jfCHYruBHjEBMC9vzPxWJPfpZ+oJflzWbx+ef/03O27YAACAASURBVAmrtHgGkmYYS1TEqTKs2TzaWnSeqOnBtJpwGhr3bLD9DGNjhygo3AtKUSaa+KL6Kk+OXk1nZz7XXl8QOQfvZzg7jzwtT8qPjCtLEzsoT2jC7z8br7fyA/MdT+a2nVeSQnqeF0jDf/39+A59n45RNy/HVRA79huk4cEVaGIm9SIIp0MMtPl5d+cJpLTjq9ael0P9610opWjN8vP7zblILRNNbuDqV90c4x1GEkJcWXxlBLV/oryYnQNjDLW3kjQ6BErRlZjBA8MBrBE7feNzvc2IeaP18DmISZuNoEQ37VhPx0s/wC+jqVGr5oee5E0VkT2Vj4bOVGwPoBE7WQS5E6Ssd5PvyV9i8rvY+64qM5aJ3h9yZkaQjen7+X7N51Bk2+c6kE4UL+AK7KVkKh5lecjpa0e3LEyE/SzpCOL0OJhd9Fj4w+gkJ3LLFjbXA6NEZfURsLIQ8jf2ZMMC914Nd60Lz43nMOvcjwqFEA4H7g3ryS1UjNT9/JTw+Qi65u85xZ/TtXUD3ksLmT06gu6doeM//4aRz81ENm9SBiJ0GvK34q7YgJ5YRKDNz8DhxxaAByzUtnTGg1GRJnp660Wo4gupHLPY5gvy9uDv6dz5ddYndoYH0FZkg4gVxBybxp96F/ulwpGhuLO2na2TURRUlH7g2vPnqr82bR+y9rWNYob5VwK4RHPiOJSGOJZB1K3FtLgsHppZxsPRO1EKqr0r+fSafyKku/j90AD/lpiEIWV4P6eIDgXI1E0K4jtZvfo1NM1CyiO8oRfx2xV5WBo4FPz44IzduIXr/RCX9Vs24m4M0qfGyBSJDJaEWH6skFXTxRyPbaPB3YYlbaXl5UWX4/WWU1nxmzCJPVz5W2nf+30G+y1SMnWWcwwHIULKgaYkaf4hhpOG8GsGo14He4ff4dEnh/m38y7nhjVbT1JvjVGWHndqg/IB7vTzRNN5yD33l7/ASsxnputWpLOFeP8KRvaYxDHFKrGK6YIz2dRxOZrUsfp0Bor8Sxb8KBXPtguvpWe4ldraWqSUCKHR+tYMHXNtC7muizzAlBCMDfahPfIz2yNISlx9h5Fpq23uBFDvb2PUdKAZmRGFW2bpchoHJml953ny3MX0R+8hetmbGLriH9cafLfmdjomCvDNBHm/OiULM4ywRa9Kxv9C29I0gNM0buWp5Xxp45e4d/+99HtakZrF3OAqVOnb2LCtIMa5MeJTN6ftR6lQ5JrWgZIoxYDlsPNkE8pw1t5HUCkQBineraC9AFJSHRXFlKuEYPQKnHONPBfdxJ0//skp5GEcjgjSJhwOhlNTcIca8Xj7mfBnMK2fR+a0DbGtmVZ8Zc7P73xjCAGlA92kTHpp3Nf/vk3bYpS0zNCoNDKYqk0jhO3bHaXtRdcmmLZ2nCJEgFP98Mbe6qbKaacYRATfSifQK3HNPQD5W6meFbzUM8yKgmJWtrcAcGHtPp6/4EpCCgxLUjAYACnRlEXmaDepm1YwNjFJ9MEeRhM2gmgBWz+O0LMYMaFYJtjjMSXRjQWrgUDnBIE3W3AFCzie02X7roUPrjhK8uzUUbZ4Q3R0dNjXQc5ClNV/PPY61069QUrJNErAM71buLt5EoQ9tpyvkCkZsOLRdZ34+MGIv5tSUKKauSHaybrr1y25n5dwuMIq6ZPRtx/d9kXazQHyxQ+ZGwtRO/4QlRW/YXN8GQ5NLDFEXhxjdzqTXb+/ltreb9KUmMe9SV/FxEApk4Sh77Bca2Ol1oXfX0vUeDG+1zvxKMUY9iZVGx+irGUnR0vPpyUzEEZF7c1oT04pmSPVTCbPnZL0sHNgjKArHu3Sm7nhhV/Rk12IKbTISPZX/hg+jo6OhaEbJBUbS2gnOdPncqbcRy9p1LMcUwnbwgLCXorhm09JQlYrtTMH6WgfiEwOFtf8WLmj43WmsM3VkRbLk1q4pvJGrqnM5tt7a2iYs7OCB5JmUG3xZAz2cM0LD1NfuIHthYUkbyygI26E30wuwNohpdg5MMZ9ZfbmOiAmGH7uEMKUZI9kMJvYSPRoCerVZ5D+DqxxPxnf/RmjTe8wlDvAHl835eNbI03fMIk83lVLlWik/JnPL4wjNcNeisJxcoHOicjaNuttxn+1tIHUsHJWoRh78xnyJwZAdxK48BmbAxeSaN4URJWBCmd7JyRspPFNeyPRk5LF4xdchqVpOBT88KAibSKH7OiXMYTEVAKJhkCGPwON94JuTF2ihIalCwLrV7OyMP2P8If/fPXXpu1D1uJEg/XCwLB52JGHwD4CHDCL+bR5L1utEY6XZhHSXVjhUVnP/j4+FZjiR8vikUJjb/EaPpplckagdgkSMpThxNRAaYKQUlQnGqzxB0EXxFSl4a5MYy6+hf6O/Tgc8YRGjpAwHsJbeB0rb92Ku66Zo8EWXjn0It/o/RwOpcOYxuR1MezT606JaOkfeAopg/QPPEWs9xN8Ni2JrbEBdogQJTTxJb7KK1MbcXYpDM8e1saOUJPsRQmoVA3sHWrnW/VvUpb+EPvaYv807tYid/rFC7URJprOQ+4zBw6yrzSOwFQOUuWQMWdELAlQsH7qSgxl81GUtMcq63bkn7LgJ3XHUldXB9i2HNJSaIttBXbko11cwLHHTzAclIy/MUXF0X68UoKm4R46CBW3MNA2xfHGJxgN9AA6Lu+1TI5lcmx3L3PTIXr3HWVr4jloQscoOMKorhAa6FgsSzxB70zRB5K4F3uRaW4jIjo4bRrAaRaS7u5u0ofSeaD8AdpEG6WbknCNljCl2eMkITSOvzrG9JDdsJ7/dyvtEaWymypNc1CRdwOfzA6jDanlfEHm8NU/PEdwsoD/cyKLtVu/Rv7eu3EbBYyn3YUSBtMek993PcBl51xG+ac/FTked0UFeQ//KsJp8155BeOBBlYlLmxSsvIuJWXNAtp1seZn8Be7w/YZGo5g3pL3OB9nNM+DOvnczFa3ANHMr/oKF27tTWbk+ShsUYI1Pkegc+KUczi1vx9Ps484w+bCzVOahCZx1f0f0Bqoji/n2tXfJXjOR3BsNXngB99gZXsL61PieeDBe6nLL6G85TjZIyY+bykJ4yeIn+slsPVmOtt66Zu4CqkZOM1+pNkLjkyEkYEvZHJidIp1SmCuzaLiih3k5OQsakpzUOrr7LTu5QLViYFNg4ibTcEz52D3s7ttA/uT8iq9cy+TcWk7Iiy0+1v5EvdVl9DqL1jy3nVdY2vFMlLXZdPWlkXIPBo2WhW0tmxk5cqCJfdy/VA91YFqyj93M1F9cxFO2/6ndy5B32JGOzi3YpTWNltANU/FqMqvXGKInD1qnuLRdjL31Ofbj1QhjotVmBhIoaMh2Jh3DR8PfMP2rBt6gpzqfyFurIjNMTrvzVhMIIgfbyE0dwyle8n0Z6LJUqSw0dzc3hZSNmziC1tvJHXcxf49OxkrXsnDVlRkOiIMB9qFV3JzTib7x0xC0h65TvodPJN+GTlzfZy1bRNGXAtyeJ52EuSV1lYumYknJ3qQj4nn+L71EeJ1u6kCzfaklDYxXs11UHEimhitmD3H95zStM2LOqoyV0SmJEIz2Fa5lrqJJ6lKq+Jft1/KLa8+Q0iGmEiGDf94K717WtAOvkPu0JMYNQZZd9zCy/4+hKpEifnZp+B3/WNcn55IlTfGTieQCqFpRPuLcU+UoJQilLOJwEQnwZ4pfONH6K78GUqEyLKe48s7b+cb13+MtkAr9+6/F6kkTiH4mQHlpp34wLpPgjdngdO2q9u+bz0tdK+7HyUWbWrDjVt9bBlxnRol8T0E3tuNCm0ERMSvdCaxkZSSc/B6K8lZGY1uGPRkFWJqAqUJTKmoTdS4xTtL6sgcpqURwuCroU/w2ex2coffBiXZfPiHONZ8D4SBQ9fZXpGF639BfNV8/bVp+5C1GJ7e6o5Ge6EDZUrmEluZS6imKrqSXKVTPlnMDMW4mhwYWVqYQAvrRkK8najb7AohkLpG0GHiaSxEem1PL6U0zhpy82aizc3RJDh6AzQGFSuvKyHhjEx7t1n7caQK5/8ohVBQ9vJjyMqHeOLoQUzTJJtCfEyRQSJSKnJ9qZgrq6getFMEylPLeaf/GK/Li1nBUUpkCx0NP6VwZhU5M8koz25b+C8VzqlMso0+duR1EtCNBTsSoCTKonvSVqBtKrzmj+eOLqqTzTQvvLgC4XQugdw3JdrNciAkmRUq8igWgFs3QBdIqZZYeKQXepcgMx0dHYuMKhWmy4/D9Cx5TZ8/SPOsZfNehI7PW0yCIYiuOA//lkreSEsiY7aR0cO9hOfVWKEejr2Taf9aAUW6Gy1GRxMa7rFljEodhYUQDipLzuVvd/xx1ejpkhCAD8wdBbthe/jhh7EsC6ELkrYk4VnhID65i6k2Gb5UJK7ERqYGCzFNSVd9OusueTSCtmZkXHUKcXhkNIO54bNtc1YhedFxIX+/roWRwcCCSg2YdRZHcjCXkIgrKiOoW3f1qxw//iS5efYmRdMUfX27iC5aSU5YYJGDh8s2XMr+dw4wK6E3ycVwlk6s346SubaumZBSOITgiYpSVi9OSlABogMvMsU1keOP1vbicraTfFkUEw1xBBrHmD4wsCRRYr5mj9osbNtOBzSvE5cnRPTAj3GJY6Cw/eHQkJqGaSiOr1vGuVdsxRIeVpxoYkVTg23JcvHZ5MUkABsY2raCuxp/z5rO7WTrhs2NdGSiO+xrpz7zDS50FNBz+AUGlUTVe9GzEgFwv9vHgDlGvzZOcpyP1c4Yjo0lUZE4DkJyduoIsmUtKkyfME0zMlatH6rHn3CITC1iSYamSVYktdAxWYgVnhwUedu5fu0wxfFp9oMv529obs7g3T2/YNyXysxM+hKD0fqhem559ZZIzuVDFz5EZqrNZTsd+haTMHsqFYOFdA2Amr0d7+vRNl8djo08xzXEKR+GsOOZnJrG1YkS+kzmm8JpTwNRo0XomqB8VRIJ5+cx2W7x1tg2LF0nfcLHZYf20OdNJnW4g/GEXo6PjVKxp5Rdj79Ad0oWO2MLMI0FFNoQEJ0+QkZaCk/klvDe+BSJc4pvTPczHJ3OeFwmX9xchTkxiZKazeuyFFrLHI8PrUZkJRJbcSGvN8WTZw6w0ehCEypMXVEoIQim5QCCvFkYfnuY6tjqiJJ5sagjOzTEnRUfpaDMIpC8jC+9e/8SU92HLvz5kgzV/X07GThoi4e6EjP47ngaJuF1S8mwOnZpzmaoZziSNLOkNPv5NXuoh5mL+yNxirq0KPQ080zDHl4YuhczLIYIKkF1dDTlgTCPbe3HlkxX5qcL/sw9KC24gLCF+YdKaYz702kNBCihG9foEwyJIvq0STJkEmkTxbhnSknaYfvezVNV4htPsF8DU1o4lOS86Z8yufWT3PlcKpXyGPvVctZv2UFu3Evw5tuAomriGE8c/jwvec8iMzaXtIlkW3T0v6T+2rT9N2pdXgIq3slb41NUfbyEnKa9dMXchxoLgXBwdd5daONZCCB7xIwQaEt75kie7GHK0Y6uzsCSGppSBI5Xs3dqlk21t2ImnMAYXs25E0WkTc5QnahTOWYxMWrRrBQJ/iAZwHD727bZYTjHl7BfW1OhE731JSzLXuwV0Kv7SDG96LpOV8IQt732mcjNfceWn/GlgVUExQoMZfKv8qusHxrl3sF/Yowp+ieL6M86xr3pdxBKNzDSyomijyniWCGOUUwzloJpKbjAa7E2Lu60mYMfVEvMNE1J14EOVt/1Raxx///H3nnGx3Fe9/p5Z2Z3sQssFn3RGwEQADsJFrGokRLVqF4sW5bcY/k6znUkx3ZiRTeWchNHduwojpVYktUbKYnqEiWLokixiiBBkCBAAETHomML6u7OzHs/zGIBqNnx7/5if/D5wrYAhrsz73vec87/+cdbbKuAf7ghiedPv4/9WDlyKiMG/5TofSaKqlC9MZfKdTmf2kIrLi6ODQRb/qObr1+D4XfOa73E26q6iZAGXqZwrf8uqDacdfAWrSgTQ1zryCXTkcfQVA8hJTf2XktktI/+if1Uum4AJAmhcszG20heMknVquvY8rsAk58Rn+ZFOjc6OjrQY9BVQzfYc2IPr5/eza0J55NWMDOPJwiN5hO7aJoO9FG5biWVlfd86s+eW2EWaQ66UjWO5n2e9Wf/BrsZJawAUsc23chLrV1cklPBeMePP6ZKpvsIHW/8gkBiMfkFM4cU6Omrp67uPq677nsUFBTQ/NZxzuw/yqC9n77kFF5dloWhj/Pk8VZu0gaJmGmYQsU0dH7a2MSdVZUs+doSwrtfw9H+7ziU02iin6mUW3AuTicpcQ0U3wFmJeGd9bOuPB+pWHZ3d3OU04S1EOVGDl7pgfEo4aDJUc83acxcyLmhd1gfrEeLzTZqQnDZrTfimNDYu3sv+y+5mmXNDSzu6cTzha/Hk9VX33mCrSe/gRqrCs/IIkRMsWjYItgKJpH1Ej3BxWRuKR/W1XO8/hQrmro4VlFEYvIA9qXvUKAYFEgL2YAAKXSW2zVOMpMAQO1oLf1n+vmXD/+FbHWSiiTizguGVDl38VbOXQzvn3qbsYiLzy18EbtqUHtsB6ryPUpLt1BRcQlO56K4ndZc4c6rZ18lYloVkYgZiSfrtZ1+DvXaWPL1H5A40jFPUbpyxRPUNz/LwNg0Tf1jrP3Io5pXkYqqWr7DqiI+BlY+GpzgS60qEXETGlG+yG8Yw815aXksMldxVlet3MNUcYwstJJuTaH0kmIcRcm09NoxNS1+7xcMS8p8JkF3GEEFhb2ShgPvohoG3TnF6PMYYBI1+DpP+6d4qfUlHj//h3ynyKqCVc1Z73LC/Wz/58dxpOeRlDPJeJ+LqQEnAsnR6TL+ZtMlPLUJdu95n4mOLpDMHiaF1TC1fmvdX6+/8Tper5eCggIOtY1QOtDGipFTeLReWnskHW/ZcHzeGYfqRowIRweO8rUlX0N3lLM3MI4enJiXSPfkl1pA6njzX1gWT1hWYEu1Xlo/+AVyfAEJVMxxhbFcXm25eUS7i9CHzuAcuQqxwIY0dQyp0haqIMvVbiFnYlHikCxadzHB6WTa01dwNFBPjcNuJXEd+3AUb8J+i0mw94M5b7eC2uKmNzGTwcFSJgLpLHDsA2BQCfKG/TgGCqro4Nqyi1iwafG8NTG3oorbKqpQeod5/expLh96H/uGK/iH8VwOJkoOBcpQBVzotM2qwPUwYOIN+VFCKr1ikMdaHvuYaO2PGX9O2v6AmAt6tEn458AZslwRizhvRPBRSw65aAgUIdhSngkGvPxsI60JI2SGRrii3jrh5QaGyR7zYwLhUA6LR9dxctJAumBJwBIgmFLSZBOMGbOLmGu0ClCsYc6Z9T+WuCWlCVShYGAlM6HlUcKak+IlVewKbZ/3cD/YeoiIug4TFQNJsH8BZcO5NDPOW/YTmBMmx6cvRxcaUihEgcf4OhKBhs5PtTcpbqzlxtJGhBJhrO0uem0mq4pu/r3Bm/MSJT2C/Y1HGdjpo/CR38Q3vLrBOh7Z833ShxSiqUcxxr4F0vLVFCiYpqTBP4FbNT/R8BYsocZtt93GiROWZUt6bhIFa+c/iKmqYNv5efT3D+LsbsGdcRlS2hGATUo26pOkh85ynvdGFKEiUwwOjJuMGKZVOY32MBLuYU//s2Q5i9CqIWeTi8IFl+KJ0dr/ELjuTHxaBW4mop4oBoaVCAgT3VTZeuqrdDv76fVfhCeln2AgG3M8BVfsa+wprZxtPYgz/ZJ5FbYZD8sabw2ripbz1NfW8XzbIE+JaZ70B3guaOf5dbfzwoHvcU/2GprlWbToWQyh0jGwi7RPUCWz558oNjt4P7SaU/UXkZXVhjenleycZrK8Z2lrW0Gk/xyeO/gqhmptZL0pGRiKQArLJ3HI14SZsRGkRAqVPZPwQW0LD+fksHVLGTzWDoZKUsL7JN10R+xEbxlqh9/rnu8owazvaHd3N48++iiGYYAGzZqPK9I2kemzcdKjcvtqN1FxFfcbl/Hz7ne4on4/Pe408sdG8cgq3rz/Af76W98jukzDdtk1POVRqZzDmErrLKFfhhGxw4bdoxAJmZjSxFB0epNb6E/PQtU0wq7kGEdLYBgGXckaLnc/BUX18TGKuHmbBITENZVhuSsIayR7f8d+WoOtmNKkw1B4IWBnTYKKfyKPt9u38bk1UUqVH3JNWSQmU7LkUYYRob3tdfbu7WVd5cUsWbWQTZs+bk33UZN6ifwEvMdF5M65z5v6xxgPvEKy0BntepsdIz/nhvWztLNs2xmuSr2b3ukK8hKaybb9DJityMwIF0wUdFTGcHMVO8mzf56hzjGOD1xDi7OA3PYUFvbmkGkzWDwHQJ0diVj2XICiaSwurMEXbGcsZK0kUproziTUyXESpieJD/TFEqhJ9yWAYEIaPPvG22Std5BbUTXPY/XwzncwDIPJARdjoUx0lxvNOUZi1hQ3ntONO3yYiopLSKmu5OmOk7HkJpY8xZLwGaWrwGqbzlRN10/72LD/v+hKT6IlOxUQGLqO1jOOaZ9FhHjsnk9U5s6gSKrKFrF/OIoev4cEl4pXKM/dxpokkE030yl1RI2NgqPfJ8Ffij5QjwyHsBWcA1oJrvXfZfLgL+CdNykr/1t8OT5ao05+dFEYe0oer3U5iBgRShwm3/ZGmZzYzVGh8auGdyx1uqLyYN8gy6cmQbUzse0rsU8GMAW6bwXpHTdTcuIZnImDVJ1XSHnCMOgKHeTjSh4mOWWQUCCb9uY2Fmxa/DH0zNHgBHe1dBM1EznguRjGBboSRtaks/S9A0yFE1lXuh4KymZnrJ3pdDT6MNoisYqvMV8M9EeOPydtf0AcCIzHZxyiUnLaXIRXWicNYQpG+tPJib02RQVjXw8TgTDJUjIw7QGXQnYoQAUtJHv6CeJlPOSlQ3ezw5hiWoVyQ+GrmgMFy+9SXZzGVRcWxStC6QvWk/XarQwufJz4jS5BwYbn2GIunc6mXwtQeVkNC1ZXxq+9ZtCydppJ3PqH3kZmrUQRGjZT58LBWhyKyQAb4wq2nOAImpToMTWkIZQYiFFw8uUoxXoTojR24pcGTU1389aZRJYv2PR7JSYzMM3mJ97G/sajeIJtDGVk0PbSyyzJyLBOmLVvc8HBFBRTIBWd9qxaVJeTokAVilQwEOzoGOTfHxr8ndDauro6DMP4GPZjZm7IjJpkmDqwMDbrMav2dfjryXHkoQir/WkC6TYYNkxqnQZbShYxcOwQI+E+plLaKavqYmDUYDDwX9iTr+T/vlfEmdHi/xZc978TbaKN+rR6ciZyMDNaOEdzkpjaiQx5CYS8jIUyAYWUiCVfT0g/S8G5P2NaMzh2/Kl4ReyTPAxXFS1nPxGMtr5Ztd+0wndCDfzDdBM/MTKp6BY0l9goPncr4x2HZ1thETdsvxL0MAWY3CyP0DR6E3a3iRDNsaF6k5SUAdrrWi1GVewwkhsYRjUlhpBoUsc1OWZRrIQa31B1Kfn3/e0su7CK7E8RuECsDWObI/KQWN6FwMn+Jithi4WJZK+vhWtkFUfT1Bj/TWEaG/+mlHO+v5FM/zBCCM7W1XG8pDzOadOl5FhWLhvn/OwMVwYDWFZtAkF0TIIUSGFwsHgnfo+PdasuJmvBNo48+ij1piWIUUyTIr0FbVkPijL7rM8MCFgUGYHHRgybbSKRTCvTmNJEEQrFdpNrUiKoQpDn6GR3l6AyrZXpUSuxVrDeSkmsFRXwYug6dYdO07Z3Mu7/OTeuXHAlL7e+HG+PLky8gF/8tvkz51nbeveRLiwoLKbB+6d2UZo35zno2Ee21kB2Yj0Ilf4Pa+ltyIpXw9enJMWECyaqMKiWpxHCjttdzR77r/ll/t+io6Gmwi3BCfJHddKCEQYG6ziz9xWW3PMC5yUnM5SdQ/4NX+Po7i6mZDfCq1jtPVXFEZkGYDrBZbUNldh9ZtXtrDaihLP9gh33/N08xImvuZHQ8BCKohC1JzBZWAFCwZE8TPnSd1CUBjo63yM6+hNSXs/iUn0FPmWUofFkxkwDPfUg7sWpHOvowjvpRWJdUzAYpLu7m4KuJgalQcb4JGdlClIIVE1Dz09CDFqHAQWFYCT4icrc71RUxa/182e6edw3HLsbDZxyghsdh4l2+ugydVBBmgaTqY04g8U4Mgfxh7oYWxDA5a/GGSjFs+1LJF9cimvFCvrOvI+393amR6NEAnZ+tfHvOTE2xiKli8mBZ6wnSkYpskHztEbUlBy1KyyftFSkqYGo1T43IhhS0DCUyUTCSbYtyOHS/DO4rtkMbIaOfaR2dbA4a1dsJlbFc6yS4SMtPP/KP87Drrw1plt7tVAxBUgRYzYKk+BCLxuOv09OeB0wZx32VlPs3Yza+Vi8K/On4jsKf07a/qBYn5KEJq2ETTUla3xu8nx3MJnWxOmWbhKDCopmVW3WOVXMxlGcQJl7nBE9SPJEGVXnjWFPfBZpRpFSpX3/7TxmOujVdBZpVkn+50yzND2JNecWsXlt3rxrOIXBvb7VrA9l4k4/zOXswlBN7CMbMf1lJKDijXpIHp/fi5+xdnrgxAMc8h2ijCYKpn6MkbiRm9t2URM6DTYblVUmb3Sm0pOSTn5wgH8/8SAHkm6i0+zkg7LFGApo0qA6eAJHr8KYNOMzbtI0ONb6Lj95V+OGmoJ5VlafFtmlHpKvLKPzhR6G09PZc/55GNLk2COPcNuXv4zaAYop4hY8JQEgvJi9WQ1Uu8vYPajQq5ooOp8Jre3o6ECPWczMnfuBWdSGtQeqMYakhe4Y0iVNEwMY40cZcuRgpqzHSuYEw7pAURQuX5hJOBjB7r4eM9qDp7gNobRbLhcySjj0It9ZrvHTo9+mI1Ty37IBmoHt/i4XhFJZytLRpXiShlla1I2imMjcVtr3f5PwlBe7x47Zn4IadaNjkLy4GUWbhdvODeNoggAAIABJREFUMJXmehjOgEaXZy0nbVoy08CxKYL1OUWg2qnwSe7abYIp8B+HsFJPYs0XmTKOk5m2Fc/AgKUcizHtF5Q7ya+sYmQshyb2INFRVBvFxRfTMZXAMT1ETmCI7JCfnJCf20+doX66m3xfO4qQ2PINwrFK1EyYkpigJJaodVitlHmzM7EWc+i3nYRbAvEvDLzUykB4EtyxF8a+rZTQFTHJHYwiFthAWoNhTUUVZE2Ps2iwB1VVWbB8ORN7H8Bm6EQBDcnKQR8UeeM/u3JdDk37+zDM+bwwFY0Lsi7ihxffTvZ4Cb1tfqqL15D+5P0MZqSTOTCIee44ujBiCRoz+07M6xZUqZE+uoQaPYEj9lYUqbBsdBnTCdN849xvQOBN7BP7ABNFNfjRRWEWl5zPscDDmGZ4TvtLcLa1hrExK7m3RVI+dbZsedZyHt76cJzzdveOccJRM47YE0KQ6rLPvz/zNjHa9aRFrZcqTaNlvFt/gP0dU6zPKaJmDvS0X1/Ey7sXYhizCu+aUk9cuLBU66U4uo3U1LX4/Yc5LSviwgQUg97iEIV+F9O1L/DLuqcob4+wKGKQMTRMxqif9toWpvzvAAausJusFRez+drNqFPjHHn5BXw9nWiGxeNUFYErtIuxpM0gNVTDoMDXRldaDj9v7eEmb+E8VpsiBAlqApOxe9ST0j9PaNbn24NHv55s6SFLT2ZIMzkdibAzpZtFjQnkyBxQILsom6GuIWpra6mrq+Omc85BsdtJDUdZ1z2CcevNlG7ZymBKmIff3hFPoGcYc3FlrpCUTL1NMLgoXk2/MTuN7X3DRKSBhs4icYbU1M8ReP9lWnIqOS2rqZZnKBxdiGuRnajqYyBtP1IDIV8l/8M78K5cgZq2gMadzbwz9BJrSiOgSAwzjHv6FF9bcg+9vc9wZlCJna80OqMOVAE2oVATMa15WNWOp/QGKpSVNDU8TdtZN6GxTMCkIz3E8shhi+122yuw6Q7E9i+jxJ4HRZjoqS0MTuXPE780vL+bYGMjyiW3IlUVJdaCNhQJQqEjbwE92UUsOPwh33KOwWNXUqfB0WO/pGbzP3Lbbbd94ljAHzv+nLT9AVHjSeRHNg/vHvNR0F3PyOBxziYUMtgUxB8eI+JVQBdk2ERctTwggrxlP47hMFFVjdxCjeGRmG2VNClaM8bIQVgSVfk5LstSB5g8t4ilH0nYwEpMTpg6x4P5/K+JWvK0SRRMwmYXw+jWGXyOmXh3d3f8BlxesJzbl93O8Ohhvp4eRhONCLMRs0TSeTKJTHT8xft4bdk3iSoadWY5X65/gbu6RjljfJ71xmFaF3ZRyUmyrj8D/6bieU4heJMl0zZNlabRciKG5OnDXfOsrD4rXCtWkLRpE6d9PgxFAcVCduyva+TVU4Jz53DmhOJEQ+G2qosZL03kiZ0nAWvj/uhGMTecTuen/tlR6kEKgTTNGBgDhLSqbGemTUamLKzDSKSPPf3P4k1cg19ZgN+05m+GTo5iGCZCy0HRcpgclNYwMpZjhsCy+Pp9FKRz46M2Vp+G+gCwBW2oqKSkDM5uEpqBWrSf6a7FaK5hxpaOEZoQdE4MU9g7yBVea7Zl3nC416rIzt0Eajv9PPRIHWsT7Pgz7XxuaR41FSVw2ysE7/0nhNGE3+XgSFE2CT0HKVvWhVChd/AECa6/pXSGQK7a4fwf4o8upG/ET3Hhf8VNpVtYyF9NtxIuqUIxK9hWv5+coJ/ioX4SWvcSaxjxubeOcHLhSupKnJhCopqwojtC3ubUT4R3fjRxS95SxNDZYLxVKiXkmR5GQuWMJ7cAoAiFjUouXrtC4bjk6WiU0w5HvGXW6U7h6rE2Nt38TQoKCsjTB0h84W72u5ax7MxpMnxdTD76qNXi7z5Cdu8+rr5lPb3BHBISbXywvSXOILvq3ItgfNYBQOiJrAgnUdV0hoG0dJrzKynlaDzTExKkoaC9noRTneC3hblIexN9qSGyxnMRCDSpcf3UZlZEVHRPHr4JFSkliqKxuMTipFUn3kVD3T3I0ul4J9BmD1NcsIDgSTea7kaofGy2DOa3z/c3JBHRzyCBnOl+8qZ99Dpz+fFrIo78CQaP4XWc5qTxDY53dtI0Wo5dS+RXznSihg1bV5TnC1VqYpXS3t61GO/PtKhmE8eaUAM1XbFKavHt8eupFm+iSUuYoGGwrvg/cZy9HOWV3Xx/YopHtijoqpXsjmRl0ucOYTgTUKfGUafGyHcrFBQU4GtupLP+GLnRKJ974zFs227iupWr0MIKL/Y0EprMIfDePk4vXMHJhSuRqsaOulb+IdgZTxpMwDs4SDCnAEOBYMCLac4KzXJzz0doCkbUOiRmaQppNjvHp/MQUol/xolKIgPmQNxNwad1kfurK7C3KBQtvTo+PpILccP2uWSAR8sM3u07Td7Ydly+Ro71z86X1ngSeX5FBbv7z1Almzk35248npWcrBb8U+ByokLDJiSF6hSF5y6hr0cgpyzPY2lGCQYfhnuycW26gyRDcr1nEV0lr8e8rSW9vudwu6tpbrkXKS3bxMKCL3Fn1gStYYUl+VfHZ9oo3kQwWaP5+L2gRSgtE0xMpjI2lsFJkccifx6pvgCud5/H9aU1hNMLkdK6YU2pcGTc5PxFGfPEL4wPktPbzo2vPUJ3bjEFvg4ADtRcSEfeAmt/QaXRmQwd+6jT4OsxiLj92L/w4CXVnzgW8MeOPydtf2A4mxvwtLZzsiQfM6qR138ABTg/uw3pKWDJ1i9i7DmLGbI2/j51dNaWxDQIBPIQwoZpRJGmiu9QDp8r9bJ4wsDRM23xsgRkTX4csgrzB8NrxSJQXwYjgkNpIsP+I8Isx7HtSziKkuOKQl3XURSFyy67jJqaGu5cfCUTA0/NcqiEYEBxMvVbhT0VSeh5Kqaw2kJvpJxPzdh/stjWz3j6Sqp4DUWRGJqgYWM+G/1uMl+rY2ypCQlQIbo4SwmS323ZNDe0jAyy6upQYwufIhT6DTd2Y3rOqwSY1iaTLAXdXWPxsT4FPpOBNjU1FR/wFUIwNTUV/zdHUTLatlIadrQwGLYaohmawrAu8RsSxV6ImDqIBEbCg4zZE1A0k4LqNJIznDTs9aEgMJD0yV4yOg/T+loB6QtDZFSNIbES9t9XQToTvy/qAyyxhaZq1tyaqVptKKERDHhJcg+yZPE7CMXAkND6aiFT/Rk097rZ8IVNFJVvi5/CZyqyczeB/9jRwDUBGyoS+sNEG9rpz0sjOWgjsN9KaHtT3ZhCkJQziYihTkCnY6SDoaK/wWXbRWHxJqaiCz+Cdvg8UyPwQkM7EZeJVASmUOjzZJAXDDIVSgNsiJj/bH4gmcLaaZZ1RBlemMRqp5Mrv1RqVYP27SMcKSFsLsJhNOCYqbjNaZk6ipJJuWoBgZfPUp8sOJqmofWG8Qzm4CCJBee7KJWpJB2eimXvcHNCGnfJiXjiVNPRybmml8Sj04TNEC5XHzWBUxTt7QAEUsDk9n/FZWy2TKmNCNmqnezbXuGDfhs966ZYQCqXnFNledO+NauclDHlsnusg5Pri6msOIQQEikhGMxkaiqFwf4SJpPTOW/Pe+iRKA0VHRiqSfZ0PtKQSMNA7/6A9v6HUBSJacJoUwrB1lSKJ7rxXLES9ViI0IkCXMVt8YQiGMimoNrB9vATVOlu3FmtdCt/STY3xWcyM9L7+Gn9X8fb53cu/VfsmkLauI8r+19FlQZGQOWVnG0cahuhLKU9zi3LU1WeGf02nWOlXL92lHrFZg3FC8mB9hPUbP0qFKwhry2Iuv/4POP4T0vIPZ6VLE7J4wej/4cmsYhqGihTmhnyLiTgKcMdasMzJfjxzSqL+9IgYyOKHobCClxdLdj1MNUbVwOzsGCkJHegmw2h/pi61eLeHQ1OcG00JcYtjPHNTMnxtGQKFGt9UhWV4sEB8t97j/aSYjpLSzhZv5mUlEEWLbqOReuuIZwToufVs9h6xlAQqFLhnJFzOek+Bpio0qAq20lnpxqDUI8QNZ6l09ARhTZSSq+a9+wvz1rOUKedd95sZqjaji13mp3NO6iSJyjnDMC8ajrMKHdXArOzrMeycomM+5AIooqkaWsBlxUlk9qRijAVqyCgC+z1flTPOWCYCBRUwDXlYDpxMjZzaeDz7YiBby13hK6uh5BAvmKnxHElZM1in/wdD8QhuYqi4EnpZ2wsE1MqnOwup6qhEXFmF6mLVuIX263JUAmjozmYUjJuMs8+jLpnOC1M8gY6yRvoYqZ8vrF2Dz05xRhIVNPksoXlkJLL0WO/jEPEo1LGuwt/avHnpO0PiMnjx0l45RF2fetviKoap5Z8hR/v+79snT6KN2ka56U3UJnto3/6R7w//iMKvd2keOtJHjcJhTJQVZXS0i34TmfR3vQeE4MLmRwpoSk0RJ1LskpJRJOW6unTLIvmKzTXoyjnxIcoHVMjOObM88xtCZqmyRtvvIHX66U6/2pqB55FznjUGQJlXBDaYlISaUSTBiaWwnUglEP3qh9Qn1nDS4FxlsqzLDSb0KXKb9RrKVnio3rkAG1FbkwFrvXupPloIe2hkjj245N85D4anquvInPnTs7f8z6D2V5GL7yexJw8Blx5GAENTRqAimLLRyiC0/t8KKqgKEmlWxi/EzEyV0EqhILbPt+IPOecXIQ3MW5Wffb4IP5Gy9NPseXizdjC8Pg4iq0QRc1BKII1V5QC0HigD123ks0h0UWGNJkccDI1lEh+wY3kLk0iNXUtm39PBelc/9HfhfqYiYKCArasOZ9d+9/lZP1FpHoGKS9cRkpqPXbbGIpixltsydlThPsTmex3MtVdBeXQ1HSX9T7kXMPyrJXzFq0CXaET4upEYkw8rfNDMAza87JprShFnRxjvG8KacQwBqZCf7NJ5rJfM6boDI21ktiTj6EXIiUkIxl45SxN7SEosqEsc4GUaBLWDTnICixlOpqM3X09eam1lJu1HJjIxMCgOAh/tbFsXusunLCB3c5VHE1zUDMa5sLJPhyPXWklcrTg2GbiWL2OpLU51Keo3N7rIywlotTGqoMB7rxwFedvyKfvoA9dtCGwDOZvLc0moXcPL/QMsaanm1vHNoGwMXG4n4naATKv2oAr518RDSBNK2F1jb8Nb7xhzUbFzKk/2LeHL6SfR9Sbhc3QKRtpI7t0xceUy6mhswibjckCExGrmgKkpAyRnDzK4MACTEWhs6QYNaOERX4VhMBV7sI9rBM8foL0lX1WNV/ER7EY63PQ8LOfkp1XiGvNajKefZYPiy/EnTZEMJjN5GQ2Q84htNQzbMmcQhUQaPt7Doezue3JSSK6SULmHrT0CDImaDpQ/zB35FYzMahj9FmVFqTOmsBRqtQl9PW9immGAYkqYGFaCx2hEtKUVGxmFITEJnXWNjxGU1oRlau3zDOOn5lpC76/A3+OQmpA4Bmfb/T9XrSSARJZJC1VuzQ1pgcWkBJ8HcVuR1lVzVnHaZSkLKr9cfYJqZVL2KAopExYB8NPwpXMje39oxYcPfaBzKBAdvseIHN1H3l+F1+97A4qf/sK/U9+QMbICKWd7UTWJVN+3ncpqNkKWIfE5mWdLOzxoEkVE4hMJ5MeWUa553mWaHUUJKThjbXppsVuzOkoqiIxjCin2vewYfnsWvLOh6d5//XtKEi2j3Sya8UGdHk9Glfzt/L/UC5a5jsUfEqkajEkFWAKQWamNWKT4LqOgv1lTKa14hwuRwZeRqcZ09NCMPcAodz9SKHHv48ApnAQMU3U2JqjCsMSbJmRj9lbzfemVhgPZSOE5QmcOTBMpEQSXjjNVPcOSNHjz0NGRg9paX14vdvIrdg0a6HmvIIbjj/FgYFsOidiFlRSsraxgU1bh/kAjQsLcrl0ySIAajb/I1rtT4hioipa3Iv3Ty3+nLT9ATF55ENOlFTEh44V06Ru03eo9r3NePWFVK7eAvt+RrbWwOrCH9C+chKEwVKpET5+K3lVxRjGa2QWLKLutSvQdRMDSZdm4jNN/pIJLhc2Ni7yM+U/QmaK5S86d65pOqWVdHmYW1auxeMpA2ZPLPFWKN0UFBRQXFyMoihxWbmUlhpp06ZNrMr/e7r3/R1jPTZsXYLgDQaokKK0cQu/4bA8h5yeEFnBUV5U1nPfmAfDlsKb8m4u6n2Nbl8GPRMLcC200dbrsvzphIUiqExrITdrNf97S8W8k/Y8BMRHwrViBYWPPUr47b38tNPOyW439r4G/v6mLRw8lMpEQwNCy8dmz2JJODY5bUr+elkRhxL0OQ3U2ZjbxllesJwrLrqOd58/ghb2cPjJAbIzc+dt+nP5bul5SfS1WKd9RUDZifcojUbp8xqYi91s/NoF8dde89crOXLYR7dm8nnvxZx88Fh84Z9OOY/X29NYJ9JZ9dlOTMDHW6KeK0rjkN3fReYe7wsAkrGxTAQQVp6kqMiC1AqhIaV1kp0YTAJFoGk20su0uJUVgK/veVatfMpSfMYqVGvWLqTngz5mlPyqZqmZXd7V7F+1hqe3bgMhqOjvpPTUIVpfh7SKMZLSK7F7OhGKNQ4gTXDpz6Cq3yctvY2ynGac/ioSsyt4conLUvZJuKMxTGZPOn7dSjqyEvNZt24tRAZZ1xJgb5bJ8Ww7xolmrqUi/jkcGs/im6uDRAXYZAKPD/pZFylhOHIPEg2xc5qMLAuq+/LUJGFkrOUDJ7wqDZFpKtuCvPJ0M8lSkmlXWHSlpUD8YtGVfPHoo4R67ISEjfjwmy4ZbxbIvK/gvfo0xkA3roR2XOkRMAVt/Wl0jqZQlD7GvtLc+NoRBfa195BUJDg6cZTqTWnIRoPsHIW0mitxrVnNBa4QoZ7a+GczMxflSelnaiyDpGXFGOPWUi6lJNQc4pD7Q9ZH7HzSA6FISUpwnJa391L8zU2kf3chK589TqdSTpYyzrrb1nMszU6Z30qwVAFg0ta7j4i+whIZjJVgz7CcCNL9GrmHBwmYQ6iqhqpaCY+CpGCqh9aX7kJe0cEM4sREocVfjk1T2Lx0HRc2PMD+vh42BOtYHmzk/ld3MJFluS7MPIvhzhBv7n6Xt1CpKl7KQrOZlafG8TitA9rR4AQPTZ5HWBi8hM4NoZ8hOl04I0HcS7eRtLmaqy9M5vW3v86IcwTpt66lPzmV48npiN27UJ5+DvVnP6Xfbufcb36XyGDfPFzJzM85OTY17/1c7nax3nwTv1ZPi1dQnxalxTXIIlsOM2Tm9OFRMiedZHjng4kfa3iMS10XUOJfQndEEjBAM5LxTidQkDwIxZsoKCigoKCAh3f7yZXPgGlgSIWGg35KXI3x6ztxZjtFBfWEAjkc95QTlZbbgy4lp1lERns/qWV3zFt3P0nN7teNmKtrrHOhWw98eDwP51gUZ6gaaRpEMioYN99ipOY+pBJL1mZJNghhp1NdyL5AHdenRmLVN6vzpAjFEift+1m8+h33pu54HufOx8lsP8hQdjYFq68j2DfC8PV67PBxKraORQHLsUNVJdOhwxzeGSI/sxLnkBNBKunXPsX69jfoefE4hmmiSEnyxBQ88xg3Xngh3QM+njq8j/O9w1BSGnNqmGOs+ycYf5SkTQiRBjwHFAMdwI1SSv+nvDYZaAR2Sim//T91jZ8VrjWrWbnvJE+goJsSTQoaj5t8wb8Be2uUp7L8rIoN1CoZA6A4rZvZNPBmtzOa+CTDbVEUYeOi2/+TUye8/OuJTvpi7VMJnJvcyUD6fchhnW7/gyzO/S8iTypxkG93zb9gyujHEqC5cNW5VPTLLruMN954w/IkVVWinigPnXyIGm8N+SO3oj7zPGNbrYQNFVpkBU+Ir6CjcabAJHl0LwOhfoysDMveQ4KStYVrCrKpye1ltO9+zFRbbMYAdKnRFqrg3hsrYpYrz37cmP5TKk6uFSv4IODmZOBMXIXmn4xQuXQJP+u3Y0rINwyWRG0IaQF1kwvd7NzzGqa9lRdPl/HkLTexqiiVusE6vvfy90iZTOE513Pcd9V9GP4UnOMF1qyM8slD1jMx97TvPnEYtbsUfegMKWe3k7LCRHtnkGDpSoTmJbXUw5U3zy7wldlWqX4ivZhvvTNCRB/6vVWjH22J9g51sa/oJDXOGpbz2SX7kuoyDrYdw5QmKZ5BhGIJDUCQZbsA4QuTUbKVqtuXxVsJEfse5NAcf1AZoa/lP/G89cqsP+xtr7D4y24aDvaS6cxg44VL6E9q51eBJh7+8l9aqmKgKaeI60OjbCsrQ8l/EWkexJ6uIKWFqBFAWuAEFxX9kPYVIUaJ4pc2Dvf+FENxIRVrdR9bnsHGchsJiTYM3zhp9UOYH/YjpWR/WpSflHkxFIU3TEnnkwf47i3rrTZjqkp0BMwYBb22KJ8VTcuQaICKNCXhtiCnMKh9uw11ZSqGsEiejmCUdaXp9DZa7MBRCX7TiPMRAaj5Eg55CF6cZoBx+hQ/OaTifvBhjMFmhDAovGAYV4b1frb1pfDyaCWmENQNZ5M5PhwXLNgMnZJwP19/+8cUdU5T84yO3VQw7XZcMeTNWiCY/RStjb9hdOwtC9hqCnIzN7D14hsAOPnII5Y9WwwnIrQk3lzTxaIplUtlzOnIVHAdUqk524c7bNCYpzB6/IuYidNwKyz7Nz/2LhuTi1Zy93gFhanXcNHS7ShCogiNfHeIhWkdNI8Wo+olfLH8O+zu246nNRgXCUnTYNHmiwkO9tN5sg5X1gSZy4Zn0UQIEj1XcfXaS2YTBWULy45egTCiRNE4oFfimDNOEe4MsXt7A99c6SEqbkAT1/C34m5Kkk/geesH4K3mgFlENAbE1iW8bJaxytbEP9nXY0sTiOMmnnSdBy9+kA/2fciwr5f+5FReXboBUygc+9JC7n703+nftw9DiPjamTtnAH0u6sn6n4BNwPdzxjGa/xPDE+EiCQ+N2Knx1uC6aBWBF95i2KGRPjlFSmcrAw9fy9Q1t5JafD2tp05zb6flVmM4JF3R2Cyt0MmzN8A53543i7l8wSZ+tP0vWeY6Rv6ZLsKDJ9hxoIEb7vpHEr1TLM15BoGONE/RfTaDOhZiSBMNgyrZwORgAttrO0gp9rOqKPUT8CzWurQ+JQm7YuF1bKYZF9TE7fV0E6SB7m9lcqtEqrPVNasOr+EUl6JGtlBkZlGvPgfELNckpAV0SvO+gmf7nfPa3P3RhfQ2p5HekoR/RxKaMUmu2kbysgN036TPCt0wycu5kXBkiJHh3bH5bY1DTx/AMdKH15uJVKzUZqJWkPn1O7nS9R4dv36OjJRljC5NoGP8FKfefBkpBDZhYBY28GGbip7itggJ0vhze/Qj8QPgXSnlPwshfhD78/c/5bX3AO//j13Z7xHRUknl9W5+0djMKXsxK0Z1Gv0m/6FAZGZ+6wLLWzO1bQeK+RqmNBCKhr04GTMSBcXENKKYkVquvPm75K3P5oVjPTxf28MqXSWS1hSnTJsyykjvfpL0DSBhIrkRU863g4mDS/f8FsPQ43yZXe1dTJp21pdX8eUve+no6CDqifL9+u/H51Eeqvketsd2Ym824/SQ08qsRQxAclE/NUO7eSWjGkOAKiXXluZyeUUpBxsexzDDCCxVjt25hq6pm7j3xlnkxyca039GzJ3Zsyd1M6y2UZmyPP53wwmw6Opy3GM6eRWp/EfzPtTcX6MKHeRuXmrMZ1XRFew/vZ+1vrUoUsEMmOw/vZ/rKm6ZZ0T9SUPWMNueTC31kFqVxtC+XGTlldgXGkwe+DmBHTtQUktwrV+AUKcQNgXlshJ8wQh5FankxuT1//FeKxF96HfaetV2+jlzrI8VaBTkumd9UFW4x3cfJ0da4viNz1pMFqyu5PPcSPvpVnIWLmNw+rT1vqNi3Lcfe4vJiO04b335LkaKqrjWkU1Zytp5VlYAvtAeclwGnpAlya9reoEHat+hvD3C3hI7XaO38MQHTzDmvgzDszDeLjJRcNRspHxpG2fPxsQ2sRvL2rclZ8pc5Pb3gHDGkhCdaqUBG3no0lKmXrI0l1UxEnnovW5Csc1yQAmyK2PSAp8KgaGYtGRF48n3uSUZ3B8IWI4JqsK5i6txjJ+HeC8m0MHAkdTLmWPJfNtwsKs3gkSg65LbY76a/YYy7x4ZLnJyf+eAZZsVasCx62rCtuW8KdZamzyClVoIIyOZ9IkpMgYd8aSt05+GGVMRmsDg4ef5SVIip461s7y5gcruNopugqouE80AIWft21wrVtDd3U3LgRa0tlzaB0pwZo8zNZDEFbdfGk8qLl53IbsOvospTUxhMuIcIck9gXDovBCw45wup6H7YtIdAapLW2lJreD2xVEL+SEADSbXmjh6VeozFhAJmDQPnsO/Hs3mG2uaSecdIqGd3Fljo0P+M0kZyfy0/u8JG2Ecdpc1ZiolmmZn0XkXMtzVwcjQIUov64q3Zy27Jjtez4Usne4jS3FQ2wkvHHOSnH0ftu4DHDQqOaVW8sM5Iw4jRwf4MFkhKtTYvBHs43xuDnwIhoSOfaxfusiqDpkSgWRdNMCK8fXYpEAVVhV1+IHtuC5Zy/QZDZLA58mIe48aUvLe2g2U+/sgNvT/UTbXLCPOqkCdm+rmzpJsMvyPc1bqqAIUIbhz8ZUsz1qOL9DIkbI8a5bYNDF0g+i6SeTwcyj+l6mY/gE2qaJiOaYM5R7itBHAsAeo1ifJTphfUV9VlMq9N36eD55XCA8OgTTj5vRe+wiqiM1MKwaT3ka2+B1EPAobeZ8yo4WmvhK67Tnx9edQ28gn4llqPIk86TLZ9ewLLGs6SUZvF5OxA8QM3FvqA5iLVzJV0DznCjWCbRvwt5/D9MgCEKBpE1x+5VeJyl8BoJhQmvcNPFFn3DS+W0/j5Ot7OXumD3XajcJqlifuwxPqQJqSYd2PnGPqLoSC211NX8u9ln5fqNgmLmO8r4V8dz5K3JIL0K0DWt6SC7AdXy6OAAAgAElEQVQvTkMaklSgxL2U9/qeZiTShy4Fvkk3NZMj2FM91mEqJr76U4w/VtJ2FXB+7PePAXv4hKRNCLEK8AJvAX8S72AweIyjtZ8HdxRP5U5u/PB7OIJljE4o5DoVfJo5q14sWIOnYA0rgzfj9x8mMbyYiQ/7GfK+YTHdpBaD5M6aAF+3Mp8zx/pIbKnGL19FmhYKIT13A5HYJp4YqmJU2DClPpsAdR+BRy+n2MhA5VoMYaMxt5gHjUTMtj5sAu5SJthaUsyuwK55OIcPM0N4v3ohxQ+9Q+r9GuGFkqJF9WglN1jDmhgUpZwkLbmZf2u9m322DZS50rl8y1/wYcdz7G7bwSqXRAFUoeBNLWV5dT4ez/zEJCf7WuvXmE3SjN9ouhzCceh1wJppc61YwaqiVH50ywqe6zpD++huXmw/g121c9+y/4X4sI+89RtYsSE//r21nnYQlpefREdztQOQOZXJgBxAwRroyZzKBGDhORaC99McFD7anqQsxSoWKCrSBC2tnMjIWbS0cmYsnKRu0rCjheYpA1VTWH9tEpOBNqrSi8mPDuId72EgKd+COX4kajv93PvrI9xnOLEBQ8oAUxtzyXfaeVu+z8nulo/hNz4rFqyujPP58oNF+P2HEe/3M9nyPJgmRjhC/979bK9IYEdtD898fR2rVj5Fc/O9hMYs+LBE4k9NwDNmgGrnTO84t7+czbi7nC31LdxvPIKeD9r0aUi+CrABVvVo3cMP0vzDW3hNXEeVeYIyabHYZqotEsmUzWNVBpAIxcbqzGp+dXSSY6kqNUGTJSUGxD4axaXFVZv9ih9HdIZXZh2/NUZQBn2EO9OoKUrm+RVl87xJcfnIsN9viROUBhzT12NXL+OvVrtibVT42WRCPJmeW2EdLnLyF4P9s5BScYIaI4JP0THiaaDkRHkx9pF+FCnJTg1gTUsKitLHqBvOtjZ7KWnOnWJF+xG+sOuA5a+rKCzp0ThVJNBVE8VUUGL2bd3d3Tz2yCPouo6QEqc/lbE+B0JR6G44SW5FFeHOEAX7BFcYq+hT/YyummZVaQoJgw+gCiuvmUy9hjI1n8ipX4Gms2rqKF71FjpNERdaTJ5jkuXeSEHlcs45fZpxaZI0VEG6Oo40LHsopM7m0l5+OzZIxIiQ4bex9nQaQlrYm81fsjxn33vsQdIWjSOUGTGKQlrqBhITP8f27UetmVJF5a1wOT49CchAU6/iptUF/HAOIqi/Lci+vb2szLahmnZMRSKFwj5xIS3iNWrUVpgOUfPKLfxb9kYeHbezNWkXFelNmGkaUx+mkBgosxAj/adpezGKVrYJkhRyA8MopompCBQk7jlipxk21+Tx41byvGY160sr5pnb31mSTY0nkSCzB1JVsVGdfzUQEzTERlJMIRivEthjJgSmGcWVO4yiFWPqEkOY1CWeoiBQhjKVyz6uJjWYSWTndlwppUTCGeRVpLKqNJWcbeezo+6dT7EIC9MiFvKW504MFGxSZ1v3bnytJTylfI4hV0585nddaTqaah2CVXX+LHDley/S33iSE0vXYytYR/KL78Xfh+QLVgAF+Ds+RLbNCOUEdv0S+muviqNsiKl+3cb1lJVm4/e9QWrBZXicFXDiaVA0uo1sHuMa9P5xSD5Bir4Uu55MIL0Kz3gnwmZHWVAM4RPxayss+ApjY6fjM5JSSjzZyaiaxlC4J84mBEATcd9mTAtDY92NClnOQoYjfQgEdtVgmS55sPhGjgbOUFO6laqpUkZ3tiAA10rv7xxL+Z+KP1bS5pVS9gFIKfuEEFkffYEQQgF+BnwR2PxZ30wI8Q3gGwCFhYX//692TpyufQiMqAUeFFH6PI24hksptitsNDSe1yIfUy96PCtJCJQx/ORJtGg2iT3fIpD7AS7hoGG5m+dnTvCexHjyFu7MJ+lsNpNpjWSWnEdCoIyJlQMIIHPlMjJTluLveN4yiQ/p1kNgRCjAx228wK7Sr/Dr/GUzhTPCpsmrbZ30732P9Veu/xjOQRSNcmQLOHMlhxIUvjhYz2/9p1m0ZpIy/TXKRQumgFW2Wq7t+gAdlbd3hZHaL1ntMjAlNEyrLHZJen3P0tf/YrxtGwwemzfPlpNzDf1tQXY9tgNHWhP1faVU7T6CJ9ROcOdOCh97lNOlFfyof4CwlozMuIOUwX+mrK2F4ud+iqZLxK7tTGbPOiZcVbmJVzofI2pGsas2rqq0pNrnLD6HxqONmIaJqqpUpC2Zp1qsXJfDJ8VH25Md9cPkazGDGSkRzjSU1FL04Wbs0kCiIBEMhi31n5p4kBNHXmPc52R6OImrAd2WgGHrQekpg6L5UvIXj/Ww2FBiDTyLgr7jg3au+ItVlDkXY/fN/7w+LeaiXeJm4Z6VeDwrmfQfp8v+CkYkgo5VUYE5p+wLVlJR8aPYZxWriG64G8oGoHgT+Y/vo37xNkxFRTENVnU9j0u48SW3YtqfIsdxFcl9bVw8+gb+PLhjooCIKETlWr5afz8blhyck7ip+NMMCw8gVbz279DxmpslNp1lfutUPaOSDXeGCL7WZuE5FEHughLCshtilV1Mk2mbnTPNDfha26jcVkPN6sq4nyUAxZtw2O/DYZyx2jHFm+hyu4iOTMfbqF2Frnnv5cw81f2dA/MhpWkrqFHtFOs+VAwMYTlzqFMTVjVNwJAtiVJlDFbeSumym0l85QkGj9TSkhfm2MII16sehCosFKrdztU3/JC8zBBiXTJZLYG4fVvtvn3Wxq8oFn/K5Uabnpw3ID9zr3qlB6/0MI6T/tEdGLF+lCoUqtKnyU/ws980kFIiDZ2RVh1v5mYGwm9bn4kKoSUpND7Twjm6tTUIoHt3BgXn25BSRwiV6Wkfy9yLsat2ckcTUMy4NIWpsTEO7T+CHo0y7nMiTYEQluH4tHMR7504HbdZk4ZBugzhIwmwrKtyU5zxhM3X3Mihl/YyOJFIek8eG70ae4odSMBQbLy+4gbK9TN49v+CoFsjLfsE/zvZ8osVAoRpEMo/ju1gA/pwM6a/jVRDYg9fQsrIEhLHg3xhfIixRSqyq5HskDWhI4TgkksuIX14mK4vfwUZiSDsdqof+Q3PL6/gQGCc8tAwkfd/xbNeB4dcGyH9CTbbGjg3Z5aDFhc0RKMI0ySpSRI9F6SqoCg2a13/ehnv/7aNX3bW4ZAGilRQYmvJrjf3YRvuA1Ts7huwO/O56rsr4r6ac8n/tZ1+es2/IJtf0kQVOpbyX0rBb9xfZW3yUYaMbO65ajGrilLZvfcIH+w7TOZkIj67N66IPhqc4EBHI4laLz/+q78jqtl4XMKvDocoe/w+hh94IO5UM697gkpOdwE+m2A4KuOtTEUIxkanmarYRvH5t8xX/yoqHXlXYvhssTk4k6jdj9NIpPKL55A0VomxMpmG8bv/H3vvHR1Xeef/v557p0ijMurV6tWyJUu2sIwBY4OpoYQESCAFUiBskk2+m+ymLUnY7IaQukn2CySQUEIChBLAoRgwxh0XWbJly7J6H3VpZqSRNDP3Ps/vjzsaWUD2u/v9nf1lz+/s5xwf26PR3Jl7n3nup7zLOd9KgWHM4Rl5jiXwnBA6BWXXctO3b2aw9RT29NQIpm052Zp9axfKTLIwa8CYNkNHzAwyFIe+EGAyaxvaZQ3U7vwGtWaIYHMvE6G8yIBAEWgcJf3Odf8tErf/sqRNCLEL3tdR6B//gy/xeeBVpdTgUnb8l0Ip9RDwEEB9fb36d5/8/zJ8JyexR2BLnaqC4bitbEq3U+M1uQsnnbp8X/bi0sY6JnwcsrezJruZ17RtPD7pRE560IXgB2Wr+ESuVZ87CxLxJF3EIW8d9aOCgt+fslTcNcGQ6zhT6m1yzh7E7fPA/iegdDmvzWOE+YxUlk+EQlOQ7Z3ANE3sPvsKOYfy5jN0PvIbCv/WwrRdj2Ro8WvcU15MwHMXSoSs+yOQ5A1HeAaSsYGXySyOMIOAGE1geQSsHNvOzBx5D55trHOEnAt+gtAM1Gobg4EPwRFwz/Yxf/QYh1JyCMuIJbywEY5ZTdVABz67nZmkWFLnQ6QdPYbfXRxhlxW9xyAZYMo5xYGsAyTNJ+F1edkwePm/a0g9duxpJntfJyn5MoStABVhg/YHxuiaf5vC+NUUxVdjL9qCreAC5g7+jOfVq8QVQcdkKatmyolL7abg4kcRmomqFXS9UsCsP435/DIQGjt2vUVa/nJSdbx/hmcbBylD47bI9TKA49IgrWeKL2x7r/zG+8VfwjMuhauujvxHH+Gd59/kx+NxhIsUH8h4hp6QTlrqp4BS3O71xBd+h76x1yl0lFuiuLGp0LcfPaEUqekQURePFx/hvAEYSNNoX5NMpwJbSTVXFz3PyfVrI/R5DSV0+tNLKTo8wNrLa4ixxbFwZgpfzh4rC5aKwOgIE6EKFtIdNKfobPBKti8RC3om2ZdnY8OUQY1fMluUC9NhNKUsUoWS5Hgn6dC9KBRNr/ZQN7aedVl28hZOR4HOvMspYUtiYOUYtSjtXSf0qDV6y9yCXXNEOyybC1fDbTvQd/2Wes8EZn4dKpxA+5njLM0aXeVXQbEB627hhNPBgwkHMC6xsD8CwejU81yydR5fXxxUXIw7uYx11RHLq0uW30JhYSG6plnAfimp7R0i4bqrKN5+RRSA7ix2M27z41HTxAgHh0914ooLsLZaQ9MkmmYjObkBx5rY97AiVZzJWPsbUb2c0YUwhiGjvr4gCEwUMxj+BV0pY+TOPoPyPI2mWYr3x1P7Weh5B2Wa6DYbgdRCfn6wlavRmRuLw3M4h1UXjqKUiXfoVzTNZ1LEpUwkpjGSlE5JUztbug7xVn49GzJ6+Hjng5BwI57EBp7953/ECBugNKbEjZT0F3CoOAZDSXRCZKo3aBLtrE+wMZNkj5CgIjVBRHDY5c9ges1rOE7O4PDquAMD1LX8kpGsBtQFG7ipOo2BH32Nty+8EKVZwslKKZqbm+mdmSErIZ60icnouLq+ro6csQFefvQr9F6lc2/gHox5awP8k6jhT9ml0ZHQucmV5vUy19FJllyFq9jBBCk8O9BEfaZG6vYCMh88xtaxTDqdCrAA81rAF3klEzN4BtORE92vcspXM+LM4oWeKZJnBvjey61sLzzOdYUmVaIVGwZhBVJotCSX07q+hP+lgtzakM/ufUc59sC9xCqTa4XOi1nXMhGbxQM9I7wuQphKR6z7gqVZKSK40FQHlSllhLx90bH9EnFg4tSzsL8QhU7lmlcw4tYQU3A5/a1T9LVM0t26n/GpDuovvZbiqWPRsSgSCrNT0MdCmKZBYsIoa7MPUeKbQO8I0lZ5J4mO6Yju21JYHbSo4gGCnOwbI4UpK0gjSzHf3MzEz76LlpCPPW8TEy54o9DEdCRAUgUJnh7WfPhLMPZq9L0FjQowlwbhAkxJsPk0zoL3Tkn+v47/sqRNKbX9L/1MCDEmhMiOdNmygfH3edr5wEVCiM8D8YBDCDGnlPrGf9Fb/g9F9robCf3sJK9dso1fr7sDma/xu1Xw4LF5qn2Se+uLWP0+eKWljbWJHhLcI+zRtvGouNMCZ0dseL7RMUAeA2zNXb/SNw54wAU1PhhObMav/xIhJP1rNTiZRvncJMSng+7khE3RGBtLWkwQB4KQtAykL+o8SbZvBg2NnJh0SjIqozf/yT0/JViqoiQEpKKuOhY4Q/fSl0MpskZDxPslfeTQQz7N02vZXjgAwkAJjdriz7I4+th7cGvnVmRLlbo9uRfhX8Y7GSUhmoJfZsPp+ynYeN45djUWO8ixeJaB1BiOFWcihUBTCmdMGo0rtL7q+Gz1yoSmcayRccc4o45RdKHjcXeh2/LeF882duxpTk/djUpRjBr7qdzyPWbn6vnpkT6qFrpJQRJncyOEhhAaShO0X76Z8gt+h00YrCq2MTj/FVzpHQhNRsZCivjsBWYMt9UVEgKpJO+cfieaUB3umcKQilZMfsEi27CzlzC6LrjEKwn2+6ktqI1erxPjJ+g9/RrZfj92s4HcOovB2tfXh2lanRTDMGl5uZGRuicZC79JWvoVrFvYju/Fl5BjfnLSYrmp/jl0zcBU8Ju2JiqyHgPgrv0/JixDOORRfjM6QW1wEYRGobGWE7Z7kKYCXQNlWeYMpjswVGSDVzpt2hqq5GleUiYGApswaMg9Sl7eBKv0Cxl5I8S4PoQz+wBIE6FspOZcwI5UG4/XuzA1C9P2fJIOvgC3iVlCJQ7sxQ6+2h7kZ2KWUEoKmCarR/soHxuiwWtjQFMoAaaSNDY2coIwt/ECebYfLwvsngPstsRF3zVGxUqie5vf5kOn/gZNhqnXf8xzN/+ZZ9RyDerpG+TZ1wcwlYbWMojUHCzx7WyuLQTaO2DmGTjxFI0Xf26FeXb2bCGB+XX8uExnbe9xql7Zg2/XOyu8dpdiXMYTX3MZ7uFTxAe8lP7D1/DVb+I57xybO45RP7aP8di1lnm2aVoahFLh96dxqmU7qbZOQv0albmx79uh6evbYx0oUnjZXS/iTC1lcaqEJWSQJ93OE45UwrNp2NQ/8i3uoUx2k840d131NTwly36P97caDNoyeDHrWvIWPdywzgvsYEnqY1PaBDudPZxIvx6J4ERuCT/5+ff56cEHKNo2hssWBs9+BtP+JqKVZknU5JYFuOnGGrY7u3mh44+sVi2U0YHUBDNJdssCSYLUraQ5btzqQo5XPImqNGArpP1vHW9NA7unj9CaN0B/zp/5UdMm0kdH2XC8ieP1GyI2RzA8PMww0LZ1K9v27CF9dg7XxmUdN1eGn6PaBZjYoicvrCyrqHM7vEtJxLP/9E0Mw8A20EnRJ27myY4XGHOO8eu4X/PTygdY7yvApwpJjB0mMf4YjlkPEwuh5QsjWLFfnUsi0CKuLZ1BjXZVTgdruEU9wt75bfTFV0S6vxr7B/r46GA+p44dJyFjloTsALMjcaxa9DCZW8BOQpgRtquKjBe1iPTOhqkQxkwXIjK2PzeMsWmMeCfjlX9EiTCCP5OcWkJ/i4kzuZv8i3+K0Ax6R14hNe9buM8R2c5bt5XbsmboaX4Es7ARpUGPFJxq2Y7/7DTu0Wmqa+woaeFOe3sayEjPtvZfRXRy836x5EOa0NmDiNjTqYVphh1zSHKXaNhUfuAG6zrFzoLu4IQNuvQ+CmdmGBV+smUymcqFUzvLkofxXzP+WuPRHcBtwH2Rv1969xOUUh9b+rcQ4nag/q+dsAGsu+RmnpmN59fxWZiRix7WFI0pOmv9JsXrs6JYrcmCWNpdlu1VpubjVUczhmngN2p4WnwAhca5vjSmgofadxE7N8uRmMrlkQxwPNVGjS+EN+cAuohobSEZykykKOClO/MaFi/O4I7uP1iKzj0PcG9tNpMpm1nXEyB+II0RoZOtkkl/l7WVa+tVOH95hNnIwYSmYbcnER9fgYaGlCaagtzxIEcyb2XXeJrVAXNr/G7ub3CHRvh07VU0VFxMV7iE4aHniE9Jib7+UkXW1/8QU5O7GfY8BVJDCB0lJUrqzE9UoDQbs9fdgWtuN/X+MM/VruGQd475yS52tXhI9SVhahFjZ02jo3cEI2zp7/wlq513K/tvXFdNVknRCu2npRhofwuVFdGzsgk8o29zNHcju0WY2KRCPuRsQBM6AmuTlCgyMo8yLww0TSGkSXx6BwsTFShpQwgTlEbQdy0xpBFSwxYzSZNMxE5Ej7tEuigPC75MDE4E64UNTYE4MsZE4zjpd9bgLEi0ZAJ2fpNrs3sJxBsI9SLjv/8qdR+/KSLtoludFARJ5lFmA88QCwSGf0XrH39L/D5BLnDHlYo5YaBFOhP1uGgca2R4ZoFsfYGyOJOeRUFjjIPa4CKNCas5lFRDRb2HNOdFHPMeIbzPDVInbyKIjssComOyWrZSanbyqeZGhvJjqM94hjKtAyXh4Nu/5vTiFpQQJLZs57wEnay8yyi58HJi4/oxZ2aQwnID2d00jLBrlnegJghLxfMpBiEprcRd1ymKTeHWikKmh0bpH51gycTcclPU6SOHPHN0hZ7XivXhjqPaaxJsmqbF5eVPzW1M9A2QTxfSGUITkkZXKc94xngaB6ZSPDM6zdeaTtCfUcBgTjF5nm5yx4Yjr6jAXCDQFuakw8mxAjtu/wirAmWkewsI2gIUzX6UH29JspLTiqv52c//hTUDPdEOxhIB5rR/mF+8sQtfbAr1cZPYhOTtljO8rKVgAnbT5LmWF1iY24UpG1BYkh9Wp0kx60slNDYPup2Wo0eixJikwCLzb+9nPrBIcnFDRD4h0gUUiv78NroDBYRscPuGfLyVLgzvDBKBIWycUdVUaAPRomzpda2OsSU+PRqThTtnkbycWcJzutURBSpiJO0xuTQJDSk0wjqcLK9ibW8n3dMujpQo6hcXyZNtK7qCmz64haxiN4t9R7hOPc+5o7HkNV+E/n1kx7ghvRLfZA5zaT8HYUTxeugQLDHgzUb8F+URpyeQOzrNO4FhLoh3Utjbg2vOx/HrthOYW14fUtMYz8igsGZd9LG8NdWc3J9IpTyDrhsYS1hOobE5KX75lxsfg7aX6OnJxgiHQQjm49w0HW6nggrKKcfuCtIz0oZS2YTsAfyJA/hJQySmEOttR18IoOk2arZvp+rCZf/Xc0kEKIWmCToXt/F9UQnChiYMrjV+x5AqwVR6tBt98uRJ1tYnYFb3o2mKTDnJ/GgSMiuTQ8qIkomW8KPVYS/fCsVSuzGOcNq10bE9sAx7SQ5Z2FOhLFIRkpGhA0i5CVd6e1TqB8LMOGZxn9vxBqZ2f4bxXBspmm6xQwUkJE3gm83C501lYuITBOaa8HotS7jRsV9E3F50ysvufl8VAk9HW9RSTNc0LsxbS8a6z4HQydd9tGotSGVBZhyrLLLYpuIy9A/+jDuafoSmcslImSPXO8Mqfze3iOM4677znuP8NeKvlbTdBzwjhPgMMADcBCCEqAfuUkp99q/0vv6PEez30z6RhowX0YWtKcUF3gMk2V5g58FvMvpOPH1ujSf0eKQOdiG5W3RjSisr6rKXWhbN7zP2VUry5v7HSVn7lRWg14vXZkHfIC6cBM95/rhy89HFT9K6I8wd1aeXFZ1RzA++yJfqbiCIn0k9mUzD/b7irK4rbqVsuhfnyefx1PtRAto7vkdO9o2Up99OuPEBkmcWSQho/MGbR7pYZDZb8Fz5FRjYsGFwS7wdT0cbux/9NUVXdjMzqzje9Jal9RX5Uk1NvU00DVUmzoM6/e4LWJzYbLGNUNB/iMmmJ3Bl/4z6v3+BjtEsHnxhL9f0p6FFPMSFEGg2O9OepKVuOZomolXoUtIcE2fHDCTxnczv0+k9TW1FLYazjGcW5th8fjpZ7pXJa0hciJL7ARMldRZ81Wy6yEqokmPTEMoWqWpNxhb6afUeZm3cMAtlAlMKTKUzO5rC4ugUg3tvp/pCA++xLFyzJYjkLtLTJzihTXBMn+ILKfdEj7sklDy1qx9n1yxCgU1FBFqFQBqSqcYxcgoSaRxrpFqzWyKWmsW6zM7oYPzYKDUfqaCsYAPzrWPUaKmEM34DRJcpizUGi61ZjGdkkKL6EMIHyjqFV05cht2s47WFQ3whY9ECsCdC6pRBY+Iabqz5GSFhR0dwmzzOujqNR6cfJt1bwIS7mx8l306Lo4ixvT8hJuDh+PxGMkYrKBP7yMrsiIKTxxKykQErU/T50zgxUoT9VDxawT5qYvtx+NYSUta6jzkzRemcxH6eC0OAJg3y23fTm3YVpiaw6zo3V62m7YE2DMNJgn0NHdl7yAimoFtcWQrxgO5gbqSQhZ/8mdi1qcRfuVwtLxFOpCGZx4twNJPulCwQQ3N4EzLNz0dqfkJQOaMJIVKxw5HP6WuuxdR1dHMrN7/8KLljg4CGZs+jo2QDhwOjPJPUT27fBB8483ksApxi/2o7pgZKExi6jROVa1g7Mohr43kE+/1MPNSCMiU50uCK2UE8aoBQXA4AZzNyCUVBWzYOuWu4amA/iTkFJKaM45/OILFpkrHkJIQ0CGbmgdA41jvImsHBFTgtbDaSbriBoqs+Q+/CbyP6fQ6u2/pBGstzo5IcOb4AD5/woqTVWS1Oa2B9wUdxu9dHuxl5a6o5dHyImqnjDMXkEJe5wFc33E9o1tLSWlqHAlgjW9mBJCwVujQZS07ldGk5f6rq5EyyhkMl8nBJAzddeYPV1UoqZqQnFs3mIzm1AU1zImUIITQqyu+B+AqaFp9ChnthpJW20QoqM4zlelgCJgQHnBxdXY47vgL3ggZKYvN0cKQkh8X4MdpK57nj8i0cfOkgpmlae7uUZIyOMXemjcDBg+Q/+gg5dXVcc9fP6Tv7Mj/JPMxh14U4HOncnJWy3GVrfAxe/jIAKWcy0FQZ4dg4glkF1rlAIJSg1ldFjcznHT3IoGOaCFoehYbhSsQWXODST99Fzfblmfnw8FOsjXmZrXmF7B3cjN2m8Z1r1vD7eT9NhAGBVHaG3Gv5pryHPWPXkzq+EMXslRTM0t0TwTtqgtKiOX55YBTOS7UukLZ8X1o3uY+Lex+0OtWX3Umw34//7UGcxW5m1DLsBc36PAphdb9WXcgJW4jARBlp0mYpIQiBb3QPZxdeIzv3Ztx5Gznx5te5I91NRTieT8hpNKEirhyZgETHpDSlmp2dEsMwWJV3ChER8FVKEg5b/sGNvsCKjvmSq4WSEhOwNVwBIRtCaGRIN5WTGq5tVThWreZvd/RHZU9uuWyKOXsxvowvMCB0mqTkupaDeMpvpeR9ir6/RvxVkjal1BTvQy5QSjUC70nYlFKPAY/9l7+x/0AEe3xsmAzjKLQTlgqhFPc0/4JLF15kKsmBEXgGe+JFnMwrxtABoRFSklOyiSL3PH5fGnlzMzQLjRUSfkpiw+BCuY8FXyFjr7/A/bd8jG5nXHQhBnOT0bpvpd2EHLwAACAASURBVI0jKGWilMaLAzdxXBaiK4mmNeBQLYRR2BW48j4YlSmojlC131ecdfAo4bH7WSixRbSsBEqGGPY8haY5WX/BD3CPjfEjbyVvjTjYOnuWUFYgKgliKNg7MUhsbxBXhj/KGFPvwrVFsQmRe1/S8Ga0njhaYvMBEw2ThOZmJrzxiFaILf0D98xUssG2E00mRHA2UFBdS0reNs6+EyUPUrnZYoGO9vh46V+bMcIWqyns8ONNbkEIxfOeM7y8LiUqKfFcbemKUUbJ+R9k5yNBnKntLI6VUHXgDVZvvog/fHYTR58+iJq2I5U13mz1HmQ6OMzieIgdzR/mkk1uJsdSCAzuRJkGtpF8Mvd9hEwJGRV7mKj6PUqYXK4EU13bmZxaSYDYUJBMcLvOZJ+FXVziZCllpQqThiQHq3P4uHyeQmVDRUaLsdOVJKRb2as/e5K4wzmkJcTgH93AfOrpaMJkdLs5sG0rpqaRn6co4JRVHStYzDhB5vT5bM4ME5gS6MIaq8eUXcSehNsJBZ3IyOitsy2Dps6f86n1DfiOPMh53SFy959Ev/ID3BvXQWOcJHsuwPUTElvMHCCiFkx2R3DFGtASPaRm76F35B1cwuTj4nIeU5/FFPDT1TE8eGyeB4/N05iiMTfTQW9MLB9v/hNxyQ4KbDU4PbGYhgQlcISSWFAO9mXvIyuYxefWXU6e9hnmRgrxNlms4eAeAzgUTdyWsKZCwYQ+gyJSGSjJ8+bVdCXYCenOqEK8AHQlLS9IXUdpOiYwmFNE7tggmq0Azb4KKU2mksuRYoCi8fVgWtgYhUHReIj9Mg4ThV0IttZWk//Jm3HV1eF5vhMZGXlpQiMrJo/x+dOEyGE0MZmzmflLCwMdSYlvmJ74dKrX7QJdIVaB/R0X/sk8FtJyoiN50zT5w6v7uMo7iSMUAikhFML7zDOIl5xk/PSrTOrd5ORso7z8YhoqrE5KX9/TlCU38M+l+XyzcwhTCX4yXUJq6iouHVvuZmiahWZtMEzqhY6/Ig1dLCds517zctXDz89283ZhCS/G6ryy5VJeu2gb8WPfxx7uYhHBSyTw3fLVaLacCHHIH4VArK97YoWzSt859kdKhsm3+Vd8t+z9gsTndAYD8YSzEqPnBDQMVwLO4Dwp9Zfy9Q/dSm1GLWXJZRzftYs3hybpyswlpnKaaw/uXiHDstRd3Ax8lPfGiTNP0+hOpH5xkfKMGTYd8XCqcg3z0VVkJW45MpXTiXY6CgdInepnfjGC41US2/wsSlnkjqUYHn6Ks+13g4KPVRzmkspMVpd8gg0FybzZ2AX+cHSi2izO42rtJS4P7mTYX4Ou66xbt47ExJwV8kuvdWSj+UI4jk1hFMYhM2MRAuwyxM1jr1ujzL79BGXlCkZ93MfXrnidmKzbGfK1UZh5BcWFW6i+/RiPvdnFgaE8ytKH2BRnMBk4hgKGB05TDzTGxBAfTKVmvooxWy8CwcRYEfOzKdRzinW0R10h9ux8iYmIPZ8Qy1jNFVCiyL6+wtVC0zCOvI5aV4jSdKSSzPsGyaeMxjnHCtmTxHGJGbMaKTQQGlKAJzmdwnX/fTxI/8cR4T8ZzmI363bDj/sPcjRjgaTOcfo9WbyWs56Ymn7c2iHGCmdoFt/F6vUqFDrxykua7KC85ovU1G/kU4kpPDM6DUB1fCwtI13Mt+1gYbyQudl0lDKZbe/iS9devnzsgkRMbQ2hE19hZuA0C54aNk0VM5QQYjIGtpz3SVaNBNnV/xYlqz7Et/zFhL0jywnKtrz3/Uy+nmdpWhNjAXmxNI0sQK+yiAOOWTpr7uL+4x2EShSvqvP5hPoNGqaFKxAmF6fnkeeK5eT+RJScABSa/m5cm9OiaUtFxpmP407aRrxQFIoH8BjxxHt6OJ2cyImGD1Lb2UpaF7Cqm9GEeWR3vFWEahpV9jhc6Ql02gJRbNoSC3S4wxJFXYqw3QtIFDCUkEJIWZuiku/FnyT6eqgd7WHkmEnyzMskBgaYP3oM3+owgaaH2ePMIiMmn/HFQSaDHhCCh+03cGD6PCqMCur1Jg5Kq0JPs+cgFCwmdTNZ9XsQZmQUqbi1dBeziQ1A6cq1VZCI+5piZl7qgoge1EBI4jEVW8+z8FS1GbVw5Q8Ye+dNskYniZ2uxBUoI7XeGh1sXFfNAwf/ieyWWtJ7NNw92UxcKUh2bGQ6McE6E0Lg9eeQTxtCWpv8fGor7eIrlKd/m7MzDpSyNuKC87/BZiqwHe+08JEKXIuKGKMQ33grt3bNM7A7iQlTUN26h6qPOWnLEWjmBKmVLaSnVSA0B0qGkVLg80ZwYQISEiYoq9llVc6RG41fuZBCodAIC8VDJU7u7A6SGJT8qn4tUggOSUldX4i5boO5mRE0XVj6XALmYkdJX0xnPHacnhTFJdVfZeEnfyZ6UBTeExM87uxiU3EqdpeGW1jisxkyGYGGUhY27aTKZHEyFa1YoDQL7nlrTirbQn5297TQWl6LCeimSZ7HkpiRRj/SGMbmzOFswQDZc8WUjy9V6FaidU3wJdj7YXrTbZRMm6y97QO4It3vSUPixtI8k0oyvjiAPbxAReVaTi6EomB5AVxjD9M8V0d20SkK9H4LQ2mDmMo4znvDQ39Q0pW5KjI2hYCni/tmkvi23Y4IhawHlWIiIYG9+z2YwoWuN3LbbWtITJxYwfgeyX4CU2kowFDw9Y4h7gqMEr/UzVAy2rXVkJyf6mJFwrYUSiPj7K0sLuQxmhqPsbhoUZeUIBSzBluom0x/CUlHUhmdfJDhUDWmIUnSBGk6kY7y+ve1P2qXhbRSTcZ4NpuSHgDNAFMj/nkNvV8jJWYBe8BPSGUDkU7bwhw2m50PXfIpzGA8+/fvJzY2lqbiSp4viAHgZOlq0ATXHTv4HjzXkqPAan0as/0YAI6aPP6eMRLJoHEyjq1ygY0bpgmGOhgRRRZjWGhsNisYdSfz+XoXQa0aStdyXvso559+Edu8D30hgG6z40oq5vjOPnLLkxkZejbKzERBpW0PGwq+xPH+Gfbu7oUNadYPhEAqwX4uxmbfwfo1F3LTppsiONq8aOI7FqzirTeW58EyPQaEQEfx/d4HqZ89G2VbB7tWMuqdnkLWr7deZ4IUPn/gJ5b2Z+cpHnZVsKX+PBLz7TSOVbBGG2B+9A/RtSuBMwPPUl/zT7ScPUZt9W40zURKHftYHBdoB8hTw9Fj5zHC1tGHedy8htMtl5KUNEnDmlsBeKXteUJyrTW9kop9vZN8diaeGz93D0MTZy1M22NPMB7+NyZKNzAeHMSrJslbU81bkwKjKAExHeS8wBm+3HYvndl1vJB4feQ0S6oKjRWErr92/E/S9p8MZ0Ei4Zs6SJ34V0op597aezDW2XiMD/NNvkuF6OBV/RoU+vL4UynmcGPzZJJWZFq2JLBSkiA3jbvPLuL170WzJAMZNRNWHHtwcJDHHnss0rpPI8mfjl0IbinMYNM1xeix/fyo61lCZpA94wOEkjYisUZN705Qzo2ZJDtyEuv9SgjOZuFMGEcpRZdYzfFgA6OnOwhLidKtztoedYmV/FhiB8THV5CTGxcdG8TnzK8wII9alMwcQTsajzZSAJpAA8LFN1Ef+xQHNt3MVxPqCes27OYN/EAZ6MdPMZG2m50bx1nbG8ONhxbg5BMsOv7IFT94iCmRvgKbtuTfaEQ2F3s4Ccu+SRFrhqMdE4nlsRc9B3/8I6P//C+I/DCplRItIJhz64iCOE69chAwmQoOMxX0oDvWkhxbwGRqBYn2eD6GRv6CWlHdTRkehC6YTzkLmNERpYgkbocHf0pJXh2rF4qjHdDTmEydHqNSEmXvndVMwpuzVmDvajNq4fraFbZmzoJERnt8DDUtUFR3MWdKerh4IgV77ZcYHWpjYlc3QYcPkZ0Nus7cQiavTbi5Mn0yMnK2RJzDYS/xOQ/S0v8nZp0uUoMa9RlxfD01le9PTiIFvFmXQPFQmL8rvoL5ib0Rj1GBMOFbjus4mO6i68Qgf8o0Keg5xec+9S/YEsZof8VLeDQZXGOgFG73OEIYnKuFWcVp7EoRFpajwdF0G03pNkysRAYhMIWgsSSWE4Xwib2zXFGVQUJKDB69gzWHSq0xjVdRrCxP2Ni1qZEOm5VE7PX3M//WK/zwrSpCajU/lZY2XiZJjCxWEav8xBoaN9t6SSGHLyqrG6kJERmB5ZFb5kC+/FsGcorJ8/RFRqPWecwtnyftkkQmw7U4T+Vii2CeACpLfYQSP0xuk0HupJWsnj08Er2+GedlsffQCEnSz4jvVWu92ezU2RNY8C/SpEAKsAvFes9JhiV4vVnk5Vt2epqykZR4B9NXT7J2WxHueReNjY0RxrdiPtHFzk99m+rWg+Qe3oWQkomsLEysru6yqOzpFYzvAl8zwlyPitjUSeChuCxuyS4ka6QXQ1nEGyHBZtMpKE5lItLwUlgN3aVE41Sik2+sjiUcSdiWskqzr5yUwM1c72nApuCl7mQuTLqfzIxLKc7uwDVdSVyLjeCm7BXTArd7PaLsCe7tUITQsJVDuDmd1c7jjI+fRLhHuERJUuaDnH+mk7dj5ugqTsBvn+HSnForYYuN5/HHH496NL9afT4kx0Qxx4evu5Evfv4zK4giS2SA5DkPH/TsINOZSUZMPsMHT5FfEsvG1iR0JRgmgRdFOm9sHCXo2kdmMJM7t/0NaQsVfPtkH0FB9F5xrDKbNN911LS+SVyawaqqavY88RZouThiV7FhQx7knYzmw/HDVhH0p6Yh5HQI2xkvRlXS0llnr7iU2tA4tbW1KxKPJRmgV97uQqqImXyKIzoalUrRs7Ca+VRwXf95yNuIU/rf44HsdOfhdq9n16nfRLU/k305HH61i6wtRdQWWwQqn6+JI6NPokXa/iZwWMXzdxm1XF+ajZLtUXu2VeuyyKv4OsHmZoKyGqesxDnwMHlykFtkI2enP0rWZBrO6Sma5j9GpipAE99DoVvyNm968E8bCJtG7WevxCzsZuDJPxI33kV4YYS4O7eSVJPL67MnuX+hFLM0AWQ8180otDNhGqZGCfsPMOrOINs3wWXbl/GM/x3if5K2/4uYCuwC4IxYY40INR2loFWtQSlo0jYsP1lZCl4Xn1nPBu1K7Ppyq/vdBuo3XLSOL7WPk6Z8TAo3v6yrjD73eP8Mb+7cZyVs1guzGDtG7EIS119VSlaBm9+cep6QGUSi0Bda0ROvQ2gO7Nq7ALLviuTCG9GmX7BcFjQdR/wkIOlQlfxQ/y6GR0OXJrqUURp4jyjFascJJIpX+4ZZ8I9RWFjI5uv+4T3HOPezkiyZFQFAoNs00q64ErRCmnoGCJv2CEBZY0dyGv94Ywl/OpBIq9HExtFpUucOW+lMOEz8QDOFn7szeozBwUEOtraxUB9DsSOTklWJLAbC6MkVzIYmEYmZ7Juef4+nnu/NRqafPEa4Kp3JT/dbLRUNwMRr/jNx4jZ86IBJqjOXYvcF5LkSrBEWlnxYeN8Ik6klK9h5qc5ctO4AE2oHUoWizzUUnF2Ad945TnpjIOJ6IPgXFcAwFf+KCxtgCHgtxuDujTn/xzU52uPjtceewZlyltTJEv6UPUTmBy7ioX0PsXmwAVFUBICQkiqXi/GNcXin/ZbSg4goPgiNsWAVtz/Xhp6zD4TBE/2v8+iVj2AmZcO0taGbQrF546epXVPL/KdA/P29KFMhHA5kbRV9A308feUnMHWdQ9Jkbe8ot133NxR+AabvfZn+GQCBHExEFJ0GlsdoZaqT+4be4o9xl3A01YY896dLmW/k36amGMi0U7kpGzUWoH3/OJrSIkQRyf5T+0nJSqH2ys3AIRZODDOnTnLj4oPoSMLYeCz4S3Ry0SJd8St9YYZUPkIoVjlXcThFxxSghMCEaPGzELuKnLG3yBkbZukGKYRAt9tIvTibL/b8hHl7KTn2E9yiF6Kkxf5Lb7iQ/U+foyKvoO2Ah6zRo+RvqyY5pYSLtuRyvLmVqfEhAJJsGbiO2rlcxJA5NceJ9SZXtX+PzJkxHlcfZs6fxpmW7dTH62ROryfGW0KuVkZGSS0pmo+m5hMYhoFEMEEib7ePMzYF8zUf5LM1qVTXr+XMO+9EpWIKCwtJTIxbwfjO8bVwXUcKL1UWWti+SOLm/tgdhA7czy7ViEKRM+3iwvOvJTU7jwm/JZ+x7DkJQtloY62VlEe+ZlkGJByf4SJfNqFgNrqyMF0mirmEMMkNP2EagxllJ+/41wj2FLwH4tFi5BJmBAQYmqIxLp8LzXKqb7qV1q5X0M48z4zdxkxCLP2ZU5zM8WDX7Fx4+a3kZKxm//795+ytUDzhYSg5I7reVssFptJKOFfJb4kMkLPgId2Zydasj6IJHalMpiaCSDXOkoKdUpA6E0tL6gwzsT56RA9t8/k0hUIgXMsVnVI0lyWx9kQ/s5Mmbfv6I0fTiU3bxHxCLHFv2QnnmMSespN/1x0c75/h1NFhPo6D5uEgPWmjzGRmRYpwncWYC/nl8VEWYnr4QHnxivN2rvOM5gshlYUVsxthyk/uozWhg/y2SjLzNuIsSIw6IrwbZlOfWU9uoJSisVoqxjdiKBsvNDZxw1fWMxrfS+NYE0NiM2L2MAI4Nm9jY1oyJ04/iadrN9mFloyQUhqNrTrZ7kRijq1FGSbi+CnSrrsAp+4gPZyPV6YwonlZdDdb96woNtxqUChzuRsY7PGRuM2SOpo/eoyU9Yn8cm4/R/2VOJTXYgsLq9X+dnwNVbEuXnOUUO71kuv3gwC7z85/p/ifpO3/IgYXrmA32SSoWWzCwFCWbMWZmU46XeuQsRFtF2Vh3r5+ZpEGTy5SmLTtOcwJn4eyhiKGPV9dYaC+oWA9v/zsZe8x8F2q6OrUDOVLDTwBmYUJXHXlMqOoPrMeh9AIS4OYYCd3t32DyeovsLn2qr/YZQNw+w3Wa9cwk2Rn0akz7HkagLOqCsssC9A0PnBoL8MFOTStKkMJPTJekdiEYGzPG+z2Tr2vPtgKcV1sJP+bjZjJAmyZq0n//EcsKvXj11EZuxpb3X2ElCUMuWfGzyHvHPdeeAlnfp/M6aQeDL0RTZlRxfjoNRkc5JFHrS6kRPCsXM0vN1+2wi4q1hfgEe8y9mFzUjxzR0aYfWseR+W1zBUCeiRpA0AhNBNXRi++Xkh15rA162Z0bUl41Lop6UtK/acnqPlM7QqtoJyCK3mr6TBNfX9EzOlkBHVOS+h16Iy3uZERPJUyFGvReIIQX2GeT65KJZQbx93rs9/X8urdjg2jtROsutCi1qdLGx9+YyNHd/2eJCMJtMh6BJSmkVpQQFlVBbvffhipQhHssQXqfrEjFxX3BJa7BBgqzI7uHVxd9dWIH6GlaXbjKmu067riVhbkKob3HESdl833PD8m6LhqJd4rtyiCj3qDUZeHxWAKoBH0r6Mo+9eEtDfxjDxnibdKG/WedNwiyIlUG2GWL8cKhJSytAcvznKjxgKEXuyiXHPT7dAxhIkUkn1z+3j5jZct2681NuIb/5Y0Y9G6rgJQBrH6aQwzF6EUQhosaOkI08I7TRiKxJCMCirbIVr85G2+CtuufRhhAyE0Ki+4mNRV+eStqeZXcycYT/0KCBsdiQZt6a1UTSayem0Bi5NhpFw5NpSmSe/rTWg7XsB1wVdAQrW5minnScY1H0ZKLpP6HFkqmXU+k+LGNtaYJwnKMq4O1+HRZsmeqCVjLBmEZpFXpKR1zxECxTFcfdWVdI1MM2omcFOfh60vPIjdNDB0Gy2X3MsnLr2UjwDdJ05QEu3I5FFedjd9vU+xGDxLUHuFD5fthLP3saOyEAQ4NEFxqslPU44RkpaguC8Vvry6gI7O70WJG1JZrgxaeCNFLVewSbl5PNdiCNs1wSelk2t9NuxKIB0wiGQoZOA3TVwZXcxpJmCRbhZS2wnmlNLX93K02CVyXWwQwRlL8uPthEeCuJ9TmBtuZPwrZZzY+RRSKdb02si84ErMvAYMZxlAhHmtRRO3lHk/hZMjSAnFUx7sYwM8fvIYt33qU9G9bVNxKjZNMByTQ4bU0IQeUeJXrC/ayvGJZy0yEVYHdio1hI6GXbe8Sc3EVPRuj4VtPqcgGU92MZhfTN7AcnLvypyl4JJHCdskxnaNmK4yjq4v4I+THpIH7fxMWYVewN3F22kv8CPuxlA2BIr27AKUEDQOznBL+xE+WlMe3VM2FCTznWvWsHNvH6GRBTremaJea2Rb9358N0ue0K+nSu3nw+0X4PQU4ix2k/g+MBv/QJirW++Cpa47AsOQvLa3mQfs/0DIDGETAikdFvNZKSpbXuQOzz5C9jgu7l1Fje7C581mbi6F3jNdVBru5eTrdD/OK+9jomOWV9tPIpEkzprUKJ0zao3VOBEahpJRpYVzSXeuujpcdXX8y/5/47dLPEcBOobF0leS89N7ONVwHb19AeYSy8j1TpEzO01h7Px7Pu9fM/4naftPRqMvwBfVGgyxFhsGt/FbZlUCcr6NA3P9BEM2hEOBZnXYrn9nP9f7q5FCY1R4ORhvR3WNMhbeTUHhew3UlxwRzo0/NQ0RDEu6RDql+qTVCNI0tl97EVl5K8dmD6//Gn/e822UklQtdFJbnA//TsLW2HGMPW88SW37aapTz7J4zdWADhKqVDt2BWFNoSnJ+WVpjDtHOEEppjLRUDTMemgY9xP0TlnjFcOg7+R+8vJutRTNDx5lMaWFzITIZ1VhgkUmzo5uFqe76d9poyYmjfkxxViai2rZzHFtY6Q0F4SU4mHPBP98FRiLM4Q+9L9Y1W+soJ4DHDzRhmmaEVNiRarycbhnigxtLuoQUJ+Xx3O1y7pc1V6TiZe6ARBCI3amEiE11BJNFQ0ldeZG4gBJRkx+VPLDIghY4L8lgVdXYDJCHbcSbp+viZGRFygSkxweyyT7dAkEZqkOztOdfz7HRTy3adaXUOiC00qiS+iwKcrPyyFtaJ7Jw+OMmtp7pEze7dhgjzl1DrXeJN/Vi+NwIWZZLPEJ4yQnTeDzZqFpAjP3LMdPx3Jr6ZfRfT9Aw0QIG/HxFWwqTuX+UyvXiEBQ747j1xlZ7OmaYIu0Ue21LKaO98/wsUMBQloNMQN7sKWGSI05yRQfQCrL2GqtGKCp+WtIGWTNGo1TLZcxO5tByVYXxVVbgC1kZ9/ARO9eeDOZGH8J62zwZE4OhxcWWP2mB2VKHip1ciTFhhJYWoJ9Ia67pJiZN/uJA7JUEleF6tjvaOfF7D8zHTONLnXL9svrAzNkdWkFFsvN5mDTNds4OpTGhpMtjJ7sYDrjfAuorhSnkmz8vtKFiUIzJV94/gmqkm+HCBB92+2f4/Unf0c4Jp62kye4bPUaBltP4U/PBmFjyd5s39w0Xs9pXgw8ybcavrlifA8KTZokz3SgZ1Va2Q2CSX2WQGYu87FZzAuTEU5wVaiWNJlAUk0utDgIhmvIUClkmOmAZGamFXdKFUoJ2rQhDvd2onqtveLqq6/mo/X1nPzhL9BNAx3LFaFmspv55mbMr/49BaEQpsPB2MNfZyahFY/nOWtEKpZw+wbXJ7/GutHLmaqs4MrSYk4MPIUhl4VOL8i8inSm8UurGDCBzkWdN2edfKzuQwSzi4lp6+fHgRi6gybKncahwWlK3Q5qfRKhFIUOjVUOBwtFvQTqP4qcedSSONXsJDZUcHrkrhXFbm9Q45Wz+4lpk8RnuJhN2sCOVQ5ey3Xwv48FaDsyzEuz3WxUYMa4GMor4wV7PeaY4qmJTh7KzCat36SipIozHaeWjeQ1DV1K1g91gKZhSrnCj3RDQTI31efx5BHFMyKGKiS6UhjC5GHXDiYaRikccqEruMU1zCVrbqQxq4xNZh35rak4i3XurMrlwXk/YaGWqPEopRjIKyVv4CyRB4nPnkdoEa0xZdJSorhP3E4YG1pciLhcOx8eNgilnKVStPEt7uGMWkvfbDnHEjdE/FUlbePdfOk3/fzys5dFTeNf2f0yV8f2sOAqZ9NQCSNSYeTDvfZ7ouoA7iN7uagNhE0j7bPVK7psJ8ZP8Nibz1BnXh5xc7DkkCTQOTBMUmo2owm9mErw4dk5Vs8Xkz1fRYt9lviFXqQQzMymMzRXBEqgaVBUVQodE5bArQzj7P03GO7FU/szpDaNUuCfSyd4+ALqjTZe3GwQ1kEzTejaiai/hrSNZUwFhxl8YWfUPWTXTLKl+hpJkgtUD+s5zlrRSoG/g06xmsG8f6QfG01K8p3WH5C38yHI3PG+kkF/jfgPJW1CiLeAnyqlXj3nsYeUUnf+O7/2/8u47/WXMdLKsQRx7fRRxKd5GLvfYItd0DOwgOfIo4xkF1A43s+1wXfYO7ue9Jh8OmKmUc5EEIKZmQwKCm10UkybqOEGewOF73O8JbV8BegLc6SHj5OYt0hgKJYXX6knY3Mfs6J9WSk/o4odbjchGebPSXYedjr4Sy6Vjb4ANw4KQpWfwF5u8E11D2W+tzCljhypo85zEV8TA7yeFiDHN8kR4NV1WyKiHdaXsyluFTfG++jVeqzxCiaFzT+kZd7Hrhd2YkqTmMwgKddq2HWBVBpal8UC1QB2vsIux9Uszqzn7mu/Q0izs3yXAJSinTCNgT9zuf4mgRgH9o8+gcu9UoR01Eyw8HvKwgOOq0TK40M8/vjTKxwC6vPyLEr44CD795wkWUEmbpRSxHpLid17KfGFh0hhmnDDJ+n1byGYsogY7mM8OIRUppXPmRbN3fqPAKGROwQ/9HTxb/ZOHrnJw8LkD1kySv9gmUbLfBWzvhxiBjo5zz9OYfoLhDbfTIqzHGexm7sxOdwzxUWuWFJ29GJEQOl7D41w8ZfrViRuzmL3CnxJdulWxgeeQJkmSMWZ+DX4ijPJjZukuuZNNE0CpyxG1KJBjnqKw2ca2JKrIqfZZGbmCBsK1/Pdrbdxb/NxFCZ2zc61EfqH6gAAIABJREFUJdcy2uPD+6s27orREMDE0UnS76xZoReVMpbEeTKGK3JPs5dHOKbOp/BkJ351kPjaIEIoNCFJShpjYSGb6vXL4/8YbykZM+loW2zIeQNnsZvcgkTWvj2If9qyPbqjM0hzg46BZQL+txcUklXsRtWkEerxIpUiXbmJL3Mzp+bQlb5s+5VkiXkqM8TQfCIdrgtYvfVDVJ63ncrzYL4wyMCBtxHpRBikgr4MO4ZmdSeVUvhiXVH2IIBndIzAqrJocfH6k79DXwhgzy7Ece3thLHkgC47XUf+5DpMzeTAqgN8+u8+HZWkmXnnOLbnfoXb34uhC5xCMSb8vGY/ielYYgRZ495RzUt8wjgnQm1Mbv8nKsdBHNUtT1wVJt7xAntGmnEm5tOWYrDUXZVS8uqrr5KZmUnZ5Vvoe/JRZDiMbrdTcvkW5o8esyRApCSYu0jrzLdRsxZJIZK/Wn9MQf+RXhbGf0fCThs53/4+tsx6snwuUiZ0RpPD7OzPZdOinfQYFcG4CY564ul1mNx39D4AigZC3P2UgSgo5++/9C1CxUkcKYL7j82zzmsJBGtK0SYKua/1IbJ1OxWxcHPtt4Fp5ORysXtm6EW+1PwaQTNIoVFI8uBd7E+OyKlIRWOK4KTZwkQwm/WuOBZWldJXUImBBfMImSaPv3GCC9rsGA4dPU1faSQvYCQpjWz/NLrNRmHh8i7t6Whjg7eJ/YbkYEwG/5D0DnW2GU662jkb0wsxMJocBKXInYOvynXk7DYJjc/jM/uQQjKVeJhSexH5/w977xke13Wea99r7z0DYFBmgEHvANFBgADYm0RJFFWsaktyky03xXFJsZ0iOclxS2x/n48d23HcZEuyZNmypNiWRMkSRVKkWEWCJACS6L0P+mCAAWZm77XOjz0ckpJzrpzvOkmc68v6RfACyU3M3mu/632f534yc9if50Iqga4k9wQPkeGZ5Lw/G6UESxMuuxEXnaK2q1oiGCihY6H4Rk08ZUtByueqmStzUE4vFWKAeV8lZ5MasARoSpK3MI2uXLFw+Ja+I3xww3fRhYmSBoOHP8vgchMjRelX0QE6ZA07rxg5XiraRkZGOHjyIIn6KuXxGrMRxawl6TMUpaZOzkQ2t/k+yd6a7zOTMsSGYClZC5/mJecFZCSdnZOF0XeBhn0as43Nb54+TtH5A2SThTXXidXQg79UkGK8iNudgd/vRQeSf9dNyewsn+3+Dsfq1lEwMUji9BijW6oRIddlVpthUHPNDXitVaiojXU1K5c6uCv5N0TnSbSrShCO6NtJEU7Mhvnwv8p5/M9Y/9ZOWwnw10KIjUqpL0V/7w8iwP0/eil9+eqvFUgLwhkOvJrEndFDyt4QRecGAQilwo3Zv+OiPwszUAYe21wQDGbjz/geX5vxEFEaz/dofIUZ5k3rKjr7JVo+wM6EVqp3dSB0haoS9L32Kj8ODzPt7idOd/JXG/+K/cP7CUvL1gIp+b8NFz++sERYaEhNIxLdCMpFN0JIRsMWp1fmSZIrNAXtTMWzBeVEogUKyg5uNoXCV13KA8mnGWzeTzHD6EtBDvzm5SjXCVZ9cew9tIftN2SxxsxlbO5XlDNsPxZWhKzfvsjTe24nohk2ifvS7hTttqHg5/pHKGGActkX60rCZa3cOm8JPw+uZdWYp09L5k/v2Er86lAsIeCywLrgqrgnzSm4JbSOTOXmrDnPnNiCuLCb66xv48hx8YlTCu9qHPe43slCqIM35ppJzyylfKiL+MLtUTK3QggNDcE6dFYTu1ie+S4alzUyQkjcHh+BxQxUYjLV2fvYasxR0fx8lNZfwHrs0/vi6yP4LRUjnacKOPXmOHdcWbS9RV/SkdDPi6/F857eVXyhEvwZmaAJ3J7JKIgSiJ5/dU2BNME5iqV0dCFiCRZnhuaZmc3h843fveowcObsIKnRGlUTAmUpju47hMtIoVDpZLnepDatmyHvHt5giqfERzAx6FpXQ0q3g2z5i6hN30FZ2TvYs2d3rGPx1lHvlSf5uFK3LVWRktp5k4+9uh9x3zu5uaw0VnwPmoMk7UomfljHU5/Og1uvYePURpp9zZQHMwkd62a8to7Fm37Oj/cdYCajmPWzEUZ/up+NJ3oovvEmmg+00165m3DcKI5QCk6ZSvG0iS5BKguHZdLY34Prg/fFPgMrMZlLVHWASHwS2nKAnIlBvhIYpWNNIR0HXqNwZgNatHvt8LlJ2NWHt+pNEqZTSe7az3LA3iukfxBn9jDznlTkgF2wJSdP4Xb7CPhzyIh4ObR+H+1aFeWBvUxlfhhjc4icsSFyOh4nMt3PjrQ+TubdAyEXycnTuD2T+BeyWVrKtO//nTspfvyxWPj3pQJUOJ2oUIjgxojdaSbWCKRbVnBmZgNZXeN4J32AxIyYPPviIUoLMrnxeDpKKaQGvy2c47UXF9mUUEhSTpClCRdeS+AtX2Am1YYcVQ9LDNN2ZUZ0A6XZyS0HUjTqFiyEUphCMZU9THghzIAlGI7oVAYC3Fu4+SrMRG9II2StooCcwBqy5gc5XpuOhYEmFSP+X9OTOkDpdAWLnjgMoZHrn0FTEilt52/eyABQgRFOIWWmjm25k5yVdoi7rhTvMEOU1dZSvm1bbP9oaz5F50u/gaVF7tB0Atd9lJrNO/mfbZ8lIiPo6JSOmNQOKy4WCnRPPf1/+TXii28krqoAoeloSvAn/k38ZeF3Wei9kz9eKaQ9VbFdX6VyzsNyTiL7Kn3U9HnI8SUwejSb/B2TIKBGXERDYalL+kLFG16TwLDJROsNpLgnWQzkcn7KYLP/p4S9O8j1z5ARWOCCuBwaX5XWS3DmcofeldHNhFnIH229nWOjo0SUhcOy2DyWDCiEocdGjpf2UdM0yVQZpCcEqYpzc2JplQltAQ0vGgIhHeQtljOVPESLYwN12hISiRJEO3PEtH+XzCrdvmH66kvY9foh0udmmBYJ9Nc5kPpp6uo1dO0DJP1qgsTZWQA2dbaDuYjUtVhE21WsNtOkJz6ZN7M3gZL29MDXyo7Vi8hEeSnghRrRgVMIO9pOmmzzt8UcrH8o699atC1gc9W+K4R4Ebj/3++S/rDXlulJ3kyN2C87LBpHO5hd9JBe7QdNoAtIyVthxZcAwL64Dby5JpHGlUGqvbsIrgpc6RnUb9jEs7OSiJxDaoKQlDzUPWyPbYDtLidFnhRS0p3INcl4fWHqkpYQuorFIyXnzJAbKGHK3cuqtcqTZ7/EmjiTQqfGcNiBQ3Pgdrr5yfmf/N7Mym2eJJzR06ZDmtSodtsRqjT8/mwsJH4tGH2QFLkLMxiWhakUStPQlJ07WumyKFi3i4KWb4EV5s2Vwphuxy6/NFpXGvloqIyEh/+MpJDN6pIiCmNUisbudn5umUQEGJpGDiGGlNO+0Kh9vZ2rSezTXUc4P/ZxFBGkqbPN+TlWF8p48H3l7Nqcz8iIQNf1WKctNz6DxddH6F3qihVzUijGAm1MB12cL1xGItHiNdp6dxNuNVk73YxbK0BTOma4nemwxWTgOIfc1/NJ7LGxiDo9IwLasKj29kYzWInVnjYwMhuB4ExRPz2ZOo+qdB7xzdDwllPccryOjJLtJeCLSH7aOkTetuyrRudxRSmx4uaFEy/wejLMerOpmcmMITT8Ua6RpksEOiCwlImFom9hlsCoh9s3baKp/kP0LpTEonFuSzvCx+r6KYqLh8wG8ipS6f3dIArbWWYJyUSriyXT5AOZI4S2nubr+t9hYutoJAIlbINOr7Oc82034vb48GTv5mx4A2JugXfKJJtP95ZR75UneSBK+be39cLJCaqGO9iwvu73Zq2aWBw5coTi4mJ2kcabh/4fFsfiOPZMEhM3fpBfbboHpWkcVvC9U/VMHP4+4ue/ZKJ8N/O1btv+mKSRvlDGTTVN7MpP5fzCOA3dfax/370ET9lYB1djI/UbNnH2Qnt0LK+RbiWwpNkvjRuryukcO81cqoeB7FVKJuORmsWm9AXOnH4vSliIiMI7buCMRtkJp5Oka9aSHo5HDJ0jOXGStfX70YSFUOe5EFzhq/rf2iMr3eRDfb9E701FF5AzXcRAzjYa+9rZuLuSqdFWampfi2EU2i/eHOsSXdL3gJ3LGDx1mtT738/k6z8luFVekuOiLGgeXs8/F/0FVqaBnq64b+4x8nxDmGgc7A9w7anfoWEfzpCKWnM/5YtJBBddBH22bD8HRfZsFs1rF+krWmHZJWNoELD1RBqS8dVmfu60SExYJq42m61b1/PovstpJhuyNuB2N1zFaZuZ7EPxL6AU4yk9NA3Uc9/eJxjJLSJvop/W4lOUDWzi2skLWAkuVpIk2f45bm85wgyC4tFeipa3xoSTRjiRG7tOU7e0jwPVH+eGknLesfujsXuxubmZl19+GSkl5JbiGu5CrATpbGnhjj2f4pE9j9B74QKFrcu4fvcCzPZj6nCkvofZFA+zSYsUigWyVBpC2Hd1/coafpFykY6RLDJ6YXMgnpPi3bBkYaV/j5byMbLmspjrTCU866QqfpL18318eMtzPLbmPhQCQyoseZil4lakP5uRkbWAYs3CGM6+CSKuF+iqFIyUFvHday9rfdeW7KJ5/icoGUFh4MzYyI+KSimNd1GcovPq0//Cuq4LlC8JEh58iKQd1bFnc3Bw0I4aAyR2JzhTuvEaBtliAQsvoBC6YiylB4nkbEIn16mtdtKOsqcVFhZCaVEzUPQHLcDSNKayMslY9BO+rhGpt0ffKBaWfBJv058SbhlCzveTGgxxy66bWcjJjEW0AVelakxlFtj8NU0HKVmSbl5x3si1aoUK2YlCkCT28FxjBa/2z1DUP0Z+8fth4/o/mC4b/NuLNqHsnJNPRiOljgJvV0f//2D95R9/Hn74Vbo9CeQPjKG1zDJbkE1aZQANiW44ycq5Dh+tjGUV8OxtH8HSDTQpub3tGHnBRe67thjL2ktFXwEOdx6RqJHBUpeyKRWHl8MQtE8RYk0KvhJFS08x2eoIQkqQsDg0heG2nS3FTotPZIRskr2CI6qOxsJ7+ErrcwQdZbg6XuOJXQ+/rXC7Lzcdc2aGW3v7SDDezby/mZ4VRWAxGp59afyHIntxjjtajhC3EMDM0jmRv4GS6QnOHhul/kMfoiAaT1JAMcaPn8IMR5AIDnt34HPloLWdQ4XDCKVQQrBQUsJoqk71uT5qBnr41DNPcGT9FrZVZXD2/KMUxt3MsfIG2w2rFDfm1dGUY5PYQ0OLTLzxEqokDFGYryuji9D8GpID9kZSUFDAAw88wODgIDKySsfrMzzl9lPql+hCw5IWGhr5qY2MZkwgVQAbxi8JegQTF5rZrGA8a5LjxZvIG80lzzeMhonlUEhNZ0b4Gdfm0dJzKNxWw03BFaq0DWC+gh2jI1ger8fXsxOCqXjLLtIT54umVthwyZKsLOYHfxATVo/7w3QvW3h1wbQpOaybjAgrNtJ462qZauH53udJXU2lWO5kNVVD13UqyytZ1Yt5aqINb9IMA5E4QrPbqcg6yIrPS9XFSozlJc40D5H+R5KT2KPOm9yHubvhOaY1mB1qpgnIrrifa/+skanTk/gme/H1xLFgCjQErrQuWrXq2DhFKFtbqJSFriS58zP2lA9oOxPk0OIo44bk2TOj/PLBLax9y6j3ysSOUL/fLteEfRrPchXF9ClXZq1alsWBEwcY6hpCWYqlbAiXrVC9PoWyhh56XypkcHoAWbQmNjo753XwzvgCVKQN07kAIhkEJKf4SMkeZqgryE1b7uWmrY0E44klCQink8LHHqWgsZF3NO5g9PgQuSqNdHcSo2uHKL1pC+eI40mrFitP0J8j2XbxAO9xp+A69hMWbzZBg269gr531LH5pU5qh/rIevghFt2lvPmP53CLOtIyhtCFZSPFlEVrUurVIytVQ60aZyw5lR996M+wNA2HZfHj3imaahMIRzusQkg2bEx+G2sqeO7c5XQETSN0gxXLxxZR/cL51QYszUBptptzouR2ijJ6eG4ugdyVcYQtSoiZDrwBI9o7ubzsl7Fgy8U0PnXjxwgOvMjxxlUevf2+WI7whwaeYF/6YbrSwaE7eWTrI7ZGd88jNPuarzp0uhdN3CNB0E38UxfIDhRTL9NwZXShNz5KaKKetPk3aCsZxxeXx7q5FQCMlSAJw11YrhRKhzopX1lmzYYtlG/ZxRu/7EZKG3Ce5zjPen8v73Bth4qbYv+PkZGRywUbgBBEXClkqTTWJ9TQdXaCdzWVknEwQNDVRfD91YjXV3BcmCDsTOWNXddiaRoX1VluNpvIVB4iwuKCq49CdTc9s5L8iGHXj0oABvmBCppzBzi+PkzVdDZVLSEyR3WEI57Pf/rd3FVawfGFJZzt+yld8/NYkX6+bTcaEm9SF8uGA/9iIklBg67QWfSEISA1mmbRS1GZjeRJDK0lfFhDmT5mzk5Teb8k610CZ886MurvelsubnFxse2plwpN6GRLDwqYtyJsubmU5pVsCkwNT/kSj3WMgYRO1wDfLHiMtQs1BFSY/NpCxKpJpCdIvBWPTwXRUFFEjCBuNUSoRKFn5kK447IbWVmMqx6Kdv0VLeI0F7eu44ZrtrH5LbmvV7r520+c47FsVzQzQtGdU0QnxRxXTewcewXX8gof3WaSNnaG9Ecli6bkeaOaOxsqyeYPZ/1bi7YfXvqFUupxIcR54FP/Ppf0h7/+8o8/z/5Hn6C15QBWQiLTrgpWzxeTmjrFjh0fJSm3iPbXOpgrtDc8GcVkjLm9lNPNyOhnABNXisG3O77I3jyNVzzFxI64cIWN2YbBSqEYScqOTWPsQF+JN8pC2ugyMcTlBJLbcyr53bIZc7EtKZNfj3bENr63BtLfCuSl1TB6qgh38gX8+kysW3Pl9WQuLZDon+c7138QU7P1H2nLi7Q1n6Lg7ndBwSZygXuzanj2xUM8N+pkIi4b3ZK0pa9ho9OJDIcxhaCm5Cyb01fx+T2csOr45/s+SFg3OKsgPXMNt3f1kxZcZMztJT87xO1Vl8MyQv1+EmYrEcUOlDRB6azMVKIJgW9wkUO/6KRqSw4FpQX4Z6fYf3iEf2yqJiLAoTL4hzOb8QR85FipZOHGka3TNj2BVBINjfjpfpRQTGQV8OxtD9hxRQ3V3Pfio+T5RrkuwWJW+HnFeQ4Lib44xLrcKrYNT/C7506S6G4iLWWCrTf+CUnFNzCWPo+eukJL1xyNU40MJQ2xFDdLScG1nB75e8BE05ysb/o5eRVraBaDzIUlEaXodFms9Q+z41QvQc81uBob7bFg1GDRPPgbTBkmYzUDTWm2PkRCXl4eXZ4uTl3IICx24pSdoCZYms5kl+8azHQN6RV4JmZ4/cn91H/0fpyGxlZviw1aFvZ9Nz/+Mu6K+8kudZNd6mbvc3PMdyzFRMcrM5XUqBdiTmpdWXyQRwmQTI12kSRHgMxqH5omKSw4T/7hz/F4qIAJpF2IXlf2r6IENJdx2VmnCVLWbUEzbARKcXFxrJMqdMGh0UMUWYX4Ury8VL4NS2gYvJOH+SJJOfMUjPXj2KCwpB0T1jQTxjHeTgiNgvE++spySfTM2RpAIVFlR+k74cB4LURkfDym+7qSjB83GKTBKkETGlJYpIpMpjwhfnaqHctVgopS1d3VTVw7MMBr/jJOUEGyFeBJ/SOY1QbPlJt887tfxRzr4NiKjmWmYagUwqObUGWHbZFPdCRmYGIqEEoxI9KZTFlhwp2OpWtITccUGqeMdNa3uDEabHK8UhqWeTXIGbhKy4ZSxPUZBJQFCnpEBe1iLQW5cegSLBS6hMryAsbzK5l+rRcxDtaCAcqMYUDS/U677hN2NqyUEnWpyFGK+PFVNt7+Sf7ccQhLaKBpKClZEdk8Mj5BsyuRDTf8Q2yfashsuPqg2fw4vPw5UJKW+ASmRQ33Lr6Tkmu+i9BMyNSJW7eBV4brCQcPYTjaGS2do+C8nVFsrAQxVi67ARM9qdTuzANgoPUVMhxPkLA8QLO+juMp17LNvxyTqgwODl4u2AChaQTiqlhbsJmhXD9iaS9TrZWsJs4ysuGbdnh6qSDtewaz2dk4NS1maPh1/EskJnkYT1ukbWYdq7NeFDDqkFir9j5uGBrlNXkMTHqpW96ClqDRvK2MwrR01uzYjquxkQ3YvM/WhRGmZ2SsSF+bdRojcw6lgaoXtLVVkB7IJHW8hGPtx9DaJjjw6A/tQtXh4N6/+wfixpMImYOgYDmxm46R/xehmWhFTjyld77t/ikoKODdO3dy/oc/IiuokZCkM1ubz7V3VZC9dSubr/jeHYs7ODhyEIApzU8kbOBSTgKti9wY5yEhY4qEuXw6ljXOGQNRXInELDKZuXMFQvtBaChlHxGk1PHPZ9HmNvj05t1EgB+09L4t5eZScgWAZ3mVb37hK7SUVDCUk8f+jdttvaqlSHTX8r7Cv2F1LsKAcuBI+Qzm7Jp/NdP6P3P9m4o2pdSP3vL1GeAj/y5X9F9kaUY+YBCfr0grbMfvz2ZkeC1jXQbVtbnU3fhp0pdDHFSKiLTHaLn+GdweH7bZXaKESanzLHmBa1CeaLSKujxWu7QEFgYm9c5mxKWweCFJyllhSM1T7LTYlGhdmmKiCYOa/Lt4flQDYUVdbAJ/pCimATsY2kxE2qorZUkOnTtP/qFvsPlrP+ZwlwcWZmL//oKMJ1mE0FDomobvumsxhR57IY27vejLUf7cyCkYPEJu8U523PMefvCTk+imxGFo1OzeQmHToxx8+hUmFlvJKz3AqCeOeLVKa6CGsG6gdB1LKXxZ9zA18QY5i/MoFHFr7biSSw9kXKkb18EKCs78FSveLhKrr8eoKaT96DgDLfa1dx6f4M73V5K8dwl/YUkM2GpKxYDHzYf9NrVdGBrZ1gzXn77IdF4JXqsNR10fU3OFjGSVxvAVUsFKSja7hw5T6Zphv/VxZDT2SCrJ6ZePcX6iE5XiJay8zC+UwbFpFiunqfCGOfnKv2BZFsWsoXipmAbjCEMyQKEnghBgWWEGB/exbt1D3PmZRsa65wkkGyS2HiXu5Anazkv8r/yWvg/vYmTY1pXpmmCb8SLObIm07M8ZiPG2RqxkFjLrUcIgmGKSNH+CtdqrFBa221qnxQxyMzYQmHORHDB56mNbGG67GU1+DylsrEZq7q2xbL+0VYVfpaDpK2DZ2aiN1XVMvvwDHrrli3RqtVSpi1TSHdOnrBY40DQZHetbJGV0UzBYxEw8pLqclx23b0EJhIYW8e/tt5kRAi6sKo6M6gzvvcAH1xvctH0zDzzwAL0tXfinJ+gPdIKUTLjTY/enqaCDOqonmsnzjfMNTdI2NMmmM4PU+OYJAfuKNrJy/3tZ1YOkJpxDEzKm8ZEXfsT0834wDIRhoCwLcQVuxtNQQGR4BrATDAKl8Cf7HkSzatHiP42MCsALExbobNrIQ8XriGiXRsgaSrND089V1vLM6m+YXzrLbeKTGDhZXSintWsn9VWHEUCZ6uYh9WWen3s/572VdGYX051VyI6uFgxpYQq7GF0/Z5G5WMeRtj2kuCcILOXxrnftftsepnvcdsGGvXFk7/oocbP9HMoc4qv8DyLCQPMINneEiDMVrpDi0Q0Ccy6E3uhhu3eB7Gv+nJf3HSFRTlCzYOtUEYKSrXl4mpz0dfjxH7STX3SHg4LaOlwV1dwyt8jLSmJJOxbsBv8JGkIhGsImzE/8/k135JRdsEmTljgnH81MpXa8jpvT+2LO6S5ZytdWazGzdHTZSP7A/6SnoIui+A3ULsSTnZVO5/E3UFIiNI2sklIm+/2c3vcyeTu/SUAz+aXYzNf1LxOZ03AsXC4EiouLMQwDMxrbdeuttzI4nsifulaIaAkYpPN59VU25mXYWZuaQqFI/NNr2HMuhyOLps2mk5JKGeGfMg8SkSZ6uo4IZiJWiiitSqOhKo/kgEleRSqTSR7ann4zdhhTwELDut/T9drD7NwTKBVB13QKhI8xzUDYdnrcnikCS9kYEpIvBDlw/IdIy8Ibl0tmQiG+k514r70BYWhIUxJI7UARIZaKc4WO+MpVfsMN5KWl0bPvDc6mr6GgqgHlN6HfHyt0WqZaODp2NPZnslazMJRdergSfSzVP8WysFClOq6zH8ZYEbZjW0o8qVPY25ottPH5KgitulhcyOYafz0vFetE009BSl579SA15flv+/mALQu49Ut/x/bfPs+p3nbeaNxERDfQpYVwBuhRJZTTCSKCkXeE1ZlpEmQxeRXr3/Z3/Weu/0Z+/H9Y490dBGZaSM5LoeSakwjdbklfbNtDypurHN5/jtkwpGrLfDDQQps3jlz/DNmL8zjSa9HERaQVQSgD11wVW/DwWJ5AarYkU0dRZ63gXG5nbfJplkQy1aqD5IiM5a4hITDhwpUZJD9O2kZGYb/fCnLvw+1uYqevn5/LOUwhESgWOs5wZvn7KEzcogaH+AJYEsOyaOi6iAqHSRo+x9ZbC7GOPs/8fCaBpSyOmyUoBbn6ItdtWEuhNo1umVjo6FKypvsc9R/7mL2p/uwOxgNORlaepODev+Opj11/NXeuKJWctGI6nvksrfUpKAGiEHa2vcljvAvzkr5HCSbdmWhovFS/HRXUeT56ksqfNRnrnif31hKyVguJK30XAEvNvXiEYD5a8VqmYqFthiSpsXFO8qgCU9qFyKRLo/+2AhpC9jjO6hzC++NWSPSx8rExwoZijRhl5GSEE9LeRAzLYnfLGcpLZojXxqnmV7RoW20GlRKERwIonSu6pLBvaIVjQ12sc0ywTrOuuIsE/nAt8wuKfHkx1hHpGfVwdC5axNxczMG2g4z52qGkBICBkhLM872QWIKGRoLLh+bR+c5sCUujDzKiAiw4F7nhnk1kSjcdHVMQZ0TNIwY319Vxe/gHaERi92zuzHq0pBRy3E5yilJZX/QW4lf/AAAgAElEQVRZ/N2ZzI+/TGrurfRk3c09Lb2EpUJakuSlFe7y6BTPWui6IMHXjUtfpUJ0Uym6Y3mwl9bCQDKZa+exT8gC/0wS1esyuLMmnS/vvRgLa37qY1uuGv8uHe1ARSxsrAoMuHWe3J6EpcGRFZNfd5+mLq4S7VQC0iymjo/yo/ifsP0inCuqxtQUDqXIOe0hNL8FZ3INZaF0xqwFWmsbMXIk9UXbOBs3y9H8LCyl0CniIXmOCtUBSkfrjQc5D5aF+557cOTmXiXgz9tRzxhtLLSM4Gko4IL7FOHpMJIz5I7+E5pzHTLcyq+1VoKFDxMxypCaDirq7lQKqWm8UbPEgkMCA+yt+T57nHexsXYPr7THx8zUUoKnfwHXqh/lFShNs5tkbouH1RfpUDXUqC7WqLsIkEnO/DqYr6c+qyA2Gp3s9zN26jx5zvMYQ+NXdDE19OQUSrZ9nV++cZRInsMG3ArFyap43v/Km4zll2CSgBQaUmi0BWf5QGEidQ99muPHmzFf+gHKMknKCZFSdwgzHKGwWNCbWcjqdBLXPfBgrOtx9w3X4uzu58BADzcsneUdy28SkjWMhO6m+3kP5pFvULxpLSuBAAW1dSRmrTDf921SEzXcAXgxKZGwEIy7e1mauJUMaQAWHdTZBXuUEahra7FkL88vV/CSKOFv9zQyXbOJyIu/ImdymIOPP0JWwQJxWZ2xwq9dVRNWIloIXE6TuVJuUVxcjL6yxHMjE0Q0T3RkrWgXFRTlt+O0uTJouoPMpo+Tly4wPvs5fGmpZM3NM/apXZjL56JOZYXD1Y8wS7hlbQ4Xg6tsqfaSXeQmmwb+aNcfceT5IyipMHTbwXplfFbi7CAFtXXk532L8fHXyc29jmnrAEr8OuY2tUJOkBJdSpyvHULGiyh30gYCa10aXAvpH6vj8P5+npsq5q5SA0NaiGjG57+2OtKK+fLQSerPnGX+dDy60DCiObHZpW6afc0xLIxAsLZiLZwB0zRJ8UzYjQVNoaTFiPcMu1PvJZKZQ3Y4jHNUp19/BomFpjnYtPFP8fkSSfSbTL10EsKraCW3gW5gmGHyR56ntTWTxZMd1Ny2822SgEvPbfEXPsBXTgxzOOVa9q29jpcT6thHJZ9XX8ay4FDKDrzlQcraX0SOxUH0HfOHsP67aPs/XOPdHTzzpYfx6JkUNa4iNIteUUG7tpaGdDcZ0ynMCsmMgqlgL5lDkzQtR2NFBCTHVWNNfoKExV4y5xpI8JdRj+SOMZNfFzhsQjOCbZnppLzeRk3t6zHXXUrJP9B24hgOdZrlYYNVXxx3ijF+viKwohMlSxr4hX2qTvGNsa23lyPl61BCY3/BVrao31EhuihT7Xw79Cy9PcuUvNpPzWAvwjCwmlIYG/8cRcVhCgt1ViJf4OnjKURMSUCk8D8aq3D0LPCevT9jKLuI/Dkf26qrsRKSYPBlxgNOnhmsxUJD/8Hj3PfFGj51XfVVP8P1Wg8OzzmmhEBoCik1spNn+Frvt3m4/DNIBA4lKQjMMerJsO332GDXV/tnSH90AMuUsQDpOGDmJ+dJi0i2JekcX7KYt2ydm6c+HTkaoG5R8s9nl3l+fTyv6ga/zXfwUmSB55qi7fThCeJ3pTNa3oBXHyVKvKU2cY4PHFpiKFPjuqHX2F18Ct0rUUJnjbOFB27+DF0XIyRPDmB6LjCxZOEPRPWAmkaXyEFKcMwuQTqxYkYAyVYDQ4vjUZH+JP6FHGZb+mhJsPinrFK+dG8Sr776KwrIRkQLQalpzCWBB0lK0jR19QewNIvVwgBF4WEq/GWcCHrQBjVm9p4nPXkSvakIS9gdjarlN9EdFgjQhGRjkkbWtAdhgHx5gFBuEnFFKbgr7sedUAGDRzi+0kFEGlHIsiBQ5OKX+fCBQwHyZ03OD7pIWS5FszoBRa+oYcLzAbSlbgZ6FWlD46yZGCauKg6/P5uABnfVJHAsGL4qrPlKzV7w3DlmH/k6Pbv/nDPpDprmJWcSBZZm4xwsqXF8YoAKmR0LfHcKJzdX3EvQNcDftR6kO7+OOLlEwvAmdJdt6zi3OMp3StJtd5iyMRPZVZVYSmFhk1yeHPkIn144yup0JWFPAY2e7+FZHcN9152/9wSft6OevB31AGyYkjh1J6tWiBXOQvhsNEJK4Oz+Kc6SLxOOwn0tJAgdgcW4NwlXVOowmTzA09o/U5hcjifrOpQ6iMJEScHChTiS0ny29SXKB6xWFynXuqgQXSCgLzmZM6Eq21SDxkqPl4zfnSa+soLnv3UGy7TQKeYmx9MIp8Omzke7h6F+Pw3+AFpeJpayq0WFZNAboNL/HG/wIFI5QAguVDXxysWj/NXuW4ANHOcT5K2OU1Y3yNRin61r1BTJOUGCU65Y8PmhsbO8OtJLzkKQ68106jfdT6jwOqZ+vYoTjRrN5FDnm/S0HgYgvWae/J1TgEKrT6apLYCKVrK+5EFapqfRD38GV0YPueEyjEYwsQuUwrhETvd/DHOlCNNj8ND4JFIko73jAe578THyfCP4RttIFpUoadDDGmZFBkZUG3wJwn1pFRTYBfB4dwfPfuVviKTloN/+IdAUBhYV8gJCdNsFo9CoqPgfdoeqEZq+9U2Cp04zrgcYP3eaqiRBV56OrhncXbeL6tRavrz3IqlL47wRnuDj795DWpWTftHPzjt34vA7WI338oPmBZ47cwHv8jh3TbyIgYSkFIJFlUjpIiVlL/kFLaSmXh7eVI52kt4ZJnNqCj20wmR5HpkJhZeBwJJoekAB3t1FvPGTCQbOfJpqby/vv+bu39tlu7Ta9x/ji4d/wETe9Qyk2gdm05Qxx/uGrA049cuGkjvW38GxhGMcaj1EnzFOIQJN2mateX8Gw8YM188s2IejG76Ex3/nVclBFRXw5m+eoX3hBIlzknfvnSayPpfknBFON6SyKFsJtfk5/VgfD3z4Q28r3KbbfsvMJ1fI0ztJpBpL15EITJy8ErmHZqMOK1dDy5a8a2GGkWe/Qm5xwR+MGeG/i7b/wzVy8TweI4tdWe8mtDLA62qFr/K3mMLg+TzwTiyzOBYGYeCIKyQYuoAeUCiHA305QOtFhdA0NOXl1nAGuHsJeju51buLl7Rc+2WiCW4tzoMdH+TIEUlKyiSLizlEfNMYi1Wo2T7AxBAWW+JmKBqK8NRiLSFnAV3TG3mv7mdKPclpVzEj3uxYVIeFzhG5izLVjaZ01rZVcMvKY1glXQSTEnB9+KucsJpRls3UAljuOcsPb/4zLoZX2VLqJSc0ybM/e4ScSISsxTlWi6tpHx6j62c/44GbN9LpzyYuKxSz+188fJCJuOyru22DR1iZKkMVXQAslNRZnqrk/sheqoMDHHc3sM3fQtbyMq9WfJEWzR5zOTSBt2uI1cBJezwtchnrnscVp9svbmwddbohmJeKa99bSc7WXPxL46ycHWJnYxH9ZQW83D8RGwu/0tvPhvV1ULyTxcRZUhdKQL6CigJnQ3NVFMyb5M8rFpPD/Jn+ZdIWk7hlzSg33nkdBQWbiE8+wvnh76NEhHplsOz/I7T4CuKySnn6hSFqZ/r5/LFHGSku4Mz69baOB40LxjhbI5XMzucyOBOk+vSLlIeD7Am+zjeaPsy+ExFqRnazlNoew6BIIWnLGgaGuSnFsoGbApSwWPV2keAvo8Cp4Z0KokzJjvk4ultPMOpJI29uGsdSAnK7jtAUShlk69suxSsiIxYzp3rIK1of65pihdnm2YtR/y2ksvl6lyKkBjN08mcijEmNi/kbSb5QSCDbyWN5DxDxC6QqhyKFkW9y9xsv4B2JxnkI6LzQw5bdO2MROg5Di2EIwNZbtbkkn9nkImIYGBJuOhu0ERxIHMpi3WI+WqbBlLHIuJojV6Sxfdtu4opSaJlq4cf7HiRkhWlKL+Jdp9aQNt/NS4kNRG67JzYmb/YaZGQkIswlu05XCvdQCnMTt9gCeh36Nt+LuKWMfWm5V2mcft+6JJ5/vvMIT5/pRk99A6UUcULjXR0XWffC33Pi7mriihd5UnwEU9kv+xLZie+KvyciTb60/wVWp3dRmfYn/O2NIeJn4mgpmONwwx6b26gkO3rPk7JsIbN1dGV34EdnHNGCECxlMa2NMnxK4pyI2FBfdEwUk1YlRZunIWcd7rvuJFKqGO3+J9ILT/AhVcPj4kGkEhiYFIz3U5V7gWvUQQ6KPTbvT9OYX7s+lthid0wz+dm2YkTgaSwZBikITLiwhOQ1eZqjZ/x8x1+PyRoMp8k9g69w7tw5biu6gXSpodkUXzLjC5kNjZOTn0jmtk77/hcgdY359TdyR/ptPH/um0RkhP7MFmrbP0XCQjnvSzKob17ljFdnY1UCmdd8hPd3n0QJSYI7wmzUBKU0nZHcEvJ8I1jhdoK+as4de5Dv7dyJKQwMBO/P9UazZt/+eY9cPE9c2iIN2ePEHw2yWFiON3EEaUyhe6LRcEoSmTkPee8F7C7PyaFWZp48RpZviocXQhz96xvZcdNHaMhs4J9f7yV1aZy7J55HU5JzPzzFa1tmmHAv49Sd/EX9t/jCs0OEIhIF5K6Moyk7LSIcl4BlWWRldVNWfiq2f9uhNRqpLStkDXTYU4y4OO54/0fxz0m7wyZ5mwHonU35ZAey2bNST9orQwSD5646sIyMjNDa2gpAnq8Lh2WSttDNkLwZqYGF4FutQ6QUJpMc8PDNqu/THdd6laHk8dHHicgIvxjPYnskg8WFbBYDaTT99hdMzcxiZFTi/fjDJO2oprj46qIxlvMciVCp2pE5/XxV/9JlZ3XWU+i91lUw5EsrXC5hGdChxrqIQ0giaCgZoTMYxHJrl6U/ngxcwaT/kpy2/6tLCJEG/AooBgaB+5RS87/n+wqBnwAF2CqvW5VSg/9hF/p7VkFtHXOv9qIJncTFCsbGPk6k0IYchjXJr6qPsStxEq9xPVVNjby4rw/LMkEq9NVg9OQKUlPMVPbgL3gEJSK4tL08Xv4kbWZe7GT3i2WLFVVB1ki0cxM3AemCpHAtRlhxXcYxslzLpIYMBodv56yqoCJ1kIj4KZ8a/zymMCA96Sp93OxcPsOL68iZXU/8QhmhzV8nxXsCV/FODs4vcXb/EuvqNHsEqzQWx1OZnfwX7v7QHnKLUnnzN68R0uMwk9NQjjisqCbGMk16+hagcQNlxftslpwlWBgc4k9iG3p0BFa8k8JXznDx+GdYTutmylfBSNjHBtdB9FAvrsURjNAqsw4dzN/yteLPMCNyKF+coeuRb2NF7HCjePc95FWsJ04XMS1GBDigRRhL9uNoPcloHyy/9CsyJifI+OUSTY88asepWBaatPA/9RjjyZ/AG1dFmnELnhXFfOf7GM9opqj6LmofeFdMW/bFFyPcFXCgA72dudTdaruKluMuoPRLgeQW9RsSKC6+jV+8OUxlVjLv7W3HaUXwJ16ZXGhT00IiwlZZxUrfcyxkl5DhKmQoOEzj7AUG+nYRF/ZgzK1jJX6SqeQhzmSeZFqmoLuGOSlM1mO78wQaqwv5tDmGyDFSUWN2CnsWKXx4Kp/hMy9hhjyM526n7fxu3O4JGweyoqjF1uRJZXHolUe5YZ2LXN8RsMKgLPKnVvjAQT/nCuNpKYnDsqsbvPPjxHvnSCo4iRV0EQhkctZTTljGOJm28BqdCU8G3sW5S79J1dpyGqIROr+7MMEta6+O63Jt2sirvgARwzYimJpiwr3Kh45YxDcusb7HzZp5SbdxlpcdZ7GkpEUfIkOrp4AUmn3NhK0wCkn+VB8lwz3oChq7DH7xjncSRkOTksnhFl4o2YAydDTA2b3I0lIICyeagIhSfCszjzEjAa1/Aqcm3iZ2futqyGzAWiniqVdPEF6sxpk4wN9trCTvd3+Ps7eXsud6mPmsSYE2TLuopYYOHBkuXpkqoT5YQZurm27XMOFACVJB91wxZzucyJd/QHPtFptnqOkoabHqcBIIZHCh7UYqrR4KmiOklNyFL/48UkmSk6fI8LST6t3K1JMHoPReIg4/Eaef8T4dd3cXIm4QbXs8F+cfRWFBElyvxilgmHZVS87AME5fkGUtiR3yDY7q12EqHU0qrsnyXgVYjpiS5vE87m96iudav8bhvh5Md4jJUj/TSyPk+DTM+KbYOHE6I5mUyUWOn+/hHVoJmrK1gVOrw3jjcimvM1nUVEwfKTSd1Ma/oNjdxE8za2j2NVMRWkd7e4B0w8bCrPPbut+zgzNsD0X4TdMazs4Oc679BZ4uux9L0zGAgvGBy0+iNcrUqoaJjhQallTkxzvJWpzjSNtZiouLr3r5e8sM1iQOIjRFtpyl4MxWEvzbWHI3MbnhGyAkQmkkjhhMJvsZ67aNSEfP9SNr19JVLbnm0CHWDKyQvVRC2+tdpFlh8koTmLRyyfONgmXhndYYc9sh7K2vDeBdzWAkzYknd5kUc5WE1lVCUwk4QyvEu2diBdulqff8fA6JryXgHJ4Ap47n7ruv6hiHhhavMgCdGZrnGz95gj3Sx3XmHtrdOs+klbL2m49y8+c+EjNBPf7447HIL13TuDYni6yQxjX+U6xkrpCRfJgW8wEu/iIOIRW6oXHjJyrQgifw+yXVK2V82/gKbavdhBPC+CanGNfmKRvpZjVhPat5QTIa3sPK+VVWO89fxW70+88SXnmOd9ydxez5KRKyBviJdu8VzmpFJ2upE5Osnu1k0jDI3ro19tll1t7N6JnnkCpChd7Pt7xH2LuUycmhfyHiyAO1FaEUulSsmcklbNT8l+S0/d9eDwEHlFJfF0I8FP36r3/P9z0B/INS6jUhRBKXsMX/iSu3ohp1f4TI3hmUUmyYSOanBRYKcGByTeIRyqr6yT/XwNjUWNRtJKLyleiTJGx+WHZjiJlZO91TyghrIm+yq/gTMWdnWMah1W/ntrajZC/OR0drkrBzChGYZqb0k0wW9vC5U8m0qDIMTfDH62Y5JCswhYFEt80DwtZnaEpSOjrDuH8dDZF6+3TVuBaKtgFw5uA3WFrMssd17kmb1TZ5gaQUHwd/+wxbbvkcE4abYGF5TAvjS0ljPCWN/LkpnD/4Ia6H1jJ3BUtOeQcJD149AltbWoXJH1OxqrDGqngiFOGAo5A5/72URt5gJVvyjyKX1YV8fBOD+Bc+zOc3f560XoU0owmUyiRr+BkS+qoIGVm4byvl+AUf/9QzielYZHNCJ+PTkvFpoKYavbKCXYffoPrsaT6aV8jLcwHK+y+SMzHIyMXzJHns4jbk6WO2+pc4NRPfQh95JQ2sv9k+5X12OMDIYVskrSzJ2MEDpF6YRl9JQKQZKGEilIE1qvHbka/x06PJOAYE1ecOMe+KYyI++uZRKgqWFIQwaRMDONIS2ZFypx047bEYnTvOoEphIwI9kkSiVYqjyc/06LWsyf01ZQlhVqSGIXRAojQ47ujCb6SjK41bZRNZyo2RZZDy/BNUT/ewmFrGcHEtS4vpBALpoBRhM2xHcinFudn9TC8PM3LxPLkbdtpQSSvMWKSe3EWL9IVJ0pYFB9YWoITghR3F1PAERaKDHGXHU+X6UzGQmMpm8AmpMIDd+Y3UJCUx7hulam052Rm5vPDLDn7cOsSwsDg9OEdldnKscHM1NuIaX7jq2ZORPt69LhWHKKF3sQMfqUyoeSwpUSgseflkfeVIZjK7lMHCUlLnuykfHOCrw71caGulsfMCrRU1IDbEzjX3bSumsNqk1hnPxRYfzw5O4Ut3cSkgPXKFxunK1TLVchWa4hIUW64UEVop4rnedCru+BvExe/gHFK4n9OpeHcf5fSiaU7cCX/LruFMDKWjUJxbN8/DZgJK2F3IvNVxBk2T/PEBdMvCwha05/tnEQqWF7PIWtlNEhdIVancGm5i0tNCXP0BhC6ZVm1E8jcTcfhZ8F4AJBfqM8mYSSN9fo6Zsz9CbRQxPabCNj6ssXrobSskSCJJrjoWX2zlwfJv0yHWkt09SvvsJI0ff/htHVO3u4z1VX/DD4cfJFQWiCFBUmanMfLMWIcxYzoAShBZdXNcWngN8KsJ4jLKqEybZz7v18QuSAlKIrfGRnXVK6WUzngZ7B9EWhYzGCig1a3xyQ0uwiKB7yP469FZ7ppwYM6GMfc9zcXKRtypaeiGAyE0hKazMWWE3LZRnr3+OiKAA8ma0DI/e+YXV3EALxVuRrIPbdp+ngWSUFoP/dRyIjeXPCooFx2gBG+MaPQdfZq4YBYR5wLSZVv8JTCVlUl21S0c/s45ErMdPLTRRSSrmjeryrn3xcfI843jEmVc07+GyqlNSMcK6zMCDGxcw7SWxgFy2FxynqalnfhLbuWlyRPEi75YYkKVascVXk/fLZkcviGOLbnLXF937VVpMleyHgEGzr3OY9rfE5J3cdyj88mNSbbjvvQBUto62N3YGEPtXFqWlIQ++HESu7JACTzCJNU4SH04iLLsz93h7mFg4h9BRNCEg8TmT3JwaS42wr85vJ00kjkZZ9JfItCdGhm6AWhXsRv9/rOcOfM+lAqjJUNTkh+WoVZe4Le67aw2FGxfSkSbraJnIpX+zgXu5ESscHO7m6hJ/gLjI88y77mIZ+b73C8MRp01nPfcb0tHpOK6i2Pkr+jkvefDfzBdNvjPK9ruBHZFf/0z4BBvKdqEEDWAoZR6DUAptfQfeH3/25W3o54Lked44cwJziV2k+LTKfJUcVdc2/9i7z3D67jOc+17zeyGDWAXtI3eOwgSIMEiUqSo3ijJkiNZcpObfBzHOTl2Ejt2chyXE8dxHDsnjrslxb1JtiVRjZLFJhaxggDRQfTedgOwsfeeWev8mE1QlPVd35dzfYn9I+sPL5IzwMyaVd71vO/zPNRofSipEfP2UmA2r0sSaJqGc3kJR2QRmenl1gffSXl5OkvBH66re/v9FkPyy8MzVtE3WGbf1c3oF45ZE0UphJkknp1LSAtTdNffcG/ZUczuw5QsbyB8vJD63U9h0w0MwCE0PprtZnQpSKtbp3xrK4WuXHKX039HXiE3LZdllolGc4lGc1FKkVU8R83uUYSuGJ37FFPLH0IKDU3AtCeLZ5t3Ymoa50rr8M9MccOpScQ1rBej+73n2JHezGsrmylKzlEwssDCwgaUaWl8gWKH0ok5dBLZpbhby9mk97NVBelY3ExopoHh8pc52f235AY+hCYEppRoSlGedBJ9ZQUYQdg0HLU+GlZ0hGsZUukhUno/UtOYz89HbN7KoyuCRFoeEwVl5EeWyLU7Wes4BFo5q1m9KGGAkL/Dmtq2vZDJY1OWyTsGhZd+ysLgf0Ngp8T7cVazetETGYzUf5UMzeAv2mycG9+BDclSRhra2grusX7iWQHMTD8K6LSNAqAFnNQnLFNwUNi8jczaFU9kJik1NWqbc3nbzg+SP/IlGpIr6JffLdXPSplkeKcIR3KQSKb1IPnCj/++DXj2fprVU6cp27aV0IUhTgynFH8RuJTDEq4VAqfutuy8MjMJe2wE73of/lCSIsd9GD+dJuS7SDizyvLu1ASG0OlVddSJboSUeL3T1EUEm9Rv6aGOdLnC5Mgd3FJaz3W7LEX+6vxCpiYnOPKTPvS4h3ux8/MMxSyS9ktHyVaT67Ur77p2G0+c6cVUAl1K7phMMDf8a0546zF1iaZrXCPrrDkmTXRNJ3cxjfhohJYyK0156kIniZOFDJfDcLnkpBrnkfbjtL54AKsHsASjhYZNE9REJrlOruG/eAlvZT1fmwFbMIGhFBoCuyaoiSzw2q8Pr4t4ts+188iBR/CFCjge7eM9NyfJyV7DlXuIRLQCI1bGscEF7rUV89MvfYOsud9iq5EUlDWSTIbw+7cjzuUSViPrmmdtnbn84p5KTq+cpTbzMMnYNGn5qxRNjfPA/scZL6ygZGqYHaoQt7eKAtNPnsggatexS5M8MtC8IRY1q9BdIUnPH8RYC67PDSlgLi+PnNASObE1Zs00lJ4aVlInNNTCQleQ1VkXoFPavJuTTw/hmo2ymRMp8WdB5+mzfHrfnQRXE1dKILiSKn7m0jM8OfAk3piXxuliSleeZz7XQ+58lOLFTLSlCuxJD0EkUiiuySzApooI5jybYr8DUuDurSPy/LMMiFV8pe8k8SMLXfdikGWTLBlJTi4n6K6Ik8BlkRGU4kuNLqqWJWmeYtYCGXSXNyA1jdfuei83xsO8rSiXTVMXcP/LZ/j8ic/RI5q485prULNrb+qoAuD3b0cTdqRMgoK+ZCt/udWdYpH+Tz7FZ6gS/axmnmTVuYNV5wyZkSo0BUpKNCnJrS3F7dmMX4xwMktfZ7eDjcnSvVSsrtG6UISZmMKW+xz2qkmmXbegNJFiRiu6qccXcPLx+TiGbQu/UVZtpRQ6GpI8/SlmPNtQ2PhpwuCvz32WBzf/7f9jjdo1ejd2DDS9g7NZ2vozJZWgvbaBm4C0tDSEsDxSwWKql/irgVQmSSkM1UzItowPhQ648/pBXAEolrwdyOXCdV3MWS1CwPSTYxdc9OucDdi4d0WxKWSi6VdStx0DP0OqJEIIpBBMZu6mamKaBztOE6n9AYfEFm7pO8b2Szrn5P0orDEw2X5pPWhbPX+e4CP/QHLvKupOwxJWViabSu7l4ooDhUAJSTgzSihriBVb478vQPgPbr+voC2glJoGUEpNCyHy3uSaWiAkhPgVlo3Wy8BfKaXMN14ohPgg8EGA0tLS/7inTrXx8XGCtgA7tjZiLo7QnFnA7TWtLA8/jTQ1hLKRHmmg5LZaHt4SYGRkhJXRS3T3nEFJiS2+SmJuGq/3gXV17/T4BtrP+XhYDJJQKoWMKewS7u51kVZ8AwvaOEOvvUwsUApC0LUwi6/jFb504ePEzTiumSWW5+7Efehu/rj8IEvl19DqsjH4q6fxKsWozcbe150W39h2ZZcwYg6ti70JFD7f7BUXBmVSUxJmuteamFPeHEzNYvGnBLQAACAASURBVLEZQEdTK7bRNLaN9uCoiKakSRTvaBhj+0wZ5qu/YXhcEnWdYHf+gykcEM56dH60JxOp3YZN3GQteHIAn28OgHcVLaAJRXLt69zylnsZ+uZRspZj+EtvAmWlAWVSkjgzT1lSJ0kWIffEFfkULAjf9447+LacJKmKLeadsJN+670kPvExFhMJjM1FqB3lCN2GUuZ6IH25zWQM80zDv5AbqmQ+s58bFotJj9uYFVGml3UKIrtZLn8JpVkSHjZhQL1B8qBO1nIMTSlYXUZzZ2B4/BZwmgq6pJKc04fYbFaQLT2cdKXzubsbuDgV5omzE5zsn+ZnQ7N86U6JboCeYgqrFEtNKQiG89YlSIxKyLkxlVIou6KAn5ychJFU7lJBXBipxVcxtzYGwOylZ1i0Hb5iyt34EOUb4yyNm6+zABLoStGgeqyTqRJU5FQw1qA4v1ZHo7hItRhkfsVNUbKQ73//OQzDWO9LfBq+pY3Ykpk0JXS8gSHKxde5NJRcNwIPRHJ5S+cJxjP9FIUWaRA5xFy3YMgRq89Q6NuyebhlJ4PtfXhPxcl4LUbX2aOEdkyQXRxkk2zmjBIW+xKNggwXW5NPcCEjl0V3Gp5lg3ceijJQYpAd62MiusTPDIO9hw+TG13mO+/8C8bHDWJLaaxuryFvoJPev//aVfpWZ+Jn8IUKuLP7w+hSp+PxEM81fQtb9iC2LJ3VUasQPmlIzjlDVBb/DLlqoPXa2Nz2U0ssujJiiehKy/3BlAp95Hkqcr9EPGppp1XeCYdP5FB0UVI0OwYIYi7Jjow9IBWmkpzSh6k/f4qMrC0M2mvwVVqsSiV1cq/7E3Z0rPDKqkBKia4kRa4qch+5Cffw35H9v20Ed2WwmN1MaGQn8cUKTDnDTMkq40XlpAs3GRt2EOU4VcWjhIYymOvL5WcTDoL7u/jxB3ZQEJ/htV+/tB7QXtZZq8+qZ//+/QgEnhnwzESY9fjpFjYy8xKUzYawm15ieb3YVjego1s6jJU2lDQRSmdiSZH1pyaIlxmfPEpx+l/iDlWjEMwVnKYyOkabvYeiyo/xPXXF4slEsb9Ap34myJS/Yt1XNIniRaePg4sGnxO5lHxMo0j1UiIGaW57kEgk9ypHldf7jrpC1aSf+TBLvg68i/V8uTRCQktZ+ykb3aqJatFPfv4l5marLPs63WDbmX5W0uLkJ1zUP/RnJLwOBhVsXjKxX2a3S6gMBbA5TIzEFDb3D6i6fgRNl+yVMU6oVkyLisGqdPO14QCJXKyASdhTB2ZLG3Qhsw6JDVJpwy5Vt34QfWNqFKCo5RZk+9cQZj97It/kO/KjKAR2TWNvYy3j4+O88MILKZFbQV1dHbt27cLTO0vETFryUkqiwj1Ue5f4RkYbpYbGzSU7CGjPIWUSIXX8S81oBNd1MfOkByUUZz06P9yTianBSxL+6vgyu+tzKU6hbPHwU+vrplA69sW7GUszOF/8LF9LfzcGNjpbm/js8DfRpGGtEcKkqKVq/dtd1idMThQi1RRCmigp2O2o4ImYRsKU6xJdUpr0PH2a4rzCqwCO32f7DwvahBAvw5sKCf/1/8cfYQN2A63AGFYN3HuAR994oVLqO8B3ANra2tQb////z/ZG65z3PPzP60FQ2F/D/PBh3EsNZD+wE2eZhxI8FtsokEPfi0+vW2pcVnX3ejfjClXzytNdfLt8iXi2jhKWldW2RZMPDsbZEDLpnZQsmAEqt99E13AvAKZpcu7UCRL2BELAlHcAcypJbLGSrEgN+6rTefYX30Vm5VuLl/nmhZmXm3lhkrLwJpyeRTSg0shjYLkP1TyFxQqsZ9q+m+X48+RGQlQk45wvr0shX9YgR2gEp4vJK+1N0bgF+d4W+p98EiWteHshNs75S4+T5tlKxFlLZ507xQpM0eZlE5XqEqFQAI9vGl2oVBxp4F79MY31dkaDWWg31CImLPhcKVgwrE+f6ZmntCKEtJWTldMK4Sm00R6+2fPPdMQqUXmfQNOcOHSNa8enUYkEiTKDhXdeAvsQAjtFhW+joMBiTT3f2cUr41M4tCEmM4YZzxhCV4rOWIzKxBLPOS6mYP4RGsJ+PPKKqGncuYGRv3knVSd/SPVUB2aWndVsk36KrnR8asRO6UFmtBA7ei/x6Q8+Quv2Ur5+cBDDvJJenl/dRbn2tGU7owRLS4UYSRfuhRgvubvw6QuE3GHu23cfzjzPVQvznBbm/PnzVh9lzuHzzpGz4EculXBu8QCL8UkA5oJnyZdxSGk0HZnu4kxFJYtL0+SHlrir/QRBRyMNK5PUbu61Tqq6YMA7wBfif23pe6F4t3qUigmTIdFxVTrFapKkI4Q96SGn3o+nNZ+BmKWTdBnhHB/fQG5ogdzQAig4bg+yM1mLpjSrv2061S11lJSUsHJ2lnZ1ngv6MCFfL02OA8wvSLDZcOV+lLX5GjRN4+FNc4S7dE5XFWAoDSF0csJDOBzWGM/0zOP1TrO46MZ+LpOuvmykpqO9tMy20V9x4vwLyNS7mMkk412dtO1q43i0D13qaOgoKckJlTGe3o8mwJE5jForw27TaI4+SdRtne6laTB36tt4b/62RZ6o97ChO2x5SiKxR/8VlZPyjRVwiVrObtnIZtsAee1rKAQhY5ZfZpyn3Z9H6fgAvvgUQ+UxNqZL5hZriBz+c9y5fazO1zG7ZztLb8ukebAX/u3HZBTtYaHCxL6QTUneR3EceIzApRguzzxuXzf25CkOXvMQP70+G1ODV6XBI1Nd7NrUBYCneJnzvlamZ/PRDcnx42eQz31zfY27/3/+3brEx/1197NyYYWR7hEAZjx+9jfvwkzZ4d3VfoKGUUXb9q1wOIY0TZyhSpZf3o0zP8zihMDMGUVdVq/BYCWrB0eoAkOYHM86Q7LGzZrjo1TU7eVz0yN8elVhpkDlZ4ptRCezWXa50ZQV4FqEIEiYkiMLEzyUZ2ARKRXB4Gvo+j5aWqyi+U2bNl21bg6f7+fF5SXkciEezxA19gI6lIWS2pSkka5UBYnC65shEs3BWzFP2YFubAXbcW16O7HOBKJ3mD0P1jI/FuVbK4qesjSanC5yrvXjSrfzyuOnyShYtnQOBdSKPvYtvcQzObdhKsF+7R7ItYJTIS1bQU3TMZVER1KcPM2os9Z6LkwaRTd2e+vv+P1qd1QwFU5Q6C3GWf4rRHSagko/77RlIP1O7q/Ipc2bztGOc1fN5aKiIkpKSuj85aM4jp3Gll2LsdhHWtEI92f18iv7bs446vjLzTdQ7atg+uwB9DMB0sLV3C7CTGuLHPef5bXM/TTmZtO7eC2mlmkh+SiOZ9l469Z8GD9F8NI/I7iCvHqmdgOC8bav8Kq276qatu76XJpf/Q0l23fQsKP+qpo297atCIeDmdU65vbbyChYZnk6g6rySZ54/508dbyXpe4T5EWCaGgUGP7fsdb7fbb/sKBNKfW7ao6pJoSYFUIUpFC2AmDuTS6bAM4rpYZS9/wG2MGbBG3/me2N1jkjF44ycKqT9lUHLZuu44aWj77pfW+01Li8mAGcHFrgQ60uEiK1f6dg563zUZrDNkysgGTEp3E6o4I03wK5wXmrNupkN4FmFzPeGHOeEZ5p+DrF0Vref8uDrI4PoUXD4M8DNIQQ66fF9rl2nrn0DArF3VV305LXQshXTZFYoz6Zu25WvrCyiUvPLbJYm893Gj9GckWg3Xg/DzzzOAWhBfZdeJUpX66lQxdeAhS2/JvxLpQQd0UoqHkri4PGFSXx1LvNFYyTUdhHTmc6Oy/cwLGGWzDtOjYkW5cXOTBwDwPhWlpyF6h8nebXSlTj5WAdhtLoOPQUf/Qn2/Ak/cxMLZNzahZ71iV8u/8JzWaiaQ4a0/8nwb/6B8z4Gp/U4XMP9dPNFykqepgtgS243A0Ih4N4XQomFwqlTFyuwvWA7ZGZVUxnFrr0UZFsJmq/iF0TVF9zE/OnujCXU2QMJJq3nu6u28jMnCIaLeSRt76DReci7zO7SEhF3lo6u2e2AAINyTXiHB1rFUSd2Vw2fh7JkGwe6+XsaDPdA8M069NMy0wiuoeWqp1kxr/K+fYvkpU1QU7OBFLqlM/CPwaDnHGN0FZ4Dy15Lb+zMA9ui2GakszMeZpTnpbLpR0ce7GV6eWVVA8LolNu8uUSaBqDooG/n95AQoCt9To++uppbh40yUiOEyn6MXGddRS2mzqSWKQcUym+r32ABxOPUtj5MqKk5gofRik0dLKSXgZzbPyk0UFyrRKb+DSfUp+jThshbd6Pr/1CSjBaraddYiQomPcQdGq07txBnvTS+5sz/PLCc5i69R2KvdNoKQsnqZLMVv4boUg9e+u2UzCzSO9CDiZaCo1QGPZZQBEpECxWu2kUMTJLBgnFdlmaakJHChh49STSZW1YFpghKGlqxoxnsLdiM4szEexxL6YwmPIMAGDTbHzqprtZWLRMunO+/09EL5fHmOA4dQluTq0R15Xysb5TNJsaVbZD7AjHMKWGpkkGqOWL4jMkXDZ6tyb5lvgsmdomzvfO8dXt11rBT20t9xshSsb6mYidJc/XSM5yDQuhaoaydX7kXMEYWsau0vlMVhUXnUOpw8Yo9wa2YXM6UYkE3sgw3sgQQlc48kuQ2t0pGyuNqQorcLksRVhbPIw+B1ttg9SP9NKZTJKWt0JmYYyR3v0U1jasCzNXtexhvHcc0zQtFwdNW9eam/JnUTUdwRZMslQfZPpYN6GMDsycUaLDblZn03An3eQpgaZA12yo1lZ+uvICF9J6GUif4MLAB4gvO3GcPcmPP7CDt8yM8+SKaR1YhcYr228FzSrtuM7t4ETMWEe2iiecqBwbQphoup1EooJf/OLK4XzTpk1XrefTegiJJMMzj2PjCL/R34XE0oD878NTVJcNWU44SiMUymMoc4i9IR9aZgmujQ+lJg0oQ5K+ZlLwtjo2Ardf/gWp7UEaN3L8qd+i5DygEMJGXuVuZFhcpbGHNCmdHOaeWIjGrQUcDB2lQXVQ7R6g89kZRssrqW+4QI0+QF//51hUp0hL30haqBplSLp+OcB8QpKTrmMIEOThnhDc9bCfM64rOMjrXUguo4/tc+38eOLXvDuUIBkcQtMU7s1xdCQ79R7+6K63plLmflxV1cy/3AEo8pWXgOnFFwiTKPomKIMdmV28oj6DKTV0CfdsKiDf3gffv5tEmg82CovkpHTM6Y2s+ntQwnidW4gVnLYOLPAjTxubWnbSWei7ivXdk1VO959+Hkf7YawyeQVIIgd+xLXX19DcWMPFY9NMKx8F0k9A913FrP19t99XevRp4GHgi6k/n3qTa04DfiFErlJqHrgBOPOf94hv3srLy9E1gWlaJ5nF9u9x1tyJUIqDQwcBuGHjDW967+stNV7fXjODJIWG0sR6UCOBb9R5cGgRAp2Kiz6dn+z1YOoCu28nbzn0K4rHB9DWVrhd38H3xSEUijnPCAueMfqdDWzLLEKPLeMe68dwZ7Lj1jpMcz+nR7L40NEvkbGaQe5aLkc6D/Hlt3yFtbpS5s/2UQuW6Cfga7mG7EA1L5U2YERMpCBFl68k0N9OQTRkkSRS9wigd3KJAS2fe/xNFFZU4G5yYbPbMRIJUAp3/hrV+8YQuoK2Je6eSlDnneTZ2Gs0qA6KfSPU3v0NLk6GKaP9qr6ac6QRd2VipHswVyIMd7zC1jvfR/orYzSk6SwWD7Com1i1EwmGB5/Dm0igKbCZ0DSm6K6EPqOYnqkFfi4EP/7uY5R0/4aV14k4Xk6L/nxyHsPhAWG5RzR5bqPNZaOt8lZqJ2Hi0I/JvL6MvLwhS4cvILnWrxON+sjJqcc099M5MUtCSaomoXkxF5mppwIGnWm9HnNmAkr9pEwm8cXWGC+t50+/e4Ab9F6ydUWzrlFxzR1sKfNz6NBpsrLG1y3NNM1EeQppmZyldlKxeuI3rNp2Yjh2o5JWIHPBDS/GMohnZlHs7VgPapQyMXNGYSLFUEYRn3NRZv9jbGVpvDpbRmJFIYVGUtPY39xITlqMvcE0nK4HmDT/wVr2lKBedKNpV9JSSgnGC8vJ7z1noVPCOpXUmwVUm4XkuTI55psioTyolE7SbNYHuTcZI/jIP2BLJGhorKe7qclKhyAYCbeTXBxER6fItp2F73UyqIasgC0VSITD+esi1CbgOe/CMTNH3+TT+Iam0YSGViUwEaB07MkAw541nq3Zjil0nsLgU7bPUF/biTZsplwNTALBeeYKrDouJRSnmkK0rE1z/BfHMUwD0y9Z0tdYcQZJ2iNkr2Wzzb6b6SEbu1utWq/VrGJCXxsjXq1wDgpyby9eH9tbyvz8zQe3cfR8L5mxagb6N9LXkUNeYJgXvfeQSLeD0DB0wcDtn+ftJ8/xaG0q+ElJFIyW1FIyNoDfXsC13jyE0lAChm7OJ2msWHWyQnC43EdZaHo9NT8fsLH98cdYPXUa3efFPPId3OICdxoHeEzdQULa0U1JwdAYvM5VakvdffyDPc59nV9gJuRkOK+Sin0TCE2xpj/Gockbec+gbtnlaYK/z9uIGJ9hLrSYSrNbBKnC4BI5RgEFC9OoljpOt3+LilsvWexMUzDwbCmGw8XsbBUCweJCLW9967VU32FjZCzIjtjNtIfKKE5qTNot1M99+hnst78LqdkAgdSslKEAynweynywGkng2z9FYD6fqZW/YPM9URYD1/GtwSQxt4dAZAnTNLlw4QIjIyMkvUmGxBCVZZXo53V83pl1310ldBSSmJlPxpkP0517hGAoj8hyNhMFvcyV1VB6Ns1CxS5HvUKsBwRvlq7MLashq+ERRrufprJqnMKCWoq96ajIlb0CpdAV1Ax1cd6VhjpxkLtrT4JusbhzcsfIXR6lgIXU5QnmeQax5QVKzn4cV7ia+bhBtk3HAnWtZ7uQKfiTiUmSmlXL+URLNW0pgeHLch8AfUee5h0HEqQEB7i0K0lDrsQQdvbte4D6rVdKlpxlHlb3pNP/6kXyTR8B5cMTm2RBGqBJakQP75v+Pu2JHdSN+6naYUlEnTFqeC5yPekdi+skudhakFumo1ABNfTzKfU5Xos9iH0lQNS2jYuV1XQSQw7F1p9fP36WJx99ivasSnylHt67bdSSPzIXGDU28r8HJrj51lqaH9lDxblZBODeHPiDQdng9xe0fRH4hRDi/Vipz/sBhBBtwIeUUh9QSplCiL8AfiusEX4W+O7v6XnXWwnTPKx+wQm9iHnXAicowrWiI7CQgLEj/cS9bf+uj7x5sg97fjUJm21dUw3AROM13zKxjBhLhQUYKTNnQwimM3yUxJYxNMVBeYb3NL2HH3b/EKkscc+2QBuxwX6LqRpbIdMzj3Qf4dKQZZ+zJV5M/vQuAGRIcuzQY8x4bqG35FnUxFvJ1XUWpOLGW7aQX+lFD6/wvfZBlFQoJQhF0/i15wayV5LsjHdymdib9OUCAsMw6T94EPujj1L6+GPrKKMWCtE389h6nZySJuEmjdqcafShJ7CCLZ2AsxsZmCY6Y6K/bn0yq0z05SxWowGMnGK0eReRl0fXddrioWKU0lOMSMHJGQ9tgQBZs7MYmqS7VOC0b8VKQgkSpuQVRwafvuFOfEOrBH12/OV/hNe7mTPhFX7r9Fgrn7JsVe4Z+jG3x09B+34WLrowSposr0rtcv3cAOGUSOrc/EHm5jUKhY29UTvv/alJ2DfHkb0SadPQNJ3YWJwNjmYGF+dZyvGCEPRv3MRU3E62iqCRSg0ryejkeX54bj8F5o+veNAqEEpDzL+XjuA8sTMH8QmN8DfPknFrOQAdXo0/3uomKUDz7yS3v4uy1DspKViezrQGFjrVBS62Xr+Nwus+Rjh8jsDQZ7HxKZLKhhIaXVmZfLItnS+eWeS6YC0rB69nrnqRcLgAUOwrfp5ncu5AItBNk5KpEQx3JrxuXGeQRj5+FCZvnR3gRaMaU9ORSjFiNNHZfYqilCdmc08faa2tnEsaKGApOwP3ihvQ6B7ooMIsoED50XQLpQRYWQmwsPxuYukX6Ooco2DGjYZAClhMd1E9F2LbwASXSlsI5dyEJgsJOsAQttcVeDexKTFA28BXWHA04g/144kM41x18sSudLoq1ljwJ2nva08RhEBHkGO6yF4toHg1gEAw58mhWw3zg5/P89237WbLPR8mujDKUecmdvsv4L7nw+vrQHw0Qvr5S0Q7XqZDmmhiAyxLjlHPqfw2LkelGhrTS+mMl9ZTe/4nHGjbjRSWbtuOBZMcVxEBdzlCWduvUIqWoSW0QgdKAyEFLrnG5YJKTbfSzO6SkitaXDsr4LHbaIt08Xcnf81zmXdSMj2Lf3YDoqyarKoRYvpuzi9ex1v0n6HJJHM+ibdu0prbqQPB4flxErLMCuyloj8yzxbpJBCZ5q6OY0x5c9i4MMSNS6vUpDUiJx2I2Sj1t9YT1wdTQ0aRVRMmu24coVvrw/xcNadfOMpT6lfMJhLULZTyYNSOMqaRyXE8gzYKpkf4y1deo7d+K0sOjWO5NkxNoQnBz6aXMFOamN9+sBbviUv4Qg4WzL28Z1AjITW0jbu4q+NVCiNLnD97GlMJJCYsHOa3xct8pPYLhMd0kmUnLOKXApuSNMWHKVpsxjx8jGn3LJ1FXaTl5ZLOzegPaIgLa1bXawLfPVU4yzy/g4rnfKCZoKn49VfOYhg+nDnXkNhwgsnwGF3RLOBtV+BOpdg1Z3Jw152YmsZxeT1Z6tPUmP2p+e0GBflywXI0tG5C6Sbmxj5sx14inHwXGZoD0NYJBmf9ttdZRF3Nmm5vt8Z9e3s7zbpksLaBwOwc/qVFyotvRVxfhb18N/VvYF2Oj4/zbO+jZFZMMxAqYM/CbWQu1iMqbEiZRCkN75zJ5kg/GavlFNXuZHxpA8+qEAphkeQiuSlBBkXU2QtXMHxecTeSTNc4cJsP//Q8s1JZNdpScai7n9s+/qe8PZnkfs3GU4+0IjRrHxpUNXzhvk+Q1B18/Vw/f+Js5zp9gfL6ffj/gAI2+D0FbUqpReDGN/n3M8AHXvf3l4CN/4mP9v/eRo6yaJ/j39LLyInuQYgEFcqSXbChs2GymLlvXUC/tojCOyuvuvWNsgCXW3Ojxudf+F8cTr+WF5pvwNStmaUpSfbkELmuEE+qTCDDQsAkDNtWsNWGmc2Oseg18Dg9PH7b41f9/Kkmp4VwJZNkFKxaTCysRXwbXsYt3iAoyO0fILLFTU/+MYIZExSEa6ivbyS/0kINRSjBQ9JFZ2yNjguLDJgV4ILi0DlcwTFAYbrcJH05XBaCTQsvrZtrF/63D1oo4/gpQt+Ko8wUT05CcL6X7IJaNM1xFZP26NLThFQt/TTRSBe1oh8lJHmBEQa0Bqa9OXgXXZQOWNIQs1qYA6tB3BduTDkM5BON5rDw7nfhDY5yLHeJTdU5tEyU8y0p130hHR3HYPSTeM0EXt0BD78FIqd45VI3htrIZQ+ht0y+xO1rJ7Eq/8GdF8fnmbVswq6sn29oEpTJbr2GwVobgdk5rjt8mNk7biQru4Kq6C40oROy9bKEZStkKkW+HmVReJBMWd9cwEn5c9JH5inwyvWADSVIjl7DXHY7dnMjw60fY2eGDSE0kqOWVdLZLNvrmGmCUG1mSlEfJo4HiAfbsLm8aPZCiu2HKez8RyjKJrh8gBq6+RSf4Qn1NrrERpTQMIXgeLbJNjmAV40zGCwnumwhdQU9JndlvsoZTxVVkyHyKEDTHCTUyvrYyzO9KGWCNKk+doKvdp/hs/d8iMXKfF6ILnOwpJ4vV9bSdKkPhCCRnoEKpeQ/hEbCk43hy6FrdZIe+zR3JDezT7Yx1hjHlunAXermEx2fIBFJkG9Po9Cmg2ExjrOXYwCkB2KU1fVi2q5hZREqZ3SONyhMzbRqf8wu3K9p2GfGcYtJhLIOBTnLcapnExzarOPQHLTUtXC893iKZCFSTFzrUWc92ezfuAupaVCm+OaFcT50XRPv3PsVkkrxbSH4vFZCcHSWtjVB2Y8GUqihVbdjSonIEiwXWMQZUiiRmFjh592THEvOcXtVLU0DnWgON2+f83B9YiOqsJnJxEnUemG4ScZTh3lX/bWMBJzkRybwGsH1Tb91c+vv1rmWbIM7vwLP/Tk3xV5hZXIPhvKjpW0nP1DLWpab933vJAmjj6O2TD6R7uKDAT8FTskfqwQOoaFpdipdVooadJQyaTyyn7m8Cs7vbKMgtMC2iUEevnMH3s5FIv0Oa2olTeLjORjlVsUC0mI2a1rY2qyFxOeZpfRSJv9LfYT2mMF4HDCmSUafBEwWujR0XSeUnOeZIoeV8lOS+ukxhBD0FJSvByOdoSn2/cufoBIJXpy8l8S+tyIRIDRERi01i6P02ay5qUlBZaiU+w6dZeovemkM7abydID08qc5k2fQQCe+hmFi0Y+RFVnBNzXG2h3vI799E2OdMSZtGne/vZb0NfMqRC0+FEYZ0nr/lMTFZNxEmlYpQUbOJXRhIdgN5gVs2h9hWL2DTSpm9BCmnptKBQuOX7yJxvExemN5rM67LWJU5EHymzWmpp+wiFZCpyB6DnuknW3DaWS3vvvyioUAtgQldgVJwCbAPTrIuJa4qkTIMAwumAK5YQM9jZLrjh2j7a5H4E2cQwCGhl6mqekAmmYiZSfT5/LJCe+m5PwnmPWe4/SyJBrORiiFt3ye/Eovz15YRnHZmzv1g5TFWs25roWFtTEQ0K0arHVOCJJoBESQOVUACmyaRkt/N5ppWGufNCifmUVsAEzopomEZgesWrp/XWvGm/ZpLn7zAPuuuYbCa/b9wch+/Jcjwr+3le/m1KvPcePgezDty2RmBMnMGYJoPvXRTeQrrzWYj0wwBWS47TgrvfSkDfHIgUdImAkcuoPv3vJdWvJaCIfP0b38OYquSfAOo5umwwM8U3cbQhPUzo6THw0ygAaqcwAAIABJREFU7fETqs9bT/8ALDq9rFWFyQs5aBrMwFUYp6W5hQqnZOzSQV47P4nTV0n1fe9g8WI7y9PHUaZlbK2kIBwKpAI2hS4U1xgj1No28oTuYC5zjKB3mn0191oq3W4Hn3mmi6QhKUzMsj02ybizkBlXPrPpxUijD8ORhr4awT3Wh+H2YFuJYBpxhN2OudnDyMg3LSmHkaM0JRfZ/2wl3poIWXURDOdp+gc6qK35m3UJBK93M3qWxt+Hbkdhw47BJ9VnqBH9RAt09hfuwhQa58ug5nSMjWHJfG4MGVHrkiWXW8fEOF/PP8acnMNxycH/iD3IXaNzTPlzKQwtkIguMU4WJUxagrIXfsLAxacJb7kZpW/isrbejkQv6A7abXDG5aTNuUZDbIaLMuOKmOwbmxIYUmN4pYSVDdn0NEp2HTnEr8TT/JXri2hCZ9rfQSznMJnhANFoLkJoZK/5+MLtjbw0HEAtz2MrGse9PEOLxwo6VIo5OjneSGHpSdY0k7XKA2Qd+3NErBaRqpnp8GrMuAS6whK5VCaN4qJVUiMhLXuN8CWJZi/EYculyN4JRhye+3P8GRpacyY12gD3yl/Sq23AVBais21thomtX0YJg41qiO7jbSyZ1cx4spjy5eJcWKFODbHml0Ac94LEUDPYVqN0q1l03UdGTycyOMyGIDRODXG0Kh8FxKWivaqOpsFeFnw+uhYWQLcBKRPpWJyFLKuIXArFYmmS626/kc2pDfCrr36Ea91R2mUdlzwbaKst5fahGPr3f4ywFTK6Iwf7g8dBn6dU+yrpr21i54RG1Qt1jG4roDXySxoPXkINOy9/REwsT2AB3HBRoN95/bqSvaPT5Lf9x9e1yADmvNmcLa3H1C67QCimbRZakVRWalYp+OTABEqBHfiGGwoifnRdw1QSoSTO8/3kDM2g3/k+TF23ZHImVsmLzdCizvP1Te/G1G3YFeTMxxBIlJQEown6V39Gs8ckmjvAXEmA/HA9xQt+4rYwkctOa29Sr3UlTXcfzjsgv+cprmWZIydcSKV45VdnWKtJsjEyQH5olGRGBqey7SSEYDhp41vzOu+s3MYt9R/h4KU+LrsZoATHNrTy6+tvs4y6UXyrNIuS2kriuREYvGB5RwE1g7v4sn4Yu3eChQUnd8pCYBaURCidxoXd5CsfCsVml4NVw2Q+NgGW1wmTeUUk99zCWGY2SV2k5ozGit2RSv9dkXBp6e9GJRKEM8rIW0rDbkoMTcOmYN+ihzyzgH592vq+QjBSUUHZyAglSyEi91Ry4IlF6l37uTuvM0W+0ljJ6Wd4az2rzTfhWd1L2AyCAtOUTIUTbLmt/Ko+d1Z6LUTItJAhZ6WXIlORbdfwC0UwWIOUAg2FVIJN42eIkUtA9+Od76Q/UAJcWfOyqjbT5MykpCjAfDJOrt2JZ3IWd2wrBZvvJTjyBMbzP6d3YorMOS9elyflX23VMgsskeKvn17l32p1gvEZzs6MMXPkILfddhu6rmMYxvr1aBqm0Jh+x3vf1OrtcvP5ZplfMFPAu2S+8AzRW2+nxn8f/EDRdvx55lxT5MzPkXWfVRavr0S5rCElEGwwSnFio7q1gYINGkvnDyBlnCZ5kae1ZMqizsBYcrNpLY6OoHUiSfWOGtYcDmQiQbJKUHLTUGp2Q83UAlqRsvy/hUAi6NUa2Zb3KuNHf01h/3fg4af/IAK3/wra/r2tZBse//uZWush0zNL1caX0IQEaSPjTCEq7F3XsDGPTtDjv0BwsJPuTI2EmUAiScokZ2bP0JLXwvzwYaSZtCa7TWOLrY+VvgCmzfo0UsGUL4d1R3gATSG9XnIXHNx6KoAmBdOXXuRb9nx61GnqzQ6qxbfpePUmlqO5aLqDtJUAg88qMgpWiS5kseLOBiHRUNwhDlJiC1JS/1Ye3fQQZ2bPkKnq+NtfLpMw+hBYa0n+2gx3zTyDTZls121Er38/17Zs5+QLE1ZhqlaCe6wX29IMQug4d9zMXN0aU8ufRUUNJHby3H/GpowV9jHIJZVOQrPOdVLGWVg8jNdzZQNZEAUgpqx6JwU9NFEr+umlEVNoKdRHcTbbxqZVg5prmznzYp91CpSpDVSANCW757fS6b/IgHuEqHeK0u4E+VELbVAITtgreNG9TFs8QVr/GGfIJaplWpug0NGUSXD7f+eXsQ18oe9HVhpaefjG8hJFESchXwlhmYaud2NtHBpZI7cjkmmMhTwsryYRGphCcG7vbpSvhx7HIK1+J9Et/0qZZlAidTo7bmYlVETHiQEykqu8/YEahmedXJzt4nojEy03tm4ePjNdg2Har9SniSSq7hlWh+4mPVpLh1dfT4vqCu4Zi7Pn3LfJ3ddvBZkCshvCBAdOE5vvYW9xhHznYIqeJ/FGDDZ3RhlpvAnbqM770n9ADxuonpJUe7uJCwNLeErRtCeDI1MxngnswhQ6WplkrmOGgohlFF+xbQNTL3djGgZBPclUxKAhpw4QmMEhSm3qsvcPStOwJVYZzPMRzs+3kCphTYbykREqJyY5VFKGaUo0BDmTjvUxc+aVf6TJeB6nt5YnxadIYuMHwL3vqCenYhcvPB3GU/ML8i6zEJVBVuYxzMPp7DLPc+2LNvz/9E6m9jkhMoLzEkjdxvH8Kgri0+Qsx/CuJXlwdQM5KbQ8LlKCz1YsgFFSzf6yBgztdfCrUjxUFaDYNolNKJSyah0usxtRijN+eG8wg+2JKs6ZnajwDI7YCsWxlXVttuiaSe/aRorWppgqL8PUdUtyRynO5thpDq0hlSRuxsgrcbG09wXQJT41y8SFAK4Luawl2nGvukh4sikpDsBsN1xmwL90xtI+VBrCBjn2x3BykbWVXJR6kKQtQsjTAXOSRq9JWjiIvjBBoTMDh1eRBCYSOj2ynJq4RsLZYCH8qZrdn9+8D7BkggSKS04r3eYs85BeNMvKWC6WGZ1GYKmFX2izVGSaZOWet+aV0sjufQh/aCMKSx5FoahzCZRZxczaa0wGCvnFXe9F2uxX+j+1do5mF3CZjqsDn68uYqdH0uGr4nzTh9E0nXf8NoR9o8a2IY3msGJWSHKSEeYcHmtDF4L21lZKs8opm+/n+iw7Ue1GTHogJU/iXKrjVGCUsvZNhI3g+lqk6xpFtVecP65qwjpknc22cd1kkO1FfnZm2EFKVLyW069s4KWWLVb5QZnAZppsOH2IrPgKCOgtKEOiYVOS+/N8BF1VXGpvpzQri/hX/46uJhfRxR9S0vhOcsaquTD4AHbNTa9rjIK1GeqliUoJ/4pUvxnASb8TgzJ6AiXcc+EYsViMsptv44mufgpC8+RHgqkMg6Dn1RHOFx2h9fY9b1qjV15+C4tLP6BPltOtNbNt60421G9hZijMYlEdtsivqR8dJOKvZsV3CzNDYQrzA7hffh6Hp4id7j0UkIVm18lprcXp9ViyWRe/Qdupp9miPsYx32ZG07fxiw3NlgeshI2jCRZFLg2PP8bAgSOMVg3h0Z5dn7MNxUd5WLr5vno/Cksov0H2YFsooSTthHWY/wOxsvqvoO3/onkKcmG6H69v5gpLjSRdeYfZFq5GKWnpmPk7iGz+V2yayQaps2Eqi4vEsGt2dpitRA6O44xWItJsKGkglE7OdCXX9x0j8ccfwlNVxXD/LCXBRS5Ik0RqE7Arg/szYXYwA01aIrUTOUX80ixFinJs2r18ks9QWXmKoaGtLC/n4c0vJTIYIRrJxUjLRBorTOWXcntDAW3ZPijfDSXbaIF1H7yE0cfl2CdXLNOiT4DLhYgtI5TJHTmrJNYW15mhppQEKnYjRiULySSdI4fI889SUJpIxQFJHu3s4eGKj7LU+0twJdDWISrFwsJLLCy8DNhw+q9nMVSNZu5NSaAoGlQvCI0mrZ+nEZZyuSbYU5OL47pJks6DPPBAG+eOJpjsihLNvATK8oW4Lbqdd0Rv5G9LvsqO2Z+jbvwCz5wdQioQmuC7uTHmHB4cSvHJC0NEZRb1Zjd2m8VIciDJkZN8of+nGKkTd4FTEirLJEISIcZZmC0nkG9efh20ZBrZw/tIiBA4zqNSKfTrkjt46/BNHAj9hrMtk+RpxvrJ0+ubYYBapsqhenKJ5E96MJNT2KPtuAJuqEj5f6KzPLyHtfRJpOy0WG8C9LxuJrJ6qRj4EF0td5NMLqfSQJLs/iNseuU0M8XpmG0rqUAP0ssMVucVqxvuhqq7IC0bXvgrMBN4V3UyM26nsvILVAmDa9ULdM7eTJcMUc3ldIVO0jzMUv7dyPXaNZ1Zfx6F0RC6rrPjhl3o12xivKuTvFg6tvMuK3UnTaLH/5mLdZYEjiVdYNJdWkTm4iWkS6ApC8PSbTaKKquIVFaxK7OelYU4uZkhdP8Rpo+u4u+vwHz+UfTboVc0rReHG9LkR52nuSEUIL52jPDIELlN1q/rU3U8Y9tC0Z4gOzrO4/Et0qU9jgpI1J/pjL28lznnBrTeAyyrLC4pxdaxBc7ZCmkcDbIBHX+PQtM0pJIITTAeyMLUrPQaUlIWj/OnVRXclT/FufPv4pOynE65gROjbUyVVaHpGnYlaTr0IyZJ52RtOtLhBFcpejyOWFumYHaMwPwoL2ydJy3/CMnBcqqnNU6m3BHsuk5di86vZp+neBi2ZN9MqOwFFlK1o0JKPL4ZFrPysc1YlmuGL4vhFYN/23+U1sFJ6nLL0L75Io7qOxAaXEgXXMx5iBuiP6Q40YGuPUDSGWLdmEZomO5M9NgKqyE/35kZZH9mOr/xeHiy/0mOn2unPvNtaCU1Vr1h6oCkW1Eqdk27yozdvbWY1bFlTGwYwiSsL/O+1TaK3RfRWEvp2MEh/3EmzRk+MvM2BBqa0Miz6+RlFTBefCc/q/QjbfbUuDdT+7JApHxHLwdwEggaJu7WVtZ23oOMWkzhokWT5v4lNu2s4OyxY7zKElKl6pqkBCEIZmUTHBmhc3iUOxKbqQptZC3+CWItU8y+FqB9rpJSWbm+fiKgpMHPtn2V5L8JEzE+FKYjXawfsr63usRXT0TYIiU6Aqk0OtJv4OmcXShhpQoNDSbcbrLiy6CgbnoUAdxz6ACqr4ufXXcdpqZxOhhky9ZsbA9O4NJMZuU/EVv9CJuzb0ehLPs6fsZa7AgrRjVmIoo9bRZHcQv7d9VjmGup/tLozy8lEijiryfDJMvr0WQtd3UcIz9sIYn+9AZin/8yYZub5SNxq0ZPh5zGgzg9QbybHkKr/RFfHFAklcYzsxp5apaRb/RgGhKt5X/QWjjHhak85Ok1Lpw/T1V1F3psGTPWT48zynL5TnLuvIWiVCDojRh4D+4HI0mb1kfbng/yCdsezKUgKqXTNxawU1Trp0f38o7lGYoHdT6+2YamGZCy/bpRvERan59x+3Z2p79GQyIfT/YOstcmQB/mD8XK6r+Ctv+LVpDjAiUJhwJIqaNhghLUL1z7f9h77+i6rjLv/7PPOfdKupJuU+9dVrHkJpfYTnOqSZxASOiQhBkYhikMLwMzMEMdZmBo887AwECAEEoCJAQSh4TYiR3XuMtFlqxi9S5d3Sbdes7evz/OtRx+Za3fzHrXu+Zdi/2Xl718r87WOWd/n+f5FhS2RUF/+BRW4wAO7XoruN3hIK9oHX9R9EGy919ixN2HK9RKlfgbYp5echYbURefoyCygDm/wKKrgIY+KDbrqIis8D3vBHErRufgOf4y+2UO1LyHhf4LSKUYK2/AFLb/gqkUfaKdJvev6Vy3j8sX78K3f4BgkZdYdQuzHj8vrLPtDH6nJE5nMff83yqIbfUFq9E0Jfoyb/YdweeZwUw7yV2JkpjOxllcxkIwvNoF0dFpWa6g0OfhSKCHeSyWp3NQ0h4PSSXIuhrlQtYZqm5Zzlgy2HU1XCuIFUqlSSzt4wa1n+hQlCFHE+XhRWoqNtBQ4qar/E1sKmnmeGiZ7d48mujnXPeHVs1gt9zwHfafd2MEc3G7InRqfkqUhwseKJQP8bRT0Lp4gOzxJGZWHkKZlDuLSPkswlkB5vxxUr1ZZL0Q50+a/yepvFL2LJ3ivD6N9YZDpimbjD2wrVRVSq6qFu1s2lYQUCrcFHpmqIjkUp26kVLlZ1ZbYq6kgOWYpFD2rPq69aY72bvO5kGdq1G8+2CU8slpwCI2l8PQb2twVxUykdfJnlvfx+vPnCJtluFqegXpGUcIBZqFtTHIre1l/Pv5oVXl3s0tlXidD9I/dgLXxuHV70xE62l1N5Pv2QE3ZsyES9oIDz9N0Otgav4sQpg2aVdKikuuUlIyjBISIQQxWshWPbSLHp7DxFQCp67zgR1bGSrIZ1Bq9IQi7O5op7y5ldl//hVpkYvQdBSw/4Y3c6ng2kGm0KWkcnrE5hAlVqi+dA63I5fC23ZxaHISS9PRQ1e4M9/HyqZvsyzSBNTzVJ7+GDlT5SyrMVrVZQxhA25dSQLnnueHY+XU548wUX4nE6/3kVOQ4LutH8VqNtCaJG+uq+Oh8E9QIgrY6ukzdVnMdQfZlgEdUgh+3rGe/Uuvof3yDP+W20lLuog3iY1Ma0t05/USmjyM3vgglgBdKT7TWMI9zaWMjv4aKVM0cYUG+lFmghfPeGnbWkZLtoL4AlPGPJK1q90g5d9GuGGe4dlDzBXEWfCmKA3Os2NKMFdUw9rBC1S0tPGnG9Zz/uJX+GHFXh5W97A5qpMbbCWgDKQ0UUojHC5DSB8CgeXKs0GlsEe1Z66Mc/7KONuzkjQCFz2CD2/OxdS28G25gWcuf5L7783l0mQbJ65M2nnKSqLHogD0OO6greJByuqCmMO/oShazd29H0SXOnfWR3l5Ux4g0C2T206+jO/WG3G7ZoidGuDsUJKK9Q2U3nADhZxg9PxFnohd4NH4Rubav2F3kAUoKVBSZ3KpjH2+Y0QtxQem30GJkVFjKli7427et9HP8+eHSGXyhd/LD1nR8siVy/xY+2NbNSzAId4AGrdAwdSLrMy3kFqsoXpLLYM+OCJCtoG1AKQkb3mZ5fz8VaqKRDHvvYTDGyZnaQ0Ds/fyrGeFmqRJZSCFptnqXV3X/j8BG9jj0bOD17mnplQcNZNsUHZMllSSq3nZ9oA+Q2gVKNaUJFlYdq6+MzQpSTmczBfaqmI0DQlEOgwKV88ii4WGX8NVqAxtABTF2dXMOmbpOvgMDstE6FB122O87noOotdhQmFhIfuCs6TJuR6q7inMOAgoUlnLhPPqiB+/iDKbMhw9k2TvOFnG0yTPnObU1m+QznYgEaSk4sBkkJqM16ZUcLxkDafz4tTMm1QFTbS4QXF2GQVZNQSSY5xdOcQPXijlZ6UulNfJ8eFxmvQO/LPTVOVGic2dwxE5g1H8MKbS0aWwrUPqPfzq4BCmMcK4Psqhw3uY76yl0NfDipZHi7pCa7yObfNzGDueJSLSRCuOkz//MOU37fpv0WWDP4C2/9JKzc/YcUSuPA7Gb2W0phlXfiNvUYWs8Q6w4uvFGksyP5qkrO660Wq/CfdW387cpUOI9XZQPEqn0LwTX3QLiaeeRUbGCBQXczC4hBU4ise7yJY8HX+wgXsHgywt9aLHlznmL2LxkG2HoRAEVvJBgqbLjIniZa7Vk+XOIYaLvGgFdpLCtPeaTYAdT/JYzxSd+stUdd21eo2banx8+44CLp0+S1FFmMICmzx6bYmNTg6dfppwuAClJEUrGlsd6ylVPiSS4pwq5qM6tk2wTXrXlEVr1hWqds5eOy/sctdWBNjXcm2qKWxA1Oq4SCzkY8ZTwCtnRlgvjhLJvUB8zSING+/jeAgmF7rJl7bOSco0musy93/0XVw620865YA+xYU8+PDmPFKiA91qZc/pp7lXdzORnmWurIy6uKAmsYbXSw9yg+MKxdUrjMW8GGMBSsVRpmNumnwaWT6dpJIIBE1lu9Fie5FWCiEVK2Ev89QjhMbmzX9JVeN2zr/6Cv+WeJwe1wi7vMW8LwUrSy1MLxtIYfPvrmW9RsKlDHkbVx3bTSEZLdEpDvpJ5pZhxCJEI25C01vQG6tIrKTxlLhosMqYyp9e3T9Nd1Dc/haaPLn8e1k+r84scFtZEbff+i5i3d0U/o/DnK7dRb5/gUi4jJ3JOyj1+RCnEiQrT5C1eRtht8FZ+QIqkAZdQ1l2V0xlEiiudZhBkUsvaXTq5RAfV19k3Pd3vL2pg4XxUb6aU4KlafxmNsZjXGaXuwpyyoCUbbasLF6oLVs9BAWCN0UWqZwdt7siQNChaB65yvhgNVZebkasIQn6L+EQqUwHJk3c309ebB3JX07S/PYBPik+R69aS+6xBU55e/AXbOWXXQ9j6TqvW7fQ3t+NJYxVr7BJfzE9aj2DqoAW1UuNGqZ/qYmV7BxURh2uNI3LbRdw+GO0xutoHLsZlKJYuZEozKSTdbNQHDtMqrmF24uKGRoa4sMjE9S7ipmQ99NKD2vUACKUhaELLmNyPiV49iN/xz8PX0SbHsO0JKBx2FFGharAyEoi9H5glLKlbGaLqnn63kcxdZ1LQnDLcpyuRAKnUgxmB5FRQXaogarTn2Cs4CSXlh1EI4XgW8Jj3sMa40UuU2b71XFNrQ7LdRu4mG/wWEMWKQ2U0JG64Jc7vspXurooBVomyhgdHcVcmGEwniQeqKBU6+D4aY3Wtlyc+ouUR5pWzYY3DadQsWdYyfZSPT1K+fwEF81XuFzkoaD3wxjSi3Hxej7kms3bePuP95HOfsWOlNPsd8TKXCuBy7tpqQ5xQFwkkcylP2FRmKejKYXQ7LijLk8u3/EbPP36WeqS+7mh9ZRdIArICZg85dzIjqJtvDeVT0fI4vjYD0j6v0yBX+KXL+IMfQJ9bTsvPv74qpLymp1Ry5V+zm7quhbEgtu9gLPzVRaFyWB9G1/S15OqzEGX8MhrAd5pfo/Ehj9npTGLF1aepmv+90Vos8N2mHxFs4+b15by/dgSplQYCooGYxwJXKJQCxHKv0SLoXFIbcCUtnKyfPpJ3n7Xe/lyXv/qO0MKmCmpY1vPGXTZbifrSEn+JRPZriOE/dzm+MeJeL/F5Nk/p3RpLfOJcRq1OA7LAgTKUsRnBW+LdfNzsZm0sj9HDQ9yMc+NKKtBCYEhBJURu8uGEmjRSYzEADnFpSxPr0GlLQQWWdolkrKFxdTnKLuwhN5VjNSkHb8XGcXKFujJfKaLHPykQZCSmT08usxbOrbQHFqLUgZwA/8ihkmbkmeG53lKS5CSDWib/pG3z/yQNfEr1Ge9xC3Fkgqu0staPBdbaGi3dY+5sTM8nDfCgBbjpzc+TNJwgNiOQKEJxS2tK2yN/Zx2LQ3CFizE2rP+2wA2+ANo+y+tqvYOsn71JHOGj59vfT+Wbm/jy1skfy+fpUn04ajX6TA+S17lu7ky+jwLDh/3Nnv4ysl/5IEsF1tEOsMHMlnMeomlnAO0ffXTyBeucBF71Jifv0B7537iQiKVRvji7cTymsma6OeEnkdlhtOhodg4ep535sPSjjr8qW/RpAbsKkdpTCTridUW4E3YaqPy8CLaG9STZaEAg0f7oKSN0dFR24suvsylx76MZZpYIopWdM3X69p0wSQ/f5pQyA8IUqkQ0pB068OE3CX07qxnfd7fUx7/ISljDDKGDL766HX3B2UzS3LnO1gpOb/K1cJmkiGVwIjfw2/XbbC5YLVraBibIB0qpH8a9hYGkXoEh7WBT6pWmkQfQhjkJteScEU42b+PKZebmbpCctIJUiI3YxJqUFL4ZjoiJpY+ypwYsfkmSnBXfBPh2CzzYTcSjddVB/7ADJbS0BclH9mwia8v/xapJD8YOsh3l3dhXnkFLapofNsZlAGa5qSkpJiekMULCy/RajTjy4mzu2qUJTHOktQJHtwEqgEQLIcKKL3qpnX4KnrNcbprW7BQoCQJcZBwsYVQZSQoy5CoQ4j5MAevJlgrS4muPwaaucrPcLt34xgWXDr6LbqDS3iUolvX6Xz4Yao2bCD/0x+i4sghopE7qZkupdTwoQkBSrL4qyeZvHwco2UYpVKZO97C47iRrIES4kuVJLQwsnTINk3JALe0tZ2ZeBExbQvvaF7DJk8uH5+Yxsry2xmQwKGhOTrOBMFSmS6bpL/I5OE7N/L3s3OrHcEP3n4TCwOn6D1/GrBx/VhFKf35eav8MBDoqbzVa0Yops0kbnOOKnUT1d7b0RLHCV26wiveGTSjDD3nHizdyNwDYLisjCGngaYkOckEX1n/p5hCx5Am797/MxwhgZcEW65OE3E58SaSvN6RZFEItge3oCt9lYzdp5au6Ucpi4TIC/RwYsjFb9Zus7seaTdodTiUyY+H/pr3lBr4ysr5oUxm8h1hqusW3KPTvHq6h1npxmHlc0ePE53dWFN3sLftW6RyFBO5DZi6YRPAsQUNv6l5kMfOPsGVaAkRS+LTNVyRJpIrBlHD9hHsLatiYF0zNbEiPrjwI1TEwTk6MrF5EHaX8vdduSTfIKxRSvDzqMHbMgalVVVVq2pTd6qck68lUAosU5K7WMT3yz9Oz8WjBISFVCA1i0RWH7uGK3DklWJ5DKZ8J6iIbCTXN0Zu0SDxhUauHIswFS7DmbXIxUPPsblh/fUYKwuy9vto7d1LfnyCsi8+yoSmERg6wzFZT0lOCe1vrierxs30QB8DX/472k2T6BYvz/EW2tRlmsQAN/gPcZO2mabfxVHmChP+w8Q2/jN6RgEuhYlm7GX0Qs51Q3B7E9h05iwNw8PoVi7d63eSyl6iqOQqaGl7b1lDWthRVhJJTs1h2qd/x/mCGj525cCqCO3bO/+aIpaQsXb2f0dimRLd0Lj/oxt4Kp3Dq72zlPWEcS1aBPCir/kJJesWKRbgl5/jtdn7KZhdob5nErdvjIJsHZFR7DsU7HJupHPDM+QNvMRwuobi+Xl8gQDnc3zk3J7Gkx9enf7M+A8QGj5OS7oHzlUxWn0nvtAAnsgOI85pAAAgAElEQVQIeo5GV906nnU38eT5Hib7eznW2IHUNISUtMyOckP5Ch9+8H5OvLCX0ZOHIR6lt0zQvraZwMZals9cZOP8F8kSV4iYDzErVhiNX+CeCx6mvYWUhuexImFCfoNtLXcSbCzBDAVRmsAScPnuIgYSTuqZRAiBhYaLOnTdRPqySAfjtm+irjNeXs8GzjNII33Cdhy4Xz3LjOtWKpofpOf8WW48WoSh7uHxOgevGg7bmFjZvzNLU7yanceR7If5lBqhSQ2gaQZFdTf/rwMP/wvWH0Dbf2GV50R5qOoSX6hst+05Mh0BE0GvtgaESa/WwR3lFnua76a5+W6YOMX3n307KU8ux2WIjYBhnz2AQsoUkYknsX4zRrKjExrqf48zJ6TE450jGilivjSLWPr3Y4G2zvTSceYwy883Yf7pW1H5gsVQgKsLnUSjxSAUZnoZLSef0nCQ+y4cY9pTQFkoQFk4SKB/huORx7GUQtd1umorsUwTJSXLozqq08hUaQq79DUIh+2UMl3Tqa5q5cVoN7MeP3vXtaP0NE9pDj5f9S6KZw/YcnUJoWE3uaWxjEuaRknfe3FGy4gVXUbpFhLFT8MbWchp4K5YBVFHO5awjTFRGv21ddwrn+fY3CY79xTbt2566kPckDiEa6mF1GsaQ1v6mXK5eb5zuz02sCSatD/fkNC1JNGERrnycYGx1Qw8tZzDicEmDGUPPnNZII1tOmliEJpPIXPkqqBksLCEda+5iNwSg1V/KjuGqb87m/cH342OIJCnsSRGMx1FSWl5mOqRAxjuHApXsnAbO5jf3EXH2hr+MRzm5YksqudNfMkqVvLGrlt8iOsk4eX8IRbEHI6KI2T+CqU0jh5Jk3j+Y8z5fJhr25n1FjDjLaJ0ZJyurAAfmP4q3oIy7u3dQ47IQuWBUhKByYHZGAsjr1K5PEvBG3KSs6UP/8i9XHRrdHs0xNI4NxS8CoC0BAM9uYQjuZxaXuB7rx/nH97cwa6qcp6ci9uRQUpxOtfLs6VJHpiyM0gFGls2tjGYncU7ZfbvxeVMv/VtDPRewEqnQWgcreuiQEkbXGaWKLdW0b9SMJU9xZlNrby1oYHqze+ghHcw7znC3NmPsGG6CYeRZ4NeqdCV4p7q33Kv2kufXEvtoTCTsgJzzQakpmMq0JMuvnL8e0xuvpWilTglyysoTaNzQmew0k4pkZmNl0Aq7kZlKxQKJRTFrmKOmo6MkELLVDwaaRy85L6Tf2i6neCBED/ZlLPaXVk/HsezoYVvnQpiKsVWU0MHNARCGWwI7aJyppXzVSZvrKIsBb+LZnPXwv1s128BPZPJqxQllgdNV/SU1XK42e7yzPrqOVf+Wb576hi7IzXMahFKLDcvlXlICVZFIdc+Py0tfjc0TNemDpg4BReehOUFKnqG0fkMbt1BoQP6L/yUjp/9nA2mYqoiydX1u3FXFPBo5Yc4nThlJzDkF1FntGCWXKKm6iWEZqKkweiRjxF7bhgzeYp0bIxzgUUKhuuIW8vM9xq0hrvRb0iSGhR07/05eYlKpGlhynFqut6Lv9wedU799ihNuZs4XxXkhxvejolhGybzORrUIMMjr5BvVTDn9nGkRlBDI02iH6XscXbn6DEWJscw3PdjKjKKxSpS3mkWC8LUzfQze+selhz9lJRcXX322uixiwAUDiTesJenXZ9hn1XDsj6IYQ1SbiQIDX+GCBKUA4f7o5iBBixLMjUQZFOrn8pTYZAKmafTXTtE/nrbFFcIWKNdISuZzWR0LWZOPvv2HuG5h96FxE6K+Ou+JJ1hhXC3soYXyXkthUynSRmCE00R9uSlV39eEGRF47Q45uhefisz67ejhIYmLTZc+DeK2jdB1Ra6gL5sncNF5W9QQ0N+Ik5VcJkfTf4IIzWFM7EM2OkTJ4aW+dTwRVKmZIvxNr7Z1snSXDszC2EkktJokJLo0rUnGSktnMWXSaeuolSLzX8UcDKR4GGR5Js+nY6ghQmcx+LBTZXcqK/wlJL2SSIl1dPDXPG38GPtTzExMDD5W/UFqhydlNZ76H1qjAblR0enIzWOoRpJ2aTmVa6iTS/S6aWdjnCKZucOPJ6N/3+hwf+W9QfQ9l9Ys6fPck7dRm9WAJSJLdi3rRBy5TL/pH8OUxg8N61RIObZvqYYRo/QFY/jdLuYSGp8b87BR7UVUkV25a9ZFs6D3cSSudSNjDBaW7PKmbs2Xg2HSgAY8c8Q15dpmczLmKsKKpciRPNr6G79EMkTMUL+TdgDDyDTtZHBKcpS2zFc+dzYcxajboHTVh1GupKximpMOQHYmaZWbj5CN7BkmvB8Hj88/m7+/L48aovKWFwc48DBKSJhPyjFlmQ9wdQK6PboVWo2JEtLxe8W/Syc/XOafYME5vxsdxdTnZ1PYvwsDRPt5IYbUdJiDZ8hXR/mSKKc1/RKLHSuuAQfm0/YXkFKYmDHlWhC0qZ6eF1uRGrCji2JRCmYute+WiEps7zM+IpWxwZKE9w8OUgw1M+2iSRrtV1IoVEo87k71cm89zL5vhmOBUcxMuIIgT2itTWKCsNw0LFhJ87Bg6RlGofmYM1N91H9+B7GrzxGVHs5s98Sh8NLV1Ri2MctuYFWgvUvrApOnHOdnFsawihtYLr8TtYupRmNn0T29SGsXjYHO3GYPhJaGnLtLqVG5hzF5vDk58+TW3kEdU09KmF2toFwqJA5n4/iuTkWtu1gb8Yr7JwF2y48S8pKURZpQJc6QRTHl03W5/aQSOxnIWG/BJcG3PjXhDJjbAdlFQ9wrGqGj6ypJy00DP6IAjVBsxzi6lAX0WgRGoqd8fOErCw+/Zzg8w9vRNNnsZRC6QaXdbjcng0keGDK5KJf54gjwdO/7EcuJXEaGm/7Yw94cldj304cO8XXL1mksnK5iz4yVlXouk712t1MTb+CZSWRUrOTEDSN8aUlruHNnukwZmgj/e4yplvyMx0lxf2jv6C59gpCg2Y1SG77ds6GCjGkfTA4LJP1A704lMWGai/Bcw5kOk0oP5f1TXdRWpyPu7qJ479OUyA0Fk1FwsrHs9TBwpoLbGvrwlgxqJwc4ayUWILr6m8BCw13k1wuoTM4ysf6EhwocbBrLk3z3ApF68r5wv1r+dFre6lzD5I12UZ6qRFLpImZy+hSJ+ly2x3GjDhJB8I//S4LK5WU+Aw0IVBKspCWDCZy8YhOptbkZr7f/j9pdM74t/JoKEWZKkAqi66gRIPVVItrwE2XFlVTI1Achx/dA1aK2KKDhWgV+aUvIRztKJlPXqSSUEUbjsAyg7UPoKIGwStpkrNzyCyJEnYCw5vEjVhrT6Atj2aI4BbZhf2sLDSgtHJyiuMU3XkFoStyLYFjroTknhgpzX6tmSfAupKm0FnOzcUPog+mWRy9hGpxUjLbTImvmcNrhn8/j1LZmcbBUDFH/Um+sd5FWuvEEC18Sn2BJtVP89AKzmGFdTDO7Z3LLNZ1kEUWJxwDWE0V6PWl7CxzE8oP40nNrWaCIqFJ9PMpPkevaqd4MUqP1sbedTuRQoPiT+KZ/xLN2QPYLDMJwiSvdIBEsGFVVZocDmfucXvv/VXnMDP3zLVJbThUAkpRrYo5fsP9tko50+294tZAg4TpIe+er1G98TyxF59kqsLi5kInhjBsRb2EuZlG2oMl/DbxDkz/DJo1j+aoQAoIFbTguuMBAM6EV/jUik7al7EUUXbWdEUkwLNyL3PROYqUk7tECYbQ0Q0HU9nlxHPB8jk5vtTGfyRqee+sm1KxjEZGtCMEaAIlFW7PIr3WWX648ndIJEiByPDx0kpxfEcx514c44w0uaJJbgxP0vul7/FgURkTZfXUBnxUhyuZabHe8DuH18ce4YF2O3WkuLUG82KIuHsIX8vX+CR19Kq1xC84mMyu43LrJiyVoRdxmWT+JOnE9aD5/y7rD6DtP7lmh8M8d2ANabOR+y6GOJJ8nqh/HcIyaJ4b52rJJsxyBxJbEPDqkVE2ZWeTVXsj61/7Ml+7GuNSwk9H9hI7jTDhGSfBumZ8IwM4lGJMy6UwEOCWg68xW1LKseRuqoonCYdLiUYK8VqLrHUL0lk7ae3sxTs9y6S+Dn//JGNFa5CaTtoZYdZtt5/Lg4usGR1ACyfw59xKidHMRCrI7M6tLHlLOBvOoXZB0hgVxNWUXQkrQUtlOydvfj+Xz3YzlV2OdzLB2OMBKu5upG86l3AoscpDSmk2DwJ+f/QqpODW7By+sdLASLgOh6HxiQe3UWFp/OpJwUL8KMXZsyympri95i+prW3l+bE5JDOZh9UiVB/j46+do7siyabGfTSJfoQSbDwxSKXxdXrurSBPW+a1Ni9ogs2TZUz6zjOSvMKunC2clWAJe2zwYFEtzw3/O7kTeTxRKZivaqN4opdmOUjxpvMkRZoNCoamakjOuQDQDAPH9geocikK2nwMuub5xOZPEE6FV02MY1PdWHqc67M6jXQ6RGF+FiuZfckJN1Jx+uMk/FfIWWph1MpiqKOU5zMEYkMq7r3goSRqjwbSzjB6bAVWfosrlo3lysdYjlAdTdLfsY5cdyY/VLuuVgXBStSPpqA06UBqgrAjxx7NCY20sji3bOJCYiSG0C07oilkWeR0KDyL8+jzfiwlSMxlM7y3Gld5nAm1k0Pr4gy1jJOmAZmpRvtFO2vUID7/FIVF4ywuVBIegwo5zWx2KT/vG8HyZF8HKwBC8NqaXKpK4/xlgQMztQzrfWw9dJJQVT77rv6MRu/21ep2fGyKQqfBfFEO05M5ZOuKLXV+NlkpKldKoPzrHD3yfYKhYqKRQjSlaMiEfJ+fP88L85/F8KVZdJdi6nZVraRiWdgFj90q0zkx5yUcXmRP4gT5yUU2H+mmbWQQdIPB/Cae3f5JvIEzuEQ/+ukLGOcNbvn0HrS/KufVX11g6WoKDQ1nysv6/B30HDuLZVmUaRqPzI1yKsfPZZ8/o7sU7IsZ/KpQUFpg8PXWbNICuv06DcsxbhwOc8/GRUpi/45SacSafUzM/hE/Wzpk21ssbKZ6PoUhc2wlM7Bn8Cql06PMZ6WQykJkun/TaUmhw4C0j5YJg6tlrJ7+mlIUhma5YEQolXakUGfI4m96E3ylLRuJQpewY3iMqisH2PCm3Zx85qdURbPxxhTnLjRz4OZdSF1n1p1g2ptHeShMxeZWmnuiKE1ffS/IuActS1vtaJcmBXMrTaC9DspEKZ2c5Wq8BixoxQQ3rtida82+ub11EfvPmWgmqymG1S8pyq5CE5lEmrSFvBizB9RCsGU2hycLM0kFWNTEJrk62UUsVoq5aw3plIkErEx82jtdURx7/4bFHhfKAt9oHxUVu7mQNWkDCSGwNI1DU5Mopw+ZbxfVurD3WwFN9NPIAKpA43vpzDRACITSMbPb2F6/HW3p8VUT8a7b9hBsqqai2UdpvYflhZj9OGc4dP75LuaLLq8CtonxNqKRYipCSW5y38mrWgq4bnljiTQLZ7+Na6KHwN6XyVtfT0FJmnXeFLULirPFTpRQCKXTNP0mcJaRWP4JdoGv48x7K5peTO6jO3Ft2MDZsSBfvzSBmUMm41RSEZqnYuEgAW+AOc2ODV/wpXh56zwPZO/igV2PckD5SBZNrwL/6Z55BB5KlZfdqQ3M6EGKbqpn/4mDWFh43LOcV2swhWGrym17YzRsh4C3dpQz4MjiJ8/1YElF39HXWGulqZgdp2J2AiN7B3rOVtqCr+GU6YzNkWTz0knSgRHgBtau38SXB79KcfIwVVqaZjFAkxrEKN9G8bibpTzBiysXqLZ+SZMYQAmNqHfuP4EO/vesP4C2/+SaGghiWmA6Vlj29bF+QYeFHnakWkgKH+ezKjlebo9CDKVodLxG4OoS5bvuZrryrZx/eQxLaZwXxTRV91BupPFUfQB6Pg6FJt76BKGrORQFAhQGg7xcu5lzJVupYIFSFWSKG/hlw8OYms4vKtP87MIn6LjpUaofKUA7eImRQcF8XjF713UgNYFeI3EuzbIxYnKjt5FFPcpJ5yWmlYe9Va1Y1XYw76eOC3YnNjCrhSiVXnLGdazCGs56BS1Lo3zp6HeJ51fxUmwLqRwJPru8nMv3cTi/is5gAi0+TWk4yJ4Lxwk6O6if09m008fP/ngbJ4YDbKu38xcPPv1rvI17iUws0Dc3AQj2XxkknOXHZ9ih8VJJDGlSfeJbBIaStA2C1hfnyvqN9DlvZX3wBOuKTmIR4p/E5zAx+E2b4mMFl2kp+CZFmkWB3M8/9H+KCUcrXWHJ9vUOirXN/KYszi/u2oOl6+htDbx58mk0rYo2emgUg7Q/tBbzyhoiyTTZFVV0dm0hkBX4fzVHjnV3M/7o+zErEoi/UCinhqY58fm2kr2xhNiZWZQpsRCYgXL84UbmtQivO88y9QbRgSWUPcKMBAENZ9JNbnA/KYeJEV/BiK+AUuQGlrjlwAEG3sn1Kh9sEjCKxsazrA9txWh/Oy9mdZOnUugZEA0WjkQfGhrb4ybtF79JyNOILzxEXvQyhS1hHqrOZSLmIZLO4tJcGTOOnfxw9wOkNYXGTRmltB3K3CJ7UVJQWDgJgM83w9hsOeVzuylNJUhfPUP3uhtWVYrXftiuasnfXvktae7P/BucvHUbCMUwJv5zn+e2wod54cs/ZrygjLP3Poql60y11/O1b36JzpdHUKbJ5K9eZeStDzEeWLv6fGYly8iv6wLguStH8Icr6JxsIKEvsneXhQR0FFurTq42kpbGbiUc8qNQFIeX2MUJ1vouMiu8hPOqudxfQJ1cwHTEVl3rLdPk1Kl9LK7LpfnWdUTGTKSlMHQdt4dVx3hLSnr7Q1xN52C0rZCqdAG2DcGnA4u8/dZi0pEIUtiKwbM+yB47ypJrP36VxnbNMlmzLkyoe4a0TPPy2se4yfwATcfmsLySLbNOahYTpDAIJKY5NP0UG5MFdJc2c7Or0RY+ZmswnkLPucTrtZXkJhOsnxhkIRZk3rDHr3U52xj1edm4ZPLdUzHO+nU8aclMhZv19fdx8IlvY6XT6KylS07SW1uL1DSbEtF5Xb2458Ixips0vCsQsifhpE0391qjHPesZcyznqWAg479KX5Ue446QxEKlRBLhbgzf5lDBS8y7YywEdtfUCiB/4zCtNkYSKERTpVT0biO+UgUqSlbqyBtf8RrPpnty8t8Mf4sfYX11MReoNHVB80Gt932PiIldTyxqqzWuLmoiuHLv2I+ejue2AIeRpDBq8RPfI2qjU10e7yr3VLl8CGUHanUc/EOqgoDJGrW0ru8RE1OL01iEJCsc57hdbkJKZT97CX76FlZT637IRqzJG2Vb7aLkzfQECamo7hQ6Jlr8E3fCgKWSk5yJeBldrYJHY2NeWuZlxFcC+PoFdux0HBIaL58kkOeZdqX86heirJ8doAVzUf1bUE893yZDlNn5uJFcgItuKIN9AUf5/pExiIsD3B4Y5Cs1j24xoK8+/snqDOy0Lf7sLAzTmsnz9PveZF04CYcfo1rSTtK6mQp27V5KdvulCkBQioG8x2YcxKUoFDlk3tLCbPxSCaTGELBYlqr+lbjwJCKD5cU4nZnsd2bR5cnl6MzF2nTpkgl07RG++3vxKZZaI5KhK5R4nHzdXWMM+EFzAUnwRUXT5yL8/C6CeZlHk8M5LOhYon3KdvfTxcGvqcuIAa78f/sKe7+i4cwa0ZRQkMog/zMdOu/0/oDaPtPropmH+iSlDOIXQ3YB9FlK4Izp43vrcnDUgoNxXvUDyiu2Ec/DnLDxUyIZiw1gUJgKY0Jo5Xyu98FJW1cq0g99SnCEx6UadFT38yLu28HXXBeNfKe1x9n1MgjLdqQwlZ//rzmI9x/aZppQyNRfwOB7Nc5VZEZUQqbzDla386O8Aia0JnVQkgkU57C1SpQChhud3PPaUWx9KCARVPywLZKLu47ytuu7COWV8VgzTZ0z0sUlcfJCbcxU1nOC/UNmAgM6eaRQzqdTY0UnM9BTyo0YZJ/4SQFgVpKa3I4eeAY3fkJar3/QskGk+J1gqEXqhkSLfybuxpzeMaOS1n6EQ6RiyvRy5p0nJDnJubiY1zIyuWX1e+x1Yjv38pn936dXipW2+FpZdGdPUPbG6TtuaX7+Ij/NlIjp5n+6GcplBKx50Gk4cjsj8av695le6gpk0+Jf+KdnY8QqS3i8R89gVy8xLmLl/BvUqvmyHmxPPa9tI9u2U18eprqinIarg5T8E0nxn2lVN76R/bL2AO0dbN4PsaUs5xSzYdbwoy2hELRmB6iWzVhomMoeHChEI9pIpIexkwXngSEjOs++5pS+FfieBIJCl23I+U+hMj0bgSrflw5/mkmol6kJiiNBFczHhPyFHPOYZy6k827HyVr/5fwTo4SdDnp0fw0x0zKXSuUNzUzbTTT++os81XtmWgYDZTOLWo/BQQomFvBGcsh4Sslxzu9CoAKmnLYtlhF0jHBeCTAnovH6C+uIujKR+oGf1RfQW76MFq8B/LvyTQmtUyjUCOt4LJqpm3iFSzTZKK8LmMgq2PqcLGhhY6hfjRfPTmb/5yC6Ri6U8OGYxpZiVJGX7uMsb8Hb9TF/Vc/bKsYpcXm7/6A7uY6SitmaW4eyKRCCLwTvWiW/czM+wo56N3MyhTUqHFOt23nWKuifPQkFctjXNtsoev8x9IvmD63giYM/vq+b9Aqa6ho9pF2RDh36aQN3BBkyyR5HpO0I4KpspGZSB6pFHq+EyMkMYXAsBStB3/KYd8xurMkf1okcWp2HFRb5Zt5rOiB1Zi6pSspxLf/A13ZWQ3kP4iR/wAB/VVi1nn8b/4zVs5WoUl71CaUotqhccepU1QGhm0gkSFgI2A638tj6wqxhIZDOfn308tsXFL82eZc0loOT6J4yF9G+ewYJjonRQ2mZvu9TXsKf0+9OOstYuNiHYV5Bs+KIWoaWti5q4NJM5+vTuikEPyiXvHpqdfwLRYzsZpeIpnTglSJPI6ndL69kE1LjmB7/SP8vOJnbD5skWpSuJ2d/FX/n+BQBjLLojvwKlvW1qFNvYapHgEUcc9VJrq+QrlmUbGiY6ue7Naq0zlCl+dunlnfyPHQMp3GFHLgPQS0FNo7DPoO/CWtB16gxDFAyYZzuIq7cbX8I4cH5phIpa7RkEHBSqSERHoPf1NZgHRp6Cge4TFu5RXWLc/z8f55LnjcFMwnuFSm+E36N5jStAu/oge4riO113DyPGV1Z3AttdjUEcA3dSveyVvI1cLMakFKTTeuAouroSDFkQB7LhxlxlPI2ql5Cmb6KfbdwGzWOFbOEHG3j+L5OQrnlqGnFzGfRc3MaSyXgRBDZGfsbWw9KowXjhD0xOgq6eLY5QApU0JykQdOLDLrLaRmTtFdeoy0s4lEcRe5k200BY4Qdwi2j6wQ4QhPHz9B8yf+AadQmNLCoUz+auE5Ti2/nwJdsiThlvo1iIuDaGjk5s/h9czTdCyLL/IFesVaNp4d5N7PfxpXjZ2uMDExQeTSq6zXTTvNMScHEV9mqqSK3pbb0B2VpOZiqOVcPsa3uM1rIt0al1buIBotYPTCES7mbqHdiHKLVcrwYA0OZxIpOjlYl0CrtZgpLqE6Ostd0zegKfBMbyV34XFY3/oH9ej/yau03kP97jz6XnazSjQQEM6epc/fiKmB0gRKSqKaC4RtQ7Ewcoiq7bvR9x/CMk10IamyrtgmpuvfCdJ+AboKElR/9C5iyUbO1XWi9GteShrLW/NoOtbLCXUzSio0y8Jx+BUuzE0ABrGdXTzWfgdpjIygzuYelIcDhAuvEigLUxiqRotrVIQWOScVUigcQPWy4PW4hV8TBBXcvLkU99IwXz72XULZ5XS3P4Se/ySNd4wgdEWRPMS07wnksu21ZQmFeetNVEdmyd00ydxAiM6T4+S43kZsKY51YYXQ7HG8HaOIDbaTvkBQUlPEqeUa0lIhMweZQ8sjJ7KXtlgtZdYnqPQ5afOmOdnYl7Eq0TA12L/udvZMXuA3NbYfl4FFfWoYKbXVLpTPd4543jGWvvGPrBQ1IEvbWDcT5BklSQsdoV1zpddJAwdn9tAwkM2hsyfQTTOjaJUUnj+Ds0YnL+5n5/ROYsQYwz7E57vszk7j6FWqey7jWvhrJu4uYjTuYnzMYtiVQjKMhsbu1HpKpQ+Pe5GihhFuJAsU3KSOskU+QI7ZiNQhoptIp0aRlouVilHinmNN9iJukcZVkiZolHP64h24vbOkU1k0NJ5GE6ApnZxAE6WWG01XSN0GbqXRIK48F+Oee7lxw92s67yR4CcVfV/7CidrS5Cm4MJYCXv8Q7hdO/De8QAP7cjmtXMj7FWKtFRoSHaqwzSLfmSRTs/FO2mNN5HwPs01ZClntrMjz2BR8zPFGErBQGk1UtPQpSR7fJrWWDlrQyaX1JfI0t7CXNFa0HTIFDttso+yqvcjtB9RNT2CnjGQ1aVF/fggQ8U+6orbQejXxy1akLllN8l0PnL/Z7lcOUXMcTsXmsqpC2RRuZDEvayoHzhEdiRhC3cRKGmQd1mnzBjjdzfczMm1tlL5B+X38Wfyx3zrbXeSNgz0jvfxJ1f+hcLBObLcWzhXqzPtGEYhMWWaL158gc/c+BdsqvcAHnZ0vYkrly4yHxvH7TMJrKvA0jT0jMmGUuAQijcPHubmnhrOenU2LaaomZrg4HaTTS6TkeV8SkQbG5o+ZBcB8+dX30O5gVEMZUc2gYWVHkfP6SLgc1KwFOfk1CXuq1kHo8uAncsbyBmjrvI26tI602KJvlQv8dwcwOaimhnuZ1pKzvkdCMRqlqOpYLKynor5CYQQpJ05mK489OUIZaHrlAhDKd66UECZciGVoj1RR7DvlwwtvcRTazeRzK7LWA1JLlZGuLd8P5cu3kE0UoRAUKTcTFgj3Du4lhZvF8Ubt/Ct7lcZL7PoLTdAKd4+W4WBjoeRSx8AACAASURBVCZsO6Eskc2kO8TWyD4moyB5P3F/P0KTGSKohdAMBlQzfaKTtzi2Ugt0eXLp8uQyOvosV2Uaodl7mV1ylaC3iZrOWlz3N0DtjTRVbSF7YoInnngC0zTxuBepd69QGtjIyz4vEtsj01KKH/EBKuQkWUO70ZecbJpKgoCi6nv5mfzX/0cqzrW10H+EnILPEixME6p3EDnzP9gUabGtZpD4l5PkWRrxyZe52lpNw5Yuui+NURYJUrESoXhqnltK32EX5/4gv6s7hxSgyzYK5l9C+5eXEblVOKpvw1mzHYRObf5tDK/8goXENJqAdaqR96T9rE+m6HU5KWCZTTlX0EyFP6Ax4htHz2ogUvIuFAbzJRY3v3CZ4sUglr8YLRZFJOP4hy7zq4Iwx0bOUzZjEJzeTcSCpbQ98p4aCFLdGuemxDnShT0IAelK6PxXnc0jw1gCrh58jo5MJNbo6ChKWtconMg8D1NuP7/Y8/7VrG69zsn2qTgvantoFz00iEE83lmi0UJylsco9vv4443fx9BMpNT53dV38YvGN2HVZIRCKJykKZSfp0ldJX4qgXVoFse6Z3A98gfQ9n/0KtZLGU7HyI6VknDNADDr9hJzLmFYbiylYaBoyzj4C2XgWmqlvCDKQ9U9DM/l4V+O4V2JgUsCCnSnHZWhO3Hd9iCuqi08GF7hyXNXVgFJm+ghPyvIn53Zz1kcVE0PUzFniwdcJRFGW8OrLvAoi4rkLJv7hmiWfdRtP0pAVyA11o3WsTF4E9vPBLjkd6LNLyDnHCxZbvTOAhYLdKZ0iXHqNKTTzFZUkU6dxlMWRazyTExa5Ckc2s0gFYYmMJ9/hqPTw4yXVLBQ10xB506KNTu8XANKs6tgKQuhxmwZv9JxLRThWxlGs9JgGBgosuO91DpM7s5TJD2juMJr0DQntzkKeU7Zo0YQHK/t4P6pST5pfYFerZVW1YsIeJlLNVBWNpiZxqW5Ov8tnDs6KPZ+EBAUK4vPTQ/xanMurZ5KvjMtMZXdyfLNxvj2leNMpfN5k1PaxTmSsGuBzxQXMhVbz+y0/vs3hBDMtZaxq+4kroI0E2Y5T7z4OpayQX2GboZUklktyHqrEndhCZ/X37uqcrpJO0TcfwVXpAmhFM7sCJfWFwNFaEhu034NykVfWQW1+jy1rZs4eDVJJBMiGYt58XjmKDZ2UVDTgXdxgHeuvZkXkxYXIjE8Z4+Q19tPpdD4zpQdvn5bKEzAlbWaYuDNqiIi7yc1lkfqC4/T+JlH2bVlBx98eR+nnCk25x+iuaB/1S6gOT9O9dW3ESaXaPFpktMbyZ28GS2bVTD1T27rDb5z8Fw8m4ohB1+KfIRv5/xPNp/6FX/7Fy2kdFv08aFLP+AtO99DSccD3P5HObzyg+/wthceZ7KslhvPdxM24gRLfSw5g+wSoFCUKi9FpoeXHWnqSg4Qv3+YAaOZ72jvJq0MjkrB+w6kKR6ZQApBbN6VMSkuIrF0KyF/gn99cAdpXVt1zE/pBr+4417Shh0TJYXGQlsF29ac5pljG3l1qprsat3u3iiD1Eodn3muhzWl+ThmY1S9tkxU15gzJDMZcQ5CQ6G4Rb1KkVjiLYOnSIe2c85XT9eSpCMKk4/czn2138QQAFGUPMvhpwY4V6Pxw9S/MJU7hFN38vn8T2LLD2wukq5XoimNtYtvpfPiFLlH9/GjXR18zN3InAzxkrMbC8kFAjRb5TRaxfhUNQeYQymN8tAiurKQ0gbXGwIphBA4lJOUlBgCHrn7bkpL6olFFK/MX7Cj0JSifDnMfRePM+Mr4tHWdWwI24BNAoHYInOhEV7M28grzhr7WVAKLfM+E0Li8cwSjRTTntvCT7Sfs/WSn9tK3om2qJPeJ9GzaqHOoCRaQXmkkYns/4u9945uK7vvfT/7HBQSLCDABoC9U6RIqlC9jKY3aapnPK7jFqcXxy/2xEnscRK3OC/OimM7tm88Gc9kHDvTq0ZT1ahKiZTEIjaxd5AAAYIEcM7e948DUTOJ71v33fcSZ61791oSJfIQPDw4Z+/v/v2+JYqBiVCWOjbD7qa4ei/cuJvsNwdYuqyRsbiOhZSxsKbbiZd8g2+Ml5BUGi8MaDydadmXAMzEG5DYENJASZ3VmSo80YO4P/JVyEta8UVASclWHn74YYYu/jOG4w3AZLn8BI09X0ZTdVYGp7DSC86N/AYPLmcxp0su5dgY9dm5vqUZR78DTzhA8VIttQ3vz3wNThy3vDu1VKC5dwARrk/NHwK7q8CaH+sfIF6+yLr7b+YTW+s5cekEc+lzbGorRQtbYHZGD1uK+5TyfrTsTiq6zuHa8TnQbNaEhACh2JuTzum5JDOuD0G0mJ5TBrVDn8ex+XP4tCU0VAosSSqXS1jMqQZh5cCZKMZKa3EvBVOVckXW5BAljU0E0iM4X3mbI+HPXJ0oU38LtPTLXJz8A1RBwppjBSgdErUK+xW4UFXDG6VNbPuXI1THhsmtq0DXdSsuUde5/UMf5bHp6DU1K1bhoK34epQQvIDBI3wVkXAilOLCci4dXa+zv+Ka2f1sflaK76uvKbsNpdOjNVAt++jfFIcLueTNOnH9v8QI/5Hj/4C2/4VRVOvBZtOwm5msAtPZHovTIaw8uD3njtMwPcu+vLtY9daTHq4n96GdMPxjcqJR8k7ZUKbOqJ5L6U1RXC0fhpYPW5NDKk4KrJ3gT2sFz/X9K+tkJ1Wyj4GpcubEBPgr3ndO8zWFBEWuxYFRVnbftMNHwHOCxsWONbDVJ6rpqWqkwWyj4pydSMTFhN9LKH2a+uES3uo1OJSexHFhlJ/trCeWncFI1gTKgOiUC2WmLBZMQelMnB9U2Hh7bJKK4BSrU8OMF5Tw7P5PYWo2jq+H75+J0RQyLMCyOoqYgB1nPk/c249zoYaTE6ep8QzyJR6lVzbSQDedtgHu8hrYRA9jvgHi5z6GL7qB/dffwavj7/JKvBiEhlQarwTSyKOBBi5Z5NEajeD4jSg1BJgMiFqOpF2HeEDj/u4Ztk4GANAudnFBvoB7pIE7M7YzmZOHPzxPYSTEOaOQWZXJ5LJGRWyMTNcU5bsWEfoCNe5RVnJuJhzKfd/1L82coj1zA+ms0EMtprQABSnLAGuh0qhYfZdQTh9HtY/+G2XbevYt1KwtdpP6Qsrew1Lidtb9IQPT58nKmqI9Usd1cReu0cuseP2YGdlEIgVElgpoT++l9FO72FDwMUbDy3znXB9xp0S/+YM8+PJj+GdG8RudfKPjJPU1XyQvbjKgFB5ngHWBOxjXl/BJN4WZH2DgmYscm+/BsfoS161301T6DnBNxdYfScepTxCfLsM3uYEi6abNO0NHYoWA9JAn3XgWx1IKa6sScd7r5Le3wPfOSPaNtrCycphH/+GvGCytoaWvC1mwwJE7buABoPmm28krLefZtx9jYfQXOFedJJweEIL5xCSjg89RWnkvStNICnjBlmSLa5zdNujRUjFWmo6BZDyrn/3BScZzAhZwm8liOP0DjPkKCVfoJHUdtWZzIVGaxkR+AVdzWNcMqzXFzvQ2Lix6WAhtAgHJ8CbkShkKxcmhIDVDUWqBIunl9ewwEWc6WqoibxcaB7KyCQxOEI1m8dub7iIh7NgV/ODsMpXlcyxraxof0AxmKts5GCqmMfhbJHx/y3z2GKOLEkfWB5DJcTQ9gGYPWM+E0Fly15AdHiZt4gJHb9iKu/cs5qpMbRwUvfoE/foUt7OBOtNGrz6FL7LIgc7jkF3LHXMZ2EbeAOXg08EkXYVuPnHbbdyQXcJ8f4jzagj0lPeMENTV1XJDURHl5eWUlJQwpSa59Is+5hImwdV+IsUtvLXnbuv6pswY98q3qRZ9KGlHRAPU5M+z6QY/tnM7cfRHiOdcYTW3D2ewlpalUhYGfocDC0VoSkNqJt+p/Dm/ab+N7Ok8qrJakK+FOep3kVu5DffQNOlL1RSd+yPi20cp23A3j4eKMFRK4CQVbaEore4M2kcWefjJGMUZv802zyA7tUY2lc/guquFRdtBZt/8Pp7FVdyHvw23fZOS6Q7M2acZLHNYgEgaEP8nbjy2k7d2H7DU7Kbg7jkv9Wkm8Rw7/7w1A0OD46uCr7v+nrqOFSbjiu7HokzHhmmPr3JDsYdNRbuYHH08pTC3kb5Qtza/aFiA/2p1MRwO0jHbAU74dvDbJMwE2mQFd6b/Lkro+FU2us1K8NB1G1Xbd6C1r4KmW1wzpRAqdU/MFFAQz2UuqxjQydIFi/H72b48zk80q6MklUJPeZq9V2ymS0nhauwabxVB6Z795Cyv0vncCQ6F78Wq5V4TI416ddonp2gtrKCGy9f0WwocfYJTTXv5s1//LKamccg0+WDbSUrffp47f/NzRCVkajDffYHypELPzscUeuoaWd0alZpTe0UD+6tfZDnmoS2+k+GlBLeXp8C50sibW0JzW2Isq7hiYsNkneoCBIthH6OlHjanVLT/Vcb/AW3/C8NX6WbbRws53tZHJMz7OB2mEOS7s9kyFKFn6AppYx48B3wcXfoFrR4/jlkvl3x5CKAoFCGv6EFcV/vl/6Zv3jHbwfkrj7FfHUzZzQrGvKX8fOfDmLoNXV7Ph147iGmM8/P6T6Vu3tSKKiwK81xpHK1oHiGhj1q+oVmkfZvNYH/Vu7zo2bFGIE6PDeEPZvJh5eBC0qQtLUDVfQ+hzr0DKGIzVoUi0x8jOpXJ+h3V9P3Vn+E3DBKahqbpjAUqMTRrATSkot2rUTA1TFeojWWbSXJ5lpO9ZylIKyNoRlhITpNXahDQLlMnLiOlID3Dhs1SgyNFkmDRUdqHJPlaMx8rL+aNviSG0tGQHBHXI9GxpXyYqukjasyRnK4k6hd8ja9iCDsIONIo+YflVZpCJsbMFHflFVIWSBAOX8Y3tohCIQJphEayAIUzuohjcZr8dTNoVz3YMLjh+iLGxtYzNzdHeCWMkb7IiZGNFlfp6g4WQEp0Kakdm2OpqIxqZzrVWf08RpDyzgl0vwLNRFcmWUfnCaf5OJTTxmzSoDe7l/VL1VbKhRBMzFygodFKpVCqk+ERAxGLEswVDJXUEAgH8S0tkL+aw/Hu42wo2EBbKEpCkQIu0Lb5ena2v03cEUQpgzP5S3z4B/+A+43XmU0W8nrigqUeRuP2xEbSTA+J5RPoiQj5TKClDEivgjaJos3eB1iAdHuyln76MG2SDjR8S40MmBdxzz5D0nUfscwGK9xcKNo9OmXdM1xoaGQ8UMFtp09TNzLAo7t1+k/+OQAP1D1AoHYdu3M+zOOH3kERZ0O/WrPtEEOHiU0NMrv9A3zT7sNcGKRgNopq0KinG00zkcpaTN7ZsonGoV3M5Hrxp6+QbY/wnW3lmEKz8nsVmNJayAoW5pnJy7datlKRG5vgt9J/YKkCTcHyZBrl2QeJeMKgbOTN7aR41cakXbK9Mhe7Kx2jf4nJbA8vtQRIapZz/IcCuVwnkpz/xTx9pofuqnUkNB0prJbkW/GzJJ5rJ/2eNZs1+qnle2WfIFlqQ5eCzT07CWvP0tBQRk/7MobNjzANUJbwQVMm2aEBTN1Gj6+GBzb5WRhUsJoK7gSm3R4m3XkkFoLsXXSj69NIBYGlMHfMm+RLRTxQQEZpF15Ry2d23k6gdh1L74yhDIkfD9meebLcU4TCPvr6BLsyRynBCZTg3xFAFGYw/G4Xpc+P89bOj1/L/EypIstOSWaz7sJczaJ04y8QusHI7Nusb/kLzl58moktT6KEgai0MX329yieqUJTloGOJgW35d2Jz+5jZSpuXShTUTa+jDEeRVX2k13QQP7GB7gaVL6TZezC2kTZBWvxVSeHLN7WQKiCK+EKKm82GRcv0bVaS8PKWWpKHWjFDjZdWML96udBmniydLQSB1IolBTMjBlsmDlL/uIMIy07EKKcQX2WgJbGeW8+hmANLA7MwR5do8AFg2nwufgipgZPjq/wlbRizrb/Lq2eQUJztVRGqlOzPkhh8aelskRaz2iHOH/ox9ydvo/ay06mciWDBYpkz0mEUmRPt/PQn/0O0w7HGpi+2DdJz9gwPumhEI9lHaR07GV7qJQmyyuSLLugzOFAFxuY7Ymyw3Heei6EoMLXwMhsL76lEAc6TxBMqyV35TL5ybg15ykAjcxYNqOf/BS2eIL1/t0M1jyIEgqvrrGYb+PJXZkYWguHWMeXeJQa+gBwvaWxGqzimXs/nqqACUxdp6u2haKjYxw5eYmmLZs5/P2vYxqWwuWDvV101W4ABdXpfbxU+eB7OlNdDIhqThW30JxZypE2yXPnHmJL7kWWwj5yIoLfzB3g0vAUeflz6CWWpVSV6mN6qoZIuACPPZvZngHKU23a/wrjVwLahBBe4OdAOTAMPKiUWvwlx/0VcCcWM+EN4PfVWq7Ir26MjY3x8hvPYKRunKJw0OKH6QqUyU2LFTTmlGNi8td5P+JU8BmMOQN/OINbtGpUrjV5jnuz8TW0Yg+fY3HxFB7PtjWrg47ZDj79+qfZm7HMendKJagppirLrrm6C0Xs5h0MXhm0Uhnes6KKNV+zS1a5XUFPKkTbIu3D25nb1srLUkA8P5+PL1tGsiYwPBhjJaMBOIKrMEKmf4WVhd0s9HoxM3LpGhoibnOiJxJIoOmGW3G6CjmlFGbKLHRjMElXuI1gfAZdrUMxSzA+QTA+QYpwQkJlWfl+KJQS+J1JUp0XhACfb5DZmUounD1Nc+tWHll8gmNunREqGBJVazurbtVIlRqwTH/DMOxzYQrbWvncQKPdo5EYOMSqe5A9G8cZ1KpoV+UEF4ppXOjnQPU85e6LdIxEWSgtYXE2THNdL1w9HyBPU7Ts38+Z4Z9z6OJfkbWaDVmbiEberzTKjEYpHh+nr64OqSWYlgbZxhepjJ7jNm0PTd0DnPGtkH35IjeX76CzVeMfz30XiUQXOnsDjcSOXEGLhklbP/W+6KiswreYq9/N0zsfwtQtR/8DF47jCwXJOtkHVaepWcrApiRJCUrTGC6uZtxfTkvnd3HovVSqStqjUco/9BFmOi4jz46s+WhNa4t4swJ4Z3PIS99OaOoiqmXCqhymziEnZfZ8tfU7pM/gypzBnTNNKOTjqMxiVpaTYbyJv/91OpprMbGhSQV9r3LBY1vjpLS13sCHXv5L+ouHAHhz9E0eqHuA9pFFTg5l8kDxX3LGdoYzCwtsnJqgdWKArFiCZHKMMyVZqMHjfOvYM9ilYtjIx7knjZbcLtpzWqy2h67xdx/6FFIIHEJQPTm0xo+USNZFr9CbWYEUgpm8Aq6+4QLJb6R/n1rRh5Iw1lZIZC6N6YowQigKIsUcWChGVxokbBSZGr5tRVwADo3PYehXWWeWMjASHcc0TTIz59hbeIYTbLQWGWmymi7pyN1KZmc5vvqj+NJX155ZK1VCklVdw49bLeXy8NRlXnt7GLE8Qe3SBJt37KGpNodw9S1cyKviyzftYt3CMK/pGfTmradgaZpE2iIvpQyn28skC50nuG7SgyvNg196KZDZgKQg+C8ku0Zo8itcN+4mPrKEEbJC27Mzp2lqPgSaFWt2ofNmjrc58PR8l8u3/D55bhux5bO07m+lxPlJwqNJHAoSUlkZokLw5Pbb+PA7YTbkv4LQDIRQSJnEljVDwx01zBmnQSiUMvmA60WSsojhlQqkvQSHvYD1jgTBH32T9C2/k2rVCTQh0JGMTJ9j1+yfwuYXAWsjHI1eZpd6C5RkD8ep4VFgEzdmDhO3v0ibUc8lvR6RPcXXlr5kbWyFtRGsEf0MlOVRPTqPe8lgJVjFytly+jyjZE/pZPktm478ci/PlNaT0GycKHHR33mCbYt2dLMAYRPYJWxeMNbUrZ3lTkwdC5wIxUtjkzScHuDZvCqaMyoZxUQgCBsmBRmXmHVcIhwv5nDeRU4UXqYwmE7a6ctsMNzckLaO6/0PYS+zI4Qi99O34b6xlZr3rFkvzAxi2BQ6w9ye3IRPeSBlco5QNLssTqM1W+pMsriWCqGkYqYvSo5swr/JRk57nIQ+SSxzIbXugC2eRtZqPRXueVQigaYkxZNH6fcV482vZ1d6IY/77Zgp3reBnW7VmAJtArGqsZBTm4Kp7x8Swb+MO2gbOsRW45qxfNHMmEURUgqXb4XG0h56davzAoJval8hmW/nhBlnf6OPcxfXURCz+hearvOJ7XvQW6KMnztIRP4QKSz7mdmZSpwzIyzb9nHwiJt7tof/h7mx/9njV1VpewR4Syn1TSHEI6n/f/G9BwghdgK7gObUp44B1wHv/iee5y8dw8PDmOa1G2dnvoc9rjReHpll3dg8G0MF6FgeRS1GM8dkDwpF3ryOkmurHlLA8KUXGHGdQGKgaQ42bXwC95LB2ZNfJyETzM87UZkGSlMoCVtygrylKRLKRCmDo5Ef0rz+dyAlrb8K3DzLEe5Oe8pqQaR+ZIPowoZBUikUOiGndRMKZfmY7V90YLvqj6MU5qUFxhIO3BXbKLvhMYRmotRzTF64jytLCZaSEkpqcI314zTipLubSBxb4P78QYKeXPb39uDveYflhkYc9j0AmIkerCXMsgxxFcYobRnDCooXLCwEyMsbf19kllIW7yU2P8fjjz/OuCuLIy27MIXVOkRa5yzDLi5cucUCEsDSmAdRKtcmAZuEjQtJgkaQrMAKg6Kar4lHrUpcHnTlVVMjH0V4e3g+78skhR1b3R6K1Ay1og+Uop8aXpwJclvoL7Aln2CbywTXPMrzJhc6byGypoSDaGYml+vqUJq2BmwmWaTUqCdRMIxn3be5WSRhh42XtVuYiHnIz6yiSXQznNQoTbjoiy5huLKITketQol2dY5UXNrow9B1KxRawlR2LkULc2zsOcrk91+mb6yJB3KLOL55H8NFVaBpGNhY9G7n4+M+jl85jpSS2ZxcMlp3sOz2kh9eQEMQWdZZCunszdtm2SmonZw5GSVney9CEyB1Sue3MsmqZZSJRiQjSnPzG1aFS+r4FjbzB9vvRU/fzsn2Q9S9+jijvjJKJq+QOT1K25671jYbhi44tG0PJCyH+ZuyqmhPWQ7s6z/OrsmL5AaaOFR+Iyc90J57nobIAHv330rRxgI2dT+PTSpCLieXV3JIHrOxdfcxLuY0YCg9Va0QqBTvRirLRV1qYBdJfJn99Iry9/BbLMVl/eop6tP60ASYGswWRznkWWUuJwEKAuEadCUsw1Bp8rODp9l7ZyvPTC6wYtewCYWhFNKUtJ2dYHQ5xC12DXfONOVa75oZ6zq6iGnlRLRCItFCuLyX/OY3WCe6sGkGSQk2JfmD/u+xoelbtI8s8ucnBslTUxRpk7zuD5DfXMyB66vh9i20ALHz53nt0a/xh7/1RyR1GzbloXW6O6U8t5SeYzlemA3RYpRbYAKFmTxHV1uUoKuE3KEVanOfY3XlNot2IUyC/tdgbQMhqaxqp51f45+aNyGDoM3Gaeh+hR/m/pCf+r5Hy0XF98/E+FGVg9N5tpRqWzJWoNM6X4Om7KmWoEZ4IIuM8+mIDXar0mYqMt6d4KxNR2oziNVTFFQIXjuXS07WKjVnv4unoBW9fBcgMITJ3+aPMRmz8cDwUSjZygsnu/ntmMTgRmwY7FHv0tf3l9S678N//AvcW6b4WPgFzjf8iHaa/p0hb43oI+RJcC47i7Lzbt6Y/irGgo308EmKb3gcTVMUSsFfhnaQ0PT3Xdt1PdN89N10VrZ62Z2xQnPYXKtUT9nfD068I5f4WPdBPppbQ8bu9dhShi8TiTgbxFM0aUPc6v8ik+XrcMQVgYV5hGkJuvxpZdixp9qQAmF7/wZyeHjYMvbQBKZUDIhJCs1sq1UqLRsfNA2LfWyNgPDSoY9gmIb1mtKOtprJ4lQCMjWCcgGnsHw9URJWRmG9TmnrTYz+1IFKJrHpGp/I/QER18OY8nZaF8yUWTo4hKDB7Fvjfb+a9WFkjmL9cILOinRMzTJ1vnMiSabThyceZMzpZ6umgTRTy50FgBGC5WkXGS/H+HTDv5LhjPN3pR9NcbytiCqRaWfJls0byXrqRJQbcysYPLpMThUsxWsInX+IsPciobCPaCQft3MJuTqJtBcx0bf4vz1ouxvYl/r341hA7Iv/5hgFpGE5Bwqs2IH/Ek535eXl7yNFBuJ59P50ml1Ajp4LmQIlFBqCm8M7OOw5R3f6IPN5JmJAR6UAnyYVevAkhpkAHaRMsjj8NO4Xf0yrDXRfAeZYNu9MbmK2rpjNee3UZbzKI2qIn0SbiS73oiWvUB6fRROZSO1aEXLBlc0T8tO4eiIE5sco3jVDtejjj3mUZ/ggl0QzV+M7mpdNfr87QXM4tatK/ZlPKqSEDF8QoZkpgY2kqOVZgp23shTJQ+g6+c3bybfX0X5sgZ6yMSZzvAQWu0kEgySXx3HkrMcMd6M7GrC5rkMmBhB6Pma8g8zAyprSUylIJtNTKRDvzzr1JSXLtnQMw2DSbVkTqBTfyIJ/ghcz9vOI9zJ12V4Ox0K8E6hBKYGmJM0hSdWyIpE5QemmGCqxnhfwYHKtEmcqGz1aA0oJ4sKOEpYytpv11Ko++qnl6+KrGMLG80mDP6aNGtGXuuKSHM8M/aKWqZx8/KE5fEuLKClTuYDWwl5oZpPjcBPyvrZGOr4sK/lvKhdzWcfh+SL3y0e5TfWRlCvESmtBCOaUn7RTK5RtH7PauJqduHHZcvySYDNNdrefZseldqpaRrkY9WMaBoHpEXaefZsxfzlmqkU1UrqVvitT5OqG5bHVuB0ZF+hNO7j38AuUjA8xb6ukLkNY7SghWHH3k52ewfgxHwFPEeWxW8lYqsUrwkxpC6yuZJOdfxxdWDwZXSjq3AOcX3qG1vRWfuP2L/BU798QOPn22j1qNwzeO/z2BJviK+ywJdkbn+PJoSDX9x/ndzueYT43F1e8G9s0nPNU0LrajtAMCu7tDgAAIABJREFUOg7+DO9qHT1lsJBTwXBBHlIE0VdjFFyY55Gyr9KrN5AhIzzBpzE1HQ3FHt5l44CXubxsdnreQAg4xvVrGxoNhUODB9JeWav6asCQJ868A5A6RriVcXuSzZoJEkzN5PngWb73oySGqZBuB6rYRW1+Jlc6gmwLh6jXlnFlFhIO+VBKUE0fNaKPy6KWzvJqXCM2fJFFIpEChs4eYNGTQbPzCkYin/TVk9hi3fDuN3gr5zO4/YLt/ecpWhzBDOms05vedz1jbzzLz/bdQtxu8a+SUhISmehKYkord7gktEClVgaSFPg2iY2/yamKIqQQaEqRfcHEXZkSICmNpHj/+5aVNc9SSz+m2Jxqg9ooDu9kyb3Ik9EwaRXZbF4w+Oxggg6vDUNI7CrJw6vfpzS+Hf3sH7HivYxzoYZ+c4UNy/WUnP0CMW8P9q5VuqMDSK8g1xkgPauEHmcSnIKZjcWMD19md99LtG2ZISacXHD10Zt+hTeFiwfK9zB4ppcfjHZg5K2zNgfKzlGuoybyY9ojl2B9muUlpmCy/4fUJP4au2uFpCaxK8HG0ArkWAdIIRjNrMFQNtLyhvGuP75GmxDApmQvV0wTQ7PmnEBoASNeQnHUoHAuxLcin+ODzk3cOXs9hwr8XCy0knRQCptpcuDIK+go7LlV2IVY44HFMiI8pbXwRvpn6WvaiNAFq/Ie8sJnMefOYFucZT4+jlImCB3NpuN8L8AYO015+ARaCrAhoM82jc+RT7FdIE4dI6pW8NR/AHQbQtfJaC2kcVMLcq6QV195Fakk0exBhJGGGsrBhoMSNrCY+wpEVjFz8jBy8glNLhPMy6P0sZ8QO30Gl3MA18h/Yzhi4tZhfcjke2diHK2ws3VyksbVe4jnrsO5UIc0SniqKkGpXOXAyCRziRU+EaqhRTYhfQ0w/XOOG0Gyb/ggyxPDDFZUMFRcQX7bGzRdOo0UgmW3h2xbnCWXjSwiCFSKqya5pybAZ1qKOXl6Eu+RWXKjgsHBXsYuX4Cr4HO52eIOouE3vczaA+h23bL6+i8yflWgrVApNQWglJoSQhT82wOUUieEEO8AU1jPxN8rpXp+2YsJIT4LfBagtLT0P+6sU6OkpISHH36Y4eFhnFMrnH2TNVKuQLDiHiCe24trYR1p4SoeTLuLCzUj3FV1FwW3Oek6/Dar3d3kHj1BRtRk/kZAE2i6HU8oCWaSDabi/xpJ8Lyzip9u+y1MXed1DvAw/0hEZbGebjqSI9g1O9vDAcyOCJ1lDqY9OpNem7WjEjZ6bTdwakFnpX2Zm3ynidpysUvQi0AKy/H8c4kZmpY9lhpME2i1HtrOzbEoLRAYm6tDqRRAutoa884SieajaTrR0XJiKw6Gi5Z4qSXFkSuTeJPnmacQs68dBYzkhBkPVFAyqSia6cDm2seKnMRQL6BLq9UyO1PF7EwVpWWdeDxTV6MlSa/poq+zCMgnEJ5HVzIVQa8sDzFh+XiNOgd4ab6AS+71JG1WoDamyUWPjU4vvFBSxZ/KILXqCpsWb+XZXANDWZOnQJIhIxSrcez6NRsR52o3l5TOYPr69+3Cj6h9dGNVSarVALp3I6+W78EQAs2sY/+FY1blq3eMZEEl0Rwbseg4IsODa3GdJZdSBr0p371r6qVGhAlnlm3Y3bn4Ipbh7sxkJYPHKolv3caBls387qtP8NrwcSZy8ilZnGUrE2zcOIwrV1KyGkMs2FCGSdHMGOsvn6OzYYtFVtc0pnLyyF0KWgA41SI3dJjKycO+tMBEqZNIWKM2AaHAO8w1PImOSbEUzB0qpk6rtPI1VTZ5MpvjcZPwTB25dfY1IvVTs+fpGDnBm/E3ubXpo3x/uYiSjfsomxyiZH6CspkjtMstKM2GLg0+OHKSshaF0mycM1+ktWg/npkzzOfmcvj6fZiaRr5SbF/oI5GTiy0WgVgUz8/auK64jI4Nv4NKzkL0WVAGsZl0XC+vsMV/jOiUiwd5jMmmWvaUv0mdvxcpdQYHWqlyDyKEyR+LR+kRjWSpCA7vHdTFR8iL9KbU0hZwy9QEOwLbuaHwo1yaDPPSzJ/xrn2Wkmg5YxmjjEd345URMr0mvZvqUULQLxQbtThNjh4kkpWwQOg+Bga2UV19ij5q+ab2FQyvDS1Hsb/zOL6lMAOrN/LzqiJMDXQJZSPjnJUOjLkZvufPJ9Fg4+m6j/Pgy49RNDuOefkMp4LDa8q9F2wTHGu5b+3kBVA7O0bt7BjTjnSaF+PcFSvDpzwooYilR8naaDA5LpFJ657wOAMktTxLBa0Us1qYs/MlNAa6EUJaqkIBDeoSDkySUkNTkkO79mEIjX9EQ2SDQzr4wZkY3z8dpcPVw63yn2hd7SGeMcl05M9xhCsxhMn5rOdpUjWkh6tJD1ejnEmcOQfJdYbY53uIi/ZxYChFG9VIZmYTv+NmSg+08OcpLiQIbtrwGSjZypVj38WbvwKsW5u/1dpHuTZvKxRFNZexTX6Dby6up0c1sm0qh2q1mYnWN1HCABPsh4O4Kvspvu7vENq1HE+lNPYej7Lryl/QtmEL3pU4GeZG7ElLELBQdoX4ZJzHK9tocxzH4fhtpLY9JcxQ3Hj2LI1X+q3XS1qpDilRJZ1aNmfi95KRr6eqoQITwYAtk+yCYsr9xQQvnOHtyacoTCul/vpNa1w+xk7D43dRYibYyI2cpXGN73xmaYne1VKqooNcyk3imf4XfBkVNH10P57dVmN1+uI0MiVYUEpiOpYgmZM6P4U9UYaSXWsbQhAMdx5lJnuZtu2b2Jm+kdbxn1LgPMLh8I14bE6ikyb3vfJt3NIgY9fnSA9XW4kgxCiv9uDyZ1BemMW6gy/TslSdEl9AZWYji8FDLLx1mZ9u+wTBkjLrZ+7eT3r+Opjp4b6dP2VIc9GvanlCfMrKZEVxW/AwzrSHqA5MkHS+TI6/GFe4mlXbEmOpnBIpFPVGEZnKSaGZzerIaxTW+ym/MeO/TJUN/gNBmxDiTcD3S770J/+T31+N9aQVpz71hhBir1LqyL89Vin1I+BHAK2trf8pnLeSkhJKSko48tV/RYmctbZkXuURJlqeAiER0k7g7Of5WexlhgYnuKvqLgK168hZXiU8Pkc4YaJG7eT9wIHri/dQ0Hgv7iUDjvwTkxEnc6PVRHbvutZCUnYe47MgwJYp+Xj6KNvDAYrigtKZGMWzcSZyNZ64yY2JFd2yp/oZLi0186K8iV5tA6Y/AyEkujS5YaSLj88f5NZAnPhnHic+FMZZ6cZZls11e8Kceuogw30DRJYTjB8rpHj3lPXwSp2muoeoqc5nddpJ/9tRFNAT8K0BAFPAfImb3A6TRE4+4yW1vLDtZsurytzLgy//ExXROLXX/R7faitjd+YJ0mJZRJbyEAjE3C0I75OAmeK4KkIFOh05NQTC8/z+5Pc5H6jlsLgRrqozNZPywlNcnz/Eo71/whXVhFAWifaqm7mh7BzV9lIj+6k3JvhT+VVeEgc4L7ag0HhSfIbPLvyYP861FvB1qouatD6SCmLRceyZSZKAkIoj2k3WdVYmDwy8SiRhx2i0QKTQdVybt+M/+zTrqz6OEDqGknT7Z1jRB4j4T+BYKSCRMUmWiFjKp5R6KcuM8HX9UZI5drQWy2HeFw4ym5HN0zsfQuo2nu7XuHs0g0ItRGEkDFJibrkeW9MfsXRpiKi/kOfeHKUy1MO66GUa+zrpqt1opUCYJqWjvbgiIXKz8qECrqbRr6Rn8ov9n8TUbRyXoJ8/w+Z1T1j3cwqwy/wx3u36GeWZ65lzBognvIRMhZirhKOfp7x+hFUzn8XFk+wKVaIpjZPnBxnfvocxUctJeT0fCy/xa3s95J57nqXxKPaLEey+WaQQ1jqGiTTe4uyGKZzD1RYxWdOsVnmuk4QoIqEkGcOXyV2awDbbylCGjjN/grQ6CM9mszq6xPK0i+hMJhqKIsbYUNrFspbBi+Je6kU3DkecixduptjXQY2vjxrVhxBQn7+PkfY4y2m8V1fCitL5SM4S6fHvoLx+unrqWb9UiwC8S7VsTWSx6rjM+dwqqzQnrMU3rTqbs4tV+MPz+MOLrC+sIRHYxg/bN7BY4SGZZ7cycoXJlNtL5biHy+Xea/wfYTKVX8WA/R76bHkkRYrXiiX+KZqd5FB3LyO+GGVHj/G57Tk8XXWTdeJX56ZoCH94EYGgcuQUBTKLfN96lFBITE4NvUSof5qd6RNoiRI8zgD7/B9Cf0/LbEoLsbSUx8ULt1BYMIjPP4RQilo1xHe6B2lz25ko6uewuGmt1ayEwBCKs16dTw6ssnv6cdzebsjy4ywqIVI4z1tt5wiHxki7sMCw9wKZ7gqmtRB+zUNhSRl6NBtN6KSpVGTTVTGM08VK2xnuPHA/bP8yb46+yYFYLds7s4g5z+PIG2ePuMAR9mEqHR3JXtEGSkcIHYWBSuVgakhU4BgF4jgFykZm2j4S88VkT+4CpVg5Nsu04STg+BlCS67ljIdCfkaH17Ol8xL5wVHWXxlAAs/u68S1/RPcs/dmpjM96FM6hrKqlDt6ghzbgJUyIGHL4CIIQVdlDb3338vGGY2WsMRAUWRqVEU0pmZ1epTElKlKXngeUITiCikgmJgiGJ/EbI9xxUhHGuM0ZA4QMBOgTFrookOtw0j5a9iTHqSE8M49yP53CSamWEhO4zkzzcLMHs5cnGCU8LVFTyiQ+hpgAziX342pj9IUsVT5uiZYGniaj63/AsmgwK7p/OnWF5ibXWFDmpPcTD+R4bO8pK9jw+UuGo59h0sN+3k8v5xur85KWRoIydnFdO6v2Iu8oKw5HEFFVjPD0UvMxSex5b/HdklBR1Yhv5c4idAU/aKOZ3jQ8isVOkqZrIbrGLx4EJn4G1RGktgWGyVnv0BgKY+OVBaqjka16SNfurkUS5K3MEVaz18zpwTpeV+mcMtD/19hw/8v4z8MtCmlbvoffU0IMSOE8KeqbH5g9pccdi9wUikVTX3Pa8B24N+Btl/lKN1aTtezQaSAtLwraM3/DKkWkdKSvFP6r3Qbk+hS5+zMWcSlPrQ/+HO0pImw2fB84AO477kb11V1ihu4/ducfu5JDKX9u58nEamKjOBKb4BA9wrjSGoGniZpz2DzhUEaSrM5XRugQXRRI/qwNxTxQoYXU2igsIj7CIIrq+QvrvC6bT8lRy9RWlNBfMh6SKUxydClf7Z2WcBCbw6ri46UGGE7m2/cxJ7bypkeCtP/bjshr87F0izrJFM9zfXCRmlzM/OFfZxLy7Oc7YWGCYwXVfHJrdfRtKuYSdsBXvhZJ/uWNfwFATQhKB/1k2YIZhqeACSXZR0/CXw8pfaTfHHgUkowoaf4RyZ71dvUiH6UBjdlv8WT7QGu31VKMDTCKdc1rplSApRGR94K3WIdOYStml3Kkf912+18WX4BNOihESGgij72hY7TPLTKj90PsORMp8dfbvmPIRjUq2gevIhoUGjSxK5rfNivkRWNIYSOjo6QGgUyxtjWbzGgVdEttpGllngCa0coFDx0+gjLHh/JGlvKHwwm3bmUjPQy4S9PpQNoJEzJhDsX79IC09l5TLpz8a+Y1L1ooowSHP3gtvl5N6+Avqw6HtC6efDlxxgLVFAyOYR/ZozG8nKGYytrfBakJOjxpYQuAhNJT2CGze9pXysEkYk0YvFJgvFJDDQu5t3LVkrRBchwNf6uepRU3Ktlc94+zHS2h/ay+jXLB4kG1RUYV06TNzlH1eg4wWmDiHJRKK1WlFCCk5cXeaMF0OZwK2mdplKpZ0CAEvhXFRmFKxhNJ3G7JYWtryF0i2MU+nkpzv5V4pnNTBTWYsbepTdazZPi1y2iuWbwQPJ1spdM4kqHQosxYLXpQ5TX7+flHxwiu3IBgOVgGvfsniYROU0SyKeTO8TtjCurPyaAfNsCE0iKwvOckxKlWe3lNk82MqcBmzS5u/MELZs2cDBqo30xiSkdaF7LQkFTCt/SArHsEIEFL7oswkgFjMcz9/JEloYuTWzKJCkFuhSUz2cxXbyXn92yxxJ1SBP79AAXvLXXnkfgwTHJBqOC2WgWy7YqdMIWUORqtUhiGgYyHe7Wu1lS69E13SKqpxZpv8xBQyO6lI+GoEwVkK7sZE/sonYpgCvtp1wR4xxn31qrWUiFJsGVWOWfK7q5aRValxREJqF3Em/nCeRoExmGxXXtTV5mzhFaUzLfUlXH3JGLTItFrugphowAlMDI9nB6y1YyDr7GrvvvJf9EJ46XnmJueRXhcBD6wv1U5Q/yJfEoPaynMdnCh3Y+uib8ikYv0937FVAmmsLqNghAGEQL3iR6ddpQGgOtW5iaqsGdOUOzOWnVZ6Sd2Z5bYa4eu5pAEaSrooZz9Q10Vg3y9Tuq8RW48bGBL237El8/9XXWjyZp7WrjY2/vZLjQScV8klu21nJhuo7P/+4jJG129FLB/okkt04mmZ9VaLl2Rgod7O0aJpq5SiA8jy+8CAgaZC1TjinmE5MIJVhYTEM7doLZ1VEumTM8WOohkLZIiTbHBzNnON6ZQThjFzYjE80mqLtxHxMjbZjJBDoGiYEOjp0cJZ6bD/mBNfqIQBDLHsZhZKEns+gMvEVPYRtKCaaSMQpjtfxZ3RTHVvwkNRumsDjcj+oOTL8DDfi0PcFP66pIVFdgv/0evvF33+KHBS60rfnUGVE6Ut0eJDyfzGK1UuO+oKIlLNGURr17K/Ozz9M80M4bgeK1e7u6/x0iqx5CjQ18gz+xNjVoCCXRJRQPu3EVHEbJJAiJEgYxTw/5of34Q+txpkdoEF58KgeJFW0201SK674ehCbpCn2ZtHDtmlDwVzl+Ve3RF4GHgW+mPr7wS44ZBX5NCPENrMfoOuBv/9PO8H9ylN++hds5w/BbF0jqT18DbClH1Z6YnTyVR9QVxb28wJEffYcbEpY5hGkYzLvBfxWwjZ2Gzqfg/FNMp3mRWiUNfee5VLcJU9OtdgRWmwIJoTTBmNdGYGaUMa+NupGjjBWWcHG2lIbKTqr1PqSEjnRPKl0u1WtMgaqL9a38YzxJwdIEp5emuL1rE4XKjdAFU3k9lnLoPVzZ2IyL2Ewm6Z4taz3+hc5eGrU53i0uQ6YqCwAoxTk9jf5tkgYRY598gRNqE6ayWj1VS5Xkl1kl+MVYgunCWTwTm+i3zWAiuaxPsXOqjvLoHzOY28a7ri2YgWsE6i5vLYfFdVy92DZM9r5HoyIEiFCC2OsH+fWM1zi7+S8wNR1dmmzq66c7+ya+XfRxDGxWnuZ7rstATjk/Cf06bTl71sxvH1GPslXvJ1MG2TjaR9inMeAvwlA6NkyaJs7z0zs+mNJ7wYcHT9MwPIhunmOWe1OBZ4K0/MucF1VrealCKCTW76WU4lLebpqHY+hVlomwpiQlC7M0xkZIS1/llLyepAKBwhUNsZBM8lIqdP6cVLgiQa4PpaMDrZqNbmWykBmg5eYm+IevrZkxIzRkoAIR16xWs7QClkuX5hgr8Fsmq6ZBwWQQWWhxDEEw3F5DbEbHTM/AcGWhxyKsc4/TfOfNZEUM/MtJ5NlphIIimcehrAgvN+/A0KwNiJYSvSSPvsX99esxyj+JrdTkwfBPqFL9qffBSqFIO9xDYZmTt5sWyV89zL0LWWhRgzltayohQVJVCcF9Bkqfx8erpPY0gGK1egV3n4fc4CiT/m1ojkb63OtIYk8BdMFkZhWFIy+wnG1DNVnPhwEcXQ2wmO7FtuljTLz8CwCKdk+t2ZNZ9zjkFQ4ysVgAqSD0crOQaS2ML7zIPZ0niOVv5FBRxprRqanprJTX0DMzgM+Rza25Z6hwX8Y9YOdV+y0p65ZFlFA4jIt85N0MLpSnMe3Rmfba1mKnPrJykYS5hfTTCxRHazlal7imKgfe1UuQQl9rv+2bNfjEuI5gmWOGjxWbm0JnMRqCSzk6LwecLFTfQVHXmxzO2MR4oYPbY8PkL2tYVCmBjV4KkrXckdjETE4nzuY3SQiDZAq0KaXICTZRVXGYR8RX6WE9jqHNhOKlNAN/s85NUuzmH9jB052/R+tSlzXtRVzI9ygCF+xxTMwUwJdMHn6b/MkBDpYVWDSC1LW/+qArTaNtfJhzjz6CaRho5YVsG5zEzMiks8/ANXUzbvc0leEYW0M5pDVUU15uLb5u9ybGowEuHPlrbjXOMFDjWnvptTdaWK3UyprTRGMelpYKmRu+B7WiiM3VQ7AaJ5LgRz5LeHWIP2zZRVLTsAsNw1mz9ns9UPcAhZFyBmcuclouMlzooHw2SUlIIr3LdFTXk9RtSE1DKsVzJXaeK7ZTPhRivDwv1Sav4EDHYQqjIUDQZJSxzijCv5JDV7iXeFEje/P2oAkdqUzenfkFY3V7CeSNwvmnyJrvZCXtK9hMO0ITbNvpwt93jub6jazOJEhznGduyU+uM4d0UUyvSr7neggrNaJqiRdtjzOdNZh6L3Sm4+XMJP0MpXvZOfs2dmmkNjIaRqp1airFj5LL1sZI10kIwdfu/jWClYUITWAz0rGbJqZSSAVmUQavCnizEn5wJkZTyCTgqiHPWcSGnrMA9Fc2UjPUxYaedpbTd9CpPoKh2VFYm9BAaI7rLpgUL6SRsNWDegWURd9IW6hnNCHJMHLYqfLQldXRUcCCBFm7iku3yKzKNJnteg73zv99Qds3gV8IIT6NBc4eABBCtAK/oZT6DPA0cANwEesRPaiUeulXdL7/j6P89i1kjp7n0BknJ9W9NJhdVIk+xibq8E60sk8X7NlbTPdL32TvRdtV6ISpQW+pRtXrTxE7+C+4zLO4vDFAsd0Z5Bv1biomkmy8+BztLfej0FDKxBsdYCGjmnOVTjrLHTz40kmKIhM8u30bvzjwCQzdhq7u47M936GGPhrWXeI5UqolRWriF0ihMZ7jJT8STNk8LOAz3UhDkjahW1UNcQ21CSGo2fEgWw7cia/SzcSxC7hOLFPh8hFdsHaq5lVplJIcKvCheBA79/GI+Cp3zr/GRbWHdaN2Shbca4qc7ZW5/P3ZDXTkTpNGQQqHKdrsl/EubSZ/6W70snnLfB6JXYDyulLRMVaVbZvZS4/eDAiq1CC9w1VIBZtVF7etnuT/Pv4ob7q20XKum+0zq/zoI7ev8dNQkBmPEnFmr7WSOtJb38dfOyb20etvpKGwi+wLMwTsszyiTtIrGqlXXQzlN5HQbaDrKKV4vHQzG797kNmmObS8b3HjwodIN6txLa6jG/Geny1ZQ/kCOisc1I9c4UDHJSY8uRQtznHj8FEyHhyiRevjIyqdx8WnkWi8s/NO6kcuv8cjUPJObpy9oTQ0XeO+9Q42nz9DWeMuykw/vvt+i9ef/T5KSvLTixAqh4LY+Fo+qBDgjS1xoPMYs84CyvuO4ImvcFG/Cbd7hnC4kMRQjOySOZz1ScJhB5FwLTPB/87ee0fHlV1nvr9zb2VUQiygkDMIkGBuhmYHdlY3O6hldVuWJVnRcWRb9tiz7OdRy2+N7bH9bI/n2YpWtmQFt1qdkzqRTTYzCZIgcs5AoXJA1b3nvD9uocCemfXWe/aMNX/orMUFEKjCDXXPPvt8+9vfl8HXUMbe5nJSpxeJnbeuJ6QCeH39ln6gEGhScVPE5BPjWV5we8hrRfcOAYFtHroyWeSmowzgrU3RNdXP+8RPqDCj/EVdkIKmc+fl4xyaqqLaMUfhlijKXryFxT2GpY8rMHIaiXvTOC7EyKf/GaEgFHeiyd4iqiWpHBpEy6bJZD2MPtdEbluU74ePMLPYCCxib+zn/fVnCc1PvGvObzbIZBcOsD21E4crTrgomSFRnNOXeSRSzTtee5ExA2CVehzTw5xLRPH5Vnl0l9VtK6Tg6EUP8XSo9NqaRBcrPo0rLS6M4j3RlOXl+FjXdhpsjfz41TVMDXzShyYsEVQbGtvmNGaqLS09XUFlXjEQcNAf7+Nmn8Fc4Ry5moMMKJ1f3eehoAE0o7V9DKEkUhM8KSVfdjo4MJ0ieeEnzK47CdcKqqWfS7WSy9oxesU1kIJ/7PHhTDo5OlRPw/nfoLXiCrvXG7DX7cCdWOeffTbLEksT5JXG3zUe5NHcHLEMFLI2WN26t3omgVBhNpt3GuvuY8Z4zrqPm8ETy+ReKmklzOmE1dFf5GtFvG7y1SFMIJmsJpmopsesp9r0WzSQZj8b0wk2JuLs8jrZv3SGuMcsQm03HKf4dZMaEAgskU6FWMreh33I0mVUWHaAfy++Tu2df0ShKF5VUPD1kSX27W8HYGkizvVvpJnyd/Ctx3wlruKH3kwSCSnatatovLeoLbh1EjNttSihilUKybWqJAeiU2w3HyGkykGaOBYG8dgN/M56NLFl8dUXPEyZNwQBBdLgnLmjuFHVyNminH/tFVYjc3R1fQzNrSPVUTTv8+wJ3s+ansI0F5jdmCDrcRWTNp1/zg8SDU6U5lohtheZbcZh02jdfZQ6Mcnvnvw8x1sOYTorOVll6c1tEpStJcLanMWcPivxFgJDt7Fz6DK9k+Oca9rBSF9XSe/zXIVOf9xC22vcTaznF9g1cpFd1y9iqeDpXGkaoUvfxasmKGFZOO6fHsLvtuHqbybpMXhhspMPyC7K1rfhineAkPg9Sa7YrPlbLX0s5tNowQTR6WmqtxcfSqnhGNXg8P9LIvBvNH4qSZtSKgLc+T/4+TngE8XvTeCX/41P7V88jnd08/utuzE0DU0oPqy+zNHw60TXmkkmqxkaucbaqh1dFsUSgaQHes9OM/3Md6wfaD6a78gD4FgJckBUotBw54PWQYSGRJGwb5RQLRPFbLiZ+uUpputbKeg2lK6DCVdSu6lcXIZuYe0WiiiQTVlJkSYVDbF1hLIUt2tledHnDtKLKQ7OrDAfqGHDUY0zv0ptYIHQ/mHclb3AHmKXZvEJL1eDNr7ZYi/FO6ujU5RKuQUFJ7idE5V3UhDLKDDmAAAgAElEQVQaM5UQSuR5tIjW7W0u5+8O3M+Zr/81Gw01FEFKlFIsalE0fxunusIoBDqKD4dgciltIWTK8sQ8rfdhsB2b+jk+dOKL7B26yFxdA2v6TSxkHRSWcvTmTuN3hgnt+yS3ruZ5oVWhMNGUpGvkGud3HCrB7VpeIRwW5fddIr66wa82/AnjiTzH1CgdjDAqephq3/Wu9nMlBBfbutHXRniqa4nj3mf4s9nP4Ip3cHS4jCe3Kcv25kYoUwhMITjR52XP/Cp75sYQUmK2S0vLSlOkVVmxhGPxmTDzJXVyTUlciUmWRQuJcicNf/YfqK1oISBvIq5PErB7eeznP8bKa1+j2vlzLC+n0RwLCGC0tglTaAyHmnjw8ilaFyWzda0U0gkqEzrJZA0oRUXVIJ23jaDpEimvcmXgLvJRByeefYbtxx4h9vQ4qviMK03St57B1ubDUAq7EnxiPMv2aIHza4Pove1IwK4M2oxLDIkQneYqYDluJBc9XHS34V8NMFv1FhtiA1B40mu055aIfsrALOqgCQna5ppbRNoabl5GaIrCQUHl8Shr0w1US5Njl99mMVhFOL5Gw9woZaEs3roMyUUPP9S7mPJ+pPS5bEjJ6gM30/D2JOujASq7Y8W5BC3Nn6Kv5VdYObtE+eVVUIpFLcYp+yggeUdL0BKrwKGqyWPxII+MXqY2Ya3qgeBSSXtvRHQyU9tOxdU0zQujOMsqWRMBpmosXSs0q5PzVi3G7zb42de1H4DDj3p5aXCYF3t6MRVoCu65kGHP5AaVcYORVgfnW1z8qMHO0/V2Hpov8MBCHsfSXq6PznCuO0NB7C9lylLDuoFFGsPrV0bYPlONcNxGfa2VoLxZnuWzDfchhYaGaZXSgzYIwlMNrbzvQi0PXutn0lR07/JQHTvP3rUm7O1ODGkJAO8LDuPS7NQoeMcEz5TVbQ+w6o3SYRRooIc6VYkSJtny6mKSsKkDBO5kikIuip5OInJphJSoYsdrZSZP8NgDXJmdQ5kmNjQ6zBCmkkx5NKpPvsLK1VdxR3pwJ1qotrcQD05vPT8WXwKf2EdSnLfioqnh1XVUeRIpXsBe2UM+0o4UJidaf8iCdxz76DJU1pQSlKvDEf6Tzca9bVWIkSimIZmqcZS4iiaKheYEubo/pamuwG3qNX7CPdZJFK9VYsm9SAW6MvmV1KvcMzZOZHaVfFU3xtoIZnSCSo+TsewMMmhVDgQaIVcz8ozJ/JEO6nUHC4ExZMKkoCdIVFwjUe5kob6DikKqpNuWd7Twjm2MEX3R6lTXPXjW5kgduJ0LsoLa+SyOxAjL/nFQNgoJC326vauauo0lvvvUWcb6DnIivA+paQi52Q5Q0nBCKEX38AxTqTJU2IUUOkoILnf3U7M8SdPUdSZ6O63OeAV7100LBVOSDTOD0DRSB27mcvI4LasVTIciDNdf4KbpY3xgapnhxijh2CqhRBQJzOSsuOIS/XyvLM49G3a6NHA7U7zhuIyJ5BJT3JffzcSGm9XIOMaGi7HnmvDWZfGOeKj+9CP//5KC/0XjZ44I/xPG7OwsX5+Zp9Dcw6Zp8DfFJ2kUs/iDi0RT5fxQXaSiWfDISQWGFRcqkiB+fLL4V6w6fuS6l/SSi/HKclStVYvpzF3ntLit1M1Yt3GaGUcvqqjw7cplAUHTwiQ2KTEBTZo0LE6SXfZycey9mN2Wnpcq7nQemt2g9srzbN8owxloo1aWI4FLtinqZDnh8HZsbR+gfmGQ9KlT5JsN1j5uMJP9LnMXn2TP7m8R3NXIhUSMX9u/uVOn1EGkSrwjhQZ4Yp0Y5VqJKzVQs8q8LkudKmWRKerMALWFTt5xjKGUJbxQK4M82VqgIMpQWJy+f1iRIO5Ex+SoehVW7bxWc9TilykbI94dHOI1Pt2+yDZHgkxkN7eoVt5Y+ieqXY0ITedo3MufnlnlZX+U+uibbLMNkFkyuV5r6T2t+4KgFNX5NZrsE1wU+0uixCd997LimWMw7qLJoXjN+0cUHMVrBlAKXUq2jw3yw0PWz666xzlz5zT3JNq4X4tyXCb4jghaXLLiezaD9GxNAwvVYY5dOkF9bA3f1QJqhw0w6FbX0YXCFCY20+RQ8iwVy4o1KuhaniWUiLKiBdgW2WBJUyTa91j+rwjMgsHGdIJ2bzUJw0ZIVXB/fjdfLZdIrDKTlDBX0cjAjnoMfRs2aYn21iSjVvmrfLkk0bLpG2kk7RhvfZ/hQg1Bw1NCfK5XrzERH+D+gQrmgxV401dg0sfruRnKNhZ47NlVcvt7OBJY5i99UXrG8vBcE75iAjWd0/C0PMUuucj1oIO7/XZGN2wMNtp4wG1a1ps6CBMcwwLbmiBzc9EkHCxuXBEOaDyyRNIMkxEadckodckovloX9uoU7XfPommSWqXRJX6ZCc3SWNxszviJaOPgzYrg9Tizb9eiu02ab/0FOjo+DVgOKQMtXkbPDzO8PgWFTcsoiS7X+G7jLr43OcrG4LlSwoaCeKzW6mAVHfyp9lmMBgf2MPz1P3yBPY7LvKQeoWXFQJeWr6JdE/zu7oMl+6WTJ89hPPd5Tm8/hEEPaBaHKOO0nrkJu8mSP4aphZDCKrk92Wjn2Xo7v33cRMTmqZydQd+1x+r+w5IhspA2hU0qbovXARKtuCHRhMbJSmXxlYRW4jmWtCeBf97jwRuLsythUrc8j7N3G3V/8UV+P/+LnKu00ek6TnfbUEkq43BXktnlGDaXSXrFy4M//2nUiWco91whG2vklVwc0+FASBOh6VYioRRqfYawGaDJtp2y1YsUYhNEvW4qUllaH3yEuo9+lJvPDvLG0y/ykNFKSAUAg1NvfJPOPd9EtRUQrXYaz/0OmeQdOCJjiOaLxcTQ+pBSXASsZiahC6qaLlDFeev56H6eycFP8CPHKRa849w+dAg3Ls7dAaZm8fhGa+2MRKN8+VKMz264ALY+02ITwh0dc6CsTtRbxJsc5yh5VXy4lQI07lrI0Z6Bfesb3JHdwKzZYPXqOPnoZAkQLM9sUDt+mTeBXZV3UuEMlxC32GiGqrZf47Z1H/+142m0dIBy04EQAqlgQaxTI/0siRinnGtb6LBFHSV14Hb+IdxnoYONisdPfJyLueeZlVXIbDMAVT4np775VXRvHfPl1aUKAELSsJJmrqZYei4mtNVVKxwevsBqtp1nbrnTWp80jVdue5gP/PgrfOLFp6DzPexbl/RFCyghEEKwu+JO4vk14rEZhpunGGmcQimwCZ3evmbE+TT16xskvQUMu0WRU0XIQlc6h2N76TKaWREJLtomMItdxKaSnC6sIWQzmq0RNk6TWfKQXXTTMfM/ot3/dIb+xBNP/LTP4X/q+NKXvvTEpz71qX/TY55/8UVmVlYYDjVBKYApalhmIz3Ocdc0UVeU6qQV+MrT4M6/C2Nh83+aP8CqaWfd4yLptvSVWhpmOBA+TY1Y4WH1A7KFBOPO29n0e5tu7GKv9BFabKI14iEQm+bguadL/CVhtnC1o7GI0FhoW9fkEDfPrrAveBu1MkhK5HjRcYlFbZ1xfZmwLMfV3MNiy27Wp2MkDtoRrWtForbE7W4iFLiV76VjnC3TrZlR2kWxxW0DHlBPEXJe5ZLYUySTC+5ZdGEbitGcU6AJ7BVu0ueX6HX00SAr8SkX/kIdiyuvMhsd53prb7G7DiuKFAnUe9U52i+tcrbBMl/WlOTA0AUaXTNkDy3xckUVqbq3aVyvIZ/WieTnafZY7f8tGY3Okf+b+vecx9+QJloWZpAdViJVPP+MXsaKqC0WQaxyyIKtkbhzGxH3rVR59zFbcKC0YjeTsERZ33PpFI0zLzPUIFj3Cxyag/eV3U7yzSexL76EJ3KB5+qOlsrPuoTehMmaywpcoKhbW+HOt9+kdWCSef8esgGT7FwNgTmJP5umZ+giP97zKBP+BqJlfrqXZvFv5NlrNOIRl5leWmTV66TZu73IqBOolJeo6zyuwg5A4LN5qO2v4Olil5+uJP5cjGV/RfE8BHtTfrYXomQnLiNyOSo6E8XKjcbSxRA5M2jdn7wkrFsBfFmLc0lOklE5fBs5auMRSE9jzI+RM61u45h3mV0P7CW7tExmaIWcw6R62kdm0UMhbcezYaNt0cOpboP3tBXockn2lRlUdHyQpUw35VVWMwomlH/LRjbipLDXKJVKN6eVECA0waIyyCTb8PtW2Wgu8GrAS2Wlg1b/SIkHp9Y0zpTtLcrJvHsu76m+hL8pS0XHx7n98Kc5Px3lhQuvMDP3JJ9/+xpGdBwpM6XnXkfjYK6FvuZa6l+dIO06Q3XNOEpp1GVa6Mz0YESbOefrY8DVUuJr1TW42HNzkra6NdyeCgYTT5KxRdHzM+z0+8nHnXzwK++QHTxDOD2Lpkyud+5ECdBNk1uuzJP0+nj+tgDrnjJLO60UZqzvtxegYU1jUZ9BoPCn4hxODPPBwREOTFwnHF3n07MV7IyrLQTZukOYyuD1sBtQ6Jg3zA1KMWBXbpYjGwaj64sY05J8IMhCzEd4TRLYyBJoOXVDUg3+phT++gyVXUnC85JE+5tkyq+RrzvHeqyGfMELQtAoK+mUdewyWrFnc7TX3k404MZfdxPl86MEI4u4Cyblj70f9/bttNdX0z08gjdWi5XlKzx1x8lXjFuwJAp7rhp79B5U9gC2vJ9U9bXSJ2gFs81/spRobn6tT+S475b301C7m+ZzvTjiTlpXDMpTJg5TsRqwECSpwBxO0LRq4M9KWhtTJF0Fet02DuhLOIy3AagkQp+4wgwtRKkoIaATPht3LRnctmIS0cHjasTXmEeFuiksrJRWkFWfh0ywhp7goZJUhkLizjxJevkBbIl6Dmd72ajPkkjl2CxrGGkXRjrGJXmObHHdYfPdCk419LJU5gFNoAQY9nXa15ZZCr+EmWnHrsr5ePUy4ydeod7dQcwNw6GGkn1Zxm1j78AJlkKNxTtr0OYZZEfnAM0XMrzec2DrxiLQpMm2K29QtzCOLxUlbcQod9aWriltJEnHu/GajbgzKRpWBR/u+wgP3vIIbp+d+YE0BT2FaU+9q9QsgID0kKXA644rJES2NDU0pXAkGtBMJ5hxZOE6WKQk6tdT+Gvr8Ozby/+K8bnPfW7xiSee+NL/l9f+DGn7V47MxYs4vvBFwjcf5pbRAU507kShsGNY+l11s+z8JzsT0s4D50EYgNAQNzBdrGGJV+YP9PHO6Jr1sCtFrUgh14J0qnE61SgFpfgq7y8lbGCVNGL7biUws0DDuiK8YpBLzhf/rkbTuocPD2T41s4yqzNGwqG4nb1V91pLuRAsaVa31iZCsGRLMD4YYG1DQvtjODfeodkcAhRKKoyZSlZfGmC/V/CVKvsWlw3Ynl3lqqcKJXSEMskID9/SP1K6YiXgO/1lHDmbIfHyFCu2BPGbnNQ8cBBOQo0MUKkCjDTNc2kpQrm7i2MDJznd1cNiWTWbLX4CsI96qB9e4BHXW8xV1FAfXeWOXJTcnd38nvZBq5FAN/CHX6dpI8Ouu+6m7OoZUhM+pgujvHF0lv3FnLNXXUXHxCzxWqyvptJplktMa7WlY4OORPHOhhe7NCgoUJqGZpro0kSkc7iNdv74O6O88Ut19O/6Na4/VY5pvh+MQ2yM/ZDH5v+Ba9178Dg6+VjEjgB+fb+HgpCWqKmR49KePdirovhvPovQJYHACpmBcmpnq7hcUUtBt7ToTAnxGj9Vfje55FNcG3UTdTuJbCwwlRyg3b/bkjVQGouNR2lznmQjXs1qewsqt8EvzOR5K+Sifm2aikyCoVATFD05b4vYaZ9XLOYy4LeeVYq8lHxFDXl7iLySmJV1nBoz8ToTXHRdxjStMvmm0DRuzRKAliA1xUhHjvdlarjw1I/ZZQZRQjHcHGf3ukY24bfeI2G/x8RW/DiEAtvqWyTPehidaMJfm6ZxNslGl0FC6CRHLD2l9dEAZW3lNOwYsNBeYeeWu36bE0PHcdhm+FvtP5LHxlAQDLnBndqrIGBn9Sv8drqK8x4vb4k7kEqzTKS5VkQXFS1hO+eno3zlW//Ee2/6Lwhp8NFdOlcH7iKZrMbnWyXsj9EWOUhtPMDVk4NEfJfZ0f8qCAOhrtF0fh/xuJcVoMv7EjZuoqBsKOBCdYb63BxdZa+Rin+bVftusmUfBGHj9yYkH5qaoDIHc64w+4VOeHn2hs7gKcKJJs7sDW9pZ8lN5AjrXijYt24yXVfH9w9/DFMDhzL464HfYp+8DjaILH6AjN5nIVvFuS2VyWRygPDwDB/I3Um0/zp7A68yJ5p4gftZpAGUlfjnhIP/syNDXSxGODHNfY37MCZi5J0pColqli/8ArV7vr1FIdt0+jBNVjIvW8fUQZgmwcBiyWlkXo+yK99GlfIRD/bwkrPol2vTuKVjO6GzE9Z8iBWlKmbPUB2YZpV6NslwhWgQoWwoaSKUTiBqsgnb+ufugGszJELHMf2K/E5RisXFMF0KYkLZ8K+3sfzsCi01FdhaIXYVGtYKoBRvbXeXYogmFS0rltzHStsS3wp2YGBnLA+n1F7+UHXRqY2U8sMZrcUKlKUSqeLPe120JQv0Ju8krnQ0r0b+g9Us3nOZ8sHruH/0IyozeWyuJjShselwoVctkk46cW3Y0NExpUl4sJc1bZGUfwxQrPqXSAgB6XVQZVjlWYktHkGLRzB6+oGqUowXKAxnDE0zeaBJsm9pmakXXgIgm5zjI6v9rC3GebO+gs1mkUrTwWMvfJvpI22c9R/gDXE3J2xH+czOL9Ixu8xo85ZC2KakyPrGAleCOumWJh7asNEfMxFojIR2cboqQOOil/ah80CA5bFXeTa+A7ngQyqFKxci51lik0dn80eoCy6yEFtjJFFdouGgICg9dORdlJ/9GvFgJ0nGWe/JWD7bCx7WIx48N+3nf4fxs6TtXzkyZ85SubxM6+QUUtepyCRIN5scDr5iWR8BTV5J70vGDciaxOE3yCdsbEbTsto8VTs3eFm4LGkEq/WGeWcNRsZP4iUNf9U6368LEymv3iKwA3Yl2RmNEy9OUqFrbO0PFWZhnh3jjXx+Q3CxQmf3usnOXF0pYVNKUScDVslBCDRNp6yljZkzG6UzTi9qRbP4NOklL+HOMpymYldc8fB8gScb7VDkk7QmBMOeLXHauAqSF/ZSwrOp23S+wkZtYpXntQuY562y1oGd22ha9RLc1UgfAZYmppkUWRCw4qlks2ylYfLg6gsEFwxap6ZonZpktWUbYSrZVnONL8Z2YLg3GwngJxknH29aJT/2W5Rlc9QHdFYf+SsGxqdYotPSY5NjPD7+HK+FbmYpWFUK1DomPfZxZs1K5I1li6IG157YeXrfniKYTDHa2MKLh2/juSN38NKh2/jkiz+gZ3aajcgbmPJRFBpGYRGpBPUrs9SvzGFz3Uyi7Caq7IIHL0kutecJL01Tm4qhNI2VPR4aiiXJMdHO1fZGnGMuvImoxRQxTYSSvB7eyetC8A21j8dmvsrywdsYbetjbGae308aCDRMzUSW23Fe/XtWjHK+u/woc/4anum3OlAng36a1pctJLO43v+4JcMt4hwdyRXidQKx2SygIFC+SjJVC0Jndk7HVVBkPFsbABTUmxXsNlqoyN3GiZ4zXM9fJtJp8ov1D3DxqaeQppXUKQW9UwHqvetMClVUIlFknFudhQDZ9RymYSe77AEg/8gaBR2cIolTgTIFa6MVOPVjlP/NMEZ7AeekjcQH7cjsDEMN2yhgA2El3t/QP0mTmrH8RRU02f6ZfvLcypsli6lONVIqBS4PN3Hu+hi3esfRilxDIU0CgSUAdvS/giYk6ZYLLFz6dV6Or1PfcJlmrWAlJtJgsvoMp7N1tNafpEMb5UN8la/xSaTQOS9u4jK7+T/4j3SGR/BneogK63xNqZhK5nh/0sHrnnoc3vfBxiD1y4PULc8hhE77kYfoubON48tL5E1pSVlgcaiEVBxeXKcuk+PiPV3IQsqaj1LjZGAX+xKDoOl477mF7BsCJa04I4SF1GbMBBG5yt3ZGa5NTiL7Nb6lfwwDGzom+9IX8EXyfL/b8jfVZBcPXX6bseg88apFrEL8NK4kxb+7tdlTykrKC42qVJ1WQsdY25KdkEqxoK1TKf1MsPau0tbFWgd79j9M7eQgejBQEpZ1mnkC9utEC78MaDTE3oPz4jUS5Xkq4xG8mbeJcD8KMKXCiEyReVhaeZwJLiNIzhm3Tk4KylZ24U604Yx2cX6mjKXo9wAT3W5ne+e9rAwaDFdrqKLvqQDu0900RKzS+MlOLwb20jUZQuO66qPTHAEJM65HkPIGL+nNxE1JXgvm6E+4EAiWZJwXXngDU0l0u43H//qv6BobJ+mrh6vW3BOahvA2cTXayS5hEfklilUDDE+a0gkCGz4J3kacy7Mo3YYtk0TPplEoOi+/yEjNL1sqBsrCoa/XFmhIdeCcNHmmcpVGXzn1mRRhdwd1qpxj8zlO1ilMAbpSmG4XE9v2oelJJHqpyeuKr56W4dOMNT5olUCVxBc7idQUV7r385MjD6KExovK6iKVwF/tq6WgCfTeVh57Jkz98gzSNBh55m2c7gPWumj48ac7SXpHCfhXrHlZtNi7MnB3ye4QIK5lWM0tUC4XMXNRguENKo4lEJpCSYH34Ae3ZLl+yuNnSdu/YszOzjIaDOAIhWiZmeGdnXtY9FfSuTRKh2+MTZm1jCrDS660SYt5XGQbNTzTkmAmj7A7qPqlh4iVh5j4zk/YnEWmu4xMUzcIjZzPRqSskgv1/84SsFUm9YsX2T0W58jVMeLBR5C6AyEg5LrONJuWVIr5xmVqal8gu9bDoZUO2jqDiHiyROxVKNbXh+mx2bjmdvCKu5VbuprRL4xhGBIUaPYGMss+sitl6HYbor4KNZ9HScV7Fgo8E7ZjaJZJ/O3jUQ6vz/NabRRHPs8LobvY4giBUApdKfatGyxqUeb9ARaCVYRja5w7+SYXCwUqrri5v/L99Nl7meICC4GqomuA1S16u/wJRwZPU3UqjZ5Lka3tZn/9LyA0naS6mx2n/hH7wyYF3ZKGCK0MkDtynHFhR2uw0zWe4aXJi5zw/RESgR2DRxe/RC5bzqq/aKSsFHvUOR4QT9FhjrEQ7We67GESju2lsgXAZHk7j++ZJ/LCmxQ0H6amI3WdghCc3b4Lc8aDhqTcEUfPB9Ht9cjMpt6YjmarJyoVA16Np3Z6MTWY8gWoyCSpja+RnnWgtglGRSd/pj2B4bchdlnlOxML1rdKxxayYgAXdh5lsLkNgKnGTjj5Jh2FDMftTh6/cBKlZbnMIQxs1r0t8k+UJpiqsoQyLYkKxdO11bxY+1v8wZ4n6L5qw1TrVuKs2Ukl64sLuoaes1AutRFAc1mClRoae4xWS3UfxdHsIW4W+/nL1S8y/9JzaHLTrAc2v5tIVaHrgr79exivT/GcOUW/Kq6hCk5nnPRrirLqLLV7VxH6FgAqrIoudfft4sJ3B0lW3Uoh6ydEgvjlFdq67XjUdTShLHRYCJTSuE4fncraZF3YkNxuE3SIEdoZYeVyBaPTzZR3JtAd7czOLEDETaayCyUtrqFCYBZcBAJbzQUKg9SOSeQ7PmLxWhqlJdujlMbVmGUAvxkTkvisEmMJ3bUxKKzWtZ5gL3NmkVMmLU6UHcE9mhts9WCrp+DsRSvMsVDXxQUVYN/Vy/z6+lkGKw6hTTp5ebcHE4WmJBWrV3nelmCHvRW7qVGQEhuKw/HLWCiqwly8SObU97GF9mJvOlyUoZCs5BZIVt8FQhFPVHFtuZ9CuNgFrKDJM4Zyazd0NMO5lh6azAgyXZRDkgp//TUrYbuxcqsgH/XjqEiUStxvzh/kdHIfh+3TxWcEXMrOiogS13PF87V2B3GPzlttdt4T/iji89/Eme0kYlQwRZgqVUEZRVs2oCxRR13mB+TMHgpyBwH9Syj8GOlhluqWS3xJFOS0BELqKCERykbF1P0Y621M6jFMYxaKkkGmYZDamMBZGKN9qRpd7gNN4NB13l9Tjrkrz8v2PFeCRUukzU2hMLjT00nt/K1Utd6LHu7i28MFDPRS6Xkzoc2WBbkSKNAflyzqUUwlUUphmiZLDgedv/wpfNMJ0u5lZDJPbiiKOSnZy34u5fJMhk4y5JihJ30PBXvy3QuaEEghSNRUYc8WKMts/b5zaoHHn/4Hrmzbz2BnP0PhVjTx77Clc3y722W1PSjF/QMXuW01xDIJprIXOXY5wEKwGmdhg9d6dliJvJKlJjIbJmLR4PXDD6KERW85euJpMtoIp/u6OHnwwaJ3s6CgFOcqLGmkQqmRQ2M23Ebd8gwKHd3eUDrnmmYfZdtMzlwceVfTj8XFXbaSNrW5NCmWjDTRtgYUilD/KrWaKtEmZqLP0Tzy84S7tvHTHj9L2v6FY3Z2lm984xuW/+jR22krC/DMjsMUdJ3zqgfHbIqjjT9GaIr8g2lWVoJUX0oS9zg53R5GagKtQ3FndR3VFY2w82Fm3/hasepuTdWCxw9Cw+dfY0f/azyrPVSUSNARCu49O84vvvhjppvuYcy/gswvoNnCiOlVtDITQ9PwhLLcc8cLaJoCHLTWfYH6sjbWvnIFWTBRSjGdukZXYB+a0DkAFCLzpJ7+FvfefxcRUY2rzE4u3YbD2UMmNoEn2MbxJ1P4pKLRIQiuSH737SQLLU72L46x46Xv4T70W7iWCnypp6ok+YCUNEcWCCXjhONr+Lp7GFkM8mz3NkzNEs19UClqk1GWlWC5ECt1lIVja+jSkiKwYbJz6hzpaIZIpYtCfRfllb0E9BQBf4RM+SDBNcWfzr3GkNhOZTLIfH+YEdFBpxhFCnimfTd/qz9eEuctKIjqzUQDlUhtE0oyaWOUbjGCRPDHPX08vQLflJaG2uZY1qr5vYb38p9/JUzTyNPYeYSCBJQi5cmAMiIAACAASURBVHKzFKigNrFO+01ZQpV7GD0xSf3FRaJlTkxnByMVCWStjSvhFgwdK1lSGrm6NNWL50mvBVla7uTZ8MPkKfJNtGKxWWioYtdcqfFDQdZbUfy99bPTbXUMLf8FkaBBx+ISs/k6LtLHkr+CpNNtoaxKFmuQN+zwi8cwlM6g3sfNgUmabvonotHTRBbaaHTY8TqHiY4NIcwpcPazUfCD02B3up06WU5IBYsIiyXhYFM6e6OdxOQlS7Zhq+ZUuqumqTifnmGxys/CvJvPr+ns8xQsBffKea7cbudDrSlsRVB6SzlFIISd9FI19pY081oZANmuFP07/gqhm/iAD8sv8w3tUygFdgy65SDpTBDDs4+LM1eoH3MSqMuSXPSQXfbgCWWp7E4itPMEWy8z8+bvkI20s3zxcWr3fheESWvnGcyZQwhlwZCaZqe+7W5sZ8+RSlRzdeAe/IFF4vHakvPHynI7odA4PeIamrZVmtcx8KoEfyI+R8G0us4PLRXoGtqgPlL0/kyZxbsGmi3MfKiJ797ux9TghLLxg5nn+fTC3/D57f/Iq3oZJqr0elOa6M+d51f1FgbKddoiBhFfG3/btIvDyUFaVpyYKyOYS0MUZk9i23WQqK0au+d2KvUaOkWKSaYQKTtCCUBiw6BXXEMBNvV+DGWVFufKa/j7PVUcu7xGKLGOQKM1fisZdQXUlo+pVBpT69torziHkJKCsnFq4SY8wrCusYjcRrQUp+wjW7zDzY7SIrVj0ZbAVdXJ+ESGH2vvxURH1xX3mVFqVDkbgRHiDSfZcNQhc70EFg7iibdQ5fhDyiqGWUjsI6AmSws6KPzzt2DPVeKOdOOKd6B06KMcWVnOG/lBIhtzSHcZVxxuzO2WVdQDV06yVF7NYz07mfr765iG5OytPrYyVUU5a/ym+hva52to7fw0nt27iQ79EX/AOQbpo1ddAwHPyIe5oN3Ej4qNJF84m8GpHFAoTlFd0OLOsPGdP2bt6i3WZqJ4a7TifHajsRwvJ1J3jWTVVeTWtCsNIQQOrQzKIOsJ4J4ZQsulLcR8eZbZcCuy2B1vojHu8ZTijFSK53fuwXHpBH0xAxNJKBkllIjyVmd/yS1HAgfS59DyG2zEbMw6WjF1vdhIY7LhKuPwpUpeOXK4lLChLH3SwPR5YhvL6G0PWp+rEjgddoaqtuMxt9FBuHRRq7NJOo82gNCIFZt+rE2Tjpw9Qk2ymhXfaCnW6emE1dwHJJe8hORakWcHFV0xzv/ka4S7/vy/ywX+rcfPkrZ/4ZiamsI0raTHVIo3NiRGsfvFlLBYXo0oEm2FkEzcbCd4Fda87iL5XGAqmL46jH35HaZeeoHYPYfQhcJQlg/a9do52s06AoFFNM2kV1zDhoEhLbPt3cODJPytxNx28qknsXZ8Or5knv0rSyzu3kFn33Eim6K3Ks/c0F+Rb/wNGo71EX1qFAQ0eXstvlMRrnhvKoH3jW+Te+n7bPvaV2+AhVuAfZx/cQrTSIAmaHRoXA3qxCt0bl006I/UsuoKcSFtMudvZLi2aCurFLqS7Jodpy4ZRSK5unaBNccdpXZvKWChvNoqC2KVQbRiAlubjPLg5bfRamrZUfctOlquoxoFI690EfN0kxaSpP9l+vtfBVGATghxgoTs5U+1/0hBPIqNh/gD9QSdjDGobb9BWd8im4bHJqk0kpxv7kEKC8fqUtesuypsRKerSYwk6KqaYbkiyLqrvISMFJRgYHqYP1s4zUPJz/DXte/j9dDtDNa1MlTbzC1jA2jb93Nk7DI9F/+S+J1+bCudHHc4qH68g2p3JZcT+ta9wuBgzXE67hll+J2f42XzIOfFgdLvN2VVUBJNmlYXmNARwGcGM0xlB5isvLWUePWNDLJ9uIaXb1rmgttBb76BBX9VqSyKlFvkY2V1EDZHlpitDKGwEuVeOUjNzg8TCOxheihE4Olx9ilQqpuLahanPUVEjuPZt41oIsfORDM6OkZRcthacxVSSK47xqgTVrlLaor5qixNKx5uRGT1q8tc8Q4gKyS3N9xGX/5lUCY3eeG6r4C+2eQpITlfRmbNiadqg9hEgPVoBspFaX2M12g8oz9kuYQwwp28SnUmwpS7hV5xjQ4xwuJgNQsDsxzsbiG3kmBj2Ur4hB4i0KIjtGlLXBQTT2iE45lmDniihIRZ7FCT6E3vABKUTqP6DapDNTz4kI2JkSCXL7eTSEwisCxzDhY6mYqVc2UA4iEd6izSnqYkTfFvcM5VTt5lA0tYA/uaQf3qu83aAYKtPp5cXcde49qyvZI6r/ruZG9ikMH8LKaoAQRSCRYDVdTH49Qa5TiSJr6lAnNVNj659zMYRf7h59xw83eeRRUKCJsNp/8IIWxUu2FmwyQkA2jVt3CiM4gUAl2Z/CJfpQMLrfzc1Js87bud01V6kQ4hmA9U0rRg0KXaqN+oYOPcfyAefpuUY424liZLHq9vnfGxvfjJ8fXEnYzHW+nUVgALabShAUXf4dK+qUgyV9amwCltnAumCOTXMF2VFgoqJEn796j1SmZ3n0NpmxnZWyTCJ2k89+9Jp+5AcRe7eu4iOf8V1hpOFZF9O4GFw7jjnSilSKgsfuFGCA0hTVrdu9FSEdZ81RZ6W+wIr01GqUvFcEbtCFXFZJWNoNwsd1qHf1T+kM7CEMY3Jhi1nUP/9zeznH+dTowS8vuaeRfn9f3WG4SgoCl+WC9pGx9GoVACxl3TRH7yBbyJj6CkVgoTUJxjQMQQNMZ7qJJlpD0TbHGDRSlvE0rccF9ho6ae5fgidmc58+FWXLkMumlaVlibG7zNgxW5d9dDDcwFs4RjOrWJdZb9FQzVNm3FFiRV7gVeLnuAfNBWOgchJbpp0rhoJczixhMBfKkEU+lBwkvT/Nxzayy2PEjLmpvweg/Qg4atGM6tv2eaJnOzMbp6DrE89RKxtWacjg0is7vQYy3s9th4ocQuV1ht59bzpRDkVz04azPWJWqKnJj67+beT2P8LGn7F46WlhZ0XbeQNqW46coFXtp7mAKgIdlXdhzYnDiC6Jrkm3frNC3moTiJBIryRIqoy87pxkrk8BhCaBQcCWaq85RHdPYOnsDsdCAaoUMf4Q/MJ5g+1c/es0M0RCUXd36aicAEU1UhGhcmqF+aZdGTxa95iJLFFwsSkUkQkjHVQTTTyK1vfY504peolpYZ75K2zqIWp06WU6X8RJLnMVx2NEc9K0+P0RVoQxoLzF67QmPfDlxlfoQQVNksNXWLPA92BX9/RlLZeJh1U+OCP2BZZxXJ0IdmM4QTm5ZRiv68j3jKwN7qsPSbpKIutlbkXQgWVs9RYa9GVAEKwok4t1edIy+ul3bA3qYCqxHrGL7AIkpYnoCjqotB0UdEq6ZQTGgMpRhkO7tWvfRWDWHXDQrFbtf3LfwjTevTjOJi+9B5QONIRzXBmgPo+T6uvJNnSMpSkqMpiVAmik0PPEFUpUFo7EtcJ1tZKJVzJRpvde7krfU0Xw7U8Ye/1UKHGMUuz9Dzxm/S6a3gUnUjKrOAFaokt6rXLWKyEJRXpLnu7S4eZhNZsMoEmpIce+0pylIRIk272Ltu4JsfQM/P8pu267wUupXG0WF2XT+PRBBe93CT16SKBRYDlaXdr9X8t5nESnoWp+lensWd38DhyHFw4x3aCrsJ3WP57y1dXaVbgV68vr1V92AlBZIzwQUuF4Z5XNx74/pkBVIkx12nCQ0l2fQMsrXUE5cJBMkb0D3L1qs24qIsFKNDDaEhS2vEdo8szS8lBbEJHw2HlxG6wluXYX1gFZJW+WPJX86z4WNIIbBh8Ac8QQcj9Lsu0s9Fq8ImBalFD5oUzKfm6RBebELDZrNTv/29xCOLKPkWYHFi3kq0cUtvDVTdhhCvoCgghBXwEYBUxLUzzFz4Lyhl4iu3kfN9gPPxJnYJxR7lJCcKNJvVnE7EuBRsLz4vGhJYEQHW49fBaSBU0a5qpejcccNipmmCu97fxTZd8tVXxkpSEpoUpKdvY16+yu6qel4Vgrwp0ZXiYERwT34PIQKsCBOhwUzITkFYsjUS+GwO/unLX6Xn9ScRyxGySis2spj4k9MM1LTz+W3lSEHxGReklM/6fCRs169jn9jBuYpKy3qu6JWpskPkZAMyoHDF2oknqrhY9RJ9/S9RVkSPVa3GwKW7CC9uEHOnOGCfRRMKITTK4zbcRgpRzlZHqxL0LmTwhLbjUnbecYxh1lejiwo0Yekh6ph0aBfJVdgt2soNHbVKM4iHT+G+/mFAwz4J5epTbEzqUGdSHrsDd7wTa8uh8AlH8bjW5sk2/SpT+7qQ+uamqziVEGhS0BJxs1jv4IvFOKlLReNGhAeNCe5+/Q2cwzZAsvarGdh4hVGs2LVNXcM+r/H1+k/CDaVzgIzIl3ijQkHv4mFGAnmqTIuKopQqynko0m7JqGEnahrWfMsFwKOBVNaWeLMVVhVPvoTAKVwrSzj85fzg2EdLvsVHTz7PSlUdV7r3bl1z8fVCSobrmi0PYaW47/wJCroHNqstynKAeUF7yKpWaEV/WkBIydGTz+OPT4HQ6Ru5xNXuvRYKByS8AX5w7BP80vhxOrN2OoYdCGurVIovUpkoAfMVNqZCLubtk9TMnGL7nhfRis+XJ7DIVVMyHu23Gh4E1qod6AcGcDUYdNw6XHq9khZPdu5/B2Vdfpa0/YtHY2MjH/nIR5iamqI2n8d48kf8X3/zn7jU1UuoZYbu/qHNiiDGgJ/3fC9mrVF6jqhzgbkKH0MNAlODdbe7JP2gpKJtQeHKVSCFYDyoOPDOAq4pG9dvVdx0corbxmdB15mqu4OZaiffPXoQU1Po5m089uzXUMyyGgSSOd6IvpfA5ARTrhD/NfxejLDO50O/yMdfeIYP21pZ0WK8UBQXBChfi2PYFxDtDTi870NbquTqnz9HPvVDTMNACB2n/+dA1LEuYaRyS+nckFZzwcF0lGzATsxXBqKltLO8JWWnp9DJZbWMQ84z4EiyLxHh785KzpfrqNEXcEZGSbTtwxtbIhOfJMMkoXwz/tAO7P4F8uHTN6xZOuX1dzO5ngaliMdDKKkxRid/on3WUv4WlnguqCJaNETF5MPcvDzLZ4N/xrDZTkvTIF11w4wc6+b74qOW3ZVp8gu5JT605wmeffZZYrFzjHQ2lpIchaRVTTBBR3HHKim42qDvUbj6Q9wp9a7nZbPsXdDsPKMe5jPiL4AC/pYz/PBFH6ljdmxFjT+7gNuM1xkVnVxnOwftleyZn2OuomYrqUFYukbSZN3vp2v8EvXLsxSA9SKS23l1gAemX+P15XYMNBZrG1BdbXy3IsRjYoGjdg/vAJt6ZNzwvdPYssfSpKTjwhJ1bkfperxVOdSwYVlwKUrdakIIdrqa+c/eOb4Q+gG/sfQ4lnb9JjtHcM2tuHTzQwgEfSOXqJ+YpQ+NBVuY7vgUKbfDQuQ0hdaQ4tdrctgLlh7VJlBRUpiREBkOYHOZCH2LgxIILpFMWUnbir8GU2hFHT/FoOqjXY2WkHApYXW8ktSyG6kpxhtSTDZmecR5O4/e8VFGzgmW3/Iw8+bv4KkeJr3aRU+kndzcOpqtnPmHP0RXOIcym0kt/wW6MEFpxIy3byhjF+ioHMCZEahCC4P2cbTi1s0wHXRtXOWC6sLAWrzc2UEMwJU6Tnk2xL1XmmiIGPy3CdutH+iiti3A0NtzeC7H+OCkg5kaOy0rBuEI/DD8u/zOvffRMjLBl98+TV10FTMXB203SNjh1rFVzeCsb+cNBWbxz0sFF2rCHDkUZO3rx1HlZhGEMHEN/oAzDceQHHwXUt3LtVLCkqg/QcVyG8cue0t81drEOkoTrKXHOW6s0ugwmfZk8QUWS9p/xaMTCK7QkqhhQ64V7xMoJRG6YKdtN/X5FCPaAkv5HI1LaQ7W3g+GzmXbdLE5QSCVxt5aQWD5HVrUNDUywFj2XlDfhf+mez8RPkFg4QjueEfxDgti8Y+yFpHc7LWjiuhLxFCUVU6SrRzGHenCdmmBiUqHlbzcgDoFg+U0uWtpnvYSkgGer9iKk5qS3OR6iQPyR+SbBM5hnY0ui7Q5Krr4E54oeePuqL+0tbEqzn2bgmPzBlNFo3PQcOaC1JoPgKsIP2OVE6UyOD3xfZKOI2i2Ouv9BT+eeDsF1xrhuevMtoasY8DW55lN41qZQ8+mmOvZXfQ81jGAjKuMu44/S9/IANe6+km7vUw0dyM1i1wqiwicQvHiniM0ryzeEFuwXqOkdZabpW0shDjn8uDLWucSXp7l8Wf+H/beOzyO6z7Ufs/MFmBRFr33DpIgQYKdokhRXbKK1dztyJad+Etif46dYvvLjVMcx/FNHCef4+vIRW6S4khWl6xeKNIsIAkSAAGiEL1jd7ELYIEtM+f+MbMLgKQlMZFIypr3efiAOxjsnDltfvOrP2T/xivpL6wExfDh7UyvZ+euddxn66VkPESB13ATUKREUzR+vXofJ2pvQVcU9lPDl1b911nzK8U9hu5bixLvQ0jSgnhKqsgoOYmi6vG9wTeWx/M915HTeFY9gIuCJbT9DyguLqa42Mg7E/zJfaQ9+hg7gFZ3ObreHHc6DnVnIRg0Uv5EdRQHjKWlkBwUHKxMZjHBQ8Ki4YukSiPjUWzix0qylPaHeHiHSlml4JPuetypOaQ3dzGQY0dTRLzm4FBBOQXjQwjAlTNHyZ6fIRSdAW4notjRTWfz1uwUXul4kGhWIZrD2OSklPiyUnDNJ6MuzBMOvY5dtaNHh9EiEWIbQXRxCFtiPp6IJH/O0LBFdSMIIWfyBL4KOz3ZHlpKTadNcyNocWsEprvR0AniYmzOxTOVAbYPDFLScRyBIDthNVO9PSy4u0huDDI/5mIuMMmkOkJB5knSFHOx6zA+Xklv74L5oBB0U8vJqTqiaQlEE417RRc0dBwiL3GCtYktNByeITK/l6nb91GmSMrkCWOPU6BTrDKThqpowNHUAvYMDXHk2BHGUtM5tUzFr6CzmxcZoAzNrKP0Qs51NLd8nr6kRDzRA9ijVxJVbSB1o0qFyTGxiRflVcyJFJLK53mkop6IV0MVgltdNja2/gC7S+cruX9LBBuPlGt87r+e5hrfMCfqNjCRlW/khTPCGVl0JnBg/eUUj/ZRND5ELPP4wHw6I0E3u3N7aXHX8y+Xf4qIYgfgF7KBTYE2o7yNWGYeFUaEoSclLe5MrgtwBhaovPqK+D0EZjs5tNhKOQU0JhgZ0SUSoQgKs0v4Vsm36H65lWkxawYhGN183K3wi6ZrDQ0s0Fa7gQ888SMKJobIj44RSHIAkvGMOY7WzHN5li2+SQlgIqKwGBaUuDTDhBKFvFfCNG/XyDOcmpC6Db8/39CypaQz7zaijXVpaMFzRyd4IXQDwbIE6mUbVbKH3tlVLFR68EQDAEynh8ndsomCmnoUm5/2vaMseCpY9FSiGwXUALC7u5kc2c/BwABbU9aT4llNUTgNgcBf+HJsuiClwO/PQ0EnX51hNB5dq5ORPkRD9QtU0kK73kBqV5Q1+gx/Xv9NosLGdLJGtus5hGcrEomqKtTtKKBuaz55FW7GT/tpv7+bEk1BeKIUe6IMZ9rYW5/AlRuMYJTUiRHWD3YZ7hwIXneHCLgdrPdGUPqHmDnxK65pvIdnNxcazvOKYOOiwNNRg6fDBfKfsJnZ93XfaZJH2lDZStQ0d10vH6dadMU13KvESdakTVA4qi0lFAYimXks6vN4FxKY9LyKFnSizmSj68qSZkMq+P15IASZYt584ZGg62QFoyjJKnkynZxoGp2hCE6xj+P2QZw4mRL++BqVCJT5CDs/+bdw/H5Gp1KYKPolhvmaJflXgFQ0ghmdJMxUmnMZpiMSny54fS5Klk0Q1iUl1a8ztOrnIHREhQ17TwWnC5vMLyH+hTMzM8wGZilTN4CEJl8Uu3QQkUu+f0KB0DpJaE0UddLYw07qq4kqNjORt+SYEssLJo2KGFNRPtYXYe1MIhNKI2PKDJOzKSxGUxlGUOo0vER1qdM/10r/XBue0Cg2MYxiy8Xv9JCgO5h39wE6AxX51I3OMp9XzpDqMQMeJPZAmGhGAxFtlELPOKqmoQFCapyWLkjfjEgyUnTMJaXGrQrxLogF+SgK/XmFy/ZN4q4ym3teY3/VFWY+SCPHYPFoX9wsKpEUTgyxvfklhvPL0VAMv+bQNL8/OU54jQt1VSJr+5uZn+ylWA8x5u6hr6DBrPWroEmdXnslqzmxlLVFKvj9+cj5THLSZskPZ1KgZzCa6sUj+vD7l/zfotLG94c/xJBWyQMbloIcLiaW0PY24Vq/Pu77dfKvvsZx75Wkpk0w682h6UTbinM9pl+bwDABDWU5gTnc83BTcwBVg+GMFKOylZRkzC0wkwTFU5KPv6ChaK3MKSrD5VWMpM4gRZKxEDSd4pE+w0NBQkpeEKHoCEWySm/jMXk7mlSwaRqlI6fxLI6gTc9Ach0SQ0uCxCgEvjCP1CYIzz6E3XmZka9JN3zmlGUROuGuef4gECLQmEh0dD83Btfza/sxRtOyVjjHAzxb6OKyYDGrxgdozytjX/U6dCFoLtVoKM/ho+MprJ1JYt7dxdDGFxGKDrogfAwOLxjOpMV6K4qio0uFiYkKMyWB8XB+snE7ejwHnrHJqbrGttDr7Kj9DULAwnWgHBhDqrqhrtGI7+HVshNF6EZ+KylwyWT6+/uRmmTsjOjVy3mJPbzA0WgFLbarMcp1SX6UuInsox5cpT3Udfw9CbKe8sJ8Hs66PB6tqEv4ifi00edqLIpUQZMaM81PUVT1a56w3UpUGFF5YeDh3Xu4vHWS0JCPiezCeL9KReFwo+G7pkidm154mMb+ZoLSAQg0KVjU7HhKGomKpTQDGgoH3GuNQZSGmcQIRlBwSLhlzM733RJNSGxSctstN8Tn99DQEIf7htDSk2mRs7iiY9TrxssLOpx64gj7nS1ousYzjhZuCG8gR7rRkRzKZCl/GKCpKkMF5RROGMKmMEdvNEtjKj1Mum2lxjLXroPdvJQOjsecpCyEWdsQjae18o5/CK2nAk+JxhONDWhmkuDYU3UknMOjZR9EKio2GeUz3h/icwyT2ydJ15OoGHJxcJWXx3v/jZwbnOzacjPqrinCr2YgpFHEXBUqCRk9lOz6NqVqBKNn9iFyICBVcjo+iihwGGZTCV5PEUkuH+nuSYo9m5gIGuONAHfaBIqiUSO6qJJdqDU1NE82opvjr0uJPW+U2+a/QufibihoIugq5uFneljdmEvKbBR0Q4upITmRrfDM5SlIFQ5qM2zwz69w55h0Z/LDNeWEhUDgYGdiHlt+o9HY2UbefCr6rhxuKcmg9OfdLETcuLZ/keC+fybc/Wtjf2vczXfvuptoXPIRPCduJJcJfiY+GdcS/UvoNNeHXLzkaCcowvE5G3bNkzvnobru91BCJ+k81karuJqcnNMgYHKigtmAkRMsUwmiCEhVnITGTjHmzGBc+IwXASmZ9TzObyrdSNG3bJbI+LWaAzYaOo+iyCx6kruRIhJzWzKITQup4PLWxVMgDYQ1fJphIZjRBF5Npyavj+lVPwdhjJsUEXyrQshZdfn0iguDmq7h3+ykKrmMy102vvdqHwdyZygo/C7VomtJaFRByzfava67g0cro0TVWLlD80VKSj468TRfaGtlNPQHYFMRZkLjNJtgPAQ+DfbNa2SKWcb8T+MJDRt96CwiP7Uej9R5teBFmia3EjPjSwQdhakoeM3RFOTOq4znZICIANmkSZ07nn+Qkcw8ikb78QWTGShqomtHDdoy6+hy14aVgUxL2uG60T6y/SEKT+2lcGIQ1/gcrXVNJM8H2Hz8dQomhpbFRRh7Qc7kEE1Hf8BC0nrmE5M4nZRKSDc0n1JI2pQc1HCE6ZL/IG++mNVDyRxONTRlNgxfcGE2b34+lZ7u7YjgWh6pvp8dixVcP9GEIlR8Yg6BYDaQRevxPeQnteAqW8WHt5TQWLmVptJ0LgUsoe1tZv8jj/C61JGBbGb9WTQdOUqWx7N0giooTZvhtEgjarrZ1w4lA0Z6hQd3hqkZUagbniaqqmTMLZAeXEQiuOdZI+eSANpLKvj857+Kpi4N4Y19p7nixHEckShhm0ra4XlCTYafSpXeyydbOrGl9bB7+GXmjy3SXpAT3zhEbFZLiRqcXXoTlVEKxl+hcMcemgcioBai2gqWrHRA6niUbcEUcmaaAJ0yLZc1SjMtVBGWhiN1TGtoJB+G16vXxoU6XVE5XlpNe7HGPzR7aUjrMqJdFeNtKyHVixpWmZvNof3ENaxJ0WifVc2N3digR9Oy4qV1MKP3hJRcNXCSHWsPLCXvBMKbk4FZQ2DTwP2QQs+qPDo95eQlnGYyNw+nP8Idd5WTo7gQqsAZCZnCsIadKJfzKkLAzbbXaBdXEZFGCHvRkRA3vy5xyiv4yfVb0LVDfGjyMIOF2zmwaDM3MqOGrBQKQmpm0nUjncN8hosetToedBKWgFDoz09mODeJ3a8/iarVEcUW14yZCc3QpeDxq+8kuNdJY8dhQKIIKHTlUDe1B1sZRM7cWM2fpZ4xGof6CDrXcNesg7zAPGOhdobTMijyTpO7YU18vGNBOAgjO/p+ezcZ4VRypZsJ4eeoOE1UMxzmNQEvJ/kYmHOQ4erjgP0EyE8AdhBgR1A81m8anwwX4MS8IBV1M5S6ItQnmxGSEuOlArn0DFBgIi+RmWwNlzKLIkAXIItsDCphBrNdS5HAph+gLlVez9kYP66hMpmZwvvSO+k9XWrkftPhqikXyflB2h/4DgDpqwr4j8l/pmZ6PXVTWxBSkJTTBWrECEKQy59NGnNZrRT4P40v9XkW1NNkZg2RkWVUKFFK27j6yGcZme/hpJpKJOxYdo/QJeB4fqEhDkkdVWps97cAcCp4BdEeB7JnEAm0tM5Q9TCrDQAAIABJREFUc10JNptCNKojhCBYYywBXShEtCj7+zv43LqNcXeOl1NziXiD5jUlr63dwFSCSu5CHsmaSnlWIpHROWTUDMlVVGzZtYRnB0n7yB9yMmMdEdXMSC2laXZWOSS3ERWx3IgKbc5yUkSvIbBBXKhxL+jszrsTNWRDqDs5njnNbCAlXt82JXWKouJWI8p21ghkCughyC0hJATPyGOsDtRim+qirTJ1pU9WXAiTcetB376H2CGb0fIS6M5IWnaeSizsOLfjwyTMVJpeazATjW+KhqkeCBfvw2YKbDFBL3q6GLJMKXDZ9cfd6XTnljJqT8dZ4ORUOMwTjclcE07jupw76J3+e5bKdiz93ZrcOf75O9+geWMtSal+7m24m6gCdqlx1/ivGQ1XMxrWkY45nnEcQ0NHpCi4Iw3YIyn4ogozIhnNcRmqPEmZq4gNaWuMrxcR9qsCGRqGpJXXjQd2SMlwyiI2mbDMEi/ImQ9QPNiFBAqB+YQcOpRq4qmPztxXzGPLZVlF6tSNDVLZFYLAMCO5xby8/QY0VWU6I5fNx1+PN0kHTrvKmHTmMpGmkKacor12/dLzTmL2eZQE58/QnKvIHLuOm4b3oOoqq6eDDO84yXbb41TRFW+DyzUHCIpqivn7K/6SnrY2eF4wjpcD9h5j9KXE4Z0ku2EaYXsNt3KQqrSfAZbQ9jtFs3+eX7Z1Mts3SG7Mpq/reDPSqRx2kLxzJ7asLNzba3Ad/hOGfArtE/k4F2xETX8IRYeKkUyiQGuxZNv8BNkz82gxR8tlvkctNauWfB3AMD+6nOx0OXGEVQp9s8icLBaGExCpYWZO7yS7L48tyS+zIekEe2vKkfOCaFLqijch28w0tuCc+Z3Gj9RFH+tuvoJydwWdB8bo2DeKXJbvVFGhc/8YcwqsS1Sp1wsh+ccUy3b2il28wlVGUlrTz6Evu+AsLRxCoAmF/Zk6m6fqQFeRRJGaoLsjnRu2VjF6UiN/uoncKTcZwk+3OsYpdQQpJWFFNR77y/wmJJLnKhrYoldTbSZORUDEYeQfEkgK9kdQFCeDh9Ipk/1U2IaZLb0RUbeAmphFcU4ji5eVs1+vxxC3JB/Rf0SV+aZcSze321/hwfAuJILv3/FxJjNyePDam83eaeBPMzT0RQWzvhdIzUiKKw2Xp2uOzuMtmaI5p5iDuZdxlK18WX6NP9f/hgdmP0pvWo1hslU0tEwbV+x/mhcuu+mMTO0ybp548bKbAFhMSGSrr4VUewENM/D9w0H+drWTvuTlr8cG+ZM+6k/nM54m+GFZGPIFuR6d9UPdIKHncDvVVxo+HWVlZSiKgq7H/LVgMn0efPC042jcPxJAl4JD8wnUIDimzNHvHMOxcBzNXsDmzEK+Wl3Nk8MbGGw+QflEBFeuRvn7fNQoy0qIGlZPgpF0XLYZIzWJSSRZYXrATbU+Zwp+NmQwD5miUOCfQtFrDD8tU0OqorHeN82LiZVoCtiIslq0owhIyQ8SnEgkKXeB6hsH6VGr6ZBrOHDsAUrLPkLOwnrW5o5h1wYQCJzpfRiFsM+sbgLB7KMEaQGx1EdxBZASISF9mD2zi2xSn+OYIy9+n12yhm/wNeNlRyimIsvQZo1EGojiiH9ZLLK6byTA7V9Yz6GDo5yYmiVxbBFZYHSaIiUbh7oIeHPJqXBTvHMn6qlJvidjiVWNOdRRs44O081AmfFxrxB8L8NGgzeKsKukXLme5L/+GNGZLJoODGKXENElugBF07BLyZ7pEF3ZgrAwBJ1Ouxfp6F5x/+rsDFWRbBShGn6OGhS6axlnFKQkN6+bqupDCCHR9TZaT1wVF9xiUZkS6LXNkJjmRxeppoXgDDWXuSYUoVPGMKqQhGzZQNBsi8A9shP7YhYuby2J/ko0U9MrgAaXyuxcFJ9m6Hsyyl8nsXQv8QYAruP1hHuCOJLdRO3z6DZDOB13p/PEup1oQtAOPDk0gq4ANthv03CKq7mtaR2dLV9mLtqzQkvnXlxNzcd2seqvvsb8Do3shgEz9UcH1cppuqLraEhUaVV88UAEKXUiDj/2cCoIiZQCxVZAprOQ9cnms0MIwM7dYx/mlNQZ8w8zm9ZnmixNc6SU6ELicwbICjlBmoZKKbEFY3umQfFoL6q+K16z9tzaNUndaH/872rGB0nqGYWZkyBgKL887iunAePFdRR5xpCajobCMfd61CRBqQzhL7zprOddgVfjypY5juaGmMh7jJKRPWbeR4Gu6fSNOVhIs5GbYCPVHo1Hlrrd48yP+6hoX0N95c1QCfvvvRcNLf79Kbmzho+sAF2P4PMdxO3ecNY6vxhYQtvbQLN/ntuPdRPWBcraHdx0Yh95fi8IQX9lFdvuvpviK5ecGF+VU7T9+FlUhJGXC4y3ktj8xzChHV+byu36JDO9SfHjMRq7TqLq2tKiAYbyizhaVUfhxCDeejuVNw+TqBrSVW7aMKFAAY7wLP3uLdyXvp3ahRaU4NyKB78aMmsnLlscytoGw/wLjHT54i+I6aqgIMUGeUmcPDXDQBQQGqtyEknx11Cd8TTVsosy+rhPfAZdGmHdQZv54FmurpM6qtTZ5hHY/ZWMP9uInjXA3JiLhYlE+sZtnCyuRPFGyfXr5Eo3udFUEgJdvJjq5ERx9Vntjr1pnxQNVOlL5ohlXYazJErb/DpUvwQkMhqlu/untEo/Tw7+lHuvuZegqwp9PlYgO8qcSEGa+bSkEExJs1KDohJW4cXNO5YuJOVSnjqkcZ9IrtefQE6WkdNWzmr3yxzKnucQHzIywEsjynXDcCe3JD/Cv/FFI8oVSE/0MunMiT/Mha5Td7qTjoq6+DV1IXj+8ptBwkF9N1tb/oXSaZ2GGY0PDUT4xio17vdmmFUlm07pjLuz+Olut2nySEMU51M/NkDNxBCuhPx4nxUXF3PDDTfw1FNPGVFqiiCvoYbh11vjGepjD6FtkWp+T+aiAC22jXw293KkMHJIHZkTTA32Uz7QwxX758meW2TuWg0zWf5yRSAA+Tm3Mz30G+xJbfHjOWu9BAZS6H6yhJSCBeZGXQQmn2Q6/zrqA35uOr6PQBGUZp5kXqQYpeUKeijovJIBirmsZh9VShe6LpgdcyEQpOQH6VGr+YZiOISL6igfDh7gk+vvRyhRZPWLGBZtbWm6cS5rkL40zZffiwS7t45TKW3YFjM5PVPHGmlo4V4XuwhjVg8xVTdRxc7+pi9wl6MQfr6IpunxxAQ6sLYxlxFV50ttfVQ4Emjdnh4vDyVR8J8sI+DrR9gU3O+roPTJ03y01MbPKhwrO1kRsVYTkZKOqwvY3D6ONt1F8uVrcGVFCA09zdpALf9+aI6n8m1MzveSFxnm2qRS1vbW462OGN+L4KWyfKLhUlaND8Q7x+kdZ1JfQJdGJKwQCuvCdSQoSbSn7Y0LbEKAomhLSVBNE6HhcwWhxHEWklLPsY/IpbWG4XowSSY5mhumP4Uo+zZSRBFSJXl0O8n+SjBrCgtT22tEyUqybAKfBgmZfeRtuN+4cGxsJYRnfRzevAtd9bK0ucCoO2uFC4CurNRCfX16Gn1esLu5irk1PcQcJJNespG7bhd9Bx5k8YNRFnboVCtdhilVFXRU34r3ZCG5TkGBnkEL/WhmIII9nLZs4hnzJssm4vcTi7TNsSlkJivsmytE8SQRccySoaWRpsIxdzOKFGSGspY1V2KfmUZdMIV8BCO5RQwVlLNn31P0FVfTW1Zn9KGUnJkvsnZiyPBpNLV4YVsYab6LFI/1xX3lVE2jXCo0/v5XmOnt4L7mSepDXaydr8OmVnFk2AG5csVYT6TZUKVCgb+aiZR+xtw9aCMaw+k2frE7jajaSI9cw7T37/ly2kkUIU1/tlxqfFFmnu1D2ATpN1VRkFnEKZ+RYxCpMziRS+6qQVRdR6CiB1dzqXBRhDYhxJ3A14B6YLOUsvm3nHcd8B2Maf0DKeU/XLBGngf7Z+aImGYC3Vy0MaFNAkPT01QvO7+1f8SMpxPLNgFjMsai7ADstgIWiofhdOz3S9LG6r5uvvPPf8v/vueP6U/PMq4lBEOF5RRODpFUGFzxUEGJ4so+RXg0g6MVH+bVKScdecUULo6S5Q+Rn2bYD0O5xaiLwfgiVaSk4rob4tctrElHtSmkSMn2JNXIxj82x7hd4IlIAlLHuzDNVN8mHIsqgbzDFE3NcvPC65zKKaYzvxRvSprxZcueyELCH3QG2OVL4LXwBKc8NtKGMwEYzyviO+uqiCCwSwffOxxkrV9nXMww4kxiOC8/Hrixwk4lJTYirJKtS943sVOQCB0We53oM9MIMtExfIISFwRZPhvT6SGe6H2CjPFa1NQKdIwI1Dq9g9N9WxhOP0VLdIEO+xHIWEfMx8yTmrZiTFeOr+EI/oxyE+/zDVLk1UlZfYR6NCMHnzSukUKAYyW1BHGRKr1Mizw0AY+Xf5DbOv4Lm6ahSbBrUT769MO8sraBF3YuZQ83Bk8QEXaOZKSzZuZ7vJ78R/xTfcIynxGD6uEQ7nABrTl2tGXpECQKJwvKOZVXwvrQHLuW/Y0aWkCaJlI9GmWsewARciNs5gPCfG5GRQS7Oa+Pp9vN5NDG94el5Duv7eeqtla85fls6R0lqWuBWZ14NZHl1FRcQ/vEJIV621IGBIFRH3DMFZeIVBkla3aaKbGa+rQjjGd6aBZb2SwOUGOaStwpraz79SCia5GRgiwOOaOUTCRgA+bGXJyUa4himPoAFhzpCLNklSGMLTPTLhviM5THsNQVcaam6vm2v4APFY1wenEP+qyCx1OEL8vFq+xhhcSKkRx1e+P14ImS09DPi50TjAkdF4Lr95Sxe0cR3325h4gm6S1xGkL3Mt/F5jQbDd4wMqqz0DaNjOpcMRWlNU3heIbN8AuNqTMVw1PKrgg2R7xMfesPkOEw3h/ZKNk9DXqU4NEmoqsv48mN1xBRV+HQa6l76TCzc7k0p9hXrO2W4ioy5gPk+6dxjA2iLszjYZ5Xxh9kddoOchPLUIRCnVbEfNZgXGAzhlLg9+fG70WdCpC64CGUmMh8lnFcACIUQjqcnDUghj6bp9lDkvSQ4q+luPnPCGZ04vLWcMSfBnjYRiYKCkIVaKZ2Ugemo8Z8cmV3IYS+cmyjAu+kCz1bXXldCQUzHmwS0+fP0KbrCvE/npOSrwbh81OxQleABhnqRgbv/zt8nw0aT2axNBUURWWoM535xX50uZVsPZlrQ+s4GPURXXRjj6TEZ5mujaFHhgmptUAmulxKWr1cIB1YfIaQbTVzzgWOuLuJ2mcpCBbElQNGDjgdWyDm72bjxJpbeH7bWiN9jhblrid/zObj++jdeRuHMtLjDRZScntrB+t9KoNmZQkhBUmzS65ChRND3PXkfYZP62g/L6kbePh5D/9+dT1XvPgYWiSMzimONt7Ds01ZK5SohmVGMpBjJyWaRd5cGQWBKvaX/YrRnC1E1UYw166mbMY3kEQkwcfkRAXzgVzytXQUBNGohvfRbiooYIEox7Q29MAkjydcQfvBbdyc3MfCVA1dMxq3f9FPXoWbi83F0rS1AbcB3/9tJwghVOC7wNXAMHBYCPG4lPLkhWniW2d7WjJ2Icw6fzoFvinDlCkliq7j+D/fJ1hTE3fkTqssZf7ltqWFhOEbtFxgA5jtnOExtZ4brlfRn+4867qr+7r50g/+jS9+8X8RFiIefQMwN+paXp4UqdsITVVTtCsVseYKHEcOMJ5gmGU2hA8QIVbfTyEhOx9X50kSIhEqZ+bJKyyJXzOvws0tX1jPwAOdKIEQijByAZUW2XhOe5xVWiq9EWkUcZ7KQJ/diVcPkRf2MepeFpwAKx5MEtDtLgRhEgMtuEN+s2d0bNVpRIVEF4qZVkQlJ+DlKcdRpEOSG1pElTqabvgtGZsGbJsb5pqkf6da6Ypvtpo0zW5SIHV4bbac+TlX/P4EgtqhZKpHknh2ywQvnXiJy8bC3Jg6hjcnkXraCE2WE6ms4vGZNiPlRYK5YQoFoetLgtOyiMzY/cZKFWlS8nhdORmjfjKG11GT9yBfkX/FSbGGZDnLz8UnCWP6Ay5rXUTYGM8p5G++9016S6pY19WBLehlbWeIyex8jq/axHI/E4nAHQngsL3MTzPfT0TUxX2RkBK7rrO9KwxCpWwqauT5WlYP0tDcKUwUFbCcjtbWFfemTQZYp5bhiNSw334KpJHoI19PN8dXkhKJly2IP9RbaxpZdeooheODeJITScKoM2tW0V02RQQ+30FW123h8LFnqE4JG4pLTRBZVKm6cRChSqQm6HmqlNpgKSKYRk+Bm/9U7gSglUakhCvkSwyFU+ncMsFVvgxWZVYTqatEjo0TGBghOOEiZd806mVGziebIrg6txI5aQM0pC7MVB7LtOMCpBQEApmkpE7HlFaxYYspGpBS8IP+axlUddIdZhAKgpHh1fRnJRlxqctNTQJ+vyiHIk+Ux759DC2qs06107Arh62bC+LO0VsrMtGLXcyWuFasLbsQbPSb+bxsColrsmj2zvHZ9QlEhGHaLB/sQigZpEbT2FaaTmptGtvTkil78BdMhcOg68hIhOCYIDLvQPOc5sWc9xFRVaQiCCM44i5io1dSNDZFR3ZxXEAJJCbz+LodfPzZp0j2e+L7kSc0SvvMPrITipFIRjKO4SrpiTddSujp3mRq2YwOVoOjRIJzSD0JsnJA11FVFdt8gJAjy1QwLe94Q9SQCJqFjSuIkuivJNFfCUQIKi/ysH45W80KMwjBsVQbrolFPFHwasZ8DU7VInU7EEWXkNAqSHleQZ0NwpVipUQOVI9k8uWrsnh00kvmdJiP94f5aZmDV3JtK/aCVxs3s1l51ljiEkKli4Rmw4aKIqZo1c09qeZrPPfUEN7QcV4Zf5CchBI85IBSgc3UKiIlujZOeO5hMp25NCRtXtGu5Rq3hL7nuLl7H5PZnbyyZzfZkWREJCUusOlSw6d6KJ2+ArutGs01yKEqP69taTD9QQUaNoYKytl6bC+zkxpkivi+VzfWT9HICYZciUujISQBJY1MEUCVRlBb0Ww1CR6Nl9UNjDnzUKM6rYePIDWjVvdIbgHPbiowUzoue26YayMhJBHjtdy0uAFFN4S0V+zH6SmOmksvygdT95PlPoXUbQT6dpA2s4asBDea0A3BVEomRIBDjl404URLLEELJ8N0Ed7hurgbwkiX75IQ2s7xPvvOI6XskFKeepPTNgM9UsrTUsow8CBwyzvfuvNnozuJh9dX87EEyS0n9pEX8CJ0nYre0+x++RUyJycJHjocP38xz8lz2yYYT18EIBY1F/sJmAEHAj2qMTYxiOmtfta1V/d1893nH+UP0xx89tgLFE4YZpbgpIueJ0qZayskOrYD24FdXMd95B37E5qUbv7X+1ajAIWLo6jBAEYGQcN8F5qewO9yMJXqQmr6iraDIbiV7Ck29hRpiJlDFWMcKXiO3oRBo6aiMPKW+2WYkontgKBgZjouzMYxP9t0yUYz306i6lpmhRDUTXZi1yOo0kgr0uTV6FHHjN4QIl4tYVvbITYdfRXVXNBHkgohVrdPGGafqaBZb86MV0gqXCD+SmucbdQn1AV5ngQyFzMRCPIDPlb1jKD0ZDA7m02BowCH6kBBwb7YgapFUDQNmxbFpkVRNA3ByvsUZ5puBeyt1Nnpf5G0mTDVdHELjzBHSrygOeY9Ln8YzbiczNgWuGHvs1RrCxzZdieKEORMjxEXipYJxE+ol/GR8FfweoM4pI6qS+w63D4U4XvtsxRNGQmfizwaH385wPbuccqnx4wEwrqOXQhuKCtcMQfqGxri11EwzDWKEGTIFKOyhtnfxmPTCEIZz7MtqTvN+9IVhcGCMnQhSZ9fYLHGlKqFME8zrqFKgd2exlz/31DrjoJQ8JxKp+epEuzLcrQJVZJSmIBiK0BBcDxpWVJi4IB+GcePX0WbHmQyPcxDVV7ct3yJe3b+NVuuuTV+fxkdk9zxxI/ImXiMu92nuKVxB1nO7zDVfguDr/4pE0c+eoY6UEEIG7OOm1HEGT6DMfOoVBid+Qxb63bx4Ge2sXbDFmxm+PL8bCbrhwbiNRljbRaA225jpMuHFtXNJSrZmpK0IppNpjmIrkpfmivm3369pog9d60m9Zoysu5pIHlLPh1XFxBRjJxhmiI4XVpLT0kux8ucbCpO43OluWx0J+HavAnhcICqIux2XPlL2v48fxKqDkKXqDpUjAcRepSm3iiXd7XgWuZmoSsqR+s3glipI/CERnl5/AFekS9yuOjXZ+TSEgSDSxVHMpKSsS3MG8LbYhDXwCnSRgZoUBOJZucTizSKrTGBRixVsKqolO/cTYbjL3Gpz+BSniHN/pc8KbPZgBpP3yJ1Se/MPB0hnWnNKFWnAQueCgZf/RMm2m7F+/RVZP2HjYQ+hZzpaa6IuEgI5uFYzCQhmE+atxH72jV8a8bLSZvkN9nGPX+8P4xqlraLje+ulsNm9LpAUR3krLsTZ58jHiBl3ghCsTFxSuIdej3ebx3+A3hD02YOfzPYRijo0WFAIyehGEWoKOLMugIwEpkms/sxVAnerByEVAxNY2y7khK7z0PJySHswQVstiLszi3MuEtXWDSElHElQcnQBDYdo6qB1KmdGGIh0Uk8ea3ZCNWZxCN5N9Pm3srJzPfzeG49a+64C19yAaoAu02hYVMTqs3YKwYLy+IJnM/2mYNggqEVVXQbCkZE7RWn1tPY+SRJ/oe5avbvqFE6EYpEKBoZKTMshFLYG1zkV6l7+W7efxIRUUZVr+EjiCHm5ykBhmy6ORQSoQoKa6xAhDejEBha9nkY2HKuE4UQnwE+A1BSUnKuU95xNrqTWNCDvBTwIRUFCbiCQbJ8PoTDgWvzpqVzczfy/UzJ81snqBxMZtvJTMM3iFgBDcMfIJbywz25aMprxit7YtNGFpqXLMo7NjTwvqYGRlNs/PLEIbSo8ZaxOJXM2ms/RYW7B3q/DnYNNBX69+KL3gICRhIK2OI7TOJgF5orBVtwFsXcHHXAm+pa0fYY+dsKGANmTkyTtjaLmspUHM856EztIXsuHxUFRVWYlzacoTRU7zrcC+Pc1tbNI2tqjfs0SyUlhcPcPZxEw0wCEsnk4mD8OqqQXB06xur2L/Paxn+kfl+YBn+EfbYlkQApyQt4qRjo5HDtBkNYEIKogIHJD1Od8zWklER1G8/27+HDtQ9jl1GEBvMjS2+CmunboqChK5LxzEW0hCl0oZtmLtNMo6psW7ONe5330jzRTCAU4Nl932R9fw0bOk8iFXj9hkaqVA/fqvo9okJFVeCaLDfPTAdW9OOg3cnc+/+OqoHv0KyfRAqok+0o6lJB8+VCrqJrrO4+ji4E3tQkGr/5j/zd+vW89otUDgxNxWwpxslSYlMEG1ZfTYcyzf9KfIrA0XZedd9Fk1djrV/DljmJHDrKYMnVpuAW5c6BU+jF5ezL6Gc0LYsbqovZ6E5a0e71O3YChsatrqie3IMOpNSZsM8Y9fskICQjio9szU0USHMkkaBohHVzowXsqsr2ihxc63aT4iwjcvIokocQZh1UAaTORqlxXIYvMoOuhwEdRajUb7mJCUcWp9sfRWrTgKFpW/RdFm9n7YCks554HxaPzjBXnItvYZ8x5lKjeaKZxpxG1l51PQAHnnuUk4u9tFUcxaFLbiu6zbjnXdfiHymlvWOURU8l4dlCai+fomx1OZHIDOnpW7jKvYGRkQpOdX3NCJjQFZKm12KLuCms+gBXXnX1UieWXssnep6nv/M4ZQxRPDDJicIbeVBtiGuMVWFo8gtrElBtCpqmo6rKWQ+Q/TNz8S0ihgB8UQ1naSrO0tT48cvLs/hX/wwRXZpClSHeSAVOueBa8zzX+vWU/PhHBA8dxrV5E66sCLz4EDP/9Ayb2/Yym1JGf66Nsoko2068SEp4CvnJP6N+cYppzwQnC8qX5q1MwZFyG4U1C2QVOmh+8hGkruPTJnFdUc2anDvQfd9kSXspcacZ/myKEOzctpmXjryG1DWElKgL81SPDNG75jL0wKhxv0LQ1NSE2+2mbLEd+vfSn7KJsh23G/k064sYfu5eDvV5+FX0To7KGm5ozEVpn0VGdTQBryhRvMmS4qjCkE1ndVhlXVhl0VPForeK1Ul9CF6N92+NPUjW9R/h1ftPISWoqsCzLo3IjM+Qu1TBkUwbd58Oc+/hID+tcOArSuIuNcQt5evQMneykO0jPX0LbvcGUr5WS9qJR5nIOcCswwhSkOiMDT/PyoTAwky9tFwlJ1DsxbCoMrk4ZPoNrvRrk8CvXc/yfhXQIMs7jaIoS1uM+eLuDHhMzd0gui0fTdFAdmDTNxPFeC5d+fqTppLARrpP5U+9Hl6YnaTAP03erG+l1tMU8npseYwl5DGRkMeO6iz+6aoamkrTqc1L4cBpD1srMmkqTacu7+scOvQcjy4eAnaBtEOsxNYyoXHQ9SD29HzWBretUH5cPl5DbX0z6aSjSwUpjReeg45RrrrKRSBznJ8OPYwudcZd03w29R7U7kGiuoYuBZMyFY9D52iFnV3pqdx4ZfkloWUDEHLZA+Ft/WIhXgDyzvGrr0opHzPPeQX40rl82ky/t2ullPeYnz+G4f/2x2903Y0bN8rm5nO6yL3jxIvIR6OowG2lpeSEI8aGF6/fadAy2ULzqUdwB8bwzKdg8ycRcug4wwoLC+M0/uIIMwlOshYj1NVNMNFsmDuFw0nJffcR6upi9rnnSbnmatI/8IH49452ddD+6ksArN61h4Kaehg6BD+5GbQwqA74xOMc0av5yA8OEInqrJnrYNf0XpA6ilnQUdeiKEJw80c+RcX73pqCs2WyheaJZipkBXa/nbKyMvomxmn9oQ80owTO6rZ/5e8+6KC3ZBWZgRGaphx8wnMjBdJ4qz7mfYEe/zGEEFQ2bWYtP8EpAAANKklEQVTTlnoK6IeynVC8mdBAgNCxNqaCR7i/x4umGxqsxPEBbN5JRrML+eVNnyJqU7FJwfcdKtvXafh8Bzk8WsbPj6awMH+c7Y5DOLsVyusvJzMhyNRciP8zkk5U0ynRO/BU7GUibQG7YudzFZ/DM+qhIquCTFsmZWVl8aTKy+9937M/Irtzgtorb2dddRn85GaaXVXsT29i+46PQu4qbjvWbaTxwNhu/7Egj4/WGsukp/VXHHz6WwRGEjm+qoknaj4QL0xfrkyyzuEi5aGHyR/tO+fYPPjCC3yRtHiUlQr8Q00RHyvMMieoMQ/mFnexIC8jcWcTSm4ig3d/kuGMjUzlrKdycwFl6izhyTLjOWBTyLqnYcVD/1yEBgKETvuZSp7ngWcfQtM0hKJyKlRHZdRNq6rz/31mMzLNwf6ZOdJtKr6oxva05LMEwpGRB+g89ZcgdYQOTe1B3Lc/jj/VxtFjH0PXIyiKnQ3rf4bbvcGY8wd+DonDZGZeS2/XasZaps2XIJj6kI1jSpgN0SCfqdqAx+nh0899mogewa7Yufeae2nMaTznXN6Yu3HF78ZP+w0zpSk83fKF9efczP3+o/h8B0kKrcE5Woazwn3uPjxjbTbf9QR3jNoImxrMb9QUx8dv/LSfkS4fhTXpZ12z2T/PHS09hHQZ9990KoKHGqvO6t/Y+bFx+MueESK6xP4G5y8neOwYwUOHGUpey5DHSXFmiOK5Eyv2uUcefZA/Tq4iqqiouuTjL/sp80tu+ZMm8ircjHZ1xMviFdQYSbhbW/+dyal/Aamj6Qqtx69kzp/F1Rs2sP3972e0q4PnHniQvlM9EHLSkruJP7p7Fwef/ZVRTlBV+cQnPnHW2jyT+w8O8kzbGNevyefDW0ric7ffpXDXkycIRfS4jrwgqnDXnAO7ENhsCtfekMTCn98DkQjY7ZT+5D5c69evGJvhTBt3tPTE+/T+vHzqTvoRgGtD7puuJTDmz/K57ta/ysvf/yUYIhOrMu0M6vegYUNRoMTezGBoPRoqUpugZNUiTZs2Q6+K3umNv99Or7fxmfDnKBsMsWZIcOudXyWjehsnmg/R/vwzRBHYggHUxSCogvq7fg89ks+ou4fN6xoYm7Dz9Klu6hcCFDuTOH1qjLyMSnZdv52IPcB9991npAMChPlTCoEQCmvLa/lybxqRqI7dpvCLe94891nLZAu/Gu4g7KxnttfDo650s2qHTpL3pyTOvU5k+NN8o2gnYwcnid3o7o/UsnpnYbwvTw4/Sk9IoaHo1vh6PnONDw0N0d/fz2JCJl1zjrgAeSEQQhyRUm58S+e+U0LbW7r4Gwtt24CvSSmvNT9/GUBK+Y03+s6LKbQB8YE/14P9fIhtjLE33OCLDxGcdOK6+razBMC31rBD0L83LvwAHBnwxd9u8kPj8U0UOGtD/Z8wftpP/5OvkDb0KqGteRyuyWBj7ka6fd28MPgCtyZcz45oE84KN57QyFu+9vK+VhfmGGpvJdvu5LRnnpaaenavqjnnA2j5fS9flMuPq4kD53xonxfn6PNm/zy/HPcCcFdexlntiwnd8zM+RosTGSrO59qyOnYXboj//o36582+/1xtWjHXzLkVe5D9VmHjjW572bhM6snn7Os3w+8/iq//IdJnIrgr7oy3NSYMxTQTv41X9g3T3jLB6sZcdu84O5P5bxPK3gpvJDz9tzhjTGIC1bkE2jdiuSD22wTiN/q7873eW/re/g5q+zvIWiincHPDm/ZXbHznelWGW2apbGyMp5qJceb6fbv23OXfne5y0DZqCFpX56STMhuNj/e51ss57/1/2KdnzvXWl5vpPnyE6k1NNFTpjB8+wki4wehX+6mVn5f185lr+bfN/djekpiSwsLs7H9r/x8aGuL48eMA1CYmsniyg6mcbKq3b6e4uPi37r1vlfv7W3hmYpgGl2TB1080WM6t9TtoKk2nfe8IvccmqVyfExfY3i38rghtNqALuBIYAQ4DH5ZStr/Rd15soc3CwsLCwsLC4q1yPkLbRQlEEEK8XwgxDGwDnhJCPGseLxBCPA0gpYwCfwQ8C3QAv3wzgc3CwsLCwsLC4neVixKIIKV8BHjkHMdHgRuWfX4aePoCNs3CwsLCwsLC4pLkoppH3wmEEFPAwAW4VBYwfQGuY/HWscbk0sQal0sPa0wuTaxxufS4EGNSKqXMfisn/s4JbRcKIUTzW7VBW1wYrDG5NLHG5dLDGpNLE2tcLj0utTG5KD5tFhYWFhYWFhYW54cltFlYWFhYWFhYvAuwhLb/Pv9xsRtgcRbWmFyaWONy6WGNyaWJNS6XHpfUmFg+bRYWFhYWFhYW7wIsTZuFhYWFhYWFxbsAS2izsLCwsLCwsHgXYAlt54kQ4johxCkhRI8Q4i8udnveSwghioUQLwshOoQQ7UKIz5vHM4QQzwshus2f6eZxIYT4V3OsTgghfnuxSov/EUIIVQhxTAjxpPm5XAhx0ByT/xRCOMzjTvNzj/n7sovZ7t9VhBBpQoiHhBCd5nrZZq2Ti48Q4gvm3tUmhHhACJFgrZULjxDiR0KISSFE27Jj570+hBCfMM/vFkJ84kK03RLazgMhhAp8F7geWAV8SAix6uK26j1FFPiilLIe2Ar8odn/fwG8KKWsBl40P4MxTtXmv88A37vwTX7P8HmMcnMxvgl82xwTH/Ap8/inAJ+Usgr4tnmexdvPd4BfSynrgHUYY2Otk4uIEKIQ+BywUUq5BlCBD2KtlYvBfcB1Zxw7r/UhhMgA/grYAmwG/iom6L2TWELb+bEZ6JFSnpZShoEHgVsucpveM0gpx6SUR83/z2I8iAoxxuAn5mk/AW41/38L8FNpcABIE0LkX+Bm/84jhCgCbgR+YH4WwB7gIfOUM8ckNlYPAVea51u8TQghUoHLgR8CSCnDUsoZrHVyKWADEoUQNsAFjGGtlQuOlPI1wHvG4fNdH9cCz0spvVJKH/A8ZwuCbzuW0HZ+FAJDyz4Pm8csLjCmqWA9cBDIlVKOgSHYATnmadZ4XRj+BfgzQDc/ZwIzUsqo+Xl5v8fHxPy93zzf4u2jApgCfmyarH8ghEjCWicXFSnlCPC/gUEMYc0PHMFaK5cK57s+Lsq6sYS28+NcbzlWzpQLjBAiGXgY+H+llIE3OvUcx6zxehsRQrwPmJRSHll++BynyrfwO4u3BxuwAfielHI9MM+SqedcWGNyATBNZ7cA5UABkIRhejsTa61cWvy2cbgo42MJbefHMFC87HMRMHqR2vKeRAhhxxDYfiGl/JV5eCJmzjF/TprHrfF659kB3CyE6MdwF9iDoXlLM01AsLLf42Ni/t7N2WYKi/8Zw8CwlPKg+fkhDCHOWicXl6uAPinllJQyAvwK2I61Vi4Vznd9XJR1Ywlt58dhoNqM9nFgOJE+fpHb9J7B9Of4IdAhpfznZb96HIhF7nwCeGzZ8Y+b0T9bAX9M/W3x9iCl/LKUskhKWYaxHl6SUn4EeBm4wzztzDGJjdUd5vmW9uBtREo5DgwJIWrNQ1cCJ7HWycVmENgqhHCZe1lsXKy1cmlwvuvjWeAaIUS6qUW9xjz2jmJVRDhPhBA3YGgSVOBHUsqvX+QmvWcQQlwG7AVaWfKf+gqGX9svgRKMjfFOKaXX3Bj/fwzn0CBwt5Sy+YI3/D2CEGI38CUp5fuEEBUYmrcM4BjwUSllSAiRAPwMwx/RC3xQSnn6YrX5dxUhRCNGYIgDOA3cjfGSbq2Ti4gQ4q+BD2BEwh8D7sHwg7LWygVECPEAsBvIAiYwokAf5TzXhxDikxjPIICvSyl//I633RLaLCwsLCwsLCwufSzzqIWFhYWFhYXFuwBLaLOwsLCwsLCweBdgCW0WFhYWFhYWFu8CLKHNwsLCwsLCwuJdgCW0WVhYWFhYWFi8C7CENgsLi/csQog0IcT/Y/6/QAjx0Jv9jYWFhcXFwkr5YWFh8Z7FrGH7pJRyzUVuioWFhcWbYnvzUywsLCx+Z/kHoFII0QJ0A/VSyjVCiN8DbsVIor0G+CeMRLUfA0LADWbizUrgu0A2RuLNT0spOy/8bVhYWLwXsMyjFhYW72X+AuiVUjYCf3rG79YAHwY2A18HgmYB9t8AHzfP+Q/gj6WUTcCXgH+/IK22sLB4T2Jp2iwsLCzOzctSyllgVgjhB54wj7cCa4UQyRgFv//LqHQDgPPCN9PCwuK9giW0WVhYWJyb0LL/68s+6xh7pwLMmFo6CwsLi3ccyzxqYWHxXmYWSPnv/KGUMgD0CSHuBBAG697OxllYWFgsxxLaLCws3rNIKT3APiFEG/Ct/8ZXfAT4lBDiONAO3PJ2ts/CwsJiOVbKDwsLCwsLCwuLdwGWps3CwsLCwsLC4l2AJbRZWFhYWFhYWLwLsIQ2CwsLCwsLC4t3AZbQZmFhYWFhYWHxLsAS2iwsLCwsLCws3gVYQpuFhYWFhYWFxbsAS2izsPi/GwWjYBSMglEwCoYAAADi7cOTjVt65gAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x576 with 3 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%matplotlib inline\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "positions = simulation_results.results()\n",
+    "\n",
+    "time = simulation_clock.time_array()\n",
+    "\n",
+    "x = positions[:, :, 0]\n",
+    "y = positions[:, :, 1]\n",
+    "z = positions[:, :, 2]\n",
+    "\n",
+    "fig = plt.figure(figsize=(10,8))\n",
+    "\n",
+    "x_position_axes = fig.add_subplot(311)\n",
+    "_ = x_position_axes.plot(time, x, '.')\n",
+    "_ = x_position_axes.set_ylabel('x')\n",
+    "\n",
+    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
+    "_ = y_position_axes.plot(time, y, '.')\n",
+    "_ = y_position_axes.set_ylabel('y')\n",
+    "\n",
+    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
+    "_ = z_position_axes.plot(time, z, '.')\n",
+    "_ = z_position_axes.set_ylabel('z')\n",
+    "_ = z_position_axes.set_xlabel('time')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUpXV95/v3p7tpQLk1cmtFbSfBxMuoiRXUOF4R422JesbRaEY0Go5HPWPWOhrN0hVPTM5E43iOJ8s42gddoImXJCMjjkZpUUNmDSYUIwhCtJEotiBdCF4QEbrre/7YT5Pq3XXr7qr91O/p92utvfbze57ffva3qvb+7U89t52qQpIkSWvbur4LkCRJ0tIMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAzb0XcBKO+GEE2rLli19lyFpgi6//PJbqurEvutYCY5h0qFlf8avwYW2LVu2MD093XcZkiYoyXf6rmGlOIZJh5b9Gb/cPSpJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgM29PnkSb4N/ATYDeyqqqmx5S8F3tQ1bwf+t6q6cqJFStICHMMkTVKvoa3zlKq6ZYFl/ww8qapuS/JMYCvwmMmVJklLcgyTNBFrIbQtqKr+x5zmV4BT+6pFkvaXY5ikldT3MW0FXJTk8iTnLNH3lcDfzrcgyTlJppNMz8zMrHiRkrQAxzBJE9P3lrbHV9WNSU4CtiX5p6q6ZLxTkqcwGvD+zXwrqaqtjHY7MDU1VatZsCTN4RgmaWJ63dJWVTd29zuBC4DTx/skeQRwLnBWVf1gshVK0sIcwyRNUm+hLcm9kxy9Zxp4OnD1WJ8HAJ8E/n1VfXPyVUrS/BzDJE1an7tHTwYuSLKnjo9W1eeSvBqgqt4P/AFwH+B9Xb99TqmXpJ44hkmaqN5CW1VdDzxynvnvnzP9KuBVk6xLkpbDMUzSpPV99qgkSZKWwdAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSA3oNbUm+neSqJFckmZ5n+S8nuTTJz5O8oY8aJWkhjmGSJmlD3wUAT6mqWxZYdivwH4DnTbAeSdofjmGSJmJN7x6tqp1VdRlwd9+1SNL+cgyTtJL6Dm0FXJTk8iTnHOhKkpyTZDrJ9MzMzAqWJ0mLcgyTNDF9h7bHV9WvAs8EXpvkiQeykqraWlVTVTV14oknrmyFkrQwxzBJE9NraKuqG7v7ncAFwOl91iNJ+8MxTNIk9Rbaktw7ydF7poGnA1f3VY8k7Q/HMEmT1ufZoycDFyTZU8dHq+pzSV4NUFXvT3IKMA0cA8wm+V3goVX1476KlqSOY5ikieottFXV9cAj55n//jnT3wdOnWRdkrQcjmGSJq3vExEkSZK0DIY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGtBraEvy7SRXJbkiyfQ8y5Pkz5Jcl+RrSX61jzolaT6OYZImacNKrCTJ64C/rKrbDuDhT6mqWxZY9kzgtO72GOA/d/fSXk7ZNg3r1sHsLN8/c6rvcnRo6WUMe9s738cHHn06ZLX+9y4gB7Bsuevecz9//evYxSzr5iyvsf7ztefWtOc5wmH8nHXM8nMOH3u+Wdazm1nWU/c8NsBs169Yxyzp+sE67mY9xToCbOAujuIn/IjjmGUDMEuAMMss6++pbz272H1PO6xjliPqZ9ydw1nP3cyynrvYOKeuEGbZwC7Ws4s7OXKvny3Mdj9hCEWo7nf1L7+P9dzNBnZxBHdyTP2QH+c4ZlnPltnr+em6o5jhBO7gaDZwF7s4jHXM8qC6jsO5i+15MEfWHWzKDzll9ka+v+6+3MYmbmPTPb+XMMuR3MmjZv8nN/BAdq47mcO5Ewi7ax135XBOmv0+d+UIfpRjRn+HGj3XXdlIKE7iZh5WVzNTJ3LNuocxy3rWsZsj6uccmx+xZfZbXLnuV7mDe7F+djfH8iO25HoOr59z1bpHMVuhgN3ZwOF1Jw/a9R2effdFbDjih/z3dU9ix+z9+UmOZUPdzY9zLHdwL2YJh+dujpn9ITdnMxU4bvY2Hn73tdy24Vj+af0vs7v7HQY4nDs5ip9y5Owd7M4GNud7nDJ7E9fmX3PMrtu5K+u4bsODSc1yr90/58i6k43rf8bjf3oZv3TrLs757XfN+/o+UKmqpXsttZLkj4EXA/8T+BDw+VrGipN8G5haaMBL8gHgy1X1sa79DeDJVXXTQuucmpqq6el9/uHVgJ2ybRrWr/+XGbt3G9wOMUkur6qJ/9H7GsPe9s738YFfe9wB1y0N1Tp2E4rdK7NN6qC8YvYDPOiGo5cMbvszfq3Iv2hV9VZG/0l+EHg5sD3Jf0zyC0s9FLgoyeVJzpln+f2A785p7+jm7SXJOUmmk0zPzMwc0M+ghq3rXsbJ3m1p9fUyhl27adOeB3rztn+3pV4348v3t//+PHapfvs7P2GWdaPAdiDPeSD1LlLjdB7DcXXjku/n/bFiUbSqKsn3ge8Du4BNwN8k2VZVv7fAwx5fVTcmOQnYluSfquqSOcsz31PN89xbga0w+i/1oH4QtWd2drSlbc/G3dnZfuvRoaSXMewht93GJaMHHljVOrQt9boZX76//ffnsUv128/5o93Zxe5aRryZbx0HUu8Cj5mqf+CHue/y1rdMK3VM238AzgZuAc4F3lhVdydZB2wH5g1tVaMIWlU7k1wAnA7MHfB2APef0z4VWNnYquZ9/8wpj2lTL/oaw/7wTa8Bj2mbpz23Jo9p85i2fo9pe9CtS+8a3V8rtaXtBOAFVfWduTOrajbJc+Z7QJJ7A+uq6ifd9NOBt491uxB4XZKPMzp490eLHQuiQ5dBTZPW9xj2h296DX+4EivSIebJiyx77AGs7wkHWMcezz7Ix497BQCv2e/HPW2F63jBCq9vZEVCW1X9wSLLrl1g0cnABRnt+90AfLSqPpfk1d3j3g98FngWcB1wB3v+GpLUP8cwSRPV2+kVVXU98Mh55r9/znQBr51kXZK0HI5hkibN0+wkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqQO+hLcn6JF9N8t/mWfbAJBcn+VqSLyc5tY8aJWk+jl+SJqn30Aa8Hrh2gWX/CfhwVT0CeDvwJxOrSpKW5vglaWJ6DW3df57PBs5doMtDgYu76S8BZ02iLklaiuOXpEnre0vbe4DfA2YXWH4l8L90088Hjk5yn0kUJklLcPySNFG9hbYkzwF2VtXli3R7A/CkJF8FngR8D9g1z7rOSTKdZHpmZmZ1CpakzkqOX936HMMkLSlV1c8TJ38C/HtGg9gRwDHAJ6vqtxbofxTwT1W16MG8U1NTNT09vdLlSlrDklxeVVMTfL5VGb/AMUw61OzP+NXblraq+v2qOrWqtgAvBr44PuAlOSHJnhp/H/jQhMuUpH04fknqQ9/HtO0jyduTPLdrPhn4RpJvAicD/1dvhUnSEhy/JK2m3naPrhZ3LUiHnknvHl1NjmHSoaWJ3aOSJElaPkObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDeg9tCVZn+SrSf7bPMsekORL3fKvJXlWHzVK0kIcwyRNSu+hDXg9cO0Cy94K/FVV/QrwYuB9E6tKkpbHMUzSRPQa2pKcCjwbOHeBLgUc000fC9w4ibokaTkcwyRN0oaen/89wO8BRy+w/P8ELkryvwP3Bp42obokaTkcwyRNTG9b2pI8B9hZVZcv0u03gfOq6lTgWcBHkuxTc5JzkkwnmZ6ZmVmliiXpXziGSZq0PnePPh54bpJvAx8HnprkL8b6vBL4K4CquhQ4AjhhfEVVtbWqpqpq6sQTT1zdqiVpxDFM0kT1Ftqq6ver6tSq2sLoAN0vVtVvjXW7ATgDIMlDGA14/hsqqXeOYZImbS2cPbqXJG9P8tyu+X8Av5PkSuBjwMurqvqrTpIW5xgmabX0fSICAFX1ZeDL3fQfzJl/DaNdEJK0ZjmGSZqENbelTZIkSfsytEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNSBV1XcNKyrJDPCdvuvonADc0ncRB8C6J8u6D94Dq+rEvotYCfs5hq2lv8H+aLVuaLd2656s/al72ePX4ELbWpJkuqqm+q5jf1n3ZFm3DlSrf4NW64Z2a7fuyVqtut09KkmS1ABDmyRJUgMMbatra98FHCDrnizr1oFq9W/Qat3Qbu3WPVmrUrfHtEmSJDXALW2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVR8aEjywu51MZtkwTPTkjwjyTeSXJfkzZOscYF6lvt+/dPu57s2yZ8lyaRrnaem5db+gCQXdbVfk2TLZCvdp54m36+tjJFzaln0vZbk8CSf6Jb/w8G+LgxtBynJw4HfAU4HHgk8J8lpY32OA94HPLeqHga8cOKFjllO3cBrgWuq6pHAk4F3J9k40UJHzgOeMTbvzcDFVXUacHHX3kuS44G3AY9h9HO+bbGBaxWcxwHUDdwBvKx7rTwDeE/3Gpqk8ziw2vf4I2BN/HMyMFcDLwAuWahDkvXAnwPPBB4K/GaSh06mvAUt5/3668DjgUcADwd+DXjSJItcwHJf9x8G3lVVD2E03uycUH0LafX92soYudz32iuB26rqF4H/B3jnwTynoe3gPQT4SlXdUVW7GL3wnz/W5yXAJ6vqBoCq6vvNDMuru4Cju/92jwJuBXZNtkyoqku6557rLOD8bvp84HnzPPQ3gG1VdWtV3QZsY98gsmoOtO6q+mZVbe+mb2Q0+E/0wrEH8TsnyaOBk4GLVq3AQ1RVXVtV31ii2+nAdVV1fVXdBXyc0d+uT8t57RRwBLAROBw4DLh5ItUtbsnauw/qDVW1DaCqbq+qOyZX4rxafb82MUZ2lvNem/vz/A1wxsFsQTa0HbyrgScmuU+SewHPAu4/1ufBwKYkX05yeZKXTbzKfS2n7vcyCnc3AlcBr6+q2cmWuaCTq+omgO7+pHn63A/47pz2jm5en5ZT9z2SnM7oQ+xbE6htKUvWnmQd8G7gjROuTf+iydd9VV0KfAm4qbt9vqqunWiV81vOe/bBwA+TfDLJV5O8q9sK06dW368tjZHLea/d06fbQPIj4D4H+oQbDvSBGqmqa5O8k9FWnNuBK9l3a9QG4NHAGcCRwKVJvlJV35xosXMss+7fAK4Angr8ArAtyd9X1Y8nWuyBm++/mWZOl06yGfgIcPYaCstLeQ3w2ar67ho4HKlJSb4AnDLPordU1aeWs4p55q36636xupf5+F9k9E/iqd2sbUme2G31XVUHWzujMf4JwK8ANwCfAF4OfHAl6lvICtTdy/t1Beres56+x8jlvNdW9P1oaFsBVfVBujdnkv/IKG3PtQO4pap+Cvw0ySWMjiPrLbTBsup+BfCOGl0X5rok/wz8MvCPEy10fjcn2VxVN3Vv3Pl2Oe9gdCzeHqcCX55AbYtZTt0kOQb4DPDWqvrKRCtc2HJqfxzwhCSvYbRLfWOS26uq94PhW1FVTzvIVexg763mpzLaWr6qFqs7yXJeO89ndMjG7d1j/hZ4LIscv7dSVqD2HcBXq+r67jH/lVHtqxraVqDuXt6vK1D3Whkjl/Ne29NnR5INwLHse+jJsrl7dAUkOam7fwCjg4Q/NtblU4zeGBu6XZGPAXrf7L+Mum9gtHWQJCcDvwRcP8kaF3EhsOds0LMZ/Y7HfR54epJN3QkIT+/m9WnJuruTPS4APlxVfz3B2payZO1V9dKqekBVbQHewOhnMLBN1mXAaUke1L2WXszob9en5bxfbwCe1I2ThzE6CaH3cZLl1X4Zo0Ng9hxX9VTgmgnUtphW368tjZHLea/N/Xn+LfDFOpgL5FaVt4O8AX/P6A16JXBGN+/VwKvn9Hlj1+dq4Hf7rnk5dQP3ZXRw6lVd3b/VU50fY3SMy92M/mt5JaNjAi4Gtnf3x3d9p4Bz5zz2t4HrutsrWqgb+K3uMVfMuT2qhdrH1vFy4L19v86HdGO0NWoH8HNGB+l/vpt/X0a7ufb0exajLfnfYrRbte+6l/O6Xw98gFFQuwb4v/uue7m1d+0zga914+V5wMYW6p7Tf028X1sZI+fUu897DXg7o6tFwOjkmr/uPoP+EfhXB/N8fiOCJElSA9w9KkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJktSTJK9OckV3++ckX+q7Jq1dXlxXkqSedV/d9UXgT6vq033Xo7XJLW2SJPXv/2X0vZQGNi1oQ98FSJJ0KEvycuCBwOt6LkVrnLtHJUnqSZJHA+cDT6iq2/quR2ubu0clSerP64DjgS91JyOc23dBWrvc0iZJktQAt7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDVgcF8Yf8IJJ9SWLVv6LkPSBF1++eW3VNWJfdchSatpcKFty5YtTE9P912GpAlK8p2+a5Ck1ebuUUmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBvYa2JM9I8o0k1yV58zzLD0/yiW75PyTZMvkqJUmS+tfb2aNJ1gN/DpwJ7AAuS3JhVV0zp9srgduq6heTvBh4J/CiyVerte6tf/lOvn/EkZxy58/445e+qe9yJElacX1uaTsduK6qrq+qu4CPA2eN9TkLOL+b/hvgjCSZYI1qwFv/8p2ct/kpfGbTv+G8zU/hrX/5zr5LkiRpxfUZ2u4HfHdOe0c3b94+VbUL+BFwn/EVJTknyXSS6ZmZmVUqV2vVN449il0cRmUduziMbxx7VN8lSZK04voMbfNtMasD6ENVba2qqaqaOvFEL4p+qPnJxiMWbUuSNAR9hrYdwP3ntE8FblyoT5INwLHArROpTs3Ykfsv2pYkaQj6DG2XAacleVCSjcCLgQvH+lwInN1N/1vgi1W1z5Y2HdpuXXf8om1Jkoagt7NHq2pXktcBnwfWAx+qqq8neTswXVUXAh8EPpLkOkZb2F7cV71ay8ZzvLlekjQ8vX5hfFV9Fvjs2Lw/mDN9J/DCSdeltpxQM+zM5r3akiQNjd+IoOadWjsWbUuSNASGNjXvp7nXom1JkobA0Kbm/SAnLNqWJGkIDG2SJEkNMLSpeetrdtG2JElDYGhT83bmxEXbkiQNgaFNzSvWL9qWJGkIDG0aAC+uK0kaPkObmpcl2pIkDYGhTc3bNHvLaKL7Wtp72pIkDYihTc27m42jiWTvtiRJA2JoU/N+su7oRduSJA2BoU0D4FFtkqThM7Speetmdy/aliRpCAxtat+6LN6WJGkADG1qXsauyzbeliRpCAxtat4R/GzRtiRJQ2BoU/M2sHvRtiRJQ2BoU/MO465F25IkDYGhTc17IN9etC1J0hAY2tS8Z9engN3d11jt7tqSJA2LoU3Nu2z2scD6rrW+a0uSNCyGNjXv79Y/dTTRfffoPW1JkgbE0Kbm3cnhi7YlSRoCQ5uaV2Mv4/G2JElD4Kebmrdx7BIf421JkobA0KbmPXj2G6OJqr3bkiQNSC+hLcnxSbYl2d7db5qnz6OSXJrk60m+luRFfdSqte+mdZtHE92JCPe0JUkakL62tL0ZuLiqTgMu7trj7gBeVlUPA54BvCfJcROsUY24jeMXbUuSNAR9hbazgPO76fOB5413qKpvVtX2bvpGYCdw4sQqVDNm77lG2/xtSZKGoK/QdnJV3QTQ3Z+0WOckpwMbgW8tsPycJNNJpmdmZla8WK1th/HzRduSJA3BhtVacZIvAKfMs+gt+7mezcBHgLOrana+PlW1FdgKMDU1VftZqhp3JD/jLo7cqy1J0tCsWmirqqcttCzJzUk2V9VNXSjbuUC/Y4DPAG+tqq+sUqlq3K6xl/F4W5KkIehr9+iFwNnd9NnAPt/wnWQjcAHw4ar66wnWpsbcwb0WbUuSNAR9hbZ3AGcm2Q6c2bVJMpXk3K7PvwOeCLw8yRXd7VH9lKu1rMZOPBhvS5I0BL3sR6qqHwBnzDN/GnhVN/0XwF9MuDQ1aCN37nVM20bu7LEaSZJWh9+IoOZtqlsXbUuSNASGNjXvh2NfqDHeliRpCAxtat5dHL5oW5KkITC0qXk19jIeb0uSNAR+uql569i1aFuSpCEwtGkAxl/GvqwlScPjp5uaF2YXbUuSNASGNjXvqNkfjyaq9m5LkjQghjY17yfrjhtNJHu3JUkaEEObmufuUUnSocDQpuatHztbdLwtSdIQGNrUPL8wXpJ0KDC0qXlH1E8XbUuSNASGNjXvrhy+aFuSpCEwtKl5Px/7rtHxtiRJQ2Bo0wD4jQiSpOHz002SJKkBhjY1zy+MlyQdCgxtat69uWPRtiRJQ2BoU/OOqx8s2pYkaQgMbWre7Tlm0bYkSUNgaFPzfsIxi7YlSRoCQ5uad1zdOpqo2rstSdKAGNrUvJ/s2R2a7N2WJGlADG1q3t1sXLQtSdIQGNo0ALVEW5Kk9hna1LxZ1i/aliRpCHoJbUmOT7ItyfbuftMifY9J8r0k751kjWrHkfxs0bYkSUPQ15a2NwMXV9VpwMVdeyF/BPzdRKpSkzbX90YT3dmj97QlSRqQvkLbWcD53fT5wPPm65Tk0cDJwEUTqksN2pEHjCa6s0fvaUuSNCB9hbaTq+omgO7+pPEOSdYB7wbeuNTKkpyTZDrJ9MzMzIoXq7XtyLHvGh1vS5I0BBtWa8VJvgCcMs+ityxzFa8BPltV3023BWUhVbUV2AowNTXlqYOHmHvX7fwox9+ze/TedXvPFUmStPJWLbRV1dMWWpbk5iSbq+qmJJuBnfN0exzwhCSvAY4CNia5vaoWO/5Nh6Cbcr/RRAJV/9KWJGlAVi20LeFC4GzgHd39p8Y7VNVL90wneTkwZWDTfGpsL/94W5KkIejr0+0dwJlJtgNndm2STCU5t6eaJEmS1qxetrRV1Q+AM+aZPw28ap755wHnrXphkiRJa5T7kSRJkhpgaNMAzC7RliSpfYY2DcD4JWEWv0SMJEktMrRpAAxtkqThM7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0qXlh96JtSZKGwNCm5vndo5KkQ4GfbhoAL/khSRq+ZYW2JBcnedbYvK2rU5IkSZLGLXdL24OANyV525x5U6tQj3QA/BorSdLwLTe0/RA4Azg5yaeTHLuKNUn7afxl7F5/SdLwLPfTLVW1q6peA/wX4L8DJ61eWdLyrWPXom1JkoZgwzL7vX/PRFWdl+Qq4LWrU5K0fzx7VJJ0KFhWaKuqD4y1Lwd+e1UqkvZTjZ0tOt6WJGkI3CShAfCSH5Kk4TO0aQBqibYkSe0ztEmSJDXA0KYBcPeoJGn4DG0aAC+uK0kaPkObBsAtbZKk4TO0aQAMbZKk4TO0aQA8e1SSNHyGNg2AW9okScNnaFPz/O5RSdKhoJfQluT4JNuSbO/uNy3Q7wFJLkpybZJrkmyZbKVqgd89Kkk6FPT16fZm4OKqOg24uGvP58PAu6rqIcDpwM4J1aeGGNokSYeCvj7dzgLO76bPB5433iHJQ4ENVbUNoKpur6o7Jlei2uF12iRJw9dXaDu5qm4C6O5PmqfPg4EfJvlkkq8meVeS9fOtLMk5SaaTTM/MzKxi2VqbPBFBkjR8G1ZrxUm+AJwyz6K3LHMVG4AnAL8C3AB8Ang58MHxjlW1FdgKMDU15fUeDjGh9rrIR7zkhyRpgFYttFXV0xZaluTmJJur6qYkm5n/WLUdwFer6vruMf8VeCzzhDZJkqSh62v36IXA2d302cCn5ulzGbApyYld+6nANROoTY2psd2h421Jkoagr9D2DuDMJNuBM7s2SaaSnAtQVbuBNwAXJ7mK0YFK/19P9WpN85g2SdLwrdru0cVU1Q+AM+aZPw28ak57G/CICZYmSZK0JnlBK0mSpAYY2iRJkhpgaNMAjF/iw0t+SJJBCVoTAAAI30lEQVSGx9CmATC0SZKGz9CmARh/GfuyliQNj59ukiRJDTC0SZIkNcDQJkmS1ABDmwZgdom2JEntM7RpADwRQZI0fH66SZIkNcDQpgHwOm2SpOEztGkAskRbkqT2GdokSZIaYGiTJElqgKFNkiSpAYY2DYDXaZMkDZ+hTQPgiQiSpOEztGkADG2SpOEztEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRpAPzuUUnS8BnaNACePSpJGj5DmyRJUgMMbZIkSQ3oJbQlOT7JtiTbu/tNC/T70yRfT3Jtkj9L4n4vSZJ0SOprS9ubgYur6jTg4q69lyS/DjweeATwcODXgCdNskhJkqS1oq/QdhZwfjd9PvC8efoUcASwETgcOAy4eSLVSZIkrTF9hbaTq+omgO7+pPEOVXUp8CXgpu72+aq6dr6VJTknyXSS6ZmZmVUsW2uTl/yQJA3fhtVacZIvAKfMs+gty3z8LwIPAU7tZm1L8sSqumS8b1VtBbYCTE1N+Yl9yPGSH5Kk4Vu10FZVT1toWZKbk2yuqpuSbAZ2ztPt+cBXqur27jF/CzwW2Ce0SZIkDV1fu0cvBM7ups8GPjVPnxuAJyXZkOQwRichzLt7VJIkaej6Cm3vAM5Msh04s2uTZCrJuV2fvwG+BVwFXAlcWVWf7qNYSZKkvq3a7tHFVNUPgDPmmT8NvKqb3g38rxMuTZIkaU3yGxEkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAb2EtiQvTPL1JLNJphbp94wk30hyXZI3T7JGSZKktaSvLW1XAy8ALlmoQ5L1wJ8DzwQeCvxmkodOpjxJkqS1ZUMfT1pV1wIkWazb6cB1VXV91/fjwFnANateoCRJ0hqzlo9pux/w3TntHd28fSQ5J8l0kumZmZmJFKe1pJZoS5LUvlULbUm+kOTqeW5nLXcV88yb99O4qrZW1VRVTZ144okHXrSa9K9vvm40UbV3W5KkAVm13aNV9bSDXMUO4P5z2qcCNx7kOjVA217yIs786Cf41omn8gszO9j2khf1XZIkSSuul2Paluky4LQkDwK+B7wYeEm/JWmtMqhJkoaur0t+PD/JDuBxwGeSfL6bf98knwWoql3A64DPA9cCf1VVX++jXkmSpL71dfboBcAF88y/EXjWnPZngc9OsDRJkqQ1aS2fPSpJkqSOoU2SJKkBhjZJkqQGpGpYFyJNMgN8p+86OicAt/RdxAGw7smy7oP3wKryIo2SBm1woW0tSTJdVVN917G/rHuyrFuStBzuHpUkSWqAoU2SJKkBhrbVtbXvAg6QdU+WdUuSluQxbZIkSQ1wS5skSVIDDG2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVQsScNnaDtISR4O/A5wOvBI4DlJThvrcxzwPuC5VfUw4IUTL3TMcuoGXgtcU1WPBJ4MvDvJxokWOnIe8IyxeW8GLq6q04CLu/ZekhwPvA14DKOf822LBY1VcB4HUDdwB/Cy7rXyDOA93Wtoks7jwGrf44+ANfHPiSQNhaHt4D0E+EpV3VFVuxh9UD1/rM9LgE9W1Q0AVbVzwjXOZzl1F3B0kgBHAbcCuyZbJlTVJd1zz3UWcH43fT7wvHke+hvAtqq6tapuA7axbxBZNQdad1V9s6q2d9M3AjuBiV7t/yB+5yR5NHAycNGqFShJhyBD28G7GnhikvskuRfwLOD+Y30eDGxK8uUklyd52cSr3Ndy6n4vo3B3I3AV8Pqqmp1smQs6uapuAujuT5qnz/2A785p7+jm9Wk5dd8jyenARuBbE6htKUvWnmQd8G7gjROuTZIGb0PfBbSuqq5N8k5GW3FuB65k361RG4BHA2cARwKXJvlKVX1zosXOscy6fwO4Angq8AvAtiR/X1U/nmixBy7zzGvmGjdJNgMfAc5eQ2F5Ka8BPltV3x1toJUkrRS3tK2AqvpgVf1qVT2R0S6l7WNddgCfq6qfVtUtwCWMjiPr1TLqfgWj3bpVVdcB/wz88qTrXMDNXajZE27m2+W8g723Hp7KaKthn5ZTN0mOAT4DvLWqvjLB+haznNofB7wuybeB/wS8LMk7JleiJA2XoW0FJDmpu38A8ALgY2NdPgU8IcmGblfkY4BrJ1vlvpZR9w2Mtg6S5GTgl4DrJ1njIi4E9pwNejaj3/G4zwNPT7KpOwHh6d28Pi1Zd3eyxwXAh6vqrydY21KWrL2qXlpVD6iqLcAbGP0Mi52wIElaJkPbyvgvSa4BPg28tqpuS/LqJK+G0a5I4HPA14B/BM6tqqsXXt3ELFo3ozMAfz3JVYzOFnxTt6VwopJ8DLgU+KUkO5K8EngHcGaS7cCZXZskU0nOBaiqW7uf4bLu9vZu3pquG/h3wBOBl3eXibkiyaMmVfdB1i5JWiV+jZUkSVID3NImSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtKl5SX4tydeSHJHk3km+nuThfdclSdJK8uK6GoQkfwwcARwJ7KiqP+m5JEmSVpShTYPQfV/nZcCdwK9X1e6eS5IkaUW5e1RDcTxwFHA0oy1ukiQNilvaNAhJLgQ+DjwI2FxVr+u5JEmSVtSGvguQDlaSlwG7quqjSdYD/yPJU6vqi33XJknSSnFLmyRJUgM8pk2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGvD/A3uTyIcf3vYHAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x576 with 3 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig = plt.figure(figsize=(10,8))\n",
+    "\n",
+    "xy_axes = fig.add_subplot(221)\n",
+    "_ = xy_axes.plot(x, y, '.')\n",
+    "_ = xy_axes.set_ylabel('y')\n",
+    "\n",
+    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
+    "_ = xz_axes.plot(x, z, '.')\n",
+    "_ = xz_axes.set_ylabel('z')\n",
+    "_ = xz_axes.set_xlabel('x')\n",
+    "\n",
+    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
+    "_ = zy_axes.plot(z, y, '.')\n",
+    "_ = zy_axes.set_xlabel('z')"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.6"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
new file mode 100644
index 0000000..0ad2ac3
--- /dev/null
+++ b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
@@ -0,0 +1,308 @@
+
+     HECDSS Complete Catalog of Record Pathnames in File C:/Users/mberutti-temp/Documents/FluEgg/fluegg/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dss
+
+     Catalog Created on Jul 11, 2019, 13:32
+     Number of Records:0000298                   DSS 
+     Sort Order: ABCFED
+
+  Ref.
+ Number   Tag           Record Pathname
+
+0000001           /FLUME 1//LOCATION-ELEV//01JAN2017 0100/PLAN 06/
+0000002           /FLUME 1//LOCATION-ELEV//01JAN2017 0200/PLAN 06/
+0000003           /FLUME 1//LOCATION-ELEV//01JAN2017 0300/PLAN 06/
+0000004           /FLUME 1//LOCATION-ELEV//01JAN2017 0400/PLAN 06/
+0000005           /FLUME 1//LOCATION-ELEV//01JAN2017 0500/PLAN 06/
+0000006           /FLUME 1//LOCATION-ELEV//01JAN2017 0600/PLAN 06/
+0000007           /FLUME 1//LOCATION-ELEV//01JAN2017 0700/PLAN 06/
+0000008           /FLUME 1//LOCATION-ELEV//01JAN2017 0800/PLAN 06/
+0000009           /FLUME 1//LOCATION-ELEV//01JAN2017 0900/PLAN 06/
+0000010           /FLUME 1//LOCATION-ELEV//01JAN2017 1000/PLAN 06/
+0000011           /FLUME 1//LOCATION-ELEV//01JAN2017 1100/PLAN 06/
+0000012           /FLUME 1//LOCATION-ELEV//01JAN2017 1200/PLAN 06/
+0000013           /FLUME 1//LOCATION-ELEV//01JAN2017 1300/PLAN 06/
+0000014           /FLUME 1//LOCATION-ELEV//01JAN2017 1400/PLAN 06/
+0000015           /FLUME 1//LOCATION-ELEV//01JAN2017 1500/PLAN 06/
+0000016           /FLUME 1//LOCATION-ELEV//01JAN2017 1600/PLAN 06/
+0000017           /FLUME 1//LOCATION-ELEV//01JAN2017 1700/PLAN 06/
+0000018           /FLUME 1//LOCATION-ELEV//01JAN2017 1800/PLAN 06/
+0000019           /FLUME 1//LOCATION-ELEV//01JAN2017 1900/PLAN 06/
+0000020           /FLUME 1//LOCATION-ELEV//01JAN2017 2000/PLAN 06/
+0000021           /FLUME 1//LOCATION-ELEV//01JAN2017 2100/PLAN 06/
+0000022           /FLUME 1//LOCATION-ELEV//01JAN2017 2200/PLAN 06/
+0000023           /FLUME 1//LOCATION-ELEV//01JAN2017 2300/PLAN 06/
+0000024           /FLUME 1//LOCATION-ELEV//01JAN2017 2400/PLAN 06/
+0000025           /FLUME 1//LOCATION-ELEV//02JAN2017 0100/PLAN 06/
+0000026           /FLUME 1//LOCATION-ELEV//02JAN2017 0200/PLAN 06/
+0000027           /FLUME 1//LOCATION-ELEV//02JAN2017 0300/PLAN 06/
+0000028           /FLUME 1//LOCATION-ELEV//02JAN2017 0400/PLAN 06/
+0000029           /FLUME 1//LOCATION-ELEV//02JAN2017 0500/PLAN 06/
+0000030           /FLUME 1//LOCATION-ELEV//02JAN2017 0600/PLAN 06/
+0000031           /FLUME 1//LOCATION-ELEV//02JAN2017 0700/PLAN 06/
+0000032           /FLUME 1//LOCATION-ELEV//02JAN2017 0800/PLAN 06/
+0000033           /FLUME 1//LOCATION-ELEV//02JAN2017 0900/PLAN 06/
+0000034           /FLUME 1//LOCATION-ELEV//02JAN2017 1000/PLAN 06/
+0000035           /FLUME 1//LOCATION-ELEV//02JAN2017 1100/PLAN 06/
+0000036           /FLUME 1//LOCATION-ELEV//02JAN2017 1200/PLAN 06/
+0000037           /FLUME 1//LOCATION-ELEV//02JAN2017 1300/PLAN 06/
+0000038           /FLUME 1//LOCATION-ELEV//02JAN2017 1400/PLAN 06/
+0000039           /FLUME 1//LOCATION-ELEV//02JAN2017 1500/PLAN 06/
+0000040           /FLUME 1//LOCATION-ELEV//02JAN2017 1600/PLAN 06/
+0000041           /FLUME 1//LOCATION-ELEV//02JAN2017 1700/PLAN 06/
+0000042           /FLUME 1//LOCATION-ELEV//02JAN2017 1800/PLAN 06/
+0000043           /FLUME 1//LOCATION-ELEV//02JAN2017 1900/PLAN 06/
+0000044           /FLUME 1//LOCATION-ELEV//02JAN2017 2000/PLAN 06/
+0000045           /FLUME 1//LOCATION-ELEV//02JAN2017 2100/PLAN 06/
+0000046           /FLUME 1//LOCATION-ELEV//02JAN2017 2200/PLAN 06/
+0000047           /FLUME 1//LOCATION-ELEV//02JAN2017 2300/PLAN 06/
+0000048           /FLUME 1//LOCATION-ELEV//02JAN2017 2400/PLAN 06/
+0000049           /FLUME 1//LOCATION-ELEV//03JAN2017 0100/PLAN 06/
+0000050           /FLUME 1//LOCATION-ELEV//03JAN2017 0200/PLAN 06/
+0000051           /FLUME 1//LOCATION-ELEV//03JAN2017 0300/PLAN 06/
+0000052           /FLUME 1//LOCATION-ELEV//03JAN2017 0400/PLAN 06/
+0000053           /FLUME 1//LOCATION-ELEV//03JAN2017 0500/PLAN 06/
+0000054           /FLUME 1//LOCATION-ELEV//03JAN2017 0600/PLAN 06/
+0000055           /FLUME 1//LOCATION-ELEV//03JAN2017 0700/PLAN 06/
+0000056           /FLUME 1//LOCATION-ELEV//03JAN2017 0800/PLAN 06/
+0000057           /FLUME 1//LOCATION-ELEV//03JAN2017 0900/PLAN 06/
+0000058           /FLUME 1//LOCATION-ELEV//03JAN2017 1000/PLAN 06/
+0000059           /FLUME 1//LOCATION-ELEV//03JAN2017 1100/PLAN 06/
+0000060           /FLUME 1//LOCATION-ELEV//31DEC2016 2400/PLAN 06/
+0000061           /FLUME 1//LOCATION-ELEV//MAX FLOW/PLAN 06/
+0000062           /FLUME 1//LOCATION-ELEV//MAX STAGE/PLAN 06/
+0000063           /FLUME 1//LOCATION-ELEV//MIN FLOW/PLAN 06/
+0000064           /FLUME 1//LOCATION-ELEV//MIN STAGE/PLAN 06/
+0000065           /FLUME 1//LOCATION-ELEV//01JAN2017 0000/UNSTEADY/
+0000066           /FLUME 1//LOCATION-ELEV//01JAN2017 0100/UNSTEADY/
+0000067           /FLUME 1//LOCATION-ELEV//01JAN2017 0200/UNSTEADY/
+0000068           /FLUME 1//LOCATION-ELEV//01JAN2017 0300/UNSTEADY/
+0000069           /FLUME 1//LOCATION-ELEV//01JAN2017 0400/UNSTEADY/
+0000070           /FLUME 1//LOCATION-ELEV//01JAN2017 0500/UNSTEADY/
+0000071           /FLUME 1//LOCATION-ELEV//01JAN2017 0600/UNSTEADY/
+0000072           /FLUME 1//LOCATION-ELEV//01JAN2017 0700/UNSTEADY/
+0000073           /FLUME 1//LOCATION-ELEV//01JAN2017 0800/UNSTEADY/
+0000074           /FLUME 1//LOCATION-ELEV//01JAN2017 0900/UNSTEADY/
+0000075           /FLUME 1//LOCATION-ELEV//01JAN2017 1000/UNSTEADY/
+0000076           /FLUME 1//LOCATION-ELEV//01JAN2017 1100/UNSTEADY/
+0000077           /FLUME 1//LOCATION-ELEV//01JAN2017 1200/UNSTEADY/
+0000078           /FLUME 1//LOCATION-ELEV//01JAN2017 1300/UNSTEADY/
+0000079           /FLUME 1//LOCATION-ELEV//01JAN2017 1400/UNSTEADY/
+0000080           /FLUME 1//LOCATION-ELEV//01JAN2017 1500/UNSTEADY/
+0000081           /FLUME 1//LOCATION-ELEV//01JAN2017 1600/UNSTEADY/
+0000082           /FLUME 1//LOCATION-ELEV//01JAN2017 1700/UNSTEADY/
+0000083           /FLUME 1//LOCATION-ELEV//01JAN2017 1800/UNSTEADY/
+0000084           /FLUME 1//LOCATION-ELEV//01JAN2017 1900/UNSTEADY/
+0000085           /FLUME 1//LOCATION-ELEV//01JAN2017 2000/UNSTEADY/
+0000086           /FLUME 1//LOCATION-ELEV//01JAN2017 2100/UNSTEADY/
+0000087           /FLUME 1//LOCATION-ELEV//01JAN2017 2200/UNSTEADY/
+0000088           /FLUME 1//LOCATION-ELEV//01JAN2017 2300/UNSTEADY/
+0000089           /FLUME 1//LOCATION-ELEV//01JAN2017 2400/UNSTEADY/
+0000090           /FLUME 1//LOCATION-ELEV//02JAN2017 0000/UNSTEADY/
+0000091           /FLUME 1//LOCATION-ELEV//02JAN2017 0100/UNSTEADY/
+0000092           /FLUME 1//LOCATION-ELEV//02JAN2017 0200/UNSTEADY/
+0000093           /FLUME 1//LOCATION-ELEV//02JAN2017 0300/UNSTEADY/
+0000094           /FLUME 1//LOCATION-ELEV//02JAN2017 0400/UNSTEADY/
+0000095           /FLUME 1//LOCATION-ELEV//02JAN2017 0500/UNSTEADY/
+0000096           /FLUME 1//LOCATION-ELEV//02JAN2017 0600/UNSTEADY/
+0000097           /FLUME 1//LOCATION-ELEV//02JAN2017 0700/UNSTEADY/
+0000098           /FLUME 1//LOCATION-ELEV//02JAN2017 0800/UNSTEADY/
+0000099           /FLUME 1//LOCATION-ELEV//02JAN2017 0900/UNSTEADY/
+0000100           /FLUME 1//LOCATION-ELEV//02JAN2017 1000/UNSTEADY/
+0000101           /FLUME 1//LOCATION-ELEV//02JAN2017 1100/UNSTEADY/
+0000102           /FLUME 1//LOCATION-ELEV//02JAN2017 1200/UNSTEADY/
+0000103           /FLUME 1//LOCATION-ELEV//02JAN2017 1300/UNSTEADY/
+0000104           /FLUME 1//LOCATION-ELEV//02JAN2017 1400/UNSTEADY/
+0000105           /FLUME 1//LOCATION-ELEV//02JAN2017 1500/UNSTEADY/
+0000106           /FLUME 1//LOCATION-ELEV//02JAN2017 1600/UNSTEADY/
+0000107           /FLUME 1//LOCATION-ELEV//02JAN2017 1700/UNSTEADY/
+0000108           /FLUME 1//LOCATION-ELEV//02JAN2017 1800/UNSTEADY/
+0000109           /FLUME 1//LOCATION-ELEV//02JAN2017 1900/UNSTEADY/
+0000110           /FLUME 1//LOCATION-ELEV//02JAN2017 2000/UNSTEADY/
+0000111           /FLUME 1//LOCATION-ELEV//02JAN2017 2100/UNSTEADY/
+0000112           /FLUME 1//LOCATION-ELEV//02JAN2017 2200/UNSTEADY/
+0000113           /FLUME 1//LOCATION-ELEV//02JAN2017 2300/UNSTEADY/
+0000114           /FLUME 1//LOCATION-ELEV//02JAN2017 2400/UNSTEADY/
+0000115           /FLUME 1//LOCATION-ELEV//03JAN2017 0000/UNSTEADY/
+0000116           /FLUME 1//LOCATION-ELEV//03JAN2017 0100/UNSTEADY/
+0000117           /FLUME 1//LOCATION-ELEV//03JAN2017 0200/UNSTEADY/
+0000118           /FLUME 1//LOCATION-ELEV//03JAN2017 0300/UNSTEADY/
+0000119           /FLUME 1//LOCATION-ELEV//03JAN2017 0400/UNSTEADY/
+0000120           /FLUME 1//LOCATION-ELEV//03JAN2017 0500/UNSTEADY/
+0000121           /FLUME 1//LOCATION-ELEV//03JAN2017 0600/UNSTEADY/
+0000122           /FLUME 1//LOCATION-ELEV//03JAN2017 0700/UNSTEADY/
+0000123           /FLUME 1//LOCATION-ELEV//03JAN2017 0800/UNSTEADY/
+0000124           /FLUME 1//LOCATION-ELEV//03JAN2017 0900/UNSTEADY/
+0000125           /FLUME 1//LOCATION-ELEV//03JAN2017 1000/UNSTEADY/
+0000126           /FLUME 1//LOCATION-ELEV//03JAN2017 1100/UNSTEADY/
+0000127           /FLUME 1//LOCATION-ELEV//31DEC2016 2400/UNSTEADY/
+0000128           /FLUME 1//LOCATION-ELEV//MAX CH VEL/UNSTEADY/
+0000129           /FLUME 1//LOCATION-ELEV//MAX FLOW/UNSTEADY/
+0000130           /FLUME 1//LOCATION-ELEV//MAX STAGE/UNSTEADY/
+0000131           /FLUME 1//LOCATION-ELEV//MIN FLOW/UNSTEADY/
+0000132           /FLUME 1//LOCATION-ELEV//MIN STAGE/UNSTEADY/
+0000133           /FLUME 1//LOCATION-FLOW//01JAN2017 0100/PLAN 06/
+0000134           /FLUME 1//LOCATION-FLOW//01JAN2017 0200/PLAN 06/
+0000135           /FLUME 1//LOCATION-FLOW//01JAN2017 0300/PLAN 06/
+0000136           /FLUME 1//LOCATION-FLOW//01JAN2017 0400/PLAN 06/
+0000137           /FLUME 1//LOCATION-FLOW//01JAN2017 0500/PLAN 06/
+0000138           /FLUME 1//LOCATION-FLOW//01JAN2017 0600/PLAN 06/
+0000139           /FLUME 1//LOCATION-FLOW//01JAN2017 0700/PLAN 06/
+0000140           /FLUME 1//LOCATION-FLOW//01JAN2017 0800/PLAN 06/
+0000141           /FLUME 1//LOCATION-FLOW//01JAN2017 0900/PLAN 06/
+0000142           /FLUME 1//LOCATION-FLOW//01JAN2017 1000/PLAN 06/
+0000143           /FLUME 1//LOCATION-FLOW//01JAN2017 1100/PLAN 06/
+0000144           /FLUME 1//LOCATION-FLOW//01JAN2017 1200/PLAN 06/
+0000145           /FLUME 1//LOCATION-FLOW//01JAN2017 1300/PLAN 06/
+0000146           /FLUME 1//LOCATION-FLOW//01JAN2017 1400/PLAN 06/
+0000147           /FLUME 1//LOCATION-FLOW//01JAN2017 1500/PLAN 06/
+0000148           /FLUME 1//LOCATION-FLOW//01JAN2017 1600/PLAN 06/
+0000149           /FLUME 1//LOCATION-FLOW//01JAN2017 1700/PLAN 06/
+0000150           /FLUME 1//LOCATION-FLOW//01JAN2017 1800/PLAN 06/
+0000151           /FLUME 1//LOCATION-FLOW//01JAN2017 1900/PLAN 06/
+0000152           /FLUME 1//LOCATION-FLOW//01JAN2017 2000/PLAN 06/
+0000153           /FLUME 1//LOCATION-FLOW//01JAN2017 2100/PLAN 06/
+0000154           /FLUME 1//LOCATION-FLOW//01JAN2017 2200/PLAN 06/
+0000155           /FLUME 1//LOCATION-FLOW//01JAN2017 2300/PLAN 06/
+0000156           /FLUME 1//LOCATION-FLOW//01JAN2017 2400/PLAN 06/
+0000157           /FLUME 1//LOCATION-FLOW//02JAN2017 0100/PLAN 06/
+0000158           /FLUME 1//LOCATION-FLOW//02JAN2017 0200/PLAN 06/
+0000159           /FLUME 1//LOCATION-FLOW//02JAN2017 0300/PLAN 06/
+0000160           /FLUME 1//LOCATION-FLOW//02JAN2017 0400/PLAN 06/
+0000161           /FLUME 1//LOCATION-FLOW//02JAN2017 0500/PLAN 06/
+0000162           /FLUME 1//LOCATION-FLOW//02JAN2017 0600/PLAN 06/
+0000163           /FLUME 1//LOCATION-FLOW//02JAN2017 0700/PLAN 06/
+0000164           /FLUME 1//LOCATION-FLOW//02JAN2017 0800/PLAN 06/
+0000165           /FLUME 1//LOCATION-FLOW//02JAN2017 0900/PLAN 06/
+0000166           /FLUME 1//LOCATION-FLOW//02JAN2017 1000/PLAN 06/
+0000167           /FLUME 1//LOCATION-FLOW//02JAN2017 1100/PLAN 06/
+0000168           /FLUME 1//LOCATION-FLOW//02JAN2017 1200/PLAN 06/
+0000169           /FLUME 1//LOCATION-FLOW//02JAN2017 1300/PLAN 06/
+0000170           /FLUME 1//LOCATION-FLOW//02JAN2017 1400/PLAN 06/
+0000171           /FLUME 1//LOCATION-FLOW//02JAN2017 1500/PLAN 06/
+0000172           /FLUME 1//LOCATION-FLOW//02JAN2017 1600/PLAN 06/
+0000173           /FLUME 1//LOCATION-FLOW//02JAN2017 1700/PLAN 06/
+0000174           /FLUME 1//LOCATION-FLOW//02JAN2017 1800/PLAN 06/
+0000175           /FLUME 1//LOCATION-FLOW//02JAN2017 1900/PLAN 06/
+0000176           /FLUME 1//LOCATION-FLOW//02JAN2017 2000/PLAN 06/
+0000177           /FLUME 1//LOCATION-FLOW//02JAN2017 2100/PLAN 06/
+0000178           /FLUME 1//LOCATION-FLOW//02JAN2017 2200/PLAN 06/
+0000179           /FLUME 1//LOCATION-FLOW//02JAN2017 2300/PLAN 06/
+0000180           /FLUME 1//LOCATION-FLOW//02JAN2017 2400/PLAN 06/
+0000181           /FLUME 1//LOCATION-FLOW//03JAN2017 0100/PLAN 06/
+0000182           /FLUME 1//LOCATION-FLOW//03JAN2017 0200/PLAN 06/
+0000183           /FLUME 1//LOCATION-FLOW//03JAN2017 0300/PLAN 06/
+0000184           /FLUME 1//LOCATION-FLOW//03JAN2017 0400/PLAN 06/
+0000185           /FLUME 1//LOCATION-FLOW//03JAN2017 0500/PLAN 06/
+0000186           /FLUME 1//LOCATION-FLOW//03JAN2017 0600/PLAN 06/
+0000187           /FLUME 1//LOCATION-FLOW//03JAN2017 0700/PLAN 06/
+0000188           /FLUME 1//LOCATION-FLOW//03JAN2017 0800/PLAN 06/
+0000189           /FLUME 1//LOCATION-FLOW//03JAN2017 0900/PLAN 06/
+0000190           /FLUME 1//LOCATION-FLOW//03JAN2017 1000/PLAN 06/
+0000191           /FLUME 1//LOCATION-FLOW//03JAN2017 1100/PLAN 06/
+0000192           /FLUME 1//LOCATION-FLOW//31DEC2016 2400/PLAN 06/
+0000193           /FLUME 1//LOCATION-FLOW//MAX FLOW/PLAN 06/
+0000194           /FLUME 1//LOCATION-FLOW//MAX STAGE/PLAN 06/
+0000195           /FLUME 1//LOCATION-FLOW//MIN FLOW/PLAN 06/
+0000196           /FLUME 1//LOCATION-FLOW//MIN STAGE/PLAN 06/
+0000197           /FLUME 1//LOCATION-FLOW//01JAN2017 0000/UNSTEADY/
+0000198           /FLUME 1//LOCATION-FLOW//01JAN2017 0100/UNSTEADY/
+0000199           /FLUME 1//LOCATION-FLOW//01JAN2017 0200/UNSTEADY/
+0000200           /FLUME 1//LOCATION-FLOW//01JAN2017 0300/UNSTEADY/
+0000201           /FLUME 1//LOCATION-FLOW//01JAN2017 0400/UNSTEADY/
+0000202           /FLUME 1//LOCATION-FLOW//01JAN2017 0500/UNSTEADY/
+0000203           /FLUME 1//LOCATION-FLOW//01JAN2017 0600/UNSTEADY/
+0000204           /FLUME 1//LOCATION-FLOW//01JAN2017 0700/UNSTEADY/
+0000205           /FLUME 1//LOCATION-FLOW//01JAN2017 0800/UNSTEADY/
+0000206           /FLUME 1//LOCATION-FLOW//01JAN2017 0900/UNSTEADY/
+0000207           /FLUME 1//LOCATION-FLOW//01JAN2017 1000/UNSTEADY/
+0000208           /FLUME 1//LOCATION-FLOW//01JAN2017 1100/UNSTEADY/
+0000209           /FLUME 1//LOCATION-FLOW//01JAN2017 1200/UNSTEADY/
+0000210           /FLUME 1//LOCATION-FLOW//01JAN2017 1300/UNSTEADY/
+0000211           /FLUME 1//LOCATION-FLOW//01JAN2017 1400/UNSTEADY/
+0000212           /FLUME 1//LOCATION-FLOW//01JAN2017 1500/UNSTEADY/
+0000213           /FLUME 1//LOCATION-FLOW//01JAN2017 1600/UNSTEADY/
+0000214           /FLUME 1//LOCATION-FLOW//01JAN2017 1700/UNSTEADY/
+0000215           /FLUME 1//LOCATION-FLOW//01JAN2017 1800/UNSTEADY/
+0000216           /FLUME 1//LOCATION-FLOW//01JAN2017 1900/UNSTEADY/
+0000217           /FLUME 1//LOCATION-FLOW//01JAN2017 2000/UNSTEADY/
+0000218           /FLUME 1//LOCATION-FLOW//01JAN2017 2100/UNSTEADY/
+0000219           /FLUME 1//LOCATION-FLOW//01JAN2017 2200/UNSTEADY/
+0000220           /FLUME 1//LOCATION-FLOW//01JAN2017 2300/UNSTEADY/
+0000221           /FLUME 1//LOCATION-FLOW//01JAN2017 2400/UNSTEADY/
+0000222           /FLUME 1//LOCATION-FLOW//02JAN2017 0000/UNSTEADY/
+0000223           /FLUME 1//LOCATION-FLOW//02JAN2017 0100/UNSTEADY/
+0000224           /FLUME 1//LOCATION-FLOW//02JAN2017 0200/UNSTEADY/
+0000225           /FLUME 1//LOCATION-FLOW//02JAN2017 0300/UNSTEADY/
+0000226           /FLUME 1//LOCATION-FLOW//02JAN2017 0400/UNSTEADY/
+0000227           /FLUME 1//LOCATION-FLOW//02JAN2017 0500/UNSTEADY/
+0000228           /FLUME 1//LOCATION-FLOW//02JAN2017 0600/UNSTEADY/
+0000229           /FLUME 1//LOCATION-FLOW//02JAN2017 0700/UNSTEADY/
+0000230           /FLUME 1//LOCATION-FLOW//02JAN2017 0800/UNSTEADY/
+0000231           /FLUME 1//LOCATION-FLOW//02JAN2017 0900/UNSTEADY/
+0000232           /FLUME 1//LOCATION-FLOW//02JAN2017 1000/UNSTEADY/
+0000233           /FLUME 1//LOCATION-FLOW//02JAN2017 1100/UNSTEADY/
+0000234           /FLUME 1//LOCATION-FLOW//02JAN2017 1200/UNSTEADY/
+0000235           /FLUME 1//LOCATION-FLOW//02JAN2017 1300/UNSTEADY/
+0000236           /FLUME 1//LOCATION-FLOW//02JAN2017 1400/UNSTEADY/
+0000237           /FLUME 1//LOCATION-FLOW//02JAN2017 1500/UNSTEADY/
+0000238           /FLUME 1//LOCATION-FLOW//02JAN2017 1600/UNSTEADY/
+0000239           /FLUME 1//LOCATION-FLOW//02JAN2017 1700/UNSTEADY/
+0000240           /FLUME 1//LOCATION-FLOW//02JAN2017 1800/UNSTEADY/
+0000241           /FLUME 1//LOCATION-FLOW//02JAN2017 1900/UNSTEADY/
+0000242           /FLUME 1//LOCATION-FLOW//02JAN2017 2000/UNSTEADY/
+0000243           /FLUME 1//LOCATION-FLOW//02JAN2017 2100/UNSTEADY/
+0000244           /FLUME 1//LOCATION-FLOW//02JAN2017 2200/UNSTEADY/
+0000245           /FLUME 1//LOCATION-FLOW//02JAN2017 2300/UNSTEADY/
+0000246           /FLUME 1//LOCATION-FLOW//02JAN2017 2400/UNSTEADY/
+0000247           /FLUME 1//LOCATION-FLOW//03JAN2017 0000/UNSTEADY/
+0000248           /FLUME 1//LOCATION-FLOW//03JAN2017 0100/UNSTEADY/
+0000249           /FLUME 1//LOCATION-FLOW//03JAN2017 0200/UNSTEADY/
+0000250           /FLUME 1//LOCATION-FLOW//03JAN2017 0300/UNSTEADY/
+0000251           /FLUME 1//LOCATION-FLOW//03JAN2017 0400/UNSTEADY/
+0000252           /FLUME 1//LOCATION-FLOW//03JAN2017 0500/UNSTEADY/
+0000253           /FLUME 1//LOCATION-FLOW//03JAN2017 0600/UNSTEADY/
+0000254           /FLUME 1//LOCATION-FLOW//03JAN2017 0700/UNSTEADY/
+0000255           /FLUME 1//LOCATION-FLOW//03JAN2017 0800/UNSTEADY/
+0000256           /FLUME 1//LOCATION-FLOW//03JAN2017 0900/UNSTEADY/
+0000257           /FLUME 1//LOCATION-FLOW//03JAN2017 1000/UNSTEADY/
+0000258           /FLUME 1//LOCATION-FLOW//03JAN2017 1100/UNSTEADY/
+0000259           /FLUME 1//LOCATION-FLOW//31DEC2016 2400/UNSTEADY/
+0000260           /FLUME 1//LOCATION-FLOW//MAX CH VEL/UNSTEADY/
+0000261           /FLUME 1//LOCATION-FLOW//MAX FLOW/UNSTEADY/
+0000262           /FLUME 1//LOCATION-FLOW//MAX STAGE/UNSTEADY/
+0000263           /FLUME 1//LOCATION-FLOW//MIN FLOW/UNSTEADY/
+0000264           /FLUME 1//LOCATION-FLOW//MIN STAGE/UNSTEADY/
+0000265           /FLUME 1//LOCATION-TIME//MAX FLOW/PLAN 06/
+0000266           /FLUME 1//LOCATION-TIME//MAX STAGE/PLAN 06/
+0000267           /FLUME 1//LOCATION-TIME//MIN FLOW/PLAN 06/
+0000268           /FLUME 1//LOCATION-TIME//MIN STAGE/PLAN 06/
+0000269           /FLUME 1//LOCATION-TIME//MAX CH VEL/UNSTEADY/
+0000270           /FLUME 1//LOCATION-TIME//MAX FLOW/UNSTEADY/
+0000271           /FLUME 1//LOCATION-TIME//MAX STAGE/UNSTEADY/
+0000272           /FLUME 1//LOCATION-TIME//MIN FLOW/UNSTEADY/
+0000273           /FLUME 1//LOCATION-TIME//MIN STAGE/UNSTEADY/
+0000274           /FLUME 1//LOCATION-VEL//MAX CH VEL/UNSTEADY/
+0000275           /FLUME 1/0/FLOW/01DEC2016/1HOUR/PLAN 06/
+0000276           /FLUME 1/0/FLOW/01JAN2017/1HOUR/PLAN 06/
+0000277           /FLUME 1/0/FLOW/01DEC2016/1HOUR/UNSTEADY/
+0000278           /FLUME 1/0/FLOW/01JAN2017/1HOUR/UNSTEADY/
+0000279           /FLUME 1/0/FLOW-CUM/01DEC2016/1HOUR/PLAN 06/
+0000280           /FLUME 1/0/FLOW-CUM/01JAN2017/1HOUR/PLAN 06/
+0000281           /FLUME 1/0/FLOW-CUM/01DEC2016/1HOUR/UNSTEADY/
+0000282           /FLUME 1/0/FLOW-CUM/01JAN2017/1HOUR/UNSTEADY/
+0000283           /FLUME 1/0/STAGE/01DEC2016/1HOUR/PLAN 06/
+0000284           /FLUME 1/0/STAGE/01JAN2017/1HOUR/PLAN 06/
+0000285           /FLUME 1/0/STAGE/01DEC2016/1HOUR/UNSTEADY/
+0000286           /FLUME 1/0/STAGE/01JAN2017/1HOUR/UNSTEADY/
+0000287           /FLUME 1/10000/FLOW/01DEC2016/1HOUR/PLAN 06/
+0000288           /FLUME 1/10000/FLOW/01JAN2017/1HOUR/PLAN 06/
+0000289           /FLUME 1/10000/FLOW/01DEC2016/1HOUR/UNSTEADY/
+0000290           /FLUME 1/10000/FLOW/01JAN2017/1HOUR/UNSTEADY/
+0000291           /FLUME 1/10000/FLOW-CUM/01DEC2016/1HOUR/PLAN 06/
+0000292           /FLUME 1/10000/FLOW-CUM/01JAN2017/1HOUR/PLAN 06/
+0000293           /FLUME 1/10000/FLOW-CUM/01DEC2016/1HOUR/UNSTEADY/
+0000294           /FLUME 1/10000/FLOW-CUM/01JAN2017/1HOUR/UNSTEADY/
+0000295           /FLUME 1/10000/STAGE/01DEC2016/1HOUR/PLAN 06/
+0000296           /FLUME 1/10000/STAGE/01JAN2017/1HOUR/PLAN 06/
+0000297           /FLUME 1/10000/STAGE/01DEC2016/1HOUR/UNSTEADY/
+0000298           /FLUME 1/10000/STAGE/01JAN2017/1HOUR/UNSTEADY/
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
new file mode 100644
index 0000000..c68a347
--- /dev/null
+++ b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
@@ -0,0 +1,187 @@
+<RASMapper>
+  <Version>2.0.13611</Version>
+  <Geometries TopNode="True">
+    <Layer Name="Base Case 01 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g02.hdf">
+      <Layer Name="Rivers" Type="RASRiver" />
+      <Layer Name="XS" Type="RASXS" />
+      <Layer Name="Storage Areas" Type="RASStorageArea" />
+      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+      <Layer Name="..." Type="RASMoreLayers" />
+    </Layer>
+    <Layer Name="Base Case 02 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g03.hdf">
+      <Layer Name="Rivers" Type="RASRiver" />
+      <Layer Name="XS" Type="RASXS" />
+      <Layer Name="Storage Areas" Type="RASStorageArea" />
+      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+      <Layer Name="..." Type="RASMoreLayers" />
+    </Layer>
+    <Layer Name="Base Case 03 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g01.hdf">
+      <Layer Name="Rivers" Type="RASRiver" />
+      <Layer Name="XS" Type="RASXS" />
+      <Layer Name="Storage Areas" Type="RASStorageArea" />
+      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+      <Layer Name="..." Type="RASMoreLayers" />
+    </Layer>
+    <Layer Name="Base Case 04 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g04.hdf">
+      <Layer Name="Rivers" Type="RASRiver" />
+      <Layer Name="XS" Type="RASXS" />
+      <Layer Name="Storage Areas" Type="RASStorageArea" />
+      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+      <Layer Name="..." Type="RASMoreLayers" />
+    </Layer>
+    <Layer Name="Unsteady Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g05.hdf">
+      <Layer Name="Rivers" Type="RASRiver" />
+      <Layer Name="XS" Type="RASXS" />
+      <Layer Name="Storage Areas" Type="RASStorageArea" />
+      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+      <Layer Name="..." Type="RASMoreLayers" />
+    </Layer>
+  </Geometries>
+  <Results Expanded="True">
+    <Layer Name="Flume Base Case 01" Type="RASResults" Filename=".\HEC-RASFlumeCase.p01.hdf">
+      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p01.hdf">
+        <Layer Name="Rivers" Type="RASRiver" />
+        <Layer Name="XS" Type="RASXS" />
+        <Layer Name="Storage Areas" Type="RASStorageArea" />
+        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+        <Layer Name="..." Type="RASMoreLayers" />
+      </Layer>
+      <Layer Name="depth" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="velocity" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="elevation" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+    </Layer>
+    <Layer Name="BaseCase02" Type="RASResults" Filename=".\HEC-RASFlumeCase.p02.hdf">
+      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p02.hdf">
+        <Layer Name="Rivers" Type="RASRiver" />
+        <Layer Name="XS" Type="RASXS" />
+        <Layer Name="Storage Areas" Type="RASStorageArea" />
+        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+        <Layer Name="..." Type="RASMoreLayers" />
+      </Layer>
+      <Layer Name="depth" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="velocity" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="elevation" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+    </Layer>
+    <Layer Name="BaseCase03" Type="RASResults" Filename=".\HEC-RASFlumeCase.p03.hdf">
+      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p03.hdf">
+        <Layer Name="Rivers" Type="RASRiver" />
+        <Layer Name="XS" Type="RASXS" />
+        <Layer Name="Storage Areas" Type="RASStorageArea" />
+        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+        <Layer Name="..." Type="RASMoreLayers" />
+      </Layer>
+      <Layer Name="depth" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="velocity" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="elevation" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+    </Layer>
+    <Layer Name="BaseCase04" Type="RASResults" Filename=".\HEC-RASFlumeCase.p04.hdf">
+      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p04.hdf">
+        <Layer Name="Rivers" Type="RASRiver" />
+        <Layer Name="XS" Type="RASXS" />
+        <Layer Name="Storage Areas" Type="RASStorageArea" />
+        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+        <Layer Name="..." Type="RASMoreLayers" />
+      </Layer>
+      <Layer Name="depth" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="velocity" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="elevation" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+    </Layer>
+    <Layer Name="Unsteady" Type="RASResults" Expanded="True" Selected="True" Filename=".\HEC-RASFlumeCase.p05.hdf">
+      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p05.hdf">
+        <Layer Name="Rivers" Type="RASRiver" />
+        <Layer Name="XS" Type="RASXS" />
+        <Layer Name="Storage Areas" Type="RASStorageArea" />
+        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
+        <Layer Name="..." Type="RASMoreLayers" />
+      </Layer>
+      <Layer Name="depth" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="velocity" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+      <Layer Name="elevation" Type="RASResultsMap">
+        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="100.0166015625,102.104797363281,104.192993164063,106.281188964844,108.369384765625,110.457580566406,112.545776367188" Stretched="True" />
+        <Contour On="False" Interval="5" Color="-16777216" />
+        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
+      </Layer>
+    </Layer>
+  </Results>
+  <MapLayers />
+  <Terrains />
+  <CurrentView>
+    <MaxX>1.06769596199525</MaxX>
+    <MinX>0.0676959619952494</MinX>
+    <MaxY>0.989311163895487</MaxY>
+    <MinY>-0.010688836104513</MinY>
+  </CurrentView>
+  <VelocitySettings>
+    <Density>1.5</Density>
+    <Lifetime>100</Lifetime>
+    <Radius>0.75</Radius>
+    <Method>2</Method>
+    <Timestep>1</Timestep>
+    <StaticColor>Black</StaticColor>
+  </VelocitySettings>
+  <AnimationSettings>
+    <DelayTimer>0</DelayTimer>
+  </AnimationSettings>
+  <ProjectSettings>
+    <Units>US Customary</Units>
+  </ProjectSettings>
+  <CurrentSettings>
+    <Folders />
+  </CurrentSettings>
+</RASMapper>
\ No newline at end of file
diff --git a/test/test_transporter.py b/test/test_transporter.py
new file mode 100644
index 0000000..ef37a92
--- /dev/null
+++ b/test/test_transporter.py
@@ -0,0 +1,9 @@
+import unittest
+
+from fluegg.transporter import *
+
+class TestMaxTimeStep(unittest.TestCase):
+
+    def test_time_step(self):
+        
+        
\ No newline at end of file
-- 
GitLab


From f65e5d20e93856fc3cf4a6f484eb2aa5dd212ffa Mon Sep 17 00:00:00 2001
From: "Berutti, Michael (Contractor) Charles" <mberutti@contractor.usgs.gov>
Date: Wed, 7 Aug 2019 17:56:17 +0000
Subject: [PATCH 4/7] Revert "Refined HDF5 tests and added Nonrandom Numbers
 tests"

This reverts commit 3ce334392abbe227fbae3aa920c10ebb9b46ed5b
---
 test/test_random.py | 63 +++++++--------------------------------------
 1 file changed, 9 insertions(+), 54 deletions(-)

diff --git a/test/test_random.py b/test/test_random.py
index b78ea76..f721f5d 100644
--- a/test/test_random.py
+++ b/test/test_random.py
@@ -76,24 +76,7 @@ class TestNormalRandomNumbers(unittest.TestCase):
 
 class TestNonRandomNumbers(unittest.TestCase):
 
-    def test_non_random_numbers(self):
-
-        self.assertEqual(NonRandomNumbers().random([5], 1), [5])
-
-        with self.assertRaises(TypeError):
-            NonRandomNumbers().random(5)
-
-        with self.assertRaises(TypeError):
-            NonRandomNumbers().random(5, 1, 5)
-
-        with self.assertRaises(TypeError):
-            NonRandomNumbers().random_array(5)
-
-        with self.assertRaises(TypeError):
-            NonRandomNumbers().random_array(5, 1)
-
-        with self.assertRaises(TypeError):
-            NonRandomNumbers().random_array(5, 1, 5, 1)
+    pass
 
 
 class TestHDF5NormalRandomNumbers(unittest.TestCase):
@@ -102,18 +85,10 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
 
         self._remove_test_saves()
 
-    def _average(self, numbers):
-
-        sum = 0
-        for number in numbers:
-            sum += number
-        return float(sum) / len(numbers)
-
     def _create_HDF5_file(self):
 
         with h5py.File('UNIT TEST HDF5 TEST FILE.hdf', 'w') as f:
-            arr = np.random.normal(0, 1, 1000)
-            f.create_dataset('TEST DATA SET', data=arr)
+            f.create_dataset('TEST DATA SET', (100,))
 
     def _get_file_path(self):
 
@@ -129,7 +104,8 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
                     os.remove(r'.\results\{}'.format(file))
 
     def test_HDF5_input(self):
-
+        ''' Needs way to validate the results
+        '''
         self._create_HDF5_file()
         file_path = self._get_file_path()
         arr = np.random.normal(25, 50, 100)
@@ -156,36 +132,15 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
             file_path, 'TEST DATA SET').random(
             arr, 70)
 
-    def test_HDF5_array_output_dimensions(self):
-
-        self._create_HDF5_file()
-        file_path = self._get_file_path()
-        numbers = HDF5NormalRandomNumbers(
-            file_path, 'TEST DATA SET').random_array(
-            0, 70, 100)
-
-        self.assertEqual(len(numbers), 100)
-
-    def test_HDF5_array_output_value(self):
-
+    def test_HDF5_array(self):
+        ''' Needs way to validate the results
+        '''
         self._create_HDF5_file()
         file_path = self._get_file_path()
+        arr = np.random.normal(25, 50, 100)
         numbers = HDF5NormalRandomNumbers(
             file_path, 'TEST DATA SET').random_array(
-            0, 1, 100)
-        avg = self._average(numbers)
-
-        self.assertTrue(-1 < avg < 1)
-
-    def test_HDF5_array_size(self):
-
-        self._create_HDF5_file()
-        file_path = self._get_file_path()
-
-        with self.assertRaises(ValueError):
-            numbers = HDF5NormalRandomNumbers(
-                file_path, 'TEST DATA SET').random_array(
-                0, 70, 2500)
+            arr, 70, 100)
 
     def tearDown(self):
 
-- 
GitLab


From 62f5342004e40b4c8bb713f84733c34316fb2cf8 Mon Sep 17 00:00:00 2001
From: Berutti <mberutti@contractor.usgs.gov>
Date: Wed, 7 Aug 2019 13:04:10 -0500
Subject: [PATCH 5/7] Removed other files.

---
 coverage_report/coverage_html.js              |  584 --
 coverage_report/fluegg___init___py.html       |   89 -
 coverage_report/fluegg_asiancarpeggs_py.html  | 1305 ---
 coverage_report/fluegg_drift_py.html          |  393 -
 coverage_report/fluegg_gui___init___py.html   |   89 -
 coverage_report/fluegg_gui_gui_layout_py.html |  665 --
 coverage_report/fluegg_gui_gui_py.html        |  923 ---
 .../fluegg_gui_hecras_dialog_py.html          |  337 -
 coverage_report/fluegg_hydraulics_py.html     | 1883 -----
 coverage_report/fluegg_kml_py.html            |  907 --
 coverage_report/fluegg_random_py.html         |  271 -
 coverage_report/fluegg_ras_py.html            | 1007 ---
 coverage_report/fluegg_simclock_py.html       |  361 -
 coverage_report/fluegg_simulation_py.html     |  723 --
 coverage_report/fluegg_transporter_py.html    | 1809 ----
 coverage_report/index.html                    |  230 -
 .../jquery.ba-throttle-debounce.min.js        |    9 -
 coverage_report/jquery.hotkeys.js             |   99 -
 coverage_report/jquery.isonscreen.js          |   53 -
 coverage_report/jquery.min.js                 |    4 -
 coverage_report/jquery.tablesorter.min.js     |    2 -
 coverage_report/keybd_closed.png              |  Bin 112 -> 0 bytes
 coverage_report/keybd_open.png                |  Bin 112 -> 0 bytes
 coverage_report/status.json                   |    1 -
 coverage_report/style.css                     |  375 -
 coverage_report/test_fluegg_py.html           |  165 -
 notebooks/asian carp eggs.ipynb               |   98 -
 notebooks/fall velocity discrepancy.ipynb     |  292 -
 notebooks/fluegg-tutorial-steady-ras.ipynb    |  510 --
 notebooks/fluegg-tutorial.ipynb               |  485 --
 notebooks/hydraulic model.ipynb               |  300 -
 notebooks/lateral transporter.ipynb           |  339 -
 notebooks/longitudinal transporter.ipynb      |  326 -
 notebooks/mean velocity test.ipynb            |  479 --
 notebooks/nonrandom constant particle.ipynb   |  259 -
 notebooks/nonrandom single egg.ipynb          |  259 -
 notebooks/ras.ipynb                           |  311 -
 .../reverse longitudinal transporter.ipynb    |  326 -
 notebooks/reverse simulation clock.ipynb      | 7353 -----------------
 notebooks/reverse simulation.ipynb            |  361 -
 notebooks/simulation clock.ipynb              |  122 -
 notebooks/simulation.ipynb                    |  361 -
 notebooks/unsteady hydraulic cell.ipynb       |  465 --
 notebooks/unsteady simulation.ipynb           |  599 --
 notebooks/vertical transporter - Copy.ipynb   |  326 -
 notebooks/vertical transporter.ipynb          |  326 -
 .../ras/unsteadyflume/BaseCaseParameters.xlsx |  Bin 9866 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.IC.O05 |  Bin 5376 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.IC.O06 |  Bin 5376 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O01    |  Bin 12800 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O02    |  Bin 12800 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O03    |  Bin 12800 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O04    |  Bin 12800 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O05    |  Bin 153600 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.O06    |  Bin 153600 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.b05    |   99 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.b06    |   99 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.bco05  |   58 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.bco06  |   84 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.c05    |  Bin 2440 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.dsc    |  308 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.dss    |  Bin 324608 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.f01    |   22 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.f02    |   22 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.f03    |   22 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.f04    |   22 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.g01    |   60 -
 .../unsteadyflume/HEC-RASFlumeCase.g01.hdf    |  Bin 113480 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.g02    |   63 -
 .../unsteadyflume/HEC-RASFlumeCase.g02.hdf    |  Bin 113480 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.g03    |   60 -
 .../unsteadyflume/HEC-RASFlumeCase.g03.hdf    |  Bin 113480 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.g04    |   60 -
 .../unsteadyflume/HEC-RASFlumeCase.g04.hdf    |  Bin 113480 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.g05    |   63 -
 .../unsteadyflume/HEC-RASFlumeCase.g05.hdf    |  Bin 92869 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.hyd05  |  Bin 313268 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.p01    |  173 -
 .../unsteadyflume/HEC-RASFlumeCase.p01.hdf    |  Bin 180960 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.p02    |  172 -
 .../unsteadyflume/HEC-RASFlumeCase.p02.hdf    |  Bin 180952 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.p03    |  172 -
 .../unsteadyflume/HEC-RASFlumeCase.p03.hdf    |  Bin 180952 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.p04    |  172 -
 .../unsteadyflume/HEC-RASFlumeCase.p04.hdf    |  Bin 180952 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.p05    |  183 -
 .../unsteadyflume/HEC-RASFlumeCase.p05.blf    |  Bin 1706 -> 0 bytes
 .../unsteadyflume/HEC-RASFlumeCase.p05.hdf    |  Bin 299299 -> 0 bytes
 .../unsteadyflume/HEC-RASFlumeCase.p06.blf    |  Bin 866 -> 0 bytes
 .../unsteadyflume/HEC-RASFlumeCase.p06.hdf    |  Bin 267055 -> 0 bytes
 .../ras/unsteadyflume/HEC-RASFlumeCase.prj    |   40 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r01    |   69 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r02    |   69 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r03    |   69 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r04    |   69 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r05    |  349 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.r06    |  349 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.rasmap |  187 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.u01    |   20 -
 .../ras/unsteadyflume/HEC-RASFlumeCase.x05    |   58 -
 100 files changed, 29374 deletions(-)
 delete mode 100644 coverage_report/coverage_html.js
 delete mode 100644 coverage_report/fluegg___init___py.html
 delete mode 100644 coverage_report/fluegg_asiancarpeggs_py.html
 delete mode 100644 coverage_report/fluegg_drift_py.html
 delete mode 100644 coverage_report/fluegg_gui___init___py.html
 delete mode 100644 coverage_report/fluegg_gui_gui_layout_py.html
 delete mode 100644 coverage_report/fluegg_gui_gui_py.html
 delete mode 100644 coverage_report/fluegg_gui_hecras_dialog_py.html
 delete mode 100644 coverage_report/fluegg_hydraulics_py.html
 delete mode 100644 coverage_report/fluegg_kml_py.html
 delete mode 100644 coverage_report/fluegg_random_py.html
 delete mode 100644 coverage_report/fluegg_ras_py.html
 delete mode 100644 coverage_report/fluegg_simclock_py.html
 delete mode 100644 coverage_report/fluegg_simulation_py.html
 delete mode 100644 coverage_report/fluegg_transporter_py.html
 delete mode 100644 coverage_report/index.html
 delete mode 100644 coverage_report/jquery.ba-throttle-debounce.min.js
 delete mode 100644 coverage_report/jquery.hotkeys.js
 delete mode 100644 coverage_report/jquery.isonscreen.js
 delete mode 100644 coverage_report/jquery.min.js
 delete mode 100644 coverage_report/jquery.tablesorter.min.js
 delete mode 100644 coverage_report/keybd_closed.png
 delete mode 100644 coverage_report/keybd_open.png
 delete mode 100644 coverage_report/status.json
 delete mode 100644 coverage_report/style.css
 delete mode 100644 coverage_report/test_fluegg_py.html
 delete mode 100644 notebooks/asian carp eggs.ipynb
 delete mode 100644 notebooks/fall velocity discrepancy.ipynb
 delete mode 100644 notebooks/fluegg-tutorial-steady-ras.ipynb
 delete mode 100644 notebooks/fluegg-tutorial.ipynb
 delete mode 100644 notebooks/hydraulic model.ipynb
 delete mode 100644 notebooks/lateral transporter.ipynb
 delete mode 100644 notebooks/longitudinal transporter.ipynb
 delete mode 100644 notebooks/mean velocity test.ipynb
 delete mode 100644 notebooks/nonrandom constant particle.ipynb
 delete mode 100644 notebooks/nonrandom single egg.ipynb
 delete mode 100644 notebooks/ras.ipynb
 delete mode 100644 notebooks/reverse longitudinal transporter.ipynb
 delete mode 100644 notebooks/reverse simulation clock.ipynb
 delete mode 100644 notebooks/reverse simulation.ipynb
 delete mode 100644 notebooks/simulation clock.ipynb
 delete mode 100644 notebooks/simulation.ipynb
 delete mode 100644 notebooks/unsteady hydraulic cell.ipynb
 delete mode 100644 notebooks/unsteady simulation.ipynb
 delete mode 100644 notebooks/vertical transporter - Copy.ipynb
 delete mode 100644 notebooks/vertical transporter.ipynb
 delete mode 100644 test/data/ras/unsteadyflume/BaseCaseParameters.xlsx
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O06
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O02
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O03
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O04
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.O06
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.b05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.b06
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco06
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.c05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.dss
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.f01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.f02
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.f03
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.f04
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.hyd05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.blf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.blf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.hdf
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.prj
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r02
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r03
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r04
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r05
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.r06
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.u01
 delete mode 100644 test/data/ras/unsteadyflume/HEC-RASFlumeCase.x05

diff --git a/coverage_report/coverage_html.js b/coverage_report/coverage_html.js
deleted file mode 100644
index f6f5de2..0000000
--- a/coverage_report/coverage_html.js
+++ /dev/null
@@ -1,584 +0,0 @@
-// Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
-// For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt
-
-// Coverage.py HTML report browser code.
-/*jslint browser: true, sloppy: true, vars: true, plusplus: true, maxerr: 50, indent: 4 */
-/*global coverage: true, document, window, $ */
-
-coverage = {};
-
-// Find all the elements with shortkey_* class, and use them to assign a shortcut key.
-coverage.assign_shortkeys = function () {
-    $("*[class*='shortkey_']").each(function (i, e) {
-        $.each($(e).attr("class").split(" "), function (i, c) {
-            if (/^shortkey_/.test(c)) {
-                $(document).bind('keydown', c.substr(9), function () {
-                    $(e).click();
-                });
-            }
-        });
-    });
-};
-
-// Create the events for the help panel.
-coverage.wire_up_help_panel = function () {
-    $("#keyboard_icon").click(function () {
-        // Show the help panel, and position it so the keyboard icon in the
-        // panel is in the same place as the keyboard icon in the header.
-        $(".help_panel").show();
-        var koff = $("#keyboard_icon").offset();
-        var poff = $("#panel_icon").position();
-        $(".help_panel").offset({
-            top: koff.top-poff.top,
-            left: koff.left-poff.left
-        });
-    });
-    $("#panel_icon").click(function () {
-        $(".help_panel").hide();
-    });
-};
-
-// Create the events for the filter box.
-coverage.wire_up_filter = function () {
-    // Cache elements.
-    var table = $("table.index");
-    var table_rows = table.find("tbody tr");
-    var table_row_names = table_rows.find("td.name a");
-    var no_rows = $("#no_rows");
-
-    // Create a duplicate table footer that we can modify with dynamic summed values.
-    var table_footer = $("table.index tfoot tr");
-    var table_dynamic_footer = table_footer.clone();
-    table_dynamic_footer.attr('class', 'total_dynamic hidden');
-    table_footer.after(table_dynamic_footer);
-
-    // Observe filter keyevents.
-    $("#filter").on("keyup change", $.debounce(150, function (event) {
-        var filter_value = $(this).val();
-
-        if (filter_value === "") {
-            // Filter box is empty, remove all filtering.
-            table_rows.removeClass("hidden");
-
-            // Show standard footer, hide dynamic footer.
-            table_footer.removeClass("hidden");
-            table_dynamic_footer.addClass("hidden");
-
-            // Hide placeholder, show table.
-            if (no_rows.length > 0) {
-                no_rows.hide();
-            }
-            table.show();
-
-        }
-        else {
-            // Filter table items by value.
-            var hidden = 0;
-            var shown = 0;
-
-            // Hide / show elements.
-            $.each(table_row_names, function () {
-                var element = $(this).parents("tr");
-
-                if ($(this).text().indexOf(filter_value) === -1) {
-                    // hide
-                    element.addClass("hidden");
-                    hidden++;
-                }
-                else {
-                    // show
-                    element.removeClass("hidden");
-                    shown++;
-                }
-            });
-
-            // Show placeholder if no rows will be displayed.
-            if (no_rows.length > 0) {
-                if (shown === 0) {
-                    // Show placeholder, hide table.
-                    no_rows.show();
-                    table.hide();
-                }
-                else {
-                    // Hide placeholder, show table.
-                    no_rows.hide();
-                    table.show();
-                }
-            }
-
-            // Manage dynamic header:
-            if (hidden > 0) {
-                // Calculate new dynamic sum values based on visible rows.
-                for (var column = 2; column < 20; column++) {
-                    // Calculate summed value.
-                    var cells = table_rows.find('td:nth-child(' + column + ')');
-                    if (!cells.length) {
-                        // No more columns...!
-                        break;
-                    }
-
-                    var sum = 0, numer = 0, denom = 0;
-                    $.each(cells.filter(':visible'), function () {
-                        var ratio = $(this).data("ratio");
-                        if (ratio) {
-                            var splitted = ratio.split(" ");
-                            numer += parseInt(splitted[0], 10);
-                            denom += parseInt(splitted[1], 10);
-                        }
-                        else {
-                            sum += parseInt(this.innerHTML, 10);
-                        }
-                    });
-
-                    // Get footer cell element.
-                    var footer_cell = table_dynamic_footer.find('td:nth-child(' + column + ')');
-
-                    // Set value into dynamic footer cell element.
-                    if (cells[0].innerHTML.indexOf('%') > -1) {
-                        // Percentage columns use the numerator and denominator,
-                        // and adapt to the number of decimal places.
-                        var match = /\.([0-9]+)/.exec(cells[0].innerHTML);
-                        var places = 0;
-                        if (match) {
-                            places = match[1].length;
-                        }
-                        var pct = numer * 100 / denom;
-                        footer_cell.text(pct.toFixed(places) + '%');
-                    }
-                    else {
-                        footer_cell.text(sum);
-                    }
-                }
-
-                // Hide standard footer, show dynamic footer.
-                table_footer.addClass("hidden");
-                table_dynamic_footer.removeClass("hidden");
-            }
-            else {
-                // Show standard footer, hide dynamic footer.
-                table_footer.removeClass("hidden");
-                table_dynamic_footer.addClass("hidden");
-            }
-        }
-    }));
-
-    // Trigger change event on setup, to force filter on page refresh
-    // (filter value may still be present).
-    $("#filter").trigger("change");
-};
-
-// Loaded on index.html
-coverage.index_ready = function ($) {
-    // Look for a cookie containing previous sort settings:
-    var sort_list = [];
-    var cookie_name = "COVERAGE_INDEX_SORT";
-    var i;
-
-    // This almost makes it worth installing the jQuery cookie plugin:
-    if (document.cookie.indexOf(cookie_name) > -1) {
-        var cookies = document.cookie.split(";");
-        for (i = 0; i < cookies.length; i++) {
-            var parts = cookies[i].split("=");
-
-            if ($.trim(parts[0]) === cookie_name && parts[1]) {
-                sort_list = eval("[[" + parts[1] + "]]");
-                break;
-            }
-        }
-    }
-
-    // Create a new widget which exists only to save and restore
-    // the sort order:
-    $.tablesorter.addWidget({
-        id: "persistentSort",
-
-        // Format is called by the widget before displaying:
-        format: function (table) {
-            if (table.config.sortList.length === 0 && sort_list.length > 0) {
-                // This table hasn't been sorted before - we'll use
-                // our stored settings:
-                $(table).trigger('sorton', [sort_list]);
-            }
-            else {
-                // This is not the first load - something has
-                // already defined sorting so we'll just update
-                // our stored value to match:
-                sort_list = table.config.sortList;
-            }
-        }
-    });
-
-    // Configure our tablesorter to handle the variable number of
-    // columns produced depending on report options:
-    var headers = [];
-    var col_count = $("table.index > thead > tr > th").length;
-
-    headers[0] = { sorter: 'text' };
-    for (i = 1; i < col_count-1; i++) {
-        headers[i] = { sorter: 'digit' };
-    }
-    headers[col_count-1] = { sorter: 'percent' };
-
-    // Enable the table sorter:
-    $("table.index").tablesorter({
-        widgets: ['persistentSort'],
-        headers: headers
-    });
-
-    coverage.assign_shortkeys();
-    coverage.wire_up_help_panel();
-    coverage.wire_up_filter();
-
-    // Watch for page unload events so we can save the final sort settings:
-    $(window).unload(function () {
-        document.cookie = cookie_name + "=" + sort_list.toString() + "; path=/";
-    });
-};
-
-// -- pyfile stuff --
-
-coverage.pyfile_ready = function ($) {
-    // If we're directed to a particular line number, highlight the line.
-    var frag = location.hash;
-    if (frag.length > 2 && frag[1] === 'n') {
-        $(frag).addClass('highlight');
-        coverage.set_sel(parseInt(frag.substr(2), 10));
-    }
-    else {
-        coverage.set_sel(0);
-    }
-
-    $(document)
-        .bind('keydown', 'j', coverage.to_next_chunk_nicely)
-        .bind('keydown', 'k', coverage.to_prev_chunk_nicely)
-        .bind('keydown', '0', coverage.to_top)
-        .bind('keydown', '1', coverage.to_first_chunk)
-        ;
-
-    $(".button_toggle_run").click(function (evt) {coverage.toggle_lines(evt.target, "run");});
-    $(".button_toggle_exc").click(function (evt) {coverage.toggle_lines(evt.target, "exc");});
-    $(".button_toggle_mis").click(function (evt) {coverage.toggle_lines(evt.target, "mis");});
-    $(".button_toggle_par").click(function (evt) {coverage.toggle_lines(evt.target, "par");});
-
-    coverage.assign_shortkeys();
-    coverage.wire_up_help_panel();
-
-    coverage.init_scroll_markers();
-
-    // Rebuild scroll markers after window high changing
-    $(window).resize(coverage.resize_scroll_markers);
-};
-
-coverage.toggle_lines = function (btn, cls) {
-    btn = $(btn);
-    var hide = "hide_"+cls;
-    if (btn.hasClass(hide)) {
-        $("#source ."+cls).removeClass(hide);
-        btn.removeClass(hide);
-    }
-    else {
-        $("#source ."+cls).addClass(hide);
-        btn.addClass(hide);
-    }
-};
-
-// Return the nth line div.
-coverage.line_elt = function (n) {
-    return $("#t" + n);
-};
-
-// Return the nth line number div.
-coverage.num_elt = function (n) {
-    return $("#n" + n);
-};
-
-// Return the container of all the code.
-coverage.code_container = function () {
-    return $(".linenos");
-};
-
-// Set the selection.  b and e are line numbers.
-coverage.set_sel = function (b, e) {
-    // The first line selected.
-    coverage.sel_begin = b;
-    // The next line not selected.
-    coverage.sel_end = (e === undefined) ? b+1 : e;
-};
-
-coverage.to_top = function () {
-    coverage.set_sel(0, 1);
-    coverage.scroll_window(0);
-};
-
-coverage.to_first_chunk = function () {
-    coverage.set_sel(0, 1);
-    coverage.to_next_chunk();
-};
-
-coverage.is_transparent = function (color) {
-    // Different browsers return different colors for "none".
-    return color === "transparent" || color === "rgba(0, 0, 0, 0)";
-};
-
-coverage.to_next_chunk = function () {
-    var c = coverage;
-
-    // Find the start of the next colored chunk.
-    var probe = c.sel_end;
-    var color, probe_line;
-    while (true) {
-        probe_line = c.line_elt(probe);
-        if (probe_line.length === 0) {
-            return;
-        }
-        color = probe_line.css("background-color");
-        if (!c.is_transparent(color)) {
-            break;
-        }
-        probe++;
-    }
-
-    // There's a next chunk, `probe` points to it.
-    var begin = probe;
-
-    // Find the end of this chunk.
-    var next_color = color;
-    while (next_color === color) {
-        probe++;
-        probe_line = c.line_elt(probe);
-        next_color = probe_line.css("background-color");
-    }
-    c.set_sel(begin, probe);
-    c.show_selection();
-};
-
-coverage.to_prev_chunk = function () {
-    var c = coverage;
-
-    // Find the end of the prev colored chunk.
-    var probe = c.sel_begin-1;
-    var probe_line = c.line_elt(probe);
-    if (probe_line.length === 0) {
-        return;
-    }
-    var color = probe_line.css("background-color");
-    while (probe > 0 && c.is_transparent(color)) {
-        probe--;
-        probe_line = c.line_elt(probe);
-        if (probe_line.length === 0) {
-            return;
-        }
-        color = probe_line.css("background-color");
-    }
-
-    // There's a prev chunk, `probe` points to its last line.
-    var end = probe+1;
-
-    // Find the beginning of this chunk.
-    var prev_color = color;
-    while (prev_color === color) {
-        probe--;
-        probe_line = c.line_elt(probe);
-        prev_color = probe_line.css("background-color");
-    }
-    c.set_sel(probe+1, end);
-    c.show_selection();
-};
-
-// Return the line number of the line nearest pixel position pos
-coverage.line_at_pos = function (pos) {
-    var l1 = coverage.line_elt(1),
-        l2 = coverage.line_elt(2),
-        result;
-    if (l1.length && l2.length) {
-        var l1_top = l1.offset().top,
-            line_height = l2.offset().top - l1_top,
-            nlines = (pos - l1_top) / line_height;
-        if (nlines < 1) {
-            result = 1;
-        }
-        else {
-            result = Math.ceil(nlines);
-        }
-    }
-    else {
-        result = 1;
-    }
-    return result;
-};
-
-// Returns 0, 1, or 2: how many of the two ends of the selection are on
-// the screen right now?
-coverage.selection_ends_on_screen = function () {
-    if (coverage.sel_begin === 0) {
-        return 0;
-    }
-
-    var top = coverage.line_elt(coverage.sel_begin);
-    var next = coverage.line_elt(coverage.sel_end-1);
-
-    return (
-        (top.isOnScreen() ? 1 : 0) +
-        (next.isOnScreen() ? 1 : 0)
-    );
-};
-
-coverage.to_next_chunk_nicely = function () {
-    coverage.finish_scrolling();
-    if (coverage.selection_ends_on_screen() === 0) {
-        // The selection is entirely off the screen: select the top line on
-        // the screen.
-        var win = $(window);
-        coverage.select_line_or_chunk(coverage.line_at_pos(win.scrollTop()));
-    }
-    coverage.to_next_chunk();
-};
-
-coverage.to_prev_chunk_nicely = function () {
-    coverage.finish_scrolling();
-    if (coverage.selection_ends_on_screen() === 0) {
-        var win = $(window);
-        coverage.select_line_or_chunk(coverage.line_at_pos(win.scrollTop() + win.height()));
-    }
-    coverage.to_prev_chunk();
-};
-
-// Select line number lineno, or if it is in a colored chunk, select the
-// entire chunk
-coverage.select_line_or_chunk = function (lineno) {
-    var c = coverage;
-    var probe_line = c.line_elt(lineno);
-    if (probe_line.length === 0) {
-        return;
-    }
-    var the_color = probe_line.css("background-color");
-    if (!c.is_transparent(the_color)) {
-        // The line is in a highlighted chunk.
-        // Search backward for the first line.
-        var probe = lineno;
-        var color = the_color;
-        while (probe > 0 && color === the_color) {
-            probe--;
-            probe_line = c.line_elt(probe);
-            if (probe_line.length === 0) {
-                break;
-            }
-            color = probe_line.css("background-color");
-        }
-        var begin = probe + 1;
-
-        // Search forward for the last line.
-        probe = lineno;
-        color = the_color;
-        while (color === the_color) {
-            probe++;
-            probe_line = c.line_elt(probe);
-            color = probe_line.css("background-color");
-        }
-
-        coverage.set_sel(begin, probe);
-    }
-    else {
-        coverage.set_sel(lineno);
-    }
-};
-
-coverage.show_selection = function () {
-    var c = coverage;
-
-    // Highlight the lines in the chunk
-    c.code_container().find(".highlight").removeClass("highlight");
-    for (var probe = c.sel_begin; probe > 0 && probe < c.sel_end; probe++) {
-        c.num_elt(probe).addClass("highlight");
-    }
-
-    c.scroll_to_selection();
-};
-
-coverage.scroll_to_selection = function () {
-    // Scroll the page if the chunk isn't fully visible.
-    if (coverage.selection_ends_on_screen() < 2) {
-        // Need to move the page. The html,body trick makes it scroll in all
-        // browsers, got it from http://stackoverflow.com/questions/3042651
-        var top = coverage.line_elt(coverage.sel_begin);
-        var top_pos = parseInt(top.offset().top, 10);
-        coverage.scroll_window(top_pos - 30);
-    }
-};
-
-coverage.scroll_window = function (to_pos) {
-    $("html,body").animate({scrollTop: to_pos}, 200);
-};
-
-coverage.finish_scrolling = function () {
-    $("html,body").stop(true, true);
-};
-
-coverage.init_scroll_markers = function () {
-    var c = coverage;
-    // Init some variables
-    c.lines_len = $('td.text p').length;
-    c.body_h = $('body').height();
-    c.header_h = $('div#header').height();
-    c.missed_lines = $('td.text p.mis, td.text p.par');
-
-    // Build html
-    c.resize_scroll_markers();
-};
-
-coverage.resize_scroll_markers = function () {
-    var c = coverage,
-        min_line_height = 3,
-        max_line_height = 10,
-        visible_window_h = $(window).height();
-
-    $('#scroll_marker').remove();
-    // Don't build markers if the window has no scroll bar.
-    if (c.body_h <= visible_window_h) {
-        return;
-    }
-
-    $("body").append("<div id='scroll_marker'>&nbsp;</div>");
-    var scroll_marker = $('#scroll_marker'),
-        marker_scale = scroll_marker.height() / c.body_h,
-        line_height = scroll_marker.height() / c.lines_len;
-
-    // Line height must be between the extremes.
-    if (line_height > min_line_height) {
-        if (line_height > max_line_height) {
-            line_height = max_line_height;
-        }
-    }
-    else {
-        line_height = min_line_height;
-    }
-
-    var previous_line = -99,
-        last_mark,
-        last_top;
-
-    c.missed_lines.each(function () {
-        var line_top = Math.round($(this).offset().top * marker_scale),
-            id_name = $(this).attr('id'),
-            line_number = parseInt(id_name.substring(1, id_name.length));
-
-        if (line_number === previous_line + 1) {
-            // If this solid missed block just make previous mark higher.
-            last_mark.css({
-                'height': line_top + line_height - last_top
-            });
-        }
-        else {
-            // Add colored line in scroll_marker block.
-            scroll_marker.append('<div id="m' + line_number + '" class="marker"></div>');
-            last_mark = $('#m' + line_number);
-            last_mark.css({
-                'height': line_height,
-                'top': line_top
-            });
-            last_top = line_top;
-        }
-
-        previous_line = line_number;
-    });
-};
diff --git a/coverage_report/fluegg___init___py.html b/coverage_report/fluegg___init___py.html
deleted file mode 100644
index 40a6073..0000000
--- a/coverage_report/fluegg___init___py.html
+++ /dev/null
@@ -1,89 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\__init__.py: 100%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\__init__.py</b> :
-            <span class="pc_cov">100%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            0 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">0 run</span>
-            <span class="mis shortkey_m button_toggle_mis">0 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-
-            </td>
-            <td class="text">
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_asiancarpeggs_py.html b/coverage_report/fluegg_asiancarpeggs_py.html
deleted file mode 100644
index 8838376..0000000
--- a/coverage_report/fluegg_asiancarpeggs_py.html
+++ /dev/null
@@ -1,1305 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\asiancarpeggs.py: 92%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\asiancarpeggs.py</b> :
-            <span class="pc_cov">92%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            226 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">209 run</span>
-            <span class="mis shortkey_m button_toggle_mis">17 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="pln"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="pln"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="pln"><a href="#n27">27</a></p>
-<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="stm run hide_run"><a href="#n33">33</a></p>
-<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
-<p id="n35" class="stm run hide_run"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
-<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
-<p id="n41" class="pln"><a href="#n41">41</a></p>
-<p id="n42" class="pln"><a href="#n42">42</a></p>
-<p id="n43" class="stm run hide_run"><a href="#n43">43</a></p>
-<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
-<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
-<p id="n49" class="stm run hide_run"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="pln"><a href="#n51">51</a></p>
-<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="pln"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="stm run hide_run"><a href="#n57">57</a></p>
-<p id="n58" class="stm run hide_run"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="stm run hide_run"><a href="#n65">65</a></p>
-<p id="n66" class="stm run hide_run"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="pln"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
-<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
-<p id="n74" class="pln"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="stm run hide_run"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="stm run hide_run"><a href="#n78">78</a></p>
-<p id="n79" class="stm run hide_run"><a href="#n79">79</a></p>
-<p id="n80" class="pln"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="pln"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="stm run hide_run"><a href="#n84">84</a></p>
-<p id="n85" class="stm run hide_run"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="stm run hide_run"><a href="#n94">94</a></p>
-<p id="n95" class="stm run hide_run"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
-<p id="n98" class="pln"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="pln"><a href="#n100">100</a></p>
-<p id="n101" class="pln"><a href="#n101">101</a></p>
-<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
-<p id="n103" class="stm run hide_run"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
-<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
-<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
-<p id="n112" class="pln"><a href="#n112">112</a></p>
-<p id="n113" class="stm mis"><a href="#n113">113</a></p>
-<p id="n114" class="pln"><a href="#n114">114</a></p>
-<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
-<p id="n120" class="pln"><a href="#n120">120</a></p>
-<p id="n121" class="stm mis"><a href="#n121">121</a></p>
-<p id="n122" class="pln"><a href="#n122">122</a></p>
-<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-<p id="n125" class="stm mis"><a href="#n125">125</a></p>
-<p id="n126" class="pln"><a href="#n126">126</a></p>
-<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="stm mis"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="stm run hide_run"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="pln"><a href="#n134">134</a></p>
-<p id="n135" class="pln"><a href="#n135">135</a></p>
-<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
-<p id="n137" class="stm run hide_run"><a href="#n137">137</a></p>
-<p id="n138" class="pln"><a href="#n138">138</a></p>
-<p id="n139" class="stm run hide_run"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="stm run hide_run"><a href="#n141">141</a></p>
-<p id="n142" class="stm run hide_run"><a href="#n142">142</a></p>
-<p id="n143" class="pln"><a href="#n143">143</a></p>
-<p id="n144" class="stm run hide_run"><a href="#n144">144</a></p>
-<p id="n145" class="pln"><a href="#n145">145</a></p>
-<p id="n146" class="pln"><a href="#n146">146</a></p>
-<p id="n147" class="stm run hide_run"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="pln"><a href="#n149">149</a></p>
-<p id="n150" class="stm mis"><a href="#n150">150</a></p>
-<p id="n151" class="pln"><a href="#n151">151</a></p>
-<p id="n152" class="pln"><a href="#n152">152</a></p>
-<p id="n153" class="stm run hide_run"><a href="#n153">153</a></p>
-<p id="n154" class="pln"><a href="#n154">154</a></p>
-<p id="n155" class="stm run hide_run"><a href="#n155">155</a></p>
-<p id="n156" class="pln"><a href="#n156">156</a></p>
-<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
-<p id="n158" class="pln"><a href="#n158">158</a></p>
-<p id="n159" class="pln"><a href="#n159">159</a></p>
-<p id="n160" class="pln"><a href="#n160">160</a></p>
-<p id="n161" class="pln"><a href="#n161">161</a></p>
-<p id="n162" class="stm run hide_run"><a href="#n162">162</a></p>
-<p id="n163" class="stm run hide_run"><a href="#n163">163</a></p>
-<p id="n164" class="pln"><a href="#n164">164</a></p>
-<p id="n165" class="stm run hide_run"><a href="#n165">165</a></p>
-<p id="n166" class="pln"><a href="#n166">166</a></p>
-<p id="n167" class="stm run hide_run"><a href="#n167">167</a></p>
-<p id="n168" class="stm run hide_run"><a href="#n168">168</a></p>
-<p id="n169" class="pln"><a href="#n169">169</a></p>
-<p id="n170" class="stm run hide_run"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="pln"><a href="#n172">172</a></p>
-<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
-<p id="n174" class="stm mis"><a href="#n174">174</a></p>
-<p id="n175" class="pln"><a href="#n175">175</a></p>
-<p id="n176" class="stm mis"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="stm run hide_run"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="stm run hide_run"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="stm run hide_run"><a href="#n183">183</a></p>
-<p id="n184" class="pln"><a href="#n184">184</a></p>
-<p id="n185" class="pln"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="pln"><a href="#n187">187</a></p>
-<p id="n188" class="pln"><a href="#n188">188</a></p>
-<p id="n189" class="pln"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="pln"><a href="#n191">191</a></p>
-<p id="n192" class="pln"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="pln"><a href="#n195">195</a></p>
-<p id="n196" class="pln"><a href="#n196">196</a></p>
-<p id="n197" class="stm run hide_run"><a href="#n197">197</a></p>
-<p id="n198" class="stm mis"><a href="#n198">198</a></p>
-<p id="n199" class="stm run hide_run"><a href="#n199">199</a></p>
-<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
-<p id="n201" class="stm run hide_run"><a href="#n201">201</a></p>
-<p id="n202" class="pln"><a href="#n202">202</a></p>
-<p id="n203" class="pln"><a href="#n203">203</a></p>
-<p id="n204" class="stm run hide_run"><a href="#n204">204</a></p>
-<p id="n205" class="pln"><a href="#n205">205</a></p>
-<p id="n206" class="pln"><a href="#n206">206</a></p>
-<p id="n207" class="pln"><a href="#n207">207</a></p>
-<p id="n208" class="pln"><a href="#n208">208</a></p>
-<p id="n209" class="pln"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="pln"><a href="#n211">211</a></p>
-<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
-<p id="n213" class="pln"><a href="#n213">213</a></p>
-<p id="n214" class="stm run hide_run"><a href="#n214">214</a></p>
-<p id="n215" class="pln"><a href="#n215">215</a></p>
-<p id="n216" class="stm run hide_run"><a href="#n216">216</a></p>
-<p id="n217" class="pln"><a href="#n217">217</a></p>
-<p id="n218" class="pln"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="pln"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="pln"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="pln"><a href="#n228">228</a></p>
-<p id="n229" class="pln"><a href="#n229">229</a></p>
-<p id="n230" class="stm mis"><a href="#n230">230</a></p>
-<p id="n231" class="stm mis"><a href="#n231">231</a></p>
-<p id="n232" class="pln"><a href="#n232">232</a></p>
-<p id="n233" class="stm mis"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="stm mis"><a href="#n235">235</a></p>
-<p id="n236" class="pln"><a href="#n236">236</a></p>
-<p id="n237" class="stm run hide_run"><a href="#n237">237</a></p>
-<p id="n238" class="stm run hide_run"><a href="#n238">238</a></p>
-<p id="n239" class="stm run hide_run"><a href="#n239">239</a></p>
-<p id="n240" class="stm mis"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="stm run hide_run"><a href="#n242">242</a></p>
-<p id="n243" class="stm run hide_run"><a href="#n243">243</a></p>
-<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="pln"><a href="#n246">246</a></p>
-<p id="n247" class="stm run hide_run"><a href="#n247">247</a></p>
-<p id="n248" class="pln"><a href="#n248">248</a></p>
-<p id="n249" class="pln"><a href="#n249">249</a></p>
-<p id="n250" class="pln"><a href="#n250">250</a></p>
-<p id="n251" class="pln"><a href="#n251">251</a></p>
-<p id="n252" class="pln"><a href="#n252">252</a></p>
-<p id="n253" class="pln"><a href="#n253">253</a></p>
-<p id="n254" class="pln"><a href="#n254">254</a></p>
-<p id="n255" class="pln"><a href="#n255">255</a></p>
-<p id="n256" class="pln"><a href="#n256">256</a></p>
-<p id="n257" class="stm run hide_run"><a href="#n257">257</a></p>
-<p id="n258" class="pln"><a href="#n258">258</a></p>
-<p id="n259" class="stm run hide_run"><a href="#n259">259</a></p>
-<p id="n260" class="pln"><a href="#n260">260</a></p>
-<p id="n261" class="pln"><a href="#n261">261</a></p>
-<p id="n262" class="pln"><a href="#n262">262</a></p>
-<p id="n263" class="pln"><a href="#n263">263</a></p>
-<p id="n264" class="pln"><a href="#n264">264</a></p>
-<p id="n265" class="stm run hide_run"><a href="#n265">265</a></p>
-<p id="n266" class="pln"><a href="#n266">266</a></p>
-<p id="n267" class="pln"><a href="#n267">267</a></p>
-<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
-<p id="n269" class="pln"><a href="#n269">269</a></p>
-<p id="n270" class="pln"><a href="#n270">270</a></p>
-<p id="n271" class="pln"><a href="#n271">271</a></p>
-<p id="n272" class="pln"><a href="#n272">272</a></p>
-<p id="n273" class="pln"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="stm run hide_run"><a href="#n275">275</a></p>
-<p id="n276" class="pln"><a href="#n276">276</a></p>
-<p id="n277" class="pln"><a href="#n277">277</a></p>
-<p id="n278" class="pln"><a href="#n278">278</a></p>
-<p id="n279" class="pln"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="pln"><a href="#n281">281</a></p>
-<p id="n282" class="pln"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="stm run hide_run"><a href="#n284">284</a></p>
-<p id="n285" class="stm run hide_run"><a href="#n285">285</a></p>
-<p id="n286" class="stm run hide_run"><a href="#n286">286</a></p>
-<p id="n287" class="stm run hide_run"><a href="#n287">287</a></p>
-<p id="n288" class="pln"><a href="#n288">288</a></p>
-<p id="n289" class="stm run hide_run"><a href="#n289">289</a></p>
-<p id="n290" class="pln"><a href="#n290">290</a></p>
-<p id="n291" class="pln"><a href="#n291">291</a></p>
-<p id="n292" class="pln"><a href="#n292">292</a></p>
-<p id="n293" class="pln"><a href="#n293">293</a></p>
-<p id="n294" class="pln"><a href="#n294">294</a></p>
-<p id="n295" class="pln"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="pln"><a href="#n297">297</a></p>
-<p id="n298" class="stm run hide_run"><a href="#n298">298</a></p>
-<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
-<p id="n300" class="stm run hide_run"><a href="#n300">300</a></p>
-<p id="n301" class="stm run hide_run"><a href="#n301">301</a></p>
-<p id="n302" class="pln"><a href="#n302">302</a></p>
-<p id="n303" class="stm run hide_run"><a href="#n303">303</a></p>
-<p id="n304" class="pln"><a href="#n304">304</a></p>
-<p id="n305" class="pln"><a href="#n305">305</a></p>
-<p id="n306" class="pln"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="pln"><a href="#n308">308</a></p>
-<p id="n309" class="pln"><a href="#n309">309</a></p>
-<p id="n310" class="pln"><a href="#n310">310</a></p>
-<p id="n311" class="stm run hide_run"><a href="#n311">311</a></p>
-<p id="n312" class="stm run hide_run"><a href="#n312">312</a></p>
-<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
-<p id="n314" class="stm run hide_run"><a href="#n314">314</a></p>
-<p id="n315" class="pln"><a href="#n315">315</a></p>
-<p id="n316" class="stm run hide_run"><a href="#n316">316</a></p>
-<p id="n317" class="pln"><a href="#n317">317</a></p>
-<p id="n318" class="pln"><a href="#n318">318</a></p>
-<p id="n319" class="pln"><a href="#n319">319</a></p>
-<p id="n320" class="pln"><a href="#n320">320</a></p>
-<p id="n321" class="pln"><a href="#n321">321</a></p>
-<p id="n322" class="pln"><a href="#n322">322</a></p>
-<p id="n323" class="pln"><a href="#n323">323</a></p>
-<p id="n324" class="stm run hide_run"><a href="#n324">324</a></p>
-<p id="n325" class="stm run hide_run"><a href="#n325">325</a></p>
-<p id="n326" class="stm run hide_run"><a href="#n326">326</a></p>
-<p id="n327" class="pln"><a href="#n327">327</a></p>
-<p id="n328" class="stm run hide_run"><a href="#n328">328</a></p>
-<p id="n329" class="pln"><a href="#n329">329</a></p>
-<p id="n330" class="pln"><a href="#n330">330</a></p>
-<p id="n331" class="pln"><a href="#n331">331</a></p>
-<p id="n332" class="pln"><a href="#n332">332</a></p>
-<p id="n333" class="pln"><a href="#n333">333</a></p>
-<p id="n334" class="pln"><a href="#n334">334</a></p>
-<p id="n335" class="pln"><a href="#n335">335</a></p>
-<p id="n336" class="stm run hide_run"><a href="#n336">336</a></p>
-<p id="n337" class="stm run hide_run"><a href="#n337">337</a></p>
-<p id="n338" class="stm run hide_run"><a href="#n338">338</a></p>
-<p id="n339" class="stm run hide_run"><a href="#n339">339</a></p>
-<p id="n340" class="pln"><a href="#n340">340</a></p>
-<p id="n341" class="stm run hide_run"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="pln"><a href="#n343">343</a></p>
-<p id="n344" class="pln"><a href="#n344">344</a></p>
-<p id="n345" class="pln"><a href="#n345">345</a></p>
-<p id="n346" class="pln"><a href="#n346">346</a></p>
-<p id="n347" class="pln"><a href="#n347">347</a></p>
-<p id="n348" class="pln"><a href="#n348">348</a></p>
-<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
-<p id="n350" class="stm run hide_run"><a href="#n350">350</a></p>
-<p id="n351" class="stm run hide_run"><a href="#n351">351</a></p>
-<p id="n352" class="stm run hide_run"><a href="#n352">352</a></p>
-<p id="n353" class="pln"><a href="#n353">353</a></p>
-<p id="n354" class="stm run hide_run"><a href="#n354">354</a></p>
-<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
-<p id="n356" class="pln"><a href="#n356">356</a></p>
-<p id="n357" class="pln"><a href="#n357">357</a></p>
-<p id="n358" class="pln"><a href="#n358">358</a></p>
-<p id="n359" class="pln"><a href="#n359">359</a></p>
-<p id="n360" class="pln"><a href="#n360">360</a></p>
-<p id="n361" class="pln"><a href="#n361">361</a></p>
-<p id="n362" class="stm run hide_run"><a href="#n362">362</a></p>
-<p id="n363" class="stm run hide_run"><a href="#n363">363</a></p>
-<p id="n364" class="pln"><a href="#n364">364</a></p>
-<p id="n365" class="stm run hide_run"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="pln"><a href="#n367">367</a></p>
-<p id="n368" class="stm run hide_run"><a href="#n368">368</a></p>
-<p id="n369" class="stm run hide_run"><a href="#n369">369</a></p>
-<p id="n370" class="pln"><a href="#n370">370</a></p>
-<p id="n371" class="pln"><a href="#n371">371</a></p>
-<p id="n372" class="pln"><a href="#n372">372</a></p>
-<p id="n373" class="pln"><a href="#n373">373</a></p>
-<p id="n374" class="pln"><a href="#n374">374</a></p>
-<p id="n375" class="pln"><a href="#n375">375</a></p>
-<p id="n376" class="pln"><a href="#n376">376</a></p>
-<p id="n377" class="pln"><a href="#n377">377</a></p>
-<p id="n378" class="pln"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="stm run hide_run"><a href="#n380">380</a></p>
-<p id="n381" class="stm run hide_run"><a href="#n381">381</a></p>
-<p id="n382" class="stm run hide_run"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="stm run hide_run"><a href="#n384">384</a></p>
-<p id="n385" class="pln"><a href="#n385">385</a></p>
-<p id="n386" class="pln"><a href="#n386">386</a></p>
-<p id="n387" class="stm run hide_run"><a href="#n387">387</a></p>
-<p id="n388" class="pln"><a href="#n388">388</a></p>
-<p id="n389" class="pln"><a href="#n389">389</a></p>
-<p id="n390" class="pln"><a href="#n390">390</a></p>
-<p id="n391" class="pln"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="pln"><a href="#n393">393</a></p>
-<p id="n394" class="stm run hide_run"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="pln"><a href="#n396">396</a></p>
-<p id="n397" class="pln"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="pln"><a href="#n399">399</a></p>
-<p id="n400" class="pln"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="pln"><a href="#n402">402</a></p>
-<p id="n403" class="stm run hide_run"><a href="#n403">403</a></p>
-<p id="n404" class="stm run hide_run"><a href="#n404">404</a></p>
-<p id="n405" class="stm run hide_run"><a href="#n405">405</a></p>
-<p id="n406" class="stm run hide_run"><a href="#n406">406</a></p>
-<p id="n407" class="pln"><a href="#n407">407</a></p>
-<p id="n408" class="stm run hide_run"><a href="#n408">408</a></p>
-<p id="n409" class="pln"><a href="#n409">409</a></p>
-<p id="n410" class="pln"><a href="#n410">410</a></p>
-<p id="n411" class="pln"><a href="#n411">411</a></p>
-<p id="n412" class="pln"><a href="#n412">412</a></p>
-<p id="n413" class="pln"><a href="#n413">413</a></p>
-<p id="n414" class="pln"><a href="#n414">414</a></p>
-<p id="n415" class="pln"><a href="#n415">415</a></p>
-<p id="n416" class="pln"><a href="#n416">416</a></p>
-<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
-<p id="n418" class="stm run hide_run"><a href="#n418">418</a></p>
-<p id="n419" class="stm run hide_run"><a href="#n419">419</a></p>
-<p id="n420" class="stm run hide_run"><a href="#n420">420</a></p>
-<p id="n421" class="pln"><a href="#n421">421</a></p>
-<p id="n422" class="stm run hide_run"><a href="#n422">422</a></p>
-<p id="n423" class="pln"><a href="#n423">423</a></p>
-<p id="n424" class="pln"><a href="#n424">424</a></p>
-<p id="n425" class="pln"><a href="#n425">425</a></p>
-<p id="n426" class="pln"><a href="#n426">426</a></p>
-<p id="n427" class="pln"><a href="#n427">427</a></p>
-<p id="n428" class="pln"><a href="#n428">428</a></p>
-<p id="n429" class="pln"><a href="#n429">429</a></p>
-<p id="n430" class="stm run hide_run"><a href="#n430">430</a></p>
-<p id="n431" class="stm run hide_run"><a href="#n431">431</a></p>
-<p id="n432" class="stm run hide_run"><a href="#n432">432</a></p>
-<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
-<p id="n434" class="pln"><a href="#n434">434</a></p>
-<p id="n435" class="stm run hide_run"><a href="#n435">435</a></p>
-<p id="n436" class="pln"><a href="#n436">436</a></p>
-<p id="n437" class="pln"><a href="#n437">437</a></p>
-<p id="n438" class="pln"><a href="#n438">438</a></p>
-<p id="n439" class="pln"><a href="#n439">439</a></p>
-<p id="n440" class="pln"><a href="#n440">440</a></p>
-<p id="n441" class="pln"><a href="#n441">441</a></p>
-<p id="n442" class="pln"><a href="#n442">442</a></p>
-<p id="n443" class="stm run hide_run"><a href="#n443">443</a></p>
-<p id="n444" class="stm run hide_run"><a href="#n444">444</a></p>
-<p id="n445" class="stm run hide_run"><a href="#n445">445</a></p>
-<p id="n446" class="pln"><a href="#n446">446</a></p>
-<p id="n447" class="stm run hide_run"><a href="#n447">447</a></p>
-<p id="n448" class="pln"><a href="#n448">448</a></p>
-<p id="n449" class="pln"><a href="#n449">449</a></p>
-<p id="n450" class="pln"><a href="#n450">450</a></p>
-<p id="n451" class="pln"><a href="#n451">451</a></p>
-<p id="n452" class="pln"><a href="#n452">452</a></p>
-<p id="n453" class="pln"><a href="#n453">453</a></p>
-<p id="n454" class="pln"><a href="#n454">454</a></p>
-<p id="n455" class="stm run hide_run"><a href="#n455">455</a></p>
-<p id="n456" class="stm run hide_run"><a href="#n456">456</a></p>
-<p id="n457" class="stm run hide_run"><a href="#n457">457</a></p>
-<p id="n458" class="stm run hide_run"><a href="#n458">458</a></p>
-<p id="n459" class="pln"><a href="#n459">459</a></p>
-<p id="n460" class="stm run hide_run"><a href="#n460">460</a></p>
-<p id="n461" class="pln"><a href="#n461">461</a></p>
-<p id="n462" class="pln"><a href="#n462">462</a></p>
-<p id="n463" class="pln"><a href="#n463">463</a></p>
-<p id="n464" class="pln"><a href="#n464">464</a></p>
-<p id="n465" class="pln"><a href="#n465">465</a></p>
-<p id="n466" class="pln"><a href="#n466">466</a></p>
-<p id="n467" class="pln"><a href="#n467">467</a></p>
-<p id="n468" class="stm run hide_run"><a href="#n468">468</a></p>
-<p id="n469" class="stm run hide_run"><a href="#n469">469</a></p>
-<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
-<p id="n471" class="stm run hide_run"><a href="#n471">471</a></p>
-<p id="n472" class="pln"><a href="#n472">472</a></p>
-<p id="n473" class="stm run hide_run"><a href="#n473">473</a></p>
-<p id="n474" class="stm run hide_run"><a href="#n474">474</a></p>
-<p id="n475" class="pln"><a href="#n475">475</a></p>
-<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
-<p id="n477" class="stm run hide_run"><a href="#n477">477</a></p>
-<p id="n478" class="pln"><a href="#n478">478</a></p>
-<p id="n479" class="stm run hide_run"><a href="#n479">479</a></p>
-<p id="n480" class="pln"><a href="#n480">480</a></p>
-<p id="n481" class="pln"><a href="#n481">481</a></p>
-<p id="n482" class="stm run hide_run"><a href="#n482">482</a></p>
-<p id="n483" class="stm run hide_run"><a href="#n483">483</a></p>
-<p id="n484" class="pln"><a href="#n484">484</a></p>
-<p id="n485" class="pln"><a href="#n485">485</a></p>
-<p id="n486" class="pln"><a href="#n486">486</a></p>
-<p id="n487" class="pln"><a href="#n487">487</a></p>
-<p id="n488" class="pln"><a href="#n488">488</a></p>
-<p id="n489" class="pln"><a href="#n489">489</a></p>
-<p id="n490" class="pln"><a href="#n490">490</a></p>
-<p id="n491" class="pln"><a href="#n491">491</a></p>
-<p id="n492" class="pln"><a href="#n492">492</a></p>
-<p id="n493" class="stm run hide_run"><a href="#n493">493</a></p>
-<p id="n494" class="stm run hide_run"><a href="#n494">494</a></p>
-<p id="n495" class="stm run hide_run"><a href="#n495">495</a></p>
-<p id="n496" class="stm run hide_run"><a href="#n496">496</a></p>
-<p id="n497" class="pln"><a href="#n497">497</a></p>
-<p id="n498" class="pln"><a href="#n498">498</a></p>
-<p id="n499" class="stm run hide_run"><a href="#n499">499</a></p>
-<p id="n500" class="pln"><a href="#n500">500</a></p>
-<p id="n501" class="pln"><a href="#n501">501</a></p>
-<p id="n502" class="pln"><a href="#n502">502</a></p>
-<p id="n503" class="pln"><a href="#n503">503</a></p>
-<p id="n504" class="pln"><a href="#n504">504</a></p>
-<p id="n505" class="pln"><a href="#n505">505</a></p>
-<p id="n506" class="stm run hide_run"><a href="#n506">506</a></p>
-<p id="n507" class="pln"><a href="#n507">507</a></p>
-<p id="n508" class="pln"><a href="#n508">508</a></p>
-<p id="n509" class="pln"><a href="#n509">509</a></p>
-<p id="n510" class="pln"><a href="#n510">510</a></p>
-<p id="n511" class="pln"><a href="#n511">511</a></p>
-<p id="n512" class="pln"><a href="#n512">512</a></p>
-<p id="n513" class="pln"><a href="#n513">513</a></p>
-<p id="n514" class="pln"><a href="#n514">514</a></p>
-<p id="n515" class="stm run hide_run"><a href="#n515">515</a></p>
-<p id="n516" class="stm run hide_run"><a href="#n516">516</a></p>
-<p id="n517" class="stm run hide_run"><a href="#n517">517</a></p>
-<p id="n518" class="stm run hide_run"><a href="#n518">518</a></p>
-<p id="n519" class="pln"><a href="#n519">519</a></p>
-<p id="n520" class="stm run hide_run"><a href="#n520">520</a></p>
-<p id="n521" class="pln"><a href="#n521">521</a></p>
-<p id="n522" class="pln"><a href="#n522">522</a></p>
-<p id="n523" class="pln"><a href="#n523">523</a></p>
-<p id="n524" class="pln"><a href="#n524">524</a></p>
-<p id="n525" class="pln"><a href="#n525">525</a></p>
-<p id="n526" class="pln"><a href="#n526">526</a></p>
-<p id="n527" class="pln"><a href="#n527">527</a></p>
-<p id="n528" class="pln"><a href="#n528">528</a></p>
-<p id="n529" class="stm run hide_run"><a href="#n529">529</a></p>
-<p id="n530" class="stm run hide_run"><a href="#n530">530</a></p>
-<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
-<p id="n532" class="stm run hide_run"><a href="#n532">532</a></p>
-<p id="n533" class="pln"><a href="#n533">533</a></p>
-<p id="n534" class="stm run hide_run"><a href="#n534">534</a></p>
-<p id="n535" class="pln"><a href="#n535">535</a></p>
-<p id="n536" class="pln"><a href="#n536">536</a></p>
-<p id="n537" class="pln"><a href="#n537">537</a></p>
-<p id="n538" class="pln"><a href="#n538">538</a></p>
-<p id="n539" class="pln"><a href="#n539">539</a></p>
-<p id="n540" class="pln"><a href="#n540">540</a></p>
-<p id="n541" class="pln"><a href="#n541">541</a></p>
-<p id="n542" class="stm run hide_run"><a href="#n542">542</a></p>
-<p id="n543" class="stm run hide_run"><a href="#n543">543</a></p>
-<p id="n544" class="stm run hide_run"><a href="#n544">544</a></p>
-<p id="n545" class="stm run hide_run"><a href="#n545">545</a></p>
-<p id="n546" class="pln"><a href="#n546">546</a></p>
-<p id="n547" class="stm run hide_run"><a href="#n547">547</a></p>
-<p id="n548" class="pln"><a href="#n548">548</a></p>
-<p id="n549" class="pln"><a href="#n549">549</a></p>
-<p id="n550" class="pln"><a href="#n550">550</a></p>
-<p id="n551" class="pln"><a href="#n551">551</a></p>
-<p id="n552" class="pln"><a href="#n552">552</a></p>
-<p id="n553" class="pln"><a href="#n553">553</a></p>
-<p id="n554" class="pln"><a href="#n554">554</a></p>
-<p id="n555" class="stm run hide_run"><a href="#n555">555</a></p>
-<p id="n556" class="stm run hide_run"><a href="#n556">556</a></p>
-<p id="n557" class="stm run hide_run"><a href="#n557">557</a></p>
-<p id="n558" class="pln"><a href="#n558">558</a></p>
-<p id="n559" class="stm run hide_run"><a href="#n559">559</a></p>
-<p id="n560" class="pln"><a href="#n560">560</a></p>
-<p id="n561" class="pln"><a href="#n561">561</a></p>
-<p id="n562" class="pln"><a href="#n562">562</a></p>
-<p id="n563" class="pln"><a href="#n563">563</a></p>
-<p id="n564" class="pln"><a href="#n564">564</a></p>
-<p id="n565" class="pln"><a href="#n565">565</a></p>
-<p id="n566" class="pln"><a href="#n566">566</a></p>
-<p id="n567" class="stm run hide_run"><a href="#n567">567</a></p>
-<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
-<p id="n569" class="stm run hide_run"><a href="#n569">569</a></p>
-<p id="n570" class="stm run hide_run"><a href="#n570">570</a></p>
-<p id="n571" class="pln"><a href="#n571">571</a></p>
-<p id="n572" class="stm run hide_run"><a href="#n572">572</a></p>
-<p id="n573" class="pln"><a href="#n573">573</a></p>
-<p id="n574" class="pln"><a href="#n574">574</a></p>
-<p id="n575" class="pln"><a href="#n575">575</a></p>
-<p id="n576" class="pln"><a href="#n576">576</a></p>
-<p id="n577" class="pln"><a href="#n577">577</a></p>
-<p id="n578" class="pln"><a href="#n578">578</a></p>
-<p id="n579" class="pln"><a href="#n579">579</a></p>
-<p id="n580" class="stm run hide_run"><a href="#n580">580</a></p>
-<p id="n581" class="stm run hide_run"><a href="#n581">581</a></p>
-<p id="n582" class="stm run hide_run"><a href="#n582">582</a></p>
-<p id="n583" class="stm run hide_run"><a href="#n583">583</a></p>
-<p id="n584" class="pln"><a href="#n584">584</a></p>
-<p id="n585" class="stm run hide_run"><a href="#n585">585</a></p>
-<p id="n586" class="stm run hide_run"><a href="#n586">586</a></p>
-<p id="n587" class="pln"><a href="#n587">587</a></p>
-<p id="n588" class="stm run hide_run"><a href="#n588">588</a></p>
-<p id="n589" class="stm run hide_run"><a href="#n589">589</a></p>
-<p id="n590" class="pln"><a href="#n590">590</a></p>
-<p id="n591" class="stm run hide_run"><a href="#n591">591</a></p>
-<p id="n592" class="pln"><a href="#n592">592</a></p>
-<p id="n593" class="pln"><a href="#n593">593</a></p>
-<p id="n594" class="stm run hide_run"><a href="#n594">594</a></p>
-<p id="n595" class="stm run hide_run"><a href="#n595">595</a></p>
-<p id="n596" class="pln"><a href="#n596">596</a></p>
-<p id="n597" class="pln"><a href="#n597">597</a></p>
-<p id="n598" class="pln"><a href="#n598">598</a></p>
-<p id="n599" class="pln"><a href="#n599">599</a></p>
-<p id="n600" class="pln"><a href="#n600">600</a></p>
-<p id="n601" class="pln"><a href="#n601">601</a></p>
-<p id="n602" class="pln"><a href="#n602">602</a></p>
-<p id="n603" class="pln"><a href="#n603">603</a></p>
-<p id="n604" class="pln"><a href="#n604">604</a></p>
-<p id="n605" class="stm run hide_run"><a href="#n605">605</a></p>
-<p id="n606" class="stm run hide_run"><a href="#n606">606</a></p>
-<p id="n607" class="stm run hide_run"><a href="#n607">607</a></p>
-<p id="n608" class="stm run hide_run"><a href="#n608">608</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">drift</span> <span class="key">import</span> <span class="nam">DriftingParticle</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">random</span> <span class="key">import</span> <span class="nam">NormalRandomNumbers</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run"><span class="key">class</span> <span class="nam">CarpEggs</span><span class="op">(</span><span class="nam">DriftingParticle</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln">    <span class="str">"""Class representing a collection of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="str">    initial_position : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">        Must be an n by 3 array, where n is the number of eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">    simulation_clock : simulation.SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="str">        Simulation clock</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t20" class="pln"><span class="str">    random_numbers : fluegg.random.RandomNumbers, optional</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln"><span class="str">        Random number source</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln"><span class="str">    characteristic_temperature : float, optional</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="str">        The default is None</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t28" class="stm run hide_run">    <span class="nam">_reference_temperature</span> <span class="op">=</span> <span class="num">22</span>  <span class="com"># degrees Celsius</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln">                 <span class="nam">characteristic_temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm run hide_run">        <span class="key">if</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">==</span> <span class="num">3</span> <span class="key">and</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_eggs</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm run hide_run">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'Initial position array must be n by 3'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm run hide_run">        <span class="key">if</span> <span class="nam">random_numbers</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm run hide_run">            <span class="nam">random_numbers</span> <span class="op">=</span> <span class="nam">NormalRandomNumbers</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t42" class="pln">        <span class="com"># Note: Diameters internally stored in mm, diameter() outputs in m</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_init_diameter_array</span><span class="op">(</span><span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_density_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_init_reference_density_array</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln">            <span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hatching_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hatching_time</span><span class="op">(</span><span class="nam">characteristic_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_gas_bladder_inflation_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln">            <span class="nam">characteristic_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln">    <span class="key">def</span> <span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="pln">                                         <span class="nam">characteristic_temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm run hide_run">        <span class="key">if</span> <span class="nam">characteristic_temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm run hide_run">            <span class="nam">characteristic_temperature</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln">        <span class="com"># gas bladder inflation time in hours to seconds</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="stm run hide_run">        <span class="key">return</span> <span class="nam">meanctu_gas_bladder</span><span class="op">/</span><span class="op">(</span><span class="nam">characteristic_temperature</span> <span class="op">-</span> <span class="nam">tmin2</span><span class="op">)</span> <span class="op">*</span> <span class="num">3600</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t78" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="pln">        <span class="str">"""Returns the hatching time (hours) of the collection of eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t82" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t84" class="stm run hide_run">        <span class="key">if</span> <span class="nam">temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm run hide_run">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm run hide_run">        <span class="key">return</span> <span class="num">3600</span> <span class="op">*</span> <span class="op">(</span><span class="nam">a</span> <span class="op">*</span> <span class="nam">temperature</span> <span class="op">**</span> <span class="nam">b</span> <span class="op">+</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the collection</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln"><span class="str">        of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span> <span class="op">+</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the collection</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln"><span class="str">        of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t101" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm run hide_run">        <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm run hide_run">        <span class="key">return</span> <span class="nam">a</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">time_array</span> <span class="op">/</span> <span class="nam">b</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t115" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="pln">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t127" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_init_diameter_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln">        <span class="str">"""Returns an array of the diameter (mm) of the collection</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="str">        of carp eggs at each time step pulled from a normal distribution</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t135" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm run hide_run">        <span class="nam">mean_diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="stm run hide_run">        <span class="nam">diameter_std</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_std</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t138" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t139" class="stm run hide_run">        <span class="nam">diameter_array</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="nam">mean_diameter</span><span class="op">,</span> <span class="nam">diameter_std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t141" class="stm run hide_run">        <span class="nam">low_outliers</span> <span class="op">=</span> <span class="nam">mean_diameter</span> <span class="op">-</span> <span class="nam">diameter_std</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="stm run hide_run">        <span class="nam">high_outliers</span> <span class="op">=</span> <span class="nam">mean_diameter</span> <span class="op">+</span> <span class="nam">diameter_std</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t144" class="stm run hide_run">        <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">diameter_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="pln">            <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t147" class="stm run hide_run">        <span class="key">while</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">outlier_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">            <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="pln">                <span class="nam">mean_diameter</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">,</span> <span class="nam">diameter_std</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="stm mis">            <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">diameter_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="pln">                <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t153" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm run hide_run">        <span class="key">return</span> <span class="nam">diameter_array</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t157" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_init_reference_density_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="pln">        <span class="str">"""Returns an array of the density (kg/m**3) of the collection</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="pln"><span class="str">        of carp eggs at each time step pulled from a normal distribution</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t161" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="stm run hide_run">        <span class="nam">mean_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_density</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="stm run hide_run">        <span class="nam">density_std</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density_std</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t165" class="stm run hide_run">        <span class="nam">density_array</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="nam">mean_density</span><span class="op">,</span> <span class="nam">density_std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t167" class="stm run hide_run">        <span class="nam">low_outliers</span> <span class="op">=</span> <span class="nam">mean_density</span> <span class="op">-</span> <span class="nam">density_std</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="stm run hide_run">        <span class="nam">high_outliers</span> <span class="op">=</span> <span class="nam">mean_density</span> <span class="op">+</span> <span class="nam">density_std</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t170" class="stm run hide_run">        <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">density_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln">            <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t173" class="stm run hide_run">        <span class="key">while</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">outlier_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="stm mis">            <span class="nam">density_array</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t175" class="pln">                <span class="nam">mean_density</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">,</span> <span class="nam">density_std</span><span class="op">[</span><span class="nam">outlier_index</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="stm mis">            <span class="nam">outlier_index</span> <span class="op">=</span> <span class="op">(</span><span class="nam">density_array</span> <span class="op">&lt;=</span> <span class="nam">low_outliers</span><span class="op">)</span> <span class="op">&amp;</span> <span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln">                <span class="nam">high_outliers</span> <span class="op">&lt;=</span> <span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t179" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="stm run hide_run">        <span class="key">return</span> <span class="nam">density_array</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t183" class="stm run hide_run">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t184" class="pln">        <span class="str">"""Returns the density of the collection of eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t187" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="pln"><span class="str">        temperature : float</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="pln"><span class="str">            the temperature of the eggs (Celsius)</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t191" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="str">        float</span><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t195" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t197" class="stm run hide_run">        <span class="key">if</span> <span class="nam">temperature</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="stm mis">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="stm run hide_run">        <span class="nam">density_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm run hide_run">        <span class="nam">reference_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_reference_density_array</span><span class="op">[</span><span class="nam">density_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="stm run hide_run">        <span class="key">return</span> <span class="nam">reference_density</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t202" class="pln">            <span class="op">+</span> <span class="num">0.20646</span><span class="op">*</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_reference_temperature</span> <span class="op">-</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t204" class="stm run hide_run">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="pln">        <span class="str">"""Returns the diameter of the collection of eggs in m</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t207" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="pln"><span class="str">        float</span><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t211" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="stm run hide_run">        <span class="nam">diameter_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="pln">        <span class="com"># Convert from mm to m</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter_array</span><span class="op">[</span><span class="nam">diameter_index</span><span class="op">]</span> <span class="op">/</span> <span class="num">1000</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t216" class="stm run hide_run">    <span class="key">def</span> <span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="pln">        <span class="str">"""Returns fall velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln"><span class="str">        hydraulic_results : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="pln"><span class="str">            Hydrauilc results</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t226" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t228" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t230" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">current_time</span><span class="op">(</span><span class="op">)</span> <span class="op">></span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hatching_time</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="stm mis">            <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="stm mis">            <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t235" class="stm mis">        <span class="key">return</span> <span class="nam">fall_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t237" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t247" class="stm run hide_run">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="pln">        <span class="str">"""Returns the 3D positions of the collection of eggs in meters</span><span class="strut">&nbsp;</span></p>
-<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t250" class="pln"><span class="str">        The shape of the returned array is (number_of_eggs, 3)</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t252" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t253" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t256" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t259" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t260" class="pln">        <span class="str">"""Sets the 3D positions of the collection of eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t262" class="pln"><span class="str">        :param: positions of the colllection of eggs (m)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="pln"><span class="str">        :type: numpy.ndarray(number_of_eggs, 3)</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">position</span><span class="strut">&nbsp;</span></p>
-<p id="t266" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t268" class="stm run hide_run"><span class="key">class</span> <span class="nam">BigheadCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="pln">    <span class="str">"""Class representing a collection of Bighead carp egg</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t271" class="pln"><span class="str">    See CarpEggs for accurate signature.</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t273" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1040.4</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.5357</span><span class="strut">&nbsp;</span></p>
-<p id="t286" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t289" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
-<p id="t292" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t294" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t295" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t297" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">7.1334</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.5970</span><span class="strut">&nbsp;</span></p>
-<p id="t300" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t303" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t305" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t310" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">30.58</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1716</span><span class="strut">&nbsp;</span></p>
-<p id="t313" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.4</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t315" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t316" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t317" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t318" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t320" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t321" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t323" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t324" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">5.82</span><span class="strut">&nbsp;</span></p>
-<p id="t325" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">3506.7</span><span class="strut">&nbsp;</span></p>
-<p id="t326" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t328" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t329" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t330" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t331" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t332" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t333" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t335" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">63.12</span><span class="strut">&nbsp;</span></p>
-<p id="t337" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">595</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.6292</span><span class="strut">&nbsp;</span></p>
-<p id="t339" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t341" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t343" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t344" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t345" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t347" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t348" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t349" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.1788</span><span class="strut">&nbsp;</span></p>
-<p id="t350" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">13570.0</span><span class="strut">&nbsp;</span></p>
-<p id="t351" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.44</span><span class="strut">&nbsp;</span></p>
-<p id="t352" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t354" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t355" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t357" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t358" class="pln"><span class="str">        :param temperature:</span><span class="strut">&nbsp;</span></p>
-<p id="t359" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t360" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t361" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t362" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.4</span><span class="strut">&nbsp;</span></p>
-<p id="t363" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1161.07</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t365" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t367" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t368" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t369" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t370" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t373" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
-<p id="t374" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
-<p id="t375" class="pln"><span class="str">        :return: hatching time of eggs (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t376" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t377" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t378" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t380" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">35703</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">2.223</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t384" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t386" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t387" class="stm run hide_run"><span class="key">class</span> <span class="nam">SilverCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t388" class="pln">    <span class="str">"""Class representing a collection of Silver carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t389" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t390" class="pln"><span class="str">    See CarpEggs for accurate signature</span><span class="strut">&nbsp;</span></p>
-<p id="t391" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t394" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t396" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
-<p id="t397" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t399" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t400" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t402" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1036.1</span><span class="strut">&nbsp;</span></p>
-<p id="t404" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.7680</span><span class="strut">&nbsp;</span></p>
-<p id="t405" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
-<p id="t406" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
-<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t408" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t409" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t410" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
-<p id="t411" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t413" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t414" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t415" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t416" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t417" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">5.6000</span><span class="strut">&nbsp;</span></p>
-<p id="t418" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.6980</span><span class="strut">&nbsp;</span></p>
-<p id="t419" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t420" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t421" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t422" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t423" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t424" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t425" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t426" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t427" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t428" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t429" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t430" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">25.2</span><span class="strut">&nbsp;</span></p>
-<p id="t431" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2259</span><span class="strut">&nbsp;</span></p>
-<p id="t432" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.3</span><span class="strut">&nbsp;</span></p>
-<p id="t433" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t434" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t435" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t436" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t437" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t438" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t439" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t440" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t441" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t442" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t443" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">4.66</span><span class="strut">&nbsp;</span></p>
-<p id="t444" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2635.9</span><span class="strut">&nbsp;</span></p>
-<p id="t445" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t446" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t447" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t448" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t449" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t451" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t452" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t453" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t454" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t455" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">22.4</span><span class="strut">&nbsp;</span></p>
-<p id="t456" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1894</span><span class="strut">&nbsp;</span></p>
-<p id="t457" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.4103</span><span class="strut">&nbsp;</span></p>
-<p id="t458" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t459" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t460" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t461" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t462" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t463" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t464" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t465" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t466" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t467" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t468" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.2631</span><span class="strut">&nbsp;</span></p>
-<p id="t469" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">22410</span><span class="strut">&nbsp;</span></p>
-<p id="t470" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.3073</span><span class="strut">&nbsp;</span></p>
-<p id="t471" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t472" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t473" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t474" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t475" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t476" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.3</span><span class="strut">&nbsp;</span></p>
-<p id="t477" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1084.59</span><span class="strut">&nbsp;</span></p>
-<p id="t478" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t479" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t480" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t481" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t482" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t483" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t484" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t485" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t486" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t487" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
-<p id="t488" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
-<p id="t489" class="pln"><span class="str">        :return: hatching time of eggs (hr)</span><span class="strut">&nbsp;</span></p>
-<p id="t490" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t491" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t492" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t493" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">1.2087e+7</span><span class="strut">&nbsp;</span></p>
-<p id="t494" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">4.2664</span><span class="strut">&nbsp;</span></p>
-<p id="t495" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">10.242</span><span class="strut">&nbsp;</span></p>
-<p id="t496" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t497" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t498" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t499" class="stm run hide_run"><span class="key">class</span> <span class="nam">GrassCarpEggs</span><span class="op">(</span><span class="nam">CarpEggs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t500" class="pln">    <span class="str">"""Class representing a collection of Grass carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t501" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t502" class="pln"><span class="str">    See CarpEggs for accurate signature</span><span class="strut">&nbsp;</span></p>
-<p id="t503" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t504" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t505" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t506" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t507" class="pln">    <span class="key">def</span> <span class="nam">_check_density_range</span><span class="op">(</span><span class="nam">density_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t508" class="pln">        <span class="str">"""Modifies input array so any outlier densities are set</span><span class="strut">&nbsp;</span></p>
-<p id="t509" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t511" class="pln"><span class="str">        :param density_array: input density array (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t512" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t513" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t514" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t515" class="stm run hide_run">        <span class="nam">max_density</span> <span class="op">=</span> <span class="num">1.0473e+3</span><span class="strut">&nbsp;</span></p>
-<p id="t516" class="stm run hide_run">        <span class="nam">min_density</span> <span class="op">=</span> <span class="num">998.4118</span><span class="strut">&nbsp;</span></p>
-<p id="t517" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">></span> <span class="nam">max_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_density</span><span class="strut">&nbsp;</span></p>
-<p id="t518" class="stm run hide_run">        <span class="nam">density_array</span><span class="op">[</span><span class="nam">density_array</span> <span class="op">&lt;</span> <span class="nam">min_density</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_density</span><span class="strut">&nbsp;</span></p>
-<p id="t519" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t520" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t521" class="pln">    <span class="key">def</span> <span class="nam">_check_diameter_range</span><span class="op">(</span><span class="nam">diameter_array</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t522" class="pln">        <span class="str">"""Modifies input array so any outlier diameters are set</span><span class="strut">&nbsp;</span></p>
-<p id="t523" class="pln"><span class="str">        to the respective min or max of the range</span><span class="strut">&nbsp;</span></p>
-<p id="t524" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t525" class="pln"><span class="str">        :param diameter_array: input diameter array (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t526" class="pln"><span class="str">        :type: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t527" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t528" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t529" class="stm run hide_run">        <span class="nam">max_diameter</span> <span class="op">=</span> <span class="num">5.6750</span><span class="strut">&nbsp;</span></p>
-<p id="t530" class="stm run hide_run">        <span class="nam">min_diameter</span> <span class="op">=</span> <span class="num">1.2250</span><span class="strut">&nbsp;</span></p>
-<p id="t531" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">></span> <span class="nam">max_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">max_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t532" class="stm run hide_run">        <span class="nam">diameter_array</span><span class="op">[</span><span class="nam">diameter_array</span> <span class="op">&lt;</span> <span class="nam">min_diameter</span><span class="op">]</span> <span class="op">=</span> <span class="nam">min_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t533" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t534" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t535" class="pln">        <span class="str">"""Returns an array of the mean density (kg/m**3) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t536" class="pln"><span class="str">        collection carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t537" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t538" class="pln"><span class="str">        :return: mean density (kg/m**3) of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t539" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t540" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t541" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t542" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">29.09</span><span class="strut">&nbsp;</span></p>
-<p id="t543" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1812</span><span class="strut">&nbsp;</span></p>
-<p id="t544" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">999.8</span><span class="strut">&nbsp;</span></p>
-<p id="t545" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_density</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t546" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t547" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_mean_diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t548" class="pln">        <span class="str">"""Returns an array of the mean diameter (mm) of the</span><span class="strut">&nbsp;</span></p>
-<p id="t549" class="pln"><span class="str">        collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t550" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t551" class="pln"><span class="str">        :return: array of mean diameter (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t552" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t553" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t554" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t555" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">4.56</span><span class="strut">&nbsp;</span></p>
-<p id="t556" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2314</span><span class="strut">&nbsp;</span></p>
-<p id="t557" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_mean_diameter</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t558" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t559" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_density_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t560" class="pln">        <span class="str">"""Returns an array of the density standard deviation (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t561" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t562" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t563" class="pln"><span class="str">        :return: density std array (kg/m**3) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t564" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t565" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t566" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t567" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">19.28</span><span class="strut">&nbsp;</span></p>
-<p id="t568" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">1973</span><span class="strut">&nbsp;</span></p>
-<p id="t569" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">1.029</span><span class="strut">&nbsp;</span></p>
-<p id="t570" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_density_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t571" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t572" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_diameter_std</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t573" class="pln">        <span class="str">"""Returns an array of the diameter standard deviation (mm)</span><span class="strut">&nbsp;</span></p>
-<p id="t574" class="pln"><span class="str">        of the collection of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t575" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t576" class="pln"><span class="str">        :return: diamter std array (mm) of carp eggs at each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t577" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t578" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t579" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t580" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">0.4759</span><span class="strut">&nbsp;</span></p>
-<p id="t581" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">14150</span><span class="strut">&nbsp;</span></p>
-<p id="t582" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">0.4586</span><span class="strut">&nbsp;</span></p>
-<p id="t583" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_diameter_std</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t584" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t585" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t586" class="stm run hide_run">    <span class="key">def</span> <span class="nam">gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t587" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t588" class="stm run hide_run">        <span class="nam">tmin2</span> <span class="op">=</span> <span class="num">13.3</span><span class="strut">&nbsp;</span></p>
-<p id="t589" class="stm run hide_run">        <span class="nam">meanctu_gas_bladder</span> <span class="op">=</span> <span class="num">1100.82</span><span class="strut">&nbsp;</span></p>
-<p id="t590" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t591" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_gas_bladder_inflation_time</span><span class="op">(</span><span class="nam">tmin2</span><span class="op">,</span> <span class="nam">meanctu_gas_bladder</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t592" class="pln">                                                    <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t593" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t594" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t595" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hatching_time</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t596" class="pln">        <span class="str">"""Returns the hatching time of carp eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t597" class="pln"><span class="str">        based on input temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t598" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t599" class="pln"><span class="str">        :param temperature: Temperature of eggs(Celsius)</span><span class="strut">&nbsp;</span></p>
-<p id="t600" class="pln"><span class="str">        :type: float</span><span class="strut">&nbsp;</span></p>
-<p id="t601" class="pln"><span class="str">        :return: hatching time of eggs (hr)</span><span class="strut">&nbsp;</span></p>
-<p id="t602" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t603" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t604" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t605" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">3.677e+7</span><span class="strut">&nbsp;</span></p>
-<p id="t606" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="op">-</span><span class="num">4.788</span><span class="strut">&nbsp;</span></p>
-<p id="t607" class="stm run hide_run">        <span class="nam">c</span> <span class="op">=</span> <span class="num">18.87</span><span class="strut">&nbsp;</span></p>
-<p id="t608" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_calc_hatching_time</span><span class="op">(</span><span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">,</span> <span class="nam">c</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_drift_py.html b/coverage_report/fluegg_drift_py.html
deleted file mode 100644
index a4b7b4c..0000000
--- a/coverage_report/fluegg_drift_py.html
+++ /dev/null
@@ -1,393 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\drift.py: 89%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\drift.py</b> :
-            <span class="pc_cov">89%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            56 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">50 run</span>
-            <span class="mis shortkey_m button_toggle_mis">6 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="pln"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="pln"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
-<p id="n32" class="stm run hide_run"><a href="#n32">32</a></p>
-<p id="n33" class="stm run hide_run"><a href="#n33">33</a></p>
-<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
-<p id="n35" class="stm run hide_run"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
-<p id="n40" class="pln"><a href="#n40">40</a></p>
-<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
-<p id="n42" class="pln"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="pln"><a href="#n44">44</a></p>
-<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
-<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="stm mis"><a href="#n50">50</a></p>
-<p id="n51" class="pln"><a href="#n51">51</a></p>
-<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm mis"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="stm run hide_run"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="stm run hide_run"><a href="#n69">69</a></p>
-<p id="n70" class="stm run hide_run"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
-<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
-<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="pln"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="stm run hide_run"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm mis"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="stm run hide_run"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="stm mis"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="stm run hide_run"><a href="#n96">96</a></p>
-<p id="n97" class="pln"><a href="#n97">97</a></p>
-<p id="n98" class="stm run hide_run"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
-<p id="n101" class="stm run hide_run"><a href="#n101">101</a></p>
-<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
-<p id="n103" class="pln"><a href="#n103">103</a></p>
-<p id="n104" class="stm run hide_run"><a href="#n104">104</a></p>
-<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
-<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
-<p id="n111" class="pln"><a href="#n111">111</a></p>
-<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="stm mis"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="pln"><a href="#n117">117</a></p>
-<p id="n118" class="stm run hide_run"><a href="#n118">118</a></p>
-<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
-<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
-<p id="n123" class="pln"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-<p id="n125" class="pln"><a href="#n125">125</a></p>
-<p id="n126" class="pln"><a href="#n126">126</a></p>
-<p id="n127" class="pln"><a href="#n127">127</a></p>
-<p id="n128" class="stm run hide_run"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="stm run hide_run"><a href="#n130">130</a></p>
-<p id="n131" class="pln"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="pln"><a href="#n134">134</a></p>
-<p id="n135" class="pln"><a href="#n135">135</a></p>
-<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="stm run hide_run"><a href="#n138">138</a></p>
-<p id="n139" class="pln"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="pln"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="pln"><a href="#n143">143</a></p>
-<p id="n144" class="stm run hide_run"><a href="#n144">144</a></p>
-<p id="n145" class="pln"><a href="#n145">145</a></p>
-<p id="n146" class="stm run hide_run"><a href="#n146">146</a></p>
-<p id="n147" class="pln"><a href="#n147">147</a></p>
-<p id="n148" class="pln"><a href="#n148">148</a></p>
-<p id="n149" class="pln"><a href="#n149">149</a></p>
-<p id="n150" class="pln"><a href="#n150">150</a></p>
-<p id="n151" class="pln"><a href="#n151">151</a></p>
-<p id="n152" class="stm run hide_run"><a href="#n152">152</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t6" class="stm run hide_run"><span class="key">class</span> <span class="nam">DriftingParticle</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln">    <span class="key">def</span> <span class="nam">_dietrich_equation</span><span class="op">(</span><span class="nam">water_viscosity</span><span class="op">,</span> <span class="nam">water_density</span><span class="op">,</span> <span class="nam">particle_diameter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln">                           <span class="nam">particle_density</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln">        <span class="str">"""Returns the settling velocity (cm/s) of particles</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="str">        calculated using the Dietrich equation.</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="str">        :param water_viscosity: water viscosity (cm**2/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="str">        :param water_density: water density (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="str">        :param particle_diameter: particle diameter (cm)</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="pln"><span class="str">        :param particle_density: particle density (kg/m**3)</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln"><span class="str">        :return: settling velocity of particle in water (cm/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln">        <span class="com"># Specific gravity of particle</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">        <span class="nam">specific_gravity</span> <span class="op">=</span> <span class="nam">particle_density</span> <span class="op">/</span> <span class="nam">water_density</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln">        <span class="com"># Gravitational acceleration (cm/s**2)</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm run hide_run">        <span class="nam">gravity</span> <span class="op">=</span> <span class="num">981</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln">        <span class="com"># Constants</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm run hide_run">        <span class="nam">b1</span> <span class="op">=</span> <span class="num">2.891394</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="stm run hide_run">        <span class="nam">b2</span> <span class="op">=</span> <span class="num">0.95296</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm run hide_run">        <span class="nam">b3</span> <span class="op">=</span> <span class="num">0.056835</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm run hide_run">        <span class="nam">b4</span> <span class="op">=</span> <span class="num">0.002892</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="stm run hide_run">        <span class="nam">b5</span> <span class="op">=</span> <span class="num">0.000245</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln">        <span class="com"># Particle Reynold's number</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm run hide_run">        <span class="nam">temporary</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="op">(</span><span class="nam">specific_gravity</span> <span class="op">-</span> <span class="num">1</span><span class="op">)</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln">                            <span class="nam">gravity</span> <span class="op">*</span> <span class="nam">particle_diameter</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm run hide_run">        <span class="nam">reynolds_number</span> <span class="op">=</span> <span class="op">(</span><span class="nam">particle_diameter</span> <span class="op">*</span> <span class="nam">temporary</span><span class="op">)</span> <span class="op">/</span> <span class="nam">water_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="pln">        <span class="com"># Rf = Dimensionless terminal particle settling velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm run hide_run">        <span class="nam">Rf</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">-</span><span class="nam">b1</span> <span class="op">+</span> <span class="op">(</span><span class="nam">b2</span> <span class="op">*</span> <span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span><span class="op">)</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="pln">                    <span class="op">(</span><span class="nam">b3</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="op">)</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln">                    <span class="op">(</span><span class="nam">b4</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">3</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="pln">                    <span class="op">(</span><span class="nam">b5</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">reynolds_number</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">4</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm run hide_run">        <span class="nam">settling_velocity</span> <span class="op">=</span> <span class="nam">Rf</span> <span class="op">*</span> <span class="nam">temporary</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm run hide_run">        <span class="key">return</span> <span class="nam">settling_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t56" class="stm run hide_run">    <span class="key">def</span> <span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln">        <span class="str">"""Wrapper for the dietrich equation, returns fall velocity of</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">        particles (m/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="str">        :return: settling velocity of particle in water (m/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln">        <span class="com"># Calculate the fall velocity using Dietrich Equation based on</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln">        <span class="com"># particle data</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="stm run hide_run">        <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">temperature</span><span class="op">(</span><span class="op">)</span>  <span class="com"># Celsius</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm run hide_run">        <span class="nam">water_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln">        <span class="op">)</span> <span class="op">*</span> <span class="num">100</span> <span class="op">**</span> <span class="num">2</span>  <span class="com"># Convert from m**2/s to cm**2/s</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm run hide_run">        <span class="nam">water_density</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_density</span><span class="op">(</span><span class="op">)</span>  <span class="com"># kg/m**3</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm run hide_run">        <span class="nam">particle_diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span> <span class="op">*</span> <span class="num">100</span>  <span class="com"># Convert from m to cm</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm run hide_run">        <span class="nam">particle_density</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span>  <span class="com"># kg/m**3</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln">        <span class="com"># calculate fall velocity as cm/s</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_dietrich_equation</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln">            <span class="nam">water_viscosity</span><span class="op">,</span> <span class="nam">water_density</span><span class="op">,</span> <span class="nam">particle_diameter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln">            <span class="nam">particle_density</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln">        <span class="com"># change fall velocity sign to coordinate system</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="op">-</span><span class="nam">fall_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln">        <span class="com"># convert fall velocity from cm/s to m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm run hide_run">        <span class="key">return</span> <span class="nam">fall_velocity</span> <span class="op">/</span> <span class="num">100</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t96" class="stm run hide_run"><span class="key">class</span> <span class="nam">ConstantDriftingParticle</span><span class="op">(</span><span class="nam">DriftingParticle</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">density</span><span class="op">,</span> <span class="nam">diameter</span><span class="op">,</span> <span class="nam">initial_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm run hide_run">        <span class="nam">initial_position</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm run hide_run">        <span class="nam">density</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">density</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">diameter</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t104" class="stm run hide_run">        <span class="key">if</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">==</span> <span class="num">3</span> <span class="key">and</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_eggs</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'Initial position array must be n by 3'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm run hide_run">        <span class="nam">number_of_particles</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm run hide_run">        <span class="key">if</span> <span class="nam">density</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">!=</span> <span class="nam">number_of_particles</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln">                <span class="key">or</span> <span class="nam">diameter</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">!=</span> <span class="nam">number_of_particles</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln">                <span class="str">'The zero axis of density, diameter, and initial_position '</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln">                <span class="str">'must be consistent'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t118" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_density</span> <span class="op">=</span> <span class="nam">density</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter</span> <span class="op">=</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">initial_position</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm run hide_run">    <span class="key">def</span> <span class="nam">density</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t125" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t128" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t130" class="stm run hide_run">    <span class="key">def</span> <span class="nam">diameter</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t138" class="stm run hide_run">    <span class="key">def</span> <span class="nam">position</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t141" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t144" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t149" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t152" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_position</span> <span class="op">=</span> <span class="nam">position</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_gui___init___py.html b/coverage_report/fluegg_gui___init___py.html
deleted file mode 100644
index f798c84..0000000
--- a/coverage_report/fluegg_gui___init___py.html
+++ /dev/null
@@ -1,89 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\gui\__init__.py: 100%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\gui\__init__.py</b> :
-            <span class="pc_cov">100%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            0 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">0 run</span>
-            <span class="mis shortkey_m button_toggle_mis">0 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-
-            </td>
-            <td class="text">
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_gui_gui_layout_py.html b/coverage_report/fluegg_gui_gui_layout_py.html
deleted file mode 100644
index 78a11f3..0000000
--- a/coverage_report/fluegg_gui_gui_layout_py.html
+++ /dev/null
@@ -1,665 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\gui\gui_layout.py: 1%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\gui\gui_layout.py</b> :
-            <span class="pc_cov">1%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            276 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">4 run</span>
-            <span class="mis shortkey_m button_toggle_mis">272 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="pln"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="pln"><a href="#n3">3</a></p>
-<p id="n4" class="pln"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
-<p id="n13" class="stm mis"><a href="#n13">13</a></p>
-<p id="n14" class="stm mis"><a href="#n14">14</a></p>
-<p id="n15" class="stm mis"><a href="#n15">15</a></p>
-<p id="n16" class="stm mis"><a href="#n16">16</a></p>
-<p id="n17" class="stm mis"><a href="#n17">17</a></p>
-<p id="n18" class="stm mis"><a href="#n18">18</a></p>
-<p id="n19" class="stm mis"><a href="#n19">19</a></p>
-<p id="n20" class="stm mis"><a href="#n20">20</a></p>
-<p id="n21" class="stm mis"><a href="#n21">21</a></p>
-<p id="n22" class="stm mis"><a href="#n22">22</a></p>
-<p id="n23" class="stm mis"><a href="#n23">23</a></p>
-<p id="n24" class="stm mis"><a href="#n24">24</a></p>
-<p id="n25" class="stm mis"><a href="#n25">25</a></p>
-<p id="n26" class="stm mis"><a href="#n26">26</a></p>
-<p id="n27" class="stm mis"><a href="#n27">27</a></p>
-<p id="n28" class="stm mis"><a href="#n28">28</a></p>
-<p id="n29" class="stm mis"><a href="#n29">29</a></p>
-<p id="n30" class="stm mis"><a href="#n30">30</a></p>
-<p id="n31" class="stm mis"><a href="#n31">31</a></p>
-<p id="n32" class="stm mis"><a href="#n32">32</a></p>
-<p id="n33" class="stm mis"><a href="#n33">33</a></p>
-<p id="n34" class="stm mis"><a href="#n34">34</a></p>
-<p id="n35" class="stm mis"><a href="#n35">35</a></p>
-<p id="n36" class="stm mis"><a href="#n36">36</a></p>
-<p id="n37" class="stm mis"><a href="#n37">37</a></p>
-<p id="n38" class="stm mis"><a href="#n38">38</a></p>
-<p id="n39" class="stm mis"><a href="#n39">39</a></p>
-<p id="n40" class="stm mis"><a href="#n40">40</a></p>
-<p id="n41" class="stm mis"><a href="#n41">41</a></p>
-<p id="n42" class="stm mis"><a href="#n42">42</a></p>
-<p id="n43" class="stm mis"><a href="#n43">43</a></p>
-<p id="n44" class="stm mis"><a href="#n44">44</a></p>
-<p id="n45" class="stm mis"><a href="#n45">45</a></p>
-<p id="n46" class="stm mis"><a href="#n46">46</a></p>
-<p id="n47" class="stm mis"><a href="#n47">47</a></p>
-<p id="n48" class="stm mis"><a href="#n48">48</a></p>
-<p id="n49" class="stm mis"><a href="#n49">49</a></p>
-<p id="n50" class="stm mis"><a href="#n50">50</a></p>
-<p id="n51" class="stm mis"><a href="#n51">51</a></p>
-<p id="n52" class="stm mis"><a href="#n52">52</a></p>
-<p id="n53" class="stm mis"><a href="#n53">53</a></p>
-<p id="n54" class="stm mis"><a href="#n54">54</a></p>
-<p id="n55" class="stm mis"><a href="#n55">55</a></p>
-<p id="n56" class="stm mis"><a href="#n56">56</a></p>
-<p id="n57" class="stm mis"><a href="#n57">57</a></p>
-<p id="n58" class="stm mis"><a href="#n58">58</a></p>
-<p id="n59" class="stm mis"><a href="#n59">59</a></p>
-<p id="n60" class="stm mis"><a href="#n60">60</a></p>
-<p id="n61" class="stm mis"><a href="#n61">61</a></p>
-<p id="n62" class="stm mis"><a href="#n62">62</a></p>
-<p id="n63" class="stm mis"><a href="#n63">63</a></p>
-<p id="n64" class="stm mis"><a href="#n64">64</a></p>
-<p id="n65" class="stm mis"><a href="#n65">65</a></p>
-<p id="n66" class="stm mis"><a href="#n66">66</a></p>
-<p id="n67" class="stm mis"><a href="#n67">67</a></p>
-<p id="n68" class="stm mis"><a href="#n68">68</a></p>
-<p id="n69" class="stm mis"><a href="#n69">69</a></p>
-<p id="n70" class="stm mis"><a href="#n70">70</a></p>
-<p id="n71" class="stm mis"><a href="#n71">71</a></p>
-<p id="n72" class="stm mis"><a href="#n72">72</a></p>
-<p id="n73" class="stm mis"><a href="#n73">73</a></p>
-<p id="n74" class="stm mis"><a href="#n74">74</a></p>
-<p id="n75" class="stm mis"><a href="#n75">75</a></p>
-<p id="n76" class="stm mis"><a href="#n76">76</a></p>
-<p id="n77" class="stm mis"><a href="#n77">77</a></p>
-<p id="n78" class="stm mis"><a href="#n78">78</a></p>
-<p id="n79" class="stm mis"><a href="#n79">79</a></p>
-<p id="n80" class="stm mis"><a href="#n80">80</a></p>
-<p id="n81" class="stm mis"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="stm mis"><a href="#n83">83</a></p>
-<p id="n84" class="stm mis"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="stm mis"><a href="#n86">86</a></p>
-<p id="n87" class="stm mis"><a href="#n87">87</a></p>
-<p id="n88" class="stm mis"><a href="#n88">88</a></p>
-<p id="n89" class="stm mis"><a href="#n89">89</a></p>
-<p id="n90" class="stm mis"><a href="#n90">90</a></p>
-<p id="n91" class="stm mis"><a href="#n91">91</a></p>
-<p id="n92" class="stm mis"><a href="#n92">92</a></p>
-<p id="n93" class="stm mis"><a href="#n93">93</a></p>
-<p id="n94" class="stm mis"><a href="#n94">94</a></p>
-<p id="n95" class="stm mis"><a href="#n95">95</a></p>
-<p id="n96" class="stm mis"><a href="#n96">96</a></p>
-<p id="n97" class="stm mis"><a href="#n97">97</a></p>
-<p id="n98" class="stm mis"><a href="#n98">98</a></p>
-<p id="n99" class="stm mis"><a href="#n99">99</a></p>
-<p id="n100" class="stm mis"><a href="#n100">100</a></p>
-<p id="n101" class="stm mis"><a href="#n101">101</a></p>
-<p id="n102" class="stm mis"><a href="#n102">102</a></p>
-<p id="n103" class="stm mis"><a href="#n103">103</a></p>
-<p id="n104" class="stm mis"><a href="#n104">104</a></p>
-<p id="n105" class="stm mis"><a href="#n105">105</a></p>
-<p id="n106" class="stm mis"><a href="#n106">106</a></p>
-<p id="n107" class="stm mis"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="stm mis"><a href="#n109">109</a></p>
-<p id="n110" class="stm mis"><a href="#n110">110</a></p>
-<p id="n111" class="stm mis"><a href="#n111">111</a></p>
-<p id="n112" class="stm mis"><a href="#n112">112</a></p>
-<p id="n113" class="stm mis"><a href="#n113">113</a></p>
-<p id="n114" class="stm mis"><a href="#n114">114</a></p>
-<p id="n115" class="stm mis"><a href="#n115">115</a></p>
-<p id="n116" class="stm mis"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="stm mis"><a href="#n118">118</a></p>
-<p id="n119" class="stm mis"><a href="#n119">119</a></p>
-<p id="n120" class="stm mis"><a href="#n120">120</a></p>
-<p id="n121" class="stm mis"><a href="#n121">121</a></p>
-<p id="n122" class="stm mis"><a href="#n122">122</a></p>
-<p id="n123" class="stm mis"><a href="#n123">123</a></p>
-<p id="n124" class="stm mis"><a href="#n124">124</a></p>
-<p id="n125" class="stm mis"><a href="#n125">125</a></p>
-<p id="n126" class="stm mis"><a href="#n126">126</a></p>
-<p id="n127" class="stm mis"><a href="#n127">127</a></p>
-<p id="n128" class="stm mis"><a href="#n128">128</a></p>
-<p id="n129" class="stm mis"><a href="#n129">129</a></p>
-<p id="n130" class="stm mis"><a href="#n130">130</a></p>
-<p id="n131" class="stm mis"><a href="#n131">131</a></p>
-<p id="n132" class="stm mis"><a href="#n132">132</a></p>
-<p id="n133" class="stm mis"><a href="#n133">133</a></p>
-<p id="n134" class="stm mis"><a href="#n134">134</a></p>
-<p id="n135" class="stm mis"><a href="#n135">135</a></p>
-<p id="n136" class="stm mis"><a href="#n136">136</a></p>
-<p id="n137" class="stm mis"><a href="#n137">137</a></p>
-<p id="n138" class="stm mis"><a href="#n138">138</a></p>
-<p id="n139" class="stm mis"><a href="#n139">139</a></p>
-<p id="n140" class="stm mis"><a href="#n140">140</a></p>
-<p id="n141" class="stm mis"><a href="#n141">141</a></p>
-<p id="n142" class="stm mis"><a href="#n142">142</a></p>
-<p id="n143" class="stm mis"><a href="#n143">143</a></p>
-<p id="n144" class="stm mis"><a href="#n144">144</a></p>
-<p id="n145" class="stm mis"><a href="#n145">145</a></p>
-<p id="n146" class="stm mis"><a href="#n146">146</a></p>
-<p id="n147" class="stm mis"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="stm mis"><a href="#n149">149</a></p>
-<p id="n150" class="stm mis"><a href="#n150">150</a></p>
-<p id="n151" class="stm mis"><a href="#n151">151</a></p>
-<p id="n152" class="stm mis"><a href="#n152">152</a></p>
-<p id="n153" class="stm mis"><a href="#n153">153</a></p>
-<p id="n154" class="stm mis"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="stm mis"><a href="#n156">156</a></p>
-<p id="n157" class="stm mis"><a href="#n157">157</a></p>
-<p id="n158" class="stm mis"><a href="#n158">158</a></p>
-<p id="n159" class="stm mis"><a href="#n159">159</a></p>
-<p id="n160" class="stm mis"><a href="#n160">160</a></p>
-<p id="n161" class="stm mis"><a href="#n161">161</a></p>
-<p id="n162" class="stm mis"><a href="#n162">162</a></p>
-<p id="n163" class="stm mis"><a href="#n163">163</a></p>
-<p id="n164" class="stm mis"><a href="#n164">164</a></p>
-<p id="n165" class="stm mis"><a href="#n165">165</a></p>
-<p id="n166" class="stm mis"><a href="#n166">166</a></p>
-<p id="n167" class="stm mis"><a href="#n167">167</a></p>
-<p id="n168" class="stm mis"><a href="#n168">168</a></p>
-<p id="n169" class="stm mis"><a href="#n169">169</a></p>
-<p id="n170" class="stm mis"><a href="#n170">170</a></p>
-<p id="n171" class="stm mis"><a href="#n171">171</a></p>
-<p id="n172" class="stm mis"><a href="#n172">172</a></p>
-<p id="n173" class="stm mis"><a href="#n173">173</a></p>
-<p id="n174" class="stm mis"><a href="#n174">174</a></p>
-<p id="n175" class="stm mis"><a href="#n175">175</a></p>
-<p id="n176" class="stm mis"><a href="#n176">176</a></p>
-<p id="n177" class="stm mis"><a href="#n177">177</a></p>
-<p id="n178" class="stm mis"><a href="#n178">178</a></p>
-<p id="n179" class="stm mis"><a href="#n179">179</a></p>
-<p id="n180" class="stm mis"><a href="#n180">180</a></p>
-<p id="n181" class="stm mis"><a href="#n181">181</a></p>
-<p id="n182" class="stm mis"><a href="#n182">182</a></p>
-<p id="n183" class="stm mis"><a href="#n183">183</a></p>
-<p id="n184" class="stm mis"><a href="#n184">184</a></p>
-<p id="n185" class="stm mis"><a href="#n185">185</a></p>
-<p id="n186" class="stm mis"><a href="#n186">186</a></p>
-<p id="n187" class="stm mis"><a href="#n187">187</a></p>
-<p id="n188" class="stm mis"><a href="#n188">188</a></p>
-<p id="n189" class="stm mis"><a href="#n189">189</a></p>
-<p id="n190" class="stm mis"><a href="#n190">190</a></p>
-<p id="n191" class="stm mis"><a href="#n191">191</a></p>
-<p id="n192" class="stm mis"><a href="#n192">192</a></p>
-<p id="n193" class="stm mis"><a href="#n193">193</a></p>
-<p id="n194" class="stm mis"><a href="#n194">194</a></p>
-<p id="n195" class="stm mis"><a href="#n195">195</a></p>
-<p id="n196" class="stm mis"><a href="#n196">196</a></p>
-<p id="n197" class="stm mis"><a href="#n197">197</a></p>
-<p id="n198" class="stm mis"><a href="#n198">198</a></p>
-<p id="n199" class="stm mis"><a href="#n199">199</a></p>
-<p id="n200" class="stm mis"><a href="#n200">200</a></p>
-<p id="n201" class="stm mis"><a href="#n201">201</a></p>
-<p id="n202" class="stm mis"><a href="#n202">202</a></p>
-<p id="n203" class="stm mis"><a href="#n203">203</a></p>
-<p id="n204" class="stm mis"><a href="#n204">204</a></p>
-<p id="n205" class="stm mis"><a href="#n205">205</a></p>
-<p id="n206" class="stm mis"><a href="#n206">206</a></p>
-<p id="n207" class="stm mis"><a href="#n207">207</a></p>
-<p id="n208" class="stm mis"><a href="#n208">208</a></p>
-<p id="n209" class="stm mis"><a href="#n209">209</a></p>
-<p id="n210" class="stm mis"><a href="#n210">210</a></p>
-<p id="n211" class="stm mis"><a href="#n211">211</a></p>
-<p id="n212" class="stm mis"><a href="#n212">212</a></p>
-<p id="n213" class="stm mis"><a href="#n213">213</a></p>
-<p id="n214" class="stm mis"><a href="#n214">214</a></p>
-<p id="n215" class="stm mis"><a href="#n215">215</a></p>
-<p id="n216" class="stm mis"><a href="#n216">216</a></p>
-<p id="n217" class="stm mis"><a href="#n217">217</a></p>
-<p id="n218" class="stm mis"><a href="#n218">218</a></p>
-<p id="n219" class="stm mis"><a href="#n219">219</a></p>
-<p id="n220" class="stm mis"><a href="#n220">220</a></p>
-<p id="n221" class="stm mis"><a href="#n221">221</a></p>
-<p id="n222" class="stm mis"><a href="#n222">222</a></p>
-<p id="n223" class="stm mis"><a href="#n223">223</a></p>
-<p id="n224" class="stm mis"><a href="#n224">224</a></p>
-<p id="n225" class="stm mis"><a href="#n225">225</a></p>
-<p id="n226" class="stm mis"><a href="#n226">226</a></p>
-<p id="n227" class="stm mis"><a href="#n227">227</a></p>
-<p id="n228" class="stm mis"><a href="#n228">228</a></p>
-<p id="n229" class="stm mis"><a href="#n229">229</a></p>
-<p id="n230" class="stm mis"><a href="#n230">230</a></p>
-<p id="n231" class="stm mis"><a href="#n231">231</a></p>
-<p id="n232" class="stm mis"><a href="#n232">232</a></p>
-<p id="n233" class="stm mis"><a href="#n233">233</a></p>
-<p id="n234" class="stm mis"><a href="#n234">234</a></p>
-<p id="n235" class="stm mis"><a href="#n235">235</a></p>
-<p id="n236" class="stm mis"><a href="#n236">236</a></p>
-<p id="n237" class="stm mis"><a href="#n237">237</a></p>
-<p id="n238" class="stm mis"><a href="#n238">238</a></p>
-<p id="n239" class="stm mis"><a href="#n239">239</a></p>
-<p id="n240" class="stm mis"><a href="#n240">240</a></p>
-<p id="n241" class="stm mis"><a href="#n241">241</a></p>
-<p id="n242" class="stm mis"><a href="#n242">242</a></p>
-<p id="n243" class="stm mis"><a href="#n243">243</a></p>
-<p id="n244" class="stm mis"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="stm mis"><a href="#n246">246</a></p>
-<p id="n247" class="stm mis"><a href="#n247">247</a></p>
-<p id="n248" class="stm mis"><a href="#n248">248</a></p>
-<p id="n249" class="stm mis"><a href="#n249">249</a></p>
-<p id="n250" class="stm mis"><a href="#n250">250</a></p>
-<p id="n251" class="stm mis"><a href="#n251">251</a></p>
-<p id="n252" class="pln"><a href="#n252">252</a></p>
-<p id="n253" class="stm mis"><a href="#n253">253</a></p>
-<p id="n254" class="stm mis"><a href="#n254">254</a></p>
-<p id="n255" class="pln"><a href="#n255">255</a></p>
-<p id="n256" class="stm run hide_run"><a href="#n256">256</a></p>
-<p id="n257" class="stm mis"><a href="#n257">257</a></p>
-<p id="n258" class="stm mis"><a href="#n258">258</a></p>
-<p id="n259" class="stm mis"><a href="#n259">259</a></p>
-<p id="n260" class="stm mis"><a href="#n260">260</a></p>
-<p id="n261" class="stm mis"><a href="#n261">261</a></p>
-<p id="n262" class="stm mis"><a href="#n262">262</a></p>
-<p id="n263" class="stm mis"><a href="#n263">263</a></p>
-<p id="n264" class="stm mis"><a href="#n264">264</a></p>
-<p id="n265" class="stm mis"><a href="#n265">265</a></p>
-<p id="n266" class="stm mis"><a href="#n266">266</a></p>
-<p id="n267" class="stm mis"><a href="#n267">267</a></p>
-<p id="n268" class="stm mis"><a href="#n268">268</a></p>
-<p id="n269" class="stm mis"><a href="#n269">269</a></p>
-<p id="n270" class="stm mis"><a href="#n270">270</a></p>
-<p id="n271" class="stm mis"><a href="#n271">271</a></p>
-<p id="n272" class="stm mis"><a href="#n272">272</a></p>
-<p id="n273" class="stm mis"><a href="#n273">273</a></p>
-<p id="n274" class="stm mis"><a href="#n274">274</a></p>
-<p id="n275" class="stm mis"><a href="#n275">275</a></p>
-<p id="n276" class="stm mis"><a href="#n276">276</a></p>
-<p id="n277" class="stm mis"><a href="#n277">277</a></p>
-<p id="n278" class="stm mis"><a href="#n278">278</a></p>
-<p id="n279" class="stm mis"><a href="#n279">279</a></p>
-<p id="n280" class="stm mis"><a href="#n280">280</a></p>
-<p id="n281" class="stm mis"><a href="#n281">281</a></p>
-<p id="n282" class="stm mis"><a href="#n282">282</a></p>
-<p id="n283" class="stm mis"><a href="#n283">283</a></p>
-<p id="n284" class="stm mis"><a href="#n284">284</a></p>
-<p id="n285" class="stm mis"><a href="#n285">285</a></p>
-<p id="n286" class="stm mis"><a href="#n286">286</a></p>
-<p id="n287" class="stm mis"><a href="#n287">287</a></p>
-<p id="n288" class="pln"><a href="#n288">288</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="pln"><span class="com"># -*- coding: utf-8 -*-</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="pln"><span class="com"># Form implementation generated from reading ui file 'gui_layout.ui'</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln"><span class="com"># Created by: PyQt5 UI code generator 5.11.3</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="com"># WARNING! All changes made in this file will be lost!</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">class</span> <span class="nam">Ui_MainWindow</span><span class="op">(</span><span class="nam">object</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">MainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="num">334</span><span class="op">,</span> <span class="num">523</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"centralwidget"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setWhatsThis</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_11"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">.</span><span class="nam">setWhatsThis</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_14"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_csv"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setReadOnly</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_csv"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_hecras"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setReadOnly</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_hecras"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_browse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_14</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_parabolic_constant"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_parabolic"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_constant"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">        <span class="nam">spacerItem</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_7</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="stm mis">        <span class="nam">font</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QFont</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm mis">        <span class="nam">font</span><span class="op">.</span><span class="nam">setBold</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="stm mis">        <span class="nam">font</span><span class="op">.</span><span class="nam">setWeight</span><span class="op">(</span><span class="num">50</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setFont</span><span class="op">(</span><span class="nam">font</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_x"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_x"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_y"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_y"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_z"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_z"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="stm mis">        <span class="nam">spacerItem1</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_number_of_eggs"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_number_of_eggs"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="stm mis">        <span class="nam">spacerItem2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_7"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t138" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_grass"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t141" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_silver"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_bighead"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm mis">        <span class="nam">spacerItem3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_9</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t153" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_12"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t157" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_10"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_varying_dd"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_constant_dd"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="stm mis">        <span class="nam">spacerItem4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t165" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_12</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_10</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QGroupBox</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"groupBox_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_10"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t173" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"widget_9"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t175" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setSpacing</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_13"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t181" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_forward"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t184" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_reverse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t187" class="stm mis">        <span class="nam">spacerItem5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_13</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">widget_9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t191" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t194" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_duration"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t195" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_duration"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="stm mis">        <span class="nam">spacerItem6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t202" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_time_step"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_time_step"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t210" class="stm mis">        <span class="nam">spacerItem7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t211" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_11"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_simulation_name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="str">""</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_simulation_name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t221" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="stm mis">        <span class="nam">spacerItem8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_11</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t226" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_15"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t228" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_run"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t230" class="stm mis">        <span class="nam">spacerItem9</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem9</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_10</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_15</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_5</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t235" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setCentralWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">centralwidget</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QMenuBar</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">setGeometry</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QRect</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">334</span><span class="op">,</span> <span class="num">22</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"menubar"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QMenu</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"menuAbout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setMenuBar</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QStatusBar</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"statusbar"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setStatusBar</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">statusbar</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QAction</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"actionVersion"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t247" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QAction</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"actionHelp"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t249" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t250" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menubar</span><span class="op">.</span><span class="nam">addAction</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">menuAction</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t253" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="stm mis">        <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QMetaObject</span><span class="op">.</span><span class="nam">connectSlotsByName</span><span class="op">(</span><span class="nam">MainWindow</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t256" class="stm run hide_run">    <span class="key">def</span> <span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">MainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="stm mis">        <span class="nam">_translate</span> <span class="op">=</span> <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QCoreApplication</span><span class="op">.</span><span class="nam">translate</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="stm mis">        <span class="nam">MainWindow</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"MainWindow"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t259" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"1) Hydraulic Channel"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t260" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"CSV"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setPlaceholderText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"path/to/hydraulics.csv"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"HECRAS"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setPlaceholderText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"hecras project"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Browse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Parabolic-Constant"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Parabolic"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Constant"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t268" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_3</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"2) Eggs"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_x</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Initial Position (m): X"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_y</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Y"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t271" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_z</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Z"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_number_of_eggs</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Number of Eggs"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Grass"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Silver"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Bighead"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Varying &#961; / d"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Constant &#961; / d"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">groupBox_2</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"3) Simulation"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Forward"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t280" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Reverse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_duration</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Duration (s)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_time_step</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"&#916;t (s)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_simulation_name</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Simulation Name"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Run"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">menuAbout</span><span class="op">.</span><span class="nam">setTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"About"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t286" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Version"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"MainWindow"</span><span class="op">,</span> <span class="str">"Help"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_gui_gui_py.html b/coverage_report/fluegg_gui_gui_py.html
deleted file mode 100644
index 67e6762..0000000
--- a/coverage_report/fluegg_gui_gui_py.html
+++ /dev/null
@@ -1,923 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\gui\gui.py: 11%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\gui\gui.py</b> :
-            <span class="pc_cov">11%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            254 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">29 run</span>
-            <span class="mis shortkey_m button_toggle_mis">225 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="pln"><a href="#n1">1</a></p>
-<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="stm run hide_run"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="stm mis"><a href="#n19">19</a></p>
-<p id="n20" class="stm mis"><a href="#n20">20</a></p>
-<p id="n21" class="stm mis"><a href="#n21">21</a></p>
-<p id="n22" class="stm mis"><a href="#n22">22</a></p>
-<p id="n23" class="stm mis"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="stm mis"><a href="#n29">29</a></p>
-<p id="n30" class="stm mis"><a href="#n30">30</a></p>
-<p id="n31" class="stm mis"><a href="#n31">31</a></p>
-<p id="n32" class="stm mis"><a href="#n32">32</a></p>
-<p id="n33" class="stm mis"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="stm mis"><a href="#n36">36</a></p>
-<p id="n37" class="stm mis"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="stm mis"><a href="#n40">40</a></p>
-<p id="n41" class="stm mis"><a href="#n41">41</a></p>
-<p id="n42" class="stm mis"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="pln"><a href="#n44">44</a></p>
-<p id="n45" class="stm mis"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="pln"><a href="#n48">48</a></p>
-<p id="n49" class="stm mis"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="stm mis"><a href="#n51">51</a></p>
-<p id="n52" class="pln"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="stm mis"><a href="#n56">56</a></p>
-<p id="n57" class="stm mis"><a href="#n57">57</a></p>
-<p id="n58" class="stm mis"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="stm mis"><a href="#n63">63</a></p>
-<p id="n64" class="stm mis"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="stm mis"><a href="#n67">67</a></p>
-<p id="n68" class="stm mis"><a href="#n68">68</a></p>
-<p id="n69" class="stm mis"><a href="#n69">69</a></p>
-<p id="n70" class="stm mis"><a href="#n70">70</a></p>
-<p id="n71" class="stm mis"><a href="#n71">71</a></p>
-<p id="n72" class="stm mis"><a href="#n72">72</a></p>
-<p id="n73" class="stm mis"><a href="#n73">73</a></p>
-<p id="n74" class="stm mis"><a href="#n74">74</a></p>
-<p id="n75" class="stm mis"><a href="#n75">75</a></p>
-<p id="n76" class="stm mis"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="stm mis"><a href="#n78">78</a></p>
-<p id="n79" class="stm mis"><a href="#n79">79</a></p>
-<p id="n80" class="stm mis"><a href="#n80">80</a></p>
-<p id="n81" class="stm mis"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="stm mis"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="pln"><a href="#n85">85</a></p>
-<p id="n86" class="stm mis"><a href="#n86">86</a></p>
-<p id="n87" class="stm mis"><a href="#n87">87</a></p>
-<p id="n88" class="stm mis"><a href="#n88">88</a></p>
-<p id="n89" class="pln"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="stm mis"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="stm run hide_run"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="stm mis"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
-<p id="n98" class="pln"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="stm mis"><a href="#n100">100</a></p>
-<p id="n101" class="stm mis"><a href="#n101">101</a></p>
-<p id="n102" class="pln"><a href="#n102">102</a></p>
-<p id="n103" class="stm mis"><a href="#n103">103</a></p>
-<p id="n104" class="stm mis"><a href="#n104">104</a></p>
-<p id="n105" class="pln"><a href="#n105">105</a></p>
-<p id="n106" class="pln"><a href="#n106">106</a></p>
-<p id="n107" class="stm mis"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="pln"><a href="#n110">110</a></p>
-<p id="n111" class="stm mis"><a href="#n111">111</a></p>
-<p id="n112" class="stm mis"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="stm mis"><a href="#n118">118</a></p>
-<p id="n119" class="pln"><a href="#n119">119</a></p>
-<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="stm mis"><a href="#n122">122</a></p>
-<p id="n123" class="stm mis"><a href="#n123">123</a></p>
-<p id="n124" class="stm mis"><a href="#n124">124</a></p>
-<p id="n125" class="stm mis"><a href="#n125">125</a></p>
-<p id="n126" class="pln"><a href="#n126">126</a></p>
-<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="stm mis"><a href="#n130">130</a></p>
-<p id="n131" class="stm mis"><a href="#n131">131</a></p>
-<p id="n132" class="stm mis"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="stm mis"><a href="#n134">134</a></p>
-<p id="n135" class="stm mis"><a href="#n135">135</a></p>
-<p id="n136" class="pln"><a href="#n136">136</a></p>
-<p id="n137" class="stm mis"><a href="#n137">137</a></p>
-<p id="n138" class="stm mis"><a href="#n138">138</a></p>
-<p id="n139" class="pln"><a href="#n139">139</a></p>
-<p id="n140" class="stm run hide_run"><a href="#n140">140</a></p>
-<p id="n141" class="pln"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="pln"><a href="#n143">143</a></p>
-<p id="n144" class="pln"><a href="#n144">144</a></p>
-<p id="n145" class="stm mis"><a href="#n145">145</a></p>
-<p id="n146" class="stm mis"><a href="#n146">146</a></p>
-<p id="n147" class="stm mis"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="stm mis"><a href="#n149">149</a></p>
-<p id="n150" class="stm mis"><a href="#n150">150</a></p>
-<p id="n151" class="stm mis"><a href="#n151">151</a></p>
-<p id="n152" class="pln"><a href="#n152">152</a></p>
-<p id="n153" class="pln"><a href="#n153">153</a></p>
-<p id="n154" class="stm mis"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="pln"><a href="#n156">156</a></p>
-<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
-<p id="n158" class="pln"><a href="#n158">158</a></p>
-<p id="n159" class="stm mis"><a href="#n159">159</a></p>
-<p id="n160" class="stm mis"><a href="#n160">160</a></p>
-<p id="n161" class="stm mis"><a href="#n161">161</a></p>
-<p id="n162" class="stm mis"><a href="#n162">162</a></p>
-<p id="n163" class="pln"><a href="#n163">163</a></p>
-<p id="n164" class="stm mis"><a href="#n164">164</a></p>
-<p id="n165" class="pln"><a href="#n165">165</a></p>
-<p id="n166" class="stm mis"><a href="#n166">166</a></p>
-<p id="n167" class="stm mis"><a href="#n167">167</a></p>
-<p id="n168" class="stm mis"><a href="#n168">168</a></p>
-<p id="n169" class="stm mis"><a href="#n169">169</a></p>
-<p id="n170" class="stm mis"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="stm mis"><a href="#n172">172</a></p>
-<p id="n173" class="stm mis"><a href="#n173">173</a></p>
-<p id="n174" class="pln"><a href="#n174">174</a></p>
-<p id="n175" class="pln"><a href="#n175">175</a></p>
-<p id="n176" class="stm run hide_run"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="pln"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="stm run hide_run"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="stm mis"><a href="#n183">183</a></p>
-<p id="n184" class="stm mis"><a href="#n184">184</a></p>
-<p id="n185" class="stm mis"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="pln"><a href="#n187">187</a></p>
-<p id="n188" class="stm mis"><a href="#n188">188</a></p>
-<p id="n189" class="stm mis"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="pln"><a href="#n191">191</a></p>
-<p id="n192" class="stm mis"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="stm mis"><a href="#n195">195</a></p>
-<p id="n196" class="stm mis"><a href="#n196">196</a></p>
-<p id="n197" class="pln"><a href="#n197">197</a></p>
-<p id="n198" class="pln"><a href="#n198">198</a></p>
-<p id="n199" class="stm mis"><a href="#n199">199</a></p>
-<p id="n200" class="stm mis"><a href="#n200">200</a></p>
-<p id="n201" class="stm mis"><a href="#n201">201</a></p>
-<p id="n202" class="stm mis"><a href="#n202">202</a></p>
-<p id="n203" class="stm mis"><a href="#n203">203</a></p>
-<p id="n204" class="stm mis"><a href="#n204">204</a></p>
-<p id="n205" class="pln"><a href="#n205">205</a></p>
-<p id="n206" class="pln"><a href="#n206">206</a></p>
-<p id="n207" class="stm mis"><a href="#n207">207</a></p>
-<p id="n208" class="stm mis"><a href="#n208">208</a></p>
-<p id="n209" class="stm mis"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="pln"><a href="#n211">211</a></p>
-<p id="n212" class="pln"><a href="#n212">212</a></p>
-<p id="n213" class="stm mis"><a href="#n213">213</a></p>
-<p id="n214" class="stm mis"><a href="#n214">214</a></p>
-<p id="n215" class="pln"><a href="#n215">215</a></p>
-<p id="n216" class="stm mis"><a href="#n216">216</a></p>
-<p id="n217" class="stm mis"><a href="#n217">217</a></p>
-<p id="n218" class="pln"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="stm mis"><a href="#n221">221</a></p>
-<p id="n222" class="stm mis"><a href="#n222">222</a></p>
-<p id="n223" class="stm mis"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="stm mis"><a href="#n225">225</a></p>
-<p id="n226" class="stm mis"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="pln"><a href="#n228">228</a></p>
-<p id="n229" class="stm mis"><a href="#n229">229</a></p>
-<p id="n230" class="pln"><a href="#n230">230</a></p>
-<p id="n231" class="pln"><a href="#n231">231</a></p>
-<p id="n232" class="stm mis"><a href="#n232">232</a></p>
-<p id="n233" class="stm mis"><a href="#n233">233</a></p>
-<p id="n234" class="stm mis"><a href="#n234">234</a></p>
-<p id="n235" class="stm mis"><a href="#n235">235</a></p>
-<p id="n236" class="stm mis"><a href="#n236">236</a></p>
-<p id="n237" class="pln"><a href="#n237">237</a></p>
-<p id="n238" class="pln"><a href="#n238">238</a></p>
-<p id="n239" class="stm mis"><a href="#n239">239</a></p>
-<p id="n240" class="stm mis"><a href="#n240">240</a></p>
-<p id="n241" class="stm mis"><a href="#n241">241</a></p>
-<p id="n242" class="stm mis"><a href="#n242">242</a></p>
-<p id="n243" class="stm mis"><a href="#n243">243</a></p>
-<p id="n244" class="stm mis"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="pln"><a href="#n246">246</a></p>
-<p id="n247" class="pln"><a href="#n247">247</a></p>
-<p id="n248" class="stm mis"><a href="#n248">248</a></p>
-<p id="n249" class="pln"><a href="#n249">249</a></p>
-<p id="n250" class="stm run hide_run"><a href="#n250">250</a></p>
-<p id="n251" class="pln"><a href="#n251">251</a></p>
-<p id="n252" class="stm mis"><a href="#n252">252</a></p>
-<p id="n253" class="pln"><a href="#n253">253</a></p>
-<p id="n254" class="stm run hide_run"><a href="#n254">254</a></p>
-<p id="n255" class="pln"><a href="#n255">255</a></p>
-<p id="n256" class="stm mis"><a href="#n256">256</a></p>
-<p id="n257" class="pln"><a href="#n257">257</a></p>
-<p id="n258" class="stm run hide_run"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="pln"><a href="#n260">260</a></p>
-<p id="n261" class="stm mis"><a href="#n261">261</a></p>
-<p id="n262" class="stm mis"><a href="#n262">262</a></p>
-<p id="n263" class="stm mis"><a href="#n263">263</a></p>
-<p id="n264" class="stm mis"><a href="#n264">264</a></p>
-<p id="n265" class="stm mis"><a href="#n265">265</a></p>
-<p id="n266" class="stm mis"><a href="#n266">266</a></p>
-<p id="n267" class="pln"><a href="#n267">267</a></p>
-<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
-<p id="n269" class="pln"><a href="#n269">269</a></p>
-<p id="n270" class="stm mis"><a href="#n270">270</a></p>
-<p id="n271" class="pln"><a href="#n271">271</a></p>
-<p id="n272" class="stm mis"><a href="#n272">272</a></p>
-<p id="n273" class="stm mis"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="pln"><a href="#n275">275</a></p>
-<p id="n276" class="stm mis"><a href="#n276">276</a></p>
-<p id="n277" class="pln"><a href="#n277">277</a></p>
-<p id="n278" class="stm mis"><a href="#n278">278</a></p>
-<p id="n279" class="pln"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="stm mis"><a href="#n281">281</a></p>
-<p id="n282" class="stm mis"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="pln"><a href="#n284">284</a></p>
-<p id="n285" class="stm mis"><a href="#n285">285</a></p>
-<p id="n286" class="pln"><a href="#n286">286</a></p>
-<p id="n287" class="pln"><a href="#n287">287</a></p>
-<p id="n288" class="stm mis"><a href="#n288">288</a></p>
-<p id="n289" class="stm mis"><a href="#n289">289</a></p>
-<p id="n290" class="stm mis"><a href="#n290">290</a></p>
-<p id="n291" class="stm mis"><a href="#n291">291</a></p>
-<p id="n292" class="pln"><a href="#n292">292</a></p>
-<p id="n293" class="stm run hide_run"><a href="#n293">293</a></p>
-<p id="n294" class="pln"><a href="#n294">294</a></p>
-<p id="n295" class="pln"><a href="#n295">295</a></p>
-<p id="n296" class="stm mis"><a href="#n296">296</a></p>
-<p id="n297" class="pln"><a href="#n297">297</a></p>
-<p id="n298" class="stm mis"><a href="#n298">298</a></p>
-<p id="n299" class="pln"><a href="#n299">299</a></p>
-<p id="n300" class="pln"><a href="#n300">300</a></p>
-<p id="n301" class="stm mis"><a href="#n301">301</a></p>
-<p id="n302" class="pln"><a href="#n302">302</a></p>
-<p id="n303" class="stm mis"><a href="#n303">303</a></p>
-<p id="n304" class="pln"><a href="#n304">304</a></p>
-<p id="n305" class="stm mis"><a href="#n305">305</a></p>
-<p id="n306" class="pln"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="stm mis"><a href="#n308">308</a></p>
-<p id="n309" class="stm mis"><a href="#n309">309</a></p>
-<p id="n310" class="stm mis"><a href="#n310">310</a></p>
-<p id="n311" class="pln"><a href="#n311">311</a></p>
-<p id="n312" class="pln"><a href="#n312">312</a></p>
-<p id="n313" class="stm mis"><a href="#n313">313</a></p>
-<p id="n314" class="stm mis"><a href="#n314">314</a></p>
-<p id="n315" class="pln"><a href="#n315">315</a></p>
-<p id="n316" class="pln"><a href="#n316">316</a></p>
-<p id="n317" class="stm mis"><a href="#n317">317</a></p>
-<p id="n318" class="stm mis"><a href="#n318">318</a></p>
-<p id="n319" class="stm mis"><a href="#n319">319</a></p>
-<p id="n320" class="stm mis"><a href="#n320">320</a></p>
-<p id="n321" class="pln"><a href="#n321">321</a></p>
-<p id="n322" class="stm mis"><a href="#n322">322</a></p>
-<p id="n323" class="stm mis"><a href="#n323">323</a></p>
-<p id="n324" class="pln"><a href="#n324">324</a></p>
-<p id="n325" class="stm mis"><a href="#n325">325</a></p>
-<p id="n326" class="stm mis"><a href="#n326">326</a></p>
-<p id="n327" class="stm mis"><a href="#n327">327</a></p>
-<p id="n328" class="stm mis"><a href="#n328">328</a></p>
-<p id="n329" class="stm mis"><a href="#n329">329</a></p>
-<p id="n330" class="stm mis"><a href="#n330">330</a></p>
-<p id="n331" class="stm mis"><a href="#n331">331</a></p>
-<p id="n332" class="stm mis"><a href="#n332">332</a></p>
-<p id="n333" class="stm mis"><a href="#n333">333</a></p>
-<p id="n334" class="stm mis"><a href="#n334">334</a></p>
-<p id="n335" class="pln"><a href="#n335">335</a></p>
-<p id="n336" class="stm mis"><a href="#n336">336</a></p>
-<p id="n337" class="stm mis"><a href="#n337">337</a></p>
-<p id="n338" class="pln"><a href="#n338">338</a></p>
-<p id="n339" class="pln"><a href="#n339">339</a></p>
-<p id="n340" class="stm mis"><a href="#n340">340</a></p>
-<p id="n341" class="stm mis"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="stm mis"><a href="#n343">343</a></p>
-<p id="n344" class="stm mis"><a href="#n344">344</a></p>
-<p id="n345" class="pln"><a href="#n345">345</a></p>
-<p id="n346" class="stm mis"><a href="#n346">346</a></p>
-<p id="n347" class="stm mis"><a href="#n347">347</a></p>
-<p id="n348" class="pln"><a href="#n348">348</a></p>
-<p id="n349" class="stm mis"><a href="#n349">349</a></p>
-<p id="n350" class="stm mis"><a href="#n350">350</a></p>
-<p id="n351" class="pln"><a href="#n351">351</a></p>
-<p id="n352" class="stm mis"><a href="#n352">352</a></p>
-<p id="n353" class="pln"><a href="#n353">353</a></p>
-<p id="n354" class="stm mis"><a href="#n354">354</a></p>
-<p id="n355" class="stm mis"><a href="#n355">355</a></p>
-<p id="n356" class="stm mis"><a href="#n356">356</a></p>
-<p id="n357" class="pln"><a href="#n357">357</a></p>
-<p id="n358" class="stm mis"><a href="#n358">358</a></p>
-<p id="n359" class="stm mis"><a href="#n359">359</a></p>
-<p id="n360" class="pln"><a href="#n360">360</a></p>
-<p id="n361" class="stm mis"><a href="#n361">361</a></p>
-<p id="n362" class="stm mis"><a href="#n362">362</a></p>
-<p id="n363" class="pln"><a href="#n363">363</a></p>
-<p id="n364" class="stm mis"><a href="#n364">364</a></p>
-<p id="n365" class="stm mis"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="stm mis"><a href="#n367">367</a></p>
-<p id="n368" class="stm mis"><a href="#n368">368</a></p>
-<p id="n369" class="pln"><a href="#n369">369</a></p>
-<p id="n370" class="stm mis"><a href="#n370">370</a></p>
-<p id="n371" class="stm mis"><a href="#n371">371</a></p>
-<p id="n372" class="pln"><a href="#n372">372</a></p>
-<p id="n373" class="stm mis"><a href="#n373">373</a></p>
-<p id="n374" class="stm mis"><a href="#n374">374</a></p>
-<p id="n375" class="pln"><a href="#n375">375</a></p>
-<p id="n376" class="pln"><a href="#n376">376</a></p>
-<p id="n377" class="stm mis"><a href="#n377">377</a></p>
-<p id="n378" class="stm mis"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="stm mis"><a href="#n380">380</a></p>
-<p id="n381" class="stm mis"><a href="#n381">381</a></p>
-<p id="n382" class="pln"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="stm mis"><a href="#n384">384</a></p>
-<p id="n385" class="stm mis"><a href="#n385">385</a></p>
-<p id="n386" class="pln"><a href="#n386">386</a></p>
-<p id="n387" class="stm mis"><a href="#n387">387</a></p>
-<p id="n388" class="stm mis"><a href="#n388">388</a></p>
-<p id="n389" class="pln"><a href="#n389">389</a></p>
-<p id="n390" class="stm mis"><a href="#n390">390</a></p>
-<p id="n391" class="stm mis"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="stm mis"><a href="#n393">393</a></p>
-<p id="n394" class="stm mis"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="stm mis"><a href="#n396">396</a></p>
-<p id="n397" class="stm mis"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="stm mis"><a href="#n399">399</a></p>
-<p id="n400" class="stm mis"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="stm mis"><a href="#n402">402</a></p>
-<p id="n403" class="stm mis"><a href="#n403">403</a></p>
-<p id="n404" class="pln"><a href="#n404">404</a></p>
-<p id="n405" class="pln"><a href="#n405">405</a></p>
-<p id="n406" class="stm mis"><a href="#n406">406</a></p>
-<p id="n407" class="pln"><a href="#n407">407</a></p>
-<p id="n408" class="stm mis"><a href="#n408">408</a></p>
-<p id="n409" class="stm mis"><a href="#n409">409</a></p>
-<p id="n410" class="stm mis"><a href="#n410">410</a></p>
-<p id="n411" class="stm mis"><a href="#n411">411</a></p>
-<p id="n412" class="pln"><a href="#n412">412</a></p>
-<p id="n413" class="stm mis"><a href="#n413">413</a></p>
-<p id="n414" class="stm mis"><a href="#n414">414</a></p>
-<p id="n415" class="stm mis"><a href="#n415">415</a></p>
-<p id="n416" class="pln"><a href="#n416">416</a></p>
-<p id="n417" class="stm mis"><a href="#n417">417</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="pln"><span class="com"># Import PyQT for gui</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">sys</span><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">traceback</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">datetime</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">platform</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span><span class="op">.</span><span class="nam">QtWidgets</span> <span class="key">import</span> <span class="nam">QMainWindow</span><span class="op">,</span> <span class="nam">QApplication</span><span class="op">,</span> <span class="nam">QMessageBox</span><span class="op">,</span> <span class="nam">QDialog</span><span class="op">,</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln">    <span class="nam">QAction</span><span class="op">,</span> <span class="nam">QWidget</span><span class="op">,</span> <span class="nam">QDesktopWidget</span><span class="op">,</span> <span class="nam">QFileDialog</span><span class="op">,</span> <span class="nam">QProgressBar</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">uic</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">gui</span><span class="op">.</span><span class="nam">gui_layout</span> <span class="key">import</span> <span class="nam">Ui_MainWindow</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">gui</span><span class="op">.</span><span class="nam">hecras_dialog</span> <span class="key">import</span> <span class="nam">Ui_HecrasDialog</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">simulation</span> <span class="key">import</span> <span class="nam">from_input_dict</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">ras</span> <span class="key">import</span> <span class="nam">RASProject</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm run hide_run"><span class="key">def</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">buttons</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln">    <span class="str">"""Given a list of grouped radio buttons, returns the checked one"""</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm mis">    <span class="nam">checked</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm mis">    <span class="key">for</span> <span class="nam">button</span> <span class="key">in</span> <span class="nam">buttons</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm mis">        <span class="key">if</span> <span class="nam">button</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm mis">            <span class="nam">checked</span> <span class="op">=</span> <span class="nam">button</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm mis">    <span class="key">return</span> <span class="nam">checked</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm run hide_run"><span class="key">class</span> <span class="nam">HecrasDialog</span><span class="op">(</span><span class="nam">QDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">main_window</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln">        <span class="com"># Initialization</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm mis">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span> <span class="op">=</span> <span class="nam">Ui_HecrasDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="str">"Hecras Settings"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span> <span class="op">=</span> <span class="nam">main_window</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln">        <span class="com"># Set line edit validators</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QDoubleValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln">        <span class="com"># Push button handles</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_ok</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_cancel</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t44" class="pln">        <span class="com"># Combo box handles</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentIndexChanged</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_plan_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="pln">        <span class="com"># Radio button handles</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_steadiness_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_steadiness_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setup</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln">        <span class="str">"""Initial setup of dialog"""</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_plans</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_ok</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln">        <span class="str">"""Handle function for clicking OK"""</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln">        <span class="com"># Initialize variables</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="stm mis">        <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="stm mis">        <span class="nam">error_message</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln">        <span class="com"># Check to ensure all fields filled</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS project.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS plan.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a RAS profile.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="stm mis">        <span class="nam">steadiness_buttons</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">steadiness_buttons</span><span class="op">)</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a steadiness type.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input a valid temperature.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t85" class="pln">        <span class="com"># Save inputs if valid input</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="stm mis">        <span class="key">if</span> <span class="nam">valid_inputs</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">save_hecras_settings</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="pln">        <span class="com"># Display error message if invalid inputs</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm mis">            <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">error_message</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t93" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_cancel</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln">        <span class="str">"""Handle function for clicking Cancel"""</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_browse</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="pln">        <span class="str">"""Handle function for clicking Browse"""</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln">        <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm mis">        <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="pln">            <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span> <span class="str">"HECRAS Project File (*.prj)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">==</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="stm mis">            <span class="key">return</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t106" class="pln">        <span class="com"># Update line edits</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t110" class="pln">        <span class="com"># Populate dialog with ras options</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_plans</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_plan_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln">        <span class="str">"""Handle function for changing current plan"""</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln">        <span class="com"># Populate profile based on current plan in ras project</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">hasFocus</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">populate_profiles</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_steadiness_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln">        <span class="str">"""Handle function for changing steadiness option (steady vs. unsteady)"""</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t127" class="stm run hide_run">    <span class="key">def</span> <span class="nam">populate_plans</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln">        <span class="str">"""Populates the plans combo box"""</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln">        <span class="com"># Populate plans using current project</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="stm mis">            <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln">                <span class="com"># Clear and populate plans</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">clear</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">addItems</span><span class="op">(</span><span class="nam">rp</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="pln">                <span class="com"># Set current plan to 1st plan</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="stm mis">                <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t138" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">setCurrentIndex</span><span class="op">(</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t140" class="stm run hide_run">    <span class="key">def</span> <span class="nam">populate_profiles</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t141" class="pln">        <span class="str">"""Populates the profiles combo box</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln"><span class="str">        enables the combo box when steady is checked</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="pln"><span class="str">        disables the combo box when unsteady is checked"""</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="pln">        <span class="com"># Populate profiles using current project</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm mis">        <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">            <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="stm mis">                <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">clear</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">addItems</span><span class="op">(</span><span class="nam">rp</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t153" class="pln">        <span class="com"># Disable profiles when unsteady button is checked</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t157" class="stm run hide_run">    <span class="key">def</span> <span class="nam">save_hecras_settings</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="pln">        <span class="str">"""Saves settings from hecras dialog to main window"""</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="stm mis">        <span class="nam">mw</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">main_window</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_project</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_plan</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="stm mis">        <span class="nam">steadiness_buttons</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_steadiness</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t165" class="pln">            <span class="nam">steadiness_buttons</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="stm mis">            <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">currentText</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="stm mis">            <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="str">'Unsteady'</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_temperature</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln">        <span class="com"># Get datetime</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="stm mis">        <span class="nam">dt</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">.</span><span class="nam">dateTime</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t173" class="stm mis">        <span class="nam">mw</span><span class="op">.</span><span class="nam">hecras_start_time</span> <span class="op">=</span> <span class="nam">dt</span><span class="op">.</span><span class="nam">toPyDateTime</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t175" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t176" class="stm run hide_run"><span class="key">class</span> <span class="nam">AppWindow</span><span class="op">(</span><span class="nam">QMainWindow</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln">    <span class="str">"""Class that defines the main window of the ui.</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="str">    It links the pre-generated ui created by the .ui to .py GUI files</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="pln"><span class="str">    with the functionality of the main_functions methods"""</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln">        <span class="com"># Initialization of ui window</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="stm mis">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t184" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span> <span class="op">=</span> <span class="nam">Ui_MainWindow</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t187" class="pln">        <span class="com"># FluEgg version</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">version</span> <span class="op">=</span> <span class="str">'FluEgg 0.0 - Python3.7'</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t191" class="pln">        <span class="com"># FluEgg help message</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">help</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln">        <span class="com"># Input validators</span><span class="strut">&nbsp;</span></p>
-<p id="t195" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">intV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QIntValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span> <span class="op">=</span> <span class="nam">QtGui</span><span class="op">.</span><span class="nam">QDoubleValidator</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t198" class="pln">        <span class="com"># Set line edit validators</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">intV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t202" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">setValidator</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">doubleV</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t206" class="pln">        <span class="com"># Scale ui window to half desktop size</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="stm mis">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">QDesktopWidget</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">availableGeometry</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">size</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">width</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="stm mis">        <span class="nam">height</span> <span class="op">=</span> <span class="nam">QDesktopWidget</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">availableGeometry</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">size</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">height</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="nam">int</span><span class="op">(</span><span class="nam">width</span><span class="op">*</span><span class="num">.2</span><span class="op">)</span><span class="op">,</span> <span class="nam">int</span><span class="op">(</span><span class="nam">height</span><span class="op">*</span><span class="num">0.4</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t211" class="pln">        <span class="com"># Define connections between ui events and handle functions</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="pln">        <span class="com"># Menu Buttons</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">actionVersion</span><span class="op">.</span><span class="nam">triggered</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">actionHelp</span><span class="op">.</span><span class="nam">triggered</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_help</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="pln">        <span class="com"># Hydraulic Channel</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_hydraulic_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">handle_hydraulic_change</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln">        <span class="com"># disable ras options if not on Windows</span><span class="strut">&nbsp;</span></p>
-<p id="t221" class="stm mis">        <span class="key">if</span> <span class="key">not</span> <span class="nam">RASProject</span><span class="op">.</span><span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t225" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t226" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln">        <span class="com"># Eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t228" class="pln">        <span class="com"># Simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">pushButton_run</span><span class="op">.</span><span class="nam">clicked</span><span class="op">.</span><span class="nam">connect</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">handle_run</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t230" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t231" class="pln">        <span class="com"># default selection</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t235" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">.</span><span class="nam">setChecked</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t238" class="pln">        <span class="com"># Hecras saved information</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_project</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_plan</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_profile</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_steadiness</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_temperature</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_start_time</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t247" class="pln">        <span class="com"># Display the ui</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">show</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t250" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_version</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="pln">        <span class="str">"""Handle function for clicking About > Version"""</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="stm mis">        <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">about</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Version'</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">version</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t253" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t254" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_help</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="pln">        <span class="str">"""Handle function for clicking About > Help"""</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="stm mis">        <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">about</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Help'</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">help</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t258" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_hydraulic_change</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln">        <span class="str">"""Handle function for changing the Hydraulic Channel input"""</span><span class="strut">&nbsp;</span></p>
-<p id="t260" class="pln">        <span class="com"># self.ui.pushButton_browse.setEnabled(True)</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setEnabled</span><span class="op">(</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t268" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_browse</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="pln">        <span class="str">"""Handle function for clicking Browse"""</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t271" class="pln">            <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="stm mis">            <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln">                <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t275" class="pln">                <span class="str">"CSV File (*.csv)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t278" class="stm mis">        <span class="key">elif</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">.</span><span class="nam">isChecked</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln">            <span class="com"># File exploring dialog</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="stm mis">            <span class="nam">dlg</span> <span class="op">=</span> <span class="nam">QFileDialog</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">dlg</span><span class="op">.</span><span class="nam">getOpenFileName</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln">                <span class="nam">self</span><span class="op">,</span> <span class="str">"QFileDialog.getOpenFileName()"</span><span class="op">,</span> <span class="str">""</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="pln">                <span class="str">"HECRAS Project File (*.prj)"</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t286" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t287" class="pln">            <span class="com"># Hecras dialog</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span> <span class="op">=</span> <span class="nam">HecrasDialog</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t289" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">show</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">hw</span><span class="op">.</span><span class="nam">setup</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t292" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t293" class="stm run hide_run">    <span class="key">def</span> <span class="nam">handle_run</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t294" class="pln">        <span class="str">"""Handle function for clicking Run"""</span><span class="strut">&nbsp;</span></p>
-<p id="t295" class="pln">        <span class="com"># Radio button groups</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="stm mis">        <span class="nam">hydraulic_inputs</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_csv</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t297" class="pln">                            <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_hecras</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="stm mis">        <span class="nam">diffusitvities</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="pln">                          <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_parabolic_constant</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t300" class="pln">                          <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_constant</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="stm mis">        <span class="nam">species</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_grass</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="pln">                   <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_silver</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_bighead</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t303" class="stm mis">        <span class="nam">varying_dd</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_constant_dd</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="pln">                      <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_varying_dd</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t305" class="stm mis">        <span class="nam">direction</span> <span class="op">=</span> <span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_forward</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">radioButton_reverse</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln">        <span class="com"># Initialize input and error flag</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="stm mis">        <span class="nam">d</span> <span class="op">=</span> <span class="op">{</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="stm mis">        <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="stm mis">        <span class="nam">error_message</span> <span class="op">=</span> <span class="str">''</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t312" class="pln">        <span class="com"># Fill dictionary and perform input error checking</span><span class="strut">&nbsp;</span></p>
-<p id="t313" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">hydraulic_inputs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t315" class="pln">                <span class="nam">hydraulic_inputs</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t316" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t317" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'csv'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t318" class="stm mis">                <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t320" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t321" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="stm mis">                    <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Load the hydraulic csv file.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t323" class="stm mis">                    <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t324" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t325" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'hecras'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t326" class="stm mis">                <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_csv</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t328" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_hecras</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t329" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_project'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_project</span><span class="strut">&nbsp;</span></p>
-<p id="t330" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_plan'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_plan</span><span class="strut">&nbsp;</span></p>
-<p id="t331" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_profile'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_profile</span><span class="strut">&nbsp;</span></p>
-<p id="t332" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_steadiness'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_steadiness</span><span class="strut">&nbsp;</span></p>
-<p id="t333" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_temperature'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t334" class="stm mis">                    <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_start_time'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">hecras_start_time</span><span class="strut">&nbsp;</span></p>
-<p id="t335" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="stm mis">                    <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Load the hydraulic hecras project.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t337" class="stm mis">                    <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t339" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a hydraulic data type.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t341" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t343" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">diffusitvities</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t344" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t345" class="pln">                <span class="nam">diffusitvities</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="stm mis">            <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'parabolic_constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t347" class="stm mis">                <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">=</span> <span class="str">'parabolic-constant'</span><span class="strut">&nbsp;</span></p>
-<p id="t348" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t349" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose a diffusivity profile.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t350" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t351" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t352" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span> <span class="key">and</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="pln">            <span class="op">!=</span> <span class="str">''</span> <span class="key">and</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t354" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_x</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t355" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_y</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">float</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_z</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t357" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t358" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input X,Y,Z values.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t359" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t360" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t361" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t362" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_number_of_eggs</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t363" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input number of eggs.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t365" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t367" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">species</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t368" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">species</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t369" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t370" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose species.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t373" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">varying_dd</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t374" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t375" class="pln">                <span class="nam">varying_dd</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">-</span><span class="num">3</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t376" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t377" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose varying or constant density/diameter.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t378" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t380" class="stm mis">        <span class="key">if</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="nam">direction</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">get_checked_radio_button</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="pln">                <span class="nam">direction</span><span class="op">)</span><span class="op">.</span><span class="nam">objectName</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t384" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Choose simulation direction.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t385" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t386" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t387" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t388" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_duration</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t389" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t390" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation duration.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t391" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t393" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t394" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_time_step</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t396" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation time step.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t397" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t399" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span> <span class="op">!=</span> <span class="str">''</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t400" class="stm mis">            <span class="nam">d</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">ui</span><span class="op">.</span><span class="nam">lineEdit_simulation_name</span><span class="op">.</span><span class="nam">text</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t402" class="stm mis">            <span class="nam">error_message</span> <span class="op">+=</span> <span class="str">'--Input simulation name.\n'</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="stm mis">            <span class="nam">valid_inputs</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t405" class="pln">        <span class="com"># Run simulation OR show gui error message.</span><span class="strut">&nbsp;</span></p>
-<p id="t406" class="stm mis">        <span class="key">if</span> <span class="nam">valid_inputs</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t407" class="pln">            <span class="com"># Show error message from backend gui so gui doesn't crash</span><span class="strut">&nbsp;</span></p>
-<p id="t408" class="stm mis">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t409" class="stm mis">                <span class="nam">sim</span> <span class="op">=</span> <span class="nam">from_input_dict</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t410" class="stm mis">                <span class="nam">results</span> <span class="op">=</span> <span class="nam">sim</span><span class="op">.</span><span class="nam">run</span><span class="op">(</span><span class="nam">configuration</span><span class="op">=</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t411" class="stm mis">                <span class="nam">results</span><span class="op">.</span><span class="nam">save_results</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t413" class="stm mis">            <span class="key">except</span> <span class="nam">Exception</span> <span class="key">as</span> <span class="nam">e</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t414" class="stm mis">                <span class="nam">traceback</span><span class="op">.</span><span class="nam">print_exc</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t415" class="stm mis">                <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">str</span><span class="op">(</span><span class="nam">e</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t416" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t417" class="stm mis">            <span class="nam">QMessageBox</span><span class="op">.</span><span class="nam">warning</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="str">'Error'</span><span class="op">,</span> <span class="nam">error_message</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_gui_hecras_dialog_py.html b/coverage_report/fluegg_gui_hecras_dialog_py.html
deleted file mode 100644
index b01c1e2..0000000
--- a/coverage_report/fluegg_gui_hecras_dialog_py.html
+++ /dev/null
@@ -1,337 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\gui\hecras_dialog.py: 4%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\gui\hecras_dialog.py</b> :
-            <span class="pc_cov">4%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            112 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">4 run</span>
-            <span class="mis shortkey_m button_toggle_mis">108 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="pln"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="pln"><a href="#n3">3</a></p>
-<p id="n4" class="pln"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
-<p id="n13" class="stm mis"><a href="#n13">13</a></p>
-<p id="n14" class="stm mis"><a href="#n14">14</a></p>
-<p id="n15" class="stm mis"><a href="#n15">15</a></p>
-<p id="n16" class="stm mis"><a href="#n16">16</a></p>
-<p id="n17" class="stm mis"><a href="#n17">17</a></p>
-<p id="n18" class="stm mis"><a href="#n18">18</a></p>
-<p id="n19" class="stm mis"><a href="#n19">19</a></p>
-<p id="n20" class="stm mis"><a href="#n20">20</a></p>
-<p id="n21" class="stm mis"><a href="#n21">21</a></p>
-<p id="n22" class="stm mis"><a href="#n22">22</a></p>
-<p id="n23" class="stm mis"><a href="#n23">23</a></p>
-<p id="n24" class="stm mis"><a href="#n24">24</a></p>
-<p id="n25" class="stm mis"><a href="#n25">25</a></p>
-<p id="n26" class="stm mis"><a href="#n26">26</a></p>
-<p id="n27" class="stm mis"><a href="#n27">27</a></p>
-<p id="n28" class="stm mis"><a href="#n28">28</a></p>
-<p id="n29" class="stm mis"><a href="#n29">29</a></p>
-<p id="n30" class="stm mis"><a href="#n30">30</a></p>
-<p id="n31" class="stm mis"><a href="#n31">31</a></p>
-<p id="n32" class="stm mis"><a href="#n32">32</a></p>
-<p id="n33" class="stm mis"><a href="#n33">33</a></p>
-<p id="n34" class="stm mis"><a href="#n34">34</a></p>
-<p id="n35" class="stm mis"><a href="#n35">35</a></p>
-<p id="n36" class="stm mis"><a href="#n36">36</a></p>
-<p id="n37" class="stm mis"><a href="#n37">37</a></p>
-<p id="n38" class="stm mis"><a href="#n38">38</a></p>
-<p id="n39" class="stm mis"><a href="#n39">39</a></p>
-<p id="n40" class="stm mis"><a href="#n40">40</a></p>
-<p id="n41" class="stm mis"><a href="#n41">41</a></p>
-<p id="n42" class="stm mis"><a href="#n42">42</a></p>
-<p id="n43" class="stm mis"><a href="#n43">43</a></p>
-<p id="n44" class="stm mis"><a href="#n44">44</a></p>
-<p id="n45" class="stm mis"><a href="#n45">45</a></p>
-<p id="n46" class="stm mis"><a href="#n46">46</a></p>
-<p id="n47" class="stm mis"><a href="#n47">47</a></p>
-<p id="n48" class="stm mis"><a href="#n48">48</a></p>
-<p id="n49" class="stm mis"><a href="#n49">49</a></p>
-<p id="n50" class="stm mis"><a href="#n50">50</a></p>
-<p id="n51" class="stm mis"><a href="#n51">51</a></p>
-<p id="n52" class="stm mis"><a href="#n52">52</a></p>
-<p id="n53" class="stm mis"><a href="#n53">53</a></p>
-<p id="n54" class="stm mis"><a href="#n54">54</a></p>
-<p id="n55" class="stm mis"><a href="#n55">55</a></p>
-<p id="n56" class="stm mis"><a href="#n56">56</a></p>
-<p id="n57" class="stm mis"><a href="#n57">57</a></p>
-<p id="n58" class="stm mis"><a href="#n58">58</a></p>
-<p id="n59" class="stm mis"><a href="#n59">59</a></p>
-<p id="n60" class="stm mis"><a href="#n60">60</a></p>
-<p id="n61" class="stm mis"><a href="#n61">61</a></p>
-<p id="n62" class="stm mis"><a href="#n62">62</a></p>
-<p id="n63" class="stm mis"><a href="#n63">63</a></p>
-<p id="n64" class="stm mis"><a href="#n64">64</a></p>
-<p id="n65" class="stm mis"><a href="#n65">65</a></p>
-<p id="n66" class="stm mis"><a href="#n66">66</a></p>
-<p id="n67" class="stm mis"><a href="#n67">67</a></p>
-<p id="n68" class="stm mis"><a href="#n68">68</a></p>
-<p id="n69" class="stm mis"><a href="#n69">69</a></p>
-<p id="n70" class="stm mis"><a href="#n70">70</a></p>
-<p id="n71" class="stm mis"><a href="#n71">71</a></p>
-<p id="n72" class="stm mis"><a href="#n72">72</a></p>
-<p id="n73" class="stm mis"><a href="#n73">73</a></p>
-<p id="n74" class="stm mis"><a href="#n74">74</a></p>
-<p id="n75" class="stm mis"><a href="#n75">75</a></p>
-<p id="n76" class="stm mis"><a href="#n76">76</a></p>
-<p id="n77" class="stm mis"><a href="#n77">77</a></p>
-<p id="n78" class="stm mis"><a href="#n78">78</a></p>
-<p id="n79" class="stm mis"><a href="#n79">79</a></p>
-<p id="n80" class="stm mis"><a href="#n80">80</a></p>
-<p id="n81" class="stm mis"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="stm mis"><a href="#n83">83</a></p>
-<p id="n84" class="stm mis"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="stm mis"><a href="#n86">86</a></p>
-<p id="n87" class="stm mis"><a href="#n87">87</a></p>
-<p id="n88" class="stm mis"><a href="#n88">88</a></p>
-<p id="n89" class="stm mis"><a href="#n89">89</a></p>
-<p id="n90" class="stm mis"><a href="#n90">90</a></p>
-<p id="n91" class="stm mis"><a href="#n91">91</a></p>
-<p id="n92" class="stm mis"><a href="#n92">92</a></p>
-<p id="n93" class="stm mis"><a href="#n93">93</a></p>
-<p id="n94" class="stm mis"><a href="#n94">94</a></p>
-<p id="n95" class="stm mis"><a href="#n95">95</a></p>
-<p id="n96" class="stm mis"><a href="#n96">96</a></p>
-<p id="n97" class="stm mis"><a href="#n97">97</a></p>
-<p id="n98" class="stm mis"><a href="#n98">98</a></p>
-<p id="n99" class="stm mis"><a href="#n99">99</a></p>
-<p id="n100" class="stm mis"><a href="#n100">100</a></p>
-<p id="n101" class="stm mis"><a href="#n101">101</a></p>
-<p id="n102" class="stm mis"><a href="#n102">102</a></p>
-<p id="n103" class="stm mis"><a href="#n103">103</a></p>
-<p id="n104" class="stm mis"><a href="#n104">104</a></p>
-<p id="n105" class="stm mis"><a href="#n105">105</a></p>
-<p id="n106" class="stm mis"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="stm mis"><a href="#n109">109</a></p>
-<p id="n110" class="pln"><a href="#n110">110</a></p>
-<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
-<p id="n112" class="stm mis"><a href="#n112">112</a></p>
-<p id="n113" class="stm mis"><a href="#n113">113</a></p>
-<p id="n114" class="stm mis"><a href="#n114">114</a></p>
-<p id="n115" class="stm mis"><a href="#n115">115</a></p>
-<p id="n116" class="stm mis"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="stm mis"><a href="#n118">118</a></p>
-<p id="n119" class="stm mis"><a href="#n119">119</a></p>
-<p id="n120" class="stm mis"><a href="#n120">120</a></p>
-<p id="n121" class="stm mis"><a href="#n121">121</a></p>
-<p id="n122" class="stm mis"><a href="#n122">122</a></p>
-<p id="n123" class="stm mis"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="pln"><span class="com"># -*- coding: utf-8 -*-</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="pln"><span class="com"># Form implementation generated from reading ui file 'hecras_dialog.ui'</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln"><span class="com"># Created by: PyQt5 UI code generator 5.11.3</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="com">#</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="com"># WARNING! All changes made in this file will be lost!</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">PyQt5</span> <span class="key">import</span> <span class="nam">QtCore</span><span class="op">,</span> <span class="nam">QtGui</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">class</span> <span class="nam">Ui_HecrasDialog</span><span class="op">(</span><span class="nam">object</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="stm run hide_run">    <span class="key">def</span> <span class="nam">setupUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">HecrasDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">resize</span><span class="op">(</span><span class="num">258</span><span class="op">,</span> <span class="num">295</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QVBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"verticalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_project"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_project"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_project</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_browse"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm mis">        <span class="nam">spacerItem</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_4"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_steady"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QRadioButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"radioButton_unsteady"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm mis">        <span class="nam">spacerItem1</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm mis">        <span class="nam">spacerItem2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_2"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">60</span><span class="op">,</span> <span class="num">60</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_plan"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QComboBox</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"comboBox_plan"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_plan</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="stm mis">        <span class="nam">spacerItem3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_3"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">60</span><span class="op">,</span> <span class="num">60</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_profile"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QComboBox</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setMaximumSize</span><span class="op">(</span><span class="nam">QtCore</span><span class="op">.</span><span class="nam">QSize</span><span class="op">(</span><span class="num">16777215</span><span class="op">,</span> <span class="num">16777215</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"comboBox_profile"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">comboBox_profile</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_3</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="stm mis">        <span class="nam">spacerItem4</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem4</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setSizeConstraint</span><span class="op">(</span><span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLayout</span><span class="op">.</span><span class="nam">SetDefaultConstraint</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setContentsMargins</span><span class="op">(</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_5"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_temperature"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLineEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"lineEdit_temperature"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">lineEdit_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">        <span class="nam">spacerItem5</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_8"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QLabel</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"label_start_time"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QDateTimeEdit</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"dateTimeEdit_start_time"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">dateTimeEdit_start_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_8</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="stm mis">        <span class="nam">spacerItem6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">20</span><span class="op">,</span> <span class="num">40</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QHBoxLayout</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"horizontalLayout_6"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_cancel"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QPushButton</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">setObjectName</span><span class="op">(</span><span class="str">"pushButton_ok"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addWidget</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm mis">        <span class="nam">spacerItem7</span> <span class="op">=</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSpacerItem</span><span class="op">(</span><span class="num">40</span><span class="op">,</span> <span class="num">20</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Expanding</span><span class="op">,</span> <span class="nam">QtWidgets</span><span class="op">.</span><span class="nam">QSizePolicy</span><span class="op">.</span><span class="nam">Minimum</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">.</span><span class="nam">addItem</span><span class="op">(</span><span class="nam">spacerItem7</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">horizontalLayout_6</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout_2</span><span class="op">.</span><span class="nam">addLayout</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">verticalLayout</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="stm mis">        <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QMetaObject</span><span class="op">.</span><span class="nam">connectSlotsByName</span><span class="op">(</span><span class="nam">HecrasDialog</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm run hide_run">    <span class="key">def</span> <span class="nam">retranslateUi</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">HecrasDialog</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm mis">        <span class="nam">_translate</span> <span class="op">=</span> <span class="nam">QtCore</span><span class="op">.</span><span class="nam">QCoreApplication</span><span class="op">.</span><span class="nam">translate</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="stm mis">        <span class="nam">HecrasDialog</span><span class="op">.</span><span class="nam">setWindowTitle</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Dialog"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_project</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Project"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_browse</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Browse"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_steady</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Steady"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">radioButton_unsteady</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Unsteady"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_plan</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Plan"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_profile</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Profile"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_temperature</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Temperature (C)"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">label_start_time</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Start Time"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_cancel</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Cancel"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">pushButton_ok</span><span class="op">.</span><span class="nam">setText</span><span class="op">(</span><span class="nam">_translate</span><span class="op">(</span><span class="str">"HecrasDialog"</span><span class="op">,</span> <span class="str">"Ok"</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_hydraulics_py.html b/coverage_report/fluegg_hydraulics_py.html
deleted file mode 100644
index 39d8387..0000000
--- a/coverage_report/fluegg_hydraulics_py.html
+++ /dev/null
@@ -1,1883 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\hydraulics.py: 87%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\hydraulics.py</b> :
-            <span class="pc_cov">87%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            287 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">250 run</span>
-            <span class="mis shortkey_m button_toggle_mis">37 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
-<p id="n3" class="pln"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
-<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
-<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
-<p id="n24" class="stm run hide_run"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
-<p id="n27" class="pln"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="pln"><a href="#n37">37</a></p>
-<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="pln"><a href="#n40">40</a></p>
-<p id="n41" class="pln"><a href="#n41">41</a></p>
-<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="pln"><a href="#n44">44</a></p>
-<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="pln"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="stm run hide_run"><a href="#n51">51</a></p>
-<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
-<p id="n53" class="stm run hide_run"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="stm run hide_run"><a href="#n55">55</a></p>
-<p id="n56" class="stm run hide_run"><a href="#n56">56</a></p>
-<p id="n57" class="stm run hide_run"><a href="#n57">57</a></p>
-<p id="n58" class="stm run hide_run"><a href="#n58">58</a></p>
-<p id="n59" class="stm run hide_run"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="stm run hide_run"><a href="#n61">61</a></p>
-<p id="n62" class="stm mis"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="stm run hide_run"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="pln"><a href="#n70">70</a></p>
-<p id="n71" class="stm run hide_run"><a href="#n71">71</a></p>
-<p id="n72" class="pln"><a href="#n72">72</a></p>
-<p id="n73" class="stm run hide_run"><a href="#n73">73</a></p>
-<p id="n74" class="pln"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="stm run hide_run"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="pln"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="pln"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="stm run hide_run"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="pln"><a href="#n97">97</a></p>
-<p id="n98" class="stm run hide_run"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
-<p id="n101" class="pln"><a href="#n101">101</a></p>
-<p id="n102" class="pln"><a href="#n102">102</a></p>
-<p id="n103" class="pln"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="pln"><a href="#n105">105</a></p>
-<p id="n106" class="pln"><a href="#n106">106</a></p>
-<p id="n107" class="stm run hide_run"><a href="#n107">107</a></p>
-<p id="n108" class="pln"><a href="#n108">108</a></p>
-<p id="n109" class="stm run hide_run"><a href="#n109">109</a></p>
-<p id="n110" class="pln"><a href="#n110">110</a></p>
-<p id="n111" class="pln"><a href="#n111">111</a></p>
-<p id="n112" class="pln"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="pln"><a href="#n114">114</a></p>
-<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="stm run hide_run"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="pln"><a href="#n119">119</a></p>
-<p id="n120" class="pln"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="pln"><a href="#n122">122</a></p>
-<p id="n123" class="pln"><a href="#n123">123</a></p>
-<p id="n124" class="stm run hide_run"><a href="#n124">124</a></p>
-<p id="n125" class="pln"><a href="#n125">125</a></p>
-<p id="n126" class="stm run hide_run"><a href="#n126">126</a></p>
-<p id="n127" class="pln"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="pln"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="stm run hide_run"><a href="#n133">133</a></p>
-<p id="n134" class="pln"><a href="#n134">134</a></p>
-<p id="n135" class="stm run hide_run"><a href="#n135">135</a></p>
-<p id="n136" class="pln"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="pln"><a href="#n138">138</a></p>
-<p id="n139" class="pln"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="pln"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="stm run hide_run"><a href="#n143">143</a></p>
-<p id="n144" class="pln"><a href="#n144">144</a></p>
-<p id="n145" class="stm run hide_run"><a href="#n145">145</a></p>
-<p id="n146" class="pln"><a href="#n146">146</a></p>
-<p id="n147" class="pln"><a href="#n147">147</a></p>
-<p id="n148" class="pln"><a href="#n148">148</a></p>
-<p id="n149" class="pln"><a href="#n149">149</a></p>
-<p id="n150" class="pln"><a href="#n150">150</a></p>
-<p id="n151" class="pln"><a href="#n151">151</a></p>
-<p id="n152" class="pln"><a href="#n152">152</a></p>
-<p id="n153" class="stm mis"><a href="#n153">153</a></p>
-<p id="n154" class="stm mis"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="stm mis"><a href="#n156">156</a></p>
-<p id="n157" class="stm mis"><a href="#n157">157</a></p>
-<p id="n158" class="pln"><a href="#n158">158</a></p>
-<p id="n159" class="pln"><a href="#n159">159</a></p>
-<p id="n160" class="stm run hide_run"><a href="#n160">160</a></p>
-<p id="n161" class="pln"><a href="#n161">161</a></p>
-<p id="n162" class="pln"><a href="#n162">162</a></p>
-<p id="n163" class="pln"><a href="#n163">163</a></p>
-<p id="n164" class="pln"><a href="#n164">164</a></p>
-<p id="n165" class="pln"><a href="#n165">165</a></p>
-<p id="n166" class="pln"><a href="#n166">166</a></p>
-<p id="n167" class="pln"><a href="#n167">167</a></p>
-<p id="n168" class="pln"><a href="#n168">168</a></p>
-<p id="n169" class="pln"><a href="#n169">169</a></p>
-<p id="n170" class="pln"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="pln"><a href="#n172">172</a></p>
-<p id="n173" class="pln"><a href="#n173">173</a></p>
-<p id="n174" class="pln"><a href="#n174">174</a></p>
-<p id="n175" class="pln"><a href="#n175">175</a></p>
-<p id="n176" class="pln"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="pln"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="pln"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="pln"><a href="#n183">183</a></p>
-<p id="n184" class="pln"><a href="#n184">184</a></p>
-<p id="n185" class="pln"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="pln"><a href="#n187">187</a></p>
-<p id="n188" class="pln"><a href="#n188">188</a></p>
-<p id="n189" class="pln"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="pln"><a href="#n191">191</a></p>
-<p id="n192" class="pln"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="stm run hide_run"><a href="#n195">195</a></p>
-<p id="n196" class="pln"><a href="#n196">196</a></p>
-<p id="n197" class="pln"><a href="#n197">197</a></p>
-<p id="n198" class="pln"><a href="#n198">198</a></p>
-<p id="n199" class="pln"><a href="#n199">199</a></p>
-<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
-<p id="n201" class="pln"><a href="#n201">201</a></p>
-<p id="n202" class="stm run hide_run"><a href="#n202">202</a></p>
-<p id="n203" class="stm run hide_run"><a href="#n203">203</a></p>
-<p id="n204" class="stm run hide_run"><a href="#n204">204</a></p>
-<p id="n205" class="stm run hide_run"><a href="#n205">205</a></p>
-<p id="n206" class="stm run hide_run"><a href="#n206">206</a></p>
-<p id="n207" class="stm run hide_run"><a href="#n207">207</a></p>
-<p id="n208" class="stm run hide_run"><a href="#n208">208</a></p>
-<p id="n209" class="stm run hide_run"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
-<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
-<p id="n213" class="pln"><a href="#n213">213</a></p>
-<p id="n214" class="pln"><a href="#n214">214</a></p>
-<p id="n215" class="pln"><a href="#n215">215</a></p>
-<p id="n216" class="pln"><a href="#n216">216</a></p>
-<p id="n217" class="pln"><a href="#n217">217</a></p>
-<p id="n218" class="stm run hide_run"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="pln"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="pln"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="pln"><a href="#n228">228</a></p>
-<p id="n229" class="pln"><a href="#n229">229</a></p>
-<p id="n230" class="pln"><a href="#n230">230</a></p>
-<p id="n231" class="pln"><a href="#n231">231</a></p>
-<p id="n232" class="pln"><a href="#n232">232</a></p>
-<p id="n233" class="pln"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="pln"><a href="#n235">235</a></p>
-<p id="n236" class="pln"><a href="#n236">236</a></p>
-<p id="n237" class="pln"><a href="#n237">237</a></p>
-<p id="n238" class="pln"><a href="#n238">238</a></p>
-<p id="n239" class="pln"><a href="#n239">239</a></p>
-<p id="n240" class="pln"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="pln"><a href="#n242">242</a></p>
-<p id="n243" class="pln"><a href="#n243">243</a></p>
-<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
-<p id="n245" class="pln"><a href="#n245">245</a></p>
-<p id="n246" class="pln"><a href="#n246">246</a></p>
-<p id="n247" class="pln"><a href="#n247">247</a></p>
-<p id="n248" class="stm run hide_run"><a href="#n248">248</a></p>
-<p id="n249" class="pln"><a href="#n249">249</a></p>
-<p id="n250" class="stm run hide_run"><a href="#n250">250</a></p>
-<p id="n251" class="stm run hide_run"><a href="#n251">251</a></p>
-<p id="n252" class="stm run hide_run"><a href="#n252">252</a></p>
-<p id="n253" class="stm run hide_run"><a href="#n253">253</a></p>
-<p id="n254" class="stm run hide_run"><a href="#n254">254</a></p>
-<p id="n255" class="stm run hide_run"><a href="#n255">255</a></p>
-<p id="n256" class="stm run hide_run"><a href="#n256">256</a></p>
-<p id="n257" class="stm run hide_run"><a href="#n257">257</a></p>
-<p id="n258" class="stm run hide_run"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="stm run hide_run"><a href="#n260">260</a></p>
-<p id="n261" class="pln"><a href="#n261">261</a></p>
-<p id="n262" class="stm run hide_run"><a href="#n262">262</a></p>
-<p id="n263" class="pln"><a href="#n263">263</a></p>
-<p id="n264" class="stm run hide_run"><a href="#n264">264</a></p>
-<p id="n265" class="pln"><a href="#n265">265</a></p>
-<p id="n266" class="stm run hide_run"><a href="#n266">266</a></p>
-<p id="n267" class="pln"><a href="#n267">267</a></p>
-<p id="n268" class="stm run hide_run"><a href="#n268">268</a></p>
-<p id="n269" class="stm run hide_run"><a href="#n269">269</a></p>
-<p id="n270" class="pln"><a href="#n270">270</a></p>
-<p id="n271" class="stm run hide_run"><a href="#n271">271</a></p>
-<p id="n272" class="pln"><a href="#n272">272</a></p>
-<p id="n273" class="stm run hide_run"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="stm run hide_run"><a href="#n275">275</a></p>
-<p id="n276" class="pln"><a href="#n276">276</a></p>
-<p id="n277" class="stm run hide_run"><a href="#n277">277</a></p>
-<p id="n278" class="pln"><a href="#n278">278</a></p>
-<p id="n279" class="stm run hide_run"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="pln"><a href="#n281">281</a></p>
-<p id="n282" class="stm run hide_run"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="stm run hide_run"><a href="#n284">284</a></p>
-<p id="n285" class="pln"><a href="#n285">285</a></p>
-<p id="n286" class="stm run hide_run"><a href="#n286">286</a></p>
-<p id="n287" class="stm run hide_run"><a href="#n287">287</a></p>
-<p id="n288" class="stm run hide_run"><a href="#n288">288</a></p>
-<p id="n289" class="stm run hide_run"><a href="#n289">289</a></p>
-<p id="n290" class="stm run hide_run"><a href="#n290">290</a></p>
-<p id="n291" class="stm run hide_run"><a href="#n291">291</a></p>
-<p id="n292" class="stm run hide_run"><a href="#n292">292</a></p>
-<p id="n293" class="pln"><a href="#n293">293</a></p>
-<p id="n294" class="stm run hide_run"><a href="#n294">294</a></p>
-<p id="n295" class="stm run hide_run"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="stm run hide_run"><a href="#n297">297</a></p>
-<p id="n298" class="pln"><a href="#n298">298</a></p>
-<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
-<p id="n300" class="stm run hide_run"><a href="#n300">300</a></p>
-<p id="n301" class="pln"><a href="#n301">301</a></p>
-<p id="n302" class="stm run hide_run"><a href="#n302">302</a></p>
-<p id="n303" class="pln"><a href="#n303">303</a></p>
-<p id="n304" class="stm run hide_run"><a href="#n304">304</a></p>
-<p id="n305" class="pln"><a href="#n305">305</a></p>
-<p id="n306" class="stm run hide_run"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="stm run hide_run"><a href="#n308">308</a></p>
-<p id="n309" class="stm run hide_run"><a href="#n309">309</a></p>
-<p id="n310" class="pln"><a href="#n310">310</a></p>
-<p id="n311" class="pln"><a href="#n311">311</a></p>
-<p id="n312" class="pln"><a href="#n312">312</a></p>
-<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
-<p id="n314" class="pln"><a href="#n314">314</a></p>
-<p id="n315" class="stm run hide_run"><a href="#n315">315</a></p>
-<p id="n316" class="pln"><a href="#n316">316</a></p>
-<p id="n317" class="pln"><a href="#n317">317</a></p>
-<p id="n318" class="stm run hide_run"><a href="#n318">318</a></p>
-<p id="n319" class="pln"><a href="#n319">319</a></p>
-<p id="n320" class="pln"><a href="#n320">320</a></p>
-<p id="n321" class="pln"><a href="#n321">321</a></p>
-<p id="n322" class="pln"><a href="#n322">322</a></p>
-<p id="n323" class="pln"><a href="#n323">323</a></p>
-<p id="n324" class="pln"><a href="#n324">324</a></p>
-<p id="n325" class="pln"><a href="#n325">325</a></p>
-<p id="n326" class="pln"><a href="#n326">326</a></p>
-<p id="n327" class="pln"><a href="#n327">327</a></p>
-<p id="n328" class="stm mis"><a href="#n328">328</a></p>
-<p id="n329" class="pln"><a href="#n329">329</a></p>
-<p id="n330" class="pln"><a href="#n330">330</a></p>
-<p id="n331" class="stm run hide_run"><a href="#n331">331</a></p>
-<p id="n332" class="pln"><a href="#n332">332</a></p>
-<p id="n333" class="pln"><a href="#n333">333</a></p>
-<p id="n334" class="pln"><a href="#n334">334</a></p>
-<p id="n335" class="pln"><a href="#n335">335</a></p>
-<p id="n336" class="pln"><a href="#n336">336</a></p>
-<p id="n337" class="pln"><a href="#n337">337</a></p>
-<p id="n338" class="pln"><a href="#n338">338</a></p>
-<p id="n339" class="pln"><a href="#n339">339</a></p>
-<p id="n340" class="pln"><a href="#n340">340</a></p>
-<p id="n341" class="pln"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="pln"><a href="#n343">343</a></p>
-<p id="n344" class="stm run hide_run"><a href="#n344">344</a></p>
-<p id="n345" class="pln"><a href="#n345">345</a></p>
-<p id="n346" class="pln"><a href="#n346">346</a></p>
-<p id="n347" class="stm run hide_run"><a href="#n347">347</a></p>
-<p id="n348" class="pln"><a href="#n348">348</a></p>
-<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
-<p id="n350" class="pln"><a href="#n350">350</a></p>
-<p id="n351" class="stm run hide_run"><a href="#n351">351</a></p>
-<p id="n352" class="pln"><a href="#n352">352</a></p>
-<p id="n353" class="pln"><a href="#n353">353</a></p>
-<p id="n354" class="stm run hide_run"><a href="#n354">354</a></p>
-<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
-<p id="n356" class="pln"><a href="#n356">356</a></p>
-<p id="n357" class="stm run hide_run"><a href="#n357">357</a></p>
-<p id="n358" class="pln"><a href="#n358">358</a></p>
-<p id="n359" class="stm run hide_run"><a href="#n359">359</a></p>
-<p id="n360" class="stm run hide_run"><a href="#n360">360</a></p>
-<p id="n361" class="stm run hide_run"><a href="#n361">361</a></p>
-<p id="n362" class="pln"><a href="#n362">362</a></p>
-<p id="n363" class="stm run hide_run"><a href="#n363">363</a></p>
-<p id="n364" class="pln"><a href="#n364">364</a></p>
-<p id="n365" class="stm run hide_run"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="pln"><a href="#n367">367</a></p>
-<p id="n368" class="stm mis"><a href="#n368">368</a></p>
-<p id="n369" class="pln"><a href="#n369">369</a></p>
-<p id="n370" class="stm run hide_run"><a href="#n370">370</a></p>
-<p id="n371" class="pln"><a href="#n371">371</a></p>
-<p id="n372" class="pln"><a href="#n372">372</a></p>
-<p id="n373" class="pln"><a href="#n373">373</a></p>
-<p id="n374" class="stm run hide_run"><a href="#n374">374</a></p>
-<p id="n375" class="pln"><a href="#n375">375</a></p>
-<p id="n376" class="stm run hide_run"><a href="#n376">376</a></p>
-<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
-<p id="n378" class="pln"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="stm run hide_run"><a href="#n380">380</a></p>
-<p id="n381" class="pln"><a href="#n381">381</a></p>
-<p id="n382" class="pln"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="pln"><a href="#n384">384</a></p>
-<p id="n385" class="pln"><a href="#n385">385</a></p>
-<p id="n386" class="stm run hide_run"><a href="#n386">386</a></p>
-<p id="n387" class="pln"><a href="#n387">387</a></p>
-<p id="n388" class="stm run hide_run"><a href="#n388">388</a></p>
-<p id="n389" class="stm run hide_run"><a href="#n389">389</a></p>
-<p id="n390" class="pln"><a href="#n390">390</a></p>
-<p id="n391" class="stm run hide_run"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="pln"><a href="#n393">393</a></p>
-<p id="n394" class="stm run hide_run"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="stm run hide_run"><a href="#n396">396</a></p>
-<p id="n397" class="pln"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="stm run hide_run"><a href="#n399">399</a></p>
-<p id="n400" class="pln"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="pln"><a href="#n402">402</a></p>
-<p id="n403" class="stm run hide_run"><a href="#n403">403</a></p>
-<p id="n404" class="pln"><a href="#n404">404</a></p>
-<p id="n405" class="stm run hide_run"><a href="#n405">405</a></p>
-<p id="n406" class="pln"><a href="#n406">406</a></p>
-<p id="n407" class="stm run hide_run"><a href="#n407">407</a></p>
-<p id="n408" class="pln"><a href="#n408">408</a></p>
-<p id="n409" class="pln"><a href="#n409">409</a></p>
-<p id="n410" class="pln"><a href="#n410">410</a></p>
-<p id="n411" class="stm run hide_run"><a href="#n411">411</a></p>
-<p id="n412" class="stm run hide_run"><a href="#n412">412</a></p>
-<p id="n413" class="stm run hide_run"><a href="#n413">413</a></p>
-<p id="n414" class="stm run hide_run"><a href="#n414">414</a></p>
-<p id="n415" class="pln"><a href="#n415">415</a></p>
-<p id="n416" class="stm run hide_run"><a href="#n416">416</a></p>
-<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
-<p id="n418" class="pln"><a href="#n418">418</a></p>
-<p id="n419" class="stm run hide_run"><a href="#n419">419</a></p>
-<p id="n420" class="pln"><a href="#n420">420</a></p>
-<p id="n421" class="stm run hide_run"><a href="#n421">421</a></p>
-<p id="n422" class="pln"><a href="#n422">422</a></p>
-<p id="n423" class="pln"><a href="#n423">423</a></p>
-<p id="n424" class="stm run hide_run"><a href="#n424">424</a></p>
-<p id="n425" class="stm run hide_run"><a href="#n425">425</a></p>
-<p id="n426" class="pln"><a href="#n426">426</a></p>
-<p id="n427" class="stm run hide_run"><a href="#n427">427</a></p>
-<p id="n428" class="pln"><a href="#n428">428</a></p>
-<p id="n429" class="stm run hide_run"><a href="#n429">429</a></p>
-<p id="n430" class="stm run hide_run"><a href="#n430">430</a></p>
-<p id="n431" class="pln"><a href="#n431">431</a></p>
-<p id="n432" class="stm run hide_run"><a href="#n432">432</a></p>
-<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
-<p id="n434" class="stm run hide_run"><a href="#n434">434</a></p>
-<p id="n435" class="stm run hide_run"><a href="#n435">435</a></p>
-<p id="n436" class="stm run hide_run"><a href="#n436">436</a></p>
-<p id="n437" class="stm run hide_run"><a href="#n437">437</a></p>
-<p id="n438" class="stm run hide_run"><a href="#n438">438</a></p>
-<p id="n439" class="pln"><a href="#n439">439</a></p>
-<p id="n440" class="stm run hide_run"><a href="#n440">440</a></p>
-<p id="n441" class="pln"><a href="#n441">441</a></p>
-<p id="n442" class="pln"><a href="#n442">442</a></p>
-<p id="n443" class="pln"><a href="#n443">443</a></p>
-<p id="n444" class="pln"><a href="#n444">444</a></p>
-<p id="n445" class="pln"><a href="#n445">445</a></p>
-<p id="n446" class="pln"><a href="#n446">446</a></p>
-<p id="n447" class="pln"><a href="#n447">447</a></p>
-<p id="n448" class="stm run hide_run"><a href="#n448">448</a></p>
-<p id="n449" class="pln"><a href="#n449">449</a></p>
-<p id="n450" class="stm run hide_run"><a href="#n450">450</a></p>
-<p id="n451" class="pln"><a href="#n451">451</a></p>
-<p id="n452" class="stm run hide_run"><a href="#n452">452</a></p>
-<p id="n453" class="pln"><a href="#n453">453</a></p>
-<p id="n454" class="pln"><a href="#n454">454</a></p>
-<p id="n455" class="pln"><a href="#n455">455</a></p>
-<p id="n456" class="pln"><a href="#n456">456</a></p>
-<p id="n457" class="stm run hide_run"><a href="#n457">457</a></p>
-<p id="n458" class="stm run hide_run"><a href="#n458">458</a></p>
-<p id="n459" class="stm run hide_run"><a href="#n459">459</a></p>
-<p id="n460" class="pln"><a href="#n460">460</a></p>
-<p id="n461" class="pln"><a href="#n461">461</a></p>
-<p id="n462" class="stm run hide_run"><a href="#n462">462</a></p>
-<p id="n463" class="stm run hide_run"><a href="#n463">463</a></p>
-<p id="n464" class="stm run hide_run"><a href="#n464">464</a></p>
-<p id="n465" class="stm run hide_run"><a href="#n465">465</a></p>
-<p id="n466" class="stm run hide_run"><a href="#n466">466</a></p>
-<p id="n467" class="pln"><a href="#n467">467</a></p>
-<p id="n468" class="stm run hide_run"><a href="#n468">468</a></p>
-<p id="n469" class="pln"><a href="#n469">469</a></p>
-<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
-<p id="n471" class="pln"><a href="#n471">471</a></p>
-<p id="n472" class="stm run hide_run"><a href="#n472">472</a></p>
-<p id="n473" class="stm run hide_run"><a href="#n473">473</a></p>
-<p id="n474" class="pln"><a href="#n474">474</a></p>
-<p id="n475" class="pln"><a href="#n475">475</a></p>
-<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
-<p id="n477" class="pln"><a href="#n477">477</a></p>
-<p id="n478" class="stm run hide_run"><a href="#n478">478</a></p>
-<p id="n479" class="pln"><a href="#n479">479</a></p>
-<p id="n480" class="stm run hide_run"><a href="#n480">480</a></p>
-<p id="n481" class="stm run hide_run"><a href="#n481">481</a></p>
-<p id="n482" class="stm run hide_run"><a href="#n482">482</a></p>
-<p id="n483" class="pln"><a href="#n483">483</a></p>
-<p id="n484" class="pln"><a href="#n484">484</a></p>
-<p id="n485" class="pln"><a href="#n485">485</a></p>
-<p id="n486" class="pln"><a href="#n486">486</a></p>
-<p id="n487" class="stm run hide_run"><a href="#n487">487</a></p>
-<p id="n488" class="pln"><a href="#n488">488</a></p>
-<p id="n489" class="stm run hide_run"><a href="#n489">489</a></p>
-<p id="n490" class="pln"><a href="#n490">490</a></p>
-<p id="n491" class="stm run hide_run"><a href="#n491">491</a></p>
-<p id="n492" class="pln"><a href="#n492">492</a></p>
-<p id="n493" class="pln"><a href="#n493">493</a></p>
-<p id="n494" class="pln"><a href="#n494">494</a></p>
-<p id="n495" class="pln"><a href="#n495">495</a></p>
-<p id="n496" class="pln"><a href="#n496">496</a></p>
-<p id="n497" class="pln"><a href="#n497">497</a></p>
-<p id="n498" class="pln"><a href="#n498">498</a></p>
-<p id="n499" class="pln"><a href="#n499">499</a></p>
-<p id="n500" class="pln"><a href="#n500">500</a></p>
-<p id="n501" class="pln"><a href="#n501">501</a></p>
-<p id="n502" class="pln"><a href="#n502">502</a></p>
-<p id="n503" class="pln"><a href="#n503">503</a></p>
-<p id="n504" class="pln"><a href="#n504">504</a></p>
-<p id="n505" class="pln"><a href="#n505">505</a></p>
-<p id="n506" class="pln"><a href="#n506">506</a></p>
-<p id="n507" class="pln"><a href="#n507">507</a></p>
-<p id="n508" class="pln"><a href="#n508">508</a></p>
-<p id="n509" class="pln"><a href="#n509">509</a></p>
-<p id="n510" class="pln"><a href="#n510">510</a></p>
-<p id="n511" class="pln"><a href="#n511">511</a></p>
-<p id="n512" class="pln"><a href="#n512">512</a></p>
-<p id="n513" class="pln"><a href="#n513">513</a></p>
-<p id="n514" class="pln"><a href="#n514">514</a></p>
-<p id="n515" class="pln"><a href="#n515">515</a></p>
-<p id="n516" class="pln"><a href="#n516">516</a></p>
-<p id="n517" class="pln"><a href="#n517">517</a></p>
-<p id="n518" class="pln"><a href="#n518">518</a></p>
-<p id="n519" class="pln"><a href="#n519">519</a></p>
-<p id="n520" class="pln"><a href="#n520">520</a></p>
-<p id="n521" class="pln"><a href="#n521">521</a></p>
-<p id="n522" class="pln"><a href="#n522">522</a></p>
-<p id="n523" class="pln"><a href="#n523">523</a></p>
-<p id="n524" class="pln"><a href="#n524">524</a></p>
-<p id="n525" class="pln"><a href="#n525">525</a></p>
-<p id="n526" class="pln"><a href="#n526">526</a></p>
-<p id="n527" class="pln"><a href="#n527">527</a></p>
-<p id="n528" class="pln"><a href="#n528">528</a></p>
-<p id="n529" class="pln"><a href="#n529">529</a></p>
-<p id="n530" class="stm run hide_run"><a href="#n530">530</a></p>
-<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
-<p id="n532" class="stm run hide_run"><a href="#n532">532</a></p>
-<p id="n533" class="stm run hide_run"><a href="#n533">533</a></p>
-<p id="n534" class="pln"><a href="#n534">534</a></p>
-<p id="n535" class="stm mis"><a href="#n535">535</a></p>
-<p id="n536" class="pln"><a href="#n536">536</a></p>
-<p id="n537" class="stm run hide_run"><a href="#n537">537</a></p>
-<p id="n538" class="pln"><a href="#n538">538</a></p>
-<p id="n539" class="stm run hide_run"><a href="#n539">539</a></p>
-<p id="n540" class="pln"><a href="#n540">540</a></p>
-<p id="n541" class="pln"><a href="#n541">541</a></p>
-<p id="n542" class="pln"><a href="#n542">542</a></p>
-<p id="n543" class="pln"><a href="#n543">543</a></p>
-<p id="n544" class="pln"><a href="#n544">544</a></p>
-<p id="n545" class="pln"><a href="#n545">545</a></p>
-<p id="n546" class="pln"><a href="#n546">546</a></p>
-<p id="n547" class="pln"><a href="#n547">547</a></p>
-<p id="n548" class="pln"><a href="#n548">548</a></p>
-<p id="n549" class="pln"><a href="#n549">549</a></p>
-<p id="n550" class="pln"><a href="#n550">550</a></p>
-<p id="n551" class="pln"><a href="#n551">551</a></p>
-<p id="n552" class="pln"><a href="#n552">552</a></p>
-<p id="n553" class="pln"><a href="#n553">553</a></p>
-<p id="n554" class="pln"><a href="#n554">554</a></p>
-<p id="n555" class="pln"><a href="#n555">555</a></p>
-<p id="n556" class="pln"><a href="#n556">556</a></p>
-<p id="n557" class="pln"><a href="#n557">557</a></p>
-<p id="n558" class="pln"><a href="#n558">558</a></p>
-<p id="n559" class="pln"><a href="#n559">559</a></p>
-<p id="n560" class="pln"><a href="#n560">560</a></p>
-<p id="n561" class="pln"><a href="#n561">561</a></p>
-<p id="n562" class="pln"><a href="#n562">562</a></p>
-<p id="n563" class="pln"><a href="#n563">563</a></p>
-<p id="n564" class="pln"><a href="#n564">564</a></p>
-<p id="n565" class="stm run hide_run"><a href="#n565">565</a></p>
-<p id="n566" class="pln"><a href="#n566">566</a></p>
-<p id="n567" class="stm run hide_run"><a href="#n567">567</a></p>
-<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
-<p id="n569" class="pln"><a href="#n569">569</a></p>
-<p id="n570" class="stm run hide_run"><a href="#n570">570</a></p>
-<p id="n571" class="pln"><a href="#n571">571</a></p>
-<p id="n572" class="stm run hide_run"><a href="#n572">572</a></p>
-<p id="n573" class="pln"><a href="#n573">573</a></p>
-<p id="n574" class="stm run hide_run"><a href="#n574">574</a></p>
-<p id="n575" class="pln"><a href="#n575">575</a></p>
-<p id="n576" class="stm run hide_run"><a href="#n576">576</a></p>
-<p id="n577" class="pln"><a href="#n577">577</a></p>
-<p id="n578" class="stm run hide_run"><a href="#n578">578</a></p>
-<p id="n579" class="pln"><a href="#n579">579</a></p>
-<p id="n580" class="stm run hide_run"><a href="#n580">580</a></p>
-<p id="n581" class="pln"><a href="#n581">581</a></p>
-<p id="n582" class="pln"><a href="#n582">582</a></p>
-<p id="n583" class="stm run hide_run"><a href="#n583">583</a></p>
-<p id="n584" class="stm run hide_run"><a href="#n584">584</a></p>
-<p id="n585" class="pln"><a href="#n585">585</a></p>
-<p id="n586" class="stm run hide_run"><a href="#n586">586</a></p>
-<p id="n587" class="stm run hide_run"><a href="#n587">587</a></p>
-<p id="n588" class="pln"><a href="#n588">588</a></p>
-<p id="n589" class="stm run hide_run"><a href="#n589">589</a></p>
-<p id="n590" class="stm run hide_run"><a href="#n590">590</a></p>
-<p id="n591" class="stm run hide_run"><a href="#n591">591</a></p>
-<p id="n592" class="pln"><a href="#n592">592</a></p>
-<p id="n593" class="pln"><a href="#n593">593</a></p>
-<p id="n594" class="pln"><a href="#n594">594</a></p>
-<p id="n595" class="pln"><a href="#n595">595</a></p>
-<p id="n596" class="pln"><a href="#n596">596</a></p>
-<p id="n597" class="pln"><a href="#n597">597</a></p>
-<p id="n598" class="stm run hide_run"><a href="#n598">598</a></p>
-<p id="n599" class="stm run hide_run"><a href="#n599">599</a></p>
-<p id="n600" class="pln"><a href="#n600">600</a></p>
-<p id="n601" class="stm run hide_run"><a href="#n601">601</a></p>
-<p id="n602" class="pln"><a href="#n602">602</a></p>
-<p id="n603" class="pln"><a href="#n603">603</a></p>
-<p id="n604" class="pln"><a href="#n604">604</a></p>
-<p id="n605" class="pln"><a href="#n605">605</a></p>
-<p id="n606" class="pln"><a href="#n606">606</a></p>
-<p id="n607" class="stm run hide_run"><a href="#n607">607</a></p>
-<p id="n608" class="pln"><a href="#n608">608</a></p>
-<p id="n609" class="stm run hide_run"><a href="#n609">609</a></p>
-<p id="n610" class="pln"><a href="#n610">610</a></p>
-<p id="n611" class="pln"><a href="#n611">611</a></p>
-<p id="n612" class="pln"><a href="#n612">612</a></p>
-<p id="n613" class="pln"><a href="#n613">613</a></p>
-<p id="n614" class="pln"><a href="#n614">614</a></p>
-<p id="n615" class="pln"><a href="#n615">615</a></p>
-<p id="n616" class="pln"><a href="#n616">616</a></p>
-<p id="n617" class="stm mis"><a href="#n617">617</a></p>
-<p id="n618" class="pln"><a href="#n618">618</a></p>
-<p id="n619" class="stm mis"><a href="#n619">619</a></p>
-<p id="n620" class="pln"><a href="#n620">620</a></p>
-<p id="n621" class="pln"><a href="#n621">621</a></p>
-<p id="n622" class="stm mis"><a href="#n622">622</a></p>
-<p id="n623" class="pln"><a href="#n623">623</a></p>
-<p id="n624" class="stm mis"><a href="#n624">624</a></p>
-<p id="n625" class="pln"><a href="#n625">625</a></p>
-<p id="n626" class="stm mis"><a href="#n626">626</a></p>
-<p id="n627" class="stm mis"><a href="#n627">627</a></p>
-<p id="n628" class="stm mis"><a href="#n628">628</a></p>
-<p id="n629" class="stm mis"><a href="#n629">629</a></p>
-<p id="n630" class="stm mis"><a href="#n630">630</a></p>
-<p id="n631" class="stm mis"><a href="#n631">631</a></p>
-<p id="n632" class="stm mis"><a href="#n632">632</a></p>
-<p id="n633" class="stm mis"><a href="#n633">633</a></p>
-<p id="n634" class="pln"><a href="#n634">634</a></p>
-<p id="n635" class="stm mis"><a href="#n635">635</a></p>
-<p id="n636" class="stm mis"><a href="#n636">636</a></p>
-<p id="n637" class="stm mis"><a href="#n637">637</a></p>
-<p id="n638" class="pln"><a href="#n638">638</a></p>
-<p id="n639" class="stm mis"><a href="#n639">639</a></p>
-<p id="n640" class="pln"><a href="#n640">640</a></p>
-<p id="n641" class="stm mis"><a href="#n641">641</a></p>
-<p id="n642" class="pln"><a href="#n642">642</a></p>
-<p id="n643" class="stm mis"><a href="#n643">643</a></p>
-<p id="n644" class="stm mis"><a href="#n644">644</a></p>
-<p id="n645" class="pln"><a href="#n645">645</a></p>
-<p id="n646" class="pln"><a href="#n646">646</a></p>
-<p id="n647" class="pln"><a href="#n647">647</a></p>
-<p id="n648" class="pln"><a href="#n648">648</a></p>
-<p id="n649" class="pln"><a href="#n649">649</a></p>
-<p id="n650" class="stm mis"><a href="#n650">650</a></p>
-<p id="n651" class="pln"><a href="#n651">651</a></p>
-<p id="n652" class="stm mis"><a href="#n652">652</a></p>
-<p id="n653" class="pln"><a href="#n653">653</a></p>
-<p id="n654" class="stm run hide_run"><a href="#n654">654</a></p>
-<p id="n655" class="pln"><a href="#n655">655</a></p>
-<p id="n656" class="pln"><a href="#n656">656</a></p>
-<p id="n657" class="pln"><a href="#n657">657</a></p>
-<p id="n658" class="pln"><a href="#n658">658</a></p>
-<p id="n659" class="stm mis"><a href="#n659">659</a></p>
-<p id="n660" class="pln"><a href="#n660">660</a></p>
-<p id="n661" class="pln"><a href="#n661">661</a></p>
-<p id="n662" class="stm run hide_run"><a href="#n662">662</a></p>
-<p id="n663" class="pln"><a href="#n663">663</a></p>
-<p id="n664" class="pln"><a href="#n664">664</a></p>
-<p id="n665" class="pln"><a href="#n665">665</a></p>
-<p id="n666" class="pln"><a href="#n666">666</a></p>
-<p id="n667" class="pln"><a href="#n667">667</a></p>
-<p id="n668" class="pln"><a href="#n668">668</a></p>
-<p id="n669" class="pln"><a href="#n669">669</a></p>
-<p id="n670" class="pln"><a href="#n670">670</a></p>
-<p id="n671" class="pln"><a href="#n671">671</a></p>
-<p id="n672" class="pln"><a href="#n672">672</a></p>
-<p id="n673" class="pln"><a href="#n673">673</a></p>
-<p id="n674" class="stm run hide_run"><a href="#n674">674</a></p>
-<p id="n675" class="pln"><a href="#n675">675</a></p>
-<p id="n676" class="pln"><a href="#n676">676</a></p>
-<p id="n677" class="pln"><a href="#n677">677</a></p>
-<p id="n678" class="pln"><a href="#n678">678</a></p>
-<p id="n679" class="pln"><a href="#n679">679</a></p>
-<p id="n680" class="pln"><a href="#n680">680</a></p>
-<p id="n681" class="pln"><a href="#n681">681</a></p>
-<p id="n682" class="pln"><a href="#n682">682</a></p>
-<p id="n683" class="pln"><a href="#n683">683</a></p>
-<p id="n684" class="stm run hide_run"><a href="#n684">684</a></p>
-<p id="n685" class="pln"><a href="#n685">685</a></p>
-<p id="n686" class="pln"><a href="#n686">686</a></p>
-<p id="n687" class="stm run hide_run"><a href="#n687">687</a></p>
-<p id="n688" class="pln"><a href="#n688">688</a></p>
-<p id="n689" class="pln"><a href="#n689">689</a></p>
-<p id="n690" class="stm run hide_run"><a href="#n690">690</a></p>
-<p id="n691" class="pln"><a href="#n691">691</a></p>
-<p id="n692" class="pln"><a href="#n692">692</a></p>
-<p id="n693" class="stm run hide_run"><a href="#n693">693</a></p>
-<p id="n694" class="pln"><a href="#n694">694</a></p>
-<p id="n695" class="pln"><a href="#n695">695</a></p>
-<p id="n696" class="pln"><a href="#n696">696</a></p>
-<p id="n697" class="pln"><a href="#n697">697</a></p>
-<p id="n698" class="stm run hide_run"><a href="#n698">698</a></p>
-<p id="n699" class="pln"><a href="#n699">699</a></p>
-<p id="n700" class="pln"><a href="#n700">700</a></p>
-<p id="n701" class="stm run hide_run"><a href="#n701">701</a></p>
-<p id="n702" class="pln"><a href="#n702">702</a></p>
-<p id="n703" class="pln"><a href="#n703">703</a></p>
-<p id="n704" class="pln"><a href="#n704">704</a></p>
-<p id="n705" class="pln"><a href="#n705">705</a></p>
-<p id="n706" class="stm run hide_run"><a href="#n706">706</a></p>
-<p id="n707" class="stm mis"><a href="#n707">707</a></p>
-<p id="n708" class="pln"><a href="#n708">708</a></p>
-<p id="n709" class="pln"><a href="#n709">709</a></p>
-<p id="n710" class="stm run hide_run"><a href="#n710">710</a></p>
-<p id="n711" class="pln"><a href="#n711">711</a></p>
-<p id="n712" class="pln"><a href="#n712">712</a></p>
-<p id="n713" class="stm mis"><a href="#n713">713</a></p>
-<p id="n714" class="pln"><a href="#n714">714</a></p>
-<p id="n715" class="pln"><a href="#n715">715</a></p>
-<p id="n716" class="pln"><a href="#n716">716</a></p>
-<p id="n717" class="pln"><a href="#n717">717</a></p>
-<p id="n718" class="stm mis"><a href="#n718">718</a></p>
-<p id="n719" class="pln"><a href="#n719">719</a></p>
-<p id="n720" class="pln"><a href="#n720">720</a></p>
-<p id="n721" class="stm run hide_run"><a href="#n721">721</a></p>
-<p id="n722" class="pln"><a href="#n722">722</a></p>
-<p id="n723" class="pln"><a href="#n723">723</a></p>
-<p id="n724" class="pln"><a href="#n724">724</a></p>
-<p id="n725" class="pln"><a href="#n725">725</a></p>
-<p id="n726" class="pln"><a href="#n726">726</a></p>
-<p id="n727" class="pln"><a href="#n727">727</a></p>
-<p id="n728" class="pln"><a href="#n728">728</a></p>
-<p id="n729" class="pln"><a href="#n729">729</a></p>
-<p id="n730" class="pln"><a href="#n730">730</a></p>
-<p id="n731" class="pln"><a href="#n731">731</a></p>
-<p id="n732" class="pln"><a href="#n732">732</a></p>
-<p id="n733" class="pln"><a href="#n733">733</a></p>
-<p id="n734" class="pln"><a href="#n734">734</a></p>
-<p id="n735" class="pln"><a href="#n735">735</a></p>
-<p id="n736" class="pln"><a href="#n736">736</a></p>
-<p id="n737" class="pln"><a href="#n737">737</a></p>
-<p id="n738" class="pln"><a href="#n738">738</a></p>
-<p id="n739" class="pln"><a href="#n739">739</a></p>
-<p id="n740" class="pln"><a href="#n740">740</a></p>
-<p id="n741" class="pln"><a href="#n741">741</a></p>
-<p id="n742" class="pln"><a href="#n742">742</a></p>
-<p id="n743" class="pln"><a href="#n743">743</a></p>
-<p id="n744" class="pln"><a href="#n744">744</a></p>
-<p id="n745" class="pln"><a href="#n745">745</a></p>
-<p id="n746" class="pln"><a href="#n746">746</a></p>
-<p id="n747" class="pln"><a href="#n747">747</a></p>
-<p id="n748" class="pln"><a href="#n748">748</a></p>
-<p id="n749" class="pln"><a href="#n749">749</a></p>
-<p id="n750" class="pln"><a href="#n750">750</a></p>
-<p id="n751" class="pln"><a href="#n751">751</a></p>
-<p id="n752" class="pln"><a href="#n752">752</a></p>
-<p id="n753" class="pln"><a href="#n753">753</a></p>
-<p id="n754" class="pln"><a href="#n754">754</a></p>
-<p id="n755" class="pln"><a href="#n755">755</a></p>
-<p id="n756" class="pln"><a href="#n756">756</a></p>
-<p id="n757" class="pln"><a href="#n757">757</a></p>
-<p id="n758" class="pln"><a href="#n758">758</a></p>
-<p id="n759" class="stm run hide_run"><a href="#n759">759</a></p>
-<p id="n760" class="pln"><a href="#n760">760</a></p>
-<p id="n761" class="stm run hide_run"><a href="#n761">761</a></p>
-<p id="n762" class="stm run hide_run"><a href="#n762">762</a></p>
-<p id="n763" class="stm mis"><a href="#n763">763</a></p>
-<p id="n764" class="stm mis"><a href="#n764">764</a></p>
-<p id="n765" class="pln"><a href="#n765">765</a></p>
-<p id="n766" class="stm mis"><a href="#n766">766</a></p>
-<p id="n767" class="pln"><a href="#n767">767</a></p>
-<p id="n768" class="stm run hide_run"><a href="#n768">768</a></p>
-<p id="n769" class="pln"><a href="#n769">769</a></p>
-<p id="n770" class="pln"><a href="#n770">770</a></p>
-<p id="n771" class="stm run hide_run"><a href="#n771">771</a></p>
-<p id="n772" class="pln"><a href="#n772">772</a></p>
-<p id="n773" class="pln"><a href="#n773">773</a></p>
-<p id="n774" class="pln"><a href="#n774">774</a></p>
-<p id="n775" class="pln"><a href="#n775">775</a></p>
-<p id="n776" class="pln"><a href="#n776">776</a></p>
-<p id="n777" class="pln"><a href="#n777">777</a></p>
-<p id="n778" class="pln"><a href="#n778">778</a></p>
-<p id="n779" class="pln"><a href="#n779">779</a></p>
-<p id="n780" class="pln"><a href="#n780">780</a></p>
-<p id="n781" class="pln"><a href="#n781">781</a></p>
-<p id="n782" class="pln"><a href="#n782">782</a></p>
-<p id="n783" class="pln"><a href="#n783">783</a></p>
-<p id="n784" class="stm run hide_run"><a href="#n784">784</a></p>
-<p id="n785" class="pln"><a href="#n785">785</a></p>
-<p id="n786" class="pln"><a href="#n786">786</a></p>
-<p id="n787" class="stm run hide_run"><a href="#n787">787</a></p>
-<p id="n788" class="pln"><a href="#n788">788</a></p>
-<p id="n789" class="stm run hide_run"><a href="#n789">789</a></p>
-<p id="n790" class="stm run hide_run"><a href="#n790">790</a></p>
-<p id="n791" class="stm run hide_run"><a href="#n791">791</a></p>
-<p id="n792" class="stm run hide_run"><a href="#n792">792</a></p>
-<p id="n793" class="stm run hide_run"><a href="#n793">793</a></p>
-<p id="n794" class="stm run hide_run"><a href="#n794">794</a></p>
-<p id="n795" class="stm run hide_run"><a href="#n795">795</a></p>
-<p id="n796" class="stm run hide_run"><a href="#n796">796</a></p>
-<p id="n797" class="stm run hide_run"><a href="#n797">797</a></p>
-<p id="n798" class="pln"><a href="#n798">798</a></p>
-<p id="n799" class="stm run hide_run"><a href="#n799">799</a></p>
-<p id="n800" class="pln"><a href="#n800">800</a></p>
-<p id="n801" class="pln"><a href="#n801">801</a></p>
-<p id="n802" class="pln"><a href="#n802">802</a></p>
-<p id="n803" class="pln"><a href="#n803">803</a></p>
-<p id="n804" class="pln"><a href="#n804">804</a></p>
-<p id="n805" class="pln"><a href="#n805">805</a></p>
-<p id="n806" class="pln"><a href="#n806">806</a></p>
-<p id="n807" class="pln"><a href="#n807">807</a></p>
-<p id="n808" class="pln"><a href="#n808">808</a></p>
-<p id="n809" class="stm run hide_run"><a href="#n809">809</a></p>
-<p id="n810" class="pln"><a href="#n810">810</a></p>
-<p id="n811" class="stm run hide_run"><a href="#n811">811</a></p>
-<p id="n812" class="pln"><a href="#n812">812</a></p>
-<p id="n813" class="pln"><a href="#n813">813</a></p>
-<p id="n814" class="pln"><a href="#n814">814</a></p>
-<p id="n815" class="pln"><a href="#n815">815</a></p>
-<p id="n816" class="pln"><a href="#n816">816</a></p>
-<p id="n817" class="pln"><a href="#n817">817</a></p>
-<p id="n818" class="pln"><a href="#n818">818</a></p>
-<p id="n819" class="pln"><a href="#n819">819</a></p>
-<p id="n820" class="stm run hide_run"><a href="#n820">820</a></p>
-<p id="n821" class="pln"><a href="#n821">821</a></p>
-<p id="n822" class="stm run hide_run"><a href="#n822">822</a></p>
-<p id="n823" class="pln"><a href="#n823">823</a></p>
-<p id="n824" class="pln"><a href="#n824">824</a></p>
-<p id="n825" class="pln"><a href="#n825">825</a></p>
-<p id="n826" class="pln"><a href="#n826">826</a></p>
-<p id="n827" class="pln"><a href="#n827">827</a></p>
-<p id="n828" class="pln"><a href="#n828">828</a></p>
-<p id="n829" class="pln"><a href="#n829">829</a></p>
-<p id="n830" class="pln"><a href="#n830">830</a></p>
-<p id="n831" class="stm run hide_run"><a href="#n831">831</a></p>
-<p id="n832" class="pln"><a href="#n832">832</a></p>
-<p id="n833" class="stm run hide_run"><a href="#n833">833</a></p>
-<p id="n834" class="pln"><a href="#n834">834</a></p>
-<p id="n835" class="pln"><a href="#n835">835</a></p>
-<p id="n836" class="pln"><a href="#n836">836</a></p>
-<p id="n837" class="pln"><a href="#n837">837</a></p>
-<p id="n838" class="pln"><a href="#n838">838</a></p>
-<p id="n839" class="pln"><a href="#n839">839</a></p>
-<p id="n840" class="pln"><a href="#n840">840</a></p>
-<p id="n841" class="pln"><a href="#n841">841</a></p>
-<p id="n842" class="stm run hide_run"><a href="#n842">842</a></p>
-<p id="n843" class="pln"><a href="#n843">843</a></p>
-<p id="n844" class="stm run hide_run"><a href="#n844">844</a></p>
-<p id="n845" class="pln"><a href="#n845">845</a></p>
-<p id="n846" class="pln"><a href="#n846">846</a></p>
-<p id="n847" class="pln"><a href="#n847">847</a></p>
-<p id="n848" class="pln"><a href="#n848">848</a></p>
-<p id="n849" class="pln"><a href="#n849">849</a></p>
-<p id="n850" class="pln"><a href="#n850">850</a></p>
-<p id="n851" class="pln"><a href="#n851">851</a></p>
-<p id="n852" class="pln"><a href="#n852">852</a></p>
-<p id="n853" class="stm run hide_run"><a href="#n853">853</a></p>
-<p id="n854" class="pln"><a href="#n854">854</a></p>
-<p id="n855" class="stm run hide_run"><a href="#n855">855</a></p>
-<p id="n856" class="pln"><a href="#n856">856</a></p>
-<p id="n857" class="pln"><a href="#n857">857</a></p>
-<p id="n858" class="pln"><a href="#n858">858</a></p>
-<p id="n859" class="pln"><a href="#n859">859</a></p>
-<p id="n860" class="pln"><a href="#n860">860</a></p>
-<p id="n861" class="pln"><a href="#n861">861</a></p>
-<p id="n862" class="pln"><a href="#n862">862</a></p>
-<p id="n863" class="pln"><a href="#n863">863</a></p>
-<p id="n864" class="stm run hide_run"><a href="#n864">864</a></p>
-<p id="n865" class="pln"><a href="#n865">865</a></p>
-<p id="n866" class="stm run hide_run"><a href="#n866">866</a></p>
-<p id="n867" class="pln"><a href="#n867">867</a></p>
-<p id="n868" class="pln"><a href="#n868">868</a></p>
-<p id="n869" class="pln"><a href="#n869">869</a></p>
-<p id="n870" class="pln"><a href="#n870">870</a></p>
-<p id="n871" class="pln"><a href="#n871">871</a></p>
-<p id="n872" class="pln"><a href="#n872">872</a></p>
-<p id="n873" class="pln"><a href="#n873">873</a></p>
-<p id="n874" class="pln"><a href="#n874">874</a></p>
-<p id="n875" class="stm run hide_run"><a href="#n875">875</a></p>
-<p id="n876" class="pln"><a href="#n876">876</a></p>
-<p id="n877" class="stm run hide_run"><a href="#n877">877</a></p>
-<p id="n878" class="pln"><a href="#n878">878</a></p>
-<p id="n879" class="pln"><a href="#n879">879</a></p>
-<p id="n880" class="pln"><a href="#n880">880</a></p>
-<p id="n881" class="pln"><a href="#n881">881</a></p>
-<p id="n882" class="pln"><a href="#n882">882</a></p>
-<p id="n883" class="pln"><a href="#n883">883</a></p>
-<p id="n884" class="pln"><a href="#n884">884</a></p>
-<p id="n885" class="pln"><a href="#n885">885</a></p>
-<p id="n886" class="stm run hide_run"><a href="#n886">886</a></p>
-<p id="n887" class="pln"><a href="#n887">887</a></p>
-<p id="n888" class="stm run hide_run"><a href="#n888">888</a></p>
-<p id="n889" class="pln"><a href="#n889">889</a></p>
-<p id="n890" class="pln"><a href="#n890">890</a></p>
-<p id="n891" class="pln"><a href="#n891">891</a></p>
-<p id="n892" class="pln"><a href="#n892">892</a></p>
-<p id="n893" class="pln"><a href="#n893">893</a></p>
-<p id="n894" class="pln"><a href="#n894">894</a></p>
-<p id="n895" class="pln"><a href="#n895">895</a></p>
-<p id="n896" class="pln"><a href="#n896">896</a></p>
-<p id="n897" class="stm run hide_run"><a href="#n897">897</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="stm run hide_run"><span class="key">from</span> <span class="nam">datetime</span> <span class="key">import</span> <span class="nam">timedelta</span><span class="strut">&nbsp;</span></p>
-<p id="t3" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">scipy</span><span class="op">.</span><span class="nam">stats</span> <span class="key">import</span> <span class="nam">beta</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="stm run hide_run"><span class="key">import</span> <span class="nam">pandas</span> <span class="key">as</span> <span class="nam">pd</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">=</span> <span class="num">0.41</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">def</span> <span class="nam">calc_water_density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln">    <span class="str">"""Calculate the temperature-dependent density of water</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="str">    :param temperature: Water temperature in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">    :return: Density of water in kg/m**3</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm run hide_run">    <span class="nam">a_0</span> <span class="op">=</span> <span class="num">999.842594</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run">    <span class="nam">a_1</span> <span class="op">=</span> <span class="num">6.793952e-2</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm run hide_run">    <span class="nam">a_2</span> <span class="op">=</span> <span class="op">-</span><span class="num">9.09529e-3</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm run hide_run">    <span class="nam">a_3</span> <span class="op">=</span> <span class="num">1.001685e-4</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm run hide_run">    <span class="nam">a_4</span> <span class="op">=</span> <span class="op">-</span><span class="num">1.120083e-6</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="stm run hide_run">    <span class="nam">a_5</span> <span class="op">=</span> <span class="num">6.536332e-9</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm run hide_run">    <span class="key">return</span> <span class="nam">a_0</span> <span class="op">+</span> <span class="nam">a_1</span><span class="op">*</span><span class="nam">temperature</span> <span class="op">+</span> <span class="nam">a_2</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">2</span> <span class="op">+</span> <span class="nam">a_3</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">3</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="pln">        <span class="nam">a_4</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">4</span> <span class="op">+</span> <span class="nam">a_5</span><span class="op">*</span><span class="nam">temperature</span><span class="op">**</span><span class="num">5</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm run hide_run"><span class="key">def</span> <span class="nam">calc_water_viscosity</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln">    <span class="str">"""Calculate the temperature-dependent viscosity of water</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="str">    :param temperature: Water temperature in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="str">    :return: Viscosity of water in m**2/s</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t38" class="stm run hide_run">    <span class="key">return</span> <span class="num">1.79e-6</span> <span class="op">/</span> <span class="op">(</span><span class="num">1</span> <span class="op">+</span> <span class="op">(</span><span class="num">0.03368</span> <span class="op">*</span> <span class="nam">temperature</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln">                      <span class="op">(</span><span class="num">0.00021</span> <span class="op">*</span> <span class="op">(</span><span class="nam">temperature</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t41" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm run hide_run"><span class="key">class</span> <span class="nam">HydraulicCell</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln">    <span class="str">"""Abstract base class for hydraulic cell data type. Do not initialize."""</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="pln"><span class="str">        :param args:</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t61" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">__class__</span> <span class="op">==</span> <span class="nam">HydraulicCell</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="stm mis">            <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t64" class="stm run hide_run">    <span class="key">def</span> <span class="nam">depth</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln">        <span class="str">"""Returns the depth of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="str">        :return: Depth of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t70" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm run hide_run">    <span class="key">def</span> <span class="nam">discharge</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="pln">        <span class="str">"""Returns the water discharge in this hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="str">        :return: Water discharge in this cell in m**3/s</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm run hide_run">    <span class="key">def</span> <span class="nam">length</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln">        <span class="str">"""Returns the longitudinal length of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t85" class="pln"><span class="str">        :return: Length of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln">        <span class="str">"""Returns the mean cross-section velocity for this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln"><span class="str">        :return: Mean cross-section velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t97" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_lat_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="pln">        <span class="str">"""Returns the mean lateral (y direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t103" class="pln"><span class="str">        :return: Mean lateral velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t106" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t109" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_long_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="pln">        <span class="str">"""Returns the mean longitudinal (x direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t112" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t114" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm run hide_run">    <span class="key">def</span> <span class="nam">mean_vert_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln">        <span class="str">"""Returns the mean vertical (z direction) velocity for this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t120" class="pln"><span class="str">        :return: Mean vertical velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t123" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t126" class="stm run hide_run">    <span class="key">def</span> <span class="nam">shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="pln">        <span class="str">"""Returns the shear velocity of this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln"><span class="str">        :return: Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm run hide_run">    <span class="key">def</span> <span class="nam">temperature</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="pln">        <span class="str">"""Returns the temperature of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t138" class="pln"><span class="str">        :return: Temperature of this cell in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t141" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t143" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t145" class="stm run hide_run">    <span class="key">def</span> <span class="nam">width</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="pln">        <span class="str">"""Returns the lateral width of this hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t148" class="pln"><span class="str">        :return: Width of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t151" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t153" class="stm mis">        <span class="nam">discharge</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">discharge</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="stm mis">        <span class="nam">mean_xs_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="stm mis">        <span class="nam">area</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">discharge</span> <span class="op">/</span> <span class="nam">mean_xs_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t157" class="stm mis">        <span class="key">return</span> <span class="nam">area</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t159" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t160" class="stm run hide_run"><span class="key">class</span> <span class="nam">SteadyStateHydraulicCell</span><span class="op">(</span><span class="nam">HydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="pln">    <span class="str">"""Data type representing a steady-state hydraulic cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t163" class="pln"><span class="str">    A hydraulic cell typically represents a cell in a series of cells within a</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="pln"><span class="str">    river reach. This class implementation represents steady-state hydraulic</span><span class="strut">&nbsp;</span></p>
-<p id="t165" class="pln"><span class="str">    conditions.</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t167" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="pln"><span class="str">    length : float</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="pln"><span class="str">        Length of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t172" class="pln"><span class="str">    depth : float</span><span class="strut">&nbsp;</span></p>
-<p id="t173" class="pln"><span class="str">        Depth of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t175" class="pln"><span class="str">    discharge : float</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="pln"><span class="str">        Discharge in this cell in m**3/s</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="str">    mean_xs_velocity : float</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="pln"><span class="str">        Mean cross section velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="pln"><span class="str">    mean_lat_velocity : float</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln"><span class="str">        Mean lateral velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t184" class="pln"><span class="str">    mean_vert_velocity : float</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="pln"><span class="str">        Mean vertical velocity in this cell in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t187" class="pln"><span class="str">    shear_velocity : float</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="pln"><span class="str">        Shear velocity within this cell in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln"><span class="str">    temperature: float</span><span class="strut">&nbsp;</span></p>
-<p id="t191" class="pln"><span class="str">        Temperature of water within this cell in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t195" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">length</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span> <span class="nam">discharge</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="pln">                 <span class="nam">mean_lat_velocity</span><span class="op">,</span> <span class="nam">mean_vert_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="pln">                 <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t202" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="nam">length</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="nam">discharge</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="nam">mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="nam">mean_lat_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="nam">mean_vert_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="nam">temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t211" class="stm run hide_run">        <span class="nam">flow_direction</span> <span class="op">=</span> <span class="nam">discharge</span><span class="op">/</span><span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">discharge</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="pln">            <span class="nam">flow_direction</span><span class="op">*</span><span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">mean_xs_velocity</span><span class="op">**</span><span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="pln">                                   <span class="nam">mean_lat_velocity</span><span class="op">**</span><span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="pln">                                   <span class="nam">mean_vert_velocity</span><span class="op">**</span><span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t217" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t218" class="stm run hide_run"><span class="key">class</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">(</span><span class="nam">HydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln"><span class="str">    length : float</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln"><span class="str">        Length of this cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="str">    temperature : float</span><span class="strut">&nbsp;</span></p>
-<p id="t226" class="pln"><span class="str">        Temperature of water within this cell in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln"><span class="str">    property_time_series : pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
-<p id="t228" class="pln"><span class="str">        Pandas DataFrame containing a time series with the following columns</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t230" class="pln"><span class="str">            Depth_m             Depth of the cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="pln"><span class="str">            Q_cms               Discharge of the cell in m**3/s</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="pln"><span class="str">            Vmag_mps            Cross-section average velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="pln"><span class="str">            Vvert_mps           Vertical component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln"><span class="str">            Vlat_mps            Lateral component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t235" class="pln"><span class="str">            Ustar_mps           Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="pln"><span class="str">            Temp_C              Temperature in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t238" class="pln"><span class="str">    start_time : numpy.datetime64</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="pln"><span class="str">    simulation_clock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="pln"><span class="str">    simulation : fluegg.simulation.Simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">length</span><span class="op">,</span> <span class="nam">property_time_series</span><span class="op">,</span> <span class="nam">start_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="pln">                 <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">simulation</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
-<p id="t247" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t248" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t249" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t250" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_length</span> <span class="op">=</span> <span class="nam">length</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t253" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t260" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span> <span class="op">=</span> <span class="nam">property_time_series</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="nam">deep</span><span class="op">=</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_start_time</span> <span class="op">=</span> <span class="nam">start_time</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t264" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t268" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_update_properties</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="stm run hide_run">        <span class="nam">simulation</span><span class="op">.</span><span class="nam">add_time_step_function_call</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_update_properties</span><span class="op">,</span> <span class="op">[</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t271" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_current_simulation_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm run hide_run">        <span class="nam">simulation_time_delta</span> <span class="op">=</span> <span class="nam">timedelta</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln">            <span class="nam">seconds</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">current_time</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm run hide_run">        <span class="nam">current_simulation_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_start_time</span> <span class="op">+</span> <span class="nam">simulation_time_delta</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t277" class="stm run hide_run">        <span class="nam">times</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">index</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t279" class="stm run hide_run">        <span class="nam">current_time_index</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">nonzero</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln">            <span class="nam">times</span> <span class="op">&lt;=</span> <span class="nam">current_simulation_time</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">.</span><span class="nam">max</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t282" class="stm run hide_run">        <span class="key">return</span> <span class="nam">times</span><span class="op">[</span><span class="nam">current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t284" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_update_properties</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t286" class="stm run hide_run">        <span class="nam">depth_key</span> <span class="op">=</span> <span class="str">'Depth_m'</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="stm run hide_run">        <span class="nam">discharge_key</span> <span class="op">=</span> <span class="str">'Q_cms'</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="stm run hide_run">        <span class="nam">vmag_key</span> <span class="op">=</span> <span class="str">'Vmag_mps'</span><span class="strut">&nbsp;</span></p>
-<p id="t289" class="stm run hide_run">        <span class="nam">vvert_key</span> <span class="op">=</span> <span class="str">'Vvert_mps'</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="stm run hide_run">        <span class="nam">vlat_key</span> <span class="op">=</span> <span class="str">'Vlat_mps'</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="stm run hide_run">        <span class="nam">shear_velocity_key</span> <span class="op">=</span> <span class="str">'Ustar_mps'</span><span class="strut">&nbsp;</span></p>
-<p id="t292" class="stm run hide_run">        <span class="nam">temperature_key</span> <span class="op">=</span> <span class="str">'Temp_C'</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t294" class="stm run hide_run">        <span class="nam">last_current_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="strut">&nbsp;</span></p>
-<p id="t295" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_simulation_time</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t297" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span> <span class="op">!=</span> <span class="nam">last_current_time</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t299" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">depth_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t300" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">discharge_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t303" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vmag_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t305" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vlat_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span> <span class="nam">vvert_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="stm run hide_run">            <span class="nam">flow_direction</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span> <span class="op">/</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_discharge</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_long_velocity</span> <span class="op">=</span> <span class="nam">flow_direction</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="pln">                <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_mean_xs_velocity</span> <span class="op">**</span> <span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="pln">                        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_lat_velocity</span> <span class="op">**</span> <span class="num">2</span> <span class="op">-</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="pln">                        <span class="nam">self</span><span class="op">.</span><span class="nam">_mean_vert_velocity</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t313" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="pln">                                                         <span class="nam">shear_velocity_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t315" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t316" class="pln">                                                      <span class="nam">temperature_key</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t317" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t318" class="stm run hide_run">    <span class="key">def</span> <span class="nam">to_data_frame</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="pln">        <span class="str">"""Time series information from this cell in a Pandas DataFrame.</span><span class="strut">&nbsp;</span></p>
-<p id="t320" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t321" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t323" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
-<p id="t324" class="pln"><span class="str">            DataFrame containing time series information from this cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t325" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t326" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t328" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_series</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="nam">deep</span><span class="op">=</span><span class="key">True</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t329" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t330" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t331" class="stm run hide_run"><span class="key">class</span> <span class="nam">SeriesOfHydraulicCells</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t332" class="pln">    <span class="str">"""Data type for hydraulic geometry represented by a series of hydraulic</span><span class="strut">&nbsp;</span></p>
-<p id="t333" class="pln"><span class="str">    cells.</span><span class="strut">&nbsp;</span></p>
-<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t335" class="pln"><span class="str">    Instantiate from a CSV file with from_csv.</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t337" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t339" class="pln"><span class="str">    list_of_cells : list</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="pln"><span class="str">        List containing HydraulicCell elements.</span><span class="strut">&nbsp;</span></p>
-<p id="t341" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t343" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t344" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t345" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t347" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span> <span class="op">=</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
-<p id="t348" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t349" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_cell_edges</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t351" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t352" class="pln">    <span class="key">def</span> <span class="nam">_calc_cell_edges</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t354" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t355" class="stm run hide_run">        <span class="nam">cell_edges</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t357" class="stm run hide_run">        <span class="nam">cell_edges</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="nam">cumulative_distance</span><span class="strut">&nbsp;</span></p>
-<p id="t358" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t359" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t360" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">+=</span> <span class="nam">cell</span><span class="op">.</span><span class="nam">length</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t361" class="stm run hide_run">            <span class="nam">cell_edges</span><span class="op">[</span><span class="nam">i</span><span class="op">+</span><span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">cumulative_distance</span><span class="strut">&nbsp;</span></p>
-<p id="t362" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t363" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cell_edges</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t365" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t367" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t368" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t369" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t370" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_longitudinal_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="pln">                                    <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t372" class="pln">                                    <span class="nam">lateral_location</span><span class="op">,</span> <span class="nam">width</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t373" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t374" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_location</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t375" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t376" class="stm run hide_run">        <span class="nam">minimum_distance_above_bed</span> <span class="op">=</span> <span class="num">0.00001</span><span class="strut">&nbsp;</span></p>
-<p id="t377" class="stm run hide_run">        <span class="nam">distance_above_bed</span><span class="op">[</span><span class="nam">distance_above_bed</span> <span class="op">&lt;</span> <span class="nam">minimum_distance_above_bed</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t378" class="pln">            <span class="nam">minimum_distance_above_bed</span><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t380" class="stm run hide_run">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="pln">                <span class="nam">distance_above_bed</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln">                <span class="nam">viscosity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t384" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t385" class="pln">        <span class="com"># enforce the no-slip condition</span><span class="strut">&nbsp;</span></p>
-<p id="t386" class="stm run hide_run">        <span class="nam">log_law_velocity</span><span class="op">[</span><span class="nam">log_law_velocity</span> <span class="op">&lt;</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t388" class="stm run hide_run">        <span class="nam">a</span> <span class="op">=</span> <span class="num">2.51</span><span class="strut">&nbsp;</span></p>
-<p id="t389" class="stm run hide_run">        <span class="nam">b</span> <span class="op">=</span> <span class="num">2.47</span><span class="strut">&nbsp;</span></p>
-<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t391" class="stm run hide_run">        <span class="nam">streamwise_velocity</span> <span class="op">=</span> <span class="nam">log_law_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln">            <span class="nam">beta</span><span class="op">.</span><span class="nam">pdf</span><span class="op">(</span><span class="nam">lateral_location</span><span class="op">/</span><span class="nam">width</span><span class="op">,</span> <span class="nam">a</span><span class="op">,</span> <span class="nam">b</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t394" class="stm run hide_run">        <span class="key">return</span> <span class="nam">streamwise_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t396" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_cell_number_by_position</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t397" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln">        <span class="com"># Digitize egg positions</span><span class="strut">&nbsp;</span></p>
-<p id="t399" class="stm run hide_run">        <span class="nam">position_cell_number</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">digitize</span><span class="op">(</span><span class="nam">location</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t400" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln">        <span class="com"># Eggs have travelled before the first hydraulic cell</span><span class="strut">&nbsp;</span></p>
-<p id="t402" class="pln">        <span class="com"># (reverse simulation)</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="stm run hide_run">        <span class="nam">position_cell_number</span><span class="op">[</span><span class="nam">location</span> <span class="op">&lt;</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t405" class="stm run hide_run">        <span class="key">return</span> <span class="nam">position_cell_number</span><span class="strut">&nbsp;</span></p>
-<p id="t406" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t407" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">,</span> <span class="nam">location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t408" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t409" class="pln">        <span class="com"># make the extend the cell depth array by one cell to virtually extend</span><span class="strut">&nbsp;</span></p>
-<p id="t410" class="pln">        <span class="com"># the reach with the properties from the last cell</span><span class="strut">&nbsp;</span></p>
-<p id="t411" class="stm run hide_run">        <span class="nam">cell_property</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t412" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t413" class="stm run hide_run">            <span class="nam">cell_property</span><span class="op">[</span><span class="nam">i</span><span class="op">]</span> <span class="op">=</span> <span class="nam">getattr</span><span class="op">(</span><span class="nam">cell</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">)</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t414" class="stm run hide_run">        <span class="nam">cell_property</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">getattr</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="op">,</span> <span class="nam">property_method</span><span class="op">)</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t415" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t416" class="stm run hide_run">        <span class="nam">location_cell_number</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_number_by_position</span><span class="op">(</span><span class="nam">location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t417" class="stm run hide_run">        <span class="nam">location_property</span> <span class="op">=</span> <span class="nam">cell_property</span><span class="op">[</span><span class="nam">location_cell_number</span> <span class="op">-</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t418" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t419" class="stm run hide_run">        <span class="key">return</span> <span class="nam">location_property</span><span class="strut">&nbsp;</span></p>
-<p id="t420" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t421" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t422" class="pln">    <span class="key">def</span> <span class="nam">_list_of_steady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t423" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t424" class="stm run hide_run">        <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t425" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t426" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t427" class="stm run hide_run">        <span class="key">for</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">row</span> <span class="key">in</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">iterrows</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t428" class="pln">            <span class="com"># convert kilometers to meters</span><span class="strut">&nbsp;</span></p>
-<p id="t429" class="stm run hide_run">            <span class="nam">cell_length</span> <span class="op">=</span> <span class="num">1000</span><span class="op">*</span><span class="op">(</span><span class="nam">row</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">-</span> <span class="nam">cumulative_distance</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t430" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t431" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t432" class="stm run hide_run">            <span class="nam">cell_depth</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t433" class="stm run hide_run">            <span class="nam">cell_discharge</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t434" class="stm run hide_run">            <span class="nam">cell_longitudinal_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t435" class="stm run hide_run">            <span class="nam">cell_lateral_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t436" class="stm run hide_run">            <span class="nam">cell_vertical_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t437" class="stm run hide_run">            <span class="nam">cell_shear_velocity</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t438" class="stm run hide_run">            <span class="nam">cell_temperature</span> <span class="op">=</span> <span class="nam">row</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t439" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t440" class="stm run hide_run">            <span class="nam">hydraulic_cell</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t441" class="pln">                <span class="nam">SteadyStateHydraulicCell</span><span class="op">(</span><span class="nam">cell_length</span><span class="op">,</span> <span class="nam">cell_depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t442" class="pln">                                         <span class="nam">cell_discharge</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t443" class="pln">                                         <span class="nam">cell_longitudinal_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t444" class="pln">                                         <span class="nam">cell_lateral_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t445" class="pln">                                         <span class="nam">cell_vertical_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t446" class="pln">                                         <span class="nam">cell_shear_velocity</span><span class="op">,</span> <span class="nam">cell_temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t447" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t448" class="stm run hide_run">            <span class="nam">list_of_cells</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">hydraulic_cell</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t449" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t450" class="stm run hide_run">        <span class="key">return</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
-<p id="t451" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t452" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t453" class="pln">    <span class="key">def</span> <span class="nam">_list_of_unsteady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t454" class="pln">        <span class="str">"""Returns a list of UnsteadyHydraulicCell instances."""</span><span class="strut">&nbsp;</span></p>
-<p id="t455" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t456" class="pln">        <span class="com"># unpack the keyword arguments</span><span class="strut">&nbsp;</span></p>
-<p id="t457" class="stm run hide_run">        <span class="nam">start_time</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'start_time'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t458" class="stm run hide_run">        <span class="nam">simulation_clock</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'simulation_clock'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t459" class="stm run hide_run">        <span class="nam">simulation</span> <span class="op">=</span> <span class="nam">kwargs</span><span class="op">[</span><span class="str">'simulation'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t460" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t461" class="pln">        <span class="com"># get the cell cumulative distance</span><span class="strut">&nbsp;</span></p>
-<p id="t462" class="stm run hide_run">        <span class="nam">grouped_by_time</span> <span class="op">=</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">groupby</span><span class="op">(</span><span class="nam">axis</span><span class="op">=</span><span class="num">0</span><span class="op">,</span> <span class="nam">level</span><span class="op">=</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t463" class="stm run hide_run">        <span class="nam">initial_time_step</span> <span class="op">=</span> <span class="nam">list</span><span class="op">(</span><span class="nam">grouped_by_time</span><span class="op">.</span><span class="nam">groups</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t464" class="stm run hide_run">        <span class="nam">initial_group</span> <span class="op">=</span> <span class="nam">grouped_by_time</span><span class="op">.</span><span class="nam">get_group</span><span class="op">(</span><span class="nam">initial_time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t465" class="stm run hide_run">        <span class="nam">initial_group</span><span class="op">.</span><span class="nam">index</span> <span class="op">=</span> <span class="nam">initial_group</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">droplevel</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t466" class="stm run hide_run">        <span class="nam">cumulative_distance_series</span> <span class="op">=</span> <span class="nam">initial_group</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t467" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t468" class="stm run hide_run">        <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t469" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t470" class="stm run hide_run">        <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t471" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t472" class="stm run hide_run">        <span class="nam">grouped_by_cell</span> <span class="op">=</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">groupby</span><span class="op">(</span><span class="nam">axis</span><span class="op">=</span><span class="num">0</span><span class="op">,</span> <span class="nam">level</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t473" class="stm run hide_run">        <span class="key">for</span> <span class="nam">cell_number</span> <span class="key">in</span> <span class="nam">grouped_by_cell</span><span class="op">.</span><span class="nam">groups</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t474" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t475" class="pln">            <span class="com"># get the cell length and add it to the cumulative distance</span><span class="strut">&nbsp;</span></p>
-<p id="t476" class="stm run hide_run">            <span class="nam">cell_length</span> <span class="op">=</span> <span class="num">1000</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t477" class="pln">                <span class="op">(</span><span class="nam">cumulative_distance_series</span><span class="op">[</span><span class="nam">cell_number</span><span class="op">]</span> <span class="op">-</span> <span class="nam">cumulative_distance</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t478" class="stm run hide_run">            <span class="nam">cumulative_distance</span> <span class="op">=</span> <span class="nam">cumulative_distance_series</span><span class="op">[</span><span class="nam">cell_number</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t479" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t480" class="stm run hide_run">            <span class="nam">cell_time_series</span> <span class="op">=</span> <span class="nam">grouped_by_cell</span><span class="op">.</span><span class="nam">get_group</span><span class="op">(</span><span class="nam">cell_number</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t481" class="stm run hide_run">            <span class="nam">cell_time_series</span><span class="op">.</span><span class="nam">index</span> <span class="op">=</span> <span class="nam">cell_time_series</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">droplevel</span><span class="op">(</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t482" class="stm run hide_run">            <span class="nam">hydraulic_cell</span> <span class="op">=</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">(</span><span class="nam">cell_length</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t483" class="pln">                                                   <span class="nam">cell_time_series</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t484" class="pln">                                                   <span class="nam">start_time</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t485" class="pln">                                                   <span class="nam">simulation_clock</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t486" class="pln">                                                   <span class="nam">simulation</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t487" class="stm run hide_run">            <span class="nam">list_of_cells</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">hydraulic_cell</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t488" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t489" class="stm run hide_run">        <span class="key">return</span> <span class="nam">list_of_cells</span><span class="strut">&nbsp;</span></p>
-<p id="t490" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t491" class="stm run hide_run">    <span class="op">@</span><span class="nam">classmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t492" class="pln">    <span class="key">def</span> <span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">cls</span><span class="op">,</span> <span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t493" class="pln">        <span class="str">"""Creates an instance of this class from a Pandas DataFrame.</span><span class="strut">&nbsp;</span></p>
-<p id="t494" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t495" class="pln"><span class="str">        This method handles the creation of a steady or unsteady series of</span><span class="strut">&nbsp;</span></p>
-<p id="t496" class="pln"><span class="str">        cells, depending on the DataFrame passed. For an unsteady model, level</span><span class="strut">&nbsp;</span></p>
-<p id="t497" class="pln"><span class="str">        0 of the MultiIndex is the time, and level 1 is the cell number.</span><span class="strut">&nbsp;</span></p>
-<p id="t498" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t499" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t500" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t501" class="pln"><span class="str">        data_frame : pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
-<p id="t502" class="pln"><span class="str">            Pandas DataFrame containing hydraulic information</span><span class="strut">&nbsp;</span></p>
-<p id="t503" class="pln"><span class="str">        **kwargs</span><span class="strut">&nbsp;</span></p>
-<p id="t504" class="pln"><span class="str">            These keyword arguments are required when initializing a series of</span><span class="strut">&nbsp;</span></p>
-<p id="t505" class="pln"><span class="str">            unsteady cells.</span><span class="strut">&nbsp;</span></p>
-<p id="t506" class="pln"><span class="str">            start_time : numpy.datetime64</span><span class="strut">&nbsp;</span></p>
-<p id="t507" class="pln"><span class="str">                Simulation start time.</span><span class="strut">&nbsp;</span></p>
-<p id="t508" class="pln"><span class="str">            simulation_clock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t509" class="pln"><span class="str">            simulation : fluegg.simulation.Simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t511" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t512" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t513" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t514" class="pln"><span class="str">        SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t515" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t516" class="pln"><span class="str">        See Also</span><span class="strut">&nbsp;</span></p>
-<p id="t517" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
-<p id="t518" class="pln"><span class="str">        SteadyStateHydraulicCell</span><span class="strut">&nbsp;</span></p>
-<p id="t519" class="pln"><span class="str">        UnsteadyHydraulicCell</span><span class="strut">&nbsp;</span></p>
-<p id="t520" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t521" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t522" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
-<p id="t523" class="pln"><span class="str">        The method initializes steady or unsteady cells based on the number of</span><span class="strut">&nbsp;</span></p>
-<p id="t524" class="pln"><span class="str">        levels in the index of `data_frame`. Steady cells are initialized if</span><span class="strut">&nbsp;</span></p>
-<p id="t525" class="pln"><span class="str">        there is one level, and unsteady cells are initialized if there are</span><span class="strut">&nbsp;</span></p>
-<p id="t526" class="pln"><span class="str">        two.</span><span class="strut">&nbsp;</span></p>
-<p id="t527" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t528" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t529" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t530" class="stm run hide_run">        <span class="key">if</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">nlevels</span> <span class="op">==</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t531" class="stm run hide_run">            <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_list_of_steady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t532" class="stm run hide_run">        <span class="key">elif</span> <span class="nam">data_frame</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">nlevels</span> <span class="op">==</span> <span class="num">2</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t533" class="stm run hide_run">            <span class="nam">list_of_cells</span> <span class="op">=</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">_list_of_unsteady_cells</span><span class="op">(</span><span class="nam">data_frame</span><span class="op">,</span> <span class="op">**</span><span class="nam">kwargs</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t534" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t535" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unrecognized DataFrame format"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t536" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t537" class="stm run hide_run">        <span class="key">return</span> <span class="nam">cls</span><span class="op">(</span><span class="nam">list_of_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t538" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t539" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t540" class="pln">        <span class="str">"""Returns the results of a hydraulic simulation at the given positions</span><span class="strut">&nbsp;</span></p>
-<p id="t541" class="pln"><span class="str">        in space.</span><span class="strut">&nbsp;</span></p>
-<p id="t542" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t543" class="pln"><span class="str">        Position is an n by 3 numpy array, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t544" class="pln"><span class="str">        requested (along axis=0).</span><span class="strut">&nbsp;</span></p>
-<p id="t545" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t546" class="pln"><span class="str">        The indices along axis=1 are:</span><span class="strut">&nbsp;</span></p>
-<p id="t547" class="pln"><span class="str">            0 - The position in the longitudinal, or x, direction in m. The</span><span class="strut">&nbsp;</span></p>
-<p id="t548" class="pln"><span class="str">                positive direction is downstream.</span><span class="strut">&nbsp;</span></p>
-<p id="t549" class="pln"><span class="str">            1 - The position in the lateral, or y, direction in m. The positive</span><span class="strut">&nbsp;</span></p>
-<p id="t550" class="pln"><span class="str">                direction is from the right bank.</span><span class="strut">&nbsp;</span></p>
-<p id="t551" class="pln"><span class="str">            2 - The position in the vertical, or z, direction in m. The</span><span class="strut">&nbsp;</span></p>
-<p id="t552" class="pln"><span class="str">                positive direction is away from the bed.</span><span class="strut">&nbsp;</span></p>
-<p id="t553" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t554" class="pln"><span class="str">            In this coordinate system, the datum (0, 0, 0) is the point at the</span><span class="strut">&nbsp;</span></p>
-<p id="t555" class="pln"><span class="str">            upstream, right bank, water surface of the first cell.</span><span class="strut">&nbsp;</span></p>
-<p id="t556" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t557" class="pln"><span class="str">        position[:, 0] is the position in the longitudinal, or x, direction,</span><span class="strut">&nbsp;</span></p>
-<p id="t558" class="pln"><span class="str">        position[:, 1] is the position in the lateral, or y, direction, and</span><span class="strut">&nbsp;</span></p>
-<p id="t559" class="pln"><span class="str">        position[:, 2] is the position in the vertical, or z, direction.</span><span class="strut">&nbsp;</span></p>
-<p id="t560" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t561" class="pln"><span class="str">        :param position: Array containing position of results</span><span class="strut">&nbsp;</span></p>
-<p id="t562" class="pln"><span class="str">        :return: HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t563" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t564" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t565" class="stm run hide_run">        <span class="nam">longitudinal_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t566" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t567" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="str">'depth'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t568" class="stm run hide_run">        <span class="nam">discharge</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t569" class="pln">            <span class="str">'discharge'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t570" class="stm run hide_run">        <span class="nam">mean_xs_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t571" class="pln">            <span class="str">'mean_xs_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t572" class="stm run hide_run">        <span class="nam">mean_lat_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t573" class="pln">            <span class="str">'mean_lat_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t574" class="stm run hide_run">        <span class="nam">mean_long_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t575" class="pln">            <span class="str">'mean_long_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t576" class="stm run hide_run">        <span class="nam">mean_vert_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t577" class="pln">            <span class="str">'mean_vert_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t578" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t579" class="pln">            <span class="str">'shear_velocity'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t580" class="stm run hide_run">        <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_property_by_location</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t581" class="pln">            <span class="str">'temperature'</span><span class="op">,</span> <span class="nam">longitudinal_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t582" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t583" class="stm run hide_run">        <span class="nam">area</span> <span class="op">=</span> <span class="nam">discharge</span> <span class="op">/</span> <span class="nam">mean_xs_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t584" class="stm run hide_run">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">area</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t585" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t586" class="stm run hide_run">        <span class="nam">viscosity</span> <span class="op">=</span> <span class="nam">calc_water_viscosity</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t587" class="stm run hide_run">        <span class="nam">density</span> <span class="op">=</span> <span class="nam">calc_water_density</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t588" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t589" class="stm run hide_run">        <span class="nam">lateral_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t590" class="stm run hide_run">        <span class="nam">vertical_location</span> <span class="op">=</span> <span class="nam">position</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t591" class="stm run hide_run">        <span class="nam">streamwise_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t592" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_longitudinal_velocity</span><span class="op">(</span><span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t593" class="pln">                                             <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_long_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t594" class="pln">                                             <span class="nam">viscosity</span><span class="op">,</span> <span class="nam">lateral_location</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t595" class="pln">                                             <span class="nam">width</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t596" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t597" class="pln">        <span class="com"># set the streamwise velocities above the water surface to nan</span><span class="strut">&nbsp;</span></p>
-<p id="t598" class="stm run hide_run">        <span class="nam">above_water_surface</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="nam">vertical_location</span><span class="strut">&nbsp;</span></p>
-<p id="t599" class="stm run hide_run">        <span class="nam">streamwise_velocity</span><span class="op">[</span><span class="nam">above_water_surface</span><span class="op">]</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="strut">&nbsp;</span></p>
-<p id="t600" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t601" class="stm run hide_run">        <span class="nam">hydraulic_data</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">stack</span><span class="op">(</span><span class="op">[</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">width</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t602" class="pln">                                   <span class="nam">density</span><span class="op">,</span> <span class="nam">streamwise_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t603" class="pln">                                   <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">mean_lat_velocity</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t604" class="pln">                                   <span class="nam">mean_vert_velocity</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t605" class="pln">                                  <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t606" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t607" class="stm run hide_run">        <span class="key">return</span> <span class="nam">HydraulicResults</span><span class="op">(</span><span class="nam">hydraulic_data</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t608" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t609" class="stm run hide_run">    <span class="key">def</span> <span class="nam">to_data_frame</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t610" class="pln">        <span class="str">"""Create a Pandas DataFrame from information in this instance.</span><span class="strut">&nbsp;</span></p>
-<p id="t611" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t612" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t613" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t614" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
-<p id="t615" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t616" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t617" class="stm mis">        <span class="key">if</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="nam">SteadyStateHydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t618" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t619" class="stm mis">            <span class="nam">columns</span> <span class="op">=</span> <span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">,</span> <span class="str">'Depth_m'</span><span class="op">,</span> <span class="str">'Q_cms'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t620" class="pln">                       <span class="str">'Vmag_mps'</span><span class="op">,</span> <span class="str">'Vvert_mps'</span><span class="op">,</span> <span class="str">'Vlat_mps'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t621" class="pln">                       <span class="str">'Ustar_mps'</span><span class="op">,</span> <span class="str">'Temp_C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t622" class="stm mis">            <span class="nam">data_dict</span> <span class="op">=</span> <span class="nam">dict</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">columns</span><span class="op">,</span> <span class="op">[</span><span class="op">[</span><span class="op">]</span> <span class="key">for</span> <span class="nam">_</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="nam">len</span><span class="op">(</span><span class="nam">columns</span><span class="op">)</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t623" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t624" class="stm mis">            <span class="key">for</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t625" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t626" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">length</span><span class="op">(</span><span class="op">)</span> <span class="op">/</span> <span class="num">1000</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t627" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t628" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">discharge</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t629" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_xs_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t630" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_vert_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t631" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">mean_lat_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t632" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t633" class="stm mis">                <span class="nam">data_dict</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">cell</span><span class="op">.</span><span class="nam">temperature</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t634" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t635" class="stm mis">            <span class="nam">cell_numbers</span> <span class="op">=</span> <span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t636" class="stm mis">            <span class="nam">df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DataFrame</span><span class="op">(</span><span class="nam">data</span><span class="op">=</span><span class="nam">data_dict</span><span class="op">,</span> <span class="nam">index</span><span class="op">=</span><span class="nam">cell_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t637" class="stm mis">            <span class="nam">df</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">df</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">cumsum</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t638" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t639" class="stm mis">            <span class="nam">df</span><span class="op">.</span><span class="nam">index</span><span class="op">.</span><span class="nam">name</span> <span class="op">=</span> <span class="str">'CellNumber'</span><span class="strut">&nbsp;</span></p>
-<p id="t640" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t641" class="stm mis">        <span class="key">elif</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="nam">UnsteadyHydraulicCell</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t642" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t643" class="stm mis">            <span class="nam">frames</span> <span class="op">=</span> <span class="op">[</span><span class="nam">cell</span><span class="op">.</span><span class="nam">to_data_frame</span><span class="op">(</span><span class="op">)</span> <span class="key">for</span> <span class="nam">cell</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cells</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t644" class="stm mis">            <span class="nam">df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">concat</span><span class="op">(</span><span class="nam">frames</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t645" class="pln">                           <span class="nam">keys</span><span class="op">=</span><span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">frames</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t646" class="pln">                           <span class="op">.</span><span class="nam">swaplevel</span><span class="op">(</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t647" class="pln">                           <span class="op">.</span><span class="nam">sort_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t648" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t649" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t650" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"Unknown subclass of HydraulicCell"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t651" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t652" class="stm mis">        <span class="key">return</span> <span class="nam">df</span><span class="strut">&nbsp;</span></p>
-<p id="t653" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t654" class="stm run hide_run">    <span class="key">def</span> <span class="nam">cell_edges</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t655" class="pln">        <span class="str">"""Returns the edges of each of the cells</span><span class="strut">&nbsp;</span></p>
-<p id="t656" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t657" class="pln"><span class="str">        :return: Edges of the hydraulic cells</span><span class="strut">&nbsp;</span></p>
-<p id="t658" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t659" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_cell_edges</span><span class="strut">&nbsp;</span></p>
-<p id="t660" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t661" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t662" class="stm run hide_run"><span class="key">class</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="op">(</span><span class="nam">SeriesOfHydraulicCells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t663" class="pln">    <span class="str">"""Series of hydraulic cells with velocity velocity calculated under a</span><span class="strut">&nbsp;</span></p>
-<p id="t664" class="pln"><span class="str">    rough bottom assumption</span><span class="strut">&nbsp;</span></p>
-<p id="t665" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t666" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t667" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t668" class="pln"><span class="str">    list_of_cells : list</span><span class="strut">&nbsp;</span></p>
-<p id="t669" class="pln"><span class="str">        List containing HydraulicCell elements.</span><span class="strut">&nbsp;</span></p>
-<p id="t670" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t671" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t672" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t673" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t674" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t675" class="pln">    <span class="key">def</span> <span class="nam">_calc_roughness_height</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t676" class="pln">        <span class="str">"""Calculate roughness height (kc), in meters</span><span class="strut">&nbsp;</span></p>
-<p id="t677" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t678" class="pln"><span class="str">        :param depth: Depth of water column in m</span><span class="strut">&nbsp;</span></p>
-<p id="t679" class="pln"><span class="str">        :param mean_xs_velocity: Mean cross-section velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t680" class="pln"><span class="str">        :param shear_velocity: Shear velocity in ms/</span><span class="strut">&nbsp;</span></p>
-<p id="t681" class="pln"><span class="str">        :return: Roughness height in m</span><span class="strut">&nbsp;</span></p>
-<p id="t682" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t683" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t684" class="stm run hide_run">        <span class="key">return</span> <span class="num">11</span> <span class="op">*</span> <span class="nam">depth</span> <span class="op">/</span> <span class="nam">np</span><span class="op">.</span><span class="nam">exp</span><span class="op">(</span><span class="op">(</span><span class="nam">mean_xs_velocity</span> <span class="op">*</span> <span class="nam">VON_KARMAN_CONSTANT</span><span class="op">)</span> <span class="op">/</span><span class="strut">&nbsp;</span></p>
-<p id="t685" class="pln">                                   <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t686" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t687" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">vertical_location</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t688" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t689" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t690" class="stm run hide_run">        <span class="nam">roughness_height</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_roughness_height</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t691" class="pln">            <span class="nam">depth</span><span class="op">,</span> <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t692" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t693" class="stm run hide_run">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t694" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="num">1</span><span class="op">/</span><span class="nam">VON_KARMAN_CONSTANT</span><span class="op">)</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
-<p id="t695" class="pln">                              <span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">vertical_location</span> <span class="op">/</span> <span class="nam">roughness_height</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t696" class="pln">                              <span class="num">8.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t697" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t698" class="stm run hide_run">        <span class="key">return</span> <span class="nam">log_law_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t699" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t700" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t701" class="stm run hide_run"><span class="key">class</span> <span class="nam">SmoothBottomSeriesOfHydraulicCells</span><span class="op">(</span><span class="nam">SeriesOfHydraulicCells</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t702" class="pln">    <span class="str">"""Not implemented. Fails unit tests.</span><span class="strut">&nbsp;</span></p>
-<p id="t703" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t704" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t705" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t706" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t707" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="op">(</span><span class="str">"This class is not implemented."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t708" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t709" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t710" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_log_law_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">distance_above_bed</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">,</span> <span class="nam">depth</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t711" class="pln">                               <span class="nam">mean_xs_velocity</span><span class="op">,</span> <span class="nam">viscosity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t712" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t713" class="stm mis">        <span class="nam">log_law_velocity</span> <span class="op">=</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t714" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">/</span> <span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">log</span><span class="op">(</span><span class="nam">shear_velocity</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
-<p id="t715" class="pln">                                              <span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">viscosity</span><span class="op">)</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t716" class="pln">             <span class="num">5.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t717" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t718" class="stm mis">        <span class="key">return</span> <span class="nam">log_law_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t719" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t720" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t721" class="stm run hide_run"><span class="key">def</span> <span class="nam">from_csv</span><span class="op">(</span><span class="nam">path</span><span class="op">,</span> <span class="nam">bed_roughness</span><span class="op">=</span><span class="str">'rough'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t722" class="pln">    <span class="str">"""Construct a SeriesOfHydraulicCells from a CSV file.</span><span class="strut">&nbsp;</span></p>
-<p id="t723" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t724" class="pln"><span class="str">    The CSV file must contain the following columns</span><span class="strut">&nbsp;</span></p>
-<p id="t725" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t726" class="pln"><span class="str">    Column name         Description</span><span class="strut">&nbsp;</span></p>
-<p id="t727" class="pln"><span class="str">    -----------         -----------</span><span class="strut">&nbsp;</span></p>
-<p id="t728" class="pln"><span class="str">    CellNumber          Cell number, integer 1 to inf</span><span class="strut">&nbsp;</span></p>
-<p id="t729" class="pln"><span class="str">    CumlDistance_km     Cumulative distance along the channel of the end of the</span><span class="strut">&nbsp;</span></p>
-<p id="t730" class="pln"><span class="str">                        cell in km</span><span class="strut">&nbsp;</span></p>
-<p id="t731" class="pln"><span class="str">    Depth_m             Depth of the cell in m</span><span class="strut">&nbsp;</span></p>
-<p id="t732" class="pln"><span class="str">    Q_cms               Discharge of the cell in m**3/s</span><span class="strut">&nbsp;</span></p>
-<p id="t733" class="pln"><span class="str">    Vmag_mps            Cross-section average velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t734" class="pln"><span class="str">    Vvert_mps           Vertical component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t735" class="pln"><span class="str">    Vlat_mps            Lateral component of velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t736" class="pln"><span class="str">    Ustar_mps           Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t737" class="pln"><span class="str">    Temp_C              Temperature in degrees Celsius</span><span class="strut">&nbsp;</span></p>
-<p id="t738" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t739" class="pln"><span class="str">    The contents of a CSV file representing a reach may look like this.</span><span class="strut">&nbsp;</span></p>
-<p id="t740" class="pln"><span class="str">        CellNumber,CumlDistance_km,Depth_m,Q_cms,Vmag_mps,Vvert_mps,Vlat_mps,</span><span class="strut">&nbsp;</span></p>
-<p id="t741" class="pln"><span class="str">            Ustar_mps,Temp_C</span><span class="strut">&nbsp;</span></p>
-<p id="t742" class="pln"><span class="str">        1,20,1,10,1,0,0,0.08,19</span><span class="strut">&nbsp;</span></p>
-<p id="t743" class="pln"><span class="str">        2,40,2,20,2,0,0,0.08,20</span><span class="strut">&nbsp;</span></p>
-<p id="t744" class="pln"><span class="str">        3,60,3,30,3,0,0,0.08,21</span><span class="strut">&nbsp;</span></p>
-<p id="t745" class="pln"><span class="str">        4,80,4,40,4,0,0,0.08,22</span><span class="strut">&nbsp;</span></p>
-<p id="t746" class="pln"><span class="str">        5,100,5,50,5,0,0,0.08,23</span><span class="strut">&nbsp;</span></p>
-<p id="t747" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t748" class="pln"><span class="str">    This 100 km reach has 5 cells and the discharge (Q_cms) increases from 10</span><span class="strut">&nbsp;</span></p>
-<p id="t749" class="pln"><span class="str">    to 50 m**3/s.</span><span class="strut">&nbsp;</span></p>
-<p id="t750" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t751" class="pln"><span class="str">    :param path: Path to CSV file</span><span class="strut">&nbsp;</span></p>
-<p id="t752" class="pln"><span class="str">    :type path: str</span><span class="strut">&nbsp;</span></p>
-<p id="t753" class="pln"><span class="str">    :param bed_roughness: 'rough' or 'smooth'</span><span class="strut">&nbsp;</span></p>
-<p id="t754" class="pln"><span class="str">    :type bed_roughness: str</span><span class="strut">&nbsp;</span></p>
-<p id="t755" class="pln"><span class="str">    :return: SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t756" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t757" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t758" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t759" class="stm run hide_run">    <span class="nam">input_df</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">read_csv</span><span class="op">(</span><span class="nam">path</span><span class="op">,</span> <span class="nam">index_col</span><span class="op">=</span><span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t760" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t761" class="stm run hide_run">    <span class="key">if</span> <span class="nam">bed_roughness</span> <span class="op">==</span> <span class="str">'rough'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t762" class="stm run hide_run">        <span class="nam">cls</span> <span class="op">=</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t763" class="stm mis">    <span class="key">elif</span> <span class="nam">bed_roughness</span> <span class="op">==</span> <span class="str">'smooth'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t764" class="stm mis">        <span class="nam">cls</span> <span class="op">=</span> <span class="nam">SmoothBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t765" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t766" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown bed roughness"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t767" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t768" class="stm run hide_run">    <span class="key">return</span> <span class="nam">cls</span><span class="op">.</span><span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">input_df</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t769" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t770" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t771" class="stm run hide_run"><span class="key">class</span> <span class="nam">HydraulicResults</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t772" class="pln">    <span class="str">"""Data structure containing hydraulic results from a hydraulic model</span><span class="strut">&nbsp;</span></p>
-<p id="t773" class="pln"><span class="str">    simulation.</span><span class="strut">&nbsp;</span></p>
-<p id="t774" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t775" class="pln"><span class="str">    Instantiated from SeriesOfHydraulicCells.hydraulic_results(). Not to be</span><span class="strut">&nbsp;</span></p>
-<p id="t776" class="pln"><span class="str">    instantiated elsewhere.</span><span class="strut">&nbsp;</span></p>
-<p id="t777" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t778" class="pln"><span class="str">    See Also</span><span class="strut">&nbsp;</span></p>
-<p id="t779" class="pln"><span class="str">    --------</span><span class="strut">&nbsp;</span></p>
-<p id="t780" class="pln"><span class="str">    SeriesOfHydraulicCells.hydraulic_results()</span><span class="strut">&nbsp;</span></p>
-<p id="t781" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t782" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t783" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t784" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_data</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t785" class="pln">        <span class="str">"""Initialize self.  See help(type(self)) for accurate signature."""</span><span class="strut">&nbsp;</span></p>
-<p id="t786" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t787" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span> <span class="op">=</span> <span class="nam">hydraulic_data</span><span class="strut">&nbsp;</span></p>
-<p id="t788" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t789" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_depth_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t790" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_width_index</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t791" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature_index</span> <span class="op">=</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t792" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_viscosity_index</span> <span class="op">=</span> <span class="num">3</span><span class="strut">&nbsp;</span></p>
-<p id="t793" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_density_index</span> <span class="op">=</span> <span class="num">4</span><span class="strut">&nbsp;</span></p>
-<p id="t794" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_streamwise_velocity_index</span> <span class="op">=</span> <span class="num">5</span><span class="strut">&nbsp;</span></p>
-<p id="t795" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity_index</span> <span class="op">=</span> <span class="num">6</span><span class="strut">&nbsp;</span></p>
-<p id="t796" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_velocity_index</span> <span class="op">=</span> <span class="num">7</span><span class="strut">&nbsp;</span></p>
-<p id="t797" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_velocity_index</span> <span class="op">=</span> <span class="num">8</span><span class="strut">&nbsp;</span></p>
-<p id="t798" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t799" class="stm run hide_run">    <span class="key">def</span> <span class="nam">depth</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t800" class="pln">        <span class="str">"""Returns the depth of the water column at a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t801" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t802" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t803" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t804" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t805" class="pln"><span class="str">        :return: Depth of water column in m</span><span class="strut">&nbsp;</span></p>
-<p id="t806" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t807" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t808" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t809" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_depth_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t810" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t811" class="stm run hide_run">    <span class="key">def</span> <span class="nam">lateral_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t812" class="pln">        <span class="str">"""Returns the lateral (y-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t813" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t814" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t815" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t816" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t817" class="pln"><span class="str">        :return: Lateral velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t818" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t819" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t820" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t821" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t822" class="stm run hide_run">    <span class="key">def</span> <span class="nam">shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t823" class="pln">        <span class="str">"""Returns the shear velocity corresponding to a position.</span><span class="strut">&nbsp;</span></p>
-<p id="t824" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t825" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t826" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t827" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t828" class="pln"><span class="str">        :return: Shear velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t829" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t830" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t831" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_shear_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t832" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t833" class="stm run hide_run">    <span class="key">def</span> <span class="nam">streamwise_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t834" class="pln">        <span class="str">"""Returns the streamwise (x-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t835" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t836" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t837" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t838" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t839" class="pln"><span class="str">        :return: Streamwise velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t840" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t841" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t842" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_streamwise_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t843" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t844" class="stm run hide_run">    <span class="key">def</span> <span class="nam">temperature</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t845" class="pln">        <span class="str">"""Returns the temperature for a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t846" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t847" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t848" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t849" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t850" class="pln"><span class="str">        :return: Temperature in deg C</span><span class="strut">&nbsp;</span></p>
-<p id="t851" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t852" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t853" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_temperature_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t854" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t855" class="stm run hide_run">    <span class="key">def</span> <span class="nam">water_density</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t856" class="pln">        <span class="str">"""Returns the density of the water at a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t857" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t858" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t859" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t860" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t861" class="pln"><span class="str">        :return: Water density in kg/m**3</span><span class="strut">&nbsp;</span></p>
-<p id="t862" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t863" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t864" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_density_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t865" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t866" class="stm run hide_run">    <span class="key">def</span> <span class="nam">water_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t867" class="pln">        <span class="str">"""Returns the viscosity of water at a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t868" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t869" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t870" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t871" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t872" class="pln"><span class="str">        :return: Viscosity in m**2/s</span><span class="strut">&nbsp;</span></p>
-<p id="t873" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t874" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t875" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_viscosity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t876" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t877" class="stm run hide_run">    <span class="key">def</span> <span class="nam">width</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t878" class="pln">        <span class="str">"""Returns the width of the channel at a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t879" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t880" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t881" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t882" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t883" class="pln"><span class="str">        :return: Width in m</span><span class="strut">&nbsp;</span></p>
-<p id="t884" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t885" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t886" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_width_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t887" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t888" class="stm run hide_run">    <span class="key">def</span> <span class="nam">vertical_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t889" class="pln">        <span class="str">"""Returns the vertical (z-direction) velocity for a given position.</span><span class="strut">&nbsp;</span></p>
-<p id="t890" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t891" class="pln"><span class="str">        Returns a numpy array of length n, where n is the number of positions</span><span class="strut">&nbsp;</span></p>
-<p id="t892" class="pln"><span class="str">        passed to SeriesOfHydraulicCells.hydraulic_results().</span><span class="strut">&nbsp;</span></p>
-<p id="t893" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t894" class="pln"><span class="str">        :return: Vertical velocity in m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t895" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t896" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t897" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_data</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_velocity_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_kml_py.html b/coverage_report/fluegg_kml_py.html
deleted file mode 100644
index b85f228..0000000
--- a/coverage_report/fluegg_kml_py.html
+++ /dev/null
@@ -1,907 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\kml.py: 13%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\kml.py</b> :
-            <span class="pc_cov">13%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            130 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">17 run</span>
-            <span class="mis shortkey_m button_toggle_mis">113 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="pln"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="pln"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="stm mis"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="stm mis"><a href="#n39">39</a></p>
-<p id="n40" class="stm mis"><a href="#n40">40</a></p>
-<p id="n41" class="stm mis"><a href="#n41">41</a></p>
-<p id="n42" class="stm mis"><a href="#n42">42</a></p>
-<p id="n43" class="stm mis"><a href="#n43">43</a></p>
-<p id="n44" class="stm mis"><a href="#n44">44</a></p>
-<p id="n45" class="pln"><a href="#n45">45</a></p>
-<p id="n46" class="stm mis"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="stm mis"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="stm mis"><a href="#n51">51</a></p>
-<p id="n52" class="pln"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="stm mis"><a href="#n69">69</a></p>
-<p id="n70" class="stm mis"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="stm mis"><a href="#n72">72</a></p>
-<p id="n73" class="pln"><a href="#n73">73</a></p>
-<p id="n74" class="stm mis"><a href="#n74">74</a></p>
-<p id="n75" class="stm mis"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="stm mis"><a href="#n77">77</a></p>
-<p id="n78" class="stm mis"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="stm mis"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="stm mis"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="stm mis"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="pln"><a href="#n89">89</a></p>
-<p id="n90" class="stm run hide_run"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="pln"><a href="#n97">97</a></p>
-<p id="n98" class="pln"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="pln"><a href="#n100">100</a></p>
-<p id="n101" class="pln"><a href="#n101">101</a></p>
-<p id="n102" class="pln"><a href="#n102">102</a></p>
-<p id="n103" class="pln"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="pln"><a href="#n105">105</a></p>
-<p id="n106" class="pln"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="pln"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="pln"><a href="#n110">110</a></p>
-<p id="n111" class="pln"><a href="#n111">111</a></p>
-<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="pln"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="stm mis"><a href="#n119">119</a></p>
-<p id="n120" class="pln"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="stm mis"><a href="#n122">122</a></p>
-<p id="n123" class="pln"><a href="#n123">123</a></p>
-<p id="n124" class="stm mis"><a href="#n124">124</a></p>
-<p id="n125" class="pln"><a href="#n125">125</a></p>
-<p id="n126" class="stm run hide_run"><a href="#n126">126</a></p>
-<p id="n127" class="pln"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="pln"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="pln"><a href="#n134">134</a></p>
-<p id="n135" class="stm mis"><a href="#n135">135</a></p>
-<p id="n136" class="stm mis"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="stm mis"><a href="#n138">138</a></p>
-<p id="n139" class="stm mis"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="stm mis"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="stm mis"><a href="#n143">143</a></p>
-<p id="n144" class="stm mis"><a href="#n144">144</a></p>
-<p id="n145" class="pln"><a href="#n145">145</a></p>
-<p id="n146" class="stm run hide_run"><a href="#n146">146</a></p>
-<p id="n147" class="pln"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="stm mis"><a href="#n149">149</a></p>
-<p id="n150" class="pln"><a href="#n150">150</a></p>
-<p id="n151" class="stm mis"><a href="#n151">151</a></p>
-<p id="n152" class="stm mis"><a href="#n152">152</a></p>
-<p id="n153" class="pln"><a href="#n153">153</a></p>
-<p id="n154" class="pln"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="pln"><a href="#n156">156</a></p>
-<p id="n157" class="pln"><a href="#n157">157</a></p>
-<p id="n158" class="stm mis"><a href="#n158">158</a></p>
-<p id="n159" class="stm mis"><a href="#n159">159</a></p>
-<p id="n160" class="pln"><a href="#n160">160</a></p>
-<p id="n161" class="pln"><a href="#n161">161</a></p>
-<p id="n162" class="stm mis"><a href="#n162">162</a></p>
-<p id="n163" class="stm mis"><a href="#n163">163</a></p>
-<p id="n164" class="pln"><a href="#n164">164</a></p>
-<p id="n165" class="pln"><a href="#n165">165</a></p>
-<p id="n166" class="stm mis"><a href="#n166">166</a></p>
-<p id="n167" class="stm mis"><a href="#n167">167</a></p>
-<p id="n168" class="pln"><a href="#n168">168</a></p>
-<p id="n169" class="pln"><a href="#n169">169</a></p>
-<p id="n170" class="stm mis"><a href="#n170">170</a></p>
-<p id="n171" class="stm mis"><a href="#n171">171</a></p>
-<p id="n172" class="pln"><a href="#n172">172</a></p>
-<p id="n173" class="pln"><a href="#n173">173</a></p>
-<p id="n174" class="stm mis"><a href="#n174">174</a></p>
-<p id="n175" class="stm mis"><a href="#n175">175</a></p>
-<p id="n176" class="pln"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="stm mis"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="stm mis"><a href="#n181">181</a></p>
-<p id="n182" class="stm mis"><a href="#n182">182</a></p>
-<p id="n183" class="stm mis"><a href="#n183">183</a></p>
-<p id="n184" class="stm mis"><a href="#n184">184</a></p>
-<p id="n185" class="pln"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="stm mis"><a href="#n187">187</a></p>
-<p id="n188" class="pln"><a href="#n188">188</a></p>
-<p id="n189" class="stm run hide_run"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="pln"><a href="#n191">191</a></p>
-<p id="n192" class="pln"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="pln"><a href="#n195">195</a></p>
-<p id="n196" class="pln"><a href="#n196">196</a></p>
-<p id="n197" class="pln"><a href="#n197">197</a></p>
-<p id="n198" class="pln"><a href="#n198">198</a></p>
-<p id="n199" class="pln"><a href="#n199">199</a></p>
-<p id="n200" class="pln"><a href="#n200">200</a></p>
-<p id="n201" class="pln"><a href="#n201">201</a></p>
-<p id="n202" class="stm mis"><a href="#n202">202</a></p>
-<p id="n203" class="pln"><a href="#n203">203</a></p>
-<p id="n204" class="pln"><a href="#n204">204</a></p>
-<p id="n205" class="stm mis"><a href="#n205">205</a></p>
-<p id="n206" class="pln"><a href="#n206">206</a></p>
-<p id="n207" class="pln"><a href="#n207">207</a></p>
-<p id="n208" class="pln"><a href="#n208">208</a></p>
-<p id="n209" class="stm mis"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
-<p id="n212" class="pln"><a href="#n212">212</a></p>
-<p id="n213" class="pln"><a href="#n213">213</a></p>
-<p id="n214" class="pln"><a href="#n214">214</a></p>
-<p id="n215" class="pln"><a href="#n215">215</a></p>
-<p id="n216" class="pln"><a href="#n216">216</a></p>
-<p id="n217" class="pln"><a href="#n217">217</a></p>
-<p id="n218" class="pln"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="pln"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="pln"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="pln"><a href="#n228">228</a></p>
-<p id="n229" class="pln"><a href="#n229">229</a></p>
-<p id="n230" class="pln"><a href="#n230">230</a></p>
-<p id="n231" class="pln"><a href="#n231">231</a></p>
-<p id="n232" class="pln"><a href="#n232">232</a></p>
-<p id="n233" class="pln"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="pln"><a href="#n235">235</a></p>
-<p id="n236" class="pln"><a href="#n236">236</a></p>
-<p id="n237" class="stm mis"><a href="#n237">237</a></p>
-<p id="n238" class="pln"><a href="#n238">238</a></p>
-<p id="n239" class="stm mis"><a href="#n239">239</a></p>
-<p id="n240" class="stm mis"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="stm mis"><a href="#n242">242</a></p>
-<p id="n243" class="stm mis"><a href="#n243">243</a></p>
-<p id="n244" class="pln"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="stm mis"><a href="#n246">246</a></p>
-<p id="n247" class="pln"><a href="#n247">247</a></p>
-<p id="n248" class="pln"><a href="#n248">248</a></p>
-<p id="n249" class="stm mis"><a href="#n249">249</a></p>
-<p id="n250" class="pln"><a href="#n250">250</a></p>
-<p id="n251" class="stm mis"><a href="#n251">251</a></p>
-<p id="n252" class="pln"><a href="#n252">252</a></p>
-<p id="n253" class="stm mis"><a href="#n253">253</a></p>
-<p id="n254" class="pln"><a href="#n254">254</a></p>
-<p id="n255" class="stm mis"><a href="#n255">255</a></p>
-<p id="n256" class="stm mis"><a href="#n256">256</a></p>
-<p id="n257" class="stm mis"><a href="#n257">257</a></p>
-<p id="n258" class="stm mis"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="pln"><a href="#n260">260</a></p>
-<p id="n261" class="stm mis"><a href="#n261">261</a></p>
-<p id="n262" class="pln"><a href="#n262">262</a></p>
-<p id="n263" class="stm mis"><a href="#n263">263</a></p>
-<p id="n264" class="pln"><a href="#n264">264</a></p>
-<p id="n265" class="stm mis"><a href="#n265">265</a></p>
-<p id="n266" class="stm mis"><a href="#n266">266</a></p>
-<p id="n267" class="pln"><a href="#n267">267</a></p>
-<p id="n268" class="pln"><a href="#n268">268</a></p>
-<p id="n269" class="stm mis"><a href="#n269">269</a></p>
-<p id="n270" class="stm mis"><a href="#n270">270</a></p>
-<p id="n271" class="pln"><a href="#n271">271</a></p>
-<p id="n272" class="stm mis"><a href="#n272">272</a></p>
-<p id="n273" class="stm mis"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="stm mis"><a href="#n275">275</a></p>
-<p id="n276" class="pln"><a href="#n276">276</a></p>
-<p id="n277" class="stm mis"><a href="#n277">277</a></p>
-<p id="n278" class="pln"><a href="#n278">278</a></p>
-<p id="n279" class="stm run hide_run"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="pln"><a href="#n281">281</a></p>
-<p id="n282" class="pln"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="pln"><a href="#n284">284</a></p>
-<p id="n285" class="pln"><a href="#n285">285</a></p>
-<p id="n286" class="pln"><a href="#n286">286</a></p>
-<p id="n287" class="pln"><a href="#n287">287</a></p>
-<p id="n288" class="pln"><a href="#n288">288</a></p>
-<p id="n289" class="pln"><a href="#n289">289</a></p>
-<p id="n290" class="pln"><a href="#n290">290</a></p>
-<p id="n291" class="pln"><a href="#n291">291</a></p>
-<p id="n292" class="stm mis"><a href="#n292">292</a></p>
-<p id="n293" class="stm mis"><a href="#n293">293</a></p>
-<p id="n294" class="pln"><a href="#n294">294</a></p>
-<p id="n295" class="stm mis"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="stm run hide_run"><a href="#n297">297</a></p>
-<p id="n298" class="pln"><a href="#n298">298</a></p>
-<p id="n299" class="pln"><a href="#n299">299</a></p>
-<p id="n300" class="pln"><a href="#n300">300</a></p>
-<p id="n301" class="pln"><a href="#n301">301</a></p>
-<p id="n302" class="pln"><a href="#n302">302</a></p>
-<p id="n303" class="pln"><a href="#n303">303</a></p>
-<p id="n304" class="pln"><a href="#n304">304</a></p>
-<p id="n305" class="pln"><a href="#n305">305</a></p>
-<p id="n306" class="pln"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="pln"><a href="#n308">308</a></p>
-<p id="n309" class="pln"><a href="#n309">309</a></p>
-<p id="n310" class="pln"><a href="#n310">310</a></p>
-<p id="n311" class="pln"><a href="#n311">311</a></p>
-<p id="n312" class="pln"><a href="#n312">312</a></p>
-<p id="n313" class="pln"><a href="#n313">313</a></p>
-<p id="n314" class="pln"><a href="#n314">314</a></p>
-<p id="n315" class="pln"><a href="#n315">315</a></p>
-<p id="n316" class="stm mis"><a href="#n316">316</a></p>
-<p id="n317" class="pln"><a href="#n317">317</a></p>
-<p id="n318" class="stm mis"><a href="#n318">318</a></p>
-<p id="n319" class="pln"><a href="#n319">319</a></p>
-<p id="n320" class="stm mis"><a href="#n320">320</a></p>
-<p id="n321" class="pln"><a href="#n321">321</a></p>
-<p id="n322" class="pln"><a href="#n322">322</a></p>
-<p id="n323" class="stm mis"><a href="#n323">323</a></p>
-<p id="n324" class="pln"><a href="#n324">324</a></p>
-<p id="n325" class="stm mis"><a href="#n325">325</a></p>
-<p id="n326" class="stm mis"><a href="#n326">326</a></p>
-<p id="n327" class="stm mis"><a href="#n327">327</a></p>
-<p id="n328" class="stm mis"><a href="#n328">328</a></p>
-<p id="n329" class="stm mis"><a href="#n329">329</a></p>
-<p id="n330" class="stm mis"><a href="#n330">330</a></p>
-<p id="n331" class="stm mis"><a href="#n331">331</a></p>
-<p id="n332" class="stm mis"><a href="#n332">332</a></p>
-<p id="n333" class="stm mis"><a href="#n333">333</a></p>
-<p id="n334" class="pln"><a href="#n334">334</a></p>
-<p id="n335" class="stm mis"><a href="#n335">335</a></p>
-<p id="n336" class="stm mis"><a href="#n336">336</a></p>
-<p id="n337" class="stm mis"><a href="#n337">337</a></p>
-<p id="n338" class="stm mis"><a href="#n338">338</a></p>
-<p id="n339" class="pln"><a href="#n339">339</a></p>
-<p id="n340" class="pln"><a href="#n340">340</a></p>
-<p id="n341" class="stm mis"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="stm mis"><a href="#n343">343</a></p>
-<p id="n344" class="pln"><a href="#n344">344</a></p>
-<p id="n345" class="stm mis"><a href="#n345">345</a></p>
-<p id="n346" class="pln"><a href="#n346">346</a></p>
-<p id="n347" class="stm run hide_run"><a href="#n347">347</a></p>
-<p id="n348" class="pln"><a href="#n348">348</a></p>
-<p id="n349" class="pln"><a href="#n349">349</a></p>
-<p id="n350" class="pln"><a href="#n350">350</a></p>
-<p id="n351" class="pln"><a href="#n351">351</a></p>
-<p id="n352" class="pln"><a href="#n352">352</a></p>
-<p id="n353" class="pln"><a href="#n353">353</a></p>
-<p id="n354" class="pln"><a href="#n354">354</a></p>
-<p id="n355" class="pln"><a href="#n355">355</a></p>
-<p id="n356" class="pln"><a href="#n356">356</a></p>
-<p id="n357" class="pln"><a href="#n357">357</a></p>
-<p id="n358" class="pln"><a href="#n358">358</a></p>
-<p id="n359" class="pln"><a href="#n359">359</a></p>
-<p id="n360" class="pln"><a href="#n360">360</a></p>
-<p id="n361" class="pln"><a href="#n361">361</a></p>
-<p id="n362" class="pln"><a href="#n362">362</a></p>
-<p id="n363" class="pln"><a href="#n363">363</a></p>
-<p id="n364" class="pln"><a href="#n364">364</a></p>
-<p id="n365" class="pln"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="pln"><a href="#n367">367</a></p>
-<p id="n368" class="pln"><a href="#n368">368</a></p>
-<p id="n369" class="pln"><a href="#n369">369</a></p>
-<p id="n370" class="pln"><a href="#n370">370</a></p>
-<p id="n371" class="pln"><a href="#n371">371</a></p>
-<p id="n372" class="stm mis"><a href="#n372">372</a></p>
-<p id="n373" class="pln"><a href="#n373">373</a></p>
-<p id="n374" class="stm mis"><a href="#n374">374</a></p>
-<p id="n375" class="stm mis"><a href="#n375">375</a></p>
-<p id="n376" class="pln"><a href="#n376">376</a></p>
-<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
-<p id="n378" class="pln"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="pln"><a href="#n380">380</a></p>
-<p id="n381" class="pln"><a href="#n381">381</a></p>
-<p id="n382" class="pln"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="pln"><a href="#n384">384</a></p>
-<p id="n385" class="pln"><a href="#n385">385</a></p>
-<p id="n386" class="stm mis"><a href="#n386">386</a></p>
-<p id="n387" class="pln"><a href="#n387">387</a></p>
-<p id="n388" class="stm mis"><a href="#n388">388</a></p>
-<p id="n389" class="stm mis"><a href="#n389">389</a></p>
-<p id="n390" class="pln"><a href="#n390">390</a></p>
-<p id="n391" class="stm run hide_run"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="pln"><a href="#n393">393</a></p>
-<p id="n394" class="pln"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="pln"><a href="#n396">396</a></p>
-<p id="n397" class="pln"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="pln"><a href="#n399">399</a></p>
-<p id="n400" class="pln"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="pln"><a href="#n402">402</a></p>
-<p id="n403" class="pln"><a href="#n403">403</a></p>
-<p id="n404" class="pln"><a href="#n404">404</a></p>
-<p id="n405" class="pln"><a href="#n405">405</a></p>
-<p id="n406" class="stm mis"><a href="#n406">406</a></p>
-<p id="n407" class="pln"><a href="#n407">407</a></p>
-<p id="n408" class="stm mis"><a href="#n408">408</a></p>
-<p id="n409" class="stm mis"><a href="#n409">409</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">xml</span><span class="op">.</span><span class="nam">etree</span><span class="op">.</span><span class="nam">ElementTree</span> <span class="key">as</span> <span class="nam">ElementTree</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">from</span> <span class="nam">matplotlib</span><span class="op">.</span><span class="nam">cm</span> <span class="key">import</span> <span class="nam">jet</span> <span class="key">as</span> <span class="nam">jet_cm</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">simplekml</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="key">def</span> <span class="nam">kml_linestring_coordinates</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln">    <span class="str">"""Return lat, lon coordinates from a LineString contained in a KML file</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln"><span class="str">    This function looks for a LineString under the coordinates tag in the</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="str">    following structure.</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="str">    &lt;kml xmlns="http://www.opengis.net/kml/2.2" ...></span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">    &lt;Document></span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="str">        &lt;Placemark></span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">            &lt;LineString></span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="str">                &lt;coordinates></span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="str">                    "lat1,lon1,z1 lat2,lon2,z2 ..."</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="pln"><span class="str">                &lt;/coordinates></span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln"><span class="str">            &lt;/LineString></span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln"><span class="str">        &lt;/Placemark></span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln"><span class="str">    &lt;/Document></span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="str">    &lt;/kml></span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="str">    kml_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln"><span class="str">        Path to KML file containing a LineString</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln"><span class="str">    Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="str">    -------</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="str">    numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm mis">    <span class="nam">ns</span> <span class="op">=</span> <span class="op">{</span><span class="str">'og'</span><span class="op">:</span> <span class="str">'http://www.opengis.net/kml/2.2'</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm mis">    <span class="nam">tree</span> <span class="op">=</span> <span class="nam">ElementTree</span><span class="op">.</span><span class="nam">parse</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm mis">    <span class="nam">xml_root</span> <span class="op">=</span> <span class="nam">tree</span><span class="op">.</span><span class="nam">getroot</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm mis">    <span class="nam">document</span> <span class="op">=</span> <span class="nam">xml_root</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:Document'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm mis">    <span class="nam">placemark</span> <span class="op">=</span> <span class="nam">document</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:Placemark'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="stm mis">    <span class="nam">linestring</span> <span class="op">=</span> <span class="nam">placemark</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:LineString'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm mis">    <span class="nam">coordinates</span> <span class="op">=</span> <span class="nam">linestring</span><span class="op">.</span><span class="nam">find</span><span class="op">(</span><span class="str">'og:coordinates'</span><span class="op">,</span> <span class="nam">ns</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm mis">    <span class="nam">list_coordinates</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln">        <span class="op">[</span><span class="nam">cset</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">','</span><span class="op">)</span> <span class="key">for</span> <span class="nam">cset</span> <span class="key">in</span> <span class="nam">coordinates</span><span class="op">.</span><span class="nam">text</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">' '</span><span class="op">)</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm mis">    <span class="nam">flt_coordinates</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln">        <span class="op">[</span><span class="op">[</span><span class="nam">float</span><span class="op">(</span><span class="nam">cset</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">)</span><span class="op">,</span> <span class="nam">float</span><span class="op">(</span><span class="nam">cset</span><span class="op">[</span><span class="num">1</span><span class="op">]</span><span class="op">)</span><span class="op">]</span> <span class="key">for</span> <span class="nam">cset</span> <span class="key">in</span> <span class="nam">list_coordinates</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm mis">    <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="nam">flt_coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run"><span class="key">def</span> <span class="nam">great_circle_dist</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln">    <span class="str">"""Computes great circle distance</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="str">    coordinates : np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="str">        N x 2 ndarray, with column 0 as longitude and column 1 as latitude</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="str">    Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="str">    -------</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="str">    numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="str">        Cumulative distance of array, in meters</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t69" class="stm mis">    <span class="nam">LATT_COLUMN</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm mis">    <span class="nam">LONG_COLUMN</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm mis">    <span class="nam">rads</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">radians</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm mis">    <span class="nam">start_latt</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="op">:</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="nam">LATT_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm mis">    <span class="nam">end_latt</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="op">,</span> <span class="nam">LATT_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm mis">    <span class="nam">d_latt</span> <span class="op">=</span> <span class="nam">end_latt</span> <span class="op">-</span> <span class="nam">start_latt</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="stm mis">    <span class="nam">d_long</span> <span class="op">=</span> <span class="nam">rads</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="op">,</span> <span class="nam">LONG_COLUMN</span><span class="op">]</span> <span class="op">-</span> <span class="nam">rads</span><span class="op">[</span><span class="op">:</span><span class="op">-</span><span class="num">1</span><span class="op">,</span> <span class="nam">LONG_COLUMN</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm mis">    <span class="nam">a</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sin</span><span class="op">(</span><span class="nam">d_latt</span><span class="op">/</span><span class="num">2</span><span class="op">)</span><span class="op">**</span><span class="num">2</span> <span class="op">+</span> <span class="nam">np</span><span class="op">.</span><span class="nam">cos</span><span class="op">(</span><span class="nam">start_latt</span><span class="op">)</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln">        <span class="nam">np</span><span class="op">.</span><span class="nam">cos</span><span class="op">(</span><span class="nam">end_latt</span><span class="op">)</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sin</span><span class="op">(</span><span class="nam">d_long</span><span class="op">/</span><span class="num">2</span><span class="op">)</span><span class="op">**</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">    <span class="nam">c</span> <span class="op">=</span> <span class="num">2</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arcsin</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">a</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t84" class="stm mis">    <span class="nam">dist</span> <span class="op">=</span> <span class="num">6371e3</span> <span class="op">*</span> <span class="nam">c</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">    <span class="nam">cum_dist</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">insert</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">cumsum</span><span class="op">(</span><span class="nam">dist</span><span class="op">)</span><span class="op">,</span> <span class="num">0</span><span class="op">,</span> <span class="num">0</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm mis">    <span class="key">return</span> <span class="nam">cum_dist</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t89" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t90" class="stm run hide_run"><span class="key">class</span> <span class="nam">FluEggKML</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln">    <span class="str">"""Manages KML file output for FluEgg.</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="str">    centerline_kml_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="str">        Path to stream centerline KML. The centerline KML must have uniform</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="pln"><span class="str">        spacing between the points.</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="pln"><span class="str">    spawing_location : float</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln"><span class="str">        Streamwise distance downstream of spawning location.</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t101" class="pln"><span class="str">    Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="pln"><span class="str">    -----</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="pln"><span class="str">    Particle streamwise distances are mapped to geographic coordinates under</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="str">    the assumption the points in the centerline KML are spaced equally along</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="pln"><span class="str">    the streamline.</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln"><span class="str">    The first coordinate in the KML centerline is assumed to be the upstream-</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="pln"><span class="str">    most point. The streamwise distance at this point is 0.</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t110" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">centerline_kml_path</span><span class="op">,</span> <span class="nam">spawning_location</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln">        <span class="str">"""see help(self) for initialization details"""</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln">        <span class="com"># coordinates and stream distances corresponding to the centerline</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln">        <span class="com"># points</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="nam">coordinates</span> <span class="op">=</span> <span class="nam">kml_linestring_coordinates</span><span class="op">(</span><span class="nam">centerline_kml_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm mis">        <span class="nam">dist</span> <span class="op">=</span> <span class="nam">great_circle_dist</span><span class="op">(</span><span class="nam">coordinates</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln">        <span class="com"># dist, lat, lon</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">hstack</span><span class="op">(</span><span class="op">(</span><span class="nam">dist</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="nam">np</span><span class="op">.</span><span class="nam">newaxis</span><span class="op">]</span><span class="op">,</span> <span class="nam">coordinates</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t124" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_spawning_location</span> <span class="op">=</span> <span class="nam">spawning_location</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t126" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">kml</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="pln">        <span class="str">"""Add the spawning location to a KML</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="pln"><span class="str">        kml : simplekml.Kml</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm mis">        <span class="nam">spawning_style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln">            <span class="str">'http://maps.google.com/mapfiles/kml/shapes/fishing.png'</span><span class="strut">&nbsp;</span></p>
-<p id="t138" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="str">'ffffff00'</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="stm mis">        <span class="nam">spawning_style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="num">1.2</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t141" class="stm mis">        <span class="nam">spawning_coords</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_spawning_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t143" class="stm mis">        <span class="nam">spawning_location</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="nam">spawning_coords</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="stm mis">        <span class="nam">spawning_location</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">spawning_style</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">shape</span><span class="op">,</span> <span class="nam">color</span><span class="op">,</span> <span class="nam">scale</span><span class="op">,</span> <span class="nam">alphaint</span><span class="op">=</span><span class="num">128</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">        <span class="key">if</span> <span class="nam">shape</span> <span class="op">==</span> <span class="str">'dot'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="stm mis">            <span class="nam">icon_shape</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="pln">                <span class="str">'http://maps.google.com/mapfiles/kml/shapes/shaded_dot.png'</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="stm mis">        <span class="key">elif</span> <span class="nam">shape</span> <span class="op">==</span> <span class="str">'square'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="stm mis">            <span class="nam">icon_shape</span> <span class="op">=</span> <span class="str">'http://maps.google.com/mapfiles/kml/shapes/'</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t153" class="pln">                <span class="str">'placemark_square.png'</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown shape: {}"</span><span class="op">.</span><span class="nam">format</span><span class="op">(</span><span class="nam">shape</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t157" class="pln">        <span class="com"># blue</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="stm mis">        <span class="key">if</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'b'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">blue</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t161" class="pln">        <span class="com"># red</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'r'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">red</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t165" class="pln">        <span class="com"># yellow</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'y'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">yellow</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t169" class="pln">        <span class="com"># magenta</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'m'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">magenta</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t173" class="pln">        <span class="com"># black</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="stm mis">        <span class="key">elif</span> <span class="nam">color</span> <span class="op">==</span> <span class="str">'k'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t175" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">black</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln">        <span class="com"># assume color is passed as a KML hex value</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="stm mis">            <span class="nam">icon_color</span> <span class="op">=</span> <span class="nam">color</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="nam">scale</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="nam">icon_shape</span><span class="strut">&nbsp;</span></p>
-<p id="t184" class="stm mis">        <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="pln">            <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">changealphaint</span><span class="op">(</span><span class="nam">alphaint</span><span class="op">,</span> <span class="nam">icon_color</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t187" class="stm mis">        <span class="key">return</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t189" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t191" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t192" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln"><span class="str">        point_dist : float, numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t195" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t196" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="pln"><span class="str">        latitude, longitude : float, numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t200" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t202" class="stm mis">        <span class="nam">latitude</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">interp</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="pln">                             <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="pln">                             <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="stm mis">        <span class="nam">longitude</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">interp</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="pln">                              <span class="nam">self</span><span class="op">.</span><span class="nam">_centerline_coords</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t209" class="stm mis">        <span class="key">return</span> <span class="nam">latitude</span><span class="op">,</span> <span class="nam">longitude</span><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t211" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_particle_locations</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="pln">        <span class="str">"""KML text containing georeferenced points</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t214" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="pln"><span class="str">        depth_fraction : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln"><span class="str">            Depth fraction of points. Depth fraction is the fractional height</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t226" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln"><span class="str">        Particles with depth fractions greater than or equal to 0.05 are</span><span class="strut">&nbsp;</span></p>
-<p id="t228" class="pln"><span class="str">        shown as suspended particles.</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t230" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="pln"><span class="str">        write_locations : Write points to a KML file</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t235" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t236" class="pln">        <span class="com">#  eggs greater than suspended_depth_fraction are shown as suspended</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="stm mis">        <span class="nam">suspended_depth_fraction</span> <span class="op">=</span> <span class="num">0.05</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm mis">        <span class="key">if</span> <span class="nam">point_dist</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">!=</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"point_dist must be a one-dimensional array"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm mis">        <span class="key">if</span> <span class="nam">depth_fraction</span><span class="op">.</span><span class="nam">ndim</span> <span class="op">!=</span> <span class="num">1</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"depth_fraction must be a one-dimensional array"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t244" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">        <span class="key">if</span> <span class="key">not</span> <span class="nam">point_dist</span><span class="op">.</span><span class="nam">shape</span> <span class="op">==</span> <span class="nam">depth_fraction</span><span class="op">.</span><span class="nam">shape</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"point_dist and depth_fraction must have "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t247" class="pln">                             <span class="str">"the same shape"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t249" class="stm mis">        <span class="nam">suspended_index</span> <span class="op">=</span> <span class="nam">suspended_depth_fraction</span> <span class="op">&lt;=</span> <span class="nam">depth_fraction</span><span class="strut">&nbsp;</span></p>
-<p id="t250" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t251" class="stm mis">        <span class="nam">latitude</span><span class="op">,</span> <span class="nam">longitude</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t253" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t255" class="stm mis">        <span class="nam">point_shape</span> <span class="op">=</span> <span class="str">'dot'</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="stm mis">        <span class="nam">point_scale</span> <span class="op">=</span> <span class="num">0.4</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="stm mis">        <span class="nam">suspended_color</span> <span class="op">=</span> <span class="str">'y'</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="stm mis">        <span class="nam">bottom_color</span> <span class="op">=</span> <span class="str">'m'</span><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t260" class="pln">        <span class="com">#  add suspended points</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">point_shape</span><span class="op">,</span> <span class="nam">suspended_color</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t262" class="pln">                                      <span class="nam">point_scale</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="stm mis">        <span class="key">for</span> <span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span> <span class="key">in</span> <span class="nam">zip</span><span class="op">(</span><span class="nam">latitude</span><span class="op">[</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="pln">                            <span class="nam">longitude</span><span class="op">[</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t268" class="pln">        <span class="com">#  add non-suspended (bottom) points</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="stm mis">        <span class="nam">style</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_point_style</span><span class="op">(</span><span class="nam">point_shape</span><span class="op">,</span> <span class="nam">bottom_color</span><span class="op">,</span> <span class="nam">point_scale</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="stm mis">        <span class="key">for</span> <span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span> <span class="key">in</span> <span class="nam">zip</span><span class="op">(</span><span class="nam">latitude</span><span class="op">[</span><span class="op">~</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t271" class="pln">                            <span class="nam">longitude</span><span class="op">[</span><span class="op">~</span><span class="nam">suspended_index</span><span class="op">]</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t277" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t279" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln">        <span class="str">"""KML text containing georeferenced spawning location</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t282" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t286" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="pln"><span class="str">        write_locations : Write points to a KML file</span><span class="strut">&nbsp;</span></p>
-<p id="t289" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t290" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t292" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t294" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t295" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t297" class="stm run hide_run">    <span class="key">def</span> <span class="nam">kml_quantiles</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="pln">        <span class="str">"""KML text containing georeferenced quantiles of particle locations.</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t300" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t303" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t305" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t309" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="pln"><span class="str">        Locations for the 0, 0.10, 0.25, 0.50, 0.75, 0.90, and 1 quantiles are</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="pln"><span class="str">        included in the KML string.</span><span class="strut">&nbsp;</span></p>
-<p id="t313" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t314" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t315" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t316" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t317" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t318" class="stm mis">        <span class="nam">quantiles</span> <span class="op">=</span> <span class="op">[</span><span class="num">0</span><span class="op">,</span> <span class="num">0.10</span><span class="op">,</span> <span class="num">0.25</span><span class="op">,</span> <span class="num">0.50</span><span class="op">,</span> <span class="num">0.75</span><span class="op">,</span> <span class="num">0.90</span><span class="op">,</span> <span class="num">1.</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t320" class="stm mis">        <span class="nam">computed_quantiles</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">quantile</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span> <span class="nam">quantiles</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t321" class="pln">                                         <span class="nam">interpolation</span><span class="op">=</span><span class="str">'nearest'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t323" class="stm mis">        <span class="nam">la</span><span class="op">,</span> <span class="nam">lo</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_interpolate_points</span><span class="op">(</span><span class="nam">computed_quantiles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t324" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t325" class="stm mis">        <span class="key">for</span> <span class="nam">i</span><span class="op">,</span> <span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span> <span class="key">in</span> <span class="nam">enumerate</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">la</span><span class="op">,</span> <span class="nam">lo</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t326" class="stm mis">            <span class="nam">q</span> <span class="op">=</span> <span class="nam">quantiles</span><span class="op">[</span><span class="nam">i</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="stm mis">            <span class="nam">pnt</span> <span class="op">=</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">newpoint</span><span class="op">(</span><span class="nam">name</span><span class="op">=</span><span class="nam">str</span><span class="op">(</span><span class="nam">q</span><span class="op">)</span><span class="op">,</span> <span class="nam">coords</span><span class="op">=</span><span class="op">[</span><span class="op">(</span><span class="nam">lat</span><span class="op">,</span> <span class="nam">lon</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t328" class="stm mis">            <span class="nam">X</span> <span class="op">=</span> <span class="num">1</span> <span class="op">-</span> <span class="nam">abs</span><span class="op">(</span><span class="nam">q</span> <span class="op">-</span> <span class="num">0.5</span><span class="op">)</span><span class="op">/</span><span class="num">0.5</span><span class="strut">&nbsp;</span></p>
-<p id="t329" class="stm mis">            <span class="nam">rgba</span> <span class="op">=</span> <span class="nam">jet_cm</span><span class="op">(</span><span class="nam">X</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t330" class="stm mis">            <span class="nam">red_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t331" class="stm mis">            <span class="nam">green_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">1</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t332" class="stm mis">            <span class="nam">blue_value</span> <span class="op">=</span> <span class="nam">int</span><span class="op">(</span><span class="nam">rgba</span><span class="op">[</span><span class="num">2</span><span class="op">]</span> <span class="op">*</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t333" class="stm mis">            <span class="nam">color</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Color</span><span class="op">.</span><span class="nam">rgb</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t334" class="pln">                <span class="nam">red_value</span><span class="op">,</span> <span class="nam">green_value</span><span class="op">,</span> <span class="nam">blue_value</span><span class="op">,</span> <span class="num">255</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t335" class="stm mis">            <span class="nam">style</span> <span class="op">=</span> <span class="nam">simplekml</span><span class="op">.</span><span class="nam">Style</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">scale</span> <span class="op">=</span> <span class="num">1.25</span><span class="strut">&nbsp;</span></p>
-<p id="t337" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">color</span> <span class="op">=</span> <span class="nam">color</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="stm mis">            <span class="nam">style</span><span class="op">.</span><span class="nam">iconstyle</span><span class="op">.</span><span class="nam">icon</span><span class="op">.</span><span class="nam">href</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t339" class="pln">                <span class="str">'http://maps.google.com/mapfiles/kml/shapes/'</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="pln">                <span class="str">'placemark_square.png'</span><span class="strut">&nbsp;</span></p>
-<p id="t341" class="stm mis">            <span class="nam">pnt</span><span class="op">.</span><span class="nam">style</span> <span class="op">=</span> <span class="nam">style</span><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t343" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_add_spawning_location</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t344" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t345" class="stm mis">        <span class="key">return</span> <span class="nam">kml</span><span class="op">.</span><span class="nam">kml</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t347" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_locations</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t348" class="pln">        <span class="str">"""Write particle locations to a KML file</span><span class="strut">&nbsp;</span></p>
-<p id="t349" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t350" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t351" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t352" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="pln"><span class="str">            Stream distance of points (distance downstream).</span><span class="strut">&nbsp;</span></p>
-<p id="t354" class="pln"><span class="str">        depth_fraction : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t355" class="pln"><span class="str">            Depth fraction of points. Depth fraction is the fractional height</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="pln"><span class="str">            above the bed.</span><span class="strut">&nbsp;</span></p>
-<p id="t357" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t358" class="pln"><span class="str">            Path to write KML file to.</span><span class="strut">&nbsp;</span></p>
-<p id="t359" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t360" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t361" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
-<p id="t362" class="pln"><span class="str">        Particles with depth fractions greater than or equal to 0.05 are</span><span class="strut">&nbsp;</span></p>
-<p id="t363" class="pln"><span class="str">        shown as suspended particles.</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t365" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
-<p id="t367" class="pln"><span class="str">        kml_particle_locations : KML text containing georeferenced particle</span><span class="strut">&nbsp;</span></p>
-<p id="t368" class="pln"><span class="str">            locations.</span><span class="strut">&nbsp;</span></p>
-<p id="t369" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t370" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t372" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_particle_locations</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">,</span> <span class="nam">depth_fraction</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t373" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t374" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t375" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t376" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t377" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_spawning_location</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t378" class="pln">        <span class="str">"""Write spawning location to a KML file</span><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t380" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t384" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t386" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_spawning_location</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t388" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t389" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t391" class="stm run hide_run">    <span class="key">def</span> <span class="nam">write_quantiles</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">point_dist</span><span class="op">,</span> <span class="nam">kml_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t393" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t394" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t396" class="pln"><span class="str">        point_dist : numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t397" class="pln"><span class="str">        kml_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t399" class="pln"><span class="str">        See also</span><span class="strut">&nbsp;</span></p>
-<p id="t400" class="pln"><span class="str">        --------</span><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln"><span class="str">        kml_quantiles : KML text containing georeferenced quantiles of particle</span><span class="strut">&nbsp;</span></p>
-<p id="t402" class="pln"><span class="str">            locations.</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t404" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t405" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t406" class="stm mis">        <span class="nam">kml</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">kml_quantiles</span><span class="op">(</span><span class="nam">point_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t408" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">kml_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t409" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">writelines</span><span class="op">(</span><span class="nam">kml</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_random_py.html b/coverage_report/fluegg_random_py.html
deleted file mode 100644
index 1726c11..0000000
--- a/coverage_report/fluegg_random_py.html
+++ /dev/null
@@ -1,271 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\random.py: 50%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\random.py</b> :
-            <span class="pc_cov">50%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            36 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">18 run</span>
-            <span class="mis shortkey_m button_toggle_mis">18 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="stm mis"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
-<p id="n20" class="pln"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="stm mis"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
-<p id="n37" class="pln"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="pln"><a href="#n40">40</a></p>
-<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
-<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
-<p id="n45" class="stm run hide_run"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="pln"><a href="#n51">51</a></p>
-<p id="n52" class="pln"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="pln"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="stm mis"><a href="#n62">62</a></p>
-<p id="n63" class="stm mis"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="stm mis"><a href="#n65">65</a></p>
-<p id="n66" class="stm mis"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="stm mis"><a href="#n70">70</a></p>
-<p id="n71" class="stm mis"><a href="#n71">71</a></p>
-<p id="n72" class="pln"><a href="#n72">72</a></p>
-<p id="n73" class="stm mis"><a href="#n73">73</a></p>
-<p id="n74" class="pln"><a href="#n74">74</a></p>
-<p id="n75" class="stm mis"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="stm mis"><a href="#n79">79</a></p>
-<p id="n80" class="stm mis"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="stm mis"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="pln"><a href="#n85">85</a></p>
-<p id="n86" class="stm mis"><a href="#n86">86</a></p>
-<p id="n87" class="stm mis"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm mis"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="stm mis"><a href="#n91">91</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">h5py</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="stm run hide_run"><span class="key">class</span> <span class="nam">RandomNumbers</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm run hide_run"><span class="key">class</span> <span class="nam">NormalRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln">    <span class="str">"""Returns normally distributed random numbers.</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="pln">        <span class="str">"""Returns a normally distributed random number</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln"><span class="str">        Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln"><span class="str">        -----</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="str">        Calls numpy.random.normal for random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="op">(</span><span class="nam">loc</span><span class="op">=</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">scale</span><span class="op">=</span><span class="nam">std</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln">        <span class="str">"""Returns an array of normally distributed random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="stm mis">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="op">(</span><span class="nam">loc</span><span class="op">=</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">scale</span><span class="op">=</span><span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">=</span><span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm run hide_run"><span class="key">class</span> <span class="nam">NonRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="pln">    <span class="str">"""Returns means instead of random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm run hide_run">        <span class="key">return</span> <span class="nam">mean</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="stm run hide_run">        <span class="key">return</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm run hide_run"><span class="key">class</span> <span class="nam">HDF5NormalRandomNumbers</span><span class="op">(</span><span class="nam">RandomNumbers</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln">    <span class="str">"""Returns normal random numbers from an HDF5 file.</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t51" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="str">    file_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t54" class="pln"><span class="str">        Path to HDF5 file</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln"><span class="str">    data_set : str</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="str">        Data set containing standard normal random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">file_path</span><span class="op">,</span> <span class="nam">data_set</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t62" class="stm mis">        <span class="key">with</span> <span class="nam">h5py</span><span class="op">.</span><span class="nam">File</span><span class="op">(</span><span class="nam">file_path</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="stm mis">            <span class="nam">dset</span> <span class="op">=</span> <span class="nam">f</span><span class="op">[</span><span class="nam">data_set</span><span class="op">]</span><span class="op">[</span><span class="op">:</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t65" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span> <span class="op">=</span> <span class="nam">dset</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">></span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"No remaining random numbers"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t73" class="stm mis">        <span class="nam">size</span> <span class="op">=</span> <span class="nam">mean</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">random_array</span><span class="op">(</span><span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm run hide_run">    <span class="key">def</span> <span class="nam">random_array</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">mean</span><span class="op">,</span> <span class="nam">std</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t79" class="stm mis">        <span class="nam">first_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm mis">        <span class="nam">last_index</span> <span class="op">=</span> <span class="nam">first_index</span> <span class="op">+</span> <span class="nam">size</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">        <span class="key">if</span> <span class="nam">last_index</span> <span class="op">></span> <span class="nam">len</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln">                <span class="str">"`size` exceeds the number of remaining random numbers"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t86" class="stm mis">        <span class="nam">standard_values</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_dset</span><span class="op">[</span><span class="nam">first_index</span><span class="op">:</span><span class="nam">last_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm mis">        <span class="nam">scaled_values</span> <span class="op">=</span> <span class="nam">standard_values</span> <span class="op">*</span> <span class="nam">std</span> <span class="op">+</span> <span class="nam">mean</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_index</span> <span class="op">=</span> <span class="nam">last_index</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="stm mis">        <span class="key">return</span> <span class="nam">scaled_values</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_ras_py.html b/coverage_report/fluegg_ras_py.html
deleted file mode 100644
index c68a2ca..0000000
--- a/coverage_report/fluegg_ras_py.html
+++ /dev/null
@@ -1,1007 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\ras.py: 25%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\ras.py</b> :
-            <span class="pc_cov">25%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            197 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">49 run</span>
-            <span class="mis shortkey_m button_toggle_mis">148 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="stm run hide_run"><a href="#n13">13</a></p>
-<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
-<p id="n15" class="stm run hide_run"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="stm mis"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="stm run hide_run"><a href="#n25">25</a></p>
-<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
-<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
-<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
-<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
-<p id="n41" class="pln"><a href="#n41">41</a></p>
-<p id="n42" class="stm mis"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
-<p id="n45" class="pln"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="stm run hide_run"><a href="#n47">47</a></p>
-<p id="n48" class="pln"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="stm run hide_run"><a href="#n50">50</a></p>
-<p id="n51" class="stm mis"><a href="#n51">51</a></p>
-<p id="n52" class="pln"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="pln"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="pln"><a href="#n72">72</a></p>
-<p id="n73" class="pln"><a href="#n73">73</a></p>
-<p id="n74" class="pln"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="stm run hide_run"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm mis"><a href="#n82">82</a></p>
-<p id="n83" class="stm mis"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="pln"><a href="#n87">87</a></p>
-<p id="n88" class="stm mis"><a href="#n88">88</a></p>
-<p id="n89" class="stm mis"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="stm mis"><a href="#n92">92</a></p>
-<p id="n93" class="stm mis"><a href="#n93">93</a></p>
-<p id="n94" class="stm mis"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="stm mis"><a href="#n97">97</a></p>
-<p id="n98" class="stm mis"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="stm mis"><a href="#n100">100</a></p>
-<p id="n101" class="stm mis"><a href="#n101">101</a></p>
-<p id="n102" class="pln"><a href="#n102">102</a></p>
-<p id="n103" class="stm mis"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="stm mis"><a href="#n105">105</a></p>
-<p id="n106" class="stm mis"><a href="#n106">106</a></p>
-<p id="n107" class="stm mis"><a href="#n107">107</a></p>
-<p id="n108" class="stm mis"><a href="#n108">108</a></p>
-<p id="n109" class="stm mis"><a href="#n109">109</a></p>
-<p id="n110" class="stm mis"><a href="#n110">110</a></p>
-<p id="n111" class="stm mis"><a href="#n111">111</a></p>
-<p id="n112" class="stm mis"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="stm mis"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="stm mis"><a href="#n116">116</a></p>
-<p id="n117" class="stm mis"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="stm mis"><a href="#n119">119</a></p>
-<p id="n120" class="stm mis"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
-<p id="n123" class="stm mis"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-<p id="n125" class="stm run hide_run"><a href="#n125">125</a></p>
-<p id="n126" class="stm mis"><a href="#n126">126</a></p>
-<p id="n127" class="pln"><a href="#n127">127</a></p>
-<p id="n128" class="stm run hide_run"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="stm mis"><a href="#n130">130</a></p>
-<p id="n131" class="stm mis"><a href="#n131">131</a></p>
-<p id="n132" class="stm mis"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="stm mis"><a href="#n134">134</a></p>
-<p id="n135" class="pln"><a href="#n135">135</a></p>
-<p id="n136" class="stm mis"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="pln"><a href="#n138">138</a></p>
-<p id="n139" class="stm mis"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="stm run hide_run"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="pln"><a href="#n143">143</a></p>
-<p id="n144" class="stm mis"><a href="#n144">144</a></p>
-<p id="n145" class="stm mis"><a href="#n145">145</a></p>
-<p id="n146" class="stm mis"><a href="#n146">146</a></p>
-<p id="n147" class="pln"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="stm mis"><a href="#n149">149</a></p>
-<p id="n150" class="pln"><a href="#n150">150</a></p>
-<p id="n151" class="stm mis"><a href="#n151">151</a></p>
-<p id="n152" class="pln"><a href="#n152">152</a></p>
-<p id="n153" class="stm run hide_run"><a href="#n153">153</a></p>
-<p id="n154" class="pln"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="pln"><a href="#n156">156</a></p>
-<p id="n157" class="pln"><a href="#n157">157</a></p>
-<p id="n158" class="stm mis"><a href="#n158">158</a></p>
-<p id="n159" class="pln"><a href="#n159">159</a></p>
-<p id="n160" class="stm mis"><a href="#n160">160</a></p>
-<p id="n161" class="pln"><a href="#n161">161</a></p>
-<p id="n162" class="stm mis"><a href="#n162">162</a></p>
-<p id="n163" class="stm mis"><a href="#n163">163</a></p>
-<p id="n164" class="pln"><a href="#n164">164</a></p>
-<p id="n165" class="pln"><a href="#n165">165</a></p>
-<p id="n166" class="stm mis"><a href="#n166">166</a></p>
-<p id="n167" class="pln"><a href="#n167">167</a></p>
-<p id="n168" class="stm mis"><a href="#n168">168</a></p>
-<p id="n169" class="stm mis"><a href="#n169">169</a></p>
-<p id="n170" class="pln"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="stm mis"><a href="#n172">172</a></p>
-<p id="n173" class="pln"><a href="#n173">173</a></p>
-<p id="n174" class="stm mis"><a href="#n174">174</a></p>
-<p id="n175" class="stm mis"><a href="#n175">175</a></p>
-<p id="n176" class="pln"><a href="#n176">176</a></p>
-<p id="n177" class="stm mis"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="stm mis"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="stm mis"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="stm run hide_run"><a href="#n183">183</a></p>
-<p id="n184" class="pln"><a href="#n184">184</a></p>
-<p id="n185" class="stm mis"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="stm mis"><a href="#n187">187</a></p>
-<p id="n188" class="pln"><a href="#n188">188</a></p>
-<p id="n189" class="pln"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="stm mis"><a href="#n191">191</a></p>
-<p id="n192" class="pln"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="stm mis"><a href="#n195">195</a></p>
-<p id="n196" class="stm mis"><a href="#n196">196</a></p>
-<p id="n197" class="pln"><a href="#n197">197</a></p>
-<p id="n198" class="pln"><a href="#n198">198</a></p>
-<p id="n199" class="pln"><a href="#n199">199</a></p>
-<p id="n200" class="stm mis"><a href="#n200">200</a></p>
-<p id="n201" class="pln"><a href="#n201">201</a></p>
-<p id="n202" class="stm mis"><a href="#n202">202</a></p>
-<p id="n203" class="stm mis"><a href="#n203">203</a></p>
-<p id="n204" class="stm mis"><a href="#n204">204</a></p>
-<p id="n205" class="stm mis"><a href="#n205">205</a></p>
-<p id="n206" class="stm mis"><a href="#n206">206</a></p>
-<p id="n207" class="pln"><a href="#n207">207</a></p>
-<p id="n208" class="stm mis"><a href="#n208">208</a></p>
-<p id="n209" class="pln"><a href="#n209">209</a></p>
-<p id="n210" class="stm mis"><a href="#n210">210</a></p>
-<p id="n211" class="stm mis"><a href="#n211">211</a></p>
-<p id="n212" class="stm mis"><a href="#n212">212</a></p>
-<p id="n213" class="stm mis"><a href="#n213">213</a></p>
-<p id="n214" class="pln"><a href="#n214">214</a></p>
-<p id="n215" class="stm mis"><a href="#n215">215</a></p>
-<p id="n216" class="stm mis"><a href="#n216">216</a></p>
-<p id="n217" class="pln"><a href="#n217">217</a></p>
-<p id="n218" class="stm mis"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="stm run hide_run"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="stm mis"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="stm mis"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="pln"><a href="#n226">226</a></p>
-<p id="n227" class="stm mis"><a href="#n227">227</a></p>
-<p id="n228" class="stm mis"><a href="#n228">228</a></p>
-<p id="n229" class="stm mis"><a href="#n229">229</a></p>
-<p id="n230" class="stm mis"><a href="#n230">230</a></p>
-<p id="n231" class="stm mis"><a href="#n231">231</a></p>
-<p id="n232" class="stm mis"><a href="#n232">232</a></p>
-<p id="n233" class="pln"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="stm mis"><a href="#n235">235</a></p>
-<p id="n236" class="stm mis"><a href="#n236">236</a></p>
-<p id="n237" class="pln"><a href="#n237">237</a></p>
-<p id="n238" class="pln"><a href="#n238">238</a></p>
-<p id="n239" class="stm mis"><a href="#n239">239</a></p>
-<p id="n240" class="pln"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="stm mis"><a href="#n242">242</a></p>
-<p id="n243" class="pln"><a href="#n243">243</a></p>
-<p id="n244" class="stm mis"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="pln"><a href="#n246">246</a></p>
-<p id="n247" class="stm mis"><a href="#n247">247</a></p>
-<p id="n248" class="pln"><a href="#n248">248</a></p>
-<p id="n249" class="stm run hide_run"><a href="#n249">249</a></p>
-<p id="n250" class="pln"><a href="#n250">250</a></p>
-<p id="n251" class="stm mis"><a href="#n251">251</a></p>
-<p id="n252" class="pln"><a href="#n252">252</a></p>
-<p id="n253" class="stm mis"><a href="#n253">253</a></p>
-<p id="n254" class="pln"><a href="#n254">254</a></p>
-<p id="n255" class="pln"><a href="#n255">255</a></p>
-<p id="n256" class="stm mis"><a href="#n256">256</a></p>
-<p id="n257" class="stm mis"><a href="#n257">257</a></p>
-<p id="n258" class="pln"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="stm mis"><a href="#n260">260</a></p>
-<p id="n261" class="pln"><a href="#n261">261</a></p>
-<p id="n262" class="stm mis"><a href="#n262">262</a></p>
-<p id="n263" class="pln"><a href="#n263">263</a></p>
-<p id="n264" class="stm run hide_run"><a href="#n264">264</a></p>
-<p id="n265" class="pln"><a href="#n265">265</a></p>
-<p id="n266" class="stm mis"><a href="#n266">266</a></p>
-<p id="n267" class="stm mis"><a href="#n267">267</a></p>
-<p id="n268" class="pln"><a href="#n268">268</a></p>
-<p id="n269" class="stm mis"><a href="#n269">269</a></p>
-<p id="n270" class="stm mis"><a href="#n270">270</a></p>
-<p id="n271" class="stm mis"><a href="#n271">271</a></p>
-<p id="n272" class="pln"><a href="#n272">272</a></p>
-<p id="n273" class="stm mis"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="stm mis"><a href="#n275">275</a></p>
-<p id="n276" class="stm mis"><a href="#n276">276</a></p>
-<p id="n277" class="stm mis"><a href="#n277">277</a></p>
-<p id="n278" class="pln"><a href="#n278">278</a></p>
-<p id="n279" class="stm mis"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="stm run hide_run"><a href="#n281">281</a></p>
-<p id="n282" class="pln"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="pln"><a href="#n284">284</a></p>
-<p id="n285" class="pln"><a href="#n285">285</a></p>
-<p id="n286" class="stm mis"><a href="#n286">286</a></p>
-<p id="n287" class="stm mis"><a href="#n287">287</a></p>
-<p id="n288" class="pln"><a href="#n288">288</a></p>
-<p id="n289" class="stm mis"><a href="#n289">289</a></p>
-<p id="n290" class="stm mis"><a href="#n290">290</a></p>
-<p id="n291" class="pln"><a href="#n291">291</a></p>
-<p id="n292" class="stm run hide_run"><a href="#n292">292</a></p>
-<p id="n293" class="pln"><a href="#n293">293</a></p>
-<p id="n294" class="pln"><a href="#n294">294</a></p>
-<p id="n295" class="pln"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="pln"><a href="#n297">297</a></p>
-<p id="n298" class="pln"><a href="#n298">298</a></p>
-<p id="n299" class="pln"><a href="#n299">299</a></p>
-<p id="n300" class="stm mis"><a href="#n300">300</a></p>
-<p id="n301" class="pln"><a href="#n301">301</a></p>
-<p id="n302" class="stm mis"><a href="#n302">302</a></p>
-<p id="n303" class="pln"><a href="#n303">303</a></p>
-<p id="n304" class="stm run hide_run"><a href="#n304">304</a></p>
-<p id="n305" class="pln"><a href="#n305">305</a></p>
-<p id="n306" class="pln"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="pln"><a href="#n308">308</a></p>
-<p id="n309" class="pln"><a href="#n309">309</a></p>
-<p id="n310" class="pln"><a href="#n310">310</a></p>
-<p id="n311" class="pln"><a href="#n311">311</a></p>
-<p id="n312" class="pln"><a href="#n312">312</a></p>
-<p id="n313" class="stm mis"><a href="#n313">313</a></p>
-<p id="n314" class="pln"><a href="#n314">314</a></p>
-<p id="n315" class="stm mis"><a href="#n315">315</a></p>
-<p id="n316" class="pln"><a href="#n316">316</a></p>
-<p id="n317" class="stm run hide_run"><a href="#n317">317</a></p>
-<p id="n318" class="pln"><a href="#n318">318</a></p>
-<p id="n319" class="pln"><a href="#n319">319</a></p>
-<p id="n320" class="pln"><a href="#n320">320</a></p>
-<p id="n321" class="pln"><a href="#n321">321</a></p>
-<p id="n322" class="pln"><a href="#n322">322</a></p>
-<p id="n323" class="pln"><a href="#n323">323</a></p>
-<p id="n324" class="pln"><a href="#n324">324</a></p>
-<p id="n325" class="pln"><a href="#n325">325</a></p>
-<p id="n326" class="stm mis"><a href="#n326">326</a></p>
-<p id="n327" class="pln"><a href="#n327">327</a></p>
-<p id="n328" class="stm mis"><a href="#n328">328</a></p>
-<p id="n329" class="pln"><a href="#n329">329</a></p>
-<p id="n330" class="stm run hide_run"><a href="#n330">330</a></p>
-<p id="n331" class="pln"><a href="#n331">331</a></p>
-<p id="n332" class="pln"><a href="#n332">332</a></p>
-<p id="n333" class="pln"><a href="#n333">333</a></p>
-<p id="n334" class="pln"><a href="#n334">334</a></p>
-<p id="n335" class="pln"><a href="#n335">335</a></p>
-<p id="n336" class="pln"><a href="#n336">336</a></p>
-<p id="n337" class="pln"><a href="#n337">337</a></p>
-<p id="n338" class="pln"><a href="#n338">338</a></p>
-<p id="n339" class="pln"><a href="#n339">339</a></p>
-<p id="n340" class="pln"><a href="#n340">340</a></p>
-<p id="n341" class="pln"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="pln"><a href="#n343">343</a></p>
-<p id="n344" class="pln"><a href="#n344">344</a></p>
-<p id="n345" class="pln"><a href="#n345">345</a></p>
-<p id="n346" class="pln"><a href="#n346">346</a></p>
-<p id="n347" class="pln"><a href="#n347">347</a></p>
-<p id="n348" class="pln"><a href="#n348">348</a></p>
-<p id="n349" class="stm mis"><a href="#n349">349</a></p>
-<p id="n350" class="pln"><a href="#n350">350</a></p>
-<p id="n351" class="stm mis"><a href="#n351">351</a></p>
-<p id="n352" class="stm mis"><a href="#n352">352</a></p>
-<p id="n353" class="stm mis"><a href="#n353">353</a></p>
-<p id="n354" class="stm mis"><a href="#n354">354</a></p>
-<p id="n355" class="pln"><a href="#n355">355</a></p>
-<p id="n356" class="stm mis"><a href="#n356">356</a></p>
-<p id="n357" class="pln"><a href="#n357">357</a></p>
-<p id="n358" class="stm mis"><a href="#n358">358</a></p>
-<p id="n359" class="pln"><a href="#n359">359</a></p>
-<p id="n360" class="stm run hide_run"><a href="#n360">360</a></p>
-<p id="n361" class="pln"><a href="#n361">361</a></p>
-<p id="n362" class="pln"><a href="#n362">362</a></p>
-<p id="n363" class="pln"><a href="#n363">363</a></p>
-<p id="n364" class="pln"><a href="#n364">364</a></p>
-<p id="n365" class="pln"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="pln"><a href="#n367">367</a></p>
-<p id="n368" class="pln"><a href="#n368">368</a></p>
-<p id="n369" class="stm mis"><a href="#n369">369</a></p>
-<p id="n370" class="stm mis"><a href="#n370">370</a></p>
-<p id="n371" class="pln"><a href="#n371">371</a></p>
-<p id="n372" class="stm mis"><a href="#n372">372</a></p>
-<p id="n373" class="pln"><a href="#n373">373</a></p>
-<p id="n374" class="pln"><a href="#n374">374</a></p>
-<p id="n375" class="stm mis"><a href="#n375">375</a></p>
-<p id="n376" class="pln"><a href="#n376">376</a></p>
-<p id="n377" class="stm run hide_run"><a href="#n377">377</a></p>
-<p id="n378" class="pln"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="pln"><a href="#n380">380</a></p>
-<p id="n381" class="pln"><a href="#n381">381</a></p>
-<p id="n382" class="pln"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="pln"><a href="#n384">384</a></p>
-<p id="n385" class="pln"><a href="#n385">385</a></p>
-<p id="n386" class="stm mis"><a href="#n386">386</a></p>
-<p id="n387" class="stm mis"><a href="#n387">387</a></p>
-<p id="n388" class="pln"><a href="#n388">388</a></p>
-<p id="n389" class="stm mis"><a href="#n389">389</a></p>
-<p id="n390" class="pln"><a href="#n390">390</a></p>
-<p id="n391" class="stm mis"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="stm run hide_run"><a href="#n393">393</a></p>
-<p id="n394" class="pln"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="pln"><a href="#n396">396</a></p>
-<p id="n397" class="pln"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="pln"><a href="#n399">399</a></p>
-<p id="n400" class="pln"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="stm mis"><a href="#n402">402</a></p>
-<p id="n403" class="pln"><a href="#n403">403</a></p>
-<p id="n404" class="stm run hide_run"><a href="#n404">404</a></p>
-<p id="n405" class="pln"><a href="#n405">405</a></p>
-<p id="n406" class="stm mis"><a href="#n406">406</a></p>
-<p id="n407" class="pln"><a href="#n407">407</a></p>
-<p id="n408" class="stm run hide_run"><a href="#n408">408</a></p>
-<p id="n409" class="pln"><a href="#n409">409</a></p>
-<p id="n410" class="pln"><a href="#n410">410</a></p>
-<p id="n411" class="pln"><a href="#n411">411</a></p>
-<p id="n412" class="pln"><a href="#n412">412</a></p>
-<p id="n413" class="pln"><a href="#n413">413</a></p>
-<p id="n414" class="pln"><a href="#n414">414</a></p>
-<p id="n415" class="pln"><a href="#n415">415</a></p>
-<p id="n416" class="pln"><a href="#n416">416</a></p>
-<p id="n417" class="stm mis"><a href="#n417">417</a></p>
-<p id="n418" class="stm mis"><a href="#n418">418</a></p>
-<p id="n419" class="pln"><a href="#n419">419</a></p>
-<p id="n420" class="stm mis"><a href="#n420">420</a></p>
-<p id="n421" class="pln"><a href="#n421">421</a></p>
-<p id="n422" class="pln"><a href="#n422">422</a></p>
-<p id="n423" class="stm mis"><a href="#n423">423</a></p>
-<p id="n424" class="pln"><a href="#n424">424</a></p>
-<p id="n425" class="stm run hide_run"><a href="#n425">425</a></p>
-<p id="n426" class="pln"><a href="#n426">426</a></p>
-<p id="n427" class="pln"><a href="#n427">427</a></p>
-<p id="n428" class="pln"><a href="#n428">428</a></p>
-<p id="n429" class="pln"><a href="#n429">429</a></p>
-<p id="n430" class="pln"><a href="#n430">430</a></p>
-<p id="n431" class="pln"><a href="#n431">431</a></p>
-<p id="n432" class="pln"><a href="#n432">432</a></p>
-<p id="n433" class="pln"><a href="#n433">433</a></p>
-<p id="n434" class="stm mis"><a href="#n434">434</a></p>
-<p id="n435" class="stm mis"><a href="#n435">435</a></p>
-<p id="n436" class="pln"><a href="#n436">436</a></p>
-<p id="n437" class="stm mis"><a href="#n437">437</a></p>
-<p id="n438" class="pln"><a href="#n438">438</a></p>
-<p id="n439" class="stm mis"><a href="#n439">439</a></p>
-<p id="n440" class="pln"><a href="#n440">440</a></p>
-<p id="n441" class="stm run hide_run"><a href="#n441">441</a></p>
-<p id="n442" class="pln"><a href="#n442">442</a></p>
-<p id="n443" class="pln"><a href="#n443">443</a></p>
-<p id="n444" class="pln"><a href="#n444">444</a></p>
-<p id="n445" class="pln"><a href="#n445">445</a></p>
-<p id="n446" class="pln"><a href="#n446">446</a></p>
-<p id="n447" class="pln"><a href="#n447">447</a></p>
-<p id="n448" class="pln"><a href="#n448">448</a></p>
-<p id="n449" class="pln"><a href="#n449">449</a></p>
-<p id="n450" class="pln"><a href="#n450">450</a></p>
-<p id="n451" class="stm mis"><a href="#n451">451</a></p>
-<p id="n452" class="stm mis"><a href="#n452">452</a></p>
-<p id="n453" class="pln"><a href="#n453">453</a></p>
-<p id="n454" class="stm mis"><a href="#n454">454</a></p>
-<p id="n455" class="pln"><a href="#n455">455</a></p>
-<p id="n456" class="stm mis"><a href="#n456">456</a></p>
-<p id="n457" class="stm mis"><a href="#n457">457</a></p>
-<p id="n458" class="pln"><a href="#n458">458</a></p>
-<p id="n459" class="stm mis"><a href="#n459">459</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">datetime</span> <span class="key">import</span> <span class="nam">timedelta</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">glob</span><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">platform</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">re</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="key">import</span> <span class="nam">pandas</span> <span class="key">as</span> <span class="nam">pd</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">def</span> <span class="nam">_load_ras_controller</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t13" class="stm run hide_run">    <span class="key">if</span> <span class="nam">platform</span><span class="op">.</span><span class="nam">system</span><span class="op">(</span><span class="op">)</span> <span class="op">==</span> <span class="str">'Windows'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm run hide_run">        <span class="key">import</span> <span class="nam">winreg</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="stm run hide_run">        <span class="key">import</span> <span class="nam">win32com</span><span class="op">.</span><span class="nam">client</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm mis">        <span class="key">return</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln">    <span class="com"># find the version of RAS that are installed</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run">    <span class="nam">ras_controller_pattern</span> <span class="op">=</span> <span class="str">r'^RAS[0-9]{3}.HECRASController$'</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm run hide_run">    <span class="key">with</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">OpenKey</span><span class="op">(</span><span class="nam">winreg</span><span class="op">.</span><span class="nam">HKEY_LOCAL_MACHINE</span><span class="op">,</span> <span class="str">r"SOFTWARE\Classes"</span><span class="op">)</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln">            <span class="key">as</span> <span class="nam">classes_key</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t25" class="stm run hide_run">        <span class="nam">ras_controller_prog_ids</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm run hide_run">        <span class="nam">n_keys</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">QueryInfoKey</span><span class="op">(</span><span class="nam">classes_key</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">        <span class="key">for</span> <span class="nam">i</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="nam">n_keys</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm run hide_run">            <span class="nam">object_name</span> <span class="op">=</span> <span class="nam">winreg</span><span class="op">.</span><span class="nam">EnumKey</span><span class="op">(</span><span class="nam">classes_key</span><span class="op">,</span> <span class="nam">i</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm run hide_run">            <span class="key">if</span> <span class="nam">re</span><span class="op">.</span><span class="nam">match</span><span class="op">(</span><span class="nam">ras_controller_pattern</span><span class="op">,</span> <span class="nam">object_name</span><span class="op">)</span> <span class="key">is</span> <span class="key">not</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm run hide_run">                <span class="nam">ras_controller_prog_ids</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">object_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln">    <span class="com"># use the latest version of RAS installed</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm run hide_run">    <span class="nam">ras_controller_prog_ids</span><span class="op">.</span><span class="nam">sort</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm run hide_run">    <span class="key">if</span> <span class="nam">len</span><span class="op">(</span><span class="nam">ras_controller_prog_ids</span><span class="op">)</span> <span class="op">></span> <span class="num">0</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm run hide_run">        <span class="nam">prog_id</span> <span class="op">=</span> <span class="nam">ras_controller_prog_ids</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln">        <span class="com"># start the RAS controller</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm run hide_run">        <span class="nam">ras_controller</span> <span class="op">=</span> <span class="nam">win32com</span><span class="op">.</span><span class="nam">client</span><span class="op">.</span><span class="nam">Dispatch</span><span class="op">(</span><span class="nam">prog_id</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm mis">        <span class="nam">ras_controller</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm run hide_run">    <span class="key">return</span> <span class="nam">ras_controller</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t47" class="stm run hide_run"><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="nam">_load_ras_controller</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t50" class="stm run hide_run"><span class="key">def</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm mis">    <span class="key">return</span> <span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">not</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run"><span class="key">class</span> <span class="nam">RASProject</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln">    <span class="str">"""RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="str">    After use, call close() to keep the RAS process from lingering. The</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">    RASProject interface facilitates the use of the with-statement. See</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="str">    below for an example.</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="str">    ```</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="str">    with RASProject(project_file_path) as rp:</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="str">        hydrauilc_data = rp.hydraulic_model_data('Unsteady')</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="str">    ```</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="str">    project_file_path : str</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="pln"><span class="str">        Path to RAS project file</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t72" class="pln"><span class="str">    Notes</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="pln"><span class="str">    -----</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="pln"><span class="str">    The values in the output of hydraulic_model_data are in metric units. If</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln"><span class="str">    the quantities in the RAS project are in English units, the output will be</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="str">    converted.</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t80" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">project_file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm mis">        <span class="key">if</span> <span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"RAS controller not found"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="nam">_ras_controller</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="pln">        <span class="com"># open the project</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="stm mis">        <span class="nam">absolute_project_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">abspath</span><span class="op">(</span><span class="nam">project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Project_Open</span><span class="op">(</span><span class="nam">absolute_project_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln">        <span class="com"># set the units</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="stm mis">        <span class="nam">current_project_file_path</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentProjectFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">current_project_file_path</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="stm mis">            <span class="nam">project_file_contents</span> <span class="op">=</span> <span class="nam">f</span><span class="op">.</span><span class="nam">readlines</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln">        <span class="com"># set the current plan number</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm mis">        <span class="nam">current_plan_line</span> <span class="op">=</span> <span class="nam">project_file_contents</span><span class="op">[</span><span class="num">1</span><span class="op">]</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm mis">        <span class="nam">current_plan_name</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_current_plan_name</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln">            <span class="nam">current_plan_line</span><span class="op">,</span> <span class="nam">current_project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span> <span class="op">=</span> <span class="nam">plan_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">current_plan_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm mis">        <span class="nam">units</span> <span class="op">=</span> <span class="nam">project_file_contents</span><span class="op">[</span><span class="num">3</span><span class="op">]</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm mis">        <span class="key">if</span> <span class="nam">units</span> <span class="op">==</span> <span class="str">'English Units'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">=</span> <span class="str">'English'</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span> <span class="op">=</span> <span class="num">32.2</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span> <span class="op">=</span> <span class="num">1.4859</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="stm mis">        <span class="key">elif</span> <span class="nam">units</span> <span class="op">==</span> <span class="str">'SI Units'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">=</span> <span class="str">'metric'</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span> <span class="op">=</span> <span class="num">9.81</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Unknown units in project file"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t116" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span> <span class="op">=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__enter__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__exit__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">close</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t128" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_calc_shear_velocity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">cell_data</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t130" class="stm mis">        <span class="nam">manning_values</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Mann Wtd Chnl'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm mis">        <span class="nam">hydraulic_radius</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="stm mis">        <span class="nam">channel_velocity</span> <span class="op">=</span> <span class="nam">cell_data</span><span class="op">[</span><span class="str">'Vel Chnl'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm mis">        <span class="nam">ks</span> <span class="op">=</span> <span class="op">(</span><span class="num">8.1</span> <span class="op">*</span> <span class="op">(</span><span class="nam">manning_values</span> <span class="op">/</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_n_conversion</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="pln">              <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_gravity</span><span class="op">)</span><span class="op">)</span><span class="op">**</span><span class="num">6</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln">            <span class="nam">channel_velocity</span> <span class="op">/</span> <span class="op">(</span><span class="num">8.1</span> <span class="op">*</span> <span class="op">(</span><span class="op">(</span><span class="nam">hydraulic_radius</span> <span class="op">/</span> <span class="nam">ks</span><span class="op">)</span> <span class="op">**</span> <span class="op">(</span><span class="num">1</span> <span class="op">/</span> <span class="num">6</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t138" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t139" class="stm mis">        <span class="key">return</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t141" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln">    <span class="key">def</span> <span class="nam">_get_current_plan_name</span><span class="op">(</span><span class="nam">current_plan_line</span><span class="op">,</span> <span class="nam">current_project_file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t144" class="stm mis">        <span class="nam">plan_file_extension</span> <span class="op">=</span> <span class="nam">current_plan_line</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">'='</span><span class="op">)</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t145" class="stm mis">        <span class="nam">path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">current_project_file_path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm mis">        <span class="nam">plan_file_list</span> <span class="op">=</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">path</span> <span class="op">+</span> <span class="str">'/*.'</span> <span class="op">+</span> <span class="nam">plan_file_extension</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">        <span class="key">with</span> <span class="nam">open</span><span class="op">(</span><span class="nam">plan_file_list</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="str">'r'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="stm mis">            <span class="nam">plan_name_line</span> <span class="op">=</span> <span class="nam">f</span><span class="op">.</span><span class="nam">readline</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">strip</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t151" class="stm mis">        <span class="key">return</span> <span class="nam">plan_name_line</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="str">'='</span><span class="op">)</span><span class="op">[</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t153" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_data_from_ras</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">output_var_names</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_Variables</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="pln">            <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t157" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t158" class="stm mis">        <span class="nam">var_name</span> <span class="op">=</span> <span class="op">[</span><span class="str">'Hydr Depth C'</span><span class="op">,</span> <span class="str">'Q Channel'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="pln">                    <span class="str">'Vel Chnl'</span><span class="op">,</span> <span class="str">'Mann Wtd Chnl'</span><span class="op">,</span> <span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="stm mis">        <span class="nam">var_values</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t162" class="stm mis">        <span class="nam">channel_dist</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="stm mis">        <span class="nam">n_river_stations</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t165" class="pln">        <span class="com"># get the variable for the entire channel length</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="stm mis">        <span class="key">for</span> <span class="nam">name</span> <span class="key">in</span> <span class="nam">var_name</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t168" class="stm mis">            <span class="nam">var_number</span> <span class="op">=</span> <span class="nam">output_var_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="stm mis">            <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">n_river_stations</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">channel_dist</span><span class="op">,</span> <span class="nam">values</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_ReachOutput</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln">                <span class="nam">var_number</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="stm mis">            <span class="nam">var_values</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">values</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t173" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t174" class="stm mis">        <span class="nam">var_name</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="str">'ChannelDist'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t175" class="stm mis">        <span class="nam">var_values</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">channel_dist</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t177" class="stm mis">        <span class="nam">data_dict</span> <span class="op">=</span> <span class="nam">dict</span><span class="op">(</span><span class="nam">zip</span><span class="op">(</span><span class="nam">var_name</span><span class="op">,</span> <span class="nam">var_values</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t179" class="stm mis">        <span class="nam">cell_numbers</span> <span class="op">=</span> <span class="nam">range</span><span class="op">(</span><span class="num">1</span><span class="op">,</span> <span class="nam">n_river_stations</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DataFrame</span><span class="op">(</span><span class="nam">data_dict</span><span class="op">,</span> <span class="nam">index</span><span class="op">=</span><span class="nam">cell_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t183" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_profile_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t184" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t185" class="stm mis">        <span class="nam">ras_data</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_data_from_ras</span><span class="op">(</span><span class="nam">profile_number</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t187" class="stm mis">        <span class="nam">column_map</span> <span class="op">=</span> <span class="op">{</span><span class="str">'Hydr Depth C'</span><span class="op">:</span> <span class="str">'Depth_m'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="pln">                      <span class="str">'Q Channel'</span><span class="op">:</span> <span class="str">'Q_cms'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="pln">                      <span class="str">'Vel Chnl'</span><span class="op">:</span> <span class="str">'Vmag_mps'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln">                      <span class="str">'ChannelDist'</span><span class="op">:</span> <span class="str">'CumlDistance_km'</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
-<p id="t191" class="stm mis">        <span class="nam">profile_data</span> <span class="op">=</span> <span class="nam">ras_data</span><span class="op">.</span><span class="nam">rename</span><span class="op">(</span><span class="nam">mapper</span><span class="op">=</span><span class="nam">column_map</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="op">.</span><span class="nam">drop</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="pln">            <span class="op">[</span><span class="str">'Mann Wtd Chnl'</span><span class="op">,</span> <span class="str">'Hydr Radius C'</span><span class="op">]</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln">        <span class="com"># convert from RAS distances to FluEgg distances</span><span class="strut">&nbsp;</span></p>
-<p id="t195" class="stm mis">        <span class="nam">number_of_cells</span> <span class="op">=</span> <span class="nam">profile_data</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="stm mis">        <span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="nam">number_of_cells</span> <span class="op">-</span> <span class="num">1</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="pln">            <span class="num">0.5</span> <span class="op">*</span> <span class="op">(</span><span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">1</span><span class="op">:</span><span class="nam">number_of_cells</span> <span class="op">-</span> <span class="num">1</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="pln">                   <span class="op">+</span> <span class="nam">profile_data</span><span class="op">.</span><span class="nam">loc</span><span class="op">[</span><span class="num">2</span><span class="op">:</span><span class="nam">number_of_cells</span><span class="op">,</span> <span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">.</span><span class="nam">values</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span><span class="op">/</span><span class="num">1000</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t202" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_calc_shear_velocity</span><span class="op">(</span><span class="nam">ras_data</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t203" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vvert_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vlat_mps'</span><span class="op">]</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="stm mis">        <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Temp_C'</span><span class="op">]</span> <span class="op">=</span> <span class="nam">temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t208" class="stm mis">        <span class="nam">feet_to_meters</span> <span class="op">=</span> <span class="op">(</span><span class="num">2.54</span> <span class="op">*</span> <span class="num">12</span><span class="op">)</span> <span class="op">/</span> <span class="num">100</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t210" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span> <span class="op">==</span> <span class="str">'English'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t211" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Depth_m'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Q_cms'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="op">**</span><span class="num">3</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Vmag_mps'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="pln">            <span class="com"># already converted from m to km</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'CumlDistance_km'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="stm mis">            <span class="nam">profile_data</span><span class="op">[</span><span class="str">'Ustar_mps'</span><span class="op">]</span> <span class="op">*=</span> <span class="nam">feet_to_meters</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t218" class="stm mis">        <span class="key">return</span> <span class="nam">profile_data</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t220" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_time_series_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t222" class="stm mis">        <span class="nam">hydraulic_times</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t224" class="stm mis">        <span class="key">for</span> <span class="nam">name</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t226" class="pln">            <span class="com"># convert string to Datetime instance</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="stm mis">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t228" class="stm mis">                <span class="nam">day</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="op">:</span><span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="stm mis">                <span class="nam">month</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">2</span><span class="op">:</span><span class="num">5</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t230" class="stm mis">                <span class="nam">year</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">5</span><span class="op">:</span><span class="num">9</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="stm mis">                <span class="nam">hour</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">10</span><span class="op">:</span><span class="num">12</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="stm mis">                <span class="nam">minute</span> <span class="op">=</span> <span class="nam">name</span><span class="op">[</span><span class="num">12</span><span class="op">:</span><span class="num">14</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln">                <span class="com"># if the hour is midnight, convert to midnight at 00</span><span class="strut">&nbsp;</span></p>
-<p id="t235" class="stm mis">                <span class="key">if</span> <span class="nam">int</span><span class="op">(</span><span class="nam">hour</span><span class="op">)</span> <span class="op">==</span> <span class="num">24</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="stm mis">                    <span class="nam">date_time</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">to_datetime</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="pln">                        <span class="str">''</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="op">[</span><span class="nam">day</span><span class="op">,</span> <span class="nam">month</span><span class="op">,</span> <span class="nam">year</span><span class="op">,</span> <span class="str">' 00'</span><span class="op">,</span> <span class="nam">minute</span><span class="op">]</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span> <span class="nam">timedelta</span><span class="op">(</span><span class="nam">days</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="pln">                <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm mis">                    <span class="nam">date_time</span> <span class="op">=</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">to_datetime</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="pln">                        <span class="str">''</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="op">[</span><span class="nam">day</span><span class="op">,</span> <span class="nam">month</span><span class="op">,</span> <span class="nam">year</span><span class="op">,</span> <span class="str">' '</span><span class="op">,</span> <span class="nam">hour</span><span class="op">,</span> <span class="nam">minute</span><span class="op">]</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm mis">                <span class="nam">hydraulic_times</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">date_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm mis">            <span class="key">except</span> <span class="nam">ValueError</span><span class="op">:</span>  <span class="com"># skip profile name if ValueError is raised</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">                <span class="key">continue</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t247" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">DatetimeIndex</span><span class="op">(</span><span class="nam">hydraulic_times</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t249" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_unsteady_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t250" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t251" class="stm mis">        <span class="nam">profile_data</span> <span class="op">=</span> <span class="op">[</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t253" class="stm mis">        <span class="nam">profile_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t255" class="pln">        <span class="com"># the first profile is the maximum water surface elevation, so skip it</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="stm mis">        <span class="key">for</span> <span class="nam">profile_number</span> <span class="key">in</span> <span class="nam">range</span><span class="op">(</span><span class="num">2</span><span class="op">,</span> <span class="nam">len</span><span class="op">(</span><span class="nam">profile_names</span><span class="op">)</span><span class="op">+</span><span class="num">1</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="stm mis">            <span class="nam">profile_data</span><span class="op">.</span><span class="nam">append</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_get_profile_data</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="pln">                <span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="op">.</span><span class="nam">transpose</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t260" class="stm mis">        <span class="nam">time_steps</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_time_series_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm mis">        <span class="key">return</span> <span class="nam">pd</span><span class="op">.</span><span class="nam">concat</span><span class="op">(</span><span class="nam">profile_data</span><span class="op">,</span> <span class="nam">keys</span><span class="op">=</span><span class="nam">time_steps</span><span class="op">,</span> <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="op">.</span><span class="nam">transpose</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t264" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_ras_set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">plan_name</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Plan_SetCurrent</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Project_Save</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t268" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t269" class="stm mis">        <span class="nam">current_steady_file</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentSteadyFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="stm mis">        <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">isfile</span><span class="op">(</span><span class="nam">current_steady_file</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t271" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_steady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm mis">        <span class="nam">current_unsteady_file</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">CurrentUnSteadyFile</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="stm mis">        <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">isfile</span><span class="op">(</span><span class="nam">current_unsteady_file</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">True</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span> <span class="op">=</span> <span class="key">False</span><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t281" class="stm run hide_run">    <span class="key">def</span> <span class="nam">close</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="pln">        <span class="str">"""Close the RAS controller</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t284" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t286" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t289" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">QuitRas</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t292" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_plan_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="pln">        <span class="str">"""Returns the current plan name</span><span class="strut">&nbsp;</span></p>
-<p id="t294" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t295" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t297" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t300" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t302" class="stm mis">        <span class="key">return</span> <span class="nam">plan_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t303" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t304" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_reach_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t305" class="pln">        <span class="str">"""Returns the current reach name</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t311" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t313" class="stm mis">        <span class="nam">reach_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">reach_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t315" class="stm mis">        <span class="key">return</span> <span class="nam">reach_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_reach_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t316" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t317" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_river_name</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t318" class="pln">        <span class="str">"""Returns the current river name</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t320" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t321" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t323" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t324" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t325" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t326" class="stm mis">        <span class="nam">river_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">river_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t328" class="stm mis">        <span class="key">return</span> <span class="nam">river_names</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">-</span><span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t329" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t330" class="stm run hide_run">    <span class="key">def</span> <span class="nam">hydraulic_model_data</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">profile_name</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">=</span><span class="num">22</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t331" class="pln">        <span class="str">"""Returns a pandas.DataFrame containing hydraulic data for the specified profile.</span><span class="strut">&nbsp;</span></p>
-<p id="t332" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t333" class="pln"><span class="str">        If 'Unsteady' is specified for profile_name, the index of the DataFrame will be a pandas.MultiIndex</span><span class="strut">&nbsp;</span></p>
-<p id="t334" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t335" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t337" class="pln"><span class="str">        profile_name : str</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="pln"><span class="str">            Name of profile. The name must be in the list of profiles or 'Unsteady'. If 'Unsteady', the</span><span class="strut">&nbsp;</span></p>
-<p id="t339" class="pln"><span class="str">            RAS profile must have an associated unsteady file.</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="pln"><span class="str">        temperature : float</span><span class="strut">&nbsp;</span></p>
-<p id="t341" class="pln"><span class="str">            Water temperature</span><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t343" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t344" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t345" class="pln"><span class="str">        pandas.DataFrame</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t347" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t348" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t349" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">current_plan_name</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t351" class="stm mis">        <span class="key">if</span> <span class="nam">profile_name</span> <span class="op">==</span> <span class="str">'Unsteady'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t352" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_plan_has_unsteady_file</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="stm mis">                <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Current plan does not have an unsteady file"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t354" class="stm mis">            <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_unsteady_data</span><span class="op">(</span><span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t355" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="stm mis">            <span class="nam">profile_number</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">profile_names</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t357" class="pln">                <span class="nam">profile_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span>  <span class="com"># add one to profile_name index for RAS</span><span class="strut">&nbsp;</span></p>
-<p id="t358" class="stm mis">            <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_get_profile_data</span><span class="op">(</span><span class="nam">profile_number</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t359" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t360" class="stm run hide_run">    <span class="key">def</span> <span class="nam">plan_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t361" class="pln">        <span class="str">"""Returns a list of plan names in this RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t362" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t363" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t365" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t367" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t368" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t369" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t370" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t372" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">plan_names</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Plan_Names</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t373" class="pln">            <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">False</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t374" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t375" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">plan_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t376" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t377" class="stm run hide_run">    <span class="key">def</span> <span class="nam">profile_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t378" class="pln">        <span class="str">"""Returns a list of profile names in this RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t380" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t384" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t385" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t386" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t387" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t388" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t389" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">profile_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Output_GetProfiles</span><span class="op">(</span><span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t390" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t391" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">profile_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t393" class="stm run hide_run">    <span class="key">def</span> <span class="nam">project_units</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t394" class="pln">        <span class="str">"""Returns the RAS project units.</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t396" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t397" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln"><span class="str">        str</span><span class="strut">&nbsp;</span></p>
-<p id="t399" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t400" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t402" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_units</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t404" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t405" class="pln">    <span class="key">def</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t406" class="stm mis">        <span class="key">return</span> <span class="nam">ras_controller_loaded</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t407" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t408" class="stm run hide_run">    <span class="key">def</span> <span class="nam">reach_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t409" class="pln">        <span class="str">"""Returns a list of reach names in this RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t410" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t411" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t412" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t413" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
-<p id="t414" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t415" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t416" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t417" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t418" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t419" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t420" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">_</span><span class="op">,</span> <span class="nam">reach_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Geometry_GetReaches</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t421" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_current_river_number</span><span class="op">,</span> <span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t422" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t423" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">reach_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t424" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t425" class="stm run hide_run">    <span class="key">def</span> <span class="nam">river_names</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t426" class="pln">        <span class="str">"""Returns a list of river names in this RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t427" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t428" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t429" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t430" class="pln"><span class="str">        list</span><span class="strut">&nbsp;</span></p>
-<p id="t431" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t432" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t433" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t434" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t435" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t436" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t437" class="stm mis">        <span class="nam">_</span><span class="op">,</span> <span class="nam">river_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span><span class="op">.</span><span class="nam">Geometry_GetRivers</span><span class="op">(</span><span class="key">None</span><span class="op">,</span> <span class="key">None</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t438" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t439" class="stm mis">        <span class="key">return</span> <span class="nam">list</span><span class="op">(</span><span class="nam">river_names</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t440" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t441" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">plan_name</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t442" class="pln">        <span class="str">"""Sets the current plan name for this RAS project.</span><span class="strut">&nbsp;</span></p>
-<p id="t443" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t444" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t445" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t446" class="pln"><span class="str">        plan_name : str</span><span class="strut">&nbsp;</span></p>
-<p id="t447" class="pln"><span class="str">            Plan name. The plan name must be in the list of plan names of this project.</span><span class="strut">&nbsp;</span></p>
-<p id="t448" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t449" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t451" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_ras_controller</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t452" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Operation on closed RASProject"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t453" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t454" class="stm mis">        <span class="nam">plan_names</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">plan_names</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t455" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t456" class="stm mis">        <span class="key">if</span> <span class="nam">plan_name</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">plan_names</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t457" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Invalid plan name"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t458" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t459" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_plan_number</span> <span class="op">=</span> <span class="nam">plan_names</span><span class="op">.</span><span class="nam">index</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span> <span class="op">+</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_simclock_py.html b/coverage_report/fluegg_simclock_py.html
deleted file mode 100644
index 1ad0185..0000000
--- a/coverage_report/fluegg_simclock_py.html
+++ /dev/null
@@ -1,361 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\simclock.py: 89%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\simclock.py</b> :
-            <span class="pc_cov">89%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            46 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">41 run</span>
-            <span class="mis shortkey_m button_toggle_mis">5 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="pln"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="pln"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="pln"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="stm run hide_run"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="stm run hide_run"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="stm run hide_run"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="stm run hide_run"><a href="#n36">36</a></p>
-<p id="n37" class="pln"><a href="#n37">37</a></p>
-<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="pln"><a href="#n40">40</a></p>
-<p id="n41" class="pln"><a href="#n41">41</a></p>
-<p id="n42" class="pln"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
-<p id="n45" class="pln"><a href="#n45">45</a></p>
-<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="pln"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="pln"><a href="#n51">51</a></p>
-<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="stm run hide_run"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="stm run hide_run"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="stm run hide_run"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="stm run hide_run"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="stm run hide_run"><a href="#n72">72</a></p>
-<p id="n73" class="pln"><a href="#n73">73</a></p>
-<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="pln"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="stm run hide_run"><a href="#n82">82</a></p>
-<p id="n83" class="stm run hide_run"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="pln"><a href="#n87">87</a></p>
-<p id="n88" class="stm run hide_run"><a href="#n88">88</a></p>
-<p id="n89" class="pln"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
-<p id="n98" class="pln"><a href="#n98">98</a></p>
-<p id="n99" class="stm run hide_run"><a href="#n99">99</a></p>
-<p id="n100" class="pln"><a href="#n100">100</a></p>
-<p id="n101" class="stm run hide_run"><a href="#n101">101</a></p>
-<p id="n102" class="pln"><a href="#n102">102</a></p>
-<p id="n103" class="stm run hide_run"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
-<p id="n106" class="stm run hide_run"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="stm run hide_run"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
-<p id="n111" class="stm run hide_run"><a href="#n111">111</a></p>
-<p id="n112" class="stm run hide_run"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="stm run hide_run"><a href="#n116">116</a></p>
-<p id="n117" class="pln"><a href="#n117">117</a></p>
-<p id="n118" class="stm run hide_run"><a href="#n118">118</a></p>
-<p id="n119" class="pln"><a href="#n119">119</a></p>
-<p id="n120" class="pln"><a href="#n120">120</a></p>
-<p id="n121" class="stm run hide_run"><a href="#n121">121</a></p>
-<p id="n122" class="pln"><a href="#n122">122</a></p>
-<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
-<p id="n124" class="stm mis"><a href="#n124">124</a></p>
-<p id="n125" class="stm mis"><a href="#n125">125</a></p>
-<p id="n126" class="pln"><a href="#n126">126</a></p>
-<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="pln"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="pln"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="stm mis"><a href="#n134">134</a></p>
-<p id="n135" class="stm mis"><a href="#n135">135</a></p>
-<p id="n136" class="pln"><a href="#n136">136</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">class</span> <span class="nam">SimulationClock</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln">    <span class="str">"""Class representing a simulation clock</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln"><span class="str">    time_step_size : int</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="pln"><span class="str">        Number of seconds per time step</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="str">    total_simulation_time : int</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="str">        Number of total seconds in the simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t19" class="stm run hide_run">        <span class="key">if</span> <span class="nam">total_simulation_time</span> <span class="op">%</span> <span class="nam">time_step_size</span> <span class="op">==</span> <span class="num">0</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run">            <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arange</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="nam">total_simulation_time</span> <span class="op">+</span> <span class="nam">time_step_size</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln">                                   <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">dtype</span><span class="op">=</span><span class="nam">float</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm run hide_run">            <span class="nam">time_array</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">arange</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln">                                   <span class="nam">dtype</span><span class="op">=</span><span class="nam">float</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span> <span class="op">=</span> <span class="nam">time_array</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_size</span> <span class="op">=</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t30" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln">        <span class="str">"""Returns the current simulation time in seconds</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="str">        :return: sim time (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t38" class="stm run hide_run">    <span class="key">def</span> <span class="nam">current_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln">        <span class="str">"""Returns the current simulation time index</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t41" class="pln"><span class="str">        :return: sim time index</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="pln"><span class="str">        :rtype: int</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm run hide_run">    <span class="key">def</span> <span class="nam">number_of_time_steps</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln">        <span class="str">"""Returns the total number of time steps in the simultaion</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln"><span class="str">        :return: num time steps</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="str">        :rtype: int</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">size</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time_array</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln">        <span class="str">"""Returns the array of all time steps in seconds (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="str">        :return: array of all time steps (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">        :rtype: np.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">copy</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t62" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time_step_size</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln">        <span class="str">"""Returns the simulation time step size in seconds</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="str">        :return: time step size (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_size</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t70" class="stm run hide_run">    <span class="key">def</span> <span class="nam">iter_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t72" class="stm run hide_run">        <span class="key">return</span> <span class="nam">TimeStepIterable</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_time_index</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_index</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln"><span class="str">        :param time_index:</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln"><span class="str">        :type time_index: int</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="str">        :return: None</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t82" class="stm run hide_run">        <span class="key">if</span> <span class="op">(</span><span class="num">0</span> <span class="op">&lt;=</span> <span class="nam">time_index</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">time_index</span> <span class="op">&lt;</span> <span class="nam">self</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="nam">time_index</span><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">            <span class="key">raise</span> <span class="nam">IndexError</span><span class="op">(</span><span class="str">"Time index out of bounds"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t88" class="stm run hide_run"><span class="key">class</span> <span class="nam">TimeStepIterable</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="str">    simulation_clock : SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t99" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t101" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_time_steps</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t102" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span> <span class="op">=</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__iter__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__next__</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm run hide_run">        <span class="nam">time_step_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm run hide_run">        <span class="key">if</span> <span class="nam">time_step_index</span> <span class="op">==</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_number_of_time_steps</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm run hide_run">            <span class="key">raise</span> <span class="nam">StopIteration</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_step_index</span> <span class="op">+=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t116" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">set_time_index</span><span class="op">(</span><span class="nam">time_step_index</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t118" class="stm run hide_run">        <span class="key">return</span> <span class="nam">time_step_index</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t121" class="stm run hide_run"><span class="key">class</span> <span class="nam">ReverseSimulationClock</span><span class="op">(</span><span class="nam">SimulationClock</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="stm mis">        <span class="nam">SimulationClock</span><span class="op">.</span><span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">time_step_size</span><span class="op">,</span> <span class="nam">total_simulation_time</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span> <span class="op">-</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t127" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln">        <span class="str">"""Increments the simulation time by one time step (s) backwards</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln"><span class="str">        :return: time index, time (s)</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="pln"><span class="str">        :rtype: float, float</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm mis">        <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span> <span class="op">-=</span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm mis">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">,</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_time_array</span><span class="op">[</span><span class="nam">self</span><span class="op">.</span><span class="nam">_current_time_index</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_simulation_py.html b/coverage_report/fluegg_simulation_py.html
deleted file mode 100644
index 410e1c5..0000000
--- a/coverage_report/fluegg_simulation_py.html
+++ /dev/null
@@ -1,723 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\simulation.py: 42%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\simulation.py</b> :
-            <span class="pc_cov">42%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            132 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">56 run</span>
-            <span class="mis shortkey_m button_toggle_mis">76 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
-<p id="n7" class="stm run hide_run"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="stm run hide_run"><a href="#n9">9</a></p>
-<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
-<p id="n11" class="stm run hide_run"><a href="#n11">11</a></p>
-<p id="n12" class="stm run hide_run"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="stm run hide_run"><a href="#n14">14</a></p>
-<p id="n15" class="stm run hide_run"><a href="#n15">15</a></p>
-<p id="n16" class="stm mis"><a href="#n16">16</a></p>
-<p id="n17" class="stm mis"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="pln"><a href="#n21">21</a></p>
-<p id="n22" class="pln"><a href="#n22">22</a></p>
-<p id="n23" class="pln"><a href="#n23">23</a></p>
-<p id="n24" class="pln"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="pln"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="stm run hide_run"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-<p id="n39" class="stm run hide_run"><a href="#n39">39</a></p>
-<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
-<p id="n41" class="stm run hide_run"><a href="#n41">41</a></p>
-<p id="n42" class="stm run hide_run"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="stm run hide_run"><a href="#n44">44</a></p>
-<p id="n45" class="pln"><a href="#n45">45</a></p>
-<p id="n46" class="stm run hide_run"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="stm run hide_run"><a href="#n48">48</a></p>
-<p id="n49" class="stm run hide_run"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="stm run hide_run"><a href="#n51">51</a></p>
-<p id="n52" class="pln"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="pln"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="stm run hide_run"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="stm run hide_run"><a href="#n63">63</a></p>
-<p id="n64" class="pln"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="pln"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="pln"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="pln"><a href="#n72">72</a></p>
-<p id="n73" class="pln"><a href="#n73">73</a></p>
-<p id="n74" class="stm run hide_run"><a href="#n74">74</a></p>
-<p id="n75" class="pln"><a href="#n75">75</a></p>
-<p id="n76" class="stm run hide_run"><a href="#n76">76</a></p>
-<p id="n77" class="pln"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="pln"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="pln"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="pln"><a href="#n84">84</a></p>
-<p id="n85" class="pln"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="stm run hide_run"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="stm run hide_run"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="stm run hide_run"><a href="#n97">97</a></p>
-<p id="n98" class="pln"><a href="#n98">98</a></p>
-<p id="n99" class="pln"><a href="#n99">99</a></p>
-<p id="n100" class="stm run hide_run"><a href="#n100">100</a></p>
-<p id="n101" class="pln"><a href="#n101">101</a></p>
-<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
-<p id="n103" class="stm mis"><a href="#n103">103</a></p>
-<p id="n104" class="pln"><a href="#n104">104</a></p>
-<p id="n105" class="stm run hide_run"><a href="#n105">105</a></p>
-<p id="n106" class="pln"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="stm run hide_run"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="stm run hide_run"><a href="#n110">110</a></p>
-<p id="n111" class="stm mis"><a href="#n111">111</a></p>
-<p id="n112" class="stm mis"><a href="#n112">112</a></p>
-<p id="n113" class="pln"><a href="#n113">113</a></p>
-<p id="n114" class="stm run hide_run"><a href="#n114">114</a></p>
-<p id="n115" class="pln"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="pln"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="pln"><a href="#n119">119</a></p>
-<p id="n120" class="pln"><a href="#n120">120</a></p>
-<p id="n121" class="stm run hide_run"><a href="#n121">121</a></p>
-<p id="n122" class="pln"><a href="#n122">122</a></p>
-<p id="n123" class="stm mis"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-<p id="n125" class="pln"><a href="#n125">125</a></p>
-<p id="n126" class="stm mis"><a href="#n126">126</a></p>
-<p id="n127" class="pln"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="stm mis"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="stm mis"><a href="#n131">131</a></p>
-<p id="n132" class="stm mis"><a href="#n132">132</a></p>
-<p id="n133" class="stm mis"><a href="#n133">133</a></p>
-<p id="n134" class="stm mis"><a href="#n134">134</a></p>
-<p id="n135" class="stm mis"><a href="#n135">135</a></p>
-<p id="n136" class="stm mis"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="pln"><a href="#n138">138</a></p>
-<p id="n139" class="stm mis"><a href="#n139">139</a></p>
-<p id="n140" class="pln"><a href="#n140">140</a></p>
-<p id="n141" class="pln"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="stm mis"><a href="#n143">143</a></p>
-<p id="n144" class="pln"><a href="#n144">144</a></p>
-<p id="n145" class="pln"><a href="#n145">145</a></p>
-<p id="n146" class="stm mis"><a href="#n146">146</a></p>
-<p id="n147" class="pln"><a href="#n147">147</a></p>
-<p id="n148" class="stm mis"><a href="#n148">148</a></p>
-<p id="n149" class="pln"><a href="#n149">149</a></p>
-<p id="n150" class="stm mis"><a href="#n150">150</a></p>
-<p id="n151" class="stm mis"><a href="#n151">151</a></p>
-<p id="n152" class="stm mis"><a href="#n152">152</a></p>
-<p id="n153" class="stm mis"><a href="#n153">153</a></p>
-<p id="n154" class="stm mis"><a href="#n154">154</a></p>
-<p id="n155" class="stm mis"><a href="#n155">155</a></p>
-<p id="n156" class="stm mis"><a href="#n156">156</a></p>
-<p id="n157" class="pln"><a href="#n157">157</a></p>
-<p id="n158" class="stm mis"><a href="#n158">158</a></p>
-<p id="n159" class="pln"><a href="#n159">159</a></p>
-<p id="n160" class="pln"><a href="#n160">160</a></p>
-<p id="n161" class="pln"><a href="#n161">161</a></p>
-<p id="n162" class="pln"><a href="#n162">162</a></p>
-<p id="n163" class="pln"><a href="#n163">163</a></p>
-<p id="n164" class="pln"><a href="#n164">164</a></p>
-<p id="n165" class="pln"><a href="#n165">165</a></p>
-<p id="n166" class="stm mis"><a href="#n166">166</a></p>
-<p id="n167" class="stm mis"><a href="#n167">167</a></p>
-<p id="n168" class="pln"><a href="#n168">168</a></p>
-<p id="n169" class="pln"><a href="#n169">169</a></p>
-<p id="n170" class="stm mis"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="pln"><a href="#n172">172</a></p>
-<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
-<p id="n174" class="pln"><a href="#n174">174</a></p>
-<p id="n175" class="pln"><a href="#n175">175</a></p>
-<p id="n176" class="pln"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="pln"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="pln"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="pln"><a href="#n183">183</a></p>
-<p id="n184" class="pln"><a href="#n184">184</a></p>
-<p id="n185" class="pln"><a href="#n185">185</a></p>
-<p id="n186" class="stm run hide_run"><a href="#n186">186</a></p>
-<p id="n187" class="stm run hide_run"><a href="#n187">187</a></p>
-<p id="n188" class="stm run hide_run"><a href="#n188">188</a></p>
-<p id="n189" class="stm run hide_run"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="pln"><a href="#n191">191</a></p>
-<p id="n192" class="stm run hide_run"><a href="#n192">192</a></p>
-<p id="n193" class="pln"><a href="#n193">193</a></p>
-<p id="n194" class="stm run hide_run"><a href="#n194">194</a></p>
-<p id="n195" class="pln"><a href="#n195">195</a></p>
-<p id="n196" class="stm run hide_run"><a href="#n196">196</a></p>
-<p id="n197" class="stm run hide_run"><a href="#n197">197</a></p>
-<p id="n198" class="pln"><a href="#n198">198</a></p>
-<p id="n199" class="stm run hide_run"><a href="#n199">199</a></p>
-<p id="n200" class="pln"><a href="#n200">200</a></p>
-<p id="n201" class="pln"><a href="#n201">201</a></p>
-<p id="n202" class="pln"><a href="#n202">202</a></p>
-<p id="n203" class="pln"><a href="#n203">203</a></p>
-<p id="n204" class="pln"><a href="#n204">204</a></p>
-<p id="n205" class="pln"><a href="#n205">205</a></p>
-<p id="n206" class="pln"><a href="#n206">206</a></p>
-<p id="n207" class="pln"><a href="#n207">207</a></p>
-<p id="n208" class="pln"><a href="#n208">208</a></p>
-<p id="n209" class="pln"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="pln"><a href="#n211">211</a></p>
-<p id="n212" class="pln"><a href="#n212">212</a></p>
-<p id="n213" class="pln"><a href="#n213">213</a></p>
-<p id="n214" class="pln"><a href="#n214">214</a></p>
-<p id="n215" class="pln"><a href="#n215">215</a></p>
-<p id="n216" class="pln"><a href="#n216">216</a></p>
-<p id="n217" class="stm run hide_run"><a href="#n217">217</a></p>
-<p id="n218" class="pln"><a href="#n218">218</a></p>
-<p id="n219" class="stm run hide_run"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="pln"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="pln"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="stm run hide_run"><a href="#n228">228</a></p>
-<p id="n229" class="pln"><a href="#n229">229</a></p>
-<p id="n230" class="stm run hide_run"><a href="#n230">230</a></p>
-<p id="n231" class="pln"><a href="#n231">231</a></p>
-<p id="n232" class="pln"><a href="#n232">232</a></p>
-<p id="n233" class="stm mis"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="pln"><a href="#n235">235</a></p>
-<p id="n236" class="stm mis"><a href="#n236">236</a></p>
-<p id="n237" class="stm mis"><a href="#n237">237</a></p>
-<p id="n238" class="stm mis"><a href="#n238">238</a></p>
-<p id="n239" class="stm mis"><a href="#n239">239</a></p>
-<p id="n240" class="stm mis"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="pln"><a href="#n242">242</a></p>
-<p id="n243" class="pln"><a href="#n243">243</a></p>
-<p id="n244" class="stm mis"><a href="#n244">244</a></p>
-<p id="n245" class="stm mis"><a href="#n245">245</a></p>
-<p id="n246" class="stm mis"><a href="#n246">246</a></p>
-<p id="n247" class="stm mis"><a href="#n247">247</a></p>
-<p id="n248" class="pln"><a href="#n248">248</a></p>
-<p id="n249" class="pln"><a href="#n249">249</a></p>
-<p id="n250" class="stm mis"><a href="#n250">250</a></p>
-<p id="n251" class="pln"><a href="#n251">251</a></p>
-<p id="n252" class="stm mis"><a href="#n252">252</a></p>
-<p id="n253" class="stm mis"><a href="#n253">253</a></p>
-<p id="n254" class="stm mis"><a href="#n254">254</a></p>
-<p id="n255" class="stm mis"><a href="#n255">255</a></p>
-<p id="n256" class="pln"><a href="#n256">256</a></p>
-<p id="n257" class="pln"><a href="#n257">257</a></p>
-<p id="n258" class="pln"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="stm mis"><a href="#n260">260</a></p>
-<p id="n261" class="stm mis"><a href="#n261">261</a></p>
-<p id="n262" class="stm mis"><a href="#n262">262</a></p>
-<p id="n263" class="stm mis"><a href="#n263">263</a></p>
-<p id="n264" class="pln"><a href="#n264">264</a></p>
-<p id="n265" class="pln"><a href="#n265">265</a></p>
-<p id="n266" class="stm run hide_run"><a href="#n266">266</a></p>
-<p id="n267" class="pln"><a href="#n267">267</a></p>
-<p id="n268" class="pln"><a href="#n268">268</a></p>
-<p id="n269" class="pln"><a href="#n269">269</a></p>
-<p id="n270" class="pln"><a href="#n270">270</a></p>
-<p id="n271" class="pln"><a href="#n271">271</a></p>
-<p id="n272" class="stm mis"><a href="#n272">272</a></p>
-<p id="n273" class="stm mis"><a href="#n273">273</a></p>
-<p id="n274" class="pln"><a href="#n274">274</a></p>
-<p id="n275" class="stm mis"><a href="#n275">275</a></p>
-<p id="n276" class="stm mis"><a href="#n276">276</a></p>
-<p id="n277" class="pln"><a href="#n277">277</a></p>
-<p id="n278" class="stm mis"><a href="#n278">278</a></p>
-<p id="n279" class="stm mis"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="stm mis"><a href="#n281">281</a></p>
-<p id="n282" class="pln"><a href="#n282">282</a></p>
-<p id="n283" class="pln"><a href="#n283">283</a></p>
-<p id="n284" class="stm mis"><a href="#n284">284</a></p>
-<p id="n285" class="pln"><a href="#n285">285</a></p>
-<p id="n286" class="pln"><a href="#n286">286</a></p>
-<p id="n287" class="stm mis"><a href="#n287">287</a></p>
-<p id="n288" class="stm mis"><a href="#n288">288</a></p>
-<p id="n289" class="stm mis"><a href="#n289">289</a></p>
-<p id="n290" class="stm mis"><a href="#n290">290</a></p>
-<p id="n291" class="stm mis"><a href="#n291">291</a></p>
-<p id="n292" class="stm mis"><a href="#n292">292</a></p>
-<p id="n293" class="pln"><a href="#n293">293</a></p>
-<p id="n294" class="stm mis"><a href="#n294">294</a></p>
-<p id="n295" class="stm mis"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="stm mis"><a href="#n297">297</a></p>
-<p id="n298" class="pln"><a href="#n298">298</a></p>
-<p id="n299" class="pln"><a href="#n299">299</a></p>
-<p id="n300" class="stm mis"><a href="#n300">300</a></p>
-<p id="n301" class="pln"><a href="#n301">301</a></p>
-<p id="n302" class="stm mis"><a href="#n302">302</a></p>
-<p id="n303" class="stm mis"><a href="#n303">303</a></p>
-<p id="n304" class="pln"><a href="#n304">304</a></p>
-<p id="n305" class="stm mis"><a href="#n305">305</a></p>
-<p id="n306" class="stm mis"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="stm mis"><a href="#n308">308</a></p>
-<p id="n309" class="pln"><a href="#n309">309</a></p>
-<p id="n310" class="stm mis"><a href="#n310">310</a></p>
-<p id="n311" class="pln"><a href="#n311">311</a></p>
-<p id="n312" class="stm mis"><a href="#n312">312</a></p>
-<p id="n313" class="pln"><a href="#n313">313</a></p>
-<p id="n314" class="stm mis"><a href="#n314">314</a></p>
-<p id="n315" class="pln"><a href="#n315">315</a></p>
-<p id="n316" class="stm mis"><a href="#n316">316</a></p>
-<p id="n317" class="stm mis"><a href="#n317">317</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="stm run hide_run"><span class="key">from</span> <span class="nam">copy</span> <span class="key">import</span> <span class="nam">deepcopy</span><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">import</span> <span class="nam">from_csv</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">import</span> <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">simclock</span> <span class="key">import</span> <span class="nam">SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">BigheadCarpEggs</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">SilverCarpEggs</span><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">asiancarpeggs</span> <span class="key">import</span> <span class="nam">GrassCarpEggs</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="stm run hide_run"><span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">transporter</span> <span class="key">import</span> <span class="nam">init_transporter</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="stm run hide_run"><span class="key">import</span> <span class="nam">h5py</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="stm run hide_run"><span class="key">import</span> <span class="nam">datetime</span><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t14" class="stm run hide_run"><span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="stm run hide_run">    <span class="key">from</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">ras</span> <span class="key">import</span> <span class="nam">RASProject</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="stm mis"><span class="key">except</span> <span class="nam">ModuleNotFoundError</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="stm mis">    <span class="key">pass</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run"><span class="key">class</span> <span class="nam">Simulation</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="pln">    <span class="str">"""Class that controls the simulation by incrementing time</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="pln"><span class="str">    steps and calling simulation functions correctly.</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t24" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln"><span class="str">    particles : fluegg.drift.DriftingParticles</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="pln"><span class="str">        Particles being drifted through the simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln"><span class="str">    transporter : fluegg.transporter.Transporter</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln"><span class="str">        Class that physically transports each egg for each time step</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="str">    simclock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="str">        Clock that keeps track of the time during the simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">transporter</span><span class="op">,</span> <span class="nam">simclock</span><span class="op">,</span> <span class="nam">hydraulic_cells</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t39" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_cells</span><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_transporter</span> <span class="op">=</span> <span class="nam">transporter</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simclock</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t44" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span> <span class="op">=</span> <span class="op">{</span><span class="op">}</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t46" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_call_time_step_functions</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t48" class="stm run hide_run">        <span class="key">for</span> <span class="nam">fun</span><span class="op">,</span> <span class="nam">args</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span><span class="op">.</span><span class="nam">items</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="stm run hide_run">            <span class="nam">fun</span><span class="op">(</span><span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t51" class="stm run hide_run">    <span class="key">def</span> <span class="nam">add_time_step_function_call</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">fun</span><span class="op">,</span> <span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t52" class="pln">        <span class="str">"""Adds a function that will be called at the beginning of a time step.</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln"><span class="str">        fun : function</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="str">        args : list</span><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t61" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_time_step_function_calls</span><span class="op">[</span><span class="nam">fun</span><span class="op">]</span> <span class="op">=</span> <span class="nam">args</span><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t63" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_model</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t64" class="pln">        <span class="str">"""Sets the hydraulic model used in this instance.</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t66" class="pln"><span class="str">        Required before calling run().</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="pln"><span class="str">        hydraulic_model : fluegg.hydraulics.SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t72" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t73" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t74" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_model</span><span class="strut">&nbsp;</span></p>
-<p id="t75" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t76" class="stm run hide_run">    <span class="key">def</span> <span class="nam">run</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">=</span><span class="op">{</span><span class="op">}</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t77" class="pln">        <span class="str">"""Runs the simulation and returns the time-stamped positions</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln"><span class="str">        of the particles throughout the simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t80" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="pln"><span class="str">        SimulationResults</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t84" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln">        <span class="com"># Initialize simulation results</span><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm run hide_run">        <span class="nam">simulation_results</span> <span class="op">=</span> <span class="nam">SimulationResults</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm run hide_run">        <span class="nam">simulation_results</span><span class="op">.</span><span class="nam">record_result</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln">        <span class="com"># Run through all time steps</span><span class="strut">&nbsp;</span></p>
-<p id="t92" class="stm run hide_run">        <span class="key">for</span> <span class="nam">_</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">iter_time_index</span><span class="op">(</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t94" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_call_time_step_functions</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln">            <span class="com"># record the result in the current state</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="stm run hide_run">            <span class="nam">simulation_results</span><span class="op">.</span><span class="nam">record_result</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t98" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t99" class="pln">            <span class="com"># Get positions and hydraulic results</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="stm run hide_run">            <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t101" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm run hide_run">            <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">all</span><span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">isnan</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="stm mis">                <span class="key">break</span><span class="strut">&nbsp;</span></p>
-<p id="t104" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t105" class="stm run hide_run">            <span class="nam">hydraulic_results</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span><span class="op">.</span><span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t108" class="stm run hide_run">            <span class="key">try</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln">                <span class="com"># Increment positions</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="stm run hide_run">                <span class="nam">self</span><span class="op">.</span><span class="nam">_transporter</span><span class="op">.</span><span class="nam">increment_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="stm mis">            <span class="key">except</span> <span class="nam">ValueError</span> <span class="key">as</span> <span class="nam">e</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t112" class="stm mis">                <span class="key">raise</span> <span class="nam">e</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t114" class="stm run hide_run">        <span class="key">return</span> <span class="nam">simulation_results</span><span class="strut">&nbsp;</span></p>
-<p id="t115" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln">        <span class="com"># Raise error if time step is too large</span><span class="strut">&nbsp;</span></p>
-<p id="t117" class="pln">        <span class="com"># if user_step > max_step:</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln">        <span class="com">#     raise ValueError('User time step is', user_step, '. Must be at less than', max_step)</span><span class="strut">&nbsp;</span></p>
-<p id="t119" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t120" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t121" class="stm run hide_run"><span class="key">def</span> <span class="nam">from_input_dict</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t122" class="pln">    <span class="str">"""Creates a Simulation object from an input dictionary"""</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm mis">    <span class="nam">input_dict_validator</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t125" class="pln">    <span class="com"># Simulation Clock</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="stm mis">    <span class="nam">simulation_clock</span> <span class="op">=</span> <span class="nam">SimulationClock</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t127" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln">    <span class="com"># Drifting Particles</span><span class="strut">&nbsp;</span></p>
-<p id="t129" class="stm mis">    <span class="nam">initial_position</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln">        <span class="nam">np</span><span class="op">.</span><span class="nam">array</span><span class="op">(</span><span class="op">[</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">]</span><span class="op">)</span><span class="op">,</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span><span class="op">,</span> <span class="num">1</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'grass'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">GrassCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="stm mis">    <span class="key">elif</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'silver'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">SilverCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm mis">    <span class="key">elif</span> <span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'bighead'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm mis">        <span class="nam">drift</span> <span class="op">=</span> <span class="nam">BigheadCarpEggs</span><span class="op">(</span><span class="nam">initial_position</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t138" class="pln">    <span class="com"># Transporter</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="stm mis">    <span class="nam">transporter_model</span> <span class="op">=</span> <span class="nam">init_transporter</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="pln">        <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">drift</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span><span class="op">,</span> <span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t141" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln">    <span class="com"># Simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t143" class="stm mis">    <span class="nam">sim</span> <span class="op">=</span> <span class="nam">Simulation</span><span class="op">(</span><span class="nam">drift</span><span class="op">,</span> <span class="nam">transporter_model</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t145" class="pln">    <span class="com"># Hydraulic cells (csv vs. hecras)</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'csv'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t147" class="pln">        <span class="com"># Hydraulic channel (CSV)</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="stm mis">        <span class="nam">hydraulic_cells</span> <span class="op">=</span> <span class="nam">from_csv</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="pln">    <span class="com"># Hecras Mode</span><span class="strut">&nbsp;</span></p>
-<p id="t150" class="stm mis">    <span class="key">if</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span> <span class="op">==</span> <span class="str">'hecras'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="stm mis">        <span class="key">with</span> <span class="nam">RASProject</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span><span class="op">)</span> <span class="key">as</span> <span class="nam">rp</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="stm mis">            <span class="nam">plan_name</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_plan'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t153" class="stm mis">            <span class="nam">rp</span><span class="op">.</span><span class="nam">set_current_plan</span><span class="op">(</span><span class="nam">plan_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="stm mis">            <span class="nam">profile_name</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_profile'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="stm mis">            <span class="nam">temperature</span> <span class="op">=</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hecras_temperature'</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="stm mis">            <span class="nam">hydraulic_data_frame</span> <span class="op">=</span> <span class="nam">rp</span><span class="op">.</span><span class="nam">hydraulic_model_data</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t157" class="pln">                <span class="nam">profile_name</span><span class="op">,</span> <span class="nam">temperature</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="stm mis">            <span class="nam">hydraulic_cells</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="pln">                <span class="nam">RoughBottomSeriesOfHydraulicCells</span><span class="op">.</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="pln">                <span class="nam">from_data_frame</span><span class="op">(</span><span class="nam">hydraulic_data_frame</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="pln">                                <span class="nam">start_time</span><span class="op">=</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_start_time'</span><span class="op">]</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="pln">                                <span class="nam">simulation_clock</span><span class="op">=</span><span class="nam">simulation_clock</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t163" class="pln">                                <span class="nam">simulation</span><span class="op">=</span><span class="nam">sim</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t165" class="pln">    <span class="com"># Update sim &amp; transporter with  hydraulic cells</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="stm mis">    <span class="nam">sim</span><span class="op">.</span><span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">hydraulic_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="stm mis">    <span class="nam">transporter_model</span><span class="op">.</span><span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">hydraulic_cells</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t168" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t169" class="pln">    <span class="com"># Return simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="stm mis">    <span class="key">return</span> <span class="nam">sim</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t173" class="stm run hide_run"><span class="key">class</span> <span class="nam">SimulationResults</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="pln">    <span class="str">"""Data structure containing simulation results during a simulation run</span><span class="strut">&nbsp;</span></p>
-<p id="t175" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t176" class="pln"><span class="str">    Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln"><span class="str">    ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="str">    simclock : fluegg.simclock.SimulationClock</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="pln"><span class="str">        Representation of a simulation clock</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t181" class="pln"><span class="str">    particles : fluegg.drift.DriftingParticle</span><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln"><span class="str">        Particles that were are being drifted through the simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t184" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t186" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simclock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">configuration</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t187" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span> <span class="op">=</span> <span class="nam">simclock</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">tile</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln">            <span class="nam">np</span><span class="op">.</span><span class="nam">nan</span><span class="op">,</span> <span class="op">(</span><span class="nam">simclock</span><span class="op">.</span><span class="nam">number_of_time_steps</span><span class="op">(</span><span class="op">)</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t191" class="pln">                     <span class="nam">particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="op">,</span> <span class="num">3</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span> <span class="op">=</span> <span class="nam">configuration</span><span class="strut">&nbsp;</span></p>
-<p id="t193" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t194" class="stm run hide_run">    <span class="key">def</span> <span class="nam">record_result</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t195" class="pln">        <span class="str">"""Records the current particle positions in the positions array."""</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="stm run hide_run">        <span class="nam">time_index</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">current_time_index</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t197" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="op">[</span><span class="nam">time_index</span><span class="op">]</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t198" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t199" class="stm run hide_run">    <span class="key">def</span> <span class="nam">results</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t200" class="pln">        <span class="str">"""Returns the positions of the particles logged throughout the</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="pln"><span class="str">        simulation.</span><span class="strut">&nbsp;</span></p>
-<p id="t202" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t203" class="pln"><span class="str">        The returned array is structured as</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t205" class="pln"><span class="str">            Axis    Values              Size</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="pln"><span class="str">            0       Time step           Number of time steps (N_t)</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="pln"><span class="str">            1       Particle number     Number of eggs (N_e)</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="pln"><span class="str">            3       Position (x, y, z)  3</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln"><span class="str">        The shape of the array is (N_t, N_e, 3).</span><span class="strut">&nbsp;</span></p>
-<p id="t211" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t212" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t216" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t219" class="stm run hide_run">    <span class="key">def</span> <span class="nam">time</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln">        <span class="str">"""Returns time array</span><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t222" class="pln"><span class="str">        Returns</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln"><span class="str">        -------</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln"><span class="str">        numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t226" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t228" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t230" class="stm run hide_run">    <span class="key">def</span> <span class="nam">save_results</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">file_path</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t231" class="pln">        <span class="str">"""Save the results of a simulation to an hdf time-stamped file"""</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t233" class="stm mis">        <span class="key">if</span> <span class="nam">file_path</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t235" class="pln">            <span class="com"># Create results folder</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="stm mis">            <span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">realpath</span><span class="op">(</span><span class="nam">__file__</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t237" class="stm mis">            <span class="nam">p</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">abspath</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">os</span><span class="op">.</span><span class="nam">pardir</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="stm mis">            <span class="nam">p</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">p</span><span class="op">,</span> <span class="str">'results'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">exists</span><span class="op">(</span><span class="nam">p</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm mis">                <span class="nam">os</span><span class="op">.</span><span class="nam">makedirs</span><span class="op">(</span><span class="nam">p</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="pln">            <span class="com"># Check if sim_name exists in configuration, if not use current</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="pln">            <span class="com"># time</span><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm mis">            <span class="key">if</span> <span class="key">not</span> <span class="op">(</span><span class="str">'sim_name'</span> <span class="key">in</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">.</span><span class="nam">keys</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="stm mis">                <span class="nam">now</span> <span class="op">=</span> <span class="nam">datetime</span><span class="op">.</span><span class="nam">datetime</span><span class="op">.</span><span class="nam">now</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t246" class="stm mis">                <span class="nam">date_string</span> <span class="op">=</span> <span class="nam">now</span><span class="op">.</span><span class="nam">strftime</span><span class="op">(</span><span class="str">'%Y-%m-%d-%H-%M-%S'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t247" class="stm mis">                <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span> <span class="op">=</span> <span class="str">'fluegg_'</span> <span class="op">+</span> <span class="nam">date_string</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t249" class="pln">            <span class="com"># Check if results file already exists</span><span class="strut">&nbsp;</span></p>
-<p id="t250" class="stm mis">            <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="pln">                <span class="nam">p</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">)</span> <span class="op">+</span> <span class="str">'.h5'</span><span class="strut">&nbsp;</span></p>
-<p id="t252" class="stm mis">            <span class="key">if</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">exists</span><span class="op">(</span><span class="nam">file_path</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t253" class="stm mis">                <span class="nam">now</span> <span class="op">=</span> <span class="nam">datetime</span><span class="op">.</span><span class="nam">datetime</span><span class="op">.</span><span class="nam">now</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="stm mis">                <span class="nam">date_string</span> <span class="op">=</span> <span class="nam">now</span><span class="op">.</span><span class="nam">strftime</span><span class="op">(</span><span class="str">'%Y-%m-%d-%H-%M-%S'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="stm mis">                <span class="nam">file_path</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="pln">                    <span class="nam">p</span><span class="op">,</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">)</span> <span class="op">+</span> <span class="nam">str</span><span class="op">(</span><span class="nam">date_string</span><span class="op">)</span> <span class="op">+</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="pln">                    <span class="str">'.h5'</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln">        <span class="com"># Save simulation results</span><span class="strut">&nbsp;</span></p>
-<p id="t260" class="stm mis">        <span class="key">with</span> <span class="nam">h5py</span><span class="op">.</span><span class="nam">File</span><span class="op">(</span><span class="nam">file_path</span><span class="op">,</span> <span class="str">'w'</span><span class="op">)</span> <span class="key">as</span> <span class="nam">f</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'simclock'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_simclock</span><span class="op">.</span><span class="nam">time_array</span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'positions'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">self</span><span class="op">.</span><span class="nam">_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="stm mis">            <span class="nam">f</span><span class="op">.</span><span class="nam">create_dataset</span><span class="op">(</span><span class="str">'configuration'</span><span class="op">,</span> <span class="nam">data</span><span class="op">=</span><span class="nam">str</span><span class="op">(</span><span class="nam">self</span><span class="op">.</span><span class="nam">_configuration</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t265" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm run hide_run"><span class="key">def</span> <span class="nam">input_dict_validator</span><span class="op">(</span><span class="nam">d</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="pln">    <span class="str">"""Validates a list of simulation inputs and runs the simlation if inputs</span><span class="strut">&nbsp;</span></p>
-<p id="t268" class="pln"><span class="str">    are valid</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t270" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t271" class="pln">    <span class="com"># Hydraulic Input Mode</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">d</span><span class="op">[</span><span class="str">'hydraulic_mode'</span><span class="op">]</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t273" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'hydraulic_mode must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="pln">    <span class="com"># CSV path</span><span class="strut">&nbsp;</span></p>
-<p id="t275" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'csv_path'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'csv_path must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="pln">    <span class="com"># Hecras path</span><span class="strut">&nbsp;</span></p>
-<p id="t278" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'hecras_path'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'hecras_path must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln">    <span class="com"># Diffusivity</span><span class="strut">&nbsp;</span></p>
-<p id="t281" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'parabolic'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'constant'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t283" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'diffusivity'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'parabolic-constant'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="pln">            <span class="str">'diffusivity must be parabolic, constant, or parabolic-constant'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t286" class="pln">    <span class="com"># XYZ Position</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'x'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t288" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'x must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t289" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'y'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'y must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'z'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t292" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'z must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="pln">    <span class="com"># Number of eggs</span><span class="strut">&nbsp;</span></p>
-<p id="t294" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'num_eggs'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t295" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'num_eggs must be type int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln">    <span class="com"># Species</span><span class="strut">&nbsp;</span></p>
-<p id="t297" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'grass'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t298" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'silver'</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="pln">            <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'species'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'bighead'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t300" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'species must be grass, silver, or bighead'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t301" class="pln">    <span class="com"># Varying density &amp; diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'constant'</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'varying_dd'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'varying'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t303" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'varying_dd must be constant or varying.'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="pln">    <span class="com"># Direction of simulation</span><span class="strut">&nbsp;</span></p>
-<p id="t305" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'forward'</span><span class="op">)</span> <span class="key">and</span> <span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'direction'</span><span class="op">]</span> <span class="op">!=</span> <span class="str">'reverse'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'direction must be forward or reverse.'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln">    <span class="com"># Duration</span><span class="strut">&nbsp;</span></p>
-<p id="t308" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="pln">            <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'duration'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'duration must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="pln">    <span class="com"># Time step</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="stm mis">    <span class="key">if</span> <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">float</span><span class="op">)</span><span class="op">)</span> <span class="key">and</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t313" class="pln">            <span class="op">(</span><span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'time_step'</span><span class="op">]</span><span class="op">,</span> <span class="nam">int</span><span class="op">)</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'time_step must be type float or int'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t315" class="pln">    <span class="com"># Simulation name</span><span class="strut">&nbsp;</span></p>
-<p id="t316" class="stm mis">    <span class="key">if</span> <span class="key">not</span> <span class="nam">isinstance</span><span class="op">(</span><span class="nam">d</span><span class="op">[</span><span class="str">'sim_name'</span><span class="op">]</span><span class="op">,</span> <span class="nam">str</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t317" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">'sim_name must be type str'</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/fluegg_transporter_py.html b/coverage_report/fluegg_transporter_py.html
deleted file mode 100644
index 85a1edf..0000000
--- a/coverage_report/fluegg_transporter_py.html
+++ /dev/null
@@ -1,1809 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for fluegg\transporter.py: 80%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>fluegg\transporter.py</b> :
-            <span class="pc_cov">80%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            285 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">229 run</span>
-            <span class="mis shortkey_m button_toggle_mis">56 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="pln"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="pln"><a href="#n4">4</a></p>
-<p id="n5" class="stm run hide_run"><a href="#n5">5</a></p>
-<p id="n6" class="pln"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="pln"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="pln"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="pln"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
-<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
-<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
-<p id="n24" class="stm mis"><a href="#n24">24</a></p>
-<p id="n25" class="pln"><a href="#n25">25</a></p>
-<p id="n26" class="stm run hide_run"><a href="#n26">26</a></p>
-<p id="n27" class="pln"><a href="#n27">27</a></p>
-<p id="n28" class="stm run hide_run"><a href="#n28">28</a></p>
-<p id="n29" class="pln"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="pln"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="pln"><a href="#n34">34</a></p>
-<p id="n35" class="pln"><a href="#n35">35</a></p>
-<p id="n36" class="pln"><a href="#n36">36</a></p>
-<p id="n37" class="pln"><a href="#n37">37</a></p>
-<p id="n38" class="stm run hide_run"><a href="#n38">38</a></p>
-<p id="n39" class="pln"><a href="#n39">39</a></p>
-<p id="n40" class="stm run hide_run"><a href="#n40">40</a></p>
-<p id="n41" class="pln"><a href="#n41">41</a></p>
-<p id="n42" class="pln"><a href="#n42">42</a></p>
-<p id="n43" class="pln"><a href="#n43">43</a></p>
-<p id="n44" class="pln"><a href="#n44">44</a></p>
-<p id="n45" class="pln"><a href="#n45">45</a></p>
-<p id="n46" class="pln"><a href="#n46">46</a></p>
-<p id="n47" class="pln"><a href="#n47">47</a></p>
-<p id="n48" class="pln"><a href="#n48">48</a></p>
-<p id="n49" class="pln"><a href="#n49">49</a></p>
-<p id="n50" class="pln"><a href="#n50">50</a></p>
-<p id="n51" class="pln"><a href="#n51">51</a></p>
-<p id="n52" class="stm run hide_run"><a href="#n52">52</a></p>
-<p id="n53" class="pln"><a href="#n53">53</a></p>
-<p id="n54" class="stm run hide_run"><a href="#n54">54</a></p>
-<p id="n55" class="pln"><a href="#n55">55</a></p>
-<p id="n56" class="pln"><a href="#n56">56</a></p>
-<p id="n57" class="pln"><a href="#n57">57</a></p>
-<p id="n58" class="pln"><a href="#n58">58</a></p>
-<p id="n59" class="pln"><a href="#n59">59</a></p>
-<p id="n60" class="pln"><a href="#n60">60</a></p>
-<p id="n61" class="pln"><a href="#n61">61</a></p>
-<p id="n62" class="pln"><a href="#n62">62</a></p>
-<p id="n63" class="pln"><a href="#n63">63</a></p>
-<p id="n64" class="stm mis"><a href="#n64">64</a></p>
-<p id="n65" class="pln"><a href="#n65">65</a></p>
-<p id="n66" class="stm run hide_run"><a href="#n66">66</a></p>
-<p id="n67" class="pln"><a href="#n67">67</a></p>
-<p id="n68" class="pln"><a href="#n68">68</a></p>
-<p id="n69" class="pln"><a href="#n69">69</a></p>
-<p id="n70" class="pln"><a href="#n70">70</a></p>
-<p id="n71" class="pln"><a href="#n71">71</a></p>
-<p id="n72" class="pln"><a href="#n72">72</a></p>
-<p id="n73" class="pln"><a href="#n73">73</a></p>
-<p id="n74" class="pln"><a href="#n74">74</a></p>
-<p id="n75" class="stm run hide_run"><a href="#n75">75</a></p>
-<p id="n76" class="pln"><a href="#n76">76</a></p>
-<p id="n77" class="stm run hide_run"><a href="#n77">77</a></p>
-<p id="n78" class="pln"><a href="#n78">78</a></p>
-<p id="n79" class="pln"><a href="#n79">79</a></p>
-<p id="n80" class="pln"><a href="#n80">80</a></p>
-<p id="n81" class="pln"><a href="#n81">81</a></p>
-<p id="n82" class="pln"><a href="#n82">82</a></p>
-<p id="n83" class="pln"><a href="#n83">83</a></p>
-<p id="n84" class="stm run hide_run"><a href="#n84">84</a></p>
-<p id="n85" class="stm mis"><a href="#n85">85</a></p>
-<p id="n86" class="pln"><a href="#n86">86</a></p>
-<p id="n87" class="stm run hide_run"><a href="#n87">87</a></p>
-<p id="n88" class="pln"><a href="#n88">88</a></p>
-<p id="n89" class="stm run hide_run"><a href="#n89">89</a></p>
-<p id="n90" class="pln"><a href="#n90">90</a></p>
-<p id="n91" class="pln"><a href="#n91">91</a></p>
-<p id="n92" class="pln"><a href="#n92">92</a></p>
-<p id="n93" class="pln"><a href="#n93">93</a></p>
-<p id="n94" class="pln"><a href="#n94">94</a></p>
-<p id="n95" class="pln"><a href="#n95">95</a></p>
-<p id="n96" class="pln"><a href="#n96">96</a></p>
-<p id="n97" class="pln"><a href="#n97">97</a></p>
-<p id="n98" class="stm mis"><a href="#n98">98</a></p>
-<p id="n99" class="stm mis"><a href="#n99">99</a></p>
-<p id="n100" class="pln"><a href="#n100">100</a></p>
-<p id="n101" class="pln"><a href="#n101">101</a></p>
-<p id="n102" class="stm run hide_run"><a href="#n102">102</a></p>
-<p id="n103" class="pln"><a href="#n103">103</a></p>
-<p id="n104" class="stm run hide_run"><a href="#n104">104</a></p>
-<p id="n105" class="pln"><a href="#n105">105</a></p>
-<p id="n106" class="pln"><a href="#n106">106</a></p>
-<p id="n107" class="pln"><a href="#n107">107</a></p>
-<p id="n108" class="pln"><a href="#n108">108</a></p>
-<p id="n109" class="pln"><a href="#n109">109</a></p>
-<p id="n110" class="pln"><a href="#n110">110</a></p>
-<p id="n111" class="pln"><a href="#n111">111</a></p>
-<p id="n112" class="pln"><a href="#n112">112</a></p>
-<p id="n113" class="stm run hide_run"><a href="#n113">113</a></p>
-<p id="n114" class="pln"><a href="#n114">114</a></p>
-<p id="n115" class="stm run hide_run"><a href="#n115">115</a></p>
-<p id="n116" class="pln"><a href="#n116">116</a></p>
-<p id="n117" class="stm run hide_run"><a href="#n117">117</a></p>
-<p id="n118" class="pln"><a href="#n118">118</a></p>
-<p id="n119" class="stm run hide_run"><a href="#n119">119</a></p>
-<p id="n120" class="stm run hide_run"><a href="#n120">120</a></p>
-<p id="n121" class="pln"><a href="#n121">121</a></p>
-<p id="n122" class="stm run hide_run"><a href="#n122">122</a></p>
-<p id="n123" class="stm run hide_run"><a href="#n123">123</a></p>
-<p id="n124" class="pln"><a href="#n124">124</a></p>
-<p id="n125" class="stm run hide_run"><a href="#n125">125</a></p>
-<p id="n126" class="pln"><a href="#n126">126</a></p>
-<p id="n127" class="stm run hide_run"><a href="#n127">127</a></p>
-<p id="n128" class="pln"><a href="#n128">128</a></p>
-<p id="n129" class="stm run hide_run"><a href="#n129">129</a></p>
-<p id="n130" class="pln"><a href="#n130">130</a></p>
-<p id="n131" class="stm run hide_run"><a href="#n131">131</a></p>
-<p id="n132" class="pln"><a href="#n132">132</a></p>
-<p id="n133" class="pln"><a href="#n133">133</a></p>
-<p id="n134" class="stm run hide_run"><a href="#n134">134</a></p>
-<p id="n135" class="stm run hide_run"><a href="#n135">135</a></p>
-<p id="n136" class="stm run hide_run"><a href="#n136">136</a></p>
-<p id="n137" class="pln"><a href="#n137">137</a></p>
-<p id="n138" class="stm run hide_run"><a href="#n138">138</a></p>
-<p id="n139" class="pln"><a href="#n139">139</a></p>
-<p id="n140" class="stm run hide_run"><a href="#n140">140</a></p>
-<p id="n141" class="pln"><a href="#n141">141</a></p>
-<p id="n142" class="pln"><a href="#n142">142</a></p>
-<p id="n143" class="stm run hide_run"><a href="#n143">143</a></p>
-<p id="n144" class="pln"><a href="#n144">144</a></p>
-<p id="n145" class="stm run hide_run"><a href="#n145">145</a></p>
-<p id="n146" class="pln"><a href="#n146">146</a></p>
-<p id="n147" class="stm run hide_run"><a href="#n147">147</a></p>
-<p id="n148" class="pln"><a href="#n148">148</a></p>
-<p id="n149" class="pln"><a href="#n149">149</a></p>
-<p id="n150" class="pln"><a href="#n150">150</a></p>
-<p id="n151" class="pln"><a href="#n151">151</a></p>
-<p id="n152" class="pln"><a href="#n152">152</a></p>
-<p id="n153" class="pln"><a href="#n153">153</a></p>
-<p id="n154" class="pln"><a href="#n154">154</a></p>
-<p id="n155" class="pln"><a href="#n155">155</a></p>
-<p id="n156" class="pln"><a href="#n156">156</a></p>
-<p id="n157" class="stm run hide_run"><a href="#n157">157</a></p>
-<p id="n158" class="stm run hide_run"><a href="#n158">158</a></p>
-<p id="n159" class="stm run hide_run"><a href="#n159">159</a></p>
-<p id="n160" class="stm run hide_run"><a href="#n160">160</a></p>
-<p id="n161" class="stm run hide_run"><a href="#n161">161</a></p>
-<p id="n162" class="pln"><a href="#n162">162</a></p>
-<p id="n163" class="stm run hide_run"><a href="#n163">163</a></p>
-<p id="n164" class="stm run hide_run"><a href="#n164">164</a></p>
-<p id="n165" class="stm run hide_run"><a href="#n165">165</a></p>
-<p id="n166" class="pln"><a href="#n166">166</a></p>
-<p id="n167" class="pln"><a href="#n167">167</a></p>
-<p id="n168" class="pln"><a href="#n168">168</a></p>
-<p id="n169" class="stm run hide_run"><a href="#n169">169</a></p>
-<p id="n170" class="pln"><a href="#n170">170</a></p>
-<p id="n171" class="pln"><a href="#n171">171</a></p>
-<p id="n172" class="pln"><a href="#n172">172</a></p>
-<p id="n173" class="stm run hide_run"><a href="#n173">173</a></p>
-<p id="n174" class="pln"><a href="#n174">174</a></p>
-<p id="n175" class="stm run hide_run"><a href="#n175">175</a></p>
-<p id="n176" class="pln"><a href="#n176">176</a></p>
-<p id="n177" class="pln"><a href="#n177">177</a></p>
-<p id="n178" class="pln"><a href="#n178">178</a></p>
-<p id="n179" class="pln"><a href="#n179">179</a></p>
-<p id="n180" class="pln"><a href="#n180">180</a></p>
-<p id="n181" class="pln"><a href="#n181">181</a></p>
-<p id="n182" class="pln"><a href="#n182">182</a></p>
-<p id="n183" class="pln"><a href="#n183">183</a></p>
-<p id="n184" class="stm run hide_run"><a href="#n184">184</a></p>
-<p id="n185" class="pln"><a href="#n185">185</a></p>
-<p id="n186" class="pln"><a href="#n186">186</a></p>
-<p id="n187" class="stm run hide_run"><a href="#n187">187</a></p>
-<p id="n188" class="pln"><a href="#n188">188</a></p>
-<p id="n189" class="pln"><a href="#n189">189</a></p>
-<p id="n190" class="pln"><a href="#n190">190</a></p>
-<p id="n191" class="stm run hide_run"><a href="#n191">191</a></p>
-<p id="n192" class="pln"><a href="#n192">192</a></p>
-<p id="n193" class="stm run hide_run"><a href="#n193">193</a></p>
-<p id="n194" class="pln"><a href="#n194">194</a></p>
-<p id="n195" class="stm run hide_run"><a href="#n195">195</a></p>
-<p id="n196" class="pln"><a href="#n196">196</a></p>
-<p id="n197" class="pln"><a href="#n197">197</a></p>
-<p id="n198" class="stm run hide_run"><a href="#n198">198</a></p>
-<p id="n199" class="pln"><a href="#n199">199</a></p>
-<p id="n200" class="stm run hide_run"><a href="#n200">200</a></p>
-<p id="n201" class="pln"><a href="#n201">201</a></p>
-<p id="n202" class="pln"><a href="#n202">202</a></p>
-<p id="n203" class="pln"><a href="#n203">203</a></p>
-<p id="n204" class="pln"><a href="#n204">204</a></p>
-<p id="n205" class="pln"><a href="#n205">205</a></p>
-<p id="n206" class="pln"><a href="#n206">206</a></p>
-<p id="n207" class="pln"><a href="#n207">207</a></p>
-<p id="n208" class="pln"><a href="#n208">208</a></p>
-<p id="n209" class="pln"><a href="#n209">209</a></p>
-<p id="n210" class="pln"><a href="#n210">210</a></p>
-<p id="n211" class="stm run hide_run"><a href="#n211">211</a></p>
-<p id="n212" class="stm run hide_run"><a href="#n212">212</a></p>
-<p id="n213" class="stm run hide_run"><a href="#n213">213</a></p>
-<p id="n214" class="stm run hide_run"><a href="#n214">214</a></p>
-<p id="n215" class="stm run hide_run"><a href="#n215">215</a></p>
-<p id="n216" class="stm run hide_run"><a href="#n216">216</a></p>
-<p id="n217" class="stm run hide_run"><a href="#n217">217</a></p>
-<p id="n218" class="stm run hide_run"><a href="#n218">218</a></p>
-<p id="n219" class="pln"><a href="#n219">219</a></p>
-<p id="n220" class="pln"><a href="#n220">220</a></p>
-<p id="n221" class="pln"><a href="#n221">221</a></p>
-<p id="n222" class="stm run hide_run"><a href="#n222">222</a></p>
-<p id="n223" class="pln"><a href="#n223">223</a></p>
-<p id="n224" class="pln"><a href="#n224">224</a></p>
-<p id="n225" class="pln"><a href="#n225">225</a></p>
-<p id="n226" class="stm run hide_run"><a href="#n226">226</a></p>
-<p id="n227" class="pln"><a href="#n227">227</a></p>
-<p id="n228" class="stm run hide_run"><a href="#n228">228</a></p>
-<p id="n229" class="pln"><a href="#n229">229</a></p>
-<p id="n230" class="pln"><a href="#n230">230</a></p>
-<p id="n231" class="pln"><a href="#n231">231</a></p>
-<p id="n232" class="pln"><a href="#n232">232</a></p>
-<p id="n233" class="pln"><a href="#n233">233</a></p>
-<p id="n234" class="pln"><a href="#n234">234</a></p>
-<p id="n235" class="pln"><a href="#n235">235</a></p>
-<p id="n236" class="pln"><a href="#n236">236</a></p>
-<p id="n237" class="stm run hide_run"><a href="#n237">237</a></p>
-<p id="n238" class="pln"><a href="#n238">238</a></p>
-<p id="n239" class="pln"><a href="#n239">239</a></p>
-<p id="n240" class="stm run hide_run"><a href="#n240">240</a></p>
-<p id="n241" class="pln"><a href="#n241">241</a></p>
-<p id="n242" class="stm run hide_run"><a href="#n242">242</a></p>
-<p id="n243" class="pln"><a href="#n243">243</a></p>
-<p id="n244" class="stm run hide_run"><a href="#n244">244</a></p>
-<p id="n245" class="pln"><a href="#n245">245</a></p>
-<p id="n246" class="pln"><a href="#n246">246</a></p>
-<p id="n247" class="stm run hide_run"><a href="#n247">247</a></p>
-<p id="n248" class="pln"><a href="#n248">248</a></p>
-<p id="n249" class="stm run hide_run"><a href="#n249">249</a></p>
-<p id="n250" class="pln"><a href="#n250">250</a></p>
-<p id="n251" class="pln"><a href="#n251">251</a></p>
-<p id="n252" class="pln"><a href="#n252">252</a></p>
-<p id="n253" class="pln"><a href="#n253">253</a></p>
-<p id="n254" class="pln"><a href="#n254">254</a></p>
-<p id="n255" class="pln"><a href="#n255">255</a></p>
-<p id="n256" class="pln"><a href="#n256">256</a></p>
-<p id="n257" class="pln"><a href="#n257">257</a></p>
-<p id="n258" class="pln"><a href="#n258">258</a></p>
-<p id="n259" class="pln"><a href="#n259">259</a></p>
-<p id="n260" class="stm mis"><a href="#n260">260</a></p>
-<p id="n261" class="stm mis"><a href="#n261">261</a></p>
-<p id="n262" class="stm mis"><a href="#n262">262</a></p>
-<p id="n263" class="stm mis"><a href="#n263">263</a></p>
-<p id="n264" class="stm mis"><a href="#n264">264</a></p>
-<p id="n265" class="stm mis"><a href="#n265">265</a></p>
-<p id="n266" class="stm mis"><a href="#n266">266</a></p>
-<p id="n267" class="stm mis"><a href="#n267">267</a></p>
-<p id="n268" class="pln"><a href="#n268">268</a></p>
-<p id="n269" class="pln"><a href="#n269">269</a></p>
-<p id="n270" class="pln"><a href="#n270">270</a></p>
-<p id="n271" class="stm mis"><a href="#n271">271</a></p>
-<p id="n272" class="pln"><a href="#n272">272</a></p>
-<p id="n273" class="pln"><a href="#n273">273</a></p>
-<p id="n274" class="stm mis"><a href="#n274">274</a></p>
-<p id="n275" class="pln"><a href="#n275">275</a></p>
-<p id="n276" class="pln"><a href="#n276">276</a></p>
-<p id="n277" class="pln"><a href="#n277">277</a></p>
-<p id="n278" class="stm mis"><a href="#n278">278</a></p>
-<p id="n279" class="pln"><a href="#n279">279</a></p>
-<p id="n280" class="pln"><a href="#n280">280</a></p>
-<p id="n281" class="stm run hide_run"><a href="#n281">281</a></p>
-<p id="n282" class="pln"><a href="#n282">282</a></p>
-<p id="n283" class="stm run hide_run"><a href="#n283">283</a></p>
-<p id="n284" class="pln"><a href="#n284">284</a></p>
-<p id="n285" class="pln"><a href="#n285">285</a></p>
-<p id="n286" class="pln"><a href="#n286">286</a></p>
-<p id="n287" class="pln"><a href="#n287">287</a></p>
-<p id="n288" class="pln"><a href="#n288">288</a></p>
-<p id="n289" class="pln"><a href="#n289">289</a></p>
-<p id="n290" class="pln"><a href="#n290">290</a></p>
-<p id="n291" class="pln"><a href="#n291">291</a></p>
-<p id="n292" class="pln"><a href="#n292">292</a></p>
-<p id="n293" class="pln"><a href="#n293">293</a></p>
-<p id="n294" class="pln"><a href="#n294">294</a></p>
-<p id="n295" class="pln"><a href="#n295">295</a></p>
-<p id="n296" class="pln"><a href="#n296">296</a></p>
-<p id="n297" class="pln"><a href="#n297">297</a></p>
-<p id="n298" class="pln"><a href="#n298">298</a></p>
-<p id="n299" class="stm run hide_run"><a href="#n299">299</a></p>
-<p id="n300" class="pln"><a href="#n300">300</a></p>
-<p id="n301" class="stm run hide_run"><a href="#n301">301</a></p>
-<p id="n302" class="pln"><a href="#n302">302</a></p>
-<p id="n303" class="stm run hide_run"><a href="#n303">303</a></p>
-<p id="n304" class="pln"><a href="#n304">304</a></p>
-<p id="n305" class="stm run hide_run"><a href="#n305">305</a></p>
-<p id="n306" class="stm run hide_run"><a href="#n306">306</a></p>
-<p id="n307" class="pln"><a href="#n307">307</a></p>
-<p id="n308" class="stm run hide_run"><a href="#n308">308</a></p>
-<p id="n309" class="stm run hide_run"><a href="#n309">309</a></p>
-<p id="n310" class="pln"><a href="#n310">310</a></p>
-<p id="n311" class="stm run hide_run"><a href="#n311">311</a></p>
-<p id="n312" class="pln"><a href="#n312">312</a></p>
-<p id="n313" class="stm run hide_run"><a href="#n313">313</a></p>
-<p id="n314" class="pln"><a href="#n314">314</a></p>
-<p id="n315" class="stm run hide_run"><a href="#n315">315</a></p>
-<p id="n316" class="pln"><a href="#n316">316</a></p>
-<p id="n317" class="stm run hide_run"><a href="#n317">317</a></p>
-<p id="n318" class="pln"><a href="#n318">318</a></p>
-<p id="n319" class="pln"><a href="#n319">319</a></p>
-<p id="n320" class="stm run hide_run"><a href="#n320">320</a></p>
-<p id="n321" class="stm run hide_run"><a href="#n321">321</a></p>
-<p id="n322" class="stm run hide_run"><a href="#n322">322</a></p>
-<p id="n323" class="pln"><a href="#n323">323</a></p>
-<p id="n324" class="stm run hide_run"><a href="#n324">324</a></p>
-<p id="n325" class="pln"><a href="#n325">325</a></p>
-<p id="n326" class="stm run hide_run"><a href="#n326">326</a></p>
-<p id="n327" class="pln"><a href="#n327">327</a></p>
-<p id="n328" class="pln"><a href="#n328">328</a></p>
-<p id="n329" class="stm run hide_run"><a href="#n329">329</a></p>
-<p id="n330" class="pln"><a href="#n330">330</a></p>
-<p id="n331" class="pln"><a href="#n331">331</a></p>
-<p id="n332" class="stm run hide_run"><a href="#n332">332</a></p>
-<p id="n333" class="pln"><a href="#n333">333</a></p>
-<p id="n334" class="stm run hide_run"><a href="#n334">334</a></p>
-<p id="n335" class="pln"><a href="#n335">335</a></p>
-<p id="n336" class="pln"><a href="#n336">336</a></p>
-<p id="n337" class="pln"><a href="#n337">337</a></p>
-<p id="n338" class="pln"><a href="#n338">338</a></p>
-<p id="n339" class="pln"><a href="#n339">339</a></p>
-<p id="n340" class="pln"><a href="#n340">340</a></p>
-<p id="n341" class="pln"><a href="#n341">341</a></p>
-<p id="n342" class="pln"><a href="#n342">342</a></p>
-<p id="n343" class="pln"><a href="#n343">343</a></p>
-<p id="n344" class="pln"><a href="#n344">344</a></p>
-<p id="n345" class="pln"><a href="#n345">345</a></p>
-<p id="n346" class="pln"><a href="#n346">346</a></p>
-<p id="n347" class="pln"><a href="#n347">347</a></p>
-<p id="n348" class="stm run hide_run"><a href="#n348">348</a></p>
-<p id="n349" class="stm run hide_run"><a href="#n349">349</a></p>
-<p id="n350" class="pln"><a href="#n350">350</a></p>
-<p id="n351" class="pln"><a href="#n351">351</a></p>
-<p id="n352" class="stm run hide_run"><a href="#n352">352</a></p>
-<p id="n353" class="stm run hide_run"><a href="#n353">353</a></p>
-<p id="n354" class="pln"><a href="#n354">354</a></p>
-<p id="n355" class="stm run hide_run"><a href="#n355">355</a></p>
-<p id="n356" class="pln"><a href="#n356">356</a></p>
-<p id="n357" class="stm run hide_run"><a href="#n357">357</a></p>
-<p id="n358" class="pln"><a href="#n358">358</a></p>
-<p id="n359" class="pln"><a href="#n359">359</a></p>
-<p id="n360" class="pln"><a href="#n360">360</a></p>
-<p id="n361" class="pln"><a href="#n361">361</a></p>
-<p id="n362" class="pln"><a href="#n362">362</a></p>
-<p id="n363" class="pln"><a href="#n363">363</a></p>
-<p id="n364" class="pln"><a href="#n364">364</a></p>
-<p id="n365" class="pln"><a href="#n365">365</a></p>
-<p id="n366" class="pln"><a href="#n366">366</a></p>
-<p id="n367" class="pln"><a href="#n367">367</a></p>
-<p id="n368" class="stm run hide_run"><a href="#n368">368</a></p>
-<p id="n369" class="stm run hide_run"><a href="#n369">369</a></p>
-<p id="n370" class="stm run hide_run"><a href="#n370">370</a></p>
-<p id="n371" class="pln"><a href="#n371">371</a></p>
-<p id="n372" class="pln"><a href="#n372">372</a></p>
-<p id="n373" class="stm run hide_run"><a href="#n373">373</a></p>
-<p id="n374" class="pln"><a href="#n374">374</a></p>
-<p id="n375" class="stm run hide_run"><a href="#n375">375</a></p>
-<p id="n376" class="pln"><a href="#n376">376</a></p>
-<p id="n377" class="pln"><a href="#n377">377</a></p>
-<p id="n378" class="pln"><a href="#n378">378</a></p>
-<p id="n379" class="pln"><a href="#n379">379</a></p>
-<p id="n380" class="pln"><a href="#n380">380</a></p>
-<p id="n381" class="pln"><a href="#n381">381</a></p>
-<p id="n382" class="stm mis"><a href="#n382">382</a></p>
-<p id="n383" class="pln"><a href="#n383">383</a></p>
-<p id="n384" class="stm run hide_run"><a href="#n384">384</a></p>
-<p id="n385" class="pln"><a href="#n385">385</a></p>
-<p id="n386" class="pln"><a href="#n386">386</a></p>
-<p id="n387" class="pln"><a href="#n387">387</a></p>
-<p id="n388" class="pln"><a href="#n388">388</a></p>
-<p id="n389" class="pln"><a href="#n389">389</a></p>
-<p id="n390" class="pln"><a href="#n390">390</a></p>
-<p id="n391" class="stm mis"><a href="#n391">391</a></p>
-<p id="n392" class="pln"><a href="#n392">392</a></p>
-<p id="n393" class="stm run hide_run"><a href="#n393">393</a></p>
-<p id="n394" class="pln"><a href="#n394">394</a></p>
-<p id="n395" class="pln"><a href="#n395">395</a></p>
-<p id="n396" class="pln"><a href="#n396">396</a></p>
-<p id="n397" class="pln"><a href="#n397">397</a></p>
-<p id="n398" class="pln"><a href="#n398">398</a></p>
-<p id="n399" class="pln"><a href="#n399">399</a></p>
-<p id="n400" class="stm mis"><a href="#n400">400</a></p>
-<p id="n401" class="pln"><a href="#n401">401</a></p>
-<p id="n402" class="stm run hide_run"><a href="#n402">402</a></p>
-<p id="n403" class="pln"><a href="#n403">403</a></p>
-<p id="n404" class="pln"><a href="#n404">404</a></p>
-<p id="n405" class="pln"><a href="#n405">405</a></p>
-<p id="n406" class="pln"><a href="#n406">406</a></p>
-<p id="n407" class="pln"><a href="#n407">407</a></p>
-<p id="n408" class="pln"><a href="#n408">408</a></p>
-<p id="n409" class="pln"><a href="#n409">409</a></p>
-<p id="n410" class="pln"><a href="#n410">410</a></p>
-<p id="n411" class="pln"><a href="#n411">411</a></p>
-<p id="n412" class="pln"><a href="#n412">412</a></p>
-<p id="n413" class="pln"><a href="#n413">413</a></p>
-<p id="n414" class="stm run hide_run"><a href="#n414">414</a></p>
-<p id="n415" class="stm run hide_run"><a href="#n415">415</a></p>
-<p id="n416" class="stm run hide_run"><a href="#n416">416</a></p>
-<p id="n417" class="stm run hide_run"><a href="#n417">417</a></p>
-<p id="n418" class="stm run hide_run"><a href="#n418">418</a></p>
-<p id="n419" class="pln"><a href="#n419">419</a></p>
-<p id="n420" class="stm run hide_run"><a href="#n420">420</a></p>
-<p id="n421" class="pln"><a href="#n421">421</a></p>
-<p id="n422" class="stm run hide_run"><a href="#n422">422</a></p>
-<p id="n423" class="stm mis"><a href="#n423">423</a></p>
-<p id="n424" class="pln"><a href="#n424">424</a></p>
-<p id="n425" class="pln"><a href="#n425">425</a></p>
-<p id="n426" class="pln"><a href="#n426">426</a></p>
-<p id="n427" class="stm run hide_run"><a href="#n427">427</a></p>
-<p id="n428" class="pln"><a href="#n428">428</a></p>
-<p id="n429" class="stm run hide_run"><a href="#n429">429</a></p>
-<p id="n430" class="pln"><a href="#n430">430</a></p>
-<p id="n431" class="stm run hide_run"><a href="#n431">431</a></p>
-<p id="n432" class="pln"><a href="#n432">432</a></p>
-<p id="n433" class="stm run hide_run"><a href="#n433">433</a></p>
-<p id="n434" class="pln"><a href="#n434">434</a></p>
-<p id="n435" class="pln"><a href="#n435">435</a></p>
-<p id="n436" class="stm run hide_run"><a href="#n436">436</a></p>
-<p id="n437" class="pln"><a href="#n437">437</a></p>
-<p id="n438" class="pln"><a href="#n438">438</a></p>
-<p id="n439" class="stm run hide_run"><a href="#n439">439</a></p>
-<p id="n440" class="pln"><a href="#n440">440</a></p>
-<p id="n441" class="pln"><a href="#n441">441</a></p>
-<p id="n442" class="pln"><a href="#n442">442</a></p>
-<p id="n443" class="pln"><a href="#n443">443</a></p>
-<p id="n444" class="pln"><a href="#n444">444</a></p>
-<p id="n445" class="pln"><a href="#n445">445</a></p>
-<p id="n446" class="stm run hide_run"><a href="#n446">446</a></p>
-<p id="n447" class="pln"><a href="#n447">447</a></p>
-<p id="n448" class="stm run hide_run"><a href="#n448">448</a></p>
-<p id="n449" class="pln"><a href="#n449">449</a></p>
-<p id="n450" class="pln"><a href="#n450">450</a></p>
-<p id="n451" class="pln"><a href="#n451">451</a></p>
-<p id="n452" class="pln"><a href="#n452">452</a></p>
-<p id="n453" class="pln"><a href="#n453">453</a></p>
-<p id="n454" class="pln"><a href="#n454">454</a></p>
-<p id="n455" class="pln"><a href="#n455">455</a></p>
-<p id="n456" class="pln"><a href="#n456">456</a></p>
-<p id="n457" class="pln"><a href="#n457">457</a></p>
-<p id="n458" class="pln"><a href="#n458">458</a></p>
-<p id="n459" class="pln"><a href="#n459">459</a></p>
-<p id="n460" class="pln"><a href="#n460">460</a></p>
-<p id="n461" class="pln"><a href="#n461">461</a></p>
-<p id="n462" class="pln"><a href="#n462">462</a></p>
-<p id="n463" class="stm run hide_run"><a href="#n463">463</a></p>
-<p id="n464" class="pln"><a href="#n464">464</a></p>
-<p id="n465" class="pln"><a href="#n465">465</a></p>
-<p id="n466" class="stm run hide_run"><a href="#n466">466</a></p>
-<p id="n467" class="pln"><a href="#n467">467</a></p>
-<p id="n468" class="pln"><a href="#n468">468</a></p>
-<p id="n469" class="pln"><a href="#n469">469</a></p>
-<p id="n470" class="stm run hide_run"><a href="#n470">470</a></p>
-<p id="n471" class="pln"><a href="#n471">471</a></p>
-<p id="n472" class="stm run hide_run"><a href="#n472">472</a></p>
-<p id="n473" class="pln"><a href="#n473">473</a></p>
-<p id="n474" class="stm run hide_run"><a href="#n474">474</a></p>
-<p id="n475" class="pln"><a href="#n475">475</a></p>
-<p id="n476" class="stm run hide_run"><a href="#n476">476</a></p>
-<p id="n477" class="pln"><a href="#n477">477</a></p>
-<p id="n478" class="pln"><a href="#n478">478</a></p>
-<p id="n479" class="pln"><a href="#n479">479</a></p>
-<p id="n480" class="pln"><a href="#n480">480</a></p>
-<p id="n481" class="pln"><a href="#n481">481</a></p>
-<p id="n482" class="pln"><a href="#n482">482</a></p>
-<p id="n483" class="pln"><a href="#n483">483</a></p>
-<p id="n484" class="pln"><a href="#n484">484</a></p>
-<p id="n485" class="stm run hide_run"><a href="#n485">485</a></p>
-<p id="n486" class="pln"><a href="#n486">486</a></p>
-<p id="n487" class="stm run hide_run"><a href="#n487">487</a></p>
-<p id="n488" class="pln"><a href="#n488">488</a></p>
-<p id="n489" class="stm run hide_run"><a href="#n489">489</a></p>
-<p id="n490" class="pln"><a href="#n490">490</a></p>
-<p id="n491" class="stm run hide_run"><a href="#n491">491</a></p>
-<p id="n492" class="pln"><a href="#n492">492</a></p>
-<p id="n493" class="pln"><a href="#n493">493</a></p>
-<p id="n494" class="pln"><a href="#n494">494</a></p>
-<p id="n495" class="stm run hide_run"><a href="#n495">495</a></p>
-<p id="n496" class="stm run hide_run"><a href="#n496">496</a></p>
-<p id="n497" class="stm mis"><a href="#n497">497</a></p>
-<p id="n498" class="stm mis"><a href="#n498">498</a></p>
-<p id="n499" class="stm mis"><a href="#n499">499</a></p>
-<p id="n500" class="pln"><a href="#n500">500</a></p>
-<p id="n501" class="stm run hide_run"><a href="#n501">501</a></p>
-<p id="n502" class="pln"><a href="#n502">502</a></p>
-<p id="n503" class="stm run hide_run"><a href="#n503">503</a></p>
-<p id="n504" class="pln"><a href="#n504">504</a></p>
-<p id="n505" class="pln"><a href="#n505">505</a></p>
-<p id="n506" class="stm run hide_run"><a href="#n506">506</a></p>
-<p id="n507" class="pln"><a href="#n507">507</a></p>
-<p id="n508" class="stm run hide_run"><a href="#n508">508</a></p>
-<p id="n509" class="pln"><a href="#n509">509</a></p>
-<p id="n510" class="pln"><a href="#n510">510</a></p>
-<p id="n511" class="pln"><a href="#n511">511</a></p>
-<p id="n512" class="pln"><a href="#n512">512</a></p>
-<p id="n513" class="pln"><a href="#n513">513</a></p>
-<p id="n514" class="pln"><a href="#n514">514</a></p>
-<p id="n515" class="pln"><a href="#n515">515</a></p>
-<p id="n516" class="pln"><a href="#n516">516</a></p>
-<p id="n517" class="pln"><a href="#n517">517</a></p>
-<p id="n518" class="stm run hide_run"><a href="#n518">518</a></p>
-<p id="n519" class="stm run hide_run"><a href="#n519">519</a></p>
-<p id="n520" class="pln"><a href="#n520">520</a></p>
-<p id="n521" class="pln"><a href="#n521">521</a></p>
-<p id="n522" class="stm run hide_run"><a href="#n522">522</a></p>
-<p id="n523" class="pln"><a href="#n523">523</a></p>
-<p id="n524" class="pln"><a href="#n524">524</a></p>
-<p id="n525" class="pln"><a href="#n525">525</a></p>
-<p id="n526" class="stm run hide_run"><a href="#n526">526</a></p>
-<p id="n527" class="stm run hide_run"><a href="#n527">527</a></p>
-<p id="n528" class="stm run hide_run"><a href="#n528">528</a></p>
-<p id="n529" class="pln"><a href="#n529">529</a></p>
-<p id="n530" class="pln"><a href="#n530">530</a></p>
-<p id="n531" class="stm run hide_run"><a href="#n531">531</a></p>
-<p id="n532" class="pln"><a href="#n532">532</a></p>
-<p id="n533" class="stm run hide_run"><a href="#n533">533</a></p>
-<p id="n534" class="pln"><a href="#n534">534</a></p>
-<p id="n535" class="pln"><a href="#n535">535</a></p>
-<p id="n536" class="pln"><a href="#n536">536</a></p>
-<p id="n537" class="pln"><a href="#n537">537</a></p>
-<p id="n538" class="pln"><a href="#n538">538</a></p>
-<p id="n539" class="pln"><a href="#n539">539</a></p>
-<p id="n540" class="pln"><a href="#n540">540</a></p>
-<p id="n541" class="pln"><a href="#n541">541</a></p>
-<p id="n542" class="pln"><a href="#n542">542</a></p>
-<p id="n543" class="pln"><a href="#n543">543</a></p>
-<p id="n544" class="stm run hide_run"><a href="#n544">544</a></p>
-<p id="n545" class="stm run hide_run"><a href="#n545">545</a></p>
-<p id="n546" class="pln"><a href="#n546">546</a></p>
-<p id="n547" class="stm run hide_run"><a href="#n547">547</a></p>
-<p id="n548" class="pln"><a href="#n548">548</a></p>
-<p id="n549" class="stm run hide_run"><a href="#n549">549</a></p>
-<p id="n550" class="pln"><a href="#n550">550</a></p>
-<p id="n551" class="stm run hide_run"><a href="#n551">551</a></p>
-<p id="n552" class="pln"><a href="#n552">552</a></p>
-<p id="n553" class="pln"><a href="#n553">553</a></p>
-<p id="n554" class="pln"><a href="#n554">554</a></p>
-<p id="n555" class="pln"><a href="#n555">555</a></p>
-<p id="n556" class="pln"><a href="#n556">556</a></p>
-<p id="n557" class="pln"><a href="#n557">557</a></p>
-<p id="n558" class="pln"><a href="#n558">558</a></p>
-<p id="n559" class="pln"><a href="#n559">559</a></p>
-<p id="n560" class="pln"><a href="#n560">560</a></p>
-<p id="n561" class="pln"><a href="#n561">561</a></p>
-<p id="n562" class="pln"><a href="#n562">562</a></p>
-<p id="n563" class="stm run hide_run"><a href="#n563">563</a></p>
-<p id="n564" class="stm run hide_run"><a href="#n564">564</a></p>
-<p id="n565" class="pln"><a href="#n565">565</a></p>
-<p id="n566" class="stm run hide_run"><a href="#n566">566</a></p>
-<p id="n567" class="pln"><a href="#n567">567</a></p>
-<p id="n568" class="stm run hide_run"><a href="#n568">568</a></p>
-<p id="n569" class="pln"><a href="#n569">569</a></p>
-<p id="n570" class="pln"><a href="#n570">570</a></p>
-<p id="n571" class="stm run hide_run"><a href="#n571">571</a></p>
-<p id="n572" class="pln"><a href="#n572">572</a></p>
-<p id="n573" class="stm run hide_run"><a href="#n573">573</a></p>
-<p id="n574" class="pln"><a href="#n574">574</a></p>
-<p id="n575" class="pln"><a href="#n575">575</a></p>
-<p id="n576" class="pln"><a href="#n576">576</a></p>
-<p id="n577" class="pln"><a href="#n577">577</a></p>
-<p id="n578" class="pln"><a href="#n578">578</a></p>
-<p id="n579" class="pln"><a href="#n579">579</a></p>
-<p id="n580" class="pln"><a href="#n580">580</a></p>
-<p id="n581" class="pln"><a href="#n581">581</a></p>
-<p id="n582" class="pln"><a href="#n582">582</a></p>
-<p id="n583" class="stm mis"><a href="#n583">583</a></p>
-<p id="n584" class="stm mis"><a href="#n584">584</a></p>
-<p id="n585" class="stm mis"><a href="#n585">585</a></p>
-<p id="n586" class="stm mis"><a href="#n586">586</a></p>
-<p id="n587" class="pln"><a href="#n587">587</a></p>
-<p id="n588" class="stm mis"><a href="#n588">588</a></p>
-<p id="n589" class="pln"><a href="#n589">589</a></p>
-<p id="n590" class="pln"><a href="#n590">590</a></p>
-<p id="n591" class="stm mis"><a href="#n591">591</a></p>
-<p id="n592" class="stm mis"><a href="#n592">592</a></p>
-<p id="n593" class="pln"><a href="#n593">593</a></p>
-<p id="n594" class="pln"><a href="#n594">594</a></p>
-<p id="n595" class="stm mis"><a href="#n595">595</a></p>
-<p id="n596" class="stm mis"><a href="#n596">596</a></p>
-<p id="n597" class="stm mis"><a href="#n597">597</a></p>
-<p id="n598" class="pln"><a href="#n598">598</a></p>
-<p id="n599" class="pln"><a href="#n599">599</a></p>
-<p id="n600" class="pln"><a href="#n600">600</a></p>
-<p id="n601" class="pln"><a href="#n601">601</a></p>
-<p id="n602" class="stm mis"><a href="#n602">602</a></p>
-<p id="n603" class="stm mis"><a href="#n603">603</a></p>
-<p id="n604" class="stm mis"><a href="#n604">604</a></p>
-<p id="n605" class="pln"><a href="#n605">605</a></p>
-<p id="n606" class="pln"><a href="#n606">606</a></p>
-<p id="n607" class="stm mis"><a href="#n607">607</a></p>
-<p id="n608" class="pln"><a href="#n608">608</a></p>
-<p id="n609" class="stm run hide_run"><a href="#n609">609</a></p>
-<p id="n610" class="pln"><a href="#n610">610</a></p>
-<p id="n611" class="pln"><a href="#n611">611</a></p>
-<p id="n612" class="pln"><a href="#n612">612</a></p>
-<p id="n613" class="pln"><a href="#n613">613</a></p>
-<p id="n614" class="pln"><a href="#n614">614</a></p>
-<p id="n615" class="pln"><a href="#n615">615</a></p>
-<p id="n616" class="pln"><a href="#n616">616</a></p>
-<p id="n617" class="pln"><a href="#n617">617</a></p>
-<p id="n618" class="pln"><a href="#n618">618</a></p>
-<p id="n619" class="pln"><a href="#n619">619</a></p>
-<p id="n620" class="stm mis"><a href="#n620">620</a></p>
-<p id="n621" class="stm mis"><a href="#n621">621</a></p>
-<p id="n622" class="stm mis"><a href="#n622">622</a></p>
-<p id="n623" class="stm mis"><a href="#n623">623</a></p>
-<p id="n624" class="pln"><a href="#n624">624</a></p>
-<p id="n625" class="stm mis"><a href="#n625">625</a></p>
-<p id="n626" class="pln"><a href="#n626">626</a></p>
-<p id="n627" class="stm mis"><a href="#n627">627</a></p>
-<p id="n628" class="pln"><a href="#n628">628</a></p>
-<p id="n629" class="pln"><a href="#n629">629</a></p>
-<p id="n630" class="stm mis"><a href="#n630">630</a></p>
-<p id="n631" class="pln"><a href="#n631">631</a></p>
-<p id="n632" class="stm run hide_run"><a href="#n632">632</a></p>
-<p id="n633" class="pln"><a href="#n633">633</a></p>
-<p id="n634" class="pln"><a href="#n634">634</a></p>
-<p id="n635" class="pln"><a href="#n635">635</a></p>
-<p id="n636" class="pln"><a href="#n636">636</a></p>
-<p id="n637" class="pln"><a href="#n637">637</a></p>
-<p id="n638" class="pln"><a href="#n638">638</a></p>
-<p id="n639" class="pln"><a href="#n639">639</a></p>
-<p id="n640" class="pln"><a href="#n640">640</a></p>
-<p id="n641" class="pln"><a href="#n641">641</a></p>
-<p id="n642" class="pln"><a href="#n642">642</a></p>
-<p id="n643" class="pln"><a href="#n643">643</a></p>
-<p id="n644" class="stm mis"><a href="#n644">644</a></p>
-<p id="n645" class="stm mis"><a href="#n645">645</a></p>
-<p id="n646" class="pln"><a href="#n646">646</a></p>
-<p id="n647" class="stm mis"><a href="#n647">647</a></p>
-<p id="n648" class="pln"><a href="#n648">648</a></p>
-<p id="n649" class="pln"><a href="#n649">649</a></p>
-<p id="n650" class="stm mis"><a href="#n650">650</a></p>
-<p id="n651" class="pln"><a href="#n651">651</a></p>
-<p id="n652" class="pln"><a href="#n652">652</a></p>
-<p id="n653" class="stm run hide_run"><a href="#n653">653</a></p>
-<p id="n654" class="pln"><a href="#n654">654</a></p>
-<p id="n655" class="stm run hide_run"><a href="#n655">655</a></p>
-<p id="n656" class="pln"><a href="#n656">656</a></p>
-<p id="n657" class="pln"><a href="#n657">657</a></p>
-<p id="n658" class="pln"><a href="#n658">658</a></p>
-<p id="n659" class="pln"><a href="#n659">659</a></p>
-<p id="n660" class="pln"><a href="#n660">660</a></p>
-<p id="n661" class="pln"><a href="#n661">661</a></p>
-<p id="n662" class="pln"><a href="#n662">662</a></p>
-<p id="n663" class="pln"><a href="#n663">663</a></p>
-<p id="n664" class="pln"><a href="#n664">664</a></p>
-<p id="n665" class="stm run hide_run"><a href="#n665">665</a></p>
-<p id="n666" class="stm run hide_run"><a href="#n666">666</a></p>
-<p id="n667" class="stm run hide_run"><a href="#n667">667</a></p>
-<p id="n668" class="stm run hide_run"><a href="#n668">668</a></p>
-<p id="n669" class="stm run hide_run"><a href="#n669">669</a></p>
-<p id="n670" class="pln"><a href="#n670">670</a></p>
-<p id="n671" class="stm run hide_run"><a href="#n671">671</a></p>
-<p id="n672" class="pln"><a href="#n672">672</a></p>
-<p id="n673" class="stm run hide_run"><a href="#n673">673</a></p>
-<p id="n674" class="pln"><a href="#n674">674</a></p>
-<p id="n675" class="pln"><a href="#n675">675</a></p>
-<p id="n676" class="stm run hide_run"><a href="#n676">676</a></p>
-<p id="n677" class="stm run hide_run"><a href="#n677">677</a></p>
-<p id="n678" class="pln"><a href="#n678">678</a></p>
-<p id="n679" class="pln"><a href="#n679">679</a></p>
-<p id="n680" class="pln"><a href="#n680">680</a></p>
-<p id="n681" class="stm run hide_run"><a href="#n681">681</a></p>
-<p id="n682" class="stm run hide_run"><a href="#n682">682</a></p>
-<p id="n683" class="stm run hide_run"><a href="#n683">683</a></p>
-<p id="n684" class="pln"><a href="#n684">684</a></p>
-<p id="n685" class="pln"><a href="#n685">685</a></p>
-<p id="n686" class="stm run hide_run"><a href="#n686">686</a></p>
-<p id="n687" class="stm run hide_run"><a href="#n687">687</a></p>
-<p id="n688" class="stm run hide_run"><a href="#n688">688</a></p>
-<p id="n689" class="pln"><a href="#n689">689</a></p>
-<p id="n690" class="pln"><a href="#n690">690</a></p>
-<p id="n691" class="pln"><a href="#n691">691</a></p>
-<p id="n692" class="pln"><a href="#n692">692</a></p>
-<p id="n693" class="pln"><a href="#n693">693</a></p>
-<p id="n694" class="pln"><a href="#n694">694</a></p>
-<p id="n695" class="stm run hide_run"><a href="#n695">695</a></p>
-<p id="n696" class="stm run hide_run"><a href="#n696">696</a></p>
-<p id="n697" class="stm run hide_run"><a href="#n697">697</a></p>
-<p id="n698" class="pln"><a href="#n698">698</a></p>
-<p id="n699" class="pln"><a href="#n699">699</a></p>
-<p id="n700" class="stm run hide_run"><a href="#n700">700</a></p>
-<p id="n701" class="pln"><a href="#n701">701</a></p>
-<p id="n702" class="stm run hide_run"><a href="#n702">702</a></p>
-<p id="n703" class="pln"><a href="#n703">703</a></p>
-<p id="n704" class="pln"><a href="#n704">704</a></p>
-<p id="n705" class="pln"><a href="#n705">705</a></p>
-<p id="n706" class="pln"><a href="#n706">706</a></p>
-<p id="n707" class="pln"><a href="#n707">707</a></p>
-<p id="n708" class="pln"><a href="#n708">708</a></p>
-<p id="n709" class="pln"><a href="#n709">709</a></p>
-<p id="n710" class="pln"><a href="#n710">710</a></p>
-<p id="n711" class="pln"><a href="#n711">711</a></p>
-<p id="n712" class="pln"><a href="#n712">712</a></p>
-<p id="n713" class="stm run hide_run"><a href="#n713">713</a></p>
-<p id="n714" class="stm run hide_run"><a href="#n714">714</a></p>
-<p id="n715" class="stm run hide_run"><a href="#n715">715</a></p>
-<p id="n716" class="stm run hide_run"><a href="#n716">716</a></p>
-<p id="n717" class="stm run hide_run"><a href="#n717">717</a></p>
-<p id="n718" class="pln"><a href="#n718">718</a></p>
-<p id="n719" class="stm run hide_run"><a href="#n719">719</a></p>
-<p id="n720" class="pln"><a href="#n720">720</a></p>
-<p id="n721" class="pln"><a href="#n721">721</a></p>
-<p id="n722" class="stm run hide_run"><a href="#n722">722</a></p>
-<p id="n723" class="pln"><a href="#n723">723</a></p>
-<p id="n724" class="stm run hide_run"><a href="#n724">724</a></p>
-<p id="n725" class="stm run hide_run"><a href="#n725">725</a></p>
-<p id="n726" class="pln"><a href="#n726">726</a></p>
-<p id="n727" class="stm run hide_run"><a href="#n727">727</a></p>
-<p id="n728" class="stm run hide_run"><a href="#n728">728</a></p>
-<p id="n729" class="pln"><a href="#n729">729</a></p>
-<p id="n730" class="pln"><a href="#n730">730</a></p>
-<p id="n731" class="pln"><a href="#n731">731</a></p>
-<p id="n732" class="stm run hide_run"><a href="#n732">732</a></p>
-<p id="n733" class="pln"><a href="#n733">733</a></p>
-<p id="n734" class="stm run hide_run"><a href="#n734">734</a></p>
-<p id="n735" class="pln"><a href="#n735">735</a></p>
-<p id="n736" class="pln"><a href="#n736">736</a></p>
-<p id="n737" class="pln"><a href="#n737">737</a></p>
-<p id="n738" class="pln"><a href="#n738">738</a></p>
-<p id="n739" class="pln"><a href="#n739">739</a></p>
-<p id="n740" class="pln"><a href="#n740">740</a></p>
-<p id="n741" class="pln"><a href="#n741">741</a></p>
-<p id="n742" class="pln"><a href="#n742">742</a></p>
-<p id="n743" class="pln"><a href="#n743">743</a></p>
-<p id="n744" class="pln"><a href="#n744">744</a></p>
-<p id="n745" class="pln"><a href="#n745">745</a></p>
-<p id="n746" class="stm run hide_run"><a href="#n746">746</a></p>
-<p id="n747" class="stm run hide_run"><a href="#n747">747</a></p>
-<p id="n748" class="stm run hide_run"><a href="#n748">748</a></p>
-<p id="n749" class="stm run hide_run"><a href="#n749">749</a></p>
-<p id="n750" class="stm run hide_run"><a href="#n750">750</a></p>
-<p id="n751" class="pln"><a href="#n751">751</a></p>
-<p id="n752" class="stm run hide_run"><a href="#n752">752</a></p>
-<p id="n753" class="pln"><a href="#n753">753</a></p>
-<p id="n754" class="pln"><a href="#n754">754</a></p>
-<p id="n755" class="stm run hide_run"><a href="#n755">755</a></p>
-<p id="n756" class="pln"><a href="#n756">756</a></p>
-<p id="n757" class="stm run hide_run"><a href="#n757">757</a></p>
-<p id="n758" class="stm run hide_run"><a href="#n758">758</a></p>
-<p id="n759" class="pln"><a href="#n759">759</a></p>
-<p id="n760" class="stm run hide_run"><a href="#n760">760</a></p>
-<p id="n761" class="stm run hide_run"><a href="#n761">761</a></p>
-<p id="n762" class="pln"><a href="#n762">762</a></p>
-<p id="n763" class="pln"><a href="#n763">763</a></p>
-<p id="n764" class="pln"><a href="#n764">764</a></p>
-<p id="n765" class="stm run hide_run"><a href="#n765">765</a></p>
-<p id="n766" class="pln"><a href="#n766">766</a></p>
-<p id="n767" class="pln"><a href="#n767">767</a></p>
-<p id="n768" class="stm run hide_run"><a href="#n768">768</a></p>
-<p id="n769" class="pln"><a href="#n769">769</a></p>
-<p id="n770" class="pln"><a href="#n770">770</a></p>
-<p id="n771" class="pln"><a href="#n771">771</a></p>
-<p id="n772" class="pln"><a href="#n772">772</a></p>
-<p id="n773" class="pln"><a href="#n773">773</a></p>
-<p id="n774" class="pln"><a href="#n774">774</a></p>
-<p id="n775" class="pln"><a href="#n775">775</a></p>
-<p id="n776" class="pln"><a href="#n776">776</a></p>
-<p id="n777" class="stm run hide_run"><a href="#n777">777</a></p>
-<p id="n778" class="stm mis"><a href="#n778">778</a></p>
-<p id="n779" class="stm run hide_run"><a href="#n779">779</a></p>
-<p id="n780" class="stm mis"><a href="#n780">780</a></p>
-<p id="n781" class="stm run hide_run"><a href="#n781">781</a></p>
-<p id="n782" class="stm run hide_run"><a href="#n782">782</a></p>
-<p id="n783" class="pln"><a href="#n783">783</a></p>
-<p id="n784" class="stm mis"><a href="#n784">784</a></p>
-<p id="n785" class="pln"><a href="#n785">785</a></p>
-<p id="n786" class="pln"><a href="#n786">786</a></p>
-<p id="n787" class="stm run hide_run"><a href="#n787">787</a></p>
-<p id="n788" class="stm run hide_run"><a href="#n788">788</a></p>
-<p id="n789" class="stm mis"><a href="#n789">789</a></p>
-<p id="n790" class="stm mis"><a href="#n790">790</a></p>
-<p id="n791" class="pln"><a href="#n791">791</a></p>
-<p id="n792" class="stm mis"><a href="#n792">792</a></p>
-<p id="n793" class="pln"><a href="#n793">793</a></p>
-<p id="n794" class="pln"><a href="#n794">794</a></p>
-<p id="n795" class="stm run hide_run"><a href="#n795">795</a></p>
-<p id="n796" class="pln"><a href="#n796">796</a></p>
-<p id="n797" class="pln"><a href="#n797">797</a></p>
-<p id="n798" class="pln"><a href="#n798">798</a></p>
-<p id="n799" class="pln"><a href="#n799">799</a></p>
-<p id="n800" class="pln"><a href="#n800">800</a></p>
-<p id="n801" class="pln"><a href="#n801">801</a></p>
-<p id="n802" class="pln"><a href="#n802">802</a></p>
-<p id="n803" class="pln"><a href="#n803">803</a></p>
-<p id="n804" class="pln"><a href="#n804">804</a></p>
-<p id="n805" class="pln"><a href="#n805">805</a></p>
-<p id="n806" class="pln"><a href="#n806">806</a></p>
-<p id="n807" class="pln"><a href="#n807">807</a></p>
-<p id="n808" class="stm run hide_run"><a href="#n808">808</a></p>
-<p id="n809" class="pln"><a href="#n809">809</a></p>
-<p id="n810" class="pln"><a href="#n810">810</a></p>
-<p id="n811" class="pln"><a href="#n811">811</a></p>
-<p id="n812" class="pln"><a href="#n812">812</a></p>
-<p id="n813" class="pln"><a href="#n813">813</a></p>
-<p id="n814" class="pln"><a href="#n814">814</a></p>
-<p id="n815" class="pln"><a href="#n815">815</a></p>
-<p id="n816" class="pln"><a href="#n816">816</a></p>
-<p id="n817" class="pln"><a href="#n817">817</a></p>
-<p id="n818" class="stm run hide_run"><a href="#n818">818</a></p>
-<p id="n819" class="pln"><a href="#n819">819</a></p>
-<p id="n820" class="pln"><a href="#n820">820</a></p>
-<p id="n821" class="stm run hide_run"><a href="#n821">821</a></p>
-<p id="n822" class="stm run hide_run"><a href="#n822">822</a></p>
-<p id="n823" class="pln"><a href="#n823">823</a></p>
-<p id="n824" class="pln"><a href="#n824">824</a></p>
-<p id="n825" class="pln"><a href="#n825">825</a></p>
-<p id="n826" class="stm run hide_run"><a href="#n826">826</a></p>
-<p id="n827" class="pln"><a href="#n827">827</a></p>
-<p id="n828" class="stm run hide_run"><a href="#n828">828</a></p>
-<p id="n829" class="pln"><a href="#n829">829</a></p>
-<p id="n830" class="pln"><a href="#n830">830</a></p>
-<p id="n831" class="pln"><a href="#n831">831</a></p>
-<p id="n832" class="pln"><a href="#n832">832</a></p>
-<p id="n833" class="stm run hide_run"><a href="#n833">833</a></p>
-<p id="n834" class="pln"><a href="#n834">834</a></p>
-<p id="n835" class="pln"><a href="#n835">835</a></p>
-<p id="n836" class="pln"><a href="#n836">836</a></p>
-<p id="n837" class="pln"><a href="#n837">837</a></p>
-<p id="n838" class="stm run hide_run"><a href="#n838">838</a></p>
-<p id="n839" class="pln"><a href="#n839">839</a></p>
-<p id="n840" class="stm run hide_run"><a href="#n840">840</a></p>
-<p id="n841" class="pln"><a href="#n841">841</a></p>
-<p id="n842" class="pln"><a href="#n842">842</a></p>
-<p id="n843" class="stm run hide_run"><a href="#n843">843</a></p>
-<p id="n844" class="pln"><a href="#n844">844</a></p>
-<p id="n845" class="pln"><a href="#n845">845</a></p>
-<p id="n846" class="pln"><a href="#n846">846</a></p>
-<p id="n847" class="pln"><a href="#n847">847</a></p>
-<p id="n848" class="pln"><a href="#n848">848</a></p>
-<p id="n849" class="pln"><a href="#n849">849</a></p>
-<p id="n850" class="pln"><a href="#n850">850</a></p>
-<p id="n851" class="pln"><a href="#n851">851</a></p>
-<p id="n852" class="pln"><a href="#n852">852</a></p>
-<p id="n853" class="pln"><a href="#n853">853</a></p>
-<p id="n854" class="pln"><a href="#n854">854</a></p>
-<p id="n855" class="pln"><a href="#n855">855</a></p>
-<p id="n856" class="stm mis"><a href="#n856">856</a></p>
-<p id="n857" class="pln"><a href="#n857">857</a></p>
-<p id="n858" class="pln"><a href="#n858">858</a></p>
-<p id="n859" class="pln"><a href="#n859">859</a></p>
-<p id="n860" class="stm mis"><a href="#n860">860</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">from</span> <span class="nam">abc</span> <span class="key">import</span> <span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">numpy</span> <span class="key">as</span> <span class="nam">np</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t5" class="stm run hide_run"><span class="key">import</span> <span class="nam">fluegg</span><span class="op">.</span><span class="nam">hydraulics</span> <span class="key">as</span> <span class="nam">hydraulics</span><span class="strut">&nbsp;</span></p>
-<p id="t6" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="key">class</span> <span class="nam">Transporter</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t10" class="stm run hide_run">    <span class="key">def</span> <span class="nam">__init__</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t13" class="pln"><span class="str">        :param simulation_clock:</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="str">        :param particles:</span><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="str">        :param hydraulic_model:</span><span class="strut">&nbsp;</span></p>
-<p id="t16" class="pln"><span class="str">        :param random_numbers:</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="str">        :type: fluegg.random.RandomNumbers</span><span class="strut">&nbsp;</span></p>
-<p id="t18" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span> <span class="op">=</span> <span class="nam">simulation_clock</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span> <span class="op">=</span> <span class="nam">particles</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="key">None</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm run hide_run">        <span class="key">if</span> <span class="nam">random_numbers</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="stm mis">            <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">random</span><span class="op">.</span><span class="nam">normal</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span> <span class="op">=</span> <span class="nam">random_numbers</span><span class="op">.</span><span class="nam">random_array</span><span class="strut">&nbsp;</span></p>
-<p id="t27" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t28" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_random_num</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t29" class="pln">        <span class="str">"""Returns an array of random numbers pulled from</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln"><span class="str">        a normal distribution (mean=0, std=1)</span><span class="strut">&nbsp;</span></p>
-<p id="t31" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="str">        :param size: Number of random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="str">        :type: int</span><span class="strut">&nbsp;</span></p>
-<p id="t34" class="pln"><span class="str">        :return: random numbers</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t38" class="stm run hide_run">        <span class="key">return</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_func</span><span class="op">(</span><span class="num">0</span><span class="op">,</span> <span class="num">1</span><span class="op">,</span> <span class="nam">size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t39" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t40" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t41" class="pln">    <span class="key">def</span> <span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t42" class="pln">        <span class="str">"""Returns the horizontal turbulent diffusion</span><span class="strut">&nbsp;</span></p>
-<p id="t43" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t44" class="pln"><span class="str">        :param depth: depth of water (m)</span><span class="strut">&nbsp;</span></p>
-<p id="t45" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t46" class="pln"><span class="str">        :param shear_velocity: shear velocity of water at depth (m/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t47" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t48" class="pln"><span class="str">        :return: horizontal turbulent diffusion at input depth (m**2/s)</span><span class="strut">&nbsp;</span></p>
-<p id="t49" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t50" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t51" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t52" class="stm run hide_run">        <span class="key">return</span> <span class="num">0.6</span> <span class="op">*</span> <span class="nam">depth</span> <span class="op">*</span> <span class="nam">shear_velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t53" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t54" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t55" class="pln">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t56" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
-<p id="t57" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t58" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t59" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t60" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t61" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t62" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t63" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t64" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t65" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t66" class="stm run hide_run">    <span class="key">def</span> <span class="nam">set_hydraulic_model</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_model</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t67" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t68" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t69" class="pln"><span class="str">        :param hydraulic_model:</span><span class="strut">&nbsp;</span></p>
-<p id="t70" class="pln"><span class="str">        :type hydraulic_model: fluegg.hydraulics.SeriesOfHydraulicCells</span><span class="strut">&nbsp;</span></p>
-<p id="t71" class="pln"><span class="str">        :return: None</span><span class="strut">&nbsp;</span></p>
-<p id="t72" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t73" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t74" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t75" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="op">=</span> <span class="nam">hydraulic_model</span><span class="strut">&nbsp;</span></p>
-<p id="t76" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t77" class="stm run hide_run">    <span class="key">def</span> <span class="nam">max_time_step</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t78" class="pln">        <span class="str">"""Finds the maximum time step required for an accurate simulation.</span><span class="strut">&nbsp;</span></p>
-<p id="t79" class="pln"><span class="str">        Default is at infinity (i.e. no maximum time step)</span><span class="strut">&nbsp;</span></p>
-<p id="t80" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t81" class="pln"><span class="str">        :return: maximum time step criterion given the current time step</span><span class="strut">&nbsp;</span></p>
-<p id="t82" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t83" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t84" class="stm run hide_run">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t85" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"hydraulic_model attribute is set to None"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t86" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t87" class="stm run hide_run">        <span class="key">return</span> <span class="nam">float</span><span class="op">(</span><span class="str">"inf"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t88" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t89" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t90" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t91" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t92" class="pln"><span class="str">        Parameters</span><span class="strut">&nbsp;</span></p>
-<p id="t93" class="pln"><span class="str">        ----------</span><span class="strut">&nbsp;</span></p>
-<p id="t94" class="pln"><span class="str">        hydraulic_results : fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t95" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t96" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t97" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t98" class="stm mis">        <span class="key">if</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span> <span class="key">is</span> <span class="key">None</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t99" class="stm mis">            <span class="key">raise</span> <span class="nam">RuntimeError</span><span class="op">(</span><span class="str">"hydraulic_model attribute is set to None"</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t100" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t101" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t102" class="stm run hide_run"><span class="key">class</span> <span class="nam">LateralTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t103" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t104" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">next_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t105" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t106" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t107" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
-<p id="t108" class="pln"><span class="str">        :param next_position:</span><span class="strut">&nbsp;</span></p>
-<p id="t109" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t110" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t111" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t112" class="pln">        <span class="com"># Check lateral position</span><span class="strut">&nbsp;</span></p>
-<p id="t113" class="stm run hide_run">        <span class="nam">width</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">width</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t114" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t115" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t116" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t117" class="stm run hide_run">        <span class="nam">boundary_length</span> <span class="op">=</span> <span class="nam">width</span> <span class="op">-</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t118" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t119" class="stm run hide_run">        <span class="nam">shifted_next_lateral_position</span> <span class="op">=</span> <span class="nam">next_position</span> <span class="op">-</span> <span class="nam">diameter</span> <span class="op">/</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t120" class="stm run hide_run">        <span class="nam">shifted_boundary_location</span> <span class="op">=</span> <span class="nam">boundary_length</span><span class="strut">&nbsp;</span></p>
-<p id="t121" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t122" class="stm run hide_run">        <span class="nam">right_of_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_lateral_position</span> <span class="op">&lt;</span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t123" class="stm run hide_run">        <span class="nam">left_of_boundary</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t124" class="pln">            <span class="nam">shifted_next_lateral_position</span> <span class="op">></span> <span class="nam">shifted_boundary_location</span><span class="strut">&nbsp;</span></p>
-<p id="t125" class="stm run hide_run">        <span class="nam">out_of_bounds</span> <span class="op">=</span> <span class="nam">right_of_boundary</span> <span class="op">|</span> <span class="nam">left_of_boundary</span><span class="strut">&nbsp;</span></p>
-<p id="t126" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t127" class="stm run hide_run">        <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">out_of_bounds</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t128" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t129" class="stm run hide_run">            <span class="nam">reflections</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">floor_divide</span><span class="op">(</span><span class="nam">shifted_next_lateral_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t130" class="pln">                                          <span class="nam">shifted_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t131" class="stm run hide_run">            <span class="nam">remainder</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">shifted_next_lateral_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t132" class="pln">                               <span class="nam">shifted_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t133" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t134" class="stm run hide_run">            <span class="nam">reflection_mod_2</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">reflections</span><span class="op">,</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t135" class="stm run hide_run">            <span class="nam">odd_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">1</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
-<p id="t136" class="stm run hide_run">            <span class="nam">even_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">0</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
-<p id="t137" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t138" class="stm run hide_run">            <span class="nam">shifted_next_lateral_position</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t139" class="pln">                <span class="nam">remainder</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t140" class="stm run hide_run">            <span class="nam">shifted_next_lateral_position</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t141" class="pln">                <span class="nam">boundary_length</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">-</span> <span class="nam">remainder</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t142" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t143" class="stm run hide_run">            <span class="nam">next_position</span> <span class="op">=</span> <span class="nam">shifted_next_lateral_position</span> <span class="op">+</span> <span class="nam">diameter</span> <span class="op">/</span> <span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t144" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t145" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_position</span><span class="strut">&nbsp;</span></p>
-<p id="t146" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t147" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t148" class="pln">        <span class="str">"""Returns incremented lateral particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t149" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t150" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t151" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t152" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t153" class="pln"><span class="str">        :return: next lateral particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t154" class="pln"><span class="str">        :rtype: numpy.ndarray(num_particles)</span><span class="strut">&nbsp;</span></p>
-<p id="t155" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t156" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
-<p id="t157" class="stm run hide_run">        <span class="nam">lateral_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t158" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">lateral_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t159" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t160" class="stm run hide_run">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t161" class="stm run hide_run">        <span class="nam">lateral_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">lateral_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t162" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t163" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t164" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t165" class="stm run hide_run">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t166" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t167" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t168" class="pln">        <span class="com"># Calculate incremented lateral positions</span><span class="strut">&nbsp;</span></p>
-<p id="t169" class="stm run hide_run">        <span class="nam">next_lateral_position</span> <span class="op">=</span> <span class="nam">lateral_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t170" class="pln">            <span class="op">+</span> <span class="nam">lateral_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t171" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t172" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t173" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_lateral_position</span><span class="strut">&nbsp;</span></p>
-<p id="t174" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t175" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t176" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
-<p id="t177" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t178" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t179" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t180" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t181" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t182" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t183" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t184" class="stm run hide_run">        <span class="nam">next_lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t185" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t186" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t187" class="stm run hide_run">        <span class="nam">next_lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t188" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t189" class="pln">                                          <span class="nam">next_lateral_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t190" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t191" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t192" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t193" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">1</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_lateral_positions</span><span class="strut">&nbsp;</span></p>
-<p id="t194" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t195" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t196" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t197" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t198" class="stm run hide_run"><span class="key">class</span> <span class="nam">LongitudinalTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t199" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t200" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t201" class="pln">        <span class="str">"""Returns incremented longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t202" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t203" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t204" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t205" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t206" class="pln"><span class="str">        :return: next longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t207" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t208" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t209" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t210" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
-<p id="t211" class="stm run hide_run">        <span class="nam">longitudinal_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t212" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">longitudinal_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t213" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t214" class="stm run hide_run">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t215" class="stm run hide_run">        <span class="nam">longitudinal_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">streamwise_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t216" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t217" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t218" class="stm run hide_run">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t219" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t220" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t221" class="pln">        <span class="com"># Calculate incremented longitudinal positions</span><span class="strut">&nbsp;</span></p>
-<p id="t222" class="stm run hide_run">        <span class="nam">next_longitudinal_position</span> <span class="op">=</span> <span class="nam">longitudinal_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t223" class="pln">            <span class="op">+</span> <span class="nam">longitudinal_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t224" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t225" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t226" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_longitudinal_position</span><span class="strut">&nbsp;</span></p>
-<p id="t227" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t228" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t229" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
-<p id="t230" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t231" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t232" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t233" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t234" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t235" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t236" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t237" class="stm run hide_run">        <span class="nam">next_longitudinal_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t238" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t239" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t240" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t241" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t242" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_longitudinal_positions</span><span class="strut">&nbsp;</span></p>
-<p id="t243" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t244" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t245" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t246" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t247" class="stm run hide_run"><span class="key">class</span> <span class="nam">ReverseLongitudinalTransporter</span><span class="op">(</span><span class="nam">LongitudinalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t248" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t249" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_get_next_longitudinal_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t250" class="pln">        <span class="str">"""Returns incremented longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t251" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t252" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t253" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t254" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t255" class="pln"><span class="str">        :return: next longitudinal particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t256" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t257" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t258" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t259" class="pln">        <span class="com"># Initialize necessary calculations</span><span class="strut">&nbsp;</span></p>
-<p id="t260" class="stm mis">        <span class="nam">longitudinal_position</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">get_position</span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t261" class="stm mis">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">longitudinal_position</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t262" class="stm mis">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t263" class="stm mis">        <span class="nam">time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">get_time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t264" class="stm mis">        <span class="nam">longitudinal_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">streamwise_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t265" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t266" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t267" class="stm mis">        <span class="nam">turbulent_diffusion</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t268" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_horizontal_turbulent_diffusion</span><span class="op">(</span><span class="nam">depth</span><span class="op">,</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t269" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t270" class="pln">        <span class="com"># Reverse the advection direction</span><span class="strut">&nbsp;</span></p>
-<p id="t271" class="stm mis">        <span class="nam">reversal</span> <span class="op">=</span> <span class="op">-</span><span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t272" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t273" class="pln">        <span class="com"># Calculate incremented longitudinal positions</span><span class="strut">&nbsp;</span></p>
-<p id="t274" class="stm mis">        <span class="nam">next_longitudinal_position</span> <span class="op">=</span> <span class="nam">longitudinal_position</span> <span class="op">+</span> <span class="nam">reversal</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t275" class="pln">            <span class="nam">longitudinal_velocity</span> <span class="op">*</span> <span class="nam">time_step</span> <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t276" class="pln">            <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">turbulent_diffusion</span> <span class="op">*</span> <span class="nam">time_step</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t277" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t278" class="stm mis">        <span class="key">return</span> <span class="nam">next_longitudinal_position</span><span class="strut">&nbsp;</span></p>
-<p id="t279" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t280" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t281" class="stm run hide_run"><span class="key">class</span> <span class="nam">VerticalTransporter</span><span class="op">(</span><span class="nam">Transporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t282" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t283" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t284" class="pln">                                  <span class="nam">next_vertical_position</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t285" class="pln">        <span class="str">"""Checks whether positions are within the hydraulic boundary.</span><span class="strut">&nbsp;</span></p>
-<p id="t286" class="pln"><span class="str">        If not, returns the positions reflected on the boundary</span><span class="strut">&nbsp;</span></p>
-<p id="t287" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t288" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t289" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t290" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t291" class="pln"><span class="str">        :param next_vertical_position: incremented vertical positions of</span><span class="strut">&nbsp;</span></p>
-<p id="t292" class="pln"><span class="str">            particles</span><span class="strut">&nbsp;</span></p>
-<p id="t293" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t294" class="pln"><span class="str">        :return: boundary-checked incremented position of a particle</span><span class="strut">&nbsp;</span></p>
-<p id="t295" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t296" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t297" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t298" class="pln">        <span class="com"># Check vertical position</span><span class="strut">&nbsp;</span></p>
-<p id="t299" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t300" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t301" class="stm run hide_run">        <span class="nam">diameter</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">diameter</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t302" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t303" class="stm run hide_run">        <span class="nam">boundary_length</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">-</span> <span class="nam">diameter</span><span class="strut">&nbsp;</span></p>
-<p id="t304" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t305" class="stm run hide_run">        <span class="nam">shifted_next_vertical_position</span> <span class="op">=</span> <span class="nam">next_vertical_position</span> <span class="op">+</span> <span class="nam">diameter</span><span class="op">/</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t306" class="stm run hide_run">        <span class="nam">shifted_bottom_boundary_location</span> <span class="op">=</span> <span class="op">-</span><span class="nam">boundary_length</span><span class="strut">&nbsp;</span></p>
-<p id="t307" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t308" class="stm run hide_run">        <span class="nam">above_top_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_vertical_position</span> <span class="op">></span> <span class="num">0</span><span class="strut">&nbsp;</span></p>
-<p id="t309" class="stm run hide_run">        <span class="nam">below_bottom_boundary</span> <span class="op">=</span> <span class="nam">shifted_next_vertical_position</span> <span class="op">&lt;</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t310" class="pln">            <span class="nam">shifted_bottom_boundary_location</span><span class="strut">&nbsp;</span></p>
-<p id="t311" class="stm run hide_run">        <span class="nam">out_of_bounds</span> <span class="op">=</span> <span class="nam">above_top_boundary</span> <span class="op">|</span> <span class="nam">below_bottom_boundary</span><span class="strut">&nbsp;</span></p>
-<p id="t312" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t313" class="stm run hide_run">        <span class="key">if</span> <span class="nam">np</span><span class="op">.</span><span class="nam">any</span><span class="op">(</span><span class="nam">out_of_bounds</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t314" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t315" class="stm run hide_run">            <span class="nam">reflections</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">floor_divide</span><span class="op">(</span><span class="nam">shifted_next_vertical_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t316" class="pln">                                          <span class="nam">shifted_bottom_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t317" class="stm run hide_run">            <span class="nam">remainder</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">shifted_next_vertical_position</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t318" class="pln">                               <span class="nam">shifted_bottom_boundary_location</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t319" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t320" class="stm run hide_run">            <span class="nam">reflection_mod_2</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">mod</span><span class="op">(</span><span class="nam">reflections</span><span class="op">,</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t321" class="stm run hide_run">            <span class="nam">odd_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">1</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
-<p id="t322" class="stm run hide_run">            <span class="nam">even_reflections</span> <span class="op">=</span> <span class="op">(</span><span class="nam">reflection_mod_2</span> <span class="op">==</span> <span class="num">0</span><span class="op">)</span> <span class="op">&amp;</span> <span class="nam">out_of_bounds</span><span class="strut">&nbsp;</span></p>
-<p id="t323" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t324" class="stm run hide_run">            <span class="nam">shifted_next_vertical_position</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t325" class="pln">                <span class="nam">remainder</span><span class="op">[</span><span class="nam">even_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t326" class="stm run hide_run">            <span class="nam">shifted_next_vertical_position</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t327" class="pln">                <span class="op">-</span><span class="nam">boundary_length</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span> <span class="op">-</span> <span class="nam">remainder</span><span class="op">[</span><span class="nam">odd_reflections</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t328" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t329" class="stm run hide_run">            <span class="nam">next_vertical_position</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t330" class="pln">                <span class="nam">shifted_next_vertical_position</span> <span class="op">-</span> <span class="nam">diameter</span><span class="op">/</span><span class="num">2</span><span class="strut">&nbsp;</span></p>
-<p id="t331" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t332" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_vertical_position</span><span class="strut">&nbsp;</span></p>
-<p id="t333" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t334" class="stm run hide_run">    <span class="op">@</span><span class="nam">staticmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t335" class="pln">    <span class="key">def</span> <span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t336" class="pln">        <span class="str">"""Returns the factor beta used in calculation of the vertical</span><span class="strut">&nbsp;</span></p>
-<p id="t337" class="pln"><span class="str">        eddy diffusivity</span><span class="strut">&nbsp;</span></p>
-<p id="t338" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t339" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t340" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t341" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t342" class="pln"><span class="str">        :param fall_velocity:</span><span class="strut">&nbsp;</span></p>
-<p id="t343" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t344" class="pln"><span class="str">        :return: beta factor for calculating eddy diffusivity</span><span class="strut">&nbsp;</span></p>
-<p id="t345" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t346" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t347" class="pln">        <span class="com"># Calculate beta coefficient</span><span class="strut">&nbsp;</span></p>
-<p id="t348" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t349" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="num">1</span> <span class="op">+</span> <span class="num">2</span> <span class="op">*</span> <span class="op">(</span><span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="op">(</span><span class="nam">fall_velocity</span> <span class="op">/</span> <span class="nam">shear_velocity</span><span class="op">)</span><span class="op">)</span> <span class="op">**</span> <span class="num">2</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t350" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t351" class="pln">        <span class="com"># set the values out of the function range to 3</span><span class="strut">&nbsp;</span></p>
-<p id="t352" class="stm run hide_run">        <span class="nam">out_of_range</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">abs</span><span class="op">(</span><span class="nam">fall_velocity</span><span class="op">)</span><span class="op">/</span><span class="nam">shear_velocity</span> <span class="op">></span> <span class="num">1</span><span class="strut">&nbsp;</span></p>
-<p id="t353" class="stm run hide_run">        <span class="nam">beta</span><span class="op">[</span><span class="nam">out_of_range</span><span class="op">]</span> <span class="op">=</span> <span class="num">3</span><span class="strut">&nbsp;</span></p>
-<p id="t354" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t355" class="stm run hide_run">        <span class="key">return</span> <span class="nam">beta</span><span class="strut">&nbsp;</span></p>
-<p id="t356" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t357" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_diffusivity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t358" class="pln">        <span class="str">"""Returns the eddy diffusivity second derivative at the positions in</span><span class="strut">&nbsp;</span></p>
-<p id="t359" class="pln"><span class="str">        hydraulic_results</span><span class="strut">&nbsp;</span></p>
-<p id="t360" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t361" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t362" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t363" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t364" class="pln"><span class="str">        :return: eddy diffusivity second derivative</span><span class="strut">&nbsp;</span></p>
-<p id="t365" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t366" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t367" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t368" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t369" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t370" class="stm run hide_run">        <span class="nam">second_derivative</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t371" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t372" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t373" class="stm run hide_run">        <span class="key">return</span> <span class="nam">second_derivative</span><span class="strut">&nbsp;</span></p>
-<p id="t374" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t375" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t376" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t377" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t378" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t379" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
-<p id="t380" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t381" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t382" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t383" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t384" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t385" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t386" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t387" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t388" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
-<p id="t389" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t390" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t391" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t392" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t393" class="stm run hide_run">    <span class="op">@</span><span class="nam">abstractmethod</span><span class="strut">&nbsp;</span></p>
-<p id="t394" class="pln">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t395" class="pln">        <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t396" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t397" class="pln"><span class="str">        :param hydraulic_results:</span><span class="strut">&nbsp;</span></p>
-<p id="t398" class="pln"><span class="str">        :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t399" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t400" class="stm mis">        <span class="key">raise</span> <span class="nam">NotImplementedError</span><span class="strut">&nbsp;</span></p>
-<p id="t401" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t402" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t403" class="pln">        <span class="str">"""Returns incremented vertical particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t404" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t405" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t406" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t407" class="pln"><span class="str">        :type: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t408" class="pln"><span class="str">        :return: next vertical particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t409" class="pln"><span class="str">        :rtype: numpy.ndarray</span><span class="strut">&nbsp;</span></p>
-<p id="t410" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t411" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t412" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t413" class="pln">        <span class="com"># Initialize necessary variables for equation</span><span class="strut">&nbsp;</span></p>
-<p id="t414" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t415" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t416" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t417" class="stm run hide_run">        <span class="nam">random_num</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_random_num</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t418" class="stm run hide_run">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t419" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t420" class="stm run hide_run">        <span class="nam">max_time_step</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">max_time_step</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t421" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t422" class="stm run hide_run">        <span class="key">if</span> <span class="op">(</span><span class="nam">max_time_step</span> <span class="op">&lt;</span> <span class="nam">time_step_size</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t423" class="stm mis">            <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"Time step size is greater than maximum time "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t424" class="pln">                             <span class="str">"step of {}"</span><span class="op">.</span><span class="nam">format</span><span class="op">(</span><span class="nam">max_time_step</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t425" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t426" class="pln">        <span class="com"># Calculate fall velocity</span><span class="strut">&nbsp;</span></p>
-<p id="t427" class="stm run hide_run">        <span class="nam">fall_velocity</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">fall_velocity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t428" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t429" class="stm run hide_run">        <span class="nam">beta</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_beta</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span> <span class="nam">fall_velocity</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t430" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t431" class="stm run hide_run">        <span class="nam">vertical_eddy_diffusivity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t432" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t433" class="stm run hide_run">        <span class="nam">vertical_eddy_diffusivity</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t434" class="pln">            <span class="nam">beta</span> <span class="op">*</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t435" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t436" class="stm run hide_run">        <span class="nam">vertical_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">vertical_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t437" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t438" class="pln">        <span class="com"># Calculate the next step's vertical position</span><span class="strut">&nbsp;</span></p>
-<p id="t439" class="stm run hide_run">        <span class="nam">next_vertical_position</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t440" class="pln">            <span class="op">+</span> <span class="nam">vertical_velocity</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t441" class="pln">            <span class="op">+</span> <span class="nam">fall_velocity</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t442" class="pln">            <span class="op">+</span> <span class="nam">vertical_eddy_diffusivity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t443" class="pln">            <span class="op">+</span> <span class="nam">random_num</span> <span class="op">*</span> <span class="nam">np</span><span class="op">.</span><span class="nam">sqrt</span><span class="op">(</span><span class="num">2</span> <span class="op">*</span> <span class="nam">vertical_eddy_diffusivity</span> <span class="op">*</span><span class="strut">&nbsp;</span></p>
-<p id="t444" class="pln">                                   <span class="nam">time_step_size</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t445" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t446" class="stm run hide_run">        <span class="key">return</span> <span class="nam">next_vertical_position</span><span class="strut">&nbsp;</span></p>
-<p id="t447" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t448" class="stm run hide_run">    <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t449" class="pln">        <span class="str">"""Increments positions of particles according to current time step.</span><span class="strut">&nbsp;</span></p>
-<p id="t450" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t451" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t452" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t453" class="pln"><span class="str">        :type hydraulic_results: fluegg.hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t454" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t455" class="pln"><span class="str">        Raises</span><span class="strut">&nbsp;</span></p>
-<p id="t456" class="pln"><span class="str">        ------</span><span class="strut">&nbsp;</span></p>
-<p id="t457" class="pln"><span class="str">        ValueError</span><span class="strut">&nbsp;</span></p>
-<p id="t458" class="pln"><span class="str">            If the simulation clock time step is greater than the maximum time</span><span class="strut">&nbsp;</span></p>
-<p id="t459" class="pln"><span class="str">            step defined by self.max_time_step()</span><span class="strut">&nbsp;</span></p>
-<p id="t460" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t461" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t462" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t463" class="stm run hide_run">        <span class="nam">next_vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t464" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t465" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t466" class="stm run hide_run">        <span class="nam">next_vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t467" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t468" class="pln">                                           <span class="nam">next_vertical_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t469" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t470" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t471" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t472" class="stm run hide_run">        <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span> <span class="op">=</span> <span class="nam">next_vertical_positions</span><span class="strut">&nbsp;</span></p>
-<p id="t473" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t474" class="stm run hide_run">        <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t475" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t476" class="stm run hide_run">    <span class="key">def</span> <span class="nam">max_time_step</span><span class="op">(</span><span class="nam">self</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t477" class="pln">        <span class="str">"""Finds the maximum time step required for an accurate simulation.</span><span class="strut">&nbsp;</span></p>
-<p id="t478" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t479" class="pln"><span class="str">        This is based on the the time step being &lt;= 1/abs(vertical eddy</span><span class="strut">&nbsp;</span></p>
-<p id="t480" class="pln"><span class="str">        diffusivity second derivative)</span><span class="strut">&nbsp;</span></p>
-<p id="t481" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t482" class="pln"><span class="str">        :return: maximum time step criterion given the current time step</span><span class="strut">&nbsp;</span></p>
-<p id="t483" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t484" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t485" class="stm run hide_run">        <span class="nam">super</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">max_time_step</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t486" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t487" class="stm run hide_run">        <span class="nam">particle_positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t488" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t489" class="stm run hide_run">        <span class="nam">hydraulic_results</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t490" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_hydraulic_model</span><span class="op">.</span><span class="nam">hydraulic_results</span><span class="op">(</span><span class="nam">particle_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t491" class="stm run hide_run">        <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_diffusivity_second_derivative</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t492" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t493" class="pln">        <span class="com"># Minimum inverse vertical eddy diffusivity second derivative is</span><span class="strut">&nbsp;</span></p>
-<p id="t494" class="pln">        <span class="com"># maximum time step</span><span class="strut">&nbsp;</span></p>
-<p id="t495" class="stm run hide_run">        <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">criteria</span><span class="op">[</span><span class="nam">criteria</span> <span class="op">></span> <span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t496" class="stm run hide_run">        <span class="key">if</span> <span class="nam">len</span><span class="op">(</span><span class="nam">criteria</span> <span class="op">></span> <span class="num">0</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t497" class="stm mis">            <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">power</span><span class="op">(</span><span class="nam">criteria</span><span class="op">,</span> <span class="op">-</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t498" class="stm mis">            <span class="nam">criteria</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">absolute</span><span class="op">(</span><span class="nam">criteria</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t499" class="stm mis">            <span class="nam">criterion</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">amin</span><span class="op">(</span><span class="nam">criteria</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t500" class="pln">        <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t501" class="stm run hide_run">            <span class="nam">criterion</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">inf</span><span class="strut">&nbsp;</span></p>
-<p id="t502" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t503" class="stm run hide_run">        <span class="key">return</span> <span class="nam">criterion</span><span class="strut">&nbsp;</span></p>
-<p id="t504" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t505" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t506" class="stm run hide_run"><span class="key">class</span> <span class="nam">ConstantVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t507" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t508" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t509" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t510" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t511" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t512" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t513" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t514" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t515" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t516" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t517" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t518" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t519" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t520" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t521" class="pln">        <span class="com"># constant portion of profile</span><span class="strut">&nbsp;</span></p>
-<p id="t522" class="stm run hide_run">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="num">1</span><span class="op">/</span><span class="num">15</span> <span class="op">*</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t523" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t524" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
-<p id="t525" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t526" class="stm run hide_run">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t527" class="stm run hide_run">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t528" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t529" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t530" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t531" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t532" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t533" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t534" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t535" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t536" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t537" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t538" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t539" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t540" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t541" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t542" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t543" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t544" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t545" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t546" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
-<p id="t547" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t548" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t549" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
-<p id="t550" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t551" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t552" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
-<p id="t553" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
-<p id="t554" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t555" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t556" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t557" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t558" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
-<p id="t559" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t560" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t561" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t562" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t563" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t564" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t565" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
-<p id="t566" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t567" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t568" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
-<p id="t569" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t570" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t571" class="stm run hide_run"><span class="key">class</span> <span class="nam">ParabolicVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t572" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t573" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t574" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t575" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t576" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t577" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t578" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t579" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t580" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t581" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t582" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t583" class="stm mis">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t584" class="stm mis">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t585" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t586" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t587" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t588" class="stm mis">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">+</span> <span class="nam">vertical_position</span><span class="strut">&nbsp;</span></p>
-<p id="t589" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t590" class="pln">        <span class="com"># parabolic portion of profile</span><span class="strut">&nbsp;</span></p>
-<p id="t591" class="stm mis">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t592" class="stm mis">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t593" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t594" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t595" class="stm mis">        <span class="nam">offset_distance</span> <span class="op">=</span> <span class="num">0.5</span> <span class="op">*</span> <span class="nam">eddy_viscosity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
-<p id="t596" class="stm mis">        <span class="nam">distance_above_bed_offset</span> <span class="op">=</span> <span class="nam">distance_above_bed</span> <span class="op">+</span> <span class="nam">offset_distance</span><span class="strut">&nbsp;</span></p>
-<p id="t597" class="stm mis">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t598" class="pln">            <span class="nam">distance_above_bed_offset</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">distance_above_bed_offset</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t599" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t600" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
-<p id="t601" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t602" class="stm mis">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t603" class="stm mis">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t604" class="stm mis">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t605" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t606" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t607" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t608" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t609" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t610" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t611" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t612" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t613" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t614" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t615" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t616" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t617" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t618" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t619" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t620" class="stm mis">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t621" class="stm mis">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t622" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t623" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t624" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t625" class="stm mis">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t626" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t627" class="stm mis">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t628" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="num">2</span><span class="op">*</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t629" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t630" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
-<p id="t631" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t632" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t633" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
-<p id="t634" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
-<p id="t635" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t636" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t637" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t638" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t639" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
-<p id="t640" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t641" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t642" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t643" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t644" class="stm mis">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t645" class="stm mis">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t646" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t647" class="stm mis">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="op">-</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t648" class="pln">            <span class="nam">shear_velocity</span> <span class="op">*</span> <span class="num">2</span> <span class="op">/</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t649" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t650" class="stm mis">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
-<p id="t651" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t652" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t653" class="stm run hide_run"><span class="key">class</span> <span class="nam">ParabolicConstantVerticalTransporter</span><span class="op">(</span><span class="nam">VerticalTransporter</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t654" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t655" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t656" class="pln">        <span class="str">"""Returns the vertical eddy viscosity at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t657" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t658" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at given particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t659" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t660" class="pln"><span class="str">        :return: eddy viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t661" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t662" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t663" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t664" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t665" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t666" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t667" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t668" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t669" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t670" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t671" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">depth</span> <span class="op">+</span> <span class="nam">vertical_position</span><span class="strut">&nbsp;</span></p>
-<p id="t672" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t673" class="stm run hide_run">        <span class="nam">eddy_viscosity</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t674" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t675" class="pln">        <span class="com"># constant portion of profile</span><span class="strut">&nbsp;</span></p>
-<p id="t676" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t677" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.25</span> <span class="op">*</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t678" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">*</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t679" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t680" class="pln">        <span class="com"># parabolic portion of profile</span><span class="strut">&nbsp;</span></p>
-<p id="t681" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t682" class="stm run hide_run">        <span class="nam">time_step_size</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_simulation_clock</span><span class="op">.</span><span class="nam">time_step_size</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t683" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t684" class="pln">            <span class="nam">self</span><span class="op">.</span><span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t685" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t686" class="stm run hide_run">        <span class="nam">offset_distance</span> <span class="op">=</span> <span class="num">0.5</span> <span class="op">*</span> <span class="nam">eddy_viscosity_gradient</span> <span class="op">*</span> <span class="nam">time_step_size</span><span class="strut">&nbsp;</span></p>
-<p id="t687" class="stm run hide_run">        <span class="nam">distance_above_bed_offset</span> <span class="op">=</span> <span class="nam">distance_above_bed</span> <span class="op">+</span> <span class="nam">offset_distance</span><span class="strut">&nbsp;</span></p>
-<p id="t688" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t689" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t690" class="pln">            <span class="nam">distance_above_bed_offset</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t691" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="nam">distance_above_bed_offset</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t692" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t693" class="pln">        <span class="com"># use fluid viscosity where eddy viscosity is less than the fluid</span><span class="strut">&nbsp;</span></p>
-<p id="t694" class="pln">        <span class="com"># viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t695" class="stm run hide_run">        <span class="nam">fluid_viscosity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">water_viscosity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t696" class="stm run hide_run">        <span class="nam">eddy_viscosity_lt_water_viscosity</span> <span class="op">=</span> <span class="nam">eddy_viscosity</span> <span class="op">&lt;</span> <span class="nam">fluid_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t697" class="stm run hide_run">        <span class="nam">eddy_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t698" class="pln">            <span class="nam">fluid_viscosity</span><span class="op">[</span><span class="nam">eddy_viscosity_lt_water_viscosity</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t699" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t700" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity</span><span class="strut">&nbsp;</span></p>
-<p id="t701" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t702" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_gradient</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t703" class="pln">        <span class="str">"""Returns the eddy viscosity gradient with depth at the given position</span><span class="strut">&nbsp;</span></p>
-<p id="t704" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t705" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t706" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t707" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t708" class="pln"><span class="str">        :return: eddy viscosity gradient m/s</span><span class="strut">&nbsp;</span></p>
-<p id="t709" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t710" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t711" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t712" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t713" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t714" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t715" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t716" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t717" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t718" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t719" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t720" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t721" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
-<p id="t722" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t723" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t724" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t725" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
-<p id="t726" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t727" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span><span class="op">/</span><span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t728" class="stm run hide_run">        <span class="nam">eddy_viscosity_gradient</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t729" class="pln">            <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t730" class="pln">            <span class="op">(</span><span class="num">1</span> <span class="op">-</span> <span class="num">2</span><span class="op">*</span><span class="nam">distance_above_bed</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">/</span><span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t731" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t732" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_gradient</span><span class="strut">&nbsp;</span></p>
-<p id="t733" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t734" class="stm run hide_run">    <span class="key">def</span> <span class="nam">_eddy_viscosity_second_derivative</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t735" class="pln">        <span class="str">"""Returns the eddy viscosity second derivative with depth at the given</span><span class="strut">&nbsp;</span></p>
-<p id="t736" class="pln"><span class="str">        position</span><span class="strut">&nbsp;</span></p>
-<p id="t737" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t738" class="pln"><span class="str">        :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t739" class="pln"><span class="str">            positions</span><span class="strut">&nbsp;</span></p>
-<p id="t740" class="pln"><span class="str">        :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t741" class="pln"><span class="str">        :return: eddy viscosity second derivative m/s**2</span><span class="strut">&nbsp;</span></p>
-<p id="t742" class="pln"><span class="str">        :rtype: float</span><span class="strut">&nbsp;</span></p>
-<p id="t743" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t744" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t745" class="pln">        <span class="com"># Initialize necessary information for calculation</span><span class="strut">&nbsp;</span></p>
-<p id="t746" class="stm run hide_run">        <span class="nam">positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">position</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t747" class="stm run hide_run">        <span class="nam">vertical_position</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">[</span><span class="op">:</span><span class="op">,</span> <span class="num">2</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t748" class="stm run hide_run">        <span class="nam">num_particles</span> <span class="op">=</span> <span class="nam">positions</span><span class="op">.</span><span class="nam">shape</span><span class="op">[</span><span class="num">0</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t749" class="stm run hide_run">        <span class="nam">depth</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">depth</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t750" class="stm run hide_run">        <span class="nam">shear_velocity</span> <span class="op">=</span> <span class="nam">hydraulic_results</span><span class="op">.</span><span class="nam">shear_velocity</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t751" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t752" class="stm run hide_run">        <span class="nam">distance_above_bed</span> <span class="op">=</span> <span class="nam">vertical_position</span> <span class="op">+</span> <span class="nam">depth</span><span class="strut">&nbsp;</span></p>
-<p id="t753" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t754" class="pln">        <span class="com"># Depending on profile, fill fluid eddy viscosity gradient array</span><span class="strut">&nbsp;</span></p>
-<p id="t755" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">zeros</span><span class="op">(</span><span class="nam">num_particles</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t756" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t757" class="stm run hide_run">        <span class="nam">constant</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">>=</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t758" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span><span class="op">[</span><span class="nam">constant</span><span class="op">]</span> <span class="op">=</span> <span class="num">0.0</span><span class="strut">&nbsp;</span></p>
-<p id="t759" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t760" class="stm run hide_run">        <span class="nam">parabolic</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">where</span><span class="op">(</span><span class="nam">distance_above_bed</span> <span class="op">/</span> <span class="nam">depth</span> <span class="op">&lt;</span> <span class="num">0.5</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t761" class="stm run hide_run">        <span class="nam">eddy_viscosity_second_derivative</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t762" class="pln">            <span class="op">-</span> <span class="nam">hydraulics</span><span class="op">.</span><span class="nam">VON_KARMAN_CONSTANT</span> <span class="op">*</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t763" class="pln">            <span class="nam">shear_velocity</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span> <span class="op">*</span> <span class="num">2</span> <span class="op">/</span> <span class="nam">depth</span><span class="op">[</span><span class="nam">parabolic</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t764" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t765" class="stm run hide_run">        <span class="key">return</span> <span class="nam">eddy_viscosity_second_derivative</span><span class="strut">&nbsp;</span></p>
-<p id="t766" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t767" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t768" class="stm run hide_run"><span class="key">def</span> <span class="nam">fluegg_transporter_class_factory</span><span class="op">(</span><span class="nam">vertical_turbulence</span><span class="op">=</span><span class="str">'parabolic-constant'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t769" class="pln">                                     <span class="nam">advection_direction</span><span class="op">=</span><span class="str">'forward'</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t770" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t771" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t772" class="pln"><span class="str">    :param vertical_turbulence:</span><span class="strut">&nbsp;</span></p>
-<p id="t773" class="pln"><span class="str">    :param advection_direction:</span><span class="strut">&nbsp;</span></p>
-<p id="t774" class="pln"><span class="str">    :return: class</span><span class="strut">&nbsp;</span></p>
-<p id="t775" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t776" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t777" class="stm run hide_run">    <span class="key">if</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t778" class="stm mis">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ConstantVerticalTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t779" class="stm run hide_run">    <span class="key">elif</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'parabolic'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t780" class="stm mis">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ParabolicVerticalTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t781" class="stm run hide_run">    <span class="key">elif</span> <span class="nam">vertical_turbulence</span> <span class="op">==</span> <span class="str">'parabolic-constant'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t782" class="stm run hide_run">        <span class="nam">vertical_base_class</span> <span class="op">=</span> <span class="nam">ParabolicConstantVerticalTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t783" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t784" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"vertical_turbulence must be \'constant\' "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t785" class="pln">                         <span class="str">"\'parabolic\' or \'parabolic-constant\'."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t786" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t787" class="stm run hide_run">    <span class="key">if</span> <span class="nam">advection_direction</span> <span class="op">==</span> <span class="str">'forward'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t788" class="stm run hide_run">        <span class="nam">longitudinal_base_class</span> <span class="op">=</span> <span class="nam">LongitudinalTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t789" class="stm mis">    <span class="key">elif</span> <span class="nam">advection_direction</span> <span class="op">==</span> <span class="str">'reverse'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t790" class="stm mis">        <span class="nam">longitudinal_base_class</span> <span class="op">=</span> <span class="nam">ReverseLongitudinalTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t791" class="pln">    <span class="key">else</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t792" class="stm mis">        <span class="key">raise</span> <span class="nam">ValueError</span><span class="op">(</span><span class="str">"advection_direction must be \'forward\' or "</span> <span class="op">+</span><span class="strut">&nbsp;</span></p>
-<p id="t793" class="pln">                         <span class="str">"\'reverse\'."</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t794" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t795" class="stm run hide_run">    <span class="key">class</span> <span class="nam">FluEggTransporter</span><span class="op">(</span><span class="nam">vertical_base_class</span><span class="op">,</span> <span class="nam">LateralTransporter</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t796" class="pln">                            <span class="nam">longitudinal_base_class</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t797" class="pln">        <span class="str">"""This class transports particles through hydraulic cells</span><span class="strut">&nbsp;</span></p>
-<p id="t798" class="pln"><span class="str">        using a parabolic-constant diffusivity profile.</span><span class="strut">&nbsp;</span></p>
-<p id="t799" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t800" class="pln"><span class="str">        :param LateralTransporter: A lateral transporter model</span><span class="strut">&nbsp;</span></p>
-<p id="t801" class="pln"><span class="str">        :type: transporter.LateralTranslporter</span><span class="strut">&nbsp;</span></p>
-<p id="t802" class="pln"><span class="str">        :param longitudinal_base_class: A longitudinal transporter model</span><span class="strut">&nbsp;</span></p>
-<p id="t803" class="pln"><span class="str">        :type: transporter.Translporter</span><span class="strut">&nbsp;</span></p>
-<p id="t804" class="pln"><span class="str">        :param vertical_base_class: A vertical transporter model</span><span class="strut">&nbsp;</span></p>
-<p id="t805" class="pln"><span class="str">        :type: transporter.Transporter</span><span class="strut">&nbsp;</span></p>
-<p id="t806" class="pln"><span class="str">        """</span><span class="strut">&nbsp;</span></p>
-<p id="t807" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t808" class="stm run hide_run">        <span class="key">def</span> <span class="nam">increment_positions</span><span class="op">(</span><span class="nam">self</span><span class="op">,</span> <span class="nam">hydraulic_results</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t809" class="pln">            <span class="str">"""Increments particle positions to the next time step</span><span class="strut">&nbsp;</span></p>
-<p id="t810" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t811" class="pln"><span class="str">            :param hydraulic_results: hydraulic results at current particle</span><span class="strut">&nbsp;</span></p>
-<p id="t812" class="pln"><span class="str">                positions</span><span class="strut">&nbsp;</span></p>
-<p id="t813" class="pln"><span class="str">            :type: hydraulics.HydraulicResults</span><span class="strut">&nbsp;</span></p>
-<p id="t814" class="pln"><span class="str">            """</span><span class="strut">&nbsp;</span></p>
-<p id="t815" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t816" class="pln">            <span class="com"># Calculate new particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t817" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t818" class="stm run hide_run">            <span class="nam">longitudinal_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t819" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_next_longitudinal_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t820" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t821" class="stm run hide_run">            <span class="nam">lateral_positions</span> <span class="op">=</span> <span class="nam">self</span><span class="op">.</span><span class="nam">_next_lateral_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t822" class="stm run hide_run">            <span class="nam">lateral_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t823" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_lateral_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t824" class="pln">                                              <span class="nam">lateral_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t825" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t826" class="stm run hide_run">            <span class="nam">vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t827" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_next_vertical_positions</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t828" class="stm run hide_run">            <span class="nam">vertical_positions</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t829" class="pln">                <span class="nam">self</span><span class="op">.</span><span class="nam">_vertical_boundary_checks</span><span class="op">(</span><span class="nam">hydraulic_results</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t830" class="pln">                                               <span class="nam">vertical_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t831" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t832" class="pln">            <span class="com"># [s, n, z]</span><span class="strut">&nbsp;</span></p>
-<p id="t833" class="stm run hide_run">            <span class="nam">next_positions</span> <span class="op">=</span> <span class="nam">np</span><span class="op">.</span><span class="nam">stack</span><span class="op">(</span><span class="op">(</span><span class="nam">longitudinal_positions</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t834" class="pln">                                       <span class="nam">lateral_positions</span><span class="op">,</span> <span class="nam">vertical_positions</span><span class="op">)</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t835" class="pln">                                      <span class="nam">axis</span><span class="op">=</span><span class="num">1</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t836" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t837" class="pln">            <span class="com"># Increment particle positions</span><span class="strut">&nbsp;</span></p>
-<p id="t838" class="stm run hide_run">            <span class="nam">self</span><span class="op">.</span><span class="nam">_particles</span><span class="op">.</span><span class="nam">set_position</span><span class="op">(</span><span class="nam">next_positions</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t839" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t840" class="stm run hide_run">    <span class="key">return</span> <span class="nam">FluEggTransporter</span><span class="strut">&nbsp;</span></p>
-<p id="t841" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t842" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t843" class="stm run hide_run"><span class="key">def</span> <span class="nam">init_transporter</span><span class="op">(</span><span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t844" class="pln">                     <span class="nam">vertical_turbulence</span><span class="op">=</span><span class="str">'parabolic-constant'</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t845" class="pln">                     <span class="nam">advection_direction</span><span class="op">=</span><span class="str">'forward'</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">=</span><span class="key">None</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t846" class="pln">    <span class="str">"""</span><span class="strut">&nbsp;</span></p>
-<p id="t847" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t848" class="pln"><span class="str">    :param simulation_clock:</span><span class="strut">&nbsp;</span></p>
-<p id="t849" class="pln"><span class="str">    :param particles:</span><span class="strut">&nbsp;</span></p>
-<p id="t850" class="pln"><span class="str">    :param vertical_turbulence:</span><span class="strut">&nbsp;</span></p>
-<p id="t851" class="pln"><span class="str">    :param advection_direction:</span><span class="strut">&nbsp;</span></p>
-<p id="t852" class="pln"><span class="str">    :return:</span><span class="strut">&nbsp;</span></p>
-<p id="t853" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t854" class="pln"><span class="str">    """</span><span class="strut">&nbsp;</span></p>
-<p id="t855" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t856" class="stm mis">    <span class="nam">FluEggTransporter</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t857" class="pln">        <span class="nam">fluegg_transporter_class_factory</span><span class="op">(</span><span class="nam">vertical_turbulence</span><span class="op">,</span><span class="strut">&nbsp;</span></p>
-<p id="t858" class="pln">                                         <span class="nam">advection_direction</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t859" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t860" class="stm mis">    <span class="key">return</span> <span class="nam">FluEggTransporter</span><span class="op">(</span><span class="nam">simulation_clock</span><span class="op">,</span> <span class="nam">particles</span><span class="op">,</span> <span class="nam">random_numbers</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/index.html b/coverage_report/index.html
deleted file mode 100644
index f97afe9..0000000
--- a/coverage_report/index.html
+++ /dev/null
@@ -1,230 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    <title>Coverage report</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.ba-throttle-debounce.min.js"></script>
-    <script type="text/javascript" src="jquery.tablesorter.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.index_ready);
-    </script>
-</head>
-<body class="indexfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage report:
-            <span class="pc_cov">47%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <form id="filter_container">
-            <input id="filter" type="text" value="" placeholder="filter..." />
-        </form>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">n</span>
-        <span class="key">s</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        
-        <span class="key">c</span> &nbsp; change column sorting
-    </p>
-    </div>
-</div>
-
-<div id="index">
-    <table class="index">
-        <thead>
-            
-            <tr class="tablehead" title="Click to sort">
-                <th class="name left headerSortDown shortkey_n">Module</th>
-                <th class="shortkey_s">statements</th>
-                <th class="shortkey_m">missing</th>
-                <th class="shortkey_x">excluded</th>
-                
-                <th class="right shortkey_c">coverage</th>
-            </tr>
-        </thead>
-        
-        <tfoot>
-            <tr class="total">
-                <td class="name left">Total</td>
-                <td>2060</td>
-                <td>1084</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="976 2060">47%</td>
-            </tr>
-        </tfoot>
-        <tbody>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg___init___py.html">fluegg\__init__.py</a></td>
-                <td>0</td>
-                <td>0</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="0 0">100%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_asiancarpeggs_py.html">fluegg\asiancarpeggs.py</a></td>
-                <td>226</td>
-                <td>17</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="209 226">92%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_drift_py.html">fluegg\drift.py</a></td>
-                <td>56</td>
-                <td>6</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="50 56">89%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_gui___init___py.html">fluegg\gui\__init__.py</a></td>
-                <td>0</td>
-                <td>0</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="0 0">100%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_gui_gui_py.html">fluegg\gui\gui.py</a></td>
-                <td>254</td>
-                <td>225</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="29 254">11%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_gui_gui_layout_py.html">fluegg\gui\gui_layout.py</a></td>
-                <td>276</td>
-                <td>272</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="4 276">1%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_gui_hecras_dialog_py.html">fluegg\gui\hecras_dialog.py</a></td>
-                <td>112</td>
-                <td>108</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="4 112">4%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_hydraulics_py.html">fluegg\hydraulics.py</a></td>
-                <td>287</td>
-                <td>37</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="250 287">87%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_kml_py.html">fluegg\kml.py</a></td>
-                <td>130</td>
-                <td>113</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="17 130">13%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_random_py.html">fluegg\random.py</a></td>
-                <td>36</td>
-                <td>18</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="18 36">50%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_ras_py.html">fluegg\ras.py</a></td>
-                <td>197</td>
-                <td>148</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="49 197">25%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_simclock_py.html">fluegg\simclock.py</a></td>
-                <td>46</td>
-                <td>5</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="41 46">89%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_simulation_py.html">fluegg\simulation.py</a></td>
-                <td>132</td>
-                <td>76</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="56 132">42%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="fluegg_transporter_py.html">fluegg\transporter.py</a></td>
-                <td>285</td>
-                <td>56</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="229 285">80%</td>
-            </tr>
-            
-            <tr class="file">
-                <td class="name left"><a href="test_fluegg_py.html">test_fluegg.py</a></td>
-                <td>23</td>
-                <td>3</td>
-                <td>0</td>
-                
-                <td class="right" data-ratio="20 23">87%</td>
-            </tr>
-            
-        </tbody>
-    </table>
-
-    <p id="no_rows">
-        No items found using the specified filter.
-    </p>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:49
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/coverage_report/jquery.ba-throttle-debounce.min.js b/coverage_report/jquery.ba-throttle-debounce.min.js
deleted file mode 100644
index 648fe5d..0000000
--- a/coverage_report/jquery.ba-throttle-debounce.min.js
+++ /dev/null
@@ -1,9 +0,0 @@
-/*
- * jQuery throttle / debounce - v1.1 - 3/7/2010
- * http://benalman.com/projects/jquery-throttle-debounce-plugin/
- *
- * Copyright (c) 2010 "Cowboy" Ben Alman
- * Dual licensed under the MIT and GPL licenses.
- * http://benalman.com/about/license/
- */
-(function(b,c){var $=b.jQuery||b.Cowboy||(b.Cowboy={}),a;$.throttle=a=function(e,f,j,i){var h,d=0;if(typeof f!=="boolean"){i=j;j=f;f=c}function g(){var o=this,m=+new Date()-d,n=arguments;function l(){d=+new Date();j.apply(o,n)}function k(){h=c}if(i&&!h){l()}h&&clearTimeout(h);if(i===c&&m>e){l()}else{if(f!==true){h=setTimeout(i?k:l,i===c?e-m:e)}}}if($.guid){g.guid=j.guid=j.guid||$.guid++}return g};$.debounce=function(d,e,f){return f===c?a(d,e,false):a(d,f,e!==false)}})(this);
diff --git a/coverage_report/jquery.hotkeys.js b/coverage_report/jquery.hotkeys.js
deleted file mode 100644
index 09b21e0..0000000
--- a/coverage_report/jquery.hotkeys.js
+++ /dev/null
@@ -1,99 +0,0 @@
-/*
- * jQuery Hotkeys Plugin
- * Copyright 2010, John Resig
- * Dual licensed under the MIT or GPL Version 2 licenses.
- *
- * Based upon the plugin by Tzury Bar Yochay:
- * http://github.com/tzuryby/hotkeys
- *
- * Original idea by:
- * Binny V A, http://www.openjs.com/scripts/events/keyboard_shortcuts/
-*/
-
-(function(jQuery){
-
-	jQuery.hotkeys = {
-		version: "0.8",
-
-		specialKeys: {
-			8: "backspace", 9: "tab", 13: "return", 16: "shift", 17: "ctrl", 18: "alt", 19: "pause",
-			20: "capslock", 27: "esc", 32: "space", 33: "pageup", 34: "pagedown", 35: "end", 36: "home",
-			37: "left", 38: "up", 39: "right", 40: "down", 45: "insert", 46: "del",
-			96: "0", 97: "1", 98: "2", 99: "3", 100: "4", 101: "5", 102: "6", 103: "7",
-			104: "8", 105: "9", 106: "*", 107: "+", 109: "-", 110: ".", 111 : "/",
-			112: "f1", 113: "f2", 114: "f3", 115: "f4", 116: "f5", 117: "f6", 118: "f7", 119: "f8",
-			120: "f9", 121: "f10", 122: "f11", 123: "f12", 144: "numlock", 145: "scroll", 191: "/", 224: "meta"
-		},
-
-		shiftNums: {
-			"`": "~", "1": "!", "2": "@", "3": "#", "4": "$", "5": "%", "6": "^", "7": "&",
-			"8": "*", "9": "(", "0": ")", "-": "_", "=": "+", ";": ": ", "'": "\"", ",": "<",
-			".": ">",  "/": "?",  "\\": "|"
-		}
-	};
-
-	function keyHandler( handleObj ) {
-		// Only care when a possible input has been specified
-		if ( typeof handleObj.data !== "string" ) {
-			return;
-		}
-
-		var origHandler = handleObj.handler,
-			keys = handleObj.data.toLowerCase().split(" ");
-
-		handleObj.handler = function( event ) {
-			// Don't fire in text-accepting inputs that we didn't directly bind to
-			if ( this !== event.target && (/textarea|select/i.test( event.target.nodeName ) ||
-				 event.target.type === "text") ) {
-				return;
-			}
-
-			// Keypress represents characters, not special keys
-			var special = event.type !== "keypress" && jQuery.hotkeys.specialKeys[ event.which ],
-				character = String.fromCharCode( event.which ).toLowerCase(),
-				key, modif = "", possible = {};
-
-			// check combinations (alt|ctrl|shift+anything)
-			if ( event.altKey && special !== "alt" ) {
-				modif += "alt+";
-			}
-
-			if ( event.ctrlKey && special !== "ctrl" ) {
-				modif += "ctrl+";
-			}
-
-			// TODO: Need to make sure this works consistently across platforms
-			if ( event.metaKey && !event.ctrlKey && special !== "meta" ) {
-				modif += "meta+";
-			}
-
-			if ( event.shiftKey && special !== "shift" ) {
-				modif += "shift+";
-			}
-
-			if ( special ) {
-				possible[ modif + special ] = true;
-
-			} else {
-				possible[ modif + character ] = true;
-				possible[ modif + jQuery.hotkeys.shiftNums[ character ] ] = true;
-
-				// "$" can be triggered as "Shift+4" or "Shift+$" or just "$"
-				if ( modif === "shift+" ) {
-					possible[ jQuery.hotkeys.shiftNums[ character ] ] = true;
-				}
-			}
-
-			for ( var i = 0, l = keys.length; i < l; i++ ) {
-				if ( possible[ keys[i] ] ) {
-					return origHandler.apply( this, arguments );
-				}
-			}
-		};
-	}
-
-	jQuery.each([ "keydown", "keyup", "keypress" ], function() {
-		jQuery.event.special[ this ] = { add: keyHandler };
-	});
-
-})( jQuery );
diff --git a/coverage_report/jquery.isonscreen.js b/coverage_report/jquery.isonscreen.js
deleted file mode 100644
index 0182ebd..0000000
--- a/coverage_report/jquery.isonscreen.js
+++ /dev/null
@@ -1,53 +0,0 @@
-/* Copyright (c) 2010
- * @author Laurence Wheway
- * Dual licensed under the MIT (http://www.opensource.org/licenses/mit-license.php)
- * and GPL (http://www.opensource.org/licenses/gpl-license.php) licenses.
- *
- * @version 1.2.0
- */
-(function($) {
-	jQuery.extend({
-		isOnScreen: function(box, container) {
-			//ensure numbers come in as intgers (not strings) and remove 'px' is it's there
-			for(var i in box){box[i] = parseFloat(box[i])};
-			for(var i in container){container[i] = parseFloat(container[i])};
-
-			if(!container){
-				container = {
-					left: $(window).scrollLeft(),
-					top: $(window).scrollTop(),
-					width: $(window).width(),
-					height: $(window).height()
-				}
-			}
-
-			if(	box.left+box.width-container.left > 0 &&
-				box.left < container.width+container.left &&
-				box.top+box.height-container.top > 0 &&
-				box.top < container.height+container.top
-			) return true;
-			return false;
-		}
-	})
-
-
-	jQuery.fn.isOnScreen = function (container) {
-		for(var i in container){container[i] = parseFloat(container[i])};
-
-		if(!container){
-			container = {
-				left: $(window).scrollLeft(),
-				top: $(window).scrollTop(),
-				width: $(window).width(),
-				height: $(window).height()
-			}
-		}
-
-		if(	$(this).offset().left+$(this).width()-container.left > 0 &&
-			$(this).offset().left < container.width+container.left &&
-			$(this).offset().top+$(this).height()-container.top > 0 &&
-			$(this).offset().top < container.height+container.top
-		) return true;
-		return false;
-	}
-})(jQuery);
diff --git a/coverage_report/jquery.min.js b/coverage_report/jquery.min.js
deleted file mode 100644
index d1608e3..0000000
--- a/coverage_report/jquery.min.js
+++ /dev/null
@@ -1,4 +0,0 @@
-/*! jQuery v1.11.1 | (c) 2005, 2014 jQuery Foundation, Inc. | jquery.org/license */
-!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k={},l="1.11.1",m=function(a,b){return new m.fn.init(a,b)},n=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,o=/^-ms-/,p=/-([\da-z])/gi,q=function(a,b){return b.toUpperCase()};m.fn=m.prototype={jquery:l,constructor:m,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=m.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return m.each(this,a,b)},map:function(a){return this.pushStack(m.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},m.extend=m.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||m.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(m.isPlainObject(c)||(b=m.isArray(c)))?(b?(b=!1,f=a&&m.isArray(a)?a:[]):f=a&&m.isPlainObject(a)?a:{},g[d]=m.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},m.extend({expando:"jQuery"+(l+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===m.type(a)},isArray:Array.isArray||function(a){return"array"===m.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return!m.isArray(a)&&a-parseFloat(a)>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==m.type(a)||a.nodeType||m.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(k.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&m.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(o,"ms-").replace(p,q)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=r(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(n,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(r(Object(a))?m.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=r(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),m.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||m.guid++,e):void 0},now:function(){return+new Date},support:k}),m.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(a,b){h["[object "+b+"]"]=b.toLowerCase()});function r(a){var b=a.length,c=m.type(a);return"function"===c||m.isWindow(a)?!1:1===a.nodeType&&b?!0:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var s=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+-new Date,v=a.document,w=0,x=0,y=gb(),z=gb(),A=gb(),B=function(a,b){return a===b&&(l=!0),0},C="undefined",D=1<<31,E={}.hasOwnProperty,F=[],G=F.pop,H=F.push,I=F.push,J=F.slice,K=F.indexOf||function(a){for(var b=0,c=this.length;c>b;b++)if(this[b]===a)return b;return-1},L="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",M="[\\x20\\t\\r\\n\\f]",N="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",O=N.replace("w","w#"),P="\\["+M+"*("+N+")(?:"+M+"*([*^$|!~]?=)"+M+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+O+"))|)"+M+"*\\]",Q=":("+N+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+P+")*)|.*)\\)|)",R=new RegExp("^"+M+"+|((?:^|[^\\\\])(?:\\\\.)*)"+M+"+$","g"),S=new RegExp("^"+M+"*,"+M+"*"),T=new RegExp("^"+M+"*([>+~]|"+M+")"+M+"*"),U=new RegExp("="+M+"*([^\\]'\"]*?)"+M+"*\\]","g"),V=new RegExp(Q),W=new RegExp("^"+O+"$"),X={ID:new RegExp("^#("+N+")"),CLASS:new RegExp("^\\.("+N+")"),TAG:new RegExp("^("+N.replace("w","w*")+")"),ATTR:new RegExp("^"+P),PSEUDO:new RegExp("^"+Q),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+L+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/^(?:input|select|textarea|button)$/i,Z=/^h\d$/i,$=/^[^{]+\{\s*\[native \w/,_=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ab=/[+~]/,bb=/'|\\/g,cb=new RegExp("\\\\([\\da-f]{1,6}"+M+"?|("+M+")|.)","ig"),db=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)};try{I.apply(F=J.call(v.childNodes),v.childNodes),F[v.childNodes.length].nodeType}catch(eb){I={apply:F.length?function(a,b){H.apply(a,J.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function fb(a,b,d,e){var f,h,j,k,l,o,r,s,w,x;if((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,d=d||[],!a||"string"!=typeof a)return d;if(1!==(k=b.nodeType)&&9!==k)return[];if(p&&!e){if(f=_.exec(a))if(j=f[1]){if(9===k){if(h=b.getElementById(j),!h||!h.parentNode)return d;if(h.id===j)return d.push(h),d}else if(b.ownerDocument&&(h=b.ownerDocument.getElementById(j))&&t(b,h)&&h.id===j)return d.push(h),d}else{if(f[2])return I.apply(d,b.getElementsByTagName(a)),d;if((j=f[3])&&c.getElementsByClassName&&b.getElementsByClassName)return I.apply(d,b.getElementsByClassName(j)),d}if(c.qsa&&(!q||!q.test(a))){if(s=r=u,w=b,x=9===k&&a,1===k&&"object"!==b.nodeName.toLowerCase()){o=g(a),(r=b.getAttribute("id"))?s=r.replace(bb,"\\$&"):b.setAttribute("id",s),s="[id='"+s+"'] ",l=o.length;while(l--)o[l]=s+qb(o[l]);w=ab.test(a)&&ob(b.parentNode)||b,x=o.join(",")}if(x)try{return I.apply(d,w.querySelectorAll(x)),d}catch(y){}finally{r||b.removeAttribute("id")}}}return i(a.replace(R,"$1"),b,d,e)}function gb(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function hb(a){return a[u]=!0,a}function ib(a){var b=n.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function jb(a,b){var c=a.split("|"),e=a.length;while(e--)d.attrHandle[c[e]]=b}function kb(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||D)-(~a.sourceIndex||D);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function lb(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function mb(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function nb(a){return hb(function(b){return b=+b,hb(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function ob(a){return a&&typeof a.getElementsByTagName!==C&&a}c=fb.support={},f=fb.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},m=fb.setDocument=function(a){var b,e=a?a.ownerDocument||a:v,g=e.defaultView;return e!==n&&9===e.nodeType&&e.documentElement?(n=e,o=e.documentElement,p=!f(e),g&&g!==g.top&&(g.addEventListener?g.addEventListener("unload",function(){m()},!1):g.attachEvent&&g.attachEvent("onunload",function(){m()})),c.attributes=ib(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ib(function(a){return a.appendChild(e.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=$.test(e.getElementsByClassName)&&ib(function(a){return a.innerHTML="<div class='a'></div><div class='a i'></div>",a.firstChild.className="i",2===a.getElementsByClassName("i").length}),c.getById=ib(function(a){return o.appendChild(a).id=u,!e.getElementsByName||!e.getElementsByName(u).length}),c.getById?(d.find.ID=function(a,b){if(typeof b.getElementById!==C&&p){var c=b.getElementById(a);return c&&c.parentNode?[c]:[]}},d.filter.ID=function(a){var b=a.replace(cb,db);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(cb,db);return function(a){var c=typeof a.getAttributeNode!==C&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return typeof b.getElementsByTagName!==C?b.getElementsByTagName(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return typeof b.getElementsByClassName!==C&&p?b.getElementsByClassName(a):void 0},r=[],q=[],(c.qsa=$.test(e.querySelectorAll))&&(ib(function(a){a.innerHTML="<select msallowclip=''><option selected=''></option></select>",a.querySelectorAll("[msallowclip^='']").length&&q.push("[*^$]="+M+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+M+"*(?:value|"+L+")"),a.querySelectorAll(":checked").length||q.push(":checked")}),ib(function(a){var b=e.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+M+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=$.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ib(function(a){c.disconnectedMatch=s.call(a,"div"),s.call(a,"[s!='']:x"),r.push("!=",Q)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=$.test(o.compareDocumentPosition),t=b||$.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===e||a.ownerDocument===v&&t(v,a)?-1:b===e||b.ownerDocument===v&&t(v,b)?1:k?K.call(k,a)-K.call(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,f=a.parentNode,g=b.parentNode,h=[a],i=[b];if(!f||!g)return a===e?-1:b===e?1:f?-1:g?1:k?K.call(k,a)-K.call(k,b):0;if(f===g)return kb(a,b);c=a;while(c=c.parentNode)h.unshift(c);c=b;while(c=c.parentNode)i.unshift(c);while(h[d]===i[d])d++;return d?kb(h[d],i[d]):h[d]===v?-1:i[d]===v?1:0},e):n},fb.matches=function(a,b){return fb(a,null,null,b)},fb.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(U,"='$1']"),!(!c.matchesSelector||!p||r&&r.test(b)||q&&q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return fb(b,n,null,[a]).length>0},fb.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},fb.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&E.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},fb.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},fb.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=fb.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=fb.selectors={cacheLength:50,createPseudo:hb,match:X,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(cb,db),a[3]=(a[3]||a[4]||a[5]||"").replace(cb,db),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||fb.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&fb.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return X.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&V.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(cb,db).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+M+")"+a+"("+M+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||typeof a.getAttribute!==C&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=fb.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h;if(q){if(f){while(p){l=b;while(l=l[p])if(h?l.nodeName.toLowerCase()===r:1===l.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){k=q[u]||(q[u]={}),j=k[a]||[],n=j[0]===w&&j[1],m=j[0]===w&&j[2],l=n&&q.childNodes[n];while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if(1===l.nodeType&&++m&&l===b){k[a]=[w,n,m];break}}else if(s&&(j=(b[u]||(b[u]={}))[a])&&j[0]===w)m=j[1];else while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if((h?l.nodeName.toLowerCase()===r:1===l.nodeType)&&++m&&(s&&((l[u]||(l[u]={}))[a]=[w,m]),l===b))break;return m-=e,m===d||m%d===0&&m/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||fb.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?hb(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=K.call(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:hb(function(a){var b=[],c=[],d=h(a.replace(R,"$1"));return d[u]?hb(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),!c.pop()}}),has:hb(function(a){return function(b){return fb(a,b).length>0}}),contains:hb(function(a){return function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:hb(function(a){return W.test(a||"")||fb.error("unsupported lang: "+a),a=a.replace(cb,db).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return Z.test(a.nodeName)},input:function(a){return Y.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:nb(function(){return[0]}),last:nb(function(a,b){return[b-1]}),eq:nb(function(a,b,c){return[0>c?c+b:c]}),even:nb(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:nb(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:nb(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:nb(function(a,b,c){for(var d=0>c?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=lb(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=mb(b);function pb(){}pb.prototype=d.filters=d.pseudos,d.setFilters=new pb,g=fb.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){(!c||(e=S.exec(h)))&&(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=T.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(R," ")}),h=h.slice(c.length));for(g in d.filter)!(e=X[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?fb.error(a):z(a,i).slice(0)};function qb(a){for(var b=0,c=a.length,d="";c>b;b++)d+=a[b].value;return d}function rb(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=x++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j=[w,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(i=b[u]||(b[u]={}),(h=i[d])&&h[0]===w&&h[1]===f)return j[2]=h[2];if(i[d]=j,j[2]=a(b,c,g))return!0}}}function sb(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function tb(a,b,c){for(var d=0,e=b.length;e>d;d++)fb(a,b[d],c);return c}function ub(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(!c||c(f,d,e))&&(g.push(f),j&&b.push(h));return g}function vb(a,b,c,d,e,f){return d&&!d[u]&&(d=vb(d)),e&&!e[u]&&(e=vb(e,f)),hb(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||tb(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:ub(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=ub(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?K.call(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=ub(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):I.apply(g,r)})}function wb(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=rb(function(a){return a===b},h,!0),l=rb(function(a){return K.call(b,a)>-1},h,!0),m=[function(a,c,d){return!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d))}];f>i;i++)if(c=d.relative[a[i].type])m=[rb(sb(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;f>e;e++)if(d.relative[a[e].type])break;return vb(i>1&&sb(m),i>1&&qb(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(R,"$1"),c,e>i&&wb(a.slice(i,e)),f>e&&wb(a=a.slice(e)),f>e&&qb(a))}m.push(c)}return sb(m)}function xb(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,m,o,p=0,q="0",r=f&&[],s=[],t=j,u=f||e&&d.find.TAG("*",k),v=w+=null==t?1:Math.random()||.1,x=u.length;for(k&&(j=g!==n&&g);q!==x&&null!=(l=u[q]);q++){if(e&&l){m=0;while(o=a[m++])if(o(l,g,h)){i.push(l);break}k&&(w=v)}c&&((l=!o&&l)&&p--,f&&r.push(l))}if(p+=q,c&&q!==p){m=0;while(o=b[m++])o(r,s,g,h);if(f){if(p>0)while(q--)r[q]||s[q]||(s[q]=G.call(i));s=ub(s)}I.apply(i,s),k&&!f&&s.length>0&&p+b.length>1&&fb.uniqueSort(i)}return k&&(w=v,j=t),r};return c?hb(f):f}return h=fb.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=wb(b[c]),f[u]?d.push(f):e.push(f);f=A(a,xb(e,d)),f.selector=a}return f},i=fb.select=function(a,b,e,f){var i,j,k,l,m,n="function"==typeof a&&a,o=!f&&g(a=n.selector||a);if(e=e||[],1===o.length){if(j=o[0]=o[0].slice(0),j.length>2&&"ID"===(k=j[0]).type&&c.getById&&9===b.nodeType&&p&&d.relative[j[1].type]){if(b=(d.find.ID(k.matches[0].replace(cb,db),b)||[])[0],!b)return e;n&&(b=b.parentNode),a=a.slice(j.shift().value.length)}i=X.needsContext.test(a)?0:j.length;while(i--){if(k=j[i],d.relative[l=k.type])break;if((m=d.find[l])&&(f=m(k.matches[0].replace(cb,db),ab.test(j[0].type)&&ob(b.parentNode)||b))){if(j.splice(i,1),a=f.length&&qb(j),!a)return I.apply(e,f),e;break}}}return(n||h(a,o))(f,b,!p,e,ab.test(a)&&ob(b.parentNode)||b),e},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ib(function(a){return 1&a.compareDocumentPosition(n.createElement("div"))}),ib(function(a){return a.innerHTML="<a href='#'></a>","#"===a.firstChild.getAttribute("href")})||jb("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ib(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||jb("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),ib(function(a){return null==a.getAttribute("disabled")})||jb(L,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),fb}(a);m.find=s,m.expr=s.selectors,m.expr[":"]=m.expr.pseudos,m.unique=s.uniqueSort,m.text=s.getText,m.isXMLDoc=s.isXML,m.contains=s.contains;var t=m.expr.match.needsContext,u=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,v=/^.[^:#\[\.,]*$/;function w(a,b,c){if(m.isFunction(b))return m.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return m.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(v.test(b))return m.filter(b,a,c);b=m.filter(b,a)}return m.grep(a,function(a){return m.inArray(a,b)>=0!==c})}m.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?m.find.matchesSelector(d,a)?[d]:[]:m.find.matches(a,m.grep(b,function(a){return 1===a.nodeType}))},m.fn.extend({find:function(a){var b,c=[],d=this,e=d.length;if("string"!=typeof a)return this.pushStack(m(a).filter(function(){for(b=0;e>b;b++)if(m.contains(d[b],this))return!0}));for(b=0;e>b;b++)m.find(a,d[b],c);return c=this.pushStack(e>1?m.unique(c):c),c.selector=this.selector?this.selector+" "+a:a,c},filter:function(a){return this.pushStack(w(this,a||[],!1))},not:function(a){return this.pushStack(w(this,a||[],!0))},is:function(a){return!!w(this,"string"==typeof a&&t.test(a)?m(a):a||[],!1).length}});var x,y=a.document,z=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,A=m.fn.init=function(a,b){var c,d;if(!a)return this;if("string"==typeof a){if(c="<"===a.charAt(0)&&">"===a.charAt(a.length-1)&&a.length>=3?[null,a,null]:z.exec(a),!c||!c[1]&&b)return!b||b.jquery?(b||x).find(a):this.constructor(b).find(a);if(c[1]){if(b=b instanceof m?b[0]:b,m.merge(this,m.parseHTML(c[1],b&&b.nodeType?b.ownerDocument||b:y,!0)),u.test(c[1])&&m.isPlainObject(b))for(c in b)m.isFunction(this[c])?this[c](b[c]):this.attr(c,b[c]);return this}if(d=y.getElementById(c[2]),d&&d.parentNode){if(d.id!==c[2])return x.find(a);this.length=1,this[0]=d}return this.context=y,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):m.isFunction(a)?"undefined"!=typeof x.ready?x.ready(a):a(m):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),m.makeArray(a,this))};A.prototype=m.fn,x=m(y);var B=/^(?:parents|prev(?:Until|All))/,C={children:!0,contents:!0,next:!0,prev:!0};m.extend({dir:function(a,b,c){var d=[],e=a[b];while(e&&9!==e.nodeType&&(void 0===c||1!==e.nodeType||!m(e).is(c)))1===e.nodeType&&d.push(e),e=e[b];return d},sibling:function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c}}),m.fn.extend({has:function(a){var b,c=m(a,this),d=c.length;return this.filter(function(){for(b=0;d>b;b++)if(m.contains(this,c[b]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=t.test(a)||"string"!=typeof a?m(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&m.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?m.unique(f):f)},index:function(a){return a?"string"==typeof a?m.inArray(this[0],m(a)):m.inArray(a.jquery?a[0]:a,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(m.unique(m.merge(this.get(),m(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function D(a,b){do a=a[b];while(a&&1!==a.nodeType);return a}m.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return m.dir(a,"parentNode")},parentsUntil:function(a,b,c){return m.dir(a,"parentNode",c)},next:function(a){return D(a,"nextSibling")},prev:function(a){return D(a,"previousSibling")},nextAll:function(a){return m.dir(a,"nextSibling")},prevAll:function(a){return m.dir(a,"previousSibling")},nextUntil:function(a,b,c){return m.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return m.dir(a,"previousSibling",c)},siblings:function(a){return m.sibling((a.parentNode||{}).firstChild,a)},children:function(a){return m.sibling(a.firstChild)},contents:function(a){return m.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:m.merge([],a.childNodes)}},function(a,b){m.fn[a]=function(c,d){var e=m.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=m.filter(d,e)),this.length>1&&(C[a]||(e=m.unique(e)),B.test(a)&&(e=e.reverse())),this.pushStack(e)}});var E=/\S+/g,F={};function G(a){var b=F[a]={};return m.each(a.match(E)||[],function(a,c){b[c]=!0}),b}m.Callbacks=function(a){a="string"==typeof a?F[a]||G(a):m.extend({},a);var b,c,d,e,f,g,h=[],i=!a.once&&[],j=function(l){for(c=a.memory&&l,d=!0,f=g||0,g=0,e=h.length,b=!0;h&&e>f;f++)if(h[f].apply(l[0],l[1])===!1&&a.stopOnFalse){c=!1;break}b=!1,h&&(i?i.length&&j(i.shift()):c?h=[]:k.disable())},k={add:function(){if(h){var d=h.length;!function f(b){m.each(b,function(b,c){var d=m.type(c);"function"===d?a.unique&&k.has(c)||h.push(c):c&&c.length&&"string"!==d&&f(c)})}(arguments),b?e=h.length:c&&(g=d,j(c))}return this},remove:function(){return h&&m.each(arguments,function(a,c){var d;while((d=m.inArray(c,h,d))>-1)h.splice(d,1),b&&(e>=d&&e--,f>=d&&f--)}),this},has:function(a){return a?m.inArray(a,h)>-1:!(!h||!h.length)},empty:function(){return h=[],e=0,this},disable:function(){return h=i=c=void 0,this},disabled:function(){return!h},lock:function(){return i=void 0,c||k.disable(),this},locked:function(){return!i},fireWith:function(a,c){return!h||d&&!i||(c=c||[],c=[a,c.slice?c.slice():c],b?i.push(c):j(c)),this},fire:function(){return k.fireWith(this,arguments),this},fired:function(){return!!d}};return k},m.extend({Deferred:function(a){var b=[["resolve","done",m.Callbacks("once memory"),"resolved"],["reject","fail",m.Callbacks("once memory"),"rejected"],["notify","progress",m.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return m.Deferred(function(c){m.each(b,function(b,f){var g=m.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&m.isFunction(a.promise)?a.promise().done(c.resolve).fail(c.reject).progress(c.notify):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?m.extend(a,d):d}},e={};return d.pipe=d.then,m.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=d.call(arguments),e=c.length,f=1!==e||a&&m.isFunction(a.promise)?e:0,g=1===f?a:m.Deferred(),h=function(a,b,c){return function(e){b[a]=this,c[a]=arguments.length>1?d.call(arguments):e,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(e>1)for(i=new Array(e),j=new Array(e),k=new Array(e);e>b;b++)c[b]&&m.isFunction(c[b].promise)?c[b].promise().done(h(b,k,c)).fail(g.reject).progress(h(b,j,i)):--f;return f||g.resolveWith(k,c),g.promise()}});var H;m.fn.ready=function(a){return m.ready.promise().done(a),this},m.extend({isReady:!1,readyWait:1,holdReady:function(a){a?m.readyWait++:m.ready(!0)},ready:function(a){if(a===!0?!--m.readyWait:!m.isReady){if(!y.body)return setTimeout(m.ready);m.isReady=!0,a!==!0&&--m.readyWait>0||(H.resolveWith(y,[m]),m.fn.triggerHandler&&(m(y).triggerHandler("ready"),m(y).off("ready")))}}});function I(){y.addEventListener?(y.removeEventListener("DOMContentLoaded",J,!1),a.removeEventListener("load",J,!1)):(y.detachEvent("onreadystatechange",J),a.detachEvent("onload",J))}function J(){(y.addEventListener||"load"===event.type||"complete"===y.readyState)&&(I(),m.ready())}m.ready.promise=function(b){if(!H)if(H=m.Deferred(),"complete"===y.readyState)setTimeout(m.ready);else if(y.addEventListener)y.addEventListener("DOMContentLoaded",J,!1),a.addEventListener("load",J,!1);else{y.attachEvent("onreadystatechange",J),a.attachEvent("onload",J);var c=!1;try{c=null==a.frameElement&&y.documentElement}catch(d){}c&&c.doScroll&&!function e(){if(!m.isReady){try{c.doScroll("left")}catch(a){return setTimeout(e,50)}I(),m.ready()}}()}return H.promise(b)};var K="undefined",L;for(L in m(k))break;k.ownLast="0"!==L,k.inlineBlockNeedsLayout=!1,m(function(){var a,b,c,d;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="display:inline;margin:0;border:0;padding:1px;width:1px;zoom:1",k.inlineBlockNeedsLayout=a=3===b.offsetWidth,a&&(c.style.zoom=1)),c.removeChild(d))}),function(){var a=y.createElement("div");if(null==k.deleteExpando){k.deleteExpando=!0;try{delete a.test}catch(b){k.deleteExpando=!1}}a=null}(),m.acceptData=function(a){var b=m.noData[(a.nodeName+" ").toLowerCase()],c=+a.nodeType||1;return 1!==c&&9!==c?!1:!b||b!==!0&&a.getAttribute("classid")===b};var M=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,N=/([A-Z])/g;function O(a,b,c){if(void 0===c&&1===a.nodeType){var d="data-"+b.replace(N,"-$1").toLowerCase();if(c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:M.test(c)?m.parseJSON(c):c}catch(e){}m.data(a,b,c)}else c=void 0}return c}function P(a){var b;for(b in a)if(("data"!==b||!m.isEmptyObject(a[b]))&&"toJSON"!==b)return!1;return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeType,j=i?m.cache:a,k=i?a[h]:a[h]&&h;
-if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||m.guid++:h),j[k]||(j[k]=i?{}:{toJSON:m.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=m.extend(j[k],b):j[k].data=m.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[m.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[m.camelCase(b)])):f=g,f}}function R(a,b,c){if(m.acceptData(a)){var d,e,f=a.nodeType,g=f?m.cache:a,h=f?a[m.expando]:m.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){m.isArray(b)?b=b.concat(m.map(b,m.camelCase)):b in d?b=[b]:(b=m.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!P(d):!m.isEmptyObject(d))return}(c||(delete g[h].data,P(g[h])))&&(f?m.cleanData([a],!0):k.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}m.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?m.cache[a[m.expando]]:a[m.expando],!!a&&!P(a)},data:function(a,b,c){return Q(a,b,c)},removeData:function(a,b){return R(a,b)},_data:function(a,b,c){return Q(a,b,c,!0)},_removeData:function(a,b){return R(a,b,!0)}}),m.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=m.data(f),1===f.nodeType&&!m._data(f,"parsedAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=m.camelCase(d.slice(5)),O(f,d,e[d])));m._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){m.data(this,a)}):arguments.length>1?this.each(function(){m.data(this,a,b)}):f?O(f,a,m.data(f,a)):void 0},removeData:function(a){return this.each(function(){m.removeData(this,a)})}}),m.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=m._data(a,b),c&&(!d||m.isArray(c)?d=m._data(a,b,m.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=m.queue(a,b),d=c.length,e=c.shift(),f=m._queueHooks(a,b),g=function(){m.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return m._data(a,c)||m._data(a,c,{empty:m.Callbacks("once memory").add(function(){m._removeData(a,b+"queue"),m._removeData(a,c)})})}}),m.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?m.queue(this[0],a):void 0===b?this:this.each(function(){var c=m.queue(this,a,b);m._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&m.dequeue(this,a)})},dequeue:function(a){return this.each(function(){m.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=m.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=m._data(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=["Top","Right","Bottom","Left"],U=function(a,b){return a=b||a,"none"===m.css(a,"display")||!m.contains(a.ownerDocument,a)},V=m.access=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===m.type(c)){e=!0;for(h in c)m.access(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,m.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(m(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},W=/^(?:checkbox|radio)$/i;!function(){var a=y.createElement("input"),b=y.createElement("div"),c=y.createDocumentFragment();if(b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",k.leadingWhitespace=3===b.firstChild.nodeType,k.tbody=!b.getElementsByTagName("tbody").length,k.htmlSerialize=!!b.getElementsByTagName("link").length,k.html5Clone="<:nav></:nav>"!==y.createElement("nav").cloneNode(!0).outerHTML,a.type="checkbox",a.checked=!0,c.appendChild(a),k.appendChecked=a.checked,b.innerHTML="<textarea>x</textarea>",k.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue,c.appendChild(b),b.innerHTML="<input type='radio' checked='checked' name='t'/>",k.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,k.noCloneEvent=!0,b.attachEvent&&(b.attachEvent("onclick",function(){k.noCloneEvent=!1}),b.cloneNode(!0).click()),null==k.deleteExpando){k.deleteExpando=!0;try{delete b.test}catch(d){k.deleteExpando=!1}}}(),function(){var b,c,d=y.createElement("div");for(b in{submit:!0,change:!0,focusin:!0})c="on"+b,(k[b+"Bubbles"]=c in a)||(d.setAttribute(c,"t"),k[b+"Bubbles"]=d.attributes[c].expando===!1);d=null}();var X=/^(?:input|select|textarea)$/i,Y=/^key/,Z=/^(?:mouse|pointer|contextmenu)|click/,$=/^(?:focusinfocus|focusoutblur)$/,_=/^([^.]*)(?:\.(.+)|)$/;function ab(){return!0}function bb(){return!1}function cb(){try{return y.activeElement}catch(a){}}m.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m._data(a);if(r){c.handler&&(i=c,c=i.handler,e=i.selector),c.guid||(c.guid=m.guid++),(g=r.events)||(g=r.events={}),(k=r.handle)||(k=r.handle=function(a){return typeof m===K||a&&m.event.triggered===a.type?void 0:m.event.dispatch.apply(k.elem,arguments)},k.elem=a),b=(b||"").match(E)||[""],h=b.length;while(h--)f=_.exec(b[h])||[],o=q=f[1],p=(f[2]||"").split(".").sort(),o&&(j=m.event.special[o]||{},o=(e?j.delegateType:j.bindType)||o,j=m.event.special[o]||{},l=m.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&m.expr.match.needsContext.test(e),namespace:p.join(".")},i),(n=g[o])||(n=g[o]=[],n.delegateCount=0,j.setup&&j.setup.call(a,d,p,k)!==!1||(a.addEventListener?a.addEventListener(o,k,!1):a.attachEvent&&a.attachEvent("on"+o,k))),j.add&&(j.add.call(a,l),l.handler.guid||(l.handler.guid=c.guid)),e?n.splice(n.delegateCount++,0,l):n.push(l),m.event.global[o]=!0);a=null}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m.hasData(a)&&m._data(a);if(r&&(k=r.events)){b=(b||"").match(E)||[""],j=b.length;while(j--)if(h=_.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=m.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,n=k[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),i=f=n.length;while(f--)g=n[f],!e&&q!==g.origType||c&&c.guid!==g.guid||h&&!h.test(g.namespace)||d&&d!==g.selector&&("**"!==d||!g.selector)||(n.splice(f,1),g.selector&&n.delegateCount--,l.remove&&l.remove.call(a,g));i&&!n.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||m.removeEvent(a,o,r.handle),delete k[o])}else for(o in k)m.event.remove(a,o+b[j],c,d,!0);m.isEmptyObject(k)&&(delete r.handle,m._removeData(a,"events"))}},trigger:function(b,c,d,e){var f,g,h,i,k,l,n,o=[d||y],p=j.call(b,"type")?b.type:b,q=j.call(b,"namespace")?b.namespace.split("."):[];if(h=l=d=d||y,3!==d.nodeType&&8!==d.nodeType&&!$.test(p+m.event.triggered)&&(p.indexOf(".")>=0&&(q=p.split("."),p=q.shift(),q.sort()),g=p.indexOf(":")<0&&"on"+p,b=b[m.expando]?b:new m.Event(p,"object"==typeof b&&b),b.isTrigger=e?2:3,b.namespace=q.join("."),b.namespace_re=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=d),c=null==c?[b]:m.makeArray(c,[b]),k=m.event.special[p]||{},e||!k.trigger||k.trigger.apply(d,c)!==!1)){if(!e&&!k.noBubble&&!m.isWindow(d)){for(i=k.delegateType||p,$.test(i+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),l=h;l===(d.ownerDocument||y)&&o.push(l.defaultView||l.parentWindow||a)}n=0;while((h=o[n++])&&!b.isPropagationStopped())b.type=n>1?i:k.bindType||p,f=(m._data(h,"events")||{})[b.type]&&m._data(h,"handle"),f&&f.apply(h,c),f=g&&h[g],f&&f.apply&&m.acceptData(h)&&(b.result=f.apply(h,c),b.result===!1&&b.preventDefault());if(b.type=p,!e&&!b.isDefaultPrevented()&&(!k._default||k._default.apply(o.pop(),c)===!1)&&m.acceptData(d)&&g&&d[p]&&!m.isWindow(d)){l=d[g],l&&(d[g]=null),m.event.triggered=p;try{d[p]()}catch(r){}m.event.triggered=void 0,l&&(d[g]=l)}return b.result}},dispatch:function(a){a=m.event.fix(a);var b,c,e,f,g,h=[],i=d.call(arguments),j=(m._data(this,"events")||{})[a.type]||[],k=m.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=m.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,g=0;while((e=f.handlers[g++])&&!a.isImmediatePropagationStopped())(!a.namespace_re||a.namespace_re.test(e.namespace))&&(a.handleObj=e,a.data=e.data,c=((m.event.special[e.origType]||{}).handle||e.handler).apply(f.elem,i),void 0!==c&&(a.result=c)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&(!a.button||"click"!==a.type))for(;i!=this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(e=[],f=0;h>f;f++)d=b[f],c=d.selector+" ",void 0===e[c]&&(e[c]=d.needsContext?m(c,this).index(i)>=0:m.find(c,this,null,[i]).length),e[c]&&e.push(d);e.length&&g.push({elem:i,handlers:e})}return h<b.length&&g.push({elem:this,handlers:b.slice(h)}),g},fix:function(a){if(a[m.expando])return a;var b,c,d,e=a.type,f=a,g=this.fixHooks[e];g||(this.fixHooks[e]=g=Z.test(e)?this.mouseHooks:Y.test(e)?this.keyHooks:{}),d=g.props?this.props.concat(g.props):this.props,a=new m.Event(f),b=d.length;while(b--)c=d[b],a[c]=f[c];return a.target||(a.target=f.srcElement||y),3===a.target.nodeType&&(a.target=a.target.parentNode),a.metaKey=!!a.metaKey,g.filter?g.filter(a,f):a},props:"altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){return null==a.which&&(a.which=null!=b.charCode?b.charCode:b.keyCode),a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,b){var c,d,e,f=b.button,g=b.fromElement;return null==a.pageX&&null!=b.clientX&&(d=a.target.ownerDocument||y,e=d.documentElement,c=d.body,a.pageX=b.clientX+(e&&e.scrollLeft||c&&c.scrollLeft||0)-(e&&e.clientLeft||c&&c.clientLeft||0),a.pageY=b.clientY+(e&&e.scrollTop||c&&c.scrollTop||0)-(e&&e.clientTop||c&&c.clientTop||0)),!a.relatedTarget&&g&&(a.relatedTarget=g===a.target?b.toElement:g),a.which||void 0===f||(a.which=1&f?1:2&f?3:4&f?2:0),a}},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==cb()&&this.focus)try{return this.focus(),!1}catch(a){}},delegateType:"focusin"},blur:{trigger:function(){return this===cb()&&this.blur?(this.blur(),!1):void 0},delegateType:"focusout"},click:{trigger:function(){return m.nodeName(this,"input")&&"checkbox"===this.type&&this.click?(this.click(),!1):void 0},_default:function(a){return m.nodeName(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}},simulate:function(a,b,c,d){var e=m.extend(new m.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?m.event.trigger(e,null,b):m.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},m.removeEvent=y.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){var d="on"+b;a.detachEvent&&(typeof a[d]===K&&(a[d]=null),a.detachEvent(d,c))},m.Event=function(a,b){return this instanceof m.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?ab:bb):this.type=a,b&&m.extend(this,b),this.timeStamp=a&&a.timeStamp||m.now(),void(this[m.expando]=!0)):new m.Event(a,b)},m.Event.prototype={isDefaultPrevented:bb,isPropagationStopped:bb,isImmediatePropagationStopped:bb,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=ab,a&&(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=ab,a&&(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=ab,a&&a.stopImmediatePropagation&&a.stopImmediatePropagation(),this.stopPropagation()}},m.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){m.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return(!e||e!==d&&!m.contains(d,e))&&(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),k.submitBubbles||(m.event.special.submit={setup:function(){return m.nodeName(this,"form")?!1:void m.event.add(this,"click._submit keypress._submit",function(a){var b=a.target,c=m.nodeName(b,"input")||m.nodeName(b,"button")?b.form:void 0;c&&!m._data(c,"submitBubbles")&&(m.event.add(c,"submit._submit",function(a){a._submit_bubble=!0}),m._data(c,"submitBubbles",!0))})},postDispatch:function(a){a._submit_bubble&&(delete a._submit_bubble,this.parentNode&&!a.isTrigger&&m.event.simulate("submit",this.parentNode,a,!0))},teardown:function(){return m.nodeName(this,"form")?!1:void m.event.remove(this,"._submit")}}),k.changeBubbles||(m.event.special.change={setup:function(){return X.test(this.nodeName)?(("checkbox"===this.type||"radio"===this.type)&&(m.event.add(this,"propertychange._change",function(a){"checked"===a.originalEvent.propertyName&&(this._just_changed=!0)}),m.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1),m.event.simulate("change",this,a,!0)})),!1):void m.event.add(this,"beforeactivate._change",function(a){var b=a.target;X.test(b.nodeName)&&!m._data(b,"changeBubbles")&&(m.event.add(b,"change._change",function(a){!this.parentNode||a.isSimulated||a.isTrigger||m.event.simulate("change",this.parentNode,a,!0)}),m._data(b,"changeBubbles",!0))})},handle:function(a){var b=a.target;return this!==b||a.isSimulated||a.isTrigger||"radio"!==b.type&&"checkbox"!==b.type?a.handleObj.handler.apply(this,arguments):void 0},teardown:function(){return m.event.remove(this,"._change"),!X.test(this.nodeName)}}),k.focusinBubbles||m.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){m.event.simulate(b,a.target,m.event.fix(a),!0)};m.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=m._data(d,b);e||d.addEventListener(a,c,!0),m._data(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=m._data(d,b)-1;e?m._data(d,b,e):(d.removeEventListener(a,c,!0),m._removeData(d,b))}}}),m.fn.extend({on:function(a,b,c,d,e){var f,g;if("object"==typeof a){"string"!=typeof b&&(c=c||b,b=void 0);for(f in a)this.on(f,b,c,a[f],e);return this}if(null==c&&null==d?(d=b,c=b=void 0):null==d&&("string"==typeof b?(d=c,c=void 0):(d=c,c=b,b=void 0)),d===!1)d=bb;else if(!d)return this;return 1===e&&(g=d,d=function(a){return m().off(a),g.apply(this,arguments)},d.guid=g.guid||(g.guid=m.guid++)),this.each(function(){m.event.add(this,a,d,c,b)})},one:function(a,b,c,d){return this.on(a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,m(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return(b===!1||"function"==typeof b)&&(c=b,b=void 0),c===!1&&(c=bb),this.each(function(){m.event.remove(this,a,c,b)})},trigger:function(a,b){return this.each(function(){m.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];return c?m.event.trigger(a,b,c,!0):void 0}});function db(a){var b=eb.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}var eb="abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",fb=/ jQuery\d+="(?:null|\d+)"/g,gb=new RegExp("<(?:"+eb+")[\\s/>]","i"),hb=/^\s+/,ib=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,jb=/<([\w:]+)/,kb=/<tbody/i,lb=/<|&#?\w+;/,mb=/<(?:script|style|link)/i,nb=/checked\s*(?:[^=]|=\s*.checked.)/i,ob=/^$|\/(?:java|ecma)script/i,pb=/^true\/(.*)/,qb=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g,rb={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],area:[1,"<map>","</map>"],param:[1,"<object>","</object>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:k.htmlSerialize?[0,"",""]:[1,"X<div>","</div>"]},sb=db(y),tb=sb.appendChild(y.createElement("div"));rb.optgroup=rb.option,rb.tbody=rb.tfoot=rb.colgroup=rb.caption=rb.thead,rb.th=rb.td;function ub(a,b){var c,d,e=0,f=typeof a.getElementsByTagName!==K?a.getElementsByTagName(b||"*"):typeof a.querySelectorAll!==K?a.querySelectorAll(b||"*"):void 0;if(!f)for(f=[],c=a.childNodes||a;null!=(d=c[e]);e++)!b||m.nodeName(d,b)?f.push(d):m.merge(f,ub(d,b));return void 0===b||b&&m.nodeName(a,b)?m.merge([a],f):f}function vb(a){W.test(a.type)&&(a.defaultChecked=a.checked)}function wb(a,b){return m.nodeName(a,"table")&&m.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function xb(a){return a.type=(null!==m.find.attr(a,"type"))+"/"+a.type,a}function yb(a){var b=pb.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function zb(a,b){for(var c,d=0;null!=(c=a[d]);d++)m._data(c,"globalEval",!b||m._data(b[d],"globalEval"))}function Ab(a,b){if(1===b.nodeType&&m.hasData(a)){var c,d,e,f=m._data(a),g=m._data(b,f),h=f.events;if(h){delete g.handle,g.events={};for(c in h)for(d=0,e=h[c].length;e>d;d++)m.event.add(b,c,h[c][d])}g.data&&(g.data=m.extend({},g.data))}}function Bb(a,b){var c,d,e;if(1===b.nodeType){if(c=b.nodeName.toLowerCase(),!k.noCloneEvent&&b[m.expando]){e=m._data(b);for(d in e.events)m.removeEvent(b,d,e.handle);b.removeAttribute(m.expando)}"script"===c&&b.text!==a.text?(xb(b).text=a.text,yb(b)):"object"===c?(b.parentNode&&(b.outerHTML=a.outerHTML),k.html5Clone&&a.innerHTML&&!m.trim(b.innerHTML)&&(b.innerHTML=a.innerHTML)):"input"===c&&W.test(a.type)?(b.defaultChecked=b.checked=a.checked,b.value!==a.value&&(b.value=a.value)):"option"===c?b.defaultSelected=b.selected=a.defaultSelected:("input"===c||"textarea"===c)&&(b.defaultValue=a.defaultValue)}}m.extend({clone:function(a,b,c){var d,e,f,g,h,i=m.contains(a.ownerDocument,a);if(k.html5Clone||m.isXMLDoc(a)||!gb.test("<"+a.nodeName+">")?f=a.cloneNode(!0):(tb.innerHTML=a.outerHTML,tb.removeChild(f=tb.firstChild)),!(k.noCloneEvent&&k.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||m.isXMLDoc(a)))for(d=ub(f),h=ub(a),g=0;null!=(e=h[g]);++g)d[g]&&Bb(e,d[g]);if(b)if(c)for(h=h||ub(a),d=d||ub(f),g=0;null!=(e=h[g]);g++)Ab(e,d[g]);else Ab(a,f);return d=ub(f,"script"),d.length>0&&zb(d,!i&&ub(a,"script")),d=h=e=null,f},buildFragment:function(a,b,c,d){for(var e,f,g,h,i,j,l,n=a.length,o=db(b),p=[],q=0;n>q;q++)if(f=a[q],f||0===f)if("object"===m.type(f))m.merge(p,f.nodeType?[f]:f);else if(lb.test(f)){h=h||o.appendChild(b.createElement("div")),i=(jb.exec(f)||["",""])[1].toLowerCase(),l=rb[i]||rb._default,h.innerHTML=l[1]+f.replace(ib,"<$1></$2>")+l[2],e=l[0];while(e--)h=h.lastChild;if(!k.leadingWhitespace&&hb.test(f)&&p.push(b.createTextNode(hb.exec(f)[0])),!k.tbody){f="table"!==i||kb.test(f)?"<table>"!==l[1]||kb.test(f)?0:h:h.firstChild,e=f&&f.childNodes.length;while(e--)m.nodeName(j=f.childNodes[e],"tbody")&&!j.childNodes.length&&f.removeChild(j)}m.merge(p,h.childNodes),h.textContent="";while(h.firstChild)h.removeChild(h.firstChild);h=o.lastChild}else p.push(b.createTextNode(f));h&&o.removeChild(h),k.appendChecked||m.grep(ub(p,"input"),vb),q=0;while(f=p[q++])if((!d||-1===m.inArray(f,d))&&(g=m.contains(f.ownerDocument,f),h=ub(o.appendChild(f),"script"),g&&zb(h),c)){e=0;while(f=h[e++])ob.test(f.type||"")&&c.push(f)}return h=null,o},cleanData:function(a,b){for(var d,e,f,g,h=0,i=m.expando,j=m.cache,l=k.deleteExpando,n=m.event.special;null!=(d=a[h]);h++)if((b||m.acceptData(d))&&(f=d[i],g=f&&j[f])){if(g.events)for(e in g.events)n[e]?m.event.remove(d,e):m.removeEvent(d,e,g.handle);j[f]&&(delete j[f],l?delete d[i]:typeof d.removeAttribute!==K?d.removeAttribute(i):d[i]=null,c.push(f))}}}),m.fn.extend({text:function(a){return V(this,function(a){return void 0===a?m.text(this):this.empty().append((this[0]&&this[0].ownerDocument||y).createTextNode(a))},null,a,arguments.length)},append:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wb(this,a);b.appendChild(a)}})},prepend:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wb(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},remove:function(a,b){for(var c,d=a?m.filter(a,this):this,e=0;null!=(c=d[e]);e++)b||1!==c.nodeType||m.cleanData(ub(c)),c.parentNode&&(b&&m.contains(c.ownerDocument,c)&&zb(ub(c,"script")),c.parentNode.removeChild(c));return this},empty:function(){for(var a,b=0;null!=(a=this[b]);b++){1===a.nodeType&&m.cleanData(ub(a,!1));while(a.firstChild)a.removeChild(a.firstChild);a.options&&m.nodeName(a,"select")&&(a.options.length=0)}return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return m.clone(this,a,b)})},html:function(a){return V(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a)return 1===b.nodeType?b.innerHTML.replace(fb,""):void 0;if(!("string"!=typeof a||mb.test(a)||!k.htmlSerialize&&gb.test(a)||!k.leadingWhitespace&&hb.test(a)||rb[(jb.exec(a)||["",""])[1].toLowerCase()])){a=a.replace(ib,"<$1></$2>");try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(m.cleanData(ub(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=arguments[0];return this.domManip(arguments,function(b){a=this.parentNode,m.cleanData(ub(this)),a&&a.replaceChild(b,this)}),a&&(a.length||a.nodeType)?this:this.remove()},detach:function(a){return this.remove(a,!0)},domManip:function(a,b){a=e.apply([],a);var c,d,f,g,h,i,j=0,l=this.length,n=this,o=l-1,p=a[0],q=m.isFunction(p);if(q||l>1&&"string"==typeof p&&!k.checkClone&&nb.test(p))return this.each(function(c){var d=n.eq(c);q&&(a[0]=p.call(this,c,d.html())),d.domManip(a,b)});if(l&&(i=m.buildFragment(a,this[0].ownerDocument,!1,this),c=i.firstChild,1===i.childNodes.length&&(i=c),c)){for(g=m.map(ub(i,"script"),xb),f=g.length;l>j;j++)d=i,j!==o&&(d=m.clone(d,!0,!0),f&&m.merge(g,ub(d,"script"))),b.call(this[j],d,j);if(f)for(h=g[g.length-1].ownerDocument,m.map(g,yb),j=0;f>j;j++)d=g[j],ob.test(d.type||"")&&!m._data(d,"globalEval")&&m.contains(h,d)&&(d.src?m._evalUrl&&m._evalUrl(d.src):m.globalEval((d.text||d.textContent||d.innerHTML||"").replace(qb,"")));i=c=null}return this}}),m.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){m.fn[a]=function(a){for(var c,d=0,e=[],g=m(a),h=g.length-1;h>=d;d++)c=d===h?this:this.clone(!0),m(g[d])[b](c),f.apply(e,c.get());return this.pushStack(e)}});var Cb,Db={};function Eb(b,c){var d,e=m(c.createElement(b)).appendTo(c.body),f=a.getDefaultComputedStyle&&(d=a.getDefaultComputedStyle(e[0]))?d.display:m.css(e[0],"display");return e.detach(),f}function Fb(a){var b=y,c=Db[a];return c||(c=Eb(a,b),"none"!==c&&c||(Cb=(Cb||m("<iframe frameborder='0' width='0' height='0'/>")).appendTo(b.documentElement),b=(Cb[0].contentWindow||Cb[0].contentDocument).document,b.write(),b.close(),c=Eb(a,b),Cb.detach()),Db[a]=c),c}!function(){var a;k.shrinkWrapBlocks=function(){if(null!=a)return a;a=!1;var b,c,d;return c=y.getElementsByTagName("body")[0],c&&c.style?(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:1px;width:1px;zoom:1",b.appendChild(y.createElement("div")).style.width="5px",a=3!==b.offsetWidth),c.removeChild(d),a):void 0}}();var Gb=/^margin/,Hb=new RegExp("^("+S+")(?!px)[a-z%]+$","i"),Ib,Jb,Kb=/^(top|right|bottom|left)$/;a.getComputedStyle?(Ib=function(a){return a.ownerDocument.defaultView.getComputedStyle(a,null)},Jb=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ib(a),g=c?c.getPropertyValue(b)||c[b]:void 0,c&&(""!==g||m.contains(a.ownerDocument,a)||(g=m.style(a,b)),Hb.test(g)&&Gb.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f)),void 0===g?g:g+""}):y.documentElement.currentStyle&&(Ib=function(a){return a.currentStyle},Jb=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ib(a),g=c?c[b]:void 0,null==g&&h&&h[b]&&(g=h[b]),Hb.test(g)&&!Kb.test(b)&&(d=h.left,e=a.runtimeStyle,f=e&&e.left,f&&(e.left=a.currentStyle.left),h.left="fontSize"===b?"1em":g,g=h.pixelLeft+"px",h.left=d,f&&(e.left=f)),void 0===g?g:g+""||"auto"});function Lb(a,b){return{get:function(){var c=a();if(null!=c)return c?void delete this.get:(this.get=b).apply(this,arguments)}}}!function(){var b,c,d,e,f,g,h;if(b=y.createElement("div"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=d&&d.style){c.cssText="float:left;opacity:.5",k.opacity="0.5"===c.opacity,k.cssFloat=!!c.cssFloat,b.style.backgroundClip="content-box",b.cloneNode(!0).style.backgroundClip="",k.clearCloneStyle="content-box"===b.style.backgroundClip,k.boxSizing=""===c.boxSizing||""===c.MozBoxSizing||""===c.WebkitBoxSizing,m.extend(k,{reliableHiddenOffsets:function(){return null==g&&i(),g},boxSizingReliable:function(){return null==f&&i(),f},pixelPosition:function(){return null==e&&i(),e},reliableMarginRight:function(){return null==h&&i(),h}});function i(){var b,c,d,i;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),b.style.cssText="-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;display:block;margin-top:1%;top:1%;border:1px;padding:1px;width:4px;position:absolute",e=f=!1,h=!0,a.getComputedStyle&&(e="1%"!==(a.getComputedStyle(b,null)||{}).top,f="4px"===(a.getComputedStyle(b,null)||{width:"4px"}).width,i=b.appendChild(y.createElement("div")),i.style.cssText=b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:0",i.style.marginRight=i.style.width="0",b.style.width="1px",h=!parseFloat((a.getComputedStyle(i,null)||{}).marginRight)),b.innerHTML="<table><tr><td></td><td>t</td></tr></table>",i=b.getElementsByTagName("td"),i[0].style.cssText="margin:0;border:0;padding:0;display:none",g=0===i[0].offsetHeight,g&&(i[0].style.display="",i[1].style.display="none",g=0===i[0].offsetHeight),c.removeChild(d))}}}(),m.swap=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e};var Mb=/alpha\([^)]*\)/i,Nb=/opacity\s*=\s*([^)]*)/,Ob=/^(none|table(?!-c[ea]).+)/,Pb=new RegExp("^("+S+")(.*)$","i"),Qb=new RegExp("^([+-])=("+S+")","i"),Rb={position:"absolute",visibility:"hidden",display:"block"},Sb={letterSpacing:"0",fontWeight:"400"},Tb=["Webkit","O","Moz","ms"];function Ub(a,b){if(b in a)return b;var c=b.charAt(0).toUpperCase()+b.slice(1),d=b,e=Tb.length;while(e--)if(b=Tb[e]+c,b in a)return b;return d}function Vb(a,b){for(var c,d,e,f=[],g=0,h=a.length;h>g;g++)d=a[g],d.style&&(f[g]=m._data(d,"olddisplay"),c=d.style.display,b?(f[g]||"none"!==c||(d.style.display=""),""===d.style.display&&U(d)&&(f[g]=m._data(d,"olddisplay",Fb(d.nodeName)))):(e=U(d),(c&&"none"!==c||!e)&&m._data(d,"olddisplay",e?c:m.css(d,"display"))));for(g=0;h>g;g++)d=a[g],d.style&&(b&&"none"!==d.style.display&&""!==d.style.display||(d.style.display=b?f[g]||"":"none"));return a}function Wb(a,b,c){var d=Pb.exec(b);return d?Math.max(0,d[1]-(c||0))+(d[2]||"px"):b}function Xb(a,b,c,d,e){for(var f=c===(d?"border":"content")?4:"width"===b?1:0,g=0;4>f;f+=2)"margin"===c&&(g+=m.css(a,c+T[f],!0,e)),d?("content"===c&&(g-=m.css(a,"padding"+T[f],!0,e)),"margin"!==c&&(g-=m.css(a,"border"+T[f]+"Width",!0,e))):(g+=m.css(a,"padding"+T[f],!0,e),"padding"!==c&&(g+=m.css(a,"border"+T[f]+"Width",!0,e)));return g}function Yb(a,b,c){var d=!0,e="width"===b?a.offsetWidth:a.offsetHeight,f=Ib(a),g=k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,f);if(0>=e||null==e){if(e=Jb(a,b,f),(0>e||null==e)&&(e=a.style[b]),Hb.test(e))return e;d=g&&(k.boxSizingReliable()||e===a.style[b]),e=parseFloat(e)||0}return e+Xb(a,b,c||(g?"border":"content"),d,f)+"px"}m.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Jb(a,"opacity");return""===c?"1":c}}}},cssNumber:{columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":k.cssFloat?"cssFloat":"styleFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=m.camelCase(b),i=a.style;if(b=m.cssProps[h]||(m.cssProps[h]=Ub(i,h)),g=m.cssHooks[b]||m.cssHooks[h],void 0===c)return g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:i[b];if(f=typeof c,"string"===f&&(e=Qb.exec(c))&&(c=(e[1]+1)*e[2]+parseFloat(m.css(a,b)),f="number"),null!=c&&c===c&&("number"!==f||m.cssNumber[h]||(c+="px"),k.clearCloneStyle||""!==c||0!==b.indexOf("background")||(i[b]="inherit"),!(g&&"set"in g&&void 0===(c=g.set(a,c,d)))))try{i[b]=c}catch(j){}}},css:function(a,b,c,d){var e,f,g,h=m.camelCase(b);return b=m.cssProps[h]||(m.cssProps[h]=Ub(a.style,h)),g=m.cssHooks[b]||m.cssHooks[h],g&&"get"in g&&(f=g.get(a,!0,c)),void 0===f&&(f=Jb(a,b,d)),"normal"===f&&b in Sb&&(f=Sb[b]),""===c||c?(e=parseFloat(f),c===!0||m.isNumeric(e)?e||0:f):f}}),m.each(["height","width"],function(a,b){m.cssHooks[b]={get:function(a,c,d){return c?Ob.test(m.css(a,"display"))&&0===a.offsetWidth?m.swap(a,Rb,function(){return Yb(a,b,d)}):Yb(a,b,d):void 0},set:function(a,c,d){var e=d&&Ib(a);return Wb(a,c,d?Xb(a,b,d,k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,e),e):0)}}}),k.opacity||(m.cssHooks.opacity={get:function(a,b){return Nb.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?.01*parseFloat(RegExp.$1)+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=m.isNumeric(b)?"alpha(opacity="+100*b+")":"",f=d&&d.filter||c.filter||"";c.zoom=1,(b>=1||""===b)&&""===m.trim(f.replace(Mb,""))&&c.removeAttribute&&(c.removeAttribute("filter"),""===b||d&&!d.filter)||(c.filter=Mb.test(f)?f.replace(Mb,e):f+" "+e)}}),m.cssHooks.marginRight=Lb(k.reliableMarginRight,function(a,b){return b?m.swap(a,{display:"inline-block"},Jb,[a,"marginRight"]):void 0}),m.each({margin:"",padding:"",border:"Width"},function(a,b){m.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];4>d;d++)e[a+T[d]+b]=f[d]||f[d-2]||f[0];return e}},Gb.test(a)||(m.cssHooks[a+b].set=Wb)}),m.fn.extend({css:function(a,b){return V(this,function(a,b,c){var d,e,f={},g=0;if(m.isArray(b)){for(d=Ib(a),e=b.length;e>g;g++)f[b[g]]=m.css(a,b[g],!1,d);return f}return void 0!==c?m.style(a,b,c):m.css(a,b)},a,b,arguments.length>1)},show:function(){return Vb(this,!0)},hide:function(){return Vb(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){U(this)?m(this).show():m(this).hide()})}});function Zb(a,b,c,d,e){return new Zb.prototype.init(a,b,c,d,e)}m.Tween=Zb,Zb.prototype={constructor:Zb,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")
-},cur:function(){var a=Zb.propHooks[this.prop];return a&&a.get?a.get(this):Zb.propHooks._default.get(this)},run:function(a){var b,c=Zb.propHooks[this.prop];return this.pos=b=this.options.duration?m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Zb.propHooks._default.set(this),this}},Zb.prototype.init.prototype=Zb.prototype,Zb.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Zb.propHooks.scrollTop=Zb.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Zb.prototype.init,m.fx.step={};var $b,_b,ac=/^(?:toggle|show|hide)$/,bc=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),cc=/queueHooks$/,dc=[ic],ec={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bc.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bc.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fc(){return setTimeout(function(){$b=void 0}),$b=m.now()}function gc(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hc(a,b,c){for(var d,e=(ec[b]||[]).concat(ec["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ic(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fb(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fb(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ac.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fb(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hc(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jc(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kc(a,b,c){var d,e,f=0,g=dc.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=$b||fc(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:$b||fc(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jc(k,j.opts.specialEasing);g>f;f++)if(d=dc[f].call(j,a,k,j.opts))return d;return m.map(k,hc,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kc,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],ec[c]=ec[c]||[],ec[c].unshift(b)},prefilter:function(a,b){b?dc.unshift(a):dc.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kc(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cc.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gc(b,!0),a,d,e)}}),m.each({slideDown:gc("show"),slideUp:gc("hide"),slideToggle:gc("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for($b=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),$b=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_b||(_b=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_b),_b=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lc=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lc,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mc,nc,oc=m.expr.attrHandle,pc=/^(?:checked|selected)$/i,qc=k.getSetAttribute,rc=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nc:mc)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rc&&qc||!pc.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qc?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nc={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rc&&qc||!pc.test(c)?a.setAttribute(!qc&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=oc[b]||m.find.attr;oc[b]=rc&&qc||!pc.test(b)?function(a,b,d){var e,f;return d||(f=oc[b],oc[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,oc[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rc&&qc||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mc&&mc.set(a,b,c)}}),qc||(mc={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},oc.id=oc.name=oc.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mc.set},m.attrHooks.contenteditable={set:function(a,b,c){mc.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sc=/^(?:input|select|textarea|button|object)$/i,tc=/^(?:a|area)$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sc.test(a.nodeName)||tc.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var uc=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(uc," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(uc," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(uc," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vc=m.now(),wc=/\?/,xc=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xc,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yc,zc,Ac=/#.*$/,Bc=/([?&])_=[^&]*/,Cc=/^(.*?):[ \t]*([^\r\n]*)\r?$/gm,Dc=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,Ec=/^(?:GET|HEAD)$/,Fc=/^\/\//,Gc=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hc={},Ic={},Jc="*/".concat("*");try{zc=location.href}catch(Kc){zc=y.createElement("a"),zc.href="",zc=zc.href}yc=Gc.exec(zc.toLowerCase())||[];function Lc(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mc(a,b,c,d){var e={},f=a===Ic;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nc(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Oc(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pc(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zc,type:"GET",isLocal:Dc.test(yc[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jc,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nc(Nc(a,m.ajaxSettings),b):Nc(m.ajaxSettings,a)},ajaxPrefilter:Lc(Hc),ajaxTransport:Lc(Ic),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cc.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zc)+"").replace(Ac,"").replace(Fc,yc[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gc.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yc[1]&&c[2]===yc[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yc[3]||("http:"===yc[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mc(Hc,k,b,v),2===t)return v;h=k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Ec.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wc.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bc.test(e)?e.replace(Bc,"$1_="+vc++):e+(wc.test(e)?"&":"?")+"_="+vc++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jc+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mc(Ic,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Oc(k,v,c)),u=Pc(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qc=/%20/g,Rc=/\[\]$/,Sc=/\r?\n/g,Tc=/^(?:submit|button|image|reset|file)$/i,Uc=/^(?:input|select|textarea|keygen)/i;function Vc(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rc.test(a)?d(a,e):Vc(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vc(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vc(c,a[c],b,e);return d.join("&").replace(Qc,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Uc.test(this.nodeName)&&!Tc.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sc,"\r\n")}}):{name:b.name,value:c.replace(Sc,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)$/i.test(this.type)&&Zc()||$c()}:Zc;var Wc=0,Xc={},Yc=m.ajaxSettings.xhr();a.ActiveXObject&&m(a).on("unload",function(){for(var a in Xc)Xc[a](void 0,!0)}),k.cors=!!Yc&&"withCredentials"in Yc,Yc=k.ajax=!!Yc,Yc&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wc;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xc[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xc[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zc(){try{return new a.XMLHttpRequest}catch(b){}}function $c(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _c=[],ad=/(=)\?(?=&|$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_c.pop()||m.expando+"_"+vc++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ad.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ad.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ad,"$1"+e):b.jsonp!==!1&&(b.url+=(wc.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_c.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bd=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bd)return bd.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cd=a.document.documentElement;function dd(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dd(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cd;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cd})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dd(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=Lb(k.pixelPosition,function(a,c){return c?(c=Jb(a,b),Hb.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ed=a.jQuery,fd=a.$;return m.noConflict=function(b){return a.$===m&&(a.$=fd),b&&a.jQuery===m&&(a.jQuery=ed),m},typeof b===K&&(a.jQuery=a.$=m),m});
\ No newline at end of file
diff --git a/coverage_report/jquery.tablesorter.min.js b/coverage_report/jquery.tablesorter.min.js
deleted file mode 100644
index 64c7007..0000000
--- a/coverage_report/jquery.tablesorter.min.js
+++ /dev/null
@@ -1,2 +0,0 @@
-
-(function($){$.extend({tablesorter:new function(){var parsers=[],widgets=[];this.defaults={cssHeader:"header",cssAsc:"headerSortUp",cssDesc:"headerSortDown",sortInitialOrder:"asc",sortMultiSortKey:"shiftKey",sortForce:null,sortAppend:null,textExtraction:"simple",parsers:{},widgets:[],widgetZebra:{css:["even","odd"]},headers:{},widthFixed:false,cancelSelection:true,sortList:[],headerList:[],dateFormat:"us",decimal:'.',debug:false};function benchmark(s,d){log(s+","+(new Date().getTime()-d.getTime())+"ms");}this.benchmark=benchmark;function log(s){if(typeof console!="undefined"&&typeof console.debug!="undefined"){console.log(s);}else{alert(s);}}function buildParserCache(table,$headers){if(table.config.debug){var parsersDebug="";}var rows=table.tBodies[0].rows;if(table.tBodies[0].rows[0]){var list=[],cells=rows[0].cells,l=cells.length;for(var i=0;i<l;i++){var p=false;if($.metadata&&($($headers[i]).metadata()&&$($headers[i]).metadata().sorter)){p=getParserById($($headers[i]).metadata().sorter);}else if((table.config.headers[i]&&table.config.headers[i].sorter)){p=getParserById(table.config.headers[i].sorter);}if(!p){p=detectParserForColumn(table,cells[i]);}if(table.config.debug){parsersDebug+="column:"+i+" parser:"+p.id+"\n";}list.push(p);}}if(table.config.debug){log(parsersDebug);}return list;};function detectParserForColumn(table,node){var l=parsers.length;for(var i=1;i<l;i++){if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)){return parsers[i];}}return parsers[0];}function getParserById(name){var l=parsers.length;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==name.toLowerCase()){return parsers[i];}}return false;}function buildCache(table){if(table.config.debug){var cacheTime=new Date();}var totalRows=(table.tBodies[0]&&table.tBodies[0].rows.length)||0,totalCells=(table.tBodies[0].rows[0]&&table.tBodies[0].rows[0].cells.length)||0,parsers=table.config.parsers,cache={row:[],normalized:[]};for(var i=0;i<totalRows;++i){var c=table.tBodies[0].rows[i],cols=[];cache.row.push($(c));for(var j=0;j<totalCells;++j){cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));}cols.push(i);cache.normalized.push(cols);cols=null;};if(table.config.debug){benchmark("Building cache for "+totalRows+" rows:",cacheTime);}return cache;};function getElementText(config,node){if(!node)return"";var t="";if(config.textExtraction=="simple"){if(node.childNodes[0]&&node.childNodes[0].hasChildNodes()){t=node.childNodes[0].innerHTML;}else{t=node.innerHTML;}}else{if(typeof(config.textExtraction)=="function"){t=config.textExtraction(node);}else{t=$(node).text();}}return t;}function appendToTable(table,cache){if(table.config.debug){var appendTime=new Date()}var c=cache,r=c.row,n=c.normalized,totalRows=n.length,checkCell=(n[0].length-1),tableBody=$(table.tBodies[0]),rows=[];for(var i=0;i<totalRows;i++){rows.push(r[n[i][checkCell]]);if(!table.config.appender){var o=r[n[i][checkCell]];var l=o.length;for(var j=0;j<l;j++){tableBody[0].appendChild(o[j]);}}}if(table.config.appender){table.config.appender(table,rows);}rows=null;if(table.config.debug){benchmark("Rebuilt table:",appendTime);}applyWidget(table);setTimeout(function(){$(table).trigger("sortEnd");},0);};function buildHeaders(table){if(table.config.debug){var time=new Date();}var meta=($.metadata)?true:false,tableHeadersRows=[];for(var i=0;i<table.tHead.rows.length;i++){tableHeadersRows[i]=0;};$tableHeaders=$("thead th",table);$tableHeaders.each(function(index){this.count=0;this.column=index;this.order=formatSortingOrder(table.config.sortInitialOrder);if(checkHeaderMetadata(this)||checkHeaderOptions(table,index))this.sortDisabled=true;if(!this.sortDisabled){$(this).addClass(table.config.cssHeader);}table.config.headerList[index]=this;});if(table.config.debug){benchmark("Built headers:",time);log($tableHeaders);}return $tableHeaders;};function checkCellColSpan(table,rows,row){var arr=[],r=table.tHead.rows,c=r[row].cells;for(var i=0;i<c.length;i++){var cell=c[i];if(cell.colSpan>1){arr=arr.concat(checkCellColSpan(table,headerArr,row++));}else{if(table.tHead.length==1||(cell.rowSpan>1||!r[row+1])){arr.push(cell);}}}return arr;};function checkHeaderMetadata(cell){if(($.metadata)&&($(cell).metadata().sorter===false)){return true;};return false;}function checkHeaderOptions(table,i){if((table.config.headers[i])&&(table.config.headers[i].sorter===false)){return true;};return false;}function applyWidget(table){var c=table.config.widgets;var l=c.length;for(var i=0;i<l;i++){getWidgetById(c[i]).format(table);}}function getWidgetById(name){var l=widgets.length;for(var i=0;i<l;i++){if(widgets[i].id.toLowerCase()==name.toLowerCase()){return widgets[i];}}};function formatSortingOrder(v){if(typeof(v)!="Number"){i=(v.toLowerCase()=="desc")?1:0;}else{i=(v==(0||1))?v:0;}return i;}function isValueInArray(v,a){var l=a.length;for(var i=0;i<l;i++){if(a[i][0]==v){return true;}}return false;}function setHeadersCss(table,$headers,list,css){$headers.removeClass(css[0]).removeClass(css[1]);var h=[];$headers.each(function(offset){if(!this.sortDisabled){h[this.column]=$(this);}});var l=list.length;for(var i=0;i<l;i++){h[list[i][0]].addClass(css[list[i][1]]);}}function fixColumnWidth(table,$headers){var c=table.config;if(c.widthFixed){var colgroup=$('<colgroup>');$("tr:first td",table.tBodies[0]).each(function(){colgroup.append($('<col>').css('width',$(this).width()));});$(table).prepend(colgroup);};}function updateHeaderSortCount(table,sortList){var c=table.config,l=sortList.length;for(var i=0;i<l;i++){var s=sortList[i],o=c.headerList[s[0]];o.count=s[1];o.count++;}}function multisort(table,sortList,cache){if(table.config.debug){var sortTime=new Date();}var dynamicExp="var sortWrapper = function(a,b) {",l=sortList.length;for(var i=0;i<l;i++){var c=sortList[i][0];var order=sortList[i][1];var s=(getCachedSortType(table.config.parsers,c)=="text")?((order==0)?"sortText":"sortTextDesc"):((order==0)?"sortNumeric":"sortNumericDesc");var e="e"+i;dynamicExp+="var "+e+" = "+s+"(a["+c+"],b["+c+"]); ";dynamicExp+="if("+e+") { return "+e+"; } ";dynamicExp+="else { ";}var orgOrderCol=cache.normalized[0].length-1;dynamicExp+="return a["+orgOrderCol+"]-b["+orgOrderCol+"];";for(var i=0;i<l;i++){dynamicExp+="}; ";}dynamicExp+="return 0; ";dynamicExp+="}; ";eval(dynamicExp);cache.normalized.sort(sortWrapper);if(table.config.debug){benchmark("Sorting on "+sortList.toString()+" and dir "+order+" time:",sortTime);}return cache;};function sortText(a,b){return((a<b)?-1:((a>b)?1:0));};function sortTextDesc(a,b){return((b<a)?-1:((b>a)?1:0));};function sortNumeric(a,b){return a-b;};function sortNumericDesc(a,b){return b-a;};function getCachedSortType(parsers,i){return parsers[i].type;};this.construct=function(settings){return this.each(function(){if(!this.tHead||!this.tBodies)return;var $this,$document,$headers,cache,config,shiftDown=0,sortOrder;this.config={};config=$.extend(this.config,$.tablesorter.defaults,settings);$this=$(this);$headers=buildHeaders(this);this.config.parsers=buildParserCache(this,$headers);cache=buildCache(this);var sortCSS=[config.cssDesc,config.cssAsc];fixColumnWidth(this);$headers.click(function(e){$this.trigger("sortStart");var totalRows=($this[0].tBodies[0]&&$this[0].tBodies[0].rows.length)||0;if(!this.sortDisabled&&totalRows>0){var $cell=$(this);var i=this.column;this.order=this.count++%2;if(!e[config.sortMultiSortKey]){config.sortList=[];if(config.sortForce!=null){var a=config.sortForce;for(var j=0;j<a.length;j++){if(a[j][0]!=i){config.sortList.push(a[j]);}}}config.sortList.push([i,this.order]);}else{if(isValueInArray(i,config.sortList)){for(var j=0;j<config.sortList.length;j++){var s=config.sortList[j],o=config.headerList[s[0]];if(s[0]==i){o.count=s[1];o.count++;s[1]=o.count%2;}}}else{config.sortList.push([i,this.order]);}};setTimeout(function(){setHeadersCss($this[0],$headers,config.sortList,sortCSS);appendToTable($this[0],multisort($this[0],config.sortList,cache));},1);return false;}}).mousedown(function(){if(config.cancelSelection){this.onselectstart=function(){return false};return false;}});$this.bind("update",function(){this.config.parsers=buildParserCache(this,$headers);cache=buildCache(this);}).bind("sorton",function(e,list){$(this).trigger("sortStart");config.sortList=list;var sortList=config.sortList;updateHeaderSortCount(this,sortList);setHeadersCss(this,$headers,sortList,sortCSS);appendToTable(this,multisort(this,sortList,cache));}).bind("appendCache",function(){appendToTable(this,cache);}).bind("applyWidgetId",function(e,id){getWidgetById(id).format(this);}).bind("applyWidgets",function(){applyWidget(this);});if($.metadata&&($(this).metadata()&&$(this).metadata().sortlist)){config.sortList=$(this).metadata().sortlist;}if(config.sortList.length>0){$this.trigger("sorton",[config.sortList]);}applyWidget(this);});};this.addParser=function(parser){var l=parsers.length,a=true;for(var i=0;i<l;i++){if(parsers[i].id.toLowerCase()==parser.id.toLowerCase()){a=false;}}if(a){parsers.push(parser);};};this.addWidget=function(widget){widgets.push(widget);};this.formatFloat=function(s){var i=parseFloat(s);return(isNaN(i))?0:i;};this.formatInt=function(s){var i=parseInt(s);return(isNaN(i))?0:i;};this.isDigit=function(s,config){var DECIMAL='\\'+config.decimal;var exp='/(^[+]?0('+DECIMAL+'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)'+DECIMAL+'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*'+DECIMAL+'0+$)/';return RegExp(exp).test($.trim(s));};this.clearTableBody=function(table){if($.browser.msie){function empty(){while(this.firstChild)this.removeChild(this.firstChild);}empty.apply(table.tBodies[0]);}else{table.tBodies[0].innerHTML="";}};}});$.fn.extend({tablesorter:$.tablesorter.construct});var ts=$.tablesorter;ts.addParser({id:"text",is:function(s){return true;},format:function(s){return $.trim(s.toLowerCase());},type:"text"});ts.addParser({id:"digit",is:function(s,table){var c=table.config;return $.tablesorter.isDigit(s,c);},format:function(s){return $.tablesorter.formatFloat(s);},type:"numeric"});ts.addParser({id:"currency",is:function(s){return/^[£$€?.]/.test(s);},format:function(s){return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));},type:"numeric"});ts.addParser({id:"ipAddress",is:function(s){return/^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);},format:function(s){var a=s.split("."),r="",l=a.length;for(var i=0;i<l;i++){var item=a[i];if(item.length==2){r+="0"+item;}else{r+=item;}}return $.tablesorter.formatFloat(r);},type:"numeric"});ts.addParser({id:"url",is:function(s){return/^(https?|ftp|file):\/\/$/.test(s);},format:function(s){return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));},type:"text"});ts.addParser({id:"isoDate",is:function(s){return/^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);},format:function(s){return $.tablesorter.formatFloat((s!="")?new Date(s.replace(new RegExp(/-/g),"/")).getTime():"0");},type:"numeric"});ts.addParser({id:"percent",is:function(s){return/\%$/.test($.trim(s));},format:function(s){return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));},type:"numeric"});ts.addParser({id:"usLongDate",is:function(s){return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));},format:function(s){return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"shortDate",is:function(s){return/\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);},format:function(s,table){var c=table.config;s=s.replace(/\-/g,"/");if(c.dateFormat=="us"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$1/$2");}else if(c.dateFormat=="uk"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/,"$3/$2/$1");}else if(c.dateFormat=="dd/mm/yy"||c.dateFormat=="dd-mm-yy"){s=s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/,"$1/$2/$3");}return $.tablesorter.formatFloat(new Date(s).getTime());},type:"numeric"});ts.addParser({id:"time",is:function(s){return/^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);},format:function(s){return $.tablesorter.formatFloat(new Date("2000/01/01 "+s).getTime());},type:"numeric"});ts.addParser({id:"metadata",is:function(s){return false;},format:function(s,table,cell){var c=table.config,p=(!c.parserMetadataName)?'sortValue':c.parserMetadataName;return $(cell).metadata()[p];},type:"numeric"});ts.addWidget({id:"zebra",format:function(table){if(table.config.debug){var time=new Date();}$("tr:visible",table.tBodies[0]).filter(':even').removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0]).end().filter(':odd').removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);if(table.config.debug){$.tablesorter.benchmark("Applying Zebra widget",time);}}});})(jQuery);
\ No newline at end of file
diff --git a/coverage_report/keybd_closed.png b/coverage_report/keybd_closed.png
deleted file mode 100644
index db114023f096297a23a7b1266b469d0ce4556b0a..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 112
zcmeAS@N?(olHy`uVBq!ia0vp^%0SG+!2%?mw9Xg;DRWO3$B+uf<OAIQgt<8-oJACl
z%`j0oqGGRjBSos&^U~$u9kEP}A;xY03|qMZk7$~=otvj5#>5cj*13AM(ls%l5e%NL
KelF{r5}E+1W**4^

diff --git a/coverage_report/keybd_open.png b/coverage_report/keybd_open.png
deleted file mode 100644
index db114023f096297a23a7b1266b469d0ce4556b0a..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 112
zcmeAS@N?(olHy`uVBq!ia0vp^%0SG+!2%?mw9Xg;DRWO3$B+uf<OAIQgt<8-oJACl
z%`j0oqGGRjBSos&^U~$u9kEP}A;xY03|qMZk7$~=otvj5#>5cj*13AM(ls%l5e%NL
KelF{r5}E+1W**4^

diff --git a/coverage_report/status.json b/coverage_report/status.json
deleted file mode 100644
index 979aadc..0000000
--- a/coverage_report/status.json
+++ /dev/null
@@ -1 +0,0 @@
-{"format":1,"version":"4.5.3","settings":"96ec3e5ac0985973daa480a4cb530dd7","files":{"fluegg___init___py":{"hash":"182b2dca469bf063cbcf996d517b03da","index":{"nums":[1,0,0,0,0,0,0],"html_filename":"fluegg___init___py.html","relative_filename":"fluegg\\__init__.py"}},"fluegg_asiancarpeggs_py":{"hash":"6a15084dab764d4e69da1fc42441f485","index":{"nums":[1,226,0,17,0,0,0],"html_filename":"fluegg_asiancarpeggs_py.html","relative_filename":"fluegg\\asiancarpeggs.py"}},"fluegg_drift_py":{"hash":"c421fa5d25182dc2751b107f19299a5f","index":{"nums":[1,56,0,6,0,0,0],"html_filename":"fluegg_drift_py.html","relative_filename":"fluegg\\drift.py"}},"fluegg_gui___init___py":{"hash":"182b2dca469bf063cbcf996d517b03da","index":{"nums":[1,0,0,0,0,0,0],"html_filename":"fluegg_gui___init___py.html","relative_filename":"fluegg\\gui\\__init__.py"}},"fluegg_gui_gui_py":{"hash":"874671f4d929f7c304b348540ea4ae3c","index":{"nums":[1,254,0,225,0,0,0],"html_filename":"fluegg_gui_gui_py.html","relative_filename":"fluegg\\gui\\gui.py"}},"fluegg_gui_gui_layout_py":{"hash":"b38c2ed9ab163d31b97cf75f2df4611a","index":{"nums":[1,276,0,272,0,0,0],"html_filename":"fluegg_gui_gui_layout_py.html","relative_filename":"fluegg\\gui\\gui_layout.py"}},"fluegg_gui_hecras_dialog_py":{"hash":"5014d0bda5dfd4419eebc1a501e499dd","index":{"nums":[1,112,0,108,0,0,0],"html_filename":"fluegg_gui_hecras_dialog_py.html","relative_filename":"fluegg\\gui\\hecras_dialog.py"}},"fluegg_hydraulics_py":{"hash":"9f98060f27ff015d762cc84986dc03c1","index":{"nums":[1,287,0,37,0,0,0],"html_filename":"fluegg_hydraulics_py.html","relative_filename":"fluegg\\hydraulics.py"}},"fluegg_kml_py":{"hash":"234de0dd5fdbf84eae22ef237ef5c791","index":{"nums":[1,130,0,113,0,0,0],"html_filename":"fluegg_kml_py.html","relative_filename":"fluegg\\kml.py"}},"fluegg_random_py":{"hash":"238d2b6b55a9e18485cfba6e00a28480","index":{"nums":[1,36,0,18,0,0,0],"html_filename":"fluegg_random_py.html","relative_filename":"fluegg\\random.py"}},"fluegg_ras_py":{"hash":"bb289bde42e8ee2f59e968d5cf384872","index":{"nums":[1,197,0,148,0,0,0],"html_filename":"fluegg_ras_py.html","relative_filename":"fluegg\\ras.py"}},"fluegg_simclock_py":{"hash":"282dd17e459a0fa0bcf9b990b1e99dd7","index":{"nums":[1,46,0,5,0,0,0],"html_filename":"fluegg_simclock_py.html","relative_filename":"fluegg\\simclock.py"}},"fluegg_simulation_py":{"hash":"b3d2202737c3926729f5bf6b0815bdb0","index":{"nums":[1,132,0,76,0,0,0],"html_filename":"fluegg_simulation_py.html","relative_filename":"fluegg\\simulation.py"}},"fluegg_transporter_py":{"hash":"b2fbe495502b86f1518fa62bbd6933c0","index":{"nums":[1,285,0,56,0,0,0],"html_filename":"fluegg_transporter_py.html","relative_filename":"fluegg\\transporter.py"}},"test_fluegg_py":{"hash":"d068ed21aa14efabe55f32f7ad03d61e","index":{"nums":[1,23,0,3,0,0,0],"html_filename":"test_fluegg_py.html","relative_filename":"test_fluegg.py"}}}}
\ No newline at end of file
diff --git a/coverage_report/style.css b/coverage_report/style.css
deleted file mode 100644
index 86b8209..0000000
--- a/coverage_report/style.css
+++ /dev/null
@@ -1,375 +0,0 @@
-/* Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 */
-/* For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt */
-
-/* CSS styles for coverage.py. */
-
-/* Page-wide styles */
-html, body, h1, h2, h3, p, table, td, th {
-    margin: 0;
-    padding: 0;
-    border: 0;
-    outline: 0;
-    font-weight: inherit;
-    font-style: inherit;
-    font-size: 100%;
-    font-family: inherit;
-    vertical-align: baseline;
-    }
-
-/* Set baseline grid to 16 pt. */
-body {
-    font-family: georgia, serif;
-    font-size: 1em;
-    }
-
-html>body {
-    font-size: 16px;
-    }
-
-/* Set base font size to 12/16 */
-p {
-    font-size: .75em;           /* 12/16 */
-    line-height: 1.33333333em;  /* 16/12 */
-    }
-
-table {
-    border-collapse: collapse;
-    }
-td {
-    vertical-align: top;
-}
-table tr.hidden {
-    display: none !important;
-    }
-
-p#no_rows {
-    display: none;
-    font-size: 1.2em;
-    }
-
-a.nav {
-    text-decoration: none;
-    color: inherit;
-    }
-a.nav:hover {
-    text-decoration: underline;
-    color: inherit;
-    }
-
-/* Page structure */
-#header {
-    background: #f8f8f8;
-    width: 100%;
-    border-bottom: 1px solid #eee;
-    }
-
-#source {
-    padding: 1em;
-    font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
-    }
-
-.indexfile #footer {
-    margin: 1em 3em;
-    }
-
-.pyfile #footer {
-    margin: 1em 1em;
-    }
-
-#footer .content {
-    padding: 0;
-    font-size: 85%;
-    font-family: verdana, sans-serif;
-    color: #666666;
-    font-style: italic;
-    }
-
-#index {
-    margin: 1em 0 0 3em;
-    }
-
-/* Header styles */
-#header .content {
-    padding: 1em 3em;
-    }
-
-h1 {
-    font-size: 1.25em;
-    display: inline-block;
-}
-
-#filter_container {
-    display: inline-block;
-    float: right;
-    margin: 0 2em 0 0;
-}
-#filter_container input {
-    width: 10em;
-}
-
-h2.stats {
-    margin-top: .5em;
-    font-size: 1em;
-}
-.stats span {
-    border: 1px solid;
-    padding: .1em .25em;
-    margin: 0 .1em;
-    cursor: pointer;
-    border-color: #999 #ccc #ccc #999;
-}
-.stats span.hide_run, .stats span.hide_exc,
-.stats span.hide_mis, .stats span.hide_par,
-.stats span.par.hide_run.hide_par {
-    border-color: #ccc #999 #999 #ccc;
-}
-.stats span.par.hide_run {
-    border-color: #999 #ccc #ccc #999;
-}
-
-.stats span.run {
-    background: #ddffdd;
-}
-.stats span.exc {
-    background: #eeeeee;
-}
-.stats span.mis {
-    background: #ffdddd;
-}
-.stats span.hide_run {
-    background: #eeffee;
-}
-.stats span.hide_exc {
-    background: #f5f5f5;
-}
-.stats span.hide_mis {
-    background: #ffeeee;
-}
-.stats span.par {
-    background: #ffffaa;
-}
-.stats span.hide_par {
-    background: #ffffcc;
-}
-
-/* Help panel */
-#keyboard_icon {
-    float: right;
-    margin: 5px;
-    cursor: pointer;
-}
-
-.help_panel {
-    position: absolute;
-    background: #ffffcc;
-    padding: .5em;
-    border: 1px solid #883;
-    display: none;
-}
-
-.indexfile .help_panel {
-    width: 20em; height: 4em;
-}
-
-.pyfile .help_panel {
-    width: 16em; height: 8em;
-}
-
-.help_panel .legend {
-    font-style: italic;
-    margin-bottom: 1em;
-}
-
-#panel_icon {
-    float: right;
-    cursor: pointer;
-}
-
-.keyhelp {
-    margin: .75em;
-}
-
-.keyhelp .key {
-    border: 1px solid black;
-    border-color: #888 #333 #333 #888;
-    padding: .1em .35em;
-    font-family: monospace;
-    font-weight: bold;
-    background: #eee;
-}
-
-/* Source file styles */
-.linenos p {
-    text-align: right;
-    margin: 0;
-    padding: 0 .5em;
-    color: #999999;
-    font-family: verdana, sans-serif;
-    font-size: .625em;   /* 10/16 */
-    line-height: 1.6em;  /* 16/10 */
-    }
-.linenos p.highlight {
-    background: #ffdd00;
-    }
-.linenos p a {
-    text-decoration: none;
-    color: #999999;
-    }
-.linenos p a:hover {
-    text-decoration: underline;
-    color: #999999;
-    }
-
-td.text {
-    width: 100%;
-    }
-.text p {
-    margin: 0;
-    padding: 0 0 0 .5em;
-    border-left: 2px solid #ffffff;
-    white-space: pre;
-    position: relative;
-    }
-
-.text p.mis {
-    background: #ffdddd;
-    border-left: 2px solid #ff0000;
-    }
-.text p.run, .text p.run.hide_par {
-    background: #ddffdd;
-    border-left: 2px solid #00ff00;
-    }
-.text p.exc {
-    background: #eeeeee;
-    border-left: 2px solid #808080;
-    }
-.text p.par, .text p.par.hide_run {
-    background: #ffffaa;
-    border-left: 2px solid #eeee99;
-    }
-.text p.hide_run, .text p.hide_exc, .text p.hide_mis, .text p.hide_par,
-.text p.hide_run.hide_par {
-    background: inherit;
-    }
-
-.text span.annotate {
-    font-family: georgia;
-    color: #666;
-    float: right;
-    padding-right: .5em;
-    }
-.text p.hide_par span.annotate {
-    display: none;
-    }
-.text span.annotate.long {
-    display: none;
-    }
-.text p:hover span.annotate.long {
-    display: block;
-    max-width: 50%;
-    white-space: normal;
-    float: right;
-    position: absolute;
-    top: 1.75em;
-    right: 1em;
-    width: 30em;
-    height: auto;
-    color: #333;
-    background: #ffffcc;
-    border: 1px solid #888;
-    padding: .25em .5em;
-    z-index: 999;
-    border-radius: .2em;
-    box-shadow: #cccccc .2em .2em .2em;
-    }
-
-/* Syntax coloring */
-.text .com {
-    color: green;
-    font-style: italic;
-    line-height: 1px;
-    }
-.text .key {
-    font-weight: bold;
-    line-height: 1px;
-    }
-.text .str {
-    color: #000080;
-    }
-
-/* index styles */
-#index td, #index th {
-    text-align: right;
-    width: 5em;
-    padding: .25em .5em;
-    border-bottom: 1px solid #eee;
-    }
-#index th {
-    font-style: italic;
-    color: #333;
-    border-bottom: 1px solid #ccc;
-    cursor: pointer;
-    }
-#index th:hover {
-    background: #eee;
-    border-bottom: 1px solid #999;
-    }
-#index td.left, #index th.left {
-    padding-left: 0;
-    }
-#index td.right, #index th.right {
-    padding-right: 0;
-    }
-#index th.headerSortDown, #index th.headerSortUp {
-    border-bottom: 1px solid #000;
-    white-space: nowrap;
-    background: #eee;
-    }
-#index th.headerSortDown:after {
-    content: " ↓";
-}
-#index th.headerSortUp:after {
-    content: " ↑";
-}
-#index td.name, #index th.name {
-    text-align: left;
-    width: auto;
-    }
-#index td.name a {
-    text-decoration: none;
-    color: #000;
-    }
-#index tr.total,
-#index tr.total_dynamic {
-    }
-#index tr.total td,
-#index tr.total_dynamic td {
-    font-weight: bold;
-    border-top: 1px solid #ccc;
-    border-bottom: none;
-    }
-#index tr.file:hover {
-    background: #eeeeee;
-    }
-#index tr.file:hover td.name {
-    text-decoration: underline;
-    color: #000;
-    }
-
-/* scroll marker styles */
-#scroll_marker {
-    position: fixed;
-    right: 0;
-    top: 0;
-    width: 16px;
-    height: 100%;
-    background: white;
-    border-left: 1px solid #eee;
-    }
-
-#scroll_marker .marker {
-    background: #eedddd;
-    position: absolute;
-    min-height: 3px;
-    width: 100%;
-    }
diff --git a/coverage_report/test_fluegg_py.html b/coverage_report/test_fluegg_py.html
deleted file mode 100644
index 2a68b53..0000000
--- a/coverage_report/test_fluegg_py.html
+++ /dev/null
@@ -1,165 +0,0 @@
-
-
-
-<!DOCTYPE html>
-<html>
-<head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
-    
-    
-    <meta http-equiv="X-UA-Compatible" content="IE=emulateIE7" />
-    <title>Coverage for test_fluegg.py: 87%</title>
-    <link rel="stylesheet" href="style.css" type="text/css">
-    
-    <script type="text/javascript" src="jquery.min.js"></script>
-    <script type="text/javascript" src="jquery.hotkeys.js"></script>
-    <script type="text/javascript" src="jquery.isonscreen.js"></script>
-    <script type="text/javascript" src="coverage_html.js"></script>
-    <script type="text/javascript">
-        jQuery(document).ready(coverage.pyfile_ready);
-    </script>
-</head>
-<body class="pyfile">
-
-<div id="header">
-    <div class="content">
-        <h1>Coverage for <b>test_fluegg.py</b> :
-            <span class="pc_cov">87%</span>
-        </h1>
-
-        <img id="keyboard_icon" src="keybd_closed.png" alt="Show keyboard shortcuts" />
-
-        <h2 class="stats">
-            23 statements &nbsp;
-            <span class="run hide_run shortkey_r button_toggle_run">20 run</span>
-            <span class="mis shortkey_m button_toggle_mis">3 missing</span>
-            <span class="exc shortkey_x button_toggle_exc">0 excluded</span>
-
-            
-        </h2>
-    </div>
-</div>
-
-<div class="help_panel">
-    <img id="panel_icon" src="keybd_open.png" alt="Hide keyboard shortcuts" />
-    <p class="legend">Hot-keys on this page</p>
-    <div>
-    <p class="keyhelp">
-        <span class="key">r</span>
-        <span class="key">m</span>
-        <span class="key">x</span>
-        <span class="key">p</span> &nbsp; toggle line displays
-    </p>
-    <p class="keyhelp">
-        <span class="key">j</span>
-        <span class="key">k</span> &nbsp; next/prev highlighted chunk
-    </p>
-    <p class="keyhelp">
-        <span class="key">0</span> &nbsp; (zero) top of page
-    </p>
-    <p class="keyhelp">
-        <span class="key">1</span> &nbsp; (one) first highlighted chunk
-    </p>
-    </div>
-</div>
-
-<div id="source">
-    <table>
-        <tr>
-            <td class="linenos">
-<p id="n1" class="stm run hide_run"><a href="#n1">1</a></p>
-<p id="n2" class="stm run hide_run"><a href="#n2">2</a></p>
-<p id="n3" class="stm run hide_run"><a href="#n3">3</a></p>
-<p id="n4" class="stm run hide_run"><a href="#n4">4</a></p>
-<p id="n5" class="pln"><a href="#n5">5</a></p>
-<p id="n6" class="stm run hide_run"><a href="#n6">6</a></p>
-<p id="n7" class="pln"><a href="#n7">7</a></p>
-<p id="n8" class="stm run hide_run"><a href="#n8">8</a></p>
-<p id="n9" class="pln"><a href="#n9">9</a></p>
-<p id="n10" class="stm run hide_run"><a href="#n10">10</a></p>
-<p id="n11" class="pln"><a href="#n11">11</a></p>
-<p id="n12" class="pln"><a href="#n12">12</a></p>
-<p id="n13" class="stm run hide_run"><a href="#n13">13</a></p>
-<p id="n14" class="pln"><a href="#n14">14</a></p>
-<p id="n15" class="pln"><a href="#n15">15</a></p>
-<p id="n16" class="stm run hide_run"><a href="#n16">16</a></p>
-<p id="n17" class="pln"><a href="#n17">17</a></p>
-<p id="n18" class="stm run hide_run"><a href="#n18">18</a></p>
-<p id="n19" class="pln"><a href="#n19">19</a></p>
-<p id="n20" class="stm run hide_run"><a href="#n20">20</a></p>
-<p id="n21" class="stm run hide_run"><a href="#n21">21</a></p>
-<p id="n22" class="stm run hide_run"><a href="#n22">22</a></p>
-<p id="n23" class="stm run hide_run"><a href="#n23">23</a></p>
-<p id="n24" class="stm run hide_run"><a href="#n24">24</a></p>
-<p id="n25" class="stm run hide_run"><a href="#n25">25</a></p>
-<p id="n26" class="pln"><a href="#n26">26</a></p>
-<p id="n27" class="stm run hide_run"><a href="#n27">27</a></p>
-<p id="n28" class="pln"><a href="#n28">28</a></p>
-<p id="n29" class="stm run hide_run"><a href="#n29">29</a></p>
-<p id="n30" class="pln"><a href="#n30">30</a></p>
-<p id="n31" class="stm run hide_run"><a href="#n31">31</a></p>
-<p id="n32" class="pln"><a href="#n32">32</a></p>
-<p id="n33" class="pln"><a href="#n33">33</a></p>
-<p id="n34" class="stm run hide_run"><a href="#n34">34</a></p>
-<p id="n35" class="stm mis"><a href="#n35">35</a></p>
-<p id="n36" class="stm mis"><a href="#n36">36</a></p>
-<p id="n37" class="stm mis"><a href="#n37">37</a></p>
-<p id="n38" class="pln"><a href="#n38">38</a></p>
-
-            </td>
-            <td class="text">
-<p id="t1" class="stm run hide_run"><span class="key">import</span> <span class="nam">os</span><span class="strut">&nbsp;</span></p>
-<p id="t2" class="stm run hide_run"><span class="key">import</span> <span class="nam">glob</span><span class="strut">&nbsp;</span></p>
-<p id="t3" class="stm run hide_run"><span class="key">import</span> <span class="nam">importlib</span><span class="strut">&nbsp;</span></p>
-<p id="t4" class="stm run hide_run"><span class="key">import</span> <span class="nam">unittest</span><span class="strut">&nbsp;</span></p>
-<p id="t5" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t6" class="stm run hide_run"><span class="nam">absolute_path</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">realpath</span><span class="op">(</span><span class="nam">__file__</span><span class="op">)</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t7" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t8" class="stm run hide_run"><span class="nam">module_paths</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t9" class="pln">    <span class="op">[</span><span class="nam">path</span> <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="str">'test'</span><span class="op">,</span> <span class="str">'*.py'</span><span class="op">)</span><span class="op">)</span> <span class="key">if</span> <span class="str">'__init__.py'</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">path</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t10" class="stm run hide_run"><span class="nam">nonrandom_test_module_paths</span> <span class="op">=</span> <span class="xx">\</span><span class="strut">&nbsp;</span></p>
-<p id="t11" class="pln">    <span class="op">[</span><span class="nam">path</span> <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">glob</span><span class="op">.</span><span class="nam">glob</span><span class="op">(</span><span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">join</span><span class="op">(</span><span class="nam">absolute_path</span><span class="op">,</span> <span class="str">'test'</span><span class="op">,</span> <span class="str">'nonrandom'</span><span class="op">,</span> <span class="str">'*.py'</span><span class="op">)</span><span class="op">)</span> <span class="key">if</span> <span class="str">'__init__.py'</span> <span class="key">not</span> <span class="key">in</span> <span class="nam">path</span><span class="op">]</span><span class="strut">&nbsp;</span></p>
-<p id="t12" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t13" class="stm run hide_run"><span class="nam">module_paths</span><span class="op">.</span><span class="nam">extend</span><span class="op">(</span><span class="nam">nonrandom_test_module_paths</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t14" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t15" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t16" class="stm run hide_run"><span class="key">def</span> <span class="nam">load_tests</span><span class="op">(</span><span class="nam">loader</span><span class="op">,</span> <span class="op">*</span><span class="nam">args</span><span class="op">)</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t17" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t18" class="stm run hide_run">    <span class="nam">suite</span> <span class="op">=</span> <span class="nam">unittest</span><span class="op">.</span><span class="nam">TestSuite</span><span class="op">(</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t19" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t20" class="stm run hide_run">    <span class="key">for</span> <span class="nam">path</span> <span class="key">in</span> <span class="nam">module_paths</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t21" class="stm run hide_run">        <span class="nam">_</span><span class="op">,</span> <span class="nam">module_file_name</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">split</span><span class="op">(</span><span class="nam">path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t22" class="stm run hide_run">        <span class="nam">module_name</span><span class="op">,</span> <span class="nam">_</span> <span class="op">=</span> <span class="nam">os</span><span class="op">.</span><span class="nam">path</span><span class="op">.</span><span class="nam">splitext</span><span class="op">(</span><span class="nam">module_file_name</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t23" class="stm run hide_run">        <span class="nam">spec</span> <span class="op">=</span> <span class="nam">importlib</span><span class="op">.</span><span class="nam">util</span><span class="op">.</span><span class="nam">spec_from_file_location</span><span class="op">(</span><span class="nam">module_name</span><span class="op">,</span> <span class="nam">path</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t24" class="stm run hide_run">        <span class="nam">module</span> <span class="op">=</span> <span class="nam">importlib</span><span class="op">.</span><span class="nam">util</span><span class="op">.</span><span class="nam">module_from_spec</span><span class="op">(</span><span class="nam">spec</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t25" class="stm run hide_run">        <span class="nam">spec</span><span class="op">.</span><span class="nam">loader</span><span class="op">.</span><span class="nam">exec_module</span><span class="op">(</span><span class="nam">module</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t26" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t27" class="stm run hide_run">        <span class="nam">tests</span> <span class="op">=</span> <span class="nam">loader</span><span class="op">.</span><span class="nam">loadTestsFromModule</span><span class="op">(</span><span class="nam">module</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t28" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t29" class="stm run hide_run">        <span class="nam">suite</span><span class="op">.</span><span class="nam">addTest</span><span class="op">(</span><span class="nam">tests</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t30" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t31" class="stm run hide_run">    <span class="key">return</span> <span class="nam">suite</span><span class="strut">&nbsp;</span></p>
-<p id="t32" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t33" class="pln"><span class="strut">&nbsp;</span></p>
-<p id="t34" class="stm run hide_run"><span class="key">if</span> <span class="nam">__name__</span> <span class="op">==</span> <span class="str">'__main__'</span><span class="op">:</span><span class="strut">&nbsp;</span></p>
-<p id="t35" class="stm mis">    <span class="nam">test_loader</span> <span class="op">=</span> <span class="nam">unittest</span><span class="op">.</span><span class="nam">defaultTestLoader</span><span class="strut">&nbsp;</span></p>
-<p id="t36" class="stm mis">    <span class="nam">test_suite</span> <span class="op">=</span> <span class="nam">load_tests</span><span class="op">(</span><span class="nam">test_loader</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t37" class="stm mis">    <span class="nam">unittest</span><span class="op">.</span><span class="nam">TextTestRunner</span><span class="op">(</span><span class="op">)</span><span class="op">.</span><span class="nam">run</span><span class="op">(</span><span class="nam">test_suite</span><span class="op">)</span><span class="strut">&nbsp;</span></p>
-<p id="t38" class="pln"><span class="strut">&nbsp;</span></p>
-
-            </td>
-        </tr>
-    </table>
-</div>
-
-<div id="footer">
-    <div class="content">
-        <p>
-            <a class="nav" href="index.html">&#xab; index</a> &nbsp; &nbsp; <a class="nav" href="https://coverage.readthedocs.io">coverage.py v4.5.3</a>,
-            created at 2019-07-09 15:15
-        </p>
-    </div>
-</div>
-
-</body>
-</html>
diff --git a/notebooks/asian carp eggs.ipynb b/notebooks/asian carp eggs.ipynb
deleted file mode 100644
index 3494173..0000000
--- a/notebooks/asian carp eggs.ipynb	
+++ /dev/null
@@ -1,98 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "hatching_time = BigheadCarpEggs.hatching_time()\n",
-    "time_step_size = 10  # seconds\n",
-    "\n",
-    "initial_position = np.array([[0, 0, 0]])\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, hatching_time)\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [],
-   "source": [
-    "number_of_time_steps = simulation_clock.number_of_time_steps()\n",
-    "\n",
-    "time = np.tile(np.nan, number_of_time_steps)\n",
-    "density = np.tile(np.nan, number_of_time_steps)\n",
-    "diameter = np.tile(np.nan, number_of_time_steps)\n",
-    "\n",
-    "for current_time_index in simulation_clock.iter_time_index():\n",
-    "    time[current_time_index] = simulation_clock.current_time()\n",
-    "    density[current_time_index] = carp_eggs.density()\n",
-    "    diameter[current_time_index] = carp_eggs.diameter()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHjCAYAAACzRa5KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VNXdx/HPj7DLIsgqoEFE3HGJWqu27uJeH5dHa1vaam2fVrsvsbbVqm2pWvcVFcUNF+qCgiwiyCr7vocQQiCQBci+5zx/zJ0wSWaSmSSTCcz3/XrllZlztzNn7tz7u2e515xziIiIiEj8aBfrDIiIiIhI61IAKCIiIhJnFACKiIiIxBkFgCIiIiJxRgGgiIiISJxRACgiIiISZxQAioiIiMQZBYAiIiIicUYBoIiIiEicaR/rDLSGPn36uMTExFhnQ0RERKRRy5Yty3HO9Y3mNuIiAExMTGTp0qWxzoaIiIhIo8xse7S3oSZgERERkTijAFBEREQkzigAFBEREYkzCgBFRERE4owCQBEREZE402oBoJmNM7MsM1sbkNbbzGaY2Rbvf686y5xlZlVmdlNA2mhv/i1mNrq18i8iIiJyqGjN28C8DjwLvBGQlgzMdM6NMbNk7/2fAMwsAfg3MM0/s5n1Bu4HkgAHLDOzSc65fa3yCUJITJ5cL23Rny+hf4/OMciNiIiISMNarQbQOTcH2Fsn+XpgvPd6PPCdgGn3AP8FsgLSrgBmOOf2ekHfDGBUdHLcPE9+sTnWWRAREREJKtZ9APs75zIBvP/9AMxsEHAD8GKd+QcBOwLeZ3hpIiIiIhKmWAeAoTwJ/Mk5V1Un3YLM64KtwMzuMrOlZrY0Ozu7xTMoIiIicrCK9aPg9pjZQOdcppkN5EBzbxLwrpkB9AGuMrNKfDV+FwYsPxiYHWzFzrmxwFiApKSkoEGiiIiISDyKdQ3gJMA/knc08AmAc26ocy7ROZcITAR+7pz7GN+AkMvNrJc3YvhyAgaJiIiIiEjjWq0G0Mwm4Ku962NmGfhG844B3jezO4B04OaG1uGc22tmDwFLvKQHnXN1B5aIiIiISANaLQB0zt0WYtIljSz3wzrvxwHjWihbURSsu6KIiIhI7MW6CVhEREREWpkCQBEREZE4owBQREREJM4oABQRERGJMwoARUREROKMAsAoMQ0CFhERkTZKAaCIiIhInFEAKCIiIhJnFACKiIiIxBkFgFHiXKxzICIiIhKcAkARERGROKMAMEo0ClhERETaKgWAIiIiInFGAaCIiIhInFEAKCIiIhJnFACKiIiIxBkFgCIiIiJxRgFglGgQsIiIiLRVCgBFRERE4owCQBEREZE4owBQREREJM4oABQRERGJMwoAo0SPghMREZG2SgGgiIiISJxRACgiIiISZxQAioiIiMQZBYBR4lyscyAiIiISnAJAERERkTijADBKNApYRERE2ioFgCIiIiJxRgGgiIiISJxRACgiIiISZxQAioiIiMQZBYAiIiIicabVAkAzG2dmWWa2NiCtt5nNMLMt3v9eXvr1ZrbazFaa2VIzOz9gmdHe/FvMbHRr5T9ShoYBi4iISNvUmjWArwOj6qQlAzOdc8OBmd57vNcjnXOnAT8GXgFfwAjcD5wDnA3c7w8aRURERCQ8rRYAOufmAHvrJF8PjPdejwe+481b6FzNszQOA/yvrwBmOOf2Ouf2ATOoH1SKiIiISAPCCgDNrKuZ/dHM/mBmnc3sh2Y2ycweMbNuzdh+f+dcJoD3v1/ANm8ws43AZHy1gACDgB0By2d4aSIiIiISpnBrAF8H+gND8QVkScBjgAEvRCNjzrmPnHPH46sVfMhLDtaxLuhTd83sLq//4NLs7OxoZFFERETkoNQ+zPmOc87dYmYGZAKXOuecmc0FVjVj+3vMbKBzLtPMBgJZdWdwzs0xs2Fm1gdfjd+FAZMHA7ODrdg5NxYYC5CUlBQ0SBQRERGJRxH1AfT65U3x98/z/jcnuJoE+EfyjgY+ATCzY71gEzM7A+gI5ALTgMvNrJc3+ONyL63N0bOARUREpK0KtwZwqZl18wZn+PvjYWbDgIJwVmBmE/DV3vUxswx8o3nHAO+b2R1AOnCzN/uNwA/MrAIoAf7XCzb3mtlDwBJvvgedc3UHloiIiIhIA+zAYNsmrsDMXHNXEmVJSUlu6dKlUVt/YvLkemkdE9oxL/ki+nXvHLXtioiIyKHHzJY555KiuY2ImoDNLKFuWlsP/mKlvKqaO8dHL+gUERERaaqwA0Az647XR0/Ck11QFussiIiIiNQT7n0ABwJf4I2qFREREZGDV7iDQOYCf3DOTYpmZg41GggsIiIibVG4TcD70BM3IqbOkSIiItIWhRsAXghcaWa/iGJeRERERKQVhBUAOueKgOuA06ObnUOLmoBFRESkLQq3DyDOuSrgzijmRURERERaQdgBYCAz6xG4rJ7GISIiInLwiCgANLOfAg/iezybf4yDA45p4XyJiIiISJREWgP4e+Ak51xONDIjIiIiItEX0aPggK1AcTQyIiIiIiKtI9IawHuBBWa2CKh5zplz7pctmqtDxK68Uv4zfRO/u3xErLMiIiIiUiPSGsCXgC+Br4FlAX8SwjNfpsQ6CyIiIiK1RFoDWOmc+21UciIiIiIirSLSGsBZZnaXmQ00s97+v6jkTERERESiItIawO96/+8NSNNtYEREREQOImEFgGY20DmX6ZwbGu0MiYiIiEh0hVsDOM7MegGzganAPOdcZdRyJSIiIiJRE1YA6Jy70sw6AxcCNwCPmVk6vmBwqnMuPXpZFBEREZGWFHYfQOdcKV7AB2BmQ4ErgWfNbIBz7uzoZFFEREREWlKkg0BqOOe2Ac8Dz5tZx5bLkoiIiIhEU0QBoJkV4Bv1GygPWGpmv3POpbZYzkREREQkKiKtAXwc2AW8AxhwKzAA2ASMw9dHUERERETasEhvBD3KOfeSc67AOZfvnBsLXOWcew/oFYX8iYiIiEgLizQArDazW8ysnfd3S8C0uk3DIiIiItIGRRoA3g58H8gC9nivv2dmXYC7WzhvIiIiIhIFkfYB3O+cuzYwwcyGOudKgHktly0RERERiZZIawA/NbMe/jdmdgLwactmSURERESiKdIA8J/4gsBuZnYmMBH4XstnS0RERESiJaImYOfcZDPrAEwHugPfcc5tiUrORERERCQqwgoAzewZao/y7QGkAveYGc65X0Yjc4eKtTvzOHlQz1hnQ0RERAQIvwZwaZ33y1o6I4eya56ZR9qYq2OdDREREREgzADQOTc+2hkRERERkdYR6SCQJjGzcWaWZWZrA9J6m9kMM9vi/e/lpd9uZqu9vwVmNjJgmVFmtsnMUswsuTXyLiIiInKoaZUAEHgdGFUnLRmY6ZwbDsz03gNsA77tnDsVeAgYC2BmCcBzwJXAicBtZnZi9LMuIiIicmhplQDQOTcH2Fsn+XrA37Q8HviON+8C59w+L/1rYLD3+mwgxTmX6pwrB9711iEiIiIiEYjoNjBmdhzwB+DowGWdcxc3Ydv9nXOZ3vKZZtYvyDx3AJ97rwcBOwKmZQDnNJDXu4C7AI466qgmZE9ERETk0BTpo+A+AF4EXgaqWj47B5jZRfgCwPP9SUFmc0HSfBOcG4vXfJyUlBRyPhEREZF4E2kAWOmce6GFtr3HzAZ6tX8DgSz/BDM7FXgFuNI5l+slZwBDApYfDOxqobyIiIiIxI2mPAv452Y20BvF29vMejdx25OA0d7r0cAnAGZ2FPAh8H3n3OaA+ZcAw81sqJl1BG711iEiIiIiEYi0BtAfsP0hIM0BxzS0kJlNAC4E+phZBnA/MAZ438zuANKBm73Z/wYcATxvZuCrdUxyzlWa2d3ANCABGOecWxdh/kVERETiXqTPAh7alI04524LMemSIPPeCdwZYj1TgClNyYOIiIiI+IT7LOCLnXNfmtn/BJvunPuwZbMlIiIiItESbg3gt4EvgWuDTHP4+uyJiIiIyEEg3GcB3+/9/1F0syMiIiIi0dZaj4ITERERkTZCAaCIiIhInFEAKCIiIhJnmhUAmlmSmQ1qqcyIiIiISPQ1twbwHuAzM3uvJTIjIiIiItEX6ZNAanHOjQYws+4tkx0RERERibaIagDN7L9mdrWZ1VrOOVfQstkSERERkWiJtAn4BeC7wBYzG2Nmx0chTyIiIiISRREFgM65L5xztwNnAGnADDNbYGY/MrMO0cigiIiIiLSsiAeBmNkRwA+BO4EVwFP4AsIZLZozEREREYmKiAaBmNmHwPHAm8C1zrlMb9J7Zra0pTMnIiIiIi0v0lHArzjnpgQmmFkn51yZcy6pBfMlIiIiIlESaRPww0HSFrZERkRERESkdYRVA2hmA4BBQBczOx0wb1IPoGuU8iYiIiIiURBuE/AV+AZ+DAYeD0gvAP7cwnkSERERkSgKKwB0zo0HxpvZjc65/0Y5TyIiIiISReE2AX/POfcWkGhmv6073Tn3eJDFJIBzDjNrfEYRERGRKAu3Cfgw73+3aGXkUOccKP4TERGRtiDcJuCXvP9/j252Dl0u1hkQERER8UR0Gxgze8TMephZBzObaWY5Zva9aGXuUOKcQkARERFpGyK9D+Dlzrl84BogAzgO+EOL5+oQVK34T0RERNqISAPADt7/q4AJzrm9LZyfQ9YTX2yOdRZEREREgMgDwE/NbCOQBMw0s75Aactn69DzwuytZOaVxDobIiIiIpEFgM65ZOBcIMk5VwEUAddHI2OHoveW7Ih1FkRERETCvg1MoBPw3Q8wcNk3Wig/IiIiIhJlEQWAZvYmMAxYCVR5yQ4FgGHRQGARERFpCyKtAUwCTnS6p4mIiIjIQSvSQSBrgQHRyIiIiIiItI5IawD7AOvNbDFQ5k90zl3XorkSERERkaiJNAB8IBqZEBEREZHWE1EA6Jz7ysyOBoY7574ws65AQnSyJiIiIiLREOmzgH8CTARe8pIGAR+Hsdw4M8sys7UBab3NbIaZbfH+9/LSjzezhWZWZma/r7OeUWa2ycxSzCw5kry3BRo5IyIiIm1BpINAfgGcB+QDOOe2AP3CWO51YFSdtGRgpnNuODDTew+wF/gl8FjgzGaWADwHXAmcCNxmZidGmH8RERGRuBdpAFjmnCv3v/FuBt1oxZZzbg6+wC7Q9cB47/V44DvevFnOuSVARZ35zwZSnHOpXh7e5SB7CklBad2PJCIiItL6Ig0AvzKzPwNdzOwy4APg0yZuu79zLhPA+99YTeIgIPBZahleWlBmdpeZLTWzpdnZ2U3MYst6bX5arLMgIiIiEnEAmAxkA2uAnwJTgL+0dKZCsCBpIWsfnXNjnXNJzrmkvn37RjFbkbl17EJ0H20RERGJpUhHAVeb2cfAx8655lar7TGzgc65TDMbCGQ1Mn8GMCTg/WBgVzPz0Oq+Tq3bEi4iIiLSusKqATSfB8wsB9gIbDKzbDP7WzO2PQkY7b0eDXzSyPxLgOFmNtTMOgK3eusQERERkQiE2wT8a3yjf89yzh3hnOsNnAOcZ2a/aWxhM5sALARGmFmGmd0BjAEuM7MtwGXee8xsgJllAL8F/uLN38M5VwncDUwDNgDvO+fWRfRp2wi1AIuIiEgshdsE/APgMudcjj/BOZdqZt8DpgNPNLSwc+62EJMuCTLvbnzNu8HWMwVfv0MRERERaaJwawA7BAZ/fl4/wA4tm6VD37L0fbHOgoiIiMSxcAPA8iZOkyDeXbyj8ZlEREREoiTcJuCRZpYfJN2Azi2Yn7hQrU6AIiIiEkNhBYDOuYRoZySe6D6AIiIiEkuR3ghaWkC14j8RERGJIQWAMTBp1UF3/2oRERE5hCgAFBEREYkzCgBjJD23ONZZEBERkTilADBGvvXorFhnQUREROKUAkARERGROKMAUERERCTOKAAUERERiTMKAEVERETijAJAERERkTijAFBEREQkzigAFBEREYkzCgBjaNq63ZRXVsc6GyIiIhJnFADG0E/fXMaYzzfGOhsiIiISZxQAxtjmPQWxzoKIiIjEGQWAMTYvJSfWWRAREZE4owCwFVw38ki+dVzfkNMTkyfz6apdrZgjERERiWcKAFvB07edzrPfPb3Bee6ZsKKVciMiIiLxTgFgK3Eu1jkQERER8VEA2Eo6JFissyAiIiICKABsNV07tif5yuMbnMepmlBERERagQLAVvSzbw/jt5cdF3L6lU/NZXtuUSvmSEREROKRAsAo++s1J4Y978bdBdz4woIo5kZEREREAWDU3XH+0IjmzyksD3hd1tLZEREREVEAGCs3nD4o5LR7JqwgMXkySQ9/wQLdKFpERERamALAGBncq0vIaYE3hf7uK4taIzuNSs8t5uU5qbHOhsSBaet2szRtb6yzISIBnHMUlFbEOhtNlp5bzAOT1lFdrcGWfgoAW9kpg3rW+t8StuUUUVhW2WLrqysxeTLfenQW/5iygX1F5Y3O+9v3V0YtLxLapt0Fh8RI8p++uYybXlwY62w02469xZRWVMU6Gw2qqKrm01W7Wmy/eXlOKh+tyGiRdbUVO/YWs7+44eNeU1VXOx6fvonsgrbf3eedxemc8sB0tuVEd6Cic46UrMIWX+/dE5bz+oI01u3Kb/F1H6wUALayi47vx4Lki7n8pAFhLzN7UxbT1+0GYHXGfn717goqqqoPrPOx2Xz35a+pqnaUVTb9hFNUVkl5ZTV3vbGUP01c3eT1fLh8Z5OXrWvtzjxen7+txdYXjvLK6lpXibv2l7B2Z16teeZuya4JhnfuL2m1wOv3H6wiMXlyvfTJqzO54sk5jJuf1qz1T1q1iwmL0wHIL61gx97iZq2vIVkFpWGd+LbnFnHVU3PZV1RORVU1icmTGTtna9TyFcz6XfncM2EFlVXVjF+QxpzN2Q3OX1lVzQWPzOLud1ZEtdYkr7iCGev31EuvqnZhBZ/Pz9rKPRNWMHXt7rC2V1hW2eC+/o8pG/jNe6sA3/GkuSqqqvnnlA3klbRezVPdmq4LHpnFaQ/OiMq2Fqft5ekvU/jTfw8cbwOP7W3JF95+ti2nacFZQWkFqzP2Nzrff5fv5NLHv2r0NxapKtX81aMAMAaOPNzX/PvITaeSeETXRuf/4WtLuOvNZSQmT+a6Z+fzycpdfLkxi137S2rmWZ2Rx93vLGfEX6bWWvaWFxeSmDyZyqpqCssqKSkPfVI46f5p3PTiAqav38N7S3fgnOPpmVtqzdPOat/QOrewjIqqagpKK4IGJgApWYVMXbubR6dtZH5KDrvzSgHIzCvh2mfmkVVQWmv+NRl5LE/fR35pBdc8M48HPl1PXkkFFz82mwcmrQu6ja9Tc/nX5xv42ZvLmLUpK+RnBNhXVM6ajLyQ04/7y+f8/oNVNe+/OeZLrnlmXs37656dx/dfXczo1xazblce5435kvEL0hrcZl2VYRzkV2fs5wfjFrNlT0HNSWHistq1K2WVVSQmT+YX7ywHfAHztpwiJixOD+ukuS2niMenb6o5qf9ywgru/XANAFc/PZcLHpkV0ecKZfamLK56am7N5/501S7O/sdMzvrHF40u+/ysrazPzGfqut3ke5/pqS+21JuvoqqaD5buIDPvwO+ioLSCV+dtqxW0rN2Zx6bdBbWWzS4o45OVtS9cqqpdTbnfM2E5n67axbacIu6ftI4fjFvc4CAt/7nmiw17OOWB6fxx4qqQ84Yjq6A0aGDws7eW8ZM3lpJVUMrocYv5y8e+7+7X763k+L9OZad3jMgvreDx6Zvq7Xe7832/vae/TOGb/5rJPyavrzdPYVklpRVV7M4r5eT7p/GHiatJz/VdGFRVO+YH6af85cY9nHT/NKauzQz7M362ehdPzNjMw5+tr5U2dk4qYz7fgHOOV+amkldSwZK0vTw6bSNvL9rO52syI9qOX3F5Jfd9tKZegP7+0h2c8sD0FquFeviz9bwyN5XX528jMXky1zwzt2baolRfVwd/sL41u5Dh933OpDCfDf/+0h2c8dCMes2a1dWOD5dn1JwjfvHOcv49dWPNdOd8NY91fwcNmbUpeEBWWlFVK7gqr6xm1/4SsvIPHNcXbM1h9LjFXPfs/AYrKaav211z7F2dsZ95W3K4/ZWvay62N2Tmk1dcQWFZJYnJk2vtexOXZbA3SAtVUVkl23OLap7GVVhWyQOT1rEoNbfWfKnZhVz51Fyuf25+IyVx6Ggf6wzEs1uShjD48C5N6uf30zeXAXDB8D41aZ97V/H5pRUs376PAT07s9jrSzVl7W5+6T1v+N83nsJlJw4gt7CMTu0TOOqIrtz1xlLAF0j6TV6TyeMzNtfa7qvztzF2zlY2PnQlFVXVnPnwF9x4xmBOGdSj1nzff3URL/8gic4dErj08a9q0p+btZVeXTuw4m+XM37BdtbszGPUk3NrfrjfPq4vX3lXfmcP7V2z3I9fX0JqThGpOUU8cN1JgO+EX1xWxcgHp9fa9tR1u1l83yX06tqRDgntmLlhD4l9DmNY324A3PjCAlJzikhoZ3x2z/n87ZO1LEnbR9qYq3l/yQ4APlyxk1vOGsI3jjniwGeft407zh9aU0YpWYWk5fhOhIu27SUpsTftE4zjBxwoi5+/vYwpa3z56de9MwCfrNzJr95dyZj/OYVzhx3B0UccVjP/r95dwScrd/HZPedz3bO+A9FlXnl8+7i+1JWxr6TWe+ccFz02G4B7P1zDtSOPpGNCOx67+VTM6j+NZvS4xaTvLWbymkxuO/uomvRnZm5hx94D6564LIPff7CKDQ+OYm9xOZVV1ZRWVNM+wfjF28sZ+/0k9hSUclai7zv748RVdO3YngeuOwnnHH+YuJrsgjJyi8o5558z6+Vjf3E5xeVVtWqifvf+Kv5xw8m15nthtq/mr6i8iuLySrp2bM/Crbk8MGkdm/YcOJl98dtvUVJezfiFaUxclsGx/brVlJ8/mE8bc3XN/HeMX8LqjDwuGN6Xrh0T6JDQjv95fj6rMvJIG3M1W7N9zV6Bp9lvPzKLdQ+Oqin3J2Zs5upTj+SYvofx49eX1Mr3+0szOHfYEfTq2pGC0kquHXkkSQ/PIKewnLQxV5NbWEaH9u1IySrklbmpPH/7mezcX0Lfbp14YfZWnvhiMzecPojfXnYcd4xfwqS7z6dzhwTSvPuGfrkhq+Z38/B3TqnpR3zemC+Zn3wxz89K4e1F6Qzr143rTxvEXz5ew1tfp/PNYb79e0Omr1ns5bnbeHmur8Z9yi8voE+3jpztfV9v33lOzb4wcVkGGx8axbcemUVWQRlv3nE2Fww/sH/++HXf8eRnby1nxm++xfD+3dm0u4A5m7NJSuzFqh37eeDT9ax54HK6d+7Axt353P3Ogeeh/8W7fVa1F4vml1SyYGsuD0/ewFebs5m7pX7QmTbmarIKStlfXMGgw7twWCff6W1F+j7ySyvZX1xOjy4duGhEPwBOvn8a1c533Hzjx2dzXP/udGzfjpkbfBeQKVkFfLBsR73t1HXLiwtZnLaXd35yDjg4d9gR3Pby19x5/jFcemJ/XplXuwVj7c585mzOpto5nvjCd3xdsDWXtTvzSPWaV6euzeTaUwfy3pIdJH+4hitO6s8zt51Bx/a162z+/OEaKqsda3bmMXLI4TXpj0zbxItf+X4rmx4exeTVvgD5f5OGkF9awQdLM3jz6+08/WUKE37yDc4ddgTBlJRX0aVjQq0A2x9I/e79VSQl9uLeD9fQo3N78kvr1/h+8ovzWLp9Hw8FBPVfrM/i6lMH1pv3oxUZNbXHAI9NP3DueWdxOmUVVTz9ZQrHD+jO8P7dAbj9lUVcNKJvTXDatWMC673fpN8PX1vMkrR9Ne9ve/lrAF5fkMbUX19A+3bteGrmllp97/1255XSv0cnzIwLH53Fz749jFsDjpMHO2utpiszGwdcA2Q550720noD7wGJQBpwi3Nun/nOVE8BVwHFwA+dc8u9ZUYDf/FW+7Bzbnxj205KSnJLly5t2Q8UIFTNF9Q+yQQzPyWH22M80GNI7y61TvbhSBtzdYOfG+CXlwyvV4Pol/rPqzjmz1Mi2qbf6HOP5qgjDqt1UAnl07vP59pnfSf8rf+8ijcWpvH3T4MvZ9b4M5t/csHQmhMkwGlDDmfljtrNGucecwT3XX0Cr8xN5eOVBw4q7/zkHGas38Py9P2sClhmwk++QUlFJT97cznlYTb/+Perxr4Dv0dvOpUde4spq6zmrm8dA8AR3Tpxyv3TKAijqS7UAb6uF24/g+6dO/C9V337dO/DOta6Kv/jqBE8MnVTrWUuHNGX2SFqFwCuPHlAzcVNXb+59Liak2hDHrt5JGk5RTw7K6UmLW3M1Yz5fCMDenTiAW+f+OE3E3l9QRqXn9if6V6TV6+uHdhXHLw29ZcXH8uMDVn8/MJh3ONdYHXu0I7Sioa/x3l/uojz/z2rJh91v8eko3uxdPu+YIsC8KdRx/N/Fw4L+v039Nt87OaRlFRU8deP1zaYv3AktLOamp8OCcYD153EfR8FX+9tZw9hwuL6wdTbd57Decf2qZff31x6HB3bt6tVa/WHK0bw6LRNdVdR47UfnsWPvMA72O/Sb+NDo+iQ0I5hQY4/j98ykmnrdjNt3R4evP4k/vbJgRaHW88awrtLdnBsv25cdcpAfnvZcZRXVnPcXz4PmafJvzyfq5+eF3TaDacP4qMVtWudj+3XjZSsQkb0717rggbg+dvP4PIT+7O3qJx3l+zg9QVptX5bgeeawPL8+Bfn8Z1GarUuHNGXq04eSMa+Yp7+0vcb8X9nL/8giZ+8ceD8+cxtp/PcrBQ2RlB7WNcPzj2aNxZuB+Cn3z6Gn1xwDEkPN94a4HfGUYezPD3497v4vkvo1D6BLh0SOOOhGU3qH3/1qQP59SXDueyJOSRfeTxHHNaRP3jdoho7p7cUM1vmnEuK6jZaMQD8FlAIvBEQAD4C7HXOjTGzZKCXc+5PZnYVcA++APAc4Cnn3DlewLgUSMJ3Mb4MONM5F/pISdsOAOdtyak5WR5MwgkA25rkK49nzOcbG5/xIJD6z6uYtm43//f28iav4+nYCzE8AAAgAElEQVTbTq+pFW5J3Tu1DyuojLUn//c0fv1e7AcsNXSh1BS/vnQ4TwZpIgdfi0Gw2rNYmvbrb3HFk3NinY0a5x/bh3kH4e23rjplANkFZZx5dO+a2j9peW/8+Gy+FaQ1pqUdUgEggJklAp8FBICbgAudc5lmNhCY7ZwbYWYvea8nBM7n/3PO/dRLrzVfKLEKAMf/+OygzXaB5m7J5vuvLo5GtqLqUAqmREREwtUatYCtEQDGug9gf+dcJoAXBPbz0gcBge0FGV5aqPR6zOwu4C6Ao46KTZt9OMH1yUf6bgfz2o/O4owhvcgtKuPi/3zVyFKxp+BPRETk4NVWRwHX763ua/INlV4/0bmxzrkk51xS377Rr65tql6HdSRtzNVcNKIfPbt24Ji+3Uj5x5WxzpaIiIgcwmIdAO7xmn7x/vvv35EBDAmYbzCwq4H0NinYqMtwtE+I9dciIiIih7JYRxqTgNHe69HAJwHpPzCfbwB5XlPxNOByM+tlZr2Ay700EREREQlTqwWAZjYBWAiMMLMMM7sDGANcZmZbgMu89wBTgFQgBXgZ+DmAc24v8BCwxPt70Es7ZKWNuZpfXzo81tkQERGRQ0irDQJxzt0WYtIlQeZ1wC9CrGccMK4Fs9bmffeco0Le1kFEREQkUrEeBXxI69OtY5OXffyWkZRV+m4m269750ZvgioiIiISrla9D2CsRPs+gFuzC/n1uytrHsfzh8tHUFFVzUXH92t84Qjkl1awc18Jw/t1Y9G2vZw8qCeVVdXszi+luLyKeVtyOPLwzuQWlTOif3cG9OzMivT97NpfQteOCZRUVHFsv27s2l9KZl4Jv7tsBKk5hWQXlPPV5iwO69ieH58/lL7dO/HW19sZN38b9155Aq/PT6Nvj04MPeIwHI4uHRJYuWM/IwZ0Z0CPzrRrZxSWVnLOMUeQub+EFTv20yHB6Nw+gezCMnp07sDnazO5/KQB7MkvpWNCO848uhepOUV069SeGev38JvLjmP2piySju7NxGU7qKhydO6QwO3nHMXmPQWUVlSzPbeIgYd35uQje7Itt4hzhvZmQUouqTlFjBzck1fnb6Nrh/YM63cYx/XvztmJvUnJLuSVudv4+YXD6NejE6/NT6OssppLju/H7vxStmYXceLAHnRq347Syiqqqx3Ltu+jstpxc5JvvNHEZRlk5Zfyy0uG8+eP1uAcfOe0I1mzM49unTuQPOp4Xp23jW6dErj9G0ezMTMfB+QUlLF9bzF5JRXcdvZR9O/RmfW78mmfYExclsFlJ/Qnt6icUwf3ZOHWXM48uhd9u3eivKqamRv2sCAll99cdhxbsgopq6zi8hP7U17pWLfL9yzbAT07k5pdxODeXRjWpxtlVdXsySvl1ME9WZK2l7lbcvj95SNYkrYXDBZv28s5Q49gRfo+vnvOUQztcxjzU3L5ZOVOunRMYEX6fs4/tg/XjhzIotS9/N+Fw3jPe+LA+cP78J+bR7Jyx37mp+Ryw+mDeGVeKndfdCzD+3fns9W7mLUxm/3F5RzbvxsvfZXKd047ki4d2/PZql1cf/qRXHx8P47qfRirduynU4d2XHJ8f0oqqvhg6Q5mb8pmeP9u7C0qp6Kqmv89awgXH9+fpWl72V9cQZeOCSzYmsOsjdk8dvNIunRM4PlZKQzq1YXyymqG9O7K3qJyunZM4Lxj+/CHiav5xjG96dCuHV9tzuaO84fW/I7M4Jg+3diVV8KExencfs7RvDwnlWH9unH20F7ccPpgUrIK+GJDFkf37sqkVbu48YzBVFZXM3ZOKg9952R+/8FqfnLBUDZk5tOzSwdGnTyQgtIKHp+xmStOGkBuYTmHd+1AYp/D2J5bRPfO7Xnpq1R+dclwyquq2bi7gL7dOrEsfR9bswrZuLuAH52XyC1JQ3h65hY+X7ubiT87l5zCMorKqrj3ozX86LxEOrdP4JvDjqDXYR3JK6ngR68t4f5rT6RThwS6dkjg69Rcdu4v4dIT+lPtHIVllWzNLqSyyjFyyOH06NyB1xds4+akIczdksMNpx/JvC25DO7VhfkpOVxx8gCO7deN2Ruz6NQhgfySCm4/52jmb83h7UXbGf+js9maXURCO6iscrRPMHof1ok7xi/hR99MZGBP3yPYHL7niF99ykBOG9KLju3bcdOLC7jz/GOoqq5mcK+unHbU4TgHt7y0kAevP4mFW3PZllNEVbVj9c487rnoWDIDjhe5hWWk5RbTt3snunduT8eEduzKK2VF+j6qnaOi0nH20N4MPLwzI/p3Z19xBQnt4K8fr+PfN57KCQO7M3ZuKicO7MGnqzLpkGBUVFUzrF83rjx5ILmFZUxatYsrTx5Ax/bteOvrdL59XF8G9OzMsu376NutE0P7HMaeglISzOjfozMfLNvBiQN7cO3II/lk5S769+jE0D7dWLp9LycM7MGQXl3Zml3IlDWZZOaV8r9JQygqr2RbThGlFVUUlFYytM9hXDfySN5elM7KHfu5aEQ/unZM4PzhfTjisI7M3JhFaUUV7cz4aMVODu/agd9fPoIV6fvo2rE9GzLzeWXeNm46czAGjDp5ACcP6skbC9OYtGoX1408kpOP7ElOYRlvLNzOf24ZyQuzt3JWYm8uGN6HIb27Mm7+Nvp178zqjP2k5RYzon83LhzRj+yCMlJzipi5YQ8vff9M5mzOISWrkD7dO3LykT2Zn5LDom17efD6k1i3K59hfbsxsGdn0nKL+Hztbv54xQiyCsrYsbeYdbvy6dOtE+t25XHGUb1YnbGfI7p1IqGdkV9SQacOCWzMzOfykwaweFsuFx/fj09XZfLHUSP4ZOUuunRIYFtuEZNW7uKmMwfTt3snOrVvx0lH9uTwrh3IK6lg7c48zju2Dxn7SujZpQMTFqezc38Jv7x4OFuyCjh1cE9Ss4sor6rmhIE9eH/JDgrKKrl4RD+uOHkAYz7fwAkDe3D6kF7079GJnl06sHpnHpVVjrvfWc71px3Jd04fxEne7dui6ZC7EXSsRDsAFBEREWkprREAxnoUsIiIiIi0MgWAIiIiInFGAaCIiIhInFEAKCIiIhJnFACKiIiIxBkFgCIiIiJxRgGgiIiISJyJi/sAmlk2sD3Km+kD5ER5G4cSlVdkVF6RUXlFRuUVOZVZZFRekRnhnOsezQ3ExaPgnHN9o70NM1sa7Zs2HkpUXpFReUVG5RUZlVfkVGaRUXlFxsyi/vQKNQGLiIiIxBkFgCIiIiJxRgFgyxkb6wwcZFRekVF5RUblFRmVV+RUZpFReUUm6uUVF4NAREREROQA1QCKiIiIxBkFgM1kZqPMbJOZpZhZcqzz05rMbIiZzTKzDWa2zsx+5aX3NrMZZrbF+9/LSzcze9orq9VmdkbAukZ7828xs9EB6Wea2RpvmafNzFr/k7YsM0swsxVm9pn3fqiZLfI++3tm1tFL7+S9T/GmJwas414vfZOZXRGQfkjtj2Z2uJlNNLON3n52rvav0MzsN95vca2ZTTCzztq/ajOzcWaWZWZrA9Kivk+F2kZbF6K8HvV+k6vN7CMzOzxgWkT7TlP2z7YsWHkFTPu9mTkz6+O9j+3+5ZzTXxP/gARgK3AM0BFYBZwY63y14ucfCJzhve4ObAZOBB4Bkr30ZODf3uurgM8BA74BLPLSewOp3v9e3ute3rTFwLneMp8DV8b6c7dAuf0WeAf4zHv/PnCr9/pF4P+81z8HXvRe3wq8570+0dvXOgFDvX0w4VDcH4HxwJ3e647A4dq/QpbVIGAb0CVgv/qh9q965fQt4AxgbUBa1PepUNto638hyutyoL33+t8B5RXxvhPp/tnW/4KVl5c+BJiG757EfdrC/hXzwjqY/7wvYVrA+3uBe2OdrxiWxyfAZcAmYKCXNhDY5L1+CbgtYP5N3vTbgJcC0l/y0gYCGwPSa813MP4Bg4GZwMXAZ96POCfgYFqzT3kHi3O91+29+azufuaf71DbH4Ee+AIaq5Ou/St4eQ0Cdngnjfbe/nWF9q+gZZVI7YAm6vtUqG0cDH91y6vOtBuAt4PtE43tO005/sW6LJpaXsBEYCSQxoEAMKb7l5qAm8d/wPXL8NLijlc9fzqwCOjvnMsE8P7382YLVV4NpWcEST+YPQn8Eaj23h8B7HfOVXrvAz9jTbl40/O8+SMtx4PVMUA28Jr5msxfMbPD0P4VlHNuJ/AYkA5k4ttflqH9KxytsU+F2sbB7sf4aqIg8vJqyvHvoGNm1wE7nXOr6kyK6f6lALB5gvUXirth1WbWDfgv8GvnXH5DswZJc01IPyiZ2TVAlnNuWWBykFldI9PiorzwXfWfAbzgnDsdKMLXtBFKXJeX1+fnenxNb0cChwFXBplV+1f4VEYNMLP7gErgbX9SkNmaWl6HRFmaWVfgPuBvwSYHSWu1/UsBYPNk4GvX9xsM7IpRXmLCzDrgC/7eds596CXvMbOB3vSBQJaXHqq8GkofHCT9YHUecJ2ZpQHv4msGfhI43Mz8j2UM/Iw15eJN7wnsJfJyPFhlABnOuUXe+4n4AkLtX8FdCmxzzmU75yqAD4Fvov0rHK2xT4XaxkHJG5hwDXC789odiby8coh8/zzYDMN3UbbKO/YPBpab2QBivH8pAGyeJcBwbxRTR3wdVSfFOE+txht99CqwwTn3eMCkScBo7/VofH0D/ek/8EY+fQPI86qqpwGXm1kvrxbjcnz9QDKBAjP7hretHwSs66DjnLvXOTfYOZeIb1/50jl3OzALuMmbrW55+cvxJm9+56Xf6o2SGwoMx9cx+JDaH51zu4EdZjbCS7oEWI/2r1DSgW+YWVfv8/jLS/tX41pjnwq1jYOOmY0C/gRc55wrDpgU0b7j7W+R7p8HFefcGudcP+dconfsz8A3eHI3sd6/Yt1Z8mD/wzeKZzO+EU73xTo/rfzZz8dX/bwaWOn9XYWvn8ZMYIv3v7c3vwHPeWW1BkgKWNePgRTv70cB6UnAWm+ZZzlIOgGHUXYXcmAU8DH4DpIpwAdAJy+9s/c+xZt+TMDy93llsomAkauH2v4InAYs9faxj/GNiNP+Fbq8/g5s9D7Tm/hGY2r/ql1GE/D1kazAdzK+ozX2qVDbaOt/IcorBV8fNf9x/8Wm7jtN2T/b8l+w8qozPY0Dg0Biun/pSSAiIiIicUZNwCIiIiJxRgGgiIiISJxRACgiIiISZxQAioiIiMQZBYAiIiIicUYBoIiIiEicUQAoIiIiEmcUAIqIiIjEGQWAIiIiInFGAaCIiIhInFEAKCIiIhJnFACKiIiIxBkFgCIiIiJxRgGgiIiISJxRACgiIiISZxQAioiIiMQZBYAiIiIicUYBoIiIiEicUQAoIiIiEmcUAIqIiIjEGQWAIiIiInFGAaCIiIhInFEAKCIiIhJn2sc6A62hT58+LjExMdbZEBEREWnUsmXLcpxzfaO5jbgIABMTE1m6dGmssyEiIiLSKDPbHu1tqAlYREREJM4oABQRERGJMwoARUREROKMAkARERGROKMAUERERCTOKAAUERERiTMKAKXZ1u7M4/0lO2qlbc8t4tV522reZ+WX8tysFJxzNWl5xRU8MWMzVdWOhqzflc+7i9PrpU9dm8mCrTkNLrts+14+WbkznI8Rts/XZLJway4LtuYwdW1myPnySyt4fMZmKquqm71N5xzPzUphT35ps9cVTW8sTCMlq7DRcl+atpern57Lrv0l9aZ9nZrLlDUHynXy6kwmLE5n/IK0KOS47ausqmZNRl7QaaUVVTw2bROlFVW10qeu3c2ClBze/Ho7W/YUtEY2gQO/jXD4fx+N/f7bkrFztjJt3e5ax7uKqmoen76JwrJKAKqqHU/M2ExecUWTthHucTFShWWV/Gf6JioCjkcpWYUN/q7Scmofx5uj7u8aIDOvhBdmb611XqhrfkoO09btbpE8+M3elMXMDXtqpa3asZ+JyzJqpRWWVfL49E0tcgxvi+LiPoASXFFZJXklFRx5eJdmreeaZ+YBcMtZQ2rSbnxhITmFZZyd2JtTBvfk7gkrWLxtLxeO6MtJR/YE4O+fruPDFTs5eVBPLjuxf8j1X/X0XABuPfuoWuk/e2s5AGljrq5Je2VuKqNOHsDgXl1r8gFw/WmDIv5cS9L2clz/7vTs0qFW+v+9vbzW+8DtB/rXlI1MWJzOsf26cd3IIxvcVl5JBSP/Pp1HbjqVW5KG1Ju+IbOAR6dt4qvN2bz/03Mj/CSt52+frKNrxwSKy30BSahyv+lF3/dy5/ilTPnVBbWm3Tr2a+BAuf7inQPlPfqbiS2d5SabsiaT/j06c+bRvRqczzlHSlYhw/t3b9J2Hpu+mRe/2srnv7qAEwb2qDXttflpPDsrhS4dE/jFRcfWpP/srWU1rxPaGVv/eVWTth0p/28j1G8i0D8nb+DdJTs4rn83rjm14d9HW5CZV8I/p2ysee8/3n20YidPf5lCQVkl9197EjM37OGpmVvYsa+Yx285LeLtPPjZev67PIMTj+zBFScNaLH8Pz59M+Pmb2NI7641x5jrn51HUXlVyN/VrWO/Znd+Kf971hC6dWpauPDPKRs4O7E3d77huxdv4L7xszeXsSojj8tP6s+wvt0ASM8tZsPu/JrPfvsri+ot11w/fG1JvXVe/9x8AG46c3BN2qNTNzJ+4XYS+xzG/5wxmENNVGsAzWyUmW0ysxQzSw4yvZOZvedNX2RmiQHT7vXSN5nZFV7aCDNbGfCXb2a/juZnOJTd+MICvjnmy6isO6ewDIA/f7QG8AWbANUBF1L+IKGlrq6yCkp5ePIGRo9b3Ox1lVZUcfOLC7lz/JJmrQPC+3w79/lqwsaFuNr21wb4y7Et83+v4c0b+vOUVlTxzqLaNb8N1RS0tp+/vZwbX1hQ87662tWriQN48+vtXPbEHBZv29uk7azd6av98/+mAs3alAVAWWXofawt1bBt3lNQU5tTUvP7aDv5a0iocvSXvf9/ufd7D7YvhKOkwvebqGjhWid/eQeut6iR32pBqa8Ws6HfXUVVNc/NSgn5ecfOSa0J/ury15oGrv/SJ77ip28uCzp/awtWZoeSqAWAZpYAPAdcCZwI3GZmJ9aZ7Q5gn3PuWOAJ4N/esicCtwInAaOA580swTm3yTl3mnPuNOBMoBj4KFqf4VC3cXfrNQ35mUVv3f7g0n9Q2bg7v8nrqvQO9ut3NX0d4QQr+4rKWbVjf6Pz+cutoqqap77Y0uSTy8Hk0Wmbai4gDgYPTV7P8X+dWu9ksdprvk3LKWrR7S1N21srqFy8bS+JyZPZGaRZPRbW7swjM692Xi5/Yk6bOblHykIdvLzfed2pVi8lzO00slxWQSlvLEwLOb28spptLbSvhfzMAd5bsoNHp23iuVkpNWl5xRXklTStCby8gYsZaVnRrAE8G0hxzqU658qBd4Hr68xzPTDeez0RuMR8e9z1wLvOuTLn3DYgxVtfoEuArc65qD8uRZrOf/wIFgs5WvbKv+76Rj05twXWGbnqasctLy5k9uZsoOGg95aXFtY0PYAvKE9MnsymEMH55j2FPPHFZl6YvbUJOWs4z+MXpLV6YNlQ+e4tKq+XtiGzoFmBfXPszitlefq+kNPfXezrF1Y3APR//S29v2cX1K4RfGeR71C4KDW8PngtZfOegqABxzXPzOPcf0WnhaGlLNiaw0/fXNqsmmX/ku28H3pLVVL715NbWFar//TP31rO3z5ZFzLIu3/SOi56bHbQGuNo8Nd8FpQeqM0f+eB0Rv59etjrcA4e/mw9icmTWzx/zdGGGhyiIpoB4CAgcGRAhpcWdB7nXCWQBxwR5rK3AhNCbdzM7jKzpWa2NDs7u0kf4FC1ICWHt75unbjZ/wNqyu+oqVeQLaE5FZWF5ZUsTtvL/oBO4M/NSgk6YGVLVmHQdXxRp4Ny3SCypQO1z9Zkcv+kdTwxYzPgq73xv25Lrnp6bosE9k1x0WOz+Z/nfU2+wQIGf4D35w9r11o2dBHUHHX3CRciPdouf2IOFz02u8nLt3RgHIk7Xl/KtHV7apr6GhKqWP3fa2Pl/ui0jSQmT2482PTvL97bP0xczaPTNrFsu+/iY1+x78Koqjp4TdlC7zgTGJA1V0M5TvDyW93MHfyVFhpsEg1Nrc1t66IZAAYrsbp7SKh5GlzWzDoC1wEfhNq4c26scy7JOZfUt2/fMLIbP777yiL+8vHaFl/vD19bzLacIpIenhFynsCDZEM/qq82ZzPy79NZkNLwKN/WtG5X/SatcDjna8787suLQs6T3cjVet2yCnWoTUyeXOsq+v2lOzjxb1Nr+i+t3LGf4fdNqVd75O9b6A+6r3lmHk/N3NJgnlpCUw+rseiTExgkvL2o/qh0v49X7qr13v/dNfX0GE6AFM3TU2FZJQ9/tp6yypa96DjYTqmhArzFaeH17XxuVtNq7f1dWirD7MuZllsM1L5I+WTlziYdu8KR0M5XMM0JAFv7oiVSsbxIiaZoBoAZQOBwxsHArlDzmFl7oCewN4xlrwSWO+dqV5NITM3elO01PdRvugumoR+VfyBHQ01uoUTrau3qp4M3aTXWZ2W7d0BuyN6i2gFZ3cEgdfv8hNtk9cCkdRSXV9UEL3/5eA0VVS7obXViIbugrEmDgN5YGNueH7M2ZoU9b7RqAANDqGienp6euYVX5m3jvYBbnyxIyal3G43G5JfWrtEPN88vfbU1rH6yseCcY/Jq361NDjT1e1r4MBTO/hPs1jPlldX86t2VzN4UnZYwfz/B1hprVF3tmLslmzmbo9+y19YD0+aKZgC4BBhuZkO9GrtbgUl15pkEjPZe3wR86XxntknArd4o4aHAcCBwaOdtNND8K01TWlFFYvJkxs7ZSl5JBc/PTqG6kV913YN6XQdOfqHX05QfWVsaDXrcXz5vcHrdnBaVVZKYPJlnGqhhy63T/+3dOvdZzMwrZUUYwXFN85T3fu1OX/+5/7SR5t2i8ir++sm6oNM+buA+gg2Nhi4ur+SdRem8uzg95P5bVe3Ymh28+b2pSiuCB7JNPYmUVlSRklUY9gXNge+6Zc9a/gucwNG6331lEXeMDz6yM5TX56cFTW8sv//6fGOtfrLRcNnjc5q0XOBhqO6AiaZ+CzWBZIjBJQ2pCsiQ/1X63uB9BQsCjt2hjqfhbNvf97Gxc0VDIjmcPzcrhe+/upgftMDdHhrThk4zURG1ANDr03c3MA3YALzvnFtnZg+a2XXebK8CR5hZCvBbINlbdh3wPrAemAr8wjlXBWBmXYHLgA+jlfd45e8zMnZOKn//dB2PTN3E7M0N13TcFHAbjHBEenIKNQrttRAnk5ZW04cxzCPBjr3F/Pa9lQ3O4z9wNScI+2x1Jjc8H7rsX/zK19zkr2UNVowXPjqr5nUsD3Qz1ge/yWs4eSqvrGaJ1wR35VNzeXzGZv4+aT1//mgNyR+uCRlEPjVzC5f85ytSsqIzEv7+T9bWOyGGqvGeunZ30Nv//O6DVVz6+Fc1TYDhak6txSZvENK7i9ObNQK+LfjjxFVhDypoaOS0c47E5MlBB14FfqMtVVsUzsjbSDz5RfALzQc/XR/2Ohr6LSZ4UURVte9+l5Foymf9fG3L3hQ6HOoD2ATOuSnOueOcc8Occ//w0v7mnJvkvS51zt3snDvWOXe2cy41YNl/eMuNcM59HpBe7Jw7wjkX/Nb40iIKvWCwvDL4Lz8rv5TE5Mls3tPwD77ugSMtt4i731leq9nUOV+fLn+/tM9W1+0pUF/gSNDKqmpKyqta5NYHzjmuf3YekwPuWL8tp4ih904Ja/k/f7SGLzY0HDT7O3NH05jPN1JWWdVgrVBaGE3TU9Zkkpg8OaojCpsTfP5j8npufnEhm3YXsCEzn6dnbiGr4MDTUkINJFq23Rc07s4L73NFWuM8fuH2gBrG0KNDn5m5hZ+9tYwHP6t/MvY/USPUgJ9Qg0CaY7Z3X8HkD9fU3IC9IZEGp34pWQV84vWVDAyMw+0OsC2niB17G95/31+a0eD0uhqrwWqs20Gw39jXqblUVTsy9jX+W6u/bPC+hVuzQx/nItlP94czyC6MuMcfxE1dt5tLH/+q3tM+GuLP76oQT7ppTKjBjOm5xSQmT665OAwU7OlDjVEfQJEAy9Mj65PjPy79aeJqPludycqAPj0frdjJHyeu5qx/fMHXqbnc/c6KmmnpYQQpT83cwk/fWlYzyKK5F9CrMvL448TVNe/9N+JtbSf8dSqPTtvY+Iwh5Ab0xWysTEJN9/c93ByDe0aGY4OXL//IyLomBOnrWFxeWXOxEW7H9cBah5SsAmaG0QfQ3xe2phtEkHkiqQVuqBbCOHAy/dW7wWugt+UU8fiMzdzw/Hz2hyivSE9zJ98/Lex5A3P/zqId9aZvzS7k2Ps+r+lTB6Hvw3nRY7O54BFfDXZqdmGL3DHgrjcja9IOdeNv//fw2epMbh37NS/N2Vor+A83RpuwOL0mIIfIg5DGthM4/eHJG2oN8iksqww60Kq62oV8LKG/Bakp95f9/Qergm6rMX/5eC3F5ZXc+MKCWpUC872R0P9dVv8iIJKHH6gPoMS55l35+H9AewpCP8N2+vo9fLTC11TnfwyY33tL658o6tqyp7DRDsFNuerzi9W1X0lFFc/N2hr2fd3qlkFxeVVN3jP2hff5312yg2e/bNro3+b2yywprwp7HXWPy6EWC6yh/jo1l8TkyZz4t2k16eHmOLC2qaGm90C3vfw1u/aXHMhrE8vHf0KdtSn8gSfBXP30XJ6euYUV6ftr1XC3lEia/4J1LfFfaE0NeO7rDc833vfv4v98xTf/NbNWWmDN5Ovzfc3rVdWuwdHj/pp75xz/XZbBzv0lDe6P/5mxiZMCAuB2IYKF1Oyien16GxK4msy80ppjaHV1026SHLqZ9cBne9jUkRAAACAASURBVHXetlrPNz75/mlBb9h95sMzuPbZeQ0fbyPYzxtqAn5ncXpYrSXPzUph2fZ9/GtK6Ivl6mrXpLJTH0CRZlidkcesjVm17okHTbuyaqi/VmPra+yqb8b6Pd4BP/J81c5H/Yw09yJyzpbQB9tfvbuCu95Yyqod++t1iv77p+tqjvGXPv4VJWE+ou2x6S03QCS/tIJRT85h1sasmmbXYH773kpO+NtUxoXZt/N17wH2kZRt3YsLOFADmLGvmHs/XBNWE2Qk92Dck19aa98sKqsMOlIzHCvS9zE/Jafm5Bv42auqG68fiuQRfU3RWNeNwHIIfKxaQzWb5WE2CReVV9Wq1fxrwG2uxs7x9Sy64fn5DL+v4QFb4Gt6/d0HqzhvzJe8NCc15DGh7m1dQh2DJi7L4DtNHMQSWEP9vVcX1Rpw1vixKrJBJHUfdfdlYC23N2mft++ua2b/0NTsQhKTJzd40bAnv7TWoxZD8X8PwYrDv/8c8+cpIQfr/ea9lXzrkVm10rIKSmudb9QHUA5a5ZXVjPz7dD5d1Xjfuvqav+PfPyn4KM9Ig61LA0bqBfbvcbiwc1lUVsk3/jmTtxdtZ92uPN76ejuJyZP5yRtLOW/Ml5TWuddZSUVVyOfzBorVsyI/WbmL6ev3BH1qxq79JbVOIA01kzXaXITv1ieJyZMb7XsVaP6WHDbuLuBHry/hxhcWBr2XXG5ROR96NcDh9h+qW6MS+Ei0WZHc7sL73L//YBUTFqeH9bzeSPZbM6s1/zf+NZORD4b/hIRAy9P3c/sri/jBuMVk7CumKOA5ys/OSon4thiR3lrlmUZqhgM/ZyTPrPaHrmk5vv1qYcAN0yMp6/ySA9sMvOfdrrxS8oorah7J15jAvH+5MYuJQZoRg5mzuWXuWRoYSDbUCjpxef18RXJIDads/VmZsWFPrQuXuhc1kebhyzC6ULREyPXh8tB3EvD7aMVO0gOOaVkFpZz9j5m1zjeHKgWAh4jyympGj1sctH/G7rxS8koq+OsnDd/8OVgdQn5pBYVllfU6e0dSg7c7P6D5t5m/6lfmprKvzsk/VJ+Uuqau3c3rC9LYnV/KfR+t5eqn5/Ha/NrBXd2nOAC1+iuG8ngDfbma24+kqaMx636bT34Rec2evyO6c/Bf74Szohn3ZJuxvmVv3RlOF4O6NRuB6u3zYXxX/9/efcdHUed9AP9800kIoQWkhYTee+8I0gX1ULF3BPHseiC248Ry56OenvUsj+fpoWLjUbGid3oqzVOaAqF4YAUFRJES+D5/7OxmdjOzO7M7k02yn/frta/sTv3tZHbmO78aubVbXvvcdllzsdP1L68N1ZPas++QqyAp0pDb38Xlz4TXm3Iz8sOjH2zBlPv+7ej/Eaw+sMtFzmXnGHUDrQ7zXcb5Ga0f0WVbfsT3P9n/r+30jtI5faTI32upw+6C1n/nfT3ZaPXgHvrn5grXLyfmvrjGsh7rY//eatva+arnPsNFT5cXCZsP0e8jWhN/vTv2/+fmV+1/M0H3LCm1nJ7I9XT286tiLtNv/jsVprERCFVpG77bi39u2IHfWZzgT3y0FQAqFMNGCj4RHtHy+jjXLFyFLje+gS43voHbFpcPZfSigyerWOL5Id/86ue4emH4je/rPfvDnpTtNjvj7yvxpzfWh02LbFG3Os4GH1/+EK1lXvn7h//lfjQAJzladhco89TIvgTdiqe/rwotVT2+jga3Z1f/CgBaX/sa5lgE9kCgXpVbkQFlsIjRykkPfWQ5vfu8NytUS/h2T/iN08++Ljcb533keXtHxO8DqDgsoVtPfBgILMzXn8gW6JE5w1Y52kDgePa7peINGij/DXy9+1eUfh/+vcyjaBTPfjXq79XM7SVKVS0bHpl1uvH10EOsquKUhz/G62usc76PqEYtfowMvsyiBWLBKhRmwVyw218vr0tnrtLy79LyusjRegV43iJn0uyhf8Y3Isqdb22Ieu1ZvX031n4d/fqd6DVw5Ze7sNiH+rPJwgCwhrG6sJnrLAW7lrAy33gq+/GXg/h6T8WLR7BvuSVffB9WUTsmi99sIpli5qIeO2fF2UlotC4Wonlt9bdY89UeywvUy6a+6G6xqaj83U+JdbNiWQKtzoOIWMH4ocNHsMa4uF72zKeWrZOtdvVVxE1I4aybH7fsOmEOsrspRyb5gidW4NIF/6nQ8Oaz7d6PRBFZJD/g1nfC6km6yXGLxUlx711vbXA83JgVuzWDD112Y71e9+IatL/u9bBpd7613lEffubz+3Wjpfag25bE7LZo8l/s6+SFDVcp1i1J7dz/3ibb7luC9h86gmuMB/VXV3+Djzb/gBl//wQX/G0FHnl/c9i10ekzwI69B/DT/kNhywfrBPvRkvWv7wf+l077WTS7dXF8PRvc885Gy25dgnbtO4SJ93xQYXq0h26nwei9S0qxdecv+M0DH2LmU584Wqc6yEh2Ashbvxw8jNXb96Br84LQNPMFYMHyijfC3fsOok5OJhY5rCPodgSAQ6ZslmAx1f+8uSHusUVjZcd/vWe/ZQDrt0n3Vrz4AM7623vOQWvnaC74W8X/icJ5naBYN5qb/m9t2JB29727CT/9WoaXPv0Kq28ai8NHFB2ur1jJ+g8R/dttNboiseO2j8Tgue20nlakVdt3Y9OOn0O5Jb8cPIyXP/0ai1d/iw3zx4eWe2119AeejVGK/9x0UfKbBz7CF38Yh5zMdMfrOGE3kkYwh+e7n/b7NvZzrL4Cf7FonPL3jytep6yKfs39c966+AucM7jEUZr2/HoId765Pmx8ZyAQ0HRpVidsmpsWvK+scpY79Na67/Dm2m/D6jK/te47vLXuO0zs1iQ07YhqzAAuGITVzs7Au1eNcJxWJ6JVn/j8m9hVU6KtH4/DRzRmA5TIhz27h24gdjAaTP/2Xb9ixB3vOUtkNcIcwBrovy4q6QOBwMWqSMArVsHFR5t/cN2XYLTtVXfx5jxG46ST3uLZrzp6ircaz/jJj78MBfQHyg7j0OHY/5howZ9bO/YeiJnbEsu9S0px2+IvKvxmDh4+EtYtRizRHp6cBgVBHa5/PZTb7rdgbOH0Rv3ptt3odMPr1jN9/mHaFf2aOe3XEbCvYxYcLhGIp79T5/uf/uRKy4Y75n4Ql2750fGQhT8fKLN8OE4kAzDaNWT8n2N3FD70dud97jlx6iNLYy5jV90jHsHGaTUVcwBruFlPfxJ2QQn2vm+2fdev2OjTkFh+qIHxny+CnR377cPSnehRVLdS9mXWd/7bvm7/mudXYfuuffjSwQPV/RYV5xNxW5zFZH6LtzuTyuKkFbcb8fQd5yW3jaZueKlijwtWI368+4W7FuPxSkZJDBB/Xe5UwxzAamzrzl9w0VMrcaDscFgxwX9/3IfX13yLxau/CQv+ovnHssSKICl1nfrIUnzypfd15KqCe5aUWj40RaqZvYS5Y5ejVpnO/d/lSd1/ZT102bGqm/2eRSOyaGMf1wRPL43eEIcCmANYjV330hp8ULoTg1pvD2tBaG7FVRNVxli65M6XP3pfhE3+u2fJRpw7xL7enLlDZYrNTX3BynDti94Vh1LNwwCwBriOF2lKUKI3irkvpvY5mEjr2WTave8Qyg4fse1E+smPv6zkFCWmuv4f/MKcMIqGRcDV0Psbd6B49qv4Pkrnt0RETtz/3ibM9rDiPBFVDwwAq6EnPgw8lZsHuiciioeXLbOJqPpgAEhERESUYhgAVgN7fj2E9zdWTrN9IiIiqvkYAFYDFz65Amc8ugx7PBwaioiIiFIXA8BqoPT7QF2/g6EBX9nSjYiIiOLHALAaqIlDnxEREVHyMACsRmINCk5ERETkBAPAasDb4b2JiIgo1TEAJCIiIkoxDACrJVYKJCIiovj5GgCKyDgRWS8ipSIy22J+tog8Y8xfKiLFpnlzjOnrRWSsaXpdEVkoIl+IyOciMtDP71AVqNEKRAAcOaL47qcDyU0QERERVWsZfm1YRNIB3AfgGADbASwXkUWqus602HkAdqlqGxGZBuB2ACeLSCcA0wB0BtAUwNsi0k5VDwP4M4DXVXWqiGQByPXrO1QFqopdRv9/3+zZj943v53kFBEREVF152cOYD8Apaq6WVUPAlgAYErEMlMAPGG8XwhglIiIMX2Bqh5Q1S0ASgH0E5E6AIYBeBQAVPWgqu728Tsk3dqvfwq937SDY/8SERFR4vwMAJsB2Gb6vN2YZrmMqpYB2AOgQZR1WwHYAeBxEfmPiDwiInlWOxeR6SKyQkRW7NhRfYdRO3ykvL6fsB8YIiIi8oCfAaBVtBLZesFuGbvpGQB6AXhAVXsC+AVAhbqFAKCqD6tqH1XtU1hY6DzVVQxjPiIiIvKanwHgdgAtTJ+bA/jabhkRyQBQAODHKOtuB7BdVZca0xciEBDWGKqKQ6Eh3wAxxcKMBYmIiMgLfgaAywG0FZESo7HGNACLIpZZBOAs4/1UAEs00OR1EYBpRivhEgBtASxT1W8BbBOR9sY6owCsQw1yy2ufo+3cxWFBYBBzA4mIiMgLvrUCVtUyEbkYwBsA0gE8pqprRWQegBWqugiBxhxPikgpAjl/04x114rIswgEd2UAZhktgAHgtwCeMoLKzQDO8es7JMPfP/4vAODQ4SP4339vRcP8rCSniIiIiGoa3wJAAFDV1wC8FjHtBtP7/QBOtFl3PoD5FtM/BdDH25RWPYePKOa/9nmyk0FEREQ1EEcCqWI0yigfwlqARERE5AEGgEREREQphgFgNcJGIEREROQFBoBVQNnhI1jz1R4AgDHsL9Isoj3Gf0REROQFBoBVwB/fWI9J936ADd/tDU1jbh8RERH5hQFgFbBqe2A4450/HwhNU4u2IO+X7qysJBEREVENxgCwigkGfnv3l1WY9/TS/1ZyaoiIiKgmYgBYlShw0BgBZMCt7yQ5MURERFRTMQCsAti/HxEREVUmBoBEREREKYYBYBWyacfPyU4CERERpQDHYwGLSB3z8qr6oy8pSkEbvw90/3Kg7EiSU0KUXPk5GZYNoIiIyFsxcwBF5EIR+Q7AKgArjdcKvxOWKr7a/St2/nww2ckgqhIuHdU22UkgIkoJTnIArwLQWVXZCZ0Pdv3C4I+IiIgql5M6gJsA7PM7IanKPPqHVefPRERERF5zkgM4B8CHIrIUQGioClW9xLdUpYhNO37GFc9+Fvp8hBEgpTj+BIiIKoeTAPAhAEsArAbAVgoe2rH3QOyFKKVN7NoEr67+JtnJqDQKRoBERJXBSQBYpqpX+J4S4q2PKmBAREREfnBSB/BdEZkuIk1EpH7w5XvKUkDk+B8s/iI3hAPIEIVpWDs72UkgqjacBICnwqgHCHYD4yvm9lCkVBomcMV1o/kQRAk5vmfTZCcBAHDh8FboV8x8EqraYgaAqlpi8WpVGYlLNbz5UbLVy81M2r7TmKVZYzQpyEl2EihBZw5smewkkM84FFwSCW94lAA/HhiOKqjl/UYdSuPPoca47Tfd8Oblw3zZ9rp5Y/Hbo9v4sm0qd8OkTknZb2Z65V4IShrmVer+qhIGgEkUGf/9yE6hk65ZXf8DoA5H5fu+j+pIIKwEUYPUykyPOv+KY9rFtd3M9LQqXzGifeOq/Rt3EvRkpFuHB/ec0hOv/HaI10kKSbTaS1H9XFfLMwD0iYiME5H1IlIqIrMt5meLyDPG/KUiUmyaN8eYvl5ExpqmbxWR1SLyqYjUqLqIj36wJdlJSHm/6dUs2UmwFOtm6hX1IVuxf4mzulDCx1FLhfnuGjasvmmMTykJl5Fglm16IusnWHqSaNpj6dGibtLW/9fVI2MuExl852Y5v74Mb1uIHB+vR27+tXPGd6gw7djuTdztz9XSNYujS66INBORQSIyLPhysE46gPsAjAfQCcApIhKZp3wegF2q2gbAXQBuN9btBGAagM4AxgG439he0EhV7aGqfZykn6i6i/eGdXzPigFtYX42PrvRWZCw9baJrvdpvnm9cdkwPH5OX8vlWjYIf1JPE0lqPdg/T+uRvJ1H0SAvy9Xy+TmZuHpse59SU67sSOCfdfagYsv5sW7kA1s3cLyvp87vH3rv9hyx+r+6CXiSIZH41uqBIfJ3HBlgjmzfKP4dGo7p1DjhbQDO6wIf16MpLhzeusL0U/oVudpfywbucgBP6tPc1fJVWcwAUERuB/BvANcBuNp4XeVg2/0AlKrqZlU9CGABgCkRy0wB8ITxfiGAURKoGDcFwAJVPaCqWwCUGtsjcmWGxQUi2UZ3dH+hPLFPi6jzp/So2Pqxbm4mzh9aYrl8QS3vG3s8eHpvbL1tIl6aNTg0rX2U4u6mEfUNI2PcFy8aFHOfeXHcyLMyrC97U3rEl/v7xmXRn4cHtHLfGnTWyNjnbbTvPqGru1yQeLQuDNw4j+3eFOcOrnieRavjvOXWCehVVM/xvszna7TeEqyCw27Nw4OdKT2aYkznoxzv20vdmhc4Wk4Q+7yy4yRntYXLYtJY8rLS4240Yg7QHz+7byj9dnUBg9V07K5hzeu5+26zLXIRI71/TXmu6s3HdXW1/arMSQ7gcQDaq+oEVT3WeE12sF4zANtMn7cb0yyXUdUyAHsANIixrgJ4U0RWish0u50bfReuEJEVO3bscJDcypfKWc+VJauSKxQ7EZnzFU3wZpeZLujYpE7YvGgtLZ+fORCf3jAGnZs6u+Ekok2j2lg2dxTGdXF2Ux3atiEAoF5e+AU8TQT9TcFSz6J6eOiM3lG39dtRbWPuLz/bur/76z2q5B4tyAWAQa0berKfSBcMs++MoaRhHu49paft/D9O7YaJXZvEPL7RXDa6HZ6bMRC9W9Zz3SjDbQO4ItNvJiMtDW0b1Xa+r4jPZw0qjqvB0XUTOzpeNtGMbCfH58WLBmHzLRPCpr16yRDbB5ygvsWBwNucSxzc3dVj2+P9a0Zi2dxRrtI7tbezXLFzB5fgwuHh521fU3c5Izs0ClVDWXLliLDl3FaFcCrW8QK8D5irCicB4GYA8WQXWJ3Bkb8Lu2WirTtYVXshULQ8y644WlUfVtU+qtqnsLDQaZorFRsBJ9eiiwfHXigO/YrrRy06/U2v+IoQFl86NOzzY2eXF61G5nz0blkx18muk9y/ndsPR9XJwR+O6xJXuro2K0CjfOfdfswc0Rp/mtoN100MBGC1jQAtPU3QyLjINzWC26Pq2G93Wt8WtjfyC03B0VSbIhu3RasAkGVTMT6aoxLsEsUuGIhVWT5avdGT+rTAfaf1wlibnLCHzuiNzbdMwIabx9tuIz8nI3TzrmWRG+nV5e3+03qhTk4mtt42EVtvm4j0NMGx3ZtaFu1mZ1b8/3h1nT1/qMvezyz2G3z4iUdkw5IeLeoiLeIH4OSB7+9Gcfpp/cuLSmcMb43T+hfhnMHFaFE/18HvufyC88z0Abjx2M4x9wsAJQ1zMWd89ED68XP64djuTdG8XnkJQZdmdTC5e3gpRzy9aLSo76yR3/B2hbZVQmrSfdvJ1WwfgE9F5CERuSf4crDedgDmcqvmAL62W0ZEMgAUAPgx2rqqGvz7PYAXUY2Lhn/aX5bsJFQZZw5siYGtnNcJcsruSfyV3w5Bq8JALkI8xYinD4hSzyTGBSLyom12x4ndLadbfQ9zQOckx8HuwjWsXSE+vnYUzhjQEr+f3BntGtdG+8b5oSI+r2WkpeHEPi3QtG4tbL1tIj65/hgsvXZUoHVnlKvrO1cOrzDtOFOx7fMzB2K8kQv5m2g5EqaD1a5x7Jwkc1HUzaYg+aVZg3HrCbGLg07o2Qx/PdNZdWU3I1lYHSpzsfmojo0wrF3g4Tf416mxnY9CWppEzR0x/69yMtPx8ix/HqjsirM7N61TYdqskW1w/pDw4mirQNmq7lhluOIY67qZjeuE/98jU/zHqd0wsVv5cfhw9tExAyC7hiTZGYHrXd3c8gegvOwMzD++K3KznIwOG65WVnrUa5qZVZojJ/UrqY97T+kZtuz4Lk08eaCIDCLtnDukJO4qIdWJkwBwEYA/IHwkkJUO1lsOoK2IlIhIFgKNOhZZbPss4/1UAEs0kP+7CMA0o5VwCYC2AJaJSJ6I5AOAiOQBGANgjYO0VEnnPL482UmoMuZN6YJ/TB+Q8Hac9r7fpVlB6MY+tvNROCHY+tfh413UOnRGgHFyjHp7ViL3Hu2CbE5qsNjkgqElePuK8EzxYK6Dk2/Wv1UDvHn5cLxx+TC8E1EEE69YN5WsjDQ0tsnp69KsPEejqH4uLh8d3nqxkWm93i3r4wGjHqJTTgIucwBxUt/y/2mPFnUdVThPE3FUQb5d49o4y6Ield3/zaquV09TvToRwbmDi2Pud2R7b0pIIuu32f2UnBS5BV0StWg5fAd/P68/crMycFVEA5iG+RVzelsXOi9CdiNWlyJ29fNaF9bGv64eiUeMB4XIY3dSnxbINo7blce0Q9MY3VUtnzsaC6YPwIOn9/KlcVN6Wvn/MFj64KT7lmADj+dnlj+oOFkv3lw3t13CAMAfpnTGMIuc2pqU8xfkZCSQJ6xeDtYrA3AxgDcAfA7gWVVdKyLzRCRYh/BRAA1EpBTAFQBmG+uuBfAsgHUAXgcwS1UPA2gM4AMR+QzAMgCvqurrbr80VV1Pnd8fz88cGNeYnnef3CNUvOFEdkY6ll07CrdP7RbXhSKWPIu6Z8HWhw+c1ivm+g+e3guTjKd+q9wOIBDwPX1+/1CmVtfmddGmUXhRkdctQm86thP+cqp9/bJY3FxIzTdMAXDp6PI6f9FagwbnmeuKTR/WClN7N8eoju5aPP7tvNiFDFePbY8zB7bEwhkDAcTXn2Tbxvmujk3kPuKtIzWyQ3wtQCO7DIrM3bG7sdfPdVH07uKADDFu2kci0pWblRFXa3an3r1qRIVp0VJ90Qjr3MeiBrnIz8kw1pcKjV3OGlSMi0e2iVr3M6gwPxs5mekY16WJo5wstyO3FJvqZMZqdGLOuQz+O3u3rBd62MnLti+B6VUUyMWMt2/At68YjmXXltdnzEoP39cHvws07jDnlp4xsDhq7mpNigNtA0ARedb4u1pEVkW+nGxcVV9T1Xaq2lpV5xvTblDVRcb7/ap6oqq2UdV+qrrZtO58Y732qrrYmLZZVbsbr87BbVJyDHLQjcN9p8YOdMwGt2kYVn/t95M7x+x0dOGMgXh+5kAc17NZhdyFWF1GNKqTg8z0NEzp0QzpaYLjLFrTumZzhcjNSse6eeMAAOO7NsHW2yZGrYc4rksTjGjfCO9dNSJ0EW8VkcMwd2InDGpT/rRqWXk2+ITu0ZXrbIsWn5Fq2zS8iMVJP4Sn9nfXzUNQo/xs3HFi97BzxEmXEwMcVE2YNbIN5k3pgj7F9bHh5vF47+oRoXnBXfQqqou+xfXQskEuxnjQZcaUHk3xt3MTrwFzxoDorTdvOd59q8eGtbNszzdXY55HOR/stl8rMz2Uoz+2szddkwRFBtkvzxpsmesXmepuzQvwP0b1jmvGdQjVdY21nllOZjquGtvetg8+tw03IrftVK2sdIgIVlw3GnMndAw9nDq5vphjxesndcKK60YjPydQmmJVBaivRYmOk2vEyPaF+N24DsjKSAsrJZg+rBXGGfVeT+jVLNRiOBh4/49NFRygZgV+QdFyAC81/k4CcKzFixJw6PCRZCchZKbNE2k0vYrq4ukLBkQd1eK5GQPDnv4iRXvq7NMyUJR1XM9mYcWAlssW17ds9DCpWxPH3WGUNMzDplsmhOoFAtEvBk7qENXKil3UFdlFhZVi0w1mwYXlxeRhF6Qo18RgwFPPTc5Lgt66Yhj+cUH8RfrRnsC7GedDtEDCvHqm0XAjGOxdOKw1CvOzMbRtQ8sbjJ3uDjvnzcpIC+0zkJbAfl+4aDCemzEI/7x6JDoYLboT6aZIRFzX7bPbTjTmgPv6SZ1CN+po6yXa+ny6g1wuOyKCO0/qgXXzxlo+gHrZ16T5nIiWE7bo4iHR66UaQmmLI9pw0hDrqjHuRl+Z1K1JqOgZCPQnGLyeNKydjQuGtQqdB3VyYrcVNZ8zGelpoZKef88+OqxRW8X1yt87+fc9fk4/y/tarax0PHhGb6ybN9by+t7Qp5bGVZXtHUpVvzH+fmn1qrwk1jwfbfoBbecuTnYyQmYMc38T+vO0QBFg3VzrH/3TF/S3vLmaW1FGuxDfdXIPvHrJkFBduw03j3edE/GXU3sl1OFr8IIdDEbNnFzsLh4Z3kWJF0+QjfJzUM/imGcY9RmtbkIdjsrHvCmdcXcldnTcpKCWq45+nQjePNzmZP726DY4e1BxKJDp1LQOls8djQa1sx13B/LqJUPwpIOiYKeCu83OSLMMAs2/jR5FzgJPJ90uJOq8ISWhcy2WYK5K0ISu0bsJMnco7UVHzblZGbbDmZn1K65vOaKEWawc22VzR2HldaNdpQ8I9J0JIFQHNvhQ4+YUd1pdZuttE3Hx0bG7TTL7y6m9sD5KS3Czrs0L8NAZvStUTRCU10O2y3FvVreWZUtyK8FtRctciCU3KyOuVsQ1DQdfSoIPN+1MdhI8c+8p7op4naqVlR6Wi5CVkYbgtbxNo9que3uvk5OBz25wP0TWunljbUeysGXcdSMvaF5dcEKZBKbt3XhsZ5w3pMTyRiUiOHNgsbu6VzbuOjnw1Ow2F8XtV49WzNPHeLCY1M2+uN68en5OJm6a3NlVMVdki+POTQscBf3xCNXvtPnKMz1osWq+CXslVlFcblYGPp83DoNaN8Dk7k1D/S6a63OZg0Rza2tHDQNM78+LaPnrxrMzBuLC4a1ROt8+0Hk4RivuRvk5qJubFZamS40+Kq26GwoeuZ5FdXH3yT3KW5dbVNeI1UvBO1cMD+uo2I1Eh6yLNLbzUcgxuuIxN+AZbuRUt6jnrm6s1RnWplFtbL1toqvcDJjLUwAAIABJREFU+1iCVVYyozwRBq+3NWm88vgq6lBCqsJzR/N6tXCw7Ai+33sgoQS5rniewL6C95teRXVx6wld8a8NO/DV7l+jr2P8rZeXhQKb3MpocrMysP/QYdfrVbb6eVmedWwc6cpj2uF/3toAADi+Z8VirFkjY3cCnJmWhoMOqj04CZJbF9Z2XKk/3pjbr1aikRT2afx4zihkpgv2l4UftztO7I4vvvnJ9X6SMcxerax0PG1UBfhmz69GWsoTMrRtQ7y2+tu4th3M7e5wVL6rc9/cWtk8VKJVbuFxPZrig9LyB/ZT+rbAPUtKbbdtPsRtjS6GhlgE3k0LcrBj7wFkpAmOsxiuUSDIzQzcns11fK0U5GbGdW0DgBdmDvI9oAm0Ri/BgFYNYlbnsd0G/G2Fe8vxXdGlWUHUUouWDXKxeccv/iUiCRgAJkMlZT2XNMzDlp3lJ2yzurVCAdPAVg1w8/FdsHd/mWVy/jytBx7791Z8tm23b+lzVRncJJg78PplQ/HrwYrBWZ2cDFw22l1dl0RcN7EjFizfhsNHNHC8TcczJzMN+w8FbuBO/utVsVTiopFtQgFg0NEdGmFQ6wa49YSujsbSPG1AER7/91YA8T8D+HForI6317kibpgD4GAH0tt37Qtbxm7UBavv4tUx+/3kznjhk+0R+3O39Vi5elbbi3aFKKqfiyuOaWc53nU0wfqZG24eX2GM7f+7eAhKd+zF5c98BgC4e1p4a/fLj2mH345q66gKT6P8HPzfxUNCgaDZo2f3xYebfkCDiOJb8/ctapCLR8/qg34l3uV0RXLaf58bf5zaDbcvXh+q51onJwNpaRJX8OekwYcX6uVlxXyQXXDBAHy6bXdY/d7qzvU3EZEnROQBEYlv2ABKWg7g4svCR5LIzkhHw9rZlumZ0qOZ645dn5sxMOYQTXbDcsUjPyczrIVX0KqbxuJco0go8rt1b1HX836xzh/aCm9fMby8U2DTNevVS4aW1y+y+cc/HmVEDyvl/W65Uy8vC0X1c0PFTdOHtbKsT+hEXnYGnr5ggOOB1G+Y1Andmwcbb9izuuAH4wK79f73nL4VWorH+3Dx3lUj8JSLroQSZf4fxpvm0PoWq1tt8eg4un05a1AxXr44emv8WGJ9P3MnvU5iSxHBJaPaxj1MV1ZGWoUAqGvzAstcbvM+owUAkcnu2rzAsupBw9rZlp0SR7bYH9WxcaiVbHXRu2V9PDtjIMZ1PgrXT+qEayc4H0LPTrTz4eM5o7DCqH/p5f0lUqM6OUkbQ9ov8RytvwAoAnAGgN95m5zUkKxcnjo5mTilXxH+sey/YWnwqm5a3+L6uHpse0x/cmWFYYuCFs4chJF3vOfJ/uLh12gFdloX1kbDvtm4dfEXtgFbrE5d7bj9t2Wmp+FfprpC107o6MnF2YlYN06r5YMGlDTAR5t/sF12RHv7gCZWrlOvovAGPuYW17PHd4g5zm80uVnp2GeRQx0pVhqjdjrukADo1bIePijdGbPBQ2UKBjz3ndorLIcoWL/Lz9yvRNx0bCe0S+DcsBNqBFLFSgIGtKqPjzf/6GqdtDRJqG4mYPNQEzEtmFP+zpXDUdeD34rZkiuHO/oNV1dRA0ARSQdwm6peHZymqssRGOXjeZ/TViN9um037n57Y6Xsy+oi0r15Af6xLGI5j7YNAGM6H2VbP6swPztmT/lVWXZGGg6UOei+J+LY5GWno6BWJm481rqeUngwHnvzlVUs4rV4U/3IWX2wbde+mB3OxiNa/apEumgBAsMNLt8a/aapKG8EMqFrE3z5w77Q9KD8nEysumkMut30puU2Lh/dDne9vSFmpfhLR7XF5O5N0SZGLn0sYzo1xvsbd4Z1BuyEm858B7ZugHXzxsY1NJmdFy4ahMI4Opi34qQvzHgEO6QfGeWhJhkeP7sfdu07mLT9Ozl3/Ki326qS6gInS9Rfl6oeFpHeIiJaXe86VcxL//mq0vYVrZNb8w8qJzMdeVnp6Nq8wPVTXmVK5AR0e/a6rVcUTUZ6Gj670X0L5Fji7R3fLa/jLiebM19u8rIz0OEo65FQqrJWhbVtbyDmn2ZxwzxsuXUCRAT3vWvdwKBOTiYWXzoUPx+oOH54UYNADnJmjO5Z0tMk4eAPAE4f0BLH9WzmSdFktAceL4M/oGJurx+C3WJF1i10qmWDPPzn+mNsu9dKllpZ6aiVFV9JRSJmjGiNL3/ch5P6tsBflgQyTuLJHT2xd3Ns3xW9wWAqcvIL+w+Al0XkOQChFgWq+oJvqSJPpJt+KZeMsu//KT1NsNYYoaJ49qu+p6uqW3/zOGSmmTvyDfwtaZiHL77d6/n+qlhpTwWV2V9WMvrm6tikDs4eFH00DLOP5hyNssPePg87+d4dm7gPgoOdZp8/1LscKxGpdvXS3PrztB5hfZY69eAZvfH6mm8d1421Us+i25hU1bB2Nv4aowseJ/4UpVP/VOYkAKwP4AcAR5umKQAGgFVQRpqg7IjitP5FOH9oq1B9u8tHu+sA1A/JzEN2E1dkZ6RX+Pz4OX3RtVkB+tz8tscpC3eMgyHCqmtW/OiOjbHyy11oEqXOYzIKGhZfOjT2QiZNChLPCTl9QEt8WPpDzGHYnIh2yBrUznbcZc6kbk3wyqpv4go0nWiUn42JXZvgvCjBaOvCPGyqAl1tOBk/10qj/BycObDY28RQGJZFeidmAKiq51RGQshbN03ujMz0NLRskIsvf9gH1cQrFt98XBdc99KaCtNP6NkMreMoWgr+kCM73Y0lnu+R6EUjWCfnzpO644H3Nlku09zo5HSUy1aWwe/TujDPXc5KJWaWPXRG74QbI8wY3grT+rZwlMORaE5gVb9JNKydjWdnDKwwPTjsVjy5T4kcs7W/H4vsjDScO6SkwnjTXklLE9x3WnjH8cHhCYMjf7xx2bBq+4BD/uLIHd6LGQCKSDsADwBorKpdRKQbgMmqerPvqaOEPXvhQHy2bXeouwO3F9dLjm4T6vj09AEtcf+7pfh6z/6wZe48ObFuVWr72HTf62vGCb2a44Re1t1ENK+Xi09vOMZ1oFTHWH6AMcbqpG5NsGLrLvsVknCHHOtB9wciUunFW9XtnnHGwJbY8+uhuMbnTkSe8RusjHpyZnMndkTHJnUwon1gpAgnQ7cRkTec3Hn/CuBqAA8BgKquEpGnATAAjENlF3E1tum7yOmN8Yox7S17vo/vacz6uzs9JMEK7MnsqDeWunEMt9YoPwdLrhwe6s/sLxYD2FupbsENxZadkY4rx7R3tU6wgYzXQ73Fo0/LeqEHGidyszJwugfF4FTzBRvGuDm/KDonAWCuqi6LuOFXbIpGjjzx0Ze+bj9WLBXMZYq3jksy9S2uj39ePSLUVUKyzRnfAf1b2Q8d5Iab7gbmTOiIa19cjVwXY9ummqpeBOylTk3r4LMbx3jSX2CiFs4clOwkUA11wdBWKKiViZP6tEh2UmoMJwHgThFpDSO2EJGpAL7xNVWUMLvMoZKGeY4rhVvx477qJifLbeu6urUCOXJjHDSucOvCBPuJi9ep/Ytwav+ipOzbb8FRE1oVVt/+IpOhKgR/RH7KTE/Daf2ZW+wlJwHgLAAPA+ggIl8B2ALgNF9TRa6dObAlvvhmL1b+N0rdMQ/FU/r4v+f08zwdsRTkZmLFdaNDlc2pamtYOxtPntcP3atwMT8RUU3gJABUVR0tInkA0lR1r4j40w06xW3elMD4rq3meN+P3/MzB6Fh7fgDqBnDW+PBf24KDfW08rrRKDuimHTvB14lMaqGHvX+T5VjaNvCZCeBiKjGc9Lk6nkAUNVfVDXYC+5C/5JEXvCyyXzvlvVCRa+nGUWPboqcZo/vEFbs3KB2NhrXyQl9ZlsGIiKiymWbAygiHQB0BlAgIieYZtUBkGO9FiXbeUNK8Nf3t/gWVM0a2QazRrZhn0xERETVWLQcwPYAJgGoC+BY06sXgAv8T1rNsearPZ52//JcRAey5uLZayd0xJZbJ4T6/fOaiHgW/LUxWr5msu8v8piyO2EioqhscwBV9WUExgAeqKofVWKaapTFq7/BzKc+wV0nd8eErk082Wbf4vphn81DN1WnnLkHz+iNz7bt5tiX5Jvq9HsgIqpMTrJefhCRd0RkDQCISDcRuc7ndNUYm3b8DAAo/f5n3PXWRs+337lpHcwe38Hz7VaGglqZGNaOFf6JiIgqm5MA8K8A5gA4BARGAgEwzc9E1VQ7fz7g+TZfvWQoOjct8Hy7RNVZKnUETUQUDycBYK6qLouY5mgkEBEZJyLrRaRURGZbzM8WkWeM+UtFpNg0b44xfb2IjI1YL11E/iMirzhJBxGlJhYAExFZcxIAxjUSiIikA7gPwHgAnQCcIiKdIhY7D8AuVW0D4C4AtxvrdkIgl7EzgHEA7je2F3QpgM8dpJ2IiIiIIjgJAGcBeAjlI4FcBmCmg/X6AShV1c2qehDAAgBTIpaZAuAJ4/1CAKMkUGt7CoAFqnpAVbcAKDW2BxFpDmAigEccpKFK2bv/ULKTQJQSGhgt4we29masZiKimibmSCCquhlA2EggDrfdDMA20+ftAPrbLaOqZSKyB0ADY/rHEes2M97fDeAaAPnRdi4i0wFMB4CiouSNmxqsi3Tfu5vQ4aioSXalf0l9LN3yo2fbI6pJmhTUwr+uHommddllKRGRlZgBoIjUBXAmgGIAGcFuFVT1klirWkyLrJptt4zldBGZBOB7VV0pIiOi7VxVH0ZgDGP06dOnSlQJ/+Jbp7FzbI+d3Rff/rTfs+0FXTuhA2plORkhkKhqK2qQm+wkEBFVWU7u9K8hkBu3GsARF9veDqCF6XNzAF/bLLNdRDIAFAD4Mcq6kwFMFpEJCIxGUkdE/q6qp7tIV6XyqxuyvOwMtDY6UvbS9GGtPd8mERERVS1OAsAcVb0ijm0vB9BWREoAfIVAo45TI5ZZBOAsAB8BmApgiaqqiCwC8LSI3AmgKYC2AJYZHVLPAQAjB/Cqqhz8EREREVVFTgLAJ0XkAgCvAAh1ZKeqUSugGXX6LgbwBoB0AI+p6loRmQdghaouAvCosf1SBHL+phnrrhWRZwGsQ6DLmVmqetj91yMiIiKiSE4CwIMA/gRgLsrr8CmAVrFWVNXXEChCNk+7wfR+P4ATbdadD2B+lG2/B+C9WGkgIiIionBOuoG5AkAbVS1W1RLjFTP4I29dO6F6DvdGREREVY+THMC1APb5nZCayqshqaYPa422jfKx94CjQViIiIiIbDkJAA8D+FRE3kV4HcBY3cCQR249oSsAYGSHRklOCREREdUETgLAl4wXxcGLbmCO7d408Y0QERERGZyMBPJErGWIiIiIqPpwMhJIWwC3AuiEQOfLAAA2BHHGi9E6fOpLmoiIiFKUk1bAjwN4AIH++EYC+BuAJ/1MVE2ye9+hZCeBiIiIKIyTALCWqr4DQFT1S1W9CcDR/iar5nDbCPjKY9olvA0iIiKiaJwEgPtFJA3ARhG5WESOB8DmqD4Z2q4QbRt5P8YvERERUZCTAPAyALkALgHQG8AZCIzfSz7o0rQO3rpiOAa0qp/spBAREVENFTMAVNXlqvqzqm5X1XNU9QRV/bgyElcTuG3AIUa/MQumD0RuVrr3CSIiIqKUZ9sKWETuVtXLROT/YFENTVUn+5qyGsJt/T2rgJGtgImIiMhL0bqBCbb0vaMyEkL22AiEiIiIvGQbAKrqSuPvP0Wk0Hi/o7ISlqrS0srz+5jzR0RERH6wrQMoATeJyE4AXwDYICI7ROSGykseEREREXktWiOQywAMBtBXVRuoaj0A/QEMFpHLKyV1NcDmHb8kOwlEREREYaIFgGcCOEVVtwQnqOpmAKcb8yiGpZt/wOff/BT3+qf0KwIAZKU76a2HiIiIyJlojUAyVXVn5ERV3SEimT6mqcY4+eHEesuZO7EjrhnXAVkZDACJiIjIO9ECwINxziOPiAiyMtgUhIiIiLwVLQDsLiJW5ZcCIMen9BARERGRz6J1A8NhKIiIiIhqIFYuIyIiIkoxDACJiIiIUoyvAaCIjBOR9SJSKiKzLeZni8gzxvylIlJsmjfHmL5eRMYa03JEZJmIfCYia0Xk936mn4iIiKgm8i0AFJF0APcBGA+gE4BTRKRTxGLnAdilqm0A3AXgdmPdTgCmAegMYByA+43tHQBwtKp2B9ADwDgRGeDXdyAiIiKqifzMAewHoFRVN6vqQQALAEyJWGYKgCeM9wsBjBIRMaYvUNUDRkfUpQD6acDPxvKZxkt9/A5x+/lAmet1WtSv5UNKiIiIiMJF6wYmUc0AbDN93o7AUHKWy6hqmYjsAdDAmP5xxLrNgFDO4koAbQDcp6pLrXYuItMBTAeAoqKiRL+Lazv3HnC1/KKLB6N5vVyfUkNERERUzs8cQKsejCNz6+yWsV1XVQ+rag8AzQH0E5EuVjtX1YdVtY+q9iksLHSR7OTo1rwu6udlJTsZRERElAL8DAC3A2hh+twcwNd2y4hIBoACAD86WVdVdwN4D4E6glVOlSyXJiIiIoK/AeByAG1FpEREshBo1LEoYplFAM4y3k8FsERV1Zg+zWglXAKgLYBlIlIoInUBQERqARgN4AsfvwMRERFRjeNbHUCjTt/FAN4AkA7gMVVdKyLzAKxQ1UUAHgXwpIiUIpDzN81Yd62IPAtgHYAyALNU9bCINAHwhFEPMA3As6r6il/fgYiIiKgm8rMRCFT1NQCvRUy7wfR+P4ATbdadD2B+xLRVAHp6n1IiIiKi1MGRQHwSKMkmIiIiqnoYABIRERGlGAaAPmH+HxEREVVVDACJiIiIUgwDQCIiIqIUwwDQY+9v3IHd+w7i/Q07kp0UIiIiIku+dgOTan45UIYzHl2G3i3rYeWXu5KdHCIiIiJLzAH0UNnhQNOPjd/tTXJKiIiIiOwxAPTBT/vLkp0EIiIiIlsMAD2k7PyFiIiIqgEGgEREREQphgGghwSS7CQQERERxcQAkIiIiCjFMAAkIiIiSjEMAImIiIhSDANAIiIiohTDANBDbruBuWx0W59SQkRERGSPAWASdWlakOwkEBERUQriWMAectsNzKiOjfDZjWOQxt5jiIiIqBIxAPSQ2yJgEUFBrUyfUkNERERkjQFgEjx8Rm80q1cr2ckgIiKiFMUAMAlaN6qN1oW1k50MIiIiSlFsBOIhDgVHRERE1QFzAD0y8+8rUTeX9fmIiIio6vM1B1BExonIehEpFZHZFvOzReQZY/5SESk2zZtjTF8vImONaS1E5F0R+VxE1orIpX6m343Fa77FP5ZtS3YyiIiIiGLyLQAUkXQA9wEYD6ATgFNEpFPEYucB2KWqbQDcBeB2Y91OAKYB6AxgHID7je2VAbhSVTsCGABglsU2q7yGednJTgIRERGlMD9zAPsBKFXVzap6EMACAFMilpkC4Anj/UIAo0REjOkLVPWAqm4BUAqgn6p+o6qfAICq7gXwOYBmPn4HXxSwqJiIiIiSyM8AsBkAc5nodlQM1kLLqGoZgD0AGjhZ1ygu7glgqdXORWS6iKwQkRU7duyI+0sQERER1TR+BoBWTWIje0q2WybquiJSG8DzAC5T1Z+sdq6qD6tqH1XtU1hY6DDJ/mtSkJPsJBAREVGK8zMA3A6ghelzcwBf2y0jIhkACgD8GG1dEclEIPh7SlVf8CXlPlpy5YhkJ4GIiIhSnJ8B4HIAbUWkRESyEGjUsShimUUAzjLeTwWwRFXVmD7NaCVcAqAtgGVG/cBHAXyuqnf6mHbf1MpKT3YSiIiIKMX51g+gqpaJyMUA3gCQDuAxVV0rIvMArFDVRQgEc0+KSCkCOX/TjHXXisizANYh0PJ3lqoeFpEhAM4AsFpEPjV2da2qvubX9yAiIiKqaXztCNoIzF6LmHaD6f1+ACfarDsfwPyIaR/Aun5gtfCH47okOwlEREREHAquMvUrrp/sJBARERExAKxMWqERNBEREVHlYwBYiZTxHxEREVUBDAA9oA4jOwaAREREVBUwAPSA08CORcBERERUFTAA9MBXu391tBxzAImIiKgqYADogaF/fNfRclkZPNxERESUfIxIPPC7cR2izj93cAnmH98F7RrnV1KKiIiIiOz52hF0qpg5ojVmjmid7GQQEREROcIcQCIiIqIUwwCQiIiIKMUwACQiIiJKMQwAiYiIiFIMA0AiIiKiFMMAkIiIiCjFMAAkIiIiSjGiKTA+mYjsAPClz7tpCGCnz/uoSXi83OHxcofHyx0eL/d4zNzh8XKnvar6OnpESnQEraqFfu9DRFaoah+/91NT8Hi5w+PlDo+XOzxe7vGYucPj5Y6IrPB7HywCJiIiIkoxDACJiIiIUgwDQO88nOwEVDM8Xu7weLnD4+UOj5d7PGbu8Hi54/vxSolGIERERERUjjmARERERCmGASARERFRimEAmCARGSci60WkVERmJzs9lUlEWojIuyLyuYisFZFLjen1ReQtEdlo/K1nTBcRucc4VqtEpJdpW2cZy28UkbNM03uLyGpjnXtERCr/m3pLRNJF5D8i8orxuURElhrf/RkRyTKmZxufS435xaZtzDGmrxeRsabpNep8FJG6IrJQRL4wzrOBPL/sicjlxm9xjYj8Q0RyeH6FE5HHROR7EVljmub7OWW3j6rO5nj9yfhNrhKRF0Wkrmmeq3MnnvOzKrM6XqZ5V4mIikhD43Nyzy9V5SvOF4B0AJsAtAKQBeAzAJ2Sna5K/P5NAPQy3ucD2ACgE4A/AphtTJ8N4Hbj/QQAiwEIgAEAlhrT6wPYbPytZ7yvZ8xbBmCgsc5iAOOT/b09OG5XAHgawCvG52cBTDPePwhgpvH+IgAPGu+nAXjGeN/JONeyAZQY52B6TTwfATwB4HzjfRaAujy/bI9VMwBbANQynVdn8/yqcJyGAegFYI1pmu/nlN0+qvrL5niNAZBhvL/ddLxcnztuz8+q/rI6Xsb0FgDeQGBQioZV4fxK+sGqzi/jn/CG6fMcAHOSna4kHo+XARwDYD2AJsa0JgDWG+8fAnCKafn1xvxTADxkmv6QMa0JgC9M08OWq44vAM0BvAPgaACvGD/inaaLaeicMi4WA433GcZyEnmeBZeraecjgDoIBDQSMZ3nl/XxagZgm3HTyDDOr7E8vyyPVTHCAxrfzym7fVSHV+Txiph3PICnrM6JWOdOPNe/ZB+LeI8XgIUAugPYivIAMKnnF4uAExO84AZtN6alHCN7vieApQAaq+o3AGD8bWQsZne8ok3fbjG9OrsbwDUAjhifGwDYraplxmfzdwwdF2P+HmN5t8exumoFYAeAxyVQZP6IiOSB55clVf0KwB0A/gvgGwTOl5Xg+eVEZZxTdvuo7s5FICcKcH+84rn+VTsiMhnAV6r6WcSspJ5fDAATY1VfKOX61RGR2gCeB3CZqv4UbVGLaRrH9GpJRCYB+F5VV5onWyyqMealxPFC4Km/F4AHVLUngF8QKNqwk9LHy6jzMwWBoremAPIAjLdYlOeXczxGUYjIXABlAJ4KTrJYLN7jVSOOpYjkApgL4Aar2RbTKu38YgCYmO0IlOsHNQfwdZLSkhQikolA8PeUqr5gTP5ORJoY85sA+N6Ybne8ok1vbjG9uhoMYLKIbAWwAIFi4LsB1BWR4Ljc5u8YOi7G/AIAP8L9cayutgPYrqpLjc8LEQgIeX5ZGw1gi6ruUNVDAF4AMAg8v5yojHPKbh/VktEwYRKA09Qod4T747UT7s/P6qY1Ag9lnxnX/uYAPhGRo5Dk84sBYGKWA2hrtGLKQqCi6qIkp6nSGK2PHgXwuareaZq1CMBZxvuzEKgbGJx+ptHyaQCAPUZW9RsAxohIPSMXYwwC9UC+AbBXRAYY+zrTtK1qR1XnqGpzVS1G4FxZoqqnAXgXwFRjscjjFTyOU43l1Zg+zWglVwKgLQIVg2vU+aiq3wLYJiLtjUmjAKwDzy87/wUwQERyje8TPF48v2KrjHPKbh/VjoiMA/A7AJNVdZ9plqtzxzjf3J6f1YqqrlbVRqpabFz7tyPQePJbJPv8SnZlyer+QqAVzwYEWjjNTXZ6Kvm7D0Eg+3kVgE+N1wQE6mm8A2Cj8be+sbwAuM84VqsB9DFt61wApcbrHNP0PgDWGOv8BdWkErCDYzcC5a2AWyFwkSwF8ByAbGN6jvG51JjfyrT+XOOYrIep5WpNOx8B9ACwwjjHXkKgRRzPL/vj9XsAXxjf6UkEWmPy/Ao/Rv9AoI7kIQRuxudVxjllt4+q/rI5XqUI1FELXvcfjPfcief8rMovq+MVMX8ryhuBJPX84lBwRERERCmGRcBEREREKYYBIBEREVGKYQBIRERElGIYABIRERGlGAaARERERCkmI/YiRETVj4gEu0UAgKMAHEZgaDkA2Keqg3zcd1MA96jq1JgLExElAbuBIaIaT0RuAvCzqt6R7LQQEVUFLAImopQjIj8bf0eIyD9F5FkR2SAit4nIaSKyTERWi0hrY7lCEXleRJYbr8Extl8sImuM92eLyAsi8rqIbBSRP9qsc5uIrBORVSLCQJWIfMUiYCJKdd0BdERgnNHNAB5R1X4icimA3wK4DMCfAdylqh+ISBECQzV1dLGPHgB6AjgAYL2I3Kuq24IzRaQ+gOMBdFBVFZG6XnwxIiI7DACJKNUt18AYmxCRTQDeNKavBjDSeD8aQKfA8JsAgDoikq+qex3u4x1V3WPsYx2AlggMpRX0E4D9AB4RkVcBvBLvlyEicoIBIBGlugOm90dMn4+g/BqZBmCgqv7qwT4OI+Laq6plItIPwCgA0wBcDODoOPdFRBQT6wASEcX2JgJBGQBARHoYf/uJyN8S3biI1AZQoKqvIVDk3CPRbRIRRcMcQCKi2C4BcJ+IrELguvkvADMAFAGIN1fQLB/AyyKSA0DZU3tMAAAAWUlEQVQAXO7BNomIbLEbGCKiOInInwA8qaqrkp0WIiI3GAASERERpRjWASQiIiJKMQwAiYiIiFIMA0AiIiKiFMMAkIiIiCjFMAAkIiIiSjEMAImIiIhSzP8Dc91EiU/riWQAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "density_axes = fig.add_subplot(211)\n",
-    "_ = density_axes.plot(time, density)\n",
-    "_ = density_axes.set_ylabel('Density, in kg/m^3')\n",
-    "\n",
-    "diameter_axes = fig.add_subplot(212, sharex=density_axes)\n",
-    "_ = diameter_axes.plot(time, diameter)\n",
-    "_ = diameter_axes.set_ylabel('Diameter, in m')\n",
-    "_ = diameter_axes.set_xlabel('Time, in s')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/fall velocity discrepancy.ipynb b/notebooks/fall velocity discrepancy.ipynb
deleted file mode 100644
index 7c7f5af..0000000
--- a/notebooks/fall velocity discrepancy.ipynb	
+++ /dev/null
@@ -1,292 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>100.0</td>\n",
-       "      <td>4.94</td>\n",
-       "      <td>125.0</td>\n",
-       "      <td>0.25</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.013555</td>\n",
-       "      <td>23.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                     100.0     4.94  125.0      0.25        0.0       0.0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1            0.013555    23.0  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import pandas as pd\n",
-    "\n",
-    "hydraulic_csv_path = r'../test/nonrandom/data/highQ_1Cell.csv'\n",
-    "hydraulic_csv = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_csv"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "%matplotlib inline\n",
-    "import numpy as np\n",
-    "import scipy.io as sio\n",
-    "\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "mat_file_path = r'../test/nonrandom/data/single_egg.mat'\n",
-    "results = sio.loadmat(mat_file_path, squeeze_me=False)\n",
-    "expected_x = np.squeeze(results['ResultsSim']['X'][0][0])\n",
-    "expected_y = np.squeeze(results['ResultsSim']['Y'][0][0])\n",
-    "expected_z = np.squeeze(results['ResultsSim']['Z'][0][0])\n",
-    "expected_time = np.squeeze(results['ResultsSim']['time'][0][0])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import os\n",
-    "import sys\n",
-    "\n",
-    "from fluegg.drift import ConstantDriftingParticle\n",
-    "\n",
-    "initial_position = np.array([[0, 50.6, 0]])\n",
-    "egg_density = results['ResultsSim']['Rhoe'][0][0][0]\n",
-    "egg_diameter = results['ResultsSim']['D'][0][0][0]/1000\n",
-    "\n",
-    "drifting_particles = ConstantDriftingParticle(egg_density, egg_diameter, initial_position)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import os\n",
-    "import sys\n",
-    "\n",
-    "from fluegg.hydraulics import from_csv\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "test_classes_module = os.path.realpath('../test/nonrandom/testclasses.py')\n",
-    "test_classes_path, _ = os.path.split(test_classes_module)\n",
-    "\n",
-    "sys.path.append(test_classes_path)\n",
-    "\n",
-    "from testclasses import NonRandomFluEggTransporter\n",
-    "\n",
-    "hatching_time = results['ResultsSim']['T2_Hatching'][0][0][0][0]*3600  # seconds\n",
-    "\n",
-    "time_step_size = 100  # seconds\n",
-    "simulation_clock = SimulationClock(time_step_size, hatching_time)\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)\n",
-    "transport_model = NonRandomFluEggTransporter(simulation_clock, drifting_particles)\n",
-    "simulation = Simulation(drifting_particles, transport_model, simulation_clock)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)\n",
-    "simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = simulation.run()\n",
-    "\n",
-    "time = simulation_results.time()\n",
-    "positions = simulation_results.results()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHjCAYAAACq4oKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8XHWd//HXZyaZJJM2vXORtqRyR4RSsgWs3IpAQbYVF7SLl1JYKggL7E9FiqsLCLsoqKisYLmjYEGwWhG0CBR0EUoKWAoVaKFAaOmF3pukuX1+f8zJdJLMNJlkJpOTvJ+Pxzwy853vzPmew0n64Xv7mLsjIiIiIuEVKXQDRERERKRnFNCJiIiIhJwCOhEREZGQU0AnIiIiEnIK6ERERERCTgGdiIiISMgpoBMREREJOQV0IiIiIiGngE5EREQk5IoK3YDeNnLkSK+srCx0M0REREQ6tXjx4vXuPqqzegMuoKusrKS6urrQzRARERHplJm905V6GnIVERERCbm89dCZ2RjgXmAPoAWY4+4/NrOrgPOBdUHVK9390eAzs4HzgGbgEnf/U1A+BfgxEAVud/frg/JxwFxgOPAi8CV3b8jXOYmIiMjAcuvTK3hs6Wre21BLSVGUcz9Zycc+MoTb//IW/1i9lfrGZg4dM5S7Z04saDvzOeTaBHzN3V80s8HAYjN7PHjvR+5+Y2plMzsYmA58DPgI8Gcz2z94+3+Bk4Aa4AUzm+/urwHfC75rrpndSiIYvCWP5yQiIiL92Dl3LWJJzSZKiqLEY1HqGpr5YEs9LQ7QyHV/+EeHz0zad0Svt7O9vAV07r4aWB0832pmy4C9dvGRacBcd98BvG1my4HWcHe5u78FYGZzgWnB900Gzg7q3ANcRTcCusbGRmpqaqivr8/2o9IFpaWljB49muLi4kI3RUREpI3JNy6krrGZeCzKxtoG9h4eZ8P2RqCxS5//1qcP5Pxj9slvI7ugVxZFmFklcDjwPDAJuNjMvgxUk+jF20gi2Hsu5WM17AwA32tXfiQwAtjk7k1p6melpqaGwYMHU1lZiZl15yskA3fnww8/pKamhnHjxhW6OSIiMoCdc9ci3ttQy8bahmQPXH1jM6s37+zQ2bB9c5e/b2LlsD4RzEEvBHRmNgh4GLjM3beY2S3AdwEPfv4AOBdIF0k56Rdu+C7qp2vDLGAWwNixYzu8X19fr2AuT8yMESNGsG7dus4ri4iI5FD74VMDVqzbHrzbtR44gAn2BpdH53JA5F0iOEYLm6jgZ+9O5ba/7N4ngrq8BnRmVkwimLvP3X8D4O5rUt6/DXgkeFkDjEn5+GhgVfA8Xfl6YKiZFQW9dKn123D3OcAcgKqqqkxBX1bnJl2naysiIvl269MruOfZlQDsaGqmpCjKHhUlWQ2ftpoeeYKZ0ccYyWZKrYG4dfz8YNbxP8V3MPsxuI2LCh7U5XOVqwF3AMvc/Ycp5XsG8+sAzgCWBs/nA/eb2Q9JLIrYD1hEoiduv2BF6/skFk6c7e5uZk8BZ5JY6ToD+F2+zkdERET6jvbDp3tUlLBmcz0tyRqNbYZSM5lgbzAr+giH2ZuUWz0RnHLruGFGur4JB6bGqpmz/MP+G9CRmCv3JeAVM3s5KLsS+FczG0/iOqwEvgLg7q+a2YPAayRWyF7k7s0AZnYx8CcS25bc6e6vBt/3TWCumV0LvEQigMyrW59ewaGjh/CJfUYmy55dsZ4lNZu54Lju/8eMRqN8/OMfT76ePn06V1xxRY/a2plNmzZx//3389WvfjWrz1111VUMGjSIr3/963lqmYiISFupw6c7mprZe3i8zfBpV4I3SPS+XRj9HcNsa8bgDTIHcG3qAJ84/Vw+UVXYLUsgv6tc/0r6eW6P7uIz1wHXpSl/NN3ngpWvvXoVDx09hIvvf4mbzz6cT+wzkmdXrE++7omysjJefvnlzivm0KZNm/jZz36WdUAnIiKST10ZPu3K4oXWodMhbKeYJuJWT6k1d6iXaWZQagBnwYOiOEQiEB8On/waVJ2TxZnlz4BL/dVTn9hnJDeffTgX3/8SXzxyLL98/t1kcJdrmzdvZuLEicyfP58DDjiAf/3Xf2Xy5Mmcf/75DBo0iK985Ss89dRTDBs2jLlz5zJq1ChWrFjBRRddxLp164jH49x2220ceOCBrFmzhgsuuIC33noLgFtuuYWf/OQnrFixgvHjx3PSSSdxww03cMMNN/Dggw+yY8cOzjjjDK6++moArrvuOu69917GjBnDqFGjOOKII3J+viIiMjDlavg0de5bpuANut77lgjgSqF0CIz+J5h0KYwpfG9cOgrouuET+4zki0eO5SdPLueSyfvmJJirq6tj/PjxydezZ8/m85//PDfffDPnnHMOl156KRs3buT8888HYPv27UyYMIEf/OAHXHPNNVx99dXcfPPNzJo1i1tvvZX99tuP559/nq9+9as8+eSTXHLJJRx33HHMmzeP5uZmtm3bxvXXX8/SpUuTPYMLFizgzTffZNGiRbg7U6dO5ZlnnqG8vJy5c+fy0ksv0dTUxIQJExTQiYhIt7TPvLCjqZnh8VjWw6epK09biFDiDZRHuj73rUM9SARvxWVQUgF7fLxPB3DtKaDrhmdXrOeXz7/LJZP35ZfPv8tR+4zocVCXacj1pJNO4te//jUXXXQRf//735PlkUiEz3/+8wB88Ytf5LOf/Szbtm3j2Wef5ayzzkrW27FjBwBPPvkk9957L5CYrzdkyBA2btzY5lgLFixgwYIFHH54Yvh427ZtvPnmm2zdupUzzjiDeDwOwNSpU3t0riIiMnC09r4BbKxtYFg8xsr122kOMi8AwVDqrl0evZ+zok8TwSnyJioi7YK+IHDrau8b0RhESyAShd0Phk9dHZrgLR0FdFlKnTP3iX1GctQ+I9q8zrWWlhaWLVtGWVkZGzZsYPTo0WnrmRktLS0MHTq023Px3J3Zs2fzla98pU35TTfdpK1HRESkS9oPn5bHoim9b10L3lpXnh5kKxlEHYOsjpjtHIDNJnhLVo8NTrzbx+a+5Uq6TXtlF5bUbG4TvLXOqVtS0/WdpbPxox/9iIMOOohf/epXnHvuuTQ2Jn4RWlpaeOihhwC4//77+eQnP0lFRQXjxo3j17/+NZAI0Fp79U488URuuSWRFa25uZktW7YwePBgtm7dmjzWKaecwp133sm2bdsAeP/991m7di3HHnss8+bNo66ujq1bt/L73/8+L+cqIiLhcuvTKzj6f57g6P95ghN/sJAJ311AzYZaVqzbzobtiaHT5SnBXCbTI0/wdPElLInN5O+x83g4dhWnRKsZG1nP8Mj2ZDBn1vYBiQAu9WGARUuw2CBs0O7YgafDeY/DlTVw5ftw2Sv9LpgD9dBlLd3WJJ/YZ2SPe+faz6GbMmUK5557LrfffjuLFi1i8ODBHHvssVx77bVcffXVlJeX8+qrr3LEEUcwZMgQHnjgAQDuu+8+LrzwQq699loaGxuZPn06hx12GD/+8Y+ZNWsWd9xxB9FolFtuuYWjjz6aSZMmccghh3Dqqadyww03sGzZMo4++mgABg0axC9/+UsmTJjA5z//ecaPH8/ee+/NMccc06NzFRGRcEo3fNp28ULnPXB5mfsWGwzR4sTw6fgvwElXd/mc+gtzT5s4od+qqqry6urqNmXLli3joIMOKlCLumfQoEHJnrQwCOM1FhEZyFoXL2yrb0oOnxqwqov7vbXqStYFyCKAK4pDcSl4S7+Y+9YZM1vs7lWd1VMPnYiIiLTZ+y0ei1LX0MyaLfXB4gXoSvqsnmZd6FAP+uy+b32NArqQClPvnIiI9D1dGT7tTC6zLgBYpAhKBidWn5YNhSMvVADXRQroRERE+rn2e7+19sClDp9ms3VIjCZiNHQ760Lr64jmvuWMAjoREZF+ZtfDp50HbtB27luxNVFEM2XW1KFe1hv3BlkXLESb9oaBAjoREZGQm3zjQuoam9vkPf1gc33awCqd9nPfMgVv0DGA89a9QlLLgEiIsy6EkQI6ERGREEk3fBoxUtJldZ46KzVpfRk7OmZdCHSp982giWKKY6XJrAvWz1ee9kUK6PqIDz74gMsuu4wXXniBkpISKisruemmm9h///3T1u/utiULFy7kxhtv5JFHHslY5+WXX2bVqlWcdtppWX338ccfz4033khVVaerq0VEpIt6OnzaPutCpqT1aYO3NL1vkNi4l2hxcuVpsRYuFJwCuu56bxGs/AtUHtPj/wtxd8444wxmzJjB3LlzgURQtWbNmowBXT69/PLLVFdXZx3QiYhIz/V0+DR15akTocLq0tbrUgBn0GQxiotjiQBu0O5aedpH5S2gM7MxwL3AHkALMMfdf2xmw4EHgEpgJfA5d99oiWShPwZOA2qBc9z9xeC7ZgD/GXz1te5+T1B+BHA3UAY8ClzqvbFT8nuL4J6p0NyQSO47Y36PgrqnnnqK4uJiLrjggmTZ+PHj2bZtGyeeeCIbN26ksbGRa6+9lmnTpnX4/Pe//31+8YtfEIlEOPXUU7n++uvb9JatX7+eqqoqVq5c2eZzixYt4rLLLqOuro6ysjLuuusuxo0bx3e+8x3q6ur461//yuzZszn99NP593//d1555RWampq46qqrmDZtGnV1dcycOZPXXnuNgw46iLq69H80REQkvVwMn6Ymrc8m6wKkWXlq0GQlxIpjic17x3+BYq08DYV89tA1AV9z9xfNbDCw2MweB84BnnD3683sCuAK4JvAqcB+weNI4BbgyCAA/C+gisS9t9jM5rv7xqDOLOA5EgHdFOCxPJ5Twsq/JII5b078XPmXHgV0S5cu5YgjjuhQXlpayrx586ioqGD9+vUcddRRTJ06FUv5zXzsscf47W9/y/PPP088HmfDhg1dPu6BBx7IM888Q1FREX/+85+58sorefjhh7nmmmuorq7m5ptvBuDKK69k8uTJ3HnnnWzatImJEyfyqU99ip///OfE43GWLFnCkiVLmDBhQrevgYjIQHDOXYtYUrOJkqIoO5qaGRaPsXL99i4Pn6bOfSumKbuk9ZkWL8QGt5n7FtPct1DKW0Dn7quB1cHzrWa2DNgLmAYcH1S7B1hIIqCbBtwb9LA9Z2ZDzWzPoO7j7r4BIAgKp5jZQqDC3f8WlN8LfIbeCOgqj0n0zLX20FXmJ7epu3PllVfyzDPPEIlEeP/991mzZg177LFHss6f//xnZs6cSTweB2D48OFd/v7NmzczY8YM3nzzTcyMxsb0f0wWLFjA/PnzufHGGwGor6/n3Xff5ZlnnuGSSy4B4NBDD+XQQw/t7qmKiPQ76VJn7VFREuz3lvh7u6u937qadQG6tvIUgwYrpaS4CGLl2jqkn+mVOXRmVgkcDjwP7B4Ee7j7ajPbLai2F/BeysdqgrJdldekKU93/FkkevIYO3Zsz04GEjf/jPk5m0P3sY99jIceeqhD+X333ce6detYvHgxxcXFVFZWUl/ftuvd3dv02LUqKiqipSXxf23tP9Pq29/+NieccALz5s1j5cqVHH/88WnruTsPP/wwBxxwQIf30h1bRGQgaj98atAhddauhk9Tk9ZH8B7PfWskSqysok3WhRLNfeu38h7Qmdkg4GHgMnffsosAIN0bGdbX7LK8Y6H7HGAOQFVVVW7m2I2ZmLP/q5k8eTJXXnklt912G+effz4AL7zwAu+88w677bYbxcXFPPXUU7zzzjsdPnvyySdzzTXXcPbZZyeHXIcPH05lZSWLFy9m4sSJaYNFSPTQ7bVXIga+++67k+WDBw9m69atydennHIKP/3pT/npT3+KmfHSSy9x+OGHc+yxx3LfffdxwgknsHTpUpYsWZKT6yEiEgY9HT5NzbpQRFPapPUZ576lCeDqKaGsrDyZdSGmuW8DSl4DOjMrJhHM3efuvwmK15jZnkHv3J7A2qC8BhiT8vHRwKqg/Ph25QuD8tFp6oeOmTFv3jwuu+wyrr/+ekpLS6msrOSqq67ikksuoaqqivHjx3PggQd2+OyUKVN4+eWXqaqqIhaLcdppp/Hf//3ffP3rX+dzn/scv/jFL5g8eXLa415++eXMmDGDH/7wh23qnHDCCVx//fWMHz+e2bNn8+1vf5vLLruMQw89FHensrKSRx55hAsvvJCZM2dy6KGHMn78eCZOVLe9iPRPPR0+7VHWhXRz3wwaI+WUFFly65Ay9b4NaJavRaHBqtV7gA3ufllK+Q3AhymLIoa7++Vm9mngYhKrXI8EfuLuE4NFEYuB1hn3LwJHuPsGM3sB+HcSQ7mPAj9190d31a6qqiqvrq5uU7Zs2TIOOuigHJy1ZKJrLCJh0pq4vjV4M+CDLfW0dPGfzNStQ7LJugDpA7hGioiVDVbWhQHIzBa7e6cbvOazh24S8CXgFTN7OSi7ErgeeNDMzgPeBc4K3nuURDC3nMS2JTMBgsDtu8ALQb1rWhdIABeyc9uSx+iNBREiItLvtO79Fo9F2VjbwN7D46xYtz14d9fDp+3nvmWTtD5T71tDpJzS+ODk3LeYet+kE/lc5fpX0s9zAzgxTX0HLsrwXXcCd6YprwYO6UEzRURkgGntfQPa9MClLljYsH1z2s+2z7pQag1p575BhpWn0GHuWwPFlMRK2qw8LVXvm2RJmSICmVaLSs/1xl7PIiKZtB8+LY9FU3rfYFc9cKlbh1RYbZeDN0gTwBnUU4wTJV5Wlsy6oJWnkgsK6Ehs4Pvhhx8yYsQIBXU55u58+OGHlJaWFropIjJA9GT4NDXrQpE3pU1an83K0x0UYZESSsriMP4LlGnlqeSJAjpg9OjR1NTUsG7dukI3pV8qLS1l9OjRnVcUEclST4ZPe5x1IaUOJOa+7aCEstjOpPWl6n2TXqKADiguLmbcuHGFboaIiHQide+3eCwRvHV1+DR165C41adduABd37i3lhIMIz5oSHLuW5nmvkmBKKATEZE+6danV3DPsysBksOnw+OxNnu/ZZK68rSFSFZJ6zP3vsUSG/cGc9/K1fsmfYgCOhER6RPaL17Yo6KENZvrSRkEzbh5b6dz37IZPjWoJUazlVBRsjNpvXrfpC9TQCciIgWx6+HTzHlP2yet77BxbzfmvtUSpzgCJRUj4ZNfU++bhI4COhERybueDJ+mZl1wItknrYcOW4e0EKF80NDk3LdB6n2TkFNAJyIiOdfd4dMeZ11IVgjKDLZRBlZERbxUW4dIv6WATkREeqQ1cf17G2qTw6d1Dc2sSg6ZZh4+TV15mk3WBcg0962ERmKURqF09MexT11NhXrfZABQQCciIllJHT7d0dTMsHiMdz+spbHF6WrWhXKrJ4JTblmuPIU2AdwOiqijjGGj9tLKUxnQFNCJiMgudTZ8mmnlaerct0zBG3QxgAuCtx2UUVQco3zoKDjyQkqrzkF5aEQU0ImISIr2w6c7mpoZHo91uvq0fdaFTBv37jJtFrSZ+1ZHCWA0lwyn4qRvKngT2QUFdCIiA1hXhk/T9cD1OOtCskJQZlBPjO2UM+rASdikSynX3DeRLstbQGdmdwKnA2vd/ZCg7CrgfKA1aeqV7v5o8N5s4DygGbjE3f8UlE8BfgxEgdvd/fqgfBwwFxgOvAh8yd3T9+eLiEiy921bfVNy+DQei7bLe7rrlafdzrqQrLQzeGukBCsZRMW4I7BJlxIfM5F4T09SZIDKZw/d3cDNwL3tyn/k7jemFpjZwcB04GPAR4A/m9n+wdv/C5wE1AAvmNl8d38N+F7wXXPN7FYSweAt+ToZEZGwaT98asCaLfU0J4OsPGZdaK0XzH1rIAYY24YcwEfO/B5x9b6J5FTeAjp3f8bMKrtYfRow1913AG+b2XKg9bd9ubu/BWBmc4FpZrYMmAycHdS5B7gKBXQiMoC1Ll4A2FjbwLB4jJXrtwcBXPrgrXXl6UG2kkHUMcjqiFnKbnFdDd6Cuol93+JEaaa5ZESHuW8VPTlBEcmoEHPoLjazLwPVwNfcfSOwF/BcSp2aoAzgvXblRwIjgE3u3pSmfgdmNguYBTB27NhcnIOISEGlGz41SNn7LfPctx5nXYBk71s9xTQTYYfF2TziMD467Vva902kAHo7oLsF+C7gwc8fAOfSJqtekgORDOWZ6qfl7nOAOQBVVVUZ64mI9FXtU2fVNTR3Onyaj7lv2yijmShOhOGTzk1mXRhE4v+0RaQwejWgc/c1rc/N7DbgkeBlDTAmpepoYFXwPF35emComRUFvXSp9UVEQm/yjQupa2xO5j0dFo/xweb6zP/nSheyLmQ5fFpLjAZiRGlh25AD+ciZ31Pvm0gf1asBnZnt6e6rg5dnAEuD5/OB+83shyQWRewHLCLx52e/YEXr+yQWTpzt7m5mTwFnkljpOgP4Xe+diYhI7qQbPi3vZPVpzrIuQHL4tJYYjrEtMoTX9z2f486+nPKgiua+ifRt+dy25FfA8cBIM6sB/gs43szGkxgeXQl8BcDdXzWzB4HXgCbgIndvDr7nYuBPJLYtudPdXw0O8U1grpldC7wE3JGvcxERyaXuDJ/mLOsCgEEj0WD4tIgdRRWMnvK1ZNqsQcAe3TkxESkY8w6/6f1bVVWVV1dXF7oZIjKApBs+fWvd9l0On7ZuHRKjiRgN3cu60PraYDtxmojgRHhnzBkcft5Pun9CItJrzGyxu1d1Vk+ZIkREcqj93m/xWJSIscvh09S5b8XWRBHNlFlT+6/OeuPebcRZETuQDw75CmdM/WyyyvAenaGI9EUK6EREeuCcuxaxpGZTMnira2jmgy31tGTY+6393LdMwRt0DODSDai0Bm87KKGOUlaV7UfV2Vcnsy7s1uMzFJEwUEAnIpKF1uHTHU3NlBRFOXjPwUGPW/qNe1OT1pexo2PWhUBXe992Zl2A5VbJO4d/gzOmfpY4MIzEqjIRGXgU0ImIZNCaeSE172l9Y3PK8Gljm6HU9lkXMiWt71LwBsmNe1uIsJEKFgz/AudecnUy68KE4CEi0mlAZ2YHB7lTU8uOd/eFeWuViEgBtB8+NWDFuu3Bu3nMuhCot0TWhUZibLIhPDXsTM69JLFxbzmJXdhFRNLpSg/dg2b2C+D7QGnwswo4Op8NExHJt2yHT1OT1meTdQHSrzytJ0YTRTRRxCORydQe9x0uOG4fIDF8Oq4H5yYiA0tXArojge8BzwKDgfuASflslIhIrmU7fJo6962Ypp4lrWdn0noH3o6M4/e7zeLbF5yTfP/LPT5DERnIuhLQNQJ1QBmJHrq33b1l1x8RESms1OHTHU3N7D08nnH4tKtZF6BrK09Tsy7UEecf0f1ZOOrsZAA3PniIiORKVwK6F0ik1fonErmXf25mZ7r7mXltmYhIF7X2vgFtUmelDp9u2L45WT81aX0E7/Hct0bbmXVhC+U8Pfys5Ny3QcAo4JienKCISCe6EtCd5+6tqRU+AKaZ2Zfy2CYRkV1qP3xaHoum9L5B+x641KwLRTR1TFpP1+e+AdRaCQ3B6tM/FX+KBR+5kLtnJpLWjwL26eZ5iYh0V6cBXUowl1r2i/w0R0Sko2yGT3OadYGdc98iNLPFhvCb8s9R9E/nJhcvnB08REQKSfvQiUifku3waerWIdlkXYD0AVyDFbGdUuoo43Uq+b89vpic+zYIuLgnJycikicK6ESkoLIZPm0/9y2bpPWZet+2E6eeGFso57cl03hljzOSw6d7AZN7eH4iIr1BAZ2I9Jpbn17BPc+uBCAei7KxtoHh8Vja4dP2WRdKrSHt3Dfo4spToMGKaSLCdsp4zfbnodJ/4eZvXsBgEnPfvtajsxMRKZy8BXRmdidwOrDW3Q8JyoYDDwCVwErgc+6+0cwM+DFwGlALnOPuLwafmQH8Z/C117r7PUH5EcDdJLZTeRS41D3Tn3ERKYT2w6fD4jHWbK4ndd+jxFBq261DKqy2y8EbZMi64EW0RKI0EGMjQ7iP01ix91ncPXMi5SSS1h/fo7MTEek78tlDdzdwM3BvStkVwBPufr2ZXRG8/iZwKrBf8DgSuAU4MggA/4tEZgoHFpvZfHffGNSZBTxHIqCbAjyWx/MRkU7sOnXWzuAN2mZdKPKmtEnrs1l52mBF7AjWsf6WE/jdbrM49ZA9ueC4fRgGfLuH5yYi0pflLaBz92fMrLJd8TR2/k/xPcBCEgHdNODeoIftOTMbamZ7BnUfd/cNAGb2ODDFzBYCFe7+t6D8XuAzKKAT6TWZhk/Tpc7KedYFYIeV0AJspIJfRv+FBWWn8uTXjwcSOU+V91REBpLenkO3u7uvBnD31Wa2W1C+F/BeSr2aoGxX5TVpytMys1kkevMYO3ZsD09BZGDKZvg0deVpNlkXIH0At91jWMSoJc6rth93MxXGHpkcPm3t7hcRGaj6yqKIdAMr3o3ytNx9DjAHoKqqSvPsRDpx69MreGzpat7bUJscPq1raGZVSq7T1LlvrStPW4hklbQ+c+9bjHpKknPfqneblhw+PR7NfRMRaa+3A7o1ZrZn0Du3J7A2KK8BxqTUGw2sCsqPb1e+MCgfnaa+iHRD++HTuoZm1mypp9khU9aFjHPfshw+3e4xGiMxIrTwdmQcP4t+keUlB/Pk14/X3DcRkS7q7YBuPjADuD74+buU8ovNbC6JRRGbg6DvT8B/m9mwoN7JwGx332BmW83sKOB54MvAT3vzRETCrP3eb3tUlHQYPoWOSes7bNzbjblvW72MokgLm20I90Y+y++iJzNjUiUXHLcP4wm60kVEJCv53LbkVyR610aaWQ2J1arXAw+a2XnAu8BZQfVHSWxZspzEtiUzAYLA7bvAC0G9a1oXSAAXsnPbksfQggiRtDofPm1kdfA8de6bE+lx0voGj1IbiVNLKa9Tybz4mbxbfkhy+FRz30REcsMG2tZtVVVVXl3dIT2tSL+ROny6o6mZYfEY735YS2NL29/1nGddINH71hKJJpPW3xz5IqXF0eTqUxERyY6ZLXb3qs7q9ZVFESLSTZNvXEhdYzM7mpqTw6cfbK5PrhJKXXnamrQ+m6wLkHnu2w6KKY44bwVz316xA5LDp0paLyLSexTQiYRIuuHTiJHii4UWAAAgAElEQVQcMm0dPu107lugq8EbJDIv1EfKkitPF1Z8mkGlRcnhU819ExEpHAV0In3YrodPd/aw5Xrft3ovopZSWiJFyaT1j8ZOYczwOHfPnMi30epTEZG+RAGdSB/R2vu2rb4pufo0Houm9L4lhk+nR55gZvHOrAtxq+/x3Ldaj9GCsTUyhF9EP8uDfiJjRsSTvW9fQ4nrRUT6MgV0IgXSfvjUIGXvN2jtgUud+5YpeIOuB3B1XkQTUXZEdmZdeG/Qx5PDp1cEq09FRCQ8FNCJ9JLWxQuteU+HxWO8vX47LSmb906wN7i8KLdZF+o8RjNRmiLF/JYTuL10Bu4kFy8cn8uTFBGRglBAJ5IH6YZPy9MMn+Y660K9F9FAMRYx3mBv5hR/mermfdsMnyppvYhI/6OATiQH2mdeMOCDLfW0pAyfTrA3uLUo91kXjBZqi4ZwtyXmvg0rjyUXL3S6cZGIiPQLCuhEuqH98Onew+OsWLc9eHfn3LcLi3KXdaF17lsdZbxRfAB3tPwzb8QOTg6fau6biMjApYBOpBNdGT6trH2BuTme+7bVy2jyCBaN8scg60J9Y3Ny+PTu4/bJ4VmKiEiYKaATaeecuxaxpGZTm7yn7YdPp0ee4H+Ld5F1Icvh0+0eY4cXEzHn/dg4fmJfpLp53zbDp8q6ICIimSigkwEv3fBpIl3WzpWn30nJupBp495ssy7UUsqW6FB+6YmsC3UNzcnh0znqfRMRkSwooJMBpf3ihXgsSn1jc5vh05PrfsNNxbnLutDgUbZRRqNHqSsazG9iU3mYT1Hf2MyhY4YmMy+IiIh0lwI66dfaD58atFm8MMHe4BvRRzioeCWDqMsq6wJ0DOB2NfctdfhUWRdERCSXChLQmdlKYCvQDDS5e5WZDQceACqBlcDn3H2jmRnwY+A0oBY4x91fDL5nBvCfwdde6+739OZ5SN/T2fBpp3PfAtlu3LuVOCtLD+TWxtN5b9DHqWtoprQ4ypNfP15z30REJO8K2UN3gruvT3l9BfCEu19vZlcEr78JnArsFzyOBG4BjgwCwP8Cqkj8u7rYzOa7+8bePAkpnM6GTyfYG8za8QiHFWfY9y2QbfBWT4ztXso7sX14sOSzLG7eLzF8umdi+FRERKS39aUh12mQzEJ0D7CQREA3DbjX3R14zsyGmtmeQd3H3X0DgJk9DkwBftW7zZbe0tnwaWvO0yHF2yljR8esC4Fssy60YLwdreTWoi8lV54CyeFTERGRQitUQOfAAjNz4OfuPgfY3d1XA7j7ajPbLai7F/BeymdrgrJM5R2Y2SxgFsDYsWNzeR6SJ7c+vYJ7nl0JwI6mZkqKouxRUZIcPp1gbzCrm3PfMq083e4xWjA2UcEjFZ/n9trjGFYeazN8KiIi0hcVKqCb5O6rgqDtcTP7xy7qppuO7rso71iYCBjnAFRVVWX451wKqf3w6R4VJazZXE9L8P70yB+5sPZ3DIvlNutCI8V86EP4TeyfmV90cpvFCy9+Xb1vIiISDgUJ6Nx9VfBzrZnNAyYCa8xsz6B3bk9gbVC9BhiT8vHRwKqg/Ph25Qvz3HTJkdTh0x1NzR1SZ31p253MiSWS1meTdQHSrzyt8xhNRGmgmMdL2q48HVRaxKmH7Mmz2vtNRERCqtcDOjMrByLuvjV4fjJwDTAfmAFcH/z8XfCR+cDFZjaXxKKIzUHQ9yfgv81sWFDvZGB2L56KdFFnw6fTI08w84PHGFm8mWJrylnS+haM130svx3xbyzYsneb4dNnNXwqIiL9SCF66HYH5iV2I6EIuN/d/2hmLwAPmtl5wLvAWUH9R0lsWbKcxLYlMwHcfYOZfRd4Iah3TesCCSmsXQ2fts59O6z2TcpjmbMuQMcArrO5b7WU8XLLvvym7F9YGjlg5/DpkDgvXqbhUxER6b/MM/0r2U9VVVV5dXV1oZvRb7Qmrn9vQ21y+HR4PMbyYPh0gr3B5dFE0voI3uO5b6lZF7YwiD8POYNfNk7uMHx6gYZPRUSkHzCzxe5e1Vm9vrRtiYRAa+8bwMbaBobFY6xcv51mB2jk8uj9nNX4NLFYE0U0pd24t6tz32Bn0voWi/JQy7E8POx8NmxvoLQ4sefcoSOG8qy2DhERkQFOAZ3sUvvh0/JYNLl4YXrkCWY2PMbIogxz3wLd2bj3Qx/C7+PTeDR2CnUNzdQ3NjNmRJwz1fsmIiLSgQI6SUpdvNCaOmt4PJYSwP2RC6OJrUMyBW+Q3ca9tZSy3Ut5zSt5cfSXeGTjGOobEwsXSoujPPm143N0diIiIv2XAroBLN3waevihWTWhYbtFBc39Xjj3taVp3UeYwuDuLtlCouGT207fFoylGdna/hUREQkWwroBojWxQvb6puSw6cGrNpczwR7g29EH+GghpUMKs6cdQG6vvK0dePe1pWnf6g4i9eiB2r4VEREJA8U0PVT7YdP6xqaWbOlnmZP2TrE3qQiVpt24QJ0P+vCnc1TeH2vz7Jmy46dw6cRDZ+KiIjkiwK6fmLyjQupa2xOzn0bFo/xweZ6HBIrT6NPEyl2irwpbdL6bFaetiatb6CYXzcfyw9azmb3ilLKgsDRHWao901ERKTXKKALofZ7v8VjUSIGqzfXd5j7NsjqiFnLzg93M+uC0cImKvhZ01SqR0xNrEgNhk8PGRHX3m8iIiIFpIAuBFLznrYOn36wpZ4WT1l5aluJxLqedQEy7/uWmnVhTvPpbBl5OBu2N+xMneXwpFJniYiI9BkK6Pqg1uHT1rynB+85mA3bG5lgryazLrQUR7JKWt+Vfd/ubJ7Cr/3EjsOnVWPU+yYiItKHKaArsPYb98ZjiS08Vm+uT859i73VRFEsTdaFLIdPW7MuRMx53cfy/abpfFBxaDJ40/CpiIhIOCmg62Xth08NWLFue9uk9VZPUaznWRfaz317sOVEPjqqPDl8CrD/8Dh3K3WWiIhIqCmgy6PUrUNah0/3qChhw/bGNnPfPBbJWdL61qwL6ea+7e5wpoZPRURE+h0FdDnUfvXpHhUlrN1Sz2G8kZj71vgukTonFmvISdaFJo/QYlF+3Xws328+m31HlVMbDJ0OK48xZnicP2vvNxERkX4v9AGdmU0BfgxEgdvd/fpCtOOcuxaxubaBZau2cEjL68nh04ri3G3c237laTJ4GxJjH2C0hk9FREQGpFAHdGYWBf4XOAmoAV4ws/nu/lpvt2XSviO47g//YHbRrzg/9nvax2pdDd5gZ9L61pWnc1tO5PAxQ3jnw9qdeU8VvImIiEgg1AEdMBFY7u5vAZjZXGAa0OsB3fnH7MMB7z/MMct+T6ItHetkyrpQSymNHmULg7izeQoPtpzIHkNKE+83NrNPeYwh8RgvXvTJfJ6CiIiIhFTYA7q9gPdSXtcAR7avZGazgFkAY8eOzVtjjm38G27J3UQ6BHAO1AYb97auPG3tfWvNezpsaIyPlxZp6xARERHpsrAHdOkykHboB3P3OcAcgKqqqgwDnT03r/4IPuNPJhvQunHvVuLJuW9/Z3/GjUxsHVJaFmV4YzND4jHmqfdNREREuinsAV0NMCbl9WhgVSEacttfVnDdisN5PnoeZxcvZC3D+dmOT/OKHcAhe1Uke+C0ca+IiIjkWtgDuheA/cxsHPA+MB04uxAN+b/lHzL5wFFMPeZKDt3nhwC8/ZcVNC9ZzSkK4ERERCSPzDMttQwJMzsNuInEtiV3uvt1u6pfVVXl1dXVvdI2ERERkZ4ws8XuXtVZvbD30OHujwKPFrodIiIiIoUS+h66bJnZOuCdPB9mJLA+z8cYSHQ9c0vXM7d0PXNL1zO3dD1zqxDXc293H9VZpQEX0PUGM6vuSveodI2uZ27peuaWrmdu6Xrmlq5nbvXl6xkpdANEREREpGcU0ImIiIiEnAK6/JhT6Ab0M7qeuaXrmVu6nrml65lbup651Wevp+bQiYiIiISceuhEREREQk4BnYiIiEjIKaDLMTObYmavm9lyM7ui0O3pK8xsjJk9ZWbLzOxVM7s0KB9uZo+b2ZvBz2FBuZnZT4LruMTMJqR814yg/ptmNiOl/AgzeyX4zE/MzHr/THuXmUXN7CUzeyR4Pc7Mng+uzQNmFgvKS4LXy4P3K1O+Y3ZQ/rqZnZJSPqDuZTMbamYPmdk/gvv0aN2f3Wdm/xH8ri81s1+ZWanuz+yY2Z1mttbMlqaU5f2ezHSMsMtwPW8IfueXmNk8Mxua8l5W91537u+ccnc9cvQgkX5sBfBRIAb8HTi40O3qCw9gT2BC8Hww8AZwMPB94Iqg/Arge8Hz04DHAAOOAp4PyocDbwU/hwXPhwXvLQKODj7zGHBqoc+7F67r/wPuBx4JXj8ITA+e3wpcGDz/KnBr8Hw68EDw/ODgPi0BxgX3b3Qg3svAPcC/Bc9jwFDdn92+lnsBbwNlKfflObo/s76OxwITgKUpZXm/JzMdI+yPDNfzZKAoeP69lOuZ9b2X7f2d64d66HJrIrDc3d9y9wZgLjCtwG3qE9x9tbu/GDzfCiwj8Ud/Gol/SAl+fiZ4Pg241xOeA4aa2Z7AKcDj7r7B3TcCjwNTgvcq3P1vnvituTflu/olMxsNfBq4PXhtwGTgoaBK++vZep0fAk4M6k8D5rr7Dnd/G1hO4j4eUPeymVWQ+GN/B4C7N7j7JnR/9kQRUGZmRUAcWI3uz6y4+zPAhnbFvXFPZjpGqKW7nu6+wN2bgpfPAaOD51nde938+5tTCuhyay/gvZTXNUGZpAi6mw8Hngd2d/fVkAj6gN2Capmu5a7Ka9KU92c3AZcDLcHrEcCmlD9Oqdcged2C9zcH9bO9zv3VR4F1wF2WGMK+3czK0f3ZLe7+PnAj8C6JQG4zsBjdn7nQG/dkpmP0d+eS6KmE7K9nd/7+5pQCutxKF3FrX5gUZjYIeBi4zN237KpqmjLvRnm/ZGanA2vdfXFqcZqq3sl7up4JRSSGYm5x98OB7SSGmjLR9dyFYM7VNBJDVR8ByoFT01TV/Zk7uoY9YGbfApqA+1qL0lTr7vXslWutgC63aoAxKa9HA6sK1JY+x8yKSQRz97n7b4LiNUHXP8HPtUF5pmu5q/LRacr7q0nAVDNbSaLLfzKJHruhwRAXtL0GyesWvD+ExNBDtte5v6oBatz9+eD1QyQCPN2f3fMp4G13X+fujcBvgE+g+zMXeuOezHSMfilYKHI68IVg+Bmyv57ryf7+zikFdLn1ArBfsNIlRmLy4/wCt6lPCOYL3AEsc/cfprw1H2hddTUD+F1K+ZeDlVtHAZuDrv8/ASeb2bCgF+Bk4E/Be1vN7KjgWF9O+a5+x91nu/tod68kcZ896e5fAJ4Czgyqtb+erdf5zKC+B+XTg1VY44D9SEyUHlD3srt/ALxnZgcERScCr6H7s7veBY4ys3hwvq3XU/dnz/XGPZnpGP2OmU0BvglMdffalLeyuveC+zXb+zu38rHSYiA/SKw0eoPEKphvFbo9feUBfJJEF/MS4OXgcRqJeQRPAG8GP4cH9Q343+A6vgJUpXzXuSQmqC4HZqaUVwFLg8/cTJAJpb8/gOPZucr1oyT+6CwHfg2UBOWlwevlwfsfTfn8t4Jr9jopKy8H2r0MjAeqg3v0tyRWBOr+7P71vBr4R3DOvyCxWlD3Z3bX8Fck5iA2kujlOa837slMxwj7I8P1XE5iflvrv0u3dvfe6879ncuHUn+JiIiIhJyGXEVERERCTgGdiIiISMgpoBMREREJOQV0IiIiIiGngE5EREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyRZ1X6V9GjhzplZWVhW6GiIiISKcWL1683t1HdVZvwAV0lZWVVFdXF7oZIiIiIp0ys3e6Uk9DriIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZALzaIIM1sJbAWagSZ3rzKz7wLTgBZgLXCOu68qXCtFREREel/YeuhOcPfx7l4VvL7B3Q919/HAI8B3Ctg2ERERkYIIW0DXhrtvSXlZDnih2iIiIiJSKKEZciURrC0wMwd+7u5zAMzsOuDLwGbghHQfNLNZwCyAsWPH9k5rRURERHpJmHroJrn7BOBU4CIzOxbA3b/l7mOA+4CL033Q3ee4e5W7V40a1elmyyIiIiKhEpqArnWxg7uvBeYBE9tVuR/4l95ul4iIiEihhSKgM7NyMxvc+hw4GVhqZvulVJsK/KMQ7RMREREppLDModsdmGdmkGjz/e7+RzN72MwOILFtyTvABQVso4iIiEhBhCKgc/e3gMPSlGuIVURERAa8UAy5ioiIiEhmCuhEREREQk4BnYiIiEjIKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREJOAZ2IiIhIyCmgExEREQk5BXQiIiIiIaeATkRERCTkigrdgK4ys5XAVqAZaHL3KjO7AfhnoAFYAcx0902Fa6WIiIhI7wtbD90J7j7e3auC148Dh7j7ocAbwOzCNU1ERESkMMIW0LXh7gvcvSl4+RwwupDtERERESmEMAV0Diwws8VmNivN++cCj6X7oJnNMrNqM6tet25dXhspIiIi0tvCFNBNcvcJwKnARWZ2bOsbZvYtoAm4L90H3X2Ou1e5e9WoUaN6p7UiIiIivSQ0AZ27rwp+rgXmARMBzGwGcDrwBXf3wrVQREREpDBCEdCZWbmZDW59DpwMLDWzKcA3ganuXlvINoqIiIgUSli2LdkdmGdmkGjz/e7+RzNbDpQAjwfvPefuFxSumSIiIiK9LxQBnbu/BRyWpnzfAjRHREREpE8JxZCriIiIiGSmgE5EREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyCuhEREREQk4BnYiIiEjIKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREIuNAGdma00s1fM7GUzqw7KzjKzV82sxcyqCt1GERERkUIoKnQDsnSCu69Peb0U+Czw8wK1R0RERKTgwhbQteHuywDMrNBNERERESmY0Ay5Ag4sMLPFZjYrmw+a2Swzqzaz6nXr1uWpeSIiIiKFEaaAbpK7TwBOBS4ys2O7+kF3n+PuVe5eNWrUqPy1UERERKQAQhPQufuq4OdaYB4wsbAtEhEREekbQhHQmVm5mQ1ufQ6cTGJBhIiIiMiAF4qADtgd+KuZ/R1YBPzB3f9oZmeYWQ1wNPAHM/tTQVspIiIiUgChWOXq7m8Bh6Upn0di+FVERERkwApFQBcG59y1iPc21AKwsbaBkqIoDU3NbKxtxAxaHHAoihhN7uAQiUBLS/AzzftY9p/p6fs6po6pY+qYOmbf/U4ds/DHHF5eTElRlPrGZkqLEz8PHTOUu2cWdmq/ArocmbTvCK77wzqmR55gZvQxhjRsp5gmioubaKQY3Cm2JpwIRsvOsqJO3u/OZ3r6vo6pY+qYOqaO2Xe/U8cs7DEbI1hjC5uo4Gf1U5nbciKT9h1R6DAEc/feO5jZxcB97r6x1w7aTlVVlVdXV+flu5+Z+32OWXZdXr5bRERE+p6/HPQtjp1+ed6+38wWu3un6U17u4duD+AFM3sRuBP4k/dmRJlnxzb+DbdEr6yIiIj0b07i3/6+oFcDOnf/TzP7NoltR2YCN5vZg8Ad7r6iN9uSD88UH80x/iT9JkIVERGRXXqm+Gi6nOkgj3p9Dp27u5l9AHwANAHDgIfM7HF3z1+fZZ7d9pcVXPfyx5geOS8xh45gDp11Ph6f9RyBHHynjqlj6pg6po7ZO8fsL+ehY7Yt20QFP2uaytyXP8a39lrB+cfsU9A4pFcDOjO7BJgBrAduB77h7o1mFgHeBEIb0P3f8g/ZZ1Q5LzCVBbVTtMpVx9QxdUwdc4Afs7+ch47Z9phtVrmWRRne2Mz/Lf9wYAV0wEjgs+7+Tmqhu7eY2em93JacKvRyZRERERm4ensO3Xd28d6y3myLiIiISH8RKXQDRERERKRnFNCJiIiIhJwCOhEREZGQU0AnIiIiEnIK6ERERERCrtc3Fu4uM1sJbAWagSZ3rzKz4cADQCWwEvhcIfPEioiIiBRC2HroTnD38SlJaq8AnnD3/YAngtciIiIiA0rYArr2pgH3BM/vAT5TwLaIiIiIFESYAjoHFpjZYjObFZTt7u6rAYKfu6X7oJnNMrNqM6tet25dLzVXREREpHeEZg4dMMndV5nZbsDjZvaPrn7Q3ecAcwCqqqo8Xw0UERERKYTQ9NC5+6rg51pgHjARWGNmewIEP9cWroUiIiIihRGKgM7Mys1scOtz4GRgKTAfmBFUmwH8rjAtFBERESmcsAy57g7MMzNItPl+d/+jmb0APGhm5wHvAmcVsI0iIiIiBRGKgM7d3wIOS1P+IXBi77dIREREpO8IxZCriIiIiGSmgE5EREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyCuhEREREQk4BnYiIiEjIKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREIuVAGdmUXN7CUzeyR4PdnMXjSzpWZ2j5kVFbqNIiIiIr0tVAEdcCmwDMDMIsA9wHR3PwR4B5hRwLaJiIiIFERoAjozGw18Grg9KBoB7HD3N4LXjwP/Uoi2iYiIiBRSaAI64CbgcqAleL0eKDazquD1mcCYdB80s1lmVm1m1evWrct/S0VERER6USgCOjM7HVjr7otby9zdgenAj8xsEbAVaEr3eXef4+5V7l41atSoXmmziIiISG8JyyKCScBUMzsNKAUqzOyX7v5F4BgAMzsZ2L+AbRQREREpiFD00Ln7bHcf7e6VJHrlnnT3L5rZbgBmVgJ8E7i1gM0UERERKYhQBHS78A0zWwYsAX7v7k8WukEiIiIivS0sQ65J7r4QWBg8/wbwjUK2R0RERKTQwt5DJyIiIjLgKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREJOAZ2IiIhIyCmgExEREQk5BXQiIiIiIaeATkRERCTkFNCJiIiIhJwCOhEREZGQC1VAZ2ZRM3vJzB4JXp9oZi+a2ctm9lcz27fQbRQRERHpbaEK6IBLgWUpr28BvuDu44H7gf8sSKtERERECig0AZ2ZjQY+DdyeUuxARfB8CLCqt9slIiIiUmhFhW5AFm4CLgcGp5T9G/ComdUBW4Cj0n3QzGYBswDGjh2b52aKiIiI9K5Q9NCZ2enAWndf3O6t/wBOc/fRwF3AD9N93t3nuHuVu1eNGjUqz60VERER6V1h6aGbBEw1s9OAUqDCzP4AHOjuzwd1HgD+WKgGioiIiBRKKHro3H22u49290pgOvAkMA0YYmb7B9VOou2CCREREZEBISw9dB24e5OZnQ88bGYtwEbg3M4+t3jx4vVm9k6emzcSWJ/nYwwkup65peuZW7qeuaXrmVu6nrlViOu5d1cqmbvnuyEDjplVu3tVodvRX+h65pauZ27peuaWrmdu6XrmVl++nqEYchURERGRzBTQiYiIiIScArr8mFPoBvQzup65peuZW7qeuaXrmVu6nrnVZ6+n5tCJiIiIhJx66ERERERCTgGdiIiISMgpoMsxM5tiZq+b2XIzu6LQ7ekrzGyMmT1lZsvM7FUzuzQoH25mj5vZm8HPYUG5mdlPguu4xMwmpHzXjKD+m2Y2I6X8CDN7JfjMT8zMev9Me5eZRc3sJTN7JHg9zsyeD67NA2YWC8pLgtfLg/crU75jdlD+upmdklI+oO5lMxtqZg+Z2T+C+/Ro3Z/dZ2b/EfyuLzWzX5lZqe7P7JjZnWa21syWppTl/Z7MdIywy3A9bwh+55eY2TwzG5ryXlb3Xnfu75xydz1y9ACiwArgo0AM+DtwcKHb1RcewJ7AhOD5YOAN4GDg+8AVQfkVwPeC56cBjwEGHAU8H5QPB94Kfg4Lng8L3lsEHB185jHg1EKfdy9c1/8H3A88Erx+EJgePL8VuDB4/lXg1uD5dOCB4PnBwX1aAowL7t/oQLyXgXuAfwuex4Chuj+7fS33At4GylLuy3N0f2Z9HY8FJgBLU8ryfk9mOkbYHxmu58lAUfD8eynXM+t7L9v7O9cP9dDl1kRgubu/5e4NwFwSKcoGPHdf7e4vBs+3kkjTtheJ63NPUO0e4DPB82nAvZ7wHDDUzPYETgEed/cN7r4ReByYErxX4e5/88Rvzb0p39Uvmdlo4NPA7cFrAyYDDwVV2l/P1uv8EHBiUH8aMNfdd7j728ByEvfxgLqXzayCxB/7OwDcvcHdN6H7syeKgDIzKwLiwGp0f2bF3Z8BNrQr7o17MtMxQi3d9XT3Be7eFLx8DhgdPM/q3uvm39+cUkCXW3sB76W8rgnKJEXQ3Xw48Dywu7uvhkTQB+wWVMt0LXdVXpOmvD+7CbgcaAlejwA2pfxxSr0GyesWvL85qJ/tde6vPgqsA+6yxBD27WZWju7PbnH394EbgXdJBHKbgcXo/syF3rgnMx2jvzuXRE8lZH89u/P3N6cU0OVWuohb+8KkMLNBwMPAZe6+ZVdV05R5N8r7JTM7HVjr7otTi9NU9U7e0/VMKCIxFHPL/2/v/oPsOsvDjn+f1a5s44BsRwJj1q5sxfbEtbYW2XGNoE6KLGVxiJ20pONKrS1McVOqTn+lYGenoSmTmQD5NRlBFA0kSlIZpzgQO6TYyISKFoHLKrZXBttCi/mx/AjagIUnHtCu9+kf5yxcybta7ersPffc/X5m7uw973nveZ99/Wr9zHve957M3AD8HcWtprnYn6dQrrm6meJW1UXAucDrZqnq+KyOfXgGImIYmAL2zhTNUm2x/dmWvjahq9Y4cHHLcS78Pq8AABSnSURBVD/w9Zpi6TgR0UeRzO3NzA+VxX9TTv1T/vxWWT5XX56qvH+W8m71auCmiPgSxZT/aylm7M4rb3HBiX3wg34rz6+iuPWw0H7uVuPAeGY+XB7fS5HgOT4X5wbg6cw8mpmTwIeAjTg+q9COMTlXG12p3CjyemBbefsZFt6fEyx8fFfKhK5anwUuL3e6rKRY/Hh/zTF1hHK9wPuBJzLzt1pO3Q/M7Lq6DbivpfzWcufWdcCxcur/QWBLRJxfzgJsAR4szz0bEdeVbd3acq2uk5l3ZWZ/Zq6lGGd/lZnbgE8AbyirndyfM/38hrJ+luW3lLuwLgUup1govazGcmZ+E/hqRFxZFm0CPo/jc7G+AlwXES8qf9+Z/nR8nrl2jMm52ug6ETEEvA24KTOfazm1oLFXjteFju9qLcVOi+X8othpdJhiF8xw3fF0ygt4DcUU8yjwaPm6kWIdwceBL5Q/LyjrB/Cesh8PAYMt17qdYoHqEeCNLeWDwOPlZ3ZSPgml21/AT/HDXa6XUfzROQJ8EDirLD+7PD5Snr+s5fPDZZ89RcvOy+U2loFrgJFyjP45xY5Ax+fi+/NXgSfL3/lPKHYLOj4X1ocfoFiDOEkxy/OmdozJudpo+muO/jxCsb5t5v9LuxY79hYzvqt8+egvSZKkhvOWqyRJUsOZ0EmSJDWcCZ0kSVLDmdBJkiQ1nAmdJElSw5nQSZIkNZwJnSRJUsOZ0EmSJDWcCZ0kSVLD9c5fpbusXr06165dW3cYkiRJ8zp48OBEZq6Zr96yS+jWrl3LyMhI3WFIkiTNKyK+fDr1Gn/LNSKGIuKpiDgSEXfWHY8kSVK7NTqhi4gVwHuA1wFXAf88Iq6qI5Zd+8c4MDZxQtmBsQl27R+rIxxJkrSMNP2W67XAkcz8IkBE3APcDHy+3YEM9K9ix92PsGdzMjB5iNG+9ezYF+zcuqHdoUiSpGWm6QndK4CvthyPA/+wjkA2rlvNns3JFQ9sY5oprqCXPUN7GVi3uo5wJEnSMtLoW65AzFKWL6gUcUdEjETEyNGjR5csmIHJQ6xkih6mWcnzDEweWrK2JEmSZjQ9oRsHLm457ge+fnKlzNydmYOZObhmzbw7fxdttG89x+llmhUcZwWjfeuXrC1JkqQZTU/oPgtcHhGXRsRK4Bbg/joCOTA2wfZ9weGhvfRsGubw0F6274sXbJSQJEmqWqPX0GXmVETsAB4EVgB/kJmfqyOW0fFj7Ny6oVwzt4UBYOeaCUbHj7HRdXSSJGkJReYLlpx1tcHBwfSLhSVJUhNExMHMHJyvXtNvuUqSJC17JnSSJEkNZ0InSZLUcCZ0kiRJDWdCJ0mS1HAmdJIkSQ1nQidJktRwJnSSJEkNZ0InSZLUcCZ0kiRJDWdCJ0mS1HAmdJIkSQ1nQidJktRwJnSSJEkNZ0InSZLUcI1N6CLiFyLicxExHRGDdccjSZJUl8YmdMDjwD8BPll3IJIkSXXqrTuAxcrMJwAiou5QJEmSatXkGbrTFhF3RMRIRIwcPXq07nAkSZIq1dEzdBHxEHDhLKeGM/O+071OZu4GdgMMDg5mReFJkiR1hI5O6DLzhrpjkCRJ6nTL4parJElSN2tsQhcRPx8R48CrgL+MiAfrjkmSJKkOHX3L9VQy88PAh+uOQ5IkqW6NnaGTJElSwYROkiSp4UzoJEmSGs6ETpIkqeFM6CRJkhrOhE6SJKnhTOgkSZIazoROkiSp4UzoKrJr/xgHxiZOKDswNsGu/WM1RSRJkpaLxj4potMM9K9ix92PsGdzMjB5iNG+9ezYF+zcuqHu0CRJUpczoavIxnWr2bM5ueKBbUwzxRX0smdoLwPrVtcdmiRJ6nLecq3QwOQhVjJFD9Os5HkGJg/VHZIkSVoGTOgqNNq3nuP0Ms0KjrOC0b71dYckSZKWARO6ihwYm2D7vuDw0F56Ng1zeGgv2/fFCzZKSJIkVc01dBUZHT/Gzq0byjVzWxgAdq6ZYHT8GBtdRydJkpZQZGbdMSxKRLwb+FngODAGvDEzn5nvc4ODgzkyMrLU4UmSJJ2xiDiYmYPz1WvyLdd9wNWZOQAcBu6qOR5JkqRaNDahy8yPZeZUefgZoL/OeCRJkurS2ITuJLcDH53rZETcEREjETFy9OjRNoYlSZK09Dp6U0REPARcOMup4cy8r6wzDEwBe+e6TmbuBnZDsYZuCUKVJEmqTUcndJl5w6nOR8RtwOuBTdnU3R2SJElnqKMTulOJiCHgbcBPZuZzdccjSZJUlyavodsJvBjYFxGPRsSuugOSJEmqQ2Nn6DLzx+qOQZIkqRM0eYZOkiRJmNBJkiQ1ngmdJElSw5nQSZIkNVxbErqI+HhE3HhS2e52tC1JktTt2jVDdynwtoh4e0vZYJvaliRJ6mrtSuieATYBL4uIv4iIVW1qV5Ikqeu1K6GLzJzKzLcAfwb8X+ClbWpbkiSpq7Xri4V/8BSHzNwTEYeAf9umtiVJkrpaWxK6zPz9k44PAre3o21JkqRu59eWSJIkNZwJnSRJUsOZ0EmSJDWcCZ0kSVLDNTahi4h3RMRoRDwaER+LiIvqjkmSJKkOjU3ogHdn5kBmXgN8BPiVugOSJEmqQ2MTusz8bsvhuUDWFYskSVKd2vXFwksiIn4NuBU4BvzjU9S7A7gD4JJLLmlPcJIkSW0SmZ07sRURDwEXznJqODPva6l3F3B2Zr59vmsODg7myMhIhVFKkiQtjYg4mJmD89Xr6Bm6zLzhNKveDfwlMG9CJ0mS1G0au4YuIi5vObwJeLKuWCRJkurU0TN08/j1iLgSmAa+DPxizfFIkiTVorEJXWb+07pjkCRJ6gSNveUqSZKkggldhXbtH+PA2MQJZQfGJti1f6ymiCRJ0nLQ2FuunWigfxU77n6EPZuTgclDjPatZ8e+YOfWDXWHJkmSupgJXYU2rlvNns3JFQ9sY5oprqCXPUN7GVi3uu7QJElSF/OWa8UGJg+xkil6mGYlzzMweajukCRJUpczoavYaN96jtPLNCs4zgpG+9bXHZIkSepyJnQVOjA2wfZ9weGhvfRsGubw0F6274sXbJSQJEmqkmvoKjQ6foydWzeUa+a2MADsXDPB6PgxNrqOTpIkLZHIzLpjaKvBwcEcGRmpOwxJkqR5RcTBzBycr563XCVJkhrOhE6SJKnhTOgkSZIazoROkiSp4UzoJEmSGs6ETpIkqeEan9BFxC9FREaEX/QmSZKWpUYndBFxMbAZ+ErdsUiSJNWl0Qkd8NvAW4Hl9e3IkiRJLRqb0EXETcDXMvOx06h7R0SMRMTI0aNH2xCdJElS+3T0s1wj4iHgwllODQO/DGw5netk5m5gNxSP/qosQEmSpA7Q0QldZt4wW3lErAcuBR6LCIB+4K8j4trM/GYbQ5QkSapdRyd0c8nMQ8BLZ44j4kvAYGZO1BaUJElSTRq7hk6SJEmFRs7QnSwz19YdgyRJUl2coZMkSWo4EzpJkqSGM6GTJElqOBO6Cu3aP8aBsRM32h4Ym2DX/rGaIpIkSctBV2yK6BQD/avYcfcj7NmcDEweYrRvPTv2BTu3bqg7NEmS1MVM6Cq0cd1q9mxOrnhgG9NMcQW97Bnay8C61XWHJkmSupi3XCs2MHmIlUzRwzQreZ6ByUN1hyRJkrqcCV3FRvvWc5xeplnBcVYw2re+7pAkSVKXM6Gr0IGxCbbvCw4P7aVn0zCHh/ayfV+8YKOEJElSlVxDV6HR8WPs3LqhXDO3hQFg55oJRsePsdF1dJIkaYlEZtYdQ1sNDg7myMhI3WFIkiTNKyIOZubgfPW85Voxv4tOkiS1m7dcKzbQv4p/8b6Huf6cL/Ka3qf438ev5FPfu4zenuCdH32S3p5gKhMSenpgerr8mUBywnnihWXzfeZMz9umbdqmbdpm517TNutv84Jz+zirdwXfm3yes/uKnwMXn8eeN167gGyheiZ0FRsdP8Y/e9nXeft3/jt9zx/nduDZlecwlT309U6R9BBMM0kfZNLXO/XD9zHL+dnK5vvMmZ63Tdu0Tdu0zc69pm3W2+ZkDzE5zTO8hPd+7ybumd7Eq3/sR+tOP5q7hi4i/hvwZuBoWfTLmfm/5vvcUq+hOzA2wcH/8V95S97NCqCh3StJkk7D//nxYa6/5a1Ldv3TXUPX9Bm6387M36g7iFYb161m6spL6XminKGNuiOSJElLIYHrJz9ddxhA8xO6jnNgbILHnnqaVwfO0EmS1OU+2fcqrq87CJqf0O2IiFuBEeA/Z+Z36g5odPwYX1v1So5/5176OE4P8GyWa+jmuB+/4DUCp/GZMz1vm7Zpm7Zpm517Tdusv81neAnvnbqJex79+wy/Yow3/6N1teYfHZ3QRcRDwIWznBoGfg94B8WM5zuA3wRun+M6dwB3AFxyySVLEuuMgf5VvOuBi/jmOb/yw12u3y92uU5NZ2N28dimbdqmbdpm513TNutv84Rdrues4ILJ5/nUkb+tPaFr7KaIVhGxFvhIZl49X92l3hSxa/8YA/2rTngyxIGx4mkRv/iT9f7HliRJzdL1myIi4uWZ+Y3y8OeBx+uMZ8ZsSdvGdat99JckSVoyjU3ogHdFxDUUE6FfAv51veFIkiTVoytuuS5ERBwFvrzEzawGJuatpdNlf1bL/qyW/Vkt+7Na9me16ujPv5eZa+artOwSunaIiJHTud+t02N/Vsv+rJb9WS37s1r2Z7U6uT976g5AkiRJZ8aETpIkqeFM6JbG7roD6DL2Z7Xsz2rZn9WyP6tlf1arY/vTNXSSJEkN5wydJElSw5nQSZIkNZwJXcUiYiginoqIIxFxZ93xdIqIuDgiPhERT0TE5yLi35flF0TEvoj4Qvnz/LI8IuJ3y34cjYhXtlzrtrL+FyLitpbyn4iIQ+Vnfjciov2/aXtFxIqIeCQiPlIeXxoRD5d986cRsbIsP6s8PlKeX9tyjbvK8qci4qdbypfVWI6I8yLi3oh4shynr3J8Ll5E/Mfy3/rjEfGBiDjb8bkwEfEHEfGtiHi8pWzJx+RcbTTdHP357vLf/GhEfDgizms5t6Cxt5jxXanM9FXRC1gBjAGXASuBx4Cr6o6rE17Ay4FXlu9fDBwGrgLeBdxZlt8JvLN8fyPwUYrHIV8HPFyWXwB8sfx5fvn+/PLc/wNeVX7mo8Dr6v6929Cv/wm4m+JZxgD/E7ilfL8L+Dfl+7cAu8r3twB/Wr6/qhynZwGXluN3xXIcy8AfAf+qfL8SOM/xuei+fAXwNHBOy7jc7vhccD9eD7wSeLylbMnH5FxtNP01R39uAXrL9+9s6c8Fj72Fju+qX87QVeta4EhmfjEzjwP3ADfXHFNHyMxvZOZfl++fBZ6g+KN/M8X/SCl//lz5/mbgj7PwGeC8iHg58NPAvsz8dmZ+B9gHDJXnXpKZn87iX80ft1yrK0VEP/AzwPvK4wBeC9xbVjm5P2f6+V5gU1n/ZuCezPx+Zj4NHKEYx8tqLEfESyj+2L8fIDOPZ+YzOD7PRC9wTkT0Ai8CvoHjc0Ey85PAt08qbseYnKuNRputPzPzY5k5VR5+Bugv3y9o7C3y72+lTOiq9Qrgqy3H42WZWpTTzRuAh4GXZeY3oEj6gJeW1ebqy1OVj89S3s1+B3grMF0e/yjwTMsfp9Y++EG/leePlfUX2s/d6jLgKPCHUdzCfl9EnIvjc1Ey82vAbwBfoUjkjgEHcXxWoR1jcq42ut3tFDOVsPD+XMzf30qZ0FVrtozb74VpERE/AvwZ8B8y87unqjpLWS6ivCtFxOuBb2XmwdbiWarmPOfsz0Ivxa2Y38vMDcDfUdxqmov9eQrlmqubKW5VXQScC7xulqqOz+rYh2cgIoaBKWDvTNEs1Rbbn23paxO6ao0DF7cc9wNfrymWjhMRfRTJ3N7M/FBZ/Dfl1D/lz2+V5XP15anK+2cp71avBm6KiC9RTPm/lmLG7rzyFhec2Ac/6Lfy/CqKWw8L7eduNQ6MZ+bD5fG9FAme43NxbgCezsyjmTkJfAjYiOOzCu0Yk3O10ZXKjSKvB7aVt59h4f05wcLHd6VM6Kr1WeDycqfLSorFj/fXHFNHKNcLvB94IjN/q+XU/cDMrqvbgPtaym8td25dBxwrp/4fBLZExPnlLMAW4MHy3LMRcV3Z1q0t1+o6mXlXZvZn5lqKcfZXmbkN+ATwhrLayf05089vKOtnWX5LuQvrUuByioXSy2osZ+Y3ga9GxJVl0Sbg8zg+F+srwHUR8aLy953pT8fnmWvHmJyrja4TEUPA24CbMvO5llMLGnvleF3o+K7WUuy0WM4vip1Ghyl2wQzXHU+nvIDXUEwxjwKPlq8bKdYRfBz4QvnzgrJ+AO8p+/EQMNhyrdspFqgeAd7YUj4IPF5+Ziflk1C6/QX8FD/c5XoZxR+dI8AHgbPK8rPL4yPl+ctaPj9c9tlTtOy8XG5jGbgGGCnH6J9T7Ah0fC6+P38VeLL8nf+EYreg43NhffgBijWIkxSzPG9qx5icq42mv+bozyMU69tm/r+0a7FjbzHju8qXj/6SJElqOG+5SpIkNZwJnSRJUsOZ0EmSJDWcCZ0kSVLDmdBJkiQ1nAmdJM0hIs6LiLeU7y+KiHvn+4wk1cGvLZGkOZTPHf5IZl5dcyiSdEq981eRpGXr14F1EfEoxZes/nhmXh0R24GfA1YAVwO/CawE/iXwfeDGzPx2RKyj+LLXNcBzwJsz88n2/xqSup23XCVpbncCY5l5DfBfTjp3NbAVuBb4NeC5zNwAfJriMUoAu4F/l5k/AfwS8N62RC1p2XGGTpIW5xOZ+SzF8zCPAX9Rlh8CBiLiRygeSP/B4lGZQPH4K0mqnAmdJC3O91veT7ccT1P8be0Bniln9yRpSXnLVZLm9izw4sV8MDO/CzwdEb8AEIV/UGVwkjTDhE6S5pCZfwt8KiIeB969iEtsA94UEY8BnwNurjI+SZrh15ZIkiQ1nDN0kiRJDWdCJ0mS1HAmdJIkSQ1nQidJktRwJnSSJEkNZ0InSZLUcCZ0kiRJDff/AZMMudCpw2HlAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, expected_x, 'x', label='Expected')\n",
-    "_ = x_position_axes.plot(time, positions[:, 0, 0], '.', label='Calculated')\n",
-    "_ = x_position_axes.legend()\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, expected_y, 'x')\n",
-    "_ = y_position_axes.plot(time, positions[:, 0, 1], '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, expected_z, 'x')\n",
-    "_ = z_position_axes.plot(time, positions[:, 0, 2], '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHjCAYAAABfHAkZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmYHVWd//H3pzsbiRASElkSQkgIanAYQ1oI4AwIyi5BQEWYHxFwIjMiLuMC4oyK6IC7KANGCCIjAiJIBocJm+CMgZAOaEgISydsTSIkJLSBkKW7v78/qhpuml5v1b23+/bn9Tz3ubdOnapzciiS71OnvqcUEZiZmZlZdampdAfMzMzMLH8O8szMzMyqkIM8MzMzsyrkIM/MzMysCjnIMzMzM6tCDvLMzMzMqpCDPDMzM7Mq5CDPzMzMrAo5yDMzMzOrQoMq3YG+YMyYMTFx4sRKd8PMzMysW4sXL14bEWO7q+cgD5g4cSL19fWV7oaZmZlZtyQ905N6nq41MzMzq0K5BXmSpnZQdmhe5+8NSUdJelxSg6TzKtEHMzMzs0rKc7r2RknXAt8GhqXfdcCBObbRLUm1wGXA+4FGYJGkeRHxaDn7UWjxM+u54r4VPPzsejZuaWFIrQjB1uagBmiFbcra71eNeMcu2/Olo9/B9D1GVeqPYWZmZv1InkHeAcAlwAJge+CXwME5nr+n9gcaImIlgKTrgZlARYK8xc+s5yM/XUBz6xtlGzuot7GT320efHo9J12+gKGDahhco9cDwxHDBrPPrjvwiUMmOwA0MzOz1+UZ5G0FXgO2I7mT91REtHZ9SEmMA54r2G4kCUC3IWk2MBtgwoQJJevMAytf2ibAy2pzcyub098bgZdfa+b59a9xx6Mv8JYhta8Hf2O2H8aZB+/JqQeU7s9mZmZmfVeeQd4i4Fbg3cBOwE8lnRwRJ+fYRk+og7J4U0HEHGAOQF1d3Zv252XGpJ0YVEOugV5nXtnSArQFf6/w5Vse4aLbloHkwM/MzGyAUUQ+8Y2kuoiob1f2/yLi2lwa6Hk/DgS+FhFHptvnA0TEv3d2TF1dXZRyCZUsz+RFa/BazhHikFoxqLbGgZ+ZmVk/JGlxRNR1Wy+vIK+vkDQIeAI4HHie5A7jqRGxrLNjSh3kZdU+SGwLDPMMALcbXMOQwTW0tuIkDzMzsz5swAZ5AJKOAX4I1AJzI+KbXdXv60FeV65b+Cxz/28lL2/aytaWVjZtaWVzToHf9kNrGTqklh23G+K7fWZmZn3EgA7yeqs/B3kdabvz9+iqJl7Z0szW5qC5pZUtLdn+Ww+pFcOH1Dqj18zMrIIc5PVCtQV5nbn4v5dzY/1zbGlupRVyCfzeMqTW6/iZmZmVUdmCPEkb6CB7tU1E7JCpgTIYKEFeR9oCv9YItrYGr25uyXQ+T/GamZmVVtnv5Em6EPgLcC3JMianAdtHxLdzaaCEBnKQ197iZ9Zz8e3LeWz1X4l4Y1mWYg0fXAMSI4bUMm3CKE/xmpmZZVSJIG9hRBzQXVlf5CCvc+0ze/PI6PUUr5mZWfEqEeQtIHln7PUk07cfBT4ZEQfl0kAJOcjrncKM3te2tHiK18zMrIwqEeRNBH5E8r7aAP4IfCYins6lgRJykJdNqaZ4Rw8fzD+/d4qDPjMzswLOru0FB3n5ar+Ey8bNLWzNkMXbtlBzrWr48PTxnHfMO3LsrZmZWf9SiTt5ewOXAztHxDsl7QscHxEX5dJACTnIK708p3jbXsvmZA4zMxuIKhHk3Qd8AfhpRExLy5ZGxDtzaaCEHOSVX95TvE7mMDOzgaISQd6iiHi3pIcLgrw/RcS7cmmghBzkVV77Kd5XNjXTkiGJd+igGrYbXMOY7Yc5mcPMzKpKJYK824FzgF9HxH6STgbOioijc2mghBzk9U2FCzVvam5l09bioz4nc5iZWbWoRJA3CZgDHASsB54CTouIZ3JpoIQc5PUPbc/1rXl1s5M5zMxswKpEkLdnRDwlaQRQExEb2spyaaCEHOT1T07mMDOzgagSQd5DEbFfB52YnksDJeQgrzoUvp1jw6ZmNvvNHGZmVoXKFuRJejuwD/BtkuzaNjsAX4iIfTI1UAYO8qqTkznMzKwalTPImwmcABwPzCvYtQG4PiIWZGqgDBzkDRxO5jAzs/6uEtO1B0bE/bmcrMwc5A1ceSZzDKkVQ2prGDK41skcZmZWMpUI8q4BPh0RL6fbo4DvRcSZuTRQQg7yrI2TOczMrK+rRJD3+iLIXZX1RQ7yrDNO5jAzs76mEkHen4FDI2J9uj0auC8i/iaXBkrIQZ71VPtkjqxTvE7mMDOz3qpEkHc6cD5wExDAh4FvRsS1uTRQQg7yLIvrFj7LZb9/kvUbt9Lc0sqWDEGfkznMzKw7ZQ/y0kanAocBAu6OiEdzO3kJOcizPDmZw8zMSqlSQd57gCkRcbWkscBb/MYLG+iczGFmZnmqxHTtV4E64G0Rsbek3YBfR8TBuTRQQg7yrJzyTuYYPriG2toaJ3OYmQ0QlQjy/gRMAx5qy6iVtCQi9s2lgRJykGeV5GQOMzPrjUoEeQ9GxP5t77CVNAK430GeWe85mcPMzDpTiSDv88AU4P3AvwNnAtdFxI9zaaCEHORZX1eYzLFpS2umKV4nc5iZ9W+VSrx4P3BEunlHRNyZ28lLyEGe9TeLn1nPxbcv57HVf6W5JXgtY9DnZA4zs/6jUkHeLsD+JOvkLYqIv+R28hJykGf9nZM5zMwGjkpM134c+DfgHpJ18g4BLoyIuRnO+R3gA8AWYAVwRsG7cc8HzgJagHMjYn5afhTwI6AWuDIiLu6uHQd5Vm2czGFmVr0qEeQ9DhwUES+l2zsBCyLibRnOeQRwT0Q0S7oEICK+lC66/CuSu4a7AXcBe6eHPUHyXGAjsAj4aHeLMjvIs4Egz2SOtileJ3OYmZVfT4O8QTm22QhsKNjeADyX5YQRcUfB5gPAyenvmcD1EbEZeEpSA0nAB9AQESsBJF2f1u0Xb94wK6VTD5iwTTCWJZljS0uwpaWFjVta+PItj/C1eUudzGFm1sfkGeQ9DyyUdCvJM3kzgQclfQ4gIr6f8fxnAjekv8eRBH1tGtMy2DawbAQO6OhkkmYDswEmTPBdCBt42gd9WZI52oI+trRwxR9WMvePTzmZw8yswvIM8laknza3pt/bd3WQpLuAXTrYdUFE3JrWuQBoBn7ZdlgH9QOo6aT8zYURc4A5kEzXdtVHs4Fg+h6j+PXZB72+XZjMsXFLS6+meAvv9N3x6Avc8egLTuYwMyuzPIO8SyJiU2GBpDERsbargyLifV3tlzQLOA44PN54gLAR2L2g2nhgVfq7s3Iz64Xpe4ziZ6dv+8jHxf+9nBvrn2NLcyubW1p7lcyxcWsrbG3lwafXc9LlC5zMYWZWYnkmXiwBZkfEA+n2ScC/R8TeXR/Z5TmPAr4PHBIRawrK9wGu443Ei7tJFmIWSeLF4STTx4uAUyNiWVftOPHCrDhO5jAzK79KZNf+DTAXuJck8NoJ+HhENGY4ZwMwFHgpLXogIs5O911A8pxeM/CZiLg9LT8G+CHJEipzI+Kb3bXjIM8sH3m/mWP4kFpGDBvMPrvu4Of6zMxSlVoM+QTgWpLM2r+PiIbcTl5CDvLMSiPPN3NAsl7fDsMGOZnDzAa0StzJuwqYDJxBsmbdD4GfRMRluTRQQg7yzMojSzJHR5zMYWYDUSWCvM8CP2xLjpA0Evh+RJyVSwMl5CDPrHKyJHO052QOMxsIKjVdux0wISIez+2kZeAgz6zvKEzmiNZsU7xO5jCzalSJO3kfAL4LDImIPSW9i+Tdtcfn0kAJOcgz67uczGFmtq1KBHmLgcOAeyNiWlr2SET8TS4NlJCDPLP+w8kcZjbQVeLdtc0R0SRt8zIKv0nCzHKV55s5ADY3t7LmlS2vv5lj+6G1DB1Sy47bDfFzfWbWr+WdXXs3cB5wEnAuMLhtXbu+zHfyzKpLnskcQ2rFyO0G+06fmfUZlZiuHQ5cAByRFs0HLmr/qrO+yEGeWXXLM5nDy7aYWaVVJLu2v3KQZzaw5JnM4WVbzKzcHOT1goM8s4GtMJkjAl7Z0lL0ubxsi5mVmoO8XnCQZ2aFCpM5Nmxq9rItZtanOMjrBQd5ZtYVL9tiZn1JRYM8SQ9FxH65n7hEHOSZWW/k/Q5eL9tiZr1R6SDv4bYFkfsDB3lmllXey7YMH1LrZA4z61Clg7yLIuIruZ+4RBzkmVne/A5eMysVP5PXCw7yzKzU/A5eM8uLg7xecJBnZuWW57It4GQOs4HEQV4vOMgzs0pzMoeZ9VQlXmv21oh4sV3Z2yLi8VwaKCEHeWbWFzmZw8w6Uokg73HgXyPixnT7X4CzImJqLg2UkIM8M+sP8kzm2G5wDUMG11CrGj48fTznHfOOHHtqZqVUiSBvV2AOsAnYGVgO/EtEvJJLAyXkIM/M+qM8kzkG1cBbhg5yModZP1CRZ/IkfRI4H2gFPhoRf8zt5CXkIM/MqoGTOcwGhkrcybsTWA2cC4wH5gJ/iIjP59JACTnIM7Nq5GQOs+pUiSDvhIj4bcH2IOD8iPhGLg2UkIM8Mxso2pI5WiPY1NzKpq3Z1+tzModZeXkJlV5wkGdmA5WTOcz6Hwd5veAgz8ws4WQOs77PQV4vOMgzM+tY3skcbxlSi2rEO3bZni8d/Q4HfWZFcJDXCw7yzMx6xskcZpVXtiBP0iNApyeJiH0zNVAGDvLMzIrnZA6z8ipnkLdH+vOT6fe16fdpwMaIuDBTA0kbnwe+A4yNiLWSBPwIOAbYCHwsIh5K684CvpIeelFEXNPd+R3kmZnlx8kcZqVViSVU/hgRB3dXVsR5dweuBN4OTE+DvGOAT5EEeQcAP4qIAySNBuqBOpK7i4vTY9Z31YaDPDOz0mlL5nh501Ze29LCq5uLf67PyRxmPQ/yBuXY5ghJ74mI/0s7cBAwIofz/gD4InBrQdlM4BeRRKgPSNoxfa3aocCdEbEu7cOdwFHAr3Loh5mZFeHUAyZsM+2aJZmjuRVefq2Zl19r5vn1r3HHoy84mcOsE3kGeWcBcyWNJLmL1gScmeWEko4Hno+IPycztK8bBzxXsN2YlnVW3tG5ZwOzASZM8DMfZmblMn2PUfz67INe386azNEWJD749HpOunyBkznMUrkFeRGxGPhbSTuQTAM39eQ4SXcBu3Sw6wLgy8ARHR3WURe6KO+ov3OAOZBM1/akr2Zmlr/pe4ziZ6dvO/OUJZljw+YWNmxuYe2GLXz5lke46LZlIDF6+GD++b1THPTZgJHnM3k7A98CdouIoyVNBQ6MiKuKPN/fAHeTJFZA8j7cVcD+wNeBeyPiV2ndx0mmag8FDo2IT6TlPy2s1xk/k2dm1rc5mcPsDZVIvLgduBq4ICL+Nn137cMR8Tc5nf9poC5NvDgWOIc3Ei8ujYj908SLxcB+6WEPkSRerOvq3A7yzMz6Fydz2EBWicSLMRFxo6TzASKiWVK2pdE7998kAV4DyZ2+M9I210n6BrAorXdhdwGemZn1P07mMOtennfy7gVOIslu3U/SDOCSiDgklwZKyHfyzMyqS1syx6OrmnhlSzOvbGqmpfgZXidzWJ9Siena/YAfA+8ElgJjgQ9FxJ9zaaCEHOSZmVW/PN/MMXxwjZM5rGIqEeQNBVqAt5FkuT4O1ETE5lwaKCEHeWZmA4+TOay/qkSQ91BE7NddWV/kIM/MzPJM5hhSKwbV1jBiSC3TJoxyMoflqmyJF5J2IVlweDtJ03hjrbodgOFZz29mZlYOeSZzbGkJtrS0sHFLC3c8+oKTOawiMt/JkzQL+BjJ+2ILb4dtAH4eETdnaqAMfCfPzMy642QO6ysqMV17UkT8JpeTlZmDPDMzK4aTOawSyh7kpY0eC+wDDGsri4gLc2ugRBzkmZlZHtqe61vz6mY2bm5hay/ewduekzmsM5W4k3cFyTN47wWuBE4GHoyIs3JpoIQc5JmZWSk4mcNKoRJB3pKI2Lfg+y3AzRFxRC4NlJCDPDMzK4csyRwdcTLHwFSJIG9hRBwg6QHgROAlYGlETMmlgRJykGdmZpWQdzLH0EE1bDe4hjHbD3MyRxWrRJD3ryRvvDgcuAwI4MqI+NdcGighB3lmZtZXOJnDulORxIuCxocCwyKiKfeTl4CDPDMz66uczGHtlS3Ik3RiV/u9Tp6ZmVl+nMxh5Qzyru5id0TEmZkaKAMHeWZm1l+1Pdf38LPr2bCpmc0Z3sELTuboDyo6XdvfOMgzM7Nq4WSO6leJxIt/66jciyGbmZlVlpM5qkslgrx/KdgcBhwHLPd0rZmZWd+SZzLHkFoxpLaGIYNrncxRJhWfrk0zbOdFxJElaSBHDvLMzGwgczJH/9IXgrxRJK8182LIZmZm/YiTOfq2SkzXPkKyADJALTAWuDAifpJLAyXkIM/MzKxz7ZM5sk7xOpkjm0oEeXsUbDYDL0REcy4nLzEHeWZmZr1z3cJnuez3T7J+41aaW1rZkiHoczJH71QiyJsBLIuIDen2W4B9ImJhLg2UkIM8MzOzbJzMUT6VCPIeBvaL9ISSaoD6iNgvlwZKyEGemZlZvpzMUTqVCPL+FBHvale2JCL2zaWBEnKQZ2ZmVlp5J3MMH1xDbW3NgEzmqESQdzNwL3B5WvTPwHsj4oRcGighB3lmZmbl5WSO4lUiyHsrcClwGEmW7d3AZyLixVwaKCEHeWZmZpWXdzJHtd7pq/g6ef2JgzwzM7O+pzCZY9OW1kxTvNV0p69sQZ6kH/PG+nhvEhHnZmqgDBzkmZmZ9X2Ln1nPxbcv57HVf6W5JXgtQ9DXn5dtKWeQN6ur/RFxTaYGysBBnpmZWf+TZzJHf1q2pWqmayV9CjiHZIHl30XEF9Py84GzgBbg3IiYn5YfBfyI5K0bV0bExd214SDPzMys/ytM5nj5ta1Vu2xLJRIvxgJfAqYCw9rKI+KwDOd8L3ABcGxEbJb01oh4UdJU4FfA/sBuwF3A3ulhTwDvBxqBRcBHI+LRrtpxkGdmZlZ9qvUdvD0N8gbl2OYvgRuAY4GzgVnAmozn/Cfg4ojYDFCQqTsTuD4tf0pSA0nAB9AQESsBJF2f1u0yyDMzM7PqM32PUfzs9DdioazLtryyJbkz+ODT6znp8gV9PpkjzyBvp4i4StKnI+I+4D5J92U8597A30n6JrAJ+HxELALGAQ8U1GtMywCea1d+QMY+mJmZWRVoH/RBtmVbNjcnGb8vv/YKX77lEb4zfznvnrhTn5nazTPI25p+r5Z0LLAKGN/dQZLuAnbpYNcFJP0bBcwA3g3cKGkSoA7qB1DTSXlH7c4GZgNMmNC3Im8zMzMrj1MPmLDNHbgs7+Bdv7GZOx59gd8//iLXzz6w4oFenkHeRZJGAv8C/BjYAfhsdwdFxPs62yfpn4Cb0/fhPiipFRhDcodu94Kq40mCSroob9/uHGAOJM/kdddPMzMzq36dBX29eQfv1pbggZUvVU+QFxG3pT+bgPfmdNrfkrxB415JewNDgLXAPOA6Sd8nSbyYAjxIcodviqQ9geeBU4BTc+qLmZmZDTDtg76eJHMMrhUzJu1Uzm52KLcgT9I1wKcj4uV0exTwvYg4M8Np5wJzJS0FtgCz0rt6yyTdSJJQ0Qx8MiJa0nbPAeaTLKEyNyKWZWjfzMzM7HVdJXMgsc+uO/SZZ/LyXELl4YiY1l1ZX+QlVMzMzKy/6OkSKh0lKhSrJr1719aB0eT7zJ+ZmZmZ9VCeQdj3gAWSbiLJaP0w8M0cz29mZmZmPZTra83SN1EcRpIAcXd3b5roKyStAZ4pcTNjSJJGLB8ez3x5PPPl8cyfxzRfHs98lXs894iIsd1V6vPvrq0Wkup7Mn9uPePxzJfHM18ez/x5TPPl8cxXXx3PPJ/JMzMzM7M+wkGemZmZWRVykFc+cyrdgSrj8cyXxzNfHs/8eUzz5fHMV58cTz+TZ2ZmZlaFfCfPzMzMrAo5yDMzMzOrQg7yykDSUZIel9Qg6bxK96evkLS7pN9LWi5pmaRPp+WjJd0p6cn0e1RaLkmXpuO4RNJ+BeealdZ/UtKsgvLpkh5Jj7lUksr/Jy0vSbWSHpZ0W7q9p6SF6djcIGlIWj403W5I908sOMf5afnjko4sKB9w17KkHSXdJOmx9Fo90Ndo8SR9Nv3/famkX0ka5mu05yTNlfRi+k73trKSX4+dtdHfdTKe30n/f18i6RZJOxbs69V1V8y1nauI8KeEH6AWWAFMAoYAfwamVrpffeED7Arsl/7eHngCmAp8GzgvLT8PuCT9fQxwO8li2zOAhWn5aGBl+j0q/T0q3fcgcGB6zO3A0ZX+c5dhXD8HXAfclm7fCJyS/r4C+Kf09z8DV6S/TwFuSH9PTa/TocCe6fVbO1CvZeAa4OPp7yHAjr5Gix7LccBTwHYF1+bHfI32agz/HtgPWFpQVvLrsbM2+vunk/E8AhiU/r6kYDx7fd319trO++M7eaW3P9AQESsjYgtwPTCzwn3qEyJidUQ8lP7eACwn+UdgJsk/rKTfJ6S/ZwK/iMQDwI6SdgWOBO6MiHURsR64Ezgq3bdDRNwfyf9Jvyg4V1WSNB44Frgy3RbJW2huSqu0H8+2cb4JODytPxO4PiI2R8RTQAPJdTzgrmVJO5D8I3AVQERsiYiX8TWaxSBgO0mDgOHAanyN9lhE/AFY1664HNdjZ230ax2NZ0TcERHN6eYDwPj0d6+uuyL//s2Vg7zSGwc8V7DdmJZZgfRW9TRgIbBzRKyGJBAE3ppW62wsuypv7KC8mv0Q+CLQmm7vBLxc8BdW4Ri8Pm7p/qa0fm/HuZpNAtYAVyuZAr9S0gh8jRYlIp4Hvgs8SxLcNQGL8TWaVTmux87aqHZnktzRhN6PZzF//+bKQV7pdRSZe92aApLeAvwG+ExE/LWrqh2URRHlVUnSccCLEbG4sLiDqtHNPo/nGwaRTOVcHhHTgFdJpqo64zHtQvoc10ySqa7dgBHA0R1U9TWaD49fBpIuAJqBX7YVdVCt2PEsy1g7yCu9RmD3gu3xwKoK9aXPkTSYJMD7ZUTcnBa/kE4bkH6/mJZ3NpZdlY/voLxaHQwcL+lpkumCw0ju7O2YTo3BtmPw+ril+0eSTFv0dpyrWSPQGBEL0+2bSII+X6PFeR/wVESsiYitwM3AQfgazaoc12NnbVSlNBnlOOC0dOoaej+ea+n9tZ0rB3mltwiYkmbYDCF5wHJehfvUJ6TPH1wFLI+I7xfsmge0ZXvNAm4tKD89zRibATSl0wbzgSMkjUrvFBwBzE/3bZA0I23r9IJzVZ2IOD8ixkfERJLr7J6IOA34PXByWq39eLaN88lp/UjLT0mzv/YEppA8jD3gruWI+AvwnKS3pUWHA4/ia7RYzwIzJA1P/7xt4+lrNJtyXI+dtVF1JB0FfAk4PiI2Fuzq1XWXXqu9vbbzVYpsDn/elL1zDEnm6Arggkr3p698gPeQ3J5eAvwp/RxD8lzC3cCT6ffotL6Ay9JxfASoKzjXmSQPwTYAZxSU1wFL02N+QvqWl2r/AIfyRnbtJJK/iBqAXwND0/Jh6XZDun9SwfEXpGP2OAXZngPxWgbeBdSn1+lvSbIRfY0WP55fBx5L/8zXkmQq+hrt+fj9iuR5xq0kd4POKsf12Fkb/f3TyXg2kDwv1/bv0hXFXnfFXNt5fvxaMzMzM7Mq5OlaMzMzsyrkIM/MzMysCjnIMzMzM6tCDvLMzMzMqpCDPDMzM7Mq5CDPzMzMrAo5yDMzMzOrQg7yzMzMzKrQoO6rVL8xY8bExIkTK90NMzMzs24tXrx4bUSM7a6egzxg4sSJ1NfXV7obZmZmZt2S9ExP6nm61szMzKwKFR3kSTpH0qg8O2NmZmZm+chyJ28XYJGkGyUdJUl5dcrMzMzMsik6yIuIrwBTgKuAjwFPSvqWpMk59c3MzMzMipTpmbyICOAv6acZGAXcJOnbOfTNzMzMzIpUdHatpHOBWcBa4ErgCxGxVVIN8CTwxXy6aGZmZma9lWUJlTHAiRGxTRpvRLRKOi5bt8zMzMwsi6KDvIj4ty72LS/2vGZmZmaWndfJMzMzM6tCDvLMzMzMqpCDPDMzM7Mq1Otn8iRtAKKz/RGxQ6YemZmZmVlmvQ7yImJ7AEkXkqyPdy0g4DRg+1x7Z2ZmZmZFyTJde2RE/EdEbIiIv0bE5cBJeXUsfVXa45IaJJ3Xwf6hkm5I9y+UNLHd/gmSXpH0+bz6ZGZmZtZfZAnyWiSdJqlWUo2k04CWPDolqRa4DDgamAp8VNLUdtXOAtZHxF7AD4BL2u3/AXB7Hv0xMzMz62+yBHmnAh8GXkg/H0rL8rA/0BARKyNiC3A9MLNdnZnANenvm4DDJQlA0gnASmBZTv0xMzMz61eyLIb8NG8OvPIyDniuYLsROKCzOhHRLKkJ2EnSa8CXgPcDnU7VSpoNzAaYMGFCfj03MzMz6wOKvpMnaW9Jd0tamm7vK+krOfVLHZS1z+jtrM7XgR9ExCtdNRARcyKiLiLqxo4dW2Q3zczMzPqmLNO1PwPOB7YCRMQS4JQ8OkVy5273gu3xwKrO6kgaBIwE1pHc8fu2pKeBzwBflnROTv0yMzMz6xeKnq4FhkfEg+ljcG2aM/anzSJgiqQ9gedJgsf2z/vNA2YB9wMnA/dERAB/11ZB0teAVyLiJzn1y8zMzKxfyBLkrZU0mXQaVdLJwOo8OpU+Y3cOMB+oBeZGxLJ0bb76iJgHXAVcK6mB5A5eXncRzczMzPo9JTe/ijhQmgTMAQ4C1gNPAadFxDP5da886urqor6+vtLdMDMzM+uWpMURUdddvSx38iIi3idpBFATERvS6VUzMzMzq7AsiRe/AYiIVyNiQ1p2U/YumZmZmVlWvb6TJ+ntwD7ASEknFuzaARiWV8fMzMzMrHjFTNe+DTgO2BH4QEH5BuAf8+iUmZmZmWXT6yAvIm4FbpV0YETcX4I+mZmZmVlGWZ7JO1vSjm0bkkZJmptDn8zMzMwsoyxB3r4R8XLbRkSsB6Zl75KZmZmZZZUlyKuRNKptQ9LhHTVnAAAgAElEQVRosi3JYmZmZmY5yRKUfQ9YIOkmkrdefBj4Zi69MjMzM7NMig7yIuIXkuqBwwABJ0bEo7n1zMzMzMyKlmW6FmA08GpE/BhY4zdemJmZmfUNRQd5kr4KfAk4Py0aDPxnHp0yMzMzs2yy3Mn7IHA88CpARKwCts+jU2ZmZmaWTZYgb0tEBEnSBZJG5NMlMzMzM8sqS5B3o6SfAjtK+kfgLuBneXRK0lGSHpfUIOm8DvYPlXRDun+hpIlp+fslLZb0SPp9WB79MTMzM+tvsmTXflfS+4G/AnsD/xYRd2btkKRa4DLg/UAjsEjSvHaZu2cB6yNiL0mnAJcAHwHWAh+IiFWS3gnMB8Zl7ZOZmZlZf5N18eJHgO1Ipmwfyd4dAPYHGiJiJYCk64GZQGGQNxP4Wvr7JuAnkhQRDxfUWQYMkzQ0Ijbn1DczMzOzfiFLdu3HgQeBE4GTgQcknZlDn8YBzxVsN/Lmu3Gv14mIZqAJ2KldnZOAhzsL8CTNllQvqX7NmjU5dNvMzMys78hyJ+8LwLSIeAlA0k7AAmBuxj6pg7LoTR1J+5BM4R7RWSMRMQeYA1BXV9f+/GZmZmb9WpbEi0ZgQ8H2Bra9A5flvLsXbI8HVnVWR9IgYCSwLt0eD9wCnB4RK3Loj5mZmVm/k+VO3vPAQkm3ktxFmwk8KOlzABHx/SLPuwiYkr4943ngFODUdnXmAbOA+0mmiu+JiJC0I/A74PyI+GOR7ZuZmZn1e1mCvBXpp82t6XemBZEjolnSOSSZsbXA3IhYJulCoD4i5gFXAddKaiC5g3dKevg5wF7Av0r617TsiIh4MUufzMzMzPobJesZF3GgNCwiNrUrGxMRa3PpWRnV1dVFfX19pbthZmZm1i1JiyOirrt6WZ7Je1DSjIIGTyJJvDAzMzOzCssyXXsaMFfSvcBuJEuY+A0TZmZmZn1AljdePCLpm8C1JJm1fx8Rjbn1zMzMzMyKVnSQJ+kqYDKwL8lrzf5L0k8i4rK8OmdmZmZmxcnyTN5S4L0R8VREzAdmAPvl0y0zMzMzy6LoIC8ifkDybti3pdtNEXFWbj0zMzMzs6JleXftB4A/Af+Tbr9L0ry8OmZmZmZmxcsyXfs1YH/gZYCI+BOwZw59MjMzM7OMsgR5zRHR1K6suJWVzczMzCxXWdbJWyrpVKBW0hTgXLwYspmZmVmfkOVO3qeAfYDNwHVAE/CZPDplZmZmZtlkWQx5I3BB+jEzMzOzPiTLnTwzMzMz66Mc5JmZmZlVoT4b5Ek6StLjkhokndfB/qGSbkj3L5Q0sWDf+Wn545KOLGe/zczMzPqCLNm1r5P0UETk9kozSbXAZcD7gUZgkaR5EfFoQbWzgPURsZekU4BLgI9ImgqcQpIUshtwl6S9I6Ilr/711uJn1nPFfSt4+Nn1bNzSwpBaEYKtzUEN0ArblHW3v5hj+mKb1fLncJtu0226TbdZvW325pgRwwazz6478IlDJjN9j1FUmiKyL20n6eGImJZDf9rOdyDwtYg4Mt0+HyAi/r2gzvy0zv2SBgF/AcYC5xXWLazXWXt1dXVRX1+fV/e3sfiZ9Xzkpwtobi3J6c3MzKyPGVwrrp99YMkCPUmLI6Kuu3p5Tdf+LqfztBkHPFew3ZiWdVgnIppJlnDZqYfHImm2pHpJ9WvWrMmx69t6YOVLDvDMzMwGkK0twQMrX6p0N/IJ8iLiK3mcp4A6aqaHdXpyLBExJyLqIqJu7NixRXSxZ2ZM2olBffbJRzMzM8vb4FoxY9JOle5GPs/klUAjsHvB9nhgVSd1GtPp2pHAuh4eWzbT9xjFDZ84yM/kVfGfw226TbfpNt1m9bbZn5/J66tB3iJgiqQ9gedJEilObVdnHjALuB84GbgnIkLSPOA6Sd8nSbyYAjxYtp53YPoeo/jZ6d1OnZuZmZnlpuggT9JxwH9HRO5PnEVEs6RzgPlALTA3IpZJuhCoj4h5wFXAtZIaSO7gnZIeu0zSjcCjQDPwyUpm1pqZmZlVQtHZtZL+EzgQ+A1wdUQsz7Nj5VTK7FozMzOzPJU8uzYi/gGYBqwArpZ0f5qxun2x5zQzMzOzfGTK+4yIv5Lcybse2BX4IPCQpE/l0DczMzMzK1LRQZ6kD0i6BbgHGAzsHxFHA38LfD6n/pmZmZlZEbJk134I+EFE/KGwMCI2SjozW7fMzMzMLIuig7yIOL2LfXcXe14zMzMzy87vYjAzMzOrQg7yzMzMzKqQgzwzMzOzKtTrZ/IkPQJ0uoJyROybqUdmZmZmllkxiRfHpd+fTL+vTb9PAzZm7pGZmZmZZdbrIC8ingGQdHBEHFyw6zxJfwQuzKtzZmZmZlacLM/kjZD0nrYNSQcBI7J3yczMzMyyyrIY8lnAXEkjSZ7RawK8CLKZmZlZH5BlMeTFwN9K2gFQRDTl1y0zMzMzyyLLu2t3lnQVcENENEmaKumsrB2SNFrSnZKeTL9HdVJvVlrnSUmz0rLhkn4n6TFJyyRdnLU/ZmZmZv1Rlmfyfg7MB3ZLt58APpO1Q8B5wN0RMQW4O93ehqTRwFeBA4D9ga8WBIPfjYi3A9OAgyUdnUOfzMzMzPqVLEHemIi4EWgFiIhmoCWHPs0Erkl/XwOc0EGdI4E7I2JdRKwH7gSOioiNEfH7tD9bgIeA8Tn0yczMzKxfyRLkvSppJ9KFkSXNIEm+yGrniFgNkH6/tYM644DnCrYb07LXSdoR+ADJ3UAzMzOzASVLdu3ngHnA5HR9vLHAh3pyoKS7gF062HVBD9tWB2Wvv4VD0iDgV8ClEbGykz7MBmYDTJgwoYfNmpmZmfUPWYK8ZcAhwNtIgq7H6eGdwYh4X2f7JL0gadeIWC1pV+DFDqo1AocWbI8H7i3YngM8GRE/7KIPc9J61NXVdfqaNjMzM7P+KMt07f0R0RwRyyJiaURsBe7PoU/zgFnp71nArR3UmQ8cIWlUmnBxRFqGpIuAkeSTBGJmZmbWL/X6Tp6kXUief9tO0jTemDrdARieQ58uBm5Ml2N5lnQKWFIdcHZEfDwi1kn6BrAoPebCtGw8yZTvY8BDkgB+EhFX5tAvMzMzs35DEb2bqUzXpPsYUAfUF+zaAPw8Im7OrXdlUldXF/X19d1XNDMzM6swSYsjoq67er2+kxcR1wDXSDopIn5TVO/MzMzMrKSyvNbsN5KOBfYBhhWUX5hHx8zMzMyseFlea3YF8BHgUyTP5X0I2COnfpmZmZlZBlmyaw+KiNOB9RHxdeBAYPd8umVmZmZmWWQJ8l5LvzdK2g3YCuyZvUtmZmZmllWWxZBvS18d9h2Sd8QG4KVKzMzMzPqALIkX30h//kbSbcCwiMjj3bVmZmZmllExiyGf2MU++uM6eWZmZmbVppg7eR/oYl8ADvLMzMzMKqyYxZDPKEVHzMzMzCw/RT+TJ+nfOir3YshmZmZmlZclu/bVgt/DgOOA5dm6Y2ZmZmZ5yJJd+73CbUnfBeZl7pGZmZmZZZZlMeT2hgOTcjyfmZmZmRUpyzN5j5Bk0wLUAmMBP49nZmZm1gdkeSbvuILfzcALEdGcsT9IGg3cAEwEngY+HBHrO6g3C/hKunlRRFzTbv88YFJEvDNrn8zMzMz6myzTtbsC6yLimYh4Hhgm6YAc+nQecHdETAHuTre3kQaCXwUOAPYHvippVMH+E4FXcuiLmZmZWb+UJci7nG0DqY1pWVYzgba7ctcAJ3RQ50jgzohYl97luxM4CkDSW4DPARfl0BczMzOzfilLkKeIaHsmj4hoJdv0b5udI2J1es7VwFs7qDMOeK5guzEtA/gG8D2SoLNTkmZLqpdUv2bNmuy9NjMzM+tDsgR5KyWdK2lw+vk0sLInB0q6S9LSDj4ze9i2OigLSe8C9oqIW7o7QUTMiYi6iKgbO3ZsD5s1MzMz6x+y3Hk7G7iUJPkhSJ6fm92TAyPifZ3tk/SCpF0jYrWkXYEXO6jWCBxasD0euBc4EJgu6WmSP9tbJd0bEYdiZmZmNoBkWQz5ReCUHPvSZh4wC7g4/b61gzrzgW8VJFscAZwfEetInwuUNBG4zQGemZmZDUS9DvIk/Zg31sd7k4g4N1OPkuDuRklnAc8CH0rbrQPOjoiPR8Q6Sd8AFqXHXJgGeGZmZmZGcXfy6nPvRYGIeAk4vIPyeuDjBdtzgbldnOdpwGvkmZmZ2YDU6yCv/aLDZmZmZtb3ZHmt2VjgS8BUYFhbeUQclkO/zMzMzCyDLEuo/BJYDuwJfJ3kFWSLujrAzMzMzMojS5C3U0RcBWyNiPsi4kxgRk79MjMzM7MMsqyTtzX9Xi3pWGAVyXp1ZmZmZlZhWYK8iySNBP4F+DGwA/DZXHplZmZmZplkWQz5tvRnE/DefLpjZmZmZnko+pk8SddI2rFge5SkTtetMzMzM7PyyZJ4sW9EvNy2ERHrgWnZu2RmZmZmWWUJ8moK3h2LpNFke8bPzMzMzHKSJSj7HrBA0k0k77L9MPDNXHplZmZmZpkoIoo/WJoKHAYIuDsiHs2rY+UkaQ3wTImbGQOsLXEbA4nHM18ez3x5PPPnMc2XxzNf5R7PPSJibHeVMgV51nOS6iOirtL9qBYez3x5PPPl8cyfxzRfHs989dXxzPJMnpmZmZn1UQ7yzMzMzKqQg7zymVPpDlQZj2e+PJ758njmz2OaL49nvvrkePqZPDMzM7Mq5Dt5ZmZmZlXIQZ6ZmZlZFXKQVwaSjpL0uKQGSedVuj99haTdJf1e0nJJyyR9Oi0fLelOSU+m36PSckm6NB3HJZL2KzjXrLT+k5JmFZRPl/RIesylklT+P2l5SaqV9LCk29LtPSUtTMfmBklD0vKh6XZDun9iwTnOT8sfl3RkQfmAu5Yl7SjpJkmPpdfqgb5Giyfps+n/70sl/UrSMF+jPSdprqQXJS0tKCv59dhZG/1dJ+P5nfT/9yWSbpG0Y8G+Xl13xVzbuYoIf0r4AWqBFcAkYAjwZ2BqpfvVFz7ArsB+6e/tgSeAqcC3gfPS8vOAS9LfxwC3kyy+PQNYmJaPBlam36PS36PSfQ8CB6bH3A4cXek/dxnG9XPAdcBt6faNwCnp7yuAf0p//zNwRfr7FOCG9PfU9DodCuyZXr+1A/VaBq4BPp7+HgLs6Gu06LEcBzwFbFdwbX7M12ivxvDvgf2ApQVlJb8eO2ujv386Gc8jgEHp70sKxrPX111vr+28P76TV3r7Aw0RsTIitgDXAzMr3Kc+ISJWR8RD6e8NwHKSfwRmkvzDSvp9Qvp7JvCLSDwA7ChpV+BI4M6IWBcR64E7gaPSfTtExP2R/J/0i4JzVSVJ44FjgSvTbZG8leamtEr78Wwb55uAw9P6M4HrI2JzRDwFNJBcxwPuWpa0A8k/AlcBRMSWiHgZX6NZDAK2kzQIGA6sxtdoj0XEH4B17YrLcT121ka/1tF4RsQdEdGcbj4AjE9/9+q6K/Lv31w5yCu9ccBzBduNaZkVSG9VTwMWAjtHxGpIAkHgrWm1zsayq/LGDsqr2Q+BLwKt6fZOwMsFf2EVjsHr45bub0rr93acq9kkYA1wtZIp8CsljcDXaFEi4nngu8CzJMFdE7AYX6NZleN67KyNancmyR1N6P14FvP3b64c5JVeR5G5160pIOktwG+Az0TEX7uq2kFZFFFelSQdB7wYEYsLizuoGt3s83i+YRDJVM7lETENeJVkqqozHtMupM9xzSSZ6toNGAEc3UFVX6P58PhlIOkCoBn4ZVtRB9WKHc+yjLWDvNJrBHYv2B4PrKpQX/ocSYNJArxfRsTNafEL6bQB6feLaXlnY9lV+fgOyqvVwcDxkp4mmS44jOTO3o7p1BhsOwavj1u6fyTJtEVvx7maNQKNEbEw3b6JJOjzNVqc9wFPRcSaiNgK3AwchK/RrMpxPXbWRlVKk1GOA05Lp66h9+O5lt5f27lykFd6i4ApaYbNEJIHLOdVuE99Qvr8wVXA8oj4fsGueUBbttcs4NaC8tPTjLEZQFM6bTAfOELSqPROwRHA/HTfBkkz0rZOLzhX1YmI8yNifERMJLnO7omI04DfAyen1dqPZ9s4n5zWj7T8lDT7a09gCsnD2APuWo6IvwDPSXpbWnQ48Ci+Rov1LDBD0vD0z9s2nr5GsynH9dhZG1VH0lHAl4DjI2Jjwa5eXXfptdrbaztfpcjm8OdN2TvHkGSOrgAuqHR/+soHeA/J7eklwJ/SzzEkzyXcDTyZfo9O6wu4LB3HR4C6gnOdSfIQbANwRkF5HbA0PeYnpG95qfYPcChvZNdOIvmLqAH4NTA0LR+Wbjek+ycVHH9BOmaPU5DtORCvZeBdQH16nf6WJBvR12jx4/l14LH0z3wtSaair9Gej9+vSJ5n3EpyN+isclyPnbXR3z+djGcDyfNybf8uXVHsdVfMtZ3nx681MzMzM6tCnq41MzMzq0IO8szMzMyqkIM8MzMzsyrkIM/MzMysCjnIMzMzM6tCDvLMzMzMqpCDPDMzM7Mq5CDPzMzMrAo5yDMzMzOrQoO6r1L9xowZExMnTqx0N8zMzMy6tXjx4rURMba7eg7ygIkTJ1JfX1/pbpiZmZl1S9IzPann6VozMzOzKlTRO3mSjgJ+BNQCV0bExe32DwV+AUwHXgI+EhFPp/vOB84CWoBzI2J+T85ZTlfct4Lbl67muXUbGTqoluFDatm4pYUR6femrS2MGjEEgN1HD+fnZ+xfqa6amZlZlen2Tp6kFkkXS1JB2UNZG5ZUC1wGHA1MBT4qaWq7amcB6yNiL+AHwCXpsVOBU4B9gKOA/5BU28Nzls2+40fyxF82sO7Vraxu2sSKNa+yumkTDWteZVXTJtZt3MqKNa+yYs2r1Kj785mZmZn1VE+ma5el9e6QNDotyyMk2R9oiIiVEbEFuB6Y2a7OTOCa9PdNwOFpsDkTuD4iNkfEU0BDer6enLNsDpo8hqs+9m62G9z1MA8fUsvH/25SmXplZmZmA0FPgrzmiPgi8DPgfyVNByKHtscBzxVsN6ZlHdaJiGagCdipi2N7ck4AJM2WVC+pfs2aNRn+GF07aPIY/rGLAG5QjbhyVh0HTR5Tsj6YmZnZwNOTIE8AEXEj8GHgaiCP204d3Q1sHzx2Vqe35W8ujJgTEXURUTd2bLdZyEVbsGItP/vflZ3ub24Nlq1qKln7ZmZmNjD1JPHi420/ImKZpPcAJ+TQdiOwe8H2eGBVJ3UaJQ0CRgLrujm2u3OWzYIVaznr54t4bWtrl/W++bvHeHrtq+w+egRnHzK5TL0zMzOzatbtnbyIWNxu+68R8Ysc2l4ETJG0p6QhJIkU89rVmQfMSn+fDNwTEZGWnyJpqKQ9gSnAgz08Z9ksaWxi7122Z/SIwew6chiTx45g9IjBiOSW4/ZDa9lt5DAEXL+okX3Hj6xUV83MzKzKVGwJlYholnQOMJ9kuZO56Z3CC4H6iJgHXAVcK6mB5A7eKemxyyTdCDwKNAOfjIgWgI7OWe4/W5uzD5n8pjtzV9y34vVg7pzrHubk6eO5esHTHLfvrn4uz8zMzHKj5MbYwFZXVxflfONFW6D3wIqXuPSeBs49bC9mTN6JJY1Nnq41MzOzLklaHBF13dXr9E6epP26OjAiMq+VN1DtO34kn7g2mQU/97C9uHrB01y94Gl++v+mV7hnZmZmVi26mq79Xvo9DKgD/kzyKNm+wELgPaXtmpmZmZkVq9MgLyLeCyDpemB2RDySbr8T+Hx5uledljQ2cdy+u7Jpa8s207X/9edVnrI1MzOzXPRknby3twV4ABGxFHhX6bpU/c4+ZDKTxo7gtw+v4oPTduM/Fz7LslVNzF/2gjNszczMLBc9CfKWS7pS0qGSDpH0M2B5qTtWzRasWMvl967ky8e+nfueWMshe4/lW797jH86dJIzbM3MzCwXPQnyziB5f+2ngc+QLFtyRik7Ve2WNDZx5D47s89uI/mHAyZwy8PPc8K0caxc8ypX3Lei0t0zMzOzKtDtOnkRsUnSFcB/R8TjZehT1Tv7kMksWLH2TRm2gDNszczMLBfd3smTdDzwJ+B/0u13SarYWyTMzMzMrHs9eePFV4H9gXsBIuJPkiaWrksDw5w/rOTcw/diw2vNr2fYbr/dIOb8YaWfyzMzM7PMehLkNUdEk6SSd2Ygmf33kzxda2ZmZiXTk8SLpZJOBWolTZH0Y2BBifs1IGxubqW5pXWbsmWrmpx8YWZmZpn1JMj7FLAPsBm4DmgiybS1DJY0NvGFI/cmgEvvaeCMgyZy7uF78f07nvRaeWZmZpZZT6Zrj42IC4AL2gokfQj4dcl6NQC0ZdgOrk3i7Dn/u5LBtTVc9bE6P5NnZmZmmfXkTt75PSyzXliwYi1n/byecw/fi9l/N4lNW1vZ2tLq6VozMzPLRad38iQdDRwDjJN0acGuHYDmUnes2i1pbOJzR0zh0rsbgCT54mf/u5Lvzn+Cq894d4V7Z2ZmZv1dV9O1q4B64HhgcUH5BuCzpezUQNA2XVtoUG1PbqyamZmZda/TIC8i/gz8WdItwKsR0QIgqRYYWqb+VbUljU0ct++ubNra8vpaeTMm78R//XkVSxqbOPuQyZXuopmZmfVTPbl1dAewXcH2dsBdpenOwHL2IZOZNHYEv314FR+cthv/ufBZlq1qYv6yF5xha2ZmZpn0JMgbFhGvtG2kv4eXrksDx4IVa/n+HU9y6gG7c98Tazlk77F863ePcfQ7d2ZJY1Olu2dmZmb9WE+CvFcl7de2IWk68FrpujRwtCVf3L70BQ7Zewy3PPw8B+81hpsfWuU7eWZmZpZJT9bJ+wzwa0mr0u1dgY+UrksDR+Ezd9/63WPsP3EUf2xYy5ePfbvXyjMzM7NMug3yImKRpLcDbwMEPBYRW0veswGibcr24L3G8H8Na/ngtHFcfu9KAFpacfKFmZmZFaXb6VpJw4EvAZ+OiEeAiZKOK3nPBogljU2cuN9u/LFhLR+cthv3PbGGo9+5s19vZmZmZpn05Jm8q4EtwIHpdiNwUcl6NMDsO34kNz+0apvki+sWPseJ++3m5AszMzMrWk+CvMkR8W1gK0BEvEYybWs5cPKFmZmZlUJPEi+2SNoOCABJk4HNJe3VAOLkCzMzMyuFntzJ+yrwP8Dukn4J3A18saS9GmDOv3kJl97dwAnTxvHg0+s5Ydo4Lr27gfNvXlLprpmZmVk/1W2QFxF3AicCHwN+BdRFxL1ZGpU0WtKdkp5Mv0d1Um9WWudJSbMKyqdLekRSg6RLJSkt/5CkZZJaJdVl6WO5tbQGdy1/gXMP24u7lr9AS2tUuktmZmbWj/XkTh7AIcDhwHuBv8uh3fOAuyNiCsmdwfPaV5A0muQu4gHA/sBXC4LBy4HZwJT0c1RavpQkIP1DDn0smw/87W40twbNLa2vl9XWiEljR3DFfSsq2DMzMzPrr3qyhMp/AGcDj5AEUZ+QdFnGdmcC16S/rwFO6KDOkcCdEbEuItYDdwJHSdoV2CEi7o+IAH7RdnxELI+IxzP2reyWNDbxhSP3JoBL72ngjIMmcu7he3kZFTMzMytaTxIvDgHemQZUSLqGJODLYueIWA0QEaslvbWDOuOA5wq2G9Oycenv/9/evUdJWZ35Hv8+1U2DtFyaFpWbIO1tDAeDtICXNRh1UBMDJksnGV0KXsaQOSdmxpOMOq6TTJJJxkTNOockE/VovB2NUTQRzbAUSfQcI3KL0qKiNIh2Q6stYEtA6O6q5/zx7mqq26ruqu6qvlT/Pmu9q97a9b717tps4Fl7v89+O5bnxMyuIRoN5Kijjsr19LxaPLeKGx+vwYBhQ2Lc+f+2MqQkxnXzjqWmvkkJGCIiIpKzbKZr3wRSo6BJQJcZAWb2rJltTLMtyLJu6ZZp8U7Kc+Lud7p7tbtXjx07NtfT8+rFLR/yVE0DpSUxzp92JPtbEuxvibNkZa1G8kRERKRbsgnyKoE3zOw5M3sOeB043MyWmdmyTCe5+znuPi3N9gTwfph2Jbx+kOYr6okCyqSJwI5QPjFN+YBVU9/EHZfN5JQpFfz25R3MmlJBa9w5ZUp0C6LuyxMREZFcZTNd+50CXHcZsBC4Obw+keaYp4EfpSRbzANudPddZrbHzOYAq4HLgZ8VoI69ZvHcKl7c8iFrt+2mrDTGmm27+dKMCTz7xvus3baeOy6b2ddVFBERkQEmm5G8Rnd/PnUDLGW/O24G/sbMNgN/E95jZtVmdheAu+8CfgCsDdv3QxnA14G7gFpgC7A8nP8lM6snegTb783s6W7Wr9fV1DdxypQKSiy6L2/5xgbiiWg0T483ExERkVxZyKfIfIDZRqIM1luAYcBPiNbKO7XTEweQ6upqX7duXZ/W4cUtH/K1B9YDcM5fHc5vX97BkBJj2JAS7rhsppIvREREBAAzW+/uXa4HnM1I3myixIsXiUbUdgCn96x60pHuyxMREZF8yibIawE+AQ4hGsl7290TnZ8iuUo+wzb1vrwLZ0xg7bbdfO2B9cqyFRERkZxkE+StJQryTgHOAP7OzJYWtFaDlO7LExERkXzJJsi7yt2/4+4t7v6euy8gfTas9ND0iaNYu213u/XyWuIJ1m7brZE8ERERyUmXQZ67rzOzM8zsCgAzOwx4oeA1G4Rq6pu4YPo45p80jt+l3Jd3zNhyjeSJiIhITrJ5du13geuBG0NRGfB/ClmpwWrx3Cqmji3nodV1nH7MYazZtpvTjzmMV+qaKMlmzFVEREQkyCZ0+BIwH9gL4O47gBGFrNRgFk/ASZNG8ULth8yaUsGfaj/kktmT2Nq4Vxm2IiIikrVsgrxmjxbTcwAzKy9slQa36RNHsaVxb7sM22UbGniqpkH35YmIiEjWsgnyHjGzO4DRZvb3wLPA/y5stQYvZdiKiIhIPmSTeHErsBR4DDge+I67D+hnxY0AK7EAABdnSURBVPZnyrAVERGRfMjqdn53X+Hu33b3b7n7ikJXajDTky9EREQkH5Sz2c8kn3zxQu1OSmPW7skXV927lnd27u3jGoqIiMhAoCCvH6qpb+LimROIJ5whJcbyjQ00tyZIOHzxpPF9XT0REREZAHIK8szs5EJVRA6aPnEUj/95B5fMnkRJzNjfkuBAa4KLZk5Q8oWIiIhkJdeRvLsKUgtpp6a+ievmHcuyDVFmLUBpDJau367kCxEREclKrkGeFaQW0s7iuVV8ZvwoPmmO0xJ3Zk2pIJ6AmMFrO5qUfCEiIiJdyjXI+15BaiGf8uSGHQDtki8AfrL8TSVfiIiISJdyCvLc/XeFqoi0N7mynK+cMrFd8kXCIRYzJV+IiIhIl5Rd209NnziK5Rvf53MnjAVoS7741rnHAVovT0RERDqnIK+fqqlv4ueXzACgJR4lX5SVGKu27ORrD6zXlK2IiIh0qssgz8zuNrPPdij714LVSICDiyKv2rITgCElUc7LHzY1Ek+4pmxFRESkU9mM5J0L3Gtml6eUzS9QfSTFkxt2UFoS46wwZdscRvTmTB0DaMpWREREMssmyPsA+GvgYjP7hZmVoqVUesXkynLuuGwm0H7KFtCUrYiIiHQqmyDP3P1jd/8i0Ag8D2hF3l6gKVsRERHprmyCvGXJHXf/V+DfgW0Fqo908OSGHcQdLg2POEtO2R5/xKF6xJmIiIhk1GWQ5+7f7fD+KXc/q3BVklSTK8v59rnH8ej67bTEE0D0iLPXG/ZQEtN9eSIiIpKellDp55KPOIvHE8QTcMIRhxJPgLvz02fe0n15IiIiklafBHlmNsbMVpjZ5vBakeG4heGYzWa2MKV8ppm9ama1ZrbEzCyU32Jmm8ysxsx+a2aje+s3FdKTG3ZQVhqjNGZsev8vHHfkCJrjTqvuyxMREZEM+mok7wZgpbsfC6wM79sxszHAd4HZwCzguynB4C+Ba4Bjw3ZeKF8BTHP36cBbwI2F/BG9ZXJlOdfNO45YzIgZvPneHkpjxkUzJwKashUREZFPyxjkhZGymkxbD6+7ALgv7N8HXJjmmHOBFe6+y913EwVw55nZOGCku69ydwfuT57v7s+4e2s4/yVgYg/r2S9MnziKXz63lRPHjSAR5V3QmnBipqVUREREJL3STj67ILz+1/D6QHi9FNjXw+se4e4NAO7eYGaHpzlmAlCX8r4+lE0I+x3LO7oS+E0P69kv1NQ38fUzp/Lj5W8C0VIq7vDg6jqGluq2ShEREfm0jBGCu7/j7u8Ap7v7P7v7q2G7gWiUrVNm9qyZbUyzLciybukWXPZOylOvfRPQCjzYSf2uMbN1ZrausbExyyr1jcVzq9jauJchJcaQEiPh0f14AAl3po4t15StiIiItJPNMFC5mZ2RfGNmpwHlXZ3k7ue4+7Q02xPA+2HalfD6QZqvqAcmpbyfCOwI5RPTlCfrt5BoFPLSMJ2bqX53unu1u1ePHTu2q5/T5yZXlnP3olP4zPiRhJVUAJg2fiRLVtZqylZERETaySbIuwr4hZltM7O3gf8gmgrtiWVAMlt2IfBEmmOeBuaZWUVIuJgHPB2mefeY2ZyQVXt58nwzOw+4Hpjv7j2dUu5Xkk+/ePO9PW1lMYOX65qIJzSaJyIiIu11dk8eAO6+HjjJzEYSPeIsH49ZuBl4xMyuAt4FLgYws2pgsbtf7e67zOwHwNpwzvfdfVfY/zpwL3AIsDxsAD8HhgIrwqoqL7n74jzUt194ckM0YFliEHfakjCOP+JQlqys5YLp4/qwdiIiItKfdBnkmdkRwI+A8e5+vpmdCJzq7nd396LuvhM4O035OuDqlPe/An6V4bhpacqP6W6dBorSkhhfPnkCD64+mJNSs72J4WWlbaN5yVE/ERERGbyyma69l2jqNLnq7lvAPxaqQpLZ5Mpyrj37GJZtaKAkJf0knoD5J43TvXkiIiLSJpsg7zB3fwRIAIR16OIFrZWklcyyBfgvE0e1++zhtXW0pmZkiIiIyKCWTZC318wqCcuUmNkcIB/35Uk3JEfzkgkYyQG9eALMTAkYIiIiAmQX5F1HlA1bZWZ/InrCxLUFrZVklBzNKy2JcczY8nYLBI4fNUxTtiIiIgJkF+S9BswFTgO+BnwG2FTISknnkqN52z/6pK3MgNrGvVpORURERIDsgrxV7t7q7q+5+0Z3bwFWFbpiklnqvXnJBIzkiF5yORWN5omIiAxuGYM8MzvSzGYCh5jZDDM7OWxnAsN7rYaSUWlJjK/OmtSurGZ7dLukRvNEREQGt87WyTsXWET02LCfppTvAf6lgHWSLCSnbJesrMU4OJKXXE7lp8+8xXFHjtCaeSIiIoNUxpE8d7/P3T8HLHL3z6Vs89398V6so6SROmV71gntn7376zV17G9JMG38SI3miYiIDFLZPNbsMTP7AlHCxbCU8u8XsmLStdTRvJgdfMxZwuHsE8aybEODHnUmIiIySHWZeGFmtwNfAb5BlMR5MTC5wPWSLKSO5v1dh3vznnurEYCYwaJ71vR63URERKRvZZNde5q7Xw7sdvfvAacCk7o4R3pJcjTv8T9vb1ceT8CsKRU8uLqOmGU4WURERIpWNkFecjG2fWY2HmgBji5clSQXi+dWsWrLTva3JDi7w715Kzc1MryshHGjhmk0T0REZJDJJsh7ysxGA7cAfwa2AQ8XslKSm4TDJbMnsWbbbko7/ImeOnUMD62uY8LoYUrCEBERGUS6DPLc/Qfu/pG7P0Z0L94J7v4/Cl81yda9V8xqS7r4yintZ9JXbmrkktmTWLahgTVv71SgJyIiMkhkzK41sy938hlaRqV/mVxZzvyTxvHg6jqGlsY40Jpo+2zp+u3EDF7Y/CE79zZr7TwREZFBoLORvC92sl1Q+KpJLhbPrWLjjo8ZXlbCRTMntPvsQGuCeMJpibvWzhMRERkkMo7kufsVvVkR6bnzp41j2vi9PLS6jktnT+Kh1XVtT8JojjuXhmnbU6ZUAGhET0REpIiZu3d+gNl30pUX02LI1dXVvm7dur6uRl4sumcNE0YPY9mGBg60xGmOH/zzHVoaa1tO5YQjRzBqeBn3XjGrj2oqIiIi3WFm6929uqvjssmu3ZuyxYHzgSk9qp0UTDIJozWe+NRnB1oTJBziCefluiaa9jVr6lZERKRIZfNYs9tS35vZrcCygtVIemxyZTknHDmCV+qauHT2JB5eW0cy5ksmZAwtjbHpvT1UlJcBmroVEREpNl0GeWkMB6bmuyKSP4vnVvHS1p1tS6eUlcTYn0iQOjGfnLZ9YfOHvLNzX9t5IiIiUhyyeXbtq2ZWE7bXgDeB/1X4qklPdJy2HVLS/tlmn7REGbfNcad+9ydaQ09ERKTIZDOSl7pcSivwvru3Fqg+kkeTK8s5taqSFzZ/SHPcP7V+XrIsZrBqy052723mpa07lYwhIiJSBLJJvBgH7HL3d9x9OzDMzGYXuF6SB4vnVjHr6EomjRneFswdMqT9H3ky6EsmY9Tv2qfn3IqIiBSBbIK8XwJ/SXm/L5TJALB4bhUXV0/i9GMqgSiY6+iTlgTNcWdIzNjSuJcSg7Nve07BnoiIyACWzXStecpieu6eMLPuJGxIH0kmVOze28zLdU1to3qftLRfZqUl4cyYNIqVmxoBMGDBL17g/GnjlJQhIiIywGQzkrfVzK41syFh+yawtdAVk/xaPLeKUcPLmDFpVFtmbVmHZAyAl+uaABgSM2ob9/L69o+5/8VtGtUTEREZYLIJ8hYDpwHbgXpgNnBNTy5qZmPMbIWZbQ6vFRmOWxiO2WxmC1PKZ4as31ozW2JmFsp/ELKAXzGzZ8xsfE/qWWzuvWIW504bx6lVlW2ZtUNinw70IBrVs/C6o2k/JQan/ftKzrr1uV6ts4iIiHRPl481K8hFzX5ClMxxs5ndAFS4+/UdjhkDrAOqAQfWAzPdfbeZrQG+CbwE/CewxN2Xm9lId/84nH8tcKK7L+6qPsX0WLNs3P78Fh5dV8e7O/fRmnDOOmFs2xRtOiOGlbJnf5RQPWPSKN7/+ADusPD0KZrGFRER6WXZPtYs4711ZvYzIGME6O7XdrNuAAuAM8P+fcBzwPUdjjkXWOHuu0J9VgDnmdlzwEh3XxXK7wcuBJYnA7ygvLP6D2bJwGz5xgYOKy9rC/BKDOJpWiwZ4MWs/XTu0xsbuP/FbQr4RERE+qHOEigKObR1hLs3ALh7g5kdnuaYCUBdyvv6UDYh7HcsB8DMfghcDjQBn8tUATO7hjDtfNRRR3XvVwxgi+dWsXhuFYvuWcP4UcNo3HOAlkQ0fduSJgMXILW4JSy5AlFwmAz49rfEmVQ5XMkaIiIifSxjkOfu9/Xki83sWeDINB/dlO1XpCnzTsqjHfebgJvM7EbgvwHfTffl7n4ncCdE07VZ1qno3HvFLG5/fgvLNzawd38rtY17gWhaNhnEdSXutDt2975ovb1H19XxSXNcgZ+IiEgf6HIpFDMbSzSVeiIwLFnu7md1dp67n9PJd75vZuPCKN444IM0h9VzcEoXYCLRtG592E8t35Hm/IeA35MhyJODUkf1HJhSObxtCnf8qGHsaNqf0/c5sHNvCzv3trSV7drXxKv1Tfx4+SZGDCuhNBajorysLQicPmm0nrQhIiKSR9msd/cg8BvgC0SZtguBzHfpZ2dZ+J6bw+sTaY55GvhRSubtPOBGd99lZnvMbA6wmmhq9mcAZnasu28Ox88HNvWwnoNKMshadM8axpQPYfKY4W0jdDFrP13bHcnzP94fB+Ls2ncwCHxxy06OvuH3xGLhOIfSmNHqDk5UnoheS2NGWUmMw0cO00ihiIhIBl1m14YMjplmVuPu00PZ8+4+t9sXNasEHgGOAt4FLg7BWzWw2N2vDsddCfxLOO2H7n5PKK8G7gUOAZYD33B3N7PHgOOBBPBO+K7tXdVnsGXXZmvRPWuoqf+IiuFl1O3aR3O6rIx+xCwlGO0QJGKfLksNHLsKLLvzua6pa+qauqauOXCvmct3xmJQVhJjxLAh7G+JU1FexqHDSgs2+JBtdm02Qd5L7j7HzJ4GlhBNjS5196IZMlGQ17nkPXt1u/YNmIBPRESkLw0vK+GuhdWcVnVY3r+7x0uopPg3MxsF/HeiadGRwD/1sH4ygCTv2YP2Ad/Q0hLKy0rakjVERESksAFeLroM8tz9qbDb6ZIkMjikBnxAW7IGwO59zQwtLcEg52QNERGRYnH1GUf3eYAH2WXX3gd8090/Cu8rgNvc/cpCV076v3QZsbc/v4X7XtwGwIHWOENLSwD4YM8BEgmnNAYtid6spYiISO+564W3mVNV2eeBXjb35L3s7jO6KhvIdE9e7zrr1uf4pCXO8LKSttG/vxxo5S/7W7O6QRZP/2QOERGR/mKg3JMXM7MKd98dvnhMlueJpPWHb53Zo/MX3bOGul37gINTxM2tcXbva8GUXatr6pq6pq6pa/byd2bKrq2pb+rT0bxsgrXbgBfNbCnRz/5b4IcFrZVIJ7RosoiISNeySby438zWAWcRxbVfdvfXC14zEREREem2Lu/JGwzMrJFo8eRCOgz4sMDXGEzUnvml9swvtWf+qU3zS+2ZX73dnpPdfWxXBynI6yVmti6bmyQlO2rP/FJ75pfaM//Upvml9syv/tqesb6ugIiIiIjkn4I8ERERkSKkIK/33NnXFSgyas/8Unvml9oz/9Sm+aX2zK9+2Z66J09ERESkCGkkT0RERKQIKcgTERERKUIK8nqBmZ1nZm+aWa2Z3dDX9ekvzGySmf3RzN4ws9fM7JuhfIyZrTCzzeG1IpSbmS0J7VhjZienfNfCcPxmM1uYUj7TzF4N5ywxM+v9X9q7zKzEzF42s6fC+6PNbHVom9+YWVkoHxre14bPp6R8x42h/E0zOzelfND1ZTMbbWZLzWxT6Kunqo92n5n9U/j7vtHMfm1mw9RHs2dmvzKzD8xsY0pZwftjpmsMdBna85bw973GzH5rZqNTPsup33Wnb+eVu2sr4AaUAFuAqUAZsAE4sa/r1R82YBxwctgfAbwFnAj8BLghlN8A/Djsfx5YTvTklTnA6lA+BtgaXivCfkX4bA1wajhnOXB+X//uXmjX64CHgKfC+0eAr4b924Gvh/1/AG4P+18FfhP2Twz9dChwdOi/JYO1LwP3AVeH/TJgtPpot9tyAvA2cEhK31ykPppTG/41cDKwMaWs4P0x0zUG+pahPecBpWH/xyntmXO/y7Vv53vTSF7hzQJq3X2ruzcDDwML+rhO/YK7N7j7n8P+HuANov8EFhD9x0p4vTDsLwDu98hLwGgzGwecC6xw913uvhtYAZwXPhvp7qs8+pt0f8p3FSUzmwh8AbgrvDeiRxIuDYd0bM9kOy8Fzg7HLwAedvcD7v42UEvUjwddXzazkUT/CdwN4O7N7v4R6qM9UQocYmalwHCgAfXRrLn7/wV2dSjujf6Y6RoDWrr2dPdn3L01vH0JmBj2c+p33fz3N68U5BXeBKAu5X19KJMUYah6BrAaOMLdGyAKBIHDw2GZ2rKz8vo05cXsfwL/DCTC+0rgo5R/sFLboK3dwudN4fhc27mYTQUagXssmgK/y8zKUR/tFnffDtwKvEsU3DUB61Ef7ane6I+ZrlHsriQa0YTc27M7//7mlYK8wksXmWvdmhRmdijwGPCP7v5xZ4emKfNulBclM7sA+MDd16cWpznUu/hM7XlQKdFUzi/dfQawl2iqKhO1aSfCfVwLiKa6xgPlwPlpDlUfzQ+1Xw+Y2U1AK/BgsijNYd1tz15pawV5hVcPTEp5PxHY0Ud16XfMbAhRgPeguz8eit8P0waE1w9Ceaa27Kx8YpryYnU6MN/MthFNF5xFNLI3OkyNQfs2aGu38PkoommLXNu5mNUD9e6+OrxfShT0qY92zznA2+7e6O4twOPAaaiP9lRv9MdM1yhKIRnlAuDSMHUNubfnh+Tet/NKQV7hrQWODRk2ZUQ3WC7r4zr1C+H+g7uBN9z9pykfLQOS2V4LgSdSyi8PGWNzgKYwbfA0MM/MKsJIwTzg6fDZHjObE651ecp3FR13v9HdJ7r7FKJ+9gd3vxT4I3BROKxjeybb+aJwvIfyr4bsr6OBY4luxh50fdnd3wPqzOz4UHQ28Drqo931LjDHzIaH35tsT/XRnumN/pjpGkXHzM4Drgfmu/u+lI9y6nehr+bat/OrENkc2j6VvfN5oszRLcBNfV2f/rIBZxANT9cAr4Tt80T3JawENofXMeF4A34R2vFVoDrlu64kugm2Frgipbwa2BjO+TnhKS/FvgFncjC7dirRP0S1wKPA0FA+LLyvDZ9PTTn/ptBmb5KS7TkY+zLwWWBd6Ke/I8pGVB/tfnt+D9gUfvMDRJmK6qPZt9+vie5nbCEaDbqqN/pjpmsM9C1De9YS3S+X/H/p9u72u+707XxueqyZiIiISBHSdK2IiIhIEVKQJyIiIlKEFOSJiIiIFCEFeSIiIiJFSEGeiIiISBFSkCcikgMzG21m/xD2x5vZ0q7OERHpC1pCRUQkB+E5y0+5+7Q+roqISKdKuz5ERERS3AxUmdkrRAvD/pW7TzOzRcCFQAkwDbgNKAMuAw4An3f3XWZWRbRA7VhgH/D37r6p93+GiBQ7TdeKiOTmBmCLu38W+HaHz6YBlwCzgB8C+9x9BrCK6BFRAHcC33D3mcC3gP/olVqLyKCjkTwRkfz5o7vvIXr+ZxPwZCh/FZhuZocCpwGPRo8GBaLHeomI5J2CPBGR/DmQsp9IeZ8g+vc2BnwURgFFRApK07UiIrnZA4zozonu/jHwtpldDGCRk/JZORGRJAV5IiI5cPedwJ/MbCNwSze+4lLgKjPbALwGLMhn/UREkrSEioiIiEgR0kieiIiISBFSkCciIiJShBTkiYiIiBQhBXkiIiIiRUhBnoiIiEgRUpAnIiIiUoQU5ImIiIgUof8P2qcQWZA1xn0AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, positions[:, 0, 0] - expected_x, '.', label='Expected')\n",
-    "_ = x_position_axes.set_ylabel('calculated x - expected x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, positions[:, 0, 1] - expected_y, '.')\n",
-    "_ = y_position_axes.set_ylabel('calculated y - expected y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, positions[:, 0, 2] - expected_z, 'x')\n",
-    "_ = z_position_axes.set_ylabel('calculated z - expected z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUXHWd7v/3JzcjEKIQLkrAQJSLkiYJLQfCgFwEIvqLgzMqgx5RPGZ0zNJzjjcgg+Jtfo7o6JzJDIjKoMegiExGFJEEQZhZGcAOl04gEGgFDSikQWJALkn6c/6ondhJOkl3UlXf6u73a61aXbVrV9XTO5XvfnrvXbsiM5EkSVIZI0oHkCRJGs4sY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCRpUOMBATJkzISZMmlY4hqYmWLFnSnZl7lc4hSY0yqMrYpEmT6OjoKB1DUhNFxMOlM0hSI7mbUpIkqSDLmCRJUkGWMUmSpIIG1TFjUilr165l5cqVPPfcc6WjDFljx45l4sSJjB49unQUSWoqy5jUDytXrmTcuHFMmjSJiCgdZ8jJTJ544glWrlzJgQceWDqOJDWVuymlfnjuuefYc889LWINEhHsueeebnmUNCxZxqR+sog1lstX0nBlGZMkSSqoKWUsIh6KiKURcVdEdFTTPhsRndW0hRHx8mZkkRrtkpu7WNzVvcm0xV3dXHJz104978iRI5k6derGyxe+8IWder7+eOqpp/iXf/mXAT/uwgsv5Etf+lIDEknS0NPMLWMnZubUzGyvbl+UmW2ZORX4MfDJJmaRGqZt4njmXHHnxkK2uKubOVfcSdvE8Tv1vC9+8Yu56667Nl7OPffcesTdph0tY5Kk/iu2mzIz/9Dr5q5Alsoi1dOMyROYd9Y05lxxJ/+w8H7mXHEn886axozJE+r+WqtXr+aQQw7h/vvvB+Cv/uqv+PrXvw7Abrvtxkc+8hGmT5/OySefzKpVqwDo6upi5syZHHnkkRx33HHcd999ADz22GOcccYZHHHEERxxxBEsXryYc889l66uLqZOncrHPvYxAC666CJe+9rX0tbWxqc+9amNWT7/+c9zyCGH8PrXv35jHklSP2Rmwy/Ar4A7gCXA7F7TPw/8BlgG7LW95znyyCNTKuHee+8d8GO+fP19+YpP/Di/fP19dckwYsSIPOKIIzZevve972Vm5sKFC/Poo4/O7373u3naaadtnB/I73znO5mZ+elPfzo/+MEPZmbmSSedlCtWrMjMzFtvvTVPPPHEzMx829vell/5ylcyM3PdunX51FNP5a9+9at8zWtes/E5r7/++nzf+96XPT09uX79+nzjG9+YN998c3Z0dOThhx+ezzzzTK5evTonT56cF1100YB/x76WM9CRTRinvHjx4qXUpVnnGTs2Mx+NiL2BRRFxX2bekplzgbkRcR4wB/jU5g+MiNnAbIADDjigSXGlnbO4q5vv3PZrPnTSK/nObb/m6Ml77vSWsQ27KTd3yimncNVVV/HBD36Qu+++e+P0ESNG8Pa3vx2Ad77znbzlLW/h6aefZvHixbz1rW/dON/zzz8PwI033si3v/1toHZ82vjx4/n973+/yWstXLiQhQsXMm3aNACefvppHnjgAdasWcMZZ5zBLrvsAsCsWbN26neVpOGkKWUsMx+tfj4eEQuAo4Bbes1yBXAtfZSxzLwUuBSgvb3dXZlqeRuOEduwa/LoyXs2dFdlT08Py5cv58UvfjFPPvkkEydO7HO+iKCnp4eXvOQlfZa6/shMzjvvPP76r/96k+lf/epXPTWFJO2ghh8zFhG7RsS4DdeBU4FlEfGqXrPNAu5rdBapGTpXrt6keG04hqxz5eqGvN5XvvIVDjvsML773e9yzjnnsHbtWqBW0n7wgx8AcMUVV/Bnf/Zn7L777hx44IFcddVVQK1cbdiadvLJJ3PxxRcDsH79ev7whz8wbtw41qxZs/G1TjvtNC677DKefvppAB555BEef/xxjj/+eBYsWMCzzz7LmjVr+NGPftSQ31WShqJmbBnbB1hQ/dU8CrgiM38aEVdHxCFAD/Aw8P4mZJEa7v2vm7zFtBmTJ+z0VrFnn32WqVOnbrw9c+ZMzjnnHL7xjW9w++23M27cOI4//ng+97nP8elPf5pdd92Ve+65hyOPPJLx48dz5ZVXAjB//nw+8IEP8LnPfY61a9dy5plncsQRR/CP//iPzJ49m29+85uMHDmSiy++mGOOOYZjjz2Www8/nDe84Q1cdNFFLF++nGOOOQaofUjgO9/5DtOnT+ftb387U6dO5RWveAXHHXfcTv2ukjScRObg2fPX3t6eHR0dpWNoGFq+fDmHHXZY6RgDsttuu23cgjVY9LWcI2JJ/umUOJI05HgGfkmSpIIsY9IQNdi2iknScGUZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMWkQ+d3vfseZZ57J5MmTefWrX83pp5/OihUrtjr/brvttkOv8/Of/5w3velN25znrrvu4ic/+cmAn/uEE07AU9RI0p9YxqRG+c3t8B9frv2sg8zkjDPO4IQTTqCrq4t7772Xv/u7v+Oxxx6ry/MP1I6WMUnSpixjUiP85nb41iy48fO1n3UoZDfddBOjR4/m/e//05dVTJ06lWnTpnHyySczffp0pkyZwg9/+MM+H//FL36RKVOmcMQRR3DuuecCm26l6u7uZtKkSVs87vbbb2fGjBlMmzaNGTNmcP/99/PCCy/wyU9+kiuvvJKpU6dy5ZVX8swzz3DOOefw2te+lmnTpm3M8eyzz3LmmWfS1tbG29/+dp599tmdXhaSNJQ05YvCpWHnof+A9S9Arq/9fOg/YP+jduoply1bxpFHHrnF9LFjx7JgwQJ23313uru7Ofroo5k1a9YmX9x93XXX8e///u/cdttt7LLLLjz55JP9ft1DDz2UW265hVGjRnHDDTdw/vnnc/XVV/OZz3yGjo4O5s2bB8D555/PSSedxGWXXcZTTz3FUUcdxetf/3q+9rWvscsuu9DZ2UlnZyfTp0/fqeUgSUONZUxqhEnHwcgxtSI2ckztdoNkJueffz633HILI0aM4JFHHuGxxx5j33333TjPDTfcwHve8x522WUXAPbYY49+P//q1as5++yzeeCBB4iIjV9EvrmFCxdyzTXX8KUvfQmA5557jl//+tfccsstfOhDHwKgra2Ntra2Hf1VJWlIsoxJjbD/UXD2NbUtYpOO2+mtYgCvec1r+MEPfrDF9Pnz57Nq1SqWLFnC6NGjmTRpEs8999wm82TmJlvKNhg1ahQ9PT0AWzxmgwsuuIATTzyRBQsW8NBDD3HCCSf0OV9mcvXVV3PIIYdscV9fry1JqvGYMalR9j8KjvtIXYoYwEknncTzzz/P17/+9Y3TfvGLX/Dwww+z9957M3r0aG666SYefvjhLR576qmnctlll/HHP/4RYONuykmTJrFkyRKAPose1LaM7bfffgBcfvnlG6ePGzeONWvWbLx92mmn8U//9E9kJgB33nknAMcffzzz588HartaOzs7d+j3l6ShyjImDRIRwYIFC1i0aBGTJ0/mNa95DRdeeCGnn346HR0dtLe3M3/+fA499NAtHjtz5kxmzZpFe3s7U6dO3bgr8aMf/SgXX3wxM2bMoLu7u8/X/fjHP855553Hsccey/r16zdOP/HEE7n33ns3HsB/wQUXsHbtWtra2jj88MO54IILAPjABz7A008/TVtbG1/84hc56qj6lFNJGipiw1+xg0F7e3t6fiKVsHz5cg477LDSMYa8vpZzRCzJzPZCkSSp4dwyJkmSVJBlTJIkqSDLmNRPg2mX/mDk8pU0XFnGpH4YO3YsTzzxhIWhQTKTJ554grFjx5aOIklN53nGpH6YOHEiK1euZNWqVaWjDFljx45l4sSJpWNIUtNZxqR+GD16NAceeGDpGJKkIcjdlJIkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKmgppzaIiIeAtYA64F1mdkeERcB/x/wAtAFvCczn2pGHkmSpFbRzC1jJ2bm1Mxsr24vAg7PzDZgBXBeE7NIkiS1hGK7KTNzYWauq27eCnjqbUmSNOw0q4wlsDAilkTE7D7uPwe4rq8HRsTsiOiIiA6/ikaSJA01zSpjx2bmdOANwAcj4vgNd0TEXGAdML+vB2bmpZnZnpnte+21V3PSSpIkNUlTylhmPlr9fBxYABwFEBFnA28C3pGZ2YwskiRJraThZSwido2IcRuuA6cCyyJiJvAJYFZm/rHROSRJklpRM05tsQ+wICI2vN4VmfnTiHgQeBGwqLrv1sx8fxPySJIktYyGl7HM/CVwRB/TX9no15YkSWp1noFfkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQU0pYxHxUEQsjYi7IqKjmvbWiLgnInoior0ZOSRJklrNqCa+1omZ2d3r9jLgLcDXmphBkiSppTSzjG0iM5cDRESpCJIkScU165ixBBZGxJKImN2k15QkSWp5zdoydmxmPhoRewOLIuK+zLylPw+syttsgAMOOKCRGSVJkpquKVvGMvPR6ufjwALgqAE89tLMbM/M9r322qtRESVJkopoeBmLiF0jYtyG68Cp1A7elyRJGvaasWVsH+A/I+Ju4Hbg2sz8aUScERErgWOAayPi+iZkkSRJaikNP2YsM38JHNHH9AXUdllKkiQNW56BX5IkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVU7IvCG+GSm7u4btlvWfG7NTy/roeeLJ1I0rYcNGFXbvzoCaVjSFJR/S5jETEHmJ+Zv29gnp3SNnE8/3jDCg5bdx+zR/6Y9ljO+HiGAKKaJ3tdp5/TWuUxrZKjlR/TKjla+THNzPFw7sPH1n2AO/Jg+nLM5D36nC5Jw8lAtoztC/wiIu4ALgOuz8yW2vY0Y/IErnzjSA697rOMZn3pONKwd1A8xlVjPs1bX/jUFoXsHf9tfz5/RluhZJLUOvpdxjLzbyPiAmrfLfkeYF5EfB/4ZmZ2NSrgQLWtXUpPrN/iL3ZJZYzI5OgRy7lj/Z/K2MvHj7WISVJlQMeMZWZGxO+A3wHrgJcCP4iIRZn58UYEHKjO0VM4NEe6ZUxqET0Et/Yctsm0R1c/x9wFnRYySWJgx4x9CDgb6Aa+AXwsM9dGxAjgAaB4GVvc1c17r13PYesu8JixYfqYVsnRyo9plWPG5t/2GwALmaRhbyBbxiYAb8nMh3tPzMyeiHhTfWPtmM6Vqzl433Es/92h/M26g/00pdTi/qvrydIRJKm4aLFj8Lepvb09Ozo6SseQ1EQRsSQz20vnkKRG8aSvkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklTQqGa8SEQ8BKwB1gPrMrM9IvYArgQmAQ8Bb8vM3zcjjyRJUqto5paxEzNzama2V7fPBX6Wma8CflbdliRJGlZK7qZ8M/Ct6vq3gD8vmEWSJKmIZpWxBBZGxJKImF1N2yczfwtQ/dy7rwdGxOyI6IiIjlWrVjUpriRJUnM05Zgx4NjMfDQi9gYWRcR9/X1gZl4KXArQ3t6ejQooSZJUQlO2jGXmo9XPx4EFwFHAYxHxMoDq5+PNyCJJktRKGl7GImLXiBi34TpwKrAMuAY4u5rtbOCHjc4iSZLUapqxm3IfYEFEbHi9KzLzpxHxC+D7EfFe4NfAW5uQRZIkqaU0vIxl5i+BI/qY/gRwcqNfX5IkqZV5Bn5JkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFNa2MRcTIiLgzIn5c3T4pIu6IiGUR8a2IGNWsLJIkSa2imVvGPgwsB4iIEcC3gDMz83DgYeDsJmaRJElqCU0pYxExEXgj8I1q0p7A85m5orq9CPiLZmSRJElqJc3aMvZV4ONAT3W7GxgdEe3V7b8E9m9SFkmSpJbR8DIWEW8CHs/MJRumZWYCZwJfiYjbgTXAuq08fnZEdEREx6pVqxodV5IkqamacdD8scCsiDgdGAvsHhHfycx3AscBRMSpwMF9PTgzLwUuBWhvb88m5JUkSWqahm8Zy8zzMnNiZk6itjXsxsx8Z0TsDRARLwI+AVzS6CySJEmtpuR5xj4WEcuBTuBHmXljwSySJElFNPXcXpn5c+Dn1fWPAR9r5utLkiS1Gs/AL0mSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkFNK2MRMTIi7oyIH1e3T46IOyLiroj4z4h4ZbOySJIktYpmbhn7MLC81+2LgXdk5lTgCuBvm5hFkiSpJTSljEXEROCNwDd6TU5g9+r6eODRZmSRJElqJaOa9DpfBT4OjOs17X8AP4mIZ4E/AEf39cCImA3MBjjggAMaHFOSJKm5Gr5lLCLeBDyemUs2u+t/Aadn5kTgX4F/6OvxmXlpZrZnZvtee+3V4LSSJEnN1YwtY8cCsyLidGAssHtEXAscmpm3VfNcCfy0CVkkSZJaSsO3jGXmeZk5MTMnAWcCNwJvBsZHxMHVbKew6cH9kiRJw0KzjhnbRGaui4j3AVdHRA/we+CcElkkSZJKamoZy8yfAz+vri8AFjTz9SVJklqNZ+CXJEkqKDKzdIZ+i4hVwMP9nH0C0N3AOI1i7uYajLkHY2bY8dyvyEw/Si1pyBpUZWwgIqIjM9tL5xgoczfXYMw9GDPD4M0tSY3mbkpJkqSCLGOSJEkFDeUydmnpADvI3M01GHMPxswweHNLUkMN2WPGJEmSBoOhvGVMkiSp5Q3JMhYRMyPi/oh4MCLObYE8D0XE0oi4KyI6qml7RMSiiHig+vnSanpExP+psndGxPRez3N2Nf8DEXF2A3JeFhGPR8SyXtPqljMijqyWw4PVY6OBuS+MiEeqZX5X9d2oG+47r8pwf0Sc1mt6n++biDgwIm6rfp8rI2JMHTLvHxE3RcTyiLgnIj5cTW/p5b2N3C29vCWppWXmkLoAI4Eu4CBgDHA38OrCmR4CJmw27YvAudX1c4G/r66fDlwHBHA0cFs1fQ/gl9XPl1bXX1rnnMcD04FljcgJ3A4cUz3mOuANDcx9IfDRPuZ9dfWeeBFwYPVeGbmt9w3wfeDM6volwAfqkPllwPTq+jhgRZWtpZf3NnK39PL24sWLl1a+DMUtY0cBD2bmLzPzBeB71L6YvNW8GfhWdf1bwJ/3mv7trLkVeElEvAw4DViUmU9m5u+BRcDMegbKzFuAJxuRs7pv98z8r8xM4Nu9nqsRubfmzcD3MvP5zPwV8CC190yf75tqa9JJwA+qx/deBjuT+beZeUd1fQ2wHNiPFl/e28i9NS2xvCWplQ3FMrYf8Jtet1ey7ZVFMySwMCKWRMTsato+mflbqK3ggL2r6VvLX+r3qlfO/arrm09vpDnVLr3LNuzu206+vqbvCTyVmes2m143ETEJmAbcxiBa3pvlhkGyvCWp1QzFMtbXcTGlPzJ6bGZOB94AfDAijt/GvFvL32q/10BzNjv/xcBkYCrwW+DL1fSWyh0RuwFXA/8zM/+wrVm3kqNVcg+K5S1JrWgolrGVwP69bk8EHi2UBYDMfLT6+TiwgNoumseqXUlUPx+vZt9a/lK/V71yrqyubz69ITLzscxcn5k9wNepLfMdyd1NbZfgqHrnjojR1ArN/Mz8t2pyyy/vvnIPhuUtSa1qKJaxXwCvqj6RNQY4E7imVJiI2DUixm24DpwKLKsybfjk29nAD6vr1wDvqj49dzSwutpddT1wakS8tNoFdGo1rdHqkrO6b01EHF0dF/SuXs9VdxsKTeUMast8Q+4zI+JFEXEg8CpqB7r3+b6pjre6CfjL6vG9l8HO5Avgm8DyzPyHXne19PLeWu5WX96S1NJKf4KgERdqnzxbQe3TWnMLZzmI2ifF7gbu2ZCH2rExPwMeqH7uUU0P4J+r7EuB9l7PdQ61A6AfBN7TgKzfpbaLaS21LRfvrWdOoJ3aSroLmEd10uEG5f6/Va5OaoXgZb3mn1tluJ9enzDc2vum+je8vfp9rgJeVIfMf0Zt91sncFd1Ob3Vl/c2crf08vbixYuXVr54Bn5JkqSChuJuSkmSpEHDMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgoaVTrAQEyYMCEnTZpUOoakJlqyZEl3Zu5VOsfOcvyShp/+jl+DqoxNmjSJjo6O0jEkNVFEPFw6Qz04fknDT3/HL3dTSpIkFWQZkyRJKsgyJkmSVJBlTJIkqaCiZSwiZkbE/RHxYEScu7PPd8nNXSzu6t5k2uKubi65uWtnn1qStlDvMUxDh+sjDUSxT1NGxEjgn4FTgJXALyLimsy8d0efs23ieOZccSeXn5K0rV1K5+gpzFkUzDtrWr1iSxLQmDFMQ4frIw1EyVNbHAU8mJm/BIiI7wFvBnZ4IJsxeQKXn5Ic/NN30MM6DmYUl8+cT9vkCXWKLEkb1X0M09Dh+kgDUXI35X7Ab3rdXllN20REzI6IjojoWLVq1XaftG3tUsawjhH0MIb1tK1dWr/EkvQn2x3DBjp+aWhxfaT+KlnGoo9pucWEzEszsz0z2/faa/sn4e4cPYUXGEUPI3mBkXSOnlKPrJK0ue2OYQMdvzS0uD5Sf5UsYyuB/Xvdngg8ujNPuLirm3cvClbMnM+Ik+eyYuZ83r0otjiIUpLqoO5jmIYO10caiJLHjP0CeFVEHAg8ApwJnLUzT9i5cjXzzppW7ZM/lTZg3l7ddK5czQz300uqr7qPYRo6XB9pIIqVscxcFxFzgOuBkcBlmXnPzjzn+183eYtpMyZP8I0vqe4aMYZp6HB9pIEo+kXhmfkT4CclM0jSjnIMk1QPnoFfkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQZYxSZKkgoqUsYh4a0TcExE9EdFeIoMk7SjHMEn1VGrL2DLgLcAthV5fknaGY5ikuhlV4kUzczlARJR4eUnaKY5hkurJY8YkSZIKatiWsYi4Adi3j7vmZuYPB/A8s4HZAAcccECd0knSttVjDHP8ktQfDStjmfn6Oj3PpcClAO3t7VmP55Sk7anHGOb4Jak/3E0pSZJUUKlTW5wRESuBY4BrI+L6EjkkaUc4hkmqp1KfplwALCjx2pK0sxzDJNWTuyklSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgoacmXskpu7WNzVvcm0xV3dXHJzV6FEkqThxnWRBmJU6QD11jZxPHOuuJPLT0na1i6lc/QU5iwK5p01rXQ0SdIw4bpIAzHkytiMyRO4/JTk4J++gx7WcTCjuHzmfNomTygdTZI0TLgu0kAMud2UAG1rlzKGdYyghzGsp23t0tKRJEnDjOsi9deQLGOdo6fwAqPoYSQvMJLO0VNKR5IkDTOui9RfQ66MLe7q5t2LghUz5zPi5LmsmDmfdy+KLQ6klCSpUVwXaSCG3DFjnStXM++sadV++VNpA+bt1U3nytXMcF+9JKkJXBdpICIzS2fot/b29uzo6CgdQ1ITRcSSzGwvnWNnOX5Jw09/x68ht5tSkiRpMLGMSZIkFWQZkyRJKqhIGYuIiyLivojojIgFEfGSEjkkaUc4hkmqp1JbxhYBh2dmG7ACOK9QDknaEY5hkuqmSBnLzIWZua66eSswsUQOSdoRjmGS6qkVjhk7B7hua3dGxOyI6IiIjlWrVjUxliT1y1bHMMcvSf3RsJO+RsQNwL593DU3M39YzTMXWAfM39rzZOalwKVQO09PA6JK0hbqMYY5fknqj4aVscx8/bbuj4izgTcBJ+dgOvOspGHBMUxSsxT5OqSImAl8AnhdZv6xRAZJ2lGOYZLqqdQxY/OAccCiiLgrIi4plEOSdoRjmKS6KbJlLDNfWeJ1JakeHMMk1VMrfJpSkiRp2LKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBXUrzIWET+LiNM3m3ZpYyJJkiQNH/3dMnYg8ImI+FSvae0NyCNJkjSs9LeMPQWcDOzOM4hKAAAQpElEQVQTET+KiPENzCRJkjRs9LeMRWauy8y/Aa4G/hPYu3GxJEmShodR/Zzvkg1XMvPyiFgKfLAxkSRJkoaPfpWxzPzaZreXAOc0JJEkSdIw4qktJEmSCrKMSZIkFWQZkyRJKsgyJkmSVJBlTJIkqSDLmCRJUkGWMUmSpIIsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSqoSBmLiM9GRGdE3BURCyPi5SVySNKOcAyTVE+ltoxdlJltmTkV+DHwyUI5JGlHOIZJqpsiZSwz/9Dr5q5AlsghSTvCMUxSPY0q9cIR8XngXcBq4MRtzDcbmA1wwAEHNCecJG1Hf8Ywxy9J/RGZjfmDLiJuAPbt4665mfnDXvOdB4zNzE9t7znb29uzo6OjjikltbqIWJKZ7QVet65jmOOXNPz0d/xq2JaxzHx9P2e9ArgW2G4Zk6RmcQyT1CylPk35ql43ZwH3lcghSTvCMUxSPZU6ZuwLEXEI0AM8DLy/UA5J2hGOYZLqpkgZy8y/KPG6klQPjmGS6skz8EuSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFDbkydsnNXSzu6t5k2uKubi65uatQIknScOO6SANR6gz8DdM2cTxzrriTy09J2tYupXP0FOYsCuadNa10NEnSMOG6SAMx5MrYjMkTuPyU5OCfvoMe1nEwo7h85nzaJk8oHU2SNEy4LtJADLndlABta5cyhnWMoIcxrKdt7dLSkSRJw4zrIvXXkCxjnaOn8AKj6GEkLzCSztFTSkeSJA0zrovUX0OujC3u6ubdi4IVM+cz4uS5rJg5n3cvii0OpJQkqVFcF2kghtwxY50rVzPvrGnVfvlTaQPm7dVN58rVzHBfvSSpCVwXaSAiM0tn6Lf29vbs6OgoHUNSE0XEksxsL51jZzl+ScNPf8evIbebUpIkaTCxjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpoKJlLCI+GhEZERNK5pCkHeEYJqkeipWxiNgfOAX4dakMkrSjHMMk1UvJLWNfAT4OZMEMkrSjHMMk1UWRMhYRs4BHMvPufsw7OyI6IqJj1apVTUgnSdvW3zHM8UtSf4xq1BNHxA3Avn3cNRc4Hzi1P8+TmZcClwK0t7f7F6ikpqjHGOb4Jak/GlbGMvP1fU2PiCnAgcDdEQEwEbgjIo7KzN81Ko8kDYRjmKRmaVgZ25rMXArsveF2RDwEtGdmd7OzSNJAOYZJqjfPMyZJklRQ07eMbS4zJ5XOIEk7yjFM0s5yy5gkSVJBljFJkqSCLGOSJEkFWcYkSZIKsoxJkiQVZBmTJEkqyDImSZJUkGVMkiSpIMuYJElSQUOyjF1ycxeLuzb9mrjFXd1ccnNXoUSSpOHE9ZAGovjXITVC28TxzLniTi4/JWlbu5TO0VOYsyiYd9a00tEkScOA6yENxJAsYzMmT+DyU5KDf/oOeljHwYzi8pnzaZs8oXQ0SdIw4HpIAzEkd1MCtK1dyhjWMYIexrCetrVLS0eSJA0jrofUX0O2jHWOnsILjKKHkbzASDpHTykdSZI0jLgeUn8NyTK2uKubdy8KVsycz4iT57Ji5nzevSi2OJhSkqRGcD2kgRiSx4x1rlzNvLOmVfvmT6UNmLdXN50rVzPD/fWSpAZzPaSBiMwsnaHf2tvbs6Ojo3QMSU0UEUsys710jp3l+CUNP/0dv4bkbkpJkqTBwjImSZJUkGVMkiSpIMuYJElSQUOyjPmdYJKkklwPaSCG5Kkt/E4wSVJJroc0EEOyjPmdYJKkklwPaSCGZBm75OYunrnhal49Yh0joodRuY6f/ugHzPr3taWjSerloAm7cuNHTygdQ6q7Sedey9+M/CGHj/7Td1NuWA899IU3lo6nFjMky9jDTzzD/esOZc6YEUT2MIIePjrySj4y8koSiM3m3960VnlMq+Ro5ce0So5Wfkwzczyc+/CxdR/gjjyYvhwzeY8+p0tDwa09h9GTPRDQk+u5teew0pHUooZkGTtor125HxjJuj99QiG2XHFIaqyD4jGuGvNp3vrCp7YoZO/4b/vz+TPaCiWTGmvuGw/lPdefxUiAhJHA90deyL+edkfhZGpFRcpYRFwIvA9YVU06PzN/Uq/nX98DnztoKSNXQtjApKJGZHL0iOXcsf5PZezl48cO6iLW6DFMg9/6HhgxCsjaeiizdnt9T+lkakUlt4x9JTO/1Ignfv/rJvPblS/aeHsQff2mNOT0EFvsnnl09XPMXdA5qAsZDRzDNPi9/3WTWbcIRo7807SedbXp0uaG5G7KxV3dfGnZwXx3zChG5bra7smsHcPSKsft7MhjWiVHKz+mVXK08mNa5Zix+bf9BmCwFzKpT5POvZbpcSHfH3khI4Ae4G3rL+SOc6/1AH5toWQZmxMR7wI6gI9k5u/7mikiZgOzAQ444IB+PfGP7n6UO/Jg/uqFv+XoEcu5teewrR5ALKmc/+p6snSEnbHdMWxHxi8NHXfkwdz7hqtoW7uUZaOncIef6NdWRDZoH15E3ADs28ddc4FbgW5qfzx/FnhZZp6zvedsb2/Pjo6O7b72JTd30TZxPDN6nc9lcVc3nStXu4lYGmQiYklmthd43bqOYf0dvzQ0uB4S9H/8algZ66+ImAT8ODMP3968DmbS8FOqjPVXf8cwxy9p+Onv+FXkuykj4mW9bp4BLCuRQ5J2hGOYpHoqdczYFyNiKrVN/A8Bf10ohyTtCMcwSXVTpIxl5n8v8bqSVA+OYZLqqchuSkmSJNUUP4B/ICJiFfBwP2efQO3TToONuZtrMOYejJlhx3O/IjP3qneYZuvn+DUY/20HY2YYnLkHY2YYnLnrlblf49egKmMDEREdrfwJrK0xd3MNxtyDMTMM3tzNNBiX0WDMDIMz92DMDIMzd7Mzu5tSkiSpIMuYJElSQUO5jF1aOsAOMndzDcbcgzEzDN7czTQYl9FgzAyDM/dgzAyDM3dTMw/ZY8YkSZIGg6G8ZUySJKnlWcYkSZIKGpJlLCJmRsT9EfFgRJzbAnkeioilEXFXRHRU0/aIiEUR8UD186XV9IiI/1Nl74yI6b2e5+xq/gci4uwG5LwsIh6PiGW9ptUtZ0QcWS2HB6vHRgNzXxgRj1TL/K6IOL3XfedVGe6PiNN6Te/zfRMRB0bEbdXvc2VEjKlD5v0j4qaIWB4R90TEh6vpLb28t5G7pZd3q4qIkRFxZ0T8uLp9ckTcUS3D/4yIV5bOuLk+Mp9UZV4WEd+KiFJfs7dVMYAxuJVsJfdbq/97PRHRcqeL2ErmiyLivmrsWhARLymdc3Nbyf3ZKvNdEbEwIl7esACZOaQuwEigCzgIGAPcDby6cKaHgAmbTfsicG51/Vzg76vrpwPXAQEcDdxWTd8D+GX186XV9ZfWOefxwHRgWSNyArcDx1SPuQ54QwNzXwh8tI95X129J14EHFi9V0Zu630DfB84s7p+CfCBOmR+GTC9uj4OWFFla+nlvY3cLb28W/UC/G/gCuDH1e0VwGHV9b8BLi+dcVuZqf1B/xvg4Oq+zwDvLZ2xj8wP0c8xuJUuW8l9GHAI8HOgvXTGfmY+FRhVXf/7QbSsd+91/UPAJY16/aG4Zewo4MHM/GVmvgB8D3hz4Ux9eTPwrer6t4A/7zX921lzK/CSiHgZcBqwKDOfzMzfA4uAmfUMlJm3AE82Imd13+6Z+V9Ze2d/u9dzNSL31rwZ+F5mPp+ZvwIepPae6fN9U21NOgn4QfX43stgZzL/NjPvqK6vAZYD+9Hiy3sbubemJZZ3K4qIicAbgW/0mpzA7tX18cCjzc61LX1k3hN4PjNXVLcXAX9RItsO2Nr/tZaWmcsz8/7SOQYiMxdm5rrq5q3AxJJ5+isz/9Dr5q7U/n82xFAsY/tR+0ttg5Vse2XRDAksjIglETG7mrZPZv4Wais4YO9q+tbyl/q96pVzv+r65tMbaU61ifmyXrsgBpp7T+CpXgNJ3XNHxCRgGnAbg2h5b5YbBsnybiFfBT4O9PSa9j+An0TESuC/A18oEWwbNs/cDYzutbvsL4H9SwTbjoGMwa2kr9ytbnuZz6G2pb7V9Jk7Ij4fEb8B3gF8slEvPhTLWF/HxZQ+f8exmTkdeAPwwYg4fhvzbi1/q/1eA83Z7PwXA5OBqcBvgS9X01sqd0TsBlwN/M/N/grbYtat5GiV3INiebeKiHgT8HhmLtnsrv8FnJ6ZE4F/Bf6h6eG2oq/M1VbXM4GvRMTtwBpg3VaeoqSBjMGtZDDm3mrmiJhL7f0xv1S4begzd2bOzcz9qWWe06gXH4plbCWb/mU2kcKb+jPz0ern48ACartoHqt2JVH9fLyafWv5S/1e9cq5kk03TTc0f2Y+lpnrM7MH+Dq1Zb4jubup7RIctdn0nRYRo6kVmvmZ+W/V5JZf3n3lHgzLu8UcC8yKiIeo7aI9KSKuBY7IzA1bGq8EZhTK15e+Mn+n2hV+XGYeBdwCPFAyZF8GOAa3jK3kbmlbyxy1Dxe9CXhHVeJbSj+W9RU0cBf8UCxjvwBeVX0iawy1v9quKRUmInaNiHEbrlM7kHFZlWnDJ9/OBn5YXb8GeFfUHA2srjahXw+cGhEvrXYBnVpNa7S65KzuWxMRR1fHBb2r13PV3YZBtnIGtWW+IfeZEfGiiDgQeBW1A937fN9Ug8ZN1Ha/wKbLYGfyBfBNYHlm9t760dLLe2u5W315t5rMPC8zJ2bmJGq/+43UjmEaHxEHV7OdQu2YvJbQV+bMfGdE7A0QES8CPkHtQxctYwfG4Jawjdwta2uZI2ImtffGrMz8Y8mMfdlG7lf1mm0WcF/DQvT3SP/BdKH2ybMV1D6tNbdwloOofVLsbuCeDXmoHRvzM2p/Rf4M2KOaHsA/V9mX0uvTMtT2tT9YXd7TgKzfpbaLaS21LRfvrWdOoJ3aYNIFzKP6BogG5f6/Va5OaoPuy3rNP7fKcD+9PmG4tfdN9W94e/X7XAW8qA6Z/4za7rdO4K7qcnqrL+9t5G7p5d3KF+AE/vRpyjOq5Xg3tU/LHVQ6Xz8yX0StNN5Pbbd18XybZR3QGNwql23kPqMa554HHqP2x1fxvNvJ/CC1Y0Q3jBkN+1RinXNfXY2hncCPgP0alcGvQ5IkSSpoKO6mlCRJGjQsY5IkSQVZxiRJkgqyjEmSJBVkGZMkSSrIMiZJklSQZUySJKkgy5haVkS8tvri6bHVGZLviYjDS+eSpO2JiM9GxId73f58RHyoZCa1Lk/6qpYWEZ8DxgIvBlZm5v9fOJIkbVdETAL+LTOnR8QIamf6PyoznygaTC1p1PZnkYr6DLXvMXwO8K9KSYNCZj4UEU9ExDRgH+BOi5i2xjKmVrcHsBswmtoWsmfKxpGkfvsG8G5gX+CyslHUytxNqZYWEdcA3wMOpPbl03MKR5KkfomIMdS++H008KrMXF84klqUW8bUsiLiXcC6zLwiIkYCiyPipMy8sXQ2SdqezHwhIm4CnrKIaVvcMiZJUgNUB+7fAbw1Mx8onUety1NbSJJUZxHxauBB4GcWMW2PW8YkSZIKcsuYJElSQZYxSZKkgixjkiRJBVnGJEmSCrKMSZIkFfT/ADrQUrOnkXF5AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(expected_x,expected_y, 'x', label='Expected')\n",
-    "_ = xy_axes.plot(positions[:, 0, 0], positions[:, 0, 1], '.', label='Calculated')\n",
-    "_ = xy_axes.legend()\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(expected_x, expected_z, 'x')\n",
-    "_ = xz_axes.plot(positions[:, 0, 0], positions[:, 0, 2], '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = zy_axes.plot(expected_y, expected_z, 'x')\n",
-    "_ = zy_axes.plot(positions[:, 0, 1], positions[:, 0, 2], '.')\n",
-    "_ = zy_axes.set_xlabel('y')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/fluegg-tutorial-steady-ras.ipynb b/notebooks/fluegg-tutorial-steady-ras.ipynb
deleted file mode 100644
index 2002be8..0000000
--- a/notebooks/fluegg-tutorial-steady-ras.ipynb
+++ /dev/null
@@ -1,510 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# FluEgg Steady RAS Profile Tutorial "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1: Hydraulic Channel\n",
-    "\n",
-    "First, we will import hyraulic channel data. \n",
-    "\n",
-    "FluEgg includes a sample unsteady RAS project in the `test/data/ras/steadyflume` directory. Below, we use an instance of the `RASProject` class to show the current plan name and profiles within the plan."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Current plan name: case1\n",
-      "Profile names\n",
-      "----------\n",
-      " PF 1\n",
-      " PF 2\n"
-     ]
-    }
-   ],
-   "source": [
-    "from fluegg.ras import RASProject\n",
-    "\n",
-    "project_file_path = r'..\\test\\data\\ras\\steadyflume\\rectangular-flume.prj'\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    plan_name = rp.current_plan_name()\n",
-    "    project_profile_names = rp.profile_names()\n",
-    "\n",
-    "print(\"Current plan name: {}\".format(plan_name))\n",
-    "print(\"Profile names\\n----------\")\n",
-    "for pn in project_profile_names:\n",
-    "    print(\" {}\".format(pn))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "In the following cell, a plan name is selected (PF 1), and the necessary data to create a FluEgg hydraulic model is extracted. The `hydraulic_model_data` method returns a Pandas `DataFrame` for use in the initialization of a hydraulic model."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>1.835397</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136210</td>\n",
-       "      <td>5.0</td>\n",
-       "      <td>0.013188</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>1.835564</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136198</td>\n",
-       "      <td>15.0</td>\n",
-       "      <td>0.013187</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>1.835687</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136189</td>\n",
-       "      <td>20.0</td>\n",
-       "      <td>0.013186</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "    Depth_m      Q_cms  Vmag_mps  CumlDistance_km  Ustar_mps  Vvert_mps  \\\n",
-       "1  1.835397  24.999996  0.136210              5.0   0.013188          0   \n",
-       "2  1.835564  24.999996  0.136198             15.0   0.013187          0   \n",
-       "3  1.835687  24.999996  0.136189             20.0   0.013186          0   \n",
-       "\n",
-       "   Vlat_mps  Temp_C  \n",
-       "1         0      22  \n",
-       "2         0      22  \n",
-       "3         0      22  "
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "profile_name = project_profile_names[0]\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    hydraulic_data = rp.hydraulic_model_data(profile_name)\n",
-    "\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Finally, an instance of `RoughBottomSeriesOfHydraulicCells` is created to serve as the hydraulic model for the FluEgg simulation."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import RoughBottomSeriesOfHydraulicCells\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the DataFrame\n",
-    "hydraulic_model = RoughBottomSeriesOfHydraulicCells.from_data_frame(hydraulic_data)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2: Simulation Clock\n",
-    "\n",
-    "Next, we need to initialize a simulation clock that will keep track of time throughout the simulation. FluEgg uses discrete time-steps when transporting eggs. The simulation clock needs to know the total simulation time and the length of each discrete time step. Below, these are initialized as 1000 seconds and 1 second respectively.\n",
-    "\n",
-    "Alternatively, the total simulation time can be set to the hatching time of the carp eggs. This is seen in the commented out line below."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3: Carp Eggs\n",
-    "\n",
-    "Next, we need to initialize the carp eggs that will be transported through the hyrdaulic channel. There are 3 carp species supported by the FluEgg program: Bighead Carp, Silver Carp, and Grass Carp. We will use the Bighead Carp species throughout this tutorial. (As a side-note, FluEgg also supports non-egg particles!)\n",
-    "\n",
-    "To initialize the carp eggs, we use the `BigheadCarpEggs(initial_position, simulation_clock)` constructor. It takes in `initial_position`, a numpy array containing the starting positions for each individual egg. In this case, there are 10 eggs starting at (10, y-midpoint, z-midpoint). The y-midpoint is calculated based on the discharge, longitudinal water velocity, and depth of the hydraulic channel. The z-midpoint is calculated based on the depth. Take note of the coordinate system used (don't worry if it's confusing, it should become clearer in the simulation graphs you'll see below).\n",
-    "\n",
-    "$Width = \\frac{Area_{yz}}{Depth} = \\frac{Discharge / Longitudinal Velocity}{Depth} = \\frac{Q / V_{mag}}{Depth}$ \n",
-    "\n",
-    "$y_{mid} = \\frac{Width}{2}, z_{mid} = \\frac{-Depth}{2}$\n",
-    "\n",
-    "The constructor also takes in `simulation_clock` which was initialized earlier. The carp eggs need the simulation clock to keep track of their changing densities and diameters over time."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Initial Egg XYZ-Positions: \n",
-      " [[10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]\n",
-      " [10.         49.99999429 -0.9176985 ]]\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "print(\"Initial Egg XYZ-Positions: \\n\", initial_position)\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4: Transporter\n",
-    "\n",
-    "Next, we need to initialize a transporter. The transporter in FluEgg is used to physcially move the eggs during each time step. The `init_transporter(simulation_clock, carp_eggs, hydraulic_model, vertical_turbulence)` method is used to initialize this transporter. It takes in the previously initialized simulation clock, carp eggs, hydraulic_model, and the additional parameter of the vertical turbulence profile. This tutorial uses a parabolic vertical turbulence profile, for instance, but FluEgg also supports constant and parabolic-constant profiles."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import init_transporter\n",
-    "\n",
-    "transport_model = init_transporter(simulation_clock, carp_eggs, 'parabolic')\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5: Simulation\n",
-    "\n",
-    "Finally, we can run the simulation! In order to run the simulation, we create a simulation from the following constructor that takes in all of the previously initialized FluEgg objects: `Simulation(hydraulic_model, carp_eggs, transport_model, simulation_clock)`. To run the simulation, we simply call `fluegg_simulation.run()` on this initialized simulation. This function runs through each time step in the clock and transports the eggs through the hyraulic channel based on the transport model. We store the simulation results produced in `simulation_results`.\n",
-    "\n",
-    "We can double-check that the simulation ran by checking the current time step from the simulation_clock. Did the simulation make it to the final time step (1000 seconds)? You can also verify the simulation ran by trying to run the code below a second time. It should output an index error at index 1001. Why would this error occur?"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Current Simulation Time:  1000.0  seconds\n"
-     ]
-    }
-   ],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "print(\"Current Simulation Time: \", simulation_clock.current_time(), \" seconds\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6: Data Analysis\n",
-    "\n",
-    "Now that we have run the FluEgg simulation, we can retrieve all sorts of data stored in the simulation. We will visualize some of the data below using the matplotlib library. The most interesting data to look at is the egg positions over time. Below, we can see how the eggs move longitudinally (x), laterally (y), and vertically (z) through the channel over time. We additionally plot the xyz-positions against eachother throughout the simulation to see the egg paths throughout the simulation.\n",
-    "\n",
-    "We retrieve these positions by using the `simulation_results.get_results()` function which returns the positions of the carp eggs over time."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl0HPd94Pn5VVVX32gABE/wACmSokRJliVKtETHOiLbsWTLjmPFjuMzh5NMZvfN252dyc78kbyZt/OSebMbz05mJj42UXzIjjWRLcuJkpEiWaZlyQqpm6J4gwRBiCSuBtBXXb/9o1GN6u7qRncDJADy99EjCXRXVVeDBz76nkJKiUKhUCgUCoVieaMt9Q0oFAqFQqFQKOZHSZtCoVAoFArFCkBJm0KhUCgUCsUKQEmbQqFQKBQKxQpASZtCoVAoFArFCkBJm0KhUCgUCsUKQEmbQqFQKBQKxQpASZtCoVAoFArFCkBJm0KhUCgUCsUKwFjqG7gU9PX1yYGBgaW+DYVCoVAoFIp5OXjw4KiUcvV8x12R0jYwMMCBAweW+jYUCoVCoVAo5kUIcbqV41R6VKFQKBQKhWIFoKRNoVAoFAqFYgVwRaZHFQqFQqFQKNrl3NHDvPT433Bh8CSubRNLpbj1/ge56b4PLfWtAUraFAqFQqFQXGW8/vSTHPy7H1Kcmak85joOpdx01XH57ARPfe2/AiwLcVPSplAoFAqF4orHj6KdPXyoTs7m4+jPf6akTaFQKBQKheJS8vrTT/Li9x9levRCx9fYuffORbyjzlHSplAoFAqF4orCj6qNHDtCPjvR0TWiqTTJTLeqaVMoFAqFQqFYbNqNqpnxBIYZrXyuRyKs3bqN2x78FTbsvO5S3WbHKGlTKBQKhUKxYvGbCqbHxrCL+ZbO6Vq9hr0fe2jZRNBaRUmbQqFQKBSKFcfrTz/J8997pOX0Z6K7hw07rl22UbRWUNKmUCgUCoViRdBJVK3/ut2879NfWLGiFkRJm0KhUCgUimVJcJ6aXSq1LGqxVJqN1+1e0VG1MJS0KRQKhUKhWDZ0Ok/NjCdI9a5aVt2ei42SNoVCoVAoFEvKQkZ0JLt7uPOhT1+xohZESZtCoVAoFIol4dzRw/zk2w8z/Pahts67GqJqYShpUygUCoVCcdnoJKrmz1O7lAvcX73wKn/55l/y9vjbWK4FQFe0i89c9xkeuvahRX+9TlDSplAoFAqF4pLTyTqpTuapPXrkUb51+FtMlaYwdZP1yfVs697Gg9c8yM1rbq7I2fjxcdaNrkN3dSQSKSVRoryLd1WuZes23xj6BsCyEDchpVzqe1h09uzZIw8cOLDUt6FQKBQKxVWBHz27MHgS17bRIxGiySSlXA7Xttvq/Gx1nlpQznwKToGckws9vrfYy3XZ60iVUkTcCCZmy+8vuy3Llz/35ZaPbxchxEEp5Z75jlORNoVCoVAoFC0THMMB4DpOaJfn9Gh71200T61dORuYGmB7djsIGImPkHJS9BZ7iXvxumMFYt77kkj68/3tvZlLxGWXNiHEXwAfBi5IKW+YfeyPgN8GLs4e9m+klH83+9z/Cfwm4AL/q5TyHy73PSsUCoVCcbVRGz0D2oqYtUKjqJovaudz56vkrLfYy47sDrpL3WhSq7ue7ulVEbQuu6vq+VpJk8yfbRQI7tlzT8vv6VKyFJG2h4E/A75R8/ifSin/U/ABIcT1wKeA3cAG4GkhxE4ppXs5blShUCgUiquBVqNni0Ht4NtHjzzK7731B0y9Uo6kBaNovcVebsjeQHepG8MziMpos0tX8OVMIucVNVvYeJqHQKBrOslIkogWASAej7N371727Jk3c3lZuOzSJqX8iRBioMXDPwp8V0pZAk4JIY4DtwMvXKLbUygUCoXiqqCTlVCtEE2lMWPxSk3btBEjn8wgdZ1INIaMxXjDK/LcD77GpDHJieQJxmPjQGuS1kpKs/bYoKhJJFKXdHd1c9e+u5aNkLXCcqpp++dCiM8BB4D/XUo5AfQDLwaOOTv7WB1CiC8BXwLYvHnzJb5VhUKhUChWFu2uhLK6+7B61iC1elUQnotZnEFG4ziGiRQammFgRqPISATHMPBiMS6MXcC155JjrmNTnCmnWtOz/22c2oglyiM2WpU0X8JaFbhEPEE0GmXdunXs27ePTZs2tXTecmO5SNt/B/49IGd//b+B34DQ343QBLSU8qvAV6HcPXppblOhUCgUipXF608/yfPfe6TpTDQ3nqTUuxY3lgA00DTQ9YbHS2FSilUX9rtAoVRClop1x88nV0FZa0XEBIJ4PI4eco9+ShPg8OHDXHfddSsqmtaMZSFtUsrz/sdCiK8BP5r99CwQ1OGNwLnLeGsKhUKhUKwowiJqbjxJqX/bnJQFEQKMBjogWk9FVk5pEhkLO67R8bWPx+PxtqNlV4qs+SwLaRNCrJdSjsx++svAm7Mf/xB4RAjx/1BuRNgBvLQEt6hQKBQKxbIibDaa57nkxsfKqc3e9eXUZjMpC9KGoAWlqpUOTAAbG0dz0KRGVEarzqsVND+SdiWkNBeTpRj58R3gbqBPCHEW+EPgbiHEzZRTn4PA7wBIKQ8JIb4HvAU4wO+rzlGFQqFQXI0EI2jB7s6KoAkd4TnIVf2gR+ov0GbUzJcqv7vSf0xzNUzMyvMSiSUsPOFVzvWEh63ZRLwIruYy1D3EWN9Y5fl1zjre472HLqeLyclJXLf8rd0wDCVpTVAbERQKhUKhWALOHT3M0KE32LT7RkbPDFaN3KiltnGg0iRgmI1rzzpIbXqUZcvFxdZtjncdZ7BrsO64gakBBqYHKBpFjmaOVro/fTJmhnXJdUT0CB/f/vFlsQJqOaM2IigUCoVCsQDChsvGUimuufV2xs8Nk5sY58Z739/SXsxO56CFdnCGNQmECZr0I2FU2vokEkdzqqJiAC4uk9HJUAELY7BrsE7mkkaStcm1y2rB+kLIZl9mYuLn9PTsJZO5ZalvB1DSplAoFAoFUJa0Q889w9jZM0yMnAvttsxnJxgfHqp8/s6Jo7zwN99FaHpF7GppdYtAnaDN08FZJWoyOIeMsqSJuToyT3hko9mWpaxVMmaGVfFVV5SoDZ7+KtnsK9j2GCARwuTWW769LMRNSZtCoVAoripqo17Q/gYAf0SGF40x40kEElEq4sUSoXPN5qWZoDVKc0pZJWiWsMgb+UodWaPUZrtkzExlQwCAqZvs6t3FF2/4IjevuXnB119Khoe/w5mhh3HsSTzPxnGzdcdIaTEy8n0lbQqFQqFQXCr8mrF4Os3JVw5yYfBkeQxGG9P/6+aXQWg3pgSIJRd+0y2mOZn92MamECksmqBBOc2ZiWauGDEL4kfSpqffwrEncb3wpfPLFSVtCoVCoVjx1NaftRs5C60dm29URq1gSdlR8X/VJcLGZwTSnD7NmgSCJI0kcSPe9BifrmjXFZPmDFKd8hzt4Ao669f/8qLfVycoaVMoFArFiqPR+ItWaGv6/3wSFpzAIET1502u1Wy2WVDQ2pGzTDRD2kwzbU0TM2JXpIC1SjDtaXUkamBG+shk3s2WLV9aFqlRUNKmUCgUistAWB1Zp7QjaXWCtoDp/2GiJYVEi2jg9yAIgWmamKZJwS5QcAp4zHVqSikbClurggZzdWZXanSsXRaa9tT1FLoWQ9OipNPXLytRC6KkTaFQKBSLSm2qstXuycWiImrxJBhm+EEtpDGDclU7QLa2G3NgaoD+XD/DyWEm+iZwPIecszj1Un2xPm5afRPv7X8vWSvLnrV7rqg6s07xo2lW6WJoA8F8GHqGaHQ1mzZ9gf7+Xys/eOBh+Ml/g+Ls5/Fu2Pt7sOcLi3bfC0FJm0KhUCgWjB9Jy01OtpWqXAyqomlCr4+ktSFotrBxhVv5vNVRGVVzy6yO3kZVl+aV1KG5mPgRtYmJl3A7ELWqlOeUA89/GV74D+D+EVg5sMp/dmecDzLtfAQhBKmRH5KCZSFuStoUCoVC0RG+qE2PjV3WSBoENwJEQJ/9VtZBE4ClWTg4baUmF4sruUtzMVlII4FhdJNK7iCZ3MH69b9cTnkeeBj+4vOQPUPJ28WU8xlsbytQFmaPKJQ1DSRMOv8cnn+K1DLYPa+kTaFQKBShBNOcANFkklIut6CUpxlPYJjRts6xIlFyqW4cw0QKgaTFBeg1xONxdF2n6BUZ0UZ4M/1m24Nmg92YtmeTteaP9tR2cKo6tOa0MjutGQ3Tnt/8XZg6B9Y0JW8Xk/Z/wJY3AI1k339cUvD2+Rq3pChpUygUiquMVpoCwor9pztowoum0ui6QSyV4tb7H2xp5ZPPgQMH2L9/P9ls+2kwn1QqxcaNG1lz/RoeH32cg+cPtiRaPr5wNRKtVy+8yhMnnmC0MEq2lGUkN4LllvOjSs7mJyhoAK5b6KiJIGJkqhsIhl6C/V+G0T+F0jRMnwPKac8p5xN4rGVOyhpJ21xNY/zOd7X5zi4NStoUCoVihfL600/yxjNP4Tg2pVz5G10wGhbGpW4KMOMJoskUa7du47YHf4UNO69r+dyhoSGef/55RkZGKBQKWFb7xWHxeJxoNMq6devYt28fL+Zf5OtvfJ1zr5xr6fx2uzJvXnOzSmu2QVDSOhG0ILFoPwMDvzcXTRt6CZ78TzB0AHLnK8eVU6BfoORdD2QCVwjKWm1Hb3nNhJaO0HXfFlJ713d8n4uJkjaFQqFYxjSKijWSr06iYQvFjCdI9a5qO5IW5KmnnuL5559v+7xaSdu0aROvXniVv3zzL/mzn/5ZS1G1jJnh1rW3qrqyRcJftO44U1wcfWZBUbRaQmenDb0ET/8hnP5Z5biyqH0c29taE1WDelkrC5qI6wij/JwWj5Da179sZM1HSZtCoVAsMbUjMnzaHRp7KUl095DIdFdF8TpJefp0GlXzJS3eE+dI5ggvOC9U0pFf+dlXWq4zg/IojX928z9T6csFEpyR5jozOO4U9ZGr9pl3dlqNrPmiZnk7kfTSXNT8xwTmQBeZD20luqVrwfd8qVHSplAoFJeR2sjZUorZfE0BeiTSUZqzEb6onTxzEivfeuozEo2QS+U4kjnCeLTcODBaHIUOS902JDfwWzf+lpK1DggKmvRKHTUKhOELGkAk0l3dROAz9BI8+WkYeQOsGSiMz4rav2lB1KAqqpbQiQ5kSN+1aUXImo+SNoVCobgEhKU1L+eQWb8BIIyFRMha5dEjj/Ktw99iqjRFV76LgQsDdBe6q44RNd9U/dloEomjOViGxZmeMxxOHPYPgGJn96NSoNXUNgAAaFoUw+jCdqaQXqnunMUSNJiTtDBBK52eIvfSeS6cfxXpSKKJM2jn9hO19mN7W5h2/hWSFBIDSRfNRY2q5/TuKOl7Ni27tGerKGlTKBSKReJSzi0Lk7BYKsU1t95ONJFk0+4bARg69Aabdt+4KJGxZvh1Y2+Pv11JT1budTrKxvGN7CjtwPAMonIumtdI1HwmI5O82vdq26M4GnElRtXChAvmly6fprVlpeHFvFUAdJEBWwPXQ3eS9L7zS/RcuLfqmHO8AIB0JTLvzj46O/CYHuBB4MOAFvIKzefzGesSRLd0kbhlLW/i8uLJMd5zeoLrxgfJ/uBxSidOYJ87hwxJ0euZDL2f+yw9n/xke2/6EqGkTaFQKBbI608/yfPfe4R8dmLB1wrKWSfpycWQtVcvvMqB8weYKk3x3NnnmCpNYepmZRl5zs7V1Y0NTA2wPbudqButkjSfoKyFrYcqGaWOh9sGNwnAytwm0EjEapm3mP8SSFc76KQRpSiRUh8xexNdw3cSe2dr3XEeTpOrzKUxqz/3hS1M0srHyNmPJvE4onv8bQLOk2PqyCS3P/YtPvD2j7nJKmB5LoP2/P9j5YyOMvKHfwSwLMRNSZtCoVB0wEKjasF6ssWuHWuH2ohZ00L+GlfwRS3mxDCp3vFZG1GD6vRnUSsyEZuYdz1ULRkzQzKSZH1yPdu6t/HgNQ+uGDELspijLy47s2akOSmE1BFehFh+C71n7id+8ZpFeIGw7s7g47LqWf/XcVwO4fEIFhsHf8rHTuznc65NzojRl8+Scer/nrayQ0MCRx99gr1K2hQKhWJlEOzwLM7MtCxqtcX+l6OeLIywdGY7nZYAvcVedmR30F3qJuJG5hW12tSnRJKNZzm7/iyiWzBtTaO5Gn30NX3dpYqc+UX3+fwpNBEJTTu2mpIMsmwkTYLmJdD0GJ5j4+nTlcd1LY0eieLZHtJyK6Im3Aixmc30Dt5PPLt9YS/ewbH+R9N4lCiveT2Ox4mRg9z21o/YbBX4Q8ci5Yb/Xsw/Rjecn66/kb1t3PGlQkmbQqFQNOHc0cP85NsPM/z2oZbPWYy5ZYuBL2qvX3y93G3ZIb6sbchvqBOzRmlP/7mwOWpLSatpyLaK7pcoJRnsuIR6gawSrtpzrSQ9Zz5A9/DdlccKmePke98mMb6rLGQ64NafuxBEFISdBS98+DOAwEYXFzG0swhyzLi3cJFebNKUEDyKxRPYfHDwBT52Yj878lneHSJpjZKoYUhgKpLA0XSeuuO9/O377mUmniRZLLL6yDCf/9AHOnq/i42SNoVCoQgQjKhZhUJb4ziS3T3c+dCnl0zUgtG0sLqzdhmYGuDayWtJusnKY2Fpz+BzpmmSSCSWTNKaSdmyiXA1oVbEwgh2XM78fITpnw4jizbC0BBRA6/o4BUcKHkNrxFMOkpkWbCz2yvRMwkVYasfnDF/lGwayYQuiHkST0rG9WnW6d/iRvH3CLPRdas/8RD8W/s3+C6rK4KWsgr8KvDZkGha0+sFKESilHQTWzN4addNPHHX+zndvwHbiOBpgKFXjs1m4Ny69bgbE/O+58uBkjaFQnHVsZjDbJc6quaP1hgrjC1Y0vyC/t5SL9ecu4Z4Md5U0nxM0ySTybB371727NmzoHvoBF/USsWRZS9ltTQbfRFG6fQUU88NYf94hrOF56Hk1ciJ1VKdVvWQjPpoabMIKsylJ+sfpxIJ+5T8R75oPEkfWW7VcuUrShCzl5YhVjUl42RlkuOjGxg7nOQD2Rf5uPVMS+nOsEVUWnc3xrp1eFNTaPF4pRP0m8Oj/L+nzzNUahzxC/K3F7N8tr95Gv9yoKRNoVBc0dQK2mIMs42m0iQz3UsiasH5ZwWnQM5pX1KC3ZbBerFVpVU8/fTTnD59et5rxONxUqnUZRG12uhZMA3o2JOXVdQMPYMW6FTtpKYNGg+QrUjZuRlwqyNl0pV4eZdaPWkm1q1ExaqPL8tO7Xm+pAWlrJZbxFG+pP+IfykG+SMK9GrVvy8icJu+sE3JOAVpkh1LcvLwGqKTNnGnxFp7lHVUp/Qb94zOPS9SKbRYLHRUxzeHR/na2YuMPPca0157X5cHVmfmP+gyoKRNoVBcMVwKQQvSf91u3vfpL1zWDs9gyjNbynYkaVBe2XTT6ptCi/kPHDjAs99+lmx2/kjdrl27FpT2bLSXshENU5oLrCNrJQ3pr09ateoubHuSnp691WuUOsCXsslTWcaKNhfljyvPGUAGjbAuySDzNXzUEhYVs4ALs+dlKC+XGMTj77HZhsZDREgjmkoazInau8Qx1mrZOrESNQ/4siaBP3c+zGsntvLJo8+wNj/BFi7UvM+ac0Me+9G+e/mbX/wQ08kutESMeDJJl6FhS4gIsH9+mIiAc0WbCbdxujiMtKaxPhbhtzeuXhZRNlgCaRNC/AXlCXkXpJQ3zD7WC/w1MAAMAr8qpZwQQgjgPwP3A3ngC1LKly/3PSsUiuWLL2ojx44sypw0H39e2uUex1Hb5dlpA4E/GqNZ1+WBAwd49tlnyeWai2A8HmfLli1NZa12vVEY5eL+xdlLOR+NpKzVNGQ7lE5PUTqZRUsYjLxynsLZaXA8ahOXBtCFhgBiQKxqFtkcIuSjWsIiYdPADJIUYLYgXADpqE7ULNdw2a5HNu9yCLfunOBxH3Of4te8H9FDlm5m5l0cVfW5gFdHd3D68Greff5t7nbK39IPbd3Bazuv5+ajb7H71DEObd3BP+z9BQB2DA3y893v4sTGLVimWXmRYiRGPharNsOSTWjetgV6dA3hSiIzDnectNh71iGajPCuX+yC/s6uudgsRaTtYeDPgG8EHvsD4B+llH8shPiD2c//NfAhYMfsj73Af5/9VaFQXMUspqjVbhpYypEcXz74ZQ5eONjR+UkjSSaaaWk0RquyBrBv3z7e//731z1evyR8cdYbLQRdTxGLrlt0KYPqtKVVcrFdD09KLBcynl8H5suY/1m4dLVSJzhf9EwCWTwmmF/Mgvjy1R03+Y19W/n03s1Vzx88PcGfP3eCUxdnuFEe5aHS33Cjfoa0MRulsnLgtRa9/ua6D/O1jZ9g0kjjeRrSFUgPcCUEFiLYusF0Oj37xjwShSL5eLw+TAeAaF7INh+y+qSE5TEw7vG+UxYbLtjYgeaNPJCftvnxt48AsPsXlt7cLru0SSl/IoQYqHn4o8Ddsx//FfBjytL2UeAbUkoJvCiE6BZCrJdSjlyeu1UoFMuFxRC1pYqeNWIhIzmSRpK4Eacr2sVnrvtMS2ua2pG1LVu2cN9991VF1nxRy2ZfwbY7HyHSKX70rLaOzI+e9TkPUDqZJeqE1x/5ETGvYFM6mUXvMold24uXd9ASBoUj43W1ZJYjKZVcEoEaKH32B4DfUygQlS7MVmhVymr3BvhzyX4QcTgVK79W1DC4PZOiO2EymbcYnixQqkkFNpK0Wm7VjvE188vgHYDc+fKDNhzo2s1/3fhJ3kztoCQiTa8BYOtRJoz0vMdVIcpbD/KJROBzyjnVUIFjtgCv5mspxNw5Id0OpuXRVZTsPVrilpNzYblm2nvilQtXp7Q1YK0vYlLKESHEmtnH+4GhwHFnZx+rkzYhxJeALwFs3tz8D6VCoVg5vP70k7z4/UeZHr0w/8EBlpug+Syk2zNjZlgVX9WWpL344osUi0Usy8IK2a0YpDYNOjz8HV54ca4BwLoEojZfbZlne+ilBOvTn2Zt5EEKb44SWZ/EHi1UCZZ0JRfzr1XOE3EdYQQ6IKt2WpaxgeJb9dsYZOBnnWoxa4b/fCvF/76U1Y5BK1GWskewOIRLd9zAMOb2bZblazuPziNfAAy9BIP7YeAXYNPt5c+/+wcwehwMEwpZJt60GH8TXIuy4EjJmwM7+c49/xvHdg9gGWY5EpZqU8B8GslWO8c3azedxbQ8NCkpRvVA4ZwECT0zLp4GEZc6UWuVa969Zv6DLgPLRdoa0fJsPCnlV4GvAuzZs+fSF0woFIpLSif7PBPdPWzYce2yETQfP6J28PzBtkStL9bHlq4tba1rGhoa4vnnn2dwcJBisVj1XDp9kf6Nb5JKjSNEWRccJ8rY2M1cu/NaIubP0bVXOH/hB5w4eRS3w5RnbYdlED9KpmkmGzY8VEljlk5PkXv5PAKIbEhRODJO6VQWCnNaM8nx8rHHmjcvAMiC21LmLNgt6UtX8Of64zsXMiiL4qAuebpL4667t4WmJw+9fJbfGv0hH5x5jIQ7U/X8xCEY/2s4GuLfQtd4a8dOvvWeBxjt6uaBnz/Dgy/8I/DndVGnH97xizz6C/cz/UAKHgjcXzBVWfcCbQoYNBWt9q8FsZKHHrhm3K4WsbOrDAbXGCRKknxUMHDBYeNYsz2n4USiOhFTm61p27QsomwAQi7mF7TVFy2nR38UaEQ4Atw9G2VbD/xYSnmtEOIrsx9/p/a4Ztffs2ePPHDgwCV9DwqFYvHpZJ/nchU16LxO7dY1t/Ivbv0XbUnayMgIlmVRKBQqz61de5T+jYfR9RJCeJhmfQKok+/DtRh6BsNIkU5fz5YtX2q5w9KvE7POTCFn2v/GuhAapTLbTVtawIRW/jqmPHjHgEP9cR740E5u3dJTf4Ghl+D5L8PIG7PhrRCsHPlzRbKnEpSyOnZe5/Hb7ytLVjzV9P7GM91Vv6nxYpGoZeHqJlLogMAyBJapN74INP6D0a4zhIhWGIYHMQuKJjha+fNMvrw7Kx/VWDXtcefbxYYCFk2U308p39oKh2hCR9e1+seXSNKEEAellPPOzlkukbYfAp8H/nj218cDj/9zIcR3KTcgZFU9m0Kx8qkdzaFHInieS258rKXzl7OodZr+bDaSoxZf1IaGhsjlcqxde5RrtpflzEfTHCKR+m9giyFpAGakj0zm3R1Jmn1uBmm5denKxaB+S2WzY+uPaVZLdlqTPB5zGYxqdEUNTEPjk7dtro6WDb3Erzz/ZXgsRMpcCwrjTByPM34kiWvVSwOA9OJ4dlnOnth3Lw8/8AnGu0MEsBGBdGIhFqMQa5B+nu8PQ5ho+RLmyabb1g0P1k241aIlKj/Nix/pCqJHdMz+KFbBwbU99IhG36Y0t3xwC+u2lesY3zmZZfjoBP07y1+v4aMTxJIRTh8aY/KdPN1rE1XHrzQ6jrQJIa6XUr5V89jdUgaGzoSf9x3KTQd9wHngD4EfAN8DNgNngIeklOOzIz/+DPglyo0cX5RSzhtCU5E2hWJ50ml9GkAslWbjdbuXpah1kv5s1O2Zzb7MyMj3mckdw7YnKovKS6UZLMsGKfHkXJF5IznzWQxJ0/UUESNDLLaBZHIH69f/ckuiFlyxFFZTtlCCdWuWI5m0XMZcpzLyohaL8kgMB3gZl80INqFhAxFgCFmpJYNyp2VXwuR3kj/hE/YTdalKAIwoxLqgkAVrhneyqxm2dhMT01x0tnJ+egvTzmqkmI2RyDmd1DwHwyngGHE8zeDM6ig/vb6bkV4TVw+JiLXzm9mseD94TNPn56JkhgfrJmejXaN2S3VmCEksrqEZc6ly1/XqomHBqNdyS0deLlqNtC1E2t4Evgn8R8odzv8R2COlvKOjCy4iStoUiuVDJynPIEu9zzOMhez4fL+4hjuSUyTi42iai6ZpmKaJoWtYdgEpOxue266cGXoGKZ2m2wRi0X4GBn6vrfEZfjStth6tU/TuKOZAGms4hxAQ2ZDEyznEb+jjyLoYf/7cCV45M8HoTPMmi/nYLgzeXdDptSCGS0qUMHBAek3FRBc2pshhySSWF6dEV8Mg38u1tghoAAAgAElEQVTbovx8Z4xCSLmfq0Ex1iBl2YogdYhpeUTcmnlyQUGbtx5MYjh5DM8iYoKX6kUzzboIWJB3TmZ5+8Vy0mzXe9av2KjXYnI50qN7gT8BfgakgW8D+xZwPYVCsUJ5/ekneeOZp3Acm1IuV9nnaZdKHYnaUu/zDKOVtOfA1ADbs9uJeHPflTPpMQb6j9CVzGLoDpHIG3XnuW75h89i1HsHrxEclVFbd+aviBJAX9+9OE45mtRqNA3mImpezuo4mqalIhh95TSem3OIrI6TvmsT0S1dlWMe+fkZ/uKnJyk4HsZzo5web+/Plj+9P1XaxMn8vVheAhBIdCwZTCEaWBi0pIFy7teXt0U5vMnkurM2t5woghBlUdsRZSrO/HVkEP6bH/jNDZOsyl3P1oGtnnKJWpKjGyIUzPrLCwRxG+4cLA+QbXIzkJ77s+ynI7vXJhg+OkEyE+0o1bhuW0aJWocsRNpsoADEKUfaTkkp29sRoVAoVhR+1Kw4M5cm6lTMfKKpNGYsTjSZxDAi3Hjv+5dc1B498iiPHXiM3pFeUsUUeOX6p2u5tuE5uqdjMvcdcu3aY2ze/AaxWP3XplUpayewIkT9+IxWpv/39/8afc4DTD03hHfAInnbOlJ719cd12gnpmd5UGr/n34R19FiOpH1qTo58we8vvWdf6rMGytYLrlSYyH0hWyrGMGWBmmRI67bCASGphHTXE5kb+elyd+hIFc1uquW7t0XsYI5V0CfTVAeNwGcXBfhqZtigKwXtVZ+80N+41MFj7sOFbnlZCm03gvKUmXGDfSIzvX7NgDw2j8O4Vhu08iXYuWwkPToa5QbBv49sAr4CmBLKT+xeLfXGSo9qlC0R5iM1bJQOQuyVPVpwU5LNxDasj2bnJ3D9Vwc4eBKl7Tb/lyqdPoiGzceIpM5TyQy16k5T/CkIVJCoZBG09zKiA4hNIQQVWnVoJwF68haIbTWLKqhBaRgwfVos9cThlYtaQceZubFv2B42mPETjAqMzzO+9hf2NbSZT+l/SNf1J+kjyw9Wm5OuQS8Y13LKzMfZdTZiisj2DKKTTJw9vzdkWdXGTy/K8b5bh1n9sthG/NEzMIGuoZtSm+GhLjtYXhURcSu1nqvq4HLUdO2p7YpQAjxWSnlNzu64CKipE2hCMdPY+pmBCQUpqcoFfItd20uhKVKedZ2WgaZb7xDK9Pt/bEahlGoG6nR7Hu1lOA4Jp5X/Rqep+PYXZSsXqay1+N5WykUCpimyd69e9mzZ+7f9droV6dRr8WhbsskujZGOv53pOL7yVkOecupHBWjRJpC3WkeMClT2LKxGFlE0KRHvx4YjDu73egd61p+NvXrjDi7qYhZ8DWEKMvYtdEqGQsiKNeYFRrVmM1eJ5SwBoCax9KaRlwXeK7EdTx0Q0PTBVFN44Z0nN/fvJY9mSSKq4dLXtMW1sW5HIRNoVBUs9BGgE4I7vO8HLs8X73wKk+ceILRwijZUpaR3Ai9o71sHt1MzKkedxAUsU53QDaKqEFjUStLWhQpTZKJXdx8879iamp1VeQvHo/XiVktl3a2mT9qttnzzcihMU1EO0XaeIyo9ja4IKfLWwUSIWfU+o0moVfMhN7G5InyqAzP1dAicNxezRubruUvfumLHN+wCUfXq+8w5BquaFLwH0Yn88r85/xzhSCtaayPRfjtjav5bH9f66+vUARYLnPaFArFIhGcgVacmbkkombGExhmtPJ5LJXimltvJ5pIsmn3jZc05ek3BEyVpoByajNrZStNAGu8Naz31lfVl9XKWStT7YPHOppDV9coWzceJZ0cwzSrv6YN1yIKMIxuerpvC51nlsnApz71qaav3/lss047Dec7bwqBXfUV1USOlP5DUsY/hJ/SxANrA1OFsQj5C1FcC2aGY5VZZm9s2skj9z7IiQcHAIiVbMa6+5hORkOu2gLtjs8IIVHM01UokvYccokUiVSCd/X18MZMgUm7LNTdEUOJmmLRUNKmUFwBLMYydaiXsVouR9SslqCkFZwCOWcuxemLWsyJVUmaT1DWgqImkVjCwhMhqUQNTNOkO9rNQL/Hxo2HsOy3216Q3sm4DAhJeU63Ek0Lk4ocgmLI42X8r0w5tmZjaqcwxDAF9zY86qfu6w3ErDaaGEZhNEL2VAKnJHBLGnZeR7rV0vTmwE4euecjHL9+K5ZRPROj6Wol6HwYXSvlQaJ8/R5dI6KVX0eJmGKpUNKmUKxAgo0DruNQyk13fK3MuvXEk+kl79r0U5wnJk8wkhvBcq06Sest9nJD9ga6S91E3EidqDWLqEkkRa3IRGyCo5mjjMfK9VDBIbef2rARffoFpGdRsi5i26PkWgxU+gNo213l5DPz8xGmnj2DN9nqvDFZ8/E0AhuNOblqZbZq7Qiw7shfNTx28kScE0f6cC0NoUOsx6Zn1wxjk13MHI2iWV7VfT1xx7385Kb38L6zL/GRk89waOsOvvPAhzmxcaBKzOaVMp9mb6ij+mxJj2FUZKwWVWOmWG4sye7RS41qRFBcifjRtLOHD3UkaX4jwDW33k4pXzaR3Xfdu6TbBYJRtNFiOZIVNusMQJMaUVkfBWwUTfOxNIupxBRnV51lKjFVebwr2sVnrvsMd6Yczgw9TKk40nTQbCM6jajB7Hyzpw/hTjtUV3yFSUR9ob9gAlM7Qlp/jJj+dv0ZHfzzfqBrN/910yd5I76DomciPQEITMcmmcuTSyTqImFhFM0o+cTce4oWi5QarVPy6XAcRvlxiJdcdE8i8DDcEqKysl1HS8TQ4vHyvSgZUywzLnn36HJGSZviSmGhac9oKk0y071kHZt+gX3BLjDDDJPmJFEvysX0RU6lT5FzcgxMDTAwPYAmNeJOPFTMgsxXnyZ0QTQapSvZ1bCo3x8o27aolfdXY9qQyQu2jEXJeD3lFUb+nkkjCpmNEO9hauIC9tgZhFvCleU79bztuM4DSO9aynPJq99d9YtVv7hgGo18daG//2yDf8q/tu6XeXjjLzNlzMmJROBg4KERodxIUSSKI3SsJunxjqgdgbEIq5WSBY9USVKcDbRuzMHvbOjjV983sKBbVSiWipW2MF6hUFDdRGAVCh1F1C73MvWv/O1XOPn6SYRT/mYspMD06uvLYsRYV1oHQE+uh63vbEUi561Fmw+BwDRNMplMnaQND3+HF178tzj2ZOUx1y20LmqVafcS03bJTLlsOVsgU1VndrbqUAAmTwOQDjxY8naRtT+Hww1Uy1kjUZNoTGCIYSLaWeLaM1WSNntbFQ507ebba+7HQSPt5Hmmby/D5hqcSMhI/LALNDpmoTQagdHweIiVXPSaQ2pXK63qT7Lumoxag6S4qlDSplAsIQutTfMbB/RIhLVbt7UkasEomBCCWCyG4zj09fWxb98+Nm3axIEDB3jup88xkZvA9dyG3ZaaqxEhQoz6tFeYeEkkAoFEEiHS8Ni66FnIteLxOKlUKjSaNjz8HU6c/HJ7zQOBlzQtEJ6DkJDOuWyeFbVmKhP2XEnuYsr5OJa3E0lv4KjGETXBFG91n+UbW6OcTnQT8fqYMrYS827n188+wcfOPc1rXdfyxLp7OJnYyKSZoSQiDCfqtxjMXbRJe2sjFjMLE3KtuOWhBdYxtbLvMpGOsHZbN7f8pprsr7g6UelRheIS40fPJkaGiXd1EUumKc5MMzp0puMGgq7Va9j7sYdCU56Npv4D5VRloRB6TTn7n4eHThtzrGgcGQuTL1/cGh3nP2eaJqZZHSUyDIN169ZV5BIgm32ZwdNfZXr6LaRXaj2SVvNvn257RC3JpuEC/edLs/cy72nk3A8y7XykquNSABIDSRetRdVyfL9f8siWCONmhKxZe14A1wM9ZCIsVHcVtDuFvxYpSc/MEHEd0ASm65HGI7+qD9sw8GwHmc8jHRvQqmrGfLojBjem4rwxU2C8aCMLHmvGLd5zqJVF5GXKopZRK5gUVzQqPapQLAHB9KZr2/XRs+HOr12b9hwaGuK73/1ulZw1k7L58GXJF7Z2UpSNInH+aA0hBSZm5bhaSRMI0ul0ZTVTo1o0X9BOn/lvDA6W8Dwbxw1Z3h6cEdtEWIKitnFW1KouE3KqBC44D+K4HwK6IWQ8Rq2qhj37WL/BdzbrZCM203ovdrM0ZhBDD0851p5bc/OJfJ6YVf8eazEdm+1nT/Ppf9rPbb0ZVv3Wb5J497vnPS+Md05mefl/nmbPiSz56dbWagFEEwYbdnQrUVMoalCRNoWCetnqhIWO3ghidfdhr1qH1Aw0w8CMllOglddagJz5zJeCbGcALYAtbDytPPfMEx65WK7SsXlHyuG9ZhFdWoDA81zm1EYQNRP09b2bRGIrF0efqapB82koaI0I/Num2x6aJ2dfDSIOVRG1msMpebuYdj6OLbfiUS7M9wAHA5sEiZpI5HyC+1pG42CvwYwO+1frXEgY5Nr9X+ZGouY/HvJveSKfZ3V2nF955u/5yPPPNLy0SKXQYjFENEps166ORM0XtNEz07i2h+t6lFocBOwvQFe7NRVXKyrSplDMw2INpF0M/Nq0Yqqbma5VBL/VuUChVILS/FGSMJpFwYpaEUc4pN106HE2No7mIIRonAI1JNtu2saHb+7iwoV/wDR7mZo+VBGvVtKVkjwXR59q853VXqT+/s2Sx7bT+YZy5n/oS1pJbsPDRNBNbYRMAJHZH+XPw0aNzD1ajqRFGIsKpirL10XzLVHIml4ESf/kOFOmyXQy3Thq6JXno11z9gyJQgE7EuH+n/2Yjzz/TEXI6KsfBKtnMvR+7rP0fPKTzW6qIb6onW8zkuaT6DK5/SNblaQpFC2iIm2Kq4bFHEi7GCQyPZUNA1b3ap599tm6hebt0srUf094ZKPZqgGzvcVedmR30FPqQUfH0R3O952nd3svX7zhi9y85uaqa/gjM5qKWe0/La1kW+dbfVk5LjxvaTgueAa63U3PmbvpHn5vg5cJ1oQZSFJ1L9xOehjgsQGT72w0mDKgoEHeaEHUGkTHuvIzbD97mk899SN2nzoGwBP77uVv7vklJtM9aOj0TuVYNS1YO+FSiOpsvVBi82hgMK8mMJJx1u5a1zTN+M7JLG+/OML4SI6ZsSKuHb5wXo9omHEDq+C0HUmrJd0b5dYPDShZUyhmUXPalLRd9SylpM2lN3U0KdmQjHHb7bdx/tRJpko2U9EEkzM5XNfFsiwsq9Up+GVq5czWbNzZ+FyYlM3Htsw2PnPdZ3jo2ofqnstmX2Zk5PvM5I5RLJ7DsSerBS34T4igeRpvPhqk+WoOAgmanUB4OsIziM1sYNXgPcSy26Gu+D/8VtvXsnrKoqZz3vDImyEDZ1v4Ovi1ZulCrmEac3j9nQxtvIdiJIMXqVm7Lio/NSWa0NFrGhgWIl7tohoKFIrGqPSo4qqitibNLpU6XpQeTaXR9db+aliRKLlUN45hIkV5cjyGUSUHLjBkeZx/6RV0XZ+tRauv2fIJClmwTsx/zv8frU7kDCBjZohoEUzdZFfvrqaRNKt0cf5C/6qGyMb1VVCuLdO9+udcYeCas9dFIOwomhsyv82LEJsZoHfwQ8Sz20Nfo3xrczf1WL/BM2sj3Hve5uPDjTsW/XRmURekHcm0AZYm5kS06kUkBc0jH/XvcbbGrcV5ZPPVmvmS5ooIUmhYsd7qA4Sg9bBkmbKcXR5B8wVRj2j0bUorUVMoFgklbYoVRVjDwGJE0VodSBscp2FZVlvNAPNF04KyVtSKvNXzFoNdgy1fvxkZM8Ota28NFTQIpDuLF3HtGVzN9edWlKl1gzCR8Z8IES/didJ75r2h6UqJAXQx2f8c02sPkD6/h+7hu3k9o/ONgQhH0lpZnqDsRhngXa2974IO+Ug5uvRin85/3ukRC/GW4HEAI61dvsw8ozX8dGcynyfiOpVaszCG19/JyYH7sc3u5q9TfqCdu7zkqEiaQnHpUdKmWNZcihSnH0lrZyDtgQMH2L9/P9lsG92LTWjUHLBYsuZH0/z9mrVpz+zRbzF4/E/JM4WjSazI7H4mYK7cK6QWS1bnQoVtoLnl2Vy6kyA6tRU3Os3Q1Pt5LLmX00mNLTnJ5wYttmZdJPBYf4TH+yOsLkk25zz2r9Zno1v3M23cj3WNwN5BoHh/EZiN/uUiGrlmazM72QTQQbrT59zAPZxZ+z4cPYarRXD1WMvpTh+/87KWTlOfYWlUqK9p8x9TkTSF4vKhatoUy46FLkavxYwniCZTLQuaz4EDB3jxxReZmppqu+bMR9d1XDd8o0BJlCpNArZuc7zreNuy5ssZgKmb3NG7lvt6ksS8CYrFc8jSJFjVDQIeHk4kRAqapPaOcS1vsZvr5SGEE+VH4qNM21vYOpHi7S6NqcD1bC1EuCR02R6OqI5ozctirlNqhQ7/PQymOz/65kFEpN4MJ+MbOdW3j7y5Cl2DYmIVttve/zdHojqpniirN6cpzFhc8+41TYv5a8dwhKFHNFK9MXo3JNVKKIViiVCNCEraVhSLOX7Dj6T5nZmtLkr3Ja1YLHbUHBCPx9F1HduzyZHjdPdpTqVP0TPaw/bsdiJe+Rt5Q0GrKVHyhSxvuxRKzpz2SYM74gbvy8yQ0Mv3GMMiRglptvL3WVT9Enz9Y+zkCT7KaQawiQACRxrktNnF5vMNda16mSZpw0aT+8MI+zdqESJijUjPTLNmfIxcIoFl1MiXVh197CoU+NVXX+LX+1Lo6S4St99WN9/snZNZfvb944wcaz9KG00YpHqi6BGN6/dtUN2WCsUVimpEUKwIzh09zE++/TDDbx9q+9xgw0A7qU6fxZC0aDTKunXrWHP9Gh4ffZzXL77OaDGw79KC69ePcuuOt4jPBpgcCTd7ENPAqPMagZA6AhPTy2FKsJAUA69r6haJSHDNkgz8PN8csDme4T6elffiYpAjSYE4OdFVf2Cl4SBw4Valy38+LIrnP16RqQb3LgQ9ukZEm/+NeYUCXr5IsOC+q1Bgx5lBjm7YxHQi2fDcRulMLZPB6OtrPM/sU/dXfRqMbllFp6MUpZpfplAowlDSprjs+HVqucnJltOfnSxG9xkaGuK1117j4sWLTE5OdjxmA8qitmXLlsruy0ePPMrX3/g65145VzlmwHS5J2XTb3rEBSRaXOM5J2DO7I/Z15z90eAEGlpag8DSM9zH/+AhsmJVQ0lqfJM1lhnaKSrCRa/RdYSgR9fZEDOYcjxKXjmNF9U0bkjH+f3Na9mTmZOt/CuvMPb1/4/i4cPIwO+hVyggFzDnrrIVoL+fyPr1RK+5hszHPtryZoBD+4c5+OQg0+PtD0FWGwEUCkUrKGlTXBZ8UZseG2trFEezxejN8Ls8h4aGFjyw1jRNMpkMN988jaY/w1ThPC+/nefAYQ8NyZe6KI8Go9zcmAqRtEtSmjVPtu+Y3MmP5McZFFtmU51QwqSoBeZ8NbqxVssmZsUtrWnE9blr+cJ1b28Xz4xP8eZ0oSJj3RGD96/q4mShxDslh084Oe5/8m8onTiBfe5clYj5HPVfzrbxFqkZxMfo76fvS7/d9laAYEStmLOxS+E1Y81QQ2YVCkU7LCtpE0IMAtOUcxuOlHKPEKIX+GtgABgEflVKubQ7hxTzcu7oYQ499wxjZ88wOnSmrYaCVsdvQHWK02ehezlN08Q0TeLxOLfe2sNo8e/xSgcpzL6GDiTnqaVvVNO/EHc7xk5+wl2cYyOj9FVqzpA1k/ylhkuEaT00Pld9g43kTELGkRizz0cRdOk60wYIXePGniTb4lEOzRR5YHWGz/aXVyRN/PVfM/5X38Cdmqpcam+T9+RLWOOpdYuPSKXQM5m2d2wuRtpz/fYM1+5dRzFn07+zRxX9KxSKtlhW0jbLPVLKQFEQfwD8o5Tyj4UQfzD7+b9emltTNGOhzQT91+3mfZ/+QsuitpCuziCmadLdM8769a/T1ZXFjEDe9ijZRWZyeWJQ+ZvSasTsGe7jSXk/OVIARLBJygI5koAgKUvkiGKL1v4KOuhzzQC1NLunhpE0/yfBOl0jEtEpeV7DlGQYwTTlUctacHpyMans2wwQtmfz0P5hXvujFynl5vZmho22WMj4DDNmqLEYCoViUViO0lbLR4G7Zz/+K+DHKGlbNixE1FodxbHQhoF0+iJr1p4gHp8kFiugaeVvvhJw0ZHCIxkpp2ylhJJVjqYlQkStUWDqGDs5zG7yxNnPXaH1YqOBz0fpkMXKswpYE4nwf2xdx69cGGLs61+tqxE72uT0S5Gm7AQtk6karxEmZlVjLw54cGA/ALblNklptl+X5hNNGGzY0a0kTaFQLDrLauSHEOIUMEH5++lXpJRfFUJMSim7A8dMSCl7Qs79EvAlgM2bN996+vTpy3XbVyWvP/0kL37/UaZHL7R1nhlPkOpdVTWKI7hlwHWroxmdSlr/xjdJpcbRNBvTtOc/ifmbIH0KLliAJuGn2n38g/gYo9pa6iztsswYk/PWtiEl6UKOiFtubugqFPjECz/mwYMvAOCOdqyQi47e19f0+bPdt3B69R040RRaPIFWO5Kjhsu1WzOa0El0RVUTgUKh6IgVOadNCLFBSnlOCLEGeAr4X4AftiJtQdSctsUnuD6qODPTVjNBItODyPSw6vqb2HrjzRw/frwiaAutP4OypG3efJhEchxNKxGJ1Eteq/7UpMSLCQe+l7+OlyIfJWpsBJFkOhJIWfqdlI3qxVpaht4iUpLOzxCxG+/SNB2b7WdP86mnfsTuU8cW53VbJCw92YhsZhvnN72X4rqd5C2j4RDY5pGxy4tKeyoUisVkRc5pk1Kem/31ghDi+8DtwHkhxHop5YgQYj3QXmhHsSA6jaj5zQSp627m9aPHyGazvHP6LIdOn12U+0qnL7Jx01uk0qNEzXqBDJO0VnxJAnm3PHDDcGHI2smT8qOcllsp6nFmMmVJq9LC2vllgRdK2B6GnN0QICVISW92kp6pbPjw1iaYjs2a8TG2vDPMB3++/7KLWDP8NGVYetInbDp/VSTsncu30LyW4CqosJo2/3ElaQqFYilZNtImhEgCmpRyevbjDwD/Dvgh8Hngj2d/fXzp7vLq4fWnn+T57z3SVp1aoruHzLadlHrXMjmT423LovBPnUU8gylOIcrfyIUQeEg04WFGqlOerUiaB0zPOsFPxX38mPvJBxsFrBw5K4UzOx7DNaJMpxPU0WTdk8+qkseXjlt87FQWipO8XHiTg10ONx99a1nJVpDh9XcytPkXcfSQ9wxo0iFdfIeB0efpLpxFRKPkr72TM5vuY7pk0r02wS0f3ELPtkydoF2uNOV81O7VVHPRFArFSmLZpEeFENuA789+agCPSCn/LyHEKuB7wGbgDPCQlHK82bVUerRz2pW1WCrNxut2s/mOu3j16HHarSWslTNNaAjNxTDmr2MLc6dj7ORHwTVMs3vQBQ5aPo/mJMhFUxQS4WLS0gv5Lxagy/JYW5SYEh4csvjY0Xewjj2Jc/qnrb9ODcPr72Ro4z3YDUZ3aJ5DOjfMlqGnyUydqivKP9t9C6dX3YGjN05TarhENJei0YWN2fK9RWcnBoeJWCSqXfI0ZqMl6WGoCJlCoVjurMiatsVCSVt7tDP41o0nsVf340UTGLEYkVisri5t7dqj9G88jBAOjmMSiViVaFkQXZMYIfVnPo3q0Kr2Y8o5SXEwwtcwtfsCYdT+PZldgL7Kgk+dtvj4WRvPmsYbO4517H/iTZwk27WVie4dROwZplObyCXWUoz2AhDRXGwtihQ6CA2kV9VQ4GoR3KBsibnXrX8fEtPUMKJzX4vlVP/VDol083SxiowpFIorkRVZ06a4vJw7epinvv7fGD19qupxN56k1LsWN5YAytEMoYEwTIIa4DoOpZkZ3unq4Uj/DkyzyAfiP2BH4iDH2Ml+7mKYjYxVBsE2oJk71UhKnZi1u4ap6tptNArMSlrSgZ3THp89Ps2N47OC6xSwzv2Msal3ONW3j+nrfgNXj81FuIKXFOWfOh4oEfrWBJYFltVal+xyIJimVJEwhUKhaA0lbVchYc0FVncfVs8apB4Bo+aPhRAcWreF1zdeQ0kvy5fQPHTNwUWQ1+c6KF9jF3GZpyCaD2ZtmUb+NZ+YtRhBrm8UKMtZZNZOTa8saZ85Y3HDlERGNE45kjOlCM8Ys4JhZHC3fKxxzdblmPyxiISlHhdSk+YLmpIzhUKhWBhK2q4iaiNrlYhaIsVbG3dUSZmu2Wh6eZxEiSglbZ4asMqYC+aE7VLPKWsmZiHylXIkMwZYmqDLgV87bfHx4fJ7fD2jcbDX4NZxhxuz5ZMsDyakx9G8xxlXcubSvpuGLFSimtV/BTslDVNvmnoM6/70RWzLDas4fWis8pwSNIVCoVh8VE3bFUxwtppVKFT2fx685W5evm4PpUgUAFvTcSItjJ7oRMIu5Z+vGjGDucjY5wctbsq2XtPl36XteRQ9OFHyOGNfmntPpCPEu8y6kRK1zFe/FSZR7ZyvUCgUiuWBqmm7SgmulZq2LIY27uDg3vu52LsGR9OxdQMn0qBLcJFSjtXneKRzWXS3vEGgZXQTYZjlYrq5GwTmxOxzgxbvmkfM/JcMq+OXgO2B53nYLK6o+cNXzbiB50piqQi9G5Lses/6RYs8rduW4f7fvWlRrqVQKBSK5Y+StisAv/szNzlJ3vN4+eZf4NWP/Cb5SBzLbEPQWpCyuMxjUqx6LIJNtxzFA8ZkH17JJFq02TZ8ms/8/RPcEJhLJuoKvMqvaWz5BSLX3IuIJEE30SIG1LxO+bbr7zv8tiUSsDyJlOUZbRYSc/b1s57keEky4XYmaWEpR5USVCgUCsWlREnbCiY4U+3gLXfz8t17yJshotaGoMXJY8o5WZodc0aSHPd4f8v7vKcBcCRMOWC+I9j4lEbsmIbhSpKlei3z41xazzbM7VLl3UYAACAASURBVB9AdG9CaIE/erqJFklUblXOHh8W9wtL5wflDMqCtlApgzkx0yMaqd4YCHBtj+v3bVApR4VCoVBcdpS0rUD8hoLzFy5w+pobePaBfYyna9axtjC1P85s1EyWpeyX+FvupSxl0w78ZFIn/7bGh37u0X8REp6kq9vFTNvMDMew8xqiawfm9g8i9tWIGIDnIK08mAmEEUUz03X34I/AILCys5LKbCCWtidx5eLJWRC1+FuhUCgUyxUlbSuI159+kp888TgTuskb19zEy3dfz0ws0NUZFLU64ZGkmEbHIUWOD8o5QZNAwQXDASPvsfYVB/N/mlxflHg2GFvuInJbOXXpUU5aGlvA0PRwEQtS03Qalt4sPxEuab6gAYted1a5xXSEtdsyKq2pUCgUimWNkrZlzrmjh3n2sf/B4NgEQ6s38Mq+j/BOppdSJDgt3x+3UV1mn2KaGAUGGOTDPM4OebTq2sJKEJ28hlXH7iE+trX6he+c/cMRSF02oqGINaBZx7IvaWGCFk3o6DGDROOtTFUE05rFabuqGQBg+OgE/Tt7lKgpFAqFYkWgpG2Z8uxj3+PFl/6Jkm5gbbfZf+ttHNOvparSKySylmKaXbwVKmlI0OwkupWh5/T76R6+e+65eURoPjELFbEGkb/aGjQIl7RIVCfda1yy4n4lawqFQqFYSShpW0acO3qYv/sfjzKcKzDSu47Dd+xhJLmaKS1Qr9YwBSr5sPwBv8a3q64p7Bi6nSI2s5newfuJZ7cHnmz93uab5xcmYh6y0rGp0bwGLRhFU/PFFAqFQqGoR0nbMuDJNw7xJ4dPMZzoxnn3+/F0KBk1oa8GspaSgcgaR9GsJEapF+FF6B5+H93Dd1cJlwzdON4awfoyn4U2A6zfnuHOj29XUS+FQqFQKOZBSdsS8V9efoOvnBtj2ohSMmPQFxJVatgBKlktL/Cg/D732S+AZ6A7SXpOf7465cmspEmJ65SwtWZbD8LXHMGlaQBQsqZQKBQKRXsoabuMPLL/ef7s3ATDmVVlUUsEhKVRzVhNCnSXe5RPW49zU9ahd/BDxLO/Xp7s77p4QB4X13XQdR0QTDsOxws2Y0Qpx8VCEOVrLxbBBeH+Xku1j1KhUCgUioWhpO0S883hUf7kjWNMAZaZgNUNRnRAg4G3km45yfXTRT7/ZprrJ9fi8btYSBwEI57H8aJXnZoUGnNjcTUQUdoqYKP5knGfoJQBSsgUCoVCobiEKGm7BBzI5vjDlw9w2BHk9TSYIeM5IHyWmizPUotgM8Agvzp8gT2v38WJUpwzlsVZALx64etkmXsD3v2Bzdz58e3zH6hQKBQKheKyoaRtEfkvL32Tr2TXMKqvAbpAn32iSUQtLvMkmWbL7Cy1nfYZNDuJld3E2cO/xPTYe3kWN/w6HdAogqZSlwqFQqFQLG+UtC2QJ4//gG+fvcDr9kYu6DeEi1pIRG21vMBH+D532T/BcKPodoqJo/fx9ol/OXt+e/cR3JMZrCPzUWM0FAqFQqFY2Shp65B/9/LP+O7YDOP6FmDLvLIWjKh9xHmS64vjpAfvIzr051WdmdFkuYi/GdFkhIGb+pi8kCc3WVILzBUKhUKhuApQ0tYBH/nBw/xT17tAj5cfaDLwtk/+/+ydd3wc5Z3/389s0656s2TJKpabhBG2sWwcTDHYJKGTkIQAgWAgXC7kkl967i45IOVK4C6XXLiSAIZwJJgLIfQE04IpxpZRbGPLlm1Ztqxm1VXZlVa7+/z+2J3Vdu3KqvC8Xy+wduaZmWd3Zp75zLc9p7jc8ywb3H/GOJpGzrFL8Zz4GkdGPAybBVnFaaSkmVieYaZy3XzlmlQoFAqFQhEVJdqS5KuP/IRdJZf4PsQQa6lygCXeQ1zY/ybzjhZga7uERscnMXiGOZlqoqAyh4tV7JhCoVAoFIokUKItSfYVlvj+ECLMqual0NNOTec+KupHyfNmku74BD3ONEw5VjZ8sly5MBUKhUKhUEwYJdqSpLq9mQMllQHBlioHKHM2s7J+gDL7IBmOQlyeIlJSU8lcms5FyqKmUCgUCoViElCiLUl+9vlvwyM/Yd/8Ys5yvs/ZB70sFWtZdd2VWMoyZrp7CoVCoVAoPqAo0TYBfvb5b499uHrm+qFQKBQKheLDQ/zaEgqFQqFQKBSKWYESbQqFQqFQKBRzACGjTlI+txFCdALHp/gweUDXFB9DkRzqnMxO1HmZfahzMjtR52X2MV3npExKmT9eow+kaJsOhBC1Usqame6HYgx1TmYn6rzMPtQ5mZ2o8zL7mG3nRLlHFQqFQqFQKOYASrQpFAqFQqFQzAGUaJs4v5zpDigiUOdkdqLOy+xDnZPZiTovs49ZdU5UTJtCoVAoFArFHEBZ2hQKhUKhUCjmAEq0KRQKhUKhUMwBlGhLEiHEx4UQh4QQR4QQ353p/nyYEEKUCCFeE0LUCyH2CyG+6l+eI4TYJoQ47P83279cCCF+7j9Xe4UQZ8/sN/jgIoQwCCHqhBDP+T8vFEK86z8nW4UQZv9yi//zEf/68pns9wcZIUSWEOJ3QoiD/nvmI+pemVmEEF/zj13vCyF+K4RIUffK9COEeEgIcUoI8X7QsqTvDSHE5/3tDwshPj8dfVeiLQmEEAbgfuBS4AzgeiHEGTPbqw8VbuAbUsoqYB1wp//3/y7wipRyCfCK/zP4ztMS/393AP81/V3+0PBVoD7o878AP/Wfk17gNv/y24BeKeVi4Kf+doqp4WfAH6WUlcAKfOdH3SszhBCiGPgKUCOlPBMwAJ9F3SszwcPAx8OWJXVvCCFygLuAc4C1wF260JtKlGhLjrXAESllo5TSBTyOmjJ+2pBStkkp3/P/PYDvIVSM7xw84m/2CHCN/++rgV9LHzuALCHE/Gnu9gceIcQC4HLgAf9nAVwM/M7fJPyc6Ofqd8BGf3vFJCKEyAAuAB4EkFK6pJR9qHtlpjECViGEEbABbah7ZdqRUr4B9IQtTvbe+BiwTUrZI6XsBbYRKQQnHSXakqMYaA76fNK/TDHN+F0Fq4B3gQIpZRv4hB0wz99Mna/p4d+BbwNe/+dcoE9K6fZ/Dv7dA+fEv97ub6+YXCqATmCL3239gBAiFXWvzBhSyhbgPuAEPrFmB3aj7pXZQrL3xozcM0q0JUe0txxVM2WaEUKkAU8C/09K2R+vaZRl6nxNIkKIK4BTUsrdwYujNJUJrFNMHkbgbOC/pJSrgCHG3D3RUOdlivG7zq4GFgJFQCo+11s46l6ZXcQ6DzNyfpRoS46TQEnQ5wVA6wz15UOJEMKET7A9JqX8vX9xh+7K8f97yr9cna+pZz1wlRCiCV+4wMX4LG9ZfhcQhP7ugXPiX59JpJtCcfqcBE5KKd/1f/4dPhGn7pWZYxNwTErZKaUcBX4PnIu6V2YLyd4bM3LPKNGWHLuAJf5sHzO+INJnZrhPHxr88RwPAvVSyn8LWvUMoGfufB54Omj5zf7sn3WAXTd/KyYHKeXfSikXSCnL8d0Pr0opbwReAz7lbxZ+TvRz9Sl/e2U9mGSklO1AsxBimX/RRuAA6l6ZSU4A64QQNv9Ypp8Tda/MDpK9N/4EfFQIke23on7Uv2xKUTMiJIkQ4jJ8lgQD8JCU8scz3KUPDUKI84DtwD7G4qf+Dl9c2xNAKb6B8dNSyh7/wPgLfMGhDmCzlLJ22jv+IUEIsQH4ppTyCiFEBT7LWw5QB3xOSjkihEgBHsUXj9gDfFZK2ThTff4gI4RYiS85xAw0Apvxvaire2WGEELcA1yHLxO+DrgdXxyUulemESHEb4ENQB7QgS8L9A8keW8IIW7F9wwC+LGUcsuU912JNoVCoVAoFIrZj3KPKhQKhUKhUMwBlGhTKBQKhUKhmAMo0aZQKBQKhUIxB1CiTaFQKBQKhWIOoESbQqFQKBQKxRxAiTaFQqFQKBSKOYASbQqFQqFQKBRzACXaFAqFQqFQKOYAxvGbzD3y8vJkeXn5THdDoVAoFAqFYlx2797dJaXMH6/dB1K0lZeXU1urZmBRKBQKhUIx+xFCHE+knXKPKhQKhUKhUMwBlGhTKBQKhUKhmAMo0aZQKBQKxRTjqKuj639+iaOubqa7opjDfCBj2hQKhUKhmA046uo49a//hlOPszabKXvkYWyrVs1sxxRzklllaRNCZAkhfieEOCiEqBdCfEQIcbcQokUI8Rf/f5fNdD8VCoVCoRgPR10dxz9305hgA3C56H7gwZnrlGJOM9ssbT8D/iil/JQQwgzYgI8BP5VS3jezXVMoFAqFIj6Oujrsf3gagJGjR8HjiWgz+PrrOOrqlLVNkTSzRrQJITKAC4BbAKSULsAlhJjJbikUCoVCkRC9W7fSfs8PwOuN39Djwf6Hp6OKtmDRl3nN1UrYKUKYNaINqAA6gS1CiBXAbuCr/nVfFkLcDNQC35BS9oZvLIS4A7gDoLS0dHp6rFAoFIo5i6OuDsfOXRiyMhl8YzuuY8cwL1xI7u23YVu1CkddHd0PPBhz+XB9PZrVSs7NN2FZujQxweanb+tW3F1dgX32bt1K1//8Endra6CN/amnKA2Lf1Oi7sONkFLOdB8AEELUADuA9VLKd4UQPwP6gV8AXYAEfgjMl1LeGm9fNTU1UhXXVSgUCkU0dNE1+NprMUVW+pVXMPDCi6HuTSFIv+JyBp57HsKenSItDTk4GPOY5kWLcB09GrlC07AsX87Ivn1RtzOVlZF762ayr7vOFyN3083gdvtWGo2UPfrrCOGmi1Hb2jVK1M0RhBC7pZQ147abRaKtENghpSz3fz4f+K6U8vKgNuXAc1LKM+PtS4k2hUKhUESjd+tW2n/ww6ixZlOGwUDhP3z/tI4r0tLA60U6HKHLbTZMpaVoJhNZn7oWy9KlHP/8LTA6CibTlGSqKlE4+SQq2maNe1RK2S6EaBZCLJNSHgI2AgeEEPOllG3+Zp8A3p+5XioUCoVirhHsBp0uwWaurASXK8StCtB+9z0RVrpEiGXFkw4HroMHffvetw+sVnC5fCtdLtq+933m/+iHkyauOu67j56HtoCUCIuF0i0PKeE2jcwa0ebnb4DH/JmjjcBm4OdCiJX43KNNwF/NXPcUCoVCMZdw1NVx4vO3IF0uEGJCgilZcm6/jYJvfjNiefZ11wHEjX0bz806Lk5nyEfX0aMcv+FGcm67NWqfYqHHzo0cPYqnpwfzwoWYF5bTE1SuRI6M+CxuSrRNG7PGPTqZKPeoQqFQKACa7/wyg6+8Mn5Dg4Gczbcw+OZbAcuVjm39ehxvvx0q+ISg8O67AMasd0IkJI4CMXVh/Uq/8goW3Huvz5o1BbXc9P0H9yPYzRlikfzhj8Zi5+JgrqwMuGZ1UToXmWmX75yLaZtMlGhTKBSKDy/6A9gz0B9f/PiFmiE9I+Rh3bt1Kz2P/Nonwm6+KZAEEC2TNPh4yT7w9X26T52KED29W7cy8NI2tJxsRvYfwN3djbe/3+eWNJvJvvkm+l94MSTbNBFybr+N9I0bfbM07N4dEKIiNdUXL3camkDf90TFTzK/42SJrPCkFGE2R2TsTgdKtCnRplAoFB86erduTchKZCwooPjffzqnXHvRhEqwQHW8uxPv6Ci4XLiammKXH5lKN3HQvs2VldhWrEioNEmIG9ufuBHLcueoq+PE5luRw8MgBNbVq5n3ja/HPUbwbwfQ/cCDOPfswdPVFdE2beNGSu7/xbRa35RoU6JNoVAoPhRMJNGg8J6757Q7bzz0mLTBHTtwHz8+s50xGEi/7FJG9h/A09+PITMzYMHU+9ryzW/hbmkJ2SxWbGDbXXfTt3VrxDHK/vfRgJtXr2WXckYVwwfqsT/1FHJ0FDTNJyrj1dMTAvOyZbgOHQpYNqfa+qZEmxJtCoVC8YEnYHUZGYlvPfJbZOTIyJyPv0qWpvD5T5PAvGgRaRdtoGfLw4G4Pdu55+J4552ECwnHwlhWhhwaimrt0rFUV2PMyMBSVYkhPSOuMDeWlcHoaNIu40TIuu465t9z96TvV2fOlfxQKBQKhSJZHDt3JSTYCu++60Ml1IKZ942vc/yGG6P+Roa8PITZjHS5EBYLGI24T5wIWJj0ciHhsWq6Ncvd1RW3SHE8ErEAjuzbxwgw9NZbvgVxXLszblGcBpRoUygUCsWcxFFXh/3FF+MLNk2j8K5/+NAKNgDbqlXk3HZrRFKGMJtZ8B8/T2hGBduqVSHtgj876upCExuEQEtP9yVOTDZT5R00GGK71Q0GMq+5emqOmyTKPapQKBSKWUnv1q30/e5JjPPmkXbB+QwfqMfd1YUxLw+PY4iBZ5+LuW0yQfAfFvTfU1gsWBYtmvTfJjzY//jnbxkr9KtjNMZNEkm/8gpGDh+JKLsSFd1Vq1vhksVopPD738PTZ8e2dk3UMizWmppxkxwmAxXTpkSbQqFQzEkClpuJjOMJ1kpTTD3BBXr1WELL0qWh86fic9FaV6wIKaOSSByenuV58lvfChHwWlYWlsWLAV8BYFN5GaNNx33uXwgUCw4+nt7fRDNYJxsl2pRoUygUijlBhIUm7KGeKNNlFZlqmpubaWpqory8nJKSkpnuzqQTnN0Zy9rnqKuLbqnTMRope/TXIbX1Bl7aRvpHLzktoTVTRXaVaFOiTaFQKGY94dYN85IlibnGwohVHiKc2S6Iamtref7555FSIoTg8ssvp6Zm3Gf5B5LgUi66axzAmJf3gXN7q+xRhUKhUMxa9Afy4PbtPsEG4PEkLdiSsa41Nzfz8MMP4/F4Zp0gqq2tZfv27djt9sAyKSXPPedz+82Wfk4n4ckPCiXaFIppJV5Fc9vaNYw0NEyKiV+hmK1EZBomihAYS0txnzzpKy9hMFD4/e+Ne58EW9beeustPP4MwdkgiGpra6mrq6O/v5+BgYGY7Z577jl6e3u55JJLprF3itmIEm0KxTTRu3Wrryik1wsmEzk338Tgq6/hOnYs4uE19NZb9Pz2cebf9Q/qTVMxZwmPM3LU1SUVr2ZetIicm28KZPcFT2qeSMxRsGUtFokIt9raWurr66mqqqKmpobm5mb27NkDwIoVK6K6Wcdzw27bto23ksh61NuernBL1D2sf8fBwUHS0tIm/D0Vk4uKaVMopgFHXR3Hb/xc8gUow4JtZxP6RMvD9fVIlytiappkCB74Ozo6Qh6QyRD+cFVMDokKpeBrwmO3I4eGAuu0rCy01NSIqYpiEjQt0URobm7m6aefpitOtf1gqqur6enpIT09ncWLF9Pe3k5nZycdHR0MDw8H2uXk5NDT0xOy7fr16wNiqrm5mZdffpnjQYVey8rKyM/Pp7CwEKfTyalTp9i3b9+EvpfVaiUtLY2lS5fS3d1NV1cXeXl5rF+/PqpoCr4ngEC8HEBaWhoLFiyI2La5uZktW7bgDRqvhBCUlpbS19eHx+PBaDSiaVrgtzAYDNxyyy1KuE2QOZmIIITIAh4AzgQkcCtwCNgKlANNwGeklL3x9qNEm2K2EXWuvATJ/9rXyPurOya5R6eHo66O45+7KWoxymTndGxubuaRRx7BHcX6sn79elJSUhJ6i6+trQ1YTQCuuOKKD4RwS7S21mRmvQWXanA1NY1NM2Q2UxZlDsberVvp+p9fnvb0QeaKCt+/UcoxRCNY7AMhf49nYZtsCgsLycrK4uAEkiiCsVqtlJWVkZubm5QlDqC4uJhVq1YFrvvweyIewffLc889x0Seofn5+Vx11VVKuE2AuZqI8DPgj1LKTwkhzIAN+DvgFSnlPwshvgt8F/jOTHZSoUiWkaNHJ7ahpmHIygQSS5OfDvTJncMFW1duLqfmzWPfK69g7+8nPT095tt/ME1NTVEFGxDy0MrKymL58uUhIk534XR2dtIaJhh27NgxK0VbIqUJdIuVc8+ekHkZnbW19G3dipaZiTEvL2DZDLjePZ6o9aV0QecZ6Mfx7k6M8+ZFFUXjii+Xi7bvfT8wtRFAx333RVTanxBGI/N//KOEr+vgLEsATdOQUmIwGFi5cuW0CjaA9vZ22tvbT2sfwRY7gMrKSp588kn6+voS2r6lpYWWlhZ6e3uprKzktddeS/jYzz33HAUFBZSUlNDZ2Zl03wE6OzvZsmULmzdvVsJtipg1ljYhRAawB6iQQZ0SQhwCNkgp24QQ84HXpZTL4u1LWdoUs4nwwo/jYjBgyM4OsW7k3HwTPQ9tGXOv+guImktK6Hnk13j6+0/LPZkosWKSjlZUsLtmNdLfN72PmhB8IieXReetDzyMm5ubeeutt+jq6iI1NRUgxJUEjMX46fsKw2AwsG7dunEtEdNtbQuej9GYl0fKGVUMH6gHfEK75ze/CbkWwjMfdbEWXpU9HlpmJt6gjEOdnNtvw1xSEleEaZmZaGlppFRW4h0eTryyvL+S/PCBevqeeGLiUwtpmm/bJJMKrFZriGALp6ysLPKa8pOdnU1/f/+0i7p41NTUxI0Ze+ihh2J+18mksrISk8k0YdetTllZGZs3b56kXn04mHPuUSHESuCXwAFgBbAb+CrQIqXMCmrXK6XMjrL9HcAdAKWlpatj3bAKxXQRq6q7IS8vxHqStnEjubff5tvGX5MoYDWZAMm6J5Oh639+SedPfxq6LDeXVzdejBRibDJnXWxJScXRo6zdu4/SRx6mOy8vIlYmgnEEWzJYLBZqamoSdrGeDr1bt9J+zw8mNHG2taYG4/zC5MT9LEe3BlrOqMK5+70I4SjMZgr+/u84eaqTznn5eHJyaG9vjxmPmGzgfjjBrkNd/A0PDye0T6vVitPpDFlWWFgIcFrWtYKCAq644opxr0v9RaetrQ2n04krVsHZJDCZTIyOjo7bzmAwRAhco9EY0zquMxfDE2YyqWIuirYaYAewXkr5rhDiZ0A/8DeJiLZglKVNMdPEy5IrvOdugJgusmjCKBlSqqtZ+H9PTHj7WDjq6th77320OJ3MO3WKvO5ujlZUsHftGgKPEF2wBY8rUlJTu5scs5mGSzbRFMv1om8TLPp0JkHAgc/9VFlZOakD80SsY3ONWNa8iHZZWdhWr47qeg23Qg5ecD67Ozs5dOhQhBWpsLAQi8USCHp3uVynJVTiCYhgN6umaZSUlDA0NERqair5+fkBC5heniPc7R8rbky/1vQMTKfTydDQEEajEYPBEBJ7lizBfZmIZUwIwa233kpHR8e4MW/r16/nnXfeCbxo6QkHQMDq+cILL0S8iNlsNq6//vqQMAbwnVtd6MayLs4EwdeBwWDg0ksvndZ+zkXRVgjskFKW+z+fjy9+bTHKPaqYYzTf+eWoD/H0K69gwb33xt123OlbxkMICu++67StbcHxYgPd3WiNjfTk5uL1Cyir04nTZosuqIKtZVKClAgpkZoWKuqCLHIAxSdbqDx4EHtmJoeWLsFjMGIadTGYlobHZIq05J0GmqZx9tlnT3hAPq35MZPAWlND5pVXMHygnpGjRxltbcXT3Y0cGZmyY+pzNwYnPvRu3Ur7XXfH3S7RpJlESnFMFpWVlXz2s58dtz+nI+Rra2sDwkUIwbnnnjutNdX0DNHBwUE6Ojoi1gshAsI4vKjw448/HjN5orq6mmuvvXbcEifRMmZ1omXbBvdrNhQ4Hs8FrWnalMfpzTnRBiCE2A7cLqU8JIS4G0j1r+oOSkTIkVJ+O95+lGhTzCSxyntYa2oo/99HE95HLEEgzOaxCvI6RmOoVe80hVvEQ1UG/hdddOkEjyfB68JFXLg1Tgjweqne9z5n1NdH9KcrN5fXLtqAVxd9Yf1YPH8+pYD94CF6FxTTODiY1PfNsFpZ6HDSMzSIU9M4q6KCC774xcBvEf5An7Tg+3hoGoV3/UPUcxgy9ZOOwUDO5lsYfPOtiFkFtKwsjIWFaCYTtnPW4jrW5CvL0deHdDhC2oa/WASXjCjY8nBsi2ISJTriCYVk0a1jXV1dDAWVGIExi9J0WHNmQ72y8Pu2rKyMTZs2AcQUXc3NzTz4YOS1rAu2ZLj//vuTTmKYznMUqyTQ9u3beWUcS3lNTQ1XXHHFlPVtroq2lfhKfpiBRmAzoAFPAKXACeDTUsrost2PEm2KmULPrIyoRTXBemuBbL62NgCExUL2526MEAwp1dUMh7tI4gi3aOUhgotpDgwM0BKtntY48Wb56emY6+tpnT/fZ1XT20azrElJXmcX3fl5SMDg9bLhtdfJ6+4eC1APGp/07NTO/Dza588PLK+sr2fF3n0h7V7btDFgERy33zHGwHy7nerKSv7c2Rky7VHJ66+PK9is/geCp6cH78hI6PXgz+4cPlDP4JtvRlwrhrw80jduHDdDOHhexuDis+C7bnoe+bUvYSVOcoqjro5X776boyUl2IaHWbtkCSu+852YlfqriotZ8R+/GBOL+rmNkrEai2TKUIxHZWVlhKtyx44duN1uCgsLE8pe/qAxEfEYnokbnsWaKBM9t8XFxZSXl9PU1JRw1nmyhMdEFhYWsmDBAlasWMHOnTvHdTEr0TaFKNGmmC6Cy3Bo6Wn0PPhQhAgwL1oUUiJhoscJFlkd993nyyaVEmGxUPC3340eBK9plD32vyHHDi8PkbP5Fk5ZUvhDTzeeQFyZv7GuccZxSaakpLBp0yZqamro3bqV939xP/VLl9JaXOTbLly4SUnRyRbOf+utgBgrtlpZdvVVAQEy0tAQ0x13tKKC5pIFlDSfZFFjY8R6fZ+jJhNdC8sZ9HoZttnGjh+NsASKwL+6+PSvvnjbyz5hGY0o1jFHXR0nNt/qEzqaFpIlGeEKn8Ziys3NzTz//PMRgfTx3Fngs0qebTJTvOIs9p84gb29HVdqKlitCcVpxbLG2Gw2nE5nhIvKarViMBiwWq2cc845FBQUzLhF64PIZFkKYyWMtGdkc2heCULA0o5mCvtjl1tNxvoWnFTS1NSE0WgMxCICgRfR07Hs3MsK3AAAIABJREFUToc1UIk2JdoUU0xCU/IIQdlvHpuSh3C4kOvdupX2u++JEI1aRgZZn/k0rmNNEXW/wCdwdq5Zw0BmRqRLM5obM0zARYv30Pu2M9XGziNHIvaleTxc9Nrr5DudmObPj2kNmkw35J6zqjlYWRnVvRr4HPy99b/D1tkGh/jIjh0hws1cWYltxYqo1rHm5mYOv/02+ac6Q0qf6MxE/b1oFe8ni4qKCnJycgLB9263m/LyclJSUmLOBBAc3J7I1EmK2Y2e7aoLpfaMbJ45az1ezQCAkJLzD+/hjPbYVR6ysrIC7lk94eHIkSMMDAywatUqCgoKYsbRTSbTFXenRJsSbYopJlayQTA5t99GwTe/OU09IqZwi8XRigpqa1aHirVw4SYlZcePc7yszLda0zh3/XpG/IHw4z1Yn3zySd+DOizZIM9uT8iqFFyM1rJ06Wllanbl5nKsvJxjFQt97lsp0TwevEZjbBGn/w7B671eNr76GoUpKRTfd2/M7xAcY5TM4D9V8VH6fo8cOTLlD7tEsFgsVFdXK3H2AeX5hkZeaetkD0b2e7SQe0p4vVy9Z3tcixv4Xgqn4uUikePpMYHTcW0q0aZEm2IKSSSTbqoFW6yMrkT6BmGCLU7SQLAbc/DyyzjzppuSHsRqa2t5/913KTnVyVJ/yYfTsSrpQk5C4gVhg9Ddp/NOnQLgtYsvwqtpCARLM9I5ZLdHd6MG159rbORTX/963O8QbTqg2267Le7vF56JWFBQgNPpxGw2c84550z4jf906pwVFRVFzDgxGczFWl6K8am1D3H/iQ7+1NVPbLklyRrsZ8Phv4wr3KaL6upq1q5dOyPudyXalGhTTBHx5t0EJq3kRjzCH8DhVpyO++5j16uvcbRiIQaPF4vLxYjZzIjFgub1MGxJYcRmDfQXCI3j8qN5vVzkTw5I27iRkvt/MWXfaaIEz83p/Mtf4rurY9A1bx6jd36JJeeeS0lJCQe2bOHNN9+iLysLo8eDzTE0lvzgF7M5CCrW+H5vPX4mfLDfsmVLhEUrXkBzIsJKf/vv6OgIBN2npKTgdDrxeDwhsV96yZa+vj7sceqsBdfO0hFCsHr16sALQawYuImiquZ/MKm1D3HNe4dJ7C6U4JVcMI6rdDKprq7GYrHQ2dnJiRMnQpIvsteey9t9g5yblQbA/Sc6aB9xc8P8HG4qzpvSfinRpkSbYoqIW/w2TpmG00V3bcWKC9KF25EjRwKBuXHdpFHEWn5nJ2f5MzF1S1Red3fSAfKtDfXsfPpJTjU1YrJYWH3ZVZy16dKkvu9ECI4PSzmjisE3tjNcX49mtZJz8024mpsjY+RiZD7qGZhevxt4d24OB6uqxhrEScxIS0vDbDZHDeg3Go1kZ2dHWM1Ot+L/RNFjEiGxeLLwch15eXmUl5fT09NDY5SkkGhMZ5kHxfSyeV8jL3b1J7WNkJIrO5u4Y1EJvb29Sd8HOTk5WK1WRssX8wwWutxelp86ybwRBz2FC1htNZHefjKi1MfzDY083tpFp9mKw2DkqGOEWJUD7126YEqFmxJtSrQpJonWhnqa9+/Dmp6Oc2CArLZTeH9+/1gDTSPtoovGdfmdTpxSeEr+ZJOfn89HKytJ+f1TuE+dIutT12JZunTcAHn9tylZXk3R0qrAssfv+g4yLA7lki/cOS3CbTyCLXPBxWPjoWeAvnT+efTk5EzaDA2Ly8qwDtlpGXDQM3L6UxMlix7sncz12NzczCOPPILH48FgMPD5z38+pORGXV0dRqMRq9VKWloaFouFpqYmPB4PbrebvLy8D2Upjomy9+UXaXj3bZaec+5p3z+62/KoY4Qck4Fsk5F8s4nPFOZQk5k6/g4S2P9V7x2O6RJdmGLmxLArqjAyCvjDqiXUZKZGfYFJSUkhKysrxNIbPA3Yoy1dfKfhZMSxBWASsDE3AyDwfesHnVHbx2JDdjqPr1yUYOvkUaJNiTbFJPDGY1vY9cyToQu9ErPbjdnjpby7n7M2Xcp8/9RUsQgehPRMuViTQ4cLu1jFLyeLRK0e4QKttaGeJ+75WzxuNwhBceUZ5BaX0nb4IJ3Hj0VsX7hoKTf+479N1deYcuoe28Gu9w/QajnhK4kyGbotfPyNJQa93rHSI5NEvOtwPGZDIdkPA+HjT37ZQjbd/qXAC9J41NqHeLtvkCX9XbxxoJ4t+RWAiLjOjMAfzl5C/aCT5zvtXJ6fOSGr0rcPNfPr1tByOMtTLZg1Q8DFWGsf4kdHW9hhd0Rsf3NRLj9Z5rueYo2Z4QVyH23p4jdtPewZcCQswAz4buFk0huUpW0KUaJNkQx7X36Rfa9uIy0nh+z5xZxqamReeQXH9rxHVxTxEf6gXbnufDZ+/bu0NtSz/8+vArD8wosDA2u0t8ZoU+sEW9P0qXBSUlJ4//33o05NA2A2myc8J2NaWhoLFixIyOqx9+UXefnB//JZz4SgrHolbUcacDmG4m4XjNAMfPaef074gZMssX7/idDeaKeloZfipdkUVmSy7aH9NOz0nQN7Rj0ua1idsXEEXMzaZ9GK/koJbhcG5xCax43J7nsIOkqXgdDiH8sjQJNx26xfv56UlBQluGYxenjB0dodUdcvXrOONVddG/car7UPcW3dYUa8Xp/oF1pk0lEQC1NMHBsem0B+eWoKqzNTx7XC6cIw22jg58c7aB4Z28eleRlsqa6Iul00gSeAnwSJo/FeDh5t6eJbDSdj9m2yuLMkn+8vLp7SYyjRpkSbIgH2vvwi2351//gNY+G3uOSVLaS7+QTS6zP8e1PTyfvIRXT12SOm1tHRg9Hr6+spLCzk7bffTsr9qcewxXKbZmVlsXz5ckZGRgJxSoWFhTidzqQe2K0N9fz2H76dcBmReCyqWcc13/reae8nnBCrHwCCxWvOCXmw6Q/C3rYWcoqKoz709m9vYdez79Dbsh2vtxfNkI01ax0edwEAXncrnpEDjKRruDJtCFIAMNjcGAxu3E4nHoMJT9A7vB4zdnh/E+/9pRbnSD8e3XUcYxow2/GDGJyh143HmspITgGe9JyAKNM0jcsuuwyn00lPg+DYX7roy9mDXh05Mz2HJZUVWCwW2tvbI2J64rF/ewtH606xaNU8lp8/tQ8sRWgYxisP/TfeBOZlXXPVtVxwoy8esdY+xBPtPZzo7mGgu5NWzUybNT32jCRJuPh1AVedZqXX7eHcrDRqMlOptQ/xybrDuKIMDQbg6bOXxBR8tfYhrqk7jDvc2EyocAvfJjg54FcnO2lwTN0cvOsyU/neoqJJcR2PhxJtSrQpohAeIA/Q09Icf6NoLqwY0yJ5rKm4MnJxZ+VNnjsrMMD6FGJWVlbIFD3h8W6TWVuotaGe539+L/2dpya0fX7ZwhBXqdA0PnvPv0yKtS34XLpdIzj7o2VHCvLKynH09eGwR5YVyMifR+X6K7Flr6LrxGH2v/47pCd8+i6BOf06vJ4u3I6XQ5YbbRsxWs7CPbIdt2NXYI3MqCGzegnzKzLJoIimt530tu3C7XwX5ACO+eV4MnMjuysllo4TmPu6Itf58VhTsSxchsftpjDNyoZPfArNWMRT9+3G64VRUz+j5j5MrixMoxnMX5zJsnMKGR4apXhpNkDAighwcIdvirTKdfMprMgE4O3fH6HupROBY264cdmcEW7R4iwn0mYqjx9tm//74d/jnoDVvPgL/4/Hc0p97sZYz/NoJX1irU8AA3DNvCxe7xmg2x1dXK5Kt/FizdK4+3m0pYtvN5wkWq9165YuRnfbB9k/lJhAMwC5JgOnRscXvnpfz/IOs6u1nbxTLaQbNFabBdecs2bKPAPhKNGmRJsijFgB8hGEv4VKicU1igCGzaax5f42ugXEa0lBmlMImEEmKVg90CfA1N3OorwsLrjhFrpONAUClLOXnTnpMUZ7X36RbQ/854QtbFXnbWDlxy6P+M3T8+axcOXqhF2YwW7PgoUVdBxrpPvkCVoO7p9Qv6KTAgzHXq3lgTeGkNJywBvu+vQJOoNhBLfLicd1CORASAtXVh6u7HlIYUBzj2BwDWOyd0dY2MZDaAYKl22mtz1j/LbCb4OLdkoF5Bal4ux34RgYDVmVkmbi8i+dFRB1sxVd/HjcbgxGI5/+/o8jrrGQODEhWHPlJwPWqkSPoYuyrhNNgdCKNVddS9eJpkAYgdA0aq74BD2tLQz19lB98SWBRALdpahbrLb96n72vvxiwn1oKShh54rz6MnKoycrf2yu3vHGHH+x7DV7tuMyp3BswRL6M7Ind6zyk2gMWDzhZhMCR5LjT7B1TBd8nS7f9fz+gDPEfQs+gffl917CvPONqPtLxBU9GSjRpkSbIozH7/4OLfVxHvTRpmsCKk71Utnus9L02iwM1qzCcf6F7NuzBykl3rSwB1l4ZX19GT6XptQnQo/lqggrbqtjsHdja2uK2nU9M1O3PoU/JJIlagJGFCypqZy18eOMOBwM9fUyPDiAZ3Q05Nix9zXmwgSiWidOVzjOLLp1dHyMtk1I9ym8nm6ktx+kB3AylvEwzn5EGpqxAGPKGjRj0el1Ow7zF2eSU5QaYpWbShJxaQfz7lNP8ObWRwPXS7A7fu/LL/LWE7+JanENdjPGIyS2M0laCkpouvpmmq0ZnPQLB5OAn7i7aPnVv8fcTgjBptu/BMDDzz7Ln9dsoqWonJDAxWizdwR/1ptJyVV7Xmfpu68G+vTbK29DGgyR+zkNko0BiyfcEmWpzcIXFuTHFYrRslsXNx7gEy/9Ju6+NYOB6+6eunhcSFy0GaesBwrFLOKNx7aMK9hMox7MHg+OFLMvGUBKlrd0UdozZiEp+ch5dGy+hbefew7SMqPHioR/9rgxOAax9HRgSU3DbsvAa0sPFSLR5vn0izvhGsHc2xHXZbb7hWfIKy0PsWq1H23g3T/8H+dc8+m44k23ZOmiq6v5BCNDA1HbVp23gYYdbwbKPXzyu3ePO5BZbLHiQSRHdu3gyK4dgd/LYDBQvrKG4cEBnAP947uuZzWJPYIMlhqMlrPAErrc627FO3oStBTcjtchXrlSOYh3dBDX6DHM6Z+ZMuHWdsRO2xE7+99oZf7iTM795OIpEW+tDfW88djDIdbUnpZmjtS+yyW3fynq9dzaUM/Bd7aH3ENHa3fwxmNbGOzppv7N12Mer/bZ37N4zbq413JrQz0vP/CfUeNHdctXR56vAHPGQB8ATmsqVucQ1hEnR8qWgTDAsCtwvbu8ki0Hj/LRsP39paqGfZWrydfg61UVnFW9nFr7EFsN8/HEGnPCxw4dr5cq9xBrFi70JRVsPJs3Hstm1zNPUtzRzPXPPhiw2uX0dXPdqmqaU7M40d1D05CDJqM15m8STKZB49zsNO4sLUg6BkwXWhMVbtfOy+L+5eXjtivqOMHnTx3hkfwKvAiM0svaPdvH3c7r8bD/z69Om6s0Hkq0KSYFvfaVcd480i44n8E3tgfqfU3lzACJ0NpQT+2zv4/dwD/ALevoobRngF6bhe40K7mDTrIdI2NTHnV3U3b7bfwx2IobTayFCTDbySMBl5fbOUgq7QHXGAjE6IjPWucXaZaOExhGnLht6RgdAwm5y3pamn0PlDALQH/nKbb96n76OtqjWhJaG+rZevd3Ewp6XlSzjsv+5pus/NjlScXslCyvRjMY4h/D/1t53O6YGXOJUnXeBlzDwxytfZdQ4WRDM81HMy3E6zqG130SiB4jU77qoxiN/T5BOSUIhKEAg+VMn2CLgmYsIi27jIKKTEoqz6P2uRfpOfnuOPv1Mup4narzN9J2pJ0he/6UCDivu5XmfTv5XcNBPvXdKyZVuMVNDpKSbb+6n45jjSHu9XihD4lYjKWUIQ/lR1u6+NXJTvpG3WSZjHza5CbloZ/GFGwh1ipgID17rEHQn9EsWV1Z+SHuTo/QsGf5REy7ENzR7eYpvzvVE7yP8DFHSorbmzjj8F56F1QwkpFN2rCD64py+ezHN4UcUx8LdOH2iZd+G1iXf2I51954C0/cfxdr3G5aC8vou+oGurPzaRkejXAvApgFPLZi0WkF7N9UnEdVmpXvHDoRN3atxGKiZWQ0YC0TwLK08YWlPtbleTx8tqCE5qKFlLQeo7hjbr0YKveo4rQZb65LQ14e1hUryL39tpAiprHmzpxsnr7vR6EPXykp6h2gPSsNr3/Aq+jsC7hAdbpyc6mvrKStuAgpBCAwWxIosRH05jteULmOx5oaU6TpsWHhlodkqTpvAx3HjjI8OBhY5h51JVS2w2A08Zm7/nHCb5rRLCeTgy92DCCvuIPqDRcErDDBsXD2njI6jtkitnaP7MXteBsYqxlVVHkx19/z9ZhZs5d84U76OtoTEgORaBjMZ2KwnBFXTAkBF94QGfz/5hNvUPvc7/GM9kSJo4u2H42CJVfhGl4WEadmS/fFZ4Yvd4/sxTvyHppRYjCnMDI4CNKD0FIwpJyN9PThGdHHVwPLzv9rzv5oWUDIQ3RXN4Qmj4AvRnHhytU4BwYoWV7NkV07Ev5dDUYjn7nrnwD403//PGmrrNlmw+UIqhUmBJfc/iWeLj+L+5vDSrpIyZq/vMGGd7dF7Oel869kzxlrE4sni/JS519JTHcnvtIZFVZL1H7p+1p87ACfeOm3aAYj1939Twndqy/8x31RLZBZhfPpa28LWaa7kIMzOM/NSiXTZAzE5k0WwaIZoMufUGDWBL9buZj6QSd/e/gkXjm2LN7xWxvqee3hX9F+tCHucYurlnPGeRtorNsd8tKXzG86UeZkTJsQogkYADyAW0pZI4S4G/gCoF+tfyelfCHefpRom16OffozDEeZVikatvXraRvoZ1/+PFrycgODk6ZpXL9+PdlHjmLIysTTZ8e2ds2EJxTXiRZPVdHRQ2V7b4RFLYAQvsnUV589NngmEeshAGPvqXGDym1Z2dgysxgZGsIzOorH7Q5xS2bkz4twbU6d+IlOVuF8Ss9cedp1z3TGqz+VDJppUUgMly3DRGaBDc+ol6x5NvpOOTAYfXXN2g7HnncTfELFaDzGWRdv4PzrPxFYHhzDJDSNTbf9deB86JXqbRmZ9La1Bur8RYgOYaXq/I3kFuVgy6rgjSf6Y3pOswttFC3Nihsz1t5o56l/3c3IwBtB4ikOQnD9D35Cb0cGB95qJTXTwtkfKwvsv73RzsEdbXQ1H6Hj8NMMD7SNs8NwLCBcEeJWD8S32FIDYi6hRKAkyCtbSNeJpqRiHlOzsjn30zfgHBjgzcd/HbKupbCU315zR+Tp8Vuyqg7voTcrD4N7lLy+TsyuYd5fuhqnLTV+aY2I/vlFWpxM9HEJejk0eD1c9+xDVBvhY1/8SlL3aqLxq5B47N9kE564EWtZNBKNQwwvRzSZdR8TYS6LthopZVfQsruBQSnlfYnuR4m26cNRV8fxm25OeJLurtxcXr34IqReDiNocKs4cpQ1u3eHtDcWF5N3xxcm5GKN5mbJHHKy/khr7I2MRuQ3vs7/HT+eUGxFRkYG1dXVpKSkYLVaAzXQeg+9H8gqM1lSQt5m9YdGrLicRFyPeruD72yPWgA4kPAwQaIJxslEF2+Nu3ci5fgPcYOlBmHIwjPyPkJLnZSAeyFgyZoCnIOuuLXIki3hECr0DFxyx/epvmhsLN6/vYXXHzsUsZ3BILjmG2cn5GrUhVZn0zsMdtfR03IsrnAZrz5ewpnVE0UIMvLyJ1Q6prhqOUVLKpOybFadt4H6t/4c8ZtUnbeBy/7mm0Dod24pKGH/0pV05BXRPm9BpNCKlVwUL6EoGlKS03uKnL4ujiw8Y2w/iW7vxwDcWJRLyv73qG84REnrMUq72/jMXROzBiUj3C75wp0By6h+rNOdamsyp+rSxVb3yRP0trVGTTyJxlmbLuWSL9x5Wsc+HVQigmJacOzc5au2nSAHKyt9gi3K4NSfEVmywN3SQvtddzNUW8uCe+/FUVeHY+euca1wEYLNP+CW9EQG2KdfeQU5N9wQ2O8zhw4lJNiEEHz605+O6tYtKSkJGXwWVC1PaFAqWlqV0KCrt+vv6owUbf5ss45jjex9+Y8kGhCfU1zCgqozp+WtsmhpFdd863shBUVf3fJLPG6fq04zLUJo2UhPJ5p5SSDuK1b8VzIkYs0K72syv8dZmy4lr7Q8ptBbfn4xucVpgfpo+SXpgRpqicaGFVZk+ttWApvHzbI9WruDvS+/GPPa2/XMk1Mn2ACkTF6w+d2Vep9721oSijHUYy/TcnJDhEiwYAPfed1021/z8DPP8PiVt+ENiknTf0fN4xlbHi7S9GVBf99clMtnCnN4ot3nuk43aPxXc2dItuLqfe+wsr6W5y66lvqlK8f2mYSl7Yt6duaykkmpOXfBjZvHTdbQCR5X88oWMjoyjN3vSj2+ty5m/KxOeOJTsLA6vrcOIJAJn6ylK1HxaU3PJDUnJzB2GoxGll948bjbzQZmm2iTwEtCCAn8j5Tyl/7lXxZC3AzUAt+QUkZIZyHEHcAdAKWlpdPV3w8siYojQ1ZmqGjTBzaDgZzNt+D8yx6cfqtnV24uLUXzQ3cQ9JDpmpfPjnPWsu7dnWPL9CSAt99h5JpP4DpyxGfVE4Kc227FXFLCwEvbSP/oJViWLsWxcxf9xQW8/FjkXJ3Zg86QTFBDTg75X/0K2ddd54uvKy5i8NAhDh48GPW7pqWlAWA0GkOK2ybCWZsunRKr1fILL+b9114KBPnr5QH0YxUsrIiwNpqtNoxmi88d6/DFtxlNpqTdKpNBsCDq70ll9/Nvo5kWRLWiWWwGbBkWUtJMpKSZsGWYGR32BKaXSggBF99cNeXlKsYTemOia3LQhaJuYejv6mSgK1QkxUpI2fvyi+OKIZPVxqjTF//VEhbErWc6ujUNo9dL9cHdrKw/PU9HRv48Lv/Kt0J+wzVXXcuxut0BYR/eD4C2+eU4L76aBfYhLrhxM60FJfzfKTtZBYVcWLMy4jh7qtbwjJiHV2iRFi+vl+pDu9lbWTP2ohlHWJmECEz5FOyuuzQ/K6SK/8YF17HzaSO3n9jHu4sX84QhPdDWCFySl0G+2UR1mpWHWzqjBuVnmsYe3cm+VMQid0GU56bQsGVm4uiLbq2KZuXf9cyTZBUURh3vEinh8+rDv6TupRdC3N7vv/YSC1etITUrO6aAixWfF43zPvu5gDAMF7yzfSaQ2eYeLZJStgoh5gHbgL8BDgFd+ATdD4H5Uspb4+1HuUdPj96tW2n/4Y/A60WYzZRueShEuAULOvsfnubIyy/7hFVXJ4sv3oipqChE7Dnq6mj55rfYm5HBvuozxwpBQuhbpn9Z2sAABR2nMI26OFhZGThu6tAQVfUHWdTYGNLfgLDr7CSvp4f3F+RxIntsINT3+5EjLWQ7RjhaUUFzaQll551Hv9FIc3NzzKmmwDdPaDICbboZ7400Xu22qawMnwyxXIY6QoNPfnN1VKETXr0/5j5iBPd/UIlIwPGTkpbOgqrlgfp40dyia666lsVr1gWujVdS83nyeAvelhPU5hQHEnhyejroyS2MOMbiYwdYu+fNmJl5lrRi8ssWcXJ/ZEHTeDWxWhvqeaDhOE9pabRZfIklQko2vfks88oW8nj5CvQc5YUpZpqGXSF25hKLibWZqTQ6XbSPjNDm8reOUttMSMn1T/+KzpwCtp1/JYjoHgLwTfP0L8tKJhSMrxeABaLO8/loSxc/P94RqO1mSSDwfiKEz8pQXLWcC264BWAC09gJ1lz1yUA8Y9HSKp87+h++fVphGzp63/RrJCELm8hEaL740kv/+vqI+YWBkDmGASw2I0VLskJiQKeKORnTFky0WDYhRDnwnJTyzHjbKtE2cXq3bqX97nvGblBNI/+rXw0INHdXF4N//jN4PKBpHC0vY/fq1YGBMT8zk7JlyyKyQR11dWz9+c85rltBhSC/4xS53V0crKoKLIs5xUrQcvPICPmdXVT6LWKvXbQBr6YhpKRy315Omkbx2NJw2zL82ZiDnHmyk0x3HnvPPpvWAmNIolY8ok3srpg89m9vYfeLTQz0RE/xt6WbKKjIHHfQ1GO8AMwpRrpODpC3IB3XsBtHvwtbhnnaCsLOFlob6rnv/v+geX45Ja0+i8j+pSsZsqaR6hxkecMelowMRFhRwuPf7tzfxJOn+iIPEDy1QpRirkJKNm1/kZX170RsarRtQjPk4XY+idfjRghB0bIqcotLAy8ewQ/Vk7lG3u4b5O3eAV7vHRw7TjSX5UQJG3v0bFEhNIpu/wp/KqgIZEwOeLw0DDkZ8cIN83MSqvx/uiQaeH86xHqJSybmLRyj2cynv/9j3vjNw/FrZU4AS1o6SGLWlQRAZGC0rg2EVpSckc3aKyp4+qd1eNxeDEaNq7+2iu6WwZgvjvFeGieLOSfahBCpgCalHPD/vQ34AbBHStnmb/M14BwpZdyn6AdFtPVu3UrPI7/2uQJvvilqML6jro7uBx6ccE00R10d9j88DUDKGVW0/+CHPkGmIwTW1atx7t4dMah15eby6saLfeUwwgZPg8HALbfcQklJCc3NzTz//PO0t7eHtLmgqoqz+uy8ognqW8Lne4xBSAFJsDqcOFOtIbWK8HrAYAy0N/d5qDzew4EzFuM2+2/usak843LbbbfNWgvbXEUXWO2NdrpPxrZwzqX5LmcjPzzSwv0nTgESvDJyLlz/dEZLmg4G3IwLOlv57D1jVq5HW7r4VsPJ2AcJTNgQliUZuB/hku3Pkt/TRnPRQkrbuintnx94gJoze3DM68RSU4OrvDQgSPZvb+HPvz2E9MJ7FRZeXJPKFEbcBchzDmDs7wu4eMMtOqdLNOvOXOF0hJvBZMYzmvy8qhNGZGEwlUYtrZO3II303BSO7RkrxTR/SSa97Q6GByJr0Oksv6CIDTdUxlx/2l2eg6KtAnjK/9EI/EZK+WNq3tTrAAAgAElEQVQhxKPASnzDQxPwV7qIi8UHQbRFq32WfuUVLLj33sBnR10dxz93U4jICm8Tj4jMz1iWrhi8etEGOufNi/m2W1xcTHl5OW+99RZjwfA+tSQQ3OoXRG///giv7/gTLmvnWJNgwrO4AsuD2ogYbWUUZRYu2GJ8ZZuzhJu/+Kk5N7jOZtob7YGJzWPxYXNjTgU/PNISWtMrWlmJIIuY9N8TmZ5RFmRlYNYM3DA/h1+d7KTBkcAk3eHiLfgYEjQp8Wq+iU/PPTjMxn1OmnONNM0z8D6jdC3PQBg0DMA8gwH7wNgxh6yTO8VSNOaZjHxrYSE3FedNWcjA/u0tvPHbBrxeiRCw8pJSzv3k4sD6uSDogn8bICQso+tEU+yiyFEorlpObnEpBQsrcA4MMOIY4uDb2yNiMZNFGIqxZEx+QffZItpmTSKClLIRWBFl+U0z0J0Zp+fXj0YsG3j2OToKCij4pi8Dyv6Hp0OtYv42JwGDf+qgzGuujplI0P3Ag6GlOhIUbEcrKjhQVYnDH5gPRB1QW1paaGlpIZpCOtewjxLaaG/MoG7bCTJlFYNeC87Uk+H6DoTA6B7BbTCPiTBBqPiKlYEVmCGbSDE41h2Ex4TB46+qLSQpzkKszvm0NPQmPoA274Sm7VB+PpSsTWybOUiwK7JynS+xJNGHzXsvHY8r2KZyaqQPC7X2If4zvAhrNMHjf6kJWMqR2I1m7P7A97oBR+Q2MdiQk4bVoPFiZ3+oQPTv1xv099tVKbxXYWLY4hdj/ntYAm4paXV7wGoIPUCU/lvcHkYMWsz1AbyS9FEvpBgZCK8lB3wpbJ7MyQrsD6a90c6ff3MoJJRXj8M895OLaW+0R7jrZuM9EP7bRPs7EeEWq97bBTdujsgubTl0IDDup6TnMjwQr1i5wGQ7P+HvEwtbugmDSQuEbRiMIjDWzTSzxtI2mcxWS5vu7vSOjKClp+Pt70f6gz4NmZnk3OzTp53/8Qs8XTEuTCEo+81j2FatovnOLzP4yivxDyoEaRdfHJhaynXsGIacHAyZmQy++ipISVduLsfKyxFAeVMTed3dIbvQZwYYSE9n1GRk2GYL2X/8mJJIwVY62ku6vQqDGGXQVs2AXQbWj5r6cdiacaWMVXtP61/Epcancaa2sc19ESO665OwGknRf4BxLWpp/UuwOqPfkKs+WorFZhxfkDTvhIcvB88oGExwy/Nxhdt0xKdMJrFcmkLPKfH/tvFEV3ujnd/fuzvqqbJlmFl75UJlXZsErnnvMDvscWa5iGaNTtCKJQCDgH9asoDjPQ5e6LJzWV4m36v2xao+2tLFLxpaOS6jTFkW7V6NVf8sbr8FWssQ5v19jC5Ox1MxlnSUMeqlom2UzsERenNMjIx6MbQ60ewuDJpg8/Vn8lJPP/0dQ6QgWODVyHFBn8NFz5CLivw0/urCRawuy2b38V52NHazriKX1WXZEd0JXg/EbNveaOfVX9fT2x5dBF/77dUc3NHG/jeC6kdWZzKw0Mb+tn4uPXM+N5wzdyoi6IlPrQ31OPsji1qHl16JhW55dPafoOHd3YEp2QTt5Mw/RP+pZjyjo7hH3bicoBnnRa3fmF1oQzMIulvGn/lFRw/NmE7r54y5R4UQXwYei1aWY7qYjaLt5Le+xcCzz03KvrT0dCzLluGsqwOPx5cNWbKAkuaTEZmV49GVm8urF20IzJsnvF4qGo9R3tSEPTMz0qKmE5YeX1ZWhtVqjVEuY0yULXN10dNzbZQ2vrdwDRdezIya+hk12zG5sjCNpgOSVbanqHNcw4jWxEB6AzIlSDxKieYcxGsyA34loVnB6A3ePXgNmEezMI/kILVR//4j68NF+7oX3rCM3OI03nvpOH3tDrIKbJxd+j6Fx/4d+k6A2zm2Qdm5sPlF2hvtvHy4k+PzTHyswhesfP+JDv7U1Y+XsTf98LIAyQY26xlona5R8s2mQBba6YpDXawdeLOVBGrgBsgtTqVwUWbg7fS9l47TfKAHtyv6TtZdU8Hqj5cn3b8PO/p514PiK6zm6EkDfrLdYB0aYsjoxW7z39exCsmGiSxD4wCaV7LcbCFj2Evt8V68Egya4IdXn8mywnSefO8kRzoGOJhv5FS2OXq8m36MWMQqYishb8DDssMO2jqGaPXf2+5iG94CK1qHE2NLfOug1ajhdI9/IV+zsogX3m/H5fYGvl+wcNp9vJfrf7UDl39f+vCiCagpy2ZJQTqfPHsBxR6Np/51N9440+6aLBqjI2N9kkg6NC+v2NyB7/iPn6ieU8KtvdHOgTd3s+ePP8fr8XlzkinYvX97S4hlMgQB6672jRftjXaevHd3zBfy4LjYRLPMV3001G09XcykaPsR8FngPeAh4E9yms15s020jTc353iYysoYPX486ro9Z1WPZV8ClfX1rNib2JRSXbm5vLNuHY601Mi34Fifo1BWVsbmzZvZtusAbz//RGRKtxCAlxr24ez6GKfcS4gSuAZ4uTbn7+keLeX1gS8y5gP1rfe6W/CM1ONxHQUcuLLyGM3MQ7hHsfS0h0wZZbRtpMhmodFqwpmqJzkIsnvPZM2GFfxl24nAV5u/OJMUbZDjDS68IccM8b8GLQvus4fl1peptL4OwEHnhYAg39jIcc9HeLLwHF5YnYoUvtghIfC5isbJgLgzzGUTrSzAoy1d/KatB4sGu+wOgp8LBmBNpo2ddkcggHt5agqrM1OjlhWIhu6ycY9OYQi4AOMsdgfNZh5t6eI7DSfjB+hLOKvXzagmONbQA70+y757YRruJRmh97nHA8EFZoOEltbiwLw/thiE0LvEm2nGtTY3NGQhPEkhynF0zC4vmpQBF6qQcOnuIc5uHNG/FkeMHnaleALCZioRwI+DhNNn/vttdjbFtksUuTXOHDWwxmLF1R87uD0a0v8reoHH01y0Gr0szk9lbUUuAvjk2QuiWv6mi5aW33Ki+WHco32YTFmUlNxCcfH1gfXBrl5kO0vXujnjvDUJuZzHyybX0YXV7+/bTduR6FPURUtkChaDelzh3leb8bglQoMLrw/dZjxr62Qyo4kIQggBfBTYDNQATwAPSimPTvrBojDbRNvRy6/AdXRiX12v1n/8xs+FFLHVXZqNiyrGBkZ/9mReZxcjFgsZAwNUHjwYcHcGuzktIyN05eWOZZRNcA48ITRMWg29Q1asnu1crB1mh/dcvNooXm00kK0pEBT0luNxLQjfg/9fyULzDi7L+QkA+4cuCRFuXncrroEnYNwcMkFG6irOzT3A8tRt7B+6hB2uTQya3BR6+7gw5RkKL7qU9kVfHzN7mw7BQx+nfWQxLa7lHHJeSK+nhEhhFUu4gYYbiUAy9tA7mWvk4YszfEHeE/h9deFWax/imvcOo0cfasCKdCt1A854m8dEAB/Py+DO0oKo4q290c57Lx2n5VAvLmccE8HpIGDDDcuSnglA4aPWPsRV7x0eR7BJDI0DmI5ElkPwZppxrcn1mYYAvGDe5QvJ8BRZ8RSn+i9zieHYYNR9jEe46zI8W9sw6sVjChp/vJJ0p5fzDzgD4uzJIpA5Fta1eVhCAznL/oglvQP3iM9KaLAM4PIacBo8nHTm86emTRy1LwzpR5Fbo8St4RQSqxQ0G70TEnq6xe3Rd5qob4/9exS5Na4bNPtHAhExiohUA94hfzHssHXSn6Sl/91s8LA1PVT0aQJ+dM3pWd4mIkbs9vc4fOQn2O27ItaVld7B4sXfAeCF/9obkplpthowGscylw0mjbyS9IgyPuPVagynpCqb5vpI4RxNfAUT7vKM5QLdfbyXGx/wWVPNRo3Hbl83pcJtxrNHhRAr8Im2jwOvAeuAbVLKb0/JAYOYLaLNUVdH2z0/wBWjwj6AlpmJdLuRYcVdDfn55H/5zkAJj+D4taMVFdTWrPY1DA++D66dhM+6c9ErryKAVy6+KDLtf4IZWdXV1Qw6LXS9O4rF714UgUeIhj4cjZrsfjdnJsZAu0gLloabT+R8n0Lz2E3rE25/BWiMDr2Cx7U3al+EENTknsQsXBTbBngs43qKsqx8ruvnaMQQHdkVsGgDrLge3voZHBxzXfuO+9f63gl92siwZdEtcSdzDTy7JpWuDEPY+QlyFQmIHLZDuXZeFjvtQzSPJPe2nggG4J+XLghxxSY7cE6UmXJBTDbT+SYOY7GQT3f0sn9oOHZDKWFglJR3OmM28Waa8RT5km/0uC+rScM56sWbacabY0brcaHZJ16qwV1sw1NsQ4x4MTYN4k0zhrgy0+an0lOdhUSieeCjb/SyqMuDW8B7Fg97LR6K3BpfzN9B0er/He92wSMN/GTXVzhqX0iRW+M8p4FST2hSgxt4wm/BOl3OGjFQ7TIwKCS7UjzkeQQXOI2kIELkmvT/3wNsTXOxyKVxjuv/s/fe8XHUd/7/c2a2F62qJUtWsS3bMu4N00M3BEIooaQCCZB2l8uV5FIghZRvyoVc7kISygUnuRiCIYSE0HsxLrItF9myJcvqva1Wu9o68/tjdnZndmcl2diU+/F6PDDaKZ/5fD7zmc/n9XlX1TY3TdLS/woIKYlbpqoUVOK2+XNnHNOY29k+ym9eOcKBHj+9/jBycso6taaAf7908ZRltbT8mPaO+9CvLUYIzC37Ldv/bJ8yjE8mvIV2EklJfjgUR068NT4yd0XxCQmEu7N9lP98/jCvNw+l1N7/evEivnjeyZuz3kn16JeAG1GzGNwP/EVRlJggCCLQrCjK/BP6QBO8G0ibWTgOANu8ecz+wfezUkRNFZOtvr6e/du2UfzMs/iGh9PkayZGxIqCa0L9iAxq0OS5tOpiJq0SKHDV8IFzT2WltI0nNrXTHjqLbEv/TKJjWjHU0B8yNbZ6Vnn+wuy5Hlj1KWh5Fnr3gSDQKH+Elw+fRTTwOHI8W1qpxVF6+I2dRFteZau8mF3KQgDWSof5xWlBKhwxlZjNMAcnwJbxT7A7dJWuPfr/m8YaAaBAEhktsfCDMz3I2lphZiOkgG8ygt9tT5eRq8um68rpoBH5zHGSLPeLlSVc3Qt7XujMaSytQXM0GO6e4OVNh1JdIVkEzr5+IYe299HbbK6uAHWSXnNpzQl3ODAjT5u2dfDU/t4TZsid+Qy9XZMowIWLS1NG7CcD9f4gV+9uITrdnJ08b2kcm9bGSw+bReQ7H1rCd/66n2jG4lngslCW56SpL3AMX9H0+Nw587jwzCq2jE0w0T3B319to2csnA7W7bFx2pwerpjzPQRBmXaPqSgQj7uwWvMY7ypj5NAlhIfVJUeTYskojMx1ElnoZSgZWqTEa2dJuW9aKZoeyyMSF09ak7+EZPlpGEmbwpAo86yOfJ0dsnBq1JIKgtQjJRgTFE6JS0n9Qpq46VWlGi46pZT7PjXtGg+oY/e6e7aQyMFTBQF+YCK9m0q6lomwfzajhy9Esk8QGlyU6ve3CydqI/ijJw9yz6utWeP8ZNsVvpOk7U5UVWiWEZYgCIsVRTl4Qh9ogncDacvl2Vn23e8cUwDc+vp6nngiLQXyiRL+qaxaM6AkF+wUjTJbuAHbZAkICRKWMCigiAkERcIZqsASdxO1jWGN+rDG8hBQsBMgjo0EDrLVhWkik6Zx6QlIPZtglvww0Ug7S/PbWZw/xMunb2SoYKVhoe05fJBXH3yI7gM7M1qmpkk55+M3s2lbB994zNyOLzWxPfdteOM/s8432G3UOxysDatSC+3vlZEofdFFdEeXEJFd7A5dSYEkUWwRGIoryEoXfrmCriIrbbMkagYSnDGeoHWhg/9eYGPClpHLMANnHJzkgn2T7JpnpWGFi2AU8kIKHUUW1T1P/wKFDFJnRuKSz/CFZfyODJV35vV6Epm877L6UEollQuZk2Jm6A9td2tmRHyiQ3nsbB/l0V1dDAUidI6EUmTCZhF58NbTONQXMIyJWV4bX75w0XFPupu2dXDH4/tJyErK2LxnbJKuMaO060SorsxQ7w9yR3N3zjAclxbn4YopPNo1jICA1D6Rk7BVF7roHA2pKYJFOL+ulBKvPWUrpfVtS3+ASFzm+nVVqfbo+10jOo/t7mKHzr5LEgXOnF/Eq83mHvCLy7wUe+05ybSeHJdZnqa55SckEuOp87ni+JpBUQT6d34C/9Fz0gcFuOYruaPbb9rWwW9fb1U30C6rqe3a8ojEuZMWbIgzmP1ISdgypXua6lavsj07ZGF91KpVNVVWgy3B866Y4d7TvW5alBhDToEls/OyNg1aW3r8YULRqdcNvfTO799FW/u9DA09T87NriyCqNY5s/+VhJWOV/6V8PD8KSMu5YJkEahaUkR+qYuhrgDzV82iqMLDy5uaTCV5C08t5aJPLzmGJ5jjyw/t5i8NPVnHBeDfNvwflbS9G/BOk7bQ7t1ZNmhgDHw70wCO9913XzLW2bEhl/lUSiungzM4B8/EPPNydDYW+qPmMEqdZBRGBZkCJa2eCEX2QHgndnmYhM7+KypY6XJVsjNvJX2OMk4Zb+Ts6AFsJjF5CisqDcnNP/zL19nTZS7dMewgH70V9j2cOtdgt3Fr2SzCyVlfEAQ1ZhVQnoBbgnGuFfNg4SX0vDBKXLkm2RcJBOEVXvecz7+d5iWebHbNRII2b4YhN4CisGokQV5MptcusqAlzOpWTeWkJP9TiVZXkYUnVzvpL7Cky8gVEkFRmBMC12iUCafIqtYoq1sjvLDMyZt1DhRBnVMv3RVilj/BG3V2DpcnPfoyJK7ekMxH3gwyZzhueNRM00hlIpPQdRVZ3pJ3rB4720e5/t43iedQpZxaU0AkLpuOidpZHj595txjIlWbtnXwzcf2HZOEaU6+gy+ct+AtkzfNAeWh3pGcErYvVpbwQauLLz24i+6xbJWpKCQTIghw29nz+NoHF59wta5G5vSG8pu2dXD7Y/sMdncWSeBPt50+o2d2dz9I06HbzU8qZMXNNpPCqeFoRNpf+mpK8qNf4Btf6+bAGz0kYjLRyTgWm8SKCypTkuCX3+jinkcaaZcySZUFM3u1dPXSqs0+i0Kj7dgcJr5RWEysNag1NfX/Bz0ReiyywW5OBoLIRERVpeye5cTjj3NEiNOqxLPKXh6RWB2RsMuQEGBQUlIOHRedUsp/fFhk566Poyi51eKKLNK38+OUrvlfgwRUT6gTUS+hUB5W6yRKwsZY93JseIAQjoIOAl1rjGRah1zZUHY+3cbWv2RHSKg8pYArvmQej3SmmGrzL4kCD392ZuP2ePE+aXsHSVvvt7/D2J/+ZDhWeMtnSFxxGY2vvMhwVwc9hw6iKDIIAus+dLUh0GBnZydvvPHGtInMAVwuF1VehaJwG1v8pSlNmCWaR9w2bmpLL0W9iLIVRYqlgsiaQSNs5sTNeF0mAvndHFy4g+2DhRQOnkZlXEQK72P16MuG6/TWYMnqMSnYcSkRwzV6LL/wUi669YtAcgG/ZwuaF7/obMeatwsEiPlXI09WAzq7jTf/AaXpCQTgzqICNns9UzoJfOu0b7Fo7AzyH2tJ7qnTNf63FU5eLrVkE6vMUAky3LsjxPKxBIfDCZpS7v2ZdnIqXl/s4KWlTnWV1c2ClYMxegqtaCY6ogw3vhTIIlqgkr+2WRZqBuKG87vm2XlyjUt1jshAZnknIo1UvT/I3R39PD00bnjPq7xOQKDMbuECmwt/z8SMCcRtv6/n2QP90143FQpcFtbVFDGv2M2brcMpY2O9VAlUVclvXj22MDp6fO4clSQdD/7QPcTXm7uITzFFXzMrnzMnRFNSKaB6PC4q876tdnd6ZErmMj0fNYlOKHQUt2suLtdcAoGDzJq1gZ6ezYwH9mSVWV11GxZLHgUF69n7chd9/Y+RP/d1BNFIivSf4UTneXRv+1hqsilKOlrksr+aXetj0foyXn+4mXhMRgZaLHGOWmUumrRmyNeyIThEnhHD7LFlS7dKPDbmFrtNJbUavrJhEXObQgaDfoChUivPBCf4YNBCviIaNBh6KKjSvUzbvTThzL5+uy1OVIT1a19kRfkj5g1TQJZF+nd9HP/Rcyg/4268FQ1miTZyQj/nDx+8BH/zdVht6qbV7rYaSHMmcmVUOd65Sm/nNxCIEMuxETwWVfTx4n3S9i4ibZ4LLqBl3QLe3L4PS2hcF5oiPdJLqudy4S1fIOH08MADDyBPFTY+BYHyYB2OYAKBOMOSh5htHGtUlYiMFWZPeAD5IyuxxvJ06kq9IaxaqygKVt09mSqATDTMfg5fuBR3NI+m0m0cLE0niS4Q66hrq2R+UwtSXM6pTsgs23RaFAQ+eudPUlK2u19q4WfPHlIlCc523DX3AonkDlsi1HFbirgBfNDXwY3K97i70MVuh8NQLkBdaC4X+NcD8IJvG9FSBzfsvo6zYrMMXl17fRK3nOpKe4ZCtt4GWDmS4EvtMZYPqkRIEWAkP0B/j5OhuMKoicaiq8jCH871Ek/7c2BJwCdfVm1t9tTYAFjRFqViOK0umYpYa02cU1fAmwMB9tTYOFJmwe+WDPWvGoxx0ysTOb2vzOK+5YoFl+n1mhOygn3HEM5gPOWhlWmPpv1eMjuPe19rTRlRnwxUFDip8DkIhOMztm+aCsdjC1PvD/LhXc253GjwSiLfml/OKXGJa3+zxbQ/3u2xvVRJ2h0ci62p3ktRw5Y/t9Az9EPy57+ifn5aAEQ9MqRtJxoLTy1lsEMdKxrp0BPWsVDUVNX8kd9sQVHgnIo3OKtiKzFZoi9UzuXrP021daUpQdGTtMxvXj+nyyi87oizzaF+geVxkY9O2DJcJFQ4ilpwlRwmEXGTV70NV0lztpZGFhlrPRt/++mpfnQUHaHq3J8iiOmROlVsZC1BjaD7Xbfo+4aQIdNB824f6ghgEaOsmL2bJdWdqlPZNJlo9PMKkCUJzoQAWCWBB2coHX4reJ+0vU2kTUu5AVA6dx6tu3cyfqSZ0n2HqBoZB6uV9ts+ztbBCSC5oMciCCggKyiShCAriOEgWKy4PHYCOKZ+KICiRfIvyziR/mJi1nHCjj5kURVzi7IdR7jUQNjiwgQ+aYhRJZ/dkoeoSMq+YnlE4pzYGKfbXqNP8HJAKmZS8eCNFCDJKqWLWCbZV/6KgaTpUTJqY/3+QooCNl0NBdNp2kwJq9+VKQjUXXMT5evPZ2vrMEHhCE+3vE7HkIAohZC8e7E402lpFQUSoRpi46uw+naAEAcpjMWqizelE3ZtGDuTf+y7ATGpqpSReaTwea4ZuQAJKbWr3eeT+OYyB70ukSwpXfLv4qjC5/tkblxcQbRngtC2voy2KSgKdEYTWAUBnyiQAI5EZDpiSlJSJuGMKEzaBaozJGYFkkBVcnfaGVUY0VkYm5E3vU2ZNum91jXGxnO9KKKx7lUWC+eW5mcF6C2wSHyzuTulpiuQRKyiwGAskXpH2jGAYEImOBN2pSgQkxEHwhSWqaRveCKC1BXC0h1iQYmb5sGZe6RlQhLgLTqlTV2+CGuqCnLG7dIkXpnBWbe2DuMr9/BCNMT+ZPiWpV4nX6wq5ftHeqbMavDTpNdvrnhhb0XCd7Lh9++it/cxunseZKaETZLyWFD71ZyLe+uBVzna+1kUJY4iS0z0LcmSAEUniujZdusJJW42l8QZV9WabnD8/l2Mjm7Das0nFhujoEDdDLa130sgcABFjhAIJ4gnQrisOntSAQQkXK65hEaKaXvjXEOdM+3mjPbC6Y2l3nnhYlc7587egU0Bf/sZhIfn4yg6QuGip3EWtmJxpm0GU9XQ9Z0cPI2Oredm9Z0COIuOkFe9BWdhK46CrtS9qimOiQbCBPm+ddTWfhWfb3XOa7LQuR0e+CDIOs/66jPgwu+qf+/ZBAgqmQP2/Om75PubEIADSg33Ji5POa1lorbEzY8/suJtlVC/T9pOMmnrOXyQV/+4ke6mxtSxhNNN3OXFElSlaR7FAovq6JWSHoJTWczmQnKgCwKcccaZtLW1EQ9JRFoKp4jkP5W8Km1vVuV4kSt86Txxv45fzk8SH0v9/qq0ieKCl/hjnpdWm07uNsMwIQs63Jy+v0jne5meUGKiTMglU1e3lp6DHQjB9MKTqTKVgaOuGnb7VtHnUEmq6GzHVXWfSsT0rZ2hmF67ri40l+WhhfiliRRh09dTmxS1iXGvT+K2dS4Soq6gjAd9KGHhvouWpX6PPtZMMIO0qfUzr+DhcIKDSRXq4eId9OW1Utd/GqIiISkW8iwJrhRr0KqgAHtCCR4veZaoJUyfr5V/rvk6o0mHr1zqhr5WP7/c08n9ebFsO7ckZlklAyk7oTCLlJ+BXHHGNFQUODl3YQlXr57Dj586mEVgNDuut6Li1CAI8Nmz5zEeiRu8DvUG/L955QhvtAxlGX3LPhuFywqx+uxU2Kzsf7WTaFwhuq44ac6ojXphSottgXSuzFw2OG8HYdMISUHBeny+1Vm/c6G7+0EOHfo2Sk4Zojkqyj9GXd33pq1T0+7naHyuEAWoOvfHCKLR3srUMeF4MYVDg3mIjMyZLVmv5D+5plVZhomelQZP2NR9mDs+aOe7ao9y9qK/4HCl/f8URWCkaQOFi541qJRNE2EoAoN7PsFIs3l/6Z3Lyp0v0jX/IHV1e1U7N0XBMZkgZoWEVdLdk17TMpHvW4fbvYDZs6/C17wXDj4Oiz8Ma29SL+jcrpKxwcPQtx8i5rbMxvVDREBGyOh6GXgusZaX5RUsFdsA+HPibHYpC98RKfX7pO0kkraewwd56Nv/jqKTWyecbkJVi1Ij397XTqSsOj0yZ+KrbvbVJOJYQ+MUjXdyxsUbWH7d5/nBzx7B16wy/3Sp6Qmhq0jkQI1Ab56LuCSwqjWi8wxUmG09wOme/03FRNM7GR6Vy4gj0WiX+GvxJDtNVIhmcEkuil3FdATUNCF6wqYnQRr5OVQZYOuyUYodxSwvWc6BfVtZcdBD2agjea1Ak4yhrekAACAASURBVGsBY/ZCuh3lKbIGKmFzlD2KaB/IcoTUk7Frhi9kTrSUbtsAjxQ9R5PraIqk7XUdpjpSzj/0XZ+SrGnkzPBaMibC7y8c5fGaKsM7EoBPtEZpzpO41OfmsxuMC2akfZzB3+zJIVQwKog1CVy/HOHh/Jd4es7fDHVuch3l9s7bOGNiRbpfFQVZUPi36p/R5DoKwPmV5/OL83+R833p8fX6Vh4YN7F/PFkwc//TH9dfBwgjEazNgVS8MC2GmGUsyqM3rE3tgne2j2apCjVbFE0tUuS2saNtxNRgfyoUzfFw4VnVXDu3JEv6OBpPGFTDWj3ieTbiNW5ktwXcVl3/Jtsel8EqZn9XmoW9Toe00GVnvsvOF6tKEcaiPLqriyf29DAeNm5aTspi07ld9bwO9MGqT9E9264jXiL5vjX4x/egKDFAwO2al4qSr0nVACwWzzSxvnJBYu2ah2YshdGcYGTnU8i+XxoIkUZE2l/69xQBEkRYfJ4fV8lhDrxQSGhwZpK4uSuL+eDnlqd+a/Z5o6PbSSRyh705HiiKqp70HzWqJxeeWkphuZuKhQXs2jvA0Ze7IayuS765r1K25g+pcWfsA7Xdmc/I/PwC3Svp3qLaD+tHqeCVOKzEscQGOEvppda+hSWu59R+yLMw6rNS4I/hG48jCNBdaqd7tgMZCIhOcMWzQowaKwPVHUFq2yfxey2M1tRSkLeGo/WPssNhY104zIpINKteyVuz3zk5PrMMxAWJl07byMWXXJGjYicP75O2k0janrvvbvY+/xRAKpWSbLPTVzCL3ZW1jDu9+EIBVna1UBYYzR4dBqYBqRGWtc0BZ/tBLJPBtCuA4EJynobFvgIl3ksi1gFKFDnehSC6GKteyG/PW09MNBqbzh0I8tGmvVwX3UhpkqztzFvCFt9KTh9rYF2gMVXNR7xuvl9cmNb154rtloQkSGy8ZCMrZ62kYaCBv7+2CfvmA4adjcH9XVB45rR+BguyvZNKRm2UDTvoLQzT5ywi0n8lABZXK/HQPER7H46yv6BN/JnrfV1oLjcNXMGyyQUGAqagsNN1gFWhOgREEshYklK1TPVCpqpBX8ZtyzvYXWZ0Lf9ka4QvtoT5Y9VzOE8tIs+ex9rStayctTJ1zdDvG5k8MKKXpxgcPMyeLyNz1NbN3OicNNm1H6UuMjeLYCoo7HUe5ms1v0iVc9OSm0zrYoYvNrZNmbMyC0rqnxlJXivtVubEBer39hOry1elSzKgXzjMGLg2KBWwHBhDnIinpVMK/LSu0uCJumlbB3f8ZR+yMrUtiiYVGxgPc/q8Io4MBXkuw7lBCz6reCxQ6EhVd7HbzsFgxGALowUqXuxxsmVsgq3tI7wYC2esdDnEwLkcYTRHltYAZ8YtrK4q4G97e3ISzrckYcsgZgbJxm8vgWQCeL/XQv2K/KRkNkdZyaZUF3yI9rGnYHqrRqqrbiMYOko0MoDLVcN4oBE5MYnXewrV1bcdm9osibvq72Kw6zdc4E1mH9DNFdHAedD3JZxFR/BVv8noxOPpekaWMHroWvqbktJpAapO3YGU9yYjLSuJjFfgKT3Mugs/xLxTVAnU8djnHStSn4ICcsSFzZlHUfEyQ//0tfr58093kleTJmy5vGpzhuzUniNLdLz8FUOcO4BGS4KnPDFuEF/gXy0PUywEpiVI+nMAXWV2Di/wpMdQDkZlCyeI2qWUTOLRESuvhawIikJlPI5FgYJEgnnxOFdMBFkZyV5TzNo25ZJWdxncsCm7AScZ75O2k0jaHr39KwQ6/IRmVzPgUPXpB2ZX8+qCFVmj4ZzmPZzS1576rcJstst8Dwq2vg7sY+axjsAJTGbduXXV2by+7qKMzAeqGE1QFL7Q+SA14R42zb6M/Z4FyIKAVY7zyN5/Ye14I5s9br5XrKoXcklA1sxaw/KS5dT311PiLOHmpTcbSMHj//F9WnZsNbRMQaG1fAK/J05fUdiUsJl1iZLx22zXqJeu/bT9n5FMEshkGu9ORcw0O2ZNSrjHJ/L7GivtbpE2T9I7IGnxXBho4qMtu9jrOsxB59EksQYRkdtPu51rF10LwP6Gnbge8qfq1meboDzqNTzXjIiZ1dmsDdrfDxc+y8bSx7O6stxdzi3LbknVRw+NwOxwJOgrtqc724w8adDUfzYpdXmBRcKajDEXkxVGk3Z2NgF+OLuMb2/cSULBEG1f9liIz/WAK9ujzZTkTCbAmXae0NSFPqslJfUqDCspb1Ql3zbjUCOaNG7x4mJeIEJjOErqITOExkWzYNaPBr2d7jm662aS8xNUG5zn//XcmVdUjwxiBkDhPPz5LkYto1j9QwS86vsJOiXG8q0z0hxIcdmgFssFM+eCt4rNhzZz59Y7AbjcF+F8byJlAaAoEFIkRO+Z2IKvIyKbvuIi742ERgtJOP5CNH40fSL1riTqFn0Xj2cR9TuvZ/oUe0ZYJB+iqJqdWK35eL1L6Ov/2/TlGIXzCIJEVeVnUl63e5+VsMz5RpZqOH29WZnptUlRIJBSx6ZDQSlAyNrF+vz78ChBVksZJgfCzD4V7VHjeRaaa1z4863piukmdLN9jQz894CdtkiGmBB143T1+ARXTARTUjj9vZDcJyYJYO4hLMJnnlGdGjq3Q9trUHP2tE4ObxXvSdImCEIbEED1Vo4rirJWEIRC4E9ADdAGXKcoSu5MvZxc0tb6xOO89tATCNUrabUM0pdXwKHSSg7OriFL3qsaUXBKbxsL+zsp8w/jGpuFYPUgyFYUMYY1mk/MMkHEdhQlMsz+eXW0ls5hUcteVu3dMqM66SU23aVz2HTFremMCfov3OxdCwKCnODSgSeR/b9Lq0MN7VCLkASJb67/ZtbCr485B2SpjrW4am8o+/nfg//L8OQw/uhxqg8UqJtUPTzz4168CRe+hJdxaYKSWAFl8WJT6ZWuGcnjaXqk/62g8CoxtpLgYp+LuxfYaSjUYqalOi3ZlzL5/d/HGm1JVy+D63zrtG8B8POdP6fCX5xScx50HuWSsTPZMHYGIxY/OzyN/EPf9SlSp6+3sflG6ZzWJo24KSjsd7bQYe/jBd+2lLpUUxdXRioRC/JZfc0a7NV5WZHSZV9SpTfLaZyBFQWiMUTGcfhfxDbYSnTkA8RtC1IEzBqI8vBnzwBga+swhyIRXhkax+KPIY5GGJzITdTFQjvl8/Np6wmg5FnV3Jd6u0FDJ0w54xqkXpneq1o+Vw1/6B7ivi411dOtriCLO5/hSscG4iR39ydCZzydOlhREPsnEYcixE/JT0kVpKNT2/PpccxqUc02aGIQuuphwmhz6fda2LXch5y9NqbbYPYesuaY3Cu53VbG3Ln/cEyegzPBXfV38UDjA4Zjp7tjfKQghllzcjVlprBY8onHzYm1xVJIPD5iODaV0b0+BEoodBSO0fYPQBR8JGR/ljo0OlGCzTuY1c7qjklKhiP0lqobNlt3Kc8e/X8ksAAKdiZwSX6Wu55IqUA1TNtn1WfAnFPhjf9St8MmEr6eMjtNmtRNEJK2voKpNExWoCMq8JcxG23RjA2B9nkpClePxfjkMMyT0uN6m1zHz5SP8tNzrFRvuR2NHJs2oe4yOPPLsPFySERBssFNT5xU4vZeJm1rFUUZ0h37CTCiKMqPBEH4GlCgKMqU27KTSdr+8s9f5uBSJy9WLKJVnEfQokuIbCb+0VQcsswn39xLZXe1ejhDagKwc56NJ9emQyaccqSPy158EOQAkPaQKbKXM8tRxUC4g+FIT6q8ntIqtq84i5aaOgwGC4YvS9vVazOVdjhBfl+SgGTWXRC4euG1XDH/iiw1W8/hgzz83W+QiMcodsxhec25+AcHaJvYz3CkB0EUueG7P84KIGw2sc4EN/V/mI+MXJQjTpJZGGAl57lM7PWJ/G6ejaZCK5JFpEeTPOSQ9VtD9fiG/it1ianKQX20Vpks/izoztVN1vBPvZ+gOjrbtCVaO/RqSeeKYkINQ4DRi0xre6uti6A0ydLJ2pTtHqjT1ZNlVn49Np5lF7UEiXKfnZ2FFgaicbCJWGO7cXv+J6tKicka5GgpiXA5ohRCjNQSDVbOKCSHAKyrKWBBqdcQkFWTdm13JNjqn3kaJj1EYENxHk8NZXvFneZzc/v8cp4aHOPuTi03p/pd2BIRopL9+FfwLBjFxaKSQBaMi42gwIIjITpbx0gcY85PAfjsDNWifv8uRvf/ioL9W/D1Th2wu6nWTfdsR/bAns55xEyaaMKIBMHGmtV/PC6151TINa9YBSufLAiwzCXnVJVNpdo7VjjsFdTUfD7Lrm/27Ktm3GbtvqHhV4hEku8rQ8o2FdLqVAH/ngs464yb6JzdQW/XA3jkUVyCncqjA1S09mbdq2WDqbA1pmyf9f1jGAZmvFzz4tRITud2ePQzKGMd+hksReK6SlXipggCspJOCpPLoiAB/HLATltEMsypc+0J5ttlWsIizYNruKq/hI+4dnEg/1wOVVyTjhOod2gIDkF4DCYyYj9KNpWwaVj7abj859P2+/Hi/xJpOwScqyhKryAIs4GXFUVZNFU5J5O0/eief+O/FtyArJOITKlG0p2vHIxx40vpnXPAOoonlp9Si/3xHA+tZVZDOb4JmbOawiw7uJ1E6E3meWpZU3wxICArMi/1bWI40kNPaSUPfegWZElKP1OTdmUmiTeDoiDFuvGO/A/WSHPq8PnBEDcvu4WV53wjdeyh55/n9Y4xzrcWUx/p501nHhf1w8f7nSlisMcHm60HOLu6gFuuS6ftmtjWS3BHH1Kejb7lYR6bfJJoe4BT2xdSHZqNXbERtkX5g+dvPFPwBgAbRs/krMAqFEVmbUi1J5uegiUhCUheK4mx3Atg/lW1bHYl+MbQ0IwtUgRgbtdWRkMPI9lV0mQ4P8XCYDYRCYAvEedD/jl8bOBrCIYoeZBpAGYRjlBwehT7FZ9l94+2UjwWNVX1GutsVL0qwDPEaEdmNwkaSbAEif/GhSX5xC2WAR4p+SvzFBdXjpyHXbbS6ujmkaLnOOhMq4wWTyadJZwt7By82BAbzwwr5vj41oeWTOtK/4fuIb56uOvYLYWmWYFN1Zg5iUjqn1wPS2+EMsoRFJmr+59n2F7AZYOvUBc8yt2V19NvK2HpaBOeytVctu4i1vrcKTX10cEJrJKIzSIyt9jN4w09hvYXuCwsmOU1kN3p4D/8v+zs+DaKoNa1rnmCiv50mAm/10LbHCdRu4glKjNSlA7Rk2tH4huL4ZlMMOGUCDtEIg7zbCAAzlACIb8am6s87R04HXmp35jtPTgFGgYauPGpG5Ez3qxmqtB06A5Od8dymQ9n4fjIm0Ddou+dUOmh37+LnfXXo5BQNxbRBLLFSlxKitCmEBUqCuwezefhQJiP4uP3YggZGasg8j89fawMT+Z8rn6bqE/3tyISNRAvwVkA1WdC7UUwOZxbldi5HTZeRoMF/uZxo7gK+dBAFysjEX6e7+OlWW5qHSrhWupMcH5eYkqT0L0hkd8Opx3l5toTfKEkohI+BVqjAkeVDfz4sruZFp3b4X82MKVqeu3NcHl2KsQThfcqaTsKjKKOh3sURblXEIQxRVHyddeMKoqSNUsJgnAbcBtAVVXVmvb29pNSx+ue/CWvOs7MKX0RFDhlLEJjgd2UzHkmZT7QGGZVa5htlU8QsQY5u/U6uousPLnaxUCO9EWX1k9QPfEGN0dOU8NSJMXIb3pD/Hf1BEdKK5AtDsNMJMoyF7z+V3qXL8JfdAqdCf1CppMA6J4lKQr/uH8vO21/ZrmtlztWfBHW3kTP4YNsf/xRGkcEfnPBpcREIWvX9/XGMAsmZH5fY+PVWRZkQRVVXzIrny9WlVL7Rj8Trxp3+KLXghzINlTW1Hz9lmEuCKw3nJsJYbPWeHEuKsKedMcfun8fSkzWClDrLkL+h2t5bI6VrxzumrZMPbTUQR+9bytx61EsrlYQJ5E8B5HsqvQm1y4xE3Isn+jweSz3F/BV6SFWChBKnE9CyUcQQBLGcEkvEpOrmZTPwCluwWN5BkqXweV3cbgxgONlS5ZNXCbMYjmR7AoZOEKCEhQKsBikdmYZMRQUNhc+x8bSx9kwqsa3ExBRUHjYu527A6fkrIdVEnjoGIJV1vuD/PuhDhqDaZKxyutkd0C34MzEsD8XclgnuxIhlgcOkxeHQud8VtTM46BNYTAao8RmxSuJNA71UdT6Ao+Vnp+WoCkyleF+lgZb+GLXQ6wdb8x+pFZVAG852L3gLoaSRVC2wrD46Z0mMjM2ZEGzwQmPw6Gn1DYtvIQ9I//DULEt1TeCAmv2+PEF4qpzwXIfWbrDXDsNAEVgbZsXX2farkkjfkPFNsOlZX1hljQHIb8Kai9U29fXoLbenqfWM+wHix3KlsGZ/wTb7zOknNPGuhkZ2HxoM4+1PEYwFqTVb7SzEhC447Q7uHbRtexo+xOjR76JQDqxuzZUAgl4atxKb0zkE4URiizmQ8dmLUaWo8QT2RLck0HYqN8Ir/0Mv9zDaL6VgrEYvuR8uXexl0HtnUJa7KVWBUVRkBEybMCSYjFF4brABHcMZ1ganfllGG6GoRaw2KCvkc0eJz8sLiSOOp+vjkS5bCLI6y4HbZ4irPnVxOQYNXk1WfbNmWjYv4mbd/6IuG4bsigS4bDVZgxUDtRY46x1Jyi1yMx3KOhPK8nmtodK+fOgkw5xgGsLIpzpSRg+/wRQOP+HrKtRBQcNAw3U99dnOWc1DDRQ/+xXWNvZYOrMAAJ85tn31aOZEAShXFGUHkEQZgHPAf8I/HUmpE2Pkylpu+aRP/BG4VJTqZpIgn9t7aZusNgYLd9ECrekLQzBH1JoEVga+Bj3rF6UbT+i+xhdgTgbt44xV7Gzzyfx93Ir+3wih/Ok7HuSk/JN9Qc460gr4USIIvtsnq8p5fH5xSSIUzzWQ1dJKSFPGeqHnH7WypEE99YHCRclqK8M80KJj+6mRuaOBNm66pycQWULwwnG7BJy5owIWBS4d3uI5f6ZG+umKUXa3mxGEjYJSm5bgb06LxWaYW1YYGlPBPs8HzvDYV7vGaOk2MXjsdCMVHCn+dysyXPROBHmshJfyqBdC5IamIzR2DvOktl5/L3tMUZdD2Z2AXLcS9y/CkGM4PIMEU5EiI2tIz5mJKWrhcPcJj3BxZZdiJpbxLzzYKgJxjOTGQuAQCB+Ef7451HIUL3lkL6ZhWHJdZ+Z04Z2bFAaoThRkCKM2vEhIhxAYhNRGnV2Oal0YscRrPIP3UP8fdCf6v/7Xz/CtyPjJJIkvDAeZsSqi4kIum/OTIdDxjVG3N7YzTXdARKUJ+9XcJ9ajmt1KXaxSVWvND0JE/3U5y3h4VkXgyBwXf8zpkTt2CFA9elGNZMGTb2DkAoeyhv/CU1PkSktUD0+fRhXPYWK3jB1LUGjKhSMmzHDxkwi37cat3sBAcdS9gQCrN33BCsPv5R+mKeM7qoiOpzdCApUdk8aJHrHgga7TZXIgOoZGE3AmhtTke83b/0Jvzq0iSElYfpuFxUs4vbTbjcszn7/Ll5tvp/G3udZ41LHpUxS1Za0kaqxJfiHWRHDlxQQPJSVf4LT676C37+LXbs/iSzrvXhVp4QTTtie+Kecpw3vNYlYTMFqVQ8kFIFHRi28GTSJsakonB8K8YuB4fS5M78MF33XQGwYOKCSrGTKxemM//QkWQ+tzKePPs2h0UPGm0z1ruohV+hCqguL+NhcBW/w95hLwiT2BFew1LUrywxWUaDDuppPn7OZHW1/4pm936FEiuGWwOMoo9BdSXugg6MTQ+wISnSERRZEo8QEgZpYjJvHAyqJS/bNycR7krTpIQjCd4AJ4FbeRerRZw7285neDtVQGYV8ZYxSepkjdHG2/BqnH1lC0dEP8YtaG3+YZ9xxZi4k+aEhfrrPyVPlNv5caSVrxyRgWFDyojLuOAw4RXWhyixXV/bXG8Nc3aWLFK2dRqFpbBt7x15hfdEH+eXZp/JKqSWrbp9sjTJnUubHpzjSJMysLbp7TM/prikKy1SFFKISfLgrxtXdyR2jT+T3NTYGHYLh+FSQiuxYS91IXhvWcg/RngnkQJS9+RINVU7OmauSqqt3t6Qi+C9xO/BaRLb7QzP28xKBHyejzx8LvvLMPTzd+6uk8a1AdORsooMfBODKleX85w2r2LStgz/t6CAal4klZI4Oh0jIqsfXZ8+ex9eWBYyeS53b4bcbUPP0ZCMs1xFKnE9Log4LBZSQn3VNggRCMoQwkCJa05E0s+O50unoj8uCQuOFIkfF2ScssnikfZzxVzqJHB5lr1vg9ZoOqvP/TK1tFz/nK9QL67M2S+f2x5jwhKl3e7PGrqjIfL7zIZ4uuogxqZC8uMBH26Nc3a3/fvQKoQT5ll+r0s6TDL/XQluli0BpOYLFrobAcJyF76EvpyPBi1Z1TCgJNaaVTiLj91o4PN/NuNckRy4CZeEi+hzDU2h/Baqrbk3l+vT5VtMw0MCtz95KNBHFJkrc19PPysmg0VhbCyHS9PfjaneD3cbNZaXEk/WyKPBAX7+6gFqc3LXygzwwtF1XzewG/NPqf+KWZbeYlz/QwL6uv1BrlzllzpU823eE+/fdT09Q3RTV2BKc54nhsyhsC6rERx/ayCzbwQmzz6vfCLt/D4OHIDox5aWadLPXaeEvETtvBq3MsyaY65BpjogqEZ3CWaQ8HueWsXGuXXErXPRdNh/azA+2/YBE0p7XZXERih+bXamIyO8u/V2KLGeWOR00x4nE2Ln879V3puYMv38XBw5+nVCoZeoCjE2kPiRxwbLvMdr6TcQp+I4MPDJqVUmuAtqOpdyWxy1rvmzqeX8i8Z4jbYIguAFRUZRA8u/ngDuBC4BhnSNCoaIoX52qrJMd8mPTyy/yZuIpTmE/C4XD6QGigHN0ISXN1+L0q2q3F0utBCRoLDCxgUve447LBLUgm0m+JpHhNzQdMdKd/1RrlC+1RFEUJaVGFZLXa+97LDpIvq2EvfnTR/ifysEiq02mBlsmZQKXdseYtAhq0vWM499rnHp3nrehhrzzKg3H6v3BFEmTgCqHjaPhGYQW0TcDNYREIOlOqaVyOh40DDRwf/3z7G0uIjQxh3ynjU+fOTenekuT2k1Jbp77troYTgEtZEkkSeISSUH1mDTOHbP3kBAEvtB7PbXRdD2mk7zpoaUhy1wmc0nkmhxt9HmHKT51LpeefeWUdZ8OkWceZPClMkjKQQZqNzM698nU+WZhId/nu8SxoBEtGzF+0djGuu7Z/Fetjd/Ps6euFxT4+oEQ13SPoJCHJrk0h0KavMk4xG14LX9WpW5ToWQRrP+CqvJ0FsFTX4XE9NIno9pSJylUYG3DWEpNpl1rUE0qkO+PMeazGpqjmt5pc4HWCeYt9ngWU7foTny+1Ww+tJnnO56nwF5AfX89/aG00fb5xSv5Rd5KGgpm88DANtrG21KqMp7/Dg+M7WVAsnB1YIJrJ4ypuTRp2hGrhVFRSkk3Hsjz8qLbZZhvvLLMP4+MsSAW48ayUnUzmUOFm0kcZorNhzbz/a3fz7KL0+C1evnnNf+ccwHXVLVmoZAgLXHy2Xz4o36Dmq5hoIH6nfewtuGRHCo6E1ic3OWx8UB+MjuOmWmA2bydcd2igkVcv+j6YyJXU8Fn81HkLKLAXsCugV1TzieZWFqwjlrb1Vy5+MysedDv30X9zhuYyqtW41v6Jg4nJIqkxJTWEoqiCymS6ZmKGgngZBK39yJpmwc8lvxpATYpivIDQRCKgIeBKqADuFZRlJEcxQBvTxqrhh13MjT+OyCbkwiKwKwDn6Kg57wUYfpzhYXfzLcy4tA5CkA2mVHgNqubK1ZU8F9N3TwbDBqv19+TQf5mT8rcfDTK1d3xKVWJ+ncuCGocsl8usLO7UFe3XDZBGZI/qwzDDtG8TfqVfYpyzNqnEU/jNWqZglWk+JZl2KuNaby+eqiT3/cMc7wQgJ8ch1TtbccMiFsu3FlUwGavBwSBDaNqyJEF4Sokk2AI+5zNKCjMihVisdtwnD6LeQvqGH7oIPJo5qKiIGNM+ZUJGZm2qpf5QGEzeGal1Xptr6lkZioj5mS7h15yMeotwV++hbjNT7Bkl5FnKdDMQg4IS/ASIICXU5RGFkV7sQdnYwtW8ErsQzxZWEFJROFTbVGW+/ULgH6c6kkaur/1x+KU2L5uQtySKlrJDjf+NdWmSPs4kd37sYv7sMfqYd9mXVlpdJfaOTLXRSxHxoTioSgrDgboLrVztMqZ7QSQaeOXvtVwKGv6FwR83uWUl1+bUvXNxNPbITkIJ3JkmdA95LJAkElJoM1ipSCRYI/DkZKmmcKkomvCEXY67Nnt1OHmsMC/5C9X7eOO0Q6pYaCBb2/5dpZ9nB7LipaBADbRxrz8eVwx/woeanqIvx81ShaLHcUUOYsIRAMEY0HGo+OGzY0kSHxj/TdY0N/MZ1ofJIqCpMA3h0dSBLfBbqPe5WZtyUpWLrwySfqjNDjd/Oei9ez0N5ua4JiuGdrwPT4vixOKUlepgfyDMVB7Lvj9u2hu+Ql+/46c18hKuplmXZJLyysrsGVC4pExOzW2BLV2mZakxPKM8jO456J7jqWJx4T3HGk7kXi7Esa/8MRnUJwvp34bBoQCJQdvpKD7XPVccjG4Y4mdpyqsxhs0KApLxhL8bncE55JCJhuGuHWtUyVTuYiUrLBqNME/Nkey7MUUvbOBDnrpm/7937rOqcYkm8q9SlM3DcT5j74Y0bEw31uRx1P5RmnZBpeLG14d5qUCkd9rauJMm5mp7CMUhWs6Y1zWE8M6283TS9XQKlcEBE6bV8y+fImH+0Y4HJykO6yqiSbiiVRA12OFFgbieKVqbzvuOx+6dx7zbQ12GzeWzUIWhNS71OLeAQTFMPMjlbzpbeDIvEGskpWra6827DAjCmM6aAAAIABJREFU7eMM3rNHZ14iYxMaebSgng2jn8CiSAbylpnL9aj7Pj6Q+Fvy3gxSZHHgv+4/GLUFcEeWIh0oIxh9g4jj7yidMfzeIvzlr4GoI1qpIrIYiLF4DYpA6cEbye/+AFPoBbWLMXruZssXrcI+Stc2wIHH0zGdLv1JFgmNtI8zeN9eiKsriufsCvKXDaVJa18DdNXTTTNNC3KMQ+3bVECUE2lvce2cWfV1n7ExcLSxOYoCb0xIbE8sIM+ex7rSdewd3MvOgWMfZzlhttxkdekMJEW68soTcTZMhGi3WUwkeoLq8TcD71M9GgYa+MwznyEqH5ukfsbQb2gV8MgJJkSjrfDSSJR1k2H+6MsjKqoX+2w+3IIFryxzODY6I/mVhMgHgpMUJWIsjsb4QXEhx5NNWMuy0j7enpKmnlVxFv6on/HI+DGFcLps7mX86JwfGVSnueKA5sLevZ9jcOi5jKOqM8jurmdxTLyqHjFaSkyLBPByQOK8ZEBmFHhxQmL14h+8L2k7WXi7SFtfq5/nH/k5BbXPYfepQfz0c4sCdLWt4/zmz6cSJiko/HetPU1ktJuS7+EbjWGDTdden8hn17mIJdP2IKR1GSJwp9XLJX/vMU6GFgHPGeWMHu6lv78DR8zGqC2AQ3QxJ16WFB2n1aVjsUE6Jw6ywxvh1x+8KvkMY0MqQwm63OoCYZPhvna4+DOrUo/8Q/cQm3pHKLNb+GJVKWt9blWq0OrnLl+c3/hPTC4+Efh8ZQn3dQ0SPYahWyCJWYSu0m5lqdeZqu97CplGyoKUHEM5SKvNC5IVJke4K9+XVqegSj9umJig3uHAl0jgn3cOa8/6mrrb1bwRnUXQ8iz07gObi0jp9QSbRYSJflzSi9jFJjZ73DzsXsMF/vVcOnZ2aszroRG3dvvrLIlPIABW4QjjeQr91fsI5E0Ss6mqTUG24ulbTaB8K1nQLXgI6jgW4gp1rUE8oYROVSgYr9fuARyjC5nVfC1O/wIMq6gA+VfWYi1zE3nxCexH/4vJxKlMJK7RFWSsgOi1krdGxuN+M6e0cOj3jYQPGJUEnnMqyP/gPMOxHW9czHjkiK6+CiQUY/Aq/djP5pFZZAzUkXGgezGXdF9J/7L7iDuHDKRWUUR+MWg1VQ2948gk5ck5M8uYPhfKlsGcdVmeuVkOHbr3pqkyW0ZbsiRob60t2e0w/Da75jixZtYavrzmy6q6NWkf22C38cD+B9jZv3PKIOcuyUUoodqzzYRQzUQiO883j08s/oShnFwendOhqekOunvS6abs9gqWLf3PlG3hQy+upVgZzSJtfTGBVyesVFgT5IkKJVaFMqtikCloQy31egRYvOj7JzwQtB7vk7a3gbQBNL7WzSubDlG05FGKFj8NZBO3eOBKKrryCc6qxz5ehZRw0Rpdzb2z56dUkoICnzxqohJEJW47Cy2cVV1A17LCnORIdFmQQ3Hs83wp1WHDQAN/O/I3jowdYTQyyufbPsKSvupU2YIgUPK5FRxqfoPn7v8VL596ITtWnpM+r8DXDoS5ujvGPp/EzkILa0binHP+PDzrZ8+4n+r9QR7uG2EwGuOZofEsaiEC1cdkg5axMk2Ba2blc/eSmlQd4K3Zqr1roBkse2eraiBQ1aZJYkXZcggNpeNcvfYzeOFO/F4Lr85y82bcyqrhySw7IxDU8vb/GfydmItHzHFXvo+N+XncOPBhrhvZkHVe27hM+loYqXmSqKsPQbEQ9XQaX2emhMxMM5nxnf2qz8aqkclUDsIdK32Me63GezVoZSgiVTu+htO/ENFjJVbbTayug5K5H1An/87t8LsrIB4hItcx7vgckfG5xgro4FxZjByVifVMIAhgne3B+4FKYn1Bxh4zMaAWoORzK1Lfq2qz81EM+ToVhbrDEwwX2owhHjLbYgLt1JGIwL7+Gr5y6HZERMK+I3Su/RGKGAcFHGOqLe5I0EvAMskz+VtScRLfSUiCxKdO+RSPHH6EQCwjO4QC1xUu5449zxqDoM4UNi9EdWUKIlyWDJ6aER9u86HN/KrhVwyFc6UV1Oo0tdlH1jGz+2fgpWmGYkcxy0uW44/4iciRLAm5GXIRLU1NCRwTobqr/i42Nm40NY+4ecnN/Mvaf5lZY2YAv38XO3d9HEWJIQjWrGDNaoiXbyCS7lIZ+PWQh4+tvJ2mkSYUFJa5XXiG7kl66udGYcHZrFq18YTVPxPvk7a3ibSBKnFr2tqL7HwKxXc30y5yCqAIlNk+xuSKf+fVo0MsaxpncUPuHINmO/LjhT7ArfcDlakFo+fwQRpfeZGnLR7eLJ1LVb6PL5DPgjcHUZIqSNFpxXNmxTERtkzU+4Pc3dHPkVCEQqvEQreT68oKAfjQruYZUASd2jdLbaz+PU8cwi6JfLSsgNtqT2zU9fcsOrfjf+Rydi7zqOFoFPMgq5nxoI4VWiDOM/1nURg5nwAF2JVZKanbWMXL9C/emM15zEhV5nHtXIaA4oWAxBNjqvTagcB9ASjxxWmqiGZyvKzn+GJrWLb4fsL5LclQDhEEQWLRwu+oO+uM/IOR9nHGnmol1jazFFN6TPpa8JerZMjXcyZOfy2u9WUUXrUAgLa2X3Ok9S40ianVWsj8/KupqH8V/8j2dLL2DIhRN7ZgBfZgOfbxaiJ5HUTc3ShijPoJB46e01kaqjVk2wj5mpksbMI5UofLvyBroX3Bu4397iNsGDuDmBAjIIUoLC4hvsRBvWUfCgoeq4dXul5hPDKOTbJRV1jHWRVn8Xr36zSNqHZ+s92z2T2wO6dxP4AoiJxWdhpbetOp+/QhO+588042H95svEdzNohEc4Y7ecvQ4sMBtL3G14IH+Xv/tuzrdIPxjNAkDhT22uwMWSS0weqWEwQlE7vhXL+PARbBwgOXPHDMjheQ7XwhCiK3r7/9uFWBeslZ82gzz3c8z4VVF54U1aLmxZvLe/fNpp8S7LkXkha3rZb1rK/7SlY/ZUrtzFD3vqTt5OHtJm16dHc/SNOhO5ipdKKs9MMsWaJOChPbevE/14YyoVssk6qat0KS3gvQPr77g+u5f8Akg0MuOxfNPzy5EAnIXMbjfJQ/Jm+0sHbNgyc8Xc57Ed3dD9J8+Ick5JBBYrVW3gBHX6a5KJBK3qwPvjpjnPlliIxD/W8NhyNyHX3RHyJiZdLXQue6/weCbE7GNJgROJ3ETJOu9ccEXp3IiEWFqtpxWV0skHpZ7kzQHRMokRSWu82Sg4usXfMnRke3caT1Z7oHiuR5lxmM8vUYfuggkw3TSF6SmPS1MLDgYcIFh3Xt0mzrziVc1sZkySEiji78Ba+lLqkMfYnCkQsBkEdH8IeaGa55irCnHcQ4UtxNQcfF5CdtZ9XuMtoRZiKdpxbGxAAFsjd1XF9GNoSUHZzn7GPbRDYMNPDA/gdoG2+jwF7AvqF9xJIhS1bPWq2q8GatTHmpZi7yDQMN3Pz0zcQVdTxqWQ4MREBPrvsPwBNf5likxFNDG3wim2vX87wUY9FAC0FRYEgS8YsiEUHM8pDVZxJYGYmy2eNO2pSBqCjMicXptFmTli8CS7017Au0mdbAZ1MDhetVmgIC51WeN21Q2+mgaWQUFNN0he9lTEfstGtyeaW6XbVUVt50UgkbvE/a3jHSBm+NuEFuSdj/RXR3P8jRtl8TifSgrchvOj7Nq9IlBGQ7beFY0qEigapE1dv1qITtM9xDJR0cYAmn0MgCDhueIYounI5yvN4lRKMjzJq14aR/gO8m+P27ONj0LYLBg6bnHY5qwuF2IzFW1DRFxWOx6aVu+jyDKXWilq1AAMlKJL6QDvlceqtGic17JssmLfV3wgpSdnxBPbSv6oWAxBN++5TXZqLGluALc2Zji7UZjlutxchyjETC3MbH6ajGas2noGC9IWbZxLZe/E8dRQmbhyDQJGv+ipdVJgzG9iogxtzItgwVdZIjFLd8hKKjl5uWPVV8vczQLWkSl3ZAyL+ylpa5/YQf7aSiPV/3WPN7M/FWpP/HY8d0zMSiczs8/21o3zL1dW8zGuw26mvWsdZRyspIVP1dXMXaRVcZiGuBvYCDI+o3q7cD+79MsN5JdHc/yKFD30ZJErd83zpqa7/6tm343ydt7yBpg+kXykxUV91GPD5BJDqI3VYybW4+v38Xbe33Eo0M5JQEnEgcb9LjqdDY+C/09T+e46zqBdTMIv586CFOYR8Av+UWOkgvFJfzmE6qNnO83R/kO4WZxDUyhX5eUATq+lx4HHMZXbCUgkkXvn0vpm3pMozuu/f9PzoGHyFODJWVWBEFK46ElSEmkJSAKQ1QFBH3rs9jUSwEap5lIq+VcSHK4eEy5o2uwentpdPZhsM9yt5JKUu6NlMsK17G1yrzTDzPZg5RdLB61R/w+VabeNOqGKh92BBDzrzRGM/r7fYUkaod38DprzW5LXveNgvzk4twWed4KP0H1ZFo/KVOxp9pM71uOuQibpqdrd6+9h1DKtCvpj4VwFOqnrPYwZEHffvepsocnzfr+3h7MBOp3MnC+6TtHSZtGrq7H6SjcyNyYpJwpJeZ2lwIgo1FC7+VFW07V4ya6qrbqK3996xyTsQgzDSOFgRbltHnTMrQ16Ol5ce0d9w77X02awnR2KDh2ItcyHZO41S28rFSN273AoLB5ikIYG543Ivx+VadMCL6bsNMbDWyMI2PR+b71zYQgcABEvEJ4jmkVVmPUWBitIoOIcCYZZwdIcuMPRctgoWrFlzF4sLFNI00sWdwT3Z6nByQBIn7zvk6462381ZsoOz2CoqLPsDs2VfhGKtl/JVO4oOTRCvaaZv9ALH4wXRYjZn7zahQwD2wmjl7vmQqUVNQeNG7nbAUJT/uZcwS4AXfNqoj5ZwVWEV+zMP8aGVOiVn+VWmTi0j7eDo3ryggFdhIDM889ZSUb8ebDHQ9uX8I62w3E1t61NAmyfy+7wrzjgzbRAMe+jg0PfHWyq8+A5Zdr4ZuGTwMffshkvEt1F0GNxzj9/g+/n+B90nbu4S06aGXVk1OdjIy+to0d2izvURZ6eWMjtUTiXTnvHbtGjXBstkCeixESyNY8fg4I6PbmAy1E08YnSQqyj9GXd33ct6rJ4kqQbsv1ZbCgjNm0HZzVFfdhtNZxcDAM1lqTq1/I9FBAoEDU/RVNo6HiL6b0d39IN09m03fnc1Wgsddd9zvAKC4+CKKiz5AR+fGGaWVMYOCwC/67bRFs20YMwNvXjb3MmoLak0jyWvQ7KaaRpoIxoJThjNYM2sNH3S2Uyh3HBOXModqN3mg9wUGex7EiT+tCTUp3OmoJhRuT4bewdyKQhGp3PF1UymbjMx/lz1k8O7U27BJgsRNvhu4YuupWBQJBZCLJdweD0pcwb2uLItE6SVjAIP37lXDjKB6xAp2CwIQ6Rgn3ntsaY3eE3a5ndth4+VqpgpBgsvugtJTZqZeLamD9Z/Plp51boeNl6U9W0Ur3PzkSU06/j7eu3iftL0LSVsmtm7dQPA4FzwzWK3FxGKj5FKF+XzrkOUoDvssqqtvMyUoRoKVG6qL9SZ8vtUpsjTm300w2JS612GvwGorJhDY8xZblsb8ef9GTc3np70u7Q4+81AAGhF9J0XkbxXTRQvXS2Sz37VIddUttHfczwn3wstRl4m8Dam0Pq93v87A5EAqVEEuo/SZQp8y6LGWx9g3ZFSBGRKDJ8MfOuwV1NR8no5AFyP9j+NI9DHdt6AAobiAS0pflyvcVnXVbfx1zEpT2718pCCWIoyTcQkl6kYUFNzBSrxtF0FgDq2ObnZ4GqkNVxokak2uo4BqkH/Nwmu4Yv4VgDE8w/6GnQwcbGfW4mqWrlxzTH2XS72ZSxU8E+RSpWo2vEpcRrCIpqTybUEuSZw+VqEmRQsOQfGC6TMuTBEH7n28Dz3eJ23vAdKmOizc/g49XWLtmocMpGRqG7NsuN2LUZTYcUtaNPh861hQ+9WUdC8XaRSQWJNR56mgT+p8uPn7/x97bx7d1H3n/b++98o23jHY2GAEhmCDQwhLHEhCaQhZCiQN7XSSaTPTQtsk01mepzPTeTrt9NdpO3PS6cwzne1Mn0mTLqRLkknSptkIbRKWkBAWg1liDGYzCG8Y8IqNZd37/f1xda8lWbItW7Jk832dw5F1dX31xZKu3vezvTFNL0N926SmFuH1NmN3imVlzkfTUsekbnC0WO+nvyPS/zE7ezHLb/110LZwtYrWcb5F1HVwIQiRRoorG9PsC0mZWibk4dL58eLQxUNsfHPjgLETJakGFRk+BFCvzSYv9xZqrtRwtv0sEklJqsmnimbg0lzoso9ppiWWgvonBpnUICV0GXDZ0GjU5rL1Sn8EMNQmJ1oEgm/e9s24G1mH0nuuI4KV2dCkL8kn6/ZiJ5Usr/kwOwc2nqQvyWfqp8tjsVyFYlygRNs4EG0QGu2IlCsJT1ZmOV0Bka1oyciYx43l/xhVjVnsGSgew0eLNBbM//sRC6dAAdfZecwfFRxek4hNpLrBeBBttM+qO/wDBhOl0cwZCvx7Xbq8M+p6tXB1b7FuZImWL2/7Mts820Z1jJJUg/tzvNwwSTqibTAvbgP4rwgG1MNFFzqmNNHQmJc3jz6zzzFkT1TnYO+5jqAUajwIrLtTKCY6SrSNE9EGwV/QgF+wVBI22iRSyZ96p5PejCS2hEglxZWDYXRbc7kiYkWTuoYUMIKsrAV0dUUndAYjK6ucBfP/ftDZOfH8oo92NItdNxgvwVFf/xwXL/6W7Oxyzns2R5z0Hbh/fcOLSNNLr7eZvr4rYY5qrTsWkS1r8Ou/RHhUZ8H875CVNT9pU8uHLh5i05ubMEYZQYR+8TZvkr/IP0S4mUB1j8a2zqFtofIn5UectP/5hZ9nzaw1I7L5iTd2CtXs6aOn5gr4DIz2Pst1G6K9Bh1AYIerQjHRUaJtHIm2cNhCLrQrMly0JJxws/cbUfcgVppwUlph0FwqYKDFThhSUvIB6Ou7jJ1mnD3rUQoK7h3TMSXDIVrhpus5lM77aszXPlikMyUlH01Lw6WnO0Meh5da1yme8QcxE7xWneBnkLL/9c/NvZX8qXcmpUgLR+CQ1xQtZdgdp5F4ILeXNbaxtJ/z5hQO+wqZXbCGZ6qfiegEEDjxP9BurvFqI5NckwZ4NI4HQhsarh5spvdkK8aV4XejOuiCgsdvTvzIEIViDFCibZyLtkDsCMxgQ2EjzW0b6GU49OVvbu6tVNzyfMTnOfrhX0TozBRoWpozv2q8FPT3p2PDRzfDoetZpLhyyc6+MWJTx3Cfu7HxZeobnhv2c2dllePr6+DaIN2xBfn3jmpdkaivf44Ttd9GShNNS3Ve6/HKiyde5Im9T2DI4OjbrOxZdPd1D+01CdwxpYgNUyZRkJoy4GIkXEp2RuYMHl306LgTZKPh4pOH8dZ1RHw8fUk+KYVZXDtxJWg/keki974SlSZVTHjGpWgTQuhAJVAvpXxACLEZuBOwC2k2SSkPDXWciSbaRktgmjE7+8YhiswtS5+hBvvaRr1WNOdhsrNvHDBTbrwRmqa2x4dcuvQ2gwsqaxDwcKJv9mvRdfUk3d1n6esbng1SNIRrOIgl40WMDxe7y7Sjt4MTrSecbtVQ66RA5ufN5+aCm4ecSH/o4iG++Nsv4jW96ELnGyu+cV2JNZvecx20PH3Emt0GpJbkkLF0Gma3L6hDtWtvI20vD2xsUo0JionOeBVtfwVUADkBou11KeVL0RxHibbBidwdOPxi/4n2xT0Yw2vSGFq4DXecymiJt7Hx9USgZVD5lPKIM+KGOkYy1qSNNcNxSRjMnWE0tlmK5Cdcal0AGcsKr4sU+bgTbUKImcAzwBPAXynRFl8CB9ECw7LOup6pr3+O02f+fcjIWFHhBjIzSx0xG6k2MZYU5N9LRsYcOjtrrjtfVcXEYqg5cAV/svi6+AK/3hiqG1nLSkHLSkEakpSC9AnpyT0eRdtLwD8C2cBfB4i224Fe4B3ga1LKsBWtQojHgccBZs2adcu5c+fGZN2K6wvblszb2zLE+AuN9Elueq5F9z4sKtyArmcCViq7s/MYYHXPnjv31AC/zIyMedx+22+jeg6FIpnpPddBx04PvWfboSc4G6BNTmXqZ8pj9oXde67juovoJCOXflbNtWORut/DM9Eir+NKtAkhHgDWSyn/VAixmn7RNh1oAlKBp4DTUsq/H+p4KtKmGAtG2plro+vZpLhycLlyhjXAd2BTiUqFKiY2YRsYYtRVakV3DvdXieiQWVFEyowsvA1dCCBlRtaAujtFbOk910HLk4dHVDUykWodhyvaXGOxmGGwEnhQCLEemATkCCF+IaX8I//jvUKInwJ/nbAVKhQhTJ/+SRoaX4rKKstG0yaxdMlPokpH5+Yuo+KW55JubIpCES9y180Z+IVuSC4/X0Pq9Cz07NSoImSBdVOdOz3BZb0GXN3bFPb3RIpG/qOLlHCLMb3nOrjyq9oRl/n2HLpE15zGmHUX25Zqek5q0qZgkyLSFkhopE1K2SiEEMC/AdeklF8b6hgq0qYYK+zawMtX3ufasFKhguIZn1H1gwrFMGnbcoaudyOPt0FA1qqhU2W95zq49KOjyL6R+epmrChiyidLBz3+UI0Win669jbS9ptTAwVbqoae6ULPTQOg71IPsivybFC9IJ3pXxkyQDUkl5+voedQcM2ylu1CS08ha2Vx3MfOjLdIWyR+KYQowBoudgj4UoLXo1AEkZu7zBFf9fXPcebsf+H1hr9at10DVHRMoRg+k9fPxXepJ3LNk4Sud+sxOnqDUmVdexvp+fASKdMzMXsN+uq7RizYALr3NZE6Iyvsl3dQIX2E9K2qn7PoPddB25tn6KvrHPiggIIvDoxo2oJYy3DR+UEDRlO/y4/R0kPTfxwg7xOlI/6bdu1tHCDYAMxOH2anzxlDkwzzApMu0hYLVKRNkSja2w9ysOqzmKYXITTml307qa2dFIrxwFBdpTb6lDSkKTF7fNA7coE2GLYnatfeRjrfqwefgXnNQAY0TaTdOIWCzy0EcPYzWnoCFgoFj19/nbCR5vDZBP7dBqPpXyvxXewJ3jjCWsfecx1c/mUNZsfgZS5ppZMp+OKiqI4dDRMl0qZQjCtyc5exbOnPB4g0JdYUipGTNjuHgj9eHDlC42dEdlkCUmdnY1z1IXSBNCR6pgvzmoGvaaBvc9vLp2h77bQzKDgcvTVX6D3XQU/1pfCpXQM6dnqGJVAmCkMJNnTIudM9rGNlrSweeCxDWunpMKItNOrqa76Kr60XDBOzc3BbRpv0m/KHtV+8UZE2hUKhUIwb7DRj94HmQYXTcEgtySF33ZyI0ZkhhcagB9fAO0i0T0DBl66PaNtQHaKTbpwSdeH/gBo0DSZvmBfU7du1t5GO7ecx24bfLKZPScNo63WiuvrkNLLvcidNTZsSbQqFQqEYd9h1Tt1HLuJrHBgRG4yhxFogoxJuQyAm6eSum5MUtVLxovdcB5efqwkrnKJ5HcLRtuUMXbvqB4pBDVwzMvFduBr1MTNWFJG5rHDMm0pUelShUCgUE5a02TnWv7m5wfPWAJGuo03SMdr7wJQgwFWYgXBpZN5aFJVIsveNJNxEho6ek4Y0ZHDd2jCQ1wzaXj5F79m2AfPGxns36qANB/TXBo4GLT0lfPTOZESCDR0y/U0iyfo3V6JNoVAoFOOWtNk5FDy+OGxnZqyET9aK6aQUZdKx00NfQxcYZthREINN9s9cYQ3uDTfmoufQJS5T4wi3oAiSgEnl0acPoyWWInGoxpFYCDbA8ikVxMTOeSQp2kSgRJtCoVAoxjWRIiOxjJikzc4ZsnEg+04312pbg2vtBEz+RL9I8V3uCduc0HPoEk1NB5BeI7ihQsK1Y1e4dvwKkzeMXOxEEmUD6r5i4DjRudMTUbBlfTR2M8/SZueQtap48Dl+gGt6BpNK8+g9045wCVIKM8lYVggw7qKZSrQpFAqFQhED0mbnUPDYzc5MsXAWWJPXz8U1NZ32t+oGDI0N163qYELbK6dIKcqMWmBEityF7W415KCdrUPNm2vbciZitDEefqH237PzvXrktb4B3aBDWV2NF7FmoxoRFAqFQqFIAOGm8A/FpBunkB/FqJCRPAeEF1gD/FpdgoLH+qNyYZs2UjQmlU4es9Rj77kOOnZ6MDu8UdcvJhLVPapEm0KhUCiSnItPHsI7yOy5cKSW5iJ7jAEemaEp0CEtwIZAn5KGlpHiiJ+LTx7GW9cRvE9BOlqajit/UlhxGKv6tYmOEm1KtCkUCoUiyYlUtJ/10WJcU9PD+3MGokHBHy+mr+kqba+ctrplNUHqDTl4T7YPfyG6sGy4IpGmRe0ykVKSTeGXlkT1O9crauSHQqFQKBRJju32cPVgM2anFz07NahWLKUokyu/qsUItW2yMeHKyyeD/DgxZXSCDcioKKR7f1Nkq7BobcEETF4X2/o1hRJtCoVCoVAklMG6XNNm5zDlU2WDjtAwBmtg8JNSks3kdXO5erCZa9WXMAObIDRrPlnmskIuP1+D2Tp8B4FITP7EvHFX5D8e0BK9AIVCoVAoFJGxo3F6UcbIDqBZUa+02TlM+WQpUz+70EqHghUR2zDPEY5TP10+pDLQCyZFflCoOrZ4omraFAqFQqEYJ9jm50aXd1j2Xa7pGeR9onRA1GuwYbr2WA9f89WgJgktO4Wce2aTtWI6XXsbubq/CT0nFVd+Or1n2gc0RiiGj2pEUKJNoVAoFBOUsA0MArJWFdN3qSdmIy9skZh+U76KnsWRcduIIITQgUqgXkr5gBBiDvA8MAU4CHxWSjn6hLtCoVAoFOMUO2XasdODr6WHlIL0uES5slZMV2ItiUg60QZ8GagB7HfePwH/JqV8XgjxJPBF4L8TtTiFQqFQKJKB4VhrKSYWSdWIIISYCdwP/Mh/XwDescCXAAAgAElEQVRrgJf8uzwDfCIxq1MoFAqFQqFIHEkl2oB/B75Kf5Z+KtAmpbR7ky8AxeF+UQjxuBCiUghR2dLSEv+VKhQKhUKhUIwhSZMeFUI8AFyUUh4QQqy2N4fZNWznhJTyKeAp/7FahBDn4rLQfvKB6A3dFPFEvSbJiXpdkg/1miQn6nVJPsbqNZk9nJ2SRrQBK4EHhRDrgUlYNW3/DkwWQrj80baZQMNQB5JSFsR1pYAQonI4nR6KsUO9JsmJel2SD/WaJCfqdUk+ku01SZr0qJTy61LKmVLKEuDTwDYp5R8C24Hf9++2EXglQUtUKBQKhUKhSBhJI9oG4W+AvxJCnMKqcftxgtejUCgUCoVCMeYkU3rUQUq5A9jh//kMsDyR64nAU4legGIA6jVJTtTrknyo1yQ5Ua9L8pFUr8mEdERQKBQKhUKhmGiMh/SoQqFQKBQKxXWPEm0KhUKhUCgU4wAl2qJECLFWCHFCCHFKCPG1RK/nekII4RZCbBdC1AghqoUQX/ZvnyKEeEsIcdJ/m+ffLoQQ/+l/rY4IIZYl9n8wcRFC6EKIKiHE6/77c4QQe/2vyf8IIVL929P890/5Hy9J5LonMkKIyUKIl4QQx/2fmdvVZyWxCCH+0n/u+lAI8ZwQYpL6rIw9QoifCCEuCiE+DNgW9WdDCLHRv/9JIcTGsVi7Em1R4Dez/wGwDrgR+IwQ4sbEruq6wgd8RUpZDtwG/Jn/7/814B0pZSnwjv8+WK9Tqf/f4yjP2nhiewbb2J7BpUArlmcw/ttWKeU84N/8+yniw38AW6WUC4DFWK+P+qwkCCFEMfC/gQop5U2AjjXeSn1Wxp7NwNqQbVF9NoQQU4BvASuwmiW/ZQu9eKJEW3QsB05JKc9IKb3A88CGBK/pukFK2SilPOj/uRPrS6gY6zV4xr9boD/tBuBn0mIP1qDm6WO87AlPlJ7Bga/VS8Dd/v0VMUQIkQN8FP+IJCmlV0rZhvqsJBoXkC6EcAEZQCPqszLmSCnfBa6EbI72s/Ex4C0p5RUpZSvwFgOFYMxRoi06igFPwP2IXqiK+OJPFSwF9gKFUspGsIQdMM2/m3q9xoZoPIOd18T/eLt/f0VsmQu0AD/1p61/JITIRH1WEoaUsh74F+A8llhrBw6gPivJQrSfjYR8ZpRoi45he6Eq4ocQIgv4FfAXUsqOwXYNs029XjEk0DM4cHOYXeUwHlPEDhewDPhvKeVS4Cr96Z5wqNclzvhTZxuAOcAMIBMr9RaK+qwkF5Feh4S8Pkq0RccFwB1wf1heqIrYIYRIwRJsv5RS/tq/udlO5fhvL/q3q9cr/tiewXVY5QJrCPAM9u8T+Hd3XhP/47kMTFMoRs8F4IKUcq///ktYIk59VhLHPcBZKWWLlLIP+DVwB+qzkixE+9lIyGdGibbo2A+U+rt9UrGKSF9N8JquG/z1HD8GaqSU/xrw0KtYvrQQ7E/7KvA5f/fPbUC7Hf5WxIYReAYHvla/799fRQ9ijJSyCfAIIeb7N90NHEN9VhLJeeA2IUSG/1xmvybqs5IcRPvZ+C1wnxAizx9Fvc+/La4oR4QoEUKsx4ok6MBPpJRPJHhJ1w1CiI8Au4Cj9NdP/S1WXdsLwCysE+NDUsor/hPjf2EVh3YDn5dSVo75wq8ThBCrgb+WUj4ghJiLFXmbAlQBfySl7BVCTAJ+jlWPeAX4tN+qThFjhBBLsJpDUoEzwOexLtTVZyVBCCG+A/wBVid8FfAoVh2U+qyMIUKI54DVQD7QjNUF+hui/GwIIb6A9R0E8ISU8qdxX7sSbQqFQqFQKBTJj0qPKhQKhUKhUIwDlGhTKBQKhUKhGAco0aZQKBQKhUIxDlCiTaFQKBQKhWIcoESbQqFQKBQKxThAiTaFQqFQKBSKcYASbQqFQqFQKBTjACXaFAqFQqFQKMYBCRVtQoi1QogTQohTQogBZsZCiDQhxP/4H98rhCgZ+1UqFAqFQqFQJB7X0LvEByGEDvwAuBfLeHW/EOJVKeWxgN2+CLRKKecJIT4N/BOWBcig5Ofny5KSkjisWqFQKBQKhSK2HDhw4JKUsmCo/RIm2oDlwCnbS00I8TywActA12YD8G3/zy8B/yWEEEOZ5paUlFBZqWzzFAqFQqFQJD9CiHPD2S+R6dFiwBNw/4J/W9h9pJQ+oB2YGu5gQojHhRCVQojKlpaWOCxXoVAoFAqFInEkUrSJMNtCI2jD2cfaKOVTUsoKKWVFQcGQEUaFQqFQKBSKcUUiRdsFwB1wfybQEGkfIYQLyAWujMnqFAqFQqFQjD2efbDr+9ZtuPvXMYmsadsPlAoh5gD1wKeBR0L2eRXYCHwA/D6wbah6NoVCoVAoFOMUzz7YfD8YfaCnwLr/C1u/BoYX9FTY+Cq4lyd6lQkjYZE2f43anwO/BWqAF6SU1UKIvxdCPOjf7cfAVCHEKeCvgAFjQRQKhUKhUEwQDj9rCTSkdVv1M+tWGtZt3a5ErzChJDLShpRyC7AlZNvfBfx8DXhorNelUCgUCoUiEYSUsmdPB+1DMEzQXFCyKjHLShKUI4JCoVAoFIrkYPFnQE8DhHU7dR6YPv+DqjoqoZE2hUKhUCgUiiCWPgJd/tFdu/8TpGn9bPRZ6dPruKZNiTaFQqFQAODxeKirq6OkpAS32z30LygUsaRyM2z5CpgG4aNqEqqehcWPXLfCTYk2hUKhUODxeHjmmWcwDANd19m4caMSbor449lnRc9aauHcboZMgRre6zrapkSbQqFQKKirq8MwDKSUGIZBXV2dEm2K2FO5GWpegfINUHijf7yHN4oDXN/RNiXaFAqFQkFJSQm6ruPz+RBCkJ6enuglKSYalZvh9S9bP5/eBgsesOrUBkWDBeuh54o/EofVmFC367oUbap7VKFQKBS43W7Wrl2LpmlIKdm6dSsej2foX1QohkvNK8H3OxutAboREYCE2q3g2d+/OZ6jP5LcfUGJNoVCoVAA0NPTg5QyKEWqUMSM8g3B95d+Dja9AbPvCLOzX7AhrciaM/ZDWN2l8YiyefbBMw/Cties2yQUbio9qlAoFAoA0tPTEcIabqrrOiUlJYldkGJiUbHJurVr2io2WcKovop+kSZA0y1RZqdDAYQ/xqSnWvVs8aBuV7D7wuFnrW0lq5ImFatEm0KhUCjweDxs3boV0zTRNI21a9eqRgRF7KnY1C/eoF8oIQENblgNq79uPbb5gX7P0XX/DD2X4yugSlZZz2V4LeFY9awV4Usiz1Ml2hQKhULhdI8CmKZJU1NTglekmHB49gVHrjz7oN1j1aiZWOJo9df7xdGm1wfub3uPxkNAuZdb4qxuF9QfhONv4HigJknjgxJtcaShtgZP9VHcCxcxo6w80ctRKBSKiJSUlKBpmiPcqqqqWLx4sYq2KWKDXS9mR7FK74Pa31qRLE2HWzZaFlaBwsi9vP9+4O/bkS+IffrSPs6O7+HMjEsiz1Ml2uJEQ20NL/7DNzB8PnSXi4e++YQSbgqFImlxu90sXbqUyspKwIq2qVltipgRVC9mwPHX+x8zfdDVPLjwCldvduj5YBEXK+FWt8vvygBxbXwYAap7NE54qo9i+HxI08Tw+fBUH030khQKhWJQFi9ejMvlQgihGhEUscWuF0OEf/zE1sG7NZ3f10AIy5s0UMTZadNYrVXTrZ+FBkVLYnfsUaJEW5xwL1yE7nIhNA3d5cK9cFGil6RQKBSD4na72bhxI2vWrFE2VorYYteLVWwCoYfZQQ4uvNzLYe33QNMsA/mTv7PSlkK3xFys05fSnxqVBrz51aQZ/6HSo3FiRlk5D33zCVXTplAoxgWBZvGrVo19/Y7H4+Hw4cMAqpZuomKnGCufGfiYnja08Oq5bIkpaVrpy/lroa/HGh8Sy/Rl3a6AuXCoRoSJTmADwopPPpzo5SgUCsWgJNos3uPxsHnz5qAmiE2bNinhNhGp28UAU/jiW6wo2lCiKHAkhxBWShUJ5z6wfExjJapKVllODbYnajwieSNEibYYoxoQFArFeCPRZvGB40YAZVg/UQka8eH3HNVShifYoD9FWvUzaKiyIm4ARm9sImH2SJH0qbD0D626uaxpA7taE4gSbTEmXAOCEm0KhSKZsc3i7UjbWDcgBD4/KDeGCUnlZtjyFUtoaS7LLD5aQeTZB1u/Br5rBEXrhDb6SJg9UsTXC5jWMfW0pBmqa6NEW4yxGxAMnw9N0+i41EJDbY0SbgqFImlpbm6msLCQ7OxsVq5cOeYRLrfbzaZNm1RN20TFs88SbHadmOmD4mWw6ivRHSfIPcGP5oL13x+9sHKO7Y/eSTOpatlslGiLMXYDQvXObVTveJuj237LsXffGRdpUjUMWKG4/qisrOT11/tnZs2bNy8hgsntdkf1vIGNE0rgJTl1u8A0+++PNDIWajO19I+ij9RFGsZrHzso0pY8tWw2SrTFgRll5VTv3Ibhs3L2vr4+qnduS2oh1FBbwwvf+VsMXx+6K4WHv/XdpF6vQqEYHbboOX78eND2mpoaKioqErqmoYRYohsnFFFSsgpcaZYg0rSRR8YCbaYCra12fX9oV4Rwjgqh+y/5NCAgLQeajsS+KzUGKNEWBxpqa6je8Vb/Bimp3vE2C+9ck7RCKFBkGr7kF5kKhWLkhHZrBlJUVJSQKFZlZSVbtmxBSjlAiIWuJ1zjBKAib8lKOLE1mmMNZm0V6dihjgqBac9Qiy2ElcKNdVdqDEiIaBNCTAH+BygB6oCHpZStYfYzANtK4LyU8sGxWuNo8FQfHXAyNE0jpk0Jle1X2d3WxR2Ts6jIzYzJMRUKxfXB+++/P+AcJYRASsmePXv44IMPME0TXdfHZPSGx+Nhy5YtmP4UWmD3aLioWmjjRHp6uiNCx2rNiigJFFuxom6X1TkqzaE7SANTq6FpzyBBZ6dxk8so3iZRjghfA96RUpYC7/jvh6NHSrnE/29cCDaA3u6r/dOUAYQY0hWhobaGvS+/QENtzZDHr2y/yu8fOsU/nWnk9w+dorL96qjXvPDONegul7PWhXeuGfUxFQpF8uHxeDhx4sSA7dJ/zjIMI0g8vf/++3FfU11dnfOcYAlIu3v08OHD+Hy+AVG1JUuWcMstt7Bx40aampocEWoYhtPQoJjAePZB/YH+sR/ShPqDkZ0L7GjfLZ+DJZ8JfswWdEK35rM5P6uaNpsNwGr/z88AO4C/SdBaYkpDbQ0H3vhN0LbZi5Zwx0OPRIyyRTvbbXdbF32mxAAwJbvbumISbVu4+l7rNonTuAqFYnTU1dU5Ai0QTdOc7YGPnzhxAo/HE9fIVUlJCS6XC5+/6379+vVOlK2qqipojenp6UGRt8WLF8dtXYokxRnPcS14+/E34NQ7g6dJbZP5Q8/17xeYvk2fCk2HAJFU89lsEiXaCqWUjQBSykYhxLQI+00SQlQCPuB7UsrfRNgvafBUHw26YtR0fVDB5vF42LVtO72uNHSvd1iz3e6YnEWKJsCUpGiCOyZnjWrNoaJRRdkUiolLeno6mqY55ykhhHO7bNkyioqKeOONN4KEW7wH3dqep6E1aaERuKVLl9LT0+PUs/l8PrZu3cqUKVOc9K4SctcBh58bOKsNcFKah58NXz93+Dnw9Vg/+0LSqe7l0Hysf5acnmaJtiQjbqJNCPE2UBTmoW9EcZhZUsoGIcRcYJsQ4qiU8nSE53sceBxg1qxZUa83VrgXLsKVkoKvrw9N07j7C18aVLA988wz1jBedykZnpOk+XqHNJevyM3kH+YV80ZLO/cX5I46yuapPoqvrw+kxNfXpwYCKxQTFLvY3zRNNE2jrKyMEydOIKXENE1yc3OdztHApoB4D7qN1PgQWrtmizFN05x0aH19PfX19c7v3HbbbaqebSLj2QdVv8ARbFqKJbjOf2CVJQkNqp61GgkCmxM8++DgzwIOZFpRtcDjBs6Si5XLQoyJm2iTUt4T6TEhRLMQYro/yjYduBjhGA3+2zNCiB3AUiCsaJNSPgU8BVBRUTEw9j9GRGMU73RAAULXmbliFavX3DWkYPp5/SW+fvIChoT32joB+Gxx/ojXnJ6d3V+DJ6V1X6FQTChCi/2llGRlZYV1QqioqKCwsHBMujEHG9/hdrtZu3YtNTU1lJeXO9uXLl1KZWVl2OM1NTXFba2KJKBuFxi2mbuAsvvg5FsBtW2G/1/IcNy6XZbJvIOwDOgDjxuLWXJxJlHp0VeBjcD3/LevhO4ghMgDuqWUvUKIfGAl8M9jusoRMqOsPKLwOvL2mxzd9hZ6agop+dOdkL6maZRVLOd08yWM9Mj1I5XtV/la7QXst55Pwv+pvUBdTy/fnFc8ovX2dHZa5rtSIoSw7isUiglFuGL/oqIilixZAgx0IYh22O1o1hXJ99Tj8bB161YMw+DcuXMUFhbidrtZvHgxVVVVYUeWlJerLMGEJn0qjmuBFfIAo6//cWlaTQShjQRDmcDHapZcnEmUaPse8IIQ4ovAeeAhACFEBfAlKeWjQDnwQyGEidXl+j0p5bEErXdEeDwejlTu41q9h5y0FNIyMtj/6q+cx430OsxZ88FfAPzmm286bfaRhkW+0HSFgacp+IGnhZL0tBFF3OyUruHzIYTg1P49pGdnc/M966I+lkKhSE7S09OD7peUlDiCKJF1YIP5ntqdoxA8BiTU9iotLY2mpibKy8sTNhhYMUb0XLaiYNLvWpBVECzGwNq+7LPBjQTu5bDpDaveLVyTQSxnycWRhIg2KeVl4O4w2yuBR/0/7wYGL+5KQmwrqNRp03l92w4Mnw+kJK35PKltl4P29WVkWxEuCLoCDr3ahP65bC3ePiLxRkv7iESbndLd98qvOF25h6bTtTSdrgVQwk2hmCD09PQE3T979ixA2AgXjJ1NVKQUaLjO0ZKSkqB1PfDAA8791atXq1q264GSVVaTgD1vbfEj1r+tX7NGfiAtQZc7c6DwGmpWXDxmycUY5YgQQwK7ML350zGmTndEWW/RLPTeHvSe/plqru5OvFIiNM3q4JISU0oEkBUwQc+uYTMluATogGGHhQO4vyA36vUG1t75vL1Bj9fu3a1Em0IxQSgpKQnqGrXLMqS/LCIwEmfXmfn80ff58+fHzUg+NAUKlsBsb28f0DkKBNW/rV27NihaqOysrgMiWVlNvxmaPrRSpUIENxkMh8F8SZMIJdpiiKf6qNUJappIrz9UK6W/XsyKrOk9V5lS7CY9J4epxbPIv/Fmas+e5fSB/YjuTqTuwtXdxbtPHqawIJ+Gwll8/eQFfP4+gT4JJZcamdbZSrrRh7y5gg49hUemT4kqyhZuNlzZijs4d6T/ynZaydxY/nkUCkUCcbvdrF+/Pqh7dOHChVRXVyOlZOvWrU7NWF1dnZOWlFJy/PhxTp48GRengcCaNp/P54wb0TTNEZl2+ja0/q2mpiZiPZxiAhPJykoI//etaUXeAi2oBhNl0dhhJZhEOSJMSNwLF6G7XFbkLDXV2uiPoIHE1d2JEIKZ5TcxZ/EtLLxzDfmzSjhx+izenCn0FrpxdXei93Q589p2t3VhBvTCSiTnp0xjelsL5Q11/Ln3Cm9WlEWdFrXHfEjTxOf1svvFZ8mfVcKtD37KiQ4e3PLqsBwaFIp4E41jiCIyFRUVrF+/3omw2YIt1G3AjsoFEvh4LLFr2oQQTmMWWCUjpaWlrFmzxomgBe6r6zrl5eVB99PT09m1axcejyfm61QkKYEWVKa/azSwcxT6Rdm2J6zbys2WybztnmDPfQv0JU1SVKQthgSO+0idNp03tu+00guaRlpjHa5r3Wi6TvWOtzFNA93lYt7v/aF1khIC0Kxo3LVux/ZKn5yFS4DXEW4CQ2g0Ti5gZnfniOcnBY35AM4dqeLCsaPMWVrhbFfG8YpkIDQqfNfGx+jp7BxypI4iGLv2q7293RFqdkQLCGoCsKNygUN27Zqy0OONtuYtcLBufX09x48fdx7Lyspi1apVQfsG1r8FjiZJT09XqdLrkUBP0UCzd02H9gv9ETZb2Pl6/QN0pfV7a78XMvfNlZSjPmyUaIsxgeM+8meVOCc1vacLT/VROi61cHTbb5GmaX0JXe1E99u3ICVS07lWOIuZ5Qsx0i0z+E9Pn8rPGgKaGISAmbNZMi0HCD55AsM6kQaO+bAxfD6uNNRH/B2FIhFU79yGz19u4Ovr452fPGkNfR2G5ZvCwuPxOIbqoWnHtWvX0tPTM+CcUVFRQWtrq+M9ajsn2MeLNFttJNgdoR6Ph5MnTw7oaLXPcYHCLLD+raSkJCil6/P5VKr0eiG0xg2sDtGqZ+HAM5Zd1drv9Qs7O31qR+NqXgmY3yZg6SNJmxoFJdpiTnv7QVpb95KXtwK3e1nQSWNGWTkNtTUce/cdq/YtM4fOPh/uyTnUXbqCFIK+qZaJxNmmi2zevJlNmzbxcNEUnm287NS1gWSvK4O0M7UsqtpMU3Yenuw8ivdXMb2rzZliPtiJ1HFu8HqDtudNL6a9udE5aSpLK0U8aaitoXrnNiC8521DbQ3VO95y7gshrOJ0KYdl+aawOHz4sDPTzDRNFixYQHFx8aAXdx6Phw8++MC5bxux2zVvobVkMLwLxsGwR3kEHidQIEK/L6rP5wtybVixYkXQsUJHnCgmMKFdn4ef848A8dtaNR2CeWugs8kSdnt/2F+/Vr4Bzn0Q3I2axCjRFkNOHf01dc1fB2GgaancsuwX5OYuC9ons7CHu768mMbTOvtOmFTXefqbFezIl/+K1j4Zrlrl5h9LZ/LV2gv+AK4AJGcKZjClu4PXbroNU9M4YJp8/Mj7FHW0DlmUa6dyq3du48Ptb1npWt3F8g2fYvmGTw3L0UGhGA0NtTW88J2vW2NxgOodb/Pwt74b9J4L9fKdUVZO85mTTqp0KMs3hUVXV1fQ/dC0YzhCh/ECVFVVsXjx4gGz1UJN3EcTeQv0HbVvbYEYiF3/Zjcw1NXVOduEEANGnCiuE0JtroQGB38Bpn9cVtOHsO6frXlvgU0JNa9YAi6Jo2ygRFvMePeXP6Wu8afMWOpDCDAMLx988AwLFxY4J6Hqg/9KU+t/g5Do+S4yLtxNZ2dB/0HCnJTslOdni/Op6+nlB+f7Hb/mtjTQkJuPqWlIoWEKaMjNp6ijdVh+gXYqd+GdawaINCXWFPFm/6u/cgQbgGEMjJy5Fy6yfCb94qHpVC1rPv+4qmmLAjvlaKNp2rAG6ZaUlOCySzf8mKbpRMGWLFlCV1cXWVlZNDU1xayLMzCypmkapaWlQV6jNrNmzeLChQvO9sbGxqC0b7z9UhVJSqhdVVYBdDT03ze8/YLt8LPw/n9YNlimz4q4BXacJiFKtMWAd3/5U/a/+itSSguZLhuxLDYE1dU+KiufYePGjfS27afh8g8Qmj1drY9phafp7PB3fQbWl/mvFO+///6gE9835xVzuWo/72npzG1p4MbGOq4WFXPANDEFaNJkRvslBHD70iXO74bOYwtlMNsthSIeHHn7TU7t3xO0TdP0AZGzGWXlLFx9L0fefhMA0zTo6exkxScfHrO1jjWHLh6isrmSisIKlkxbMurjhUbMli1bNixBZTcIHD58mKqqKkcMXbt2jZ/+9KfOMe2uT5vQhoWRrDdQAB4/fhxd1ykoKKClpcXZr6CggIKCAseDVErJsmXLyM3NjftAYEUUjPX8M7sxwdcLmMGCDaxGg/SpsPn+YBcFCPYqTVKUaBslDbU1VL72awCEafSPZfPrL7sOxHf1FbKmBj9WVHSai8030NmRb4X5kaRdbkaYJmneHmbkZA54vrW9bUyuPegcaLnLxHOmmlNTi5jb0kBRRytSSvZvfY3y0hsABsxjUwJNkWhq9+4esO2mu+4N+94snDMXTdeRpjnhU6LvVu5n81sv4Mk+wQ8n/5Cn73t61MItNJUZjV2V3SBgz0hLT08P6igFnBRl4P3Rrjc0smaaJrNnz+bKlSsD/h+HDh0K2qbEWhLh2QebH/B3droGWkvFA7sxYevXoP7AwMeX/ZEVaTPCuAsleecoKNE2ajzVR52TVHZhJ5pm+svTJLmTm7h6tZADBw6QlZXFzVNtU3b7t01yc5vobJ9qXa0i6JsyjYzztYjeHo7s28vp5kt0FBZzOi2TOyZncfPyFVTveBtvWjqpvT1kPfQHvN/Siw9ozJ3KlKsdFHVcRuvqwFN9FMAZ+BtYuD1U9E2hiCehg5w13cXCO9cMeF821Naw/ZmnMU3TKhdYvGyQo45vms60c3RzO0t993GzdjdbFv43lc2VoxZtkWyioj2G2+3m9ddfH1KUmabpNCyMdL2lpaVBoz9sc3vbFSFQnNnjQlR0LQk5/BwYfqcdsw8qf2J1c8Z7eK17ueWQECraNFd/o4HQrBEgQK+5gF5zEWnubNKSOMoGSrSNGvfCRbhSU/F5vVz1pGHeqCOEiZQa6ZOWIKWJlJLOzgJOnVxOaek+EBIpQUqN9rZp6F1tGNl5QbPahKax7/Q5Gi628/rNGZh6B6ma4KUl8/jMV7/hfLG9lDYF41IjEvw1bVNxnz2GmZVD6rTpFBbko7tcQYXb4dwQlHBTjCW2PdrRbW+RNWWKNdQZKyrs6+tD0zTu/sKX6OnsdPx7pZSc2r+HusMHJ+R7tr62FQzNmnhuwsyOMioKR29+HmoTZbsexIoFCxZQW1sblIK1GxZG8jyhNXhCCG6//XbefPPNsNFCW1AqkpEwAt/ojV8K0rOv3xA+LRfLP8D/vhQ6rP9+v+3V/LVw/A16zQVc8j6BxIU4Lck/10Ha7JzYry1GKNE2SgIH6roXLuL8lSqqj71Me1shXV0BaQMpaW6aB+eu4l45idb2dis12pmPy9dizYxBozFnMi3Zk5nR1U6+adKQm4+hCSTQZ0p2t3XxvwNq0O5ov0qqJvCaJpo0cTeepW9KIfsd2x4AACAASURBVH2axhvbd7Jx48ag9c0oK2fvyy840TdfXx+7X3yWOx56ZMJ9CSqSl4baGno6O7lr02PO+27vyy/g6+uzPHgNg3d+8iR3f+FL1hxD/3YAo69vQo76KC7Lw+XS8PWZaELw8ZmfiFlNW6yaBBYvXsyBAwec85oQguLiYlauXMnWrVupr7fmPNoNCyN5ntAavPnz59Pb2+ukSwNHjyiSnMWPwIGfOREtwIpwxSMF6dkXpk5NWGJt/jpY+eV+wWZbVmkuen03I3EBOlJC75n2pBZtysZqFDy79zyf/fFedrRmOoXRNbvr8ZxfSEdHvuPvB4CU5MkTTJrZS21tPqdP3WY1IUhJSsclMs7X0iIEry/+CLuX3smvP/Jxjk0vYUb7JTTTRJMSl4CMc6eCLFoqcjN5ack8fq+9kQcOvUeBzzdgZMiMsnJWfPJh50vOttuy6+LOHT3Ei//wDWURpBgT7Ejv+y/8Iuh9Z3eK2kjTpKezk4e++QQ33NI/g0tKSW/31TFfd7wpmpvLortmWnekRsP7vVTvGv2w6/T0dKdZYLRdlW63m/vvvx9N04KOZ6dgXS5XxOfxeDxhLaYqKyv5+c9/7jQUhFponTx5csDIksGI9DyKBOBeDvf/q5WWRFi3drQr1tTtClOn5g+aFC/rf85AdwQpSbvRjdCs5QmXRtrc3NivLYaoSNsIeXbvef72ZatmbNfJS3gbztD20r/jTUmDWWUgNHSXi3Xr1tHsOUfdgecpvfMwmmZQbJ7h6JF76ewswNXagqunG196Bp6Z8zA0HYSGKSXvlS7mwcO7+MSHe8i89XauVn7AhdZL/EQI7rjjDhYsWODUcszqbue9vALQBEXtVwDCnjjtmqG7Nj5G7d7dnDt6KOygUlXzpogXnuqjYessZ5SVc/cXvmQ5HpgmekqK8/6bPq+M05X93aYH3vgN8269bcK9N+trWwPuSQ7tOc3CVcUjPp6dGrUvINeuXTvqCFWoddThw4d5//33ycrKiuiuEMlBobKyktdffx2A06dPO8dfunSpI+JM0yQrK2tYzRSxdmpQxICKTdatPQfNvh9rSlaBnhIcaROa1UkaGNkLtL3SU0lbtZb8lQusCNvc3KSOsoESbSPiwLlW/vOd2qBtRysPUJgyCV9GFilXLmJOymDB/PlUVFRARQVb07ahaYa/ScEkd3ITHZ35uHxWkaYvI5vpHZcQ/i5ShMAE9i66nexUF4uaGihovQRYkYb333+fDz74ACklFydP5dWbbseHQJMmHz/0Hremwn2f/FTQCcsaZvq3GL4+NF1nztJb0XWX44Nqd+UF1rxpmsbC1feGnVavUIwEO9IbbkBu/qwSbrrrPgDHjWPvyy+Qnp2NpuuY9lR/w5hwvrhNZ9q5dL4TrDMAAG/wPAsv5ow4TWqnRsE6b4x04Gyoz6h9XrGtsWx0XWfTpk0DhFKkFG1VVVXQfjU1NVRUVLB48eIBXaF2B+tgDQexTAUrYoRnn9XJaXjjOwfNvZyG1U/iee8V3EUZzFh028ABuv79gmyv3MtJg6QXazZKtEXJgXOtfOapD/AawQWWpeXzaNLbCWgN5XhTCx6PB7fbzdx5H6fu3FtOk0J7WxFISd8NU7jr3o/RnO7Dt/8kq04e4b3SxZhIQNCop9BoQG1eMR8tauHGxjonrWnXfVzInoIPgdQ0TBMuaxrr1t7LjJCTVfXObRg+K3xsGga11Ucx8wooXXAjt9/3MecLMCgSYpoceftNPtz+O+7+wpecAnJFMLGerTWRCa0DhX5htv2Zpx0xVzhnbtD9+bevoua9Hc5xPtz+1oS6mKivbcWU1udeYlKXd5QPp71HZfOyEb+nQsd9jCQ1akevfD4fQgjmz5/PypUrgwShTSShFLgOTdNob2+nsrKSxsbGoP3Ky/0lHAEm8oEibSgBFov/70QmIRmUwHRkHOegNdTW8OJTv7TOF8e6eGjlCmZURPg/BqZKA+73nutI+oibEm1RsufMZfoMiZmbijklFe2Kl48V57Fwdg/Np7SgXhm7YBaguTmTnOxvU9+yjbO1Lro68hHSRP/wHNc+sooHVzzI0oUetrz8S/L3bGXfglu4kDetXwRKy7bqxsa6AOcE6wQ/o60F3V2KgUQ3DO4qmMyMsnKOvP0mtXt3U7bijgFiy0jPpNufxv3wUitzWy4xo8x6zI6EBBZ/24Xh+bNKIn7Yr9eU6qGLh3jsd4/hNbyk6qkxma010bHToYFR3VBf0dq9u4PSqN0d7UHHME0jKRsSms60U1/bSnFZHkXDrI9pOtNO7fHzmNIazG1oPg4Xb0MiyU0deY1NJPETDYFG7FJKjh8/zsmTJ7ntttsG7BtpsG7ooN4DBw44llM2CxYssDITAb8T7XpjMd5kopKwqQEh6ch4zUGLVHYRfueAZgQ9FTa+anWR/ugo0mciXBr5jy5KSuGmRFuU3DZ3KmJKKt5lU0EDFz4Wtr1Jlraa3MlXyMqup8+bRkpqL+1tRRw8eJCqqirnCnP9+i9xvPYZUlrqSenuRPRc5c13nyd3zixIg7f6dnJT763MbWmwRFvASW1uS4MTZRPXupGTMgDJ9M42Hn7nBS7kTWN2s4dPfOlPOPL2m7z19A8AnHlYC+9cw4fbf4dpGPgysq18v//E+dvnf0FhQb7zZWr7kh7d9lukP6I3WErqeh4j8urpV7lmXAPAa3hjMlvreiHwRCuFQNM0ywDc5aJsxR3UH6923lNlK+7gwrGjjvWVriffoN2mM+288m9VVgeoJvjoZ8qGrElrOtPOb75/EMMwEWiYmHxYtJMZHfMQCNq97YP+/lCMdiSG3RgQ2NFpGEaQmbzNYG4LttG8aZrOQF674UDXdVauXDniNdrEe7zJeCYqURNLwqQj4/I0AcEGIQTp2dmRdw4T/ev1TUf6TJAgfWbSdpEq0RYlt8zO46H7SvnZlSuW36fUOJPbTsHBv2XRohYk/d0rpqk7DQfWfZMtW7awZPnt1FT+EmGCqUn2p5zknd89xsdv+DjClYXU4FpKKiAtYWWazL7cyI1N56wDC5Bp6f6fBaaUFN28jE6vwS23LGVGWTm7X3w2aN21e3dz8z3rmLP0Vk5X7sHV3YnXP2YEaTrDeAO9R2eUlVM4Zy5v//i/HeFWvePtsCmphJ0QEsyhi4f4de2vnfsm5qgiI9cboSfa6WULmFo8y3mP5c8qCYre5s8qoXrnNoCkTI0e39OIr89/kWNK3n2ulqnFWTRlnY2YPq+vbcUwrKi5NalRcHPjGoQEUzMou23q2P9HAnC73axfvz7ICSE0SgbgcrmGdFsITV9GalwYKYE1bT7Dx4t7XmRN2hp1EcXgtaTxf/LlcbeGmlFWzl0bH+OdnzyJaZpsf+bpyJmhMNG/NDMX4dKcSFuydpEq0TYCGo7uhOJFCGniwqCcanLmdCDpc2yq7IaDvLyLdHVNc05wpinJy3Rz21/8MW+++zz7U05yMe8auqlzuecynrwserJLSff24jJNTE2gScmyC6fRdZ2yOSVcaain+WqPE3Vrysnj9YJ5GJrGm6ZJ7tFqMnKC33AZObm89fQPaG20RgjoPVfJOF+LkZmD3t1Fmq837If45nvW0Xz2jOP9aBi+sHPdEnpCSCCvnn4Vg+C6ntFGRq4n7BOtfWFQX1NN08lapwkh1Bc3mX1ym860U/NesM+haUp+/vaveD79B/hMX9j0+aTMlKDfEQh0KQCBJnUyLxWMxfIHxU5b2sLNHiFid6UuXbp0WMN0Y5GutQmXhrZFoc/wYWDw2pXXeO53z6mSBQbWkg72ORqvpS49nZ3Wd22YiQhBRGhGyH90kappm2j81Y/+i7fm9ofx75NvUEotV7qLSE/vCvB8Fwjhwp23gUmZhRw/thuQmAiuTZrKvbeuInfOLN753WPopo4udN5paeRS8VeoEy5cwP8pyKbdhNz6Om4om0txXi7vPvlv9LrSwF1qPxEX9RQMTUNqOgbwyqEjlAYUbANBBdxg1bSZWZO5bc3dZAgG/XAuvHMNx959B5/X68x1qz9eHZQCjeaEMJGwYiP96EKPyRT76wnnROvH8PVRvXMbnuqjpGdn09PZOabvqZF+YdXXthKQQQTAFAa/8/4Gb5o1hqDP7BuQPr92NWS2lBDousA0JbquUVyWN+L/SywJ7DwdjTl7LBwM7DS04TPRXRob/nIpRXNzHVH44p4X2dm0k6nXpoJAlSz4Gc5Fz5G333SiVa6UlHFV6hJV8MAf/es910Hvdo8j1JJVrNko0RYlVdNmWD/4o1xn5Tza2gvIm9IcuJlUfQlnt6/F8PWQXvg76tOm0dPuItPbwZFDm6ns0mjNu5u//MjTdHdW0tDVwM+aekG4QOgYSNpNEK/+D62GQZWu45rjtt6MXq8VJcvIRu/uoKSthX033ooB6KZBUd2JQf8PRnomPSULAMH7x2rZuHHjgE7TQJxoyI/+X/9VTJip9MkcBYkXH7/h4/zm1G/wml50ofONFd9QXw5RYg/VNQM6ET/c/hamYdWuIcSAL494RQJGU5tZXJaHrgt/qhMQJrvmvERT9lnrLoIULWWAqC8uy0PTLJFms+CO6WRPmRRVM0O8CWc8n6h6sfraVgyfiZRgGCb1ta3O38ntdrOkdQmtx1oRUiDbJHPl3ISsM1loqK1xygoK58yNeCHUUFtjCTbbfWKcuY9EGzzoPdcxLpoPAhmWaBNCvAN8X0q5JWDbU1LKx+O2siTllvaT1GTNcRoElvM+kye3AP2CDTTSej+P4WvAfef3EZqPh02dmh03YcwsZFLJOf5D/h19V1w832rwg+lpLJ4+n+ca92JVQRqkajq59XW0Bli3tKM7VxFphpelK+9g/2u/prjnKg+//lM8M+awLAUm1VQReMFvpGfiy8jG1d2J3nMVIzMXa6xA5Bb9UHo6O4M6Y4WmXTcp0HAEjvj48cd+rMZ9jIIZZeXcdNd9Tgoe6BdsMOAiIZ5NL4PVZg4lFIvm5vKJryzj+J5Guju8dLs66PJeQhdWJH3DvA08eMODA94jRXNzKbk/nTNvXAUpcLk0Ftw2fVhiLXR+WjwZbWrT4/E43fRFRUWjqmUrLstD0wWGT6JpguKyvKB0aUp7Cjq6s39Ke8ogR5vYWPM5v+408ABhL4TAGgsVePE06vO8Z1/cGxACifZirvdM+7hoPghkuJG2OcDfCCFulVJ+x79txDkgIcRDwLeBcmC5lLIywn5rgf8AdOBHUsrvjfQ5Y8Wfr8oh9fST7BBryJOtzBLnHbEmJZykjKruB7kndyFZRTsQmg+hSXTho3hZE9euXWW/dhM+XEih45MGbzUcYaGopTPvWwAI4I+L4IZTXgL/MJeuXGHmio+Sk5bi1PxcaajnzIF9FDd7mHW5iYWr7+FoQKopa04pjanZIAReaZJxvha9uxOhaUh/Pcpgs4zsD0F6drZ1le3zIfxm3uPl6ivWhBvx8eiiRxO9rHGNk4IPGDMTSOCXRzybXiKlV6IViuc/vIxpSD6u/xn6hnqWL14UVtAfuniI106/xm+u/IYpNxbj7pzPpnsfpmhu7pCz/xIx/X+kqU2PxzNgEC9EHsY7LAImH12u7+K9F0466dIZK31WlA2Jrrmu63lt9ucliAguONU73nJ2GfV53rMPNj/QX+y/6fW4CreRXMylzQ1uPtAyXFx5+SQCyFhWmJQCbriirQ24G/hPIcRrwB+N8nk/BH4P+GGkHYQQOvAD4F7gArBfCPGqlPLYKJ97VLQ0FDJTerggSqgT8zjKUr4uv02ZqOUkZfwj36YvM4Utva3886J1COMNwAtI8vKaMM2LLJA6LuGjT0oEkE0HO+Ud+IRVfCyl5KnTB9lQsADf5HwK2iwnhJbLV2iRkuyGM0GDRzVdY+HqjzlC7ti77zhv3JkrPkLj4aP+1Wv+iFtX/xgP06S5uTnsSTPUGcH+LtU0nfxZJXH8Kyc3lc2V9Bq9SKQa8REj7LTG7hefdUbU2IR+ecSz6SVSemU4QjFw3IeDCTPa51HZXMm289s40XqCe2bdw0PzH3LEv/1easo+S0vOee5Im0/OxZQhZ/8l8/T/0AhguEG8MHLzd6t+0N/cJSWnqy7i80dMemjjQM0RbFWX1lFESl/yffmGIx5DuiONvgj97HiqjwaNdZm7bPnohqkffg4My/EHo9e6H0fRNpKLubTZOU7zgZbhou3V0+Avb7h6oJmCx25OOuE2XNEmpJQ+4E+FEJuA94ARV8dKKWvAahsfhOXAKSnlGf++zwMbgISKttM1Lt7L+hi+Ahem0PFJyTEWUiprOcZCfMKFFBqGJjncN4O/Xf4L3j3yVSZ5z6IJ0DSTKZe6uHfqG7yhfQIDeIYvsoSD9qxcAK6lL+aFbo3UJR/h0ebTGDVHnUG73rT0oMGjJpCTX+C8QR/65hMc2bcXIzOb1Kyc/hlLUuLq7sLMzu2/SJWSLVu2DJhn1FBbw+4Xn3UiH4YdSsTqIJ1oFkI2w5mInZua6xgNmZgcbTnKoYuHlHCLgnBpjBll5dzx0CN4qo8EpWhCvzzi3fQSWJsZGGnWNA3DP1ssnFC066wCERr8v4v/gudqv+3d7obdgNVl7DW8AaZVVt1bQ1cDr3a9itfwYmKGbV6A4U//H8sUqv18oRHAwLXGguKyPHSXhmGY6LpG/sxsPMcs39a+1DbAtM6lErozLrBt6y4e+dMHYvLc8eLFEy/y3b3fxZRmTId093R2Dtg279bbuPXBTw2YAKBpGoZfuNUdOkBDbc0oPl+hEfOBEfRYkp6dbWkKIaK6mLObDzq2exzBBoBPJmW6dLii7Un7BynlZiHEUeDP4rMkh2LAE3D/ArAi0s5CiMeBxwFmzZoVt0UtuKmUfQercBX48EmJhkn9tRL2X/sIU/t6EPmAkGgmrJmZB3ST25duxdr874ezmSW8qT0IWG8wHylICS768EkX1ptbQyLokyAXLEKvPWaFuKUktbeHaSVz8VQfCfsGNdKzqKy74Ewxt1m88EZmLL2J1GnTee2d7c5VlWma7Nixg9WrV+N2u50Imy3YhBBouo6U0voylTLsvLbx2iZu4xSl9pmgCSZvuIGsFdMH7NfubUfzD0EF2O7Zzu6G3WqswDAZLI1hm8YHzgYM9+UR76aXhtoa9r3yK84c3GcN+9V16/MrA66sQggUEpoQLFg5ndqC/dQ3nBqw79vn3+ZPFv8JqXqqI84AfNLHr2p/hUtz4dJcGNII27wAkWvMAkUaMOYp1HARwFWrVrFu3TrHHN5GCEHv5RSazrRH1XBRNDeXDX+5lON7LBustuZu57EU72SsYZbSEW61zQc4tPcGlqxIzvPSoYuH+O7e7+KT1jk7lhF898JFuFJTre5/ACGoO3yQWx/8VNB+M8rKWbj6Xqe2dNSOI0VLQOggTcvIffEjo/lvDEpDbQ3bn3naGUFz18bHhtWEEHiBnjY3F3TRL9xcIilntQ1LtEkpfxhy/wDwhcF+RwjxNlAU5qFvSClfGcbThjszRpTqUsqngKcAKioq4ibpp+VBRd9+SuUedok7eZc1fJB+O3vTb+O28/WA5hdScK33FJX7HwW8+DOfAFzMW4bZqwX5lE4Wnfx/8ju8K1aznTXOF4QpBHPyp1C+bh373nsXV0crC+66m6qtr2GaJkZ6Fpml5TQH2FAdPny4X7DZQ+Ok5MjxE1R84Qu43W6MtHS2bNniCLfTp09TV1fHpk2baLBrIPy/Wzi3lGlzbqC7vZVT+/cAAz/QE8ERofdMuyXYAExJ2yunSSnKHHClVVFYQaqe6qS1wqVJx4OHXSJoqK1h++annS+QcGmM0NmAY21X1VBbw/98+2tB0b7AmqBI6+m+dpjSe95FeBdRfssaiubm0nLiKGZDcPRtQfccPte2gfKeuXz11q+yuXoznk5PUPTWkAZ3zryTa8Y17pl1T8Qv79Aas9Ao15IlS8Y8hRopAtjT0zNgKK80JUfP7KHh0DUe+l+ro+6UPb67EcMXfLpP6csh/WoxPZkX+rMXUrJnz+6kFW2VzZUYsv/9pgktZqODgkoPjh4adIaZXVs66tID2yReStB0WPd/Y54abW8/SGvrXvLyVuCpPuV8Z0kpw0YXof+8rGW4aH/9jHW+F5C1qpj0hflkVBRidnrRs1PHfU1b1Egp7xnlIS4AgWeXmUBDhH3HjOY9x1nW9QnqzX+hRluIIXSk0DGk5P1Z/uUKMIA3Th3m4Txvf1epCcLU+Ei+yYu9PnzS6mjS8bGKndySncYpUYLsEAGeoybVp09Tt/N3/jeloP2d36H19WFMyqDbPY/uXoNXfmsVkObPKuHAgQPBi/aLLykldXV1gHUCXb9+PVVVVdTXWwN37fqSZQE1Q5qm0XLuLE1nTvojbi6kNAd8oKt3bhv0i3g8kDY317kyB0AGhMcDuqCWuJfzlx95mp+eqcTT/AYp3lNBTgjjsY18LAjXxaZpetgvhph9eYyA0A66UMKt+cyxdzl94XFEpg+Z7qL72lPAR2n3tiOwCuIXdM/hc+0PsqS9DHFe0FR1iNack2TmupAZwcJDIHiv/j18po+DzQcpzSuN2IwQWjtmX7D5fD4aGxud8oixMlCPFAEMTZFKJxIm6Uw7HzS2Yzgc3zNQsAH0pXTw/7P35vFRXef9//vcOzPSaBvtK5JAG4hVCGEwGLAx3vCeeKmz2UnjLG3SNknrJm3TpFmc1L/2mzZtkjbe4yZOHG8YGxsbL5glLEIIhJDQBpLQvoxGy0iz3Ht+f9yZq5mRBGJzyOvFhz/QbHfuvXPvOc95nufz+YzHhkwVgbd0O9uprKwM8ze9XFCRUUGUGoVH8yAQfHrhpy9a1j5YAYm0hYu8hoPvu+7Bhy9cGzFoE4UOUsD4wIUfSAhcriqqDn8aXfeiKDZyi75/1j7X0HEZCCOyjH7YweguYx5EEcRWZFzU/b2YuJx12g4CxUKIeUAH8GfApcuvzhLp9jw0VzJ5lX/PyrnNvJghA4OPCJvsFfyUOd4AoEGWcJxFZLv6iG62Y+Et/nHle+yS1yCQrGMnxTQwPCIowIOF70wGdLpGQssJvJpmBnK+6DjsE248MQmmfyhAXU0Njt5eo6wU2i8Y9CtVFOx2e9hKPCdnqi9icGV2YMtL9LQ0MTrYHzgsCQos2XhTWGk0knUEMze/XvZQwDQ4UAPp8Qhz4cr7tvIPXTY8ohyZvoTE3h8T5W0xnRD+FGnkHwWmY7EtunbTtBPDZSvWLMS0+9x1erfJFAc/Xad3c9ptx1mlkO0rIlHVebT1r7BiNUsIioSbh67hetdqnrLvYX/yAXriTyEQXCU2MNGu0JHQSH9C+7Slsul6x+x2e9h7Ojo6EEIwf/581q5de1GzbKGZDoejPOy16VimocFcR0cH9fX15mveqAHUpHEuBvwx4T1toTWburq6yzJoK0sv45GVj5g9bc/XP8/GvAu334qsgMwUkF30Sok9JTAHKRfdJN7lqqKl5afouhEU6roPS3zPlPEitF0HwPl2Cw5/wsz1uuDzmmRsfzfuqt7LcsH9RwnahBB3A/8FpAFvCCGqpZQ3CSGyMaQ9Nksp/UKIrwDbMSQ/npJS1v4x9jcUqVcV03OoiuihQgb7FyDTFXO1GAyOsuVpHpY/p1hpoEkYjFI/FixJfu6Nf5N5lb0cLjjO55LrAmvwICTzOcE/yu+wS2wACaV1R7g65252K4qxQpWSKO8413/uS1TX1NIyNGI2y2Xk5uFz9odLJgSCN6Eo3HrrrYyPj0968/n9tLa2mm9VFMX0DuxvO0Vz5b6pJyCw7fZag5GaXVI6hXUkz+b7dhmiureawb0tFOtp5hgfsyKQHt8Vbi68t6sVr16ERAFhwRddSqy/DYfNwRM1T7BWW0q8MGaMoIfdlXLp1EBeUS0m43k6nKlv7UL6J92HD+N61ejQcNx1JzHLl4dtF0AoKlIPz7YJIVCt1mn3OSk9k/EBGWh5k4zqcOLJQewyj83ii8xdMhgWsAXvegWBVbewfmAtad0reWPhz7EqVpYevx3dr1Ou3Mi2Rf8zrZ9taBtEsPQZ3M+wEqSUNDQ0XBRD9iAiMx3ly5+bEriFIjQjuG7dOtrb2zlx4sRktg3o7D5NGbP/LReszqL2w6nFF4vbAdGGp3IkctLmznr7HzXqBuvQpIZEzkg+OVdEMirHR0ZYdfd9Z3yf3+e7MKJZsDSq66AocPOPL1pp1OWq4lDVJ5Ey0J+HgqJYAwuHyfEi1NVBVVVAkGTJYEPGfViU2Wn2Xa4L7j9K0CalfAV4ZZrnO4HNIY+3Adsi3/fHRN3I6/xb3vOsH32If11YgGERGCLUBnSKOZwWeQajVBqM0iDTdDAzit65sfTE3EmDPMp80YCUoAOqUACFYhop1huQmqCpMR9/dB8xbQ14bHasE6Pc8InPsHTTLbii4mh5911z32wJDkqLC6n9YAcTsQ6EorBq003YEiatZiorK6cYPQdRUlJiro4b9u+d8nqQkFD7wQ50XTNXZKGm38FzcME3/keIIGurZCyfR/kqNmFDsSjElgdS5EFzYb8HhCCVXpD5gALSj22inmtyruGxg49RMJLDdW3zkNKGUASO2wwl9ivl0gCLbVKBmsXX3XBe18eFZAXchw/T+uBDECjlD734Ipn//G2S7r8/bLuRSM7JZU7pYjPDHJll0nSjDIowSEROZyeKXIVAoEhBt1NHV3QUXcFobzUilWDwNuAXqLpK8fgyrsq8CrcmUFBBhwxXAY/ufxSAe+ffCxhB0OHDk9IooXqLSnCBFwJd1y9qP5vTuT8s0+F07sfhKJ+WqRqq0RbUZbP6EohzFTES30SQeNX0/hjdS2ZHSAgK6S6/MY/Db7eFvWb1OUgcXIrX5sRp7yUmSiAmVOzjmTRs9aMM1s9avPijQnVvNVuatpjXw8Wyw5utPE7uL9eU6QAAIABJREFUoiVGsA8m0exMzglnxCUsjXZ1vRISsIHVmkhhwdfDFgxHd7zJO0/8fFLtwO8nJSqbtKg5NAwfojRx1aT9oAJqih2tf3xKBu5yNY2/nMujlyUqW7ZTE3OS03FO9NCALYjA4wPyaq7V3qdwogdLnME0taBh9/Xz8pqvgLBQz8f4lvwuxTTQ4lHISigkztcKaOg6dPwhE6/TuGjE2DBRI0MIRTGbLOfOnYvFYglr+M3OzeWBR/6R9toabOlZjOqEDaCh/oGRiIuLM/8uWbUmTC9r5R0fJyomluH+Pmre2x6mhbPq7vu499s/pHbne+ZrMzFMLzdU91bzw/0/RJMax2Oa+Ye8/+KLiZ9h7ZpN4YFV0UY48Ra/j43m/zv5cxxRxXijS7FN1BOntZNiL8OreVnsLsIiVWNI0CXezlF8naMmweFyXb19FAjKZuiahqKqZMw7P2uhCxHXdR84CL4Qr09No/v7PyCqpIT2U43mdgksUIJSOYMd7bh6ulm0YeOULFN++i+o2hJP9loLQtFQVCvR/vAJt9rbzLu5v+eewRtYPbI0jGXV6dMY1DR0oaMpvQyfriXduooBn44mNDoTGvFLPz/c/0OKk4opHS/gxAdHwrLby5cvN+/x5cuXU1k5Va88snR6IUhKWoWi2NB1n5npCJZr/X5/WEn2yJEjZhAZ7JvNsiwm2p2F6ovFZxvC6k1E9SXMqq8t0nd0+Y15HNnRHmYDZvUlYPHHEe3ORkgVEfinIan9sJMTf+g2/UovB1T2VOLXjcWCQHBX0V0XpaftXNoMIv1/333qfwzm9LmWS4OL3KCo7llKo+7Dh3EfOEjMVSvDst6zgc83yImG7xEXNx+Ho5zOhjp2PPmLsDk5JTqHazPuRxGGAkKoX3TMykxiyzMY3tmOp34wsH4QRM9PQo23ndO+fFS4ErSdIyoKbmLh0UrcMX6DGhGKkABuaecEPZ0PkJ3UxjfnfY96pZQFej1b/Deb/qJ+KdklNlAnF7EgqpZYb+Nk2UQVzFuVR/Envg0wbVP2dA2/la4x9kYlI4vKeL/yEFnOPnJ27jSp/na7PSCUK83/gynkYGkUMHWxGvbvpWTVGvNxZ0OduS+KojDc3xcmx1Dz3nZzG7p2+RMSXmt+zWRtLXDPY+l4MelX508GVcF+Nv8E1VFWHk1OxA9YvE1YvE3kxefx0KJHKB0vwDroZkh1oaGjYARu7sru8C9UL08a+aWGSckPTN76BZTQL0RcN+aqlUbJJjQTpWm4Dxwk97p1Ydu97sGHqXnvHbqbDY21oJF98Q1KSJbJS3vHz9D8m2jb+Q1i008wb8F1WErTadvrREgFXWg0pB2kJ+YULwmYlzCXjM4Eg+mmQKPXj0Qw16pyZ98DxqQSB80lUfx47Kf0xJ0yvl9q/OHgB6TtGyNJA8Uq0BWm3LvLli3j8OHDU7JtZ1qwnSscjnLKlz8Xlm08enSXWa6VUlJfX09jYyNz5kQOlBAda5SorL4EU/hWtRh2VGdDpO9oVIyFu/+2nI4GJ9GxVvrajUVt3UAdsjYOBcVkeQcnbL9fp35f12UTtAUZ6T7dhypUJPKiaT/ORh6nvbYmLGgTQpgLlnMmluVeBQ++Niv7Kvfhw7R99nNIrxdhs5H39FNnDNyysu6mo/O3EGLUKGVIpre2xpQKCmJB4Ros7kBJVABKoMfbomDLjpskJyiC2JUZWLPjDGapX78s+9quBG3niLLFn+Arvz3Oq4PDVC7xoykqiq6jChW/MC76T530ck+XhZFVvwPFT6KukN6czmDbZkbmHQNWgTQ4ZR+yEV2oWPDzDxhZNwMSLfowsRnjOBzlM66WQht+K11j3FPdhFeX6EjIX4CaW8wdR/ea/S5vvfWWqWVzyy23kJGRMaPw5tJNt0xRxA6u3Gp3vkftBzuoeW87xz9819y/sBs/QoT0UKuTfS0DrC5IYUX+eWszX1QEB/EF7nn8qO2vsUoLyotuPEnD1NlbqDz8MyosUOaXvBYXa7hWCIHPVoQvupSWiXq27Pwdq9v+mk9pt6IrOv5CK6I5MGFGkBCjSpIuqwHgo8IUEsL5TAYBhBJlxpyD9LedurCFgZSoiY5psxI9J1vMoA1gbMhJUtLmQJbJCNz86iFyNxzG1XoNY6fX4ElJ5xv1f0HioiyyhgvpSmimJ/4Utziv4S+670dFwYePdxL30emDdOcqUlSFMruKgnFNSh2WaPFcn1XO/420mN+f1Z+E9OtkSAer/SWcTh9hydrlYfdubm7ulGzb2ezqzgcOR3lYWWru3LmTQt4BaJo2bd9sb60vjKmdPjeedfeVzCqIihTWzSlJIrPAMeWzSuUIh48PIqQCgERHBM4w0pALuVzKpGXpZTx+4+OGpVnTq7zU8BJbm7d+ZNqPuYuWYLFa8ft8KIrCilvv4vBbW8+fvZ171az62NwHDiK9XtB1pM9nZNzOELQ5HOWkpl5Pf3+I3RYKSUmrzOMILrwAFFVlzvIlsGfMfH/cNdkodqvRaxxCGkOXqInR6G7/ZU0kuxK0nQfUgs3k7Wni/q3P0J6dT25nK4uT7+J0VjwrBjWWDmn0lP4BofoC44NGi7WP7RlvMmC3mowmjQC7JtRZgckJQkrNXEHMBi90D+LRQ4gNQqAJhQ5HCna7PcxKRkrJ+Pg4Kf392I/XERMXB7Psd5kkH2hhjauLNmwMu/FDrYcOtTr55BP78Pp1bBaFX39+9WURuN1eeDuvNr3KUncJVqmiouD3a1Qe2M3feL6DV/Ngy0jhkQEnr8TFAuCzFjKU/k0QFsYS/CS6PkD6JQoCVVeIT01jvK13KrUc8DQ48bQOX1aDwEeByL5HcY6q5ZEIJcoEg6rZWO64Dxw0GqRDIQTakMH8jcxKLNqwkWPvv21mCJur9jPxK42Ka79P39j/4nYbPVmKRSOxYCdJhXtpVf4Mr+alO/4kvfGtrM5ezdejP8eibUlmmU5Fodc6yB/iG7mz5ypSLcLsdQsSHj1NQ3xC3ciR3KMci27EqlgpWrIY0TRBt+Zkn6UBfUjS8VbPFEeTZcuWUV1djT+QEd+8efNH4ku6efNm3njjjRn7ZsvLy8nNzcXqc2EJCbxmG7DBpLBu0Bx+ps+tr1jJjtd+SXpvYWBxpoSRSTVNnrPMyKVEWXqZWSY9kxPGpcB0C5ailavPn709S6P4mKtWImw2pM+HsFqNTPhZMDf/CwwM7Az0timkpk4Sg7JLSrnvOz+idud7gHH/xnXEMcxk0KZ7NBS7FV/3GP6hCVNQN7SHLdSP9HKrjFwJ2s4Dc69dxOGDY8wbW0V+XQep0etZNx6FaPEihOBAThcfzEllISUUyQYaWECd9c9ItjbgTZnDiGI1krtSIpAI6ceCxkJCybHGIPPuB5VE9/0jPYeOIgGL1Tptf0Gla4zfdg2E91IGGK3RPi/j4+NTRC8zvV4zNT2QkYH3S1+keM2aWQ3uYZYnUnLs/bcBuO7Bh+k5aWQGQv1J97UM4PXr6BJ8fp19LQOXRdBWll7Gkzc9yWsf/h5fv2aUXITGu2IPXm0CHfAJwY7YGLRgls2+0CxxA5x0JCMUY/UuLAqd84apd5xkeXMBUc0RqTbt8rRGudQInRTs8fEXrAMVSZRp2L93VkFbzFUrEVFRSI/HvD9EVNSMk0V2SSmLr7vRFPqVus7p3QeQ/m2kL+s33zdJHveRM9ZlOh0oQmFT3ibWdq7AJU8FkkvGv2MxTTjjO1nykIPE5gSUo33G5BHMQEkQGnwn5xF25ddQkVHB4vQyIwv8wYfop+SMorkzaaVdCoSSMioqKsjIyODIkSN0dXWZGpBglNyCZdzZBl7TIUhCONvnqnurGRA9pFM4uQ8hrytiduXYjwJBz1GHzWGWSWdywrgYmMlG7qK4jkRIJPHga9MGbsFetqRPfRJPXT3xN94wq542h6OcFeW/pqvrFTq7XqSv/10GBneZDObI/fZEDSOsRhCGAPfB7snqaqBcGntVZpiYru1TOgMde0jJWXvZjdVXgrbzQd0bSJmCYslGUTNZIAeMVbIQHHEofG1RIT5RhIWP8Sn9Kf5PfB5/lgVVLiJvvBdLlECTEouicrflXXRvNws5FsiyTYoLnfowhcG6bgTdk70YPt+0JaW9Q6NhtmmGRRYgdbxR0ebAHTqQ27e9SZ/XS39SEh+sXYNeV8fexsZZW92k5ReYWQ5d0zi6401UiwUQ6Lpmlk2zS0pZXZCCzaLg9ekIIRgZ9/Gz95v+6KXS4GBZuqSM7w7+gtLRedTFneTOhDxsIzo+IbBKyaYxN5XRUXgB60QdJBjN1hYEf9G+EKEbPRHDG6x89tiX8GpeftLxtxQzN2yiuBxXbh8VLqb1VCRRpmTVmll9Lmb5cvKefgr3gYOoiQ60IddZG6AXbdjI0Q+2o/uN3HhsxjipS/rNjHkwYDMxZOWBBQ/wbO2zaFLjsYOPsTjzZ8QIY4GjI/lZ5u9Q82J4Oud/yHOmE7XaAauz8LS40Md9jH4YCHYk5KTl8fklkw5+UfkJzN+4jH3PVp/Rd3Q6rbSLjY6O5znR8F2k1E3pj9zccpOp3tnZaWbdIr2mpytpRiIyQIskIZyJTFDZU0lD2kHm96xGQQlrQFcUwfoHZp/du5So7q3m4bcfxqt5sak2HljwACecJ87ohHEhmA37+oIsCU+FSyRxateUoM3sZQsunhQF96FDRJWUzDpwczr3Y1iiGwzm1satjLc3TdFps8fHM5zeTUKvgyRfath1EFoWDQZnLlcVx7q+hI6Xrq7nKM88s5zNR40rQdt5oPLICXR5DUIoJKmQFme4dUkpOZSs4hMKulDwSckr4h68wgJCoEtJc2w6NiSfzE7hvsxkitGpOvxpTuhzeU3cQ6k8RjH16FLHGqWhRCi5CZi2pLQmMQ6rIpC6JLT4YxWCh9euMgfv0IHcHUhN92ZmoClG38dsrG7CvEkjENSSg3BnhBX5SfzzbYv45y3H0HTJS7uOkqkM8xwJ/NUdV/OJVZfOLzYU1b3VbG3eikRSmlzKYwcfMwfLRzY8gsvr4taMT1K2/V8o7u6lMjqaiokJAO4aHaM+bhGjaZtZlRNFnD2LZS1jFDoDqXddcrqxmXlks9F1FQUTc5gUdRDYFyYTvyH3slu5/SliJqLMbBCzfLk5MQRX+8Hnp0N2SSkVf/V5fvPSTyhsiyE2y20M+4H1VSiBXOoqpw4sY3vmG+hxxp1YMJJDTN04QoIWCNi2J+3hb/o/R8LuMVzyFIrVkIJJuC7XMK4Oge6eKkECUFZmTOjLli37SIzgI+FyVQUCNmP/dN0bJv3x1ltvTdGLOxfZkekCtEgSQmR5M7gIq8iooCKjgv9N/F92F7zINS33oGCMcUIYAduidVOFxf8YqOypNP1nvZqX544/hy71MzphXAjO5l5zwUK7s2CPul7dggyMq8Cse9pCEcpgFkJl32/2Mtp1yCQRvf/spF1eSlQ2GzM/ASF2kiYiyGHhcjZe+k7uxFF2JWj7k0ZNzjCx7RqqBqk2FSEUQ+NG11kx4MNaZMGLjkTFKVKNDwUHLyHwS5gTbaPCEQuUI4qf40eNEp9UsAgvf69/l0LZwEiXPYzxBFBx+8emvYEqHLF8vyiHn7f1cmrCa/ZuPJCdyq0l0w+SMak+8v7mBnxdUdT5LGgBY+yzNSybTeXT9K0oioIQiqnjFhpgOt1edClJFaPcZKtHQaLTyU9fg/mZ8Zc841bdW82fb/9zvLpxI6sBCnhwsAyaeJell0HpnZQ1v0eZx0t1lI2HM9MZjSpmKONbCGHlSLfkxeVxLCmw06d0gmaUvIpbs/hX/gY1sLIPWhjVxjSRefNyytKvBGwXC0s33UJq3lzaa2umGMrPBufCXHPMy+PUnHEK2+2MdsUgdYEuJGqIRON4XzGH2j9DQ2o+UVof0Gzs53iJqc+mI3FocZS6C9jYWmbOIXpIw3NUgcMs50yXmY10QghljgZ10ux2u9kScakCuslMhwEhJhvCQ/tngzhXG63pArToWGtAT0yaJIQgQjNWFsXCnUV38sjKR9jRtoNWZy3znEuMsVRKk2F6OSCUOSoQ6FK/qD1tkc4Aoe4101myXYikDnBW9qj78GGGXnop/DNCzKqnLVIfMchg7jw6ymjXLqSuE5U8TFv749iSXPh7DJmbuXGLJ+fpgKBzcF41RdQDSEpahYLVCAalBd5JwpN0+fQhXwnazgO+kiRO1L/EooF76fcHOElSB93PgoM7+Gr6Kp6cF4dTpEzWTUIcE4QwMmNBHPXn4JNd6IAXK695lmFztTIPyAsJ2HIWLGL9Jz877T5Vusb4dlNHGBFBAkviZtBmCvYd9Eiy+ux8bM0XafPZKCwrO+sgH9bPFoHF193Iog0bzUbQUARLpFn6MAoSJeAkkS6GL7jHbTbM1MqeSnz6ZHZQkxoWYQFpmHTv69xHVU+VwdiqeMh40+FfUTnWjFcIvPaFSGFBCgWPpvFCo2GJE1uRwej+brPBHDCDtSDaoro43aN9JE3FlxMuqMwyi21fSEYgjLnm9Z5xlf9a82uk9KkIXTDeE0Pj63mMLBmkcPFCksYPIdA4nWrlqbQS/IqCkJtw9FaSN6izMPZaxIAA3bCSq41pYom72AzrZeBKCQZnUfkJpH5+yYwOGk3VJ9D8hnJ+aGY8VCcNAg4OAXurSxG4Wa2JYY/zcj9nlpGCTNJg4LZgwYJzttEKZYkqQtBzapi2YwPoujGGLrluTliWLSxjpXt5seFFotQoHln5CB9GNYRsWdDXNkJ3y+yEfC81gszRYE/bYwcfu2g9bZH3yML110+ye0Ms2ULv0wuR1DFxBvao+8BBiBCwjl2zhtSv/OUZs2wzuXA4HOUMN72JELuJyRin8NZWFBWKcqDp9TzcPTHTb1AY7SqmiHoA0UNFzDn4CO7EOmIGFxA9XHhZ9SFfCdrOA3cU3sF257NIIXDqgj0jflKtkFL7W06XLuM/5+bjM/1qZHjgBuiazpG6BipWGxdokkUNKWkqtE14sXmtRKd7ye+NBQmqxULW5rU8UfMEFRkVUyb/vUOj+EKZoxgr+Df6XJTG2ckYHgxvSj61C3ePpO29RKQmENW/Il9R0Gw23GfRyskuKWXRtTeYzdlBqJZJi5+glltoX9uK/CR+/fnV7Dpcz9DRbnRNQ0cwIBysLkg59x8igEOtTh54fB8+v47VovD8w9MzUysyKrAqVjPTZlNsfPOqb7KjbQf7OveFr249XqqddVQuWMewfwVK23YUbQTDBUEihcLzI5L7XGMsKc9g5EBnQMbFmIR1dGPVjI4fHQWF1dq5CUf+qSN0wlAUhUXX3nBRxZYvNCOgJjommaS6bjyeBkG1ekcK6IokNm2c2Owx9qNwlT4PXR4EIalXF6AhkEJBCJVVafezak8aXRrssflZtz6HfUn7Od7egoaOT2iBIUGiFUSFfWdUfkLYJBEs+63WluM44EFRhJHLV1Ws44Idz75Oj+Y0AzbAtKp76sOnuPOGOy/6gsHnG8Iw69UBBYvF2N/29naOHAkX/21sbDxnG60gWaF+Xxf1e7s4WR1O/Diyo52CsjQz8KrIqMCiWMz7O2gH5fK6uPe2G6l52gWaMRb3to6w5SeHLxuB3bL0MvP3KU4qNku8F/qbRZZCgbCAbNGGjdMufi6l7682Mhz+hMVy1oANZnbhMDUgdZ3kEheKGsikqYK4LDfunhhOjR5jbvwSFKmgS53D/e8QbY1j6adumxKMeVpc2J2F2J0BAotyeWlrXgnazgNl6WV0l1bRfNyYwJ26YHBCZ3H8HI4sLMcfdEoIQkqExLS8korCd9ySZS6jF+qNPpdJP1CAa/I2c2rPHjb02UhY1o+7O47ca+/nbxu/b/ZfRer3RPa0Bbe30znCh84R8ge6KGtrJPuDD1i+fDnLMhdj77MjtZAi/ywyDkFkzCswFOMDRvbJ2XNYsfkOsktK2f/KC2ecTK2ONNbe8nEGuk/TrcXz0+ULLijL9nLVabwBeQ2vX+flqtPTbq8svYxvXvVNXml6hTR7Gp9d/FnK0ssoTiqmqqcKr+ZFIHCMDVL95sd4OM2BRwhk4LfU1XjjrAojm+bHCJYr8jMYu96OfYfR6+RH553EP9AU3U7xRC43Da/lpqG1KC9NnFOa/eiON6l57x3ikpNZecfHL2uR4ukQFlTpOkd3vBkWxF8oQmVEhBBTvE3PBm3INdmQpiim7EckgjIMfUk6x67r4FPzRlEU+BQWuvdZSV2iIhRYqBzHwqT7yXo5wISWRqIiSBLQ79cpWrwYa4eV+piTfCvvP7lheDU3u67B0qLR/0TNtEKeoWW/vsFb+JT/VjZTTpfqJGFOCu/seQ8tuOwLGXZ0dHShs2t0F69tf40nb3ryogZuZ3NFCDvXs+iVnQ6ZBQ46Gpzo2tRWDF0akh27fG+zo20H85Pmo0f4jYbaQVnv6iK2Op+hFj8ESq6VVcfpHqu9KAHShSC0Fy80gLsQdDbUTSmFLtqwkUUbNoYFZNON16vuvu+SjDfuw4cZfPqZsOeiS8P76WYKFqe73mBynIlJHyOpxDl5vMKCdXAeK1KuBiE4PPAuUUo0vRNtDHg6jXmrr4gcloZ9j9me4DPIZYl3Fl42WTa4ErSdN9JsNpqFjuFlL5FCkmJRWOHUsEjwhfR7KdIQ3P31PBtaoHNZx9BVC9VWE4BNEWQpfcR6JfM3tyNUidT7aevch1d4Z+x1qHDE8mJZEXuHRkmyqLzR52KncySgHCA5mZxJa1I6dxzZjVZZSbXFwv33fBtq/h9oIQPdGTIOQYSubESgh83Z1WEq3M+UXo/UavuvO/LJmRggXRkFzj9oixzOp1eImvQY1aWOTbXx2cVGqbksvYxHVj5ivvZYw2+43W7FGxKwwSRrFKwgwCoUyjom6NtRQ+7iXNo3tTNe2Uen6ObdhP3Ux5zE0X8TQg8E0ecg1Hh0x5u88/jPjAfN0FJVyf3f/dGfVOBmBlXeSa/A8xXUnQ7ZJaUsv/l2Dm59GV3TeO/pX56Tw4Ip/3EWjahgz5FH85Ca6kEoQVF1DWEZpW3nN4hJO8FIVDcPFD/FIbGaVUol1+bcz0Gbzupoo59Nqe4lcW4RT970pEmGWVtzLcIZ0E6c4foILfsNCRcSSQYOMkUStVqvEbCFCNUGcSr+FK1xrQxGDyJ0cVE1v1yuKrq6XiE5eR1RtjSysu42XREie9kAVOXc+tlCEVomFYAuASlRVMGJqMP8aN/3ANjbOdUv+a6iuwDMoDcntojb1b9E6sba6+e9/0bHWNO0C+GPCpHs0Yu1H4aW5tRSKBAu0H4xyqGhqHwG6rZA6Z0QbDMJwPXqlnA3EmCitpbWBx/Cd/MNvHe6EU3TUIDNG25m/l98xXyfw1FOSfE/0du7nfT0m3A4ynG5qrDn1hGX5cFRMGyoMAWG7KSYtZRYH0ImBCpcsRrvdz9vBGyAqk5/rMH2hLGqHgRgzYy9sPNxkXElaDtP5JQVYjkyhB+JAhQkP8XBWB83ONfwPwfG+NU8G22xCnljkk+fMiatU7GC3elWQGJTjWyNN6Kk+f2iHJZYJa/keBCqDCR1JAWFsdhabZPZINvUwKrCERsgN0BpnJ3dQyP4JQTlP3QUOh2pZA47iYnppiN1hOyPlaH9vipsOzNlHIIIJSJIQAY88yK9SNtra8hNVcnu2Qb2EV6usuPx6UjAoQ2z582XEFK/4L6bxdkOVKNlCKsq+Hj5VNuc6t5qHt3/KP5A47RX84ZNYi6vi5KxfBa7i6iNaUKIGmxSMmorwmtfiHWiDqu3icTeHzEefyv5KRV8Rouj4LU2PICncYh4AfEygTQSeMz5NR7J/wlHYxrMMpiqqGhDE7MS1615752wxxfLEqzSNcbeoVHWJMaZ18qlQnZJKdc9+HCYefN0jc/ni86GOipffyWErWyIPM86aAuR/ziT7EeoWn1V24tI6QvaejPRv4CJgQLGBwqoLbCyXYlFAidYwt05paxb34l2sNuYRyQMbWmm9ItLKbv623T9oRNvcxOBlxCKQTrwtA6H9bMFg8bC0Ry+0HMPQgp6VBdDpQpalBW6ghsI+R+YsEwwGD0IcFE1v1yuKioPPYCRawYhbGRl3Q0QpgWpCIU5/iTsehQlIpt0/dxLTN0tLur3dZG7KBkAt2WYlwZ/g9UfTa/jFEnuqBk/a1Ns3F54e1jQ2xnXjHpnByu0dWz3vMLpoUazjPpRCdlGInT/gvsRfP5CMoCRwViwdSUS5+JPelZUPgOv/7Xxd3OgrzkicJsCXcdpERw/fhgtJtpUWjjy0u9IT0kj6f77AeO6a2j8AbruZchlML6Djws2GzSf0AKXc2w3cfHXYHcVAaAIhXR7HoPeLuakZFBxy+1TjjVIdIj1LMZbpVyWVlZXgrbzRObVV3Pn4G/o+OBdcqw1ZNpOUO2I42dejVz/JvalrcUnoDMGVvf7+X+l0WiKQBXwQEDuA+DXnQPmNiVQMzrOp+eXcXLxp/H3/gJVN5yQHLlrecA+l2drn8Uv/Ty6/1EA7p1/77T7V+GI5UfFc/hmw+mAk5JEkTrZrn7i4/tYvOQdNF1yej2kVCrYThpBJKp6VgZP6GCgKIYtTJAtmlJkob7e8EtdsGg+jhf+FjQvumKl0fMtJMXG+VNHkPqkifTZSiee1mHGqnroH/FQGa8wvzyLFflJHGp18t2ttWhGGwN5KbGc6B6ZUh6t7Kk0PUbBuIErMirMskTOUCqPtn0Vi1TxC42GdSeY7xV8I/4qfEJAgo/E3h+jChU9tpzmCfiBPkK2Q2GpK9z5QAAWVDa5VvPfWc/zrbz/ZJNrNTcPr2XsQPdZB4HOhjp6TzWHPafMsCo8F1S6xvjY4SZ8UmIVgpeXF13ywK3nZEsYy3hu2YqL2tMW6TNovhZgUUayJyPNqU3pj7PIfgAHCR0XAAAgAElEQVRkxWXxZ8m3oei/NVobdT/pc72c7JN0pFh5uzzeuASEMEvnX6zIoO9QTyA9BMhJceWho/3EEvB5lBJvnDXMuFpYDBmQsnwjaBx8twUbNnqFi22WKrQGw45uioQBgAL9MUYPmCpUvnnVNy9aQNLV9QrBgM04JB9dXa+YrL6gFmTagJ24/eNmIHmuzdzdLS5e/fcqtJDSqERytbiL3fNepCOukUxlxbSfTYpK4qvLv2oec6hg7VXLlgBDvLT9/0yyUGgZ9VLgTIulUPaoVbHisDkuSubtXIKx6TQUz4tEVLdl6uOQoE2JjzNbEpzxMQzG2bF6fRzPTkGP0PETwMjb75hBW1fXK+i6B5Douo/e3u1mj5v5gRBI/LiT682gTagKaQsySPxtN0lHmvHsOog7J4+Y5ctxuao41fpLBvrfCyg2WMmN/TvsQ0WXnZXVlaDtApB56yfo9r7D46d7kSRxx9gENxfE8m3G8AqQisCvSz7IsKIpAj2gdzsp9wE3pibwZv/wlG2P+kc5Na6SYNE5MGZjTlcDLze+jB64QIOB25l0fD6dk0ppnJ2ftfVQ39NHbtNxMoedOHK7URSdYFnXOx9sJwUoKpn//O1Z6eQsXH89gLl6a6+tIaXIQmvftwgO6J0o5ClRDHSnkBMzzC3aB2hjI4zFppAqxpCKMZ5bziIF4Gkdpu+XR5GaxI5kNfD1yna+/YWrwvrZJNDUO8o/vFIDEKb95rA5wticn174aWCybPLV7gdYLNcYRAIJp2tcdCZtQItXAv2JFvzRC1mXex3bRhQ0QArJLwuj+EKzZzJwC0AgmJ88HwWFEzGnKJ9YiBI44LMNApEersk5udz0pb8648A5mwH26fpmvLoOQuCVkhe6By950BaJMefgeclzTIfpfAYXbdhIe3s7zzzzDJqmIYTgmooVxHndpFmj8P7DPzNoVRj87a9Y+I2/IzMnL0z2w/aD79Ln84Sdx9Dy1Sd9CilzzbZGbImHkWoJJ9MV9GAvq5QoQrAmMY4oRyyJdxYytKWZoEl1W1Iv+2q2s2TuEmJaDMKAAKKGvXiOD5rHF3qdlKWX4VlTQG/tETrkgNnDput6OFNZGL1s1UnV9Nn6zG25vGfOnl8YBJ1dLyKl32T1rVu3Dk/rMP2Has7bDqijwRkWsBnfJFCkyjUn72UwpgtHroONuRs52H2QEd+kjIfT4+Sxg4+Z42MwUxo8T8E+xeA27yq665Jl2YKe0D5dYlUEL5aFL5ZC2aMVGRXTZt7Od9/OV9D6vJnZpXdOZtiCjwNw/u53DD7xpPF3TBQHCnPQgj2IIeoKSIkiJTnOEeK/cANgZMA6u14kuDIWQiU9/SYGBvaGaa+ZvD8JSAXVO6nSkHhnEeq2dxlyjRpPeL24Xt2Cr0ByqOqTAVuswHbwMZ5yArur6LITRL8StF0Afn/i9/xg+BB6vHFhbImP4/H2d/l360nuzbgOn27FImFjn48j6Va8gcE5eWJyIPrLvAzeHRgxsx/3ZSbjclWRPfQ8WTFGZijH5qFO6wnLFIEhWbG1eeuMN3Sla4wXugeN7Ss22oqWkOweJn4oE6gFjBJnW7qXknJB4Y33ERNY1cyEyJs5yAbMLikNZNhCV+A6VfEpnO7LQkEH4eWq6GOMp8+fnNxGh4lbvO7MWbYWl2HvA4DAgmSxpvBy1ekZ+9d+d7AtLGhzeV3m5KagkBCVYA6OJe58NjoNenrQYqhgPJssXcdaAD7dSBUIbZgspQ+rSEFqGrpQOZCqcjg5hl8cdLN0JGA8LEGq8ATPG3pSQsVekIi/z48FFcWinnEQiCxrzCZgm43CeXPlfii9dNmE6bBow0ZqP3jHDKy6Wxr5/ff/8aKQEabzGcwuKeX1118P89jddeAgMW0N2MZHKY2L4nhOKroQNP3fE9xYvhYRkP0YtCgc+PWT6BgMu7KvPERjTC+do53mJNpjM3TD0EHqAmvWErYu/G+itKsQbEJKFYFktf9tLJ7NQBlxq7KwZsbiaXHRltRrOmbYVBvPFP4nCS3atMkyIKycHpWfwP6NrXTta0P1GCw4BYVVWhGNops+ZdicvGy6zdzGxbZDysq6OxCkeQGVREc5Q65KjAyIh66uV0zpD3t5OgLCLIJgdlZUhibbVDlIgUBIwZzhEnZ3fIBP9yGnGQkiA57Xml/Dq3nZ2ryVTyT9OWUdmxi3jBKrxbNh0c0X49RMiyCzXwPQpUFeilgsRZIPPgorqzPhvJnZGQthwa0w0g3LPxOWZRv81XPm3wNx9smADcICtrzBEXKGRin8xKfMLFu4JqAgO+secnIe4PiBFxAJR8MEGiz+VPzKIAhJ74LfEDU6B/tw0Ywi1cdPv4ouveHONUIhYdV8+jJ+i/TqKB0fIyv/hlmcuUuPK0HbeaK6t5of7v8helASHfBKeD02GkEnsb2PkqCu5fq+GKJGh/hc7zK29yfi8vn5p2Yjs/ap+ZlUOGJ5eXlRWOr81Kn9gGZeiBbA4j2JVbGGDVASyatNr3J74e1TArfg6s7UbRMCXRg9bTmdw+Tl/gcDzlf4t6YPacpWSU9O5uG4PK5ubz9jAHUuN7MEolI92DPGcfdEgxT4HQHtuiAjM95Bmrd/2s8HEVXgAFUgNSMi8gOH0VgGfLx8Di9WtuONWJEf7xrmUKvTLJNWZFQQpUaFDYSNzkYUobDMPd8Uw9XQURAUTeSjTOh8vW6CxxZGownBaNKDLEi28GL3Nh5z57MreSG6EPgUSc2yRK5fZJw3T4uLt+VOatqNfhm/9PPk0K/Zk7uXpe4S1hdfS3yLkfmYLtt2rj0ms/lNDmx5iYXtHdSUlKEpKhYkS+Ls/LS155L3ty269gZ6TzbT3dIIUp71upmptDkdgguGYKZxJvjtsVjcI3Q7Yo0yTKAk2apNoGUmkzzsZjAhBl3KgFSGjye3/TtHCoYoiIbP2yZI8+kkZ+uB+UVgibmXhrEkMlwFdCb8gQXO/SxMKmYhtRSIBr7//gt8+7pnKEsvM4OufTXbw7IodUUtrD6ZP5U9IwBFTCmntyX0MmoZodhdiEChUMsgQzpIEQlss1WhoaELnb7oySzbAwseuChZpFBh0xXlv8bp3I/VmsiJhu8xeQCSzq4XSRE34v2/SYHgmBAtrNlYUXW3uNj9QqMZsMUnRzHi9Jhfo6hQsmgOh4f8UwI2NeAJHBrwhGavcvuK8By2UeZdi9VnZOBrnxmhJPnS6LYFmf0EMm2hGp3TITLzdqmsrM40vpwXOSHSczRjofmS83e/w9s82fKRMjo+KXQbhBAIKbFoGgNxdhJ1P8GrJpI5GuyhnFf0aU52/Z3BBwSkJlAmiiB2PwiJVHxGiXSsmKgCB/1jy2n+cAfJw2Mk+3R6Nyzk3449ysMpYAmKKAAxqbfR0v+vyFgfxMLQ2Huw97/JWvPHD9yuBG3nicgeKQOSV+Lj0IBFLo2PD0Rx9egiQ6/rkEC16fxivQO/At/s7GZBZrxJHgidNA0qs4JECwi/Qo2zGV3auafkHgbGB3i//X1DXFNq06bPw3XbJEhQpM6c4UFuuKEQm+0kTRMqTT6VRE8Kq3rWcby7j4a6p3nwoc/OOFlOdzMHJ9mMjLXAC4DfHGxj0yYourWNk2/MYbQnJnzVHFhdjc/QlxREVH4CaV9YStubLZw85WQrPhpVne+Vz2FFfhLPf+Fq9rUMsPNELwdOGZRvXZdTBHvvKLwDieSOwjsAeOzgY2hS41hsEwwqoBuSK0iocVh5I9tCVZJqSDsJgUSl2pPCJ/RebuiJ5sPkhRhekjBqV8wALCo/gaLexdg6beZEEUTxeB5z/xDPMKcMo+KKDDMLERasnENZ42wDbGdDHS1VB8jRde7f+hS1JWVY8gv5x0bDBWO6ks3FQKROm6papnXKCEVlZSXbtm1DBtw5ZkNQicw0rv/S16hSlBCdMInFPYpqsZA55mEwzm78IopCfU01Mj0RJSOJtTfeRvN7bxkBsAIdSW7ybD6+lOzBooR8oTAWTDtP7yJt9yZW+jPRlBsZSPkX1nOMZlHCNu4mI7Z+Kss7on+paPFiok9bmQgpi6rpdqLnORg70B1WTq+zt/B61eusc6+jQe1CQaFIy0RDJ0XGcaN/Kc8mbaM2/oRJQAA44Txxjr/cVEwnbDp37pc5deoXSBluZyeln4GOPcT5107bDnA2K6rQ9wQxMugJO/+L1s4h8epUXnn7N+Y9pqAYdnQrDTu60IAneN7j3HEsGZrPRFwbE5zGMbgEm88x435cDIQy+6dbIEXKfcDUzNv5YKbAbDaZ+fMiJ5zBc3Tk7XBiVUZmDps+/xfseOLn4VZnQtCSbozZjYd2M/b0L1n52S+EuR8E3RAAipZ8jIGeQ/T0bUH3gXfYTvHKHAZHZCDAl6jeOGJWZDDg6WDr755Fy0giZb1k3kKdwbEtNE1IftYXxXVxPtKtOmO6Qp5zFzbpmyy7Kn4GO3eTxZWg7U8W07E3wSgOLhgv4Metf4MtcHpFgNY1nGVDUwDFkPyYLk0O0OBsxKdrqGKyXH93oo8un0p2XDZ3FN7B7o7d+HTfjA20axLjsAppGDlLjXX6+2Q1TTBH9jI2+jbNLZJsKSiyWlCGUo1+KwSa5ufUkV3k5n5i2uOLvJk1e5ypy6QoCjfe+B08bY/j0nqJSZsw2a9LSk7TM5ZCw3Ac/sQUAuERSMnAgZ1sTU3n9vs+PuP5bq7tI651hFIslCgWHr6jgKWBgGxFfhIr8pNYXZDCJ5+YFNkNCvZGUurvKLzDXHnPd89lyXgRdSu6WZN0NYqnnQ8P+/jiyhh8SsROCEHNyDiVaWsY6T5uDAqG9gNP4cFzop37MpOpcMSaq+VfHPkFezv3ssA9L+yaAECTjO03MikTd6Tw/PYXTWuic2HTnm2AjWzYPza/HM1inaw7zVCymRbtB2a0p5ny1pAMoA4s2XgTCalpM04C7e3tbNu2zQy2ZqvtFZlp9PZ2sXnzZl5//XWz5AKwfPOdVCwsI+6V33Og8Ri6riO1gG+mEOiJieZ5nMiO5reN32dDrIZq3BoGApsTgDqSgfSDggo6jI3cytPpNnZyHbpQUWP8FHqPhO3rdFkUz4ZhJk44QZOgCuLX5uDtHAVVGG0BgZ6a15qfJnk82RhNBOhSp0txUhl/lD6rk9qYJmpjwgksAJvyNp3x/M0GkX6MLS0/paDgr0hKWoUQ6hQ7q5TstXgt01txhUp4RFpRRb7H79enZCEtFoUFq7PITHeYNlVJUUk4PU425W2alpwVPO/v7XyP4c5AD7HU8dlcWH0JaGiciDrMCuZe8LmaDpEL8yBmkvuYLpA7F5wpMAu9X/y+mRnX59wPdwbP0fgbb2Bszx7zcfKDn0FMeA35j2BJKViBCTSmSSnZ9eYWUtIyKLjtTtP9IBQuVxVuy6vEpk8Y10nOBM6xLZP3qy7Qo8eILc+gscpYkCXNHyRnfTdeIJ5e7u6N5pBNsNCuB7JtOkIbmCKjE52ZPftzcQlxJWg7T4T2SJkIXHBL3cVYUU1vM4ONAutdGr+V4NElFlUJS5OH0vxP9WzHIcx4AEUYP1RxlI7D5mBr89aw7M10qHDE8l+Zx3in8ygLOYYEDmRuINnrATGZgfi6c5yGnlbaoxYgARWNuaOHYFfXjBNz6M28a9cuU0hT13W2b29kYcKNdPcfYsGGakAidKhpmMPoaCxWRkjsamLUnoQQYHUNoIyP0fDys3SWLZx2kDi+rZnYDzsCAaxA1WGue+rxBx0XIu2spmvsrcioYImnmH9p+zIWqaIMqGgVE0SVL2bfWHW4QHLIxF89PMY9eh7f92/Bgo5fGkQFDXiuc4AXugfNrFVZehmb8jaxt9Moi4ZeE6GQPp2mQ3XmefT7/TMGKzOtns80wIaKztaWlKGpk7e9gFmVbICp5Y8HXztj4Dad5MCZJoFTp06FqegDuFwu2s9Ssp9OZNc1Ph44QAEoeBOSqdz6MvHvvI+vIA89olFKqIYUSW+ih5qiYSoySvh5xt/Sf+RRBIHGZTm5SU2CNXoMhESXkqEMlZcKbsUjAlRJIfBLK/tHfLhcVWGTTWgWJdjblX1bAbETGkqMBdfrLUi/IewZe1UmMeUZ1Nlb2NK0hbjoOKMvUwoUFNJJ4FcOQxMw8trKi8/j+rzrqR+s53t/+B53FN5x3tmbyfKUEbgNOvcwdPgg5cufY37JdwPG8RpCqMwv+S5pOesYva2L8WP92Benmlm24PFec18xE2M+M2A79NapsP62zAIH19xXzPE9nfS3jyID5I7U5VYG80/SHZdId6+RLfdoHrNX9Uwm62XpZaSsTuGZ+mcDPZYKVm+AoCQFez6oZU78HNZXnJk9fzERaRYflPu4UPZoe20Nfp8PpMTv9YYFZmE2hFJS+8GOi+NUcgbP0WBv2sjb7xB/4w0k3X8/u7/2l4YOZkg/WxgCgVvrnt0U3HYn06G1cSu6NhFCRpCB69BiEHwUC1nrbyUqP4FczxIUIUgsGAluHiSsS4xjWAwbSZLI4VlM/qHOOfOc+1HhStB2ngjtkVKFClJD0w222rGYZnxo2AK/uI7hlbfMpfOzg27+N1myuCTNXHl5Wofpf2KSZVV4xw30yJ2AkY8KruzHdMGPD/w4rK9tpvIowPqsRcR2PUqDnMuPlO/iT7Bg4TpS5WmKaQRAelQWjbtYGf0yvaN5pPX2kjLQBSkeUBTY/O8z6ux4WodJG7CjCKMpOj6+D0diN21DGYxYFnH0aCppspaxNgvu3hhAGKp2w8PYh4fR7LH4YxKwAOr4GM//+AeU3PyxsIybp3WYuF2dZsBmWESJGfXOglm3UER3e1jSnEBX8gTDqUaWtLKnki8nfQ5rixUFARpm1su+7DSKLEWTIbN04G8pBF7FSp+liL8/7uZfF8ahIZFCIDFIC6FZq2BwfzSmwbS2mi5wU057wu7G7vpaOjNSwwbSozveZMeTv0DqOqrFyn3fefSsA211bzW7m96f8fWy+Bi+X5xz1iyby1WFs/k/SIrRcAxPLX9Mh3MtscydOxeLxYLf70cIgRCCQ4cOUV1dfcbMY1Bkt3Lry+i6zvvPPs76L30NRVEMxw7An5iK39XP6ZZGbA31kJsOBIkncGDBAHPkMR57+zG8mpeiaMGXU93YYgMtEKE6aBh0mIzGj+OWAl1o1OeP4BNJBq00ZPKx6iM8X/ldurxf46aCRayZn26+Vrurgw+fb0CXEkugtyumddgI2CSgS7p7x0nSJK81v4ZP95HSP8CG995jKHcBWaTw0oJnqI85GdgngSIUpJTYVBsPLXqIHx/4sWnrtKVpy3m7IgTLUy0tP2XQuYdQK6G5c79MXNz8sNKVp3XYDD69p4axZsbi1CRbfnIYv8/oC5y7NJXoWCu7X2ic0t8Wem5URZC/NBW3ZZinvD+ho7OJx3sMDTav5jXHwtmwLXNzc3nooQepqaqns26CcZ8dJdDPWtqzmppnXJest206DHuGzQW4jm6OTcFAzqN5zkg2mwn2+Piw6/DY+++EkcZCbQh1XZuxx/Riegcn3X+/Gbx1NtTR3HPaeCG4n1IS6/ExFmUjeKMpEvLXXjPt9job6tj3m73Mu8W47SYTdsbCwecbCiulJo5NkNPvYqglnvg5Y+bXjtqKaByt5kY5VT3H2KaCothMB4Y/Nq4EbeeJsDKHsxf2/ITK6Gg6LSovJjTzzfz/4HrXKkDQFN3Gl3vuxSKtLBzSyHBNcM/Nk4O3u6rHsMzA6P8oGr0GrehRutsfx+47icBY2ccoeljAJhBnZBc5HOU4U77AS/1J+LAghYpfSupYTLFsAE3gWQKeZTojuofU/zyJ2qxwUknEf5OLZQ43bPuG0VAaMTl7Wofpe/wocX7J1ZYSapJ2snjpuyiKhq6r1By9gZHhDDx9fqL6u8xVEIE91+wxuPPmg1DwSh17WwPqmIsTLz0NYAZu7qoehAwN2IwgePRAN2OVPWE9YdNh5/7X6HhqG8v0BJaKeNRNpTx20JiYl3iK+ZH61xDSmij9Oo6RGAj1wo4I3oSUrBjUKBzUKBx180aOlS25NjSMilZo1ioY3DfGtvHrpPf5tNMoVQkF1AQb2pAxoXpC+4KkpPFwJR0fbDcDs86GurD+j9kIyQZLL3l9VlaLJLrSDTatomvoioJNKLMO2Mx+piXxlNeM4HCrYeWPmXAuJZbc3FxT48vlclFZaWQdzpR5BGPwPvTGq5PnxufD29vF/IJ51DVNlgu1mHhSRscZiLObzwVbFywenWdqnzEny2XRXkALrJqIKNGpxGpfxd1neBMKKYh1dWCVc/EGBKeROhb8zKWFH4h/wh9l5an2Dn4HrJmfTneLywhKAvptfr/RU7W4NBkRKCtquqS/fpCWugEcGVbmJ85lQVsz6X0DZPXuQVcEeY4C7ou5CZc6StFELgJ433GQjPn51A3W4dMnr6sLkY8IkhDS029iyHVwipVQZOkqckzztLjo8Gj4g89JOHmkn1M1/cbtFdLfBoSdG02TtB4dQJc6N4mH2brwZ/QntCMQ2FRbWE/bbNiWubm55ObmUpvcwQdt9aZsikABP1S93crmLy094zYi9f7Ohul02qp7q3nu+CSjUiDMXrygh+qZyGZnwvjISNjjyMBs0YaNpj+0arFgj49n/ysvhAVn5yz7cQ6Z+PbaGiPbHZHaGou2IaQkddhNtF8jd2SCzJy8Gbcx2hXF6d2ZzLmm20hw65AnPkt8wzWGOLVjcl5wHzhIzuAwNQMOhk7GEZ3oJd6eQGJKPzkeo6/trkQv+TYjyaJLGPXnk+JfQFbupiml2T8WrgRtFwCzzPHc3eDxGibjUTZei4+nzn6KuujTTPTchsUfz/pyC/a9On1enRW6QsrxJshfaYjGVvZMblQ1zGlX5t+PK6mYyqpPouleNAnRis4XUyc4Mq7whzErilB4ZOUjZ5T8+PrgBrxCIqWCQMMq4O7GgwxLnUS3Bd8yY3khhcC9Uiex2ejP2dWViEz3U+b1T5tRcVf1gF/SI1x4pJcFCf0oihZoS9DImXMMVdVw99pQXG5GO2Nw98YEEhYSf0xCyPJIQYuJxzI+Zmit7d9Ld8UmozF4OJyK3YpGPipCAppkdH83zgPd1K7L5PbNxVPOQc3h3Sg6KAH9NfnOCfIWW2nImyDHnYbUpBkQCgTConDKkTKpuQUB3SAjWCSw/1alGcG1LHUpNDssvIqpIDTlGvn/2XvzwLiuKt33t8+pWSqVSvNgDZY12bItD/KQOIMzJ5ABQhPmS7oJ3Rf6Qj+g4QINTaAhcIHum4a+nYYQwhiGJEDmYMcZbceDbEm2JcuarXmWSqoqqarO2fv9capKVR5CQjcNr99d/5Tsqjq1zz57WHutb33f/dffzzOvvojnUD2viCirHBqrXTaYX+EFKpZ+bJqOIU1rww8vYhoxjjz2KG/55Odof+n59EqrFLvYabh5opmsadjekc1oQRkP3/znmLqOJiWNHc28u7yIJt/v3gjSSC11nbkt1+HLvB7aHoK2n0Hju34nvu31nNhTCzEmJibS3nO73Rf8DqTL9ZjuDGK+PDonppk4cRzySqyqNGBjVx/Z4Qhxxo64P2YdBDzLGmOD40i/tYFnhxQiJWOszYBMgWJ682KgS6ShMDUTXZ3iX5obOVDVi57zKv3aaoSCNjZjCDvEq4x/MHKIhqJVjHTlJJ0SAE0ISmv9JCR0Bn7Tg2s0SIXDksDaENjFmxe286+l92LaetFMgS2/hjdlfQR9SkdjBYB5XeASPs0/sz9zP7rQkyogvy+B7LlFCLU1nzsvipFqF1rTQi6dxbHQeTghJUHThJWNQODKsFtaoyl9Y22gVgpTUzqlC7UEssepz6m3roFibc7a84oPLmStk608eOpBwl0mNT1bcOg52JUXqaTltCHob52m/ZURGipHLpjqm/vFLxj/0j+AlGC3U/HDH7ym45ao5I9KhSbgqzWreF9p3nnFbInns6lgE7dV38YjXY9Y1efS4L62+/hQ44det+Pm9noRmpbEsp4r2ZQaBXd7vbzww/vPc87eMO1H28/AWMbywC8eiR/tOk1/67H09SzlYKyA7HCEmsl5EILAbx67YP8mYBFznX6iMw7qXeP4R0pwVV7CghpI6oZm7igGLNm6jKe/TfXNgyibNa4MplFL0/yZH0ZiggNBOyX2qCVOqSDavUh7VxfHZ8d5++d/P867/2j7v07bf4SlEApuikT5nzPzPJi3me7xTRjzO9ikdWFGz9C9tMZCt0lF57d/TkGRDWM+b4UtHfBsXYka+XxbaHK/h2eHvse8x8Y1XmuC17ms1yNh/TVJM58fP0NMKRQ6AoP16hR/xiNsDnbQH4Wj1dmsRnFuSBis4FOz280mM3rBiIoCJkSApxzHkCiKDDvVJDGk5OVZoW9/PFOpDEHPU+WEJ6w0qS28SFTFt04l0cOLybV8VW1TkhIg16GxK0NHSYgCBzBZjZ4SswNNKQ6/PMBirjONmw0ge00F4RdPxVPM1p3ubPeT5yrlQzN3rNy7stIT0w0hOoLPYMu6M6kfa5ewa8bkpQKbFXRRguacHLaGvsShLV/nf2U6k8E6Q50P6t9UsIlDcz3EpM48Gnky3lEpPV+ofPzZxpt4te8Fpk40oy+FAOg7foTRrtPnPyAhaLjy6tc8DTcVNvHS3I/QpGC4pApT11GajgSEEBwprKQ9pXjiXEuwhE9PP0fSJRU2/CVvgp//P5CI4rT8FO588qKO2+s5sSeExhOFGNXV1Sm3KlhKYNQuYGUNG7DZ7UR0uxW91TT6xychrwTnxCBKt7Mqx8+E38+Iw0V7Vj3ducVcPfOKNX5Q1A16qRnK5NmdE0z5o0RP6ZBnJqkEpD9eJ4BA0+yUr7mSDXea/GDvLxnO6uKO4CVsmlfU9yr2+Uf4MX+BIWycE6JjhFGOt8X2vY8AACAASURBVHyGivL70G0C07Ck6q54V20yJeesyMK7yosxGkSL43o0BDal48+o4xt3BFgzX8CGwsvZPmul9xOHDgCb0tkQrqEr4yxXrrqSl4ZfwlSWrNTvY+cWIUxO/paqqo9eNPIQ6QukrWmixs/jD3VZ1aDnwpY0aLy2jLbnhpBKsf+X3Vx2Rw02u1WEoAlB47VlnHxhGNOU2DSdXds2cXP5zmTEPFFc9FoOzdDQEK+eepX7Bu9DIrlyfDfhjEHCGcNkzTYQFZAZzU7OyN6DPTS89I7zokbhlhbLYUvoZ0ajTNzzVQo/+5mLOm4H54NEZTxLoOAz3cOszXQno/BRM4omND6747PJe7h1za080fsEETOCRPLq6Kscnzj+uvBtCW1oC9OlsWbrdrbd+rYLVoheTDC+pHbtG6L9aH35Hpp7HqXJaWdTJAqa7YL7xonnnkmTtUvaCiMuUiiy8oJMbofgqIecZ5/C95bbzuvfhEze6eeexX+wmYIZHUfdVlDWOF/ydjPT9gQl2TeTX3e5pYDyP98C4YeSKAYRL/ZTCkrtirf5owzYL6HAtoR36SQ5dbP4q+fofbryP0wz+d9rv98s/neaEOLtQoh2IYQUQlz06CeEGBBCnBRCtAohmv8z2/iGrOlOqL8ZgFang6/nZDFCP87CJ2nw7OfH9nvYGXoATUZBmmjKJGumk+49Lyc5yACwCTJS+IwYOgIH/5lsv06VK7FpWm9dIkxAx6vqLtqsNZGXsCkDTRnoSAoYR2HSV+lmKd9OuX8lVSEVLLlcdF5Vznh+Li9t0PHV3HjREHfGlkK6bWNIFN6sKQqLetLal/q3ECB0RWZxGNOdQSS3CMAiPJ0awT3YRYu9hkHXKkJNb6Gq4pIkJcBMTDLbWEBwRyGf0JcIWUQoyRIPmcLb9sypsfPa2Zc5w6GG2fhyEMdJoHFjYDuasrAsSikLQ4VgsWOMIfUi64a+x/rpbq6KBPiJ7uOjm8pxagIdsOs6l1Zvwvnmv6AtaxgzZSfSzkmPJmzd+gqkZiIxmZAGJjKtiGXCFmBwfIjG2iZskRQHRSmG2k/ScOXV6Da71Z+axnV3fTh5GjZiMWvBjcXO4yqbzI0iNcWq0T50aUI8kndi7RYeDUt+NDrD7S09NAdCad8LBI5z7Ph7mJ7eS+pOm5t7Jb6uYysOG4AZsU7VF7ELndjPtYGBAUzTjHOkGXR2dq70qaa9pmJGYvF2rtZZVd6O12txlHl90xSvG8Fv62Wqq505LcKiV6OUXgpSuAET6XddCq4+lkfNYAa9haAPJwYwSA0OhXVmQwVs2fxjfL4tXNG0jY9+4D385dq3c8PCLgBcgTX0LF2DgQ0p9HhkWSY3qTa2cEZWElo+luxWTQhyS60x0xwI8a2zEwys9yF0zfqIsCJRY9ocU8YSq80rUd51nAjPMKrNJCPACWJoQ5ic8vRg1+zkunNX0sZx/OsbtUQRgrVdSGbn9nPs+LsYGfnZBT/vrPIhbJa8lhSSvo4hLnEKmtwafn1lgRACrnxXHU6PBRpPpEiXQzFu+9hmdt5WxVv/dguX3l7NbR/bzI5bq2i404tWFOH07OkLAvgvZAmFjI7DHewa20V5sNxaP+KVglFHgJ68xPetvlqT3wdGxKKvMFbGd+/+A3TU1jKdm5u8/vLJkwz++V8Qbmm54O9fmp2JlrIuSmU5coko/Ee2fIQHb3wwrep1U8EmPrXtU2nFbL/rPpP3m6INDVC0pvY1nY2EcyY0Lc05S0Tjdt3x3tdMjbaeeogP9D7Et7Kz+EBRIa1OJ2x+d3LfCLe0MP2d79L35GPs+/6/neewKWFlMQyh6Cxf5MQ1I8T+KkzsxiiO989z5gY7R059is7OzxMIrOhk9z35GM8/cB8jA310rMpjedsWfDfvBE2w5OthsOlrTFc9womRDzIy8jMGBu7DU7EOIeyk8vomnTdhndFqRQ7OSTdgWskgXZFZuvQfppn877U/VqTtFHA78J3X8dmrlFKvzb76p2C7/gZ69tHsdhAVFqWHrplcUtKCaziKL9DLprZvMeerJXu+G99CP/edmOGDuxfJSYxhQxF4pg97YYaF0xp8hTmfji5UnIgQiIMlG54W7JJr+eL04wC8Y2P6qSYQOI5/5rt8lj28zJW8zNW8wHW8wlV8Jvtu1vi6ktUyiUErty2RsbWf49VXM5d5mkD59otGT5wVWbjW5eIdbWXDxj1xWayVIqBUJnOlQJmChZncOI7NklHyDHaTsZhLd041RzwbcNg0fnrHTkpNLY0SoGBbEY+eneKENIihW9ix+OIa9vWwJ+cUy7NV3Lp2DQMD9yXTNq2TrTzW8xjRcisNeUl7rpVWVYq5wS5kkaVbmFoY4FQ6Dt3BhDiAPXqEb269n00FVQA8UpSxgktZiMEPb8Wfdx2q9uPWzo+gKSuD08Elfts3TcVkjGtr8imq8nFF0zaOTfwbXUcmKZE+iG3EAmHAbHGMp2eOI8ckYkxQufMmJtpeRg8H0e32ZErxji/cc16KMRVwrJTC7fUmU5EtrgHGfGF+uyNG0UyAvLGfMZO3GU1FiXhWNBtjF4gOWgzk6fxbAE5HPrBIwGtjLtuOfz6Gb9EAd+55n03Y6zmxV1ZWWhVtpnnee5s3b74onu3Y2TkO9c2wauIYay85iqZLpNTp7WliTXUzmjBR9YKeJ8vjxTAWX6EG6HY7MhZPUcf7MNcf447sGDn1UauCGCxnQsCxkM6tg/2Esvt54ewrjCEpc+3kUrEDKcchHvFqDM3wy0wDQylsmGxULTSL7SA0pNI5LTZS11uZlGiSSjHSNcdwri0pd2QTgg85FFvmTQwB7nVLvDDSQvZSbrKYRSL5Yc7TrBLZLOhBVi+vAuB53xH81UXc33g3AE/0PkHUjCIQF6UqOtdSMVu+zalFCPuxKvQMznTdTWZm3XkRN2dFFtzg5eRPn0KXNtZm77B2Q11QZIe2sMlgTLHu8hIaLi9lvC9wHgVIUZUvrRigqMrHeGY/n9jz4WRk6lwA/8Wsra0tOa50dJymE4lCV1ac1R7LYtE1y9mcU6x3b6JpdzUN7kFaJ2w0u1w0LS+zyZ3L0NAQv5mZxtywHk1KrnrhRfJmLO1oFY1a/XWBaFtCB/oz3cNIBY6Uau3X4mM7PXs6jSUgoZf8u+yNEuO+VsHQ68GkPt71KNE4nCSK4vHMDDY1WpRR4ZaWpEzcqVX5SP/5B9rYliJOLp5mPHeZKX+Ua70xhE6SLqr08gkMDUZG+xgZ/Tn1dV/CP1lPxz99EzMvy6reNwyGR3pwt/4DBZ/7N8bDB0Az4o55jDNnvmBVGGsO7EtvZqT/RXLr51OZpwCriOHMr04jTZOaNwuUrlBScNhhsD47wp8C6ccfxWlTSp0GK+3xX8bi5c5NnY/iGN9LTEnsQuPm6VYEEJ504gv04wsMABamZtNIB+OnpshJYfOPDiwSHVgkdGyC/Nt24V/4uiUarymUKXAMCTwHNTwHdP67doyxap0vH98H/HOa45aQ/aihi3bVgBQ6MlGIIBqopiut+QkIlxASX/YkhcF8moTnNW9562XbmNnzEJom09gxxsdqCAZzyMsfJLjoxzTtRDojzMcqVo40CMy8bdiCjWxYFcI538mGLVuTlZ+3fWxzmszNTl3isGmcjpkcwuAKbCz7ehlt+gbrRIx1NTa0iKC3zwBhY9T3DvojGtkzGoUzWUQc0hpv1oGe2cgoL47/nMrM9az2bkRTAqkkXcOH+ObNn6fbM3kePiaNa+mERSR50luNdUVr9h8KhDgUCCGkQtfgzh+O8T/ev5HxzH72nt3L9VMfZK3dge7Sk302sjxlaUkKy/Hqm5tAX72ObavL2Lh9R3LRvNACurS4mOZ5T/T3JfEpQtcp3OZm3B9mtLCc+YJ3grBZ0QNlWn8DdnE+5YcFMNdJlSUDDa93HYG8Xo47fUgNNAlbTiziW5q56Dh5PVWkZWVlbN68OVl8kDBd12lsbLzgdTuPPsdLTzzMAaOebTVtNOkyiaksKu5JYixBkVkSJjxh4eKEEFxZ7mbzpR+kY/9egkdbCbqcOEsiVL95EKGrBGtHsghBKNi8HKFg1sYv7vsBhqnQsNHrzSXoWeYyr93KnyLYMVDFZ/P+gQ6tnnW0g4ATbCaqbCgFgZn1tO8JIXTL0dA0C8/2yxS5IyUVJ/w63vEYOXbB0kJwBbemQAlrzSiWflq9nckKUgCbsPFg4xeTY/dT2z7FPYfvQSqZpsd5MUvdaIXDQfmD38e3eQtVVR9l7virSU42pSRzc4eTTluqYsJk31mUaVKaUZfs8/iXaPTohMIm9TstrFFRle+8+X4hmavUqspUPJSG9oa0VR2mg5AWI3+xAvdyEfZYFpf33WHdu80ktzST1t7TfLCogKgQOFQW98+dZuCksirKNQ0pBP2VlUmnDU3Ds31bsv/OLVJI6EBfjGD3XGudbOXX3b9O+7/3rXvf68K0/T7EuBdzzka7Tp8nE3euCW8xLKwQOIuKS1eibEeOoqJR5lx2hnzn7ieCbbfejnuXh+mWgywuw1RUZ3raicowsA4HKVsGAJIzZ77AmqF3kRMIouV6LXyqUuQuhlGRKMFn7sfxLj0NXhwXEUPKKMrVyVy3j7luH5nFYUZLg+TlRyjJqsfWu5HQqMWt2P1UOd7iMItjHsqm3Byq28Omm/4w+rRvxP7UMW0K2COEUMB3lFLfvdgHhRB/CfwlQHn5hatN/uBWtp1NZdu5f/JdVlXpeDebeq1goqcgQsC3gTlfXTLSdsl4O2KmF0TBeVgPDEVkROILSmp7gkzmu8hY2IL5jTNJ9gFNQsOgoqs0xhf2PE61b33S6fH7dyDRUEpSr9qxCYNYXPs0Uy0mx7NSlgOplFVeDRCLOnjLeC5FP/8/8FfVULY9GdFI8J9Fzi7g64MtOX5m1ErzldLQxrZgH4H28ZqkQ2GLTsVbnZoe8RDR+5gdasUvFKOPHeP5XA9XX7ES3escW+RbbYMI4O9vbmAuHKWobRbGlwnndKJEDKEpEioM3dTQLhuYHzrO5NlJbjhcgCZXGBtgBQs9HRlhOjJCX/AkRa4KJpcHmY2NUze6zF1vvQtY2YgG7Ds4YZSuLLiVl9Oc3cjPC29MueLKxqQ0gYmiN0dnpGuOltJmKic2YZM2ZgwrEisAoQlsAWXNxJQxIKUko2LN71xw3V4vWhxwrNut9GkiFalQ7DTqeIxWljMuA2FPHF9xB19kfd4G1uau5U2ZU2SOfY3OMUtX8uJVUoquri9RPBpEFlngeikUY0VufBfAr5xbfPC77qWxsZHjx4+ncbVdNMo2dIQ1z7ybj4oY78110rLKwoEmFvnMzBmUssaekgLnGfAsRwm7HNazbz/Gvs4WK46R6QYFmSVhhK5WWDsSzyPunF7rjtJb5sW1HIpjM02IjTITK2V2Yz6VBR5iE0FEG1zT/DY2VT5NawF0qAa28SoHxJUoAc/mrsMsfZztw6DZSsgrC3G27bfUVDck5Y5smqBq1iTHLrjUozM17eJkQk5UWBWr5WYu185uJDZ3A5+r/BdOu/oQQnBp9l2YSxXJrgpEA0glXzeFRGKjRUoipcv0d3+LVVUfwefbksLJJtNoENKKFYSd0rG/Zb3/8pX0XgKCEF8PmrbknxdJS/z7QjJX45n9jAXHsGk2TGUmpar8szols25q6gu4mDU2NnLs+LHkuMqP5CMQRDwTKD2GZjpwLhfgiPkwDMm+R9sIrbEcNikEMaDZWMA7cDbtulaKVYCuU/T5z+HZvPmCDm9HVS0H54P4bfp5bbsYiW7zRDPL9tVEXfUIcxGle5nXii96j38IG+06zS+/+JmkbnD7i3u447ZGSi65OS0Dc0vjXfxmdD8xTOzCxi07P5l8z7N9G9hszGS6LU42WMFfatAd209F/wFu8sW4PkvjXybB7Mmi+1Qu3uIweB0U1Y9YB6fk8mpybPFVwvnZrBuZJmrTyQ0u4Q9bqhmhAwdQ48DHRTwDkmqSmOik+hYY3l/EeGsubWGdU2oR58w4f967KrmSL014WJqIR+dRFM04/xDd/IbtD+a0CSGeA4ou8NbfKaUee52X2aWUGhVCFAB7hRCdSqmXL/TBuEP3XYCmpqYLl9n9J1ky5J19BA59H8woC1lVtG7+G0xlQ5Mmm9u+hV8XeKb9F0YW6uDUThLIgK7qTKQGc752cldrOPotrIsS0F5ujWTDcKfJNvl8W8iu+hJ7Tt7NVk8X71Hf50fig0gEPxF/QZkapFZ0ISUsBH0M6ous90g0FDVrWhkc/hiPTd/MZXvb6XV7+WbrWYaEid2m8cgtG8l9coBwRhdzW9OxTEqBX3moPHOC0aZapG4tVEZ2AZ75PAxmkrHocnGW7jwbijzry748jj3xMPmmxsFfBTEMSUwpXsyMMmqT6Jrg3stq8LrsSJZxz9YhquwoaYDQ6dZquUf9nQUA9xpcuvivaHI6SeuQbgnwNkxHR5kzLGoR3WajLE+HV/6RQGEhx0e/yhlZyT1swRCjODTNIs8t287B3d/AnE2lyyfVe0WTUDlp4NpipzbSSGiyDBDMmpKDYcXu3WU4QlEiZ/oTTUp+X9d1KisrX7Pq8sRzz7Dv+/+GNE00Xeeq93+QvPJKOl7ehxGLYiqT9nAXnkg9U54riIfyAInLGKHBdw03Zk4hu97DiLLShCOjv6S05A6i0SnSo2zWzUlpydQIaUdp1ko6UuyiOMtGaoLqDdMFYEXb3vSmN6XJWF0sysbAK+gyhiYkQZ9Aj0fV0lkEFErCQGsNc9KL7goluxmIc7jFDxLCAj0r07qISFB9CJLyZtECN6owRnXdID1PVhCe8CLspQzn2Xii1sVVHicVzw+Cgm5Ry8MZNvaKOmRK4Uyikb31dTT1DwDw6uhhfkk5Fa/s5xPv/SBPSydFThuXv7OI1XtGmBof5aSe7jAAZOBCR0cpuFW/DuFvpvVMOc+crmTf0UP89K6dbK3w01TYlORSVCh+1fOr16SQ8GzfhnA4iJQuM/ORKMrxCuPHDpCfdzUVFX/J1i0/O09OKK1YQcVYyu7EM1eTdNaUWkFwCl2j7OqVg/W5B8JzZa6aj3fwxeWPEjWj2DQbt9fczq1rbiXQP0jzt74HpqK17wdUxyrxxvwW1UMKBVBZWRmeCg/B/mCyUtxqiCLqmgEFy55xfLMbsceymO+NIfoaaVi9i46CA9iVounkExgTN3ImvxipaWhSUud2kX2HFaFz1tYC6Q6visU4eOI0dy1oyUIEDSs9+simavrHn05GQDdEavh8ySep3LAWZ0UWHm8T8wUbUMJGos75hwsatwZCvzNK90bn3sXoS4baT6bBFUzDYOiVX1PS9d00rPOmSJQHJqZpdmg0RaVViBC3rlLBTLkH+6wZX9vidBooJJJ++yHKZCyu/iN5R/lmfjDRzWKPD+lwUdvUk5bFAQtqM9FlEPZlMJnlYWfPSNJhA9D8VWRqtQSG9xArW06/2ficFhqsumyc0LyD8dxlFIqsaVg8cxYdkcIEEIcwaOCvWf2a/f6fZX8wp00p9e/WTlFKjcZfJ4UQvwa2Axd02v6kLFXq586noO0hRnpqkHOWpy4FzGXXkO/UuHgtiIDiRuZmXEgNqxRak4R2CuzxPV6Klc/abEvk5Y7xvZMvJk9t2yrfgRFqJzTxECG8KESSq62DBmrNLjQJfk+A7Pgh0GLgMPHkdzM7U8VLR8sx1Rh/hp3n3HACk66jo+w0JJP+VqQw0itxhCLD2E/O4ABVxTZ6ymuSu6iwZ5I9W0rMEcC/tESm5xUU1WnVC7HQHM/d/xVsnrdZUQhd8H7l4HFiIGHty2PYsKpbHYFqSpo/SaDkAJMFboZyt2AELQC4phSxsg2Y3UewLYXjizXM2LLRhKDApxGdthw6oRSlO7eyumwtZXk6JS/9NZhR5sozkBUuOlhrAcsRaeS5l7oV9jiiVQiBiUCl+ofx21oOxcgI5WNjAeJYpFdzD6HX2Cl52UOR9KOjxWkHBBvrNrD1sm3oS8E07c6G3dclUxSjXaeTDhuAkpKJ/j6WFhfZfOMtHHniUYQS7DiVw1HHVs4m6FWUxBs9TdD/Xn48CT+bUnxGraYGK73RTRWPjS6xjrOcT6BiJeiKJyJE7BrTeY74PZqMjf06LUL3hukC4tbU1ERhYSFtbW2v+blOVyMVyoYdAxGzsEkgk5VgibGsBIgcD+HKOjyDXejhYMoDskiRLe49CE966HmynKoNo+hVMctxk+CLFJBZuIGRhRcAhdAFWWV5GOFbGC5cxU93e5Hzc/zr3CyfKtCoCcKHmtxEtQbrWCAEJGSeEpJawWY0+yaG/EF+cd37MHWd/VKh5g2UMGER9rHAPZFp+uIV2skxFce1VscKkJggFCdCHbTPHUPPa4VwAbHlirRDnExBXhvS4PHexy/utG3eTOFnPs3Zke+h7H3x/jKZmt7L1PQLlJbccV5ENk3QW9jwzK9NjmepJJqu4arPAUD3OpLfO3Z2jvd87xBRw4I//PSunbgy7Jajh0LXNUZ9PURClupBTMaS0buTLfutlLRSZGsFGE/NMa8CCJug4IMb0xy3rZu38kL/i3FSj3jxUWKQxAdNzDGPPeYFNJSCS/vexnrVy5vH2ynosjPff5Cr/DlMFhRQMDNDzV9/mImvfg0VjRJ47DHKH/x+0uFVUctxORgIEZUyPjKtrEZMKh4Z7ua3x+7BUAb14dXcPfghHH0Rpg+fJO+uDUyLYoQ2FvdzFBafpeIfj5/lb6uKzyMQT7Wh9pNEbE4Mbw62pdBrzr1wSwttH/rvTDt18h58gMb7/i3puJU1bEDX9WSkTUPh1iIcnsgn9+iD2MxjluPe9jM2hYNg2ml2u6HzUXA6eKL3CU6+8AgfGRO0VZWknW27yhfpLQ2RoSl2xYe2qUC5a/jmuz/Jobo9FARfTkIcpIRgMIflMZ350554pNsamX352WwdmsK9ZQuR3lk8uz4Omo5/LovJVT9Z+d2VaZ9A6DC+fYopw1IXKZ51oakEXlQlXTclFIfXzZPjmeTKi/b6f579yaZHhRAZgKaUWoz/fT3wpT9ys363XYhg8OZ7Ke0LoP/vFkxTomkaedoMxvQcDmnVHgotsfHEzZRERiT+XV9FDH8JFa9RDF0qcR8SuPo1NAUNg9BTamPrqlK+3vYxDBlLkz5Zt+otHJ96lLWyAxsr4Oh62Y7rgIbKUkQaVZqSiJI64clahErls4Jrl+xM64qRLBuTEwscCZo0KA0hzYQ/gGZC9v5+kIJ1oTP0m1WYmg7o2KNZ2GNZ2KNZRID+pQLwtJKcTUohTANpxjCWj1Loewu7MnUEcB12niKGDbAhMFA8QZRCDHJKDuDRDMqCvdhoSN5jozbIUnkd7sEz6EshTDSyjQV0JL7FEipzbwDg7HInV9x4h7WwvfKPNHuqOejbSI04jVMNs44ObMLAUBp2IWhaFsz++ABrzjzNQ9l9HPX7yY4F+Vzdx4glVoh46nCwyL6iragrpCExNZPOvMPse26eNZPXcC9Z3BTdwpg+i3uNG6/LQF8Kpjs+UnLiuWfoeHlfEq+SmkZUwIl9z6ZVZmnx7a18pJ9Dm02r6laZxKJTxBzxnV9pdLCBGs7QTS33cDcGNmwYfJa7qaELj6ea8rI7LW6uqBffwY/jjKVHLs1gNO3fbxQMDSs8bW63m9bWVkzTvKgawr5gJcPG+7ghez/R6jm0uDRbaqsSBwm/f5RAoJClrFzcS8Fkjx1eN8u0L8b1R7KxGy5QivCEGzXpRlZaT1JTiprObpaPDDJ6WQZK1xDCRihwJdgKaau0Y6QcOr6xzsWtw1FiGqjEaUZJLHygtXW/yXyMxjM6MXsJwa12TN2G0jQLp5Z6gAEO+iUFIXXexrOtbw7fzLPQ+C40pXHX+FvpdQxy2j2A3dOHMFYntXebJ5rPk727kCpHwsItLUx89WuI0mVYzzm7hMHI6M8YG/9VsooWOE/QO+wq4uTPjxFeHsKpO8ioryTPUGR1W+S54eOT5N21gUN9M0QNiVQQMySHjoxie3nK4mkTUHZNKaHyKdRofANF8UjXI/ym5zdkL2tcLwqwCY0CTwVIgSYsouK+4+OsTXHart54NXv2tuBcXIjf/zkmgMIQoj8+cLDUW+ToWwgftjM/3w8o8mZmyJuZIfOaazDnA2lRtZnvPUC0vx/hdCLcJdjyamnYfwx73UZiDkdcD8V6xHOhgSRH28ZwLXaloyEIe7robX+ejY1vxqHpLMuVtVEBB7o6aHn+bDKKmmqJ+TM4PUu4vAawCr4cBRdPqw7s/S2HynKRQtCjFL69v2Vd3GkrqV3L1X/+V0kVFgU8N16Nu3CZ6sw9aL17EMLG1p4AQ3oDz9h30Ors5r7R38L4c8RkjNvOmsxlZK3IVcWfIQqm/FGmojq/nrez0W1yYknnurIGNhVsIrb2DPN9Zyz8ZnxaLI1VMfZiKNkfietN+DKYm5rHDdjy60DTEZpO9uhVOMqdTBY8RTRqke8qGX/2CgQ2Lptcx86qHYxX+QhkD2F0HwW5Mj4sBx/csd+P4/APYX8Up00I8Vbg20A+8JQQolUpdYMQogT4nlLqTUAh8Os4gNUGPKSUevaP0d43ZAMWQB2VLvVTZD/DrU0DjExU0JWfg9NdBgfnMCZOIdzZ2PIEiKo4mFkBMZxtn8O59Zvk5V3N5NTeeBRMEdxpRRCWd5rUry/g2Ewhx+ZPYcuOIoRKMp+vdko6hn/DhGc309Mt3Cy/hO5eS4NoZ43WhRZIpG1Wtrql2UomW98JKEqrf8LM/CWEZ2ri9WqKckMjvy6X+dwjZI2P0dvThMMeoWS5lILZPmyvdrM0U8VoeS1r8o4jhudoWBhHikwGK7JYdrlwxcG/SmgIoaekKwSRwjK0yBL6Ui+l+iwa+QghsCtFjhBxug8LpnvgUwAAIABJREFUVhoErsjpYVoYIBTVqovPirvpUA3Uq3bEop8J4cf0ZJFZVsrxCQf1gXbynCXsLnpXEhdT5Wtk/sQgQ+0nmc2t40Mbv0lUs8cdly9SI3v4Zv9RzshtXFbup/xHXYRNCdxA+bTB1oXPYBNneCjjetpK1ydTYAK4smgFq7PhTl+S12vKO0K0/0ZOYvI5Rwdr3UNMMEjpyxFw+3A+9TjXvfM9CN2GkisOUSJqlcCyJSJt5/EepWDsSiaGuOPJBzlbWsmI/xjz3hiRjMsAgU3TuDTLBQHooCFJVZGIxtbQhT97O6Wl77LwfQOPEGy6lIg+BWLCuk9pw7GvnskDPybzivV4Nm9O0nB0HT5I7Y5LXzPKNjQ0RFtbGy0tLRY7fSKdptRFReNXDzzMX9p+wJDfQb9mcf8lTtCpKVKlwJc9ycbGvZxQ12IuZKLHSZxths6UP8RI/jKVY67kl01dx3fQOqp4jupIv425lkxyj0J0rY3yd/49fYWjhJxnaV29aeWHhHWYmI2MoclVyDjPw8qJ3ZK7aw1exXitm02DUW5rrOWpiTEiMt1hA2vRK5ufJZI+RdlglLNa+VmqWMRlibBhUzqbluroyxzlrRt2s9bfwKE+CyTfVNiEQ3Mk5axswsYta2656PNITfE5T2lEGuMOX0raWcpoWhECpKsi9AQGOBMKEF3cA5jkNq+iovidFppJCFRMEjo+wc4teThsGjFDYrdpFMyYTMZVE0yl+Okr/fgd6alhiSQqo0z6Ye/OKd7i3M2sbRuxHsshMIA9iyFKAscZG7PA/MXFb2Xbhm20HXgeSImyJUvdIRyaJtM9QbVZwpShmDMF2cv1tG6oZnPbt/At9K88m7y8lahaLAZCENy3D7DSc4loz3Zp8k8PPMjJzXWoK3bzQExgKngiVE5G5m5cwRdoz+iBGY0lbw9DTV9HiRjamZ/xg7qf8IneMCNGRjJK7vGH+cDwHvpblthacXuyPQmeQyNJ9SGSCP7mjk5G5gI0NjamzaPRrtOcnB1Dxj8ngdlMV1pf9413oVTiQGQNgPyNMwidONrC4GxOBdnjX+bdIY23zxh8tvxeTnsGAAu+c+3xJUTc6VTxMVQzkknvqhAZhUu8NdtKj9Y4JXOBF2mdrOGXrf/A9d70AjcjPA6s6Cin0hSM+L34m5vRctbgUCZKCYRdp3Lr/6Ao+0aOHX8v0owilWB+toQyZwEDzxq0u9aw+cVXeffdf8ePHLMcKw2Rs2AnL+BM8h8i4MbL3/l76/b+R9sfq3r018CvL/D/o8Cb4n/3ARcBtPwJW+XlVoQtEWmrvByGjhD5/t8il/6eQgS5MwFeWqzjmsuuBy0BThVk37qG6LEDiJHjePR9ONUZaHsIR3V+2k+crKyg+pI+NF1RyDB/4xvm2+NuBmLWteyanUavN6mm4FNwJOAE5vmwqxMdMCWcNHXyl/PwyFE0DZQUhBZzseX0ULLxNwjNIEMe5OyLn2RpZo0FztQUP375CT6x9V+oqIwipU5/zzay7OA662FxpoqWxr9B6jb6uJV8VwtyIcjphkoQc4Bg2TNB9sxGYo6AtRel7bSWOoK+FEKZASy/3rJV2W4ciyaYFrP4lqwBYq4ZUIIuVcNpGshUK2LA1TVHCYeyMM8GabruehoWTI4/eZICVxma0FYq2qRiYM9RTi8c5vCW3USaSlBCizsu66jRzlCS+xibz2TgHqiJE4cmdjAbIeNqMuw9LAZsUKqSG+wl3cvcen1Vsv0JIer2V0ewB3z8ZClCxHWGNcxgRHRyVSXRMmsBjSpFW88gL/ovZdfkS2jxJVMIDbfXy/MPfmfFYbuIpaCIKJ0cZrjgJCFngJJxBzcc+j6jxVXULXcye/kEB8Vb8bKYFo1dRwdC2JmYqELTnmVk5GOWMkIiu6UEKI2CzvfimlnNYufjzD74Tzi+fDcnTp+k7/gRlFKMdLaTV155QcctbbNJXFYpNM2KOiewfbAC2s6fhTcNfIMxChiMZYGaSdzmiu8afwypVWe+7EkmPX70pSAIxXiOhXdpX71M2YTCm79EwcZpXJUhwgIwwHMEFofdVuV2n8DRDzN6L9dxCV9vyLDm7zmgG/toK1uNIEfqG5LpVw0Vx5TpjPiyGfFBW6WNqkNP8c6GJn4YSqF2ALbrJiXHDhIJzSBUfLOLp0ad2Ig6fUwP7yXTdwl24UDXdbZWbuPKyK3sG3Dw+ZdPoZRKphwfuOEBnuh9AoX6nUS0nu3biNZoTH/ISJILY0EhEcIaVZoy8Ue9F/x+5OwCxaEYfi3AhFULS4Gr1Dr4CZE8ToSPTrB+SyE/vWsnh/pmaHC46HyoO+0g2S9MjjZn4CgTIFSyqxMHrrkcyUT+FVTICn7bM4gEniWGMX6S9ce+jRWvhNGxhxnquB5N5CClQFNyJbKZaJCCSW8326NZ1EofB4IG86ZAajpz2TUrTpvDkSR7LX/w+4SPHCXw+ONEey3JNFtebTLaowBbdjnG+ASTL7yAsesqQKCUYNH/39CjQ5wRAxirbYRlJ11iNR3aOtbJ0xSNtTBpbiUZbkIQzFvLFf7vsPXEY7B1VRJXdqL5SNocWllTYWRkhJGREVpaWrjzzjspKytL4t6MaHRl/ApBVu0K7+fDZx7muzM/5VqRh6YsvQhP4RK+imDyMwqIqgYEVqQQpbMhXJt02vpW2fj2W0zW942jzBy8S05rHEgomnFRWB5CFxZVqQLyg3s5OZxP5xJck5kSYFYaU2oty0Ua9sBMknw8tR0AcraX8Kv34rvlTtxbKlh89ud4tm9D1z7J1OQPyckdJidvmFbl5Wu3f56oZkNTir9pace27wB1RiZSKJSmkBYLObk37+S91/31Bcf6H8P+ZNOj/5+1OPVHEtMG8OJXicTqUNgQFnSY7VmVoKU6DiDDBjm3lBN54H+zEL0dqXLJOLSX4rw8RoQdKWMoCV53CKGlLGAKtmVGGZhzogudT237FM6FfSgVTfL2Vjslz0TW8rlwHZcET/H+h7pZ1QuaY4FHVl2Fo6CDrTlT5FUcQ5UfR8QXSKVJfBWvsjxTjUThkoJVWV2gjCS9QlXNYZaBiSobrrzdqICOpXQAwawKxgpCxBlMLVOKmCOAPZaNxV4dr6WMp5L0sOV4DcYMKrFSVBKIKBDxdEHM14O+9ZsEhEEXNXxV3E2UFdCugxif4W7yaGdqKYvvHGvnkmnFjv5xxuhFZl+WTBFJJZlcHmSkYBXzngwSzIsa0qJsACJZfQxt/RplzZ/GHVhh61dAtyrlf0U/x6A9noYQAqFgy46StAq58b4AHQ8GkWYWERRv1x2cyO5BX86x4pgi3g/xBztmOLDHlhColK6T9LUcS+JMLmzp0lwjhWUMlVRySZGNDd6D2NrP4hgfpnx8hPBlXr4mvpBMib6P77OIl3W0U6266erawcTEIGXlz1BRHk3f5OID13QsgjIxps4wa9M4/JPv4SoIkb8xTHDMw9JkxkVxNQMDA+mbDZajdtNNN7G0tERlZSVlZWU8fOZhvnLoK5bGpAKPvZRT7l00VO9bIS5NxbKtZJXirxqB+WIK5AIV2WM48ufYX+DiykwTkR1hKsdgS3EoXokcvz8dorUK7/QSS7G12HLqMKa7CE858BbYmHWkwBmSZIeSZZeHNZ0HaK6pR2oaupD8N/kAR8ROTolGEhW8hq7xy1CMEwsx0FYUrzc6dVRnB9PuTIazciiZn6Z4YQ6lQEejSPoxzj5OSUhhDhxkZlsNay+7krWPC5Qpea9aZiHYzQF7JpPuIg71zfDXV12cDyzVEqB0xwcuA/tea94qrGllgv+0id8TwT9v4ht/FNy1aZWEI/tPYD49h5CCy3MaeGH5JDORYSaXh1EkKBxWDkuLLw1RU5bF+qoCTp2exTRVCvzbsli4HDnxFlxFjwESh+bg09s/TcfEOD9/xU5ru433M8ZGHBhKMhA8hb3sBAojZd7E8HpHmZ/PQdMFmZ4CyiJBtLwSTo31pTluPfo4BdJHvk1jzrScTl+gm6ncXKaKilh785uTlaLhI0cZGZnE1tuX/C0ZDcZ/U/KrUjtfv/4GpBAImShjTziLGjHXWjbOS2xDMfqKt3CPdrs1FzWDWxYMzEQ+Nd5AAxuPFl3P1q4Oju//LYsl7djppL+5B2zrzxuPKmXtSI1aJwl4U02IpGZp62Qr9xy+ByPb4PC6WS45lUuus4TihuGk+qA1twTOhQpmVz+Fe7YOZ2A1pzwWnVTtsOLqmRyez53k0Sti5M/NccPhQjQJUlPoZUH8ukqbPiiJv2+J5ekafhQZZ7fTjtv0MDmxhsXFPMgGw5fH2jk7S4sjTC8NI5SiinwcNU0YM92ohUGclQajn/gARKOg62R86Hpy6oeT+9pp1hLVbShNx1SKf65YxztySyidGEJTgsGCENO+KOO5ywTUr9kyefP/vyNt/+WtLE5Km8C3GRGkeh9KWQ6FADL1lQVfKQvc7KzyEZE+ppa/TOKIO2/UkvnEo6zffAN9Hc8Q3mFS4h9PLjAI68/iqDUYTWXSO/gD/HpnMtqggFZZx3zBp5kXNh7NeDu29U/yVz0/R8UMgs9nUX5bMUJMxCdjeqrNuoZ1wl5wBChayERKDREvpxZxh0xJk8yqMUSLRMWdNsMM4fVN4sseJzBfxOJCHkIpHJEMbLEMMgOVBLMtvAhKkDurs8Z1Cc0eF/NyDQeCBvk2jSlD0hMexe/1MKEH8Oe2InRrQT2tGiyHTeisgHbtvMJudo2/jKdwieri/bxq7mTbkkFxXxsvOR+iIsvCWY26DzB2heLh1Z8gllKtlWYClGYQzunEE6tDhc14Ehu+pKppx0SbjYJUaLrAoQtuqMpLu8RI11ySUBUgqgUoXM6J93HKw7Q6FaGB5rClPmqUUoTmZs8bcoZQjBSE8YZt5Cw6ku0fKVzFL+Oao0dQPJpZxoR5N53C2kC7PfXJlGhMQT+r+QD3J597RuYMalwxP5tPeVmyaSn9ouP3b2Dp6L8gF84yW+jHVRCi+maL70yZgr6nV18Q0xZuaWH6uX3J/k3Y5s2baWpawY+0Trby5UNfTuKyTOB5bRvrCgfO4whMK0KQsDjlJRZcx/TYWmwT9Tgjr7C7fIDjuQ4+XCjQEkUy3hBpzzw+cYpECE9VJRmlf4tSGg4p8QjBiWydA/m2lR8GhFLYpKRstD95EaswRVDGIGUM0kkDhoorW0jFtD8fpYm0Tm2LGKjK+mSn6NLklrYDFC/MszNWgwyMIswpMi77OELoFE3B6JkZnKbEhkBDcnVskfyZF3i85FZ2Vl16Xt+fa82BEC92dLH6a19hXVcH0TXAx+KeWqI/JJTMmBTOxPUlF59ntKOVifJPU5DXBMV2Tv70KdZlXWrReyhYKF3PIV8V5WNnyQ3O0piZC0pxMlvnWI6NraPzbDw9i7BpZGwrSvRaEo5RZmiM2yXm/A5iRgnvviLGbfWXs6lgE/9ntIdI8AyN6NiwVkyBojxL51nXVoao43JeoIYuhLCzsFgCWM/8ehesufYGPJs3E3zgxwwM9ab0hjUbpwwThaR8cB+GbYGXrtqNqWm0nz1Lwb33suqFF6jq6saeeP6A8Ffh2vguEBonsnW+vt6TdLxWRlccPqEkVYMdbDLr0ZTGQZ8jBZ4AXZqMa66ufC0x3AYo5YWxCTbk/ZiYZlK7WydyopDFhfwVjypeuZuw1Kh1AnNqxGJJj0kXgny7VSyXqovqiurkxiElU86fspDC8emarWaq/iGUZiCkjbz+t9HnHqF+SPB3PzNwmGNcIeBHu92M5Lo4vG4WV1RHLwvy7qqgFWFLRJIlKCUIjQf5QIYD3A5iMTeLizn4fOOAYnGxABB4sirY4b2ShzlNfU4WRdPFKClwSJPwoXuZ/u79lsMGYJrI7icR9SvYbS/p/JYSGCpZTenEkJVRckhOVsfxj1LQPNH8f522//I2dASe/TQYy0RkHUHzrfF1eaVyKYHdQUD2bdU4K7JYeGGIxPJjmSJo3o7j8S+i+5XlT+hYa2mKb7E6W1IRMxmI6mRGu2AFosNwVDCoN4CwHBuF4ufX3wpC4F6O0F2YwzUlT1q/dg4eSEmNuZGNCBS93l62usfQg3ZOnLiWbN84sZiTNdXNlmqDsmGbacKn68yZ1r36Mueo2rgXTTORUufkiWsJzeVQ2/0wy851DJVlWjcR/80KXxXrjUrWoXhVm8Zc8HMmYmIYo9iNZ3jaX40SGr5Fk41xcPc60Z50aFaOgIKXuIbiigVuqPsFaLCpdoRfhnbznr2vUNNxlJnMUzhXxSi8fYFD4lZMke74SaXRoVaIiIXU8czWo8LxjUzAY2KQ3eJlnHItxwO1eI7P8vbrq3n76nzcJ+Z5vKWLNZsLyC3NZHF2GU2PK0mhiDjmrXEQv3mFYsQzSnG4GA2N0ORZ6v1gLGRgj6cDNE2jrGED433daR7KkYZZtLw8CsO1eEOd7I/Okh1wMlayGkO3gaYRUYp7Jw02jFaiKYGnMMz28kM8z01IpaHQeJmrWU0/i3hZSzuZ8QG2uJiHnHChFS2vjBOgvv6L+GOKQC3QdAXrdt9AcPirFt+ZAHRFzTXZ50XZwi0tHPvYxzlx+WVWlCneB5qmnUfz8VjnK5hqxTnLWc4hx+mgsLA32RbrVWN4qJ5VZadBKaQpCD2TR+GQGyPfT/7Us+Q7u7lz7bXUVrSyS5gpvpJKe0GC7xca7kVB5Lq/gh4tnu6yHKzjOTaMeFW3UIorJwzWLZhsmY0xPW/y1LpqpKaB0DBRvMKVfEDcz9+pL/Akt9EitiE1wUjxatJuItGElJJsU9MYzc6jeGGOZRFjUvnJqW6iULMhhIZC8XIswtBqB9tmDdbPKTJsWRQ4CtjunE0DrF+IFywpaG6C/cOf5B/v/Qo15hnsZyWxivijkeA5bMNbciOM/gSA0bCXfRPXcLlZgzlgpZwztGwS1Zkns+18o2knhibQTRP9ueOI5WwocvDX2zzEBNiVg/uOhtkQkAw+P5Rsp4zjVodsMiljaobLGBko5OEZHXPLHDurcnHYNE7ETAxAKMkJn8bXt+3EjFMNvSyu4d7cl8mey6erux2ftsClp9vQR0Y5e//9VPzwB6xvXMvZoV6Usop3qs0izujjTEeWUbFh+spXY7NFMDXNItYFxufnGd+0CWIGVX19yYOVLb8OpdvQsMaIjM9Py0lTaNLE1HWEVLxj71Pc9VQ34kvvR8wIKjiORilSWU7EKelMzu+kEyYlsVGDb5jvYZuvOVldaZGiT1hOjUoc1VccNiEEN910UxLTliDgbX/peRbODiCPHKV0doHo5+4mXFpOU2kTds1OVEaJOiRFrnI0oZM9dhkLpa+ghImQOraYl0hceUBpBiM5J/jUhs+Q2b8Hh3kAoRTLRXVcHdvK+NlBJmMj/HbHBI15kWRaVAILi7n4MmcRmiR3bTp0vTiewLD2j+sILfy/7L13dCTXfef7uVWd0EAnoIFGzmGACZjMNMMwJEdmEkWKpqKtSFm71q6fV2/PWrJXouz1s5/f+q32HXm1lmxJtBVMSbaYRVEzQ3KGQ07AJAzSIA1yRje6G+hGh6r7/qjqRjcGI78/ZEvnLe85CF1969atG373+8tlVOjFpqlAE6NLsAsFoQikENg73k/i6g/z2ojJQhARpIQT3Me3xVMbMkhzbgrWjfSBWkERFreX4nUIOoJYFeuvjRMCvAva/mVK13fg5f8AJqeS0Hdi8mHZeEUCTC5Kh9AbKDYXUIGSyBCuXPZKIgtbsQ9OEc2YMeXGkRLG5xaHzlhSpTuuss2hZ8+Bs2sWrKl+cJvtmkTg2fsfMVUuGvfJ42wT1wzNoMhqepiba2JGRtljfYUVByRwIwSsRktZjZaChNJoKy2eOAXBNgrCzdxeBG+vaoQ0HbdvCiH0PMKyGi0j0lLNcvI2dCUG8iqgo6BQqftQTC79kF5KpPoa77jfYn40CfFC0wsJwuES0ol9WOxnaGGQh3iel3gsD8joUmGhogTFBBCKnmKbb4hQgZVQUQElq3EspTGiQqND9GIhTVJKQAWpY0GjZnUGisw52DzPUvJx9RQuy4/4nLTwkeQXuRJqpTaUZjSyyE8uzVC/kGbyeyHDO1hKFEVAlYMri1FWrIKOnJZ1JCKdymTEys5+yuPHEltDURT2PfQ+Lr36Yt4hD7AtUc8nJj6FVapIHmKo/B+44O+iYmUtT194wtlGaWkt1fNTuCriVIgJ7uIExzlqAAyp8B0MgmYRaZ5YfRW31FFXVygZ0QmWGmtNSqiwfRbHy0VMPfN1tOVRhNKPeus+0kVeYDHbt0zO1NwSO3eehWLfhleZKRV48MEHb3A6SMcaQGY4FUlpohSvdyErZdN1iMXcDA/dTjRSykqwjkpHhPOTVhpLVCx7iogvWhn2/Ca67+vsLl2jUC/AcGXJZ1SQEuu4wPNjFfuEwHkkhaqfB1FriAPMilHV3KHmfr5tKc37p9PoUqfHUUvNzHUUXUcTJhgWRzgs36SFQZrEMJc4kAfM0HXIGYt8/a7AkUoaYQl0H1axwtz6BO3SGI+f1Nj4iwYVDYVv6QYI2iU6qS/awWD4At8/O8GHb6nl/Niz/PDyn3AtDn99pSDrYf62mYlBF4KkxcpP7z+Er6N3w55NM36cZxVihc/j7DAuT8Y8lNjrUIRqxoHTKKuyESx+CWeonQvF7aQVBakoaMDP96isuopQ3C5S6XV0AWld0lVsYftKgsVUxq5PsGzTec2WYsaioxSMY3GOko418lqfUeMH5yb4L+/byf+4v4SF7tcYdQ+gJlb5SepuNOXO7DylUeiOd1L09a/SJA315IjPhj9owxdLcO2553nFqmDoBhRuS7USkF5KdclM8h9YUELEAq0gTDOH3HkCRhobaBwdNeWRgmMFhTysALpkXzCNTdpI6Qadv/fUCwgpOXbno+gCfnTfQwSY46HlHxOvPkqPwwgtlD0rILseFE2jbqqXmGuNixYPKWpoi06j61cRQjfV/+U5wuJ8bYGUkng8J6exWfpOHiedTDLb2oZ0+Lm1v4frL/4PVj9w1Bg/WzNz5bs5v5KgQ2roUsM1fQdL61M0Bj/AauU7ee1NpBc49b3/h0dr70GoKpaqWwl0foSAELRLjRNzP6B8OcxwYB3QkNLwqPa4DLvUzY5EuftTCB2PZ461SBkSiSLhEaycFvm2vaqvAecd/4HY6f8bPTQKwGqZEwcRhkUrz/CUoQnKkU7oQnDi9gcoXgvjLSgioAkCc02IgwqP7nv010bKBu+Ctl9+mTwHr3w+C9jACJJrbKxcuYpRxmev4e96ltg5I86Pfv0KyPYNiY+phIuPjmIbV/D/d0HkIY3kNrmxL02px6pmrMPZlEJ3TMFjkZxds7AWOcQjwTouWrroLTlIZjNLCSgCTSr0yZ206YNkIkgbZ4bCwkIToLEQD7Osl1HkJ5cW4HIv4nFpFCwdpCDcjBACRUr8FghpEF9sRUoLUk8ZhCVUhioENsqRioo17cEb2kXKuoJP8+B3uNFN5/h17wjz+/+SBpGmrhkGf97GoqzAQA06ieUCLJXGYf4hvkepXODHqaOsWesNY3ap05Q0EtkPylb6xXZ2aEOcb7Kjm/3cPzkN+hotyjWO8hIvCdMjSwieKExRMp6GIlOsLnQWii8TWrVQrvsoky7s4goGP53mVqUfud5BqG+FP29TSe0oQJHwnvPT7B7oQbFWg62SYOEKbzqO055wItMCBSN2W1qucO9MI/3FaTLgWggoj6xRPh/En9DQwuEbbFEUNLZZKrGmVdNiUvK5uQ9xpmg7X93mNNsy1PE6grHmTsojQaJzBZQBt8s3OSXuISkNcqBhGNenpGDY2sxeeQ3b8hzT1bdSsDiCtDppKP8kBT+vIpZMUXDb500COcK1E6eZb2qiLDCSPUwKVsvh7x+D9kdh/8cBw9i97Ac/QNV1MxSJ5P69e/PUopnyvvY7+PHV91HseZlVW5xl+wIr4Q5zPxlz43QaAKxIt3N46X56pl6m0TdMy0MTCBVKdAvzl55E2XONPUoaqZuH4ibABgLX8C4c4QRley/jDCgk6g/D9Y3+XPWqfLfBll0nQkrCNoMh06XGwvoEVeEZ9s2Nca6qOctA9MntNMtB2pWNDCUSFaHrKLqOVAwDdSF13PE1VgrdWUDnUH08kPTj1z1c02KE1qd5Y/YHRKs7+YtttxkBgYRAU+BisYXdYWOTHkon+bNnj9HkbSIy/SXud6U5UgT/c2lD5XO7twhVGN6aUghe23U3B+TrtKiDhvPBlEL85x7W5jXUbSvZcahxhpmJxwDDySLmGWbmwH9FijRCWtne/yUsejNpJBKN2cAe/gkVNR3DIhQ0XWKRsC+YzqOJIAnqehawOWv/BkQam7QQm/g0erwOXcLXnj3G59RjBI52gaIxRCvrJFDR0aTB3CkyTSDyl1AWN6LbC2MPTPlc+GIJZgE9rZs2pZJ1kcqqZsscVcxYUhsgTdexJRIkHY7s3AeLS/jh7vt5/5XjCCm5o+cnFFaOsW5/jJ0rfr5+PkZXsYJ37AKp4S5Gm/YZ0jdFRROSr73nU/jkf+bn+gqn1Tuz7WbXo5SomsbjJ17mx/c9iBQq8z6N+2e6GEuUo3ffi9ezQDhcbqhGjQZMXn9jVBVFyapGM2Wy9ypaKsV0oMYwoVBUfnz/e2kd+DPmzvwxKVszK4EvEgqojDRIFnp+xuMdz4CiYddVkslp0vYI2eCUukphVz2dk2tcH+zCuXsnuyo+DDlOX2UFtSz4r9BqUxB6ISjRPKC22RY1uyKkIUkPh8vRkVyyjLI33USZ7qYosUbK7sFKxs5bIBUVi7+VpAnalOt29FtUepUdaLnMUaYIgaaqjNe04F2eI2O7e6ToyK8VYIN3Qdsvv4ydMrixnGJXh/ArX2I29geowr1hZyAllLRWHbdnAAAgAElEQVQy0PwBKhbOI7/5V7gWryPrvmjGCtVJz19FJiKkIsZU2a4L3D9VWG7RTE6MrPqiUIV6m8a/LU2YRBjSkToOXfgAUoPm4TQr23/K63X3UHfhPK/efgsp1ciHGO/eyVp5H4XlfTnrOePqL5iuqqZkOkwSQ2Tvci9SFhihvHwEgWSq/nWquv4jBeFWdGApbRyA4UgZXHov+IZZCQdYDfvZd6mL2tZbmUkZiNOI3eZi1TrI5XCQvZ4mQBDz9SNFGhRDkF3QIFFHwihaGq91HGf5MKCj63AhfJiRxD6qYicoSXhJOraxQ7nMHTU/Y4hW/kwY8ceeuzvNE+FvsyusU+aoIamfBb0fhGBMNGbfFynpXY/QZK1C1y8jTG6uR19i1jKCAKwpP7+vjJCWhqtAIt7OvTErp9NJUqIAFIEuJa8erMA3+wpV82eweZ/gDcs/YiseRovUQ3CPIWGT8FjiCOWFPtT0ED3WSUPdK8GeTONNK3ijEeTqejb+GUKQrJcc98/SqdRw55whtVsQEd7yrXO5fA8T/qKNtQaoUhJIJbHsKKaQWb63uJNJ1yFKE72EhWTV02kSfENlUD0/iXPiGi73IgUdpp2aLmBZQ6Y0hFCRClhrbkX6W/GNzbAWqONq99GsHWNb9Dpwgrn+aabfSePY/QDraz4CH/4cd/39V1n0l1KyvETB7fdvuaXUgnGc5S8R1ZMoOpSLOSpsK2S4B2M76Xg9c+xeOoqcvMxycpqyio20VJDGWfcOQkkbzga56W2ykk3jsAsd6aew6POsR99L4j27SaxWAaNZydhLlVYjsHVGCiJhz3KSkehlxlZ7CCZnsdhs/JvdHXQH0yR1HVXXKTqzSlf7HVz1dtDIEElpo35pmNR1C+WrEVK+Uma8fhypJKdadmXnTUFSGJlkPFHD+FI3esEc9SsCS6KHq4GyPBUcErxJadqlShbWx6lQdAZGu6i2ZxJoG+EVMiqf/Z5C7vPCK0FpqnNVI9yLHAQBWpVkosTNtQYHq9etHPKO4vSnkKKVvf6jZDQIk87jKOZ+lXoaR/pZPvq2j6u7yxmw72TV1m4cjhK2jY9yt6WavZMpOsOGteKG4T80pVUq0xpLzlEQaQyv1TQW5yhJM0VXRWya8nYVKTSGxEaMQYGOwGCSBRIhdIoqYgZoM/fBVLGbqkiMljsP0/XWSdLm9TLdhWbGxCy2l7NdFHBZhrOmF0mHgzm3lxlvGZXhJcrCIVIeJ0JKVCQWdx0x68fIHK07VtJ0hDTemOtmWUDT5GieKYcuBS+KR7mg3pJHezKlNrHEh7uDvFFbbWRHEAbB77crtE0uU2dXcrWg1Gl+ptQgmsw/g/bu3XuDBLtm+04EgsmK+g0TCiEYajiMY02w6v2I8R5CIBXJT3a9h53yFC1iEESaxY6/39hHUqF04CM0KXcyVnKVsehVKpWWrLNdxgyo8p4DfLpxjtLVVzPL+0anIV0Qj/lIplXicS+rUR9Wa9IEpoad8LQSYs52kQeSe/Ak13jH7uQwGYm+IdlMLxlmLUslJVyouB3nlWWSNW4ozZFw5zxc0XXqJoegwKCZqsVyA9D9dSjvgrZfdqk/DKrFCPmRLRK76MWm/AxN/maeoX+tXWWy5k4ulN9OxdQ7VM5N45v6Syz+NvTkKo6dHwRFxVp3iPXu75MeP0VhZQJVuZWVnksk2jVQQBeCldAeGmxrWEUfQkhUBB8RpVzTQKKSRuLqPcAjvTEu1u+mdDmEIlPUDC7TOV/DCh0Ulvfliac9njmi0VKQAlFmBKt0uRfZadqpQWbtp1mKP4u+/oXszUnrCrL+BNI7azghrJYhhE7CZiX29juw80AWICA1osmXWHffS9wzQrTqHRKF02QOBF2qhNbr0Vw+NCkpqbyEUAyJ0xBt/JX3d0kLFUXfQ9uV07TGT7NrtxHbrl/kxB8TEKzppKRiO10lNpptVgJKPyhQr1+nR+zObuR9qedpLT/B5OQ2amqMMW1oPsdqzEs0Wsq6dYk/1Z/iU8pz1DLDjjTMIKlfSBtOd+ZAShR6Wzupmp8kXNDHvHuEkkQxu0OdmeVB/YpKucPHohKl3zpjvLcwJACjzU1cb2ygdXiYoCtB+XuOEBsa5lXrRfpqQmyL1fPZiSeJe4ZZKu7mOennH5ofJG2GzchY5TdHJtkxcp0WhtjZeYIR0cTryhdJYwUnhndbxjVM19k2N07bWDfp+BpFbbkASDK3+ib1fMgElhJr3R0gFGp1nb2BHxL397C0WEs06ucixVSn1jgb/H3SQQv0XjPxkYvOpIuO/n40AT/43tfQO3bm2WBNTk5ypuv7/IZdp1tLM5ZQ6bHbafSqBPK0iQJHsI2A7kWvOIR/dorVmbiRlgrQpUI47jCiPOU66erkE28BUmjES4ZwRh9h6QWNwtuMsBHZ/JmbtvzBuSiuKQOwlR1opb36vmzasR+H13h7ZRXx/N8SKrfyNd+/Q8uQXQHj/kZ2LF6ganmOkvAS5ZEgJ1s6jcC8Zr9ql+cIRJaYjPahJWYgobNQrBKI+NgxMoBNSxux3BQFKeAv2x00RtMkR14jmJhhe3uECuv5vMOxYU0heOIVepemOd9s48ryGEpgLxINISXusRiywVwOiqSoMkZsvoCeylLKw178+xrpPlvDdo9iqEbRKAptZ02/YAAmXXBeFhG9o4SdIsgF0Zo3Zq1U8fGedXNuJDqCxbRuSj4FqtTZGwnziqsRm7QgSYO00DxRwI7p43T7mygsbKRyrYJp3uGUvIukmVvXcHgVZO1S2U7H7EWTrglzy0nO1NTxkFvyCflDXteamZksoFefRfPcQrWzhSpnK1VAOj3IVathtjLnKebFXXdkU1k9eOVtQku6wfxqaQrqbgNhxbCO03jHMsfL3hAlcYWahEKgpo1/PzHM1+qa0QEraVYoztmn+SKmCbuftz1TRArzA+muywL22NfZuet41l64t/sou5b2s1OrY1idZVCdRQrDAaG8vJxTp05RX1+fD94EONZjeXrJ9aK7WC+6kw39OFmA2cd2kEZMx3bRS6vIOCXoSFsMVag0uXbTWLSLDDeUOe8EgkCvC1m3wspGs0gJiUgFdvessScVibMoiENXGRvbw+qKP990QGT6ozMngmwvqqeRjPzCuJ6aeDurGl0oK0NTFKKrAYZS228ca5Pe7RyeoWGplrRlFbuIceS2+q3zHv+Ky7ug7Zddag7Cno9C17c2rkkdFAuVBd9jMOZH0e/Grhgxi4SU+K0KIU1ltuIQc+W3svfyV/EM/RT7ro+Aas1yKo7ODxPyjDD95CRCvYDYqeAZbmSlaQxFSD5ce4lzfb8J5ddASSN0lerZu1hUJcuaZgr9FZ47WMTVehuZQIWT5dXoA3E8/lpuoZVWMZg9CMNhw05izu0j6q7BFZmkOXAmawCb1eDqYJ3wEQgoKEJQY4Ofu/uo2/VajhPC/aytlFC2uETIvQcyXnO6Tvn82xw/OEZZ+Vmm6i5CToR7KSEaKSFz0rrci/ibDRsIKU1QJlSkUNAFBAMFNLvPkHHvbpeGOippqn8Sfg+fq3WZhtD38wX9FFLTeU19iEzU+od4nnvFMSTg881naYai6JQFRohGSxGARbHyXd7PrfEFyiwjzCQNCYnMSGKyRQAqnrUOApEeatYDqFIlkxc1LFfQpcaMsoxmhuR2u5bweuazHOZAayvM6yzOzlMwMcveRBGLRWs8mC4h1PZ9ItWGgfAMnyEt1FxEAwgenHydZNhFWesIiqLRL7YbACJzkGVAnjmpS4UeztftYE/3aVZnzbycSKSu4J/cnzXknaj9GWvVp7Gvl6DESnHUn8AB+Hyz+IqnmZ7azplgJ3rWx0+CFOgoTNZsY7bSQeniAgX6dDb10smu81zu6keLn2P7jtdoUjTulHB2TeXaSjGVoXoo6cIIIyEYHjqIL1JvqmJU9sW99C8WMHLqI1jqe1HVBNU1/YbERgqE6a4mpAXv2FFC9a8aa06CkAoFIcNxQqZ0Vt+aJtdG6MGZFC9UWUkLQ733qXFodBk2ZCFPGP/+/YyMjdEb7mNw1UaFfQjXtmd4RX0EHTVvXWioXOk4SG/rHt536kX8Is/6AICCZAKkJJkMoma8OdGYdykIGefDLz/Li0ceZMldghSClNB50XGd1tVunIEYnfv7NzR80piBtooY6M8wsPAV/rOljVSFP6dPkm83fIJKeZ1WfRCpCVZnnCYDIhmfXGN6roL52Djt7tswIJJC9fph4l2VxIsHeM1yG9/YU2saOhjx6XLXY9CucNVjxDE744njnzzOWrwUr2U7UiqoUuNDPd/nSEkAyyh06UVciO/hvxx/HqueZrWqndTOJxEIhmQbbypHjD0mJQo6AokmjcDDzuQadl8CX0sYgNCgx8h8YU1y6Z++y4fsM9iWi7DEy1DsXqoKmsnElJsXYXqs0+YWFsx4/OiKghQKmhB0le5iLRjj79//v1M9PMFjNYfNxOiSS16Vz+9vIq0oqJ37eM+pdzj6k79ldzpF5QcbuXConQ6lly55gBHRkgURHhkiLHzZ8RotrWT/2AADFbXoQgGpURHqw+tZyNJhRejscKUpW3CDgLK0m2Yqie53kHbIvHy+mQwjo8d+hq5pLJRWkmtCYYRhIitZzvTLQhqXiN6QNaVZDiKAuGuUuGcYZ6SFTHYf4+zSmVcizCkrVGg+PPE7WOGMQQYwzpnV6U5shUugGIHSMzZsXs881admmHTbSRW6cYlCVkpLjNRoKMhYlJ7CcSr1Ysqk21DEC4349BkUxUhHVrqwgKrrTLuLGSiv3aBxUhq7WkpUXWfn0BCKEsCh7CRlWeHSz1/FWltLy7338utU3gVt/xKl80Nw6bsb0jbVDg/8BcSXWT/pwB0xD0nTiNlQJWISRQtXOz5F9fosHbW7svWEKbFZvTeBUDKARmO91CBQCIkqNN7jmSZi7gajVYUSi8qyZgTtuNhoNwEbG4c1knfaC4DbOMF+/kB/mhaGGB46SDRSSl9FHW+1dKILgUXWslN/jQrjRkz6hHKtkKT3s9mgtSqS6pL5fO8mzxyOQTf1u3Yxc/k6Y7qGbko2XuzsorKyguYaE7CZ51rmeDOi2v+M7ivvweOZB1NdKSWUBcMoxTq6AFVq3B14jkIlkv0eoEEOcU1sRwKv17dn3z+tK1weeT9z1UmShRlOPY1TxkyCopBIFODaFEc0yxALgSZVLqdvpWi1goA3wuW2WsOTyawopM6B0CQ21xMoagUHg4fxBxuI+voADaROMjLDxbWfM1u/g4uVLTSnhri96Vge4I1E/AbIE0YAYmt8lQfmBHX3nCaiGmM2LFo5yT0bncyq4nVCFLCj6gwVFQYH2i57UUU6G4IiuyakQcAX3MUcu+0BxsrrOHjlLXgZiipiVK/dQ2GqFSEE11v/jkT9CRQg5Z7JZYSREvz+KYqLZ+npvhdLZAU15TNnVZKwhbjWXogUO1B1nbtefwP3wClOukIMPHceb+VFROnUxhoCbi/SuMW5hCKWswBseOggi3NtHNAqkLoGUuIrmMft3c1YrJ6i1BB19Zdy7McznIbxu9fp5rx4Hx2ihxZ9CPf0IQpWmjYW34Z9PFJKdq5o/NHbUUbqJc2D19mVakAxDzwpi4xgwZpGWhe8lmrjQN3bPNpkOLuobBrvzBpSLUzUteGfHKJtYZJr5cYBreo6u4anjbyp62ub7oOpQC3PPvIhNHUj/IgQGkctFsL2SqwV3XlCiowqWAiQSpqzNSHSuQyGOfeaInhL3kWLPsjU2wFi8wXZMbMlU4TG+3BbG1lNreC2lZivoVAQbmZYtPHfDhYY7I8Qpu1h/vu+GbDwZpkFC6DjxNLyBJ/+6U9oOv/f0Qta8K0M4axfJ3F3P1LVuVMLs+PZk6w5VJbr9qEceIqfVtlJuCZYV+7cAMNSJyBncRFhSLSjAz9wfJwv3Pk0tcwBENwW4MK12ykfnEKMTnKlPMDsehFF7nrsvlYW1Qjl0secWOGSZRSZIXQSKleWUHSJphgLfanSQ/OMxpS3GWeywkwdJ7jsUfhvDZKUooLpiBEpiBuORoB10mAcJvRaXlPymcUy5vkWn80SmfboNVoY5NOzI4xSSZ3spzhhIyXtWbtOXSr0Ri0UKxHKpBsFhbK0m1jfAidjPVnztnQ6zenL/XywpoaplXWeO/ohhhraM4t7Y2GZNENBp0aOYxEad8vjRHGREhakUElKwUl5l6EulbAWuMha2WWKFndTPPYgjpUmpJTMKxFesV00nT0Ev5FsY3VxNzbPJFZnEAEUtx5n5uqjKJXdlJcOARIpFVbCAdzqPLf1DrLkKkBtP4wj2cyYZYlirZDLnml0lrjMGA8k91Am3QgUXjzwMOGJIcLWAn7n6gvsvnSJgaPvRWaCYes67bNjtM1PMuMtwT03wViZhYSjDz/j6NY0K/4q3rrSg8vh5ckd29jvKeTXobwL2v4lSs3BbKJ4EAaIMwNQ+s9/h3TE4EB0KZlI6oTS+fYHSbsP1VNiSOIywEpK4p4h4o3zeXUtCR8JOWXGkRAk3BOgmKBH14kVX2Nxup6MpKC/Ogew5YqHTWKdklbeWbmf+Hgj0Ugpc24fb7XsyqY60VC4prSzTQxkD2iAVNKPReQT55KlTrqar9OvtLNN9rG+UsH2iTGufHY/XZ3LVPZ8l6GCUrprhpl3jfMVbTeI61n6kWluo1lJWdkIC3MN0KBgpFdRcE5aeWTyNDNeP/u047Q1XsveMyhbzcC71hvfWxq2ZClF5XzhPnI59W2yl6XlaqamjICVJSUzYNrJrEaLN/plNmVN+dCFlfmwldLBNWw1LpJmWx+T3+Sug8cZX/0kyXAZjRGdRNKHWKxgnXOosQiluhtr6wP8xUEXSQFdtOFglnvFsSzgjUT9SAxbs+lADTPb9nJv4nV09WKWKe5je84BtvGeqtTpKOijqmE02/cWOcgf8WVOyrvo0W5jwbKRqzF3rIYbOhiraeHJl77Frn6dxvKjICDmHiJR9/qmOco+Mnt9WDTx1rbtrBV72DtkoVkOUOo6Rnwe+kWHeagJBlvvoOXtEWbWZmm88+9ASZOTejHbniJkVooKkgqLnZrV3VgWJqDCaE+v/ATOJFS4rhBoOZsPXLLvB0NKE/9H4H2khWJIDuSfcmTmjo332KgKEkKaTk9ckg7rfOBgE+WNPrSXQ0gpUSwK4WKBNqaRsUULiAgDwRYearTQpA/yh+LLnBJ30S13syQCeZ2qDC+DEJSHg7y3+zQzHj+eSJx5dzOqe4Cq+CqbS2/bHiO8RQ7okiis1L5J67kAS0Vreefx5nkqZHnDxmpTBWPMBO6iQoLm9emyakZaDrDPW8UdS205dUWWuewqVjds/m62KMzRTZuf00JBtj5E0UQUX89rqL5G1u/Zi1THsymZk81OzkVLCB54mG/vcxnxz2gGGlGNIF+AyozIVf8J0lLSz3ZaxSBDtPLn6pdJdVhQWzWefOlbnJjTKXA3sFBZxpp7kJjnFKHlA5yJJQypd2YhCAgWunGnNEJ2Q32tCUlpseDC9RABrCgSrngVfveAk4QgS4dVXaNurguAszvu5EsfeMrwrMWYL2MdaDhljCMcAwnnuZUDnOGe6uNQLRBC505zNeoVwpwfI95iMFiBRDKrBCnT3FmBQDgSQ+aEE5TAV8+EeKH/R5w8cIS0uoku5oJ3DGn4uGhEoDMp6nhw7TyyUMl+/4a4L+sVbdyqs1p2kVX/FWq7voBjpYkudQQd47BYKYevWieg8iCH9HVaCSIUyRCN/Ky1AaezmMNAsxxieHg/4aifF3b3Uu9P0VebpsSxSHVkCIlkRgkx6/Yy4/VTtbLEbDBEueZFIPmgvYPPtdTTi8ZyiZ/t/hXc2rrh+KQoKFKnbX6S8kgQdTXM87f9BppqQZE6j1w5TXkkxJzHZ6jCE4JnLw7xj3tbfi2A27ug7V+qZALsbiol2+0sLqTQpdUI6JfcBJzM/5dSEt0BIueUiReb3p0ZsCChaGkXMf9VMyWLRsJz3agsBUJacAS3UWNTcaUldkWwbzrFaLk1//TKOdwlgoXVKqKRMAiY8fqzgA3TOH2b7M8eZlKCSMPq0E6WVEmt3chg0O1VeblyJy8oe9EEWBSN37ecJ/3ZOF9Y+Q53WQPUHiwgmZpjXplnW6yBplQTS7ydPSlzu5ihJQ5VQ1sdNw5JxfD5mC4sY8bqNyPH68j6jfpvibsMwLZJ1J95n5alEJHq2IaaUEo65UVaxRBXpo6aYU0kQ0MHaGk5ixCSpuZzFLmCRpTuSCkFq1VYk0XZdquWUvz708fpa04Q8E+wqrgYpoWK7S9R9NoFkmvbGC0EdW0Z+/osANHGw3y33UnCjP0lpcozPEWNnKCZIVIpe3YsZr0lvGTa1ZyXB/hDvmQYjZOvCs6ELhESfnfgOSoDYzcstRYzBt1J9b78Qd+0HjXVgtLyMIfHbShCZUCdYan0GKXIvKqGSt2PzZagoCBiJKFXvkK6wAp10FMj+UP5Ek6lH6cmiI7sYMjWQvVKkLZoDfW2YgpLnyGspkCAqsNx7uO8uJUD8gxH5DFOcB9dmJ85RmO8gbm0m3/a3sSVxiLunU/z2FSKejvYG64SERvrIfdsyoDctLCgC0FaCmamf4eCsIt5JcywagT0bNEqKdPdSKAnpnPVqzJaIVkce4f91S7aH2+mdLWQxaI1+k6+bByY5jZdlxbGV6t45dKj3FZ+nubKYZrlIN8WT3GC92TndFtsgPLIRtDk8nAQdJ2XOg+hKRbUnZ/gyRf/lqr5yazfxHSghqttG8xG5gWlhCsuF/X3XGCuvprX2U6H6KWFwY1zWcIQrXzTczQ/lbzZjkqaw/IkirSwPfWbROznONFYyfFD70UKwctSUH4+RmdYJ5MnVghB3DOM1ZUEDt4I0jKiPkkGEWb3pA6sWhRW9j7Bq82V7A9qNKaSG7ROgLDrRGv28u19rTmZAgCpZENubH6eMEP3tJuZTfqkMd9SqOiqIFjdSdXcJJq3jEL3Ars6X0MIHVnfjfPK/aY9r9Hcmfp2Ltfm2OZJiZAaxdEeSkSA9zirYFXnbGWYhFKQpTkCeHL6BDv9s0w97uZU7UFSqmoEVc6jvQpFGBkJ7hXHOCKPZQR8YO6zjBd8u2K8T7/YTju9tPgHKS6exX2hDbFiKKTDmqRC8Rne6XIj00SxCBIpKTGcD/LmZov9b76DNINvv23LsQkDdKny8/WHaHEMZvvWQS+TSi1v7itBjaqo8Vpa5w1R+Qstd6CbKchOqvfwh/pXEDr8qfJl0oUGgHyTI3yMv2G2ooF4MkWPO0JMCDpmfaj+GuOsA3rKazmd0QDpGrd3LSJXDEesGSXIHr2QXunAWmxDCghEQtw+3E1/WQXbFmYpj4aMMWzaQdpiBSHQdePMCxa6OdfQjmZK5hK65GejS+zf8y5o+1+rTJ7Dfu738NsaWEoe4a3ovdkgtNlibpaQBm9H0+xwKvhUQ+XoDLUjpA2pG4bRgf6PollXDQ/LHOKGDvZIPYFrH8ERbqLQRjZfZOuSBl0xrtRYuWVN8r16G7qS/+zumhZSViu7o1ep8Q5wgTY0c9PfFjyP9MIL4jE69H4iM7sYCrfjL6mjajlNWJNMllj4twecJAVZ2640kq6dqzRPj/KBxHZua7gIQqNOqjxy9RYcBVZWK86a/SDrn7Aed+IoiBkEge1sK+vFYrHxongfHfQiheBHLQ+SFiqqLtn9TjmWkxUkOk5wPVDMG9xLvuifPAlAhb+LsMiXMHnECkhJbV03E+OdRCN+ih25dm2SioohAoFhlqc6WRuwsba+iGKpQXO6iDknSKaieFYE3y37JCksKIrkY5Xf5MhHjxH8pyDpNZWkZZ50STl9lY0cv/W2fJsyYRj+9rOdFjFo5FGN+YhE/czm2NWkkfyTfJL3ix/SwiAtcpCj8mVeFu8zeHgpOTTUTeXKEvEqlSI2SZsk9Mmd6DlqAyPMlMw7WKWAuNONTYUBdZrT1msE0lBqHiSnuIt02srd6glavQNIqZBa89JflG83pymSAbmNNtHPcfVeftD2CDoKF3XJg8k4kcLjdFXNcJKnEBIKRIyXxGMAXBW7+Yl8PyHFCG1wld2gwwdsq/zNXicna7wAnPVbuOhVKdQh5r2bW5jJApZN04991QFFxhe6hNOuElp8YUbjF7KMyaA6S0PBrRwPeLlusTNcYXiPviXdzHWf5tKlS9x6662cfvl0dnCFCZ6qlBUe3+bggZGf8vbILq4utlFadp1DFW9yUhxBkyoqGnumBkEIXEXzBByjBOfc9HAHmqIgFYGGYLKynqr5CQSCtLWWa5070dVcqaoBUlQ0utnN6fq7mBPlZgREycfkNznCsexeWhb+vLlB6jTGJih2zOMRIZCCsoGP4Ay3MNhZxLHdbdm4eikpeaXSyoVinf1BjZ0rGjH3EFP7/y9mlYcR7EdmwhblLLisfdsWgO77DTb+od6GJu7nO7rO/tgMKcrxiBUOyTdp3jXIZe/ODcCWt0ZznW42gOd9sW5uK/gxLaadbofei6IaCcVV4P3p7SzbLrKUjhIIjPC6OGIwCJzBVb/KxZXbqVxZAuBKTcsNz7hj+CqBSJAjVhUs1XyzPcpM5Tngfdn+SWCuBh6smQMJB+RzvEonmlQ3jYHOdLgZ3XUcRcndpOY6lBte8IppHqKjYhGmbZkYxOGZQA91oiNY1yQB1UOrVsGAOgMCPK5FbilO8I3aA+SpNLbSvGRokdk3icKC1bNx3ex3SJZwgvt4RjyFlgXOioEufICvgWsVtZSFQwZgM+9LSwsvr32acYeHtGLdoBHSwrfF74AblO06Hb0XefoH17hyyw5GpOEt21dex6mWzmzf04rK3zXYCVyZ4h2rIYkTKOxz1hD1ezijljDtK2W5yGvYPbv9lKxFQJBn5yaQhM+mMD8AAB9jSURBVAqKGGqo3Rh4kwOTi+s3zMmvorwL2v41y5UfgJbAoQxQZR+gmgHKEy0MxO7DSHGVD95Cms7p2DoPuopQpKQg3Ez1+f9IvHgAe7CKwvAe1r0jGBIVLQ+4JdwTWZVHrupCkZIPTkb5rTkHr7Y58tUYOUSmr6KBwYpqJIZKFAwj5DMl+zjLXiOWlyqRNYohuu+ABy/GqJtM8tNKa1ZilCHaRoDRu3FWrjKgP8gZ5W4eFs/TIge53rnEizxKiGI66CEmnQAckqcYnjrA1boGeuw7DMN3IVH8mUQ3knIxa6SeEgJNkSyU1VETrOZC5FFO2RfRfL+Am0SnW+wiKPzZ64aE4U3AMKT3eBa4euV+bOtFeVOZAW+ltZcpqe6m58KdrIRCSEchGd54sqgym15Lk5JnlKeosUzgObCKnB6muDrBGecBjpcfJRNpP9s/U70xKpp5nfuI4iJR7WFMNBFx2Y1nmOrhHtHJNTr4gnyaSWp5WTyabU+iI4tSVDUd28irmTPlSNi1KPhJqY4UAouUPHZtgsuVFQx67LlvzD82uKiIh/DNzzLn9vFmzSMs8tssCTPirhVOcyd7MABPkS1OEwNkwi9k2nERZYhWviOeQjdVQ2kFvtUe5mjRO/yJ8scbHpbkHyQhUZr3+WXxPtYL4WRVvtr/1aqM3dgOfsaf8HH5Te7JSC5MKdMp7uaNovsMSbJ5b6/Pzn86UMp7L/uynHhPeS1fbyk1Dcw3BlCTMOPxUx4Jcfr06RvUSwKoU8M4Zmb4O+29xoEVAYlgV8XP+UP5ZfrYzrbJUYrsSdy75ykqCiGQBFoEc28XcUa73Yz2L3Gsx8nQiHBzmlBdSd6a3J3ootgW5A1xHwNi+6a+Sr4tfocLyXvothnSIpV03txYSHOP46c8o3yKNBZeF/fxRPk10q4CnqvZtuFcY+rZXqiyogmwSvja+Rhedz+DooER0WSqkzVUNJoZJCltuJIrXLXvM8ZRasa7yJw+Ik1ApqALwTuuGsBQdb4h7uVu5TjLVZllkbOXN4tRMcDhA/JFNL2FU/IeJNCqDzKp1KKjIAFN6LzaNsJo9eMsOBRUzx1MiHrAYBAUn4buM1Rp/mgkLxB05m+42I7VN8tJ116ecTiROBG811i3GcN+NqSbQoFm2Ucdo4zSktdnRUoKrttYayrG5Vq+QSrcz4YXvGE2oGQB9D/KJ3lc/pi4ZZlw4RD1a614Skc5XbnERaWFyZiVlWI7anE5K6IYLTeBaAbkmjQnG0ImU3LDh2Q0FjlzMFDQwoBo26BhW3BHGgqz3pz1ajIZXa76/GvmPZm2NEXgK/w3KB1nmWwo4WKlh6Rq4XJNyw1g82qpj7+pHadjVppgrIZ3TElcXhECXRgSNcBglk2G1bkeZyiwRb4+KZleXwLa+FUXsTnP5P8fyv79+2VXV9evuhs3lpf+N+j6NmCss59p+7lL7WY52cDV+XsZtdxDZiOCSc8E1FkVOp2qaeC94UKN+Xmh6VlCjT81L5hfSPAPvZ+SsUfYPMcZANftVfnMASeawo1FCPLSI2Spx6Zr2boGIS9bSbPg24IXyBLq3IdJyuUMc6Ji0/VsR/M3zs24wZzy26NJnq23bdiT5BRF6twRfodrhU0sWMvyn2m+261r5/iY9q0s0dR1wcRwB8m+JM2PDGUjYuR2T0qIRktIJAqyzdntq5x37edb4rN57e+UV9gvzzAuGpmmimui48YxzjSeV/StxyjbtkalnDLteTbaU9H4fOzP2VVwacumpVTovnKUIVqZ8Roq5vJIiAV3Mc/tPrShGjdvtKWTFMVjBF3eG/tw036LnD7ptNGHTaa4mpM8PUPEi2SUVeG+eXtbvkTmEZtOuTwAJdkbWmSNdVRHlIGCbVlmZKv65StLrNvsJFQrcbt9o96mZ985eJmO2bGt+5YjAcu9v7r6KvUNl2+2hLPbLDpdyMtLD/Hy7ieQQqCS5iPxb3Oaw4wUbMvUBqRhj6c9zan1B3i98I5N45rbl00PMe9XkHxCfoProsFQ227VuVxQZL6SFAJ0SSCq4dBijPsKyXoOovMJ+Q2OcAypG04yf6Y8TRoVIweBMJi/zRs193mZkjuOef0HtqBHQqZNpYMhzVLQqJHjjIuGG+tvOQG/mM5slAxNuxE4ZopKmj+SX8qaIoCRSilLG8z3u7PvPDuv91LaOENz+6UbhmFQtvKn4iukUdmaFujUyTH8cpHitIbdssAriiHJ/oVjLHUa5TAflc8wJapNZmoj3IcBp9Ut5oOtx+qmtCC3/ua5vPlaUyR85HqSf6i3kVI21cktUuKNRalYWSJuszNeUrEl0AbD7PuJM/0kCxZ5ofMOQ9Nwk+cbfZB8bHiAP/udD289jr+EIoS4IKX8Z/NlvStp+9csnR+GS98DLYWmWPlG8mFGZTmftb1EVc01xpfeoCv+AeZt28mGRgAmUhJiGp1OQ62QC9yklKiaIZnKStoAoVsoCG7Lk7bd0J2wzjfPx3im3spEocJYoZrPTW+hts1e2wpQITcA21bIJkNost/BnKjaun5u2Qq4bSYOwgifMuhWSQqMcCKb6twtj/NJz1/zAo/xQz6cf7/5brZpO9eDO9hx4C0yEf1jExaS8zqR8SI8DRupj3L/ulzLN3iYruLCCCmvZtu/KnZzVWyKsL0FUbmBQGZzom5BfM2xnRG1ee0JUyW2q+BSXl8BVlZKice9Wbu8chHKSpYQUBYJ8sTAOD/cVpf3qKTFRtCV7318Q+N51zerrQTX2J7DXOQSfAzAtrnN3HHZEsRt8d2msZQSLvjKbrz3JofznNe/dd1NIHbdaruxf5uB46Yuh8MBdF1FCC3bXO4tmW3mql4jVu3JxmzTpJW/K/jMFv0X/AYvIRTJm4W3GTffwFBt7lPuoWk49URx5aVQ23JdZsYzd8wFzLtVMiGEskynVBijwWhTMewnv8jT9ElDNfs695OXymvzHGZK9l3yg6IK4HZOcpq7snUMaZFESLEhTcKwvRrfFDx7S5DxC5H0VozrJhXnpvqVcpLPiK8bHpY55Yg8xhW5hwvilizt0hNxnNOjLGu1SPUWyiuGKSpazmvS/C+/T9n/DaeBcdGYNYe5oe+5Y5pl7HR+i2/TIgZpEwPUyAlOcRcR4cUtVwjjNfq5aX6ENIM4b7WIt6LZeWMrbvwut1859+pI/r7BxpaM2aay4nSx4nTl3b/V2i8PpWmdChB2TbMtMEFfZcMW5wHYk0kqIsvsnhxiV+LXAy79evTif5WS8SodO4Wl/jCf7Z3jyDt/nF2L9aV92BPf54XQV0iZ0olMKM+JlMS5rtHqUNms9kwstkKTFUQaEBQu7KZk/EEc4aY8sLYZwGXCF/zXyxrfabTzV83qzTd4pmzB3WSvb/Xdlhz+FsAkt/7/l2dt8QxFwj3zKc6VqBvExKyjIDnM6whhhrpAM1Ld5LYnJesWK+nBNa6t7qCwJsnapI3kiBG6ZaG7BHftGqg5hGuL4cqUDnpRkWhbHZg3IfJZyZTcNFY3O1x+wXjt5Rz3imM33LK0VM1A/z0592XGMv/z7bNLVKzF+etdjazb7DcHjL+IaG8+jG9CRG96qGweI8g/NLd6xmZwtdX43ASs/bPMQy5okDJr75S9R0r2d3UxXlfHYlnZlv2LhksYGd5Pc8vZLZvOe/wW+GGrA3GcBmI48+PAbbVfttp/5ucOYRi3n+B+pFTyx3CrtXizfZxbTBCYqdLCIC2mF+cp7smm8tpyzraiGznPfYjncMoYQuhIoSJ0jUen0pSvSzxJyf/Z4TC9Fjetky37eZN32ryWMzQUDSm3GOtNZZvoy3MAyW3+Yfk83ewhrVtRdZ26yRkArOFl5mfbmJ9rpbnlDOUVQwiRcaJQyVNR5vb1F9HTm6xlgeTjfDNPCtjCYDZWJxgSvitiL2lp5kUVAnTd1ATdZG1Jw9RER9lYS7l1bkbbc//P6/tN3ldKLOk0aYvlxra32uPm393XEwgEnuhedlwfo7+ibsOLN+f+gyMr7J4cpGQpTtn8ZeB3+VWXm+hb3i3/YqXmIBz+PNQc5GjhEKqZTB2MZVluu4bH82OGLcbBlEsKBhKSqJYPvAASwWaCb36e4uHHqTn3B1Rd+Xc4VgyuMuPZtRnoZT7HNEPFsDdoCN1vxsU4ZU64gcwh+4s45E2bJO9gz3zeaqNubn+rz7nXcsbh0EKax6dS3DafzKsnJPyH0UlaGEJKaBWD/JH8En45v6mepLH/Amp8jeRIktAbZAEbQGzeyfBLtSTC1rxXuNlZ0CwH+Zj8JrCpr1u9u5QoaHyKb/Ap/hqRCWGQGbetAFvu502HnUDnYfl89lLuLdNTO8h4H+f9CPPHrNeslXM05ObgWP/GszaP/+a52AzEtrpvq3HYgrDe9P7csqnOjrGE+T4y/+emINkoRfG1/D5v9Q45/wspOTx0xZBO5rTvCy7TNDrKru7uLccgEJnjYeUEdms8b0vcbIjuFG/euBZy+2PeeECeufm4bP7Z4v0eks9lHVk+Kb8BmWduuq96LSc591bAOOeZKmnuDr656Tvj62Y5yB/oT/N48oc8LH+y8bzNY515Tu5fYJvs5UPye3TovVhlGkXTsOnw0EyaT15P8fhUiv/Ut76xFjaPW+5Ab7XOtnifzPcPy+fYK7vyvwcspPLHFslh+ebNlhAtDPLb4z/iN3r6+O1Xr1G/uhMANb6Gc+Ia3lAE+/RBdF1F16GdXtNWcNNe26rx3PG62RoA9spzWVvPm/Fbxcsxvqh/mSPyNSykEDITGzSHNpntCim5Y/ksT8rv8UfySzyUoUG/iKZLiW8tSuVqYut+Z65tnitp5JeuDW54XW8JIs1+7RxL0jiX4sGuNfaNJrPSYhkVHBq6cb8KCc3TDrzBDjq7TzG+/datVse/elGffvrpX3UffunlG9/4xtOf+cxn/vmKv+qiWBDdz5JJLi8QzO36LBd3/h4PPdxMS52HeDSJo9CKo9CKr9xJNLROwLKBtSXQE0sTjLromHmbgH0Wp3oKu3oNgudZn1tFxoLo0TmUwtLsPZodZr1O+oSKxWOjrdBOhc/BW0o6PwQARsDa35Lf4aroJBPWtyQ1y7pSiJACRYfN8TOROnfMjlKzlmC6sCgPfBr2LPk2WkboYJN7kxJfYs1QPZnOBw36OE+EztDtrDf7kLHHMfuoS37r2gBnHWepWrXTFShBYthD/N7ZMR776cvEK/1oPoObLWGZmuQk71gOGU4NumRbzwTvjc6zGl7IbdosdgR2RNgF0k1R3eI/O71SQkl4lXCslEln9S+oqbNPnuMpvs4+ztPIKF5CXBZ72aIjgKHSuF2eYipjw5ZThJR8dOUVDjqO33BnZHw/tdNH0aUgLTWsQsWl21lXUhv3A3vWW2mRZRRKO7sjKlNqhHFvvuqybiHK4Z4QCBtBV75NiMgl/lLykP48pcwzKepv6JOClrcehJTcsqQx6xRk4tIp5ngqwHsm5xlzO81wpNkh4faBdR64FKNx3jhYUmKSpBpGqjn2dyL7K/u/RcBvTg7iXpxlojiQ9465B0j94jydE9epDc9z++AlaleWbgCEh7Wz1HumkSOSgnic2crK7P07Vwf5LfdzVLJAITEiZQZClkBqvQDVks7iZvOVKGaZJDYGRfumUTPsQcuY5zF+xD36MfQrRXQF9qMjUKTOQz2T1MULqElI6td0fElJgSZZtSrZPVQqF/gg3+W9ZA5XwY4FL3tHXUSlFysKpeuSinXJp0eSPD6V4qVK2437Pa/o7JPneSr9P9nzwgjJ7RvBstEFtmFIjdhJvqXQ2DPOwe1n8IoQV8Qek07oVMlp7k69/f+2d+fBUd7nAce/z55ara6VtAIkhHWAMSAMCBtkbFNs4vtMJnGdJo2buM2k7aRpp2nG6T+x/3CnnTRN26mdYxKnTttxajuObUgbx0l8YsINBiwQoFvoPlbnSns8/WNfQMYQLBe0Eno+Mxrt+9ufpN/us8/q2ff3e9+Xele5sybrDDdxvhx9kvJEmDUjm1jzs9+woKuDhw80sDp55hxty7vriPoKOBCa9NpUWNMfp2q0i/rMMwcXrdR9zKOTtWPvUu8p49TVPoQEJdpGPr0U0MPHeY57eIlCetgmG50rPih364ts4C32yZklSbeM/oKa2C4ikTBtrcsYGgzT3LSaocECXK4kPY3V5BxYTLjVz8qGwwyGVoMEScYbcMVj6Egv8REfbfFKotEskt1ZJNxCc2DSkY2nH5c6z/GpT1/vj0ehdlFKE4V0nz7wykOcLyS/S6H0cj6qLo4fu454Z4hlY3UUdQ8RGExS2X2S5lD4fa/9BQM9bD6yh8rmHpYMRSjwtFPSHqPA1cWo30MRHaxiP9XtzYyO+3EpzB/sY9OxfXyt18+NHQFeKU59IPYoXN0XpyPzPPuVVKno7uX2A12sJItdhb5zPO4z47pv5yA1dUlWNk2woP/MB4/DngR7MhOsGz1BcCJKi5P/onDnriGubJsgo+N1XplXwh1f/1OK8wLn/BsXw2OPPdb+6KOPfv9C/exAhHRr2XnOk/CeT0d9hL7XW8jpi5JRFGDYN0zz0WYWrSujrEpTF6wPFMBYL5TdyGiPl8iLL9FwrCW14H9xDYvvXMPV60vO+fvfOdrFmye6yR1LcCQoeAoz+bgOMv+V7/H64lF255WS6YtwXcnvcXAkTu3JUvxHgZAX79UF4HcR9nlZ7e/lRPsWesZ66CFMLVVEyeRa91E2ZvbSKIspzVvO8USYxNAEd51MFQ37FwXYWF7INblBdjvXbdyQl3X6pIavt+1la9t7BOt/i2+nsLPyWjK9bspy6wksUu6tvJfVRat5ZdsOXj3Swrr3tnNj77vk3raJzIUZvNHfSSS2n+H2tQz6bmWPb5j2vEIeXFbOZ5fOB+BkXS1v/WQL3U0diCuTeZU1JHK9RH75U+JJpXP9zdx29yiuof9lqHsMvAMEcwsIJuJE+04SGfORjAbIybmD5ngZHT39/CqvkqM5QQLeUYK+EVYkmkiMluDVMMs732HpvK2IdwQUkrEM+k7cRJf7ft4ogdZgnGzppcTVRjkNDMUWUN3lpjT4JgdDIV72PcBALERG3yjh/jGu7x7hnuxhWgpHGXa/gzujEbcrhqfpekJNmxnQMVzlRVTds5L5Fbls+Z9jnNh7FI01kDc2jmc4TDSaTZ7XTaEnTmz4MF6Pn9eKC9hWUYg/FuG6Y7+ipLqYtrIsJg5lEu1fTu/CfNauKKbF04vvwEGubM7nSG6Aq7q7KRl/h57iBn6WfQP7CtaQ4fLjd8W4S3tYmdnCwSgEx4cZHS3h+q4JqsZKqC1oZWe8jZVNHpJZa9mV62dJ3WGyx3OpqyinPuRi8aIcRorCZB8YYEHHBCVXhuhLdnMy9zihRRlEJiJ0ea/hreFM/C4IeT30x+KMJ2FDXpBcr+f06+vVXe/x7OET1Abz8cR9XKVuqktDnIiOE+6OETg6SPmaIu5cuA32/ZgWTzk7jniJt/cxkJdHvn+IvM2f5tYV8xl96Ukib79Hh9tPf0UxSzbeROktX6Lxl08wvPcFtsavYX/eYtaXNLJh+a2szwwQqX+OOneSzqEB8mUPCVWiSRexeJAX5R7e8NTgdkOZq407Elu4Uk8yr3AzeeEwodB6cnOrP5AzHfURGrccQFt6GB+LUhjMpqEknx0Ls1lUlE1mw98R8uxktMdPUEspHLqGjKKlXP3FT7CnqZ+je9uZ1zTM8OAEsVCAkbF+OuMJtpS7GPa5CY4lCQV8jBXm0zfQQlGkk5tb6lgReJOJjiH8mQup2LAadDuMDRCq99C+t4SdI2HeWbaI+fMbWTfWTl5ZnEOaT51/OdWjA1zVmIMrrHhWLefZsUw64jlE4/0E/V08UBrmjsX3n/P9a3hHO2OHeghUFZK1fgHDO9p5ancdL873Mi/az5dGT1KzeiX+a2t4cu92tvb1cl38EPdqG8UVDxBeeiM/r6vnmbYTeL19fCy+n4qRQ0Q9HUwkR/C4sulrrqSr0UNP5TyOZ5ZxZew45fEGcgoaeNt7AztlA6Ud9Sz1NHFjspyx7kXkT4QYjg/SlOjCExhk0+b1ePNraKvrp0C7cW99mvq+LHoKl1Lg3klLVx997gJcgQK8+UuYyErgTYyQiI2zu3gBLcULWBeI0zEYx+1KsokQroIou0ZayO/vYU9oHq3+MIUTndwVeYMVsXokPkZTa4gdWTfRGw6xnFrmdwRYkBXFt/BtXC5BR0qJ+zoJuDLJipXTe2QV3Q0xBjN6GPOFIJ6Fy9OO2z/OkXAJ269YgeTmUj0c4eaOWqIaoHOoiJ5gHsHiILcUhcgeitMVO8BA93aiHUsZTSwlXBKhr/8E2aFcNt6yidLSUsabBtl24CS7PAlW5WYRHlK6s4X/nBimlgTeaJK1HRNoUlgYSbI6EKD6tiuYX5HLz+vq+WZdE514CRAj6M1G3S6Wd7VzBbX09ycoaFxMQWE+VUtK6WkdwrMoi4ZcoaaigL6udt7Yc5jO/PkU5Hm5tr4V33ghe3JyiOV5+UT1wvddE/lS+LAHIljRZowxxhiTRh+2aLM1bcYYY4wxs4AVbcYYY4wxs8BlOT0qIt1A0yX+M4VAzwV7melkMZmZLC4zj8VkZrK4zDzTFZMrVDV8oU6XZdE2HURk94eZfzbTx2IyM1lcZh6LycxkcZl5ZlpMbHrUGGOMMWYWsKLNGGOMMWYWsKLto7vgSfDMtLOYzEwWl5nHYjIzWVxmnhkVE1vTZowxxhgzC9ieNmOMMcaYWcCKNmOMMcaYWcCKtikSkdtF5KiIHBeRR9I9nrlEREpF5DURqRWRwyLyFac9X0ReFZFjzveQ0y4i8q9OrN4Vker0PoLLl4i4RWSfiGx1tstFZIcTk/8WEZ/T7ne2jzv3l6Vz3JczEckTkedF5IiTM9dZrqSXiPyV8951SESeEZEMy5XpJyJPiUiXiBya1Dbl3BCRh5z+x0TkoekYuxVtUyAibuAJ4A5gOfBpEVme3lHNKXHgr1V1GVAD/Lnz/D8C/FpVlwC/drYhFaclztcXge9M/5DnjK8AtZO2/wH4thOTfuBhp/1hoF9VFwPfdvqZS+NfgF+o6lXAKlLxsVxJExEpAf4CuEZVqwA38CCWK+nw78DtZ7VNKTdEJB/4BrAeWAd841ShdylZ0TY164DjqlqvqhPAT4D70jymOUNV21V1r3N7iNQ/oRJSMXja6fY0cL9z+z7gx5ryWyBPRBZM87AveyKyELgL+IGzLcDNwPNOl7NjcipWzwObnf7mIhKRHGAj8EMAVZ1Q1QEsV9LNAwRExANkAu1Yrkw7VX0T6Dureaq5cRvwqqr2qWo/8CofLAQvOivapqYEaJm03eq0mWnmTBWsAXYA81S1HVKFHVDkdLN4TY9/Br4GJJ3tAmBAVePO9uTn/XRMnPsjTn9zcVUA3cCPnGnrH4hIEMuVtFHVNuAfgWZSxVoE2IPlykwx1dxIS85Y0TY15/qUY+dMmWYikgX8FPhLVR38XV3P0WbxuohE5G6gS1X3TG4+R1f9EPeZi8cDVAPfUdU1wAhnpnvOxeJyiTlTZ/cB5UAxECQ19XY2y5WZ5XxxSEt8rGibmlagdNL2QuBkmsYyJ4mIl1TB9l+q+oLT3HlqKsf53uW0W7wuveuBe0WkkdRygZtJ7XnLc6aA4P3P++mYOPfn8sFpCvP/1wq0quoOZ/t5UkWc5Ur6fAxoUNVuVY0BLwAbsFyZKaaaG2nJGSvapmYXsMQ52sdHahHpy2ke05zhrOf4IVCrqv806a6XgVNH7jwEvDSp/XPO0T81QOTU7m9zcajq11V1oaqWkcqH36jqZ4DXgE863c6OyalYfdLpb3sPLjJV7QBaRGSp07QZeA/LlXRqBmpEJNN5LzsVE8uVmWGqufEKcKuIhJy9qLc6bZeUXRFhikTkTlJ7EtzAU6r6eJqHNGeIyA3AW8BBzqyf+ltS69qeBRaRemP8lKr2OW+M/0Zqcego8HlV3T3tA58jRGQT8FVVvVtEKkjtecsH9gGfVdVxEckA/oPUesQ+4EFVrU/XmC9nIrKa1MEhPqAe+DypD+qWK2kiIo8Bv0/qSPh9wB+TWgdluTKNROQZYBNQCHSSOgr0RaaYGyLyBVL/gwAeV9UfXfKxW9FmjDHGGDPz2fSoMcYYY8wsYEWbMcYYY8wsYEWbMcYYY8wsYEWbMcYYY8wsYEWbMcYYY8wsYEWbMWZOE5E8Efkz53axiDx/oZ8xxph0sFN+GGPmNOc6tltVtSrNQzHGmN/Jc+EuxhhzWft7oFJE9gPHgGWqWiUifwTcT+pE2lXAt0idqPYPgXHgTufkm5XAE0CY1Mk3/0RVj0z/wzDGXO5setQYM9c9ApxQ1dXA35x1XxXwB8A64HFg1LkA+3bgc06f7wNfVtW1wFeBJ6dl1MaYOcf2tBljzPm9pqpDwJCIRIAtTvtB4GoRySJ10e/nUle7AcA//cM0xswFVrQZY8z5jU+6nZy0nST1/ukCBpy9dMYYc0nZ9KgxZq4bArI/yg+q6iDQICKfApCUVRdzcMYYc4oVbcaYOU1Ve4FtInII+OZH+BWfAR4WkQPAYeC+izk+Y4w5xU75YYwxxhgzC9ieNmOMMcaYWcCKNmOMMcaYWcCKNmOMMcaYWcCKNmOMMcaYWcCKNmOMMcaYWcCKNmOMMcaYWcCKNmOMMcaYWeD/AF3MDch7CHZFAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8VfWd///83HtzsyckJCQQQsIWg8gSCUvBHagbrVan0tFxBpd2OuNstvY7dn7TsXZm2u9UneX7G79tVdTquGBLFUWhBlBBLEswLEJCIJAQErKR5Ga5We7y+f5x13OXJGxZ8P3sg8k9n/P5nPM5J+ncV9+r0lojCIIgCIIgjE1MI70BQRAEQRAE4fwRMScIgiAIgjCGETEnCIIgCIIwhhExJwiCIAiCMIYRMScIgiAIgjCGETEnCIIgCIIwhhExJwiCIAiCMIYRMScIgiAIgjCGETEnCIIgCIIwhrGM9AaGk4yMDJ2fnz/S2xAEYRjZt29fi9Y6c6T3IQiCcKn4Uom5/Px8SktLR3obgiAMI0qpmpHegyAIwqVE3KyCIAiCIAhjGBFzgiAIgiAIYxgRc4IgCIIgCGMYEXOCIAiCIAhjGBFzgiAIgiAIYxgRc8Jli72sjJZfPYe9rGyktyIIgiAIl4wvVWkS4ctD49NP0/rCWs+BxULeq6+QUFQ0spsSBEEQhEuAWOaEy462desCQg7A6eRs8LEgCIIgXEaMCTGnlBqnlPqtUqpCKVWulPqKUurHSqk6pdR+77/bRnqfwshjLyvj7IsvhY07m5pGYDeCIAiCcOkZK27W/wI2a63/SCllBRKAm4H/0Fo/PbJbE0YLbevW0fDP/wJOZ9i5hMWLRmBHgiAIgnDpGfViTimVAlwHrAHQWvcD/UqpkdyWMMqwl5XR8JN/Bpcr4nlzcsow70gQBEEQhoex4GadBjQDLymlypRSLyilEr3n/kopdVAp9aJSKi3SYqXUd5RSpUqp0ubm5mHbtDC82N7ZEFXIAfQePzaMuxEEQRCE4WMsiDkLcDXwC611EdANPA78ApgOzAfOAM9EWqy1fk5rXay1Ls7MzBymLQvDQdu6dRy7aTlHFy7C9v77A87tfG8jbevWDdPOBEEQBGH4GPVuVuA0cFprvdt7/Fvgca11o2+CUup5YONIbE4YGdrWraPhiR+f05rGp56mv7aWzpItJK9cQdZjj12azQmCIAjCMDLqLXNa6wagVil1hXdoOXBEKTUxaNo3gC+GfXPCiNH0H/95zmt0VxetL6zFUVND6wtrOf2DH1yCnQmCIAjC8DLqxZyXvwZeU0odxONW/Snwc6XUIe/YjcCjI7lBYfiwl5Xhbm+PPsFkIr64eNDrdL63UbpDCIIgCGOeseBmRWu9Hwj9dr5/JPYijDyDFQA2JSWR/z+vUn7lbHC7B5xre2eDdIYQBEEQxjRjxTInCIAnVq5r27YB58QWFACg4uIGvV77b34j1jlBEARhTCNiThgz2MvKaHjyJ6D1gPMmfP97AKTd+8eDX9TtllZfgiAIwphmTLhZBQG87tWB3KZmM9n/9CO/29SXrdr6+htgt0dd1r17d9RzgiAIgjDaEcucMGbor66OOJ6wbBmZjz5K3v+8Strq1YZzWY89xqzP95H+8ENRr6sHEHrni72sjJZfPScuXEEQBOGSI5Y5YewQExM2lP7wQ0OqF5f12GMkL19OzR/fG37S7cZeVhYxEcJeVoZ9z14SFi0ccqKEvayMUw88iO7vR1mtTHnpRUmyEARBEC4ZYpkTxgyus2fDxs6l5+pAgsr2zoawMZ8oa/6v/+LUAw/6rWyDWd2anvl3dG8vuN3o/n7se/YOeY+CIAiCcK6IZU4YEzQ+/TSu0N66FgsJixZelOvbDxwIH9uzF93XB1obRNmpBx70iDWlSF51O5Ofesozv6yMpmf+nZ7S0sBF3G7M41Ivyh4FQRAEIRIi5oQxQcd7xm5tKj6eKS+uPWf3pYqPR/f0hI33V1Vx6qGHSf7qSn/cnauzI5A56xVl9j17PUIOQGs639tIY1YWycuXB0ReCL1Hys9pj4IgCIJwLoiYE0Y99rIynI2NhjHLxInnFYemrNaIYg6Hg+6dOz3/SktJv/deWkNKlrS+8Sbpf/ytsKXtv3sb++49EYUcRLb6CYIgCMLFQsScMOqJFM/mamo65+vYy8pw22yDzut8byNdH30cNt5fUUHrG2+GjbtbW+ltbY16PWd9/TntUxAEQRDOBUmAEEY9zpaWsDHL5MnnfJ1zSUTQXV0Rx/srKs75vnqQlmKCIAiCcCGImBNGPf11dWFjE5/4p3O+TsKihWAZfmO07uqSenOCIAjCJUPEnDDqcYXEy5mSk88rXi6hqIi8V18haflyLJMmXaztDY5SUp5EEARBuGSImBNGP7GxhkOVmHjel0ooKiL32f9m5ratZD/5YzB5/ytgsWAtLAxfYDZjycs7v5spBUqhYmMvWgkVQRAEQQhFEiCEUU3bunW4IsTMXQzSVq8mtqDA3+EBoObP1kB/P5hMJN14I+MffgjbOxtor6kJW29OS8M6fTqO2lpSvraK5OXL/ckaqXfeAXDO3SMEQRAE4VwRMSeMWtrWraPhiR+HjZsSEi7aPRKKigxCK+/XL0cUYO3r14PTaVibevddYa3EQkWbiDhBEAThUiNiThi1tP92fcRxZ4SEiItFqLjzjeW9+gq2dzZgP3AAd1sbKV9bNaSesIIgCIJwqRExJ4xaHKHtu7zoYd4HRBZ5giAIgjAaEDEnjErsZWW4GhoinoufM2eYdzP2KCkpoby8nFmzZrFy5cqR3o4gCIJwCRExJ4xKBirlMeH73xvGnYw+amtrqa6uJj8/n9zc3LDzJSUl7Ny5E8D/UwSdIAjC5YuUJhFGJb3Hj4WNWXJyyHvj9S+1u7O2tpaXX36ZrVu38vLLL1NbWxs2Z9euXYbj0tLS4dqeIAiCMAKImLuMsZeV0fKr58Zk94HOD0vCxnKefupLLeQADhw4gMvlAsDlcnHgwAHD+VdeecV/3kdfX19E0ScIgiBcHoib9TLFXlZGzZ/cD94v9uSvrWLyU0+N8K6GRtu6ddDXZxyMi/vSC7na2lqOHTNaLJu9SSK1tbXs3LmTEydORFx74MCBiC5ZQRAEYewjYu4y5cyTP/ELOYDO9zbSmJU1JspptDz3fNiYNT9/+DcyiqitreWll17C7XYbxmtqaigtLeWDDz4IOxdMc5TM4OD4u8bGRn/SRHFx8UXdvyAIgnDpEDF3GWIvK6O/oiJsvH3dWwDYNr6PdfJkJnz/e6PO2mUvK4tYR86akzMCuxk9HDhwIKpY+/TTTwcUcgCNjY1hiROlpaVs3LgxbG5VVRVtbW2SNCEIgjBGEDF3GRItE9Td1UXrC2sB6GlooOa+PyHvtf8ZUUHnExi9vb3UVVYyYednTA2ZUzVtGmdSUigqLf3SWoyiWdYA2tvbB13f29vL2rWe373ZbGbJkiX+TNdI7Ny5k8LCQnHNCoIgjAFEzF2GmMelRj6hQ8rtut2cfWEtCc/+90W9v72sbEg9SWtra/n1r3+N09cmS2uqZ86gw+lg3sFDgEfIlS4sBhR1XivSl03QlZaWUhOhN+z54nK5BhRyPqqrq0XMCYIgjAHGhJhTSo0DXgCuwtMA4EHgKLAOyAeqgXu01m0jtMVRhavdFvlEbGxYYkH/yZMX9d5t69bR8ORPwOv2M2dlMfk//wPA0IQ+oaiI6urqQOal1qAUaE1FYSE5dfUAVBRe4TmvPD/Ky8u/FGKutLSU8vJysrOzKS8vH5E95H/J4xQFQRDGCmNCzAH/BWzWWv+RUsoKJAD/AGzVWv9vpdTjwOPA34/kJkcL0SxzJqsVd6iYq6nBXlZ2Qa5We1kZtnc24GxpoWvrVsM5V2MjNX98r1+oAbSvW4cpKYmTN96ATkjE36DLJ+iAXYsX0Z2U5D/2kZ2dfd77HCsEx7JVVVWN8G4EQRCE0c6oF3NKqRTgOmANgNa6H+hXSt0B3OCd9mvgY0TMAdB7JIolxxShrKDLRdMz/07StdcO6haNhL2sjJr7/sRviYtKiIv3s9lXUpOQgF/IhYi27uTkiON9oSVLLkPKBqkLaDKZSElJGTRWLj4+ngkTJpy3i1bKmQiCIIwNRr2YA6YBzcBLSql5wD7gb4EsrfUZAK31GaXUhEiLlVLfAb4DMGXKlOHZ8QjjbGmJOO7u6oo43lNaSk9pKVgs5L36yjkJutq/fGRwIRdCy/jx1OTleQ5CxJp/LMhKd7kxUDuukpISGqL0pAVQSnHbbbcBGDJRlVLoEMG8fPlyiouLqa2tZfPmzdRFyBIWBEEQxj5joQOEBbga+IXWugjoxuNSHRJa6+e01sVa6+LMzMxLtcexQUhngDCcTs56s12Hwukf/AB327mHKZ7Mz/cItWCxpnXgH0QVcn19fezYsWPMdjTwJX1s3bqVF198kZKSQKeL9evXs3PnzrAODsEsWLCA4uJiiouLWbVqFdOnT2fVqlUsWLDAMC8vL88fW5ibm8stt9xyznudN2/ekJ5nLP8+BEEQLgfGgmXuNHBaa73be/xbPGKuUSk10WuVmwg0jdgOLyN6QtpDDURXyZbBJ1ks4MtW9dKZkhx9vk/ERRF1hw4d8n8uLCxk2bJlY8oVWF1d7c/e1Vqzc+dOzpw5Q0dHBy1RLKrBxMbG+j/7RB14RFVZWRkulwuz2cyKFSsM63JzcyksLKQiQv3BSJhMJhobGwd8t74+sb57rlmzZkz9LgRBEC4XRr1lTmvdANQqpbxpjSwHjgDvAn/mHfszYMMIbG9U0n8B7jS33T7kuSpIWEQjfc2fGY5bxo+nOdRCGuwe9FnnhuBiraioiNpsfjTiE1yhnDhxYkhCDojqgs3NzWXNmjUsX748qqhatmwZZrPZf5yenh71Pm63m40bN7J+/fqoc0L7xG7ZMgRxLwiCIFx0xoJlDuCvgde8mawngAfwCNG3lFIPAaeAb47g/kYV5+P69BEadzUgkRIqgkh/+CGyHnsMa24uLb96DmdzM/sWXB3uYg3KdDU5nbgtlsD4IPhqpn3rW98a+r5HgGjtuAYjNBZu1qxZUefm5uYOaBnzCb7geL1f/vKXA8boHTp0yOCyDSa0kLGvtdiXoXSMIAjCaGLUW+YAtNb7vXFvc7XWd2qt27TWZ7XWy7XWM70/W0d6n6OF+EULz39xTw/Hb74FewQLUtu6dZx66GHa1q2jbd26AUWjZdIkfx/YtNWrmbltK90vvUh7sDUoNEZOKRK7uwPn8Lj78nzJElGoqKigtLT0HB7y/DnfGLGB2nFFw2Qy8eCDDxpi4y5UKOXm5nLttdf6Rd/tt98+6JpPP/3UcOx7B/YIVtzBMnEFQRCEi89YscwJ50DcjJl0XsB6R00NNffex7h77vEX+G18+ml/K7DunTuxDNIrNS6CBcn/Re+zuEWwvC0sLKTvyBGOT5pEWn4+y5YtA/DHZkVjy5Ytl9wiVFpayvvvv4/WGpPJxAMPPDCkGLHa2lr27ds35PtMmzaNqVOn+q1nubm5l+zZcnNzeeihh6iurmbfvn0Ry5309PT4PwfHyUUiOXmAeEhBEAThkiBi7jIkajuvIFRyMrpzAMmnNe3r1tH+m9+QfPttdG5833DaOVBcnsXC+IcfChsOFgXRmHr77eR+97uEtnj3uQebmpoMSRA+ent7qa2tvSgB+LW1tRzwJoLMmzeP3NxcSkpKDC2w3G4377//Pt/97ncHvV51dXVE93VxcTHNzc2GOnDLli0b9gb3PsF4/PjxiGIuuFDzYNm2PvEtCIIgDB8i5i5DbO9tHHxSSIZpVNxuOodyPTwxcubklIjFh0tLS2ltHdwTHq0fqE9w7NixI+rai1HkNtj65jtOT0+PuPeGhgZKSkooLCyMWjcOPMV7QzGZTH6hOFDdueEkMzMzYoFhX2ZsaWnpgNmwqampks0qCIIwAoiYu8ywl5V5CgAPgr7YnRRMJpKXL49acHgo/UWVUoP2A83Pz8dkMkWMPzt69CirVq0a0nZDebWuhV9XVJF+7AhXhljRBhKhO3fu5LPPPvOLv6ysLFatWuUXNbW1tWzatMmwJi8vjxUrVvjnDJa4MFzMmzcvLPbQarVGtExGIjhTVhAEQRg+RMxdZtj37B3SPFN6Ou4hlsMYEm43tnc2RBVz2dnZEfuM+oSZUorbb799UFGTm5vLbbfdZuh+4KOzs/O8silfrWvhB5W1oKxQMJ8zKeksrxx6IH+wC7WxsZG1a9dSWFjo31OoW3LGjBmjQryFkpubGyaUnU4nb7755pDq0w2UaSsIgiBcOkTMXWYkDDWTta+P9IcforNkC8krV9B/spqurVsv2b7i4uLCxpKTk7nnnnvO2cVYXFxMW1tbREvRBx98QFZW1jmJpfebbZ4Wsd4SKceypzCxo5UrGyL3NI3UOiuUaOLHbDYPan0cSWJiYgz9b91u95CEnNlsHvZYP0EQBMHDmChNIgydhKIiiBCjFYq7u5usxx5jxu83k/XYY56EBcuFafvUO++Iei6SgOnp6QkrlTFUVq5cGTEWze128/HHHw+5dEhtbS1xjd5kjqBixQdzpofNzcjIYPny5Tz44IPnHei/ZMmSUWmV83Gu5VN8XHnllRd5J4IgCMJQETF3GWIaiigLsSwlFBWR9+orMFhXhyiFfOOLiyO6WH01ycDjUjVu4RwKFEcgKSkp4nhVVRVr164dsHsBeAL6X3zxRU753M1Bz2ZNSmLOnDmG+UuWLPELz5UrVzJt2rRz3vNABXpHA+PHjx/y3PT0dGJjY5kzZw533333JdyVIAiCMBDiZr0MMaWn4x6o7AgQe9VVYWMJRUVk/8MPaXjix5Gvm5xM7nO/4syTP6H/xAno7/efS/1aeOJBaNcDq9VKf9CawYoBD8bixYsjxs758JUwcTgcdHZ2UlRUZOhlunHjRhpS0jiS7d1HkGXOhJu7776bvLw8ysvLmTVrliEWr9TWTfv1N5OYupfusqEXLB7tcWW33347a9euHXBOTEwMf/qnfzqqLYyCIAhfJkTMXYZYUlKIWnhEKWKvuoppv3kr4um01asB6PywBA3Yg+LSxq2+h4SiIqa/8zYtv3qO5v/8T48AMplwtdvCrvX+++8b3HbBQg484u5CGCh2zkdwTbq6ujo+/PBDFi5cyOHDhwGozMoFZQqzOHYri/8eoQkVr9a18PeVp3ED5pQcvp5ygqwOT8ZrcDxdbGwsDocDpRTJyclcc801o77VVW5uLqmpqdhs4b9P8JQfefTRR4d5V4IgCMJAiJi7DBn3R3fTECRiBqr/Fom01av9oq7x6af9SRK+9lzgSbRQsbFohwMVExOWeFFaWjqoS/H06dPn8lhh1NbWhgu5IOtaJPr7+w1r7DER3MpKYddw3e5yvj05k/tzMvyn/vl4Hc/WBnqSulDsnzKTWw7vwWw2c8stt9DT0zPiNeMuhIkTJ0YVc9dee+0w70YQBEEYDBFzlyGxBQWeZAanEyyWAeu/DUbWY48ZRJyPhKIiprz0IvY9eyOKxKH06DzfYHsf1dXVF7Q+jCAh6AIq7X38oNIjOO/PyeCRw9WsbwrvkNA7YRI3Zd00pgVcMMuWLaOyshK3243JZOIrX/kKDQ0NYa5mQRAEYXQgYu4yxL5nL/iEktYewRVFzDWcsFFX2UZOQRrZ0wZvAxZMQlFR1OsaWndFsZYVnafA9NHb2xs+6LtPyD2PZOdRPjEPFwoLmsIzNVzZUEN8/+DFk/+lqp5d7V0RhRyAxWLh2qWDW6wObtlE5e7PKFi8lLkrbh10/sXkXO6dm5vLAw88MCq6UgiCIAiDI2LuMsTV2eH5oFREF6iPhhM23nnmc1wujdmsuPP7V5+ToCspKeHQoUOkpaUZOhqAp1iuX1BFEHIZGRkXXJesuup44GAA9+qR7Dy2F8w3jDUlpwGQ2WWjfJD1Npc7qpADuCp58FIwB7dsouT5ZwGoOVjGkU8/ZnzOFGZffxOTCi5tUkTovdsbG7juvgcMc+oryzn8yTYAZl9/E7kFs0TECYIgjBFEzF1mtK1bR+sLgWzEtD+5L6L17PCOOj773XFcLk+wvsulqdh1ZshiLri9U0dHB2vXrmXZ7NvInJJMZ38Lzr4+o5XMh1IXpZRFfWU5bQf3QWbOoHMP5kzz39uP1uyeeiXXdjaDAu//OWfMwCNTsgadt+vt3xiO68oPU1d+mC8+KmH1j392SQXdoW0lhuO9765nxsIlTCqY5Rdxh7b9Hu215h7a+ntWPPwXw249FARBEM4PqTN3mdHy3POG445Nm8PmHN5Rx8evHaW/x9hmyt7RHzY3GmG9VjXsLd3NOx+8xdatW/HLN5+Q8wqp5cuXX5SaZLWHD2FubSS2oQbV12O8lxeTycT06dNJTk6OaHXrs8ZyNn8m5yvkZifGseHqmRSnJg46t8/eHXHc7XL6LWKXCrM1Jmxs+2svU19ZzltP/gMHt2zyCzkArd2UvPB/qa8cvJ+uIAiCMPKImLvMcHd0DHgMsG9TdcS1CSnhpUIaTtjYt7mahhPG7MbxqRM8LbCC9JMzpjMw4BNPwdY5rS9aK6v45GTQGmt7C0knjxhq3vlEXbrVwv3338/XJ4dazgIu1bLOHsIIFoXeffvHtJvsbht/62pn66JCrHu389t//REHt2zyL6mvLGf3228ZxFBCSkrUZ+lubxvaQ19E6ioOs/31l3E5HZEnaH3JRaYgCIJwcRA362VGaMFgU3q64fzhHXV0tkYO+s/MTWbf5mp/MkTDCRsb/qMMl9ON2WLijkeL/G5YszPBs0jh129uc7/3IEKcnMtFclONIQ4rNE7rXFyNjSdPGI5jW8/Ql53nF13K3sUVkycAkBoT+mcexRIXLW7O27MVQGnNzC92Yy3bzgflpZR/+jHgiUUDyJiSz1tP/hCXy4XZbOaeJ37G8b27aG84E/VZEselDfK0F0ZL7amI43UVRwZcV39s8J6sw8VIJo8IgiCMdkTMXW44jeWCTWaz4fjA1sg9S5UZPnnjKNrtqaE7sziLxmobTofH/eZ0uKmrbPOLvJ56rxXPq908n7XxZ5AwUs5+UuPj/MceF98PcXn3e2jrZlY8/JdD/qI+W2cUKNZ2T0suZ3Ials42rO0tZN28AgCbI2oJ5XCCBV3o83h/5tafBODoHz41LN33wbukTczxP5PL6WT7ay9TV3F4wFs2nawa+v4GoL6ynNrDh8id7WlDVnv4EPHJyfR1RekGMkg7tZZT1dRXll/yBI3BGEoChyAIwpcZEXOXEfayMpz19YYx69SpQ1qrg8LntBsq9zSGzemzO/3xdmCFCUQxcgUpPK9gsLY1oWMCXv3aw4f8osczTfu/sAcTdPWV5RGtStb2FqztLdRl5VJbdB2df9hNxpR8PuswR7hKFEIsc2anA5clxm+dS+zuJKfRI4jdLqNIbK2rpbXOKJYbThwb9JYNVZUc3LLpvCxOPgEXn5zMtpd+hcvlwmQyobU2xMENBWUyo93Bfwia2sOHRlzM7fvgXcPx3nfXMy4rWyx0giAIXkTMXUbY3tkQZm0Z//BDhuOktFjaGuzndf0jn9bRZ/d82TtiOoxCzmDRMq4z2TuxtrfgTE1j99tvkTt7jtd6pMImlzz/LIe2lTDnppVRv6xrDx+KaFVSJhOnM3N4a9UDuMxm/uBy0fnsf9P49TVgCkkCiGA9jHR+cv1JaqYU+I9nHT8QeX4UXP0RkkqC3LY+Knd/ds7ixJfA4HI6DNd0u1yDrIxM8vjxdDQ3GcaiJW4MJ9228LIwJc8/S8aU/BEXmoIgCKMBEXOXEV27doWN9VVWklBURMMJG59/WENt+fkH2/uEXE/8GbqSvDFroVoozDXpJq65DgC7rY1P33wFALMlhjDV56WhqpKGqkraGxvos3uEZ3BMXZjAUIq5y2/hWFwy22LScHotaU4Upybm0dFth+RU476C9ztAnFyMy8nC/ds5NnU2M08e5obdJeFzz5GElHHYbcbfQ8HipUNaGxw71njyRCCBYRCX6WAok5nFd36TLWt/YbDolW5821/GZKSIZmHc/trLfOvJfxvezQiCIIxCRMxdJrStW4ezpiZsvPPDEuonXcMnrx+90O97wCvkUqK4DrUnvTW24RTmvh6cCclY7J2Ye8KtO1GzKIPY++56/+fDH2/hnid+yqSCWVTt22OY1zZzDq8vuZXft3TgDhaTSnEidwZJXe10JaUEChi73cyoLifG0U95wfxwQRd03JWYwjc+fOOiiDiAjLypjJuQxfG94cJ7MEJjxzLyhuZCH4wZC5ew8Ot3+wWb7x7gEVJ7Nqznzh/840W51/mQkjmBlpqTYeOtdRfW21cQBOFyQUqTXCaE1pfz0ZW/YEAhl5IZx93/awGzr5vExJmpxCYMHF/WF+dtMq8IeEm9FzfZO0moOYq1vQVzTzcT42IiCrnzweV0sGeDR9wFuwLrsnJ54cZvsqmlAzcEBJtXjNVNnEpDVlAnA69QW3TgU1Z9tJ6F+7d7xoLanwX/nFOxj/Sci9cJYdLMQhZ+PbzO3u53fhNhtpHtb7xiOI4kcM6HYCE3d8Wt5MyabThfVbqLkuefHfa6cwe3bOK3//qjqOfTJ08ext0IgiCMXsQyN0qwl5V5Yt6A1DvviNrzNBJt69bhrKuLeO6L9twBLXK5s9LJnpbqLzmyb3M1u945EXV+bG8mDmt7IMfBK+hM9k4ST1V6Jql4LHFXkTzeGZYQEI2Y2DgcfRF6rQZRVbqLg1s28c6yVRybeiWx/X30xYQXxAUGjIkzOx3+JIYbdpcws7qC2klTOZWdR+OEyWT2dpNiMTOnsZoHr1kMGK1V54tSJr+72Gy1GuLputujtwvz0dfVdcF7iMThT7YZ3Kjjc6ZQV27MwD24ZROHPy7hnicubbeK4PsN9M6Vycx196655PsQBEEYC4iYGwXYy8qoufc+vwBpf+st0h96kKzHHhvS+vbfro84/tF1D9JmPU6sO5P4nokR5xQuMY7nFKRhiTHhcrkxKUWvyYbD2o5bOem3tgNeC1aIRvLFxZks07EPpzo9AAAgAElEQVQm34E1wUzBYru//tpgzL/5dva++zuixdH5ePRks8c1CjhjwoscGwgVckFJDcHkNNaS01jLivQMvvbo3zOpYFnEy1Xu/owJ+dPY9/47/iQDZTKhlBo86UApVjz8F34hFJuQiD1IzLkc/Xzw/z9N7ZFDmK1W4hOTw5NATArcF+YrN1ksuJ0Dl2qZff1NhiLI/j06nWHC71IR2oIsmLkrbh2WnraCIAhjBRFzo4AzT/4krOuAr7/qYILOXlZG7xdfhI1/vmQVTRM9Lk6H1WP1CRV0E2emhvVizZ6Wyh2PFlFX2YY5rYcNm3ag9cAlLmIbavzuVGX2FMCdfU0Oc1fMAGDby8/jcgSES0x8AqkTsuhobiIuMZHFd36TuStuZVxW9qAWsKqc6Z4Pkfq+BhOlLyxuN1MawmMLAb5y9+qoAmHuilv9wmrGwiWGYscQqOnW09lJR0uzQQwppcJq6CWkjsMe0vnBV4AYwMYZGqoqObl/H1PnL/AUST6HUiPKZIqYOGCxxtJvEHPK/ww+JhXMIj0nN6JVNTRx41JQX1lO48njUc+nZGSKkBMEQQhCxNwowHk6ciB36wtr6di0mbjCQpKuuxZXu42ERQsNLthI5UgAzkydDO42vxu0L67ZIOaUCZZ+Y0bE+/rcrjt27EDjDsTGRUj6nGRy0ekt2AugXZ6YutTMeMAjghpPnjCIm1nLrmfltx8Ju1bGlHzMlpgBkyOymk4HSoVEKysSTHAZEO+auF5PhuzCr99Na30d3W2tA5ZCCWVSwawwMRF8XF9ZzpHtW3E6HJhMJpY/+N2waw9mHfNxfO+u80qWiJYBOm/FLex7fwNulxOlTAZrYTDTFyyKKOaaayML4YvJ3nfXR92/UiZ/UWRBEATBw5gQc0qpaqATcAFOrXWxUurHwLcBb0Q+/6C1/mBkdnhhxM2bh33nzojnnHV1dNXV0bV1q2dAKYML1tnSErbGMmkSOVNyOVrdFmiV6grEliWPj+WrD10VZpULpbc3KIYtgm7KyMhgSeF0Sg4HXKkm60wAjuysp7fbQU5BGrOvv4nDH5f4W1yFWoJ81B4+hMsVLnJMZrPfjTmloYaa3JlgMg1eKy4UpUC7iZk0hZXXLL5kRWcnFczimz/6V383hkhiKW1izpDjCS8W2dMLuO6+B5ixcMmAewOPGzgStoYzA3aFCO5Cca7Ws/rK8oE7ZoS4qgVBEAQPY0LMeblRax2qXP5Da/30iOzmImEvK8O+d+/QF3hdsNbcXNJWr6Y/QuJDxp9/h167zXPgtar1xzfj6MkhxpGCyaQGFXIADQ0NA55fsmQJtDcHjShM5gwAmqo7aaruxGxW3Pn9q7nniZ8N+iWfO3sOSil0iKVxQv50Gqo8yRUt4zID1rYIxXcjEjxPmbjx9q8zNydj8HUXQCTrXTCL7ribqtJzt7hFY1y2x+oarQesOcbKfT/99yHtDRjQ+rVnw3omzigI+10e3LKJrS/+ErfbjSUmhm/+6F+HJLwGE3HJGROYOn+BxMkJgiBEYSyJucsS+5694Bi85loojT9/iq7tO+ivMDZDtxYWkrZ6NY0/Cyqm6hV0Dms7MY4UumwRuhJEICEhIWwsNjaW+Ph4rrnmGialJPLm008GndW4+o5gskzyj7hcmopdZ7jh3sEFxKSCWUxfsMjgVswpnI3F6kl02D+r2J/84LfGDWCVy421UNvnDJvX5jy/DgkXk0kFs5ixcMl5uVBDMVtiuPWR73H4k21RxVz29JnnvL+MvKkRy59Ule6iqnQXJrOZ5Q9+l57OTuKTk9nywi/88ZUuh2NIrcDqK8tZ9+PHB0wgmTp/QUS3vCAIguBhrNSZ08CHSql9SqnvBI3/lVLqoFLqRaVUWqSFSqnvKKVKlVKlzc3NkaaMKAmLFoI5UNtNWa1YCwsHXae7uwOu1+DrzZsHQLw1JWiy54fD7ElSGOeNZxuI2tpaDh82WkqKi4v54Q9/yN/93d9RXFzM4U+2hVnRImHvGJp4BE8cm9nbwcFsieG6+9b4uyMcm+atfzaARe6R3ExuSEvmqYLJ7F16FXdPGGc4H6MUS8clDXk/l5Kp8xdc8DXMMVZ/MeXYCOLbx5XX3nDO11758F+iTNH/X4Tb5WLLC/+XT998hZLnnw1JlFHkzp7jrxUXKTsWPPFxAwk5syUmqlteEARB8DBWLHPLtNb1SqkJQIlSqgL4BfDPeKTKPwPPAA+GLtRaPwc8B1BcXHwReiBcOPayMux79nqEHHjivwDMZrL+v3+g90h5mMVtSJhMpN55BwBplsm00RhIXPC6Wnsc47jhvlWDXqq6uhp3SBB6dna24bi7PTyz0Rx7ZdhYQsogJUSARw5Xs6nFRpLZxLe//xO+UlPud+P5rDsv9AbFcUWwyD2Sm8mPZuQYxp6dnc+ScS28fqaV7FgLj0zJojg1PB6s4YSNuso24hJj/LF+Q3FFXwg9nZ0XfI2b1nzb/36aqqPXBzyfe00qmMW3nvw3Njzz07DMWx/RxLzJYuaz37zuL01Tc7CM0+WHue2vA9nZ2197KaplMqdwNlPnLziv2DtBEIQvG2NCzGmt670/m5RSbwOLtNbbfeeVUs8DG0dqf+eCvayMUw88iO7vR1mtpN5xB/gyG7XG1W4j9c47aH/7bY/71WwOnB8ES26uP9O1qbkBzIRlonalHuNQ1R6yp60MW19bW0t1dTXx8fFhVjmAnp4ew3HiOKMxNDV7Nn19kwjFGjfwn9kjh6tZ3+Qpn2J3u/hXGzy16CYWe+PavrX/ODvME3FFiMlPNCkKEuO5d2I690eJg7s/JyPqOYDDO+r45I2jBBuWTGb4xvcXXFJBF5+cHPVczqzZjM+Zwuzrb6LlVDXbXn4OV4g7PqdwtiGJo2Dx0sh1/ZQ67wzQSQWzMA1gnYuGy+EI20v5px+TlD6e6+57gPrKcm9dwQjbNZm47r41IuIEQRCGyKgXc0qpRMCkte70fv4q8BOl1ESttS9A6BtAeLG1UYh9z150fz+43ei+PvqqqgL1w9xuzONS6Uidhu3vfsG49uNMuXGOf13rG2/gCkpKaBk/nqYJE5jQ1ETG2bM4a2pofPpp+levpstS7221Fb6Hnd7M2bS0NMrLy5k1axZZWVn8+te/xhlFOJrNZvLz8w1jwW49k9nTqH37Wx1h96zc08C0+ZmcreuiqqyJ6UUTmH1twIL24dmOsPs9f7qZ+3My+Nb+43zcFr3zwY9n5Awo1Aaj4YQtTMgBuF3w+Yc13Pbdued97cEYyFpmibH648Qi9UxVJjPX3bfGsGbuils58unHYd0bFn7trgsSRrOuucHQJ/dC2PvuesZlZXNy/z4i/XEqk4kVD0nGqiAIwrkw6sUckAW8rTxuNQvwutZ6s1LqVaXUfDzfCNXAn4/cFoeOq7PD0Ae0p7Q0cFIpKo9rPv/kc9xaY7FM4Y47p5E9LZWEoiIc9fW0r1sHeITcRzfdiNtkQmnNFRUVxDicTPrDLqqSZnizPYnaUGFnUCmUqqoq8vLyogo5gJkzZ5KbG+hRenDLJsMXvNYwPieRG+6dyMevHTWs7W7vZ/3P9/mPa494XHazr83h1boWelzhNcVO9/ZTautmxwBCbrzFdEFCDqCusi1MyPmor7y0BXIHspb54gR9+Cxwh7aVkJSebuinGsx1967hrSf/wVOrTykWfu0urrvvgQvap2/9Fx+V0NMZLrzPlZLnn8VkNvYAtsTGceW1N0rGqiAIwnkw6sWc1voEMC/C+P0jsJ0BCY6Fi9Rb1V5WRutLLxvGyq76C2zjZpLafowJZw9wtDYTnwJzOtzseKuSa+8pIHtaqsf96hVz1fn5uE0mUAoNVMzyfAF+gSLmRB3EE1XIRaKmZuBisElJxqSByt2fGY6120Xt4UMs/sY9HN3dwJnjtgGvd2RnPb+bCM/WepNSQooS292au8qOMVDe6XjThf/5xiVG6e0KOPuH3nHhfJhUMIvU7InYImSgZkzJDxsL7kIx0DXveeKn513rLRrX3fcA1933ABue/peIcW4rv/0IjSdPcGjb76MW/A0mNOmh6ObbL1h0CoIgfFkZ9WJurGAvK6PmT+4HlwvMZvL+51USiopofPppOku2EDd3Do7qGs95L3vnf4/O1GkAtI2fTdv48OSBpuoOfvfzPVy/rJ3Z93+T7Cd/TMMTP6Y3LjYwKajumgYcsa3ecc5J0EXDZDIxb55RT4fGZ5nMFr+lKS4pukDyUdbdw4u1wdnFQWrO+7E/2t69Qfe1B5rYN3kiC/LCE5kP76jjyM56ElNjufrmvKixb4c+idx9AyAtO3Lh3ItJwaKlEV2YQynrEY2h1JE7X6bOXxBRzGVMyff3TN3+2svUHT0ytBqAXqIVKRYEQRAGR8TcRaLpmX8PCDWXi7rHf0jKyhX+HquOEMuXLWUqnSlTPQf+UhuK8FYLCo2JT3aOY3z662SvvpfudT8nNrg7g+8aABq0yRV6ifMiKSmJwsJC5s2bZ3CxgufL29//UymWP/jnfgExlOzVLbPjjda44ELA0XqHBdPWj6rtZteJs2Fi7vCOuiBXbyc1X5zlG9+/OqKgszX1hI35uP7eKwZ9jgslYgbqBSQsXGoaT0bOmPWJT18GbHAniP2/f5+Kz7ZHtdgF/w8BQRAE4dwRMXeRcNQaWzM5a2poe/2NqPPPZC3yCJfgEhtR9YtH0FX84TTZt8Pkhc2k1Ez2nAqzfijDjwth9erVYSIOPIVef//L/xP4ctba8CVfuGQiR3bURzXMnB5v4VSmhTDRNsS2XKq5l9iyVtzAscbwJIKqsibDsdulqatsiyjmUifEc/Z0d9j41PkZl7w0CUTOQM254soxFzcWKsaCrYOTCmYx/+bbA7F8QeTMms1190rmqiAIwoUgYu4ikfK1VX4rnA/d1ze0xVGbxoeKHTPseAbcDuqyfSLLa9HSKmDYC8liXbVqFT09PeTn59NYsZuNOwdP/F22bFlUIffmE38fZmUJrjmXPS2V6++9ImKWKMDBfKt3ryr6swePe1Xh7LhYYio7qKho9U97Z389i6aO54rsZH75SRVH6m3c2KSYGHK5tXtq+FVTCzdcMYE2ez9Lpo1nQV4aN9xbaEjO8HH1V/Miv5iLzNwVt9Le2OB3tZrM4Vmqo4nZ19/EoW0fot0B62+0ZIxggmP54pOT6enslBpygiAIFwkRc+eIvawM2zsbAIi7cha29zbSe+QIOlIVe6sVQmqz2VKm0jZuJi6T1xU5pLgiz5zM3j/A1hIAWgnq8BBqhlOBZQkxaRQXF3uOa/eQu/uvKE9ZyW9Sb2aS7SzZHeEZmxkZGaxcGV6HDmD76y9HdJeF1pybfW0O43OSqKtso7W+m8o9jf5zXXGDWOAiibteFydLThIfYw479aN3DuEKeo2JPbFoFMr7IjSas6297LZ38eERzz4UsDA/jTXZmRHuDy9X1LN5/efcMjubx2+7tILjuvseYMbCJRc9aeFS4HGj/m/2vruertZW5ty0ctCkjOC1o/nZBEEQxirDJuaUUn8FvKa1vrT1Hi4h9rIyav5sDfQPsT1VBCFXNu9vcJvM+DupRXUtav9PR0wnvXENbLZczWFXMu3mGFyEJBm4zWB2hS3PjA+yMFXvoDRhGo/P+1tcyowJzb8lujmx+X1DJf8lS5ZE3FF9ZXlYDTPvQ0RsuZQ9LdXvqpw0cxxVZU0c0U6OTfT+2QULWZ8lLtQi5/1ssjlwa+juDxfNrhA9rHXAoqm9L6JHGSdpYE91G/MO2EnFFKR/NU6T4pfbPW5j389LLejGktCZVDCLOx77x5HehiAIguBlOHuzZgN7lVJvKaVuUWqIAVKjCPuevUMXchFoGzfTI+SU17qkFD3xZ2hPO0hPfHB5Co/wMNGLI6aD9vQD9CY00Gnt54gpj3o9yTsl8AqtjnHBSwGw9KcwdWJQn9eTn/LXBY/jUmZQCjeKf+yJ4eStf0Tt1UtxTS9g1apVAUteCIc/2RZxfHrx4kGFyOxrc/j63xSxaUECbhMDiNiQca1Bg6U6er25UBKCruGzzsVr43UnOU2ssMeQosNTfrvcRsG4+XADgiAIgjBaGTYxp7X+R2AmsBZYAxxTSv1UKTV9uPZwobgusGBqWvsxlNZ+i1NP/Bm6Uo7hsLbTlXLMIOgU/SxK+i29cY2ADsTDqcAMwK9DEuyTSeqYGTSmSO7KpzDuI6jdA8CrPUmcTDDGwfVpzeZuB+8nT2Dt5CthZnRRZrdFMKoqxaI77h7S8//z8TqOOhzRhZy/0LH2W+0K6vqZtbMVk23oIjr4j9pnmau1BFzDk5wm7umyMq/f7H2lxv00mY3i7pbZxp60A7Gvpo1nPzrOvhrju7LZPqe6+hfYbJ8P+VqCIAiCMBSGNWZOa62VUg1AA+AE0oDfKqVKtNb/azj3cj70lVec17q6iUupnXwjDnM8lv5OHLGpgKI33mvx8RqHehLqiO/xhO5rLHSZnfTGeef49IUK+QlY+pOJcaQS40jF4kzEYW0npj+VVFc/2Qcfh4NA3lKeyvued21kMeUG/v7oKbYuiizoGqqOhY2tfPgvh+weXNfQGjLifXCtMXkTONw+16tSKLcmp9XJ0nooiTdzMHagEsLGqwaj0dQHiblcpwmPo1v5xZ4Oss5VxxhjAo+cGZqI31fTxn0v7KLf6cZqMfHaw0tYkJfG8eP/Rs2p57yzzBQveJPU1KuHdE1BEARBGIxhs8wppf5GKbUP+DmwE5ijtf4LYAEwNNPOCBM7q3DwSSEcvuJ+jhbciz1hIo7YcZ5/1k7siac8GahBuCx2zmbswpZSQVvaQXbE5mOwyvkIUSsWZyI+tRfjSCGhO5cYRwoFcdsDk2o+o9Uyzrgwgqir6I6cgXtwyya6Ws8axqwJiUMOfocIf2zejNap8bG8WzyTH5+1cnVVH2Y3KLfG7Ib8JhcKWNkTwySn8QqTnCYW91oM457PKuQ2irl9gcSJHIfyykjtt8qpoISJYJfs3TM2sDr3TynZMoPPPls+oGVt14mz9DvduDU4nG52nThLXd0bQUIOwMXx4z8f5E0JgiAIwtAZTstcBnCX1tpQPVdr7VZKrRrGfZwX9rIyWl95NTBgNpP9Tz/C1W7DPC6Vru076P3iC5xNTX4XYd3EpTRmL/bM9wonTwzcITx2MIyWNg1ucz/98b7OCF6RElyhRAfm+ojrzSR8oouvpPyP8SGGkDnrAl6tawnreRravgsgM0LLqYHItMbQ5Ai3rv3llAkUpyYyeUEO7n9vZF51P9UTzOQ3uZh81onvgRf2mtmQ5Hlvd3XGMM3lEWhO4K2kfuotbhb3mf2yzCfWNJo5/R7L3or+wLrgbFcVZKXzuWQfmv0KX5kU6J1r76lmT+k9fN79M1bMWxFWrHjJtPFYLSb6HG400NnjoLb25bDn7equOqf3JgiCIAgDMZwxc/8UKuSCzpUP1z7Ol7DkB7cbV7uNjD//DmmrV5P77H8T8/hTHLzqO+y9+jGPRW7Gas/cIAuYw9oOuKMX9Q0Wd751oTH63s9mRyLjWucT40gLWQwmXAH958khINEd0jUiCv94rI5X61oMY6GN30GdUz20V+taONxtvH+aycRTBZP9wjF7WiqFfzyTs129fKW8l5yzxgKzM5xm5vaZubXLJ8g8ss0CTHGa+OqVWVxhjg16hQGr26SkWNb/xVKusSYYrHCh1Jpd1FvcTE89yRKvkPPVdlbKU745rvdlfvjm62FxcQvy0ljzlXw04NaeTFibPdS1DHGxWUN+b4IgCIIwGFJnboj0Hg+JF1OKhEUL/YcNJ2x88F4nevxcQNOZku+bCHgscv3WdtzKI1DCa+Vqo3gLnuQttZHUMQOXuZe+uBZiezNI6poWvCGCLXNxqstviOtzF9Kv53BNczfvT0qOUv4jsLZPa35Q6elZ6hNaGVPyMZnNuF0ulFKsGEKs3L6aNtZ/fhoF7JgQUh9OazpqOqjrjoEgK+DrVQ18GO+gweRmZU8MPuXqs7Wt7InB7R/Df+6735zNDcsm84vdkTNu0+KtLMhL42AU46TPKldu9Vjlrkg/ZtDTvlcFMHt8BQVpxyg5MIEFed80XGdLRaD7xPTUkyh3a9j/ZDKZrNhsn0vcnCAIgnBREDE3RHoPHjIcmydMIKGoyH9csetMULcDo9XHV17EJ0w0Xo3mnxniR43QmtTitHqTIxRJXdMMAfuRmBBTSZ82U6luY5zjYRSKOFecd3sRyn9EMFS9fqbVL+YOf7INt7cwsgZ6OsPbaPnEW0unJ+5u29EmnN4icH1fyYTQnq1e69WU8Yncu3gK+2ra2FLuKep7MNZFi1lzk91MttvsfSUeQWcKCSI0WxQ3LJs84PsYl5UAeFp7RcLnZp3X53HHHm2difZ11/DNCSqDF2NykcYWICDmXt99iuNNgRIqN+dvwRThvXZ0HmDf5/ey4OrXRdAJgiAIF4yIuSESM3kyjpqAlzhhobEWW+2RcHeaD0N5Ea828NW1jTe76HV5JIofFRB22ltmxOx0B0lB/1m/CFFegZNmhgyLiTRLH9ss13Gl/WHezonl3ZwYqhMjuxYn9LWQhIUTseMMFrvsWM+fR31lOYe2/T6wQGv67MZ+pvtq2rjnV5/hitxL3eN3NFgawVzvKar87MfHuXfxFH73+WncQVqr3uImMTkBZQvE2fkEXfCTzL3JU26l4YQNd5SE13FZCRzeUYczpOhwqCge5w5cWWvtd68GVZQJPJLLmBCy6YtAaZnpqSeZnxm9bZrWDioq/omsrNtJS1ssok4QBEE4b0TMDQF7WRn23bsNY3EzZhqOe7qM8V1GtOGTXy8BS7P7ya/bwAFmsZ9ZOHWMwUrWrWM44JzEMTWBufEO5vSb6VKa6U6Tv2+BL/4rzQzLkiyYAM1y2hyT2ZBj5Wez4wZ8vmub9hK7r5bqrz2E2+x1h2qN69A+6mP72Pvu+rAWXk3VJwzH/7apPLqQA8yn7ThTrQFLV9Dczh7Pu2vuNGbSLspP4+uz8/j4taOG8eB4t4zJSUyb70kAef//Hoh6/7IPT0Uc94jhwG/ouDf54a6ZGzApg/YEjIKus9fJ67tPce/iKQDMnpjCjmOeWEOPm1ZHr40MdHWX03WiHKWsLLj6NRF0giAIwnkhYm4I2PfsheDeqxaLIV4OwNV7kF7bXhRgjrsaS+xc/zm38q4NCVXTQH7RTeTW/YrJnKGLBCqYEZgAfOKYgSshnayMDzhuLqOiczb9zbfx/fbYsH3OiTfhaa7g8eHOchTyRJ7XtRkp+AuwaCfTyg9Do41vvbeWTxatpG7SVFCKD7NnoF9fB8C+e/4agAWH/sD88lJDQsS+mjb2VA/cpc3U5Qy4j5UCk8aZn4T1QCsJ3n6rta12w5rUBCuzr83B1twTVYy1nO7id0/twxJrxtE7tDp0waRlJ5A5JZmaw2dJykvm92fqQUNmfLilNVTYdfSn8OKnJ/xiLjk+0GLtaOtM9PRIsZHhaN1Pdc1zzJv7y3PevyAIgiCImBsC5nGphm/x9DV/5o+Xq9+xno2/fg97p8ciowGnfQsAlti52FKO0B/vzQwNEXKHzNPI5YzH1adhKfuoZBpu7SlnW+tMoFknkTX+A+wJWzBpsI7fTkzaH3Dv+d+YMSYVJAUFaCmlOJBqojoxPPEAYGaHi9k2F1c0bkadtuECchprcVlifBcArdlVdB2dyYESHCXX3YE1No7vr7iVdQd38Nsjn9DROgUYP+A7dKdbjRm6gHtCHO5UKx09HgtXeYMxDm9CskewLr3LI3CjCTqtOS8hB5A/N8N/fYCZNfn8zRuf0+OIg7jAr12jcLs1piBB1+OIozeo1MqSaeOJMSscLk2VbSrH2qdxRbrRghmNlpYSSYoQBEEQzgsRc0PA1W4LmGVMJszJKQB89LMH+UOtCYuzJ0RWgbNnN3Pm1LPd5gm8D00wOOUaR2tiLux+3HNaQa4+w116Ixv0jZS7JvKp+0oAehM/8s9BAyYHzQm1ZNvzDYVv+90aizlwo33pZk9d4pAG9sn9Lt7Y1YMLN0mmXo6kzqOqs4mzfWdI6jZ2O+hOSCJwc0Brdi+4kWf+8GteqngGlIZ4SJyZQF/zzTjbF0d8h6bWfv96fyAaGne6FfvJLl7cedIwXwF3XR1Ialh61wxOHT7L2TpjrN6FEptg/K/Agrw0vnVVGTne7hy+V+d2mujsT2Jcgs0/NiWljg5rqn/tjHEnuX1qCYeap1Nlm8ruMwu5Iu2E/3efHj+H1h5jIk0wZ868LWJOEARBOGdEzA2BhEULUTExaIcD5XWxbv35A+zozYVMRb92E2M7Cy4X7rgELJ1tWNtbKG/vAVM8BpOc98jpdlDTaqfOfpZJQdmrs9QJ/tP6MCcthcywWiiaXcHmhiCrk6frFY4YT822dLOJXKsn7ssVpBg1mtT+4GyLAEXtLpy4AE2X+6vkJZnITXRT3XWI3Z29HA9a4zbHEEp7TCwvV3qEnD8r12wnLvttegGXbXHk+sQOF8QEYvIgIPLae4y9Vwuzk8OK8mZPTzWIuYSUGOwdA8UqDk5OQVrY2Oyk3+B2BVeK0VhMDua2nOHUlAT/s53qyCExyYzN9jnHjv8cm20vq6bC7fnwxdlCpqUayyq6G8pId7hoHW/F/wsPEvnNjZsp3F8FZw6BNQEW/wUUr7mg5xMEQRAuf0TMDcLBLZso37IZ98R0umPMxLnc2D55ix3dk/EoKwWYcIzL9K9xJabQl5FDp7J4lY5P2WiuoIql7CM7ppk/7v9HDjnzmGT2dHzwWd7+aloj8+99BICbf/vTiPs6kX6Aa+xXMi/B7NcDbhXoM6pQbJ5odJl6VIiL+I4PgBswYUJphVKeIrrTk+fTNyneuMa/MfyfnWh6Eq8nvvtjw2mtISajhKuSvsr+0zb/kjmOgU4AACAASURBVL6idHRmeBKGau3DZPOIOBUi/orywkVW4ZKJVHx2BpdTY7YoFn1tGp+8fnQojS0iUvTVKWRPSzWM1dW9gXa3hMe5KXBZvOkSSqE1ZCU2EaN+Qum+g4Fp3nVzMkL6+GroTFDc8IdOjufF05QZS2+sCR2UZdHvPMvxnlpm2DxZvmz8W89PEXSCIAjCAIiYG4CDWzZR8vyzuOITcU6bjsXegbmnm1OVzZCZEyZyDKU3LBbD+Dhl4y42k8sZ/5S7zDs4obOBgG4yAfuaYT6wv2k/9d31kTeX0sDcRBNKexMeCNSmVSh+l2OhLN3o/DX3VZHU9hozOqejUJgwGUpzKKUo6HCzO4OBI/c1dKV+0y/mgqeaLV0cjm+md2mOp4iIBpKDRGUQpm6n/3Nzl9EylxIb/qeZPS2VO793NXWVbeQUpPmFWGi261BZurAVdjwD+ddC7iIAmpqCS7Dgt5zF97jpTjC+z6IJhyL2kQj9UwhlRk0PM2p6qMuKpaIgyVsCxTO5LjuWGTU9gck7noHyDTDrDhF1giAIQkREzEXh4JZNbHv5OVzxidinFIAy0a8nEttYi9tiNX5L+/1xUaxZgLnThtncBfGBsQxsLDJV+KeXpsxmZ+p8psR6ymO8W/Wu4RqF9qnMtRdgM3dxc/tSTCi/kINA4VuNZmuWUUyCJqntNayO49jMWZi0R8ipkH2m+Dy6YR0iQjAlRHz8zpR76E3N9ywNnh98Pe9JX525SBw+Y4zdo3YPVO8gO/9asm9Z5B+efW0O43OS+PzDGhqrbNg7g9yuQXX9wrZvBn79deoy4FT7/0FV55Ex8XbsPafC9omGKyu7+KIwyXCN0A4RxnPam70cXAw6sJn9sVbecyYw3aGYEBO4ldNq5nhefEDQ2U55/lV5O1uIoBMEQRBCEDEXAZ9FDsCZMh6Uye9O7cvOC18QKngimGZ6znbzZs9cnGY3aZnNfHvccb5qDjRxfzV7FY/PfBSXMmFG01XXwu4zgdp2hfapPFXzqD+DNdii5vvs6zmq0VzT1MPujGT//WPbNxPTfxwUpLqS0GhMyoT2xfF597+g1UmM24rDFCJKw57RTFfqPWiTJ4YsrvtTAHpTbgtZR5CoCryTSSYzrTajNS6Y8YlB3SJKX4b3vwfaDWYrrNnot6SBx2J323c9pWA++91xTuxvYtr8CaRmxke12imc1GVAxUyvKHXU0X3quaA9e/ZpdmqKvuggtdOJxQV9/vXa/8n3fnwlnA3qNoj4Xs+a/bFWHsrOol9BfquLv8nqDwg/ramZ4tmTwUIHHgvdCIu5/U37KW0spTirmPkT5o/oXgRBEAQPIuYiULn7MwBc8Yk4fGU5tObIxHwOTp4OGubWVXFlQ43RgoMvRC4o8UBrYhtPYe6xo1GYXWY6GrL5ZX8M351QTn1PMlviFvDDmY/iVmZQChea/1V5mtQ+K770g+/X3Y8Zs1+s+VykoR0MfMcHEyrxOGtNoF3EtLb4f9unnCdxa08CBN6YOZ+rb67NzS/32vn2wnjcob2ogq2OWtOTssp/qi/5eqz2siDh60UF/wyIHG0Nzf818kW91zJXu8cr5LwmQ1cfrH8Y7n7BIOh8LL1rhqHUyK4NJ+iNUNA5IU7TlBHZ/RtMUpeT1E4nGphc18PRgqTIVYSVCvzeo1wztcvjVn43KZF+r1mvut9MpwtSzEHrvIIus9VBamfAFU1CRtg1h5P9Tft5YPMDOLUThWLN7DV8r/h7I7onQRAEIawFuABQsHip1716BTrOYyU5MjGf7QXzaU9Ipj0xme0F8znitdKZO9uwdpqItWdxOr6BVksztNdhba4j/lQFMe3eBAfvfwC6W8fzg/Z5vH5qLhsTluImWAR5xFVH+rexp3yNq/vuIseZ5d+f7xrB13PhwoUbjebFiRWU5M0HzKBMKJOFCeNvAW326Mums3zU8CZftH3Ktob/4Yy9ClRACM61uZjbHpRBq309EiJYnfxlRsw4Yq8Y8ju+K2sc6QnhmbI+Tp31Zq1W7wgIOR/tNbD2q1DyxKD3SZuYEHF8QeY2kn0uWX9yCEGWRM/xxKY+/3hOQx+ZLV5rYuh7GCgLw3etRs+1VFKWYb0zdKn33PH8kL1/sd4jboeZ/U37eeHQC/zLrn/BqT3iUqN56fBL/Obob4Z9P4IgCIIREXMRmLviVmIK5wWEilIczJnuOekXL3itdJrY1iaSOqYS35XPnuydfJS7nfVFuziaUoGz32Nh0kH/8Qmw7IZklFbk1lejtDtMELhjJtKd+k0+mnYHB1PNhjZWPjQaN5r/zl7HK5nv8e0r3uK5wkngtfIBmJXiL6+cS//pP6e/+Was7dM521dPuW0XZ/vOEBPrcWkGX/+vj/V7LE1eIRff8b5R9PjeRfBezMneD5GFTZrZxERrDI/kZv4/9u48PqryXvz455mZZLKSBMjOkARZRRZDBCsF19YF69Zq1auCtVp721u99ra119rF2pbWLnpve9uf1Qpal4qtrfteK7UKBgggsmPCkIQskAxZJ5kzz++Pc2YyaxbICt+3L16ZOeeZc545cU6+8yzfh7unFuIan0Kp2sW/2/9GqdoVVrbLsI6RHC8ZsYZ37ze7YHtxxuVTo7ZNmrUP+6THaJjgjH4fwXjafNCd2PMRMVBMPtCBzQ9hi8hGVCuq5Q4o2t9utrLZHKQWLw17SXWXLbI4GkVTZgLVuSErfWgDXrlzWAO6ivoKlr+8nAc2PsDOpugu6/+r+L9hq4sQQojYxkQwp5SqVEptVUpVKKXKrW3jlVKvK6V2Wz+jc1kcpU3vrsXT0UXgL/vBcVk0p4QMfrf+4janpLPHmYRTnY7NUYBN24PBXnfiVP65cAmPfSaZlz5xkKqcdny2ngVJQwOnwjo3ZVve7QmWdHgLWJdNsSFiZmogMPSj+d+8J3k1610eL9jL5qIvYCQUhuUv+9KkbK6bkceTN1zN1ZlnUdLWs1qFwo8vMXxslkIx12Pw6w+aSWleQ8bBH5La/DR2b5xZoxH1DU+FYl6rBKV4bN5JPDKtm/yOl6mor+Ds1EoeT/wxdzjW8Hjij8MCumAP79an4/yWLOt+2+vuvCkZnPVvM1DW/+mpOftIm72S6vwk2lPDc97FCsKymrsBxRMJl/Od7i+QdsTHpAPtRMXVoRMdYmz3Jdig7AtUXPG/rNr/aliRdd4s/ERfRlBsmBQ+6YLqjbD6kmEL6O59/178xF90t7GzkYr6imGpixBCiNjG0pi5s7XWjSHP7wTe1FqvVErdaT3/1mCc6MPXN5kPFBxMz+KNmQvCgxQIPl439zxc7Z0UHuoO/hnvTpxKc85d5vgx7Qd+REPWHrKbErnwvVzr0D2TFapzXWycc0Z4q1DEBIqPU6Lj7oOORn5WuIodKR/TnTgVz8T/ACLGrAH7OszuvXzvQebWr6PK+uOsgdkZdWTaPwb/dGtbT8vhwmYH392exc8L95jLqfrbiLloVsQKE8FrZLTj6K7i0wUn8+8lU3F4d3PTKyvo0gZocPkcLHUqSrv82HQXV9jXstFn1iM/05r221fQ0rDTLBNj/FxAYMZr9a4mEtWfqFf+6DFtoQFdoEWz20/GjBtg3jXM9E+j+sFv4RmXyH5XYFWP6JZS5fej7fbwCR9A64QcuPBX3P/yiqhxjjW+JJ5pSuDKrO7QOSIAOFMUv5qUxdkNbcz3dpnHNLxm93Mv73mwVLdW91nmrn/exYtXvDjkdRFCCBHbmGiZi+NSYLX1eDVw2WAduNXXTVdxK8+dUcpfT11Ka1JqdCHrr21LagKPnp3OgQmO4Pb29Iusbk4bKLv5HGjI6uK9Uw5bo8/M/yY4C6g+5XwMu4Ng81GMrswPM8Nb5hSK8UV57EqpMoPH3LvQ9tiNkwe9Pra88TJPfe9bVG3ZFDy+sjnIHdeOizfAGm8XOh4P4NyWRdx94BZmtpdg90ekCwltSQx9Djg6tpBdcytZDT8h/fAjlGWk8vzmh+jyBwb0a9wJ3XyhIIeKxEQUcLX9rWDr3FfOsrpH/X2t8KDNwKYPeVMyWDC7nuTa53vqGvo+IKrrVDsS4eJfgWshC4qy2J40l9ocZ685SWzaRkKX3wzXQsp0pNipqK9gY/3GqNdcNvUy3mtLYE1TQrCFLvByO3AkO5Gb8nKocCbiSXdQOcmJJyF+WpdQa3au4Uuvf+mox7blJOf0WWZ/y35pnRNCiBE0VoI5DbymlNqglLrF2parta4FsH72/VenHyrqK6ib0sCqoqupcbjMjRGtcrlNRth2wwZVOQ68jlZAYTjyw445npM5v2kxCsX0M8/itTMaaU7tZkraXM7Nvw7P+Elh5e1G5OQDKGyP7uoaPzGbaVnT6Ez9JOZkBxUzyLjI5uX1h/4P7Y84htJs0jNw2nbg4EB0z6G15YzWedxX9Z/MOLSPsHxpIRM2Qs+d2F5OVuPPg8epPFJpvpWW2pCDW9cOKE9OMgMXpfnK+A/48eVzuHbRZLOcLf4kiaDiJX2XATZt/w+qXEkRdTeltvjIC052MN9fTv7FYWU2M4M3/KVo67oE48GQwFDjx+mN7mr16S7K68qjWuVunH0jd5TdwbKSZbzXloC7S0VVb5xd06UUf89OZcPcDPYWp1Devorq6id7fb9rdq7hnvfv4V81/+Ke9+8ZcEC3Zuca9h3Z16+yz+99fkDHFkIIMXjGSjfrYq11jVIqB3hdKbWjz1dYrODvFoDJkyf3Wb68rpz6PGfE7FKCf7Cv39fFJqeiLitkvJWGZK9mZ/YHaG1D4ws7ZrrPyW0Hr+WmU77ArKUL2d61npZmN3ntE/nfaUlUjO85ll3DtVUGj02xh3W1rst2cPdsJ//MsQOKy6u7+WFpLt9J/g6XrP8g5nspscMZezdj/9drsSclGAZpE+ZgeP9Omv05PMZX6ZnOGXINUdix8/29Z3L55IjdwfFx5tMEP3zucDuvhxTJcpothpdMXMCaIzujupA/cCbyReuw587KhUUhvyeHE7p6aZ0rWNCv7sZt2+7gsL0xvM6BxygyW/3M3GPOoG2ckMjE5PnMnv3LsGNctWASz2/+NDMLdmK3+WKu/tDdmsKLBxdz5qy/h21PSMgiIzF86bBlJcuCqT1WLl3JwbaDrGt7n6LE7pi91umZNrQtUGfNjp3fJS1tBhkZpTHf87N7ng17/sftf8TT5ek1R1xFfQXP730ejea1ytei9p/jOodPFn6Se96/J2x7ZJAqhBBi+IyJYE5rXWP9rFdKPQssBOqUUvla61qlVD5QH+e1DwIPApSVlfX5F6cst4yduyohSUUEQJprq+v42u5U/n1uxDqjCl4uTaVsWzrdzafhz80L293qMMfHZZRrDu7YSPoBL2nk8JdJDh4rsZLjWgHGTI/B13abLUSPTUkMBj5aa14uTDBPpuDREidtrYf5TdF8FuTBey3hby3L7+Nz/+8HZj64Xt5vZvYkvuG5j295fkSqzqPN/9meN0X4RI1JvjyUH3Roj691jc6q8zGhS7OsppuTmIM701ytYkvKLjY3bqaivoLffhy+okXgPW9zhszYPFzZ87h8FXS19VJ7oGZDn2PmABoa3yQstUpI/RU28heuBMdLzG45CDNuiJmc986LZnHwSCf3lcMV0/7GjKx9EZMnbLizfsqlZUtIav0hB+v+FnxtSfGXeWv/9rDjTc0Kn2l7+4LbuenVm5jgaOGcdCMYIM9J8XOxr4tam4OSsC8Kfmprn40bzHUZ4UmZ93n28cDGB7Bh4yzXWQBMSJ7AJSddwvyc+WF55GJJT0jngXMeAMDd4uaRbY8E9x3qOERFfYUkEhZCiBEw6oM5pVQqYNNat1iPPw3cAzwHLAdWWj//Fv8o/Tc/Zz4/93yIyvKjlR20n4m6nq/yANPzKulwf4O8rtmhFQRA2zTbpsyCjZlgC7+sbdZTf3MX/mbzD+zWDBsrT07qGX9lBQWXVJutULft6eKFSQ6aEiN6wkNikT/XN3PjpDa0LQVoDyt22toXe899ZsktmcJ76xO43/gsP0l4GK93Nj5mhY2fM0+rehZGiDjGhE4/P9/cGXzutWt+7vk6NhQ+DL5Z9Cu++tqXODmlmdvTDI4YirdaEqj0mu9tcndIy9u+t+DBc8DfBQe39ll/AJ5eDl/f3msRuz0Nw9cSti2hy2ByjZespFlknHsdTL+uz1NNy03nuc0l3Fd+O5+d9jfOn7yZQnsWqRNKySr+HOcGA6tfkpl5GvX1r5KTcz4NCbP4866VYcfa07Qn7Pn8nPk8fP7DlNeV42t+koSuykAjHOeOM6j0EvFbMVVXP0l1zRqSnDkUFd1CRkYpFfUVMVOJAPjx85b7reDzv+z+C3ctuovth7fHDeQAPjf9c8HHVUeqwva95X6Ldw68wyMXPCIBnRBCDLNRH8wBucCz1nJTDuAJrfUrSqkPgKeVUjcB+4ErB+uEc/3Z/EP7MdA4MPgqDzBN7ULbFB3jd3DZwRm85ErEiFjyqj21GHvhBEgID8COJNrYkmFjrsfPlgwbjxYnsmG8DR1jIP3UVn9wRYbTGwxeLrTFD8q05pEde6k27GHb0jramLc9dtdrGKXoaGnhsvlzsL3bih/IS/omBzr/jKJnOa1AYKeAJD+0B96eVa8v7Q1vAUo0zHFuCoUDOzfWX8pfs+/jqqyeyQ8nJ3v5db2TSq+N9Mj3V7Oh77qHCh2LZ/F4NtLUtI6srEVkZJTicKTR5Q0vk9rup9jdAZmH+n2q06dMINFho9vn58XKy7n2vJ8yuyh84knokld7UhzcV/Esbd1PRaX4eOfAO1HHn58zn/k58/ngg5fwWDFuINYvdkYVp6l5PdU1T5iXoQUaGl/HOfEy7tu3J7pwHIY2+PG6H7N00tK4ZUK7hNfsXBMWDAb4tI9HPnwk2HonhBBieIz6YE5rvQ+YF2P7IeDcoTjnDeecTtszL3C4tIKT1YdMU7uCqSbs3enM8/h58IN2vjMnidpAyhDrL65Rkh4+29Ha/r/TnHTZYHuGHX9o/BYydktpzYbxduZ5zIBuSnt4GpSICwDAn1u7QRlhQWFXL8tTmYezUm8kJOCaPYc7p8/i0Zbz8G9/BhsGinZ0SDBntT0Cis/t7+bRQPcvcHqjjyuqI1tzwluPpiYqPjPOH3wrAHYNy8Z18ZuGJM5ra6d/rGaqSPbEsKcez0Y2bLwWrbtRKoEZ07+H19sY9bLgkRxJUfviWVCUxeNfPJ339x3i9CkTWBAjkLv5tZvpMrqwKVuvLV29KSi4kiM7N0f92gMto4Hr294eHbR1NvyVXF8C++jH5BGLT/vY0xw/ALx65tXBx2/sfyNuuXcOvCPdrUIIMczGymzWYZU3JYOujAOcXbOXaViJbK2/nq0TNgMwz+Pn3q2dqNCM/0r1/JWNWAlg03g72zKtQC5kZYkApTWJflhwuGcma+lhX89xImeqBo8R/SvsSkqhOtcV873ZHQmc98V/Z/Hnr+fKu39EwfRZANzw+atIuPiXKGUn1R74Yx0aSZjn/tqeLm7Y14Wrzc8N+7r49cZOIoUGcp0ZezlQdh/J9ugMdSclaWYk+HA7+vmdIiH20lykh49RrKp6EK3NZi2tu9mx8zsYRnNEzaAzybp2p/97/85vWVCUxVfOnsqCoqzgUleB1BzP7X2OTqMTP/4+A7nQbstIhYXXMHPGvXiVtTpH6ITqfsw1WJrWV0qXaPtb9sfd99zenvGOM7LiL9vm0z5uevUmSVUihBDDaNS3zI2Uqb5TaNqZRXrBFkAH46i2nE00F75NZvVZzPUY3PlRJz85OYnwwfUhLUiROeNCV3gImSE7zoAFh33M8RjBfLNzmnxkdHrxJMfoX4vHOq67oITCOjfpE3Momb+AtuYmUjOzmH3mOcEALkrZCmj6mMx376fLX0yXLiM8cjAff21PF1/b0xXrCCHlrK7n8TvQtq6wxsXgTE0Nc9L8PNI9jnq7nZWHDvf+3mYui70ihK8zbBJEs2dT7NdHzn1QwJyrYk526I9flv8yOAlAobj79Lv5864/9+u1Wc6sPhepLyy8hqc/fpdTOl82z2HV3/CD3RbdYBveINt76+xAhba1jnOO67Vsl99MwyKtc0IIMTwkmIsj3+5i36Ek6jZcR96Cx4KD/wHqZq0isbWQFM80rqjuZlOmnVcKE8JXQSAy/QXRqyRouLaqna/t6Wm1MjA4kFiP8neze/87ZB88E0/JyeGVCzsP4Y+tYNFV8zEAOcVT+NTNX+n/G7cS8OY4f0Cr73zajE/Rradi9R0THSSEdvrpYJnAODvD3h7cFau3OPDKF9NTubq11VrlIJKCxbdBUpwgorUOHv403PQauBbi93tjl4v4fdjsyfDZ38cu24c1O9eEzebUaO774L5el74K9T/n/E+/yp09/YuUb3iF4kQdrL7bB8WJUd8Jgl8CALZ19t7onmhLJC81r9fWuEAAl2BL4DMnfSa4vSy3rM9696eMEEKIwSHBXBydrd0oFJ6Pl5Kav5X0QqvbyIo+Dhe/TMrmaSgU927zsi3Tjjs15A+oNlPLKj/4bRERjPXX978/6uTsQx7uKPod53oWAfBmxjp2pHzMYxc+RumWCRTXetgT47UxWfs+tfY5CuvcKJudhZd+Nn75WNJ7Eh6nOV4lzfEqXv9MvP45tPnOxaAw9IRxHpuaCv9OU/FL5pNgY6UZ5gW6Cz+R6mcSil81aZ5PS40dzF18v9l6Vr4qbHMg2LSrw6Q7/oLzxTvg1n+iVJyxYmFNVwrnxKNvOfrj9j9Gbesw+rcqgx1734UsJU4/DU4zYlPKXKRCWRcz9O00dEN2yNs+K91gdlI7DT6bOXO4q+ecNmw8fP7DAFz/8vUxz7usZBlXz7w6OJFjIK1sy0qWSaucEEIMIwnm4jB8PS0sh3eeT1qBGcwF/oB2pu0Ptj5p4PsfdvLFhSlm8lSr0Jl1Pm6o7OLR6U52JkFtsj0YcN2wr4srqn10JySzI+VjdqR8HDxf8I/hefPxVeyFpvCUGlFCWupS2luYv72cwlmzWXrtivhdqvEsvg12vRq2jJbTtgOnbQetvotivCBWd56mI2MP9bMejWrMS22xc6jNS1JeglVlTVFaOz8w8vihhs+0toUHdLaEnm7Qjp5Zp62+82n2fRWAbg2dXaeRXf8DnIBhtMZ+bxEtc2mp03q5EL074j3Sd6E4NLrf3ZBNTeuwoYMNvRrwxYjn27XZGmoLmWCSlwB5Cf6emcNdds4oOIMvz/ty8NznuM6JOTN1atbU4MzaSOV15VHbkuxJ5KTkcO7kc/vsPhZCCDG4ZAJEHCcvLgg+7jw0Fb9xcVjPqZHSSHPhP4Idi/M8fr79USd2bU5mSPDDDZVdzPX4eWhSIX9X4/nvbZ2c3mjw39s6g2POUgvH893Tv0tBagFZzixunH0jK5f25CNblh2+akBU0tuIiRFFTfV86uavcPX3fzrwQA7McWc3vgTnfhcW3w7pPdchxf629SiyRU5DsHvR3Fc38w+gdFSsZ+8oId+ZYm4OCfQy0uo517OY59PC18GtyJ3KD9/7Ib998X52Vk/Hq8yJzUd81wQugPXPgbdrBrjXo1REy1fo+rHWc6U1+fmX9++aRFizcw2NndGzY/vLYXP0uxsyK2sRNpsTQ4Oh4ZmmBOq6ez62WptXfl2bA0OHv9XA/xp2oCzFnIwRGsgB3HjKjThU+He6RFtir/Uryy3DEZFL8ZunfZMXr3hRAjkhhBgB0jIXx+wlZnfi3k31nHRqDrOXPMC7726i01ttFtDQMOtJbKkOCvM+j/YaXLHuIFNb29kw3sGCwz7mevzYMhNJW2R2Xd7wEny2vA7dbs1ytCkyLizhyqJ5XDkjdpq86wsnAvBE7WHynA5SbDb+XN8cXsj6620HvvkJB0bLn6iubqaw8BqOimthz4oK3iNQ/gcAku3raDU+S8R6XubFwCDN/hc6/GdQO/s3dI2rMffp8OK2LhdJzQsg6+mIfTY+2VLKlsxXg2UrnInclNzJlIoP+On+23FoO/W2e0kvrsW/b3zoBQDAadsMD38K2+Ic/JE9mVqTV+dl0kEvTZkJZCXNjLtyQl96S83RHyUZJf3uhszIKKX01Me4563r2NUJlV12ihMNFqYZ2K2WumeaEnivzexjvTKrO2ZbqQIW5CyIOu/8nPk8csEjPL/3eRo7GsNWhIhnfs58Hjn/ER758BEaOhq4fOrlcf//FUIIMfQkmOvF7CWFwaAOICmpoCeYU6CVl4PFD+GcbMOV8GXaPjjIXI+fuZ6ebkJbUs8lzrxoCpkXTcFbdQTvPg/OKRk4i3qfGQhmQBcI6paui73SQapS/NpVSeL+r3MYONy0lsrK31Jc/OWjD+oA5l0DG1aDNvD651gbVcRPgAQc6iD5zi+xPScLsIXvtlqLMmoWk+yZRn3Ji/gTQpbqsvuoHb+JnESodCXT0KF4KG8BXW1VnOtZRIJ2mF3afk3rvoLwg1q6/UU4bTtIPdKJJzPRijPNMjN3t1FYZ06MyGjxwU0/69fbD00AHFjyKsnev7x0uSm51LXXRW1v9jbHKB1fRkYpha4v8po14aKyy85v6p1MdfrZ47UFx8PNchphKQ6hp2t2Y4eT73/i9pjHj9ed2pv5OfMlObAQQowSEswNQGrqNJo90SsrVO3/PckzJpP9pWU0PPIhdPbMTlWO6J5sZ9G4fgVx/aYUSyeOY1zdLwnN+tbprWbHzu8cW1DnWkj1Fd+g+uMHSej4J2n7PkGyZxo9LXIq+LjN+DRpjletcYShEYX5w9lcYr0Wkptm0Jaz0aq/WWZy9l7sExzsJhWfhpqGfYCdTF96WJV6lhoLTwXTmF7CgUKrmzZkimeRuz0YyAFmOpI+1nIFM5C76dWb6PZ3Y1d2lk5ayj8O/AND9/x+7djx449aaH5G1gyeueSZsPQlFB+bhQAAIABJREFUAReVxBp72LtA9+Vf9/yVJm8TlV32sEkNAOMcPXXo6WpVNKadz/fn3CyTEoQQ4jglY+YGIP4YK82Ond+lM3MPmReWhO1JPS0vzmuOzs2TsmNuT+mu7Gk1jBAI6qqrnxzw+aqrn2RHw0O0pNo4PLGL/af9lObCtzlU8gIdGXvDytqUOUEhuT0iQXBgUL7RMx5uQuVFZqK3kBgow6FJsAbxO5Q5zmtmewmnt5otgpHrxfYwJ1zsLf0L1flJeDITggHizN2tTK0KmWWaMrHf6Uie3/s8Xf4uNBqf9vGW+62wQA7MdU6vnH4lC3IWBLc5lIPvnP4dwAzCHrvwMRbkLCA3JZcbZ9941OPK7ii7g3eufofHLnyM20pv48bZN4bNjP2o2+x6Do7rTMinbMHTXL3wNxLICSHEcUxa5gYgI6OUtLRZtLbG6ur0U1n1IPMW/Q6Ajg8bST5lYnC83GC5vnAivz/QwK72QEuT2QZ2WkffgVpNzZoBt87V1KwxHwRnLBjUnbzaOrWNyR98m2TPVMBgnOMvACR7/bSFNjxawUV6Xc+g+mTPVLIqL6Sp5KXgfnt3SrC8As5I9XNG+yLs2MOCuOiATnGo+CWw+SMmiGi6EyO+r0w+vd/vPbK1LV6ZmeNncvcn7o7qkg2YnzOfVReu6vd5+xLaLXrO5HPCzvnchv/iSNM/GJd1Jpcs+PmgnVMIIcToJcHcAGWMOzVOMAetLR8BkLYof9CDuFA3T8rmG7sOEIiClulncXmj00tEamndzpYtt1JUdEu/Bv97PBs50rKlZ0PU6l5+6qc9zbTK/yTjyHdx2nYA4JxwCrA77FhJTdPJrD4rbJvdSOk5lob2CduCzwOph+0zn6U50SCr+uxgcKVCkhIDdGTsoS07YtUHq3kqoSsyiW8/1sKyzBrf92xghcLT5QGObuzZsYo8pwRwQghx4pFu1gEyu1pjx8Cd3uqj6socqOsLJ3Lf9EmclljHTfp3XMPj/Xqd1l00NL7Oho3X4vFs7LN8ZdWDhAU/kfMeFHRNPIDz5mycl3wZTjoHLn6A/NN+TNj/Wgoyas+IOn7K4ZlobQsfehesrPnDSGqi/uTV1E992tqso1ZZOFz8UvjrQ/LuVU1Kjjhr/5e5CgRpvbHb7LLagRBCiBElLXMDlJFRStmCJ6mtfZbWtt14IiZE7Nh5N0BUd6bHs5Ha2mcBMyAcSFqMWK+9vnAi0w78mjZv7FbC3mjdTVPTuj7r0GK1NIaJiIX8/g7KN1zNzBk/oLDsWbZtu4ODG34CEQFXwnwnzpRMNJqu3WaQlNw6DcM2H7veiNIRx48I7JpKXiKt4VQeTF7PZYfPpqjLbPmsn/o0rTkbw8qGdrV2JEd+X+m7ZS7QXZqRmIEdOwZG3LKzxs+S8WhCCCFGlARzRyEjozQYCG3ZcisNja+H7NXs2Hk3aWkzgmU8no2Ub7gGMPPLVdc8SdHkm5k69Vt9nsvj2ciGjf+G1ma6k5raZ1hQ+jgZGaV4O2NPeDDZKZp8E1X7H4YYwUhCQmaf57bbI1u14jHYsfNuqmvW0NKyOWaJtCkuspeYExlCU7PkHE7l0GGiW+VipLKrnvQar/q3UeWs4b6q/+Tw1L+YY+6I9/oYi8Gm5fb6TtbsXMO96+7Fr/u3xurlU48u8bAQQggxWCSYO0ZFRbfQ0Pgm4S1Rmt17fsa0qd+kqWkdR45sJhDIBfZX7X+Q5OTJpKXNoKlpHVlZi2K2lDU1rQsGchDZqha/y7Bo8k3BYLFq/4NR+7u7+851lj3xHKr296wMa7Ol4Pe3xymt4wZyEN7KF5qaJcdxPoeb1oYtGm+t8hX19ppzP+ATRxJ4n0p2XvAKDiMikIvR6Nbd6efaglyyuw1ubO1k/ryeFtOK+oqwZLmzxs/ih+//MO7EBxs2znKdhcfrwev3csXUKyRZrhBCiBEnwdwxysgoxenMxxuRFsTj2UD5hs8T2d0Y6uPK3+L11gIam81J6amPRQV0Pl/kGqCahIRMPJ6N+Iz4Y7paWszu16lTv0V19dP4jPDgrb7hdYqLv9zre3M4wnPh5eddRnXNU72+p4EqLLyGjo79VO3/PRqNVoomlcd4f21PcGaNh0u3w1VZ3cxJNnD4n4kZxKU0nkL7+G3mUmIayms/wVbnNnDCO+npPOJMZD5mIHfjKzfi0z1BdmBiRTxnuc6SRLlCCCFGHQnmBkHs7si+A57QANDv74wax1Zd/WTMVrX6+lep2t97rrTExJ7lrrKyTovoCoa2tp191q++Ifw1R1q2MXPGPezY+T1idd3GZ+t1HdSpU79FdvanwlooPZ6NbN36H3i7DgbLBVruZiX5Q+c4mGfoTiF791VkVp9FR8Ye2sfvIPnwDE7ylLC56FfsSPmYqW2TOfzmPrxnTOH+j+4PC+Sg71QkN55y4wDesxBCCDE8JJgbBJNdK9ix8zvHfJy6+hfDgpnAZIpIh5vW9nmsrq7DwcdmV3B4YOZMzMPj2djrJIjW1m1RzwsL/0Ja2oy4E0AiKezMmPGDPidbhI5DDDwvKflq8LpGBm8qolVu0qY7rHx3Zg67JM9JKBR+/JzrWcSK+kuY0zENVaWo21LBxNwkyOq1SmGWlSyTiQ5CCCFGJUlNMggKC6+haPItx3yc1tbtwbQhUWlBBign5/zg44yM0qj6dXRWUr7hSvbs+WncYyjljPk8I6OUmTN/SNmCpygsuDbu6wsLrmXBgqeOem3YwsJrmDnjXhISeloZleppoQPzCqXWnxoM5MxtOiwX3bLmJcztmI4K/KfhPw5ezcz2EvoSWLVh5dKVR/UehBBCiKEmLXODJNBVWFv7LM2eTbS17eBogjGtu6msepDGxjePohZ2xmedQU7O+VEB1OGmdTFfEZiIESvgGpd+cthatOPST44qkx5jG0DR5Fv6NVu3L4WF15CWNoN15Vdii2id0xr8WjG+8qKwhMIQHtCFbg88Vijmtk9nR8rHMc+rUNx9+t0ywUEIIcSoJ8HcIArtKvR4NrJr170c6WWGZzyNEV2i/ZWXezGzZ/8y5r4kZw4tLbFft2fPfcFgzuPZGBy75vO19nnOWLNix2ctGZRALiAjo5SapLMo7HzbXOrLiss6/fD/GhOZkbyeyzpScXXloaykwnbsMddyDQ3uPHbz/Z2Rfwbv1b4X3GdXdu5adJcEckIIIcYECeaGSEZGKdOnfycsv5xSiSQnT6a9fU/vL46gVDJad8TaQ6D1b3zWkriBHMRLoWLyGZ7gihAbN12P3++1jh1e1vB3Rb02K2sRSjnQIZMJsrIW9fWWBmzF4odZ848LyfLtCnaxvttmp7LLTmXWu7ya9S4z20uY2z6dLSm7+L77Vsb508KOERrcaTQZRhrLSpaxcunKYJoSjeaSky6R8XFCCCHGDAnmhlDoahHQs3rDnj0/pb7+NTIy5nGw7gV6nxmqyBh3Slh3J4BSCcyY/j26u5vj5qiLrsuf2Prh7VFpVABqa58lKanACuQ0sbqICwuiW6oyMkqZMf377Nz1fbT2Y7MlDkkwB3DlmS/zwrobaWley5YOGy94wsf07Uj5ONhtWuWsZU7HtOC+QKtb4KcPg7KFn+TCJZcBI7OuqhBCCDEYlI7MkH8cKysr0+Xl5SNdjTDV1U9agZAv5n6HPYPc3GVU1zwR3OZ0FjLnlPsHtCRYQOSKEj1sFE3+YsxUKGC2/J166qpej9tb8uPBdOc7d/Lixy/2WuYP/vvI35kafO7Dh8KGDYUfzRuzNnLT8v8c0nqK0UEptUFrLQvoCiGOWzKbdYQVFl7DgtInGZc+L+Z+jZ/8/MtRKhFQKJV41IEcmC1pC0ofJz3qfH6q9v8h7uuikxdHH7e4+MtDHsgBrFy6ku+e/l3mTJwTNSZOofju6d9l7jlngN3aZ1d0z02GkG7Wc5oW4q3q/T0JIYQQY4EEc6NAYHxdrF7v9LSZwQDspClfD67LeqznG5c+O8ae2K2DAInOnGM652C7csaVPLHsCe4+/W4cyoFC4VCO4AxUZ9E4sm+Zy7jzi8m+ZS6TF5+MTZmTImzYSDjop+H3WySgE0IIMebJmLlRIjC+zkxL8gagUcrO1KnfDO4fzFav/PzLw7pu+1JcdOx59IbClTOuZFrWNMrryinLLQsb9xa6BmzrulqUhrAFX30a7z5PsIwQQggxFo2ZYE4pZQfKgWqt9cVKqVXAmUBggdIVWuuKkarfYMjIKGXe3N8Ny/izjIxSxmct6ddqEmmps4al+/Ro9WfyQseHjTG3d9f1nX5FCCGEGM3GTDAH3AZsB0KbUb6htX5mhOozZAa7FS6eU09dxXvvn99nqpSOzpohr8tQSz5lIt7d0TnxOioa8X7iyJC0ztX+4gOMxk7sE5PI//ppg358IYQQAsbImDml1CRgGfDQSNfleJOS0veSVn5/+zDUZGilLcon8/Kp2DITo/a1bawb9PPV/uIDjIZO0GA0dFL7i97XsBVCCCGO1pgI5oD7gW8SnfH2R0qpLUqpX6nIhUQtSqlblFLlSqnyhoaGIa/oWNPlre+zjMORMQw1GXppi/IpuHMRjryUsO3d1a2DPhHCaOjs9bkQQggxWEZ9MKeUuhio11pviNj1bWAmcBowHoi5fpTW+kGtdZnWuiw7O3toKzsGpaQU91nmpCm3D31Fhom36gi++vCWxu4DrTQ+tFVmtgohhBiTRn0wBywGLlFKVQJPAecopf6ota7VJi/wCLBwJCs5VnV1He51f17upcF1W48HR/7hjrWiGbrbPyTdrUIIIcRQG/XBnNb621rrSVrrYuBq4C2t9XVKqXwApZQCLgM+HMFqjlk5Oef3uj81dVqv+8ca/5Ho9WUD2j+oG7zWORW9SVr+hBBCDIVRH8z14nGl1FZgKzARuHeE6zMmFRZeQ3JyUcx9CvuQrbM6UhwTk+Lv9Jt55waDLS0hattAWv5a19VS9+tNND66TYJAIYQQvRpLqUnQWr8NvG09PmdEK3McGZ+1mOqOqoitdmbM+MGozi93NHyNvU9EGIy8c96qI/hbuqO2x2isi6l1XS3Nz5rpYrqBzu2Hyb51niQ3FkIIEdNYbpkTgyR07VdwUFhwLWULnjquxsoFKEfv/8t3bm865pawln+4Y25PKEjr1+tb360O36CtsX5CCCFEDGOqZU4MjcDar0O96sRo4MhNoasyfrCmvQYNv9tMQmEaqaflkbYof8Dn8DV2xNzetqmuX8fTOnpb18eD0/0rhBDi+CMtcwIwA7ri4i8f14EcQGppbt+FtJmupPnZPbSuqx34SWyxO1S7K1v6dbzkWeOjq9QVYwquEEIIgbTMiROMs2gcaUsLaX2nuu/CQMvb+wfcOtdbV27Hh43B43mrjuDd58E5xUzK3LaxDn9LF507otPFOLKTB1QHIYQQJw4J5sQJJ/OiKf0O5owYExn6oonRT2pJPmUiYAZyjQ9tRXf3r8Ut6/LjK0WMEEKIwSPBnBC9iTWArQ/GYW/UNtu4RJxTxuFv9+GtOkLLP9z9DuTSlhbKTFYhhBBxSTAnTkwOBb5+BGqG2Yo2kGAqoTCVrt0hExaUmay4o6KRDhrNScMDiBFtydE564QQQogAmQAhTkiZnzmp32UHmhbElmAP3xAZuA2ksc+hgmPqhBBCiFikZU6ckAKTEDo+bCT5lIn4DnXQ+s8a8EdHWl37PP1unfNWHaHzo4gJDANsiQu8JmnWeNLPdEkXqxBCiF5JMCdOWGmL8sNmqvq9Bu3rDkaV050GDQ9uJvuWvldhOPz0jqhtiUXjes1tZ8tMxJZoJ21xIQl5qcEZrhLECSGE6A8J5oSwpJbm0l5eB0aMZjTDXNnBecPsuK9vXVeLcSh88oNKcfSaqNh58niyI44pQZwQQoiBkDFzQlicRePIvmUutszEmPu7a8LXbW1dV0vDw1uDiYA7PmyMek1qWa6ZqDjOJ23cma5jq7QQQogTnrTMCRHCWTQOFTmBweL39aQSaX5pXzBXnXd3M96Pm0nIT8W7uzlYxp6dROZFUwDI/tI8ml/eR3dlS3C/pBwRQggxGCSYEyJCQnYyRkOM9VWtyRHeqiNRSYc7Khpx5ISv0mAc8gYnTjiLxpF763xa19UGJ10czbqvQgghRCQJ5oSIkDRjfPSMVEApc83VljipSnz1EQGgX5uTGUJa3yInXQghhBDHSsbMCRHB3+6Lud05LROALnf8malhbJIjTgghxNCTYE6ICM4pGWBXUds7dzXT/NI+dHf/ksalfbJAxsQJIYQYchLMCREhMKvVnpcStl23+2h9pxrt69+aqrIMlxBCiOEgwZwQMTiLxuFIj52ipF9ruiqki1UIIcSwkGBOiDiST5l41K+1ZSZKF6sQQohhIcGcEHGkLconef7RBXSJ+WmDXBshhBAiNgnmhOjFhKtnkXn5VGzj4nS5xpEuKzsIIYQYJpJnTog+BPLCNT+7p9dyKslOQl4qGReWSBerEEKIYSPBnBD90BWxLmtA0snjsacnklKaKwGcEEKIESHBnBD9EJ11DjIvnyqrOQghhBhxMmZOiH5IKc0FhxXS2SSQE0IIMXpIy5wQ/eAsGkf2zXPNtVanZEiXqhBCiFFDgjkh+slZNE6COCGEEKPOmOlmVUrZlVKblFIvWM9LlFLrlFK7lVJ/UkoNLHeEEEIIIcRxYMwEc8BtwPaQ5z8FfqW1ngY0ATeNSK2EEEIIIUbQmAjmlFKTgGXAQ9ZzBZwDPGMVWQ1cNjK1E0IIIYQYOWMimAPuB74J+K3nE4BmrbXPen4AKIz1QqXULUqpcqVUeUNDw9DXVAghhBBiGI36YE4pdTFQr7XeELo5RlEd6/Va6we11mVa67Ls7OwhqaMQQgghxEgZC7NZFwOXKKUuApKAcZgtdZlKKYfVOjcJqOnrQBs2bGhUSlUNaW17NxFoHMHzh5K6RBst9QCpSyxHW4+iwa6IEEKMJkrrmA1ao5JS6izgv7TWFyul1gB/1lo/pZT6HbBFa/1/I1vD3imlyrXWZSNdD5C6jOZ6gNRlNNdDCCFGm1HfzdqLbwF3KKX2YI6he3iE6yOEEEIIMezGQjdrkNb6beBt6/E+YOFI1kcIIYQQYqSN5Za5sejBka5ACKlLtNFSD5C6xDJa6iGEEKPKmBozJ4QQQgghwknLnBBCCCHEGCbB3BBRSrmUUn9XSm1XSm1TSt1mbf++UqpaKVVh/btomOpTqZTaap2z3No2Xin1urW+7etKqawhrsOMkPddoZQ6opS6fbiuiVLqD0qpeqXUhyHbYl4DZfofpdQepdQWpVTpMNTlPqXUDut8zyqlMq3txUqpjpDr87shrkfc34dS6tvWNdmplDp/sOrRS13+FFKPSqVUhbV9yK6JEEKMNdLNOkSUUvlAvtZ6o1IqHdiAueTYVUCr1vrnw1yfSqBMa90Ysu1nwGGt9Uql1J1Altb6W8NUHztQDSwCbmQYrolSainQCjyqtT7F2hbzGlgBzH8AF1l1fEBrvWiI6/Jp4C2ttU8p9VMAqy7FwAuBcoMpTj2+T4zfh1LqZOBJzIlHBcAbwHSttTFUdYnY/wvAo7W+ZyiviRBCjDXSMjdEtNa1WuuN1uMWYDtxlhwbQZdirmsLw7++7bnAXq31sCVx1lq/AxyO2BzvGlyKGVRorfX7mEmq84eyLlrr10KWqHsfMxn2kIpzTeK5FHhKa+3VWn8M7GEQZ5T3VhdrPearMINJIYQQISSYGwZWK8KpwDpr01etrrQ/DHXXZggNvKaU2qCUusXalqu1rgUz+ARyhqkuAFcT/od5JK4JxL8GhYA7pFzc9X+HyBeAl0OelyilNiml/qGUWjIM54/1+xjJa7IEqNNa7w7ZNtzXRAghRiUJ5oaYUioN+DNwu9b6CPBb4CRgPlAL/GKYqrJYa10KXAh8xerSGhFKqUTgEmCNtWmkrklv+r3+76CfWKm7AB/wuLWpFpistT4VuAN4Qik1bgirEO/3MWLXBLiG8OB/uK+JEEKMWhLMDSGlVAJmIPe41vovAFrrOq21obX2A79nmBIfa61rrJ/1wLPWeesCXYfWz/rhqAtmQLlRa11n1WlErokl3jU4ALhCyvVr/d9jpZRaDlwM/Ju2BrRa3ZqHrMcbgL3A9KGqQy+/j5G6Jg7gCuBPIXUc1msihBCjmQRzQ8Qa4/MwsF1r/cuQ7aHjri4HPox87RDUJdWahIFSKhX4tHXe54DlVrHlwN+Gui6WsFaWkbgmIeJdg+eAG6xZradjDryvHcqKKKUuwFym7hKtdXvI9mxrwghKqSnANGDfENYj3u/jOeBqpZRTKVVi1WP9UNUjxHnADq31gZA6Dus1EUKI0WxMLec1xiwGrge2BtIpAP8NXKOUmo/ZPVUJfGkY6pILPGvGlziAJ7TWryilPgCeVkrdBOwHrhzqiiilUoBPEf6+fzYc10Qp9SRwFjBRKXUA+B6wktjX4CXMmax7gHbMGbdDXZdvA07gdet39b7W+lZgKXCPUsoHGMCtWuv+Tlo4mnqcFev3obXeppR6GvgIsxv4K4M1kzVeXbTWDxM9vhKG8JoIIcRYI6lJhBBCCCHGMOlmFUIIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwySYE0IIIYQYwxwjXQGl1AXAA4AdeEhrvTJivxN4FFgAHAI+r7WutPZ9G7gJMICvaa1f7e1cEydO1MXFxYP9FoQQo9iGDRsatdbZQ3FsuX8JIYZSf+9fIxrMKaXswG+ATwEHgA+UUs9prT8KKXYT0KS1nqqUuhr4KfB5pdTJwNXAbKAAeEMpNV1rbcQ7X3FxMeXl5UP1doQQo5BSqmqIjiv3LyHEkOrv/Wuku1kXAnu01vu01l3AU8ClEWUuBVZbj58BzlVKKWv7U1prr9b6Y2CPdTwhhBgOcv8SQowKIx3MFQLukOcHrG0xy2itfYAHmNDP16KUukUpVa6UKm9oaBjEqgshTnBy/xJCjAojHcypGNt0P8v057VorR/UWpdprcuys4dk2IwQ4sQk9y8hxKgw0sHcAcAV8nwSUBOvjFLKAWQAh/v5WiGEGCpy/xJCjAojHcx9AExTSpUopRIxBwQ/F1HmOWC59fhzwFtaa21tv1op5VRKlQDTgPXDVG8hhJD7lxBiVBjR2axaa59S6qvAq5hT+/+gtd6mlLoHKNdaPwc8DDymlNqD+Y32auu125RSTwMfAT7gK73NBBNiyLnXQ+VaKF4CroXRz8VxRe5fJzD3etj8JKBh3rXy+RYjTplfEk8MZWVlWqb2iyHhXg+rLwGjC+yJcMFKeOXOnufLn5Mb/ghRSm3QWpeNdD2Oldy/Rgn3elh1MRhe87k9EVa8KJ9vMST6e/8a6W5WIY4PlWvB5wVtmD+3/80M5LRh/qxcO9I1FEIMhsq15mc6wOiGzU/A2l+YgZ4QI2DEV4AQ4riQPAHwW0/8kDcXqt7raZkrXjKStRNCDJbiJeZnOtAyZ7PDpifA75NWeDFiJJgTYjB0HAJlA+03fyaNM2/qMmZOiOOLayGseKFnzBwKNqwOb4WXz7sYZhLMCTEYipeA3RneEudaKDd1IY5HoZ9t93qoeFJa4cWIkmBOiMHgWhjdEiezWYU4vgU+4xesNFvn5bMuRogEc0IMlshv66su7vm2vuIFuckLcTwJncFuc8Cp1450jcQJTGazCjEY3Ot7ZrO511tpSbyANn+++8BI11AIMZg2Pwm+TmusnBfKHzG/wL1wu8xqFcNOWuaEOFZh39DtgOqZ6Raw82WznLTOCTH2udfDxkeJWk7X8EL5Kqh4Sma1imElLXNC9MLtdrN27Vrcbnf8QpVrzZu4NsycU6E5qAK0llxzQhwv3n3ATEUSk5bckhH6dR8Vx0Ra5oSIw+12s3r1agzDwG63s3z5clwuV3TBziNmShIAtJWixHocYLPJLDchjgevfw92vBC9XdnNn9pvjqGTzzswgPuoOCYSzAkRR2VlJYZhoLXGMAwqKyujb0Llq6LHw2m/eWNXNvAboBRMv2DY6i2EGGSBWaudR+Dd+yN22qBsBTjHwb/+F/NL3ImzTGZf+nUfFcdMgjkh4iguLsZutwe/URYXF5s7Ajf25Anw0teJe+Muvc78uekJc8zcnjdlHI0QY03omNhgC3yImRdC3jzzXqANc5vhk+TBlrj3UTGoJJgTIg6Xy8UFF1zA9u3bmTVrlvltMnBj93lBEfvmDmarHApa660xdFqywwsxFgXWYg0EapF2vGj+CyXDKsLMnz8fgHnz5kmr3BCRYE6IONxuN6+88gqGYVBVVUVubi6uyrVmIIe/954U7Te7YAkJ9mQcjRBjT2AtVl8n/eo+VXa46BfypY3o8XLz5s0b6Sodt2Q2qxBxxBrrQfES81t3kIJxBRGvVJg3fX/4tlOvPbobfGgOOyHE8HItNFd4KCztmeTQmwU3mGPoROx7qBgSEswJEUdgrIdSqmesh2uh+a3b5jC7Uh1JMOeqnpu8ssPi28z9oeyJMO8oMsQHunXf+pH5UwI6IYZXIAl4zSbzedFiKLsRFt8eXdbmOLrP+XEq5j1UDIkR6WZVSo0H/gQUA5XAVVrrpogy84HfAuMAA/iR1vpP1r5VwJmAxyq+QmtdMRx1FycOl8vF8uXLqayspLi4uGesR9kKyD25ZxLEK3eaeeRsDjPQK1sB3iNmRng0x9QqFzpeR8bcjRpyDzuBBPMnnU5zAAAgAElEQVRIWi3t7nVw3vfNz+GhPeFpSkpvkM9niLj3UDHoRqpl7k7gTa31NOBN63mkduAGrfVs4ALgfqVUZsj+b2it51v/5CYoBp3b7Y5/E3IthCVfNxfXNrowx9Bp8znAvGvMVjtlN38e7bf1wHgdZTdXl/AckNa50UHuYSeK4iXWhCaL34DNT5iPF98GjmTrc55sfu5FGJfLxZIl5lhhSRw8dEZqAsSlwFnW49XA28C3QgtorXeFPK5RStUD2UDz8FRRnMj6negyEGwZXebPwAQH10IzDUnlWnPb0X5bDxxn8xNmipMNq6HiSUlxMvLkHnaiCAytePEOa0arNj+L864dvM/5cU4SBw+9kWqZy9Va1wJYP3N6K6yUWggkAntDNv9IKbVFKfUrpZRz6KoqTkT9HrgbuJmfc1d0gBVovTvWG7xrIWS4zOWDQrtbxUiSe9iJpGwFLFiOObkJ87MY+AwO1uf8OCYTIYbekLXMKaXeAPJi7LprgMfJBx4DlmsdTOr1beAg5s3xQcxvxPfEef0twC0AkydPHsipxQms10SXgaTBgVa4vr6Vh5Y/2ht+vBZAMWRGwz1M7l+jyLxrzFbxwGcweYI5yzx5gjm8IvBTWuiiSOLgoTdkwZzW+rx4+5RSdUqpfK11rXWjq49TbhzwIvAdrfX7IceutR56lVKPAP/VSz0exLxZUlZWJmusiH4JDNzdvHlz+I7QbPA2O6DMb+n2xNhdn5HlT73O/KNwNDf7+Veb5zva14sBGQ33MLl/jRKBL2QXrOwJ3F65M2RihJWOSNnA7jTvBSDdr5a491MxaEZqzNxzwHJgpfXzb5EFlFKJwLPAo1rrNRH7AjdRBVwGfDj0Ve5Rs2s77m1bcc2eQ8H0WcN5ajHMKioqMAyDiooKc5xH2OzSkIzwPm/smaaR5csfGfiYt9CA0J4og6xHhzF9DxMDEPn5C4yRs5KH17Sn427PwJXioSClxSy3+QmoeCr8NSd4QAcx7qcybm7QjNSYuZXAp5RSu4FPWc9RSpUppR6yylwFLAVWKKUqrH/zrX2PK6W2AluBicC9w1Xxml3bWfPDu3j36T+y5od3UbNr+3CdWgyz+EmDYyUO9Zvf1iMFukcDY21Cl/Xqd0VipCcRI23M3sPEAIV9/rzw9k+g8wiBQG7N/jm821DMmv1zqGlPt3JMKvnMRpBxc0NrRFrmtNaHgHNjbC8Hvmg9/iPwxzivP2dIK9gL97atGD4f2u/H8Plwb9sqrXPHqZjjPFwus6s0mEMuxMEY2SUiZ6MGumQHMuZNxsuNOmP5HiYGKPj5s7pU974NH78DKNztGRjahkZhaIW7PZOCpedFj6+Tz6yMmxtisjbrALlmz8HucGD4fNgdDlyz54x0lcQQiZvwMnCj9nVEvEJFHcM80MLwMgMd8xZYTmjTo5CeP5C3IIQ4VoHP378egMMfA37wa1AKV0oLduXH0Aq70rjSWiRlSRySQHhoSTA3QAXTZ3Hl3T+SMXMnCJfLFTth8AUrQ/JOAbaE+GPZjnXMm3s9vPwNKzkxsPt1WPGC/IEQYjgElvMyvARXdEGDhoK0Nq48Owf31nJzzFxSC9R9ZH42A/9EUMz7qRgUsjbrUSiYPotFl18lgdyJrOMQYd2s0z8d/8Z9rGPeKteC0d3zXMbgCDF8gp9fvzlbdXyJtSKEBq0paFvPookHzMkPYLagCzHMpGVOiDh6Xc4reULPWo0Au14zv8HHCugCY258XlAKkifgdruD0/TnzZvX+7fV4iVgT+hpmZMxOEIMn8gxq2fcZrXUdZmTHVrqwsvXbum5FwxGjsnjQK/30ogyycnJdHR0SFfsAEkwJ0QMfS4/03GIYHcL9GSEj3XDDu2W9Ru4X/oFq6jC8Juv3bRpEytWrIh/43IthBUvWutBSp45IYZVrPFvuSebzz1u2BDREuc3zBmvsy7tCfpO4PQk/VnKK7SM1uZ90eFwSPqSAZBgboAkx9yJIdY0+rCbykBbyw5uDo6vq/TnYhBINErs40eS8TdCjJzIz1/guXu9mU/OyjkHipr2VNzrd+Pa9j0Kkq0ZsIGhESfgZ7jPe2lEmYB+3RdFkARzAxDIMReYyXrl3T+SgO44FXcafWi3yUBay1p7Fggo5gB2IJByuM9p+tJVI8To4V4Pm58EtDlzNdBqlzyBmr//kTU7EjC0Dbvyc2XxRxQkt5zQQyP6k5IktEwgoJP0JQMjwdwASI65E0fMafSxMsFffH/fB3Ovh92v9Rzb1siKi85g80FzUkOvY+YC5/R5wWaDi35hLvothBhegSBu42PgtyYkbXrc/FK35OvgXo/b3YChJ1l552y4J11DwbzsE/qLWH9SkoSWkTFzR0eCuQGQHHMnlqhp9JVrexKHGnGW74qlcq05jgYABaXX4So7n37dpkKWDcLvh5e+bo7XOUH/MAgxIoJfqjoJm8VudPfMLH/7J7iSm7CrAjPvnN2O69PLQb7w9ysliaQtOTYSzA1AIMfctn+8NdJVEUOsvLyc7du3M2vWLMrKysyNoTNYdZzlu2KJnA0379r+V6R4idki5w857wk69kaIERNITxK56os9wbwPBFrPdSonZ9SDsjP7374lPTcRBjSLXwyIBHNH4aN33sTw+fjonTdl3NxxqLy8nBdeeAGAvXv3ApgBXcchzNSMfvNnx6H+HfBYssG7Fppdqy993Qzk7M4TduyNECMm9AuZzQHTPgVp2eYXMyvQq2lPZc3+ORjajj3Bwezck0e61qOK2+1m1apVGIbZS9HnLH4xIBLMDdBoGzcns2sH3/bt26Oel5WVmTd0h/Po1lscyGxU93rcm9+mkkkUz1uCq2xFTyqEE3jsjRCDZcD3zb6+kNkTcXdkWeu0guEzcL/4WwqSr5PPqyUwYzWgv7NV+5OjTkgwN2Cjadzcljde5s0//A6/348jIUFaCY9R4KaRl5cXbJEDmDXLuqaDtd6iNTvVnXwKlR0p4Tcp93rcq25mtXExBq3YN+1h+YWLcB18mbhrvwoh+i2QlcDX3Y3NZuPcL9zK3PMujP+C0NnkS74ee/vy53C99wL257Zg+Azs+HAd/Cs88rhMWrIkJyejlIo5WzVewNafHHXCJMHcUTh56bm0NTeRmpk1YnWo2bXdDOSsbzpGd/eItxKOZaFdAHa7ncWLF1NZWUl6ejoAa9eutW40x5jvzRpI7faNZzWXY6gE7PaQ5JiVa6k0cjGwo7GZ315f/CUu/b75+k2Py7qsQhwD97at+Lq7QWv8hsGbf/gdEycXx753xprBHsgvZ22v6cxiW851kJbL2Su+RMfWl3Ed/CsFyR5zRMYJPGkpdFWHV155JRjI5eXlsWzZMlwuV68BW39y1AmTBHMDEPqNDq1BqREbN+fethW/v2c5KWWzyezaY7B58+ZgF4BhGBw6dIi6ujqqq6vZsWMHSqnB+WZoja/ZzAx8OED3dDcAVHrySbZ1Y/cbGIANhUen4iYfF7UndPJRIQaDa/YcbDZb8Iuw3++P/0U41rrKroU94+TaUnh6/wyMfRsAsDscXHXr9RT8/XEzkDNPcEJ+ZkODNKVU2N+rgwcPUldXh8vlCgvYfD4fr7zyCvn5+cybNy8s/5zNZsPj8eB2uyWgi8E20hUYSwLj5QhkqdY6OG5uuLlmz8GRkABKYbPbOfcLt0qr3DFoaGgIe37o0KGw8R2h3wyPSfIE3OSzidnBTTabjeTkZFavXs1bG3bzijqbC2amsWBmEdjsbOAUVvNZ3OSf0MlHhRgMBdNnce4XbsVmt4NSOBIS4n8RDkx8UPbwz5613Rwn1zP8wTAM3I2G2bWq7OZGe8IJ+ZkNDdJCA7mAwNjkQMAWUF1dTXl5OatWrQJg+fLlLFiwAIANGzawevVq3G730L+BMUZa5gYgMF7O12Ut4aRU3HFzvQ2wLfe08a/mVs7ITKMsI/Wo6hJIkyKTH46d2+1m//79YdsmTJhAU1MTPp8vuE0pRXJy8jGcaD28cieVeg5+bATGwJ166ql0dHT0fDs1NNu7J5GVlYXhdwM2fCgqCy/DdcEVJ9w3fCEG29zzLmTi5OKo+2fUvTneOFlru+u9F7D9tQK/YQYrNqU4svUNamwzKLDZwfATlc7kBJGcnBy2PFekvLw8oCdh8Ntvvx02VtkwDDZv3szFF19MZWUlfr9fult7MWLBnFJqPPAnoBioBK7SWjfFKGcAgaav/VrrS6ztJcBTwHhgI3C91rprqOtdNLeUfRvXo/1+bDYbZy+/OSqQ6m3Zr3JPG5+r2EO3X5NgUzwzf+oxBXQSxB27ysrKsJuOUorFixcHx811dnbyr3/9C7/fz8svv0xubu7AbyTu9ebi24aXYtzYWYgB2DGYl5dAHeGDg/ft3YsKm++gSD71c+AqO+b3K47dWL1/iR6R98+49+Z442RdC6EjHfW3LQT7VP3/n703j47qvNK9f+85paE0lQRCIyWEAIHADMIyGDA2xo4N2I6dwUmcL27I4MTdfb9eyz3cJF9P7k4P6b63O7e7VzrpOBM3YztOu20z2QaMjcEICw0IIRAgJAoNJQlEaSpJVee83x+nzlGNkgCJyfWs5YVqOnWqXO8+z7v3s5/t53hDGycaLvJQ3gyWZXUahuEfwTKr1+sNua0oSkiG7oMPPiArK4uKigqcTidlZWUhZA6guro6otwaH/MVHTezzPoNYJ+UcgGwL3A7GrxSyhWB/z4edP8/AN8JvL4X+PJ0nqxJ0M4dq0QGfpBSSrz9/RHPjWZfYuLwlQF8ukQDfLrk8JWB6zqnyldfpr2pceInxxETxcXF2GzGvkZRFEuY63Q6Wb9+PSMjIxbJMneLVwVTLH3uAEgdJ51s5bds5DBbeRU669izZw+6rgdydRIJ6DJIEylERHCM46bitopfccSGGUf3nG2+6tgcql2WGCtYoCPY1zmP9qF0UNSPZJnVjKtCCGw2G1u2bGHevHnW47qus2vXLlwuFy6Xiz179kQcQ9d1Kwu3detWNm7cGO9ojYGbWWZ9EtgQ+Hs7cAD4+mReKIQQwEbAtNLfDrwIfG8qTzAYEXq5KCVWs3MnLSc/pn3J2sw0EhQBgd3f2sy0azqf8bJ/cVw9VqxYARiu5BDcvToFQcNyjw+YDReW4+w8gVPvAjWRg8xG084ARkFGQUcirOdLQBWSYvvQ9Z9LHFOF2yp+xREdwXHUk1+M7eNfAklkbA62IQnKsFlWVb5RFKmjIwyfOXsaIylpHB8doKD87o9UVi7YZiR8Jmtubi7nz5+3CLBJ1oAQjbIJIQTDw8NAfNzXRLiZZC5XStkBIKXsEELkxHheshCiCvAD35ZS/jcwE7gipTQFTReBwmgvFkJ8FfgqQFFR0TWfbLC/nKIoLNnwMZY8sNEiUOHt1Y89/wKjXR0RerYKRyqvrJh/3Zq5W828+HZF+P+3vLw89uzZE9Imv3z5cmpqaqz7TMI3aRSvN1zjNd0QQ2/6tnF/y0Gwz6S48yKqIoyHFcFqvYYTci4eHIEDSFbrVTh3/zvkxm1JbhHcVvErjugIjqP5HS38dd8FPMtXh8Zm11H46eNj9iRB1kCWdvnwbpynv0vPUAJvepYxVFQKQuFD8lmSNHtyc5jvAESzGVm/fiwr6XQ6WbNmDYcOHbLus9vt5ObmhnStOhwOLl++jJSSQ4cOkZWVRW5ubtw8eBxMK5kTQuwF8qI89KdXcZgiKWW7EKIE2C+EqAf6ojwvqtJSSvkD4AcAFRUV16xEnajhINwPZ0CH9Z/4zLW+3YQw2+s1KVHitiTXjLq6OqvJQdM0GhsbI3yN1q9fz7Zt264zkMixf90njVFg9pmw5xs4tVG2Kk5a7v469rxSdu80bEmC0cks0Eag7ldxMneDcCfFrziiw56ebmhVhaAjv5ihwrlsCt9k1/3KWHsQdQ1a2jvXfRQc+hdc9R4+FAKEQEeh5fCrOBet/Eis2/Dr4IEDB9iwYUNIzExOTg55jdfrtcqopifdzp07Q55TU1OD2+2OmwePg2klc1LKh2M9JoRwCyHyA7vafKArxjHaA/82CyEOAOXAb4FMIYQtsLudDbRP+QcIw3gNB5MVaE5lAwSIQNk3PhngWuByuaipqbFuK4pCWVkZra2tEf8fryvF33LQEEEjQfPj2vm/aJEFFHMRJ8OAxKm7cDo6OHi2C00axVYDxvW7jDMht+OYftxp8SuOULQ3NfLO9pfQdZ2OvCJ+8/g2/H0aP6w9GxaXw9fcOGvw9G6WJeRQw3KrwalYtkLdLz8SZC74Oiil5Ny5c7S2toaQL1NLFy3GAhw4cCCiCzY9PZ329vZ4N+s4uJll1teBrcC3A/++Fv4EIUQWMCSlHBFCZAPrgH+UUkohxDvApzE6wqK+/kYieGcxXvYmuAGCgMj2WsicIbw1TS+1eJn1GmC2u5soLy+noqJi6tP5QUO6XeSzXT6FhoqKxlZ+i1O4LQ+r4lP/gspcNIugS9ZRTQUNxnOWf37ct4rjhuGOil8fRQTroC/kF+NDGD2p4XF5+eeNySuaz5BJxFqDLQdBajjpYCu/NWYrc9Ew+/6IbLij2YyEk69Y10qzRBtuB7V27VoWLVrE2bNn492s4+BmkrlvAy8LIb4MXACeBhBCVADPSym/ApQB/yGECCjH+baU8mTg9V8Hfi2E+BugBvjRjf4AwWhvaqS9oZ55S5ZSMA4B8Pj8ljG4KrjmBohbaUbs7Yri4mKjVB2mhZtyoa1zlaGTa3yNFv8ytFZpjOoCWpiNs6AAV/nXaWkZobh4Pdva/g91GMR8+bpHcS56/PrnwcYx1bij4tdHEWYMvTAjn770TGxC4MPIu3l8/qAnroJtOydeg/aZGKRN4qQjQOIANYl2x324Xn35I+EJatqMmI0O0chXtBjb0tISQuTmzZsXUqKdTLLkowwxnqnfnYaKigpZVVU15cd97xc/4cPXf4tmT0VPc/DoM8+SXVQc8cP7WVsPf9J0MeS19zpS+bN5BdeUnRvPmDiOiRE+j3Xbtm0AUx8wguY4uhSnkZnTpZWZQ0lgu3jauE9V2bo6G2fnm1D2ZHxA9xRACHFMSnnbG/RNV/z6KGN3fQNf6x7BLwxZQ/Ccgs3ZGfx+Ue7kYrPVJDGCi/zAZkxQmFdIj3cGJz6sQ9f8CEXh4S//Lsse3jwtn+dWQPgYry1btlBRURHS5RottlZVVbFjxw7r9uOPP05FxW2/bK8bk41f8QkQVwnLfkSB0a4ORoYGLSJndjC9/vY+FFW1diWmXmBntyfieEc8g3yi5iyvll+9ds4kcA3v7qfh3f0h3bVxTIzgMqumaRw6dCgklT9lItug+Y5O3cXWu1Np6bhMcdtrOOngoL4aDd2wNNA0WpKX4Hz2+et/3zjiiCMmju/dzX9dvIS/aAmRw6Zgd08f71zun1DX7HK5OP7GDtRLi8hNHmBH8hY0jPFUVe2SlAunUDUj4yR1nb0/+h7ZRcV3XKw2r40ej8fSzIHR4BCtyzU8tnZ2dlp/x301rx5xMncVCKnp6zpJ7gskXukBwJ+SDkIBIayLMozpBdwZM7Cr0XUTPnlt2rn2pkZe/qtvGroPoOHAXj7zl393xwWJ6UJwmRXg9OnTAFMvsg3SzKEmQt5y4BJ07gZdxS58mP7AUkprZNhEO9k44ojj2nB8727efum7pOc6UQpKkbYEpIiMz74JdM1Wdt8vIGMDtoEraEnGzFcAhHFtUL2D1mukrt9xGudgsqYoijXtwSyxhne5hsdWl8tFdXW1dVsIgcfjweVyxWPfJBEnc1eB41VHx2r6QjCSV4Q64kX1DmIb6mdUGtIYRVURQlg/5r7cQp4NdLDagBkJKl2+MfOJBHFt5sGuhvoQo0VNi/vNXQ2cTifl5eWYpSsZsHkBouo8rplcBc13dNnvYvueD40dqvIptt6djJfZUNVkPb2zs5MdO3ZQU1Nj/IYUwdbyZJzLN8Q1c3HEMQVoqjwMQKHbxYOHd7F3/RMg1JDnKEQxDw5DS91BNM1vkTd/eiZj3a6G24BtKHSShGpLuOM0zsFkTdd17r77bhwOR0isVFUVv98fdcZ1XV1dSDOaruscO3aM2trauA3JJBEnc5NEe1Mjp3a+CgUlxsIVAuTYrivNZmN2aiKO0sUU5OTgPn+Ofp+f9AQbVf2DVgerCnw6PQn/lUu8b0tjTkbq5HUZQefiaqjHnp5utIEHCKaqxhshrhbLly+ntrbWSv+vXr2azs5OysrKInaOZlZWURRLBzJpBOY7thw8OLZD1aFuYCb0N6MqCnqATJoGxSY0TaOlai/O2n82SGGc0MURx3WhdPVaWo8btkTDySkIYUxaEcB8/xCfmZmOnJkzvrG76yjFNf+A0J9ECqxrgq23O8DtBGsfeICU8ruwp6fjPt8MYMlh7qTMe7g11/Lly0M+k9PpZNOmTezatcsa4wVYzgHd3d0Rx4zbkFwd4mRuknA11CMG+0i47MY3M8/wd5M6tiFjNmvBwjKe+pM/o+bQQd789c9R+j2o3gEQgrPnXYj7nkABbALcB94i58olNpragaskcsFjvDZ+8WsRQSKOycNsk6+rq2NgYIAjR46g6zqtra3k5uZaQSS400rXdXbu3Bny+GQxFvT8KFKn5tR5dBQUdO5eVAJpORw7dizkNSoaxVwwyrQfwYHdccQx1TAbEJoqDzNasYoPFIOIKX4fq3b8Av1yhzEi0ZEb+yAtB3HqLu7zHeJg4rpAQk4ibQkkXu5E9Q7gr77M6q+9ELFmJ6Mhu50wnt2IeZ/X67V0dLqus2PHDqscGwtCiLgNySShTPyUOMBoY5epGfhmBBa3ECS5XZYWIjUzC5fLxRt79zM8I4+hogVo9lTacmaz995H0aQxbXMZPnRND9l1XA3Cx3h5+/v52HO/z5IHNuJqqKe9qXFqP/hHBLW1tZw6dSpC12GiuLgYEaSpkVJSV1d31e/jdDrZuukeNopKyqlHR0GioKPg8HWyPC8BVUiEMMoSFYuK2KruwCm6LC+6OOKI4/qRXVTM4NJ7+Hc1E00CUmfjoV0UdLZaIxLHRUAL+1ByDSV9JywDdy09k6GihWj2VOg+DT99zOh2DUI0DdntDqfTyfr16yN84/bv38/27dux2+0hMRSISuTM55gVkNuZ5N5IxDNzk0RBaRmLHvsEH9YZC1wIgUhIAiFQVRtLHtjIuZYWY+chBKDgT0nnYkEJfsUGQqABVTKBmmXreOL4IQqH+q5612GOn0EIy18uPFv39J//bTxDNwGCbV1a3D0RQ57DNXNOp5OFCxdy6tSp635vp/cETllJFWVIlgISicCekoZzz1a26lm0CCfF934Ssgpp6d8E6RrOdZ+JZ+XiiGMKYMbM3fduwlfmDDSuCc4XLWDF6WOT8+4M0sLOPDlCc/vIWOMDoKWksySty8ioh02AmOzEoJuFqbC9CiesXq+XLVu2sHPnzogJD8FYu3YtIyPG+LTc3HEyo3GEIE7mrgLLKlZR09BoLcBHn/kCo10d2NPTcTXUk5aTbxj5Bvx11jz8CP7EDN5TxhKgEpCqiv3u1WwtKbiqXUfw+BkhBMXLVwKGNYl/dBTA2lHGyVxshJPf+59/IWTIc3l5eYTmA2DdunWcOXMmwmT4qhHY0Xv9qRi/CAWQeC+3g38EJ+04ZTuuQxfZzifQSDI86eb3Et+kxhHH9cOMmeGk4mzRQlj/CE8//NDkYmiAoC078BzHeAJdGk0UAp1NGTWgQ2XPbJzdwxQEv2ySE4NuBqYqORCNsJqfc9euXVbDWV5eHm1tbdbrRkZGLB1zvAFi8oiTuatAtAUY/sN/7PkXGNCxfOiU/EJEnxYyzU8Vgs+vuOuqtHIQOn5GSsnZD49w7thRgkfFKIoab4KYAOb36E+yM5KaQXPNMSqKZ6OlprOsYlXMwOF0Otm8eTONjY0hDRJXLWQO7OiL6w5gq/ai6Zqhi+vYAULgkvm0MBsPGWioY9MiGo/hrHh0Cr+JOOL46KG9qZGGA28DsKSpluNl9xjxWQikovCWTOJzV3PAgHbui+IV6ihj0JeAY7ADVQ7wG/dSNKmg7uvk6XWNIaRoyifNTAHamxo5/Jtf4vf5QMprSg4Ex0Pzemm3261Ssjky0ZSp5OXl4Xa7rc10R0fHuDYmcURHnMxdJcIXYLiGbbSrg7ScfN789c/RJHTkn0VZswlNjGXnFicqeI9X4wq7+E9ECszxM+ZCA8OzyIIQLNnwcDwrNwHs6emGyfPsBSAE9V2XSTlWSZJ/hPIli2O+zuVysWfPHjRNsxokgGsTMjtX4XSuYiv/SEvVXoq5gFN24Sp6iu2t+WioKOiIgJmwgk5x2d1T9A3EEcdHF8ZcayNuds/IJdU3wkBisvW4lFfpAxfItDs1N+rgAD/3bGTYsRrFP0pishvVO4imTXxMl8tlEZxolYHphpmYCL6+XG1yINpUneLi4ogYCYS4CGzatInOzk5qampCsnSKotxyJehbFXEyd50wCdaILQk9LYOBxBQO7d2PPiMPgFmjI6xrquPgwhXIQAatdtjPvzWdZdm777Jp0ya8Xi92u90iCrFIQUFpGU//+d/S8O5+6ve/GUHkbAkJLHlg4w377LcjzFL16Iy8MYsZwJeRha3r4rgBt66uzupo9fv91NXV4XA4rmsX6Vy+wbAcCYz6OuBfiUaPYTyNYpyeBBQb5MYmmnHEEcfkYMbsY/OW8/b9Hx97QOqomsbSs8dxPvI/ruKAY9q5vXvPM2SfCYBOKv60TFJcZ0jyj4xLioJJEEBNTc30jReMdQ5BlZ8xXN24z7q6uhDD/Fgxsq2tzYqlpp7O4XDE7Gy9k2xcpgtxMneV8Hiq6e2tJCtrNQ7HSgpKy7j/+Rd4Y+9+dCl5/8MqK2VPoBlicWcr54tLcSWNlVWbZxWwuLOVH713iDZHNoWeS+QG/cS2P8sAACAASURBVLhjkYKC0jIKSsvInVvCvh9/H6nrKKrKkg0fi1uTRMHxvbtpqjxM6eq1LHt481gmNSJGiXFFzy6Xi5qampD7ampq2Lx58/UJmZ2rYNO3cdW8zfaO+fjbTL8lg2Sa56lLGS83xBHHdcLjqWY0sZLH/ucX2N2RM9awICWZnss8/u6r/M7jj1NQWkaVZ5DDVwZCvOZiNgY4V9HuTad1+EeQTMgEiFklTmbnzRn3vMxmARPTOl4wCO1NjTS8ux+A3LklEZUffQqmVYRr54aHh0MayUz7EbfbHaFhvFHfw52AOJm7Cng81VTXPIuuj6Ioiaws/5lxv28HaWkD9PXPiuzSCRC6j2ck8d2RsbtLutvpTMvkjWXr0BWFY7rOE8cPkd9/ZVKkYNnDm8kuKr7ujqM7GebIHsAyCDV35Yn9vfgzs0EIFFXl7nvuYdmq1TG/x+A5riZ0Xcfr9UbVhUw62LiO4tr9HQ5o5fiDmiGwLEwN3Iodb3HEcashfLMd/lhw/P5kyc+odQUeFILPJ/j5yu/9D4vIfTowtSdBEbyyYj4F7gvjNga4GupDqyWBa0H3xU56G05y8r19MZsJTNuO4OvH6dOnrdvToR0LHwep2hLY+MWv4j7fTMOBt43pM5Pp6g3C8uXLLdPzYPPgTZs2WVrjxsZQ+6z8/HyAiPtNTNuYxTsMcTI3CRzfu5uj7+wnY0ELM50jICS6PkpHx6u0d7yCrvu4a5lC/fGH6e+bNfbCQHZuTmEBX1xbQXFbD6+43NiPV7Gos5Xq2fPRhYIUCrqAdkc262bNYMOGDZP6sZpZujiiwxzZE3x72cObefrP/xZXQz0dA0NcdHdTVlbGQ489Pu6xzN2lWRoQQqCqqkXgJlMmjwZX3QG2a4/jR8UgbzLoX+OvhbNU1q2+Jx7A4ohjHETbbAcTut7eSnR9FNDRdR+P2Cqxlz7Nzm4Pj81y8GzhCuu5h68MWFN7CMxnXR2mjzYzVlVVVTQ2NpKWmIBuD4z+Mi2qpMSvJqJK0Hy+qFkuU4sbngiQUlqea9OxmYsYB+n38eEb/8U9T3ySJQ/8/aQTBeEl0G3btoXcdrlc7N692yJi9957L+fOnbNeb2rqgmNr8Hcx3d/DnYI4mZsAx/fuZs/Pf8pQUSnpl2aRWagghI6U0NlxBF0bRSgghI7D4TbIXJDXkGqz8fAmw2382cJsipsb2d/RggQKPJdQpI6ugyJ1Cj2XKLt/bfyiPUXIKS6xMnLmbTBIsLu7h9qat0EIDlYeZUamg/J1sQ15gzuZ7XZ7iM7RnDd4LbvoFmbjZwAjI6cTSuSMDN3Zbh/rdv9PyM2K+8zFEUcMhJK1UZqb/5WSkj+wCF1W1moUJRFd96EoCWRlreZZRzbPFmZHHGttZhoJioBAZm5tZhoFgay+5vejKCp9Pd3s27mDgx9WBV4lg0Y9SiszJzSf8aiU2NPTI94rWIsLhuhfBhwLTPuOTZs2Tfl1wblkacg4SIArnR28/dJ3+dhzv8/qT3xmwmPEmmQRfK7hOrqWlhbWrVtnjU30er0hpHLmzJlcvnw5pBIynd/DnYL4BIgJUL//bfwp6SAU+vtzqD/+MJ2d8xEC/HqzMUtZBykFHk+e9TpVVSmbP4975jqNsV4BFBcXG8PcpSTPc4kn6g5xT0sjTxw/RG7fZfbs2YPL5Yp2KnFcJUaGhmLebqyvHwu8Qhi3J4DpcF5RUcH69evxer1WEA7eSV5NB5Y9r5TQjBzWvwaVU9BQadFyjFFeccQRR1SYZM3cGF3uPcix6mdoa/sVAA7HSlaW/4x5JS9EZO3CUeFI5ZUV8/l6ST6vrJhPhSPVakBbuvFRQFJz+H0OHXp/TNhqhgDzdmBTL9UE67hNlYdDpvSEa3FVVWXLli2UlJRY90kp8Xq91/y9xEJBaRkbv/g1hBJJA8KrGrEwmUkWAwMDIbfb2tqorKxkw4YNVFRUjF0TA7h06VJUU+Hp+h7uFNwUMieEmCGEeFsIcSbwb1aU5zwohKgN+m9YCPFU4LGfCiHOBz22IvJdrh/tTY10tZxDaMYFOz29C4fDHTg/OZaAEyHJOIR3gNK5WXS++Sond/4Xv/nWn1oL2Ol0cs9cJ0k97SS5L5DnucRK1xny+noBY+dycOcbtDc10t7USOWrL8dHdF0jhjy9MW+XLV06tnuWkrKlS6ntquWH9T+ktqs28mCuo3Dwn0LG8oSP+LoWjAUng9CZdiQqOipa4G+NYi7GR3ndQrhdYtidgnHXZgAmWZuRtc66T0o/p07/RQihKy7+XQBaWr6Hx1MdcozgmFvhSOUP5uRazQ+AVXIcTUhmyDkfPSHJeJ8Ak1MCs7qt7BySxBGvdYFora8NuR6Ea3HLy8upqKhgw4YN2Gw2S84xXaVFb39/VOJUunrtpF5vyk9inafL5aKpqSnidcHEz+l0Ul5ebj1mno95zPGOH8cYblaZ9RvAPinlt4UQ3wjc/nrwE6SU7wArwAicwFngraCn/ImU8pXpPElXQ72R6lZtpGd0s3TZXhRFQ0oVIRRACyJxOg5HJ/2eGSRc6aa5ZghVTUQdHY0wXly2ajWn33zdENKqNoZyZo99bk3jYuVBXj74FiDQde2WG9HV2eyhramXwtIs8kocN/t0YiLFkRXzdu6sbJbmzKBv1MeK1fciFqTz3FvPMaqNkqgm8tIjL7EiJ3B9dR2F7R83xvKoiYYNwTjlTl3XJ11mtdvtgb+MzNwaqkjOzKc4uR86j9PCbIq5iHOGPV5ivbVwW8SwOwG1XbWx12YYHI6VlJT8Ab3VHyClWT7UOd30ImlpC3E4VsbU1k1m8oFhOLwXv2MmAX0NoOPTvaS5u7CNDDNUVIrZyKR6LrP83rV4ujppra+NMOK12+0hZCovz6ju3KgJEc4lS41h90FlzhRHHkKdNc6rgl4/wXnW1dVFtRsJr14EN06AQeRWrlxpTdmJ25JMjJtVZn0S2B74ezvw1ATP/zSwW0o5NMHzphRm56PNO4jD0YmiGORNUSR9fVlh9hYKA60Kie4LjOYWMZI2i6GiBbiKSqlc+QCX5y+xnmmm69d95gskbXqKmqJSOjMMopHguYQ61I+maWh+X4jYFrjp2brOZg+vfaeGyteaee07NXQ2e27KeUwGSx7YiGqzWXNsTQ8+M2ifO1aJu/kMzTXHOHLsLUa1UXR0fLqPKnfV2IFaDoI2AlIDvxcO/R/ACFSxZgyOkbTxEZ6ZGyEJUmdBZhFOOljPhzjpgN7WiGHdcdxU3BYx7E5Albsq9tqMAodjJQtLXyT48ialTm9vJRCprTt+6Ifsrm/gO2cvcmFGvhVz3z51hn9tdVPlGbSOYxgOa9iG+seMdYWkKa0aRr34UtJR+y4Hni3QHDNR0hNY+/TnsSUkIBQlpEM0vGwYfDt8cP10oKC0jIe+9HxIqXXI08lb3/8b6t8Z/3s24XQ6KS4upqWlJUIiFF5iNVFeXh7yucKzc7qu09vbaz023d/DnYCblZnLlVJ2AEgpO4QQORM8/3PAP4fd97dCiL8A9gHfkFKORL4MhBBfBb4KUFRUdFUnaZIuV0M9InuQfl8j4EdKlc6OeaSm9iKEhhAKuTkvUD+rB7/Xbe3YOjOy2XH/k+iqygc9o3yvqZnHSsdE+O25RfxzzRlG03RUvZQnTxyh5OJZhKIENARjmTnnkqVTNjPvetDW1IvmNxpANE2nran3ls3OFZSW8Zm/NLqyzPm5YATkEVsSQ875IBTquy6RWttM/rJUOjOHSFASqMitGDuQfaYhjDRxaidU/RSIFE6DUSbYs2cPubm5Ewag4uJiVEVF0zUUdGpYgt5uQxUKn/Z/gblKFUnKKUAapDKenbtVcENi2PXEr+nASGsfI80ekkocJM3JuCHvWZFbQaKaiE/3Ra7NGCgsfAaA000vIqWOoiSSlbUaCG6EGEX3S/YcHWF7whB6cjbK49v47I6foqgq/5JRhL+5w7ImqXCkWht8Rryktzcza+P99NtO8MT5S5yfswakMqadC5RamxuqSBseYNknPkdHVw9lS8c6RIuLi7EF5nnfjDJie1Mj7vPNCKEgCc6gaZz58BhLH5z4u47WBAHGZjdaiVVRlKhzrfPy8owsYSCT19zcTGtra9xXbpKYNjInhNgL5EV56E+v8jj5wFLgzaC7vwl0AonADzDKG38d7fVSyh8EnkNFRcXV2VkTav/h8Synt7eSkyf9uN2XGBrKwpHZiT3hLg4f6kbXdEiZYe3Y2h0z0RUVHYFP13npUCXL7AnWD/PwlQH8EsOaRBWk3rOGRXPyUQf7WbbKCDzB7eGVr74ctTX+RqKwNAvVpqBpOqqqUFgaIRW6pWB+Py//1TetYLPxi19DT8sIKpMo+JNSeH7GZ+lZnkpFbkVoGcd7KfLAja+xfMO/Ul1dHbWMMOmOVvfJAFEUSGxGOJWg6Tpn5WrSRz9BduKfkZTYEtfM3WDcCjHseuPXVGKktY+eH9Yj/TrCppD9laU3hNCtyFnBS4+8RJW7KnJtjoPCwmdIS1sY4TtnauuOH/ohDW820ZS/EE1RkEIgbAkojz6FIzcPf58WYk0S3AThaqhnuCCZPz7zLUa9w5QllbLIqxgxxWRzgetAT9cI+7uOM5J3BYRCc8+7ZBcVW12fwWVKgIMHD96QkqI1vmt0NMqjKgvumdz4wPAmiLq6Ompra0M6dE0oisKWLVsiPptpzxLewRr3lZs8po3MSSkfjvWYEMIthMgP7Gjzga5xDvUZ4FUppS/o2B2BP0eEED8B/nhKTnocGF46gxQXP87SpVBV9RP6+7Lp98wksf8yumOGRQxsvd0o/lE2zl9AjdSRUqBInbzeLurq6qwfZnD7uwoMHD3Mh55LKEKQO3ce5evWhw5mDmqNv1ozx6lCXomDJ18ovy00cyYa3t1vtd9rfj/u8808+rkv8Mbefei60QCROOJl1apHopPj4vXGOC09KDiVPYnT6WTlypVUVY2VI0xbgUntsqt+SsvOX6LJewElIKI2RJgCQb4+A4nKSP5Wkh6/O56Vu8G402LY9WKk2YP06yBB+nUjQ3eDsnMrclZMmsQFw+FYGbVr1eFYybz5/y/Vv/pTimhF1XWkopKgCD67zhD//7D2bIg1iQnT2uitd/6bQpuDc7OGcSd3sxA9IH0VCIysnDLUjzriZahoEebaDicoJqmrqqpi165dVvyY7oyUq6HemPYQBEVRyV1wL0sf/NiksnIQOeEBCLEaAaNLt7y8PObM2ZaWlpjkL970MDncrDLr68BW4NuBf18b57nPYOxiLQQFUYGhVTkxXScK0dPIq0qKqPngEOpgH1pSCjjGMnLqyBBdScm0tXdwX/dlBh0zKfD0WB2rJsz2910tbXTuf5Mcj5EB0nWdN3/9c3JnZYeQi+BdYXDZ8GY0RvRfHubUEeN6dCsTuvamRrrOn4u43/SUq608QkZiAmu+8Ezs79G5Cr6429DK9XdC+e9AxTbAEO6GD4z2er0T76xdR2HXH2GXZpAPTbos1HLJlakINJIKlTiRu/VwW8WwqUBSiQNhU6zMXNItvO4ng+B4+nBeCsdGdZxt5ylwJ1JQWsYrK+ZHjPOq8gzySt0Jrhw9Rp43jRVyDZIPGLL1ktTahJaejZaZjRTGqtbtqfgc2SFzoM3xVcFwuVzs2rXLykzdiIxUtOaHzPwClj74MUZHsmk42MbwoG/CTXu07KIZExVFGZfEmYilMQ7X1sURGzeLzH0beFkI8WXgAvA0gBCiAnheSvmVwO1iwAm8G/b6XwghZmGsl1rg+ek4yWOtvfy2+iKq+xRq2NzUZatWc6H6VySXDHN5eC4jPiyNRPus2fzXA0+hKQqqrvNE3fvkDVyxvHRcLpf1A61wpOLtc7MvQOTMdnZloC9qGdW8fbO0c53NHv77n6rRNIN8nDrcwVN/uPKWJHRWGSFo96naEljywEbamxrZ/5P/YDTJzuURL2seeXT8gzlXwed+GXn3BN1cMQdEtxwEXceLHYFEWmO8dGxCUGHbQQbH6LZ1cFT5PMVBv5k4bgncFjFsKpE0J4Psryy94Zq5q8V4I73CYcpo2psaafrHP+eS389vbDaWPvcN9l2yG4m2lYngSOVnbT1888xF/Hoi6or7eOL4IfI8l5ndl0dSop2EoUGShoYYTEpGS0m3KjVGSNdBGBYba9asiVjL4RYl0QjfVMNsftj7o+9ZY8gut7l46/vfIjH9aRRbAQC2BIUnXyifkNDBWNdpuMH6RPB6vRGTHxRFsbp745gYN4XMSSkvAQ9Fub8K+ErQ7RagMMrzNk7n+YFB5J75wQeMapJFvm7uTdVBCKSuk6ZAaq6XeY9fQMpR8vQO6o+n0teXjZA6p4pK0VQVhEATgubMmTyYN4Om861UVVVRXV3Nli1bqKiooMozyDsZuXRnZTOrtwekJMl9gcTR4ZAyavCAZ1eMsTI3Am1NvRaRA9D88pZtgjC/J3O0zpylK1j79OcpKC1jz89/Sn9BCQjBiJR88NabfKq0jNqu2qvW5phlEpfLFaJ3GU8YzEAWy9UiirU2VAxtjoJOuTjN8se+gjP3MVx1B/hVjRPt2BnU2ua4EPgWwu0Qw6YDSXMybgkSF2udTjTSKxYa3t1vacf8Pj//+NZRTjiXolwe5ZUqF3/xOyv5Zkcn/kAZVRMK7Y5s8q70MJhwhTWrN9PWsBNfRjZ6SrpRUA14WCb2XUIdGWI0vxiAI0eOMDIyEpKtMhsh/H5/TF3ZdGDZw5txn2/m+N7dQfdq6L6LFpmbTKNbtFhnjumaTNXCNA7WNM3y7tR1nd27d0+qkSyO+DivmDjSfAlfgLTkeVqwX2pFS0nHNtRPz8lcsgoVwBfInus4MjtBmYP/RA3SWRpyrKzZRRSkKjSebQaMH+mOHTs41HWZf07JwS/Btvw+/rDvIr7XfokY7IeA9gCI6GJ9cOtzEdq5YLI3ncQuOTVhzA8TUG3ilm2CCNcYmkQOQEtNDyl9nDnVyLuVrxuC5lh+Vq6jRkateH1E2fPtt9/m8OHDSCmx2WzWzjRcGBzspVSjfIptFclszVtOS+clw09u+Z9Yx25pGUHT98eFwHHEEYTxfOfC56/29lbGJHNmzLSnp9Nw4G3r/rbcIuoeWItUArq34yd4qfk9tOSxuK4KKG5pJMV1huX+BDZ+diNntvo5eKjFeEIgSCrDQ6jDQ+jpmcCYqL+qqoqampqQEmTwMPqKisnp1aYCuXNLwu5RUBLGvE8n0+gWaxKEeZ/f72fHjh2B46ls27Zt3FgWPBoxWGceR2zEyVwM9HvHSnMSUL2DCMCfkk7fiI+srPsBG7ruR0qFK1dyGRoa5okv/R6pbR2clDo6CkJK7spIpe3C2Yj32NfRzejcbKQw2tkv2pLIHxpASomu61bGLXTX6MN9vtnSepjZO5PsKYrCkg0fY8kDG6ec1HU2e3j/5TPWDOniZdmsfHTOLZmVg/E1hssqVnHseH2gAUJHGfBQd+AtRvMMP6tRbZQqd1VU42CX4qSl/OsUL19vCZcPHTpkva/f77fKDeMJgzVdp8WxhvUV64kWqsJffycKgW/UJiSO2x9mNq59oD3Cd85cp9Hmr0ZD8AZZCGHpxtpynVSu24JUAxs9XSLnXaLVpyMTi0EkoArB14a6SDt7HH+SnWFHNsf3v8Gmnn+mZWQD5+0ZY/rpoX6K73sIf6ZRmQlZ/0GkbvPmzezZswdN02htbZ2SbNRk15b7fHPI7dlL7qPbJfB7j6ImOrnv/9kwYYyPFavM+4LLp5qmsWfPnpA5q8Fl5ljenXGMjziZi4JfVl7g+++N/cDtJYsZcQ/ic8wEITjZ28+qvlm0Z36OjpPvobgXMdCfA+gM6HDvo48hqs9gDHkRfM+r8PF2d4THQYGnB1XX0VVBgqJwd6KgI5AtCs64Be8akZKGA3tZ8sBGaxByiGWJrnN8725OvPMWD33peZY9vPmqPvt4ZUbTYw4AAblzM25ZImcimsbwwa3P4e3vZ/3SxVTu34sy4EH1DuKrHWLmahvdWcaFwpEY9NlaDhpETuawXXscf1UT4tgZFi5cSH9/f8h7mnqXcD2d2+0Oed5EnVo3ygX+ZuFW8E2M4/ZAcDbOptiwKTY0qUX4zpm2IxNp5oKlKiZ1aMt18vLjX8SvBi6L0hjbOJK2DoQKUiehu4mkCzNZlHaelqQUhooWgFCodA/il2tBCVRUApm52Xcto7GnF+2SB0VRWLRoEWfOnIkgdWbGfqqy8JNdW+HXF6EoCCWRkb6XAQ3/sIr7fD5L1kcoBUIQK1Zt3bqVAwcOcO5caBNaW1sb27dvt6Qj4ZMwTP2cqqpRPeniiESczEXB7hMd1t+zxAA5vgv4ssbGm5jjmpYufIr/e+wQqwdmoKCjKgqDred4NyUzYL9otDTpQFOuM7SbVUryPJd5vPZ9Mlet4YGsNJr+8d/RdR1FUXhw63OWt1y4j5muayE6ObOc6Pf5rB2hrmns+/H3yS4qnvQFcqKxObebx5yJ8Mzmvh9/3wgUNhvF8xbQ1t0OgNR15rWl0p01ikDgGQ2ablG8HtREWvxF+DECtpSSU6dORbzfXXfdFWE7AEQMoV65cmXMgG2as+aUOHCuvzP95W6m9jOO6cN0GAu/fu51RrQRJBK/7mdJ9hLKZpTxxLwnIjadsexIghEswQBj7bsK5hpETlGMEqkAp3+EVjXJIHOAGPGxuPvXXKjqxD8zz/Kq1KWkSt4FiXIsK6eqzJw9hxZ3j0XSBrvclM6dQ/eVPnp6eqzzSU9Pn9Is/GTXlquhPoRYSl3n4on9YBkIa/R31wETSzyDY13wfWVlZRFkDsYqGE6nM6JJ4u6778bhcNyRm9jpQpzMRcHmu/I5eMZYaHlKH0pY2ldRFOx2O/2n+/nC4i+wXW7HeTmHhad1Gk4ew1NdjXjiS8ZOI6DJCj6EAGyXOpGKivNKD3fnZZJ1KcUS60spcZ9vpvLVlxmSMJqdj9LvQfUOGAOHbTbs6elUvvqylUJ/+s//loZ391O//02rM0kGlWongyp3FZlX8snvm0enozm0zMjt6TEXsfMUwiDHgRmJ2miwz5Ic8/tEhmbmnKtg6+sU1x1AOeZFH6cUkJMTOgzA7Gi12+0hbu+xdpwjrX30vFSH9EuETZD93PIbJjq/kWXPW8E3MY6pxXQYC9d21fLa2desYfY6Og09DZzpPcMT8564pmMGSzA6zzVx9sMjONvPo0hprO1AZmh+QhKtfkDRQZfYba8xb/AykIxtqJ9RqRud6ALLMNjW242q+Shfs47svLyxjJOUuC5dgkuXUQLD46WUKIrC/PnzSUszvOzMuHA95sGTXVv29PTQixPG6LMQiLHHryU+xOpmDa5MhE/CmMjKJI5IxMlcFHx+tTE251dnOsnOtUH3SdI7RunvN7JzUkp2795tkAIFZI7EN+giYSgTEOS1N/NwXytvpRcZOzxdY6F7bGadBERCAr50w2j46LkW1i9dbC0+RVE48c5b+BLtxtDmmfko2fnMS1LJmTmD3LklvLP9pYgUekFpGblzS4zMk66jJiRELOLxFmNKz0weP/l7KLqKFJLC4gzDtz6AhoNtnKvpYl55zm1B5MCcpWiWhgUlK1fRerza+u6WbvwYnS1n0DUdXUjOzTbmMCoooZk5AOcqnM5VbMmrYufOnVaQNruvgIhddXiX12R86EZqTiD9GqAi/Rrn33+f7gvp075LvdFlz+BNSBx3BqbDWLjKXYVfDzWUjaaXu1oE25I0V1dR6Hax5fgr7Fr+KXQpUHWNgh0/59kHHmevYkcRHoaERmveIIU9yQFqKUwv4CCf0UFSBj0sW7Wac+6esHc1ZDS6rofEDfN6oqoqeXl5ln7uWs2DC0rLeHDrczRVHqZ09dqY69jb309IRxsgFBWpGzZJoNLWlEdnswfd335N8SFYTxeMYIuW4DKt3W63qhhxQjd5xMlcDJQumkm99xKjMhtb3uf4Rs63SD17hdQ0ww+uyz3PIHcazBmYw8Xsk+hnJehwMXc2b6flAyCkzn1n68nrHyuxKopCweLltLS1AaDrksp39rEloOXqONvEuaoj+FPSrMyerktaL1ygu/4Y8LGYKXRTIxdtEY93sa7tqmXvkcOU64+goIKUtOz00lnmIa/EQcPBNg784jQArpPGZ5lIR3ErIHyHuurJT7HqyU+FENredB8/2vVPtGUN0Z01ioJCopoYcwZkRUUFubm51NXVMTAwYGlgFEUJEfVCZJeX1+tl/QRl0ySlHsE8JJIu0cuus8fRzoppd4W/WWXPk+/tQ/P7Ofnevrhu7jbHdBgLB89mVQPlzmh6uckg2IMOjO7XrNzV5C9YSG/vh3x2yW+4W9ZyUt5F+qEehjU7/5kyw7CaIg3s36S9/3+hNwxYXnLCNP0WAqTOnIxBNjy0zCCKfVVj/mkmaZISEZgUA4TIaDRNo7Gx8br1c+1NjdaGv+1UQ0y5jXPJUmwJCWg+P1IK1MQlqEmLjfPyXTS6WpU82pp68XuvLT44nU42b95sdbOaSE5OjngeEGFxEid0k0OczMXA4SsDjErQUfEjOSUW8cT8V01uRV7eOY7XPUJ//yxKhkooqSjhbXaQ05PAibKVSKEGFq9gOCHROq6iKKxZs4YjR44YdwQWtzLQh/t8MxnZs6z3MNP4RvpPxzbUh+b3M3ilN2YKfbxFPN7FuspdhSv9NCvEx5BSIjB0IKa/0Lma0GlFJw+1T8od/GYj1g41OAg9sPrjOOYWUeWuwpHowDPqmdBnztSHHDx4kNOnDZIrpYwoKVxLR2pSeTnZNX/MiG8hZ2zDaMy7IfYkN6PsGdfN3VmYDmPh8NmswFV7QUKoB50QxqVPSj9C2LhypZC0/CGEKilVmligN9GRNIs3Cj6NpirWphpUFOUuhKwMKrOKAKnTUaoCEQAAIABJREFUUYWOmpTA8ctpuA8dZM8770YI+xfNn8e8RWVW9s2SfmDEkLy8PFpbW69LPzfZdWVmx4/893u4Gr2gDwOg2AosnzlFGPZTuv/a40N4XIzV/BXN4iRO5iaHOJmLgbWZadikhh+woVFGQ7AtGWB4y/X3z0LXJRkD6XRlDuPO9OITJ0A+jiJUElSFjy8oZsXyhVZ5Ldztu1tR6FpYjvtEAwVuF6qqoqg2GB4ira2Z9HkL8TSdQvUaJcDUzKwQa5LgRTreIh7vYl2RW8FvxA46085T0D8PHYktqMlhXnmOlZED6HEN0N3aj2qb2B38ZsKc9KBpGhcajnPYV8+9dz8ScRG4ltmPLpcLj8foUjNLJOEBKlaX17jmxM5VJH3pf5PUcpD59rs4tOfDG2JPEqwjulFWIXHd3J2HqTAWDl8f4evzWkqrwR50Y2NyJVL3kZo/iN+rgoAmWUqjWEJRziifnLOCQ7qOphiB3yZA5TQ6EolEHfAgExIQg/3oJRnIvlQa1VJoHyDx9MtojpnW+8+bN48NGzZYMSA3N5eWlhY8Hk/IfOfk5OTr7mKf7LoyZTeznDmcP7Yd0GBYJTH902OmwbqkubabtZ+89vgQvKkVQsQ0Rf4o2DFNF+JkLgZe+u2PyJ/tJFt184R4jXmyyZyhbEAkcPlKProEXQqysktJuJjAqD5KwuhZMq78kvnOL/JM4WyeLcwOOXbPhRZDZiEE7owZvL50jTH6S9P4zI6fMLvrIksf2kRG9izs6em4zzdz4sQIuhCoqs3ykIuVNg9exNEaJaItxr4LPrac+F1UGdixoiPu67ZI2szCNBQV9IDsQddMU8eJ3cGvB53NnutquGh4d7/VsaZrfqr37eRHl34TaQh8lQjWwimKwt133x1TtBve5TVR17DxolWGRg/Ymrv4htmTxPpdTef73WgCGcetjVjr41qmswQj2INOCLMjXQOh4mlPIyO/nzOylL9XXsSPDbVY596efkqThhmWHrzJieR4h7jftwQt8zSjeXOwBHNJqfgGr5BAmnWXDNLFqaoaQuQgdHLM2CxTleHOJBIKMyaUY4yHyayrcK89QyMnCZ8AgYSaty7gmGVnyfrrjw+KopCbmxv1sTvdjmk6ESdzUfAHP/w3XisxFlIrxSyXNZTIc3S0L2LefJ2M9Nl82LOFVy55yRV9dMkM8lnEk/Of5JWmVxhNnEdf5uepGZScPNtGWZrdGtTc3tTIe9//Dsm2JPS0DPoL5qApClJR0QBXwVxmd7eRlJLCyYPvcLntIiBRVJVlD22a0Aw43Cg3VqNEOE6eaEWRmQH9BygIZtuKrMfbmnotImdBTM4d/FrR2ezhte/UoPn1a84AXhruCbj9GZ8raVRhYVMyR2a+xYrN107mgssBuq7jcDgmHXiq3FUxTU8h0tohWsv/jcLxvbutEvXVehZOFjeaQMYxNZgOCxKIvj6AiTdAEyDcg25g4DRdXW/S0LuSX6iprPMcZoQZ+LGhCxUpBYdmZiAVBYkRvzuToCGjkCcGUwwddFATw4gdkr2q5UqQPOhh42c+x4DOuMTEJDD11ac4d2CIM/sHaH6v5rorHtHWlbmec4pL6GpptuysjESFQEoBqCETIEycq+m6Zp10cDXKtPYa7/uIk7irR5zMRUFtbmBHEhCsHvY/wPz2dpxFjYyMwCXfee4qfIY+NYFL/jQSbAr3lsxEtX+cN869wVDyYhA2JAKfLjl8ZYDcvsu0tLQw2HrOIFejo9iGByn3DfCOZszmVDUNZ/t5pJR8+Ppv0eyp+GfmYhvqh0CJdTIXPfM5h3/zS2uxTqRHWnzXHGoqLyOkEZyEKqhYudh6vLA0C0URxsSEAJxlWax6vGTasnKmSbGU154BvJRhlFNMW4MidwpFbvA2f0D7vMarJhFmWSItJ/+aywHBgu5wEXcsawfT3uRG7laP793N2y99F4DW4zUA00bo4ri9MB0WJCairY+JNkCThelB5/FU03Tmb9D1UfL5gNVzHiH7yCU87+uo92lIYThy6EIYliNBNlOaotCeNYu8gStWF6gEFpQtYcuyLRyvOoo62M+yLzwTEV/GW8d9PV50TaJcR7wbD9HWczCklAhFJSH1QZSEAsumCUD3t4PWTHtT8jVtvKayfHozYuHtgDiZi4IV7naaSkqshbqorwmn86TVga7rIyQO/YTtX/gi9fWnSB3dT+V7e1AWf4qHyl+id7CFPUMqfgkJimDeyCA//c9fWCW51NQMxGCfkS17+CEKLrTxxonT5J47QWHAwkSzpxq2JEJhVOqkXGia9Pmb6XOTyJnedOPpke6vuAf4kIYP2phlz+a+jUtDAkleiYP7nynlvV81oUuJzaZMK5GDqTEpLlRncQYj02hm6ASgX4PYPrwb+LHnX5hw1x0N4YLukKxcFGuHLsVzwzq8gq1rmioPhzzWVHk4TubiAKbHgsRErPURawMUDW1tv6Kr601ych6lsPCZiMeD9XNnmI++NJlhLY3Fo408+/73OJNcRvLwEO+s3YImhNHkELge2HSdgt6uMTsPIRBIFmcsDimdnmtpQbO7UL0DHD9aiQeFpvOtlr7WXMeWZMOvIbMEWb3LSJaZU17xCF/PUSF1ytZmYUsu4NThDjRNovva8Q/9ljOVfs59+MY1TRaaqvJpuNVTvNt1DJMic0KIfcA/SSl3Bd33AynlV6ftzG4ivvX0OtKO/gcfKqupkEfYmLVvrPlBAkJyufcQ9H7AHIeGUCSX9UX8zRU7uiJJVObyNwsK6fVrrM1Mo/PgO5bHjq7rzN7wKMWpSZaW4XOlZdxfVMhvvrWPkZR0tJQ0dFuC5S4OCv6U9CgDkaPDbIIwd5NFS1eEDJkPh6VFKargdyueinncJesLmVmYdsNMg8NNigGO7Wm5qvdeteoRzhw4ykiiHdtQv9VEgpSGYSaTN8IMby4Z7epgfWCk2kQI303GariIZu3Q0lI37R1e7U2NHH3ttzRXH0VKiS0hgfJNT4Ts4EtXr53S94zj9sV0WJAEI1rDQ6wNUDja2n7FqdN/BsDl3oMAEYQuK2s1Qig0yfn8HS/iFzZs5X6+qb/Ig9pBnDtbGXKnMOuym87S2cxZ6KJVKQYpeKwlk/RuD3W+K2jpmVacHR4eprarlgMfHMBT5wFp6MOSOloZyi4guIPOHCBfX30Kd1u3QeSQCAVylytseHDqm8pKV6+NmpELhlAUcopm4e0/zrpPlTA6kk1v+0Xq3jKuJ7qmsfdH36O55hipmVkRsp/xsmbh5dNrybDFu11jY7KZubnA14UQ90gp/ypw39UZ/NxG6D7/Lg+JvTwk3kaXY2twLNMeEItK3eJbp5QyNKFYpdX6AS+zkxOjHj81M4vVjz8ecl9BaRn3P/8Cb+zdZw1/t3Z+Usc21B8xEDkWwpsgJiJy4VqUvIG5MQlbXonjhnWuBjc/ANekn9PsaQzPWYSmaYzqOikXTluEztvfT3tTI//51/8fut+HYkvgs3/xd9G/K9dRnL4TqKpilMSjNJdEg8vloq6ujpqamogdeTREs3YoVqa3w6u9qZH/fPEb1rBxAM3nIykllXs+/inOHD3MglXTo5m7kRMn4pg6TIcFydUg2C8ufHRXV9ebEbfDyZzDsZKFpS/yWlMtfmlo5PxS0qgsAaD6/pUs8jWy9NRxVnq7yBN1CCFBKiRpm7msrmROQS7NvWPzlg9/cJi603Us6VmCgoJAoGl+RgJ+dMH6OkVRqK6uCay5gLRFMbwkF921gLYmwzngemJt+NrKLipmXsW9DPZexrlkKV0tzSHkTgjB3Y89xb4f/we65kdRbXz2xb8nv+Qe6vf+1ooPUtc5V2VYazUceJvP/OXfU1BaFjVrBkQlbNeaYYt3u8bGZMncFeAh4F+FEG8AX5i+U7r5GHTloiULzskFNIollNHAAtnEGUpp5C4Wi9MskI0gZIBzSRaLBhLw45fGovh5ezcShQQB3ytdjBoYpCyEwC6wSABgLbgBY2KMlY1T+3tBUbH196J6B2k4sHfCBghzAT+49blJkb9wLcrRunrk61euq+lgKhDe/LBwTZ6ln/P7dQ6+3MSsonQW3Zs/7vmF2MAIgT8lHdU7iGozpmPsevdX+H2jKAj8vlGOHn2Lp8K/36qfwq4/okDqPO2cgWvh72OfXRa1uSQYZsDy+8fc6/1+P3V1deMGLvPCOFjtZqjazehsjRUrjEzEdIy5aXh3fwiRA2OHbk9P58h//RrN76dmzxvMv+feKSVcN3riRBxTi2gWJAOVHXhP9GC/K5u01flT9l7Bm86SZPjdWV5UJIqSyMryn4UQupycR62MHEB6ehktLd+LIH6Fhc+wyWvnVZcfv5TY0EjT+41u1hk2dqNxf85+UrqukCxKWCIbWCDP8eGATl9CC6IX3BlZtDmyKfD0kNfXS+5AbkDKESjjSLAND6ClpAEKiqKQkzkbXR2lq8dt8DgpUX1p5MzKZfXaCip/7r7u+Bu+th7c+lxIvHpw23Nk5uaFkLmKJz5Jr7sXXRvr/v9wx26e/MM/5KEvPc/eH33PGhVpQtPG5oSHZ83MTaxJvLZt2wZg2bGYcTF4Rms4wrN38W7X2JgsmRNSSj/we0KIbcD7wHUV9IUQTwMvAmXAKillVYznbQL+BVCBH0opvx24fy7wa2AGUA08K6UcvZ5zMnF+IJl674O8lP1l/Niw4edZfszP+BJ+bCSg801eZJ48hS7B70thQVITz/Jjjso1dPoT6baVgYBRCe/KBD6zeTO7du1C13UOVh4lxXWGxFd+CQh0XUO12bj/+ReMXUegRKqlZYKioKWkoY54ESPecXVewQtYURTr2OM56weLjQsG5pFaO4crfj9Mkwh3sghvfgBQbQr+gE6nq6WfrpZ+Th3u4Kk/XBnzHM2dnD/wndqG+gFYsuFhujJH+M+hN3lYmQk66Iqkc+ZIqAXCyCjs+iMIjBMqSL5MwTxJZU9/TD8/MwAFB6xgVFdXj0vKRlr76P7BcdAkbuFhV201mtBRFIW8vLwpD2BDnt7QO4TgoS89j7c/9mecCtzOhsG3cvy6WRio7ODKq2cBGDlzBWDKCF3wprM4wQdSAwF+fYSTF/+bNUEkLS1tIbOyP8bwSBczslbjuvh/0fXRqMSvzNbBs3IPR1nNPfoRLvXPxOewIYWKLhX2i0cg1yBmr0mNp8/tIqNPgoCOjCx2LFuHpigous7Hjx/GnXicWcOzxjrohc6yjHbU/ib6Sz+L61wmnfpZQMfkewBawgAdV4ZoPTH3upu+IHJtNVUejlhrQMgor5GhIQavhP4EB6+M0tnswecvo2DhStoaQ3/mqqpaSYnwrNnAwIAlL9I0jUOHDnH27FkrqREMu90e+RnC7J/Ky8utuBkncZFQJvm875t/SCl/CmwD3rrO9z4BfBJ4L9YThGEG9F1gM7AYeEYIYbZY/gPwHSnlAqAX+PJ1no+FESk5Plphtaj7UTkq77Vu+1A5yWIUAaoCSUlDnKGUn/ElGsRSum2lQUczForX6x1zAhcCvz0VTdPQ/L4QDda2bdu4Z8UynNkzEErgf49Q8DmyJ2xiCFnAYce2Fm8YTC3KZx3b2NLwPFfO+QO6wOm1HZkIZvODUIzzmOVMZ+GaPHLmpIc8T/NLqyQRDeZObsmc2aRcOI3iHUQCo9mJVLmrcGd6eXO1m5rSK+y99xIzS+by3FvP8W/V/8Zzbz1H7anfQvBuVChQvN4qZQtFCfn/Ygag/fv3U1NTExG0YKw1PxZGmj0Q8PHrUHrRGGvp37VrFy7X2Jzf2q5aflj/Q2r/f/beOz6u6s77f59zp6iPerWKZRV3S7Zsg8EYTCcJhLCUkM0CadueX9nd329/u9nNwrZsNs9m97fPs6kECCEVktAMgdBccJcsuciSJUtW723Up9xznj/uzNWMJBfADuaJv7x4wR3duXPnzj3nfs/3+ykDdee7pItGT1MDZ2rnJmghJDd/4U9Ye9Pt5K9aYy0KhEBKedEFfc92DT8icdnOXx9WzJwYOuf2e43wvf3cqefonezFIR0IBKd9MqTvaQna/tuJl+z7P+zyMDj0FlNTpwgGJ22ig1IBRkcPRh17z2wuz/AI9azlR/JzmGc0DmUidKhSLebm4CAGp50lEBIM7vGkWdAaIVFCMpTg5tM3f5rUylRkSLfNgclaVwu3eY5RTBKmts7FlqdzxIeOD6DoGz/DTEInQdf4B5p/54+tss1b7G0pJeNDg8QmJmIYhv2e+p1vkr+iHGvdAWBQsHoLL/5HLft+8S7dDZEtWcmyqqvsFivMzbXbt2+3W6yRMTw8HCXnNHcsscAhAhbi46qrq3n66aej5r8rMRcXVJnTWn933nYN8LkP8sFa6wZg0YddRGwCTmutW0P7/gy4SwjRAGwHHgzt9zTWKvnbH+ScwuEIJJA21IXM0WhMpNasGBqgIV2hkbikYCWNqNCYFAL26G34CZEWdDD8JUEI1iTEUhQ3t2rRSuGYmQoNpLnKnCszh7a2NtZWbWJt1SZ+8IMfWCsbITBTM7nuvgcWVC4itZ5iExOt6ykEMnRs07QEIcNg/7NF88luKs1VoTlGk78i9ZKzVc8VkeSHmHgn7z7bTDAQbpdir2gNhzjvhJefn0+NcwoxM2nZlKF5cf+PuSbzEVZ6V9IX20d9ySgPrXoIr98bLYEQE0OFww1BH0hJz7ov01ndRv6qNYvahM3XnysvL6exsTHqfM6H9XAXe8AQYGpyVAoixMQFq6UfbklckPjweaKz/nhUG3rNjbfOw8aFV+7nHKfvKz7KgsGX8/z1YUXs6nS7Ihfefr8RvrdnTcteSiBwSifrM9cz6q2Zux0FBLVpS5VEslSVsmSJhHCgtSUUnJKyOWrcBOM/jz81P6QaIOh0LeXel3/Iga1X0Zq6ag63rDRSK3LHhtDCSudyvENIrVAKDGUyNr2Lrx9u5qnV38GhNb0jByjp/Db5uh8cbvIqlhHTNMAUHaAVUhq4RnPxJbZYGGmgb7wVHa+RiQbbbv299z3/Lja20guKqN/1NvU73+T4269z0uEgu6Sc7sZ66ysqE1dMgE2ffJjmQ3sp3XQN/tkgsxOH0OY4ED1P3PzFPz3nOSQkJERtx8XF2c9AGSpUnM05B+Z1VUJxhfRw9rjcpUnygMg0vAvYDKQBY6HWb/j1RdUMhRBfAr4EUFBQsNguC8IZGKGUJj7X20IDq0ntn2FkOI2YFC/33FzC7RkjqKbToUENp3QZu8SNzD34jNBkYyEnRoMm+YVzvf4ECf6B1VGYOVdmDq+8s4tgqEV6xx13UFlZadu8aGAyGq4QpfWEhKN9O1DKasdtf+QPAXjrye+glOKdpx8/q9ly2Jd1rbwx1G40Sd4S/NAtusJki5rX2uYSOQANcYlO3PFO1t2Yf9bzjAQA96X5UEIjrA4JSwczOfNmK8v1ckpECe9mv8szJ5/hsys/Gy2BUH43xC6FhhfpSbqW536xd0EbO9IDd36roaSkhObmZrvdkJGRwebNmxl2D/P68dcXZea5C5PI+NJapo70U0w2t8Yn85sDb6NCivLhlkRk68lv+t+X9lYkWSY8wfY0Wfp7VqIXZmGbF70N+jtAfvhQ5q8PK8It1YuBmavur8Zn+uxtjcav/NQO1LI9MYAEZGi6LYvRtlRJpMuDlE4SE1dC78Jj+00/sb5yOnOvJnLBUr+iittzc2lvaqR100pbY650dJzt1TsRbmXLGmSPj/KJY3vp8aTh9tbRmHaclRPLSHx2AkNJyhzrSL/rCZjdC0Vbyc7fxIbe0xx6RxNwjeH0JwMQM52JMgL4Y4bt7o3Wign/+69sLja2Ise0VgozEKCnqcF+jxCC3tNNtNXVoJRJzY7TaE0ITysBiRAaaUTPE+GYT2q47bbbbKtDgK6uLm6//Xbb1hKiyRFnw8dFEsiklHi9Xjo7O68kdPPikiZzQog3gexF/vQ3WusXL+QQi7x2tjKBXuQ1tNbfA74HUFVVteg+82MJx4lZ+wZSmlyrXmNX4E4Ca9byd3qY3KMD/KZoggK9lFJOIZA0ua7DDBoRp6Xs/9dAisMqWy/W6w8Ppp6BAXsFopTilVde4dqqDUgh0LDoTexr9aJDSY42NWmOXAZ0u2X4PjER/v5RosHAgkFelVXFN5O+yY6V3yR3vITepBbi3XdyHRsv5HK9r3gvNl0x8c4Fr01PBJieCLDn502k5SUsOMZ8AHDFf3uYZwv3kDdhiTCr2ET7jpFakj6bznDMMM+cfIYvb/4yXr93DjP32l+B6adz+AzBQL51PSPaBJF4r/kA3QU+vIODvPraq+zJ2sOAa2BBRS2y0pp6dykAV1GKIzWGV199Fa01r732GllZWXhcHlS4BYvC43rvyXd4BR+1Yg9hLC+lb+pHgfzwUZ2/LmWcz/UhYXPOB8bJ1Q3U0TvZixQSU0cTcxSK0z6JGSKaCWFwX8VXqMissBmuZaV/y8TESQAmJk5i5cwarU1GRw9SlXU1LsNFrN6ICsEIwl0UJTSdcTPEzU4xl+RBuecdvCmavoR8Ztyx5HiHyB4fJss7jEJxJDOVgt51XO1fglQAAh008XUbuD/5F/b5dzeN4gxY1202pp/ZuD7sWyLizhBCUFRUFJXgOANJFzRnnmtsRY5pIUTU3KS1pqXmoP2dzdCzwwqTvBVVpOVlLJgnzNgEGyMc2RadmZlh/fr1dkFCKcXMzEyUTVn4WXY2dmv433Xr1tlJXU1NDXV1dVc05ubFJU3mtNY3fcBDdAGRv9YSoAcYApKFEI7Q6jb8+kUJX8IQhrB6qC1iGU8X3oeJg9cxkXka0zRwUMGXeYxSWlke3I9D30hQWElHRBcQgANdPZQdehtXZg6TilBlrjfKbkvFJUD+HNZOa83BN18jZmyYYHIawZTMBTexjJv7+QSCAL4oTETW0uIFPq2LDfKKzAq+vPnLfPXgVxlM7MBluM4ryvlBIpKpmuaSbL0uj7SqrEUfDn2tXvb87OyCyWHM3PzJrX7X2wT9/tA+QbqONZMaW4E/xhJhdvR3IKRAK1BCMRgzaO2rTd7seJM/XvfHVoK15xtg+kGbxIrZiMkNhDTQoXZJZKIzP2mf3ypQQUXydDJ9rj4CKsDpEycoFmnIOAfeHa2LquqHMZeR+kreZK/dgpVIvH7ve/kZ7FiwYg8lp5vvvu+StUE/CuSHj+r8dali8mAvYy+2WELkF9n1IRyRLVApJIYwUFrZ97lG0+Y3+PZgLF8svY7s9G0cnZiAtp8z2fYPKOVHiJC/tA4ihCPUZjWR0km8bzWpZ9L4r4z/4lcnO2leqjARaCEQOogDk1LnD+nP3IKFbTNAm/za+DhqowyJB4NLa/75cD/HfLW8uuZaTCnpy7yJ7W/vAS0hNCrHu4+TxJw+Y7zHzUxsE5NJzdYL4bTelqGy/t1cZEmkzBEADJJH1mDMJp6X5XqusXU2u0c7sYuY39AaIaXNYO05dYTYhE1R88SxQwepbuuyW6fhSlxk6zTsO3sueMn59OPy8/PthfEVjbnF43Jvsx4GSkPMr27gAeBBrbUWQrwD/B4WI+wh4EJWyhcUMe2rmEnbg1ZB9ogbCOK0cGtaYEosAoPWnGQ1ZQQp1Q38LY+yW1+Pw72E3WM+ZmMrQwPVWu3sOvw20/mlICUoRVxnM07fNAFXLMHEVBzTEwjfDNoVY+sRBVyxEBuPKQx7BRV5E6vpaKZk1U13ETeWFYWJyHroT6gZ97KdTszmDkrj1jMw08GIvzdqkN9bfi+BHgcnT7SzcnXhBzKhP1+Emar5DsG6GIl5uI+huoFFHw6NBywV8siISWshLuMU04PlBLwlCzBzPU0N1O98w94WQtIrZkPsMkvN3VeUR33iMQzTYChmiNEYi0Sh0RzoOcCR/iNWxaxoKxguMP30+6LPTYdBk4sXVQCiWgVHjhyxWgWGZCxuDEMYrJ4tYfPbhYybbdbvHrJL0wHF2MstyJsn6ZndS3+/tFsw4VV7ojsRt+G+YFX8c8ViVbhL2Qa9lFW/yyg+lPnrUoSvfdxK5CLuz/muDxfDqzUSOiAQ3FN6DzkJOXhcHr5++Ov4TB+FriDL3IodbTtJ6NxJ86zkVCzclmRh5bQOhI5mVePycu8nJiaXeN9q/D+S+IJt5AIfn00n4Z1mjnm6yUzvw1gqWCnqKaWZhHUb2TVrYlrpGyYRtl5SEFDwi2XpJE9URXlrt2bnons1A3KCd1NmOS1yue6lQxS7MskrSyF3vZNDffMSufkhBP0NfryuQ/Yi0DSDTDn7SJxJPC/L9Xxja75na9irtfa1l23XoHBESpFopWipOYSUBgrQ8Ul0Ts5EnKPJ8uXLycvLi5INOZeUSLjyGBsbG4WnW6yVGglhESGR5h07dgCXRrLpoxYfWjInhLgb+J9ABvCKEKJOa32rECIXi8J/h9Y6KIT4b8DrWBSbJ7XW9aFD/H/Az4QQ/wTUAk9crHNLnlhD/OH/l5m0U8SllVriAZHnrk0cmJSbJ2lqyaR4WRulRhOlNKF8kCmW8yNWg3ZgaMWqU3UEY+PnRCNDbFa0Dll2Cfx6rjUbDh0Thz8mLuo1KaW9uomszAF4CnJJcmTYK6f21Gy+IZIxk1N4TuXzzVMzrElejvKY7Oz7WRQpYnf1YQafiyVLrWKwwWR34uGQxdfFj7yyFNJcknUx0iKQsLglUF+rl4Z3owsWMWktFGz7BkIGASfFud9dMKl11h+3MWoAAXcsycKDl36LSCAEhs/FKt8qdufsZiRmBACJRKOj/R/XfAEeegna9jD1Tg+Mnor4JEtHSil1zspSeJKpra0NvUuzdclWSIb7h29FnPGHVuTRSeH4RB0dHf+KlgGSPAaJiTczMZGBUor+/n6qqqouWBX/XBGpTTgzMWFP/peyDfpRJj/A5T1/XYrwtXrtRC4cs63UR+LmAAAgAElEQVTWAshd7CHQN2Une8L5/qt2831ZP7HsE/Z9XZpSymtH/4b1stGeNxRwSyLsmnSiwlK9woK1hKtxOTl34/GsZ/ydTnzBNgjhZgtdks+qXHae3MlM8mlK8jsQhgZhkD3zI/6a/TTo1SQMxvLDzE9ihuYOtEYLOJTuwJGSjlQW39wwTTI7T9LnjOXp9E5eXHc1ppS8qOCPd3eQ+kob+VeFHGjsity8CxDSnesSg/hPjUY9EmZj+4idzTqv1deFjq2epga7MtfdWE/lbZ+gesfzc6oLi4RWiqL1m4jJWcLhM51M9g9E/b2pqWkB8eFsUiKLYez6+vrO2krNz8/ntttusyW+9u7dax+rtraWhx9++Hc6ofvQkjmt9fPA84u83gPcEbH9KvDqIvu1YrHFLnrMpM+S2FtCrLeET40YvLpJW8gkIUApKvqO8zHxEtLroa+/lOSULtLTuxDCgone5m6kSD/KM9PreVCvQg12EXDF4tdzk4FjZopgSoZVqQNslZgI3R97OyIqKyvtG3Z+ZU5NB6MStM6cIgIItDBACGpSXazzWviRzNgCG1cHcPJEO1J5kBigrO35ydx7wbmdK7KLPVy7PgPVMBKVvs5PTrubRqNUQQA8hfsRRiCEQQ4i4+qB66L2yV+1BiGEVY6PjWc6v5TpziEMYURNnhJJxmwGIzEjFLlMSt1BWv0O2vzGXKWr8xC07YGircTnHIb6U1GfhTi/7y1EixebpknbyTYashr41OqPIRxBG/sYGdOpjWgRDInHKzzJfUxMZADQ0NBAVdUHb4WfDV9z8PlnL3kbNLJCEFkFhIW4zsstLuf561KEu9izAD/ib/biP+21mAhK239brGp3oXEu266lbsVGo4mIaRQjBDW7PjGAO3ETmYkl5OTcjb9viuHuvcSkZjF4ZhdTIwN4VSpxUiFNaxEphUAgyYwror6/h6ZXivAXxZDr6iNt+Sjlsoky1YS3axlZg7fy31fFobBIVFqAFgJTajYO7CNhNkBWbQsJ/Z3sy5qiM3mDVbETkqDQ9GQ6SRqcQbYaSARqfsI079qa0j/3QugLC6Ev2OrrQsZWVDs2EOR0df0CUeDFoq2uhtKSFXbLMzKUUlRXV18Qpq2trS1KOHhmZgaPx3POVmqUxFdEXGm7Xv5t1g8lku9YSvc3D5MdU4QGru0P8m6W0/Ks1Iq7Mn9OqWhCZQr6PR72pm1iJXGU0mRLlSynia8ll3Lse79AKYXTP8O2itU4MnJIkNB/pphDrR22hpmQ1gSjQqBTY3wEMyk1KpmTUrJu3Tp7213sQTjn/BG7hk/y1q++Yw/I/J4zGKa1apTaZP2IL6TPpBj0dbEkcYN9rKRCg8FDpsVmFYr0YDZ9rV570pjvyHDtfaXMTgXeV2LXu78H1RidyKHBu6MVZ3a8/RDIK0uJym1j0lrwFL1r7a6xpQYWCxEijgTDVjqhzwgnedamxid9FLlM/iTDhyFASk2v5x7WLPmkRX54+k4LM2e4yCp7NPozpMGa7bec15UDrBaBlNJqESAonCikM7GTA0Ytn/3CfYy/2R4l6wBg+BMsrJDWaC3xjs1h8VesWHHRpEkWS9p+m23QnqYGnv37L2MGA0jDQAhpy/VcjsSI38VwFyaRsDWPyd3d0X/Q2JqIdkg+kFfr2XyLe3ufB1TUnBBO7AwgMHGY3qljpIlb8P9IEswK0LL8XwAToV2kNt5PTfkxcgarKBveaiVlwFB8DIO+1XT506k4uJuRrCRSy8ZoFqWcZDWJU0OUHX+GB/UNNOUUUzaueLbIRUAoHCLArZmvUUYrzbV5TBOHf7yLJWMFHFHlmAIcGnIGAqBhpM/NbUnraTV6UcDYdDwDtjRJOCEWGIEYTMdk6AsCSiGFfE9WXz1NDTaxSSkzioEfdoUwHA7MQBCtJePDCec8XjiUMjGmJhbIjER2Qy4kuZovFBwbG0tWVtY57boWkyuB88s9/S7ElWRukRiZniYzroCjSQZ/ujEOvwCpoHxklJy0wxa+VcBpXcqT2Q8TxMGLBPlr/RilWGB9IZ24R/Mxg21WWV5r4gTkZ6VbD9D4xKgVxoYNG1i3bh3Hqg/R+MrzmKZJUEDqsuX0DVkU9XB7LTxAIv0RJ5yjvP6tr0fZMuUNdHH/q09TuzyHGXmMn6UGyUr8DCer30BrTc8v60iLyWOwTPEf3V8leWUOZYMbWTFwNf3Vfl6oO2K7K0Q6MgSDit0/bUJr/Z4tZ/pavdQ/10yZU9gJl91xmLeizy72sO3Bcnb+2KqGxWWcQsjQZK4EswPbmBlehmfeR3fWH7evrWN6Ap+1nkYLzfJ1yxntGmVoeAihBetG1qGyunAIH1IA2qTErajur4a+ZipC5AdMP/2N0SbVa7bfck6tpflU+7DUTNjuJ2s2y6r+zYCRGgMOAcGQyLTnNAPLfwIohJb4pz5JauoKkpKCVFZWUlVVxT/s/wd8pg+NnmsLfwBpksik7bfZBq3f9TZm0MI5WfdvSDX+MiVG/K5G7Kp0fB3jBNon5qpIi7QL3ctTLzoxAmBoZijCHxu6/ZDjsnoaYe0ApQIMd+/FiM+if/kzIMwQKdXP8IqfkINC5JxkqiaLgf5sWod3MOzrIguD7OAKW6C7WZTyNfEYQeFAXmNyA6/y9qpitHBQlwp/dnKa14qOkBo/Zc8bCbkzTPfH4ZiZ4s7OX7JWjdGRtYWtGUUE0gWdA6OMmprm8XjSHaUMBxRaCZL9cUwlthNwhxZzSuOPHYwQR1As6RoiMXU9B37Yh2lqpBRc9+kyVm1dVNHGrrhHYuAi2almMMjMxAT3fuWfOfDCbrqb4lGBrqhjCCMbbfbNbYeSNsPhYO2mzazadqM9vzU2NrJv3z573g3DgebPgZExMzNjL67DwsHns+uK/HtsbCx9fdb5XcHMXUnmFkTdQB2/fvvnPKg/Rm2qA78MldPRNKYn0yhuZjc38Lf6URrEqjlXCK35JfdxVeA53P5WipY8wI15H+ewY/+ibFIdn4QsLLeZP5E2JbmZmbz85ttorekfHo46v/nttbA/YsPz+6NVtaWkeP0mqD1Edm8bqTG5jJem0ZRgJWHXZ92PFAbmq6M09fWzsmMr3UnNFqZMW7OIGdQc/dG7+NufJ3Hz7RiONEzTAiZbFcT3bjnT3TTKgE9R4jQsthREVx8jWq19rV5mpwJU3lLAqSM7ccQNo7UBSqGVQd+JKl7Ye2SBnVdkgoIh6XV3MuM28bq8GMeMOe1LBFJLZgZy0ckTaKnRSvP4vlepcQVwSYPHY+OomJmmZzaF+vY5U20ZUk6fr7UUjkhf1rBu4Lp166irqyNoBpFCsqJ0BY4ek6FfhrUCBfGbs3HmJjB8bAdaBuwJfXXFUoqKHom6T188/aItJmwI430RIM6VtA11tNF58ji+6anfatsz8qHxvykx4iMX0ZqWgviqLJy5CajpIDLOwdhLLVaFzhAkbbt4D9VIa73DUw5WAEaogLV3yknvmGRzvObqBBOrameQlnsNPWk77ETOwqNaNAYkaGUyk3KKqQ4nw74uQNOdlUt3/gryuiapzD7MYbnentsxoH5NBaZ0WHhnpTnlcXAi/ipMIdnFTfyBepyCvhYApNCscTtZM3wtesSNaB5E3rGUzsYRtIIx00L7ZbgkBDSjwURifBkEXKFkTs5jRkjJWHIVvqmlhLNmpTS7f7q4LBPMVdztEqYQUSL1UhqMDw0y1NGG4ZhCBdpRZrSVl5DJUclc1cfvxh0XHzUPhPXh9u/fH1WcKC21ZJWefuopgqZCADdXrGPL3Xfb+8zX5AxX1s5n13XFzmvxuJLMzYvq/mrqYhu5n9sYN5Q1dEKlbh1iQwa1k91iG1vZhYMgfg0ag3qxlibXSq72fY1PLPkkuZnRD8rIlpaYGmfj0nziC5ctWIFMKpuhvgAUv2LFWUD2q9bgcDoJBgJIKW1vzZaaA2S487g+6wHEpERMQWt8PFIYSCHRSuPZm07VzO1Uylvo9DREHFUzffgwU817Ye9ebvjzf2KiYIPtyGCa6j1bzuSVpXBQtbJv0qTELchxyqjqXBgHGNnWjc9spWD7v4MOoEzB2JmteNuvZnZ4GaDZ82wTW+8rsye1cIJy7NBBDrW2k+03UQFFe0K7xSaNcLFTKEb7NaebCkjMmWaiN45Zjx9V4sOvoPrqz1NBEp0tAtW2c+7KaB2ltXQuX9awDdcjjzzCQw89xP4T+3m863EGBgbIO+bm1sA1ITcfjZEcQ8LmHDyxyxka0vZZDg/vijIKr+6vJhjyixUIPlnyyfdNgJjPbgM49uaveePxbwJYZtxC4HA6L0nbM2tpsQ2CkoZh37uXM2budy18rV4rkdOA0gRHZolbPycn5MyO/8BM1vlRN1DH51//PAEVsPCuAm5LNNieaCKAu5MDfGvQzcEpyeYE0x7Vrux4YnNyrY3QEErsvYrJ7Bq0CiK0gWu0lAHtBAy6s3J59uOPYBoGxvoVcDKW5aoehxEkqDUSRV/KktDxrEzyVJIkKAwQElNrnpZf4j71OPl0gXQylP0xUvqdSG2Ru8aODRG3foaJGhdpUnJNgsvC+7kVeycVXYQYuItUOgUSp5m24PoovbgsEyzUk0vOziUlJ4/iyg30n2mlfucbHHvrtQXPl6jQkRZbAndcPJvvvm/BbvO1NAGam5sJjo0RDDkYaa15o7aW5LExMv0B4jZtJL+y8pxVuCvx3uJKMjcvqrKq+G7Ct/jPuB38ouj3rRfnkxIANJSJJv5KP8ZP9O/TIpejhUFQa7ISS1nqtm7u+Q/KyJbW2k2bFzysOjs78Xq9UXo9mzdvpq+vjxUrVpwV9L5YhaWnqQEpISMm30rekGitiDHiUNoENCaaIb9CYiC0wOeewhRBpDYwlCKn/9Dcub/wJBtevQeAtLyE90WGyC72UHFzAbW/6eDwtGa5W1MWa92GwilxF3vwtY8z+kY7SVozosGd2gg6AEIhHRK3OyeUyFkx0DbBi/9Ra7d7w4DfiUAQpSwNtvDkqIQKsdlC/wjBsMfPxOkYpvpjUVLTV2zptSkUnszVUH4v+VkNGG+9u0CTKbIVON8YOgqfF7Lh2rp1K6+Pvc7AwABl04VsH91k3UwIMIT9/WeH+iMvG2Pew9Qc+Qwb1v8Yj2f9oqy/ixlNB/dFvzDvu16s6Glq4O2nvhs1vs7mVHIlPrxwF3sQDmkndL7mMQZbvWR8aa3dHbjYrdWXW17Gr6xqUVAHKXKaXJ9g2rhkB1DitlxRhCWWgdZBBs/sQi4BhgVhtkJCWjlLC/4Q70w10z3pfNt9EJ2ZRbrzaroLijANAy0lSisCKwSluom/1o/RwCpaRQnVbJ5jskpo8IQenaG+r9aCrtyl5Pd3YSrFsyP7eUQsx6kdoAS1x4cZVw72Lv0l901sYSiYSp8cI1t5SHMk0B9IxsLvWLqV8ePFBIwJEIIV5avoGwliSuu7amXV4x2Osy+kI8XAT7zzG0a6Oxnp7qStroZV19+0UFNuQQisK2xY52ScvUo+H/sGFmaupbdv3jXSNOx4BdHQgHC5KHjqSfIjCH1X4oPFlWRuXlRkVvD9vL/if7T2YoZnjYhSNVoj0Vyrd6OApbqJ0rE36EgtsVdxw6Sxu7eeT4SqKOE4V0ur2jvFk80dnGo6RVlfBzlak5uba+OjLiTmJ465sRPELYfpmRhbeBMEObHL6J1pYdac5u3kE6TqT2FgIA3BfR+/lcbRRnK9JWT/+Enix8/Yxxt151LzWpudwL1fRmtxRQZjA9NMjfnIviaXzIJEe1UPMPT94yQGFVviDfZNmzhHlyPUKxazUztYuWwb3YdElP5cMKhoPNCLCvbYWBEzJg4Kyq2JRGg6EzoZc41ROVxpv8/QButztvL21b8mY8hJX5qPwWQ/pV2aVR2afrkHyu+N+u1801PUvPICWqmoVuB84cvs7GwGBgYsbGFEGyGciK2bLsfitlnL8bgNWfb3D2YFIPxThvkb2jIK93jW26y/l1tetlutFzPKNm+xKnLhuEDW7nuN+TIy55N5uRIfToTxuWMvtxDomrReNDVTR/pxFyZdFI25+TH/vi5xK6SIMGwAppSgL2BgJgZwIBHaAW+kEH9NHkIZaBlEKIPZjBJe9J+iKvcGspOWsurVPDo8Bk3LnMT7FA4UplY4MFkpjiGEokw0UaqbeFJ/MUoixFY2CFWd0BqpTAp6rLlSa02jq4VvOf9/tg/fwXiwHBAsd7qJ9VaRrz382lWLCompVPrXkjmTgBheRUJmJwl5CQwMO4mdLsYQJptXGnDDGtunerDTUiFYflXOOefgOTHwCLca06rmW8SHwNllSIRABVsBiSNmLdsfvvusY3JmZmbBa/ZCNvxjaY3UmsyBfgsmEwgwfegwcZWVixzxtxfTtbXWeWza+KGfyweNK8ncIuGumyV13IHDDGLisLBVhJimaB5S36dUnkJp+NWoE488yF/pft4V29jNdt7hJt7t1SQmHuH6vIUJ3fxBUe2d4lO1zZZ0SXYhDVn53Hn0XVR3N/39/WRlZS26ejnfBOqrreXWmf/bmuCw6j8SgRQGeXFlmDqIX+y3bbwSCw2uKfh9vlT1WQBGzQ76HrXYo96kpdTlPIB6sfU9kx4iI9w+TdKaDJck1SGiVvXj73Taq39DCCpWp+FJX8JUjYE3x9IVis1XbH2gjJN7exjsmLCJYI37egnOdtpYEWNmiriOUwTiEunK6GNd6Tr6TlirxUhF+evXXM9d2XdR3V/N8cHjJO1/i7/7qYnDBL3/baZX1xJXWWn/bs/949/YPoE3PPRF+/WioqKoalxfXx+FhYVkZGREAXQrMiv4y41/SfWv37HIgFgVx/j1WXY7y3SGHphhzI8AIZwL2LsvtbyE3/TzcsvL74vNerZYe9PtwJyg6HyszMWK/FVrLNxMqCVtnKMCcCU+3HAXJuHKS5hL5rBuz0g83cV0hrhz2Z28ePpF/MpPkcskxdC2HKMQFkRvc3yAbr9Je9c6NvmWET+yghjvMmYbutEF2ATRvUfe5vsxh3AZLv41+J+oDCc/2pJAUIKh4GONbbjKD7CC45TSHJW8bZ9sYlf8LZZgfDiUiVOZaCFDEiRzndFUdw6fGlvHuoN1eAMvM7G+hKuT3EhgebCcY442FAotLGUBYsa51vBwvKuWmgwHumsMmWJy1cwAa5xHyQ7eC8VXA0QpCiy/6vy2aYuNr1XbtrNq23ZOvnuYhn2jBGdaUcGWee8MAX2EZtW2ctbccPaCQpipH5k0lpeX09zYaJEuwmEYCIfT+q/TSdymS2cXeSExXVtLxyOfQ/v9dqXwo5zQXUnmFomx5BIK6k9z344f4iu+httn8pEIqlMN8vUO8ktetxYcQIIBzbOCUg2DZGEKAy0MAjrI803PUZmAjXM6W+wbmyQQoqQjQCHp8aSTPT6KaZrsrWtg+LSPq4rT2FBoldUvZAL1qTUY2o/ACLVVFUrMtRclkszYAvoTX6U/sQ2CcOD1d3ji1icWJAWjyaWYobH6XkkPkdHdNEqS1lwdbyCB4Mut+HIT7HOXcY4ovEh+RQbO7HimWwXjuXvRIoCX3fQffJDRtuuiV8xKIx1LMBwOm8Wl0GihGU7yc1XGGu66/i52vrDT0jJCcyz9GAWigO2Z26nIrKBuoI4Xnn0Hh2laQOugjlpBRgKLlVL0n2mdO9f8fHJycujunpNvaG9vp6urK0pSBkB0+/hi/z0h4VPF/lXNPFBoeRYKhyRuZDlCudAiAAiSxRZK1v9fUfdSpFr++2WznivW3nS7ndRdqsgtW8F9j/4L9bveBrggmZcr8eGFMzdhwXYknm4x8e/3GxWZFTxx6xO8dvRvqBSNUZKbWlss1kKXptBlouKPElfzcWK9JQCMm7UglLWTUkwm16NmFcsm81jWEeDdQjemBC0tclunK4fUlgqGAx10DGaRf00fSBDKYGv9NXwyL8iv8p1oIUCbLO0+Qd7AAPsqt6Ol5c7SkbeUNWMm27M/jRQScdV2nHv/HWO2G5lUjBQWcSxbJSORmCGheLd2IaRBf34JSreFngGCmLgzZDvaoMiaFyIVBS50Dj7X+OptjcVwtqICM9HJXIgsoUKdh5XXnjvpys/P54477uCVV16xuxAbMjKYeOstunNzbYKbAvx/9IdkjHkvi0rY9KHDaL//sqoUfpC4kswtEkXXr+LIoWmWTm2moHGWdR4ri1kzZjKW56APazIxNZz2SU6LFXxN/iVBHGik7RCxQh9jdLTgvMlcisNKbEwIlaMVud4hCwsiDf7noTF6g6dwOSQ//sJVbChMuaAJ9MSKEt7sb2H9SJDVo4qa4TdQmalspAqJJCgU+9MswkPWRBG54yX0JrXYScHEb+YssVLGmpHaRBuO90x6iIy8shRGXe0YWKV4lI469/lCyP6eSRI25+C7oQE9HmJbaZPMip8wM5oXhZ2TUrDy2vUsv8pqh7ZNDVDf3I8QgtWTuRTrYrav3U7nRCevVL/CYMwgk/GTVGVVcezNX9N0cB9lm7dw931/C/v+ER1USKeDOPdpSzw4fxP5q9ZYenEhzEn9zjejJsjKysqoZA4s/MjRo0ejqqtrpktx6hkMDDQmrb3N1A3UUVFYQfoX1jB1JBNqBdOeBuLHV5B/36dwe6J/3/m4uUvpp3spY7Fq9ZW4PGMxofJIPJ1wyA+kMTc/AtOn2GCcQugItzthGyXYCZ4BBMra4aCVzMWNLEcsc6IJgHTg1y7+3FiKI7gUqSVVIyZODQFtiQAfLXKjZDk7zT/jvqan8O2IIasoA+34JHvTiigbN3EpJwGhcQZN/vynvwTg8JrrCBgAQbpTajCXlHIi0Ultqov1w37KM8px9x1EZxajtFVZ9M7E44qDadMqGx5wNpHsj0fPJEOMBK0QQlJUdROs+yfIt7Sl88pSMBzyPRPPzja+7OO5lsCsQVgSSAhJdmkFs1M+UrIzL+gzsrKybB1NgNmTDcREtl9DP1bSsmWkXwSx84sRcZs2IlwudCBwWVQKP2hcSeYWiexiD6uDhzluVJEa4wSsxGPGc5rBFT+3S/zPjznpCDjZVv5pXp5yoIWB0EFWc5x7eI5y2W63xcK9+fG8LAYDPrtlVe2d4iunu0OdNI1naoK13S1kj49SvGwZw4kl9B4cQWkIBBUHWofZUJhy3gm02jvFg73d+EvdGKaLz7/2PAXBIbLEEkRYKC80EWZNFPHxk3+KoQyUNCm7ymJOJd5yM1MhyxTP+Blu3DDBRMGGD+QAkV3sQd2Yj7lnLuGJlCNxF3ssWfcQHm66ph9zZR994y/MHUQAmMRlnIpK5nS5l76EM1RkVpBbtgL/nj00tLxltWwBp9dJ3UAd/3Xmv/Al+zCEwZc3fhl5rDeKuXnzF/+U4qd/yPQbvyKu+0ni2r8PT/8QHnqJ3LJNrLr+Zo69+WvAwqDse+4nbLn3QXLL5ggqu3btYiLCYWN+FK1ZQe++IwSVSVCYeOU40y91MJoWT9z6LFLvLiW+3Wq7+nLb6NU/JsW7OWphcC61/CtxJS5FyDjHXOs/RNiJ1Lu8GJi5sByJx+WhqekxNsVpuxMihYX7BTVXldeAlriai6y5Q2nipspYs+S7TLlPwHgMwvw6WnQhspqZnV7H2tFl/GdTM4dWQn1PModyMtBSYmLQmVtMXm0vPSkP8d+3ZhMQ4NTwFw2zjLkE6+qrKTtj+as+9p2vc2jlGoYTxqhZXsLTCS46MxOs9yxz8eCMjwduuIHh+kTSuyaQQInbyS6lEVj6agpFsx4hNlhA8sgaAq5RKtKOkD/v8Zxd7OGuP6u0iWdJ3laGvvv+8V5zxyuiq36Q04fesi6nMuluqAZguANaqndy0+f/6JxV+khGq1KKwcwMirq6aS0uDukgWz/WYvi6DyviKispeOrJK5i5/91jTZWBfOUtlqy0nHm01kynNNAklnJSrGQFJ3GLZCYTi4gNtOMgn6DWODD5g/jjbM36hC0lEe7NN6TE0ZqRbMk8uFzc+5V/Zp87lYAK2YUhGItPZF/JGjJ8U3z++usZUAl8p+YAgaAi2zFF2mQrnZ1u8gvzzzmB7mtrIKCEpZMkTVpz8njYuBHDNEJ5nMDQBmuny+gd9+BQzpDumkH8UIY1oa6cYNP/8wWS9zeQeMvNpNx/z0W5tglxTsYjtiNX++7CJOKrspg6aGHbdFDT0fosuIPMD+mYmxiC0s8O8SRP/qbXxo4VFRUhDYkKWub2RUVFvN7/ui20q7TC6/fSdPBY1HHrf/Es+TfcBqNtoIKERYNp2wP5myy8ye637FZu+/E6uhvrbdmOqqoqsrKyeOqpp2xs3fw2a0NsKweuOcrIqR5igy7+uO9+DAymTvcxVdNPxhctluBs8mlO1P4RSvmR0sX6ymcWJHRXkrgr8dsIX/u4pSdnwyDm8BAXi80a6Wqy1K34owy/XYWzkjdbtGkOYaHB030dsSPLiFmZgis/yZ4TM9hK49tfs+AKUqNVkMDqTuJjsvGIx7hRBSjIW8kR9SgBpTE0rPGm40j8FCcykmyd0YDWjLkEj5zxo90raS5eS2DsDPV56bRmZ3Ni+ccwpeR0koUzQ0h82uS59clswM/VWG1GIQRSazwOyXjARGjLVrBMpJKRYLB30oPb10n6VBN7qhVFRz5H/iNP2tW5MPHsYuG9wsfLKb6Ntro9USLD9uVVJm8+8Z1zsszna8aVbtlCWlkZQy+8yNHQPg6H47J0aQj09OB94UWAj3RCdyWZWyw6D+HreoGYJZ+31MVDoPbT/g18Vd5DEAdSmIhkBwEBvwzAQ+IJxnUcK0UD25d8hry8T1sJ0fHvU/5SI23ZyQwkxdkfEQwE6Kw/zpbtH8MpBSpEN0cIlGGQdf0tljgi8OMvXMWe2ka8x47QWGPSVHeIRx5+iPzC/LNOoFWdp3DErEPf+e8AACAASURBVAShcWjJtWMxFo4jtELS2loZeqcmKB+42WZUGoZgKn2Qv/jNn1g2UTEuHv+Xxym4iAnDfBuysBxHODEN43LCRILhkR6MRbC+MSkdAIj8aXZ4vkdf4hkMZdht4mH3MHuy9pA8ncxY3Bh3uu/E4/LYLDmFwuPyULZ5CxP+t0kunmCsNZHUNwfp23nA8kOUKRRsHyUuS9jYlTCzdd9zP6H9eN1ZZTvC1zr833BEPrBWxZfwL23/Z8giPBTBudbz6OhBlPJbZ6vm2KyRx1qsMuf1HmF09GCUNt2FRKSP42+79Rm2H4Ir2LnLMaaP9Edbd5lcNHxcOCJxoEtdgdD8O8deDUeUfTWCmPFCAGZPjSATXbiZ6xyk5V1DT8fTaGXhT0/HDJORtQ/VHwAUpbqBvzT3MXRmAxtHTFarZRyPNdFa8kLowxTg8VuKAFpKfEtW8+ayFJ6983MEDQchhhIoC5tsMTiDLJ+YZHNNITo4abHqscB+8atzyexIJrVvmhyVQpa25qV0h+CkWsJxx7UIHcRQJg8d3Ul+frSN73vBe4XHdGxi4ln1G6OlTN5AmdGLZ61MDu/4NXf9+Vl0ThdxbugE6p0OhGkihOC22267rGRIpmtraX/oYfBb8B3v889T8PQPPrIJ3ZVkbpHo2/lrnh/6CkucbjLBthupdxcSxIUK6QqFHNAJACfiPs1t01+jVJ+iqfmf6AlI/uTdfyNpCG5tyMAIJ3LhBzwW0yjXE88vKkr4Zkc/vxkaRwMuKbmjaM6mZUNhCvv3Dln6ZcIyJd5b18AD5xgYq3v9fHtokppUF5UjfhJGxtEJlq0VgNaKmpE3KHBlYeC035e2JIHG0cZLCqyf35YBbDKHFgJZnmK1nUOAYTHrsRmdkTHRtQEpBUUV6YyN9mIoIwo7Vt1fzYBrgD5XH4awkjywVsJhWQCv30vaiiAFog8NJC6ZIrnLgL2WQ4XWBtMJtxD30P9hr47Bmvy23Psg3Y31i/qXHj161MaPKKWifAojH1grJ4uthXzkF3MI+7qkpGxGShdKBZAyms0aKarqlE6buOL1HuFI7WfPWs07W4QtgMLf596v/DNw6Uzv5xuAP/v3f22z7o699RolVZvZeOc9V5K6yyQWE7GIhEhcjIjEgZ7xg6kDhBurOuK/EKEaJTQDy3+Ce3IJsd4Spg/2MXNkwCaFubLjcfavwxeoRmPiVC/zTGMc96Q6QJtI6SS/18mdZ3wYGNQlG7xb6GIiXlgydVIglGLMGWKfAj5zhr7yfJRhCQdbyZvCoUwyen9KelYxV2ek85mZBxFhZwVl4http3ukk/1jeYxlTPCfZhEOLAKFAoaCmkDMOKAspizQxhLmz/STBZW0F91G8sgpkme7o/Be88fVfFsvISW55StIyyuIWjSFsXWrtm2n+pW9dJ/qY3r0oH3FWw7vpqfp9rOOx/nODJFSTWC5F51NmeHDiOlDhyEQsLc/6iSIK8ncIlE9kECSdLImYqLSWrN+yI+xzGmxnFBoJFpLEIKD0/Ec0V/hyzwGSlLTNcykkU/pcD8inPhFxPJrtkUNindGJkKYEPjHkjyqPPH232raR/lR/TQ3OURolSg47nXxwDm+g1sdZo03n1VeExS040AIGfouViLX4Wtg+/Yvs+9XkwRDZIqB9glkVx55K0voSWi5JMD6+ZIqkXIkWinOHBui0G2gTMuBY7xzC8lL92D7cAFusZXx9uvQStP+6xm+8fC32BV4LUqbqiqrigx/hl2ZC3+P8MPCEAY9kz20zNTNQQg1zFRq4vcCUiJcLuLu+3PIXzjAz6Yb2NnZSW3tnEZb2KcQrASsd7IXh3QQVEFiTTfWx1qPKiEg+RPLbO0u0ZrB6tzvMOU+saDKFimq6leWPElFZsV5q3lni0iHEjMYpH7X25zc/VZUcnexEqv5iePK6260EznrgmhOHz7Amdoa7nv0q1cSussgpNtY8Jp3RyvObGuuuhiYuUj9xKGZIb43uJOlLj+FLsXqWEvoHG0RIcJJHgK0CDKd2mizWcOksPHZoxzv+hImVrtWCgs/GyOD9HjuZ2tqFikpm/mJt5bVwuSFXCdfXxmHiYWTk9qSpDK0IuHMfrTegBCCyrSbOC1/wm5MlLbmVYnirvaf42+s4ci63Xyq8gmK0ooZOngcHTDRwCl3Hm3pudwqBHGi3XKtCHl3nxnsYMydjdOfCEirMiehaN3WqGvU1+rl9VenMAs/hiy8ndvu9NgJyFnHVUQpUytFd0M93Q311O98g/se/Zeo8SUdufS2lqBEMYZrGtN/LPzGs2pALubBGtl61VrT0tJCe3s7Dz300GWR0MVt2ghOp12Z+6iTIK4kc4vE8Twv6zssbTkpBForZkfaKN39LI+KJN7eXMEusR1FSGHcgrISFA526xt4V2wjEHCiMzdwZuLfWXd6EhntdkLakgL7//eNTdq4OaFhNGhG7XugdZh+M4HX1XKy5Th9Kglv4wyfah+1pUoWfIeK6/l392k2DaRx7aibpYnWKk0IAUJSWLqB/rUezFUO7iqs5NCOVjobRq2J0tSUzVRgZk6yPHU5cGHiitXeKfaNTbIlOSEqGY2MRSVVij22dZkGOv2KpE3ZpDskQ0HFNRvXYbrjOdX0GForpHQRHLwLHZZKCWqaDw7yq8RfobSyNddG+ka4uudqhBboMc1I3wjb1263HxYvnH6BXzb9kr4ExT0p2Ev+5JkVZP/9ZzDfJ4V+vr1NZUjlPNxe9Zk+JJIHZz/BfSO32PtFWprNv045X/gMbk9SVPt0vqhqePtc1bxzhcXUNTC1RkojdG3nkruLKeY7P3GcGhtddD/TvPiuE1fivcfkwV4md3cveF0HFVNH+pk5MnBRdebC+okCQUHGLWwp3oL3zKMoFbDJZ5tSc1lKN6CRhoPUnC3QgUXKNAQyzkHv7lfQSwPIUPFMhVQI2v1u/mDJJykKdRyuvlry1YGXeK3446iQWHwgPIa1Nbb689087Ywh2a8Zc4E/uIpC3UaLKAlV52B0JpV1PZqDawI8uu9RqrKq+L1tt5L4lsVQXRXvQk2brIkzMHyllpSbsAgdgYQ8tF/jDiSyfbYZEdtLUXnFgsQnUqJEScmwyKAo9Lf54wpAxSXgd8fhmJ7AmJmKOpZpmgvGV/j4aDDcK1HBk2ht+dz2nm5a4Ecd6XxjGIadrIVbrzt37qSlpcX+vOZ9+4i9DORJ4iorKXz6Bwx//wn8bW24LkM833uJK8ncIpEYGCO58WfodZ9BI9DKRJ14FnO0lU11ObyzSWAKxwIwh0NIPIlrCU64Qj6uDoYySsn4WAxjrxxChyYHw+GMasltSU7ACLUUDSHYkhyt5XRVcRpup2QokMCgaf3NMOeYrfOj2jvF3dMlBAtg9xJF89H9PDIkyNbJ9j41NPHtgZ/yxG+e4/FbHmfTx4vpba4lGDQJiAAn3Ifon+qhZ6qHvoO7ePRnGhEInhVsW+2d4vfqThNQGqcU/KKiZNGEblFJlWKPBTcJ7SOlIHNjNtnFHnLtd36ahIRyenufB6B3MPq4RwZqCCZYk5ff9FPdX834qXGEtvT0lFZU11bj9DqJjY1l8tQkCb4ERmJG2Ddl8AlfMbGilZg6iePFZvh7SP/DL53tFgEWb0vmlq1YAAYOkx+q+6tt8oWJyfIBa5KeEzDGsisr9ix6nWaTT0e1T28v+jtePD0nTXLnsjsBS9dwfeUzF4SZm9+SmWtiabKWFnMywn7uYor5RnpHGg4H8ckpi9rmXRERvjxi5sRQ9AvhlYcUBLonL6rOXOQ4AWgfeJu+pADvTqbhDwxz2idp8xsITyn3bvo3+z6PGSth8OAxwtU7f88kscPliCInWgVRwKFpB/GpN/GVGz4fBR3pOT5Bgb7Z0pGz5/XQlxQCUyt+vPIqTCKrk9cjQswMoU0MbVI0dJq17T4OdimaaaXV24ocnuCz+mNIIZFaU+i23KFFqB2gtUZrGDQt4oRGEWc6qDKOwTVfXXB9ziVRMn9cpa9cy3TPIEpp/FoR19EUldAZhrFgfEUe3xW7hIobH+LwS0+hlaKl+gBnaqtZfcPNdou2ra3N9qEOBoNRMkz5+flcf/31tLe3W/OhELi+810G+/svG6HeqT170H4//pYWJvfsofAjipu7kswtEtsGUxkfO8S+iQBpLgfDfpOy+FyS08uIIRX/2EZIXfi+B3LSuS+7jB1HGi09JB3E6WtgenJZ1H7LkpNInpq1txsmZyKUshciUzYUpvDjL1zFL4908YuaLkxT4XRIripeaL4M8NyZQUuEWEiCAhqy8ugbGSUraOGwlDB5M+lAFCbuC2squOvPKvnGS9+h1mG5PlR230RP0mmuPtoCPuu8zoYrCFcXTQCl2Tc2uWgyt5ikiq/VCzpUBQW2XmfhBXf+pBGItq3p7fsVSvkR6b8kPuPPmRoqRokgpzIsD9mMURe5I3GULs/ELC/mnZPvoLQlEDzbMctbZyz6vRs3W8VW9mTvISV5BFfKGUwBk9sVgSYH8b95g5T771/0+oZj/io4vMJdDAwMVtvXEAZBbU18exPrWD+1wm6xxq5MJXGbRWoZ6T7IcNGbxI0sJ9ZbgoxzMDSvfZrBCE/c+sSiBAiPZ/15W6uLtWTCno1KKWYmJs5qP/dBI7dsBTc89EVb2y+9oIj6nW9imkGklCyt3Eh8csoVIsRlErGr0/E1j9nbCVvzUD6T6Zr+OUcIwUXRmYskKRW5TP4w3YfhfZ3rY+Fbk27a/FZCVZ5SHnWfjx/pDAnRAcpCB8dNlZFf85dMpzXSuiyZj191+wL878+P7aHnwB6q5HU8VQx+qe1OgV3SQ2KioxM9rdFSIpTJKn2ce/g5JVuaOeldTyB+GQFXI07/aepiG3mA23CFxNpTHAJUEB1ODLVi7NTreDO3IQwDiWIyYR31az/PbH0meQGvPf9N19biOHSYW++oZFhkLCoTtfK6GwGLRNTSPxTCFQrrO8R7KF+9Bq055/gqvzobgLScSU7te8suRAAoM8ixt17j5O63uPcr/4x/3Bv13iNHjkQ53uTn53P/1VfTUldH1vgEMf2Xj6XX9KHD6AjcHJfBOb3f+FCSOSHEvcBjWO6Tm7TW1Yvskw/8EMjGKtp8T2v9n6G/PQZ8EQjXZ76stX71Yp3fshvu4vVdkhElGfFpUqRB+vrPIIFjSZJ9yYnWjjp6cK9JiKXKE8+/LjX4yvGdKK1wSAdrKq+ldpdlbSK1Jm3/UTrefZiCH/yAk8Vl/HVzF+HGalCzaCK0oTCFDYUp3LN+CQdah6PcICKjpn2U535zGtYnEzYyPJVTyGjXIMN9PYz6+xlcPsuWkZUs647jSGabjSXLLvbgX9sDJ7F157QwqWz7H8AZ63cxjEVxBVuSE3BKS+PJKRdWF8NxNk0qO8GTgo6RWWq/UWMRw4C+A71ct20J08t22cmM1n7WfqKJno5VPNP6A3LHS0ge12w8rjC0pO7MDywA/903UF1bjWvKhXfQmnQ0GonVFsmYzaAqGTC6bRBO+8Y4Uvxnt8oJM0hLczOjVsHzV7j/i73zDozjuq7+783sLoBFWfRKgGABwE6ABElJJFWoaqrSKo5jO7Ysy7Edf0kcJ+4tbnEcpzn+bEdWs2VbVrGoLtliFSVSIEECJAgCBEB0ordF2zbz3vfH7A52QVCiLOoTlejoD3EXszOzZe6cd+8953q9Xo4etYT5hYWFlGeX85UNX+F7Vd/DVCY7Mw5y54o7yexIIGFFJkkb8sKvO0KD/29Qi4KIhU4Kq79AynTxnOXTYs+fbk0yV0km+v0kJCe/reKH3b/8BaZhcLqxnis+eje25YQQLKxYS39bq61uvdAI3YUew843Ir9N3/Eh+7c6vrsrRt0atziVlKvmv+USqzc4Qw4Wx0l0YdnHAVS6DRbHSVoCOilxscfpTBsgWZNoUkNzaDjzk3ADCWRTtOZWVp/lvF46tJdL+9azwi35uwY/P1wWH0vcADs4RGfswK7MrFcHKNWaaKKUf73h8wSFAzBIHfgBoxMGNc4u1ocWEO5aJtjxqvXauBRUYJy4gWNU9NUytnQN7fGbqe9bBS8EgVaEBmsLBihdLOj/px9YdiQOB/nbtpGSczMwd7/c8su2hO2ZdLtvzumftEVFkaz8UGc7vokJEpKTGegcpOmgA0QuqD6Ck49jGlFkJ+p9R/pqDx87Bum5M5MeogRfXV1dHN6xg4ndeyhuayXeO45wOFCm+Y73qE3X1BDq6QFdh0i/7ru4b+6dyswdB94P/PfrbGMAn1dKHRFCJAOHhRAvKaVOhP/+70qpH70dJ+euqCB5yxQ0BAAodGm2rcdz81zWjL6oAcKRH3HdpOV7VppWgpEMQSUJJV9GU2c90jDC0nQLkVXJ/vR8ezEJFv9aFJhi3759MVmdCCKk7mx44kg3RjhdD9Z5SjROpSXTNvxr+uYF+WLfXyFMkMpkd82jeDd0QpgQ3LniTv79tYfQpY6GjpIwkVJC5lgbCIFn27Y5Vy2VYVXuG/XMwZmeVHHzU/DcsBDvwT6OtnppOzxTQ03TBRcl6JiH+qA1DbFWx+ouVIxNPcOwJ5WL27ehS51QoApTvoZgxvqlpPJi9nftZ9qYtvcpsIw6pZAMxg9SlncjDN6LkiGUKZjoTaTt+G7qH/82ZZfeFEOWom1FXLqLH33268T3+GMIT3V1tT3aBqCmpoaPfexjM9+lwraCCaxykXVVLAkcHa0KO9dbvli+zJPELbyVOE8hpSVfY2DgD2RnX/umLEfmwuweucjMxoiNQYRsnW/xA5xJJJuq9ttZQdM0eenen9o30vo9Oy5EEcQFHcPeDiRtyLNJHZyZZT8fRA6szFwELQHN5otSwYYkEw0TU4XwqzHurbvXXozeffxTXJFVyebJNZQuWYl6+pRFNnVB4pqcOY91vPYwl3RmoUuN37pgV5ZuETk7IxeGENhDoJUW9Zy1NPy19nEKZScn1AoMzQGaDgoytcu58UQZAeFAJoUNEHRB7/QJ+pLdzM+7nhzScBVdgnrtPyDXgfQ6Ywo0ylQc7khHPftfeCJ2JMEgY48+ivepp+xS5VyVgg3b7mDdgkJqDryKPjWO8E/bC6QYlWsMcXXgSr4NM3gCMxS032t6/jwAxvp6rLFdDos+aJPjkJYz85kAfr+frq4uHnzwQUvVv6CY1vlFbNmzl8VbtuDMz39He+aiffpwOEi60spmOjIz35HzOR94R8icUqoBzvTfmrVNL9Ab/veEEKIBKABOnPVF5xF5axZwsqGRVA0K4yIq0Fmrslk9Pr/rHWFlUgLPDXoJKlBoVgZmqIV14V4MBQwnJZAeMnGvX8clqUm4NEEwXBbYmODkob37mNYczKuu5eObL6ayspLDHaOvm5GLQAG5GeN0iXRUWDKvAcvWxnNyVRmb6jNgSKEJHVBkOwv43fb7mOjKonLNMsoXlnPXNSFq7x9FShOlmSRNNCM1ge6Kw3PLzWc9dqUn8XVJ3GxERmgtK9uE52gSMiRZ7tIYCypGwxE80yEIeFrwZ5zEPbKElO5NeAt2hxfJJjmBCcbDxFPDPaN3VYrq8WNkHcfu54hg5cqV9It+TqgTfHbFZ9lWdjsnnndypPa3TPQm4uuLxxGYpO/xR/iRP3aAfXQ/T9AM0uwe4BPbPmHvu6uri+eff94mcmA1/ba3tzMcN8z3q76PGc7DGtKY0/YlOgMnNAd5l15P3HxL/NDU/F2kDDLmPURSUhltAe0tToCILe9H7Amqtj/6tokf4MzentINl9g2L0BMWcc0QhecCOLdEMPebpzvyQ8ReINeu4+0Pajz30Nu7lq8Ge9UGzlmU1iYBn2n7+HpMRf/fTSBGxfdyMKJAj7ZfxtOpSOqA9ZoRSwyNHWk3z6/SGb9IrOCpEcnyU5eznPrXTyd7wwv1Dmj6oJS6Eg+qn7Bi1xPj4haZAtBSDp5eOLDlLYeR19phuOQQUb/FJrUGUNj/5RJxcoMXGtc7HCVoaTiBHVsDa4hSySTsb4Qn+M1fO5C9FAmzmAKYYUESglGUxbhmWifSSIohQoE8D75FO6KijOuqUilYNX6DTS+8KR9bdXv2QEQq3KN6VU1MfyHkKGoea3AWF9vWICmseKKa1h+2RYATry8k5B3mFDqDBE6cOAAgUDAtmdCWP587QsWsPaWm9/xMma0T1/EnmTq1VdRwWAMQX434V3RMyeEKMbKJVdFPf1ZIcRfANVYq9855XBCiE8CnwQoKiqaa5M54T/dBkiynM4o42DJVd1BnipwYmrhkpACFY7nhlJ8ubkbGVY/CSVxYrB58SEc9X4mB9xoSpE+6bOvnUhG69G+EX7XO8Le6SAsWgXAYWnCvgOMKjf/5+kOgoaMmc86F25dMw//o4/yuCwgqFnnV9y1na7JcY6NHWbKN5+LKEMoyzOpP9BF2fAtdOyc5vTeGm7+XAWXVq4DDvHAS4/QndzEq0U9fC3uDhZccX4uwkDHOB1/PMiRfdsZDvTg7ohjZfqliHC+KtMpGAeKVmaQ6D7J6bx/QYkQYqGT7JN/znieCyUMhHBQuvB9nHKEkIaJYib7JlHsb9nDQLCKTdomVFT6s76+njvvvJPPFH4GsMqaarKWrKNBBmQmSkBjQSZrWoK80hmIIVxzmQ5HY7aSFawm4+LiYh449YDdL3ft6EY2T6yhtGAVtTmxxr9tAY3ulNtZHCdZNu8WOwMXazkSoK71F3yuvtrOEkaTznNBV31dTI9cNGE6243hXHAuxsNz2bpkFhXTVV9Hb0sTp6pfs7cVmvauF0H8qTHsT41fbwcmq3pjyqxw/iY/RKMyp5I4PY6gGUQTGh+q+AqFaSU8uPtj3J05Y0dS6DL5TLaPnw1akaPcvwSncqCjha9RqxcVFN6OARI7cmhIaLUz6wPD17Eq+Ub+al2iNekBbOJm2RRFeudMdBQf4xdczg7Gphw8kfhxCBdNUQolBE0pS2hbXcKmk7/mYH4STn8DU5qB1NagKQ0vsG/hUVKH4sLHsmLwaW2EDJXIWGIrz+mVmEmdCHGaykXX0L7fh5ImmjJJn2on/WMfZeSBByFCkpTCu307nltuJr+iwr6mIi0SYF1rkRGEZkIiwcQUxgMhdIfjzMycEGhCO4PIoZRtJCyBlMws+9q+/evf49W9e6k/3WdvHomBEcP98AOSr7j8giBJ7vXrwOGwbEmUYnL3bovYcfa+8AsdbxuZE0LswOoVmY2vKqWeehP7SQJ+D/ytUioyBepnwHewrr/vAP8KfHyu1yul7gHuAaisrDxTXXAWFIR24mA9Q4ZA4gJlIoTGunHJPYemeS7fgURQM+7j9AoPkR5TqcJjW1AsV8e4TTzKQq2JwXnx5B1LIXPSR9p0AISwfzCVnkT2j01iqJnggxCYmsZpTwa1J5oIGs4z5rPOhbXz00heeTnzj1Wx05NJvneIfK+DRaPzSR/zMRToYXf87wgWZdIh2xmb52H58DxQAtOUnG4aJXehh5QiJ7UFOzGUwVCKA/O6W3C/DlE4F1sSsIjc4D3HSDCdXJ77Qfb0PcyAvxOJiS4caLpG7pocVoXVrO3tr3Kq1QAUShmYrkkKq7/AdHojbu9SCj5Qzq1/p6g+coIufyL+F51II0R6XD5r41ZQZZwkcXEik02T9jlE93R4vUc4fORDqIwg+l2Q8Ewa0wNWhs/rTuDG18ap6LyP6cv6cX/wq3iD3jNMh6NRXFyMw+HAMAyEEJSVlbFx40aG44bZ3mwpca8d3cjf9P259YIdAR468Sue8+zDpbv4wrov8MNDPyRP91GWAI7E5azzrMHrPYJ3/CjRmTTf6E7ydBdtpviTzJ1fj7CdzUPvjdDT1GCZ/4aVvLM9rKIxewB45HFPUwPttdWYhoHQNK6669PvSFbuQohhf2r8Ot+YrOplbHsLgC2EiC65nk/MNXP4Z8/9BxXdV9Hk2MPS1FGLRgnQFZTGK25cdCNxU0G0fn/UFWL9JxA4+kyG7q2j5Yo227C7NuEkU5mbCWluu4ohpMKlFJ8Y24XXqRHnbmZCS2IpxymhiSZZxtMJH8WW89rlVyDcspCxxMX7Og+SM1KOV59EzqsmJbmUh/VHON3TQnYwm0vFZssrTwgcCVk8PtnNGk1hKt06F6FILjZ4/8a1tO+pJ3WshaLPfNMyup09bss07XtJfulShjrb2Xn/z5FS4nA6uf3r32P5ZVs4VnWA6fyFIAQnRie44VOfIzjQa0+GSEhOpr+tlbpdfzj7lyPEGbHCTEjCH39mzM/NzeX666+3W050XWftVVf9yb+L8wl3RQWp27Yx9uij1uc5ewGe+tZEPO8E3jYyp5R6y9+aEMKJFQR/o5R6Imrf/VHb/AJ49q0eazZy08a4Of2bVMvV/CgTrvZVUj61BF1orPJKhHeanxPA61T8IL+MkXhBmkPnq83dhBQ4EdymbWexakZoLsrWf4z4hx5EM8MrllmNlpekJhHWD9irJE3BvIkRyi8px9XSQch4fRUrwP6TA+zoSsJjFLC28zhKWHcLR3IWW+LXsLvvYQb9p6nhBHWl4+ROLGDFKLaaNCJzf+bUM3YWyVAGLxzYgxmXOqd6qto7xftrWggphVMInqiY25YEYCo8EkigoQtBcdIKDg//kS73KRakrcWb6LRtSQASAysQpsPKxCkHqSnr0VuzLXNQYVmd5F5RyA0LLwYu5ljuEup27uNidSXDU5Ms9C+lJRDrYyKEsE182zvuQamgFZt1SCv1Mt2fYAlVJn0sHjARTaN0vvwQRUDlldfj0ByEZAiH5jjDUPlsStYHDkRl5cYusc4jXEra4F3JM569hGSIHZ07yNN9fDrLh0PA+Klv0j4+TevwD63zjIKGpCwBOkP6n2Tu/EaEbTbZeiP0NDWw+8Ff2OWcSIP0myVi+aVLueOb//SOjRWL4N0ew84XnppT6gAAIABJREFUAh3jTLzcHfOc7/hQDJmbbQT+VhE9c/h47WGueWUlDlXOZKiU7sp/RotUt4XOHeVfpzy7nJP+KsveB8IUzsrQExY8SUPi6DJxaA5MZRJKb8dMfw7BXQgl0RTcMDhKRcZ/UpLWAEBUOEYpaBDLMIQ+01OnFJpQCGWN/3Jgspx61miF5A7eEF74KeSk5NlCE4kk3UjkmsBqBhknT6aR7U+ilETuCd2I2zlghSLdmmOaW+ghd+ElwCX2ZyNcLqu8mlzMaGop6dPtzA/fS3qaGiwiF87cRXqHC5evJH3ZaibGLVsSKSWTEjZvu8Peb93uarpO7IypYkRDaBo5CxazcsvVMf3Bzz///BnVCACfz8fmzZvJyck5Ix5eCPDccjNj27fbpsE2TJO+73wX4A0dDS4kXLBlVmE1o9wHNCil/m3W3/LC/SgA27Cakc8vVn+Q3CMPcYM8ybyQi5b4NjT/18EEoQmmLi0gMc7gw5lJjMRHqzdF2EdMoBV+i8TAk7QENDLH5qNpGpgSpWnkfvUrMWncSk8i35gn+XYXmOHb/Icmu/jrRdNM0cP718xDAO9fM8/Oys0OoNXeKT54uofQQhcOtZBLWibxOZ3MGxshbygdTehkxRcybPaR6inkz4YL6RU+NKHTleagM9fJgoCfXGZKiQA5E8UkH1xOlWxFd2jc/LmKGEL3aN8IwfBqMagUj/aNnJXMzdVhlBGXT5GvFHNqAjew+8ggJetyKC1Kxj8xQsroRgA8vRtJLluFzzkQY20SQU9TA7seuIfSxLWMZEzxousoJhLGZh0vI8POyg0N7ZrzPLPGp0mfDsx8p1LhfeZZuPL6mO28bZ1Uvdpkk47pmhoSDh5i7fp1uMOBq3aglqdarETOkukFLPJbz0csSao8dejCImRlaWUkTe7DIay+IKRJ38knURlnKspE+EaW0ttkf19vdibrmyVsZ0NESWfMDoyvs/3rkbXzdV7vJN7xGHYeYJtXh2Jv1gkrMs/c5jyaBkf/jgcaOlik0tHRSRwrJTB4J7nLuwkGBsjPv52Cgg9QO1DLo60P8ZfcFu6Vs9SnGuBLO4UvtRHH6CJ+O/0cMlFy2bzLSNMF95sfDMdbuNnZxN3jNYxkNtAsSjnBcpaqekpUE82U0qAtxyfd2OO7wixvgdFHrllHnBMuFXspoQnpSkRHR6HQ0dCk4Krxi2h0t7FiqpRcM40C0u1C8Jg2jnt+EU0F5eRMTHB5SjYD9SbOKFsSug7intyH9pFPUP/yML3ZG1CaRoeu4R4zmd7+KONDgzHEStM0EpKTeew7XyXgiIPCEoSu260fEdTtruaPP/8ulmYH7ApRFJSU9LU2M9jRRn9bK5nLVvH8zt1zErnoqTezx3xdKLCzc488cuYfDYO+73yXuNLSd0259Z2yJtkG/BeQBTwnhKhVSl0rhMgH7lVKbQU2Ah8B6oQQteGXRuT7PxRClGP92tqBvzzvJ1m4HtZ8BKofoDwQpDx4hMllHYzWL+BYsuDvHVOEEOweGkEbApcmuCM3PVwqtUzI/7FLI2PwJPga2Lb/cW43LMtJU0m6T+4ljRnW7/UeoaT7I3xNFVMvl+NsSSSlVxJUVcwX/8LJ0FeoE2X29kX+4/S+/BwJw2W4d5WS+YmVPDY6QhCF0gSGhH0lq5FAjVJsPeQj22uil2ZTUryNbUfm45DWXMHfZCh+dWkypgYv9/ayPT+JmxbdxFMtTxGSIQonyhCmhgJMY6YU+6fAvSaHqcP9KEMilUn75HGyE4qs+aTh4Lg6XiPpxBB9PVV0V/4Q5Q5n5QY2kbgmh8Q1OXNmAer37sI0Qgz4OzHEPCRyTvZ40UUXAVYPWsSqWIVbbEabPSAErrlWp6nFVPdXY0gDhSJtRKf6x/cipGXpceMHPkrgK9+wGmqdTtt8srq/mpC0yNiq6VL08M1GoYhfls4d132Chf3leFwefnjoh+TqguuSNUAilEZSfyVTGQ3hX1UEOmWl32LQWcbTp35E0AxytPMJPpPtB2UghJO1a37zlhWv54r6vbvOIHK6w2k3SUfjzZRiL1S8K2LYW0SgY5zxHR2WIXAYekY8yZfOi83KzWUE/hbI3OzZwqmLv4ZxzEQpmEptIphxiKHhk6BMJptPkpRURt8rLXyy5zbLcigK/rRTdK/7Z6QKYSqBb9CFEdTZ07UHR9pWgkkOEBbpetpcwqX6EGMs4ft8AwMHDmFwzfSv+KP7LzBwILRwoBAzxzml5dCq5+LE4FL2AuAMejAx0ez+PbjaexGHMroYmVoUzh5aVK5fePlR0RAvL16FFAIt3o1z9wTzh704nOHFs/Mk/PIm+nzF7Br6JmZuGZaxnyAUPM1L9/zYFidEDMsFsPb6W/BNTFitFMEg7q5m5m3YzObrb4whWM2HDhMdX9ypC/FPgjTO7J0zjRDHdr5I6NgxZMaZpXYhBBdffPFZCdy5TBP6/4X4ZUstaxLTPPOPUeXrdwPeKTXrdmD7HM/3AFvD/36FuRM5KKU+8raeYBi1xeuoPvUklT4f5Qb0y0IcUnEk3UEoamKBBELhm79dKsVqkHfGLyToO0FdEWzTARMMHU76XmRl10F7eHukub2ERhZxkg7narpZySF5CzeJMTaIBg6bpfy2qpPe3t/xobLHYKEJC3RyGj/C5F4PY71DsNYDwmrglQKUEIQkPJ/vZLk3xGHtFLJDslouCE9GUNQtiLPtVkJYmbYflpXzg9ErMXbtgxIH7WYIKXSEMslQg2APkIE7ctP5Xe+wVV4W1uOzIW5+Cll3r2LoYDN7XryfkVAfutNpqZ3Cit7ksKmUL70RJSyLDqlCNJVWE6ddSbaMJZIRddqgMDlScSmFPW2UDh6C/ExU+HtwCAdKKTRNIyfHktFbqtE4pOlHmNB/LI2kvGk0obFk/jpU13Nh0mWVGDx3fwGPqwUtPLonfyQBTGuuomkYtL74PAURQhMM2iqzaLNgrz6JFiZyAM7MBMAieg0jDQTNIOjK6slT4TKPJuzzAEFW5lXMn/9JPJ41vFB3r90DtCkxgFJmWIwXpLd3+3khc2+URetpaqB+z0v2Y03XbbXbXNtbpHumFHvwqd9zyz987S2f5/9PvFti2J+KOTNymjiDyMHcRuBvBbNnC58W+3hqRR1rU8dJiJ/Eg9WmJgSYMkDjiSdYXn0tkeKqYqau0LdwD0qFEAJ0FOvcBu1BHVNJ0oMn6EWFS7HWBJ79xV3AUgwcSKETUoLO5A8TMp3hvjrT6piNqN6wTkQJHUPBCbWCEtlKSs9Gep1DdMT1cvHkKo57HBxKd+I0CklPPIX0LUUPX9M78w32lqy0p09ITdGeazJ/GIzI4jlxH5hBTgeWIoUDiJR5JWawARU25ZSmScHS5fQ2NSKlpObFZ7jio3fbvbFxRoDLt1xBT0o6vzxcR+HpNq5eUkLJurW0HX6B8Cw0Vl55K8d2deMbbSd2ERmGUmiT42iZ+chwXF2+fDn19fUopaiqqmLJkiUUFhba5E1P9eA/0YB3+3aUMfc0ociM14SEBHw+39tamp2uqaH/n34wN5ED0LR3lefcBVtmfadRO1DLXTX/Sig1CWdqCvet/SJ9NRMsIZmKEQOncllDEYTVo+EMZ+ZWJiXw5aYuTCROZfBxdy1HgyEOzHPy7Q/qLO+U1BcJPhgfhPZ9NpmL2FGYZpAmVcqeuGvJSPGxZFRj2tzCayoLgIWeNj5Q+igKGXZJMelf8hAF1fP48tgi3ndomm+nSwr1Ixwu3oyhWWrbpwucXNMjqE2wpiqEhAnKIjquNAG4rDeuFFNjoxy791EKfvqM9VzjU6R66hjzLCZt/BRJlTcBMz/ySk8iT1SUnJMAAixCVzB/LVeudtskIaHewWRVn33nU0rhHlkCCx1IaaCURkOL4lDNfdxgVJJjWjeQ0Vvjufv4p5jUCxlb8CVYoKObJrc9ex9DehV+TxJuw83CiYX2fiPih8jYq7b7vohR3wG3j6IcIOQwQce1jO6Ow5uQgNM0Ca5ZQWt7Nc/U/pr0NJ2RdLhm0x0Mt84Mos92J8/5fiNmwd957Tt4zCQk0i7BTLxymh91/yd1cc04NAcOzUFJfND6bgWAZHLVQVQwUv6wblRWVtFS/rl0F/kOP8vizbmZw1vA2UaWRcNWxYaxoGIdV9/9V+d8jNYjB8+Y9/ge3lnY2bYIwnYd3mdbceYmMtsn8nxalERb8yB0DnTvYkvuTJtBpIdNKstB4OCxfm6RMz2oERdHhSJ+2kEwam1p9dTpFDpN/ir1OC+rX/Ar7kYJHQdBllEHAhwYGErgMBV5r+6gYeNWQspEx+Av1P10iAV4w+MRj4o1GAo0Jbm4O4vCni+S4F1MjXsnHb4m4j2r+Ot1bkICYAsXN/6aDymLNEld8GRcUswYMU1BwdgQkDHTx+zcDJpOgaseXRiYSkNoipIl8QyNujjdMPMefePjloJUKYxQiKaq/Vzx0btpbjzJeDDEnv4RvtztI6gUenwux3/+Mz73qU9zzae+RvOhw5SsW0tGQSLdDTsZCnnQHRr+iTGLMAphK1TjjABXX7WFSWkJv9rb2zl+/Li1uA3bMWUMDc34uc0qx85WjUZmvEZbSTkcDnvW6/mGbU9yFiRdfmEob88V75G5s+CZU88QlNYXHUTyTO9+bujZTlVaGSuml7DlyGayr7mYZF2jfmiS63PTbZ+11IkXeKnnGMs4zmKtiZI06A3pNM/TaJ6nI5TC63VC8Wb7eBFi8dPGE/zX5FJkvoYj12RT9TDaRAdXL8vleKPGkvRmhE3ksG/4gbRGksYWowP5CNZM1jDeV0hD/gJLGSsk92TW0uNqwwB+mPZTbjpVzpCvi/RdOvqNH8fUdHRp4n7kAXpPN1HITOdEyngrnol2NJdrztXKm/WYg9i+qN7hHiBMVcLL6rixhQROXstU7mGGBouYmMgCBU30kKM8KEMy0NBhWXM4LkYJBwgNE0Fw4eVcUbOL31QcYSTZw6LpRSBnbEIi2bzKnEry5LV0JN0DjnD1REhOGUfoXJiPFlmB9/fD755iJUks1xL5w4Z+/BVxMQKC1Ck/nS++hAqFEE5njCff7WW381zrcxybbkKi0CJZBKlYMrGAo3EnMZXJrSW3Uhxnonsfscql0oHTjBW8DA/tYmhoJ5rmYk3FQ/ziml/Q3PZjHFMvM9PnohEIDtLY+HXy8rb9yRm6s40si6B2oJYdspq4cDYYLHJ2bMcLrLrqfXPuc/llW6jb9YcZLzmlLjgfuf/tiM62zSgAzl5GDfVNEWgdQ3M73jKZi54tvG+kn/zp3wAzFp8RMWd/SPDypAOvHORGzUSTVukzQuQAUnouYTz/FRAmQmlUJlewOncFXd170EU7V4kdFNHNQeMi1mn7KRFNoOArfIsGtYplNVmM11fhyTV4LjNEkVlPfmqQDhZwVKxBoqNhUhqqJX9gHik9l+D2KqSSLOlLp8hYxpOZHQS1FSihIaSOmJjHnt6HyU4opmNFBYkjPTilh5CwOq43NdcxfyAZgWR+3jj0n4DhR0Apcl1N3JzxXU6v+GcK1luK0l0PvhLz+aXnFzA+2G/bjnTU1dLS1Y0/x4roR062EVywDKXpmEBHdqFtMLzyikp6mhp45FtfskUUYFUmVl55nd02cbZMffRM6uLiYqaff2FOIocQZ4gAo2e8RmAYhr34Pt9wr19niUlCIevHNevYSZduPssrL0y8R+bOgiFf7GDpo4PH+H1OGqW+RE7p8dyV1UxC2nV86N7XCBqSGkcHS8P+b5fmLSex97uosHpRF4Jrcoq5p6sTsEqfng2ftrNyETRTxk+mNaSIWJPotKYlkTi9k0/PT2f95uuoPRVCJ5IOx7p3K42EkSUc9Wh8JrwCrFGfZWNLHU3SRAoNTUnKJ1/ie/4+mp1ODgcCnPRWgYKCfvjAM/fTlb+Awp428ga68S8uhaMdNjV4ar0gmKCz7Y4vv6XVSl+rl9NNozGq2L5WLy//romL4mc6XqQy8ae2Elf2B1xaCI9ngOnpNCbGsxAopj3N+DObCObnknt8Aaua1/LwZWBqEpcSbPUVsiLng7QMTvF8aT2v5L7C3fPu5uIVFzMcN2x7TS3r1fn6b0LIrWqGuQpIng63RUf5L6mIDamE3OF4WkZbyL/0EzEBreiXD561H2Rh6kIecx/mifSd3DZytdWi7RA0JrfZAogl6UtoHGkkYfgDlAz7rOwkMLbhAAoDsAZxg0LKIKOjVZQXf5oFcZ/lSE2kPGXd9YaGrNJnT+/j59w/N7uk+nr2JbUDtdz1h7sIyiAXFaRR1pkcJqiSl+79Kf1trXOWWvNLl3LVXZ9m5/0/R0mJ7nS+633k/qchkm2bOtKPnAjibxq1VOhzlFHfDtuSyMzVQ4HH2OdzsCQ+aF+bkUsyx6nYlhrip6Emtk9Y15QFq9AqkcR7F1FY/UXG8/cznr+PeA4TP1XNsjRrd1JBsWrkyNgpFqYZtiChRDRRQjO+vFRCOcmcmHqBRJefXtcivq99C4XTPhml4JRzNS0FOgfy4KeHplgxKlmQtApNaCifxoumwtBMdNOkqKeN0UAPo8E+ygQ86/tXjh0t44XUzeR7h6gc7mLMUU5jaAvtPal0/WqMm9P2k+uyspO5zgZw1dH4WiaN+3sJ+ecBOiDRHQ7S8gqYHBkh6Pcx0tONGe/Gn11on2++dxhdSkwUumlS2NtO4ftvsD/7rvq6GCIHlvjBO2D5yM0lTuppaqCnvo7rr7jMztQVFhYyHSFMEUKnaeBwkLptG55Z5sHFxcVomnaGgCNaqHE+4a6ooOiB++0ScN8/fjuGdPpPNLzOqy88vEfmzhEnQ6Ms8S3gnzo/h0PpyGHJM6KdoCGRCvyJDn7U2svnU11UetZQVvotTjZ9C6lMTCUYFhlodIf9ycAbmjrjGPvHJi31ZcTzSCnijXuJ05ugeDPZTFLqTCM19W8ZHPwPlDJBCdLar8XtXcxzS52Ewr1vptIZTPKwsaWO1qx8lg6e4nvefQCUB4KUOTR2CEG6K4fs+CIyxjop6H+Z0zmFvFZxGUu3vo/TOfEMv/AsB8oEuyqsll094SSr+dOaWPtavTz17zWYhoxRxZ5uGsXh8HLM4SVfppOjPAQ8rQwueRg0q99FCInH08fUeDZCHaGrci/oJiokWeffSnbfae545gkCCzfyPl8h5V5Fnz5BStwCUv2nGUwYZHzeOIWFhfyh7g8EzSBFrhBXxvsJFkKoMGJsCShISpqysnSRWULhGYwShdQUfRl+vEN1Z7xHd0XFWT+PmxbdROOxo9w8egWgEJpG2o2L+fsFX6O6vxqPy8MPDv6AoAzync7Pkj611B77tbDnO7BpCMMYp6PznvAeJU6nVeqJzmb4/T2c7nnYPq5SIUZHq96QzJ2tpHo2+5JoYcepgilKOpPQmUmfHNvxgj2Me3bwX3XV+2yT4NfrxXun7Un+t8N3xFKOowkS1+fiXpNzRubNd3zojMfnw4OudqDWFgRNTaeQ5B6PEVhqwqIw69wmZZndjCXsQbqmSBgpw+0tQaI4kHSMDd6VONIbUSI8jisMgaDRr/Gi10GCdzGFp27g8Px2qrNMlnKMEpqIyxtl8Y2jJAzGkT28CD3jSo5GUvjhUqawml6s/mRNUpXnZeVYEgI4nurgSLrO3zcGOOI/RkbXUQr6uwBwOB2Mp7v5UsLnucp7gG90/dwKM044rM9D4kApgd85zR51MRsZxxlModF/JY07yzBNq5qhOfJxpdxOQckUmQUuDj39+5nPSNcJuFMgUsYFcsdHuOXVZ+mPd1PY08a6tJQYg2FrYXWmmrWjrpbTjfUx13NXVxfHqg/S+Nx2xNT4TNwIZ9KiCZM5MU6goZHka66e0/KjsLCQrVu32lYnmqaxdevWmKxcpKfu9XrpzmWbCCLxeui/7zkze8iFJdZ4I7xH5s4VSnHJ6Aac0oEmBEIKgseHcbg0gkkO/JUZ7CXIgdoWHlxsUhwao9O1iaP9r9IS0GgP1uAQOkIqnEpReeA+KL4eb4rDluCvcoBLmQQBoRQbm2vZOJBIoOhjDJBn9ROYJgiNzRfdBdp9ICRj83eQPLgGwfKYU/a54nh18UrLfDg1k+87buYr3U/RM53M7tOCBe7lrM28BtA45hE8l97P/kXFKF3n4IjBX2yqYLvnhdiPARUz1y66ifWNLqLTTaOYhkQpYgyK9TQfx5OOopDU0s7VCalMrf0JaDPZR03p5A+vYXVgOZ0Zr4JmGQnrArI8fchQNwX9HWSMBVmR+2f06ZO84DqKIR1s7tvMa/mv2T5slTmVLI4XfCIjgCMbhpdA/BER+Zqtcz06SGZmMfLUICgYSXZbfxeKqmUjDKYFubPoyjf1EyrPLuebBV/A1RawMnwK5LRhe2rdW3evTY5eSa5h7dRS2/Q0bmEqAYYYG+uzXRGkhJebXmSpcykL4iSjo1UYxjijYweJuWkJB2lpG+Y8p2jCdLaS6tlsQipzKnFqTrsdYSLJJHUyVk0Y8bl6s/Yj59Kr9x7eXkSrVJEKPTV+zhJqwopMOyMXeXw+UNf9JDcmj7M+yUAnbBMUxTFkuCNjfaKBnvQyA7wMCIR0kl/9eRzjC/h9xg6eztrL3+bNwxrXg70fBRzz6XSEdD5OBkfzRvl69q2EhEDnVr6svkmZZpVdy/Ggpm+ndUmflRu3rUkkFaqaOlGBoaxeu/yC/ybQezPNlPHpcKXEqeCre+KZ6O/mdM58ptdvITEji39xujE1jcfkNfxDy/3ghIu9Rykym9H9Gn4xxmh6PWN4aFa3kzqxEi10ps+oK34el9xWwQs/+VLM825PGtlFRTRPR1kbKcX8rmYWTE+gaRp9w330NDXY19lQZ7v9IZsJiRjuFBzT4+i+qZi4ENPjlr8Qd+dJCPjOuN4jJChyz5g+fPislh+VlZVn9aWLHC9Sxp2rl+5ctpmN6ZoaQj09sapWh4P4ZUvnvM9dqHiPzM2B2oFaXjn9yhnPDxnWDzwynmQwpLjt4nm0persJRhWtUq2Nz3GTepxcqRkSjpZHGcxfk16uHG4k0q/j/JACG/dTzjiPoyUQYSwvoqvqAXUqxU4WxLx9CpGjXUMtRbTUnvSInJKIaXJgc6TXLzQkslLLcRARi2JoWWETxCAdJlEu6aBsOTxP1n4N1wTp2N6c0jtH2NtxjUINOpSdf5qnZugSLJGkwlBSCqCcUtxaS77Zu3QHNy06Ca8//dJVCAAStlNrLsTPfxb9TGUUiw9cpQvvf/mmIso0DFO3lSIDJfGcEii65ptUDwRHAqvmi3blt60OpKFOdMXqEAfWoocL0IIgXt0CZabg0QqRUtAo8Q5D9OvMxzoZVf/I4SWl2JOSwQCTWlk+GYCYHl2OX+/4iam+n9r6clcGnppDope29DdCGoM90+hktz266x9QXzQwfULrufvKv/ujN/IG63kilcuZaiqbk7lX7Tq9Q9prwLwUe02MisVjcG/RbYGAIFSGkoplNJ4tWWAxwc+xmeyfMx4RMUiek5sNGYTpmjV27mM8CrPLue+a+/juX2/Je6PjQjjzJUtSpGQPLcw5PXwRr167+Htx7mqVCNZuNmjvt4KvN4j5HsfITfJIBySbPugCCIaIV0LSx8UCGHFw2P5f2RUrGZJ2hK2lmcxcfrnsQcIb/v+VCu2LS/Yx7Miw3IpEBoojUa1kjLVwim1hCr9zzmxthRTRBbMEpRAVwab2nZxnaOa5sI0lonjlIgWptOXUM1ya3+awJCKE7kLcFDJY5dfj6HpRMaAIQSGBv9cchcALiF5fB7c7ChlzwtPMzZgoISGqRR+1xTuUKb9JnRdkLfGhTPTR0PtHxg53RXzNidHhvBPjlOyvIK2nj6EUDjHRym/ZBMpmVmMDw3a/auR66zrhJWlMxMSmS4qBaERVLm4O5uIM0N2XGhvb4+ZvWompsT8Peb7fPKpM+4Zb5YYHT161O6piwgsZhO1yDlFizBej8zZiQm/f+ZJXSf361/DHPPa5eF3w4iv98jcHIguH9kQgjinz27yFkC8E8ryPahpH68KgakUDiFZKo8BEl3AbWnWfkwFVVMJVHb6qI6PByC1byey2A1IlLK2KxEnWaya6HCupofV5MkMlJLkjQdBaEhpotCIH1qBLD6AIIRUGttlBg8vctrnipI0JU8ASXbPl1SCL7rLuEK0sCm5HCE0hBBUp+uEBCgt0ugsEabJZdLN2vVfYnvLdrISsrhzxZ2UnlZ0PPF7mzAKXadxzTr+8rQXI3c+AI25RVS0dfKJ8EUUbSq6McnByKqsmCkPCQkJMR/12OBCkhfuwTZ/ERDKqqcpvYCa8RzmG2PME1bvmFN3sjR5OdKRhyv5NsxQJwfnddLoeYZNvk1oSkMKyUD8QMy4q2XzbuHI4O/DRFojs/xGprseRJpBlCmYOp1g3TdmDdtGQH9GgC1pi8/43ZwtYxnBYycfY0fnDm655n1sNNaeofwrzy5nW8k2Hmt6DIA/pu3HU1rAR/Iyka2RYGN97n19JfQOFFOX2MCVCT4UxusoWc05y6yzCZNvYoIrPno3TVX7Kd1wyTmRp/Lsctp9ezllnn12vG9i4g33MxuFy1eiadYNTPsfMJv13Yg3o1JN2pB3Xsd7jY5WgTKwQ1Kk2yH898gECE1ZixW7iqhAKsXy3qtIGivFOGrSk/8TlIjyiIk0xmG5ENyUkoEuelkm6sMqVoUDk2XU0zP4Af4p6/0EMsMvsFmlBRONvro01jlGubngZdBMhHKQMLKESkycCgxpKVQb3cOo3FwMYZVkCU+dUOFZsEqAEjohqdjvg79e7WHjTZfT8kArpjTRhCDeTEMI0FSIJe5dpCYe59meDZjdVtxOSEhE98W28JiGQXZGOkP1NfZCLSJkqN+7y+pTA3sBl5CcTMexGgx3slVOFgLQEKmZ3P72A8xjAAAgAElEQVSZz9pxobi42BY8aLpOxcUbWbV+wxlxY7qmxpq0EHXPOJvlx9kya11dXdTU1Njbna2XLvqcZhsjz4Xpg4cskhkNpTDHvDECidlijQsR75G5ORCdIYlAAOXGfKuHNCyB36iZfPaZegxT4kqP4/aL53NpsJN40YZUmnWxzrQqkGT2cFduDoYAl0rhp5PD4X0JrO4PAJMWVUad8zYuTkgnJ2D5kMmhvbjKbqCtromPm9nkBzzU1/jpST+MdyyXptRFmNHdwQgmE/JBmeHShAYI6lOv5HSwipUZgkjlYu2IFXRCUqGUZFFHI+uPvkIw2Yms2UVOKbxSmcCdK+5k+qUnLFPccL3Dc81G/pidjzHZawdIicarIp4/D2epRNLqmHJNcbablIUeWwwxEIiaLy4gyz+PpKFyprKP2PsUQpKS2sf4RBZJ63UkhpVVUyYDrj+SJjagOXIRzixa8g4wHD/Mq7mvkuXPYjBhkEn3ZMy4K49nDaUlX+Nk07dQStLV/SvKSr9Bf91+en9dxfy2KRryE2YSAeE7ymDqFCPpxpyjs2yp+xwrucdOPsa3X/s2APvZzzcu+ga3z7/9jH1EzJqDMohC8WTLk1yV9mcx22iawJO9kF/6mhh1jdp9dWeDEM45y6yzxQ0Jycns/qU1jut0Yz2ZRcVvSOhqB2r52cjDbBHpaMoa0i2EZvte6Y63Im6Y+S2/h3cGcfNT3rI69c3C6z2C39+D5f02w70ixC4ieI/E1UkTkvWZxzoCXWmW/Y+C4EgJIuVY7EjTsN4JpZM8VYCR0ksJTXxFfYsTLGeZqKeEZnbotxOKsg2ZPZQedPZeejmfapqgh9qZc0Owyiv56aFptueavFjo5uj8YjRZiCalRZ5Mk/KGagayCyj2jXCwaCkhoXAqg0u8dUAlhfTyUR6nnVySDSdjS6+EiV6WjP47uc4GnjevxzAjGXGB4U6eIXPhDyRC3nIWLLQXagCP/eOXMQwDXddZueVaW6yUX7qUsf4+XnvpRYJKYnnaSYqKijATkti3b59dAp1rdOFsTB88NKMUFYLEzZvxPvkU3iefOkMEcbbMWvP+/TGijIqKijmPd67nFIF7/TqrvDpLyRqprET6/d7rmXuXIuIL9v2q7yOViQPY5MygMb2dinAfE0CJSqDU8HEcWDFs8JfP9+FQLvzpXyBw+Qn6Jp5EYdoxQFWbzE+0LEpCQKPLRYE0iUg4BYomWcL39W9gzHPxbD787NAUF03s4PhgNff0XsqHKSKPOHQEztGFdE9ZZYJ8hsJmllpUsLFEC6XOAE2h+PBjjVD8UvoSxmwyt2rM5DN1Q/x4VQZKCNoLS1h/9BXidr9GyYjJylaIlzm8ZrRwXUKC1fsrrWgYnxakZHwITUkkM8y1s7OTI/f+Fxn9/fjnX0r6qg9GrKromQgyHSWGMFxTkGqRQwFkJo1hxM2awYXAO5YDUlJ7opuN65Rl0Iwk0eEnIb2V4HAJGjqV3nKSg0toSGrj5utuxxv02gO7oxEKjaGUJGJOGgqNsea6/+JXHf/A1NSrZI1PM+BJtD9PpQmyvEn8H+1qmkeb+dnRn3FV0VXcXmaRMvf6dQiHw1rJzVp9PtHyRMyxd3TusF83+7d38+KbebzpcRQKU5l0extIj2oWEkInr/QyRvurUFJxcEpjXaK1HNCERlxcnpU5js8nMbHkrNYk+aVLqbjuRpoP7qdk/SW2U3x0yWUgNRAz8Hw2njn1DCEZojvTR9GgOzxQW1C85iISU9PmVLOei7DB8q4LG6FK870y6/8SRE9/UJHpLMz0x0nAoQmEssqqEghFSJrN+xXDi56GUzfhHF9AkzOfcnMN48FDDGo69X6dEiOXVdMlpPRsAhRd644A0lKxKqtPTigX6/oT+G06BJW0YoUIL7rFzAKjP7WMmvwd5AhpxXIpmU5vJMG7mFVjJi8lDmOKRFQ4A3bZqU7ivH3IqT52X7IVU3fQrQr4bsuPGXcmcYm3jspLrZIrRx+mUHbiDCbw1Mg/4vcOEXJN45ZZ4Ibjgcsgsdc+l+TcpSQlJDLW246UEiEE81etYaizPWahlpWdZ1mXCIFpGCSEQmiOfHb9ahfS6EaZ0+i+KdydTRjuZBzTEwyOp3H/ffehsGbHfuxjHz2nUV16qmdGgKHrTO7da5Mn7/btFIUn5XR1deH1em1FaySz1rxzJ6efex5RVAiahu5wsHr16rMe782MD3NXVJD79a/R961/nMm4SkmgqckWR1zoJC6C98jcWXB72e2UhEJU7/wKnlCQH2aYBBKfYX5SPpdMrkaE8yFrNQcNymStcKCHV43xI4swJvqIkBMJJO7XeN92wTWaZM9KxWsrYHGhybRwYEUgA6XghLY87D4uCGmKw+k6F03AJuFjjWiiRi0Ne3RDQITsAJY7Mcqi/m6ac4uiahIKhxAslSdpVcswcIAycPobaA7EI+UlaEJDKok/IQmFQGkCEwdd+Qtoyu/FFx8kdxLm+T+LWeXiRW0D5cn78HjbQEF9zSFGHHez1XkFz62+1TodJVFKcWDpCm7o7aVPxtMwaZDp0AhIRdyuLvpavQR93chQN6bICJNPRVLyIFOrfwdipswdXWYByB52okkBukIHytNG4bL/pHPv50kYW8xN41cjJkCMCLLjVxNXNndmIdqcVNOs7NWxHS8wuKcRnGn4UhSaitxSsDNg0yc6+XfzEUq6Fccef4WErZ3ccPPnrXONnHPUcWoHamkcbow59lVFZ5/hftOim2yS5NScFOdcy2R7lV0SLiv9Fi+MTGBIKyC2B3X+70AcJXGK9fO2kDO9BymDBEPDLF78hbOqWI/teMFWvh16+vesu+nWmEydPz+ez/7xblKG4OXRh7hr6+e5bMNNMfsYb+vm2qocNBmZhmn1sxjBwFmJ3LkIG17PEuU9/M+E13uE1tYfI2WAyBUUycZVTemMmhrXpZYh1HGrQqIs7pQeuYtFXXS+jHq6007yWlsFjw01sDhe8ckMnWwBGU6T0PHLyem7yq6ymI23IZY8BiiUEqSdvgxPz0ZKvfn8HX4enTeJl26GPOWxwShsTbLXVcEHlBMlrdGDCcNlVl8rktSOw+hLCjARuJTgw8OZrBhN4Uu5CRi6AzQNJWGHXslDnd9ACAUvfglylsFkPwCng8vxO6cZTa8HJC+otax3phMyxwg3AIJSjE8bMJqPNFvD70Vx6nAVbTWHLMsPpTCCQXq7O8KfmfVepjtGeez7DxKc2MnMbCPQfVN2pm/cnWz134YJYN2RxnMSF/R97/szwgIpY1SjkQrGcGamXV7VNI21a9fahO2RffswiuejKcWCtjYq1m84/75zs/qKJ/740pyK2wsZ75G510H5aC/lo2Pc60kmGO5zeDzjJdZOLcehHCghqNw0n+wEwWZ3Atqz7XazcEbBRnp7H7JWmKbE/ZqGriyB5tW1kq3ezegbM+nIfwwprEZ9JTSWmfU49Jm+jRXBdqbltUzLK7lB28VvUpxUpbezdmQZeePZaFhjaPpS0mjJmWedeJS7ZuFwD03DD+JJTsUfvwxnoBFXsIWsyZXs7n+Y7Pgi0l25VI4u5f5If4dUFPa0EdINWrM0xlPmg+YEZV2To55SUIKxZZk4PrifHH2SD5iPkHVgmNeKr+ZkXjEN+cW03PJhFnR2UjjWRpuEZKlY7bbMK8zeCdqDrzIc6CaQmAsiH4TAk9qPCtuRRBBJNHpS+5kYzyJtvuV+HnleE6A0E3fWSeZNl2AVlAXK5A3nROblvt/6f942pvoT2Hn/z600gLBG7WR5rUA24Em0G5ZPZg1T0q34xsMmDhPk/vuZLtoyU06w5Lp2mbW6vxqpZgLYlsItc2bl7N9ddjm/uOYXMRkxb1qJrXr2eNZQ6azFoTkIyiDFLpNKt9UzlyxHY0YhvZ4lSVPV/pjHA+2tMTYkzwdeJWVIcU1VNpoUVLfcS8k3S2LIV/qgQJPCHlFmkXk1p40BnLuw4fUsUd7D/zzMZORmiJzA6jU2FXSHNBI1UNMhiG2xteOAoWUR8k8THzcVnqAi2aoK2dC2lZaS3yBEC+FJgbRlVVHRd5XN/14YyWNy1MFqt4lrohBXyEUyiqMejX9bGk9IxCPIjD1gVB/t81mZXHvimxQ69uMZK8c9XmJfD0WDA9zx7AMEFl5q2yZJobF+RHJAhTCkjlMZ/M34I2EzccAIWBOCkqzRgwWuekJyE4TnTSugc1LgnAwRisMmI86JEFIlEcNslUKFrT7syRDxbivjNjWO7pumrqPWUn7NsiOJhmN6IqrsKnAG33hs2/TBQ+G2nDCkjFGNRnrRGqLKq1JKPB4PhYWF7Nu3z5J1hbN1Sf4AizZtfMPjniuma2ro+/Z3zng++Zqr59j67Pu4EEqx75G510PxZtCdVPr9uFQKIWBC6ryYHMTvVewlRPOBFn7ziYsoQ2dqTTYCbC+mNbmW79dQbTPOzueR4QvVOX8z8as+gpiAedUlyMwHyF15LU8PHSZkONmUvBshYLPaS2FKPpz+f+y9d3gc13nv/zlndhfYRVn0DhAEARAg2KtEUYWyJdlqtmJHsh0nllziG9s3z3XJjSMnvrKT2Mp1bnwVlzhRjx032VZvlESJokhRbGAvAAiiEL3tYoEFdnfmnPvHzA52QVKiIsl2fj+9fPgAmJmdOTM78873vOX7vRXQ5AcNvrz6+3iFSV/dk1Ts+QuujayhwxjgdG5xmiRM0rrzy7mu5wNEMw4QzwSpNRlIlm7czImfP0rQW8Ro5WL2Fxh86fgsIS/Q/hTZQ3NdUZPBRJp8tWlk0rriz8lreY5iw8neomnxHmIrtSixEITE9Hhp/5NPsSgnSPXRDFaMxJzONLsrtCSzkrFYL57oJHFdBkgSiQzA9ZHYMUh7thwOlSI0LJq+iqjuQCvTnp4r0MqgN76atqZM1o5bLA9ZmFj8R/TXXDx8xVkpwvli3uXlN6XJUmmnqGYkN8D6U/2URKIMBLPoKY2yrWCGD5zQeCwcgK7dh9klyBTCTi8wJ7mVUAmuDW3i09FbmMoaeFMF40kS1bNuUZ/F54tjeJL4PfoaQnjRWrjRxvNZ44aNdB9qTfs7lS4k87mtrGgPumAN62ylho0XXcuuXT8CZXPwZeUFiYUjdhHxOcDam4m4nY+c9F2A987b1GsDb2t36huZrcc6B+RAklF0I7/ueJJpBTflJRwg1gbaEblmrulBAB41ipGRzEoIhPaQPd5M8WwtC3puobvkTixpYWk4HldcUjNLmSrmSJGPYwMjfDE/gUeAyOzGKuqmf8FL7Or/RxIigJICkRTddjMfCkh2o2qOZFSztvNDdgRf2H5OaMFU5XJ6g1GW9h5jqVGKcrIhBT2vcvPjrxGvX8L7pneyfvbI3CRWSvaWXsbOXMHGjv2sDR2kaqCLE9le7MiZIKIFHl1KxuCrmDlBPJEwfutKNGeYzxMnpGTNdR8kI5DFC6d72ZVbSkV4jLLwKIGetrOaJs5lc2nXIFnGBpatWfyGnwmsX2cTBafUuxXcdisqMgXg1szV9vaes3EhrTlOSso+9tG3FTBFd+85S5vV19SEFQoTbW19w2O9UdPbb9PeBXOvZ9Xr4dYnWXnwp9ydCLNbL8Xauwplgk8rVkzsRuUVcnL/Asr2T7hRucBqezaVfAG39n2JwS+a5L1msOJliafCeSkLgT9cz2zOH3FkcpzZ6Ca+U7AJU3jwYHIp2wAHWGDQXPAyvcJESo1WJoMLHyOaMUZZrJD14+/jeVWFlXQGDrDTWtBRsoCe8svQQiK1ya2ZrVx3yWdYaNXQ2R7g8+uyXS6kH+yZZnRkiLGUy9Cfl0lFTCEdYBXJqUZJg+hIE1o/DtpCK8FUf4DmZcvpdgrXlRBYzSv4/k9O8HVwgZx2qpiHZ3vcY8jZGZQ/C68v5g4fjb2f/rX0DlUhRjK5Vq6mLJbP7N6/JFzxChOeTqwBwU7rU9y7ZjGWFHgU/MueGWajnfxw9F7uefbH3HvNvWmAbr6Y98TEa1S3XIHH68WMx92UqpYwluvHF7fQAma99vdxtEZgOu8U6cwuA6tWUfpXX2Xwb/8OlGLo23eS0djIylWruPvquxl8pY2WY+UILELdNmN+8kV5YPgA9x+5n+GZYdaVruNnJ35my5QZPu6++u60sff29rJ111Zyo7nUF09jpDTZ2HWJCSorPvaGMl5FNbUsWnsR0xPjLLvyqjT5rf624ww98CzlZqZTKqCRxtldpb2TvYwE4wSnPGSaBrHQpPP9iXOCtbcScXuXe+63Y++EosMbWX7+BoQwXNUc0LQO2vQ8VV6bGcAQdqfqcCyDXKuCjMApuwkqacKO1qMgY7KWkpMfwx+uR2D72Zq9f8mv6+6hP5rFl9pvx6c9mJ4oQ5UZbCg+YgO5pN+RoFWCZo7i1RWYDpBTgBYCoRW5eoKwKLAjX8Co17QBHEkfB4fzPHxn7UWYUrBTKfa3n+Q9vSFy+w4xFuunbFDgCdXQ4/8EgwWdlPtOgjDYe82/8OEBHwml8S7/Lj967n5qj7cyFLiV6ex+4hnjTAVGwS/JiCxDyAjZRc0YExVYcewTSKoEIVBK0frM42RccjU/XHYZlmEgleKGgzvwVmkGs3Op7j/tEhqnmw9kLsHiIIZXU1SznnU33OCyEbwpEwIjJ5fSr3wlbfH5GhdmZmbSthv3eunt7eXgwYMArFix4i2lXI28YDq/nGGQ6Oxk5K67LgicvR2UK2+XvQvm3siq19v/j/wUtaUPZdlFaobWbAyN8+GjvyJzzTK0ace+tamIbX2CjPfWQ/V6Htv3FbJmH6W+FqgxmbIMvGf24ylpAa0JVW1jqOnHaBSHCj6EKTwoYWBqzTG9jM39TU5dh0XuRCmydsAOVWuNWXIYH2DST2PxUW7p+Dgd3noyEnF21C9FCwOpFTM+P1rY7V4KL/86PsPVwwco1kXsL0ikcSHtL/Cw1l/DeGKI7IIq4ouL2Sv3c8NRC61AaIvikVbCwXp3HLY/1fTkV7PFV2JfN4fVdufBg/z32WxEZiqQSwLUJJfRYheNhEOlaO00Qwh7u+54nDNTWeCHUGKacmUrZ09W7ESIBJ5CODiRiSnt5o+E1Dy2YJq89j0sDi1mJHOEx089ngaIzlUvFwzaQOPotq0c2voMSimU0OxfKMmdto9ZGA6w6eAYr6yY5psfNVjWC0ve+yGWOA+wFQq7dSGpD/fKkpV0DkWxueDsc00y5R8YPsCtT9+KhUWtz6I31kqZYdBlSRIqkUapsnfvXp566imysob4WF4+x+IRtJ5Ip14AQuFWMjMrAM4J6JLAyEwkwBBU5VyRtr736GGwlJ3GRzNYFGPVB29KA08/ee4H9N3zJGVkpO9cCGqWrWTjH37sTZMFv569yz3327F3StHh9SzoqOacOPl1NApLaxrkCE1BF1u50frCzChad6Tf8O7kz/49ntPr1DXb6X+BIBBuoOD09fiDHYQXPE32eDP+8CIKR/ZQV3347H0hmJzq5NaDR+j11lFlwYPL/CSkQmIxKfKd7e3Ja3d2AJgDH0II9hUYmFKipcQSktcWL2FfvcnNTxylYggEBtJbg4VBf7yFcl8brPkTdpZdTqJzAAu72eyVmSyuV3ZuJ56Z2v2viOWGQcMY/fiyE+SMB0mte0u22FqJBC+EJrGkgRYSJeBkSRXtyzdiSYlhWdz8xP3nAHRxUKOEh0ZBCCaHz7Dm/WuAOTB3PsL46O496coKhoGRF2T0X//trLTkuRoX5tNW7d27l/3797sZlP3793Pbbbf9pwBdtLWVoW/f6aZ+s6+4Ak9REaGHHrogbrn5lCsohRWZfNPjeLvsXTB3AXbgyE/5zJ5vkeet5XqxDI8ykNqiINRGhrYomO0m4alDJyyEjpNx+i544DThW/6JzNAjOApbaAmRj1h4vvsysqMItaaeoeYfg0OQu0Qd4lHxB2693MVdlQTC9Q7wsfB6up2Im3bno3O1ZYol3kPk9trrlHWKk8UZVITHKW65ha4UKh2lLfYO7WXNTCGrxgrxLspwuZCO5AhOXLGaW4JruKS3l76GPA5s209l/y6EhuLh3RREusmZHmDythDSUK5THVhYg0pJ9QrA33+McdPu6rT5oOyNpZaUZNbQ7+ma63QCIpESuvfVU7vGjgxoZRAOlyVDTpyWIzSpKqIFx53aOg0GZGV0AXXuOY56OilTBSyZKEQJhapJJ7RNUpMMDz9LSck1ZwEe7aTEhYbsaO7cxdaaBUMBXmGaU1UGvQt83HTZXFPA+biJDgwf4JeJn/Jn3JysLHOZ8h8/9bgL5D5XHMMQYOkEPxoN0G96XRqU3t5eF8gtW/4cUlrU4sHy1SLjXWkvt+np45zqPImUPlav+vE5OeaSQtzKVNz71P8huLDGBY2zFZmYQiG1QEnNgYYQLw89wNLhS1hZspIDwwfYvuUhGsiai2I6d6XH63WB3LnSom8mVZq67btNEb8de6cUHd7I+hOShLKjcAK7FtalI2GugsQQKQnEZNmaBntGYyM+LeyO0szworRjZGYPUduwnXFgos5Dxd4vcr/5BLcYZ9eKTYTK+WH2Tkp0H9cf+zyLDC8rjTPsqh5jxMjh6eyWtLKWRbFR7l+YzxqnzENpxaqxOJ46w6Y3AZASC4PeioWUD/XizdrMgcZaTlR50BMFrJnIhBUfY2NuNl4pwFJ4LJOVJ48xkdfAbGAEN6/svgRw/477Rwjnj+EzA2elToWUVPefxrBMLAwMpfCHQ1gVtWhpYAG9FQvPE51zTOuzVF1eT3UhsH4dIiPDLj2RkoJbP8HQt++005IeD8FzaLSm2vzIHJCm3aqU4uDBg/85MJekknK+P//y5QTWryP86KMXxC2XRrniXJvxe+7FV139O2meeBfMXYDt7XyWuIDB3G6ebP4+H+2ooXlXJ8HJLjAM+hoXMJkZorm7g4DcQYY8QXTIS+fT30cunSvUTwK64SsXUtgnGKncAcJyHVID7dyu7uCYbKFZHaU2K4BgNQpFwrOfoeWVaDE6lwogtXFVEg6VObRcmiUjkrjaTYbKJDN2Bkm9XYSvTXJmdrG29GuUXJTBoW/dxZcjS9m1cAHb6ip5ucwHlLPdNPnuYz+iOixYvfQLDJYJpLIoHdqNun4zeRVHmW4cdA5ue9+qqUE8StkFq0KiBexadSWrIzNsis9hjWiwg5mC44TauvGMQTzVWwMzU0HGTuSR6clC66uJRBLu+tmSGE9Gt5PrGaTEmXEKCVeceo1tay7F0h4MTFoGBpy0sH2tmkkHDeHwftra/w6lYoyP7SDe20tGwQ12tCoeB2c2b9cKzjWUAMz4Ynz5aC2FZQuppYBFfRqcgOR8bqJQViaHH/4lrZldPBncTlyZXBpZRUZLPu/bcKkzPHu/9Rlz6SQBfHzhOhoW/rkLsLq6bLqBYN4gUtoTAIHFkPJRrOeYCu2SHTvfdL4miOqWZWAIlKlQUtNfMJMWAdymDvDShiHKxjIZLJxlJD+OtKS7za59W6jrDaSNXyDwNJaz8vobXCCXjP5JKXnPJ/8bRTW1F5wqPZdCxZLLbAm1c3XKvmtvj70Tig4XYmf6f0m2A+BSy9POR/GW2uVuaRBCJ5lJkNqDf9yu6XI7VrHoL95DhQP4lDbpLHsONQuzyuaqw/k8GnpHFqEDexnK6eKJJT/g8zMbyGv+CdcIk3bdzPP8DQltN3Rt1Nv5VcUlmHjwaM2X9hzkkgFJYvQkfzg4Qc/mm9mRE0QLjdCQORsFoPWiCp6pzwah+duyj5MbX8QfA6WT43x1tIuu0BRrH/4VVeMWHXUFzPoH58YIeOJ5No1TykUxAxZmTSOBnjYAzEAO5SXFrNl0GS8+eDc3P3E/vRULqe7rBCE41LjMZkiwLKr7T9vX05/lUpKcVU+n01VdXk91Yb4/TOPijMcJ/fKXhB999LzpzNra2rSMzttp7sR7dhaUYrajnaLP/ik1999H+JFH39znU2zsvvvPK1f2TtrvBMwJIf4QuANoBtZrrfeeZ7suIIKd/De11mud5QXAL4BabF2nm7XWE+fax9tha+uuwTe2jwSaiewu1kwewjvpyDwJyYNPdfI/shYQZyVxtRRrso+BF0cRpyYQi0F5UpyP5aVv4iamsiG/4lf2PpIzy34vDWVtNIg22kQjPytZyCX1B9jYsYLhbC8RfThlpirp7WkiL3+IWMzPmTNLiUwWIwTk5IwSzBskGKqiXSzmCasWJe2UaO30Sf58dIKVsTj9ZICG5WHFCV8xVgrDsWkYvLj2Bt7b2ofGSdEKmCxoYtVH/piTof8BKiW3p2FB5ijXH3yF1rIaussX2h1IEgZLvYjeBHurBni1apy67CdpkCcoXggTWxYTTbnWOTlDNC3b53SrhonPhGFoTlKrrKGWfxj9By7LmuZaHCZ4C0oqovy34zvpzMtg2WgfkXEvygF7HuHh4qUXp32naQXXQtMZ+Ve8x8awnJmWjZfnQErSe2oBwakgDQd7KYh2gBD0/Hu6M0pyE6WCES2hcJ2HZ/N38Gz+Dr7e8nV3LDcuupGH2x8mU8bcdJIUsCQ7j5aSlWx77TEOt75CTe1KDMMgEU9Na2qsmJeDR66ibkErfv80k54yynwDaSnk+VbR2EzprdfwzPafM1Awy2QhaUTIAsFIfpyR/DgpC91t8jpmmNJ2GkuhsTIk+xsnOFndi6/9AHcvrGFk2w4HGIOyLF6470cs3Xz1BadKU9OqZiLBC/f9yBXgLl1Y9zsFc//VfNibtbdb0eGNLBzeT27saLJM1qV00tpWeRApfibVUjvak79HZ7NZfOjPEQjGFz6Jf3wx/vAiflPwPK+qMKuc/RvKQ/XUUr5YdJhpb8r+NeR0X0NfTHFz9BoOBdrAgMqSU0REgnbZyDHdxMf1vUyTQzNHOU4LO4VEC0FcacL5TZSFEl+GEg0AACAASURBVJRk1hAe/Bk1j71KsPlynlrtRwnB85tuQCHpcQr9kx7ne+YijJ/fR8d0OUopspRFVtxL6/LPMpUzAKI7zedmxPMgNoqZY6SHMJHEcwsx8wpBSHo0rPRn84d/8/cc/PUvOd76ssvHffMTD9BXfRFVZ16jYqh3noyXOqtBQgiRpuri9/vnyme0Pis1Op+rTfh8bp3ZG9WaVVdXs3HjRnbs2HHee+f1OOdezwKrVpF91XuJPP4EaE3k8ScYKi3FV11N6Ne/Bst6XaDp1kh/45tpqeRETw89t33yt94M8buKzB0B/gD41wvYdrPWenTesq8CL2it7xRCfNX5+y/f5jG6tnLpx7gbO0K3bqwA766n3ZoKbVlcHRcYWQb2U+ZlSn4KkfsrMk6fJv8uDyc2VVJf5yOhSjlx7BJmx+opXPIUCDUXLhdAZRw0tNPIt8UdmHh4pM7iRyMJZMFRPFLNgUI0E+ML6O5ag5CSQ4kSWoxBcnKGWbb8eaS0UEpydHoBlqPPCpqu7KV8telbNJ4+iNFVxOWlN3Mk38fjVQ5AcB5KqQW5iUUMlFYjpUApm6S3srmQ0e//AL2pCV1zJiVCKMjImKZBtGN0zdBXWoOFxlBQPpRgT+UAX2ypxaQeD6u5nTtokG1ULgozMojriUtKOxFGMpqp8GT+hpycq4lMFoMQ1BXX8dW6r/Lj/d9AWwk7qikhq/QEG4o7KH/pi3hlNWFjwL22jWY5+f0eSInE5+dvcMCo2zZLpqfblpByH0zni0mZFdoUMtCfn0N+NIbQmjEDBn75UxZnZZ6XhkMpTdlYJiP5dnNFOB6eu79KVnL/++6n49h/B9Xv+urBoccYCdfy2veeRSo4EuhCLWxxm0SSVmEcY0RXcuTw+1Eolm5YyupV9WlUJvPtwPAB7hp6gNiiGIYwuH3d7Wk1hTcsuoFftf0KlVp741yG/rbjDO5qdSIeTkosoRjNnrGjyCrBrn1biG5N1zdOMrhfaKo0mVY1HWqD5OeVZfH8vf9yQQoV76D9l/Jhv+9my3dZaZE3oSF7ZCXR4gP2RqmpRefvcwVsAplTTBbvZ3LB8yBMqPNQtfd/cuPElfT7RjkRitOQHacm1MhI08/RMm4/c8n9CQgteI7b9v4F2aFGEsLilcrHmKp4hnbRyLe4w21Su507aKCNM9Sgke7g8xI26JEY1GYv5VA8j4F8w5ZMdCJNWy+7gbzOKajzuOfV4y/hf676U64/uJ2yyAQWBn2VC1HSwJvIB92ddgGMmTj+scPE8/JJBItQmc7EVyuHnkW6x3v2Zz/m5vddh7nlOXRx0EXIlUO9VI1E0MqeS8yX8UpTlQBMfzZtfeNMPrSbZWsWn5UKPVdqNJW+o+b++xi7516mXnzRrVd7vXTm9Jkz510npTzvutez5Hhmdu9JWx76+S9QMzNuQ4SOx1+3bm722PGzb8LfUTPEf+5KvEXTWh/XWp98C7v4APCg8/uDwAff+qhe31Yu/RifvvFBKg+dcoGcnYrTWB5v2rY6o57AJV9B5teReVpy1fGTBPZnc/LVK4mO1aHRBMabENprA4rk7pxfj5EkDjYw8bC3wCB/vAWtxZyjA0p9gsxoGTXF9Vy7aS27RQ7BvCE3BSelYn3ONgxUiocUJISHncFVZCfKkMKgtcBrd8HaHQc0zij+5MVJqsY12vCilDODUoroKzuY3rGD4W0zREcasOIBElE/ICgvb2fZ8ufJKIpTNT5M6dggm3c8Sc5AD9tLZlLOyeCYbkFoSf3QmFPvosnJHaW0tNO+hu55aoLBobkU7MwMx8eP0xWX7HzVh++ksPGY1AhpEihpx5xNOjT7R6HKYXrPYNp3FAyupi77M/b037L/L2j+IC3XtFCycpRA6QwCSSQwS8FUlJxoOoBKgpjxQAa768rZ32lH4frbjrvbJPVFAZTQDBba4XhDGGfJga0sWcnFDZ9Lq+kGzejgY0iFzePmz0Ur5abT53yIJi9vGI1GIqkrriMYXE1t7Z+dt5t179Be4lbc4cLSLrg8MHyAew7fw/jgOJ/N+SyFs4U09GRx1e4S6nuy2Du0N43Cxb51BUJB2VgmAoFXeikby0ArddZxWy6/kj/8m7/nkps//obdqBWNzWz+xGfsOst5DlMrxdFtW8/72Xfa/iv6sN9nSzYkJZ2g0mAoL954nr1ByoMh3J8CIQy7rCDpRp2f4dpnQJr2G06aRCpexasNvjD4Ua4NbaIiWsF00SG0nKv/SA1sCaGI57djYODRBpX+KFpaHBMtZ/kxrSGicxAodwCPVXk5FLSf/XhuAO0rIQ2JOjyW1bEo1+2dIj9i2aulwBKC/rxiJ10MlX2nkcoCZaWEKCF7ciHG9CiW3482PHjDqfMFgZyNgk42qSnk1CSdzzxFYXhqLkedDEqouaCwJxqZ+xwaYc3VhVn+LKLV9ZwaGWDH4ad56HsvkZiXhZ1NSTv29vay9Re/YP+XvszIXXfRc9snibzwwhyQg/QGiXkWbW0l8uJL50bt2DVzXV1d7rG2b99Ob+/r1PwxRycyctddmKPpcyw1NZVOVSLleYHmWQ0QHg/C57O7Yw2DRH8/0RQ92Xfafidg7k2YBrYIIfYJIf40ZXmp1noAwPlZcr4dCCH+VAixVwixd2Rk5C0PKLCoAJGUenBG2NS13YnOOw+HEGB48FZfBEBb8RoOV9aigzG3WHxkZCEVe/4C35RN9KtTdrny6DE82kRoC68SrBm3qAytxn/iwy6g09pgenQRs4Fheobb6dv7FGW5hwmHSlDKcJ+PRtHG+/RjuPkDNF4p2FjbzEx2AQpYNZ7Aq8FQmgwNn3l2G+W921GJMwjhUF8KiRaS0JIiQh8x8X5sB4HidgxfFG9gBiHsmWCHqOcXDdfTVVzBYFEFWy95Pz15ESp6fXgwkdrEg8W64Uya1V8z3Xcx2eFFgCQYHEQ60ce5tIrASmQiNLbeYtsUJw4dtGtg+iUZrRIEtOlG7hOf5uGa1ZwucvXRABiTEYxc31nfZWnGVRR9z0/OEwZFP7RTA0b1byhfN0L9dT0ESqPkzgaYyfMRCcxFLoUQVISm0MB4tp02Abtb7OT99817gO11Uguqh7LwCA+3b7j9LN67PV2/YOeZ55AZtWnLY35QUtvUINFJQBAITKTyQoOGeNzn1gada2Y835Lcd4Yw8Eq7yeLA8AE+s+Uz/GTnT9j68FaGDw1z2cClbDhVQ8VoJhcfyae8Q7sRM2cEKDRKakaKTD7c+GHuvvpu1q+/GmkY6QcVwgVgG266+YKiajORyDtSL/NbtLfkw95u//X7asmGpIL8TcxmX0bvQAuFJz6K5XO6A5Puy7nvM0J1TsOmlT4Bmpuzkr7YdojxYCd9a/+RifqHiZYcmNs3glnLlttS2v6fMdGIQmEgqR6+CLSkWR+d82NaE4yeRgHNHMHAcl/sR4MGn10X4FCeQRMNmLk9VA/1IFUSRNm1c0vDh1nbOc0Hd0/jUSCUnc1Y3J1HVqSWpYeGqe05zKqD/0x2dLcNspLPvrRQWQVEaxqJF1cSK62ZO3kh0IaHQE8bvpE+J1U6xenwKN2FuViBbGKF5Vj+LEDRV1rNrlWXcaB5LXua1jCeJD9HECutdrabF7UTmlljguG+9OqAV199ld7eXrcxYvvx47x4yUZG8/PR8Tjj996XDuBM87w1atHde6g93Yl0mRPSfYEQAr/f7x5r69atPPjgg68L6FLr9s4HEhECPB7K/uavzxldi7a2Mvr9H8wRIgtB3oc+RM2DD5D34Q8jgNBDD9Fz2yd/a4DuHUuzCiGeB8rOseprWus3ri607RKtdb8QogR4TghxQmv98psZh9b634B/A1i7du1bfitMrvksoxv8eI50EZw8bUfflnzY7edLnULGfLl0X7QOz/tfo1geQysPPdu+zMxYHSprCCkU8Ww7hOw2NQhY0HiSz+y+nxeXvof3D3lZES4EBCWRBrq1wx+kNQnPFIOBIP15RZSHR7G0IhQp5JlTH2OiLJN12dtBa56T15FEihcFc/jrRRU0cJKehm3sPZYDqonr+uz037X9CUp1IdtmX0DMvkZWyXqi5kbQmsyi03iu2ElU6rTZsH2d7f/HRQuWmFO9tqRBKEfwUf2P5OpSW8Sao6wavZioWcPPPNfQMFuAMR4kbkioPQrCcq+FkJr6+n1UT7ZQGlpOSXsW3xSf469q7uJoTSfXjUC7buTv5Tcw8UIe7FynuP7AKGWRCQZz8+nNLYf6LMZe7OCiukLWLLApBaK79+Dr0PjaDJCa0dPPootMlwQ5uzzK9JCfKB4nDWNHiBY0NJN71Wasf7yHgqkZV/JLKEXGcy/Q8/Tz1Nx/H71d7Vim/bALBMs6c3lP9gYuuWhp2j21p+sXjHbcTlBAXNvak6BJKPhFaJDMljzWH83HQIJSlJV3kDIchICGBjtdMDLa5BJuvp4lVSZ27dtC2VgGJaEMnortYNaaZcHsAqR2Wj+0xArk4pmJooGZYz1U3NTMyi/cyt1PfoeoN0Fm3GCwcJay+sXcuOhGG6iWwC133MmT//wdJkeG3Zvk0PNPc+zlFy6YI666ZZlNJjpPCFsatnj4O2m/Dz7s7fZfv68215AUJ0v6yCzayGjpT+3oGnNz5KR5YnnExLzLYQk7lJVcnKQ4Uh5y+i/hiL+DqoI2tEjYOVzHx7TrRo7RQrNxlAbspgGJTfibtOxwI0XH/4i25t1cykuEdT4VI7Vk+IKIADSKdi7TW9kqrnZKWsCUNtXT8pDFstkGPKM99Ad2sGfFRsAmIS7w9NAS6EaNfYA/fmmSrhIPgRicKczDYwZYOmMDgYR3koz4GQwWYmkDMPDG80n4x+ehV+e8tKIkP5/iulrGp6YZcB7B47kF9KzYRBFQFgkR14rQzDS/uuojmIbDAK81HmVx/aGdlEUmSE212ioQc4EMz4xJRWkVJ8+0upMupRQ7duwgkUjYjRGAkpLhslKKwuGzRO3B1mg9V1drYP06iv75n9m89UVO19bSVbcQZRhuU4TWmieffJKcnBxMZ7/zmzDmWyrjwPmigtlXXknhpz91XiCXJAq2CzYlwudzxx/dvQdtmhdEb/J22jsG5rTW5xefvPB99Ds/h4UQDwPrgZeBISFEudZ6QAhRDgy/1WNdiA12hnn0pzFM34eQK0xWHfxniosascWXk3lSW5cUpTiY04xe3EOxtBBSA7bklH+ijk2inImCp8FpM08N8bcbjdy94TZMPHTUmSya6WJdXzmTFa8gnBQqaELlmsdrN6GkQCpFQ1c7AVHEE/WbUFLynH4vqyIHiOd63Yd0T3iaqamT7G+31Q+GNzVxp1iFKSReDY2TFs8s8uMVNVQO9hIzp9yBBWtftSUPBA56s1MF7TjOUB8jR0wiUSgHDHgsk4aew/zsus1MkEW3WEiOjhCu3MbCg1uIe68jHj6FYVahBzYS6fMRizyEv3CG7JJZ57JaVOaFSIQ0B41uSlQuK6KL+UXVaXqn4JhowcLjOjQTQX9eEeNZubzSsAItBE9Gx8nYO4Z/azv/8emLqBp+ltOB/yDxtUwCuzIJPDdObjSfYeyaOa0kRZPrMTNmGIv1z8vjaET7aUy/h/xojA2n+hnL9lM4NUN+NIY2DKK791C9ea5bVSAoyCinqDvIC//wfd7zl19wwUzX0LMExRzlgnYSpr8JeTgdF6yI28Li8dwCEIJYzE9KM5l7PzQ27uW97/nEBbfpl4QyiP10F52mSfez2+i82qZgicmYG+VDAFbCPYfGDRsBaA8M018QTet2HR09wme2fMYlOa5obKZ2xRoOPf902nHNeJyj27ZeEJiraGzmyts+y/P3/oudthWC+rUbWHfjh97xern/L/qw17NY96Qtf1cXJFUCL3U5cM5t3qqlNiQpFSc/pxc9a849dsxNXACiRYfmQJubd9UpG9vEwTkjqwmMN5MRrmO8YDd1442IOi9aJwBNu27kW059cmoNnNCaeEEbOeHF9vOoNR26iW+La0k4WQpKweBzdOkqAjqKX0eRQqGSIFArcuMKDYyZ0Jc3zb7lG+fq2LDQefk8Hb6crgUZ1A5b1A5b/PiKHCwJxhI/1b3ZZE0Xsm3zFVhSIgF/tJSM2XK88RwEJlGw3zlakTHUa6dcZ6e59qtfx/Jnc/9996KKK+nJyeOJFZuwpM0/eknHYWa9PqJaYRkGSMMFJxaa/mAhZZPjoJWdesVWgcg6M4rpNzGmJ1EzBzn4yDSZvl5miiud6y84cWJOizpJIN54xWbKbr7Z1mqNpzRWAdqyOPXKDkJTU2lcdYFVqzCKiykaHKRobIyFXV2MNTYye83V7jG01kxOzvG7pSpInMuSHbbhRx4l9ItfnL2BEHiKigg/8ijhRx49C2SmRfakJLOlBU9JiRtdPB891Tttv7fUJEKILEBqrSPO71cD33RWPwZ8ArjT+Xmhs+S3ZH1tE1imrU2npMFEfiP5Ex34UmeIwqZZHbdGGFMFZI40odWTgIVWBtGhBpZOn0JkNxIYb0bU+dAqeWNLtFIckyl1GVqzpXKY4vg2EhX2hN6OgklO6lUop4PKEgK4koHgDErazsYCEDiRI9sTWlrzneOnuUHW0sAJTsgmTCFQQpBQmu8sycSiHmNJLZt3PsVsZha1Y10siNSCVukpjbjBocgKvlv4FRLCg3Sug8JmSF9x4hBX7t/LD27+E2JeD8ms/mGxEnJ/REnGM9QN78DUgll/Dqp8LerwdpquCjmpbEjK8syMV/KcrxWFQiKJBj1sCpkUXG6xRB3FMExMbdcuGlqRmYizvWH5nMSZBCvfRzwUp337TwiV/F+ocE7jg4Aoo/iZ37B6/TTdWQvwjX2WgGqkuczipcGfMxrrc1Pk5q7dGGdGXCqQ/GiMvGgMISUYhvsAxwGyfDAdozCjgivKPoIUBkpbDO064YKR2tJrGI1sc6cDyf9Bj4EhDEaLLGSnF+3UZvadWUpBQZ9NxSDSX3I+3+kLvp93796CmbCbbsxEgpG2dqiHDJXh1t8pFD0VCRbmBnn/NX/sqkSUd2jev6sMtJ0GfnbDECP5ceJWPI3ipOXyKzn60nNnRdYOb91ywfQiqZ1zAIlY7Dxb/n7Z76MPO5/FuicZveewq2JT9OllZCzITVvuzjaUTtvm7TCvN485dKaY1V68pN/bMBeh08LCH2pkJr9tbqVkLh0LEM6m4PT17mqVAF+kjsq9XyFcsYN4Vj/H8pem+dpjtNCg22y/Gc9GoVBoxnI62LakDVPU2wTsOulPDZ4QN2FrpsqUg4MWkn9szmTRlEKFB+ku8aXzcGrNvuxl7NmcjxJgKFjeNYslQUuBhWbfksWUTB23m9iktBvRLD/eRBC0IqvvGWKRyFk0IsnJzvbt222aFyHozy+xCYOlxNKwvWE5IJBaIZVy3hcSoRSGZVF3cj++6cl59CQCr5mHHD2c/DYwZ9vwTA3h8fgw84vP+m6Lioq48cYb0yaZg9/827naNCkZKynhpYlxrK1bz+KqC15/HW0PP8JwSQklw8Nc3LKEF89zHxUUFHDTTTe94YQ2GUE7p2ntEgcDhB5+mAUPPjDHVpAK1gyD2ePH4bBNOh1++GFqHnwgjY7lt9UE8buiJrkJ+B5QDDwphDigtb5GCFEB3KO1vhYoBR52SGY9wE+11s84u7gT+KUQ4lNAD3B+1fK30Sob8zE8EstSSGFQvboa9fgLRLf/HzKab8BTvMTZUpLvKSHfMJkYrWOo9SPkVO0jcmYVs+OLOBWwczcZIduxdGYfZ2w6QGZ+NwUZe2iuOopHmC558FVnCvFlvkpc2vVaWglCpzdS2mcgF2osp4e/cdzCa4yzXyksqfFicm32r1mq9/IAn7G7rYBWWcthvs7tfJMmdRwp7IiHwM5UaCExMXhh0w1oAa9aFh97oYfqfdmwkDlCM5/F6YKFJPCAMFAp4UWNJmcmzolF60l47PWpXEi7xUVck/2SnRXwB4jVLAIrjL/JZ3ezSkAJAuMtFHTcyN6JMFbALgC2UIydMrnOp8CABqONr1n/i60z72V6uoSa/nH684rStWo1yPE4Ciie2Wk7/pTMRHTDLMYzCYKTcWrHVxE2GxGOcy7OrGEs1k+SSLhqfDL1o/b7zRBUfv3rWKEwk5Wl7Ni7k8Nbn3UdQkllBqEFz5A10UxGqI4Sf417X62rvYU92DxbubOHsTsyBH/Q9AkWJ/IJ+oKMNZzGc8xkLBInEimmo2M9DQ27SQtPCA/bx4cIBQ6cVZOXar29vbx65FV+OfQM64RAaoGWuA0aI5kjTjRCoYVmJHuc9y16P0U1tYDdzdr20BPIZATCaX4YyY+jUAR9c8zwycjac3f/IG0MWlkXrOCQ1tWqNd2HD9B34ujvVM7rv6oPO5/FOsM2YNPYKjadYRvMpSzHTAEqKdu8HZZIhLAfSlt3tMCK24dz8JGd10jhUpSamYJTr7vP2eqjhKa2onwz+McXszm8Ho1GIZmqeBUtEjRrI83XNuujbmRvJreLzukyVoUXYxS1sYTDePiQk2ZM92dz/m2uoxXAFJr9BQZrT3dQdaYXz8rlmMnXrhC8VlpnZ4OFDd4EAo9WWNpWGVp37ARZ04ZN3q00Uit8sWwSxgTxzF4mi0yszMKULKt97NZnHqd+3UXU1ta6ZQoVE8PImsWOd3G8mQMQl5/YR+5UmMzZKLOZgfNKe0nvYrtL1zCc7nIDT2Yj1uwAvsgEZl7RWQWLPp8vDVxZofBcKkpKsi6+mIGrr8I6ceIsrrre3l4ONjWx/73vQWmNARiLFhEZnd8cbltzc/MFZybStLTnW2r69Ryp0uAHPgCAOTrK1AsvuMt1PM6ZL34Jf0vLedO075T9TsCc1vph4OFzLO8HrnV+7wTOSSCjtR4D3vNOjvFcVuY9yQc2H6cvvozK9cvQD75MyDRR46eIHXsMz2WLnZQrIARFhmQmr4PSVT+3Oy2L24lNVsPEIieCB5mhBiJRk9JN/4QwTLSCBtHGX+k7OE4LG/qDrD9zKVNcz9TiXwIKoQ0YXEEWe7j+UJC+YDGnZvJpLbH43NAiGk/u4lRTN80coVE4NSBCYzkzKSUMLK1pm7mCyhNdXC920B8sYlV+NQ8WBIk7haFKSCfkDsNlBlVRSchNadi/5BKeI3Wc13U4XLyc+pMxDDRKm7gOEFjPLmIVipzSKKOixk09hMNlKHUYiUJqD4UdH8AfrqfRGKdd2/UjGsVHdrxKXhZMOPRxjbqNmpdNjs5cRrTInvFJpVDSaUBIDhto1+toULtTyxuJF4eYzPeSLwwmTdOux0ChtErTkE01jf3qOVUOk1evZektt9DfdpzHv/FXbv0GQFbpDN7NzzAmNePaQ+neL6Eb1uAkJQiH91PMOBULPsyJk0ecpRYzA/exYuEdfO6V/03uKNRNllEp1gDg88XcyJzS4Mtezl2nO+noeRjfsSfP0nNNWrJQ2DRNmsQadq7ZRXZ4lsHCmMspZ8xM4e8+ifbnIqKTXBzzcko9R+cTz9Pw3uuImIqEz48xk0zBzwFBII12BWDodOdZ4xDSuGAFh6Se686Hfkr34QOgNdY8Fvrftv1X9WHns4y6IMIj3chcMqWaujx1BpO6zdthtjarB61twm7TOo3tLxyKCA1dccmiDHscjidL38n8tCuK4eaf2IvqvFTu/QqZ4UWEK15xu1gb9Am+qu/ghGihWTs1c85+IhWvcMCs40D+MpbH19CgH+Gv9B38hps5LFa4tXHuAJM/U/yg1LBqLMHwbDeV4T4273yKFzbdgBLC9q/uZNNufFg70cl1tT/jhG6iSZ/AV3ktp/2XkzsxRcI3SWVvG/nhh9h90RIbBAYXuENIBIsIdJ/AmI1ixuM8d88PyQrmsbK8kt72dsbjMTfsLxxgqNAYlkVL24HXV35IXtHESZQpMAxJ/forySlewZJNa1Dm1fQePYyvpJyTvX1padZVDqBJSn4V+rx2FgMQPh9FX/g8oqiIne3tmKZ5VlOD60sd2qgtra1wHkqS1157jaampgsCdIFVqyj92u2M/vBfMIeGzr9hSqo0rV7O4zlnzZ01OMjU4CBTL73kSoS9nsrF22W/t2nW3zvr3Q0P3kiZFafM8MEljzGQslpNnEL03Yeuug2lJVprRi1NoKQNIU2nZs4kUHySwql6+5kSdi1UXmkHwrDsSZ1TrdQo2mhU7RRN/wEISTZXUbOnlmhBG/6xxczEPOAJUT45ARpaVzYxIcr4myqLbw7s40Z+406QjtOCsrsJnPC+wqtNyiLdaKBscoLS8AQlVoy/a7mWv97eRu34GTpW1mNh4FGKm2YLMVoy53KAGtpo5EHxKSdeRbpDAzoqM9nYluDG7sM8UrsMyx4F1/Eom3ke8qHuhh6mDi4mEbE/NxUqpOvFlfhze6ma3ow/UW9fJyGQQtrOBwNvVgX+02NYDxlM3mKBBN/VvUy3LuJITi7lU2fY2D/OjqpitAM2VYEPGY7zTz3N/KTma8Rmf0g8a8I9p/h71hMbLEKd/jBgf2Yw2klSzDtZRzaS4ycvGrOjchIWDYL3mUl6Fv2YU1PP4CuYxBwOuI49uzyKsPlFsHSCR+seoMSQLGUN4fB+9rfa9Yt2JHCuLV7rBF1Dz5I7Cle/VoxUipmaSVRWLuFQGUoZCKFAGHR7ltMxe8rleUtNdabajh07XOdoKEm+WczBhhO2Oohji/qy8EWnEdGonZ5PppczA+zr6bNra2oaCfScRMxMc2Rh2AWCEplGu9LfdpwjL245axxi3uz9jayisZnGDRvpPuQAep3OQv+uvb6drx4u1QKrS9BA1upSd5uMBbkEr68j9Ogpe9bgEQTWlKZt83ZYMLiaivIP09f/M+xQnMYbLSMR6HdnYgWeeZyH8xsgwPVNc4BOgwStTKYLjrM1dw+NFdvn9gE00kajtie9xdyBbAAAIABJREFUqbdlu1zEvbXXYOLBqxv57vG/ZV3uFryFWzkWWIqlU+9hO22qk5G55HCEpjV8lBqgOXgRXXmLbT8sU0CcBSu7YizvitFUvJ9icYzF4hhaCEZKG5mZaMBr5uNN5DFRUMOsf8aJ5iXPdW4cZiAXYzaK5c+ib2oGz/AwxqFWLH8WXZtuQDmco1polp3YR24kZEfhhs/QV1ptK0OcJyrnXjStUQrK6irZcFOyCSnoTqyKnE7SSCTCqlWrWGIYHP7e93l0YhxLKaRpckV+HkXjE2RdcglgkwO/733v46mnnkJrzdNPP01ZWRlWKk3I/Jz7OeyNmh9SLanNes7IHPZ1nd8IkVYv52QKXmcwbtQumX59JwHdu2DuQq1rO1hxe6ZoxeHgTwku9DFZ3IC3fB0IyC54hgzf7bww+ykmphYSsiAvlgVCO13emqzSI4THFqPii5nJbSdacILpSBbZygNYCC3tRiuhENqDf7yJmWAHk5U7AQj2X4J/sp4yEUbQhaUVfXnFbi2GFgZdajU16t/R0nZ+TfooEoXleEWpFX+k7mN18VZUoeTQoauITBYzMK2hfwp5KkIgfIabz2ynt2Ihl4YDrFLLiLGEcf0YWpkg7M5VM6XxABcQ2GOxhOZgrY/yTBwwac+0Azo690xKTTBvmMhUKWhNiTpJsGiQ8e4AoWnBUEmYQTnBlJh1C/K11oxU15F/+jA62z4cEjqo4561jVhCIlUZl3YcxquKsAR4NCwcNykQbVzMcfoSTTQ3vp/+/ofQ2kRKg5LTLxMbvd7u5BQSjaYyq5GyQB0PWi9ypDiHFt8hvFXjTG9RZL8iQUG0fDHeq66jI/9b6IIE9VWCjseriQ7bfHfCNyfZJoBuI8S1DuCxC7/j2I0zdj1m8i0jhJfa0muonDiFVALtz0b5swGYjBRx+NBVttJHcSX1ZYr6TMGpmE01EvQFuefwPawtXeuCukdefGRuxqxtCL64O5P3rvk03x28j7iKUzzho77XPoZGOw2B9nhcWgKwZ8lZQXyz0yzpyqW3dIaR/DifaPlEGoicz0mXNGWZF9wEAU5q97WdcwuEOKuW7l07t82vhwteX4eKmi6wm78+a3Vp2udV1Jx7aVkaT17m2wrkklZefhMDA79GWQnQgkSWM1228Rj5SXU+ZygJmYtXpQibp7xXk8+a00qJ0B4OJxK0VbxEvbTmsBSOikxyvyn7OMZSTOFx64mP+BaQ2f9JOn3drPTvY59Yn5JWlQ79SXqq1USzb0E2NwfXEqnYxXrfDI/oRa5cmdDwvtYoqzvtyHZmlXZ9BUKj4v6UE7JXxH1Lgb6zJs8AQpnnVHAwAzlUhMfsbIUAQylaTrZSOdRLX1kNWy69gSOLV6OkxLAsbn7ifiodNYhkPR5Ab1UDA/nFLOw75UbWU/WTLX82DzzwgKvTGgyH6fnyV2irq8Nc2uKoAkmGi4opGhllautWpnfsoOb++5iZmXE7VC3Loq+vL/0GOQffZKrUlxDiDZsfUm1+I0PWxRejYjFm9u51r6unqCgNgKV1whqG3Zn7Ojx5SdOJBOFHHn1H6+jeBXMXarWXguGzgZw0iO3dy1TkCrIu/iJa2Pp8EbERH3/NYStOlgIpBEbGdNrznVXSTqD4f3Oo7b0E6l8EaZKtPAy13kJpVpTqyWakEETzj+Mfb0IIQc/aO90W/XDlNkqO/wmlfZeTmGmhPd9kSOciLIWQEo+GsqkzSblUwOaau5wX2Mo1NuDTgojIddJ0Fnl5g0QmixmeCLMk4MMjBfXTnVTMnqFyqJfcjApU2RK0tmyH5ew4R0fmPWDOVFHMIZfWOh+J8YUk2dE1khwiKX5IEg7bQC4nZ5j65fsRUpO/TDKycwlPa7vpQTj/0HZh/quVXey/XFJolbPc6qaNRn4sbnVpUZQUdBWUsHZgFJ8nn4K4pkBG+JrvW4yUGXT4n6evXyLwUCxuoLx/gmDoYWLyMGCiHKkqIQRH8rzcs/aDmAa8xuWU6jvI/OgwUhvEWgMkmjbjLWi3KQ+kXZmYXRElOhwgUBqldPm4fXWclOj1tVe4gCc9vQQgKSp6Dxm+YsrLbyIYXM2nrvWzp+MeEoGctJnpZKQIjaKm9hmiQ5rPlXjoD95CZlYLd+6+k4RK4JVe7r3mXgC27N5CMcVuIwcIYsXViK5ZFlcs5vDoYcrGMpHOuSf8AWIVhUxHBikZjju0BAqNQEqJEY2ABg8GK2drsaqruLImnS7kfNQib8ZSNV7t6ygwvN4LTtP+/93m18OFHj1lg3mniWF6/xA6Yb+QzlULd74U7HmPdwFRwHNZMLiaxfqf6O/7FeHKbZDspp4rxU3LYnrFvNfXuYI2EnyRSkpP/jH35TxCZFZg5tq1dwo4pRs5SQvNHKVRdeCbriSeY0eWlnAEr1YktLQ55eKaP1vnJyEXI7Gcrv2UutxzZigE+xqbeEn/LxrkCSqAy3SQrVxl1/RqTTQjOXiTnIxDaecaK+pAn74c9JyftTwLyYxazAYGzrooZlYQbXjcspUkrUiSCHjxYA9Rnw8jOs3RxpWMFJbx4sZrMT0e3Ek40FuxkLLJ8TRQOJhbyOMrbaaEPasv45bSGmg7zi+/cTuWmcDweCl//x+40TTLsjiwbx9l2dlM+/1IbQc1pFKUOJyJowUFDJeVknhlB/6LL3KBWZolF+l5N4LW6JR0a11dHVdcccWbr5lzuk6LvvB5wo88OgfmzvWZeVqzY/fcm1Yzd14zDMIPP4w2TYTP945Ifb0L5i7UqtfDJx5jcM8+hjsyyR+rAcOOSs2ljDzErRY+7v8PfjP9DRQQHWlEa4krrwKAItD4HIBLWWJkTDNy/Doasg0MNFpZzBQeZya30wZyST+BYqj533k6XEK3v46XVxahhS2SfEPbAFebEYyyn5Ek8U3apXob27kSU3nxaMUScdT1AVLaQKLLymciGueyDVWcKNmI59SrVA71MhbrZ9vgz2nKG8SVIMNmPXeRKoBWGCgsDUnHoIHDhY7zFwK0RYQcIpECpiIFDA8vIhKx2dHz/d2ulJcUipmqAazeIpK8BBUzmWTjxzszTW/pAnatTLD/2BKmtjTwb9d+koRIV+LoLqqgO+Vvb1UNV7Y3Q70NdkGjtYnu8BE//XFivuNkyBOMzPxftPgIxZk1aK3ZX+DDlAItJAkN28XlNOo2oqsUEx1ZBIWwgbf22lFLJZkasKNy2eVRlwZKaxBa0Jwxx3gxPeTHmF2JmbGb5DcczF1Bbe2fudvsMzp4tWmUulGJX5Qj+H/svXd8HOd57/t939lFWWCx6JVoRKEA9iZKoopVbTlW83FiJ25xTbnnc5zcm5wbO8mxcpQ4J/3cm5ybuEiybCfWteOoUbIlq1EiqcImkgJAopEASKIS2EVZALsz73v/mNnZmcWCIhXL5UbP50MuprxtZt7n/b1PlVhYSCRVVYPIlGpWW1xXWsW3R0+ScDykEyrBEwNPoNFMB6epWKxYoa54ebKbN3NsW72xsiWU0Ki8ApYabJVQXmkFicQQOdEp8odPcX5NLi3rO9H9y1hSIgyDrtA5Rkf62HduH/e/934XrNa2d/ArX/5zuvY+z0J0htNHD6KUwjCMS44TN9J1wnV+AGjYuIVrfvnXfqa5WX+RyG/3Jtws9tpUxI+MEz/ksReSYgVYy20sovyzG1cAtGygbTWv2EulspZrmBp4EVKbxoy13RchyJrOXolX1aohmT/Bj9u7KEi0sja6yEC8giNVGyhUizxWeA9JIQhg8Sex79BUsNeto033cm/sAUYmP862aZMjpQGSEpTj7NCmT3JKrPeAKUdC41W1CoElJd26gzZxkj7aAUVAW1jaQCponDCdDhvErWJCnqEElQbtrDFOOxpNwLSl55lqViscIbAw6/TF7ocK5HC+oo4ntlyHJTMCeSvLAX5On5Xt2Vp//vSKtF7nSyrcSAkJrfh/9x+gZugUr2y82lXNzpz3S9OGEwm6b7rRloAqxYaSYjZt3EihEaB/715evHY3lpT0zEyzZcyfpWfl+0yDuBQZgHIkcpcD5GAlMHMpELA9bYNBInfflbVcCogtX38d888/b/fJ8Tj2xdETgvzt28ltaXE9ZN+p2HPvgrnLoLHkOh57IU6zAcW5EinTgQsBhLBgrofgTJAtpYMMJpuZn2ph/MhHqd7+HdzE7Y6q0J6gti2WcWEdE5Zi/7ymtewpju7optvopFPEaQNSHl12EcWFuhF+3LDTsfcSWIZBT0mCLWXfoVXaO0vvJqeNXj7d9wynlm7gRvn3tHT2unNjqd7iSKCevvNriNQW8uNzcyQ2bKC7cz0ffvIR1kzNMZuznaXl/4XStmpACOigCwPLtR0JYPIJfT/HoldxpHizPdqMnaPELjc22sb4WBvhoklaWl+1y1sLvn4bhiOt0rYt1lajg0pVjAgJds1r7p7XjHf/PX972/UkZTqWnm/gnvaTwPdr3seHxDdSDxK0JDR9BZoAy8qW9IRzriRHrnGKC7ZNm0gCWAg0kpe4ievYS2Isn/rrdzI83EVz9CNU9HyE+arDnO21iI8LynJrqRAlICbdLi2PR3huzz8S+m0biHz/vj8k0jLBmt0gDIGUQTtvLLZE6qm932Xf2DPs6i5FqiTJ2VOYV7YyNneBNsPwpT+T0qCkZBd6dI/9zocLaBorQMxOoUpLCeqgnyk6i0A8N+l+m5MlCfrr52leqHUZudSQqG4ksLyEsTjPmr4FNt+xnrY/vpuRrhP8WB3k/LwdyDihEjw+8LhP1ZoCXSNdJ1i7dTuLc3PUr994yWAsPxz2vdP2Xde8C+Qug7xgTIYCRJ8YsD1TDYE1l8DZfQGQt66EzBhz8SPjK2zpVg1lkiEFXDgyfllSutzGIop2rWNyEj+Q85gpeM9lJe3/7ZVN/EXkw5gEMMpsxy4lQDgWoVpITK05WhKkgTlf2R3nqrjFCai+t0LYNs1aIVEkRQ5etYvEPm9qA0g7Nwg0HaqHPunEtBMBDDRXn5ug7WQe9RcsUohldrqD0Noj9Op2elhPOAAVwTmCSefZaU0yOMt8Uf/K8QrbkK71qt0snh1iZGqSZKQMs6SC422bbCCXMfft2HKeTAieZ+oPEKypnZlENq5z1LQWY6/v57vXvB/LMFzV7O5QHhNLCde0Ys40Se1mFTA9PkHef2onUlrKHLjhsyynHcMw/HZyTts+8oDXDU1NlLe00NTUdFlAzkuLx48Te/xxEkNDtspUCAKVlRTd8YGLAq740aOM3fen6f4pRfiX3k/yzBAqmSTR1wdas/Tmm0Tu+MA7HnvuXTB3GZSKM5dKyuXV1SutCCaeZ/xIEXlX/1eapEFDHhyYM1mM1aKVREjHdkqBUNIOLAQgLCLF55icbGHaUhysifGXwS/7Alm2ql6XoSllcCR/kztJUnSqspH7+DK/ztd5j3qWRCJEIpEDGIyOtqKXhmir/q80laV3Z/2inf8hvkyyLohRJzgyNUpSKbRh2IEjm25n7ZIdzLNn/BoaXnmW3N3xtOrDCc4hUXyS+1nDMNOygryzJgfWbHdAQrqPYaK8zA20Fp4nEp5k46YfIx3bPq3tAMQ9jmdZeTidJqbRLKdSFSOF7VwikBhacfDKG9m/bRdpQxNWMiyXBLnVu5ALD6GUCQhKzryXvGiL7aivZ5lMfIVcw1Y5pOwxNkYVm5eWORoqQAtQGPxo4df5VEeE9r/8AxINV7O8boDJjofRIknxLgG001pRhJlnMatxTeHyqqOsff8sh579R6pqriW3dJa6q8dc6WNReCPz86cY6nuCV//lALPnglxFqR2RHkEwvkBnuIqG8naM5Yfd9GdKQWy6g74+xbUF1zI61EvToA2GFyeL4IKmkUbcB5361ZoFJjCEgUBgapOBugUa+mX6Hgf4mqEwuYsLCCBxfISJuxo40TrL5GQC5r1P2f/cjz/7Q5574J9QShEIBi87pMji3Jzvnb5rK/f2ybywmAZveoXgy3e8PDTL5NePuyFJ4q+NUXxPK4W7alYNZeKTAoIt9bvcuHRFS5A98kRWaZ2v4yLjGOiWnW4sOSXt0CcpcxOJQmiLACadoitdnYb5mUYW52/i0eYgswZ8e22O24hCcpoWXIaOJs+6QA4LzFOKaaSlm226h9Oxu5nIycUsDNperNqktuZ5NpzPw6hYID7ZztKFFozcOH26nT+XdiBjo0Hxnth5TJFP04TJmqkkZm4MUipo7/i1Bq0Y3vc8O2+6lbOjo+6GTGfMST9/9PBLIVFSu2pWPPy7dnyYe/btYaywmIbhU4zUNmMZBloaWMDZuhaKm1vRFw5nvLN0/eeCAR66/37es/clVCgfduwAx9ksNzc3vRl3+5MFsXv4fP2GDezYkXa4SnnMXgq4ix89ytDHP5E1I4U5Ps70N2zzlKrf+73s5V8/uKLs3J4n7T8Mw5V06mQSKxp7x2PPvQvmLoPq2kswDCh2wwSlxb4KTf/Eaeqa34eQhuup2ponGajsRUhlb+AUyAtBBEFUedxlTlbNYYoHr6M0KHgi0kzCid2W0JpuvZ421cvAwE5kTpLpaA0zFR6m6BXpa4Nv8jnWiGHacnsJBpc5fvxW8kMzXLvxBdtOjvT86mY9pgjYu1OliI2MYpTaHqBSaZomTJLBWRKBYZgZY7lZk+OU79HrsUilgFGc1s18W3waMxJARizbuwvp62OMUp4X72VvrcVn+BZSKvqFnUGikDm+JT6DRQBDmHxi7nvkOM9nMDDBUHU7h6oi3DRucs/ZBFpbHCo1UEZqF2y7eNiGzX6vMrQmqOAqq4Wm0GcYmP86Qmiijc9SOLGV3FgLS2o7EHRBXAqsHys2EJZh23wIyJEB/vj6DxD8p28gQnWUdnyYmdKnPDZzmpKrTzHNKdCG88/ZbQqQUpPUp5idWke4djEdVw+Ixg4SjR1Ea2h+r6D/yQYWxm0jaI1GGJIrr7yNeYY4MzTgebSSwTM1HDuxByklVVYLiw2KYOyCqwYPEEALhzm7z0ZTMhvgg9d8kDtb7qRvpo9HX3wUs7zG5eMCe5EIxOdcg+g3B/s48eABThefZzY0S0AEsLRFUAa5o+UO97Gf7+2xgVzKjuZthBTJD4eR0g6o/a6t3OWTK0VLZhhqK00gnMNyKrwbsNw7w/LQrCtl88aWA4g+2k+wumD1UCaZ3q9WWqV7qXHpbMl0ADB9oMyxjMgukcsG8pxzndj5VE2tQdtSuRS1q1OElorYmv+Em8oLQGtJ7/T7+V87C0gKnHmDyzgVtpRLaJMafZ7zop64UUnc274jwesTHfSWCgJKYGgLUASwWC9OUL2tD4R2Uz0ujJXSvSEdyFgheG5jg62m1Jr1wzOULeSzEGqjNjplAy4hGCsqobeyDmEm2bi4gHzyUQI5eSQcdeu6sSF6qxrs4MNeI+7UmNy1zA4YnFKzjkXKOV9cbrclBOXKouHNVzAWF5gsrbIdip0gwxuLI+w7dHil3Zv3WNpS0Dc6rmApL88HKk8/+xxWXq4fwHn76L7X9N9jHtVsKpRJyvnCG3g4k9zcqm9hyzv9wIOEb7457c169GgakF250wZtmR63YJ8znG/EkcR51bPvBL0L5i6DqtdGuLNtP8nzTpomnQriq7CG9/ESBfxaqd8TrFAK4pPr0CoAJO11tCyJVik7J/snd3Q714QNliMDJCoS4IIRg3O6DtBcGz/OyeLf59/OCK4reI3v8X4s7XmFzsRQ2g5H0i56kdIit+I8rbVvIj0ZA1LUkhxABJ1JrDVlcwVQKh31g2C0NEFu8DigCNdFKKxJJ3EvZA6JRmmLgGO3lWJCWuMP2gt+2w4MesQGqlQ/f2F82fGKTTNJUwd5JXgNN+jjIKC7upGX2ssAeK08wLmFXt7zytO0mGsJaoWJHfTzY/oB5ijixcXbmAzZASyF0uy6YPG5gWXiyb2MbPwhhJ14VcJksewU+bEWFGVu/1Jrw4lig9/aGcJKOXFaij/OBxFN8HexOf732k4QgtBMR9pmToMQyomBqsidbWQ5ctqz4Aim+hRD409TUBWiKvUdZPIrI50fNhUW5WzFIhPFyxTHTyOldqVyY6MtzM3Z0deVoyoAaT96bYcvsVvOfB+SgIxQW1jrqkbLp8udy3abUgiCTqgC1yAaaIhHqFtcy77afdy08SZqCmt83rOw0ptVSHlZYOx8bw8vPPR1Fwy2XfmuivVyyZWiZZIQhBzP1YXXnEXR1C7okqHASpCkYeHIOKX3tGW1owPH+1X5F/RLjUsXix1hdHRF+D6/xE1nOe/tYgofOPe10cuXuJduvYGKmRq+Wnotlg4gsRgQ67BCgjf5NPUM06Z7yYk1U3HqI7xSuoGkwI5V6XNq8DTkRrAkKwjRjmmGbTunuWN8hryK5+jgBG3021ELJKRSPU4cLSO87wLiOoWd/Qbb90EKLA3Hm0qBUkBjKMUdx/aDgMc3X2tL/ICe+jZ+5el/oX641/VkXTt0kg8P9zLcsI5yNGfKaxksr0Way0SL0nyveuIcNx14irrxEUYa2nli824n/Zfm2r5jdI6eIVFUxnRRKS9c836UsKMj3HjoeVRyObsDg8h4fkIwVeHPFGGYJkWnBznf0XFxDYvPbAcmHUcKgDNnzti5YLW+aIgSN1bcpWSSUcq1b8uMMVd8zz3kb92a3WHCMKj+4z9iqbvH1+67krmfFzr0TfTYAiD90httYQ4d4IMNi+QW7MBM5YkC5pVmyckCUb39O5DysxeagvGt6ECSwrHt5I7dgCFhubSXIeksVs6He0DewK36GcIVBXzwVz/F5NcfxhDHuUHnphM7awuhncUX7To4aC0wsVOMZZivAZATXAKRRhLzOSE74bIUKK15ZmsZd74RoXpuhkjxpCvV69XtjhTNQGjF7VPP0BToZ1/JjSS1dqKFaJ8zxArbh/wER5auxiwIOEbFGbYSTlE0DFbU+p7JK3XFvK+knVtiETZ09fPi+iN08iZtopfv6o/aQA5A21HDPz+wTKs+xfBV/0iXsZYe7qFQzbFACdcvb2WnVhQYzxA1m9GOBEsg2VMbtIGcw1CUFOwb7+bQ/ic51PZvdJ1u42qtyIu2sObg77NQ2oNMFHCh42G0shDaoOjsdUyFz9mSOyQVPb/G2Zkx5tVZlLJsLY2RoTVxNA1zo15zaIjnmBwaP8SmaB5KSYRQaC2ZmFjrvlzXNhNNeW6AkvYqekan0As6rQJ134cmaUbdrA2Hxg8RN+IUU+w+fqVhuaqBYGzKVduk2pJa0DHTwe6C3dy0caVDQ/36jQSCQcxkEiklN3/6Ny8LjI10ncD0xIHq2fciazrWu2nF3qXVKeWgIEMBW4rmlcxJKL6rhdzGIpJjC/5yI7PMvzZKbM9gVpVm/PC4az+XKWlbHpolMTLrO5fXWUr4hvq3lMqlYy7aZh0rKEOVmtWGzsPfhOfeNt1Lmx4gsnAdFcU/pluu54Ku4AVxK0pITB2gW2+gRQ1QceojFMTa2YFFUENSayQmdXqEc9RjiqDbiEYwKmrTHXL7YoMN7eF9QsOdZ0K0n1lHrGaSZE4+CxUn0ErZqR4n1yGDeSxNn0VrAdLN02BvyLx81LH7O19s8zk3ALHz93BDOw0jfQSW4m4qrrrFBcrNJMMtGzmxpsVxhih0+y6VxcaThxmpbQbgbFWDa2engJfbNjNZGGF9/wkmQnVuPlelLAY6t1Mw2E31bNo0xkeZ6lLPcTiZZN3RNxipX4PrSOCoKN37Mhcu54MYHhpiZGSE+vp6mpqakFJiWRZSSpqamrJ2xQ1Jkg14AoHGRsyhIffYKI74yykFiQTR730ve/BiB8jltre7ceyijzxif57verP+nFDPY0wl2ygysCene8H+Sx8fZSF2kNzNV7g7lLnYGAQqMHLnAZ3eMWpB6Zn3kx9rtcs6+sHQhXVcufYgJ4zNvg+4m/Vc/d0nOHTgs4xW1xMOV7Nbvcw+40ZMHQBL2+pGwCLAkGqghT76+naRHChB1LyJ1qZtk6bXc4Xuol30sk/c4Capt4DpHIHEMUh1AGsq4fJctBqtbJ3My+IGTIIOeJD0metpPzvGx4oe5CHjs05+Vk1rbIgzxXVY2s6fldqlojUHSq7iE+rrSCx7DqPQaJS2E0G3T4zYzExA40wXZ0sq3Qn4oWg5rVU3orRizVlNG4WMd/bTSzt7xN3Oa7HbWTNv79a+ccUSAeM9fEd8miS2alkAj3bC/7Mwx83xISLGV4lZv2WrRslYLLQNen8cbuOPNj3MxuNtvFQzRFnsdZoaK1gsPYk2FolXnaJ46FakmU/ICS8TPncNAoiMXkterIWq0H6mls46AYU9koS0toOz+6qJe1SsALGIoi1eyeEXDhEvuIVI8TixaJXrEaydVUw4EozZyXGOdQ9REdyEcGLn2ddttGhMj3G6dYyvvPYVAHZU7eBHxg+oU9WuetZG5hJlBHC95JznIYSkcrGSA48foK2kbcVOOJW9IRWH6nKlatkCA/e+duBdMPcWNP/aqBuCBCnIqS8kMTTnw0jB6gLAkaR5aLl7muWTMyukay5Z2qcy9YLG2J7BFercnPqVoC8bpWMuplGbEAG0UoCFE/QQnP9TPkzuHHWKKY2jlvRek1T1fIxE/iRtopc23Usf7baHvxYElaB5QrA48RHyY20IBBtjFv94MM731w/wTGEHQ2JturMeiZHWXg9Rz/zIoOsmTDZFLeLFitm6AyiRRCvJ8Qu3c9JYR22kgNbC1xlZvxaVclZIDUvbm2M3iLeyeWVeMkFpfNbJ5mC3a2jNXbVVlE1EiQsYKSty6wrE5zhVucZWt2bs7kunx3nBcWiQStE4NmzrA5yHrYGe2mb6qhq55fV+DMvCBBCS00XlDG3azR3H91M9O0MoFKKiooIhDyhajQpyczmyfZs/b61ShBYWWEg5P2WCQXd94pKDBKeO2btuAAAgAElEQVTIFytOiJWq1ozjlHTNLbe8nN5tZwWZdpml7h5fgGHt9Ptdb9afB6rehHG8ixNxi80hZ7EXAi0NdMt7OTMxSFVZM+XYMeaU1uQ78cPiE+1oZYCwXAYzW7sfgNBsG1prxpKKmthaPnlQE+04xL9FtoPWBEmy89keQHO6bYQwubZK7Tj8euU/0yM2cD5QzkBls/thHTRvZv2xBHUvTUBdCWjtGtYmCCLRfFJ9Ay2FD7GUJhT/tXuJv+rMw9IKwzLZODBAu6xBRusoPNzG+cBTxErC4OFtOcEl4rNVzAw3oJpt93WlFbXxKT4Wvp9ueQVxVcge4y53AigtGRL2LjAFjVMOFanJkVIvbpx+gSNl8wSDu7lrLMQHz1oIB2yciR6h/FyQ3NANPNh8O+4O1qHIzBi/fWUNSbkLwZUohJssWwtBUmgOl+awdvojBEtHWCj5IaGZDvJjrTQnR4EGn+hfaUm3vILPFAhiWlJaKzi78y/QMs0E4uVdVHZ9EoCRHX+JFgl7NMk8gjONlGxtguf2I3PS6YpSgC6oG+neI1gYy3PrEwi0gHuKbuaNf/gmy0YO8YY25mZT6gqv+gd3/GYoTH00TKIiBaZT0jm7Qau0irBZwqQe575X7+PX1/869xTdQl/Mn5JLO3AyMD2OWVazgrleTK1R297xtlWj2Zwd2ndd87bq+o9Cy0OzaZs1AEuTOJPxHBXEj4zjqlMzaTUgB2Ckw5d4vVqzSt8he/1ZqKRkF1LmoFQSIQyqCu+Ag0UsFpzGzJllofwYSMv90les8cI+KVOx34QGLcmLtpK7UAcIZpqedu9t0718Sf03etjMDT1b2XnuA25VqXnSRi/h0EksNvilRN5f8FwTzuZUuLNNa0EQi1+eHEDpKoYqnkTKBEJAHy38X5UfJUkAWab5pN5LkKT/wTh1N0ydJ5RYpqemyTZhQbCvdSN3HtvPnW/so7e6npxgDlfoZfoSFgX5pawZHeJsaRGpZBUnmjo4WduMu2v00FRZDTZqNLCEZLBurb15y1BzWlKwYIzwK3v2cmDHTQytaUELOz3Z+Ug51bMzxOPxrECuurqagoICzFiMieFhFnNzGVPKti9LPVPtyaaRGn/md+UBfdWO5P7MmTOuSYdSalV+5A1JYs3Nuo4OKVKLiyvKeMvFHn3MjhmXsoszTX//LMuW2gWDiEDAvU8A2rLe9Wb9uaC8IpZ0EbnSARqej3yqbCODBZ1EDUEpYBvJwjnHq2lpupXYmd0Ut7zkgCdFrP5FZusOUHfw98mNtTJuKqpyDPJjbXx+fA8bw4/QLTvpVF00V/Yy+TuCkkA/EXWaE07WBjkHZeFFYk0pl3q7bzsDzzERyOP01q1srjqEMCx6xHqS2AElFZqH5GfZHX0FStLl1s0q2uYVuyeSTOVK2rteYdOspLd8AoXi1BIUJq8jYsVtMOeU21byMrfkrePUcC5PNdoAydDwXmuMJnmSNtHD/fJzOA/OkWw6Nl+OE4WVskERNnAZdRiD1oKavFyWim5nUQR4uAlunFRsjFqA5oI5Qbx+nsHG8ww74ND7LJqjCxxvEE6qHQtJ2rkBrVECIgnNYKiA/B0/RIskQgdZc/D36SnzxNJzGI1E0alOkT99N9ea69CN+20g55GuoWGm6YeEpjvdPJBoTXTtjxidnCJ2po7SK2ao2jLt66624NSPgiznVANTLpjVaDAM8hMGZiKBQYLQcB+ipJxEMkmyrAo8Hrgp8V4gPoeZm4ej83Gvi9R7QLJmtorBinE0mge7HuRzgU/g9ySzn5VZFAFd7EbM9wLci0Ve90aIv1xQV79+I4GcHMxEAiEEO+744LtSubeg5cHYxcGYQwuHxgltq1ohmQPS33I20pAcW2B5MIYZXXK9Wh3xur+cWCn5W40ikW1s2/ptZmZeo6RkFwuHJzjZ9ruOeYKw7cuEf5r5+6X936zDZ5eK+1gq7iVWZ2+mvWNrk720qX4mikp5MKeRHdMWG2POBgtNvLSHTt4kwH/C1HYcy4C2+MLpc7yYX8Ph6qA7t8EOz/RJ7ue0bmavuBmFRKL4uP4GkY7neVjdzNmmtXSySJvudXmydvJlPyQ+x+08nh6Ph/ITyxQuL6ZtkbFVqueLy9k23AcCTlXW872aJjSC4H/5Q/72f/4phWYeczlx3ujYwbPX3bHSlhncY6l12uZWCFwU6H3GWpO3NE/d+DC7Dz/P2TVrMbW9VayNreKG7LTldVggP9/XtvvupLRjtBb4TUx89zpUe36UwpdehptvpqmpyQ1t8laZIFLOCMOf+eyKa2p6Ot1WMEheZwdTX/2az4khr7ODuWd+7M8YkTleyyLyoQ8RrK1N53Z912bu54SarqMu7wf0LVooAraqCnvSDydtI/NpU3FgLkl9rr34J4MFdjAdrYmduZrixn12SBJ7Y4USJsNFPUyebaQ8KBGOPV5opoM2/Sht+hQIWN4EOAbvQigixWP0iXZOVdZzqqYRDRiYNOnTvEc8x43iWc4Ub0FrCK3rA6BDdyFEShVnu6uPh2z1HEKCUrwRsfjLjgLX4P/U1deR/8pL1IX6iBSPEYtWMzdbwXxFLXZgTwOhTeZlIfkl57jp9FYqDsZ5qjaIBiZlPce4mw7dRcyxw0pRm+7hWvbysrDt7GzrNlzAVBubQqNYLjR5vPputLDVwUmpeWjNIh8gyev589wWuZ3Csn/lpOy0y2dIjZZDpi35c8BikZ4mKkp9O+3xAGyu7MMSCSeXY5LDtVM8E96Cfxdr/4bHdpIfa6U8d55ojt9GKLVQJAsmiOVPpc85i0hpS5zk4SLCG6Nud93qBQTD84iz/t3hckAhN9fQf+R191wwsUhw9gLJ3AJcaaQDkuXSAnJhjkRRGWZxOa4pANq2B0xpwrTibJE/yXRv0RCVRqW7y7W77sTYciQCKRJLcS7kjXH3nZ/KugtOZW+wTBMjELjssCT/XjXtf0TKXRtBBOVK79VMsjQLR2z7NxF0wokYdu5Vc3xhpTTPUy76WL+tUTSEDeBS5q4ajIp8rOklG1AKcUmSuVjsiAviSkp2MTPzGtPG62iVwHVRJz2NMlWrtjOTcI+9DhB2YExAWfQ6ZiaddNGm+kFAn+7gz+tuISkFQW3xP7sH2HGuxn6W0+toXfsYf6Tu5WVxPRq4nr20Nw5ybuRvOEKd066inHH+s/6/aaWX03zONV9RWnBcbOWMbGbvxpvQwuAxTL6o7iV3KQ4hPNoKwZBuBifncmpTJpVi3cQI06F0vDl7aDafHCsq4YlNux1vVZsXmIEAP9q5k86Tr3KuqsEBctLPcDL+Xtd3ghwz4ab2QjvP1XOvlpLnd/8SFdPj9nHKQDGbDZpXFZnNbs6xjZNKUTY9zWRFRlDzTNDpVWtqTc3oKC+tWUPBnj1s3ryZ973vffT09NDR0XFR1WvKGUGWlqx6jywspPjDv8LYn33FzsMaDNL40DcB0jldvam8pCR/2zYWjx8HRwIXufsufzqwd71Zf06o/kqqNzRj7BvgRHwdm0OGfwPrfoSC+hwDA6jPhQPzFotFvRQXH6Zw71YC7WFm6/ahhQJlMHyuFb0wxVRBBToPtNa8WRjiBXmXa9Tvj/Ah6E5uWjF5LS0oZpob9bNoLYlFq6msHgAjzdxSSePRGgOTipzz9NGK1oqAVozmWj6Df1PCSHOI91X9GCktlDI4cfxWaqMlBJRCSQhgsU51sxR9L8vFg4zVnuXRutudvm1GsBE7ap1fTTEg1oGGj/MA/6Y/xIwodydqe7yPqtlp0IJI/zlmS9dDefpVnMld5os7q1Cimkc17J66mWb1QwKG6e6gU3U93dLpO46KUl8/ggp2RxUlBWGm3G2/5o2cYix3h5qO7q605LXaGJtmXiRy7gYWEh4vPd8iAi5q8pwvHN/OYjJCdME//RxBGWuuHaP/iVzM+fTONNeUiCNjjlTNltYpy2J5fg4RyPWNB0DlFaLyUjlWHYkcigU1TV/RScLxAPXzDSyHBdGwX62zmVZksUDmh1jOsTh35hxCC5QjZ/DGkdN5IYbDYwyKQW5ipQPESNcJLNO0Pb5N87LDkrxLl08rwoNchOIHx8ipLfR5pi52Tdn2dRej1BpmaWRxDiqaDvBtTS6S2pehtN0PoHBXTdaq0o4PCYSToktrJ+OHZ974bOG9FejUN46778oidKKPdv5c3OvG7/yzqSfYNJtkb971JOpt0JIAXug4wob5K8iPtVIQa6Nn4H/jTN0y14Wep03YtnaPyjuoCJ9CiGrHZk4wRTUjooFW3bti43qYHY7a0AFaWvOyuIF9oRs964fCwKJRnOYEW9xBtEaH2HB6mOrZGXor632DiizaMT97q+r9QYG17dBQNHMODXS1b/EDOWfTp1PQ2Dl/qm0TH3nsG3QMnWJw3TbyzCQvt232C2mFwDICdLVvoWg+5ti6SbTAVbOmwaam5vx5Rmtq7NRbmYAOWDs4SPPpM5xubrbBnKePWe3lHKqYnOTItq12qJlDhzh8+DBSSpRSDJ0+Te4rr9Jy7W7XE9Wb6cH1Zs0GQB1Sc3NMP/BgGrAlEsQefYxgbe1KIAfktLdTeN11RO74AFY09o5J4Fajd8Hc5dDI69D3DLliC7nSWauFHSG/PCCZsewPrzwobYdVIZBaU14xgLzm7xDSZEEbRM5dS+XJj2EG54hNtFMfb2GqIP1RHS82+J3OFpZFKyDYrV/it/h79xu/cKGW/mCrvXPyZT0QHBa7eF7fwnv08wAEpccTkPUeBwRFHSPsFze415snzlFjlvFG6oQz4XcWvoyUVloqGBmjeqScDxw7wIWqfDp4k+XxJqbFHAvb/4Hn5KfdHKm2XZrhhKvyiPeFwNKSl3kPe7nJvt9Ds6rIte0arajndEN7uk9aUZC0U0lpxzbxxcoG9utPc1f0CY6xjf5Io32/sFmWgYXSHgcMp67qpQS7Jx14kjPv9FGDFmxJzvAvjkpWOvkflLZzQXTSxXxVkJLzN1J0fredS1KmgLKDyrSy64I0wNOQM1/HyPQhFo+XUdQ47wPqqQWpsCZOfDzksXFbyXdS11ReyB1r6jvING7WaITSlA9PULGYg84vZKmhmlxTcMNoJXtrXmI6b5q79K2cOzbtlLtA6YZ89lXvo2ypjMm8STpyOqgeqkqvnlpTbJazo2oH2ah+/UaMQMCVzF1ujLh/r2TvPyolzs9fkqoVBdHHBqj4jU0U3VjP/GujzL907q3LeauIJVae9DqmO4AuWF1ANkcI2/HB9mC1cxR7EZxzk2f+iNRx6lqG1jB1q/RgAgH0iPVu6CRTQw+d3Hi6nkjrtCu51xiERZRY7X7yY60cjxj8Veu1mBICXM9t+kmeFHfZcThL004HqQ68wE3MsdJpx+Y70uVfAWx1b9KJJ5qatxrBEb0jtbi4g6qenSGQLCSa55ckRQvCPLblWk9Ddv0do0Ns6D5I9dwMy2U1dr5WDzVeGKVxeoKX2jb5eIVCMNywjproFAhBaXyWK0bP0FPbhC82HTBS08S2k4cxlMYSCulICQFCC3FKojN0DAwSft97eTQez0Djdptrw2GufLMLnUxyJgvYC8/OMVcUTnuNekCeFgIVSI8rFZIEbBve3hdeIHj//VR98Q9cSZrIySFy110X9Wb1kVop3XYdIZaWfOcTJ08yefIkBAJU//EfrQCR7zSwexfMXQ6deZmxpRbOJrdQ7wh/UrZXy+7WEJaVdqTO9m9uxSlMw3RAgkms/kViKkDRuWupCkhCeQYqDyaSNms4Uhpg2QOG9osbmNVFdNBNB10UJjW10SkMrbDwBOZ17j8oruJG8RyVlQOUlQ85/YRO0YXEQjmepUM0+cr1Vzdw1+AwT+v8NJNCEw2H3DoAkslcQFA9N+NECS9lAUn+1h9hOaDPR456U2iN1mlD6SAm56hz1RHeyXWusJqxcAk10SlGI2UOcBWgFFeMDtE+PmIHwXTs6xACC8lMpJCGqWEKRxIcr29DA0GSfFzfzxtiK4fZ5dvtTebm8Mga2FMX5O+6t1OsHkNLE6EMjGQBWliAgUDzSXU/cyJsq2joJXf2dhskCYHAQOPYBgkNSpA715SOL+eh07Xf4sKxCCyFOLuvmjXXjqWlCgq0JdzcrvYbSIv60somm6z8ApKRsvRz9qoh3FKwbM0SnphGhYowADNS5qo+hJY0zDewpW0LzW82MCJm0t/ymUWmqqZQKCqWKjjJSXLUIqWiyW2jxWqmbDkdq8pL/141qVeyZyYSvP7YD7j79//osur4j0bLQ7PED4+/9Y0p0rZ3KsDsc8Mrr3uCCmcvf+ltZIK5WOwIs7PHMioxQJvpujMlcit0rSvJq/VLaSU6RTp4cACLhop/Jlp3FXvrWtI3as0ZmjFzDqPRPFkbJCkFWtixL58Ud5MKN6JSHfDMt9O0MSjaEKkH5pyXWtmbQqXYFdvHrSXPcFY08Lw3uLkQWDrAebHGN5b+4gZqa6LMBlo4X5IBFIXw83+HP17fdwxjacGNC7l2YZYuy3KDBjdOT7AUzLEl9h5JmKEURk4ej9xwlxNfTrFxZMBeujJe9HRJJS/suo3d/cdZCuZQG5tyQ5PUtbbwXiExbr2VPU8+hW5u8vfbGbM1MYH6wn+hMpEkGYvCQtx+WQ7/mSsKe16+54WLlbHqvLYqQmsqx8fRySRzz/zYlaTp5WXMqSkbjGWRrr0VyXAhoa1bKfnYR5m+/4HsgNA0GfuT/w7gA5HvRDgSX9/esZovQkKIXxZCdAkhlBAi65ZeCLFOCPGG59+sEOJ3nGv3CiHOea69/6fS8abrOJfchAZypfCor+zj1IQoDojUGAAosRwjeq/6TZrM1r/I+Z1/xXLxABKoDtqvoyjhYQROHSfEVr7Hr/Fn4k8YkGupmZnls+e+S7MecOpMM5Sd2s51mh+KItIe7rTqXq7Xz9uQIIv9ggaONp1KS5McRvGg+LyTIBqE0LS0HiJcNOmMR1C3XMz19cOo8HkEcB17CZAkrZp0JEsZ7d6mn+SC8OhOvWMWkqNrWmgePE15zJGYORPPlAbVszN84cgAN0yYSDRohUDzkriRFyqu5Xh9KzvH3uSX9b/wJf1lbuJZWnQ/tp1f+llZwo4dlxDwdHmpPSSHce1vGkHheOYimRNh7uIRV9XycHknxyMGC6U9aGH6JAVIE2GlED++tSpnzRg1a+ywEIE8KzVc0DB3roD+JxuIj4ecquz3Mp9vuVWnzgMZybBZ+euM0zAhUdVIoqKOxYZ1aCPoefdgYPCpDZ+isLTU9zpUQZCypTKuG7uOzplOrh+9noJkoa8NKxnkwQcfZGRkhGxU297Brnt+5W1J1OrXb8TraDRw6FWOP/vDy67nJ00/zzxseTDmy7f6lmTYdm2TXzuGms0iZXOibeRvKV8JoC4CqFK0GOlneu2TLNee8Z1PqVcnp571VRgKNeGGxfFeSQE4b5teiZ0joXNvE35Q16Z7+ZK+lw/ph/kS99ImTrKv8wAHc9v9/aKYhYqjPHDVyzy6JuDwBHsSu3HjvOTJbWpfl2n7XyEAxQ3qOW47s4cPP/EAd5z4V9roZU6HbdCXMVfdsbv8X/JS+xbeWBtODywbOWnFJsIl/GDbDZxo2+Lyhuq5KFt637AfnZDsb91IXjKBVMrmnVpTE52ifWyYoep6TGmgpcQSkmP1rSvs5lJ/W1KyFMxh20gf1bMzjBWVcKS+jZMFRZT/xuc5093DYGNDejw+hA1D+fl8//Rpnp4YZ3hhIf0ivXZ2K55PtnfgR+41o2OUR6OIYJDcjivSoE1r5l98kaov/gEVX/gCpZ/9TPZYcavQ9P0PMP7Xf830g9+8uGRPKaYf+lYaRDrhSN5J+pmAOeBN4IPAS6vdoLU+pbXeorXeAmwH4oA3NPjfpa5rrZ96Z7vrUP2V1N3zKaQQTJkKBShte61OJdNAJTfjO0sU2dKxFSoDAVqYxEt6PAxI0FvkYQQ+Y1CJSZA3SzrQhkV4colinfaGTFVezzDJZA6G9ETed6q4Vu/FwERoK20/B6BtpwMtVJphOW1rJE+Ku9x6BmQLbzS1MFZUQrkK8z69DV3zhjumVt3LH+ovc5N+xmZW3onp6cxBrrroWjBUUcf+tk08etMH0h5YQtBX3cCrzR1MiCj7Kgxnh2znS7QczzAlJAdrOulI2Rxip/WBjGfqjF0LeKqqlD7R4gR1VnSI4wQwkdokgKKTLvpEO/fzOf5U/Anfiezit3eGGExsx1arOi/ReaxLJb0r37uw6y7bNAGAueRky7B5KsuzXpBlj1cakvBy0BmlcIGcyi/ESqlYs4zJ+6wDOUUe5igdd3qb+Qsh+MStn2BL5RZKq2p872ld50bWxdZhaAOJRGpBbk6Zvw0ESimefda7KP9kqLa9g8qmFt+53tcO/MTbeRv0c8vDUqm27E3FJRRQmrkXh/2q0RX3gMwNEGzMkAy9BWZcLOln5Mq/YrLlB7w5+pvEYkfcayvjytkVxuOpTZfntGde+QBd5i8e0Oc5n7LyaKOXu8QjbuqubtbbwMszdyZFBX2ija8VvTcd+wzFNn0QieWXgAMl+gIb4xc8jXs6ojUGmuvli3y86Vvs3nSA/PIlV1IYdPiLtL3kVoAlH2XO7wwJPA6QvBAuZjJcwkvrttJd0whaMxYu5ui6rS4fTYGw3f0nnLSLMFpcTk9tM2fKa/3836v+9PbN0TzlJRMcqW+ju7qRJzbt5mBzBw/VdfBPP3iMQ+fPZbeV89SjhaAvFdttxZhI8y3tX6+yPh/nnvM1NRz/0Icw/uavMcIZqn3LYqm7h/Lf+DxVv/d7VH/5v0HgEpWUWtsSOWvlZJERf4YTKxq16zWMdywciZd+JmpWrXUP4NtxvwXdDAxorYfesU5dIlVffTWRp19lZizOgXmL8gBMmdj2cgBCsPwWuniZCKOCcXsy6AChmQ6fE8WK0hn1TSYqOdJQSm2shJxFoAC3bTS8zA20Bb/BQn8rdF7wzb+zNNjSJkfmk1K7Cq25J/ooG4oPsY8bSWj/FriXK2zpnIY/F/eSLAkiI4qWIwNwAYKLFVh5tohdAO2iFzTs5WYs0rYi2rUPgQlRDRnqCB/g05rX1m/2Had+u2uaOFe8gCnTINGO7YR7n9LCTmvmMO4RGnxj8jEoIUgi+Wv+gPeo5/hV/TBteoAviT+hmw1sWB5G5cFXuJckQRfwmkLTldPEbZNbmK884qnb+/7AG/AUwFgzTPWVpVRumEkPTUJ5R5Sy9hinf7SWq37pd1mcm2N2atKVRqW+Diu/gEVHhbLad7JiYdC2/Z8WiunSWcpEJVqDIQ3aSto4dOgQ+/fv91UxfGqY6ni1U70N/NKLqp/BDnmisf8kaeNNtzI2kM6b+fMQZ+7nmYflNha5Dg1WdImF18cuDroUWDNZJHIZlBxfQF9imJEUJdqHnNAiCqWSzMy8RiSyDXDiyokgykoitMRYLsYMZQltkdn3jE0T/mm8okzWN+TUYW/wHK1JSlrEWvaIu2y+5QFkmznKMbav0DjPiDJiBVnUddrCQHO7fpwesd5uo9m2Xb5Cd9Gue/mSuJdubeel/o74NImU8xb+ubUqkMvc8Pva15wqq2HL8QNMlFTaacncOSuYCBeTn1h2AJ7MXq+XPOrY9GMUvNy2mZQINOVkkVSKH0bn2VpTw1hRaTq/6+x09r6n6vSO5WLXwJa2uVI1P6/TEnqAvlde4YN1dRcVGpR8+MPktrdz4Rv3M//ccxe50/P8s5BRXIzyxOe0ZmZsj9YPfWiFV+s7Qb8oNnMfAb6bce4/CyE+ARwC/g+tddY8IkKIzwOfB2hoaPiJdKa4OsTMWJwZSzNjeiVn9u/IsqYxBxvACOEYyO8DRxWncuZASwomtlBy5nZyYy0+fvX+80kerwtiyoyPRiuEVvQWtqHDAqks2hYGAAU6vfvpFhsAjWnVEB1bR3H1KYSwU3A9JD7n5j/VWgAWa3U/N6jnaZiYpaWol4/JB/g+H2FOpD2yZolwn7iPdk6SIMfZ3QlOlhRwLHaGiv73w/Z+bJd6+3v3OlwIrWi4MM5QaZUzAVNx31aZZu4Ezjh2KBHMYTKYk3FNsEEf5YTYSspOr5A5tIYXuIVvi0+m31Mmo3SO50WYPeJuBpIb+bD8Jm2ihzZOQR48xj2YTuaIFFNTQlFT9w8Ex6rSgM0rFXC7pv2Lj4bi5jmEoV0Va/oT0jRfU0N5QxO17R3sfe1xzOfsuH12cYEVKsKnXl2N8WdQqkuxsEHpvH1OKcWxY8c4fPjwivunJ6bdNjV6BTPPpMuNxn4pVN7QhDQMlGUhDYPyhqafaP0/JXpbPOzt8q9Uqq3loVkWDo1fntp1FVo1VMlFqMjYyoT8PkolkTJIScku91okso11+m+ZHHiB5dA55mpfWVnBik2R52/8f7s4LhPjeMBfH+106/V0ii5XOidRNk/0FDzETrwAoVMf53WuwvQAvHSKLen4mvj5cImeZo01ypMBOyONIWwgrDAICJMv6ntpp5c20etK5h8yHP4M/rl9MWDn/c0AdwVLcQLxOZaDub7xALYEbkU9yn9fFgCXueFOx61Tnns1s7n5dNc2s791I5Y0EFrTcGGUrSP9jq31yrpWgNPVAGvmdfc9e/sOlmly5swQzeArm9e50uRj4eWXV5zLSobzrWTY2yWHhsi54grUzAzmxIT9bCzLjjP3U/BqfcfUrEKIZ4UQb2b5d9dl1pMD3Al833P6H4EWYAswCvzNauW11l/TWu/QWu+oyDSYfJu07bbG9HeVZeGcsTQj8elU+4Rm26g/+H8Smt7glAGEYqHyDVdjIFP/hGBT1OLjx+Ou6VqqjerkFDYIsiePkganwm1kvsaoLnZy/V3BRP91KGWglK1SUF5mJAQag0HRyj8bnyJaGWRAtvMd8WnmhD+eEUKgMDjJet/5VyhNbd8AACAASURBVCsL2FM6w9OL0+Sd+hAyEXa73EGXq6YMkoTCBEgDn01ItmfombhTkRL/PZlMJQNIj6by4jrHb1i7eJ5buF/8Jgny/WWzkXO+J9jCfcaXeV7cwmPcQ59op5MuR82SnsQayQ/ztzPT/EPkcspY1/PPK+BM/e0MwVyU6TUBP9/sf/ks37/vDznf20NfaILJ4iWnCrsyIz6bHVh5K8n851yXWpK7LBDSjhtnONHXsybJTglOL8HKXQhBU1PTW953uTTSdcLtm9aaka4TP/E2stHPAw/79/Kv3MYi8tatHksrr7MUAs5iaIBRmW+HFblkgeNFSEBJ1ZWsU39DY+lv0d72R8zMvOZTtZa1XEPACmcHclnqQwPKSB97f72HXiDnHPeJdr4i7uVfxa/yFe6lT9vAjkw7OJHiyLjnT4jNnBCb7c2pO/+9PMlTxvlWZ0QZJwIb0c7G1SSQ9qbFoMfhpaniCzKc5s+ZIGoVXilT6j5vGQ+g2TRxlkO7buPIFdv85UWWMWtN9cQ5IrELvnP+hytWtpXqn+eaFpKe2mZebtvshkzRQjBUXsvjm3czVlSaHSRmSuG87WTy7NWklal/SiE1hF94gUwa+7OvMPrle4kfPQp48q6uRoFAWgpoGJR++lNZbe0SJ09iTk3ZgM+jXo0fPcrUV7/mtvdO0DsmmdNa3/ITqup24IjW2nXP8v4thPg6sOcn1NYlUfXaCFtubeDoM0OsWOOcj1EFIqn+obUmP9ZKWf9dxEu7SduDKKabnmLN8S/4FisBRIPSsfNIf+BjwTJcxuNObrliAm/nkAMmNAuzNZw4fiuVVQN0VPfgWgRn1JHUAUYK6xilAtPrLu+7b+UEvhAu5onNu/lw/5MstvwAIdO2BO2ily/qe+kR6+nQXXwr5zPZH+hFJD2m15YhpfKwTKyUq31G2Vld7GPuZxOtJPMzdn+ZzCEboxS2Z9kD/AZCaAKYfJwH/J1z6jssdoAGlecED3ZFBPgBnfdYQ0H1sn2bSp/XOp2TVUg7LlukM0JA+RmHsbiASCyhc/N957Mx2OCFMaxQOB3CRCsiEzHadq/BWsqho+PijgluXLnMBT6DuTY3N//EpXJgO0FIaWcIkVJedniTt0v/f+Bh86+NstSTaVebpuXhWXLWFKJNTcHOaoLVBcSPjKOBnNpCoo/0v+22A1UhO1erWYAuKeHU9vvQIomUOWzb+m0ikW1MBZ5k7IpvpueFjzLcaN25ZPmPPb9eaVyfbqdbrKdT21K4br0eU6RCk2j3WgDTb1aSlR95g+2uIk3ynoOsvNnOPmMRwKKDLt907dBdtvw7K3jJADmpdSaVBst7zaFwfI5TVfWcTKX/Wg0seY4nymvsvLBeyrbZzvx7FUma9t7n3KOknbXClc5lSt+y1Z9tDcocS6q7pD+Jq+bmKJ+YWNn/RILo975H9Ac/IK+jg2BTI6uRDIcJXXkl8ylQmEyy+MYxRF4eOh5fWcBJ31XsqFfBiWv3Dnu1/iKoWX+VDPWEEKJGaz3qHN6DbYz8U6XcxBj29i+7lElncCYhBPmxVnLm60iE015/C1VvsBjpJz/WSsomSWvN9hmTRyE9sQF0RluZfzst3yqeRkiLUGUvM2e2MDdbQSQyhhDx7PIVbYc3ichpGhhymJsGjItPJufYkgaT5WHcVDmkb2kXvbTTiwZ2Lb3C6VDL6ruxzHOrSM98QC6jfJGIMkWVe1wbHGAbr6aDcGYCuqxMON2uu6vW2lGzGGTGW6piPM1BViOd/hGZQ5QQPV3I4mQ+86Mh15NVSoP69Rs5sbyfvvp5ymOleOPO5cxMsFzdmJ25ecaUSvWFVgSikwRjF8gnh94TQwgpGRoaorW19SKdX21M/nc0ODjIoUOH2LEje8y5fx9lLKS/WPQz4WFujtaLfJd63iQxb6tPo+f63e9YBCQF26rI6yxlqXt1MHgxMsfjLEb6idXsZyk8hMZ2dlBqmbO9DzM59ypD+m+dBjNLC1bEQ/Gu0u4AnJ+Mqdsn2vkKdoBgIRRVnGdRh2zJl8PvjuktdNLFbeYz7An8UrqiTJ70Vjwqk69klnF+7bDdYKC5jSddO7o23Uu/aKeH9RTrC8yIiix9ESvr9Q7Y+7dzfS4UpicU9pfTmqLFeWZDhenvwsPLVWY+1Gy/2dpebX0AqqNTjEfKPJ+hIC+ZeEs+v+JapiQv815wnTmQttZjRArWZC9hlzFNlk6cYOnE6tJ+NTfH/Isv2pI4ZauSs6bw8hVSrnp16qtf84VGiT362DsC5n5WoUnuEUKcBa4GnhRCPO2crxVCPOW5LwTcCvxbRhV/KYQ4IYQ4DtwI/O5Pqesu1eWcwGY22QCA5mzCcoRjaYC2VDxAotATkFPYd8dLT5Kp4lo3Y3HVSSelU7bJm7lzcz98wRP6LjQQn2hnKd/elcRi1bzMe+xGMyeksBnngiykjV6+xL2s9YY88f7zkpexzAdsAJtlrqVuWVoM+yd9tsmcOWG9DCoDRPoqd37XcdJ3vC3wKjfxLBEuZDwn/H3J7FNGGxJFI6eBzN225lN8Y+WgYcUCZcQrsg4RwFwMMPFGuQvkADed1o6qHQw2LpH0SD0FgmB0EjkfW+V9esaXeudCIpNJjMUFrFDY3Tmbpkl//2VKYFS6L14VbE9Pz+XVcwk00nUC5bSnlPVTU7NejH4ReNjyYGz1xS8baVyWppOK5cEYeetK36rUqrRY1M/I9v9BbM0LLEcGnYoBrRmL/YAh9Te4QE6TwTsy+r3iOp6dUXqDlKJunQ4QbBHgPA12hhm3qOCUWM+94k/ZE/gA6TlykQ1eNjCTjSetAlJs+2EDC8EPuZPv86v8qbiPh/ko9/Hf+Z74tTSQ89aX2V7q72xSrGw8LXXNeYCzoTBZN0Vv9a2swhuz1pHqi1YoaVAVu2C379SxFMzJvvnMNu5L6ReQF4+z/dBhO82mM97hggIG1q713R6orc1SyVtQFu/Vi5LWGMW2di505c60t6zWxB555B1Rt/5MwJzW+hGt9Rqtda7Wukpr/V7n/Hmt9fs998W11mVa61hG+Y9rrTdqrTdpre/07HB/alS9cztBlr2dSv0BwGLeC8yansVXCOKlJ3FVrM7cEipA/oV1CJFOkq6BkYTm5hOLFKuMvJ+ZlGUCHBE76BftFNa+gWnYYuBQaIYYkZVlnQ9foOkUXYDtvt8sTl/ag3DaPRdYQ3S62vsI3McihG14/FjZnasDpkzAmG03nDlm77Fz7jA7SMVuEijmRZiH+SgxyrLXm213maWt6/XzxMnMtKD5DF+1Dam9RbXnn0diZ+ZPsTwX8DWbatJKrJyKWll07X2eLZVbKAgWuKZCdhOaRHE5Khx5y76717UiEJ9DIAjE5/Da/pnm6l6KMlscpoz2UoDurVS2b4dSWSSElG8ri8Q7Qb8IPMwNUfI2SYYCqMv0XvVSrHY/Wpou4HJJZPzzns9Gnj3JivuzgTzw2LdmgJ8Vm1O/bVy67gxAttpGMptEPPPeDJ4mwM4nIwwsDPaIu53A6XJl/d46LgXUrAay7Buyb8w9/TUyg+hmewYXA7nOr1AKqSwQkomiEsaKy5HaPm9oRW10amWfM/u9Sh9X23xv6OqmZXCQ4mjUV+9IvV82J/+/9s49uK2rzuOfnyRLtmzHduI4tmPHjvNo0tA2DqH0sWnaprT0TR+UQhkKu2x3WTrAsAyPKbPDLDA7PHbp7A7QgdICLaUtLdBSSqGPNGUoSZpnkzSJmzhO7NhxEid+ypYt6ewf91q+kq5sJ40lK/19ZjS6Ojr3nO/93XvP/d3znJG6CsmkGKeMTMHjIdpt3fLBxkZKb7klrseMjNDz+2dOT8N4WZ7xFN8l7GqZywhjtSjJhcFQZBYeRzOBMYbgiSWI8UNMwHgo7FxBzRtfIdi7KGHfrkgsPtVJifMZkO7NxYlYS8LsZhnFNVvxGMt5mN+wmQGKXOMD+E2YhaYpnvQq1sFoJ5Sxg0ib/4lgMflBe3iki0/2HDeTMH/daHrJBaGLNtdaQef/jn2HpBAvUXvQRYSlZhfruCJFt8eMpGpws6/932Wyjt6k9RYBajkUP2ZwPFecD574g8sQDXviyToPq6SuP/X4bLYd3Ya/cxD/SGJfluFZleMPS0iqHQh0tuIdHACsPneMTDwdBVgvIqlpW80NzmbfJUuWTEkT6+gqEpfe8XFdzusUGF2j9XRbpmOhCJ6gz1oXC04pne65r9JTs9b64XTGcGyP/k566Rmlsvg2yg5cjzdUPhYv+YJPdgpTbggXR2v0O/kmjKcpKfeOq9M2mRdPZz52nFkctSc6H80jjWEdL9uuzkw63By2dLVdSeHR0T54brZx6nFL23GMxuMZ63tn/z9jsJ/3tezmxjf/RmXfyfSa0h1Tsl5H2V3Z0cGC5mYA69vxX21rW0JSw3v2pM/nDOKcV67kQzcjefFlo+iegtq5XOgzNy3Zv3W0U6XzghwrlQpHqlOsW9CzkNpNXyY0cw/BE0vI716QmgTWpMMGQ9ssH4e8cx3Jp1bdp7wN2m9+S9nFYNd8kBh19Zvx+SK0UJ/2eMISZC1XcSXWxK/WsH2rh0eccQqRcF6ArqO1BOveYrQ1xXn/dRhH1bbb2+54jONEJoTbx7/ANHGBbLOW3ZImVyc2JnnUxQ5y0FM3oQY/QywyTZTQnZinsef0s6c4SHDk0uD1x8Y9lGSWrb6S5zv/RmVXvv3Mst98ERCvNeJZSChIE3BcF8Ol5fjtN+Lh0nLw509KQ9SticGAt7eLSGl5vFZu1iz3Jb3OBNWLl6oTdxrEQhHXmqsJEatmrue55rE1XieZzmDJPjqX/jKezmTyco3b56f46FJO1v3p1NIy1sj9qEv/VtdWAaezNckX5rQOjVvcpDyOU0mCk+l27ybXgk2UfvK+6f53pjfZ5uR0x5Mu/zQ1baWhfla0vu2erjPv5PORrNmlhrTLsXLNgv2WU9daU0Nta1vcycsosRh9L78c7xsXbGyk5JZb6H7ySesYolFrzdYz2HdOa+ZOkwWNFfaWewlX7OnEk/RffFTrgRso6Enf4TzfY83yf7DCR8LyMePdOI7/zmE3i0wTw33ViPFRPtsacDEsaR7e9r5rWZNQDiTrH48Zg320tqykrPnaFJMYY62P6kq6QsGtQBrvzc3x3wh51rJbtpMVM+6js0LiMhLUZTtqO7SrRjYk1uQB3S61dWn79wCx6NhxOpPqOZjqcM5dsozqxUtZOWclR2YN2cmOJewd6EnZZzxM3tj5HykpHyfmxEgsCj4/Vpcn65iOHDnyjtJUzjyBhhLwnkbVnAjD7f2YyKmtXQkkdicZxVk753Z/kBRmoCvyontaEyGjzaxpat8mqrVKm67LPuO1LLjtG09DEtMYz5l0e/mdqBYrqQkyJU033ZO1gzOP5PScDpnjt2BY3jaOI+eWrpvjnUbjSCDA/oYGJBAAj4cF+5u5fN1r2XHkbHr/kDhAveRDN1v6pmhFCHXmTpNlq+ZSWOxWWlk1YxeXPo4MH07Zzxh76PlYQDxsNLxjxCpA645G8CZMxDi2T8q2I6zaHMbE8ggdXUzBQDXHj1nTRcw24z9sZzI6N571O96EmHoQSduGxtZ9YDyYPR8m0lOTGjXiUj3uLJgmaqZIV+vk8n05ryRFcX8g+WP2mON0b8U2RVij/c456aGqPdGBKnXW1gHDMYimef71R2HvsVkJksV+uMWGvSnxL7vrkwAsr1jOUEWAobzEGjLvcDhxh3TOvp2Zt39Mq0RGTq3wHsVOy3/yKN4++3qZwv5yyjsjUDeD2fecT+DcUxzIYN8b8WXBToHgiSVgfGNO22jtcTLJt3RSHF+oPDWt8XDkt4gmPml+iji7iiQ3sSaXY2lqlBLiJu+b3Pw6mfJqdL9k3Jpy3dJwOn/J2tzyc9MlQnySX8e6pWm1TXR8bk5mPG6MVU3bqew54W73dDqTw9NpsvNura0h/7zzEL/fmufN77cGHoiAz0fRmjX4lyxxT2cKyEuapinY2Mi8hx9i9uc+NyXTk2gz6zvgg595L09/b3PcoVncEGLm+eczd3EZlXn30/PIQ/ScnIfxeCEWJdz2GkN1qyk1Hstxi0UYevPXeEvnEahdSNQ7m/YRL9sGrb5IVV0RVm7aTmhZETuCC4lPTQIJF3e+6WdICsFYHVjP2x9jcPMaSjqPM1R5IV3bP4In+gyfrvkZ3/bfB8k1VQBEud48k5D8p3iQb8g33eM78r+saTuVvSfxh+ayvj9C/paPMW/1d+PLlfa1BlnQvoeDF89PupFjEIvhj0YZdo5uAjyxaHyYfHVPO41vbuaPl92UEEeMYWFnK4OBfArCQwwG8lnat5fL576UYKqLIutZn3dpSoHw0YNhOhnmkQaXkVWOuLebJyHmYWfL1XQRQaoAj8HLCKvMuoQ0Xz1eiyfQwVUlkbFJn7Hs8Hyvn3+77YeE3/wNJ/peIK+4x26O9tHfUZiQzvtuui2hWfFHV/2IH+y4l/OaS2znyRrEEPV6iRlr/jX35lBLhIT6CHa0AFC5YDHVKy/itR27E18sXPB4PCxbtowdo0P3Rcg73oGv+xgxMTQ19FJqKrnm/ddM0ZQkyjslUDeD2Z9YRv+GjsnPG+cTgivmEFwxh3BzT3wwhCfoI7S10301CPvFpKBnIXV7v05v1esMeQ8xWLSXBE/MeCiONdLnS11xZOydWJgX+Az0lDBv01fpqn+egTlbUuMnE80jv3c+Mzou5rqqv8OMh3nYdzcxY606Yw36ieEzUSKSl+ggpnOGRvuN2J5iiemmR0rj5bEQ4xLzVwIM0Uspe1lMn5RN7gU0hlWlMsELOli14TXHhmirKLTKAAO+aJSIz2UKKZu6Q01cunUduxZdwPHS2QwWFNI9YxbGI3ijUa54/XnCwTqGCwpZv2xReqfJTjs4MgQxQyg/6BpXMKxq2s7MUC/tZVUMx6LUdx+NzynnHR4m6pyA1+mYgjXa3hgC4TB5w8PM6OvjWEUFoaB7fs5jrm07TMW3vglYkwCP1nyNbo86T53f/z59L75E8Qeuwl9bS/dTT+OrqMA/v57+V9YSC4fxFBcz3NSUssqDE19dHUQimLD1Ui2BAJH2dkuP10vFv38xZZ9gY+OUrQYhExXmZxMrV640myaaH+YUOdLcw+Gmk5YD11CS8n/Pk08xuOUgBSvqKLnjdh7bcIhdbxzmxpEQ805sRzy9lFyymGCwA+pXQe2FHGnu4Y8vH2BTKMSqi2roPP48B1sGOVxdSYmvmt7yOWwYCsGI4cK2Tm7tfYU9wyt4u2AuswZbuLyoldXeCrylJez71Z9pzjuPUOEc/JEeRqI7efyGK9hbNZ9hA95ojLrwYe72PUpD5CChtosJVu3EzDhIzPjY0nMjvy26mjbfTDAelkQGqToxzLayYsqHRrhm707yeg9R1XuSOZThq6xhyV13UjBrP1vW/ojD23qZt+ha2hau4YE9++gt9VMxsAdP3z46y6ooH9jK5Z1d1Jcu4BdLP0Z7aJBrm7dxbWE+G4LVBAhi9r/MHHmVp4uuYl/1Kvx+OH/obT7V56GkexEdg02UsomRqhrM7JvpatlNcOH9eHwnCXfNo2vtZ/nNpbPZWVFIYSzCzFgvV7d0cv2uIKXBUn4/v4AXKv34ZwbozBugfPAQJ6JzEG+AD0Y38oHj2zkRWk31NTcA8OPtrRzxGe4YeZ6a/Ecw3hE8nnxq532cnrx7+N6rf2Zp4aNcUtyGD4PIDI6Uns+S+n9mecXysWujZwsnT26grOz9DHQW8MazT9N/4gTnXfkBzr/q2pRradvRbfz1sV9gdrSTn1/IRbd8mLJz3kNLSwv19fUAbN++HYALLriAl379CIe7usjzhambM5tZBeUsW31l3ElsbW1NiL9x40b27dvHwoULufDCC+Pp1tbW0traGv/tHexn48a/sKvgMNHqIm5acFPCcU03RGSzMSbnPc0zUX6FD/bSt66VkWODeAvz8M0J4q8uijtqw+39CBBcMYdAXfpRf/0bOuh79RDRgQjeoI/iK+aRV1lIuLmHQENJwr4dr79Ie+tTRL3d5PnLqTnnTmafs4qeni20HPwJvT1biURD+LxBAp5a8sO1VM29ldnnrKJ/QweDO49T8J5yoks66Oj4HQDFxecyMtJNXl4pfX1vAVBVdQslJSvY/dJGhnZ2kV83TEPHH1g/VMfGmXPwE+ZY0QiLIzuYUbCDI74FPOe5iWOUUmHaOeqbSVFekPf2tbG0vYm/FzdyoiDMms7DFIXm8/fyQUqK/8Dqwj00s4S/xq7G64ly8WALJdHNlAcGMMaDZ2gWjxVcxfr85RSMDJMfNcT8Xi6Q/UQ7SzDt9XSWeTHAeS1D7K0O8FZdHjPDIeZHDnLIN48ZgRIOeqNEooaSgRDVvYe5vKOZK802Wi+5kQOLr+GS0iIWvPAcj2/az9/q6ykPGLYsXkZLFAoiEW47eYR7l1v9st949mla9zQRCcfoO7eRI/MXUfbWTi7Ir2LVnbdS2VDCn3d38n/NB2kzYfKHQgwEi+gN5FM4GGJebxfndh5iXvMeZph8Cm/7GC+Uz2R/KEzeUAj6+5lXUsTtFWXM6DwcLzdOPvEE+19dx5GyUipPdrPg8tUcLy9n2+bN+CoqWLlmDe33fZ22gQGqvR5qZlcwfOAAJholFg5TcsP1zPnSl+Jl1Yk9ezjZ1UVffj4er5fZIxEYHqbB7+fiM7z+aWjrVkIb3yDa10t49x4MEN69G8nPp/xf7qHsIx9Ju4/TeXynTLb8UmdOUZSzGnXmFEXJVSZbfmmfOUVRFEVRlBxGnTlFURRFUZQcRp05RVEURVGUHEadOUVRFEVRlBxGnTlFURRFUZQc5l01mlVEjgEHsyihHDiexfydqJZUposOUC1unK6OOmPM7DMtJtMklV/T5ZycDrmqPVd1g2rPFmdC+6TKr3eVM5dtRGTTdJkiQbVMXx2gWqazjulALtsiV7Xnqm5Q7dkik9q1mVVRFEVRFCWHUWdOURRFURQlh1FnLrP8JNsCHKiWVKaLDlAtbkwXHdOBXLZFrmrPVd2g2rNFxrRrnzlFURRFUZQcRmvmFEVRFEVRchh15hRFURRFUXIYdeamCBGpFZG1IrJbRHaJyOft8G+IyGER2WZ/rsuQnhYR2WHnuckOmykiL4rI2/Z32RRrOMdx3NtEpFdEvpApm4jIQyJyVER2OsJcbSAW/ysi+0TkTRFZkQEt3xORPXZ+vxORUju8XkQGHfZ5YIp1pD0fIvI12yZ7ReSaM6VjHC1POHS0iMg2O3zKbDIdERGviGwVkefs3/NFZIN93T4hIv5sa0yHi/afi8gBx7lbnm2NbkyHMvN0SaM9K8+eU0VESkXkKbss3C0iF+eQ3d20Z8buxhj9TMEHqAJW2NvFQBNwLvAN4EtZ0NMClCeFfRf4qr39VeA7GdTjBY4AdZmyCXAZsALYOZENgOuAPwECXARsyICWqwGfvf0dh5Z6Z7wM6HA9H/b1ux0IAPOB/YB3KrUk/f/fwH9MtU2m4wf4IvAY8Jz9+0ngTnv7AeAz2dZ4Ctp/DtyebV2T0D2tyswzoD0rz57T0P4L4NP2th8ozSG7u2nPiN21Zm6KMMZ0GGO22Nt9wG5gbnZVpXAz1sWH/f2hDOa9BthvjMnYihzGmNeAE0nB6WxwM/BLY7EeKBWRqqnUYoz5izEmYv9cD9ScqfxORcc43Aw8bowJG2MOAPuACzOhRUQEuAP49ZnKL1cQkRrgeuBB+7cAVwJP2VEyfe9OmmTtZwHZLDPPekRkBtZL3c8AjDHDxphucsDu42jPCOrMZQARqQcagQ120L12U9pDGawuNsBfRGSziNxjh80xxnSA5XwCFRnSAnAniQ/mbNgE0ttgLtDqiNdGZp3xf8SqGRxlvt1UtU5EVmUgf7fzkU2brAI6jTFvO8IybZNscT/wZSBm/54FdDsc/0xfm6dCsvZRvm1fXz8QkUAWdE2G6VZmngpu2iF75exkaQCOAQ/b9/aDIlJIbtg9nXbIgN3VmZtiRKQIeBr4gjGmF/gxsABYDnRgNR1lgkuNMSuAa4HPishlGco3Bbt/z03Ab+ygbNlkPMQlLCPz+IjIfUAE+JUd1AHMM8Y0YjdZ2W+BU0W685E1mwAfJdH5z7RNsoKI3AAcNcZsdga7RJ12c0yl0Q7wNWAJ8D5gJvCVTGubJNOmzDwN3LRPx3I2GR9WV4sf2/f2AFazai6QTntG7K7O3BQiInlYjtyvjDG/BTDGdBpjosaYGPBTzmAz1XgYY9rt76PA7+x8O0ebDu3vo5nQglXAbDHGdNqasmITm3Q2aANqHfFqgPapFiMidwM3AHcZu+OF3azZZW9vxuqrtniqNIxzPrJlEx9wK/CEQ2NGbZJFLgVuEpEW4HGs5tX7sZr9fXacjJyH0yBFu4g8andBMcaYMPAwmb3fJ800KzNPCTftWS5nJ0sb0GaMGW3FegrLQcoFu7tqz5Td1ZmbIux+LT8Ddhtj/scR7ux3dQuwM3nfKdBSKCLFo9tYHe13As8Cd9vR7gaemWotNgm1LNmwiYN0NngW+IRYXAT0jFbzTxUi8kGsWoqbjDEhR/hsEfHa2w3AIqB5CnWkOx/PAneKSEBE5ts6Nk6VDgdXAXuMMW0OjRm1SbYwxnzNGFNjjKnH6prwijHmLmAtcLsdLZP37qRJo/3jjoeyYPV9yuT9PimmYZk5adJpz3I5OymMMUeAVhE5xw5aA7xFDtg9nfaM2X2qR1i8Wz/AP2A1fbwJbLM/1wGPADvs8GeBqgxoacAahbgd2AXcZ4fPAl4G3ra/Z2ZASxDoAkocYRmxCZYD2QGMYL1F/VM6G2A1Zf0Qq8ZnB7AyA1r2YfVJG71eHrDj3maft+3AFuDGKdaR9nwA99k22QtcO9U2scN/DvxrliFPsgAAAfBJREFUUtwps8l0/QCXMzYitAHLkd6H1V0hkG19p6D9Ffv62gk8ChRlW5+L3mlTZp5B7Rl/9pym/uXAJlvn74GyXLD7ONozYnddzktRFEVRFCWH0WZWRVEURVGUHEadOUVRFEVRlBxGnTlFURRFUZQcRp05RVEURVGUHEadOUVRFEVRlBxGnTlFURRFUZQcRp05RVEURVGUHEadOeWsRUTeZy9unG/Pir5LRN6TbV2KoigTISLfFJHPO35/W0Q+l01NyvRFJw1WzmpE5FtAPlCAtW7ef2VZkqIoyoSISD3wW2PMChHxYK1+cKGx1yRWFCe+iaMoSk7zn8AbwBCgb7WKouQExpgWEekSkUZgDrBVHTklHerMKWc7M4EiIA+rhm4gu3IURVEmzYPAJ4FK4KHsSlGmM9rMqpzViMizwOPAfKwFju/NsiRFUZRJISJ+rEXa84BFxpholiUp0xStmVPOWkTkE0DEGPOYiHiB10XkSmPMK9nWpiiKMhHGmGERWQt0qyOnjIfWzCmKoijKNMQe+LAF+LAx5u1s61GmLzo1iaIoiqJMM0TkXGAf8LI6cspEaM2coiiKoihKDqM1c4qiKIqiKDmMOnOKoiiKoig5jDpziqIoiqIoOYw6c4qiKIqiKDmMOnOKoiiKoig5zP8DtV50PPxsknwAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "yz_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = yz_axes.plot(y, z, '.')\n",
-    "_ = yz_axes.set_xlabel('y')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXd4HId5r/vOzFYsOlGIRoIgARKgKFJily1bsqOo2JHjksiJ/dhxiUscRz655/paxyc9tpXYcaI4N+7tuMTXsizJkeQiyZZkUaJIiRQpiiSI3nvZPjv1/rGc5WKxC+yiE5j3efAAGMzOzC5mfvPNVwXTNLGxsbGxWX3E1T4AGxsbG5s4tiDb2NjYrBFsQbaxsbFZI9iCbGNjY7NGsAXZxsbGZo1gC7KNjY3NGsEWZBsbG5s1gi3INjY2NmsEW5BtbGxs1giOHNe3y/psbGxsckfIZiXbQraxsbFZI9iCbGNjY7NGsAXZxsbGZo1gC7KNjY3NGsEWZBsbG5s1gi3INjY2NmsEW5BtbGxs1gi2INvY2NisEWxBtrGxsVkj2IJsY2Njs0awBdnGxsZmjWALso2Njc0awRZkGxsbmzWCLcg2NjY2awRbkG1sbGzWCLYg29jY2KwRbEG2sbGxWSPYgmxjY2OzRrAF2cbGxmaNYAuyjY2NzRrBFmQbGxubNYItyDY2NjZrBFuQbWxsbNYIjtU+AJvVwzRNFEXBMAwkSQJAEIRZX9ZyGxub5cUW5A2IYRjouo6maYkvmFt00wm1IAiIopjxb8mvs7GxmR9bkDcIpmlimiZ+vx+PxwNcEUtJkuYUTdM0Ez8bhjFruWmac75+dHSUiooKRFGcIeC2mNvYzMQW5HWOaZoYhoGmaRiGwenTp7nhhhtyErrkdXMVSNM0GRwcpLy8HNM00XU9sdz6Pt8201nkohgPf6SKeur6NjZXE7Ygr1Ms8dM0LSF66YRKFMUZVu9Sk7w/S0SzJdkytyx8wzDmFXNN0xgfH2fz5s0LFnPrZxublcQW5HVGOiFOFcJkIUsWvbXGQi1zS5Crq6uB3MQ8df/ZiHnqurker42NhS3I6wTTNGcF6NJZpIIgZCVGS4m1z5VmMeKYLNzZiLmqqoyOjlJTU5PYpy3mNrliC/JVjq7riS+YPxBmuShEUSQWi9HT04MsyzidTpxOJw6HI+13S0Q2CrmKo6Io+P1+tmzZMisImizmFnPdFOfKYkn+P9jpiesPW5CvQiyrTVVVZFnmlVde4cCBA1ldjIIgEIlE6O/vZ3p6mtraWoqKimakwYVCITRNQ1XVxPdkURFFcU7xTv7ucDhWzUJeLRYbBLXIRsw7OjrYvn37jP1lEnRbzNc+tiBfRaRmTEBcHLN1QQSDQUKhEK+++irbt2+nubk5IcS5BNySxTtZtDVNIxqNzloeDoc5ffp0IsUuGxG3fs41ELhaLJUbKFcx9/v9iaKedOmJlgsr+e+p200X9E3nbrHFfPmxBfkqYK6MCUmS5rU+p6am6OzsBMDr9XLdddclcpEXgiRJSJKE2+3Oav0zZ86wa9cuXC4XhmHMEnFVVVEUhXA4PGO59X6t9zyXmCf/nM6qXG5W2i+fjqW0zFOXJb+/aDTKxMQEtbW1M/Y3l5hnWmchx7qesQV5DWMF6nRdz5gxIQhC2rQ10zQZGxujq6sLj8dDY2MjhYWFnDp1asaFthIXQ3Ig0RLzXLFuSunEXJblWeIeCoU4ceJE4v3NJ+LJ3+crlFmP5CLmuq4jy/KclnkmMc+070yCnk7MTdOc8bf1hC3Ia5BsMyasv6VeEMPDw/T09FBYWMiePXvIy8vLuP7VgiAICRGdj1gsxsWLF9m7dy9w5fNMJ+aRSGSGRa6qaiJAmrrfuVwtiqLMsObXM1ZQ2GKpLfPk5ek+zwceeIDh4WE+/elP57SvqwFbkNcQln+4vb2d6upqPB7PvCe49Xdd1+nv76e/v5/y8nKuv/76tC6F1RDk1b4JCIKQyCLJFet/kirmqcFPWZYJh8OcPHkysU9rv9kEP61MlquBpbzpLETMY7HYolxuaxlbkFeZ5IwJy0IIhULoup7VCaqqKrFYjOPHj1NVVcWhQ4fmFB4rCGiTHaIo4nK5cLlcc64XDAbp7++nubk5sczy+6da4JmCn8n/l2wzWaxMjJUU85XeXyrRaBSv17tq+19ObEFeJdJlTCT7zuYTTVmW6e7uZmJiAkEQOHLkSFa+2Uw+5+VktS3k1SLX4KdFchB3vuCnLMucOnVqxjmUayZLrtbuaguyLMts2rRp1fa/nNiCvMLMlTFhMZdohkIhuru7CQaD1NfXs3PnTp5//vmsA2Ub0WWxEiz1Y3y2/vKTJ09y4MCBGccxV/AzGAzOstqTySb4Kcvykr/nXIhGozPiIusJW5BXiGwyJizSNfzx+/10dnaiaRrbtm1j9+7dC7oYNoI4rhZrIZiXi5inkm3w0/Kdj42NzdrvfBksS1H5abssbBaMYRiEQiFEUUykU833uGcJsmmaTExM0NXVhcPhYNu2bRQXFy/qeFbDh7wRbgLr4f1lG/wcGBgASPTtgMzBTyvGka7y00IUxaxE3Moxl2XZFmSb7LECdZZF3NbWRm1tbdZiKggCExMTtLW14fP5aG5uJj8/f0mOLdUdshasuvXAajy+r9ZNwDCMWRZ4tsHPdKQGP5PdKcnBT1mW+djHPkYgEOCJJ57A5/ORn5/PI488QmFhYVb7mpyc5K677qK7u5v6+np+/OMfU1JSMmu9T37ykzz66KMYhsEtt9zCfffdtyL/X1uQl5BMgbpsrVLDMBgcHGRgYIDi4mL27t275JaA7UNeP6yWD3ep95tL8PP48eN86EMf4pOf/CT79u0jHA7n5E++9957eeMb38inPvUp7r33Xu69917+6Z/+acY6zz33HMeOHePs2bMAvPa1r+Xpp5/mpptuyul9LYSrI/FxjWNZw7FYLFEgkFo6Oldmg6ZpdHV18fzzzyPLMrW1tVRXV+ckxtkKni2Oy8NqWcirIchrIcvC6/UiCAL5+fk5HcvDDz/Me9/7XgDe+9738tBDD81aRxAEZFlGURRisRiqqlJZWblkxz8XtoW8CLLJmIC4BZBc/WWhKAo9PT2JPrqHDx/G4XDQ1dWVU2pacmnyfNg+5PXDagnjagvyYrIsRkZGqKqqAqCqqorR0dFZ6xw9epSbb76ZqqoqTNPkz//8z2fkly8ntiAvgFxKm2F21kQkEqG7u5vp6Wm2bt3K0aNHZ7w+17FKuQienYe8PNgW8soxnyD/zu/8DsPDw7OWf+Yzn8lq++3t7Vy4cIH+/n4AbrnlFp555hle97rXLeyAc8AW5BwwDANd1+no6GDr1q1preF0WAIbDAbp6uoiGo1SX19Pc3Nz2tfnKsjW+tkWhqx3cVwNbEFeOeYT5CeeeCLj3yorKxkaGqKqqoqhoSEqKipmrfPggw9y5MiRRCD99ttv5/jx4ysiyLYPeR6sQF0sFkuk7wwNDeWURxmNRunq6qK1tZXa2loOHTpEZWVlxtfnKpq5Wsip6y73RW3fBJaH9RLUyxVFUXKufrS48847+e53vwvAd7/7Xd7ylrfMWmfLli08/fTTieyOp59+2nZZrDZzlTZn+3qr/aWu65SXl9PU1JTVa0VRRFXVrI81F4s6eV1N0+jt7WVycjKR65mc95n6+0ZsS5kttoW8cljtNxfCpz71Kf7wD/+Qb37zm2zZsoX7778fgBdffJGvfOUrfOMb3+Ad73gHv/71r9mzZw+CIHDbbbfxe7/3e0v5FjJiC3IK2QbqMpGu/eXU1NSyCay1fi4WsqZpdHZ2Mjg4SHV1NTt27JiRC6qqKtFolGAwmPg9tcw2U7+EdKIO66NwYq2xUQV5MWzatIknn3xy1vIDBw7wjW98A4if21/96ldX+tAAW5AT5FLabK2ffDEkt78sKyub0f7S7/cvyCecLdkG6jRNY3x8HL/fz7Zt2zh69CiCIKAoSs4XWGq/BOvL6peQOsJpYmIikW+ayRpPFfWrySJfDXHciFkWyUbSemTDC3KuGRMQv4NaQTRVVent7WVoaIjq6uq07S+XM2vC2v5c66uqSk9PDyMjI+Tn57N161bq6+uBhQtJLpM/2tvbKS0tpbS0dJYlbgm3NfUjWcitm6P1HrMRcYfDsWGs8Y3qQ17P/98NK8hWxkRnZydlZWX4fL6sTzJRFIlEIgwMDDAxMUFdXR1Hjx7NKFALzZrIlkwWsqqqdHd3Mzo6mjjG4eFhYrFY1tteCpJvMAttSZkq5Ml9EsLh8AyBtyz1EydOzOorPJeoL6QVpYXtQ14Z1rMYwwYT5HTN4MPhMEVFRVmf2OFwmHA4zNmzZ2loaKCpqSnrZkHZsliLOrngZMuWLTPynK/WjIdchDx5hFMmIbf6Cqf6yFMt8myCnQvprLYUbERBXkyGxdXAhhDkuTImLPfDfFjtL1VVxePxsGfPHnw+36z1ZFXnF6+OEJA1DtWXsGtzAaIoIqs6hmEiitnnLWeLtb6iKHR3dzM2Npa24MR636mCvNwX9mreBBZqkadOx7a+koU8XQez8fHxrER8sRY5bExBjkaj63Z8E6xzQc4mYyJTWbP1+snJSTo7O5EkiW3btlFSUsLZs2fTCqas6rzjayfomYhgmOBxivzVHTv5yUv9tI6EyPvVJPfc1sRtu+eui8+1vNkwDHp7ewmFQhmFOHnbqce+XgMki0EURdxud9ZCPjw8jKIo1NbWpvWRp076sJYnW+TZBjstId+IPuT13AsZNoAgq6o6Z6AunYVsmiYjIyN0d3eTl5c3q/1lJgv268920zYaTvweiun874cv4HOLeKT4hfeZn7eyrczHzsrM7TSzzZqIxWJ0dXUlemHs2bNnXsvF7va2vCy0DWVyP+G5RjYlC7mu6+i6TjgcnlPEk10rS2XZrqYgr9dpIbDOBTnbZvCWhWy1v+zt7aWkpCRj+8tMgvzYuZFZy1TDRFYNXC5wSnHXxYWhwJyCPJ/LQpZlurq6mJqaor6+HlEUKSkpyepiWy1xXO+CvFircSFCbqUw1tXVzXKvWL2EUwXe+j9YzeizDXaulbxj20Je50iShKIodHV1MTg4SEVFBQcOHJjzwsjkd3Zk8A/HNJMw4HKZCAKU+ua+6DIJsizLdHZ2Mj09zbZt29i1axeCINDe3p61z3m1LGSbpceqWFusRZ5JyJOXJwt5JBLh3Llz87pXlkPIZVm2fcjrFUVRGBsbSxRKWO0v5yPZqk7m7dfX8K9PtiOrV8TR6xCRNQPFAEU3ObytlNdsn3tibqogW70wrONMbUqUi88514DhUrARXBZXW9rbQoXcNE1OnjxJQ0PDLOs7ebqHtdwwjMQx5uIjzyTkkUjEtpCvVjKdrJbATU9PU1RURF1dXaJQIhsyidp7DtcRUTS+/mwPUVUnzynidUk4VIGmYvjEHddwYEvxvJkWloBFo1E6OzsJBAI0NDRk7A6XS0vNjSCOq8HVJsgLxQqK5+rHTR6gmmp9Jwt5csZKqpA//PDDtLW1MTU1xbe//W1KS0s5dOhQor/xfNx///387d/+LRcuXODEiRMzpnUn84tf/IK7774bXdf54Ac/yKc+9amc3utiWNeCnIrV/jISiSQszfHxcaanp3PaTiaXhSgK/NnrG3j3oTr+9Pun6ZuSwYTGinz+dGc8DS4bYrEYoVCIM2fO0NDQQEtLy5wX3mK7vS039k1geVjtirlcyHaAairJQn7rrbdimiZtbW2EQiF6enrYunVr1oJ8zTXX8NOf/pQPf/jDGdfRdZ2PfexjPP7449TW1nLw4EHuvPNOWlpacjruhbIhBHlqaorOzk5M02Tbtm2UlpYmTuRM7oe5mO81hV4n33//AS4OhxAEaKrw8eKJF+bdbiQSoaOjg3A4jCRJHD58OKd+y9keux3UW3oW04FsoVzNTX6yJVnIDxw4QHt7O8XFxXz84x/PeVvZtNA8ceIEO3bsoKGhAYB3vvOdPPzww7YgLwWmafLSSy8hSRI7duygqKho1jrZFoYkk42IOyWRPTWFtI2GONXnxx/LLEjhcJiOjg6i0SgNDQ2UlZXx/PPP51TKnYvLYjV8yDZLz0aadG2x3GlvAwMD1NXVJX6vra3lhRfmN6aWinUtyIIgsHfv3jkDdQu1kOdrp2maJvf9uoMHXx5CEgRisRhl26Y4mOS2CIVCdHZ2Eo1G2b59O5s2bVrQBbbWfcgbwWWxWuK40azyaDRKaWlpxr/PNb4pXTP6VNKdpyv5f13XggzgdDrnFIO5KvUW8hrdMPny053818l+JsMqhV6J4jw30ZjJpx8+zy//4oaERRyLxdi+ffsMF8pCyLUf8noXx43CRmr5aWFNnM7EXOObsqG2tpa+vr7E7/39/VRXVy9qm7mw7gV5PgFaqMsi02u+d7yHrz3bTUyL73M6qiOJKg4BQrLGiZdeRjS1hBAvBblYyPbU6eVho2RZrAVBXs485IMHD9LW1kZXVxc1NTX86Ec/4oc//OGy7S+VdS/I87FQl0UmAfyvFwdQtJni44+q5DmgzKvTtL2ekpLssi1yOZ6FTJ2WZZmOjg4mJiZmdINLzgnNlCt6tTWQX49slJtAMpFIJG1Tr2x48MEH+fjHP87Y2BhvetOb2LdvH7/85S8ZHBzkgx/8II899hgOh4P/+I//4NZbb0XXdd7//veze/fuJX4XmdnwgrwQC3mu12i6iQkIAmCCCWgGFLkE/vM9hykpWdjJNBe5+pB1XefixYtMTk7S0NDAjh07EhdZak8F68tKxUtelnwjSyfY1lc0GkUURRRFwel0rksRt33IK8N8Lou5eOtb38pb3/rWWcurq6t57LHHEr/fcccd3HHHHQs+xsWw4QV5qdPebmmu4DvP95JssBa4JT66z0H9puWJDmdrIauqmig0qaurY+fOnUC8YjF5W7lWcFmNblJF3Er6DwQCaJqG3+9PTGaxxCSTiKda59lOJ1ktVst9sBFdFnal3lXMfCfsQk7oTC6L6elpXlcS4OliiW6/jnFZI0OKzmdf0Ln5BoVSX/Z9ebO9yOezkDVNo6enh+HhYWpraykoKEgEKpbCtysIAg6HA4fDkfZiGRoaQtO0GelEMHsKiPUViURmLUvuYz2XNW4FcQ3DWPXH6+Vmo9wEkrGbC9nMIlWQp6am6OjowBRELipF7G/Io+v0YOLvphl3WxzvnOSOPdlVFeXS7zaThazrOn19fQwMDFBTU8ORI0cQBIHBwcFZ6y7nxZ0pqLeQ5vFW5ZaiKDPEPLlxfCwWIxgMcvLkyRn7ytYaX4gFuFH8uavhJkkmGo0u2Id8NWAL8gKw0t4mJyfp6OjA4XCwo7GR//VoFye6+4lpBukMT0cO185CA3UQt2IGBgbo7e2lqqpqRtMka4xV8mtXMgtC0Qy6JiJohsnWUi/57txOwWxKcJNHOMFMl4ol5tbPqX7x5M5mmebxZbLKV5qNmGVhW8g2s/D7/UxPT9Pb28uuXbsoKCjg0kiIkz1TRFUD3Zh5cbokgWKPwKGthVnvwxLZbHynlsVumiZDQ0N0dXVRUVGRdgL2ajxuJpolqTrffK6PQb+MABR4HPzpa7awaZ52pEuxf8ulkgvWGKfUyR/RaJRgMDjLVy6KIt3d3Qlr3OVyzSnmV+MIp9UWZFmW7Qb1VzNLdcJa45w6OjpwuVx4vV727duX+Lus6ai6iZYixgJwfV0RH9ot4JKyP5Zc22RGIhGef/55SktLOXjwYM5tFZcb0zR5qdfP4LRMTXE8j3Q0FOPxi+O8c//KJd7nQi5jnDo6OiguLqa0tDStXzy1Yby1LHlf2VrjliBuxCwL20LeAFjWaLoTzTRNJiYm6OjowOv10tLSgs/n4/nnn5+x3s6KfByiCKTOq4OLIyFc+0qWfPK0aZqMj4/T1taGqqocPnx4TTbvtm6K/qiKy3HlM85zSvijc5egX20stKtZpiwVa3xTss/cCqzJskwwGMTr9SbEPJNVvlQ546sdKNV1fc0ZG0uJLchcEb9kQbbErrOzk7y8PK655po5gwlup8SHX1fPF59oJ9lIjk8REVANIaf0uvl8yJOTk7S3t+PxeNi1axfd3d1rUozhisuioSyPZ9unUDQDSRSYimoc2ba0RTKrxWKFygpw5vI/fPXVV6mursblcmXMGU/uMwwkJq2nc5+4XK5ZVnrqe1ptC3m9YwsyV4J0DocD0zQZGxujs7OT/Px89uzZk7XP6v03bOXVgQC/OD+KCUiigMshsqXUS5EntwKUTKlsfr+ftrY2HA4HLS0t5OfnE4vFrorS5F2V+fzetRU8em4Uv6yxp7qA/Vtmd+CzyR6Xy5VT1sFcOeOBQGCWSyU1wKmqasKAWemc8dSA9Hpk3QtyNlaLJcijo6MJIb722mtzDh5IosC/3XUtT7eN8/lftjEZVthdU8hn39LCeH/nolwWwWCQtrY2TNOkqamJwsIrAcLVaKmZC8kpfDsr83mmfRKA3sko33iujz+9oQ5fjtkWa42rJe1tvpzxTFgBzv7+fgzDIC8vL2POeLJoZuMTz9Wlsp5zy6/uq2AJME0TRVE4ffo0xcXFGSdN58LrG8t4fWMZvZMRnro0zq/Oj9LgNilbgCCHw2Ha29tRFIUdO3ak7YOx2Dl5K5n29tSlCWTVoLY4/hkPTMuc7PFzU9PccwZtZrOSNwErwGn5qCsqKuZ9TerYpnQ546ll+KZppnWpDA4O0tnZCcD58+cpKyujtLQ0p8yZbEY49fX18Z73vIfh4WFEUeRDH/oQd999d9b7WCwbVpBN02RkZISuri40TWPXrl2Ul5cv2fYvDgf58A9eJqrqCIBHgn9/awHZ7sIwDDo6OtA0jR07drBpU2bBWsvd1EzTJKoZqLqBrOp0T0TQDTMhJm6HSEC++gN7G6VIIxcf8kICnFaVZaqIWyPNAoEAn/nMZ5iYmODo0aP8zd/8TdbbzmaEk8Ph4F/+5V+4/vrrCQaD7N+/n1tuucWeGLJcmKbJ8PAwXV1dlJSUcN1119HZ2Zlzjqq1rUwX4X8+3YWs6uS54v60UFTl/jNj7N1Rl3Z9i1gsRkdHB2NjY2zdupWGhoZ5L/TVmCSdDeGYxree7+Nc/xRyTMV3SkZWNPqmZbaWemnZXEBE1WmsWB+VV1eDy2KxLHdQzwo6pgY4b7nlFm644QZefvllfvCDHyxo29mMcKqqqkrM6CsoKKC5uZmBgQFbkJcK64S1iia6u7spKSnh+uuvT/zDF9Kk3hLBTAGMgKwiJU2XFgQIyJn3oSgKXV1dTExMsG3bNiRJorCwMOteFmuRH58a4tJomIp8J+cCMn2hEEe3FeNzO2gbDVPgdnDX/mqaNxes9qEumtV4QtlozYUikciK5iB3d3dz+vRpDh8+vGL7XPeCbJUR9/T0UFpayv79+2cl+i/EwkwW5JFAjH//TQdDfpkbGkp53w1buaW5gtaR0OV2nCaiIHDDltmWoKZpdHd3MzIywtatW2lsbEQURcLh8Jq0enOhbTTMJp8LQ1NQ9HgKYFjRqd+Uh9shcltLuZ32Zu8za7IpClnsCCeLUCjE29/+dv7t3/5tRgA9lQcffJC/+7u/m7Hs7NmzPProo9x+++1Z789i3QuypmmEw2EOHDiQMaF8oWOcDMMgEFW56xsnmQwrmMCZfj99U1H+5k27CMd0Hjg9gCgIvLW5kKNJgqzrOr29vQwODlJXV8fRo0dnWB7L7YZYiQurosBF37RMvkPA5xIYixq4JAHNiFc01hRnvrgsi3OtWv9rgfXospiLbFpvLnaEE8Tb1L797W/nXe96F29729vmXDe1x/LXvvY1fvCDH3DrrbcuaN/rXpBdLhdNTU1zrrNQC1nXdZ7tnCYc0xLuCd0weejlIf7qjp186MZ6PnRjPQCDg4PEYjEMw6Cvry8xq+vIkSNp3R7LGahLTkOzOsKpqpooDLC+rIj6Qi/Au/ZX86WnuhkPy3glaCz3IasGwwGZO1rK2VU5+4nBME0evzDGb9omEBC4ZVcZNzctbPjrSrJRrNXVdlksdx8L0zT5wAc+QHNzM3/5l3+Z02svXbrE3//93/Pcc88t+DNa94KcSx5yLlwR8ZmiaZomhgnTEZWygiuuEUEQmJqaYnBwkMrKyhkd2Obe/tJj3UwGBwfp6emhsrKSvLw8NE1L5JVaHdFSu5+linayeKc2zakq8vC/btvBxb4xpqcmmRCKONUXiLtkVAPdnN0B79eXJvj+iQGK85wUe508fHaEQq+DA1uKl+WzWCpsQV5+FjtPL5sRTseOHeN73/see/bsSfSq+exnPzvvBBFVVfnjP/5jvvCFL7Bly5YFH+O6F+RskCSJWCyW82sMw+A12zeR55KYjqgYpolqmLgkkdv/43nef8NWPvK6eoaHh7l06RJutzvrxj/LJcimaaKqKidOnKCsrIxDhw4lLOX5Lm6roXyyWKuqOqvzWXKFlyRJiIJA13CUM/4IVYVORFHimYvDFEk6R7eXJgoDArLGN4/1Mh5WmIzEg6LbNuVxcTi05gV5tdgINwGLxTYWymaE02tf+9oFPZn+1V/9Fbt37+ad73zngo8PNoggz/f4vxiXRUmhkx998CCff7yNJy6MIWLidoiIAnz7uW68oQEON2yiqamJQCCQdWMUURRR1aXNz/X7/bS2tqKqKvv3708EK5K7js1Frg3lrTLdqakpnujtpjTfAwJcGpMZDSl8MxBFCYxR4YnP8TsxrOEPapiGgCSIxFRoH1G5rlxgeHh4lnW+lsY6rXbTnZViNS3ktdrp7amnnuKBBx7g1KlTi97WhhDk+VicywKKvU66xiPEtPjvQVnDc/mTnXZVs72xkVBgOudeFkvlQ45EIly6dAld12lubk5Y68uNVabrdrspy3fijzjpDylEDBGf10NVqZdTAScf2buVUp+L3tNDNMYm6Z2MIms6Ogb5TpEb6gtRFCXjkNXUSdmiKCLLMqOjoxlbV9osjNUW5LU2LWRqaor3ve99/PCHP6SgYPHpm7Ygs7i0N4BHzw3TPxXFar5pAtHLRueXn+3j68/189k3NbDDu7TtN+fDKjLscYhnAAAgAElEQVQJBAI0NjYmqv3S9b5Y7hFO11W6UKa9nB0IkueSKPU5aarwMRZUGA0qlPpc7Kku4LftkzRv9hGM6QSiGu85XENT/dzljamTsiORCBMTE3PO5ks3YDWTfzybz8W2kJefxfqQl4OvfOUrjI6O8tGPfnTG8nvuuYe77ror5+3ZgszC096s14xNh4ipGk4JYmk2oxkmn3qkg++9Zf76f4uFCLIlCslDTRsaGmhubp4hFqtRau1xCHzghjrGQwoIsLnAjSCAjon3cjXjzsp8/uRILb84P4bH6eBtezfTWOHjF+dHEQWB6+uKKMuf7fJJnZTt9XoZGxujvr4+4/GkK89NZ4VbbqN0PRaSBVxVVWRZXpJJIGuZ1RxyuhZdFvfccw/33HPPkm1vQwjyfAK0UJdFJBLh9OnTlBkxnFI8cyAThgmdUwqz25lk3n6uLg5d1xkaGqK3t5eamppZuc3J666kIFv7c0oi7z5Uw49eGmQkGEM3YF9dEVWFLnomowjAnppCrquLt+R8sWeae37WimGYlPqcvNA9zUdv3JpWlHMll2kgFsltK5MDm9FolGg0Sl9fH7quo+t64vNN7XaWzgp3uVyIonhViPhqDjmNRqMUFa3vdq0bQpDnYyHjkoaHh9E0jd27d3PddaX43V184YmOOV9X5MpeBHM5Jqur1gsvvEB5eXnaWXqp214JQT4/FOR0fwDRUNnqjL+X+k15fOS1WxkJxvA6JTb5nPz7U930TEYBaCjL4yM3biUoa3zx152EYjpep8TAtIxpwku9fm5tWbomULkwVxP5cDjMjh07Zlhwqb2HLRFP7XamKMqM/7Ul4vOlGK4Gq51lsZ7n6YEtyED2FrIsy3R0dBAMBikuLiYvL4/S0lIAtCR9E0jNToY3NJVS5s1eBLO1Yqemprh06RKapnHgwIGsAgsr0T/5VJ+f/3O8H49LRI5pHIuFad6lUpLnjOcY58UF5aEzw3RPRNlcGLdU28ci/Lp1HLdDRDNMPA4RExPdMBnwR9HWaDl5OqFaSO/h1JaVlohb45qSLfNwOMyJEydmBDUzWeCWK2UprFvbZbF82ILM/Naooih0dHQwNTXF9u3baWlpYWhoaEbu8rH2CUQRDOOKGLslAcMEl0OgeyLKaCj7j3u+YwqFQomG9bt37+bixYtZp9Sliv1yXGBPXBynKM9BvtuB6hJoD5m8MhDgdY0z24gOBWLkua40J/c6JYYCMbZtyqPM56R1JEJMNzAME1EAp7g2H+uXynLMpWXlyZMnOXjwYCKomZofnq7IJ3k/uRT5rAVisZgtyOuB+U6oTBayqqp0dXUxPj5OfX09u3btSmwrVTA9LumyNRcvn9YNExPweeKFEaMhha++rHD767M75kyCHIvFaG9vJxQK0djYmLDQc/ELr4TLwjRNrE9duPyTkWaXDZu8vDIQoOBynmBE0WnYlMe1NYX84tVRBAFcooApCuytKeD57mneuKt8Rie9jU5qUDMbMhX5WEFNa3lqkU80GuXixYtzivhSDVRNZSVKp1ebDSHI85EqfslZClu2bOHIkSOzHvVSX/PhG+v584EAMU3HIYpI4uUAyOUT0yEKDISyK8DIdExdXV2MjY3R0NBAS0vLjJM+F5/zSgT1bmraxA9PDqLqJlFFxS3BNdVxd0pA1gjHNMryXbxhZxkD0zKn+wMAHKkv5sYdpTglkT+4voqxkEK+20FVoZtSn4tBv4yiG3jFtVMUAldf2ttCi3xeeuklqqur01riqfnhkHmE00KKfLJpLnS1YwsyVyxoq9FOf38/tbW1GRv/wGyr+sDWEr7+7ut4+MwQDlGgptjDfzzVdSUVzTCp9GZ/wVqiaRgG/f399PX1UVdXl/bmkLx+tttebh/yoa3FuB0iL/b4caAzOhblkw9eYDQYwwBqijyU5Dn5H2/YxvuO1vGOWHyySr77inXVUlVAY4UPSRDIdzsYCshsKfXida4tMV4NVjpt0fKHi6I4ZzvKZOYa4ZSaXph8PqaKt2maPPPMM0xNTdHX10d1dTWbNm3K6Ykgm/FNFrquc+DAAWpqanjkkUey3sdSYAsy8dxKRVE4fvw4VVVVHDlyZN4JIuks0j01heypKby8TZPzw0F+3TqOhECR18kHdmd/TIIgEI1GOX78OOXl5UvajGi5LWTdMJkIK2zblMe+2iIePzfMf70Yw+MRGQ8rGIZJgVtCkgS+8mwvf/emJgo9s99bvtvBnxyp44GXhxgPK+wo9/HWvZuX7bgXw0pbyFeDRb7QEU6pAj49PU17ezsjIyN873vf4+tf/zqKovD4449nvd1sxjdZ3HfffTQ3NxMIBLLe/lKxIQQ504lrmiaDg4N0d3djGMa86WLJzCeAoijwt2/axY7yfkYCMjfvLMMcbs1q25OTk7S2thKLxbjhhhuyeqzMxS+8nII8HVH5p8c76J2MYgJv2l3OpeEAUdVEMVUMA1wOidGgwvayPPqmohhJrp1Uaoo9/MVN25blWJeSjSDIK2GVW8HGZOu3vLycf/zHf+TOO+/ky1/+clYDVlPJZnwTQH9/P48++iif/vSn+eIXv5jzfhbLhhDkVKwBp52dnZSWlnLw4EFefPHFnO7k86XKqbrBR354hvPDQTTd4Gdnh3lbA9wwxzZDoRCXLl1CEARaWlq4ePFi1j6+XNwQyxXUM02Tz/2qnbMDgXh6m9fFf58bRdF0ohr4HKAaBrpq4HG68Ec1qgvdGcXYJjOrUcK82lb5SuQhf+ITn+Cf//mfCQaDy7qfTGwoQTZNk/Hxcdrb2ykqKpoxVy9X5rOQj3VMcnE4iCSAwymhGyb3X1L5v9Oc1LIs097eTjgcpqmpiZKSEgzDWLZmRKnivVQX2c9eGeGZtklMTPxRjSKvhksSCERVDBOCMQ2HKKDqJoUeBy6HxIdv3Lok+15tNoKFvJp9LCCeYTTX9brY8U2PPPIIFRUV7N+/n6eeemoxh7pgNowgT05O0tbWRl5eHnv37p11p7VEKtsTbj5BDspaYrsAogCyEe9r4ZTiy5LT6rZv387u3bsT6+fqVliMD1lRFPx+P263e8G5p4pm8KOXhijwSIRjOk6HyHREQRAE8pwiNT6YUEVU3aQs38l7DtdyW0s5HjtAtyA2SkP8ZOYaKgyLH9907Ngxfvazn/HYY48hyzKBQIB3v/vdfP/731/UdnNhQwjy+Pg4vb297N69m/z8/LTrWA3nsxVka/1M7KsrQhAEFM3AIQlousmOYhGnFBfO3t5eBgYGMqbV5Xri52ohWxkcPT09DA4OUlBQkMhLTZe2lJymZP2cvCymGZimydZSL21jEVTdQDOgvMBJXZGL1iE1HqkXoX6Tl5d6/VxXV8TW0vWRxmRbyFc/n/vc5/jc5z4HxHscf+ELX1hRMYYNIsjl5eUUF889ccJqOD9fdkXq+pmoK/Hy73ft4e8euchkWOXItmLevDnI4OAgXV1dbN68ed7MiVzI1UKenp6mu7ubzZs3c+jQIXRdn3WxJactJfdhyDTmaZOo0DsJm70CIUXAlSdS6DbxR2IoBridJl6nxJ7qAqYiGj2TkXUjyCvNRhPkxb7fbMY3rQU2hCBnQ64d3zIJ4IWhIMc6JshzOXjTnkr++2NHAZiYmODUqVNMTU1x4MCBJW8Qn22gLhAI0NfXh9PpZP/+/bjdbgzDSPvek9OWsgmm7Nqj8o3nejk/FKS+XOLmhgK+fXKUibCKaUIoplPtg4nREUYjOn2OSV6c7kprcaf+vJamg6TDtpBXhoW+52zGNyVz0003cdNNNy1oX4vBFuTLzOeCSCXdiXGsY4L/cf8rqHo8jes7x3v41jtbGOnrRJIkCgoKaGpqWpZOXfNlWcRiMdra2ohGo1RWVuLxeJb8plDodfKXb9ye+P2hM8PUlOaT51EYmgwSMx0oogszL5/9tV7+4HAtkmDOKBjI1Ich+b3N5z4xTXPFCydWmo2YZbER2BCCnM1JNJ8LIhv++ZdtaLqBUxIxTRjxR/nmr89x9217KC4u5qWXXkLX9WUR5EwWsq7rdHd3MzIywvbt26moqGBgYCDrOXq5oGgGPzg5wAvd0+S7JWqLPZwbDGKYJoIJkihQ7HXw7kM1NJTl4ZTigpKppWU6khvLJwt4IBBI/CzLMuFwmJMnTwJxP/hcIu5yuZakiY5tIS8fqqoumXtvLbP+32GW5GohpyMU0xAQ0HUD0zAwTYGi8qqE/3q5JknDbAvZNE2Gh4fp7Oykurp6RuAwnXgvxcX9g5MDPHFxnE35TgJRlYd6/UQUHRHiqW5eE4coUprnJKLoFHqEnPebTWP5WCzGxYsX2bt3b8IPnuwDt1pXTk9PJ5ZZNyjTNGcFMjO5Ulbz8X2jCfJGaL0JtiAnWKyFrOs6B6rc/LJNRhQFECU8osDrGssS6yxnD4nkbfv9fi5evEhBQQEHDx6cVfO/XJV6L3RPU+qLW5q6GU/xcztEDMPENEHTDS6NhvnGsT7yPQ5aqvK5uWnTshaG5Fq+azXRSba+FUVJpEEll/RarhGrC9qFCxfSWt/LMSV7MqLSH9DJn45SU+RZEXFebUFea/P0lgNbkC+zkDFOEL+Ah4aG6Orq4n37N+PLz+fxi+N4nSL/1+/s4PotV7I7JEnKWQiztYSsSctnz55FURRaWloyNqtPJ8hLYXHFVJ1zgxG43LdYwAQEXA4RwdSJqAZRTefp9gkayrzEVJ2aYg+7KtOnIq4GgiDQO61wcSREnlPkUH0JZa65hVTXdV588UVqamoSAm5NBUm2zK3PPFND+VQRz9TGsms8zANnxgiFZV4ND7OnuoCbmzYtuyiv5jy9jdB6EzaIIGdzEi3EZfFsX4x/Pvkb8txO7r5lF7u2l/PXjfDXb565niV2uVrhlnDOd/y6rjM2Nobf72f37t2UlZXN+Zp0rpPFXGj+qMpTlyYYCsTi/mIgrBhIosCmPAlFMwkoIIgmDlFAFKBtNIKsGhzZVgxrSJBf7vPz+Sc6mYqqYJrsrMznM3fuIm8OUZYkKacuaOn84IqiJCxwa1nyuZLc/eyhS1GcmBQ7DIqdOqe6J2gs81Bb6ltWwVzNeXobofUmbBBBzoZcxDIQCPC1J17hh5d0QARB5eM/fpVvvfd6rqm+clH2TUX5f356jvaxMJUFHj60z0tVVfaibwlnposg2TovKCigrq6O8vL5580t5cSQ6Ug81e3icIhQTMftFCnzufA6RUYCClMRlbBqYAAYIEmQ55KQNYPxsIp7DVXqRRSdLz3dTe9UFKckYJpwosfPL86P8rZ9VUu2n1wHrCZ3QIvIMQxhEIegoGg6oVCIQFDhlfMhhj0GMc1kMmbikER0wYEhONhc5KGm2Js2kJmLwK6my8IW5HVGNpOn57OQI5EIbW1tKIrCb4fi45nczvgJKmsGD54e5JrqQtpHQxzvmuIbz3YTUeIiNRqKce+zUb67pZLLQz7mZa4g4NTUFK2trRQVFXHw4EGmpqYIhUJZbXcpfcin+/10T0QYCcZQLlfn+UUNl+SMt9o0TfSkt6Cb8eCnZpjUFXtprPAtyXEslq6JCF99tpdzQ0FUzaDQ68TrlIhpKi/2TC+pIOdKcgc0n8/H7jqFCwOT5Hsl8opKqcozuPFgDYpu8F8vDhKKqVwcCaNqOrXFYA5FuL1RYluRNssKBxJ+8PnSCTVNWzVBjkQitg95IyGK4oyZY8koikJnZydTU1Ps2LGDsrIynKfiKVVxL2n8SxIFnuuY4JM/fRVFMwjIGg5JwO2UcDsENNWgYzzCjrrsjylVOKPRKK2trei6zjXXXJMoBc8lYLhUgmyaJi90TXNmIIhLEnBJAqpuMBlRCMoqggC6DpJwZXyTacb3v6Msjzv3bqbYuzrTk5MxTZNvP9eHQxAo8jiYCKuXM2bibVQ3+bJvhL4SvHFXOaFwkM5Rhfxigd/fW0mBx8GPTw2iaAYep0RE1YmpOjFDpMzn5oHWCG/ZU0FTZQGNaaojkwOZyd+TRzqFw+FE9o7lB58vE2WpxjlthInTYAtygnRBPV3X6enpYWhoiPr6enbu3Jk4uT742q3c8+A5VE0HQcDrkviD/TX8zwfOYQJ5bolgTEPTTWRVx+MU0U2TvmmZbz/XQ0WBm99tqUjk4qYjWWQ1TaOzs5OJiQkaGxspKytLu+7p3ml+c2kcl0PkDTvL6ZuKMBFS2FmZz/VbihO+7KXI9ugYjzARiSEKAg5RwJAEoiq4pPikaEWbKfqiAGU+F2++ppIbd5QmRjqtNjHNwC9rVBd52FNdwPNd0/HeHMCWEi9v3lO52ocYn7o9LaPqBlVFHq6v9lGfD7sbNyea+09FVPLdEuMhhfGggmaYKCMhzmoGeU6J0/1BTnT7edt1m2nePPOzlyQJr9c7p1ugv78fURSprq5O+MFTRTx5nFNyX5R0gcx0Yp4pH9x2WWwwkkXKNE0GBgbo6elJ5PCmpizdtruSob4eXpxwUJDn5k+ObqGxIp+gHG8xaZrgcYhEVANVN3BKAtUFTr5zchRTEJEEgV+eH+Vf/2BPxoGdll+7v7+fnp4e6urqOHz4cNrHRlEUOTcS5cH2djxOEU03+clLA1QXe3BJIg+dGeJt+6p458G6JbOQg7JGkdfFzoo8uietRvPgc0uEZC0xfVs3408QLofIkW3FfOTGrWtqSKnbIVKe72IqolJR4OHgliI6xqMcbSjmrXs3s3OVg46aYXL/qUHaRsOIgoA/quIwVFyiyfGxXn7/2kq2lfmoKvTwZOsYU2GFmG7gkkTcDhF/VGNTnpPKAjfhmMYz7ZOzBDkbDMNIFGfk6gdPNxnbssCTRV3X9UQg28oHf+ihh+jo6EBVVX7yk59QXl7O9ddfnzGLKJVsxzdNT0/zwQ9+kHPnziEIAt/61rc4evRodh/OErFhBDkbH7KmaYyNjdHe3k5paem8E0QO1Hh5+w1bZ0TXX7N9Ez8/N0xYuWwZAFtL8/jEGxr43w+/itsh4nY5ME2TswN+Xu73s39L+sZHqqpy5swZysrK5j0WURR5tieCz+VFMwwGp6OMh2NouoEoCoiCwJd+00VjRT47ipemQf0mnwvThL21hRR4nJwZCOB2gKKb+NwSJhBV4zc5twgV+XHxHvLLVBa653w6WGlu313O908M0DetASYHthQSUXQevzhOkddJTXH2/kvDNHmydZzftk/ilETu2F2e8X+cDReHQ7SOhKkr8RJRdM4OBCj1wDUVbjweB4+cG+W9h2vpGAvRORZhLKwkek4D+FwSZQVx4ZREAT3d+O9s3tcignq5TsZObmx18803Ew6HGR0d5dKlSxw7doyampqsBTnb8U133303t912Gz/5yU8STbRWmg0jyPMRjUYZGRlB0zT27duX1eNR6qP/M23jBGUVWTMwrVLhPAeTEQXNvOJvhvgNQhQEosrszI5IJEJrayvhcJjm5mYqK+d/ZBYEAUGAybBC/7RMWNFRdRgLq3gcAhUFHgxT59vP9fIPt9cvWpDHgjEmIyq7Kn1cGo1Q6nNya0s5p/sC9E5GQRJxOcREv2NTVxkPxfj8k1185Vgfr6kv5j1H69he5sPlyO4in2vU00IxTZMfnxriuc4pAEKyxkggxplYEKdDpLbYQ89klL++vZHivOz83b9tn+ThsyOU+1yousl3j/eT73Ys2NIOyCoOUWA6qnK2P8B4SEFWBFrK3XidEtMRldbRMGcGg1SXeKkqctMxHkHTTY7WF3Gq34/PLRGQNaajKrc2X3F3dY5H+Pmro8iawaGtRbxme2nGz3gl85CTXRyvec1reOWVV7jmmmv4yEc+kvO2shnfFAgEeOaZZ/jOd74DkNPNYynZ8IIciUS4dOkSsViMwsJCrr322qxfmyzIT14Y5a8fuYiuG2h6PBe3PN+F0yESVXSCskZTmZfW8SiiwyR22a/XUnXlLq+qKp2dnUxOTtLU1MTw8HDWj4SiKPKaWjf/ejKMouvohpkQf92E8bDCrs35qIaJrJuL8iF3jkf4Py/0MTgdYyqqUlXo4u43NLCt1Mv/+0wPraMhQjENn0sEQSCk6MR3Z2IA0xGNn18Y59XhELc0l7O7qoDNhW52bc5PKwaqbvDr1gleHQrilATesLOM3VVL439uG4twrHOKqkI3umFybjCAX9aoyHdhAkOBGB6HSMd4hP1birLa5qk+P8UeZ+JmFI6JvDoUWrAgVxd5iCg6F0dCcXcYJmHF4JURmV1SjFKfCwGTqGJQmucC4n1EBv0xNNPkw6/dgqwaRFWDG3eUsrcm/tkN+mW+/NseXJKISxL4yelhdANuatqU9jhWOw85G8NkoXR2dlJeXs773vc+zpw5w/79+7nvvvvw+VY2C2jDCrKiKLS3txMIBGhsbMTr9dLamt0QUovkQOB3jvcCkOd2EFENFM3AH1VxOkQME7aWernnDTV86bcDdAZMaou93HNbE6U+F6Zp0tfXR19fH1u3bqWpqQlBEBgdHc0pc6Kx1MmemkLODfgxTQOfW2IipCAAXme8h0RZvpsCt4ORJAvZNE3C4XC8U5ogMS1reJ0SRRkyIB55ZYTRoMJUVMXrFOmeiPLvv+mi1OfiWMckxR4HUxGVQCx+7F6HQDTpMdlyH09HVR4+O8JvLk1QUeBm/5YiPnBD3SxRPtYxxZl+P1XFHhTN4NFzoxTn6EbIRECOl0DHNONyU/14Lu9wIIYkCuS5JGJ6fMhAtuS7HQxOx7BuGZphkucU6ZqIEI7pVBa4KC/I7kZrBYRbqny0jobxOEVK8lz4IzKXxmNIzhD/89rtlOW7yHOKTEUUvC4JURTYW1vIx19fn3FfF4dDGIZJSUH8/ywIAse7pzIK8lrOQ17s+CZN0zh16hRf+tKXOHz4MHfffTf33nsv//AP/7Co486VDSPI1qOWpmn09PQwPDzMtm3baG5uRhAEZFnO2WqcGQi8srwkz8loMEZENRA1g3yXxD/9qo17b6vlEzeUsWPHjsS6ExMTXLp0iZBUwEO9PiYvDHHdlgh/9vqGnLIhrHX/6EAt9wVjDEzJmIZJsdeBgUCJ10lFgYePvn4boqgnXBaBQIALFy4gSRKTUZ2fXowQUuN/O1Lt5GhdXuLxzYqIjwfCDPmjKJrJZNhENQxO9vhxihCM6agGOEQQIRHYE7jisjGJ/y2mmfhcAl6nxOYCFy/1+nnt9lKaN8+0JNvHwmzKdyEKAh6nhCioDAXkJRHkvqkorw4FEQWBoKwSufzeVQNUw0TRNOq2e2gq910Ozs4vSHfsrqBtrItBv4xhwiafA7+s8dXf9iRcS+86WDOvlT/kl/neiQEiip6w2ou8DtpGw5R6JRyiwDXVBTzXNcWuynzecm0lj7eOo+oGFQVu3r5v85zC3zke5vxwkJ7JKFtKPfjcDgocmd0yqynI85VOL3Z8U21tLbW1tRw+fBiAd7zjHdx7772L2uZC2DCCbBgGfX199Pb2UlNTw9GjR2ecXAvpZZFcTPJHB2v57C8uIas6hgmiIFDidVBw2cocmJZ5qiPAa6vj+wyHw7S2tiKKIrU7mvnETy+hGQZep8hTreOEYzrv3uXIeSzTjY2bcDtFfvRiP63DoXgfCaC8wE1lgQufS0K83EDn/PnzhEIhdu3ahcfj4b7fdJNf4mWrz4WqG1wIyLyutJrN+VKiP0MkEqHKrfK4X0YAnCKE1biAxadKx49HS7qPaIaJS4SYERdj0wSPFPexu50iXpeEIAqIIoSV2W1B3Q6R1pEQBR4Hm3wudAN8rsWfuj0TEX51fpwd5Xmc6Q8ia7M/awOQFZ3P/LId3TC5vq6Q39+7eU5hrin28Mnf2c6l0RAjwRgTIYWfnx+lZXMBHqdIVNW5/9QQzXekd9FY/PjUEIZpsrnQTb5L5Ofnx4iqBrKqoxvgkmDizDBep8TBbSUYhsm1NYXc3lJBkdeR8QkH4MmLYzxyboygrDMZVhiYjrC9zMe7bm/M+JrV7GWx3Glvmzdvpq6ujtbWVnbu3MmTTz5JS0vLsu0vExtGkLu6ulAUJWO2wkJ6WSSXW79pT/wifejMEC5J5NxgYIaYmqZJWDVQVZ0LFy7g9/vZuXMnJSUlPNM2jqLpiaBRqc/Jye4p/mhnec4WsiAIHN5WyuFtpQxOR/mHR1vxeRx4nRKn+vwIQh+/Wxev9Kuurk4EPGKxGP3TUSoL4xaVUxKRBJGwLlFUdMV3OhlWCLfrSFKEqGpgiCKiaCCYJqYQbyiUKmuqAQ7BxCEI+BzxIhFTgAKngRKL4fWZjE4pqDoUIBMMBhPWeDCmMxqM0TURQTfihRq37NzEjvLFFQkYpsn9p4e4OBrGLUFMN8h073uybYI9VfnkuZ08cm4Uj1Pi9+bJTS7LdzEUcPDgmWEiik7flMx4SKG5Mp/NhW5k1UDVTdyO9AKn6gbjYYWaovhTwHBQAcHEJQmEY/EbhWbAaEgl323gdYiU+lz0T8u0jYa4NBYhFNNorsznluZy3EmBU9M0+fmFcTwOgfpSDz1TMjHNYCys4nNnloTV9CEvpv1mtuObvvSlL/Gud70LRVFoaGjg29/+9lK+hazYMIK8ffv2OS3ghbTGTHUp/G5LBb/bUgHA53/Vxs/ODiEIwuVJ0yJbvSrDw+Ps2rWLXbt2JawNr1OKi9Tl/EtVN3E6RBzSHKXTEYUz/QEE4NraQvKk2Wl9vVNRDOI+TYBSt8BvXunmxrJKioqKqK6upnUkxA9P9NE2EmQ0FGPQL7OnuhBRAEWPW2PjIYWyfBfhmMbnn+ikbypKaZ4LjzMe+Q/IBpJh9TZOr2qSIFBe4EYUBbaW5uF1Cvz+njJO9kxzYTiMW4Tf3e4lEgrQH55K5KW+PKoyPGWwK19ENkRkQ8CMTjM8KMxwo+Tam+GVwSDnh0O4L1cXGkamI48L35mBEFtKPQgIPHB6iFubyzNmh8Q0g9FgjGQCKSwAACAASURBVJ+eHqbI48AhiciqTkhWUTWD9jGJm5vKZohkKk5JpLLAzWRYiQvtVJSJkBY/T6zjMuNVkOGYzoXhIPWbfEQUjcdeHWNLqZcij4NTfQEM0+TOazcntm0CmmYQUXUCUR2HJGCYAoZh8vVjvXz6tsa0x7aWfchzke34pn379vHiiy8u+BiXgg0jyPM9ai3kUWyucuu/uLkBzTB5qnUMjxNurzNpKJYwjHJqampmrLuvroiWqoLLVnX8Uf7PXr8Nh5Terz0SiPFXPzuPX1YRECjyOvmb23ck1g3F4qlbshr3FSuKyvDENFFFp6a8hMbGRk6fPs2wX+Y/n+pkyC8zEY6haCZ9skxQ1qgq8qDpBg+fHUE3h7m9pYK2sTCXRkPxghdFYySoIwhgmgJl+c7LXd5is45XEuLiIasGJT4ngmAy4FeoKsnnL5sq6Z2M8PVjfZwY1Tk+ovHmayq5uTkeWPJfHCc6HKI0z4Gua0yFYzjdIg6HY0aPYqu4wOpRHIvFOHfu3AzBTq4KG5wMU+CW2FLi5fRAAKcIyhz3YxMYDylUF3lQdZO+qSjby2dH4MdDCl/5bQ9TEZXzwyGqCl1oJpTnuxkLxdBNCMga3RMRvneinz1VBTRV5qftJnfX9VV878QArw4F6Z6IoKe5Y1jLXuoN0D4WwSGJNFX4ODsQYDysUOCSCETVGYLsj2pohsFESCWiWC62eIXlq0NBBv0y2zbNfgJZ7X7IK53xsBpsGEFeDiRJQpbltH9zOyU+/tpqbikL4HK5aGpqQlVVurq6Zq3rlEQ+85YWnm4bZzKs0Ly5gGtri+jt7U0ryN881s2gX6aywE2+x8FYMMbDZ0eoF3TODQb45rEeooqOpuvIsRhP9UUwBQlJktjhdqIZcWu8ayJCTNOZjqoUeByYJkQUDa9TZDyk4BAFYpqM2yHy/700QHGei5piD90TEQzA4xDI9zhQNJPKAhcD/uhlgU59fwKmYWJg4nIIRFWDxgofbke8QOU7z/cxFophEs8GefjsME0VPmqKPTRV+jjd7yeiigiIxEwHhxorqZojhUyWZS5cuEBDQ8OM/sSRSITp6WkURSE4GmVoTMbnNMkT4y4UpwERLb2lHH9iMJFEgeoiD5lqK35yegi/rFJZ6Cam6VwYDuF1OXBIAmU+F5IoEFV1LoyEuTQW5nhpHi2b8/mTI7Wz3AXlBW7+/PVb+eKTXVx0OwhnuPkDiYEAHiec7Q/gdko4JIFAJN6X40x/gL218QKmp9smqCh0c21NvEzcuPy566bJWEhhYDqaVpBXc6aePTHEZl4yZUFYKXXBYJCdO3cmRjjpup7RBeFyiNzSXDFjWbrqwv8+M8Rj50aIqjpjwRh1pXm4JIGfnx/FoUUZO/ky5fludmxyMTkdYMgPNaUFVBV5yHdLTIQ1nuuaxKPrnOqZ4txgkJCsUpznxOsSCco6UUWP+4dNKM5z4naIKJqB2yHRVJFH/1QU3QBTENhTXchYSKF9LIwjqYlQ4jMSoKrIjT8kc1tLOSV5LkTBRNHj00Siqs7T7VNMRdR4L2UBij0OusYj1BR7qCvx8uZrKnihexpRFHjT7op583mtfh2ZovK6YfC8v4+oMMJwUEM1DXxuBy1lbo53B9HNeBaI9Z8SiQue0zTJJ4Iox5juj3Fhwp2wulVV5VT7IC90xSeO63lO6kq8TMva/8/eecfHdVdp/3vbVI006s1FcmRbcovjkhiyCemQsNlslprAQlggIbuwwG4ILHkJyWdhgX1ZOruwSw11CW8gtJAeQgJO4jjFRZYlW72NyvRy57b3j6s7HkmjZktyEuv5fGTJ0mjub67unHt+z3nOc5CApGZSFXDRH1XJ6qYtU3NJpLI6/ZE0z/ZEuXD9dLmZLImouoExR3HXApJZA8Ey0Uwwsva4LFGEjG7x1cc6efVZZVy9pYqheIZDA3HS2olu0qxuIgkCXpdILF143uLLlbJ4OWElIJ8CpgZk0zTp6emhv7+fdevW5SR1Mz1+Ps+fT4lEUho/eqaP6mIXveMZZEGgeyyFa8KLIeiCkGrRPx7HZymsqamgKxml2KtgWhYDURXDNBmOqcRHdF6MR6kMuMjqJqFEFlmwi2aKKJDWTQTsUUG1ATe6abEq6GEkYWd/Gc1iY7WfuGrQG04jiQKF6lOWBRV+NxdVa4yqBgcGxjBMi3UVXjTD5MHWcaIZOxhLooBpWUQyOn88Nsb5Z5Xyp84wfzoexrKgudrPhupT27Y+3jHGd/7US/tIktpiNzvWlBBJaXhcEjtWl7CvJwGmvRbNsAuUigRuWaLILfKXOxu4dGM5Hsma5MHQNm7weFsvgzGdhGbQE4rQUCwiZuHqJoWkIfPngRSWYVLmEZExSWZMohmDaFojqRr43dK0FmtREFhX4ecPHWNzvjbdhIhqIQJuRQDTxNCdwCzQH8lw93ODdI2m6BlPo0hijvKQRCGnSawPFg58pzsgr7i9vYIw363WQrZljjLDsixCoRDHjh2jurq6oBkRnFxAzn98XNXtjLPYA5bAYMymS8p9Co3lPsJjSRRLJytIKL4AJiJeRaI3nLY79wSBVFbn+GiKdNyk2KNQWeQhntExLbvqr+kWpQGZZNbEsMCyTIYTKuvKvLxpRy1jKY2BcIYXB2IMxjIMRrOUeBUUSaQ/Mr3338LmkEVBYDiuoukG42md46Np/nQ8wuqgF7ck5DJrAZBFgQMDcd774xcJxbOcv66MuhI3h4cSlPgUXtNUuHFhNqSyBn86Ps6P9w1gmBa6YdE7oS5YX+WnP5Lh9wdDZCcilDHx2SUJ+N0SPpeEgMA5q4sp8dkttU4XpWmaPDncwerqIGurBA4NxhlLZEkrPq47t5bLN5ShaRpXJDN8Z+8Ax8ZSDMayJLImAUUATcejqfzgsSijDTKVRXbWLUgKMV2kziUgCbbE0D4ezCbQtLBVGpplc/daKgsjNh0hCfbA2SK3zFgym/udjG4hCyaBgJtNtYV3IKczIKuqelpamZcbZ0xAng/mOzLJgSiKpNNp9u3bh8fjYceOHbOaaJ9qQK4OuClyy7Z7V5GSc/RqKlc4NjhKQIGta8rZ3xcjpRlEUhrv3LOG7/65B8O038JNVX4GIxmqRIFQWiel2QZEiiiiGzoIMBTXkEUwDTsglXhkijwKa8t9NFbACyKMprIMxVRWBz2sr/Lz4kCcQm9Vxyd674DOuGHfGGIZA1m0t8lDMXVCFmdzzZph65G7xuwMLmuYPHRklKu3VlHqVegeS0NTgQPNgt5wmq8+1kX3eMpuJzYsNMNEEGx9eCZrYAmQUA0EbKrCoSyyhkWxWwZRoNgtc/f+QT5y+VmTrhELyBp2UUwUBbavKqZ3PMM79tTz6nX2NAJZlvF6vXzgsgDP9kQ42B/jsY4wQa9ERZGbcp+CZlo0bKzlrHIP4USae54fYjShYhgGQbdAJivkDP8zE6xCocDs+HM7smpJsHc6tuGVgFuys+F8rbiAzaM3Vfhm1FifTg7ZoaFe6VgJyHlwmkPm84dXVZXjx48TiUTYuXPnJK3uTFhoQJ7KIbtkkf9z1UY+c18bz/REEYFSt8UxTaCqLMjweARBNfi7V6/hmm21+Fy2sdGjR0epKHIhCHamNRRXqXQLPNGTIjJR9LGsE8ZHdoZlb9U9iogkwJZaH9lslnueH+bR9nF8LhHTshhN6NSVuNm+KoBlGkT64ja/jB3UFNneBx+PgoadkdnZsH20ZNYOgookkjFsfw9jYlq1LNncdTyj0x1OU1fiYVXpwrvz7nqqD920qPC76I/YWbHfJZPUDATBYjSlUepTyDijppzlWXbHod8jUVXkprHcx1BcneC/TwQmATgrKLK/N4pmWkiCwKqgu+Dw1mKPzMUbKrh4QwUGnTzTHWYkbt/cTMtugpFlmYMhlbQlsbYqSCytU5URCfgMBEFgOJYhq2ZprPBxYChFKntC+20CggDCxN9ThNzElqxuUuaBtA6qMbl4KYv247bW+k9rJlwIjnLmTMBKQM6DE5Bns7l0TOuHhoZy8rX5BGOYOSCPJbL8+JlehmMqO9YE+attNciSWPDxa8p87Fob5NhwFEyTgM+LS5FpqS/hiuoUrz5vM1UBdy6TqZLc1Ac9dI6mCPoUklmDpko/L3aOs31VGQf7o6iajmrYWaqB/Vk3ocitUFviJpU1qA36eKE/wZNdEQCKPArprEGpF46PJVkd9HL11ioaK3w8cMTuNJQEkWKPSPdYClm0g24iaxcLM7ptfiTIJpUBe43v2F3P2nIvN/7kIJmsnhv1ZFgmYxNNFRecBF0xFFPtqR8e2fZqVg0QoMynEHBL9EUyFLkk238kM5FzWvbkbEUSaCjzUVfiIZrWKPW5cE34WpiWxSNtYzzWPsqLwwaaaCAJAoYIomDfUGZDwC3iliQQbJ12hVchkrZrBpGUhiQI7OuOohomKVWn2Cuzrb6EpKpzfGCEjXXFhFW7xVqRBMJpHcGy6wDOsNkit4Sqm4CFS5LwehQiMRU1T0MnYXP9Admi0hhl//6R3HXnjHZyuVxks1n6+vqmSQkVRVmWzPl0ZefLiTMmIM/njzlbBmtZFsPDwxw7dixnWp/NZhkdHT2lNSRUnY/cc5CRuIpLlniuN8pQNMPfXzTdy8JZw/3PdzKSsvAoMrFIFresE0/rVAdFqosnZ5CjiSzRtMZgNM3BgRhryuzA+Xw7COEQ6YxFmUdkKGkiiuASbb4XQaC5yovfrdhmNYLALw+EGE9paIZFSreoCbipKnZxwfpSLlxfgVcWuaxFp9jronUwTjStU+aTeKE3hgFkJ4Jx7vUAqmERcEv0hzN8e28vLdV+it0iQzGDfCeM122q4G+2183bqjMfZ1X4OTaapCrgZmt9MQk1QrlfodzvYiimUh+0tcUBt0w8Y9i8twheRUAz4bm+GAh2u/bfnluf+zs+3jHO3fsHCfokIqqF222xbXUxpT6FwahKz3h6xqkoGc2gP6xS5lco9crUlngIp3WyuslANMNgNMMfO8bwu2WqitykswZjCY3u8RTnNZRSoofpT+tsqPbjc0nopoVm2HLEmoB7QoueJaOb6LqFJdivZziWRZgi7DOw+embL2riyp11k3+WN9ppfHw8R9PFYrFJZvNOBltoKshUHfjJjHU6E4IxnEEBeT6Yyc8iGo3S1taG3+9n165duWLOYoxCOjhg+9sKE+Y2bkXkvkPD3HhBw6TnTyQStLa2org9pPCgyFnbgcyyi32FjHYsy+J/nugio9lbXb9LYjiW4WfPDlBZUU5GNynKpNANE29WBawJLtRCxMJjZBgeSxJOGzx7PGQX+RBwyQKaIHA0mWb36gAbgwKmmkazXAQ8Ch+65CzSmkFHZy9f+2MPlQGFznCWfKsIYeIfRRToHs/gc0vUBNwksybjKZ0itzQxf8+evJLRDATLQNOMSa/P2Vo7b9hCHZfvOK+e//pjN4NRFUGAWy9bN9FhqFPmU/hDxzjFHpl4RkcSBfoitilQSrNYU+rG55K5dlsNZ68qzllqAvz+8AjRdJZkdiJYWDCa0Ah67beVMoNDnGaY/HTfAONpjd5wml5BIJk1KPYqtI+k+Plzg/jdMrGMTl/U9sLwKBJeRcIl2dRIz5DKnvWleFwuXttSSXXAzff29pE1TUKxLBnNoMwvo5smMcPCtCCS1ieF4nyjJ0WA12+tmrbW/NFOkiRRV1c37TH5fw/HVN7RfmuaNmkuX/5YJ6Bg8J461ulU6JP5Tgv54he/yLe+9S0EQWDr1q1897vfPS1DVVcCch6mBthMJkN7ezuZTIaWlpZpEwpONSA/1xvhvoPDdI0lc/PnRAGKvSfsEA3D4MiRI0QiEZqbm/H6AwSe3k/AI9MTzpDRDFySYL+5pvBsmmExHFNxSQIZzaDII5NUdYo9MhndZPuqEjKa7bPQUhOgfSSJ3yUiTUwYeW7UoLHcj08yiGV0slmD+hI3kYyG3y1SVaTw5k0BjFSM7vAIqqoSTWvouoFoqIQ1CUWR8WonvJkdOAmPadkt2sWiTOd4mvIiF7IkUuOzjZAkSZiY3G2/SR0+0Xmt+Z+dj1AoNEkyGHAJ3HLJWmJpHa9LwjthTORw9MVemd8fHkUSBaqL3QzHs3gUuzQ2ktCoKZGoDLgnBeMnjo3zfE+EcFqzG20MSOgaAU+WvohIS00R6yoKy7T6IhkGohkCbvv5ImmNJzrGKS9y8VDrKJppYpgWZT6ZgEsiqxtE0jp+t82vJzWDRNLAN5DgnNUldI+naakJsKHaT0YzaSr380x3mIMDMdL6CbvTqSxsPu9sWHDP80Ncv7v+pIcA5JvKz0eiZlnWtOCdzWZJp9O57z344IP8+Mc/ZnR0lD179lBVVcV1113HddddN681zWdaSH9/P1/5ylc4fPgwXq+XN7/5zfz0pz/lhhtumO9LXzSsBOQ8OBmyYRh0dnYSCoVoamqisrKy4JYp31xoobjv4BBfeuQ4qayBmpc6mpYt0YpldMKjo4RCIZqbmycNWN3TWMYTx8YQBZBFEUUWeOToKLESg/PzjiGLUOKVGYllsABzgi9wyyKiYfGuV63mXa9aTTSjc2Qozt3PDjAQzaBqJh6XxLGRJKPJLJpuUOxTGM4axFSDuqCX1aU+3nbuKs6q9PHQkVGe7h5nMGYgaDo+TLY3reU126t57vEuwloSQdAnGQ+Zls1V+2QLywIrqxIzsvSPJzBM0HQZ0ZIRBBG3InF+Y8mclfZ0Os3hw4fx+Xxs2rQpJz3sHE3y430DjCezbKoN8Obt1XiUE8/zuuZyLl1fimaYfOxX7QQ8EpG0PXXasCwELOqKldzNVxAE/t/zQ1QXuxlNaogCGCL4XBIVfhfvOLeeHWtKZlEr2O3TAzGV6mI3yYxGJGMQyaQnTZWJT/DZogCSJHBWpY+RRJZQTEXCYjSe5aEjY+xeW4JumlxwVhlferSTsUSWvnCGzETXYaGW63wIQEWRm6OhJKG4Sk3x8mSGgiDMOZlj27Zt3HDDDdxwww3cf//9jIyMzFrjmYr5TAsB25Y3nU6jKAqpVGrWncBS4owJyPPlkEdGRmhtbaW+vp49e/bMGgBOZSv1rSe78bmk3GQPCzuAyhMFmSee2sfacj9lZWWsWrVq0u++78IGImm7Ml/mkwl4JDTDZO+gzgcmHmNZ9lSQv3vVKr72h24E0oynNNaWeUmoOldvq5kwMjIZT2YZjqkcDSUIxbMUe2QMy0I3TAajGWTJbhQpntAbS4LIX26tZmN1ET95po+79w+Q1XUiCZXKgIvXNNeyry/FoVAPXpfMWMrM6XsdSAI0lns5/6wyXhiI0R5KoWZNDBM8MjSWKiSzJlsrJV5VrzDe287w8RNNMlP5yUQiQTQapaGhgdKyMh44MsZj7eMYpkUooVLhd+N3K+zriZE1LM5ZHeRoKEF1wM1r1peRMeG7e/s5OJggltYRJ4qQEgIlHol0VsdhICzLQtVsU55ij4wgQFrVaKn2U+KV2bWmGEEgF8CnXid1JW5kSSCTNUipGiNJbVL2ak35LAu2/HA4niWe1mw1hmh3/3ldAl3jGVyyyG8OhGgs9+KRRY6Pppjv3k0Ryd2gZmoJfym0Tbvd7mnvhcVAfX09t9xyC2vWrMHr9XLFFVdwxRVXLPpx5oMzJiDPhUgkwuDgIIFAgN27dy+5CD2jmfhcEh5FxDFJk0Xb80GR4C92bMLrdtPa2jrtd92KxOUtVRzsjxFK2HyhblqYhkk0laXILeWsOBsrivjXq5vpGkvyYn8MzbA73natDaLqBj94qo/9PRHahpOEUyqaYWfoAuB12UUtl2TP/nPLIpV+Fze8ejXnNpQSSWn85sUhZDOLqht43C6SusjxkRTxic4zv1tGEiyUiRsNgi2vMixoH03TMdqPKEDQJ2NZIpJic6wut4eRdIaU5Kd6dT1b6k4Mks3f6sZiMbq6unC73VRVVRGLxbj/4AC/P5amxAXRrEV3zEIqV8An4xNEfvtCnL0dI3hdEpopsL8njEeRODAQx++WiE/IAA0Laovd1Jf6SZsSFR5PLshe0FTGbw6GMC0LS9fxu2VEQWB9pW8ajZW/i7Isu5Pu2q1VfDPWw1jSxCPbeuuZoJngm2gMKfLIKJJJkWQXV33Yf8+Uau+qhmNZQnGVhcRO04LBqMplG12U+xXiGR1FEiZRNC9lL+RTnRYSDoe599576ezsJBgM8qY3vYkf/vCHvP3tbz+ldZ8MzqiAXMgbIp1Oc/ToUXRdp6amhuLi4iUPxpZlccnGCu4/HMLnkimakGKZpoXPJXHbVc2UBYOoqjptvVnd5CfP9PJUV5hjo0ncst1FJgIeYcJes6k8N6JdEOwxRJtqi9lUawe10USWe54f5NBAjIGoiqobpDUD07LvDMaEhjWt2R1dsiigSCIBt8zrt1Zz/royLMuiraufdDqB1+0l6PFODN/USWl223XQpxBO6VQEPPTHsmCd0MTmw7AgnLIpAlEQEAWLpzojWEAonmXv8XE+dOk6Xr+lBkkUclzlwMAAw8PDbN68eZL08Df9HdRWpMkaJh7FQE4lSFoKtR4vaVUjqho0lbsQLB0XBs93JkhpJomsTQ94JXtNfgXqikDNpNBSMeKynsvM33hOLYnIGI9lLSK6h/qgl011Ad6+Zy0ez4m31YmJMic4blU36Y1kcEkSiUw6N+pqNtjm+QKrg25iGZ1M2iDglagL2h2MyazBWFJjPJWlxKdgWfMc/YVjTGQ3ynz+wWOMpzSCXoXXbapid0Mwt/7T6fQ2W4HtVKeFPPTQQzQ2NlJZWQnA3/zN3/CnP/1pJSAvJ3Rdp7Ozk5GREdavX09lZSXd3d2nrJqYC85N4QMXn4VXkfhj+wjrS2DP2lLOWl3Lhppi1lcV5R6bv56kqnPzj1/g0GAMWbRn9am6QVXATXWxi1RaJpFIMjCg5ooiU/WkWWS+90KC3rhOLGOgmQJBr015OP4NMOGZa0I8reNzi0iiSE3Aw+UtlaTTaY4cOYIhuGhZVUl/LIs+YfCuSCJeWQBBpLHcz5HhBG5ZxKOIJDLT+fZ8TlkCLCzUiYGoHtkedzSazPKZ+zs4OBDnQ5echZlN09raSllZGbt3754WKHTd5Ilj42SNEzK7aDpF51iG2hI39aU+SortaR2GaXE0FiaVNbCw0A3wuOwiqCiJaIZAc7mLvuFxUuERNE0jnU6TTqfZ5FXYucuLpNhtzsU+iI4Okc6jUhyZV/4aH2gb4uhIhh1rg4SSKgPxmV3cnHNU5JI4b20xFUUKsXiGF3qSjKZ1HhkeRxRgX7eIIokTcj6Z9OxPOem53ZKtdvnun/swLQu3LBH0SqQ0g9qgm1VB72m33lxKH4s1a9awd+9eUqkUXq+Xhx9+eEY1xlLjjAvIlmUxMDBAV1cXq1evnsQTn8wYp4Ui539hGFxQnuTcIonm5t0UFU3v6pqq4rh7fz9toQRFbglpgv81TAufIiALAgGfh0t3bqSqwBw1XdfJZrM81jbC0fEwXkXAIwnEVZ1Rze7DVfOsJx1e2wDiqolbNIllVEZ6O4lEIrlpJ3JZmPsOhkhldRrKfLx5Vy1lfhePt48zksjiVUSCXhm3JKJK07nkfBgwSQqQNSxUw24pUzWDF/tjfPvhA5xXni2oenHwfF/MNp2fonmWRFv6tX11CYNRFb9b4tBAnHAqS9Cn2LsUyySSsiia6M7zeFw8GzJ5eljlVY2lXFito+s627Ztw+/3YxgGqqrmKBRVVYnH47kbYr7MyyliPdmWxUTgQI/BkaHC9q2TrgNgVZkHRZbZGNAZziYJ11Zw8PAYpmXfzAzNpEgUKPcrDMTUefPH9nm2z7VzurwijKd0DgwkCCe1l0RAXsppIeeddx5vfOMb2bFjB7Isc84553DjjTcu8quYH86ogDw+Pk5bWxvBYLDgKCdJkmY0nF8sCIKQ6/RramqiqqpqRm5uakA+NBAHy0LVbZG/VxExsSjxuVhfXcRfbaspGIzB9lKQZZmUpWAioBoiWQt8LhlVM6kqdhPP6IRT2kRB6sRQ0iLFzpZHoinCYRNFUXITugVB4KJyCUt0UR6QKdajSGkXF691E9c8uFwuSvxu3vPDFynzK3SMpGYsHE2F8zhJsJUhA+NxevwB/uG1u2YNDmPJLOKEFWj+oUzTbnkuckn81bYaHmgN4VFEKgNuij0yLlEnmtFIawaprDkx5TnD9tUljMYyfOePnTxX56W0pJgvHmijyC3znvPXcG5D6fxej2kSiibpe/4Ix8fSGLox45SSfEgCyKbGWGgQuayEK89t5pvfOQTYdqXCxLnSTVBkiYHo9CEBs2HqGlTNxCUJxDJZvDJomkYylaI/riMPRFkV9OS8mzMTfiSKJFEf9NiucYuMUwnI850Wcuedd3LnnXee9BoXC2dUQI5Go2zdunXGyQMnI2NzaIX5ZA9jY2NEo1GKiopmdISb+twOh3zvCwM83BYinbWpgbhoS97qgx7+5bVNrCqd35ZuTZmXZNYEDGRRIKtbVAZcfO8d27nrqX7u3t+PRxaIpA2yhjUhrbONaqqCfvbs2T3pBmKa5iQtqaqqqKpKNmtniYlslqFslgsqdX7XqU/yGZ4NXlkgPSEH9CsgWQYZU6KmIjjnuV5V6mE4rk6f7TfRIFFR5OKas2vQTZM/HRtnMKYSSWuo5onWaSeT11SDPx8bz5kOPdqZwiSVG/D6fG+EKzdXsabMx6sbS2nJKz5OhSiK3N8WodzvoS+iEVbnvtYEIOAWSKdV6mtLqA76GRgYwDA0FAEyzuBYwDINukLRgjz9QqBOFBGaSv2cVRVgdCzMlx9sZcTw4e7vJeCR+YcL1iCL8MNnBohl7CLougofbzqnepLcz56yfaJpJ/9czBdLTVm8lHBGBeR169bNyhGfDGXhZLGzXWCZTIYjR45glibq7wAAIABJREFUmibBYJA1a9bMGYzhxAX8Yn+Uzz/QgSyIuCS7kcKe+mEymlD58M8P8eU3b6WuZG79aGXARW2Jm0hSwxLA5xJYFfTikiU+fOk6MlmdP3SMo0imPS1aAEGwOeBrt9dNy+ZFUcwVEGfDHuD8rjAf++VhhmLZGTNDAbtpxAmIigCJrNNIYvDIkWF21ro5b11Fjp91YFoWvz4wTFrTC2bhugWrit1cPTHOqKnSz2NHx9hQ7acvnGZ/d7TgmgoMo7Yd3ky7Hfzu54Yo8Ujc+8IQH3tdE69eV9hvw7Qs+iNpGip8HB1JMJac4STknYtyD7hkgdfvbOBNu1blpm2/O1rEt57sAc2wzeVFgXfvqed/9vbP/qTzgAA0lvu48+qN9PX18ce2IcYIsLbShyAIjCZU7j04SnXAhWoKrCqzE5zj42mOjGTYXm9TSfmFzKnF6anKE6Bg1yWcOdNC4AwLyHPhZDrvZvsd0zTp6upiaGgoVzh88cUXF3QMVTd59IUBUprORD9eLtiIQIlXYSCq8pVHjvHZazfP+XxeRWJDVRGyaGeMfrdMVjdRJBFREPiXKzdwUXuIPx44RtuYScxSsCz4y63VvGFH/ZzPPxt2N5Ty1l31fOmRzhkfIwjgd0mkNQOPCLIk2G5mFtQXS5iGwX883MW7R4ep8Zhg2X7UQ2k4MApPD6r0xQqHe68i8pbdq3KND9vqi7l2ew2/Oxgi4FaoCLjoiyxsu+/AAsZSWX70dP+MAVkUBMr9bqIpFdO0dx7aDJdCTUChxq1TU1rE3124gS31kzPvd+5ZTVXAzR/axwCL53pj/O/zw5OajE4WPgn+br1Gz8FnkCSJmKqQTiWJiFksBMZSBqOxFE0VPvwexVZgCAJuWSKuzm7OBYWVJ87/87/vPPbee+89bY0ay42VgJyHk8mQnSLdVIyMjNDe3k5NTc2kwuFCgv7+njD/sS9DT6KfrDGd69MsCKc0/C6JzrG5i0NgeyrvXFPCsz1RFEkklTW4rLkSn0vKTTyRxoe48eJm3EXFxNI6RW6ZgOfUL5XshOuYM/S0ICzbl1gERJdIMmvmuGwDCdWAdFbnu4cNPLLIuqoAB/sT9EfSqLpVMPN2/IHdgslwTwdPpbtzCojVLhfv3+lHcbm4a7/FD/afXEDOZE3bSS4zew3ir8+u4bt/7sEli5QXuRlNaOimveMRgXK/zC1/UUmJEWFj81YqS4sLtjJb2BnkqqCbe54fsvXQi+RQqVrwXMjgxos3U1VVRWl/lBce7URSRFpDScIpjVKPxAu9EYpc0BgQ0A2TMRXCrjGeS/VNUplM/ZivP0UsFuOmm26iqamJz372s4vz4l7iOKMC8lzC9pmC62yYyjunUimOHDmCJEkFDevnE5AtyyKcVPnyw8fA5UWR7NFLhYJYQjWwDIMNJRaHDh3C5XLhdrsnvQHcbjeyLOf4vDecU0dLTYCxZJaaYg8bq/05A6Xy8nLOPffc3BvG2SKfKh5sDfGzZwd4sT82czDmBL9sAKmsafPXEzzpcCyLKNnj6rvGbB73yHAiZ7Q+S4xHFKAm6OOa12yn3K9MUkE4H6+pUvnBSb4+CwvVsNizbvYCX3Wxm3+8uBFFEgnFMvRGMgzHVUSgqdzD61YbbAgKrF9/7oxBy7Is7vxtG4+0jZLVTRKqgc8lUfh2tHCYJnRrAXwl5bbZTn0JV26t5ttP9hCKZynzuykrdiOLAoYJYsCHW4B3bKzgVetKc74Udi1huvIk3x1OluVJ16miKDzxxBMAfOELX+CDH/wg73nPe1bc3s5EnExRzwmwhmFw/PhxRkdH2bhxI2VlZbM+vhCcdmfLstjXHWYsmbWnaUgiQUViNGlnX/mFMQvweV380+taqCmScxd9Op0mGo1OehPAZP+AepcLOS3z3HNHUVWVpqYmSkpKFv3ibxtO8JNn+ikvctn2mfMoZjnIn2phQM6YQVtA7BGwqY8yvwtFtn2mPR5P7map6zpHjx7lnqPz22UUgmXCOWUGO71jvPhiYtoNMf//PpfMjX+xlvsODVPiS7LJLKIpKOLPjPCqzRuoqKiY9Vj9kQyPtI2iSAKKJJHKGhPTQBYHiiTQOZbiyePjvLalkme6I3zl0U7bOMqwGE2oOc/lYrfMx17bZLeZTygsnHM7kywxd84m3OHyb4qZTIYHHniAAwcOUF1dzV133cW3v/1t/vznP58RQXklIOfhZDPkkZERBgcHWbVqFeedd96c/heFjuEEY9M0eeToKP/zx256wxlMy9bT+l0SkmDHo/zfdksCAY/MUNJkwywVfgf5qojh4WF6e3spKSmhrKyMoaEhenp6JgVvRVEKZtz528+53ih94fTEsFCRxnIvY8mTlxaeTNgpL1JwiSJFHpnBaIag9wTHGQ6HaWtro7K2nsf7Rhb83CKwscbHba/dwDlrgtMCjNPe7WSL+c06jZLEhhqFdDqNYRjUN9ZjGAaRSCR33gt5B2cminjO920zpMULyJphkVANvvrocdqHE/zg6T7SWQNFEtAtMDWLpGrgc4koskg4pVE7j4LyVOS7w/n99qSSL3zhCwwPD/PII49QXV29aK/p5YKVgJyHhWbIiUSC0dFRAoHAJJ/kuY4x1XTeNE3GEip94TR+t8RdT/WBYG+zNdPeQsYyBh5FQNOt3JY/4JYoK1IIJzWOhpJcuH72zMo5vmVZHD9+HFEU2bNnz4yt4jNJ2pztp9MQASfeXAUpE0HHNE1iaY3xUwjGJwNJgCKXbM+is05QMIZhcOzYMeLxOFLVOt70w0MUaCQEwCMLeBSReMY4MaVZgK11ft65Zy2XNFegTKg98gPMXIjFYhw+fJjS0lJKS0ttvW8ySTgczp3fqU0lLpcLUXYRUGAkpYHFvFqvFwJRFJBEgYFomv/6Y7d9fCCrWyeSAsuiqdKPR5EWhShJJBLcfPPN1NbWcv/9958RA00L4YwKyPPhkOcTkHVdp6Ojg0gkQllZGXV1dfMKxnAiIFuWxVhC5a69PRzoj9E9nqHMr6AZNieYyhp4FNunIqkaZE17KrQkCegTEdklCYgT8x/ys76ZYFkWfX199Pf309TUNOfWeL6SNue5p2aGTvAeHU7SPRIjlJ7XKVoUKCK5LraReIamqgB/cVYZq0s9xGIxWltbqa2tpXpVA5d9+c8zBmOAgMfelj91PMxYSqO5OsC159RQW+w5qW200y3a29vLpk2bKC6e384m/9x++rUuPvfYAAeGMiizqDVOBhYQz+iTbDsdrbMzq6+lpgi3LNFQ7qMqcGrBs7OzkxtuuIGbbrqJd7/73WcENTETzqiAPBcKmQ/lw7IsBgcH6ezsZO3atWzcuJGOjo6TmiSdyGjc8v8OcnAgbs94A5JZnc21RQzFVFTdzI3m0S0L07Rbf7HsbTKC7akrSyI1xW5eNUcxKR6Pc+TIEYLBILt3756XDnohEARhUvA2LYsnOsZ5qmuce56PEz15enZBKHZLpHUTryLikSV8bonm6iJuvrCRdeUeurq6GBkZYcuWLfj9fn7+bD/JOaJZOKURTenccfX8vHVng6ZptLa2Isvygv4OU3nviooK/s708R8PHcM0THoWLNfLd16eDGOKiNtpo3d+q6XKz3kNpdSWeLh4YwXyKbRUP/LII3z84x/nv//7v9mzZ89JP88rBSsBOQ+z3ZmdrCoQCExqu16IVM7xlO3t7WXw+ChHBmMTUjAb0bRONG1QW+JB000GoioeRUQWBEzBljUJov3hlmzj9uZqP28/bzX1wcLCeafY6EwcmavQshiwLIvP/L6dxzvGGIxmJhXmlhqabuuXyz2woVxhNGNxwRovJSTZt+8g5eXl7Np1ovW6Pzp32q6b8H8fOsauhlKaKuemImaCw1c3NjYuCj8qiwKjiSypBRRJT0CY9r+ZUhF5QqYoAmVeeO8WkbVlKVwunbFhbZqsTZbnDiumafK1r32N++67j/vvv5/a2tqTeA2vPKwE5DmQzWbp6OggkUiwadOmkxrj5GTdhmFQU1NDIBAg1Rsho4+iTdEX943FKfUI3LjNzeGwi8NjBscisDrooieioU+MmV9T6uG6c1fz+i3V+FyFs6zR0VE6Ojqor69n165dy7YV7BhJ8kTHGPGMvqzBWMC+WSmKjEuRCWdhc6WbOiHMoUM9+P1+xsbGcoNpFUWhbK5xGhNIayY/erqXT76+ecHrMk2Tzs5OwuEwZ5999il1nf2xY4xnuiMEPDK/PTBMKmtMKvLOFlhPFpZg8+jryv1sriviVWevxjJOFC9nMlMSRXFasD5w4ACapvGjH/2IiooK7r///tMyu+6lijMqIC8kIDl8a09PD42NjbS0tMw4xmm2gJyvnhAEAVmWKSkp4VX+AO77ekjr+qTHq5bIx16/hVevC3LFxAX+6wPD3HtwjIagQiRtUOoR+Ku1BqvUbl7c3zNpVLvb7c4pPwRByGXFy8nLJVXbByOpzt+74lRheymDKEpcuqGCm17TgKFphLrbKSoKsGvHOZPoAcfkfoOq8p/P7iOanfsYzxwL0dYmFCxculyuguqadDrNoUOHKC0tZceOHafkmPbjp/v4rz92oZsW6ax9jqf+VRcajJ0APvX3nOe1sLXT56wOsrHazxvOqaNkHvUKODGxOv/jwIED/P73v8eyLNLpNOeffz5f/OIXufDCCxe48lcmzqiAPF9EIhGOHDlCaWkp55133qxbsJkc4vIDMUw2WbEsi7ue6kWe0G0K2FX7Yq/MWZV+Llhvt946037fdn4xW9ZW0zmWoqLIxZ7G0kkGLs6Fn8lkGBwcZHR0lGAwiKIodHV1TZJaTRXiF/r6VIKGZVn4jBiGZpv7uBWRjGYuetbmc4mYhoUgQkaz8LsEGir8BL0K77+4ET0Rpr+7mw0bNhTUhDuqhXDGJGvOL6+sDfqprKzMBZdUKjVJzja12cEwDGKxGHV1dRQXF5NIJE76HFuWxX8/2W3PUJQglrZv5Kd6Xmf8/YlTIgDXbKvh/RetW/Bz50+sBnj88cf55S9/yde//nUuuOCCk13yKxorATkPqqqSTqfp6Ohgy5YtBT2Kp6JQhmxZFoZh5Djjqdnp830xfnNgmLoSD2nNRDdM3IpEZZGbizdMVz4IgsD21SVsX10y7Wdwgsc+duwYgUCAV7/61QVvIs668oNINpvNNZA433cCy9S5dU7Qzg/e+a8tk8nQ2tqKx+Ph/75pG3//00NktMX3lxawOXRLgi11xRwfTVJX4qG5JsCbtlcx2HkUSZLYuXPnrL4KY0mVt3z72Zyr3GzwKgJXbK6ZseHHgWVZqKpqG/gbBk1NTRiGMeM5nukGmf9/cWIYgWZYZHV9wq1vaeHUtku9Mu/cs/qUnss0Tb75zW/yi1/8gt/97ndLMhfvlYKVgAw5D4f+/n4URWH79u3zKkzA5IA8lZ6YKQsaitkVcb9bprHCR384TdawuGZ7DW/bvbCL1TAMurq6GBsbo7m5eVYJlUOZyLI8p042v4sqP4Ank8lJwTzfBEZVVcrLy/F6vfikDE0VbtpC6UUxvMmHKIBqmAQ8CklVZ9faILdftZFkdJyOjsOcddZZVFVVzfocY4ks7/vJi4zG5+YqRAFet6mKa7bPXXiKx+McPnyY1atXU1c33R0vH4U61VRVnRS8NU3LXV8VLp321GLvNQqjvsRNQ4WPT161kYBn/lOepyKdTvOhD30ISZJ46KGHVvjiOXBGBeRCb46xsTHa2tqoqqpiz5497N+/f1bp21Q42alhGAXpiUKoD9oXpWFaBNwy1cVu1lX6uWHPmgW9nvHxcY4ePUptbe0k5cBiYGoX1UxIpVIcPnwYn89HfX19LsDs740ynshS64PO2KItCwFori3i7btW4VEkvC6Jc1YV0dXRRjabZefOnXM2FcTSGm/+1j6G5zlZ4/Wbq/n0NZtmfYxlWfT09DA8PDyr5/ak1zLPc+w8f/nR52mPROax4pklbfPBa5rK+K/rzz7p33fQ19fHO9/5Tq6//nr+4R/+YUkmjjQ0NBAIBJAkCVmW2bdvX+5nn//85/nIRz7CyMjInJr7lwrOqICcD8ej2LIstm/fnjPAdrr15rIQdCAIApFIhP7+/pwO1zFJmSkob6sv5s0767h7/4BtyVjk4p8vPWvea89ms7S3t5PNZk+5an+ysCyL3t5eBgYGaG5uJhgMTvp5RcaDyxWlZzy1qMetCShctTHIZevtYbTxeJxDLzzHmjVrqK2tnVfx8q6nehlLZfEoIqlZNMgisLshyP+5asOsz6eqKocOHaKoqGjRb4xPdYb59O+PEknreOT5Pm/hc+DI12ZDiVvgpp0lhEKhSRTKQnXrTz75JP/8z//Ml7/8ZS6++OIF/e5C8eijj04LuL29vTz44IOsWbOwJOd044wLyI4EaXh4OOdRnI/56oodesLv91NfX1+wyAOTW17zOdgrm/y8pnEDOjI1QS9uee4L3rIshoaG6OrqYt26dbOOf1pKJJNJWltbKSkpmbG5YVNtAI8iLmoHWbFbpCEoc3bQ7pSMRqPouo7H46Gvr49QKDRjsdLxhQAYjmcREJAlAVE7oQJxSnsC0FDm4YOXrOOy5spZA+zo6Cjt7e1s2LCB8vLCPsgni87RFB/++SF00/auSJ+CgdDm2iJahxIFf+aSBIo9EuU+hY+8poZyn0Q8HmdsbCxHnUwdlluI904kEhQXF/Ozn/2Mn/zkJ/z6179m7dq1J73mU8GHP/xh/v3f/51rrrnmtBz/ZHFGBWRd19m7d+80j+J8LETGBnZRZjZRu+MHkW9FmEqlJvkVDObpNqcWzpzPpmly/PhxfD4fu3btmncGv5hwuPbh4WGam5spKSlcZAS73fj2Kzdy3XefnfcMPWBGmdw126q55uxattUXY6g2TdLQ0MDq1atzY7Ty+W5VVXO+EM73nBttlaEjYpLVThxPAHyKgGpAQ7mX/333TryzWI+apkl7ezupVGpeNMnJYF9PBNOycooadYpEcr64ormCKzZV8fF7DzM1pssi/OTdO9EMi8Zy35y+11OLwvneJv/5n//J448/TjgcZvXq1bztbW/jzjvv5NJLLz2pdc8HgiBwxRVXIAgCN910EzfeeCO/+tWvqK+v5+yzT512WW6cUQFZURR27949azCbLUN2VArOyKb5ZKcL8YNw5Gv5QSUajTI2NkYqlcLtdqNpGs8++yyyLM8YvOeiTE4GiUSC1tZWysrK2L1797y25VtXFefM8GcLyi3Vfq7dXstVW6rxuSWe7gzztce60CaGgH70tU28al05pmnS3d3NyMgImzdvnqSCmdpaPBt26jppzzF+cyhkT0sRBZKa7RWytlji/ZstXthvc5GSJE3LuE3TpLe3l+rqarZt27bobegOitwSojBx3Zl2x+BCGz/OX1fKl968lZGEyupSL8dGT3QmCsBbd9ne2POFJEn4fL5pM+4GBwdpa2vj5ptv5kMf+hCiKJJKpZZ8B/fkk09SV1dHKBTi8ssvp7m5mU9/+tM88MADS3rcpYKwkAIWi98EtOxQ1dl7/ltbW6murp4kb5pNU7yUiEQiuYLj2rVrc0HQqc5PzVSmKiIczBS087fyM70eZwzV6OgoLS0tC269TmsG//5AB8/3RnHLApc2V05QBrBjdQkXb6zAo0wPaElVZySRpdzvIuCRSaVSHDp0iLKyMhobGxeFp42mNQzTotRn36Aty5r0vM4NON/pLhQKEQ6HCQaDOUOlqRrvQvJA5ya5kHWrusEN33+ezrEUqm6SNUwkJixIrRP0ykxvSpckcPd7d7G+yr5x9YbTfO2x4zzdFcHvkrj+3Hqu331qkjaAvXv38qEPfYgvfOELXHbZZaf8fCeLO+64A0mS+OpXv5q7YfT19VFXV8fTTz9NTU3NaVsb86yynnEBOV+qVQhHjx6ltLSUysrK0xaINU2jo6ODdDpNc3PzKU3czbfQnBq0nc/6xFY4nzJxuVxYlsXw8DBlZWWsXbsWj8ezJJXy2ZDvUNfS0jIrTbKU0DSNw4cPoygKGzdunJYVzyQTnKr5ztd4z6Q7zt/hZDSD3x0KMRBJc8/zQ4Tiqt2wIYBbkfDIIj6XSDipTVi2CnhdEpYFb91Vz80XNizZObEsi+9///t8//vf56c//SmNjY1LdqxCSCaTmKZJIBAgmUxy+eWXc/vtt/O6170u95iGhgb27dv3UlBZzCtwnFGUxXzgUBZzNXcsBSzLIhQKcfz4cRoaGmhubj7l4+ZTJnNlt/kdfz09PcTjccrLy7Esi6NHj07LBpeaMslkMhw+fBi/378kDnXzRTgc5siRI6xbt25GU6CFStim+kw7Gu9CO5wGl4sNFS5WnS3xr3+yp117FZEyn0zWtLjzL5t51Tp7R/dif4zu8RSrgl7OmaGRaDGQzWa59dZbicViPPLII/OS+S0UhSRtn/jEJ7j33nsRRZGioiLGx8dRFAVd17n++usnBeOXI1Yy5Cno7OxEkiRqampygXg5gnE6nebIkSO4XC7Wr19/2gy6o9EoR44coaamhjVr1hR87YWywYVSJvlfO/P+8jE4OEhXV9es47CWGvmmQFu2bDktTQ2WZU2a0xgVA3z6kQHbltWw2FEt8Zb1Uu46navrr9C5XiiGh4e54YYbuOqqq/jIRz6yZLumQtltLBbLNT995Stf4fDhw3zjG99YkuMvMlYy5IUgX8Z2/Phxenp6ct12hTLAxfJ+cApEg4ODM/ouLAfyJ2hs3bp1VppkIdlgIcrEmfdXiDKRZZsvliSJuro6dF0nGo2etB72ZJFOpzl40Lbr3Llz52kzTXc6//ItO89ev4ZjI0mKPTJNlf7c2qaa2M91rudqiy/Urbpv3z7e//7387nPfY4rr7xy+U7EBPI7UZPJ5CvOzP6My5DzW1EdzEZP5Mt88j8XMpWZ6eJ2AvjU4lksFuPIkSOUl5fT0NBwWrfkbW1t1NfXs2rVqtN2kYdCIdrb26mrq8Pv9xfMvOcqoM3ks7EQOFrvQg0vywXLsujv72dgYIDNmzcvOiVQSCY4tYU730bzU5/6FGAXvd/3vvexbds2LrnkkiX1125sbKS0tHSSpA3gtttu46677qKkpIRHH310Wi/BSxQrRb1CyA/Ii1m0c3jB/GA9NYDnz0dz1lFVVUUgEFhUx7X5whlFlUqlaGlpOS0df846HI66paVlTongXAU057OD+VImuq7T1taGYRi0tLScFq032OfjyJEjiKJYsIC43EilUnz0ox9lZGSE6667jlgsxtDQEDfffPOcniGngoGBgUmStq9+9auTbDo/85nPkMlkuPPOO5dsDYuIlYBcCJqm5bTElmUta9EOYGRkhPb2dmprawkGg9MGiM6WdU8NJnNJ1mbD2NgY7e3t8zLBWUo4VqdLtY78WX+zqUwMwyCTyeD3+ykuLp50vk+lhXihSCQSHDp0KHc+TjdGRkZ417vexaWXXsq//Mu/LLvKxsEdd9xBUVERt9xyS+573d3dvP71r+fgwYOnZU0LxAqHXAhORjyXI9tiI5PJ0NbWhiiK7Ny5c96DQ6dm3fmc4NRtZaEgMjXr1jSN9vZ2VFVl+/btp819yzRNjh07RiwWW1I/jvxZf4W215Zl0d3dTSgUYtu2bciyPClYz9RCvBSUyeDgID09PdOaXk4XnnvuOf7+7/+eT33qU1x99dXLeuypkrYHHniA22+/nfb2dtavXw/Ar371K5qbFz7B5aWMMypDtiyL3bt3YxgGFRUV1NTUUFNTQ3V19aTPNTU1+Hy+RcnWFjrp+WQxlesuxA06wd3n8xEIBGYM4Cebdc8XTqFqNiXHciDfFKipqWneN+epvtKFPmuaNq/aghO4jx49mqNK5mv9ulSwLIv//d//5etf/zo/+tGPlizoFZK1feQjH+HXv/41YN+gVq9ejWVZXH/99dx222284Q1vyCU2a9eu5Rvf+Ab19fVLsr5FxgplUQjOmykUCjEwMMDg4CBDQ0O5r4eHhxkaGiKdTmNZFsXFxZMCdVVVFbW1tbkAXlZWNiPlkT/ped26daeNC9Q0LceNbty4EVEU58V1O0YyMxUpF9p5ZllWburzpk2bTmsWODIyQkdHx5KYAuUjf5dTKHin02ni8XiuUWQ2bfdyUCa6rnP77bfT2dmZK5wtFQrJ2h544AEuueQSZFnmox/9KACf+9znlmwNy4gVyqIQHJP2urq6WTk6h1+ORqMMDAxMCtqtra0MDw8zODhIOBwG7M4rJ3CXlZVx8OBBNm/ezJVXXonX68UwjHn7XywmhoeHOX78+LSmBpfLNa9GkanBOl9CNZXrni2YqKpKa2srpaWli25RuRAshylQPvK1wVMxPDxMZ2cnu3fvpri4OGfyP5UyyefAl5IyGRsb413vehfnn38+99xzz2lJIK644orc13v27OHnP//5sq/hdOKMy5CXApZl5ebZPf/889xyyy3s3r2bdevWEQqFGBwcJBQKoes6giBQXl5OdXV17qO2tpaqqipqamqora3NZY6nEryz2WyuUr9hw4YlDTwzFc6cr2OxGKqq4vF45pQGLjTrXggSiUSOKnFc4k4HnJtCJpNh06ZNC1ZzFBrFVYiimokymUqXeL1eDh06xE033cQnP/lJ/vqv/3pZzs1MsjYHV199NW95y1t4+9vfvuRrWQasUBanA6ZpEgqFChqZODK7kZERBgcHp30MDQ0xNDREMpnEsiyKiopy1Ijz4VAnNTU1lJeXT8u6TdNkaGiI7u5umpqaTqtG05mx5/V6Wb9+fa4tfSa6ZKFZ93y5VkfT29/fz6ZNm5ZUOzsXnIaTqqqqZeHP56JM7r77bu65556cZWZjYyOXX34573//+5d0XTC7rO3Tn/40+/bt45577nmlNH+sUBanA6IozugqJQhCri27pqaGc845p+DjnIAUi8VywdrxeaObAAAOPUlEQVShTZ544olc4B4bG8OyLBRFobKykkAgQFtbG1dddRVbt25FFEXS6TRVVVW43e5lvbCHhobo7OycxtHOZN84FYWy7nQ6TSQSmda4kM91Tw3coijS0dGBy+Vi165dp1XT6/DWLS0ty9ZwMhtl4uzYWlpa+OEPf4jP5yMUCs1rQMNiwKEMq6qquPbaa3n66ae58MIL+f73v89vfvMbHn744VdKMJ43VjLklzmcKcdPP/0073nPe7juuuuorq6elHEPDw/nGiXKyspy9Eg+ZeJk38XFxaeky9Y0jdbW1lxTw3I0V8zkqxGPxwmHw5PagGdrgV9I1r0QOBK/eDzOli1bTptPST7C4TDvfve72bFjB//6r/+67DeqmZzaAP7pn/6JP/zhDy+XDrz5YoWyOJPgmNDM1GLrFCnHxsZyxclCdEk8HgfA4/FMkgVOpUsqKiqmyeMcQ6DZXNGWA850lWg0yubNm3Na66lZd6Ft/Hyy7nz+dS6oqsrBgwcpLS2lsbHxJZHxHT58mPe+9718/OMf541vfONpWdPx48e59tprAXJObbfddhtNTU256eVgF/ZeJuZBc2ElIK/g5GBZFolEYlaee3R0FNM0kSSJYDBIOBxmzZo1XHTRRVRWVuYCeW1tLR6PZ9ne9PmmQKcSAGdzs5urNdv5Op1O5zwxTpdpVD4sy+JXv/oVn/vc57jrrrvYtm3bkh2rkMb47rvv5o477qC1tZWnn36aXbt2LdnxX4JYCcgrWFo4BaPLLruMCy+8kF27duUC9tDQUE7XnclkACgpKZmUbU+lS4LB4CnRJafDFKhQ1q2qKqOjo6TTaTweT64mkD8OaibaZKluXIZh8G//9m/s37+fH//4x0uqvYbCGmOHyrrpppv4/Oc/vxKQC2ClqLeCk4ZTMHr44Ydn5YoduiQcDk8rUh48eDAXwCORCGBnnFM7KJ2va2trqaysnOTrG4/H6e7uxrIsdu7cuaymQFNbs7PZLAcPHqSsrIx169ZNkvAVyrrzh91O7e6biS5xuinni2g0ynvf+15aWlr47W9/e9o6AVtaWk7LcV9OWAnIKzhlzBUAnay3vLyc8vJytmzZMuNjHS48vxFnaGiI/fv35zLukZERdF1HFEUURWFwcJC3vvWtVFZWcvTo0UnBe7Fa4OcDxyhpphZ5WZaRZXnBCpNCk8rzue5CQdsxTYrFYrzvfe/jlltu4brrrlu2c1FoGvQK5sYKZbGClyUsy6KtrY2//du/5eMf/ziKohRsgU+lUgAEAoGcuqRQC3x5eflJ0yWOQdHIyAhbt25dVsOmQlm3qqrs3buXb37zm/T29lJRUUFRUREbN27khz/84bKsazaN8UUXXbRCWcyAlQx5BS9LCIJAc3Mze/funXX77tAlsVhsmrqkra1tUgu8o+meKgvMV5dUV1dPmhcYiUTo7OzE5/Oxc+fOZW8JL5R1G4bBz3/+c8rKyrj//vuprKzEMIxcm/9yYCaN8anAsiwuuOACbrvttty0kp/97Gd85zvf4fe///0pr/mlgJWAvIKXNebiUp2sNxgMEgwG2bRp04yPdVrg84uSAwMDvPjiizz44IO5FnhN03KeKENDQ7zlLW+hoqKCF154YVKx0ukIXE5ZWSwW46abbqKxsZH77rsvRydJkrRsk5dnss48VQiCwDe+8Q3e9KY3cfHFF2MYBrfddtsrJhjDCmWxghUsGA5F8cY3vpFPfOITuFyuSXy3E8yTySQAPp9vElUy1fa1oqJiUYynOjo6eNe73sU//uM/8o53vOO0aZ5n0hj/4he/4AMf+AAjIyMEg0G2b9/O/fffv+Dnv/XWW/H7/SSTSQKBAJ/4xCcW+yUsBVZkbytYwVLCMIw5M3TLsojH49PUJU7wHhwczLXAy7JMZWXlNKok/+uZWuAfeOABPvnJT/Ktb32L3bt3L9VLLqgvHh8f5y1veQtdXV00NDTws5/9jNLS0iVbQzKZZMeOHbhcLvbt2zevYQ8vAawE5MVGb28v73jHOxgaGkIURW688UY++MEPLvsFuYJXHhxlRb5P99RmnOHhYVRVBaC0tDSXbbe3t5NOp/npT3+65B2ShfTFt956K2VlZXzsYx/js5/9LOFweMk9jG+//XaKioq49dZbl/Q4i4iVgLzYcN4gO3bsIB6Ps3PnTn75y1/yve99b9kvyBWcmXCKlOPj47nA/dBDD/GpT31qWTLFQgF548aNPPbYY9TW1jI4OMhFF11EW1vbkq6j0Iy9lzhWVBaLjdraWmprawFbRtXS0kJ/fz/33nsvjz32GADvfOc7ueiii1YC8gqWBE6RsqKigoqKCrZt28ZrX/vaZT3+VH3x8PBw7n1RW1tLKBRatvW80rASkE8SXV1dPPfcc5x33nnLdkEahsGuXbuor6/nN7/5DZ2dnbz1rW9lfHycHTt28IMf/OAl4SS2glcunnzyyUn64lfakNHTjdMzR+dljkQiwRve8Aa+9KUvUVxcvGzH/fKXvzyp/fSjH/0oH/7wh2lvb6e0tJRvf/vby7aWFZyZKKQvduxewab1qqqqlnwdd9xxx8uJrpg3VgLyAqFpGm94wxt429v+f3v3F9J028YB/CtPIBVhVGrDbbraRjZt2mIriMg9LAYDFzKq9YSQijCIsMjYSQceWUkZnRqERjDQoD+O/qxZIekI2zoYlBBluhmKm3agWZu7noNeR0Y+r8/7bvtt8/qAB/4Q7kuYX/C6r/v+/YWamhoASMkHMhAIwOl0oqGhAcCPXmJfXx8sFguAH62Su3fvJnxdxhbNzs7Gr2ddnC8uKytDdXU1Ojs7AQCdnZ0wm81ClpnROJD/BSJCfX09SktLcfbs2fjzVHwgm5qacPny5fhJsFAohI0bN8YvihGLxQgGgwlfF/hxGs1isWDHjh0oLS3F4OAgwuEwDAYDFAoFDAZDSk+BMWFMTExg//79UKvV0Gq1MJlMMBqNsNvtcLlcUCgUcLlcsNvtQpeauRZ3bVf4tar19/cTACovLye1Wk1qtZqcTidNTU2RXq8nuVxOer2eQqFQQtd98OAB2Ww2IiJ69uwZmUwmmpycpO3bt8d/ZnR0lMrKyhK67qLa2lrq6OggIqJv377R9PQ0NTc3U2trKxERtba20vnz55OyNkudaDRKFRUVZDKZiIjI7XZTZWUlqVQqqq2tpUgkInCFGW1FGcuBnAHsdjsVFRVRcXExFRYW0tq1a+n48eO0efPm+B/JwMAAHTp0KOFrf/nyhUpKSigWiy15rlQqaXx8nIiIxsfHSalUJnxtllpXrlwhq9VKJpOJFhYWSCwW0/DwMBERXbhwgW7cuCFwhRltRRnLLYsM0NraikAggJGRETgcDuj1ety+fRtVVVXo6ekBkLxWyYcPH5Cfn4+TJ0+isrISDQ0NmJ2dTclkSXt7O1QqFcrKymC1WjE/P4+PHz9Cp9NBoVDg6NGjS97cwf53v+5RhEIh5ObmQqlUAgAMBgPu3LkjZImrAgdyBrt06RKuXr0KuVyOUCiE+vr6hK8RjUbh9Xphs9ng8/mwfv16XLx4MeHr/CoYDOL69esYGhqC3+/HwsICHA4HT5Ykya97FFu2bEEkEsHQ0BAAoKenB2NjY0KWuCpwIGeYgwcPore3FwCwbds2vHr1Cu/fv0d3d3dSTmqJxWKIxWLodDoAgMVigdfrTclkSTQaxdevXxGNRjE3NweRSMSTJUnQ29uLgoICaDSa+LOcnBw4HA6cOXMGWq0WGzZsEOxNI6sJBzL7R1u3boVEIokfhXW73di5c2fSJ0uKiopw7tw5SKVSiEQi5OXlQaPRJHWypK6uDgUFBUveaLLcNAkR4fTp05DL5di1axe8Xm/C6ki1ly9f4v79+ygpKcGxY8fQ19eHEydOYN++fejv74/fZaxQKIQuNfuttNlMvKm3avl8PtJoNFReXk5ms5nC4XDSJ0vC4TBVVVXR5OQkff/+ncxmM3V1dSV1suTFixf0+vVrUqlU8WfLTZM4nU4yGo0Ui8VocHCQtFptwuoQ0uIUDxHRxMQEERHNz8+TXq8nt9stZGmZbkUZy/+DsP+qoqIi3kv8mdvtTtqaT58+hUwmQ35+PgCgpqYGAwMDmJmZQTQaxZo1axAIBOInxxLhwIEDGBkZWfJsuXtK7t27F79zeO/evZiZmcHnz5/jG53ZoK2tDb29vYjFYrDZbNDr9UKXlPW4ZcHSklQqhcfjwdzcHIgo3ipJxWTJz5abJgkGg5BIJPGfS+bBnFT6eY+ira0Nb9++xfDwMJqamgSubHXgQGZpSafTwWKxYPfu3SgvL0csFkNjY2NKJktWgn5zba1Qb+hg2YMDmf3W2NgYZDIZwuEwAGB6ehoymQyfPn1KWQ0tLS149+4d/H4/bt26hdzc3JRMlvxsuWkSsVi8ZAws0e0TtjpxILPfkkgksNls8XsJ7HY7GhsbUVxcLHBlqbXcNEl1dTW6urpARPB4PMjLy8uq/jETBr8xhC0rEolAo9Ggrq4OHR0d8Pl8WX3fstVqxfPnzzE1NYXCwkK0tLTg8OHDOHLkCEZHRyGVStHd3Y1NmzaBiHDq1Ck8evQI69atw82bN7Fnzx6hfwWWvvgVTuz/9/jxYxiNRjx58gQGg0HochjLVCsKZG5ZsH/08OFDiEQi+P1+oUthLOtxILNlvXnzBi6XCx6PB+3t7fHNLcZYcnAgs98iIthsNly7dg1SqRTNzc1Z+cocxtLJv+0hs1UiJyenEcCfRHT0P9//AeAVgLNE9ELQ4hjLUhzIjDGWJrhlwRhjaYIDmTHG0gQHMmOMpQkOZMYYSxMcyIwxliY4kBljLE1wIDPGWJrgQGaMsTTBgcwYY2nib6rjpq8BJRDAAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "from mpl_toolkits.mplot3d import Axes3D\n",
-    "fig = plt.figure()\n",
-    "\n",
-    "# 3-Dimensional plotting!\n",
-    "ax = fig.add_subplot(111, projection='3d')\n",
-    "\n",
-    "# Only look at the 1st egg\n",
-    "for i in range(1):\n",
-    "    ax.scatter(x.transpose()[i], y.transpose()[i], z.transpose()[i])\n",
-    "    \n",
-    "# Set view angle\n",
-    "ax.view_init(20, -70)\n",
-    "ax.set_xlabel('X')\n",
-    "ax.set_ylabel('Y')\n",
-    "ax.set_zlabel('Z')\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([[112.87246867,  52.99250149,  -1.81554181],\n",
-       "       [129.23256286,  50.34731347,  -0.31828964],\n",
-       "       [157.96565746,  49.07607002,  -1.48092605],\n",
-       "       [114.32742594,  62.98863475,  -1.82608929],\n",
-       "       [101.44406675,  54.21796584,  -1.76485366],\n",
-       "       [176.2605702 ,  56.11526941,  -1.4431294 ],\n",
-       "       [126.78326949,  44.02848669,  -1.34415829],\n",
-       "       [156.50789027,  59.28279066,  -1.78484798],\n",
-       "       [138.09939604,  48.38843799,  -1.34070468],\n",
-       "       [108.51932843,  57.81323762,  -1.77115225]])"
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "# final positions\n",
-    "# rows are eggs, columns are x, y, z\n",
-    "positions[-1, :, :]"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Other Tutorials\n",
-    "\n",
-    "There are plenty of other ways to extract data out of FluEgg. If you are interested in learning more, try out the other jupyter notebooks in this directory to see the capabilities of FluEgg!"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/fluegg-tutorial.ipynb b/notebooks/fluegg-tutorial.ipynb
deleted file mode 100644
index e9ae0c9..0000000
--- a/notebooks/fluegg-tutorial.ipynb
+++ /dev/null
@@ -1,485 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# FluEgg Tutorial\n",
-    "\n",
-    "Welcome to FluEgg! This tutorial will show you the basics for how to setup and run the FluEgg program, a model that simulates carp eggs being transported through a fluvial channel."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 1: Hydraulic Channel\n",
-    "\n",
-    "First, we will import hyraulic channel data. The channel data is input by the user and is composed of hydraulic cells representing discrete lengths of a channel. Each cell contains the following data that defines the cell:\n",
-    "* Cumulative channel distance $(km)$\n",
-    "* Cell depth $(m)$\n",
-    "* Discharge $(m^3/s), Q$\n",
-    "* Longitudinal velocity $(m/s), V_{mag}$\n",
-    "* Vertical velocity $(m/s), V_{vert}$\n",
-    "* Lateral velocity $(m/s), V_{lat}$\n",
-    "* Shear velocity $(m/s), u_{*}$\n",
-    "* Temperature $(Celsius)$\n",
-    "\n",
-    "FluEgg includes a sample 5-cell hydraulic channel in the `test/data/multi-cell input.csv` file. Below, we use the pandas data analysis package to show the sample hydraulic data stored in the csv file.\n",
-    "\n",
-    "To initialize this hydraulic model in FluEgg, we use the function `from_csv(csv_path)` from the `fluegg.hydraulics` module."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "import pandas as pd\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 2: Simulation Clock\n",
-    "\n",
-    "Next, we need to initialize a simulation clock that will keep track of time throughout the simulation. FluEgg uses discrete time-steps when transporting eggs. The simulation clock needs to know the total simulation time and the length of each discrete time step. Below, these are initialized as 1000 seconds and 1 second respectively.\n",
-    "\n",
-    "Alternatively, the total simulation time can be set to the hatching time of the carp eggs. This is seen in the commented out line below."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 3: Carp Eggs\n",
-    "\n",
-    "Next, we need to initialize the carp eggs that will be transported through the hyrdaulic channel. There are 3 carp species supported by the FluEgg program: Bighead Carp, Silver Carp, and Grass Carp. We will use the Bighead Carp species throughout this tutorial. (As a side-note, FluEgg also supports non-egg particles!)\n",
-    "\n",
-    "To initialize the carp eggs, we use the `BigheadCarpEggs(initial_position, simulation_clock)` constructor. It takes in `initial_position`, a numpy array containing the starting positions for each individual egg. In this case, there are 10 eggs starting at (10, y-midpoint, z-midpoint). The y-midpoint is calculated based on the discharge, longitudinal water velocity, and depth of the hydraulic channel. The z-midpoint is calculated based on the depth. Take note of the coordinate system used (don't worry if it's confusing, it should become clearer in the simulation graphs you'll see below).\n",
-    "\n",
-    "$Width = \\frac{Area_{yz}}{Depth} = \\frac{Discharge / Longitudinal Velocity}{Depth} = \\frac{Q / V_{mag}}{Depth}$ \n",
-    "\n",
-    "$y_{mid} = \\frac{Width}{2}, z_{mid} = \\frac{-Depth}{2}$\n",
-    "\n",
-    "The constructor also takes in `simulation_clock` which was initialized earlier. The carp eggs need the simulation clock to keep track of their changing densities and diameters over time."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Initial Egg XYZ-Positions: \n",
-      " [[10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]\n",
-      " [10.   5.  -0.5]]\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "print(\"Initial Egg XYZ-Positions: \\n\", initial_position)\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 4: Transporter\n",
-    "\n",
-    "Next, we need to initialize a transporter. The transporter in FluEgg is used to physcially move the eggs during each time step. The `init_transporter(simulation_clock, carp_eggs, hydraulic_model, vertical_turbulence)` method is used to initialize this transporter. It takes in the previously initialized simulation clock, carp eggs, hydraulic_model, and the additional parameter of the vertical turbulence profile. This tutorial uses a parabolic vertical turbulence profile, for instance, but FluEgg also supports constant and parabolic-constant profiles."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import init_transporter\n",
-    "\n",
-    "transport_model = init_transporter(simulation_clock, carp_eggs, 'parabolic')\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 5: Simulation\n",
-    "\n",
-    "Finally, we can run the simulation! In order to run the simulation, we create a simulation from the following constructor that takes in all of the previously initialized FluEgg objects: `Simulation(hydraulic_model, carp_eggs, transport_model, simulation_clock)`. To run the simulation, we simply call `fluegg_simulation.run()` on this initialized simulation. This function runs through each time step in the clock and transports the eggs through the hyraulic channel based on the transport model. We store the simulation results produced in `simulation_results`.\n",
-    "\n",
-    "We can double-check that the simulation ran by checking the current time step from the simulation_clock. Did the simulation make it to the final time step (1000 seconds)? You can also verify the simulation ran by trying to run the code below a second time. It should output an index error at index 1001. Why would this error occur?"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Current Simulation Time:  1000.0  seconds\n"
-     ]
-    }
-   ],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "print(\"Current Simulation Time: \", simulation_clock.current_time(), \" seconds\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Step 6: Data Analysis\n",
-    "\n",
-    "Now that we have run the FluEgg simulation, we can retrieve all sorts of data stored in the simulation. We will visualize some of the data below using the matplotlib library. The most interesting data to look at is the egg positions over time. Below, we can see how the eggs move longitudinally (x), laterally (y), and vertically (z) through the channel over time. We additionally plot the xyz-positions against eachother throughout the simulation to see the egg paths throughout the simulation.\n",
-    "\n",
-    "We retrieve these positions by using the `simulation_results.get_results()` function which returns the positions of the carp eggs over time."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHjCAYAAACabpOIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXd8Y+d1oP28t6ARIEgOR9OrNOqWLImyEo/c4irFJc1x5C4XJbtO4uzn/X0pX5JN1pt8ibNJ1rubTaI47pEiy467ZVndthyV0UiWNCrTNI3TOexoF/e++wdwyQvwohJgmTnP78cZ8uLi4gUxJJ455z3nKK01giAIgiAIwtLHWOwFCIIgCIIgCM0h4iYIgiAIgrBMEHETBEEQBEFYJoi4CYIgCIIgLBNE3ARBEARBEJYJIm6CIAiCIAjLBBE3QRAEQRCEZYKImyAIgiAIwjJBxE0QBEEQBGGZYC32ArrB4OCg3rx582IvQxAEQRAEoSFPPPHEaa31ymbOPSvFbfPmzezYsWOxlyEIgiAIgtAQpdTBZs+VVKkgCIIgCMIyQcRNEARBEARhmXBWpkoFQRAEQRAa8fS9d/HE975Fbmoq9HbTtlm1ZSvXvv2XWXvhJQu8unBE3ARBEARBOOupljQnn8fJZRreb/L0Sfbv3MG7/uT/XxLyJuImCIIgCMJZxdHdz/PYN7/GyQP7cR2naUmrhecWObzrGRE3QRAEQRCETuBH1KbHxshPT3b02oZpseGyl3X0mu0i4iYIgiAIwrKi0xG1SDyBFYnOOS573ARBEARBENrAl7Vje14kMz7a9nWCkhZLJrnmxrdzxRtuqDjn+P5xdv7gIGPHM9g9CQxr7bzW3klE3ARBEARBWJJ0QtaiyRSmadWUNB9f1k7sGycz6cwcHz2e4eCzI/ziJ65m9dZ0W2voJCJugiAIgiAsGea7Vy0STxDtSTaV4qwla9V4rmZ496iImyAIgiAIgi9rkyMjLe9Vazai5rPrR8P89L7DZCby5DNu6DnpLT+kf9s9KMshP7aBsT03sO7Ca1paV7cQcRMEQRAEYVF4+t67ePgrt7WcBk309bN220VNFw34sjY1msPJe3Nuj63Yx8BF3yfWdxjDnsKM5Gdui/SM0Lv+WeIrrgaubmmd3UDETRAEQRCEBaOd6Fo0mSISi7dU4dlI1qAUWRu4+LtEkmfm3KZU8Ksio6OPkk6LuAmCIAiCcJbTjqxF4gmSAytaSn/mp0v71JyCW1PW/OhaYnA3ZnR2LZWiVolSNv391zW17m4j4iYIgiAIQkcJ9lnLTU11VdbqRdR8/D1rZmwCK1q5lnrCZll99Pddy6ZNtyyJaBuIuAmCIAiCME+ColbIZluuBu3p6+eV73x3x2St3p41aCBrZppodCUbNnyQdetuaul5LAQiboIgCIIgtMx8e6w1E13z23WcPjRJbtqpkLWgnGHMtvJQRnFOVA2WX2StFl0TN6XUZ4G3Aie11peXjw0AdwCbgQPAr2qtR5VSCvg0cCOQAT6otd5Zvs8HgD8sX/a/aa2/0K01C4IgCIIQznyjatBY1oJ71eJr76dn3Q9Rg0VWrs02JWdB6omaTyy6jt7eX2PXrgF2PnEM170fuH/mdsuyWL16Ndu3b2fDhg1NP89uorTW3bmwUq8GpoAvBsTtU8AZrfVfKKV+D+jXWv+uUupG4Lcoidt1wKe11teVRW8HMARo4AngGq11XbUfGhrSO3bs6MrzEgRBEIRzgU6IGpQqQnvSfTOy9tiDf8+ZydtQxnTFeRqNrySGmZ+T3gyjkZxVK47r2rhulExmkJMnr2JyYiXZbLbh4xiGwc0339w1eVNKPaG1Hmrm3K5F3LTWP1RKba46/A7gteXPvwA8CPxu+fgXdckiH1FK9Sml1pTPvUdrfQZAKXUP8Bbg9m6tWxAEQRDOJaoHtpu2jWGZjB8/1tb1DDMO2Ky4NMvg5Ucx7aMAHMs/yrHvfwLTzmMlmrtWM1GzevEnraFYjFAoxDg6fAknTlxYdUZjaQPwPI8DBw4siajbQu9xW6W1PgagtT6mlDqvfHwdcDhw3pHysVrH56CUugW4BWDjxo0dXrYgCIIgLH+evvcuHvnG18mMTeK5Llq7oBtHtmqRWJVh5RUjxAfzGKYCIqCMhhGzZoQM6ktZ8JxiMYLnzV7U80ympwcYPnI5k5Mrm3uwOhiGwebNm+d9nU6wVIoTwl5CXef43INa3wrcCqVUaeeWJgiCIAjdpTrq1Ulcz6OY83CdHNDetQcuHmXly85gRmdHRCkDrFj1yKhCxVe1BK2VXVq5XBxQKFX5WJ2WM4B4PI5pmjNfL8U9bgstbieUUmvK0bY1wMny8SNA8DuyHjhaPv7aquMPLsA6BUEQBKFr+A1pc1NTuMVi2/vHukVQ1AzLw4zUNq160bN6glZ0LFzPrH17MRqe3vQ8Io6D8mYrTKNNpjzDMD2P/qkpLj10iJXjExW3qWiU2MUXs+Kii+AcFbdvAR8A/qL89zcDx39TKfWvlIoTxstydzfw50qp/vJ5bwJ+f4HXLAiCIAhtE5Q0ACefb3mQercJpjxN2wuJpHVO0OYIWY07W45DpOjSp6cpGAZ4Hv1nRrn4hRcYHBlp6nm1StjI+anhYaYeeohNX/oiiauu6srjtkI324HcTilaNqiUOgL8F0rC9hWl1IeBQ8A7y6d/j1JF6V5K7UBuBtBan1FKfRJ4vHzef/ULFQRBEARhKVAtZkGWkqQV+gYp9J+HNkpv/an0adZtep7e3hEi0bn70apFrZkigOA+swpBC72znrlzJJ9HeaWvo47Dhbt3c/7+/S09v65SLJJ57PGzW9y01rXaDb8+5FwNfKzGdT4LfLaDSxMEQRCEmrSy36zTYhZNpjDN8Ldmf6+a57ol5dGlDzceJz+wAjcWJXxrOGAYYJqkek+xbv0uentPEWkwTSDMtaqjZ6H7zObcsfS1VShgFmdjWqbn0T821tUIWsewLBKvuHaxVwEsneIEQRAEQVgUFnO/WSSewIpEiSWToU1p/Ya0mYk8XsbFTkI2foxM4ghaFdF4YIYl+GYpydqzLctaMIoWut+shqBBpaR1I4KmkkmMWKxj16v5OP4et498eElE20DETRAEQTjH8EXNyefxPJfpMwsT7YnEExTSg2R60mjTxI7G0LEYeSBvWdz31B6+/eNn0EUDlIfWCk1ZzhJAAjQumCEzOkMCbatW7WbDxmeIxeoPVa+WNceJMTExyPCRy5icqK7WrJS16ihaO5JmpNMo2w69TUWjGKkU3sQEulDATKcZeP/76H/Xu5q+/tmGiJsgCIJwVhOMqHUitenGe8gPrMKNJQBj9gYDVIhBKaWwozHyhkGhMNsuI18skp+amtvkqnahZeCi4YdXrdrNuvXPY9vT2HagdUcjWctHmR4f4PhLF5E904/tFHDtCFErF/o40WKRiw4fZtvRGk16BwfrL38RI1lTjx5j8sfD6Fzj1ijKMrDXJEm9ZgPRTb0LsLrGiLgJgiAIZxXBPWq5qak5ouaLlxeNgafRpkmFgAWpkjGNAjPErMpmVGsLfr5YrL3gJpvRzrkos2nQZPIMppmvkLXAskp30bMPpzSocYgcVKTuMYm8pFHJPFfGds9K1c3vWTLpwVrkD04w8dBhnKNT4IZEIqvwCh7kG58XxB09Q+7FUVbecsWSkDcRN0EQBOGs4Ol77+KRr9/J5OmTs1Gx9HlUSJlSYDXx1qeCstZhGl1QMduCvvpcBamUv2dthEhktn+ZCt4v5LHmypqBkU5jDQ4y8KdLL/2YPzjB9M4TFE9MUxzLzxEz7Wp0pv7+vo7havL7x0XcBEEQBGE++GnQU3mXbKoPnV4NfWsay1mzM5fmSy1Jcw1UICeqMECDZ+Vn71OWMNuK0L/iDOed9ySJxEkikUzt5YfInpqCyL6ArPX1kbjmGlb8+eJtuG8UKeu2lOmWdFyBAdGt6a6tpxVE3ARBEIRlhZ8K3XPocGmjf2IFpGqnL7tJcESSW/Rw8i6eq9FeuBgY2iaeWUc8u2bmmB01ifVYDG5IsfZqm8nCaeLxOFNTd2GYD6C9MYrueP2FVD9cBsxxSD5g0vNwaX3mypWs/NOPLUpkLbivrBtS1pqIlZjEo9GU1gKwF4+vUOCPcbmmrdV1FhE3QRAEYcnjR9bGMjmmEincRBIGVleeFCZqMxu7wiVuYGAA13Vx3eZFwp9fefGWKzn6pMPpQ5MUckXyLcpIaiDKNTds5rJXrZs5Njx8O9nDn2dq6hiuN11/25au+nwKzKlKWQOw1q1j8JaPLpiwVUfT2tlXFkQH/qx3zjgedXYSzjAJ3EmBb7cyt9WDR/aPcM2m/sbndhkRN0EQBGHJENb8dtKOl9Kg8QFIVb1the2+Dx5XqqODw4/vH2fnDw5y4olxHn6wRkVlHRIpm1Vb01z95k2s3ppmfHwnP336k2QyL1EsTlEoHK9/gSpZq96z5jOTDu1y1WZ1heZ8omm1BM0DzhAufn5E7DYK7AodWNUZbFPxM1tXdO36rSDiJgiCICwqT997Fz+5+y5GsHDsCGBAuhxNK3f8r6CWrAGmaRJPJOYlZ0F8UWs3qgYQTVis3dbH1W/ehBv9HocO/zf2DI/x4mGn9RRoHVlTyST2qlVd6XMWtiet3UiaDnymgUk0TkiysxNSloqaRCPN9FcJJ2qZXLaml19/zflLItoGIm6CIAjCAvONL32eZ1/cgwuUJh4qSDR4U6zTiMw0TQZWrOC6665jaGho3usLTitoR9QAogmT9LpDrL7qPlR0P9rL88KhLK433fjOIfvVjAzYwyGRNb8qtEVZq1ccoCwDFbXwckVwvXnvSQuK2jSaLLqjkbIwOeuLR/jQ9i28+7qN87r2UkTETRAEQega9333Ozz2+A4KxSIzW8hNq/RRTb1igurxSkqR7Onhta973bxkzZe0/HQp1ecUXJwaUaTYin0MXPR9Yn2HwajcH6VUqd+bYSrsmIlSRYruOAWA6h62YU+zWtacKHauj/S+19B36Gdnj18IXGxgWDYqkcCIlL6P2b2Q/bN/b+o5NydihQa317l++U8NTODh0Oa+sgCDqcicY2eznNVDxE0QBEFomcOHD/Pwww9z7NixORv7XcehkM/jFouzac566c4gYZPN8S9hkurtbSoFWi1kYbiuNxNR22grzo8a2LYiv/IlxrfchdN7CF0WNG0U0ZHmJi5UfDsUc0WtRpdeK3MeZrGH9JFX0zf82tnbAiM5VfD7lgcv38x2/O5QHUnLlY/kmV80zY+gLcU05VJAxE0QBEGoSZigua5LNpude3K1dPmyVq/aMwRDKaLRKKZt4xY9tGOSzK+nJ7MWJiE7DPc+cQA4EHr/elGzflNxQVSRNkq9uabX7ye35fsUeg9xwiiWBa1OOnMeUw4qLuPEMNwoyrOJTW1k4MCNxMcvmN/jLAAayBiQ9dzy/rT5RdL64haWZZQ/PzcjaK0i4iYIgnCOUyt61lDQqoWslSia1uC54GlQCkNFiDJI2tlE1EvDdGVEDCDTQA6CUTPsuRvSC317mdx6F5nUIaaNUqTKi9UoDqgnTq22DNNgOD3gWZjFHvoPvrEyojZz2uyFS9/KhbE3FTdR1uxjVe9xA5hyNc8UCny2mGOX1/6etL64RU/MXhaRtC8Nn+a2Y2dYHbX42MZVDKV7FntJgIibIAjCOUPD6NkcIWlC0OpEzipwXfA80BrLUSQyW4h65889jXBBC0bKwqaKmpRaNgQZW/cgoxt/gGtn6kfSavlRradWFjHlWXVPU55NbHIjAwduIHp6Lbiz+8Y8xmZPNAwMy8QcSIGym5q5OV+aGZ5+26OH+OyP93NsIsd0/uxNeX5p+DT/dOQUY85s2jnrekz6TZQn4d6RSb5+1QVLQt4WXNyUUhcBdwQObQX+GOgDPgqcKh//A63198r3+X3gw5R+pn9ba333wq1YEARh+RGUNKUUhmFw5syZ2RN01Sel3fVVNCFoWoNXpEabLZTnEZ1w6SlciWGtrbhtJkLW4LkYQMRsHH0aW/cgo5vuwbOm8cw82q6uCqA1SdNgFJMoXYreKc8mltnEiqNvJXZyA24mU4oa1sPJUNh3H5mDP55dQjKJmU6XBrl3uc9aI2579BCf/epOxnKzshy1TNyix/HJRnMFZlkuKc9qSasQtDo4WvOTsalzU9y01i8CLwdQSpnAMPB14Gbgb7XW/z14vlLqUuDXgMuAtcC9SqkLtdYLNFlWEARh6eJPFJjIO0wn+yhaETwV0vvMZ6Yx7cyB2dvqRc+qBU1rzHyG6JnjmNlgJCsKKoJhnYcVuxbDWlsStL6SoHlAAU0C1ZSMVS597vlj6x7kzMYfUIyeaV7UakiaaaQw7SiGESWVupRNm24hnb6a0Tvu4MwXvog7MQEco5j9n0xON9HWI0C7bTs6jR9FG8s5ZAtuW5E0n5XJCFdt7F+ykbQd49P83aETPDuZJe95TUtaGLZSvLIv2eEVtsdip0pfD+zTWh8M+4Es8w7gX7XWeeAlpdRe4BVAc3XPgiAIZwG+oOWmpgCYiiXJJHrRhglhEwWg9crNsOhZPUHzh6SrFIZ1Huclt7MtcV5FOrMyhVmK6iVmrt36ONFsei8jm79HLnkIz56aK2vNVHACppHGjiSJxdbS07ONNWt+kXT6aoAZUTsx8XGOZbPoFiUNlk5UrZOiBtCfsLh284olJ2vVkTTH04x2KOV8WU+Mv7xow5KItsHii9uvAbcHvv5NpdT7gR3AJ7TWo8A64JHAOUfKxypQSt0C3AKwcePSC88KgiA0Itilf/rMTnITj+PpHHgOhb40hf7z0IP94dMEoPnqzaajZ/51o6BMlNmLZa8ilr4OO7qOdcAGVXojMYBImIRVB/hCbqtHUNS0lcUL26dW7zoKTDOJacTmRNJ8Ru+4g9P/zx9xYmICr01Rg6UXVWt3b1o1qajJqnR8yaQ/OxlJC5IyDOKBKHCfbfHR9St537rBeV+7kyyauCmlIsDbgd8vH/p74JOU/n/0SeCvgQ/RZKBba30rcCvA0NDQ/F9BQRCELhPsNZbPHCY79iiee5JCOkGhfwV6YH3pxPmImtbgOqhiEQyFkc+HCpphxrETEcx0KYpi2jartmzl2rf/MmsvvASonEs538HhFUQNjEgpRjd63v2cWf19XGsarYp4dpVENSF7vqjZdh8bNnyQdetuqrh99I472PeFP8LL59Gui3u8wXzQOizUTNBGPHFwlH94aB+PvTTCeLb13m7B6QNRy6Q3ahGxDN517cZFkzW/qrPguUwUPfKe17FI2oykOVn6cqf46PHv8L6R++eeaEVh9ctg+8dhwyvm/bidYDEjbjcAO7XWJwD8vwGUUv8EfKf85REg2GVxPXB0oRYpCILQCcI69GcnnqKY2wneNG7cIr9qFW5iC5g1tuvXGftUccxzwfUw83miZ0awCg6GFUcXs2hc7KiBle4PlbNqph49xrG/3oE7kZ+/qEUNzIQ102rCiJhMv+IJTlr/RtEZw3WbHAkVgmkmiUVX1xQ1f4/afCJqKpnEiJW64Zrp9KJH1nxZe/LQKKenWpt04IvaUisk8FOex3KFNqNoOmS+q6a/OIVNkT53mo+e+F5J0grTUJhsfMmxg7D7brj5e0tC3hZT3G4ikCZVSq3RWh8rf/mLwLPlz78F3KaU+htKxQnbgMcWcqGCIAj1CKY4XWdWbkzbIBK3mBrNzfQjK+afLsvaJG48Qn7NKtz4OrCqRvo0m/Z0XRQWhooR0amZPmimbTC4LcXVb97E6q3plp6PH1mbj6wFe4MZcZvk9nUkr1sDwPj4Tg4c/Byjo4/hFsbbnq5kmWmi0ZUzspZ58klG/vyf2fP8Z9CF0kU7IWpLQdJ82pW1pSpqwbTnmFNsTdZCfh5SziRxr1QNG/UcLp/ey8eO/CtDE7vmt1DPgQM/OnfFTSmVAN4I/Hrg8KeUUi+n5MoH/Nu01ruUUl8BngOKwMekolQQhMWiWtKqm8RW4xVfoph9HM89CTrXvKyFFhAo0CaGNjGVzdr0Nm74xde1LGZhzEvWyqnOWr3Bhodv55nD/x/FH5V6lxWc042vOSdqAioLRt7APm7T+3CK6OEIkGGa/8OLzqfxxms0022SpSRqvqA9d3ScfDk16Lge45nm06BLbW8aVBYRNJ/2DImiQTmSNo7tFekrTvHR4a/yvuPfCTmxAxg2bH5Vd67dIko32zxxGTE0NKR37Nix2MsQBOEswZe1E/vGyUw2Hu0zG1XLARnceA/5gVW48Z7GkbXA72TTNIknSjWY8Xic6667bl4D1atpW9bKolYdSYOSpB06/HmKTknSQtOfmsq9amFvQxlQBVBFsIcVqXtMIi+Ftd5tH6OvD2v1agzbpu9Xfrmrohas7gzD31c2kXOYKhRbErRq1vfF+I+v27YoslZdOBCk6SKCKi9ZkzuBhUdelbYQdDSS5hNJQSSkanSB9rgppZ7QWjf1w73YVaWCIAhLEn9PWmYiXzeiBpWiVuhLUVi1Am2sL78BeRCJVd6hlqwpBUrR19fH9ddf31FJ86kta5U2Vf2fel3MogsTFI/+BPdE6T/G+Q0F9kUmKRx2wNJ4tq4YiF6BCvk8+BBlUTOykHzApOfhGn3o5sFCRtTaacMxPI/HW+ieamHTBuZVOFD17y3lTLKmMDK/KFq8H8xog3P64Lr/AEMfbO8xFgERN0EQBCpToLlpp+aQciiJWp5d5PtTuLEoJRNZX7v6ExrKWjKZZP369Wzfvp0NGzbMvf88yB+cYOKhw+RfGoesWyFlsz001RxZ85wM5MaYzP4bY5fvxFmv0eV3DW0CqRoP2ELTW2MEUj/ovKgZ6TTKLkVouilqYZG0TvRLa4aFkLWwCNq822/UKKrpL46zsjDWmqxVy9kSrALtNCJugiCcU4QVEjTap+ZH1NyoIj/Qj7siDlXjmypo1Ph2HrKWefJJRj7zz+Sef35mA34tzFVDmOtfgxkbqFre3Mja7FzPqdI6i3m069QXNGhe0gAyYGTAHAX7uEHiUaNh+jNYydkIFY12teFt9b6zhRK04Dipbs799KNoWdej1zI4VShy0mn3+dXYl1bGLyJoOe0Z74do74LJ2VMnn2LHiR0MrRri5ee9vKuP1SwiboIgnPW0kvb0ikeZtn9KPm2ijYBUqA1gVf3KbGYygZr5o2VZqxy1BNpxGm7AtzZdj33+z6Fi/Rj2zIyCObKWTe/lzObvkUsdKsma3WAuZb3+aXX2qEHz6c+FipI1S1DU5rvvzCfYLy1IcI9b3vW6KmhNRdGaH1MaICBrgcKBIE0VEQT3m1lRSK+HlRfBlTd1VdSeOvkUn3v2c7xw5gUKbgHHc5golH72omaUf3rTPy0JeRNxEwThrCPYM80puDXTnqEpT8MAMxF6PtBcLzVKhQWp3l5isRjFYpHBwcGmZM2PqGV27Gi6StLo30rkgjehBi/AjFSGx3xhG137QDmilkEbRXSrEwigdgSlXPGpXIWRNUg9kiT5RMhG78GSkEUvvYT8rudwJya6HiVrhk5UcNZiKbThaK+Ssxk0qWKm1H5Da9Bee4UDfrpzgfabVQsagOM5jBdq/7zl3Tw7TuwQcRMEQZgv1Y1t66U9W0p51huiWSVrynOJRGPYsVjb1Z+jd9zB6X+8leLR5vuLW5uux77wLUxu28WJjXfi2pnSeoJLheZFrbraM+R8y0xjGKWoWK0RUtxU4/4LxBMHR/naziMo4LK1aR548WSFlPlELRNLKQ6eycz7MasjaYslat0aBwWa/mIGu9wjrc+Z5KNHvtJe4cACpjvDomj1BK0WCsXQqs4XC7WDiJsgCMuKZqNpUFnt6cZt8gMr5tfsNkA0YrPl/AvmVUzQbnQtd8Naxq54Ds9+As/8CVQPWq9Fo4haYK5nxWPWErRFIixC5tOpSFkj/H1nS6GhrR9RO5V3OhJN6zdN1sYsJnJZyI9z+eRuPnbgC+233ljgfWl3vngnX37+y4xkR9qStDA+cNkHlkS0DUTcBEFYwlQXEviiVtknrQplloaie5OlMVJrWu+fNoProtAopbCjMeLJJKtXr5535Wer0bXCpVGmb+ihsDqPax8A+4W5JzUxw7MW1RMIlhLVkrZQYlZNX9yiJ2Z3bd9ZK8xr2kAV/aaBbZT+8fTZFh919/C+Xf8DsqNwZn/7i0yugvXXdlXUwlKe2WKW6WJ7kzKCpCNpbMOmN9rLey95L++86J3zvmanEHETBGFRObr7eR775tc4eWA/hXyeYs7Dc92SR4W+HznljxpoKKSj5Ae2QaSqh1MjWXNdFBCxLV4xNMTrf/6tLT+fWrQaXZve7jJ9QwKvx8WLTAJVMxXD0py1bgvgpzqXWhTNJ9heYzEkbaEqOJuh073S/MHqUcPg8lScj21cxVC6vBdxx+fhgT+H6RN1rxGKX0ywAK04fFl7+tTTnM41MYGjAb6gAUTMCBcPXMzNl9+8ZKJrYYi4CYKwYDx971088b1vkZuaAqCQy1PMz39/EUChb5BC/3lo066s/mwga51IedbCl7XsT3+Ke7r+m0xhi8fkG1yKW2O4cQ9slwpZqydqZQzVg2XH5x5fIpLm7z3be2KS4bHsnDRnt9trBKUMZis5Hddj68rkognajvFpvnL8DLunswznnI7tTfOjaX22xUfXr+R96wZnbzz8GNz1h3DsmVJ0rZlh6z4LXEzQqdSnL2nLRdBq0VDclFKXaq2fqzr2Wq31g11blSAIy4pg1Mx1wqNhTj6Pk+uMpAGzY6RiCTCsuY1va8397HKz21ZkLfu2LUy+cgQ3lkFH/O9NNrDWqjtUvY+rYhzTjhNNDCyZNGet/Wfdip5VyxiUhGxdurRP78x0YdGlrNYIKJjntIEqUoZBn23OjaYFOfwY3Ptf4OBPWrv4AqQ+g3RC1nqsHtLR9LKWtDCaibh9RSn1JeBTlIaZfAoYAn62mwsTBGFpUR0t83GLRfLTLfxvfR7UnfkJ4bK2AJMJmpE1a9P1ZF6fYuzCR/DsDJ5ZAPvFqvVX3Slk0LpR7MFmgPVrP8DmK27u2HNoRKNZm9D9wgBf0hakFGRAAAAgAElEQVQ7hRlGx0dANUm/abAyas+NqFWz4/Pwo7+G8UPNXTi1FqIpGNy24LJ2YvpEy/vUginPpbgvrZM0I27XAX8J/IRS/+x/AbZ3c1GCICw+wShabmqqo9Gy2kSBcuSs5FsYpokz0Ec21Y9n2bOn1mvXUb59sWRtpq9aahXjmx5h7KLHKcZqVH82iqo5McxiknhhCxtWf5g1r3xjR59HvQpNn4WaEBDEb6+xlCStVvSscy03wvH3pvmE7lEL4/Bj8PD/gAM/gdxocw+WXAWv/YMFm905H1kbjA1yxcorzqpoWjM0I24Opdh9nFLE7SWtdXf/CyEIwoJSHU3rfhQtwsyvH2Vi2qtI9P8MseQGBjekuPrNm3DsCR5++GEOHDhALtdkuwsgHo+zadOmrsiaP8mgODIyp8DAl7WJlx9n/Pwf4dpfCO+f1kxUzenBctKsOPPzbLzkAySvWzOvdS90+rIZBlMhEVO62/+sWryihkGvZTBR9ELTmEEWInoGcJ4d6AUXtjetEb6sHd7RfKFBvL8kbAu4X20iP9FyBWg6kqbH7jnrUp+t0oy4PQ58E7gWWAH8o1LqV7TWv9LVlQmC0DWCotbJvWeGGcfzVM0O+8qIYcauxopeAUBqIMo1N2zmsletmzlnx44d3P7NzzLeZF8zKMlaMplsq/FtI3xZc06cQE/Pvsn4o6Vy551idNv95HuP4tq3No6qhXxvlBPDdJPEMptYOfILnHfV65qStWaiZYspZ2HFAAsZPWs8McBtc7RTewRbbwRpOoJWj1ZToQCbXglv+NMF66vWbgr0mlXXnNOiVk0z4vZhrfWO8ufHgXcopd7XxTUJgtBBqgsH5itqkXgCq9xmw/U8ijkPiKDsq2aErBFrLkjzyl+6gNVb0wAcPny45ejaQqRBg607Cls8pt7eh7POQZse8ATaeLT5iQTBm4txDC+C6SVZm34P57/+1+dcopGULZaQ1Zq16bPYqU1f1o7lCl1NX9ai7bRmu7TaxiPeD5u2d2XfWjCa5tNOX7Ueq4dVPavO6n1q86GhuAWkLXjsS/N5UKXUAUp17i5Q1FoPKaUGgDuAzcAB4Fe11qOqNGjv08CNQAb4oNZ653weXxDOdvyI2vTYWEdSntFkip50H9fc+HaueMMN7PrRME/cdYDJM3nsZJPXSFis3dbH1W/eNCNsO3bs4Ec/+lHT0bVupkF9WRs78zjjQyM4r9bonwNlmmjbQseKQI0q0WbSn26SSGSQzRd+ZE7151JqMltdoTl72+JPCAijk81oW6E6etZWWrNddnweHvk/MHG0+TYefRvh+k+0nAoNa3Ibxnwb34qsNY/SDca6dOVBS+I2pLU+HTj2KeCM1vovlFK/B/RrrX9XKXUj8FuUxO064NNa6+vqXX9oaEjv2DHHNwXhrKVThQTBaJpp26zaspVr3/7LrL3wkplRU1OjubpjpoLYUZNkf5QrX79hJh3aTnStr6+P66+/nqGhIcbHd3Lg4K1MTj6H9ubmuQwjimX14hQnQm8P4jlFvEwGig7a1WiTUglWLerVQ1RH1dwEdrSPdP9lFf3TFlPSarXOWCqb/5shKGpTRbftfWf9pkHSMpve4wYLED2rhb9vrdWeay228PAl7cDEAWzDZiQ70pEmt2H0WD3ErfhZXwHaLEqpJ7TWTe3zWEri9iLwWq31MaXUGuBBrfVFSql/LH9+e/V5ta4v4iac7Rzd/Ty7HrqfkSOHGD12lMx4kxVjVfiiFksmZ6JpQfyRU0d3j9Yc3B5G9d41X9YOHz7M9HTj/5WnUqfYuOl5envHiUQMLLMkG57nUHQ7MHuw0a+9FgQteNzwUkTjK9m09UM8dGQ7dzx+iELRYyLndF3SlmO0rBHVxQTtFgjUnRiwmASFTCmI9UJ2HIKRLbcA2TPNX7PFVGg35nrWQqJqtWlF3BZrcoIGfqCU0sA/aq1vBVb5MlaWt/PK564DDgfue6R8rKa4CcLZRsVYqGy27fRnNJnCNK2aouYTTIWGkd7yQ/q33YNRbhqrPRtFkkgsixlxMU3FSdfjyA8KeJ6L53mkeuHSyxqv0TTBtmcf1/Og0OlivmbmetYTtGIPCgsVMbGiccaKW/jKc69i15lNAGTvdZnOP9Ox5daSsuUULfP3nmVdr6ko13yrOFOGwZpYE/3NFoKgoPlS1qqQNaLJNh7zqepsFj+a5iNRtc6yWOK2XWt9tCxn9yilQiYmzxD2K3bOr1Sl1C3ALQAbNy6v/1UKgk/YBIL5tOaIxBNEe5IVKc9a1EqFVkuaYeYxI5VCV2qpNgJA0S19QEnCqgca1KNRa7aWmU9CodyWQ3mlX5PKs4nlN7Nx7UdY88o3zqQ8H3tphPGsH0WrvQeoWZZyk9kwwhrPVjOnz1mXKjmbbkbbKcKErJpOC1qQSArS62q28aguFpivqAWb3IYhgrYwLIq4aa2Plv8+qZT6OvAK4IRSak0gVXqyfPoRILgLeT1wNOSatwK3QilV2s31C0InqJa0TvVOqy4kqIWfBj19aBIdeZ7erXfRf/Vh+o3ZzvhhkuZTS7I6Ll918Aem+3hOETIFVAZclUMbswKqTLM0X9EwgcroVXDJyrOJTW1k4MCNxMcvwEjaRDamSL1mA8/i8scP7ePJ++/h9NTykrQd49P8ZGyKV/YlGUr38KXh09x27AwFz216j1c13W482wh/n1rH0p/+pv9iDtLrS8fGDodLWTeFLMBT0QifS6d4wY5QKE8BQZkQSYCdKJ207wuljwDzlbSNqY0UvZKMn+t905YaCy5uSqkewNBaT5Y/fxPwX4FvAR8A/qL89zfLd/kW8JtKqX+lVJwwXm9/myAsVTqV7qwmke6fU0hQi/3P/ZA9u/8Bbe5DqwJqPZy3sYgVrV/MECZj890e26zgVctZ9cD0ygkGE8F7zk4wGNiCGeurevzaC1AJk+jmNKl3byC6qZfbHj3E393+OMNjzTcC9lndG8U01ExLj1Ykzd/jdTxf5N1rBgAaRrdqcdpx8dUsoSCzzP5761dxtr1PLSw6ZkVn95VVb/ofO9iRdd+Z7OHLvSkmjPD9hz4RZZDCYhKPQvmVcoBxU1EaI1J1BzdT+ugQZ+tcz7ORBS9OUEptBb5e/tICbtNa/5lSagXwFWAjcAh4p9b6TLkdyP8G3kKpHcjNYS1KgkhxgrBU6HRbDihF1CKxeKioDQ/fzqHDn6fojFXcx3E8nHweM6znWJl6IlXr10TRsXA9E88zKRYj2HYBpeYWMRiGgWGYRCKRmUKDelTLmY8vabnnn0cXCmjHqTnBoFVZe3qlxZe2RNjdb+PYiqzjkikUcT2aTrn6ARH/896IzdqeSFsRrYXq1L/Q9Jsma2NWU9+TjknaAkXHoFLUsgqm6+4VCBGyBUKqOpcWS76qtNuIuAmLRSfne/qFBAB9204xcMlJokkDs/xGUN32wnWzuF6lmIX9eLcjaDAraQDFYpSjw5dw4sSFoedGIhESiQSrV69uqueaP53AnZioeU6YpH17+8/xtTe8jclUH0qZoBQRD5JFmLKgENKlvhplKJyowcyV2/2duJA54iVIdePZarrS58xPbeYC/y4WUNIq0piGQRbFdNj3YJH/bQSLBUTUlibLoapUEM4afFk7tufFttty+JJm2jZrLk9y3hUjOByeI2SuV/qYIT9c97q13i9quYnWUCxGSmOryjSSNCg1xk2n05imyVVXXTUzdirz5JOM/MVfsqccIQvDy2YrRklVs2vLNm5/41vZt34TBX/IvGGRi8XIRGpvlG5MINrhf0OCIbNzjFrjmBrR1cazYWLmU5huvp/ZfIn3l/ZHAndGDb4cV4woxbhpLGjErFFxQDUiaWcnIm6C0CZHdz/PD//l8wy/sKvl+/rpznVDDr1bD4NxCpjtUzY1j6q7ZgJG1YLmeSbT0wMMH7mcycmVDS9sOQ6m6xItFrno8GEuHDmDkUrhTUygv/BFdhMeIdu1ZRt3X/cqAHqyGf79ZVczmaidAnNMi8lUvY64dEa0gtdo5hu4yHLXKLpVTdQwWBcrveEP5xzynkefbfHGFb2kbWumYGHBqVeV2U0x80UsuMfNLUC8r1ShuepS+OltgOLOwTV8+fjD826fUd0io5qIGSEVSTFZmKyYUBAxI7LvTKhAxE0QWuTpe+/ika/fyeTpk3NuS6zKsPKKEeKDOQyzUgCUMjAsk0gsjmmemomkFVxKw99aoJFbuE4E1zXRShPcoNVQ0HTl+WhNxHFQ5f4eUcfhwt27OX///oq7/XTLNm5/9Q2VUbEqmpKwWrSb3y3duWrIe4PzNeC4+Dv5lQLDgETEIm630NuEkjC10pk/7P6Xp+JsjUe5Z6SURu5KdGvH5+HJL5bTjOO1W1t0Al+WJk82P19zHtw5sJIvJyJMKBMsE+weMCNAUJZ6ZmVp3xdgX+nTbDHL9Mj8RE2iXkKnEXEThAYE962ZPSdJX3iYdW8METNDY8XmvjmrmT9cwMH1crS659x3DdeJ4hVLKRvt2XiFOGYkC4YDysMpWgwfuZgTJ7eFLKLqYmVB86NnBNo6mJ5H/9gYF7/wAoMjIzPHv7395/jku3+jIkrmmBaTyWTzUSj/PK1bi1zVEa4exyPmAgqiSpGO2kxFjVK3fVczXSjiFL36zuaBMelgHZjCGC+wvi/Gf3zdtiUzbeCPLljX3h0bSdlCphznyZ3JHr6eShLxPFBwzLTKLTKgssWLAZZJ1rCYrhh75oIzUSrX9OlQ/1k/jSmiJnQbETdBqMHT997Fkw99hp5Ne4lvy7HxUi9UzKrpVBZNa3ALPXiuief0MLr7DYy/9GoAHHuCXOw4RSuDZ+bxcMCsWlutKJPWRPJ5YvlCaPTM59vbf47//B9+d0bScpEomUSi9oJbfeJKtVYIoKHX8bADT7O3CO8+4XJTtIfUa0qtO3xue/QQf/fDPQyP5TCAaBMPsTIZ4aqN/fz6u5d209s51Eo5dkHKmm1vUYuI1qQ8j0nDKElXMyjIYoRs/K9XlemC12IouwWkfYawWIi4CUKAvc/8G3t3/y+0eRxlF1n32pAIWhe2N5lmEtOIldp2TBtkRtdz5sW3kBs5f+Ycx54gk34Wx55Em074heqkBCP5PCtPnZ4TRQvb/F9X0lqteJhZV3Af2cwfs9GyGkQ8uGjS4/0HClwx7kHUwExY2GuSFbL2xMFR/uGLO3jp1BRTuSLHJ5vbKDgja0ttQkG9jflBOlRF2YyQNW5v0WkWr11GNZL6FJYKIm7COc3w8O3s3/uPZLOn0K6DGXOxKlt/zfGUaj+p5THVjWPDsO0+jNwvsPeBq+aMmvLJxo8xnTjIrg1reHr9y8mbpWuankekWMCxIxRV+JutKu9ZsxwXyy03bf352dsb7jtrxVKVCq1M9BwPCi5ae0RcWJ0tfQMLJrzjiMMvDTduJqviJmYqSvIX15G8bs3M8dsePcRnv7qTU9P5loa39ycsrt28ojuy5qcmrVhpE3x2tHb3/Vp0MX05pxM/bQjZMqy8DSsOqFUQEERETVhqiLgJ5xTj4zs5cPBWJiefI589jValqIxhA2XHamZKgGmksKy5ybdajWOrmTsXtNTvbd/aMX5yUYKRZGpWxtRWHGMbRTtMAuukLoPEGtze4htxdVVjsCXE1KPHmPzxMDrn4BU8CJHRZpiZXlCOqvmzQZ974Dnyrke24DKdby0VNq99a81EwJbQfrGgoAGklMGIMjlthkVGl05kq1VkfqZwriHiJpz1+NMEctkTuF7gTTXQ4b6aOVk/DaaZIh5fxYYNH2TduptaWsOXhk/zv3cf5UzOQWuN1qCvtUDFAI0GXMOgEGkQ/VmESEdQ0qp7dvmSRjGDimY4Mr4bsu3vKypF1iIkt5ciayVZ282Th0bbng3aUnStlpwtISELoyLNqRQOqjwqCeZKWWf+DTVqb1GLZqJcteiN9vKa9a9h2plGo3n7+W+XvWXCOYeIm3DWERz75LpZXHe6YmJRo9Snf8wrmEQiaVacd03NCNqXhk/XnR3puZrJgkfej3JEq1OaIempdlpfVO8ha5NgqrNWY9X8wQlOfXEX+ZfGqyStdbFScRMjZlbsV7vt0UN89scvcurup1tKfwbZNJCgL2Hzrms38u61x+Hhv4F/C+kVFmSpylkkBZHKHmtPWYrPxRUvWKWJD9MdbATbSMgkgiUIi4uIm7DsCaY/i85YacqApiVZc/MKzzVAmyhnNRdc+Ftc8LJfAkpy9psvnGLMeaaiL9eYU2TSq7Mh338Q38061PoioT2S0ci8e4T5NDMPMn9wgomHDlM4NIGeak+miBoYEQNlGSGitp+xLx9tK/0JcH10Hx81v8Ol6iC9MZNoaqDU+uLBqQUbf1SX5OrW7+M3gx36IHe+eCdffv7LTOQncDyH8UKDgoUmCaYZRcgEYXkg4iYsS/yoWiF/iqI7+yZWMbkocH61B2kNbt6gmLUY272Gk/2/xGNXvop9WCUJGgd+/AxZ16uSMxeanWrQTGivFloTdfKYnkaZikgkyspEvHujhUKYt6yVRc2I2zOpT6Ajovah2IO8h+/SS4ak5REvjs80zGUamK4/CmxehETAKoj3wYVvgfw4oODKm2DDK1p+GF/WTrz4D2136/cZjA2yIr6CyXJEUVpYCMLyRcRNWBbMSX8Gh6lr5uxXC3MkN69wCyb35N/MPbGfJ28nsfqjcH2EUdeDvKayM2eTtCBktuNgzektpVHl9him53HhxBl+f9tGrr/2Z1tfSweYevQYEw8cwhtrPvWpEiZmbxQvV8SImBWiFiwqGMs6LYna1Wo3t5jf4RJ1gLhZxDYMUkYeKygybQYA6xImZ4EIWLeYkbXpE23JWjDNKaOSBOHsRMRNWJIE059ucaoiqjaHGrLm5hW79UV813wHB9wtODpKsSdGPh2pOrHNMQYBwoVslmjR4YrhfVx69ACRfA7laUw0A/kCr7zq5Vx6882traHD+EUG7kS+pSpQsy9K6nUbKlp0BEVtqlBsaZ9aUNRSRpY+NU1gi30pqtZ+VrhiWHj47d2XM5+nTj7F5579HC+ceYGCW2h7DmY6kmZFfIWkOQXhHEHETVgy1Ep/1iIs/fmiczHfUSVRy6oE+XigXUbbFZmlDXO24xAtOqXeaVaEomHMCtnxgzOnVqNciOZzrDhzmksOHmRNNMrA+99H/7ve1eZ6OkO7smYkbSIbUxVtOr729WfYe2KS/aenW67+9GXtanMPg2q8UtTaIbkKkufNjneyorD6ZbD9422lLDuJL2tPn3qa07nTLd/fj6hJNE0Qzl1E3IRFI7SooA6+qN3PG/g+NzJNsuRUWqE1FD2bbDRZeac2ZK1XgXYKuK6L1oFo2bGynFVfslrWXANDGyQymsv37mbr6AHMdHpJyJq/b21uRWh9grL2LG4ponb74y1H1IJ8MPoAH1FfZy2nUbQpan5KcwnJmc9TJ5/i2/u+zb6xfRybPsa0M91WUUGP1cOqnlUSURMEARBxExaQeunPYFGBz/28gbv0jRSIkmCaDD1M6RQ5IxhFC3mgJmWtooms45AeOcEV+59n5fREyDUDjxW2pc01MT2LlSfhqj07GEzmS6L2t3/U1Fq6SbDIwJsqEnwCKvAN1FVPbALNc6bHN6IuL6ocHJ7E+cKRtkXtarWbj0W/yyUcYIWZIeq2mBYMpjkXMKXZDNVpz/lWfoqsCYJQiwUXN6XUBuCLwGpKu1Vu1Vp/Win1J8BHgVPlU/9Aa/298n1+H/gw4AK/rbW+e6HXLbROsKDA85zK9Ge5XYeqKiq4T5eiaWdYQU71zBWzmTxa6/EZv0dZD5orjx5iw3PP4BaLeHhQ3U2+YVTNxMDEyscYGE2x7ciTbDYPlWTtM7/fcC0zlZW5NoohykQtk96oxUTOIV+1T++NBYO3FkzSGnoxKp5OPVmbxOM0cCcFvo1T+onLtL1EPhR7kPfyPQbVOCk9OfvIzQT74v0Q7V0ykbRgS44gnWjP4bflkJYcgiA0QulWWhR04gGVWgOs0VrvVEqlgCeAXwB+FZjSWv/3qvMvBW4HXgGsBe4FLtRa1/zVPzQ0pHfs2NGtpyDUwZe1fO5Yw9SnzxxZC9JooHnN2yHheEQdzarJPFce3sPg5FE8XLRRI2LURArU1FHSI3E2nppi7cQzJNQY9132Or6y6po58lSLdltg1OJt2LwTm1T5CUSBFJWNflXVkwsK2xxZmwev63mJD+pvcak6SL+arKz+bIbkKlh/7aKJWi05a7dwoB6DsUGuWHmF7FMTBAGl1BNa66Fmzl3wiJvW+hhwrPz5pFLqeWBdnbu8A/hXrXUeeEkptZeSxP171xcrNEWrsuaL2jRJ8kTry1rYfyyUAqWIFcFyShEzRcmzTE8zODXKlYf2sXpitHTULEmSG3SZMN+rkwJNjvczeLJA+vRj7Nx2MXdc+7NMFa6ZTRuO5Ro+704QlLQCYKBZHTZ9gfqypoHjeHxpnrLWF7d4hb2Pd0cf5lprHz2jz7d+kXg/bNpeV9aqU5H1aHekUjfkzGcwNjizNikqEARhPizqHjel1GbgKuBRYDvwm0qp9wM7gE9orUcpSd0jgbsdIUT0lFK3ALcAbNzYxgBpoSX8/Wqjo4/h1qkArS4oCI2qQV1ZixYK9OTzOJZJUZUrOQ+/xKXHDs1IWShBn2la1AwMLCwnSe9YmpUHn+L+vh7u3nwFpIDzzy+d12VRq46iQXgkzada0mBuGlQDI3g8h8c37CIvxUob9waJzLlvPa5We/gN6ztcqg4Q87KlyQQN/KhiliaU5duESALsBHAUfvK7ofdtKxXZHf9qCj/tKZImCEI3WDRxU0olga8Bv6O1nlBK/T3wSUrvL58E/hr4EE2+5WqtbwVuhVKqtFvrPtcZHr6dlw78Pfl87c70WsMeLuQ7vIODbGZKJ8kZDVKgVbJmOw49hVxlNWc1M6OkmG3CG2jGO3dhIcdcEwUYnkViciUqu5qDsQiPx1yO9nvQ/4aaz/MyTN6NzQUYRNpsXhF2ryiQrCFopfs0ljSfaZVl0siyP3aUr/b/kBfjh4hHLRK2SQpK7TKcHHhF8JppkqbZozWfmPk6BqwlojUpz2PSMChUvbZZBdOmydxh54CbKX0sI8JmeYqkCYKwUCyKuCmlbErS9i9a638D0FqfCNz+T8B3yl8eATYE7r4eOLpASxVoLhW6W8+KWpY406p39sawgoIaTWxnZO14QNaacaJg86862m66JlFlMeAluaywnkE3Ts6wKVom9FD6AD5Y4/4FYArNALACc55zvesvNkzQoJ6kZcgZpdDXlJnlGwP3c3ffw3POyxRLH3OWYvqfNFpzK4TI2jIgTM6kcEAQhKXAYlSVKuCfgee11n8TOL6mvP8N4BeBZ8uffwu4TSn1N5SKE7YBjy3gks85xsd3cuzY15ma3sPU1O6KVOgeLuTbZUFzsEFDEatS1HyaiKpZnju3iS3Ula9mMFyFXRYrE8UKL8HlznrWGKtmTzJLH7F5PE4tuWrlCrWoJWhQkrRJM8O0kcExXO7u+3fu7p8racvSmhoQHIweRrt73EDkTBCEpc9iRNy2A+8DnlFKPVU+9gfATUqpl1N6yz4A/DqA1nqXUuorwHOUphJ+rF5FqdAe/p618fEncZzZju738wbuKhcSFLGYpkrQKvpMhEhCvRTo8YP1Bc1VKAwMT6Fc8EzQRukOSoPSLraTI5rP4BkmphXHiqTY5q7lUrbMuZwyuyMx9QRrvgSjaOBH0h4Il7QFrhCfpfmoWlgkqxkkFSkIglBiMapKf0z4r/nv1bnPnwF/1rVFnaNUy1opmnYzB/VmUOBhcIaVc+9Yr4dayByqaLFAvFCovV/NNWYiV0pr7EKOrXt+yvpD+wFwTIN8j0Ui62IGWm5E0ltJbXoTkeR6lJHANBOlLVp+b7gWU43totFMGFMUVef+P1Ev1Vl+0FDSros9n6enmplhYIBlgt0DZqmwoVGUSyJZgiAInUEmJ5yDBAsMfFnbq7cxrgZKJ8xpets4khY8Hi0WsIsug9PjvPzwnnJbjjJlSTNRxJXNJYXVbFQDFIMNcCPAZT8Dl5W+dFQRjCwxL46tS/9kLW3S66XmLrVOc9kg1ZGsZnFUkWkjS49Xihrtjw3z1RX38ELipdp3aiIS1uO6xENOG6w1pEBBBIsUBg4em4suN2c9Xl5s0dqsKKTXw8qL4MqbFr3JrSAIglAfEbdzhGD7jnvca7lLf4Jx+mb3ptWbSBAmHmVBM7zSbabnzRE1yzMwMQGbKDYXFdexSa/AVJDUicrHbTNYVa9XGbSQapxvmrHB3WtFwno9j/dOTPLOqZCiD38OZ5AlNupJEARBWFhE3M5y/OjaXflLuEvfyBneO3eUVIMiApgtJAgTNB9Lm9jaIEqCy9wNXOyW2+3VmEgw/439/uXmytppe7zlVGOtqFeQmm0vFFDVwiMCXFzUTUTCUpBMzX4pciYIgiDUQMTtLMRv3/HTqRjfVjfwAp8sRdaalTWtSTg5Yvk8FpqLjx2cszetJGml/U1RbC5zN3CJV9UXuYGXdWqvmUYzpaaYsCa5O30fD/b9eOa2eqlGX7R6Nbw36/HOfBMjq6woxHpharzUA00kSxAEQVhARNzOEsbHd/LCs3/N2OTjPGS/jm/xO5w2VleeVK+PWlnWzpsYC42mRbSFqY05khacdavRLXefyJAhbxRQQMLTxEMawCoclFnA0wnwZv/JKlXEtg6RStzNRrtUyPAzwH8Zq/OAIlqCIAjCMkbEbRkzPr6Tn+7+KyZHdnLI3sp3eAcv2LdUNb+tLWu24xAtOqGpz4guNanto4cL3NWs8tIV9/WjZRrIqBwFI3wEVC0hM4wcyfh9bIj/qP6TbEq0fqf+NQRBEAThLEHEbRny0iOfYu/xf2ZvqiRre+2PzFaE+oJiA4oAACAASURBVNQQtoibJ5ELb81haZOkjlbuT6MkZznPrVCvolnkcOQguvfr3MDe5hZuRWH1ywLDxG9q7n6CIAiCIAAibsuG3d/4BPe4L/Ld3rdyyLiCbOrWudMKakXXtCaVz3DVoT01Ze3C4jrOL66dOT6Fy6SZ4UBiHz/p/wHb2VfaAxaQr8s2fAT4SBeerSAIgiAIYYi4LWEe+NxNPJue5K7UW9mXupFx9d65J9UpMogWCqyZGJmTBrU8gwQxLiqu5SKt2ZC+jWh5jxhQkZ58BfCr/HaHn5kgCIIgCO0g4rYE8HusTYy+wNTIOD+Ov5q77DcwvvE36kfVfJqIrlnaJWVMcCXP8fLe0/S97uMw5Ivg+zr/pARBEARB6DgibovE8PDtPP3MX2F40zwUfS3f50YK/AJu2mBUVY2ZatRnLaQi1NJFoMi0kSAzeBnvf9vPcc2m/q4+J0EQBEEQuouI2wIxPr6THz3+e5A5zIHIVu6y38ZB+8+ZIllqiFtNXVnTxN0sZoFARegZUJoJEvzU3MpkchMf2r6Fd1+3savPSxAEQRCEhUPErcvccdvH6Ek+xE96tvN99THGe/rmpj+hiekFmmRxmsGxyUBUzaFomNg9A7z5bW9jaGioa89DEARBEITFR8StwxzfP85n7v0rfrxxE0esDTirfok8N82NqjUxZirqZYgXC/SPZ7n20H7WTJzANHNELZPt1w8x9MZf6eIzEQRBEARhqSHi1iH+5DN/xSOrV/JSbCPjF/xy+EkNZC1WzJHMFjC1xyXDh7jmxG6uuKCfN7//P3dp1YIgCIIgLCdE3ObBP373X/iaKnIgsoGJrW+ovLFR9Wf562jRoSdf4NW7j3DNoWfoec9vyL40QRAEQRBCWTbippR6C/BpwAQ+o7X+i8Vcz3u+9r+4r387FcM5m0h/RtwCsUKRC8ZzvP2xXay+9kJ+4T1vKd8qkwQEQRAEQajNshA3pZQJ/B3wRuAI8LhS6lta6+cWYz0f/8KnuG/DG/3FVd5YVf2Z8KYwXUUqZ/Le547yprjD5b9TFrR3v35B1isIgiAIwtnBshA34BXAXq31fgCl1L8C7wAWRdyeWb2h9IkvbVWy1uuNsW56hNc8N8YNu/dy4Vuupv9d7yqtWBAEQRAEoU2Wi7itAw4Hvj4CXBc8QSl1C3ALwMaN3d0j9rLjh3luw8UBYdOk9RibCkd41Z5DvPVInotu+iUS77iqq+sQBEEQBOHcYrmIW8hOfyo2kGmtbwVuBRgaGpq7uayDfPoD/y984VM8uvYC0sVp3vTCQT7xn/6wdOMN3XxkQRAEQRDOZZaLuB0BNgS+Xg8cXaS1AGV58xFZEwRBEARhATAWewFN8jiwTSm1RSkVAX4N+NYir0kQBEEQBGFBWRYRN611USn1m8DdlNqBfFZrvWuRlyUIgiAIgrCgKB3Sa2y5o5Q6BRxcgIcaBE4vwOMIzSOvydJEXpelh7wmSxN5XZYeC/GabNJar2zmxLNS3BYKpdQOrbVMdl9CyGuyNJHXZekhr8nSRF6XpcdSe02Wyx43QRAEQRCEcx4RN0EQBEEQhGWCiNv8uHWxFyDMQV6TpYm8LksPeU2WJvK6LD2W1Gsie9wEQRAEQRCWCRJxEwRBEARBWCaIuAmCIAiCICwTRNzaQCn1FqXUi0qpvUqp31vs9ZwrKKU2KKUeUEo9r5TapZT6ePn4gFLqHqXUnvLf/eXjSin1P8uv09NKqasX9xmc3SilTKXUk0qp75S/3qKUerT8utxRnnqCUipa/npv+fbNi7nusxWlVJ9S6qtKqRfKPzM/Kz8ri49S6j+Vf389q5S6XSkVk5+VhUcp9Vml1Eml1LOBYy3/fCilPlA+f49S6gMLsXYRtxZRSpnA31GaUHopcJNS6tLFXdU5QxH4hNb6EuBngI+Vv/e/B9yntd4G3Ff+Gkqv0bbyxy3A3y/8ks8pPg48H/j6L4G/Lb8uo8CHy8c/DIxqrS8A/rZ8ntB5Pg18X2t9MXAlpddGflYWEaXUOuC3gSGt9eWUJgH92v9l773j46ruvP/3uXeKNCpjWbZsS5YlN7nbcTdgApgWqoHAQgIhsCHkt9ndsM8m2WQTavruZlP2ye4+IST0kkBoMSU4YIwBV0nulguyZBVLstqojDQz957z++PcuTOj4gIGGzKfvII8t5x7+vmcbzukx8qpwEPAZwZcO6HxIYQYCdwDLAWWAPfEyd6HiTRxO3EsAQ4opaqVUlHgKWDlKc7TXwWUUoeVUhXOv7vRC1ERuv4fdh57GLjK+fdK4BGlsQEYIYQY9xFn+68CQojxwGXAA85vAawAnnEeGdgu8fZ6BjjfeT6NkwQhRC7waeC3AEqpqFKqk/RYOR3gATKFEB4gABwmPVY+ciil3gLaB1w+0fFxMbBaKdWulOoAVjOYDJ50pInbiaMIqEv6Xe9cS+MjhKMymA9sBMYopQ6DJndAgfNYuq0+OvwC+BdAOr/zgU6llOX8Tq57t12c+yHn+TROHiYBR4AHHfX1A0KILNJj5ZRCKdUA/BQ4hCZsIaCc9Fg5XXCi4+OUjJs0cTtxDLXbScdU+QghhMgG/gj8k1Kq62iPDnEt3VYnGUKIy4EWpVR58uUhHlXHcS+NkwMPsAD4X6XUfKCXhNpnKKTb5COAo0ZbCUwECoEstBpuINJj5fTCcO1wStonTdxOHPVAcdLv8UDjKcrLXx2EEF40aXtcKfWsc7k5rtZx/rY419Nt9dHgLOBKIUQN2nRgBVoCN8JRB0Fq3bvt4twPMlhlkcYHQz1Qr5Ta6Px+Bk3k0mPl1OIC4KBS6ohSKgY8C5xJeqycLjjR8XFKxk2auJ04NgNTHS8gH9qw9MVTnKe/Cji2Hb8F9iilfpZ060Ug7s3zReCFpOs3Ox5By4BQXAyexsmDUupflVLjlVKl6PHwhlLqRmANcK3z2MB2ibfXtc7zaSnCSYRSqgmoE0JMcy6dD+wmPVZONQ4By4QQAWc+i7dLeqycHjjR8fFn4CIhRJ4jTb3IufahIn1ywvuAEOJStETBBH6nlPrhKc7SXwWEEMuBdcAOErZU30Hbuf0BmICeGK9TSrU7E+Ov0MaiYeBWpdSWjzzjf0UQQpwLfEMpdbkQYhJaAjcSqARuUkpFhBAZwKNoG8V24AalVPWpyvMnFUKIT6GdRXxANXArerOeHiunEEKI+4Dr0V7ylcBtaLuo9Fj5CCGEeBI4FxgFNKO9Q5/nBMeHEOJv0esQwA+VUg9+6HlPE7c00kgjjTTSSCONjwfSqtI00kgjjTTSSCONjwnSxC2NNNJII4000kjjY4I0cUsjjTTSSCONNNL4mCBN3NJII4000kgjjTQ+JkgTtzTSSCONNNJII42PCdLELY000kgjjTTSSONjgjRxSyONNNJII4000viYIE3c0kgjjTTSSCONND4m8Bz7kY8fRo0apUpLS091NtJII4000kgjjTSOifLy8lal1OjjefYTSdxKS0vZsiV9WksaaaSRRhpppHH6QwhRe7zPplWlaaSRRhpppJFGGh8TnFbETQjxOyFEixBiZ9K1kUKI1UKI/c7fvFOZxzTSSCONNNJII41ThdNNVfoQ8CvgkaRr3wZeV0r9RAjxbef3t05B3tL4KFC3CbY9AQiY9zkoXvL+06lZB6VnH18aR3v+RNM6jRGurCS8aTOBJYsJzJ//kXwzFKrg8OHnAMjJmUks1kle3lKCwQXu/Y6OjSnXPlGI95/+LmjaDmPnQkbuJ6I/HROfgLETqe0iUh3CPymIvyT3pKZdXtvBhuo2lk3KZ2FJ3kn9VjwtI+BBhq0PJf+fVDTu20Pdrh0Uz5pDYdmMU52dQTitiJtS6i0hROmAyyuBc51/Pwy8SZq4nRyczEk1OS14f+nWbYKHLgM7qn9XPAq3vnz8aWx5CCofAU8G1G/R6QgBZ34NLrzvGN+9HOwIIOCsOxLPb3kI+dLXQVlITP5U9HUmXPRVFpacZMHvgLYYOKEPhYHPDPdOnKyZI4I0//gnqGgU4fMx4cHfHZu8fcA+0tDwJFV77wYlQSSuC+FhWtm9AOzddy9KSQzDx4L5j54QeRuK9MWJYiR6BL9v9JBk8UNFvM4y8+HAa7D3VVB24v57bwBC99MvvvixJTTHxOp74N3/AqUSZYVj9qdIbRe9Fc0IILBgzEdONpLJE0DrAztQlkR4DEbdNiclP8nP9o84cEIbkPLaDm58YANRS+LzGPzh8rnkr6pBxfRYyZw3Cu+YbDcfyXmK/7st0kDzhioKMicQnFDoEjSAll9vBakAgUCAAdnLi5ARe9i6/TBJ6qnA+ylP4749/OG+7zDCHE3bq/vpvHARM6+9+EPO6YnhtCJuw2CMUuowgFLqsBCiYKiHhBC3A7cDTJgw4SPM3scUdZvg4Ss1uTF9H2wB2fIQvPx1vTgbHkCAHQPDgEv/Exbdcnzp1KxLkDYAGYNtTx49X/FFsqUKdvxh8H2l4J1fQN5EGDNz6EVj25MOaQPQz+9qDPFM7zzubPlnDCURAoSyuaL+p1z/6wD508/mK+dMHpJUldd28MeKegRwzYLxLDT2D/puCsky9rttYQkv38n5Ac+1FmHZCkPA+TPGDPrWwEn/7stnce+fdhGzJF6PwZNfXsbCkjzClZUcuvVvUdGobg8pQUpULKYlb0cjbh+wjzRvfoqqzrvAUCmkTTeLRdXee3R9IwGQMkpHx8bjJlehUAUVlV9AyqhL+o4cWU3tod846SZDYBj+EyaGJ4x4nVn9Q+QhGQqsPnj6i/Dpbw0/Rk6VxGrgRuxEpeBbHtLjLg4rotPY+tRR+1Oktosj928HW9ddb3kzo78894RIxPFseoZDyvdNQdaiMZpIASomiVSHdL4qmrGaewmFKgmPqCLS2Ej3uPWAQggfCxc8TrDLOmrbbahuI2pJpIKLYybeP9e630JB39ZW+mjVY8cQIBVSSQxhgAIlFHs6N1KWsxBb9NBZfgAECI9BX0E/PtuDIQyUcsafhJ63GtzvD6zblLILGHHVFLKXjjuh+judEKntOirpjj8TqQ5REzBYF+5j2aR82te+wczsM5g+YikCUJtg/5G/MPXvLjg1BRkCHwfidlxQSt0P3A+waNGio82YaUCCJClb/61Z9/4WhrpNmrRJS/+2Y7gLlpTw0j9rwnQ8afd3DXHxKE3pLpIR4ov/sKh8BJp3gx1FGl6enfO/TJx/njOxp35DAdOrH+JiexqGqUmbUlp4ZyrJl41V/H+7y3i9qoXvr5zN55cmNgrltR187v71RJ2FZ1/56/ze/2MMGXMXq3I5NYV0vb6knKJ4W0jFqNbNxOxCQM+hr+1u5i97mvnBVXPcbz1bUU8kJlFAzJL87p2DRC1dB1FL8vePl/O188u4aO2zqEhEFwB0IYQA0ySwZHFKvgctdjXrNKFVUhORbU8cdx8JV1ZS+8S9cKmzaOiN/wDYKb8Egry8pceVPkBHx0akjAISKaPU1N5Pa+vqYZ5WSNnP4cPPfbjErWad0x+PcwrqaoRVd0DHwcFS4ZO5uToeJEsKX/22/q5h6r4jY/qZ8ofhsp8dezO254UBFyQceCNBaIeZcyLVIZe0AWApLTE5TuI2cEPz+G3LToi8da+tS3zfVvTXps5J/dUddL1Wo4lV8ACHFv0EhJXSt5WKUrP1Tuat3ajHjukfsu2WTcrH5zG4KGbyDTIgnDoeEgni5kkogVIKIQRImJ6r0zSEgULp+5aks7mZUWqsfmfwwNMYULe9Fc2JsivofOEA3rFZ+EtyP5aSuEh1aBDpHigtbX1gBzImCaB4mTA/M/bxC2nwqRHLAHQ9o8io8VH/+GbG37h4qE995DitnBOGQbMQYhyA87flFOfnk4HMfGcRN/SiEN9Znyhq1oFMmnCEQUq3Unbqzns41G2C9b9KvSZMmPf5o3/7OEibAnZ2Z2FbEVA20opycMur3PjABsprO/Q3hJn4rPPWYnPvkOldYFawQOzDloq7X9ip03BwsHINt/E8C8Q+ABar3ahkgrztCaJv/gez7Cqk0qRrb5cPhMBGEMPDBjnYpkIquMv5VnltB09vqWO+2MdXzReYb+zjQEtPyvOF3TuQf/onxI4HnfpxmKdSoFTKVB5f7H76571c/+v1PLHxkL6Rma8XnngtVjym2+k4EHr+BfxVyv202xBHQf6oFSdEqiyri0TbS3q6dx/zncbDTxMKVRz3N04Y73ccvftfg+t2qM3Vh4G6TbDqn7S5wBs/1BsxO+J8N5YgbaCvrboDnrpxcH7rNsG6/9R/Z6wc/J3OWtxOIAwI1Q9KQ/bFBr1mBI5fvhDf0EgFkZjkjxX1gO7j/73mQMpYHYiejYfp392ecs1uDqf8ju4PuUUIFb4DhjXkKtoWq+JIoISu2GeJREsciWUqFpbkccsZpZzjyE/i+5uhoFBacoYmEy55i99XKvlhRhmFRO2+lPeHQnLdDqJ3UpOfOMHpeq2G1gd2EKkdaoN9+mFgvxnYtyLVIWRMItASrL/Fx1l9HYwJZwGD61nt6Dttyv5xkLi9CHwR+Inzd+BWLo0TRd0mvaOWUqvPPvOT97+Tz8wnZbo58x+h7QBUrUpc2/uq/uZw36jbBG/+eDABvOxnR89XZj7HQ9oOyCIea53KPd4NeLGI4WG9PYMokg3VbTBpKgfnPcBFh/+HnOYtjvLOwMBOkbbF/6Iky4w9VNhlSKXYUN2md/V1m7hm+1dQnigKgztjt7JBzsAWXkzlTBoVjzIjS/Dvk3yUt89hR/dszq1+DCltpDK4L/YFKlTZkGWRUn8LYI7ay2O+H7nluVF+x31vgdjH474fYbdCfcVIp3mUrt/4htqyXFXphuo2V3o3V+2l8U/P81rH5eQ072MZSRO6tI5bMmu1tuI7aBBYbxBeLvXidlTiJhiVf84x040jFKqg9tBvU671RxqGeToBpawTUse+LxxtBR4OisF1W3q23lTFJW7vlxQeDUOpdpWh5wUFw46vqlWwfzXcskrneSjp4PTLU+eBZChbS++2PulKoyK1XfS83TjoURm2jqso8Q1N8j7hmfJ6cv0eHnj7IFKpYaVwkdouOl94b4h8cnztOUCqrISgMfs8Rh65AoHF6C334p+XOgeW13bwm3XV3IafJWhyNVA6lkLISJCJ+D2BQCkJQjj/1kTDEzUxvTnOfk0gHRvTgekn1623MDu1rCb4JwUJVzQnJFfWYMnV6YqB/abn7UYyZ41y817fFyWAwgBMYBEe5vuK2N+5mXGZpan1LARSKaormphxGpT9tJK4CSGeBNYD04QQ9UKIL6EJ24VCiP3Ahc7vND4IXFsyqRfzpq3vP62+NlK6Uc06yJ9Cqu5ADi8t2PIQPHgJvLcGd+YzPHDZz1PUMYN2zHWbhlDHDI1JopF7vI9yX+wL/My6jhujmuQIIC/g48YHNvAvG/0sqv9n7rS+xDp7Nr+xLsHCk9CaxIui9CBvV9kAeEyDZZPy9c13fomQUUwBJpIfeB/ENAWNZ9zjLIQ2oSyonJtLzcQMRi3Yz+2FjyPsfgwUBpLZRs2w5TBNwbJJ+exv7map2IMXC4+Q+IhxjZmo32WGvtdRlYWyhdMWIqEuBRCKQGk21G3iqp6nWGTudwnfP5lPc/b6L/Hivn6iypNYswaQh3BlJa2/vp+O3/+e1l/fT7iy0r3es07nJ7DRAEtXoCF8TJ/2AwKBKUOUTrFv/w+OWxqmvVSHUi0JcnPmUTLhdnJz5g2+K0zyaquPW3J4wqhZd+KkDcD0DiZmxUs0qVnx3Q9PTerOBfFMC/D4tW3q5HMZQg7jQtnabq28toP1bzyvfydLB8+6I0WSnfqy1M9aEXduiFSHHGP6JHiEa2x/LGyobmOabXATPmahvxu1JL9eV40lFVLp3/HNTzKG/Lab16EvBxvPAukQXPcZPdaENMlsn4kQJhIPrX2fGjQHbqhuY7oyuQ5fYn5J+WxCwuZec8ZwR6TZvSdEYv5NfjZO0uIEbxAM4UqlIrVdhFZVp2ZACGJNvfRuaU5cM4+/PU4lIrVdROq6Uruv1Krh8toOnnhuN4F1jZgkHjERGBhEibGp9VXaIo10R9sAhVSKqIBKjm8T8WHjtJK4KaU+N8yt8z/SjHzSUXq2tl2xbUBB5RNaXfh+FobSs8H0JJwKGsr1/1OgHOnYAAy0j0PA5PPg3H8dtDNNtlt5/kov0/98kyMlGAKTV8CMlYQqniG74W1MofAqyyVF15jrwIYdxjR2NYZcA+HZci93+h7Bi8UZxm5MtBg9hskuu5R5ZjUGCksJRgqtmjynbLQrbWPvK24WhABDSW7N2kCgbaQrTTw8xo809AMKxf6pAXLCMYJdFgaK68y1PGufPaTUzRCC1buaeH5rIwvEDGwMTCUxUNxgrmGnLOWP4gIO5oxgr5GD5fPhi9e/U73aTlmRPbYfe9U/IzdaFEqLJ7weXrfn4SeKIQBlcY7Yxm45gaIcDwV5OTD/ZrddwpWV1H7xFog67W4YrqdqeNNmsHSb+g4ajPqlh8g0GDP/b8heOI2+vkNDNpuUsZMgDVPk5Myirv4RpIw7nAjAYHTWfErWryMY+i2se/TDIUOlZ2vik+KcYEDRfO1ZWftO0sPJYppjsL3m3R+Ok0JcqmdFdKeddokmXMVLtG1q9VriHrFxwa1I2gNEtzzGTzaUMkX1s8gj8AgDYfr0eK9ZpyXw7/wXw0vGpTs3+CcFEV7D9ar0leTgHZN13EXpqe7k5wTwoPcKdxBmF3bKfsUQIrHRSoJ/UtB1ADheZIamEGw8h9D4NU4TCsbmXIPfOw77lRwyQ1NdFWdLtJ6i0pvddyO1XazolAjhxaPAg8BCYcZZhAA7w8boNVypGYBSkobwfrqi7eT5xwxSnw6FuCQvhbwZgFKarAF9O1tR1oA2shS9m5tS6iSw8KP38j1RaCeLbUPu6+r7otz4wAaujXlYjj9Bbp3/mQJCOXPx2D0EfeMwAAvFG3YXz3u83Lvg9HDWOK2IWxofEYqXwPybYMuDaBXa8avAhk/rd8M/IwxHMjcANeu0utZ9TmjbmAH5SPa+mm1Xkfnuq8N77Zl+l/itrs/liob1oCxA8nnzdXfqusF8g7/IhRzsvY1FZjOL1G4KRasrxUq25TeUZJcqZaaox4dFTJmuHdrafUcor+1g4aF1KKWJnkrwJC7s/zOqSqCEoivHQ8OYDH3T0bsqFE1j/AS7LIQAj7K4xlxHhTWYuF2rVrNiSzm55nh6yGKN/SkuMrdgOE4T3/c9RCjDw8qFL9AkPDDXZtQvBb6DybtwjZ4GP71NPiac20ZgtMKjYixv30Z7SzaBggi+URYXm86xcWEgLDR5cBxN2h74bYK0QYqnqjkimNKuvhoTX4MXX1DQsus5lErsWgOBKfT1HUIpGwMTsbaJcEflMcOU5OTMRGCihpide3v3O04LCjAYmXcWkyZ9jeD2NRBaDcqmYRS0HPgmOZFLsaweN3TIuHFXfzDiGJeSbXtCb4ikpYnRZ36i+/uh9Y7doICRE6GjRv+W9uAxGPfWls4GSxhaGj3/Jhg7T4+pD0rkipfovL30zzof+1/TxC0OIZJ5vxYupYyNGCt5i+s8azGxkZiYS7+ScG4wfXD5z7VU/8g+qH2XAWIdd27wl+Qy6rY5buyx0KpqorXd9G5pJmvRGAILxgAMGSrkiY2HCOwP4cOLoZWGzMdkV1L/8BiC762cPaSzgr8klxErJ2t16fGQN0fIFWw8i67Cd1DCQigPBblX4G8spSt0EBwVZU3PNqZenGinuM1YjiW5wvBhS+0ToAxB9/JCxkYk4c1NGL1GihcpgFSSw+FqFuRf5LRBQqqmULT21YGAoLcAn5mh7ye9i4DAzFGuLZ+KyaOWOXa4B0wBtkJ4DLKcNjidoR1MhrghoP5wN/0xSQjl9GeH+CYRuHM8uShPLsIhzELZFHTvYPkZ809+GKj3iTRx+2vFvM9p+5L4TnsoidiJpFX5WGoojziEocnUUPY5pWdrFVE8FIeSeqGCFDVpXsCHIQTzxV4e9f6IjI4hvjNqGpSelRKuIDfDg3BsGNzsOMzFVIqLjS3I97byJY/AUDY2BjYGQkkcoZizSAmetc+mYPktXJS1n4drC6ncqRcMy5L84i/7+H5xBiWoVG2kAI+SrkylfYQXN2FwV8DGsRmMa46Q22VhQIrUbUlpHlvrQ1yrVvNDz29BwmLPVsfm30AiEEo54UokZ4zcikdYWnrggfBSG99BL6AG8FyBkhBu8RMYHaOv1Uv9m/koWyDMbIrPbSMwKpa0bic8AcOtXnrefHNwGwDmiCB2Z8itvOgkhbUkiGdziM6nnya61cC4w4PExjC8zJzxYwDqdtxP95o36dzwBzqffZbAt66iYNbQJCoUqmDf/h+gkAjhIZg7n87QZvd+Z6gCITyaDBpeTdqCCwiN2U3HhCwsYVNbnAGqnvZD96ek3Xj4GR3K4f2Qt5Tg0Z/X/x8oJTP9CUJz5h2pBCd5jAySRqPHhx1N3SQJ8/i8PI+W58pHXKkadlQ7E2UXQO36FLtThXagMZAYImE2MEU04MNy+oqtw/LEvZHtqCZmlzsOSlseckiik+6AcvtLcvGX5NK1pk5LgByPyt6NTY70J5H15HAWrW/XcyVedzE2gFBSh19SmseIgI9djVpVNtQCnL10HN6xWfRWNBPe0jRo8feV5mAEvJg5PpdEdv1lBJT/C+G8KgLt0zGbDPzmgwixHCW1Yefk7Arye6fQ9fy7+I0dROQct2zShoaRXlo6+lgjY7y2fh/PLZhMtlSasKFoDO8nw8ym3+rhcF81k3LmYQhDS9mcca2UpLztNap7tgOQ7y/kvLGfx8Bwbdya+2rY3bWe88+6PbVgA0lbsgDYBu/4LMxcH2aOb4gOdHohUttF/572Ie8Jj8HY2aMxDjQQVAIbCZTrXAAAIABJREFULemMS9sAh/LHTXIVSkmkkrT21bAgdvqoiNPE7a8R8QWmaAEc2qAn2Fe/ffxhOwaieAlc8h/a2ywZJWfClAuOIRUYMGlISy9YTl7Kazv43qpd2FJxhmcPfhEb2uqm9Ey9s09CTvMGre5McdXXf+PXhLTwgKMehKfs81gsqigzHEN3AZUZy7j20s9ykROKY/GEDvx7N2jvNaD3wLvU1T7LBAN3QUspkkOu8jpjeuExUtmdUoq2oJdcR+pmOs4PW2UZ50wr4FuXzGDU87+ADj2nduZ66BzhZURnDAV0Br2MCMUIdMH69k9xzcRqhLO7Dp8BgY02voMmqcY4CmEoAgURwke8tO7Kce3hIiWSmqIARf5eHYtKACS8j8Mvb06VlMZh2zT/8Efk3fwFME2iJRat/xgD8wgsg1G/9ODbZ1L459kYK6e7xCwUqqCl/w3UGTbhpYCKQt+T1Fc+O2TcNR0GRIfcUEqSlTWVUFdlkiRPUjjuejIyCt1gqKFQBeUNP0SV+BnU55Kg1PtU1w4MHl35uDbcP/vriWfi0rhkMjdmZoLsJWOgNDop1ylPKntwyJ2Bsd+GiwWX4piQ9I2ql53lKwmGF7HgC9T7plD07l0IpR13bCXwk7SRUqC6GhN5NDyphHTRLTBmJkfefpCmrgg5ExdSGrf9Ssqbq7pMDg0ysMs54SwAVrbaek/kfFmiKEPbu23Fpry2w03q6fJ6N87hQMSJY9aCMXT+6T1i9Qlv7Yxp+eSeV5zyfO4FJUTuD5HZqe02w6EYPs9OlH0AJW7FQIDxRY5sB4gimEzQ999I8RWk0txwXHuUIkzmYHIwFqYSi+VCoaSW/I8LTEEgkD5JYfYUhLMVjROLxt4DVHVtoi2ScOxoizRS0b6ahfkXopRAKptdne/QFmmkZc8BCsS4JE3+ABWxSr0Wq+8h7o8ZrmgZMh7a6YJIdWjwkgJsyjXwf6qAK5YWcXtbFw1vaScW25HZt2IzboB3bwxFTfd2ant20B5pJPTmEWads+K0OEkhTdz+mlC3Se+mq15mUO/+ILHcIMlJwZldhQkX3Hf09AaGEolDSr2Y1azjYNtEopYfBWyQM1DCIDkKvQIkJvvHXM70Acl0j1mGVf1rjPiCHrfTJ0GubC0/wFSSGB52ylKu867V9mCAMLwsvvE+FhcnYrUtLMnj7stncefzO5iPNuj3EkM4E7ErrQOkMNkeWMbonC3Uj88c7A7khObo7MgnxmEcWRSb1Ax8HoPzs2uYvv5uIn0HAOjM8VA5N4izmY+b1iAUTN3fw3cbn6azJkbzRL/+lgGRMoXvYMKWKruwH0+mltlFQh6aK4MOaYPoRJvWO2wwPTSrIPO3hzAD88mdfYm78JsjDg5mp0B0oiRS1kfkzd/hs/V3NSvW9+P5kC/uQv35AN4Hr4H52tFAGXaijQCEGtbmTYcBiX9fkpMzkwmev6XWlZ4pcnJmUlSUMJmtqb0fpYaQ1A6AwDihWHKJD6xzYhg6GG48FS8ZfK3ycf1u5WNwy0v6vmsrlwjpEK8a5TSlS45Ukpo1ObahEDBhmT5FJK6yTbbrS3JMiNuvOQkO9klYcBNc/nNKgd/uaebm9l8hlI3CYL2cySyjFq8zLlOJ5WCCXy6ncuPuK7laruZ7jXehhEJ4hoh1NozNlgtDE7zqiiYCcQ9LR74tEFzpWHjGgDtU2FWbxhwHhaE8S5NjlY24YjJH7t+GshViCKP8UKiCDrURMacAc2s8LrzB4cBFNI15lzHdBwl0TXUGqL6nUEgZYGfwTd7tOIMxGFyBF48zNudhQmE2ffnryDwyTavqEK5KNNlWTaGo7t5Oedtrbp7y/YUUZEygpf8Q1d3bCMVaKfAX09J/yCV24cxeRLfhBqbNOmMcPesaEu3vEYy4YjLd7zRgtyT6H3Dae5UODAHSke/j220d7OqymfVWN4F9Hdw2MotuMhEoJPBz+umfOZKfTyui8/kDrtr5YbuVQ9E6ZkX0RkRKm7pdO9LELY2PEHWb4MFLU2MyuRAfPNyAu9BEEicmHIsEpjhJJGdHQOUTKBnjSrw8ZXwHKRXLjD3Ujv0Mkw5r4qm1KAZ3Wbfwx+ejXFe/Q59UUJLHExsPcfdbHuaqO/mKuYozsxvJyfBCqE7bojkbyt/b5/GsfTbLjD1skDNYZuxxnRJA6AVriHJ0hKMoBcvMPfiIYQqFpWCHnMRM4xBeJIZhULfsezy/v5JzyrJTyxePLSIV4w73U9bTho2JQOE1FF+dFaOwzMv0V65HSQufM6l2BL2uc4O74LqODtmU0UPYzowzWpCQ22KjiEvcQHglndWBhLW5y2gV4aUO2XIkgY0FmdxbdTlfnjiJixzJSFwVGi21CS+VxMZIZA7YBTqZbtsm+LSJPUITIWVLsMG/L8GaVTR69JMbJBiGOYhEhUIVHKpLtqcUxGKdeDy5bhnAIBbrTHmntfWNxCtKJRVbpKQ1LTKT4LpHYZ51YpuYgWFxUNT0ZfDSmgNHj+C/7YmElM6J8+eSuy++SMfqf2fEodXxJBOS4iG/T2psQ0WqM4QV0WF3ZqzUG63M/EHjL9nxwCWIhjclnmLmstu464Uevu99CAPJlzyvUiPHMsVo0JLrZAxhP7uhuo1ZdhXf8z6EB338Erb2Lo3I6USqQ9id/UP4M6Taxo1YqaVctdUdTAfXCD/etEYSxfkMHuZjUonNfo8a5KAwVJT9vfvfobLhBUb7x9NmHeb8yCgKyYW6TYSqn6ZCrkIqCzHaS3Hwm2SGptBZtJbmGY+CkNTL9YzfrK/H5YAg8Xv3Eh19KXRAT3weQ2EBYQ4y9aUfcbD5PGaOmO6efBBX2QnAFI5kyBB0xFqYEVxGS792+Dl37A0YwkQqmzebnqI92kRHrAnptLEQBrkzxjLqyjkuSQ1XNKdUbWChVgMPJG1xnEhcvY8aA0OAbMRmFzazMPkVATxN/fQ1RfQUh3YICSLIzfETOtSIlNKt8/P6Gtk2fzZy/QGUbWF6PBTPmnNqCjYAp28LpHFy8Zd7hiFthlZffJAD3WFoNdDREFffTL3IjfWkFXkGoeLzGVH3F21rpmJcJd7is751eIliNoIUAIKawFy+0XG144GpeGLjIZ7eUse50wp4vaoFW2rJwafN7fj7LYgaroRLKbAxedZOkFXTFGySjrcmCmF6hw0AnBfwodBhQQzHts1EE8F9VjF3z+ngU2WTsNc/x/lj9xBDDDBt0+pTQ0FhSwQB7iImlM2K9/4NgjeDtHCKq78biiUIV1JA3Th52zs1O5WMGGCX2BiV8UQU3bUB52byKjuUdEOwWU3Dloqz138JZVgI009g8c+Ilpm0fjUyeAZxOGDoczpmnDA8jPFdgPdPrciaXYnvGIZ7csO4cVfT0PikUw79iLdWUOL5G7x5gtZN9xNYspjA/Pl0dGxEqWSikSB3huFHyhiG4U0hfB0dG3FZgMIlvQOR2xUj+7110L3mmOfkDjojta+NBHHU/3327e38KlZ6jAj+A5mO87tuEw1bX+PrB89mopzAreYrTBaHtT0jCd6pX0ly/ik9O8WhIBVSh915742E7enUi6DqJVdWlRyzMFFdiTyW13bQEY7ymUk+jHqFicJQFlOMBndcpUgDB2wIy2s7aOjs40yzCuGYMShAKEXPtj46X9mWUNUlCfBTSywJTGjBO3YeLb/ZzgxLuuZoBonQF/GtjQIuw6eTE4KeKyYxd6C0rTrk2p2Fs/axd/srrH99Iz19flr7dBDfXWvfoDCzGx6+ktpRGdhTTLTfQJTwyD0olEPabC2xN2L0jazSUje3QUwaRt3Hp/aZzCcR3lAheZft/Jv/HiraCmnuq2N60HZKIDnYvZOanp0IYbB07lWMmTQZb2E2i15QKFshlU1Nz04MYbq2cQUZE/COz+a8W77Mphf+SHXFJpRSrHn4N4y6q5TC82boc2E3N6XUha8wm76drUN1IFAQWlXtnqhwusH1THYIOMXZ0NbB5/G5ZA0S/cIEeg24acF42l95myA5bviUiVmzCeZ0MubuH552B86nidtfA7Y85HhzDYAw9AHsGR9gAA60nxm40A1lX5McrNMwwfQj7Ri2Etxt3cLBgyU84lmLoWLEnC7qJYbHWVC0J7uiuHcncLX7KQVEbcVruxNxh+IxzQykY19moqSe6F+351Mm6rjH+yh+oVVJb076Ot73DIS0GUKu4ZbH1zYR8DPbqEkxCTnX2MZT1vn8ZM8BHtv3dSZhIbMzOTQy4JIGgaKtpxjZIrioayfZXTaW8OIROrZVKMdDxwgfeUYbQcODktbwZlnxlS9FipR034Cm801G7ZD4qp1lQiUkbEkKOKITnWMOHH2vkIrLjuzAYwbxYmm7OTtKIHCYwLeugr4nBnO/5CQNUFjYuYqiBdfS9FKVlu4YBtnnnOO+5q0W+LcbROYkCJm33sDsCVP7HzeDlG6okbxJSx2CFkUIg2ll97qq1AXzHx3ykO+8vKUYwou0I0nFHmyM2JVjUjE3yILtIYLdsWGP+BrqjNRgZr4eTw6ptIWPd6zpKRH8hyRu8z7nqEodB4V5n3PHxzirn0cNg7vsW7gk9lO+MauL85t+x5SezRhuhxCpzj/FS3RIj+EC38bfizsOZI/WYUrsqCY/SoGS7gJnolDSZsMbz3Nw+li+t2oXUUuyxDOO5V4ftt2vNfJOdR5QReSXzGJkwKcdHJI2hOW1HXzuNxuIWZJFnhl8TXhQxIjK6fTaKwjXn5XoQFIRWDIWuztKtDqE6reS8q/ImhzTkiJLOXJqxSqiTBmdw+wjqSrxFiRjtZk+CigND1bfGgEPCEFfcD91C/8dZcSYdAkceGkC4Wa90dnxxmvMCjZDt48NLaVMnFgPKJQNtdWdTJhYBdiJPqYMMtunO5KyeLw1hbcu3nI634bzwpXmDjxIigMhNrTWs7bpScZkFjNhdhbbNr2DbWmpT+4VJeSVTaVrTR1CxdWoul2l0mRPKklL/yEWrLiawrIZjJtSRnXFJlAKKxbTJLRshhO/LrUuZNgic/YoIvsTUmtzhB87FNHTx4esLv2gx2tlLihAAHWFAX66ajuzMDlrCKojEEjg9sUlTMLkSN0IpFMZWkVtUJA5gcKyGacNYYsjTdw+6ajbBG/92+DrcdK28dfv/yzEY52lOPD+0q9A03bwBpKO8rHpGrOY+xsm8a49gwpVhiHht9N+SXjvGt6x9IC53nwTpVJPMhBJJxgMhw1yBjE82l/Uo8MyiKatGBWPc6Go4AIqtXQNCTLGCrneWXzVYDVPUnmuMbxUem7iOnOtK2kQwMXmFm6QrzNS9mAYFl25HuqKA4kMKYWQsMAzj3/snMZ7wSLylcW553yZ6aKe0Lp/oWJ2NtIAw9jMgov+D5lrfou3vx0htKp0kIpPgEdmYAnHyDxVowQC6i8agXorh7Myd9FUHiRaKomUafWl76BBdKJybNv0+/7tgpzVJn3TvWTNbKa9y8+o7iiGI0EpyPVwqPz3uK53STxiYB5aW1cTe+MtsqyErq9nzRp633nHjfuW85pBZIbzfRsCGwTdBxPko2dRmB3132B8wW3DErRgcMGQTgXB4AIWGJdT3fYU7XneJNKWxDAduy4pFB0jvAS7LVJZaQKpZ6TG6Kh5huArDzj9xoDpl3Jg8q3seD5hP/ZMeT2fddT4kDgbNi8wFt+c/8c5fasZneOEinHUnVp6ZPN970PUyBJCIy/iu3su4xHPVr0ZMT0YC5zQIMkG/mfdAfteTfVIHQShN02O92vD1td45HAxXbXb+IyxiV2yhFs9r+HDIipN/qNqNJV7drjNutmawvML/5fP1P+CrNZtbpLB6ecy8nP/434lUttFZE0d/klBnq2od8/TtW2F8kCPdTEh6++cNkjaUAgdesJfkktk8waO/DGGXq4k2eZz9L6VQ1iOB+LSE0WOZw2TZq2At3yuYb3AZoxjFxbfV9QEDOYm1UTPxsNuSIzwyCqUEQOhECaMXdhKU/kows0BlLTZ1SDI7RtJd3MWB16aQPa4MD2HA5T0F5MZLEQoH0pGAUFO42LCI6sAHfMtHoE/rszVql2Ik9EMQ3uEFga6uXbCDurDhyieOoXCT32aEZ+6kbpWO0Xq458URHi0dElKSW3vbuoie5k3+0Iauw+w4OarmXvBJbpbzJqDYRjYUoJS7FyzmlnnrCB/UpEb7gNwAx77S3Kx2vpc2ze7O5oSFuTDCsIbqe3iyG+2g6V36CNWDn/QfZzgdXs7qD9SxfjR0+HP3ShLokzB7xtMopbkM2Q4gXbjcuXEv4UhmLRgrEtgE6ppbdc4asnUD6WcHxRp4vZJxkBPtxQITaLiBMrq044LNww+U29YHOug+uT78fSTv+8gp3kzrXKuG3RWAMGpZ1GXNRtPczcRS/Ko/Q/c3P5/MRw7D1sJYniHPNczGZWqjFvlnfznkm6KPnWRzt+6/8RQNqlbTcdrcsZKHQZhqBANSeUxbMm/jt2MpzURuy3OBy4xN/Ff9mexMWgc43cEXPpmTrfFtBoLLl3CNwI/QqkYQngZVzYSghfQ4d2HbPsDetds0bHn1wQjPSihj+HyWLiLUDIsI0LCCJoEcVKghOAP5gWsnXoWNxivc+Xo1+m7uAdM6LYh/5ceomWOrtchbpHZioxdigMXZ5DtaaZCBcluPYfly28j3Ool9vJmCmdfTmPkReKkx/XMSG1eUNA3J0rWWq+jo3YCuibFffNVC0b9wkN46WBpSO9Ztla9ihqq9t7J9Gk/oLT0747a7gMRjAaYVBumMxhECl05Y3PPIqvgDLzeEezbe69Wsyq096/h1dKiIZCXtxTD8OnnhUnetrWJkDZIyC5g+uILOHfPFlf6a9sJg/h4QOn4MWMLjVqu8P4BJWxE5WPaQ9swtKRRaKnX34yq5ZtvH2SeUvzRUe93T72Ov5s3OXVz9Jmf6Jhp+VPgSNVRakS5EscnGsdy17vzmcc+Hvc9SjgXCoMH+UXbZZhdPjbIGYMCQpumwcT555G9cLw+49SOIkwfBctvcaXSkYyzaH3RRloSS0BDVoJILjP2YNmTHdIWj1/vUCuhGLFysitt8fe/w2jfH4jIORh0EbJuR6FD3MTHgo9ermY/6u0WuuWNxHcAJg3ABKfE2qThwRd2c9PYAAtL8hJHXTlEz4hkJapGQE5RL9ljwwnJW3YBxed/AfPJ1wk3ZxJuzgQELf5DzOo8m9F7PkfLzMdA2HQXbQAE7dJL0eZvEAhNSRybl7LTUXjFe7RGDlMXnsCEQAdFgW6KAt2ojnrk62sZa/opvOVPUJyY75Lj3nV7O5h+ZIVL7JKJKUBh2Qwmzl/Egc0bdC+1LXatfYMLv/z3jL597pCx8YxMbyIBqfDPGAkxSebsxLFRJxvda+s0aQOQqQfdJ8O1SYxJbGnT2L6Nds9+Zo84G4HAtiRGfR86YuJgdUWcvuUsL3LTlkiEcqi0koQmdFN8GqqDIU3cPpmIqydD9amebqAlbYgESTn4ljuHNG0/QEPPsxStOJ+xx7Oj6o979w1zUH1yVPZBlsapg+lScxNPSeeADAHP/+k5FqldWHIGOygj05PPzR4TlMLGoH3aDWzN+wxdu3LhSO+wWZxckM03P3szRclqKscOKFVTJhFLv+KGKxjSVm/AiRPZ7buRhgfLjmq+46S3IWcqN07fT0ODn+7sxBBTCMJiGsHP/pAauxxUTEv6ks7PzCu9FqPjBU0KEOR19Ou8YdA4aT57ixoRwkIIkwnFf0tHx0a6urcNrlYnxiuGJnoludpO5yl5Pl3Tba72vIRh6P3ngYUFZB2w8dGcUHUa0HOeRHnBEAqkTYb3IJv/9ydkvrgfq8SivSQKPoEQHqaV3Uv0xXJqM57DnkDquiQgc9sQqgrTJLBksT5pwZHEhZdJMPXfUb/04Dto0Dc/te8ceO+nACleo0dF3SZY/yuC0mLB9hAdI7zkjbuI4JJH3PvZ2zroyDXI64wR7LZ1PxhG+hwMLqBs6p201P2egu1bCDYmwjAoYGdDiB0bD/Hm3pakwgryAtrLMflsWICrjXU6DhpoAnbgNe3c8/LXkVISUR4eaypmHnsdD2Z9Pu0Xq87hyuB7FMVjpln9qTHS3AaI52wApMXWdav47valKLSjTTgXts/NQRqwqOQdfrLlDt4LTRz06rULx7PQ2K/HySX/Dn1tVGXMY83a9/jSe3fgJUa/dT127PMYCAylWNht86bz/gY5g9tTdPuJnYZUimpkgnxk5uM3qvAbVXRZ16FcV+VEmRTZdFn/QIZ4A21yriAeCkjFa0JgoPia9PPi2hoW3pyXctRVOLifI9OfIC4lFTjTJYrscWEibUFmTR9L4dq/Z8WYXFY3xY/2U7RFDlPR9mcmTnI2hK5KXqFEjP6Re8nsnOI4byRs8OKZi9l7+WPdHCwp2GhM4LriHRQFdGgLQygsK8rhra9RNKBPxsOX5FJM0SC6loqBTrpt9Yfo2XiYvp2tZM4eNUiylSzRwxBE9nWArYjWdH0oNm5DxmBzDrofRNyqQ+75qYYwWJh/IY3hA0hpg2FiARWONmBTQHB5n7YpdlYrvb8UCXLqL8klWmjhr/c68fEEI/MLT2r5TibSxO2ThoH2Y4Yn4ZRgeOHSn6ZGXK98BBrKaYpO44X2+7DbvZjbKln5f+YPT97csCIvJa4t/crQoQ+++KKOETfoGCwN5fznZTvx7jy1j4fNpAPUo99hodqDoWytPhLwdksG39zhwZbDkzaAg61D3C9eQs/IWWQd2ZbiMBA6WE4wnu+hFu2BJ04oibHwZg6rURxubqGwfz97CmawaPSroCK8V5ZQkSoFljTJmX4nFC8hL+RJSG2SjOmDXRZlLKUl0E5B1lKC4V+CMJGGl0cihSxUhzCFFuVbVg/dPXsS+RNgtGr7sIw9JqEbJFoMplhetIma0Hiyfb30RLOQeBFYCI+XqZffRN62+9gv4qc6aMmdPS6RdxPJlNoKrP0ZHLFy6F5sozy68ZRSdHfvxs5vw7/bIFwsXcNyj5XDlNnfInCBQdP6H7hHYbltDwSWLEb4/USmhRNSP+LhQ8BbJ4jOUO4LVqyTqr13AsdJ3pJiogW7LYK9wLwVsO4/9TioWUcwFCMYcgii4RnWKQUSAYCl7Kdjkg9sP0XNEW1jqTzcWzuHbbU7kUkrpS0V31u1C4CtdZ3DmiwqQOx9Fc76J6ou+T1/euEPrHdMCL5qvuCe7IGyWMwuDjdnUOSG3FDanCA5wcnnUTPmAorX34Ux4J40PHx/Z56blw1yBlcHX0p4LQvFtJH7hyRu52YehIdvd73Ia5Z9jytfjXIbazA8MYSQeNmK5HoEJgbaQeBVLHZhU6HKeEj2cm2KmBbihOy5F/YQc6RiyaGGfMYOXMmcw45EEjntV+cxwvPfRNVkwvYFWGp8Us1q8maimF/1Ki1P/obglJtRJmAr+kZWoURMb3bipoAKUILJsz7L+csnUVjzGI3dPvZ1jyKVdCpqe7Yyu91Pu/KgZCyFvJmxHG2LNkjaJgCJFJcwwhuiNXIYW0JNOEhhZsjNg43Bensm1w7Tb46Fxn17qNm6JeWav96k47n9CIRrz5ZM3pIlenZnP72bmj4UG7e4ytPu7B+8vzDA7uwnUtuV8r14nD8lpXM6hEFRoAxb2dRbXfze43PDv7wV7udrIsY8TDpR3EEGPsBMUvk27tvDuxV/5NOjr9XWkKZx2qpJIU3cPnlIDgdgKyhZplV/ODL6gUF2598MDeVU9Z2LhRcwsCzJplXVLFncz1jrXVICeb7zC9j76oBdPVrtOhwOD39PIvi1dVlC2kbCoSC+QH3WXIdhCDA8SGkTkSaPNRVjHyvOE6CUGjJm06a8yznvyLaUXWh51qdZcawE3VMiYq6NUFHxEoqc29Ga/+W96j8lnk8ygo/6r2PpNG2UHwwuYMH8R53D0qGnZy+H9/8/ItV/pm2kieqFzr69ZP/NTwk2N/Ns20Rer2pkXukWkDbC8DjlS7VjUqM8FPfdwOivXsWhzGe1tyYKU8T4wsw/AGBJDzkF36QwN6oJ49YnKZ+ckWo7F5fYCWcRk4qqqdmMUVGiYUn4TJns1kjj4WdQoyw4Q8a5IsKG6fnfZkzRDXC9frLpvu8lAsvGYoSef4Fx993LhAd/x5Htz9NjPKm9RqW2v4tOlPSukIl1GtwFse7AQ6nEbbhAswND1ZzxD6knFiz9ChgGDaN9tBT4KchdTtEQQWHjOHz4OaTU9oRKwN6p2WSHberFmdx1ZIXr5WyIVFlSf0zy3ed2DFqbnrXP5gZzDaYTpkYphahZx+vWSv7bWuk+F7fXROkNTSc5LGh4KNH2zn86cz10BL0EuyRbCs7jxZr9jM+4km+Gn8cQyq3GTSMuRR2Gr5ovuOrQn7XeyDUlz4HQEsFMc3BICAMd3NqdZ6SkeP3dzJZ3soFEHoXxHutp5yxGa6kbiWOolpTmcWTMStoPNZF3eKC3n6JcWoyKj9v+Li0/UwKP2EuW8Ry98lq3ZlOPLVJIcvGII6To/pNSN7BYYj6Pf28V4sAzNOc/RkFLBoH2GTDZALcdnO4mFCWZlbDq/7K6cxS7QrOxlSAwps+1cQs3Z2rnhubdhHYVkjOnznlXf972djt5EKAkplFHxhiL3ubJoAwMTMZkFtMWacAUimb/WBSH3BjEe2QJs4veP1Gq27UDOSCg86SceSm/+3a20pXXmeJBGZfoRWq7CFe0OOfIipMWEiQ5DIs+7UUkVKUAEno3NQ0K/Bs/oqzj+f1IGXf+EJiYTDBzuQOoRrrkbbuy2W1IpFTUCsk3ZxSx5JwSN71da9/gSPgQbzY9RUHGBHLnFFFc8umTUsYPA2ni9klDfxcJtaTUJyPEJ66hziRddAu79mSx+50RuCujgrrdHTTujnFV/tOMzfwPbTvzyjeHsZdDq11kWTcfAAAgAElEQVSHwrYnB4Uh0V6TOvL/Ux2X8O92qtQkeYGSwuR67zpMLBQenrTO5Y9DHMIu0OE8rl9UTI7fwwNvH0Qqhc9jDHmodHD5l7lzTzM3i5cRCB5Wl3DN8i8PXYZBiM/GUR1m5YL73DrNy1vqHLcUTZAgoZeU4pyGQSkdbnpWnwIQXyXyTfcdqWJ0+LoJnv11JtZ2UF++gZ+X/wMz8g9w46evZtzYHOf95Mj3Fn1LJYHp8xkXUppQOYFnDUeM4DMtCnOjrp1YzYhnUK0kSKYrGdDFVACmoDfLpHp+Jv4pEZTpcYsXCJQSDlcDErwGeQ2T8UayKJh3HWMW3+Dmze4MpeprlCL03HNkzJyB3RkiY8EM6BaO9y90X+hsDjyJKk9mQr2xakKhCu2QcCxHmSkroLtJb1T62pJsLyOw/lc0jPZSVRYABO1soO+9N/Ec+AV5Z/2YYNlNbjKhUAWNh59x8x8Pw9I+wssrB8el9EupBir0hlRYUqHKuDN2K9/3PoRQEml4ebFtInnjfPhMQdQxHK9QZdwY/Y4bc/CmsXUYHXqsh3I8NI7xE/UatOX7UAKUFEj+mysnWSgM/qdqBX/X+qZ2xvH4acyclqJ6vTH6HVZ3n0vhkTBnjHkFgeKSia8TE4W8XL0Ey8mHx2OQN3MF1P7aJeGGsjnT3MOvrJUpeSwih+VoymSCe0bkOdMKyAv4uHNTA78AvM51AeQYzzLP9LBs0lLtEe/Yxsajg5giHP8XYNFPD36CCCSCGH5jx4AaT6bPjpoy3sXtKBk5O4i2LMZ2Ons8oHXC/0dRxUbqM8bT2qk3gIExfUy57BDCVChbcOClCfQ1Z7CjcyyBvHb3G/qzgkDHDKfLSGxlI+zfEuiIEhY/cLqRzezgGkynhmoi43k3UkpJoI3xmd3MMaoRr94IY//0vsI2Fc+ag+nxYDnnC+f7Cwn6ClI2RJGCGM/cdze2FcP0ePmbe36UcIQoySV4+SRtD+gcTn8y1KXJYVhcT+L2fiIHOpP5Niom6fpLLbkXJMhW9tJxHKrbTtfaOgoDU93nDSHwkHpWrdcUfOmsifzm7YNslzZf2lfPk+eMZ6Hzid7ODkCfONEWaWRuxiUfqFwfNtLE7ZMEx5YnBcmRy4UxyA6tqTrE2nfzh1xQbDxUhT/NWN8+rVIdirSNmADLvz78WYk9LSk/QzkeKpzI/4aE6Vv3QdL580IkFqjbzVWc4TtAUGoxvlI2DWpUyuIoBHzl7EnkZHpTAp1eOGssG6rbhg1+urAkD758Jw9X3IIAN3DvMeFGm3dQ+64ObOzE/Orp2TtYGumgoODilN/JRzfpwjj/cWKzGYbPVaEuLMnj8duWsfW9GNNHRpk+NseV2u3b94NUOzcHweACgrnzUs7x1FB0dW1zSU9e6bUY7c8hVRSEiUdkY6muAetdQqccyTFTVG6BwET6++t1iA5pUDT9lhTC5j7nqERVJEFUVTSqpXBK0XOJQl1muWwnMk8NbxopAClpefmbBJf/eHhHmYFnYzbt1DZZpk8/J7QEpGW0N5GuQp9lCoi6e5mWZbqSPR1HLvn8UIUhIRiSvGsPdpQ5tkxY4yl5PsS0Y8srsSXs21jLmear3Dn3Aqp8MzjQ3E17b5RtbWWuF7XniMFVfh9dAUnF3BzUgEN5lQEmlhOqQ1I2fQdfK7+NKb0hrlkyl/NrXnGDR6Mslhl72CbLKMpKSIuUgk8XvsbuI6M40DkRgbZvm754DnT+Q5LDkaKDHECP33geZ2orTkwEEsU0DFZ7DfICPu5+YSeWUrxEjKvwEvdw8Ri93Od5DsO4Hva8kNwsGIDf3IGwtR2bwGac98dUzv4u8/x52hYuNhd2PkO2+Sw9drJkzvEuVSYRew4+owolTL5XazKeKi4auQ5TKDe0iXDaV5NzKFzeTLgjg3BzJtnjwghTJdnA9dLXnEFzfzZ51TY543vdPVBe9cX4OydiK5uanh3U9uxgem4LRYF6CD5BS2M+4dg+crwN7A5NxlIGCpsNFFMuCrl2wg6KAt3ID3C6TWHZDK67S8cjq1q/jpKeqZjCdM879ZXmsmHvKmxLb7JtK8Zbjz/EDfclIhLIsOXaA6rYyVGXxsOwQOoh9q01Xa4NWxyR/Z0ceS/EiJWTyV46jsZ9eyh/5UXOzr82oS4XcbkqVCYdNnvdomK6I5aO7QlELcmzToie7X95hffKNybyZJrMOueYupdTio8NcRP/P3vnHR7HdZ7735nZAizKopFoBEGwAASLSIAUSRWqUC2yumRJlhTbsqPYSezEyb1xYjuqtmM79V6nXFuK465idcpSZHWRlCg2AGwgCgmAIAlgQQIEFmUB7O7MuX+cmdnZXQCkJCe2nsffHySw2J2des57vu/93leIvwDuQT2FB4DPSCknZ//Ub2m4zahLViVzzj5MTONv6ITmmdbNoHVH36zOMqfiCwnFllIyU7kz3AOhfeqYptNwO/xq0ktDeQnlf1OTdOQVO8BNE3BZbTFvtPRTLY5zlb4HDFyOMTp7xLLEIQn45o0ruXP9fFJjTWX+GYHY2bwnLRyBU3c6PwZHtxHO9dDW/iAyxZ06K7CYioq70/hYXm9eSgbK3p6gPP8ySpf8keOzOTS0k2B8hCrxQyZPmzQO/6fj41ldfS8NjXclOlRLlbZdONzIcLhx2sM4NfA6A4NbKCy8GL9vDhUVdzM62sLcuVcxunUbPXNfSeBJZyJzoSZXBmxB5ecombqEY098HV+rZKjn78j5UU2aK0Kgro75P/oh4ec3M/z00wnFfuue9bWYcLVQXq4pZdGkxIma38EA3/Y2OHKtAmNuF4DMQnX/pZL1bdPzT7+gnsGxU9D+CnNPTSmpEPf1EAIpTdraHiA7u0aB3Pz1aMKjNOEk5I7HKQtFGVnxAAe3VCV7a1rnThPCmTBminrRzgPen+FFAShQvMLYoefYdt5/8q0/uh6Av3nuAI/tPIYEGozF3Bf8FjWZv6BM60hkiKS0sH+i/CgEaJjUVDXT1rWc8h0P4TVjSCEx0YjhYZesxevRyC+8EqYOOqciz9/PX639vzzaehs7+zdyS73FG8vIxc6DSTSCcpTUCFuTqLpsguuEn4uurWVbZALDlCy3SplxJF4MBAZ+7YDSXTy6TWXyO9507oWY1NFFGwXevyFqriRDP4Au2vH2/4LculUWZ3EMEOR5f4JHhJgwz2cqfgKDj6EJDVOajMQ6yPGqTu1L5G7+0P8yIdNLO1lIUzjrJ5uSJqx0YHZphEh/gPikrs6PCcKESF/AyRmeblVjyry1fhbUXsXJ3iaatWfo75licKoHDUlFIExvJIcnW05g0mfdK9XJtx+qe/5EJEhZ5ihCE2kL7/cTth7ZyMApaHI9ExJGY4N0NOxKen9PazP7X3/ZkRRJLY+aE9MJup99THWPEH6x00pNC4LXLnSAYNE9Kxlv7Ceypz/Fr1YyvLkDb0mWKun6lzoA1DkcKWkXyjFBAH6vxuWFE7yzbSclkwFCGSX2YdPb3sLr//m9pOe+qu7c3zrdttT4SAA3IUQ58GfAMinlhBDiSeATwI9/ozv2QWI6iQ6hKWC15Mo00cr3FdP4GwJQvkaVOs96m4mb+GRsMc8NPMhFOY+wPOu1ad5qKLL+3sfTy1NHtyEt5X97i3E7K2D125fUnIOnSzhlzT+6eBFzc/xc2agGESfRA2j1d/HXKz/NM40nGBidYk6On5qSnLM8pl9TVKxT+nduaROhQWZhmqq/Co2SkhunJdE7tkyusqTanEbOWJyho09zKus1jh3/obXdxHUxzajTiRoM1rOm/lFONj+H77CGN09AXYpjQFpIpIwyMOC+poLh8G6WLb6PsR+8xfi6KPEKtX+2pIlwAymgqK+WYLCeWOMesl8WYEqkHpvRzsp+bfipp9L+5uvSKDmyhlD1LhfByD5g53QqwNYmyH1JI8MvoTCqJDAcuX8DXv4rWHJFevbT3f289wnHq7O8P8ZggY9TRb4EUrWzLdKg7/D3Ca59RAFlcR49Y68zlu1hJMfDWLaPak8Dj17dyb8dqGVLd4LgfVltMZfWzOW+zQeTwFuqr7eb16ncEVTmBxln3zsvUli7kTWV+dxcP49nGk8QjZmYElr6RlhYbmULE6QsC2xI5ztsELKssJVlBW2EDmtU9KtuZbHoErqXfoFLxxbw1YWFrKm8mm0NA0yFf+qcfl2TfHLZU/zJFVclFjv2eGNEQfOyO5ZYVAEsR+dLZDjsNYFAl1DcdIpzAjrX4uVLZKhJSAiM0iGKB/4On9YGmi9pMRtufJqfhVfx5ukiNmgtnJbZPOD9GTpxDDTqBl9CvvlLhO5XY53ug/gk2Z5XyOYVXhtcRM9EmLkZlZyc7KY8M8y8AAgZ5/OelxjN1TmyOAtQ3eYn9xXg8RkU1YYTSXBTMNYXIFAcYd75/Va5VeA74GG8P+C6WeF0az7nbLya4yf+H2ZZFM9cycSL8xH9GSzMHuTwaAH7h0sxXY0ZtqOKScIdwyMk8wJqH4TQoP9QYtH/AeeJ5Rdv4rV3v0tV9ko0FJB9d89TyGkW/e07tzvALdVOauydXjKXf3BpEKdMCiAl0d4xTj93GIGSJTFHo2kLIbUjkvHGfso9izFz5lofT35f40Q3vuy53Lq2gssKJ9j/8LfJise4Seg8X3I9g1ml3FI/j+ONr6Udd1be+1zM/wbiIwHcrPAAmUKIGBAAes/w/t/OSDWjBhwVc1vtvOlRuPvFs3ooQ51hWneoFdvSDTWU2JmExp+rTJDQFa9nhm0t3VBK6/Y+jLhpDRm2EGZipjQRbBn9PIXeY5T42tQ27f22Z/Fp0vitGauoND14rcF1f045IxVj6o8WIss2nubRT1/Jnt7ypLLmsw3ruYgDiYWQgPBkJ4XD/8ANy67i0z+PEI0rRfqZ7YT+m+KKhyC/SnUlho+rEfdXXyH/tn+0VP3t8qdIKnemRn7+eqyWNvWCU400aI2/DQPAgHDPB04IkTBDjzQ1EXn+BYznXiASj3PM90KaywAIsrOqGRtvZeYCnsQ0o0zMGaK85HaG/+EXlnG8xMiA8SsNB3DrfZD9tsbiQBNctEuVQX0+ZCyG8HodO6vpIrJr9/SZYZ+Pqg1fZt5CSce+v2d0opW4d0ztr31LSnW6cl/S8XUJTosccubFCCCSBWeNKIz2pZ41lZkD5dlpy2hYUXligsECn9J5s+ty1g3YO/w6pTu+CbUfo918FzPHY18ITGnSarwNBny65iVCI39K29ACdAGX1sylpiQH3abuWQDYTMnAJfE6LSK/KSUxPLxn1DJklXXWVOZz/7XLue/5A6ymnUd936Irz0cf/uRVjvVdTuLSAh+aVUo6vCRA7oRBMKLDJV9lacU6lrr2p6JwLh3h1LNnUuw/BFxsvSlhc6ct2MhNvSU0WQBVE3C7PxPfJJZjQeJ4Y0dHWQD8pQXqNASGlOwOhbjR24qUEsOI0bBjG+uBnr4T/O/jV7AjprxJHcFtq7Q8If1crjc6zh5MDCrwlpJtVfylPkDiFdkcj+RSGhhHYBIq9luVAJVBk1GNeMwWZlYXb7AtSKQ/k7mrB11lUkEwO4aGieGMnSoi0WZMTY0Fmi4oXWLQ1Q9HxoqYOSTdWVV0ZVSQaU7xhcpWyqbGFJAzDYT7mN7HPOGOsupayi5YyVvbHncM6W0D+tSoXn++87PdyeleDUx1qpvkgzgdOHIjVkk0YnWtAsqGa6Y1JxDZE7IujXKkNaXJpDHGRHyMztF9+CIH+f4t97LpopW89h//7pSAPdLg9vx+Nt59syqTHs5JqqB8FMqk8BEBblLKHiHEPwLHgAngVSllUg1OCPE54HMA8+enl85+a2LBRtzWONPGWXIZQp1hnv+nRgxrVdLybi+1F5SxdMNDlJSstgYuU2UfUrtJrShZGOTGq/voees1MsQo74z+AYalx5AwJhdINFonLlHATZpQeZ4idvftV7/rPlozVvGGy1T7jbEFHMz8DOcV7OW906upK29kkRhLIsFLqSaDL1x6sbNPayrzabvuS7z64l6u1PYgBAzneGgKHsQcOIjkWeZlfZEjw1XE4ua0XaP/7VG8DEZ7cUYaY4pgf7+j6h+Pjzilx+nU/EFx0FYEv05b033EFrpGKbscmKbwr8LWTQsG64k0NXHsM59FTroaFKamnG5Nt8vA0NBOxjpnE2VNAELvjYLhZ57B2xXH1wUGggFvIXOr+8jYo1HQbFJYG8ZfEOeVl56m6OqvUmu5INi+ojNFYN254PNB1JV11nVK/uZrBOrqCIcbCZsHML32MQk0zUvOEyZmlrTcHqzalZRETvkJ+HOTnyvNo6yc3PleIVRm7ldfUZpnKcT14KhBfexChoI+Jrv+i57SDAcMSSRDh/4fZEYwMVKycs7JQ8oYd64e4BtbqjClkgC5pX4ecVPa/GtVykThwpXzghTnZvB2u8bvR7/Gzfo2btXfdhZRD8U+SaOsxl24GYpEMWVCdy1U7LcufILLZf+akjx0/jfR2FeyEv9ABcHQCKW5Ce9VgPBIOmcSrPK+O1zSOXdWqJfu33yQWlNj46Td52nvV3IF3M41GUgMTK7Wf4Juaa8JabL24NcxDnkolSY/0jzcJb7m8FvdpWXTyelpCDujancFW7E8eJLmcAmVWedQlbOK8dxW9uS8S0CDOnOQnmJLk9Lygl04OcrcyiqOy1OYpkSaGkOHcwGVdZOGOjJN91B56d+wvH8r+5sT4EfTdQpKFhMafsW5f6KeMEWrpxJdqEmp9sQzviTHpD86xYnMMr43nsMG/VW8xKxR2Ey880Nw3pZfvImDb73KYFjtsxAiKWuVV1LKudfd7GTbINHJObz5iN0lghbwcOqR/SozpgvmfO6cswZvSQ0PqVSCWUAbgGk5iynOosrm+rUA209vdkBo36+e4LW23Qz2HEs+9rIgayrz6W1v4c0fPew8N0IILvvsH/3Wl0nhIwLchBD5wA1AFTAMPCWE+H0p5c/t90gpHwEeAVi7du3ZcoL/56NiHVzzz/Dil2Z/3+SI+n/Pj1VjQE6psrJxPaQ97UMOaAN1Mzdv7aFtey83rD9GiT2JGVOqu3OGB7zk9FPg66EnupwLc/6TU/EqDk1cYf3VDRpk4v/u7YkSb/2naS2+hhtfiBGNtzmm2nWFW1i89lk0IblpYYfakqvTUv3nScpI2VZAGxYWknX9V4m/fCceM8qwixsnZJxlhUfoClfhnaFr9L89UvmEVuOHDdJsL8vh8G6HHzVdZFRXY4x6QEZBaORlVBMdPEgkkOgudcmtA4L5FZ91Sq+RXbsV2d8dVrdm8MYbCNYlbKDGxtqYOdumYn7FZ9X766Dg7k8z+J8/wpQmcd1D6MACFj+tuq/GgOzSSTILY7x1LM5TD7/HN25YwZ2f/9wZT12gro7Kn/yY/m99m8kDB5x9NobV6j3RtOGcXKrnfIpA9N8JvZvtOgT1w8SAh8gL3ydQKFU2uHgZhJqh+13XNixTdYQlY+G6lzWPOse6DxZfCb3/Rc6ogSgGqUnnbacKPOSfbkNDxzRjCAmZEwaRLN25ThLBW4ejmFKVKWNxJavh82jE4ia6JqgKdrE42E7nSDX3X3en46bwTOM85jS+qLheAqQ0WaEdxSsEN9u8MmDDwkK8unB016Stu2YmQOR0gM3+synBMHXO6TtEwUgTp7e+QsNoHpI4oCGEliYzY59Dp7w/TUx1j1B08DS1psaVeB1TbwnECvz4hqNJE7TtFdlNnCPaa3xKa0m63TUJSEW18BJLsrdzl5adpLzQkykhdgOKlJQFRrm6rIyA92omgkcYPPdxckUcpE7XwErQ9loYXgGysZx8yuZ9jLr9O+gr9hOJe1mVF+JUYD1HugY48tJ8csomWLjsZoLVv8/yT6zh0Df+hngshqZpXPbZPyKr4CgMJxYGBdWjIEeREsZDmUwO+xk6HLRAXAK8xUPHWE83a9F5vvR6Hgp8UnUcM0vZ/8OG0NB1DdM00D0erv7C/5oWwHhLsnD4EhIiTS4OmqFKmO8n62ZG4okS/1mEohWqupC1C2r3hWo8mZsx3wFuoY52Qh3tSZ93Z9SONx/AMIykbU+MpvM0fxvjIwHcgMuBLinlKQAhxLPA+cDPZ/3Ub2Mc36VW/XmVMNw9w5uk4lCN9MKBJxMvt7/idC8ClFfn2844ic8hiMcNerpNSlK3OU00b+vhUNvnGDitIdHQiVOT+RaJ5vzEBOcTkZTdNBVaDM7jjbEFRONtzmS1t2MblXwHXUibcuMqBVqfF2BKSWtolPVBHCugaNx0wJ/3My/CvsfIP/IEmqm8JIXm4dY6H6sWGaxedP6vPdvW0/M4J0++wty5V80s8JqqDeZq/EjzsrS4aNPF0NBOTOLWqTYJTx5GZnkSs25aSI4d/yFz5lyBt1MQ6+1V328kD+oyHk/jmalJ131NU0Pg8ahBN9LUxNDPH1XTrq7Tefvn2NC2m2iVZKpa4m+H0ROZ5C6aoECMYRiS+zcfpKYkJ82P85rYKyzof10Rza3u40BdHXkfv4WQDdxMEz1PiWEqSRXdBR4ksZ53yF84ij93koGDOYyH/M6xjPX4GQ/5mH/pIIEiA/qbSVuyL7oELvmq+rnxp8mg24xD5fmEL7iLxt5vK/P4xVnUHBljNMfDWKZOOM/LSI6HEbmXyhNRPLE43pikdXEWdqbGvtErco6jWZ6UXo/GLfXzuKV+Hjs6B1lb1sNoz79bjSSvsTjvPECVQLua3mKTlt5McuvaiqR7fE1lPg9ev4L7npf888Bd3FL5LEJLHE8q1pdSza0CDYSJKTXG24spGgmhCRgLKukZ9X5jGp6mujeE0NIzblbYHpO1ccl3CXDUBTIEkLckn6z6YqY6w5gTMca29jh/q0Jnp1lLDC9CRhOuada4oQSgJadlNgAeLVFaFjKaKAlLQzVKQVIZl55GaH0RXVsLwEj5dtDsZ85gbI71GVfiq82bx3hTCxd5IFScobrgy6dY7juHoz94h4lTGtGhPDbdfC2Q3LVpa6CFw43OfexcE6v6ml02QXbZBIVLh/GFIaNb48jRtYROjTlZPx2D2vF2inLG0DDRhZVNLa+H0lVnzXF7bOcxfvhOJwjBZy+o4s7189N03aRpkJmXR8miJZx7/S0zZp3cThPKRSEZ6EzD6pgxprpHmDo+kj4kWR6loEqmsb7xNK6bKvurEqn63cSUJicnj6dlD93hbjyoWL4SXdcxLFFwXfdQsXzl+ziC31x8VIDbMWCDECKAKpVeBuyZ/SO/hTGrd+g0cSSlGcDqXrQf1pKFQSpXFtG1b8B6g5W+R1I+8Svwe9WkpHunVYJv3tbD24+2AX7sUcuwOGse4sSdp0l5CTZFbgbg/NxH1ftFwupq9EDM2QOvR6PQux85ZaJZo7CTAUAJaQqhVk2mafCzLc/RMVzFUCRKNG464G9H5yBrLlWlmODxO6nvfIq+rDC9o1uJjjxLlfgli/MeBX59wO3Ikb+j+9gjAJweUuWWacGbe2JI6QhO8rJ0uSJMF/n569HwqFZ/CVIzEn4sNr9Gpg5aBiebn8P4kxeR0agCbqnv07Q0npnaL7+zX9VL7mVgcAuDA28iSZYfiezarbYtJUJK1nbvxajT6FwRdzxOC16ZAoTjF2uYMsmP8x9+8FP+XD5Gpd6qEhkdbxLqbqH0FiUxYAyHHU9ONM3JuAWD9cyv+KxzHUASR91fgaIYRStGiZzyWeUqq0xmQuSkn0DReDrg1bwKtNnX6GP/BC/9BUlSOd3bGaouTwBuXePkooUsbO6ivSrBZ0PC6VzBur0RWhdnJ5e0rbL2BeU7OWfJHZycqk7iba6pzGfbnkeQckoJq5oxDna9zQWrFag/Tz8ESGdzBhoviov5sivbZsdQJMqF5e+yoeJdpGbZlUswpY4QhmWtZO+2TkbWRqLjW62GB5N5Zd2MTHoIjsTJCRtI65l0fQohvJSVfhyPJ9tqkDFpP/zNaTPIkcZ+iEsrOyZY4p5aNByZh/jwpAIleX6M4Slnzl5IOXdZpeLb9bfwyGQgGpdQIBTXa9PSYl47BD+KX8kfe15MOTOuY7DLuMd3weHXMMw9oC9Lvz+EdB43KUEaGnrHJJ2njlN5ca6T6Tc06PE1cM1f/T4nuzrILouQVZxoBLO7Nu0IBuvx5t7J1PBPE3vnTp4DQpPE82Es32DewhihJ9wZSTh3QT4nJuJoSOv2kmq8ueIhziYe23mMrz2X0LWzf74kBbQAjJ0e5MjpQapWr5kRuDk8t+maBgDh189qv6a6Rzj1yD6H3osG2ReWo2V6k7hy2etLmeoeYeT1bqaODCsxcPtySRNTGjQMvkFvTi17PTrXXHo+9RVzefNHDycdmx3uxoOy6lpue+DbNG9RXcvLL970kSiTwkcEuEkpdwohngYagTjQhFUW/UjFdI0J5WtUGRRgYii5vOPJBIYSv2teJzUe6gzT+Gq3C7RZdXoMLsp5RHHR6j8NwYo0YGFHR5NbY02NJrowWBrYxtKsd+kpuovOkeWc7E1Y6uyduJmFF66gZH6mI2PyWG8J39+aGBzuPm8Bg7EYGVJHpKzeTSl45egmLqvcikcYxKVOy+BifrX5IF+/YYVTUkorgVasI1ixjr7W+5Aj6hxKGaWv77kZs1mpYctq5Oevn/Yz4XAj3cd+kPRaT+9TM2fdZrDGsvXVZvsu93sXHr+N/qYnMP0m41daYpROHSB9gBRCx3dYIxKNKtBjmsmzga5Tct+9aTyz6farvPyOac+L02wwNQWmyfj27YzlGrBaWqx3SXy5ycNd1zi8I11Tfpz//tYR9J7d/ET7Oj7U4KkGWpi7/2Fa51/B0nMvn7WhQWX+EkvxY76jzAlmEAxPEiiKUVw/RmhProufAoG57hLoLGFrDr7450nvzz9xDK3YZwkaS057Bhg6J7NdDKcAACAASURBVAdpgwjru0azPfSUZKqyrJv9b+2xVxiU84+cX31P0vn1evOYHHnBORem1Gg9vZgLrE2Ur74Ss+m7mGYUKXS2LvkKX77wU2kZ5XC4kRWZ/05N7dvOa0KAoQn2D2zk/JrlLJhTyujoIQBHHqahcbvS2hMwlqvTuCrI6n0jvDp0IfOy84lHEtsLBBaxrPbbBIP1HD36PesczJxBToZ8yeEtU5kyhwuV9Bn179vElf5bvJpnjY3c5/kZq7QOR1NNojsLhKIcP36vxgq6U75PpC1Qe9tbaN6ym3H5ScZjvcwZ38GC3vMZKX8HqcXBtK+h0h0aH11Mz1sxJvozQUh+2bOR8xe9B0Jx76KRnXRP7EZkw8SIZLDpSUeWZ7o41G9S5QNdSzymqZIf9oIgHmyiaHkZA80q86zpOvGFa8hrfgoDZSogQWl1Lr3mrLJtLx9MbdBRr935B+u57YFvs2vzM3Ts2ZH09/ad2ymavyApe2iHvzKXjJp8Jg+dTt0sAGNbe/AUZqb5nqZGpLGfpMqvCbG+8SSBXfd35l5e6Wi7ac6wIDg+1krX2D6GC7z8yRe/ROlUiOPNB9j0mc/T2dSg9NmmaTzobW9xju+KP/zCrPv62xgfCeAGIKV8AHjgN70fHyoWbFTZLzvjpnmVIGjv3oTae+tL8O53AWmR362oPN9R6A91hnnuHxswTVBrbcUjydYGWJv1FMsCr2EKH9qqO2d9uBfVzeX4oQQwrFpVRP3qcUrit8KCjZRUrCNj8zuc7LX5RqpVvnXyUkrWqh60hu4hHtm6N2m7v2oO8XvLl/CLA19iXclOVhQeoihzyKJGCCaMTP5pzxepKThM2+kldISr0IRkKBLl0Xs2OCWlQvkE4bACE3b50u0SADA62pxQz58lwuFGh3emab5pB9vp5DPGxg6d1fbt77AtrEpLb3KcCWaLSFMTvk5B7psZjGyaVKO7rnYjdyzOSI4nCZQJdMpCl5GbsYyIx5Mg+LukIPI+/nHyb7992u+z5UPO9Fqgro7ir37FEcdFSsSIKwMo4N3JFfy9oSZKXRPcc2EVX3+xmWjc5Auet/BoRlK5zqbGDB16E8693NF1m66hIbVcKpGcWnETwe1PgjSZHPK66u+SrNIJAkUz6ErN4BjCUFeSrEtw0Z1U5PUnZfqkG5i5DqJtSRY1GdfA1CuAvY9O/o+JyaO0tt3LxMQxjp/4qQWYNDQMiyIA7/Wt5/qL0zlKAgGazqaLLoGKdNCm7uNJZ7fs84sU/KqzDiPnMvYOedmw8PeSQF9Z6cc50fsYNsSUSIaCPhbPv4CltZeyp+Ed51gikaMp18JjlXd1vN48jh79XhLQ95Vlk0KkcCLr3BJVYkvVuEM9bduI8RIxPJoqcR3UavhG/JM87vsmHqlcH+6L3U2jrCbDmyg9h9+5Hg67XBJSOMC97S08+dBXkzIvIbbSO1FGZeRmMpe1E8vqJ5YVsnZIkpHdiUElJgKh6ezhCrbuWcf1i15mWWEbmpC4dRrdsjzTxXB8BYZXVz6xKYhWmihtNlcabt6FIcoWXARTZSy/eBN9/hL+4dAhJDrS3oY0z7op4eoVpWw7PJD2GqiMU+ni6jTgNnfBQp76xt9gxOPoHg+33ve3SeBNz/EljsH1ORtPje8OnRG4GaPpVaepI8MMHB1Jsrayw/ZNHXy0BWNkyimHVuYs58jYXg4ORTjQuI93nv0X4rEYQghyCouSxsWqunM53nyAgWNHeesn/zHj8X0U4iMD3D5KoVZ506RfK9bB3S8ldHgAGn6iuBnxSfV6sGKaLQpYfLnzoLbu6HMoOoJEq/24WcA7o/dwKrYQ33y44AwP9vKNymGzo+kki+rmOr/DeYn3FOyk1x+mfepi7Me05d0+lm4opUc3uesHO5hMUbg+Ohjh+1s7ESygY3gBC/O6+Iv6f3MybA5Y02Bp4RGEgBPji6jVTxNvbOSqxR6O991HhwWyKuZ9yjWZWufD2peR0X00NN7FmvpHZwVXZ8M7U6XEjGQLKWnOOjDbEQ43sqfhDuyJr7fv6TPuk9MRGo2Cx0NezlrG2I2UJpqUlPVFGcvyYOqqbFUYWQ3f24fseJuQ2IKWnY3p7swUAuH3E7xxBvux9xmpFlVmNk43mWnCUW8xX9A3M1y8HirW0TkwzlRMkcXfjdfyRb+ORmLSNCVE8fJieBG+7iHWVOYTqKubtgM1GKynpvpB2toeVBOW6YGGNUwZe/FrLcllToCsJYR6q8nM2EdGXpwpcyV+7QB+rXVmErct69Ky2eHfjTbdPc2ZcKVJnG5oSaz9OdZe8G32h/fzems/R8PlXFX5JsVZp5xPnjz5qnPfKd5NIkN4+fJFScCqZ++rFBtxPEJiGHH69r5KecoznNq44S697T21nI5wFV3bOgEcnqj9HaWlN9HT+xRSKoCrSSgIx1gU+gfCq4ot67Ij1pbj02SzJVLGaWt/CCkNZwGUMbxYCalOE/5lBU65y/GscrYGUeAXxPB5Ne6/djlDkSj5AR8HXnhddZgCcTTaZQVXLivm8xe7zlnlX8GeuUnXzx1u8nmgOEJ2aYT4pE5Gbhgzo5RIsWvBaZ1DTTOYXJBJc2Qprdk1hGIFEC7ghY6rWZLfgVfE0bTEM+GW5ZkuLl91OZu3vMjG8nec8rVzzdxkPtdZWXLRPGfRVwZ8+Z5Pse2dKS458neqnUP3n3VTQk1JDlcsK+ZQb5gpwyQv05f0d9sKy4jHQQjOve5m/IEsjHgcaZoY8TjHmw8kAZtAfTHju0MKeEKS7hxAtHcszRQeEmbyWsDDZNtQ0t/sKrB5BkcGYyxqnUOpRHelZE5GJa2BEsZf3caGaAx1n0pGTiUqSkJoHN3bQGfjLoQQit8nJUYslnZ8H4X4HXD7NUfqKq/57deTPN+oWEcoVkNP+xDlwT5KtJ9bxHIJTY/Bhj8mrdwzS/eQbe9hFTox0Dg0eRXiCCzqDFOyMDjr/i7fWO4CbNPEgo0U+H8AUxJ7pDENSU/7EDv8caJxc8aPLgx2OVm1f9rzRc4rSyhzLwp28b/q/wWPZsAiDU3/LAf+YzdGPE5x3SAla22QNcmx4z9OO2o3eJMyytHuR1h1zvdn3BevN8/qlmNG3pnb+L2n90nAQAh91oHZDpVpS4AUKWdvSgAIP785Yf8Uj2M8t5/CRp1ojc785bUUV1SSXbmGId8omafyOf2nf5swYJYSc2QkeYOaRvFXvzKrFMf7CceiypIa8bcLRu1kg6nxubE3KPBMERt8jrv6vpZkRdYoq3kg+mk+o7+MTywiFF+PEC08L0t4oreEJ+wu1PXznQE9VQeqvPwORFs+p468ReD0UjLCC5jyrMCvtxFcbDB8zMNAMEj38g14ipaw2Cyl2LiV0agtyGWQVXyMwAU1+GdaxKy9O2nCnzv3KofbqEKVhVPBm5CQPzRJsL+f/fHP8bNDqjGnKHOAq6vecMp3weAqJiePW1ObpR6stkZs5DHC4euce+Q9YxnXuEzk3zOW8fGU3c3PX4+JhpCGkwSUEmKmzitHL7d3DwlMxZTOoQ10gsF61q55jP3tT2D07mV1RxN5o1F6SjJpO/EQcgYNBiUsbWczTad07CyAmnLS7InsyKwpAFTGJOvcEsZ3hpy/ZSzJY2hFAVdFJnjAxQV8+vln+brnx440yFiO4LY5z+GZ18XivLtJ4rSmXD93VCxfiaZpZBSNOr6iiWHDqma4uG0AGIKso2PUjrbRml0DKOmRy7QdtPdWU1kKuVqz8x1OF/YMsaYyn/cKViJ4J6lEatE600KI9LFpTWV+AqQ2/VTJ3Ox73DrImRfnDd1D3PEfO4jFFdfYMGFgNOrw3BKOM9bsoXtYfO4G9bMF5nRPOmHfX5nLyIVlBLb2qPsYaMFgNbrqFDZVE8NBDJ5pPIEAbi8roPDFo0pwN6VePFUSwBcad2a9ExNRkqWcVXQ2hgiYEt1KVkgpMaTBDk0jlFFilZ2Zli0hpYlhKLAmk16XTEXGZzyHv63xO+D2a47UFmPDSF6xNG/rYevj7ZimRNMEqxZ8E//JnZT7DlLiPwKh/SQtTXPL4KK/Vj+/+OeAYGnVbbRuFxhxtXTr9vWzaCofE0tBHYE0VWbuTMDtjFGxjvKbDLSfjidJ7WRkedkwP4hHS5hg27Eo2MVVC15n9ZxmhJDETQ+vd1/ExvL30ITk/LJdHBxYildLyB5I4wf4C6oYD2Uw2pNJyRrhrIJtk/TkSP7OwYE3ZyxphsONtB/+plVq0Klecu+s2mqAZc4eR0rDktFgVs7aVPRU0u+C2VfikaYmhp97LimVj2ni6wBfh8Rs2wPnbSe46g6CFesYeOWRtM7RtHBJavw6wimXPvgQSImvS6Poux6mqiUntPkU5DbgESa2z6UjjIqa7B7y/gRpLmYg+hdU4AHO52ve+2mXFTSa1dz3/AFWoDsDuvBoyWWS47soHOvGPPp7KM2LuDIQL6sj8Nnv4Ll+lLe3brWMbfpoJ8THovWUyCAKaHkYDy0k8oJB0dz0DMB0YfMZT558BV3P4NTA6865dYcEh3O6wSzE59GoyOrg8vlbrdtWo6T4OvpPvkyyBVpCcDk1m1tVdymfabiXNbKZBrGcL9ddmrZ/wWA9WUV/zdjJ7yAwMaVOIO9GhqKXUja3gCtW5fLDd7uIGmqCerrhBLe4fHiDwXo2nluvCPsHriec66NtcSANtAnhc7hx6V2+AEpbL2tqhRJLnSHcavuB+mIijSeda517eSVzKnM5J+Uz5+mHEBZoG87xsO+cXIq0HgQ97Gl4maU1X5+Zd+qKsupaFtafy0jsRUcw193ZqS6C9Z+E6EgVx942megPoGNQM9ZGWeYI3y/6Ow6eE7BkVzQnY2ZKQf+Yl8UzfL+SeDnBHIYwMxI8t9PRMrKzqsg0d1nnVKeo6FL8vjmUlt40/dh0fBe8/OUEzab73TMK8D7beMJZWBspuPrlg32u7lJ1P5qmwfHmA6y/6ba0DtnUeCtT8jIRVqM7nqD/QgAPSmz4aEDjjkfec+aGcnGS66TP6v61eLIof9IDk1PUofxsDSSHOk+zjEVp5/LZnkE+gwJbSIOusQN0jLfwer7qFh7MLqNwWT2DzQ3pJ0NKhKYllvyu57nhpedZfO6Gj1TW7XfA7dcUNtkxMydnxhbjUGeYrY+3WarpSj29qXMJsBAPcW6Y8y1Kam+A7vcsrSmT0GAuPU++S7nvYUo8imxcoj/KjXdt5qWDmWxr38nXMr5L7+i1NE9eSSL/fuYIdYZV5q86f1aAV3LeedR2tdK8NbFKnRyPsaYyn9UVeew6mkh7Lwp28Zdr/wWvZmUWBOhajN+rehNhdcx5tDh5/kS2yF6AFVSHiZwMMHU6l+zMcxmbTOZeJIctDmy1g2PO2KiQKJOqVdpsWlT2+xMZBoPWtgeciWs6flw43Mjg4BbXFjRqah6avUy6azfY3BshyL7kEsa2bXM4a+GuAMGFUwQsLoueFwRdT3xmupimk/TDRmq51Nel4euC2lvrQduHlDEMNIc4bscGrQUPBmFzEzgG4l5ixkUOyDMktO/uZYOVrZExM6EDdXwX/OR6YpMXgyuTB0DpOUyZS+k+sRXDVWYypSSkDVNiJN/LSds9iygvv8NpKhg8vU2Vzu0R39EhhKFL7yZYsY41wKP3bKC9o8FpxgBJOLzPdR8BGASD5zIy0qTK4SmuGmsq8/nyPZ9iR+cgX15YyOK8Lo4efSJtsbC8so49AzoSiUdonLPkE2wM1nOrJXI/OhXn0Z1KdDRupAtUh8ON9I3/En7vehgNIWUigwQ65WW3JwGI9C5fdXy5OSuJNJ1EN+cmnb+J4BEiBa0EhmuZs3CV87rNUzqTyn756isx9/4rphHldJ4fqQlXNdGkte3+WbUR3WNxf88WchfGnMq6Y9nmzsxYa0SfUU6kf9DZjkDdxwNzdUcrT1pafaYpiEudr7/q51v5Q2kNJA3dQ9z+yHvEDcmiYClL13oRMo4QkgJ/H2Y0pExTUGW8osKLZx+XpmtsO4MA72xtOjbPzV0qdWfXUjtkU2PDwkL+1XuYQzE1Xi1DV48HgAndbQPELNC2HJ2rpDfxYY8g77pFmJE4WyYm+cHWDv4vASRKSbAnNxmW2JnDaNxkLzr1QqfXGOCac4MsXPQZNg1mIoCb6+dROrWAJx/a58y/wkLpmq68ZaUZTzsv0jQ/cuXS3wG3X0P0trckkTk3febz9Hcpzoeb49azy17dJBwJVOjE0ehZ/m1K1l4IxcsIvfAjWjtyaI1swkRH52ZuKHhAdYsaUYyBN9h+eC5/IneRE8+mJvNtWic3Ybiybqd7xwnNUC4NdYbZ/H+aMOImukfjhr+omxW8Ld1QStt7IeJxE00IMrK8NHQP0dCdzFU4r2xXGikdKRCadI5WoPFOzwYW5B5Ds8CcEFBeswxteD7V689HZm9mbNK1DVKoIEiCwTWEw3uscynp7XvKyRK4s2NKe0oNK2cqfYbDjUxO9uIuayXKQ3JafpwCevaELSgv+8QZMwKpHZWF9/wBnqIihp/8BUg1QUROZRJYsJGhX/yC0Ne/oTJuQpBz7TXIyATRri6ix445dZfpOkk/bEznciB8PuZfuBrPLsCQeIXB5dqepIzbDrOWCXMZMTN55SwRjh4XwKQnmbEd2dNPVn0x/mPbmIouYDj+R9hyNOBh3Lgciq9j4AcHCMtT4FIf0BCUmHlWRsT9fEGkwdru+xAHdbpwjz6Nd+dPaavyWYK8AqF5yF+QXMjUGMedypmYPJq2zZGRfdRUP0gsNjxt9ta2terpeZyGxgcdgOdeLKgmGsNqSUrnYC4vSzzHpoT8QILXFA430tB4lyuLnbzQq5z/Byxe/Ndp+23r+7ljOLybcGETFcGvkBlWeaeJ4BGOr/0OUosjhJeAx0/saOJY/ZW5Z74GFevQ7v4lHN1GYXExXSe+TmoL4nSLtHC4kSMtP6SjYSen24MgJYuu6U6USCG9lCY1kCaa5mX+0hvYp/0EaRqY6LRm1zBijvAx8XLy/knJ3lMreOXo5XSGF0zr3PLwlg7iFnDpCFfxj3u+yKdXvk5p5kE0IRGadGV/YrS1T3+tnUhtbIMzCvDeUj+Pp/ccJ2ZIvLrScGvuG+HqFaVOmXQ6/bmzCdt67YfvdNJxapzV6GhY9mYSVreMcD1eNhOjDt15ggECa4rxlmSxa0s3jxzq4SAGXyJCHTr7MXjg4uTS7MNbOpzMYTMG4Twv370j0XiTbFCVz20PfNs5HlBVsJGBUxx485Vpj0X3ej8y+m12/A64fYiwBUZLj+5yyJzxWIz2nds5/9Y7Kauupbe9hZ3PPUnF8pWUx95EZ51V2nEv/QAEUz4lmRuK1fB888ctU2r1XgNJT3Q5Jb42DKHzzw3l1I+UsYcqmvg4NxQ8wA3597N99Pfpiy9XxaMjYZ77p0Zu+t/1aaCsdUcfcSvTYRgmPe1Ds2fdFga58LYlqswrJe88eZj4RXOSyqdL8rq4eN4OR+7Ajt39a9hQdgBkDCE0ltU8yO9lX8DbhwNcWvoTRbhF48j2LgZbhhg3tjDvwj5sRQwpYWLQR6AwpiZka1kXDu9O2kcpYxztfoTTp7c53aPVS+6lrT0x8EsZZ2ysbcaSqt15qoYgldUQwmN91piWH5fcded1wONsYXdUhp/f7LwWvPEGwps3I6NRhC4IfOZbRAa8CdCmdoLRX75I9mWXUfq33wQ4K5upDxq2y0H4+c3EBwbwFBURvPEGAmNvOhkAgeSPPS9yXBbzuHkZAOVyOYOxereFNoIYWfobfA0Plea5jDCHDaFo0lOAofwP/Ys3MiXbIOVZicgrEScKCRltHPRaVjbWn6uNMorNoNNxlgT07e2+T0PsYLCe4Kp6KLiR7AP/Rt/QmyAlpQMGwcVxsISj733yMf687mmkSF1gJIeUBrHYMAsW/DHhcGNadyao+1BN5GoxYJpTdHb+CwsX/hnBYP0ZdQKHIlHnjGnW787fkrLJkNxFLaYFaGD56rrKvM7xaHEiBa0OcAuXv6tkNgRIYrS1PYDERAidmuoHz6rECThSO0FgaZZOa9u9s77dAaRmlIKlkL9kiMG2YHKJ1Blq1QvSEAztrGbKN8SGj/0lAX8tU1VrOXxyVDUmZJQQkiX8+4k7uLnkmaSE6+o5zbxy9HI0TaQ5tzR0D/FGS3/Sa10jVbSM3cYcfyseoTJv7l7xmeRWbCmZ/qllHF/5MBdPvMYcMQLZc88owLumMp/HP3ee40Qzk1D5mbJr00VD9xAPvnDQKYU2OQqglsqBhL8ggyOYNGE4fde6R0Pz65x8eB/zTcn/IcCXiNCMQYsw+OaNK5P2c7pzeWJ4kteaQ2d9PPY83Pz2axgu0WGhaRRXLWblpis+Utk2+B1w+8DhVvmfFzO5SfcgTSVY2r2/iWMH91FWU0vocLuyEdE1NhWfRrKe5OVfIva9fpyFq+fQ+vo+i5NgkzGUR125rxkJ/CxyO2J8HmrK1DCQnIguZ03Ws4REsrK53UjgBmWhzjCt7yb0fYQQlFefWcR2cjxm8QsgHjfpPTyMpqmSr64J/vy83WgWwEhUIwSXLF+PJ/NP6OzZxsKyjZSXX8yd5cD6e+npWaQmKdOgbEMvpmFQdl4osQGrcylQGFXlDtv3eYaKcHTqpKt7dIpeVxeddUZobbuPwcEtVFZ+LmnC7Ot7LskgvrBoE6Yxydy5V5GdXXNWumzvN2ygFt68meKvfoXgDaojNHjjDQTq6hh4eHpu29gbbzC+bRvzf/Jjis7CZurDxLSdn8djTo1bAFLAZwoOsFu7Af/JCf43fpT9s7DuYJMs/QUmzE1EjMu5Bg8CDSYTUhogEB6hRD4rKjDLWqHbTUhSOhrx0Sh92pBqy3FlUArN7OR9dENCzdruB42KdQT3FRA87FKK3/cYVKxjR+cgC3PbHV5Wcq7P2m+Lt2pnfGeTp1Hgyn3NJaeH3mG4aTcV8z7F6aGd5OasJCtrybScqA0LC/F7p9dDTACw9JL7bLzMYLCepTUP0dp2P+6OXmF6CJxeCgIyagvQq8GtCyJdC6a29gdnLXHOFNnZNRQVXcHAwBuos6vSrG5OqwNIbWqsbjUuWf+kgmk9VkvryxOMhwRCK6KroI9DW39ORizOUjSnMQGgN/t6HmvzckfNE9juYhom55ft4g+WXj9tti1Vn1YIwRN7g+zJ+yIfX3aAxTlbQBoIoTG/4rMuyRjhuFMksqMxYqbO91r+lK+MXsfXraaeswk7g/tBw6135gY3OzoHnVIoqEzYPzPJX5KB1RqEAOrQ+TlRvkSEenTWVc+lblsPSGkVVyV16A5oSz2uHZ2DaTamJZMh9rzQyI+nNnL3TZec1XGUVdey/JIr2P+6K3sqIdR5mJNHOwCSfFl/2+N3wO0Dxo7OQUfl/7hnLmOLNhBo3er8XZomPS0J7kjcNDkwVIzpcyeNk8OUktYdffQeHgEyk/5mr896orWMhG9mgTUhCgx0DOb5mkEIKipGON6ZUFoXGmmgLNXjVKY+GTNEeXU+ukcjHjeJSclbp0cwPAq0fftaQcbk9sT3Wv9rwosncw2f/nmEaLwOnyfCo/ckOCGx2LBabQq1Mi5cOqwGWbvby/rRBmoDLXkIISiqDYNI7WTTCAQWMDJ60DlrI6PNpE9UklMDrzEw+DZr6h8jGKwnHG6kt+9p3CBhcHALUsYZGt5JYeHFAFYZFeczQ0M7mZzstbIjEikNJbbaKc6YCXPcCUwTGY0S+sY3FUjTdTKW1RKoq8MYHZn2swAyFkuztfofi4p1cP6fJemgvR0upiM2xl8xgocMbJQtrGE8YtyEPaRrzv2r7hSJZCjXS81dy/BX5jLVPcLYMXfXm8S+G6ZaTuMX3gTjwIod3sPkyyyKzaClh3d2Ku5nH6nPrfp9w8JCXtxTjSGVU4nu2BbY96ft/2k4zS6x2LCzSEjVAlMTdxoTB9OcTOKZhUf2TpvdXVOZ7+ghpmZagsF6ystuo6f3sbTPFRZtmhVUFcWvobJhiuG57xD3hfFEgwR7LyA3ZzV5dy5iMu8IQ41uf9jkuuT7kdaxF0ljY21OGVEID4WFFzM4uIWe3ifoCz3rAN4kKy7rKzWPwdDhHMsjFNflMzF8bWh6FULT0D1qGjTicZAmXgEVU72czCzB59G4/7rltIXms6/rEHVz9jtfc+WyEjaemww0Htt5jFcPJWeIAKt6AoeHq/j796p47O47KfYfchaCmZnzneO03Sn6+p5zStoeEeeqBa9zdKSSH7/dRU3Jnb92q7/U2Proj9jzy2eRgMfrTdI7s/1y3Y1pnZhW7USVgQ1wGhcOYdDhlVw33ItpBtCEZvEFYb8wuLy2mJqSnLR9sBchtuRUyWSIG0O/RJcGoV808GZhgE0XnVnPDhRtqfnt1xz+m9MdbRi88cPvUzR/wUcm8/Y74PYBY8PCQqejsk60Ezi284yfCY1P4NeOg2c+04E3XRO0vNuLaWSmLRVNdBrHb2Qot8aVyZBM6SPcEPwHSvyHQc/g+jvW8ezrAfp2Kg0bTUv/nowsb9LvEs5YKgVVLq35xGIefrqZbt2k12N3LEmY/BVp/pAIyko/zhu95Uk+pm5OiFrhaxZ4g8yiyaRTM3wkSF7VCGCVNg4H0XUPc5aNWcODTjBYx0i4EYlJqH9zyj5IystuZyp6ioGB10meSGKOjEgqTy03ZzkjowdQ/LYoAwMJ+7Hevqepqb6f9sPfdGm+qayKpnnJPJXPsT9U+mzC52P+j344LbjS84IJTQDbb9SSBgl9Q5VBT//4JzNej1S3gf/xsG13tv8LUko+qb3Cr8Qa5hIDWU5q7klad65bwsZuzpdIsgsT9kFTTQetS5XCIldvZkqLJV6yNmZIkyNaH8XxHOL9B/CWrU7s6wcslSbFqjtUJ58RVfyiVarspHhqdAAAIABJREFU1xYaxZe5iq2D93Pt0hCFGUP09D7u+mBCQgMM2tofZH7FZ13HZTI4uMWZxG3HgzPFbJIzs2VaSktvorfvyaQuUYHOgsrZM7dTnWEyBhdRMpjCW/SryTn5GYJk8CnSmjGmC3cmUtEPDNw0h+jUSQfM2IAXsOgQNhlW/egANvu1pDA552O1dLypofu8jA8PoWm6kin0ePjjO66ixShwgO+zjSfY0XUZKwqb8QgTE5320QsJdCc3JkznVJAahoTNhwr41k0JgW5nAesql6bG6jnNrJ5zEEO+wt6OCtZUXn/G7/qgsf/1l9n9wjPO7/EUvTO7DPtM4wkGRqfoH5nknBMTNpMYE8l7xGjGwKMLPlVRyIqREXr2b2FuwSbUIhd2ZPbQahRwsKWft9tOcuvaCm52dUGDajoQwPhUnBNvN6JLAw3VWXpgd8NZA7ey6lqq6tZyZHd609tHrUHhd8DtA8aaynxuXVtBy67XedT3LVpzC3kzsoiZsmmgxpCKklZyKxbRG/Ix1JeoKVQsyye3KNPq3BQ2a9UiZwAIuqY2QLLqBIf0HP5cfILv1o9RvvpKHust4Zf7WzgfDxoCY5pS6eR4cneSdpalUoDm6CQ7/InOnEXBLs4r20Uu6ZONpvkpLb2JDZmFM1pZjfdnEh0sxlvQkyxKaR3+5JCPI4cqyS6LMNabSaQ/QO21ASRd2FkYXcuwAEB65lAIzSkn9fQ8nsaVGRh4g3C4Uem8IVR+SHgpK7uVscNtaU4Nar9i07g4KPRQveRe9BdHEpm0qSmHx+bOwEWamuj/9necDFvB3Z9WIM3uGo3H1d/dXaQeDyX33cvkoRYgUU79jUaGsqbSMPES5zy9hWzjAhIMqxTdJCQGkneJU4JgCbpqUEHg6xIM/Mc+iv5wFX7tAIJFKZ9ODFd+6bW4NNLeMADtnhCLjRIK4uNKciCR9EILfMjhrmKdkl9w+dN+579a+P5W1Yi070SQlVUXsqJqIA0YuQGolAanBt5M2vRweDd7Gm4nO6uGsfG2s9qd6TS/ziYS4sYPWKVMfdou6FR9Pff5czpHTy8l8+RiTv3Hfrgtg/TFmwqfr5hzVv7rjNk22xlF1zNcgsVKTNV1xNZiyg4Trzcvjbdn89ks61hr7ZvalaCx/6VmRnv9ia27OE/nXLQuifQusZsM/szRpuwa0fG9tcMROW7oHmJgdIrUsNfO7sJG6iyR4C0myqX5+estWaKoNS5Zdk+mwdKCI2e08JstbH72TNy39p3bk34XkEbgdy8OGrqH+OYju9RwZtWHzsPLSmJcuLCIWw5H8Eo/FFzO4OQJRuKn6R4/ROeF1xLrUKLdUUPy2M5jPNN4gkfvUXpytg6d16Px+B9u4IB/I/2/2IOQBqbQWHnumrM+5t72FrqaEhbnwl40S/mRa1D4HXD7ELG8LEhQa8FLnGL/GPm+CEPRrFk+oTM8mkdgchcrL7qE7c9qGIbq0swtymRORY4acJKe8HQgaGcqTOCQzyBkLuHfshdjDvr5xVttlOkm66336Ii0DFt5dT4er+Z0iF50R/VZ6725U+Sp0h+J0Cgv+4QDmNYEmbZ0Y3fjll8cJq8geQvSBGkIxvoCRPozifQnSscnGodZPM/jNAvk5NSmiKa6tuNqRsjOrkHd8u4J1WTfvs8Ti4dx62tlZ9dQX/cz2tu/ycjovqRtCuG1hFrfJXmiMonFhgnkFeBYW0jJ8FNPMfz004oPZmXg3CbuSImek0vJffcmNSLYwreA4z86k5XVbywWbARNB8NE0z1cUL6a+Z12RlkVTIQvioxmWmVRiQfJRounpO5um8emI+Mm41sP4BkzCfp+iGlm4fe2MVryLSa71HPRovWw3dvmEKHnGjn062FsuYaQJ8yCy2swR49iikXEQwZICL/Yibck68Nl3Vz+tI/tPOaANjuUPtZ6BYxcnYJz51zlygZLl0OBO0zGxlvOajcCgcWOl+gHiezsGhA6SMW7y3ZxukCBtoEfHEjS14v1jgF25+jfI0UUFukUt3ySvJ5LmBzoJx0gqYhGT87YFJS6oBLCizK9V7VwBcp08oL1DKc0JI2OHkrSUEwxuHCF5kj6CKHhHb+W0b72pH2Vpkmoo52B40fTyma31M/jF7uO0RGuoiNc5bw+GTP562f289kLqrh/8wHceuTLSnP4/Q0LHDeIB3/Z7ICQm+sTdBZQYFo1UiXKpfV1P6Om+n5a2x4E4gjAkAJD6uijh2lo+B4SiYaX+U2bCIzMOeNirqF7iO9v6eDN1pNIKVUp2HKscI/N1evPp3t/k/O5tdfdPGs2ak1lPrdeX8trLxzhY4bHae26Eg8nDw/hwY8uFCd7TuZ8CmU5rzLFk0e1pMWZJFGV6R2ecLpJo3GTZxtP8IXlxTyhCaQBXk2wdJry6kyhNOsSujArN13F8os3ve+O2t+G+B1w+xAxFIlyWmZzYLiYt0MLLYMWRUSViGQSr16O7l/KqdAWToUM9F3vcNk99zLYl03r9j4ObetF0wSZniiRqNe1ZEwuN2m6agYQCI5knuCmjHd4M3gej4p5xE5PINcWcmL3IG8aMS6fUH6O7zx5mMLy7CRwVnOe6mBduqH0fYn02pnGR3ceo6bgMB6R7sGXk7OSpUu/kfa51JVd85Y38eUPE5yvJoSklTJwYnsxkf6AfQaxB9nRXh/G8ZtZctE88vPXW2WF6ScMkLS23Qdg6SSlZwRi8VTDZMVTW7Dgj8nPX8/I6H7s65AVWERFxd2Ul9/BxMSxJM6RnQGJDe9J3pyrk0lGo07mLdVgPVBXx9jWbYy98UbaPs7mP/phYibXgvcXNvySrDi+jxGWYXeWBDxvIJZczXiz4XqvZiVW7WtmWj+rslikOQ7UIlhC0Tnv4d/4h0T25ENXiH4RdkAbAqSUZA/2MVDox9R0dF1n0TmlDDz0l8hoFF/Nx/DX3gAIZHx2O533Ew3dQ9z3/IG01219rPLyO5IaWma/R2eL1M8INM3/oUAbuMuaCV6me3tTnWGlci9Bxk1GthxnqkU9J5GCVgXaNEAa9Nf+DH9kHoXlF9DX9zNXg487zBmbE06eTJZpEMJLTvYS8vPXW64pwvFITQ7NcjhxO5ZApN9PVsmUu1hB5fw/YM6cK5zrMd6fSYOe7GNqx3Q2T2sq8/nGjSu5f/NBDDM5D3zk5Bj3Pn8gjURfmO1PItvXlOTMmuWaqVwqUZk2wxS0nK5hcjSTtZWvWHTR/8/ee0fHdZ7nvr9v7ykYYIBBxwDgACBAggTBIgIsEq0uS5Ys2YpLLJc4krtzEx/HSW5OEju27OTEPjc3TnJyEyeKnUhxlSxZnZLVRVIUK0AQLACI3jtmUAYYzN77u3/sMjMoJEjbcrSW37W4CGB2m92+53vf530egWEsMjrzAtkPuwg/+ijBr/7liu+Kkz1T3PNvh1PA5ULc4MuWk4JbFfz4s9dQX57jEPWbX3kR1eMmFo0y2HZ+VXBzsmeKrz7ZzCZD5VZceJAowJ14+HsWzHqIbVOF+QbYpy3yytwQw2nmWGTbtqpWp+6/vd6Rsg+JOWZI3bpm8vLKm0s162yproutv1at07c6fgPcfoG4xd+NV3ucJ4ZrLNBmEq6nc9ZTlTbP2GBy56YLqY1iDk4SXdMYbj9KbuhODN2s9+u6JKpb2TFLHboyMEXg6nq6T4+DNk9FwSDeonJKy1UKXzKVtD35aZyWVyEtQTStIgPfyAyKNaBqccNxUViq37b56oubAS+N4c4IexdcvIFK2+RGZNVy6YXSkt++5HYG287T/MrPKdgeRSgkhDHB6czz5S8tRSbi7M/PUXv17xAImA+donhXGTDMdVtbv8amTV93yhGrlXTM/ZsAbGDgx0uAmcJctIPWtvsBKCi4lbloFzMz53CpPkKh+wgE6ojuEcu0z5I24oC0lQzWXfn5y9dRFNK2/PJng7NHhwg/2WFmApe6Fqw1ug+aJu5IMDQUOUUigybwbN+Je+825s43pdaKkiYjOt3kup5FkkU/hXTKTRQbeRTJTObCNXhDe0g3ppk7McwQqd2kEnjBU0TZ8BgF1TkEy0pZOP0Gada510Zb8FS/G+HyIFzKL9ZZmhRHOieWdQ7urshJGagDgboUkGLeo3Hru19ESNmK3Jzr8PlCy8BJaN3v/sKdzd7BDQjdhRQaQqpkxLamfl4ZQLgUE7wpgljLpPNopU9uhioVpG5dRh1j3xie4A6K5fsZH3+F2OJyN4XVmhOW2owZRpTpmSarycicvEqp4/EUIITH4rgpZKRXMhdNHdyFAENzgYyldJ67XFkp1yMQgA997Zu8+uC/M9zRlrKBlWyewLSIssHX440DtI/OJo5ZLrNidUC8HZfq8FxN5kUIN7puyua4lEXqy1sc0GbP66PXGKQfNfB0wfD9X2f2wEHG7/oQh9NKHKD4WEN/Cmizw76NF3XJ/3zsNP/7A9upL88hv6yCsZ5OdE1j4PzZ5faNSXGkcwLNMLtL9xPnbtwoCFxAvqLw98aC2WnuPDOCmD5H6cIgw2lBXKqZj9d0c/beOjzDa60Jr1GXKnhn3jxNP33B+ZuiqJcsbyYDr8vVrLtcrdO3MtT777//130Mv/R44IEH7v/sZ3+1EgkA+Z2Pc/x4OyMLmdgjiZCCsHc3Rd7N+OJhopopHyCNCFK3VbnNu3esp4uNe3Yz0Bq33BQgQcqQlAy9wYaj30Gr3EZHj8JCVDI87mdD+N+oLOhBDDYgMHBJg58U327NcUD63agxg+3jiad0on+WUE0uA21T9J2fNHEhkqx8HyUbls5kVw77Ro50zbBVc3HVeg2v3o87w8pYSUF+1r1Ub/6DS27ryM8eYaTjgumYsGE68bWTAGB0LI2ZviyEoibScEkRKAyyrqaWtLRiPO5cxidexy65+f2bWVwcT10+UEfl+i/g85WxGBslHl+aaYPswG621n6bQKCOjo6/Y36hN+nTBJl8fOJ1hoYfJxptR9enicfDTE69QW7ONahTAiEEwudDD4chnuDf+G++mfxPfQoAd3Ex6bvqcRcnXvBqdoDpp59OSIBYYHzuzTdJ37s3ZdlfJGI900z+sCUBpqTElevDu/4yX0yKC04/Yk2VXSzoVxEztmELGHuywmTcuAvvhhz07mb0qI9Uho9Gm+sJxtRRptUhnhYbGVDCtKvDlBi5eCN5KJke0mvz0acX0frnuKBaEyJr3BpzZ5EXiLOoLTI+Ps4FJEXDw6TPzyMXpjBiM3grqgjcWUN67QrA+ApCVQRPNPY74M2lCv7xwzspyfatuHxaWjG5Odfg84WoqvwiWVk7mJvrRNNWV8tfiA1SXf0VhFCZSeJ2TU83kZv7DtLSruxeiPVMM/ujCdInanAvFJDfcTcZcgu+mgT31JXtxVuVjSvXhys3jXh/AqS447mk1QWYiVkm7QJy1tXT2nY/09NN6Po8qRDGFIhQFA+V67+w7LiljDM2/jKGMU9qSKtcatprVW/8C0qKP4AQbmZmzhGPjy/ZjkmvGD2dS1Zo1rnNBCpVVX+4bL+ZeQXkh8poeeN1DMNAKAobdu3l1s/+waqDekm2jz3rc3EpCi+3jKZ89rnrK8nJ8JDpdfHFW6rXLNlhh/0eiy2Ok5W5BZfLz9xcB15PLtFoCwLI901Z78mkZ8j6MbbRQGjg6RXEurqQLz7Pd6Zz+F7bHNdU5dMyNE3zwMUt8SbnFnni1AD7qvIJn36TnuZTzmdSSrKtd+7SUBXBzxr6MCRMI3mXBdwUARuuK2Nmcw7qxBR5C6pVkZJMxIZ51lfMnMvPttIAw9NmZg4piWkGPRNRp9704T1l5DfvZ3Kgz9lnZd0edr/3A6t+F3u86j03ScvhIcb6ZiipDrF5Xz2ZeQWXvB6tR4eveKy8kvj6178+dP/99z9w6SUvxx/pN7Es3pws4FzYtnuRYMCuiI8/CGzlBnc5NwQ/Sn56Mt9AB1zkeUuoCVxNjquI4fajXPuhjSDA0AbQ5o9ixAcQUqd45BgYBu1HB0gumXZEd5u/qx6Tp6K6MexLaaEfrSKVa2foptTIzOQCwmLLKsramxLAkhHRDKQEb3Y7Zeu/QXrBBfPbS4Xhk7/D0f+6nuHO5S8HW4h4sC2VwxMdSaf92TKGThTik+/E7DA1X8Dh9hw27NpLchZNKIrTwp882zI78exynE5a2jqSE8p2Fi0QqKOi4vcIhe5b8TtGphO8jsLCdy35NPlx0a2ZfwLMGUac0bOP0/uJTxJ+5BHmT5xARpNErVSVvE+boC3a2Mj4vz1AtLGR5EjfuZOyhx6k4EtfIvuee7A9TG3pj19GxHqmCT/dsYQtfWmds1jPNNOv9hHrSZIoCe2Be5+C+t+FjbfhzZ9DoGFycnS8WysB0+7Im2cTt80y6oTSzAnP93lTDfEq+9gvb0FDIAUYGAwpJqgJP9lOrGea9Loigq4c9mmbsEU+7Ux38pUxgNFC87lUcipJ234PxoKfyDOdzrFPPfwwvZ/6NFMPP3xF57C+PIf737uVHesC3LaliIetEtPFwr73AoE6Sks/Qm3t36IopmyKEC6CRXeTfI/ZGSpT8kNd9vcrjVhnBCT4IhvI67oLX2TDMrJ8cgk9va4oxaECAS7Vn3SsimUrZ9r0gSQ//1Zyc65j86a/Zlf9wybnNfj+Zcdid5GuNIkCCGTtpLTkHkf2I5GtW5KxlDA7lE77M2VMtuTQ8ex6Js7nMNmSS3nht1bNUJZU13DTvZ9BUUx5iu6mhoufPCs+ureM27YUJZ8S3uycoDDTy1ffU3vZoA1s4eVvMDPTxNj4i7S0foWOzr9zuJG2w4y0vq8zJFh9QHohRD6qE7nb5MO5DI2t4x0OZ+z9deuSpGpWD3v5UO021CRJHUVRVs1w1Zfn8PDn9nHrliI2FmTgFtYzKSHr8BBl85KHRoeJY6BLUzbkTX81QsCemUbeV6rhcSmWTp6gtjgLj0tBFRDSRqk+/SgdJ1K7QTOyL/68DbRNOSLzUkJX0zhPfLthxfFppbDlr4QCqqpc1lj5q463TalUCJENfBfYinmrflJK+eav63hO9kzxDy/0ssd+o1kZoTx/BUIxZxVICPp3Mx5tBjTyvCVU+LeyPnM7CgqG1Olb6GasbwYjPsDizGOY4ENh22CcwHQXAIWjjUzlbMYGCapYoHFmOzvv/Sh0H+SR9BuR08kPpCTaM4OGxJX0Sj53aDCZdnfZdBv7RtZ1A39RG0JJ5rcZqN5ZNG25C0OyJZiiKNTeeCve9HTT9NcwiI6kEx1JZ/z0MKH6G5hfPGM1JaQh15HCS7jp3s84dmIXC6+ngF31P6a75wGi0S4y0tenfG4ruPf2PZhCFE/m+yQbjtsgrqX1a6SqxyfenIrixnNBIWo3HSwJuwyabGElPB7KHnqQ9J076evro7u7m4qKCkKf+6wJKqzOp1+W9EesZ5qxB06TUucTkH131UXLpEvJ6oG7KjGimsmNU3BkMrxAvqeDmLEd73U34939TmcbSnEFtGqMiDCn1R561DEghJ1uNTlJJtFFQaHYMK3KpGFy07JuCpH/6W3s7Syj0n8Vz124wBsjgrwML+rwJNIyy1YMg8LRUeucV5uTG0yuVviJg0w/+W20QVOPb+4NU3fscvmDJ3um+MYzZ1nUDFpHZvjcDVWXXmlJOJZaU0fRtGl6+/6DRKZqqXxG4jkWwnVF3aR2eCsDoIrEPaAKE5xZEeuZNrtENQkugX9fyVLHKdIna5yynhCqpZcoreNTqEgSt45EGhga/hmGsZiivQbJPsIrRzhynMh006XdSAT4i6KAQFFVtuz5GN70jDWVxOZnZkzSupTLZC8uFp+7oYoDF8ZYjJtApKk/QlN/hJ+e7OfHn7n6snXWlrtawNKXtNN0kWp4kQLi5m41SDttoHS7OZtf5XTy15fn8Fd3b+WrT55BW0G7s060cbVynhOilqsr91FSnsPNn/gcL33vO0jDsHw/zVipK7W+PId//91dTL/ax/TPuxPHrEnOv9JMzeBPacyoZXf+rQgUPu3OZ8PQS0zGBgg/epI/++AX+evjUQwpefDNbr56Vy1jJ15DO/g4EzK1xisUhdobUs2ulkZpdY4jEG+HrkmHNnSpCFYGuPtLO3njlWZG58dom2wjWPlrlF9KircNcAP+EXheSvlBIYQHSL/UCr/KONI5QZpXQ8EwZ/1WeXNkvpcsQ0cqppHThJGJJ/ODZGlnuKHwNhShIjBLaQoqgZkcOiNNGPF+bP4bUicmwg5Tv3ToDVAUure8l1g8je7YHvpejwNn0Euz+NF0auJU7ZphdmiOMx43OxYT0G3JvY8hl0uFXCzsG/ncoZNE5zOQugKq1QFpqETHNoFcrhPXd7bZsQTTDSNFvdq2JwJTCLHn2DCQKGdlZOek8BLGe7s58+oLGLrOmVdf4JZPfp7t77zD0qZ6dJntlCmiu0g02s74xOvU1/3QGTRKSz9CPB6mo/PvSLwgFXp60lDVPkKhkGM4bsfMzLkk8VJBbs61FBa+y/GedAcEvZ6nHDmQ5NBGR+m59z5T4sP6TC4uEnniSSby83nooYfQdR1VVbnnmmvQk+RCiv78z34h6Y9YzzRzDSMsdkVYRs6SEB+cZfboEIuDswggfYmvZwpZPW4QfqLdPGUuQcGes3iTDLC9SgtepRXSN6fsxvCGGBFNPOM5mRiOLBNoW7shR8/AEAYBaT/eBgY63ekK2zEzd6NKhOOnetHS8/mT92+mvjyHvr7NNDU1ER8fp+Ch/yJv0szgaONteKSORGGEMH2nXiU/FiO5YDrzwouXDdx+1tBPLG6kdMFdiSCqfS+ebPhIQj5ECrLELiqKf59AoI7u7u+QDOhKij94xRw3O5OW/d6qVa91tGHEBG0AmmT24EDqRoQgr2ofddnfp7vnAWamm1M4bXLJiyYBzpZbOi3ldVVv/Aqjoz9ncuoQ9jO5VK8u8awvAXwK+EuiREfTaXz+6RTB2IuFLzMzMdGS0vx9DWELHf+PnzQyMJUo817p/bCaq8XSOaA0QBiQdkKwsFvalegU8LZYLenIvgHX9h18dXeZcyw2T+9fX+/gxSSh4DrRxg89f4MbDUN5gm8+m0Vr/S1UzSScQgxDp+9sM0Pe4DKZjuTv6q0MLCH8SfbE5+j0FOJTTaqEIgRIQVFaiMnYALoWJ3z6MIbc4eh9XjjwAv6TT64wCRa881O/d8lrG6wMcP1HqnntR60p+Lfl8NCqTXlLmxEaz59n8OQ8yEwaz08Ax7l+168fvL0tgJsQIgu4HrgPQJpP7OrTtLcgrq7MI+Yf4sZgJ68OVZo5FynJV3OJz44wkRZkRIN8F0AJOa4IilAdxWg74iOzlEgd6c2lY8F8aIWU5Fx9NTzz88RNa+jEFn1Om5SOG/3kIR4xKtCKcSbktV4P7QZk+2bQJtvRjHLcrtJlx9+f56I36KaqfGVOzmphaINcaPzfBCrHiY94cPl0FsMeRk8XEJvqQvX6WJirTFnH7ubRViDryxUyU8IqW6iqmtL5M9h2npf/418xLP5XquJ1HfV1P0zRNeru/s4SfaflgqXmwOG1BhbBhbbdDA/3cODAg9x3332EQqGUY8vM3JJ89Hg8uan+iztxmg7U7ACzBw6ycOYM2uioeS3j8RWzcd3d3ei6jpQSXdc5dfIkSmUlhSMj5IfD6OG1pfdXihWzbEti7mgqmXzuxDAZu4K4S/wYUQ0l3WWS1eO2zIm1oCaJRrbiFYpJVrdDKCw1wPZWBmh3D5mrOtpa1v/WgDOpmlyqMFF61HEKjEwiupdAtIztwIkTJ3j22f3ohjlh+sKJXv7pM7dRX25ep+7uboq+8mX8Bw4SefxxjEg3C2ceoWvnDbzpvoAsC6Cuu4kbX3mV/AmTc5p5262XPIc/OtrLc2eGuGNrMZuCmfz0RJ9zClRVWeZXeTmRYnElAamQfexdxKZh9reGyNmcCm7W4oW7UiRnTVEEGbuKcJf4mWsYIdow4gC4ZXfJkp4SOzs7PtCaIkydvMLFwJmdLbR1yKo3fsWZ+NiyPVMNRx1gtjTDGAgknnVNm6an93tIQzflgwZ9ICX6ZWTO5mdmnEmyEML8fY3ROjyTAtqAFf1L1xIXc7WYn6ggFi5HX0wjb/NLSEVnoU7i7hDENyZdIImJ+2YF0++4wLbMB3jo9b0pTgv15TlcFcrmpXMjzqW92pK1cgkDzYjjG3iTv+gt5EMhL4VCBSFRVJOe8s8N/ctkOlKAW3kWGbuDiXeKhKq0ciqCpTRMvIQhzQSFIQ1GkzjE2cQcvc+S2Ai+E09Zkj9LQkB+WcWazmleqR9VESlOQStpm0KCE6fFTeu6YFWAoY5ZhDSFwzFcnDvT8xvgdhlRiSk9+59CiB3ASeCLUso5ewEhxGeBzwKUlV0+v+Byo748h4z3/DaFP2jhroxN9I0MEvRXk7XFHASKgaDHXFZi0DDejyFrAImwnAJ0aVCQZh5r0Ae1mSHOhA/SOdvM0Z42ciqKyIzFKZ2aYbTAzrZYTRBAqecMyNTv2hJbxKjKZLy8iuxnDtDDMC217yOa7se/INnebb4Mv39jJroqeGN0mEdL/OwKXEx/LhHHjz9G5R3tdvUJgLSsOKOn89AXT6MvnmG0SwUqUtYr3163jKMghEAoigPEABRV5ZZPfp75mZllZY4UHR4rDF13XtBLu/hM83d30gCwXLDULld1d7/Ayy/3Mz1t5mJ0XaepqWkZcDMlRRIxPPIk2dm7VzTP9lZXk3PPPUQbG+n9hOmk4NSW7e/schH4rbvxWaANTDB7fn4eY2st6pYabnrjMOW/QJk01rlClu1SoS8BcwJcRenoM4vIuSUZAX8h3PltePaPrE5D1fx9iQG2tzwLb00etCZncGTKfymkawljygxSmSEYH6Svz8v+/fsxpCVEKiV5cprHGvopVGZTMpb3fvpTFG2pYfg6LUK8AAAgAElEQVQbf8V4INMEbVY3qq4odFVUkDcxQfquXZfMtv3oaC9/YUkmHLwwzm1bipxSkwA+WL/uirJtduTk7EUYbiRxQKHo/Mcd0/bwk+0UBHc4JdUr9cq1eY0O8NblcrB+coSCz2xH8a5iFaYIsu+uwr/XJPkvlfGwYyWgVbfTzM4txkw9NyDFIaGk+IMpy5v6ZV8jIRWTGoFAHT3HR2h+5UVIq8dwd1n0CjNTKy7Cx1oaodptuNxuh45xOUKsKzkl/NXdW6/4figufl+ii9jqmpaGymjTh5mfqCJY9wOwJZhUcA0L4uulOZLr4G02z9XMPRob1A6q6ODakqPLnBaWWlYdMWqI4wKpEcfFEcN87z7S5yJYeBebZltRhWDH8AxymR3j8kivK2Lm2KDlNW1XmBS8ajqvDD9MUVqIsYVexmODztUNt53mXz53J+f1XCYPdyIGjJREoh0C1gzKB9qmUkql9gEvrQrZyyZz4obaI1hHb707JFu2ll9yn29FvF2AmwuoA74gpTwqhPhH4M+Av7QXkFI+ADwAsGvXrsscpa4s0joymfHej69QYWO+bnVAJcp/wvlZIccbpHHiJerz32UfL4rFGbCXT3P52ZV/ByDonD3NlN/HlN9Hf24mFVPHmcypsQRH4Kr0xwl6WsnUbsA0GFFQrU+lEOiqwrnqHZzZVIeuJi7zqfVeruqKoSsgBcQNyeHw7JqB26zeRYaSOr6iSvzFUeulaXDutR+zbvNGtt20y+G3rZRtyylZR1X9HhqffxotHkdRFKf0uVLYZNml2kurlTbsmfnQ0OMAKxpy28tNT88xPb1cP23ZMVsWXckkk9HRnzvALRmkJdtdFf35n5k2VoYBLhf+G2/ElZ/vCGYOP/NMyn4MKUFRMBSFxc9/7hcqky4vXZih+N0Ys0s5NauEBG04uvzvAjwlfth1HxRtMeVBfHkwPwF9x1LA23BnhAzXOoQ4k8gwYVDOIDEji2ElkATgEv8LIDrSQ7dPmN1/2ElLwbCRxXZSM5aapvGPj7xE7eEj7NV1hn16ioQIQFflesp7e6muqiLa2Lji+Z09OsTI8WHaJlPBekPvVKIZF9hacmmqwcX08gKBOmrS/w+jzS+ZTgQWaLNOD7HOCIGb6n6h8uilMq4AaNLUazu3vFHAvc5P9ntSeZBLZTzMWLmUOzvbyvjYi0ggMt1Epu/qJIeERQYGf5zCfzMnSCYDfyWdudMvPcfJg39N9qYZwp2ZTJ5NFL+FMN8ja9X3ulyZiOS4Y2sxBy8kuls/f33lFTUm2BEI1Dnc3OlwOxM9ASZabmdhogpfXgeBikMAVmOOypnRLdxx6DjT6S7m2z1EftswR0urQ18ALkVjc26q4HOyZZUAxmaK+Nj5v+Bq5TxHjBoaZHXK8jWzbahS5+R3Wqn+0B/iUQVxXeJWBR9YIiYMMBEboDVynM2Ze6zjNe+9sYVepmJDTMQG7EN0wjB0Mia6+f337eHpsRJaTouUjJutAXc5Lgc2z01fwuld6h5kLyuUVEqRReLBEAbZNy9w/a5LZ+ffini7ALd+oF9KabdSPYoJ3H5t8cyjB/AfbKPKX20CL6epU6xY/ivwhgj61juzD7sjywF51k0ppWRj1i6K0yvxqZl0zjTROXOa9vQFMsUBij1ZbPC+yZb0F/lB8C7+ueyjTtnptjTBi1ENKQSKIRnPKTRBWxLK0hXL4dMAqZjq0/uy/Wv+3mI8iAyS8sRJw+zoSoTBheMn2XbTLoffBjBQFKKvZD2hwS5KR/qYHOgjMjLMzZ/47IoZtqVRUl1D7Y23pnDkwLRnWc0geGkWbrWoqKgwQaGVCVMUhR07dqy4vfKyT6fouyV3n6YYxyeZwOvhSMKLNB7HlZ9P8dfvB6Cvr4/GJd2ldqguFxv37XOWc5oXlmQCLxbLShdWrBm0XSwkhJ8ytbSMaDFe/zvwPv9bCT/Pe5+C0J4UTaTctB0U1o6R0f8cQYYZppBGZd2y7SbfYzU1NRQVFeFyudA0DQPB0XgZETWL2pIAJ4dmzfKs1JESfNO9jFjrF8+rnMZ6Lq1nRSoK40WFFP70p4Qfe4y0mhqyP/gBJ/t2bn8HmQcG8SD5FCpevPwbZlfs+GxiEiIwhbgvFinASRVkv7cq0dhhAaHifbcijuSgRZZIYrgu3e17qYg2jKwt46qAPr5UksOM+OAs8eG5FOC2mgj1SqXcjvM/QNpdkRJGeprwF6lIZzYhU/hvbnc2Qpgd5snlVTu6ux4idL15P2euMwsvky1mlmvbLe9adfK3WlxKiHW1sEGaXUa/EtAWbWxM0XMMBOrYsf1fGe6MMHy4jYUJs3SbXtCKUAzLXUfQ2rmd+ZxcipU58gZcNJW5zRHdllG0LrkAShaW6wYutaz6SOsoDXr1suVKFwYdf1DD0HnupUPc/7u/u8xtwY7BtvMc/umPKHeZE5DEmGjeAIrbTWNGLdvDTQhLD0Ek6ee9cuAYrU/8wElSgMDlcXPTvZ9Z0zgB5iSx5cgQ0elFsgp9KfaSSBjpmma4M+KUS88eHKDp5b4lPHCJgUFPzhma173Ghza/56L7fCvjbQHcpJTDQog+IcQmKWUrcAusYI75FsUrB44x9tQP2Rr8sH18Zg2cxMwiGYgJAVmelfWjkstjdgQ8+QSs5XO9xeR7SxFHvktm+1nKbpwgMz0KAn5UfKe1hrmvU719yNwipKqiC8FAccWS/nEzqhUXX1xXQms67Mtee5k0Emmg/KpxognXEKQBEy3ZSQ4HZqRlmPsL1W5DURR6C0p55K5PoKsqqq5z0+H9LKSlExrqZn5mhr3v+9CajqH2hps5+9qLKVm3nuZTDLScXTMZORkAAc7P9913H01NTczOzuL3rw5mN2z4n/h8ZU63aXKZNNk4PrkTVM0OpBCgw48+yuz11zHs8RCJRJaVgO24/fbbAXjmmWdobGzEMAyzFHjvvZcF3twl/pSMU3KoBT5zwL6cPHXytnRpNiuYv5ChfJJ09WW8XIDug/RRzCv7jzPjmkdLM/lEuYGdbPa38FDLZjS7Mzt5m44is8C3rgZRUEUolMPtt9/O0YbTDIk8dudXcrPXxV9aavbvcOexQR01ZROkpK1sA/qZQ+T0nGff+o/yhudC0ncUxBXFzIAaBgvNzQw3NzP5458wV7WZYa6jxu13yiQfxcMgBgEEjeictdos1TXwmeaSgZMuCT9pNnYkix7HeqZR831oowng5KnIInDH+mUZusuJWM80cydGVl8gSU7Ctz2f+VPjKy9nQPjJjmWWYZo2m7JYXt4NK06UpgcFaaWJR2Bm0Ed6QThFJFcIlZycvUQiDbRd+GukNKsY1Ru/4mxzsO08fWebSSscstYxt5ldOcNkSw6qy33JbsNfdnx0b9kVZ9lWy9APd0Z44u8azEyRddKio9VIw7TsExrsfeo8B9ftQQ1KFtdL5rcZmE3ZIpVCakB48OLyMUszcHMxjSdOmZ3XA2kl6MIUXNaFSq+7mKnoIr9/04Zl23EqLPE4aoZO0Lc+kZiQksK0EHm33MZ3mnx0+CoIxQb5+E1bKHTrhGq3MeQN8q8/fpTduuYUCXI31nL77967ZmCdcu5Wia6mcXrOTPC+P65jYmCW1364kj+wQEFQFqnhfOgQu4p2rWn/b0W8LYCbFV8Afmh1lHYCn/h1HUjL0z+nIi2EIpQUgAaJ2YXzu7WOSMp62R8kgz3NiONS3I44YfJnFZnbGCy/loaFs7w8vIX63EF8OQbNGfaDY5IhMmYj6PnFZuZBWeGmFcLU7spP4101RSxVKYPVzYdtvSWDhYSekPVOmbqwPCNw/sAzZOYWUVW/mYLySt7ICqKpLlAUNAQvX/sepADVMLg1uPYG4ZLqGj70tW9y7MnH6Dh51DkIbXFxTbyHvr4+hwulWADLMAwURWHnzp0Eg0Gef/55s0Hg1KlVAdLSblNgmXF8cifo0uaC8exsXjtwAENRUKx/uq6zNNrb23n++efRkoCqpmkr8u9WCrubNHpyZGVgpnLZoE0t8CEEKSAjsb7KnP4uovrN5Pu+wahvKw8++JAJtJPwx5vnR4lVb0GnG8eMXibuK3u2bUjJoa4ID/zrYf64zsPYuTfRDQPo49WeBYZ1v1O2HNV9bFDt9SHsy+T5ij28u/sIFQ2vMbFrFy2uIQestGzeTOnAoNOkIIFYSwuulhbKKqZgx0eRwn4WJX9MGmByv79IlFbF4Btr4DMZM0sycnZ/R9wwQR0kNQ2YILu9aJLOhdPUjMXZVX7lA0asM8IyLyYB7lI/GbuDuIMZzDWMYMwsMn86FbS5KzKJ98wkrq2Ul7QM83qWC5tGIg34StstIVMYbcrFWFTN1siksEus3d3fscqo5nvU5pUmg4LcTRqh6xNAMNxp0iVqb3zn28pzMvLEk8hYDKRMydC3HBlKBR5S4m+dJb2tGHfpAN42gbsb6vImkALC2W6kCgiBMKTJg7FBsYCp7LNEIqZG3WpcyXrlAkHXC7ypb6HRuxHFGi6G04I8EXwPpQuDDKSVMJwWJCfds+L3cSosUtI5e5oMVzabs/eaDSNSZ3S+l0hfHppRxlBakFFfkBsKNvEeCwQ+/mo7fd4S6oQKUkOiMFO85bKu6UDb1IqgLSPbw1w48Sza2qbTq2SZzVOnoBpuPpR5H1cVXrXmY/hVx9sGuEkpTwH/LSBvZszN6EI3hjQcgLUUwI3HdXKMOVzeTJItgOwQigDDXL4pAE+nDXDXQgVXRawMHKlAUAntYnK4Eymi/GTyajatjyEV1clM3JimUHr6MB3lm62SUBKysrNuUqJK8JWmc8eJNoJeF79fVuRk3E72TPGx7x5hUTPwuBR++OlEm3dCYBPre5rZtv5DwWXZNjtOPP0sJ5/9ProWJ21zVtKoLDAEIBQMoXAhK5/LKWyUVNdQvKF6WbPDWtr4l3Zv2qHrOidOnEgpdeu6Tnd395ozWxPf/V7CGF7KFLCWvmc3qKrTlDBaWIhuXR/DMKivrycQCNDe3k5PT4+z3szMzIqArrGxkR07dlz02FbTbEvfE7R/BJZ3lK4aAlAE+tRCQi5ixVCQeIjt+Bbd8zq6riUyO9ZODUNnzgigqi503UC3niRDmrhGxVxeAAvSRS6zDJ1pQREypTFhUCYyo2nCBLf27b7VNUzH1k1cUMcwApI83W++8ZzjEHRVVJA/MbGMAK13v86J0C7q8qqdFVRnGUm9cPGxuy+tjh/rmWahdSr51JgbsS5p9OSIeWosqRWACznjvHTW1Jfr6DDL0Lt2Xd6rz+bUGfPxRPZSEaRtykHN9DgdpLGeaeYbRhNNC0nHmbGziHDfTELDTV1etl1NhgcS2TFf6HyCUG+AsagyN+xHMEEy8dLu2F6tCzUZFNhl0exKi+Nm/V60PrWjfS2xtFT5VkW0sZHw448TyaxgKnsjubNd+Mp20vN8N9FIEti3rl/WTA+5vcNwxspQuxTENbcSH36D7HAcxQBDSIQOmY+ozO8ziFeYD5HEYGjocUdPT1E8KXp69B3DePA9FGmL3ImLR/Qv41I3oWmmRt1IWjDFU3Q1eoBdYdEtVYDgb2+j+fXDiBGd0YVeJmKDVIfehSesOHIiyRnrnHQPI2lBDuTu48aJQwgMjDefYPDW3WsGbytx1RRVUFiRRdeSjPLghTAFodXHDXscfmH4Oa4aDf23AW9vG+D23ynEdi/uYzfQM9dDpiud/LRgYuoHtC3oNOthMuhkh28DxTInMSgIyP4tc3Yxd3yYQ7P9/GF9EE2p5XlD8C8n5tkRMZaVUPvnWh2uWuH0ANeEB1CljoHArQjuzXRxfrSPqp4W2tcnS1aQAt6KPCr/OWMp38/Ac+PTfCCQyT/XVXGkc4JFzXB0dJK1iMwOTRXD0JwS6dSFGsIdG4BU4quzW1SMuPmAL6SlYxFWwDCHaSlNvkaOa5UutotEqHabI+Brnte1tfH7fImOKEUxM6bJwCg5c6qqqlNOvVRMPfzwMnP4ZMHc9J07CX71Lxm+/+sgJXF3gnsopSQWM0Hxtm3b6O/vd7ojKyoqGBhYoqPF2kDl3ErcJlWQkaTb5ZTS1sCB8m7IRrgVFlYgrzthY3NVYa6ogoX+fhShYhhJ4NPa1cgxlbs+8tv0j3VwsqEBXTd10YZkNutE2EkQb3UNM2X4EBZR2W5MGBNZuFRh+hsCIzILIQZBJgjNRRkLnNpVbx1aOzmGnykltbw3le5lwu8jd3aefG8pan418fEL/JuIoRLldly8B6916CYr65TUKLoEtw2WZ7zSdwfNUpQNljWDWN+Y4wsqXAodc/0p2zjb0HxZwC28v9PUXku+pAJ82/JYODuJ1AyiDaPkf3qbqc+3FLRZy8cHZ1MaWtLrU/XeIFWaIzmLk9yUlF4UZcNd0hpMBXPDfuZGfEy0ZJNXY99LipNZSxYmTt6mIytkSepMtuQw1ZZ32e+A5FitVPlWRPTYcSK+dTRu/wKGotIlJeLpGQxj6XeQCKmTE76Q8tfMO27nbzx7+D+LX+GzU8+w5/QpRgq96AsK+rAL16Mqk1/UwGX6egJJenoxhoYeTwC37oOgL+ISBkiN3ZxjQ/0tlGb7yEn3cGYwwqMn+9H15WBreQhnQgqQX1fFoYe/jy23UujW+eGnr15W2TnZM8X9T53BAAoXx1EsXxSpa5dlJm+dspSoeUcxm68upuf0eIq85tRQNJX/tmQjwoSOuOM+Toyc+A1wezvHVbuux98WQRUudKApqlHkEqSpgp6YpIMI4bxmwhgM08S7F+sokgHStuSSeYM50NqlkbMV+WiKilQU4hiczFXZHrZ0yjAIx0bMBoXZ0869mLU4w2TMm6gJSYPRrg6klOxpOkRn2SYMy6pE6DpSSdhhDS7N3kjJY+Fpipt7uaMyz9HRWfpwBgJ1pOX9KbOj30KRBtJwMTNwN1uur+CllqfpLgwRGuxm3bgG6CiudeixBOE+NNiFy9DRhAChWDMZgS4Ef37BHKg+Xnp5PpJmWdkMRVGYHh9jsO38qg94X18fzz33XAoorq2tpbm5edmyPreL+hUyWnYWYSlBNvzoY6kbWIGzZhPfz/zzv9C6aVPKZ83NzQ5YvOOOOxgeNgf2/v7+ZduxY3R0dNXPALSR5S+kpYOvtzyLgs9uZ67BzPzoM4srAzMF3MUZzL4xmPI3p+xn/WuOargRjOuSyA9akYYkzV9MNL0/sSDgn96IupCFPuUjEDD5f4qVBbt2c4i+9lk0zbTuyRIxstRYyn6OxMuYFJl8471bebV1lFdaRhmXfo5p5exRe5wdCZvzI8zrPaXMoiAwLHeG4KzB0aoSDCHI95QQKv4wQqh4DYOPadMcQ6EExQKNAh3YzyLnFIMPr1IuSjlt6a6UQcRTksgQ2vdhvD+Gq9CDkmaWL2tVL12DPc56pX3pxHqm18R1C+/vZPbAcqCPhPmmcednqRlOl+uK3EcrAZgMKDOS3BWSY6UGoL6zzU4neXTEtKLyF0eZHcogOpIGSCbbAuRtngFhLGtAWK2paMv1tzDR38tA6zkHCCguN4ahX7aUByxpJorFiDzx5FsG3NL37Gbq8fMYist6JxpI3cARpbamH8Ubstma1Y1+sDtl/ZnnnucDV93CH8pqHtDvYjenGQ6mYSjAlzQyXlQI/FRlbp+OOq3hTc9ECBe2Vd/g0KOJTvuK60D1oGmLxHFxUtTyf9etSwFVAOMz5nP4swbzeV5KEzj7+ivomtn0JA2Dl773Hd75qd9bJrdSktQYAeZ79eCPHmffSJgF4WHLjGmNKAF1DWbyyTHQNpUilakowhHcfd+f1HPwkTZGuy8C8AXkFKUzNTKHIQ0MRWMsu5tdRR9f8zH8quM3wO0KomyqkIM5CzTkutg5qZGV0UYkp5WekWpGZ6uIZ4SxBGzQpcGQMkWRHmChZYrMG0IpKvT1ExruSg9xdBRDp2yoByg2Nc4kDEQv0Dl7Gkgt5exPvwZdcSGFgo6kr3Q9mW43paP9bGs9SdOWPeaopSjsazzMqYrtRPOWvPiTSqr7xyPckZXJ++vWIYD3161bxnHr7jqH3p6LP3+ecGeA6IiPg640HnnPJ4hLUHTJx1+bpWSkF23+TZJ9ckpH+rj5jf28eP17kUvc5DUJf36hnxq/b82NEn1nm1MaOqSUNL/yc84deHlZk4INtsZRl2XXVgJtSEk0tsjBo8cAuOXOu5zt2NZdqsvl7Cfa2MjC+fPLNmPzVZIj5557GJ+fR3Z3r7Bbs3w7PDzMqVOnUnhtK0VzczPl5eUrZmNmjw6x2D2d+keXWHHw9ZZnpWTgFlqnzAycAp6yTBZ7TZ7T7KHBlMyyu8TvmI9LKRmOGyZo0yRTVhZs3jeUAG0WQPAs5OKbL0Z1mV65cbfqdPSqqso7r90D1+7hJ488yuxMJCnLZq4vgSmZjiYlU9FFrgpl8/L5EQwJLfECtmREyVgYTa7MO/8joVovxi99BI1sYlk6RuwkCEFBehkoKkKoSKFwo5rLjZjYVAF0azC9gIEhJd945iybgpkpz8nSslt8MDW7Z0Q154s49ApU9HEdnVnCwx3k3J1PVV4506NTVOslbJYll+SW2dd8RdBmhwSrzoxwKU5Xq/+60uXrCfNeyagrWlXG5GKxlLZg29qpLheqS+DNm8ZfMo9ffoCiqnWX1Kc7/dJzKeLbdhi6TrCqisL1VY5Y9+VE+p7d4HKBZVMXfuwxR6LnrQj34ixOmhqrlIF9s5rh8ijkygnGlq5sGFw728vfvO925l9+jkhANUGbdaPP3SYtvi1oGHTOPkB2zi7CEdPzOEVmJbQH5b6nmTj0nwxPx7i/rpbNSaDtD//xcQqjAw7HDVhm7XX6pedofiVV208aBp2NJy8qt3L6peccW62tSX+3KusU1l93WY0JM5MLqC5TAkQRgus/Uu10jwYrA2x5Rwmj3Ss1I5g7dbkUuGGIJ88+SHC6kuFAJ5+55Xf+22Tb4DfA7YriTImXz+9JIy4EbqnyZeMpNopz5G12w4E/omfWKsdZg00MS3bBJvdWBiwVep3tU3H+1389zOGyAm4uKaJ051XEDy+gSlOkV8vppbYmnYl+wVDfnPM8V43HcUsJQuISgtBAFzutdumZ4QhN1v6kEGRMj7J1vINjuVc5L4Q0YMFaBiDeN8sHXzgMErxuhfcnafMMDPyY1rb7KfRrYN27/mCUrhdP0plXSVyanDWpCk6Vxclv/ymp5oYwECyjuabeAm3Lw5Bclp6cXTaxu0vtcomupabVk18KWm4RFK2xE9M6zkPHT1C93cy8pVh3Je0neuy4k2GLZK03+SrRHoevYtungJn1O9PXt+pu7YaJlXhtyXIldpw/f35F4DZ/JsHlkIAuYLIog0jvDAvnJ1OOKTnsDJx9n8Y6IyzaBHUpUwb+jN1BpgY7kLrJgylyKwTd5qKnozodRJjNsso7SZddMbwgYPvNIesYAtx7773LpE5uuuE6nnnmGRMuJa8vIahMMyUznaywSzHFRA2gf9ZgU4KQlgBtgIJgg15MkQwghaCrOhvOmB+OzvdiZBsIS7fCbhRSMZUSbZj1BdJolwYtmp5CJ1hadiv+239n7sRC0gUEPbyA1Ccx9cuSrerMrY/oYZ577lV0w0BRBLm63+QVhhcumnWL9Uyb3aorhfXdl3nMWtvKfrfJC3PKq5bQrv35lXS1rlSyzC0NUf/u9xKnk0nj7xGKZNp4mLyZ/4dAxcVB20vf/ZcVZZYAhjsvMN7XfcXdpJ5QiEWLS4imvWVZt8gTTxJ3mdqXCBUMg4zZAeYy1yUyoAJCeTHibYMIt5uwbx1TgQ3kRNrJjg2Svmc3H91ZRnekhqxmDUdBwCZ6Jj0HIAlHTjj7t7t46TsGb/wDjLdTMNlJgTTg5/shaEr5PPnCG9w5+BSq1VV6IHcfPiPGYFqJc//brjZyhUpDZ8Mx9tz9gRWVA5aul0yFNbPrChPFa8u2JUsOKYqg9rqSFa2tVtJwEwpc9c4yvOku5vLH+MLZL2JkGgxlmr7YLZMtazqGtyp+JcBNCPEHwA+llFOXXPhtGP9w9nni2dtACOIIDir72CjOIg2N3OI2JvsrmCUx1T/j6qPcKKDYlZuY5V7vZXr/UX5ijPH61XvYONhLT91eGhbSOSO62IFKlr+JXVe/jlQ0gtsUPIc30ntG4C+cZ5P3cb7WdJq28nvQ3jjBxFA3r1pZIH9wAaIGKCoYOgu+DDacO8bJqq3oiooi4L6FFuK+OV7UtqD1DbI7fojWrI10RNazEE/w2yKRBlrb7kdKLTVzoUr8pXNkxKUzKErgdFU2NWdLKB1JgJOBohCP3PUJs6t0hRCA5zL15GzRzLOvv8KZV19IUpEQTskUcF74ui+D+YKSS25XCJHCmZHA888/T3FxMRnSakJJ0hwCc9YuXC7CNl9FddOtCMSzs+jaDIpizvpqryt1miNWi40bN7Jjxw4aGhqWDVR33HEHU1NTvGEZowMEg8EVt+Pbmk/sQtjZhioht3+Gwy1hpnSJy61w95d2pgBKBziVh/CWZzHcGWF0NEqu1V620sDfPxKl9+U+pCdC3BOh2Mil0MhiR7pKO5YMRUopTpC2UAQSTr3YS6DAR+11pYRCoWVl6V27dtHc3Ow0a9inw0AwRpbT0XmyZypFW7hDL2CDOo7VZJcIK9sWlNkMizCDGTOEbtqNPPuqc2MPzXeS4con4Mkxy7eWHIi9HYHAjeSbpHEWg9r0BGcy8sSTTnOKXFxkvqEHjMLE/nXJ7JFBMDQWmh9GzanAXboJ4Up0Yg65ptANA4lER9KgdlInKyk6Jh1eGuCUtu0mg2jDyDKB5eTI2BNc5kmaHNnvrsRXm39F2bWVIlS7DZfH45RLhaIyNTTAqw/9O1veLxFZ9jmVDPW9xIZt719xO87AvgpoA0DKZRO2tYQDtBcWLr3wLznsxoSctDzuoFwAACAASURBVFKEYZh0FiGYywxhppUNvLFJKnpfxHf4OGFNI5JdxantX0C3mt227fCxeedO6DtG6ZGvI/Q4ZX1ResvSkx4WU2PUeQ6StAxLij9IYFqD/7wDjCXZfW0BXvsm3PjnuEe7HB03pGY1DUh0oVKjmvdj39nmZdlQJ6Rc9dqstF7y6+J0zg6+tG9t/M6Btil0zTDFiaUkMzdtxclpaXUOLrfiuCTYp8Wb7qL+9gq+8eZ/YSx5mCQXuf9+DfGryrgFgeNCiAbgP4Cfy4s+eW+vEN7UElSYbOdOm57LYGG2FJFt+cAJk4R/evEwafd8kNLyLKKNjQz+8ad4eve1fPtjnwbgRM02xAK4maVu41kmtV6u8nchFasjD4PcfW14Iln4b4ugu6CMFkL612nXKpgzfM7L68ab7+SfTrayaOiouk5oqNsqVT7LS9e9BwOF76Zt4Mv61/hf4m+RIQNFkRhS8IPzH+LAwDucdm/TR9HKaiWVnaSE6bIbeSHPb6r8AwgwhKCvZH0KcOsrWY+uLLVbMMtPLgEfLs7jQ8HcNWfb7Ciprllmg5VcMq3YUee88LX0TFJEo1aI0tJSbr/9dtpON3Ho+AnnUR0YGDAbBAyDdI8P9+I8N937mZQXkQSmAhsxFHOKaxg4pHTDkBz4cRt5pX4qKipQFGVV3Ta/308oFCI/t4DR8YT+Vn5+fkpm7fDhw0gpOXLkCJs3b14GetzBDObz0pCjUXyKZTkjJfkuwZQu0TTD8evr6+vjwQcfdEqV9913H+54Fk98uwFdk+R5BNffsI68XcsH/jmPyjkZZjr9NBIDhW7evVhHoZFFmgLJIiiq5iN9fh1xj0lCd8eznPOy0gsWYN3WvXR292KzIiNKFqNZ1fyPfdudjs4jnRNOgwLAmPRzXC/nGlcvyeQtaWXbhkWY/Z4GjLik4cV2zhXu4/ZwNzcGP4xquZ8YUqdr5jRlShC3v9jRc5NIFCAHhWuliniik5Hjo7iDi4QfS+I5GgbSGEO4ghYtwrCeHwUpVNzFO4m1PIOcG8ez+b0IRQUMyoryOTXZjWYNZgPKJMOEebdeR5EWMKVdkppJbJuqi75crfLypcBYcsn8lxFbrr/F+bn5lZ8jDYNA1Sgiy+Rv2u+RdE/tsnVtesP0+NiqzwpCoKquK+a3OVIcyeHxEPituy9rO3D5nanRY8fBqhb45seIZhQn1fRNYLbozcE/N2hy8ICpzCoLtJlUk+amGK6ftbOv4CAuGUcIWN89T9qCZKzAgza0kbbotQTrf5SYfFgkUSFcZgfw6VeXgzYwF+p4BboO8O71X+LFZlPHTYLTNKBgkDHRDewxu0lVNQWErcXpYKX1wE4SCt6/d8Oa7cNKq3NQXQq6bqCqCqXVK68XrAxw95d28sYrzQyciCJQMNCZyx8DKhylCDsUofDeqveuuK1fV/xKgJuU8itCiL8EbsPUW/v/hBCPAN+TUnb8Kvb5Vsbe0QEOlWvo0jx9TaKOC7KaDaIN/84fossp1EgO/TnZDGbnE5ocpbj1cY6oVWyl3nxo43H277vR3KD1wEoEmpSUVQzxHp7lglHNAd7HFs6yUbQBkryNGjEVLohqzlHLFuUsmSVh5kbTEULgy8xkeyCDfy3w8p/797NuoJPSEdMQezS/GClMAKVJN4eUG8CA80otW8RZNtDG79Q8jGtQ0Pbt1/h/35HP3msmuMBmzlFjLiPbkBL6DgXp2FuAJhNzETtzFho0MyS2U0LaQhTVMJCKimoBtW1+H82z84wt/mLq/b7MzBTelZ0t0+JxJgcTvB1XdIZFabGVVijXCiG4/fbbCYVCTLWewTvcQyynCOnxJpYXglhuIepgl+PW4Gs8zcR//CfE4+SE21CM2zFU++WaCEOaxsb1t1fw7ne/m/379zvClPbApKoqO3bsYLgzwkJ3ADISGaurr77a2VYsFkuRLFmq6WbLgKTpEkMRptujNMuI45aMhyKE82JrampysoD29vzTG9CtZScWJW0xnRtXGNRLq3PQX46YM1QBhjQYUibJN7LwRIvAM+zwd3zz65jL6rRMphWyJ7fj1rJWNHy2o23Ww8/jmykS0wwbWYxJP8zDyacT/LKrK/NQRWpj7JYCHyKcuDWy84v46Ugem2QGiqsdA+k09ihZmSDrU3QZFRTSXBn0jh6hyv8+51rZGosjIsKQMkWxkUNRP8T7Ja7Sa9B6EhZQ4e//EwV/8ld41u9m8vvfQ829zpLwUVALt5Cetwl9yizFSEMHQyft0Qf4wBf+Lw41nWdATKbyZMk276rkL6qZ9AtPiZ+UVpQlDQfREyMp3cS/yljKBb3p3s9wzuXCmztN6TuGEhl66/hO7n+K4rIEPy15fbPzWyFhkWaG7WmcX1ZxRVZVdsbLOQiXC/8NN+DKv7wGKXtbl9uZmr5nN9O5G2ms+bzZnGBHUllDIpjK3khgugsUhdy5LjqXvFcaX+il8t59BFUvUl9EKi70qq9SMjLOz86+wyrwKwTrf5AAbwbkRGqtpgQNFNcq4A0wNOq7/p7Fj/w9Rxv70VuPgtUhLjDfvzbIrr/ztzj57BNIw0B1r83poKS6hls++XmHzpI4DQLV7ebqd+xZcb2VIlgZ4NoPbaSjcZSqnYWrvlPsZSc6upAnC1EkCKlwrr2T63ftZnPuZlRUdHRUofLlvV/+b8Vvg18hx01KKYUQw8AwpmZlDvCoEOJFKeWf/qr2+1bEH73zfRw4eoojufUgFHSpcE7UspE2wKCgpJU31Dt4esc7MITCqVA11x54jS1j5kszfc9uzm7czIWyCnODTneoRMGghrN0iI18S/0aGi5caPyFvJ+NRjtatsoFUc3fcL/5maLxternUE6bqvqvPvTvJqB4/MfsPdO4hJmdGmGZzTeV+xP7EPeb4M3/M3KmDSarNZojm/iWkjiOPzPuJ+3QNKOtBVTdnI0bq4wGVKZ7qUr3kldaygCGVR5VUaTkRmIYObncWRDg46X5nIjM8eUL/Sxa780fDk7wrep1l91Zumr7v5RMDQ04szl1fo703jbiWfkEN2ykrKbWyVoJIbjzzjsJhUKcfuk5nv/BQyyUbUxk6JLOn56Zw2Jgmp7mU/SfPc2elh5youasPTDdRWjoID3rbll2OMlAadeuXRQVFa3o3hAKhTj5fDfe2SB+XRJLGyM/I8S63I1rPicTJ0bMTkBhzh17Fg3mDZymASFgxztDF32xLY3o9MrSF8HKALd8cA9PPd+LYegIFFgMMH9dKVd5yigeK+JcUxuuxQC6N2KKaViAKe4Jk2YEVp0Zg2mG/U9qFmNxf0pWyZarKdUVaIvwtX0b+PrhdttViq2bNjB0ot3JIn7g7ru4zvDT2jCEbEidO+ag8Jorg5uTdBlBUJpezYmMDiJdLxJY/05s255hJcxznkYMDBQUq2s8C8/G2zCmBzAsMIZhMPbtrxH8y68wf+wxlMzjeDffhVq4xQQjqkDNtyyGpMFC80/Qh1uYfvIHeHfshWmSeLJm5t1d4icFpQow5uNMv9zj/J5Wk4ua6UnV59MvLZ77y4qlXNCRrk4z+5b/EpYqReKREuArnE4ppZ19/RWnxKqvUKgp376TqhtvI2JAjs+/ZteV5Jj47vfMhgQrPGVlzB08iNQ0Ik8+eVmyIKvZ3F0s0nfuRH7yTzGOzeM0JyR/V2mgGJYEiBBkXHMN5X/w++hdmTS+0JuyrZauHIL3PoX4/9l78/A4rvPM93equhtAA+hGY98BggQIkOICkqIkStRmiVotybItL3EiObGdiZ2JM47vxPYzmcSJnXFy7XhuJs7YliVLjjcttiybWqyFokiR4gISICkQIEBia+x7Y+m96tw/aukuLJSo8SLf6+95pCZ6qa6qrjrnPe/3fe/bdxB37W5qgf3P/8QEbYJYqBwpFYTQjOtJB3dxMaGu7+MfG4PbvwbnX4DJ8zDVzRLfJ5A6V+VP0KXEmNC11JpA6rz88DcRQrE7SQtr1lBe33hJjSKbb7qNsd6elJWhEFRv2squ93/4ksD4aE+I1x7vJpnQGeo0WP2NuytWfX95aB29cgGBgoJEO1DIgXXH+efOf0ZHxyVcfOGKL/D+9e9/y/vwm4pfV43bXwD3A5PAd4D/S0qZEEIoQDfwOw3cgqf241/IgHyLKVMJS6+DZBnOK0RXFKRQSKoqZ9ZtYMPxEbgRztY18KNPfsZIq1nAylSMuVbuo54ufi7fQ1K40IVKQsIBrqNe6UIrmuMgHyCOG4RCQkKbf5Ft9ZNMdwbQkkm6fvwDPD9/FmVNqc22eKKCqu4Lhum8oqLqGt7oAolsF1KoJKTkLBtZRxezxW7UjQlQoVPZQALrPbB39E6yxqYZKSvnD/QAT24r4xsDY/xyco6ucIyucAz35bdRU3iWpMtoc9elZJ/IRpmZ50jI6LJ7ZiJEIm2c0oDPdV1aZymsTrWDwb7V7TCYqgstR1Aji6iRRS6/604233QzjY2NDsBk1dMk84oM0LZSW6KUxEprUGMRCC8yGMi1gVvIt4b+yhuW7YdQcHQ2reQ56mDMwlYKpYysSBnJGfjZv5zkns9so7TOz5YtW2htbbVByVJP1cneEAGMtLEAZpOSgbSTLSWceilo15ettL25PmdaeeCNKdvbL33/3QlD0mNL5Q10dL4BCC7EJGUeleKNKuG+JDc17ESbyUINRNj7YtAUQBa443lIDPVyYEUgub0mwA8+diXffPUCL55NpY5dqmCjJ9MuRlZdCn+7Zx1///oFdCn5vw9N8L/uupfM6JR9nq0z/NrxQhRl2JQEEVwfy8WvFthpUsAWYq7MaaT3/DdpCJ7EXXMV7trdnFdH0RwM4wzFSR9KdhHeqz9D+NC/pMCbpjH/woug60z6s5nMHKeCMkr0gN0AAUYaV/HkMFlQwP7qKrS5MUDYzNkbrgFqE0X4wkny7lrL7FNmI4LE2REqsQV2Hfp8vwLP07ca6R2lQgja97+ErmtUXjNCQdouSAlSEywMZxGrMvxGT7/0HKdfft65wTRAo6gqa6/fwzOvvGpfr5dq/7aS5mK8t9f+nrcKvqzw7rwc4fEgEwmHzd2bRe31GznV2oqmGQuGEtcESn8XOfMDJDw5BGa78S/0IzIyKPzzT+FtbmZXswFQRs47nVio2mn8B7D3L0G6U/tX3IUQus22ocBY/EUm+n/JtjPz+MOq7SnMi39rNCrYIUDN4PSIl8n2V4zzQ2qqM8bd1Ng72d/L9GDwkhtFNl53I2cPvGyztJcK2gA6j4zYdWvp5SmrLVB9tS6kkFiWlbquc+TkGeIZcSQSXeqE4qEVP/vbjl8X41YI3Cul7E9/UkqpCyHu/DV9528s+qhEzx3B7gaSkufEXWyXx1mrn2dsrI5yJhFSIqWOqmts6u5gpus0X19c5GvX3UrS7U0DbZiPOiHyOC8a2EA7AsMJXqKwX9zEGtlLlRhgP+/CWqVJFHKZo/KaUaIzGUQncvD84jkCCxGuuDDMYCCXofxc4pmSppF2fD+fJ1ixho3u08S3ZnOQd9ngM0ca7FVubZjRaAX5Yoiw9BrpVfO7auN9tGU1Mp1TzpV1BUjgxak5RylnQoiUCHAaW6UDcV3y+e5BdOnI5ADG7f/46PQlAbfVqHYrsvMC+AqLUvZYwPjPfkbwqWdwFRay/Z678ZqDvlUv50ir2r+NGeZvlvTmooYXGMrPpXJmnkA4xkjJTgwnbec+XPeh9fbKL91ya6VJp/3g0LIVNYCWlHZKsaqqigceeGBFw/lY/xx5kxHGlBCjyiyleh4ZSi5Lz3b6wFZV59zeXJ/CgR91Ob/ftIcZnO6207yKopI3vQk1mkvSM0c0bxzQiXrHCFHAc48unVybKCi/n0MvtDJ2SseV8KED7QeGOff6qKNZIj221wTYWpVH++kJqpIKQZfOnvUlTBxMDdTJpM58xyy6lLaAdNeCh0/dsNuxrSM9U5zXs7k/vo1RZYZSPUCJkvrOpZZ1M9FRChYi6OEeZNF6xsUcXaqpZSeN5VapZny+Ux2hzz1G5fqN1B4xgZuqktHUSHBojpev2IiOpI02KhddZGcUsU4vp0T3g66RnOyir64WTbUWdNizpJSSUdcsl5mdvhcLq54tXZ/vYo0J/6eRrm14/vgRjv88Vesndd1Io0vJ9DkfBY0hQENqMHUuj5luP+ExLy17n2J6eMhxnxobSP1bKAp12y5neHzc4X5yKe4mgAGkl4ZdpysuCXyBwZ5Vf/dhwseOo83PMflv3yB3z822buNqYdVaDXXN2F3e6bVyYNThLY1d966z609Vl6FR5gxBY9ardERuQsdFeML0OJUJhMS2Q9QF9FRnUjcQxd930ABumT5StgMC1t4A13+eru/9wtxy6rK0/l4a+tsQzE1vNns70X5wiLMHhx3PWeUpq5ZhZJzitTXHuab3fQgp0JQk/dln0ZMm+EPH7/nNLHYuNX5dNW7//SKvLRe8+h2L2i27qXn5X1ED0qDyhUCTCo9on+DqnlN4FqLEcxcNiQhFJaEofP3DH2PX6ZM8sXsPmtmZaIMaXTNrGlROiCs4xTb+SD6Uks4QAl2qfFd8nBvkS+hCtcEQUmdB5CIE5JSFDfspE8AEwjGmcrLQ076vYjxIxdgAdXcEeYU9htCBUBFSYwFjOyiSgg2DdNPAc+Iuex+QOm3ZO7h6fZwP3mbo9/zXc8GV3Y9Wkf2AlK2RAuS7VSYTqRXb26l523zTbfS0nlhmgZVuOO1yu9ESCYSm4T18lAWLJXvqKaoffQRvc7PRCed2QzSMuhBCyw2sAK6NR9finPG7AFM5WYT92xku27V8JBPO9vNTp07Z+mxLJ532g0OrmB1ja55ZYX2mz9SDs/6O9YSYECFHKq88vBmHUagZ6QOb1dU52hPiwI9Ooi/1t5Rw+lgnM92nkWYqRdOSzGX2kkERscwJLO9JISRDE30rTq5VVVVcf4OPn508aeqiGZFM6Bzb28POO+tWHGg3ejK5b8GDUcIPruOzjKfjdAmiP0x1rkpQaKuqu19ZV8AYvRRLP6VanvnRNE01Kc06NiMa/TuIZBxAD/eQnDjHiNicVh8H6yJ+Ssil0zXEIbfx2w3VZBEKb6J5OErung8S6z5D39q19uekhGB2AhimS45wS79CXtdRxpUQvWtMlkdKs4hcQUqJikJ1ZTWJ0UWSs9FlNWx2CGytvl91s8FKYeur6bqzIxvrMFI7uTiWRZ78NO68SY784DXmhzNS79P1ZfdvepSubWCiv5cLJ44hOztRatajaZpR15vmhvJWIqOpkcW0zmzAuM/dbnJ2776kOjcLaKl5fhYOHiTSYshtWNtfDbyFW1sZeOUMg2odrqLU93mbm22mb+axx5h98knQdWafeooac5wqrfNzz2e2OQCfI7Z8iNITj9KU9TLtkT1Ep9YxsP8zZBd1UnH+dRLvHke6jGtxOuBmOs9N49RzVAR3YwjxZoAWN1QJArUANFyxi/7TrfYlFxNuMuTKY7WiXnqjiBUW67aSHmd6tI230TLWwo6SHbjPFa04bqqqWLUMo228jTMTZzhXcoRp7zDlc+sY8/cypvXZ7xGI/98xbv+fjqqqKm6t96BHH+QR8XF0w92XflctwfpqKrP+lfFAkeFeIBSQgoGySgbKTG20Jak32wHAnDyS0sV+3oWOM12nS5VZ8lBJkjSpcBdJmvR2pK5QOLcTLTPGtD9EdmmUWL2ORw9TUiqZH/ESHksNcOHJDJoq23GTJG42RpxmKxswmhQAOsRGo38oLZ3bU1TPUKnCB/I8/MfQJD8YnrK3KQCfqhDS0gbvtJUswDpvBgPROAld4lYEf72mjM93DWKVxr48NU9LaPGSO0yz85w3aH5FFVm5Pl555EE23Xgz7/7A/XQ/9iNyuzrt1CY40yLWqi/YfobOsUl6R1KpuayZSeIuFen24J6ZQI0s2q8lPQV0rf2gWRNngW3jQVUE89NRRntCJNxztLam3CQURbFr3EZ7Qrz6w5VBm1Bg9wcaHAO0xdwlzQLu22+/nR07dpBR56fbNWKn8jSpM+EZJTe2wgQuU2lZK4a6ZpaDNjNi6qwN2qxIeGbtLtH042pqaqK/v99h3WVFaZ2f6k0Fy3wDg2dnGOo8aUunpEfufBK3yUIpsLL0hZR8ZksNwVK3w0onPbbXBBi+tpbkq8NYySSDnTTZN+lnIhqkOLMSIVQQKq7CBuIzPYwrIfoWTkN+6lzGPC7GtAX6VFMe1QRU55qaWFfXjHchD5FbQiT2gnNH0ljo89kRdmD41+pW97WuUz+VoNG3ixFlljI9QKBHMNtjpkgtcX3HNg07vd9EHRukpDqsMoWVhAMM4JmS10nOF7H9pk9R6OvgwA8eYaiz/S19l+ox3BGkriMW52gsLaJjZBwpJc8//zwlJSVviXUb++pXmX74u+k7CG43ee95D0puDtOPPAq6/pbq3GYee4zRv/8H2394acy/8OKKwC3c2sqZ//xFWjZ8EkQMxDCdh0fsUgjrPY5tx+MOfbnSOr9jPBjtCaUBuZ1wx7/Q+NT/Nlk3QXR6HSAJF5yj4IlJFt+dIJlrNWpJzuX0kPOTe/C/92dG2vTUD6H1h3DiUWj7EZvv/zmzd72X47/4KVLKVUFbfkUVt/ynv7jkNCeYbhumnVkykViVtWsbb+PjL3ycuBanYnEdd5z51MobXKXV+olzT/DlI19GM1O847n9bNxQx7qsbTzZ1WO/TxUqO0reEfboy+L3wO1txqbL3kv85Efo09ewT+yxC9l1BKr/KmI5O7CX10vbqJY0C5QwxCQlNhhT0OkVa1OfT4tFkcO17GNO5lEQVdgzPUqNN4ErtplA7haaStYQuuclJn1PADoqC5SyQElSMHioBFeWRjKqUnzZDCVympvlMzyjGMbQnWIjX+RL/LH4NjfIl8iR8yhCotkdXQooCgld8vjoND8cmXLI7CqwHLRZBRHm48cri2jKyeLw7AK78nLY4c/mzEKE75kAMCnlJQnxWrHxuhtp3/8SmmYAmZmRIaaHDEmS0QtdbBqZpnp8BVlBVXWkRcobmihvaMJz6CC9w6P2ceiRBbSyahAKsdIs1FgENWr08c02NiCTTr/V5puriUeTdB4eof3AMB2vjZBZP+XQcGtubrYnm6U2LekhdWh90ag6sABNX1+fzdzpus4zzzxjHM6EyjkllcoDiHrH2Lx5C8FjMZJpZuZg1LrVbS2ya9fGYt1oGYuoKwA9Ja1uxo6039YKTdM4evQoV1xxBZmZmcvSuQBe38p2UavVplQ0BHCZrf6KEGgr5NpVVWHnFeXc9Sa1XO++vZ4X+k5QeC7JVLbCYXc3ltDumokE1T1dyE1/at5+RgrzQl0dLTu2L2OS+9VJBtVpNiQrGVKmzXNhpFtbXf1s01xIRWPIm2l8YMn9AKDmr8G7+2ZKz3yLdimN2jspWTM6R0munxKTGXSeKFByXOgLTuDtLr20++b/JJZK8awUddt30n/6pMPuCIz7bM3W7W8ZuA11njWkPwDV5ULPyra/22J0x3z5jnElPcKtrYx/7V9sRsyK7F27KPxzY+Lv/8M/siU6ZCx20Tq3ZcBqhRCZmYRbW5dtI3zsOMP5zUaZjdX0lHSm9cLHjl9021aM9oToPDJC5+ERdE2iukx9xh0PUApc+8R3OBD6GJ6CXqqv+zpCSRDSATWthtXslp7JlUbKdPdfGd6lehKkZmi6nfohGd5dBjO9ykAlFOVtgzZYohAg5TL3DStaxlqIa3F0dApna+wataWxUqq0bbyNfzz6jzZoA6jxJNniGmZT2S5+cSGDuBZHEQpfuOILrMnQ6ez8G4CUPdg7IH4P3N5mGObK32ffyePs01NZfxdJ8nOhN50tg2VgzXpeSI1NC9/mypwkh8R1hGQerWKHoRZlpidF6u10spFzNOEWSb46cpyCmh8QU5LEgMXiU+SOXMm875idtsL6WlVStXvUmIwwnhMCBuQa4312qkjhYT4BAr7PH6PbClZp7WC6xtTgALqSGhzTbCvtEBJuPxFGCJi6poB7qwvtrtH0gXVTTooJ1Hl7pvPlDU3c97f/SPur+xjvvcDoBWeN1kh2Biutx3Ouu27FwTk+PoJ3oIukNwdXeJ5kVm6qYQGFZLbPZt2mJ7pweU/jythsfz7D6yLD67IlNXRdMj40C9ZhC/C6/PZKeSnzBaCoAt0sLg+NR+10wMbdFcv04KSUPPvMszQkypCqXAIOJHpgirv/y246j4xw9rVhu3HMGtwS7jm79k4EFHxTm3AnUuBNUQQ1zXm8sVTMZxWwOTExwcTEBHfeeeeKTEjjlWWO/UiPlQZcqx7o5Av9LM7GyMhyEexIAfFAqZct73rrnbKVxQEGg1McdpvXiTAsrXKbq3Adf45XRn5MkbeaifAARdkxTmy/KnXTgM1AW6xmBm42Jat5wzWQ0v9TZxhVT1KkZSPNDsqVztccUZ7POIO/ug67u1BKhCfLgYkdEiTSvwy0IfmNdY4CdmlBMpEwU83CkDUxw+XxsPPu97Lz7veuKNlRtXETQlFWrE1dFlJSu3U7Zesa8BSXsXfffvslRVGYK6ngD9vOE9cNz9v/UZ/qUA+3ttJ//wOOLlIAhLCL/ie/9W0btFnfp+atfi29KbASgoV9+1g4eJCaRx+xP+PdeTnenZcTf/FVx3cJxZnW8+68HDye1D67XMv05doPDnHgR10OhjyZ0Ok8MmLcBzseYONML7zwbc4UVSOUpFPKMm1+EhICc5qRKgXjUVHNY5Rw4ntUba1CdblsVsxxuIrCTX/yZ28NtAWPGcCwdneqoQJTISAtC7WaYsCOkh24FBdxPc6wrxtNJHFJC8qkMh4rabm1jLWkERFQ69H4ZFEMV+Ikod4z3FG+k3ORBPeuu5c9pWtpOfEhMPNBwyNPsn3bD94R4O13CrgJIVSgBRiSUv7WvR+V+wAAIABJREFUmxy6Wc8jVucXINC5lb08J96Ngy2zCj3TC211nV2nT/DefXs5ePN56jbGjW5S3sMJLnekJ7dMa5zKV42aNynNDk+F54p8fMQW6AWQzJe/ntrBtIZIG6ylpVikhB36Uc6oW1PAUgikVHhFvoukMLpJSUt1ICUZsQi5w12467cTNzvz/lNVEd8MTjgYuPXDCbb1xFBdgnveW0ZpxcoD4UxSs4GfYv79duPsgZeNgWVJZONm/9VXEva4KRkK4p+dpWAhgjh4kJnHHkObDTnEM7Nyc3HFwqiRlNdkXOpG8wFmjZt9TkCLvQF6FMVdictTYQ8YiiLQdUnCPUck2+nZefKlHrr2Jm1wlh4brzXsWp7/9hkWZ1MTzoXWcdtp4Pbbb2fv3r32a1LqRDDTwCsABCu9ovjCvH7gOBLITpRS0RCgu++0XZMmpUbCM4s74UNRoenqcoqqcjnf1YsgLfWVdixLWTcrDh8+vGIaq7TOz3UfWm9MPNKYbCXGZehyrSye2dM2sSy9asXMaJiDj128i8yK4a4O2g+00B5IOI8BKKnZyGxtNZPxYSYTIyAliZpK495bKq1jfk4gyNBVUCSXJavpUkeIibgN6kaVkPPkLDlXw+o0AEOlJgtplk6MiFnccopR1zwxNBMUGju6KVnDFdo6Jxj8DXaOgrFYuuH+j9N19DDFtXWcfPZpNClQFIXLbtjjkIRYaUIvb2jipj/5M178zr8vAwKKqpKTX8DcxLj9XHZegPIdV7F//34H09fc3MyFjGxi+pyhdiGd3sfhY8eXgzYAJYVibM/SNPAWPbt6OfYyYLU0pLTt76Jf/w8y21423quqqJ/+ItOFG1MXvNTZXjnluG69zc3UPPqI3Zyw1D/VKq1Yifw6+5rBuDeumaH09X8jKu8iPLHeaFBAQ+i6YYVlfjhvNsG6gRj+3f+cAlJVO6H5I9DysHk8GuWn/pH3f+LbBCc1snJziczP249vSUfPstY69zwgjVo6s5s1GAwyiQo5fsTi3EUFlbcWb+XudXfzZNeTjOX2sXfjN7iq7x6KF2rM20oiKiM03VKybCzwe/woKDbjti5DRxWGk5+mJwiFjvHGvJuu6S7KLtsJpK4HKRMpb9ffcvxOATfg00AHK1Va/xbi8OyCUZhvr8IF/axBx9k8UCJHGRNlqed0nTtf28dnfvwwmoCOCoV/L85gXYZOu94NAXMmNCeKhMsg0KSSQlwSeDG3kStkA/UyxRrYg3gaOJO6YPB8OdXrhhxgDqBhcIitnKOtpiGF7oBpUWB3tdqzjPmhSFYOT9Y1c033KcKKi8q5aW7LvYqewnyem5yzvz87mmrNvlh3z668HDyKsOveLmZ91RJaXDUdYulHWfuZlesjy+enomEjrw+NGbYywHxRKd7+TlzhBdZMhuj+93+lYCGMePhBtPv/AF/Del559EFHzY6lA+fJ8tHQdZ4pl2Tcn21/l9RGSWqjEFVpfu9f2cd67YcaOPCjLqKZy+2fXDG/zcilR3qnWGSJftra5pSFUklJiYN1E4pCJtbkn/oey/80GAwyNjbGvpa94DVeiyvjJNzbqK2tRVVVkkkNMKQ6ECnQZk0Sfvdm5vyd6OqSAnkBgUCAmRlnOnp6eppHH310RcmGjbsrKKjI4eQL/cyOhsnMcZNfnr2iv+BoT4i2F5d326bH0nTTSjHc1cHhJ35IvysKZKcAlHksw72DbLzhXXS88qzBIEtJVJUImVbDZT3qOkJKGvvGeL1OLmGcRdq5cYI+i8O2v9cK+96VCKmTCE/wrKfVqHtL2ywSzrj68SterrzzWuLDC7/2ztGVYrirg1cefdB0bDltXIdmR66vsOgtsS+bb7qNwupaXnnkwRRLLoQN/B7/4hfQtCSq6qJww2a7rtMKRVEoLS1lxqU61ipJmfI+fjPmzGoIKP2b/+ZIf1pOGCuZzlvAauo7D7Hwyit2QxiK0YEfyq2ldctfoCsqvVLSUBCiYuQwaBoXfvIa+po77VrGivEjbPqz5TxEeqPC0ug8MnLR0or2A8N0vqZzT95aKjzttEzdR/DVvyS7qJPKQ6fI8A0SaZZktQma1jbg/cjfO9gvAEqdMkPoOuX0Uf6ev1r1fK4awWPwyB1G04MVWgz6DhKkLMX2V9eTlR2lsGwNWtbq88Bda+/i6fNPE9fjjOb2crj2Ke48+ylUXUVXNPb6v81DHUM8VP2QLZ7bNt7GV459xZEmzVR0o1zUrJ3NVIzfMaEnmIiMO4CGQDG8Xd8B8TsD3IQQlcAdwJeBz/yWdweAtbFFVF037JwAlSQ7OcJZLkOTxojsIsnt8mm+x8fRzHSjW0tyy9GDxoJLQHu1oC+m0BtTSXgU3JFWEt5t5kCu0O5XnZOA3cmqGsK/eteySRQd1FFwjRtdadWXObWerM3k5M5w5emz5E8MsW/79VgSGLPkYyc/zQEmPVWUBMaycrnu/GkAnn32Wd73wY/wshAkpMQtoHkwYWaTBJnZK9RHmbHDn82TW9etCsisaAkt8r628zbAe3LrOsd7LeN5i8qPLMyTiEXJb9pqewFaYaU6e4rM+qFiv/H6qy/BAVPjacnIqEYW0SKLxGQWO/p76SwN0FMcwDn7akRCZ4BrAQOchCYivHr4JOkFTu5ItiMVaYeAxl0GcDnxfJ9jF9ZsLXQU7ff19TnAZUnuGiJDipGOTfuclJKWlhZOnDixrIBc1w2nBL/fz6233kpfxxhDxxO4kj5cLoWiqlwO/Mhwy0i450h4ZsmIFhrsYfr1Bni9Xubm5pZ5sV5MsmFqaMHBoo1eCFFUlbsMfF2sBjD93I31ztl6c0vDUuRPxuPESqsx0KtwnKv2sW4u/+gDXBWa4VDbURCCWGgKjxDESmuNr5E66zs7cSeSFI+P01dba9wpK9T7mV1HJhiT7NIaCWjZnFL7CKpTzvKJtBVV8YUuesoK0RWxfHvm30NVYXKuWCoF8ZuLdKFdKQymTUp5yfZT5Q1N3PDAxx1uCxZbd9/f/qOdZj3ZdcEB2sCo73z++efR371chDeUMN67InOmKMtkPwIf+ADRsx3MPv648Tskk8w+9tiqjQre5ma83/g3Z2fpgYMsvPwyM3mm/Z1QkUi66j9AzqKhVxj1+BF6EomCIjU23L7h12Jqr+kKJxfv4fbAP3F3/t8yFNtIxqt9qB2jgIvsQwCSyfEFCredx7sUuEWmWLICTKVSLzX6DjpBGxjbrt1t+zdLKdGkzvy8m/n5QXrOP0TRtUVcveHqZc4FI8ej7HnjT7hQ0Ma0d4TyuXUcrv0pmclshn3nGcvtAx1+ceEX9me/+8Z3ieupfaj1aFyfY7pAmLfeDbkab0Q0hpNZVJbfx3zvWaSMAyrr13/xHcG2we8QcAP+J4Zw74oVi0KITwCfAKiurv6N7JBvbIi7TrfSWVyJEHBF8Ru0qc2YGB4FnT+SD3ED+0h0ljI2X4gnFuWWowdp7O1GU+A7exS6KoyROOGpJ1TyORAukElciQGSnjoMmyZzxE7rRlWQRkdp+tieNnlopaCV6anBPu0etCbByYlqUBTunJ+ne36GoK8gjS1M6ZgpUkfqINVU/dm5slrWjwcpnZsxUmxdZ/nvvgDD/iJur60gyzVrp8Jee7z7omksC4Adnl1w/J0eh2cXiOsGsyH15U0MVlfo4Sd+SP+ZNpASLZEgsvfniM3bbMYNKXGFU/UUy6RLrLoPIUBRkGlARMvK5uymGqZqavCEpkCEebPo7uwhqS6kti0lmbNJWyYuPVQ1xbale+8pQuD1eRygJMWSGQ0ZrggMZacVodlEqXQ8Lg3L0N7SZXPFfSiK4Jr76okuJuxU72z+aayEdtZiJbGMKXRXxL6+mpubbUeIrKwsnn/++RW7StPjQuu4428pWb05YYkxNEDDzhIScY3eU5MgoffUJH1nJh3aeWCAtl9+819tRX53aIqEv8ixLYQhqNvX14encT20HU3tl+rCWvFIFDQ1ly2nDwPQ2dSIA1GtdJolNA8naSwsR6BQnPDx8sIBFiuz8Pj8DA8PO+7t2UAAdWHGLFNIW3SkXarlaypXPKe/qcjKzTXuESFQVJXarTvIzgtckmq+Fekd3elpN6tZKBgMcvLkyRU/m0wmWRwZRMnId7Ce3xqc4IaZcQqeeir1pKqS/9EHUHN9K/qK+u+527DCSkuBynj8oo0K6cyYpREXmO02rwPrmhGMlOxktPRKA9BJSeHUGWoGXyZ/x6V7ozZeWUbn4RG0pEQoRunBMlFeoC9+BaOJJko9HfjmeujvcEqdxNfozG4bZejIf6dODFCy53OpF2t3gyvTaE4QAq768+Ws3FuN2t0Ymqdpi7rqK6HvILVZl9njmKEWqhistC45euIojww+woN7HrQBWPvBIXp+sUgF66kIrUcXmqnDprF3wzcM0GaGxWy3jbexP7jfsUvrMnRUJW3KFIbE3QcCcQJ5Wwkk+5A5TWRmFFNT84l3DGiD3xHgZor2jkspTwghrl/pPVLKbwPfBtixY8ebrc1/JVFbW0v5/v2UnJ9mIq+Q75XfgWaBHbOzbIFcpsZy0Hv2UbMwzdlqwY+vhg1VClMbdDKqNGqjkv6ESiKz0QBtQgFUXPF+NHcVCI+JJVIDu5CSPR3PUVg6Z5iJWYt1mTa2W/Vs1mM6QyJhcrKSsTHDcsd3xQ5uy83m2xpL6ngMtq0p2A1Ae02j/ZoOjOQVUTo3gxCC1lbDdktVVUruv5/xRWMVhQRN0y+axnozNg2MpgVrYNZJrajTo7yhiV3v/zBDne2G1yHgW4xSNjzCTJ4PkYhRODTIjEtbfpzpISEjuwZduQItdgEt3oKWlU24ugGEymCeF0QJ3r5zqJH0IlpByZo6+6+2ox30xg5DZuod7ukxXIkmyGBZVF9WYJ8jqyDf6ho7ezAlVAsw3qWxa8d1vHbsFXRdZzDWYwxU6ezrapEi/xzdeVFlBrdbksiYZXg0m03b1+NyK4Q9s8ZZF8bZV6SLgqnLiWSNEMucoLGxiR07jNb5qqoqgsEgW7caA+2WLVtWlWpY21xM8KwzvbqacOb6q0oB8GS6mBycZ21zMRt3V3Di+T4Hayd1J/gb7urgsb/7nMNdQ40s0jTlwptXQxyNM65+47NSkpWVhWdJR5vQktjsnFRwx/KYyc5koLKckUongCrV/Ewq8ySFTvqKqjs3zlYMUW5d6rjmx7j3rj+nvKGJr335S8ynaRgmVZWsyCIZowPEymrMn8t5jb7++usEAgH7vP8mw0qT2vptEnpOHrPZsrcTFkhbKfr6+lbtYB31Bdjr8i9rjtIlHOwd5B6LpROCvPe9j5LPfnbVffA2N5Oze7fTWUFRLirIm64pVrPnZhYPHWIhuwxnvQpM5TehK24sCY7Jgk0UzHZektivFaV1fnZ/oIEf/PICvUUuaicWqU5rZrJCIhja9FVIvExnUCPT12J4nwLxNRqTf6nZKOAN/UEyQ3tSAKVqJ9z6FXj2r4yb6ui3oPGOtwfeqgyJEp75jLEtodA2dpKW0BvsiOvcf+tDPDwQom0mTnloirI5Y0zwaB4SeoKWsRYbuBmLPWEOXxJFqsZfOoYemwncVKHa5vA/v/BzdHSuyk6wOUvjdESlL5Fhdsk6mcBSt4TwUfoHjIXb/DwUFFz3e+D2NuJq4C4hxO0YU6BPCPF9KeVHfsv7ZcfJirVo6StjaYh4NtFOfukcM5dV8oIIYd3MiTqdTxbFDdtBHzw162bYM0uLjcAU3PF+ciJHWVt+D0OjU4zkX4OORJFw2/HXqAwnGIhtwe+fQAjdZE3S1v5p44Y15Fv4T0qVkeFUOqO1tZW7bruNY+3dtFXVpyg5qaNKnfppgxnpqDJTABj1rQuZXkZ9AcrmZuyB00qN1TdsthmjlTp80uPw7AIJXRrVByuwaWA0LaRjkm8NTnBbUd6y96Wv3okl+eUbZw1NPUDRs/Gdv8BMrit1cqxwpK1UdOUKFLUcJbsCofqJ5wwZq8a0t0UqGvFM9uKZtYCDtP1iyxua6Hyj29ye+T8p0TO9JCf2o6iFKK5yx773n5lysGqldX5DW02TSBMAdx4Z4dzro2hJnUhOED3b7CzFbIs32+MD/gBToelVz3mqzMoohlcVBVV4bGbt9Y4gZ7NnOXeDB0/bAnn2ZxQ8iTyEAlnRMnKTFVy9O8VGLHWHWGrJlR4WK3bq5SCzY2Eky5sTRntCDmuru/9LM7vuXWe/vlIaXtel3V0XbD+zoiVaZD7IlbnXcMY16Hh+dHSUokTYXiRpWdnESqqMg5eC3FAt7tkf89pl9cSKKtDTFgCNWgXXJBvpUIY45O5MA9CS+Vwvz439hKsa38Xw/Hm27LkTLSuHZ576CcnBHiiqAAzVes+ckUaVqtv+jZYfoyEDczENs2AwyKlTp4CLA+hLjfR6UkO02HSwuIj+Vvo+reT6cbG4mMjusL8QTTHOT/pZcgnYvabSYUe1tDNzaYRbW1k4eBDAbC5ooGb3egfbFm5tJfSzp0lOTjKbDf+Uf5izZRoe1cODex7EG/oSXSd82EyplCAUYpkm22VfLwpdDR/gMn+dVXJ6SdEajvC963LRFFB1+MP981TNJJ2d2hJinlKePnQdSbeGsmUXzaf+Ff9cD7EGaQzi1klTYGTkKSdAiUxhNVCgxY2U59tl3XY8QFumh5a2h/GPdvDPBXnEhaA4GmBD7wBP5G9HzxOousadpw9ROjdNWbiMolgRDbEt7P9hJ+G5+DLWHSQ6Ek3RGPYZOodLzeEFgquyE9xnNiQ1ZupkFt1BocdLLD7B5OQ+dGnML0vX8ADj47+kouJDb++4fw3xOwHcpJSfBz4PYDJun30ngDZrFTjqC9CXX7zs9W0cp0EY9UEfrOqgeqaME4kp+hOq3c2imhfJ+wIJfoGXE6aTAVJDV3NQFjupTRxlOHaYzcFz+NjJxvYLuBaHiBdVMD9fzJnTN+P3j5KRuUhZWXfqwktjVSwqWGDch6OjdczNFWHNLLquMzo6ytUD5/BFFnmtfouZFJNcff4MpfPGCuiuU4c4V1JFxJNBsKCMs6XVdBZX8u621yibmwZFsVNjpVXLLV1Wi115ObgVARdpUNiVl4MqsJ0aNAkHeiep6x1eVpxtrd73PfYYuuqyByddUeiuqcAzPeYA2el3q+JeiyvzcgNUmalNV8ZmsqglxilnVsxteJcCNngzirWNySvTZ6Vn7f/hmp8BNPTE4DLgpmvL2SYrZepDUuRWYDxsD15iMQ5Zuj1BZEWzyFXyqa1cz2V3r+WRRx5ZVnO2NKSUeGIFZIeryK5OMLdgbHs4x8e3PPnoGQrKtVfy7lOHKA3NkBUuxxX3Ubu1kJJa37Lf1lGz8iaWRMNdHSxMnuH6D29CcTXReWSE8FycziMjTA0tEF1MMD8dRUvqNnBden7SnSnSo/PwCI1XluHNM8sNlnAyU7FhFnfEWedqovV0H5opZdHa2sqdN15vSF3EEyS96VIwksDUq3RX5hCuWU+6voJLddGgGb9nk15BQkY4LQeJKkn7+ppSI7x8/LtIKWkfaGOxusFgkooqyRgbQKou1PAcSmQRJLjCc8T1MiOHIwSWJVf6b3fq1KkVz28wGHT8/q2trTzwwAO/EvC2tJ40bYdW1d+y9ulilm+rRSQSsY991Bdg2F9I5dw0utQZCBSbSxaJ20xLJqREk9BbXsU2045qpdTo0ggfOw7JJCHfGru5oG9Aw/vccWpvu9yQFvnDPyLkrWImr5682W4+txjhix9W6akymKHm6puQJy0hV5latKWHtFKovGlDzWrRX+xGmwapCDQkfcUuKqeWZCEETA7OoyUNZQNdqMzk1eOfu0BGl2DeysSYpTQLi920tj5AcfEtBlCp3Q2qB5Ix4xrOWu5G8lajbbyNj7d+lbgWpyCnjtpQMVE1TmniBh6v32Z3bmuKQlvlOm47e9wAXMlrOfPdEGjpmQ1TqcE8SInO4KYWNq6v49qsy7lr7V1sLd7KE+ee4KWBl1gfWM9Wr1UCY3wqNvkzjMpvlYzCdzM0fYICPbjivhcX3/K2j/vXEb8TwO2dGlaN0UhekWlPlUJJKknu5GkbE6hIrskfZpeEJ2fcLJhzqS6N8jUhYKNo52mSJCRImcQd7UAiOTB0gC/s/AKheIgdJZsp3nU5r7/wS85MGIKf83OFzM8VkuubpKTkAoqSLoJrPDgl5RTGx9YiTb0cg6kzBYR1najbY+pOGRpLUbfH+iClczOUzs9wsqqe/sIypFDQBYzkFXL9scMsNG1g6623vuXJwdIxq2wI8A/rKnhmIsQdRf4Va9x2+LP508oivhGcsA/tWOc4jb1xNod0FltGKfrEFhu8hVtb8XzzWyhX7zJdLAzewpb4WFbzpeDKusHQYxNL8o1C4E76yJmrZ8HXnXrJHASSuQEDuAmB6nKRlZvLEw9+k/ahUQfdqc7PmABPRXEvr1Faam0FBut214cbSP78gpHaHFlgWBXMaBJlvhdv+AKx/BK03ADhrChhOcpVl1+LGlng8jVVBBciDI+NO2vc0gvpJcQzpvAuVrHQ74Z8BYTOsL8QXVGM31iH4bxCSudmiGQPkRErxOsrZ/uttcuOwdKY0zTN4Q6xNIa7OoyuwWQCoShcftdH6TyUh6Y591NVhKFpp8sVmduKhgCqKpyfI9XNPD+dgyf3PhKLLyD1FAO5dseVbHifMSA3u0ZpMcVZNU1jQcf2TjSeN+5rRdfRNIVkri8F5qTEl5PDtddfz8aiBib2daJ1LnJZrI5CEeA5z0kTt+u4wgs2+xfN9hn/tiasTC+Zo/02A7o0jS+A9evX09nZueL5XBqHDh1ygPa34+u5WjjqSU+3Ol5bTX8LnKA+mUxy6NAhPvjBD77p92VlZSGEYDQ3wN7NV6MpCiewLAeNsUsC9d5MOhajgOF9/F+7BumrKuZv/vQTb+m4LFmQ9OYCXcCFnx4klNHL3He/h8tbRZsJ6oSuUzr6Os3BFoI1Y4YF06zFAC8ZJFaoMb2YLdObRXVxNnJ2xmA9BXhjksECF33FLmrHk1ROJ3G5FNY2FzPSHTIWPUUZDG3ZweKzfWy80IX/xxD6oGasa4RKKHQcgOkZg3WsqPqQM136/OegZMNbZ93SNNu+e/p/EdUT5McK2DW2G0UqSCSv1dcafthpElj9heW0l1azfqyHsakQRZqzJNis2kWYzyoIuhMqTSUf5fbKeoh18+l9n2Zf0PA+PTx8mD8oWwdipXtHIzzxM2ZjCgUZLMHYgprqj7+j2Db4HQRuUsr9wP7f8m4ARi3P/fffT2nvAG26QsJcXDWL49wpn6ae80gEupk2tRrE3p+fsNf+6YuxdbKLv+bveHhxC4uL53DHDdo3qSf5fsf32V6yHUqMQfO9DU0EfvYIZ14+wUx+PgjB/FwhZ07vobj4AkIISmabmC46SUFh0B4zQrPF9PVtY36+yAZr1oReWlqKqqpUhKY4qetoAhSpUx6atJknoRiTSnloEkXX0c33NPWd51xjI1LqjD77LCUlJbgTvmUprqU2Ldbrw8Vu/uMGH0kpORJasDWY0qMltEj7QtSRLn212MXrhS7+9/Ewm0M6Uz/uIKshH++2Eg6f7mD/lp3Unu/Hoxr7nrOpid5o2JxIJSVzYYoWIowXrGe26KYUmLJZuDQNPiHwRstwJbNZyLlA0jNvD8Yuk5EsravHV9fA3r3PEPfl25OyuVEypg1ZENWzEcVVjhCw1XRZAFaUwgDIHF1k0TxoBah0hZmKzaDF34CsLLQcsztWCBCSoeGzvPpvPzC6/rJ9KDXr0XUdRVFobm5muH+C4fH+1EUoIZo5Sma0lMxIMXkVbqrmZziR9huXz07alG0yI7SCufWlRfur+9CSBlsmdZ1jT38XT859ThZSGjVvtZsKScY11jYXLzs/pXV+7vmrbXQeGWF6ZJHRCyGjjAZBLJyk89AIiqscd/Ye4vNPAhqq283Ou9+b2kZpqWObWVlZlDc0cfz4WWKlVVjXQOZsEVFvPa7Ic4auH0Z189zCgmG9dH8Jw8EOyqhFEQqlMo/GKTcXZD+u8LzttgHL53HV4zEPOZXyTmb77GtISp2oEkVVVRuQCSGW7TtAS0vLMoB3MRD9dsKqJx08a6ZNMfyBL9ZRmpWV5VhAdHZ20tLSctE6vWAwaHSO6jrDeYVoqmKMq9aFm8acn12MLpvgvxEcp/D4Me5vrH1Txs3b3Ezee95D4LljKLqGLkw+53w7yqceJF/CQPWeVMeoojBSfg354mq+1pjH1uKt7D3wOjoaCip24bEVjoYoSeOu8rfFtkFa6YgwMhVHGzKYzlHRzdTpZ/vgvTca3r8FFTm81D3BP2UsktAv4wfrGvja//wyGw914x4WxJsU4ncVE9VTZQN2evDtpkuDx+DRuwgm8/mp6yiLbh9b1a1kahmoZl3aiC/AuRKzmdC6LsxzdLy2nklXC0VTCYy7Io1pNkGb9dxAocKxje/i6JjOD8bP4R//CiLq7CY+NNVLY1kZufrIsl0VwNoMq+QkHbspuFzvCPUxR/zOAbd3WlRVVfGxqiq2pumL1SOZmdGIx9fw7LPPUlDYTWmpoVFkda4oLLmHMf6dsThFeLGLRKZRI2KBt55QDz2hHp4+/zQP3fIQyYEkQ/MqxZEws3qeLXcxP1/E/HwRSEhohQQn/RSVnKOwaIDJiWq7GQGMgTzdNikSiXD//ffT19fHxpEeXh6fpSQWsdOkYEywo3kFnCuuomp6DG88RsNIP1mKblPdSd3ozPMuVl00xTXUNWO/3lOgktAlugBNl/xN9xD/UF9hgzereSGuy3SiCCkESSE5ke9icyiOPhNn8egor3dP8MkdTcQr1uPSNP7zz76PTEQ4rruoKq6kYixI3fQCjaPTICX+xCQnS0qWdF4aYDUwfZakJwdfVSHZ69fS3jpH0pNg4EYGAAAgAElEQVRi7ZTIAmosiqKoDI2M0O3KAb+ZUkhLwXonhnFFI1guFInwQfKKF8nx3cDme2+76HW2dK1erGpcm5tDj7yMjozxFECUBmDJnIjYUg2Wt2M0M5umJqOJIBgM8vBDDzuON+odJeo1bL4mQio3btyAfvoQncVVFgdksE6Kyk3v37nqhJNeSK6b18JbYnmkjtQGYUn6WOpG7Z/UJSPdoRW7k62/n/56a8oVQpe0vjhggL/kMHpiEJf3etCjVGy4zFGHlZ6KA6POLRgM0tp9BkiBb12EQOSjRhbJGAsasiJmW3cymeR0yzEmLhymxKyJ06VOZD5IRmzUcAlI22fP3BTJvAKsujZ1YsSuZbOM7l2Lc8QLy0AKdEVnsXiRB656gEOHDnHunOGkYXl1Wue+trbW4Yn764rhrg6C7We48aN/ylivkRq8WEepBcCWRkdHx0WBm8XSjfoCjOXk2efQZiXTJnwpJZsyXbTF0soDJDwW0bjho3/8pv6jYHSW5j39NJWDrzBQfTMSwfl17ydncQT/XC9JNRPjN7O+15BBmWiLwQ4Y9p9HV4pQNBC6jm+uh5B/ncEM2mkPDUXXqA2szk6+WezKy0GVkDTTsZM+1T4PmiK5sMXnqJWdVqMkehbQhSCuumhbv4GNvd14ehUim5NEtUEH22SnB610qRY3Ht+CJEgwGOTU8y+wkLyJc6xBTypULDP6kIyYrL5jMjTPUdSTw7k1f0Lz4IjNrFkaiOl/6+icqB1DCqN0ISE1Ip51eNOAm+2QoI0sy1qnR2q4NmoQFcX9jtFuS4/fA7dfUezwZ6cxRNvw+7dx8OBBQqECZmfz8bgjFBQ68+ep1GXqud7cPcxkvxuEC3xJ8sa/YoM3MIQB97++n9lW09i7onL5hsyrLyTC6EjGxhocgM2KpUKWQ0NDhEIhtmzZwtqSQmL//GXmy+scN9WoP5+fb77ablAQUmfrhc5lyvLRaJR6szYrKmZJZoRQA06GpqIhgKIKtKSkZjyJKlJVSK3zYe5tPc9Pm43uUqt5wXJX2JLrpX0hgiYlLgnbp52jwgm/ShyBrqokhODZXdfRXVaDJhRULcl9e79L5RoPRWs2os3PwXceYtup/4eRkp0oeQF01cNwZgMIhZmCjQipsTDnQrSME80eJVW7oqB7fURqfDBwjoQvkAaipH0+7rzzTsp92Rx7+if0nDyGFjf076aC8OKDZwFDjHS1yN5WwsKxYbOxU5DtziMbyC+8lcnICwxZHY9Anp5NZtxrpCt1nWRmNp0j4+hS0t/fbxez777yRg68bnbPpdOYwkirvXHmDaZKqzlXVosuBJ2ltVx/8lU+vq6SrVesXnxulRC8mRTIxutu5I1XXrBTh0JZOX0M2N1yF+tOthYCjjBBm8W0gYon932M93uXSatY6V2AkydbWVgwwXnaZOKOZaIngoCOlmHqwFmd3kIQ6jrLVHSI/aM/pjizmvHoAGK9HzWqE8gMMHP2vM0yWqLOSW+uwcZFFu0UEEhqx2fx6NMogxOE/QGe2T7DvRu+TlVxFRUVFZw7d86uIzx16hRtbW2GiKkQK3ZgXhKIfpOwNPEs3bX3/82X31QCxAJgS2MlxjA9amtrGc8rYO/GK0kqaYLgS0NKXLpGUTwBpMo7ALqranmjsobCi8h6WOFtbibzf3yb4FOzWL+vrqjM5tUjgGDVu4w3CmEDbIBXgq+ydjyHQHUmj2/4Btd0ruWWY13M5tUTyluH1aFfOHUK3/wAgdB5cnbcDVx6VykYc849ubk8OT/nWCBa+7bUD3hkYhHdXPVKVeHCrmtpP3+O2pJ2Fvc4r5fCwptT6UGru7TjaWi6+03ZNmdt5Vpjd9J+M4tRlkgyEnHsjAYsm8N0FAaKFdaOphY01vYMDk5HQcevDwNNWI19QnMC4nSHBCejBsPeO9gb34GaGGY3r9JAF6UldxGPT1NcfMs7qpvUihWUpH4fv6qwJjAhBKFQlTEcpzFs1vxu/e3Ovh6t+H0GaBMqCBf+wG7yo/msn11PfjQfVVHxTCwx6E4HCmA/hpTwcqpmhcjNzUVKaactHnnkEbSsHG7+4B9Q55ZU56ZSlsPpKyQhkEKhtW596nvNgzl06BCD093U36EyW3CK+exenn7+cV588UV7W1NDC7ZzQOVkki0Xoo79ikvJV3tHaQkt2s0LKuBRBP9QX8FPm9fx13VlPDTpYnPIOfBsn06i6gZwUjDSpJqiIBWFpOqivWErTTfdSuGffoKSz36W0i/+HZmbN+NfU0LJuV8SCWukd3RIxYU003bLB0mDdEnmFZDwL+0cMyI0Nkr7q/voOXlsRW/GM/tedPw93NXB0aceZ7jLWDXOaJJBf6oIX5iF6gD+LFN6wPy6GWWBF8dPEfcYnXjJrOxlzQIA40Mz9v47ynHMf4/48jhYvxldWJOXwv5t13E8mCbmvEJYJQQ33njjmxafr2m+HGEX+IsVvUvT42LdyVYTx9LQE4MYoE1iNYVIaQC99H1ev3aDfey6pi2vJZMSLdYKShagLrsMSvMDjLYZNUJTsWE6QkcQDX5+lHuI2Plhxk+fRZNJ1u640v7t1MgiGVOjJmgzuuPOVc/zxtoxGsZnWDs+S93QKE0dHVw+lfpCa2wB41pYWFiwf+PVZDMuBqIvNdLFd61mnDcLCxwvjSNHjhAMrlwUDsZvU3L9HrNOdeUpS0jJhpFe7jx9iD1ZCplK2o8jBJqq8sIV175l6Y0pUZQS7ZaG/FJgtpuRkp1G85jJ7qVcMCTj2QMcefY8MwNRxnP7+cnlL/P4rgFchfOoqoJQjBrWmuH91A6+RF5s+G1JgaTHFeV+m2m3DxfwCLivNN9+7pcdYzwSSqkagOCVonI+/Zf/jZ/fcEPqgzL1z1DI1M0LHjNq23peNR6Dxy66T06A7gRscsmEFHOnbN4cN5S56FWkpHx6dsXPprYuyIzsJJU2lyQ9tYDBtN2Um2BRN5rZ9CWb6BZNfD7yAK8mN7FP3MKX+CJ9/o8xPvFLpmcO0dX9pdR5eAfF7xm3X2NUVVVx3307GBx8CEkb4GTXnP9WKct/P+8rqedHE93EpY4KZA9dYNeoUcipCx3PTg87i3ayd3Cv88t0HVXXqe/q4lzTBuzKiovQwlbk5+czn1ZQrGkap1uOcf6nRo1UvLAM8ktBCMpnJxHSvImsoumlN50ZR44cYXp62k4/SSk5dOgQgUCAyvx6DvzIaQS/qTdO65oMNBMsARyYmedIaIEnt65zuCvERxd5bXiWa8rz2H5VDRNnQsadacb+IhdJa4yXksL5EEqJRDO7895ovJyRigosW/jY5bdy9LUSkrEkypa/oHLwFWYCTTYAU1RjoFZVhTUVDXRMjzp+QFVV8a9pYGLaUhvHQf0fPHYMb/851NW0qC508/RXv8Tldxl1V+lsxo1//AUOPTnPGiUMXv+yzsI1SiVnpSlkm/YzJLOyUcPzuMLzxM19EULY0gqNl9XTOdCGAy2lXZPD/sJlTKoUgpnLtq94DOlRVVV1UcBmuxikdSVKXUOLn13WaWsf55ZCtt1Ss2qKNl33rv3gsH0sirsSoioW46a4K1f0Q82IlADtOLyFrfNpXt9JbzYZi1E8ue9HhjtIBowksqKq1OT7aU/7XYSiENleRP5hgaILFAS6pjOZF+emj31ymUenBLqr5jl2WYgry69ktNRP5vdeYMabhaprnNNi/OLHn+QrH/x3tlZt5dZbb+XZZ59FSkl3d/ey68LYbcH69euJqlEWixaZypiiil9dV6l1jV6srs2S/1hN0sNiDC92vdxeW8F3Zs4b17EjzOsSyIlGKJ2bITAxyjcaNvD5jn7Gc/Psd+bceMNbdigwBJ9VkgkNpE5l0GCmh0t3mV9rXBsWmOgqbOGa3nvRetwk0bk58MecrtjHaztGuH/PX7BpYY3dXe8L/f1b7nJ9s0jVuaWeu7XQx6eqSxw1wj8enEKqpC3wjTFWUxQeLPsEGnCjfMm+3icmX2Ry6lXDVN1yPZDaW6pxq422o5A0rB8B7PSmkdYUNtwSBuOWfs9ImTbm6Kwf6SM/0UU0S8OlZaPGfShmbVuK7VTJimHY0pl8WiznWj6Q1cJNagsCSUKXPDXrodoDhbnrOCsb2SA6/l/23js+rrPM+/7e58yMpNFIozKqo2pLsuUm2ZJLHJfEKZA4TgghgWQ3m1DCwha2PPtmF/ZlCcsS9tlCe2BhCZAESAKkJ04zie24F9mybMuyJVm99xnVKefc7x/nzJkZSU7ZZ1ng83Llk4+so5lT7nOX676u3/X7Mez5HOGR6PqlSRvHZt2U6EFAR9d/e/RJY+33jtuv0Xy+0/T0/hWSKMHf/FT+zEwqPl8OQ4NLOXb0JPffv5L/yE/lkcPHyR0fIsufgUCgYBC0LWc5OTk5ZGVlMTw8bHXw7MFBVp1vZDg7O+qwRby3+T6VBLfuxIGNXJnOhe4e5tvMyLC1o1am/CiZeei6Tu7ECFsvneHgsrVIQNV1KgYX3y2PjMQIgsfcx4EDB1hdqKPP3/6AScwvjc8rAh0Imrxunys2JqMjl4a4u7uXkIDvdk/zVKGXmk+vYfr0IDN1A3y71MFPlkR3cpqiMpKSxlUzAQ65koxjAl5rHuYDlQY2yEqzCQVdqNi0OZY1P4lv00dYfvMaMr0ua+IFGPo/fubUcaSikVwYYnR8iOGxMeLC/hDzsiHsTEGdnV60rUDSevIY7fWnWHnN9XHRjJaTpwgFkukPHmZZ0p1GY0phRd1ydDdXh5dx2N5sOivGbtU2Y6T61NlpkoZ7mcstQkppYaKMdOedXDzfQqoji5aOJpqSJ6kvKGM2IYn88WGjAEWJOqKKgDtq3t1xezebrysbaQMZvkDxqm24MkqY8QUNRQTTnG7HuwK5c5e4rc80HjDEthVbPo6UjyC1HtbdtJmk1KJF6WncSR7SxtYQckygi3BU1ktABGRum5lGyjnstjqqt2+nZEuthStTZ6e4+NoLaOEwQlG4/pOfRV+Tx9OXnkZXJOigK5Lj9ot86vp/RKhZvPnDR9DDZgRTqLiUTXinL/PZqs+SXZzAU0ebLB3MogHwDkmOle+h+qZqZmdnkVJakdTFbPPmzWRVZfHAngcIdgYXsNC/m0VwbPNFxK+kdDDfYuk/FnMs34/pi35XRCMzPqOv1NfVsWpkhKvH/LxYdTU6CjYk96xa9r6uV7gyg46zI0gUeguuZdaZDUqMDjU6voQRBlM6KJxYjiojy6mgdHw1RROVjF5/2iTnhZoPRtr8yhqk8M56zPNtPkUSwK9G/fxpUU7c55LTEmAyEHMk4rwZSiCPygcolF2Ui+hmWsqgwetWssuiBKlLXckRpZLNzSepHTxg4N1inbjuExQe/XvWsY061hBZiCKJTh0dBZWm3GKa8ooZcaVZa1jR0ASruh3sWesirOgIJFlThhpEMHGY0+632dD1EdBVpJA05uylenA7XRkJvLHWFXVehUBIwazqRXDCiEAqCjcUXkUo53P8XYckBNgFfDWjEPtIDyGrb+mEEytpDa2gTDb9HuP2/0cbHz+OlNH01vxCBIChwdX09ESY9qO6kWu7mo20B5Fcv45QBOm2dH7843hQOVJn1flGskZHEYCqa2iKGvN34pw3BcG28ApypJszapS/KtacnixrR50QDnDDDdfRv+ctRi+3ghBkzE3Rn5rJpqE+wuE5NPMSbqeTiZl5MlCxaGIBfr+foxdex+1Ygy0YrdjpyLahKZhABGl9XsdQTYjYob4JggpIIQhKyUN9g1Tnp/FBVWPOpfDT0pjwu9lOTblF7Jj2AUnWbnmqxWfhnDLlMCIcRAoVRWrkZOp4aypRU7pxunJxLvHGLfR3/vk1nDt1iWMX9zAznzspZlK0cG5SN2S23sW0cIiW44eRplOrKArl62voaXqT0UA3+wd+TolrFYmqk7ykpUZllYRlmpcMmUqL2gdIJgbPMj07hbdyJYnJKYyrCXT5DQxVLC1E9cZKqjdWMtDm4+32CV5cswZp9p2hlHRcc9NMJSZbz6IjaJqafdcF5d0sNmIDWOljKXWyvH423r6cgTYfXedHLZqPCC/be6nCW74pj6ZDfeh6tDBh+dU1bLlrm0VBA8Sda/mmPC4c7MMeSmUyJZY4GRCCpelZJNgz6D73JtMBOPGCgT3devft9DU30fj2XmtcK4pqkDBnV7Jzy93s5gmW9hii9m0Tw9z9yt18YOweHKkfRQ/1oYW6sdsLWOrPp6wRcj9Yyrm3f0YUlGRg6FQdckcNyY2SkhID7PIONH3Hjh0jw56Ba9pF5lwmITXE3rf3krkpMy7CFcv+H3Hq3g3H9k5KBxGLpf+IpR2K6JpGlFbeiaS5u7ubJ9v6CC8mNYKRxtzS0kCuybav6zojh4+Q583n1vqDDLgz2XVgLyvSPwfvIcIVqXaPEr0KdNXOSLbXCsJGIj7tmQ1U910f9/1IREmVKh2Xhnlx6ucWOe+7OczvRUEm1mrdyXytvIC/be6JEqBLFhCYb8x389ylSWOzLIimV81/66h8a/YTfNT2GFsdUYhAYzCDPUnFbL7h23Dk//CR1f9KKGDH3hXimbPPUrv/n+H+V+gmz9jA+I6CbnCaqmhoKAhgFRdpVpPQtWKacks4WBHTDkIACp4pJzVtMwimea0mGV0IDpetJmPaj3f2OOdyzzLkGiTfV0Z/aiufDpxma3Av3yi4D13ZZMCLpAR0bGisoNHYwwJCsbG54Ab+qX+AoMwBBEEJe8f8PFxRwCNdPQRCfnq1VF6fTOct8RDfzTvPtryVv3XRNvi94/ZrNcNTV5HSXJwkTE+Xk5zcEsGpglgYgYktmRcImlOb0W06d6++myMHjsQ5bV6vl/K2RjyjowBkjo6ybd8+ju+4gRlhzTJkON2MzfgWYN4SWMg6r6oqa2o3sHblirgddf7R4zR3dNBRWkLexCjesWG27H8bbDaGPR6yBgfoKF3CxJLShecMJaPZo8+q6zpB+0Sc41YyFEa5Ao5sPBxdnbI8TuTwNEgjMH4WjbO9I/wsGbaVOBavNkOhPsFpYFIECF0y4xAW0N3VVc/asy8y7i4j3ddKVm0pY489DrqOcDgWVKPlLnHT0htAa1wouxWXKgXsE8PYfaOos9MIRTHA4+9Aijs76bf+rYU1us/vx5k6jm8G3HYPS1KMnawuddqnWhmfa2Nd5g1k66nkSDe61Dkvhmmik96mRoSiEE5wIosqEKpqYZ1ioyn9bUl0u90Wfidy/1OJydFnMSMmn2/pWZSu5f1YbMQmKSWFfY8/siDtlrvEzfKr86zIWYSX7b04brlL3FRuyefc3jqCk08DGo37jpFfns6R56YWpajJXeJm+z3L+NXTJ5lzmpQBJs5x26Yd7PjgVp74wl/HXefUK2+RllvI3h8/HJf21XWN7sZzDKUFSE1IZXn6coqPj6PogrIeF2/QzM9sP+A2/hxhy8Nmy4sCuE0S5gVmeg3hWQML2jLewhRTOHHGgb9jTdM0koeS2TKwBSEFAoF/xM/jlx638Idnhs4YETktGOdgzMexnXjxWcLBABUbN79jIU2sxRaqKIpCeXk5LpfLctTeTUEhErHr8XihvMrY1JnPWuFMYJUNxKG3yBo3I7O6jtB1+nJzkLpOnm+UW/b+iqWdne+oNxqxgTYfB3/ZvICdXwKazEAx0xg6kkNLnmbJqPEcsdXAEdOFTmvOHFOpO3HMXYyTbbqSxSrI6LrklwNjVxxnsZG5zxbG81vW+6ep801T606mzjfNF1t7F0iCze8y484y/pN/IJt/ZBkXaWE5Xx3dRmi0D5UybvTeRUixoQkVhOSIu5pafyPdh3/B463pxjtGIrnD0utezmWu5hQA57U7EQgu5RWb15+XnTC8SGYSFGsO14XCaFI57fY9AAy62hlM6UBIiU+zketo5s7ZJ/iFrCGkS1Sp8WG1kwoep0w2W+1xQVTzUnMD3bIERDQa+fqInz0jfkP/muhaFJSCg+Iadrn/e5RG/rvt947br9Hc7nVkZ/0FA4NfRwgJKAz0Z1K6pA1DokrBNxGtqBJCUFVVZYHHwZgQ1iSuYeOWjdh99gWphry8PDbU1tL5yj4IBtEVwfO140y7Oyjwlxi4LBSKCosZv3QWKQysWb8yTo7mJqAsZJ1fu3atNZEOpQV4dfAw6/eew/HY43jCYa7Zt5+h7Gyyh4YMh1EIPIODFnaifUnpIpPE/CMCezAt7kjBaJibTs/wao0zbgK0Q5ySwmSqHWVExF9DCHQkB7Nt2CWE9XgcHsCYPQFFN8gqhQRnUFqpTzXNjdvXhttn0BpM7W2PYq8WEZmu803zVJKHi+VVVAx2Wbv92Dy4Ou0nYaQ/SvgLLFm3gQ233UHj2wYxZILTSd3u5xctWDBPSNOh/WQm5FOTeSNLXGsQKBa4fSbUT9vUeQBqPDcACrrUGJrrip5B11Fnp3B2XaJg03a27tyFOjtlYcwURaF21/0sGfOwXwddxPSxyA4jJscfllFJsveT1plvsREbT1HJomm35ZvyuHi4H02XKOL9kZUu35RHwxtNREJSUg9zbt+baOENcRQ1gJUGX7nVy8nmt5iIZP8lOGbTufhCN5MXvs5ge2v8RRQPR5951BKvj7SZarMxl5/In+15gIAWYE2rG0VPNeIPOiztSaa9BIIJsyTMuYinAREMtvspXL6Rc2+9bvQNqx9LOvceon7FZg68dQCnHhVLinw3NiWpqioep4cOOuJuOzbqeqLhHCu6ttKb2sJwSpflYMRGRYUQXK47hpaUTHNvP6P+Sa798F3v+g4ihSoNDQ3U19dz6dIlK8J2JRxkrCRWR0cHPc4UDpWtjsI/hAG+//ryImrdyXRnu+jo6EAdGWHgyacYdafS6/VaG42+/DzK+t69EGCgzcfz/3aKhUPRaFcVFZDoQudQ6TOcLRymK0/lmouGYkG88yzpzrTRXnI/UqhMp4ZxpiwWMYy3SOpTMyNFT/aNclduxqKclrGRubtyM+K0QV4b8fPW6CTPrS3jlwNjBCKRtgh8ZrGqNSGQ0saj+h/xCeUnHGIrIWkUaGjAG57NKFJHSA1Vamz2Gbjtjkl7tPgJnaiOluQSS7maU3RQgEQwmJrBcLLpIMUU0yk6VHUYY6hkOIyqg4ZE1aFgdJIpKulzd1mfV4Fa6YDaj1MbmOIrrd/hlaxt7Bw7wr0f/BMOjRQxO3YRRUCLrODf9L8kjA0FDSF1g/AXYZYrLW7DwRDf7hz8L81tv277veP2azZd9yOENNc9iWqbMySq0gbwTeQanGumeTweBgcHKSkpwWazWXQdgaEAh144xFVXXRVHvqkoClVVVTgLCyl+/DFmTpyktzyNrgs/Z9VIIbrQUVC4YfMOvJXFnG9pNHdFCnm6sQDmaUYlnmYC1GPTFmeGzvDJNz5JSA/x4aNwl2YAYT2jo1aEz/ySwVEVCuEZHeW2pCSOut0MDAxYH9FsswA45jLJzs9gujUZWyi6w3FnJ+IbmmNdW4DZhEH2rSpBCoGQOh/sHKJ2R9Rp2pzmwqEI5mIxcpGIEJJdPUFSAnN06G28XW6mYEzHIzGoMZugIgXsWZvMZzJt5ALahA+EoLGkjDMVK0idmsTvSqG6+QIru9riJv063zQfrm8hKIG8Ei7kFrOtpYEVA53Re5GS9NAsgRinDSA5Ld1yWCKpqCs7bYZlJuRzTe7HUIQ6b2GWDM11k7dsEyklXtSKDOgPsXf3I4wG+hacR52dJnlqDHV2iu7Gc1aESNc06l5+jI8+8EWWB1P4eqCPPmeK9SwKkqUD3bTkFlmT7Wvd/ewd9XHSZ5AZO95DWifW5mOn3jHtFrNgvx/LXeKmpCqT1uMxbWAznF6JUWiSmGyPI4ku36nS0d0Wdx6hhZkd/yWtx+Ojq0L1ogXqmYzlDBOCstqNrL/1Dl4NHCagBZBIZhwhK8UmgIqeVFZO3IHNZjht8yvm2htG6GoUVG/aSf2Rl612F2aK68QpI50+3+EDcLlcZGRkkJWVZY3l+vozVloajGKKkpISBtp8hF7Mpzacy1rlRnav+C7+gBHxza+o5Nr7HuDc3l8xPtDLpD3Jknc7cLaRsvXd74lapLCwkIaGBmveWkzBIeKszc3NcfToUSutWlBQwKXsQpPw1hjDZYT55tpKq69FHMALjz7KiCdzQelgf34+6r/f/a7RtovH+hdx2oCY9yNQEFIyl1jCRPanmBA2Hs/TuW/fFAWjWsw3FLqzEpDCBqaT8OYE3BNz1simJ92mMh7WLAfhusxUXhsx3kEYFo26RZwxCdbzOhQRPYZRlf/drkF+NeKPOvISbjw9RV2ZYDgtOW5DFqHS6FbK+SpfoprYakoj+iXNmFoYle8WfIw/7X2akrXXog6eNNcrEfcdCRxVi7mYPA6Tgj63BxbhbSvvD/KBYsja4GDu8OOsPeHkO0V3MJESpjdrhuUDTjJm0xlLHEOV8IXRMaqnpqH+Ceo++gpf7LMRkpJjmeupTK2gVNnGxfE9SKBJrCSMDd1MpS4Tl7jIO6f4Ad4anWTPiP89paz/p+33jtuv2SYmctB1NS7CZpHkYkzEOTk5DAwMMDw8zO7du7nlllu47777eP311+ntNYDLuq5z9OhRbr75ZsshihWNdq41AK+z3d2sOXjBmsglOsd7jvMXN27h7pvupOXIeXICbrLCSaBLctV07rn5LpoGWxec86XLLxHUjV3Q2ULJHXYFNaQb55bRIeravh1bwSpmjlwiPNKM/6WXGbohBvcRDRZgD6UQvJjH+uuLaHizG11KbDaFtTcUc/DnzcwpPqZcczE4DIHLGw+0rXUn85UyL3/X3BOJpZjnl0hdMmoXFA72UjndiS/RyZmiCmvhm0mMklSGJbzRNkLt2mQurlvPN//4rzmyaq1FfyGkjiMc5jtvPEtlzKR/ZGLKcKYjnJ4AACAASURBVNrM8wAcLK8iY8ZvRN6kxOEfw5PupncgpvBDCFZu32H9agH038WyE4tQhIpiEn1KqaNLyenRPYwGerlh24dYVn41gTYfCRvc5E+sZuTNhQUnAK0nj9HRcJpr73sARVGslK3UdWYm2li+Yydqw5SBdjYn1TTfGBmz8Zxm9UEJoSiWMfAuaZ1Yez8cYL3N4xaH2/tJlUZs/S030X7qgJmqUxntKzD6r4Ala7No2NttpcXmxAQHjzdEv2y+Y8fkHMYSGjVFUckpK6X/0jwHWUo6Gk6z/tY7qM2pRRUqYRkmMaga9TZWGh0I9SNsRYBE2CQyLOKiNlpYYvNlsqp3hPbMVKYTHYYjrarsCe2nklozCoRZr2KM+cnJSSYnJ1m9ejWjCaO8fPllbOke7J0CXTFY6JM9SVb7omGw/OuQ7y/jpxd+yo6iHShn+3nzR98zUqVJyQQiDPdmFeee55/lpg9+AC3J9Y4pz+7ubk6dOhXTRDKuwjSSDg3PGwuaptHZ2YkoXxN3fE1q8oJ+duHRR3n28mW0rCwUXY+HSUhJ+8WLlF933RUjxANtProaR5lvwuBGNt+LpCdTpS3HzvnSShB24/yK4MV1zdx2IoTXt8yqeiwaDoJ0EEkBvjGux6UvI4TiEW7KyObn3azON83P+0ctB01Bsl2EuKu6jC+29FI/GR2Xl2cCJkGvMW6X9gepaQuS7VN54hoIq7Gan9GHDks7UoIqwmiRogtjOgYUdASvebbyhmcL/zuviI0bFZ49d4E+t4d83wi5/jFSUoZJS+vnFXUCwi52JPThD6nUyeULNiquOZ2U1p+x0t7DgG2E11x30ew1No9DqUaQ4brhAUjbw61T01QHzAi3FuRIfychuRQNY378YksvJaRTxTLKucQKGlHQ0KUxrxe4l9PsEwuzQjG2yZ3MSd/0e0pZ/ybs947br9mWLLmeZ549TUpKX1yEzeVyGUUIa9fS1BQvzVFfX09eXh59ffGLgpSS2dlZbrnlliter6OjA6Q50RhAAZa15nLwu89R2pvFKj0HbIK0W5eiz4RJWOImoTiVpSxfcK7YRaSlQPDy59YRrKunuDfERhO7LQE1YwnhiWU4Kitx6BrDfU8uxKmZ41RTAswk9NPSN0F+TTbuJI8FOM/0unjmJ7vJnxhB0SvQBahSctUiwsbjYS069E0cElIiFcHbuXYO5ixnS0uATR1G254pMgmIYwoGFA1mX+jijcREHpgWBKtq5p1LJWATfH31BtJP1rNlveG8xRZKRM4pMegzcv3jKIrCVdu20fDskzEfUbj+U5+Nc1DmC3ULIVDtdq697wFmJycJzEwz1NGGoiUip3QkGLi26ct0TJ5gNNBHZqIXR4NgeP9Z0CTCprDiA1u5cOAtK8UlpYyL6mmhEIPtbeSVL6f3kkH+q9rtnCiu5H/XtxgVajH4E396Fhs9Lk4FwoQjkY95GEQJ/Lx/bNG0znxbjAPsSo5bhJtN0/R35HC7kuVXVHLXl75Gd+M5pic9NB0x71dC84nBuM8GHRNRKIL5I2m6gNSkFCb9x+LaUCJZta2KwdajC/CKkWfaePtdfGHjF3j4+MMMZgaQWPoTiBitWgn0JbWRO1mKgmI5CSAYV3Xa8rPQhQHCLxybhFI3zZ5eRlyzLBstpXAwCXVuhlBmHtKRaN3Hvrp9PNH4BBoaZaGVVDkrrQcLTsGjjz7KrR+4E0UVhMMautDJnLCx3ufliYl/Je/opPXMYWdK/HuXkv7WFp76lzpmTDm1K4nGNzQ0LIB4zM4aEfju7m72799/xapYAM+kD5FrLPV2AZ8oK1rwmcsNZ9FSU8BUp8jv7aPfm4+URrsFX3udQxs284czygLg/5VSpEJA9fVFnNvXQzisc7o0kddrk9GEBFxx2cbpBEFd4evkTi4FXUVRFFZVTeKcrmfGdQ0IQ6YrAjGIJRQHrOr5L7b0ci7G8bILEcfHBsbG0WI+0nW8owPUH36F++67j6+Ue/lwfQshabSVg0BctHrWNokEikZ1/mD/BG+uHKQ/uwxdGJi0+Tx523mLS6ygl8LoSWLmdh342+YeisdDdFRtQQqBout8rHU3W5b+ChSduyUojKHQxUV5fbzLJo106JqOWRLlGAMtI7w49mVeXZURfQlS0paVz01dLj6uzcN+qg42J+rYJwNIYUTV6ienqSeHl8SX+aL8B+MypvOsI9jrW9B9AAMzmayq3JOXQaUriQ/Xt1gp6/c6t/1P2e8dt1+zFRYWkpd79QIyz6mpKaamphgYGGDTpk1cvnzZ+lt/f78VaYu1WA6uK1lJSYmhJ2rhkiAsNEq6PdHxG5aE+qZwrssh0Gb04ogwe6ztWrqLF1pfIKgHUYXK4JI09tmhrEdlXZuGTQNpU1GyN6H3honwfHntRTRqQTRFQSgKOdlexrrmCCaMWaDvqWEAhUx/laV5mbvEzZab1jHy6tPsajhMX1oWIpTPN1M12t8O87fbo7vR6t457JokJDD0BM1ChdgJ5ZAZBUuILAqW0wb542Ey/Tp7lyVwvneYkIrROnEwFWOCaipeykf9kn/uHeFer4dzU7MLG14IlnnzqM1xU1VVRV/d0SgRqhCsvu4DCwDd8wH6EdkgT1GJ5cicffM16n/2Isuzawx4ihD0aqmMBobwJBawPecubMN2IquIDOukhtLjqBoATrz4LJfrjpmPJTn75mtx956866M85NfiaAUibSkBPdnF9ftf4PXNNy9w2iIWi317J1uMA+xKtBMRbrYIBu396jrGnlex5XPp2OnFaWgAeyANkk2nyfyhSBvBuSzUhBrCsyetz0opmZ2cZNW1N8a3JYaTHmn3O5fdSXl6Ob94/g0SU/LRAqajnLAC1ea1Ig85U8Wczd9LVd8OsJw36Ghpt+hYJDDjsGHTDFqHscQxpmbDJA6kmd9QCESA38Ch8CE0Mybt0u1WpDEyEei6Tt9AD5WbC2nobERenqSgswUQ6J0+NCmtCKHQwpEHB2AgJZ2RlHTyJ0bIMOWo+tOyyG3v4lPzHDdLgcJqH0FJSck8hv3FbSA1ncNlq5FCoArBwxUFi/avpVVrOHP5skGzLI1letnFi4Z+shDUV1fR2TlAIDPPSi9G+mpv8/jiKVIBCU4bW+4q5+tHO2Kwt8L6e6SvBJ1r6cl8lVdW/Ac3Oj7EvdffQU+mjaqWIo5OGm1mE1GsbrpNjb4L03SIi5YJ4O48w1no7u6mocGIBi+tWBF9F0LQlZlDrzOVjo4Otm4t5Lm15Xy3a5Dzk7OcnwkYZzLfW092Gl0eH0UjGnnjGuljT5A/UMzp1fejRWh/dB2EzhlRgzSLDGKvN7+RdClp9+RFXi66IhgoLkSoZnrW+BStooKf8CnjnEKALlkyGGJ74ywFo5JDfJJlSfsIY6OyJ0xbrsO67yXDfaxN90PhLVB2AwycMZ6r6m5qOw7yzNlv82/Ff8T+9FoiugKatHFQXEtBggN9To1ZGxaOf4UoZjJiH8vL5Kd9RmRTe49z2/+U/d5x+x8wl8t1xb9pmkZiYiJXX301R44csUrkFzNd13n11VcBrqjtV1hYyM6bd7J7926QoKKQpxu7l9ghF54MMvwDI0qDKsj69Jo45y3Q6afodDL/Gf4q/xb4T5qS2jjUewhVqLQUSL58j8qaboU7b/wy4ZNa3NmzZoVVwOC121lz223s945wov6w8YHI3Cd15pRxepvHGe2d4nL9EEvXZvOhm+/kwCunmCOb19caC/U3tEkunmuziCUrm/x8b2iGUxk23EGdwx6Vt7NjurNZrNDv9rBiLp3jYE0CCtCXbqPP3NS1EUZEwLvmd6NBD+OgJoyd5d4xP78aiVZ9WpcDunOLyS3NpdCdjDo7FeecxKZIYy0W7/bTV16lI6eQku/9B3/12T8B4M0ffY/lKRtQhIIiFJAaKyqyWbP2/0VpHMTWM68qWBEkLHGTWlwY5wDllVVYjtsCk5I97d1oWVGeKxVQhUCTRnSisLedQ5k5i+JTIm0kiC8iuZJFHNZIgcZIV0dcVen81GksN9v7scVSstvuruDtJy8hF/Hd7KFUXP4yplJbwUxsWgU0Mh5YrigKzrQlTE96EMoeZAyljjTxorEUG6v8VzFuC1nOWiyuTSBQpELQNkdTzjFWDm6OXidCHmxWpo+kONFmJVnjDobTgwxkzqErEkUqOGd8FK8spHN4iDH3GG1hYyOQM1lCnn9pdISafVsCLfumsQf6kDaYc3ajhBOM6mdppsXMMSBVs58JwUBKOrvXXI2mCFRdZ/Pl8xwuW42uKNRrgmozHQhGRK2lpcV6HiEEO3fupLCwkN27d7+j0wZGFFszo7yS+OryWCuprmbDyZMc9RgYqt4CL0LmI4GBtEzOeJfSmZEbTS8KYfVVb0U6ikK88yaiKh3/efIYr63LNtpjXp+PThoqgeStTGhPccON6+hJsEVxsBYO0fgZqfLUFumDsRaJts13cAeb29CrtxjnFUYUqS/NQ0lJCQBNU7MWRg4zPRjFAAv2rDpNVVsffamtDKZ0UDK+yiC9VVSI8O0ZMP64yHvcv+cPoHkVov45FemI9G+QusIFZZUFQzGws7CtcZaCUQMbF8bGjOYGFNa1GZXTx1eAos5RYe+heuY5aHUYjpu7kAiH3E8nFF4pcbPSf4mDaesMAvdIm0vY4JI8EQgTlnbz8MKN52cLs+KcsjrftPUOwtLY8CzItPwG7feO2/+AVVVVUV9fv+gkFaFm6OjoeE/klBHnLaI3uZjZimwc9h7mQ/3Xs3HW4GuTsXtF1fwZmTk0yfTpQctxmzrez8QLrSAhBydf43M8WPwNWpK7uKPcYPaXFZJbl95KYWMmftlhHJMSpE6o+xie8WgBQ+cf3ov7sw9GVwJrpylwhNIIzIQ59kIbIbufS50NbLx2DdfdcC0/j0grmQP9tRE/vxr187XyAm5f5WHN8xOs8QVocKv8a2XigmiZquvk+UYYSkk1FiLF2OXp8ydgKeOYx82LmvcprcGuQ3RCjLw/81F04lUeat8jQWnEXjh+kqduupewqnJYQtqhTrZP9yN1naG5LnRpSDbpUgePj9XXXkNgiZ/h7zfE7drtecmLRk8LV642CkiusCko6L2MTbsGTbUhgD+eHmB9cSEtqR42p7nIH3TwVM9Q/JfmTeJCLJwQ38ki6dzzwtTWlHLR1Ol/tXK18e29VrVnbPrSNzxL/Z6uRb+TNJtHAi6SvEGmOu3YzQIaxVGAqjnQwtEqXINWBOzJOwhOvRnXHidO7OGr/Myi2PhC7jeZuBwmsnwb8lY6CImQAk3R6E+9zMdXbsP3tGJFBRVbPgmpd2KzHWBqrNdI+EijKnU4PYjiTcf2sfWEznUxGQ7wav8j9LtnyB4vZuvwnWRPFuOZ8RKy+/FlnI3rK2LOg20uhaDdz0T6eePEaRU4u5pRZqcZTguybuUWMhM91B85RFAaaKw+d6YlH6chaMvKR1cUpFAISwMPFHlfsx0dcRvRmpqadxSUn29B1Wa1qS7EoovnTH09Xffdz1TZUvB44iLFAynpvLjmaoObMKZ/6lJypuEMOaVFFC4p5Pa/qeH0nk6mJwJ4K9JJcNrwVqQz4GrneXkOXVy3iNMWY0KwyrOKr2wyqFQevNQdxcGaFolIA4T0+SiveacDrstM4cjEFM7OLmvtGEhNp654mdGLIg6QhPyJEQYHByksLOSV4ZhcYBxcRQcZxjXTgaXlCsyJJuxamID5eWNqVszshImBM68l0NkpX6AfL6fFeisFGVchKnXWTZ9GphrsLboEISSVnMdOmJAUCAk3nZqhcDSy6TfO5FR9YFam2pKHGHGWAE5+WHoLJE2SPTvN5oM/otZ3HhSFn17/KP9PoAjSa9ifVsOu0V/xSuYOjLI8nVLRSWbmJ9kyN8X+aRuxi8Qd2WmMhjR2Zrm51+uxjhvFZ62ETOdSYDzDF1t7/69pkP677HfCcRNCFAI/AXIx3uoPpJTf+s3e1Xu3wsJC7r//fqskPsIivmzZMq6++mrLAVMU5YrRtljTdf0dJWLqBusYcgyxP+swOzs3xlWcAaTdWkaob176wvw5dbyfiedbY44LbKh8ZvAj/CjvRUZmR8hMyuTWpbdSnV3NVHu/NTqFkIT6G1hgmob/5XpcK2qNaIZJG5Iw58FRNkxT6zlCdsFExllAZ19dFztvuZkVM6O0kRu3kwtL+HxLD1n2dJZmJmKf8HHSNklYFEfxGVKS5R/n6rZz5PrHcYQncUiDIsRgrzcWzgU8QleYkBczASQogq+UeXll2MeB8Ul0jAk5ElJ/LwSlETuUkkXYZlSg6VLyH8U5VJ10kZmQz2igzxItH9X6uW7TnwFGejupysPsmai6QPL6xQW78ysqWVqzgdaTi0fdvIPd3Pnyj+n1LqGovxPXQCfNkeiXOwfclfxFQOeBoUAUpi9ElCpECMK6zqMXL1O7cc2i14hYX3MT+x57xHKqpBBW3xdCkJSSYn32/RKSxl7j/L491u9CCCt9meC0xWweQFGMdI8AStZ4WPcBQxniha+fRkMiFNjxB9eSnlMTx3unhdsMALdjNRVXZdJ6/GmkriNsNvZRb1WUpk3k0XdxFqxlAHO5EzTk7SNom2XA3canr7+XO5fdTqOtl7efumSA4hWo2FBN0xENwbOAhkBQ3pNCd1GYT276Y374xr+zozGDZF2wQ8ng5GoPW7v/LIbJHxyhNNxjVcwlGri+xLkcyymdSxwgWm2kEEzNJGl2mpzxBPqPniZ/54dICAegq4Ww00VJKMjp4mVogCJ1PJMT9KVlIdGR0qCwkIBdEXwlMcly6IfSMjldWEGub5qC0TAJs9koioq+CAE4GE5KQ2FZ5AWClItG3HwvvIgMBskeHEKsMKkehDGfNucWLXDawEh9vdTSQf/be9l140fQxpNYd+NCObXd5+pwTrejZmJi27Dmr9iNogrcVbyO6myPVTwQNSO8KYQk3aZS6UqyKD8WM4GBT4tUNarSyc0mQP/lNVejKdF5TkidLS1nyfGPWRv6nVlu9o9PxtwrgM5KWxd3JxQSOn0HWlgnrITZveK7DKRdZmP96xzYcGv0HnQdmxamIFhPt3MtmlRQgPt5hB3iTV7kdupZb7R1rDMrddZykk5nATlUsEw2m/teSYVo5vPyIZpYyXK9iaLSAD6xhYnL28zn1smytVnEvRcLEuLe/Y9yP2ZgqqXOP7d8g3sHdvPk8BSkWikcBlyZfFz+gMfEp9ER/ISP89MWQUi6otFH05a5kvhccXzhG8B3uwYtabXY3hY7t/+m7XfCccMo6fpfUsrTQogU4JQQ4ldSygu/6Rt7rxYpWY/wtM2vwCosLOSqq67i8OHD1jERs6ABcRG5+vr6uArQWKvNqcWhOmhJ7uJkSiObJuN1BPWZMM51OUyfGjQ8IQXs+S4CnX7GXzDSRJFUTsThq5gr4eH2P+c7sz/n6fSnea7lOb5W+hCrX/dEy+8VBXv+Wmw5awh1HiLUfQx93EjXpI9fInn2JmzhZEKOCZJSNEaSuhkcA+jF5koFdGPzhs7uV3ZTIGFbuITG3BWMppg4LiHQdMnx8/2sGAkicVB0uR1blZeQiKYNR1OMCVggyOl18uDMFKcybOQOhZi+Podf6DMLUwCxv1/BFAysysfyMi2waqUriWO+Kcu5eC/pwlir801z0J0XvQch0JD8rCSB+zpKQAhykopIWZlP9QfusJzB82dO4To7aeCbhELKVi+ujXmLXqOvuQmnOx1FtaGbeCVv5Uryy5dz8uXnQEq8A114B4xIlIQF0a+qBIXrj7zCG1fdbAhwS2lU8IEpAC54cSrMLecayWhtXDTS2NfcxC+//Pm4alpVtbHu5ls59coL6LrOvscfwVNUQl9OEf/WPmBV3vEeJ86+5ibe+P6344oGZAyuzVuRjs2mEA7rKEJQVptNy8lBpISOsyMUr8pk5VYvH/rrdfOwdV7reRSbL65oYv2uXdTcVMOJE3v4/tgv6NWim588/1IIL+xTAsGa/mt5aeW3GU3poTy9HIBMrwvF7AMCaKkbRLF5UWwl6OHLCAxVuF2jVYy2tbPyUrKlhYoOJYOZKFIlnlfMSAXbQikI8z+JJGSfJGQbI4pfiO/+uqZx7M09JFVUYQsG0Ib6yLDZ2Hz5PG2ePDxTPs4VLDWi2Bjk1mELRCd59kIL1brOkDvTSK+OzfCj8Vbu3ecnfyiEK3kpUymtRiQZrDFY3NVF47Ur4rRyVRZPxYdjpPWEiBaAFBYVzRvL5n2ZBQuJoSCapvHaC2/inli5gJAZjLn08NBF0vQ5Ti9NjIm6GX9XY84cicjEFQ8gUULD6LZMdCn4u+ZOXly3nI/lZfKTvvgqVgF8ODuNZa4keuaCPNE3alQ1Skmf28NUYpKVNo7MFVtbzlo0RLqu09HRwb1bt7J3zG9kB4QAqbOEZv59eSXa6TSOa34ECqpuY9nwBsbdfYwUrYg0IEhJ5sQYm87Vk5J0kHtqXqBZrGSluEg5F0FiVGoKDV1GnUjjGXROiw2QBvvYzuflQ1SIZmtqK6fZ+F0BkQFJGe1IHXzt25AI5mQKy51v0zhzA8t7AlyqjJ47EmXUEPxt+V8BcC65LO76a2zHmSTVKAQSKmF00282sXrmu3MIhc1prjjOQIA32rt4Q1t8flHF+5/bf132O+G4SSn7gX7z35NCiCbAC/zOOG4Reyfx7cTERGLJM2tqaqiqqoqL1EUsMkgXO1d1djWP3PgIL19+medn91I7uQKbCREVNmFVkqbtWsrEi5dBl0y8eJlAqYJdGkHmiMXicFQUPjdwNwBvpB+m+0gTq7Qt0eVBNz+pqthLt2Mv3sLc2ScJdx7C7W9nbf234I//HmUCDnWdBLfNmljDCX7regbdiLG4ZEz7mHDZortbswqpZkxDEUakpCBxHd9s6+IHK5bSoEWwDYL+tCx25q+k54AKAyFqB0NU31BEXWkKom3WeLIYZwkpcQZ0i+dtvt3kSWVtavKClF2tO5lnqsv+y0S0RyamzKaLjwAeyLLxRztu5LrTM8YiPCDITPACBn7q1b2/5A/0m1BQCEuNQX2YNJYsOL/lLJmRXmHKDQ1ebiHJlQJS0ptTSKMpQ7Pm8nnyBjoXiId3N55jxmGmpM1o2+pLBs1Dw4r1YKbKvnXgCDccfAlFUbjuE5+JK8robjy3ADKw8prrSXAmm6l2I136w+ZOftAXsKq6FHhPTvFijiEYuLOIE5q7xM2Wu8o58FQzupSW0wbGIrn/yYtkel3viq1bdpUR3YzKcLk5O/o0vVpU2ixnsoSC8YUV25HNkZCCfH8ZQymdFvGtAZY3bsiqb0EgFGfcGWYudqFc6iFfGpWkOhJdSDpyRins1hDzOnHUWfMTcvgQuo3p1DYs2laz/e2+USIRDC0pmZnCMmbCOih2yCliwJ3J4bLVaIpCT3q2FXGdj3dUkeSNG2z+ve5MwuaVpC5py1DJGwyhEYw6bYBrcorlFy+ytK0NJSOHo/lLCAvj/T+YvXBszdTXM3XwIABD2dkmhsr4W1dXF5XuaS7mFplM/jGtLwQHTY7HFf2dBG1+7OFULh7rX/DO+1PbWN05w9mSRMKKNNUbDFvqTODyTCAu2m6Q6JpRXKmRNNfPtCvLcDqk5D/aW/iT0nJ+3j9qpVNV4J8rCqyUXZ1vml8OjBkRXKmTGApSV7ws+p7Mdh52xd9ra2srJSUl/GlRDm+OTBganDLM2NAv+WRvF9+o/D6KItA0iYLCiuHNfHTXB2kJ2/j7Gaz5Zywtnd1bdyC4lqLJR9kiX6UqvRbbRBB/io1y0cx2uZe3xI1EOFM8coiRiCqBEASlnee4iw/LX1JOc+RwdIozmzG18BT+9s2oaHgdjVBZwqUTClWNbibzj7LPvclahSIn0VF5Mm+nKc8nQEi2zB5lR8KbtIhl2AgTloaSgkRBEyoKGmvFGco8NfxhURk5/jFLRzciwVbnXYpeWsn86loBfCzvt6eqVHn3j/x2mRCiBFgLHJ93/NNCiDohRN3w8PBv4tb+r62kxJCHEUJgs9msiJrb7V6w2CmKYu0SFrPq7GryXHk0JrbyYPE3eC39EN1l42Q9EC1C0GfC0WiZLrFfDluTu4HBiTptkZ8CwZ8PfIzlM6VESGAXmkESi6KSWPUH2Iq3AOD2tZGw/xlONSUSUouJw0bEfxswnLi+tCwDbBr5H1jfEWTVhIYujUjMSEiSmbqKr1ZVkKgIVIxF/qPLq+g7bLMWQSnh3L4els2AQwijIGGeZfn1RZ02G5DlsFuOw7c7By0A63vFYJ0ZOsMPz/2QM0Nn4o7H4XZEzOQkBK/M6dHIiYlFBCMdfibpIiGhEUYjLDTOOVtYzBrf3msJuktdN3BupoM0NTZGb04hv9j1CRpWbKBhxQaeuuV+wpuu5dr7HlhAX1I82I2qaQhdw6aFWdl8hpXNZ1A1zVpQzlVU05tdgK5pvPXj79PX3BR3DlWNPq9qs7Ny+w6r0lQoCv15JXw/OZewjMaBtqWnWBxXsW0/306+9Oyi3HiqzR7nhM5Nh0xH0fRXYvq6lJLXDx9Y9PwQ1bJsPNBH06F+RnsN2MHTl57muebnrM/lTJawq/HPyJ8sIy6vZl5JR0dTwvSltmJX7NTmGNgvAyy/sBOqjhXWeSzGNyljxicoUqBrIxwufZYI2UR0POvMqa340s8w4+pgOvUykSg3AMEAdl8kemW0h0EDokTHn6LQl+Yx0nWR4+Z9RKNbkky7yv/yJOOd8SOEoGByDLuIjs0lYxpCgUQtHcXUxlUkbKyrY2mbEaXf8MqLfPmx7/DRmVEeKUzjL1ZXLGiTmRMnwXzfWcPD1tMatyTZmuvhQ2ePUNnXTslIP5l+k/9LGBXwByuqGEhNJ+SYAGno4Q60RTFidYN19LsuU5/7TWqaXsdLvA7zUmcC6UHBFAAAIABJREFU9pg5J7qxiOA+FTxz8XRGJ3wzfLdrkOsyU7nJk8of5Wfy4rpy7vUaadZvdxpj/JnqMj6TkcyHzh9jzu5AV5S4eRDAOY9loLOzk8ceewx/53FSBx8m2fcsaUP/jD3YSkgP0ZzQQNGqmPvRBXpzCp/ctJaHJgdY3nEZRdcNehBFRQqVztSP0yXKmdYO40+JYg5LaCM6hwsCJFptGzl2TlTxZfFP/JP4Mi1U0CwreEncTquIvsuygk1sTH2G2zK/TK6zi9xrbuK2v1rLxluXUJC5HIGMg8EY14DcVA+qMOqeHcD1ia8CgnLZzBfkQ9wpf84Xu7+DYm4MFCH4m4oavrl6HbXu5DgdXU3T0HWdfN9IPA+gaapgAS3Lb9J+JyJuERNCuIBngb+UUsahxKWUPwB+AFBbW/tOuM/fWovIw8xPpZaUlCzAv8XKUl3JIinTZmcnrcndfGFjOZtjgOsJS9xxWJ/IdCAQaOh0OwYoDhqpN0tOx/yvaqaC9qQ+pE+CFIgYlL4V2DarkxKr7mHG34c+3sbAgMb0iiFmXSZHnYQsdyrD/ujrjHXcKmwBTulRfImqw/rOAN1BA9TaHZSMaxLf4X5u35QXF/kSR4c5Hh4kXRV4bIKRsGRC0/F0zvJVkcxj4+Ocz7ZFUzESlic46DaXPAFUpzjJTbDx1ugkP+sb5Ym+USvSZzcxbn/f0kNQGrvmP82D7FC8WDdg6UEGtAAKCtsLt/PxVR8nnFC+UEfQWgRlnF8sgYujTTiHpnE73DQ7O/l80bdYM1NBk6udB1d98R37g9W+JkZGtdlYveMGXjx1PpqCAcIITs6GSTBTlhHnLb+ikl01a9F2P0p3fimFfe14Bw1tqFWXTtOwYoPhcCoq3fmleAe70TUtLt0a4VWLVJSu3L7D+lukmOMn+cvRZ+KxnjuzjMjCO+Hdzr752qIYvgxvIR/4zOfinNBYfjgpdHRNN0hoAU1oHOUt7meX9fnYCtGe07OEQ0b/03XJgaeaGU3q4+ELD6OhEXKUEUqsJHMkD3V+ylLAyq35ZBWm0D7YxTn7cbZlr7cwo7BQo9X6qj0fm/M6wjN7Y3po5LRRp+mqxkx680Nosyfpz1tGV14epck+Smd68F+qA+E1x30Es2V+1ZFAyJFFyO0hYbALx8QItplJC+8T6Tv5vhGTfmceTjTmcyMhjX8ZmeHB2+5i3cQgKQ4PV03Y6cy284ElHgqKwvQ2j6Omz/Ly62dA15FS0u+pwT53Ebe/ncbScto9uewaG+b6ihsWvFcA54b1CJsNGQqR6Runx3aGfH2tcW8KzKlzSClpzi0yHJ/YlUEIpISW3GKWdxiH5pM8R+bQPo8DLXGW+7zJfH8AiyftT4ty2JGRyivDPnZmual1J/PgpW5C5tCVCJzBIIrUrajfiO60ipwcQvDc2rI4Ut5I//5Kmde61cRQkLjJGoFDUfiT1cuoO38iDkajaRpnLp1BDTTjDFyyjkc2BxPuaGFCrH3mtpuYOlrPv88St4FECnJSyhGcN3837mJSpCLQDX1jKZkU86SsjA4DUnKRlXxFfAUFHR0VG2G+wEOsDIxQkn4zzj8PQcdBIpWiuRjjYLJ3jJ83G9Ezg07eUG+wIcBThhydNDakkcVHALqkauYCt9ed5sdJdxMutCGFgi6hrktwjdmsSUlR/KVx2wuhMgLDafta+eI0NL8p+51x3IQQdgyn7Qkp5XPv9vnfVVsslVpYWMjNN9/Mq6++ipQyTpbqnaw6u5oH1z/Iw8cfRpc6/3LyXyhPL39XoePI7vyFjH18duAubKgoROkLNHRKE0q4umeVOVzCzF6bjG1IJ/Fs0Izamc6eEEgpsHkqCI63Af1MpZqSQpHNusNhpYhjaRIkktHen/HXRyZ5q2Y9Qgiu7gpyTxAUh4oOpgMHuinMXVCRztXNs3grEqEinUyHwsZExdLxOz6n461Ixwt0P95HiyeFkDCwRA9emKOiKJ23lUB08iz3cmRiijdMIWIwgM3GRSVP9o9Z6Q4N+HafRvrgq7ga/tMS6wZj5x4Bq2to7O3ey4GeA2SU/ANzeukiL8FICQOcdRukoiczFI6pexh+46hxeXSanZ0E8wR/WPmHV3yvK7fvoHH/m2haGFW1sePjn2Z2ctLCoH0YO4d1zSyjB1XTKOxrW4Bx62tu4tQrL+DVNMthi1j2SESUXSKFYM4Rpc+ILTaIWKon6z1V20IUP3RXboYlwD0f79bX3MTRZ3+x4LuqzbbAaYN4frhpzzBfPf5Vlg6tA6A56ySj9HBm6AzV2dWW9FtERSR3spRd4s8sHJkuJXuPHyfsChNylDGR8wVA5UC1wKXNsK4tYF23tMrDNfcYqdOVeLmFqxZ95uWb8rhwsC9+DUSgJqxGR0ef2bvo9/pyijhfUQUILhfMcWpNCVIoHFGT+Ud/CPvpSUKZJle/NNOKJj4tNmoWyC1CCcySqIVYX72Ktp5+XBkZbN5+DQ0NDYy1nOXAPDk5mxYmrEbhDxrwLyPT/GtCBhdeHaEtQ2XJEY2k621c7DbSyTOBHiMirihICZ0lqxnNvJGk8ef50gOfIKjaeFTAPx6r55ObFpesiroygmlHLwfTp8icy2QkcYRD44dISf+UVfW6GJbVFkzFbko2K0q8Hm7LeAtOzx30OG4AofKDQcFXy72WRBUYfTOoSw5NTHJsYornhyZi/ENBzuwkyxoOUVey3Egtx1hIygWkvBpGOvnzLT3oUqKs2kTFYJd1PqRO4cQwD60qY2fFEiaXLYvjCRVCkJmfiWyN3kVNdg1/WfOXVGdXM7DJZ+j/agbNRVZhdHxes6KC75xuJiBNTWcENqGzykQlxfbHStmIXYRNJ1UhKjNhdaq4PqVL1XBeTUjFBbmS2mdfpvPE/aTdfjvuD92GszD6jn2+08iWe/mCLOYCK1jBBRB2Lnq+xLOjSlyFv46gSa4wMHgCGpIqeUldw+yEE6FLFGlkCEq/9a/MPPT3jHo8vP7661ZBVE5ODoODg/S5PRauUsGI9P9Nae5vldMGvyOOmzDc4h8BTVLKr/+m7+c3YbW1teTk5LyjtMxi5gv60KWOjk5ID1k4GsAg350Xm4w4Tq2J3byRfpjOhD6qZ5eRFE7kjrHriAicb+lZZbG8a0h8Df28ZP8VnxC3Y5MqOhLVHLy60AiPt4IQzCQblAixu5qRkRFjL2qlxgRTDj8nPae4Y98I69teJ1EauIM1ThXVYdyDkJJCB4zPSIQMM93ey/MvtVsyWrf91Vq2bvOinRyw1qet27zWbvqOiixWnxzjdIZKzZjGKr/G5NZpnildviD1uUj2FFUIchNsMBl7VBBMXE7Qf5nvNXyPz1Z9lursatyOKBYl5ChjLnkLupJKf7jQag8B3Oh0UlM3xpEMlYPZNp4rtPOS1yi6CCkS5L2kjCvoqgv7XBP2YCttvjYePv4wYBC+zjcjyvXwFalJytZfxeq3DtAlFTImRtjQcAjvYDeqw7EA4zZfJQChIATMJTqNSVsxdt+n1myhvOMiBUM91M+E2G+KNecPdi0qdxXLuebMK8G26xNxIlMBXdI8PWu9C1VEgepn33zNkmaKf65NrL81WswxP6UdxbCVkFr0EF868iXafMamQpWqNVYePf+o5bQBDKS0c6j0Gba032lgMRU4JN8AYC55C2A4LxLJqzVOsn0aBaNhVJtg3Y3FC97PYpa7xM32e5ax/4lLcccFIMILoSAJyRm0p6Twi1vuR1PnTetCEJKSi8lpZM3N4Oy8hOZMJUl3MZGbShw2wMJ7Qig18/9j773j47iu8+/vndkCLBa7aEQvJBrBDjaRYlGjbMqqlmS5KbFs2U51+yV+5Rbn58i27DixEzsucZElWXFsS7Ks3iVLYidBEiRY0Ije22IXwGKxu3Pv+8fMzu4SpOwk75vYsY4+AojZ2Sn33rlz7jnP8xyuWt/I5lveSa0F4u4IdNDr7WXV2ATDvry0+rWGpicjS5YzaCj4UXcHbTsrMTTBaxKM589RPmH2rpExh+YHQypAxxnLRQqdI6s2s6A7QNcxlOJvZw2Wp1QvSZidKlUKIRWfdd3It6uHOTB0wF4A6pGj6LIBQyh0JVk90MmJijoUJrlm2dRpYs4KnDEfDdtK7Pnh4baH+fyxf2e68HMkUEVRaTJbE2zEb/WO2uQZqeCXY9Np1yeBA3Xr+Lw2R7Y3jweDC2mfayTH8bYcL06boW8eTyLsgugOKYkLc4ZeNjaIao9CfTXbt2+no6PDhtMsX76cydikPZdraOwo35EW0d357nob47n3oQ4b07myq52v//OXOb6sDn8kjLjj/eRnHadivCNJpjXhrdSJdj7LF3hdXc7r4iqk0nEIjZgyUKTAP6zxoWGYETeloyNZfmoamaWIlkWYfughgo8/TuV9P7ZrygYCh5AySh1tgOCcexdbszVaMR3eVNOFxmVOA2LQIZZzj/4FYjscVtuZ/fyXD/2ElR1nCR8+Qs/KFXZ7KaXsMpJlwUmahcDATH3/Ljpt8HviuAHbgT8GWoQQCYDQZ5VSz/wPXtN/u70RseFilgj1x2QsDUcDZqpUODWUVX8Uklif53PM2kDOSi/1tZfQ+YwJQtcwQ+epzDQNjdLxXO4UN/OvRQ9TG6kgJ26u4qYdM7zsP8Q7Nm9m5ZEq8g+cQJOGWfA3xZRSLI+X4sVDkfTxnG8PFWOK4thyYs4xlnf8nLa6dwPp30NBdqiH3Ol2WrS3kJhg43HJYHuA1ZuKmGgeQ8UlmkMjf5M54S70hvCcnmSdVDQGTcf22Zy9/KDlUe4tvZePVaVHrxYjlOAW5eKmwTgvOBSGBcEQSuKKtCKRHBg6wLHRY9y1+S6+evirJjDcVct04WdBpIsFJ5LRv54LsyU3gz2FCsMiAcQ0S7pTaICTmbw7zO/54jZ+Ja7i3HPonotGVC8mTWJqFnUQzTVZrUFfPltb9rP26relpTHBxKdpup7mvK3dtZtVl19FfmsH+y3wdQI/NFBaje5w8k1fJdEuMyK3a6CV9VaJr9SIXmoZrOKhbraN9fD6kirbwVfAwWCYxEpDKsGz49N86XQn/n2HWXue01azaSs3ffJv0u4zURtSs1IfqdpNYD4rAzMDGMrAqTnxu/x88cAXebX/1UXtdrboAFOeYUpDdRjFIUb1nkX7JJy3k8tc7F5VmEJi+O1s1c4yxvtnkilTpZDGMEb0fE6WzuV//DHOhcbSUt6p0Q4NiD/9iBmxD8/ikToTy0qxI22GAY5ktAxAZmRy+skniOUs4aWWFqSUSBSn/O3MlC2hq7AMG4VojeGNQtKvOxgxkjihQGaWqcovBIam2L/czTstx02P+Khbupz44ZeZzN2NI5aFpgwMOWuKPVv3IIXGnu4BciOFtlD3qp1lZqrU5ULFYginE9m4kgzSyyKVTEo29AXpK3SzZLaLvGgnS6dGUupqBoi5snEbfruKC8CjnY8Sy1iRxJUphXYeQWZbjtfWKruYxZTiMc1BUzBC6kySICQkHINUklOuQ+fznYMsSIkAatyKKz2K782bbbGvdg0FLQdY199vy03t27ePtrY22traEJ1mFGncPb5o3od0jKdhSDs9HD58hLKReTzzYXJD53A1/oix2uex3wwqUS8ZQFFLO3Winct4jTOsptqTxc+msuh170rDpRWEDN7R3k5GXj9n1CpqAkEa1r7KzErFjAEF3wRXX4zw4SO24+Z05iCERruq5x7+lviCg18sxKmmFcSKtLa8Jd+gVs0zOaFxRq0iLhwmcUGZ+DipCToqlsI+iZ7jt/Hk59fHLQpN8bd6mHBV7X+KaPbfZb8XjptSai8XDnq8ab/BEgzTBD4n9aXurvJR8KE1TD95jujAjO2Incxs5/lcU5bk5tqbuW35bZyar4aHZ1EGiNQyKJZpCBxKZ/PsKrbMrraLX8dEnJf9hxhc6uUfI09S6ZtnW8dr5BtVRF0ZDJeWWNISgnzlo8EwAQgzaoGa2GWcWaXRtkJy+auvkjn5z3Q43kKlaz2aMlezgwsxcqfb6au4msQQiTlDxN1B9NwSAoZicnUB+ZE4Hl8S27HQFUTJpBiqQpET91E9W8aT555Ma6f907Pp0BjAZSjeemSKuqDkh36Np0udTLoFLt8CicJICsWsXsF3+ycJO6pwRDvMiIxwpL9c7aNCDMULDgODFNq/vVsCqp8EKMczVuKMmtIThjIWXftvsv3Ts8TsSxAYus7Uyo0ULStZ5OiV1q9g151/xss//leUlOhOp+3c3VG/Am1wgk+3D2BIiSYNKoZ7GLhiKwuJ4yvFS2XLEQ0bWd96NI21WrFqDZqmYVjA4PJ9z+O4/gNm6k2z7jnFEYkryXf6x8wm2XkjUikazzbZ11q9fuOi+0yNjHymYwA9NkB4pgm/y8/XjnyNqBHFoTm4pe4WVuSt4KuHv5oWaTvfRrN7GM/uY2vJVovzDhlze4lkXUbq1Npc7cK7sYLi/8RLoGFrCW0HRixMHchYPzYLFBBaLvXbbye/LAvtsacRN3wAlaZXZY6ZG+cnKRnuQQFGVjYTlXVJhwTQ52cwvKZqfcJkppeeVevpPXHCHv+aElwyeDU/LwkkCQpKgZIoFadZcxFPaGFYoZm4nr7Yai91MZC/QPlkHKHDT1yPsLywjXfsH2Ks6BK6SnJ58rIdyWMoU9S1ikI7Atl/JkDvqUk27K6m8r4fEz58hMG6HO4c/PtFfTaTOczKqS6KOnPQhIfpXEFxMAAKhnIKQGmsCORw2Xvqbce6eayZ1slWnM4I+MyXuyYEX6mrWMQo/0pdOZ9qH7hw0XIlEVLSG5qDbJf9FluW4eJfVlYtcgw2+bPsbYeaD/HLjBKkEDyVU0nVQhwl3LYjO+DLS9PzbG9vt3FaKq643X878RXxRfM+XLwG8Gzleo6vrURqOpo0KC54EC+mlqFJ5JEEg0vw+ycRIjk31Yl26uigO1TEH7t8fJXLzUoFgCahajzOyaxlTOfXccmhJq6UDxDTlb0OX1gO7mEnnks2A2aatK39bpSKc4aVxHCghE5MKdo4n6SiyJq4lwn1IgArxVmcSrJwnm6bOZ7AmA5SUVHBNddcw/HjxxkaGrLbTdd1di+rpKJisb7b75L9Xjhub9p/zRoLGy/6MndX+XCWeYkOJPN9/W6T1aShEYyaDKvVjRuZHupi9vVEDdUk+9TAZD5KJFtm11iIOAs/onTWhetpC7SxYCzQXi7oKA/ywT2trD+bwXCpuepXAvY728hT2RQaXgpnvMxq5vCUwEhRIRtbz+IaepF4xQxRl4+xuWkKpvtoq3uXtboTxJwhW8j3ief6yJ1eS0HMx7YsnTlNED42RsGH1uCu9mNoBkizLJiGxrbZdWyeW8XzlSfT2ig1haELuEW5eWvTFGuD5lRt/o7x55s9RDUHyv0pcsa+CsB04aeY1pyIwg3c3PEKv84pIZJ68PMkQBwSrhqNcThfR6bIlCSZIyKJ01EKYcxYGuFm1PTRjkdRqDSw+xvZthwvToGJ01MK3YiTc+oIL75sYtjOr6+69uq3EciO0XJ8L2vW70hz7lZ4M9GUxFJkQSoDx7FfwxUrsRmIStFRvYqr1DS7b//TNNLCqiveYtf9LBvt551P3cfhdTs4t7TByuZp6Y6uIu2YqY7b/Iw5nhPp0VyHnrbyMxT8XfOjZAQfRxOaDScwlEGpt5TWqdY3dNoSJpHsH95vXZGgMrsSp+xlXK8m4WAbwD92j/yn0i4JLF7Pq6fpfPEUAU+52Q6WNKiSIXIKPWbkcqSXq/c+xYs7LSHVlJdWaVEhusNBPBYj6stPc9oARDyOp7cN4ckhnJuHcrrtfezRqcy7dC3k0jA4z3ihNCOsyiBjbg9uw03Qv81y5swv6EpSFhhn3JuTvCalGF6awe5VPlq1EzQcr6SxO8JcVjHDJdt4ZVM2hp5cuAgl+fzcON6RYgIk2cTdJyboPzNlaq/96Xoea/kR0f70PsuL5LEqVMu8t4/5rH5yA+vImVpHb2GUp9bVYgiBLhVXbc5j1c4kGaBptAmpJM5oJ97Av5GVt5tP1m9dFKUF7G2fbh8wRYmB3QU+KqZGae7sojQ4waTHx3h2rv0sX2sRGS5m/f39nA4soEqtPtB0epTl5SiJpkwGJEWmo9lzXoUKgN7WXu689E4qChdnaS5WA3hSLEE5ZkCB1AWipQ52HEYpaQ8Xv3/cHj5SQizmxu1eABRL9RFQI/wN/5fX1eVMzNVy2lPD0Wq3PYedeetW/M+f5BL5grlNQk72Jsrv+6QdbRse/hVKmX25klM4iNvYYmlJWyVMA2ZUUiqnjjb+2b2Xfzucxf61G0EIHEac3YdeN+e44Bn6+/t57rnniMfjCCGoqqpiyZIlF9VG/V2z3zs5kDft/3sbWhYiRhwDSZQ4r+YcQRc6Lt2VFmKPDScnzdSCLRLFczn7eCHngBUPSpcUmdHDFn4tmY6tDRQT2HC9GW1LBFSADn0IpMEqzY3DYTluQtKXPY7LX413+1/hWroTb/FqikcOE3N6SZUliLmmSbCLpDSIaAHy9YR0Aqi4ZKEryNnMLj5b9S80Z7WRyph1KJ214fo02Y5ECuNT1SU8ur6Ov68uY+1MesTxaJ6DmMACtjqIZaww0yya0wTu4kRmXslMluXopIKkgWJNcetgjO8fCVM7K0mItNtRJittmvyOKas/k3s75YVvsR3luIrzSPsjfPiFDy+SHbmY7cr3Ue9xs3ZqiHc9+WObeNB+aP+ifZvHmvlkxxf5YebzfLLji2nn2D89iyE0KzWhMVC6jLXto2w6sSd5L0Bd1ymedTYxlpOO9ylaVs1gUQUv7LyBF3bewHheET0VdValNIUe7UEYFiA5LaKUQo4gKf2RSI/+fdcwn+sYSDuXhkSbP2U7a+Y2DV3otIy3sHdwb9r+ue5cW99QQ6PIY67IV4xeynVn/owVo5cSd9dxNut9TDhq09JrKLMc2juaOy8qY/JGVlztZ+ud27jkynw0vdiSBUmY5Niz+4nFitGdLhrPNlHbk5RfMaNViq2nWrjm0quoL6lMD0JYfeIKTaLPz5EdnDadtsRnaTsLskI1nKoopLfkEkqHWyy5ia9QNfwEl3VH0aUZYdKkwcrhbrZ3tnCyojYtwqxLcARjvFim03uqiJrpa5kt/Bgdde+mv8BN87KM5LVLyf/52Y+59olfkuNMl+IAiMck7Q++QPj4cTYVbUI/D4KxJLIETSUXkjFnEGfMx4ivHEMIlCYwNMGe0ETa9xIQk4j3Smbz7mBMlPP5zsHfqv8EcFWej3UTQ2zo76A4FGDVSC/r+tpJjNd7BycWHStVLujEiROLgkXmBkl5YJwbTu6jbC5kk9QSygOpJqXk5QMv09/fz549e+jvTxKK+vv76Rg8SeEqPS19n6jbijTQjDjqGIweew8okZyKUtaOQoDTmfIcW9NTHe3cyQ+pWhg1xZkT8jbWTe2t35rWYJOOIwy/8iPCx48vas862vkj+WNWqRbqVWvKJyYFzok0iQt2M+nkzo5weM16lBAIJfnoL+5nVbcplzRy33Oc/cVP7DSpUor+/v7fG6cN3oy4/UFYqpTBhaIwB/XjvFj1FKvDtZzO6mTVuo1c7b1+0f6ZqwtY6Ji2HZ0Evk1HMe4M0OLp4OrgVjutlyAvfHj0Vr4b+mfePig5XSnQ86pZVfsJJrQ5mjlqg14B5HyQhcH9qGtyuGb1Dl48/CIHjGM4XAFuCGwC3YEQJsvSUVBPPO6yvmwexCwKbrGbrCLhE6l1Aa0i7E2jz2NIgxHnhB0xBJBC8Z2pezl9rBOX7rKZoakpDPyQsTyXyJkpu202TsVxKhdxadLWnZGzFKhGunzmMQEO5juIaVgzX1L0VENx11KdW5c1MHdslH9dmE0vaK1SvqMUjmg7cXe9FWV0kOW7FH38ZQxl2A5z1IimEVEuZDa+zWocZ14pq1M+r9+ybfF3UtixC8ZCWmp2W44XlyaIWoCfjEgYDcHlh17EHZlgsHwtdV1nWHu2ieP1Ku27TcE5vh3P4IUbPmhWYcDEC5pq6WaexnAtTV6IkmYaSpjizM3rtnNFhsYap7DTt59r6SJiXYuRlmqGmgyNad1JauRYR8dQJuP3fAsthHBoDgxloAudyflJVoxeymVd7wKgPNjAQMk5AuhWsMkck4li7RIT2P5fKZmTpyZZ3vEsZ5ftxIiexYy66QwW1XFw2EHV9Z/g+OQgYDpOUtMQCv7s8Scpe+HnSMCVl42zbikxvxU5Ugr3aB96eBYBRP2WxpcQyeZSkCFycU9VcKqiiGc2JaIbjZQO9RIzOlkSWU5JaJobTu5j0J9PWdCsCvBqXaOpCWaN5dKpOOu7ojy33kPcmEW7ws/bjoXZ0DkPAnqKnCZe1NpfCY3C6ThDfUOc1mbA6rOECWngeuZ++n45QP0D9/O5LZ/jiwe/aC8SDelAKM1+/oV0Es7qo3yqCE1mmNUplER2HKS/P1n/Oe6uo7zhh/TPSNNpeYP+awrO8ZmOAbs8kgF8ur2fG3oHSC1A5zJiZmOiLTpWQi4oUdv2Q8aHqJ+McLa4ylr4YTnZkjrHIW7ffGUaSS2hPPDUU0+lLap7zvRwf9v9SCnRdZ1rrrmGkZERjh8/bm+744470hyWqpwgkZaTlIyYUqnHOz8GQNHGnwESKXWmpkooKBhIOnJgO232+lJplHbnouWcXy4MtgYPQCV2FbjwDoOe+HPMfuF16r7wE0qqb2Zo+BGUitHBcn6q3UkcBxoGOnGk0tGQbJk/yNXup6nT2hM9zPKOGb7pySRWakJSpBJ0VCyzP0cpMh9/Du3qq82sBlYZyeceoOKat0LFJfyu25uO2/9yO39CSJWoSNimok18z/s9znq6cGpOPl3zhQu+8L1bSohPzjOzZxCppMUoNcVfT3raafV027pihbE83ja9HR0Ss6Y1AAAgAElEQVQNlM6fHq0l1t5JXIeDt9SjCZ1ilcO2WAP7na0oZeLk6l0NuJf6KWwL8Vzvs8SVwQa1jqBWyIHKKLswZUNG9Rm6S7IYcq7HEYfEZO6M+fBPrSHmCuKM+s16jDpJvR6liI3MURYt4J6+j9oMWOzJBkrnl9CS0U7NbBlTL3exsK2aCxVuT7W1Qcl3j4RpytPY7/o3oJTWihtt3IsUMOxJn4C9Uw+g9GyckbOcbCljq+u9FG5YxhU5fr7fP0hMKnO1Ksz5bYtPo73zSxjKYLrwM4BAF9A6+BCodLanRBJaSJM6BNKZlWn4NiAuBO6b3kPVwRep37JtUZoUwO/yp0VOH+18lBtqbrCd2y/WlpkpI03jpR1mym712SNceuI4nDhut8VIfoQG6ziJyNiCO9fEmtiEBM103s7XV0p4+ppu7x9DcGhugXffdC2l9St4cHAiTS4gGak0QGh0RgT6kk/hHfkSjmiH9YkBCluHLcHaTXx2ednlrFmyhqHZIR5pf4TqSTPakVjELJuroCt5QpYPxsgPGexfkahswAWLpP+25rlkM+Xf+x7e8DDdJSsZ8+cxVFLPT3dVE0+UQS00pUY0w2DdmSMUjQ0x5lGcXlZH6Wgfp8sK0Ofn8PS1Efdk4wjPoM/PIZRi1eAEwXgBU4XCfgnbL+NZD86Yn7PlzmRfKEU881KY/SXjGeNIISkMTbIkNMG4r4An1m5Haun3Wzotmc8Q1vUKpKZ4dqOHwsAC5ZMGVWNRNJWZBhM4smoz/oUSpJbutIGiov8l/MEuFGbN0tv+7gsA3HPoHgpCFVzR/gGkI8xCxihxR5hZn9nXM74ZEEVWKlhwtrCM57v7+FBFBU3BOd5+rMNkNSdwUkqhiQtX7kgvcWWaVDDkL6A4lCRKlAYn0aXC0Iw0VjSYC6KoEUUiKZ0uZXhimGKgYaSXsyXL7IWbK9zM5jIvOzftXHQdjkoHPb4eqkJV9kIUsNmT8Xicp556Ku078Xic/XsO8673VtjC0kbcjyjaQsnIIfyhbhpPfIvp3jpGx64ksmKSYLAYEOTnjqL0GEponBmooTojRmZuPwiJUoLRY++lsLuYxtwFjtZYFVekZPuJJm588ddMrCKZ8xOAA8LrI0z+6F60z27H611BhruQPcFdxGMOk9CmFFeolyhgggZ1hvqMdNY1KGK6JB55o2SioGB8gssccV6L6fZ8dnRwAfePv0zGxnexdN3O3+no25uO2/9yS50Qzo+Q/Gcs59pqMlcV0HR4L48PPkm2kWU7bQCtnm5aPd00hJdxdXCLKUCqFERm0RVgwDqHF6KmA9ZglJKrshjRApTIPAqlDyEEI9oUcWlY87SGX5bRlwuj0QBC6DzjOoYscQAteEN1ZM6XIATMl3UzMz9OVrjMLqJd4EiZxiQEHu9EZARwqTwrQWqqBpvxQY2PjJhRlL8YfSdO5WTs1AkO7eqldvVqGgsbWegNEWkLcL6tm1FUb9aZ0hz0DjUSTaQIzk85WU6EIzaAc66T3YHt/OXIO4E4072d1K/M4/7CLL45E+Jgvp64bA7PwD9s/Rv2De7lsaiOYanTxYwYjvPIIgAPnnmQqyqvSotqnS/waePbAKcQ3LppI5t2XXbR/j87dTbtb0MaaZG9ltl5K/IgUJrGSztvxDM7RF3/kO3gTPmiBPPhxhrTsUvoVyWxVMn2qulpZS7Lz3BhWdp501KllnZcWHfwT50DvKuokn8fnlq8v5IIYxalZyMt7FY0o8F23AAiWVcyk/c+QANfzGbtAuRn5vOhNR+ieayZX3X8iq78E5QHG+yJf8KXomKvoHQqbrWEsOIsXLBI+m9rnvXrqbzvxxQcPkK4oIgDAS/nVJYZoTpvnEndfHG9suM6DF3niSuv4yM//TZ6ZAqEQA/PoodnTedp405GJueonG3GGVuGK5JHNGMq6SMpmM8awrVQQMOAm65ipz2GS8eHGfHohDJD7CneQ+VsJTWzNQz5C5JK/2Bh1WBTcTZnIgtmIC/BQFaKniI35VNhyiZjrO0a50TNEjMKKqFqNMpQyTb7OBbFGgCHkUSMTkQmeLrlR2wq2sR919zHwWc6MZSTGIKIZyRlLMBQTp5VHssUCT9TspQvSkGjVWrK5hqm5AXfEw1cMFpaszCHbhjEreMJIXCCiUFLsZJQgOtP7qW5WHLrmjo2+ZMEmkRq1jvnZe3EWnt7wUwQSrAXK1HPeu7v+geuqkxqDCayKU2jTfRm9VIeKrfJYRJppo8XTw/2trNtp2g+tBIjkIkRl+bt6g66ll5Ldc8z5IS6iTtDHPFciew3MclZoRr6ptYSrHmGE7kTDIVc3LD//5CV14unsJ3wWD2RKbPSSXHASI4lIdhy+gSubg3PAY3wDrkIsDUaeYFg67MgYGYGVvZ6cZZVEnOAA4PLxGvUqvYEhDQ5LAQI4SCzT7C96QgPf/wa4roDJ4pb59pSQoMwWVSIDDax3JNHK2ZlE4XGPtWIaGpHb+5aFIn8XbI3Hbf/5bapaBMOzUFURlEoHut8zI6QJKxptIm4jJtEA2X8xhSbu8rH9qprGWqb40sHv4S8AJ+q1dPND4oe4S9G34VAw7P23czODBEPdbHfO8I75pO4smKVQ1HcjxBJ8d0SmYegOy0CI1F0asPmy8aKkqFg1teB08iiepuXo639KKdizncOgUbmfAmTltCkPXlJxapwDQAJsWEQNqlCILhmehtO5TBPYSgmD/fx90Pf5Idv/SHVXflp/H/3yjz0bBcC6KvwU5PxWSJTvzYh5GkEg+RvgYO8vCuYGelkx4wJyE24l5EzU9S1Cv7EJzic57Hu1QS5PzTlYVS7CknUun4NmbkaoovLXUkl0/oyVeATS4/q0fV1PDRiOjnvLH7jWnzNY8083vl42rYLSQ3YZr0Ue5ZuZKqgloqhbkpH+3H5vdzsSY6vBPlDStMBM29MIaTkkhN7USh+ceMHzeiNMEcCSk87D1LStG4nRzXBL453EE/FCCZ3ROlJdXeFgTOSdETjrjpm8+4AEg6H04y8RTvRhc6KPBOf2FjYyGe3fJYvH/wyAA2jW+kvquVkUbb9gtUVeBYUo3kOnALimL7VfyXiBqbzdiwOdwTixHIdaNIsFWXIxPNg3q9uRVkMXUdpOnEdmlasZsvx121HpMyXh/8Tn+HPp+JEpeSRt9zE7b8OURiaJpoRSLadddy4K8j6rmxA0VruZvlAhDn24y6u4o9W/BH3HLqHSMSsVJAoHSQtbJNQcGnrPD+qh3gmKU6hQlOwdCwOQmcoX+fUMp/p6ErYfWyOLLU8ifEEC6qh0DDIneky5wNd427/67Qeew2X5uLe3ffy9svewq8OHyWSMZq8D+v7JcFxHCJFD0wI4sp8RtLM+lygmDt7mv5VdWkv8/7+fqYO7eOG8QCD/nwyYlEKllUjWltYEgoghGD16tW0nDblVApDkxQ5T7AwOwfcYDtefpefbaXbGGoZSouWLThdgCIpraERdtbSNNpER6DDFld36S7u2nwXIU+IE/knWD+53j6Ow+sgPrO4DFxq37ae6uCKKy9Hd2jE4xKURiC3gaM59RRMniLuOm054labaHHmJ2twTP0lQ6v+hZHsbqbVtyhv2UwoexWR7Eqz0xHkrM5FI4ol+0zI5wch8BxxEL40mhwLEpz9gvn16e+TMvESX/+ndvZe3kjdxqPU2mnRVIcNPJ5aVub9MeGjn2fluQ7+6Z++RHP9SnYsyeAa/1OEr1ZMnvVyunIHhyuWooRCQ2K+TRIha/MNZBjGRWuB/y7Ym+SE/+XWWNjITbU3JcG5MsaT555M28fv8qMJk1n5hi/i86wutw6Hlu776+g4NAe60PFLU9xTQ0PpOqPL6wmVV3Nd35VolhacqQmUqLBgpeCUolD62BazaN8KewJtcwwxO9NLModj/l+3K4uRmW5rk3mvCxmmUGnVVRXM7HIjRbIiZep+HRn9fLv45xjWfzFhMOFIF9JMxY25q/0IhzmJCadG5vI85o+NcaBtjPf0D/LVrmGey1nOe7ujZpQx8XJIYYc6heAjyy/Hpbk45+63bzNhUkrWhCSXjcfTruJgMEx3JGrDj1ya4IM1mxEIYq5awr4biLnMle755JJch44Qiwu2l2e4fqPTBvDEuSfSmJZrCtZw7+5705z8dxbngYon0ctKcXLFZvZuvpqHrr+TwaIKfH1RXI+c4dM//wu+0fQNfnj4r9iROZl2Lk0p3rL3KcpG+02G6ZM/omjkMW517Sdrbq/ZWuctt5UQSARRRfpSQlrg6cT+lhefMfu6HU0DMDJXmYKdNkhHsDZ3KQ7hQCnF1458zSZj3Lb8Nu5/2/2s2VnB2Cqd5zdkp+ESa4ajPL/ew9FlLgyrr6TCBrgnalL+Z8gK3x0OELM016QGvrmUiAawZGKYdz35Y1a1n7DryurSoHyo226DymCYGz/y13T4CsyUPIKYptNT6MYZ8+OfWosrYtVmVAACZ9SPQOAN7ePde4Js6Iqyo/sdZLaXcHbqLFJJIloEoaA4GODGE/tY1zPFxs4F3v9yCHdMminSVKC6gnXdpjQIStJT6LAjiEpAOOO8V5Tl0BeMN1M8uB+kxNixkS+8V6O1zHyCojLKE+eeoLjaz4odpaQ9WRZkNMQhrvX2oqewa3UrFfrO4jw0FTcpk/Z4EQz48ujp6bEP1d/fzwMPPMC5c+coCk2xcaCTtRODXBuboXA6OZ7dbre9INTQaJxs5NjRYzzc9jAffuHDfOvYt7j74N38uv/XRLSIdZnKdjBRRvJ5wiAj2sFz3c9x98G7ias4EknUiBKMBtlRtgO3NMkliXO63BcucZXsW42G1XU207RihVU5QmggdCYK1jFceHnK/oB0mEdXgpKQuQhuruyluvsX1HU+TP5EMzkE2LbTw3u2V+HSBLqSOGNRGltPga5T+b4vUDH/dvRhbDxl8DYDZ79InkuBe0+YVd0d3PrkK/hH4skuSQ4JQKOy4v34R0dt2Miq7g5uf/5x1vWdACMKyqB3oYhDZZVIrEWv0lga6rPqmZoLeCEEuq6zdOnSi7fb/7C9GXH7A7Aba27kVx2/Iq7iabgkgCfPPcljnY/ZoOu7Nt/1W6dSE5G6NBNwS+0tlHhL8J5SaGNmFE0ojYrpDFyrPwm6GbpXwox3CSVQFvDemDqHXlCPEIJc5UWz1kOml2Q+yyOOMaQoRksZvvPxEMPDw2mX4o4sMctCzZ3lO+G7ubJoE++YupqSaKGdtgNTbDhRJWJtuJ6THnNFt3VuLbrSiGJq0UmkXQEhc0MhAvBsKDI14eKSp0vcRC0lhLgAnwFvH4jxaIXTjCRZzoAA3l2Sx3uXVrB2+gdkt87a2xPosbiI8/3CR3ir+2b2iQJiKsUVsWatpZYWVHPfEUvY91MgHOCLc0vGYf6kbqedTnl04CwPhFYglfneTNRBTIjS6hj8/TKd9y69cN9/o+kbPNz+cNq2m2tvXjRWXu/4Pjmje5jPvoMFT5WNIUII4sCzV97K5hP7WHf2CBX9Du47fZ957ZrPXKELsx1u9jqoaTtKosXKRgZ4y/4ubqj5KNvXVHJXl4EhDfvYqYzb1OAqAJqFy7IdaAOh4njCSdasQPCWJUU8HjMjL4k29maWXrTySOL3X3QetrCIiYiqeTxDA6UJMzhrjd2YVDw0MsVDI1MXrbn6RtYUnOPV7Ny0Gwx4rSiedf6J/GJAY+fZXion/pn+0mWs7mpjWg8jhUBTirVvfwee9evZFpzDqQlT01BAVlwxkO+gZ0kh5VMuslSAJMXZbNmsuA+hTHatkoLtXe9gvrALl8NFhsywK2kVhwJkhicZsVLIy/tGeXV1dTKKrkwdRaEU/fmCiD7HYJ65mBDSSpOOxWxsVILwUdH/EoPlVyI1naHibWTP9VM4k0EryTq1iUVZw9YSWo6UEGHUSqmb56yZqeH4VAjpTiyBYFd+Npv8WTzc9jDL+7pprbjaAt2bEb6KmQBLlyZhBD09PWkCrqWlpWRnZzM7O2svRBNMT1MzMultrJlYw6NNjxI1ovY8lBvJZd2UiZuUSEY8I7RnvUrO2Gusqv44Apgae5jxyFna0jSFQBMaoYUQr/W/hj/Dj7QIVwJBeCrMmjVraGlpSf+SdTn1hRsoXlIKmAzmmvWFdHX0EskYAQQZkSKiGdMk5mAzHJqEASyZqaRoZikhPzx1+SbyYltRQkMzDKLfuYc1K/+OH5xp4vXWczS2nzHZnUIQipxhIP8plBd7AY4OKhPcJ3XEshzcTwXJ2mcupsaKipiZdVHMeYF0QClJa9vdeMs/R0YBcA7zQp1O/LfeBof3Eh5zMVpQZJe0ShC/qg91UqOfI3rTVnxl+cyTyVJvlAqGgd/NiNubjtsfiMmUF39cxrnv1H3sH9pvMwTBXOUldNt+G0vgMhIYOoFAF7qdim3rPYRkHrPAicRRsRV0zSYKKKXoyOznOe2X7BqspuJ0G5oE7/a/QgkHI86AeW0pb2IloK1sAeileqbangzPn5QcC7m45wsxtDgHeJllM6X8yeg7cCqdRDhcInkk7yWez92HQNDlHaQzqx9DGayO1BFb42YoPM43Yz+m1dPNynANy17wMD50wrweXeDZUIS72s+JXI0nypz2RK8UnPKZk7ZDmqwqKcxIkkvTeMvxaUZfnKDYl0HESMocCMBA8YL/AM/k7uGFmQPcUHgnL4yNYIgM5n3Xk1ie/kVlIZv8WTiKNiHP9ZlOm9DRhEZD+TtpLCzi4baHuefQPcxkX8uCvx6EjlLw6/EBXhgYYEGWoTCdi79rfpSVHhY5Y99o+gb3nb5vUf+fP1aax5q5//T94KphIdOa8NK0AzSm/QW8eNlNmBGvXxNz1TLnv5lUnTch4JLRHiasiIeZGoOSCTfN376f2z7/Zb5WvcDT7R1EZyR7cutJjcAlRrP5D6sYu4VxW2J04RERKrLLuaTw/fzs+N/aqaYP1+1ga6zcZAgqs6zWCn85rRepPAJw+EQL29tq6SkhDVCfFZHoEuIohCasfjVtPBq7aM3V32Tf6Rs1o4mp6Xf74UhgxoDll9Lw0qs09Es43kzG6tUMd48w6XGTH46Sf7UZhUkjlABPb8hCWTAAXWVy/YkcimfMtGnUNc2g38fe5RpXtDoonzDrPAoF3kPVfP2D3+WVU0+TKFwwkp1vaqVpAn1lJu97tglNVZni0lbkTAOO1mRwrDoDyEXZFUhg9/E5KiYtxKSSlIwcoGT0MIGcOittroOmmMleyorAUsZHBWeLDuAQDnthCuCpddAxBg7HLNlGlhn5Uhqx/qOo6gYQpmP//ESIBwcn2Nv3EkpvTKZnpWTt1Ahvq12a1heZmZlpfw8ODnIhKy4uTsso2NmPiRhY8nZ5kTxWBFagKc3WZQy4A0xlTOGKBmiUe3is87GLagvuXrqbB04/gEQylTFFb3bK/CghHA5z/fXX09nZmVbXFAWD5yZ47OvHePtfm7V6X3m0iem8E/a4inhSFsQWVtEZTUqILAuspTKwCoRCl7rtGEkBU95qgo89TsXDD3O7TF98RuskKpJg12M+qhLCl5q4N6ECeMfcJhZA06jdcglB1+HE189Hn6BUjMPHXiSjaykFjDOxZAnz734X3pU78cT+CM/og8TGHGmLvMRiOn9sgpxXHsK/LEx4zI2nMArN34A7nvidZJm+6bj9AVjTaNMiHFpPqCdttQegC/23TpNCsirDk+ee5NHORzFkOvB66ZoVDO87RqJ4vMg0Q/BJliCU7ljO7Wu/wJPnnqSzs4bLx/NwLHQwf3aB4rJqNDSMFKdTABk4iBAnIUsCkEyCmqvCo0UHyPb1MOTrJMfvZt1YHU6lW06k4oS3jQfzn6Ijq48PrPwAPrfPvvfOU6fY8koVwohToefirHSwar6Gr/R+HEfqI2Mo5o6NkndzHc+uDhMXHntSkBq8VmTuq0sz8rY8ZBBZnsOa41OsCEhiQEIgIPVn3Ko2YZ7CoESbJnfuBWIyRoYMsKTkfdR4TazWt3pH2ZZTx/9tvIVPdRtmjT0hmJh8hYcjDu45dA9xFccROQP+m02nEnhmKo4ndBzlMxliqDh65DRNo5VpjlvzWDMPnH5gUd87hIOW8RbuPnC3Lfb7xLknUCirTBDpE6Tdgea2loaNZITOMl3416bDSXJfqQyiBS6UQ0PFDUj0swIjHufw4Rf4uvoJ/kkonszAs/ljhL31VgQhEUERgMQVPkY0cy3gAKUIh9sZ9+6id87B3nAORdX3Ua8PU+MroSVWTsvsPJt8Ho4Ew0gFPxgV3LPjh4RnLiynUxqsZWFijq1tEQ40ZKBQOAxY1xOlweHkoaU6BsnUrQG8OBEyU3TKFHQeiERpCs5d0HlrssDyANm6xnMToeQtQrJ9UxxkVzzGrpEuhMOBMgwOrlrDkV1Xs/Sghx0tJ8mNxNBzzBfvg4MTfKNn1HYqpd18ZuSxqaqBTb2tFAeDnMuJ8sQ2L0psZrBIcvuv5yifMkxnUSpanjyDEqbDLIAJz1IMTVhRR8nJ6mQBbyEly3u7aF1aY6ZFz2MOKxTDuQ4gCpj1OjMWAvhC3Rb+zbDJBWaUVnFpZDer68vt8ZhgScZibipdKwnmtdjHVigWZDP+UB1B/3bT0VCKT7UPsNl1G/lzPSZGT4CmJMv6z3F0JkBzc7MNWp+fn1/UX+eblJL5+Xmuu+66NKkOhWJBW0AiyYvksXNkp603l7i+cQvq4dSc5nMlYxc9zzPdz6TN5SFXKC3Cd+7cOXp7e7njjjuora3lmWeesQR7NYR0MpPRyyvPzTGzECCYOYbdiebFWn1j/tsXmiND+oknUosIkwyhMBflSmGKBBvkzpwDNibTzpbl3fkBMlZdxcDxR5EyCkqQM1JN9FwX4W2GGXkzJAvVMVwdOhgGrp/+O6vv2EFI6khhLPK/pNRoGfAQvvwy1h87zvEN65Hj4xx+4AHuuOYaRguaaM1P0UC04BVjhUsomJxgustDsNtjKUkpvCULOM58nNlbPsRIUT1Ll/72NcL//7Y3Hbc/ANtUtAmX5kpbrfUGe63VskhzgP6j1ljYaDqG0lTuTyU3uKt8xNZkoJ1cQLPAtUpJMEI4CvPIvryaii0l9nG4FMLHj9N7x/txN7yDIunn2ugGhrUAbuVkQYuxoKKIkIYUZvoKgS1NYt+DgmDWGJ15pwEYCwiEJ0pMGPaD/pr3KGc9Xejo+Nw+PrTmQ/Y9VYt8QkaPOREZ8PnS/4eZngkc6ItaKfH3lfj5FRcgIwCGpiiJKG4ZjOOIzGIEkpNYYhpPSKs0Z7Xxs4JnbZauQpHlzLLLlnmyN/HZXkHnRIhnJ0JomDi3Rxrr+FUufLe7g9f6X+Xh4dd5PHou3WFPeSmjNMK+66ztkuzpn5IV72NT0aZFTLULkU8UytY7e7zzce7dfa/d/s7IWbNMkEq+WNNXuDBaWIbbs8WOEpqzZWJfwdNGgCVvyWDu3CARl8GWM3noSuBwODgz18GGjizqBr0IKVgSeoWHbqxGJRTVbQcOPDPP4IqcNEkHQmPO+1YrumdWYRiNCUZjJeyJAGPpIr1gpjYnRAkfSxkfqbZpw0p+1XWKgw0ZlkMBu4+HqQoaTDYWoKYD6WlbTOftvSV5tM/NcygY5sGhSR4amVqUMj1fZ8+2RHsaBuXjEwwVFplAawlXHznEDXueobq7A+VwcOL2P+Lzm6/C0HT0ZWsYy7qXWw4eQXzlqzxaVc/n5s8b0cL6YfXTQG4hw/58qgcHGCrIRgkHCI24Bj2FDtNxs6IW09EAwpVIpymcRtg8nFQ4pOSy44dpqWsgBjiNOOVjw7Quq00PnaQ8N2lLMk2jryCDaAxiejfrTnyLrmU3EMyptxcjXXnNfLDmVttpO/xUF/G4RKAhnbM29Ugi6cnuYSpjiqqJDlp8l6IsQopUikNGPnptDts7W4g4XZQGJygKmf2YClo/P+J2IUtgpSoqKgi5Qvz8uZ9THDbV3RJp0bK5MjvSlup8+aI+AhkB3l77dm6ouYHHOx+/aMRNnTfKti7ZysJkusB14tp37txJUVERrzx+hPFz88z6zgGS9rEe87Fx2gdNjgmV/Hu1pvCUHmffcDGeeLG9rx3vVgalw/spGT1M2eZq/G+/ieDjj6MWFkAI8u78AEWf/CQAG9Y/SCBwCKczh7DnDME9fWbdXAAD3G0k545olOwfvoJ7mSDQmE1I8zFXmMm0Kx+na4HgdBEzs4UITdJfUW6WZEvc97yHnqytMIs9vhKp+sKxMRJjXimYyC9grHCJub0XXm3uRjr60R2O3xmm6ZuO2x+ANRY2cu/ue/naka/RMmGuOhOaVQk1+N+WUXohe6NC9pXbVzLWcsJaUQuE0Mi5bRPeLSUXPFb48BE0bwXOyu0AFEofRcoHCEZVkKdcR21HU0enuKqYnr4eG5CbuJcqo4pxxu2/Wz3d/GvRw3xk5F1oaPz5yDvpdQ/R5R20r3ehN8RCV5DhyUEyMQkT6NAd7WXlQHHa8QHQzFQpwO78Cu463MNXV2ZY6d3k5KAr2DAVN9Nlk+eBU1DEMRAI4sLg3wqetp22hN1/+n4AfG4fJ+ewwOSmScy/v9M3yrnwAh1hhcq6jDnPpWlSFmaN1FTgfSInZb5oVxVeygZHAa/0vcKDZx5MY6pl6BlEUmQXBMKuNgDY2K+GvAZ0dET0HAUTX2dp8cdpMjz2xFulRelVpmCyHYhTFkZIGbZDiYrTPvgIXaIDVatYEnAxVLjAancty9dt5fAzv6I+nm3F1QTlIwPUtz1EW8O7AN1++V/tDSDnMxnPXMdp4SCReE30SxrC+Q3seGjOJhEkymcF4gbbcrxMLkR4doPHxrgpqQi7TYZs1VgMZ4a5LdX11YG5uMHBYDJFHpGKf+we4bolflpmk5Gc2PlOW4o5gIHCJYCkvn+MO596jC2nXrc/D64a21MAACAASURBVLh0nnK6MDSLWQrs3byL8qkZdp84ydPjQUiUojrfEuNEExhCp6OyKvmRUuhSsXQ8bqcSEQJ3ZIlZuUTBiC+PPQ11WMELPvj4E1y/7xWWDfVzon4lvrkZvvnuO9POJRQITSCte1snplC47SiU4d1FQbgF72w3M16Y8S0DS8qnx/8yr2Y/zd7nn+KbK37A2QfmiMcS5AJwxH2Ycs7KrMTi7QPAHemicnKE3oLStHs3NI1xr5/LO9PL3ymlyMzMpL+/n2efffbinQNomsY111xjv+ivWnsVfW19dJ/utiPIGyY32PNZ6gJaQ2P95HoiGREbenLv7nu579R9vDbwGlLJRc6affkIfMU+Jtsn08pgCSFswH1FRQW7r/Vx//d/TqLSTHokN+XflrkjC6w5fYry7m6mvZVkrf2ESe62HKDEWCgd3k9Dxy8AmNszSP6HPmjXk/VcstkuawXg95vp2WPH/xgpo4jbNPw/05FecLcLXN2L+ZOubo1c5vHUh5k/l0Nn7Warbq4JhxBSmiXTEvhCpYhEIqxo3MK5vS1pi8iNTUcpmJwiMS9M5Ofz6pVXYGgampTkTAeTDmA8/jvDNH3TcfsDscbCRu7afBcffuHDi3BtiWjVf4RRev6xL1bIHhLPf3IWkOGLUNMxRUaDz3WAZmLhlDRLOwEMa0nMWyKdMNwzTAYZ9r2AiV3r0roWHbs2UmE6FghcCHYFt7C2UdrabBM/akHGJB7MUl0Sg8f8r7LsdCmKIntFLJEc9LbwZOFrbBjfRlt7G++bvolbB7MZzIzyk2qXPTkIBZ86E7Hrmtrm1nH4XfQUjdPcfwyAl/2HFjltifu67/R95vkzG3AUfsZMDWALj6eIzVpRKxzM+W/GEe0lmrHCqjpwXurSduIUHUO/5FwkXcxywVjgpb6XuGvzXbROtaaRWKSSxC2nSxc6oYUQ3zn+HVs36vONt3Hb8u38y7EWnp4Icl2Bn0tr6rn5WKvpjFiOnzfwb8StigiOaA8+TznzwUPo0Q4UUNeXxaWnCkwZAQZp6v8VQsq0lJLSFIGcjJR7l6xwBvjk0jwaL/n3NP06IUCb3U80a3tKmtH+kWwa67dhte3zVnozbkV3BODWBI0xHZmi9C+ApeNxdF3j6rolNOSXsH96lmAszr/2j2NgSoM8OpbOWgZ4NTDDq4FkzWATjXlh05QirgnQTEe1vbKYMX9yOg943BysKaWwvwOtcScGAoRGT3kt//j+T3Dm8F7W5PnZ/5vKsZ6XwkQp8oJBbjwsKZ9KfGY6wZnhIpAGC5lTTGYsx9CEyYQxDGIO80SruztY1d3Bv19zUxpWTyh4v9+Pke1kYn6SpvavciQyzw3iI2jKfGaVEIT8deQEuzlTXYeh6Qhhps3Gcs3oUlzGOXOqFxnPszuyYkUuOduyufv498gJ5zCVOcWuNbvwOr0c3HeQxoEO+vKL7ahbIoLYVlLF8rF+Smamk6lc4JlnnqG+vt4Wtr1406m0dGp/fz99Z/su6KSdn/VIzMkfLv9wGhkmPzPfdtpSCVap5tbdbF+5nbg3bqdENU3j2muvTXM6Ys4QkcyRZDQt4bwlriEFl6dpgmsy3GR0d4NhMFJ4CWg6qZQqlERgUDJ6ONkGsRiTP7qXzLVrFzltCQsEDpnpUmvWnV8v8D2tpzttup7IhxJdJpn4RNx8QIxJLrvvBSYWynEvLDCVm0tP9TImCtJryu7bt4+GhgbWRcP0zczjmY/Q0NpKwWS61t5YYZHpqGkaUgim8hPMaoVmGBRHf3P94v8Oe9Nx+wOyNExax6M2y1ShcAjHf4hReqFjX+i7C13B9LePVXLqjSxzdQlG1ESrJmQ3MMCtzBh+6mR1/oQ35ZriZP5JpjLOE2C9gOUbOWyt2W5fp4pLexoyC6rAzZNX2pOoRGIg+U7xL2xCw4nTprMzFR7mH/grPtq5QPm85PEyJ/ka3HF2gbVBqyC4BeQ2T2gQn5ynZNxDqdpBDMPGtV3MJBI90sYdvrMU5F9lR36eHQ9yfCa1jqMZUYtlrCaWsSa52VqRJh2cpBnSWKQNpFAcHDpI00gTN9XexKcv+TTBaJBNRZvoCHTw5UNfxlAGUkkeOPOATYCRStrEhY9uWMNHU4755yU63+05R9xVRcR7JUmJFIEuFO7Rr9iCuEsCLraezkOkLP9VagTBenF1lM0SFadAXW9deJyR/m/z4Z5+fvjWH7KpsJFHGmvZPz1LJHSYB/u+z/xCG7M5t4Pm5nynTQc2+z1pETEJdnmcRAsvSMVhPW69+Ezn4+OObK7ekWsX7i7GJAB8q3c0Ler2BoG0ZJ+8wWdKE+ZFpaQZX9+whRsOvQ5SMunNTGrikXKLmkZcOHli+5U4YoIrcr28Hpi9YDLc/N7iNPeUz8dYzizlgXgyemu9/DMjpWRGyqjVnRyoN4k2DsNgbfuZtPte23YG19viFoJNY0tbmAfrQc4IdAy8RoyR7G72LnuEHd23oSmBLg1ypjsQwMquDo5tMBDKrGW8ZKaSnV23MZU1xJK8Ysb1GIZhVjuoWV9IrHKcwNkAY64xnJqTFXkrCEaDXLfpOnpe6WFdfyfNlfVpjqpEMJRTwBWlRWmAfiklnZ1JGRmAqqoq+vv70yJciehcwlILwac6bxeDqjgcDi5dfan9d0JHMTH/OTUnt6+4nZ+c+QmGMnAIBzfX3Wxj/Cg0v3f27FlWrFjBpk3pi/J9+/Zh5zhTUqHWBSKEYPny5QB4vV440pRMY17QLAZ5qinF7MsvM/vyy+ByUfXA/Yuct9zcLWiay3TehCTaoJiojVPwTQeuHh3vVVeR/6EPstDezsjf3U14S9z0XCwoq6shgPvwEvorypGali78nGKtra2IDC8bW1qpsfsvfT/3QsS+bvPjZAp//bFj5PoE7Nr1Bm3w32O/N46bEOIa4JuY8+qPlFJf/R++pN9bOzd9zo6WJMxQxn+IUfrbmrvaj3BqKCttofudzLzWD5dXcH4ZqQS+jVgMbUk9BX/6Gbw7VjDzWj+9Z7vZ7zQnz/MJCWm1+SzsyoXsZf8hdk9vw2Gpim+ZW0PRfLV9nWgCZSyORKaubFOdttTztnq6OeRtYdvsOm4ZjHPzYJypgjl+mvk4sXgjB7Kbuc1x/f/L3nnH11GdCfs5M7eoX8mSVX0tWbblbkuyXMA4mBYgZjGQQAKBNUkgm15390s2m7KbTbJJdr9svrRdQihLAoRAQsdUA6a4yJaMmyzJsmRZvV71W2bO98fMrbpq4Brm8c+/q5k7d+bMnDnnvOdth9yTEfesYa7nSkgDGNS4BTOfaxHDdzDP3g1zllCabZhoH2jppmUs2pclNH02/bii/IciO6rQd4QSzcaio+PTffyp9k8kqAmhJdMqOyrDgppprgqVUyhxNbeVnmHu6hAEnPMI+b+FnGMEGpLhpAtI9RrCcG5PAkKKuINaGEHKnDyuzMnlpc6fMuYswT52BJuvHi8itFJIcK3Zuw90IBAkDr8KwNCsT0acCa7KSuPzc3N4pL03SnCLR2isM5/hpuQk/s/6BXGPvTA9JVahMSVBbWq8oVIVgs0OeMJvlkTAVaqGUBRkIEDm0KiRZiOvyDQjKeO0ZwEJO/qG+HGJEZTxYGtPeMUAwr5qUcKbMMTo5ypSye73hIITohCCOd1+bnt1kMbZCrbR12lz1bNUGGZTgaF5+4//+gGvrr2WsaQSdi1KIhDKTawSSFiKzVfHkZy3ASjuWcWGrlZcA8cRwCzPceTAL6hZsI5FHeuZ17fSLLWgvcEXerV0Kdnxx1qULSdDScYDeiAqce23LvoWexuGo55NUBBflO1lw6orOHr0aJTWLTINiKIoXH755QBs27YtKro0UuNWVFSEqqohTV08jVlBQQFlZWWMjo6Oc4aPTL8kEFy34Dq+VvE1Lp17aVxrR3NzM9u2bUPTNJqamsjJCa/F2tzczNGjERr2yCo0ixQUMuvr69ECAaq0AJsyM8nq6SG3YzdteRcQ9isNzQzoSy/BNdQ0LiABn4+eu39H0q9+GbXb5SqnvOwBamv/jYHB/UZZbDCyTsdxXGF4xw4y7/gUzpISsAUDVsIMpKZRuSamv5nAFUJKyd41FRSsXk0ukLB0Ce0/+CH4fHRnZrKvvDz8u5jQVV+Ck6Ts2L727HBeJOAVQqjAr4CrgaXAzUKIpZP/yiKW6s5qPrHtE+zt3DvuO4kM5Sg7lTgL08i6YwXOpYbKWevzMXa4l6673sHbFL2WpufxJ8DnAynRO4/iq30OZ2EaSqqDOrXNHCTD5QVoM0PVg51g0NdNEQrfWf8dPrHsEyE/vpqk4zyf/lZ4hqtLQyNoljO5Ioeg31RUsEPEvjVDSyc0UTya+SIamvmdZFZ3MjZF5btzf01TQjuzW1LH/WYikaQ0u5Rvrf8Wl7ovJT85n/zkfDa5N0WtNftASzf/UHuSTn/s0B6xJmrMoGv0yhrhRe51kIGoFQQmwqt5qeyoBAy/xmDASfT9CG5beltc7Wtw5YaobmcSP7P2zDEzafJk4o6ko8cIKlC9tSQNPBUSQIM5C4NJc4PlVoUhISQOv4pjZC/BkUoCL5gm5xUpiTPrHAUkJE88D65wJfNZ9+yoffMSHJPOnHUMoS12tQUB/GjhHP5nYxk/XeRmU0YaPy1x8zHhR/qNyMOMES/rj7WysvYIiqkRjPesNeCxjl5+ssjN4+UL+afiPD4fKme0pi30tzCXLktsISo5bEwgypxuPxfUDNOW+jbdLhGl3AFDeKs4tIfnylPpTgvfoyoE1+YXAZAzWMSFjTdQ4Cmh2fEBBtLmRZU/bSwz5P4Q2V4ji6wFJLOa5uFQHahmuhxNaqHEtduPbSfP04WiR9yLlGT2b+fja8txu91s3rx5wnoqLy8PCUTt7eGltWKTuLrdbm6//XYKCwvNp2u6U5jlFkJw1VVXUVFRwcaN49fKDPoSq0LFqTpDKU9Ks0tDgUSR73pjYyOapiGlDAUmRH4no+o14n8Eg4ODxjkATVHozDbUeOkDxymv/jmpg00R5zCeW4anjsTy8rjPaujVVxmpqor73cDgofCGMNKC+ObpSJ8Pz+NPMLJ7DwQCJO1SDH8DHQjACc8S8zci+nMCpJS0rKkg71++R8ZHP0rh/feRctlldC+YH9bWxWiaFSmZZz9J0mUfmfTcZ4rzQnAD1gL1UsoGKaUPeBjYcpbLdN5R2VE5TtMWRCBOi8YNDKEIf8zsSwsLTVORbAYAhDAHgKrMKmpdtWjC6IR1odOV0MXq7NXcf9X93LjoRr5W8TXuv/p+Lsy/EIHgZdcufCJAAA2/CHAiozN0Wnt+inn68L/gdpD1QytZNFIUt5w1ScepSzBWQQgOIzdzHYpQWD68wFizNQ6G35yMMpXu7dzLD3f9kNeaX6N1uJXW4VZeaX6Fur7w0lbPdE3y/GI7nwh/tpTe+0n2PEpK7z0kex6NCmKYDIEIadJKs0u5eM7Fce/loZqHogaQIEGtU/jgGC2g1EkYfiP0dVeGj3p3zBJEoeuYz02RtGeO0TjQGFfAC+gBnjz2ZGg7uFyVTdhQUEgfedHUeRpoGLnSvl3fMiPtGMDLPYOTroTw7QUFfDg7HAxwfMzHluz0SfWJMH5906uy0ritwPDhua0gi4dL53NbQZaR4iPmHUsZ6uTyN55CxGo/ItjpGeGBlm4qXMl8qTCHby8o4Kclc5iX4MRobBEaW/NvRde54u0/sqjujxGTgGgBTiI5mrOL2fNSUMtXErBFaw8lcKwgA12JEPqA5SmJLEkyjskfWICqqyioSFT6MhcjBfSkz0OkfZECT8mUzw8gKymL337wt3yh7AvctvS20Luio9Mw2kDuQB9/886bFHa3Gu1UgGfWJQScCwGoqKhgw4YNcc+dm2sELkWaQgHKysrGCV9ut5sFCwyt7LhURlMIHEFXly+UfSFqAlfdWc2dL9zJL/b9gjtfuDPU9oIavngrARQVFWGzmdMGCTZfGmrAfOgh+ccIZohM1eL0hjVOroHjlNQ/htDNVSakzqK6h3ENNuKcPz8UHBCFlIYAFkNb218gQt+LABTwloTf56S1axAOB44TdrJ+lUh2YymZ3bfTqheFzh31qesUxvi6TcTQjh1k1R9D0fWIfimi2EDK+vJzJqfb+SK4FQDNEdsnzX0WM6AipwKbiJ7jB5dhcarOdxWYMF0Sl8c0IHW8r5vrui0IhwOEQDgcuK4zZHNnYRrlF1UYA6wptKUWJtGYZphFd+Tu4HDGYXbk7qA/oZ+L5lwUpfEpzS7ls6s+i1N1cjSpkW/O/TkPzH6abxX+gp1qePanjwRMC5Ex6NQkNPLIrBfQCTsDA6wcKZnwPl9Mfztqu2VOL7rU2Z90lEBIG8c4VdvbKfvHBSYEZCDKVArw0omXQn9vnj1eQzpOMIoZDBwj+0gcfpWkgadCn9MR2gC2Ltsa9Vw/sTyszYwkGGUaS4UrmRWpwcHBNMWJoIO2Tmrv/ePKcqxgGE0ZL0IJoMvlZdu6DroyfBSlFU1Y7lhT642LbuTeq+7li+Vf5H83fZMrs6JN9u3eQPSi99NEk3L8Wpcx9MRoR/cNjExL8DDdeXAI+PzcnLjHaP2eqMGyf04eUlFYdaSSlTV7xw1GkcROAm4ryOIXSwtJEAJF07BrAexaAKFpqJrGlx++l2UnGrBfsCmqHqPN8hp12Xu5bO5lfO/vHuLZr6zlwLywx6IAVtYeRuhGrr4gt+TNCqUwak2rR1M0dDQUm8KSL91M080X8ZeLFyGkIdBNhaIaKyiUZpdyx4o7SHOmRb0TTt2JRJI30Ef2YJ+5dJlCABFVn1dccQWLFy8ed/6gOTRSULLZbKxatSpueYqKijC6smjfNilllFYsHsF7iF1rOpgEPbLtud1utm7dyqWXXjoujUXwu8XuctJ7S8noKyV1oISgSKAoCps3byYhISF8cSHwxqRAcQ0cp3z/zylufJrV7/ycgo6dob4797vfMYIKIn4vHA6S1q6Z9B4jcdYpYJ4vqayMuffew+wvfYmF//IAK+54jMG5mwzzaeT7F/FfHxgYd04hRFTdjOzeA34/WT09XLL9VYrrjzGrpyd6EqIotC8cP1E9W5wvPm7x+raoXkgI8Wng0wBz5849E2U67yjNLuXeq+7l3oP30jnayQ0LbmBhxsIJo0FPJcH0H8N72lHTHKTG8XFLKitj7v33xQ0bL7mqjI9nJnL8cD3zli5gsHCM3297mIAM0JvQS29CLwIxoQAaGZjxeP3j1CWfwK7Y+UbEscE1SPWAjp8Ad+U8Sk3ScTodvXy2/SYE4BdaaEmsIBfmXcic1DlIJNfOv5aM4zmMHuwmcXkWufNScbzgoC75BN8p/jXfTfk6WYlZ2PNT6H/yGMEU/U/Ofm1cmYNrZEYKb5fPvTz0d1Dr8tuTRtqTO+cYJq5gFnyAUDACxvqkacMvRl1jIrNvJMWuYm5dcis3Lrpx3DP95/X/HApSgLAf3kSTgFvyZkUEUgg+756Ny24jS7bxs5a38ZnZtkqzSznQfYDeWRrbL+jndq6k9e19SDPJs2qzs+LGq+nnHT4793IWZizkjZY3ovJcBSOlI7PoR5Y9+L5/3jnMyz0D+CXYhVHGI8OjoBsJcsvTktjtGSH8JMf7qgmi13+diM2zXVGRox+a7eJ3Ld349LBbdzyfts+Zz+nC9JQJV1kIaiSk34+w21n86c9Q98f70QIBVjYc5PCytUyUwjXeJKDClcyj5SW8/PpbzP+fX4EuqV60jAtSEiifMxvX7x8gw1XMkf/ci6aZT8c0nc7qOchLy1+lz9UWehc+dO1X+XH3J1l6YhS7eZOLTtSxqubfSbzg24yRxC15s8z3OovfXfk7njr2FCPuI6z0r6eifCm5xS76V9upefT7FB7UQGdS4S1vgYsLb1hAbsQksSKnAqfqxK/7EQi6ErrQheGnmevpRMgSJCoORR1Xnxs2bKCuri7kpxapyQoKQ42NjeP80yJxu92UfqCUfa/tixLe3u36mJOlY3K73ZOWY9MlaTy+bx8aErs/jVmelSy4JJkV5Ytxu900Nzdjs9nQNA1VVVn5uc+S8voO+h97DEw/P9fwCRZ9fSvOkq1RfXdSWRnOkhJGdu9BTXeh9XsmjCzNy7ueltZHCGvdVIpT7yB1S3rUb4LnDVJUVIRqsxk+h6avabB1KrrOkiVLaD14MOxXKASbN2+OeiZJa9eA3Q4+H1k9PWR5PAxvXMuzpiUkVDerNs64bk4XQk4yCztXEEJcAHxPSnmluf1NACnlj+IdX1FRISsrx8/4Lf66qO6sDgmha3LWhFY/mEoAjUwwG3tsMJfbiYxO/jL6bEgYs7VqdB5pwjtHoSW9mwHvAEf7jnL53MvHCTTTvV7wWs5iF0cSG6jsqMTlcFHTWxO6LhAlaE91LTCCAN7qH2JotI0jnpMscc0hJTGPC9NTsHnreOrYU0hkKLLO5XCFPmt6a+geNULkMxMzwxFq07i/4HmmqoMHWrp5psvD5tmukPAZ7znFbrfWHuHQa0bS32UXX0p+yZJx5Yi9t+lOSILPLCgYTbYN8Eh7L7XDo3h1uDA9eUqharL7j3fuLp+fPn8Ar06EMDM1I1VVUYNna+0Rmg8dwL1sBa05c0OrMNyUO4sjQ6Nx62E6542kvcFDS20fSk87nqpDZNn70a5ws2f2wLjnX91ZzdHXn6TgjTr6x/pp3DCPi6785IwnjdWd1ezef4B8zwLm5cylq3mQkQFDaB8b9qP5dZZuyGfZxviGmch3q66vjueqnyN1MBU1S2Vs9jzS0jfykTkL49Znc3Mz+/fvB2DVqlXvOq/XK++8QvXRaoqzism0ZU4q7E3FZH3aVLQ3eKjZafgKL16fFyXkgnG/scLoSFWV4ZMMIW3Ye8Xj2WeaTA1BLpjjbSqC5UtMTKS9vZ3+kydxDgxQuno1Cy+7bFr1Fe9+TlU9TxchxF4p5bTMXueL4GYDaoHLgBZgD3CLlPJQvOMtwc3CwsLCwsLifGEmgtt5YSqVUgaEEF8AnsdIB3LPREKbhYWFhYWFhcVfK+eF4AYgpXwWePZsl8PCwsLCwsLC4mxxXphKZ4oQogtomvLA904W0D3lURZnEqtOzk2sejn3sOrk3MSql3OPM1EnhVLK2VMf9lcquJ0phBCV07VJW5wZrDo5N7Hq5dzDqpNzE6tezj3OtTo5X/K4WVhYWFhYWFi877EENwsLCwsLCwuL8wRLcHtv3HW2C2AxDqtOzk2sejn3sOrk3MSql3OPc6pOLB83CwsLCwsLC4vzBEvjZmFhYWFhYWFxnmAJbhYWFhYWFhYW5wmW4PYuEEJcJYQ4KoSoF0J842yX5/2CEMIthNguhDgihDgkhPiyuX+WEOJFIUSd+Zlh7hdCiP9n1tM7QojpLX5n8a4QQqhCiCohxNPm9jwhxC6zXv4ohHCY+53mdr35fdHZLPdfK0KIdCHEo0KIGrPNXGC1lbOPEOKrZv91UAjxkBAiwWorZx4hxD1CiE4hxMGIfTNuH0KIrebxdUKIrWei7JbgNkOEECrwK+BqYClwsxBi6dkt1fuGAPB1KeUSYD3wefPZfwN4WUq5EHjZ3Aajjhaa/z8N/ObMF/l9xZeBIxHbPwZ+ZtZLH/Apc/+ngD4p5QLgZ+ZxFqeenwPbpJSLgVUYdWO1lbOIEKIA+BJQIaVcjrGE48ew2srZ4D7gqph9M2ofQohZwHeBdcBa4LtBYe90YgluM2ctUC+lbJBS+oCHgS1nuUzvC6SUbVLKfebfgxgDUQHG87/fPOx+4Drz7y3A/0qDnUC6ECLvDBf7fYEQYg6wGbjb3BbApcCj5iGx9RKsr0eBy8zjLU4RQog04APA7wCklD4pZT9WWzkXsAGJQggbkAS0YbWVM46U8nWgN2b3TNvHlcCLUspeKWUf8CLjhcFTjiW4zZwCoDli+6S5z+IMYpoMyoBdQI6Usg0M4Q7INg+z6urM8V/APwK6uZ0J9EspA+Z25LMP1Yv5vcc83uLUUQx0Afea5uu7hRDJWG3lrCKlbAH+AziBIbB5gL1YbeVcYabt46y0G0twmznxZjtWTpUziBAiBXgM+IqUcmCyQ+Pss+rqFCOEuAbolFLujdwd51A5je8sTg02oBz4jZSyDBgmbPaJh1UnZwDTjLYFmAfkA8kYZrhYrLZybjFRPZyV+rEEt5lzEnBHbM8BWs9SWd53CCHsGELbH6SUfzZ3dwTNOuZnp7nfqqszwwbgWiFEI4brwKUYGrh00xwE0c8+VC/m9y7Gmyws3hsngZNSyl3m9qMYgpzVVs4ulwPHpZRdUko/8GfgQqy2cq4w0/ZxVtqNJbjNnD3AQjMKyIHhWPrkWS7T+wLTt+N3wBEp5f+N+OpJIBjNsxV4ImL/35oRQesBT1ANbnHqkFJ+U0o5R0pZhNEeXpFSfhzYDnzEPCy2XoL19RHzeEuLcAqRUrYDzUKIReauy4DDWG3lbHMCWC+ESDL7s2C9WG3l3GCm7eN54INCiAxTm/pBc99pxVo54V0ghPgQhkZBBe6RUv7gLBfpfYEQ4iJgB3CAsC/VP2H4uT0CzMXoGG+UUvaaHeMvMZxFR4BPSCkrz3jB30cIITYBfy+lvEYIUYyhgZsFVAG3Sim9QogE4AEMH8Ve4GNSyoazVea/VoQQpRjBIg6gAfgExmTdaitnESHEvwAfxYiSrwLuwPCLstrKGUQI8RCwCcgCOjCiQx9nhu1DCPFJjHEI4AdSyntPe9ktwc3CwsLCwsLC4vzAMpVaWFhYWFhYWJwnWIKbhYWFhYWFhcV5giW4WVhYWFhYWFicJ1iCm4WFhYWFhYXFeYIluFlYWFhYWFhYnCdYgpuFhYWFhYWFxXmCJbhZWFhYWFhYWJwnWIKbhYWFhYWFhcV5giW4WVhYWFhYWFicJ9imPuT8IysrumTVcQAAIABJREFUSxYVFZ3tYlhYWFhYWFhYTMnevXu7pZSzp3PsX6XgVlRURGWltcyehYWFhYWFxbmPEKJpuseedVOpEOIqIcRRIUS9EOIbcb53CiH+aH6/SwhRdOZLaWFhYWFhYWFx9jmrgpsQQgV+BVwNLAVuFkIsjTnsU0CflHIB8DPgx2e2lBYWFhYWFhYW5wZn21S6FqiXUjYACCEeBrYAhyOO2QJ8z/z7UeCXQgghpZRnsqAW7w+qO6up7KikIqeC0uzSqO9aa4/QfOgA7mUryC9Zcuov3rwbGndA0UZwrwXA49lHX98uMjLW4XKVn/prnk7i3M/5xmTvg8W5zXttr6e67pubm2lsbKSoqAi32/2ez/eur3G62uW7PG9kH2dvEIzs3oNWnsbo7L7T1u95mwbwNnhwFrtwFqZFf3ke9FtnW3ArAJojtk8C6yY6RkoZEEJ4gEyg+4yU8K+Q5uZm9u/fD8CqVatOWyfS3uChpbaPgpIMcotdp+Uakcy0o47tmKs7q/nU85/Cp/tRUPmnsv/HR1duDJ37T9//FloggGqzceO3fzDtwWBaz6F5N9x/LYcGNnLMqzD/Uh9zNiWxr+o2dN2HojgoL3tgep3YdDqe09E5med8IP1inhkWbD7wawpbjnFYayBtzR5G5jknHgTjlOdMDHSTUd1ZzZ0v3IlP8+FQHfz2g7+dcAA/0+/6e6HSM8xb/UNcmJ5ChSt5Wr/Z29THzoYe1hdnsrow45SWZ6SqipHde0hau4aksrLQ/kkHVyZ/5sH2GvD7EUJh4fobWfM3fzNl3QSFiC5m8bk3/mNadT8dmpubuf/++9E0DVVV2bp1K263m8rKSo4cOcKSJUuoqKh41+ef7BrRBxn9DJoPVAdsffLUtP93eV6PZ1+4j8PGrJ/bIBCgp9CHHFRm1O/FvtcTvefepgG67z6ADOgIoZF1fQLONevj38dV/w6jPeecEHe2BTcRZ1+sJm06xyCE+DTwaYC5c+e+95L9ldLc3Mx9992HpmkAVFVVcfvtt5/ygbG9wcMTP6tCC+ioNoUtXy07rQPaTAWreIPyU8eewqf7ANBkgH/Z8UsWuJaT523nrT89SMDvBynRAgGaDx2YluDW3uDh8f+7Dy0gUW2C675WHv85NO7g0MBGXh34DADNz3kpS3sMXXoBia776evbNXUHNp0OdAad7LQFkubdcN81PDD7Cv6h5FIAXp3/Za7qG2B1g4/ObRrPLP01v3H9hi0LtnDt/GvDA2Gc8jSTF3pPFUWhvLz8tE4y4lHZUYlP86Gj49f9VHZUxh28T/u7fgqF7ErPMB+prsenSxQBP1o4h9sKsib9zd6mPj5+9058AR2HTeEPd6w/ZcLbSFUVJz7xSaTXC4pCyqZNZN7xKdRZ88ODq01B+dA8Wj2+0Hs4VbtqPnQg1F6l1Kh96xGajyjc8I+bJ6ybSCFCRyFPtXNcE5PWfTxaa49w6LVXAFh28aXklyyhsbERTdOQUqJpGo2NjXR0dPD0008DcOzYMYD3JLzFu0ZUe2neDa/+CDQvSN1ob407To1A0rjDOJ/Upn3e6s5q6o7/klm6D9DRdT/eImNckirmPt+E/V5QMMuwqRwYGuXhtl40KbErgu8vKODb9S34dWP70dIFIeHN2+BBBnSQIKXE+9R9OHMVo7z7H4LAGCAh4IVnvw5Snloh9xRwtgW3k0BkTzwHaJ3gmJNCCBvgAnpjTySlvAu4C6CiosIyo05AsHEHidvATwEttX1oAR0pQdN0Wmr7Tqvg1nzoAFoggNT1aQlW8QZlGTMfWKZ4OfHYdg4fepnO4RMgJUIIVJsN97IVU5apvcHDjkdq0QLGebWApGZnW/znUGRo2gwECZnHGNGeRSjGb4VQyciIVUbHIbLjmagDbdxhdEroxucEneyMBJL9D4Hm5ZnZF5u3IEBKjs5JYE2DBjrkDcynPfU4j9Y+ylPHngprMeJ0+vs9i0Lvqa7rVFZWUl1dHVeLMJVm5t1SkVOBQ3Xg1/3YFTsVOfEH1dP6rk8iZAfv+0RGJzvVqmmZ9N7qH8KnS3RAl/DNupPMGh4graNlQs3mn/edxOvXkYA/oLOzoefUCW679xhCm/HwGHr5ZYZ37CDjUz9E+lMBgfTrHHu0jv3DGooi+MDNJXQ1D07artzLVgRfQRMd/9iJSeumr28XuilEKEjWpSg09ToQCFyOqeuzubmZdyp3c+TpxxBDAwAcevUlbvruDykqKkJV1ZA2rKioiFdffTXq90eOHJm+4BZHmI93jZGqKkZe/DNJSc0k9T0Lmh/QAQGKzfj9qaBoo/F+Bt/TKc4bnDjnqaN8draOQxEQkDhrBf58GeF9rxMIDIz7feQExLybcO+tS57p8uDXJZq5/Vb/UEhwcxa7EMIQcAUaTvYbzxKg6vfhMwlhCLhSN/rU/Q+eM4Lb2Y4q3QMsFELME0I4gI8BT8Yc8ySw1fz7I8Arln/bu6eoqAhFia72xMTE93xej2cfjY2/wePZB0BBSQaKaihLFUWQkGxn77ZG2hs87/la8XAvW4FqsyEUZVqCVXBQVoUaGpSvnX8tAgUpYcnoPH584ktUdGbxgcyPkOnIAyGYu6KUG7/9A7TEFHbs2EFzc3Pc8weFns7GwWnewFrmX7omtJk0+yhC0c0tQX7eR6anbYvseCbqmBMzMTpvjM/EzLiniyeQTIxxzc1dr5mbxvaik2PoaGiKRmtavXmkDAnLQLjTF2qo0x8aGhp3heAkI5Kg2WPghUa67z6At2l8J/9uKc0u5bcf/C1fKPvCpKaygpIMVJuCUEBVFQpKTqEpMZ4mg/B9e15oJPGP/bz4xtPc+cKdVHdWT3q6C9NTUCJsGLqE3765i1deeYX7779/3Pu8t6mPP1U2hwZFVVVYX5wZ+u5X2+vZ2zTZezE5arorUroCQPp8DGx7CmlqRCQw1ybIUAW6Lnn9oVp6W4ejftM14B1/cikBSaYznyWu9WQ5Miatm4yMdRi6AQDJumSdeU4dXer8ZM9PJn22QTPlnv0HGCqYj5ZoCAmaZkwi3W43W7duZfXq1ZSWGu9RisMedY4lS6bphxcU5l/5gfHZvBsgdI1LL72UrVu3ktndzYnbb6frnj9x4jdvM9KhE273EvQAdBye8DIzwr3WmFRc+q1paaaCE+fjPsF/dyfBoXyyfm7DcVxBTyHKpnai+Z7QuBLkrf4h/KbQRvThqEKwebYLuyJQAbsiuDA9JfS9szCNrOsTSHP8kSzHt3E6jht9UOMO0INKDQGLrjL60OAVqh4MPeuzzVnVuJk+a18AngdU4B4p5SEhxL8ClVLKJ4HfAQ8IIeoxNG0fO3slPv9xu92Ul5dH5bkbHR19T+eM8lMwfRJgfqg1SV3y+sNH0TVQVcF1X5/AXDjFNdra/gJAXt7144SY/JIl3PjtH0zbxy04KMc6H2/M+DSv9d7FZZ512KUNgUARKoUpy+jta6dk3YVoiSlT+pIEhZ5IVFWweH3ehGVatuUimNXCsapO3KuuoF8+h677URQ7eXnXT/2QYjueslvCHWjkDH20B4RizCSFYmzHISiQaJo+tUCy6hao+gO3tT8Disoji79A86F2Egf3czhbUp9dyZz5mfR1t6JJLVqDFez0zfJVdigcPXo06vRCiJAWIZIos0dANzRvhWkT+k3NlNLs0pD/490H7p5Qq7XoglxGBnwkpTne9bXiMoEmI3jfQoKKyvKRBRxNbpzSpFfhSuZHC+fwzbqT6BJsSPL6uiY0r+1s6CGgm1pf4COr57C6MOOUmU+1/jgTOUVBsSUCEiHCk8wsm6BPk+i6pP2Y8TuJoVX5VWMbxU1zWa3UQeMOmo8JpIRMZwGbcj+GIlR0JP0Hu+P2PUHfNlfaKvo9e4Klo9gR4JjXNqW5NMqSIRQCSamoo8MIoTA8mGVMWO1QXV2Npmns27cPPRAIaaZXLVs6fW1bpDAfowlyu92h+ut+9jmkzwcIpA4jnU6Ssvzh80jNMAXmLD01miT32mmfJ1Kb3Rqwk31yJbbjLwPgrBUMRkhiUupR5tJKzzAnx3yoQqDLaDuJMSeRLElJ5PsLCnimy8Pm2a5xvpzONesN82isC0JkW9vwFUjJwbv7Lbz6Cpz6IZynyrT8HjnbplKklM8Cz8bs+07E32PAjWe6XH/NrFq1KtSBxBsMZ0qkiSHoi9VTOwvd7PD1CPlF0yYwF07ix+Px7GPvvo8jpeF/1tr2KKvL/xBXeJtJ9FhwUI7kk6tu4ZXfq+i+pPBOU0MhdZ3t9/+WBTd8PMqX5M0Xqth0SVrUPSUk2xFCIJGoimDxhjwWr8+bUmCds7KDZPcu0yz6wMwiSos2GjNETTc6nlW3GPvjOdyqzinNGrnFLrZ8tWx6Pm7utXD7M9C4g9uKNnKFfxGP/XEYXbsQXfFTn13JoZ5DfGPtN/D4PBMKQLUte9l/+BVSUrIZHDSSiC9evJiCgoK4pjxnsQthU0K+UM5iV7TflKqS++1/JuOjH536+U3AZEEKQc1qwG++5AKOvt1+6vzcYoTaYNsI3rce0NHQOJRcj12xs14rY2B786Rm49sKsliSksgj7b0MDQ0h1LBw1NLSQnNzc+g5ry/OxGFT8Ad07DaFD5fPAQyBzhfQ0SX4/Dr/9VItX7m8ZMbCW9LaNYiEBEPAEILEsjJGq6sJdNfi0DSkqbXXAa8uWZig0KtJekwzqQQOODSahcbxqu2sPvg50Hy4xzJQ1eVkJ8xFESqKUEBKml9pJn15VlTdhCeeXiJ1N0LYaPI7UQWTmsohxmohJUILAKDYlnHkbajbU0XGBT0EAgHzEGkIbcK4v/6W+Jr7uBRtBEUFTSOkCVp1y7h+s6Z8Dc9ffR2rag6yvKmWpGwvZC2CnnpDaANj8nYWhJHYifP8ZZK6Q6/gnR/AWStwPazi+ZgGqkBRHCE3kaCJ1K9LBGETaVCJLAFNwiPtvTzS3otfl+z0DLEkJXF8IE6soBlsa/sfDJ3Rm/NRun2bkdgQBMhKSMF5eh/NtDjrgtv7nrMQehxUqZ+qiL2MjHUgbEjpD/liJZjamtCANhlTOMv39e1CyvBMUcrxjvqnMlXH9Us3EBgMoNcMga6jo3F86CAAAb+fsZbmkC+J1AWtezv405v/zabbLmPFJRWGb9vDtSHBNXte2rSEtniay6Kiz86w9DLmk/HmttGeuMJAPHKLXdMXQCI6wocePcSuEgfzOjXyeyQXNF7HznlP4PF5uGPFHdG/M+vfk6TRvMJFYaHE7VY58M4VDA/nsGHDhgnfUWdhGll3rIjyceveFuE3FQjQ/v1/w1lSMiPNW2TEcaQ/ZIYnn53P1pP7gXnkFruo2dkW/Y5P4Of2nqIy42gygvfdeOAI28U+LmYT3/esI/HRUQa0RoRNIeuOFZP6/AUHNnXlBj5U9Tq5A33U1NRQV1cXClhaXZjBH+5YP67sQYHO59fRgTfru9nT2DtjzVtSWRlz770npB0d2b2H0X2GWczf/BaBuRWMyUS6/DorklRUIUBAk0/nhFenMyCpcWrYbQoXqIdD73l+Qh83XbeKw8dno/cYJlMd6ArIcXUTnnhG626c6ZdQmpDPKmR0ME0Mzc3NPPfcc4YwZgpk3py5qF4vDttSkDAm+jlSdyj6hzJkkiAtxmw6Ke61UHYrVN5LyOQZI3xVeoa5dUTBd81N2K+6jv955J+ZKzxQtAEWXQ1v/9IQ2lTnqfNzmyGRE+cW/0N0f8Wog8EAZP3cRtbP7Nhuv4A5V34x1NcHTaRazLkkhslOYsjCXT7/hD5uAF1Hd9DT8iaZBRuYvSjm/qsfNt6j6ofwLv8zUjgNjb5Q8Q4VWILb+57TFJo9ndxfkSr198pxr8KvO50U2qHJ7+TbXoXSYhcX3bSQ1x48GuXCIhTGmwuniEgyfE/sIY2bEPYoR/13k6ojXo6mWPPPpi0rGTyxnwca72Ne4xAqAiGh+e3X2Py5r1G9v5n2hnYCI9uRo4O89NudZBb8kNpKgaaFb7qt3oiAmzCi1MQYQIJRpBNHU8USNAuq3bvRDjhJypYkzdbCzzE0Q9eNz6CwdpomCpWeYf5zlh8tI4k3dLj11QHm9BRS2vZl3uqGE/se4oY5S8IDoVn/fS4HKNJUROikZ3Ry8cWfmPI9dRamRQkoSWvXgKKYGglA1w3BYJqCW1DDVtg0xtghWJC+kEVzoC9tHpsPfxZN2nlibxUX3bSQmjfbon8sxvu5PbjrBN954iC6lKcsKtPbNEDjgSN8v/Wn+DQ/PzrxJRzST8hYFGE2jiQYiXdyzBca2KSEVlcWuQOGr1qsyXR1Yca48gYFuv96qZY367vR5bsPXAjWy8juPWiDAyiuIpI2fA0UFbuikCghXVVDGhYkFNkVCp0qLRfk0t89gLPXz0mxnoIIU1f+BdeQf9Naap48xolXmun2SwZgnMk/I2MdiuIIWQ1AAWHjZ7VvUz8mcagOrp1/7YTljzaThh0I9dT5KP58APwOT5Qv35IFxTRvfx6fMwmHd4QLbr1lRs+MVTdD9UMTas1DPmBC4FdsvJG8mqIXm5nLH0jKUeBD/3la01xMZwwK9sGrUlMZPP49MAOxUMFbIkl9XiFXXhX1+wvTU7ArAnTDRBqpFljjSqJyYARdwss9A4aQb0aZRvq4dR3dwYETn0YKP60n7mcFd4WFt5ixyKkcQNiWR2n0zwUswe0MMOFL/C5CqKeivv7HNJ24G5AoinP6ub/eA9tr72ZlwggCOObTQr4gY8P+aKFNwMU3LxovvEwRkeRylbO6/A80Nt2Fz9tJfv6NUfc004jSYL62YLTg7678HaXZpTx+5E1k2qswUkzJaDHtB7sYmNfLWyNHsWfPorDDMJ9qmkb94UM0d3WiJ+uQtICkE0fJ1NNpf7KWBFfxuGtqETP9qBQb9qMhzZfdnk6EYyAj/c4pO8Aos6CUQApCTWHu5YMkRT1HEfM5fWaao+yt/iF0AVIINCRN2XYEggcvTiUgJfQl83j9j/jfTd80hDez/u1+EFIihYKi2Nl40adITMxhx44dM9cMRwygwmYzhLlpUtlRSWHTGN9+MIBdAzjCt1S475r5KLoKCAIBjWNVnSGtKgLmrcoipygt6jntberjO08cDPmJ+d5tVGaEZt6rL6b77gMk+jW+z+fZnXIQm1QRiJDZKN4gU+kZ5oaqOvzS0E4EBzYFSb4nOi3mdNwnVhdm8JXLS9jT2BsypQYDF2ZC6B32+UBRcBRfAYqKUFQj8s+sSxEVOmi8K4k9Y6Tv6kMF3q4TcM3vWefaT3PichobvRTRjD+1j8N9LxCwC2RaLu1duVHvsctVTnnZA7S1/QWvrwunYzZ7RlTqT/xlXCqYeLkFI6M5w1o0iSJyQ9fISMlmzNZMIBBAURTmL17KxrVraD50AEd2Hsc6utESm0lL65qee8QEJvRg+ebnFBg+YLqOqmuU1h5G6tBzOJGkrAFDaNv49RnX1XSIZzmIvZfqzmq+8fDnmHvCztCCIVaUGCZkDOUozloBijLOB7LClcyjpQt4pL2XB1t7CIdvQa9fQ5PGKQISbs2fxZwEx7g8bj0tbyKFHxSJ1P00tvwKR26yUcaijXhZjjewCKf9KOStIrE8EwEkleec0qj194IluJ1mJn2JZxhCPRUtLQ/RdOKu0Laue+NqbU5lYtM9jX9kydhz2MwJzdqUETJTUwHImHuCvIrfo+sweOJC1l55Ncs2Fow/yQSdUJBgYEJPz2tIGWCo7igpKYtC9+VetgJFUdGkRFHUKSNKI/O1+XQfTx17CoBnu76HfbaPlSML+NGJL+OsG0Q7Nof16YuY02lEOUpAT0zhcGuH6acCIHCkFbAp4RqULhv09tNoF/T4w6OMahMUlGREp9hQYUvGd8m1HQJFxb9qGSQDZhqDhvoHae/9KZLAhB3gyO49xoAXkpAFUgpGCj5JUvA5Nu4wzCkTmFUmY6Y5ytobPMyqOoY93UEAgdAVijr9NGbb0BQMlSs2RuwLws7e7rV4bvoPjp78V9PVXGHxou+g68umTigah5Hde8KOlULguv76GZlJK3IqaDmpYNPCYq5Ng4z+WjT1StBBFxr2+V7UunDwRvkHC8c9m50NPWh6+D1QhJi5cBOjmfcu/zPSr6MgEKisG1qOjiGAmRfBdU3xuEHmkfZefOYhAeDqzFTK0pKZ7x1m7xue0CAYG3U+GROZUmdC6B026yzQW49DakgdEApSGtqO9GsX4GsdYmRvB2gSYVOobPJgA1NolbxyNJX8m24KvTeKouBsOAxCZyS/BEQ3T277E5n54zW5be1/DvXTi4u+g0N9JioVzEQJbt1uN7fffjv79+/nZGMjHd3dSCEYSe/G1n0Mpz4fX1cCF/7NxbyxeztSSrZt28bWrVvJr7ggdE6Xq4eVq15CSv/0Es/GaM0jy9eZnolceRGxKU+HWhMZ6R6LmtSd6nQ68XyeY+9j594XuOStdFQpcPhU9GIPig2EUEh7zIbjhIJw2ONOuCpcybzVPxR1ZxKoHfGG+kEdcA/388VF0WOBt2mA5KEliEQ7UveDkAxQyb6q2ygve4AEfTHd/h8gAxKkgCcCoLUjbApJ5Tnv+dmcKizB7TQz6Us8hcAyUzo7n4/ZI8bl/qqsrOTZZ59FSjmjwTAeHs8+2pt/S0LYxxYb4BjYjsezkMaOv8NV7AMJsxa8zZyV5RgLYcRhAtNdPMfh+J2B4V+i6xrdJxon1bjF5muTSCo7KgnofoSQrBqdjwNz0NZhraeEPlmNMDZJKlnBiDci/YAQ5Es3irChCIGuSSrKZ3PSaQtFGgZ93PZua4xIsSFpGSshN/kd0DQy6g7AyllIIUFIEtKPG/2QmOieTbOgzQY+QxBFURAOB0lX3BA+KDhBCHiNioqT/iO28w5q+jrq5hLwG47XgcAkOcqad9O+Zy+/rFpCQ5aNDx4boij9FXKGjlGtlKAHZgHrjMyaMoDTe5SKnHDMUZt+lLDnisbxztd5+XCt0YEydb7ByPInrV2DcDiQfj/Cbsd13Za4v5mI0uxS7Fd8D0frG+idNWh9DQRUqJ7bxIDrV+QPLKAt7RgfnXstW75646TayPXFmTjthi+Yogj+dcvyKOFmWtGvccw3KMtAlwjzX33CCUrGClFQDPl8JDDlfc7ySj5Y1Uyb2k9JSQk1NTWA4Tg/k9yO8UypMyG2vrK/+HEGX3kJf5sX3TuIkpBG6qWlpKwzhA1HfgqjB7vx5yYz8nSj6aButGrvLHtMItoAATM1B0IBIdClPu7+ovtpL7a+5/j1RX/PtrbaUH8xWYLboAC3Y8cOOl5+2byeZIw92AOJCCWfzpY+I71JxO+B0DlTU1tNd5BpJNyO4xsdWb6TqbPQMLTXmqJSXbKEZcfrQEpG9OWhSV3UKgLT8IucDpGmZyGEaUmIJrfHyaA03t3RjiROvpnDvAtTWbh8KxmfWcxIefw2EalRtCtGepg42fhB1zjR3g6EBbfgvYrALNzp/4e+0mcYtO8j0jVl1vHZZtyGwOiOzCCYCVwPzhaW4HaaCb/ERlqHcUlUT6GvUXb2lfT27QhtF869I9qk2NzMs88+i27ObN9L8t2gQJWkew3tdkTOwu7uF43ONBhQIEAyzcz/MYx3HBbjnmPzoQMhHxOp67x8z3+TNbdoQuHt2vnX8kT9E6HZdNB/JRieXpN6HL3HEAI1dBzOVLKS5tA72orNZmPDBy7ime2vhSLEHL2d2Ef8kKSjSwUdGEmys+mji8ZdO5jfTgtIFEVQkFBLMDbKNRhg3r4UDs7JJynnaCj5brx7jkRgmCVRVdI//GFc122J7vDca41I0me/bjgkb/tGVAqA2M7bcavOwbbPGM/dbich86uM9RjpXRKS4zhRmxqhJ+XXuO8DLjQFVB3+fZefseTXeX3+fqQQuDpfwZ+wBMdYDZfnTP7O1TZU0tyyijzyEAhsqm1C8128wSfS4X2m6UC8TQOkV2WjL9mCXLyZDt8zNGxwcVFRCv976H8RCBZ1ryV912K41KjTmp1t1OxsGxeEsrowg+9cs4znDrZx9fI8blkXXtUl0kQoHA7m3ntP/LLGaOadZWWk2LIY3NGClDp+ofFi+k4WdhUZg40QKEm20L0EBdqbcmfxcFsvPilRgVm7T/CL0YOcTJ/FHE8vuapqmNZOQaT5TIgNUEgqK8NZUmI8G7+fgYwFHOd6bA/WkJtiJ+ntVoQEWd9PpiroC4COpNGuceul88hWhlAVYWjcpE6W34HLkUeN9BtO7Lbx75IhXISzgvX2vQH9u6judFI/Jnnq2FP8eOWPxyW4DRIUKBITE41oct1I3GobGUAXJ3Goc1i8fCH1be+M+33wnIOD+QhxGCkDk7b3kAY2YKw2wYf+EypujzLZzhnspVoIAhLsAkrrDgMSoULStZ8KnWqidDqxzGTNZJernJKF/8zR2u8hpU5t3b9FWUhGqqooaR2lQTHet6ScEeZs6ECzdVJb92+Ulz1AVtmnx992jMbzVzfdwmvSzoOtPUROU4Suo+o6l7rzo34fea+J/fMR9ksYJJgfTsduTw9Hqft1o2M1/enOJf82sAS3006k/0SI0xRJWlBwM2Bo3rKzrwxtB2lsbAwJbUE8Hk9U+P90iRSohBBo2FHxhb4f83bGDSiYtAOI81wiBV8hVDIzL8bpmB31M8NUqqBHCG+T+bmVZpfyuyt/FwpOAMOv6R/X/GMoVcVQq8bbz7/IZf1ruXhkHSL/AnoW9ZCzfjH5JUvQnIkhIdifPpuCpDKQhrmm0S8psSl4mwbGdYI9LUPoWlgg40M/gaZfQM0zABSPNkCLyvFcO6AhhEp+3kfi5q4D08wUCBiSs65j9x0jKcs/3i9ttMc4JnKpG4DGHXh7LojqvHta3kTHdNSWfpKyjxqCm4CxYf+4MtC4g/bRIl7LvoCAAiihs4TcAAAgAElEQVSCAJIjs3O40r6KvEFBzuACxmzDJARGaUsLsN23nTda3gj5F+blXU9L6yNAACnB7eqnPHUEe+Yhanw6xUuumFjbFmfwSbuk7F3nb/M2eNADOgKBJhTeys7C25vDnMwMcoeKufrQ36FKGx3tPv5StRcIp8+reastKghlb1Mf//r0IXwBnT2NvSzKTQ1ppyJNhNLvnziAIkYz79UXM/z2AaSU6OjsTTYG5f6METJ7kkGXeJ5uINAzytAbrcbAo2isuD6BHyxcEMrh9uuSNKTYgC4ElVLna20nWVs4a5wLRWxE7N6mPh7bdxIB3FA+55SsopBUNr6+XFu20ONLZZ+nDP2ID4604nMqLE5QTOFIGrndAhIFwULdToGmkFvoZmtZAo2VL5HizyVz1icQQmF+wEPHEi8rN63H7XZHCbV+2U90/n2JlH4K7VA7ZuRxaxANXHXVVaG1RYPPKFag2FCxmj3bnkIZGsAR8LHig2tZepHhYpCprmH/zleNS3Ucxl1xZVSEf1ra7VMLSJErn+h6KBeb27026lyfSJsVWqtz6ZdvZuTV50hauZikpDajr3WvjZtOJ5bp+KyFMPtwf1oPUhoJfyO1h8HJivD5WJuawOPlyeQvGQTVjPyNODZ2rIjVeKZ1tPCTjRu5KXcWj7Qbiym5h/upbTjGktEBVhWuiVqvdIV5ryPJtYxmHkVL6oaRcNH93QdwrroZ1zXF9D9xzOwvJfaCFJLX5J4z2jawBLczRtB/oq3tUcr3e3B5xk7L+mcFBTePE9iCxK6QIIRg7969Ey4lNBmxAtWstFV4QokroSD/RlJSFnHs6MMMe7wUFHwYwMzH5kcIeygXm8ezj77GR8nYfg+u/jFQ7UZOMPO55OUaZr/U1KXU1v2b8Rzb/xzqQPJLlnDZJz/Dy/f8N1LXUe32Kf3csvudrKhPwzNygr+v+/74HF3ZYD8ZwPaGFwUBOsx3V5BWYjyj0dFRggt4SCHoUAfI1zKRSBY4FfQ97XTt7UDZkE9bRJTh6w/VhrSTmi5p8eSRW7Aaap4juBRN8dKLyKz422nNcENmJp8PITSShl6g/a5Gnuj7FzSNsF9arD9lYmbIb8rJclB+YGhrFEFmwQba2h4w6lax4etdPOmqADUJqxjw1ZDgNX3+TN+/Nk85A327ua7/NjRpAxQjYaoS4LWF96EqAZ7c+ySlV5ficpVTkH8TLa0PmjlJdRYu3I0QkrlSYEvdPGGQQuzgIwMddP/Pc+86+a6z2IUujOS2EklG62o8TYKuao3i2WUoZiAAROQ7NtFi0k1Mlu8s1kQ4aQBFhGbeu70ZGQj7uF0wtJILh1YB4ZxW0q8ztKMlMtYF71P30ffhO5DSZuiWgnnEhEBD4aDM5AtzV+J0hweoyEhrmyLYtCibV452EjAnH3/ae5KH7jx1a5dCtCbyZNFV6HPDddgdMLPlS+OzOxA2lElNsuORWjbeVIJ71SbsO5/g4PDfkplg1FeuzCA1w8Hz/c+zvqeMjMfGQu9M8q3LURRnRGSp8RyTFBFaXaVYFrNt2zY0TaOpqYmcnBzcbvc4gcKR5mLzDXdSt2cvC9esZsUlZv635t3w7Nep1regoVL19A5KqmpwJbpYuXYd+W434J7aKlG00dC0BSfhuhZKwhuZLcANYaf8K28haekCo83XhrMYOAvXjkunE8t0fNZC92f2KRmuBJRVLnSpRWkPIycrGYMjJOpjbE+XLJGGMGJTwxP88amRxi/phXmPwft856WDBP58L6O6zs+qKnnk2k8aWkdzvdLCW3WOtvwUiQ9GwoEkQkLG9vtg1nXoI3mm0AZI8J8cwtPRgD03+ZwR3izB7T0ynfxhUS++9NOXCq5+M5J0/4OnXPsWOcuIjKaJXSHhvZhMIzWJrW2P4vHsBWwkJRWRnDSPlJRFjPbMZ88DH0IL6By26ay57eGQBk5KH41Nd1GUcBH7Tn4fXQZQliVR/o4f16DxXDxptqjGa5Q5fgey8vKryZpbNK1cbpHpQ3QF0tZIOjOio8e8TQPM9s9iWG1H1yVCFVGz0WAnEghoCCBHc6EHI+CCY4kuCbx+ktphjT3yOGnZieEoRAxH9QJXG/Q0G8KqHgglznW5ykP3NpGWcqSqCs/jT5C8YQO2QAsux1skZY5xZLgELSCRiHBOsati/Ckj/KbG+iQkBgAbCEhLWEV5WTj579LC+RP6ce1t6uPjT/q5gArGnEa6FKkIhC4ZcSq8qV3IHGmjJdNJY7ZKUadGxkgrKz2LkEj0PTrNyw2Nb17e9bS2PYamBbW0RmoQVUjaav5Mfd06VFUN5RgLEpnLTQY6aPuHO6c2P06BIhQk5soEmmoK74a4pgsNYfrnKKpZ1aYAFwxCCTJpvrM4JsJgvcbuq/QM81bjES70VLEiZUXYnINAMR3zg8JkMJdV2PknGNFaTEXzUeypy9F13TCvR5AkHeNMZVGCpyZ54XBH1G98AZ3H9p1814Jb5L0CDL1+EF+HDceiD+M/8TbpvUdR5l6Nbq7O2KdJ3hrScDtEzAKVBp2Ng0bqnY8n0OJbSlcAFgBBZ9FtNc9yT8/jdPVeza2Bzcb7GtBxthZRXm6888PDdbR3PAFILknz4p5VToe9hO6W7rg+brECRaoji7ce6UALLKSreYjZhR6j3TTuoFHPRUNFoqBJwZGTvSB7OPTqS2z58g3YUjumF1H6of+EZ75m+D3GJOGN1JDmedvDfWLHDry+eXj1ZTi1QzjNscdZtBHnJROPPRkZ61CEDV36USZbMzlinWSXZ4xy5eP0FRZH3U9wsqL7fPSkOOlPSGS4Y4xfAx+dW8bfLP+6qV37zbi+vqjosyGNYle6j3t69nGx0sWmAuPcrbVHePme/w5ZXpqy3aGUKMFcblnOg0j80S+OhPz2MUOZ0rgDZ8oGkD4g6BYiLB+3vyaCAkDA70dRFC775GdYefnV446L8nMTKhmD5rK4QjEaXHDAPgXat8jM0sFZRlB4KyoqwmazhaKtgPfk0+JylZvJcQMEZ6mjo42MjDTQ07uDJO9P0AKJobUuh/u9UW9cT/fLONueRc+1GU7DAvrS7bgGA4AYN9MDI5t5ZKLfSKa7ckJk+hCpS3J6nHRmeFGFSkVOBQer95L6pyEUXeCXAV5Mf5vt6ZV8eOwWbjQX8QgmMd716ju07PFTr6VhS5Rk26IHQwFkqoJer05fW1gvLxT4wJV2cl++3hCgFBVWbzXyM0W8AxOZKUaqqmjaensoKEHYbbgutYFQKUioRR0VBDQj2i7BexJ2PGYIbBu/bsyMPc2g2BjptNN9ogLHImGsfpVcR/2eF8lecTlFiz5r1jMTRpIGB/bt6hxuGNmFXW7Cr6uoOri7vDRk7gfHYh64ONX0fZNc804fOYMYjvQ6oQHQSPvyexobX6C9YyeqesC4iCSk3dQ0jf3794/Xupm53Lr/57npmR8nwdvgQehBkQhm26F/TEcIQWlKBdqSfmYPFZCZlBXKSViz08jntnh9Hu0px3n6QCWpchHdPXkhH7c367sp6WmktPsYh1/SWP2pa8aZCOP5vR0uLuEjVbX4dYFdX8GjVd9kxbU/YvhkNiN7O0yzbjjoRgpJ6kY3w2+3mcIdgMKYvp65bwse/Ns8ftzXxa4RX2jJJUXC5vYAzouj6zkoeI5Nkkj7T5XNfPhdmEyj0oDYbKjp80hc9yVQbNiLCrDPvRCx5xdcvSkVT7ud0WQ7qYtnMVjTS15DP0KC2y55cyhAnxYWXLWApKX6GAX2A1RqN9AwprAwwUaH6Gd+33yu5APsT6nhFuVqVF0JmQidLuMdrKq6Paqc+tAeHus6QLYvm43qRtCI6jODfcGBfTWM9uvs33OEMaHw/9k78+g4rjLt/25VL1JrabXWlmTJsqzFkjdZlnc7cUL2xGQjgQSGZBgyQ+Yb+CaQCQQIZGAgGSCsw5YAQyAkkDibs++L43iJbNmyZclabO271Got3eruqnu/P6q7JdmyEwIDnO/Me46PbXWp+1Z11b3vfd7nfR6bSp0rxly0hSJ+iY4Z5WTNdHU5csN0DH4RhgyE0Ckvu/O0lRMAam6E/kOzRHgj0L6T/bI0jpAuiAxyZf9TKNPSt/zQNTdA+OszLgD77sCp32+J8J5h7XG31FN9cARfqo5nQuAuMWD2bdK1zwIgDsz1SXYXX4M7+p5x3cz8GsR3b2fHg9/GOZlFYb9gwaDixXWD/MBsZlmpRhWn54YXFBTQpg3xr80ODJXGL30RfsMBtuZX0/DGq/GkDaCwvx27JuKI28a0ZJL6lyGwW4gbFqqmKUHuYCSu7OBs30mSPsKUeSGWnbsC8b8ct/9voqvhMEYkYsH2psnLv/zpvKT4GDrl8+3FE07B/dYt1gtKWjsmJU/xnHu/MUdZeh7F6JjB8cqVKxkYGDiFr/HHxuwOIglo0R2glBFcWc3otlUzXpcLruZE/3NE23VQSCaV03K6Ftbi4Rkz8Kcl4itIxG5Pm1OODYWHOGWL/T6iYOlyhK5jShOpKfozphEIrii5AoCnXnuE682LEGhoaAzafTQkttK09xuUekrjwrH2SCq9tRHC9jH6jSHkeJisjBWIuZs5hs1Tx1y0IpPp3nr6g0V47Y1W3uteYEljzELYTlemCOx7ByKz3CQM05IA2ZCGt2gLm9vzefOhZqSUvPXcBBkZD+NNuBtKL4CWl6zNgqYTsK3HGG7BUWoSSGulu+YelIgw0PnwXGHK08RsS6SkQB+P1n+GB90X0j5p45B3LyOp3QQXbsPQM6IlOehNy8Q7YYm9CiEo8u+GLicUrMXtrmblymrC7X9gpPWwpYYuNQYHFsc/82QD+tlcpebsLOrPPosFnV2U9PT8UfptsYjbSUUMlFKEpARhCU6E25zYOnPYdItVio8hkVuvXwLMiPeGzDBS6gQ7P4kIFXHZilwqRjv4j10/x24aaG2vEqjOPyWpnI/39nZ6HhGlMIUOQvF2SiU107twXvk5kqpzaD/cyP3Hf0tRMA8NjfUXnk9hVTGJSzMZe6qNSPes62XCst4Qd1QXcfX+ZsJSIVD8c+MY60sLMEfbGH5+Bu2LyX187akGDnXP4ysKGKZ6X9p0c2RAIhH0tGIQely3Dd1G2vW3EWkwyDDCoAkSnBqJE9NWshnVrYs4wQzMLGa6DvnJbXidrXzQ8ysCxscZ0OA5Rx0SSfJEJiPuJiauSabQl31KiXB2k5cC6gIaEsmQc4iMzRms0FecUrK3R1Jpez3ASOohQIJHw+NbQYJKm0FgC9ZScNlt3PD0t3g7sowmWzlKWVZcaZ4hEJZkj5IGTce+OofQP294VzKnFp6YMQchzZnsRkYsdMmMRBjrtOGOuQCgLORNOwpm6PQSQdHyrlsauP1YO87Zx8YbJaZnxoKY45N8smXctsXbOJbrpKpZxGkoOSNORtKn4hWPOWvmSQjkG0NdGGoBUugYSvFK31HKphJpeP2l+DFC0/j4ZZexsnRB3K90+ZjJ8AMa2TnXMbDktyBMUBppHecxlLoLNl4bTzRdjlsJBM9FYQNNJ+3yxX8zaBv8b+L2J0XB0uUWSTbGdZKShjdenRf1iZe+dt4TrasoYvYoVqjTes79MbExLRm7Rc7BLogrRp9MoPV6vfPyNf7YcLurSS76Cs/s+RH6RDZrFtVj1ywB1cLFZ5N1y0yZDSDR+AxB24+wiO86Owe2IgcECxY0kJ1mMFS9ii6OIkceQfM9SVnpl5mYOEpv33aGh18m3p6tzPfVpQoWMpf40Q28+fYO+jOCDHnC6OgoFDvadtCQ0MQ14nzLMUmY1LuaATCk5MmmnfHEbc/LrzHqPggCtCTIHjIwzUpsWvSx0sC2aQFpXZP4Ds4InAoNOo+M0G7moak7WeJ6jSVJb+Mt2nIKwlZW+uV5d56utWvAbp+FuNktCZBoIjDd0B69LwUmOj2hSrz2Jmh6euZCSHCtXMLway8R2PN9AldlzhKmNBjp2fWuidtsHa8rJuvQ95hc3jVJLxn4UzdhL6/kTt3yt7SQnblir+WqlYLap6Du23DjM3SRS3t7O/XmMC8MJbJOpeHsW87kxExDSktLS7yhJt5RGpE02nrYZWuCnBz6c3JI3XYZmfss3uUfg7o5F6YyfrYd18sRNCFY4bIzMRHBJ6OIjilp2tPHsd39p+jb1Q7UEjLDKCQIhe46Tji4kCcO9vLhoVbspoGOAsOYFw2cj/e2MS3ZKtpIA7sy2DhxFIpuiI+1iApu4O847GqhZNkySoPFjL/WheayEembmntyNqvjtOzAKN+LwG+6G8kdG0KN+xnI3YC44db4Z+d86YuYY34q1q7hw2sKOdJ7BCkVmhbthYmu0+9XeHf2uaLrmGPHQUmUEtHkTaAlpKKMUeuxNxXTR0fjBSwThSkkMuFljjgWcal3EWnBDpZM/YqhOkH99EepSPkgDk2nVW/GRMY5mDeKa1lWtXrecc1u8ppOXEpd78PowupA31S5iYpgMaFWPyE503zU0+xjWvNB7DNQ5KzUWFqcTMehF5BGlL5RcyN6MIX+n91Por0FmZxK6ZJKVp79aTqGvoBSpgWCSpOOlqdYUXOG+S04goUIWW4PXf2DZKjjrJtqZWF3B3b3JBomCoGOSVqhAQMaKmIiMHFqhwnJJYTUSpwJm+a3cmrfOddsWmhz9UZjlItZSdtBVzK1bjc1gwepyq6aYxkXkREEgpEsiWxV1jIgFGGnYrETlmqd+P0H4uvlfPP72VkF/HI0gqEUNkzyJx6mvbdvpvFOCJafeyHhNWdxR7T6tMc/SaFMYbEhMe2TM9+TUowWvcIoJl1T91PtvwR3wVqcn/gOmXV1lrn8qmV/U0kb/G/i9idFXlkFxdVraavd895/6WSSeMkHoh2FM3D3e0ncDr9Weyr5FSjlGLerf6dBlbGUZkr5KnBqR05jY2P8/4ZhzFt+ereIIUMNtZOkv/FVhBJ0djSTtvUgF67+VPTBA9P5LO0dT3Nidym+1rNIyv43ys7rYU/tEP6JTHJymsnI7MEEOtQAMfKKlBEikTESEvKi5dj3Jo/xXmL96gv45cgjhE0DHR2hCR5tftRKupLhi4U/ZHmglHpXM42JJ6JEVRt9A1aLeW9zI02Hn4N0Lwhr5+/2lKKZM+KlrjVe0i8tpu/5dk4cGo4PPy3HxVh/wCoh46AhcAHHwhdyeaScad+DcxC2SGRs3p2na9UqFt7/a/xPPAlwigRIfpkHXZMW2olJvuMkn0QE6A5cH/gQOYmrmXjxJRxpK/CpPShpgNIIulpparqD3NwrCY6cnucW0/Hq3/0BnhipwYwtrUF47agDuUxFydSKtKkILTkLrTFOjLJJvWN9r2aYrl1/4P5WD6ZpInRBMCeXl5XB5slM9FmfJ6Xk+PGXMc1pHMcXoSIWotwuBmfY+cDRQ4fIeuPN98V16xvqZjHpCKEhlElmuh+fLxWkhh41ZZ/R47PKYQDeY0vxTi6mN6kVlA0jMOOicShzMdcJDaEkmq7PQQPjvNTiMipn8d6OFpfxdnsj/9D9KA2uRVw69CY1lWdZv7TzHkIJmxjeYZJkSDbYFuFOymH4aUsaJVYGjYV9gdUd53/6uMXrsnewSmuzuIaaoG33iyyObgRUOEzfv3/N+nW7nT9s/idkaiGasLiZhlTowvru01wOHjvQHb8X3mucLAMC4H+2C3Mi+h4CtBTHLD5f/MdIBc1inHX2u/i4dpSPazZsEwLMMIcDlbzYk0WFOwuFjSFtgmY9ak2mLPpAwcSZF+LZTV73pZ9P7UAtmcOZHHqijuGuYywx8ubonuWXeUh4wcMUnaAkuk2nfImHV3/2zVOs+LqGTUKOJIzEJGxTEyzIz6Nk+VX0Pb2LaecTlnySFLxzpBNZePC0HqkUbQGb03p2tALur5vGMN+mMtVg1fghmnUnUrOQ4nNyTiC1YzQVB9E7BjCn91OMh4TwrSgciB0mjtSdTDmPzEW4Yp8xW3pk9vp0kibkwYQEbvJmET7+BI6OZ7nvgvuoyanBoTsIm2EEgiXpS9j2kW3scm8n9Hw9Sik+MOKibOMogYGHODD06Bk7V9XeVm6KvMRQpptK0UCpbCE5bzW6zRa/1sb6rXznRD9hGW1mkYr9Hp0Sm4bLtwSh7NY8B0R5EUglZ8CAgrU4C9b+TfiSzhf/m7j9ibHsokqm5LOM9yQSGknBW7KO/c+3n94e6GTR3YGjMyhIFO5+tzj8Wi0v/uw/AJMT+59jrP8GHAkRMkpsTBg7KFFHKeEIKD1+I55MoK2oqJjjsVdXV8fKlSvfc/LW0/NQVKfHJD/Vhpn+WaZHStCUTup0xpzjmo59GaUgq2oPCVmH8TVfREfzKvx+S0MnM6sTmO1SJABtTnI2u2Qak8cAaG//6bxk3jOpgcf4FjH5j97JXh5tfhSJxFQmn8r4e7wyjecnn2FxdzIbEi5lp1NwKFjAYb+frzf/iMWuCNqEH82Ti7JGS66yFhyFQrPrJEWVtq0kasa/1D8YiGu5xc7XlNDR8hbuhb0IEbP6OQMRmLkSCm+9U8fOh59iy6IFbPZG8Pbs5PJLcml65TCToQmO+JKQbg95ieMWn27Vx2DldQSG7QzcdTciKR9X+nUUDNyGP38X/gVvMhp4DQLQ27udrjc+x9Rg8RndE3r8uZjMbYApHDSxKZOItMRAR1IcjKQW0Zy3kC8NPc4LPVOstCWS5YKO8DimmWohhSbctOAmxheMU6yKCXQGqKurQ0qJ2z2CKf9A2/EImrCzwHMbib7FFJnZ9Gij8c9e0Nl5Rq7b6e6RWv8ULxcVMdExwcoxE1Mz+XXB7xjyRlgyvI6zF5xNVkEKum3GNSEhyR53mLhc/xe25+6m0/AggwvnfKaIJlOzm1RO5aWWUbNqVfznYakh869FQ7LHvYKK+lup2fNTkAYh81qU8VFiUijBI8NxaRSUsnSosHSo0rYtniOd4jXS0BM0TCXRhcC9d298TApAWi0BZjjEluP7OFRViFTE72OlrOaUGBPg/XSYnszx09MXxxFUhMCRl0xSdQ5TBwYI7OtHRa+bArplA+doR7EJq+krJpjaMlkABOhUfYzZGvFpU0hiHc9QZuZSXFL6nseYEcoguSGZg00HATihWShRhZEfJ6x7i91c8+mtHN6fS8ThZ3n1Enprd8e5tCHdyQvPvMh5ick4snMJFJSCEISVwmGfhp33sNi9kacfP0Ji9jj+vkQeX1TPz168ifsuuM+6T07yVp69lrT7czH2twBgahqd+bmooA+i5eQWWUjjgSCGcdSaaJ2L2CuKuVgEyVFOAknN0W7Lk1wbziQS37XP0oRUM0l1bYKDsDKQEG/2+uTyT3Lbmtv45t5vIpXkW+98y0roUlewi3pQiuScSZQyEOLM4sP1Lz/H7pdfwrXYzmXpOxBCYkqBy7mca+64lq6Gw4yWLOXmUYOwnIg5z6IB9f0nqDjfwybzPNLySvAPPQv19XSWNqGEQsxab/7cbhJ/7vjfxO1PCL//AF0jd+BdE8Zbo+MRX+HtxyYxjfEz2wPNFt1t30kM7g4MOwk8+goufeVp0YH+4372P/cW1iylAIN9T/43ruwAJUnttNnKOMrlVNJIudY+h9Q5W+OnoKCA/v5+amtrAQvFeK+dpX7/gWjSFqXYagauLKucWHj299BsJgfqdlC96rd0dTwdrwgrBSn5B0nJPYwzvJX+cSdj/gyGhwrxePrixy0s/CQ2W+qchGw26gTEu1ktscq52kJnUgM/mW9x3wX3QY5lgxWREZZNl3Dp7mqECVXmzQhAGBpXTCruMltZOL0HW8s4XcEgNk2R3TdEXtZa8lQ6OdJqfz8x1UDJR86Kf6a32M2STbk0vNlrXWsTMl1TDJuuOArnyjzOlOO7TPbGyg5WFjs5eSwugXI6DaW33qnjo6NhIul5/Gw0zO+e+SKbRR0YSzk6eRNB/2NAMkfGq7j28hXkbbiM2tSlvD02SWX9K+SHw5hrMxhd/DwuXyX2YAaz7ZuViuBMb2JyoHgu2fqkyC/zIHRQpqI7w0Z7to1Fg9P8597f8V+LPkJbjjOaSICB4HsOSXlOMvnZYcaFQvAm7tELGfOngwaZ+Zlcu/xa681XWLzM9vZ2UlN3MTwSwerSNpAbB+G5EipUPpjQkdBBWaab7J5elK7PK7VxuntkJonS+N26VG4f6UUlttAw3Eq5fx2lA2sZ6A8xcqiFzdeWMj0VIb/MQ0+zL47ACQm3FF9Fl9eOx+XA1zlBX8sYHB9BlyYaYJgGTz38A8rz/5W3g7nz8lLjRuFRgrQUOiEBD2efR03rEQ467bRqzawbs+R1hE0jcVkm4fbx+Hm5LytGBow5C1BMOsWre7ju4mtoHGglePRoHJ2LS4pE/2jA+Z21vFpYw9H0ovg1rPB1sGyolUOZi2lKL3rfJvOzw7kwdY6O1uiTbbyV6SBvXR7pVdn4o00gXRFFg7OACDZQETSh0R8poydUQXaCn9ZwCv25GfSLPuIQrAIdjVIzj9TkmdL75N4+hlveIrTwBN4V550iWn7//ffHxbZjcdjWQYZKIWvWc+AtdiONFLoa2tGDk5a+pG4j7HQQKCylY8zHr399P6tK86z5MMqbnNz/ILCPPN3BZVf+mMca9vJ4wmsMeqbRpc5TbU+xo23HqZJFEF9Lirq64EAbShrYpMTl9xF0xEYm8KVbXON4nVsITKXo03zkmG4CnqZot+WpHfsHnQ5q09zUOB3Mwf5OKZNCzXQYBxoRiFuFAfjDfqSSLO42WdYZ5FjCDrasuCbONfb3JZKlFHahnbaa0tvcyMu//Ck2ZyIT/jLaWmvIzOpgvMmJyOnj/JuuIq+sgh92DBAZ7osnbRV2aJo2eMGewsuhMPd5x7m4fAtZ5VvwZz9AZ/fXADNqx/c/4ybx546/WuImhEgH/gAUAe3AtUop30nHVA+V6jYAACAASURBVAE/BVKxMpVvKKX+8Jcd6enjzb4GXpKXUMkRSkUbQaMd0/DOKZ8kZrSdWY8rCkUHBhSdr3lQ6gDiuU/MW9qJ+UaGg5lYNtEmUVyd5NxJWrVS7uKrGNiwC8n9pfqcz5yt8QPWQnjw4MF5lcDPFFYnabTBQAEIpoZKcWU3IXSrpBl7+OXkBtD3zHFWQDMJJ7zC8mV2QoduID37CqZbT+DMGKJwdJr80nNOKRfH+A7vxQLrTGrgJ/MtYjvC+y64j6fanmJ5c0E8J9aEpZQlhGBUjLIgoRsjKRdD5WDzjzBBEgweI8VeTk7KIoQQCDSUlHQPNZHPivj4l6zPpWlXn4VWKMXwpDMK0VuTRe7SrqjTRGwSVChl0NHxi3fVUNrZ1EAktwKp60SAnc4VbA7V0jNdRiTUQ+yETFPSZV9Gb+rSGYSnsIK7zioj54pdKBsI9TServOxpjwz+p3ZCZ1Oy22WaHKPXkpdShvVrjEe2HAupibYqZx8Y08SZzUEac9yYkY7N3QkW+Qx1iUmYhNWd6OSEZavnOK+w4MMOAd4uv5pfpJ6K1mM4vGso6CgmoKCAvz+JEZ9v43z/rwrziOhsISWl95m8s3XKD9xlKyJSXJu/wLmmH9ePbfT3SNzmnsQhNfUcFZiPk9t38nmEx9CUxogMCKSo7t62XJtWTyJnY3ArV2XxweL3dYz+8Bxcg2J6dnIqLsWz3grpq54OHk/nS/exC2b78MeVWiPdb9BlK+qWUKzMsrHUULj97mXUOV7le8ljxAWgyxP+S53DBZSdOnHca6xulyn3ulHT3Vg1zpwTv0eDgvQriOm23WirpmmYCfTbV20tLQgTZOmrWez9bXXyRgZmdMCJAA7kstUP02iCKmgYrSdu96+F82I8BHNxu2b/4nj2cXvi+s2OwJ1dUy+fhxktvUDKcnomKKzrRnnohR6DMWIodA1weaCbBpCV7F6+hEGQiU8OfpVTGzoGORmP0Gb0OI5G0qRZ3qoNovJFmlMJeikYiVtfa8+T1fNt1ChCL37f0316gfiz9jsqsTsCzIugjyr15GlraAAa26ZLTOk22yc9albSFvzQXo7uiwivADTNGC4BU3oUdlESXJwiL2TuRQkTZBHO5uvup77X3wNXVr6cQp1ypx1cvm0oKCAgrUXM/T4b9h0ZD96cIq9i/OQQqDrOvl7D9K7Zi1Ks+5fFGjo5Eo3QXcbkYRhBDrqJBrKzEY3hENo3Fd9G1XLrrc+tGiLhd7Puj5V00Hu6+unNtFFzQe+ER+n2+FmcbfJVx4ysZnA7ofZ+RWYurKExoO76csIkjLs4mOL1nDBkn+Zd63sajhs6XQGpwg5hjhamk8lPkrWtMBAb/y42HMTe54WTHVy1J6Hil7zV7t6uXj5UgB8jomZbuwobzr9RNbM3BCRTD3zIs5thX9WvdU/Nf6aiNsXgFeUUncLIb4Q/f/nTzomAHxcKdUihMgD9gshXlBKjf2lB3ty1Pqn+HT/MsKiEpsy+JL4JuWpC3FmteDKaLFESx391NZ+DYQZJ5pHImNzk7goFB34yY9Q6sAZSzuxXb1my8OR8iEczn6mAzaMwOsY0zqNYikGNqvbBo16I4+tZziH+VC49xIezzoQdkwZRil4sT+b4aRj2FKOcr1mh1mii3LBJIf3V2FPHsCRMmjB6iJathAm+SljLBo3SO0/Bn2WwTiv3wVbb5/3QZnPAksInd76SRzhRvLKKs6oBh7jW7hHBHmjiZSWZ8df29G2g8OBfJbxaezYLHNr6xPo1XyWPK6VeWKkZSHQeMVxMc5pO4ujreUCwaKU5diy5i5gM6hbTxR+JLrztfCNvoYCCs+xR5M3CUqAkASD7SCghSU0ihVcaV9H0ew37trHlrb/5mfZ37R2uabBllB9XBbEnnAOxrSV5Os2GwVLl7N9VnKiEDz4kX/iUvOHlIpjKCL4il6wxoBOVua5LFz4j1QWzeW4zYgm/xr3WBA0Df/iz1NmayWUb0fqFkKkJOzLzmbFgWk+/rqPQ0WJBFOD5GbsZ7V7kkVEOxWjt0TPQAON7gASRbENxo5/hXFMhHCwuvoBxsezaG+fIj/vHhyOE/Fnqballme79yCLctALs9j6xptkjvnJ/KdTrXPA6hxFE2Ba5cTYPXLypL8xLZkqdxXXptwY91aMaabFNcM+W02PLumrTsUc7iOhuI/+5DS8VNHT7MOILgK60NhedT3JU7+nqaKVlgWgywiBiVq2V113ivZijTuJ7VUlvHlimAO+SV4hjBICU2k8l15DOPIiUgiOuNrZ6T5E+YCDUEclYzvawLTwk+mjBmm2XpJtLxCqfYdQ1bcYyk/nkcPPxROS/lQPve5M8v3DjK3bSm5rAHPoGIbvOEpgCf1qGhuri3H0Wh3Eq0aPY5MGAoVQJh9PHKH8puv/eB/WWRGTuNGSC3BtugWl25FAWMJZyTa0oSC5Lp3dUyZjUtHbpBjgChak19ETXoqJDYWOiWIBHk4gkLEdo4KJiU6GZBHNKszEg81cnpOEfmSYQHpTvClHqrmbo9kUEyEESQkuJgJWl64p5+pfHn3rHYxIBDPBRSA1kx0vvQIIVApYyZI1OufwYSTW9VAKXu0vRgQD6MOSayiiKrsqvpFUKCrSK+J2fLNRrJNj2plGhjZI1tgISsL6E70cWF5MUcZixiaOxBMUAZSb+ZSaWaSmDtFV8x2UMBBKJz//w3NcWqyNbgiJIs8WoqX+SyxySNxlH7Pm51Ufg9pfzRlH1fQ0VaEI+PriP/OH/SzrVNhMyyTBjJg0vPQwz2x2QhmYymTCSKB00Wdwu+fn9BUsXY5ms9OV4eWR9X+Pqek8icHt3MmmSsecY6/1pgNwSfIQTU338hpfxlBgU4r1YzbGX+silNfOtOqNSkzNrFlOEZsbrKpDoNND0q9uxfmJ7/zNJG9/zcTtcojnFfcDr3NS4qaUap71714hxCCQBfzVE7e3xyaJKIFExxQabZ5/4cVj/8ZNZ02iC4XATmtjCunlkajnbSju3XZKyatgLa5rP4t47hNnVFHPL/Og2zTCwW6U2U3RytW0H7aj5wRZsOlXhEQDNoyobo0W37nD6UVcT0bh3muMOys5PHSEdwI6neYk69dMcfPKu1nklHNKmh2DN5OcHwZlx2v/LNPt+/HnvokSEqFsJI1X4FwhoEtYyQoSjr8OHbvn1RY62bHB7foA+//QwmTfTt6x7Y4TgE+nBl6VXcV3Su+g9rlfgKk4ePzXADw4/gwhM0Sjq43bC39I5dAljAyZVPsPUZy8FGU30NM1pJJRgVOBUIp8h4NLtBm+jBACDZ2UyKnlIgt168U0TDRlkjHWxFCGhcoFhhaRNHIbrmIfR17z4/LuJymnEaEpmmU5d+l3YmDjyVaN7clTMxIv7TvZLOr47xe+wHbvhdgX5JNw/d0w8CbYNlJ5wsPkaCYJrkEqN68hr6yCjf6pGSQHRa3M4ZD4Kl/ka5SqFhRmNKFUmOY0YCWeMWRpNuqpLU2guj6Ee8Jga+t/8pq4kZKpOoSUCKHQpcDVuYzC9HvJnVgL7dU8cG4qx8S5vMVZ3K7upEw0ExPBTO8+gSMni4ims0K3I1TAIg6bYQ4feZTXX0uMI8Q33HADbnfBjAcvgKZhCsGQ18vqd5MCETN/R/qnCB33s7zYzfaqErZ3t+AIHcUWUkAVYe8YUsuKivDOaPWZhmLf3l5uPXICw9GOq/AXMGGw/Xk7l2X/Oxumy2dXkrjo4tXsTkimY+hOdGXEF+KqWervs2P5mEnuo90sSYKdNS4MIbErycVj9TQlaUSUxK4UNdPTgCB03A+z5Gfq3Q72p9/C2f58Fo9eitoTodaxE1ObSdqeWrEJqWkckJJN4RGc9gQoMwjs+i6mv93arEhJws9/yEN3/YC3E/LYeFYK2u2voiIRdLudK27chuukpO3dfFhPTuz8TzwJ4TBytI3AW99lsuY6msxcMu2axVOK8i0ydMGoYW0sTBQ94aXkOxow7T6mHZMkhJMp18GIlHJQ72BKC1koWVoK9cOHcYUWodnz6Gn2Ub4sE9erSxDFFll9Ntrk9x/ANPdy7bU1DAwkISPTuF4N8rx+EBNL1y/mRtN/3E/zPhtmQgqBwpKZzVlURLpQE+REjpGtd/Is56KwkC8pNMKuNBzBICY2uoZNYg6bs8ujMT7umqFU8h/fR2CtOuV6ri/O4NuZG/jQ1jeIDOp4s/0859xAqKuR6QX5KE2PjytZOfCSynjGvShhRDvJJWIoBdGXRajY6pityanBITTybCE+lR3GIQQHur9OdU6ltY6svA7qHoiWTGPPkxbXRItFTU4NryxyYuwKggmGDkcKrYTt6tKryU3OncvfmyfyyirYfN7F/GBUYggbSmgYStGoraQidxs/7BjAY9O5o7UnzhfdktNAKY18kTs5qpaxvjuLtU3rGeh8ma7V30LpBkLYyM+blbC6IWmJYKohRhTQCEXKcb7HxsG/RPw1E7ccpVQfgFKqTwiRfaaDhRBrAQfQdprX/xH4R4DCwsL5DvmzxtyduUaCHGahPYQmFJqweEFSKZQZlcZUCk3ENM5C+Nq34145k0DNZ7R8cniL3SzdorH30e2AwZFX3qZy63WkLlZM2xSlNFs3KMs437uCGrf1Hv7mByx3AuZJGv/IiC3aqTLMmiTJ/qADh+7g5pU3z8Di8TLDjPo1IkI4ZQ+F6/6BSM/VTNjrSYmsIGNrGs4XrrBazoWgS+XSrvIpMnopmOdBOVnfp+nVViZ6O0BJjEgk7lEaE2SdLxJ6pxGSaEdthF8+ew91xRapXSloTOhivzKpSg5xa+JxNHEtQujkhv28mtrK9JSFEmlKsdpwYReCQeGnTxvFKz14NQ/jk0N0/Vc9aVUF5G9eEf/+rvjcatpfbyBtrJWEik288MxENJEzcD/+W8bWfYbRlhRMA5JyjqGk5CjLMZQNKQSRk7X5irYQGE3E15bMMxeeQ0S38WSPxs+9H6P9J42YRi9mQojFW3MxE61EvsadxNdL8vlxUxsd2FGahiFtdIxey1p/bRRxM0FIRn27GKt7Z849Mxv1nC2aXO+0ES5r5buhUaobXsbFWSwalOSNSDoy07ki+Q886F2BIbSZSVcspVQ1I4DcwQjj0xn8W08BQ8UF5KaUIuV9CCFRSqO7OwnTjJyiXD/Hg1dZwrkVH7npjCjPnATHUHFOlbBpJFydwCtHPkXYDPPcUYtTtMSzhEeyX8QZSqLQV4kenTp1m6DLJomYCrvrOAiLYB2RER4+/DrH+x1sjE2zAnIS7Hz9osu4enDBqWTz04xTGZIVY/DTdwLsT7dRMxbm3Kp/oLLuFmqddmqmp6mKKFh5HU7pBt1CEuvdGjevcRER8Ev1MT7bOE2P02BiIkj2uPX+ve5MpGZ9H1IIjnvcbB2LoDQdW2YZ5tgJYp6NKhKhoLOJ//NPZwElBLy/ouXFN6nPXMxUehGzxTXm6NGFQvifePJdhYZnh89U1E1nIjVpGaUl6siozVWiBoV2DacGowbkO48SsY8zln4YE41pJHXmBLV6SxxlIrrRCieOYhvej8N9Ffllq0kudpPLRdhbkgktPEF69gbEgSyG8nZypO9TcW5pctFXePnxOq43LqJSFXDE1oFUkuefe57kbgiHUkB4wbMexOgMSRDQiXCefIxskcpOcyNSt3B8a1gCRzhojU/TSExJAU6ldMSSNv1fv86gIdHmSYZXL/Twwcuu5DM7wixJ72NS6qzyH6Q1YyHCNKJNBBq6JiipzCKzzIV4I5U+ZYt2WAoih8KM97THuV1VC6u4r/o2Wuq/hCNqjyaZ233Jjc9YGqQIS1suOAJFW/Cn2vBFm8eqsqv5/Cd+xbGSHWQfG+JefRfH8yR2zc62xdvO+AzE4vjTT/LWs0+Q7V2Ivnw1JhZhKFNeyI2tOhHZR9QkId5J2iiWshobJbKFMnWCgr7PIxAWp09Y1BSlTBIS8uasiS73EQIsRqFb0il6AxTd9K5j/EvF/2jiJoR4GfDO89KX/sj3yQV+C9yg1KwWllmhlLoXuBegpqZGzXfMnzNiZYznW49T0HOCooQkfhhxYkYtnXRhx9/qITjkJGPJGNIQpOSFQRloSsV90WYnJvMZLZ8cg+2NQIwoK2l84yE+uPlGOoctQ/dSmikT7azOjapud+3Dt+t2ZKHdeuhk+H3rn8Fc+y6HpvGxRWsoXfSZeR+82eK8EE0C/O9Qvfq35Llvsw7aeU/cMLlL5XE/V2Gio2NyQ+Iy5sMCZ+v7JKYMzEgeKBWf+M4UBUuXx1vHpQbdntmCroLwwGXI4ELW60/i0RYybtoQaOSYaaT7fYz2tiBdKXgiTlZlutilN9Gs91rdpJrOJWUbyNgZJkUkE+kcpof6Ocmbt3gjsBGAy4M/pf3lOsSBTkKeLiK9d+FedBE5q34PmCil4W3Ow16piCCxIVlh6yFQ1xtP8gP5n6BORIjoNqSuE1aSh482skKMoWwwllrPSJ3kwOG9fHhJLh2tx7hj7YcJYbMI0qZl25XpT2Ns4cuAGS3VgsWtC3Os+T9ITVlKbu6VJ6maCzx+k4NOJzflZBEKW+W1gL6bc49Wo0udzkwNY5GX2rEcMsJHsKnNmEhsmFSoBpSC54bTESE3b3MxpqGjt9hYvWEDexq6SEnpZWIij82bL6C15flTOJlFRUXYhI4hTQSCjZFycrSiM94Ds8vp8c6ZKN9tsLGDsBlmcbfJ8q4grR2PM9y9hSVqPdgUxduSSfSnARaK2qNL7Ac7MALFFIwvJm9iEb0pJzgRKKZDM9mo2xFKzeEHVmVXvafFSnPZ4npTK/ySFf4wCAgdH6NqOkjVdLSLd8mlloQBoF9WzORrbexP14gIkJogLOFblS5rsVMbuax+F16/j6WjQQ4uBFMobApqRs2o/p8iNNxCRGjogMapEiaN6UV8dLKf8JjE0b7HsvFa6CFQV0ewvn7mJJTC//jjcyRr5hMadl9xOROvHURPKyake5CaDkJHIZnSA6Qu8ELHBAsdGokJfvo1HyUyjWStmHckSKER812t1TOtpG12lwVgm/ABJq6sgTiCnLwul+R118RJ6SGjnZHipzEXhxBRvm5rwwsExos4qvdwxNYZB1ENw6C1tpHyFJPFyxoIji7gkKERW6YyjQC5YwfQXF6GtS/hEQF07SCmkGiaxiWXXIJjbIjdT38Xl3eSPc9+n8zCItwON5rQQFkkf7fDzROP/AdXRwyEAhkOz0unGezrYaEtQIhUnJqkMWO9he4piXOgC2/5Us675iPxKksG/0rO3ufpX/IgCMlg+e9wTuSTOF4S531WLbueRQ45Z/Pv8aybw2/lsu/PGcd8ji9V2dVUfci65z0xJ4WcGsp6FMOP3zuDvPoPMNjwOI4WjawVV8TPsWPXW0gh8E6McuWbT9KfuYxyXz76FcWEx3xRAXiryimU5ZawPOyk7ZmFLCpMZ0HgfBLGLSFv12gZotiGkhE0/dTufeeqVWTW3WohbXoDzm3/+DeDtsH/cOKmlDrvdK8JIQaEELlRtC0XGDzNcanAM8CXlVJ/hGDa/3zkDXSS8v2vMmIYjNlsfOZfvkan/QAlTkmGfSPja/aQnPUAQp9pn08e0ajo9uGeVO9Zs212lK5ZzYn9zwASV06A5LwggyfaWH327+jrexwmB8idcuMej9qStO/E45tGW2BHCoWmaX+S/tnJViRFORdSO2B1pp68EMXQsePHf8iobxfzEuwTZzoY28mP8lQEptBoD7rmTdxmR3BiIr7wCiGs/79L5JVVcM0d32Dfvhf56ehDDLlnYH5NCLYsSeIDucvxtjbQt7+ZJLvFa9IQqLDEFpyC4BTpmet40XHIEvYEi3ysJEcaj3KOWGlNvCg695yIJ24nh3fNamwP/yc9HgfD/9cEfYhc8YBVZYlqa55VUUeGep6jLKWSBuSxNlp+4MTRIhEOBzm3f4FVu/6A3TSIYIH7jo56fJ4xEoI58etrGgaHH3qaAwvKCEtQepRYLAQS+MGiPL5IEaWiOapPaS2aIJmYOMTExCF6en5Pbsbtc51Adn2W2mQnYTFTFRxIaefpyh9TEl7DsysuwtQuZbu8hEsPvc01Lc8SKZmigsOU0EJLy1o6wwYHF1RitlnyBaaUjLzVzrZt/0zv9FCcg5mTk3MKJ7OgoICrFn+A441t5EorMaodOEJFV8JpaQCz/U01ly2ubSZsGqNZBSzvuIUPHtlDZd0bdBWOMbBIgdAQpiBb97L6+iLAKpHR6OfeS1bwerOXjHfKEVJhCMlj6d0MJsDSK0pJmTBOLxF0mgh1jON/qjUq2B213kGALnC6h2G2bWhyTnw8Ox5sJlVK8gyJvtiBkhYzTwqrucGUGn3uTPL9fj406mVLbZDaNI3VPsnyMcvJ5Z3uPbS5s0hzJrApHMK5YC1C02g7NsGbY62sL56r0h/rKK0YbZ9jxRYLZZpzEo24+G7YakzR09zo6YtxbfkcmIpiAX1j00gh2ZTiQDOd0DmBBgxo43EXBA0NEf4wqSg0x2GkkghNs7htYuaSKRS28TEcYyOATvnKU+fA2Q0rzuFS5CJh+eUCvU0udCnZa2tltjWKQJCVPEZX9U+wiQipys6FB/6ZgxEbI8NHCIwN0x504kpbz3KPjRzl4ZLwKnxFfsovOZuCggLe3vFtii85gdAUSg5x4PB32afvZoFd0R2ZKZMeXiC5PNaTZtNmkuiY5RSCwuAKRolVfWJ2TRYvF5uds8vKSHz2OQLRJKlxYQLdE70kRvm2ShgE0ptwBcrmcIPdZR+jGvD1Posn7xJrfYkays9n1/huxvSxjcvJyKvnvs/TMHEnSkbAC2N3Pkbpnb/BtWoVqUs2YPb1ECgsIUMIMsaaqCy3Y0xqaIYDpWloUvL5jARURjYb05IxX32GwZFFlNk+YjWbRU180yYmSTvkYsrTj6fkqnmBDOfqapwIWPn9v6mkDf66pdIdwA3A3dG/nzz5ACGEA3gc+I1S6pG/7PDePWZ7XpqGQULvNH935Z0c3NvI71/YTn7+EVJ0FdcnU8BEBgx0Z+HWx6ykZec9c/Rx3o3Qu/ycGsb6/56G3T9m8WWdCE0RVL+g51AYl9vE89bTllnuzt9aD1PRFtxvfJv8ege9Hjd5lTe+b7QN5pYqh0jnn9/6DmEzTP5UCf+cfSs11ZVzFie3u5ri4s8wVvdOPNlz9pYw9MphEpdlkhwesTIUJSmix9I7U+I9d7kWLF2OzW6Pd3IVLF3+ns4jr6yC4dAu+g/M6I4JBAumSrgy6SxqstwMNIxwYnIhSz0KTWhIZVIwlUsD9WhAn+7DJHXurl5BsK8F6VkGKKSStGrTbDjtCazF9fffJPz8v1u4vw5IafGoJGhKkuDspTTURikW5VMpCC0K4zimoSIRzI4jXFy0F/fTX+KpZecTnkogZ9yH0AQ5RSl0jwwhpYkuTbL6B6kKmNhNA0NYdkcSDalZ9jFHVbR0qdlIMP4FLXk3U9N7iaVkCknv8N0kOH5BceXNUScQg5pphUOlEoqKEQP0ZNjxpZQT1mwgNKRQ9KZlUd3pI2VqCkeai0NjFzA+kYmZeYR05yKmRCdSWguy10gjazKJxecsmblcJ3EyY3pLhaWLSG2SDDDGs44DyAHFvvsbuOGGG86YvMXK6XZvEqHjfg46JZ8LjBIpWsnOf1jJN3+byeLGA2jSRArQdMtEvtY/xQvHhwk+0UneYATdprF0aToDUY9TXSmKko6wYf0AWzfN+BfPNgB/N9kMK5FQ1Lvt7E/XWT1qssJvoqcnQun50PajmYVzpYWw9zT7SFWKDck2jtgtrAwRHROW24CuoGzazWT+2QyM2Fjhl6zSJwge2k9vgqTH7GJnciI3HNpHQmoRSZs+B7q1VKQckDyvtfIjewt3LxF8pOVVDqUX05ZjdZQGnn91jhUbYJUBT+LtulatIuf2L9D/9f8AKRm4626y/q0ousewWIQbqlLwd/nQDKcF/kZvrD7Nh0SioqKpfdo4VeZCLglX06f7SE5PZefoIcxZxRkhICm0DD0hF82+gCNvmpTU+OfMVTEU1jRMTCGjTSgxQD+WCKp4g4omNDaa5SR4DjAZ54kZGGktDPRmoNyZRFIzcHUeYyDYRaXHYuV5VSLL+r+NkzKgAM3VYzV5aNbnJKS9xvkozk2Gnw1r+MN+anJq+PnCBL5xfYjMQAlp597M1cVl1HTtg19fGueYrREFHNWuxlAiSrGLVSMki/Py6b3nB9R5PHifeYPMD17Pd+R/M57SxM1ZEofQ0HQ76bkbcWWfxFzq2of74Vtxm2HQX7WE42M2V2b4FBBi9gYfobNzdIAx16liwicjr63Hf43MjFjXQsDE2dOcaPkhC4o/DTnV4Omm363oTcu0HFiaD6O1HOFDk+P0ZORQ2NfB2q1ns67aWgd6ly7H92KbxUmOLcRCYNOGcI07yZqWcME1p5zrnKR05Rk8Y/9K8ddM3O4GHhZC/APQCZZ7txCiBviUUuqTwLXAWUCGEOLG6O/dqJQ6+FcY7ykxu+QWSxr6j/t5Zfs+pMtkbCyHAqmhadYEIqKzT2/xSsoKLrbEC2ftWALD9ncl9AJsue5K3KX1DPrb4/YoveFfw7BEW5rI6voQ7omo9+ll36frovt5+NndmJOg945wQ37X+/YmhZlS5cuHf0HYDFM+sI7NJ66hQwXoeaOOy29ZRWJGm4UAArm5V8aTPWdvCeaOBEzGCLWMwdYNJOuW+neB7uOGizbQHnTFEZXTNVXEIoaedTUcpmDp8vdkMh+LWIdpREbQhc7VqR/D885KJo5Oc+Ttg4wmeglMH6Ui5r+qJMOmE4QNqQySgiE0z4z1jzPgxeEfZWr8BK+Hfk92QiED0524KzadcRzjpZcSHo4A3wBpIpSgvHWCiEPD4zd5e1UNz7GCShoopRkhQMWbUQAAIABJREFUdJzH7SAkQtdxZYdwBYOcp96hvK+X+7VrMaMyAKtWr2JBZwkRh5/SSCfm9hEG3OlcuPcNksvTWOV7gztKPk0k2vFWKRoAwdjxjfTvr8SVmUDB1lrAiDZlgFKSvu63KK48i5gTSFU4zD1dWez1XMUr2ut0pIMv+wv4tKiLQtTIvLzTQ0LAywSC8YlM+lM99C1NI3F0EY9N2MlPSWPtmM4KYyFe3XNGY+dQxzhdDz/GVGojSeMVeLddSFPTfmS7ivPgdh1sZKQ19K6JUiyJe/OZBiIJVnnRkIo9ay7BNWqjtHU7RkIqSz5zHb8Kn+C/DljWTPrmZP7u9QnyRsK83NxChUhFV+DMbGHhot0cHPDzyLESrim/hv0dPr788IPUZO9lR7fAWPsJ1rkSCbyyncCgE9f5V+FatSq+ebMXV3M4XefmaounZlcWz23FYJChx2FizX3s0h+jJq2cqnbLWzO/rByfowMNqEu3YUb1wpSEbb0GhRkuEo+Pc8+SfCICfl8MP6ub5txrN9JZbefFnTsxycOtTPweDymeMtBm/EM1NFaiIweaKXniXspMg+t1G5Fv/YhVCz0ETrJis35JI+f2L5wyl5ljfovbGl20zeFmhK04jnx6L1qKFxj6ef3MQwYszC/g4LAl06Gh4cUDGuQoN17hQWWOkdy/nH5tnASloTtewAik0GxugUSrVGYaip5mHx5dzGliyvzkctoPN/J08DesivGVUbjdg0yMZwEaW9afgz3JKtFnSzcjbW5GecpqmFI2+vyeaJnWumYRdwYj/V28OdpMbp4iJ/cBkiebcD7/BchdyURPGIpiXGispp5ojlGWoOI8yPsuuI/Huhu5f7wCQ8FDB1vZLg5RY1qJcmDYTuKgjw/nPUqDXkJ7fyJh3cRISsU+NU5WXhGvbrYaURrQuKTN5Ovq//Bj7x/4CTu5MquQbdNrCO9LZ8rsJ3BgkMwP6jind4G/O05pwZiGY88Rz6Q1G/22jfQ8PyM873ZXU513O0c7H+E7Iydo7Xwcx9FnuG7JdRzzHeO8wvO4NFBildSFAE1D2XQOyHZmz+Ch5ZJ+bScDB/ZQVPhz+j1pPLWyEhlF17bV78I77iMnMEFhVzO63T5n855XVoH6aATzWZ+1KYjSC6eM8wloHyBzW6LljvD0v1ovrLxuRp9OmfMmpX8L8VdL3JRSI8AH5vl5LfDJ6L8fAB74Cw/tPUdeWQWX3vYxerq3k5yeTlJOkNbdPmwhN7g0JsazaDhyEauqBzEi+1EopNTJW/r30PzCKTuWwNEUVChkEYFPw2GIxcLSbQy98yBKRUU/NWkRM4WgPS2dlRODce/T9qALU4lTSN1/Svj9B1iqdXKRLY2VzmSC6SeYHinBMCQdLW8x1XErKsr36+3bzurq31FUdDM9T9WhmGTa3UogvYnugQSmay4nTyZRtvwjFBSspSD6/k1N984rsntyMpdXVvFHJWyxiE2Ge/a/iHfESap/OQMINiTpVmHKWMUroonX+39PdsJCRshmwl7Km9mXs366n4vS1jEcnqRXjDJgi2AESzBUD2H2MhzqZTjUi2azceGmuQ/9bFR13F3Mk9+rw4gUkJDxb7iymggPFVOp7iff2UJtWhU3i2sIAzYMvpX6NOfICkbb7wJLDx5yq6DbAUaIAm2AGzZ4aQ+lkuIbYu9v+zBN0G12qm/5EK3fS+dWbQFhzYZDg+v7H2J7/a08V7CGrIwmC9VTEBgpRCmYGiqm/dXPkVH+Asl5lj2NkjZyF2y2TiYqZ9P/zn4aXy0nqQ+26Ut5YF0rPmEj3ropYFX7NEUDDqAUeyiTN8sPsm/JRpSwQYZ1nC5NRluPcCTPTU5yPxckJlHF/Fywkba36az6T5SIMKLsTA06mM5IRevUkFIiNJ0f7RujzziGw6bFOVhnipJpgd0JhrQ4X7kDBr15m9GkwaqGn7Db2ccPe/JAWB16pqY4ka2R4zNoLXqAo6ObOCupnbOqXmSRZrJRwc7O7VxTfg0H23byf6t+gC3a0envfpva3WGSH0pEmSB+t4OcL36RgbvutuYBXefgv/+AiOZCRm2m9qfbWOEPWyYre928tHCMn488yH0Dw1S98W28N+xAXVOKsaON1aMGduWIn8ulPWHWJ6fx4wQ9zn0zFLywysHBvW/gMILEFLmU0DixqIjstmYcUf9QBBiC/8fee0c3dtd5/6/vvSq2ZFuSe5PtcS9je4pnJpmSKWmTnkDKAoGwC1nawi4LLISFBzi03dAeWLLAAgkhkEBIJW1Sp3ePZ8Yznhn33osky5It6d77/f1xZY2dwuaXPed5OM/J55yck7Fl6erq6nvf38/nXWhFp3GmB0XXEIaBKnRyBy4AlyWi2Ma/810WzpxJnFfd/8aA+tfnsqZcthI1vewNanD3TWXLxCOV1zWyYSKbx/58hGzNxbcVG1+8tADXSBiZPc/Lj/0Ct5pDTrKXGtceCmwtjKmVdHNTPI5NoFoEebphgsL48y4arVYVb2BH36fx9/wvwEBVbeS5ryAwplFZXsWOnVvMTm9XAEohf8dOnIFs2g8+hu9wCoMLTnCYlqSpaZN4MnuIyChz/Am5cYAJRWNKprKm9TShzg7a+uux5xSRkhdGj1nJ3ThiuihK2Fj64USXalX2Kl7plsQMw+TzGQaHbAU0Ic1N/+4MpC7w9aj0rohiiBiWqGTF8CgFgTCDK2rjCRKmTUqXOk6O5ubTY3/D5+0j3BfpYVNfMU7NpP1LzSDyzEPYlT/iS7Xg99rx+GO4gprpjhD/Yo+VfIqnH46gaz2oFoUrP6GgxHbh2X0/bdJKl8eFIQQRPcIDbQ8AsLC7GfuhJDJnQ2C3MJ3qZH5HHS9ziAoZQyXhlGSmKehRJnw/wV99wxIxjSmuyQ1Mo4YCCEVh+113v+FeULC5gTnrKPNnpxBagGMzkhPpSaydibK5fQz7rrsvqmJP/h6uuddspmgRE1S+jTSj/9P1bnLC/6CGhx+hf/JrYNfxh+BEy6uUFP2CJOkmbSoPzTrO6tU3sm3rlXR07GJkZDf53u1UJqebEuolOxZKtqCO9F4k2hsGqvutuw0u1xpWJP0rzSdaiCZPklNqjrMMqeD35wATYGjQt5+SkttRVRVN05ZJ2N9JBQIt9PX/F9NTryExuDJXQs4QsuZZBvZ+gaivHEdWB3P+i+MSGfdGmp8u43RPgPKsHoaavocUUdMBBOgzVJi/isr4a5xo+UAC+Jmnw3wOIEF6FcKSiL9a7MaNdJx/Q/ftzX62+PPJvQdZ2HOYHkNHUfdSm/G3KLhQhMCQkJvkpd0dInPdFmpTigimWnh41yRJzjymCJErPWQbaRwJHkCsS2XOZ6PlbDW6HiJidfKBO9+77DVfz+nwf+Y+dM3AtWIfqYUnCA6tJTRTzfDaL5Fb1cuhtK3EZkwOmo6VicxPou56GjSNuNMz4dPncZTvIHzwVcLjVjKmvoE3S+fE7A3oWi1u1UKmCn2vDtBy1UZiPaareEzCoW3f4zOze8lMm6Z72ozMQShYkxfDySUL0+WMHFpB9dbDKJlHcaTmklFw0WoG73qG27LR9R7z8tVgS3slA7kCPc7vtCnwad992B35TKkW7i85R0d+LVKo8VG5eUPRhcL+ioa44Wwhv9vzXX677Z43JfKH088jpy6OqE5MPsXgYB0KgpLCavZHXIwO6mQwR76cZf/JC6wtfsuhNQDbVhfwz789zUi2jbzxKNbJWHzMq+JLLeNA3zCUFCR4lVIYhNjHs7WHGU/pJz2wllqbDVWYGykVuNRtLvzV6V2Ep/QEdUJIg9NOO5fq5nBQxmIEX3o5sXlD06i4/8fY/vlrxCRYJKydiaeVYPqrrQxX0J7cTbPdCsRoPnkfTaVXU5P0czaHqnjolJu9rltZO63RGALnmhwuX3Dx6+ERYhJUJI8bBnp6Pqo0uG5slNxZE3S0VAjmXVaut6oIQ4ACC5vzuTpZsnGrI2EH8qZj0C/fY17nb2FvtLh5eTOT5NerwVM25CVG2YuArqPHxstaDqvoYLM2wYkXLMTUIBH1LMLqYGp+lOnICGFy2GirYyytGyX1+1jtHyVqtbO6Mh9j70iikydjBrOv9JN2RTH24jSsjirG3O+j3G5gCaxi75mzgMGJ89MUvpBB9qGwGculCNw3lRHyJHP4kQto0Rh6cioUVZKaNkl9wysoQkdWCqY7XAhFBxNz4XNbGe91YaAQHncQnnBiXV3ME5M+yuwaPVErN+S4l52zFf/2Tayf/CIx1YJVxtg4f4pB8mnTV+B0B8icnmHa4WAwt4jBglKS5kN0aoIrzrRiLymG/v4lZ9Yc+yooXB7YQEdyDw94+vn4mIYqBYqQ2DlFIFXhVEMqhgKKAY2tAVJnTSshxWJj2Ho5umZ6elpdnfSO/hCIIlY6qOtbwCYlMSGQ8RFzls9GfXcOndmCriwXArPhoFwYJepJ42dCUJkk2apfij11N4tj6tDCKdZnRnlJ1pr2i9KgPNZJofcskVCEyJDCfDDIC2faeG1whB3efK6pr2P4QCv68z4UqdDqgk+sS4l3sG08MvwqG/Ulo309aqpid/4bPP85U4m760uQU/tX1XV7F7i9wwoEWnim4/ec48bECMuQUcblK2x8z4288svnUQ2d04+3UFlbSGXlTiord5rA5+T38TjBNQtmK+L94F2P7j8VD+M2o0nebJcKJgF5uMNHkvNystwaev6/m8RSKejrXUeBOs9Piu5kY/AcTSVb8Hq97NxQzfOHziINg127dpGTk/OOQuVfD6ggTqIXOq6SQ9TsvJbCMheTLf+VeJwQpjdS12EfgZjEvyjFXsKdFcKgre0JkpPrCIWefMNrKIoVLZhD67lfYSSZpFcpowyPPMLo2BOsWf0QofHkZc7lt3312wBv+Fl+ZU3C5VyLxRJg2UDDURlGDqaaknJpMD4/gJwdY81HPkR+ZQnNzc1cZTlPUJW8IAe4JtqIgeS8J4bsvQCGQY4ziBrwcdBaxHk9nR1L3sfrOR3uoYN4SvxkNf0BAGfuOVQLFOz4LJS6TM81f9cyQ9hlnQqLimP4fsIDUQZ2pyN1gWiTFG2foSDtDOnqHVySEu8gdvkojPZgrS0CBFZFsCaqMtGSjZKXjZJlw5AaoGBxTJOU0cXCdBmg48zoQGb/Dl3oBOcv0HziAAX5tydAczDVgozb40gk3imdD+0JcrDaRizHyift7Vwdfg7SdBAq5ZV380TGSn7tM3lXQJw/JBPqQLAQtpYnnOIHBweXCROyVmxl0PdLM6dSqPj92UgpMaTE1RNhTIcMMcfVtgsoSGbPjDO4tpAJI+UNPLPFkPemmOCWiID+KAbwcJaVMxkqK8YXaDrXy+aS7Twh40csJSm+39Lr2m1+j6WFwlAuCwvZyJrnAR2BymUVHwVg5YptHJ/5RSIqTgdaFJUNquRCcTmnaxrYvnE9eUePgqbRtqKCU+U13LL/AH1Nm7hiylSWAgkT4Dl1jjKrTk6WwjeEh25fC9YTp/i1fZxV8jSXhVQ2VJYTKb82AXrW9sPPTszT7FIYS4In8001MoZgzJVJ7qwPRVWo2nIJO+aaEAfjwfO6QUbnBT71j9exaAfyVnzcv2Rv9HY83hZrca0rqPSQu/3ienVJaQbrLV08oHyHs6EbOKT68ae3AQakVeIY6ECdX2Be3MKZUBZPp/+RvRkHgW8jELzv3LXcaVy3xJEPIl1+pvpm8b03ibvjdjA21cYNYy7iah2QBkebD3NdrD4uujatZCarJ3Er2WS5CplYGGR63EZ2XhQlPgkBiSVZRxoqQjFQpI7HH2NWjSEwhS+q1Urjtqt4qPMoA3NvNNsNHzuOjOlcdXgfCLhj6kVyNjWaSvxsFWW7wbbdu5nKyOXRG/4OTTU3RUJKnt9+A/eM9KEoZjfalTaFN8XH/IyVpEAZHi2VD8+vYz73At9P+y75vrXcuHo9Bfs7GXFbMRTMTp2QTLuSuHf6DjKUOVas3snmhnrUgyfRdYOU7HaQUTAFscyXJPGf56c5nXsJsysu44G2B8idTiLeSkMCyTnzpOSHCY06+Xj6HUzVOWnKaSLbb+fZnw+Q1ThKakEIFEkF5/iK8RjPDzRQHutkZ9nDKIqOUaTQ+3wJvanpfH4sjG5P55GxMN8ffwX348epTdsIAk54rMSExFAUNEOnuXw9GwesFztui/5zffvjSnPjr3Jc+i5we4e1b7SN78ivomHBgsY98uusoIPvn/0zt02oGHEUr2sa+3Y9ytRzw6zMDyOzT2BIDaU+lTVngrjCKjSaESKvHx28mQnvYuyVFjMX8PSac2QV6HHwI0hds4VPBdcTk2AV8FhaFU2Dx5g//GukXIdEQde1dzQuNaOuluxOXme6kp7rpG5LAVDA2jW/X8Zxc7nWkO8aIdOpsuCrZk5aTeWQkHGbKIXeXhttbQ+yc+fc8idGkJ32EZ6793fY02cpu06iWC4qAha7ceNtGcvEIoNtZ5idmkSL820Wf5ZfWcNg25lloA1AURRKr2xgX8tuUl+bYXJhgJnICCA4d+A4Ez547oXnTLsEAToGpyKthDQ/0h7vQAmB5s5Cc2WwaeAkTv96oDzxGq8HXUXWV/GX9hEy3yZIKG44nSBNL9rOLHPVX3pTtHfh6P8VU23Jcc9AwaQngz6jgkybnwXXKY4obir0fLKMNIqOjvCDlx6k964buSTFRfbXfktk3T8ghlUKM75AdMd5xmb/jKtkH2lFhxjY+1lyLN1krnyGkFga/aMlQLMj7z/5+jPzVNrnUFMuMJ0yyKa+Wxh32enKtyMVwZf1aqpcDawPtJqcuOr3ck63kTY1js+SHe9g6azhOGfEOqISkBqOWBdNObclMiOXmu+mpUFe3nvjn90mDh88jpAm76nA8LAKlVZllkmXO66inObgqfP8r6M6Mc3AalF45O5LkG5bIgLMIuG+NIVVAYNWl8LP1znQFDggk1m4/mu8f2UlP/B18sL4EPUOSXp2A4G5tRzpH8RGCtPe5wm2/T39ez+LM6eTDVfcCJiehh7PBkbd7yN68mGyA5ITQQuHVtjZ/MXruSf/ZqKqykOKwv3f+BYz99/P5z7zZaKqBakoCKClEFaMKzT4jDhB3uAqMcdVeTpSWvi4obO/9XKO2Pt5JmWOVQvmqMeeb8fe5CV88iRTu44jUhqpn9Gon4ZWt8KzeZb4OFVw61QWeZUeKrfU4/V6ifTPMnnwpBnubuj4//Cf2HLn8Nxxx39rX/RWv//vPN4Wa3Gt0zXjDdnP2cocH/QGmBjJxGs7S0xuJAGuhEK48WoGlEIqww6q/Dr/PHEH48kjJEedlIVKCNhCGKqBqiuLwtM32MEYGET1KKfUZhqoSfigjasjGNSZilYAKcnSC9iaczuKUDGkzsHgNLW1a5nR95trpgBXcYjxlg+wYrWNHHsSx3zHaZuYMztX8TFfw4Zr+OWKojf1+LuwZh2fK2k0u226xl0H/0wfXjT85nqkwkRONmdLq9FV1YyjkhKpKMQMyXg4j7yhPWSXSVIbXmFBaAyWvkRB8+eoF8lklR9GCo1YBtyXNIbX5SDl8lsYu7ALQ2L66UmFn8x8kFFyyFYusLIgjdxSFzd9djV9e9pIHp1iWpprugnMJH0ZyTTV3M6qle9n79BerPoQajzGzZkdpuz6QYQqkcYU+Zk6pZFh5o74oPp6Lrn2n+g8/ggi/1Biva9Qn+LK7i6SSyWKoscpcgaN19fxeFSi2xWkYsZbvTo4hte5wMGaIDW0URsqxqZUEcMwN8L6MFzzPRg7RYLjtgjQVNtFDvoSM+G/hnoXuL3DOi/q0ITEwFTjnY2tQy6MkDeRyfDBE4nHSQEDh48hDOhfPUVhpunDZCgKfd46Gld8OHGhvB0T3sXYq8UKT1QhaywIoaOoNgZFCTEp0YUKhsahvvM0ze6nxOhHZY3p4ySUt51LurQ8ng0IYb3YDROKmc6EgTQslJTdnnjsUq+1xXIu6OiKwDlbgbf5X4hW9BHNc9M3cZ7eXhuzs5kIoRMKNWA6wCwCBcHMWBe6phEaS6L7uRJqdmaj21uQUkMopg+PrS55mVgkOTWVw489nHh9RVHx1tVzauIUzbOty0Db4uswfo58/JyIOTAiY+bPUBmb9ND+xDFk0hKbASQWTzLpWdlMjY6hSFOFtii/NxxOXnjlAPVrGhOdncRn/PITOIbvxxEZwDtl5UJ6CotzY9tj7YQzTyY+/6Y3cdVP3BQHj8GDv8WRoyFUmPRksGfbNnSLaj7QGgLCdKijXBNdgzrSQu3wObb+4RgoFgJp7wGhIhSVZF8ZenAchI4QEtDJrHqJ5IJWQuLN7BNN0Nxz5hXe49/GcEYmfZlbGXI+wh8z/kxvyUfNLhwQQ/AZ52d4vOwcBauu4mHdxue6o0hLZvypJKDQyEnekzJGu3UT0blWbJUfRbNX0Nfegq7rCZ5mT88rGPL75sgcK/UFV/HeukvoPjFMruEhR3cQCA0wvCKHloYCNEWgSJgIzBPVzOCVqGbwRMsQOWuyl0SASVrSVRr8Oi3pKlqcN2oIwcMRePxkF4+vrqBKFHPk2AjZWjnXb8jno7XdvHThp/xWdvBs7X3kBSoYCmZQrHXS13JvIjGldvBa1McE0Uq4ucNgk+cqXr76Y0RGzHzQiG7wbG4ROR//B2KqxbRskRIpBJqQnK5MpeGYzxR7oFHsbKVfxseyQlKnJpHV9g+ELtkFM79NjHrC0zYGvvg9hLMAa/E0thKTo9gYgl/2xziqE1etJkNAkLXJBEj24jSMmV3ERhYwonNYMisJvnYKzx13AK9TwWfGLvp6/YXuhGP9OrBYTAHDm3i8LdbiWicl6JrO8LEz5JZuXgLiDU7yHj5ke5KtPM5zXIKQkvG0dJ6pN42eX40LOuoCBlt86whEJAYGzkgyXRVhZKuDBc2gPllFjc+w87IKsY2ZoiWBoDPdjIvyzpVg2Of4J98tzLs6iaR34JipITlUgdPtYU5ZQCBodVs4UlxIcDRGtbsczXo+viQYODIGSLN+kud+9Z3ExlFPdhJ1pjEyNk4Db+3x15KdTyw4jCEUNCFpKWlgI/NLHiGwL0TwjvSiGgZavKuFNFCkQak/QAbZiODjEJ94SCPGZPoL2JNcSMUEmKqEDU6D/MAf6ZYa0WI7T/qteK2wOnMzH71sBbUvfRWLjCFefBpy/0xawIq4/15GnCWkjOYQu3kciSQqBQ+JZEZP/YhfZtdyZ82dtL7wddb1jBCosuCom8WwyMUGHGP+nyMNHZkkePZnLxEed2DPCJp2L4vWLlLHnTrC7IV0jCJT/CcUGzVrP8SOATuPjIXN+5xhUFpYyH2FlRiKioUsvsy3+U3l12mdMti45ws0+U8nxIGBNIvJnQ5YcMW5u2/nev6/Ue8Ct3dYO3Kr+OnwBTR0LOistB6nwjpHRXWYoalsLEk6c6MOFmQmxkQIBcHsVAa6MYMQ5s5l90AV6Rd+hHfJ/Pz1u9RTS4wKV2WvSsReLeYfLsyUMbz/8xQ1jVBcsY3UqXb+03CDkFilxsbhV6H+SryW73GX9iR9SjEl1/7TOxInuFxr3tBJmx6eY3ToAHmFmymtvYxTE6cSGXs3lt24bAFaanrqCFdStO69ppJrcJC2tgcBk4PndNaTl/eNZRFhed4rUC2/Q9c0IjNpeKwf5Miz0ziyZwlPpFFdkPwGhelg25mLjvpCULftCibcEe5+6W4qu+yswrW4ZwbA0DUG//RNDPUqbParMNRsjNggWAuIxpKoNNzMoKBLs+NR5FeYHtuD5bLbeTFWzSVyhnTrOObW3UAJhxn05HGkZ3oZKd6xejWzvUc4P7mTgugZCsY7Cc66mXQGST4pcB5RGKg6Q6g9RIHtDLnr1r71whFfYBynH6aoyk9foAg9psR/eVHZZkhJz/geGoYPIBSJI3sBhMrMqU6Quhkhq0CqXoRiXYwUU0gpPMOiDxwIUlMbUBQbs4EWc1wnLMyfKmIkw8Lvt6WhKyDk32EN7U3wFxfNbQdt2XxNlvMrbwMvHH0WKfJMkn+c3yakzhypZAV3o4mTfFt+Gc1n4VF/B/flFyQyI1VVxe0eZ2o6PjI3YnTse4zZ6TI8pw7iUfMJz3Ry9eZNOK7czoM+H2COeQ65nVhdYWp7O2iY6iYjdxMbd5TGI8AMrAasmTE3DGtndKwSooY034sQRHWDnx7upW/PEDf7rfQD0+cPUrz9h6TLGJ/MMnjC0oUzr5uM0R2EJh5EiYsRDCOKETqC/x814t4cTBwP8PuRibjnlrkf+FNI418NDYuqEF1iLq1K2FqbS1ZhmMgzv8HOaRbmpuiXaUipg6ESnqxClSoNs1XLRj3hPS8gnAU4Lv2s2YkxDJwb8rHmp1D7525ql8RkYUhCLePYi9MInzyJsATRpnpxbPpnU2GqCiL9s+gz3RdHnlYLRdumcKTPv6mv19JyrF6N+5Zb8D/6qAlKX+fxtlgFlR5U1QRtqtQoOPsVaP4YffNlcRAPurDSnfcRSvFy+VSA4bCkxZ2CpgikEEQNyXMFVurmdGIGy2xE/NNzjM/bccc3F6Z9BqTuifLArT/niHoSl83FvcfvpSu9ja70Nm6fuhotrZfhxXzPUgtFLV9CseUjheB0msKn1jmICnjSsPCpfgfrVlx8Tzn5C4T9Pehxjqqe7CRcVAVCcLx3kLrBt1b8b3SnYFMEMV0z1/bgOeazNyFEJzJOM4gm21nffo737H2KvhW1JMWiLFht5PunUIN2JsMDlJ6TxC5TkBgIKbCJXmbz5xJLBgguy1tFLNgMGKgCCqwGTU4da2QPM+wnnCJxzV4cIw4cz6Kl5uPYsvpxZgnK2/rpbRQ8NNpOb1QgiPBM9zN89dKvknztAMkjvyLyoSCGGn/JeJKNUPSELUpyzhzBETsp+WFzGYtvmAUCbcHlfaTOAAAgAElEQVRCWsYMwwdzsbtqiAXWU1dSxjX1Ln7JRY7bkXAQI6Sa+d1Sco5qdsaOsm02DP7TCeVooOdPtMjnlxkGu7zr/+oA22K9C9zeYeWPD3DHsw8y1ZjO+oKjVCrxWFXFoHDzWHzyIxjcF2JqKpOY3UHQUUVrazFu9wQBfy5zwQz6yHlDtNPiLna4ws3dI99LcC1+edUvWVW6ips+u5oLR0YJz5qdr96To5x50saFpCHKPtjA7RMvgTS4ffxFmkJdUH8lgdu/jz7yPA351+KqvPodv+/Xd9LmpwMkGUU4kjycmjjFR178CFHDPK6nu57m11f/OgHelpqeRvL7GPT9Gkd3DdHUEsrLy2lvb0dKya5du7jrrrtYu+aRZerR275aswyUzY3aCQ5nIBQlMQJd/K85EOLloEYgr4S80T5Ui4W6rTt4fvwgUT3KaIZBg5KGYpiLthACRRGE5M3oxhY8qsBHHoolG9XdxrZQIRbFgye6mlHFR67uYmjuKDNA6ug5ZtWt9AXCFM52oDkcWMIhRixNzKTkc0npclXSWE+Ap16tRNfKUcWt3Jz5LYpWfQq++D1kLMasp5yT3QXoHfMolHHZsR8x/3f/zCF70bIQ8mV16g849Ch1ipdj3GxyrkUCOSGEZE39HJ5QCEdWGEdmjIDbgrgxn8ipFxGHJNrEeeSuYWp/+VXms3wsLIwwPPJI4iWEUCnIv42Ozm+Zi75QSYp9kvmpMvprrOgKSEWYCkQwid+KjHfTBHqhkxeEQXMgxDU5hbzSHY1P2xWE1FHRmSSTqekM2tLL0IQFAzMJotvu5K677qKvrw+rdZCZmddAxok0UuXYrM7swgzKmgq27d1HVijIjr/ZSfv0EAgnF8mUkOUI890Dv8BqaCjdr1GytZTHVlXy0N6jXNlmZVXATBKon9W4oz/KQyviAdZxS5PxYxPkLoh4ooAgKeNCfOxvjl9u88TM7UDaiwiMJedPweYtBHUEVOikkt82bkSXi52RuEBDURjas59bb72NR6IiMcq7zZ3KxqpsIBt7rmJ2A5I2UfBaGwuudpJmqhn3lzCvGDQ1NRL+QzKBLnNklnRdPZacKRN4KarZWXEnYYS1ZVYbixU+MY6aEmD0C3cjo1FsFdeAakGYd1UiPQGiHa9LPxgVODxvz0LBdfNNBJ5++i/SQnJLXdy0o53hQ8cpsJ0l19IOz3+OkmsfvgjiFRXXQBWqlsIKMgiog+T7JxFGpXktCnjaa+MDG0poGo6wd++hOMgRBLNC0JNBpkUsukSYpUmKfNms3G5yEys8FTzT/QxPdT3FWUcXW1MXkEo8g9rQaE8/QNehAPZoJufSSonFX1cXCu0pDayTJ8zLVBeIo6fwrll7MbklxWXymgHDMNj/3DMUrC6k0zHxhlFpk8vJY6srOdR3no2BMzS9598ZJA/1lAkEVaFT7+3Eo/q4cmw3LUJFKkri7ztVSXVoCnzpBJ/Ox+UaxXNWw3HVFEHFmjgBChJt7hQIFcMwTCEAAlUQH9Ab+DxJuIK6uQkIDOG3lGPL6qdo248QSowACoXO61GVLq5IjdAVUXiq6yluKLuBHUU76L7pEFhOmTxnA4LDTgI9qRRumURKHWkI5sdTSM2LYE2JmSbS8Q2gI5JP0dYxszNnqAzs/RARXynnDpyg//QUjXX1XHPtlXSdeYLe2V9hUb+GJiUWdOpEOx7P34CqLRuF+txWjOm3Ngz+a6t3gds7rMG2M+SN9lGqnaU8r5+La69AKIumuxLVY0NImCpII9c1HQdtOQSDmVjQKBHDy+TGS4m7qkWh+A5oL4SYEUuQtAH62w9gT79AaDSDBf9RQKc/bYjvLlSj516H1Yhx+/iLDOqZ9Bz6PXr2y0gZQxk5fTEg+H9Yr+egiBsHiRkXOXCvP+ZForGnaID+kY+bPECp0rrvCgLBzMTfLVqWbNmyZdlxvt724/Ueeot1qH2C94+MmBYa193Fl0bauHmDGbDeNBHBptrICEeIOiepqtlJaeNGelvPM3tOo9SxAQVBBXBwLsbh9CNsynOjDigoQpAl08jWTNVbVsYVBGJTZJau5OtZKsPnZ+FEEHV+FhCsSIrxw7Xlb7Cg6NvTZo67hYpuQJ9vJZfUlifG5AHrSvRj84CKgeT36t38fkhBE6NYFcFjq8oT4C188iThR/8Dx5zEkaHjNQbZnCnYN8kSDqKkZL4DZ7GbzNo5kDqBVCst9akY4lVYLUj31eMYM/MoxaEY6Q3XE8nvY1R5Iq7gVaiq/DqxmD+RUyqlQWpmDItVoWRSQzVMwCOlpKRH0qQ/TbRxB0+NWYnlO0AxQcgh/xyfKVkFnGL30CGyo630UsI+drBXXMkhz+XcafwGi6qhSbCi0GAZRo8dxe2WjI79b5OQbCgkj11KcLSa2ZCpUDYsFkI330RDw1bmji/QuTAIK6sTwEgBvkgYm9RRkLR5S3i6c4grSyu5u8hF8mE/Giqa0PnfhWd4smRrvAlhCi/KhvxUd71It7saHS8gCU1VoEkFVWC6syvxoauJnpGG2WFX5z5OatVapkdP0mGs4Dvq14mmxC1TpJmOoOimOfKqjjZc59byRHkZMcz4nvdVLEkPjHcDwk924vRVkOKrNBM8PP003FxD2nQn/a+4Enms4r6HGPrSv3E4lMTaGZ3GEAmPPGFRCDs7CHsu4JipJjlQDpok8HwXwlGAXOhGm7qAXbkh8Xh7qQuL+3UimTxpdlDfBifo7dBCwEwWyT37FVMhDyANvPNnEyA+azqZlCNhFtsxK0QH+UE7RTPj9GXmm5xTCQ/PBvliRTX79h+GuIClpXsAuyuAO9BgWnwtdn4tYpl/4OLocqt1J+fO9jNu7cJlqIkM3fZZO6R3YHXtIzV4BRY2xIGCxoasg/HDFvSfqmBtZJz809/htr//LwandGzZeTy3e6/ZQdR1ho7sY3BvkJc2TPCzjJ9xU/lNyyYXTS4nTY1NgCla8IJ5Lk7vp6Tlu2RoY4SxE84cwSPmGUmp5Fy6g/zAFLmzPi40NtJuGBiYo8Rtvn24xWYUsRsjThYAkFLjyJzKtGahd17hsoUoaqoFkCiKFc+mr0FWs2k5deJBSrRm+nI2IJS4ea40CAee5pOZZvqKLuHnUyrt+/5M0reexChYgE8DqnluxpozmZ90cMITo9QeY9Ln4KrbbsCI/AxpREEDa48gViYJO4fM61ABMHBmtxOZdtL60mMYunk/qPyXb/Ly6BQViowHzNexUp9lW8knaG0NmVShnQ/Sd/4EJTVr8ZRkofieTpjE/0/Shf5P1LvA7R3WovlueNJJ+3PFiK3DVLg0VGWRbA+GVJmijphrntx0Cw0Nr8RvOCraxI3Ud72Al5FlcuOlxF1Fg/ohC11esUxh1NP1EAVbfgIYZNQoRJ/1Eh5PZqCoHE2AFApRxcrDxdsp6psidW6I4syo6YfzVruJpblzbzPFYRkHRTdwjLlRUPDaopTbDfpi9sQxn9ndzJ6HXgWlgJzG02TUxkAxkIYkK7uLVPcoAX8uwWDW20pNeCvj3Uj/LK/u7yO6woqhCGII9o5NcnP871Zlr+JX+V9AvfebKFoYpflZbFVN9DTvpyplLQpm7BVSks4w86KHQPFqtEF9iYO6ihrfnjo9l9Lc34MY6EYoAjW3CGtgGnV+gczkUjLaZmjNG2Z/eD6hYnT7u1CMbNOJX+q4fe3Qt9+M+wHcu88gREE8M1LQm20jhpIITl4MmV+mzhMeinb4cOQIXJlX4OmYJJQ8SDRpxnyOpEoePtDF+7M95Cf58KUnYyzy1oRkZsdZnM7PYz18iuhECdGX+pBCYHj/lZSaQapXX4nLtYa+1ge4ODo1SM/J5abPrubY0RFeax5hJMNCnb+bP8/fi5UY4uh/se2KP/CP82bvyRZXxu5rPk7g8DA3ZM/gzHqNp+VNGCI+0hBgGb2Ofzf2ckFZyeZVLmTn39NtmJYDi0o9ISRt2TUMZ17FTPthsgPTqKpKxWXXEXxqCnSDTe50njUMNCFQgE9c8LNxopBwTiWtKZLPffoeojYb953s5LsVxcxt3s/0hSFOOx0Mua4zWZaJbhh0F6TQ5Jpl0+RTHKwXJFPKcGonyRMWyu2Ses97KeJxhIwkGO/SUBhveT+B3kY6XzO48o4vsz/mIyatcZ6oTuH4OW4Nhpm70M+qjjbqZyXJXR7umwrRkmXl8i0lb+i0RvpnmTs+GocsJiex8XIHK3MkU9//Muhx9R5wtrCEz+fkmMR24OH8fArithu2Ow3ah7+HJIbQLXib/4UkfxnClodj42eZO/gj5v0DRBsFxTklFz3Wii+Cr8Giap6PTHGpanIY384a8naymfGuh2t/kLBmMBQbT0yvYEVRCuuLGglNjRNW583oNgnDIRvpFnCFQpDYC0r6Wqc40zFlUifMxisVoSKMuXx8qs7hMHhtCiXlaThzl5/nsZ4AF46McuHQHIaezlhSDUPFO0lLHSHgN6PG6hteRlF0ioyzOMXH2CM9rOdI3DAbUCQiPZnnwteQaTyBlz7ybzG/75lFJex/7hmGju5HnZ/DAHKmbThyfPhGH+abA0/w1e2/ectsW6/Xi5dywi9NJbzc6s+rvPiReV5ZuZaYwkWz2sAMMhEWDxPZ2azd+DHcpX/P6OiTcd9MHQOJLg1OGjUMJtdSH2qmSV2Fz23FMzyEq+OEeW0ZmrnpMGKEJyqQtWYKTjxZyly14p28yiRJbY9hdnC7IfMnViKVksiAjbzpeXpzQ3iPZKJJgUuRjDcdJtOimX9vFcQqEpdzvASKamVF9XYyU6dpfdkUpg2k5/GDyQiatQmLbOQe+XVu5Emc9g/z6KPNpnHzki6n2n+cu1jHGnEtPrsPj+a5GBn5V1rvArd3WIvA4YnXHuDJhd1cpkqqlvxeSujuaiIYzEFNm8XtHlimgCnIGCZll5+BQTep3iie+GhhqepQsVq5+bZ7KMiaTbTNA4EW5i0/AbnoB2WQmj9PeNxBnn8axTAwFLASo8LdgtGg8OrMVWwyFqhWOxK7iWXcuUiU5ie+yKHUWja2PEvTe/79baU4FFR6TIqSLpEKPBr8DV5PjE9lRbDEO5Ap4z28/PRBzrz2MslZQVLy5onMrQdpAakhpCAnrxshDBPQxj5Nff3Nb4uD92bGu5GeAGunYlhLrMQMs7VujUbZ89putiSnMG2fZvTAyxRrBiI+4uk/eADD0JlYGMCQcT6S1BkPHqR2yk/RWi/zd7iZON9PXlYhKXuiGJrEQDBuNXv9EpCGxPBkEXNlUegrYZMjFyUYJfpkN7sI8x/WTn7/0UuoqbOw5tEfM5NWSfpsO0lNBnvOrUNrOUDqn75P2kwnVQVbaC+/DSklZdMGhxQFTV60BIHXqfMUlXDKVUzvvJPx4XkUVcGqpRFlJjEydbuqeS5jO1NpC9QVBnHya/Okxa+j+cwuci6/E21Cj9P0DPQL+TSfziVFzSGpaJbZo+2wApPYLAV9k6NsWuVisH+SydYF1ADsUI+gWmPmmFCP8t7YCYrXfDyhjL1wtJnT+3TGi1UK0kcIyRtxylkUjHjikcCZPcnmSBXvadzMqPw93ZOLFjDmAUsJHbKKe+07TQV146V8RXSxs2wjri6Y1ScBwXa/g+82T3IodY5NwTS2+ZNBQMbdX6LTOkHUZkNidmXu6Rzi3rpt/Cz0XabSv4Ah1HgjJ966FAJDURksWIEUMJydx4zzJJZIHyKm0BcV7OpdYEPSzdxZ/aiZcykAIVHtpi+eNa2T0bN/IsVuIIsuAWnBrmn8y+/+RP1AL+kfvosJmxdxwYqQCo0Bg4bAAq6yCM25pmXJxrG9NHU8wtj8+xBGDgIFgU6q+jLFlkzo60e1xoAkFjsop6pqiSpKAnI3J0k2xv8/ZD+LJGaeX1VnPvs0Sf5ShDDVebHGW/m1IqnOyedTi5Yc8Y2eo2QL53fexgd+dYSoZsdmWcvvGypYy/8/24+3qvDJk4Rf68aRfgMLjhAv9hk8dqwf4/gxfiKcCF0mlKRjws/RNAUdg9KZMc56y9AVBdWA+t4IqTkOFBQMaUaq5RseRlGwFceobCgn32XDeL6X0EDQTA34aD0+XS5T8XtUQaZ0YXXdgaXcYGFhgf6BnyfW9m5Rxi+MTWjCQju1eMUA5bIDKQX+QB46Kn1KCd4lHUmv18u2Hdv508FXzI034M6I8MGsCKoAXcY4M/TUWwI3wDRwH1MTynKhS3KzLo2PbcUSs9oZhGGQ6prC7RojL0TiM3G51hBMWslkzxPYjZNkppTRLb5MFAsPpt3EjUkD1D/5YyJaDRHlEHZLt+lBasBwrIH52TJm2q8io/rFBG9NsahxLqzC7au+SllxJQO/fdoEbz0Gtl4FJxoe/CjSTWdu/MZhQLKvGCWn1YzNAi6K1QBUCvLvSDgWjHSc5/Shl4jakxkoqUIT5rWuoXJe1FFJJxE5h647EgKnxdJ1jZ793yUnq9P8vkzELkZGvstx+3+v8itr2Ox+Pw++tDseKG5eDIvUoqzsbjKz+jk/ayU4uxLDOJNor+9uS2dtTwmZ09OExuywScez5c1HCI1LXtM0odUTOxqBJGbPRU1qYsVMFjecPkyoJMZG9ysMiSJ+o96NkaWwT27ie2nNXFuxnt6Iwt0v3Z3gzn025zbuqfs3YooFq6HxeO9pSs5LIgULRMp17F3Gm5KHx1J6eab2PrL8xYy5ehhz9nLbvIqFRTFTjCPPf5/xkxmkV81c5P4ZzyOCnyA2fQZbZgcyddRUxakSm3XobZ//kY7ztO19DYC6rTvIr6zBXuqi8TX43IUF7q1JQhOwe8OVRLvO8MdX9jNpeY189ShfUQxsKChWK8WbNnN6oJPpyCh7xx/Fm3kJA5OHmY4MA4KJgwOsqb+cle9bC8Coc4SJo2Oc6w4QJQ0cgkQXSggzHjJTR503uTMWoBGVs7Eoj7cM8Z3MUerXtRAeb2Wuophd+jfQT2qARNR+gjWnfkz+yAEKrtlIqPYyCio93JxhSQCf2p4Opo4dR3W7EiD/XHk1p6/4ONMHT5Ltn0ZJV6ktWsfZ3gGk1FFRsWev5yurcohioAjJh+lnB6/EeWIKzkANKVtXEHi2ByNmgqgpzbzxd5+cwKsZJE9XIUpsSEPDkCrfetnOtzw+LinNwKIIorrkiFFDVFpIUnREfGwm/FHUniAv2ed42BdjensGUriBuxEYWIXGJf6jHHJfioHkp9Zq0pRvs34iTJs6Tr4wgb6Ugu6uJqy2COe8dxKTYCCISTjLKW5Pq8BeWo5UMceEErbMJLE2y4FrTEUKM04pZXMNV7pXct/JTuJvEUPCUK+D671f5IF58wYiDElNQKczTcUQEsWQJC2E+dP1f4tmUUFejWv837BGu0Fa0EIrcKa2Y2ZZLtL7FCIz1SRnduO97AcsKDHqJVzR/kNmFyq48+VW6ntN8+OZ3zzI5PZa8ibnoEJf/Gg4ZTf40KkuYoaBVS/isclxVvp/wDjfjV97OnbLfij5IQB67D9MH7jKOlZ1tLE5fJrfib8xx67iIviH5bmSimJFZtRwWu011bnCg9u9gn8Ewo64cfeSLMfwTDJBbqV0vpJz6SWJsPm1xZ43eBb+pSSYN6vwyZMMfPjDyEgEoULR9iluz9C42bqP30R+wriIMab4yDM8ZMs0xtSAOS4WkDM7w42nDzBjK6d0PJX8kI8Ja4j10TKiikaO7qIjHAFSmO9VCO2YxBnMZTYu+pKaQaQnwHBET6j4PapgY9wTUemSZO1oxF6cxlOPdGEYZ1GEznnq0YTVVH5KEtm/PZ1rmQtmoApBybX/9AZAkF9Zw/a77ubV+38OhsGlESsWAcpid/DcGcLiJI7MGM+dOcmragmXr6jguspS8wlKtuDI+yGiDc4Wl3O6up4y2xx2AVEpEdIwsz2lpM56BHdjD0LAQqmVQMfvcI2Pc8qTx48PPcFnZQn+shNcEHXEsIBQiakK+3zJ5C18A4kFgUYm/4rd64S8Rgoybif52VbSK19lscusnahmY3ILvu0fxlNyqznlKYGiB+5n6qf3ETp8mGixRqRSYusQZI7P0y2lacYrFORgCt7abzIf6+fs7gCZ9X9AKBpCUaiu+gYFBRczRPXkFMLFVei6TrZQsAqIxXlt1cY5dKngdDSiqj1v6Li50ibQVg4yrNjN+0puEmtbg7j+yrzblta7wO1/WPp8MWvtX2IiuheZ8gIXx0jgdk8BsNED/b4SxkbfTzR2xhwJzmYykZ1D5vQMAMHjHXg+bv7dXxohWK3uJf8ybQIK684R9W8hMGeldNhOau55hGLlN/Ju0xYEgSEUJrNuweXKoTmeMbroU3R/2Ek01WqOWIXgebWaj60ZZro4ilRhTtfJzUh7w7E8f3g3mf5ihtM6mUwZINufhKfbgSwIm8emC4LDSTiyQyZoi/uqCsXAnT6IL+UghqIlPJQMCadPhThw4MG/GA4O0PrKC7zy658h46rRtj2vcPvXvkN+ZQ2ZH61noWcMQ4ZAKOgGHKhoNHmIsoIZyzTffn83f6dtYOsNn8TvXBwpSWZiY8z6AkQj4yxagQRnMnn6R2YGK8CfH+4wR8QCzlucKNMK+c4gMvniiCWlIAWtB4Qh0YCTcZvZx04M8aGbGqnOETgy5+kPrUSfjVt3IJBCxeepwh0dJafAjt7/Ehcy1tGi5idA29IuRs49X+LEgs7nimqIAkrdJVzfepC8oJ/sUgc3JjUx1DpFnuHhhXwPUYHpcSQlv+FuvAxSKdspai/HO/8A9vw6rB+tZ/C1AY41T+KLc6QyC1PpmwiTHqygoPlfmEs/z3MzyeyYO82zzzm4/rqbua3Jy8NHB2iRlXww9mU+VzXJpTtu5oRRwQd+dYR5p4VIUwZkxTmd8cQEKVQ0CUNKsemuLszu4jmliqSOP/AjrY/yJDufTN1E21kLgblshJTU+wd4ZrUXDbCgUyNb8fmKyBPl9OU5GBgKMK4EOK/MUJdRyyeuqFvmvt8EfDMjk69OTWEAVl2y8vgkUoHfrUtGA6wIPt8RAeCZfAvDc11MZOaZPlnCzPBs8P49adOtVLlX8Xy7xDImMEpfBENDIvhjx2186OqdWEO/ZcFibu4UA64K9DN2Okje5MhFLzHDwKbaiMz2oJz5A47G9yNQ2XtunFiZDR0BwsIh1yrK5R8ZSPsGXVPXIuYCXHL916n2rofBY1y48n18rvDmuOfXLTwYmuRnzQs0pyms9eukLXSw3zkXNzNek8gSjkZX8OiBZjRbDEX2cWmskojQyTFcVIXja1s8yzE8qTCwO5Uc4yW+o+zmXzd9LBE2D2/Pl/IvlQn8Yub3QpcEeh3kZQawSg3Us7xgsWNgds+u0daQa6SZ/nbxsXZO0McNq21Yc5M4cuEM02MawmpQPW2lLTiIT7diTb4UYcnh3Nl+NmyvSqjeF3l8BbpEtSjoukGWTaAKczOGLhNJC5dseD8v/sZCuvcQ65wWns6WxBST41Yr2hCGZFv4JOP4yK+4AVewlkj/LHblwjJ6ynwwaB67lIRGnAhpAXRUDZIfOcfA0Ic5f2sFn770S+iKwqMDPn5BjwnevOtxfP5Jpjbs4fPZ24kKBZvUubttimPJk+T5J8mdncGVOoFnVY8pChAg0fAdvAfXQIhmt4tq7b04o9UESq2kGnNxcYM5XUjVs5GY3FuJJGLUYx95HMbPkXvX+6goP0VE0UzumQGZyjAu/zyu1vOQfnH06Fi9msx/+BS+qaNMfeKiwjrjx/PUjMxwzpuFlJKu40foaWmmcedn8HVBeKYAR1Y7SZbVqCXXLrtW+vr6Eg4C2YFpvqqEOCctiPMvMpZSzh5xC1fZi7nrri309fWRvDDOWN8FNLWAgnQfs3GDYTBpBz5PEq6/Mu+2pfUucPsf1B9b9/Pzp/eRM1vGoG0VvbW7uc0doyAptlQkhpSQRhfn+0oxjDiJXoA9Ekk8V+q6Stj/g//WMyYW87MoxUkIBxUN1XuI8GAdUkBT/ZU0229DH4m/kJQoSDZGBoCcRLj6InhTJzpRnBvinCsD13SA+QYfMhhnz6iC+SzfsuN4ePeTOF+sYZ2xEl25il11/8WtjpUExlvoes7M3ZsbdRAed5C9ajrOSVo8JwoWXYLQEpwFKWF8rJzZ2UxAY8+ePWzbti0B3pbGVgG8ev/PE6ANzHb3orLUXpzGDrfKT1s6iBkGLHHjl0hiSTX0eAfIu/pTOLJXcebJRzGM+IhU1zGMeWypt2LEhlCshSiWfDTN4NjREQZnwqDpIAUeFdbbLRwnD2VhDD3JET8ahbGzdr5lC5OnKJxEpy3ejdV0g7PDs1Sv+htAUJBxO+rvFtDjAElRFbxrCnHObmL829/hrLfENN2cG8GmKPyq7zwFS7oYuj/AuZ03JWKspFAYdWdRGA5SUlKCq2s/WXoRoLJmRkPBhh6/MCUq41zN+1qP45o9aBLL+/Zj37Ke8r9dSaR8mO6TE2QWpnJm9xC6ZpBhU6iuWMfhzmHusfyQYLrCtO05/uPRdi657JPYrQoxzeCsWs3A6iba/K30D08Q1QS6x0biQlj80AEhDRQpcfvDDKSaXC0LOrXGBU5EFzAUg+6ISrRdUHF0kBNrs5FCMOGf5O9af8r0ykxqaaNS7cMZWcnU785QEjOwiBAXbGfIw2Dm9DD/H3vnHR7Hdd7r98zM7gKLsgssOohCdAIECIJgEYtI9d6sYklWQhdZiXxtJ+4tvm5ybMdFcRw7tmg7diQXFYuimlWsyiaSIFhRiF6IjgWwAHaxZeac+8cslqRrnntvYv+R8zx8iDLYHQxmzvnO9/2+9/dmoYcrLqkF4OjgLGdax7j86Ay5qYKjmQbr/CYNAYlC8d1DQb5f2sn7hmtpmJOc9Go8V+AgJmrQpESTCikULl3nEw0X0+y5hvG+ACkLrci5aoZe/wh9K9o4Mll2T7wAACAASURBVFfBwPxKttS0sqV4idExAyljKAuCY26E0mhdX8eVe0+ClAink5GtlTyWfYy7J9No1gQ6wi7/lzsBG/PTEDvFsQYPpjhLXum/88/HPkBptIbxH7wJXS/YjhWGgdR0TF3jsLOKu/0T1PthQgR49GArUlMJmHFRkd0tvnfv3ngZSWAJxQFHFwrQ0ZjvnmdV4ToKSreB7iQ0aRBXFuBUFvdnzJN/7yZWzQww/cLjuDes/081IPzeMXwYt6sHdM22dwMC/W5SS5cwsuCESCVP2POnhWSXNsmGSBblVi69yeP2OQud6oIiRsNTyHb7NZQQ9KpBCtCoSclnMryfaFYhlZVLhL1lia735eA+D7jpQ2sZ6ZpNlFJVvGy67LSQdW892+6spn/0W7iJ8Sl1ir7A1ZSlP0Ol6EJp0FYUpSA4jTqbyvypAYQOWY7P4FKn7K7Sa79JUd3GRMNVymI1JUffQcjbQfJUBWpmDzLaxyvp67HiXp2WkDzR3kVDsoOioiKGyefJwu1ELR0pNGJSMOIyaRrqiqN5BBnJA+eCtrgWOzqTAmqe5qUlvuHtwTF9DQUtH0GW62hZChmHJnXmZnGNPmpnsgW4tNMJ3AwDe6lavZ3T/pdROghLURwcs3cofa/D4MELSo/utWtxf+JmWPp5Yg2I1ghcxY1kh48n1g5pmcx1vwHmZsLTZYSny0AInups5eYPNyHNURumfh5eU9M0rlpZzFXAV49n8mjFtViaxiGp0ZieSWlyOz995RiW0tEYJX+qHJp00Cxb/ygMMrZ88S822wb/E7j9X4/jk8f50d4HuWnsPnSpY5oReqxaJrMzyG94FSGsRKACMD1VfI4pFh/O664lpfUYaeuryJj+Frwa/ZMMpIyMjSCMOATX9tNUSicQyGHck8GoJ4uijk68lcVAYeIEKkK98Py/QvLXaSzawK4rd/FvJ/6Nt0bfIiyPcd3JEsY9ORTMTmF2tjCQtYGoVHGNhWKKTErP+91fOriPdfJqNHSQcJnjeq7dfhGPv3ma0ASEJtyJc5bBQmAGJU2UgpGDeZTsuAgiz4Na9l40mJ6uTPxMX18fg4OD7Ny5E31p8QLbqtqLL7vgWvpcBeS6S1mRXZP4Wv2cxYOLFg9Pd+OMhDlQ0YDUNZQycYY7L7imRXX1CN3AkjGk0NGMQgwjH83I53w17POHhjG0MbZqeRQ6nRQ7daa0AOPOUayUbABci+kkR8owzHSCxHgk6ULrrnVaN2879RWQMcbNOgbXrGHt7RMsdOey2JNJcopO8KW96P4u2kor+Mk1byNqOFDYTKpf+uDDDgNhWoksxmZvKo643ZSha9xQUcJVV9hWZyO+FMbFLOPaPHnzHv5+QuPbeSvijQIalenFPK6n0py0RNWYTujgHO5UG/5bt62QFQ0TnD70GI70bEx/Of6YxEya433OB5lPFZxoSEdqcEPJrzg6sY63NdUwvRBBTx7kn058FlPGMDQHjpR7MWfKE2gQsJtAbjGdpCVbDHS0sm9lHVIIhJJcG/g1nfNhDhgz6ErHoTko2HoFPScft/UzmkZK6hT1dfvRsE3QHcGbcI2WEjEHEMCUNouGjGMbJN975gC50oNjNMgDLf2stjS24KJhTtAwF7d1UgohBI1zio+ddFGmLE56dB4qc8X1QrZ2Zk1nK1s3baLMZ3F86BcYuc0MHXIhLXuZC/vL6A8W059sUp05QCnfYWQ0ZsP9w6vofCnC0kQSUujU3/V3lNznSAQ44ULBUPgZHvf10ThooaGzJmg3FLQkKTaPv0FWrqRX09CEQpcW16Ucp+3h6vi1vYzQADhWWpgIHJrO1jwvaJMgFWParM0zU+c6uJc3SKWlpQgRz1oBUtjoDEtZHDr+Bqf3Pmnbxu18GvcrTyDOvIgyLTSHg0vvvBpmBn5H15b1N/f93rnsD454KdZtRUnNy2DxrI1jUQhemWzmEc+V+PQYaWlT5OT2ArA4YrAjWoEDL1XRQg5kRBj1ZtH5qp+atYvoKoaFjgJ8Vj478i5BEzohTxdn138DGZG0HnvK5nddcmHjVl6ZJ+HYMAaE3jyLazaSKKkGWyeIeg6AZssdKmUH6+d9zKd2ITWIKYE702DBN09wxT9R1PJxkgPlRKjGZZwAKQm8+TGiG2/iuo/fw2R/L6kiAG3g678BJS0iWVVYs33UT7TwVN1lWPFNdlJfFz893cLVV1/NCy+8wJI7Ha1hM0rYMoGCiIGK6/pQEjGSharuRwkTEPR2b2B2aZY3vSGaIyYfTYdjGf9IfbCCG4bm+ZlvNVFsvMnj8wtcmq5RP2ujgNCdwLku4tyiDXAE+s88zojmYqxihtz+QxcEd6Hpc/e5u6QWzsQvsgZpt13LYvTX5FtRlCXoea6Y0IQbx+I0+RNvMZq/ZbmVFMtUtO87yqmX/xUzFsNKciPjPLzle7eoqIjcHVciZ4IJHeuBuUXWdhy17wVhXxc/CyQhEmii6uov4Cm860K7tbK/rE6F/wnc/i9Hy5nd5AdK0KUO5gRyYTeFziyCrlxOnbwCj3ecJeccKenTRMfqmJiosvUKykSioWORWZXLYMNOSgMHyZiIJmCAf4yB1B/R+N6ki1WmxspuD06XZN6fSU9+Jc82bMHSNE7IGNcOvwJp5wCnne4K3lb/df7j8EOUzjzFytLbuH/N/bROtBJIDqBGX2VTTy5GaAHCIQ4eaedAjosKl6QnorEhpYv1pfY5PN37NGfTu2jUrgAJUrPY2FSfaNg4vOdX9LUeTmTEprvDhOYLE1m4pckU/PXQkP8PjHbvwsDPCv8sVVuv4/WOSXp7e1FKYZq2NZdzeuwCKyuAtIIoyTnzGNMlbDHuRkNHPT/PomMMR14K0z88xUZTkq4LulL9XBrzs1cGCJx4mpBjkJlMK4EqKahahXHd/ex/4y3OJhVQ6whxj/UyXaEdWPHdplc3uEU5iMZW0JgqAM0mfWtzy5J6hBA4hQ+nlW5DShllx3QHAGdSq5lMzuOunCHEXJTxSCUvijspSP8qwjQRxYLZ3g8xMlKJtupvSZ7dzefe+24iumFrrZRCqSj7F55g4U7BP7huo/wSmzbfDDzRWMFj43bZvUjmM9m2xFxPCy89/TiLBWX2JCUk7ZN9fMz9ARZL8liZMcuD+/6RqDeN2mAan31NIcwnET9/lvyv7yKoT3NGfBhpxCjarjO3/6NkLFRSEOlBU5I5ryvhYYhQjEzs59leNwpw+Q7iyLY7mU0ZQ0vqRZ8uwt3qZ/ulK0lRAu+zoxRMxtANDd7exBtRM5EVPWKE2Z5+lntyLifNs4bm3GbW5DQi32inzTJJ8UxTXHIq0WGqJMTEEq4yD0oXWKYkW2bY2QIlkQiSYh7S9/ShSfg6yXybMJZSnPZqtPocNPlN1gQkStk9ms5BP6caynhfsw1UVYCmFLpUvC0zmw1FFu958T3EpO0reZP+JdJxoVBIYNiQbKnI4r6GN4guxAXWAnB1UHfRfZw5HaE2ME3lK89zZtOlHKi6lE2ZPtblZLDryl2cefNpIoETeFdsIXXrKgpL0u2GgpI7CAQqoPUeLCuGUhqpo+tYOo9GVuCXvLd9Pydqm7l0fJrGdIm8qZy5Pb3kqwxbpC/UBR3cIyO/YHr6RSrLkjjTk2eXHbHxLkJBuSgmrOl2ZvuWO3C/cwPFa+66IKM2/YOH/qSu7U91q59fil0cdSS+LAwHJe/+FHdGpsnq+zbR+lE0zX728nL76GwV5M2tYTI9kweb3MQEPKrg+wNn2cluBihgTjgxnPehCR1NaIQzuxCa5I/xu855QzvY91g3aUqxOcV2WpjUA4y1DpCdmoJoMlCaiVBQPHUK5+wSz9dcxEJginLfKAiFEjECBftxBytw6W0ABNIMG80TfhUR2QtpGksqBs0aOR3vwDu4FWu6CylgfLqNf2h7gEOpV+AKmOTOz2ICHR0dWJZF7vwMm3tOsa9yDZYGD1V5ecDVxFzb64TnzpKTVE/q0Q20Z+1lLpBDcD6LQ8artHrTcSrFrsED3BaJgGhhinK2qVd5RVwBaJgojnp11sxKTAlny75AeWnrBVWisZIaPnBmiGgsilPT2ZWcQuNSyM7QhvIZ+oAd1GMYmB+sgLJlsbZgKHAM3RVNAHinK3M5VbiOivo68g59j7HcTShNkOTrJSX3DFLPTICMTXdaIpsvpWRgYAB9aZGSwW4cacXE4k9GhqFTumodeu+bcT6dgcc7TljY2TYlJf6xLvTIH7Zb+0sYf7bATQiRCTwKlAIDwB1Kqdk/cGw60AHsVkq9/7/rHP/gGD5M88Ef8WTqGqR2FSo2hDt3nuziGaYwWJjPZWHezsBMLSealSRpapgrvCdZdGWQTIQXDjqwVBu6JtipFVEkh/8kA6llooXusMTV48XTlYEGuHNDGIXTyHgK3RQ6roiFnqYSZTGAGAa7PV5unP4l2sxumpp+xq4rd9Ey0UJ+mqLzl3sS75PinU8EbQNRnfXL3WmTx9nTs4doWpRna79L4XwVV120lYub1yfa5gdOtCYyFzZBQxGacCeycJquES5IYs/EczSPdFEXXgKh41k6zapV2+nttXfRaWlTCO0FfBXrLmC2rdyUj1Y+EM/WzRA+3I87UIGSktmnupkpOQ0rBmk1stntyyASLWBlWztrOg4hFueRWi6vXTR3gYHz5s3NfLfdJGZKVjue5hLtUWqTXmUkWkdMVpHn2GIbtaNDvEsKFHnSe8EieNltG7Bmk3G6plnatQdl2YHm6uAZ9hTczM8mirjGYTAw14izqi8utrUDhaS8XkJzNUgBR+rWE9UN0O33A0XKzCMY0W6mkp08K8bZmZLEubwmPDY+Q1Qqfm5J7jgyQJ6/nViKJ97+D5rS2DZyKXrnIlmOfhZvHCZqRYk4ywmm1NBW1M7q3i5E6goWXg3iL30NWW5jWzRDsWL1M/h6bsbsrGBMuwZH9FXiG3uUcNDhr0ig42KhMhzKiGeeDWLBlXbgMxuleQE2RXQOTcaIGvPEXHN4zpqQnQYYCGVyuXuWYbGTiZjOezObEh111TffxJlHvkjm9raEI8Gy123bYT81lSPsXZdJx6ERWpWDyWg1BfoC4zKNa0UGerykYgBVoTlag2185PIbiWkCR5mT7x4JUT9ncToYJbP3Nxy/ZjUxkYLSBJpUrO3tZefuh6ka6uNHE8VEM+xMXVRGmc49wG/St9AwF8A714VPZPP3l28iZcnFiI32s/9pYI7vZdPJfqJlMSYOC/THnsCVW8Ob7nSG33EHp5RG5FgEvfMo2sjDJNf+GErOBTkeTxPNTY/w2skXmXxtlpi/nHPFIhjNMnikbjsxpTicWUDO57/MNZ//DNl/00B6X4C7UysYDU/FNW5FjIz8gs4z/wBAdj7MLWxkYrzKfoaFosrM56LUVcgUC4e+QOgnHyc06cJ9xdsuyKi5N6xHOIxzbLff0rX9pzpNzyvFnjPtEHg2lVGzOomsEz2c9pg4EgbugGYx7mulNWSx4LuYmACpCUypeCPNzTX6FEXWCACHMjKR0XsBhTtQy6z2nO0ffR6/67eDNcuUCCGQSjGr4LCzA1Wyj9F5D/OBLLSQxpWt78OzPkh+yQo8SRMMJ6+m+4VDpCSPI32jccsmRaBgLxnld+BKug+e+xBjuec2QCpegVj+nSZWPcxSz0uoDVNovYLTJQZNbSe5eyHM/upNiUPz8vIYGBjEskzCDmfc6UPD1BVnUwxuq7uag/ufYGJpiFUzb8cIrGRc+Mk49jw3DE/zxbt0egoFz6S6aYxEAEFPbjpbxevsZQem0jGUYt2MjQoxgeeVlw/GEUbLo2WiJSHBiSlBy0XvoZF0KN1G6PnjiaCeaBT5ZBvigwrlEEgLRg5FWbFFgK7ooorv134IKQwOCsVHLiliw8vfZrpxJe7tL4NuIYQDd04RwXEXRmiBaNxLVjcMUjV4/EufwaNl86F1f8036txYAj7bPcIPchvJrBK0GfNcmeHFPdRJSP7a3qZIQbgnndnAIJkZPZiZnSxNVzPSVfo/gVt8fBJ4RSn1VSHEJ+Off+IPHPsl4I3/tjP7U2NgL41LId6lHeOHq/6VzbMuNm8cQuiKPDnGqVNXsLCQE9eWndP0WMIgGrTYltTKXrHRbnpTyoawrvsERZ6xxO7lD+1KK0M5NPR6MKQHDQN37gIV1w0hdBd7uAFL6TiUybpAL/3ZAxxWKxN2OgYmq8Rpe1ei7N1lY+n9NOY0cqjnMRACnzOf3BVJOApfpEaYWAoe8qdyY7ltlv1079MJyO5k2iDb123g7otuYbwvwO5vHSW6eAgrFsNunOA8PZP9n6brVN1+PR/t/hJRK4IzN4tdE9M0mkDpNpYGlhBCkJo6SX3Dy0QikmH/U1z38S/h7zEpqqtnXv4cWNbHmcwV7CU5UI5AEEzrYrrs23RrZTygfQETe8d+2lfF2+amKe0+zlhOMaXF97I4qGj/yVeZSU2i7PKr+P7V9bQdn6C55HbEsSfJc54hz3mG0cj7MKVd2pOJQNgu+eUoD+mxenIvSmFL46pEyenQ7sMoea7lXEiL8kAHCvinyNVcNDRKOP1aVK0tQMaC8Hg5SAtNWaxvO8JTWxvP06MplJ5G9qyTqw7loquzPN7yGbtsVbWKA3OLRKWK69ygp2CJdNME5Utce4GgxpGMX9eYsyTFgQpUcg1zvg9zONfgRI3JN7/zFZrSN4DScM/UIMqMOCpCEcpsY6m5i8IjH2PIvBRR2QLCQqHTOruTocXyc0iPcAnW6H3cvi1GjbeRz3UvooRt7L6pzEfSUIiYY565jBP2tTwzSHGkn4mMenzOVB5x3ouFAQpe65J8fqmVexYEocNHKNvsY16z6BFVtKs6alQbosfD0pBguO0UFGziF1oMqRROI517L2oi0jdH2BBwNgyWQtc11iUv8pvaK4lpWnyRlxxkiLSuLnwjh/CEhtlek8WuoEZMSnRpsXP3w9T3d2EJ8HYMwOZzZPqsNCffviSF0Jf+jUBqGdeNHGXVzCZiZbcwMvKobUsFKGngHxdo/ytMt17Fm2wn6ZTGNS/vY3PfQU78fJYf/N2nkde8DcdVt/CtH/0Iz+8xYvd4mhgx02lZeIWNmPH2F8jIcjB6RSExaxGpacSAYysrWf+v3yXr/f+L9EvWkg6Uc05aMDn54rl7FViZNcXkeFVcK6ZRJQvRhA2hTnrjRYZeeBVlgfjZ0xT/5Cd0ZJbyVp+fy1L9FO+YTjg2MNlB6BiJueyPGcxHBufj+rIaXDufZvGp3zCwMIVnpgvvYi8e1wGGf/JefiJvJiW1gdVyMpFxU0pjLpCHRFIwN40h0zARaFKyvbYMUu6Bln8HFAVaK921z5GUpuOSmyjJ/T6auy3h0HI+WHw5WEPZonWFJMnXS8a2B0GPkSF1Tp28gsX5bPz6Ir7MJJvJWXUPA3v3Ii3JchZ0WZOshMV4qIXyrZ8mYJ5ldOHH8TkyvgsSup1CFvZ7zt0wjgaYChoP6pS/6aJjldsOgDQNIQRLg9N4pmoJuSYpWMZCCTAsSePZNJJnLLbn3MEB6wecKP08vpQsin89h6N/DEtA3ZCku1DjqdRUbghF8ZXcTZ/VRiVdCYDt+skkagJXsocYLxBjTdqFYHEAj9NjExYUNnu0+haIb7rcGxx2s0okAkrh7BP4vuPEf2Ml3W2LLE24Cc+6mK/383juGqxUHYRGTFk8WpXBjj2vkZvcw6JuxX1WTdIKUwiOm+hLQdxD3WQ3rOPy2+9ktOUgZixGTnoRQy49Pi8KYlLxlZZBugqykSKbZ4HvZ15E4JUDmBn9GLMrWWU0E0o9im/bN5DCREmDjBXVkBAL/fnHnzNwuwnYEf/4p8Dr/J7ATQixDsgFXmAZF/3nHvEdYdBI5dKkYXyFBkJXCM0GDno844mMG5BQgRpLixRdvBGyL6E072r0F44kvBdL12yD+KIfOnaMwZ3vhFgMHA5KfvoT3GvXMtrVwfF//Qlrox4koLnWkF50BqEPUql18Wn5OSYC1ZRNz/Dpyr8npjR0TNaoI2SIANvka1SKrsTksHdmgjn3cRpzGimqqycnpZhtvluZK34BP1acBC/4+OqbaMxp5MjAo8yPP0qJUzEQtXVHN5TbNPWW1nZM00IzilhuEzKF5HDtDNkLLi7yNFOQU0rd9kv5of9xIl0RFIrycAUz6e8msn4zrqINlDKc8KK0J2UbGmykTbDxlvsBmD9PoqaANncPOVhoaIQyO1CaSbtWZy/8y0EzGiMZPozcFTx+/buQuoPnZ2LcMdRP/uRZWva9jjP9DoTI43inQcnV3yav5f2MRyqYNhUZmolSOpowSS2bZr6/AKXskOYVmcxVqWUXdMEW1dWjaRrSWkbECFYtdKJj4wbaciR1+5/FmtiI5+olhNOBb7Yd79gk+ROH8Mz383e/NPjnu96N1DQcmkZytIeGmE5+wwzBMTdLU+esvjZ7UzFQxKRCU/bitcy3ysTJrIqhUBx2dFOblIwWSkWlOliR+SmmgsrW0Dk0nrn9XWzszAAFyYEKio59gvltLzO3dChe6jEJZXYSjEpSkGgCpFQM+cfA5aF5tZ/mvPWkqHI2lW1OuEZUeGZ5q8+fCNre/EUXMi3u6yrsZyRvKZ/BFVsZEQ44b8MjlcYXhizSHvsyjW924arU6PlgDf/I/8YUBoYwea/4HunmAkFfKV98tg1LKnRN8PWLKmg8MIE0JTHgG4S5rTafDdtLcO9zcMRvosWfUQPwDr7FyyXJNEYdzF//QTpzCvjs2CiDz76KV8+i/eI7GazoxG9EOFraCdjZYafm5MbyG0l65CRv1b0PqekMSEn3w4cpvbuJVPNBhoeeACUIDGxkRfajdBtV5zYXjfDy6h08+OADnK6oxtJtuyJTKNp23MPqn30Nz83HEkHOMocxy1fNwaRiBEOsiQkc0XLm/Arx6jiO7anElp0YzrQRHOwldPQouZ/6JNZcAPeG9XQVClomWtD1zRzDbvKopIuC8Yu5zlrL2To7o6i1a/ZeSUisyY54U4JAxWJ0v/Qm71gcJxKTLBl7uN+KERhIRVmCuQ9/GaEbKNNMdEH/PoN5PbOc6R+eSnR0ateu5Lkzm1AlFhRfxcmc7/A+92HmI7lYSjG/kMvpk5dTlz2NWyXRMu1hcT4LDY2tgSQKlywOGwEuLSrgmvo68N4Fx3/BsJnJr9K2UZu/h5BmEbSe4vSjH+WqnXfj8dgZlfPB4jbWxc46ZugCLWUas+Z5hB63vBISr2ccDYGr8RUGZ0yG535I09qHiXliWFike8cSTL9lzXNGju2CMZvnQwXjzA+pyOywSIqVMLp6KJ4lxxb7C9ARXJ7kw+9TBN1uNGWXsXVNI/xiK3rmlaRFvdSE5ylKHWQxxcWmQAb1M7a3csTbT07zUdAVEUaYehdk/YsTbUjQXmw3b1lC0LL5vVRzORNHwuTk9lBBFxWqm4C6gQ87+zgZzcahC77YtCIx34WOHaP3tT08GX0aK99CFzofX//xC9hzy6irwFN7COzejbIsXCMO0pzXE5p4GlCEJpI5nJ1M3gqTCQGmskCZBFyd7H/3NRSEe0gXbfE1TCGtUuyCnYXTjHLV9ddTUFSEvrSIpmlMhodY64/iKHdhSnsT3FkQt/cSgoiSvD61yAeM+5nytJPjdqBGFUuZnbYXrWb7p2ruNuDiPxgS/HePP2fglquUGgNQSo0JIXJ++wBh16O+CfwVcNkfezEhxH3AfQDFxcX//8/2/FG0gae2PsBR8wy1nKZEdqFkvAPTEiz1gVARlNOVaKV0BPxc5T1FwdAojDjxrV/PTR4vUznZVG7efMGiH3hqjz2xAUSjiV3pcNspzJid7RKAjBzDNFdCvAW+WnVx18ARvpz3QWLEH0Rl4CXAu9RDCHGuzfWtRY3HhnfjbH+OXVfuwpfsI3PdNqaHg3hmVzGjHChiaEIHPY0H932A2sgLXJkuuSwNvjeVxIbSmxMP5qinB8syITaG5t6KVX+IhdwO3EGdle1epoY6mDF6OCI7GO0bYrOxGZWp+MTU23HgYGrEJDtnHjRoavKg6240zYibzF9oQZKff0uc8B1DCIPD2gxjaz9N5lgdqT3z5K4UrKINXTMxlZ1x01GMpb3FeEMtpm7PhKauM1hYRv7UCJZlEgsPYSTlYVmSkSGJilby9MznsTDw6TG2ph3BbSyQvPZ6htYUsXtPB0elSZdD8bnf8iOdmJomkpGDFgxgLC1SnuKnZzEezAubPRbR5iieGcafZSJVjORbDc6+/nfkT9gHlY0Oo0sLJQQCwdtXvYvJrNcIqlNUWN30/XolUgtz8KefJqP2Uv6tsIxd+w+RNztJ3sIsyybj0cUZVFqq/b5KEgyeJMk/yvvFu4gGddR5GYGXVxTRNB/m1hE74PRVbiGntoHWY3+FlFGU0ukZrWLWkhStMtClhal0uoJpOFfsojNi0X92j+2rm1ORuB7rSjJYV5LBeF+AX7/4a/JrzhALuwkEzzV/eAu3ITRn/Hzs8vBymkIqQWt9FY2vd+LsEYwEb8JMNeLm0TBXej3vuXQ1u0ccRM0p+6eVwjUWRJkKPa7XSkPwrs5hHt2+gpMNhXx9cgrTrs7wrowMvnvHTrspR8Y7K3tHMaTiI9mb+FZdXOsmauLnFsM39Q1WO0p4W6W9uXnLG0JqQYj7RM6Hyjn2Yz8Zl1gsndyJaUpcGd0Y9YO0i1su2FyYusHxqlpW95xBV6CkwlCwblaiZ5QTeGoP7SkmTwy187z/WUS4C6fu5Au3f4tp/2UUjcc4++YYSkH+ZIzP+F3Mr4hQ89QzlA/22lmuaJTxLz1gf+ww+NpdOsdLSpnL+SRCa8bA4sr+feSPrKbPCFDd04mSFqedOretu5qVhSbWI13M6GkoqRAOJyezyonM2l3uB6xV3DPx6wQIFqlsH1elEl3Qv89ggMZm3AAAIABJREFU3lmVhTqPoTZ0aAxp2mpgKSCSVEVL8ikui46hlEBTktB8Npp/GwFhsVo5sHINSktKWbm2ihWWIvutMZiD8ZQAeWUbYOfTDLz+G9KiRxPAXDQTZ2Ynh5/tY8P1ZeSVeWxz+zgCRNc1tt5RyULnDHk9s0TSQ5zN64zfX6ApnXz/Omq8E4SVCUIiZZSp/jfo09PYm/cmddJNkRIYcUwJQjE++3UKA43nGHpWBGEKtOddzE7OEa7OILUgiHvWYv4OCQ6BoTnpLX07j73TQ17AT8HcNPluN6FwlLARIU7FxhFL49b8UhYPdzCmepkQGWQrD/MrDiKWtQIADjB2bsLMuoah0a+jyxirwxVsC1yLketB0zRm/IVk+s6CULhznsZSL+McvpXPXfKexKYsdOwYA+98J1o0yid0+OJdOn1FGoFo4HeWzmXU1dL6tQzu30fJlq3IWCR+SgKJIsV08jnXBjrP7OPb7inmnB2UzoDWdz2RyudRqi2OHBEYyYZNADDP4kgqRjMKAJuLd9m7/5ZXfvx9XDPf5eP9hZysuIFniGcJ4+ugUNibXCuH8rFjuDjBhHoAEUkGNJS0EEL/i7PA+i8N3IQQvwHyfs+3PvOffIn3Ac8rpYaFEH/0QKXUQ8BDAM3NzeqPHvz/OFoCQT4oGzG1tezB5FN8nszOCNGFJeb9mfjddYnuF+Jar/rVTg4H55FLOlWjiqGP/iOGpShwOvH9+48T2TYAc3r6gvebXprmuVM/pLIgh6xVc6SXBpjrS2Np1kX+uudtyo4C44SD4GQy0WKdC4c6V91TCqngUNAuasVkjEfbTtIx4CAvPEmhM8C1C03kdr+DiZqHUcpi7uz3WQjqiFSJHv8zNJJOUU8j47kB8so8VKd7OLT4EJqE5LwQVWvOorBQEnpPh1macGPGojheG6BSCazkebxyM4eNHiqtApCKw89+i5D3ELm5PQihUMq4gI4Ny1iQHoorvoyRNoHD4eW2ri+i1CQy28986pVxHMks73V9h576a/Dl1bAhTefB0T6CholQ1yDQ0C2LotH+BLdFM5IRGui6hlmUx2BvAxYGCh3bAn0TQUsj9LRF9b1pXP8368jq8/O5uJXV8hgeHuaZ37yKzCoAXx7uoTO4jXF0oWxDcWyf1fLrbsCxNcj00i8Rmo3BSM7pYTajkrM+g59cdyvmcuZFKb7vz0WKO9HFbXxGfY4axwCO1z9DY/oisb5dcP0v+M7lWxkYGKC/5RBnuzsxQgtYKERqDfHCPVWBBZ4rX0lMN7B7Bomzr2wbnK/XJlO+GKR+ThLJSyHfU5ngfMlQHadXZXPkxD7M1jXMeA1em7mIYWMApzBt3MpvedSePwa797Hi4m/Qo5XRQT3OnhRSxyS6pnFHdQ1vjC0QkwpdCBrcktagbSHnwKTp5Jl46kHnqqRsHlYxYnE8xl1lpRRUrWKTaxanYSNJHIZG3upsRP8io9Ys49osQZmCVEk80TfJw2IJU4sHrQJOy1migNR11LI+UwhMAa/mO4kJUMtUXaEhhINg+K84ckLnxPFFKjyzlO6o4/jRo1iWjAfcGprUebX7Dd75jiYc84NEIr0oHWpFGzrnbS6UpD7XTdXVH+I6/2kKZstpnpE0zEQJTXdxwrGevx2yiGirUVk1eCe/ioj1EzVf4bqVucjcOkb3CRsto0C+McE9H24i/c5bGXrxOVQsRrzFNtE8UNlvcbi6BiV0FBoxBS+YTRgssoZZZFyjaUmLKd8SNeu3Qd5uiiu/R6h3BvfVdxKs2YLee9DOaADJOVHmdDdKAoZtTK8s6wKW228bzOuZngsYar0eHUsoUBaWZjHu6aW58DJSwskMtqeTpKKsM03ecvUkWG7X5mym5uZmxg6OcvqxLqaiillL0XlgjJs/3ERe2QZKd+Rz9FfjCRg60iA0Wc3MzCxLvcfYdnEhvubcBAJkuaOwo92PBoR9Z0Asu9YIPGPbyJvdxpLsYbjsJZQ0EcpAvZjBlqoMvuv086bwk3bIx8YVS6QVBm18YbwRorT0fpqafsbZPQ9g/rKd4EQSh8rzkaZAG1Rs7B2lqKAOcU0Z/do6PukrIpYlEhZWct6Whc9VZZAaGCWaVsLpUheHwpOkZfRTTidTnklS5yvRfDEyzltGBTorrvoAHk8Tu06b9Jw4xsbB6xH9UcKZb9HQ9DKSKD1U0S7qqKGNiuR+BvKeomN2PWAnSHpf24OIRtEVGBasHoLhEtui8QKHnuVNflcHzzz6UyzT5OTZXi7Z+V4MpxPTjKFpGvdWvx3Xh79CQzTKDx0Gpz57Kyp1PcOuIfSZFfikw5ZoSB0rkkrW6uOEpqqJzOYx0jWb0KJVV27Bffscg2lfIEdrpQsnUt3BMj/SvgYKn0wDIXFxgrCniynfh5ktDLHs1JKfed9fnOH8f2ngppS6/A99TwgxIYTIj2fb8oHJ33PYRcA2IcT7gFTAKYRYVEp98r/olP9T48DcIqbQkQgbFKpWs7pvjsWRcSK+XEjRSEufxuMdt2G7i9n8KNzHgDcdpyeNH59esjlm8ckz8NQeQi8/iTsnAvmNLO7dC9hxltQFX/S+SVfrXrakmrxtaxiAtBVBAgNpdledbQ9Hr1HIG7KBGs5iEMNSBjom2xLyQEH6QgxGFGPpXnQhkUnVPCLrMEsEWlElN5zYz3jyItWbU1AzdqnSiHfUxVFjSCUoOv3XBP1unnqrlZs/0kTSaBg9/n1fRQCBZZfRBKQWBAlOJKOEQlMCK9lNqLiCkJhmFDijj5KePk1d1Uuka+e7T1gkJRVcELSdjwW5/bNfJsrroMy45luSVgjDr3pYmkzF6wjytevXMppbzIG5RT60dRehhRYmHU5e6A3jO3mE4YKVIASF40MYqWNEXZLi9etoSSmlRTSzLp75yTI04jCkBFV93SVFrCvJoCUQ5F8GJ9jsTaXZk2LDIBNaOA3pTqM2dZIar5+3PHfjzV6RcHoIBFoZbv0V0oqhpE5kqgxzw34+su0f4h2lGkJZCKWwtHimUDnYy3aKRqbwazrNnnlQJrPtr1Kz/nL6Ro8xdeQNXNa5/Uvy0BlcGevYnLSKvOJ0NqXBf0hJTNfs7sHz9HuWkvw6+SyBIY2aQDH52Hoqj6eJyOA8WcmnuTLpP3AunUZGnPjKruekK5/D4dexlHmBr+5vjzmrlT5nGV/RPoeJgVGp+PDCACnrfPS6UvhSRTqzppW4lq+PtPLG1DAXhRXFB/tRwFyyE/Y+w1f1KY76VrPOfxrLs5JRUllXtYqf3buJM61jrMVgfHaCNzN6mJkfRKHIRONtZh36kolMPndeGorqhR9xmL/GVAZCgVBgodCl5JLxKMczDWJSxXmHCpRAjScjVRTL6Od7x07ygc1XccVdJiN9rzA16SJiBFmcLifHeRxz4WksA4TDAKlRobr4DJ9jLzsYWPAyu/Qi3ygeZte6G7mfBn750BepOFJCcLILuTjE6drbiWkOVByq7Ujbwu2qk4LAL+mds9A0J9U7HqD9FXvhklLZC9nV59xYdK+Hia98NdE80L1SZ4O/jf2em+LG6BbNi69y2hdkKlyMhoGS1u/4B7vnXsDtjcKRw6yrreB7F5uc3PcseUyTkhWl+BI/ockk3NfeDb/VeQr8Xr7b+Qy1lIHHeH5hD3kLFYymdyONebraTHzmAA/6drO/6lZCPZmM+jVUPJPcP9xP3r6TmM/OUu3UqHTCgUWLWVMlFvSioiJuvfVj9PWtxakN4e+sJjyTQ4Ym2JSkYR0ZZ/q4bXeVd/W539fbkEW0b44kfzWizIFUpt2pnXoxUilcc+UUHvkYrYXTdLCate4Fyib385VYOg8tuUkdKWFkdozqvC5AoennqggeTxOO+s8y9K13M5SejFzujkTgT0/B+6vjyN0nePNKC/PaIpSmIQWMebPJiwduCsFQboDd69OIxXMGuu8iPi1foFjrRKlWprRqhHDGUVIak6lX8NJ4L4GTe2g++CPqQ9ejLDvfHUzvQGHSI6r4Rz5vP6vC5I7AU6wKt+FW+4DrAWgv1qiOQ3RNHbLzy/hx3wrU977C7vF2ThUpflDsZNdVP6Yxp5HhtlMXUAKWFhZofP87OXVsH/Vrt1J3fJypuA5SRGNUnZI8axzFSjUJKggfup6k7EHcgTpy19puCkoajO7/KIVVtrtNZHCe6R+eIrjiOKRZgKTGOolD3EpsWWwoBCiN/kwPNzdahDsHaa3zILUFlhNFAo2UzPMmir+Q8ecslT4N7AS+Gv9/z28foJR6x/LHQoh3As1/7qANYLM3FaemEbUkulKET+axNF8PPImwTNLSJ6lveCVhKH/y5OWs8a9BIkmynLSvXcl65QNpERttIfDkr+yJVAdP2eNg2r2CCnilHjoL7eBhrWFn0pa1Eg53LF6SUEip4bdqMFM8BIdifCbjC3SIVVTLDipEN1LZeomq/jCebf/EruJGWiZa6NGa+emEOs/PzoeeFCYtlo+ISlScSzg+oPO9HIMKlySl/3Ly/FU238lSdL41RlVzPegayb5FMqvn7PNXgBTMj7rpKQ4ynR5hY7sP050ef3BIHJfmGUuUL5bBkNpvpah/+4EfbjtFzaU2186SUaSCof21GO5NJGe2svrqZLpSlnjn8R5i0vb5/FLFzTzUNUzY5YCNWwGFYZq8/ekfkT96GsRpOgZew125kV5VQL5zjsJoJtOm3eAmlEJoAld8V3fgzCR3j47aVkKa4InGCnuB03SkZaEryebFdjK0ME6fxWDIT6zhfgqq7N2qx9PEuqZHGOp9g1BfBvXaj3hsZQMxw2AZ5SIUrA+c5i3vmsQ1CwylccbMRQjFS2MuKj0zZNReavMFn/8m9VZqPL9mD30pQk1aDbnSgxCCNQuKD00v8fW8NKSwS8kom4emWyY5w+1k6VUUeJyJ1xg7OIr5TB9CSuCLzJtvkenaw/0lo7DtIxyfLP+d3XXibzc8zP7jHZw6pTG/oR4Tu8wZQ/KTslnGVRGibxSXpvFEY0XCUH1HYRM7CpuY/sFDTJkms8lODhVnI7smAUUeJxkBRkQ/+pFPUp67gtXrr2V7h5cxa5Z9jlbbBgkSpeIdIkRf7zxabRJKE+gC7hBnWDDd/JX4MQsqnfzeTJxH3Rxd1UTRxCTe0d/wmckNtOd4ychK4d9DSZhLFlaGE4dzjOrc71MsIhx961FWJgdRBSbeQvsZ9klB7QFBhGUhvYkrqZpwuIMq0UWF7Ob1aDpPR2PEhE7LRAv31t9L+z3/m683tnPF2VJu2HgxO1JM/mXIxNJsguqs+2IyeQVUFwBSxsgpH8B4cy2WKdGUxKemCB2bvSBIclVVJT7/5Gw3E4e+wcWln6dDq6PWakPT+unyOQkKB9uLvkpsOMLK2opzco4TvwAzbM9QVhRO/Jwrj/+SKxwRLHQ0YeDOtnDnmXDZbVD0u04wv88dxlWSjqskHYYPM3X8AcY9qYx5BsgMZ7Jt/GLalcZoWhENdb8hWX+B5DqD9OOXMx/XtonoPCcfeZY6zxa0+EQym21wwGdQUXLOrqtoYC/p+bkMLLmYywsgk5LJUp5E0+/yxsxVks7w8DADAwOUlpbivLmC0EkvSerT7F74GgHTojr4BMWuG/EEKuhIruBbhWuJaWDg49Pyp1SqKTafvIzF7Fz8qpD5fWWkVM1y0Y0fwdEnmD78UOLvEn3/PXi//zCa8toaZiHIXFxCSImQsKbjNI6rbiIGGAKuKspncqgrfmsrJjIzMc9rCLPQOKOtokbYouBcdYZUVxNRdxYPdh2Eg29QO/Q6M7WSzvIUzEA37++2MBQkB2rQhIN2tRpTLEsSNNKjN/G1oSsIzXwJVh+Gog1UX3wjX7vnKaoGooTcOu96sh8RtcHNtyG4WYcH7o7QcmZ3Qk+tGwauzHnSCpdYyh3nY90PE02O4ux+jR9WfgzneTrI9q5OrOoaEJCWPonbM8HCbDYp7qlEVz7CoqhpNHEvRfoCKFMmGqykMilXPdze8zzHUuvpyiu1mzckVPrSSL26lpNJtyCtFzhv2gQE+/pi+MXsBVWVP/f4cwZuXwUeE0K8BxgCbgcQQjQDf6uUuvfPeG5/dDR7Urg3usCpdiidtMj3N3LUbbLGeR2RrLNke04nghAhLLzeCRYWsljrX4tA0KV0KkrqyVXpOEu3EnzzG6iZXpRUIC2ELrAQxDTFG/XnutYmJstZmXoyIXD1d3oJz7pIzQ8xbVWzEMsGIZhfyCJ2MsK70/fweuBSTlGM1zvO1rk2PIsmLPlpzGmkMaeRnw8cR0diSdClpKLnBA3vfjf6a3vxPe0kUmHh6NHYWFdB/ob1pDpS6T0R+p36d0HVKpo/eC9HT32FeGIIKcHf6yM8mUKoep6u4kVm06LUTqTiA9LTpvB4x5mfzWVhNgdZoiGEXfb1TmhUFt2AZ96Ek7ajRFFdPZpuYCkTTTcoqqvH41nFqOftHBt4FHF2A6XTlbhzByje/jxBZbKn0ySq3YmM622emwoQUdiYjXjJy9INpnLKyZ8aIctVQE5SMZNDg9xsteBct5YD+g6KJ02YM8kyYFpKVnS9SNm+MV4ObiBa7kJqAmkpHu+f4muNpWy55lZ+89hL3Hh2hKyBDIbmfeTvmONA+ipO7jlNk9ZFTfgElG7DU7SB+qYmaAI21rK5/wSapdneGPFJuCp8lhZVj4lAtyyqT5yKd5sKTs3l07ZYxNs9heyb2M9IRog6LcU2edY1KtZdykh3Ln6VxrgWYFKbIw8vrwfmsfJsJwEpFZe/9QZhLUbd1CI7jUvQUx3I5/uJFKQyaynaHu+myiHigFadVH0Lr881kT2g4w0OUFi1knvrf7c8Ojw8zE9/+lNM08RQ4Ohxo1faQSKYzDnmQdhl24hl8c3Wl/lEXemFwua4fZI/zW1nJICR3GKGC1ZSNNpP4cQwlmnSNTKAsdhKdlYjh4zuhHflsmROQ2MuNZdvrkrCAjSpuDUyxxPGSkyjEgOTT8oHSO6/hqLuo5SNz5Hc0EDxLe9EjUxzXWMRT8XcqEP9mM2+eGaklqtVITWiCwjES6z2+wkBulDoaOd5ZGscm91BdVIPGiYInbPhFDTmqTwLZf197Asf41NBQTRlFS/X1JKbIymNtXCDu4BfhYtAaEil0UEdlXQhEGiag+Ly7aRda9H5nV/i9XeytP8sQ5BoDljGb7jXruXEq4+x8Kmv0b8+nYqmbvt1LHhLreL20XqWnEFKu5zoMgnR4yeSE7dpOvYI59rEDfuXtaIIJTGEgKa/Bk8Rf8oF5g+Ogb00h0I40lOIAtlLWWhKAzTSvLYlmX1xTZpXhxhtySEw1MlA4AgpacVYmXvxeieYiG7ha7U1mBrsnxznCX2I5sduJOC2OFrvsZ0jknTMkqtxeN6O1qOYUHOMG3PUpGYTiN+3yw1kO3fuZNVFDfzw1GHOnIb7s6MYGW2Q38XQGx/hcGYdMaHiPqU67VotFbILr3eKxYU8QOC0NrCqoxjyJEMfe+8FWJSR0U6KFiNs7B3Fn5pMRnAJb9S071Ogrr+bb/zzlzn5f9h70+i4rjJt+9rn1CCVpKpSSSpJJZXm0Rpty46HGNuZ55ARCEMIEIbut6Fp5tA0STOkoaEb+JoxhCSQEMic2Nhx7CROPNuyLUu2Nc/zVKWqkqpUwzn7/XHKcgLdDW9/X3/wrtX7j5a1tOTSOfvs8+xn3/d11zZw9Xtu59J123nBFGBv+wCjaW5SElEUqaMlKQKq1KmR51bcrEgILZ9CRk3kTanc+6REL9Lx35JAN0PCMcT3xIPk+ZrRi61cm/kBLpsO8KLFgNeadGjxaZiliYLwxhXeaLO7mS+u/yKT1mdwpoaIdw1iGTD+QwUwa7C1Q6fFewxKjuOpWs/1n38fwzP3gdCIL/+QfNXMoCaI63GedWpYPvV5ap59Cs/UMBNmHXSNDMc8DY37jIZIsUpoYANCWIA4UlMZOp5P7z4jmjCzzDh6Tw1U4D31BQKr+zl4PoAjANunO2gaDTOZUUDlrIltd5cx0dPJ0Zf6KL1GJA0JRpNElzpZ+o/4+6dUvn7nXX8xxdufrXCTUs7z7xgOpJStwB8UbVLKR4FH/9s/2J8w2mba6D3xApeOXM1ElpU9a20sCsicMOHSIB43wmovnJbFYxYUTaKrhshcR2dS8ZOrOQAFU3YVMV8fACnZ4Pjkfex88yV+YztLb+GFlq2gbDbArO/d2ArbCY2VE+gfIWYy40tkgDkfnMkzTQFHTLNcNRPgttgbDFJIaWgCr5gDRaVt7iytB76Kw13Pv574NhmqlxSaeL9axLs/9CGcS8sEJiYwj5hQB4z2954t49zq+gD7RvYxkDNJ1cw6VKkiVKjZkM/JYT9nw6twZN2Irj+KEDpSKsyMFyOIUjG2xJJF0lcYJ5RmpTQ4R0PjXuMhLFLoO5MBQiZDlSWL4UIeC3jZ9OznaAl0gGpBufx5LOm3E18eeZsQtaHwnfzg/O/IVBcoUjRs7m6EkgAhqdXbUfTb0YUJRRFcn+PgoD9I4i15ZAJBQUyQZfWwLe/dKEJFlxqPaft5uPFaEoqCSercc7IH/0A+OpK9xw7z+XiEdSmr+UVZ0rEk4dm9fdyZ6eAd7kJq1NXgbWbau4mR8Z0sh9rADk10U777QZCJP0zK8K6nxbueB8fn+FLvmIG0EHBny9WkDe5hcDpK/sAIWdMzvHVrKHWd0XMdtGxu4afZP2Xvhjk8vlQ+fN1n2HrJTew/NMavXjhGl+UcCjozGU5OVFzKhYmqSsGVvcNYx05TkL8VtUBFAFpCY6ijk0VTLrMxnUqzepHRJyVOJUrfmddwVUwyPJZG8/IHKVv1dvfV0NBQMkbJGPYpyXVLhznn8OJLfwJd6kTTtkBSdJ7ePsDn+n7IP9/8z4DBhmopaKHqkV8w//zT0N3OeK6Xp264B01VUTWNO3c+QqXsJt0TZjrQyQmLjo5kyp7JhDObgoU51vpTaNI8vOxxXNSr6ZL2YIREtt3oKuhw/sxVvPPYSXor7sBhNpETNmE/EQdph+kQpdsCKN5xULJXjsO79TpqRU/yerJS10hdIKQJ2ykztuMJotXw89TbeEWrZa3zw1yTfZRQII+yJTex8DRf2PEmJv15fh2A6A23gVCJ6hrP9TzNzfJZGqhiB/9gcLXQqJHn0FAoLnj3ihY0PvIzigd3ryxAMnmP3wrEbZtp48Wnv8Fqq43FGdtKTJ1ucZDvSGVBBhFBN0dEN5V4cCccRhfKdABWMDcCVhtHobQ9aXTfVAs03fX/Li6oZAvN+/+Jh6dm2JGehq6PIDA0mqFgPoizGFWwJG45grehlvGzQ2gpNpaqNSxNv2RZ0XgDGwmlGh0DA3F4cpgWLcasvQBdRJIbax17xgSmCp1ofQ67d7+OJnVO7xmiubkZTdMMZNNbEiZaclvo7ifpugepJEjNOkHJTAXmVSYSUkVFY5XeiZAmQgv5iOSmwaO7UFCJnBq+iEWJRQnvfQ5PXSVSHFxhIQoJ0e0e/KlDuNoFKYMKq4Z6qWksomGdcQ//YfZJ5uo+i1RUFF1nc187UbOdxRSFqqkR0lxmRNHF+YgAIXXWoGDSIFwpQTX+DhNgcYxxLGWCCkXnm52Cr474eTb1KPuKv0VjZ5zGQLJrLJQV3qj/t7+FXz2A+X9FWVJh6ZPg+r4J6+CFpoNka3iZhoGjMHQtXPddTNkRmDWOMBVgU0xn9RGFE/WVPBasJV4mMX/qPj792PdRlgPYRnrIXBd6S0NEp7jATGXL45w99jLdb+QQmS9HKDrjPX70sgi+Ah+Zw05SF8qxHajkxpuy6Ow/RO/4CQocZygO5LJ9w03klTk49vweFics9O0sIsMTwdtUQtzaaiSTCI0yew9HB+b/p3D7v3m0Trcybu/BnX0tv96agZb0AgyUNHJjW4BCs5GhJwSgg3d+hIJTQdrWrkYqCgoK+boxAaSWIDHbDQa0h+lTDor+tpaqT61ieM+HQY+hCpUvX/Jl7rAVM3XiJOOxaym4o4HJS9sNEbyUIBVSlzzELAsErD4WLAGOpdq40zpPYeYi9lUfJ+DroSP4Bm+IQxwbPcro4As4Iy6aAi5siXmUOgfOpWVG7vkQsxnpTFdVMZwxw6FKP/35Gl3HvokmNWSGZGfdD/GGqvnglXcyruq89+dHiSV0VmkuLsu9ErvD0PfpUyYKA/2kTVjY1q7x62uryVVKcHgvdiUVITFXGoUWAnqo5sHy+0kIE+b69TzT/ne0hLoYb+sH4cGUkgeKYdtPzerHGT7Gjy79LGdCIaouySJt+FIW2InU40hp6LdAoid0XEtBHqzy8qXuURK6RJFw/Zkwd12+ndHfxlaI6iCZ8daSUIzcvwQS35p2vIFFFv3FjDt6ORcOs8Ef5YcnBCdcJvb7lhgLRjk6ME8lVgQK02qA3ZYOtAovI3YTN9v3EAk4MC3FCc+qhGdM2F59BtsH3/6ie39BNrVLgxyeHGZTfjGVuSqXjv+KTQUx9Hx4NcWN+3TWSummKCreugY87loeuuohdvTvQCJxlBYRCJxiMroLNScBS8ZUG3NmoyuG81hIyZXBXrI8Op0RO1ExhZc4GiYSaHxt4gd8dM0XUFTBRFoPqe4eUn01WAPl+CxPUnbVcfrUKjrxMjP5z7ynIP1tYt6SkhJUVSWRSFwwGpITXCA+n8f2DZdxeOHnFA/8GquyDk9gDpstSLp7C4937eCNkZeIaTEsqoUfXfpZ9A0L2BbCjHpKk8gMFQ0IbMymImuvATOWPubbM+kVVexo3IyuKJzUJWfGo3x+QrLal8AsLSSSrs2CyeMMZF5rHHdrCba9+gpxawUOi4VN6SYDvKzLZCGr03ZmJ9b8XiKyFkVYsAhBnei6sGcCqaAPXcqiz0vUHKI2NRvHx69i6NV2goFxRhezwAXZiwkmInVIoSDQqAtFMelvYNZDAAAgAElEQVQaqoTmrrOo196MpoJKglrZDuhU6F18Ud5Pl1JHtTzH7OIgud77yM9vwu8/BoDqdDDncjHjduOemSF7YYFAejF+VzWpRavJTq5hHYU6l52IoEhJeCoVRZeU3TyIUDQKk3yyrqCkV53iqngjgUwb9VkGCukPirS7XzI6MKlZxldYKd7+aFLC7w/veqbWfB/t9X3cGzpLnqWbURYZKn8/Jdu+yNKSi/GJJwGJlBrpnjCqyUQ0zY7LObuyrtTqHZi5kwQqZkWwKb/Y+MwzjYjik+h6AikVtEQKdvshxhZy0aS+UqgBqKp6EdmU1Pg1u5uJN3+Fhf6vIHUNXRfEZiK8YylIw9ETzOQPUblswWOqw+a7HWcwhwnFR5504sZB1NXP0upeYocEll6JEBLb2M9pimocLHFzIt2DLgTp7jAV1/WDCr7tkPkDE8qIwrecB/hCUvQfNlckn2MFTUDUbOE7JU60s2fp8znJn/so1sVWFgoOErWPJDeqJtaUfBRpfhhzrw5G9DKKJihedHClZ86IOrTD6+EUPhQ8i9P6Y3TlHYQdkoirE2tT4wpvdOprXyd6eTIsPvkuHNwoqRgGVQdUQXnREoZjJgG7PkPmu79vuGn1OAoq1zyrYOnTmSjcwGmZxBOZzJyqa6G5bZ9x7B0polDvQwgdRQdv6x4cTR+jvOKvObvjNEIxXMAW6xxPf+2bVHm9aMVW0vy1pAYryFlM43dMMtBkZ5UYpk5/lYDPAlyLN1tFJUFkOoXYjJXVG7xM6afQpKHzTjMvs+H3yAF/zvE/hdt/YbTktvBD+w95JfsUmnr5ioNUUxRmAG00A1FsOF+EVLEPOphNTeGKCg/RzCrsx5bJlQ5AZ7n9SWaUADO1tcYi6/MRPn6C5o99lIevfvhtmqHR0VGGcuopKSkmz+ugd/ziRgp0dJFAM4dJk2a2TF9K3JHKqcZeUKBv8ZeoVh2Zo3IJGmszNH415qB0cjNq8mlbOO3n+NnnUDPS2b91q6GlEbX4cw6hiAV0aQRwKyiUVefziab30uxu5oev9xFL6LgjU2yZepnETAoztixMYR9qJMREhoQMF4qEsuBGIo4Fo6jT1RVn19RMJYVpbahC4YDYTgyzsasTksOOZlrCAxQ0l6Oej67Y9DOLRjh1+hPoehQhVK6tup/sRDVzL8awp32BRec5DptL0UuNhU0XOo/1nOa+9eU8WO3luZE51oYEH7nFwAC4zBYSO33oUkOXOu6xTkyNlSSkboSei3YCVZ3sCYEvbYjS0Cx281cZD/0NZxYzGdMTK4BZKyqoMIkPHZ0M+yyrGl832HRSofP1LJTXjZDu2PIubFVW3HUX3bOMHqflqZtoSb4gh278EMiE0ZFUBBbXao6tLsY7MUTB9AgFdTV4qmoBCI7EGdwfJCS7EG0vsqk6SA6S21artLdfyWIwG69vhraiahIITCLGevujmLf1Ylv0Mjs9zoHEjxnML+GMrZfelBFmgt2s8SQYXfNdwiIOmBk+eSmZeefoU6t4UCQFzCQomDzHjY41Ky/srPXruPvuuxkaGmImItnX/hoZ9ilu9ks+MF7KQs2XORXwM3y6n4V8ydNV15LAxMlEgvKUk8wt9eMxLbMw8A8oKToVN0hGD3dyRNuGBphFgpac1hVWltAlTsc0E2LTSpqIpkgGvKn8VQH8IJzCr2w2nouGWVye5bJXT/HOI1Oc2lRPTXob624oQJbdxe7WKL90m2jxaTQEDKXcKbvgpYIc0HtwTH+LGs/7+VxaCflvFhNwJ7CUlpJj3crQo78hkebEszSI48t38fLOEFqiCCG8fLrvKVrdZ/Ca/QyXVWEkXOp05/WSSIq8q0Z6qe/8Fv3eWkr1Lqpcg6ALpC6pFD1U0YOOQp73Pq6oaFrBtSiKBUfoZvZv34amKKi6TktrL0Pee9AVleEXF7iGE7SsbeGnxSk8vyXCLQcm8NtSySheIPGWjobDMUUolIMudQ7aOnCoc9R7P3KxSHvrUeiFr4/ddLGou/slwnPmP56U8Htj6sgRXvxdFpr+HqNozfsa3c5x1q02Uh4CgVuYnHrOeOkrZoorb+SOr9zJq6+9yUygY8UxWqEP8I+6j0B144rZZWLrDzny8Cus4zOMZrfi03TKqw4yN38MIcw4HFcQCGShqipNTU00NTWtaNy8Xi9TAwGGew9iy5kgMnsZM4szBAJ5hK151AuFMtWJkAdwRMxE5/4ZiZkUIEfaOd8yRao2yIzr20gRR/mkoOzFCDkygs2VMJqI+Qr6osCWFyFv4wzSvKKWYHS95LHNKgP5Gq3dz9NSfQvm3vNcwIAgBKmJOClVVcSGDiFm7CQcfZgtIcLdzVjj78bu7sHmqyF1qZIf3XmA6jOzLLTXkeGaIeRzU2Q7hVrACj0gxyk4VZyBrhxAX3MIo2WnMRv+HcOvOWg5MYhF07D2CELJRqzUFUaiRTzx3im2nYVtOc0g9168wVLHMT294lQXb0wR7nuGo9W17LrkHStxxlIRvL5uC/U9bSRsFsKhZJykY4qMM2H8rw2SUfIMeR/89ttcwMNn9mB1BTFt28W8IvFJM0VtX+Bkahb/nHM1mlB4kdv4oniAzYUK0eEg6X1Rbi+OMrY0TZZnkVF9AEigCpBCcnXJPvJMLwPv+ZPrhP/O8T+F239hNLubue+S+/jy2YMYM2zlXISJjMMovkoKWj9L1NXLsj+fVwr86F5B54iP2+1O0rXIyu+az3Swf93FRXbbmwcoTlrmL+jQwNAJPfLYIwbbyKRwz933UFJSgsMxT0bGBMGQB2duFcMzUwgEJqnQkD6Lrshkl0NLah2SOAoJq8wmohiuwim7EVAv5s9TVmp0My4cA92YeSPeRi/fPvFtPKZlqlI07qy8bOWzbSjLwmJS8C5PoMoEIrKIGll8+0VLoibU8CI4FELBHDrar8KdEiMx3ULullSyK+5kajnGgck6Q/8kJSo6m/IL4aqXyPOu5xKlk66zvdTUV6LY9qPrUYydd4LunvsRMhOZSCN1oYLUQAXbCxfYr0s0YYi150d384FwiID7SyQknLYKrskykQcUXNrIOO10PLGT6fAQTm2Gr+OhVfZRmwSTxlI34XCnUzVVzaJayM6yElouewctwOHDrRQsT5AfncKaGsIm9pCvrUdBMSCdK+YLjdMZbkpTlklzh5n7qwhEnmTs9HNGyLVjzUpe44X82syFeHKHGqNHr+Kxsg+RKFdQtQRXHN7JUEkRpYElCucTdDwaoGm5AYutjYp1CytH9qqSINM5TbZnOzcePcD217/G8Xeupqz8OJWKISZOzw+zPJ1CYWob33N1U75cwV9Pvpu1vlKCzpeQIg6KRMo4RS1vgNR4nboVs0EC6BR1XP7vRBt5t2whEDiF0/wUUo+h6CYirZ8lc4+TG+vyGYjl80jW2MXfJcGaVosaHqIqJYER766jKLDZewzr/gRDVWWsLzxOldKzckQppIn6+a3MZ6VwWkJ8hZ8lkArsMiW4bi7MC/YYMWsGez/5Ff61q48rah9Aijh9ikqs6Br+KaXEMLVI+MGJMIdJ8Kt16ejKdpBbcEx/h8s6x8n68f3EYjFSAWGZJOOxj9Lw/3zV4DHSzIDvPI7KDsKz1SzPldFdsoWqsd+SqkeQWDhZITiTO8J8ip9/fI/KqhHJ+SKBu7CO9xWrVFjrKHLezvxkD13HduKq9hmdaiSxwDhnB/3oeoyVvM3MMbSRElCMKzaeX4KuqCBUNF2j6wdP8o5vvp+HrnqIRzyP8K/Zr1I3EmSuEG6SYJICpEoocPGIr8PexfUWI2lhIpLBQIeK68hrlFxpvliI/d6cZegA4fMZfzS79G1j9Djjzz+Cpt+BxJhPj5jW0+p8Fcvpf+Fh9yqyojko4rO4sqZJTW3m4GuD+Kbn2HNyntJYDqPK1WTl9RGZuITSrU56gjswpbYAzYz2DzMbGWP/oImZ5Xw8xR1kEzcofzLB9u0egsHNK4UasPJ1aiDAnseexrP5O4R8CVKyFALjVxgpOejMODsIrvmlUZRJSf2Zz6H6r2G+7FIe0H5BfDrB55UKZGbUWJMVgVwDthEdFAM6XZazwPn0LEpvGEGoFzq4gA6vORUGnGCWkg3TKRQlsrgl/308EsE4VZA6EdXEyX37ODsBNtdxzI2vsqhoKNJM9GANWYM3GAkwSNJTyznaIMhfdBMI5yF0HWXWgayeR1MMikBJWgFRddp47oS+ciqi6XFO9b/KS8M1PGixYB6MYv15EWObm1marUHxF2NX/40tHf2o+mmG1Bw6rl+i2hmmOSEMbW/SqR72n+aM/WV2r1+/cgpwYdHSTCqDmzdSfPh1pjLqeCO3CYHkyuU9NOqDRuwakFfmWMGA6IkG+nojRgatYpiBRho62BMoJWHOMGIhpaRLNFCzUMa5lw/gTngR4j6aXV9hMj+4kj8NFwUpMzN7KCj4n8Lt/+qxxXwVG0Uhe2BloqlTMyxa+tjrjXLZyGWkBco5ow6jmQzLtqZpnI31sU7JR9EVhKIwaQ6iKbaVRXbG/QccYgCOnD1CIpFAQSGRSLDjzV+SURunofEVIIEQ58mIVjM6Y4BGVTQKAkFGdcMtagjBjTfbhYmYsCxS6O2gK97EjgojoP5kSTVb7B3UTA0DxqS1nelmenmI+5reRfrcQyjoLA79I4HMSsMVWZzJEx/ZwOHDJqI7TiS5IRc4dsnsPSnRhYpJL8LuSydhDbAuNowlYMYZ+C1Fmz+MreRd/GB4Go3JFS3Gu7UBWhquAO96Wltb2bVnF1JKeifO0OBZJK3ISKy4UBCFXZ2kmtYbME9F8I6leR4Yb+OkqMDZ2YNjcIKXr7+SOV1HFwroOocXFldcjAXFywjnw4yabHjTwwwuVuNJeyHJlYPJYARnay3ng2vQUVFHVQq2KuiJCfRdP2YwnmBw7wtccUUV1cp+chPbuS7WzNS8giw+CyKB1Ayn7bxdxVS1ZBwvCPn2kOuStx9JOcruoEpZQ1fXV+lSVqEJYXSSUNm75SakorKjrY/7xyKQEBCfID1/8aLrXRpzYGHBTaE7gwKnk7TBXipf6Gbmb42iXmqCxUkbWdnZ1C2aeHS2iHT/7ShSRaBjc9QgysxIPZEU4BtF1Cp5DhMJElJiFnBZXg3h3zzxBy/sTlcJPf27cBM3rqfQCLt6SQ1UkJibwy1cXDa1xEtZCUMMTYL3lm4gWlhOU0YGiwP3o2sxUMBaHGVT4RGKDg9Q6JlCXjApSwV313twBldzVwjq5yLsLDDzUoEFDaMbd9OZIGdcKrE0w1SSUE2cyItyhYgnF3qN3SOHiYtidEUQl/CNbJ1JSRLVYLg6o7H3sy04aCScJIdMArOjG66n60SIjLTTLG98nJxckLqJ4dfuJjB4jIONNZxp2owQgsqpIaQYNWQCBYLeQoGUcGtqBE/gdyzJOF0zZlrWPMHYhETXH0cgSSB55MwyqpbJZ1vMyY6sSsHoKUzCiyZBVRQKZ0YZ9GhJjImG09dJeO9z8MHb6FvoY6RQJLW0CgvzhVQv1HOHrwFHMIcpxc+RzFZOO85y7kQP7gUrp7//MFoigSIlG557nqYf/8Qoxn5vzlKyBVt6MuboLcy2/2y0Dp5hT2U+S8OCgjkNXWiMOvpBQEyL8sTLz5AxZEFKiaIoSHncSCeRkqZoF5eEOonXRtBNkOYe5Pv9L9C3LI3A87wr8coAqtDxm5fRhUx2/jtQFOMIMcO8iaYtF7OiZ7sPMNT/MiFZhBZejdXVteJkFLqOwzlNKORGILA7p4iKBBjLCgFnHPfCDGfiv2ZyeYh3z1yNKd980SwjJOaWv4KKi/nUnqEDbNAGmNVGLlYMOmR2atwTCVIVLyI3Ukcs1kBQG2KLy8Tjqy3EhaEPLfDPEo9LNE1id84Yeb4CBBphVzf6eJWxFgOx9AnKXYOY5nMIBd0ouk724TAZ51VGbowRKLyJjsoPYh9/APQE56lnlX6OctGNJlW6fJUMOYrY+/GPsND+EEJtxtV9HQIVgcaW7gpMiX4EOpqEc34b31nl4Dvue0hpHcIbycBTVYtt9Wq0D7yHwq5uVE0jAVxgXOkyzpv2V/E0Wzhft8VoKAC9d9xL1cwc11556x/MIU9VLZdc+xnD/ICGpgvOno/iSx9ClDcABg3C0p/OgYkpFGWa61hDrnAQLf0bMjfrKBMPrjQFLgy3++r/dO7+/znU+++//8/9Gf4/Hz/72c/u/+hHP/rHf/C/OKYGAjz0/K8YcQaZTHGjJ7tD5s4omq+E/EIXm0tDpI2fpn2phEDKPCBRFMHR9F8zl/cmQ/o4ZiVMUWM1XQsLICWKrlN37jzOrGxeyFb5dncry4kwDc489o/vR/gGcbsH0IGX5FFSI+0Up0aSjiGdkfYYsbEmLLqDK9XXqI33EF1w0LHcwMhIE5PTlWS7TJhM8wgB3pQYTuc0510VnFMaQSgGD8iVS8HCDOnRZZCSiExl7XNHOOM5RKHDEJRKqdPWfg7fUholhdV4nKlc0lDOXJrk7OI881nZWGPzrBrx4VlYxB6OMpzupifVil9N4cbKGObRaeSpUaxDIyzsO0jaxk2k5Ofz7LQfKSUWPcYDHV/H0/pDRm0NPL1rP7qeFMfqOr6+GdICVmyFRmEsdBNZGVcQq+3H4nEwmzHKZNmDZNpPU5d+gIJBDzKcyqWueva6HUgEJhHn4zlLlNjzjZt74DtkzBym0BYgwxwlkbcRn6kTiURKldGRRnJiqxCxTCJSQdcljpxUFiZOM9TellxsJOcDOptsc4S1y0nHRvayl3FHLTPne5k6lc3idBrVM35sy3Ei63VQFRTFgid+Ncs7D0OmF/Omd0FmMWz7InjX4/MdxL9wBFUkOMQ70BFGyHvyOFDXJXlH9uNaykaikIh14apMolkQ9PauZ3a+GD2lkgx7JbHO89gmfSxMpTGt2Zk6mU14OpXy3lFM7RNYw9WYs2pXurTmqItEtJ7UYBYZ0+tYzjqPFDpZYp46zuEWPr5UVc+mnGJQFYI7dxqaGrOZ+dvez10vDtI/G+GSvFYEEiEVzJEc1HgG+At4zvUq26fraVwew22a5G+LnNxSdyWKUDjtG6K0LRV9doBEtrxQO7HksxOJOUjPDCY1pZKUWRs5tdcTH1tk2ioImRVuyLIjETQcn+eOAFgk7PaYkYBZwoeHglhz9htXSoCCxhFlO6BgUQVfqisi32LmvGKI1U265J9sFjY3VRB4aQdoRvGrZpaxGC/m1FgO4xkVxFeHSMvrRiS1P9GAoFvL5anrPsCMI4vZjEx684opWJhhUR25uK2SZlYJC96UEYOHKDWm58L07z4JuiQ8b+XZgIVzy0XM+VbTUlZOcaaJomgRpd0nKGUEk26lKKuR6mtvIb/rN5iG+ykd2oUjNMhcS5Qnlx5hftmPeS6F8vE0pJBsq7uX+PG1rFvOwUEqbumkM62fs7ZemrtVUl/pZTmurZgeUpej5Lnc2FrWgqMAbNmgLUPN9bA4jdlTiO2qW7EUesn+67/6T7ttrYElbp+0cjSzitMlFpblQTpynsceGmTLWUkKLnJ8JYgLBxzJyKcLZ4kiHiPLO4FaFjNIOkhm45L+mEDqGoWjJ9k6105Regi/Ipm1eonGbPgXclH8Vcx3vJPeQy4KazJJz0xh8vBezs59gmVzO5pylHN9S4hgKY6CUxhdfoWR4SZi0XRyFtJICwcRxX3GHNIVHL2fZnJ5LZFQPgXDChZfkLwShUhWd7IoU3DkbcfZ9Enj2jkKoHgTKZn5TIw+c7Fw0yD7ZYHDkcHR+E2E0yX+vEPMsUTBQia2iQgJTScntETVlIkNy2761WmkFOS4B1EUAcLMZMcNTAUzCeswYOuhZvUzeOwR8nIGyDwVZtWxXrLnfZj8gmVHOZ9u+hyHQwqHxDbeZBvnlAYOi22UJ5Z4tbeZM3ONNARG2Bg9wevZE3QX6lTOtaBIw/le17ULW3QBKQyD29OXKgg9hbTds4yebafz4H6K6hvJyMrB5HAwtvsFrOEQuslM5cA50hY7WNu+D0dgkK6q1URTk2B7IZCKoDQ3hyKryvnxcRRFWYksA1gOwNJkOhE9i3PnK+ihkn01a9EUUKXkrtEdpI9dKMskGaSSr7qw37aFtPJ1uDI3kppahJKoJB4xk5t9D+VVH/g/KRP+j8cDDzwwef/99//sT/nZP6njJoR4FfiulHLXW773Mynlf1919Bc8Htn5cx5afSkJTChorJsY4MyoEzUQw6SW8MWN76G+OJOTs88RabXj9DUStyzgzHuNSzwzqEKi50xy8rTCul++zG0feD9du3aTMzVFTijE3so8PtMfQ4p8Xu2Lor78fUoLxlAa96EKiVfC9GAtrtF6ZOY+9KSD0z8VRs7vwpJxK0vua3hIsTOfbuL0XDPmxVRyCHDFxD78JbohSk92KerFOZ4XciXQXEcy4cgmL+A3/q0o+LPdZJ2cQ/cqKICWkPgPLTLywk/hb2HrJTcxOjpKe+sAGRYPCOgr6+CGYwuYNJhPt5KmBKgLHENVWznTditSuQOlQWP1mR+QHhqk//UXaVl9P880V3C4bTebTn+PlmAHCJWhzpMrRduFIbQ4aaMbKVRvZTmrh8W4Qp/4FkLRABOT8RLyFEMQL3UjYzN3/h14rG3cpz/OeWUVq2Qn5tnL+WGPncvTh6j5PdRB2ZobmR9dTXvnrwks5LIUzMWjZ+IzCfzJAOmUNDOZZQ1JdptEEyrWFIjqDRhBgwoqkLLUwk+mBZ7YBLWJCZyhfpSgIOsHZpRb63A33YH/3m+9XQ+05TMrf+/MaAq6JqgQPbxX/oI35reTNTHN6fqNaKqKomms6j5K7fjr+J2VpF1agdRySJjT+e2RXEzzJoLkUn9SI6jo+NZ+iub5r9EYGKB9Rz66Q5IX1VlyXUuXC4rDY7hlAoQ5ecEFDksj5sESVATWxUKWajrJy5ynPDOP95Tc/jZTguPmmwnbZ9E3uji1vECRPk/xUozfnnovhXm9bPMcI1DwBkHPYQpOfo6QCPO54n+hOVLNWlcTVzZspm2mjXtfuZeYFmPVgsoXDluJVUSQJtB1hVmlHgKCHH3S0EtKUNKLsK3J5WjfHJ9YnUJcgEVE+Hp+Ls8ujpIglVUBje+fCPNvLsn/8kmaA7kEuIvZ2ieQGN3YW7IEFksWd+a5jI5sdR7XnzjNnt88S1NXB/XjI/DILyh+7FEG/vErmKYkts1/B6qJDQgOL2oszdSQre9EqKCoZvKyWhjTSepHjTezjoLVu4Uve27j/h3n0C19xMNljHhfRWQmT42A8ZF+Kq4dMgwYmiDrTBYyUkaVa4h88RN8/jg+FF7zOCgez2F07v1oc1YG+pa4+Z4PUPCTdzE1YiNWorNQ18VVZrg8HfqO5hKZsqEoCiazYM2lxXBwymApqoKujEFaeqw09rgJCS35uQUIE1bpWumidZ3YR/nuz2PSY4j+14yXrGrFdvdL2D72UcKnTzP305/9hyaFpwdniUqRBAzD2aJFms8P8JUnNUwaHNpcxURhsmJPZn6IC3nAUmJeCmKbknRureKcUs8q0c1wfAQVHbPUaYlEQIsz0XIrL6eV0DPdindhEVeoFFvfNSDFiisxUxUMnN2JLEtcdJ/aJ8kvuwm7/C42Vw/dJzTiQwukR2LYFQ9EY8y9sgbdPcpa+zsJBPPYbT2Djo7IyyFlpJPOviC55SpS0RCKidTZTOb2/OxtubEtuS1UhT7GWIfxDrcdU3DnLPGs/TLa3UVszW2jWOlCL27nQPscU0tbOFvsRlMUOgtdrG+NcF1wDZN+P7nLm1n0TvH4nlTqo2WYtVnOL/aRU2JouC6YCTyWQTLmk5xQk0rbDX9HXAqMbboARUUCcaDfbOW91U9RNjnDbQdPIBJxqhWdb9w1zJ76h/jrietw7X0OZ3CQaJkkui2HX9sCDNgVimZrOdpQj3digMLZ8ZWsZU9VLdVf/Ab/MrNMQiiMF5Rxx4sP4ZmeBjIpLknn1/YEYKxFpoRG3qsv85uyYnSTCdVk4u6778br9TLR08mT3/4GMWsqqGZiWW4mvTnJZ05BkiBaGMbjjxAIulFVlYrVtWSvrmI+Os7o8y/jrWtgafomjjzZgyUzn+m8TlIsb/6BY/7PNf7Uo9JS4AtCiHVSygeS3/vLCHz/M4yBXNOKDgcpyTNPkObR2LKhhQ1viT8quOxy1DOnsWh2UpfTqckcJgoXFwLXLNOuTGpicUru+9KK8+obsXHkkqFJAWjvmuSG7hdZvMHAZQBcTh7Hg25DrOmcIrCQSzQcw8o0WnyccHkK5ZntlMs4a+VJOtqvIBzM4s2FrTTIfaxApoAq0c/HE2/wY2UbYPB6Ns4LQ/mh6yi6Ts7MDOMpKovZ97Dc+Sb+Q4tEpm2oQPubR9h6yU10nOoynIMY+JLr1nyCJ+xPYz17HqHZcIQEAomuJYjHxjClFqIL8DkrSQkPcijHRwMGJ6+lrAgO9BnXQLVQUrsWZfDY24s3k5nZpTFqAxsJhrLpLn+cImEcW0k9hpTyLQYIiKfMY3aNkTrfQlXZS1TqvYDKgYfcDM/7KNBOUpQnsGUZfwGrDcfcOu96wssZLLw2ToGWRbbuoCeRIHkGwfJSHE9VLVl3fIrfvXKAUFoWZbYgffHjZEnD7q5LnejcMcyqhbbMNSSUbO7qOQRxHcuAQPygD/2Wrv9QD3T60AF27R0kw3EFAbeJX+W/Dy1HZcRVxvbDu1hOsVEwP0U83UrcPE2OdzeBTYbGA6lwaSIPOVdLSZqL0oxkWgIW5vKrUNP7yGr3k+oS9Cl3EvFXATApE1wX+RlpGWuI6peAVEgZXUSqCromSVusoLT9UaycTYrR3wkOw0U4cs+HiBYsM/83MeSyQrF8hqtclxEK5kAYiFmQQjOKED3BclY3XXKQ3pQRhjImeaj+vUSHgwWv3Z8AACAASURBVBw9MU6W8hHKF/3MOY7S/YE1bJjWGMmc4kSviVAoGxAromV8EVLqF1h29nF0UwaxaBwpBHEpmYlE+WZLKUemg/SNLHA6kGA0MciT2fsYlKvJ6tlEbCqf6ZJ5flpxDdqcglnx0YiZY6cm2VCWRc2pE2Ttft64R6pK+PgJsj/2UfbfWsaVz6igqAihoEhJtlkwsFBOobyflLIgmZmXMFinMLDnCeP5S2pjTTLB7FArgzk3cNP113Di5AQD835sMp2kKQ9dB6s1gFCT8XVItjatodFcSEXqb0lE4oBuoCyyrLw+u561WECCpunsC+bQvfW75LpbqSvfBaawsZZIsOdFGJA1jHpKKeg+xjP9CX74rqspCetYyxx8NvXv6fjat5gRwZU1QzEVYbJegqluAdvq1Zwc9vPGjqf5pEgeg2NIHVa0bn/EpPDrYyM8tb8XsdaVdAZrWCLnqR+RmDQYKi1jsqDA6LYJiUByfU0KuZvfR3vrcdSlEFXr13Js2Mc3TI1oimCHEHzzEkF49HlaDj9EczRGq72O2x23E1OtyML1hKzfop4pIumjmKNOUqSTAKM89MSLxK0adVJB6MbGOBTycNVVNcxb5zn4Sg/h1w5gRiPL6mFL3uWoohLJJai+b2GOK/QpfnR0pDC6f6mFEi1tjLHWazDZFMb9HeQ//XWElCu5sefzNSyqhYeueoiaRBGhV/aycJWTf03v4NHSe4krZo7SzH3cT7noxZ+rcFpNNaLbFEECwclMhXsW0skRGeQ2rubZU2N8xj+HWQVpz+b18D4WhgbIrjciqtDAOmAmvbkIkysTx3ovnuwwyoKGEZOnJxFJhuqwTpxFERq3pO2FuA0hJRYpuHukmFPbmyisycC6c4JoOfj+Jo60THGTMJEt3sVDBTcQR0HVt/Ke3Y/jrWtYmQOvW+zElXgSXyMY9ZRRMD2GBBr6pvmXLRaenJght2eOa576LcKqMqYkjYFJXIvdPsvZ8z+CmgyiITcXNOgFgXnM6CtGs1rOsnF9LUH9MsP1HlnkzVd+xbn9+0jJDtHXG2HZdwOWzGyKtn4XoSQYnPwdWQWP/0XEX/2phdsCBnPtB0KIHcD7/vs+0l/+qPIvsScnsRIR45ge5VTmr/hi3c/fFqydV+ag9u40zp8dprZAUn4mn045nbShC6zWJXJSQys70AsLWUPHGHsXEwhp4AlWd5/HKgShazHQI1Ilc74BhQVCwRxCoRzQdWzhJFZEsRJQ+sgWBmJD6AkyHZOEQ9kEQrmovdnolbOGLkiYqK66n4GBLhr7fs6G2Psp9wfJDGlYZTVLc2dwnTuAY2Ge7jsFowOP0uK6mcXZM6gIQ8/QV8e5A+P07w+DPbkbVhQ21m+kQ9g4F/gyn3oxzKkSp6GzESD1AInEGMLsprW0j7atKsMcYvNMm2F6eCtioGQLXu96riOLXbsMjZuiqqxuqGRo7lG+mDXOKn89aYEcCnUVIQx/++Kik5n2K8jNHSAvb4CcVQFEzX44sQ7Pic/Sn7ITeWqCG1qPGvUNMHLeRdFlfmy5wkAdJMfWy67krOsk0yfGmV8WBLsNUKOqKhRUZXJy2M8/nYpgd1ZxlaUbk5D8LqWR3PFn8ZLPzPII88MT3GK2YLr+E2za9G4yc6bfFrYN/Id6oM4OA7gbCrlpc1aiCRNSUdCA5RQb67pOEi6qZqK0gqUGO42r916UGUqNgk0TpJlv5Ziazy6nZNu8iXLZTWD9QRZECtTpSDmHV/8+I298huX5cqRQCaaWkUYKSXU/6JK09XmYnCmEBp+i7bQfb6oNT1qY1sEzHNaLWdXeSUEsRrRCQ6pgZE7EcTqnWAzlAOC1FtGr1NFFFauUHhrfcQOfzcxYwZiYJjRe23uOB1d7iAsPnW7JN8bBkZNC8e1/S8dvfkEwNMyFhTkUzAap09i8j5ipl9aTr7PY8x6UiuvQhYKi66ivtLLkt7JNddJ0cy0VZ09j6TvG074eTosi1sUFynwl3SUFJKQR1yZ1yd8f6EHpD2ExKTy5qYbU5D06X1HDYOM6PENtHBh7k+xKF9VlKqn+GmyhKsgZoa4sg0DEjD22DYejludOPcmY5/Zk00gjP9xJUJ9mLmuR7y2YUBQ/othC9cwYJ8XV1Ojz1ChdSKkwN1uEwzGDouj0qauYzb2FnLl/IxE5l7zPhry0N6qwbO9lrSoRuuB0uZVdlkX0kgrMJUV8SW+nSlw0cwxaynn6pntICIOJV/vGcX4z4eObtxgv1WaasV/9bg78Zic5tiJmlicImS7BpLopu8lwMh8dmOdQooZPmE0g46hCJjtuhn4rvOvEf7gpOTns5x9ePIvUJXeeeoGSLB+xWCdPps5wrkhwiwqj3kJjMgtBRsYMRc4+KkvegcPrXemyjJ7roH9DC3rQcADHpWQsqvP5LQ9AIAitj3DY0UxcMaNjAIs35m6nfqqLYNowImOU4trVvHm01bg20eyVDYEaWcVtt32Uees8975yL1ceXUuBN0GaN8ZszMsv7TZafBqNAUmGqRhTwQyZz51Gaa5Al2B3zlHT0GbwLfU9jLzxaepP6KCNG39XzMiNjWrQMBqhfekJou51RD7cyO+mf8zrys3EFCMCLyFNnJP1aFLhF/kfIEES66PrqFoCel/m3JKV4itaKCq2s/qUCTOgCoGOQm5KEe2BBQ6eSWd9tU5h3IrrgxtI7Q9iG/8F5xYlo90HuHfperrNFcxrB5lIm+Waqo9QNv89KmUPQqo4o9kExCJSQiCjBDFYxtDuE3ykagc//5cvYZrbjbQcNJ5/mUD3B9CchjZXFyYc7713xQnfGljiN5PzF3FzQhBMdzCeW4hnepT2SA8bO3v4dDSM+zvfQUloDJSVrWwkpJQsL5/n5Knvo2TEaGhS6Gi/0tgoArlBH59bfo1e6yyrOEu1OkxJ/TdxONasRCkm4nFs7iXKrxtBqBKpP4K/v+piOgOJixrkP/P4Uws3IaVMAH+VjJ46CPxlkOj+DONzH78PfvJNejLTyJ0I8po9TCD9ap4b63wb7b1tpo3PdH6MmIhjmVB4pPIjFJ+6gvHincSzz5Lv6UX7kIV42UUBJKPHcQ0+Q+ZSkIKFTZROG2vIYiCH1tZ0FiumCS5l8XcLDVwnluhTJ9GR9EfbmbJnM1pTjHdigGpz+QonB6GyuFiAEAJVMVHuvQ17kQe/JURm5iU4HGtoMbfx06EPEZ1XmTNLYqWTBAP5XFVzA6FKyUnPPm7M86MAQjyD5Zp7GXk9jmLyoqge+k/PoL8lG1MmuwnvrN2M/ng1WYsdbJmzsFxQT78yzVz0LHr8PFP5LnLCldijgrg+wus9DzPqW0+nqOOyvDpatlzkm7W0tJCbm3vRnj/0FG2HfDycIjB7ZtiqeRgfq6bQ24kQkoryVobaKsnOiCYfPEMQv5zVQ+bAtSiDa7GfH0LFuMYGr0shnH4Vtrv/5g8govXNa6lvNrLwJo9MsNA+h7Mxm7wyB88mkSi5SjDpfjR4ZX5rAmtwFHeKEXHli0+xPsWITwm/8+a3hW073nkzjnfe/O8yr2obGuiZmALA459FLapaydHcaLeRVtVMOGbwA+1ZBl1+RQMtjPuxp3CIn+dfiqYo/KYMvjUxh1tJJO/XBaqNhi2nm+X5crLMKpnK1UR18RbtFVg86QQzF3jm4QMk4kUIirHX5PB1vYX4wCTmolq+W1lLRd85FjXNyFbUBYGFi3kblurr+FrkRmISLAJa8qowRXt5qd/gts0tpzJcsp2YQrJjpnO8cJ6bYi9x/ICD090jyRNt4746rVBZPo1iSl57PU6t+Qw3tjuYcGRTsDDPwpKP3RaFa2Kr0Q5HWffYV9BjMaoVne/d2oumaMyWzJAoHUfBDaioUiDnougSXIsTvHk+xo1fv5+e7iH+rmkz8WVQBzS+OVBIzm1d+EzDgIL/eA3D7UC70dk2mc1Gtm7CBSIZZ4bGdFotOqtWboCO4SbpWteCFIJ/kg9w5dgO6ubmWApmEV5yEE6P8PPqTxKfA5P8MvdxP5Wym8SSzo8WUxmKq5AxSOZtIfRYA7ssi4ZfSAji0kSnUkeV7MWlFODu7WZHUz6aoiKFwcQb9ZTy+/jcgobt1B1RmMJPvd6EZtbJrQlRkn4ORiWblpeRPW3syVlLJCeNjZsvwxz1c0RbRaleSZlzEJSL2ArVeVGPdHRgHi0ZUD/id/Hg0k94PDMVPdVOd6HgG3eZuXzJjMQo2hoa96EqGqdCfazpKWGJtSsZxoH8Ekw3fhCZ7A45Jr5JIO+rOJKQ4E2Bdsx6HFQFlRjr5C7K6vroaL+SxcX/zd57Rsd1XWf/v3PvFGBQBgNgMOiF6ARBFIJVhVRvlGjZalbsyFYsxY5j5/+34je27NhOHNspTuLYibtjyZZsNUtW75RYxQISIEgARO+9TsEAM3PvOe+HOxiSjrNWVtZKnHetHH4AZjgAbjnn3L338+znyaFvrJsEGqEgGPASCuSw7+a7KCoq4vWzr5OxnEdhhpeK3fsZ0Mr5jrgeAwd2Cd8/GePqaA/Oa75JU4Od9MNHmMvxklUzxNy8RAgrAEjOeBvbauiChLamsZqi86VfRgk5nZxc6KQt7zTle0e4Pl1RrM7wdfV+a8pLRXAyhV9p92Lmr9vUmBRPDJHVPUryeDtdSLqeO85cUQRP/hZkXGxaKcmImmKtuBq3mMeZ9DaLLslSrJ2sd+0gUvDvlbSIOch6jJbTHybLfy3/WPwIVfoI+1LuYfJMO67FWkSklL6a5/CND3Gm4dNITad5xmQs57ucbAhw55ZPMdt2Iq7VJtg51M5P6+8G3bIfvLFiQ2IOHF0OcdHjA4SgY+NWuqqa+OOnfojHkUvX8U5QJldlZJAzv0AkyckFIiCMjr5JSWkk4ViU4xuwAjcF6elz1NhfoxarySzH/Unc7mbGxsY4tP8dIjYnejRKal7YqmrH90JpTKNMrCr6Rf6yv+vxHw3cvr/+jVLqESHEWeCT/zWH9P/G+MCVl3PirRfoijUxWrwXQ1c84hfc5l/BFumjdaaVyel2omYUKQQxZXJs+O/Zt/urjIS7iOuZI4kxNfWcFcWPnYBHb6PFBmXJ2+msuZKuShuv79zNrWcOk72yjNYtcTSEma0/T1JomC2LtfgDmXSnR3hqx05LVsQ0aVib5n1xnRyPZzs1VV6Gh4dZS8rihZCDHc44pDt2wrKU8uRxW8XteFPOU55+PN5F2cHZvgjexkOUiNgF6xQkFfU6s60tRNfGMddOkpm7k57hMaxNz2oeeOqt57jmlitJ2lUCwyv4tnwKdB2HWOZo+CBmYIKShUr05O1snzLJTv9bbAX9fHLyQxhC8d3Jbp4pULRUXag8FRUVseBc4PWZ12nx5NFowHdXlvDXRBBiAQtEuQAnlTb1ounrIYxGn6rlgPNKtrk1ck+fIWUtlhBOVYDQNFx3fQaK/n0SdWQkgHxliDRDIseDRPJTE5IoM0Y6kskEDNbgrqAuZSsogVQmhxZ+lYAHXE2W+bclG0HivfWALdzWlvi/6vftI9/IYSEwjCtWSP1gAIdzjY9vKaWp/MM8/Z13If0MaekzOJ1hTGWBoRpWvUspjU6xETPeyGBoioHSXeREf4oiBkKhpEBJnfBcNameGHWDJ6DkisQDVwgwUAx0LzAzcZpKVwvLaWcxs0d4NW0XUWlVqUAw9LkvsLvjJLlZ6XSvtHHmzEoc1oSakhxmc4uIDU7FKyPWxu0KtBI1o0QcG3imcA/KclBFUxIbBhuF1ZU7Pv5dXKnbrEpzfLM3nXPYU89edJesQDE3sGhxNSFhRj6lLTHYeobro1GElNgRFM8M8dS2Fxgt/QhS1KBhcpV6i2vSs/jblQIyI9Psm3oBY9LkhVM6Y0UNxLCMwFGCjpYt5Nu616N/MrZ1MzddTHjGBUphRqN0fftb7N1Vzi9y9hATWDNVCCuIUyaatBILgUJpOkpYum1nY9vIWnuU+sweVsYcHPfuIaYEUggMdLqoo5IeVtcUo1FLQ0JDI5y9QDg9DTUYik9whYaiVnYjdAcbCh5gafjzbBTnEl3BAkV0xcn7mwuJjASIDPqZS13hzOl2ztl6EjqOdxaWUzr4EPRFCS8mk/xOJtdELb/lomuCjHk+wY0vxIgakvo3nuAbR36AiNMoME1mvvHXOKuqcDU1WbqHdo1Vl43WrC18Lf+bOKMvYAsNYqIYLLJhRncRGozw+zlH0OOdklLA1MSTjM2/icOzTHjGxaaFKE1jb3GsYI6N4hwVasCqkpR+wqrgD53hLpeNIDM0BL5DJT0oIcjImGF1NQ+RK1AB4pCstSm4I7nkei2XlhZfC4cD3aTmW97K3WJdCkcQ1RRvNUdocT/AQt9+sgouo/5TfwyA33+a+cVHLdkWE/yj80znpQBlFC2MwJ8+xKaxLoJFIzgzKih1KVxlAwht2JLywUIqzHhauH/iMjQBWoFAKoWmFFXt50hbXr2QOBomP3r5m5xy3kuFLGVrygjjzjewJyWRrWWTcVHXqdIhUmmJzQpLAwYpDaayTnMqbLIpUEuLrwVnZxaZQyUIBCaK0cLd2FecSE1nPNvJUI5GstyB2+HG7W5OaLUl9/oZfvoAD517i9EcG/uuqabFvSWxWndlpGKPB5fC+hLXX9QZKKslP+IHrGrdjC+HrIUFklYtCZV1Eujyso8iqaFpEiEgN3eAuZly8pcayctrp0urpFvUUUsnjpmTCSs+0zBQRZW4RnsITYUT/t/KFCz1pbPcl0HdjVVsvuxj/yOqbfAfDNyUUj/4jdengPv/S47o/4Hh959maOrjZG+MsoSOKTaC0IhJxePnznN46ONEzSg2wKbARGFXipZwmJW1V+EijRhQTE49Y9nVxHWQGg2TRlFBu25D6jqGgLHMHLzhAJqCwmiUUN4/sSJNFjbY6Oi4ljMZO62sOQ6fjRWU4XbXJyaa2w2zMpU/+NExYobEbtN4YZ+dmtc/RLsNHvBlU62lsb1gNiEhARJn3hmUFrPeszQg0DQHxeW74f2St370K6Q0aX3+PZTDBakVWItJY3R4iQfeeIBthR/h0NVQlOzgUJYkFBzDG0iHjFRscznoSkcKqLcl0ypqrY0QnZgyOHrkMVqSFRRto+3IIU6cOsKbsQP0Zk+gC52Hr/0MTUvdBDgUh4WxCKhxFUdNj+NBaEwYt/AN7feJFQkeLYSflHwUz+PfJTo4iHVmkFqTiSvb4sm1+lc4uhxKiHeuj3UDYxRIQ/LjQ4OMbsrgix9q4vXDI7wxAJvWRvnQyZcp9jQjaqyAUAjB1Tfen4AHEvPp+ectGYnnn09wf8JtbYzc9xHLaBkYfu1lVjYU0FXdyNuXNyOFhlMTeItLmXhvDn0tjfz0dMo2P44QJkpq9M2kwWSIaKEikpxMUWgSXUpMAXZNY8txnWLz/xDK6GY46GLNHiI8V010oYTV4D9hGwOKdsWlPzRMFKaC0bY5NieVECk1GN/6GFLEuFwd5qC6HqU0hFLUZnnI/kOrdyk6dhmHD/0UK8ww2T76PU5PbcSueUBa2feujFRsyS04dAcrSRstqRYh0BRUh8Lku46yzilM9y5Sn/3mRVCIwJ0xY4kbx+/kzEwlwaAXgWCTUUSXbRyppOVVutiLsTyMFLqF5mVXUF6VzdkcH4Mizi1Vimw5xxYjgysqvaSfOoJNWXC2aZp4p4awm4Zl+G2abB2JQrklYbAeJKXmhROBm1AK19Hj6Kcm+OhtLhZbRkgTAR4T9xOToJsmN557juR6I/G+oRzYFVylH+Ha7a3YAFUrmDqez3FxtfW3MdlIF0JCwUwUeyoYQsOuO2jxtWA4U3Fogqi0bMrunZ2j2XclNU1fBWCtYgdVkVM8rL5MN5uY7cnh1t33sAmd+R+fZdpc4hX7aUwh1y8tUkkGht+gxhEBJQlPCVTM4nwqqVidFix17SdqXIZUUDvdh4rGLtRGfsN+a0uJhy9+qInPTU5joviJrCEj+DwuoXGl70ZeP17I6RU35e4hvLkj1nqOB+wTsgfhMam4RdD/cjE50WIqJr3k5v0UJQyEdqFK0ppexx3KSSyo0PFSryxpF023U1FxC9dffy0LzgW+OfNNyv0VcckyjaJYLp37R/jViIsdG0q4fufl+N8dQFYepEZ0WbZ9aCjgFw4vPSvD7OUgVaOPUD36JQquuxe3u5ky3w9oP/Z9ZtqnCc+6QMD5sl2k3H0P70yMYsgURrdt4qZIAy3KQ3i1j3HVjlIm56lDEa+uaZK8gmVaRBvPqw9YGYlSeGMzFKxMsB5xKk0wmbmCUq2cDRbRJU1SfcOU2Srx+nX8y7nWesXiADv7ddB1QkSRcV7fsj8XiSTF46Yxp5HIagDNriMNiRQC0VJJ+nYfpycEr25Jw2rXupbGlQHuBNzuZuyDgt6nnuRk7V1IOUXJrI/sc0G4/sIe2OJOsZrSlkOEVqf43pQJSsNuGmzrbGdqQwmmBlJIXmqcY9YOZWk1pAUrCKb1W3SJYA6zsxXk5vYmEvfy9FVyY2u0eWMXRMKFwdeTnkaLW/EpAE3DdKWTvOzGeHcT4czzzI5JwjPJ6HY75RWfwu2+dN/+XY7/1XH7T4ylpeMQJ+FulOewYRKTOkLB+NleKiecRJN9pFBFja0Dr72HlrU1Gg2BP/9mtMkzSLnGeqlHmTHGe5/AXXpHQgfp2rkOHjfvSjwY8pdnkfF/RrQLpYy41I1BmnuKfP88mpJIqXD8Rhl6fTx7epyoYW3AUUMycuoNaswoLxZtwZe5nerVGTSxP6HUDRCJJJOSoqMJiabZyM+/M+GJGF5+CqVMUBLTkGA3sS3PIwQ4Vwvw6C2EOMWV0ZO8mNLEoa2pRAVoaie3dhzB519EJul4IhKvXeNMNBWXCloK+MrErgx2LZ2C4WLaRiM8//qbIASbVAsxFWPQO8PXe3/Jo9mfQahjSBlDKo2BvhYcjigbKxpYU08gZQxh6vRPXU+sUFjaXVJxaHiOgqGh+Jkq0BRZeV3wyF5a736ZO6YclgCrJnikwsQz/wbLyz6Wk7fTUe6keT5GTMFf5SrUwhIOXePrl5dwcniRnOEpcuZmMY0eVLUJCISukb2t8pJ7Ej7x27k/4RMnL9EHm3faGPPm8fblexMilTHg6HA3d4VPouvVpHnGEXHCP0g2xJLJ7A0SbDBR9hCkP0FZpJKlwq3sXrRRvhgEVYFjeQOnnd2cjbVxw+lOMpaeJSU4DBkbiI4dBQEL2Yuc1huZlg6useWhIVjN6ok/HKFK9nD/1M9oj2ynwL9AurMJqqw5WFRUxH1NSQy1vkkZY7ASZvjnP+Thy+9iQde5oqwwHhg38qPrf8Sz4908GrAEeHUB/S4XPdq1HGI3n5dfpkrrRZOSDPdMgsPiX/YhpY6uSTTdybatnybXMPD0gE+6KZFeBuUoi4tdzPmH0d0ZPH7dLTijHu4qzKJo8ze5QUxxihstPTplsK//BG9NBHgzVsjulSh5wKSviLG8Ulq6z/F33/oaHVUbaejtYriiiUdX/pnGlOe4Wr2FMCHznEGRI43gyAhZoTCecITh7HKqbIfwiVaEBkVylBMT2/CcmqUxr418MYfQoFiOM7x4JzsGN9BVtt9yzIg/jG7YOUeh+iJd1LGRTkIzSTw9cgctqZ18In2JWFYdOzZ+MkHbeKaxgtcH51n99Sj5s07atK0knX+VxarHkMQQCvbMdHDnzCn+del2lsLRRHIyFSfYJ9aIEqAkamEU8q0OT1euiehUVsyqKVy5kqBvB1qPFUB051ZaXaaxmNVloWks5OQwleGmcmyMoqIiFpOsSrmKd6tGk2pwBgaYWkwmslKMV4TYnXXaCs6FQEmY92eT7Z6Pw1qK5HKd5RmT5GAFRaf+D6tZPeRdeUsieT26HCImldUpKQXvTN2KPeJgQ+NN7N7yUWuuUsSf/t6f8s5rhzHOm2wQaTiS/KQNjNDT7+Q79j4e/9geVtIK6TkXITdzjGvT/bwms+IJI7SKbbTTxBe1rzB57gjTqbXUZ+Qz/D1JdPVmosFnsGwSdISjhIH5IHH1MiSSaT2Az/CQEqgifeJy/EUH2CguaCXaMLkv/xEOiyswEHENUMVYQRkFs2PxeyWYz3Qz5xnBjOaSnhmjlkX8SzfToFfhXkzFadNACYvrbNPJuOsukjbW4kzrZGpojLNdqYQC2Who7NIaiIwEcJakk/2xesu3doObT5ek0+pf4bXTvcg4JKOUTtRpBTnrjUoDeduIpD8PmBjojHIvNfEjvThBvjJ5it8//g1sSduwC41blmcYS29nwDlCivKSOzPLteYkLWft+FNbcW3eiR5zEXP4sccyWBvIgNwhwLIi6w8kM599gK71goDQMZRiUmxid2lpwtJMAB7DyZ7c96NJHTlncmhtgKhrgfqrtv2bZPt3Pf43cPtPDI9nOxoaUkqqVB97e4Z5vqYcKeC9DRXc2VVPYe8UtrRGHM6b2FvxM3LLJFz2J7iLtlGVonO+50tYpE1AKGaCL1BYdQ/uOCF/83vL/P0/fZ32ylo293ZxtnyJobJSSoOlaDPVKN84pmaRcJf9XnzBBfadPULutmZu3tR8SYVofWSN9HJX7xE6sss5n1nKYGoT72oN/KjorzCw0ZFikCUnqKIHAKUE4+N1TE3Uc+W2HCrq915SKi6qq0fTNEwpMZNTCBdXWUQppUiO5aBLnduPl7Fh9C3O3JhPVFNxvTGNCXcW2cE5okkDXOaoQAhYkX/EP4pkpNDQpclX+75DS6gb1q6hu/VFEMmsuznULteynBYjV3oIRd2Yix9lJPM4fn8uwaCX6TQPL3c4uXz7t1gKLdHUo9gRdPNoAQmPys1njyfK7Cm+CNmbgla1zRQcnRohKsstKExKnut9ilvl0/TIGr5h1CPLHdjKHLjHV1AC0KzOxcUkweMf20HXWybawH4WjFeIeQAAIABJREFUYtP0TT2BN6WEheg4W469jP/AOCPadiqv+BC127b+1oYE17atYNMTwVt2eJXxgg1xAViRgC53vftZxs0Y843XEzK2kC1fAqymFFvxFMFC4CKB4pKhdj6wto30wmT8Ng3TMIlh8FruK+SM5fPS9k1s7Vxl54SGa9dn4jIABt2zzxBcfYYUIcD3IJCOa/GCIC9KwzOv2OLvT/g69va+xsTEM+g2HaWVUSymWbWvcjIpj1zTJHP/WZoH20hdGCIcrzSuu4XcFt/Mh0aWeFKuWrCgstNNPVVmL31U807S9ZBnZ83uoH7ETtIjHvI+eX3COqzEGWCutwNQ5KoMvKTyTuQM/TmFPHXr/Ri6DV1B1eTb+ESUSq2Hh+VXGOzZxG2zJ9mun+efjdsBWJPpTHkLEsb2x5v38PBPvsYHX3+ely+7mn+4/X0AnOIPSepM4dZXXsI5FiH3z9/H9Ne+zpJN0J+TQdJaLyv+FqRqQ0hJuRogOuRhLWAw7NbJATQFpfSwtnCQX7p/TVj6abbyCpQULC32U5mzSiWW20WnXsNKio2S2vPWwjRnEAdXCJd/NgG7B+ZX0UyL32N39zFjexFdWmLGSggiIQeuQIxToo7Pxi3bhE0jz/SgoVmejUpiX57HsbxAVtci4Yc+g6swCc6cxT2wH1C4y9YYb3gff3TQhikVuia4+75bKH1gB+ETJ9Ez3IzPzvHu0iLm+fMc7evjvvvuY1dGJnYsDUSlQDMC2IUgW6/FK0Lc4DiPK5iMklpC/qhvuIKsTZZGplQ6C0YlQVuM0Nwz3Nz4+xRv+wDOkvTEfrUOx0nTRFOSrNk1xgKbCKYHueYCakfaSBIrw0sYDpOzyoLZdTR+L9rEUMzOscEFPnnVVq5ssdZq8IUXeMMlLR5ZPOs1lI2fcR9jdRswV8G2OsXvuTUKY/nY0t6PNMbRbIXYhBfvey8ysrUKqdvQ0MiVGXEEUOGevBx/wUEqtV4eFl+hizpqVScIOCiuZh0q1KSiaHIocQ4u3wqb8ufo1Wo5WX47IWCZPD6b/1cYA1noKxNk5bYh4m4uUko63b04/U9C0EQ47ew0PsG8kUGuzMDXl8rUwBkC+zaweXvBJdf16HIoHnADKHShc0ehlaCuJ6bKGIMEm9hEy1gD4tp97f2JBPmG5GFmsz5j8UCVwZuhv8a+EyrHF/nTX85hM0FgQaQZ/kE2d3ybE0234DJqQUF0up404+9Z5klm52YBWPb7qFXnsYm4SLgyuTq/zkoo41Z8qRrMPHb4Iq9qgc9VSdisZOPl/wF/3f/m8b+B239iuN3NNBf+OUtHPo9naY1j6V0oUQ5CYKIxnl9G4cw4xCaRtnzOj+WTu/Io7ZtuoXW5gxrj1EWQCtbaw7zAxSjahiu1jU2/eImNw/3EhGQ6Q8OfU4aGRijoo6PjGqJ55zgmlvCndpNjW2BPwx4+edkVv/WYw21t3PjTryIjUWKajS9d+XHyixw8trD1kkzkZOhK0kJWhn0yZGPKNseehj1U1O9MmFivB2/5VbXU7bmOjrdexXClkbAwQGAm2xErkLXUj5CSLZNLPC4FhlDoChpCQ+TazlK9+imEU6AhOOOxIYUNi4kjWbK7LVPiI9+iNlJBr/1m1lslk/RMrpq8ipujTWhovOlYRYUt7th0moeXGndhCJ2jIYEgG0cNfLV1mj85PcFEeS63prvwrB4meKPEOWinpHQNV2a8wqU72JwpsM1HiSkboEhRSwhB3LXAgkUMDfwaVvAnwa5r7MpIJf3NJ0gaOkf3vR9A94dYGOxkfnkKly/MZMYIQgOv+R4/+OEsf/jgZ6j96b/+m4YEV1MTJQ/dxODzJ5l31lCadZbKghkOK9PKbJXi6uBbYMa4Y/M3iWl2bErwkVNfoqXsJyRnDluVCGUF4EgBUqcqUIs5Po2/XcO9dwMTc6N8deJbTOoFvHfVg5gaPH/5Fv7h+cPs1HSEpoMCr6OQ+dVxlFKsRp7CdH6UpOVyCk9+lpXMbrr7R5HLS7TcsofNLdtYXe1keOSP0TRluSA5NN7I3caGshP4tHk05afg5PUkZ+xi9b1v/RsrpPplk5ID85ycXObZlmRiSmFDsVWrYPLIJr6x4wtE82zx+aY4U1zJTZdvJKeu5MI8LWkmpcXHynGrqUPXbGypvZqzy10YcRoCpqTDUch18bVYKXppPj1AdnozA/d+kXO/joKpKFlexMjMjtMRdAwdOq+5jiu6Bnl3V5zKHw+oj4vN3DH6Orlf+iKeu+9mKSWJE4/9GFMpbEjyjSHOdlyLO2MG/7KPoPJCsaQtbZGTs04qkiQDERtjKW2Wb25U57W2TLaYOqFJF8mZUVK8q+vIMadnG9jiO5M4BBTMZxyHr/w+wS/+jA+FNaI2hbY7jY/3HmRH9T9b8JhVPENJwfHzFbxdewW1tRp68gjOnEayP1aPaJ2h4OAi07HD2MJ+9JUQvsAKSgnCY2tQczOjP/oZKmJBf84swRcG6zDizQZSKZbCUVzbL3A3j7z0EsbCPGDBzj37z+DasY2rXIo3QpbTy1rmh/n/M6+hOnMPUx2/QkcRCnoT8kfLy7mMTReQOe3HWe2IJ2w5IBTzIsy4bYCCkouiMS7AcT8/f4bVI8fx+ZeQQtFYfaGhLDISoPuFk5hx7pd1US14eFZbosHMI7gau+T3XldTyTtPPsPru26Os0qtHxoUlazzTkwUozk6hQtRcOTQ7z1Ey+AsNcO9ZPiHSA1NMldaQ3HhXnJFOus3NzlQgXf2g8zn/IJKrZcKelFK8IK4HbkOnSpJff80BTPjACT7wlTcYnVGFovdnBAW29VQil6thpblJ1lJTcZTMgqs03EFC6El8tJicaQ/xnLmWXzLe/EpNwI4m6bx4zPD3Jmh86HqC41GuzJScQhFJM6h/HKRSBQOrATURv7CJGMZBRa8qglyiq1K+cVVUKRijFIQJutSWLGkWirp4eZkGN+cQuZ5g4zwGkqz9EZTVoY453ud5oVqhNTQdQ1vURrBqWPk5Zn4fAOc7bie/Ikr+XbZIXplNlfn1yV400XxrmSACeXGfGXJAl90jdxmH5u35iastP4njd9Z4CaEyASeBEqBYeAupeLpzaWfKwZ+DBRhhTk3K6WG/9sO9N8Z/c5bGPK42JndxQ3VN/DdcWFlmKakcHIY0NHsBYDgfPgqtPSjPHT6b8mzGxR510jw5QGhBGDHE02DQ38PpVfgatqWIK4vPfsrGsczWC4vxrSBQuEPZlNYchc7xyY4k3yegaxhLtt42W891lb/Cm/2jVNZWELdQC8Cg/en7ucvh/uoXanBlnGhBL8hOsjsTDn+YBZTnm6Gs4Zpzg1z6vQHUUqiaY4LfppA3e6r6Tr4NubqCtF1d2A0HLEMdl2RSvKxSZSu0xhN47snw5zOtNG0GMU2quNweJgxoNIJKEXjYgyhbAikBZP62xPn0OTsZ3D+PbqS6jFT0kFYrgGzmkVaTU2fJcc3AECv/aY4R8qq/ikhiGqSZ7yLNI32ktbZRcq1m5n7lAGYVoaV8hW0M8fRDEFIeckcfpwPp+TwCB/DRPCoeAAloUZ1oWsmJuBQkm9OH6FbNBLaVMWdZV6izz/K4/3ToKdD2EBzJuNypSJWgqTmheMs4/g5udp49vQ4X7u96bcKkgaqb+dI7lWYysZ5cx9NSzFOLf2MQHIOKSszZE428FrF9cQ0O2ZcZ2nIk87l7jhcYiGmjB/ciMNbiStQRF/ERr7w4zPcyLBB9d7tPPhEC99frGFQA6VZD5mjeVnsXIrzP4TBQmQ4TqbXWDEmeXf6l5SmboIgDJ/3sxBZQWga2ZgUFRXxzjt/YdkIJWB3SVbWSEKHTEmru9e1XI7urblE+iQyEmDuhx1gKird/XxePUeXqqZWdjHeaRCufRhDtycCJYSGYbNzNL+E2EVm681NP0dLlSAkSglmxDLn7RFqPRuwYcHlNiDPbEchLFK2CWaaxpFNH+LDW6/llzlL/Or0ON7cyyh85xf86jqL16ZLk+a3jzL8tU+jpazFr7e1oK+eXEHLqsBZZenhzcUiVqVUKUZzS+mra8GcCeAb9cY3ACvZsTsy6InOULq2j/8veSuR7Gm+OPNdogI6bJKcrjJwuelby6AveQd19lZ252/mhpTLeP3kD6jLOp/wpUXBdGMJh3unieXnWWCnDWZrJi4J2oITKZZjxlwyZ9z7WU5fILT4A2KNf87W0ruZ6l4ksHgeZ3Qycawz7hTm0l3k2pfgxElUNEY8+2TqZCrbZs/g3eAmM72QDkx2bMhK3Nu+t9+mrbU18VpImJ528IWxCaK6DaVZe4gUGvOZu7i3xMOn6n0c7RjG1DSCgWyCQS8aisrFc/ideUTH8klLn6ew8Cx+fw5yyI/X7vyte2FLoBO9+zVeGV0ApXCs+KlJuiD7s3J6hjzDg+aIVxnj60hDI1t6aMOk5/AQ19XlJvQ686tq+frdd3DV+T7eVUv0piYzKCw5HYvfKLHLKNtDP2RFMxlL8fPAi/3YDDDKJMs3SWzMUD1ZTrrKIJFxAVIouvU8KvSPszh3kNlYjJmZcuwpqWhVympMwGTLYhugmPAVsbQlB6Fb/r0bOYeNOxP7+0bZjW2umLS8kcT6lBKmp8qZnS3H5xtEExKpBJ0BO0HnaW6KNjKblsUfb3UREXBqcpqa3LREcFZJD59TX6FLVbGRTirGhvF7H8ftbsbV1ETG7bfDU0+xcWKOzkIvSkne/sn3ANi19cpEU4JdE3ywoIDOvnGiypIQKZHdfNIbweYFVRfllSOXs7ZaQEtFGj3tv+RckWK4eIr7bnWTMu+loMrD1OxDCKzAW9MkvpxBCrpuIrc3g5se3HxJtfDiUXD5ZiJFgQQMXBiHgf+hx9pPE0Lc/wPG77Li9jngbaXUXwshPhd//We/5XM/A76mlHpTCJHKpcz+38k4NbLEl//lSQrNGR7RffzF5gr+piDCFw72kjk5yUQsjy3NN+MfcgGWMnqXuZmoOkS500AXFxbMwkIhSYENdC2WcNXRh0DG4mKmL+Bq2kb4xEmEKZnL9iI1SzgVoLJ0A9ecqUIajdyr3UTwzlQ25TTSPtueUN/OimTx+tAoX5UpxLyF2D/9MN/89tcpFeeZrDtLvkNncqmfew9+j7nqIrZkn6IqqweVqXH23A3sadjDttJsgkNfQsU9R6WMJrRs1rWTrrrvAVaDQRw5eUzNr2GPuql39ZO7+DeE/+wOwgEv9g3N1L+zQv1yDKkkB8KjODcUszgkORoy8Nph0DvNja5csoeOctf0q7QEOkmUJYXGzrQhBme9rLhSscALjTyZScw9iGPzGwly+uVK4zA7iCnLtVUoiU0q8pfnLfsmU9Hd9hz51TGEppDS4Mn282i9m9i1EmZudYRI7yKh2zbE4Q8dUyke1R7k5qHHKda/ze5wFi2vDLCxv4+NDjtnv3QnAe1yDg9MJ7Js63opsiqrWWxvJTTlsjqWlEKYcDLUQO5vTq6LxoQ/D5NVFBAzZhg/0cV10TEUwwhs2NJ2MG3fja3cglU0CbXqHCLeVYUE+3QSBUYm6uAaxzYto2zLtDPMTUYjjo5hFtdq6D68g+RimzWzpEKXigr/fsIzE2R7S0hNbeca3zgj4QyO6FczstKCGXmWhcibaHHvQIRA03SK6uoZGxsjGo2gx3eXdZ/UhYUSMrMWLXkApeNcsCRNFrbeQFFmOWAFbYG3RljXBghnnqdSdFEpOkEIsp3vY7xP52dbIaYT99+0PFJrVeclZuuznc9hfvYlglllDNU00Z0VQwUFAsHeMwHGM7LIX57HYAXp0+IaW4JHUu/kwWutJGhLiSf+gK4nvHsDsV88wa8zMymcHOJcTjpPpzZa+mcYlKoh9s4scqexEbbXMP1cH/6zwyTnp6HbbIxm5vHk3o8gbXZsBZLbDr5AdlxQWiJZcM6yR+Zyv2HiGl7GFdzIxzLz+F72FKYrldWSaubSs3lp8+WYER09Ws43KOTD27Np1q5CdD3KeKEDpEBKO+OxWzG7U7AVWHPOJiQbRbzzNh7gBQZSQUFOwzze/BBbvUX0ijpODv6cKk8lDqfEjFo6cWZyCoYrDVs4iFgNMefZQG7DVqvreF2HUClu9c+SklKMVHYLsh8bgxIP4bY2zn7/B5i1NdbPAFVmPn0ZbmJiPVQR8ekk8NisudWwNIX9wAHmsr3YIxEiJQ5WVYSVlDVSig3MrCkKi85bnfAm2Ncc6AungX2XLqixE4w98gDvJu/Et2kO/7IXs1Mm1PvX/7pPubk52syUtoRT2YnoMfqNVP5K2enERFPw4v4hjoUHqWv0seeyQvKrarmvqpY729p4/gd/yWfveBgjfo6agk+c7yalx0FkbZLmYD56dQ1SP8XCH4wknsJh8wj2k5fhClQCkv5QJ4PBs8wPTfDcphB/eNtXGH7hKKZpErFlIYSOiFe58rcfZS4pi6c334+h6bwtbuZh/pJqbZivRpc4PBqhzDXBZPQTFGalEZz/F5Q5H1+fOrOz5QQDVkUzwz3NcpxyIpE8mvkKk7m7iIgG0AQSLvF3Hul7kUrZaa1RrLV+sd6Z+337GH27ndnMdBQL8X3R5O2ffI8aXzF35WYCcFU0QOaJ/Xy/oo6+9Gxcp1rJnnVhy7Dm6n6u4ZHdD6CExjO6ztdvuJGCYCsNaWl4acVTuR1YZHH4wCW3vVhmk6vcSEMy1vYONjWZkMH6zeEsSU8Edq3+Fd53ug8jng09MbXIs00V/yOCt99l4LYP2BP//lHgXX4jcBNCbARsSqk3AZRSof/G4/t3x4G399OSNAlCkKsmOfD2fj5z/weoTXJybDCfHRtuIH9ylc6ZPuaikoDSqL1yD7bpY/RHTKQ043IbGhPjmwgEvNhliDE9kxImE2rjFG3DFedAZSdNUFykWA7kE17NY1tGPdJYRSjQpEbxUg7ts+08/MxXKVzcwCnbGfJiXk4VVBAtrUEJjZjdwXs3teCuPsdWDbYog+7UGHLtBFu0c3i0pUQ3aWFJN1f3bGbJcY5AvJsOQAgNj2c7k73dPPUXD2MaMXSbndJ7Pk5f/wKNG6u4TpyAl/6E8Lyd8OwJXLf/Ea7rWjjqPMPLbefxjnWSEp3ipDFNSnYb7z+xgfG0CN+66aPE1hw48m/hrkIfuOywugDJWUwODjIWzsBVs8jI+T4qo5ez01GCV6az4BlLtIADVNPD5+Rf0C3qSJVBYlM3IKd7SQ+FElW4lfFMVKUNMFFSp2C2gFvtDZBhQ7p3cWD6lzSe6eOZJi5YgSnBijOF747/gsLTNub6U+ksq+J09UYWTp/GP9lFjYhTbuPVFx2TxpJ0DrRbHUr9LxeTmhcmuugmNRTi2qzVf3eeFVR5EALM2ASrxqsYaS5mU8qZyMqlaHKYEv8E9UuF/OVZk/7qZNR7C/jMLFSZDsqy6okVRtDzj7Hm+RBq1UhIYoxOHyDludcYKb2R4eZ9vN603hGmKB09z+CandcMG3furiTr7K/J16PkpsVos12DHElDT7sDGRsnzZvB0virluSFMmgdbKOjdRCXy039ZkuMRClBf99WMqcr2XLPQ5wbepfHXk/m8tlMLnMI8gMO5n98FvfeDfhfGkTFLFkCEJfw6IQpSF6qoSGg+F5rmI5aJ/qrP8ef5KJpqI9tX7yDrrh2oabZcfRprESjTMem6JeZKFEQJ09DTmCRnOAiKAgKLx0d15FZAirzBh584ApytBCHDp2z9AKLimDsBK7QIYq9Nra3HgQhONZ4BTEs/TNNQQun+cBwBULTUUrDHsnFc87g0IFfcdV9D/DzqA3TZvmjGkLD2LSFyrajpPrcGJ45tORSLs84wSJDLJXZyW99iM1r1TjVJDmr2QgEvb6iREBgKPiz3nFEyOBDa2dgOMz4choTGSUkxSyyfMG8wRfm7Kxty6Jm6j30QK9V9Y1X3JKy18i/bBahKwJU8TdavPMOg6KpTsyJRSQm6iIOa1RJXMM9aCqV2WmD4aLr8Cz2kB6wOFb27CoQuiX4KiVnHnuRfvswde3TeKen0KurLEcITaeSPNIWDezKagSSyrLZMhV8Pn5u79+2lcx//hc8cwssbbQxVpyM7pBUbF6MFysn4nuThbCZ26MMak+R4d936cN5+BCtuo+6hv1WJ6jU6Qk0XaLeP5wUYtw2TJ6ZQb1Rwpih2HRHJQHNoOf5c1ZXv6mRcXwJCbSfXUbJc5QVDVnBQFMzN3/gCxyeMHi2yGbJvSiI2Gu51lfK6YU3acq6Fl1oLJYq0EcSkKzSFcuen5K7WsdAcJZT81ZQryFoOZdG75ZW7rqrhe7BN3iabZjxCrhUGj2iDhqFJcwtBIZyMJV8Px/cWEbtQjnh42f56535xDT4WSF89sBdhN9pIDV/kaKM7RQsL3NemyAY9BIMZKNpGkKATbdR19JAcVolrQEraHPEu8ABJnu7OfaLo5TdaF17K2e1X2LlFXBvoK3h08Qi45BozBCMewv4x7kIplhAA94b7sa1EmTzoR9wT8MeThx2seC9kpTyVvq0DTyqPZCAhyOmyasj3Xy6JI3Q8F8SiFfZ83Lfb+0d6/m+0siZuAqpFGF3PxNpfweDBkLYSAreT2nNXvKrapke9DPRu0RBlScBjT52ZsKC/ON2RVGpLglYf5fjdxm4+ZRSUwBKqSkhRM5v+UwVsCyEeBbLdust4HNKXRRJxIcQ4kHgQYDi4uL/uqMGXIFxAhdVVVwBi1uQo4XYbJsiY9ZAvrJAjVOjyqmxljHLqm591j4o0F/0MHx1YSKrAYhpqfyc93Mfz1GkL0KpxVVzNTXh+dGfMen/MiVigRK6KIrcApqfiLJjw9rAh10ar7z3Dlefv4eQpxtiKUghyVueQ5NV8cqEpHql3bKnExZiV58iESkRFFH6VBXdWDo3dcN9zP7on4hVamh/Ykdi8ToWqWLoxJPMnUvCNKz3onYHbSePoITGgcEOCr2dlMzbGX0ny6owdT7GyGQqn2i+kkh9FfrGCj749mZ2jqUSML9D6cgbHLt+HzHdhkQQU/CU70aOJjnYlZFK/swoT7/4AqZhIHSd6aY1VmQHC+ElsuyCAcdpblEXJrOQNna6rqN6fgTPQguzGTH+zvEM14yVoZLTsa+tYOi3MHqgDpe3l+BcFaUxzcpg4zCFL7mIzfP7CSSt8LdraUilcAjBQ8XFNNb8NeGpL9AVruShT32BmG5DYeIOnsRtGOQtWzBMwdQke9JOUmmWM18+yXRaMqEpF7PtmWhAKf2c/eHXqcn9xm/tWlrr6UXFYqw6hwkXVDCdnsWLDZclmjc+8e4U+wwdbXKNPZNrDOWlogqykXqifAHC0gZL98yirWYnJDFyXJuYrU7H5h9nxKtjaoBmBTX9ZTUMF1Vw14s/5WDbBPf8gdUw05vUwBNPx3g/Cs2Wh27LIzB30ooAAGkq3nrvVTK1cgKBbDrOXI/bPWV5vC5nUX/4APb37eOyps/gmjpI6nsvolfdgkCgDMnquXlLZgUAE7s2SFJmNbapzzPf830cA0kkF5WBDRpWoLl3kJVJHWOuA+kfRj8doPmeC9qFdrdgLOUllpOd2MIBoioPi41v+VxaqmWQljaL2z3DqwM7uKPKw7GhX7BweAFlKnRd574bt1L02n1gRtmw5uGUbROGaVI0NYxuWrC5TSj25tyKayUedAoQCDQ0smz5zAwNkpZXnrgtUikW5+cZSk7hvtt/j6KiIrYMf4/+gaPWPZMxQvnv0Tddw4Op2/hlbJgpmcF5X3xvSyQTir95t49svQFfbBtnjFI25e9H0/rwFJ9i9MBnKI/ls6fEx/xrs5zrchO7NYCIE/ql3Z4QHO1RdRf4rkC3qCPFfBaBInYJh1XDSEnn8Bsv40hJgpKb0YpuoPHMt0kLjhCZ78OmTOaEn0ltiQlzkvdeeYOHdn8SbzDEngMHmcvNJffeDzI3uoZveonvnYSTmTrHkxSnC5Ms+6a4a0XtdfVof/sdXn/ppzTvO4xPW0kEOxd3wKt16okGcp0zfFHgNkkpQccqaXFCvhCSgmo9sfbaj3fz/LEXQZdoukbB8mYisXSS/VHuvbGU6tw0jg0uEDi9gB4IoSFIzuqnO/ISzw1WUyde457mLyNsPm6ZGuWlAjCE1QjVsmhRMgpTqtHi+4xpX0sEGBZtVePIagOzthkKkscR5CKxKsRKKQrDfYyN/wSX3WS77OOAshrcbJikiSBDqgxdSYTSsCnYMVvHoYklJt0vcGxnPhHNBUIjppmcKXGyqWMjjuQIM6smWTINXdOQSqJrOjfecjOrq6sXEhfg2t8ijzTWeZbQlJP+l0rIrAqQW15JTfa+hOcyNhsz138aaZai2QqZLr6NkaxFiiYHGS8sxxCW6pypFH0lVtJ7rrqZzMOHSdfqCAZ9dHRcR3vpBszMRJcVCkXrxNM8udjDTW6D9So7gKY545V3gT5zK20T6WTZJWvp3aSI+GfNKINdz/LeC2covmIv0+3J6Gtp6DaN6z6hobk6cY/loeeUYIp4LVhC5prif8L4Lw3chBBvwW9Fg77wH/wVNuAKoAkYxeLEfQT4yW9+UCn1Q+CHAC0tLf+lV3f71mZLmsL6w2zf2nxBzM800YXGTWaTReqUJvqR4+iPv0np3YqNo4qltULGRjcl4IL1zcfAzpHsD1Jx/Y0clcXs8q/Q4k5h1buECsYfCCqGY+oJCiYe43Pir0hWZXRgkrvcyfnlDBqzQ2SaMrGx5QaWuLXjiKUevzSHbzgEDcTtrtY5adCrKvnri3RuHq77CjtLBsHQSAmWEEwbQCpJiuziq7P93NmfDlhBp+FKQwgR59ZIjqvNzC+cYTnLQ1ZoFU84wuGxKaINlr+jqWmM5+VTvLxCxlolSgzS0NuV0MXSdY0nphYxlcV7+Av/iCWSKCVGUgr1oQYLGiRCo9FG/UQNOfMVrOVXAGYAAAAgAElEQVTEAA331GX4tl9L0z5rw2mfbSf5tV20724mfe4cH77yNpTRzC+f7kIGS+l2mtwRHqA+xep4AhNbVZSXnX+M/613uS01gymPlwcu2w6+e/n2cohdn6xj6FwnMbvd4tMpjWX3Tl6qN/mTZ3/Ozo7TZC/O42lYY2JDEVpeB3mEUKZg8OUiQjMuQODIDND+5p+i+z+Mb+s91k0bO0Hr0BkeH8vDlgcp8Qx1MiMbGRfQNYGRgjS0EdDiD/Do8mnWfC+QgnGh8UWBUDrehc3cGPXRr08hAFtBkNS6FRamNrFNh4PSEtdFAELD1HXG8svIbz/Agclpdl/xEG+/08+o1sNTqVF2rdkoMTR0eyHmmuUCgACZLNAilsRAOJTDij8LKQSakCjTZK7j1yjPMTJnp1mb64aKG63ami5I3pRNdGABpRQCkwzbj3FuvIPsKx4i40kns8YzBLY9h8ezl/6kWg6c02jekcfmxSirx/4eV2kq3ctlHBtKZ4fIYtY2yU8/cDeFE4MUzIzhGunBSEnHthIEYDGljF3RVly7hhGa4mPFHTzb+yglUQ+u5E2Egj7LA7H7FEVmFJRJftISd76vgU6/D/3dt7j75UfprG6kfMt2PMW1eB80CRwYI9K9iJQSqSTz0XEW323lXH0YtnpBs7hPa3YHLtc0AwP/THr63Xg82xFY1VKEIpB/GG9PKk8cNrncNDnabE9IwcTxZ4RU3DgqGVgQnEu5g4zSV9A0k35RRZe+ibyyRW7ZkQdYRPHFt95iqD2LnNwhUIpIQCPbtDoza6TF30QTODSNq3OrGNe99AG2cNDiHcW7GG2rQaSUGLEJbDbLc9ifXUvyR++ku2MBTU7S4xi0pETyMgmmOznpDXDvT/+V7BMnya0o58mj72EaBppD46ZAE/f73TS6dT5eAEpa58d8xOrivOlKwnmtrC4cukBtvDhoi3/tUTWcZyM19NDyGyr3Y/MmK6N25GYt7oeqMTKXxVhckqTtVBvE+X9SSRZty6TLDAqqLC7blhIPFRlDnNLeoX8xk8hCueVrq30BAxu/Vgb5U51cv2EfDfvheyfDnMrU2bJoUu+XSKFYjEzjTSpm1d3PUunr1oGtcxKny/EHcmnFR3vSRi4reIe2yUwUkJ4XIznjXYtnLKBG6+ZrM7+m1RsjTfj5ubgfQ9jQJeybiLF3xsA/vsxc1GA0O583r05P3DsNk1LaWPJIliasK6fZBDuNaqK6Qc3NLZS3WEHU2NgYhw4dorS0FNItSDM6vULg9CLODW6S06y9f3U2hemlDP4ve28eHddVpnv/9jmnqqSSVKVZqtI8T5Ysy7MdJ44dOwlJCCQkQAgQpm4a6K8vt2ku0A1NQxOgmXqCpps0zXAJIQkQEjtx4sSxncSjZFuWNcua56kGDaWqOmfv749TluPb9Le+r9e6zf3WYq+VeCUpK+Wqc85+9/s+z+/Zc/ALBA6dZyjvFhyxJeKOVOLzz5He4KTHvIWfb9mJpYGB5GPJHZyNKaJK2J3JxLJ0jfHaOjZMWozkRrmasZOk+Rh6us2gFCjKJ54nrK7SKwQHvaDbDy40bTctm97OSP9znHn8FMtT/Wj6EHkHP4GvcifhtUMoFUdJ6DQ30rnjJvwLM+R7QqSbTXi8cwxNfguEyZ58B1bb52nLKEMhmJtdJqSnQc1/UBj8F67/rYWbUuq2/+i/CSFmhBC+RLfNB8z+lpeNAxeVUoOJ3/MMsIPfUrj9V65NCefmhbYLpGZmkl1cyvA1mJ9SWEimjSB5MQ9KScZ1L87kYjaMjdJRDLd2z9ogVEBoGm+uMo/HPHx63MASUxgCvhQeZUthhHV0CAJi2UxJk0xHP1dknAlvERecBZhFWQz6JXdfDpMfXlx/suWHA/jCATTTJOvKKp5RHf1tq8yUOekX1XTRwDzZN7hLu7QGNu4YILLdRDkHbGK6sKcs21adrKjoOpX/+kNdQ0OhO4KcVuXo+QJNKbZdncSztIRQys7Tk4LCqUnUag81w33oSrBhqJ9v/e1XaNtex1xzFc97NydQHDafKM0wsEwTmepZd0FJZRCOPkizWQrLirR5jTXvAMuZ3WiOAjzYhdtqwE+H/xHiAvTCJpKJczDrVW57MJvPHlJsm5/GpSp5XVnk6AJZPsTpkAFLIcDOuctfCjBVUczHJ0PElcIhDL68/W6cAxNEpboOqdXg+IYtlA4Pkx1YJHLHffRHD9kdGAGgaCidom22DFdulIq7RtE0xZWFP4fzkJdfTuuv/gfvaPgqsQoHWrng7vYM8pcC+IPzaFKud0/NeJh/K89j86JFpepF2/JNJrQyutXbqKGLStlHeNgL0430Tp3FcNzJVPo0qZ4ZMpuOsiIkosLB5t7/xiOv13Oh0EF7mQspJLplUTRlj75OnXmefvcsK8L+PCcNyakkk6JlJ7rhw5F2P5Y5ylTFGJ8MPUBARJjWAwSnzjDgz7LHk0Kw2JSCWfQkctBEKzLIzNLh9HcwcuvI/tg7Sd3uw6GNEH3uR7hox+UcgtI9Ngvq8b9m4Y8iKEPxmhziq5EvEa9IwlEO3zu3zJbGUub6zvLLH7RxKbOc71TVEG3JxNy6H71lLw8e+jfyQ7a+BgF6ZJVNHou8lFGWNQU6GJbk/vQIQkRQOTN0XD5AJOKjtG4zjNh8RXQn/p134y/aRsMt+zja08/TnmI6ViWHLw3weL6Pkv7guoYsmDmBr2oD86+M41pbQVM2ekEAXn2BDY0vYUlJa+tvKMl9lHzv25gOPW3vsUISyehmX7eT8YabqVy06C6WdndUSrTFIHnL7oTXReCIZbAUyqNX1vJ1/QuYwsBRoXEgyyAfu3vf+NE/ZPTSr2wRumYh8wTtHenkxg3EVJR36f8T73s+wh2V5WzxpuDfdpChI8exIiukDPeSaeks6hZ6NIJm6Dgc+dgGH5Pah3fg2307WePttDOESnwISmh48bMlbwvu3GbcmzZx5tAhkt1TeNOnCQfzmV4MkG+l0xyyeOv5IC9k64j5KMZSnAy3E4AN7lwuzNnXv1jf6O0OuUDRQw2Pii9iCR0hFd5pPw+/yRBY1NDImV+lM9WRjrtkluWlDDxpU3R0PEN7exmjcwP2CxPPF2c8neJ6aP3n71Gwdzflu1K5cPG9KBmjbJ/Okc6dnMusIo6BelOX8p4SDyMPV3FlMsgtLhcZV0ZoXxkh30qnxrsNIQRrmb1cKxKvOb9nZyoS16fAUjqG18O73v4Bxq6OYCUfZRW5XrSiYOO8k/rYDE9k1GOmJg6QGpQWp1GYpDgfOkF2Th/nUm5BkZEwdFncLI+TPiWYe9POI4ViqRjuuuOt6xqvNzcjuv2lvFbZhFTglPBPras0vSxpnz6EtOxiv/K+O+mwMvmJUUnx5iIKFySu9DOU7DuMW1ecViVIfYcdraYUU2tdfFY8Q3f2X/L0vMBMvB2HNBkcn2TTgSqezszF1ECTkt0DHaw5nPhDs3S7j0Jy4uuS0paASMnzzz/P/ff/GZGxOqT1GjlNs6xMpxLTRnnxlVHc7n2kZ8zQP5PHT7c/gqXraFJyT/sbuMOjuLM7UcQTGuEYLXnHSD7aQqc7ieE83w1Gm9/l+l2OSp8F3g98LfHrb37La84DGUKIHKXUHLAPaP0tr/svX9nFpUy9egIrEKR/eIQ77rhjHean6zq1b9mCdSHA6UtrLOTuQsveTtOOIZ7V/oXv3R5iw8wb1Lc8wM7993DkyBEmJmydxqQ3m3gCRCkti8PdvRg9z5C/RYBQIAUT2s0cIwNL06nR5ljNymQqAeuyNLszk790o0G3vKKCHX4/GR6Be+KHuCcjzKtqvlr1JeJKQxMWGpZ9msaiTnUzl+slxRnEfjDaMSRYgrSOLELzKZQtSEx9hQldh9F+pDuFg55LnBoAofLtUY6As3X1fPfB99mdFywe6n6avKEu4krSlQdpy04yVqNU0UvGjk76HdW8RCMmTgzgjpUzzH3kgxxbdlEZjzDV1mqL4ZXAJzMRQrMdlfnHMBsfByTza79h8eIH2Lrs4PXlPcSdDqRmd6aeWjH4zUo1n+FRSj0HqB8VyBSdgNQImBZmKEBa2hze9GlCwXz6RTXTGbnMaIK4KbGEjrJMDo+N8OXKEjqWI/x8coG4tDeqC7Ub6Kys4Zt/9yilHUdQhda1/QUhwT0WpaUlmxFzGC1RNADMtj9F3touTqXVE9fsIholmU7PIT8csLun7W8wmZ5NUjzGSw0bsYTAIeH/GholRSvnq9pfYmKgK4utlw/Tl/kcovgiokhne08pBUg86dPXo26kCZ6T7N80yj3LuxhxNnB06AppbYcpmBnFEorh2ALWSz1cdj+PnnwbVqSESUNyzB1nQ1Rn1ZnP5ruL2biwgPOyk3zpJF96GF+5zJC08a2alGTuVMSIAwqJifvgCqkvXAazE4fcBGzBtXUHrnwNhl+jJ2kjrwxkctO5w8SbfShjEDToUvXEBTbbTSraMjQaTg6y8to4D5mSBzSDD9V/iSmRtd6dHC2uxhNeTGi0FO7RATwZ1SS16SwnhPUk5CxCgKVZVDUqNtW93x4V5T0L7Y+z3srGdhOGXJnr0V1KKl6fDFIcT4x7pSLtbAeeD+7mpfwiXt31FjsSTNgj2leKdlNMJ/t4GaXinH3hW9S2PAQYoCyQGtGpDKbzU7E0jfzlIPe0v8FFn2TeMcRK1nuYznbys6Jk3ns8TMmCm+0LV/nxzE2Y/usjz2u6nFDoAo6KPrY4BGtxuwjQNEVOXOdZU2Nv3WY+ue8DN4zt/dV1VDz8AJeff5XiKRfVI4NYcprYgf3UbEpGa/9nJqJ1FLi6yS96gPBgCGGBT2QiGLK7p0JQvlpOVtTe9MbGxpiYfIKmjWcQQiGljqetBhm0kEgmQzGcS5b9DFSKLx3qpCY/jc0zM7R0LBHw6qysuFjMaiCz7jZmQo+hVJweGrGEjYhRmuLw5CKaa5oXZsa5M6+Qh6qbuesj72Ik+gWUFicjY8r+muRlOi4fQKmc9UIqaTUPI+bBeuZZSkeOYB76OZ3fuQNp2OYXIRSy8DRz0SCC/QgETmF3KVtDKzw0OUFMKfRImLcut5OrL6DpGnfGmsmT6bgDdQjlQEoTocDd+wAFgTL69Ck7Z1Xo+Hf+Cf7SLPwnPs4rohqZqSOEfa1Oz+ai1/4cJUwq1SwOuRdTKDQE+zYXkDrRRnHGtxGayU7VzQm+gKl0DCxqO6ZZm6qF3Mkb9ogrM304O1LJn8snEokwf/Uqlmky5cngZPmGdcBuXFO0ZRg0BqNkGT5mGUFKyT8Pvk6bdwtWQzJ6XTLvfTVMY/r59VF8vbzCM9JEadgRdtiRZLenneXhgMEvRicRAu6ffomToQZecW/G0hJFmRAoy8+e/gmKXFc5U2Pvb426C11cyyeVZGX3Mzw8jK/SoCLF7qQrOc/ycDuWlUZ4KYelcBb9uRsS+bwaUsCkN4uKzhfINipB6igslCUQr3by9gunuVc3iP/NP7Cp5P+MiPbfZeH2NeBJIcSHsMegDwAIIbYAH1VKfVgpZQkhPgW8IuwjVhvwg9/ZO37TuqHDZllEIpF1mN81XUDbwjCLl2zekqlmSJtI4UdFX6d/5yyVGzZQ5pIMD/+MjAyNRN1mJyAkuiq6ZVE4McgSSeS32EJ6oQxCQR8W11lCvuAsBrWYKDRp4Q/M3TBLMAyDvXv32hvQ/v3QWgHdv+Gy7x2YSk+M+mCveplstcDWWQfbh+8DZTEqv4XQFELomMvVDL+8RGTGZjaNFexkW98ZGm7byZJjkqLpZ/AnhVgyMzmj5YEEqSkO3VJBzDBQmo2skMKOWVHCFrsueFPJiFlEq6Og2yytz1p/xenQbaSNKGY4ycebPks82YWepLgvcpzs6BoeRxY41brw1NzwMxDXTqUmL438EDMUYVOkFa3yz5Drui+NuDLooZr6rAG63U3cJC2kANMRJMsfJrfsKJpm0StrOax/EEvoGHELXVlIFFLonFhVnBmY4OnmSh7Mz+QPz/YzYSjQNOK6QXtVHdU9fXC7oF9V0SUayLywzHhtCvcXlvHa6VIetB6335MF8tleVj9+P7uWDmFIE6mBQ2h8oDgXYyjOLMsQngMBrSW1mIkqI46kLeYkm+saJRRUj8exxu6h5b5sypZzGD/+LLHiCkLBfDtlQChQGmv+c6i1Myw7f8XtG3/G3WkFXPxeKwsug1xHHu9Y+Cg6OnFh8am0M1xeK6FY6RyMusBSaEJwW2UzGTWC+a4OlCmZ0cNMGiE2XZgg6nKRkzJNfJ89kgNb/+WZixMY9qAsQehTj1KcW2djUYq20SareM9jZ4iZvfQve/mY70HC6lsoGaeeLhxYxCUYUpHc9RKP1TSzUTjZMNSPkiYt/d281FyGpWyyVklc8mbOoMzZTOaxwzjnIfvvDKLVClYES++MoxToEm4p3YU3oe8B4NITYMWYfONZxmo+TtGuO8lIyVm3uUsg1bvAQtlzJC9Uk7xYhjnbTdZEJd6bm7B0fX1MihBINH7ERyiUo1Ra/YTHkzh56SXW6u8iVN3I1ulkdhu5LMV/yYxSICW+pUW6U09C7k5ICNEtTTGS5+TezLM0L53Dml3mmfyDxHWBQ9PZlZ5KKHSBCwlUijQT1amwYbdWxMCNwU33PYQ/90at5djYGBfO9UNGAYPpGoHcW9hy8Sdsf/AhG1bd9y/kO/tAd7K66mOs9UXSqCBPeai2fPTodnEgpWR4eJiioiIGB1+mvNwu2uzi0aK96BAvO0a4nHyVy2v3IdO9ONa6Yc5DfK2EX14YZ0iUcd+KxsqMk9+M1GOhY73ahtZwK17PNCHdD8Wsi92Ea4k/vSpQwsfRq3FeDl7iLnORdGHeMG4VQuJNn2YpbGfpojSSo/kILDICvegolGUSbI2RvMs2vyA0FgMFbJspZWD1x3iymzgYdeGfSeLxhTVilrQ5gUox5s0kJ7yAVJJJESBHpeEKluE//2f0pvVQHM0nZ24zJUKnyvIxpQXwqUySXvMQXbuIy4qRO7jEqfQWymtaEUKRnzODpdkHjSrZzdcmXqZ/7WZKhIMt+1MYGGpD0y0QiirVw2fUF+kRDdTJTlLXAswuXGUx6VYKcwSr0cD6d9T6JlSLZpoIoTHlzb4R/K1gU8BE6ILZ2DgSRXL+Kks1TTaPTRNYQnGqLomyiznkJrI/K61+PnzlH1ho9lMvOqiiDyGcZGRsp1Q3aTnxF0gzRhyDx8xHKDsX5LU9aSjNvh8rJ5NJixSz9x116Jm38OjZRwmF8pEZy2/KJx0gL28FwzmDNndNLwIr8SWESrP3BwTF43OcqSrFQkeXkvLeC+RaaVRP7CMSLmY1s5vu/jFmVpbIS4qQETXJH+0Bbv7/VCf871q/s8JNKbUA7P8t/74V+PCb/vko0PRf+Nb+X63S0tIbOmzXirUZTya/Di7Tcv4i2V0daFoh8dgkhaqX2vBtiE7Bjp4SXAVLtE3+IVLG8Hg1PJ6DLC3lJLoqp1nQfRQNvkLBzBgrJJM18zDaSojkhTqWwunozotYCcJzwUqYfyrwctWVQlV4HjGTjlVRRF5Ryb8TmDJ2Do58Bswou+ZmcDR9GyUMDAV3jwu2TtWRFKxACIGSFpmDBxFbl8jNvR2x0kzPE58DbG6TEm6CmTU0Hbjdfoj/+EkwBTcbi1DRTcdaJr2eNGZTO1Hcvc4Vs4IkEAoKTRME3rWTWNVW8sY6WdGfRKo4FWqA1eEylpeyeKVou80qS4jJx/KKyQgvsig0XuASd8Q2MeG9QKp2fZSggC2pFitpTnR5jltWB3gltWr94aOhqFc9bLr5UwSSQpRdnWIoanIuaZIU3c4fFAJ6dRu4KwFTCfaunOCCI5egqxElNGKW5OiLx/iTqkI+WeLjU2OTIBQOy6RhpZPF5iROzBzgh/6HMdFhm120vqwJ/vq9fuS/jeGNnMLVJ3COwurwMsb+j+C98g1WXTXkLk8THZ2hihryrb20ZkgONe1cdxYKaVPTc0fmSUkBoyTB5BMWTUsdvLvqNjbe/Mec/fWTzEaWMEb7WHOnMbd4gCJ/jEnPVbL8I+gClIwTCJwl9ZxOxtIq2Vopzorb0ZWBlojzaVqtJq0ymwfcHsZPTtkyOqmY6AuQf0cp2R9uZOhiHy90nMCq8KOV+7kbSL29gdG1JxJ3j8Dv2Yve+1Ii0FmgLHUDhPfM4AIxUyIVeFIKSAq7yO15iJm6n4JQ7FbHyFrOprI7zLfvfgtx3cBhmXzz7x6lQr/KB+8N8HCVxRuzWUSeGSUnUEEgo51rxoFYyhIxYY9OnSMGzpRqCvJOIS+bBNMdeIMW3qQZ2x4FtsvbijG54uap0WqswWNoLx5n4W0fROSUoIRAQ9Eb+g01lb+CUo2cHxXhXF5ET/eyY2qSf/aYxBVcM0jYnTed81M7EK1x1uZTGMsp4Knt78HSNH6eCd9dWaYkkE/xqWNEPBlkzM8zeFOElPAY7ZsUUih0CSWzcRwbdjHeX0IknMonBx/ndNP72ZOcyfLhMU6Ln2LkRu1iSdNYGq8mtaAHIaBo1wwfDL9zPSLrzWt4eNhutSfc5tGkZQLv+QP0zArCAyFctz+Da+0NVld9DH/6b1DRGEvZFWRsv4VKUUW/Po1UEgtJ3GsfNtPTZ5ibV9fHfmgkBeqIuMrpy6slml5vH0hUPt70b8LVfTzdpvGE5eJp43N8KL0Hc3gMUMScycSCWSyFcggWZtk/ULMPon3RFZTw2nZHNJ4PKI6J7XxG1VMlu+yumbJNAaFgHijJvKaz7PJS1ZxHYyiGGYoRyrXQBxz4Nt1HuX8LgcnnOREqoKVtP5rUae5vx4ocwlKKXzz7LCU7b8dRuelNcYVzgO2iLdxVzNjILKt9bhZWywlPVbDtDifm/CozIsS0FsQns8hTXpSSzC8UM75QTE5yiJqJbswa+3Pr16oTKQpd1KgBKlUvmxay8N56J9GRMBzNQDQbKGEikVTSR7XqQ1mCgaliwKJ8IQLxOlYzQ/Yo4H9ZStOoXIjjSIMLJQpTKASSytnnqdpwkJzGOjK7xxjsfJKmpjHc2o1uy36/g6udtyMPD5LqW2F5yk25b4Cb1OnE9STw+95hG0i8oD3yHFOXXuK0Vc89kTrGTkzx3uNLDOcalM6aFC6Y1N5cyHTFGqGZEJ/b/jl6zs4yM3MIn+96PqnTaTt8UY6Enk1nZi3JNnooRUq4nIwljQcP/ZgxfwlFk0MUzIyRm7ELoQQp4WqSQxXMO69wqmUF4ezgjs7OG1iTv+v1++SE/+TKlV7eseEOpvQglc01FBUVrcd3xKTEEYvxrZd/SXNAsrhzHw2G3U63CyLF/NUTqKRY4tQp8Xqnqa6+gwszgoU1A99cv61TA0Ax3fYKTn8qadkdlDrmeGR5hXbqMbN3UFu4jzJXNneVeIA8aGz4j994YgMCyZZwJ492f5pvZN7M7bOr1CZrWMoWoLZ74Kx/CX/RMFWBHoLBs7REtlJTkkX34AwgMddOkvPO9+HOjjPWfpz2gk/B6gL5c28gDBc1GXP8iz+II7aAd+brFGa+j0qtkLM1B8jdcDM3T73Gi+YrTCWN4pw8zg/u/AFipomX+85jzjlJXbJxGlvmLvF08X6ULkCa+ILzKN1YFxEP6FNMrikapT1K0NBwztVh5nbavDwh2Odo5YQqx8QOLn/b2C+5bfMHKAq7mOt0Ax6CRg9SqfWOlKYpGrQ+fiMgJiUGcfakHGOXEnyFWpQycMRNqn78GKMTo9z3bz+EIj8nBrt4R9ejGA8OYekQUC6sN4WXK6ETkxaTTHLfO/+E0Q+0r0dejRXX8o8DpyE6QEFonj3Te+hSRfTqOm+xBKlpTYmfZev/ymbj7ImGSI+skGPN81n1RboTJ+vKlKucXGjgK0/8NVsoRNMNRGQVI7LG+KJicsAiOU+Rdbc9WlISzvckcRGTTRtvZkfBO+wOEQILiQmEQyt8av4MsnA7E8LmxwkN2vTX0GeDNJc0M9AxjWkluH+aYHnfPsobUhi/+Kt1VIev6qM4PrAX8alHEZ5SjLx6HOXXHYA7yrNwGhrRuOQiFqaQxJ1h+qnkUfGXtn7Lq7j/Zp14xO5uxAVcev8+snP6kPwarf8wt0X/hrbZZJTykLSSx1rKNAlWLHP5PrIXAwiHg+K7q0gafhVtSeENm5jo9CRtXM9TJNnW6o1F0rGUrUu1LIvUw7/E+Z5PENcNDE1RK9tBUyjdIrA/je76vfS3XmFnZzvfOnKcH95xAEdU0ta0GyUEDg0OVmeQpbazMpPMGZWMqQmUdm0MrHPrWAc5E9MwMc2C20Xj1ULUYIDa8R8xXX4PJXPJlCzEsDTJj7mfCY+X58p3I1c1Xl+a5z2XByldvULlXYAOSmpYsVyE6LW76UqxtjBA20hgHSp7bdkHVFtfChqueDqVRfXMP2Z3VoWhkf3hj7B65AlULI6Owpy/ysWl3WzItHloE9oC7d4uBsUgntB2jiUdxCNOUSk7EWjkdr+P6PI+vrDVTcyu49enBWZyNZurFmhtL0YqOG9WsgMLsKGoxmqYuPKBkhQtznKpqJqYYV+zcxOrCH9qQuhh/xUHJqc/ys7VExB383zOi8xOOsi5GiPoXuaZg+9G6gavKsG3u0fJ+OA4UkgEFk2pI4j/+QY+hsiKewhLHcwZ1OrJxE8XyHgcn1jjG9/9OpfKq2meCVJSejtzehZ+kUlD42Zcd3tuwE9Mpw7xj4Pfo3DBdh0baoS3xFvIE16OvX6IuZUidF1w4NZ6pvk1fVTwVe0viSsHhrL4HF+kqvAEQf9JjNQMUga3krRYQVHrp1nJ7Oa4nKc/Psz2lVWWp9z2xAQdzVGIHveQHmjCW7vK+MJVrGuyAWx5Q/rcFIPZydzdPs9Ueg5KtrG3Loar8AIj0QCXWgco8mmc0PZzUWxZ36/sViaM+fMpuHgXs/hiL/YAACAASURBVDPHQVloUiG3GGgoBkQdz8XfjrN3jMbUZAKyhF03f5J3eFOYHgwxfnKKwgW7YCNxSWjVS3zkpY8Rs2I4dSd/6f57RrvC5OVdtTmMSiMWK8PrbaHM931aX36W6WWDpWjSNW8GcSNCklFNccBDwczJ9T/vbGQUlaFQUtLu1fjG1u3ENY1T2w6QliKo/S2Q9N/V+n3h9p9YNtm9nVRLUaW7yGnyMjY2xuODk8Sky0Za6AaXqupoePE3pI7WIyrEuqBWIEg1mwAHUsZRSiMYzKMzLYmnyrIwUYiaLGor/TS1v0bR3Djd/iIaNh4jpFl0SNjcEebA0jzz0ztRExHm2zrI/nAj/xEVen2V7rEBv2YUkISDs3xi4VWKd0+zKGBRGpy78iD/1Hgvpu7GwV/YDwarl+7BU/QMVsP6g9DCVMOM/eiv+JF1DxY64AL22VIRS5EePUEgeYGGoT5qh1r50fZCZHYGg8B5z9vxzHRhxK8Sl3F+Nd7NT0LVxDNKMbwmn1/9AZvdSZx8bY0Hpn7MlepmpjPWENEVRHIathlCY0VEb4BH+hY2o1A4snsSN7OgMH6eP3d20a3qqFPdHNj8QSob76P/20+QpHwJDIj9/Swt5XB1YAsVFSH2l+xCjB3ldFiyLe0E1aIPCdy2/BXCQ408/NIVGq72oXSd1XPnefgP/4CHZ3/GcHoXA3oyQkA9V3BgvgkIbGFgkrNwGPeuL1GciLwaK67l3adWiBtpJBfr1C/VYCh7E5JIprQgtyxk8kQ5iQgo+Lzbw57yIvoEnJj/DU45hNIEwgJHn8DyHqKrXqNLGXiL7qdmIUS1I4yxOI5AEJlx03+omDTfKj3Ren6yqwGzQudnZZv4bluE5hBIZTEbGWXUp/EHL/wt4aQCLjbVIDUdIRSvFT7F1GA/x7rzeVfju+i42HHDJZecnGzHxG26jurwelvg9hZ8WjVLx1ZAaSyfjJJUbQdZby7J4JGdpXz/5CAdWPyVvMxtwSU6eTOyQmFkZ+OYmCWuLAxhUpTzEhYxW5Mp47hz+tC0ZixLkrSWx5p71t5AhCD/oXdzpaed5QLBWksVDaNOpBVDofGYdSfNXccgP3E/HfkMSElRyhICQabTR25yMXOro3z+ma/Ru6GaiqQIFUX9iS6k4Oh4Fj/adTumrvPzg/eyqX+YxsE58sdepGq4m+nqQm6uO0POSg8yXzHRUYvuO5hobkk0qRADRwhFxsnBLjbn01JQwpZMFsyMctDfCRcmSF/ooXclG7O8jPncZCxNQyW0XsPZFrnnkxg4XExKsYmK+EhKrkdYr9s7mQWzYyv83ZPP0HTgVu7MWaQ0bn9PRUUtPHLnVs7++lkmwvsw4qmMvzpGbZI9jlemJDoYSvAmHZjRKEoI2sUkNcIiW6WSYSXzvDhMRdq7E7mUGgZ/xdcmjrJlMofkUAXPlBk2hFe71jK3yfnJsX7ur/9jLncuEzclBfFZ5OUT69eWHlkhvNzGjpEk8mZmKei/yt+/60MgBFGfn5usINFUk0uxXExlY1iCyQHc47UkhStxh6LkX7mEIaeYLKpCajpS0zClojVvjdtEPKGTsphs7yAr9i4E72Cz9gNGNRhKX2K48iaKJofwz4yiCUFswy7OXZlh4/RZVksO4lfZFJjZIGChdYap7kUKqjPYfEcpAIc6WgnJKH6UnQsrJHM5EZzJirnBMcZzCxkvKCc9uYbb6jbym75LmMpI6DcV3Vod1aKHfqo5MrbA/RUuSgyN5HAlSSuVDGT9gur+TxOIzWJFuxBO0F0NaIYfiUSYSVRsK6CRap4/fNhOYxCC/Zs3M+HxYK2ukrcUIHdpEY/eRVPFEFcHjwAGKcn76I5v5BfirjdFcNlmEZeAR0qGyB7rhFCAYGCFvrUKvtZ6P5nVq7yReRtyXkACyqthM+Kebq5kS7mX5gPFXHxpdP27bj5QTJfrODErhkQSl3E6HGcxlvLXo9BCwXxmpudITh6jvP5mxk900RWd5hoX0v7/2IW47szDil9ZH60vRCcY9Q+y3DXN0zkZxLWtoOlYwBdWobB7htvr8v6f99f/ovX7wu0/sZZf70bFLRu0GbfoP3qKZ6bOEUnxojXdBJqGwzJp7utCyyjHpafZ17MdrAM65G68lcHhT9M/dIhQMJ9QOIeToTXiWYCmoTRBl7+M/rwiPvHGY5SXdqyP75QmmCq4i7ypW1EzgIL2FLgyOM2+dJ3CBfPfwQRb1xk8DWxJBNmTnEXm68+Q0dCxLv9RmPRnaZgJ7ISpoIsNVKte2vuKrp9eEzdnzmQbw1YuFtcLH0goC6Tg1v5sgtY8H3jZ4rvvzkhEUdmvszDIiNayqg0ik2poNeuIoRJ6CsVqRgrzwXRMcxilFFeqN2HpOk/dsZPdbY9RGhN4dS9jUYlQsBTOYSWcy8aYDdR8/fJ+svMGycu/ipYyShVQLbpBaETiI/zLU12ccRRzX7p947YWZJOe1Eal6iUraxJNU4yM9lCBoDTFjthSSqBpBtX5+1lNrUc71gu6fkNAPKV7yGj7FkLaZP8q0cfn+CJdqoFUllgmjRrViRg0YJft9nNv2sQvXh0gGu9FxUson3gPj6xU8JLzMhKZSInIIDcs+X48hW6fi7qjkzQuLBNkDqVFiWbu4tvaB7CAZ4XJN/kKt3b0c7IRAm6NsuVuapaWMGwlCgpFtstP7loxcz3j9NVVYup2FmdMSNoyNJoSSRcdgddIZg0RjRLIq0RqdgdRYZEa97J7+iY0pXHp5CXEm68DpThy5Ah5eXkUFbWwMpNMz7EOihqS8VfXIYw87MS760XAtcNH51QYgK3JrexzvcjSRBJpkRL0m2xjhSE03haYZM/0n3M0r5l60Um56lvXnOlCY2ncpLAuytClOSZSVxjJ2kTteDc7ggO8ogviUiKHJD9Z+yG7W75B33QEz+Ii/7DyHZKGTfjxD6FyP5hrgMKfvMSmxhy82V7ci37KyWdi89cp0y4jNAdjb/jRnXFWplPpza/BTOjapFC01VZwqbqcdz7bScHMCC3+dnxiFrC7ljNN5Rz377bzHJXilnMv4h0/T0PdNCvpgrn8WmIt+9BOvA7SwnAYFIsYYvgI8xkZDBVvIi1tlr155znLRkxl2IH18zqgsxTOZSZsQ3RZilBw+uMUZ71G/ewZUjMDdG+s49LiIj8PxPmcOkSN9o+0bPopRZErzMbWmI17UOjMxSU1yQYChTA0XOVeXCVF+D73Waa+9GWUlNz9xnF+eu80daENjDnDFE3kcK57mZgrdd2gMRC7hT0hG0C9OQHhNaVCU5A5P8hK+BJvL34f72zaQ6U3wJnBBXzD8wyNXx/raZpO9YGbcMd0Vtt7GGu5i3ULt4CK3HK+3lzKlwcm+O7YLAh4MrOetC2P8YFLgvo8J9P6IsuTbgonh9ClBUJgKMGW6SREhm0g0JRB8mItoKOAFCMDY4ebn/u2Y2kKQ1m89/V/4l312+hbHOfLOY/hyDFZlVEC1i50JUATvHZygoWYRDc0bnqwirWVONXZG/mF+xfIoEQogaF0cuaSyRBeVoo38+Rtd2JpBmd1jcylDurUFQzuW4+xqqOTflVjG5OSnPxyaorHH65iw2QUV7mXqotOzmgmpbNu/At+OtxBVt1zxDxPkmS6mfYOkuK6h/KutIRDVENZFrPBID3R6PpnrVuSltgU0oonDFUm6ZmzHJc77ef/NRmKlNz1xqvcceEMez52H27vYSYdpSy4GhmM5mC4JKcy9iHVutUesDWi8QTktnDBxOU22HSwmPnxJSo25dKwpwD37DKGZhCXcQSCp8M/pcRfzYZQ9ToTdXl5kJGREe4+cD/nB5PAzfWCUhMcbIqzGF7k8umToBRZLj+5ycUsmFOU374DboeZnn5eFuJN8HXFT14eZKMr6f+I7NLfF27/iWXN94HyJ7ijitGJK1jKJC8c4J7Lr6FnZrP3yadoDFq4d/930HSEppFUm4me5sTdkoerxEO5dhuvvTaBaVpIILZgQZm6DiUSAlPXmdidxmZhB2UrBUIa6IM3sRIqBGJcTk/ij7a4MVnluxcHeO+rYfyzcXRD495PbmI8y0iMcBU6Fl8vc/LQnj8FwJzoQIiON2nDBKWTKzgLElmOSrDPmUfSCfc6e2yddKkUa+1tlNSBznas9U6c/XfNNLn5zAyZi3Zhtb3jEoe270Vd+/3A294I42y8ne+UvIf5FZDYWiFDCJR7C+2vv4AAOqubsXTjmpoY75538t7pn3JmohUj10so6GMpnEOhlcWAbp+wtnj3EvfYzkghoE9V060aqKOXN17N51+aoliZybwosaOvRCkGH+Kz6otk35CsptB1gSZuITOzkkD2Qf51wC5uHv/jz/C9E8/Tkojbag2tcEqW0FL/XbL//nMs7DawNkeoFH1UCluHoSSszCUx3eZnclv3uotvR3kWuiaQrmHeosfwq8z16B1fbgGBEZ0p0yTp6BTv3JiNWrRHCDMixPOOC7RmVGAm8AtxBWcaGqkb7qdx0Il7NRdNBt9UUkG2q4C9+e9CEzpSScYCvZxOAGV1y2Jl7Fk6gqnMREaZi08QMGcoyMpiMWsZ0whixNPRhInlDKJF/Ghobz7YXr9fLIvh4WH0yDJPffnPsUwT3TB44PNfQSR5UULcUARcW3du8DE5e54Pbf4ZhpZweR2GD7/wHFTdyZaAomQpTlVmkNScX2FpEFeCXwcd5MUc+M/nEZl+DdRrjOcW8uTBR7B0g1N1+XT1ZJIdWyZ/2UZ3GDTwWHIDotzAUR7n6ORRbpm5jHcpCr0vMLmaytiql6zCCHLLaRYxCajDpE3stJ+iAhQWdaV+Yss7kEVe+s6dR1O2eWb9sKLBRNE2igMeUouziMnvYST0Pm0pm9YPNgoIF5fyQPj7zKZH+Mj2XGLaKIb2c+6546NUz4fJSXOR5CvkYlUdL27fhebU2J3Xik/r53N8kU61gdwxF369hOTtuSyGnKwiEs5JSXA5nUrv3fi0Y/w6fSNxzZE4rBl0UUeV7LchtqV7KEh6Bn3JxALC6Bj3lJOyZiWKNrvQtoIhG/mjFKEkB75gKj1ZcRApQAqTI/1Q1YxQYOga+30DeEaOoxFic/gg3ztfx4VMg+bFGAOqlwtyDW+mjQLRk0dwZbeS5c5l7JgDMx5H0zT2f/CjNN12p33B3Atp5y/y/GJsXfN4TzwAlHIquHLtoQoozulbeWhvF/ryc/j8MZQU6M/rPHxslGGfn4Z5k+BqNrGZD5KV20/Ryo5EFJV9gbt238JcZARLr13HWwzvqeNI4XYaB07hwCS2oLM2MwLbX8Wz+YMMz66ycHwCpcA0JSd/3mc7SA2Nz7//UTqqzuHrz6BkyEOeTNwHzW9B6tfSEOC5xSzuk/18RnyRHhqoF51Uqj6ORD5KPMVp5zIn3M2by/PpSNf5dnoSsTSJLuHdx8NciaYw55glJb+V7ICOfzaZqtVcPF0X0N/kAo8Oj2AlUgOUUpQODpG5GGH+ZkATaLqTPbs/xPxgjIso2wikFH/yxA+55/VjoOtc7VtkrOxb9J5aQc4/T3neOKEyF5evFdfqmn5SoAEOTVCzCr/+bhvSUmi64O3/ffNvLZYUClOa9GdeIZAyzUHzILG52LphsOdKP0Y0Hdya/dAVgrvuupvmLVs4++snkZZJlsu//gwUukaWqwBXiYcDwKu/eJqXdr4FJQS6hOKZuK3l/X3h9v/PlXrzBsKf/wGu+gdAaORFq9AdrYx705nyZnPLQg8NY1cxyg4mijZ7rOAs8uC59bpLbcaTibznQVzj4xw9M89KyMA5FSFWeF3kqQmop9NOapIQnfPD6B2Ew/n0e51czh5iOrcQU7cxrUoqrmbq+GbiWJak6/U2Xsi2iCXZziAp4YuXfkm9G5pzm8lL34QZfc5GgSAY6N8GkVT+unWG4YwMWgImO4r2MKMmMbQ+1sH2ic1l3u2inmHep37JufS7Sa66hfz8fIaOHSNy+TKaDSmis7yaM3Ubr3+IQoC0GMrLxT1hEW9SiaINtiY7KTz7KoHAPBRU4h7t5cZqQJCdWUVZLJvF1JNIDaS8Qsflg4yFr9e9PeOT7C2wb7J+qvmq+CJxbCPGptx5LF2tjxvsglDDVIpu0UCV6vtfihANn8+Hz3eQE8ECYnLSHokjOB1epfzoc5y6dIU//W9/ThyBQy/mL9K2kHF2haxL47hqA6zulCQmn6TkrFF+5xDDPYfWC7fNJRl86d4NfOm1V8FMB+zcxFzLwyqp9MVC7EzRiXoHmFt7npSMOpIXK5jSAkgkvtC8zQcUoEkLsTbPQqqbeb2KhpxZ0nyrLCU0LppuUJbWhC6MxAhfsG3VT+DQTxjzF1M0NUTe3ARdloVCMZcRJWOtkFf3NdlCfHWZ2s4Vtu3QqNm+k5MnxtZThJVS+BwOZi0LqdS6eafzyLOYsRgAVjxO15OPcXX6LjwIcpwaDW+tuGHU/9D2YtyxJfTYtTgzRW6RzpaxSvKG4rZhQui4wlto6fglJ/NS+Fc9jaGoxsbBdNKnkhMjN8WYrwRL11GahikEr29owZCSu9pfJ2d5nqn0XLuDKMBUGi/7NpOWN0LLlWVWppN4arQBS2nkFS2SL+ZsR6Y0bVYZDsBExCSuX7RjLQzRWp6P3zTZf/JZXr75XlTCTKJbFgVjZ1ByiumMnfTOZfCWnCBCKLyeuRueM9HlCGgGrcnJxBIO7KgV45WhiyT1TjCpLF4sKOOpP/kccQSasmiUR/EBlaqPCjXA5OJ9+G/5FppukYfO5fb9hEI5gIYr5qFAThHoSaNFdWAUJ1ANwqSebjTNYYu8vS3E7/0Lilo7mI9lEXPBhMPDlp0JTVMCGH28vISyqjp8E0OcLcvDcmbauk4B054M3qhstIsCBR+JJbFrYxWhgT9jPg0Wl8epnf4yDSEdS0guOXcSz3QydynOydLz/GnPx/DpEWqS4a4/+gOSZ/Ipamj8d4kjtRfO861nD9O2tZY60UlR6WZaq6vpWFq9dnECsF2cR0/LRC2ZXFNJpDUVknfRoLB7DYCgNsh0pJ+otUxOaRcakuRwBX36cfznvs/unGr+2fNNTKWjITkp9nJ8Epwpu/mRdi9FYxmYs72ovl+Rs/+t5JaUo78+hWVJkjMHSS15A6EE4dGdpMwf4ON3fJxTvlmeF8NsnovTGLLYPBzDkWMQ1+1C5ZWJl5iMO9jqHuItqQNoSKTQyQ7nolLsP58EtKvd9PT/K0db7sNULlszieJQoSAyInHGy/jv2X/G3IuPg6VonXiS4twiNl26TNTlInd2FnPPLrqT3AkDh6BwdBxjwSD7n5y4/8fbyG14O45BwYdGzlNd6eWoCRULM2y/2g26zkJuLscDiyTHuvFumkZMhyneOgq6kyO8lbgCIRT7vBq35xURMC12pacyffQypmmhoeNRkqlfddBVnc2l4mSCshszcd8ppdCEnd+97F5me9N2TiWyXHVdp3ZDFYGLU3gWG4i5glwoOs7biu2Sp6ihkSlfKVeLd5EdcdIcUkhLMX98jIL3NzDW2UFj53ky5yYZ85dTupBG6VrtOoz5d71+X7j9J5Z70yYy3v1+Ih1rgEaezMCXlsz3m27C0jTaZC0l93dy02A7ceNeuwDQBFZwjeiIreG5bmRQOJMy+cbuQmZdGl5/Kp+dnCKubODte6OXqHQM0K+q6WIDjmAKaatxekrmea2qACU22N2txHsTlqJ01u7EKGuKyy/9EpmVj3bXI6Dp6NKirreXF1xPkLv0K66ePo2nwoN0uZkKN7K0lMOUN4Mpj+KueZMNYYv55/8G5vrY6kkh9La76e24aLfUdR23J87p+SLy3SvMV7XwR3ffzdjYGEfW1jDLyxkpLSVncJwvf+ATCer/9ZOWpiA5PI1QCoclMXUdhya4JxZkIriQ4GAKzBQPTYNX6G7YRhxwCMGD+ZkE1hyoeZsTpQmLbPcyS+Fspr0ZTHqz8YXmudCVTlOTTqfWgClsUKYlFKm+dhzcgqkM2zSCbXSwGXad9gFNv24nB5PjkxfonjJpKHoAhyXtAs0yae7rBCm5WF5FzEbtoYTGoVsP0jzWjy7r2fvKSaob72Ei/yzLkYv2ZoEi1b96w7X10PZi9OS38utTf8uB4E4MdGb1MP2yB5czl6h3kYmt30CJOIs4qNW+Q3VsA5fODeNbCvLWy6eYVYrikR78cxMsvuOdBOJRKre1ommKfEtw9YXNpCcV4i0bJbLoJjlUiUIxH49Qbm5m2/jPmPV6ic/YXCgF5AeSiGXl2AWIsDMo0wt6KN25n9I9H2J16dB1lIBSTEejbG5vx/3QQ3gqKrjceo7uM2+s18EaFtrsLKZpsYjOomlhDIXx7fTf8HnsTCrjypqO0ixQOvXmg1z1lfNCpoOWRZNNKwrXPY/w7Kzk0YVzWKZEFxp7C1oI9Q2sI2CuxVOZ62M0DUvAQo6P4NIo9Z2KU3tMLE2zGVOiE6kJAtveyswvWhOGBEF4wk1eiwbCAik4OpbBmbVPcF/6MC0/PYTzKozmGbbIWwiae9rIXZyls6YZJaChr5388CJr6dnkjuvkprgRws4Ivkkd54S6FUvZiIIN3ecY893ElgYfzumjRKWFUjp5iy50ZXush3OLiJEgzwuNXuqpFT1IBd2BHKprNDTDAhtiQ9PWUSLDxUSem6do5F+xXhpkXqSwOr7G/cF/Y8xfRtVaD803VVG3+ct4vYlUmCPnMU0TsOOixw/93+y9WXhc1Znv/Vt77ypJpaFUKs3zPEuWLHnAA2BjwkyY0xAICSEnnS/p7tOZA52EkInOSafTSXe6OwMkhBAgQBhMcAIGjGdbtiVb8zxLpaGk0lBSVe291nexyzKcc65y0/09X5bvLD12aWvttd73//6HEVgYpnn+RVomR7mj/vtEdAeOv3uIr5x6A9fgGL6kRPv9UbY/5cXUByUVpmeB7tXXmKxPRCkLqeZ53vkz4oK5jGiFHKjdiRW1gTB6J8jS1/hU2hq6gNDaj4lv/BbZhf9nTJye7KZM9OHZ3g46DOoDnJ7+oG3mjQ13b/e18Ddlu2n3mUjTHlNLpTG54GI55TzJftvEYNkzQaLbILu+hXlh4VcaVa3JTAXyUFaYmLhBviwfoVurYU6l8o64GontE3g485N8tCJE9xbBidWTpB44wa57Cvng3zcy0neEFcf3UcpW2bqLjuLJqaAlkMY901OES5wYBQY/aQnSEJB8rnud79XEYSrFmuce5gYneRqTP4krKRUHiQn34sxsR1CLEjpCSUaLjjLHi3gC3Tj0R5DKjs1aXQyhA3c05ZLu9zGRnAFmhFBGPh2ahr65kSvfOYRuhjg71ovLEUvYlcQRVwPn6z7EowVhyj5wOYvxsbz1H6+S+sJzLKZl0NbURLqmsQy8vedKbvGkEE5PwzVxmNo621pJFQiEUJRrvdzH45xzXMctWfn8j9LNttvB6GHQdvNTdz+WlsaS10F7aTyvODWOudaw5tdwaBW44yrR13twaA6+uOWLBMIBmjOaaUhvoMxTRltbGwDe7AT0D07QdvocE0l9zCWN0eJrIX0xhje6+3juxo8SVoL9Cn5yOkj9ooXs9nP+2R7Glj1INLJ842TOTFGw+5NccV3jfwu0Df5SuP3Zy0i3TVhtpaBFa15NlBBsXwhH87ZwK98nsrmbVWsvwTM+Vk9NEzw7Q+qDdRxjjbC0u6MIiu6RBf6+IZ/XQn24pn6Ew9jE1X6TvSVP00cp3xWPEBYGohw2xfXTlleKEnAxNF0fX+VmdxLJpxZsFY6AlMxFpnpMsqdH2XP0NfqKaygb7GBT9wqXLbXii8mi6LphhCZRchFfez3TSSnsr9+JJTT2F8H3T7SyxV0MERPPwgDek8eouKKcWU8xM64C3nrxVxAbhyUT8Zx/lf94CpLdXpsboGlYmsY7N9yB0vVo4LLtR6UpxVVHXiVnZhwUfG2sjZ4dVwOQJRKZ1AWWaaGEIpiiuLfsRm7NzqYlVm1k5QUK70Dz/x6pImhCJzRdx3SSwav1O5GahiYlog0qz+bQmCl5KQfQwSEkl2uHuJy36VS1VA6nMjNZT2fxOHWO0ySEFdOUkZXVt0HB6KOc7/A1TGXw0pjk088+QV9OARuQnIDGwT6cwjZL0QVkLflBs61E5utcpFid5BXeTk9vhy1KEQZriVf+H3vrQ/W70WKmefjtH1OzVI61GgMLApE4Tbp3DqVFQCikinAme5aTg6lkJFThxU+tM8jY8UNIaaE7nWyqqSDT/ztWNcXb2j5Oie1UNZ3n5oxXmdck/mIHOac/z+T4KpOLb9BSK+nPmSY5sMgHBjMwEAhl/4zvS8hQiiJjnIuZups2beLs2bNIaY8kEhJnYOscCePvcqCvz770o+ipvrZKTbKPjBgXXeGoMzGCzsMTFHqWKbzO5gouPPssg//8FFrj1XjqY4lbrKKfSj69xUVEgEPF8Gv/ALMFpXyn6yRmNDM1xa+zcLIHpIiWnRo502Pc9eov6ay5nvNlOcio237q3DSZMgHXaDcFiz8ntjGe3JxOSkUvmoKAvgV51eWo3/6OFGcWGaF8HCNhptb/wFBsMf++/a+QQqeV7Tycq9iS4MAIj6NpAaRloSnFNefOsnv9FL/Nc5C6XEAwvwKExuB0kE07b0NaP0EISanq5/MXfsuJUAa5k4Pkz4ySd+eDBJMF31idoEd6+GlXDRO6A0sMgrLInhpBjz5BhxBUii4sBZaCg9YynuwYsgMGlgzbSSfhTuKyeshb1VmNxDC4OZ6E7FXmFxzkTI8Bgr7sKp4/Nse99RoNXPKs/N9X19HXaOY1juV9mIhm2GpnJLNXX0/W0y+hojFoKKjxr9FaAJZQaEqSufJdJpY7oga9IJRFoxHDT2N6mUnNwNJsLq+FIliQRfmMQhf2e2UpybPnHsXhqqAhvYHWgqxylgAAIABJREFUmVZafC1smU0i5ruPEbrCtDlYup1Z6gwNoakikBKHZXLv039gevcefjq6zBV6Aa4SjXmzLMqRkqzHTqNLW4XoTvZtcIt7ZSk/Ld1LbsBP4bhBX2CM4pxeymUvB9U+G0rEwlCCJr/FBY+D/2eLi4jYh5KK+OfO8OxdTWRUjLIyaG6cLUK30FwdHFusIBK9E8Ia/KzEyScGQiw6hc1KFRpSGCTIaxjJqCMgDAbUNq5W32JTVAB1kfdWzQUQilLVwZdXjnAydgtH+g9BOBHdUcSeXJ0Tr49ipWZvWNMASMOg7d6PMOjxwrGD5EyPELO2SqLK48O7tpCzMsr0xCgvP/MrrEiY/spigoUV7+OqWVKy2LCJFGcq7tXnN54fml3E98lyfq09QMR0cn5cELfWwn0v37yRTOLZ91l+2XSckYKPY2napQ0nBBGluL7wAUrjxjaKtf99tba2YlkWra2t7Lh5Bz/L/xERGcGhOXCOJfDbpx7iRP0OwltyUZogIhVnUnQ2BSTTLNJ1bpD5VTfOhNuxIuO8484kvrrsv03RBn8p3P7sFRk8S/DYKxgpZZhzvTTLOl68PhcL2yPssvkIYWqIbWwk1B9rn6TvUWHt2JyCU9pFm6Fgs9+k591RXsg7hCPcQ+WsoiZBoWkWXaKGCEaUDK5oyyt7H3KFAm0iSG1sMkZAYgo7vzKvuo6ZgYOMeDJ5e+cNmLrOaE4x8UYyd63Us5B3wHbuj6I/myokYwnbUNK28pdAb1olO6uKcEqL4NF/QnYPEu4bpW7fMhcaP0dXbBzBfJvwPIPFh/u+xTflAxQ7dZA2ZH3flmpOjC0QlvYIr6bnHDV9reT4bEm/0HWym7fxzWk/Eal4ThPcvbOQ/vOvEofB16cfxNHpIKW3l+GmFMRmJ7jjbaXi5t9sKBUNt8VzFzo38jylgKnkNDL6S6hfSMSxFqB9ezHXpflRfcNIK0y5HCbH9wViV+Jpe32K+fwlQsXxRCIxyAwNXbeLgc73qhmVpC+3iD9t301EN/jTjsv5Rd8xwlUl1MXMkiYMbl/o49zqIpaUJCXMkLiznymjj+muo7isezngs9GgUy3tNJencNvm3A0rhjMjCxzoGqQzbhD3jEaWqokGwEtG1iAzimL0UcZ3J6swY3Qc9SX866l05lt/gyUjJOXl0FDVRPgfHsGVvcarf7+Px/lrEHAhp4EEGeQq7U2UNAmmdDHSvQRKoocWbXUfioGcFaooQI7ZtjR6cAXXSA+WK5Gy4TGsCUXwIw46k1Y5Jp3kXlaJGn2OcNhJSWkLOhZL8o+kDm7FcIYILGYQjk8ixgxR41lkynQThaMBe8zf/eNnSM+0j6WeHz5Fa91nKHE6SRk20ITgTJFt+yGjdhknEvNZb/s5ZpRUjlJkzccSZcADoMXWIUQS+WvZOMbiuVAa5dVc5FoKgelKInN6nIJDSTRW+tBTgyQuWvwqcJb5xs8gcua409iEQGd9tgezeYljWj5S6Eiho6TE13gbaUMRvMpidvZ3BDZX4UvOxBU3y+j495hTqfizkogXGiKKWnocTWTk/oihgTcYOpOGuZDJjvUQNXHzVN+9j2CyYGjqizgTFLVS8K+7tnHQv4nXjmhkro7jc+TyWE4W/lhBSWiV0OAVnJ6bZW4aQk6dur23cAFYmnqa8lgLTYBCEqiNoavIQ/FNY0R0RZo1w4XjFTy342NYus5xy+LkK/+LH9/8hQ3PShtxu7TK5BJL8k6aFxZwFNjNokPTuLa0mMUtdYx3tdlNJRq3+zPZfXqNlhSdVOMQZYWdEA3vVgoQiuTCE9R1XsZr8jhwJUIZOHWNfWlueib2INUBQGEp6FmHFp+N8H7iT58gbIXZ0VeC98prqVm+QLrVBZqgX6viB/5i+0xE8cGzB3jt9p2Mp1cznKbIaJsm+9wc6/mpGz3YeoKPJeEmwYLAYgZS6vSLUh7Tvo7pNjDcJiU53yLmnY/wbNzzGO4E/pDy8Q1Ryd/sf406YydPlLiie9VuTkJuBycG57l38zaEcKBUOLr97JH0DhJwaDYiKYXglNfgnEfnboduZ7dG9+qKJxOEYTftGKwuXU6562c8pD8a9Xa7QJnojUZjaTiOx9LoDzBec5TZogm+0vBDJqLFzcWCS0SpLzPJqTxeuYWIAu3GPO589QkyfRPkLk+S+i9fZWYlyOBmF/mbPLj8lfSs6CS453AnzxBYzGB5KQ1N10l0pnLyKR8iZScq7zxCsxhQFYyNbmYquZZIshOFzdv7ypxGlauU5qULYIUJzHQwk5Jr8+suFoTRbF6JoGZtnvu2PrhxVp4YnGd7sZfS5CEGBp7F5VplaSkVy7JwBBz87AM/o8XXQqKq4MX/PESzZZI3OYhuXYGFjiGhyW/hEwFed57DQkKMRrK/HoexlaTkNnoiT9A6c+f/tVD8r1h/Kdz+zOXauoXZH/2I8PwAAPGdOuJaCboGSvB2xnXETe2jaTwX6ZjDtGxOjpSSZccCze48/iEmkf2TC5QtWZxJ0en2rzLem0hlUgWepXgGklJ5iy0EVDJC2DP9i9wyXUU9tIAdnctcWDXZvjWb2Mxk3v1tL1IpOg5L9j7wEP88OYKpGzb6oxSv7LgCfTzCvqVm3OpVpDRREmKtIu5pqOXF1n4iUuEAihaWaHPMkCmT8KRWEF4YQklFcEqQt3MRy5XERUmqUhrjZFOjenDUfYwmr7lh/usOnOOPzzyPd2oIywy8r0Orb7ies3MOIkTszlIqVHo9y+I/uMa3F0PpaAhMU9J1coJXzr7Bj6u7sZZimVgrJWfbZtyFm7m8GVKnu0BZdjGrFLfPekmTcZhA74CFa7Qfb72TpNAd+BInEUsSTdij0szGNVz1LaDZMTzvTt1KuKSCOsNHbTCJ32MXNLoQCN22fJG6jikUT2/exOvBeNS6gVAm+waf4X7h56D3DvS4YaRuj76RFl2dJ5mvq6WKC/xd9o/5pxbFC2dL+M2D2+kPtPONN1/BDMfhzNDJmJm1w5Wjox6pR3MwNehSNZiIjSLmnNdBc2wec6FxAiPjHBmbZJsh8AwKTk1dCblsFDenuIy98k2Qgq6+MeZCKygN5j1rVI4ksKXLCwqkWHgf1U9fW0VfCzKW4CDb6WT8fBcPLmm2z51ewEMFQcpoQyBBA4GipOxUNNpIYzWtAGO1GrJ3kzPej94BlrQLUaEs3PPdvPXMAfJSXCwkliA1nTnT5nehJI3+MA4VExXOQGGazj92HAYgze8kez6WvbEJLAuJpQRCaOjOajQjB4ViNN254QKvhD3Cy1ycx1hdAhxMadcxN/QRblx8BJdzkGNmJeXAzlgDzbJhnGBKP2iSatGBgYmpBIZUNC1INGFf0otZtXy/5jIsofEUJTw8VM1VnYmE87I29r2maXZRtLbCTGsh02E/JAyzmqCh1tPgxE84P1VGUqnaGK2vzx3i9uYbMOZGcMyskLarlmn/FHkd5zk3OYIlJUpeQ+ZoDzmRNQLbRqkruoVv9r1EccyyDURpDqi4Hpfv0EYckQLm6uqiPEDbAkFSQYuvhQfrHtxIhVlfX2d6epoyVwx5p3exhEH+nOLJs8/S6g2zo6yBjKU0DvS3o4R9PjV6c0kfdZG+aFG9aNFiuKFAv1Q8R8VDCIkrvQdneIXcsX/D47qG+wrKOPfc05hWKhcS97GQe5LjWj4TcfWo5VyOHH2apHWYyCjm5Su/BBg4rFt47PeP0fyRWl5NvJXwXBRN0jV+t+1G1EViSSE8V/AADe8c41o3LC7P2d+nLFbFYW58y8dCajqOkXj6dtQQSY9mkipFt1bJdu9ZvBdy+NO2AqyoylooSUCtETzyAxIcNyDKttsPVynEfJjl3Ahu92aaNv+GqanfY62E8SztIXaxlFzL5Fvr8TwZE+K8CqM0jTCKs8qyJVtRZVNcJISB3VjrFjwwto38sRQ8ucdpTp9kyTmEsnOiWG69h/X5EjQkWUslTKQ6eNo/B4N+Gt8jMovxjaJ0gxl3ChEVpasaBmeLt3G970VywmOcLkij2Rwj7r4F4vQFUKMU9FxJfMVbdu6t1Ok4vp2q4r1YC3FYpkT56hl757PIwtN8p+ATRAoc6Cqq0I9yiyWCY54mmpc7QXfSXHwNrs6XWVEmNn80uoRAkyYLybYr9pmRhWi6iqQiZZjPN/8bqDB19TDQv425uSr7/knPoyG9gX97u59RZxaNQifbNx414C2idnaJGn0PJ5yTdtEWFe9EnItoZizlvoO0nh7h474D/OKaX/y3KN7+Urj9uWumC+TFDlTQWl69oQizNPh9noPXchx89Y0B6rRZJv1nidFimQ2NUzm7l6lACd+yVlhPMziRaiNcQjq5uQ2yFqqZTvTwZP5OO3uPKCcIiZIaTgWf61pn0Slo9Fu8WJ5IcXM6nYZF9WrEVrFFlUuzY0t4Ww+hXV+wIb+WwIt5TvbLcn7Q+TVE6AnmJiQ33l5M9lIH36Sf1+Iq2GrFMLx2kkHDtqPYK8dJEfZB78pSzJp51PYe46w301beCIv0RR8x49nkVwXYfcu1G49r15ZGNnf8luGxFv4kSjbsQ1Lj8qhcqiZ8chaj2QW6wKEJrpAG6SfT0fUZVKbE0jQsBYnhRb4nnsG8YPGK/xtYGJgD47iPPUm4MJmulX8hyVGAGVvFdT15GBPldOuSdan4mCsG3QLtTISFscOsfGwUlQTLOcdI67qb5eoXEMJGYwa1Ep7MuwszbKCtWezoP48sYyPMcltFAn+SJhGhMJRJ63wXyrU9OjqHV2OayNTfYGAxxGrMdqbZi5CSQjXEr+sewNQMDG7jS/JRKlL6GF4q4qWuo7w683W0lDBOpRHx70KWxZJ/rJuhymoAZkPxZCtA8f7CQQka5yP41kejO1JgScV8YjyeYIimC/O057KBMhV1BPGFKlkaXyPoW0UgcBa4eWixjzM9pVFm3yUFscLm7WnRr0ghGMrIZqq8isi63Qmb6HRq1ZTJXlBiA2XWouRvTZMk5gyhzGH2v5bHrukJrs3opDXhb1gaC5A1fQx3YJBfjTQytujm4ZUhNGmxEIHjKyZWRidWaI1PtLgIpJdT5k3kfMeL3NBpMuKNpXooA10KlnWNjEo4462leXGMxeksTAvGvQYBl25PbKREB67KSqNxZoSRhVgW025Ec+RiIXkhfDeHhaJdr+Qrm3NJjKuBd0xA4fKXIaSDMtHPQ+rbTE5+kryBWWrX85FCQyrJuVQHZjRxQynBm44dbIob2WhyAHK9JSz2+3jr8e+wmuiFtGwuyo6n9WQ6B8tJci6RVHYRlYJlxyy/+fW/Ut9+Bl96Nv8Z3o6MSPT8am5YXABNMOlOpUBK8vvO8Ys//BOf/fS/8NU9v6T17JN4FnwkrDXgMSN0zySi5BygiCidiXEnepK0VcXSInG1n9Q2NxfmWgiHUikrr0f5VskNZpAkdRSXDMKL/TezaeobROZTODdwdAOds5C0DL9O2fE1zJxtzJmS7ImTtAc/wLbqOPRQAjMVTyOFiRI6rXIVz5qXy315GKqHoe4+u2FVsLqcyQIfo9e7E4nGI6sWH+pa5rrpNF7ZV8tihj2VMDWNifu/xt2XNRJo6eciL8/+pOJ9TSNAygcuZ/mdl6Nft1+u9JkZMmbn8SbMMne9SYV+cRSJnfcpuwgMh8j0Odl7Ko5nbzaj2LGkur+H1mSDf7miCSvaKBldAbRAmJ8fGeLqmkxKk8FYT8F424Ocj8fHWY6smgRMjaZUgwtXJKCEbTOS9e4f6NpxPZamoylJ9ewEH5KKmfUcNs+bbArAerLGUtZRlIiApZM0eQVJEzuJCZSyplvMWwo9PpeltA9zSuqwq4D8Pz5N5moAR3AFfX0FlCIuLRcR9XFzaho3pbvsJkzYiv+VKoFTt6c0UpqYme0bo1BNWKTHDlC/9Sss+Bw2iqck4fl8Br0+u9HVNIRUXD4T4Ui6AykUTk1jx857oTQfCnfTkLeVJ9OreXG8i3GtCqUncXA+gKUkDl1nR6FduL03XaU4qRelwggUmgZl5afZu/c+8vLyNsyOC1YmyQ9PccS7g0wrTEOoiKIBhTJNHs+fpS0/gaxFD5nLCwih4XKb1B37ESmLQ9yswzfvDtHia/lL4fb/5RV853XmUrzMpGeQPuOjobcTh2USis7klRCEheJMgZMPdKaSkbKXQ77n0AydXLOEZ4fmCL8H/gZAg76MXKaSU1mJibMNbS9yD5TGtXOTFC+k0uS32BSwAItPlUY4nRIP6+uc7R3nQVc8qdF8RqnA5x8ia2qYpvNHOd1w+aWLWAgimsX5pD4aW2eQKevMHPsbJs+U8dXafyRiwREV4kZ3MplLfqQyCVUvkRa/gquxFte9jzLwrwdJWgtRNDgEQIkcxzxvsdc6jdV1hvNnD1F6710bMUauq+6gevxJkpc76AhkQGoZ1SU3o3qhflHy7y1B2relsbchh9EXn2fMm83x7EJGZt+hPlyNV2QSSUjnK6n/yBWBE1gYBONmWEnqx7+k4LzGrfMlnM/qZDCnlzrSWLa+yILlpDhG2BwZBEroBBqSUNExsZImKxkt8B5OTqeIolnRZzWYlm0HHQOWUqyWN/H8O1/geU895xeGca3nMtW8DaSF0zK55eUe+nOLmClL5dXSXbbvGXYBroTY6Ny7qGHeF4/D0DBc/VgqEvXTkzi8R/Ak3s+ENwDRC2d5OZ3Z44WkXzZMmdbLw9q36Vv6JKXnVwgG+mjzDJI9E4OQCkvoPFt6HV+4Np6Pe7JY6hqiI1encniCm/ViVtevIPge5/Ci9CYWXIWonrb37XWB3YEHkspwOVYwggH0tVWmEwU1CU4cYROkRMeiWnahlE7y+oeIWxvDlV/F8PqvkNb6pa2uK+Ky1hho9ZI24mJqUyIyyc1qQg6u1WmSwkE6PAV8u+4aPp3cRrs3heOpcKevgcZFEGsCtaAwxTrBI70wL+nPcNKfYctMRtLy+Kdd9xPRDJ5Wig+PhdH7TJ66MtHOd5Rw9enTXO9Z59q7dzOTvIZxfoo2Ld3mBhoaNbfdgRFe5yvFXnuEXXAVIe8JQu2DxBs1qJYvspbSTZ6/gphAAjo/ZDYUR7yjjNWScu7atYu3/SZhy0KzTLIHJ9CDS6Cy7BcdjaVuF++0HMSMRDCCS4TVJWHGkCOWYk8jKvatDYRVKUiNv8D9WzsZ8OVyJnuHzauN7q2+jDx6sgowhUZLQSV7DA2f5wAtvhauj9nJ4lPDzEciwFHiEj/I7uQIbV0f4IIRomWpkaGYJPJXR/EiqF0bJv30MgPmQQbU2wjvDcTEO9lqpJAh3ZiArgnWkvoJpnTj8pcTOrUF89Q5PLs2o8dqyOiFPxW3QI9zDe/AC6QFQ0Q0g5D1UTwDWbYFxFIOo0ldjM9U8Fe7ymhZOYyhoskbUqJdVOTqOqL4aqzldUBg6TodZQ3kTI1yy7tD/KDYjgAzNElzvuDMyAKH3x6GxhQQAl0DsLDURXKZAAG6tW6LrbCnt8biHP1JQUwdO8NWhzK9l4fUo/Tr11MzdBJHhwfftC0qyZsa56Y3fsR0Zh5XB5aZNN2c2N5MyHBGC3HAaf8MllS0DhxmSfsKUoYRDQZ5LV8kdrGYBa+TIx6DwlmTDxwfoT77LVJGxljoiZA6P81oQSW18XEkdpykIN3L9vwY4qkCSgh6uuyiTbM5xM41L/FLZUgUqYYADApjdyKJco0FvFm4h/rOc9x7fRWDr/6G0ZQs3tp5PZaw1f03pLoZHxEYadlkzYwjY+Pp1/KoUD1oEpTSmJvNx+2e2UgtiPfuYn5ilWMv+givtWGF2klNHKO4RsMQ12AqO6Lt3r7D/O3EGVq23MaOhutodsdD+RZ79Pl2P1clzPHo+iQUlkBe8Xt8SG1+M8CO9Ukm+t6iLaWYQW85gtftM9y+4XA6h5geDPDyP58jvDZOePl5tgoLNIPyW+4lbmUVzchlxL2F78WvRs+Gcm5qO4pz3cup9GJO3mxy87t/oHK4j7oxjeaMi+kQ/7XrL4Xbn7kWmq7kHb0AS9PQZTWFCq7S4NzQBDP5mfbIQcD+HCc3TZrUBWBb/S0k+ONRZ4NUDU+iNcddcguLhvf2ZBXaXAkp0ZS0UTLAoeCOAQ+bFsNR+wZFj+cMLUV73/e5Dgb9VMrjaEYuPfEZfCijAN0wiA2HbWuEiyHXStpoTc4E/5xwF8kTglfEUerdJRtEY6Ek4+5Uspb86MKiLH6U1No1uPqvCM45UGsLvLvniugzkNT1dmFYtq2IJi147SVGDx4g/4nHN8LDuf8VstueJvvc0yAHCI2OM6d/m9YEjZYUg4oYJ83ueH6XmM/vbqrG0nSOS8nnu0O8mWTwao4TU8BhtZe7D08SRz/2zQYoSe5qEbf89gKP/ZVgm97OUsZ3OKhdQyJJWGu1CGUgUZjLlUjVgZAKpM7w8tXs9+4GZbGLQ1TTgaHMaESWpHh2kml3Kkq3vYZ2FFbRfNs/MvUfX6Ox1ckX//YjoASaUnz6uSep6+9nbsHLH5q87zMdlpqGjkQpEwOL/Kl+qv0rfPK260ipzOKl4cdZcxQSia3Csd7N2LsvUhnexIwSSOzfm/uQJPWkjn7rGp6YIRxd51kYOMkqFvlGAhNNhYyOaIzpNczGZXJkawV3JLRwu/8fuF1XqErB4OtFxGXcg83itgAdH5m8GH6eisw6JrKKyZ8aIXd2Aikl0pWEkeMmrBIJq0xifKM4F+cwH/8J373pGv4Qr7F7NYAx6uL84tUEg07uv/9R8vLysPoVI6M/JeoMg5KC1Yk40s1VFtzl0eejkyT8hGr34CVA5vo083ExvBnq4rmGPVi6weF8wb+fDlK3aKEJDUMZxOVsJTzXT+ryGv0ZNrF7ujyHiBZVEKN4Ki+WxnB4g/CukGTNDHEs8Q+knv0PUBF4UFD70jdZ6d2Ce3mIVzLvov6a3e+LgIrZsp2YLduZOvYGwWA3sf4KHIFSWrQT3OpsITdWgjgCtQ9DXQ3fvNDCv3d1U9LZR67PDuOOD04R5yokPJeBIZOQeg5C2IWX24ohYIRJTJolN7cd96YI/iGJkmKDDyaiyGVCfoS80UH0pj1Y2JmYOdPTdOYUc9Ew9ODum0mf76E5o5mxoxewzIj9rmARiUwSFiXsKc7mW6eaCHtmCW6qYFAYDCmTPYtDKMsCJbHi4gimjoMQHGCE68ObSZNJzCVfwL/5xygRQRQbpLZlE5+yiQzl2Yi66o7tJr7HSV9mLD2FeZhGGudiSogkurlFCJSpiAmUMjtRxIolKZhP53PX38+vfvWrDVuHa6+9ltXVCyQn+/j50jSo5Euz+yglYktHOx89/CgLu8upFR1YvcO8ufwo1rwL5+l5lNfJvWWZXJPWzk9GfBxxbUMpgSEEzcFFAkKgpAQliQn4SU7Zylf3pXPtcjtl8jxKKArUAKvTKaycvA8iUyBeBBVBU4qPvNlBysoZG+lGkG0EOLZzO0rTbdW/P3zx47I2cxwrLWwXO8Ik6OmkR5bw2NZEzKiS9pGJHj469BRvxDZxoHEfpes93Go9S7prDwPx0ziuPGWLi5RB9unPszLlQpQYKGkhlE6MvxIZtQaZMxULaQa+WIGuQEjbJ/OW6lLuuHEHVf5hSuq28vOCcizDHk1K4AXfAiKnGMdND/Cp539BJDOdFU1j7UIeCd5x1uYKWF5OIxj0RFMLMggP+hk6+G2EsQkrZHMQRWGAUn02akJeS+Wol1VfI80pL7GjOJ8zi2H+7ewUHpeTR/d3UG12cyO/oyVSSW7s82Te8kmamz+6UbABBM+dI+4rf8e94TD36AaRW39MesU36Ol9BKUkmnDgHCxiZnYay5TIyLh9zikF0qT/pSejcX06p5r/Gqs+HSUEUkBvRh7dmQU2N7FkG283NfH9f/02t951D5v+G6Bt8JfC7c9e0xnlSMMm108me/lpw25MBI7cdGoGezlfVmUfoELRkqJTtyxxr4exLHvz1flNvo6Lr6sgEtsaY+vsGifTY1FCAwH1A6MIaZDmiOevZpxsCsgoXUKhkJzxrtrQ/8WlFGUnDlAdOI0lDPpcH2THjltwpH2C0Vf3Y0TNVQUWV/IWRWKIX+sfJ5LiQHcL7j60DY1f48gxo1MywdhsPNdm1rFPXyd9/G1Q0wR//TAjb3sJlZRi1dXa3DkBCwWpZHescj6/jPPl1TT0dlIzOvi+8HDyttqpDdIEZREj2mmr7+eTKQ2YAgj6MXtiCWalYoUitiEo8L3qOFvSL7DH0UpjpWyBuP6LPA0AQc7EEA5L8eWONeorLF6Mj+U+/2U4lI6FZCpumszVNErM6wi2lDCdd5RDU3v5aWMdVpT6coi9PCS/zpfUo5wa/gCbT3aRF/Bzd1kxY8WVG11fcNBByUvjPL3vRiK6gdJ1pJT05hUCkDY/zw0H/8Tpwip7ZAI4lMVH+BnLIokq1UFZdi8qQxC7eIiG9C9wd+Oj/GAm3SYfJ5nExf+G62JuZTaywpTwM70QIGU5DmJgJs9Br55LR9YCic4UvF0zKEuy09vIa4F0whGbv5cz2c+U7xdQf4kr5cpYZjw0TmziHRAZB0cu7R4/I7GZtNU8gMLAEJB1rJ+C8V6SU+LIZWWjAA1lFqCvB1m7cIGqN97ihbsN3kqsoXKhxq6jhW26m5Q0y+jY48DGFBB/j5vVGRedOXHUTPehSYsk4WdnchqayKRYWaROP8dhZxJjpfmX/NekoiVFo27RiqoRBc78nYTGTpKwNEB7iY+wHkt82mk0rtlwPVfRP7oEC4VuWUykJ1GUmoBSvugbpAjfPE32D15H8+vI1jM8FLS99O7Zlr/xis32HKZr9W9RJREo1ljpr6ZrIo1bdSfIiB0nF+el5d2f8VWzkbC3itGd5aT6faQt+RHrGsvLAyh9FHSId5RRtPPjtAy2gAiRmDRHXf0f0TT7zc7Dp6vsAAAgAElEQVRogDi1j5HBLlKLplBR5Wz8is6W4RFC548xnpxK7uIcOzV4S4AZ5Q4JNPZmf4qG9AYma2LQDQdWJALo6I5scmIPkNnwSX5TX8ZnO9+gR1wUQMEZNcsWYasZTVciCEhMmiXZPc30vI53fgfKPbSB8ihlEcqZZrk7nQVjmAzloVrmcmz9j6QqDSs23hYxaRrVIkDdZXGkV9Rz6OVepnuWaE/WGUl30mWMM9l+jqKMOJJTC6lv3kpS0ixnz32fufkQNda7vCQewRQGhmVx3YnDbBmYxBMMca3oYp0OGyGWMDH3Goo70QJhnKsmd1yTTlPB7VyZfIqWobP8Qa/E19LG4uI8AnAszuIIzKOvrbKv6i6OO8r548TVvHiulXJPH62RzbjSy4hpilA/XEj21G0kz71JyeQFPKshLlaTOopNgz187VwLj6VUIWdDaAG7cMs2NZwXilBX6FEOqI5xbo7DGR2Y2jaUpmEJxeuZFVTP1/KpTd8irDk4zh4eko+Qpb1AVjADoUn7uUuLgdjX6G5TrHka2JyfyInZIGVTuaRrJvOm4EKyzlM7E2x7FQU3TYTYW+3gruYKBve/zFs/+D4pS6vszCnmuf/5sG2Zc/FK0TRM3WCosILsUAAhNFaW0hmP6KSs2UkFy8tptiJXSRzGHBFnLEaof+PfWJlyoSwRDbofJnX1bqy6g0wkPMCELNvgqTVpfTxAJ+nS4PXAV5EYnFkx+eBLj5KZUW3fHdEVPHUaFQ4jpEQXFpmj3aRe9z9ISKhgdugQvOFB+uNJ0WbxOgQzjmxY10FYaJrNNUcplFTkTgzhqE3HRKEriXKHNqxrACKGwbFPfJodZRvJxf/l6y+F25+5CgsL0Q3br2nKk45JdDxqGLSXVNjfFI2F2hwrWDv2A1QkgmvH39uHuxDkOWPQQ0GUsl+o5OAKQsWisNG2al+YLdOJ7EqwfcpUlNA5HV6j09nGhdkyYgrZGLle3t7Kpq7TAGjK4n/WaDQVeHjmlVNkTQ9z1/4nGM0uJDGmi7trjrBfvyXqbaZhaYqxtBjunnByS+SzHEnezOuzjcQv5/LBlXiEKZnjUVKdDxOcmkBFImTMzNAlJZaw/XmS4oPM3pnDZ3d+zfbDskx++G/f47qLUVAbDy+alxqVf/8+scAu2jQBEl6b9HOVvsSLMsYWB6IuoVZRdZEBlKdksaSPYlk2x6K6fQBPYJmx/GtYSl4hramIutVNOOZ1dHTWk/qxUs6y7m8ifqkcV6CcsgSdo54BpFYbVWmBqQy6RQ038TLrgXyWMlNJ6+mkqr+H1KuuoHWmlZ9faGHb2+MYUtLQ24kurQ2fuj/uuIJrTh6mariPLe0tfOjEL1nPvw+BoMSaYqTAQ6U8T1k0SQHtkp9bbNJWtLkpJCDQWC7Yizaok6mSyZBuhmMsFpIHUNt66TXK+Y54BBMDfZfFnf5fkjs/yfadW/lyso/X/nQYPSQofPk5KAgjqkEZoCzB0lQc5i54eT2NzPV0pmMVn2oq5I+DM6joBW4pSZpYZUWmkKUvwkWZQvT3EJOUQ/VKAXqwk6rRYY40+ajSqkCyYbq7sLAfpS5ZSQihsdDnjjY1gnXNT0PbjwjXXIUmMjfI/ZmxuWhyifypIfRow6FJSfLwGSZWY8lJKEcgULqBufdjjGc58XiP81boNfKtBe6VP+Mp7RNIJTAkbBoOc3lbB+cLnSxnplHlFeSM7kWkPWOjWQL6RDkHbqhjy4EeQqm2Y//r7VPvK9ymJl5EaeEowmuRUH6By4pgVvt7MuIcdhj9gS9zLPt2IoWboyNyxURNPuurVUy4U8lenCNzyU9ETLD3ul0sh3UYti8Jt3sa7SJZP7rWV3sZO5LJupFEXn4XoEjeMUabdRVjbi/ZgTnSAvPEtHfwYd8sv77mNqSwo4fUgTeYTM8gu7yKxr/5KM/8/hegZ7HoPs760gcoefZZsnOnuV3fx3eddmMolEmNnGZg33U4Wm3fuZhEH3X1Ngmd/AsMvbtCtr+SBeVASROBgXP33/HHxClMhoEhFuLmmDAWyBiJZTSvjAvlDQgB5b4xtBPvsLWqCO8HS/jPp1/n5JYKTE0glAPHKwPkTo8zpRvEefMozj+DlCFAUab18LD8OiNHN9F8tp+tuZksr4WIFElC2223NhRoJqxPXuK2XVGedgk9zdtKc95WfL9/gdMLc1FWGxiRCPqanbDw0puneLM4CbwxFE+7WR/NYOjWWpShQ6rOuaJYPnowhy3ts+Rsqmb59HlUOFryaBpKN1hzpqINLEebyuh/bWqEVkoYPfQ54tK6Oaf7aTAdFIhqNCmwhM2yOxWTyAsZVxPRLirZFZ1aDaWyFys+BqEuoWvrq2WcaOgmxmVyp/NB8rcZHCvuJBIoZVNGPvvHe4no9rxdKUlrzBGaY5KZ7HXxym9+gZWahEhNpnZ6nYenh/lWRgGWwi7+pUSXFlsvtDJVWmA3/hrcHdjHMmu0e4+RlDxFYDGT5SUvkeQ0Iu5UqlJSGT/+JwCCPhf9rxVQVVdDyloqc1W/tVFaHAwNeAmbOg308qTxHRyYnAndxhkM7JwfxUSoiszhw+8r3OxsXCcqEnlf3KDbvRmxkMaSf9h+7lLRFHeaN8INkHgbmKM0XObh7JGDmBETlEb+YgJ//e4yayXLZOX8O0dcu+ii8tIdrhThvk5+1XaS+++/n7y8Syb6/1XrL4Xbn7ny8vI2lFbJM5O0RB3rQW1YdQgp2dPeRpN/hMWZXpCS2bZnma++mzkT9p+dxKyJtf2KpOKNgjSksDfKrv526uaTSTcUoeR+gil9xM1XEBcoJcMZw39a+RQFUvnQ6SCHvSbZi7Nkjo4zHv18mq7RkJZM5/ceY+KcDVln+0bJnB2l2+uhf6iAtLIJtEoLpQl0KSicCdOktZG73E3zcidXJsRiJtagFu1cOIXOknkPq1mn6QomYoVGKOtop6t+ExKdA9pVTO65GtO0t1VEODj6xYcpKC7n2IiPktAqSb4JW+lz/ytMHt/PWDCZJlci+yO2HYRQivhlE0+sxU3tR5l0pxIbCduu69H4iIylABXTwyzOjKHpOs3NzWzKdGDNv80B75exhIGmaeg1zRTOdzFzboWgu5+JLd9HiQgT6i1yTn+e2KUyWtyldMdGIfgo/0/Holp0gFK4PTOsLKVxor6RY9lF5A238s9HbPuBg2Gd28oqaCuqYFt7K0c3Ndsds6Zzrrwab9EcK9fn8FFtGymHw5xP0vjUlnwiIh9Du4OvyEcoUz1ouoOCspsA2JGcgAM7s8+h4Np5L+89+WM1RUpziOnLFJ3UbliUKA3O1RRyIXSGpoU+5n/3BFstE6FgJUbHOyjw/sjB4Dad8yqeE6UhHrvyJq7fVrAhp28q8GAlJfKlIQtLKYyISfVsJ9Idizu8hoiLs4Okow4yO12X4y7xQPG1rCX+iBXXJLs/uBtHwLGhJp7tqUXgRBFBCI2M5E/SvnAERAQloS25kltmTrI+ehSZ1ggopJLMhia4bsfljL39DHe9+gRj2YXkTQ0T8Y3RHZNLdnwxQggEkq6lFObnFaX6PjqquhlNGECfO8ZdUmNu9Xpyh93k+iMEsiIc3tyAJQRt7OXL1rdwDuYSKRqlW1TwmPYIZpXB7yoi/PD8Y6wvuNmac/XGsw8EzjLH69G9Ev1LAegwMnKE4eVi8pL7yLbCeMKLNskbC6cyqUzJ4vGSOqyov+BN54+StbzIcnjObgI1DcuyCCym2+bP77GvSpzLx504Sm5uVHgioE8v54dXfpyIcKApyU2tR6gL6ZRMDXFz62Emk+0C0aPrnD91kuzyKvpcMxyrGiZtWXJTx2dISBkhof43LGsmVfIMnzz7VfrTR6g2e/lpwV8T1mPQ8pq4a/8v2ZJw5j1ZyRZ+9xmKZq8m5/TnWE/pJc5fSe+aA8u4KGgReNbS8BoZcF8dLxh5UZ836M4s4Oa2IwwPD7O7MIbLM09wTKuIFha6PaafniDijOX5Vw5w6x21aNFxcZ8op1PUsCVugK25mSRcvpvVo0cJVQTZiEuWEHdc4/J3lhktH6Y7pZBDvbOcOvA48UuHSS26ho61YjpefRFyS2y1oiaYS3Qzll9G3uQQCawQbvKiNMFgfjklx30o7RI3TmqKiaQ+kkOT+K/fw2NFrZSNCYKxkO2r5M2kvfTPxmHoAsuS6Jrgyop0ujvmUOsWa3NFrM7ns1z2e3akfgh9XXBhMsLv8xxRAZlEEwqHjKZZYFElO1CWINiWTNXYHYRS+ojxlzGdPslnJmvIWihlKeZniAW4dev9pFVcBsCNw7O8PRBCYaCUyQqnaM54yB6fy0uodGd+DTv0eG5pPcKY20tseB25usye0yfY2dbG3NgQM+npBItKyHZ6CLsX0evfRIkIMk/jwoWrWV5OR2ga2U2NVNWWceL11zm/oBhhM4mtBbjrDmygtFKZeB0daClb0JLjOL9UzrbldnIc7ZxBRm8ci5zYPij86/fdv67GRvKfeJyBt19mJgLmof0Y88+TteV25hJcdBnDZFrJZJDIqjWPQqAZuQgjE5ec4c6vfpvOI6fpOaGDloV71qQm/R3iRTeasHiXvbY5u1Ls7jtPxtIClhAMDw///7twE0KkAM8Chdgp03cppRb+L9/3PeAG7NfyDeDv1HvDLv8LV7p0457Xyb7wa3qT9jDuziAuEuFYUY2dAmCZ3PzHl1gcHQQhCLiLGUppwL+uGPca+J1BNMthw7KKqG+NhlCKAq2Iq2Mh5PkFo5tPoYSJKHZsEFnvSFO0xfoxZudJWO9lEcliiiJuJYEMktlSezWR//UEA8xAhsf2jULRnxukW9tB+cgKuQuJfGnyFEOxOkXDC1S6TdLc/SgFYVlB+ty1WIQR2CwoDZ112YiIbWA55RnmQzrhlFREdCQ1nuChbV2/tKuEYDDOtZEQoVkWN50/R86hQ9yw5wrefbUdMxJBiEPcm3cLYzkV5M1EOBYOMh83wSZtgcylBVCQsrpET5R87XOnMJvkxrO+QtbyAm63m7zm3Zzpj0e+Y6dZKImdKxd/lJjJ/Uxmiqhxra2Gmog/RJAKPpOTQERLfN/vVSFoUVvooA5HJJ71hET277wRU9fRBy0S9DwMq4+2ghKONH8JSxjoloVhmVjK/r1XBdtRd/uJZ5Z50UFc8hdoSa6yfZ2EwFQaXaKaCtFPRfnXNhzq14aH+cywIhh2ssVvURuwouNxm7eU6RD4CxJBExuq0ogCpUzwHqVWC9Df9TJICw2FFDCXGE/KepjYSSf5u+9BxJ7gciuV0LkJCsqK+PSe/5e99w6P47rvvT/nzOyiY1EXvReiECTYKTZRpEj1YstWcZMiO3ZuquO4+9qJI7cUO3bsSLaUyN2yVSzJVKMkShRFUuxgAUCi974L7C52AezuzDnvH7MEpcTv++bem8T3ee49/6DN4pmdnXPmd76/b6ldfu/vq2ylPjvCM795npGedn55453YhoHLsvjOib/FZWvCIh2RvhliJkIbaCQ31t3LB3ZXLyuugsEzdL35GPKolzL9KRZzuyjacRP5K7aTsteg418eJzu0QNrSEL/ZeB97CguhNoZvLsRCSoSaNXs5/fwBtLYpmR6hZNqhJYwVVHCiYhcTAcm91ktc0hJfbBcgUZYmd/BORotOc91GD1OjL9E41ELUn4wlbV5cOZfIck0IQ+QKViW9yppz8/ykYgfxHBdaSuLAj7LuoHW+l7GTL/HtpTjb1zSQq4/zdlPZZYKqhuEJxfhCPd+3DeozDb5fcy82EkMrHuj9HgPuMuzc1cv+guOePEoX5pcL3Pt+7/c49toRlsbzmDb30p42TZPuYFfZVWRnN7DY9SFilwWR2vEVjAsTLSVKgQ8YzV1NabCdwqCfwtBs4mDB8GiIyf4g1bqaxmAjGaFSpDZIze9GSAuRMI5tcLdxS3wLTxouosLx2dLSZLphLXnVrzhv1ZEXkzrbSNvcScrizRQE6xFCMJe1SJvXpDAw7cxbQFmKF8YmsSsrrvA8kYx78khJSWHk3GsshaKQQGUFFiUT/cRTUlkqX0GeUBzZ387GVZsZzvA5CLM0ebbV4puvf5WVb36Ngi98HtfoIc4wSKdqpMnuYPPxflonh2me/gGf2/YxSnLHmeeXzGfDpP8Qp19cjxGOkDrchZWSgdAmT9zxYSwpMWybpu6zaAlIQdxwEXenX+EcJ8j9GWVePLe/i1NnXmNzn2PpfLFcMF2+ROdMJYbS3LWxjJKslOWN0aGfv0H7G0toAaaCzXNlSCGRCG4aj/N8iQvbcMyU75o5wF1T+/mV62pc/knSk+bonSgnMhVhoPsg9boA2/csrfND6K3rGXnPUyCd6xgcPUzy0B+TkRfnppqroSaJfxkeBDQf3vR5Wr2tnM+YeMe6Z8cv0t5XQf6ij/zQLGiNe2aMmAoxl5pEnt9PbijIT9bBlohNoPgwSEdMJdFkeSbf4eMWj5QR31zOC2cG2bBo4l8Y42LPCN5qCdhYSvKtCyVE1+dxROdySrXy5PlPsjbSQ1b9Et7wIivlGxRu+vA70LbLo7tE8IvIOT4ib2B07bfQxBk79Tg9fRuZMGoRBgzn9PEB/xBGeKdDk8CmpLWGwvpG5qYy6T7VhVZgmILyVdcyaz1Pre7lc+rLHJy6jdzJiHMvJyZeZWXlv6c0+E8fv0vE7bPAAa31N4QQn038/Jm3HyCE2AJsBVYlfnUYuBo4+F94nr91RIdC+P75Ajpuk8Rf8GfWj5gKTVBctpWLXQa/FhJj1olzkhnlWKWbGczbxKw2GM01+enODGypkcpm7eBbVOoBnqm8Gy0MXBp2+k3QFrMehZYWl7MRF7IvEghmc3KxB2tBc9RwQtkRIKSkYs1Otkw1wYyGDX9C0env0qtjKCGQpsG2az5G2xnBkatq2SVKmU+S7PLFqB/4Nsc/+GGeGLia9xkHiOkWwMRAYGvFglakCSPheabxJpfgj45gLMwjtGYiI5vnVm3FSrS6LiMSJwKRZQsSLQRjnlwKQrOcOX0GKx53eAbapnDoacpn70SbRZQmSwbMDFYniQRqIbl2NgNfBmgkWgqUchb/kvm55clUUmFgiDiDOUkMe01qdBuT5hb6Kk+y1Hw5jgmkNhAzpZwpczkt2st9qUQBqrTBc+JdIDRGraJhYgjLMFCGAVqhUlZixPuJJjdiJUjwAs1t7SfIykilKNhL7T3lLNAFKLp0Jc+XjlIymImrqpw4MpEH2Y7Wing84MQKJQjZQgj2Lq6mWGWhtGZysY8le5HUpFqK3GmkzjYhqvdRp3v4tP4y+2ZuJNk+wx8UtjuB5ZmHsIuqmJ9IRgpBTstasnNzkDc3MB7+MpmLMRQQkq+z/8ef5rp73/sOV/D1njSW5sf5Tkrasv9f3ITTrlq2yTl6rGLs+Sm63T5uiLVSKLPZuuVakrxOzmgweIYzZz6AsuOItY5qLqfvRmSqm4XBX2A++l1qJxPJ7Nk1vK9gPaYwEf3gqoiTWZvBgUcfRtnxd8y5sYJyHr/lfmwpOaIg9ZSL42KSLQFnURXABnuQnLigNvYL6r1x1M7v0HbxDqayD3F3VgZ/w+63uct3sFgc5s3BIkKX0hCbNVJYGFpRFPQDAtuyuHTqIOrMj9h941qkdKNUHGm4KEy+jvGlfYDCt9ngm2ILcSHYrzeiE21zrQST5npqF57BULdjCxMT2JrpYW3mXlxx55plZs6w4eo5Bl1bua/XIL5QhUtsJGu+nR3VmhXv+QIdwb90CkctKD0TxGxVjrrTtikf7kW6N1Fy2zVEgkfpDyRCe7ViKdbDq/s/zUw0iYaA0wKKuYIszNSjlQnYaGWw6KtjYOBBoqoWo8QxJzWUplF3IKRa5ihmju2gUL0blW3Tbb5Ad72Xg+41vOjNx5b5GLqO+yd+SuZUnPlgLvXDU3SUK1QCsZJaURz0MT09y/npk5hWHnf1PM9weZxCdQ67Zong0CbcQiIFZKRPYaYfp1PcuowwxyWcrW+ieaCHwJNPcSInxtdWfwlLmhja4pt8lRZ60Mpila+P6oqe5TQFgNUpnbRTjrEQxlgIM1C9DlvIZQ87KQQmjgpUakHJfB0ffeMpHt75HhQSUyvW/eYJDmbMc2bNKtZMmrQe6eOaC5p/uiETwwXu9BGScvvZ2rCdVm9ic9Q7jRZZCXRRU6Erkaaz6VgVUjyckkN3aTLZpsHR6L1s6fgX/nzkp/xqqIVp8sCZNXQlBcjq6yRrIUoos4rFsjAIe1m0oXScBfmPLMwqZoKPUFz/M/p0FXGl+fyQIHu+g+4fP8I7+rgojOlejLTUhDZTYy7Mo6RkcMsmArlF1O3Yzt0tuZw7+gqZaY5/okisqU0zO5ifG6a8sYHjP5vCthTSEJSmSkZMhR0fZWI0TPC5UtKKFjkWXs9ARcUyzShuJHF03cdZX13O+wB+nEhTeOlpov4kouOapJXVJG3YDMCzl95kk6+KxcaeBIoHWitqqo8Tmc8iOJ9LSEd5IKOGD4SPQKwGkaU4+uYw3pE4Fw7aaAVxV4gFdwDfdBMVq79FR8eviQ64aQ6NO7ScgA8jHqWlf4jc226H/5MRN+A2YGfi+x/jFGOf+VfHaCAZcOPcki5g6r/m9P6/R7Q/iI47TCQwSLXuY418mGDPVqQniQMb0omLJl7evIMHTy6yah42IzgatjnsNbANnN03muryQW4TT9NMF20DH+PWmWxWBmwUgu7JtQRr5rgkm2jQndRMuZhd6mQ8L4vx7DyKAj4KQgEkDq+oOa0SbI1ILEKejCrWDr5O962buemuP+Nk7yATG3MZMUxOCsd41l2TzPeK/4SmXWv4+TcOs9t3iuTCS+g0C61BIh23d1hWKk0vjQGOkWLeXJih8o0JE0rhMIMT7WJt2wgpkcJRXBYHHZPLsUCQlNR0ZGQ+cUU1VnwEYRYxYirkYhj3RBcpmYUUq2wWrTTqyONYVYJgrqBm3GRz+Xpc8Ux+89hFUvyHqKhs46vr/gJLSA7rZD744hIr80rJk6ec+kyBe76MOLBm1sLQbqy3r12X41+0wwlRImF0qRXY4DYk9za8mxMzjVyY7XN8n7SNadnsenk/K8eGKf/ho8SrNafPvE63ruRr/CVWkYmrQPCJjgUmF96gYu1hao1uFCb+8WoWbCdWSGuNrW2eM1+mRVdyVXwDJan1KG0v989SgjWUnfoEk/mP4R68mZt9deQ09mEWOTRBrRWphWHKvFvxvt5BVsRkvv0c4jrbcWtPaDyQNkbOUS4d2/Zv4lyqr72OlF88vnwttJCMLiXRNq2w83VCIGJzNnqWda0tlFZkEh0KEe0PMpP9BkrFQarlzUbyXCW+H3wdPduDti4vOxqXdwVmQnmnlcYzkMHrbz32b4o2gJHiKmwplqOQTjZU47oYcTihCXXsdtnNrbkv8apeTadoppGLVCaP0Vo4gWSCD/IoJ/RmNnCM+oS7fMCVyrb216hraMFd5Gbz5CHaQmHHVR2bTxlPUME4+uWnWbj7WwwujhIIFBBLn4Koc26dsmEZTRVKLhtkmxoaZ9YzLsKsG/gVylhDSWCWxWCQzrlV9BzopfKqIySVvgwofiPfS4y7nEaRVrwyfp60ia9jyE+hsz/J6MBLLBwKYUxN8N7RR+mobwUERtJaTKuE9J63cGdYdHhy8YYCVGdM07D6AFLaeJXBhfN7mA/lo5JChGOLTBy/jtTcYTp9GykvGOaYX1HsH+HO55zc0rLxAXLoQtfgrHXaJGtiG1JIFj099G/o4mvGe4njSuiDHJRvrsjFVu8L9LxcT4ovnbsLoKeolFgslarRGVbIHtxJr1BeYVFWDqtweLIAutFkwH8z48wDCk/WJFLaV3wLFYmM4E4AQpHzPPfR+4hJl1MQSTjT0ETjYC+WMOnIr2VbXS3C7nTO0Yb4cJLzwSXu79rhXly25cTVKZu73niNq/JXsd8SNI7GqaGXim1PUqjO0sFK0g/76GtI4ic7P46Fya+aLP6GB1h1pI/icAcrdxxmIP4i59+04LF/Rrz3C6zedSflGyvp+LWf4TyTIW8y5Y0r8DbW4z81hc9StBZlkZdl8p6zvcTda3Gtauah6BcRw+IdNZYSgtHsDELlGxAlNxFamiJbnUeIRMmlJQKFkBqt4rwxM0JcORw121Y8dLaTq+P/do55vZnUvHyIQW8+40kaI7qAnZJGd04BCDhz5Aj31v8eM8YcCLW8pqb6VlEcaGVFbIGktFomLeWgs0pzc6aH0755zqQXcpVnCW+ZScrcRiJLG0kKxhFCYGuNS0q2tN4AnjR485tgx4jadURiu1h43QsY0BUh7dIRUhsMagY6mI2MkuK7FWodGo1I0JUysyaYC2fjS/ZBYDPzkVaENY41/RTz2AycfhF3xnuwU9IJ5JwHFG9dHOGti6DUFVseoRQlw0Okz4fIDkbeKbT7HY7fZeFWoLWeANBaTwghvP/6AK31W0KI14EJnGfN97TWF3/bPxNCfBT4KEB5eflvO+Q/dCRVexJk+gRhG4OI+y50zOR0jns56iRuujidZ7M6bCG1JkePUj6eiquxHNtlYkhFE+0IASvoImfhIKHR6+l0Sfxxzen0Up6QX8YWEkMq/iK5n3BtDr9pzEEJgaFsatr6+cOGLLa2NiK//wKKxkTKgmRehvn+HZLP3P8HzLRf4MCpCayt2x1XVK0Tfm6aI1lwV+cF1o90892a99Had5HwjlHeyq/GJZO4edxiZcAibGvsTIPKoo2kmF66XYIIsGD70ZQuFz6GslFCYirF7qPtVBU14J7rIxqZc9qVWlO5fTcjL+9DKYUtDGbckvSFJ2nJL8M/Y+NaDKEWQ4wARoqkxJ/HBw6GGPKaVE7HqQzmU7xzBU9/6wyWpdCsI7h2AVsKZ1euBH25BlXTK8hrNAEHuYx6BtE7Rom+Wc6f9uTxUpY0emgAACAASURBVIYJQuOOxzlf6pjPauksBFIrVkyP4p0PEKmsY1N9DQ+P+VhSDZDRAGiEUvzREz+hua8bbRjsO36Iny02ku3+79jR0behBIpgkskHTwjG+iU5699F6mwTZjCF0M40RCKfVSpN6sgMBan1yAwnHkkmoALHCsYmNzxAaLaK9IUVVCYZTM2VoZVEC4W2BfNjyRSZNt7VH+Nynq7VcRxVZbxjcZ8NphHumaBhc9E7irfi+kayd97kmOhKCUoxmVdM02CXA7s4BngEgz0UbH4v0aEQMw+fQ9saf7aJvVYkDDgFi3PFLJ37BWqmm2WBA5q0IgvP+69ivk0sq0S1FuQnleFbGls+FymdqLfK6RHeQmBrx5LlxjVreK73JFqA0gopLMrc7RyPbuFr4lNYmJjS4s8yfk6OgF5Rz0+5H0uYdNFEqRqmzu4hMpGKtm029XezZe3dFKpjrOJpBimmnDHKGE8UxBahM23s687A1kMUFfVRUysASZO6hEtoLOGg6J+8GCWYZLB+1qYlqMCzkyJC6EDPchsxagzjdu/DVdxPggtOozqHS74HCwNDO6issmP09z/H0GgT0WAuBVMxLj/FO+rXYBsGnQ3wwCOPcmlghM98/AvEDROpFfdP/nSZmyaEjdfb57SzlJuqDXv5dOcgeQNQoQySa04zULiAMusdTuH4ACVTIyyQSu/z5XjK8nCF9lIbq0GhWMjpolM2YOEInN5uM9QkOhzD5Vw/aaaHNbW/4EZp06UaeD12OyptmhZtvY3L9zZBhrTIqHwTd9c15BSlYtu9aO2oEj9v/xVDx1vZFkuhKT2ZJSk5t7GSN4xdJKTwGELB5jRmsm5nrHQLf33tVtZVZDNwLMz0zH4yfeXMdp9DVjmbUKk1nqjF3mOHQMN1x98EQ/JorosYgpF8F+uGZxGGok52U6u6mUjO57Xi694Wg6c5s6aJpmN9nC9T9MWep35M8cXHbMci6cgDzH1Bkx4Iktecwtebm7AMyVFD8oOFRQYPjmFbCuPwBL77HWTMRoCRxOHCP6b+0gtX5oRw5tZicSMbi+5GCoOFVD89Q9tILY4y719CA+lF7U4utOHi6vwyHpljmcd7urCSWm/pcuwggGGarL7jLrKuv42GEyc5OTtB59mTxD25y10J27I4/eqrDMyFaG5xNuNCwELeeRY8vVQ3X4NhZzBtzjApgsTdAVzTWWyLZTBVncSltWsxuEC9fpnPnWlFtghC8gRHPWsci6XLlh+V24myko74xxmXYYrEAgU6C5BEOmwiHUtcP3OR6SNT6I5nyYmsZHbXBbQES5mcni+gs+AIc8l+Wo0JDFpR8TEc0o8GLOxYJ3FPPZOZHocTGvRRGJxbpkJk+wLUXDpHT04Ks7mZjOZkUFRSkMA9f7fjP7VwE0K8ChT+lj994d/5+lqgESesB+AVIcQOrfWhf32s1vph4GGA9evX/6dz4JIqMsm6rYbA0wkfMQTxhVzAYt2shUu7iSunfeOJa7RWKG0zGT6M1z/Ff/v1VcSuK6Ug61fUie7E+zWINuZwIPwCS2aYrYPvZiwrD5tEeL2GNypKOJGfmohiFNjSoOaatdy93oHix3A7Ow9poJVNpp3O5/Lej27vZuzBn7J3zSd5CrFslXB5sa2Mmrza3s/3/uQzxA0TQymUNJctMvaVuPn+yQVWBWyIKLJUOXMjx1DVToTPosvlXAYpEEo7/Bgc3p5IL+C+vhg+kckLbomlFUJKslZu4bsdBslJESLeVP7olWdY1deDdQb+/pqtKKmwk9Kx0jLJa1ZERt4gX2lumF7A672drJvraR8dJZw0hEtkIeMZTE/V4Kp27ExMrSibjrM0W8PYkU+y4ppXidinQGiEYbFizzCbqm4m9qMfY1sWEskHprMZLlUUVBdwrKcPY3ocBBypX40tJWdHZ5xa/fLsFhItNSFPFhgG7bX1fLz2KvSSC8jHoB6JE8FlKMFkiqS/eRvpo+nk9a9GComNJj4myd2WS+drb1E2HMO1uACp77znNICyEViMpx2iL7mGrdLFjAxyXIeZPr8Hj2eSvkkvvcXVpLsqqZ8yEvcCZKbuJuTXLMTeBAHTU9XEQpVIS3Hi+Di3vq1wGxkZoUVGeUqnYSXulfMr1tPc3YZenMeXX0VjTydbOvroDy7xL1O9rEkXtAZhJuSh+/weMrMmCQUKqbp4Ec/oW+ByOVctHgchyLjro7jqaph97Idk1b3b8VHSNtOJ9AdnTghW7tqLMDKY6ctAK9DS2XDkLhaxZfDdjj2OUByp+DUtSyaPW39KXLsTAdKSi2Y9q3n+HXmzcQ0nrBaSjgUJT6UiMRjrTuPZf2jjtvdtocz8O7QF/aIchUGlGEdIg8GuDmy9kfQMP5VVxwEbIUy2u3dgvXKCk1mC3OFzlEeyWZe3F4TkvMfgjzakEhdpCO3llvNHKAwGMRbCpFeGL4PTaA01uofPjB5huqCIIvEotaIHWxsEA4UILUk28oBpwGK4fAW24fDcbK3oLcqAwqblKDat4KJoZpt6EZlodRYW9TE9XYO1kM/GzDY+v3EdgRfGMAD51iZm1o7z1pYPooWBYdvc+dwPKZ0aZmk6FWvhZqRZylFDUWoukrlURZN6CdNwEgWEgpbZbm7J/hk1ohtbG4yIOlatGaNP1vCmuJpDxi7sYgOD1axJiHMu8/aW4yGAvLILjM8Wsagkq2pOOYW9DeufGOCua+8j+667WGhrY/C++zjo2YmF6RQ0WpG3eIjnl57ghUrJvfUr+GBFNsHgGccIOi1GxDVIrtfFpoFJgqXFLNx2J5+oWEVMa1y2YmtnP31lucSFcO5JNJNGCw3ahVZxtC0Ij6dSsjiEWXYl2D1nrJOvvE/SW+zQRZqHNaadiCeMWUz+1ZcBOLf3VqyVTSghiNk2v+i6SLFHMJifTOWMRfN0HFeyAwqYNnjDXgavuhd69+OZOEdl63r6Tx8nP6UMKQyiWf2Mr/87UoUFGKQVOUW6VhK5dB2VNXcydyGH1SrI6eQEHURKRoqrWCMV1Zm5hFLcmHn5+MciTETzKNlzF0mjXdjdXU7hBssKy5mBfoIil6mpGoqKepx6WSjGMs9Tf6kBbc9SnR6my30ehUKkwryq5/F19dhiBU9zB1fr17m5cIabjh6nXv6KAlHM4IrfZ2TrHQ75v2wjbcWf4JVR539IJDfGWhPFmwDtIhTejeAXALh61zInryOe30vEtwKrLEIg+SigGfd0o0f3Io1iHKp8YuNqdWKs3s5zxS1YUiA1bOs5R04kxHhWPltmBlnEuhKRJyUz8SjV/6PFwn/C+E8t3LTW1/6//U0IMSWEKEqgbUU4q9G/Hu8Cjmmtw4nXvAhsBv5N4fa7GNI9SWzoTWYrVzIpgxQpD7O1qZyyDe4cjPFYlRtbwLcaU/BGZ4me34c/6rQYUxcsrk/rZHYZQBQUF72HnJwb+d7k/cTtGIZS1Ey+j6MNTnSMVPodRdtldOtAOMKpYIT1njTSd7YQ2h9cfsjbvm6sAxYTT41Snr6RrKDmM51L/G1TsuNijeb601PY/cm0NdYTM11X+Dlv439ZUnMmx2RVwHbasMKkWJbSgY0lBCXBWdxaYycI27YQiWxUwUurC7jj9CIrZzO5NraGH5kzvOfmzXSH3QzllRJdn4sQ8LmGZr757a/SMNjDZmOEp3eUkereSXHQhzUT4HzJeVyG4vbhP8M9CRMvtHHMdQY73ZFOpM+2cCHi5f2zk3QFJwn6XYzNCDa4FtiQF0ItttJnnEVIh9OTVnQDZWVlNLZez0uBLhrpoG68i1uLbidzcxk7IrP8suscpyobHP6LkCjtAK1op12BVkhs8jdlkF//p+wvSUdL88oOVZvcFOrFXMzihfw8nil1otC+HM2nZslBmqSAeZePrU1b2Xf+55T3ZKEQ9EfaqcxswdAGWiuCXS+Tqpaw/V189cY5mlO8bIpoJmUAhWJ+3ksPK3huk+Oof0IaPHQywqpZG+EymGg26ZiwiR/fgNQSoQWpdj6WUHzr3BAlWwpZV5H9Dr5dWdNGBvIKAYEyDC5s2MrFwgYsaXJw9VUY/IR/CtrEUySuDWn808kIhaFs2kJO4LRhGKy8dwvZW9eRunED0e5uJh/4CijF1PcfI9Y/zQGzl+yJn+NNLmcmOoo/Op6YEgIhTZLTi3l6UbNvcwm2QaJNq3nk/DmutiUSA6VtXHY6ndZqyqdtDKUTLXXNQqgfKxsadAemuPKg3eS6QOm2KVzlLsLdK7B9ThtpLFhE78YHefXIWYdTCdy+wmBtxiyVp17CYB1ZWROONQZOazqtIp13f2gntSeOM5+7jhSXiVGZw8JwhJNhnUDgBUJLZMNKbs8tZrZrgp62gyjlI5HGit9fQtLwPEVH6tlTNcV8nuS1wC7mQ3lILfEsrsNMrceMnSJfO3wxpRwye2t/N8St5ZafVDZF5y4xU19AQfVEYsnQeLImGZ7P4/XDnUQXZxB6pfP52lCech3d0kzQBARJe65n6yt/SaqZzuGFwmU9RnlyOsZkC7uWUhgta+NoZgnrrTPcMj9KNLsnYRQMG9efpJcqvi7+KtFOFVw2CL5IM/W6G30ZbdNiGXm8fJ4A3VRzUTbRpDtYm9bP/MuvkFRfT3eJ4LMfqeV8w9VcQdtsshcP4UOjtM0Pu75FaVo1q90vL1uKaAOidYrs/kWyu/r5eXs30fJVDpcTwRN7PkR5URRTxR1OohbkzedycOybNNJO1YFXyR1fIo8+vjTzDbpX17J9po2SzAtkJafgn7qe6YITdJQ7ps9y2czfwRNWJ1J24jjWKxfCBzlw9W2Oz5qCL01M8QNPPy8mNTAxB3/fmIwtwKi5lU9G9pI2cxatNdNLI06uanYnWliJ1AQbIS+jl5q0jDJeeUhhW/2szjdp256OlgrDtikbH2BmcgzZG2U6xYeSghcvXGS86mbSz2cwo3ooK6kmb9mKCbxTs8zF/MjyBiLzOehCh24jtEGqvxaUE5c1JefQXGldnqtQxIWR+OwlB8QeDpdoSqYm8Ybu4UkjF/vSLHQ9ypYb38ueDU10LE6jUMuI+pAcx2tnXXGZ0wKZXUPq1k+AYbLeEhztWcGSbVMVP81oeTXeYBVj6b34I79h05TJVJKL2RQ7IVJTdKWDbTjdDCXgzbpWpNYoIWgrq+XO3wxRPO14NUjDpKy55X+yWviPHb/LVulvgHuBbyS+PvtbjhkGfl8I8XWcrdjVwLf/y87w/2csvPJrJua6eK3eQqGYzszlucrNxKWJ0M6NoIXAEprehmLSTk9zua0q3eW0nZ6lZIOJISykcJEr9pLvbeWRwj2c6niMwoBgKKB4/4EBBvNs5jNyaavNuVK0JYatNUcDYdZ70vDsWc/Cqe+z2DYDQDitmOOZN6MzJfNScxWK20ej1IQVp3MM1s7GCY2mMIdmpc/isBJYKAwhUNrhk4ETE7R21mJKBpmUcxSKbIq929hWEeY7A1MkzXh48ESYMzkuPFGbv21Kdoq3hAKre28JNQNRBsjjo2u3sa4im5yhOUTfeGI344S2n1nRRO1IDzNX3cbFvA1oYSzbJ7T4VlETWsR0O5yocT3rGCkKAEWmeZ5/jC9hZ9zAPReSqJnq59NHHsKlLCZOVzG5Zg+zOX9Oan4PizMryNlezqmSCJ9Il8TTGthPLUmFf016SinNlFG3ezd3A9k9/ZwVAgunRfdAbQlzlk3/8Kvsm2nHtXSRf471Urz6Q9SnFcH0lXBklxR8uPFqDp4fwk48vC2lOZubzFXhHpZyu0n21zPfJbCvXsc37n6QY3UvM9I2yQvJR3gpZZpdE3XsPHAJ09/HZe/7uhHJudZu7hEWhToLicRGMZ6dl0jtcIyLL+0tZducZDh7mt9r/wOW7CUqcipZO7sGBEQy+xkywbLzOdbvZ11FNoODV/h2KbGlK91NYDKjxBFkSEncNDmwcStxnB18TCleTZvhz+eyuCG2hkkzQFGRl6WeBaK568jIqcEOnHQ4kEqh43EG5uZQQuCPTeCPjtO0ZgMNDbuJLbk4+0o3SifxcNcFXtlxy5WJpzVCQdh3GFtuAWVgS5vpjG6a4nOo0Y3cue80I8UVlI0PUbm0ke7MRaoy+rg1/hVEygqaRQd1ohsNFFeMosom6Nk/gQ7dTUn9Or73so1EJlqksK8nicLVpZQxzr08xYVAOUoZiagfQWSyEKMknX3+MKMZOaQsxlkhJLuKClhp+zHRxJXGUBZprz6L9w/+G60f2kXD5iJOHvkl864TFBT2kpc3Sn7Oz5hdymduppUi/yuoaT/uVBtzIYJp1iBdJQhzkIJwgFvOO5Y51xYUs/v9dxF48im+tP/H/GCVBxnrIyt1FGMpiraFg1RqSTBQiNSC0dh6MpaKMIlj4UJb4+QdO4px8/3YhlP47fAYbPrUwzD4JlZgnOHBDgoDDRjhOgTwUnoDPyxMQglNL16qMv+KumXlrUIIm4ui+R3tVKFVQhzSic9fSk7uKImdEBoDLezl85zIKORxsddpexsW35h/gPSjR1k4fZrDf7GdntIVjmhICIS22aEO8MGsdv4plkTZjGaNVgyf/Ao5VUPLObsoSOqRy/fSqkvtmNe/GxuBVHC2Kpk2kYxhx7np9AmaU1v4u+ZULFGMqYv5ZiaMLb3hCL58UW5/+BU80RjHrr6G13OuYsiuxYitoiN1gFerBrm+t/1yrD0aaB7o4e++/VXONDRxuvISVu71TCRSPWw0L4eD1PR5eHq7IOY13raBFhwdH8V+cz8A/ug4Byd/SUNa43JqAtpxKNBCIYQJ0ZVO2LuGUp/Fp4JJHAu1U3L2ICVTI2ghmPakoizBWEEpj9/8IUeQJARCr+K0aubmc4cpnA+AFohcL6J/kPJYN4u1IfaJ28nQYZRvO/nxZN6DMx8KVfZykPxkRhYXK6/4ogEgJDGheD7rZrYHR7AZSIANigf3HSXHW8Sa/Ckm/Da2dtJmphghThMu5+VYEycw81eANBBCIrUmz9CE7Di3qpNktX8UpU3WSpuzlQ/yrtP9mLnlzKU4G2GFpq0zhNxadCUoS4jEcwssYTJcWkPxzBgIQfPOaymub/yfqBT+48fvsnD7BvC4EOLDOAXaewGEEOuBP9BafwR4EtgFXMC551/SWu/7HZ3vvxmp3ihTaXFsbYMUjGblEBMmOkHEfztBeXddKf2t93N2qouRIi+VvlTKBwppi9/EngJJ+mwjSyHoXnmRaFIjjZ4sFnPewhuZRF5cwnsymbGCCs5X34+Fs6hKHNTHZUi2ZKUvn5f/hg1kBkMILcmrVHgiNgFb4rdtOgcOkFdcT0ugktVBhdKaITfoKNwUg1WnFjiTLXEXwbfTkpaRIyFgVoQ5425bhq5viK1F+JKpb+8kyzVLyvwi704pxzXeyVJTJd++58POOqI0xQuaEuGjWl4gSa4BNrKuIpuvbK/ns+OT2BrHw212jIfXXMOcdycQRSOW7RMKA37SpuaQxTa2AUk4QcZojbQsGk8cxOX3437lBR77m+9y6dU+DGUTyqjmbMufopSBy2xHZA7h8YwwNRHmePse4rDMU7kkm2heOoYD9kLd7t3U7d7N5t+SlfexYz8hdXFs+Ro9PfAiPfYTNCYXIzO2kpeSz33F2RSbb7FlyyYe7oK41hgo8kNvMrbphWWbl80n/4KZff0Ye8ror76Hmfwoo0fWMh4+S3tSLU3bLPKf7VvmJy+mmfSkDfOXVQ/x6dLbuDETgsEiWtQKzkuDuNa4pGBHVR6ZrWkcu7CfmO24tycph5gtEtVYhVLURdw0u5M5O32W8/Z5hCHAhkbfGN1FlVhaI7WiYXIYf7oHpRLqQJekXWuEsjFsG9mzn4NzNhtFLatLr0IPaAQp2ANhpk+fIaU+b9k4czY9lUPRJAqEQb67kILUCjxNu0nNNLn44mGUdqNiPfRU72T5JgTnYTuwSH5wnn2ND1I4tZOkpB4eCJ9mLVGW3D9jcSqVkqlBQKBTStl2wmJd6gkK89IJNF5EasXl1BFnf6FIK1sidC7B+UnPd5I6Eu87uf8Mz8352Lwim4rIDBnzZZx8Wzs4FgjTV3aKZ5o3Y0vHUOyNaJwfqSBfawtwf8YQ7eEw5cNdFM2MMdJxgeL6RorrG7mt/sucfOELBOlJPJ9tsgu6yY6cpS81nbQlP0wtAgI7eQSd4iUpoxiYpDA4R2EwSF0sm6kffAMdi3FVt8n+PEjKg+1bIghDoxVMD5YyGWhifj4PNLhi2SgkDSmvckEWs5g9jphO3GHaecYeeOp5ShpSyN2Wz1z866Q32USUi8VTn6ZX1PM3CTQIIYlruEgzdXSjlMNXFAgaRAemdJBOiWKHfo0dHKJW93Fu9FpGR5vxeCbJNRoJ9ZdhetsJzGdTVrmaSHML1mwEhcBScCp7NRn5fqbzinl5Nh2RMg/aSijXLHaINzCAa7VFywrbUZHqXlSClokWFKRdS+6GQuZGfo22bYp9E9y571FGiisJpWdxvnF9IhrNREfn6XT3E5crQQjiWvNMTT7rZhLIIeBPTyFzIUbPZDG1e3ZxdVYKm6u3ADC08HM67SjnEkkyjYN9PFm7g8UMH5MZHez07WbVQgt/XOh4N0qtyFvs4WJ5PjHhKOgvtygNpSnpesOJ5rq81kfHudRnsNn1SaK53ST5G7gQVei8LtbvvoXU5NWcNdscLzlDcs/aUu6yJI+/9iuHQ4eBdNejrDFH/GMYV/jP0qFx+BCUz0yQZNezVDiMljBSonnE+CLxREEuCjRGrk345efYEElmctNW5gquRR17GV9iY3dZuCYSc9jQivB8B0k6H4lEaRsFjFsZHOv380fbriO35yMMqgIKbBcH1Qf5rozy0Q0VVK8txL7zrwm/cIBoSJEIFCFz5hw7eYZIejVamw43WIFKruFgaw3u9Btw2ZPo+DD1g29x0ONj1dYWXiLm0Icut1S0o1NPW1pECIHhctF89TvjJX+X43dWuGmt/cDu3/L7U8BHEt/bwMf+i0/t3z1Sd7+Hwo7P0p7YdZcGfLQl2oWmhnsnFSonmRtr8klKdvGgSzF44zUoIThi27z/wBDb/DXkLTQ74edao4feIrT+G4hsZw+QTSdZNYLe58opmRrinv0nGC1dyZZzBymaPMH+q3aQ0tIC1ANwdvosL77+BO/jescfSGty9Rh+SyANL0dzz7PWiuLV5ejEo7vc7ZDXJdAaVKyei/OdpQloWXGl5Ydmf94CtSMqIS5QTMpZ6p59nFsXRjlRU8zZdIHUHWyKjnPz0QHOeyuZaSpiUeeTPrFIT8DHpHTTcOavKbrqfSwMhnn3xg3o+jJ+eL6Pbc+/xJrJXLYH+zlx6g0Ot65HS8MpEAI+pFZ4By9x0HydQxvWYsSmKQwp0LDi4gjhtHW44j145gcpG75E91VZWPthvHAjSpq4Ctup3PYgUjqzXOszRC7MY9bfjIWNiU26mue1rPeTnmg9Xx7rPWnU0cXc3HGCbMLVL7j7Qj4zKaP0lDjHrJzNYlt4nNp1s0jR7mghhqEPiZRuHij+Gk/NLNAz9hRZRdPL7Q2tLKK53YRmG/noyBi24Vxz16qVfIANtOZOc/Chh7iDxHNICD5U+i5WrClldUYG/sG/RsViCLdJy6lP8aBYwYW1OWx2JdESsMED6wvW4zbcRO0oM8kzKKEQWiAwcMeyMBGEJ0b41MCfErNjeAu8/H7p73P/yqu4cTHOI0eOUzg3TWHAT044yHh2Pqm2xWu1q1BaITTsPPEqJdOj+LRm1l1AutLIhO2B89Um+NwxCj73WaZ7fQSHAzQvDqOTitlZeBdSGNhHoxya+DH+6BXSdF1/B4Oltcu7dalg5dAibYW9TKcPoyPdPL/4FC4rjo3kyaLtzJanU7/USWPSJeJBmxJ5DtBs8M0TjO5iImORwHgb87mJeaclkZFkhFHKWPccTXXVfOfiFGuWLlHp7yYzc5qqG4aZkQZ+7SGlPUI46CUUysdAUmRlcYiMxAPqbcIfoXm0KExaNIVi5vGG/AjDoKy5hcn+IGPdcxjZi8zrcoQ2QdmgDSzRxeC6MFpqalYM0/d8JZHpdOw0D9kuP1XVzUQueom5AiSrbKo8PlQsRmdFDWdXNLM7LZWAfAphODFnGsEiecyH8nAFZ3AF5zDMagwzifq0I6Rt/jLDYyWccg0470E6ivehokraJp+ldGpyGT3XMk5f7lEOeLJRspyEDwMCTR+1/GP4M7TOt1M0P0OGa5ycjAifzf0yl0QTTaKDWroJT+cT7NxLWGQ7huVaUV47yep79jI3fB0l9dkUVns4FYzwaKCXqFIIZSGXfLy+ejWP33I/lmEAFulzPyMztZb6pEVHNakhJwIkhIjYzj3jkG41+Zk7Gd9czOsnh1FKM+FNoWRqiJKpIcYKymlfsTZBjRC8sHUnV7W3vWPd17EQAGPeUkaKq3CfPUuZv4OLhXV8aW0p6yqyOTt9llNTp8jw2nw6IRZx2RZ/c+JNfinTKc7Yzy2X/ohGVxKNMZuHTi6wLy+EDnWDgPmkZIclrJw4xD1j85QMnWaVVcRikoUvOr7cMvRHRxk4YVFYXUfwumaqdQEl9Vcsfm778zWMdc+97ZqaDNzxSdxHzlMeSEeaRWhrmrJxJ6XEAhAykZogqBy3SAoA6g2soHMZOz2XRSnGsurcNjQX8tLoSV/gtfJ0lJAYO25nz4VzGMrGFo6RcOtUOxNJxVTPjOMN+YkKDzfG1jAh/YzQg9vKJHTGz0/CWaSu+is2R0bRna3cqAU3GQLv2kKSKjJBxknVf89sbBcR1+8jhKSkdBWZS0/iX+xCaBstQGibjPA8RuZdaC2RrlIwi1DJPlbP9tNUfAcT4z46/BGiOU5iymUD/dxInPrpAE2f+OT/Nmgb/N/khP+lMUIRr2XsRCV2Ebf787jp5CKncwzWzUbpDA4TdlZsYQAAIABJREFUkUWk52bxj1OTDKwqddSKwskAHMiZoaKvjVXJTQluh2Ax5xIioQK7PHqMOk6s20j2aR9Vc6mULk6QszRAINvDy5u2E3e7efpMD61jMTaGniC75xI6fY+zTqGYnD9MLDbJWHYuhlnML0rymYkMckO8xnGf1xotHK7O5ddkDHdgNNcuZ2yiNTErkPg+YREy2IXy9TLrzV4mcF7egU6v8HJtxXm+WHwNSkj+sBhuOTeMN+SnTa/j6q88RK7PT0d9I1/8+H8n6nbTfdutxF8PUDIxiHHiSe6Y6qa/YR3FQT+FQT/FPd30FjXzxQ/c4XBHdDm3nD9CQXCOoYqrSY2UOb54Hf9ERVIvsjSPb7+7hvVTW0AIkgval0nazlCkpfnYNjNFepHAaw/xU9fHsEKCn5zt5cnWWieTtK2NmfPP0F/2OAoLiUnOd0wKexQPmIInPpTH+sL1lO5/Cf8fO8II3vb5gUKpGOcvfQHXRDW329dxNq+Oo5xjuzpIve4jZbaBF4pdy2IQcNC5sdAcyRdfI5hSgj9jnNxwFEsKdOMuPtKyg8HBhwipGOAEVi/mdNHSX8uq13wgwGdOkPeRFqysOnaveYT5wGH6hs/w+sIoK0MV1M+uxIhnYJiCcU8vsUgMhWImaYZQaYiysjIuneykdbjH4fOZJrs9yaTmJHO6uoVDswvO4q0UocJy7J6zGIsRepiiRDsmwAKneAOJigRYbB8jxVrHyixo8tgMhNsxhGMZI/QVj8DLo7XzFIIMLjRtJjNqcs/gm6Qn7ePVdD8F81WUWKm8HruWgngyRyqzeb7xFmwhOMF2Pqe/TL3+MSnn/JBwnvGoXDzb/4E3HvkAB4ZGKcl2YQw0oAIbcKeUMp9h8v0nXqEsPEqxOUxydJ6M4gXHqFaCrQW9Xg8qoMnM9NGSYZHhK2WnP4dfVkNMqESryUFKLhWVO221ihXsIczachNpFvPsP7SxJALMZZ8HofBkXMvKjHk65lPJyJqiQjjrijAE3jUehg/fgssuI2zDhbNLmCITt+Vhxz31LIb7uFi9gs/+yWeImyYuBH+oUlHqISSJFmmw0Hkgx2MYS2FKGqfY0hKBor/n7C+i2FYutdmSY1phK8cfrm7pEsXbppaLtkQtwZAdoTrnEVz6S8Qxl9vpp8UmyIDT6Wv5fMFfUihG0UoQ7anglrpnEIlzGTudS8Q3jZFpk54ToHnVSaQJQ9NvUVbyAPvbTUbmqri+tponW2t5crSH8A+/S9H0HMfWXr3sL4gGnVTDVPJWxhG8yTVs7f8q17Z3Q0WiZasg43ED0sHda6DWX8L166+zNx7Hl57KSY+jnxsrKGO0uJriqMVImoNK24aJzFO4VZy4NHEpi9KpUV7efgvtDetQUnJsw24Ck7N8afsG1lVk80TXE3zt+NdQWpGWesuyWCQODLWu5m7PJfoOV2EoA7/l2A2tDNjkhSz+JU/w3Koty6gtOMh2qq8Ntx2kO09yXcaNtI+/iD86jkwgwmmjJ/nqhmMMzTzBI3sfodBbuTx/Cqs9y0XcqWDEMUTPSkFet4H3HxikPCAwkpoomXpi2QYmdWmR7NI6xnsjeMfexEpJxk4twFyYJzPTx/aiExzhesf8GwcgMJQieWmBA9tuJoGrYSNYFPXcd+okwQ2DZIggPyu8nzguJjy55EfCFPmyKdBZFNjpTKt0bo77sXxdTIzm8Rszl72uJu7Xwmk325pof9Ap3AbfBDuGmZaKiAuHlylNjsgPUfnat1mb9h0CWfVkBnqozKljsPKKCkho8IT7WfmJz/D5ySmiaHTulaLNQdo1WVaUueIKIgNX1qP/Hcb/Ldz+F0bv2S5sWy0vaFFh0xpUrArEccvjNLERlIF+5v9h7z2jG73Oe9/f3i8AgiDRWEAQ7Bx2Djl9RqORRtJIoy5ZlmVZTvO148S58Ulu3E5i39hWnERyenVJ5HIS+cR2LNmWRrK6NEUjjaZXcth7ARsaCYIA3r3PhxcER/Zd62Qt33tP1lneX7gWF0i8Ze9nP/t5/mWYd9okuth1zcTRVE9dIBmb4oz5EjvL7kBrcC61oHP2LgADtPC4eJR0tQ1ZBbedHaMpcZ5IWTXna1vI2B0oBEppJhem+dITL2JXWVL138Os3UN/dojF9AxlBSGKy67nsZu6yEjBCWUSOrVKd8yixI+nNSOLZykvSDKXGqc4PcMHnl3gxK7bGKlqRAvBm01dLBR72T4do33Kx/zqMZbaOyiMRyypE2eIeNUWTu1eJpgY4LGm3yKbA6RmpGbSV0J5YhFTwVxZOWXzC5yrbyatN/AdwyXzVIz3o4SgPi3wTQzmEiFBzBNiuHIzZg4Psi7CG4xFQDlAGCgp0FsrcY3+M7GoF+V8EJ1TJk+FN6Oaj+Qrbv26jW+Gfg2FgT2dYb9ykLHnYOLKwg12DPcz/uGPEL85iQplwbDELdcaFI4+iTQN/ov7l2AFBnY8u2G7o6GfFnrppJ0rNIlhUpFKfjn2KX5np4eMBLiNo/oAn+97h6ZYI8mqNdaxcVbgAPfQKXRc4SnewVudxaTkEPNFO/n10RPEf2yjqH0zQthRKo3QBoWLrZasBhqhBTqjOH5hmo9410gr0Go3Xl6nyp6hfe4RDGVhiurvKqJySxdPhB1kVAa7tNOoG/neoZc5dGqQJrEuwKoItnVy4403UhFb4RtL/fkWTyi+SLbIg5FKspiZ4fDs9+j07SNYWG8RWpSJ4a1hZdZNQQl5X1LrcVs0fZN1jcBrh+b2nqPsC2co8IzT5X2avyr1Uppo4d7ej2MogxEkx0oN/qXNmyfvZLSNXtHBJvroKS+iMJ3itMvFzvpdBPp7Of1GnDKzmFUBszVOmptSvOfhbfzgnZPcPfkMNp3Fhkl1zQIOTwqRq4oDVFQMkoj72dR0GiEUkw2H2XTq03yyp50/73RaiZqGHek0p5yOvGPCkr+RaP8Ql0SfJf9QFGPdgkGjiQoThSQaraRGXbY8ihWEz8WResP4Gq3J2ONkHFGmZ4voLwvxnQPvJ2OzoaVBRpmcT1UzP9ZGvT3O2nIHiXgpQitkMo4WmmX7Mqenu1jtt5HNroKG2qifL5t+3rCFmeq/gqs0tQ6vylUmBUMDu7E51miSV3O6eHtRMcEVX9c1FXpJn2ynTVwFoFwYSC3RmAzpFk4230FhUBNMRHDXhJGGBjRKpXj2ynf469I/wIxmeOLcAE9va+bLnVv5QVsjk2Onca6uXEPOkjQEbuayZfWLqaCxp4Odg31E1meXFNjmHDjf1kiHA3aCNLMINDGXHak1U8Fa/v3eD1v4UL1B/AKIx+DPh77EXE0t/kyMP7z7d1mT9vUeOwrw3rgFgM+/+ByH5v7Ugs8AEXsPhngATBO7mWXTE1/DvG4rP6ltZ67cxZbRNGY0gyoQvC4d9Lmb3lW1RQiyUjDpKyOQiKC0ImzEmS+/g7ORHnYvXqLMm+Lv32vSVw2GynA6fDrvYPLT463oMmmlrT1DwktbCzCWTbaPV9E50kkwPkRZNoMtucJNW9qZXowwMOtktbYFhGTc7WM1lOQ6cZzP8Sg9ejOVc02k41vQ08NcKXTlD/HreMa6mVk6g8OU82OeFQ/k8Y5KgHS3ohfWOG+MUK68hMUqa54hADKOKNtSSS76PPy9v5JbFm1sWclJcQHrntcF5hUQJkpLFIJIZhO+ogb88RG88REEAik0Y7VWBQ6tcYZf5vudTiY9dtbWNmAT1+7PN/Sdw/S4GPJsYjSyhG9i4j+F3RX8InH7uUal6cv15i3MV1D50VohdBZDRBHawEBwziNZqiq0/khbul+3Hn2GUHgSgWBk+SL2oJeK4A2cvHIeOVtLoHsRX/0yvaLTOtFKA6U1r+yoJzUQo2N2jIroAoYyLdCv0mzt78HpqaWg5jpsdftAGmzTjYBgW+lB/rWmkIxhtQCywOuZKxSkmpnLCCKmYj4zwgVvlolNzdRMGVTPjVO6rBnJbYRKGvSEGhio0PxBOsy0z4tJF/NFXpwFAil389ftLjIChD64QU7QFjevOrZkOSEok0hBEX/9yEcIl4awChQaw8xSNX4YMzNFmaOSdtd+XuIiKqcbZjhuYPPwOZ69YQcmVlBYF/TVMmvhCckgEiuc4CGq0gnchs+ipCPIzHYxevS3CIWep8BVzhXxXlSVleyllY2puSgy6AXDQAgomplm4YmvoNNpCvogcScgBVLYKRixgaHzBseJbB/JpQ07pAHRwuM8ShobUsMj2T6CkfNc8Dve5daQRXJ8VaIWf0DhXAuy6gYUlu3ZQ1fHKI0vWq0kJMrlYd7Yypd9l0mMvZ/YWJrZUzEulB3A7ZkhHqnAmyjFqRXiGrPL4+EYGXeBlR4Ig6KiFu5IXabYP8baYjNKm4zNT3JX4CGeuP0JTodP06gbeevZt8hms2wSsODxMOkLUB0LU1+YJHnuHPUnT/F3Ta38y/g0lZF5grElbEmrrFVaECLgrGVypY9yZ42lQqcU9rp92HPVBKUVSitGly8zsnyZQGE9pxwNeAjhW4sStcfzSXtn1RJd7j/jXEEBv1FZRkYIti00YygDiaXzNhpwvItxLdG0qSso4ETljfwbV0hrReDtb/NAZAzTUYixuoKhoXbOD8s10Ps8VakMQ9pCABVUrOE9GEEYmpytY571WFY+vuHfqbKkSn7CRa8PJTbl728lOos9WEtGqbxjgDY1GUeMUoedBnsJLzFGkTvM5u5XkELh1ZLLF2/jysUDlOorrIzbSc45kQUTGDarL7/qmmXZY0kRnbg6yXV3Pog3sohhmpiAoRS+gVmK4tsJC8Wl0kv4CiO09WlsqyuAYP7CGea5gMP9ENIWAgGGUJQXL/Jatph05y561FbK1BdAQY/YjLmwSHC2gSJPmD7VxpOGpYsnvFbyvl5psZGlTfegtWBQtzMcuItG8RxIzWN8gUyzHakU+wYvcaUgxAGVokVcRQsYLW+0/HeFJKM0/3b+MhWNIfbt/yBHJ5cRfotZqIUF9ehNbsRkQ2u29/WQbbaqo9YykDh+/wb09Br+hjuYXgghnvohBpqSlTWk1kxU1ltJmzRy7WoAnbO/usDMHLxn9hW+VfdeMtKWx4GBRUAqSWl+5anvI0qeQRZudEwc6WH+7wtHmBxfYGvfFTTw6Z13krHZGQMuNbq4L6x5vSeMaSrawoVMNlgsfqtaaOkbOjNp0BYuNaD8vLC6wMevnGTZ24hnbhh7hx1DKOzSjtfh5RuXvsHOip0/k8Bd7yvGphXpXNI7G6iCAMzWQ6poM7HSjnyHIzs+RcVT36d351brs94SDnXvQ0nJG9zGH6g/4j36EIH5XyLr+CHfMfyEZqawK4WJJdj+mZ4UJQszJAqqKdMG7aoHm8yS0QIjB4F5wTFosUcRlKliS9M6F0czgVVObNnOW1Ly75sE362qoqrOchs5o5oZ2fxVblp9hejZ06ypPUynNRFTU+JrxhMfQSIwBXiXR9l++StEihvwRwdwx0coNJv5dNLic6wfIMnBPu4/cYzKtUXrPQOmUv9pfErhF4nbzzUatrVw9+lZZnSEoPJRobygFa70N1F1pegpgVJwusTYOIUoRXfvKW46c5xocWGesPfWZju6uwhXupCik4Wszhfiq1/GLXL9ndzpSwNvNm+hZCVOZXyJT33vGywU+egc7CNStJnifZ+EnByFJdaqCXibkULiS+tcPLLwN4Mlbt5cGGHL5DTXJScZam3hM/ffbPn1bb+ZA0deoGpmmrMtDTkAcu6EKeFKBVRMama9JTzXvQ8ljXcxaVFWaVsphYHi0ZTJgRsPMnTyNcaPv8MffeR3yNis6pJUsKV/go7eF6kKj4PWNFFBpfZxd3o703IJsebFId0ULDv42xfO8U5bIyuJSwTiEQSSgrViQtPH8CxPcLbpV1GmAUuSDjRZFFk9Q3Bhjvpzr+GJz2Cra+K6W3w8E8rpHWlFy9wEZcsxjrduRWn4UiyNd2aeTqVwjNko+5oD1+8/QKDzvdgfFQy98Qw9tZKUvRdf7Dmw5SqlGnq05SWJMFBo/t3ewfs6vMzMryC10wLCYm2w/nA/814HgcQS9194k2mvZRBeEo/kqjwKtMaRTvHA5lJY6EBhQ2AwQ5RYrJRYrAyl4elMLz5auCVUzcJahjMlNrxrCgNQWKbnHy66QGtRP1QNMnbkE6xE6ujYXAfA1sBWtga2cuzYMUzTqhrMefw8n2vfnNUtxGfDFJ5/g9vfOkJX/Dk+e9eDvDM/Tio6ibG6QmNxt6VhlkteZleHqdxUi3nyFPbq6xHCku8Ir45xJXqcxbVpNIKY0U6ZCGDaMxQlT+LPwmT1XoSjlpPJciqdX+Ssb5aMkCBg2juIOWWCskDwzuQSiKr8hrqn/zDFkQiDs3Ws7A+R1pfxpfzsmd3DvEpBbQuu8X6M1RXQadLJs/S8dJXr3v8AY3Y7KpOmuDKZx4mhQGthSR9qycJ8LV7vHEIo0AZHzAO8Ul6XX68CTcvsONdPR7jgd1gCnznfw9ZQDXprFsdVyd3p7cy7n7GEY6UFQt/qvYJ/MMHR0QpMLTAMKGlNs7J4lbV0ZT5ps2QNTJypRf7rwd0898MnmQjWEliOU2oYeD2LeH2zlDvreSd8GlvSZ82pfBQzUZlJpC1EjeMCu4u/z7/37yFT9yGUkKQxeDLzW4w7qzCFDREw2ZH4LjvmPbwUu4lMqR2NRGhF9+JVSksmQWj2qaPIQR9jrg/xeNU9ZHwCGzu4UR8mK6yKiymsWKYFvK128Mmlb9Jd8hIdMueQoC1x3NUzJ/jWGxEKx/owVpepCGVxbLkl73iyzggUwB3apGVsxEogTUBKhDSYyxxBl2WZWznJcMHjPL3vY1TYYozX1vDBU4eoD8/zltZo0wSytF39PqXLQZypJBOhBhCCC7EFnEUTCKWsjFBYELrPFyiMf/5z2v2v0l+48WS1FtRc3MdK7xUemTgN2Qzfu+M9edYmgCnAs6OM7+5r4MTwIvOjcToOJ5gI2FizwTvtLjRwvKkrF/OjzGUUW1fnON+6G2GvxSbv5IGlY3h2LLDN7eVk7x/Rtwr/dKGQJ25/4l3J205vEf9UXsCXzvcyEmrcSEyk5rWdrRaxTinuu3CcmSNH6UgkqZqZZaQ8xLS3DCUtWaSMtvPC8oNcSUFX+zM0yV7ubHEgjc/RdnGEN3wlFGknQgieub6DqeIU3sgX2bN2godWXmTQ3kR1dJFg3GDMWFcG0BTpAhZI5POoGd+136l5czrKDqeTy5j88jdOcE92gQ7RiMfYAVJSagOpTWq8pcjSRn7cNMKaE0Jz5dzYN4RvaSC/515u6rBgHrl9uW5xhopElFBkga7xWeYD9mtIsJL6+vr/cG7w//X4ReL2c4yCOg+bf2M/1YeGyEwmWFeStLk9eO7/NdyqjatvjLO8GLNk/3Kn7srFWTz3382L8z+idqaAS80BLgduQM+a2Lrfz8ccf4MwIwxgKb3nQ0EueVNopn1lBGOL1CzOccebR9AIlndfZ1Gjpcy1NayKxtTKJaq89UQdlkXVOlPpZGcnZ9vg40di7FzTvLDJiSltVhtSSJJlfhoj89x34Xje4B0tsGnB5qU15hFMe8swc7pv60xalSuR7xu8xJrdwYElJ3ctBYAwdcde4uhOSyR0PXgpqfGmHFSFLf0uqTUFU5cheAszPi8/CZUjENw9naGtYD+NwO4hSVjWMyW9TCwm2Xb225TEhxmtvR0lDciBZhESGwJEkEhJGTUTr6INg6WuHdiXx7n3Qp+lmh1dIJiIMOsPWHZDQNqwcb65nc7RQYr27iV4+0HMSzHUxABDU708ln6WnpUsjlOKv1dRRJ0DDWS0IJvqhUKr/YMQZNH8wF6JrgKpFNfNrRFas1E7eJJUYRFmrkIWjC3llfXBIoUUFfnoDvnp/pUPEipMcOS//SkRRgmZfsq1B7XebkTwqr2BSlw0hQr5ZJmdjLAEQFWuHScAQ+QIdkYW2+a38QsPDRWdG4Bq3crMog0hDTCzzHpKMIVESQOlJa+4quH6al7YfSNfP5mkO66531HLYfU9HNWa+uYMqaVhXPFmBIIqVzPJ1AALN12hbKEMV6wFDUyu9LGYB1lrhEpBdgZz+YdM+rGIE446pK0KkyyT6U62r46Dz8qiwsWjPNf+FVoWdtE2dx1J+4r1zmUOWB1VrMy48IZWqc0aPGM4CKQCGPmWoyTrcmOsrmCunQU0F9cUbTMX+MAX/pQrR15noP8FKvQiUlubi9CC2dkmwuFGEvFykkk/Xu8ssViQ5ytCVjUmtxHULs5QlYiyZy2AI9GPmav87k0343hmnkSjHxtQrjwULexlquEYqCxSCLYv9+F1rmJULHMpVslc2svCpXMYNhtVtz1MdGQjQRBCYCwssDI8zPsaGhnsGeQNEaSueZau7leQ0kSpS/TGA6hBDWqDUQwG0l6NIRW7i79P0N7L9REDo+aXMKUDhGTIWZfbWAVS2Lha7mLU8Qze+M3Y/JAVFkOwYWKe5okxvN5Z0nM1OONxrm6vJiMt9ntW23HGGrB7LIkksH5vSTBozsT20eV9mSb6+ax4lF46aVW9DLl2c8bbTF02iz2+yESghlun34GOPby8sVSwC8Fv796M/suvMH34OCJlkvQPU+koYC3yKhbWNENbySD9zd2c3WZJK/3hjnYMNKawUtqG4Sf5m6+9xtHNW/izX/8kpmFg0ybNeoTrxEl6eJ3XOQhITK058crr/N5PXqTd0HzpgwYD1dazbZlSfP6lo9hNk6yUnA520jnYh1RqAzsMfHdqEWN0jjtaK3AfKOWx2RdocMRYLUojuAElDJSQTPvKqIxHoCDGHeV7OLv4CsPLP4SiBzkpUswsHOcBsUqjGw4Uw9cXxP9j2/Surk4AfmN+jaylHYLQVvt03eZvxltKYWwJATSNTxH2FFPjKORMXSsWkkdxxr2N0x7BIbr4HI/SzBBlvkl+aBbzVmUjWSl5oVqwoSReySXdyv0X3mR7bIA6s4xxYz63t1nBqVqVUa3KGDXmKFHFzEeXOKuURWzQsPn0PAuvz9O33c892Qk+oRtBW/qAIkdy6XbZoGE/1O3Dk/wbntg1TvXZ/WyeOc+sP4TKThBanKZrsAehlVVk0JptE4MEc4fljH0n3iUYdQ2zUFjE/3H3zf9pqm3wi8Tt5x4FdR58923KGc4rkBK570NQs5sCoNcteao6Z9orLCum1/fejSfdw/nATUwGBnCaHYBhtUOFZr6jir2c5CTX5xTBDYTSeYyRoRVVkXkMpQjMWbrF0mGn8eZmVntNtLa03UaXLxFZm6Vmzc9I7Fna3Lfh2BQirXReGygrNZcaCqF/jZ0RhV1DRoNNm1QuzoFhEExECCYitIYniDiKuWc5xFjqIhpNVXSRs0pjCkvU8RNHThOuD7IcnyQQX0QiuSGz3QIRK43NvwlPIrGBUQHQmqVMmjcC7+F9pVM0/eRHOBNJTkbe4PfufF8ODwaHqux8/aSmO2YZsc96SvhuSQnm8jvclBjFBHzRAaQycy0zy5aJ9YBkGMRvvJ9tt3swTnydscwvEYxb97Y+misrOGFdFFpKll0uhMOB+/aDhB//MnptzaKyC/h9A770QQOzwWQ54LCSIQ2Xpg0m7CPs5Fuccv26FRhhg8AhFKFEnM8OuXglHWPcbYCAWbd/I4mML+UB7tmxq3Q/8HuEWtqZmJjgsNqGto1y3jbKlHuMYKIaC8UnuNFY4XezQf41liRd7sjJGuh1NT4U0hI+ZQApHUTDHqKxfob6+zleeYw5xzxKGaTGP0pFtoXfy16k6rWXOffhFtK5TTbf5jVsPF/t5OwabFtK01pYS3LfkyzJM0T0c1Sf+gyFsSZSviGmdvwFWmSZbDhNzenP4Iw1s630NmKZBRbXZkAYSHsNKjOJBWnObezZCaStAgEM+T28WP4Z/BFNt/PrHHM5CbtHCHtGGSg/R33iVmxmg2WObpq0pPppunccITXSeIavNjzK2yeHWVpaJTchsSUTmIVFZF1ubMkEYnWZi0vFFIUXaLvzftJlQcLhJ6isHMhpkFrVz0SiHIBEvJxEopxZt5+rwdr8fEYIJkuD1Dt30b5ajD9dZOkfKj9B7UMpjdcQHEualEjBwnIDqyufoK3maTYf+DW8LS1Mv/pN3uifZs3hIuuzri8rJPFYGMMwME0ToSGQNnn17FmUlEiluPnKRbZEjnF8S8s1dleKWo/gld1hKhcLqGaN7PImyt1309W+k7aGCMFXh8AU7Ez08kj4Rf618r71XiPkZxB8suYgsdFSppJluNQ8fm1j/1KClG0Aj3eWRKyS2lWB55aTrBoRbHSQ1Zbv621LM9waH+Wq6CSVKeO/NzgscXGtcMcW6H+llVDXBM1V/bTIfvpEKz9ovpssBmdqWwFtYcAwcY6/Trb4ZotwoTUPObTFBL9rP7JglmPf+GOUUrx5g8H9nTaLOS/tNGVCPOKf5FuixDK+FzIXny3mc81iMXYTwsH6vDNFVkOv7qRF9FOvhhHXyMm8uGc/d7x1hLbRATrHdT5x6xjX2JVpMcGVYrC0jrdbtrwLxoCwdB1HEinOP9mH65cbObWnlbexPFMNpVA5dYBQdAGJJKRKkEKyo+wgscwCEXOCizUDbC7IYgjrYAbQ4tTsrNj5M3vW6dgKA54yHi8xuLS8SjKeZvW1q7y0PZATrVY0XD1Df0kh3kgB0l5NAY3UDV5gX2mQ4UAVNtNkrCxo6UVqG1f0ZpoZY6HfzaTbZ5ErrsHprQ+FhUsOxaIUYh1082cIDWsyw5ZsPSUUc1GO0hxd5aNnL5P2F3PDQgXdMaursw0bPpkC05ablRqFQgmFgbQwtUCp+x7qZy4Tce3j7OYm0okfAQaTvipESwOGYSebK3KsX0ezWQm6hEgmy8GLU8x8oI2Duzp+5jn+rxy/SNz+XxhhVXrAAAAgAElEQVQFdR689zYSfWYItCR2XGNvj1NQ5+GCyJIRkFfyFIK0zcZT9m4UXaSKTW45/jyDmzbo0h3iCmg2TJW1wK4Fn+hJcUmZbD3/NKHYOIG5OcqiUbLX7+f8vvswOrtJTT7N5qUAU4krAOwouz0Pqm5chq+eSvJ8yMYzVQ7MHI7iaJ2DC3NZtkaz/MPJBN/wz9Pa+zLl8QjJ2lYssIigMhHhxjMvI/zVmA2VFmAZnfNFtaqNdZde4UMdv8/oiJ0Z4aNS+akQPiwxHZPsQj/xxi6EUmjDyD+T3q2V7EhlCXlriNxVwsjoTxhoaHg3HkxqTpcYbI5mueSFj+9ykRYaR/0+evsP0zY6xDPtHcxWjdKVhK5Tp1gprmGmci8aiU1kqXQd4vWBbpZ1LaY8h8dj4PGFiUWDJJNB3JXViKWkFZSF5qmD9/LQg/dRdvYUOp3OJ5tCg82ErnFItimL8SStiqa7chN1shM3Cc5hksWGzFVhlBYYWnP9ohW8uwu6meIc024vh7bsywVpq1URjC9ZycVKPK/7debNU/lcFA0lq6V43YtUVAwD4J8yMCJN+NKW4jjWxzC0iWZd+LQXr+c+LvT4iURVjumn8a74CDvCIDSBglFKM3YyS1EchuajLz5Ff0Utr+3YawmeYmkJHqq23EHs2sGXJx0EZDZnY5phpaSXgljju5XdUayW9OOKtyKAjpZb+auZAZJGFbeng1bClsppOGAgbTUIBOOlNv5094fISoFNm9xwdpnWxBROs5hp9yBuM8FSIsPukycIBF34h/10lkmroyVBa5OChatknzmHy15A1uWmIjSM/9YI4eVWwrNVpLXCGZ7k1FwKFX4dQwr21swgbFbbaz15qagcIrFcgt2+RiwWJBEvZ9pXlmeM52ENWnLJ78QXH6VA21nfGXROiEcPRNh6sJY3XhxHaY0tugnf7i8wOFyN4V+lZ20LyyWQKa0AhIVLApJL1kHDvmxgX+jhcn0r4zVtOa/FJS62NROYniK1Un6NSLBkebKZ9zlep8SX4S9K/ayJqziMYW6/bSsMwZnEA1TZLhB0DtO1PEiOkUCenYDln/nG6RGqnDF+1HU9WWFgU4r3r87ja3/V0iXUV0gP1SIMTYvs53P6i/SIzbSrK5TX9yOAuG7jcfHHVsKkNTVLcyAglqzENRzFHVphgFZ+JD5ANod3s5Irci8UPMuKdKGJkmAzTfb93Z+RfNRyUzR+90scyFpN1JsuKSZ/Zyf1JTY8RgeR/+txtoZqsf9eO2mbYSXj6+9NK6pGFwHwLCdyUiUajSQpXPTrFr4jP4LWueRLCEwpOdfaScf0GFVVm3jw7X6u1Aj66+xkpYk2TS41tTH84QdJFLkx1/0nrJ47WkB52mq7vjYxRSboQufkSG4YH8YWr6R6KU7tipfr7I0ElIe8r29hDYu73ESdMwyn7Zg6Y7GzhcHDWz//M9W2dVZpRlk6j09tbUKMzPPOWCFl0XFG/HNUT16kam4CJQTv1DVRt+fjyMEppv1p3mrutpIypXLLwUq690yWUz39GZbj5VSXjXBGqY3YvX5AB2xk2JOaZZNZSanyII0Z1LrMD4KitJcLaonTRddIsKyMck98mrrsw5g4LCZrgUFbbReMrHuPKt62v002Os71rg9gaKtKqZabuSPaiF+OEc4ssO5VqoRgoHwTJjp3GN0gupUrN9rQxNImgmkmLk/y+sUWDnT/Qsftf6uRPHeOxKsToPwA6KxibTjGZUxODS5g3+4no7RVBcq3O7FOehJSziIefu7bzLZUs6/1OJuEpeXTpPv5ffUlRmY+ytaxMuRslu2ZLJvCkj0fehgzGmOito1HD12h7fnXSZyZ51PubdgLBAFHKFeDkXmsmwC2xBRd0RRrZpLn631W4BGaH7s0lZcvcDlRzU1jP0FEZ9EIXOP9FFbXUdy5h+ORIt6pLOdA8jxhj5dpXzlzxbnTlZRksPH9+x9mf0ZRobxU4CUsYvQ0LlKwlmbxxCuUyxhb+3twmFnW1qs3QmAaBtsqKukYyQCbUcEObJOnkbnqIYBNwc6I4rJX8s81GdICtJSkbXZe2XMjI6EannzkEZQUvJ41+dT8Ajt73qJ04SRDu+vpZJhDYifmggFswu2dp6v71Zx1kY3amr8jXlHFP0cGcvgZgRKCs4FKtu/eZQnHptNW0BICaTPo2LufxplniHsceVLCY8ajZLEh2Gg/ANw+vUphapnrFyU3Rwu56JWcLilHZm6gL2hDScPyRlQw7SujamaUgoVZCsy1vNWKiqffNfcqipfZ3PlanikrKkZIna4i6mhfz+2QwM3iCKU6TIfoZZPjVg49v4JWFgBfYVUD550RtBaUpMrZn3Ix70/yvYa9hKIWASTu9dMy8gPGggGU9FKy7GO2vNFyUVCa084gd69/qdAMzvewMhOjQjpxNFooO6FtFC615diZgsRSnJPubbQujVK6eJlIWRcO90OozATSXmNpTAGjgQJMKUAKTGUwUnAb+3vX0GiUzLKl/E/YY3+Mj8f+hK5MOyytsSp2odVRBBmk0CxfmERnsxjZLOV1k9TstSyVPJwCJOHZZjJuH6Zp4vYsEAgMooJDBIUmd7m5fUjR1HwSITRKGQydvYNQ1J9rgWHNDW1i0ybLicucti3m35eRE64Oai+YGk9G0X6D5fdbXuPmzX8fICXO5yVCKM1ZPV9T6bSCDGSKMsyLSn68715MQ+axSbbIPIm6atYSAS7l/GtjsQpsyXKOxz6OKDnMmpgAoUmrDM8fO03Za3Vk1cNI3s9+9xNEqj3WzFiHHOSuQaM52txFizZyGE4rhj1Xl8Yt78Mt4iS0h9bCOC3mMKBpFgM06wGryJljXR/VN26sfy0ZLatkoiTAr632smtXmEHZwmN8kbSwAZYHqcwxB9EKqUw+8MYIX3v//g1OrpklefIUANJcp0lYB6yGfziH0JoEJ0EpOkcG+au/+xPO3NTMMzWjll+wsx13bI5E1Sr/8L4PkHR5rLWeO2D+hPtJ4sqRxWQ+8ULD5uYWKvdu5ebHv4xKa5RNYP7t51Dbgrx+/gp/uec66wCvLQJTHmcoBFJpsgEbZwsK8YkVpHKiBBhaUTOZpWZujowjhjPro9ywGJVaW1X0ohu7+dSv3M+tc/s5HT5NmdtNOUv4/Xvwerf/zF71VnQ5Z2APSmm+Mh6mqcJgNWCnNuynYuIoOmtJX2ghWAy1UTihMQuLGW7dnoPFyJzvn9Uy3d8/ypDcTwkmASLcGHFSfbafiC9E1VoBZ6pGWfTG8IkoN6pjOApc9BmdSGOWvZlmFuSy1ZI1K6kQXs4VjObm2/pc1wzZMpwyT7Cg9xBD84lj09i1dYCclj08n+nlvc+9hs2EldIpeve+n3SyhqhpvSfn5DS2sjrMnLCf1IpdR4/wQvse0jYbUmucmTRna5vxLRhs6z1G/coVTu9uQdgkx545RrO/+T9Nu/QXidvPOZLnznHui39JZPNBgkJYAVlrdDbMieE1hiOrXHd4nlKvjbnCFMfb262Tee50ZyiT6ukRqsITVIUnsM8HGKspJJMpwG5fI7C0mTsXSzm+nCFiamyGIPO7H+TJ9hqu9xXT+9QbPHrka9jNLLasxN7emJNZsIKDyAV764RmVVYEggfDDl6thYxQ2JSmc2qShbIu6rKauXQnmjAAxuoqerqSf8kWMYZJ5yY756q2c6RylyX1sT5yCenRxlb+7XKS9wG9coq37H3MxH1WeXxrJ1V1AW5+4zB/+feP8b0Hf5UTdfUoIaykbMnMY28kkmjFLoS2bFwk8OneNQTwf+5xW0lbLhFeF8rUQuYVujM2yYktN2MU7ORixVf5L2PPMhDfhend0Efy+sL5VhIqi4r/kJ0td/J4czWfHZhEaXBIwfW+Ylx126j47B8QfeppUj09lgK4kNxHEa7FJCMXTIa3uOiRnWSFZWQudBaZK+Hbkbx/SmCPRxk15njWX8uXd9SSFgJEwTXPMcc+jCywtWUbgX1Oajq78uKPW7Zv5fJ0n4UjBBz+McS12nQyy3JJDzuWWnAoyAiNlIKbag5wu+0dpuNtvH7yOO7iQpYT5dZrw8JupZf2YXov449sZt7t57ktFoNM5BJVLQRCteGLnmOpZCszrtyz1BqpTdyZs+SAYKAFhjND1JwjMqrY/eYHKQ4lcUXaccYs/UCtTHpNHxroXhiibrKPSGkn0qi0WI759lyW+rkUhiq0XDuUoH5O5eeJVAbulWbeKKsh6atldOoStdkiUov1TB/5HbbXfZ3axDQr4Rc4IbagtcTXuJxbF9bULSsfJzyzCZlK4qpco3vLKxbpIPeZa4kJ1u90vgVZ6V9mbiqSs58qpTUzQo19Bldsjcl4Vb5ChABTK2aNCEHTC1Jw7OgUi2mFYZOwPIeZMUkXRVmXCFl/sbn8gHwBWgBaMFbTnN9MTQF9gWoaL71l/bVWJOKW6O56RTwmfCzOX8/m6EvMliaRRg2Zs16yCsAi0hxN/AatC9/GWZdhLfcOdL69ZyUcfaIzv+4Filfc7Zh0WkQFobBVmfz2aARnqYNJ+2Y6zAFa01OslQwwQAtHxK0bcSN3n0oIZuqrEIamZ51Nvy7wikYh8+D5W49/n+GqerK5VqapDS60bubu3busf2e3W4csILnPJLUtQ+E5iev4eszSbB4d4K6ms7jMu0iPneBK7QDTZR28cN2nMaVltSfERkdBaYOY9llistLC4m41nHywtoyWlkaOf/XrNKbTFr7SFAQHopR97GGOdbSSGZ7OrQ1AKUKxOGGPBy0s2Z/nqhyY1SC1k32DF0nZ7VRFF6iIuYiV9AOKVSQL6W1Wq11rxtOa5HI9sEEq+p+N633FGMISKdbACwtxa07d5Ob2dybpOj+a/6xGMqebCClNxhklFIu963BiVZXhcMsmDiP4ptbcd+GsBZFZkQQyGS4GShDxBRo9E7TryzTpIS7GbkPn1kJKZLkh27YRh4QgpPycZX35W/PjaKaVV3UXkOZTOLFrnd8rmsRFOnr7sFvFfpYymnC8Mj9bBYrK8Ekqwic52lWDyk6y//IUpStrfP7b/8ihW2+nwMxyvKkLJSTna0z++vB3oMiGaUgEEq30L1il/zuNoTeP8/rWJpQYRTLOXWtbKRm5yMxnnub6x/+Ol2PjfPbI10gWVXOm83pONjeTNQyEVnT2naV94CzexAKuilUCNQbu1TquxBbxeGeIxypxRFt43DbAVJEbb9qL6vRywmnHHJ7BLgWPp+axm1lLEGG+F9V2N6BRWmMII687tT7Wg/+WmOIrp5KcLTHYsZSlW4TAaYHhDycG2KgRKDIrR9gU95OuK+Tcju0b4pDXtIWu/fl60MENM2HesvdxpbKWN5u3oITAUCb3nz/OXEUFzX0DrL4TpnTZjidUQNfVq2xObLFYPljb1ulSW76ah9LEHIIzJTYyAotgofKrPV+tyuvwAPXzCiHs3G/cgv2dfgIlc8gOZWHNEMSiFSgl86K8U/HXcU99l/fNtVF+5iinfWXc3N2RF+G9FuMGoLIZhsaX6TIcNCyvsjJm0NFwOdfethicVfF/pbv6vXzY3c3syvOctI8BcLSqmrT82WcYisfYM3SJikSEc4koraKeeEzzjz+6hAA+ECphr9nKW0YfGk1qoQEdGkSvV9yUwUq0Hg3snc9yLGBDAY9NGbQ07SGz8Cvsrk+Dlly8eJBEvNyKwSh2EWV1uRTss0z7WvNsLn1toJaCJf+Od79/rbl+8BKelQw6aLXmhDaod95G2d3ljLx0gqrUTRgjG4m+1gplSF4qdAMmY74S5hdjhEaeZKbhV/L4ofb0cxRlF9B8iF89HGUsYKN2TlG1mM3NZ810qcG3WrfyTOgGTCEwOkt5+Ll/oW21kDv0UUwzzHCdi4BrjVvkDM+zhaGEZCuX83lDdNiNa7yfjLeUQMWwdQ8bt5dvTc/ONrGcKGFT02mk1EgMgkvbuEgkZz+1hBQmAYcJ6bV3bfwWCVTQcsNmPAVljM4lWTw8hdZg9wygMs9TVHqQdDxIrt98zboV6DUfsiCysZDR1E0McLJ9Z156p7+yjq2eUirmpulZzlLrXKDIXmm1Z6VBnbeA/edOgfKgB7zYXDfiKPBv3CAChaRswc3XJj7La8FtNNl7maCWb4nfRPPudrDQJnV6hFGx6RoVfQNTai41bOdNcYvlM8otfM78Es3a4Bg3YQrbxlrNH2IVJYksqsKgTfUgpbaq7bmq3HqFSguYK23mcuv2fCvTJuCOR96Ha9s2AOr+5b+x+I1vEl57hfgHrZZput1yXi4+bqAQXDi4n+8cuA/Xcy9gFt3LQ2/38K8HuxiTliyIAqoSM0x6qjYC6JjJw+e/RaS0hl+/524KA1U8fXaSL52Z5NaxFX5bgyElMicTBBDLZN+VhCAE+04eJlvQTkWolrBT8uNqu6VBqUCblWyfOQFoVoty7ztX6Z2REQJZLwqYSGuiFxeYHY7lBXb/Z2Ont4hHKkt5cnoxT3rTuXX00u4QJTNVFrMfGClqp9dVQfcy2NM+grFR7rtwnJGacq6UNVnVT2Hh1iysHnmtzim3l+e2dJKVEqgGNHZt8rG+o2Tjy1hpoaRS+RFYpvTrGNAy5eOe9A4uGWOsijXGleRV03IG6sTgXow86AA006tX6Riew+ZvwChrJWPzIdbnqVJUzryNNz6MMgzeLi8GR5K7z6xZMiHpFbZNDHC2rhUlpNU9AF687kZ+6bVnUMKS+rIZNurr6/9Dz/j/j/GLxO3nHPNFYM5jTeCcDZR7/G10JoO8eI4P2GMki2s4dOBTjFYUcOvpWZblVWpmrCqbQlNUsUrTvRNIqUGP0o1ACxP0FS5dhOp4GVU2wdr0Ms/pA6RVzkNUaaa2b2WL3YYsrsEoa2Hp6g+ZDlZSbHPT6N6CFJbO3Hr1bT2R01qzJWqyJZrNAzmFsNg1P61cDyabzNPMle1l5FrQKbwbw5D7eSCcZUZGmPH4ONbcnU+oTCmZKSmHykZeTXqYa6xgbnMNc8DonhKCLx3iptVyQDCeKaABB/b2Lsv0Xgm2LeXc9bTDwkXkqkxSKQwzi7DbyWJtBHeeSVK9aFmyp4Yserk946Vx0MZ4nZ+MfYVEPEA4vInKyoHc/9L09X2R0r91UNdvUgdgGES+8HnMaCyPcbPCBWSk5nH7W3z2vr9m6+hJaga+S6vq57PyixzhZq6s2oivzrCnYJQaVyuvGFZAnPX8FJD9muFbMwnGl9DCYuf2To5gTo7ySrqNeV2MTYTZZeSs5gUsJwIMDe7Kt+5AcMjl43vtro2qJLCmNN+fCfMQGZAaUym83lkSifJ8Ml+S9gNWu1/GFpBK5RlkltSLVfG4VsNqvSKUsjtYjpZSfOq3KCydwRVtx7VvB0e++nlai3chhdWyV1qRXQlTvKWG2e5aYj94mVuivbSvXGUo6EOwxPXJx4jOd+OLDOCNj3C1+RG0S1K9qKleXMshxKzvnSy18Z1b3GTl/vzGbmIwEaqj8vxRjt/ixFdh+fgu+R0M0Uw2XENsoZqTffPUl5qkx3YSngRVXoByuYHhn1nn69N8ba2I+blWujfdTtWmVVZmg1xOLuDRKaIymYNBGFxNV2KlW6aVvCGQUnBrxw0EC8ooaPQSqPNgvDmD3TtAzf6/QssM1S2XMQ9/Gpa6yDhiCGVHywy2tLUxxwpirIMcm8tbKVodoWfoEhdbtuUSa4OR7Qc5cX6JGUeQcwVj3NYUpTob5FB/EdUz/dSpbA7OrdHJw2gjgLBV5Np3CpvNoPDeOhyZ17iLMQZoIYGbe/SzPC/ek9/w1w9IHVxmkjoyWqOxDqUSxZhozHlZWj7APbKdnZOVON2N4Nt4tptGe6mIzBNMJfFkYIidVFYO8ojjSb7n/FVM/VMHxRxK0JQ5c3mleMgpuWHXtvz/dG3bRrK7m9XMS7kXaC2Z1W0a53HB5aYWPnvfb1h+oB/8KEIr7NksN739/IYWnmnyofEf8RedHyODDakUrRcuUz03xcFQJenVDB/9xgnWMorWpVF+8+KzCK1QwiD9sd/FtW0bp2Mr/NPkfC6+iPxze+q2e7nrJ99mONXAsnM74EFogaEE1ZFYfn1fm10ZOa3QsbRiIqdXhoCp/sh/OHEDeDhYwnenF8lcG3uEVUm90rKNqvAEJgZnPS2EbYpep0lXyoNztZKgmCaQHqJUjxMXPs6xI39Phobq6BJCWzIe7yYoWASPU85KttEPCEoTm1AFcMzWy4Axk5MrGmX7yhaC0iCgvQRNH2EKEawhBdxR5MJY3jhJaSRHU25u8RXjut6SwmpAM7OcYSlrYogswbl31uvGfLjrI/zXoRG+fetXOXAxS9n8HIayyH5n6loxtch3cMZ8x9GuE/xm9W+yd/Pe/zTVNvhF4vbzjYmTeCafRoobUFpiCIn/8iuo+BjaZuMLYw4y2VJu2XonTx7wY0owlJNbjp+1tIGAUHgCd2WSQdlMr+ygQ12hWfTnGKRZ3N4ZYokyy4A9VESsvtT6bq2RQnBzRwvc8cu42AXSoAzN2OLLjKbGqC/ejLV5yNyfbCxUaxM1c783rXKwVmitf0q5XgASjDSFmXRuv353oia05qaZVVKOAm4Jp3nflElY+JnxvbsKJjXcm16i49hLmFUNzOyoz1dyTGwMB6vYNbDAXGocr72cD3GQbadXOeM3cEyuEY+YlNkFe9M2jjod+RNVy+gQd719mP7b7qZwUxueQ1OE5tZygBqYd+xmonKcoaaHWCtIknZexqrpCeRSG6JyMH9PWivWGtI4+nPVIdNk9o//hODn/zBvjm4KzWubNX17NaGaFO8s/QTf5n34y36H7f0vMFpSylHXLSiXDVG4H5fbwfHjx1nndk57fwrIfs2zvFrmp81TQiC+lH/8UmuCMs68WcxpneUe5UcaElMr3J55ysrH8607hIKKdfzfBiZKA4eWg2wVHTTpXkAQjwXz4c/6Kuvzsx4/A4EayuMRlGHQOjMGq+dwJ2p45bqbyEpjo92PldiFogu0uGO4/EMUlHYi9kQZG38JpRRzqXHW7dQEAntxkMy4orR9kffOHkJl0u+6zplYhraxlwFBzNPATHAv6y1ZpMDUYOSueTRgw5Qi3zZHW+zmmukR0Jplxzy+9T6yhpLyKabD7Rhaw+UOJpNJkrXluXzV+p9z4U1UVAxaB6n169IghI1QZCfb1roIHvOTIs4P337nXTZlG2vG+qmxsbOtBm9VC6XTDjxn08T1KMIu8d7byH03VzFuP8qKLadGpjSF5QOsLrYAgpRzFg3Y8OLIePHmEjpH1se+66o4f+wijSLGFWVa/ppAVXc3a/Mv8mD1E/iccRLiTv7xnQqrQO2VENW51pT19s3MJA5niK7mGaaiVRhFbmaW34ACGBCtPMY6ZlNt3Ftu7ioEL4t7+GX1LZbxEp2sYsEo5lJVF8Nsslqn2vIB7lBX8Uy9lwdFFS/vsmREpDLZefUMvsIiEBK3Z55NTaeQUnEXz9Gk+3mSDzMsmvNPd9PoVbr6ztLbspUsYDez3D04BPs2EjcAw+el8GVBuj3/alHxNkYCKUb2N1jWceu+stIgY9vAG0+E6rklfprfdrzM3gu9vOjaQ8lqMaGaKkYXZ+m9eAZ96Tz+inuZKQjSvTCEXWUxgKw2+cGRNzHvfoC3SKM0G/M39+yUlJzbeRdzFRVkhQBtssUW55OVXf+jvTMPj+OqEv3vVlV3a2/tau2yJVmSV8lWbMdbVid2SOIQEiBhwIQwDPOYneUbYOYNPAZmGGaYFRhCCGtYQkJC9uA4m+PEjuV9kS3JsmTtu1ottaTurrrvj6putbwkMSRe8P19X2JVdXX37br33Dr3nHPPYai5i6Y+ZtwjEgqtTJZG7I0JjZbFsGkvxnVdUDgv49QB+KYc7Q0QNq2Y+zw+drLNV8O2udP0TSYynJzP3fXFrM/N4NgvWkiYyqMtb5on8m/BFJrjNBeO8iy5pSvExwbn0Kx76B0dtEspRucWKTGkpGDUUWKlJKAHeMZ9HBkLC7AXqwfdLexxTThqmcbRUA2SJEwJz40HuZVEHFMDEsFq9524Sk6CZiA0e4dxlqGj9e2jKPgsqWMdCOzqQuV9O/i3+WWUfMnCiIBgiKtffIn+3FzGIzrPX7EaqdkhN0lL38+Xq+a/LRf0+UYpbr8HHftf4llrlV3eBosNpUHmb/oMwTd28YxRwL4BD5H8RNqTDCIaoAkiCLauuQUp7BXd+5/8AcPTOfxU+6TtUtAifEF+iQrZhETY9QUdeW+YVxlbZWJZrOjpxfXGywwHi0lNNex4NilZln0jL/Q8GCs5lJdY5ljeJL1hk1yXjiYllrToGD9GWep8wHbpnOw5RsC1EkOUgJYA1hSW2cuRwjy2VS6ZEXLnu9zhEAX+Ia7sDnL7UK6dddwwQEDh6CC6ExMhkKxp3k/R/mcgFOLAvJpZpVE04M7IQhZlmJjSsi00CGr9ksWjYY4GTcZPbiM91MXS7ApeX34tYcN2tzSXlNFcco8dlxIIUFvsRppQNBjGzkukM5hTi6UZhD1jOImsQEoyBvoo7ZqmvciOM9OEC8/x+KUuYJpMHWnEu2kTAE/PP44/YSe3pZh2havI6xxvfR1hSaqCQQJmPZS5AXt3174uk6SjR2MfV+BYs+JjRWZ2Igqm0+ZQNZJAk2670SwEvZadLfwwJsPZOdw0sJQTGQ14F29BaM5DXwqENFjRl8jPMiFsyVgQMdg1Nv0F/0C5ZydHjkQIBGyHuEDE8rz1pkWzo8+4NQdTvGwMBvEf+F82vvQq++bNJ5CSyWjGdbHs9SnJfnLKn2OAMGg7YEggkl0UltYx1RN1ajiebQQyYtGx4wRWJDxbqCSEgzN1w0bS580ouQBzknloYJjVQZ1iU6esP8I2U4IhECYsOt7D/CNPU9DXQVLeFCHpQel2KT0AACAASURBVMpQLC5sIpBBUdFB/KM5mO0BIkmp0UZF/0dgLJvh4UKysztjXTM5mUSKrKcy4iPR8iKlxYlXt2CKFGIpM+Tsh6AtJgJfxRKqzUJG97bM/MywxeijLUggK6OYyeUuLBlGCI3poWrCrjFGM/fHxuF0Uh/e4cW4wmmcFClcu3iSPQ98g+HkRHyuBBZ1HmdfiZ0f75HRMe5ZepA6Djrf9l3WFHyAV7pWYyR022EU2BsNLCFoTPFx+/XFHNgiME2LhKw9pBrtCOxE0tGYTZiJc5tRQjTC0qDTX0VtWwtwjG1FNU4aI9vdWzvVyd2jb3BF23vxD5pkhhv5+5d0tnunsSZ6aS+uZCocwhcYwevtRRMzMZvzZBN/ZP6CrxlfIIKBLgTzEsfRrQa+8V897K+cT23rMVZ9+f9yKuaoHwC9xz5OflEn6bXj5EhJ+JUEXHVhTF0CM4XSJ90eOgrKKO1q5bqhPTAP3O2DJPU2MYmgNc5rgYCSUA/9CT4acyswm+y8h6YOjQsbeKxxO5uuvAa3JuwyU2L2vOJNzKMXZz5HEDZDvL6ji6TWQUiOiQAAZWYOuc4cEF20SKSjFNrs69/HE8efQCK5tfzWsyocT3XbqYbsTAfRAWn/4c9MZsd1q0jcPcSX55ewwOWhMD+V6r+u49ATB9nqScB0ktbG7oNjbdvQHSbHSqFZj3qGJXa8q6R0qI/ajmbyx/1OdY2os3OmZGS0LdOu8dj9NaVFmjYGZhIL0KlD5+eEuRsXurP4yPTMgeISu/aCtNXARE1jMG8xI23HSBUdIG3vwzPDrzHR9AhzIhbRgntZQ0NkDQ1hTUV4pW45IcNAR/L3izdR600+4z280CjF7fegjSJMxsGxVg3uaoSCRrL/5BOIY71Md3SDJmLxYsKSjsvJdjeZQEfBXFwpodkuBbGAcquJ3t5yAmM5zpsh328rQmCvMj/w0+/gGTXJXPPZWJuiyltGSg6/TW4jNNHNDZQ5q2NomYaWaZNsQzAd8bMkbT44rieJZDKzEm3SRHMXAQIr0k3DnBDPr9wwo2TEEXK5acvO518zoeINu5TOniwXaf5pcgPDTsC2nZusMDBAuacdU4fa5sbYzlJNSj7XGGLJqB3wH41giHftDpqSQkNQUPVBPhTQOdll8miJbfmJKbNCYEnYU+7hQJmHD784RtFQ2A6cD3QwklGDa9oLKfYDRcekuKCBkwUuQCKEwbx5/xdt2TFGW3458yM1jdFHHgHTZGKdpOyqCCXSmX7ibocUcKwiicUte3HzEcLouDRBamdbLLs7gG9shNUtB9lWuWRmggPHBSbJDRmsjlShjfbRYrXjDgbR04shwQ4sLlhdRP+TbUwV7CQ9WnJJgsdfRs6xu5ikKDZmYtqS82d+SgllhUvR9Q527/4hpmmi6zpjuQWM9rXT7c2JbfCIYgkd95iHZa1zeWHpfMY8R/GG1jLq3AApBePZ2SAixGZDIZFWhJryYjx516D36zGLHoDUBff3BqlERycSUwkQOumhVCSDCKFRWm3RHrbto7qhUbW6kKFnhzkZlhSbUDQU4cMvB5i8IpPk3cMU9CdimStxFxvMveFZhGYiLEibiJCRtQ5ZvAOEhbQELSdLCIwJQjO+v1j7wqGEWeM8MTGIySu0L3uN1N2fonB0IXM4zKssP6PCFh2/AM8++yyezDVkoM96XUqnnNFwOUWHP49YM0jOnKvITElk6wtbYFrGX8y4exRRWchNV6aw46lfYc6vsXc9AoOp6dEvBSnZxQquF1uib+Uq3xs0di/BN+xxdpvbibyPpBfxSloOdV1jdsQ6kJRzDKHZFtwaaackCkvbujFjJbYrokhpp6+ZE2wjKWkUq8LPG/rHmFHuBL6hfE4Eb8EyQ6xzm+gujfyQSU/vi3zvxluI6PYO7Os7XqVcnyA6n0bvaJWxn808wA/lx7GExtaCFXivfoF9vWESpM6iW++JxbbFE1gyir/CnH3SWSTOP97M57bdx1eu+tRMDKc02bN4DRLBzjqTnAeDlB9t5aTMmNFvLCsmVoahsfH6NbiHE9m4cBHbVnTRu+MxjpQImgolS5JOUO+9mYdrK3htdJwMQ+eLzZ2EJWiW5LbOEP9Skxi7T0csH+6To9ww7YXkOOUY2O46BgiqzQIqE+x5pTMkGbEsuppG6E05wb3P3UvIsq3Xj7Y8yg9u/MEZlbf3FGTyYme3I6ezv8dW6CArNYHA013skKBpgiXXF9NydAqzLm32tVKS0TNA7kmdgaEJDpmdNCUM0J0eV3MVycksH6uGd1GYfpD8/Kvo2+lhKJIYGyezVNo4RU5H414rl0Rc/CUJGEAEGKSPPPJiMiY1jabQPtLEYvJdOmUejWKPm9fL7mRisIO0wAmEBTc+2sED6zWczcmxMWYBeYPNfP2/vsqByvksbGnksVWrmVx7JWVlZReVmxQuoOImhLgT+BJQAyyXUjac5boNwH9ip7m5X0r5z+etkW9B2ZK16LuP2RURTIvk/SOc3PY1SnJrGM4sAD3OhyIlKaNhMjta6FxQaVdjsSyqwkHMqm5792HUpSCPIKVOf1/5zMiSkD82zGd//V16PdksbTrC/BPNuBffbWeKn7UCsmjIHKCydz3BcA+vWn3keHIYikhGnHlsaLqLSrcEmTVbQYoIR9hs6TmZHuD5NTfPtgzF4whORJM8VeDiqSI3YQGGnMPNB7pmKgFIyJUBEtIjZF07QnbxYv5JRvhNTy83t4S4ejJvVjvi/26eMhkxBdVJXtANhNCoCphoEizTtC0yMzfadr1qkrZcg+LBaSpafkXElQJYuCJe0ocXkpHcQFXOFvorrdhvkNIi2H6EhMEROwWAkwogsbaWyYYGQnMs/O+zA43jF6vR/rXjRCRl7hYeLrR4SOba4yShlOONB+OvZsrlJqb5WdE22PEVP6nKY36gn5FICMJuNMYpnOpmICmfr2xaSEaBxWPGMebMbgHuQAke/1yerNFtC+8pyoQGjDi5rYqLi/noRz9KW1sbUwlZfPM3O7lCd+EaHWC/NW+Wm1WXEu34EN95/xedjTURCjq2xWLgNGkxry+C8BpIM+wob7b1L2m4mqyqciZH+pERCzRBcn0ezxDmxTf8HPbdwpXjvZSaSQhrGs0owEzcjcB2deYWpXPbHcvpahqhcF4GvrleHixKZscb3Wgv9yMtSZnfQoQ0XsoysEwoGiokrWi/rbRpEixIHQ8TmXgR4fPY912TZFT6md61Dk8oiRFPfOFyQX9/OT5fSzSFYUw3s4TJ4extGP5iFjJKbbCBfUlXOA8aiS9J0jdlbwqKjl/TNOlPD5JxMjV+lMYeOgAJnWWIX5bRd5XgiV0Px8qNxT/NkvQUrp98ncO7UmeC9jUdkGQHRunMyI3J5xXWjmikAADTg7nc6D5K0oKVWAMtIC1MoXMsoR63obGgNo8jh/xIKdGMSVvxllBJE5+XX2abvJpt+nXOphvYKB9nNJTF5GQaN6U+TFXBUaQFP9D+GCtmRbLvyTOFLgTgKvfw7V0T1PrtNjZWryJiuGLWmxdKVrNKPotlwWQwje5kH9vEVVHjOJawHW8RCfXzPs+WHBMTnf2aoNI/YSffjWPUcwSCM+LZttpLxevTGFYENI2JnJQZGZTSscrYcYJhAQ01CzH2DsNsMSLHP0H6VJi0dTfwJ3smCUUm2Nk6xKakdBLtdLt4dDebqtcC9oaAaNtqUhL59vZWNu0fw0C3U0QxI6vHSzzoPWl4gnlMJ/XOmv9fcx0jU6aQK9OY49YoccOOSSicl8GTfc/HlDaAiBXh8eOPn1Fx+6MqH22hEN8aGLbHaHQsxTaLwHVdVmzsWZZk35aTSKmxpD3Cvjlg6faLmmlS6e/nXspYYrh4LaEXC0mBP85V6syL4YoJSsVehDhMUuHNtDPTXyVmNu364CwrY6mZzWKzjBzp5Y9zE3D3TxF9MrmYcQ9Hf0NnSj/XhTWEJBavneXSGU2vdIrNg8uEOb2S+2/Q+PhzFs7PIKJDvxcWH29myfFmmsvnok+P8/zWrbgMg82bN19UytuFtLgdAm4Hvnu2C4QQOvAtYD3QCewSQjwupTxyfpr45hQXF7P5Pas4/MD/kLx/mOyhYSQwdP/3WfW1rztlK2ceroF0F+GxMazoQ1XojJXm8Zi+AcuOMuPD8gEqZTPWsVsIjM2sbgRQ1xWi7LXXbc+/FTl7w6QkcyIPM/AYYNI3tZPh1NuJeLLwkIgV6SYUeJheTx7VKYUIDKSUNE+bjERmWw86CufMypYPkDI5QfaEn/YsH9KxlRiO7hEWYGkC0wLDW4Xw74g9wHpEOj/ifWy+2qD4fV/mbuDqpkbeeOXnkJE3KwYvao2Q0k76CRYhy16Z7vdqfHN+EpZTF9S+QXFPVxndVWoiEURcKWSMNiMsC0vTcIW9+CfqOFJxlBIxPOP9RRD850eJNDkPTV3H9/d/x9SRRiYbGpieJ2fcamcysjiTXkbxbQzmzeehWKJLF1/ZeDM0NeJyuTh69Kg9sVmWrSDFu5+BiAYP5wxTN6kDOYS92SzMreQLt1zJstIMtm3bhiUtJxbrOEJYaFIno3stB70Gjxe6HEueXT7VzjNvF8NelZ4ya/wWFxfz9fsf4grddo3lB0ao6TvJkfw5zr20mNfTRkdhESGX7f4SliBF5nPzge30ONbUwNgoSYE/JSHhRURJFpPmICl99SRNzCN5aR7JS/OYbvXjmevFU5pGVfsI7j3tDCT6aDeKqBg3Yn1phF8meqAf/hHZd92Cb8PyWLuXlWawrDSD3mVFdDWNMFiayMd7ewhnJiIk3LQnyKqBeUhLA2FbJLt9CXj9s2VGM4pISL2KlVdN8fgbO223kzN+AmPZnNxZSunKkzEZtp8PGiP+XHq0MXxT9bR3tJKUcBQz2cvKxGMYWgJ9rGTG9Gi/zzsvl/TyQgKvdGIOTTnKyMwiBae/ml49hGnMthLpkURSxubhmU6ma9+vaF5RM2vl0OvN5GBROWCPvyubX+Ca8hdiY6CjYz79ffMwBLgS3fw6fxMFk910JxRQsWghf3X9PJaVZpBjCXY++zSZVb+dESkLCvp1Plu4hLvyjrClez9BknhG3IrlERhuk5vlQ/bQPTXWL04epRCENItdWYJF/ggH0l1sK/PNus6SgkaxgArRzJHwYr4lPkUEu56xLiKxhYIuBNmJOVgjQ1jYIQGvjY6fprjl5t7I8Mi22FrziYn19K8pZPHgcSpzu1kXauBb1t1Ma7aSuuToUzRWbCBs2GEsxT1tp7u+JZQPBegpnMMPa69msjmEGA0xd+AEd7/6E1xWhNt1QceX/+yMSpMYDXFT6xS1fvjxHMPuo7jvCGqSVsOkbMpR3KIWc2GPl25tmFzTixC2JWPdVUX45nrxHjt9c4I4VeOM4+8WlVB2zM1/7G2ndyBIpCbdTpAtYePuCYqHIsRrrNGuLBoKs/nFMfYWjTDunuBE6Tx2Vc1nvxR8tWGA1knbL+3zj7C2+YCdUQCJIU3mi4POcIgQ0I4Di5zxAVM4IRPR3yshR6aRK70IQzB3dRH+J1uxwraL04vbiWu1sKTkRc8WrgmvR8jZm/CGwiZlo82n3Bd4oc4erNfutxhJEXRnwm077fcMZGWxd+lScMJAIpHIRZUKBC6g4ialbITZq84zsBxokVK2Otf+AtgEXBSKG0Bx/Y1kDQ3R/tI/xs6Nb92K8bOHMFIqCRcmxwmmJNtXS6cTI2AJ2JNkx4NIodsDWqQCFjkug5tD9bTodv3OinAuqYe/R8iSPFdWz3BKJutLU/C9vhNX6WqkpgPOoBUaddLHbvZhS4KJFe7CMHyAjJUVGpruYu/QVpbl3IAAKjwafWGLkVgWAkH5oJttlsR0agtqUnL90d12Xc/UDJrySii1srmzyxaEJwvdRCyJIWFDfwqu8DzHzI9tCUOnLeghKgKaUUC3Vo0YO8685CJSdDfRkjDSWbENhi2ElKRGxkFa7Mn0OClB4nY3xlkbddNi4+4JigZCaNIkfbSZtLET+PreoDt/FSCYdo8T9vsosg4hhIkmNAr6r0c2vzTTuZaFOerHe9sm/I8+iqdpikA0FuPUYes8oAp6p/GWls9KdIklGfEV8xcr6uno6KClxa6JVz1LQZKx32BYkvzRuJ1oQnD9kkKWldqrzLKyMgzDIBDI4fChG6mq8DD3yELc/nIa5hh23VMnYHhTZ5ib+0wa1xewbk72aQ+3hoYGJjuPzDI8VPZ2cCyvJFbFoaq/g+GkNKJuDSkEnnCI/LERu3aic0sGx9KZcyKdvuqXkC6NYFYzeeuvxlNqL0Ci/4KtfD348ZXsaB2iuDdMx8s99u+1TMc6as/e5qQFbdugeDmn4pvrxTfXy+eOddjTvmZP2E8vSyL7hUr07gUUFR+Iee1GvYbdUglCCkpz3su6Ty/FN9dLJCeHp556CmnZJa08fScZms5hLKmGVG8v4ZAHl3sa/6iP8bEcCqxU+qfaMaWGPhnEmAqSlDNCQUoYnSuIOPITHSiTk5OkrM3H5Utm4L4DYDoLk1N+U76ZgdDFrAWfaUzZoQxC52TpfKSQsywT3d5srFiJCBNvYsBW5oUd1xgxPVgSNF2jdv48vt/STn+CD5ehxZQ2gAVrCxk3hwlEZlKhgM7g4VvxUsq62hy6en7JV+SX7ESmQhABjlgLqbTspOHrxMu8wrVEpDFbSKQ9D+1w/Qx3TiL7s+Zg6lcS23UoJS4iVFtHkFKjSa/BJK4Yu9SpPdaANxjgoxs2kOPL5KHeYXAqAMQvSKIUFt7Fi8cGGBp6jt19S3ilazVkwtHMMj6obeXjY8/wqwN/w+veWrKDh9A62+l97RjbFy6huKeNwr6OWZ8nNI21G27Gr6Xw6ZIaQgisegv3riEWN0U3J0g7x+6uHrhjdnt2t4/woft3UBkWLCOJpcMRXNI9s7tTgt49yYQGrlAaKWOVjKc1x/pZImixUlis2fWHNUMjqz4PAH/IHwt3sXtN55byW067J/Ft+cef7mU6bKF53Y5cCDQLcv3maUqfbghyy9LoaRmlaNikoC/Atopejs+ptkuCWZLtWRZ5nTNjc35PO5kTY3SnZ1MRbqGiohW7rJjOqD9/lsI6apm2JhpdFCPItzKxkEzNy6BoRT6tWBx/rImlUkfHrv/cLALkpf4rodBS9FOUtuYpk0jbs2ydO80tB+1EzBEdXl6kUdkpued5yzknyZgJq2MgNxepzYQPCSEoKys76728EFzsMW6FQLz0dAIrznShEOITwCcASkpK3v2WxZF0490kLHiMqYMz7rDx325BW1GE8CUjHXusbsFtegb3iSBhS6JbUNVq0J4uQbPdpDXyMGCQlb8a0ebFF/Hag7dtG9MjJ4hoBltL6lm6cR3XvncRe595hYkfP0qmmYm7dLWzS8qkdHkZe54wkFYE0BGuQjTH0Ky5CmHKnpkTtESiqUI0Iclxw8iUhdDgqruqyDJOkvHSSzyXlYOZlMK8vg6njqakYGyI9w3lUGMB2G6wnyRlsmN6mtrWCeb7TfbpjpXD8XcIISmrWRa7T11NIyB8dEqYmITVyRZaNHBVWuwdO8GILCF1vAOjcweUrWKZM+GFLGu2NdCyWB0O8oH//gbFA2FG0ytJG22mzz3Ma2Ur0a5chGi3g3tdoVQCY1kcOnAd6em9rMmfQ1H1h2l3bQcncadwcjEl1dVR8qMf4n/sN4Qf+SX+O0LEbPZRHGtb/qCEq9ayKi0Fl5NrLv7BUlxczObNm2lra6PcncgXgxCWEsOC1QMRMkOSK3tGODE5GssIr2narIkj/jOi8RfTi8do3dPL9uZOkB6EBW4J7+kKs2jMYvWIRlrt6YG2jY2N9m+NM/rNT0pEtp2gOz2b4o7D5I2N0O3Nth+wmj2+pl3uuN/upCow0wimH0XqgLCQRJjwHCKHtWeUm5jlrNVPz2t9RMIRNGmSMdqMM3uTlC+h7MzvPyOOW6Ytz6DXHOODElyOXdgeK4AlKeydprp0CJw0CvX19QwePcSe17ZjBMfQJycIZeczOZaDPxpn6lDvggXy6wwldKGLRXZtVMOgOCVIgRhhs/gN+61q9lKNhYYelwPKU5pGcn0eEzvtqg2n6v+5eCkaXUJPcgsR13hMbsLuUVyhVFICoOfZLkJN01iz8lrcvSfYY5l2nUnTxHeig0iBgW5ZRKTOc4MrMK0MPnXzKtZfMZ8Hc/PZ0TrEyrlZMaUtxvRCpHABEaQU9O25m6mhcgC83qUMZP8F1sBst1rq9kEGs9LJqvJToTXzBfkVfjt0DztzymYsSlKSPLGdPn07j+VqXBHygawHDDRLUtV7krrxg7iNRA7615ORNIWeFiEibYubC7ir2Mf66rWxZNTR2LFV6SmnLUii1JR/mLu2VhBy4vc0AbomyBLjWAiuGDvMFWOH7XYmQGvya8i9o85GAqeH4kJErPR0jiy9inBrj73HVtOwMt0cyC4nrNnzrakbFF69+rS27GgdIhSxOAj8B1N8eiyR7zYEebzAxXYZxt8dRPOHOOLWWBTS8Uz60CLJdCf3MKJJDsgsRkQC122aS1nQilmvAerz6vHoHkJmCE1ofGHFF950N2S0LRKwMp0d+pod99ie66J4KM7qK6B6lZ3QtqfF3vChGQXUtXezY7ljzdc1rvdlc7Bbs+MApaTYykYbGyZ/bATdMCi99j9xu0/Q3JvH6NhBdGRs/Lum8plyH0c45ceWh+aRJdMIA7tTNaqAbcFJnpXTLCKJ6MaamoWtFLUcwDipIXNvBUfRsqTkZFY7LVdvZnH5Jr721J9T1RbmaKlB7TXvY/GT3Rjmy7ar1IRBdzaVDCKBnP5+JFZs6VS3ru6isrbBu6y4CSGeB3xneOmLUsrfvJ2POMO5Uxep9kkp7wPuA6ivrz/jNe8m6Xe8j944xS3lhvUkdkfIfmOInNxkdAR1nWE+vnkuG7IMHt3XjbWlh6LBCLljJvJ6wRWZDSxw15Of/1USRisY3HUQGbEQusb/ZBeSMH8DB7LLac2dy1eX2gHodRvXEfSlcvKejxHp2omRXY130yqy776d9fl5vPSTraAVonl8COwM7i5PIdWtgilzhNzRA4jcq2y9y9BZuKmCTH8oFk8EhdydlY7rK19k2vBgpaRyRVo7bpekQBgkcI3dIZogfVM561bksw4YT+phtHmcfCsdHQ0TE01Iblq9hOL6G2P3qXBeBrqhYZoWfgknDv0cUboAiaBtopGAezWaISgvDJFWeQVJa7ysMfL4UaSPX48N8euMXCKOFcWtCT5/ZR3uznWIb95PauAEER3+acUdtKSv4sG7VxLonODwvj6Wl0oK9j5OWyCPsmAfxTd8HorrKHUUNADvbZtiQc9JdXUk1dXh3buJgQOPESjvw0yDoaGXkTKCEIIqfQ3e930SipdTz9kfLFEX5Vqgxj/BIwe7WbGtj1q/nT8qlJeMtzeNZq2baTnFxjvef9rEEf2MKJ7SNGpK0/h6ew4Pt/aDS2Pd64MsGrMQhobnLHmeampqOH78eOx49erVrF+/Pnbc0VHB/v37ydDc7Nc1wtIuYn313Exy3OX4fD6MKUFOXwT3T7/LZLIfcQ1IXUPTXGRknHGdNQvfXC+b/rqOtpcOIx74F9LG20E38N29kqSPfOKM1rZ43u/L5GfdQ0QdoQbQk/orxvQhxoeS+UzWHEryVtI0+GMscxpNQv6gBVfNVggXL1/BseceJxIOo+k6K69bz/YjTXYxdyHIz8+nrq6O+jwLfvgtCrQwd845SkfVn1O8aiMFiQFo20Zx2VqKgSX7X6KNIsqWrJ3VV0lL8wjusWP+hGGnBQl122V/pnzJRH5mkjJewWjGAeywaQ1XKB1hRShvfYPSjjEG8vNZ9KefpPK6tVQ3ZTPyv9+hLbeYwu429keqeaNhKTVZLaSmLae6ahG3Ly2KKWlRhflMlFau4dkffAZP1lGCA1VMDZWj6VC90n5wbyxZzfeHmpiWdo3b6199kqzGAbrIZ6Q5g7SyORhDSyk0jrBJpPNEjh3Y79Y1vrLoaoKBFLvwef8RXj30LwQ9VWSNdbN6tIyk3iz65dUYuLl15Vwq+rfxalo2aellfHxBPfWnlHCKjx07G8tKM/j5J67kkT2dCOB2Z948sXcKcfA3YIVB0xmouJP/PpJIWm6AiTSD2oQpkrOKyVu0khd/9D3MSMRWzhcsQk+fWZTpmsA9FqYps4y/W/Mn3Kb1Ub/peuo2rjutLSvnZuE2NMIRi+cMk3tvnsuaoEVRksZLTx7AFbHQdcHC+TmMmBpLExJJK0nlvmcPEgpbaJrg/21ayOIVhad9dm1uLd+74Xs09DVQn1f/liks4ttijIWZ1mzrqUvXeG9dAWJygMGOcaSU6LoW6/+j23swTYkmJHdtupb19dWz5rg0XxLffuI1uiOpFIh0/qYyhYh3koraqpgMlJUBejW79+wlQ9OZmz6XRcuqCLvGYjG3336sg0VMc1C3+Lul+bE2/7ermb8JB1mmGbx3Uw2LCzxwwk1Z6mE6Dz5I4qIP2eExwsR3TTr3rLVLBVb5fkhDXwO3O/cmmLCXE0+8hhmOENF0Hi79IHsye/mkdpJFt95EpCaHfcf2UVtVe1HVKI0iTs2sf94bIMRLwGfOtDlBCHEl8CUp5Y3O8ecBpJT/9GafWV9fLxsazrjX4V1l5Je/JPDbLaTesJ6MD3yA3e0j7GgdYoE7gdRAJE4Zsult9c8Kuj6V6faxWFzQIcxZk8+pE29w716Cb+yKWYjO9B1A7O80f2vsej2zfFb80Znobmqk4/BBu/yS84CibC3TVvVZ3zu+s4fJQ4OMFEboSx4/6+6c+Db2HNvPgad+zkh6mOKKDbjGyimvy2XB2tMnK7CLJj/Ua+c8e78vMzaR73/hIbpf3UJk/mpOZq05s3Wh443Y73gr5eBs2gevHwAACF5JREFU+P17GBnZedbagG+XAzu76D00gG9hDotXFM6+346F4VyJHz9n61ew3aWNjY3U1NRQX19/9uv8E29q4YiOQXNpGpM5I7/TPTnbOH4rTh0HxnTzaQ8xv38PI20PkzEaxjv3zjP2+an3vaOjY5ZlM8bvOXberG+i8qBnTBIIDZLqzsYcSSRLDuDZ8RQwe1ER3+6JrDKeH0o86zzxduht9XN0Rw/BsRBJaW6qV+bPmp/ix0FB30kOv/wCAL6KFbQPhen2trB8ySJqc2vfdMzs6983q4/eaj58xzmlD6Pz9alzxZlkMf53idHQ2S2Yp3C27zjb+bd67fch/nNluvu0fjpTf7ydPnon2ntO98npx2Awn/07m+j1JJOwqpKNa2970++IzjUdJdW8llDwjt/fc0UIsVtKefYJOP7ai1xxM4Am4DqgC9gF3C2lPPxmn3mhFDeFQqFQKBSKc+VcFLfTcn6fL4QQ7xVCdAJXAk8JIZ5zzhcIIZ4GkFJGgD8DngMagYfeSmlTKBQKhUKh+EPlQu4qfRR49Aznu4Gb4o6fBp4+j01TKBQKhUKhuCi54K7SdwMhxADQfh6+KhsYPA/fo3j7qD65OFH9cvGh+uTiRPXLxcf56JNSKWXOW1/2B6q4nS+EEA1v1yetOD+oPrk4Uf1y8aH65OJE9cvFx8XWJxcsxk2hUCgUCoVCcW4oxU2hUCgUCoXiEkEpbr8f913oBihOQ/XJxYnql4sP1ScXJ6pfLj4uqj5RMW4KhUKhUCgUlwjK4qZQKBQKhUJxiaAUN4VCoVAoFIpLBKW4/Q4IITYIIY4JIVqEEH97odtzuSCEKBZCvCiEaBRCHBZC/KVzPlMIsUUI0ez8m+GcF0KI/3L66YAQ4ncvJqp4S4QQuhBirxDiSed4jhBip9MvvxRCuJ3zHue4xXm97EK2+w8VIUS6EOJhIcRRR2auVLJy4RFC/LUzfx0SQvxcCJGgZOX8I4R4QAjRL4Q4FHfunOVDCLHZub5ZCLH5fLRdKW7niBBCB74FbATmA3cJIeZf2FZdNkSAT0spa4CVwKece/+3wFYpZSWw1TkGu48qnf8+AXzn/Df5suIvsUvTRfk68O9Ov4wA9zrn7wVGpJQVwL871yneef4TeFZKWQ0swe4bJSsXECFEIfAXQL2UciGgAx9EycqF4IfAhlPOnZN8CCEygX8AVgDLgX+IKnvvJkpxO3eWAy1SylYpZQj4BbDpArfpskBK2SOl3OP8HcB+EBVi3/8fOZf9CLjN+XsT8GNpswNIF0Lkn+dmXxYIIYqA9wD3O8cCuBZ42Lnk1H6J9tfDwHXO9Yp3CCFEGrAO+D6AlDIkpRxFycrFgAEkCiEMIAnoQcnKeUdK+QowfMrpc5WPG4EtUsphKeUIsIXTlcF3HKW4nTuFQEfccadzTnEecVwGdcBOIE9K2QO2cgfkOpepvjp//AfwOcByjrOAUSllxDmOv/exfnFe9zvXK9455gIDwA8c9/X9QohklKxcUKSUXcC/AiexFTY/sBslKxcL5yofF0RulOJ27pxptaNyqpxHhBApwCPAX0kpx97s0jOcU331DiOEuBnol1Lujj99hkvl23hN8c5gAEuB70gp64AJZtw+Z0L1yXnAcaNtAuYABUAythvuVJSsXFycrR8uSP8oxe3c6QSK446LgO4L1JbLDiGEC1tpe1BK+WvndF/UreP82++cV311flgN3CqEaMMOHbgW2wKX7riDYPa9j/WL87qX010Wit+PTqBTSrnTOX4YW5FTsnJhuR44IaUckFKGgV8Dq1CycrFwrvJxQeRGKW7nzi6g0tkF5MYOLH38ArfpssCJ7fg+0Cil/GbcS48D0d08m4HfxJ3/iLMjaCXgj5rBFe8cUsrPSymLpJRl2PLwgpTyQ8CLwB3OZaf2S7S/7nCuV1aEdxApZS/QIYSock5dBxxBycqF5iSwUgiR5Mxn0X5RsnJxcK7y8RxwgxAiw7Gm3uCce1dRlRN+B4QQN2FbFHTgASnlVy9wky4LhBBrgG3AQWZiqb6AHef2EFCCPTHeKaUcdibG/8EOFg0C90gpG857wy8jhBBXA5+RUt4shJiLbYHLBPYCfySlnBZCJAA/wY5RHAY+KKVsvVBt/kNFCFGLvVnEDbQC92Av1pWsXECEEF8GPoC9S34v8HHsuCglK+cRIcTPgauBbKAPe3foY5yjfAghPob9HAL4qpTyB+9625XiplAoFAqFQnFpoFylCoVCoVAoFJcISnFTKBQKhUKhuERQiptCoVAoFArFJYJS3BQKhUKhUCguEZTiplAoFAqFQnGJoBQ3hUJxWSOESBdC/B/n7wIhxMNv9R6FQqG4UKh0IAqF4rLGqXv7pJRy4QVuikKhULwlxltfolAoFH/Q/DNQLoTYBzQDNVLKhUKIjwK3YSfaXgj8G3Yy2w8D08BNTnLOcuBbQA52cs4/llIePf8/Q6FQXA4oV6lCobjc+VvguJSyFvjsKa8tBO4GlgNfBYJO0fbXgY8419wH/LmUchnwGeDb56XVCoXiskRZ3BQKheLsvCilDAABIYQfeMI5fxBYLIRIwS4S/iu7Kg4AnvPfTIVCcbmgFDeFQqE4O9Nxf1txxxb2/KkBo461TqFQKN51lKtUoVBc7gSA1N/ljVLKMeCEEOJOAGGz5J1snEKhUMSjFDeFQnFZI6UcArYLIQ4B3/gdPuJDwL1CiP3AYWDTO9k+hUKhiEelA1EoFAqFQqG4RFAWN4VCoVAoFIpLBKW4KRQKhUKhUFwiKMVNoVAoFAqF4hJBKW4KhUKhUCgUlwhKcVMoFAqFQqG4RFCKm0KhUCgUCsUlglLcFAqFQqFQKC4R/j/MkGAk0ugpoQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4HFeZ7/85Vb1ob222ZdmyFsvyIjvBS2yTxIRsZCHEgUCYhCXAJMAdmB/bb+ayh5AZhmEmc7kzwEACQyBAQkIICQaTxHHimCSybMnxosiWbVmLtdmSWq2lJXV31bl/VPVS3a0lxOvM+TxP0jrVtZwqtZ7++j3v+32FlBKFQqFQKBQKxfmNdq4noFAoFAqFQqGYGSXaFAqFQqFQKC4AlGhTKBQKhUKhuABQok2hUCgUCoXiAkCJNoVCoVAoFIoLACXaFAqFQqFQKC4AlGhTKBQKhUKhuABQok2hUCgUCoXiAkCJNoVCoVAoFIoLANe5nsDppri4WFZUVJzraSgUirNIQ0NDv5Ryzrmeh0KhUJxJ/tuJtoqKCvbs2XOup6FQKM4iQoj2cz0HhUKhONOo5VGFQqFQKBSKCwAl2hQKhUKhUCguAJRoUygUCoVCobgAUKJNoVAoFAqF4gLgvBFtQoj/EkKcFEIcTNhWKIR4TghxxH4tOJdzVCgUCoVCoThXnE/Vow8B3wN+nrDti8DzUspvCyG+aI//9zmY2+llz0PQ/BQs3wz+47D/MSisgFXvh/EBqNgEZevP3fw662HbPeBvg1W3wbX3xt4K7t1LsH43WesvIcvYF7+PdR95Q5fYu/cjDAV2k++7hNWrHzqt0z8dNLT7qWsdYGNVEWvLT++/FSbbh5lsDeCt8jHe1E/wtVO4Cr34bqjCW553Wq81E/u3baVl1yvUbLiUi6654axeezq6W5rpbDpAWe0qSmuWn+vpKBQKxXmBkFKe6znEEEJUAFuklCvt8WHg7VLKHiHEfOBFKeXS6c6xbt06eV5YfnTWQ9tOpwDrrIeXvwuH/jD1cUID3Qt3Pj2lcGto9/PbxhNIYGWpj4PdAQTwnjUL37zA6KyHn1wHmPFtl30Wrr2X4N69dHz0Y8hQCOHSWPS2HrKKwwT73QQLbyXr3Z8ka/XqGS+xd+9HGPTvjI0LCzbh8RTSP7CD4qIrqK39tzd3D2+ShnY/H/hxHaGIicel8cu7Nr7h5zq6q4fxg/1kriwmZ8P82PbJ9mFOPbAfDOvvbtx3lGDhIbIGl5E5XE3+LdWO/acjUfz9JWJv/7atPPfg92Pja+/+1Hkh3Lpbmnns3i9hGAa6rnPbPf80o3ATQjRIKdedpSkqFArFOeF8irSlY56UsgfAFm5z0+0khPg48HGARYsWncXpTUFnPfzsZjBCoHssAQbwX9eDNKY/VppgTFqCr2x9ivhraPdz249ewTBTD310dwePfeLSNyfc9j2CQ7AB7PkJLHsnwfrXkKEQmCYyZBI86QWg44UipPkS4ul6Fv30v2YUboP+l5PGcQHX2/cUwDkVbnWtA4QiJqaEcMSkrnXgDT3T0V09DD15FIDJI0MAMSE21tjnEGwdl3wLhAlSY9HuL8PvwF2SPaUIi0YAN2VlUrSlDRkxQYC7NIfsS0pmLfgADmx/LmV8Poi2ph3bMSIRAIxIhKYd21W0TaFQKDiPctreDFLKB6SU66SU6+bMOQ9M0dt2WoJNGtZr207Y9o2ZBVsUaUJmUVz8bf9H67Wznh/uOJZWsAEYJvxwx7E3N/cTu1O3TY7Az25Gl0NgRi8u0T0GwZNepCFAgpycJFif5vgUpo/u9p3c+oanPR0N7X6+/8JRGtr9s9p/Y1URHpeGLsDt0thYVfSGrjd+sH/KcaQvGPv55JLHLMEmAGFaY2kLuynu4wM/ruP+Zw/z5FPNmBHTepQmhE+MMvTkUUZ39cx6ntkFhdOOzxXBgH/asUKhUPxP5XwXbX32sij268lzPJ/ZUbHJirAJ3Xqt2GTlrs0azcptSyP+mrsD0x55cnjizc09OJB+uxHCaD+QtEnHCCVskBJjZHj683fWo4cNOEvL8olC5wM/rpuVcFtbXsDXb6rl0upivn5T7RuOXGauLJ5yHDo5Fv8554Rjv+jYHAmRjsQI4B4zgiFS9xne1jbreRaWLph2fK4YHxlxjM+jDA6FQqE4p5zvou1p4E775zuBp87hXGZP2Xq4/ttQdYX1WrbeSuifLS6vJfQyi+LfWEKDik0zxKggMB6edUQpLVPNU/egl6+yB9LeZBA8meHYLbirfvrz73sEVyQhVJjmhoRwz3KyM1PXOsBk2BI6k2FrqXMmGtr9fOP3Tfz5SD/f+H3TG36e7pJsK3oG1tJlSXb8zfF4tFVKp+qKjrVcT9rzFmR5MO3ndQCDYxelRsbM4CyjuUBn04Fpx+eC7pZmug+/7tiWna+KxhUKhQLOI9EmhHgEeBVYKoQ4IYT4a+DbwLVCiCPAtfb4/KezHv70RWjdYb121kNB5eyOFTps+AT0vQ5bPkssv8wMQ9/ruLTpf2VtA0Fuf+DVv1y4LXtn6rbMArjzaSZ6okt7lriY8LtxZUYcu7rmpk07jDPahyucrNSc9ySE/gYmPD0j4+GYLpT2eCZ+23iCUMREAqGIyW8bT8x4jOOaOzpJvOjIjs74mwm37g75HMdFx57SnLTn/VHS0vdrh0+l7KPnpxd86YhEwtOOzwVNO7aTWBwlhEbtFVedwxkpFArF+cN5U4ggpbx9ireuPqsTOR2ky2mbrmI0EWlYFaYIksNQ3XW/pn3w0zOeImRInmg88ZcVJOx7JHVbzjwoW0+k/+eOzSNFOmJdmNBWE89xHXSdorv+evrz58xLiTDFw1IWHvfpi6y8mhRZSx6n4+TI5LTjmTCGQ1OPE36tBR3voG/FQ44xgBl0CuEonf6gY9w+HgIyHdu81bN/dsHA0LTj84GqtetVEYJCoVDYnDeRtv9WVGwCTQeE9VqxCXJL3uBJUtcNXwzMvjIwTbrT7BhNkwRfVA2Aq7g4Nq9QpUnnBzU6Vnjp/6xBqHKWy3IX344nUZMIK5qSiCnTi5ZEZltc4HVp047TMTfXO+14JrIvKZl6rMV/M/ldb6fg+I24g/MoOH4j+V1vByDcNzqr6/jS/JanitJ1tzSz68nH6G5pjm2bGHVeJ3l8Lqi94ip0lxuEQHe5Wb/51nM9JYVCoThvUKLtjCGcr+7sKfecDRLom5xdrpeuCd6zZuHsTtxZDzvvt17BiqolU30tAL5bNtu3IwluMEHHEiEuCG6QYBgM/Pgn01+vbD3ZZdeBSBQcSaLNnD6yZdmevMq/PHOY2340/VJw9bzcacfpeM+ahXhcGgLwuLTZP0ubnA3zyX93Nd4l+eS/O8l3LWHpb9x3lKHybYQzTzJUvo1xn2UTEupML56SJVpOGtE2+mp3yrbulmYev+8rvPzYL3j8vq/EhJtpOMVx8vhcUFqznNvu+RaXv/9D3HbPt1SUTaFQKBI4b5ZH/1vRthPMCCCt17ad0P7nv/h00v5fX2R2wu++zStntzSazk/u4tuh4SHLdiTKS/8MwOSxTJCpy7aJhNraAAgEGvH7d1FQsAGfb41jn1yvM7/P7cojFI7nZ7nd+dNO+5+3NmPYGfmGKfnnrc089slL0+57YjA47Tgda8sLeOTujW+qI4K7JBszGMFdku0wwUUXRKsJgoWHkCIMmkSaEYKFh8gMVJNZm2ox0tDuj9q7AfAu3NxBav5aZCC1eriz6QBGJII0TYxIhM6mA+e1GCqtWX5ez0+hUCjOFUq0nQmilh9RMVSxCY4+D8OpUZDZEJVJH9S28ag5c4pf/fEB7tgwC5PhdLl3m74AS2+EQ1vi+w13w5bPMFQfFV8CMW7/KKVj7KmoIBBopHHvhzDNEJrmYc3qh+PCrbOe8J4fwCK3HW0T5PneQn9/3Oh1UdlHpp320ZOj044TaezwTzueirXlBX+xSfFk+zD9Pz5gGd9qwvoFGhLh0hC6hgxbS8lZg8sQVW6kGUFIF1mDy/As8ZF/Y1XKOZ9IKoa4CTfpFsG1jNQijrLaVeguF0Ykgu5yUVa7KmWf8w3VxkqhUChSUaLtTFC23opaJbaxWnUbtCd0AtBcdjRu9izWZif6fvdaN+sri2YWbunEJcBln4Ejz+I0YQNzOB4NC5eBlZAGSAiXWWEgT2UFfv8uTDMEmJhmGL9/V1y0te2kwD+BttCNKSSa5sI0nNGhoaHdLFgwVV0KzMvLYDAYdoynoijby+hk0DGeDW+m9+hkawAZtiOVCeExGTbRcr3ICUu0ZQaqKdvz9/E2VoFqQsMBJtuHUzoiJMuz0BTRTi0z9U+6tGY57/vaP6aIoOyCQsYG44UZ54u5bnQ5Nyoy3/e1f1TCTaFQKFA5bWeP3n3O8RsUbAiY0GafEL/14Cyc8aPi8qqvOHud9r0OJaugMCniE4qLK3fUxUJGx5asGN3+AmJHLxouQEfT3BQUbIifI7MI34jBmv3DLOgLMT/vCvxDdY7LnDz17PTTLsyadpxITUnutON0NLT7uf3BOv71mcPc/uDsDHkT0bKm/reQSOpmkRmopuj4TWQGrGIPJATTdER4z5qFiTUMTGVhrBdnpt1eWrOcDe++7YIQP007thMJhx3LuQqFQqFQkbYzQ9reo2/S1l1ClzH7dko3rJxlpWnZemdj+j0PwZbPpN1V9xiAVQyhTWjWsqoGmKBNWIoi1NpK6J/byN0k4AMrmb/4fY6lUf74BZAGo1kuuuZ5YPj5lOtoYvZeYzMRCIamHacj6tMGcZ+2NxJtm8qyAwD3zP9OiqTpiLC2vICbLy7ld69Z0dbB5P6wAALyriib9TzH/IPTjs8F3S3NNL24LVawoWnaBbGcq1AoFGcDJdrOBG07rabvic3fS97ypk/rEbOLzi0vyZ1dTls6mqduOuH1RRjvt3LYvC0wYmKt25ngbYmHgULlEQLvjkB4PyNHDpOTsxQAf9O9FGQDuDi0JGdKX5KpChGiS5YnkvzKhqYRYonLqACTkSkatybwZn3apou0ZS4vJDJnnInXpxZI6R5LQ7ufp/fFl8f/RIR3CS+uxH8LaFM8UNLniAlNQxpxqxYxg3Hz2aCz6QCmac9JCGrffu0FER1UKBSKs4ESbWeCieF49WW0+fv4ALGw1F/IcTm76Nnw5Juwbli+GY5tT/tWRkFUAEnCpdKy/ADQIVwq8djtVQO3GFZATkhMM0xPz5N09/wG6Q4hLvJR2jdhN0m3RUasVZcdrQv7U3LKoj1EQxEzpRfl4FiI779wNCX/rKHdT1u/s0jh/ZfMLGant/6dmfHDUwsyc9JAeKYXR+naWP228USshRVAEwZb57nYHNQwo+a9hiTY2JeSDzdVjlhmbh7BofjSb2au87hzQVntKjRNx5ASXXepbggKhUKRgBJtp5vOenjl353bevdZVhouL0TG0x83EwJal92Fp1kQMqZfah2beAPtiDrrnQUT81aQrhsDwIQ/KiYEI+8wY/NCwsg7DLJf1glsjhCuTmxDBJOhU0gZAgFSg0m3FvcxSdzRxpDumEDzuDR+eddGR7P0ZFr7x7j/2cOxfaPCra51gFkE1lKYk2SmmzyeCaN/6t9xpG+MUHu8IfrQghcZmbeH3L51MXPddAa5ydG+WnSuPxnBTLq/xMcTja4N959Ka/mR5ct3iLYs3/RWK2cLKU2Q0npVKBQKRQwl2k43+x5xepwBnDocT/p/6tPQf/gNn9YQbrY19RKSM0dDZhJ1MaK5d5FJ0DS48X67YCL98aO98QiQTNIx0fHY5QliDhDCi9czx7Fv2CUSvIcFyaGz4VAuk2Gr92c4YsYibi4tvWCNCrnovlHRtrGqKOX0Ww/2zLh0/J41C3l0dweGCbrGGzbXnW55NNI/EXu8QwtetNpYAcGig4DVJWHi8KDTkJfUaN8adFxpNE32Gsscubulmcfu/TJGJIym62iajgkOy4/JsTHHscnjc0HTju2Y9pKtaRg07diulkcVCoXC5twnsfy3I43gidhVl2XroeKyv+iMuhnmF55vsUa0zLh/lneWDdfbdtqRP9OqZt3yWTixO+2uwX43kbH4eb2vR5c2o2PrVSTevgQpDebPfzdCuEBKhIQJr/2xS+yKkKCsjMhg7CnquhZb9nzfuvRJ9lErtOi+jveS9p1Ngcbh3hGMqGOHaY3fCO55U5sgj+nNDFRtsbohLHjJ2mg/hug4fCo1Upf8qRovyXI2lbAJ91rCq2nHdgy7AbxpGBQsWMiilRdz5Z13x0SQkdQgPnmsUCgUivMLJdpON+kKDlZ/OOH9i0HMUlRFkZa+8RBmo9Y84+5zc2a5nDeRbBwhofdA0vwsZRA86bV/ttZD3X3CUhICkBJ3n2Ztb4ufCgFSTjI6epi12s0sbhtn7b4AYc/UWWIS0IXJYt9xbqx8lo+tH41FzmpLfSn7a4CmJeXG2dS1DjjEzrUr5s2qQCPZLmVW9ikJuKfo/znuO0rnuu/Qv/i3dK77DprpjMi5Jq3lSfecVNuO5P6n3vI8PNWpz2P8YD8AY0NOm5L+9uO079/L8//1o1gbq4xs5zyTx+eC5N6jKqdNoVAo4ijRdrpJ9mMrWQXrPmL9vOch2/Ji9rk6UsZXEAVQZ868VBSabSJX7/7024uqYcFaW7xJQCOrPMf+2VJj2qiwaioMwBAYBZJQpYnMjq6Lxk93svPX+EbCVJyYxDcSwZwiwoaUCODUeBH//7rvccviP3BJ7j0EAo0A+IOhlGVCCRiGtF5NSV1r3Cx2Y1URHpeGLiDDrfHJKxbP6rEkR+NmbZ9iE+5O36HBalsVAWEiRQTP2AIwdesmTJ2ithtBQG4a245cryXwatH5IB4qJyXGUGrVrHu+FeVLF4UDq7/o7qefAGDtjTc73ksenwtKa5Zz1Uc/Tvmqt3DVRz+ulkYVCoUiAZXTdtpJWsjqbbJyx/pehz987o0JtqRxp1lEo6yZ8bhIumz9dExVKTrYCmbiUplJVuE4mXN0xk95CVWaBN5ne7RZmo7gZZLgRgMtsXDSjrbN3V9PYGQnPYutzgVCSiRJwk2ImNJYUmwSCRtoQoKMxDoqbKwqwq3H89oE4NYFEogYMmV5dG15Ab+8ayM/3HGMk8MTHO4dmZXfWjQat/VgDzesnP+G7VOMND5rEG1b5UKaYUCQMVxOxvCHYoUImYFqqzdpGpp6hqlF5/+ShQsw9wWQ2e6U/bRMa9v4yNRLuqOD1i+peFEFQtORpoHQdIoXVbyh+/xLma5FVXdLMy/87EGMSISuQ00UL6pQwk2hUChslGg73aQsj5rw8neh5Zk3JNgAJAKBjAWj/tPYPKvjhmdbPTpvhRVNk1GvLgHlb4WOupRdg11BxvuLAZisMa1PTlS02YcCyKTmBHoERrLgUJUvHn1L0pTCMJEu3aoYRDDCZbjNJ9AFGFKjb3IFFcBzTb2OQgQJ3LhqPr/f121H3FKf7+HeEZ573eowsO+E5aw/GxF2x4ZFb1isTbYPM9bYx8Sh9JYfmYFq5h66g77lD4Mw6Vv2C+suhEGw4BDe0YVkDldbzeWTbDtq5+cxemQYN6AjkBLM0dTfc7QIwghP/RkomF8KWHlv0vZEk+bZSfqfqUXVhdbcXqFQKM4mSrSdbnpfS902cIwUb4bpEDpIE1O4eCB8HbVaO1uN9bNqFg9QPWeWuUltO1OFZGZBWnEZOJ5piy2Bt0XEjXWj7iD2Uqk2BEZCpyhDl3TNt3uDivSqTbriOXTBXh8/8d/A6Mh8lhYe4fDgEjaOFnJsqIMfvtSaMq9nX++Ntfc0JPxwxzEe/PC62Pu/3t3h2H821aNR3kj/0ViT+PD0v2fDMwqYVsWGiCQ8wwiB0pfJCtbgrXLmqjW0+3no1TbuxB3TyVNlBUa7MRTML6X3WPqiFX+PZdKbnPd2NphJlF2Ize0VCoXibKFE22knzddp/xHQ3VZ3hOnw5MD8i6BjFyAR0mSUbLYa67lBrweYUbgJAbesnqVFRWYRTgElYXyqL/L4fXmOa7hbDcJL4u+62wW+32gEN0iCZU4Pt1hSXjRkKBPei/5g7+PyGAwFw44P5pG+EQ52BdLOaiJJJDV3x/draPdzsNt5XE9ggl/t6ogJt0CgEb9/FwUFG+LttoBf7erg608dxJQyxf8tHY4m8dOgh3IAzRbGdjsJG/fcTLLy5qYcU9c6wGTYZI3tZhx7rCknF3irfHS3NHP41Z1TziG7oJDulmbaXtsT26bp+llJ+i+rXYUQwv5YiBRRVlqznCvvvJuWXa9Qs+FSFWVTKBSKBJRoO92UXEyyOW3vZDVdvltZIF+lZOKFqY8NjULnbtBcSBNCps5icYK/c70MwNu0AxBOFW4OLzIJ39zSxNKS3Jnzt8YHUuZKJL2w9FUGGTqeCSaEqkzC0V7yEjDA9xsdz3FBuNSIb4+eN7HjQbSiApzLpfY+rScX4zKa+MK67+ESESJVLp7q+CJm1kogVbglp+9luONRu982niB5xfToyVG+/KS1TPrOZf007v0QphlC0zysWf0wPt8aGtr9fP2pg7HcwMmw0/8tHdN5s0UZ9x3l5LJfAQZInYK26/CXPwOaNc7av5axoV6CjScpvmtVbIl0Y1URmoB+aRJvQ+HEU5GH74ZKvOV5dD75J8wpIrtC01i/+Va7XVR8n/yS0hnnfzro72hz+LD1d7Q5hJnKaVMoFIqpUdWjp5POevjTF3EIttBSnhq8l13H1/BU2yfoDS2d/hxmGEpWcrDkFu4Nf4hb9FeA+MpiNOKWiKMAEwjZImNGKjZZEcAoute2J0mNFmYVhym/aoA5F43AOycs7WDv5j1gRd8AwmVRgRaftB6OCjkZv5Hk6Js9eTHqZmnhEVwijK5JXCLCYl/LtP1FEynM9tDQbrXB2jXNM9h6sAe/fxemGQJMTDOM378LiHZScObOFWRN38TeDEZm7HdlVY+G7L86g1B2b4KxnbQUqAQZMZlsjQvUteUF5Ge6qcPAAMyUpEDIWFoYE3lltatwuVOLFAA0TY/toyX0Gh3s6uSxe78cswM5U7TsemXacWfTASLhsLV8Gg7T2XTgjM5HoVAoLiSUaDudtO1MilQJuny3YuBGomOg0xWqnfk83XupPfkHVultSKQjkrbVWD/j4SYziwzAMvu94V8se49lN8FHttjFCek/FlnFYYpXjEKxSVyYSswsGLkuQqgySUxEc82i0a+prD6i7wkIl4wzGspGs+9ZE5KDPbC7bXb5V7vb/Nz+wKvc/mAdR09N7fB/w8r5FBRssEx/EQihU1CwAYCR8dQkfv8MotFb5UO4pv9z0kM5jrXNsTmNIExb4JoMVvwRAOHSHHltH/7JLkqCJp8lI6aVYyvLAJpw7F9as5z3fe0fWbxuY8ocTCOeR1a5ep3jPSNy5kVSzYZLpx1n5ubGPhtSSmusUCgUCkAtj55eKjbZESR7LAQLSifQjlsREoAMkWDFIDRY+V44+IRdwRktwTTRzDDLS/IwTrrQpZVcHkGjRTo9vHRNIE0Zc1CL0tSdPgcsRmc97PsV7P2V1Q1BOwA5qflU5C+CIWcyf8TlDCmFayC8xGQkYpLRaG9MeAYOszkStoMz+oZg4ZwOQnZD9eghi/JOQNf0txNFAmEj+WnA2xa8zNp5+2jou5hXei9naUku0J/2HE09yabD6YVcIt7yPHw3VTG2u5dw12jaxhhWEQJTRuTC3iEyVhSSe0WZo3q0vm2Q9+LClpepB6bZVFqznDH/FFWsthDK8qUu9w73n6K7pfmMLUledM0NALGcteg4yvjIiOMzM511iUKhUPxPQ4m2041DmOhw+E+YvBUQSHR2jHycIncHJZ7DVjJ6028TLDckaFa7J1Nz853e1dwkh7lDf95q1SRho9ZMo1ET8yj7xs0r8QdD7Dh8kvqEaNSpkWmKHmI9RyeIqotgn0bw54+RNS9CVjGWoNS9UHJRimgz03mJaYALwpXRe8cpXJKFW0qem3VAvneE1XPeXLRH1wWaEERsk+GP1v6ct5ZaSfe1RYcQAupaayiq3IWUYUAiE/zgblg5n51HnIIunZBLZLJ9mMCWVmTEipxpuR7MYWd0zipCILWKwH4U+V1vQ1+YGiEty89k76kJW5jLuHCLPl9DptiEdLc003f8aMq5pJRs/+kDFC+qYF5lVYqY3r9tK00vbuO2e751RoVbsliLUla7Cl13YRgRdF1VjyoUCkUiSrSdTrZ9g8RqQPLmc6h9EzIhAUyi0zh6CzcW/rO1jxlxnqP2PTB3Gb8dqGRXnZeQMLlV34lbRgjjos5cTvWcbN69ZqHDiqJraJwBf2PMJqM4dwpbi856ePGf7EpWW7D1u+nYXow0La226Kp+suZK2PAJmAxgKbL4fZX2TDCcm+OMktnf+xmvCcbeIdNGmoDUJVJHywdnHMmUEDF1Xu2eeUk4kdvWlbGy1MfXnzrIZaV/jgm26GUuK60jJ+uTuN358Ylj2mPLo63++AC/e607ds6ZuiJMtgYswWYH+WKCLaHYwvCMxsyIY+9Fg4JSxzu6kLFdqYUIWV4X+zB4hBB34EFLVn0ytRDC8mBLX4xgRMLUP/WEVT2avExtv38mPdumM9e1kEmvCoVCoQAl2k4fnfXQ7kyqxpVJ0ExdghpzbEsKSQ0eg1sfpLLdj17/Ko1mDR8IfZmNWjN15nIaZQ3furwqxWts84pBNuV8D11EMKpcFC5KE6HY8xD84fMJkT2LwPFM25rNWmoNHM8kq3gYXvl3e4rCMcXQmAtM4TTXBTLqBZn7dUIVEcsOxO5LGiPd8mjidttcVwjLc615YBlPH7uBY4FKZotLE9y6ZiG/bTxBxJSsmbsvfgv2ZcrzTvBa3y7C84aIC1KNcHgodp71lUU8/Vo3JuDSsJdTp8Zb5bM61xtOoeGtzidzZTFDvz9md0TwIEnKj9MAUxIsPERmoBoZNh2RM69Loxad9xGPwiXHOicOD5KzwRKW3S3NHNj+zLTz7Xzd8kubioETHVO+92aYlbmuYVjRZsNQ5roKhUKRgCpEmInOetjyWdjyOevnqWhL44u18W+gZGXCBusLfUXOF/M1AAAgAElEQVTm8ynbYuSWAFbF4Dc3r8SlCRplDT8wNnMiZyXfeveqtOawPSdfQRcRdE2iC4Oek0kCsrM+rWCzSJYA8dy62H+a1QIhkOui9eIM65OTZN0hvZL+zyQItsQK0mg/1IR2VbFx4it2AQIwaTgrIDUB33r3Kq5dMS9tWphLE3xzs/W8H623REdD38Wxc8Yvb5DvOphQiAAgiUSsJdCo5Uc0TmVKZleNK5w/C7dG3jXl5GyYz5y7L2LexmtYtegBCgs2EfvTi9rUSRdZg8vi95oQOauel8tqdFxY3RCs2ToJtPXEKj87mw5MGWWLEgpOXaQBMD4y/XLwX0qiuW4kbEX0EpkMjqlCBIVCoZgCJdqmo7MeHnon7Pkp7Pkv+OmNUwu3ZPsMocO8FWRxyrFbntZFbfZzSQfb3/aaCy77bGzrHRsWcdflVpRpjWjhvcHHKfan6bgAbG2Zjyl1TAmm1NjakrSc17ZzCsFmebBZU7A81HyVQecOmg433g+L344/3xMXZEmEKgA3zk+V/QWsR6TDj22q10RNt2buAf5u3X+w2HccsMRTx8AYD354HdeumJdy/bsur+SODYt4ovFEcsArdu6oIFy1cJF92Xg+YXvHA3R1PUJd6wBGguWHJoSjp2k6go19EIkfoxdm4LupKh4tK88j78oyPCXZaHqGnZdmJQJmeqrIHV/tOF+0swHArWsWclAziACGvTTqSImTkv0dL/DYvV+iu6V56jwwoVGyeObetQAF8xfMar83isNqREoOvvAs3S3NdLc089yD32fPlicd+6tCBIVCoYhzQYg2IcTnhBBNQoiDQohHhBAZZ+XCbTvBSFjKMsPw9KfTC7ey9bD6gzjUzL5fsWzsxwgMorGRYXMBTWPXOo9d9k5Y91FY82Hamnfz6s++zKHd2wArAf6vtOf5tec+vuB6jCt23ZX2+oXZHsDOqcK0xwlUbLKjZVMQ9QsTSWpHc8FbPw3jAwRd6xD7vNZqYmqBJjI/+oP9ai+5AoQy9Ph70hJwOSO2MIkuv0qndZsQ4NIivH/pb2PC7XevWWWkn7hicUpv9R//+TgN7X76E4ow1s6LL48mvkozYPuyOYVsd/fjVmN6275Dt6N303ZDaB9mbHevY5sxMEFgSyuT7fGIVSDQSEPjB+jvfw5JXCyOh1sZztlF57pvM+6zigcSI21rywv42ic2UL+hGJnjTqphkDQP1dE6sg8jEonlohUucFYZ2zfNiD9NxFCkKvD1m2+d8n7fDKU1y6l4S9xqxDQMXvrlQ/z6G19k/7atjgihpuuqEEGhUCgSOO9FmxBiAfD/AeuklCuxbF3/6qxcPDNNdOXUYXjoprTCqbfoNhqC77MMdDUdTh2mxNXEHFe0Z6b15Xhs8q3xgzQ3VF8Lrz2K3PNTyl/+Mhtav0/llvdzaPc2PrSgj/vcD+HCQBcSlwzT9dqzKddeX/goLs1E08ClmVxUmLQ8WrYeaq5Pe5vBk14rRw0BUljjKBVvg7of4P/Rv9D+zYcJPpdJ8f/1kLVTw/uaiAu4xKXS5MrRaPhMQPFAiMWnslm7L8CyY2NoJmBKNGm9J2xfukQqfe18Yd33WOw7HvOfW1tewN2bqhwCJmJKPvXLBp4/1Bfblrw8Gn09MXjK9mVz/gl4vHNjOwpAFzPns022Bhz1J1GSTXL9/mi1ahS7YWt0fy1CsPAQCGekLXq/N3ozcI2m5qF59NR/w6y98ea0cx0bTCPakooRND1914XTRXa+UwB3HX491iUhitA0rv7YJ1U+m0KhUCRw3os2GxeQKawEpCyge4b9Tw/jU+QxGaGUHLamnV08+fA4dcO38dTgvfROLI4VJuTrUZMx68sxU8QT3pEmHH0OjEmE/b4mwEOEyEvf5R3ZR9CFGVvaM6XgC/W5NLTH7T26uh4hV29yzGcwyQw20PIL2oIvEshNjbZlzZ1E6BKERGiSrLkJdiHtfybYJ+lt8MWiYZ5WQf5jHooedON7VHcKN4kzCpckwLx6HhXVX8A3EkECJb0TlPZOsHp/gKJBe862iIiuUGoCXMJgaeERcjOs+UebqCevgvYOTzpaV73UdRkH+pfFThsVhCWZHfh8a1i29JsJR2tUlH881hFBAiFD8sMdx1KemeOeqnzp/5J0p+mtVZ2auKMLRy2Q1MnyLwNNYAxNOKJ0k+3DjL6UalYnEOS5i62fNc2y8cCy1bjk5tlFy0SSmbKU8oyZ7Ha3NKcWOaSpYBVCULyo4ozMQaFQKC5UznvRJqXsAv4V6AB6gICU0hFqEkJ8XAixRwix59SpU+lO85cx1ZKi7rHes+ltDfDSIy2YpgR0IrjomoxHCIaMaF9HSzEMicWxn5EGHPojUqY0J2L5yMuQWYTmysBEI4LO18IfYXekOpYYHwg00t7+YyvxPdoZCsGhoctiwi4QaKTxxH0cK/fSeJHPFm4C3JZvWFZxmEVXDjBn1QiLrhwgqzghGmSECBzPAukMoWX87Q2MXGct+4rknPUg+B7VnOLN/mKe397HIbmQZ7NXsvciH92lGfTOsyJFEU80OV84noW1ZCo4PLiE1n4rgb6udYBQZPpke4DFvuPUFh2KntaahoDqRTcBMD6eKCBMRkcPx3p9Rnnu9T5+tWuGaso0OXTemoJYTtuxP/+IQ4fusfMKNQqzrmTd2kdYtvQbxP4MNUHGikKrW0J9L/0/PsBk+zAN7X52bGud0gBjTtZCijMXIqXkhZ89GCtI8GZlI7SZ/8SLFpVTuKAMITSEEOiuM+OPFq0c7TrUNOO+pmGkFCkoFArF/3TOe9EmhCgANgOVQCmQLYT4YOI+UsoHpJTrpJTr5syZc/ouXrbeyudKZuP/st6z6Wrx24ItQdQkdD7Qcbrp65mZ1vJpdP5IRx/1aERIA7p6TvCblT/gaNl7+Y28kqOU4XZpbKwqssTY3g8xPtHmcNeo617L7w8Vc/uDdTS0+60emxggBKYAf77bmmd4NDaHaIsqh2BLmGEioUpJ25KnGXmXQeAOE+lL2j0LdK+JHnAmvnknDHwjEfyvb+e4rwBTwzEnV8hEyLhIg8RcNOs8/aMhvv3HZjZWFeFxaSl5bcksLTySWMQKQDDkpTdyPV1dj9De8aBj/5Mnn2FteQElec4lx60He6a8RrCxL61oi16y55XnaJv4V8CwPyImobZhTh3fQf/ADuJrqxHaPP/GePYRK78vbFK/o533/+hV/uNILwYyvXCTMMe7EKR09Ossq12F7nIhNG3aJc/+9uMMdnUipQlCcOWdd5+RZclo5ahCoVAo/jLOe9EGXAMcl1KeklZC0G+BS2c45vSRkZe67eXvwk9viOW1LagpQNcTE7k0do7cFWsOn6GNOg4vnJdhVWNqLhAahnARxkVEaoTRMYWGREPqHr5Qn8sj9e1UdDzBX2nb+LX3H/jdzW7WlhfYDc/jS5nRSNKkaeWkhSJW4/iCgg1o6LHcsYKh6VsyJeOrHHe0mppcYmASiX96oq8JuW2BS8HIi+bJWc8l5NUJ5HkoWHEVGdHyTlutGhocqc7BJCrWZEyIWilxkqWFRwD4U1Mv1fnH+cmtzXz5WoPl0+ScHR5cErtMlCz3JH+o+08OHf46yWpr7tzr+NWuDk4MTTi2T2WuO9k+TKhrNO17Ey1+JtuH6T35JLEeo/blRuc00D74ffr7E6JJEkLuE3Rc8k+M+44igd+83kPElBzA4N+YSC/aBJy0I4aJNhnRHqSX3fZBKldfknaOyUgpz1jFZrKI9GRmpeyj6S4QAt3lpvaKq87IPBQKheJC5UIw1+0ANgohsoBx4Gpgz1m7emYRqZn1WPlqP70RPvpHSqrWs2ixxvEWk6hqMXDFmsN3hNbYB0kEJnPyBq1q0XkroG0nRzMu5utPHWSdfJ06czkuXeNvKnr4RW8ZdeEKfuj6N9wYVmK8jLDs2E/hkmtsXzHnvISAy0t38Wr3eo4FKhkZD/OLxjyuH96EPrCFgqEwvpHUaEew303wpJesuZNpom0amdUljB+xKiS9LYJRwxZCiQa7CY/JKEncJmztJvFv2Mz8mkKqgxqTEWJKc7DAg6kl2HLEmyTEcvmiAmzt/BM07v00phmiSvPwjRt+wB0PpfjaxugfL2RO1mDs+UgJJe5tSGk6InAl8zbTG7meB15y2qpUz8lO64032T7MqQf3IyNJv4PoD3Z7KVdhJrFga0KHhJQS3PiBnFzyGGV7vkxuQlJgmzCZLM8lsy1BVGkwtCjAQGs8zTNRdJXWLKe0ZjnPPfj9dI8mBQFnzButtGY5V955d6zvKOCYl9B0rv7YJxgfGZmmW4JCoVD8z+W8j7RJKXcBvwEagQNYc37grFy8sx62/j1p177AsgCJFiQMdya8YUWJFmQe5dD42zHsVt/WOxo7G8rpbQ1YS6ybvsCyS65hydqr+YGxmRrRyafE4/ypNcS20QoAKkXS0tyINR4ZaXZul1blpSbMWFTqwT8f5/5nD9PdeBhXyKS1PIuueV7HYcF+Nx0vFHFqfy4dLxQR7I/7zR3PyaJxWR79c+NJ8J7jGgseluRu0fDuE84iBHBWkEaLAu0onztvMY17P8Sk0RybM8BIjgshIdkTNhohe32gJtYZIV8/iGmGABPTDDPP+zr33bKKixf6HCJsse84f7fuPyi2BVvUTsSUGi4tVbj2nvwTX33sV7QNOH3qrlme6gkH1rKojMgEu9tkEWYVIiy6+AMg9TS7RL3aUtd4JwpaGFrwInvtB1iLzr/LbKdgA7zLCpHVzn97Zebm0t3SzK4nH4vlt9VecZVjiXSqXLdob9LocaeT7pZmtv/0Adr37431P62+ZGPi1RkfGWHDu29Tgk2hUCjScCFE2pBS3gPcc9YvvO8Ru0fnFGhuqNhEb2uAjr7oF7sVTbti1UFY8x2afz6GUxsLDAMO1fVQYlcWNrT7aekb4a+05/kn908AeJt2AMLQIsuo1Hqd3+urPwzAXNdSBuVLjilJCRGpx6JSUZPY1+bOIVRjCa/BAkuULeiz7i140os0LKUlTWucVRyma14GrTWZgGRyuSUesl/WELokfzSMuSeDUKXJZG0kyd/Nmqx3v8DTIdDGwHdRkLnhSfzuA7bgknGxZzeLL+oPEXJpBPLdKf3kVxYfZrHvOMcClbjdBQihWRE5zc3u7gq+vuUghunM+XpraT0uLRI7x6lgIUWZfoQwWZiTWoAsZZjKvBaaByoS7gIeerWNa2tLUrzakqW8QFj5ifaxOZeX4i3Pw8saLir7Ce27fkbEbVmAjM3ZB8KABA+/5IhlYOFLNHVZUdo78JAuK23y8CDDAadHXOveBl742YMpraLe/41vU//UE4z5B1l1leUV2LLrFSLhEF3N8eIAIxI+I+2jmnZsx4iEY9do2rGdS26+leN7GzCMCJqmfNkUCoViOs77SNu5JelrufxSywi3eCksuwk++kcazCU8sfUohoxGTCQrsp6n9ubL6ArMx5ROwRYlaDcUb2j3c/sDr7K7zc8NupUjF40W3aDXs1FrRkPGj1z2Tlj3EQAWNB2kvCMhKiThRFcF9+/5dCwqpWvCam05d9I6i33yk3Pi0bb0lh8a3eWF1pztiwcvtfKy5q0ZRc9wObP7Y4LDVkgG5G7TyX1GZ0HPJEsGR/EFNdxFq2yLidTo0miWznC+K94VIWGJFCTvWfIUH1z+a9YVPoSUBkJoeAs/z5e2yJhFRyKVtiFvFJceRhMSTYAmrP3jjQ80wB0Tu9FbkkDYzg1MJnvNPAwgse5XJHQrkJNx77E5SzeRk7UCqYdiC+jOB5eKZrh4F5bALk7buMs6Td5wvmPTmH8w1irKiEQc9h3t+xvpO36UF372IMWLKnjvV+6jaEHS0q8QZ0Q8jQ35HeMTzQfp72gj+gykNGnasf2MRPkUCoXivwNKtE3HxXc4LT86d8P4EHhzoPpaGswl3P7AqxxsHoh+7QCCOW5LLMQLFKLvxcnKs0xi61oHCNvJWFsNqyI1GmXaaqynzlxOGBcmOrgyHW2uGOnBFV1OjPb4nNQTBBtcvWwuqxb6mBzJtHzg7JPPPRWPIEYtP7KuGUX/xCjhSgmYiPFR57xDEoRG34YVtN1Vw9jbJJM10voUaVHPEUAKfL/W8Ry3xFnGWy6BdR8j8P5/o2XgF3brKI3x8JUI4suGE1npKxyjlbVLC1q5YuHLWAliEikl7f09jpZTURb7jlOWFE3zaMm5etYzMyVkZ1XRyyc5PlyZci5d19K2sfKW5xF8W2ms9jMaZYvNO+Hntv0/pavg+wSLDjI6t5FU0RoXx9EDJ/KPcbWvHYBG0rcgk0gigYnY719omiPhP9G+I7HvZ6KYS1461bQzY66bbKo72NXJth//wNEgfv+2rTx+31eUcFMoFIo0KNE2HWXrYc2HiX2bmmFofxm6GmDLZ2h/9gcsC2rURqJfclak7VS4Atp2UlLl45YPZlCb9RxFeiuJX+Me2yS2IMsT8wR71LyaL4X/mpfMVXwp/Nc8al5No6zhTuOr9Kz9PNz5tMNqhNUfpmAo7OgqMG/RTVy80Mf6igJ0TaO1u46L8x5gdbmdXC9hUUcwtjQKAlbdxsjSWo7d5KFjRdzLLcOfUA4KuPs0xi416FreSkAcI3BbCOZXIAxhuVlInQUL7qC664Nkv2KLXU3DWHQd3PR/8HtGYkujhinZ2pHDvzR+loyiT5GXWU3UbC6ae+ZIk7OnocW0jUDT3FQt2ITXraVkhr21tD6mI6N0jZYSMV2x/qwgY+cbCx5lPv/BFQucnSQE8N61C6dsYzW3fwI9Fl9z9gT1lObEr93/cPyEgBkuSvKUTRKeAhAGwVJrPjnpimHsw4ZHT8XEuDRN9v7p91x5591cdtsHY0ujwJRirrRmOSuvfEf8lNI8I+a6ljh0ZmTIxL5lNsnRQYVCoVBYXBA5bWeT7pZmOpsOxKvXLr4dXnsEIhMkf2nWDGynJmyJKBH7UhW8HryGOYOZ1AIlkVco8f2Ipwe+wkBCsKT/xAgN7X6+uaXJUfX4qHk1j5pXO65TvfYqFrxrlVUYsfN+y9i3bD2s+wg+YM3rD9Lu0emKVLBzZD9joxpNw1VU5LXy+bXfwy3C9nKjNUd/gYfAYATfmIQb7yeoX0zHy3cgl1nmcKYp8ee7yazToQyrcZgBWbs0Jm4LEXfyBaMyg4V7/p7AyE+YO95L+d+9i+BFbjq8TyPDYdB1wt3dBPfupaBqA5rmwTBDGFLn0OAS2oYreM2/lFtq5hM4/FXHI5YSTFND18yE73UB6GRlVZCdVUl5SS6/vOsi6loHONI3wu9eS98sQwJPHNkMWN5tmfo411VsRzraZpn81bLH6BiZz7FApdWZwqVx65qFac852T7MRPNgUi/QuHiMtqLq6nqECdrjOwDHhkqpmtOf6jOXpM3CwLtwx5ZJE88vpRXbaxs96DiFEYnEEvoTiVqAOD7fNvMqq9B0HWmaZ8xcF5wieipUbptCoVCkR0XaEuhuaeaxe7/En3/9MI/d+yVriaZsPVz/bdLlYB0puooWt6XE4ktjAonOjmdCVoVoxSbQPSzOqHMcu3j13Fm5+uuasERDZz387GbY/o/Wa7T36bqPMLbxx9TVZ+Ka+wpXLXmBL6z9D8pzW6kpOIJLRHAWCgqGc900XJxP4B2fg3UfIfC7p/A0m1aalQFEBPpBjdArWRR/10Xu73WKv+vCc1xDHk5o/A54R8rJHK6hsPlS5phjTO58hshQMXO/+kPybvwkel4ZQ48/TsdHP4a7VbBm9cNkFv4v/v21v6VtuDJmFLxgwe14fR92psYBO7vfys9ffz9NA8toC15Obu5FgCQYPMqp/udoaPwA1fnH+dSV1WR54/8GebV7PaYtdEw0Hn79/RwLVHIsUMnhwSVcXf4S6SJXUT84Dbisuphf3rVxyijbZGsgoYbAWuONIC2HE7fGZGkbbW3/SWfnQ9FHD4BrdD572q7FlFbULyXgFhVuUuNY9wY+TwY6yXE8MKVJQ/8zDEwmCFW7o0Fmbq6jejRKac3ylOrM7pZmXvjZg5imidC0M2quayaXB6ehpLpGVY8qFApFGlSkLQGrus2KjhiRCE07tlNas5zejnG6Rt/NAs9BSjyHrZ2XvZPxyg+x/5i1jLMxFMZnZBKz9jDtCtE71sOdT1O0uwFtm8A0QdMFRQty2Khn4XFpTITjX2RrRAsbtWbqzOU0yhoW5mdaomHnTqvnqTQcvU8DB77HkcFDlFwyhtAkQgOXGeG6im0803YNRpWGJu0Qnx2uEkIgMWnreIAlgSqGnnwSFkBWnaXusnYJpF6Lp2olWn8LtBy1ctcw0cZtNaUBJuiRDDANvPo+9MLFnDpwOexvs66nrSJz4wqCL9+POdRK8Of3UPz5r3LZWz7PPxT4qWsdYGNVkXV/ex6i7PjTHLNrH6yZauzq3YBpSip8J1g5ZxcjIxESZY6UYbZv/yFlZR9HEC+uOBaoZO/Yfbz/on52d1fwUlf8GS8tPIJbizhaVUUxpc4R/xI8bo3PXlMzpWADOOX+IyfX/JGcvrUUdF2JiWQLIeYv8HHFtRMc7PmkbX7sVGa5p97CFTl9CJGap2YiEFIipUbP0N2YgcWxhVeJjAk375J8Dgf30Nq+P3ZscXkl2b585lZUpa0enYpYpwIpz4q5rhGJIIRIaRIfpetQE/u3beWia244I/NQKBSKCxUl2magtzXA755fimEssaw8ch+gNvt5QODp2YPAiyujmS/k/QN/GLiHnkgtUeEWrRClbD1dTXORshWwlrW6Wvysvb6Cr99Uy1eePIDEEmy/9HwLNxHCuPhA6Ms0Dtbw7T8288VVVsQOI2S9ZhZx9IX30L7AA/MhKyoW7WrLNXMPcLB/Ba2BcpYWtEZXRh3rU/2FLvL3PEaoLET/30Ziy6DZh8rQFn0RDy6MvBYGLvkOUjcZjQjyfqOh4bKiMoaGu2mC4J77Mf3d6GV3Q1b0I2UVLaAL3Is2Eho+Slb4FXjoJvjIFtaWr48Loj0PwZbPUJDrQuT7kJolLIUQ3HtDBqOn/hVBOCX3CcA0Ba2tbvbt28KaS6/icZdGOGLidmm8felcoJ/hiTACPaabPO6CWFsscAa3moc2UZC/hvVLpzeYbdv/U9omvwNFECyylifzu95OCya9CzJY590TtzaBhDVNMN3jlFT8yur6YFfIIgSGdPPM8U0syuuiu281K8KbyBNjdjGuRItm87k18q4pp2rSRUP97zEiETRNw991goHOdjqb9scEUSQ8s31Hopg6k0ujicuzw/2n2L9t65T7tux6RYk2hUKhSEKJtgRqr7iKphe3YRgRdN1F7RVX0fhsO9b3n2W8sWPkExS5O2D/ESrCf+AqbQNXunbiIUKhu9MWbRbRClGwK0ldGoZhousaC2oswdLUHYiJiY1aM24iuIQJMsJGrZlGo4Y/NfXyxRuvtAoR2nZCxSa6jv3QEmwAwo6/JPh8SQmXL6gjQ3e2Y3IYoCEJrZ1H6FSLJdjslc/IxXMg4EYgGC8+gtRN0EC6JOGr5zK/4Dr8x3aT07uW3IxNBLkfrWAxkYy1CQt4IvZ/b16EkmgjekNY95BYUNH8FAC+kQhFgyH6i6PPzSA0/BTIMJomE+w/IN93CSe6JEePFDMyYvWbDfa188jdN1HXOsC60i6CPX/DMTNEhXCzrOhTHB6owARCYT+maVXXGqbdfcG+4okhjfo2P7vb/DzReGLK5dGe/ifitynBv+g58rreTqHQuHnNQgryrfy9WKQt+vuRml0HasbdUaRg0M6NvLZ8B7owWFXQyoI9i8mS1Zao1CD38gVomW68VT685XmUkhfrMOD2ejnWUI80zaTlVjljh4Ppct1ON9EODd0tzbz+0vNEwmEr8ms6XIeZW1F1xuagUCgUFypKtCVQWrOc2+75VuzLS3OV0ravgQQXWCSCQ+NXcHj8KgxcrMEkx5cDOizL3MGh8asxcKHrOss2zqe3NUBXi58FNQVs/tzq2M9RY93EL9iovQfSirTVmdaX5/W1JVYOmy3YKFvPya5vwRhxX7RoKC0hkhY2dcpzT9lWH/F9pb3+qAkPc9d/grz8K2nyfxVpWP5qGT0lYLeF1MM58TCUgODcHoJDD0GRYLzgCN7RMjzV70C4PCku+1ZloMlY026yqlyWaNM91j0ksnwzHLN6cHrDzpwnf8hHptQRMuIQhNnZS1hQupm9jVtiW5cs0SmSj/LBNRvw+1/nmN01ARnhq9dO8p0/+xgdeY2KvPZYm6zoEmn0MV5fuZ1T48XkeMY44l9CXeuStKItI6uE4Fg8Xyyc08O47xi3XvUOLiovAApYs/phjhz9DoHA7ui00UY287uRDK4Wcf1c37OW9fP3ootQfC5mmJHSl8kKLEbDqqjVMt3kXVkGWHloTTu20/TiNkzTQNM0NE3HxIpSmqaJ1SFDzGq5MyqmzhYpUbfn/+T4Y/BmZZ+1uSgUCsWFghJtCSRXjjY8+mfbU0wnnmVlcCq8mAguoqGpUsNKeJ/nOcwthV+nMfdrjIkSWl87xYEXTmBETHSXxubPrWbt9RWOa64s9cV+bpQ1fCD0ZTZqzfQUrGNQLuGTtSV8cdWIVXwQmQRNgxvvJ7f4rQwGD9jTivqjWfORmBhSYyycja6ZcUViqwTDhGAkB91byejoYcJzhpgfupmB17aQsRc8PRG4yDrGcI9Y5xcSxzqikEgRYbzwEJml70RE3XBjRCN6Gq55F9PbcBzKL6Pgr/+3M8oGMbNg9v6c+Rk5dGuHbfNcN7g3Isd3xa5tvUi6e35DVmZcZPh8/QTHH+NYaxhN81Cz5Kt2pCuMprlZWfl2Vhw6xKalVjUtWI/FlPFZW7pX8qEVjwESQ7ooKF0FVKd8VhYW3Mng6IvWfdrHBZbWs2HDR2P7nDr1HIFAYptcwRFPNgH3kBXhlHgAACAASURBVJUWaF9/XvYpBCHHr0kIyXDpTvK6L8UbqEYiMIYmmGwfZmCyi8fv+wqRUCh2ZhNYddV15BXPITM315HTdr5WYiZG3Q6+8GxsSVd3uc/bOSsUCsW5RIk2m+6WZh6/7yuO5O0FngO4qCBiC5DcLIOxcTcnI4uxMvENBCYL3QfoCy+lK1TLQHghxwezgBFOJvSJNAyTQ3U9KZE2fzDkcHlolDUcFMt45H0b+T/RCM/O+y3BhgmmSeClv6PjLYXWe8L630BzPgOH8wDIKR1nctzFRZe/bu0jEwSXEOga5HpGERzg0OEDxJTYcgjVaPj2rIEhk2DeEcbH6rA6uZtx4QYgBUK6yPIvtzscJCNsESLx1FxPpHc/vb87jPe9bprNpCIEsISbbWGyNtCI37+LgoINPNfwEC7NiEXGokgZ4eixh1lYlkVgqIS8vD6ktHLITDNEODzEmtUPx87j861hjvcJXCKMpsXFkSk1NNseNxqkFER7uEbImHwEuCLl7rzdFWSfWs3Y3MbYtpyyXAKBRnp6nmR07Eg8whZD5/H9c5ifHY7qPARQntcJaLEG9jIqUIXJWOEhjgcqqZEuxup7CTae5OSSk0TCTqNgTdOZV1nF+MgIxYsqztpy5+nC+gwZCE3jqo9+/IKYs0KhUJxtlGiz6Ww6YH0RShlL3t6wKJPNxd/klcDt9IRXMBJ0ES+dNFjo2Y/M3IcAnhq8146+Jdm8JqxaHnqlB9OQsahbSZWPjVVFeN1W8ryuCd63roz3rEkyc63YFPfAAPw+HSkjiYZdhIZdBPusNc1gXxZz3zKALozYqmnxQIiBQg9SsxSB0y8rLuqkZjJQ/ieKcHFi3b8iRRhMDV/XFWSMVGB4RslcUEo47MdzqJzMQGoUKhYPs5fnpJS4imsI+Vs5+ovH+EDW2whFTDwuLW3OmM+3Bp9vDYFAIwU8awURnSu/gGDevKMIYWKaOj3dy4grSpNIZDh2niged0FM/EXFUftwGYf91dxQ8Xy6Ogf6+58nEGh0nAdAy3JR1PFOxor3gzAQmov80tU0NH7AFo+p9PApjgxVsqTgSCzSBqBhsvfkKi6e04TAtHx4bFGcPbiMgO8ogcIjZA8uJ3O4mrmZi2LPNUpJdY0junblnXenncP5iGUFYlvnSMn/Y++94+M6zyv/73vvzAAYlMGg9w4QYCdIilSnJEqiii1ZbpLL2o5Lskkcx3GStZPYVmI7dpJ1vM5uXGXHiteyJVuFtorVKVKkWQB2EpUgeiOAwaAMMDP3vu/vj3unASDVvPnYP875fERyZu7c8t6B5uA8z3NO56ED5FVUJYlbEkkkkcQSXPakrbXPUn0qwnpMylGK4Gg3h15+hGlzCyPmmiXvsohbnqMH3dlBx9wODJxYhG2Fb34sCxBpkyPTlAx1+iiq8dAxOsuqwkwKs1L5w+trV7aYKL8CVt0G7Vb/lnc6TJQNKhBSERhJBSTuwkUyigNoLjOm2tj9eJEmfxGnWkUHGOII0XzBCUBDCcN28pOE0y7gGbmatLkGqJhmcmgfsTGLpYgRCqUUSBNjohOAsZkgIZdEqlim58VsNXy+Q4AZz1ej+09JaWBxsd3OKZVUVunEO0j0D/yQ/PybE8jWpjKNwCQJql2nr57Na/+WXl8j8zMv0j9Tyi1VL1q+aAKUkpzs/BnXbo3tZ+7QCNO7z5Ema6k4+jnkVeMUrd+Jz3cIpZZGZVnISG+iqeiDaBxgLpQeVdrAshl5tncnz/ftpN7bxdqwh62ZQ9YgSMYgOY0/YVIzmJIOyls+S3HFLkpWNSWGvIfD0YgqIxzmxR9+B6XU67L8+K/CMuNqG5HpVSMUAqXoO3mMwbOneM8Xv/o7cd5JJJFEEr8ruKxJW2ufj/c/cJCQIblh8jCr4147sucAUApM4MocRnOUxr1qEaYTgbup1iR9izdGn4tuISCnJJ3JoXnAVndsES4yPfrQoX7+5vFIXI+fHasK2FzpjRLJhPLh1Z+CrufBDDGXmWKXKi3Stqp7jsa0Hg5VFZNx4yRCtyYtI64bSsFEnjNa4TRtYa17upYan5s07TRGhYoTCRXzBcewRkZNawAh7ywDOV2Uzn+cIcf3UbVhRI2T8pa/JiNtPeZoXHC9Bs5iB8ZQCCUFqBgjzG9eh2s4ZsuxUqZnBF7vtmhfmrUHCSiE0CkqvJa+/nMoFUYIB1mZa/BNxzzLlDI4eeqTeLLWUVn5CTyeZtZW76DF9wBKBaO365aqvXRM3crXX1kFrAKgNruXBu+56L6ebxtjQPbzvm0VBPtmmN59DqRiwdNNILud9HAlPt8hnM5srD5HY9m1zM130uj4NV9+x9W8evw5FAJNKKSCfUPbOT9TzZfvXocvEOKqxTamHD+3VM5SYZemQWkG/pL9uPvXM9rVEVtuXWfdjTcz8WBvzAPNHkSIREK9XvJzMWL1Vrdfqf0gsn1JQxM3fOjjPP/9f49uH++TmEQSSSSRhIXLmrRFEgmkgpTw/ApbCMBAhoeWkLZIO7xG28LOqF89SKobnBSurqS0wUv7wZEoaQOoWp9HYVVWtKft4acT8xWfOT3CqqLMKJFMKB+WXwEffhJ/z89pN58AZHRidDbTSVbpJjJyHQh9wiKH9hCmkkR72ZRQeIfDzEg3++c2kpIXxFlzBkOpCB+KXTbW5GesF06hRIjRlJ+itLD1WBoEctpJO18XfV9qUw6pq3KYPzIKGAhNoITAWb6doK+HMi3MTz62fTkpXQEeTzPNm37MyMjjDI/8wh4KsQhZX/8PGB+vxOFYYOJCBSkpHVRWJb4/FBrlwsQoE5N72Nz8EB5PM40Nn6e94wso23IDFaa9/xXAyt6s9Zyn2tNrH8fqeds/tJWH2k+zqiiT+p65KGEb2PI1lGYwAdCjoWkuMjLqmZtbKezcpKPzfu5o/ikDY9cQls/iECaG0vnN8BV84toa3retgtY+HxeOHEHLDoOmrEmFOASz+hgK7o0lCwjB2htuYf3O28irqGLgzKk3PYgw3NnGw/d/DmkaaLqD995/aaXrUkRsKVYKq4/f9v+VoW8SSSSRxP+fcFmTtu01ubgcGqGwZEF3X3xDLTXuQUxRUwpGyaQcgYbC4dBovnsjAEOdPvLLM9F0gTQVmi5ovqUyOoDQ2ufjzLA/4TC3rS1OIJIrlQ99aogoI7Ph11N59rDAlTNN3Z1EqqEoCYt+F+7soF1GBV+hCzSD7VpL7HIivVU+BzInTiUSKna5NnkzXFPWa5FBhKnG2Pa2gud/sge1xLoDQLhcDFQ08ujRwRVCwVaGx9N8kbKjSX6+ZVacnT3K4EATSokE09zoaakwPt8hPJ5mwuFpsExP7GEEQftUfXTbVTld0V5AS8i0rkMqxcGeSdbWFLCQ3c1Yw0MoLa6vEImUixchbJHzMPH5DrFzw7383SPjVGd10jFVT2nBVj57e1NU+b3OXcS9W5woaYDSMJVCs89p0XOeoPgeGcUVzI2koDssP0EgSoIGzpzihg99nIXZ2Tc0iHDkl48iTev+S9PgyC8f5a6//LuLbn/mlZeiE6yvpei9loFv/OsAmh67riSSSCKJJCxc1qRtc6WXL9y5hsd/+RirPeOYs1F/2QS4XFNLaJL1jS6UotzQrS94ITA2emkfmaXjZ92YhkTTYgRvKUk52DOJGbdTTcCqIssE1eVYoXxoZ4963Sasz4x1sSNYdNZgGCbGWBoz/Rl4qucsFUmDNG8IIaFkbJGFKSdTTY6Yg0mcSz8KHH4noXjShgAZmaRQiRehFNn9O5cNIgTbp6KKndWzpUAaOAsN/B/537z31TlCpqWq/Lx1kJ9+/OLZnhFYZceVewWFrQqWlZ8lEMgkPX25YiOEE693G2CVXCUulAyhEPyk7d3RcPhiTypzofTouQthLdVVJYcZCtSyvSaXmcUTDGz+Z5RYedjgUhBCx+vdRpXHy/VrbuQ7e6sAOOef4GtPt5GZ5iQYljznr6So5VNsy+mmZ6qeBSCv7ldU5rYDCqVM1t/exOChTBq2XRUlSidfeIYXfvDtaOj7G+0Jm5uauuTjeAx3tnFmz/PRx68V8v56DHzX7LiZ+Wkf6dle1lx/Y7I0mkQSSSSxBJc1aQOY6drPfzq+gjPD4IXsOs5MFy7bJhgwcGXEWU7EpQpYQpXVeH/85AUOtF3gKsNhDRzEpYFLO7oqorRtr8lF1wRGXPnrYM8kf3JD3crlw959+N0mIwVO0ucM5jOdgEJIyDg7iMByzg8vJN5SYbeUpQQha9JkyrRf12KWE9Y1gW56gIXoe10zZSg9CEA4fTy6XUSd81U9Q+Z4cyJxk9id/hKkQbhvP+Hhw+R+8G0cSC0hbMZ6sV5rECG6XXiaaNipdVXWtcf7CgNud4ywud11GMYc7rRy6ur+OjqQ4PE0k1X6bX78yuO0TdZxzl8NQHXWee5pPElD5t5l/LDIk8oX7lzD5kovZx5/EZUZjs2cJJSUE5coERqrGu6PnseZkZmEV7+7t4etVV4UsAad9+IihEY9TiQwGyhiNqcbJax6d3/HfqbGPQw9eIa8iiqAKGEDS/k6vPtR7v6riytlS7HuxpsZPdeZ8PhiSAh/F4I1O3a+Jsm6mIHvGymzJpFEEklczrisSVtrn4/5jpdxalZ01BrPGG0zRciEPiINPWU12YVupscCMZuFCFOIs11QQJ9mcpWwllUTIHSBlCohugosle8f7lrL53efRkqFQ4+papsrvcuIjL+wkNZ1mah4SzQFhW0GL5xdFT0vX5eH3FXTsaECpdCETk7d+xmeyCD3mw+xsE0SuMqOphL2pehgOGawDmD1soWyBl5jBZXV0xZP2jRB9l21BLv7mfz+N1CGgaOgCWdNM163K4EPOXRxyUGECGIDCXbCwZKBj6W3BCAQ6AY0DGN62f4aizLZ2VRIx37rca3nPJ/ZYpnuCuzhDfsoUgkODeQxc/gsm4YXCS/4IQtr4RRLFEiNDl81Re4xslxzCedTWnIvpaX3RR/ftraYfV0TcSsJh3t9AFzv6WNsy/9CiTBTNbp1G4UJUsfruhqfsZ+cVVN463yce9rqYwOihC2CnqOHGe5se90EKJL12XnoAA3brrpk9mf5mnVomo6pVDTy7bVwsaGF1+p3SyKJJJJIwsJlTdoO9kyy32jij10ORgJp9AW8rLnpBhZGfZw7OwaYaI5yZHgQd1YOMxNpmEZC7Q+wrDwkcNZlEs5xsb88jcqxMJV+k2vf28DifDjBUDeCVUWZ6MLWj1YyCYuDzzWL0pfrN1PCjRllcorAmBvfuUxyGmbtZwTlru14KMJ/8iDqvEaowSIaYolDSbhyIfZErPoa22aphKT0xJ42DbLvqiVjWzEZ24pxFPwtsy/Ng9KY3bNAZuAxGuedtOdUAXCDPS37WogMJPT0/BtTvv2ATPBaE8uXxYZEylg/G4Dff5Sjxz5IpgzxP65w8rXDf0yDt2uZ6W5k35pQvL/xUcrm6ggPHmFy9S+je9dDHswUf3RtJJJ6z7moHhjZjxBOiovfkXBmh89PXvR6Aznt1uSoZtmlqAgxlJKFmUFwm9a9Q5FZuhAtS8b3hEVO4I0SoPU7b3sDQe3WYklpMtHf+6aHFv6rAuuTSCKJJH7fcVmTtu01uXxDrOIrs+8iZ7gfqQTaS69Q78lAmfOAgWmOAXDu0EFcme9Cc5QAEndgFN0MMZmngcPHCd3NYE4N5tYcBgXoTal88JVZGgdmycxJXfH4B3smMaRCYZVSL1UqtHqy4hiUTfKK02vRdYFhWmUzd2EAb71F2CLGuhem91J39CkyHRnMk46rUyQMF8TImFryOHa4zOErMcumwWEiw0Hc7hryxt+G8OdEz9G9tYiMbcXRx8JRCPRauwmbNHX38U/nXuB/XPNHtOdULe9SW5KvGg+Pp5mamj9j+tgRTHMx4bWLEzeBpsX62cDyfospdmEavF3MhdKXJS5E1w/QNYNQTjuL3o7Ibq3ydzxhs4cghGaJb/Hvz83dkeAX97Wn23ji+PBKJwzAvqlarqxx4JAmKM1ydxESlMZiag+RVkGloLH5fVHyc+NH/pDnH/hW9EI0/Y0ToEimKXDJvrKBM6cwbWM8JSUv/vA7lzTEvZSa9l8ZWJ9EEkkk8fuMlfKHLhtsrvTyresMdoUORPu7lGkys3ABMJdsbSLDg/a/BXkTp8mfOsXbzR/yycx/4Nvuv6ModwapgdIEpgb9BU7aD4xwaHcPu79xjNGe2LToaI+f8tEwFUpHF7ymZ5nH00xl9p0xKQio7A9QN3iQ+mIHmk2BMooDEYePKAJuB/4MgbdmjoyNlbjOa3ge1q1LjFiCRBCvqtn/uSfWMlt8iIBsIxDqZNEcJHPfNWQ6EgmBqyQj4XFKjQfhsMut0sSc6MQpDd7Z+TIABZkpsY3tQQte/DL8cBf87P3Wc0vWoHnTjzGNq1FKENdSFUe4dIRtwSKETkP93yUQpkipFXSEcNLlqyfDNY+KxG4tXQ4FpnTgmmokZbYicY2suiWpk2s5dyG2FvGVcwVMTr6C3x+Lu/r1mVEuhXP+ak60fJqcc++gouWzlLf8Nbkdd5B2vgClxfYvBAyd38dwpzWxujA7a2fA8rr7zOIx3NnGI3//OU6+8AwnX3iGR/7+b6L7XgqrPBr734eSMlqmXQlpmZlEmiFXIpMlDU1se8d7koQtiSSSSOISuKxJG8Ca8EnS9YhyY30bl7onYsOZUehozrLoo/7ym+ipvJ3nw59jIlyPE4Nr/CdwaprdTibIEgLTsIxuIykIoz1+9jzUzuNfb2XglRHeM+viL5qrVoxzWoq6+XIaOwPk+MI0ds5R17fA3pFy2gaNSPgRcyNuhNQTlTTAl50Cuou5TVcC4N6vk/WwjjSWiK3Snp+N2IAEswjktkUNXhGAZjJR9hThkfmEMqoMJJrKplRmkfexdQi9h8D+f0X6LIuOK8faWOfv557m2HrSuy+Wr6pMaH+Sgf/4KPuefIiBgVhvncfTzOrVX+HUyV1MTlrvT1TITBQm1pSltIcYSHh/86YfU1vzabY0/19uWn8THVP1GFJDSoEmI4zL+suRuolB/V8wb7wVrSR2rZFtJBq/HFvHYCgTU2lxmaYiJmTaVh8R7FpTlHBOVblu9CUfuFf8lWSevxOnv5bU6Xrc/nXI3FgGhbDvRVrVEZ78zp8z3NkWLTMKTcPhdL5hy4x49QzANI2LErGShiZu+oM/QtN1ayBHc+DOrllx2+HONl784XdRdlSVnnq9rVgnkUQSSSTxRnBZl0cBOmZcmIvp9iPri/Yp40YqM/IIzh4gIkVpzsrENwpL8jCV4LTvJq4v7uUTO64j6Pbw2Pg0Sih+1ZhC9miIsikDXddITXey+xvHMOI8zJQJa8L66+rtGsoOMV6QQsH4IqVjQUCjay4veu5WT1sa2t57SFvdbcdRKYTU8WashV3v49zPR6gCzGrJzLtNcMRxOwGu+RJCmTGSJFNn4ncfJSzz+cdYmO5CdxSiDIlwaKQs6dkDi7h537WRmSe+Ht2NhuLLVSE2XCJfdYBiHpRvx2zpRD/ew4c+9CHKy8sBKC8v57rrPsyJk/9EXt5gzFNt2UCCtO1CEhGfSZqZ1m31nWF7vEUJmcDbextrdn6FHZVZALS+NJOgsikFw/P5XN/4CxwijELQ4athZL6Y/pky7m18DIdm4tQTS7Sfvd1Sk359ZpRda4r47O1NPHSony/sPo1pl8sXPd0cLmml3DWLU9nRYsL63CRcpwB3wYyVlfuO97ylMmP5mnXouh7ti9Nfo7y6fudtCD2fl//zBYRexv5fzJJf6V/Wu3nmlZei/m+gMENjCZPUSSSRRBJJvD5c9qQtNzjJy7bNR66rmIK0Sgq0eqaCPcTXCmX4HKFwL66Md6HpEVsQS2Xokjew9ua3c6Sknkc7B6NNVoau6C1wsEZ3sPPDaxjq9GEay01nAzOv7fk1NPRT2i88AF4HU9kZUHcTpambqS8M2pFbMbmpr3+KHaE/IZjdQyCnnUzfQTyhFgIHzlA0vB2BINigQAdNs0z33WlVlGR8gFCLYKD5S9aOosa6WpQwxPe/TfAcaz72zwR7/KTUeEixyU08gn0zGNN5ZH/gT5n+z38DpRBOJ/W3XJe4YfkVULGNgb7z9FKGn0xMdKvfzzTp7e2NkjaALVu2kJX1Ufr6T6KUYTf8L1XdtGVK21Jsr8mlvas7al4bk8cEuuEm2OPnNCYHeyZZr4tYQpXdRzexUEBx+ii6Bkop6rJ7eazrLs75qxmaK+Gq8n7+8m33Lguc/+ztTVHy1trn4/SwnxsbC8jPTKEotYtVjn9D10xCQPTTET8UQqz8qqfIKLmKN9iNf/x6UNLQxHu++FUO736Ued8U6268+TXfPzmSgZ5i9R+apuLoc33c/kfrL/keIUTCJHUSSSSRRBKvD5c9aVvUCpFo5KaUsqPoXjShIxHsRzC6eIjclAIKUisYX+xnMjiMsXCEAv84mqOMqaJdIDQkGod7s/n24oi1UxEx34WqcYOazSVRVUF3aBiGTPjy7T89yWjPcoUiHuPjz8Y9UnRNHEFMmVz39s9AVjGnn/k5C+FY3a5v7iQ5oQUKuEBp+DSBCzp9L2Xilmet85D5oI1Ge/kWjpVTcNVG9PfWMn78KYIZsR6s9ImNeLwbmZp9lUVvzMcrUg7NuiFGpuIR7Jth4oFTqLBEmfVo2dWYvh6Is6bwPfwws889T+YtN3OOtTzNFiuXE4mGRAoNXdepqqpatv+Ghl3ANzl85JsUFnajlELTHPbyGwjhSFC4LoYOXz23KQdCGmhW1z9COdCNTM46HuJHP8ukRuoEthzAEefPVpr9YdLySghMnLS4nrBUxFU5XZzzV3POX81Hb3w7Hk/FRY/d2ufj3d85EE2rcjk0/vnWDvSQXLHXMMorI57HAgo2TBDQfgk0/VY8z/pOHsU0DCYe7L3kcMFwZxsjnS8hDetzK8ODnGstY7Qnlvwx3NnG5GB/wvuad21JqmxJJJFEEm8Clz1pm6+5BniJgtRyNKGj2Qnr+Sn54H0fV2flowkNqUz2jP6MyeB5RtMVmmrDGVqDcJah6YJ/PdHHwGQKrM6O1ueubF+kbNLgxIv91GzMp6jGw12f3sRQp4+x8zOcP2H5dJmmov3gyCW/yAoKbmXKtw+UQiHobS/gRMcM7x68l7rb/4UWw2ITFvm8D11oCGGQ5zoEIUlg3G3FlQKatwbH6ibgCaskKCGj8wC93ztO1Y/+g+ot99DefjRKFDIm1pN54jrMEmmRNvv51JlKS2VbQWEDCPb4URFlUeg48hqQvh6kYdD13F4qOjsZ/eL9AJwcGaHliq1EpC4JbOY0npotVO34YILKFo+Ghl0Egz2MX3ic9PQSyst20dH5D6/39vPY0UE6fVV8veVPWZXTxXWFOjVpA6SZtVxY/RBmKMx7mh1kDl/FTKSvT4JzvoRgeJyc6hALNpWKlGgjqQpbq7y8b9vFCRvAPz3TlhAvGjIk3zqQxWeaNRzakmEYWwUUS/oVAfr6HyA//2YGznRjhMOgFEY4/IYtP16vZ1qEHBphA1SESkpY1Dn7aglFNTdGBxsSbEgAV+rSSLIkkkgiiSReD34vBhGEENlCiF8IIdqFEG1CiCt/G/tt7fPxved/Q3FojvGFfqQykcpEKUlQwrp0L7pN5DShUZBaQcQWQwrwjj+Ld7qD2s5HcE+dQ8waaOMLlMya3NES4KZTVrqANKH9oKXCFdV4KG3w4va40CKZWQraD4xEp0uHO9s49PgjCZN7paX30Zj/MfRxncG9RUy2ezGU4PB4AQd2P2GXBQVVGWvRhY4QGignfSM3MBzIxF0QtHy/AD2vgTRfI0I6QWogdYy6NEbvM9l38CFG2lvthQeUwHTOWRYXrrmE8qFMmV+xjy2C6PSoNZaLMdGJAgzNwfDgBcb/5X8CcK6mhpYtm+3apk2AgCLNx7U7dl6UsIFVNh6/8HWgh/n5V5kcfMLOKVXLBgCW4vj4cTqDu9HS+jjnr2YulE5u5q+YdR5jPPUxpAojhEQJw+p5U07rxgsIZwwz4XqaoeFHEMIJ9vSpEIp7Gx+j1nOeE4N+Wvt8yz5z//5yd/T5/qnAsvPqnq7iJ+3vSiz1xk/1mkRtP2KKrcLnO2RNaUbeqBShRedFr38lxA8zXMwzbbizjQM/f8gmh5LYGDKAyeyFE0CMACZAaBcdWEgiiSSSSOLS+H1R2r4J/Fop9S4hhAu4RLr768f5Yy/zH9qXOZ+WxbOLbvaM/JTC1AqytFTWZW9Dt5NIlVIopRhf7Ac7iV0DpgpvQ3OWMZ3dwPq0oxzdmgcajCtBgT9RJQn4rc6k0R4/u79xbFlvm5RWzJU0hnnk7/8G0wijO5y854v/GFU6Std9DrH3OMfbZ4iwp3NzuTDnIzelBG/2KibcLjKEnyKVjQJSHRs4M/1JmjzpFN56gKCeTaDTR9pUNWVHPsNMyW/wl+5jcfUcCtDUE7S2b6auToBuh8JPN4GOZaRb47BYqHBQfN0dF1XZIDY9On90jMn+EX5TupYJTwELLjfvfP5RJDCRm0vr5maiTWlAZEz1SXk9p144w86dxcuI28DAAL29vWjysQTVaXHkIFq6bnErTaOvLxVdH1j2/uPjx/n4cx8naIZwV+hcNXkP7256OE68MgEdKTV05SBr+Cqyhq9isnY3gdzTcSqXyaS6lYK0ScILh9CEwiFMVuV00eOvTvDeiwwbSKVwOTR+8rHt3L2xlO/s7Yke9br6PA73TrEpayg6aBBB+uhGQkP9TJfN4y4MJvS4RfJVu/tPx12l4NjzHdRvu3TpPR6v5ZkWU9jCy43tooe1ng8G5pe9pOnVHHhsbsWBhSSSSCKJJC6N33nSJoTIAq4DPgyglErozX4ruFI/i5MwXn+YbSPDTGb40NUgPsRu/gAAIABJREFUgU2fsWw7bBKhlOT83CkmF4dBKTwLQUTKBhadZSAECp2e1Wvs6CiBIeDZTWncemyBsklbabC/fCPDCEu/7zTNas4+9Nj/xTSs8pFphDnzykuUNDTh9x/F5zuE9+a3sebUNznpK4juNDelhNUlt/Nsykkks7Qxzm2hTRSRjVKKxuwrUUAgZT0Z15UxetMgzq98nfT6XThzckGYVtkNAImeEmL2iVpKsvykFtxDxb33ADB+Ygo0hVWgXT5QsRI6RmfJOjJKqhRcV3s7uwf2se78vujr4wUFqATCloi+vj5+8IMf0NjYyNVXX015eTkDAwM8+OCDmKZJUYGLugYss1nAMdRI82ILvdm5vDxzE/6ZfvbtezBh+hSgZayFkBlCIWlarOKj+T3MxZMkBf6FzUwMlXDd1Brc/noUipxzdxHwtoNmoAQYps53Wxtw6oJPbTqKhoGhdDqm6lFA19gs//5yN163iy/sPh3Nmg3ZuasXmyQ125eL4ObMIKGNPty2YhpvKpyZYe1nMVCA9WNtkU6hlb3hSc2LZYSCpZ5dkrABmXkbGe5so+XJJ5a95kjbimHI5PRoEkkkkcSbwO88aQNqgAvAfwghNgCtwKeUUtFf44UQnwA+AVBRcekeoniUbrwFefQbWL1gJRQVXcmCt455XUfZPUoAUklC5iLXFb2bwfl2esRJEN24jGE0ZykAYRXz0ELBcI6DH+/I5P0v9lAy0kVgei2wntIGL8MFTs7l6FSNG1FS13hVMdIYprslsZw3fv4cZ47+K2PT30FhIoSL6vs+zpnvvoxpWidYkFpBj2Mc025aM5VkVPNRaHgQNguJENC5vUPMlaXzs/V3854ZH8VTjaAcoAyr2qY0ZqYLye/rx9kb4MRnVrPeVtN6x/ejZiJTlibnDz3IyHQN67eVrri+rX0+frm7jY9IFwKBUynunJ1i0RezFEkJBmNWHxeNo4L29nY6Ozv5yEc+wokTJzDsstvoaD0FMhuz8CQTF8q5MN7I+5RgZl7gl/ko1MrTp4VbcOkuFo0Q6+dXobnjYqXsUvPqU7fwuL8cBy7mPF0s5LQzvrCavPR/Y057hM7h8+wb2k73dDWagD0Tn2fGf4iOqfpoEP0Tx4cRgK4JzLjmNU3Eclcjk6SR0unw9AIXhrfy3pL9EOlrkzrS9IA2YWWjRjizvWYzsydpab2XmYX34cp8FzI8iOYsQ3OUEFzin/dWkFB+XQFCy8GV6mDgzKmoL1vcq9ZfClLT31jZNokkkkgiid8P0uYAmoFPKqUOCSG+CXwW+HxkA6XU94DvAWzZsuXi3yhLUX4Fiw1/gTz9Eu7VfwWajhMrD1yiuLDYjy6czIQmacreDkBRWjXpDi+nfHsJL+zByQ40Rwn3DD7Hwbr3oWz/NoTA1BQ92ecJB/rZL5ykn6pGc+Tx4HWZGCh0CR/YM0PZpEHArXPmleeWfSHOzB1neHJ3tP9NqRDnp/Yh7eZvoWksVKTREbZjkey3pyjr1gohrPKu5fkPKKoG5/nrzBqMdBOX30FFy2cZKXmJfv0CY2O1zMzmc3RLAT+uvpl71sbsGyZmR8iMOzfTOc3ju9sIF7lX9Jl77OggM1JaLepKIqSJnOiw3fAsBFNSsEM+o88VFRUxOro8NUBKyf79++nq6oo+JxAERzbSMZ6PEtYIQ3fmXeRuzEftP22vmWJxMTH6amPBRr5/y/d5oOUFLnSXkhFeYKZkXxxJ0ghnDLIrp409oVRqGn+OEiEcPEF6ygeZnD5AZVaY0sxhhuZK6J2t4d1X3sY/PVPFOX9iH5vCiinTNYGUCk0T/MNdaxPWrLXPx/sfOEjIkDg0AaKakpa/4PaSI2hA5tCVdOhPkWb3+ytTMLknl+pd2cyZ3dZRlEnBpodYmP4rFidjMWBDnYnn81Ywdr7nkq8rOcWRJ77BTX/wCYSmLyFuyiaTJSzOJ4cRkkgiiSTeKH4fSNsgMKiUikhQv8AibW8ZgWPHGPxuC3rTh3FpeiwCCKtnPy/VUma8LsvBPkKAGrO3MbzQxeTiCKG5R9ic5WJEA2f7DGaZG+FJQQKalKQuzvHw2z6Cqeu8Oh6kYbgPo8RpRV2h6CtwUjppcL5zijJt+ZdrRnEgoXKoFEwO9qOklfGppGRgbhiVGkenFARF7EsxnrhFHmuAS7Nuf+p0LTNzDrqd5+zXQSEIedPxBWKV6AJHHgtx37VayEOrNMi7SGZqwazBR0iNtl4tnH+ZkK/H0lt0HZSiYHISXdOioWG6rnPHHXcw1n6Ig8fOMBFIJLGzs7PIOMuQBllCvVlMpz6MUhYxLS/eQE9wKuF9Bw4coLGxcVlv247UIraYpWh+gWf4OvxlL9stdZLxph8DJtWIWGi7MhmaftCqhNuB7qtyuqgttRIt6gszOdy7/D7qNlHzBUJsr8ldtl4HeyYJGRKpLIL33ivK2TxbQtHZ1aAUAU8XaZtOR73oBg8UUtITYC7UA5GBFgEoiTu/g8XJ2ui+07NTeCMY7mxbsadtuLONM3uef833K2myMDvLljvv5sgvH41fBTRnGQ6HlvRpSyKJJJJ4E/idJ21KqVEhxIAQYpVSqgO4CTj729j33N7TpG79JLExTkuViZA3yyVfRMlO9DUFjZ5t7A8+AUhCWi+u27+OuZCNxPoOvScjk/qTvTydV4qpO0AIJIr2Eie6sgYPdAmV42HLRaK7m565luXnOOK2SmEiVj1cmEglboyT0OggorIpql9pCArCzmjIOIBUJpqw8wjirhGsWc3Kykpahs/Z12k9nypMvG4XH//PFtIvLPBHxgaGm59GaQZSOvjB8GY6nYovrpCZ2trno3TGwImVBqoEpNbdDMPHLK8208TV2Mja++4le/wCHTINFXKwYd16GDvLwm9+wF2yjzGtkKfUDpRS6LrOusomRgdHkCg0NNbWNBLs9CccO2VVDowlkjalVEKJNDKI8LHBd6CrCgTgGb6amZL9KGHYC25GcqgiC2UnISiEcGBKial0zvkb+OKVJzh27P9wR+21/PRwUYKNB0BzRTarijITyNpwZ1vUyLZi49W4HG7ChsTp0Li3JIecJ3psTzaNYE4nmqasvkkJBcYc3qIFZpf0FgpNJ3BhVcJzlWsunmm7FJfyeVtpGlTYv+zEEg8EmsNBWmYmBx/7Wew5Zw1O91bW7thC4/biZD9bEkkkkcSbwO88abPxSeAn9uRoD/CR38ZOR2UF2ZpAiyhRNplRcSXKyL/Fkkb5wtQqajLW0zN7gjGzglPeWswFqy/KAE61D3HBN8lUSV3sTbYj6oaeIJ6ApOqCQdmkCQjM8AByWQ8QBMbcTHZkk796mi7RwFm1hvy8IdzEJkj1hXlqx8M4cq2orXqzmELhQaKQSjK5OIiuOclJKYqpbnHXKJVkJq6hLHKpm3IMHv7VswybWdyqckilhvKWzxLIaYfiq9iwfQ1/uIJqFJmSbJIam3Gj2aVZDYVue7UpINTezuiXvkxq2ZVs2/ABANr3tvMbVweKreg08yH5GH+wJY1ez5VUVVWhH17kttAmRrVpimQ22YMOjms+i1gLi4AOL15gw4YNHD16NKrKaZqWYNAbGUTINmIKZTBjENdsGc5gNukT6xmzlbbYlKZF2JV0Eki5h8WFdsbDV/LFXaksTPwjlsHLPr5+x1/wF09VJVS6j/Ra5c9IxuxwZxsP3/9ZpJ31OXquk/u23E2obhv3NJdR+monCypS0oa0qUaQOgoDZQo47yTFt8is9fGJmfcog5SsoQSl7Y2UIi/l02aFvifC7SkFx7UEZ/tASwW5SG5FA+P9FywPNxuao5iaTeuThC2JJJJI4i3g98KnTSl1XCm1RSm1Xil1t1LqLTfptPb5ONzTZwspibJIPEGLTZCqBLLj0FxsydtFTcZ66o6fxxiI9VmhFJ0l6byyqZaBoiXZl0LQnJfBH+bn8IFba3E4NYQGzpQKdMfKzdkLE6l00sg/cj+/EPfx3cZPM1SYWOYbnz7FNaXrucZoolBlg8Dyl9ME+WnleFOKAEs1jF2fAinRUEz19SWkNAAs+CfZoA9xq6udTjGNATj9taSfv4MjgWr+5Ia6ZYSttc8XnZI8hcm/soiBHeOuJKbt1RZdYcPAWbzJugZthgPOTqQChYaBzn6a6e3uoCotQHl5OaPDcxRKDxuMSgqlBzVvUCy9aGgIBbpmpSeUl5dz++23x1TTJaR7S+EW1gXr2Tq3BgBf6R7GVv+IoKeHuYKjpK7JpSr1M5ZSGeeR5h7fxIn2d+EIPkq2foLalAcIze5O2HdV+hG+cve6hBB4BYTtiVGwyJGMC2dHKYLHXuXRo4Nc+NnDXPjWl1CGEf3MpfhrGHt2IyNH8ul+qgJHr4brvIbn5zqa4Uo4TmZZa/Sx7nhjkVEX82kb7mzj5Qe/v2z7xUABplGII+0KHCnrcaRdgf9CNh2HdKwivAB0NEcZ509MsPsbx6J+hEkkkUQSSbwx/L4obb91HDjQwlrTyqWMV9esvqiI2pT4hb9UdVNKsTZ9E8b849S3t6CvucWKl1cKibCCPSO+DPbfGpBWlUnmmCK3NCOakFDasJnxHi8vPPCtBBKZ0+ij7JpRfsWVGDiQQkdpMFBSQ+nYIACmO5PaK26mxzHFjHOSYsNLoYr4p1nnqgmBVBIzxSSztpCFMxMIoVklVKFRInM4Sk/U39aKt1K2OKhY0Kb5lJnJJnSOYXLm+Czu6uxljv8HeyYTpiR/RZgeJJvQyR08xC2+noTfFCby8+lPH0J32p54RHrHrBNpF3V0TCv0J/dy5wXJZE8aMnWWUW2aYumlUHkoVB5uDzczWWPSdGtztAS6sLAQXculE6QbCzby+ZK/wtETRCCYK2yJXy5mvYepD30V37kjsT43FIH8E1wbymJGGFa5Upr4gh7i3eoKCm5FGpkJAxcAuq5FJ0ajprVx9zo1aFIz1kPpL/4dqRRjrf+GXnEVulJ0LrQxos3DYB4A4ZQQoRrFzLtNlMsmf/auFn3WPfEWu7nxg01v2O5jJZ+2FY1yATN4HN1Vh+YoSXxBFOPMSJxiBZJ2H0kkkUQSbwGXLWnL7ziKIC3huVjDvu0Pan9RR/60qNhScVJwcPUa/mn1Tiu8W8DNbp1nFuSK1ghOYP7RPg5OGjgcGnd9ehObd1Ux2uOn+2h/wlvchQHKrhlFaLBanMGBQRiBUJC2uICm67hqGplwuDk12g/0gwaOVJ27iq/H22P15UX7sBA4gg4Wz1r9Xkra1vo2CXWrFOZFMOF8lQIlBAupOXTPm5whpg49c3okStpa+3wc7JnE63ahaxDvHawBuhDkbFyHOJMCwSATeXkMXX8dHQ6HvcLDdpVPICPM0SZvSliDCu1nugioCn7jOmH3tAnuCG2mUFkEYM5c4MT+5yFjgvINO0hLS7y/Sx9XrWti4tAplCHJmthKIC9mTOvVr2dkz7NQhN0XGMkClSwSQikdU5oYSsdIfR+NlbczPv4sBQW3Ulp6H0+83I25xMru+ob8qDJZ0tDE6o1bOXvscJTUj6bns36yB00ppt0pHMoLIRdeiXzMIn+gO5zUv/teFhZ3o5znif+MAuQ0vMjcyEayC7e9KXK0kk9bRIEzDcPqYZORz7dpEbOlpO1iSNp9JJFEEkm8aVy2pM0xK+idO0tNxgaAZb1s8e78mtfFdHiQyeExqjLXJmx3OnCUp7duJ2jrKkrCOekEgjGFzUYOgiuPzFE6YSkWEdUBYPc3jhFaSMcaYzARmsBbraJBAUrBOo5xTGxDaYKXr7mTvIU5srTUiCwWbZQ3lWSiOIT3fEqUrEUvi8h1KowRK25osrSSZ1wnLZ83iHPZxypVpnqYm12usgTDZjSOKd6uIr4Jfy063xTpOBSImVTSPvUF2n70TfZcdy2mpiWstVKwyigCIejUR2zyZp2QQlBQUUTLxBgyEiWmFF36CEh4ytmKHFEwojiGyYePfZzR+j9LON94G5Hj48dpmWnh6uvXk9eXRuXaj5JdVhslXrLVTU/zZ1EibJG2yE2QOkcnPJgTO/F4xvj1xDZu3FZPaWkdpaX3RffvdbvQBJhxa/FK5wVa+3xR4pZXVGypnSg0h5Om226jXJoYbc8ymZGGjL/5CSPEkqn//DHu3BnEaoVyaXZsmWn9tqGZZFUeILVwBL/fwONpXnbv3ihKGpq44UMfp/PQAQqqajj69G5M0wQ0UjIrKan3MtThIzLYK41hQrO/AExY1HFlvitK7JJ2H0kkkUQSbw6/Fz1t/y+w2ORk1nElHXOW71SEiI2FTUz7sQLQIb1Z59DJX/CrpmpOZsesQfyhCXrmTlE+3INuhEEqlJQM9i7xGLP3PaUkT29y87/u9PDiujQ0IUhNd3L4yR4MQ6I5SnBlvYviVVehaToL0yEQ0Kka+Kq4n1ZxhUWi7NSF86U1ticcCX1XmqZRt3EV2XdbQxBSybhTifS0aTiKN+Ao3sCoNoOMKkkxj7cIF9QXp9npaCdfzCVc1uFeH/d9/yCPHR2M2lWETZVA2prR0ZVCA0xDMtkfYjwvzyJsmt3zZCeta0pR1dtHnVFAg1lMvsoiluUkcBYXU1m3pEcQxYjmQ4rIQQUmGvvNdYwMD61474+PH+d/PvFlzKfGSXlxjsXuafxP9uAZ3EHt9JfwDO5gavSARdg0BUKilD2EgEKimJvNZ3BgLc45N163K2H/rX0+/uHJM0iV6BdsmlZP23BnG8989X5efXo3SkmQkvVbtvPJ+27m7vfv4uCffplZZw5aJIF+CaRpMpGi4zoHuf/bRdHENaxquB+ECyU1lBRkVx9AZf6Yo8c+iN9/dMV1eCOI9LT1nz7B0ad3W6elFCgIL5qMdPupXJcXO8fwIFYqQ0yNiyCptCWRRBJJvDlctkrb2rffwG9OPoJiJ52LBl5dMK/8nFzIxKtDuUuQU5xO3XtXsW/Pk3zxo39O2OHkYSX41pEA66dNumaOAIrSsQFuOPA0RxquYm7SSe3oWc4WbMPULC+yHP8EU94CK/JKV8y6NQ40pRKoS0d7pAsjbJMqAa7UMgqqJKNdJo5Uq3zZpq3BwIFlha9ASYRSpIWDWExCRN+PgpoyqxGfcujqOEjKCY1MhzdBTbScSzSEEDZJs8iTjoaJB5iMiTyAhqJIm+GCmZGwjmHDMs91OTTChkTXLMUxbFpmso6KLMK9QRQKA2jP81Do83FWSqvQGiFuUlE9eAFH6c08k3ISiUTTBLoykFjX3br/CCXOomgJVUNQb5bYSpVmEU9bbmynFmZiZFXXdTZssFTV0Vc7+XLPn6JZpi7WsoUl07vPRUmSO6sRUe1EScv+Qwib1EqJxzPK7Gw+oPAGZxO87CDmuaawS8Oate5Oh0aTPsXPv/Q1jFCIuOZJThzaT1NnG3t86Xy13wlb/5hPH3+QYiagqIDUNWvpPd6KlCa6ppEXNEHXcQ3omMfW0jZSzsDEp0nN7cDpniK7dh8gkTKMz3foLattCVOlCWRSIsODmK4S3B4XmoaltmmpxCir5c8G1lNJpS2JJJJI4s3hsiVtTQs15LpvAWn5p3X0HcNXVk/YOctUip8UmY3Tm0tKZRZHS1dhCIHSNAypaM3RWTsdxh+eAGCosIyXr7odQ3dAAQTHnNy4/ylevOZtSCHwZ+WgK2WVyiJf1AqOOyWl5U6ae6w+snSPi613VOMtLOTMy08wP5qBkhM0ibM4hIGhBMqUKF1DahqvbLiGrJP7KVriwJ8WjikZekkqHXtfZUvurXFlXavcJgSMMc1vXF1RL7oKM5/zboWweUgkYQpgVFrt9npc2c/p0HhncxnvbC6L9rTd/8vTtjamGHTr/KW+wDpTYwbFu7LKWPc3/4yn/SDHlIPzk6N2L6BOg1nEqMNS/ZRd/mw0hhiXpUw6HUwvzDC9MMM6owIXDoqllwKZhQRuDzXzqn6WaS2QKG8BpaWl7Nq1i/LycoZePcnqw4VRuhaxHLba1WKqVpq/jvKWvyaQ044eymC88SGUMBBKZ9ZfDFKhS5N3H/w13huvAmLWLttrchNI7I5VBeRnprCmxMOpV59KsMKIlD6VkvS88CzPpFwJwK29v2HLeCeHa0uQgVn01sPc+LH/zsLsLOVr1pE9v8jkAz+gf/wsAwWDzI9lsDhVT+BCLam55/BUvYpwCITQ8Xq3vZ4fiUuifM06NE3DVArNJtrW9KtFyDRN0Li9mAv9s4x2d2AE9oBlMY3DbaWGIEga6yaRRBJJvAVctqQt2ONHoINmTXtStIGRkB9/zikUEh8aled15g7lse5YCOemVAypcCjYMmUisDI/J4MjDJTUYOq6pRpJRTA/i8UFvyWAaRoSRc7wGJOlxVjKWGyi9GyZk009iwgE89Mh9v6sk3d8pjk6wZdb7KAweIr/9swD7Cm5ge6qRqwmfYGpwbAnzyJttsomgA3NG4FYScsIhkBKGh01pMxO4azYZl070OUYjfaIoeC8PoaKm0UQcfuN4J1lBoH+TrSSOj509w42V3qjvW17OsYJmxYRMiQ8f3YMXQMpdP5VuXGe9THTqeG+aye9Tz0cJYTbQ3UUOgLo0oOGZsVeAaP+O5jLGASmo+fYrg+x1aijUFpN9hpWK5dfCyy/0UqR53RSXl7OcGcbgz9voSS1LsE0OXptmi0tapbyl+avI81vkbGUuTLCGwa5MNOIebadtVPHKBwfJ3dqCu/Bl+C266KH3Fzp5Scf286jRwf5ResgL7SNWbtGULDg4m6lEn/w7NJw6sv7eOfdjewDrhk+xVRcX5spTWY6O7jmj/8csNI8pnpfZOHPDPL0PnL5FfOjTQhhT4/aquoSp5O3CGt9lFKUrbmBke5FNEcZmrMkmp0bmjuEsdiF5VYIoChvSmPVlatYnA9T2uBNTo4mkUQSSbxJXLakLaXGg3BqyLDVfj9hCMIpfpTd2yWVZFRMkbN/kHWTBt8+EqAlR6d5KszaaROpJOOLVvB5+fB5dNPEFAJNaFyjDBg8h7b5Bus5qVjQ7BSDSM3RVr0yRmOZmNIYxlgY5OGXJWLnWq668Q7y6eDwc7uRpkZPZQMJkwkIUsO2JBax6gDaxrpxDaQzHLFpENAzd5KZ2YNsdm/Bs1SKiiCuNy56iGgKhGKzOM+JhXxy9v2KfGUi+/bj31RKK/W8/4GDLIblsl0qwJRwM05c2NOhhuKlfXsSyOKgPkVj3noKleK24AaOmVPML3hwGB5SFoOEXdPRcwsLkwPODgSCJmmF1XfpI1H/2/g+MCEldbNWL97YwXaKUmoSzk/atia6Q8dzZw0yYJBS4yFwdIz5Q7HexLTZeirWvJPVlVlkefbi/MtH0EwDAfgffxzP3Xfh3rQpuv3mSi8HeyYxTKvXzxLxlMUJlyxySsigcDZAyDdM4798js994osc6F3HXf3P2YuoEApy5mKfFf8TuwnWmaBLhGZtk1FsBYWkF52N2735WyyPWmVNJSWDZ14m1fNe0IrQdY3c4jkevv/LcckIESjqmitYc23pWzp+EkkkkUQSl/EgQkplFn0fqOeBVSa7UyR5ed1UV7eSlTVhK0uCIunFPzeDMkOs84X5SPc8TnOEjpQB9oz9nMmgFdJeOjbAfc/8mD/xONm9uZ6/9J1j7ZBVOo18PytUwvEzA5KiMzO4By11KDJt1+fp518qsvhazwjvPNbBT1s/j/C+yuzVeUgtborRllAmMmzVIo6HtbS08KMf/QhXQTF6xCsOmMh005o2bdU3bdSZhbHzXN7zbr9mvVDoXGStNoiuTDQUmjI5daSVgz2TBFcgbBGsRucOnDY/U4w7/AzNJA5rBETI5qMahSqbbaqaAmWV0dIWinGEsmLXaZ9+rz520VOOYFV3N7XXXA1AejATIURCFusvcp5noHmOvI+tI2NbMVk3lJNSmYW7uRDhtH48FrznmL/tAIvZ3bT2+Xgl6KTt7XcxmWt5rinDIHD4yLJjR8qk8RS5dHF42bqGnA76c7M4VFvClEOjtK+N48XVnC4riG0qoG3GGmKIIKUzNnUbUdQS/35z5dHhzjYOPf5IwrGCgfmEbZQ0KVsVoKzRyzXvqWe0+9AKhM3CwuzsGzp+EkkkkUQSK+OyVdpa/PO8b2SIUKUHZ4Xkc/JX1IuzZCmNUydvZm4mnwkxR7k+RuDAEzhy6glOdPFScQOnG25hV87VFGpPovJ6mR9J550FBdS1/IaZkR7OTI5wurYRJbRoebTe18Wpgs0oTUcH/k9tGXnrXBx8sgdO+THtabuBkipMzdJiQgr2qmup19rJlDNEJy3jEFOXSCBupmky5PNz84btHNnzHBMZaSAEE+ER2tJ7qSlppq/7CBPTg5CbaCkR520L4TA4nNHXa0uyMYd1UCam0Fm3dTOeylx0TWDE9YSVmhpNQR0BXJmi49RF9DQn8hdhSaZFg1kSuwAh8OqCqzNg/5zCZ4Km4j6q9mFyQnmAQgkRDY2P2oTY5HbxmmuiClhgwk8a+bFhDCW4e+pGnl9ziqsrb084n5TKLPI+to7JcwcYFP+MDIcZPPojvt/yEermAvhcOu037GDHy3vIm5xEz15e8ttc6eULd67h80+civYAjrhL0WadYIRBCNymIqBZ5yuByYxUyquKeNtLz9q/UsXuS29XG4Nf+lve/fmvkH33XfgffxznXhfh66di8agJt1KhpGJyaA7P66xIxmePaprGmh03U1hdQ+tTTyzbtu/MPLrTx0iXn6Lq4Ap7A02PpSokkUQSSSTx1vBbV9qEEH8qhPid7zR+abSDoJRIoRESgrPaKtAUQkg82aMoFIdcnbi2V6Pmh1g89xzHc1207NjJxz2Z3JwfomTXMYqvuEDtnX1MntpN5/e+ze4Hv8vJC0OIxQl0aSKkiW6arO08zn2/+gHF3T2sljq5JRnUZZ/nuiv3klHYY0/XaZQPn0eTyu4dEuwVN9JZDp+JAAAgAElEQVSpGuilmmh51YYDxaqxgQS7j6WouvlWiueCCa+3dU/xzP7jHO9+3PI5i9iGxJG+SC/bqMpCIaJTpCXVNTxV8nYOea/gqZK346msZ3Oll49dUx09tWsXHNw3m8LGkM6GkE6toTMmpv8/9t48Oo7rvvP93FvdjUZjaTT2HSA2EtzBVRslarUcS94t2Y4TOc6L40lenBcrMxNn4liZOJO8M3Em22Q8diJZiRPbimxZlmzZWihxFSUu4IaFALGT2LduAN3o7qp754+q3gDKz47p8+Kj/urwAF1dy723iqovf8v3yzljmCkRxOfzZYyxvbqF3Xt3pzgbdjRMAqUueyDSypTVqLD81MVrmIhbRCxFuS7kXbHdVFp+knlioH7GJPjSaaIjIYqDpc7cRPKnBxfNo+VcDzkNhcSahlA6Dii0jrO5qMf2UhUCJSXT5eUgJdbi9a2ZFsKx5G0RwMEDe/nI5/8bm3fuQSqHsEGyrq0ktEL48b8lh5Bda7kGCT9QX0cH9U9+laa5/RjH97MyuZnY0vp5aG1x+pXnMqyjJgeDnPnB8HXtpNZ6j154+QVeefxLmZZbDpQZQWtbyqSgdCfSMDK+F0YNO+7/9Dqh3iyyyCKLLP5t+FlE2iqBU0KIs8DjwA/1WnPPfweY6fouuug9NjlCUqCXQEu0FgQXK+xCbhSdY5fJe/B9PF7fyommjWgh+G0FX5gZpFqaNlExNL59IUI73FT5pljo91M9Pc6jJ1/guCeXuvEhaqbGuFZRx8yGeiYMiw929vF7+o9o0d3U3mFgzu9n8EiYmqkxWqd76K3aakdftOQod3BY3EUi0iYti30Lk1ReHaByyQlZJRsGUgX2y8vLzJWW4rnnTug6l5y7ivWj5TSgHKK1JkyXhgEqmDajbHPb6czBrnPkyRK7Vk1rTg7OcXlyia8ctS2wbjbDbHOtEFd+PHE7vNOvFpnwODIeSLbKjakLaMgb04hy0lLJOPcFqtzCrjdcrWTVN2XPH8Feq4UKJ31p4YgAC8WMkUrFbYvX0Wq20P/KVWY6eykTfiopStOqsxHwvvW/MdzuIlsAV4MQbroX22nVK7bsilKUT08jXC58+/Ze9/j0TtJEp211Q4DLoRVUspNYU7oUpnVqgUA4ypXyolTtogPhfE73A4329bH8yitMb/m/mL22E2/pIPUH/zvIFMHSWrI02Za0jpocDPLs/+jEjNuSKrd/pC2j3izhfGDG48morlJqnfi0kAZubz1I255r820dWNH7uPDyC6lrWxOU1aUbfGWRRRZZZPHT4IaTNq31HwghPgfcB/wK8LdCiKeAf9BaD9zo6/1bEcKHQKGFneobstqR12JcHmtlScVAK8Bi/sXXefTjv0U8YeYuBDGp6CzIJ924R221cAuLUlYp2Rhk6AfNPPDhhyj59jNMTY2hga62nZguwz6HsujSbbSKS2itMALHaHkQjl+4mf6KTfZJtUY6LgVK2MehFNsun+Hg0iyLUUfvKq2BYN+23bx58TQa6O3tpb+vjz0nTiELDJSQdpOFOUIiyOoOzhH3l3I90qYBrzDxmhFEQkVEWdwWPkfOwgRq0WB5pJovXraL7cvEMm15lwk7Ug9F89txxQuYdy1iOgRRaUVsJIQhDZS2EAiWiTA4OkaF4XG0RFJdnUWG5LZ8yflwIQPzOyjJC9IuiqnURbZPghBIrRmJWUzoQZTHbiQRGnKEh2ljme97zqNWNNIj+IXYTip0IElAlFDM+kPXfUaCwbNc7vuvaG0CBpvaPsev5u/gxPNPoZ0OXoTA/773ZTQhpKN9fphv5vdxobSZzffcxO6GAON9PawW5iG13QghtU4SNoCS5UgqDS4E0nBx9yd+PSn3kYhcLb34EgBRjy04vDrXTHDoVoqaj9hcUAkWh25hda6ZaNiuN7vWt5DUBVRKc+TrfZTU5Cc7OhPeo12HD9H12su2LpzLRcf9D3Lme99BWRbSMLj7E5+ivOkWxzfX7ghV5l1cPPRDdMIWAc3UUDfb7txz3bXJIossssjiJ8PPpKZNa62FEJPAJHbvfwB4Wgjxktb6P/0srvmTomXaxCiyMLUEJEfcN3Og/oeUhHOJ9d5N/sobyOUTDFTfauuvJaIeDpFq8x7OPKGTXhQAhqb53bupbmvn7vfDkz3dzPgLuLRxF4lomVCKTaoL5fQWXBFtdMstzO4sdciVQGiL2znE7RzmqLoLU4BhWVTMTjJ480FiXedSch9ATXElOeaK/dJ0LKIsSzHn96PVMpkRNfvFakRW8I1eRhe3Uuurp1QV8Ka7HwuFQhBfjbN5+SKmtxYQSCnwhJfsRgQUJ984jXI6EytliKRHp1bEPIsY8QI6RR5tSIS2I20tZhV1nhpGrav0GRNcNsbpX5jkA+33UHjJSkYLU9Ewzc48NysrftSSn7J8IxlNTDhXXFuN4x84jtzfjpISqTWVZiH97vEM26uTZic18zGqfE1U+1qRSLacqSK6O0ROQ2ZUaGLiGbROCOdazM4dxrta6yyhQAvBdFkZWzdfP/0X7uxk9Fc+gScWY7fbzRm+QLC1nItf+TO7Zsztokl48A2NMJdv+6IGwlGWvB5wCLYQkrs/8etsv+ed685fcN+9rBw/TmCxj6XCRtCa4Mgt+BtfB2mhlUFo5BaApF3aWjcCpfU6A/cEKVxZXGBlYZ66LdvI8eVx9yc+tY44rpXvsKVUEpBcPmmw9WAwK/ORRRZZZHEDcMNJmxDi08AjwCzw98B/1FrHhRAS6Af+XZC2//ip3+f4N/6Rk+VbQUiUlvSIzby7/RkueQP0j1UiV4q5pbcboRQ6LVX1Tr4LAp7lfWzWXbSoPvplG916C+100aQH+NZLBivP/QH94xdxKYuxTdtS3Z9KUTY7ydXeCkrap1koLeNPeQxTuJBYuARYKFxC8c7ccfwX/Xzo4hOMVW/Auxrm1dsewDJcsOMAt/WfZ/PECBLBgYY9TA4etQeZlspa8uWiV1Yy0m2pIjaFEVlBXztHxDvHudJ7uajbiRpBJqwCblo5h1lRQ4Js1ni8LFtRW2wYWBE5yTOurrG/8vnzmN0a4MxADGLtPCwj1KpiKoSf8wsmvnyvLW7rROAm5CKFRgHaVEC6e4NN4g7UTjLZUAdTEsbjdtpSKSLLs7RMPIdfFFEW38WkEaIyXkCg/w3Y3Jg2Z43QksX4DEWWLbA7LUJMsEDTUYPNDbdkPCPR2EzG59nZV6irfa9tyaU1QmvKZ2ZY7e7hegi/eQodszXyrGiMS987xPNVxeyLm6AVSkrc9bV0x1ZQTsRw87VZLtXYDRb2Giimhgave/7Aww8zeriLq/FbSAjZrs5uYOb8hyluOc9s3w5W55oByPPb92lmLLOTUwqxTux2vK+Hp/7os7ZcDDA50AdC4HK7+dDn/iRJ2CYHgxmRtrGuixkpVMOzBWQVvScnsqQtiyyyyOIG4GcRaSsF3q+1HknfqLVWQogHfgbX+7dh7E3aF7/PqfJ2xxJJsVl00a/b+GrTuzE3uJDqNszm8xk6CkIrwtrHfxOPYeLChcUvBp/hn4vf63w2+bXxv+FdR18h4jagpBApRFLLzQQQksmyGv6p+D9gXvp7IqWFmLjsFKjW3MkrTt2VQaT047zWFOGyHCYvskwo348pDTuaISXHWndya6iQ20I5uGvyOXYh7aXs1EtN1TXgG45gRNPFZ21SIGQxWs0jgIXVq7y50sUZ9y4wfdTEpqiQs8RFdXINomYudz7ya7zy+JewLIvb508w7ylh0ltJo5MWSzQxrIbCHMzxcfCd2xifDrH79DzCiYyFLCiO+W37KScCVzYvCB//C1wVu9HVe/B4fBnDdU9dYnf0t4i+83lmvmVH2RCCvIIy3EY1nu334tUGlVYJGouYuUrdmVfo27fZoTSS/e4OyipvZyIywJQM8oKnE4Xi3MAwBWN1tv2XgxxP2ZqHRhOJOLWBCa09ra+r0wbg27cX4fFgxWKYwuB8aTMhj5d90rB93aVkbnYmKaCrgLHiwnX1bD8KS417UAMGCAOURXXtJfx7nkLrOBUdXXgDowRHbqZh60YmB4P0Hp9IPR4Sbv9I2zpC1XX4UJKwpaauMWMxug4forqtncnBIN/54lksS2MYgvc+uitVDxeLAwZGzuYfaw5ZZJFFFln8ePhZ1LT94Y/47vohif8fMHb+NWJsTCTiAPsd3IPt86mlXU3W4y1KvlTRGuHsnSBZptacDrRlfJ6uqmR8xziRSS9SaxRQMznKQ889zok9dzFc22J3HGKwus3PZn2J7woTU2tcWDTqAZ7kVzG1i1fGBMg82GC/ACVkRP2UgL6KOj4QjNE/eRUrkRpNl74AjIJSiI6uWQWFVvNpnyTXvHalntsQfKxkhlB/iLiutK+sFcsDb9KjYyhlr4OhLWpWxykXNWw2iwnmXHPqASWuqJ+uI+O43JIHD9agHEmQKYKY+XMERDHvjHUwKReoUsUUX/UR8ZbhrrsZpMsZfiLiplHBUSiMY73xJYTno+ioN/m9rN5nk+r0/WPLVPm38QvRbUy6QlSqgF0L55jLj4v5pGWWhWJ4eJi6ujrGxsYYHh6mouJW4CkS6v5CuBnpMm3vTef5mC4vp3RxkfCbp9aTto4O6p94nP4Xj/CHQ24uFzXgNgQdn/os1uVTdL32MrNLiyQfPg3B3JzkZ8uXj5Xnp3Tz9rd8jktdi0jlQQmQ2qK2qZuQ0+0qDChqPoy/8QTL4WpW+7Yk7wFA4/bSdaK34309XHr1xbe83sVDL7LljrvoOy2wHB0Ty9L0npzg4EfterjuY6e4/IYBogrDZdtbZZFFFllk8dPjbavTNkwt02UTKAwQEksbHFZ30XR1ClmnUAKEsuivbUwRNq15RH+ZBjHKYe5y1O0VDQzRzTaEtnBhsVl0UX3LFOMnKijpjhN1GUz786iZGuOWM69ytaoRCwMXJpvlJdpEH7+vH+MIdyCE4DwdmLhTIStIkq+3lLBVmiqrCAMwlVonwisMFyiNlusjOFZuHqavkBHsiJkAPrSnDv9QLyuRFXyjfZi+AlzhJYxImIkri3bdnVZoBBGZw+a4gdsspGh+O3HPIu5YEe54IXF3iLBnkWOjQfLcS3hMFyfdfTZJYoRfiO1ih9nodEeCu2YPGC479YnOSLeZpY8QnB9k6uVZ3Bt6cFV3JL8fkoW0aA3KAq2JXXkR77YPg3RRgbCjb4m8LbBqhRmfuQzVdjRNSkljYyNjY2M8+eSTWJaFYRg89NBfodRxZ59b+fprJ+0TOGubE40iDOMtu0d9HR2YxY1c/spJMBWbgt0MvzhLSVE+SlkZ9zZDZy83j3D9RpCS7716mNL6xowoYAL1d25j17f/iPm8DRSvDFH/yQ/TvXICpaLguD0gLXzFfZQV3YaUKbI1emmOycHMerOxroso9dZCyVpZdB0+hDvv7ut+X93WTnVbO1sPZqZOs8giiyyy+OnxtiVtjTsOUPG9x5EBC6Xtsvpjxh1UR7/P3isnGQ4UUzOzzNlNu1MECE0do4yJeiwMNAKF5AXxIJbtmMkv8Tit9EE5tDwwipouoEs5kQYh7Ijb80/Q27EDf91iUi93lHoOi3tQa7s4NXYr5LrtKTKzMWSBIdjQ0cZdegcvdnamCJuzX83oCFc9kkwxN4nKyydc2wJCUI6kIr5M0CjkA7tqOTG1CcFrGJEVjEhCEd/A8GxmJlCBf/IVBIrb50/QV15BI3W444W443ZBf9wdYrH4AqDoXhy2fV7djiRJso5tnnJVaE9TCrhlG6ovnkyj6tgKhicPISRog2DoXnJvOgDSQGuLRUswEtOMxjRTcUVHqAtPLIRw+0AaCCntZgWdalxQ2mJo+SJBGQKRmQIdHh7Gsiy01liWRV+fid9/H42NjQwPDztixqmmlGhOzo/sHgWSdlbtoS5unzvCwoytLSwNl22bdh2YvoLkdSzLSkYB18LX0cG2v/m8Henb98v4OjrwBtuYmHiG8fGn0dpEGm7qm+/A7/ez6dYquo7YrgxKrW9CqNuyDcMw1qdH16CsruBHfq5s8mfJWhZZZJHFDcbblrTV1dVxV30x4/pVDol7k80I52oDXM7ZixIupopttf0EAdII/obPsEAxNgMRKJ2qd1NaMKQ3cCck9dtibRp9WWQQKDPPz8X63VhCcpw7+SUe50l+DQsjY79kRX8aYRPYRpbaSdlKrQl6BL7dFeQ0FDJ9aDFVE6U13nCYrV3drMY15KTET4VRidt3kIJtJisLw4DtbvXBjTncddCWphiklqueLajYxeRxhmcL0hAUu66yWlKO24m+3dQaxTuRw9J8Shk/7lkk1U3qTAmNSOjNIalUgdRctSCUX0zXyjglhiCqLHbkep2v7XmbYQO3NBDSruGajCtGY4n7o/FVb7e7T7WT9nY02RLabEorhpYvMB+dwCypdLpQBZZl8cwzz9De3o5hGJimidaaM2fO2PM2DO6//37HS96ejFSK8rk5/O99z7rnK9zZSfjNU1hLIW7vvEgvDRSIzIYCn9+Pv7ySa71d6453hZeIOWlmrRT5P0IGO+n44Fhp+Tt24ffvoqBgM9PTP6S8/B1J79FNN1Vx+fVJTFMhEOu6Savb2nno83/Km89+i/HLPUSWMgV4DZfLSY+m107C6ko8+XG8r4exrosZXaZZZJFFFln89HjbkjaAmpoVDswe5hgHiWvbcmncyMWSLpBGpmWU4+u0IGxV/bcqFI8tudE+AVKjLUF8JCcZNQKwvHkMN2/FFAZaSEyteZOb7AhbOmFLpkYzr9MWCdN26gQ/uPkgluFCAIWrJka+/XKNz2R2PNaMT9A8MsLAXb8M08expWhBWzMYLsnOm/Zz9aWryXTgh+/aTV2dTaTKCj1M5mwhFuvByvVi+gopLqxiefYFlvOaIN9HXCt8V69w89ZdHOvJ1DtTwonWpDk2SAQ3x9uIijiVKkCF8jvTFWilKXVJglozv2qxI1cihOF8pzAnL2IFR3Gj0cpCa8Ws02mKto8VQjpiuJqIpcg1HMIGaK1Q2mJ46ZJN1qx4xgrPz89z/Phxtm3bxqVLlzIidJZlMTk5ae/rpMp3nTlL47ZtSbKUJE+O1IdetQ3eXcC7invoqst0LFien2M1FKT9toP0HHst9YXWGOFlfKN9xApLEAKmhgbg1gPrnrfJwSCXnrvI8quvUTnxOkX/639R/8TjxJs0ff1fQKlV5heOE4mM0tLyn6ls8nPbQ60c+XofSmuOPdWfodOWwMiFs5ix2Lrr3fUrv87CVCHdRy8nt0lJsgM13QbLcLkyuk2zyCKLLLL46fC2NYwHaGy8j2YGuFd9D5BYSBY9KS21ZMQqnaClpcYyjB61xkWcu/MOsfjGRiZOlTHwXD0Vl6LUzi/hq4hQ3jGHt05THZxDKOUU7EMDQ7gxQZskq9acwvS13lS7/T4+862v8Vvf/CpCKxSav9jk4dR4HwBbysqQStmRLKVoHB2h8g8/x4aHftGWYEjCIjfvJDMXDnFzx06ampq4//77M1JwHq8L6apGlLyLcP1GYmVVTHpmiBSWpK2NRPkKmRkLZXDcqlY/Zo4TpUmoi2BH2gI6n4pIHXlmIaMxy3E00AhDkFcYpOP8X7N1+jj17kSDiL3OrsrteLd/JHl/xq+eZ8FK3YOotqOhidYSnyEzVk9rGFvuZS42QayolFhlgx31W4OBgYGMWrp0KKcJASGI5uSwfPgwM3/1V4z+yicId3YCEPzOs0nClsDV4kLWDQYw43FmB/rXbU/ALCohXlTGqaExxsbGMr6bHAzyzBfPcLknyrWKmzm749MsemsIv3mKhYU3UCoxBsXI6Jc58eLfMjkYZHUlbs/PsaBKaLglkLCyuh6mR2c48vW+9f+eWXNswgZrrOvi+pNkkUUWWWTxb8LbOtLm9+/igvm7vODanVK4T8/lQRp5czY7byg/84QoAg0GFndwiAMcplX2UVz2Pi4cC7Jh8DwCyNm5Qsv9QYSACjXH8OAW20wegcLghzzIO3iO7/NuVIJHJ6NuqYibWwje79Hkbt9OKL/AHo6UxA2Dc23t3AMEhke489CrTJeXkxONEtx/E8u33MJqVxwjZzNWrJtEN+T81UFm5qaSBe9DQ8O4rDx27rclHc69bHebRn0hh3g5NVYFRam10Rodj7E8N4gQzWg0Lpek6TYfF19YdtaMJHHTwEDNErWzpXTOrLJgaUbiFlta/Gx6XwtLP/gGOh4nL7/MiZqlUptIm4TZ+mwWleUVbBcuxmIahGSbLy3964xVpmm9TckgwUA+ha4dXCsy7Dq56yAcDq/btnHjRppmZui0LFu817GwwiE3Oh5PRtwWv/WtdcdLpdaVJSb8RkU4ktqWlo43cwsckV2BUmpdXVvvyQnsXgbhrK3BYvFGrF2FrK52rb0UM7M/5OJzW7ntoVYMl8SyFIYh1+m01W3ZhpTS7kROn4PhQrpqMzpQE+dO1MYlj9UaKWXWLD6LLLLI4gbibU3aAKbzd6Oia1OTayQznN+LI0fxehuYELWEKEKiqNQTVDFuEzb6QBmsFg7Rsi+IWolwsaaUpvtHE+9epFD0V9Yma9IA4tpgMNqCypGZkbxE16qA+0sL+dXVICW/8stETJPCWwsRgFQaN3Bwc1tyTqVzcwC8dudBLMPg3BNPcPuuBzDc1XgKPkg8/Brasr1E0wvelWXx8tNvUllWTe/JiUQgEK3Wk5h0chGtqGNoUOBSGikFtz3UynxsMNlwkCRuAAJ6Zvpwmavckt/CiWWLEFDx7mZyGgp5sWEXX/9wO1vnLD4WT9WkgX0toUzHLUFieGtpBOpzYDRq013pkLyErEcCPfIqJ9x99rEBN6yJYP4oCCG49dZbMT/zKB0rK4zV1VI3djW5zon18O3baxO365irF0TjLOSnooIFqzGqgmFKoyaLu/YxfW5+3TGucIiYtjXyEt2t/1/jbPz0LrpX/hi1lBbpc6a6NLYby1KsrsS57aFWBjqnae4oX5carW5rZ8vBezN8RItr6njHpz6NdFXT+/qZjOiaEKwhfgJf+QqFNVHC0R4gmx7NIosssrgReFunRwHarFUMpUBbToLUIsVWUm+m2vEedpsvMSVq0Ei0MLBwcU3UcVrs50/EHzM2b2sHhyvOEdkyxOpvhKm4aSZJ2BKn8+SspAbgRNPmdDHJtGyyEUEhhOY36sp5YlsTzc8/C6ZJ14ZW/ufDH0cJiQAe7YmxqdeuJ/O/9z0Ij4fp8nIsJ41nmhZvvnZhbeYNAGGZQCIVK3Gt+jn74kjGPi4zrVkg8TOd1ApB1GXPSaMZn7xGMBhESiOTG6VFmi66Ruk3rlHqFmy6pYrKJj+ngyv8pkvy6vZ8/u4OP9/2OpE8ZaGVxeqFf2Hl6J9jTfckba6EEPZDLOzEcqJJQCT+cyJsCcJmR6TS5pGGmpqaNOus9Fuk6e3t5fXaGs7u3sVURQWduzqYLSlZcx9tQV3c7nXnqFlYIsEjpRDcsusmdrS0s+l3PsOODzyMNFJRwky5lrcml5tuqsIwRPKQO35xE95NIZTKrEXTQDRURWjkdgxD4s1zc+ypfq72LHDsqX4mB4Przr3ljrtweTwIKXF5PLzjU5+muq2dyiY/jdtLk/t5SwZovuMwuSW2rfBY10W8pUu0PDBCxe5JRqZ/j2Dw7FvOIYssssgiix8fb3vS9o4N9RwY7KI6Mkmr7iXpnJhG3FyWxaPf+AbXVrZgXa9hQAhMDC7rXSAskl7iEvKrIonTJINo93h+gEBlbJzy1qTOB5QyhWGLbPGVqzOcDqaI3rm2zcQNV1JzLeiRRC7NAo6g65NfpUprDKUQSiE1uKJ+lDlObOnpZJTNys0jWlFP4jHIDzXjjhcydH6WcCiGNAAB0lOQUdtnRNMemwSBW3gdZY1j5SxxsvdFzpw5gxBQVBTIqGlLr/zvMsaIO+s4ORjkmXPjxIRAS4Ep4c2AZObs14gPHyU+chxrYQy1MES09zlwZDm0I148FjU5sWQyEXcaLRyNN601V4yJtKjfmhBRGgpik29Zy3b8+HH6CgpsKzIpUVIy1LSB7vZ2m7xpnRTYbXjyq3i3XS8t6JBQyyL03edYef11pv70zyhaWeXhx/6Mmk1bUmMSwomC2mudSI+mo7LJz4EPt1G3OcAdH93IlgM1BAL7kdKTXOTEdBb67iG/KIdtd9Yy0DmNaSr0W9S0Qco4/taHPraumWDXOxowXAJvyQD1d3wRV9m/cLbzlwgGz1K3ZRvlO2YRhjN0YTEx8cx11zSLLLLIIoufDG/79OiFSJyjTVvtqBS2G8DaCIdGYyhovtRDd2VaA0JaxEloKA0VQcAAbTm1V2sCJo7mbZvoYzenOM3+1PXW6KqVMscsFQDENDw1Oc9j730Pi08/zc6+bgxloZEYGnbNm8SWTxDuNPF1dBDt6yPQ28vBmRmmy8vxrbgYbrqVaLyHRPcogKxqJmFMjoa4MUUuVaBh6NwsQsCG7aVU76ri2ReG0dommlaOw7yc8boWZzEiS6j8s4jqBlTYJlRKKVzutAgSZETbgjLMqivE8BFN15FxerblQrs3KXWy6pJgSNwNt4IwcNfdSnz0GPGx1wkf/3PcDTfjzrWYG7tKQObhii9zeKOftsot7I60IoRgUizSa4yTiibyFsRNMTGzCPgzB5l6CFJOEw4ZHG5usp0htGZ35zkqi+w0o6+jg4rf/6zdQRqLgdZcCxQkU+IamMvPJRCOpmrh7jzA1KDdkCCkxPTmoVw5dnpYSqQ0WJ3MyRDDnRwMcuypfixTMdEfdLpAd7Gr459YWHiDnpP9xKx+lq7uJjh0OxCl88U0VwwBhiExAhGOHj1KY2OmgG9CKHctKpv8vPczuxi48jqrLgtQKBVnYeENAhX78Teu/CTZ5yyyyCKLLH5M/NxE2oQQhhCiUwjx/EsjhRYAACAASURBVI087ysTM1hyTZfoms5RJQ3OtW1mLm+AvLknbUldrXErqF2xSZAS8NeNdfTTRiKoA87PBF8YdoMt2M+79LMYmGvSoYnUnga9njj4Ojqo/MPP4TU077pwnL3DPfzC+aOI7qcIfesvGX3k44Q7O1l82i6EL52bY3NPD41jlyjY00Vv7RiW1Cg0GALDl5t2do2pRogtPUt85WWUOY7WMHJxjsWJqzZhSyBNBw7AE5rDys1joTif+eX5ZOOAYRi4XNf5d4HD+TQwIRaTmycDRur8wGSxG9/BjyEMF0JKMAzcG+7Ad9vvArAy91VKCr6Mb+IYpuFlrP5e2jbeyanywWRH6rhcyByz8yd3bgozMuukSm3ZkCA/phisZSLiUZRD5LSUnN7VQdeX/neygzRhYVX227+N9fAHGCsuSN5jqTUlyxG7Rs/txrdvb6pjU2tMbx6rjRsxi8uQLhftrVspmt9G3yvLPPPnZ+k6eg2wi/+tNRGzhW9+k+Bn/g7/G8XU1zzK1aO/4xC2NRBQ1x5g/8cqeP6lb3Ho0CGefPLJdR2qb4XKJj9b99/vRPXshhG3u4iFhTdI/wsgMKiqet+Pt65ZZJFFFln8SPzckDbgt4Eb7l3a4TWSEhm24KuVSl06f1yWyZKrh/5agS/8Gv6pL1C+cIrqWJSreSmiEZOCbtmeWtW04nutYYTNFEzdjRnLpZU+Ps7fk2FMlYzECPpkO26nZs0jBA9VFgMQePhhZt95P5WhBXaN9VMZmmfEZxedX6pp4C/OdtO9aWvGHHN37ybnQC3H247xg/0T9NUtAYLw7CTpIRFhxlHmAFbsArGlf8WMXiC69BKvv/SvGeNLpPmSqeFAFZGK+gziW11dzbvuvINIcDFjLDk5ObbzASClgRlNEaX2q45Aq0MGq0IWBdXFawJjAqQLT8s7GG96N4N7Psb0Q48y2nAfkdwyrl32wVADx5fj9K4qZpYLM7p+k8R4eYGC6Rnc8zOUWTNktLgm9kuTZSG9scFwoXNyU/s58x6sqUl2kIJN3Ep//ZOMjwxlNJ7UzC8RCEeRfj8Vn/09fB0dSbN1ISUqv5BEg6ZSipmpOSxTO581R77ex+RgkJq2AIZLIqQdMSsYPcPk5x9j5fhxJj//GO6ek1y3QVaAyyXZ90ATS7HZpAOEaZqcP3/+OgdcH37/LupqfxnQaG1yue+/4nYXIWUONpFzsXHjHyWFfbPIIosssvjp8HORHhVC1ALvAv4E+MyNPHdjLMK7L5xlqLaM4uIxNohBhtlASBShNeRPxfjA117mQt0AcXcb8dx2pLXMZNFOEG6SjgUOGdiseu2P6cEo5wVcGBhnKdCFCxM0DLOBhLMCkFEnp4GPVBVT6/VwS1E+e/x5gC3c2hiNMZwMxAnq51bp2tDKo//PfyHuduNp2syfd3ay5UovuFyUP/oZgrEzSCQzgRhVc7mgFO7gLHG/4+6gFZ5QWjckFmb4ZQCMlTwoqUjuJyMrKF8qchQrXB+hKszN4dAT/5twYQkUFCXneO+99xLQ+Qx1X8FQAbonUg4KuwajLORJTmzygoA3N+bSb0ZovmShZWaa1VW1g01yB/Qo+iMx0vPRJcvlzGqLBQuUuUTO6gjRyrqM9Kjl9RGtqAMhmdGOQG8yBKjBMvFdvQJA3F9KvKgk4/pr6+EAhNYYRZlrsfDNb5J//hKyuRqFLUFSu2C7CahgkKk//TNy2tqo7ujgQ5/7E8a6LjIeU5zv6U2eYyY4DsWTFM1vxx0vRGnboL2g2MttD7WyuhKnpi3Aym/9Iul9q2OnRsCVKeeRwLY7a6ls8hN3N9oSHU7H69mzZ9mxY8d1LbO6jl5joHOa0toCcnwuAvWjjEz+A4mF1TrG7NzhZHo2ENifJWxZZJFFFjcQPxekDfhL4D8BBdf7UgjxSeCTAPX19T/RiRsbG6k9fJi9S0eJlazwp+IxTFy4MPksj7Gx7yrFoyZfecdGFit+D4TLia7IdS/uHVd6aVusRO/qcVKcmeVqRUUzqdI1ko2jNtaolWqgYRV+c2NFcnNCab8iFmPvjps4ues2Fv3V4L6T88snibncaCGJAV2f/gPyDo/iLi9DLZcTuLyJ268+xOWyN5krm0EOubGExLU4jxDgDs6m+YtmwkgzjReWaZOd9DGvrckTgtXFRZaqm5Lb/L5cDtx9DzXxasznBtmk/SA10zmS2VjKcXXVI0howsU1fHtpjt+ZuoyramdSsw1AS4GBRGmoXhhl3NucSteqPI40/yt1C+0Uz02SsziD8uYSLypL3jMzP5B2DxPhqLQGE8OVnLu9Ljp1fHpKO3Gk1jQOD7PanRkMXnrxJQLhKJuvzTLpz6MyuEIgHE3d51gs2cBQ3daOlZvPD594Yv1NEBozJ4jbLMSQgt4TEyhLY7gk7/mdDnJO/YCFgYGMQ8oKIlyJS1yF/fjKLhOe2cjqXDNoOP/yGE07y6hrqqO1tZXeXpskKqU4f/78OtLWdfQar/2z7YIw1m2nnMu2vEDJlkx5k9nZl8nzbcDlKlw/hyyyyCKLLH4q/LsnbUKIB4BprfUZIcTB6+2jtf4y8GWAPXv2/EQl0HV1dTzyyCMMDtbw360YMTx2yk9rethCSesV/vYjOQzUbbYJmzCwi/nXyF4A22ZWKC4pYg6SgZs1uyTf90LAAX2YV/W9aNZogji/n55O83fE9pbUsRgohVnYzD927CQu4LtN8MHTVUmfVAWMnluldM5PPDRL5+gV3LEiNsVvZtP0TQQ+FGK2spdgt0MeFLjiAYic560qyMuKi2nevY/jJ06sJ6xrmigAhucWMtKlAW8luZEqup7pp81tS3GgNAdur2Eiz01NW4DBczN8cyVNr0yAq6IcbZ5JbXKikFooTG2BtijsexZ//YMEi1qTUUqvmceLmx5nV6+fbcEi3ME54n5HqkKDsTyPlZcPSKQUCG1iaYkd+bTnFC2uxHfNJkJyNZyaazq0RsRWqRwdztRtc1Bw371c7TxNd00pSgjm8u20av28c2+ltGVCEus2PIxaI2qbmHd1UwnVRXazTPdRu+bQNBW9JydoeGa9oK/7+19jy++FWK19BlBo5WL08KOszjWjdMosPj8/f92xazHQOb1u2/JUGyWb3SDiaVs1I6NfBgRS5rCr45+y0bYsssgiixuEn4eatluBdwshhoFvAHcJIb52Iy9QV1fHaMuDnBb77A3Oi7mdLs76JH01AvdqD0KbCG0hMLlr7DS7p5cQWoNWuJRFsTuX1cU6hHaDkmAJxLA7vTzOObVAa2jRV2gOjrzluPKKcjI++/btBaew/3TAIC5ASYEpoC/gta2xnDBe2ANxd4jF4nOs5A+zWHyOuDsECo6/1sXpsZ6UXpmASJmL/KZb33Iste1bKWy5CeHbbOd+07nLWsIJdjOCdB4vDfOX4xz5eh/TMZXUU9NCULKngpq2AL0nJzg2vsiVSnfyHrg0fHRrG/m3Jmr0nHo0Q/D6hmN8rew5/jrvL4kuDdI09CxSxRHasiN4/nyqVj5FyUq69EbGoHEtzuEOzvLgPXfzziYDYw0h0y53ck4F+f60VuC0eQuBzsllsnkjs+Xl68zjAw8/TOTgAVRiXyHoqiljwZcDhkHl5/4g6VkKduRXyvV/LbVS9E2d5fzJXsb7FtMitDaBm7oaWXfM/NZKIjXfBmEhpEYYJnnldrTMMERSELeysjLjuLWfAZo7Ur6p3pIBitu/j2EINlR9mdLSe9ftDxqlYk5jQhZZZJFFFjcC/+4jbVrrzwKfBXAibb+rtf7YjTr/2NgYw8PD/J1wpB6cKEvCTupggeJSxAIu8w79GK9zBwpwyRH29UxSd62I8aJSqhdnia4s8BKSe8/8B3KLxhhcfY38rfMZUbalpQoKCqaTPGff9AUGC+ttoVytEEKiALcQfLwt8+Xp6+ig6H3vY/GppyidHUIqC5AYlkXblMW5JkFcaaQGXwzCPkfewYn6hX2jFAa3YPePplf329/PBQfIpIk2pOGidPN2vvvDp1E+CxC44vmYHidalM511pA39+Is7sVZdOQ8ZsEHCXpqOBSbR+SE2HlgG25L850vnsWyNJ3tXpTMtY9Vmk1eD6t9fSy9cgxPyy+AMNBoVre4+H/jT2F6FJTAtQ9L/mDG4p0tZ5kru50TfjeXXO/Hkprulr089PwTlJrxtAihJlbZ4IxXcfHoy4xELCxhpM1HYITthg3DMCi45SAvzy9TGZyjMjS/jrxpIehpa2P3mueqsbGR9k/9Bhc+/5/tCJqwvVHn8nOpu3k3gYcfzljruro6br75Zo4fP555E4Q91ph7kYXJzNSj1pqJsj34F65kbF/e7MMQKq22UrAyvTE5x7lry1zrW+DSte6M465cuUJtcSvX+haoaQtQ2eRnywFbR3Co9yi5TV8ETBAGMfkQjQ2fxIwvshg8lXEeISSBwH6yyCKLLLK4Mfh3T9p+lhgbG+PJJ5/kmq+QoR23gXS6B51oVY/YQgt9tHjtmisp4Ji4ExMXssYid+Z1qkIL9kscQAgsrbiwrNl09Rp5753PUBIBKCycSuyKEJrN7ovcdqWBwbJqmmbGQWsm84t5pLUh2XyQDv9738OZc50s1FTwwIXjjBeV0jKWQ9NkOfedDfPCnjy0gB92+HjP2VzK0hyoLCOGJUz6yk4Rd4fYsLQBkZAW0QpXOHSdVRLsefARzliSMzXNVAVnqAwu4IrnYbqXIcOjKhNaa5Q0MCLLgECZV2m4o5nTQ8fQSnHtzCj7l+8jHr2Gil+lfqIVY3MTltBoKeiOxfjYquKL7hD7lOXUAVocufQ0gXI3MwFbAy23NM62R74AdftoBP7h+VNYHtBSYmEwVr2Byt4zxLQiI7js1LNNLYWxXL41tXkJ31LNmS37eaWoAR0QGJbJ+1/9NsUud/pEQQjGa6p5/TvPUnXuHN8aGkJJieFy8cgjj7D7gfdx6rvfStXdmRYrR48S7uzE19HB5GAwSZK8Xu91FtO+F+5Y0XXvkZAGGM4fywLLIr93lfBtBghHcDhNRsaytGP8rpkrmcz4P8Hc7ALf+YuzWKbGcAm231XHtb4F8vw5FG96g4iKO5E+k2vj/8LE5LcpLFgrJizY2PZYNjWaRRZZZHED8XNF2rTWrwGv3ajzDQ8PY1kW1/wl67pAXcRp110IoN5t0Rs16GELJi6UMEBr5sq9VIVYU5wuGDcWcO1YpS5TzgzW7Kq1pDu+neMt21BSMu4vQTieDH+8otgRXMkgbsGXThM5O8LUTQcgukzl0gKVSwu4o0VAMWGvdEzkBRaa6fw6yiK2ppcWmuWcBc62PcFUwTACQVl7GZGRKESiMHThLRsR3pgP8zdVecQ2bEKqNh68cIKWpQK8YcGqb+K6jQgajcA2l18tq8E7M4V01dJ9/jI63470WZbFYniQId/rjFU3MFsUIjcaJ8ftYc5ji6FEheRMVRFbj/8F8erNnMldZCE+zjuGKvjh/ilmAjHO5nr51/AIm16VvPnyq8S8OcibD9im5RrqxocwIit2XVtReTKamvgTC4agJDeju1QIMFZCjNW38fL++5KSHaY0mCgMUDXUTdxfivL6UrV7WtM3OcH4lStYLc0AWKbJ8PAw0YQJvbNfMDcHHQwTfvMUfTEvrzz9Jq6oH+/3itj/sQpcLhemaTrNF/BWxBjsAOLOX38H+aPlRC5cYPnQIQCKu6YwZ3cTr3jT5qdC4yu7zOpcsxPM1MRdISwj01s2IOtYcCRGLFOnCfIuUW4sEmhOZWcBlIpjrbHOKi29h5qaj7zlmLPIIosssvjJ8fNQ0/YzQ2NjI4ZhUBOcw6U0Alunbbd+g/+iP0+b6ANgm0/xgaI4ZfFuXJhIbeLCotqTlsJKtIQCCFgIVaGVQUICTqnMxteVlUIuXriHK+4WlJRoIVFCYgmBMgziUnJicTm5f/Cl04ReDBKfK6E+lJk2zVm1bZQap+JIu2AMqaBl3Efucq3dxaoFXu1ia7CV4tViNixtYK5njnB4mbCOo3KvV4wuAIP5zZswNckxjvtLWC4YwGXmp7XBkux61ekLAcRLKqHoNqSrGle0CBxPUMMwGDbDPPXAIxzdezc9bTtZ8rmZdafxJwHnN+RiLgwyFRmlzFdPaU4NUgkq5+yIlEbz1Lf+kRe/9McsXjlM4czlRD4QZUsJA+AOzjNZEOBsXSuTBcV4llyU4yFeXE6CsLvnJsiZuUbucC9GZJmRhk0pjTWHkEZy84lW1KFy8zIIG0BgYYGhDY3J9RBa09jYiDk7m8HehQAMg4WWZr77w6dZ8g2xELjAqlhkcUCwreogG0q3s6F6EwmHCNDEPZm6dwA776mn8Z178e3by/LRo8nrCMNgU+t7kDIHrSVaQUHNOfwbjtC6twKXS7KaO5Vxrk2bNlFd1HKdZ8FGaOQWtGXgmGMkURzYjxAe55NBackdb3mOLLLIIoss/m34uYq03WgkOkeHh4d5oCLAQE4e/lA/A50n2FA1iBICITTSKXW71X2Zcv0YPWxhI110B0GzAZGUf0+kGmEpVMbFC/fiL5okuFjJ1q1LIFMkLxSsYClURrWYRSqFEtg1bQi0UrgMg1uKbCI1ORhk+vA0AZGHkJJNVi3myCUmNpcwO7rAmeYNNE5bTm0VJHTiAKR2brEAgUAiKVsto3qlOmMtvA3bEOFWkF7Qq1S3VWC4YrTu3U101yb+5dwVtKUQWlEdnAUUijlHCsSHsEyMplbCkUQnYVqbrNbEc1bxxsAdLyQv2Ewsd5abbt/FU7NXsQwDpLGmCzW1lue2vIve7RPsbfgQSBdKW7wy9XUmSyaT428fKQVmABirbkBJQEi01JzYcye3nn4VMHh+x21YUmI0KD64coHccDckomWAIfy451KyHdWz4witHe9Se2xnt+6n9twxKpcW7HR2QYBxfwk3nz+DO26iDCO575ZAgLq6OhYWluh1Onul1tTMLyGAsdlZlLKSNWtxT5Dzb/QScy3ijhUhRA4EbH08kNdNj8ZWTcDuLsY0k9tzNm6kwLWRxoov0X/57zAKT+EtHqKyeAifVcr+LXfznRdeyzhXS0sLtcVV9B6fwFJ6nV3r6lwzU50fpXL3PwPKZtfCYmT0H8jJqSQanQA0ff1fID9/YzY9mkUWWWRxA/G2Jm1gE7dMTaoKzhRu4csvP0uZ6xC315xAopNcok300artCFx/fhEWFq7kMmpylIeotGt+lpZKCS2VIhB0dwu2bJUIoQCD6Wlbw6wyuMCD548nmxkAJorK2Djmp7a+kcm5IM/+j04KdS635AmktlX6WybmseraeOzBu4gbEkNB9VzcISsCJTXnGz3cd8GObKXevAKX5aIoVuSkMG2ysqGujtG+K2CU4vHWcuDDHUmPS4D/WVXAV46/QeXCNJWhBUBgrCxDZAkjEkIB42E3fmEXrKeCQzZ585i23lzcHWK5cABQHH39FXIjSxjlzZhg5/nWOBcgBEpILmzdy75lAyEkoAm2Fts1bQ4MMyU7UTc+hKEUptCAZKS2hdHqDTSPD2JJ25DeUoLBWg9FI7kZ15O6OOP5aBjuoaVtJ/2VDUlSqbRg3F9CZWieyYIint9+C5aUnK9r5VPPfyPjfIVbtgBQlpvP/oFx5vJzKVmO2L6jhsHk4FDqYgI8JXHmVy9gJ4clRfPbCSxsJ+KdRAhBVasfayGXhYnMlCbY3cXC40nKwqx2dXHxt/6Izh2fpuqWFfIKU5xY5r9OZ/f6mskrV66w58N7eO+ju7jWt4A3z82Rb/ShrBRzM3KWwWlwSMEiGr2W/JTwIs2StiyyyCKLG4e3dXr0rbC7IcC+mq1MTzYli7fXlGwB0FIYIugJZnRiRmXCisn+kSBFwWApFy/cx+hIBxPjH2VpKSWhUBlaYNdoP5Uhu0atY7SPqvAY1/oWMvwlUxB4t32YzprNmIZES4EpYbTMnb4TK17BGy3lhIxtGPF83NFilhC0hloRzn8ADTXVDH3/a8RWjhJffppb3p+fQdgACqeu0THaZxM2Dd5wBR5VDxiAQOIibIVI5M0ShC1izRKoKyAXu8bLTu8pm0eiMT25NI71k7/idKI63Z3J350U4/ZLp0BZaGVhYdHryeyUnMtPpQ1rpsZ4+IVX8a06MhhCoqUL7SpHaoVQCpmIGCZupvMz7srUWpssLGagvC5jPAiBWgnhmbnGrJBY0kBLg7jh4mLzxtS+QjA8PAyAd3M7gXCUlunFpLjubFkZ/dHV1MU0BFdmk+sDinjOIq17K4jlz7CaO0l/6Di1uz1JeyrDJdh0UxWQ8jvNu/lm29xeKebzNmBZmqWrdl9r4vldWmlmZGS93Exvby+HfnA02RQxM7aUQdgAPAXjyfG+FaR0ZztHs8giiyxuMN72kbbrYWxsjLE3X2Bv9UUMmZJM0Br6aaNHb6GdLuYi41jJzjzbJD1pYalTvwIIIVheLicSqeL+++9nePj7johqqlsRoLvS7iTdObHCRxwdLcMlKTVwjAIkU64QE3KRDQsVuHUZcaUQWmMJkYxWCQ1Xqjz0VYPU9Tx4fozK0DxxzwIi7ncaHjRSSgqjYeadSJVWJpNX3mDbnXsy1iShH2bbHQm8q5VIVyGegg8Qk2PEcwUNM5eJVZAYKABeowTv5Czop4lF23C7G525aiYLinhuxwE7PZqAslOw6bZV/oWzXJVHWJ6eoiR3F9ORUVpGIsxuyaO/3m6euLRhgvrJGts3FoP5snbC3sxIUkHY4MHzJxgvKqF6cTbV9ZsGrTIjWGM1W1GJ+aQx97Nb9nOrtcz79+7h9ajCUiDQbJi6Bp5ExFAwMTHB2NgYSyNDDJQHKFkOJ0nbTGlpivc4v3iipUR846l0aLSIngt96LxU88apwxfxqjqkFBx4uC2DYPs6Oij9v3+TlVOnIB4nsDSAYQhiSzVoSyJdCq0lFy7MAWXr5g9w5PVDBBZ2kPOcH7VGu85bMkBhg6O9lkjBSx8qbd3KSu+loeGT2ShbFllkkcUNRpa0XQfDw8OgFaFgpRNps9Ojfbotw+bqkdV/pizqeDumF/9oWJM7QmvNpk2baGlpIRKJ0NbWZlsHpRO2qgaOtO0E4GoA7siJc2/UzcabK/GuxJFDi0zpIN/3dKJQyMgQD4we5FSNl7bONzmyaz8xBFJD60SMvmqPkwqUnG7cxO7hXiqWVJKwAbRsb6FwZn1x+1pciMQ5U9tip0eDC0S9s7jjhVi5BSwVm9j1TWmm8Q7BERrmJubImZ8ERnFxD4VWDaucYrYggCXXeK8KuHv8Codr2ogjEChyc4b5+3cabLsyTUffSSQCieDmrhIWC+LMBGL/h703j47jus59f6equzF3Yx7ZGEgAJAgOIAmREilqoKyJtiT7xpJjPzuWlDjDTW7m0bnvOu8ltvOc5CbxWn5e17IjK752bNnxoHk2LYmkJIIkSIoiCYJAE42pMc9odFed8/6o6urqBkhF60WSvVZ9XFR3V506tetUU/X1Hr5NeWIXgaL9yOQguj/MhQbbk+li3JsjgwyuK2K4uJzcZMLJSXMY9qr+q5DIrV4dtrV12fpKa6lI3WshUAgmy8qseYVgNFjCcKic0MlTcOo1jOoSNFXMnkvDlCytUBGLoW/ZgpmSAVmuoGhhPTnxcpIBK6fNnwxi+BednEQhNHwrIftrpogvJlkTdgVMaK6fOz5URMT3JKYune9iqHiU+fm1SRsoEv4ZfMngKm9afsUFNycHoLR0H+VlNzI29iyVlbd7VaMePHjw8C7BI21rwPIq6czOVdBzcQ+tLa8Blm5bSvLDUIrzbKEdK1SklKJwfp7ChQVGa2rsh7vb1wYjIyP09FjaWI7qvUsXrK/CLg6wicY3z15i5ulRtOUiNE1QsaWEkaGIVREp4Ex1mJcbi0AIBnbv48DJQZReSuO4iUJxqTqAYXvyBksqGQmVcdfpw1TNTTnELRqLcvPN93D20POYpomu67TfeCBjPbpmF/nNoVmSDZsQ9RvZf/EUm0cvo5s5SGGSDue5nuTC6hMqAN9Suh2XTFwkJ+eX8Bt57GSeo1JaHkLnuiGSMLn5lcd5bv8HUWgMF9xD2dIFRsv6sUsCrNCuUjQPFTJeMsX6ye3WFPZ1VU0b9FX7HbJ1zalXGC0tdpHiSuZy87m2390rNJNog8ZYWXHGPUndM02a3LKump5QBXJywb5ewXBJBdULM4wWlfDY9uuRQuMEio+V11E7ehklBFOhQkpWDCrm59lYsom3ps4DikTeJDn5K6jRIP6kJaCb9M+xUHTJliERbGvbQezlQkxNouua09XAjdkf/yRdkGAYTI/+35gNbzlfN4DZmdVdD9zXHUgWowmQWaRtaXwjKB+QKnjQabS9anV1H2d29gSRyFe9ZvEePHjw8C7AI21rIBwOE9x6Cy91vUmLOUmrvb1NncUnDAxbeLV0zMqZUrYnbt3QMBc2tpJ6+AfNPOb1dM7S7Oys894KM2aifH6GwZJK58nqH44wGbxAsbENfzLI+QvT1OSXoKEhlaS/IrMCdCwo+UhX3LYJbju5yNFNOUwX+pyE/uFQuV1IYCE+EsfMK+S+z32R6NkzhNu3UtvaljHvo6NTJO1uEQp4pWU7pUtztAZn0CK1gFXdKJFoykXAAG1pPlP/TeRhLL+BLzfMXbuuYeonD/Pvt/4yyy7JkYWCILGyasCuwsRPTukHEaNfYbYgScmiJS0hEBwIHyDcqrFw/jTJ+RFAMhRq5FhruxOGbbt4iv3Hnuff7/7jtG1K0V3fSjC+xOaRiGOvkV/k2Kv5W2nuPUx/7V1pGQ1pouzOCs3XXEcz8I3pi6yYVqg7N2kJ/vZUhZH2OAPB2Y07qBuLovt8bP6jPyE4FCN/9zX0DUzAlEpXjxaMA+uctUgGZkCkPWSn3jpO23VbKPGH2bpr46rcw7UwXxFNL7+AlZW82p5TnAAAIABJREFUtJfN9buioaEBn89HXUUjIcLMT8U5+/JwxlzxyQ1cPvTHlDQdpXFbORs2/rJDzmZnT3Di5KeQMoGmBby+ox48ePDwnwyPtF0B+3ds4vTwE9zR+rQT8WtRPfyF+isOTx2kMCqpmptyokfrWsJcsHuKpnLa5rU0YRO252nVZ5fERcA0UjutikvTCjsmAzP4k0H8CCpVkGuTrUT0MT4wKnm4BIdQ5C/PM1TQy2jFBibzl3hjyyZb4haQyiXXgVM5qlC8ePRF7r/vfmpb2+ge6+apM1+ns6qTjsqO1QsjLPHf4VA5N8tSFjZKBscUZmCWlfgQ66aLMcpqnGIEmVeImVfgECGZvIBMXkCZfvqO70RKSWAlbpG2lNaZXUXrRr1WzXWvV6JJ63okCl33ccMd93ED8J3InzqCvtHaegwNq4WFgvMtW2lf+TF1C11crrolIzftlZbtlC7MUj0/A0pkeAVRy3ScuwBILq7fjC+Z5FLjJtA0lIIjMwt8dGWKj08N8K+hdUihcbh5K6VLc6kGBg427NrNvppgBimORqPMXbjgSnyE0YV+iv1pT5s/UWzrtyi7CFjxVs8ZfL5zdgHCatIW+vA9zP7oR6hkEuH3U1FygOGVn6QvSwmqqnqIxVqd7yrCskdKSSQS4a7bPgpTAt0nME1Fbuklgg1HEAhmL1/H6IlP0rBuPaFQozPv9PTrSJkApFc96sGDBw/vAjzSdgU0F/fzf2x61C4wSD/nW9RF/HOHGJzb6oTpJJLEciL9oHYRNxSUhArZvHU7R44ccQoW9u7dy2tHjmBKaZ9RUTs7gS5NpNDS1Y2AFBaZm0iaxPLmeM3fg0SSP3aMOwI3cLimkMU8nTfa23ljS7uVxJ4qL3SMTxlnKawJF6MYX7b0zbrHuvnMc58hYSYI6AEeuu0hOio7uK+6lO8MT2LYnitNKZqH8pgYziHhnyVYKlDJIFIvRAZm0+e1kQiWked42yxiZiYT/Cw6zPfuehBT96WPUYrl/EI6T77M2fbdGCh0ISnteRFdahYRRDFavkLLh26ktrWN13/0KMKO4yksyQ9NWYr/FsnUWGr/JPUjZRxJGeXsg4tlVawf0vCt5KGWu+0BPrTABqJlgnhuPvu7XkQBkXALprWX/GPH+fZT3+KNA/cii4XjzbxQGUbTNHS7LMIv4IFNG+jcs81Zk2g0yje/+c20x9XxeCmHpOcU+GAxSOFcMwvBixnfT9M0iUQiWXI1FvJ37KD+kW+y9MYx8ndfQ/6OHfh7qxga/gGGMUVu7iItrVYxQWy01Tm/tL+LpmnyzL+/TNF8C7om2HxgFln2D6CSKCDUdJjhV/+EutZdGectKdmDpgWQMulVj3rw4MHDuwCPtF0BIyM/AjK1qKx8dsHsTLWTyK9QSCFJVCTQowozlZjuIm76tOC1I0cdT5sQgvXFYabMWs6JIaeIIVuzrXreCmOmenxOm3DCnMa0c8iGikK82BQkKUS6YlOpNYRqcemLlVNpJ9unrqGlvgWArlgXCTOBRJKUSbpiXRg5LRyZWeA3whV8NTqOlIAU5KyUAwZGYNZaJ/vPckFgVdP5rJoMB9GaRkxNTw+wbd1nLvEHv/Vf+VhVPf/r4lFeufgVIokBNmpVaNLSoDu7cYlP7boNgHhtLtHqdQzVNBEejlAXi3Lba2/x7HXtjiju8/oG6otX0ga5vZ7Kx7hIEm1pJVxwFw0jr7A91MfPWiXf3fIgUgiOypv5x5/8FY3P/78cqf0Y4dgSs/2PMNCyjfPV9S77FRdqGlBCwy/gtrIgFYFMKRZIt1DLgAK3gG5+UYCVRQOfUZDe71RsajQ2Nq69sFjELX/HDudzc/OfMT9/jqnpV5zLL68YsEibS2XFOY+yijNMqQiEzhHHsIshQGgmO++ZXxWaDYV2snPHt5ieft3LafPgwYOHdwEeabsCFhbSLaTcqgdZCggoFGfLzvK56z7H5Ikf8yoyHZK0xxaoHCaUKxlfSvrf6qXZqKHHP4JUEqEE+SrH0WpzP6B9yUKnInUuqTtzDxeXYwhhhwGVK1Fepg92Gy4EucmE42VLvZb5ygDorOokoAdIyiR+zU9+UScf7e5lRbqU6DSBFJZw77pJwyYYGkpJEIr8xQRmUUH6nIAWXy0EC7ZHTEqki9W19XRTf/hx2LebzlAB/zP2L/gTvYyXwLN7YmxerGXLzv387a7bnPDti/5FHr3rQZTQ0U2T+574V3ZFYLx6hePrA4BGUkmCiwNQ0JpRUCCUJHd+nG8fvAkpBL72Mu57oovLoo3/veVmV89RH99ruoebzsRQ64JI4zIgGSkud3LckJLy+VnGgyUgBAmpeGZ8FoTg0dEpftDR7PSSbWy0Wqi5iVvuUg258SonNDo9aq2b07rKdUt37NixppftaqisvJ2p6Vecy58cb7DXwZ5e2PfRlnRJoWbd9fSPPkKq+EBofuo33LjmOUKhnR5Z8+DBg4d3CZ647hqIRqO8+qqJaWq2coJNcgQIYcklpDxLGhr3VN1DR2UHZmWF/ZC35slRPrYaDWw1G9BcT1xN02ja3Ey1XsLBxA52JRq57VKCPAKZhtgP0+WCIZKBeVCKXF8q7w27g4JKe9VsF4o/4ZKByBCPVcT9gQxhXaELTpun6R7rpqOyg4due4jf2fE7PHTbQ5xehLiUZPHU1OkBqy1VaGorK8kEeZEL6It2eNSlQiz1tX8b1MWitF3ssq5BCFCS8plxjESCI9//DsM956jIS8tSFM/7qR3xU3M2QeVM2p83IiuQtsCtoesMNR1E89VQPZ0EpxuERv7SEpXTmRIZCsHxLXuQmgaahqnrRGubuFyz3iLfLkIZrazhSx+/g0Nb8vm323czVNVA/cAFdFuwV1eSupnx9PXjRMhJSJXRSzYcDnP//ffT1rqV/HgNxVMdFM1bHs+lggGS/jlnrEWMhYtcCaqrr1b9uTakvJ5LvXuZnq7hYs+1jI62ODdy/bo2HnzwAZrKt1E8td0hjii4fHYS4fyvQvP6inrw4MHD+wSPtK2BSCTC7GwZl3qvYWamhsFoG1LqSClQSlsll5BrWo3La6RCl9J5uK4Ig7d8UabFwiriE6guoPzXtlKtTbDxxGHqam6h1bCU7Z3BgnSek3+aEh2u9ZWgoyEU1M3NsmfcrahvkZ9kIJD+7JapUCqjEEEi6Sru4muXv8ZnnvuMQ9x+beuvAfDU2S86el/ZqJ62PEQSiWbkM2Wexre8CLodCnRCkIqJ3PE1iZ8Ctp/vxmcYCGniM03Cw/0AXD7Tzff/+i/5LwW34NN8tAwUsPfNMnLGE/Qee43v/dVf8PSZs3z5coy55UFQBigTTSnyk4W82pbHUNFcRpj4aMM2xopd9qX01VKeMrv7Qni4n/qRCJpUGWtYNRkjqeuW9p0mGFy3g7pYlA+//BjXRM5x16nDzOQXpud3r4OSTi/ZFMLhMLnLVYikRUCT/jlmSk+zWBhhpvQUy3kjgEWMi6e2U5xTYwk4A8888wzRaJR3gkgkwvx8kHi8kMKiSYqC46QSMWuKmwiHw9x+8BYCZjDjuNGhw0iZIruS8YnnOXHyU8zOnnhH5/fgwYMHD///4IVH10BjYyOh0CQbmrvQNJNQaIxLvZ34AyvMzlSvEiUtLLQexhuu38fNf/hHnN11IyMFVvK/VJJ+fQx3q6tUhV54/37kzHG0QCFoOm0qzKA5xWV9IivPSCCkn3jhIIhSDiZ2MqJNkZMoRj9rcKwcTKEQqdCsWwMOHOJQOTvlyH2kKkdzZA4SyYq5wuOXHndCjl2xLsTyefLmn2I5+CEy4rVCUL6jDL3+FG/0vc5Q8CLSGGHD5Sq0pTlQNVgyIArf1Cixkgmqa8P4hl0hZ2c2QXvPCQwNtp8/RV0s6thuJpMkTkf5XN799I0eRZE+Plpewz+OxTEnRhBsJW/+KYxAA6GFaZ7fcQOmBpr0p8OvQiARLhKVuTapv7tOv0pdLEp5fgm3vX6Ww1vXYfj8bDl/ggPHX+dkWwcGAl1Cw6jlVaxamKF8oIfRUCmXy9b2gJVOT1Aby4NQWk6l+/VznBx4CQqt7geBlRIczTulWAj24jMKrMrhZJDl6VlUgWW3YRhXLES4EqqqFtm67Tk0zSo4qK6+xOlTtzE/V0lOno9oNEpkKELjdXlEjiw7S7Q0vhElBUIo5ysgZcKrDvXgwYOH9xgeaVsD4XCYzmuKiMel7YyR+AMrDEa3rhqraRrbt1vCrpPl5SR+8zdovTzO2OIUUkk0NJrMSkb0aYeD6bruJJH7ystZOnGMgFIopdhmNlqkzR4cSpRhLpewEOpjAckgEVrNGprNGkbihYTmDe44sUikbJatPV187wMftEK0a2A+r4DRYAnVc9MoFCPBYs7XbMcwTfyJXn7Y+0Pu2nAXHZUddFZ14tN8FM1+HzPQQCIvXfmoA2NIWpo28Jbx9yTMBGXTPoQAfXmRQGyARHWDlQtWWkWhMYRv1CJcKbImgKGqsFU9qulo0mT7+VMZ9iqlOPPSc1aelc0ghqrCRGubmCsMkUTY8+kYwTsBwUROuihDolE1Psxo5bqrkzVXefCJrXtpifQwkX8Dz+9pwdSttTy+bR93vHGUv/7aQzx7/adoHJfUzlVxqb6Vvo07qZ2dZDhU7uTAOSFfGys+P2d/9hJmXiGRSITGxkZOHTtHmqRJEjl2NwZXJSnBeZi0PF/CzPznmpeXt+Z9vhKWl7vRNHdxjbQ6I8xVcGngPC93P4VpmCglKPZZ2oCaLqzxWpqwpeBVh3rw4MHDewuPtK2BaDRK17F5NrdrCCGdkGhBQQHl5eUZjbZ37txJOBwmGo3yyCOPOF0FblzXyVxkkhpZQoUK8lr+KS7qw2hC41c+8CuOhyT04XuY+cEPiJ/+DrnbP0FExDJsKZB5zOp2myhhyVic14fp0Udoz+lgMFjCszsKkCKP3nV3UD82wuUaF0kBUgxwMSePx7ftY1/vGeYrqzhVXGV5n9SdFE4/Qt7iIR679FiGPttywU0kcjPJqqkUT+srPDev83+1fJVjcw8x33sWIe1cOd0PTj6YRkW8AiUnHLKW8jqebd1uyX0IgRSCN1u3UxsbyJAjUdLu7YpiOIPkSTQpUUIghMAUujM7gJAK3ZSEh/ss0paxFiKTrLny70xd52zrNopXfJgarrw8ncevv4k/fPQxGsdNIpV+xkJNPLujDVMXaFKyr/cMupSYmsggggALhSFeGw1w9OGHUUqh6zrlgaa0LSmItJmapnHT3Z289q1RTEOhdAM3RkdH1/j2prF08mSG7MfMTBVSao6nTSlBMpEDCAqKczDHTPveKOK5o/iTQarWB8mrGUDT1gpwe/DgwYOH9xJeTtsaSOW0nTl9K5cvb+fM6VuZn69gcXExg7ABTkJ4SsJBKYVpmCybK2ynkQpVRFIkOV30FifLT3Ky7CR9os85Pn/HDoo/+lGMy6+y9Mrf08+QtcN+eI/7J/CvBO22TTj7JIqob5RIpUUupK6T1H0E5+0q1VQ/y8XDCMNujC4EptB4pbWDk8U1SDRLz03oLJTeTzLQ7BCmrlgXSZkknp/ZON6BEJgaHJ7L57e2/xbj5UmkpqwA7dKcVcFq53ItqelVsh9WeDZzY6x0xUncB4uoucPKb7Z2WCRP05C6Ts14lAafpYXmyFTYcivFiya3d4/T1NBq+eOcHDMtfQYXqUp74QRnNu4iMP8mwu2ZwypaeOLOO3jkQJBDW/J4emc+hq6hhIYUGnF/gLtOHWbd9JjV/ymLuHX5C5BSopTCMAxiS72uq3VO4tzj6/ZeR3VFbboAwfRlENqTJ09eMa9t6eRJBh54kPF//mcGHniQpZMnWb/+A/T37XY5GxXNLccIhsbJ00JOG1aAeH6MpH+O0UuzjJytRxr6qnNMT7++5rk9ePDgwcO7A4+0rYHGxkY0TWN+voLB6NYrNtYWQrC8bLWyysvLc3TYlFJoAyuYpsHRwtP8ef0/cz7fSrDftNRE2/laVi6nqwNzN1t5TnK6j8CMNZ/zoE4UkRtYw8shIEfA1gkDXYImFbo0eWtDi2uQRDenUVqRPadFIKzccxdhsj1iZm47Bf4CPvHkJ3im/xkUCl8iRVJV1ngLul+jo7KDX7/jj3l+zwQnW2c4tmGAwMAFAuND5EZ72HXwNm79td92yKZlmWJLz0l00wAlEcpgRRzi6JbJ7LMxVLWO13beQH9dacYSDNc00W+S7izhXCPMFPp4YXcd11x7DTmaQEgjvR9B0N35IGNdBVLX6Q83c+uJ50hV5+qmQfX4ED/YvQ8pQGkCKeyooZQIpbhYGea1ps0YQnPy0qxzSnRpUjM9nnEqRVbI0Sk8sZCbm8tQzzRSKpL+OeaLLq2ZG7kWlt44hkokQEpUMsnSG8eIxWIUFEy5azAQQhIMjhDtfY2NjafZ0PKaVaBgi/wqCcuTG4i+/Cf4jH1Y/8sQCOHzwqMePHjw8B7DC4+ugXA4zLp161Z51bLhFjhNkbcUVkQSHZ1rF7byg7LnAYuwfX7gv+G/rDN26hSVn9lOTkMQc2bW8cqUTY8xVRF2In3StwzFU6gVlY7+KdAQXEMt5Qng5XliGyRLkWM8sf8WF4HRWA4exAlVpvTbssRlrfeSWm2Ch8+m2x0lA80sB+8gowgh9dY+vjFhbb93470AfP71z1M6pXO5cpybw+3ccPt9Ttumx2Zf4q3uI/gNQcNoAbWxKAcOP8nF9e3kLLzBVEEv/Q0+7iu+hsFXjyEQDFat49G7HsTUdTJ+Ywjbw2a/z9Be0zQUYCjFtGHyg1qDv3+zm0PFuyxPm5TkmJmhxmxXYG9jG5frWxDSKvC495nvsxBqcfqJohQacMsrj9Mfbqa3qY3pgiKgKHNOpShZnGfdyOVVodiMKuEsXi6EoLGxEX8yiO7TSObMQPqKgasL7E43b+BcezsVo6NUzM8z3byBp556iqb1Ls+hskOkyVxadv8rQrdC0VaBwu3oUx2OfcnZFsLrNhKJHUOp5Fqn9ODBgwcP7zI8T9sVsLS0tiCsG26B0+yk8Bzlc3TcbpndQ3luOduWWvErHR0dZUhW+maZeaqPxPhmAlt+CXSd+sEehEs2xPAvMBofskN11g3bZNZyMLGLalWMBnTOSfafnef2Y6+iSTOLHFiekXRMjMxXJ4x6lKmZwxnXEC+4HvBZRCeDYKSJh6jIdcbPJmYpm/Jz++tVNF/OZ+i14xnzjZckGC2LszkSpGjJx3BVmJ/uPcjluvX0bPwoyUAzCsVSiU4qODpY22R3TbDDcy6PWkbAznYdaZqWumJ0AXuLC+ns+Q7tcz3OcZqS1E1n6qll5pVZcyV1H0q3cuVkXiMV8VZ8EpAKTcJtR8/Sce4Yhn+1jIgbMwVFvLlhC09s38doMNNbmEHYXK8lxWWEw2Gq14e45w920LFnM7rvP/Ybq6uri387fJjT7Zs5dPNNyN/7XUYDAaSUjMU2oJRmOyQ1Bs8eJGiUIjQzw/tWHRCOVltlQxG3/pbG7Mq/oJRh3RtleuFRDx48eHiP4ZG2K6CsrOxtx+TkpAVel5eXHQ0thOVpS2HXQhv1c1XM6gtoaKSatcf7pll4eQi5oMjZcBtF9/wp5ZNTbBgad+ZJ/Q3Ga9hprOe65EYKVa7Nnayn/IShGGwo5fXt+7nuzZM4lYvuSsmMCUm/2vsSBdeSDDRf9Xr9JNLHKOu1vrLA2d9Z1UnddD6aFJaYsFREz55x9k9QwUzZp3lx3z2MVNUzUNuEoVuiuEr4SOa2YSqTnpG3bIeeIDzcj8jIV0vnmRXNTJCfZaNwmScVnH3y3/izWCFfqf+Ec81KaJl6atl5bcrFUJVCahpKr2DdpMGnDs1z85vLfPqn8+yKAOhUTAxf4Xh7MwKlaZiaznBxOVk718T09KSTr1a9PsSt9+7m/vs/TV1dnTMmOzwajUb57ne/yxNPPJHuIwqcf+ppqhMJdF1nfr6C06duQ6kP09n5Pe68669pbr0D0NPmSx/x0XS18PxCN5HYbzI1/SqWt0/zeot68ODBw/sALzx6BTQ3N3P+/Pmrjjl69CibNm0iHA5ntCXSlKBaljjjqo1y/selX6cvdxCFsokbJIcWMyeUlWihRjZV3M4lujOe/WWqiFoZ5OnASUvQlgh3JnZQIUNESnW+sikfc/MtCKUcDbY1ZS6y4XjNdMy8dvyJXmdX7uKrxAv2Az5QBk16jB5p64LZU52dGeTrUz+ms6qTjsoOfvXgH9HV+3WQCp/PT7jdqjz9TqSbF9XtUOdjuA7ObtzJgcNPoCkTqQBl4I+fA6CipAbFrJ2/lRn6dBOsmVBZ5jYskpIqAjCU4qHlPHobP5xx/QrQilx5ilmyH842FAgNYZoIcxwoZd1EElBEKv1APSNNH+diU1l6fqlczNFa+xTB1pR0xI2LioqYn19gzUIEYfkZs3XYYrEYw8PDzmd3eHRVA3rnGqBidJT4W+ccIjc/X8Gbb05SUvwt/IFlcmtgYTwdLo2d+DjxyQ3ONHnlF5Ayaem0oVFaso/163/X02jz4MGDh/cYHmm7AlKes5Q3KxgMMjc3lzHGEckNhwmHw3z6058mEolQfE5R3JcmEgJBAB+b4o0AjqfNX1dA4uJsekJtDF95K1WUsNGs47yeaiYPcyrJsJZuFm8qyag2Q5UMca4px5GnsIoM7P9ka5K5c9Mc41JkBQxyWArehT9+Dn+iF3+il5KxvyWRu4m8RC/NGz9Lz7TrUBSPn/k8vpWLBPQAD932EDfuuZuWz7UQPXuGcPtWJ5/tyZ6LoG9wSJGp68TKa6geeY2pUJLcxVcdwphYXCRg2/nG9uutEKWbcL4dCXVhoSCIk8dn79dQ/Jbo4rPqOpKrSFP6s1+ZSGV1ubhu9Bj1c0f46eZP8K/Xl2JqICTpIg+wukdkee00LN+UALZGL1E9OwVCMD9/pUKI9Ft3vlo0GuWpp55yvo+QGZ5fswE9WGF1Xae3qBA1mSKM47S3P8fsnCtHLrVEEnJKLpM7d4n8igssjW/EXCkEJUBoaFrAI2wePHjw8D7BI21XgNtzpus6DQ0NnDlzZtW4eDzdRipF3hYCI0z39TqVfqnXlAcsJduQu76EQE0hy2cnyWsvI1BTSPRnj+KXkmazmov6CKaSoAQLYoX+hJ5xx3KUf7XhLhLm5J+pFFlzEtmc8GbayyRZDt4JaBA0KB77InnJCP9j58eZTczSWXUf35kug+lJ51RKSUxlYgbWs5i7mR8OnqOjsoPa1jaHrKWwZWCEQw2NmClSIxVn2q6xhYBN8hbT+XQvcoJbKefNtmvobdqcOln6+q7kQXRvU1Y17dbzx4mV12ZUmN4+8QqfeutzXCj+O56q62CkxIcSLsJlz3/d8Jv4JpppGDeYFr9MRdlLXGyYwdRqLIKsZZJioVRaXFcpCpfmWSgoAqGhlOJ0fQvrR/upXHG1HoOMHwep25PNrSORiOMpS2FhYYFoNEo4HF5baFcIlBCMlZZgDg46m0PFo45W2+pjFMVNhyluOoIQJkpahRdCkwihE173K04um0fcPHjw4OG9hUfargC356yxsZFDhw6tOW4tyYXlC1OAyiBpaakGO4Hfr6HlW8tfet9GchqspO9AbT79vS+zUr+f2qVtjAdGiefHiOePsJL1JF8RCSTQ1r/CC+EASl+dILU1d5G5pcsM6O0un1JWuaKtp4ZIebT8xAuuJ3emn5aSFkds18hZ5NvDk7j9OfGC662CBeHjkTmdu2cX6QxZeW7dY908fulxFIrWJcXHHv8Xfrb7VoZqG0GzddqERSZLq+5lLvoFAGLFy/TWL3Bm0y7b3CxSlu1hyy4isLftOnOUjnNdaELw/A13I5XEp0x+e/B7dAU3880tOzCEjiahZmqZ4bK8dAswYCkR4s7zcRA6SvNxQd7KuFHAKqSkXrLah4WH+jjX2uHYLIHhUDlV40MopRBCsGvXLqqrq3niiSfSZM2+hFOnTjmeNPePiBTOnz/PxYsXuf/++1cL7Sr7P0KQE18h9PQzXLj1A5hg985NfwfcS2rdDtPlnDQde5SSDET/BaUkmhZg545vecTNgwcPHt5D/NwXIgghwkKInwohzgkhzgohfu+9Onc4HGb//v2Ew2Ha2trWHDMyMrJK4FTOJXC7SjKJmyIZMMltL2X2iT7mnosw8fUzjm5b/p7d5Ay9zqWlBPHlAqS2Arael0P87JeA8nN6ySQ0brAzsmJtzMjJgoGRHzI3/kOns0AGUpWjS10Elk9mXoMWxFQmj116zNnWGSrgw5XFrlEaUguB8IHQMRQcmbHaVXWPdfOrz/4qj/Y8yvd7vs/DPM14aTXDNY3W2gj3V0+Q68v0FPWtWyZ/MTMc7VxftofNXUzgquDs2raPoaowZZOjaFIiAE1ZHqZHK2/D0HTQBFIHn/Kv8uCdqq9nqNSSCLHm1tgeSVjxThfT8SUTOMUfwiJDzf1vUT4znt5uz5mv6Rl6ftFLY8xNLJNmRqsv+WowTZNTp06xsLCQuSOVVwes5ORQPjnJtVNTaJrGwkIlfZeuQymBvRyZNRTur5DLOWttk4BEyqRXPerBgwcP7zF+7kkbYAB/pJRqA64FflsIsfm9NqKqqgpNW71cSqlV3raCa6rXkt5ywqK+hMZS9zgqaUl7pOQ/APSiIKG5fnac+jIFS8+RyLW7GaiMiQCrQjVHsz5UT5vpKktwyIOh5ZHI3ZRFkkgTjvg5QpNfJhA/nbogABL5OzI6JAB0zS7yk/EZ1xSClmA5usCW2BDsLbaqMlMdFVK4XFHDizd8aM3enAEBv1rfSEALIBD4hA8NjcaBF8AtYeKyL1ubbdV7OzQYrW0iWtuEKQRKaJhC50ioAyOeuR5LOZq1fi7yZwpBwuyiduRVUCagWDdpUDWbSYANnx/NlM65ddNk96lXyY0v4eQW2vPU+nukAAAgAElEQVQu+APpAxXEpgZ4+ehLpIh5arum6U5PW7hyzhpYnRHWhG1P5diYZWd1NUpZPW4XFkKAnhGGzfC2ZW2zxlkhUtC96lEPHjx4eB/wcx8eVUqNACP2+3khxDmgDnjrvbQjEolk5h3ZSImgulG4pwaA8aN9aKNJNJsbu/PZ3PluhjA57DvOnYTRi0MABOf6mQ+12ichTdpSfAdBlSyh11AMlvl4Zkc+yh01VBKfUE5FJkHTCUW64TNGrOF6EalqSWuDRjK3jcXkIl8/83U6qzo5slxjVXra0IDhiZcxQ79sF0GkiVBnVSe60DGUJWIbL7je6nOaVaV5U0kRf9xUTWeoAP/Kn/PCwAsEx6H8aBRdjaOLx3lh/90ooaWPy/a2SUn1+BDh4T6ObbveCnEqhZCS8HC/dZ2mgdQ0/Mpg72w3m/vz+F7DnVZbLGCiUEdXYKaKCWypj6LFRXJXZgnN9zMbamawzE8s5FKIs69j64W0Jl17Tzd1sSgD9RstO217AHKTiYz1T+UdChdjamtp57r9uzMqR7Nz1oqLi5mZsQi0aZoUFhauCp9ahDHlJRSsKwpyfHYG0zQpLhlDCLuv6xoRZ7fT0b2rsHAzlRW3UlKyxwuNevDgwcN7jJ970uaGEKIR2AG853GZVE6RYWQq6a9F5MAibi+cf44dow1r5ral3g/5x/iH2n/lfF8/C5VJbra7I8Tr9hHK62SS3kwvm/2+aamZ7qRJwpREKnMympujJGF9gj9oqOQfBgdIyiT5S6+yVHiz23BQVtUmgDDncbxCKQvNeX48NIgxqZN/7nn+fPdf4BewohQaglb/NJcCm+3wqIaB4sjMAp2hAjoqO/hIy0f4fs/3SQaaiRfckJ4/lbgvcAhb91g3Xzr2JRJmgm19ISpVkaVll1vgyn1z2S5lmgwJwdbzx4nn5qfDgkqhbC9kXWyAv/jp32FsqGDvbDedc2dZUn42Xh7grfXrrfGaIjhvMl3oEvGVkgvNt1JuxEl1oohU+jJCj6kChBRRc6N6Yca6y65ij7jb0+bcT439e27GX2B9z9xkLYXsamZfltBuTk4OO3bsAGB8fNzq5iEATaN/fRMVi4tsuH4fny4vtyqciysYGz++KrUx+308nk9u7pJD3Opq76Wu7uOr7PPgwYMHD+8+fmFImxCiEPh34PeVUnNZ+34d+HWA+vr6d+X8qcKEU6dOcfz48Qyylq2nlUI8kHDEdGFtT9vhom6nL+kLAy/wwd2/iVbWTPnOT3CT0BlWl4mLZEborMEsR1+qIWFaczSMJdFlHqZI2WTyBw2VfKKxg83536Ar1sWYv5Mvj5CeBEnh9LccmY3VnjZFIncbC6W/AugsYHJ46FVCY68wn7ub5cIbOJcshvxdznghBCW+tBfq7g138/ilx1nO3ewqckijPV84RQtdsS4SZgKJZMln2KQW4oGcVd45IDOWJyXx3Hw2LkxzGIF0SJIVHq2LXebDxlFqo2mZjfzyJMnyzO4E00UuwmbPEQ9olu12+LIxe60VNNvtzoaqwkRrmwgP91M9N0W5NNl/8TSvtmxHYkmHpHTaUtCNfEKLrZSWlDOfyNznRvaPhomJzLFHjx5FSommaZnfRSFY3rSJ+j/8Q94yTc4dOkRbWxt+v/1lEI6zL2NZUztzc92dQXwUFm68oo0ePHjw4OHdxS8EaRNC+LEI27eVUj/M3q+U+hrwNYDOzs53mMr9H0dK0qO6utrRzNJ1fVV4NIVdaiuQyMgLg8zChAKZDnt9oP4D9JQI1O7ryUdjTJuzCFsW8ghQ4hPM2JGw8KTJpw7N8Xpzgv6y0+wrXOYTjf8dgI7KDjoqO/jy5RiCEcfPB4LF4ntJ5GxEUysYvhqy869Mfw1WGyuLAJ036xDL59H8G3DaY7kuTQL/Z+8QbYV5jrftodse4oeD5/jGrMLMqPKEC8uCLrvatLOqk4AeIGEmyElYazNSVc/xbfvs8WkvoOOvdG2bKK7AXNeESHnflEKTJuHhfsoDi9TmZ+uiCX7ZN8VfU+zKhwO0TG/gkU35bBxMsm7KBATrJg1+++UeLrb56TPr6K0J0NvQQF/4QWsNNA3dNPnIy49RJjRKl+bYOBJBCNg1P0vB3HS6ShQwfUsktUUee/YHKCXRdZ1Pf/rTq34EpH40HDp0iL6+vowfDZqmOXIgUkoGBgYyjh1JJnm6r8+RrLl06RL7tx2FUPqWu21KT60yItGgmJ5+3QuLevDgwcP7hJ/7QgRhJft8AzinlPqf77c9AJ2dnTzwwAMcOHBgzQdsCiVGWnhVuf64sWWpmU1LTRwIHwDggWce4AS9gOS0HrEGZVXwNZs1TBiZ862bNNjZ8yZF099kU95q3rq3uBC/mzsKgdKKSBTsI154ACOvzdluvSj05EjGHMU5JQT0AIH4ebB7UGYjIZVTQQoWabx7w9205WfngQmSSvH3/aN0zS46BK+9vJ3RsjhSUwzUNiLdOWz2a/34sHVul3voXGsHR2qbLTkSe9yWCyeoi0XxldbDhgOw7/fBl2d5zny5/Pb2MH+eNGnvH+YjP/0ZfjOZGSMUFil9YXtms6xNMzG+GPsRhXGFqeG0qDLtllymrjNSXM5oUQmPb9vH+dpGLlTVM784R0ivTd/LVEFJ7gRKSpRSmKa5powMWMTtpptuQtd12zzBpk2bOHjwYEaRjFKKgoJMaZLe3nSni6KiMWRhxB5r/U0sVGZetgDQXBzea13lwYMHD+83fhE8bfuATwFnhBDd9rbPKqWeeh9tcrxuV8PsyizuDCaFYl5bJCgLnW0NiRq+dPkPeHl9D194/Qs0L4Y54P8Y57URLusTqQMB6xm/N7mRlXgh06ZkPjBJYaIUUJhITtW9hECwqXTTKls6QwX8cEcLj45O8aPYNPOmtEmDiz04L5Lc2SfJWT5BIm87qTZW2txLfHzTx/nWW9+iaPrbxAtvxMjZkEHdNGERxG8NTfDk+Czthbl8Y2iCeErLNSvU+bPpeY7MzPPDHS34gAtTF0iUJHh2T4y85BkEN6NkJnEbKK9Jh3HdEieu97o0ae+xvi5b7/oEfOBOa9+mD0LkFWjcD+Hd/NLf/g63v/giAIae5PH9t2RotQHMFGa0pqfUF2VwSyfdWo5zPiGl7aWT6KZJ/cAF+jbusvqWCg0pYLi4nHWTI+DHVVwiyImXY+bNI6V5Vc8tWN+7O+64gyeffBKlFBcuXKC5uZmDBw862wCWlpYyjqsQggFl3e9QKIbQrHCvsG9/oGjMWUbrVTA5WYth5LO5bRdCDFJZebvnZfPgwYOH9xE/96RNKfUq2SWPvyCIiQnCWLpmqXBoirC5CxJ86OQdS2CGTbYttaIJnYjPJmyuytG9yU1sNGs5b2uujQT7eKv6W9TONTMc7CVWFAHgC298IUMUN4XOUAGdoQKKdI2vRO2m9FlLm8pvWi66E90Yo3jsiyRz2/DHz3EhcYneEZ24v4n5kk9aBQjKQAgdhUAHvtiyjnMLy/xJj6XAf2g6KyzpeLIstqCAhIJHR6doTXRhSCtna7wkAZyiZPz/oTj4Gfpyq5z8NSW0K5K1bC+b0DTK6xvT5w/vtv7aMGw5DIDbX3+FZ/beSFJkdprYGkl1MJDoGGzK+xmPBv4U08S2SdliwdYV7XjzqFOU0LWxA1NY+nC1MxOY2krGPQ0sl5MXr2HbphZyq1euWIjgxujoaIbW25NPPsmDDz7Irl276Orqcsa1VFczf+oUxZOT9Gzc6BRu5J2XiHrSJN3tyJSwslxEIG+B8vJBpNSYmu5DCMnM7DEKCzd6xM2DBw8e3if83IdHf5ER7KzDwHTCmKnctuwcN4ASI4RCcTq/BwNJo2k3NHeH0UQCAazYXqvWiWsoXarhZN0LDmEDMKRBV6yLK+HOimL0K+yznD9W8v1C6f0shO7F1MvsfQpDGSwX7APht71dui24mg78fmdk6gqzu1snrV6DUCC0am3ykhGui9v9WdfSpkhtN02EkiAlmpJUTthSJlJy9mcvrWnN0smT+CrTYcH2/ov8t+89gnDJZgjT5ObjP6VDvMK1Rf/Gh8s+x2BVAS/5G102YRFJTUcJja7t1zNUFaYuFuXu15/jmsg57jp9mOq5aZSezLinibwJkv45tu7a6Ag5v1OktAK3b9/uhE41TaNuaZmK2BjzRUGkpjlxz1h1dXr5s4pyldQJ5C0ghJXPZrW7MvAEdT148ODh/cfPvaftFxnn8vp4vfpFbp/ZS57MoT5R7Wi2pZCiOs8WHwHgfH4/XYVn2buwnTkjzpu+yygFOho5KsApX4QVfxCRDKJQrJ/czrmqo6vOHQqErmjXkZmFDNm3lvwcepZWMgcJAUrDyG3DoI144Q0Ux77gVJtmwipKkMCf9AxSol/ht0CqCnMNwlasJvlS15cwyRSQvb7uekpCm2EmaXmK3E3ZU1CKWw8/AcCL19+FFBo/3XuQiqnYKhmOFJZOnuTyp34FDAOEQC8uRgSDLNTWWudJnUPTiAUX2Lx3ByV7D9LVf4qPyk7iK7a7LKuLQkqv7mxrB9VzU1SuxKkcuJhJktyJ/0qhlyxSvf7K9ysb27dv58SJE07xga7r5OXl8cILLzg6bUopXp6fQ27dsipPL1g8ZvV/T9li27Y81cjybA2ljUezChAsw4XQvZw2Dx48eHgf4ZG2dxHnznTzX2P34VM6JnKVx02imPTN8NPgMZ4tSTdMn/ZZiiZ7zGYaZDmj2jQ5ys9r/h4kEoo0gsmt+JNBJgoGV51XIJhNzF7RrhKf7vi8FDCeMFYPyvZqKd0KkyZ6yV18lXjhTaA01ni6M23K1fM4Kq1rR7rPzQ6yYq6s2l6eV84dzet56ORFklIhNM2idVkaFWPlVvWr1AQIDRPdlvuIUtW0ftW8k1//hkXY7LnM6WmYnmabFsC3/1YnROozDTp6z2FutuY4sqyR8GeFZIHyyREmymszzpEMlTnFDA5LXkNzr6BojX6mV0E4HOaBBx7g1KlTAE41s7uhvPM+XVXg2Gok/A5hUy47kiuFTCYVxUpHSDPjUFC2R9WDBw8ePLxf8MKj7yIOzu/Hr6yWTD50UoQlRdw0BBVGCR+ZPsCmpSbnuN7cKAqrmnBaLDKizTCoTSGRKAEKSTw3BsDWkZuomm90jhUIcvQcOqs6r2jXtGE6N17YnzPhZKO7vEim013Bn+hFT6ztwboqriLG0hZahy4yg7Y6OndtuIvOUAF/07KOG0qD3FYetGzP8rYt5hVyZuNOUhoWmqsbQqy/b9X53LlsbrT3X+Qf//FvWD8QoWB5iRuPv0Z7NEJ+YyF884PsPfsNNGVm5dJB54UxdNMAKdFNg7bLFyzS5r7ubL5qf65qfmekDSzi9qEPfYgPfehDLC8vZxC2NeGyN5Scyaw/sV+DNW/S3PIGQ4NX0mIzGBn50Tu21YMHDx48/OfAI23vItYXb8j4rCGcPykIBH7l45ZZK+y0aamJ34zda+mi6UMc9p9nSJvism4XDtgEYCU/huGfR1c+aueaAdCFzkdbP8pDtz20qgjBjb3FhQQ0q3BAX9PxJTI8NL7EpYzQaDLQjOlfl3XMVRiZQxjUKq+cfTYK82r47J7P4hM+Uv1H//Lav6SjsoOu2UU+e2GAQ1OzPDc+g0+INHGzSRKA1NMCvk0DPVcMjQLk79l9xX2vbttFX30ji3n5vLBnP1/70EdhpBvMBJ1zZ/nixX+y8ufs6xLAUo7JgcNP0jh0iQOHn6Rycc7ODXRp2WVHhu2lmB9bw9P5NohGo7zyyitEo9GrVpu6z5PC7EwVWK1UVwnrCiGpqLy8qluYBw8ePHh4/+GFR99FFOysYv7YiFXxiEJ39SDNRrGt6bZtqRW/0tGERkS3vUE23wkoPyup7ghKkQjM4EsWEfctAmAqy2N2NcIGVhXpDzqaOTKzwGzScFWSZiHVL3PhZxm5bMncNjKf6hKuVNrg5HClxgEqszuCX1iN5jtD9wJWZ4gP1H+Aezdan7/a1U1S5IMQmEqx2YxTVlZO3vIC5y720dL3Jv3hljVPr/v8tN94YNV2Ob+QuSEQgITVF/SVHTahs6/vUMd1dJ3sp1XbRLX/PG1L/ehIDKxqTE0pcpYG+eneg5i6zmB1A2XPf5fitdoMuG+9vTbRy6tD3FdDNBrlkUcewTQtiZC1uoC4W15lszZjtID8oxpL10vrZ1tWJDwnZ3HN8woRoKbmI+/IVg8ePHjw8J8Hz9P2LuJcXh9/2fhlvlXxOF+tfnRVTpsbMz5LGuN0fg9JYWJg0mjalY32MzchkmgI+7NGIGHJiZQvpr1ea829FjpDBfxuQxUhv+/KR9jeMSPQmLHZHz8HygBlWn/FVb5GKj2PZs7iW7nIKteP/bl7rJu/feNvOTJ8hM+//nm+f+H7AMzGRjNGnxF+Dk3P8/SyJFK3np/uPbjqtAXLC5TWhbnvc1+gtrXtyvalkEg3ct9/8g3bLMuuprE8zkyv5yeTf8VoYiNHQh0oh7TC1ouDxHPzMWxxXUPXGSqrJic24L68dDjSzJQU8fne2T/DSCSCaZoopTAMg76+1eHfLVu2ZFyDG6G5OfJf1yDtLMwYmq1nnDK+Pny/J/fhwYMHD+8jPNL2LqIr1sWZnIt8r/xZni09wqE6S+w1u2m8QvFiyJJSOJ/fz1/U/zPPFB+mXpbQYJZjD0YBpbKQYLyG0JRViJCNtYR1r4a9xYVv8yUQxAtvJBlodrb4E70UTv9vcsxJ0HxcVUbP8cYJpF6KkbNp1fiksipaH7v0GAlpkSdTmXz+9c/TPdbNrspUblg2+xGgaZi6y8tnj6mcGCGQm3dFwhb68D3gW9vRfP3p42imaYvmwsZhAxAY+BlKtLN3thtdSYSS+IDtl5PkxuMWeVUKhEZufInAzAQFgzMIM7NJvONptV9y83OvvH5rINWH9GpIJle3P0uJADdGIgT6NULf0xHSlbaoBKOX9iClRipFzt3C6vLAN5idPfGObPXgwYMHD/958Ejbu4jOqk58mpWjpQudZ5pe59HS51aFRwWChpV05WHDSi13zuwlX+Wz1Wywwqr2IRPaPHO5MYfwAST0ZefYV4defcd2ZnQ0ICvQKQSgEy+43tmUDDSzUPJJVnyVXB1ZOWxOk/fV5y/x6fTNZHqMTGXSFetiOrwh6/hMcTHdNClYXkjnmClFPDefcPvWK1qWv2MHxb/0S2vu627d7BBCBESq/A7xXJH5znkBhCbQ9AqSod2rzg8QkE34E6H0heLyhqb098jui3p1hMNh9uy5uvTG5OSkfY5MBd2mvn7K7X0Fh3XK/ynAbN8NzFy6kb5XfofYfImj0aZUtqPO9AoRPHjw4OF9hEfa3mVIZeWzSSXpn+tnSbfU9bOFdm+f2QtYhQi/M/oxNKUjhKBaFXMwsZM6WYp9ACBJBGacY93h0chc5B3Z95WBWIbkrSWTe3XkFu2GVAunqyKLZKlMD5N71LRhMr0yvWqG3uleehaX1yZswK7FKe574mHae7rRpCWuK+zK0eNP/oThnnNXtE4rKlxze0fPW+jSREiJJqExlnTOO2Gs50ioA9MW0pUoIpU+miby8ZkmQpropmFXrgbw5WyzBHVdy+G8sddh67b2K9q4FqLRKEeOHLnqmLIyl3fSVVFQOu1aY00j756/YfT4p4id+CSzC8XUrXvTIW2Zkh8ePHjw4OH9hkfa3kU8fulxDGVVBhrKoDS3lNP5PRmabSkUGXmAVYigKeEkkiulqJRBcpSdB5XKb/NPO8e7tdoag43vyMbRldWVi5niEVYBQe5i2oNXX/wfyBFLwUUYhDmDnhxaNUQXUK5G6J/tX7XvzMQZppKZkiSVfp2bSor4u9Z1/P7oeepiUcZLq5zqUanr1mfTuGI3BIC5p595e/PJjBNuyDnK3tlu/NJAlwa6KWkcM1g3afDxZ49w/bEXue+Jh6mLRdFztgGQE3d1twCUnnCfgJb2xre1w43Dhw+7igzWsFkI9u3bR7nuy97BiV07mbAJXd7OnQwXpgmjkH5ycpa5GrxCBA8ePHh4/+CRtncR2WHQPTV7UHUBenMtKQp30UCqJ+np/B6ksMiaEBZ5A5jQbLFc+xAjZxbDP49CkvBZ3juf5uOBLQ+8Ixv3Fv9HNMIyr+Pk3Jxr29v45VzkQmkFBJZPZhwngN9YV0HvyGNrVtXeUn8Lpf7M/K31+Tl8t2MDn6ort4RzheDiept82OuV+rw4s9p7B1ZHBGNoNYFECLpbN1ueNM1q9B6ptFtDCSjLi9E5d5YfnP5D/izyL/z3E12sm7SIb934NNeefNmRGhG6VSiSt1xDYMX2fLk9V7bYcCQSWdPGK2F+/urh1Pr6esLhMMkcVy6d7TaTmsaY3bpr+cQJjPEJZ4jSkoyOWLmLaxUolJbs9woRPHjw4OF9hEfa3kW0lbat+vyxjR/jdH4PkEnqFjXLw3E+v5+38vrSEbSU4r505UWl2g7ljiKFpKhB5/d2/h4P3/7w28p9ZCPkfzvVFwEIS+bDRs7SsbSMhyPn8XbTCBB+lJZP3twTaa8T8NDgBLFU+DcLB+oPUJJlY+rzcM85Xnr4f4FStPSdtSe0JnY+XwFLbxxbe4dSdPS8hd800EwTn1Q0jlnhUakkQ0sWqemcO8vvRr/N3fULllycMYy5cjxjKpm46LzPXwyDk5torSkKNKG9vc5aFt5ufEWF5dlbyi5GsJPUKlPCwlKSc/41Z7c/UUxsdCOx0UZnOKTJm9fCyoMHDx7eX3g6be8iZhOzTsGAhsb5qfP8uPfHfEb+FyBdPQrwcjBdlTeQM8rWZUt3LBUmDaTKA1yeGmmH2S7N9PGZqk++Y8IG6erRK+vpW+HRVDcEgLzFQwAsF94I6AhMCnPXMaOyqyDX0CkDTF91xnUklCKRs3bV68NvPkxF3R9nbKsIWKHi6NkzmHYrqo5zXQBcat3Ohp5TzucrQS9e3etTFBSgFhdp77/IP/zT5+lu3UzFSiU+ttsjtHQhgo3qOiitLSDWO0i211ELpLXj/MkgxVPbSAZm8CeKMXyLrOSO0xRufsdN4nNzr15tWl1dDVh5baMjtlxKKkSdRbAnhpagNm1jYKWU0dFNVFReRtOUc6gQ4PcXvyM7PXjw4MHDfy48T9u7iM6qTqc1kyY0JpYnSMiEI6QL6RBpqkABcMKnqZw2cYVscKEEmtKomm3kq6e+SvdY9zu28dzCcgZhE0A4x5+xxZcYWtUo3vRVYgbWYwYaMQIbmFGZshbpw/8/9s48PI6rytvvrepF+77LbcuyLUu2ZUu2YjtOnBBnT8gCJKwDDkwS5vtgGBhmAUIYGAjLBwwDGWCGBEgmJIEsJHYSQxKyOna8yJZ3WYtl2bL2tbX3UnW/P6q71S21ZDuxLIvc148e96263X26uuvWr84599zwGJskZugtDFtqZBcgV+tEi/Jz7BzppDQhNmJbsO1aWorQxp5TVl3JXZUvRQi2+JTI9wrZ3zf52qxgLWf1iRc3kTSYFeYdg0bPRWOdNBtttnV0Nw+h2ecwdg8kyCvegC2Q0wbgs/eHBBvAYNIxfI4+jnXvo6np7JYEO13Jj7Y2S6jdeOONE5Y8kGHhUYCh2GyCYtNn78fr7CY5pQ1NkxPmfvh8fWdlp0KhUCjOLUq0TSN1vXURExHcHkso5HjTQ32CnrY4Y8x7kmwkIKUZEmtSSuzjJiIEn2toBs1Jdexo2cFdL9111sLthc5I8SKA/JjI4q9+xzxG4t8Xao/Ev4+RpPdbvUNTDKMJy8htwrAu+rGDb0Ts+7+uTD44pwSHPlH4VWRXcHAwMjk+2M4rKqF43WUR+xLTMyLa0RaLh+ieNjk8PGGboY07FjKs7Uik2Z0LgGbLw5F4G7aYS1m8/nPkLh4r+Ouz99OXdoChhEb60g4E1o01QYBpGmed03Y6OjvDVrgIXzg+WMMubN1VnyM+7LH1/fi8zijlPsDv7z+ndioUCoXi7FCibRr5y8m/RLS9ppelIwuZ780PbQt62hZ4xkJkB+JqQZrI4PqWQI82EHwCAFJIRpP6OXHZm3QmnsTExGf6qGyfOiw4nqUJkaG2D2SlUBQfO6GfJ+6iiY/HZ6qfBqmn0pf1FaQ9J7RNA67PTKEsq4wHrnmAwuRIkXWi/8SUr9nb2hLR7j4V6bUamSRpf/DNrVEMnPg5YsLLkEhI0LrH2qO9xJz4U6ip2fKwx6+m4oaLI17DEkNmqFyLpbw1QKDr+lnntDU2Nk65QPxwQHw2NjZGLm8QoDl/rCag3TsU9jiFxKROFizcHbXUR0/vzrOyU6FQKBTnFiXappMoqzUtHy4CIldDAHgrsWpc14D3KnD1LDAiy0YA+NOH2Ljhwzh0B7rQsWt2KrIrzsrEASPy4h9v0/lwTlpYgV3rDZ3DY4n7Nm9ASIUJAcdkWXHji+sKO0OJ14U2mcB3jlmzOMuyyoi3R85mnSo8CqDbIz1hMYmJEe3Yce0g/jBvUwjt7E+H0aajEe0ll+aRU5hMpmvsfa2QaHASgkbMaA4J/QtI0DO47rrrzjqnraCgAG0KW4M12mJjYyPXowr8lk7NmRPWe+x7s/uSyIgbQdPMqDXaYpynK6asUCgUiulEibZp5NRg5ELgJwdOsj+2BmNcjTYDkxPOMY/R8uEihKZFlPwoMedQaAQ9VNZzG2kMeag+X/55HrjmgbOejFA7NDKhXZEcz61Z4UnnBjbf2GfR5AiW52jMg+Od7KcULhoCqwqMX6u0bsgTejxedH5g4QcmDY+21FbTVl8z9laaRt6i4pDaEEJM6mmzF8ybaGrsRA+jqYeJQgEGkSIxP7UDm11DaGCza+iimqfuu5eGva+NvVdgEkL8YAEpPVae22BSPYP+TrZs+dNZ57QBU3raFi60Zri2tbWNrf0aFu+cc2rsu/TZI0Wtp205pqlFhEetr8/OvHYUzVIAACAASURBVHl3n7WdCoVCoTh3qNmj08ichDmcHDgZas9NnEudUUdDTBOLRwtCoVEdjSvdazgaZxWXPRRnJf2Pn4RgECyEay3Abhuysa9jH2VZZe9o5igwoXBtj8/gkeYunu4IJp2PLWMVnIwgjAEsz1H4iuJnWPYjqAbCPlev36DSPYTNU8fjRx8HQENj49KN3L74dnbXRBc1TYcPjokXISjdcC1LL9/A4ddfxjAMNF2fdCkrs2di/TY5OjphW17rdmoSCwI2w5LYVyL25+Rr3PKBcpprexnurWLXs78O7KnCHndVqMCu3ZcUWit2ILEWkKGctv3795+Vt62xsXHK4rpbtmwhOzt70v0Jg2EhUd8AkBtq9wzHMnDgGvLnHMLpHKGvNxvDdHDZ+rtUjTaFQqGYYZSnbToZF15KdCbywDUP4F9u5ZGFe9uCM0oT7YmkLMimS48UFe3CzQm9K2Kb03CedQ7beOxiYnv85AQAv23swi71RCzREZnTdqY/JiEj64eZWAvGV7ZX4jWsMiZCCJKclshJ1CNfOdh2LS1Ft9kQmobNbmfp5RuC7zDm1ZuExGuunrjRMCZsShhqRUhru4ZJuv1kZIeRHnIKk1l1XQHtDZGLqTucjZO8+7tbG+p04VHTNNm/f79V+mPc7FGAJtdYeDR+uH2c3g4sd5XWSmJiN/lzanD35dDefiZFmBUKhUIxnSjRNo0sTl08oV2WVcZ1H/wwepIjckUEw7ooDvgG6DnWSrJhCZagR6VOb7U6hl3vPbqHfs+7m9Hn0PQJ7Rszo8ys1JNCj+2j1SD9YSE3k9vTxRn/mKSInCVqE1a9uIrsiqj5edv7hiL6B9t5RSXcfu99XPLhv+H2e+8jr6jEqt1mWB5Jw/DTdPhgVBucRUVntLBmb8oipNCs4rpoNHvHrRPqHgs1ZhVETqJISJ9DNGJGswl+kbqus2LFiqj9JsPlcnHxxRdP2aepqYmRkZHIfLbAb8nVNGZz4mCkFzNmNCdQ8sMIPM0kOaXNyo9TKBQKxYyiwqPTSJIzKTThQDDmOfKc6Mfsj/Q22cNKSSwfLsKGFiqsO56gh67P0UdNb82E/WfDx3PTqBoYjmiXJEy8QMuwqQl2bz0pHd9jNP5SAOJH3iY+++uTB0jD89qi2pBORXI8YOXnPXfsuQgvZI7TBmGpaTnOsZ9tXlEJeUVjqzV4hocikrE8w5GCL8jwrt1nNOvV7h8m5LkTgpj4yJw2bGPHyhkX6Y1KykjB3c0ErBy3Ffidbq66ffVZT0QAqK2tnXL/8PCwNSvVNK0JFoFj7xgdZUFDQ6jfQELke9t9Sdj9qzDNgwhhIqXA6RxiaOggcHaTXBQKhUJxblGetmmkIrsCu2ZHICI8R8N720N9guLkxZTtoW1ufRANzRJ7gYvtIiM3+ISQhy7Fm8JVc696VzZ+Mj+DHxbNCS3A/sn8DLb3DU7oZ4VEx7B764kZegvd6MY0TRyeauzaFJ6rcMEW9tAGfDgncgmrzcc283Tt06G6cxvSkiL2j2+Hc2zPrinbQeJWXwS2yHsWLSVKxf95iwKrTgkQMJoYuTQZuWNesvECcXRo4nEMYvclETvkwuh9Zx6sqXLawAqhulwuMgYjbcjoiqIix2H6FnKsvoLBwTSEkOTm1uHzfx+3e+9pn6tQKBSK6UOJtmnGxEQiMcNKK0ysBCIjZo8mGwkh7xwQWKZy4kV6XuI8bl98+7u28ZP5GaEF2MEKVY5Hysgwqt+xiL7srzOUfDu92feQYE/gqbKFzI+ZZGWEsOmIaZov5LfTxnnfgnlt4XXnXu2JDAGPb0fY5fVM2Q4SV17OvEf+l4QrrySmtJScb30TEWV5qIQjb6AZPoQAm00jXx8nXHqOhR52NDZE7OptmbrGnK4J8ouir9hwOhYvXjzlfqfTCYAnPtL715sW+X7jw6MAfZ5tLFhYSWJiN0IEV0bw09r6zDuyVaFQKBTnBiXappHNxzbjNwMrIph+Nh/bDED8ymzG9Jj170r32GLcB+JqI2q4IaFebws+IbR9v2c/T9Y8ec7trkiOnzBBYXwNs4GU24Fg2E3j8e5YKpLj+b9zo9TyGlcnbMgcey1DygjPXrS8tjaPP+LlxrfDSUzPnLIdTlx5OY75BRj9/XibmjC6J3qhkt0NlB+4nyXxx7nlS+XkpEROBsHmDD0sWrMuYpewLZz0veGM5ttOyunWHx0MeNjGB4dH4uLoSh9bkWN8eNRn7ycx5VQop02hUCgUFw4qp20a6R7pjtp2zktCT3NidEf3AkVjhLG+wTw5p+nkLyf/ck68beOxC4EvLAQnjEjvlt8WWeesU1ohy2j5cONJt9vo9AsMKdGEiPDsBevOVbZXUpFdQVlWGR/3dU3Iu5uU8UJjCuHR/qMf0fOgVaKj58FfT5pzl+xuIPmln5H0iZWQWQwnxkLZZI4tdL/8qusBqN25naI162g8nENT9cTSIkFMQ9Jc20tO4cSJH6djNEp5kvE0NTVhRoSlrdy8jqwsMsIFaliX0Zh2jL4cpLTKykDQSaqTm/uBs7ZToVAoFOeOWSHahBDXAT8FdOBBKeX3Z9ikM6J5sDlqu29LQ0iwBb1mwUXiIVBcN/AvGkEvXGdMJx+Z+5Fzbve365sZNiP9QFKLi+wkxjetDU+09Ux8QRH5ONXhpMVnfX6flFQPjgQmIliMrzsXDNu+0OnmxszkUDsa/eHrbkZphzPwcuQyY1NOTDAMhnftJi5jXJ6aJ7K9/KrrQ+Lt0Fs7IvuO6aAQ7zQ8GlwUfjISEhIil7GCUIg6fO3R3PZdtORfAoGAtRCSuLhehBgztKtrDl7PFapOm0KhUMwwF3x4VAihAz8HrgeWAB8TQiyZWavOjI7hjqjtkcNjXo6g2Ek2xrxNofBomIiIZSwMB9AS14InwTMtXrYtUeq0ISLfX/dHfjbN186kyMjHJ0YiPYyPtUYReuMoSYhlXWrCGXnyzpSY5dEL70Zgs4GuI+x2a/JC87i6eOPbUxFFEzbsm1xUTkVJScmU+51OJwUFBYhgLmH48gYT7LK2CQFLVi4kI/NkqA2g6wa5uZe8IzsVCoVCce644EUbsBqol1I2SCm9wO+BW2bYpjNi/OLnwXbs0rGcIonEwLQWiQ9wNO44ryXuDlSasC6oi4xcNCuhDQODuuQ6DDmxGOy54IYoddowI5eD0v2RYkPzWe3x64RGQ5eRob3wEh7RqHQPcdu+en7Q0Mpt++qpdEcv4wGQlJk5ZTucmIWLIjdECY8mXH45mV/4AnN/+xviysuh5ObIDuPaLbXV7HzmCVpqq8mcG33d03Aa9kVZA/UMmGrFA7BWTXC5XCwMrvwQ9LhpGh1ZY3mHrdmrCXrZpITGpuN4Pc5QG8DrceLxnHkoX6FQKBTTw2wQbflA+BS3U4FtFzxfXPVF9MAFUUfni6u+CEDKDYUkXJaPluTgSFwD/zzvP0JLWAVJMa0csWDJjyyZxA3elTgcBltzt9IT08OVc6+cFrvvXZhPlj1SSNmMyPw8zYzMcYvVLCHW659CSAZUwMacmFBc3gZ8bu7UAmR73yA+U2IAPlNGLUkSJD1/7pTtcOJWX2TNGNV1REwM9vnzJ/SxZWSQ8dm7LcEGcPW34JIvQlqh9f/V3wr1bamt5slv38O2J37Hk9++h56W+ik/F0Bh2TtbhL2xsXHK/YmJlmBcODCAZhghb5tmmhHhUSAifO31j+BwWgItqGGDbYVCoVDMLLMhpy1aYldEjEcIcTdwN8DcuZNfpM83ZVllPHT9QxFJ9UFSbigk5YZCvrD5h9T0Hp/w3LcSq1g1VGLlvAno0wd4I3knj2dvAqA0vZTvXzZ9qX3/PD+Hf64NVM4XgtjBN0P7bMJG3NB2RhMuA6kDBnfMsar/RysXErr6Cyh0Cr5WXMY1uUNs7xu0VkJInnqJpHUpCVYNOFNi10T09wgQvvaoruthS1tNJK68nLm//Y2Vq7b6IuLKy6m/4UZ8geKzwuEg+dYoTt2rvxUh1oI0HT6I4fcjTRPD7yc2vhMY87al5sTR2zYc0V73walnmE5GQUEBuq5jBJbeEkIghMA0TTRN45JLrHBm0Y034P3Z/RwvKEAAJRkZxPeMhaNzO3bT5roM0wTdJigvL6fm+A5SU1tDnrburnnceOPZrdqgUCgUinOPOF2RzplGCHEx8E0p5bWB9lcBpJTfi9a/oqJCVla+u/U4zyf7Ovax8U8bI+q4CQQX515MwbE0lncv5LWE3ezKOcKtC2+lpreGq+ZeNS25bON5pLkrlPxfaj8VWqng5gVWSPCHh57nuC+RW/MK+ZfSmyKeFxJ8YejAppWLTivSolHpPnOR11JbTdPhg7iWlkaslnCmDFdVRQi5MyXoaTP8fnSbjdvvvY/e9iSOVXWwoDyLpevzefk3hzlxuJt5S9O5+jNLT/+iU9DU1MT+/fsBQkthNTY2hgrrBun9wx8YeOllEq+5GmdRESc//Rmk1wuaRs69X8dz0XU01/aSX5RKTmEylZWVHD36KxIS6pCUU7HqS+9o1YbziRBij5RSLdmgUCj+qpkNos0G1AJXAs3AbuDjUsrD0frPNtEGlnCrbK8k2ZGM2+ue4JWbjVS6h0IzSUsTYun1G2ckuGY771Ywng/eqSi9kFGiTaFQvBe44EUbgBDiBuA/sZw1v5FS3jdZ39ko2hQKxbtDiTaFQvFeYDbktCGl3AJsmWk7FAqFQqFQKGaK2TB7VKFQKBQKheI9jxJtCoVCoVAoFLMAJdoUCoVCoVAoZgFKtCkUCoVCoVDMAmbF7NGzQQjRCZw4g64ZQNc0m/NuUPa9O5R9747ZZt88KeXka5YpFArFXwF/daLtTBFCVF7IJQKUfe8OZd+7Q9mnUCgUFx4qPKpQKBQKhUIxC1CiTaFQKBQKhWIW8F4Wbb+aaQNOg7Lv3aHse3co+xQKheIC4z2b06ZQKBQKhUIxm3gve9oUCoVCoVAoZg3vOdEmhLhOCFEjhKgXQnxlhmxwCSFeE0JUCyEOCyH+IbA9TQjxshCiLvB/amC7EEL8LGDzASHEyvNkpy6EqBJCPB9ozxdC7AzY9wchhCOw3Rlo1wf2F5wH21KEEE8JIY4GjuPFF9LxE0J8KfDdHhJCPC6EiJnp4yeE+I0QokMIcShs21kfMyHExkD/OiHExmm274eB7/iAEOIZIURK2L6vBuyrEUJcG7Z9xs9xhUKhmA7eU6JNCKEDPweuB5YAHxNCLJkBU/zAl6WUJcBa4HMBO74CvCKlXAS8EmgTsHdR4O9u4Jfnyc5/AKrD2j8AfhKwrxf428D2vwV6pZQLgZ8E+k03PwX+LKUsBlYE7Lwgjp8QIh/4AlAhpVwG6MBHmfnj9xBw3bhtZ3XMhBBpwL8Ba4DVwL8Fhd402fcysExKuRyoBb4asGMJ1jFdGnjOLwI3GRfKOa5QKBTnnPeUaMO6yNRLKRuklF7g98At59sIKWWrlHJv4PEAluDID9jycKDbw8Ctgce3AP8rLXYAKUKI3Om0UQgxB7gReDDQFsAG4KlJ7Ava/RRwZaD/dNmWBFwG/BpASumVUvZxAR0/wAbECiFsQBzQygwfPynlm0DPuM1ne8yuBV6WUvZIKXuxRNV4oXXO7JNSviSl9AeaO4A5Yfb9XkrpkVIeB+qxzu8L4hxXKBSK6eC9Jtrygaaw9qnAthkjEAorB3YC2VLKVrCEHZAV6DYTdv8n8C+AGWinA31hF9BwG0L2Bfa7A/2ni0KgE/htIHz7oBAingvk+Ekpm4EfASexxJob2MOFc/zCOdtjNpPn0GeAPwUeX4j2KRQKxbTyXhNt0bwXMzZ9VgiRADwNfFFK2T9V1yjbps1uIcT7gQ4p5Z4ztOF8H1cbsBL4pZSyHBhiLKwXjfN9/FKxvDvzgTwgHitcN5kNF9TvMsBkNs2IrUKIe7DSCh4NbprEjgvxWCoUCsU54b0m2k4BrrD2HKBlJgwRQtixBNujUso/Bja3B8N2gf87AtvPt92XADcLIRqxwksbsDxvKYFw33gbQvYF9iczMQx3LjkFnJJS7gy0n8IScRfK8bsKOC6l7JRS+oA/Auu4cI5fOGd7zM77ORSY7PB+4BNyrEbRBWOfQqFQnC/ea6JtN7AoMIvPgZXIvPl8GxHIV/o1UC2l/I+wXZuB4Gy8jcCmsO2fCszoWwu4gyGt6UBK+VUp5RwpZQHWMXpVSvkJ4DXgtknsC9p9W6D/tHk3pJRtQJMQYnFg05XAES6Q44cVFl0rhIgLfNdB+y6I4zeOsz1mLwLXCCFSAx7FawLbpgUhxHXAvwI3SymHx9n90cDM2/lYEyZ2cYGc4wqFQjEtSCnfU3/ADViz0I4B98yQDZdihWwOAPsCfzdg5TG9AtQF/k8L9BdYM+KOAQexZiWeL1vfBzwfeFyIdWGsB54EnIHtMYF2fWB/4XmwqwyoDBzDZ4HUC+n4Ad8CjgKHgEcA50wfP+BxrBw7H5ZH6m/fyTHDyi2rD/x9eprtq8fKUQueJ/8d1v+egH01wPVh22f8HFd/6k/9qb/p+FMrIigUCoVCoVDMAt5r4VGFQqFQKBSKWYkSbQqFQqFQKBSzACXaFAqFQqFQKGYBSrQpFAqFQqFQzAKUaFMoFAqFQqGYBSjRplAoFAqFQjELUKJNoVAoFAqFYhagRJtCoVAoFArFLECJNoVCoVAoFIpZgBJtCoVCoVAoFLMAJdoUCoVCoVAoZgFKtCkUCoVCoVDMApRoUygUCoVCoZgFKNGmUCgUCoVCMQtQok2hUCgUCoViFqBEm0KhUCgUCsUsQIk2hUKhUCgUilmAEm0KhUKhUCgUswAl2hQKhUKhUChmAUq0KRQKhUKhUMwClGhTKBQKhUKhmAUo0aZQKBQKhUIxC1CiTaFQKBQKhWIWYJtpA841GRkZsqCgYKbNUCgU55E9e/Z0SSkzZ9qOc4EawxSK9xZnM3791Ym2goICKisrZ9oMhUJxHhFCnJhpG84VagxTKN5bnM34pcKjCoVCoVAoFLMAJdoUCoVCoVAoZgFKtCkUCoVCoVDMApRoUygUCoVCoZgFzKhoE0JcJ4SoEULUCyG+EmW/Uwjxh8D+nUKIgvNvpUKhUERHjWEKheJ8MmOiTQihAz8HrgeWAB8TQiwZ1+1vgV4p5ULgJ8APzq+VFzb7Dj3Gg5s3su/QYzPz/h37ePDgg+zr2Dcj70/TLtj6Y+v/9zCeE/30v9aE50T/TJvynuK9NIad7lyf8bFgOlDjy7tjlh2/2TKOzmTJj9VAvZSyAUAI8XvgFuBIWJ9bgG8GHj8F/JcQQkgp5fk09Hyx79BjVDa8SEXhtZQt+/hp+961+7t4BTi69/AAnPY554qW2mp27XqJ/+75A63JQzh0B7+49J/IpIfU1DUkJ6+cfiOadsHDN4PhBd0BGzeDa/WZPa9xKxSsP7P+0/Ua54CW2mradxwlsyaDdummzdZH8U0VLLio2DKzqYnGxkYKCgpwuVwADFdVMbxrN3GrLyKuvDzq67rde2ltfQaA3NwPnJ/vc3Zy4Y5hZ/gbDf4eehcuoM3hwJfso0E0UJFdQVlWGW73Xo6cepYfHdqMz/RTcwx8ZfdyUcFHQq+xr2Mfd710F17DS5Y3i7vm3MXFyy4O/ebOpb3njXc6voTRUltN0+GDuJaWkldUMk2GzjxRP+c5OH5gjUW9vTun/briOdFP14MHkX4TYdPIuFnHObrtwvk9hjGToi0faAprnwLWTNZHSukXQriBdKArvJMQ4m7gboC5c+dOl73viGgXzvHs69jHc/sfZNvRRrL7F/HHxsf4LlA26oXqTVByC/vmllHZXklFdgXGyDw27XkGrwBTCHxIKhtePK1oi3ZytTW4aa7tJb8olZzC5AnPGb+/pbaaJ799D5ULltNb+EUEb5Nn+wt9Dd+gHxNNc7Cy/JGIE6zSPcT2vkHWpSRQkRz/zg9mgD0nevG+/ixrDQ9CmtbA0Lj19CfXGQ4k44VNxDGw18BvbwDTB5odPr2FyqSlbO8bJNWm0+s3WJeSQGmfgafBjbMwGee8pIjjeXRHKwDFa3OjHvMzIfg9LIpbhZFWyp8c+zAwqXyhnnV9l1BcXMzDDz+MYRjous7GjRtJ7+ri5Kc/g/R6EQ4Hc3/7mwnCze3ey569n0BKr/U+rU+xauWjSrhF54IYw9oa3PylrpMTWXbK4g2SandQUPUDXMZJ0DS44cc0ZV8ZVcCf/PRn6ExM4PXLL8ew2TCEwVs5b/GU/zlu8ZWwaNmz1IlCcjOuIkEOMCQSqTz2v9S+fpTXMhaxYdkShgcq8RpeUkZTWNO2hiPNR6jdU8vGjRvPTLidowv8mfBCbQOvtHZyZW4mNxYVTt6xcSsYXto8C2n2lZK/ew8542yaauwMnp9+nx9N06m46VM4Ynx/dQIu+DkNvx/dZuP2e++zPl/g+CGNMx+fx+F272Vv1ScxTW/U6wpY14IdDd2sLUxn1bzUs/8AgZsFz4kFSF8aIJB+E89zj+DUn8DU7LxU8ADzEoopXJkTMZbPFDMp2kSUbePvPs+kD1LKXwG/AqioqLhgvHBNTU089NBDoQvnHXfcMWEQC96lpvTlcGP159FNHUMz2GV7nLKOZwF4sn0n92VmYCCxCTuupuu4VA5iz5f4AbuEisJrx7259WM8GrOCVwYLKNF7OPjA9yNOLs2Wx7P/sRfDL9Ftglv/cWXE4NPW4ObZH+/FMCS6LrjktkRqtm+icsFyXr7slkCvRcwb8aHxImBimj56e3eS3O+Hxq1UZl/Gba0OfKbErgmeKlt41sKtsrKS6upq8jMLGOzN4Ln9b/E+21FW6hoOTSB0h3VHdDrOYCAZrqrixMY7wOcDu53YHzzIi1uGMPwmuk3jlmWbyDF9VmfTxyN7X+OryQ4Maf0wNcAhBL/cPUxpj9+6a7uzFOe8JA5vbWbHn7cQl1nDcOdijm5fOOGYnylNhw9i+P10jJzAL/IxMEFYNmzbto3u7m4Mw0BKiWEYHKjcRdyuHThtgtRRE+nzWcJ0nGjr7d2JlL5QW8rA96lEWzRmfAxra3DzXw8f4KFLEzB6QO82uam2k3zj/WzkaVxmK00v/JCHtZMYhkRoGjdfextla0oY3rUb6fXSkZGJoVmZMkIK5rkXUn78NlIWv0wdhXxP/Bs+bEihITDRMRBzwEBnS72HL2Zns6RVp6gzAxKt1zEMg8bGxjMTbePOy8rj+9luzjtnN3lBXqht4LMnezE0O0+c7OV/aJhcuBWsp82/lE09X8PAhv6qzi1l7tCN65G3dlO7ywYiB00TFF+SG7oJa3v7bXZseg6/1wdITEOy69nfggCbPUzYTMLpbqTPlKamJvbv3w/AihUrxr6L03k1z8LrGRyHpGli+P00HT5obT8myB9NIc/ZB5od7UzG53H09u7ENL1Eu65QsJ495iI+8eAOvH4Th03j0TvXhoTbZB66CMdF7EDgZsGD0yhCcB8SG0JInOwHaTDqLaL4cCKCNjr2dJB11/IZF24zKdpOAeFn9BygZZI+p4QQNiAZ6Dk/5r179u/fj2EYgDWI7d+/f8IgVtlu3aXm9i9EN3U0dDBhpDsbgH1OB/elp2IExnm/9LEy8XH+qbuHDa2x/DmrjPev/VSkly1w5yoND/NMG6/6vsab7iFW+/wgx06ukRGB4bde1/BLju5ojRgkju5oxTCs/T5PMy//6mmk9FN3w6esDkKAlHjTPooYfQUpfQihk+pNhCesO+ftc0/iLbgDE4E0Jdv7BkMD8ZkMTpWVlTz//PMAHKs/ht2TRulQDpcnNIMOh3JupfSGvzuzu7iC9dadfPCOPspA4n52E3gtLxNeL42vHMDwz0dKMAyT5vZ4cgJ9H8l5P/+aeDVm2CXWBHxSUpmsUdqNddfW4KbXkOz88xbmXv5jhOZHmjZOvvFlmmvnv6OB2bW0FCEE3Z4WRjt3Q17kCigDAwPouo5hGGiaRvXzTyMG+xHzc1h7vI00vyRu9UUTXjc1dQ1C2EOeNtBJTR3vPFIEmPExrLm2l4Y0HUMDqQkMU3A0y0VLcjo57ku4s/8pGmUehmEiAWkYvPLUTnIy80hafRHSbiOjswPNNDE0MIWJ3ZuMLm0Mdy7mCBp+bEihg5RIoWNIQBOWiDOh9sQA9z5u0JXUwRuXl2DaNDpS0nktKRuxu4rivVOH48PPy8qUFdxmVuBraH3HN3mT8cej9RgJGUihYQiTJ2qOTi7aXKtpXvo9jNc9SASGaR1r098S8KD5QOo4Em9D2vI4/GYLNW+3celVNrb+aRCfvxgrSm5g6XYTJKGxdzLR1tbgZtNPqkI3iWv+JpsBb9eUkZpohDsMAKqqqiynQfsrsOXLIE3QnRO9mmfp9YxNTEQIAUKg22zEJiaGPIwGyxD5aeyJK+efzUWsOmPrLdE1OtqCEDakNNA0e8R1Bd3B8WW/wOt3Ykrw+U12NHSzal7qpB66ltpqnvjWV0NOlA/fspw8wwvSxKkdJcNxDx5zOc75iTibazFNjVFzBQIdHYHpl1b0ZIZF20zOHt0NLBJCzBdCOICPApvH9dkMbAw8vg14dTblsw0ODk7ZBqjIrsChO2hJqsfQDEwMDM2gMbMNgMqYGAwRebPeaxNoAlZ5Rrg7vnBiWDRw5yqkiR0/a0Q1TY5c0HSEpqHbbLiWlo6zRNI93BW5abCDoFPA9DUhTT9IyaKGw6HnIGBd/MDYq0iJt7Y2dOec6unBDOwzgVSbDowNTjs3NbDpJ1W0NbijHsPq6uqIts/ZQ0/aUaqNMnQM5oqOqM8LJ5RgahZbg9CGeyYdjPxdkccg4dgONA2EBrqukV9k3clVJi3lq4u+iDnOkaIBdiFY1WcNlu26mz2DNRzcU0NsZg1C8yE0idD8xGfVhF7vnSBN68gO9Z/A3t0asa+8vJyNGzeyYcMGlqQmks+ZmAAAIABJREFUIgat5FopBKdSEsj+6leiXkSTk1eyuOgbqGpAZ8SMj2H5RakU9hjoJghToklJbe48ds1fwreX301l0jIK9A7rwioBNGyjiTTvOkhceTkH7/0Qryzto9b5JkdSq2kubuZ4Sg0SE5CUyCPY8COk9XsW0kAzJDa/gWYYaPi5dHgHvjleMju7eN8bbxArYfOytfx39xCf6PHy+uYX2PuPX+bVP/yBpqamiR/CtTp0Xm5/3w/xSYEB+AI3eZNxNpMfmpqacNQfRTNNhGmiSZO+5q1TPjd/dSm6XbfOfQ3yh/9E0/Y/YfitcRAMTP+pUH/DMDmysxcDO5ptDo7ED2GLuRhb3AbAhhAamXEu5vgXTJrs3lzbi+E3kRJGRR+bX3yKV199lYd/+1sO3v9fDFdVnfazAjQ2NoYEm2WbQeP+rZZgM62bdwyPda2IeGKUaMQktNRW89rDD2CaJkLTuGLjXYwMDGD4/aQ7cliatJq20XJ2+xeyo6E79JydzzxBS231pK8bFF3NLb8HID/vI5bwam+PsO1i/QgOm4YuwG7TWFuYjtu9l4aGn2GaHsI9dHtO9PLEY8+EvjvD7+dws7CEKRoesxiPWYrTdgRny++s4yM0HsOFD/AjETaB8114Ps8VM+ZpC+R3fB54EdCB30gpDwsh/h2olFJuBn4NPCKEqMe6O/3oTNn7TkhISJiyDVCWVcYD1zzAbw/9luf5OXn9C2lJquezIwfwmMWs7yvjLzGtHI47HnpOuhGQQQKyEh0T3zhw5yoNLz6pc5BFZCdKFmz4O3L97lBeRW97MwgwpYkpDH7t/QULOhIoyyoDoDjjMEeZj4ENmz0H6ROYUlBx7AAFV63nfwdacQztot/9KjLJD0gwDVpbPSSxDKc4RK8zDQ1LsGlAr98aSMIHJ8Mwaa7ttTxO41zzJSUlHDt2DIlEIKybVmnidfSjI0lq2WbdGU4iwiYkmN5ZinP95HeOtoyMiHZ89VuUd3YiP/MvFLxvKTlHrJD19uQyzMAdJoHP9n9cmSTbbVSMCua6a2kXbrboezH3SjShMTdet0KYEhCSwhUL3nH44/AbrxK89hsxcWiGwfy0VNwISkpKqKioAMDlcrFp5xsRz/XqGnu2vsqS8uVR7/gHBo5ASGr7aW19RoVHo3AhjGE5hcl8fuNyius6OZFhp3momWe9TqTQ8AudLQvv5ArNyaWtrVQdTcbmTSXGF0e+4yBwKZlFl1LbcgSvKUgZnsNVWev4sfc7bC18klsdicwTR/ka3+SIXEZqrZNaz7XM7fQjpMm+JTu4KW87roxauv/eJP1+B+nHunD3jWJIgakJfLqN7ctXkap7Maur2V5XFz3XzbUaXKtZ5x7C3lcPgXSKdSkTx0yInPzg0B08cM0DoXErGo2NjWT393DTgW20JGeQ6+5kRDaz7ci2SZ+XU5jMLV8qp3nXQfIPf5Wcg4cxR1PRtWUYEjRdZ0FFGaeqwTQluiaIz0iCHj8Ami2PBUvmkr1kHg7npfibmsisyUDuHabrwEEy7iyl15AR0Yb8olR0m4ZhmPidbqRpIrFSHGpfew37r38dNRd1PAUFBSFPO4Cu6xRwCkxzrJPQIqMNTbvAfQo0K9ozWTQi1D0QGkVKpJSMDAzgWlpKZpyL9ekfQhM6xUCDNsrawvTJ89/GER4WldLAO2jj6Kv1uDIKyAuLlOSXXcOjyxeFctqS+1+jsv5rIALXIjQ0zU67Zwkbf7eDta19LCMsXyEhC9Z/H89zv6LL++9IbOCHFNsvSbD9GU0IPrAW3vBn4BowaErUWYxxVh7D6WBGF4yXUm4Btozb9o2wx6PA7efbrnPFihUrqKqqCrljV6xYEbVfWVYZP93wU34y8t8cr25npbmKxc1L6LRdSzw6/++En3+Zdz+H445hFzaull4a5sSS6Dbpzn4/xeNfMHDnKhq3smdkPgt2HAbZzKH9bazauJE8l4u2BjdvPVEXCHmYbJv/NC0Jx6hsrwwNYjkXreLWqi/TPFpEfkwt5jVfpKnLwLW0lC2ebaQcux8Tk1qn4LpE3XK8SRux3cV4VtyCM/1t1mVfhqNVC+W0BQfh8MEp5MGK4prPzs4lpyCH2uZaEnwJCAQ6JqV6VeC0NME/CvsfiyraGva2Ee8z0RgLVU7l3o5ZMnEQSeqtJ9N3iIzCdXDEOuXXuffhMP14NQ0hNK7JSOL6zBQqkuPpfaaOIUPSqvdiEhCm0kTEdoMUCE0iTYHk3U8tN2LjGZ5bBELjeE8vADt37qS4uBiXy0VLbTXHqwKLj0sr8a4zKY72zmYOf/ue0+bXKKbmQhjDcgqT+ZuA+K988yW2mKX4hMQmDdrr+3mlvxeEZFXSG+QNZpKfUkvORT+mqamJ7Zu3U+wvBqmR0rucgT+m8Iv3/4JWs5rY+u0IQ2MR9RTJ4+T1/hN7m730GgITk0xjJ8XUAibSoSGvnAMNpyivPcLvDD9eAXbDT25/F0PpKcDpc90qkuN5qmzhlBOX2hrc7HiznpTBXNoSj+MzfRHjVjQKCgqw2Wzk9PeS1d8d3Mrh/Sb/nlrLDQX5Ud8rpzCZnOadUHMYpEFeTA+3u/bRNJSEK2GYvMVv09b2Es2jJeTH1sHF/4+Txwwrf1AI5l20kKXr84EC+l/Lpr+6EaQ1FnVXtvPc681j+bJfKh8TirW96Km5PP9yE4bfj2aaZLW3h3JRuzMyppzg5nK5uOOOOyJz2miFff8Bfk9ogkpozAwfezUbrPoUrPg47iQbvY2/jDp707W0FN1mC4mwoDNgw3WfwdwzhEBgB75bMZ+SeansfOblCflv0cae1NQ1aJoD07TSbXY8tp3B1j2W0Lv75+TRGLqpXwWsmpdqef3+9GOyV/oC99GCtNRLKCz8Ar/bm4TXX8PRhMWUDNRgw0C32Vl6+QZo34LHWGoJNnRA0uf/O+zaSZyO4wzkrOXwKYNv1jThNyWOvScicudmghkVbX/tBE+c080eBXizcjfaCwUsMhcg0HDHaqTqOkIINOz8k+f9PLBwN1meDNy5TzEk/PiljYM91bx1sDE0RX/sza07V7l1K0KaJCR0kJLSTkNDPi7Xp0OeLhAIKYj1J2LX7FRkV0S8Rs7dPyancSsUfBZcq8kL7Kro8ODQHfhMHy1+O6lJX8O2bz+x3YuJG1yIUzsIBeupcF3EU9kTZ4+GD06hnLatW60BBRP8Hpr2v87D+7wYhkGKSCFe95JpHOcKsYc5stUK4AS8VqLqMVjx8QjhtudEL9+pPM4PibVOSV07rXvb6HOHcvUAEIKWvEs52llM0dZmlq74GFQ9CsAVvZUcy13Hcb/gpa5+Xunu56O56VynGxQBuWYqGhomEk3TSPFmAJp192zaOPKXdObNdZ+Rt238rNOll2/g8Gsv4YlNtO6Yw0Lo4RfGpsMHMcPurpNHPLjjnFa/SQbO3NwP0NL6VCBH0U5u7gdOa5/iwqBi/gqe+uO/sj1xCbLPTm+/JZakhL2edTi9g5RcdSW4VtO4dWtYCM3EZ+8jazSZ3Ne95MsFSHMuPX9OQy42ie8tweleQKbD5GC84HiWgxzXxzkp9lMiD7BYayR3/d/S/fD3KG6s43v338f9t5fyBdcalhUXsam3B0NKy+NTUABMPqu8Ijl+0jy2UM6XL42bxOfZNv9pGvL2Ro5bUXC5XGzcuJHGxkaOtR2j8XAjbUmpPL/0YsyeIX7TVx+RPxeRbxuWc9fmW0yrv4R5iYfIcZyC7T8jx2aSk3AE0MC/nfUf/ShvPl6LaUreeqKO9PwEcgqTcRYmI2xayOvf5TejRhuCfwDpeRup274d7/9uYjDhIhziOLaFC/jDuJnhkwm3yO0uKyIRPskgGNlwN42FHk0g2YU7yTbl7M28ohJuv/e+CRUJHMuHae3bYl0LhoooXGllAUcTedFITl5J0aKv09HxIoPN6Qy21o0JvS6DvA98ecJzmg4fpP9ULFkrBCAxTA3NczHJB17jyoQV3G/TyIrJR5/7aUrnj7LsqhWWvbEDOPWnwS+xvHMC0PDM/3uOL8vi1s0+PL6ToZlD4blzQTwn+qNWCpgulGibZiaeONE5cugEmpmMho4M/XgsJFDl6WRHyw6uTvKjxRoIAZo0aB/8b3631zZpiKCgoICk5G6WLXsJIUwM8xANRxYw0JOFpgtMU2LTdC65qIwvrfjkxLvVgPgLEj775oFrHgiVISnLKsOTdSOeqkM4938FZ9UhOGB5yypcq1nSUMvwn3czHJaQHD44ARCbDmEZcI2DDgxjBCkl0pSYgwsZGboEW1od2FvZbRazWjtqZV+Z/gmzQXc0dLPf9PMPDLMKneJV+Xz8NCdV3OqLEE4n0usFIei67A6OypVwyk/LozXwicWMfOQFPtis4UUDnyCY92dIeKSlmyeSBL9I01nek8wNxkr6lmgknDrG0NLHkBhIBD21VzLcVTgWFp6C8Fm8AEe3t3LrP67kw9/8Poc2vcLbg10B8Wr1F0KELozhA6UmwdXTT39sRugXFm3gTE5eyaqVj56X+kiKc4xrNRUf/AEVjVt5vjmFyn4rh0xIgYaNI8Yq9B+9yMVZJREhNCkFdm8KGTZBB3206X3kkITpWUPW8XTLUw3ULLXzcIETU9OAxQgW49Bu4+FFguz8lbT9ROOZJ77DQVcDXq2ZkmW3U7rhZupfeSNUasPlclHpHuK2ffVnPau8ubYXv88aI3Rp47LGD/O5DXdO6WULHZrAWFzQVMDDNQ/TmmLNmpUIfKbkyV1NzFmQCxAxGeCWL5WTs3Ezbbv38Mc/x+PznMJuX88Hc35Fji0sN0uzwo2jh31jqQuGydEdrSEBmHFnaegCrxsS/a3WyGhDFJvtF13Hs29mYhiSE7pg7qARMTN8Ks/lhJJT4eP5eO+apjPcYWe4M5a4tbnRZ2+OGwvyikoibvrc7r0cav07zAVexAI7pfn/ExIy8dkjXPEPKxhsiaOg+P2Tevjd7r3U1n3Heu9YnfhsF4NtMZMKPbd7L7GuatA06l6YR3zeCAe95XyPe0H6KdYdbL7kURxvOtBFPFqrRrozP3CAV+O86W6Sn/0f3P7PAtY9sHNZIa8MZuD114QEm2Asdy5I1PSbaRZuSrTNBFGmVC9ZNo+qXd1YlRs0mrwmLoeGJiVSGPwlaQcmJnUejWuEbiUKC43aUStUMVmI4NhJQX5iD0KYAQeSj33bH6Jtz9+gaYIll+YFpqpvOK3Z0XIS7iy9E7d7L41BF3r628ChiETWt9rsvPj7p1lRfZCl999Pzr1fJ/UjH5k4LXuk2zpjAkmgsYwQnrMtTDuGcHDUfgM/9V1KrXTxqOO7ODHQouRfrC1Mx2HTOOo3qEmz8aH5cRTUdLCsxTPpXVFceTnZX/0Kbd/+Dpgmp3rjICXseFZ10Hi5wIcgWjUHiTV79Og1+aw97qWQHFqHOjmZchC78FrJb1KSXvwyg61lxMQvPu1xb67tDQk2sGb6Ntf2suq6EvoXDbG96vmxNxdw8cVjhU3D74Ydm55nZPQkIZkZnt+imHWM91RFnE/rv8yKpib21P0G0y8RgOEYpC/tIDXzF+J79VWWfvjDXHfddVRX7UDvtNHrS6LJ2cdOxwFMTDSbRp6tlNgBPxl2jV5gR8EwphYTOE+tTFO/1Dngz+V9wO7Mfp65WGAi0KVBZXslgyckX/TH4MuZz3N+P5m7q9iblYfPlBgApmRLYzMj/e0UFBTQnpQ2aXg0vygVTbNuNgGQArM2kT1djWdcIiPodcs5fpJ9poZfgvBLtDc62LS5jcUX50z0gF23miOvDTLi/hlg4B/VOVK8kZzRb1oJ/WIs3Jjvc4dSPzQhOLq9FdOQYwLwCuvczIGJ0YYwgh6cjo7hwKkqMCXW7N6A2A73XI6nqalpQq3GCHEXPunAhF7vFbS9Um2lufzrD0l94F9DYUpNs5/RLPKIfDT8DDkPkcn6yBmdSQ5k/BwaG18nNXUN9X3zI2qtRea0mcTlDDLcEccVG++aIPTCX7foZsEbe9bwl5b3cVviLmy6LzDhwktOazv90hUKTXtefR7nVQvBtZo9mbfwQ+Hm4/pTrMeHTbjxbE7htnlZbLVlsNu/EF3XuG3VHD60ck6kl63BjfSbY697HmaXKtF2vplkSvVlFRcBuzn8djPmkUR6Dcn2QT+ZNklS8q9piD+Bjm6FIgu/TiY9dJJGa8uP0IVvYmizaRfN+17i+dcLWbPYHtosJRj+ocCAJOlpHaJy7xFajtWzekXplHes4TV5TqTl8L0DNXwofgSz9hNI04fQ7KzKv4fksGTRyuzL+JsmE+/1H8B+zU38+D/vg29/B2+h5MjQtzFNLyZ2kvJ/yZqC9dY09MBzRxLmAbVjtus+dJvOkWW3U1f1Emu1av7d/0luLorh4g23TshpWzUvlUfvXMtTDR08Kkb5XW8fv+/q5ZeVw6x4lUnviow+tyVoTJPMjip6UhYTFGgL5g2R9/q92Jd+H6/mCGy29gVlnF0TVAzD8O522unjBfse4pPsLEegSRkQzyZxWTWMDl192p9MflFqRMRWt4nQXfmensCdfph+jImJifo6catXc6qhLjSBQiKihkfPpKilYmYZ76l6aKGBrIv8zlyulXzmjs/w5JPP0u/uDvxGTDpzBugcEOx+6CGQEtP0o0lJiiONHttwqOafIU0OZfpoS4phdXwsH9tQiKEd55Vj3oD3QQv93oO5qsHZ8D5zbEx64pVGvFlzkZqGD9h6/BRXFxVh1wSYEpuA9tdf4tW+bjpS0nl+xaX4JREeuJBATU/gso8V8cbjNUhTIjTB0W2t1kSAsLyw0+FyubjT5aLMPcSTu5rQ3uhgTpcfIzBpOlx0DfSMcvC1SlprXwb8gVcwaB80aLv2GXL82626br7FNP/ZEo9BMTZw8iRH9vqssiEBAWj6W2g6fJC4lEK8ngwczi5O7N+F6S9Fs+XRXNtLXrIDc8txpN8kTROkOzS6fZZHrnTVYorX5p427SY4g3RSj1xY2He4J5a2vxwlWL9Ier3oe/tZ+dFHzsrjHp6PFi70Ir12Xmpqv4mUJgg7P6r8HDU9BaFaawuDr2F4kCYMtsSGJjoEaamtZse2XYymHSA70UMw2nH5qp3MW3U7lyTejnhxU+ha4lxWiGgwLI+Y9OA8fj88fBw2bmZHQxpDvsVoQqBp2+j332XVa6v381DMt3h+1ZeYX35F1Dy28SHv8zG7VIm2M+EcLrGy7+jTVCY4qBgxKPNGFnhNmmuHtwNVWhH0GgZ5jpdYY3uRB1beT6UcDq2I8EJDNxnprdy84GYkkpsX3DwmuALCMNfv4e8dJbx0YiMpBdtAM5AmdB3pwfS3oNnyaK1zI+tMDC2Tr9V9m+/edu+kws21tBRN0ziZmc8TN96Boes8W2PwNbOAIq0W0/Byov8Yy8PyJrabc/FqLZgIfMC+oiUsPXGMruMvYmYE7qZMH4+++Qy2a/6NVYHnDg/nklLbg03TMKRE03WKShZi9yXhbW7lP+ST5Nur8WHjxJLHJ/1eVs1LZRtejIZW665ewJ5UG8vd3knvivSUZNxJ8+lNWkjaYAOlK2I42SooLMtiadom2LefPx74Ej+f81FeyrzUqkEXeK4m4N/S0il8/DiYUGdrxUQyMJBJfd1qFi3abXkoTBuermLybzp9Qmt38yBhDkeWb3CFLkyD/d0Rgi08NArjvKOaRnGgLIQJ6PaxcEO4l2b8ABstLHK+lpdRRGd732CEp+qNziYujRLKcrlc3LRiCY+//iamJhBSIjXrBzOWz6ZhCpMFyc/Sn7qWZjpJTm7jiG8FTy5YiKEJtusa69NtbOiez9917WBbbDtL5mRTmF4W4RELzobftf8gee6FcNyJu/UkWuYcTBNspsEa3aQiOZ6HFhq80dlEXt8oLX3dSClpSkjFa0qksARdsORHuED97jzJ88t+TmbfPJK86RS3X2zVQAufhX4agr/ftOGlXN+ZxdFeA4+jH7/TTcqCXG5ZW87RHa0c3d7KwVcr8Q48hVVzLYhO16lkNj3m4ZYv3Qm+iSHVVUs7aNt2DzUECvRqOrEj7Rz4yau0DZ+ge/QxbHHvwz/8OmCgCYEt4TY02xwWx+kUOzXLg2NIVpVl4M5NCPPIJZ827SY8/B3VIxcstdK4leGXa8F4A4J+eCGs2nrJ5Wd1ficnr2Rl+UShFzm5QCClAUik6aUwqRavX1KcVse+Yz5WbbiZleWPcKLuOXY8tp2RTmdEaLSltpo//LtVKy8me5SMmwW6FhwgJVcWNlNQ8H8gJyx/zywmdmU7onU/cW0/Bkz6R2/CWVXF+uz3cy1x2GUZA0Zp4BhYaUpefzG3pR+HeR8MfcbxqzCEh7wB+l9rmtb8NiXaTse7XGIl/OJ23KNxV9vLeFOScCQn8kCnm7KC9dYyVseeY9veKq4/8ll0QCDRMSiOf8tyu2ctgfZKatoGuPcPb2M4Gomd+yuEZqALnZK0kjGxFXB7a5jkO6rp9Z7AfeBqUlLacPdlYvT34ZSn0Gx5gESgoZk6mX3zJp2FNVxVhXh2E/MTUtmWNx9D15Gajk8KtorLWSRrQYC7rR8qxvIm1rmHsAkNn2mimyZlddUIh4OM+dfSMrATafrwS53qbquWz6orVjPcZefk338Gm8fD5ZmZjHzkw3iKFnHy2VHre0DQxje4Ne0bZDvrKR7dD1wV9fgf2NmMXteJ9VElNgmrevygR6+5M1xVRc1PH6Wq9POYms5x00Qc9CAlHHztFIUfX0eO7qBi4Cifa32GzMJ1HCSB/QPDoYkRHU3uUGreCN7Qa7e3F5GcuAy9p5fB9iJ87gVn9Bs6VhVZi67r1EDI1jlvH6C1eGzZo9WlqyIG84iK5aaJV9dYc6yF7sR4Ftx4E3lFJRM8a645nyI8t9BuD4sPozxxFwLrUhKwa1bBaiEgN8GF1hc9lJVaf4wrXn+VjoxMnF4v+y6qwB9wC2sIWhOSaU1OJ3u4mhczH+CzGSPoQrKPwkA/gV9KXmzoIu3Xx0jza9ygZfHnpf/DHbd/Az+L+NmJ9pB46z/pw7cplxPGCEfja8iM6+amA9toTUrn0r27yNu+lfa5I8ihb3Op6UUIO4PJV+LuSyfP3YVuGkjdFvLgjReof2o/RXN8PU3xteQOFlLctQZhapPmhY0n/Pdr+nWaDn8Zrz0Td+pBpDTZ/PIJ0i/9/+y9Z3gc13n3/TszW4BFWfQOohEgQIIFIFhEipLVu2S5yLZc5BTFLY8TO4kdJ3aay5PLjuzEsZWix0VxkS3JptWoLlEkRbEAIFhAggDRuOhtG3aB3Zk55/0wiwXAJsp+8l7v9Yb3FxLkVszMmf+573/JpcLVjLQU0hjCBmw2/yAjv5bYfDOawzYtHuzZhxnbgzOzBnN65SJ4TNtLkaOTW/R/4Gx4PSvWrUE7vI7Vmduoz9jC7rFf4o/3kOsupCClnIl5H0FjGM1RxkRMUudeGEFDW8cU115b/o4sgpaKLy7akUtw3Dy9X0DoNkBEQPrasst+n3PL621eth5EjxzBONTK6uavMJfvxxkO0D32CFKArhR5VpS/2Piv6JqJpl4iGCzD621mXUszeZnnRy/6Oo8jTQMNxfx4CvvatrBj0yE0FJrmIjt7SwJY5bC1+vdplPoi70wvxKlVE4z/nt1NO6RTtjFKRAiEAoWOEAqUicDC7TwNlQ8mv0vboP+CKQzuikxigyEmHjmGMm1Pt/+u9IQroO0SFQy24+/9Z7I9Ft7QO89QGx5+jNOn/xaFhRAuhr0fIC4tpBDEhaD1qj8At4sHX3qQmBVjQ/AGNKXZfmRINpRO48n7GKd82eza8xgdqV1k5X+bzzQVcTTi5lDC8NJSFl8/+HVqs2ttwLWk7a3pTjJKVjA+OsbsbD4ohTtdoc0vXpQSiaVZDGf24HVdtfxL+A4RffVJBh96HgyTlJwMVrjcaBuvwxIaINgjruca3mCl7MZbdIGTVMnEbE+BplH4pb8ke9MHSDsWofX0r2kdW8/gbE2S4Bk9dBgVi4FS5E1MoB7+N350162ssG5NWL4KLBwMx9dQlDpwUS+hYweHSdvZy52A4XfyeqGTG8YN1gUlni0XzpGLHjqMP70aqekgdJSwb4wsjDeCxRQ98DSt/Ud5n2whFhZAFF2ASIx0Npl68vVSWe6jZ0RsE1SwvZ0u1hlYCvZrmgrxnbTtPAxniHj2HD5fHo7fPEV91IsrXsdpxyhpyk2VXrTsdZYptjSNvJhFVswkR0ZZcZMdfXYu4TgcPkVyx42GYQSWvea5nbi+vu+S4bib6TPm/++yFf+/Wi3eNL66spQv9QwhFXxjWOfHtT+hYvINGKhm8IU0CjbZymTP5k3k/9u/kTfjRzideB58Hzt7D1BgZdKao2iruhNLCFpp4Lrw36OJk2gCGtQJdAwkLpyaRvrgGJYpk6ktBcEK/rNnL7tMsawL9srLj9Nk3owGOGKZaKlQHJimdGaSrUfbUYaxrNPerao4Vb8acTKGAGrHz5JTkM2XNm9OdvAWRqlOTXBbYRlHB+tBrCVPG6b63bvIsW6govbqywI1S89foUFGxX4clo4RdRMO55OWOkZw5GV2zj9Di/4FNGcZzOvYwE0jo8Qk07OX6FQLui6IOB9C6XHKr3Xie+NzGMFaGzw6dxCdSSV+NJvS7FRkWxi9QthGxygKUirQyWdHVg2a0JHK4s3QFAGlCFiSkeo8Qp3TTBmKgLr4WnGpWiqEu1SAveeG97HiyM8I9joI9KUynt5P/5H7SJ9toWbdX/zWm7KFfNtlecezr5F+PIzfq5MdtMgqHmFGmDbf14oz0bkT7zb7/ZYKHRbWxNyVhWgOJ6ZhYAmdV8evZ23Kh9lUMpDkyC0FVjuba8hY4J1ZMFf8KZRPMuftJZpzCs9EPh59K8oCzaHjvbMaOdqPO/rLjT7NAAAgAElEQVQK7syNxE72EnvlDO7Gag7M5hE35bIUhkZ0Yn1BRn1BUkyJjsA0JX3tYzRcAW3/79WybsLaDJqPh/FG9cvLuEw8v+v037LQUlcqTk68G5noYEjAW9BI63grMSuGQjGS0YOl2aTQfKegLFJEKFJK+qDGh7md28pSmM4+AQyyJhscM07eitp8NStB+t1QsGFZ21ur3MGmcY29e39MRuYooUARzU3vIz93Nb1HJhh293Fo+k2GM3sQCKbfEow5g0mj27H//DO6B9fgSi1DOkc5WZpHybiPxtPtHF29CYSGVBon1RpqtTPgGiUYbE9e5PsDsxgKlKZhKp2O2nreFQgSDLYzN/0QDdlxVmX1YoZLga2AreBE18FM8EekJGPWRyTtLO54Ni4jEx2TUlcnNN1/URA9sm+INcBxr853GlIwBHTk6Kycm+OG5sILPsezeRPZjz6LJi2kwA6kt2eJizv58kr2ywpifaPJsaipoM7j5sGyfLabLiYPTIKEWquY0/owCsjMnKKk6pVkjNXwvj+ntO58q8YLdbLexSpa93YyGD9OZ6/k1EA7dYCnOJ0pfYZpLcwUYXxHn+P2MmhpabGVY+NTXPPJzxGfGKV8zVqyIvN25ugSFe+5PJSCglsIBA9flIC8+Hj7xjczs48pax9nXq/gwK+9l+X9dqkbyJW6vPKbFkrZp2dcSh7rc1LWtY3K6QCO2Td47YjiXfdew4YtTaz40Q+Tx/2Ev5M/mXo/TqUTzJIcEnYklSWhT7ZgqZMAVKtumia+S6b3PsKRNzly/CRbrD9GCh2HstDmexiObCLulHYySKILNpZxmnXaDRh6CMsdpOG0D80MUjA+Tp7fn+y0T0QOcVpW8g3xNxhuJ2KdtLmWQqCLRT7Aud5tAIH8v8RQin0Y7FB/j9v1Aqm5PwWWg4tzxRo+n4/BwZREVJuJkpBVtZ9sYVGkNHrPtFCzshWhWTQpmCg/QMXke+jcLTDmO3FnHSavZZedaqJ2k+26Br9lgAYaBqvKnqBm43uBjbR1FqClf52cbZVoQqCkTaRIsF8oa2qkSqtE7w8kNuqC+rQCuudMVqT1UHnDJp46No2lFJY7zHisB59Pv/RYdAmVZ2QuI3mNAZc2ti3fjOfPdxJ9+F+JFB0i+CF77fXHD9HWfj8bm3/+WwG36KHDzDgE05mZ5EbjyJdfJFzgonwyncqQn2BWim2Gu9DYt8DVozFc8RgTEy/iUuuYHSwjd6UD3/RXkmviXV/8Kq/tnuLRfgcjrkK+8jz87A8/SKU3mwPtZ5YBqyOYXLuEd5baUo0/8iJDTd9ECQNNKdbMPklKzXdwNzXam3mfDx59mFi8kqn4HXZX7vQsN70rwr86NAxT4nRo7PCkJrt4KcJmPCrsTPAjmPx3rGxXQNtFalk3QdfxN9+Et+ZPL7vL5vcfZDkHAuIyhkhcthoawXgQr8u7cBkznjHAcw3f486JFVzjrkHObmTB8E9HY67AjjCxN2qK9R67Zb/OIzkW1fBGlkQaJtrePp+P9va/onHtWwihUJaDwTebqH9gM2t2lNIxIfjhS/9IdrCEOzo/haVcPNV2hHs+1wQdbTw1+VdYHgdivUX+wHeTJPbGnqOcbGjBFAqHEKzmFCCZnHqZqek32Nj8M7zeZrIdOirxeZWm4Z2L4tm8iQn/AZSMo2kKIU3u8PRz4NAIGyuy8TQ1UfSVLzP21a8RTFvB2RWrMfNSsRhkTp2lZi7GzY5XKXKdhqJPX/wgJLhebTkODAFSE5hS0Zatc8NFnuJpamLd9/8e1zd/yPi0RnagBzSN+G0PUPfRm5M73W1Z6YsqzER1R2N85cwwDRtWsvYT64m0j5Ma0dH6dCxp4fWOIzQTodkROCs2jlBU7T3P5+dCUvvc0vuZ8o8iPZZNErcsTgmgWAemkt9XKsWuXbbX6wsvvJDks9xx3bV2mPOatZR84o+WfecL8VDS01ddlLO28Pi+vu8y499n++RpkF4cYXLCc8lsRbiwCvkKcHvntS0rHYcAaUlQkmelRFW70KpyufNoF0UhP0+/8AS5Jb9HeVNTEqSvfTaOU82ho1MamESTmYlRleQarYp/n/RQ7TaYDOfQMliLlG1I4ULMBFl37LuEvLVkBnsYT4niOTVN2xoLJTQcusZthWU85B3mjdofsza4CgF0NVbw7uxcygrysQLB5IYhJVjHnn4fpt+FQqAWktOEhoRlOcVLvdu+Ozhu3xyFvRE8JVZTp3rO416eK9b4fnEGRx7/OZZl4fXeyHXXlWDFZvCHd4JQtoFt7ihaQmmvA3XF81x1Uz31W4vZ/+QsEfl6IoYOkCaeoRcJFqfaGxwFjbGTzBV/lae+cwTTkNS6K8lN0WwelyYwMuaQba9ijp/E9cIwxd96hNkhHWVYCKDAIchP0/DevImIOUJN01mmgql0h7o4fETSfvzgRX3ZllJ5RuazecK31rYTcThYfc0Nb29sW74Zz32fZ/6tDySOg/2HUhe2+7gcXmuotJCDVUVIYfMptY63kFKiU88d6zrxrXEgtV6wwHFWkHbIRfRjYUZOfznx3nsZOlqMs0dR1LK4JjoyxjEab2J05DTqnOzRBdeABWC1qrmYvOayZWusb+AMCAM0hZSK6UIfXv+jnGq/gfLYWkrGbYpRTDYmjXcViqLRUX72h7clOW2VfbOEEl08DXhRGGhMkKqfYEvZdcDqS13Cv1VdAW0XqfNUME1/Du9gpxGPV2FZGppmbyGE0CkruQ933z8tU1a1jrcmgRxCMJYxwI8zBrhh6ATZrE8AOh0Li9SJJqK5nSibdkDOvMF9OfYorj5FMjXzCvCFZZ+jr+8VqqptwCYEoJk40p7l5L5qiqqvTxKHD+w6g6Vcywi9xNdiMYdCBw0ceWvQZRdSgKY7uDvdSVpWNs2BneTPdl3wIvebFhrCfo6SGB+9A09TE87hLkAlzXHzrHTKxsZg7wtQucO2BMms5o2ng4Q9Q2hqICHPVFR5WinitC2zn5vmYlVaEsMakzTNmDiVC1MmOG3T5iWl2Z6mJuq/8Pt4fu/3UYaBcDpZcfdKPEtGEy3eND5Vns/3fZPLnruQl9hSYXfyul5ow5I2eA8EClmxQgMpUVKQnbXlgj4/F1JgnXnLjyPmBc+CJcqSN134e8LyQynFqVOnlinHXvzFT3FNjb4tSBofn+DYsb0UFkZwXSAhbaG83maqqz/LTOt+lLIFLrOjHoSmXdQ0c6GW8ezeJkD7Sl28Wrxp3B88xokpjUiKh1PFlYlxvsZIVh5FYT9SyaRqMEm+r20k+paGaVlcFXBy99G3GM7KoSQww01rNtDk+gqTqZNclZrPyf6TaNiE+PGCAtIiJ/GG+lFOndUbP40YnOTOY28ympXPXSsruL9yO/uGP06bblCgNIpDASypCGxYT1Zlpc2vysvDg30O3VG1ih8FbWClCc1OEAFcQlE19xLB4JrzAMG2rHScQhCXEgcWDfIkQj+/I3wuF+7V0Um8iWsiGMwlFNrOunVptLY+i5JxpNKYmC4mI3sYTUl0zcnqsncDtqfkutvyad9jd+cANKUoHp+juOwD+HOdZAcMvO99P2c6C7DMPqQ5wrgZpC6l0U74AyZic2R2PWer03Udo6+dvD/8IP5fn8AcNwEN4dCYDQhe+8X3yHWUMOaeQWZnJDdrF/VlW2Lh4Zv12NdYIqQeuCxjW0+eQWn+OvpYzDgV4vzf7eXyWieNGErXE8k7Iil+sRCMpqciNcPmlTjArFSEqiyCseXxvd6qEOPtBRRt1EGI5Jq4VdjgrDytl4bcM7SUpAMrk64BS8UCQHK9H93/Mt75MYJKs+elQjBamMLeZ04zOz6M7nTw/k98lFwaMVU+C3xGgYW7sZqNFdnJ14yhJ9WjmkPjxu1QdehPcCgD8eIPbDHE7yhePLeugLaL1MVUMJdb4+NpnDh+C/kFZxAIysvvY1PlB3jEs2qZIS2AU3MSl3Gb9yUEUikOpPXz0fhXiMk1HEk1aM/RmMvpIhzWWemW1MRMcj0JhlfCDqIk4/zPka778Jsq+RiFIDQUYuLov1K/tZiJrBit462sblzPqbbIOUaP2ej72rBMiZAWRX0nKRRTnPzEJ/iXqmaMqESLTODad4xrt4KwrykEDtLG0sH3kB1jJRzElcSBSW78+wSDeRhGIMntQAkK06LkDghik0/idn0LHniaaVGAJIwznkXC4AyHrlHJBEj9ktl40SNHcP7jnxBLK2VVfgP/VP5uuuadbJwyWB/hktLs2GAIM5BH8bcewehrXzZKXFpfWVlKZaqbn4/OcGJ2DqkWo7pigyE6/89eTmin7QcvxJQmgCcC4vPmBX1+vNedf+6V1gVJeS6LbP86YqnjzKdNIBNgcFm7DztnsKGhgcHBQSzL3sFrs6GLgqSlC7BlCfp6NzE3fxhdV28rNBBCw74tCjRN54bf/+TbArDLdUa/UpeujokODo7/mG2j25jMyON04QqkZpO7S4J293VBNXh44JcE+v4GDYmmuWj82L8z05PKgC/IqlPlVI8E0FQO+yK7UUqi6zpbbt1Cl6ML0zSRQtJVOMU/fEjnPbN1vOe+rzCp+8E3SVHYT2kkTEXGSl48Nc4z8e0YRYqhAsWdx/ZREgmSmpp6Qc+wC40+Xxs7jXfk7/GMnKR97Pzzr8Wbxq+aatk1MEyx/wjVntUMuzaTE9NYKqFaEGsscOFuKM7nyBI1ZWpqKseORchM/RpdR59nIuoiHM4nGs0iz3WG7e/6ZPJ9g8F2zk59mZxVcZTSCJzZQHOwD68Rher3411yYy41gqDGiIefZAKL3fETFHtvw08GW99VyvzTruRm0LN5E9ZML6GnvkXqpj8GoSOcOjPTI8n8zjzh53nVYe/JNC2pAj3PiX8Jl7k8PYrud+DOnSWjdI6qrcWsuXZJekFqGPY+BJU77LD0viDu9GHcL76bKiuOq9jD8JoGUjJqqKj4I7ze5iTodzqzmJh48YLGu+d+pvI1a9GdTtvcW7M50NIy0VEUz87jkzpSX1CskhgsJiqxrgX6MohNplFR8A0cGePJNXGjFx79iIfQ8MNoGERHXyZYZJ8rS4HV0goG2zkV/Syq1GDRjRyUEHiK5wmPp2MZBuMnplDG121hhqZIK5vEs6kM96aty17PXZG5TD1aevYRUGbSH+6dcOAvt66AtkvUuSqYd1KpqamEQnmEQnYAeX29fWPaULBhmTpzQ8EGfnDLD/jR4Yd4Y/IISilcStESMwCFqfKpdkwTq30dhD2nFwJMl4OFacKCHYQzf7nnV2wwhPetFfg3OFHCQCnB0L5CouMeEBaHDr3E1/lpMnT5oQceJm0qf5nR4z2f30j3T17CtevHeIN9oOtMpOVjJHaOUkGXq5bSZ/soqTcpSa8la+Rq4oFiYq6HaXF9iz+96as8F3GymbdYqU4lwQjKgVImQumk+RtA6cTkGtzmKTj6cyJ8jHBGj80Hi6zEtTZEV/oJDpR+mHJDv6QFS/TQYURaKY6cWsypLq6LdHL3rR88L27k3EUmNhhi8j+PgaVQArpzm5FHXMztPUJNU0EiR3CxPlqax0dL887jzoTafYyomUQH1X5sUc4IQliJjqeF0/sG7sIdF/T5OffcOzf2y3CGONNxGvPgFENMERUxCvLSKGpek1SKFRYWMjAwQLoGex4+ggXoiU7YxSw+hBDk5g2iaTYgvJgTOtgUAFtkYwP2qz5yNetabrvIFbFYF4u/uVLvrFrHW9Hj6Yzr8zjmzrKt81XKWm7kxvxs1HwN3fMCf1oRb41PcHjoq9yUYdojdBkn4j6B6b0b/YSG25rFZWYyl+ZbDCg3LYZ6zlJfvYaJST9nGWVN6BpqN5TykTs+ScdEB1986YukF6RTHVrFuqFb6H41zJujZzAaU0HoWJpFR5Fk3nyFkZlxPB6NUCjvvG7RubFVef6D9KqTXMqJv8WbRsv6OjomovzVk4+TH6jgsazllkVLAWGeGmU0/Brb7t6GM+jEiMCuXc8jpYXQBXWrbyV8/DgoRTiYi+XzM11msjKxn/D7Dya8KBVIgRmrwJ95D9xZd94aVFTtpW6zydEX7Q7NdGyIYOgkW66+g5yULNQ5m8Gp//hPrIluovu+jVl+FbP1jeQ4C9FEHE1oFKks1oTrGHQYXH/9OrxnYHZklOCzfYxZfsYcAervaqFm0yKXuaRyB3cEhhgc/ysQFmcn/xpd/wLVLTdSwmhyjBqjkan4V1GWQGgWeY4q3NpJSkejlDbcCuvsyKilG7tFAhoshLJnZ194anDutQ52p708T6eEAfILCxmVpxOxeebiayv7r47dTvL2SrYUd7MyqwzK38PSKnSfZBbjgufKhca3fv9BlJYIlFeA0kFZCKWIjqYgkOhCUWA4UQseUUqgN2zBvenCXEJ3Rebi1EZbBM6Xair8LnUFtP031dzc3CV/XlobCjbwL3f8hI4936C152laUotoaPoyk68XAE5msp5FT9z8FyZhC1GTUsGUKXg97GRzQTZLtZ+xviBBfx7Hj91IpneUULAYY3AanVl0h4Ox3BjxiXgyUaHL38VG8pd9tqJqL5l3r+TszhGUriOcTnZUlfG9WQubrGZROtpHdMKDy9hOkXd7YtxrEpNrOO7R+Xa0CUNonFKrWSHGaEm02oVYoOVK5tJ8pAZX2JmlKDoOdPOa/gyk2oh0XoxxdOYUGcPF/MfoXt7IbOCuziep2BiiftP5dh/O6mY822pA6LiUhXNJZ804dYLYawNoxZUE31TLFpmp3T6UpRI+pIqMkVkOn7GD3RcUnGsqh8/z7Vu46Sz4Sq2t9lLyWg7t9KGUPfrJkp5lnzE0PY978/Kd2qUk4stjv2yfpt6iLg7uegJTWUwHZqlKbUneDBeUY9EjR5jvHWXKrZMXs9CDR2kf+WpytFFX++WksEApwfRUBV7vOLquEEK/qBO605lld9oUaLqLitq7LvrZz61z42+u1Duvuth67jxZhiYdiASV3XEmzMbPraSvdjP/4hvGEOAIKG7x34xMf5oeaukS67hqYBX+X5xOvlZxfgjnBmjvBGHTJjnWdTwxrNQomVmH08hEHxCMNQRpjbQSt+KMZmbhYjNlJVHq3W+SoW1DqAobzCsLj+sNPlgwglMbpXGtxonjNxONFl3UxR8ubtB6XvkOcei1x7nlxINoUkcOWRyqPc6GmxY3xS3eNByxHh586cHFzWn9wxx5+mSSH5rmGWd4bg+Z3gZCgVxAoOt6EmSM9QUZ71kBTidKGiipE5upp/SBuxgzSBrqLlV2rr56Eyde+w2WYQA6BWlVlPUHCPUF7N9o/XYycuzr1LN5E6GcWkZympjP3UJuyMnUsXnWenSUUghdp27rRravyEDu6idkDoAQjKsAu1ztSCRHnu/ngaKPU74kpsoa2A1YICSWNOjvf469e4d5YIOL8sQYNWausrtJaCgJMbUOtzh9HuBYurFbLC0Zyu71NhNq9503NTiBxYFhJ1ubb6Ik0flaet17AYLtAITDnYTCx+33EALPWxpZv4YibYYV6wMX7Fpd6FxpG/TT0buXSvGXoAwQTmbCX6PRaiRvdWNyrRPKQUXKn6JnDJI9PER92j58+R5K0kIYxffhnDxnM30Jv9bZg6PMnZgitbGc9HPzXf8v1xXQ9jYV7P4p/pFdZJfcjrfuI5f9vKXGhpqmEQwG8fl89g31Age/48TPaT3yCC1zc2wwBwhF7sE+PALPTAOi2oFUJpZSCZ1RwoYC+PmMC4fQWaOdXabcdFd7GdX9BEN5BMN5ZGRMUnZtKgWuRlZveg8TWTF+8NITGNJg9fg2zAOlHFB9OM5xFvc0LVGfVaYzO9eKxsaEWa2gfe0sV9VeT+DUCrsTiEITErfWyeNFdxBPOM+ZwsmpvL/F621m4M0/RKm4PbZFMr76p6Rnj+DutW8kXbIO9MUuFUqxZehm0iLlWJrFSPEvyQkKUgf/hi44D7gJRyFCXwDKOvOndcJvHFsSDFwKp2MsXALKlEy3jtN/bIoKh0ii4iKnRrau8CdipHr3n2HNGx84z7fvQlmK2XfXIHa1JebSipyJzUTKD9t3RanRu28t9atspe5v6+dz7NhRTGklOiiKXc/torCwcBnnJXroMFmhWbISPJqldgtSGhhGIDmOjcercLtGsWRbYud74Roefizham4hhE5d7ZffcVf6ioL0d6u0qXwcKky2LshzCKZMxaQIsPv1N+gsKcVwaUjNtuMYlxt54UwGT9TdgRROfi3h1uoozX22m/zoZDrPjPwftqesZkNwDRER57Q+nHB+kRiuAE4jE8tSdB0YpeXGFlRqPYHczxMscHBKmHxE7uF5rRSF7Xm1recY9Tk+2w4Hha4r1q+0KBjMIndqCi6igrwsakqCdF8yezf9Uk/akJQEVy57WDDYTk//9yjW5+i3BIY0OHliEEfMS0bRFAUFZygq7gUhUYU+jh+7iXA4n/o77qWkrsHO/f12O/PCwFV0Pw0bYxBupmJVA9PDs+x7vGd5RulC0Lu7lPff89f0DxwmPnSAek8HUhYCNr9Lnpxm8vQMaZuKmC8q5Mj6z5IJbEt3JKRn0BO1ULrGmvevZN1VJYRe9yVJ7yjFqMNvcwAT6RVLu5exwRDa/gJEswMpDXukGyi0u5yUUZ7oBrn1ToRpohY4Ww1lUP7X5wGOcxXjdofNlQRscH46wFism0M//T4yPcZDb27lzz76x+eNLJd28AQ6At12DtWcVG/9KPNT/0681sSwdJgPwU/uhYZ7oOXj4DuEd2AvzSVfwu8KL7P7uKHsVcpr4uiaQloG1aMH8PTnMd8KjVe9l0j2CNlmNt6KJij/BKwHv+P7bHzzy2hIjBN/zuD2xyly1+Gu9tI/cYia5++3uWq6e5lf6+zBUQI7z9i/954A3LuS9B3nh9r/36oroO0SFez+Ke2Df4PUQBs8QDO8I+C2UFJK2tra6Ojo4IFbN1H+/EfAMkB3wsefo8Pt4sH2bxL3plEqVvPpkVI2Rp8HPgE4SQnWUNb6BWZzTvGb9Lco8oZpzCrnjZkzHJq1+1qfyY8QHX+M9slfUVf7ZQwjQHb2FsLlpWSGD5KfWJwECk0/QFrhbRRN1/C3Kd9lyDyL1Z+HFR9GGsNIZxnD3ZXLdo6epiY8eQY8ejf7S96LVdls8y+A7Vf9BbW+LA529vHmrEWeU1BUE6Esq4jJsqvBWlAowExAQOuPyT6wE9bbry+EnZ96MtdB9WAKmDHqtS66uGpx9ovAHc/CckaIu/yUTNzJYSMTDZOiPYfOA23uai/CqaES4dLG0Ow5R8XmVyTZ+7pgypT4YpIVDnthtZ27FXkO8CfoYzX5fXA2BkgwY8nd37mk5/2BWZrmJxOdClsGPhXOpu7wF5mp3IWZEiAna/iyA+MvlE/o8/k44Tud/N3a6lHJ0aNHl4E2z+ZNCNcij0akbwD1lm2umtidLh3Hulz/Rm9fwrFcWeeNp4LB9gRgs0GdUvI8L7e3qysK0t+9SuuyCRU4GCiVlAamaAgY9Dh7CPgUM+GzOBq3YUpbAFQSnKLXW4uV2AhaAp5v9lAQNCmbtlAoNvq3kO/SWG2VMyNm6dFHsZR9g7Z5pXadmj7FVVRx+5ov8ejEQv6o4rC2FRMHC/nBhjOVcueN6NozoCw0dHJ+sA9Hzx7O/uAHtmdXgivaMdGxjOv7ttSUBOm+RevAJ+5FKoHDodPSvKjWWwAEOTLOp/Il/z7lYcR0snp1Bd1n97Ni3UtJGoAQIIUkK2ucubliSgoKOLjzcSaHM5kX8wRyjkFcMnXARXZQQ58fsdctmyi8LI1h6ZiwStST530UOMVE7OYEOEpMGSREDo4hBWRiA2898X8oxcoUnVfjM0ydbGV7WROOFB1LquSqVbq2jo7TA1hSoguNkpTFKUmsL0hqoIby1i8wkdPBoVmL2dl8m+O4fgcU/SPRl39BdCaTdPNriLRa3M7TuHf8E8FMhw2YgzY8WADPC0Da6cxK3l+WHqNl/K70YaYPPEjtZns8VC9Pc+RwARsrPrHsMC7LGZWQNrkBHHGKVr2blIr1nHQ+ilQGQ0qjueN7eMMmI8cP43t9P+Uzr1KS4gevi/mG1YzmHuHlkZuIGR66Zmq5s9qBUCZCaaTN1KMjwDJxHxgl3/EEoMHenyQBWLi/DR1bOexSJrHBn5H5iR/SNujnjWee4JOqmjnViMvqJGWh6+c7xNzecZYGVM+dmCJ9S/FlX8fvtK6AtkuUf2QXUsMWBwiFf2TXZYO2gYEB5JJA7mT+25HX7NY02N2aoz+ntaKRuJLkz1ZxS9dnGJQ6w5jclfUbDG5CIwtPsBaAHdVPgWYxH+viUMTFgKFzY0Y8mSsoZSyZ66aUg9XxD1Ow7hWUMJJkeCUNzva+wf4fhexgZPKxjGGM8K8AC+Z1XO56oPKcL2UvlPlDJ9HKTaRmg5HMhHBBd2gELEnYVKyb+BbMdELKDZC7Pdm5ira3EQ38GNKXvK4CIXWMSD2+LX9H+Vt/zQbnQaZnSjns2gQIUuOFxJwhohn9gCKKRtbMOlxGGqFIcZJUu7D7WVhAhp7pxTU0u0xsuQjWFv4OzqI08ldkEBKCY3MW61J1UHZotBzvpLC8goa7m1mTehbO2se1NbOB/VoD24KR80jP27LSKdSWdFuVoEhmE0tvJ1JoK7MymvtJzV0B/P55588CH0NG1/Dyv8kL7uYHBgZs37+Fr5MAbkeOHGH9+vVJ4La0UxoqLeSZxx7FnVNGRukcW277s/Nujm83nvL7DyZiaBK/QaFdVpj00up84zXMuH0dXFGQ/na1Z8jPwzvSMTXQZTp3Hd1PYcgWhRQEp/ni0BgjWXnM9B8gPzSNhQU0JAVPSoOJIhdl0xG8Tsltc9txRDUsIWnzHmcwvYdr8m7HGylnZMpAorCEwW/Ej/jhS6N87oEPsBgAACAASURBVOpHcGt22olA4lIxNGGhlEBTktLwNOU7Pkmb+iANqpN1B88Q7XnSVk8bht25zzPo6PqVnRQjLVy6i0dufuSSGcgdEx20EqIl1cMGznBv3jcYXvO/Kd28dtmmZikgcGqCj1Rtorbqs2wo2MDc5C/QNGtRoKUA6SA+toGrG7ew59+/k1Bd6phF10HiOpNYzGt+PCrDtm4SAiXUsjSGZeIipeOf+zDa2K+wsh9hSH+Qcpdu218s4bgsdEqTq5IQdGtD+DK7UT7FmUePsWXVzUxFLHJ1wbRU1HkL+dBt76frmVaK4lmkPD1NrCCEuyITzeMAIUgNriRlNp/K6gjOVWn2usAo0Z/8NWdfybDFky4nKz6/GfcN/0Rwrpv2nq8ikQiRmEIoMylIqqz8FLC4PgHnATd3RSbBN77LZL0AbWHpV2QaB7AbEYtd9tyVhUvGlRqRvGMgLPqmeihxvRepbP6ZxGImy0lkPJUnzq7FGhxGF3Xcse4EZxudKDEAwQGaUndT7f0svcEqdh25h8/l/Yy06UKM4AokEh0LFTrJ1Fg6noIYnvxFsUBRphtGFs+zokw3bYN+/vmVbvLjG5nh/diQySQ/JR13otubOn8tMT7Dwr0ktTHvnVzG77iugDYuPqbJLrkdbfAAUig0Bdkpl++5Eios5ciKOor8ExSF/Ahh8yQqM6xzHinwurxoQqcktBJN6oBOpi6w1HsQQks+ci6nC6HZOwGpJLdkGrwYgsgCYRKwuyMLHRCTSMEhEKa9+U0sTprmJDpZZwM2ZT9neVSLRTTQB7SA7xD+//pPwieDZOzYhHsmlbWvjPK/zv4X3/3g72FpGg+PWtzc7OCmT2mMDu2neG6Ooo5OUBb58eWWHNnBANEJN7NlzoSS0t5xjo9Vc+bMFJ0aPKAKyZ2aoPT1N0lLH8Ofs4pnt+whl5oEd0eAksRdfnQjjevj/wdeO3VezNgJLL42OsFDuHEk7StJ3LQWUI5tTmwMzSLGo2xb62LwzW4CYYP0yBjG0EEqo8Os+OIP8TSVwt5pEBqtGQ28b923icdcuDrO8OSGlctUcPVdISKHp7in4BqmiuMURjNwH40zUdi6cNhBwdzcq4Rev2kZn20Z6Vc5cWZ+DnO65rxsxcrKSnRNT8roFxZ8KeV5tgCehE9X787HsUyTyFgK0QkP/dmjTJ95fNm5v3Q85XRmnbc426DObS+0QqPQ+wm6XjtD+ZrUywJeI92n6Nz9cvJnTdOvKEh/i3p92I9ZYJvRWgKGs3IpDk3bnCkp2NItyco+iW/jIDt7T3NGRajrP0tvxUdRQsOp4D1RSbh+jLHoAI7Q1ejoKAWTTj+tmcfZuuZa7ll7NWPXBfnNnpf5zex/MZbRjy51ouFWntzwIR4fm+GxkUna2ARYeIP7qZruY/2Od/OZ4SBxJXCJRn66upE819OLysnKdHj0blrTXcSzMpFCELNiPNP7zEVBW8dExyI/rbiAR4puYkP9eym6AHdokhziUqILsJSiMqSxIWZvFKpqbmJg8BmEkCglCAxuIdx/Lcpfw4yzJ2lJIwTo0VnITFjtLOk66rpgxwfqmI8YpKQ5bZskINUcZ2GECGCIRihsIH7gIcrWf4Wg8xpyq25HDYNKALUpU+GXiqmyDApGI4yrAPud3aiEybBlWRiuICHh5FiGxkCBk+vSFB+cTcMdrwBASZtHZoxFCDzVC1JxyjHMW85u1JBCG9FwBKbQXX24RgXKAr8nhekMD3Iih9WA/80vIVc47XVZGYnfpFpG8g8G22lr/zBKGQjhTHpyLi1/lhMmWQaKf9NbTc2gn+zje3j6Zz9AKoXudHLTh/4IGehk3pQES3aDZtvTxuOTLOXQjeW7Mf0pWIOaPcxVGqPpnkRDwr7/6cJiVU4PfcEq7sxUVPkixC0HEf1V5r21pI3+F6OvTqOsDPS89eRuqSQ9ZTtuYHrle/F2/RKHsjDROZJ9G59NJCvcTxUSp21/gyA2W8rUy48TmPkIWY42slzfJ5L2ACK7hPjILLHB0G9NeXm7+h8P2i41pvHWfYTmwf34B3faHjxz34PSm9+WXNgajPCZ0TDxygYclfV83WNRGZ+zVX3jr0LX4mM7MvP5x0P/iKnMZYkIeS4dITQEWtJ8N3Wm3ra60Aw0YFWKpMYdoy3iSAoTEhgMiUAqndTxFuaze1DSRCBISamnsupD6LGr6XAcwTSlrY5xlmMlolqEI3ET9R3C/+X3MXbQJtBH2k6Qvu06NNlGOC3DbvQLDVNZPN6/n1v9f4LSDQYyHOR6XfTIahAaDhSWVOjS5PqRN/Hc+wc4T34OTYIUIJXO+ES17UOkYECsIHUiiJTgDfaREe4nt6EBMkl62imh6EoJcY1jJyWOTntVsOJEX32SaKwDz+ZN/HrAgZAnyXM+SWy2Ef9hH0oKHPl15FUcQs8sI2B+moXFVRmS4CmTxqJq+19kDcbwQQq/9JeLlh+VO5DCwZveDRiaEyk04olx6GcrCmnxpi3jOGQjyO53g4qjgPTxFqJ5i157KUcaCPkGkkKIRXNdm2uEiOMp6GZupmbZbt7n8zEwMMB1DdvwHx3BLR0ccPYghbpwOHSiltptaJpG5+5XkNI6/9xPLMIX8mJaCurMcCHPffOn72jM6es8viSsHNa868YrXbbfoq4rzeaZ2AyWbU1LxO0hz7OBslCIYpmFN3OSsxu+iVImd9YIqlw3c+OhLPqeeJGjTddRHQijwmNk1Ln5TUobd4avsi8jYdGZdibpJQm2CGZr+kp+8NIoutST/7fBm8b+wCwWWnIjYjHKH+y4isGZDOKWbU4etywOmBqfXpLM4Jl9jQ4HjOoaCVEmCsVvzvyGu2ruuiBwax23BRASiaEErUW1bLjAejzWF6Rtj85bVhU52UP0zQs2Tr/K0ZOv0nLD19nQeD8jZ/6eswOvMj/eiDG+DgQ4HBq1mzbiO/5i8pzeeMPVnPUZRNUMkbNOHEamPfLbVsyaHaWM9QWTYfGaBk0d/0yWkuiN9+HOrkRouu22mbOK9MnHKdB6iJ714bz+T4iEvOzfM0xAKRwOjZI7qolMj3Js/ymUf9HLRwjB2uZ6hnJMHo0FkAJej/nJNtOXic/knEHo5UGQinERZL9+GpWgmFimyeGOo3QGxrk3J5Xp1Q4GWtyER1PoO3qArPx+smfm0MqcSKEQC1F+ylrWcR8d3YlSNvhVKs7o6E6AZRzE7Mr3oc3sxJJxpBQ8ffxWDkaaOfrkr9Bf+wVWmhuEwIob9H3rCWrGZnA3lyJ+z2lbCAkHp6dc5CROKgVE0xzQZJIbnmHqdB66w4FDlWOo/sUOpdIxZ1bhdmqIyqsZDb/OZObVeGZqSAmuJJZ3J0r+EC27itStnyfqcDC30yD9yC+ZixjEZT0OrROF4K2+aeJmAVJBnnYQXW5FoSOwCPW8jnmmiQxnC4a6nYD5E5jNgGCY+ECYaOs4+X90JXv0v6WWGn2a8TiHnvoV7/6LLyf+8xDet36JVyYI2cK6LN+VBX6TxDYR7E/JpDJuk+I7/Kdo9XppmZ9jQ8zk6ak226MNOxHh2dXfpyS4EjNVsnriroQbsw0qUoMrGT59K9GqXdSlWGjCPoBNWbVgdSdI4fbe5HSggqd77mV7oJ4PhcvwV+4iUnCU+dhJunu+RnPTKu75XBNdB0Y5uW8EzVGCK+N9SHOItddvtm+iex8iPLhwitio0AzH0dwprDtzCqdlEhOgCZPiqV8iRRwhFFKavJC7jS8WfwFDc6ILuJZX2aG9TtF9/Rgb6xnN+Rldux9By9KYDeUQDufbiFMTVIohhksV6qTAYYGpKcazTYqsZAgM80iUiPChlF8mRBkQnU7h7K9fRBnPoZxOjl31R3wgby/p2gniwwNYUxmAIO7vxXDPIrLWJn+3sDBhFGhgjz00HUduHVYguOz4SqXYGujAKQ0sIdA0jW1Z6Unbj/oTY0kf7HERZFTzUyyzKVReskauY86pEas/QbG6hhTf2mVqK3dFZiKgPcGFUwpzPg1NCK6+r5aiai8+ny/peaVJwVa5knkMKsIOcnesYl3L5otG3SyV4I/1dnPm8AHgwiPKCyUznLujnujvfcdGuakZGUu4ilBYVX3Jx1+pC9d911TCHnhsbIxDOS5OFVfyv4sU32gdZ20ghUDOvkQXwuZdjUztRlZ8jIZf76bU28DzqcexHBLZLxkr9vOlFf/Cumgdp9L7Wb2umb+s+bvz7IkeufmR83wm89SordJTGro0KZoO83QglW0DAzhzSjAAp2WyobsXz/Ur8awO47MmeHbczSNZdUykzLAktWp5JN851VLYgkt3LTMoP7cWQVQOzeLPeW71w0yn9TGU7sEUAlf7N3mkYDUZ2lWEjxeSktNLRv0uMtJaaLnhNoqqveSW2teIYRRx7HXTHvlqubg1QcwVxHQHycqOwd7nGB7ekpxaSEsyk1aFCvQwoBexFduEFyWxZk6jV8HZ17JRqh3x/IOs+NEPubZpuZXPYy8+iWkuioA0TeP222/HaWTy+nAvMl+AZi/0LwenuGoJNdcYjSSvrVHNn1wv7T8EVlomYU8Gh6wx8t4zSJE2R6E1Te9zFXQeHCbTUUh5LISjSJJ99T9A4eq39SqNxScvuLlrbv4ZJ/p387WX3ZiW4gMrdmKcGsCf5k58JoUmICc4C0rhaPdRs+1dDG2v42svuzEsxZ9tfAmXnuj4Jbp2hbV+vFYD1es2Ed33H5RFtuCvimG4Q2QOX8NHM7bwifur6ejdi9gQRhNPIap3Udr6BTwrdqBcP0XLWwWabq/2UjHbV0w+kgD/gNP11+iim3uy+ukYLmGtpXGj1k6u4xnici1u7Thn+m8nQ1SgCds/dD7tvbgji/MuLHVJA/ffpf7Hg7byNWsT1hN29bYe4Ngrz7PuxttsgLaEl4bQLst3ZSFeRimFDozvfonXAtMIXbC3sJWJ7ExcKoNHJoOIjGIIdyefO54xwHh6P6Z08unAAc7IG+hXqyiSOeSqdJ7V+4kFndS4F8Li4Qcjg9xSuokq4wBC2QJJh/Dw6TVx8kK7iU27iBQcRSXiWaSM4/cfpLK6maJqL64UBx0vn0VzlOBwlVJYVWd/mModZFT8C5ExFwurQtb73ou7rg7j9aeoGHqMsdJm7nW8yVqxG1AoKUDqtJpXY2gOLGF373KZoFacRqLj9x/k1dmbeGjmY2wODrBKn0waz67K1SifHuHFFWm88CGNhrPQVaHTWNGM6pEkHBjx4KBCNzlpttDkPEArazmasYnCsm5qevtQhsGNkwd4f+EbCMBTEEPoGShpR9B4Cg1k403QYfPQEBDofomhgmsod7lB2ZThMc3DpLMRsy+RxzqwF12ZbAl38sujn+ch78e4e4ftmp5Uj1YKHp7QKAz5k5J8DY3b480UKi+rm/+A9C3FNmH59ePnebTZpH4NSHRB3bMoFPMRe/EaGBhYTDtAsd/ZAyg0p0ZO/yTl914im5BFyf1bT/48+W8XGlFejNu2bHybrlF2dSYz3V5iM5mXNeacC4cX5yZC2D9fqd+q7rumkrHBVA72jSIBJRW/yvdz3PEWxXKWBmwRNkonFijmcE4n9ze18XwsHyu1MjlWypvPoyvrNMezdMyU1ax0114QNJ3rM9kx0cF39j1I43QZzQOryA6Hefj9H6Mv4mJPIbx39/NgWmzvPMq2T78HHr0bn5nDo9yLiYMt4hr2Fu0lkOKnZLaaomANk1kDFwRjC+9/IeC4tIa7/VimxHCEMFwB7rRuIRj5Nk+mp5IVy6VgvoA3T77Je+s+QnpBHyXbH0JoJpq+i+h8CW0vrKC0roSK9SX8+lttyf2FlJBSMM+EOI5SFs8e7CaXX5PteYy8hmuZnagnPlNJTqibmaw6pqVgf0KY5c0MsfYrHyG6OxfV1p7k9c3uOYFnXR6NDTm4KzLZu/fYsi50TU0N73rXu3AamTz1nSNUejUc16ZjodCUxDHcxoSjmgIzE+HQ8Jea9AwOUmRmUUw2Dk231eULlTje8wV2yo3NvlFklEbpPJKPVAJ9SvL+4ookf/tcsFZcfG/CV802qDWn5pCcv7nzepvZvqGZv0t9g9DwpxAqjqqBM8+uIDqWSl4kxtb1JagTZ1D20Ib8tEye9d/N6ZnTSAUPtf0xH6/cSVH+QPI4jPbkEuybZqBvF9IqpcRlULCpEyVMpjKGKG8vYcWEwXzOGaJTpj1ulSaR3C5iK2/m6Ge/xtSrHdwrFrSqC6jX1u0GzfvJdD5Ow9ws/ypdKHSw/hi0L5HpeAKArPytGGOJHHGlCFTlkHPCTJBtAF1c0sD9d6n/8aCtpK6BgsoaxnoXgVP3wf02aKvcAQ63rRIUAupuvazXLAzNcOfRfQxl5FBrnKEh/RgBs5BwOJ+saA5jWRMYQuPQys/RFNzGm7MjDKf3LJqvCUGLO58J7Sw7hY5FPxqD3Bxfh4bGQMzFsf55RnId9MR0zsYFE856XhrtpMIZY96U3G91EM/sJO7RmSwkCdhUYse1cAMe6wty/PWhJQuTYu8vupn0hanfuoqi//UPkPMo4aEUMt73cbI/YOfSxarrGDzSYwdVs4oqzlIre/BMrya7993coB3jiXLbzNOpa6yhG5SGkILUyWyyPS6kgl4rj1p9Ck0pdE1jU10LHHLREjP4ZW4uQ85VlEVXUDZYx7A6mVBjiqQVwWm1Bosoz3I9OAW+lhZAUD00RHphPKkG0nJqyL/3RqzB/biz48xn3Eu0I88GbJrAkT2Ca+wIVZnVHHdU4NY0pkxJoOR6ODzP0SN2HmtRai4L/b7N4U6+udaiclUR3x0cX1SPanbeadPsoiRfKsmo5qesvIywVPj+4xhZ6/Iu6NG2FCwpqTE3tWrZaLQoHkdTCzkEJA18pZJE5hY3GQsj1MrKSvS5WXydx0nNyGAuHCY0NblMKFO5YWMSzPl8Pvr6XiEra5zyso8RDp+ioOCWZQaVi9J/SW7DDDmrQqiR913W9VG+Zi2OhEv6lUSE362CwXaq5jpxsAYjoRQtDE7S5xzlBU831w+v5GPzjXhmGvjTUBXRm2fwFOxiLOUEZrQcTWlIIYlrcYrj13O87MMoofNoSOfuYITC0AwDAwOJWLP+8zouC+PKLSe7+cCeLn5x8z0YugOZiJnqrahgk6+HdZ/9FNNzbbSZ6wiShpWwAdKURsF8AWlWHnec+jRYoI0IimaroODC3/lc4HhuldZlY6WECWQeAyTzIQfbr/kr9pz+KVvGtqMpjel90xgPhGi+J8yE34L/h703j2/squ/+3+deLbYsW5a8Sh7ZHu8ej2ffMksmmWSyDEkgIYSwDpTtB4X2gZZSlhbaFCjtU57+CgQKAUpDSEgIIctM9sky+4zHs4/3fbyvkmzJku495/njyvI4C+X5FX6lr4fzjzdZule659zP+X4/i7C4wE0vPsnEpZvJKuwmuG4Ip8/P/GRl+rmnIqNIt2WxYyid8y4/GWt78YlfkbfCzvKML1BsP0f/eIw+cRMzUidiCm67eRPGvIl9Vw3i6Y+gkkn0gmoSY+UknlukR2Q78lM8ZokmNPSxAHOnE6jhPnKUYtmEwR0nLtFbLAiEJigMT9O/ooSq4nJG4hM8fPxJTE2iOzRur9jEbePF9M9k4JR2jtnaMZUJSjI34EDVXQFWXGtJZEygx6IYSmNA1BBYOOmBE4S6H2E61463/E48nnXU1vw1bW2W5c+MPGb5NWriDYVLaQNcoUCD7ECM+LibHR//FBWr/UTnbic6LHD5Fa7r7uS6kV7i9ic4bNRxaqaGn716I28veAJfRZiZ7mymWr0gJChFnrMEb8k0SiyCs2huK/EnTrDyfTto0h2Wt57SeGAkl30D5/jrW1bxr706vck4nyHD8kAFLE63TkKuYTLegKv7RVAWh1oqnZi5CodoBd1O/o53Mf5YEiUVNs3GsMzibxjmBuxkGXPYc6e4Lp5PgD9U2n4no3HX7iWgrWbzVuubYMph+uzPoPmn0LoPOp6HDzz1a1ukvb29FM5MUmG00LjqeTTNJCh1Lly8gRnXDLrQCcxWYp5cS78Z4636Jzmz+QmOyBcBi7flningcLwew6GnuF6ScT3CzfJOmvrDdIgmTtmOYwiBXZncmtS59dp/4/zhzxLwdhHXUphfyJStj0hxGwRm/O70wruwK71ymKbi4qtDtB0Z4q3eH1KcexFvngO2/k36MUdmZokrQGgklM4ltZIa1UN+9+1khCrYZOvgns5vsa/8Tt5St4PtA9sYbG4hoxmmm76B+al7AMG4ctOWWMG7tRjLpI+Mgzlc2PVtDg8/x/aOQCrnTxEZdpDDGuIZI8RcYyn0qZG7ajstY16YSu0mhWB021ZK1m7n2cOneTcvkjArmUr+HWCHkl0kAMzFtjNKoXmCuLZ+Gpew4ReCI7MGoYX3TIFhSFqPDVMctIQIQkkQGuWZ8wB4bboFDpUlbVg/ZVAkvWhoSGVV2vzSS7IvgtkTJgtIdM8w9bYqfBUe4t1WC9ZZlrOEMyajDfi2l6btPqKnTzP6d19Fbt8GmpYqVglLYIJG9epF4JVuoWoa+XNNuHPHmB3KJDqWha7rSyrMvWdOMdTegpnp5tFH/5EVDc8wPmEyMQmgMRM6idtda/FV0qAyxbsDwGB06ACX7mn5tby2BdHPtXs/QiwS+YNH239iLFQ8XTLBF8QKDozegndkjoLIBO3Fk1wVuIq39r6NV0NzDOcVsAMb66ZW07T+0wyMj/Cq6qNkJsq8owbhvJukMwOEZdlhSMUTTWdwHH0Jl2uElY3PWWbLykZ5y0fIq70az+4NVHTZuP1cDXPZoxj6eJo2kdAsNm7Ymclgjo+2WIwzp+cx2WJFaVm6Z2xCY2PuRkpFI1OmdR0ryRta4byZ9c1rR3GFh8prXEyeTlVCpImOxqfK6+mITBOJFKBMRW9vL6tW7WTi9H1ImQRlY3akBqevi8C2f0LqBqU7bfS/8mdp4GZP5GKZilugYVJP4hci5XKSZDajB9efP0Zd70FybbkMhvwEPI6UKa5VUV+IxxPu1cQuJNL0iMmmUY6/PIpHNJJ0hKys4VGNjLFBdCHYmqVzJGqyLDKHLzmcPl9btgNnhYeO+17G1BZ923paR6h+5XFq7Hbybr2ZitARmuMZ9Iw6mI9C575S3BVFjJl5RCL5UJqHq78dPTZH5rLUnBw4QejRt9HckIGcADH5KIHAXYCl6bQi+SQ5gztxB6vwr72BzpnlHGvuZEtFHivRcZx3obm0dGZ1xYo72HXHLQRq6hk6+CgDvi0El4XIv9aq7NU9+15q9Th/rNv56MwnqJ86w9RkLpOtXnRNQ2gKTdPwOvzsLHgHYf0g45yxBL5KxzVVjSl7cDX1QMkXGDp+L7NDmRSMHcfnL2Q6Ws0DH95CW/MwWtOkhdWExJ6bJDltxwqH11PlAcvDTgL3mBvxI1i+9iZumC0B2ZsSxcHqljBCwM9ivbxt5ElslyWPXHzid2Jl9AfQBlZVDavCVrN5a/pnwAJnZx8Emeqrm3Hr5ytA20h3iEuHTiGNy6zYvjFtrJubO5qWlQshyc0Z5fMbPk+36Ka4rYG+8zFrwpqQuGxjYWsTmK3CvPQBRl294BhM3xeNnF7qVjmoOuKmMmxj1+QMB7IyeUtGHDX+PQq9go0uk8GUTUkqbJSktNPTuR6HfZ5IJMCdd34kfewLVh1GcilwAwu8DcaqKXafW+JJdvbAw5weCENwfeqROtOjfgK9f05GyFrcjrlv4vPVWRhC52B7P18yXqGm2iReBRBl1UQXuqiiKKlxnfKx1mZHFwJpSJ4800SzNs0K5U95FkmSjhCuuVLsyWyqVT8n9ABnVRH3n3PyD9fshCMH0sddmZHJhaEwTWYV7zG/wIeEziocqTK4tcO/kssmbBoyPAMiE6FpaNKkOtKGfuNajh+JYZrW+9h6ZJi692ylWHcuiSlpCs3xV52DC0U7vpyXz6pwBJSHPYl1SzhtKvXKCx5P4RMjyInYklSGBeCWrmhcIVqOnjjJqNeLEgsGwCpV9xPU+QoZa2umI1My4nCkW6gu1wiVmy+haRJlCjr3lRIbd1O0vCq9WTFNi4+WyPeTnT2Uvm6t8fq2x7q19zM8/JjVJpFJlITIUOav5bWde+FpXvjhd1FSotts3PXlr/8BsP0nxpUVz2p1idLiUr4VtXMk6EOoQm623cx3zREOrV+NFIIHKxQfn4vzr66bSQQlmjIol09ytPQOTA3LhkJKy8LCMDEPPo9hgxzPcNrPTCmDiG0Y+3MhOvZ/mcNZJmStIFut4NDtEUbHnqWm9ev0l15PJHsLrYFyOorLqEtMYkqFQkMiWM85AE6rBmI9UTr0U+RmNKLHs5dUlRfGlWT/11rfvNFoXFdH8/njmKaJxzOJKX9Oli1J4yqxJJWhJz5J3/yNFM6PUZyzh85wAHfNowg9aS2hmkFG8bkUaJM4jBxyxuzMaz3YomFmc+yoxtQ8NAVjbTbYYKUSFAPFsMQU15rnReR/7KOEnm/CQhpWSPyEYVn72FQOtoRVocl3irSjpK4J1qzMo37N1Tz53C/SGaqrV68m3hmi2MhFcyxuEoulF5uvmvHxDkYmBDW2OUqjg/THSkEIoqNZGN4CPMFBQBEJ52O4srHNR4lFItYGa99Pycx0pK2vFAaDQw8ihB0hbCjTQCgbuWPbCV5zBxdmTN6TUlyu1mz8C5kIs4yg5zNQ+D202k8z7bgazeZl6OCjPPKd+zCUhrvIZOW5r5FXsgy/y8QTljiEQWO8zRJCWO8Uet1mrlpVRbChkfP7h5mP9jJR/1CKtyko6K8g6mtngjoyzlcxfnIEY7KRWHwQHZNgYjgdIl/dPUtYLrgbaIh4N8hKEAohTFz6AVz6Aeblav7W2MAvKQGzhP/HUcGtFZ4Ur3CRe7wandb4ELaUkemTzAAAIABJREFUe4ORTP5OrIz+ANpSY9X1N7Pq+pst1dEzr40lUa959OLPI90hfvkP+4hNPwyYXDjwK+7666+yd+9euroUhnk25ZlmOVLbQ3Y+vOPDXJwZpE8tGKMq5nSL11MfrWDv7PsICxvjjqj1dwFFRe24q08yl4TPrLfx83Pbedibyzq3gcvnYArF1Ph95GbXwRWJWbFECY+fuZuicBGj2gwbt9gxzacIhaw2R3GFh+13VfPqg+1IaQXLC03Q79XpL9SpjEUZmsyme8KH75EjGG2g/vk+xj7+l6ljs8BhhxFk5PIQldkWIPn38gyMVIK8qeAp7VY+I1pBQeidBitVjG9dOkdn60a8Bd1MlXTgmq4nY7aCMxmtjGnT1FGPriyAZUt4WAAoT4hyXhbLrJVMQntvD7fUObkwrJP/8mGKOjoptNtp3PYxznpquE/Y+JYmUxNsAZxaBkJZm0pwrSti+ItfQi9+q/XJShNtqJlIZz6lK2vpOWuFb0upGAz5mbnxp0xfOoB3xS7qgps4kmqNSuujpMWhuH1HCbOvDlKkPBRJj7Vgp3rQVuXTglruXCdqZO51YoQ3G65NG3Hu22e1RRd62il0dXFqGJTi5Esvcd369WiaZt20ckfQdJn2S8oOxEhM5xJsaFysMCtFZnY2gfJyTp0KIOU5NGGmOC8aQtgYbSslQ1rcvgXw5vffTmfLj+g6dRwhtDdtdw61t6QBG1jCh4uvHPgDaPtPDK93M0LYkWYCqQQv9RRysfoWkgrsvIUH285ysHpVGuAnNDhRaCMxbyCFjgTOebdiCss2BCWpG+0jODyEWyawa5ZtRWimGCl1dE1alYzpFSB0Ls/GMbOdoAmkgmikgaONHYxmd2GwAqml1OWaSXeem4KFsHYkq1ULvSxDoqGwqmGFGw1UbJa6ldWvA2QvdIzzSpWDsjGD4LSxpBL3uuB0rAi3vXv30tvbS07OYSYmrXxKTdMo94MvczOnXvklD/Y+yrqLbsaloM3+CNd/6Iu0DVYjpZ6yA9EIzRShmQmqYz9EVs1jlpQwMXGe2WEX0VEXXfvKyPJHmR12oxLLWXlVaPH4B04Q6TmIVOsRaAjN4q5GT59m+LMfsfKRi1aQ//G70CuL0Q8NY5pWBrA0FROGta4IQLNpVNxUzrSpqCy5hsH5UdZsXEEwGCQuwxTrudyQ6WHadwHv1EqKom7G43OcbvwkuREnCfs9BKrPY5t8AcMwcRXPU7XtWYRuIKXO+bPXYfbPodvtZGZnW64KySTuwnKqKvst+xEtBVCVSUngndjmfbim6sm7ayvOshyOvdRJwrAyshtNi6Qf8/QQ9XWSNb6BZ45DMvEQmi0Tn+s0htJwFcWouKWfmA6D9DG0KpuGgzH0Vid1a1ZwYeoUKBMlBNcGQ6zeUA7Bek512pgbeGZRbAOMl7WjaEdU2FnW9Fm2ykpk8Ts5MPJzJpOjfOydN6RTGa5McACT0ZaHmC+N4pqpZZmzm7MO6JQl/Eqt4CSLmdP3Hephd0MxtW+tZObxLlRq7Z9BERXOBQJPek39bY8/gDZ+AyPT1e+G0w8sphisfnf6fwfbp0nO97PgcWYmkxx55GesuW0tiodSakpBd9dGotFikp4k952/j+LRhiXH4DLcrIhW8vX+P8Gu7MgsRZsq5AjTZGePU1V9In1hCpFkWUk3HrvJyszFtiCAaXci4naUMlDYeeLM3XwutBIbMOcOMZL193R1J5eofObnklcAAEhu9PHToMQUcEh+mnc84cE/exktEmPjkZ+Cw8mKjvOcql+VViptdR1kuuY8ExkDdCfWc8lTs+T8pvEt8M5BE0wMP0COswjf8hjetQ8zqRlMKju+3L8mdHSM4ITORc9xcsxScuaWMevuw5Xh5HwyjjNeTMDQGLJJ1ol2PjP0NZzDJuUtOYx3uCxwlkzyt2UJDm2qZUtFHgVjbcSf+DFOcQaAuFyF860fwrnRMi3WPZLo4W9iy68hFJvl+PK3o0YcaGOT6DaBlJaBZiTbxnueSJIwtuHoTPJA4TRbc90pLygLkD00NMm1F2M0Yp1rRp2X2KWpdHVtxlSYOQ6Kd5fhC7gZ75i21CO/AXn14NluTq1ZY3Vo0m8oi/sITcMEwt3drF27lqampvRNVwiJJhbbEwMXz6dBt0gJAlYFg7z97Z+lu3stubmj5OeXMTU6QvPj2cyOZtKsNXP1u2po2LG4iIXnXyKvPkFeXYSywq+9IRC7+MqBNGBbGNGQ5Wv1hzir/2/D41mHrn2Wnu59zMwU0e6txFCghMCQiq4CP0poi1V3YD55HlR5WunpHz3JjPu2NLG9ZnSA4siU9QKaxmiOl76KLSwvvoOS/sfwnllFRmg5SJPCqQiaPyNVbNCwJXMJhKsYze7FPt8COSkFpDLw2PvSIKp8/iLBw1Z7T8fETCm22zsvIpWic/gceYG9aQV0U2iOLzrnSKzMRJfwgUOzi0a2fWHGv3/WygvWBQUfXZ0GbpNDswy2T5NRX5MCt1Zu6NTZEnp6vgMYbBA5Fj0CgTSSjPZcwpO9hQsXOsjOGSYS9lNlBvHN/APzH+pD10HTLuFfTrpqrYurmWrLQLMtQ3cULwLKgRMM3fsuXhzaRWmWHRAMCz/Xmo3Ez/2K8DVRnG0dONp6SXZXIcuyqFzbjxZzssI/ReeUj872YcZr11G7vBxnhYdpU/HYN5sxDIkdL9/tHiDWKdi0OYDjfTB3+XvYSTJXeQhN/hWz7t3kjju5Kku3KnYja7nzEzvpOXcAQ72KoRkWrUOYrArOkVN5O8GGxkVXBaWYHcsmo3sbvvWZDEUOpi1A/P7bl4SzD/ceZ0NgBQ6bRtKQjOd2MuJvIuI/hBImE1JDDPVihCz16EhKf+T2R1m4TMFS8Hfr2eSes1PV+kv4wAcZnTlMhe88c32dDN37CwKfeJCj8UzGpsq5q8KGkKnOgLBMkJU0iPlacYWqESiqC66n+pp5gqWnON4Wo2moxGrffriR+OkLTB78S8b2joAOYXMC9744q0Scb5h3c4bqK4tqSKU41j3J+mutyLTpxzvRJPwPMjjpLMVYloXK72N2OOt3IrL6vx60/UZGpsFN8IF9lgfYmBPXhB1XSqCXkWVHtwcxYjpguTf3nT9DW24Po/V7WMEFqrVO6uqWIX1b+dy5z5Ew4+yY3MpbM9/JeBLGZYLBnA5umdmCTVqeawKoN0sQCGZyOhGoK4wKFdvy+lM7wdSJpOC9rjmozf8Ak4On+UFLLv5EjCkRIqBySfraAGvHudDu6j3VSf+hZoS221J+KjgWjmKQgRKChLBzvmYt/tFBJNCT52Eix4VpzlLdfZFYQRY3uJ9hl/cF8MIxMvi6eAcJtTADrQPcMHMA5bH4ekiN0aIEqriHItWHEAqhWQaOZ0Z+yQ3HC1CmidB1ntt8jjOFR9GVomB2OTe1fBJd6mxBcCa7iw9mPIqdJCiFqyCGKbIse2Cho1at5Y9TE4uyLThnnobDlkmeU2sFsQ3YAkDehz/E7HvfR2K6m9HSG5CaDRSYUtGwI03J5eJQKL2TjCcljzZf5mu3N3K3P4/7hyZT1sTQ5NFonIRRZpiIjpNvs1OQzEEAXl0g4ia+gJvkyJyF9hY+w18zzhxv4WjPBdIXyMJImxSlABhQuWYNGTU1nDp1ikg4n/PnduPxjBAo3MZ1t30m/a9vJAiwguY/mJ4fvRd7MAwrwkJKxasPtpNX4qa4wrNUlCAEtuzR1x33a810F4bL4/1DnNV/clRUXM+rr17GNE2WaVOclgpTWK1Ou2kiUhVd69owaZ88TUP/A6zvrWNd2yVMDZ5++0qmsxVr51/Fo0wiwopDGsnx8tSq7Uhd58AkeObGucF8it2hasr7wwQb7mZPco4hbYbx2RzmjAyq+tqZU4r8jYUcnfwmUXsVrmQndzR+nskeC0RlB8oIanaCcpi94lf0soyQyuKUWonCqg5faQ59ZGaWpFIoTWAKRe+OOUbcPRSzhokTHUjDIu1LQzJxooOSsvWcOd7Cr/Y/Akha+zVq8/4EZCfR8VrmhiexZikpfzhrM6XrdtpP2FBiFmG7jmnHDI5kLss2F2NERpi3fM+tvXNKden2z7O8chcXD0rmxQwJRx+6igPl0HuQ0WgDVxe9C03oSGXSP9nE8af/iey6h1EBg8hNkH+v3UoqSVW2dAzyi3o4NbocExtHhl+lZPtXySkLMvhML9KwQKZCcc2sjSMXxvn5xAy3bW4nX1j3IIVJsjpETeW7SXz7zKKNkZTw9CnW3bmT8XPTdBpnUTYLgPYcHuSW7RcIZJbDlX6Ouo35zA+S61uPv7rrdRYgoycf4mLoyyhNomkOfvLee7kwGKJcfIuQTEDq3iUxcftniY46r7iCBXPDLou7LBaBW3SziTxXwki0lomeJ6nY04OpK+ZMwVP7gqx79ftEom56qOIbTZ/kuvxj3G47x1AwZr1eitsGBkLoFOVHuJzxj3R1GyRMncdOfZJvHajkgQ9vYX3eUUbL+kB3WuwZIFGtsE8aXKW3cEnU8YGryrnvUA9SKRw2jS0VedbjhmYREvSUo+ragiiDG88iRRIpJ5h1Jn7rc/7/etD26vBFnpcpcCW6cBe3Mz9dSVZBN47Cs4RCO/F41hGdsNP/z8+jEgnEz56i9Mc/Iuyp4NDDHQjdjyP7TozYUaTRx2DhMh6u+SASHRsGXxRf4+617+SR/mYSZpyaaDmfGb8Lu1OjxglfL/gVI9k9jE9tspp3V3hY1csSYhPXMVDehFRJTAWXYjqrXAYIkc62XLhhz4ROEjZPINsyyQ3fDirM045mtiRrCBjZqUvLSkWY6J7F9if/QrUJGYFxemrejVKCstEkWn0GplAoIbhQu56GtjOUjA4wnuPisr+Mh2/5IKauYxcmpao/DShbRIOVP6hp6fPQMViR04emwDW+GnvCS2jZyyAstRtgkf1RnGvto8QoQLPkkNwZreCko4kM02QmXI2+EA6N5K3xKJW2BEK3EKsj3+S+7bfiGE9wMb+SPRkB1g6csLh45Ttg5Fz6fY3LOuIHenAWWM7VrrVryVy7llhTE/bkLGmnUCWYGppjrDeMNBWaLtiVNUiNrYnnszfzwEQ2K9pGuKvYx8MjU5blhxBsCElGRYj99mbkiEJ36uzM95GT0Wu1gUNV9P6qk6xUaxQA+eu9fVovWNYeS2OrxNKfEWysqab6uusAWBEo4uLlISLhfCIhH8Vz1vv9mwgC0hsaW4LSnTr9r1ghyK7CNvo6ohRXvOU/jLwCywtRvqbKpttsNOzctcQn8Q9xVv+5URSa5GtN4xz1e3mixE5vnp/0xZUS7mwMlbKzbZyyzhhjOX6+/JE/ImmzYRMGe1QHlUVd6dD0IU8+prDWi4SURO1VnCw6xERGmKt9K7le2ihWXgpMD105YTJe/A45091UVVbz7WAB7117Cz5G2VD0DuhxLgFR4fgers54nKAaJMggAxRzhnpMBLqA8sxo+rzy1TBKJlJGrwanxr/PPS918+crb0M3vRSq1YBCKslkrJ8S1qfmykLEm+RyXwauuT0AaPZMSBmJg85gwEt2YYRr3JWMm83MjdWSDBek37Zjh2Nce9sXiYi/xTJ+Te2QlU7D5k+ybtfVuLOf5oljzSjgqeOd5BVoBMt3UJjZh6n0tJ9Xvp5kMvI8WSqJ0KGDGp69aTW145PpypaJoD3iw1SWsfrCvBCTHmytU/jsgokUB3kwz8YD12RjanBwdi1fFCuoUi1XZAp7UO+oJvlEF8o0QZrMvvILwk/+M8WfeA/x+71MrrQxO+wiNprBwMHHCLR/n8Bei0R/6dBJ2k/YaD0KHSctBX15xaJ6OPrsz+h/5m9Qe6yqqpQJipyXKKqAru4kQijLv06BoWyEht0owFUUJdsfw5YhKfFPobp0bEVJ5j0p5KYLJnas5XJzPr7iswhdpe1JcqojTBe8wq2a4uZyG//U9EmuYY7hZTHrM1c6ha13kzfbjanNEZdriPnarDYqCruQ3O49xchMLW3Nw1Q1FGHmYcFgaQH5wmQCTdNYX1PFru1bWF/mZXdDMce6J9OcuHhfmOgpa5OqgJink6nKx1Gp6iXAmNn725vgqfFfAtqEED7g50A50AvcpZSafs1j1gDfBXKwZtdXlVI//20eR1Nojk+NrCQhVmBTFrjafd2tjNdEmHN8k7GZJBOn72Pd2vtJnmhCJRJLcvMGy7xp5aVmC2DLvIpEZJCBQAWmpqOEjoEgFPiyxQFydCFRXBfahF1ZwUoaig1GOUc5yjHfcWrHN1Go2TCEYHWGxedaDIy/xI8cZ+h3DrIy00BDYSrrpq2rRWq9FDCcm42Y1iy5spBcyDuErfYAYCKETk31lzj3wwMETet/le5Oq0uXTRqs6Y1zqjLlWq1pDJQsp2TsMkrA5UA5pq6jNOv8LtFANe0IFPXqIjZhkFQCldo6KSW4pDdQrdqJFpzH27sbCxDBwk1FKnh2zMe0uZxCl8IZiyJ0nV+4uhnOcKIpRYHsQKYSIwQaQ4mV7Ev8Dbf5vozhCNNDGTOFBRz01WG3aVzn7oWfvHdRNLD5Y9B1gFnjRmaMj8OUQPzgLPkfsVoqKh4HIGl3k6K9AorhzivMdU3FR+UJ8F3i3tV/RFw4+NzgCI8XZy+NscoM8/KTnZgpDl2ma5j5hvtJCBOh7Cw7+VlCfRVk2rXFDELx69ujdSurae0/w8K2tCjHy+js9NIHCWju7aVxYIBgMEjVigaGh14l2zdJrFcn77lJuiurefLnP/kPq1tXVtE0G3jKj+IpO4LQDOb0/YRC/iVK1zcz4HxtCkPDNbtp2Lkr/Zq6zYaRTCKE+J1wQH4X4/dlDevt7UWai35Rnsgobp8TQ8uxWqMLc0xoCKXwJsuoyPXQsWqeg6VBy55D0zGUokU0UC06yPWMMBsuYNnMJKeVxJQamhSUj8W4angnutIYcIQYSYQplh5a9SHOmqOU+31onmo+/6kvkrDZ+Pao5GeeZawpXMNDTz7BlSDqRPIaavR2ciL9REdt5BVOs7fgcXrVMsplP8FnvgdFViRdNNJE7th+Ehl12OdbqKKND+fFmRv9GVqRnW6xlpyZBiaNIa7b8kngtXNlMXoqy+sgJ6+ewfY7MeP9KIefCxW/JNvbyTWFp8kXgrx6jZGxSsZGK5gJF5E7vYo5trF+44MMDz9GPDGO01GAQ+5mur+UiwcHaT173to3CYue0Hv6AMGPfIP8t0vGfzlvcVgFjMUHiA1lokxBh6rm6/pXMGpt2BXc5T+Df6gHHUVN9hSDUQ8mNnSbjdxIkOSxTnzAVpfOiy4Hv5qJkFmYgalhVSFT95pK5+JcHBgY4PBECxlcpLGlH2OinTEtxFhVJUZ/O3XZUzxxug4pBLqQBDOnrfWy9yCBHX/GcHcmiG4rKeM1MXoMnCD64y/gCDngxoVrfjGHeGEzh9A4eHkzhwc3Mqdlsr7qDLfufA6bbiCAJAoKoKR/nv4cl7UXVTq1cyuZzXQTHnajzHEWxB4AQrPSJ5AG1+cfw6+foFvLSPGcFaZjDofow64fYCKxEtdULaLCjpIJdAU3TG0hAwfR9mM0e/4RWexASCgZmcc/GsczawlHdvV8E66+BtjE+jJvmg8HMNl1hMngS7im6lDA5Q3/iBKJ1FwUmMpGRcl/7Ov6fzr+qyptfwm8qJT6eyHEX6Z+/txrHhMF3q+U6hBCBIBTQohnlVIzv62DsMruwoqRFRpd3k/imj9AmfccatYq60ppxXTojZCo1nB0Cis3b9NGSjwp5WVKGaTZA2R672JXxTTHhYGhFDZhsslt2W+EEqFUV2uxtyUQ7Azu5GRBD8eGjvGT2m9REq5mmzjH9bE5ho1PoctluELVOEIVFBcojvmGyb40T3+eg5+KTJQQbHQZbMky0YVAUwr/TIT2FHFfIPB4RlAkrd2EUiSTMwS278Z4+BCY4I50oOQwZmIQzbaMVb2lnCl3IjWJrkyCwz0A6AK2JY9wSF2b2kEpvO5KmLPKPbWqjX/t/wtesl/LQ/49mEpDCMmkyqdD1FBNO3OFx0m/DSnQKRA0xEoZmK8lVqYoK8klssxkeOwBJIKK6ZUEZ8s5HdzHBnk1sak57IlcRNLFEbmJi3hRSlBpi3CrP5Pq9bXUzT9kLUDKtL5m5BAPfoiZjltZUJEqQzHXPEq8O0T2zXczf/483pkOhJQoTeM1Hxe6MAnaz/FI7gaSmmWPYErFdzqGWVuQzdZcNxs8WYSjU8RZ4PSAxzOCEOail5CvFSYqlhTM3NsDb1hlW7Q6CPC2Pe/g9KnTCKdBRpaD0dbpdGt8oaiy0F4CeOXkI6zY2oQmTKgRuFrt9B0+hGkYZBbMkh2I0dv61BuCttdW0QJVHqLSTO2eDYaHH0uDtYUg6TcaV6YwvLaiF6ip59q9H+HFH30PKSUv/eQH5JeW/3eotv1erGHl5eWMevK4nOMlMDPFeL+bvLE2tIr1SJGqHqQuDF0qVLido/ZpsIM3OYsurwIhsQmTFbIFTdmobw0wVlDFYK7GVZ3niNudVPXnkLQ5GMvJY9iTT2BmgkNjg7h9R9Dy2tFDxVxauZzx7GtJ6jZrQ2fCsw89yjrb6zccSAe9rg+Q+9R3UUkDoedQ+rENBCefAEwwdeg9SFNOA8fj5SgUrvCTAFRlW3miIkWIX/GOWmID1axpuINATT0j3SHM6Ux2bbyFnt5eQp0aumHNq7mZBPFZg13vu5b9Lc9yQX+ARu9lvLpEaSrFizLx+9spSlUdzWgILbONc8f3k7A9Y60nws7lV8owjDbyitrJSJQANoQy0IWZzph2btxCQaEllGgePM1k3zCMZTH5wka6V67HWJYCzSg87/kI2/pbCObraONjNA77kJlx6mvWMLy/nw7bFH7po0Dm0ODJ4B+MMFmzMYRyIQC7JtjOMnw9BTiFh6aOJvbt248pJcKuyJs5ARq8fO21mJpGi01nb0k2d3kuMBDzEswKE8iIgu5giHIGHnsYV24Fuk1jXsxgOEPoXv/ixdd7EFdBFOd5J/n/opOoFZS++2/SG7d1gc8zPbQfb2AP3sq3UNQ9idflQMwNY+fKyrvVppn2OlAq7TyJAAqc+UyFb6Rr336y/FHmhrNQKPJqQljsN53rc7PJ7U8ggs6UoEbgmqolZNxIvuOLeBw/xJHzx7in38t85Ns4J7cjQ7WAxnxuC1JZ2aVKKDLiEk/EYGFBVWaC5qdexlWcS8W6Yq7Mh27hM1AZh0od1/hqpEha1UApyJpuwFnyCdbX7vxtTfX0+K8CbW8Frkl9/xPgZV6z4Cml2q/4fkgIMQYUAL+1BW9rrht7imFoE4LTXd/jWs8Z4guUIQVKSoaGHkFhov2pjYqBuyhY9TYrgBt466etCJKMLDvzc0lKatYzk/ifiKGvcIkGVqiLFEc2AOvYULQBp2bnZc8xbpi5Cjs6Qtco3dbAxzM/TvNoMxM5A4RyBvj00AhQhpBF1nuAQgqJ1C/w3eFJHp19N2ZoGCrOU52R5OScTtOcTm2m4K7y97PRd5xI5CBnjB2gNCIhP0pewKq02awb7a51nP0XGDj0PK6qNRj7H8NMJhksKqOl1I8SFqlZKA1H5nXYMjqw2/2EHD/FNf3vzOZ9AITGj6Ib8FNLtWhFKUW9bOPmzjPcNfYc9wb28EzhTbwobuAVdvEl9RWqXW2Ln3PqqxB2wiG/FcgroLRuE9m12fzwuUcIjlexaqYekPiMTCa0S+C22j05kXIuOH1WVQ+BKcE5NEjesJP4bdtw6o4l9hzxSQM6EiyiHGGVuE0FyofmrcAz3Y1/5Cix4A6CTh0UDCQV9qCbFdkH8Y+3sTVkwy4NZKqS+Fxklucis9g1wS/WVNFY4WHqpRQJVUAoVIxSFxBSIpQN11QdXrtGT1JS5bSIFHNHh8lsyF8C3C4eHLSUvUohMyIUbjQYmOhcbDdeyYNLF+wE5eXl9Pb2LrHvUCjitZBnKtzFMZbf3I/QFFHuo/N8JVWNdyyZH6/1izv483YC255OOalrKVd0Y4mo5c1GoKb+TYFYLBJJ+eGp/04t0t+LNWw0x8e+NdtJSIUuFb6JaXa8+iBvc8wxkFdIcWgc2wobyWQttvYWiiKpYqCA4vAkd3YeZsSIc4dYRpVjBRnTb+PS8FnuvbEWQ9fRpOTWs4cpmItxoMbkYsU2pKahSck7O/dzU+WjdGmV9Kos7J0CX1hhRyNpmthNg+zwDP9vx2V237iL4oM1jETaAMVsTjeTMgNP0rC6F0InGg3iumK+NhVdzZ1nOonLPFThX1J6+V5KZ+bI9jjRtWZIEeLLqm/Fs8G69l5rDbL9rs2M+yKM90cY64tYPFVTMj+X5JobsljZ2YOeIpkLCWiWKAdACJNc7xiV9Q4m4n+K0JJW0VKAkglcgefxLj+L0AyEsnPDqY9zOTTKlswnCG774RJfufbsEc4ecWDLeju52gxb7WvIHtJ5uEQjqRR2XWOXu4j63FzmbDqPv9SePoc82yxP2xeSVXq5ObGW0s1VPBCo4Fj3JJ6Am7FYnDX9MUqfbydsKsZsYfbbTqGUtASfQHxzNokZHalbUQimgt51n2OHZ5jAQtJP70GGKOeR7z+QrsSvfvvHefXsOZSSPPVcH3mBDxIMBmnNWE2ZT1FyzTSzYxnMbPwrijbebT3PwAk8D/85HjMB+gGybiwGyqktzqYqdw/Npx9c6vMoBFrhSphPBXNLyXzeJYqnWtEyTnBuNIu5URdCCISArn1lZC+bp6x+D53nmyn3pG7aqXMNBax4vrnZXcTkbtRlhRi+Gr/tGTD7mUz5r7mm6hHySZQw0ZTEGLVzfCKPYFYEv2uWiFGPt28Tet8IY6fGKPyIlSc6PX0cRcICacokWtiMUDpIy8uwoOttFOVf4dX0Wxz/VaCtSCk1DKCUGhZCvIn3tTWEEJuwxiJpAAAgAElEQVQAB9D1Jn//KPBRgNLS0t/4IDZ4stItrYnJA8xOXUIXlqpZSYgMZhEP2ylYEQKhkJioncW4ytcueZ7QWDfTKY+24opyZlqhmnaqWVizrUiWNYVruLd4Hb1jLzBT/DmqJtbg3LQBp+aEs49yW04Nypjntvz1rOn/F6bN69CwMe/pYtbXwtnkPHXzF1gVT/LXTicyL4PPFM6jaYrdOXDvuJPnwzZqbflsvObz3PZvt1JrlNOlrqV4Yj3uptVctP+C5ev3pm+wq3fdxepdd3H8sYeRpsFg0TIevuX9GLotNQkEhtDp8wcIzuShMMkerWOFPZcTPgGahqEUl0Qj1aoNoQShkfczHO9hQ/g5xus/jMSy/jCUnYPiaqppW1K9Go4UU1z0Z8SilxDCTAeeBwuD/OCGH7Dv/pdIEkrhLLVYWUKRU2sSHr7Ccw2B3/SilGTuciHOvU8sctqCm3DKMJw8myL/pyZ6SvapFNiDW1D5NVRqcTzZ9nTLudQJRy7Pcog15OU2sC58iZ+d/Syfzv4fDHoCGIWZ1gNT4fEbyopYtrqCwfNToCASLoDmD+HMmcCTdBPLa0MBZY5GmJy3Xj8pmWseTYO23qdP8srjIRQaSXuYmZxzTLa/3k8P662wzl8T7NmzJ03iXrTvkAil4ezUsXc+zfK32RCaSpmCGhzf/z9xOV8PrBasPU4908vcmEH/K39GVmEbJSuSJPT9/Lpc0ivHr1OIXtk+/W+UkPB7sYbt7x0kiUXSlyhMezs1zmW8+8AxDlYYPLtmmveUvIcbc+v5yamjGAt8WQW60Ci19+E++yxP1O0k4t1IzNFE2J+LoekoYRmiDuUW8JZV+XR5yzgf1tK/Hy9w06VV8nXxFQxhQ6+WfL5pkHtPzHJCdpLVd4rv3Pk+kg4H32vu4I6YhifFyVSY9ObHqHQ4UMmk1b3YfQfk35qer0dkKUk5nKJZ2Cg0r2fFdAd6WCe+fgslJXOUl9+w5LobbJ+m16PRW+CgfNxAPtiOUhYX1brWFUITlNR4mWeKsNVjQxeCHAoJM5Z+Lk3Taazew3jPczgDhvX/qXXCiuubA23RiT8z9zKNkU1oazYxkqzl8W+ewjQUeQ4Nry9JvrAzY1tGsXMZSFgdknzn5CxPu4a4ZW0dZT/tIGxIlBDkKMVUCmD2jF5ekqwyos/QGHDjmeqirP0k/ZM2GqbayJqsA8MSXg2pKeQVfGGFoDzrMg63pJk1mEKz1tnVOyC1Vgy1tzAwESQ8MbKEZzrU25RyI9AwDJNjTz1J8OOf4MXZcg4kv8Dm3BZOeOq51n8t6Znde5B4Yjlx2YDDvMj+Jx/h28nbcNg0HvjwFtatvZ+xi48RHeoiWThPbmAz/QP/dsV80Aj44hR4HuJcMg+w/D81THYVdhNTGQRr30fB6W+wRSTp9WQiESkumUmo5CXCgUNkNO9ATFuruDIhseEbRNq/g37+a1B0O5mhRoJNnyPqu4Rr0s7RtjHG54fRJyTr1uVzYXoPN6OhY3mIdv5iH95gC941NQgs83WR7nJIPINX4xnaiiuy/L9fjJUQ4gUsb8HXji/+Hz6PH7gf2KuUesM7llLq+8D3ATZs2PAfaPCWjg2eLDZ4sjiTWc89HU5MlbB4pqZg5FQ+AAX1YWsn8Bqi9Zt5tPm1WobQUUiEsKTRYJVUZ/WD+Io1QoWTqHO/xJkZ4MyD9/ChAg9JIbArxW2dx4lv/F/Mvewn5uliYMM/oIRBAMHLAxkoYDhvP9d44pY7tLCafdVOkxEjw8rtK1zDc+U/oP5iDquVhhCCkQhMx7eRNfR6RcvCjfNySYUF2BZag0ohFJSPmWnAVN3UTW+ilOaVpmUmrSR9E4M4bFdR0H4trnAVCaVomw1QYF/KUVJLSPQWZpqZKWNkRmPz5s2MjIxQX1+fBh1rCtfA9hSJOdVa0ZSBEjq6TWfN+kZGnhnEMAw0oXGVUUORsiZL9NQoWetW4dyxaITsLMsha0Mxc8dHUgdE2nsIU2Iv2wZCx75Qu0vtujWlyNMF0wlFe/Y7eWnuVR6Z2M6YkYOqzkw/vy4EW3PdDAwMcKrlTPr3jUYp1VNVXIy2k9j+TyiRRFTYKer4Ep7p0gUxW+qYizCnumj91kOo4E2WDYtjBngTwJYavrjOjluvYe0Ga5MQDAbZvv39dHYVEwj0kT0+AeYlpjOcdIe9VJhzLPBEElHBxbN/T1bRn74h+FowYY5PV2KEq9m0W6Nv7IVfK0BYGL+JQnTF1ZZw4kqu23/1+H1fwwYGBhh9+Tm0hi0ooWFXkpUZZbQ0uig2rmbZ6A+Zdc3icXj4wfghQps3kv/CqxSHJsgUGTTW7SDjpw9y1lXJv9+xl7jNBqzAPf1TwEBIO7qC2stezudfZKD1EI6avyCp29CUoGB8lkueRgxhQwqLbjDhKeLWriib6z38oOZGknYHEkFSKi77PHjGSAtmcv1VlP74R0RPnMS1aSOutanNcMq4fGtobkmG8zrHSTzZJpFIASdOTGKz2di7twCPZzGybSDHx/07LWK+rhTvOjhK+agT01SMVj1Odl4XrdLgKvff4x4tAmUlzmiag0D1nzDb8XdImUAIjSLPx3jhfz2JrShBdTHpihUKho4FaNz+bqbVPSCNdPU8wyggecikr/NFTCObXN3G5kwdLaZT44bDswZjpkkdGlLBymnJRMsBipIZKMOXWhslefos0zKLPLtG2bSLi/YrklVML7OHWmi57/NM1DvIfls35Eqml9tZ1vQXuEJV+PGiKw3TgjJsNWsZXX0Pcr6Fm4priGUUWRvjKwDbwhzVNB1N0yxWr81GfW6MrmmVsoURTDa3cv6lJrZUVPItvY4zRg12m8bnU4pKgHjGNiYSq1HYAINB0W05MRmSY92T1I88jfnVR3GYCqdNR32zAKUbCzMGT9ZuusM7GK5dwYGW/ekWv1KKfOcsgawxCB9CqSRCSLyhJD0q84rNKyiVJJ53nMzpd1o0ISEwDAfzx0owRkOI3udwbWsgM7SczFAlSkl2FEleHnmIqfhl5k03z2k+dpuWGlspg6azB5g5eZl3nL6fuuVxWiszl9BT7PM+vLM9TF29nJLfQVg8/A5Bm1Lq+jf7mxBiVAjhT+1Q/XDF9mbp43KAfcCXlFLHfkeHylB7C/GL7fxJ+d/Sb28mr7+TvgPDgCLbH8VxVifom8O77cuv29W91qPt4r6H2D33r6x3mUx7M/Bu+8rSzEZMS/UpFNO5djwj53gy005iwQAT+LHbyT1DCpTGuO8sSrPcuYUEr7OEr+dNYQpJV9wqcWsodAWbZud5/7ovp3P5ytx1wIgF2MQMTzvOYDpMhrv7aUgR1RdG7tw8uxs34S7I43DK62thyNRiJY0hMkInGfZp+EyTq0+/SnvlSpZPDLExmkXIJykkJS0HMvXbecd8jGeyTKTS0DHZoV6xsMfC9kTqJCZ8zEXOcLjHAkl9fX0kBgYId3dTuWYNa667Dto9tLb0UCcukWsb4GfyZqLltyEKKhf9n8rLyXwpzPyllM+U+cZqTNe6IqLNY+kUAs8tFYSeeIZE32Xs5VcjNG3Rtw7SRriTpkInTlXoZ2y0d/MI2zG8jjSUEsDdfh8bPFkcPNeMaZjp3zuxqnZZhW2YIpnenRv6OZBXVFZMxWTXEaYnfk52Vh+a3I0U4EjkENO0xd0zV7wo1lsZiY2QGFuMt2lqamL//v243WP4fC+R8JiIT8H8/VnMjrmsGBt/FGNeZ9nWUYRtlFPNJ9G1z1JRcf2S66O4wpOmAiwYT+eV/HoBwsL4dQrR1wK6hp273vR5/v8ev+9r2LM9/VzO9rG18zxxh5OtEUFvvINuu0Szayyv3c676hzcc/YXjOV9Bpw2bDffya3nDhMIhaifcOHa9CnO600kdRtoOkJC/eUscjteIOm6muBUhILZETrOD7FxoJU/evqrvLLxNnKSlRRFVjEc70FfaW2m7FLgSUju2eEgt3YjtdMT2EMJkroNm5Qsm0oJelKbta5zXUyuv5rgxz76hue3kOE8nu9kZ+GvqPW3Iov0tLr1Su7mQmTb6dIaZFkdSghMJemtvsyy6QLcuaNsXb0PTShWKjjT/O+EHujF6VtGdkmMzTf/GSUld+B216av6RMPHyWuO5h2NZAzZuD3d6QqOYK1e64jP2ct861/hNszi366hMxQFWNamCFtksyZEDrVBB22tN0GSlFgE4QbMxk0ksw0H2Vsvo/J+ChzpgQNpCGRymQk8gx117yduqwS5MmRpckqWi6DI+d4adtW/OWXcGtmumI+52tBOv0UeQvZ0279j1PZmdQiHL/UjkSh97Wyd+/mJfN74OJ5crVCCrKXMR6/TGB7Izn5BVZlPDNC9z/+HLu7kYDyke91037kEjdcu4EHPrwlraisyu2ht/ch7PZcIpE+9NwiMmeqUGiUR728c+BFWoureUuyl+hj96KMbECgkgbyJy+gfUBDapaR96mHO5gd7ierKEZeYyRtZCzRGIh5CeQYUP9WRN9RpjJNpj128qcSTOXbuSLKBZthA/U1Qsn1eNZfQ/SUwFG1B0fFTSQHjqBP7wffBkxVjBCWl11hRhBdSFYU38YfFVXw4+4JdoWHuNz2LBPxYQSCgUgWm4emmU/W0lt7OVXcsOOaqmNCtfOVwxf+N3vvHSfXWd//vp9zpuzM7s7M9t67Vl2rYlmWLcuWjW1cYgOmmhgIuSThRzCYkEBCAiHcJIT8kgAhdgDjgnHBBXfcZPW60q62915np+zu7JRznuf+cWZHWuzcm8slL8INj/6wJM9qzpk55zmf7/f7KXy+aesa4cKvav26xqPPAncB30j+95lffIEQwgE8BfxIKfX4f9WBvFMXgHUw/tZnqLq+H6FBXCmy2qN4Z2bgEs/Ykvos7GnlGCvHWAVuHafO0lzmoNgI4V00ofbiz2Rl7URDt7oTCrKCCajMRQXXFtYH3S4mjGkyKSUUzMd2iTu3Pt+A6TkOCEZiOs8u2LgjOwECCop0qvytgGX+W721kNkzs0hD0qdNYiYBoynlGh+kSGsro797NyIe53KHg7/61+/zpZVkLHoSXJ0ri5Pb/yR2XwlTxduZ9GZxcJPFb5nJymafepI00c146WvYl4vJHj2AZ3wvMxMxqLPObzXpUmmQM3wdmpHOWMjHYsSSYoMFkAzD4OetrSjg1BtvcNNbh2jYXU/z0F8jzAQJbJxOlNF6YZkneo7z8Md3ccUVV1hGm93DFz9IBZr7kks8af/hrLzibUHtiy+MYIYmsItky3v1iJJhiDM+naK8WfYFvkWhvRtDaVymd3EuuB5pOYNgU7BfOqzvuh80ZY2srEgZHwJwLzSwpOyoZHWuxzPwVz6HO9iEK1hDNHuAMfG3yNwEfFyR8+K/IyYr2f677+WC6eD06dNrL+DUqBjSbOmp0eLY2BgvvPACUspUDJEQoGxgL4+hD+lEZtOJzLjJ3zxvSeoFSDPO0ODztLa2sm9fcWr89E65j2uitv5v1juNP1fHpeH5ud9Uy49f6x52OrTMV2U68cpGdCm55fwxKgJp9OgXx2gdiQEc9x/Hs/O9zObaLR6TkEx4cykMBZjSguSLTDaIADZMDCmwGSYffqWTogWD0y31hHI6iWRICg0XQ6U53H6kjxL/T2nb+GliLoVrYZEbzx1l2pdHy0ohf78ui4QGTPpxSMUfPv4jwumZbB7oJmPnLRy/OEtCSsnwmw9SdtU175jlvJrhvCWjjUqt2zKB1RRZWbMsLeWnaBTDw8OpyLaiwBxaeR0gsGFwVcHTFOy4jsy8KTShUt2y/OgsC4bB8nQakVk3/jqD2g0Xr2nLW/BVDG8OCI3ZmRoKCgbRNIWuO3A7N6SeG3nuMq7K38+MFuJFR6vFPdMEN+U+Tm7iI0mevWJGC9GXtkC9qbHQ18lQIh8pKnC6d+H42QNM3X4jc92zzK6MsJCYpiFznpytLcyfm6Ug4aVAeXE2ZeO5soze4xOYIY1QqAiZ5MqidLoHxpka+w557jL2FdwJEl5wnLVU7MnHjGEYnD9/fg1oK81rpKAgF01YinnNvUzpbTem/v/Gunmc4+mWH54wqSq0TMlXFZVr/E6TGQ5im53SM/diC1Rz1ZmHEPN9iP7XyS8rhPwYQs+wRpZVkliORuaj4N0cY7pgL+78TuyZGqWXzyA0y4rD3+Mj2OfD1XQt3HQnlO1gwjlF9+z91jYoralQspELCkLiGs7PhJEyxObTy+Q4M62iXGjYK/dazYmkwhhMNAzK3GNszLoT2eNgQ88UPyfKXxphbkvMWJ+NgLLMZSai27GP/inl4SEi2T3o8XQi2T1kR9/kW50znH1awf/6zK/qlk+tXxdo+wbwmBDiY8Ao8B4AIUQL8PtKqY8D7wX2AjlCiI8mf+6jSqlz7/Dv/dLrF7sAbSdPkF5RQ9PNZcTM/iRmEQyXutm0StZMrsJqL79z7428/sNRpnoOA5CWu8xAaTrpiRW8Ed3iUiWX17uVDPMKhmdfpXIhasmKI/M0xRKQCasO9xKYCsyRiaQguIm32g7g8U4RDhVx3jaPU0k+61/kp2zjg7mnieVY1YXUFK+oQepmz1G4VMVEb4DiG6s5cuQkPeFJ6yCUAk2jsrIydVyRk6fW2Jnccv4Uh3dfw4vzF60unNEJchx5ZOdvZ0YMM+nLRSYvfhONbppoEBaJNJExycy6H2Iqk0NFW5CsEl91ukQz9fSyUPUKeeMfYCHThtaXSLlNwyVCyGSLfrC9DdczzzD9yS9zcryd47KJ6UQjOwyNcdNqt2+ryLJC13+hESUjhgXWzj8CrY+ANCxRwnVPwyXRJN5bb2Gl+3nr/ZNmm6Mxg/T0KN1hFwuLCXLt+dSl304gEcBlP0RG4z5s3QZZx+apzXBRPWcyHAoyef0yvh64QfxC7qiALLkO3+l7WcnuRo9nMNv4CEoYaJqdsvDfMK+NWmomJEoHbc8U42MF7FpfyCYKaW1txTTNtSeZ/Ow2VuxIAZ7h4eGUWGE1EUETJsoULE+4aRqfZaZlE/Mz0yxNpaPkvCXqUxrxuCMZGC9ZCDxIRf533zkp5D+5flE9ClwyitHQND01ivkN4bPBr3kPOxpcSqYfaEhNkJG5kbr5Rfr0KaSSKCTXvtaFLr3MVaczVCaRAnQlKQnMW4WE6SHq6ydn25N8kTY61QZyzjZTPm+ggNF8k4GSGopD8+SHF8h0NPPEB3U2BRvYtdFHTzROcExSuBigKBxgojQLI8mDBYgLQdjr44MvPYOw20n7g/UszxZzYfgESklsJKgceAxG/gnuevZtwK2yshJN0y/GaOkWYNqz52OcGwgz55rD7/RTWWllPZuGQUF4gU/6/425HA/rRAe1Wi9pZVUMvL6Z4svtKM1EQ8ecLkbTllPXXU6tjeHh7160yuhoR0oTW2SRuJJJg+oD7N6Rx7qN76bj4GvkNE+xOOkiJ1YESjGtBy9yzwB/2dXkDVnJoTNaiJecrZhI/BOQHwpjLLVTvlRCif8wnuVRVMLP0cgZfFo+Td5dZFKBs8JD9OYchjr7qVpXS+n2RgDqtN0c7elhaTGPjvYDrCuQuOYkU6MTZDuKyLEVEygPMo+BOW3tA5em3rW2trJp0yY8njkCgRPoC8XYtCxWlZy0u4mdOo5zu2U+Xn7zHma/d97iBOo65desTfRZY7JtvRtKNxmpHeLCTye4dr7PIgwZCSIrFeTmHqN8n5+xYCbzH9Isfo8JGccg0XSIwiwzFfgikuGrueuC5DSEaD2egBkvOdoA3XM/SHVu0SAzmCDsdVqCEWXHtdBIXaak2FVjAVIFSlhF+UUymmWM7xTnyXT8GI99A2HDsuTSUfwxaXzFdGBILP9QTWN+y71MvhFgnUfDFapDKRjf/rcokcBfATkn06i+/34ie6+8OPb/Fa1fC2hTSvmB/e/w96eBjyd//xDw0H/1sVzaBVDpHk4NjmL2D1NbN0Fhks2igPkcO6GVXrys3VgKq71cdW0dj/UdwZm3TM1No8Q1yVnhY2vZX+C9ZCM6N3uOT02fJW5m4MhI576VEJubbiG0kNzDky10HciPHkawnzyVweXz13BquZdz3laczjPcPx1kfdRg3MjjYeP93FH6FCCJK8GDUz0YnV/l3Z1/gDJBt2mk7bQhF4UlsFCQ56nCnrg4MnTv2I64lBC8Yzt/UF7Aa/4QCSmxGQa3vPUsBTmbyVPZnGeUtETc6pwpExsmTXQkz8EyjOxUzfhqoyw4NMBi8Co0MkgqKpXJs54f0z7VwC2Jm+jVp1Ido9qsdAbnQkhAk5L8mVlUIsHS8BL/qt3CBjPInUt2BAIzCplLFoiZy1imyz5MkWGBJGwCZ8YEPHArGFFW0U0sXsX8U1GUGgZNkN5SwIrDi61ij3Voye4aA69wrPQASimydMFOl45Uu1g2Fccy30VHhkksI8GWaZM9Y1E0BKYGKxfmcYKVO2peBDdCQHpLIYvnu0Epop4Ry/BRU0gSDE8cITBTj2+PbhkGC4UvawqPd5YL5zbwrnd/ko9+9KOcP38egOhgkAv+/hTKXQhMEWltxb1lC5WVldhsNgzDYGkxj5431uPLnGRp0k3GjGS4yI2cmgAgMuNi4PlKqvdV0jHsWqM4lTLO1PhhTGPXO3s1/SfXperRE089liqUJLDh6usujmJ+M7psv/Y97FLluy4EQU+M3oYOrp3MZLKjg1Cil/w5Py9edS3j2flc3t9O1OFgz8oSYnCA6fwqJgIdKPEzlC6p13qok32cyvbx4Lt+h4xIlMcvq8PUrXvw3W1HKAiDUDpjkWLmj0W47MN19E22YZomQhe4vckxnXXygMHZql7e97E7yGy6kZdfWMY07GSnbaKmoY8N09+njImUvccvgjZ7wkN6qJqwYdLedi1ZWXPs2XM3EV8hf+f/MnEzzg/Hf8h9B+7jruu38+bzjzEgS6iMj3IZfaniLx6G5dlqRg/egyvnFKHhISIzXWi6zoarr6NqVxFj/i8j5+IpJXRZ8wZ0TYOVZTLGB8jddIDNu+6EqhjPDjxNUfqjFLYkKDAFc6+0Y8rdFAovGhaPTNM0qra2IMb9KEMybQ+mjNCVgOL87SzE4jjmLuBdDiHsdiquvY5r6/bhPr6ChoY6HqM1rZXnTj+PaRocG27lA7yHmiRw27x1K8ZinPIOB/mzGShl4s94jS3Z16AJHW1U4L4tn2MvXkBeUugJrC7n4OCrSPX3FofPZaPM+3lcodoU6I5dGEyBNmeFh/xPbnpbxuvqysraiSZsSLXKl9bQNDsZG/bz5uud7NOtcHndbsd92++DeRnurmeImDGUrSdpnAtLjZoFqpJfnpKsNu6SEYiK4ssmmAs9yPziqkGytRSCiCyjrLsMf/4KmTPbcYVq0XNPECx4EXegCVeo9pIJ0sWfBEm67cc4te7kY+iiXZaO5IAMMZmkpphS0Ns3yXJkjsbMXYBiObsbKZJiFR1i9eAYURZf8/8PoO2/07q0CzAalnQMdoOAmelqCgosB3qRVC0GjnwR+5BGZHjpInF27CTaK/+II/1uPGUvIbTRZICy5MzE45SSS3399QCcnjlNXJpIIbg6uAelXc+SuZOW/Q7Szv4tcWWiKcWf+gOsN8eIOf6MYbGZfyqYoN09jCZ0vuiPsz5qkMDGcdnE2WA96/0t5NoP8kKgmyHbLFuCFUjTmtmZpqTYmc+IzYY0DQQa5pCHZ77VmuqYuLdseRshuAX46ZZ6jg53kXf+WRwVMLswTpN5OZWu7XyvtgBp/Wt8SH6fOvoB6KWevxFfIS5skGa5gAMpQDpMFVifKk4jk12BndSbxQzoMxbRVtNp8MyRPjlAaMlOVdsYOQsLCIeDkqsup+LYIPuDxVi2wdadvTi6xNjYGD9++QlMm8lsVg6Z2ZvYF03j8t5OnGb84nEgiLEJpayqC1OxfGIaqRRCWIINJSXG8CEWYyspw+Fcm5WPKIA2r87/0eImIRS0KPpPBLhszCIq67pGWnkmKhBLXWMzIsSUFqB6Yz2Lti4WW/4WoRmgdITSUUoipI3SUCO1sVpOHfkcvsueQ9jbrUpTSAKjF5geDGHHQ5FtPSX1WQRiJ+n0DyCTJXS3OUfJZ+9h6z98k7ItW7jrrrs4f/48y8EAY2/0MjuQi5CSXHMJeemmJQSxBQ/r191D3DbA2Ngj1nekrPfOyi9Et2mYpkTXtVTu4//btToSdWVmrhmX/ncSH/ymrFXl+2PTCzwyNc8z+bk8zz6+VPQVdhwfxn/NTXSu9PLPt36IhM2GriS3XDhG3YaNfKZ2MwndxhOmwZdeaKdKztNLHYe4ikO112DWAkolA9+FpSD15lIYDgCSeNo8ziUfwQGBb2EDUS3AvLeAJ/KLLWqBkmSFe6heeZb6kgucq2hm3WweprGIUqDHMpFpdbyctULLigvD1cRRz5XsDi3T4k1PneNEbwBTWffu4mIei4v5zMyk0xM7TdyMI5EkZILTM6f5+EqI9dFzDNiLmZ2pprBwAJAoqdN/uhZNF0T9NSyN+zGiFl9ZSoknNw9b5gxyzuoSSZlgdOAgM4e2UxBpwLZ8gZKRATb90SZ6S2J84pVPcL1uoyjPSDn0526dpK3tUWz+cvLUHFGXnWqtDGdHGO9N1ciIQXE0A+3EEFKZaGgUK4taU/3eTeTojtS+K062oRFDS3b7e09dwDQNqwsuTU498xbt7Ydpn5hCSokuNMrMzYCOQqPccyWasFkcOmmSN7HA5e+6ne/87CgRU2e7bQxNKHRdx+ebYd5vnbcSBpHsHgu0YSIwca6vXnPNOSs8KbB2qRo8x1mCaI2yftDDsncMu6mR2PkRsirvwOvdyp9/YSPt28rYOD9AzYG9SRCzhens22j7waMUF38LsCw3inybCYlepBlDkzB+pJC03Cg5DSGLB7yKt4TC0vRcBG6m0lDGfIwAACAASURBVBmdzUI2nEYKwUpWLwhJsOHH6MKyZSk9/XncoVouPg9I/V7TbIjLP4Nzug2fc4Fgaz4oEw2Ty51P8ZhwIZU1RHXWbWai+2EOzjxGvruCjvlCttYkaS/opM0UIxwB3Du2/0rve/gtaAMudgHCj58EekFJFsP5DPbvpLr2BKDQJLiGDUb/4etWOLHDQfkPvo976RAT0XqwlRINXoOS5wGLY6bkBYZHPg38E/X119NS0IJDd3D1fAt/OP1+QBB4qh9Z0sQ3L7uP3qG/pqX/CJtjVrXi1LppoJutcS/tbg8mkr/JyebU8m4GIjs4q+opNjTkwWxm5W1s0Qwm1n2bSU+flQMnNXRNUNMcJb/eRl+7h4mT5djiHkzN6phMZwxxeuY0LSUtbE4Sgl/umuH1vmGyo9OM2Dw8YYQoy5hm82SUN6cf5aXaGzBWN3SlcyK0i7vz9mMeXeTFphCJTBsIPfnUvxhnBZe4dkgb3taPE495yNW9vCu+hUktwHiGm5dG2zFczUiXYmbdIq7QAqImwp6ycd417ETMWoBNJX81by5geHgI0zSZyvTx3MZdmELnxwq+c6qGLZMfw2d/AIQgItdjv/IaRLuGSkguJYUpLooOggujZC1NoeuW99tC0ioApTiTrZMQIDUNXUnqdxez2eEhc9GgpD4L90iY8Pl5wAJsLzjPIlGc6xvh6h2xlE0AUpIxvhdnLBf3QiOucC0SRdZiHdXln2Vw6pMomQBpY2VyI2dfGWGsYwHTkChzkpr5w5Sta2ZE9ydtFARDJSU0XlLdnTt3DtM00Sqb2OJxUT4xDVUwMd6HKa2OwPp9B1LAaTK8TCBoCTlWcZ2WNsQtf3z72zht/5l1KVB744H7UiPRys0tpPuyfgvY/j+sFm863x6dwVCA0DCUnbdse/HfNsjT9je45iN3Y9h0lGYJltS6SsZqG0kMTCKFIC4Ej7bcwaaBBh6vvxFD2JJ8IAFSpnJLBYriwFzyPhZE3dO4EgXMR+bRohm4VSZjFWnEpUz6OkLzUphPFJxBaCZa6CdklV+dAv5Cg+9EfsSELxNVsJVQwZ9hLGjYg/08sbk2BdyWc+fQEulYnXqJ0KHNbCPfkY9Dd5CQCdbN7Mb1bAkdvkXiywbucA8xt4du/wZc1YJQqJBFwjTVQ0FuMR1vlmEkI6xWx/HpWSspE2khbJx5KpPluRjkH0Co/ZS2/RORk6c4vVsjbsaJLKxD5QSwci0VeuEUGflziIO3UTCVyZa0a9GFjuqKEuzuIVoc4kRXOiXODeSlhymSWeTLTHL2baXqAzeu+U59G3OJDwaRyc/eNjiLVqFZhR2CXn0KOSJTN6epTKZtQfLjHhSCyYSDXDvW64XJhQsdiAUnd20vo29hhZK0UrSlFRrX11FZucKC/wGkGUeg4/LXgQB32Tzp20utLluSB9ydtonXlirZVZ1DUWx6DZ9vX+GdSdukvyYw/I8UuNqobMohBAwPf5farJ1s+9hNb7t+J3oDOAL1qKOfI5LdReHSOCUfvoeX+qapHvpzyub8XOjxsNDtJdznoaTSjyNhom1dsZjCmoP6ui+xuNjJhckQ/3q6njuyX0IKlbxkEsQ2tKKbFt9cyQQr2V24QzWAQmcck1Is4KcRN9eRluaBDz+FfSQM51qttiiQ71yE4hKOR2qYTCsmM28T7/nyOgu45urkH/GTfvrzxLJ7cPobCFfYqf3C+l95lw1+C9rWrA3bGug+OkVUD5BmZrHzhvcS8j+Db/oBKoPzJHrSUaZaE2XlvuEK9LTXWZEjJMLZTL71GYq2P4SWMZXqkkxOvkF9/fVszt/MfQfuQz0yBat9IqVQw2E6eyS3fvALFHbfkjqemGxkVF1DxoqLeucJut3DmEiec5WyslxPjXeI20pepSCaRXhkNxF/JZtkNrL0BH79q9w0WEdW/gWGp8MoZZBVbGc567Msz3nQdY1I+Cyv/8Vf0l4q+V5FGvcduI8ZfxEfG5/ASLdDRjlCgZ55Nxt6EigxynxskmBiDkRl6ji7srcwYXqoCU1wdafGIzu0iy3olC+UxIbBbvMQgaG9hEd2k/BXA4qjukFO3gxGdjdZBRXMdgksaw/FSkELlTPldKUv81T7P7O+4b0EJgJklZ8CFInsPdSUN3D+fAhNCKa8uZiahhICQ1oAa2PwJsYOd6ACgyg5gTj8VYr+7MuYbeeIGPtQyoZE0B4xcWown1CEqm5n59Lz3HrPthRYydIFy48/xuWhIP+u9pKQGnYB92ytWNMhiOkCYddSY5HVKCvDMAicc+HaYlVkKB3v5OWkh+tY8fbjr3oOV7CJ5r0HKFpXDHyPU6/+jKWZeqL+GoYX5lFKIY0p4otPIHNbSOPS8GVA01LV3aUEbdMwGG09T/aFDoTNDtVrnSz8E8tMDQ4zG/uFWKzkKqz2/odg7T/yYLtU5COEsDh2SmFKycDp4+g2+38rtehv2jodWuaV+fCav1MIFhZ3kqUHsW+IY0tI4kpDIXjOXkrz6AiaaRmsKiHoKq5ETllejGr1flUKDSs5ZbXosieSY69k1ZVdP8334w9ynfgEmtKpnDfQURhKoilFEx0XxS8ywYx6lVv++B4megOc0Q8xMdmPRLHibCS+KlFa9Tj0pnNu9hwPB+5nsH6KymA9CUeIUd8A/hE/jnEH926/F3+rxBzIJQi8ObaRTc567LEIYiXCIsX4x4qT9ZgkqgW46gP7aNxVROfhIqQxTk5DFee6xrGf91LT/F1m1Kv0nPeyPFedOleFznBRM4YZoS5SjUN30K4HaXjr01Q1v4TI77S6PsIkp9SkJmGBsFWrIKUEwVMTmO46VqIeFhNenDZBv1QUUoNrMJS6r6YHQ/S09YMrQJYrCxdTlLz5OmHP3eRkLhMRUXr0yTX7qq5M8mqX0Xte5mjoSvymRmQ5zjb3OU6Fypkceh6zP41IeT1oGr1KkBXYROjcDIV/vIXqsfcy0/oosXA1nXo/FYULbPnUvdb5j52EB25GmTEqpI3XE3/KP+uNfL16NkVvyLEVE8noI1x8FKUk8z1VtDn81CaeJXrme4CJkDrN3r+iYPudnBkJpNSmvoxeGte/asVALTWT2GYn5LGxueYKnn5jP3+l3c8d5e10hvK5MFNI90wZulDcqLqxX3EVxoyd2UdHyLdXsbG+gtzlC1wpOxiv1K2SXgrSMveihfuQMooA9HiyCECSVp5GZJxkd8zEae+Byk8AWPxoterSqRFnM10UIgBNE2S5HRTX11LsWoQHbiY7Xsl8/Gu4QrUsefuRN02SqF7L+/tVrd+CNmBi4sfMzr5Mfv51vOePbviFjkITnC6ErmeI3NKC6H5iDfdrjFyec+zE1McRYoIrjZO4++cZ3nhR8VlcvC/1XpvzN7N0WQGBp/pTthKTcYlpKCZCRRR+9Dk4/whTx6YwjN8npC1RvBTgc4vrebDuX3B4J8gpcvFm6zD3bP0nbJrVGvZVHWW+dx8NjYctfzHPONLo5bSnmGyZSCpw4lRf9SqO+IcpkPksfeGPuD1hcIsOf/2BGKdnTtPevw7Tk5YKfLcy7RTLGc00j5+ls6EAf8BzUSyQbON/V4T5pk1jQ8hkz2yCtwrsqXN2JYapsQXZznFq6WV05Gbi/qpkFa8R8fWRd/k/4NVMBBpTmdcQDudB0jpkfmsJu1seQmgGUn2X7KtBKTMJio/z5JNthEI5aCiuDHTQWtGEKRQ2BS0L1udjy24g7h8EBCoeJ/LqwxSVvEm69nP8ias5srgfvyGSjTcBQiey5drUhjrRG0CZk6QHj3O51s4TbT/lqHczux0rtFz9gzXXk7PCk1Kn5iQEHO23mo6AI1hF2el7Wc7qQsQ2kL5YSbDkTWaaHrQ8XZSdKm81UExhLBPv7G7m/dYxKGmCApmwbGZmo6MUm1WrEanoQrDrro+kqjuXy5VKGgAIOTROVBVSGljCmbtIRlGEpSk3ba++SH/703grqwhHqll21aTGS0JoZGb+x87ea/2d1uaKXiryUUJY3k+XcGtMI0HHwdd/22n7JdfR4BKrumxL1aaoOV1EweBWyjWT6uIE/iXFk8WAJjCU4ujZKJvcds7UpLGaC4wATSpMLTkmUooy/xSjucUgNJSAkbwScsb6QFkpDKPOdIbcirPb/o7NWjpljma+lL6B5+e6qBnX8CwnkAUX98CfvvYaH7zzd6i9TBIf76N2QTAQ03En+kkIgaGsDOSqrjHan/wu3wmfJ+qoRGVKTpS+hAbkLVWxaX4T095BQvEQxbPbGGMhdf4LaheuXc9xaD5OpiihMNmhA41N261rzCo+rmZsbIwf/tDK3wWNziMbebm+g4RM8G42oCcfjdKcZDKth8lDXejH3uIrO29h+kIbdt8AabGbScg+lEj6tAWaLLCmSO3tSilM7U1yGvtYnm1kYaGWgGkdr/+tSUZ6DrP1lkXS07bxyrcNTFMBGeiscP1eDV9skqYT3ydWvIu8YoP+HImJQJiSqqEhKoeHYSBGUf0AV3pfZSKxgZKNFUwsVTNztB0wMNwZl3C4JA73OJ5lLxO9AZo23sroD97izT1bMTWNdhkm47XXqNu/H4YPEXKbBLxOMoMmOxe6OGfUM5FWnKI3hH0djLX8yJoeAPYSKNEgeomqXQmTwZe+wuR8MR88ukzckDRkD/O5rd+GujgLyirS0RTzrT9j65YHuelDN3P27DFqJnvAZpBbuZCy/Wibauay517n0OTVXFGwA1PouCcl3ypJ0H4hm4Fpb2pvY4OTdTd8iZ6ev0AJk9nGR3EuleJabMBeXUzu3J8QSzTg1Dtw3vh7KV6ls9qLsFmFtxCC5e3v4sqnXibPXsyU/xSvPT7G/nYD14KGM15JmtZFruPLdBZdR6DhMUgkONv6o//HpJhfZv2PB20TEz+mu+dLACwEDtHYANuuf//FF4ydhJf+BMw4bv0YBb//WRZP9ZJ54FrcW7Zw5tAhTKlS5NtFPcHmxSkW2hqZKiqnqPq2FKdtdWXsLGL6/ByJvgCTccloQqHbBMu5c9wfbKN+KZ/40k343EspCXlhYR+3lA2DUBjqYWIlG9GTlSwAmkFuw8+5RLzFK2UeSuMuIJz0pVXE5WnitnM4u9+Fw5BJI2FYPyZoKWgh0daPnl6OgQ5CQ0iJbppkz3bQU5RLWShCRWQSzSxjRHOl3uygNGm7NoPK1jCbO1c4kmvHTBr/xuyldFJOL+so1cbwlL1IPHoZankrCoErv9u66YUFTLy+KQu0JbXbXt+0FRWjKTSV9D5b3RBUgszMSYLBbKSA7ZFWfng2hyPey9m2YLIhaIKSnEuP0Hr9LWzu6aR5qJ/Q0V68V+m4c7vxLQ6Q1+3HX/0esmw6uXbBgiEo3VCUisXxKEVuuo4pPoTAYEPwz2gJPwyNb2/7nw4tc5QVdm/NJtE2nMKBKIiKBGnBGtKCNSghWPH1JwGbmXz2JDj92s/QRlxEv/h7+JzFaBv/CKnbrDxUIdBsVks/6rBzwmEZ7AsE1+7eT0l2OvPf+zcCtTV0TSYVw8nKXNnsVjB0aYzamyYtIG8Kxo8WWD5t+hC56iDtbdfQ37ed2rqTgKSn9ysAlJS8/23nukZ9LSVtr75I51uv8Z4v//XbrD723fUJ2l//OdMDqXQnZocGaHv1RVYWF3+jhAj/HdZuXwYOTRCXlhruhs55igaLsQy/YP7cCPV5uVBitzhqQFoM1i0EOVeVjxQCTUkyw8ep0KMM5jclgRy4E3E0aSlONSWpNfopLWuny9jIs7W7LT8t1cB29RUaRQdKdaHCT/AZt0LW64y1XUP7+f14s2YJBfJxT83SPv40gfDjSBnnU/k2Jr3vY0Pprcz4i/jB650ULcwxOC1I6xxjS+0nGc53EsuwETEeIT0yyk3df4AmdaRmUp9zlpyKZcY6ARQJe5hZzwD1hZu4z/MqEecMHtnEgUget2/ayuada6+r9rPdKa4YShLXg+QFK5jw9KW6iQn7IjHnCMJwoq8sY8Tj9Lx1zNqWFrrxj/Sxb9+1JIxpfMEDuMI1gGXzE0zECEsdR+BfWXr/GfL0M+TK5xk+eA+xBet1aTkDFF/+TWYDJmDH7vsMpt9KNDDRGZpZYvMX/wT11a9B9xDadBXXVDQxqQfJG+4i178AKCb1PIwGO4XOfgrdo3DVs8z1azi7HiCjaJGwXzGnipNnLphz+mkRSxR7LXui6Y1XYlreyEhg4Nw56vbvJ1RQwNkNmUgNNAkjZ33YlzR2726haJvFA3dlHWRu9XPEuvSSb3Mp84SYJhg+9K/cUuLCH97GTs8gijhCKC7ll0kzRn/X94lE30AWxDmb50XIZYq05ZTth2fKYCzsIsdZYQkuhIZSAnOyBbftBJGZCJEZNwAd2SHcc7Hk5AeUZhDJ6cMVaiD0VoxcWwyP7TGLzrPiTx3HpYW3s9pL58HXuCrvDjSh06xMWuKPYfTfQRgbgivIdXyJNMcQ2bvjBPyW+v8/kxTzy6z/8aBtcnKtfdLY8JOMn9QvPkCGD6VCxyMzipmf/AhlKiJnzuCsr78oNzdNdE1QyQy97kI6fcUEp/LpGBykpGStke3UsUnsA0GcmqA2TUevykDbY3JP1yeJywTbJg5wjQERLUC6Z4bi0gvk5IwnO0vWl6Y55zGljkh22kQymH31JpFK0JJhogvL+X+104OwZvu96hBlngykkcCf6aJo/Va+e/677FRlvO/5NxgtqsQdjaDlVpDVc4KS2XGUEEyKND7d+u88t/wmD9785yi0FIJ6dPx1bu86RAV38qdHBGey7Wgbs3hBrSCxqukesZ4DZScQoTCBIciygWGmYSqLo6YpQShYmAQakBYpIGoUoRpfJaUUEhokw9iFsLO4WIwQwvJtuv4z5E8O4zs5y6QKMKv5mKOTP/7Y3SQ0O7YbDL71ra/RPNRLZNaJOzdBZNZJXHOTZRPszrTMMJUSxP7PrzP9kc9jGpIch5b8aHUUipjcgNPWD5f/LyAJ1IJLZNl0vtw/QUIq7JrgXmcWptLQkdjQKJJZyeO2/OAiWd3WeaValxpLM/WMLgyTF4/jjQ6ypf1fiO65jYnJSSYLS7EnsnBwO3bfApJA6iET6hll9N6/Yy4zgzevvBLTlry9k2pY23IYTSly95UT1/3Jr03hq160fNo00KSB1zedPEaVxHsGPb1fISOj4W0b0CowMxKJVEdv1W9t523vfVtQfG55JY/95ReTHQ6YHui1QJwQ2Oz2d0xL+O1657UqRnj4Qjc5L4fYEbIzrykChonSTV4smiSWu9W6PKw5JUtpgoaZad59vpdJXy7FoXn82gC5Mz5Gc5owNSvDtH5mjPqZUSZ9udTH+7mu5hE0zeS8qklZ/Qhs9NJMk+jB6spax6Wh2LjBxYtvpAHg804z7Zil1tlMZNUWQhmkJUbpC/QxdbCNxtlhQBLI0RgtX89onpOHrvJhaoD6GKWzA0xmOSn3K0w9zMlOP1tdn6Z63e0cnnSjOwMEyGWsC2xVLQQLPkVA2HhACG5pXBsLNj0YYuDNCHisMRloOEwfc74RSoL1CCVI2BcJZrcBJnjryYucwZOzwNKkm8isBQikafLG60MoJanOHGBLTh0CiVSSVv9PqcnOw3WFyaJdJEeoEk/Dk+QupbEwfQPegn5LkCQUqATlRX3M+n3Mrwyg24t4ZMYgOz6NQ0o0XxXuyz/Lom2JNF87sraH2EmJY0jj6bJ9lLzrL8icPs4xcx1Vso7I8teoffcgQkChOY9xzEtA1ZPyjNODFIy9xrnOhygtvpHulSBSSYQS1Gy2zNkDjkUrpxRLlLJnu4e7a3YlDWOzKK5vYuLNl5jjojmaUKwFbhKUCZNpGeTtOMG1AoQ6hHt+IxFlfS6re59SoAwYOHOcnKZVgYRAaMpSeQnL9kM0KmwTJuELbax4i4hm96aUoVUtdzN48GlyHWVMRce5P1TAyz+P8rkWOygDIazkCrCasEuLm1icGMddKHH/gqWXs8KDU+sm8syXyRyoRXNcgWaFjZLjWI+V9mA9D5bTP0isYRvpaSaa9sx/Kinml13/o0FbKHSW8GJH6s9KQc9rs/i7HroYt1N5heXrZcaJzLnexmkr++TvcdO1t9N9oY/G9XV4lEbv4g+JaVGGVDqOfnONkS3A4slpXFgPbk0pigW8tfKcpYgSgvHMHgLyGqR9nvUbX0HTLE7UKpVBABneEib0z1PMAzimF8j3X8lc409QIoFSEBpJx1e5tEbZnNIDCMhqCBL64HV0Hx3DlBLj8ABzCwvMdY5RLDVK58bZf/fvM+/I4cyhJ1alhCilCC1nsr1X8RAXO4w6Jo0rx1iI5JLTWMiREieT6ToL8Si6Q0MoiS5M1ql2XGnjpLU8ii9viJJ4Ka5AA+bpe3mm6gekBVaILGYnjTQ1yJriZX2Ssu6duPN6yM6t4e5t9zA19RQARUW3UVebl0pEGIs4+Td7Lgs5x8gPWn5UgzVXEdcdIAQJYeflnVfQPNSL7rBAoLvAwBFYIdempdzLlQLdW40v2I9uK8e/2k3FwozOdRV01/2E1/qz8Uam+dL0DAmZNKhVSbciqTi0ojGQaOAOscLVModC5bPkE0kDX9dCI1TbLP84NMLnP0AiVEf5DelEn0rasNhsrNQUMZA5gZQjwBg+NkI8Ay09dDHeJr6MiseZzc3DXI0hA0qKCskcGcCdvYjv6gyGRmYoLsIKfseGXZQjRBckKUx2u4GmxVBKJCthi9g8OnCQ+Gz2GjHCqvq64+DrdLz5KlKaa/zW3ikovvmqa5kdGmB6sO8SzuNvVFj8f5vVtbTC2YU4t+W5aIwlkGnQPjnMS+WnOFT3uyjNhvUwVSiVYCz9xxjl5QRy61dT6TCUnYjtGO8/uJPxvDQq/Ql6so6jaQmWDD8tDeVo0gJl62jHpt6DocAuFOtUF0oJFMl7RgdNs1O35QOkcZpp+RhoJpWag3JfE71zDqSME5eSHw2eYDh+im3hXaR51lsgMjhPuRqirWJHsvsjQOmMF9bzcB7ceXiSDDpQZPJG7Ebsha2Me3Wqoo2pDdKttoOwgdBISMk3z/6cLzRXprwrw4ut5FUewblQSmjJR0lxGVff1cKVGZWcPN+OOaERtVtKWYQg0zNP3Z4+NE2iTEH/c+VEZqzoOpkUZwwsXiBk2smzO5iNjuKPT9O4dx/RLc3IwQtW/03oZJUMo4RJdn0veV3vZ07ZURgIaaM83ES9J48hbZqhpeN0xLbTllvDdocDW14DM7YlDuX9nOaNr5DQTI7vaeTc7PvY03KA5TQntz6bsEaPfY/wuW0/s/BQsjDb3JDNWz0WlUVDIy8zQH/Wt1F7TIT6LgfOfIrZRS9eT7Y1GgWMxQKkkaQ1SthetI7aiqw1RtuJrEKYX/2eIH1uq1VTl8TIcVcT7uqhrTdMyZ5pxGp9r0wi+a0gLQEASJAQGslgti0HAeQ0LoFI8r5NcxUTJm0/IFimk1/ayrg6l6SV2Cg/+0XyCvZydcmHkKaiQSl+KlboXjAZVt9gf/UE6dMZxINFKAxQktBUKYmxTQz7BmDoGxRp70Esb2bs6IuUqV58Z59m9HUvwjMLey5D6TaUJsiyHSGcaEw+ASWR8GY4YcIpQe3OrxMrHySv6spfeZcN/oeDtkDgBH3U0kkTjaqD9JkpZjsy0ZCYiQQnT77C/KZ0Nt34GfJCbbgu24i49ydrOG3TgyFOPDSDkcjg2JlpYvuH6fPVrQlRvrogZ837pvucyMmlNX9uiUZxKEUCCGQMsaHgazgKcli+pHu2KneWCi4vqeey5puBm4mdOs7shSiOpXIiWV109Y0CICrOcmnUYTiUj9c3m5JM64VLKStETQrWDaejJzOrpJT0njhKrKCEfYWDvDVVafnyKkXO0gr/cOtNVt5gcqPcpM5SFRlgtuR3+fKOTMsVfXUpSYs8yU3iaeroTVVWaRUnWOAkQtrJ6X4fm5cbOK8Ps9vxAoOb/5z2nAL6px9mNHicLoA43GHU09a2TGXl76WAsNdr5Wwe7Znl/WMTxB0a+oZd3NR2hHrVSzRzBFj/tu/fjNtAszHb/Kf0JdbhMVcVpNJSz6XnULRhHbfcWmcpnbwO0qMmzmovF9jMB+8/TtzoQdZkEq/xWDX7alGowK4JbizM5knh4w6jCDuwmoFnfZ8K6bZZH4YApKCqcD2X3WZZsUQKv8/oG+20DpSy2D+KzJCpcU7CHiC+WMSVehor1aXU7tpKkW2F0Qcd5M/Po0tJutePL3uOrQ4d0f4C838YI26D4kLB+JECbC7J8lQ66UV+0oqTDUwEpaVdXPQ/so5VCDtnn8lkeXbwbQa7q8Cs+cqr3yZIuFSkAGtNdXXdZo2olPWZ/IaZ6/7a14MT83y+dwzS0/hGMzxQ5aAgKimdziZQfQA0x5rX7z3zMAHnJEc2/C6rW39vQSUfOLieI1VP8sr6s/yO2Mi+y7N5tbufhEygC52wbpCfRHj19HLvyMtMpbew7ZH7qTUGCGzxYm65k/z6dAzjJPn513G+z2QqdJ5c3yooN0kkgmzd8iBPnPgbzo4sEZYRSFugsyDORImVrqJLCeFWZtMvwKWemEJg6CYDlVE2DVsAUlc6IrIO+8oZVjtmKEn57By9pRdHu46hg7w4+nf4eluQTjf1u54iN8sgR9qYOPw5rr6thfEcG0eDRezeUUfgje/TMzFCJD0dpYHXO4umyZTFR05BhJwuA0/coLM0F6UUum7H7/ISyj6JzzdF5oSLaHEanzv8VYp0O/VpiryldWQWLdMt1rFOdJHjjFB25l7itcM4+itxhWtRQlGduYnKjPXMrRym2T3J5Kc/Rm7AyfRCKJVu0i/q+br+5xjFDl6anuH9Mo1r/NPsjcWYLmy1CrlUka9TNLKNG4w8BtIGKeibRit+xAIuyfgrp2+MjYFNOPbWpj5yf7/BwJuV3Ya3/QAAIABJREFUpBcusTydgecqg4z0EE/9/RmkVGia4Lo/vB4hnkIpA6RGJLcNJUxE1Ebj6dP4B3LQi9NTU6KLEx9AKLLdVxKIHERpEk/5MnNtOWi6ji/jGtK9WbhOaJx9/SViLUbK9kMIq+umLh2tKoNQ4WFch2tBWSa4uoBt6AzYFJtrdlNZkQVj3yTm+A4R8yqWE9dgL9/L8i6T0IYeSJwn1H2ewPEmRtosMc4OlUe2mUAFhlg58k28e/ejf3QH/mgV6b1P45xvxszYyHJnMnHCVIij2bhO5ZL28Vr4L8iM/x8N2obtO/m62IqhbNiEwYeH3iALK9lAKcXPOp4kcypK6RY/YU1Dc5xn3X1fRj8bTvnqdL00jJGwoI+Uis6zO+ja13sxRFloDDjT17xv7lVlzPUsoCQIXZB7VRklc03cd/r7nE5LoyUapUn5GAveyLLqRqmL5G2pwFDw47YMvvHGYd63vZx1VWncn/cQN438DvMjGcwE+mjytmCfdBAvPZq6WZYjXjI9/hQ52OZYjxCHUcICE5f1LNJT5FxVOTPSfg694zx7S5e4NauTju5CchajdNZv4PDGbWvOaZEM5vs8vNboswDbmhYfBMiyAFtypQRQQqFEnPmmR3Ai2als/MB9GW86y0gsa4iMu/AuT2CP97NV81I6fYFTgTkOHizkrrvuutjBHDvJ4Y4ACW++JZ6QGgv5LtYX/By3GOIQX8FUNmyGyXWnjyCcTtw33EykaDPd//sMZtk6AiYcWYzTHBsnO7scR9nlLL6+QnhsjJKryi6qJ8dOEn/9aZrNPM6oepiPoVUplLC6p58szcNrt7Hbl0GLN50dDfPYOwMX1cKXWKAset8ELTke1UxU+usUVt8BgHvLFsb6EyxOdCKkndWqVJMmebOd2M3DiJ5+rvjIPwIrRE6eouCLf0JuMARFy0TdjyOEyZzZirzag02PpR48vupFps/kEZlJQymrg4AATdPXXG/WTqSRlvgUy7PVOLMHSM/vYaRvmcLqtXYFq+BtsreLE089tsbmQ7fZWLd3/zua6royM3/Lafsl1jNToyQvOlCKKbfGlFvjXHYFNiGSwTxWJ0goSd2kG1M00r5BT92fUoP+SjfDFXcjNY37UNT4vfxV1j9zYaKT1xLPcTgQ5kLGbTSLDupkL7v6niPjZz8hXmEQqzXJao3gq1ti0P9DpIyzEDjBwOt/hKY2kn3lawjd6ujKSDNhPY+x483kSMleFOdyztFZWoKpCRAapg7HdmwgHn4Z2ArYkx0Xi25wRU43amGexXAuoFGXuRN3tp/YKz0olwexEsZTUsi7zx9j0pdNbWKA62qeQxcSWfwiMzPVCD2RPH2TtNxu/mXgVR4crcFQYENx+1I3JdERHLN5xAoqCIUKkUpHkyZKasS911B6wMb35LOs2FaoXqyguqCZRGyQxvWtlmp2q4P5qVd416EVLpTDeW8NOyO38u2SWgxs2DSD/50YZvtiMdH5XFxh3+rcIjWC258R5PnudEzm0DWdXaKecKgIKdvp0NZbzxgECanQFwJ8Ib0cMnRWljRG5SGUMFBo5HV9CHewljQlmZkNczZyjpbuZbiS5LWjsRjKxrHLScVlxanrq6x5A8d/6iEy604VVKd+1mqJiYSONEzOPiNYjt6DL6eHYs8C4dKDllm4TDBQqiOn4ixN5ln7CyrZWBcITaDpdnS3DRWxilFNVzReqyHTxwkuDxOO2CnI+yRDkRzUIUGg10tOQ5jcdUtYDE2FQnLJk8Z6QAoJQkPXNRq3lfDw1iJrpDt2EkLjOO39xOR6EDpC6CwVtVo/m2wmFDSu/F/svWdgXNd5rvustaehDAZtMOi9EwR7FUn1ZlHFsmTZsh2XxHac5DpxfFKOT4qdnJTrFCfXKTeW4rjITcVW75W9gwQJgui91ykYTNl7rfNjDwak7NybnOP8sr4/JAASA+zZa+13fd9byMjwIucq6J8oozH7FLkrcXRwEHHTATonP4vWSUShk+23fYqxKwFyugcx1gApoE31M3Ovfx71Cw3aOs0yTG17FiW1YKrSQ9lMlNWZTEDTPOSlqECv6YhQKsmqf4nqz34u/T3KGvOQUqBSOUzRhRq2dl3i6bYkphA4pcHe3OxrXtddlYP/Knfp7pF/4Ez3j9gO/EowBEhC3tvxzDcRP/cJFkoPgYBwOI8l3xjHWaJvphdtzvIHL9fyvh1Rwqsu+mIWkkKc3g8wr4Ko6WZcpSfTIG1oagNzs3X4cqcJLheTHO7HqWxD28LCTHx9k+vUKrDJywomYvnsLBmh2BmhZ7aK5265zVaXXgXMlmL5LBbfzZmG5vT/vfrruWrxWq7D2h9psqqVFiI4M9pTQggB2klD9iauC19keyAOYhpdIXm5/2N8bXCSh3Py2R7qgm/fwz7PTfzj5t/BVBpDw3WRDowSRYPo4Q/UHzE518JtPZ00H9hL5q1/TOaWLcz/yzfIXbhCQdXt5DthMamwYssga0BItNJk9yzyzoV5rv/NLRQ7e+Db97DbivOY08HHkl9CzbeSdzbKS9syUVrz6NgcT21tYLsvi/hIiMwrS6lLsg7WwAZ4lutaywZHfkb672NjY5y48ipWtj06zVmpp75ZIJ/+Ph2bN2HJMgbrSsh++hkynnmGOW82c8UlFD/8YfoWXqcyy1zbk1kqy6ZABBHK3lm8ZStkl6zS/3wF0Rk7PL6kvYjG7bcxtfiXXO00DgpP7ihZRR5Kr/sbhDSJiBcYvOyltvUAYFMNRvqeY+Zygq5XLqOUda3NR4rD9p6p7s+v9rmGOELt+oj5qvVmak1DLMygKwsNOC2TLT2XUQIeu0tjppSiDg3SSKKl2wZNSvFc7xgHujSZVLGx8Nf5frMXLQyeweT39J/QNjSHq8pk/vMJMCBsWRhZs6hEioekk2QXDnBx7l7eGfkrWrlEYLiQ/pAifns/58oaKA3OEwgtsmVhC45Sk1PCBphaCxYy9tOweggx+5dsq/kk2zMbGVrop1n/Cw3Zl1HtBn0nPkpyoY0bGnJ5/tSL/KA9n8Cih5mCGO3F9dSfqKBucpni6mmksLtkQllkZy+idUoZrwySq5lcCQ8Qz622gYjSjJVWUTYzgjYMELax78XOW/H57H0zHHEyYEA0t4KNCxsxhMH8bJDyivUkEa2TZJ45wm1nHNx/NM5jBxvoL6kmqV1oKTCVoNNfSqTjh6hxi+sDDyGFbRm+ktNLNP8KPfNLWMkcEGApRVwnOTB/B9PnSsgtNhFlYKRU8nt7TRuESIOMYCM1b25H1L2JZ6mc+ML1NrzRitnYKEoIlhdzqPxnsD53A2de7SUydQzj0ilyN6xzSt8dP1fa2MLxf3kdqRpSXUyLpbFZEqoW53wd0cAAuuyobaEhNEt5TrjZJK8nyPixAA6PRWQqE8PhZPfDe6lquDtNc7HvX8jIyyQST4LQKJVgOd4Hhkw/J/ICG2hquoPBqQ76xo9T6Z1MP0I84SoEcXzGIyiZh/vuT/DwDlv5Pnn4KWae+i5F7nIQm5nN8uFX9v6eObOVaGFX+sGX8I3haVcIfYVdp79ION/EH+kic+cO+tU5lJVASo22EnS9/nVOXHCh1D4eoAojZeWFIXD/J1Nj/qP1Cw3a9uZm4xSQUAqnSLKj5BXqD47Q/3w10ZkslMfDPBWU6BlbRSnlTxELi2t9HPhwI4d+0ItSColm+/gkT1lf5Ni2L7B3853XeHit1Zq79PlDf86nB75Hwi1wFRfxyPQ8my2BW14CrqNouY2zURNTWFjC4rCcZMFt4Mw9C8LCpR0MTH0IkTuCGrOJpIajjGVKiY+PETFuxZs7TXC5iIXpKrR3mXBKmZkZtuOUlFacl9P4vBm2U/7a5i8EhtNJ5YN/iBx+jEzxNsv5jbhTD+CrTXMDYTfTZdeh5PrINPWPACifm4IA64AtkYl2RtcJ+NpemEIb+KctpNfexA2R5M6sUzRlrp2goI96Hm+8A0s5+HFHL0/KC2y3EuyNvMA//iiT0xV7aL90mvrwWyz8lv2tG6w+9nx3kMqCFfI+8z5I2WJk7txB/g9eojTbgZAG2i24aLRRaDN204KBUmnbfuQlOojH7sYtO/EYfXyxaY6B6XxecCdTv4Ygqdf9pqLnZtJxfCJlYULqMkRz+ljxd6Yvk8BB5aaPpK/pNQo3NGVb3eRVFDF7y81Yi4vpbNYpwLsmPpCSSxcukJ1TRHn5muWCoKBg0vYuSr22kCBQlGxfYOqMIDrjZezEQYJjMcqv/+m1YnhCbL03bCvdhEYrkzNvPEemZxMZBQOcPfcRlJWAYoG7oJLoTGba5kNrnQZpP2uE+l7979V1OSZ3zfyEF4z7SDHMr/n6oDuTu+dfxDOUZN8759kw3I+Wknu7L3C4bhOlK4rf6ItxWE1xoqIuPU4sXZ4DCgHBmN+FwoEWkqSGt2fuIZB4BdfuLvvpIaBPNvK6czPVyUnqdTdCGLzl3MMLN3lReHlLlfOx4TD44HuZXpI1Phza4sG+F/FOKxzjfdRmvUWf6yYQEqUlrswWshbf4JMZmRx75nE2lpynqroLhEZITe2WFTa33og68zcUDvlwVmrmi/KoCjfx/vr307izkYneJcK5TpIrr6OVDaa83gWUkiyP7aZndQcz2yZpEDOc4nqSyh7PVkwOAaRyR+1rGQ777X0T7PvfgrJoGTKVzQLrGb9CKFCC4WA+sVoPzZML7FxN4pia4khrHRYah2lSNPYTRMM5ioI7kEoihWQlp4fx7X+Flib+WsFUp5twOIDQUKR8+FUO/sX9HJ+L84mpMTx5AbYtKjYuW/bqVhZoi8LoCL7xKKvKYMFWoqRGlBKH00ndXXdTtuUWxntm8Id8lHs9zMXHf4pT+m5Oau0tm/B/5a8J59TiDQ3yyOb7uNWAvdkGcqWR8Onf5Xj9j6kquGI/RgwobFlGa5g4HKC65Ho2feCD1/o5Tj1pd66Ek+xEOxHWAJRGLOQg0XgCUeoOjiEdo/T0nsLSFpVey3b4EwIUOHLOU+h6AbfsJq5aiV8ahKJWFkZf441HX2F/4PNYGChl0dn3Q6T8HptqGvnOVCnl4nZ2B8aQlouI/4KdvqAsYvm9lIS24825jHvyMYpDdcxvssGe1AZFvbv5Vf1NYgaErap0py1zW+C/pMsGv+CgrXRmlA8+928s7vSx3X+GRtmLFhDYrFld8jIf1iyFA1zsvJVc3xT13oo0sfD87Hk7SSCwnc37bbXNoe9fQWnBkfAvc6/zj/l8VgR+BmB7oucJXh99nVsqbyE4/AoJIWyHcuCf/QE+1/ghWt5+DbDzK3ck63gt+wy93n6WPctYoRYMbzdCaDQmdSWSDxb9Phe7gmBJDEOw1JTN4sUrZFyaZzYzDxldIJwxQWVyN9oVxJWw0GanrQST0Fm9ymKmYuOAvQVJw0HbjeueW9OOUmYvtuA1dhB3Rkmz1lMPiq6ifLqVPa25FrDZqOxC3jYe5LEU/tBIVq/p5chIC9meNsZdXgq9e1PIIvW1dAPB/n7dYoO9+JAktMWzoohVsYtqPcJ1iVfxvXKF2aIiQiE/5UeqWA6dxjNVTpaxidmBHtzREjKveu2s6+5BWylSrIQcp42zDEgLBipdkvjCKvPdrWizCcFDFGb8CXtuuo+c4VK6Xh7AUDbQdErB3txs4iMhVs7MXPPeX93KX82/QtrqQwl8kwfw1Ns8iHcr3KQh6R24zJW+SzYfzOGwDwmGQbyqioWaWlt8ICVKQ2StO5A7jdu9QklJn72JroVApChA3nK747Y0uIXQ6Cru/J6riCfrtbDwDpUVNbAk0EqglUFkxn4wFjSfRKtkevSaXRIlOpuFw+nkxo9/+qdGn+824H0PxP3v1chgkuKpHchy7MOW1jitJEnDHilqBK7CIAdzn8Z/xAVS8vye63lqg31gmfVITl7opziYw90XjtMTKEMgcFhe+wUE1M4mOGq5MUnxWadXuFiXhbO2hiz66KeRP+fLmFEnLrGTr5dcwuvdwIsI+6wibJ/H4SIHUgpsK0Q7nzNZv4J3JUJMxvAtdeAK7E9RVSz2FZZw9/ZHCPeEsSyL5eUAFUoipIWl4ZGVl/j83B56jh8nM+DhvuFMktEPIJ2VdH97BT7eS2/ZBbYHtlPj/iHdl/6cSOy8nWBggGq7kW9ENmEicGDyUf1N5hbbyT9bTNGMbZVjxGIUOyqZ0eNkZ8/i883YCQuhQqRhcNvO2zj/zvn0+xEOFTJy7DqqvMssTLiIzq6A0HSXFsDMEAGG+fWn9jJcWsGumdeouu8YWlho9RLRMxvJDDYQzb+ClusRWQWOPuJzJo5ohClPJQFfLgL4lOHmQvg8O5a8aJyssfQT7lnMijiF4z2YWhC3NtqCIsCQDrbvuJuMapPsgRDht1fxWTlU+HcxJZdosdoo818bXfXu2nLnATqA0NtHOVOyn6MzHjaa9ohSCoE31MDSwN2U5vXjlMk0lw0N5QdmqQ5sJCuwyvDwP5OXtwufbyvbtn6PpaWT5OXtYm7oHZgXqcQYwWw0gSv7Aerrvo6Qdgip1knkGg/4qsNKydzbuKVJXLUwn/hTdK8bMXCB2ch3KXBvS9uDgMbvqeRK8Dirc0f4i4Ipnpi5gbHpRq7zjdFbCEpJhDbIWmoBaplP/Bk+xzcIJW8mZ/IUAL7JfXiC1ZiOjXjkBULWh9DCgXRIsrYG/k+X979bv9CgbazrIiVTw2ybm6DQv5z+fE7lKDmVI/i1QWdnLqGwn5VwPrcdtAPFL7z5OM888WfXJAlYK7loDcqcIZYc4XKkieKrfF/AHiEd6nuU7/S9zXDC4NjkMT5ZsAPX3DwpITzHHJozA9/n+9Z1ZGEwK8Kcdg7gTeSwbWkbX7j+C5xZTPKdof+eUsA42F++i6xJPyg7jN1Smty8KEf3QNGFXMqnx1FS018VYSiewWf8FTiTmpL9DTid08RW54gc/gajRVU4ct7PRG6cifIaWvdtprQxwPRgkKcfi1HruI1mj+T2ecHpam0HIK95gAlhx4fAuzptdq1aIdtAExAILGcqBVgDFngu9jC6sZK6rR/kcl4eanHR3vC1g0P6eurpSeOIVrpxYGJqjQMLOfY2b+pdGHIXd3y0jXeOdWEphSEEDxXH8L0VInP3b4E0cCmLyJkOMm+HaEcHIx//BDK7gszrvgDSYZ/ItT3JXeuM2ZxZTeTcLBlOiUjl/MU3/SXuip1sqICPAkU9s8w3ZPP+zaVs92UROjdmcyxS5SzPRjgkiWF7JJqx2Gy3AZUFCNyhyjQPYqJ3CSPmJddsJ+leprDWxehcny1eUIpt22xOYUdHBxeGhxG1NUgNWimkUmw5fxHzvvu4MDpKdvYsgcCArUIW9vV2jgmS1QAaYVjk1Z8ht+4skbGdCOm0icX23QSA1iajY98EodBKMHP+QySDDZQ15pGRtwshnSgrgVaC1Vkv7Tff8f85/pzs7f4pxel7dh//udLDq+yZqeY7pQKVGndawkBqO5rcgUmr6EI4QN7XAn97hUObU+T+1Bp9pb2chw8H8Ybr6NtUjCUF/aWCv3bk4u26jGvsBJ9+eZUpn63s1NkeVGYtkyFFQ3Efl/WGFLdKktSabrGB+Ygfi/n0awigzanZfmMdR6bHSabWbQuXcOZ6aEgYNEejtI8+wXhOGfcFCqkNTnKm5yfU+q7HMAwikSIudt5KTu4US8EiFrN76O9+hpo7h9J+g0OvdZKMVDHsk3yvq4s514tkX/gXHrntEVravsS5jo+lrRhGfFswV4TNCdMwTA2f9P09o/K/oWt2k1FwntWFzSSmaigriVC96QeAiVYO+k9/lD1bt4H5Nt8p7KFtvt0WICnNltV7CKzkYRmKt90/YjE+kU6a0GgyIsu0T2wnozkfLXUK1GgmmvtIvlXE8rCTgloDjU1pWTAbcESXcMZWyPAWpMGRA2hv3k7k/HGyHPtSEwGI+Sy6/VkMj7Rzs3EOt+wkYiVAuBEOSXlTgKkv/jLh6ptxNVcwa6x7gUqH5O5DIfKyrJ+KX7r6cLXlzgNsufMAZ0eW+MajJziiTe7HZQuwDMGxSDWvnv0N9pad5kDZMdbsYLTWnDv0FzYnTZtI6Uqbz6ZVljUwtvQISiXRymBm1LKzPjO8JFhO3bpOWyymTa4i8zCX72Qp14UruQs94gYNylRkGTUsxEdQ2o6zUloxuzpim0hnBnEKiw873gDhQNbdT/ZUgLnMPByhB3AEayE1o5j31jC69WspM2Unvsk9CCxc8hKGY5DEdYpidzXuWt9/WZcNfsFB25rH1FJ/LgXNQYTUtmUOOsWBUOTmzhAKF+LJW6QikEe0owPjt/70miSBUxcu0ri4A63seKGJQCnHStuI6ybuTL1WMHiOcx0fw2PF+DU/HO7bTt30DSyYYR5pqOer/U+QjJfTHm2iM7OHAarYqCVTxmIqBkkgtMAZdJKlK0nMHMTwXsIKtzHfk48jOI4rv4csfz+XE5v4TtkGTB5EV5lsO/d1ks5ebmj+NfbE6hh6eQxlTjLZPc6m7fUU/+ujPJgwGa6q4/DWWn5wQw6WhCNTU/y4NJvIaxewLMU89jju7sU8Fi4v8k+tBdfw364iqKVqbdPWfMbzA7oHiinPniW3WKUVlKlfjehuE69+iT996wgf2PUtjGWbl6MRHBI3cYB3aNC95Hg3Uay28Lvhr9AjWmnW3cSmqwlrO+b44uUlLEALgYVievosje1NJKTN99CAsTAAz3+BqfMzzN6WIDI5TeDM1/E37yd2/k0ys0ph68NoYUNMlTImnUgoChwCQwqEw8C9ZV2RumF/GRv2l11zf13jqu2Q5N5dB8Dcv3SiUxYitprUvhCzTY8RX9xI2WAOZY15GA6Jy8ohI57Llm0BJl4btP0ADYPi4mK6u7uxUgkDGrvLWTcwSPXQMIXLy1yam0Nrm5MzM1O33m0TYBhVxK0R+0SfOg0LNDlVJ6ms+AymGSGemGNh4e0UgBMpJbJGGpKazS7qHlhTkNqn5ZG+54hMZrL7rjZWw+F/d92tpSj8LG+390Dbf6ye6HmCk6Gz/GawibsnEvyk3OZKKSmpnp+kIjHBjcXPgpQ8Kx+kseUA03cepX5ihDOt7enrPpafR29NN1fyfZjS9kc00VxKTuCYPI5ySnBm0pg5RJWnhyGjmXAkgNMZAw2tsit1gAIDk9Dkd/ghv2L/kNreT287G8K/ZZRN7jZ++Vwvc5vO08JF6nU/fcmt3N5wFkMoqlUXA/3bSczH+LpY5oxzFpfxHF9o+nXG+6ZTofF+FIqAY5naliysuE53pXLKo1yYd/Dd672YxkbQLYi5r3Jm5gybN/4KW7d8N93R8dLEP0z1kdAajeSQuIn94h38Vcfw1ZxASBOtLjD6TiFZvjGEsGkBQljs27/CxkOf5NFsFwO5OSw4l2iZ8XP/SCNFgTyEMJBaUpx9HSFmMWNvp8VdVrIbv9hKQbAVrBfREqThZCh3H9/0OCmP3UBph5sNhRdT/Dk/ja0F3OC5hPCbmBft6YbhkAQObGM+/DrJYROJRGmFyxzm1rMjuEQEA8UJ4eJQwQnqMyvwV5aRe+Q1PIkE5lwPrkaLKeciCoUWoLSip7cDz+Nfs3O1U8Btsreb5//f3yKzKMSFwzkc/NW/o7SxhW1VeXzvV3ZzYnCBaGYGRVGFu9bHH2BxYrCO3bUfodjxMleu/FFa7GQfOpMIoa8xnw0Gz7G0dBJneJkS6pkLLTIxHsNKdJJddoZE3WSatlNZ8Qn8/lvpufR7hGMD6VbeSKU9PxHiZbyZK+SM78G9XMPJ+TCbcg8ztzxHxmIjscU+Cq0ZDjRPUZpp71P2BMiEi4/jExKf4SZ++x8wP5hEm3bMVSz/OFqYqdGpyVLpKSq3ZuHOfBCq99NYcZXa+b+wfqFBW2ljC5t/4xP864t/w/GhbJoCq7RGnGQXxUBptJYkEm4qK7ooCk/Bt58i6vo08qokgc2j1ViTZVyQVzBKTxHZns/jtZ/EEgbHTfhxcIXtviyWlk6iVAIp7Iv+oKiiILYB1Qvu1noOGJPcMvp+nNrAFO9jJSnAALdel+1rrcnIyKDQNYUr8DyNkwm2jCTQI/tYyh+i+vq/ByPJMpIkbWghkVoQyL2Dz+Q9gC9WzInLZ4nLMDr8AmBx7uhxdjsEeTFF/lIfo0UOLGlzs0ytefn8CXZfeBP0TSxZmmMRk+KcefK6v0tl7p2MlO2x1V1a0zAepr80O2XIyFXdNsUxsZ87vEEanznJ/C+P2Jk1kFK/YXuGaahyxRk6+33arXbOFbamOS6X9QYa6CUY7uJHAxZbwpW0+wZZWq4guuK3Pe+UoHzWy7hDoLAwhEU1Y+QWhnkj44OczXeybVFx8+o5gj0DDO/woQ1wWUnOPuelOT5B1NdI3mIPq8e+RuHn/gfxXD+Dr4+igbCCoxGLLe0F1N5Rfc1pas1cd00xCte6astMB/HBICseg6MrJnlArO4ImWvdL0BJk77xI5x5O5d7v7CFe7+w5ZpItYLSj9N37BhyYpKXXngB613dTIBgTg6Fi4sIpxNHUREMDwMwO1NHIDCIFBbCAkttZ+AFQW79EgUtaydY+3ssLp0kHO5G68RV3HaBEDY/TQiDtl134POtE219vq20b996TazVv9c9W0tRuJpA/57dx3+uXh99nXLLywWfQCCQmvT9MJYfYFvXEMWbvsAXFnKJawkJgTj4AdxKsXE1wcUMZ4rYKBn3FVAQ7sdQG9K8NtV5DJUSG3m9c2xofxMpLDbqCS523ppWVNarPn5ff4UrspVW0cVl3YaZpk4oymb6mM1+nJ2b/pCJc0sU9gcoW6zHUxyl29HGbMHrNApFv2ikS26gpeEyhfTyIeVgdfx9zCVbOTQTpji+ln1qm2g/3HgPWRMzRApcqRxfSW3zjXQk3ChDgTAAqMxpYJPXHveudXSZ++jpAAAgAElEQVSmB4OMHD7C1rxVTmRXgRAobXBZtHNP6BjItVG/haf4AovBYgqVrXgU0kHR+CzznQ52ZirudykuVi0gciKENwSJJmvJCjaggUVRgeEpISt0lkTlDNklUYz5KvYaRcjVYqJnfpcebzfFjTewuXkvC54TTDtMiiOt5MVt7pUhJfvjz1O6Ogahk0QO/JjVCS8ZbYX2/rLjbuZGXyaccJDhGMC19DHC7EHwAH2eb/Hxvf8XScOBRHN351FKgZuqN1LsLCN28YcUb9yAdIrUvSOZztpLlaePwlOn06Ct68Rj1Nw+gDA0Ws3x/Bvf54bBGyiemqGtrZZtN+4GID4SIj4YpK3Wx7Yb64l2dBA9Faak4jfouPQ44fEMNIL8xjBIhTQc5OXtSjc0lIrDmkVVjqCwBQqagqwuXGtdEw534/ffSk7BbsKTw6z56a2VxiRY9hbB4kMsnWxA5C0QWZXsLThCtAGik5rWnQfJ9M7DXA+MHOPqjh1agZXAHTtK4ac/TbzjEm55kfmij5AMfw1DWVjaQO/+CO6mdQLwGvBcG/v+V9UvNGgD6Muc5ULtMpWuJNuyLBzZJkpJpqfqiEQKqK8/YyuClCB40SIzP450uWyllEOyaeOnGegJ4Wp5gvqGkzwn7kMJ2zHc1Jpj51+ioSRGTE0ihAOtTYQyyFxsRqba5sud89zoux2nNjAwQAtiSoEBcZG45uc9NHSIqJziAyMGN6xYxBL5DLoFWf4+O+pJQKu+xNPaQmmBUwvum69BDi7yhOtFu2tXCG4rl5JVF0WeSmKlWTDQiS86xr2rlznMNpJKIS2L4DNPEukZxizLRDorCFJEufvveGazh/a5GOMlFkpIXFLSNO8gkqWYzL9WWaq1wRviNg4HLP66VlOgR1g7eqrZYmTxdJpGZYRdOF66RJM/ROfBRpQ0cGDRSpedzqNN2jIXGAjfyBT7KRHzbPRlUeMqoHjMSUD5yFdZLDnepMl4iYL5eQ659/C5A16SApzazaMvtlBdOA4G9MtGLosN+JsmiJ8pxKjagay4nS2dX6cgcoGCfR/CPDoBlqbCBcciFiqzB/ehP4aWe2H7JzgTXOGB8/3pFIQnN9dfGyA/FiJ+ZRG03QHMVLaZm+EJrr+xqVbZymwTpqmY6F1i2x3VRGMXGOj/PtHYPqypJFPPPM1MjhcrULI+hl671loz7/czn59PYTBIW0UFncPDdrctVEjX+ZvYbB3FV1NNzo5ddLzVx+SxTLTpwN8+n8ZQ4WUDLRPv+vaWrbr7/6lrYq3+ne7Z1fFW784rfa/+Y3VL5S08Ov42j1ZkkxRr9J7UmjIM9L6bGc/JJzk/lf4/GkFCCvLMIIbKv0p4ME/WSoL8ziNM+fyUBudxzw2jnYUoIFhk8Ly8h1bRRZ3qw+ebZnx8Y1pRKZJuDtY/ixQWWoAUJlo7MAS8r1lxf/kfsrloM9ONQQyHJL5UhxlqYMvHs/jawCuU6Ga+Kv4IU9jWS1/iy2gkh6sexkRyWSvu7jxKcXCRwuwsWlpaOP3Cc6zqcla2/DLHA1GK5kJ4RvvweV042ytISnsEe5/7ApHh5wjmNaQB2/f/6QV0yVFuLR3mHH+EqR0YWpF/tp2R+RUq9KRNdQFmEhBKJlm9cBN+3UVswoP7+Hnygtn24RvF3XUW878ZQ8plJvi/8V/+KDnjB0DbRPmCvFWyDo7azv5qkfiZQaQQxPKu4JmqYGjiMjlvDvON9jYulpbRmJ3gxMs9qTdNkTBLCKkdyGSY4KEEWi+nKRbB5y00N5HhsjhOC3tT6hCN5mju9SQNh30/KMWEr5AG3Uvo/hz88xvwLNWQc/LrNPnrGK6oxIiuIM1VJgsrMa0otb3dAMxMvUVx6XpHM6COEpoeJyQFua/vogKgqJX5Ry+mpwrZB9xM/c6n0YkE0uViz//8Miej48yP+xh9Z5Wsoh5qmm/E59vK8PA/o1SCNHBKGfXaYikQcS+IWPo+7l0qYfHcR0EnISUE0WmyrkhPL7S0yN3dgxCamBYEOyW+lSNk5moYOAV3/CWc/8FPrS2bc2mwNN6Pv/oK7vv2Eh9po2YwiJlVzdjyCWrMzTR71kfI68AzgRCSpsJPULbsgur96TzTn1f9woO27YHtuAwXDZ4EhljjGCji8Swcrlhawo3QLOV5qL75ASo3fZjoqdNk7txBoa+WseWvU99wEiE0rcIeFyQ1OJRFe+//w7nEOMqwie4nIg7cV9ppCNajUmq+DN8qJXV+Zs9HUtNCiyFTMmtZZLlzMRwy7Xo/0N9B0+ICzbcuY0mF0zpG5lu7ic42oJUEYdFIL19SX+H8/G/iTPgQwIxcsgFb6vkeL66iNb6FYp2HKDyAsekMoWe+zcbv/B1f7NrK0Q1tlE8OUzwzymC+RMeOIWKSvRl5NJitPLTs4pWcPLyxKGjYbZi8sjmXxFUA4hpum5CYWnCm2s3tEtvUUYMIzNh/pj7eZ7Yx6C+iJDTJg89/k7laPw8tnyRr/zAKeyPtUI0cb9+HkhKpNDmHZylc8rDJ6wShKZI+GjiFmFtg9O1CjnxoH0kBSgpMpTmSu5+iV47R11Jrk6iFA9ls8ZGJMSqXDZSAJV89VjjE0g9fQ6gie5yrNYUOiF14EbLfhIE3ATjmv5Ok0jb7S60rR+MjIea+0QnW+ilOaM2mTLsLMG3lcrXhh57eRMZyPTGt8WQ5Gbx8iIHxzyCkycDEd7jUeTPBhkb7Ql2VJHANutKa2aIiChcXiV3uRkqJZVkIrWm60ot6MMqScZng3P/grt/9Mxb6TeYmcpg+cwJv+VnC49uIZlvUNHXA2uaX5vymvJG09e9m6r07b/Rndc9+lpXAe/WfqwebHuTVcB6dIW131El7y6MRPBuKs6fYSAt/1t5IqS2uG3gRMjcx6C+ldm6Sijkobvcz0bdMaXAZieROdQszQ2/z/OZanis9iBI2Yf8j+t/o92ylwLsKIWxFpYBoNI+asl4oFGmqKkpxm9XM5iJbqFVc67O7x6cuUua6yLTHRzjk553kvSRLnamDLlzWbWgkZurwqxRM+gopXp4n3685euYsKr+YU8UWT9Tst33PqkweiL9MSV+IhxeimJveoa7gGAjBT9T7iEx1sTnk5+hbHay4JinxTVMtr/Alvsxl3UbJQAE5gzuI63sRj80Se1BjOnYSDq9g2y0FcFoL5AXGGGlzIzoscqNxkjWKlTstpEiBGq2Ya/0e7kg5BfEaFi2IbqohW1609zgUodKjhMuOoUUSWStYer6SiRkvxUsF3NziYKp+1bbKwabEdlsP4bZqsK+qvXdYScXM6WmWrSWmjCWKVC4L2ocNY2zj2+sqS/iGZaY/15Dsp639NQyhGKs5QuzcR8muaiZ3uJOirChFnjJmzWOMeKcYPjzO2eOHaD1wM+GJDAKbU2oCBdkNIwSNEQBCpUfJ7P0k2ZEytGkbzGpTsXpuBJ1IpNODEr1BluZakQ5NbAGSy/VU3W3vH3l5u5DSZXfa0OtNLw0gqM28mdymNi70Pc3jl+rJcka4ty6BIW2QVlr6EB5PKU5nLuHwZcYnn0ApE4m2E10kaCWY85Xii4ymO2l0PwNm6jURUHcjw557GDs/wxb5LHlXfoDqfZzk7n9g/kgl2lQEZBYBfRMomDtxAf9nN+GuyklP0mzLG0XPzCNkd4bxvfNX8PFnf67A7RcetG0u2swjtz1C/8BXkasn0/ub4Uyy6KxEqUtpn7NI3q9AxU4yK0i3jjOBzQcsVhL2A65e9/L7+iu8NX0fNy++jNs3wIp0I1IQbcGUZA1cYnbwu1zZuJ9L3ihbl+OEp86xO3uIylgjbtnF9Tt/iSuxG0meFtxpbGFaLhNQOZyLJzCaVpBGityJplp/m2HPQQhVQt5QCmQqXi7Kw8Tg+TIn//NMALE6ZHuFpVQ3s0aIUqsANMjsKrRpglLs6L6ESiwxFqjg5JbrKZ8YpGx2nHxXMf7Ah+i1IlzIMjncuK40ekWnrCHfBSAAmwmnQWKxceo41IrUmI2Ud5lM2aVIpuMQzPMhcr34x66QObPIa/lbuVeMAlYq225XOv9QCc14vo/qmRjj1T5a63N5fjnMU6cf4CPTr9JkDdN+8TTOPVsxle1p1H7pNK5BydSlVsx2R8qmBMZLAlQuriK1RV6wn8VvvYn0VZGx97fR0oEGMg1NqXM9zYLuZ9jb8CBOKUCtK0cB4oPBawDbWolUPEvu5HWEyw7baczKoHL0LhqzDTpXLWIrSZZXj9jdU6lBmXh90wTDKdsBNM7lOVzhJcprWulJjRulsiianUU4ncwV+VEL64RwVRO393wDlE4SjV8EWpAZgxhmhPnL9xBbqMPTMkt/385UYLxNE1i4chv5jW8gHeqnMvWCwXPXxIr9RwDZz4q3eq/+c/XZhj282mHzslhTa6bKRPP05Us0j7zKler7UUIiteL+gR9zqqSCI/6NKGkwketn3PMyv7lwhtv6GpmvbKFEF1Cksxn3ZDDhK8RKgaekFnxbfhpdIjGKFR843kN+stemDgQDzIfqubx/GoWRojVoXv7Bk2x1rO+Xxc4eivsfIJhp0RfLpplmkrOryOK1BAOoWSpkYiGOrLc/ZyhN7nw3570nuLLko1lvBCGY9edgYpuYm1ozV+iltMdJfmyI6hFYzIM/M76MiYNnpuBg5zMULS2gndjjXSWpE73UMcDoyBeJpTKS+tyfpvjwDFM7V5EyimVaeHNmaW4/b0dZbYe+sgC1Fy0Sn42CY3276xeNXKaNPWUL6MkahJCszjWD9bwNFpRgKqnIFEmbQ40mu2SFjOV6rsstRk5b5CzEkC6JpS20FgRUIWsZl0hQli1qeG60m3BGvy0iQFLacAPRhro0t6ysKofvne7gUN8M9ZaTwuoQWipsDzSTqYIOJms2sDEe4IbiB5HCQGmLt6d/yEJ8Mu2tGFv00fdCFd6SKGUZC+iNVvrwr6VJtCpIQcU6f9eSgiejilsdTqRlIpxO+oxKLMtCpp6ERRsL02blPt9Wtm75ru3z2NWDQ4/jysokljcAWMwWPEkkchuff/XjmEpzi28Eal9BawvDcFIim/CNzUD1Ns5m3MHfnC3mw75n2JNwMNY0mBKXGVxcuIda+Q2kStrRlMXt6YM3aOIZ+4n3W+RULjK1+HEqV7+Joa8QP/IW2vxYSjS3vp+vevvpP/cGhbPNiMvTiApxDd5c8hn4wgk7v/w90Pbzrc1Fm9ETLhZX1xdffskVEnOzDPRvw+lKEFoqInLiErVVHdcqa8ZO0aoinMFAK9t/PGcwD2vlLR7J7SUvYxtNNNKqu2gUg/TFBc5KwcaQwR/c0UrSkHxXJ/HNvUNNTg6/FpFsdzoo3rGNiaPzXF7pocHZQJHyorQiGltBBYvTYBIlmK0LUFn7Xds+Avvn76aNpJBoIUgoxYsZo2yJJlmRRuoHF7iFyyahOyQZW6tY/oGddbmat5Ppmtv40c3VWFJgbLN46Ll/pTlWxqyM8JLrAseLUw/ttUgmQCqFUtZ622wNLCDYpk9RPnWJD+kz9PaUMdW8am9CKRsKIe22dk39aSLRXMIhPwNlG3jD3M5dOa/aY2VhN8M3Oc9yUm/FxKbGVc+mlI7zfeAvRgZKOVu7DceK5o+7HqG1823+9hua7t3baD19lpaLhxAS9nR18m+tD2Ea4LBM7l3tJmesm9zFHnyREftnXxhg9fjXUNd/giyrkCqXA6U/S1yN4pZXoOXedHD3T3Haan2kfehSJXNdqGV75J0RrMe49DCexotkD24mK9SARrMpw8Dpc7Hq28fAxHdAmWhtEAqVXHVdQZpJbn/4l8iOJRh//Hsks3KQZpLJXTsovusg/qIeNhivMz9XwdxEHd5LSczta2+bwYnvH0NZh6m7axi/BK0cDB//VUJqAK8rTn/fTpyuOGp0P8mZdlamN9N0YC7FZ7NPycHgOc6e+wha27/T5NSTbNv6PXY1fvDnt0Dfq59ZgdAirWN9nC+rTym5Yf1pCgPhJFW08KnnHkcj8a6E+fpDv4RprFtEaGCw4jaWzy6xeegSZcW3gjRAWxSMD1LeUMTZ6iaUtAdPaz6OlpLMeSu446WnWcz34kzk0n5dNRmeRn4S1ygUhmWxufsiwaed63vm8GHeLmzkJ/U7aRGXOKj76Oys4mAnTOf6eah5ExXuvQS73uDu6FEmfYWIWDfnA0+jhaBwNUFL6hDtnw/hyF9XkZdMKiI5A4DiSlSQnNmEWWqDuqRWjHvz8S/Ng4As6bR5sBJEStO+trY8BUOo6uMULWgWsrxUiDZczuH0QRkNZQdmmKl2kXdVfGa/bEx37p+pEHysP0TpnEVitgrPI+UYbeMkivLJyAmBkrZC1ILIVBbVZR6Wq14ka6mFomAd7eFsupKX8ZkZ5OflYAqbUnHRG2PTstMeCRY4OF1YR2lwnpLwMoHcEMHEIMH6aioqbL7tjqI6ap6Nok1FLH8jo1tfsJWZWhIMFqOlRLRuQa6u22EEMitZTExd46144ugplheTeMJ/vW7WpAEh8W98ELfP5u+eemeEv7w8QZeVSeddd/GR2kHaNt/L7PgC+fo40blGVhbqCAX6GB4+muZ/rcxk8MbfduApDFF/1ySWodOiKYVicOIwltrCBgx+P9iGeeZ3iRf2ULqxDd/j/83unBkuhtr+iZ7Fap5evJP7HE9C+AsES0+igCNKUuK7g921ebDpYWaPfAv/+ophfvAEE9s6bXVorYOscxspXb2CW3QihIXGSO/lq75+xrZ/FS1NZhYFhS+Vk+NzEHrI7qZKrckLWjY4fFcQ/f9p/cKDtrMjS5wYXGBLwX7gsP1JAVmGoq54Hh1YpPP8LUSXC/BPX7LHomsb0Ngp+PY9kGlBu+1cLYBAzRm8o+VEPY1MFP53LmHwE0zuXnkC9+wQmdlOLt/wMZKGgZICtAOX2MPtVzYyohwsFA2xdegniL43mQ0GeFlX4PAGMMMzJJJzrAabudh5Czm+GcZiNVzf/Cxpv6/UTdWiuzCUxhQKoRWOpQnM+Wnwl9lO9Rp6yp3salqXKDv/7ZtET53mylwznf4klmFz0ywhOLGplfpTb6NFBQpFRjzFMUh104TW3HLkGeKeTOYb2+nKLUldSxtgnBfbWVzK4MuWmz+cPc6qt4pgeXeKtKDTPAQhFD6frRQrNSCgIhihDAy1fhLfnf8WhYxxWW3E19lMyUI1BYZJedDHkW6L38teIlGbzbGqfXT1vY3QcL4klxuGfsTeggtE2zPIDFi4EoN88LlvcrFpCx4jC3dWgJqVF1ChITAMhGGgLYtFc5bgQg+tvsKUDYiLeO69uA98DrZ/AiAN1I4tR9Ifu6tyyL2vnuWn+5khyJRjicbNbWS8kwClifr6sdp+yIowiTZfxh0pJyNoZ/+JQ8extudyqes2vN4JwuEyNm68m2PHjqW6lILaPQfIa2pj8sxxjMQqWgqilU10S0lw4FvUiWPk5UFu3hRVw6MUnQ+T+HsH8UZNyLeZyNQq/vZZ+8QvQQiLyl0XEMZRpLRQyuBi560QzSNDQjLYQF39B68RICwtnUTrZPpjrW1F2MjpGS6++RrZ+fnsuOcD73XV/gvqlaFRLpTWXtvhvuqEMJ1byLSvgLNVLdxx7C0mCwowDcf6oSpNWBR8K+Bif2SMleNfQxQ28FTDJLEWCxE6zMG+AVyNWeToIN+Vn8LULhxa02KN403MU915GeF0Yvza+zhxthu9wfao0qnH4fzqPD9++x+JxCoYyd7Dcw37sIQDByZf4o+paJ2jWt/EnrY9VFRUMDY2xmxuAZPefIqDswxmH8OpbQ/EiHuR/TdUsTCcRf+xV7nefYIhfzl1C5N48xo4nRWxQUxoCeesA2exiSlsm4zy0KK9fi2LTNWBWLOzwSIr0EtsoR5PQT+V1/81wrC/tlcZDL0qWfYFKLZNKNe2NHxVSSwtMLRGSAfdtKc7f0mt8VScp220F+eVYTLzJ5nfo8Axj7QT1nHMNRAd3EpuvAfnwVdYkCaL2kn56d9hk9rM0lI3c/FBnlSvkZ3TSkO9RA+GwGjiUq6Dr22rJ5niJe4buETHXJiS3gFK33iTu7YfYOvBG4kPBtNjS89iHc0dmxn2XuRkZD+RsB/D4WDj7bchn55DWxopTNp9b5LvWkTd/Nv8ZMLJ7toC7v/kxwGYOZ1NV/CP7HxRYdDU9JX0Ac5dlcM3klG6sKjzDfHA9qdQ0uRS8AzVOaA2apRy8NKVBzjo+zH9g7ah7vatj3H5yCWUZZJdEkUYa6Nm+z6WSFoz/TgNwVbLwAF4gg1khxpwO8ZswKYtojOarQuPszF+PR05jXzCfID75VkCpcdAmOwr1ZSf20bszCDDgYN0dM/woRQw1MBqfvdV6lCLlYIemJC4XcMU3u0hHilDzY4S6bCI5nejhZ3coA2Jvn4r3u/14B/bir6+mLyEF59n5j1O28+7zo4s8ZFHTxBPKpyZCX5vVwlVzqlrDqygyPXN0PTmKP6QnTmaruHDYCUY9hWgU140AEiTDUYGh7P2sdY7V9pJX2gP+5YykEjqPGGcOhNT2S3y6lkTqQw8BUOU7vsbZpMm7NJ4ggVMZ+bboCw7H+dMBNCEQ36WQ34qyydZi4C6msfZKHq4f/IUT5buRAnJW3vfR/5rPyRXK7SQaCRN21rI2VGR/nUyt2whc8sW5h59npE85zXXKhDy0JPRQ1vnS8htzay6POsvpjWtwV5+ff4p/MkVOo5u4vOf/0Msw0j/G0sbTLhruGNjIQsXDpIzOUiodMBeJFrYY09hIVInQABDwE6/xacCLmouhlnyGay6DSZKPDSKXhpFP0U3/BqJjElKRrtQ+nbO5rtICmx+jDR49vbread1H6Z08Jh6P09e/G22+6/Atl9i7uIiekpyuXkblnRwXsM/3f4F6p//Kio0Qtb+/ehYjMFAGXMTIzTn7LYvsiFwf+A34F3q0XeLEQKhRYYTwzhvFLx+ogNTWZw7NcTeyq00DecQy78C0rQXvk4Szb9igzYrQfDZf6PrTCahDa0El/MRQuDxePjUpz7FhQsX6Ojo4MrAIH3DI7xv83W05u2lxzlPNHUT5ucPrT+TNazsEAxcqqVuYBDXEFi+QYz6MiJTWWg1b3cdDBcFvlyWg1YaQOfmzdLQtJGZSxZZPvdPraG8vF0p36RE6q12stCvePuRf7T/wQAMnjvDQ1/+i/eA28+5Jn1+1EIkvQaFAJGcRzkK1oGZlJhC8Py+mxHaRKQseECjtIYU6PCvmpz84v1sn9f8bewwZck9zHkLmcopZCuH2KefQkioUOOcX74LOWJihRd584YbuCmjmMC2Ok5MTjLuzU+pTiUWcL6ljRdyT+I4V8uL7aVYCSN1ULPV6d26jT/JEPiuX+/Mdq4mebZtL5YUSNXEH+ZtY7d7nDODr7C99nY2tz3MyaG/5bjbzVvle7GkwXB5DW+mFO9SpYQLoSUOdp5gItdPyfI8gUiQXJlBbKiDlRwDvTF1ytYGKzNNJJ0hvGWnEGs8ZgBpkZF/irnprfT37aShcZ1Co7TmxIrBkiW5M287LdYlHPJ+TA1OrSlcDeIreAZHNJfIbr1mUmmX1piF/WRF28lavkJSJNPh7asFPXiCtVRnt1HkqWQmNko8vMRofwBPLIHKrudMvgtTiFTOMhyub7dFIBUN3HPhKOPHRvDEXqFux5702FKjEIuavZFxKjjEcN1Hqb7hY1RUVBAvKiX+5vO4h76OW16mNNPgm6+8yOj0eV4uqufL//3DbKvKI7DjQ3iCjT9bJTl2ii9mvMCKyKM4fxinMJFXhbr/L/bePLqN8773/jwzWAiQ2EhwAfd9kURqoyxZljd53+I4drZmberkbdqkt0lutuamTZqmyW3qprdN2mavk7hNHMexY1t2vErWYi2URJESxUXivpMgCIAACWDmee4fA0JS07wn577JSe+bPOfwSAQG4Aww88z3+f2+i+XjZnJr+xDSsDhpppmmt/svEMkNgM7KjDuXUyqETulICk93mkL+kg7vRzlFK+/CujdoNg3npnqYcpCcU4y/HECpXr5g7+fgfW8imhll1J+gRBjomkJJjbC/BiLvI9F1iseMPbzBvh+bsrzgCqOzTCgvUgJSkdCaYO+76M/bzEsrQXbVF7DddhRb73GM5VrCykpGEMqGK9KGvK6Q1YoEofXPpfnXc93/VoO2o8NhUhlJuT5HvXaBEyN+Khtn0C8JH1FKYzkWIrSjmOrP/9WVrdHaa5kQFbyyvJsN1S+jZeXKSto4Z65SllfIMJe/l7VqQIEvPs9XT3g4HbThb1liuCSONgD5JQOI7I0cTRGo0VhYzE50aJieAEqILC9KMpqJ0aDsKJnJTobrxS+NpdWAJdLULDXMZGk1JdMraHoReelS2ouu9BUDOHTiNJ+rLiGjX3lqFMWi+JMKT/Mh2qdHOVRhY7Lw7lyl7YbYKXYGp1g87wV3OZrQrfa/sA5cR/HlDsnmfU8Rk2/BHW2mquujFlAJtyKxEgLSyxUkV6MgFIYSHFvQWVgq4t8cGr54mqgvj9kKB1IZgA1nQRvtdxeS+vbXWVy9idrIEpoqQUmBjsTcaGBo2dWvUBzxb6UzOQxlW6g6/Dkmy99LRtNBs4KXTxY5aau5mlTfJImDB1l2VTIiryG1dob9sz+k1F1Dx1VOnJoLuLSC+kn3NClTWkaaUrFvdArtqUdzvBAFeDwL+Pyz9CzP49duIy/j4RLxVqFnPOieCLF9X0eGL1KsFaNt3IAJaJpGbW0tVVVVjI6OIqVEKYVpmswcn2Kzfw9BEWGfOI1EEQ7X4A/M5PQKCwvVLHQ244vGCC4u4l9ZpbNhA8cvnOPC0zV4K9fYecdHKK6upevkvpy5rpFx0v3COHrKC8QZPxfm9R/edgUfZfu2R67gtL3wlcvyBAFpXlKR/i4B4SVNtqMAACAASURBVFc37qyt4FuRIVJZFKEAYStEU1Z70poMsv9qGkrpbBtO40ukKI5PkHLPMeML0pgZYoP9AstLIXp3vZ/MxNUMRqY53NiO1DROqVaK5RQtsp96NURi7FxOgCCl5MiSInXkNUzTIOQNoMnmLBcN8rY2sLI0xFpBSc5CxPJvM7Erg87xbn7UdA31PS9jj9qpra3lpZkFDM2yJDEFDK44+cPtv8eWTb8HWDmSsaM/YKr2DZiajtI0TJUNIxcaUmSFC7EIxdkfsEj9a7E89NVVVtcKGHm2AW9NLYmFTmsRXNiDueqkTGmX5nJTsDLjwh5bYn6uBYDGpuMoFKaCE0kbo2mdnStVNIdO8mfyLzlPO1v6mzmRmeSx5gaKglF2rZSySU6iZSks1jwtGZ9/FZvcSIk6hZISoXTywi1IBHWeDgSCYhHhOWePxV3zOHAtHcc/WoBevxOVDXSWmmW4KAXM+IspX8xn7MUu/B3VaLsE5140WMgoYua7ubdwjCrXKFU33AxV1qLdWePFeXMjPDzChFHBwEotdb3T7FzoIdNv45XWUrb/6f0AV5rhro9s12mLmeZRl51/sH8ATemwbtKdXTwKIVgYCVBSqYO0BBwp4xyipY/S+J0IfYLJY9uY99oIToVxvzKHvrLGqq740PX/zkO+t/Ah1cYHG8u4/uZ6zmIysumf2BZ+FKV6QUpEJsPrz/8LRa1xIit2ziifRcFROu4lCxwGtB1sVCafTH2BMr2LWbOTO8Ixak88znHNJD6dz3SsCNtaI5+eMjkjB3DYNJ543WZa875EwdoL5Pc2MV1wPa5wKwiYvvF7KAxmTv2Ebdu+/2uz/fitBm276ouoss3zhnAF0uYjlvHRm6impPQiDvsamYyL+bkGEolS2u/ZiXvlZZjIXFHuHFXlROOl9PbcSknpRS44KnlZqyPqOk7b/GsMl2/OAZt8LWq1AdFZWPFSGQuzKTXN1xLfZsafZKDlDB9IFKBlDR81zUZD8mYuEsNUVvC2tpbEyPdYEmelOJsIY/Tcx82BOUTVYRAWeXX62C5cyxPodfWYgC4lQSDjMYAFXKkQU4OR3M13ffxgYIRMqNYKhFcKlMRmGOw9cZAndwmEnma+eoaZvEdxxWDVexcA36p8A3csHWFDZxE9azswrEgBhFK0zk8T1r5LdcDDfPVxWNiKQidZOIhrqRV3rImEdwgNKFRe7kzX0xdI8I/LgnlZQFg18vj2f+aBohEoLcW19AKzs/3MzDRw6OAxWlpauOauT1EyfZHCYZ27zwwy7Q+yxXGMUGiIQ9yAYXF42d24BW55F4wepDwvwh73EAfEbRZ/TYA/o7DX7MFenGHlpceI+BoRjkoc+gNEjUmqnf1UTPwUHnbkVEHnDk5hO3YC2/ZmDKVj0wTl0QWmDGMdj+HxLtDe8UK27djL/KlyKuzxLBkQkJBs6cEbqSFVk2Kt00SGjSsVuNlRW1uLruuW0a7QKDP8oKxswqplwZjPZGamCYDCojEWF6qZm7OWfQtlZQQjEYTdjiorQQ2dJTnnYnUhn3CTQXE1WRNdEEJR33CMoflW1NRuAExD/dx5sz45RSLHAGjeuZuxntO55zXdUpFebqqraRo3vecP6bj5Dn43/s9Gpy+fr5eGeGh0jl6niRICpTS2Dq+h5S2jQmMg4IzYhokNmxJsHklRGZYkXGlWjCWaVD8dHS+haSYDco2PJdcwgyWIYDFSYAEnBfvn7sW55rRinNbFMAp0NOxKkTStm3NZLMI9Zw4TzmvFmyhgqLmBMelmc3geTbYiBdh0jbcWKLZEXuXL9iUK+l5lz6xER8em2wjsvR3MSxyzmsIAABMTE/R0Haf/6ccQK8WEPHOWp5y0IraUAKUEmpK5VqimWaDGNC3w6jCq0b0PUNGUwF/WRP9r1p/J5I8DMhsOfys1ZcM47QkWzymSc/n4QmH23LhKhlsIhd7JQOynfH1oP4k5F+3hPNybm6nu/jhF3vNsWS7n2dUxgoQoTJRysOwQp9mM58CbKWnbh6vsHCiFUjrGch17tAdJdw2TKDqP40wMPaOTsM3g9ZUjEMzpsSsMcJ2+craVmnxo6Bhd5Q0c8JZm+fEKHclWdJ6pKYb0GrZnfkDhzAyDq29EoSOEg6nKD1B2dzNUXXWlv2TVVXTt/Ar7jpxFuhXiBsmOI4eomZql4dQB4P5f7EU2epCo2yTicxCImny4yc2pwfewYD+JLdSdVZ4LYucqcWpdJMZcrPgLqAzMWAsOoQjt2IcSAsPUWXm6muVZJ0frytl5cZrA6hrNC5M8UvzXvMP4FGfjCfRvPE93VLHDIxk2Cqiw6WAKhAaJgI3RcDkVqyWU9V9LvLSbgrlOXNE60ATm8gj3157HttTC16IP8Cfk4ZAKolsxZn5AHoJry96CPqbxkIAPoug3TF5aqaX1XT8ldfo0sWgzfX2K7d5Rwg1PorT1oPsMMyefJ6+hkV9HMsJvNWjTXWPUu8+hL1aStk0BkpV4CbF4ELCqYpoQ3Fkdp+rZd4A0LGLhuoR39CC1agKdTlbiRQyLRp7q2E1Gs+GQN5G/+CIWxNdBKU6XtRNc62VT99WsJGOcjT8O8wY3akF+tnOOaf8YydUStpzeTrI9H7fzzRgRN7u0aY7YB6yWX2Ep4cwAoagHWyLO7pSD6J1eRso2UDJ7HcnF14iODJOci9DCQbzPjDAeqqMsEadQzxrfKInpjFLRHLji8zh04jRPlFTlgIJummwfH6Pq4gs8dvUwwxWCY5E8to8r7uuHZ69OMu5VIHTSmp0jvg42nP4RBdpmFFutiQkoiJ5gk2OJaGE3sToDUfM3gI4SElFvp/j8W1lo+3eUyCCUncqujxKQzdAYh3kb9oRB3dYbifpr6Tr5VsCgwAONBUskkwH6+xWDg4KqgiHqZjJUuJsoi4XxedM0lF3k4/Iv6WMTV5XeQ2f7ey87ARzEXJVWCoYm0JQi6rAqoenJJMJmIxC7iCZNhL0ch7OMDQVPgDItHkVWFTR4Zj97tnyWMtVAH+00Tu7mthu28x0hUNkYK59vNmcfI4TE65/FFd6CUI5slVQRF6eIB84gfp9sJuEcdfOvMTfXwMpKCaOjo1RVVVFVVcVdN17P+d5eWivbKD3mQEoTqUyichmwzERnZppy4G39+yyenydvwwb8D9yPd2sHJ1979Qp7jtHRJ+HyVj8Sf2COyFT2I7OJnztvLvco0jQH23Z8j1v445/jtB37yaO5FARpmrz07X8hWF37cxW331XjfrkxOxxl5Ct9bPfr9N3gwdQUuoRQRPL89mJMUYINg3eobzG/Vs9135sgWXA3KUeCpHcUAfj8c7nzsl/bgClEtlqcBUJKoilJcDbJZLw9x1EFqDGDtJs1nJNRllGsB6eXxSK4klF+tKsEUwfl+SPgn9g0Mk5h4w18ZOstdPry+WZvN+lpk6K1IkTWt9E0TaIZ0/K0JBsn5/UxMTHBww8/jGEYUNGEe3yA4kScu88csipL0UUEgilfEZUrS7zn2qtZXV3F4wjSf+QsY6MD2DOl2KUX3eFj6XoPj8cXqS52U7lokCcDrOkT2YQRga94BKEZVF6jozvqqdh5jFVjGKVsXBz4EPk1D9CqTIqPT6FLGB55iuCeD1IbvIYjgZOovsVcV6VkrYQpzwVWJm9j6fTr0csr8flniS6X4kuXodl13LEWnLFG8IAmNPIs1RXSVJRKfy7xQEMjJAtp2rSZPTdW8bevnWZ/QoKuIZTJZrr4Vt1WMsqOXn8PK/v+lXdqfegYmCjyCy/i2DhO1LuBoWiCB04PklbgEPDVch8nX+uzkveEQGkaZ5rr8UUiNJ3ez9yJH9CX+FzW2kLgSN5DQ/ODlLviRONnONXuQWqWGD4+OsGZST9SbsC7UMJVBTreVADV+gge3VoU+lQCIXSQhnVbylpu6ZqJPxRnfs6JRBAucFGYWiW/NIUdg3t5kcbRIVis5o2hTyBMHS1/B+4bBzErricWCvLUM89hKo2NDXXYWx9FCYPVwCCeZBKdCBPbDmQFB3bec+L9OGNbEGgodK4qvotVYwVN6AihYUOyDZ2LNsWu+iJSsoTFExnsGckW3wCTnX9r8dvAovpIG/rJUhZf6SX4YPuvHLj9VoO2rrkupryDbDY3QuQoeBqx1ASKsJ4imbfMO4wuOseGyc1Ul92sqb2WKv2L7NaepFurYci3g4ywoYSOIRRB00TLch8sXpvGTJmDyebvsmWoiFDcWp02ujezY66R3tRFdkb2IrHhPCToKR6njWrWRPqS0hKN8mUPzvBcVnipMT70LE/LZeyanY/a30Zybpp1GnDVkodbU89y0HM7uNco8M4R8M/TXtGKeyxGShc4a7wkT5/mqZe7MDs71wkbNM6a5K+U4dbeyIp3EpsaoXCsFPsLa7xJmoTyRvnr6kvqrcrMGMl5B2P15Pg0SJMFfz6fWd7MMiNWW0CzyL9CgJIZIjXPI9fNXKXByfJFPlGxlbTmRquFv6ooZ3tNgP7+vwOsz8wCFRKf3xItmKZE73ISPH2S64OTrG3xUnx+HsdMFb17rsZdeTMbqy3PMMupuxvzqj+ldDGKTUkMqWFXsG0pA9LEmDtPXkcH5WqNwtB+4hvupqJGJ/C8g1jmTTjtAzhrr2V2OIrpfBGhmzSLQZrUIO5Kg6qq13PPzXvp/slB1lyurMWAbil+lU7p0lbyog1Udn2McMMTJIvOWi1xYVgt7exPWWiIktJh+s7dTm1tLQC9r3Sx/+sPIaXBgu15rn3rf2Po4ihT4/2kUhFQBVyGugAILC2x7dRpguEwsYI5Zgd78FTcyF0fezvhC0YOIA0dOIqUmpVTCoCNXXvfyHhhCQCtu0I/V5293KNoPZqm4+b3X1FFmx2OkogHs6kKWQK4lD9nvvvLJCr8blhjajCCaSoqwwbv2B9ntESnaiHFeLEDA91SjivBCHXsOPxddnQrYp5hzm5sZ1nlIYQgthxCqXOApE32YxMKQ1jg75MlxYRZpejkUeyTw0z7rgTrk/oSm4wqFtRJ4NKNSQlFd2USQ1cWtw4bS95KVOJ5/ufGd1MUW+Jgzynsmh1NaITzwqhsbrGu69wUKuax6TgZpdAFuMcucCYWyUW2eXyLFG1dIjYZpzReTgtD+H3zVIS38WTkLEO+EWzV19K00sHjf/MMq5EfYsNS//kDbyNRF+AzMYmhF6Nfr/jCSIZbNrZiVG6j91Q/Kv70JasdJL7aJRQGQiiUMpiae57xk1MsmZOUmAACM5PhxNFj9HoEbbc1o4tBlJLouk5VZTN9CyfpDn6F5qUWVmKFxGOW1ZI7Hga/kY3MswQTgqwlkhTobUVcPGnSmOqgwBWjXBZSZgtYynRg05FXsW26GkOATVgK+zT2HCVmobIDbTqf1wW+zXi+JLGzm/kMLJx4ggP2vyGtypHopJXJC9P9+LP+cOtCFT0ZZ6nARWE4zuLIz5DBdS8yWHM+wdP/1MPesmHijRlkIMvfFor81GEMead1jsWCRJbqKKjqAe3SglAISXHwFryqEGNpgHHVi0KhaTaSs/nklybwhJJUTYepVsu4ghmWPA7KNvWT1BRKjbHaNUp+rBmlQPc0E7jaz8XFEH5HFcV51RjBLmyXiQuMomcw4Io4KiP1NJgbUbrVki+wF6IXLREpfAZ3pBVHtA5ZWcAj97SyvSZA7JUJlCHRgFThoAXYst0ST7KRQN+bcS03ooTMZUn/KsdvNWjrFG6+5h2nv/Bx6ufcucc1qVER82GLrdHnK6LJk2SUSmqZokqPXJLwVl1F96a7+fjycbzLs2zqmUGvMq12pDJ50/yLJGo38eNUfbbqJMCM4y68QP6Oi+QfL6U0cTWdwdtBQVOkKUsStgxRN87WAJCnsqKAbJtMaTrpojL0ZBzWEkwFEigUaZnmYmiWPE3PhpDr6M4NlBbAg/oOZly9JDoeAc1kRZ5l7tjHcL5Qz1LlOBM/+hrB+r3o2zoxsDIDB0MOBsod6NLNu053cm/8FK+Nb6fN7EJDUVkywdvVtzkhdtEpj5LQNfZ7W4g6raqVkhJdSlriJTyR10aFGqRJngehY0oTmyZRQpEpyIo/FKA0DoqqnJjAVJLe1TWSp0+zOtIH/ksfhVKC5eVSiyuBRiRwOyueGbTENKkzktUVk4vxfP7hllvIxOz86NQg3y+A4HvfQ6pijcU/SVNXAp9UPRwd/kPapnzU9h8kOX4EGRlmdcnaKX0sQW0ihtP/dhYzn+dMvsbJoI2bkrU4RyLkggWBIZqZ9mzj4tQiC/nVtJZcT0lkiX2xGL09t+D3zbFh8Tqcy1YOqTvaSHqu0wJtOQ6gZQcAFvbSdZPNW/oZHn6R8PQuXv2uFbIO4HRV8HTXAWtrjws8NYgs3y33BkDhUoRgOEy6TrL43wywQTL1PGLhFfL0PwAsQFtffzM//vFpgsEhhBB0dNyN5j7H1rsKfiFH45I5ZgYhdKZ7VnCkz+fA1uxwlCe/fBrTAHv+XjKJl6xge92Gy+Ph2E8ezYHGXyZR4XfDGhXNgey6SFG5mKFqYZVE3QnG7PnAtaAs5vur3ERDIWhFh5j0aPSV5bPm8VKyskw8VszZM7fQUmkjr2cjbyfBVG2M3aER3lp7DfZhweiXv8Si18fs3huZ9geZ9gcpjy5SFo0wNvkU+zvTJIJ7EAia5yYIxSKUrvRxXrUhhB1dwG0lId7b9A2mlr185vAhyiLzFMcX8ZX5WHYt03hzI/WyntraWua8hTBt2U5Lw6Srp4uylQhCE3jzF3G2j/G8djNqI3SMxXBVj9GttZGqOczGcyHOywwvH3iZdvaQTpyFrEq0yFnKNd4SvuvJQ2p2q5qkFKOmgfnTIbx789ng8PPK2RYqS34GmCipE5/cjrt4CDByVhmaEvhUCFfZRXxla6zMFGAkK7F5h5i+MEBIVhJL+jle+RIDKz1sXILff1YwF5Ash5qZqfGigMVSDxNdX8MeaGTKrdgevC0rKrEC4PuMDGVvbsITNyj3OchfM3Nq/+Tp0/gfe5Hfmy1jrH6c2saLfE9/D+vEZl0p7k9vwOdoQ6oMBTV/wkqO92xQG34Om/+dGFiL7p2ecYaEyBr7Kpxz43i9i3h3RgmP5iFXSiAoLhcd421YYqwFWOdAK4WmIBSNWdkECmxIGsQxxNIZq5WdA22wGD5A1PsW1lQvGlaFtaX5z6l5wwxjqa+CpogoSPcoHDGNxzw7adDPZ0GSpeJ0RRsAE6etH1x7qIxMUFr2FjShk1wrZVqdQ0nL4aA4OgMoJpTfEhyYitWeGdaSP8DV/nqUzcOa7yKTnV/Kdn5sLJ98H2/e8WZqh1dIoV+RKe1ebiWiQErruOtK3kb6RL3VRbJpOXD9qxy/vaBt4jhbnvgw37DBMz4Dl6ONoupzFmcjFiTtSZMu8GHOVfCvBTuRQkMXgnfdvpuqyzhtXcFq0tETNMyGqJqd4k1Pf4fZ5kra84/TpPqJxWfAUQtCRyiDJreLu11pbALU3RMUHL4J1shGcShW/cMkAufJW2ohP9qEQJBaL71m25ZGURnrJOO5lQssBMZoS9bRkWzG5smn5f4PM/TUIXpaOxisCbKWXOJm81nseUsIYVgvFRmSgX6kNJlLPc/kJge22ZPcenw7z+2qzvJZyFp+KE6WbuLC0MfYsbuQAS2Jc3WVXlnH98U7yGCjT2vnDnMIn3eAV665EylAKEnZ/Dwv1XYgBdjVX/C5xcfZFJomlhrFZDynblznTM/O1iIX5tHKm1DSmiBOPHaQ0aceQqtMwZ+AslnO72en3RS6p3GuFWHObseWyWeyqIqJApDCAo6TNe1WlIvQSJsm+3v6uT+dJrnDAi4IaFH9NMS/TI3v3eQHZ1g5c0k+ogUacO36MKu6zuqBDGe8Nv5oh5uMgG9NT/O1mhCJ13bjqzvMkFbPF8RnyMQdqPgkGmDf5uafT8CdsW1ML0V4es6Nt6gKb5GGQ50j6T/Pqjf79y5TAHOZ8hPANC9iqL/mlVO3o1wdkNQpcpZSWLKDWTV6mdoZq711GRdOB5xrOoevfh1VVUew6dO57aXKMNz3OCd+9Bpv/PTnqWpu4/77P8ro6CilpQmmpj/C/EK27bn1e6yGG67IQ4UrzTGPPnKE+MyrHLe9xpv+3KqSTQ1GMA2ZJYoXWQcqrAD6l7/zdUzTyHHcfplEhd8Na5TV+7ixcZJnBpYZrChiV+9BFvTXMCpNWi+anG/cm1WR2nAUXM/Fu6/hI1udZHQdXSnu6jlMWTxCNBZkcNiDniyhKX+AvTUPodlMTp3+F+rHHgDDoDgcpnxolG/8weswNB1NSV53+lVOdqbpav8ACGth2R+q4d7uQ9w0Iph0/T3zwUb01XMcNye4pmIPn5iKkqlpQVQ10TI3jiMZQ3GAjDfDte3WYvgnY3OYWX2OFIJpX5DS2BJzeWG87UG+oL8TAzsIeLXORHAvEh2bbnBH6HkKVq5ncCJMYuU58uzLaNkkQJenil77OKtGMVCaBRiK+kgMZTpY/OdHGajpIJlsZvzAR8grPUM0WkpmoZ28lTKcJccYTLmIZ+kzFX4bTddPWM78apFw/2sUNr+E0AyKpI2hY2+jQdmp8KSojjk5VVuB1DRS+UkKfBl8/llikRJmXQalA/sYbqwABNuKbkVgWZz849AsQ6MzPPLgLkI1V1Y6lx9/BVvjHTQkpsibiXPOsw2z3Kp2Cam4YTTOlphlJJf0jTJXlr40xyiNHVNl/Jn38/RprWwUA9zZ9BcM35zgZz/4Plp8GW/BPI13jWPokFZpLj5zEl80QLB90dJPmQKby8j2sK2WujMmaRtZwR0Dw1xlk3+QFv95ZHKNc1qQwJUNAKRMsxr5rgXkBEhl8urARaoL3bBkla+kgv6qrXyp+y6Ww3Y+WjeEXRooU3B+cJxCx4/xF3czVHUVNz77cTyp1zEX8JEsHMK11Exm/50seI6TnCugtaOe8smfUHXCoNfeTN5SK7FAATWNN1v+hHDJziNbnWtoOEvRUzuImSBsGsEH23OZ0sX1mylNOYhM7yOQtwFfZp7U65pITpZcbs/5Kx2/EdAmhCgEfgjUAqPAm5RSkV+wrRc4D/xEKfWBX9lOZO060HVO1Zj8PyWn0TSV9aa6mXi8BNAwPAHMrFbbRDC66qbo9OlcjFVny320HeqmdaYVRT9NDHJH8wtomuJUpYdb/TZeiZvIbAtxA+ewZe+paIolXxeVa9ehlGLVf4HJ7V9AahKkjequj+OONlEmA5aTtJJZIUPuDVjxFbN7cTefWHwLOhoqrIjd28B37y7g1SLrCnmIG1iW/8Je9eqli1YoDG2FqR1/iy4yNG6CyUNl6Kl+FFWXhAjWl4CtupX3btjA0Wcfo3fjBkBwqrzJKsULS721r6mVDjyW1Yemo5RiMlSee4+0EnQVZ6gwXl1PY8mJ2ywRpUZ8pYiyeIS7uw8xp7s4uVbPVX2nUekMjotQ9A92TtyiGM2HvVUJlK0XJfsZP1BJYqmGZEUcFc8qqoCq6RHs2SgXu2mwdfQiwuEAcclbDMCbnKa02cnstw9c8bgt2GxdzEJHSsXJQj0XiZUBBtzwpne9kbGhEBP5axgpR86fSgKGgK5CG++J+ik2fZzQUmSaPQR84wzwN0iVuvTHspPpOrdj/bMRgtw7er3TRNzb0dSdmPmruHBkz411Wb0AaZHShZS0NzbixsNrUgMhiXo2s0XNWnuXnXjj064rqlrrvLlLmYASKdOMXzzAke/EMA2JbtO490NbrwBuIwcOEJ+24y5NUBBape/E45Q3f4qK5gC6TbPI4OkpqwqolLWiz7ZK1zlub/7MF/+viLj6LzGHAdM1Pv5hYwsZ3cZzOxu57ugsn/73AQarX+Ujf3odhs2OrmDHkuRkkYOM3Y4UAiVNZv3FlGWVlaZjGE/7UTx+gWYzWW91p5sk2GyojMFoaYWVjqBZVgc9wQSOqt2gZc16segaM/5izIFBblwqoD/Rz3xemKgrw7NzkxhUWoIJTXA+VIdQlRSHZ+ks7cwd025/QS5hhGw2qlA6DdPXcWxLAtNmy/09U+kWF0loZBQ8FbwTVSw4JSX3nDlMdd4EzgSYrnzOFxnM+iI83bIhu6hU7L7Qgz+mgaxkOR5hbNVaEGeYQrlnEPYlCsp7qFzYQ8Xku4nbzhO3WeR5n38BXVM5qkZh68+sda6mUBh4ag9zY9kwQjNRezNcTKySnHfjc0/T1DFoiZKqdaIDIRjXMKWd4ZUeoplFivOqGNSHWfQ2sncszPDfvUrbu9+Ee+tWUmMxkqfmkJltlJYLSm1jTIkoRfOr6GUSKQR2BTdM23JNgETh4CWKjQLf9B78U9dzV1Utt29ZIRB4CwCBirM88L7bmPi319AyvRjZBBUhFf7GCEXN0XVDAObPBihpj6AuW3ivenRGyu4lVtbMRxa+TPdGl4W9sFOoorn57PIkPu0/PHbwZIwRLcB/77SDMtB0O2Lzp0mOnaXFO8i/9d/PLeYx6l6dx5c3jP2dJ1mxgVBPsuw2MV0nmdh8MGeSu/SzLcxdsGxwjnbs5g3v/gPi/7aPrQvXoQkdirMzttARGBREgoSVxUfWlKR4ZAVpWJ0rZUjCF4+Qrh8hsG0nTl8VTt6Oz9UMD7+OVLqO+YIhlvw+3EutrJ5q/pXz2n5TlbZPAC8ppb4ohPhE9veP/4JtPwcc+AXP/Z+P2mtBd9DlclDjkojsjVITpmXuGisGpbDFI+ANIJVC13XK0mnGf/89qHQa4XDg/avPcFWvQJl9gIan0mNxITQYoI0Zo5g/HZ1hovoIbZyljsH16jUImI8u0LX4AlW+azhT/lOqNRNNCKRmsFJ4nrxoA0WqgLScoKS+haU8hdmfRFPWBNmsNXHVxAZsebr1Oql47Cd9HNrmAZy5q+EVbS9x5WUDZ2kSgygJYXcPmsjkjAwr5oA+EAAAIABJREFU98yy5ekunjVvxMhG0aAUuhC8tTzIYM8LGNJEZF9QHg1bJP5sWUgimS0uQpcSI4c2Ll2NQhls4OylqtBlVSWyBP2Gxi6SST96xCCa1GlfMShZW0bYdJAC24TguYTidjKs7yKYFJUMYjhSOFr2oD/1vEVYRlA1NsPf/v3nOdO8gS2DfWy7aht5n/wE4tRjrHIGpUyEFFRu+APWes5D1qIDACFwtRRYZGplNSy902ls9U4MAXbdiqwq8+UDe9gwtIDdmSCdFWAIwC4E2yMGk/7TLBX24l9q49qTLhaqXkE2pK1Vaq4tCnKmA634DNgFUomcpxaAUhqxcDE1469yfkMNMRTTKsrVmRbCWhyALZ1b0T1RhscfIb96gbrWjRx8zm6ptwTE40Eicx9kU+cCiWiEkz8cYnXB+XNVrYmJCUZHFyEXjiSJL9pzFTPTlFeoSKcHz3Oxaz/u0iSNd41bBpl8j2j0Dsrqt1mZk4MRHE4vL3/7WC4sXkqJkutWORbHbed9lmfXxLlegP+qwO03PoclT5/mlSMnyNxxH1LXyWiCZV8bNnOA0VCVZYeBJcQcLIBtkQw2qZMRAodh0DE4ylBNA6XaMLsbLGWzKQWGBF1olt0RW4l/ppPnzp3DyIQRGAgJSpnMBAt4u7uTwTWBmT1HdSnZcGGIpcwCJFtoS4ZoES0cKz/GPXqIV01FWmQZBUKAsHPnxk/m8kmBXMLIo7NLXBgYJy9Zhn+pBj2Tz9rQRfRNHRhZqxxNgkAiNet3K7Fh3fajiPpkDBDYqppAE0z7g5hZHzmUZM1uJzDSTWL0UeZ8zSih4fQfo/r6R9D0S8FgK9U9rHV9guZYiAtqFokiulxiEemzPpli3XZEWteq5bSS5e5qgoLyNZLz+XiLwmhC5u43a/UpTiyX0bi4wIXqCmKVEcYrVznsrmfnqUlafAPoFTr9316k9voHSXRnwLBoNEIIymWAbjTKohHuPfMa+Z52rg3bSSwaTN9Sxc9eG6Xs/BqNFtsGpTQyFyvJTHeT+ftXqPzyn5MJqEtiImxU2Lax2m2yeHP2NdKatHPGtxLcwZRlzJ2d4q2WqWI14GCvR2d0TSDXq3Aqdzu5wgN6/bH1tmrFxCofKnqEvw+/jVH1RW6qn8pF5n1k+1dRKk1G2nio6wPc5OjhpuL9rKzfB6Qi6rOBmEaJ/KzvXQazeBw5UYSJxjPnHLT5/RSX3olcWkUTlsBDCWWd25iUJ35M3kwVmRI3gb5j5K2MsWiRhlj1DTEhH0ING7nug8+3DUYPkkrXMZ73bia2ftkCjHV2qk5+jNRw9f8vQNu9wA3Z/z8M7Oc/mfCEENuBUuA5oPM/Pv//aVRdBe/6KZ39P+aZ8D7M9clICqLLJdmNFNWFTq67cyejq25qa2tx7XuWhfUg3FSK4ef2oUwT6yw0SSzUY3CWEdXE57W/wFy1Y6uGfzi/Rq1Dcs6/RklwFF1YMWbLIZNjmQUulH8Vl/0CH1BWW09TMFYwydzWo4zlHcTmKeS6Tbdw+FwBD/eepFTEcC0nePfFEcL1bcg8QFmh5WltisKFAIvB6txyZox6RkUjNgw+KT9LoxwkESvGUzKdu+CEJqgvGOTGw88w1LAJV3KFRV8ZYeHnsz0vUpn3MNeIXWhKQ2MdUEhAz6HQ2YATIeXPEeEBa1VzWRQIyrr6L0+9EsIyMw5NleHiFLe9Noxumix73CR3bGOpvZkLef/GqWWTOqlb5H2p05rYyNbVBsQZmJt7mZn0PN5kmn9vvJ33n3mCjaMXEHY7eRvextwXvohKpyk67yDdaOLoV6yMfxdHY+OVO6wUsfImzoxBAMmiobDHFG87EENsD/OGjVV0+vIv42xJbm108uy2fMvkU8GH+9Yo4hSx7V/BoZm01x1g6qSdoqVWaFif7bKnjxJoA/lkXtqNc3eGnnghSklKSi5SvBhmdShIZ89Z5stKySa9IoUiJTLsMVoBSObpTOlHsNUcIAX0D/wPKoO/R/+4PVu602hsuoVQaJVI3jH2/v7eK4QIYAG2f/3XfyVU3k1t7fpXqeEJZtBtGoYhEQjy8i8ZME+c60UpdaWjOTIXLF9W78sCvFqKKi5V0hbHR3np2/9i8R/t9iusQf6LixF+43NY8vgJOvp7sd96DxlAR7ImztPb0MT/esvv53zRJIovbnDx4ad+ygd+sMCBrVfROD7Kw3tvJ6Pb0EUrTRylWQyiCTga3sug3krxYpxkYop97bswdleiSxP/8hl8Tj/jrjrW8m/gWwlQmsqBls7+ec602GjuyKNiepGVeCma0nhg9SauGYF/vpjkmZCdn1bYkTrYNY2OfMU3e7+Zq7Z1zXXh9nTy6Kwg7cnn+K4m3vqzo5SvuUiII7zHV8Ok1sbx4S4aJucxbGlspTdzwu+2qtxKIZSkfqAbfTUJ6OieYkhGKI8uWnF7AjRlIlZepKDnGKYJAaExroEreAYtS5i/BEZMEoE+gpE7KFlcZDnPRUvdnTgWK0j7v2Ndw1IweaQU3aOzwAYQgtLSYXRdIZROavkubHk6qWUT1HdBmSgpCMauwsxbJZUvsW8qRN8ywTf1/46Bjb4Kk0+qzzIvFAe2FXL9+VE2uBOkigZwLbWgAD3QT/1MGbMxH7t6u5mqrsK9qZ4db67hx2MLPKxSNCdb+OjDJxjbW0YkGiIpdO4or6G09AMsP/4KkfbenMhAmmmWYyfwjOgEswkqqQknKuBENVuTlTIFy8MevJVpLHGYQmXvn6Gqm8FfSeDkQ1ascjaCyyIBCTJrIcL9KUo2hSHLnw7NrmEzFJNVLpSA19c+Tn6whdra9wNwuPvvkNIy5LVpBq9reJbERDH2IQ2yAhUhwRs1SNq2INRkLnO0qmAbTwRKcbvq+YwthP3YDOgamm5VjDPA40zwB/oh8rQzoA3zmvdrPLCxErpeB/oQPse3SWT2Eg4MYL1CIWX6krVH7bUspsdIrBvGZ0UOq0UDOOvv/1Ve9r8x0FaqlJoBUErNCCFK/uMGwirnPAS8A7jp/+3NhBDvA94HUF1d/UvvRJd3I993TlGducDJoRUqkhrL8QBxVZprP/q1KaqeexdV7/opVFWRvGoH2GyQTlstnp5eCBXmcMhQ8CxzCY3TzlswnBbZNaMpnvfW8r54H1r+rAV1FGjSRkKr5XDzIevFaZ3kUIo2j2RRtzGfP0J1wXHqBdRI+OwrZ7jP80nqoheYcIS4YW6CQGSAscytHIlD0K4xZ5pUGBU8GDX5JuM4m2poKciwf01HCg1DaXSHd+FbCnNuzcQ54ufq+mXLrFfpTEXqeeX1d2HouTIWAMniNhzjrYxqr1IfKUY4NRIl15DNP7I2UtZySl3ONL30JaGUxkXvp6if/ipeGUa47MRt55HKzJXc14m+pa5ark3vIel5iPDaFMeqi5ELUxivzOGueQPR0ByRsTgC8Exfg3u1EU0Iur2C49fdScdrT1A0fwFfOsmfXft+/igQY+9bbid5/AQqlQKlcAwJHINgzbgG6YGBK08QXWfZ30h4aI3F7BccsyX4Q/MLVHSfRzvroP/2R3jpeAAy1qp8xSaypsIWR3HZobHs7MV2md3HcmEvhYu7rHLD5Tw2oZDXHWdq/4fInKrnmr2KiUe/QcnsKsHlNEKbRZkmwuHgfNZQVEcjJC2uy5yI8uyx/Wzc/DQezyVOXHz1aTzLH8IUEfTVBDJxmlOnP2+1PpVOTeNfXwGKzpw5Y1kvLFuKV02TCOzk522n/cZyul8YR0rFoUeHKKoooKzeR9XGdmx2G4mZAithQRM/Fyy/Pi4Piy9vbiNYXXtFO/TYTx79v0GM8Bufw6aa/DSNDfKl//V5Xuu4BlEWYGnJoKdpE+blPafsdfj3d9+DLk1MTae7eSNSs1qdKI0+1UGjHGJQtfC14PswhYbmlzTPjpPRLQNbqWmEA9tZVhKZzTUmC9jWz/fjbaUg7uAMt/DJ4GcRPYJ4NEj0VDcvaRPsDb2FjmiKu+dNzt9SjqH38KVX/xypJDbNuh0Z0mDNdy8p3xusuVJTjAZXKJ7ah2nM0J5vozrdxcn4P5LQqrnn7B9zNCNQ/kvH3BafpjLZiJ5XCI4QBBYRCUVZdIl7Tx/EGYmzq9pH5Uo70xU+AstDuAMXaNv9DRL21WxlyTq2dTAyM5aie/aHJNNzNDY+yGRXPmPG1bj9hdR7v0lKs6gOIpMmLzyOc8aHPpGPeaeXwuktrM2Xg5ohvlxEov8+gk0mRaeacctm2kImL+e/gifQx8vatTnaCRocUtdxSNyAgY2fbJD8mfwcTaIPUW9VUhEmZQ02Fn+6he/4NzEhwrw5OkObYWdXfRkOm8ZQUS0/9N5P+ZQVsyeQzOoxSqWP1bMzGKeOIj4oUTarmuAczK0kUZrAk5HUnEnR464mvzyJvlhD6Uo7noV8SnblEZkfIbpwnGIjRKO/kpOyiZHar7AlvR9bZQH2YDvxeB9T0z9Cc05T1K4zdHI7m72DtK5NIhH0bi7IVWAFitXFLxI90I+v/o30LzVSrmxWuxRFW2E/8vUXiH/dxep3C/BWJGjMi+CxaexPPUBH0kaycAj3UhPpfDddfh8fJ4YDAA1MA0fhPEtTIzyZgWM+JyGxAKqcAXkNf6j3AZWkbnuCxIlJkhNBUAL3koaofxolDYS60tpjvmYjWnqGbIkPgU7ourt+pVU2+DWCNiHEi0DZf/LUp37Jt/gjYJ9SakL8J1Wby4dS6uvA1wE6Ozt/Kf5fVzTB/acGyKhqbBUf4xPGZ0nub2PZls86gtCQNCdGWRyy4X7pMdzvvgr31q3477uP5UcfBaVIZfdNAK7SJLdsG0NoMKDSl9pewFzJMcKV32d9Zi+Y30bh6B20RBuJlT7ChPsV3hBfYa9I0dXow9QEdWox1+8XwO41H7PPP8mOlRW2o+FvLyTTME7H8N8QT2xlsHMzaj6Ehg4Sbl7p4o0lF8kU38CRIZ20lGgqQ0fhUUqCiwRlhDM9e3l4uod7W1q5TruVfZ7zFmDT9CsmfBONq9Nv5YGfjUC4j4xm44d1JejsxlCXRV5dTsSyvhzr81GWd/ehrie5PTFIomMJhEQTNuze+/nRmRE6kMSWy0jESgnJQtB09GAL4eUlq+0BaMpgq22Weze+gC4MlLQRmbgGNEG3V+OPd7jJsBn7zo184R//J+eCDQyX1hN6cBfumgCpwcHcPkVcDsIeN0XxJIFkiqi3joi/mUBkAF9inLI//zSp2gDJvuPYUj7sGS8eIw8dE5uQmGaafU/9iAMr93ELVoizO5WtgWXbqb60xJ/YRKxuPyIbdO1f2sRq0UCuZbluXo8AoZm4S4aIRJrQvfXc8ak/4+Khwwzm2dGTcepTBttuuY2aYJDR0VEKx3R8Z62V5owWwVQmqVQeHk/24weiwkvcN4J7fABW4wyde5zghrVsm15y7NmHcDvbfg4YWUajt1Ccn8SY2M2ENkhe8Kc4C1tYCzdgGJK+QycZO7NI1cZ23vjpzzPa/zRO7xj5/gCh0H2/lCv45SAO+C8jRvivPoedKI7x3FttdIyb1EU3oy3bqecDTLnPXdZ3yh2MBdKy/ltIaZ1yUmLXNW4supXxExfZ77gVs9ziiElh1UbsCjLZlj+alk0bwfIgzD4uweJIZikRhrJzWLuWazwvYfYuoa+usECCH9dMc67QT5UzTKtrkm+++Ajt0RuY9l5gzjNK0VoRwbUg07iIei/10OyaDel0Ewq7WEucoyGxxFujdgIqjvCexGnsROACZbVom0ZGiBaHmQutEtNPsPMAuGxOTFc+dx8+TP1imLwvfJ3nemLYOwtI1izjqxsA/TgOQEmNpaEWUstNaM4ERjKFLbhEOlOEvnAdU31n0eyVmK4CVt1hMtvjaLqkSsyCgjJzkcyzBXD7CpoWI1o5hz2/l2S8mGRpM6fDedgiOrevllEgrDQDn3s7hzN2XhV7WefQaABKYAgr1cVA0Ke10CTOWaklVpcUpEFh+RjbulfZlgRjRvGj7hd446c/zyMP7uLocJjCsTCDo3FAZP3e/AgNjPnzOMJQ9I8OtPs2IJ/swzGqSDdIwn9iIHXBslLkhxvZbG5h8IU5ri15E5pfR/QIjPghluufROZlmJfjeJ+9j1NiG5mIm/8R381HH3wn2ysCjI7+MwrTEm4gOVdYRkzcyZGZw6SqEuwUR9EuW2coKRkb/BEdB7/HNbd9nw/t/yC31+yjrbAfXQNdk0zscDN7shA1LhiptlFT5ubwqkZntD6nKi1f+wzbtfupEBcQ5n1Wl0JJVk4NokfGeSCvgPfqXXgLz6KEjq4dRDtlkjr1PIuZz6OM0txl5Io2UtX1MZKF53EvteGKXrL28OwpZnTmIQRWBbWs6H0Ut/xqw+Lh1wjalFI3/6LnhBBzQohQdoUaAub/k82uBq4VQvwRUAA4hBArSqlP/Cr278jyChmFdSEoRb++ge2hi7DYkQMcDelxMi8YzMsC6H+W2s1vxb11K77X30v0ySeR6TSBtTUKypL4G5dxBdfIZqyzRx3ggNqLgRWMfLPj2eyxWydlj7OQucKNbMNg98o2emzP88aVBKNVLpRmZavliOlKoZSGWNxEoiKIe3yAAu8CdbvOkdYVQk2yPHcf6f/N3nuHuXHd996fc2YA7GILgO3Y3iuXXRSrOkV1WZJtxXZsK/Z1mlNurnPjkmLFdtxiO/eN4+skjuXo2o5luao3ShTFIlKkWJZccnsv2Ia+wAKYmfP+MViQ8s2Te5+8zhPndc4fXD7YXexgZs6Z3/n+vqXIQdlBRaWEsGeMzm0/YC1oQugbfLDgN5kKuShYfJEO/2AO9fF5FjHC9bQ1/R5m2MVywdBbF/yrFn5fGlwl7RjLYwjTYPfMINPNrxARXoqJ0J5Y5FX3VgZE99X9TlCKzWtp1MJ3MTLjBPTdVIqnsn/GpK6siT3X3M25x7/FLmsH1aqECqsYS5lMu5cpnV3LRvNAQeUavRsuI6XtmwQGsv44jg13cHhugLTMRwmNtBA8854P0l1YRnkF/MPSSWJ6BRvCEZCSUJ6Dky3VWFIiK0qoynQRqrgFJTW0pju47V4v8Q1VPP3ooxiFBhRIvMGNaJkiZjIbqXIOYUkHx4xO8iyRq8/nfVfyVlEw6NG4b3Yz1pu/w0VfHw3xLdSEellTRYhmB8oyQEmbGygspNLRg51oukSuBHj5xCBnxUqWtK8YnBvjXW+7NycWSNVHWbrcB6ai3BOmruwSoWANpaWzgEIpwezMBhAKw+2mqDhASUcoW1jaCEJsNj+HZk1PTwPk+GZCCLRMIbJ4lsotj9nKuC6dqcMfIbnopu/FH2GZdnF1yx/sJVn4DyRXTSJJJ37/ff+quVnd3vULIUb4RV/Dtldu5+8a8igQnWyf0rKEBZ2+zt3rB/mWeSwtC6EszNy8tOian+RBXwn333Azp1MeTr12DFlltw81LA7ox/nw5TVeKW7hyRoHplA4FHzk8hphpyCYjPP4Bt8VnupVwwJmQ6WUJtcAwXR9Bz9sbsGUEmmV0n34MQ4MvgfLEWdjYDfHm39Md6QFTWmkCxvsCMDsccZLK1mr78DrX6Q6/BgDVhNzPTfgUf2o7uMclAdyivHdI31ZgYWkvbCZWt3PnPkqWiaOlowT6fFzft91FKwazDcuENw6RrdYxMNVzQFpYaQ7SMU7KC59nYoNJxDSQvVqjDxdT2IhD1MUkvC1U1t9ETSb5jGk2rkse+iin9Y94yhdZelzBu6aBKlVi5L6S0QiVcRj5QS0MBUZDxaQSnmYSW/BVLrdTrQsNk9GaVuu5cg2hcJCsxSdasAWGq2bg2WRwNX5fPRsUg6QQ6k3b63Bc3GSmcthIpllgo4Ue3feRlvdZpSxQPz5WdA0XLMO6rf9CdRdJvGtTzB/i4nSHbbtkDJZq7iI4DLt192NNqTb95thEgwcx2o0QBNYUjHc7KJZ9CMteHvfYV47W8e2hvtzOcWmmcFUGmPRdj7wznuAe3jp/EEUZ1jPMM4GADER9FIWDVLf/yKft2q4nL4NTRsHZa+b8Tl37jHTvjbONdFJdrmex7TaMKwNuLQLOMUAb9crEWYV+fJlTLykjO046vfhaLBJxQnuwWl+nUL9xdwOJGV0oIyrCMfZf12RZvRIC1LaaErO2iM0iZAWSBCWwCX/5Y3av3b8e7VHnwTeD3w++/WJn/0BpdR71v8vhHgI2P7zWuwgq1ASkFEGOiad5iXikxLciqLiJTzeBRbCFSz5yqhYXsHMGIweeoLebPbo8g0bOLtwloGdSe7pCf9MXim0qFHed+KbrO7soUM8R4cYypEwh2nnc54PYXg0HMrJnf0LhAt9nIvHaQpnbG6dEAilMzKyDc2xlpvkCEXGXUSRfzLHHbIsk4Gl01yY7eAvC6rQlcZC8xtEsgpJ00oTmvlbzq3m84fLq6jKLL1dSSIxP79+8wNsrtjMyWOPM19StX7Sryz42cUw7IBU0BZSXGpp5Y/2/TFp6cChMjw6/N+5IdDHZ2vfz0BT5xWkDjuD8MPnM3RF3sZZxzQWayjrOcCeeBNzGWJFg9R3KDKB7xCLbCMeqWYidoEwo9xqWHTPBYnus/DeEgShcu1UhMLTeIzB+D/xQuooSn0c0NGUIhNZ5J8qKjETGqhKnooZPLKpgnqnk1CXTtmGIPF5N8N0cqJ+O83BPGqDJqYyCcxnyBRO5Aw9wSLjCuNSHsZ67qKurIFY1U4uPJFhS9kIJYXjrC11IOXGKw+wLEIqEdSGt1BafROr6QwQIy/cYu/YfJdxBDvQhSBZMog72Emto5WlvIuceLWJeJGFVXQF8Uy7rhRYqckoqbEI3ntaiK6eJyG+ToNKY1mCmekuTMtJJGzHDkkUeiJGYUci19FWFgSHvKSCxdT19Oa4bKZpIoSguRlqal5GqQxKCVusI23uZkHFEOVlHYy8YbcxXSVR5oNfhyzB2jJttWnv1n9d/t7Pom+/gOPffQ3bXLGZP7rmjziojmHNmGDBeFWKc80l6wfA+s0olcW7n/4eS+XVvLDrxuwNIChOrXF9ppDTkVV+mK8juyUbxr9DvMzDrxS9QVfFMLL0KX7/1B+yc7aaI3kB9qSruDHk5qxX8qWGPKwcRWK9QLSQmCyETrBcYHJX8f0YYpbJ1nZMeRWKp28k7ruM/ZSU7Lb2EFfLAFSHl9CtTkxhH3t1ZBklJPvqGxhWbj4nP0kGHSkUm9VpzOwxKKVYc7iyhyLRR/0EMwmQ0k4NkYpvNF1iefU81ek4/dvegSk6eIL7+bh6mDY1lD11koKGfMp7/gopM1d1TQwK/XESCy4yHrtYjUSqsJTGqNXC5+TD9kZdGnzc93BO9KVMMNY0uq47i9CyLgXnb8ZcqWJgzWDZEIQMi4bpGY53VWKioSuTzXOvU7/Uzd3a68x4S6iOBMnz3MMKGUrqRuz5qARzxytJLhWi6dkMUstE03VqyztZ+vs+XKaDlqLNNKleDgW+x+L0eYrf93agDse3HuHUj5/ksiVoj2W46cC7yTRZLE49nEWlsvcw9iZ7tf4JVgOdFETb7Q+2GGIdbrWVvHZb2RKKuEew2fEqExML+HzXsn3rd7g4/ioDwVY+8859bMvamGxreAeRSAuTx79E/6UhyjaGEALyt8V5+plmer/+Mt7YGpudTnzf+DOS5SGMWCUXg9+hoCpKUfUqZWYIPW3ZgpB1pSyQtjo5YLYTNw+QWC/ABAhhOxwIIUEJwsZv4dBncWnDYBm4HIP2e5kWYOEQYzhEH4gUnzG3MaLq+cKOZpq3VuFqKMbdV4LIc+Rap+7gv8369e9VtH0eeFwI8UFgCngHgBBiO/CbSqn/8m99ANs9BfxoawdPDZzEM3kQ/UQtsdl5fF0jdG08nc2I1Jid7aL0uRVMCSt9rxD6Wzfz//PbeDMGm7xNaDdoaOLSW7qBoZCfqcmNFM2luGtxhqR/Avu6C1ZXSziSuo1Mmc39ylgW5woUcZHmQ1UVfCOwyPa+CH2eHgLBG5lfXec9ZfkFWKw4l/DMF1JlLYNQSBPuPPgGZV3XoOmSlHeUaM0RwN759dPDKZkkVOjlSbebP1gaJ6ivYrCNxtYbOGeVUxxZJdjaw4XC5JUPcpXy02GYjCS/y5/dPsn1FwQXNnWRlg4soZFW8L88tzKSnKDl4mWc9RYZZE5uLrELFyc6OzJNWApOHv4g6cKfEJvPI7b0PP03zvGepjiaX2GY44w8XU8ylc+FthQlN96Kc3iasptPg1CMiHb6VQ/d9NMuhkBYLATepH1ymN3nv0Sg7haqUmu2UizbekDY9gCv5wk2feOj5IX/FL+wGLI6eFw8hCkdHLPgvYci1C+l8YZHKGi8MZfxKTWNzdd207utI0uov5c3J0M0Ff0TD239ataN3MGHSv+BvnAeGaVwAHcGjNw5KBgKU9jmswPghSAv3GJbvZQMoIe6KB2/C1AECDIaXSTlqsCR8YGycxFRCufaKsbZc5yaiOBf7rQXSl0SOPAGVtrm1EipqK27TN/5A8Ri5bRWVeEeuMh4cpX4vBuVzXWUQqek+AAl19m2LOtcNvvyK9KZCygytkJMAUIDFELo7Nh/N3l6OeNnnsU0DIpqkohsu1dlH5iJpfZ/q+n7izD+3dewc4vn+OKpL5KyUox2j7J5toOR2s1Ystqeu5ZibyRMVyZM8shz+BdnwIjhNPZhaDqagrcvlxCoh/eeHSZjWeDcibfwFd6eGKKzaM1eeoTBK56zPOfKwx+OMp6c4GR9IT/tuBFLaFfWp+x6UZJaptk1hF75ILs7CtH9AQYnPYQLdISyW1NSWZTGsve1AJRFXZWfwUQQ0zCpika46fwyQ9WF1EeGqIqEMIViTitiUvrJKDt5xlSKN8UO5FXv2zzrpCDeiJ62KQ2WKMTYvIfz0SeYL01i5heyabmesHcjhtDseECluMSfHtp3AAAgAElEQVQGfMuJXOZ0c/MSUppXTnj2I2bWZHbTa79s0whuYbCiGqPGkeUOKy7LHtqsYeLz1cyfclDoX82pLaUwKacfl7eN0eU0hrmIZcxQm8rjfcf/nthen6303zlCeuAOKpd8VMRWUApOzBXy7vIkRsM6iqdorC2jc9O7qevpRS1mCB65hNNaIW8yScJct4myoxkr8uqpvXZb7mOdiGV4Y/gsmjJ5Y/QM8Akq5DF7c3w15zZ3iRWXHD+kzfNr0P8I4V8N2AscGt6JWwk3vISSdjSVw5KMuF/CGnsup7bcs/m/sQc7/m5i4jF86SI8Cwt48kvZePI5qCpmUehZSrXC7V9j2eXCG0mgMhm0M1Eaf8MWKNz5RzC5+AkQBtOmRmahEN+8H3PlL7DLm/XrpyOzHBSFwhIWQpl2kamyZsZoDPr+nKGGKLu0S/iczTgOPQnpPNLOm8ioVgzViM/xJ1ShmFSrhKOv4ZJvg2koPfNN6p3/ldWSEQrCnZR2TcL0G2/JKv95jH+Xok0ptcI/Q8xVSp0G/rfFTin1j8A//ryPY7ungCFa+bNza2xnit7SM9R4R9+SEZns1hkz3kXrmZNUnRglcPIRUBAvbqZ/w++hFk5hNQ/kYn+UkkxNbiQWKaUgMUBjSqdg63e5NPNTLg1LVo7WU5WXh3adiYlCmiblKxdxFzRRE2nlDXGWzbGz7Itd4Jup7eDMkhizC6IeWqFqySTeUIdgnGz6C5qyUIkXUd5eVn2XQViMiHY+x8Ok0aHYFhUcshSib4SPO6NMOrr4b1s1MitB/joU4p3VpSj9Kv+yHB/NombyUc76jtCegOsvKqqjl3lhm5klJEuerbiN19WbbF4d4kMnp/jBtkYW8+zdrykVp0s0eiMmEoESJtqqYG62jkxxKVQors3EkSKWm6hF/lXSSxWEN24ilj9Ob9UMGakYFu18locxhM4TGHzc+hSt1ihVNPMn3zvHGx0p5lwzICTughBnaMtx7jQMrtcMkqIPpI0mDYhuTKGjhG1bEMyf422XH6f+tz+Ju66O97///UxMTFCdV055vADXVZDqibEVWr1DaMKwPf6UwSZvH3+nXccr03PcVFfNzrZyVk8GSHpGSJQMUOLbjZQlKAVr3lFmtn/BXuAsndpTHyUWq+A553nMKgWqH+9KD76VbirbVygkTubYDCdjETq9+YjSSka0BZIqRfriIC1tV24VKRQtDXM413aRfv275JcsUGh4iAfcjD1VR2degMKSnRy9fBnTuMCl116m6oDdziwqWsLjDZBJu65C2Bx0tP8ZmUwYn+/anMnuTR/4BInwGKWtOlPLf4JlplFKsNz3bjbctzeXI5pfVEQyFvu/anf+R8ge/UVYw04vnCact4s193Z0OUE4WkBeJp1TR+qWya98869wrS4zVOEFIfAvzvDOp/8HFzdv4TdPGXT1HeXLmZvI7L4xS4sQoF9HxRsp1P5hLCyGVDuf63gIU2pIy+LuvmOE/PkomRUr/YxaXJqznFM7MDM6by7Cr5WV8ZTHgSklwrLoWpikbWGK7mQfUTow0dB0nd37drB73w5ev/g6Z9IGh4rKMVBMl/fA2ggL+Ue4xXML230beXwWrlQRdiGxce4caq2fxsB+NMuLQGBhYgqTl93HmK2vRoiN7JopwB8NEWDFPlfSzlnNv1jDQPAm1pGYsbElNm664uC/LkrQ3HYh4IyuYHhLAUk8XMqO04O88NB+MpqOLk26zX6wJOljLSTCQfs+MJcBZbsUhCqoaPXgy5tgZfppvKXLxOeL6PKU4ReHcntmZ+ezFKUOEI2WIRD8ysmn0So1MluyRYmlU+m4n6att5HsXyb+2jJe5QernOkffAdv+/1o2ZgsBZS4ohCc4Psf+31qnQWcSzrQlIm0jRs5duQkd3UtwtVm/uugRLYVuzQHsztK2bZtM2hj2Cp+heVYu4LOCcnq1juxooe4OuLO49nK7Oz3GBx6OGu5ZOEPpKheTOPBolQlWaLQNlc3BeaaxLMzSrofXLMO3DuuyR2W4TgLwlavWlIw589jtjJG3ekpCiNtVw48562UfcUaZCGVh0vm43Neoa0enhf8VcBFb6SUzx37IiKTxtl2K65O26tToVizNlEk4jymfxp93IJHH4HN78LFReqSj5CYugnFCJx+Bc6PwUPP/FwLt1/eRATgzckQX/9hP3utBHVFi6SLqlkxNKqtKeycOUk4UkVBcRVFuz5C4uiXsUKjICDobcOSGpmlXi70HaCiYgQELC40szrvZEmexdE2SnX5bZxLSfqtejxdHsIX52ieruc9r0wxUWqwbaCfNT2BR/tdpKWRdO7m2d4F8kpmmQmlENNX0coUuKIraJagpjRhrybS9gZa2VrHeKaFN7Yu0L22Acv6CZdED4bQWQ+st8nIkOlo4PGpMZYqdDLS9jZKK4W5uIBD6KSv3kZmF0VplWPGutkyMoXTDLFhbITbXj/M0/tuRgkbS0vnd3O+WfBaZZPNm8F+HwvwpEx7cRU2YriYGCdZ3866QnUtCVgLKEyUJYksdPHlD/4WhqbzJgafUA/TxjyXVM9VpFzJCO/jQK2f4vEBLvnKWKlvAiEJeEpIVSV5n/omE6IJoeD+lYPc4LidiJXJSdG7zX4cwsCQOrplck96hN6vfhJ3tg1eYXlYuqS4PH2KsOWjSvPlzBJ3Npfy5BvtGOoFsExMpTE6WcTQP/wpfsNgSNfZ+BsPs1Y6ytRmuzhbEU/SdfdfYz6VR8R/FCWzCRXSIFp9jMDw9Vg59MHEmTfPrq3b2fKed3Dpi5/n+ZJCFDClApx2WljZhajWsXblcmU7A4WeC4wu5dP0tlGkMGkxo6Qe9eI7buBLwOwtzreoND2YeLwr9PS8lEWarzaRg8LCDjyerW+xOLFNdg9Q1eyhPNLI6OBjrEZSXHv7TVjGHD/49B/nQuIRAt3h+BctPP6D2H38QoxFx3ZiJTZiMlfTy5zfQkexZ7iPtO7grpdfpGd0iFBhPrLcw3RlHTPVTaTkm1xz8lu0vmZl/WtveMv7Fq3lE8zfxoULjXg8C7yadyumX8u1NVcq8rip6EleZxOG0hEoLCXsAh+T3rxFDouNNoKFxdGEhemyN3cIKFxL4o+u4EoH2Rd4nrPb3s9Yw04uxZ0c6Kqkrq6OwOQC5tg8CoEpIJjXRHN4jHqrnsfGj6CcD2Kr9Oz7SgkoSAdoW85nsOZFDCWJOKPkGQXMFY8wUdnIaslDKATPlNiFpz8S5O7zx5jzluGPLOMMxXDHm8jkBck4w4BdDK6LvLEEWJLErBuBREuu4p4aobq+hYZXD1O2tMyXwrYnZJMRoKC1k8mlt1EgmthTH2A0HGPyUIS8qiEWM3lEtQpWJqcoKlqi98AQUpgoc5nl8z5U1rHWBkwtij3zxKLllAQkFUuLTOfvZ+7VBymtGqEz3kVBtJGlgfPZZdtu+SmpEfG38tYcBfDn38ahpx9jZW2WGaBxOcJoeQkWYAqNTEUT1XXlBEPnsmkHAAIhHHgLb2ZuSjLZnuCNyUFeHy3iA9famcpC6dnrYfO6FEBhJTJuR9whdF4eq2FD6jCrcw/bQgrsfcKc30Wg0kX7SJyh1kLWLWQcYxp1ewNkpGTlVo0ez0dza3Nk6DvMzX2fK1AgOXuWpG/AThTKijRsN3eJjbxZSNFGZZ6GUhaWMpFIDAHPk8FS0BkYRqUzCKUwloZwdRh2YSoUp6t6+PWVh+3YLQAjZR+D5gRTkjBvRqGTNG+mjD/Gdf6f/rNo+3mNZ469zgNxB2l3nATr5qMVTPR1UtIQYmmpnli0nCFtnla9Cl95O5noKCN7MpwVI3iliZYpID17DcPRMtaNUMc8g5yrm0BTGjE9xgvP/xqmMlEoqrxN3D3bQX2wmMYVk55Lpzm1uxl9VSPjWCXsu8wbsxbmnI5Py8dvVrFGmnyc5EVjjCRXAZ3kymaUdR4wUUpjSr2Tpkgzq33jLN68wsrU9bS4VtBLFen1p3h2HKl0cqSyA00pJBlQEh2TWy5+n3fd/C4eV1WcOPsGI2UNNlHfsrimfw7P9v3cW/IqgtOA4rZTh3lp9z7Smo5SFv5YPjNl77fNK68eShFxaVn1pEIiSOU5udouJBarYODYAepKXbiDHQxU+chodgvEUIpLooc2NcSWSJKfeO1J6pSS+wrbKT5yikWng8PXX48pJVG/4Jm2XZhCQ88WfO3WIC1HLRJ3+vF072Prj77L+JKLsjOjfIXPcK69i81Dl2keHya1oSPnPH7xG6/xrHYGS7OQmuSO9FaKXnka1y2tbGvYwfb26/jyaUVHyTBDoTbudsRwlUQpqIqzGihkZmkAfdcUKpWxF2Arw2LBm1SWNP/vN6QQVJlepC4wLdv/Lp3yc/J4Av+uCGcMxVpZNXoyRlBPZYs7+/zl7DmEbfSJTVmipHzqisEnivLyKEVnNNB1mm+7g/7vP4qrJEpRTZLWTcX4rRqWV2zUWF4V7qyUeWWXfFUs1c+a7EYSz2BpaSYXD+KKPoRpGFc2AEr9Hy08/jN79P9+9K0VgbBNlVEKNA3LNClZ03jvC08xJ9b47m33smV8hPo77uYrtd0YUiLUjTid32Hx8hkql4Pc9uYJXth7ExllO8DfMrcAQhKLVRCLVVBatIZWaWcq60qxKzNNm7zMJ3iYfrUB31yKxYUmRguKwR+msXCMYxgYys6/rBobZritB1NTaJZFTWQZhWBR7iSlVvly+x5MCT+dneFLsafZ4q3BHShCWvlZs1zBpbbNtJ6PM3xwmMkuD5TJKzsUy0Iqk8aZXvLVWfLRMYXFUPkpgq4VMs5W4iXvx2aI20XgnKeMqvAyVdEgldGg3T6UkCieIH+1mryyEZpbTiHllRahM9LA9PEyEgurCK0CTW+maXmGG2/vZeHJZ7CEoGd8mK7xYSbrb2XCuAOfrrOzWEMTTdSUwWx6itFT40RbKnKpMx7vQm6OgqJMKsaGr6W57WRWhKYRiVShUHg9pTgq2/FGRphYuh13vA13vo4QtrG6ALvVl+Uzel2VCCFzr0khWfUM4/eHSY4nSQTyibscuMxCjpR1seCu4UvXFRFSJxExDaVMEBo11Q/i999HPD5IMPFJbigx2aeOMPJUPZlXDuBvyKMg1IVSFtHqIygMpObk8nIVc+E9+NxOvn2+i8Ggxl3NP+HeFjN329o1ocASMFJShyXCuZZ7cXmSoHSAUCihSJbbCR4Dpw7iuPAxVIMzy2Uki7iCVDruUCcmsNiaZNPUZ0gZnUAcJTyYVimrxq22sS4QSs3jYYBD7jT91h560Kiu3Ym2PIZaHkZFxihK/TkU9/BZaztlCxe5WbuyNiIlbHo3VG0m9docatEBNm5JyurF9c+pdP4/jF/aou3c4jnGJw+xVd2KM+0lkd2hFBUt0NR7GSEVxZ5FEgkf8Wg5ARmiujaF/8N/xloNfOrMF/FG/yc10TY29mznzOvd7Mus4kwXs83czbzvaywUTfDMwsm3/N1A0ThP9XyNjdMteMPDfO3OCTY5UuRN3EnaGWLdgV4qSSxjEdXmkAjuSG+lPL+DaJGTMF6iqwUMnXw3Hs8iqYVNJFeacZeOUbv3y5iZDGXVUI7gvZabJ433seRy5o7BzhWVoExuUIcoE0t0W5dpc0zTulCD3nEz5xd+jCj9r1eRUAWb5oPw/Lks+KK40XeWHxZP8exyhv7pJEdbb88WbFl0JvuwdliwbSVzFXcAaiwfEZUhS4agqGiRKmeGzvhm3MlWFvKS/FRZmNjxX12qH5TgwOgbPKa2UbN7Dx9wJSj70AdYSqcZ6OnB6ummqGiJldYCTKHllMGX6GHT66MkDjqYeu0vqf/WI3ge+CkNX/kogfF5ehiiZ3yISHEzE/W3knrpLL4HHyQ1FmFehbCwUNkd71FfksPmENf9+Btsv/8L9FRXcWLAPkdKQXmbg/LeCTvKxlqm1K8zG6zDstaLVsnYm0681FA8t4dIzVEQJiiN4tld5BsF7B+b5mJBKfGCHTgMH87SES70H2QhL0q6ooa0svCtxMggcvXQarwSI/O7lLjOEDePYEm7Vb+8VI/Hs4gQFtJY918CkS2su/d3Iap/iJAW0yt/Snvbn7ASdGKZaTuRQdhr0tWea1fHUmmapKbd3suHQievir3KUFidQNP1HNImhPg/Wnj8oth9/EcYd5Z7eDUUu1IUmxYOJHevNRPa92E+co2bjCZxCMG+ZMQWAUg7WSRVvINXbyqmem2EXdds5ccXPsKrspemF8apiIR55YYb7LgqoDq8zO89d4Rk+y62hSxGi/08oR6gS13kbvUEg9PXEwlNc/nWX8HQNAbZy3usR4jjwTHipngRipMxtJhBw9I4iXIfCIkl4fSGzZgSlLT9DY/FBvBFvkD0wq10VN1Cf1VD9qFsZ5BWRFeojiyzXLqeXKLwWgtcM7NCVcwkUWjluFsPym0cTT3NRUcv6wUbys4bbRi/TP7MECYQq2/BJVw5bp3uP0vvxpfewmdTwMpChvmZVQA0RzdOZzfVy8cxwxHqv/UIo4ee4Hujz1AQd7JQOUFXTFCmXwGrlGFSPvQmwcQIornKTgIRgki4MrvhslCWhmO0kuKSDfQlvHi8ASLhSmLRMiQCh9NBbM8HOBP5JhVjX2Wt5BrONzTiVyWUK++V8iBbafpcflvlmbViSniGmN2ejS7sFow8XY9fhtl4r5vCyk1sqPGQmP9t4lYWPcq+YV6ezXsdHLIRJlshaVCzbYFQXwldY7+BJiRYJtWjt5K3u5izsRryk1+lvdDAVDqNppsb5Xkmg17MZgcCW+CkFGjCLk6DyUoKVRRpWUgF5Uspwh4HllAYSnBqrpG/P3uB0jM/4CFvClnnxMr+7tTRSmq91dQlD1AQbcNAsTg8hMPVj0u/YF+Fzjt5M9SCbwJ0ZZuElzirQJWTkE/zaw0HeUewh0LaYPcfkOeforBTw+2e55Upk97Lz1JGBAMNgYWUEu74sn2Snv8YVvLB9asNSCyKYNO7fq7z/pe2aDu9cJqZokE2yZuZL/Zwrn4nplrmemPcJotKEJaF1xMgESnHd+ZZIlP9mELS/l8+yDdu+0dOL5ymWTWzOGlQYcZwr9bbOZCYVEdaWSiauELQvWqURMa5a/YirzdJBmvzGWCByvy/YUfoWnRlIyJiXbQjwFKKES1AheWhqqCXZWuFSIlt87C0UkFM9zPXlUdv/jIN0sg5dgyLNr6tvY+MlvVRy+6k7cApiVQWe6zXaBeDCAuKZtbgwD5OD/6Ekbp6uwCTEgtFoL0Ww3gRo97AMW5HLPWVvJ0bqhtJPv+nvFn73qviYWwYGSyaw7O0Tz5PeN7AKniX/YEw6Gl/iuLyBFNzTSRjRXRvPI2Uijl1jII3f5uJZIg7z3mI1gp25h2lJzaMPuTAXAvwXufTPPxsFe/XTjHsyac0pigPBJA93Xi8AbpFgid4AENl816ty7hPanaKRSZj58b+xq+Tvv0AMeubuIYEyZUWzm76PSypMalJqsYi+Jo9+PEhsaNOFotL+camFkzRwv9Qt/PjCy+RzOvlD7f/DZowsJokfcYDnNDvs0nEcgS9aIH02vVcOH0rHs88sYifvcttrBoGRVob9ac/RqJkgPyVDpzDKRIDX8ETGmNDcRNnN92Is3yYuuv/CqEZ9PZKLvTtJxotJ+ZtQRC07xXgptZd7L1jPwDnvvtpziTOEIpUEYuWkQ4ofIUzNB0PA2liB0ySGZOZi59HL8xQWm0/AC0rw/LyJIuLv8pq/AzhcCVCCLZuLWDLlgdznmtVzR72/5ZkfuY4/tq9OZTNlvTrKJVBCI2Gtrt5x5++k/7Dr7AaDlHg9dFz/U055Oyf4679oth9/EcY760p47VLJ7i4XE5l0KDWTHPbqoNNEXikyZkzxc1YFnOhELKqCGWZSGVH0IHkoN/g7+Lf5j4Z577XR1ld7CHk3cqONwaZavdwsWyNkD7J26P72Tqe4aJX48sdu8jIXejK5B0jzxAVYyz37s4acmtkLJhbrGfj3AyxWL6NIMdWqJ1K0jxyhiM33ohCIJXF9ovnOLSxF1NY6BgUiShPy3uobV5gc6CPwYo6TCFyClJLWKSsc3gXp1gr2MtawT4iejWvNvohtETE46I6vESHHGZLg47/RC/5qwbP+K9sIvcMnyC5MZ+hco1xNYRXaWwMd+a+7/EErqDTWfQGpeOruI+GjUFKhIv0a9MEioZ4Zs9mDmy9hr1btlBakEf5p85jGRmaZqA18FWcnm30bb+Bs2UOti5bVMbGGCzLJ39qENNdRHNgmUyth9Hor+P1zrO20ELnmWcoaC1nVa8gFi0DpfCmBNE8GNRmGdbmUQ0djOa9js9tYsoJNDVBa2wTu52ltigjawmyLhxImCuYXWXIpiXUelsPRVf7DOpug6Aep1l+HI+6n7iV5krL0TbJzl/yMXbmL1DeKzF/QkBxzSpF/jc58dI32F5wB+W7u6jb/zcAHP7hhyj2ZkCCtEx+v/QFCoIhxleL6Z9sYE6r4MT8DiwF91acpqvuOEW1g3bE4oCXrbFFatIpihImKx4nz69cw1ciCtOaYovo5LejsLEvRsjr4ofLt3Cv6zBB3URgYNlbbV5ReexXEqew7E7Y8IukNx7g0Inv091YQ74/mkUITbq2P4OSFoHm56g7/VHyI43kNbTgPrAbpt/ghkN3IjTbkiSDxnLHu6jY+5Dd+jzyZTDTZFRT7ryBIuN/4P8fQoRfhLG9cjtfK/4aj297kvGGD6CkF6hkQHVRZq3Qbg2gIamJ1dIzFMcXjmOZJvGXX2b1yBHaH/1HSssO8Oijj2IYBjVuQYxK8tYqcZoFLBQPX0VGgxuTDXS6BPHUKtv0JZLXlHHtScHpvFWGayVN6Vo+kNzHiogxJ4Msxi4x63Pnft/WjVoEkoOk8hdsZQ+CeY+HpzdWYUrJa+oWPOoYbdYAUiguqQ0YQre5JMrEsdZPy+qPeMCXZogeOq3LyBEPk45NOC5lqH15kqJ7HWxfWyN/bYBksWkTby2Tve3H8Mlxwl2Swaf30qdVsbEtj9MXDnKodgv5mWTWS22dHGyx3zXAPTUvs1opON1wjNcjY1QGN7Gj4iB6dQwHguaKy2SChXbOnwClMgRL+jBna6iKhai6BP6qGzh7OIapJKeExb31b7Ins5HTgbNQ6UNWeNk5vUK318tEuJJe6yAfE3/OUa7DWNORiS24ZudQWgbhsImskcgZ+uW3UHdZxEzIPFaOdVUw/MSr/VTt19ng/CJi7UHmZBE/Km/GyLodp5WTx8MW76g/THjNFiKM0sJXXffZcn0M/lh8lsJUN1/9cT/bnOWAwusJYGbGiS9upEizzRrzI60oyyC0+mnWdszgGhJ4JifZpV4lug0yuh2TJoWFx7tAbLWKuvoKJqZWcoDm6OoMDdPT1NXVURuvJPadZc53+FhzL5NIuViVHeSXDZN+YMZOEpNJKlUyRywWAoTUOXRojnC4BNhgI2OaRkvL+4ElJia+nkPbJhd/C0tPM7n4XUprvv0zJroKpQwmJ/8et7iVS6+9nEPOeq6/CfiXuWv/Aew+fmHGvZFSNh6OItEozvSzobQHS0i2rCi0ZoetVFYWHYvTdC5MsybycRtxylfDGNJiKW8JQyl+UFTATEsDPb6HSLviOFN7KZo/SIFew0BjjK/XBtiZ0Vly6RhCoITAUDDiaGNrCvTlKFq1whQmmmlSfClJTKu40sJEsOiNUuFy4J4YJFNQjJ6MM1beTPfgKRz5Bhvr+/i29gEMoaMXG3y04FM8dL6WUb2T2lCE9soyvl/0FEFnEEdqhYKCDmaFhkKQUYqDm8pQohxdtbNRvcQqAxTuFBTIZgQWSmgIZXGsYycWAr1sP7eNf5+V5BiB/CUq10oRCMKRyquQccHiQium5aK9/SS7OjZR88T/w9FrO3l4zxdI6w7+V9zgMyd+j8ZlBxlHHkZxKXoixpo5TWTtNB/ZfhsZXcfRKPmDfjeWkUFbS6AlVykIBlFlfYwHVlhYaUMznqVhRyEVb7yBx/sQSW0EGZvEXVVN5CrEP2JYFBTvt2kUwu7PpFMXiSVacTtcaAK0gjLWoTLHVD/qpR9ife4DWDoIKVCWoKi5ibA+xjo6DiClzUETQqPa/3Z8sR4Cn/kLgr+duIriKrL8Mbt93P1gJ63b35u7LyORM9T6bAcDmzUk0JY28NzaLE23TNOmDdNijeAPpLgkGnEVLiGkmQvhSccdrMwVU9aUIOhxUBhRHIruwsqaORdWL/G9yh7EcgEL5jupLHqc+XaBEgvMWl+k/cxWvPE5Joy38wPzet6tv2IXbZaJHDtN2jNMfM9BElIRVDrFM7tscZoEZZkkSi7hjtThSrwM7IaJI0grQ6RYJ+R14A0bVBjzVyZiNsvcIcZJsb4WCvK3t/zc5/wvbdG2uWIzn7j2E3zi0nnbIfwq5/+Z+d8k6voc+5t/l4rFalS9gtrbSRz7ClZoLIfWTHR35SwSJIqUO8Cae5HSkkY+nzjL3zrcHM9zcWOygbtahnJwuwKcJLC6JbuOlBCNVfC2mXeiuzT8+KgyihkPTzKb5W5JBG2mH6EU5tqbyHQE4elAScG8tzwbWSMxUUy638e2wJNMh+vZWF3NEw5BSpmgDAoiP2Gra4hOkaFbDGEJwZRjEzNTPVxz/gjKMEm8cYrNdzzAdVMPcyh4jLaVMm6Vb9LeMmibR9LG5972YTJINGWCUJhNGg7LYHfwNEdLd+QW6frkEUrEYXxAjQeM4nF+UjjNTl9WoZpFkR0ldrQK2Ra1tea0swEBqUmkmcZQtvrJVILx6RJuDx9mtrggS0IWpO7YT+UTT9K/dw8X+m4hUZvhaPmNGG6dE26D//rpNNdNSrr3PIh7yxbbnVuY691Z3BWDyLCBpbCl4I98lYRsx81FehwpKtKf5dsO1+m0y30AACAASURBVFtvIqVoNyWn0FCWwSWuFMkZBbPFf4gx56fWGqWweDHXcok3XCDz+n/HV5pHpPBVAPJiDSzvn0VhEjOh7OtO/L+xmbyifubmdZQykUJSl27i+j27yWtv59F/HMYwbSHD+NwkP/zBF7h2WwEtW7cgHnMQ9NfY+ZPZEa1doUSzizZho/f261OFVDfeycxsJZFwaP1C4PP52L17N8XFS1fCpKUTf9X9b2mDrnPdQqGTKLWuPrZYWn4J1Cs4fXUkFvIxMpkrJr7/yV37uYztW7sZP3QSZZhErEIOz32Pcnc9sysB7nK2MecrpzqyTFUkhIbk9mQ9qb6DjJY5eaPtqg6AEHiMLkKltvJ8tLqUZ+79kL22YGEJxXmh41D2Jk5lDRTyMjbyUBUNcXffMeZrfDQeP0Z1JESyvoOcWEAK0p4Kzu4qI39qEFcwwGxlPT+69X5MKdBME6bAaNJztIZB2c0u7RL+y41oeh53v+8urins4cmjn+Zs8hI3uc/zl9xnZ6erK2HxJooBOukQlwFFl7iIA8P+OcDKtkoN5WChtItt54pwbNvIyaU1qsNLVEYVfX034/EuEA37cbtDtLWfJJGAgcQpKIMzjm7Suo4lJBllcSrhpDr/JxTt2MFCoIa0UuiBMCc7usloGpaUpHSNc53NbLpwxnamU4qa/Biu4y6arDEMbYwv/Go+9+z4GK7X/oKuC99ibFOKgvZVoivT4Nhuc/KQVM/vpkFfY6B4BEtZSCQ9xRvxqJ+RHSgLLJPx+EWcLRZq+jgVqfegnAnygm1Em+PIgn/AsjI2BSLWQ/6kJN1mUdFjJ5pMPvpJovvXrurzQknB9YQSr9vcNalTFr2W1GSU9cimUOikTfvA/nn3ykZii6uUbgwhtKzCXSq2NZ6gq+QUllz3DrX/hrkmiRbrnNnoQUmBwsG7XQ78l1/CIRPc3viy/d6lMDP/LLVVg7kILEsqMmVHcCdS7JSXuaDuIGZW4BLn0fRR9LIKilOnEOtAgZVBWzttgw6WfV08YYlH/3uiopTHD42wP7UZWbGHqfYBlFBIC7ZeOIrn0XsYOPAdXo43sn/7d3G/th4tBkX7aii81v9znvG/xEUbwDs63kHG1cYfjptYWVRMt2DnrJdz2l765hfopZBK6SUgI8xs6KX0UoTyWIxQawuRSAQpZdaMNPumysJKv8rpkmvY5TI5ribodIm3wO3rPzssWzm9aRfuWZ1gRmG5WMfiUTFFUUDHU2ix2bWZKuUloAUxy2oRwQh5U0NMlHYxtVwADVmlkYIbjjzF+bH3YKKj6Rr33HaWZzOjCDNGJq+LQLIUrfgYSmWQCKrXammdNKgILOVQqNPF7TzT9ClSCM6XSN41EcyRcS+JbjJC2lYfuRauJCMhLluzvk420vZj8YDNfVMHkcLW72x2ZwmcWfLoVRvx7PkDSz/HeXchDlcxphGj4Jgz900BuAYVdYSYL7RtBzSnA02tURKY58ZXDtHf0kB/RTsGVx4A426Lro4nueC+nWvJtvKUXWxhgudCiC0rf03I24EvPETx6hSJxV7cmhMXwxwtPsexspuyh6HQlcU7lw/hue4LNIZ32VFQGMit62HUirJ5g529pRw30m9tuQiLsoYTTFUfAWm3GyJKZtVJ9rlJfXg3l1Y/jRVLARKfYxvaly7iHH4W03mQ0m89wm2338axw0cJRcMUFS/R0/sSiYxJf/xJ1O98AOvCau54EcImM1sX7B2nvHLei+oSDLzaRCRchvKFWfeRCYVCPP/88zgc+luKNLiyG7+a62Z/lbaMP1cPmBT6V0ks5INS5Gfztf6Tu/bzGVXNHjb9mo8nfvA93nZ4AJmeY9Y3wOTWXcz5ysnLpJnzlFFk5rEtIrnsy+P8DbeTlCHKVsPsCzRwpPI1SldW6J0MMdZmK/fmfCUY2pVsUpvfJDGx2DA5zMXGdiwhONbaS8lqlKpYiNpEjD/efT9jjV7Ov/oiYnCETF4BlsOB4Su3PbGEIFVaBUJjoq4ty7OTV7lpGWSy06DAipFYstWxpbWFgL3ZLq3/dTZf+CRuMZQTQ6RXinm65HbM7DQqsOJ2EackbWqUT4hPcZkNTMev43hxde78pdNuAsU+ns5vwGyQaPWd3H/yMuG1GK7CG0nOR2hoOP+Wcz5d6qNkyIej0SCdfW2MVoZop6x8ioWFDoSUJG++mbJzfeiWhSEEEpM1/wW2Phkg7M7Dm0gRLa8mWhqjNJ7Es5bmE8576G1rJHHDMnOWouWuBEJTVJnL8JLA13oHOHsJLWRYS17mgGsjC1oEv+WlUnm5Oi5NobDMRc4EzxBoWaL1riRSe5MVdZ660x/FFWlGM6cprrofAF+sh9CHvoBKpxGawPGlLiI7YazucTuRRQAmCOmk6Mg+Cs29JEoGcIe7WLXmWR79LP7r7qS8Y99VVAn7DCXL+gg07kcvGM4dnwASmm4HyourHgEW6HkmC3n5VIm43QXAxJP5a1vAcJWwTinY5T+dfUPb6UAo8IVNpJTsbdhM3VQn0Uw7Jg/yU+MY7z/xNWKbCjDsk2QXiUTZ0hdn2VMNS7+DHukgjMFXL05w6fwIN3jmCFwznFufLakIeTRc4QbET18kHirhfNrLjtJuNCEwlGI+ZeD9V87rf2n8UhdtAO2+NuT4MBYKqeAjlxOUx5bJOF1MJEJMO8+yM93KCecIpt+FVn0zN2/ezCuvv26brkpJZ2cnw8PDmKaJtzhAz8ajOXPeTbM+BlKKVktDiCuF2zDtfE48TNqnI7wmHYsxCKUpd8CGvCeo83uYMTrILL9GWdVeAlrQ9u9ymlDYgXNqmP7CRUJ6BFQdYBcKK+k6THQUGkkRJu/0LNe683l169uwpM6xIsE9E5sob/wqCAtXxwukuQvV86s07D+Ae8sWjh97lhSVNj9FKPqKvdxia7DpVpdwKAtbQpDlQmXVp7WBKS4W+zA0AEFIlPFNfhMF3GQdBCXImyuHpgUgx5W1x7p2AUg54+w+6+GFa8doni9AWToCcFcmKSuP4o4mcY1LdozOEWtpoqC1mScjL/EeDVRlhMLOEeoXBXqNkeO19Yh+NGEyNnuEazuux+PZSo/nz5n8p4dxDSic4xKnmMCTmLFJ8w4H7v33MzzayIXTQxzxt2HK7EFbitviQbbf/wWo20Fr3Q7cri6sHx3k7nPHmfOVUh0O0lV/Lf5UgO0LL5ISaax6aQsUlG1SizCuUvVa9sNRgbIkk9Or+BrXssWPSTB1moy3AqPMojSRJnP0GM9HwhiGfQ3eUhRaGVxVYbjgeItyczVciuNbJeRXRQh2+9FbpnMtDlfJAPriHfhCG9GbFlmKzKGUwjRNwuGatxRpfv99+P33EQqdxOe7NtcaXV3IZ+ZoJdW75nIoHkojPl+Qvd6CZMxWO/4nd+3nN67bfg2PpU7wNz4nDxzWkcB3b3k7acd6JrDizQaLyZELHG+twBSVSGXbXlREVyhPVdA9tULj1CAT2Wi3mvAyZ5WFYSmkld1IagJpKTIuZzYs/v9l773jI7vqu//3uXdGMxpN0WhGvfe2fbXFa3vX3Q4Yl4ANpgRCeQI8eZIQICQOBEKShwRCGg8JkOIHcALGBOOGjY3ttXfX27VVvfeRNNI0aTTl3nN+f9zR7C4kvxev5wX8Sjiv175WmpFGd+7ce873fL6foiGlIOxsw5k8wj33HMzHq/ka63jkhb9heWiQdZ+TresBNJUzXfBYaFCZmbUC7FHopsn+5FG2y4t8XfsAEsGj2vt4h1qjBsnSVIInvngGj/9HTBQ4KXLvZkvNi7RoIzTJMS7N3M71q5c40roNKQTf1N6Pfb6AhqUS0lPHKKvNUr+a4qmSfvTdlZhKoStJ48yyZcKtWYi9KWGyQrBz2sPKQJjtnZ2YYjdCPGOdSQVDU7ewPnMLdwUmebqtGYnOGfZxXuziPfFvY1cKTQhGRgdwlJTyx0OXON85RCeXaGwY4cibDmDrs3Ng7Bxn3TakpwRNKfZPL7O9JAkXvoWrZINgeYwl/YrJbHHpKhVdPQwsFqHUeVYyc/TPX6LMWcOMMUhp4HYrWmlzCIHQy9gZvJ2+igGEntusSZNkyQAAM2WfR80baFoBhVMaKpOxuL9KkXzkYdYq3o7EyNucpdIdlHMH694BXKsdBMbvZsM3ykzP51EiS3juKXZXPIrPt4tyzz2EYt/NoVkm1dMvc1RvZ1vZpfy8X3hakLxlM8EgtwCYEJ+3MsDLTWuRUEqhaZvzZQ4tuKpAzX8pNNqdv4Jv7VFQJlumzxE3urH6VTpb1wuYnvRg3m9udnlBQbjeSeNAkrLJfcSNdkBHoVFg1rMdyJQMWgeW+3mhwBWpYiXzZxQpG28vMkmOPYbmb8XU7BgCzmHw85jV/ssXbY9PLGNIC75XSrLiusQ513E0ox4QSCGZ8a8ik5bSRwLD8/OYppGzPDCZ1+dx9JQxe+40Xb6pa8x5u+12HmMSMdZGV6GNpIASLckp90EyXjsIS6E13bKEa2qEFqMfmXk/dreNG5Wk3y7pLf0cq2YzZqqCzS3JYLsiUvkautcP2lYLNpca42UOymcN0vY4Uf9lipRkraQVJWwgNAyhuOD1chsShEIKgxX1CouyABYK6dq5E3/oLPjvBqWQAkriPoTfhhImbWqCvxoY43BREZ31/4AQkgHRTafqo9AwWR6xc7Kj+8pdpBQnUgfpvHgB90o1N7X+JgvRvyDlv3bHZd2I1le+unU8pSnKV5y5n1C4yjdoeeM0Qles7IHA39rwT6TxD4ygLg/yDh2+/wAcuC5JhZak3FyBc7BUVkd3xQWaxCiG0rE5rziBl+95G33ThTzFSXZofWyZm8b/zneQHhjEc8ftzK2u8q0LU0hHISSmsKsastKK5XLoXt62EuCNWph3VQepauvk9rdWEf3SYZpDEfxeSUXzMSYHDZRpkJqBsWfqWW3yM7FxMx/BSbzqKOS8ipA5Z3lhXWfhjKL4Kq8mhGTuxnJWsWFPrtHktGOuXlG3xWJXW37YCPcZeNyr+PxLxCJlMK3T2T9IeThL+f2f5eTkPMr8KmgmSuokl9tBgFMV09oZYPnEfO7jUxQVbaW19Zs/UaT5fLuYHx5g8OXvWDFYfZcI9xeTDNvxt8YACPjuIhMZQGg/iaj9krv2sxlnYus8m72R9F6TEzsNbj/xWk4UsAntW/5q46VVueJEQ0qY9wUIJpYJO8OMNDp424kENx9+lZn6DvZdv49ti5O8PDNB7fw4CsVQdzd165a6faSyHlMKdAmNCwWcr7jM0swkR9eP0lnSaSU1mGn8NX5KU8VcKLlA3bKXslQlqrCIkK+EeV+QrZMDRByFtI73UbIWZ7CzBoXIpR3AkieGoJjJ8gIaQmma5yRmrUk8Xsqli7fT2GqSPN9OazrAoqeOI5u2HgrOZ/bhmp7AvuhkclEB43SEKrl5XwlPXligdPks/qzFS9o0JNaVoiq6bCFWSnGhvx+En/KKfQSDU4SX61mMB3AVDBCyl+RbrQCGspEcKeb6oQvEHDqR3SW4i6exOwa5hxHQFFIKKqrXmDW7GM8s4HdWUVZYz9LGFOaWEK6pf4IZnVFHMTF7CZpKoKREUzp1XR/iAy+u4E9c4r7Y09iUSUTXKW6tYbK3j1hohXrPFlZcLXhshbSjYxNWtdWSups5NYiSJkJpuFY7SZYMokQWUEiZJdMqyTRLou2wvlCEw5MhEM2iaQWYMoMhBX0JO/bAl9GbJaLJRs2pj7IRGLVeR1MoDCKRkzijLThe6UTssKOEiTAVWlyyraPvyoVrQuFljcaCBMl6QXrGweJGJZGVelLxNZSAiWdraHcsUrhqknjABPumnYHI/6fYTGrRaG/7DNXnThFzCyLFhRRFziLCb0Who2OyHh7H1qlbYoxcAaYAm8Pg4jYP3Rd6EeG3oYQOusaahGYpcK6257Kis4CgZmYdZ/QWy7g+lwpiKygicfSv6eu6m3+raOSTu372rVH4L160hcZjaL0riDqBkiCU4lei/0qNsczXVZ2VWKDrlOypYea1MMKUaFISfOEFZndsxRAappA8tfokK8lVyj0NdM7cSXH91/L2DntXooRsaV4umuJloD3STldkP0ZDEXg3e4MaPUYhD24cYNZpmVwITWfDO0bB7YexawY+OUXi0u3EEqWYSCb9CwgB9lQfqHtB2UDB0dUa7vS+RtwsQcsVAFWxldyOFmxKsGfRifDnMtKkINgRA6GYM79E4HQ5C2UtiKxF3EVJzhekaOy7n6bCLEUrHbRESgmMHmGjJYntzhlaGUZKnZGZNrrdL3Gmo90KPc4Nb6QA2beV3dVvR5uwUbb6INM9f86I1kw/WyylpRhm0xYCTVFUtU7IYSAEtM15cFcm81mryiZIHQhiV4UwOYcG2Eyo9llE0s2daXNmlI5vzPBizw30NbQwHGnl/n2t+eM6E1vnvcEG0vfUocu38Mm1RW761O9bnMXTpxm//36LEyagLL7C7/aOMep0s6C7+fdON0TiHI4kiC4usHdqgNrurbT9t/38aHYQj+2vWIr2Izw23JV1rC04SK16+WHBG+gIbDBY0k9t30NoxVZAO0IQqz6cK9xM7PYUoyN7aWk9hTWpWl5NRlEGW3oDR6EDXdctpE1YUTqXL96eL9KEjLF1x8sW4lunMxJqZTBQiLj1Prw7t7Fjz1386PEYnpqzJGZ3k1ppprbLz967mzjTf+Ta+yQUoqfn7h8TG/ykmODmd38AXddJLrpILrrQbXYOfvqddO/nl4jaz2mcXzrP307MklU1IHQyNlhoaLBa4DmbB6QEFIXpVE4OaeUzNk5OMFPwKlViiftveh8Nd96O9sol+sZqiFwEKcPsSxxBmSZKKG4eGOLCvuuRmsa9l44jt+4kNHiM8xXHCHkmCIXhUvgSutCRSrIVF4dsJcSNUqJrAaYKRqhZXGWqvJant12PqVk8VZRktrIB94ViCkej6K3S4roaBvWzvXztvvsxNdC6Cjl4sY2AGSO4HiWy5uf5xZP8UfV91I8UYlux8e0mRVZaKvmq6CoF2fLcom4COppeQ3MSvvjGLvqPbjD6+ghaQYx7LhxjobiUznkHjmzEglKu4rIsLrSyuNAKQuDxLeGvGqA5u4VTsg11VWRCxfIiXf39XLy9gZrt59E0E6WsjbmVRKcRi1WA0EiXN3Gn7340oSOLD2AXY6BMRnUPE7s0hBZFKA3f3CF8C9czUbqVdHaOA9k1tnh7WE5Ns5IJsTofRSpYycyzvLLAKRkj7d/DXykXm5SSwlgrtWc+wbq/HzGUwVlQZ4FVTXYUJppmx1XfxcxvSyQGdjPLkdfL2amSOEp+l5PnXmNL1Ql2lV3afKsomSUa/2fs7rsQWkGO32bRJdK9MZwrzdSe+QRJfz+23iWS3lMI7Up3QWkQvsPF1tVFtFkYDzfTn/kU0qZjd8/SwjeoW5hDXbKhoWNf0Nh4V5qNsqt6o0qjsuSD6C7Lv83tbiemPUfvNp+VdFEXpe3oH2Bb2INm9KHHJIP+CprMGTY3xJuImxSQ9M9TGf8k6cbfYslVwW+fs6GhocUaEEP7mes4ihKKuZoiCha92KKAMkGZGKsjkJwldaCGT962N5+r+rMe/2WLttB4jH984puEayS/OurjZdXIejTNX6+/mc/WLFPcv4OUPYGmNI4PfIuWwBTBfh/BC+uEikuYLNax2RKYyTi7pB9nYZx0rARjcTuTRz+Ms/wyZqSQNzaZHJN2HgzZuegaZsm5jNuzRHFN6ipFk8lswwnmw5WcSdmwa1EqZQkbJUMobZMsr/D6QkQTQQCqYyXUzBkslExjJJ4kY9+DPTXAZMbHP+g38KvrvRQVWbuSiliYt7zwLWYCVQQ1H7tWW0itfZS1yuOkvFOkfZN52Hn4zJfwtpdg55MYSiGU5MH5SnZEK9BMSWbqGBszT1AWGYcBWJgtYeRQAeZYLRsz6xTekOKQeol+sYUQ1QCcqGphf+MqWta63ApjLcQGP8vnulrICA07WSvxQAxbXpnAi/4UYae16Lx03Sof025AU0+jlETXbBSeiSOmrGgYU4ChQ6/QqcO05lsJdneWE7v3MeuvooVh7Lpgf1OAWKyXSOQkL6f3kZEaCoEh4E/dZQSr6+meGEFlMpRFo2g+n2VPgMaBVTutiX7+6aZyoJvN2edf+4bIPPtNFqoaefye95K1ebCph3mYz9CqRinrKiZY1EGHp5BDTYqo70sokWVN2ak5/XFc8VaSvlHiVUdRZjY/sScSpSSTfoqLF63vYyWUFvVS3BChZbuXYMdd/OAHP0BKyy+oqvpGhgYHUUBNzUW0XDteEybewApLM0H6z59m+PI5Dh1opHL38yiyuEqHyMSd7L37Q5Z9R////b2zef7mB9euERNsJBI8+OnP0ffqywCUNzbli7V99z9IaDzG2ecnqW7z521C/r8QWfX/1nF+6TwfeOEDrOm1UPoJNGFHU1Abnqc2PM9CcZC0buNibStSaIxU1OV/VwrBEzfexUPPnsYxu8L3wo/S+v47MLsOYo6M59pPlYw11pCwXcKbriRasY2m0SkKNQe72prxFTt4tSfD1JCT0lEvoUCKZX8GU5k0OeBdwTA2sYyUfVy8eBsFai8us5Sw3X4lZF4p0HRMBHP+UnbNRHnj+uukspI7j77CS3tuxNSxuhxCcXjHTuymwc2XnyViv4BKxphaO06tPERZPMpHzqZ5pSRFY8hB/VI1WgE4dt9FJLSMM1VBgV6Dv26alPYcu+/dh3f+dohJQqsxKsIeVpMezqsg9rLT+LwLRLItJOKl+WP1eJbYuu1HaEJSoy5wKr6N0eIGqxWpJOFdHjLzirLqWcy8Ya7cPOmMje66YuNhK0UTOpqwrDmerryN3op76Mz0slU7lnPzV9hTJbjW20hvK2LLiM6H3TuwA1KZHA59h1i0BtQoQoDNZuPgof0Emtr5X//2A67LZsmaWXrqPaT8wzhX25icPMVApUFJqoHEsY/Sdk+CuuZDlpBIXDH5rbphiWXzh6jllznAAdZyxt1K5d6SCbbLMearitnR/imWln5IWdmd2McFaxcPA7U4I404V+pIXv5rSt58CwntZYvnpiw60lZjniw2dCUJu7rIppdQqXk0exXB4kbOO310auPYpIFjzkFVsos+dR6FspS9F/ysOL9FsDOOwmRh4btUlt2IjF25ZuZjUdyvWXOSLPOztuRl9Nk63JVJalUMtTeDzB1PcTSLXR/BsTWDfPIx1ngIi6erk7KVAjmGjNCI+W0EopoluCg+Q+CgH9e26+iqGQKtDPjZWn1sjp+qaBNCvAR8USn1g6se+5pS6r/9XI7qFzAeeeaf+MedN2Bgw1Zq8L7zr5HpuItf3dVDciCGfmEcu9IxG37Era3nrJZn6zIzmS7+4IE/JG23oUvFW0ef4a7m19A0E9P/OlOL+1lbdhGJ1LGn4DihsXV+bf2PSXvHeYMbHik4D2VDdAkn9qu8xDrFRQaCY0Rmuni+4DxvyOzGF+lEKAsR24zUErkCoj25DefMANtH13iqJUms6Y/BZbClrJUHxAfxOw5x5vBXMFxF2JJrFMtGJjIBXizZYLXuS7wrswV39bEcPG4VOcoUrMejtJohHtY/Q5/qJrCywc7oW9E2A+A3VjEj43kqVsW5BH0Kgm5FTUsx/6PzdywF5eaJzk12L+ys5x29IAyJxOQlt0FGiJzS0kYfW2hRwyB0etfvI+Pz8p76WnzuLNeNBPAe97IR77DiSdY0siPPgoKRpiaG2moYKpljsWziiruQDqudZRidDu4Rz9POABrPURGP0zvxKFJm8IkuBJ+22rJCICWcb+uie8Jq3fqnpjjUdR2X0kUkPX7+vrKItxT3ct+K4HigO88Xax27DEoxWVZLxpQoTcNAp19102yMsHAxTHLxAu6FLCV36Kj9uVaCNNgIDOGKt+KKtdC48DDL5z/HbGo/iVJrgkjES2kI3kPbHhcORklkvgPCZGblU2jiYznnc5BSkkgkLMqFUla7VF1GkybKFKwtXLGPMbJZFuZfpqAtY2XAY1LgeQpp3Av4qKioyDuo67rO9u3b878bi/XmlaRXo4ibrc/Nluf88ADf+eOHMY0sus1Oz70f4dJhS/Bjs2nc+5Gd+ZirX0ZW/Z+NM4tnWNNr8aTbeddj32C6ay/IKBWJCCioiK0y6g2ialuvapVe+d/QdTStiwdfG8HQs5yreZJy3wGyjgR6yoOpmYxUzjAfKCNe9ntIJbCZJu88nKBsJU7q2xcZKe6ju28NTRajNMVI9RoTtSn2thWgi2SeJlLsX+RUIsGBgnfQvOjgZKfAFFbEnZVoIKmKhkEpKmJhEmu9fPe6KVZLD177pjUNAxsRXys7ZiSFU0MsJs/yvDfMUmUpMqnYmVRc8o+Q1uoQhdXM+QJU2dJUJRbYtcfN+MJngSwCG4vLOzmgf4CQ18+zJXaM+SmKPQN0bz+OppnUyqmcN2IQIRUljmGLm6zBmGxhwmfxiVEKHYOm9ouEWyWojc2HgdxpFwrb2gpL6zrtPhsbiSlkkWXn81LtBP+z61YMbDzPdfy+adlOKQkh0cr0dWV8/Pgov00UO4VoQmNJi2IEqzBTRRTY3kJ7g6S7rZvg3laGRo6xEHqGWcBVnmSmZyZn+C1Ij+1iRWqspBViqYmGpSZ8uxqs49Tsufxgrlh6KCM331vWUbA5ZSq8FUmqVv+SgaEipDJZXTmO/X8HKe2NMt95C8vV9QRnJ6han+VU8Qdpq3oQ3/wXYb6XysUNiuKSb5s3M6+CTGeaaEx8DzAhpZNdj3FnU4oTv/FealKC5jsOMm2ssP3oO+nTixlfCVB9YBGhq7yoSppp2IiiYaG9Qmmkpp2EytwE1jYIrG3gLkviqtwgOVdI2dIKlY4oK94qXKsdONemed1Txdbe7+IUy6zzT31dkwAAIABJREFUgBX1BhSuduTXY6E0ss5VNnxjFMYa8aXG8DqegaGnYFgD3QHvfupn7tEGPz3S1gh8QgixRyn1x7nHen7mR/MLHOPltmvUhbPVBXxwVw276/2ETA1dk9gcEdy+hTxHTepw5M69pO1WH1sKyXKpN/+8LhT+ijPM69UgBK+pHqoNJ4e8E8z1/CVKZLlXaTwb9vBGNcMf8BkGRDddqo8WNcL52B1W8aAU82KV8mgzNac/zkbJICPxQhLrIkdps5rx0uXFvpGkdj1CXDPpSDbwZ9Mfxq7sCJtgoelOwmMLaPYa9IIq3re/khNOg4hRjjKfRYkcwVQKUvPFzJ7yUB5PYt+eQgpLBbqw7mDJFqfc8IA0McLDgKVMAoGpwU2XwGau8K1fuSGfC3o1AR6gbrSQz5X8Gx9cDTCoPHTXvMbT/BGGsgQU9uEi5tareT55G6dSu/E4EkwvKt6zo4vZhUVONrvoiXSydaKFDTWKsr/AhfY2hjo7QUC1rKQ6rTMmsgyJLtwqwaPae62iHMNCveQQS8NfQfoLAEmLGuC3Ei/zd0U3I4W1IO0YtmCmvsZWzje0s+PCMTzeWj7//vdhaIKX1Ef589XXuWn0AqOBSpqWF+icHEYiqJuf4oS0Uhw0KSkdnGN0pM5STmKyWBygYiyN2Ld549soXG3PF5rO1tvYsnUrU0+fBDOUe1RQGijlxht3MTl5mcS4lZ0nZRZjfQQhCq2oGWB+fj5/fScSZVy+cCt1nhDhfo2NcABYBCxzVXe/JHXQCoNXpiAx7+TMj/6B+o0qjh6dR6kSALq6uqitrc2/7tWpB0qZ7H/7ATZmOn8CKes78SiBLQusLVit0jPPPI/ddRsAhmFFXxkb/7Htxy/Rt59uuDw9RMu2EUXnq28x+PRj32amtjhvOQDQsLyITZoYWPmc+ZapktiUZOdQP7qC8fompscVUxxD+AWzeoKJ4iEWPZMki96DIXTQBAaCsSooCF8CJI3ZNpRjEG0jiZKCthkPLXNuptUSqkugcoXCKWcVY0E3sv5HJDYa2DtXjuFqwL8WIaKWqYyFqYhHqDL9EJ6g/dd/g+9PnMBYyiCUZTGyedy6klTHVtCVgEIvJJOs2tM5FaJAINhvNJJu28JX/G35KL43XTzG1PQLVLdmrPlcGhiVc3x94RX+qec+DE2gNTezay2BSxunTQyjhMlWj8nKaiVmdJKIKVDtOlJK+tmS57QJZXJQvUyrGMqT9sVmZxpQSiBM8FTew/sefCeV6RCP/8kf8uridyh31XO81HXNenQhfpB6qvjXgTpOrFehTY6wnz5q9AkG5A2s6glG9BCyQIJ7js7kTrrWSlBnkyxfuMh8wRXumLsyidBknjay0R3BHBaWl9tViSY+3y527/pXpkaeJhaKky36gWU1pNkoXryRjGeatG/8qvgmwaq7gEjMOpdoFvo3eqiMULKF/u5SEGvgL2eu5oO8NCoomEzy/Xt+i47JdyINRRob3zNvpFe10ZPupTEnbkNlCc+l8F9c5aZb/oLnbv0yfZkAn30mRJfxCfanL1BRNpSnzGxaGWgKKs8cplIppoq8jK7sZUqPISss+lOVO0Lz3dNgA7ETAq+v44q1kFz+MyQ2ZnxDlPm/jBmfx6FlCRR8ktG1GxmJ2dmlbqfm9MeJVx0jVn2UWPVh4lXHqD3zEUo3LpJHVJUEMwOTR/4fLdqiwK3A3wkhngbe+TM/kl/waIus88PSK+rC4NwqJ8ZX2F1vtW7ueYOLuSN+jsQqkfKSFQOkNA5s3cb35ywRgq4UpctxpFfPPW8jFctB6UIAGlkDNioH80RNoSQe7PQNbmdL+4Ucl0twZrSO9UQAPcc5mVs+Q7EriMg0klioRS85gswZ6kJuTjazIDR+tX0LHcfPUl7Wik3paAgMw2TZNYso2o2mCtB1jb37qrinyUfvM2Hm+5og8DpIE0wwL0jcVUlCooizr3fyjUMfIivsaLUSW/Q4H9jw4XzmMZa1GMu7rqe2wEvRxkXCmQlWUl1caOvGk4hjlwYZgTXJ5qw/yoww7kCGVLybF9fHqW56njYtwsN8hn7VTelKHFfShukspCZ9hEFPgOXdezF1jT/JKLTOakxlcVD//mSc5+d0lg/9Ou3Fq2yWsCiYSV7PI+IQBjZLZIFFcDOUol91066GKFtOE/U7kTmn73sdlcReijJR7qBxMU3NikFfYysf/Z0/JKvbsJsGd5w8giGsW1IIjbOle+jse56O+UkQgoHKvQSX12lI1vHQc68yWWZSOz+BazFBkqLcFadTGlmhgE6qT99JKjBk7eyizYBi3TfK8NmnqNx1Hf3KUtfmYDPmF2eBXfj9+/IqTmloTFwsQJrmFY5IrkDWNA2lFGvr5YxfXkVPrgHzVMUUgSo/7ssD+NclZ75XCQ3ZPArnan2O8Iqiq9tKXkgkSrl06RL19fX09Fh7tKuPQdPs1Le+CV+PxXXbbJva7cWIqu9SWWWgTMHos3WkI1fuPU0Iqtv8SOMnbT9+HKF78NP/85eF238ywqIStAUUkNFh3Odk/8AEz+zdybw/SFU0TAWrvPHi64R8AdoX11kqKqAoa1Dc1YlilRduOMRcVRWxytL86yqlSBUusuiZJFvQQqroxs0n0KVJdWQZclnNIDCKPNg2LHsZLef06hjxMTruxVOZ5LDjZp7b/hakEMwhwCs3fxJ7SZA3XRiiLB5BQ2OX2cRqTTXrIYPGF7w0aFW0LcU40tpL6+Q6G0XFBCGHJipsyTgAtuQ6mbwS3YTL41zQypGBjnzQ/byvlNhiBZVXRcqtJmq4XOrF0IRlPaIEp727OMc2DqqXuYHXqMzAiG0RM1gAXEf6Yiu+4kXsWRd6i7TQYwwOilctSEZZNilKmiBh8nwrDm2dhpLreNt7/wcA55emcLx9P74VB9v23kHvi49ju2o9agiZfNv5fk6sh5EKgiJBi32Ns5QBw1cughwpq8gZB8PaaGEo6rzb6OMwAGsLLtSmCtMUXJyrYsFj8lCJm6031eWpCmAVbtvy9/M78uIjZ1ML2liSKXKRTbkWqWNYI1rsxVQxhLTOaSRWQbS2BI9vMRfDVYE9VYNUkDUkL6010PHupzj58vf5wmApvaoNgHlXNc6CFL7KNdbnCgmMbqCkIBnSWBp+jP6l19hm82Mua3zPeSPXZ4qols9Dzu6qcjFN1XIWXzzLqN3NpUyQeCiEqbnyVlTZNmUVbBpgF2w02ikc24bCxoZvgpmev0aJLHPKy46LCVzuXfgLbiH+6pMsbIxRLdrYCAxZLVFNoWQW0dNLqm+SBU8h/mgWX8IATbcMd38O46ct2oRSygA+LIR4D3AU+Pmw7H5B4+MffJjUlz/LdNCLb3GWp/0v86nAbUALAHGlU46fg+G7WOytwOV+leD2FrzOFIHwF2lcaOaek7M4Cz3EY2+lojiKP7KN0SUdiietP6Ikfa5BboocRCgbKicGaLj8LjZW2phYGMVdOsz6cgfOSD2nWr9O0UoX/sU4d43PU9D5PLGyEE1OyaVmFxOj0LTWZJUpShJMZukcnSFw8Z/plgq9MQ7bQaIwhMkx/0mi3pPsU7dwx3XXU9HkY+yF53j29CkkCu/F29jjFpiLyxTdcZoiHcrNFY6M3EoWe36ym/WWMOyPEbTFOHboZqSm04dGY+FHOVUW4omabkxNx24a1E0+SkXZNo55diKVDgiWbKV8txHsqpL6xSLgNQBaGaaFYcKqhpJtC2jCpAo4v7BESLdyEk2k5eGkCbJS8VeedUZqaygNpvHFoTIRySMLfY7G/HFfjfRpKHZH+tg1nQDNTqX3ELjLqay8n9HjJdRExqiOZCzfoN13cbxokYxuQ+k6WaxCzSawvgaiCFKeYsriEXRN480HOpk6P4I2I6iLl1Mx9zhgouk2et70bpZnlnAWejh8+Azx8m5+L9aEK9aSvxZTxWPM93yBIpEllnwat/tWEolSNt9YxxZLPOHz7WLXzm9y+eTzDJ8UzBvpn7iubTYbd911FxsbG0wcfoHljfV8SyyjJak9NQWmCbpOa8MdHDtvZeOW7QgjNMvaQQiJrzhkHQPQ3/8MweDpvHJ0186fVJJe0zYVGiKf26jwVKdQmS0oYRVsBx9qyy0Uvp+w/XjxH7+MaVgte9PIcurJf+e+j3/y//Au///38Nv0K445ukb13r2ckEmerOhECSv66Z7zR61kkfgqQkrq0wJdKWrMaj7lqsLcX8Nzew9x98WjCKx8z8pYGIdhGUkbzi6EZkchEFJy5/HD3Hz8NGf3dyFRSGFyvnGKMleGlhk3mgKpKWYr05jL3Qx4dnGpo8e6J/OtWQuJV0JgaJJ4aQF3rTZRKf0EpY+nko/i+bf5nGuMjRp+lRsSlykPhdEQmIVFGC4PtmQCsZFkoTRFcEcPl9cLSbi8tA8P49lYo25ykBNbD2DqAl1JqmLLrKadXLp4Oz5fiGzWQaQlSDrrt9C8zYlEaBjKzsviDo6Km/n99j/Bldby92QiFiQRL8WrTH5DPMpyi50ucZlWZW3AS/vfQcFaNQOFr7M8Pc9ayE7SFuS2T70HuMJFzJgZCvQCfnMsSXY5wztdj7Nc6qVpMc7XQ7eSzoZRgCagQ6yx6RywaY9kFYhg03QqzWuXY3PZgTd4F2FtkiJZQPj5ICV1itVpQeVSLe+tLcQRzyJ/MEG6ys2mKe7Vw+fbdUV85IOW+g9TOOdnfv5x9A0H+t9eoGBSstJVw8TFHnzFS8Si5aytlbGvXqBtfTFvfTV0thE9Vo7dprG/KcCcdpp082Wud+jEJ+xMJpo4uNdJW2DKEtDthKJxHTElyHaYNO88R6s4g2qA0WfqSYZclOg2dlyKkyjW8UQN1my78d34ELGjDzPVVUC5FqbMXGHk2TqSi1bhtrbgyifAaLqDos5PE1/RkWFF0t+PygklpIIVXxXrEw+BCbdUvp3lpCUac6125JWkGhqFFfX0ah4kJkKC84iDhvpDVP0cUDb46Yu2r2x+oZT630KIS8B//7kc0S9wVB6s4vHeL6F8Eh2NhBgCbuT80nn+cv4LfEZ8iKBy45EVzHbMspiZRI6/TJO0Y1vvZ+9FE5sJ+sINzOzazfdLz3C+bZ7OUAN2tcG4f5KZ0mU8FFExeoBkyQAroTZq4xVki+bIxMtJr7Qi0NAx8WxUcdOtOxE/6ofGKqJ7vooSBnNKY7bwDmYWL1G/Xo8uNWxS0jk+TWAtBYDN34Sr+205QY3iXyqfYNg1hUTyNI/ww8F/5ZHEJ5h6NYG0KZSAeDxI1LBR0HUeTb+iuuwSfRxTt5GRdnQlqYmHWW5d5eXbyqkwLTXlvMfH17aXY4iKvBN1WsB80MOH1r7OgLuWsCi/hkOTRaN/SznBU34C7ZEcnG5NzfkWs4KuonMMyDfmI3g0TcNQGlIphkQhZo+XeU3wjKrg7ovHKI+vMOQZoSyTYlY2YuaO50rb4iWq/cMsBw4yQz8y/goiYV36fncruijFVDq6MPF164jBsKW2FWBTioa912FaejwM4DnDhm3rDbzt2A8pm7jE5GAvUpqY6NiL3kyB5wEc/rM0H9DZdks9Pt/9nBx6lYTjFJmVDYhYSANKseEfZaXpKZSWtfgj0sRfvEQiUYoQghv330JjxwaTk/+AkShnZdTAW3wHsdQxsKWvmcTr6+u57bbb8u1M5+gA68vHKKrNEo1WUNSbJVOXJd2mcAxLXJEYQtNQUrIeciO0GFIaKCWIRSsA8HiWqap+ibFxE00rYNfOb/6H99K1bVMQQkcpiRA6+9/wMdxFtzI3HLlGhABcw4E7+cR3WI9Grnnd8d5TzA8P/BJt+w9GxDDzHz/AN6trmDByfFIhkGicr23hrr7TgMUfDRWXMO8NcHQlgemuyG/MhsvrGC6vy7cSd43OAWBPD1AgBFkFqCx6+iiPHpqiqMlNPBRn2bnMqnOVyVKNiZoUlatOOrbtJ1hRy3dS+yyrIcSVeQByvCgNoUxsGOyr+j4Rxz6i54PMZS7iWZjLdxTAwDSnmSxfoWzJUvnrGyn0jRRWUoPGuZYY7Z0BjqX2ooSNvvrdPPjMI7QyxG8M/RXjFXfhmI5SEbeuLc0oxOFcJ12f4hH9tzGwIUxJy8QAE3VtlqpVbBZvOoNaB3vK+yxBglI4QlMo3Y59Pc6eOTAbL4BmdV+WznQysaxhxM9TUuTh7v/+N/lNSfF6ivBXv8ZQIET9VIrOaclAneTZlbPs9ZRyXc1LVmpOvc5Lyw2MRhspE2tcX7JGnZDEElefQwurbDMrabe5KRW+/IWgUKRtcULBVUzcLAmNno2HKA/5UTaTcMk0DiyBrDQk6fHYTxRtfSeeYGH+MIHyBvzVzvwGrbr6IaqrHyIW62XpPZ+h4JVztAUHifogEq1AIbiuepGSgiwxYaGxuq54910ae0dnqRRnMOe/y+DGYQB2lMG2sn681V/D2BgkGc6Z+dnAdkOKmsYkr7dWo2trOV4glLTGSC066UiP445LfHGDLDaW7/449NxGxD4M4cfyggp/axx35QbrC4UkF11MPNdI8717CMd7WD0ZY8N3CWcmyWo8lwazyRNOd7Dp+iyUoKywDoXCGWum9szHML1fpjI9Q6T4fyHrHTnhA4wX+jj9UogHrv/5zFs/VdGmlPrqj31/Fnjvz/xofsGjp7wHh15AVmaxa3Z6yq0W0JnFM1xyDPMHdX/LjmQ723fGKMTACkBRVDi3Mxvcz8lt5zg0uYpry9toN3WaFlt5uO7veHnLAl2+++lYnOMjHR34Guv4wAsfIJvO0qYMPCV9udfSqIx1k0p5MTWTROE800fPouwKW91JKrVsjsYhMUensGW9HKk4QsdikLe+sojYWOOFXTuZqWrkYLyIXZpuyceBt7Xso7RgmFeW55nISLIyy9LANBWyGY0ZpJJ4vWGcW18A3boypbL+1Wij/PvFj/AvZfeREG7e4LpEdf/zfL+skfKQxRsYLq8jq101GSuFrhSB+BwjJQ2ERel/eM4jboNs8tcYeeUMBc0zZLNOmltOW08qqwZ5g7ef9aFvs1AU4A21r6MrK0c1OVXJWbORkOZFaZbX1II3gJk4wkLRMgdDzVRtHGO4rJahynqAa9oWS44oMmV9jkplmJv/FkJpNJcE0eJNdHlHmcrupXJ5jgefeYSZqkbqFqb4t443YrY5rS2vUtbfRuGuuInS8Uk2Aou4K5OsLRSRSczirgpQd+g5sJn0nnuOxpKPkVj6PPc1ZVGNNtKnP05RvI2kd4jZ3Z9H6ZtxLwKhbHQt30hy3YcyimmoU3kESxqKscMNpFe9NB98iLOzkSu7bmB6ejp/npPnzlHw/S/R+uEN0BUVapGJql0Ut4yDrhAGJF8bR+VIN+shJ/Nn7yDlnyMWLc+jbL7iEEJc4dEN9X+ZRPIICImmOdi108od/fG2aVvrJ8lmo9egcVcXa1ePq61DNE37sQVe/TLi6j8ZeaQtd67Gjdx0fpXp6FSgkpDPT0UsQshXwtPbLMsOIS3bD5QlAkjY1pCadk0rkYzVKq2RA1xffQM7HCsky99ET3kPI5ERPnvis/m/8+7ud+N1eOkp72FH2Q5+v+88alFaO0GlQFqB3bvXzlHn8mJGhnEEonSJPprFMDNuO8uTBrq0yrX8OxCCad8pAOzuNyMyC+g2a1MijVmUvRKb/fu4izogbflemjZY2V7Jr9S8SKs+xT51lkvqdka8bayUF3JT2ZNUaiOc5v48j0zoULk8x94LR+nvvItLrdUoDUskRh/l5aMsLTaxFi2hcilMmfTR6NmBu2w/G2fG2fAPMjcwz3BxC3hMcJews6uT+fI6TjpKyC7NE/zAe1GZDFt1jU5poEkwdMkX37qEt8rMb1xB0hUYJREv5Xb7IPq6IoZFBGkzqwhKL2mRoUL6KTdcJF/5a5I2G46b7yWbrcBhFBHSo0g2c0klC7YEPneUpL8fR38azDpMzYaUkkdnRjjySoI3VpXwzvYK+k48wfza7yF8kpUUrI6La+711y/+M8nwXyCKJeJeO6g09dpFquVlyx5DmMTymVdWekqxhHrvFxCaIp685hJFw2B87ghtzj2k80R/nWV9Gy3B16jRwixYZaZ1SaDQhaLWFeVx8xAhgmy74W7u2GNxZv0Nb0FbfSKX3iIIdiXQhERJDTX/FvSGe/nwiyu8zzVNoOdvUCKLUDay443oCoRmQW1JzyobjU/jWu2kMNcZ2dxMBHw+SpYnc3YfCq3WYfHATUFiwYVpmD+3eeu/rOUHQKND8vnGO3htvoFo1S4Mh9WG6oksUSBNRgrHmXSOc4vndpKJnKmkauU578cwvDYuNh/kT5/+EbcKHQ2dAiU4ZH+A10s7OIrG8epWzMce5SMf/BCPbPkKSwNTrFZluBwdBKzgX5d7mSX3DHN6Ar/hw+1aoqx8jPKK0dyEDCidrZP3ULZSzzfav8Tr9cOkbiggsLaP79z9Pkxd53FT8g+nkmxJSNZ8Yyw7/5JtZOkolXwl7GLesFPWWUfxtJc3ZHayWHwJV+04pn6VjBt4Mu7iN+LFvJ6s4anttyCF4Ijq4bsXBvlCZJBX1+9jubiOoQqrKNr8RaEU149eojRRwHhRIxSJa+/M3ChIONBt1cRTq2zMFFNbdxlNk3mjw0207ZasQMXClNcOIoBWhqBeZ3/vu/i0rMFEIpSkKrZCVaKWYq0KGzoC8KQ32D52mVilh5tcP6SFYYSAsrI7mJn9BlKmN08sUpmE3JKVsRU63MsUZ7wIKakOTVO9aMHht3te4rHWtyOlhTJqSmFTsDtiotUUYrtpGk1TSBnmu8eyNJcP0GDbLHQyLAw9gfBnEZpCSoOlwAUaos1s+Iesgi0nBnGtdBEcvx9ntJl4RjKalSzMHkXaLARLaFDcEmH+dRdlQUWNUc3s4lz+3CqlmJycpLa2luSp06QbM1aBpoGQkpLy2fz3ygai0YCxK5/N7JSHVGLLVSsmCNoRoj+fKRpff9VCBAEpM/nc0f+sbfrTjGtySDcvxNzQ9F9GXP1nw0LaVC42Tl2zgQJACBSKeV+QiniE+eJgvjBTmqAiGqZkbZw19Tr1qz4WAl25CDZJYG2WaXcL8bI/IKZszM4scY9P44Y97+f80nlimRi/3v3rDEWGuK3uNh5ofyB/XGdi6yxKL4g4V3BAUAjOubZTf+wHtHmW2Op/MbchEBQsutFlPIcc5uYUTcMsLKIs46YlskBJ53E2VvaQiBWRLYihp4Jo6/O8Q7SRXPkb7OKPLANtTPbVnURoOR8uKYmV6zxdYRWsJ9nOw3yGTtWHDYtHJqQi7vYBgrt7E9zIHOP+M/QEz9CmWTnNvuIQiXgQW0kdW0veArqNDd8YG4ERCle7WHRtBTFByOdn3hdk3R3ksbNDGEKjQEr+srqO7rFhhFLYsJAuTQqa56L0NydpIvcxonhzbSGlyybZtMrfjgpJkSyg3azARDC+HkEMfRvXyhiRIgen+h9nR/BOmj07qZR+NKzYMV3T8XuizOz+e5QwEA1g/MtlClM7OFsf4c8rP0hGpnhlxhIyVSx+D+GWV+2dVP5eHwwlSCz9OXoORVObRmc5RE1gqWE3VaZCabQF3sn4zCiiQHE1c2VzGFLnyNk4vpU+mos/RiowjHOljdFIDN11mMCwwUKp08pMNqFsOsuBuj6ChRt8L3MjF2jjrRt1jLwyyv6mAEVLq2w7HyHuFaSdduYqHVjzp6DlYA2vn3PzQDZGacnwFVNgaSKVgS5zV6qC1apxFBOIJju1vb9HYbwVpELYNIr21MAPC0hnGhHRbXRfOEvIvcyJ/kY2Fp3oNvFzm7f+yxZtsVgvZ3vfyZDZwD8H7iGb0vhe7wifK54g2ftVfs/IEtN1etIZihsX82tbP92YQkcJDVPCq/UlBMOTlCs/Xm+IC44VDDpzeXo6k2U1vPKD73MwfAPFZilLtjh9usiTxsf0RTrWttGQ8uDxv0jhln9H5LIfN9VHi6EmOtIVtLucDK3u4ynPJFndyXRVE6auozQdQ8HxtRMQUZxtWuSAyiKEpEDTuL7uTaz6HiRV04pr4kd4QsvEdn0DU2TzC7QQgIRfSzUw+rqdP/3ND2Pmkn0zQuN1/24OLo5SUHSBsaL9mJtii6sWi4zdwX7zfh4uDnJNJQj5HX3DZJSUFsOj/4hgrZ1sxmkpq3Iw2yavZGO5A4UE9QwjtNAvuumin6KChdzPWnseV1EEWeSl2rVCtCzKM1VvwhBXko2n1fuplhrb0i5c8h527bydhYUnmF/4LkpmURJrZ6R0xv1vI/TaZca39OBYW6JqaQYdxe9mHueWUzGe8tyNZy2Mz9/F7ohJd9Tg7J4oPl3lofju7hP0Lm1nF3Y0sihDULSwm2TxcK71qHFmXeKyreGNdoLSLTGI0giM3Ycz1owEVqRC1zUqa25gcvGbKJkBAYH2GPHxALXdWwnWCB595tv5ZVHTNGKxGDMzMwT27sHxgwKUlDlPI43wch0+7yIaEiUFyuwArFBtEBSY9aSYuwa9i8evWngtB+orHzvkc0fhxzgwPzZC47H/sD0K1+aQCiGsnMPc6L7ptl+ibP/JOFDsxoZlJrsp+rFJ2BI1uei3WZYtCqpiYRSKqmjY8jDMfZ6h4iD+9TPUzJzlQ88XU5ZtYLakjJrVJWLpc8Tb3kQcO0oTGFLxwpMv40mM8Otzn8OQBjY0Htn9CXa0P8DMzAzHLx/nnDPFo2whm8fLxJVNgBCYQtDfvIXS0UuMjfbQ0noKIRTltWdJlNeRXHQiNI1tt9xJPJ3l0tIqHl+YuW01PKntp0eeJHhBYz1RCm6JKzmMFp+kRS3zsLCETV2ijxYxwojoYEB10a76GWBLvmA1lGXHc498kt+Z/Wdekjs4X7eHi5099LX38K7D69RcNLi+pIi6m8dRSljeidFyAMZryujIrOPzrTDb8wV2NGblAAAgAElEQVQLqWmyw4lfI16q8WzrdRhC50yuc4GADILz7d10TowgdMubTRkGQtNoabgN034BiOQ3r4bt32nMlDPKlbVCKMX88ml0MUtYFrNm60Q0PkA1aaL2GUwhmFzro8G9jVLp4c70Npa7s2y7aT8LJ79EWhhWgaJDunIGc3iO4/e8CUPPMfPl/8Xee8dHdtb3/u/nnDMz0qjMSBpp1HvflVbbi8vaXhfcDdimN1MSbhLf5BUI4FwCJCEhJHmR+8uFkMA1AVNsTMDGa2Njr73N9hZt1Uq7KqteZlRG0zSacs7z/P44I+06QG7uDffFKxe+/6y1nh3NnHOe5/mWT5EcmHmdd+f284a8SgFCkny9j0lxnqLSKwmdyJIu7M67fV7YBV52P5cWmd6vUFH6MSbVyyhlZoEmAIIVNvL8qVb+NvENBpK7cIX/gNxIE1JJLO85MmkDcdGB76ROqhWMYZ3DOZsZKUuzMuKkxhfkGv9Fjp/awONWM4au8VvJJ9iT9FHnDuP1rzLjd9lTEoBoDtuGT9DRMICW9rCUxZoLpcNEO2oySNVWD8KRZCbfHpcqlWGh+HHqqt5CQdUduPJncCVfZab+c1gXWhHoyMV3Urf8FYpyXmOhYiv+Tb9Fiavq/8q6/7VN2paXj6NkhotaJyYGShOkpeJvBi9jeQtwKsXXAvP0ZCQLObdD/CQISafoXzc11pUi11qh1zFDQeEJurtfpEc08xOxz7Y7siwq5y4zX+pFmhaLIs6cCuHUIGUXmCilCGsRrq9aZmbjD1kzDV8rmJXSmZ9vxKuFKZMedvma2Y+DueIU3eOj6FbW6cAy6bzwKo/tukx74jY0aaCEybDq4CupB8jMw+PzQ/z1099kdZeLXu0uOkU/KGxXAnWBVnOY3O8McqblLbbZcnZlagJ8PTfw4b5D1E2dpnnyORwb3moPjIW9mRgK7l/wMVieuYIJUZLSTJI3TUKffoKasKTIiqCa5qHb4rzWRpu8iAw3I4qGQYFUgrlTbyexVI+lWRwOvYd/9t1mS3cIk5v1XqzsCE0BmeYEfjVNU3Mv+7V7s587W84JDQvFa0O1pI6+zmnjj3ng05+nvf3PqKh4MxdPfosz+8+TCNrsySGtmM88/AimbmBYFn/4z1/ipthpNJroCr+TTREdqQo5M7IfTXdzoWmFouLj6/dKE+AoUeQXW0x7/oTm4GGmXw7RrF3HUNIiXNyfFc31MazNsRUDkZViEEowlZZYKUnhhhJaawrWE5xE6AaCyZ/amENNkVceZ2lmBXlO4870Vkb0AKukmBIhTp06xZkzZ9i8eTNtD/8dntknmMwdYGGhlmCgFXk5RmHJIolgAUW+Sq4o6Sr01RW8oR5ihYNYDltnqrAwgM1BUlfwc2uR3MHqUhOenz/1XI/AaISnv3QGy5ToWY22f41rWyMkpBIrnPzxv6z/P39D439kmf8/HUZqmMLgX5BrbmHDvJeyvA72hgy6Qxm+44IjtTmAIu6IU6EE5dFlSuJhFgqK1td2vKCH6ya/jX9hibc//UPmy8oonZ/nxY3LeEot5krAlPb63rKQ4szzj2FusGUZTGXxwkvfIueclycv95KRJn21LWTq1VVrkPVnfC1EtjvjcKQQYs2mzSKvrZzhvJ1c2txEcNNGqgbPEUhd5lBbBxf1dgD69E3cW7Ofiov2Bmq684nNuvFbgmaGaBZDoGBIdPJ5Po0UOrqAGxdnMCosLCQGFu2qH+fsLt5y8e2cKx1G1uvZQlsxXmZQvWSyMl/N5f115JXHCKUbiVmlWaygYk4PYxRdXO/USJnBqD9MpnJjtqjXARNN2YmLbllsHLrAS92CYz0OPuV7F46/+2dCHaX4tzyH0OxO9hWSgcTvm2F+cA/j+QFWxAptwTOsrMS4JGZw5t1vkzLkPMsVburz76MOGI9f4GDge5Tl1LKYmeHmhx6mcNYgOdxGfFs2QZHgXTYJtzvp5Eq30cBih/on0CNrxPU1grDtB3r8AE6tB3m7vt4hzVy6g+ZYD4niS5S23EjeljK7KJ59AiXt71+0nERQigp+gkjFq5jOCLn+auq3voeRcAPNBz+JQ5hU5JzhQPC7lLjqWTDnuOVDv8tEpIuo80kKvvcqznGJMgyGN9bxocNPo+rSXOO2qBExHtZ+wKfl+xl1eCjNH+TcbBknJmu41Xspi41WCGFxefEvEZuFLSKsHPgG34E04uSEWrm0MEq3by++vtMkC8aZ6y5EagJpCc73ZTgReJp7mp6k0X2e2XgOfeEP0eltRwiBpiBsfZReYyvbjF2oIcHiaB++D3X9XJLHf2jd/1Lf7T9RFBXtRGgOOqyLGJpJRmroEqrn0yS0BqoizZzQztGx88Okn63F738vwfZv0cIQj8jP0h96KyUXp1HKxm0UegOgSVrFEJ+Sn+XkzA58o0Ocqh9iNqeK3YldvOjow0LanQRhA0ktofAVLrPc9AqINRq9/Uc06mNsdBsrUT/LBaX8fbFFRXEBH1j5KD/IjDCfynDP/scZb3ZTHejjB7tHuVwleG/AT9VJu8180HU96Vo7uZJS8uKuW3lh21Yywm6e25gHAweSLw0NU7X8GD3DAxjSIpNloP3x5DkS2xV1Uxb/7XsWhvVDts4uMXDDe/FmBJcKNQQCr8qjg1cx8K1vAr+jf56bFt7CsViCEVcSgUbE7+D/0z9jJ2K6ySNFf0qLACkFy5duITJ2LRfLjjHkO41R8PA6I9SUoC8l0KTEEnZ3roML+EqjaJpFp7iQTagVCttpwoHJNa1HEINJRkQHXxqZ5s68VRwLB+kfLiARzGNtLnuwsZ2M4bBJE0LQ376FjywdYsy8iwKHXR2DwqW7uRg5yTWNOaxkPeykghFa+YL4DKYw2B+Fr9Z0MR/8NIe0J4jLChZWNmYPS/seJ4ov2Y4XAqRmYZSfZ3G5me59tRRGRkm8+FMSO7ZTcLmMQNbGTinIKVnh+E++i0hdT2l+lGarnIC2zKSy2WaWZdHb28uIN0RX9xG8KoOnMIg7XomjsJyVQBPdRbWMLI2+YU3IzDBOs5u8VA1Rhy0rEA77AQdgIYSO7cVjoSyN0VfKGHzmWd7yR3f+QrwawMzQMpYps169tkbbv379GiHh+I++/4YO7prB/G/iZ6M32IuWGiTFIFOak8qpbhZdnYwNnMTvLqLv+g9j6gJd3UbBuVfxx5bpmJuwk7Zs96YxGEDr2gGvnqRkaYlAYTE/2XEtfXWz1MQv86e9c0x4i9i6mKbx4jH+6v21JAq7cCQv0hU2eSD4XxlYmMUyJPOeElZceQilUGtjMglKy5IRlEKXktbAdJaFWYGSF0BYDKo2flx6O+fb21BC4/TsEnp+FWyqwFrrkmSfi+PuHdynXsOW/IiTSuYw9mw17ookGfJQ/mJecd6CrDTsfUOzMEsV7zj9PVY3G3RwgWZ1mXjgOhb1GM1GkJexMLNeqvXzdpGizCnic04i4VrShV7wZj+H0pmPFeAKtKI1GoCFknZF08kFnr4qCbpv9nGic63cMRGlK2Tx3SrorzA51HuEfVIS78hF1zJ2jivJXicQykF4vg2X6WEylct5l8VwUQn37MtnNr+E4ten2R6Ps6qi9JS/Dd1WyaahoJtX5r7HxcgxAM4//iwbEjvIUS1ZS6mL5IZa8RU9xuqeG2lR3+YRaXcou4IDNFYMrRdn6+iWLEtViymKWla5OLId3ZEkFqng2oWbyBXF5Ky0cLCsmLZwBc0Vb4Z4EAafpyK4SsGKxk9L82nU0kQrbUH3FfqpD25la/AVgg31ZMYNynJXuNZ/gC/F7qHlxvvsPYEOEkYJk08cQ1l2B74xMkOsTZH+bfu6DUg3Wy5k+DiPcarLi6ZJlCUYfraWl/I6aReXrvouFmpd8s8kXBym8Xwzi6tTbCm5GYXBYvJePOY/UXapnWjZWdzBLcyEZ1lhhoHX4pR3SaYoILg6RUPdMMniIdzLHeRG6mlU1bZsFwL1C0ge/9H4tU3aPJ4tbK16hLxXvsZDkWFOFDWiEGipOHcM7ETXa7Fy7mKptRZlBnDFqslb6AFPkNuMdq7/i79noaCAQzfcgGXAcqSMGmVjSBrVMM2BYYpdMV72lrKgjfOdkhcoidmMPIEgUFjEqM/NJnOcgpqvkhB29bpe3UidisF3YcS8XNLjfGqbD0vT0GQBd0+OcNNKLnv7j7NUUMhpvZNT9YKAx76hSSFxhRuIxXwUe1cQ1SZoGpqyMCp6yGgGUgikWhtfCEwluOBqYFNZG4UbE9nPCbqUdOUske+/lZlpzWbLKthw9hBdE1O8fu172X9rK6YG+ysd/O7Zat5T/Q1+Im5HCMGUqGa1eJC22B5GOI1EcYmuq4QkYYAOWriEEIqS9gPEZ3qoVSW4697PicNTOG9wr2um5a0msHT7sbUweJZ76YkNcUPhj2nR7IT6kHYDUeHBQ5jrxSGatSHOX7+RJ7zvQ+oOnhhK8wnrJRqbL3P5Yi2p+VwMh0FBVQ2sXDFhL9i9haWltzM+lUvp0jLznhJOFTnBTNFDgo5ND3B69gJSZrAk9IvudXHhtFScNvP5wKc/z+A3HmX15BGWdu1G6joaGi1WBXo6gN1+B1AMqiW2FcTJvTzM5Mc/jEqnEU4n6YdvXzNtQAjwNMQprNvP+fNppqI+ziDYaNauY1gKChbweAPkuBIomV7v0FX1/Mi+3RsE7r93kJ8sZd53ZUNp292Fv6mRYMrixBk7aYvFSjH0P6KuLrk+Cu19+buMvHKORHAEGGPgaDnljTf9wrVW1VqEbmhYlnyDmOfPi5oNXRgOxxu0234TPz+2+bdhCANTmVTG8nBqVYxZcUa3t3I5x2mbw2u2EOystxQFpBxOOuZnmCnw0LgwS9vcGP1FcQbf7eQ+dR8f234HmSyDtOrcUUaTxyieXWV8aZCpj7+bl/KabPnTQpOyyMs4lIMKWcxCYYRnunfbXr3KonLmNVZzLJZLrjgabC7M4/fzPGjLu1jOTDE4MkDf+ZsJl+k8WvleTF/2NM2esBbYHbu1mWG22pnPLWHRsthRUcb4jj0cMlx0T5zlpqUx0l4vvVMawu/IvlwilIU/3k/h9CoN+cv4SqMcjt1LpGgrnrKX2FvzI3y8zoDqpvjMJlbkPJc9E9z8+iD99fkkaluznUPISVSQk/CRzBQwPFdIzqE/xF06iDa6yrk2H6nKBO9WjzIuGkBBoxmlKZxLRUEl+ddsI5n/NW6JxhDtAeZnDNxLy6TWYCEC4pduIVflE1loY2GhERTcmHDgMzXO+Gv4u/ISLKVw7iui5+QKW8J28SOy10xTGmU5tSylbHyanE6iihSa0MgJN5EbaUYpyRPu3+bH4yE+tkWnRQ3RIofImdFJVqxf5jd01bXzDsIPZkDvp0Hp9J2/hZVoKYPRk5iN2/nicg7nTkRoG3mFj237MqgMWmUehvc+futYEycGdD7QcI7dYg3bm2bp6CcpmFzhRmXwucx7KBZxjukdXChu4317rmj3J06cRJkm6XqLVKtJy+IlJje4KdcTNglfQNhry9Lo+lrjQ1FQmSQwVI7q1FCatP/afqjs7ijgXkmzVD9OTqgNIgag2YlbQQPB9u+jhMlq8RD+uVtYHlEUx5Mk5l3U1Ec4pw0zte2QLVysDGp7/4DmlQNEzY/YTQNNw/VvFLP/p/Frm7QBeIJBdgb6COfs59GGPyQjdHTrzTROfYOqYC+auJ9Fsxp38WUme74AWQ2XMRlA6yxiKVlGz5kz9Lbl8GzFIkcWnDS7JCMpnckyg9+f9bF9ZgOOHRWUlDnghEIpRbCwmP3d1yCFzhBbaFZnadEGkRLi8RJW4iU0T7+JilA3c0svcKDbjanZQrE2s8uHPxLitW3b+fqb7iejGwhl0jX9LW6daGd/3Mdp12v0NTTgMtO0BiaZzZvj5mCc25ev4ZlqF3Jtl+AKsH5bKIPvXdfwbJUbM7k2LtB4raaGe0L/wr4HOslMnUUbyVYSy6P0i3FMzTZNTqP4Rks1YfGh7HgA/qf4bQrzzvM25cXhThLzudiRaeO4UphYGErSKQdY1+JVkryyS7xZbeYTUyXcc+Yp6s/+gHOtnWwaGuDr92QBz9mq+5S2g7M1W8mctuiyXud8UQ0HW24CoeHA5HoOATBe1IIUOhKBqQwGtU5a5DBTbbU0FNRxvcdJ1/QYPy6oyI5HTTa99nW+oRqZKyxhcKNkqNyNJQR60918zbUTT+tdbPF38uzB7/DqiTQJTw36VmX7o0pF/ukRLjkEq8JNUSTMjYcOsdjQSW3N3fiVh4Bnwp6GZDftvPwl5tQy+skQ5zduRChF/eQkMbMfp3ZV5QugWXg8c8RiPvIL5gl7+ti9vJNQZQZv2Zo+kmbjcbIQsTVgNroi1WyR6ecNkUkl2Pqmenp7F+HMlb/Py+uiqEhbJxmo5W4SwUHsXd1CmtP/5jorb/Rw7x9s/oWYtqvj6lHpbxwR/u3oKevhkZ2P8OS//DldgR5e2L0FBbTOT1ETvIzDMslgH0OuTIpnNl1l0o6ir7qJulAAZzqP/kpJvHkXmZR9JEhNcLamhdsvHOeSY4xd73wrPxqysPKy8AME8/52GBeUqULyCrrWMWNCKRpnVqmeG+X7d19rJ3LAhViCH8oBijrraV4qRw5fIBor5ay3BUtoV0aqayLRSiGQKKWjsrZqtqyC4EinxmKNh4MZG2d2quUGBlYEn516jPnSd/Jqc9d6ofNQXgZjLklurUA2x/iRdheHi2/CwsDB/VSpC7SKIVoYYjZvkRfTcbb0TeGJJ6hItjByVSKpW05c6Ty84QNM17SSiZSQmr+FnPCP+N7dd9nj2KyqvxQ6h2tv5u7Qq1RGJ9mVaaY8v5iu9tNomkW6RWAM6giFnXxISGTcTF+6/Q33WVewKaUTy89hFmybPKk4U+xgU9i2hlvDKSplkbISdHh2MZ+cJFzQx1JDGHeoA3ekBaUUppLsV0U0Fh5DiSwJTAhcuzeSNM9jEwmyv1wAShCr1nEbmXViR5n/MilPgGUMeqv2cm4pjVTQWDiEUhkEEqksTuaWccJsRio4uNTE1gYDQ9r+0J7lFBoSB6adsMkOdmkXubWjfN1s/dTEMgNGJV3NGkv/xQQd3ASJnS++sq9JgSecAc2BEA6kMpFSUH0iweaBs1jjAnOfxarS0WMaYlWxcrNCE5JI4/OAQEiDqpMfs1miQpEqfj3rGGSTFNwFo+wcnaU4uYpWeT0OYyc7O3/MYtYbXMkMlP4PClKTJL0jLBbWkp/uADb/klb7lfi1Ttqovw50J5dKSzCzG46FYqqy3mYOWtOEm9oI5J9A165SnhcWozdVMjm1EU1KRl2HWc4JE047mEjbC0gXFqZ7lt+anuXpH3roq4Gcwk00R5qY9ayxuAQZpXNRddMsh1BKY/TydmJRH8lomEuL32E5OUv39Bb6N5iYwrA9+iKLgOB8Uxtpw0BpOkIKdqbfw1uSaRpLdH53eyumtgYGBk3VMhL+Zzojae6eSfOjGidK2IKZ24Mr/E7Cwd53bsJVV0jR819GOStAKXvjSUcpnO2lRQ2RfFgj95+q8c3kYnaVsqnoLN+XN5LGACFYLiywL9JahqEUPyitJdHo4JhjBZEY4cOFCd5NnJNqF9s5RtulBWRHNnORUHWsj9pPvhd/n9312jA2zMaxYRTQPXSec20b38CQszSNUa2e0lPDnLulJivkqa87IbSIoZ/BbrSpAUylow86uO7A9xFKUaFpfKmmgbOtnTRNDjNX7mW2uTR72F3pAljoPC/LuR1YCeYSfHKM+kwGKaYoXshlsmSZmtlRzOBMNveRaPXl7BwPcN0Nt5Ec8WKPjuTVRE1741QOnkkPYjXZWK6xxgYaSVEmB9C0KwB9JQWRSDkFBQt0ddtJGg0XyAQar2jeaRAKlIJLJx4roqp6EE1IhAWuIUHaoV/92xk7M0lgNMLqqo1nW+vYxeM6p888jpRpNM1J/fY/48LLV7phnddu/18utfJGz7+ZrF0da6PS38T/Oh5oewBZPMvHtl9DRrfv51B5He84GuB3n/oO/Q3N5GiS2aJSO3laHz1n9dnKaihIlVKeKsMrS64Qi4DJkgoW8r3sjObTKBupWD6DqG1lzcLutcIaznlW6YnAdUs6322SmEqhWxa1s+OUR8O0zU1ysbIBNI2Msng6Xg1xCwMX9xQWURZeojkzzBnViglolmSXIchMz/Am/1cRmuKIuoH+VR/BvG4b9I6JpV/i7NJGKGT9O53YdD3nD72CKpPruFoFTK46aEIj4jf47/qf2HCL9QmDzkWxgRY1hFKC+aSLpnQVSW8OJ5oWaFtaRJcSS4AmFXXjFyiI/4STO9uQ2jhCaPjiIf7xmhIsfc2BxYE9X9RQSjLj9eGPLnNen8TjCa6vT01TxEv95Mtw1uZKkAw0IVEITWAZUdLGMo60F4fpoXHe4nUFGSUxlGBzKG2P+C79AFncQI5pklmZZUvbW9HQWfEMMbXtr1jSelmSPyZx4CYqJqs551rlg/HTDBjViFYHKBNNd1DR9ACx4UGkzCBkli4gbPhPbrGtB7pGFPP7L9us/0Yn+VVOnAMmGVMiw+0I9SIIE01z0FhxHYa2QsZSTMQa+NLp36PFO4RadrHJ8S1Gq93kRxShpXy+4/wLHJhoY0/DVBOnZAvv+vox0qbgA/u2ssc4Yhf3CvybQuuObGvEvcici+GJatz+OPFZN13jy+go9FGN/ApJ5H4dpV+BIK3ZjSEUSjMZq30ULmylNTaMLzrAjCpGSYVQOpXcS/7OKQxXjITrLSDBvVyIUF9ASdsasDQyx0J+E32b4ijRB/QTfTaP5jsf/qWOSH+9k7aaHfC+H1N49EjWo2htw7H91YrzA3z/8Dd4Z6aVxJaXbJV3AQqD5WglaBpS09iz4e3c0OLE4/TwxZNfJGOlcCjJjskM2ose3mqZ3KvDP77NfvArI4toUqKEwKFg78BmclwJTsYlsagPDagPLBF1jeDa1URhqJp3HglwsTZKZWQJfzQEQlCSWkFTCiktdCXYFrIwEJwr1rPsTm19E5ZojHg9fK/0OeRSF6K6G5TCYWZ4z3f/li1334GrbhcAyyIHDbnuIdortnOeHh4Rn6VZHyK1dysi1kFw+99QKTI8oj7Hl9OfYsGVd+VQuGrzn3Z6+Mdmhabez++/tsB47WN8S/wBJgYX2UB5yxwbVMh2fxGK7+4OMKvH+eBOyfMhycpPIXcUNIeDD7XUcWxsgOGGzitECaWonRxEGDpSXkCTtwLgkBbdCxehwnZfeITPMsAGOuinUY1w4NRNvPvFIwglba/R1k56hgZ41wtPM1LmZaFQZ9ZTkj3s1roAEt2yGDx4glMNTZj9fUjTRMvS3PX5Xu4MSspyaph3mVfGFEIw7cmjftqVpZRB4ey1RKtetVW4pU7L9B0siDTWVYASqetcnssjGLuVMv9lHI4EKpRmcbaWmF5KdU3f+iGglIVSCpm16dGEoMi/CELi8cxzeWQbbpz4j0ucU2fghg5YmMTtT5BfkSAxX8zM0DL1G+rxekN0bngRTZNY0vaZJEv9NwqCPPgnn6f/0Mv/rmX2Gy/R/7txOb8KU9evjBWFxkj1RvLlII3ReZRhgGYXaEq7UkyhJIMVdSgh0FU7v53I4yU9YSdl2c6WEYmzed8dFNfXU3XoEO2BSQYq6rIkH8HJEo2NkQwbY4qHxQSzzhKMHzxJRXCKVEk5bfPTDFXUXfHgFGuJjUUoJ8me+iNEa3K5jhyUFFQNLHNzSTuW8xAubZARrZWj3EAmzwAlyY+PsfvycToKczkaGuN0Ycv6XqOUYrLqLnJF8srBjMIQq6DgIhtt0tlVa9nAol32oxCMDO8gHiuzOy3ldejJJImIYO+RI4zu2EDjsT5KFxbp3bp1PQGWSI5XLBNxTaLJN6OEQhc2qUAqHS3L2gWIaasQ8a+vT6Tg8ZE93DDrYpNjgJwhQW7oWS7sHEPUjBGjjJV4GYIpNsa6KQnnc0NlJScT8zQOT7G52Y84fxLnyCFQB0EI3Hd/Eg0dIQSp4iE0TdmdICwi3rNcGl+gc2wWp/SyLeamatND5GzPW5fpyc9vY2HsEOqFIlurrOQSy7UhlPHyGrcMTVaCPpPtwpmUrJ7mOx96P4On57julIfkyY+zWjJIxfV3MpmzEcQxQKFpGvu6buLrRxuoKxjldLcHQ5iYyqC1P4AzbKIjQWZg/AhnMwH2VR8gls4jXShRCFtbcI2QvFaDaDBe52Yl4mZlwkV8LgeBYrEghTeRwtAUqzslysiyxRR20v6GMbDCKA8ifM+hPZsmGeyi6uS7SBYPoWcKSBSPgGgjN9KU/UeC3EgzNb2fYLV4gNLIRaLUMl0/ixL92YRQEmj9FkWXt1FZ96Zf2nr/9U7aAGp20L2nBff3T5HyOHhg4Xluz1xiKP99hNPV3Dq3wgH3eUpHtuGvuIxHq+T8aDWxWAkAOnCLp42Wrn0AtBS10Dv4I7a9/j/Rgi6EJdAVDNS2MOPtQZgFVISXuO/c6+QVdLF3ycGmSCWK+zG8ZwlX9eENdZG3R4OOaWAKJY+SOv5Ociet7MZsb1DlsWXuPvcqQYeTsvkcOkwbb9ITyqBLw27Sr+mGYNI2M0zK2swzWzZmWZ+wb+ogdW1DWFvevn5Juiu9GPMm6XXK/hWafLMcpTrWyWrxFT/VFjnEjQsX+H71zisdMCRrlDG7ONNBaYyVCxaMXZg4spWug2OOPXTSb381DcobMpye+BFlBS9wbXea8EYd7fXrqDSr8Oy+hgePHuGvzAymrqMpxb6j+2nx19P5rtt5YvjPuPuVv6RkpZ0tgwNkqnSefsdb6OACLQzZXq/YSVSHliSyoYyxjW4+veePyWg2bu5v/+7zVAYncayuUDs9wqn69uz1knSOXWRD3zFO6ls4NrrEmzd0gaYjLeLGL70AACAASURBVJv8UFzrY1PVKu5QBZ3hPRwMPM55r85URT1zM2PsVG7W+lu5kWaqT36ChZJzRMJlGJEGKgCdcays+bDIHkaxWCmxWCnOyCI5gUlUnhO9RiMSLkdK3e6gCZ2F+Sbm55vweoM0LA4hN8ezm5vE4UgRPvNmNhmnyP3r32Pp8adw+y/RfNckQlcouYTmHKSm5jZuvLGSxSXJ2gj0SkgcDi+kYeDwASzTZODwAR749Od/bkJ2tXCubhi/8HW/if/z6O47i+avx8p22hCw5M5n/6ZraJyf4c5wEKLLdsJV2bBe7JSuRFko8NqCuihEaQ53vbzIs5vcSKFwKMmufT1suukeEmfOcK/Hi0PEGBIKiUIpk6H8R3l54zxnzSTXVX2EW4u8vLq5iFRwCiMRpzyyyN1njxLwlBATFxlouA+lDAyluL7pIDHNxRe0P1lnh1/ffIjPZkpoi2zhXepV+tVGTGFk4RYa8fxGDm2o4fa//zxTPQeQOXWcrW0FpXAq2BrqRETgyUrIINGVyQ7zi1DuIRAsQquwSRJCQXPUZF9onAarGpZvJJhIZK+ffaCbeR7mau+i6cYWHux0MfniQ/aY9uqLn5VQ8UdDtIWeori4lh2lTyE0xYDcQNu5KZYDVeSWJynz28SfpeG91Oi5+JZ7kCsFnHY7cAYLaIyPk186TtMdl1CGnfT1nb+FeLQUV26U7Q4vfncuJZWNvOYrY86bT2ezRvTpb6IyGYTDQbogH1fc/mi5ofZ1+0RN6WiLdegqzqC/GIQDZ/5Wxl7yc3t+MZ7bt6x7BxNykfBexB1qp3jsLg4sD9C5+RAGttVXYtwkr1EDJEIaqJ8WsfFtOi3eAqLWErnhZnIjzaS9bo5OPk7JipM5VzmWJSnNGeabD44wMjeCJiyEBpqUdG2rQD/oso3WdScRv5/6mU9S05TK5lkiKy9iYxuFXGOz23cjVORAXJciP7xCPOhGF4r8a1qwPJspbRql3/vMldcLgVJQEjZxzUCw2InyS/sw1yHZoli6vIPSSAua0Jna9sWsAK+D6pMfwx1psW+8gNxIK7mRJuKeDqa2/a3tbJN9LrLgdBLFF4HfJG2/lDg1scyx0SV2NZbwxINbOTa6xL7N+1h5cgmi1YBOWI/gLgzS2NyLpllYchklK+03kJK60THUwXMsBfLJv7aDnroeesp6oP5Ovuz8DNecH2egtoWP/9c/Ju1wcE4IPn3mK9w9fw7PXCFOowEQrHpGSGz9Bxwiw0rDYVaEtKsxAWDi8QaYXypdfxhElo1VHlmicXIEp3E7f+ZdpbvQRUfdKnedO8VsUSk56SS+QJDWCotbvzbEn39gX1YyQ0Oh+GnjPnY2HCQa/SyxPieltfWopT/hU6KWw/IGjopbbEkRpWiadVAw/nFy480IIRBZ9WqUzqbJRaLBBYarBH79EsdLd2Fd9XgJJXEowTVLOj8od4HrqhuRTSDXIjddyOYaBzJhi8pqGqjkAIm+AmKH/pS9O5roXVhksGkjrZcvcN+ixs0PvBNXuYevNdTyfP4RYofnON/WzqN3PoAldAxMHlGfoZWhrL6QwFD1JD9yjF79bjJZAkEGONvaSefYMDsuz1KeOIbMK2S6qIyqyCKMBjnp3MJ8ZR2XnKs8F4hS9aaHSB2eoLxKYlz7FULCZFk9S9XJPySid/PETTuxdJ3XLMmeoSg7pq7gCaMxHy+nSpBk0Jyn2Ve6yk1dI0QTzVjWNeQKOHL8xPpBu/u663ELEK4oczOvkVmuxXPq98gpmiYwmSIzG0TmF9JcuRnP0QssbLLlFpTSiET8FESfo/Bt97EkSlHKQVFLBLGmM6dJ4unngNuor7+V0PJj69ZUV9+sTCZM8CpBXDOd4eC3n+Km91f+zAj0DcK5GZNjTx1mz/0/+7rfxP9+nJ0/S2+wlx0tRdzx6is8c/3NrLVDhstrAZguKqNldYo70xaByxMMltcihYamJG1zEyzme1AohJKUyAk++OZN7B1eYKLMwW2NPrZ5tpE4c4bJDzyEnk5zmyY58OF2Juq6uLEwxb1lB9EFVCj46pk/ZTrjxMSkcN9GNvjeSkdgkcqxUdrzc2Dbm3nu6TjjPifdrudpbR7kUe3DpLGdDNJK8VLuLZAL44XVhAL54LYQBXZXLDtTJGMY9HZ0sScxRMORp2iubWepvJU7Iz66I7koFJ9eeoa+oqit2cYQqkWQOFfEXWdhqLyGS/5ahgudTBS0svVEFaWxZTSnTZSyOQ+CHLYDgkMv/JjJoI+uP/8sOccvUzexwJhUrPG4vKli6mP16Oh40udp9Y2ClaHFGsL3spOla/Mxuw+vwxuEfwx/7yeJxEppd55CORVjjU1MNjWxrfwcTuP8uiC21xMgEfVTIYsRQuPY6CLv02JkpMKhCb7thhKypZUlifsU8ZUQQT1KebSEqpMfXxer1VZXCIifZp8eC2nOIvVKzv7j86iiVxhNfB1UFgbULBDSQeXpP+KV5TrEub109byCEAp3U8B+C6VTdumd5IaaSI1GSFWOE2p8ltylNnJjzbz8/KOYK1Pch8bTFXfjqUxSL75MMpShJsdAKXt8rAud0sKNjN/9EEXhDCvaLi6PHICcDHo2T9OEPb3xzOzFkSzCF5kg33iF0docQkV2A0AJRU/5NOm4m/qyGNUf/RwLiRTjM6+j1meh9vvpStA0kcATTeNbzOVCaR4KO1EmrnNhOcTecouVq2RdlDRZLR4kN9yMrRMq1t8zUTxov04ou1mR7d5pwkFpw95f6rr/lSRtQohi4AmgHhgHHlRKLf+c19UCXwdqsC/DHUqp8V/GZzg1scxnvvwE1VaQn+h+Pvc7b+N3bmwGmgmYeejfXsGSEDMNPJ7AFYsRYeH1zNpjTClpWkyRu/13We1LkbzUR/KeEmaTC2Q8GX5a7+TAO3QyeRtIOYz1sUCi+waa0i9wLPI/qRl/D3mRVpsKrdkCqkiLq/XaAM6kLlGW30QiFltv66pEPjHDzaVNe6hfzKVxJcOO+hLMgiDl8TDl8TBISVd/P9uni4hnTLouD3Kwa7u9OWUZpANiA81yiNef+2uq92xHyjSt2MDczYPDzJh30J6apXGyiHkaqXRDTriJ6pMfZ77kLCfjkkjGpCFzjPc/e4rntrXyWuk1b8C15SdWuHnJhUKxbTJOb0cGMzs+qJdj9neVoKROSd9H2LihjYnk/nV8RaH7fTjbW0FZXC4d45XubjK6zmxFA289lSJw7CVWhi/R33kbX/FeT/pOaYOYs+wzUxkMqI0AXGQD7eoiNQ2vIDRzXXvPlLbeXc/QAMtuF6G8HOpmA1Q/9UPmy8vp/i8f5eS1b2F6OMBEpYMnUyY/VDnctzjB+0rrcFYcYWkdvJohUvkqLyf22WxXIbB0wRO1GnUzUcqsAkAQ0Gy7GSWg1H+J1dbjYIHTeZqKkhZmTq7inhy0DbJXV3Bv3kjRhkLGJ/4beY22GTOnfo/i8Ts5O/td9GQMI7mC1tGBayaHqcObsBoytj5c1EfCH+WZJ77JTQ89AnLxZ9ZFOmkRGI1Q3riFurJ/YGrmy5h671VrUsfh8JJbc5H88lVisy5AMTd4jB9+se5n5D/WhXMztrDwzFAeT3/pzM9otf1ni1/1Hna16bjhMujUanGY19tCqWu6aNlE/2DSYLOVAE3QFpxEKSiMn0SYTlBdNqZHKZ4+8xS77inkLWWK185f5GCyAzpbqT9x0mYyS4msl+zMzRDSMvj1FLoCPbvMG50ZxlKCtLOJ4eqHGREO9ufXclc8QXB6mu5RSW2snZqFFDklNQw1dXCIfVzZ6NY6hfbPvf5N2YJOUb8UYKrYjxS2/mX13BjO1k4IDeKTFr65QcYYwa81syCiRMcDtHvHGWADCGhSQ3g8AcqnSpn1+lBZTHFaKR7zG9wWCWX3RBvLWZIzTzqRILY0CFiMHIdI3zA3VryDhgqF032GkcKXmU/WIKKl6+PYaNhH6vR7qSoMYV56nXT7Mp6aGcJXyTkpzSRYcpbQyjbW3EXALo0GE1VsUP22zZgFOUuVvCm9iTJViObQOVWkk1m2BVWQiiNj01zv1Al53XjjSV5/5UWS7WV2Ym4Ibo9uojx6JwBNHphKDTIfnwR0NKMKhCDU4WM0/reoq4WzhULpJku7z7Pz0nn2OCXx7CRkncOmJMnCcdSsYmnkMcbVY8gmE9HkIH/+w6zEBylrjhOfy+dt1Wm27UuRDGWwbQRN7NaDnZBfDn4BdIkQBiNPn8cyLZrvUrYnNnYiJJSOZ3Y37kgdPucf49LSNE5Iwh4PUiiEKXAd0SicTDGyt5rg1DKRld9Hiey5Kmwh4Io5J9XBAJ5YmsSSi+WXvRSdhHRPMSuuXayEhllMzXIw8Dh+PQejUdimXErHvdzBeuckO6rN1Q6SF2pmqXFNqFejMb4NGusoqr//f8sd5t8Tv6pO2yeBA0qpLwghPpn9+RM/53XfAj6vlHpRCJHPG0v+/1AcOvAy23JmQQjK1SyHDrzM1ofeCkD57t3c67cV3Hun5glHyq/ghBRcG77ItLcD59PHKC/cbI/+EAzIKV579iUUColElkh0oGJ+AE2aKE3hkCbdI1+ltzWIcFlMlX6BcKScYk9wjamcfUBtlWmBoLT/Xbz/qZM89ZZJPOG9GI4ofuXl1QIv/3KNB0uD1xR85WSCuoEw83oSzSFsrJuU+EPLhG/fA8depWV6gn2TR3m57hqkEjgw6VD9KAWxmVz2nzjBHVsMyLoFmEuFFJeWU7NSSnuuyVRaMZS0KHUIjFAT4RWDqDGafYYliVyTjZEBGxO3Rt8CYu58nnLDM1U+7jrn4MbJ1zlQey0KjW+LD9ISbiJ3ep6V+TZSy00sT9ayZbdti6SdyEdEaxCajpKCM/WbyDgMm8ghNHor5imoslvYx5OQ0d4OmkBJgabsA0lTEhnN4S+9n13Xh/tUyWdpAZrlEJ+Un+Po4DVUDk6SHwlwoqkSKQRzZdXMV7ZTtKmH1eoO/vzbZ4i1FGBlx7sWGiPVxYR8j1HgzmqKZcGt0aqjWJNvBOkvRJd5LucCN2faqM6UU1oQocbXTzhShq90av11Chjuf5zRV9zolom+ukJBZZp40VnGLk7iy7eyEiAWgZIzeMvbCU3MIYRANwwab74N7+69BF45yMHpyPq7GrFlrHSayMWjtO7eyMTgACVt4SwDSmO0t5mzh59i+94uLr4gyavuoHybnbQJAf6yOxka/nOkTNN4p8bwj6uy4sSSTGqSmaFlpDnLVH8fbm8j6ZSPmx56hOGTp5gZykMzKn+hVtt/sviV7mG9wV7SVhqJJC3TnK0bIW/pC9SE2tkwmcPjt92zXvE9OOshuJrimS3XYmnClvOYeZpEbjNqresuYKqwiP/x2O9x66ESPv47nyKzIvnvvRf5m1CATYZBsibFiYcb+abj02QweNSU+NUILVxEKkEo7sOhrZLI6QRhY8csAbNFpZRHQxxTM4w311MfyqNiqYFDM+/AqjXeUNxd/adaF/iW+GNhdp18mWl/NZXhRXydG5geXyXlq2RNFsRC8ppjCIViIH87R8UHUQIcmHxC/SnJSDl1ZXVoeDklwdJsSsXRWhdbZwoRJkQqBEvNebiJ09z8Q0aerV0X3/Y5q1CWIuUdZXXbV6kQGfzqEn3nb1n36hUI/OFu3GqBqbv2Z32FR1l3d8Lueh+PWSwk5nAU2PAnsKEQ0VgpfedvwesNkJgwSA+NY+b8BM819+MuL6b61BBGo/27HJqgxLI43lBJbnmCSIUiJxonIfzZ/VgR0CKUy2I7PVKKLRuqWKoOYOkxUtpXWY2VYyYL1xO29VACoRmkrOfZ3WSyIjXW3FuEUFf2uMqjOA8nSK6eRtbb7E6FiV5/mabisaz+3AJayKDCuY2JrD+xDftYI/ddgV8omSG3LMr8mRKG99dR0Gxyo3MQ0wF5y9W4XEFczq/j0i6hgMKYyZYLcUYyZTh6S8kzepDVcQozfqITR1ClmSs2gaFOfCP3kLtcB8nPQHE/8cxejKYaClIxcjJvB2lAboYS1xMsJWdYugzuWDVdRSnKXO9HaZbdTQy14Y62ARJNpKhZfRT3mS5bZDgyiyfxImzbD7/khA1+dUnbvcAN2f/+JnCQf7XhCSE6AUMp9SKAUir+y/wA7ug0UXElqXBHbdmC1ESU1GiEokYPMcdlgjOXkPiyC2mODeEZWlcnaH3ffST2PkCw9yeE1E9ILlfzWiKUpaXbejlbFjez95VlyhaGuOH85zl6VxMPJY7j84wyovLQs13UEm/AfnbFFduq3KEWmqrc5C134Ao3EanQIb3A/h2LPDzZTk9E0V/hwtJAaQJLKk4X6/REJGVmPm0RjTFm2FPsYcv7tvEMo7QDZfPztF5eoIbHidUKCogyoDYQPF9C7kKIc41RerQbSa34+JflOs7v7kEKDUPBV08m6A5bSCV5LZ5BIWhx2B53Ukk0ZVHPLGVTcd5vfY1H9d/iak0LJWwbm1mvDywbp7BmKzMbWsU3fAdmdh0Hx6LECsroT9/CZtcilWoVPdsd7BlNYxQbmMrCkJIO+tZb2B2yD437saSOriTXjPSRNBy0xvqYq/ddpQ+nbNaYHCI2k4foTbJ1/nVQiqAnDykEU3VtPHnrO22skIAnZ2bR/TlXAKzZKCmZxMEpklwFZcg+WrflnuMs27CUjo5FT+w8liWZTAcp8cRZ2foV6kSGWqXjmryedNHs+tkVHq9AypD9fPpXabxzGsscpcg+Q9a5HmHHIs8c+WekMwcrr5Cdt7aSdh4k49/JDZv/AOePfsS5vj6is2MYywsIpdC/9T0K3/sOEkE3I/vrbMP72E6Cjgi4w7zSO4FXdFPgmCVLhLMtv8KT6yNToUFhdSorUKzjcNXidC3y5J/9BWbGBKXhLLgfZ2411z54FwtTw/+mVtt/MsLCr3QP2+bfhlN3kpE2hsZSFo70CHcdGeSWs4rKxXmeu/l+/ORRsrLCD0pXbd02oSE1SOddR0ZL2uOwLG6xYu4U+15a4qc77yFtOOyEzrI4F0zQpSRLbyqj39iQBfPbwhZHhvbidOQQifhpWvXzvnuu5aAZ5JtRnYy0i6XK5QUChUXsv+5aLE1Dl4J3HYxQ35/gWJW5rrto7xMWxStRWscz9Hb4MDW7E+XKpKgV1XjjYTAMRpMpKNdA2B1ru0kmmCv0Muiv4VJF/XrSl1ZwMHgvXStBnNPFFFoZWl0TXKy0CRVKUyT9FTSEcvjjlhJMoaPxIO/ja3RUnFtP2uaTUyhlsVI0YHt4ZkeYHk+AWKyUgoIFWjyrFC7WMl98BqllLZsU6x2qpaVqpqc3EouWUJAcRoRWGKnYjBBu/K4ScsQw8bhNQMiZvIiuFIur07x+9Afs9T9Io77K7y8OEeip4YFd3bx6+Ai5Fauou3I4oW+hXV7Ec26RaKwUDY0KVYRSdhsh4RkmsPFRW0MEWzLbKAyA0hBCt5MoAKVRVPhm3IUuZmYfByFRQuGe7yEnWk/IfQ6qsoW6kGTqY7heg9ibAE2g6Q4Mt4mWWFsIEAq/xMg/tHDLR/8Bzd3P4swckcTjWVyMwO6+KYRwEA8UkOtfJa9ylbPhzTwoB8gsClYXFjDuUzhWRjFNW47qh+oGNl/7UfLPzuGuq4SskLMLRf74MNO+NQN6A9/IveRGWlBYLE5sx9JqidTuI9EzSO7STogaCKGhlJHVupsDpfBdNCmeWSbZ/TiLH5xC6RKhHNT0/hG5kWZWrJtx6y9TmfgprH1nLBg/YpMdf8nxq0ra/EqpOQCl1JwQouznvKYVCAshfgg0AC8Bn1TrT9aVEEJ8BPgIQG1t7b/rA+zcvoWnX3jR/kEpdm7fQmoiyuLX+1CmBA36Jp9ANpSDphGN+YjFSpnTuqm6Yzc1NTvoSxwi2vRt22NS6uSf22dXXGu4MyUI+cqomF+i+/IwxrEBzm5K0TOjI6oBw1bRHxAb6Pj/2Xvz6Dau8+7/c+9gIUCQIEGCJMB930RRm2VZu3c73h0ncZtmOWmaLknT06T72zZpmyZ5k7Zp+0vbtEmcOLuz2PGWxZZteZFkWdRCUhI3keK+ggRBkAAJzNz7+2NASE7T9O37S0/Sk989R0eHGGI4g8F97nOf57voCxnaucHcfANGzMXOjduQwkABx4r9/POuW9DSyftLBf9yKsGuJZMvaDdmho3oT2mUtv/lSC8efCRWu/COddM2WIBQboKLixw8epQXkmVcznFztvT9KOFEdJrU+P6GtGuMtWMRPrL7XZjlV2Qu0lrzdNhBZ0whkNSvXaY3rJkqG6IjVkFiZpXa6CqmCBB719qVzCXz+YId4KRWNptKK4zqZiyhcVlp9llH8Owf5ELvYZKL9Yx0R7C6F3jEl+LoWhfvFX7q87YhhKAjavGHvZMcXe+nanoEr0dBue2d16wvcXD2M5zMKWPbUhPp1DptkZPceM0RnjduRHA9Issau4i2JPo5D+vJHBA2E7UstsZ8MMhI844MjT/D5AR0q5/G7lWGwhoMjYHJAV7M3moW66oBbVCxPs7/Uh+iT7bToi7icnqY1O24lZOR4hM4M8mmUIocQ5HCwFZYN7ASrRiO11CWSVHzCggTY5NXQjYXxutbYj23ArOgiDz/Iqb3swyPaKR00Zb7Z6h//DdKCgsJbqyxplPkr+ew7N+LY9IAHCTmcknM5ZOuqgbnSmYNVKzmDeOKeAhaNnZDK0E6Wo309aFUGimdXHv7BxktXkU6KqjZ5WBq9CHcgRXMWdtCSaUnsVxh1tfSP1Gr7X8gYeFnGsO2lWzjs7d8lq65LvwuPx9/7eOkVRopJWDhUS4uBf0MCsHxYDHXXZpCKmUTatDMF2yzW4Taoml9jOrufn7tiRSzBQ38cO+hrAm9oSx2DFxEWxaFzg6a9IUM408jlSYwl2BSbyErvdC3wPuX42xviPGyI4eO1UXWJvs4WtGCJSVaGlgoxoo3uObVJ3ngmT5O7rqR0eIy0AKHUtz27Dcpn5shz/1ejtQXoQQcb+igdOUURQmYzbcN2cPLEcri0ewmaia/4N/J86Bt8+/AXBJ/Tj5yPY+RcASBI8Pgt3OYXUsWXYEC0tgwFktrHpa/xvuCn6CgdJHkYjsrju2Mnv86CWm3zASaId3CUc9tVJRNs7f+WQypGKs6xtRkI+Xo7AZss4qVNnMza4RCWmkcyTjB+RRh5w4ksOF0E7zWSUUhvDY/xebNpQNhhhyznHAOoRKa3BN9lLZVUBaoZ7CgjM863p/tIHwo+AyN0WrKVAGlypYX0sBwztPkSJ2NVbAZphVuVxkGIcxkOUXBTrwFGzidBQjhQKkUQmgSwR4WugtZNQOUhSYyVlAOXAMpHONOiv/FhfcP76Wk/T5mZh573ffVSg+TWp8kOr6f3KIU7c/8Oad1MZGyYnwNsxlICZy8sJ19HS5SlcdAaoL6OT72/L3c9Opplrw5FH7qu0zc/0GmNi5xwmpFCqi5+DztwTuJDZvZiqIUEm+snoYzB1loyqdEbIWlMFpYoCzU+hqLJTcycU2GPNAgKb34y/inr0cIk8j6GN6SBHmhNcq6EogZzUbdmi0ZIkErk0SgH0+sEZBsKFsEfEN1oFf6SM9N4L0uhPc/ncn/9fHflrQJIY4AZT/m0P/6PzyFAziArU43jo0feSfw+R/9Ra31vwH/BrBr1y79o8d/3Ni+7wAAfb29tHZ0UFxVw8vPv0ShCaXaD5YiZPq5oFRGRFmAAFNB92yatVNHGOr+BKW1G5l+ucZfMEt8JZi5KACFKx7FEmAa8J0GN/2FOdzXD7ec2KBnfwMflR/OMqd+N/k3hFfnEVqRWpniuPNfKarQxOZ3MpgPStoBJS00pwKSt44muWkmxQ/DhSgBf9eaw0p8noa1WYY8qyjyeTL/bl4r2M0N6iSBngWUpQnEosSsKGLubqzSjFmwdLB9pYr3TL/Mp+uvy5IVrrBBISlSdlIIzAYXqbr+YYQ0QTlo6foDcvMO8EprMSfkIqdFpi2YCZyB6DztQz1ULksCiRHMgiLu7D7GjD/AWxa+g9oxxapjhspDpxl/8YOsL9aDOc21KwMMOPIZXr1IjW8LEkm3XzJY6aP8pTFCc5O46uvsySo0Qgt2xxQj8SFeq70HyzDo0juRaL4q34XK0MYPTZzEbXlZ4z5aTj9NrLmS19o62N13garoKAsbkGOmX2ewvckqy81N03GpG09wndsKnqBJDl79MQGwvtDI4FQDCkVH5REa1SBaCebT9+CNTNNdLCi11qjHTu7RklW5kcW4CKm55o1uinx/zWj/UyR9n8sqqSgtMMSVBWFxocqWdRASf4GtAwWgVJrLl77H8/v3ZZTqNd6xASLrCRyeSpzRdlx5haj0JNJVQU6xxXpyJXsPaWecBVGEfqGd/IJ5EvP53Pkb7yaxsY+ZiSOEKm+ioeN+GjogFjvDmbNvQ+WkqL9DM/xUDWtzPqSrIltZ+3FabZvVtZXIwhXCgmkycaH3Z560/bzHsG0lGdIT4OkfZ/aVIxTu7KTLmOTIvl12FV7Y4sobLjd39Rxj2l9M3O2hP1xjC+EiqBgu49qxPC5s2cFwYfcV72CluPnVF2kZHSJtwEDTrUwEPNwz8xyzi0UUza0TVBYIabflhWDj4e/yvCdM/+QkfkMy4ZCIHQVUnO7H2LoPCzCUoHJyBFCUrq2wbfISnvQGSZed6J9vvYaFwDjP1Rdlq2WmFLzY3EzLTA7HGmwhX6kUd3UfyyZu0wXFPyLPY2/C9g/1EIpFWF1ZIlpcwrf2NGMZNlaudWaMd0zmsGXZg6Ulst5lC49n8L4ztVXsrDrL8AtbMKMVxJWX9Z51lsw3EGnI518a7sUKSRxhiyb9Go30g2FSEh7OfIdeF0IJ+IL2a0KwUVpFft4ineExVDqF4V5jbaGJaKSWidGTmMEwFJUBmoSwHmJg3AAAIABJREFUmGIww8QHhaa7u5tDtx/gieeXXucw0y+2cLNZyGo6Bk6dqR5ZGPOVoM5zNetr83wbqVlgluraa5iY/FvUkq3JaHj2otaOZte4ylo/PccF80d20La/jlDTreR+0MdCz3dxNCpK2u/LYrimph5BY6EtQXTIT47/FFL2Ebm0QG7SQ3wul7gnhU/aVXsU7KKHdFzbGnASpEqzxXeeU7VlKGHDXZZOjfJI631sFf182flRckZNUrwC8iPoTVapTSvAv7LM+a521olTfOxTOIoaMSMDOIJNrAYG7IRN2JXm+bYvU7B+EVm6nb31Y4xWj4PUpHZB3rEADve7iOtPZXBr4F2qB0yU1sSX21jJ/SXAQLstEpOfIvKHn6SqpBXv9p+uwO5/W9Kmtb7pPzomhJgTQoQyO9QQMP9jfm0SOKu1Hsm857vAHn5MwPu/Hdv3HWD7vgNMTEzw8MMPY5km0iW5faOTUstHYHKAgxNLXK6tYaS+FpDM5Qf43PwK7xr8PAc9PQzhRWu7EpFOuZn127vA8vkpqge66C/ycLYqh/O1GwxW2GrePVWaO05ILu7b8rrJdjmnmo6cMwQC06icNoyWC4AmYJ2h5tlrMdSNKKEQWrEe7+cTRa9yNDeIxRvtNoBQnCpdwxqfAWDWX2g7L0jBQ9X38ZV9M7ScO8P0wJe55tJWxqvse0JrNIKacS+j6d9mKTdo+wduMrYymLDgxDR960GiaRNf8wmEkc7kMSaRonN83l/C16pusUGhWbaE/X/rwnn2nD2Gy3c/yTwHpliiLB4lFFukoGgKbdgUUiFNFptHOLNYSfjyScJzo5QKyWlPFYHFI6xWbudPrqnFMgwc976LX1/4Ft78RawM0FcLRTLQj2fpDViGgZYGpoLX9HXZtg5YbDhymLrcQcdKF0sPBPmLfb9PyuHi+9ffyae/+Ge4yy2OZ1TV0SrL1pVK0FNfgBKFGChuUU9llbmv2twzkN7BiwXthGIR6IEixxAbl+Gu33o3Z0sv0j/yPHUNXTbgVwuGL+1EoGnQV+4j7sino6mVlOsowyMqs44KLs504l5zEwyOE1moIsdxGEN1Y8EVCRCpMQwn87oJJdPZrf5GUSneqRHM5AtIRwnSEUY6wggJjkQP9Q0nQWjm5+qJx4Pk+uYorslBLOyh8663AvD0J76SqYh9hTf9mS2EG42ezLZNpUPSflsTBZ53kdoo/g9dEK6urkkpkdKuKkspWYksMD3Y9zNN3P4nxDCA7ue/ifdvH8NVVcN5twNdV08oowWpMpWkohIPq/n1hMftZGKwrAolwCkEjclRilrOkJhrJLBahsOyMKVACMWE/xiPHJSMtxzmOSqwohLDfRt3zL8EQnCmupnOyALXJZbRCYuXO99NV5Mi7YzTPD9BycoiF6PDLNeN09n9j0yU13LLxCSH8qaYCppEygye3raXdAYXDEBxGBq3ZjbKV7Ke+bxCFnwFGZJFxh2moJiylSXQUL4c4XTmnqVSbBk4Q9P0ZYqUBW4PaX8xQ1Uq0ya2zxuM5hOJnuAFvY7qn+PGVDnP7b8LLW0sXJu4gJAaZ/0UiZ5lnr6pmFRBOxXTbgY3CjGFTWgwMfiOfjP38wiNDOB0poCrYHoZktVyvBmtUyAEefkLNB4YQIqL2c5EseVgevZdLC+bm1+0LMREZxkA9oknp+e4804/114M86K2pUyk1pTP2i4JA7FX2Rm8BSEkSEF9bhXpp24nsSPBhm8a0xFnzR3H5VrNnnZ+/hkGVA0XaaVN9VGcyMWvDIS0Afa5Sy3saPVR9MZOwk2txGJnGJ95lOmqb6PXTSbPPsqO7V/G799BteM3OPnqt1iZ8lLgKKbklu+zJC0IGnx/vZ540kvuVBK9Y5HNSv6y4SIR8VBhzQF20l2yvMJqzhZKPNXMJ8cYFDm0luXx3vkLrPW5WWmRRJtG2HB/Gu+l2zLVL4VLnGbedwOhwDBiI5fFu2cQaob8sS34DYmKNmOLNVtZDGAq8BKVI0eYrHIjDE8mbmpWSgrJn2imsusPWQv0MZUu59jqOMXrXjqd5ajcnYBAZIo7jkAjqegIiWcf/Z+TtP0n4wngHcDHM/8//mN+5xRQKIQIaq0XgBuArh/ze/+fxsTEBEePHsWyrAzl12Jy8QR5fRdIHzjM5Y0UJ3znKEUwu2k/JSWn1R/zexOfoV2/mN3YzeQV82Rj5nh1M29amqV8fICBsJfBirRNOtaaoQrBRw504p7txAiDbdmeCRCAkArZcoEsgxRNvCWfptlxhIDm2QnCs35KE/cx5jnOhTyw0BhaE15eYJOJvFjisVsSQrJhSJ6o3MWO6ROM97Twx7/9v0g5nPaHIGzhza7r7uDTJQ7S0gb/BuMxwssLuC2TcGyeUPwlVH8Vlfm9JO8dAzJBSWh+4HLz1YYQKiPqqzN6OpvR4FTTflqjbjyTl9nWd4HBGwPkBeax0m7cdUvZa74kGvl0xb2ky50Y7W/nzU99gdDcBEFPOdt91/KlkBdLGighSKO5UFzAHh7DtCRSaSw0J6wYRUtDtpI5AkMpqnsHGOhsA8CByeHSJ3AM3sDp1ffS0z7AhsNp734VfObatxBemsvei9AW1y68jLnmw1JtnKvLyeAIbaxMXSJM+XolC61fQ0uTS6qVvw+9kbS0//ZbLi3TWDBO+Z4ackuTbPXsZi76jatEccHh2rCByhmcmlaCb5zsxe2P0lB4LTID4JWGg0DRDkzzHONjncTjQaScY9+tLYxOv8jycinne29h97V+Ora8kZdXp183bay8QixPLkZyDZWeQDps+Rp34TBV+/4ZYdhVurKyYS4NXUN9QxdSWOgywakjpVTVhzHTadAaK53OVsQKr7pGIRy4jDsIVjf+RLLB1XIgCui44VYALhw9Qu/zP/yJ+m8/B+PnJob94FwfJ97265StLNkJjBCUrSzZleyCYuY9SX4Y2oXl1cjCEM0zY+y71Eskz09+sUHp9q8TFH3oNge8+Lu87ZUk3vtrqC2M8qnpKYa2N1LgfRtmZi6bCM5VNDAZKEMJybmKRjr//iNMl13Lw28NYEmAYgbKqrir5xUWchaI5qxjiAvUym5u2pFglCYuspWIKH69hdVmH1HI199k5nU73Ci7vagVlRNDuBamMBJxGlwdvDkxQl+olLSOUrQ6QJEr70rmJASh5QiGVlhKYiiomk9SOjnKudI4pRtrdPbNEFyaY6a1lv0NL1IvhrJyOZHWVZ5sfAOWFBg1muuGz+OUWzEBheC86GCAFv5Yf5gmYVffU2sOXhu6hrFgIzdVbCW6PAXYrG2/fy6rVTakbZhMm+zDmT6F1u2A7cJgJzQqEyIVm55Xx89PkX9ynNs9ivH+J5kr9VMaWWV/dDvrBcPoYBcp32XM/LczrNZI9cTZmXMfeX0Z72Zt8bWmR9hd+2w2Uk96b+SjGzdiarv782euJ8hPwKYeHVLgKxphLXKBqdy2DClpg802rlJpZmYeY7D3q9Sd+SqHl1yMLV+D97pKFo3T9nqmLDyhJPG5XNbmPViPtpK7I8lG7ShFrTEC1gqTx0tx5FjUJ2NUiRKqQr9kQ4UK9vJ8eoZUTzdFx15lqspLZJ8FDg2cRuzqprLr98lZqWO4IEZyxxcy2mlXqouJa07g6vojcpbrKL74yyy0fiUDjQF/zMLAIrCcYtTyoARgCaxXUugqC1esnpx4Aw33NDBQloP4m0fAJVkvGCFR2IdnqQVPtAZzcQAhFN6ph2Dirp8qtu1nlbR9HPimEOJXsdsGbwIQQuwCfkNr/W6ttSWE+D3gOWG74Z4GPvvTvIjNCptp2rsaAUhlUdR/nGUCnF3ZjqWgVpaQ9I0zk7WfkpjCwSvOPbTqVxBKAQZ9bMkeVwLGKhsJTfYzF1hHCoO3KS9rqzN837mb0zt+D0s6cGjBnfML7Cj+BxqkLfxKhjm6mcgM6SY+U/OrmFJiKEXr7BRhVci0crBrMIetl08wUV5HSSJCIBUFAXn5C1xf2sUJtmFqJ1rAN6YWuPY7A5yt68zYX11pI2gheLnUiRbalslAsJBfQCTPz47LJ5hyPE9ZdITq8X4id+Vn1ajBPsVY3mbCdlU/4KpAnNJOutsjjIa/w2STyX2tKZt0uzmXMvd6UWSAzlJiYTAeriEcmebeXYdwDFnsWrIwNBm/PcFLXM8B9SJrI25GqGJETDPp6qfePc2d3a8wXVhCOLqAHtHcXPA4vpoUbZynQVxiIdBCT3o7T1bvQ2cqaVpKTrduodtqxaEsTKFxCItbgz+ktmiY+fM7OK8+gIlhVx9nkwQX7yKgC8lZqyAZGOAlzyHMcnsHriSkGxPkij6W1/o4ffoIHeWfpdbaj6l6QFj2orCc6cJpJygLrQ0SI7nM/PNnkIf3MeL+GC2BS9QEQ8ihj2BVb1BZKentuTnztq9QXWNRqQTzcw10nWqkuipIRdBDF12vI4SY3jwciQTSCKHSkyhrGk/RiL2bzuJdFMXB8StSN2gCrd9jI3l79vlqrfHk5TE7EmNqMEB11b+wtn6aM4/nsTbv4ZzjJ0t7ZOVAMji29kM3cOqJ72CZGXD9z0mb9D8YPxcxrCu2xqc778QUdtu/eWaM5vkJymJLhOJREJqu2oNXWn5I+sI1DGzOeyk4w5/yNh7isqhjfVsBzec0+06Ncfg9B2nzfpal50b4dvr1SdSsz0QJaftgGgbP7diB5fbaCdsmBlQYLLk6KI1dZMt0FTtKtuOt+Q6X5SwfEx/CxIHtq6AyFQ9e10sUWl+11JLBp2kODPWw7nQRXo5QPTqAkYyjgYKgJlUyzLdr6jGFj766B8nvPk7ZyhUllrKVKHeee4VFRxlVEQufHORSfTk+NNozgEwmqCKX/Jkk64kaxvw5xGJlJFZKmc8PZskcllAIRy5vN0c4n9vAq0nL/iy07fLShB3LL8Ta+VzH+7EMg+e04M70JCWZe4nFSlFKMkwDH9uEyUiTX8v7PPn5C8RWgiwlDMoX+zG9uTgSawCk8gNoAfPOdv788fN8I/wStzd+C22A8DvJSQumW76KX6QZ1yN09xQQWylFeiSV6VXKdCFaK17L7WZ79dEMT0LgMG/gWHQFU1/p/vSup6jddAJSmjnXl0hVTsIaiAEjk0ReFcQVTEw8ghAWPe1edqgYTaliZtI+2CRlCEiv2247xa4wbfkPEtU/ICJHs1TafF8uE6cdHK6aIt9Zz4ppJ/YCza0qxvTUCQzLYq0JWylmM6mXJkv536U8ukZxUZTxrHYaV7B8QmXxaIVTh5meWSKSfwqV8HFAdiGwWam1T5nMCzfuQYljdBbD8zC65F2gJLGnRtjy7g4WCxKsugeZ3PV3NjlFO6js+j3yO3fhdcbwBuZ+6oSEn0nSprVeBG78Ma93Ae++6udnga3/XdcxOjqKZV3BBNfV17MnHKawsopLzi2oU+ugISdVxDoTWfspu+WgKJpL0jt3M37/LI50M8H1DWRZpjyvFbu8ScpvLWHXcjV7x7dx0nea22KC8/79XJZGxvhXYUZn6fh+isldftxGLrXWjSy2fsM2rFWagb5OzC2byaDAm9fB+oYiJS/hTY/ij61QNvEMM/UPcLaugVBskUr/eWpEP4d4nue4BZCYWnG2rgW/yrli5bI5hECjkWiUtmwxwowA79m663jz4AJx3zJaLJCYb8ZQURCWXRlUDkojqxgFCktiy33Y3ilXJXECV3IOgJxKDYbtKAIalLA1HSXkqbhtbK4VUmlmgoX43/ebtJVvIXK5l60rirtnTB6tcKARKC3p022882g3zuA+JgoSUDuMw1FA6XKUstUYSkN3oJ6i9VHu5nG0UmjlIDHXyFiJA5UlG2wuZAYmgps25mhwDFKqf0ijGLBByxsjvOnJzzNe1UxoeZH2uSjBwk6bXRVrxLNcT6XrMkaoFI3AwKJV91zV1Ugz+NK3OTZTjHflJvz+OZZjpVkCS+rs2yn1L/P4RB7ve+JbuLRF6qmv88PD76KrdoX7rzmOzACDhbCZa/bzMzPao5qy0CAlpcP0nq3BubH/yjPWgNbUSIOakSlWPd+kNyRBQGx0g+AWA4SVuU5JZKEKv38eKeyg7SubBr6It7SCxJzdOpgfX+DE42exTIXhkDRfdztr8zYD9j+T9vhRc/jI+CiXTr36uuv15OX9X8/v/87x8xDDumJr/FXfKOmM5IVG0xeuYbCsiru6j1EaX7R9jvn3mylFphIuJGmt+QLvQQkJRXDyMMgXY7SMxNhWt42ZmhLe8OJlngw7MTP4H2fiOdKuX0FYDqSycG/EWC/029I6mZXXULBtzmDXyoNETFijB9M/w8WyLaSEA4Rhm4zrYUZEw5XqmlLZdtXVmAOhNQf7z1CYXGWqsJh59yK5lWE2zEkCeYts2/lluh13YwnQwrC7H4U2xnjaX0xOOpVN9rYPHgEEqeJQ1trI9OZhJNdIO7wgMi4kK0HKVYDDZh19iy5+WKuxhMLQmsKYn5H+XNpKJ+gqKMHCQCqLVi6AAUI46I5fgxXOwDS0Zio/QElsEYQgOeVkZKyKs7sPYYadKCExNSwU5XNX4LsMDl3LeH8LVclVjGQcEOi8rZgF9iZ8NxFEspiJsiT5mWIlyiJeesq2xhO2Y16ef4FYvAyFZlosUaLy0QLy9sRxGnYM10qwHJmhpWQSh7wv69HcJs6T0bVFK4OENnBknAO0trL+nyiJqyeAY3WJ5D4brK+0YNbpoSLvPMrlY5NFi4bmtmnSiRjly40I6cAbbUPoJ9HaRCBpyNlLT4Wfb7gq2MMGdcJkLf8Sa4F+xNA4Du8qy143vsEkcYssTk9ZkrMDCV6dz+ENBVFkTQ5qkyG9udxpiXepBa1tJYSZqXViEyFuua4Qx8Jr2dyupHI7yYcvgWUhpMbtz9n0qUGbio2RGAX3X8/0t977OnP5RGAQz/IdxDjE6tpHKPcU/VTn/S+0I0JNTQ2GYWBZFoZhcPjwYSorK+HGGzFHYnSfPYtlKTy6AG+wGubHsmDeutkpClIJ4tgT+7Z9N3FjazXNvX0MGG7uqK3kjub9/OD767xv1l44d6y1cm5tg5pkjGPtNsHBsCxcY0+wOLrK5HoIhCDqnsJIHmIlMICrdxbpnkK2K5QCqTWB2STzcp144TSIEGldSjS5xncON6MMiaEV4UtxalQv1VzOBCWNEpIC3CTabG/OqwO50BZOZfE2/RCXZQ0viJvROrMYaLAakhzs8RIpLGZaBXAd+y2aanuRgH9mPw+uFONbHGEhNUX5+iD/zy3vtnEjV/2dcFEuqQVFwlkJXGaQRvp0O8U9M9Slhhl21fPwtl/F0tLeZQsYqdnJX65rypKPs+dXanBP1/DWsJunZ2dIWxaGZbH3iUWCFX/EfdLBHSnB715+PzO5fXRIB0JrHIbBHbvc1PseQ2uFQnDh1T3k98/TUejnmGwhrTRGZuEzM5XHFzwh3uQaJ3d9IHMfkEo6KJ+bpHxuAhCsAWfUc+wsvtmm1msLx9hx3vTkSSbCdTSbaRp2D6NFppioDGaihVhKsRIPsrISxNbWthlPNeHDmI3VdA4+ykzFDRiJQSJ+ze7aQbZ2HkGYm/gLkWnb2BU6W0dwU7sNhFAsXnqSNVNnrx0NBdFVri8KETM1k+5VID/rPRq52EhwyyAIhdaQSBTS23MzDdVd5BZGENIG9+ZXrJOY9yKlJBmXWKbKJmmJlZStwYT+D6U9rh5Xm8Mf/9bXXndMa8ULD3+W4qqan9dq289sdMXWeODcJdYti8wXwj4gJEpopgqKKI0vEY4tYigLS8oMo1llKxZC2RqGArCkyFYrLKk5V53Dp4ZnaFwYYv0rUQoR/JFrjFerxpgRp4gkRvBas+yYaSUcnaCpcpJFc4P9QwX0l1WTlxC8oU/w1pRE5khOlc/watsMbQIS2ssVlVZJTdzBlE+Tlvam0bxKn01m2PBSa97x1OMUpHL49H03Y0qJ1C0EU69QFvdR758GYzQrlJ3WdtK4JVTGw5VNmJuMUjSGUrxpdozwwhRpytBaIDSEnFXESvNJrU2ArwbQCCTbzFpK8VO2JvlHS/LU/BzOBQdPdxRjSXAS5sYXv0vCk0v11AhbpicJPHiQilt/m1TQzUsLG3YSZKapWJxDKIXhcHDHGx8gNb+P+NKqzWSV+iqYjKap6RQtbbfT+5lTWJb93EyvD8SGPce14pCVYMNzPdJ4xoYmaIlX1pLggp2TA1Y6ZzPrYnrhFIaY5AfuAGvD67y1xd5ca2UQn9hJQ/E3+CP+gn7aadMXaRSXQDvQ4/uYGr2Oyonn0FsmINOmjZ5soqG4Fe9SK55oDQvrf05Sz9rSaxYMDDYQ2NdKaOooixkHBAGsFwvkLQnyz71MaukePMu1BC8+yHz7VwGLxZZHuL/647ySdxfJjYuoV/+UiV1LaGkRrBXEnqpiac5DYDRF9bfWSR9KM7/ho6+ngrU5LwLF4kwBzRN3s5BKYaR8JPMus5JeJH25isXFM/gW+1hfHCJIhOt/7Y8pio2TUudxy34AvK21VP/tW1h76I/xFCdw+LpZT78ZjUYIgfQ6MJeLCV3/Plb0X9gtbG1gbPhYrPseOYuNXB67HjEyQnjXT2/u/0InbZWVlbzjHe9gdHSUmpoaxmYjfOXEOQ7UVrD/mu0cuMFDrGeCdL2PF4YnyMtfoCK/l9hyCGtokZzcEsz8AFs7O9lzi52Y/U5lpX3yZz8Ex/+RcvOvADLLsibsclIVC/DWI2PM5c1QnRigzF1FidNkWKdQQGRjipOpKAOuVdjppHk5yZ09x5jJ0NyrUx4W3S47ERACkIxVNtlq6BlR2S+VJpm9mMdyaQmU2jtqqUzMpjC7lu2dYpYVqy0K9BJ1DOPujnOb+yVearsBM1ONM7Bo5Tye0hgvXX8TlmEgWaFl4F7KdAFaa9yAK5kHxgpDZbWvU2QHcJCmVVzA4baYX4oz5Gnkf4sPY0oHRqfFe/o+xYBow8QAKe1qWAZTZmrF16en8cmPs2PHl9nr38G3y3L53NEzHP7sp9gla6DFQAqJEwh7azhXWMuTsRjvq0gTzHNTWXmeyGLaTo7QbAn34+kZo/Xbj7M0fS2jZdXUzI4xWL+Lk+3bQAhMrXlscIVfsR3NQIEzxyRba9eaXNPLJI04EhZhp2B+ZZyljXnK5yzK52Zw593P+NoHKap/kdWcKPNzdayuCaQhUUohEexJN7Eh0oRUIf4BjawXHF9vJ13hJ7U6ykagmJIMK1RkAMu5ubt49dUS4vEipIYLPbcQLLlEaWjYXpgVrI1Klh2TkJfP5oKlDAv/vffgv/ceeh/6Al5xnoY7Mt6j2sba2GumzYaOLZfh9dvtJa1BSgcVdQ8wd+YFlFIMn3oUl+8BhCxDCsH4+UWU0kgp2P/mn4xp+9FRUlPHWM/Z1732c94i/ZmN48urbCh7XqMUwdVlFnPzUVIgtCIcW0QgCK3Y/sQz/iJCyxEQgumCIkKxebZ3nWW8pJy8tTj/+OA7uaLND2frXJwRSUQc3lbgYME/w9LWbvbSQz1DPBN8O7FkCZHkM/xyWw9Sata0i+PyXVhCsuTTOMemkel8zvsdfKC9nrRo4HHupwIbD7sZH5bTYf7p1DpfKzFYSwxzuqUZU9qJ5dbxSxQtxyi9fJbQcjkndhzElA60FCilmPEHCcWWWVh3U6Yl9WqIP9R/ydG5eyieX2emohqryH8VVCOT1BaVUTk+iGd8EE/RQZpcBbxWcAmLfNA+CnPnKchfYyhxkM+4irk938tdh2u5vzqfvSMxPvj0xaxGpqmhOKk4fPS7FK0mKUyYGMt3culEgO1NhTxa5eDZHz5P48Ofo3R5kfmyUpoOX09HRsEg8th3uLP7GIulHq4v+y4NYjCTlFlUOQfIv+VOXv7+42itkLFzUNDMZvxxJtMsXghxYPufMfvaN3D2rrK8Yxx2kBWVbZdFmAlJdGOBlfQiF5NjWA21vKnxWTQWQkgivQ8SGz2IhaZx59doYhCJQd7kQfJn97NRu5fwLT5OPQO5oxorNUx0yE/1+nUUxQ8ghSRROEBs53x2g5j3qIvAfX9JcEsO6ouP0tmjuFztYbnAiZACJTSJojk8hc9jXJgnFR2x35iR1MgpHOCGSCt/0uXmAa+XMrGQKcZq8kJrFB3fQLjdzDS+gT2XHsKXNBhAUbItQmLWS5V3haLLR9Cpv8LCiU/t48LsN1jcGMFbkiRvxxrVpxI0zVXh7PawItpR+qMY+q8pz+uFsm14kzN4f/8vmB96jcDgNykSf0aKTuTetxN7aiQjD1aJL3QTOY5XyTHrmWz9mt0qrXMQXdzKRGIP4Z/i3P+FTtrATtwqKyt55dRZ3rqUIh0I85mlFJ/+8nN0njfwEeTcxcv4iubo2PosUloo1cvwWCWJuTgicom85h9p4XR9EY79PefcLr6R38N757ZmZSNmU2lQUBP1cX93D8HtD2KkDKxrLEKxx8mzgsytj3PNRQi4wlQ6ahlyTBFaWSIUsxfPQSNKjs9lV9CURkjJ+pobQ1soZfsKVs/OUdFdh1GucRRbKANcWrF7bZWmWIr3zV/k06U7sbSd9EVFMadFMd3bd7Jv6iJK2Ir/QisO6heo14Osp8OEai4Si4WIrwSZLejB4Y+Rs9TC53Oa+WpnHkrswIGJgcLaxKmguU09RT2DHFsp5pAV4qi4Nus5iNQstJWz3zrGUW5CaTCUstufhkAjeJEbEBbc/cQXOXjpCSab9vCDXovR8I1Mr0Z5QApA0e0XPLkrHyUE0zqPk73HKRtcZGAoQmenA4GJEApRE2H9PQ5WvxaibHqUspkx0Jpzza/HHshlIMSmggstG0ssUEShK0xJThXm0jhxw0mHVxKRK6RLJXV5b6FS5zJjWngag/T3vswTBQdwOVKUxaPk5y/QXGnhTDRRNNhIqbqS2GhTsdwTQSlQ5jRg4UjjTj6wAAAgAElEQVTGiS2XZI3hpeGirfUPKArMMz39AsGcPRizlfQnx1lZ7Ccx9SxrYwbrC158jlnW8/KzybMqKuL5qSk6OzvJadiNL/Ga7T0qsXspGHbCnMHZ+f2z9ueVqe4V5N7FsS+nskQTZZo07TYpDNcRX1rn4svTmSeuWV9L/5fmotub++9ek9Kgsr3jv3SeX4RR6DDsmJKBINTM97M3nrL1y2KRDI7LZhyGYovc+dwznG1p47XmOlzr/ST0GK+0jpKbWOHItjZyo18ilbOVlGdHBvtmV7u0FPRWu+itb8ISzTzO/bxVPcTXzVtRTieyajst+iHWRB7DusHe6AmJJTT9vmLUcpqugIO0sMlDptYU6mhmYbe/k+3zETSFvFzlxpStCC0y+Yagt6qR348nKYyeZsVVRWhlHkNX20SCjHAvaOIrtgC63z/LeqyE9pUppJQ0hHbyzLpNSNLCjpeG0lROX6bIHabEVYUvXcy0ZxkLlcEDL9K69VmGZT1fEu2kcfIsirL5YVp+cIr83dfw9pvqeHl6GlNrnFpx3cVeGuaXAYj56zh31o86O4LhkNzzu9v5ncYKxqfG0ek0OJ2MjY1hfujDNN97D1t37ebM+YuUXYpiJAKIegmWAgsuPNaFo9EPGfyxsb6WtbWr0mW0uEsx06CfL6fE+gC60qIv9giF2kBk5nFkOUDEo/CVgd+fJtEvyAslMISZZflvud7P5XCIkysrhNBIqVFKEVsrouLQrYSuC3Pyh09TfvBvMjJPEjVaz0JsAi3spmGyeBDtyJT3tKDwnQ/QuPcgAPKdT7J+7hkm8JJvfA60rSkY2P+XPHvRyx35v07IMoipPDQCgQOOF5EbneWTeHjU2U6ZHrMreAq2zkcordtg6b4P4d33AG/9bAWHik7QsOOsDefQEm/vKu6Vi6A/yoL1JlYSaTTgKU1mN6obO8F8tAiNLX8DBr2xGxBbtxP+wR+BuUHM72Rqy+0c8/0Ju0lQvu0Wpl41UOk1uxhjKhIXmzmxNML1h0+ihcNuD6s0qmSSyr23/1Tn/i900rbpfuCu8/Py5UnSgTDKsE3Dzya8bMO22wjrAJGrKh1SKHyhJMm5HAyhqPQuv+5c7j6bSNaVk8PThccxhWR/fDuv5J2lSE1TNlbB5PoYZ65t4Q0pgwt+J6cCbnYuvYmOZUW9f5BLOU9z18at5C40kRYWj3iPMuEtZrogIyq5EsVX5mdP6y5qamqoeuU1qjercbEIeTEXqcpmioTkzu5XwHJzN1tpiu4GQ3Bd2iTf+hCPyQc4LzqzeBITg1iOE6kstJA4pMByVfCtyy380oE+co0plD7P5GQT7sp+IkIzqFr4qvwrm2kjJJY2qGWYETI4FQ1Py7sZjZwjsOykP6eDl8QNbO4WJYo2cYF6Ocg7Ep/gmfibMFkBcpgr25I5p4PnxM28XJrm77721zR/+zu07PsN0rUaIU4TPfc8uWudvNpRhpI32Xg8BdP5AcpiEWLLRXznzFu4t/08hvNcptVn4axxIi7YKfVUSQUXGmzWFlrj0Jr9J87wQvQAU/XVhC+P0zltUOP3s6PgDoQwUIUWo/FeIjKX77vO2Wi+fEllajvbVBHnm0r4xNbbSGtbhuDBS0+zt/4ZDKEQhUfJn/sDdPRK0iYdkoKtxRjnl7CcFbAuMZJrWBcka6FfprI5hs/nY3V1gKlp205qfv0pytv+lvPfvIhlmghxiPbGAqq2eXn5e0/gjMySLrbbqKuWoquri7Nnz9ISWMbpS6OVvTXWyiA9+26S3iFGx1xZax6lzyOVAhyko4dARiEjAiykQdv+awg31TA7EmPgxOxPdD34SePH4dfaD9/0/1fZfsyImhksUqaNKKSfspVBQit24qA2ATxC03n6NDP+AP/6hrdgZfTN7ux+Bbw7eGrPPtvxQ5vkrL2SKbNerXOmiHgvYLIr416iOSX2YGVFaB18SfwaCpEhMGG/T0HpbJoTCYuwsYHQDsBu0QYH5pEt2tbdQlGSOMtj3j2Y0msL/m5qbQmBBXyy3cs1ufeSxEnt8gXu7J5guqCY/RGJa3KMBAlSRaEMBq0Y5+IsOWKWWx/8FUqDAd7yT//EeKiKnPUkkdB+BOB3lnC47BBSGMzIKIPGjC3aW1DMNtcSUlr0bZKihCSlFB/qGeJtR85Q9vgAdffu5VNPf52ztY1sG7hAx7KFo/E2zMUhlv1NOAMjeIODJCPNTA3WUHbbdqq+8BAD332co5aJJSVnLZO13/0A7b/5G9xbUMhCSZDGvb/K3OP/RGTuWS7mX8NgTQszviBbG67lugVBJDVJZGOGRqOBXcUZmEt8w/5sM48tnixnsucm/AVzxJbLiCc0ef4FOrYeQUoLq9rB6YEOEE7AQkongdIynN6v4V9eIZVwABZCOKm9/k60I8bJx17B9D+H0DZ2Fqlo7Mil/yWJg4+R56jGvdrDknSitIkUkhLphpf/FmoOcFo18qovwK7wFP6MRW8oZGu61bqjfPjUx7hNQei0IBUYJGexEU+sASkEZv4Q27Y/m8GKQ31PgtqCBNoPiwuXaBxZ5eYtZSTkKlIqu5ahNAv5YdZm99O1mE9nUTPBPIM63xZOB//3lY0qYGzpRk9aGQ1MxVxyjImTrxIuWmeq1MVAow8tXiY35zhPdu9g73Q+0R6o8W1F2q6k1Pg6GFvtZXV6FFG/YaMQlODaxs6fevz6hU3arnY/EA7JdQdDfMYySQNOBTuXlI3N0XYA8Tu3ge5lUNfRxxaqfQnaQz1szRnHWfXLDDzzUTyLzXifb6J4/5txDz/PrvV1DJ3POccU84aHaWOSg8Z56vJ6eSEvxETuKCGv4Hd25djyENrB+8aeYGflN8kRFjO6n40zb6d4uR189TzZsSWDTbEZVJ2XY5wNBfnIs1MURJO0xqOEMkypXG85awlbD6gsvsyWOZOtBVvYZPhcjrpYX6hhb+lZ+kIdWJnWiAOTuwq/Stul3ZzzdTAUruGldBuO8J+zS3+IRjmIVBaVlX02kUBAv2y1d/2ZqCHRHFbPMSrrsv6jWgsuO9o5tHiGruoGTDKeg0pxUD9PoxwECVXeBPOeBttKRpkYlnWFkSYkKengn+9/C7/yvcc44DjFzp0ncAqTyDbgH6bYdq4Z4/rDWIbAJSXhlSWUtin5Z5ZaaFhqZmvwPJuuA66BFAIHGrjQvB1lGNm2TdvSNC/ddS8/CDeiBThCJm9+6mFuWi9ECLsduwkcmRZLWeN3pRWzcplS7eepeJyU27bBsqRkurQOQ6gMaNUkUdCPI1rPU2aKHAQd+6rZc12Y/abmhS9dUUQ3EnEWuo7jD08QWzEzgpkKUCiVZnr6BSzTY8PLlWZooA9HTQtaCmzkMFnMEoDXO0tB07MIYYOJI30FrIzt4u7f+nWOvvZ94nEb1xFfCdLfdT9BT5qW7TcTqtvDOc9ZEA+ANcXht92YDUpldf6f6Hrwn41kPP66n6Vh0H7ohv/SOX5Rxt4Cny1doYXtMhKLZI9Jh+SM/wwu5WIhZ4He6xYh74as/I8SMFMQZNXtsS2kMhsrAKFNtHYAmprFOd5Z72O6MI+HlyGdsapbXT2D8LXZuHJts0Q3dc825/S2sRSVUZMVQ7JRZmXiqC0IPemqeV28GN+2QvjkKQx1OxYaqSybhQ+ZxE3zaq296ehV+7i75xjh5Qg9RZXsXq5HrHRn733WH8Bs3sm+DS+Xzi1wWfYRnhunNLbAubZr6W4oRCM4X3cPdacXKIxPsSISTGfcFJSUnNbNXNIVVOthHNIklYlhF2oa+dP3NPDWI5e5fDqP7bNJ2ga+y1JNB4PXv4GQDlBq3U1g4V8xDn0PIU20clBY0QzUkK7TLDQO4p2127UF/hnmDIj3fBRfnyY8YlD0hYd4dqOBucgCYwWtWYeHUzWtFF/c4L4Zk79ITbLLctnPK7NGaaFtAoe2MFfmiecV20LvGYKV3z+bLTo4hKLWmeSTp97Lh29LURMM0T/wYdA2ecEQTsKhBwmF7mNtzpPVUqzYP0NRy5XvoEawu2075WuPsGHFYGkrWyI5rMYfoyC6Tn78k5l2tINB8yAXcuup2/EEq4aFlC5CofsA2IJBiWixvz8xELEmlLZtrRQWyaK+K9AQDRRqWIMN1UL+7K3MJZ6lftcnsUTKxvBpAdqAhd9CiWZa6i+xHPgBudFWcpZraVa7mdUjoCykAs/gIpb1MQasg8wlJ1hOTVLpiRHNc2YSNvt7aAiLG/0XcV96DwU+e47oDBZZIij1VFKSs8q4cNr8GakJbtn3U5/7v7hJ20gMnbbLutpUlK3BB84fZWxtg0OrAbZ6bXHHORnj++5zWCOKlcQv8a3GO0gLA9mmOeg8w5/m9TAf/2t0rYmocVJ5+g/YcN2E+85/YFvf4/zBWgkLF+9DKgMlLRp9H+XceC6dWoJM8qW7j5GWt9rMLRST1evsxMzEPpOZotOcTph0B2qxhJFlib3S2InXusSRnARWtRujsg01nGbD6SIcXaBu5DyytAJl2WDe0PQoFNkJm3BIWltb+cHxKWQc7pw7RqLJRHnTHBAv0iCGyHG66Rbt2AgugSUcXKSDRjWEUJldSmYStXEBpzJJZRK/xokjeNdWUZt07MyuvSDdzFRBCe50iix4Wgiq1EL2ufTRjpkRv1RIDi+eY0wUM1JUabfvpORiXSt//puNfGDlCRzSzNLEu69toH+5jeaBb+D1N3FPfS3p6w7zxfOjFGxMs9t5gtNjTeRd/AB5wUGSc/UUur9J8dYlVme8r0tqABY30vSUN9k/CIFpOLjcsIXx3vO0ZRhJSivGVs6zbuZAqCi7+Lm1rYGXWDOhePPDgvz1UoTvih+ed+n/Ze89wyS7ynvf39q7QndVV1dXdXXOOU7uGU1OGgRCASSBkMAGLA7YPvca+wAGg33A+ByHewHjjDFIQtcIIYEEKKA4mpx7elLnnHNXdVV1V3V11V7rfNjV1TOAwPd5uM/1veidZz5M956qHdZa+13v+w/16Aq2S51LEcmll0cpb8phZTmOEV8D/JqRnhdGyXjy5ZeUSRA6mmalsPAQQlxAyaSG1VKI5eAKRrqLuNv3c+Pf7Z4x257Je5dYtrPrro+TX+kms3uO4pIb5i49nIOmatm47Q6a9hUBJBOz8lQl7fIrw7c4HrxVsmZKg7x1QlfStAGLzUYibrZObn/k996usr1FtLidfMI6yKXeGGnxOJNuHwrwqVlsJTZsU2bC5k/zk2VpROrulLuHQJEWX6W1bB0bpSlJzdAp3CuDnGl5BCU0RrJz8Dut+NLr+OLqJLOj45T7FMuVm3hj5ApDfi9l/hAXmrcRF8q0yJIKi4JP7qnAVxylqNbD302OolbjrBnTa0YCizIwbmIo9lTuIye4jF0G2TzWT0dBOX35pTcRLMz5I4VGT24JvfmlKKFzoqyE970+hFtKpt3ZvLBpL4bQeEkp9vWN0TQ1hTW3mNHSWo5t2ZdyWIgDz+YssCU6gEAwmVWVkmsyELwpjmBVBzk4eo4uVz3jnlzQNAwkAzkT5IUDdDRvJG8armxrRIphZjPDOF0baCrOp1jEk7JICTRHB8FgBpfbfgutYJUNeSJFFqICULByQHDtxVqmvvcDxrMKsEeXmHRnp5xpJIqvNKZRtRShMOjjYmyECltOEqYAA8sD5EyPYxk/T4W2gHJsYtabh5Im6zZ/IAfKLCBkat3pCxbz0lApDyWeM9ejVKE0TlqaicIa6P9H7N4Qy9Np+HvdeGqDaEKC0nFO7WG4cgl9qQxmHyEtWAdtijzLJRx6V/LRSYRa5UFxlJbs8wyLdEAhZZxA4AJu91YWBs7iLzmGw19PerCaSGYvy94uxoaCWP2lTK6GKa+1gkqYTczrNiIyQSJrAyiNYOFZlFhF08CQgi5/HRsHd5AerCeaNchEy1dRIoFfWSi6+Clye8/gGIuyUipYPZHOorSwWj9K6YYxPFcvUZLuJz8jxg8zm8kWI6lNvACcgXokujmWlUxKT5msi0XXAjLHg8K0cVRCELCF+b+3df3V8RubtKnEDMpYBaEzIwK8cvUqCanw6JKcyS6oagahM21ZxEi+ifutNaZyd3ISnazZxtGOkzTnxlPgyWh2D/bKB6Dso9DyUcr+4ssEpE4wx85UngXL9B0Y6hwk+dhbg1dozbt9nWJNe5IZaMouLAbzMTDYPWPnXLHCSGJYJNCe78bQSSpyw6maTQDopXX87nSAg5kNzKYHkDM3yPij95BTtYml013ErryI85lLxHfup8fVQNXCeT6Q9gPzKpVJmpBxJ73lpazpl2kkaOQGIHC1VRLeOpBsYUCN6uXLN/6CY85HsBXUcHDXR/na9DQYap2MIHQmczbyQrakbmaUNbkBpEHMUQox87k00IFFmrR6i0jg9I4wqJm2KCmcdFLDbSJjE1u0Z5HGKr2qlr/e/UVWdQsWw+D9Lz5G+6VrPHfvfyFRWcg0OdynfkxlxSuMHf8U/u53k+bpw/XwOC5dogzBtrPnaU9sxdB1dGkQTU86x91URciLrzJdkM3zCy+yr2A3K0u9lL3jMN+6HqRGTZmTFcE5aw/EFUVTFvTSKgzAqhTvGXZQMvxZIp4uoovF9Czp5GtBiqxu5qwwElepxMaaVkoiarYhAaIzLhB+IJEkgwnCI3vZvPujVNbu554jTl79/nfRlkLYEzHqquoYD6aDWFzHEAlBnqcUOZaFKm0HEqB0dt71Gao3tBAMtmFP+xfKy1eRUqej452854GPUVJSlJo7a4nZ9GCQn3x9Xe7jl2my/UePbdxvqmg0HTj8dsL2K6IwK4gtdJmzGz6GTGo43nbjURo7fTTSiETyRpni0rb7TXsngKSszXyG22xnJoW1t85c5a+/1cvfv29P6ucKC/80qYBJrIkEX3vi2zRPjDL/rcf4crokUQQT+QYPXmoly7sB96pi0Sbwrmhsqkwj/115ADT3paNrcQxNoUvYOuLmPu8lurJHaOAGY6KU7+ev4X6cZEWW6M8rNv+5NvfWCE1CkOl0oZIC2wqNiex8Crpa6d9zd1Ko10RqnarZiHc5RL5QTHpyUgkbSTxm0J7GlNtDXiiADM8gZH1SLm6NAGUhaPhoGelmyp2NFCZe2CcUoZwJQsLORMl2pDLdZ17YuAspdKzyQ3xB9lBDL5puxeO5jZ/2XeScvItG0U7VGtFgbVlJFjrDG9PoHdYYHFukMRqloqeN1vIGpKaSa76izWehfUliX56manmA4ox6xpf7GRe1WLK2I60TdFTexjt3b+fuDc30nT1LzuwcEfsR3JduY8XbTZq/ng5/EfWhfpqPX2ZxUwRVzPr6CkyOTjI49CFU2ipVdwsGXiwn5s9Es32RGyOvk6003nQNcTj3WUZ8cUTp31HS+lnSglWsyE3YtG6WMnVGnRksTTooXwnjDcYYTjKHNc28L8He79Kj/geyykBUWsnteYjZuidRwsBRAbZvOnlO/C73q3ezP+0Skf/jx0R7NUa1dApu7yKS30+o8NR6DQCYnNnCvYsHAEHE23WTHEechPdpFr43iTIyQCgoV8z/oQE6hDnBtr1fxD0zww8XKvi37kk+U/6PWLQESmlU90VwBgXhlFyWQBcSh+U1HPqbbDN8yPk/QJR/DSWN1LP/dcdvbNIWH2wjcvZ5LN4aRjNDGNVFoGlIBP7a7ZQqAZqgdk8zrReHkYZBweJ8UvBRpSpe/b4qmtV5SNJ9h+ru4MneSQ5HoryzIY9Ajo9wXOebB1zEBVjr7+K/xFZxjLYBguzOBf6k6s/p1ppooINq1U9/3w6s1hXCgSQ7UAj2B9K5PjLPK+U5qQUsIcxWqbmomUwmhMAQgqnmO6noXqVI+PhC6SsMTn6FT5HGm4N9kJFJTaCK75bcTsxq4UJuMRXyGjWiD5SiMF5Ia2Z2qrInlGG2MEUvCkEooSEH8tBrZ1L3s1FEWTzRxT/szeZl101+rTfFWmtGJYkGUgOrSFAXew2wkOlq4oD1blwzWbSuvEh9xqs8qz1o/uebtJpQEl1KjhQ1UsJfcuGnX+WUcy/xBgtoOgYwXlgJSfkAE4ujc0rsp1NrIrdimqyFKpz5vQhNJrWDFO/InmHz3/1PLjQ2I1bmOb9lP37Pug94/ppBtaYRyHXj+8htlJS8j38+1o+782SyhWseK5XirLUXj32WL8jv0KM10CC7KCs+QFrHTkKhHF6zXcbp7WHGPUPT/H4KExsZV6QqUfd/9i46T+cTnr+Kw2Wn6cBhQvJ7TEw8hRBmuym27GXopw7SuvpobNlE3h/4Urpn4smn2dDVycWdDalWEwrKyksY67cydvLTZOT10nL7PVQ27md6MMiNjh8iHPFUJaCm1II1nvkL51Dn6cushC+iWYpBFP5STbaJ3sAt0iA/e+zPWlqtxduJ21tHS14LLzBiitwmwf9xexMacwgEM5nZjJTuTSVh6+xJkq1NU0bIJuB/n46gJxSrlltFdCWkqszXNuymaXiAU0PjGDklmKhQiDky+ejgKu1ZOq1eHW0xxk++foV3vttJxugV9pZu4cOnogzlWCidmqJguo9cTz6u1evkF/TxnLh1jg/mFN56zmuh4LbuCPuqPbSCKZ1hGBRPDKJFl9FXltePTUIyTJurAIXBedMhJYloQCm6C0xNu7uuncUzsEih8RIUlTDp24hKJmhFQT95oQD3XD3DpOcmksda5Q/zs3pyS5JVMUEcnZHAR9iReYaVaClnR+18LryDhNiOhQSfU39BneoDzRSmNS9REAwWYGgahWqZk769HBo9xXvOneSF3QeRKKwSDjblc9cdtUz9Sxueo6/SXTjBYs4RNEsRw1l+nnz/Ixi6zvNS8q3FELk77+D7beNYW19mc+4sjul6ZqYzKI6c4pHOV5jNK+L5tM341DZayi4nCUkCOX8OlWVacWm6ouFdOdRUfRFnXhTkX6FUnEI0TIFNhRJxgoVnSAtX84Tah925SPXGNjQhUVWrvH66hENzM+S6PoM7X+Lx3IY7lGD4zOeRpVZT9UDFidWfRZEAzRSLvravgp75CgaCJbRcGsLWJ813nRTEp0eINT2BFOutU00ojtT/kNhSJdZgDQ5/HaJSQ8kEmoKMzl4ihpPk7ppYrTS7QbpZdAlEO3Hv+ytWL4zSf/4GX2n9Aw55z+FZTNCxuIHDlOFNFhwEEMkcxO+9QulyP3n+DYSCNZS0fo6It4ucmsMpH9ZfZ/zGJm2OHduZ/8Y3SACFGfV0KoWhTAmGfOVhTUco3+5jz50P8C8vnGXOcK3T4pVCJ0FT7kVQgszxA/TY9vEnOR4MLcqT41EeBZb3bGTw4hRx4UFqgrhUjDVtZK+YZG5kisiMA8fzEXY3nIK0DIam72B5Lp2ivnZqA+3M5eZS5N5MXp6bVUtSCDi5mE1n+dCkwcbxGaatWcwU2FPXJ4Sp/mWVOlXLt3GxyMZnVCHGHlOSxCQaCBCmkOyz4gM8oJ6mhl5cYwNUFZdgIZGqAO4XJ1Ib3utp1bimKqmo/tckU0fHE/0gVc11ROsy3vKeC2laz9TNjJGzFGSy2MUB++vU6N2AhsvVRFpajC3yefLm/wUNRZka4obYnFq8dyzMk2cxuCsNtp8do9M6gJSK8vl+E/+GqX1XMjkEqNTPNCE5yWGk0NEqFPcnJB5XNRIdIQ2EsJBX/U4KJr9D8ew4gzlulK4zWFqXMqfeOdiRuhalFKdeeoGDhw+xszKfVzUXuTfpZSWh/bizpinXuqkX3SgNpgv6sE766A3HcWbOsnHTawghWSq7jqX3S9x3592pZMasaB3GdD8ywxm8j8mpZ5FGHCV1LPP1VK1GSMxFmGubIecTGym8z0x0rkeXCBtT5PfDdHU9Sil0obFhaz1bN2QmW5wPkl/p5saxVo7/+1G0ckXNLg0hTObZaEc2E8d+3tlgsreL66/9E0Y8Duikex6kqHbbWz77oloPukV7S5LCzZZWhpRcf+Pl/+w2Vv+vx+bczRxIP8ZlI4GBjm4Y+ILTmG8hmHL7bq0updo8Ct/SImpG4Sx08FDtdl7r0thVUUPe/BRCSZQSaNIcL1KYLc+WRUnIU01BPAcrEE/qp+XGJjjmyeTPWvJJCNAq7Xz4RJjuf/w+ZcOvIGw23v/H3+Dp9kkGsoaIR0aJDA1g06vIzRukRZznhrY+xysXI1xNz7g1YUu+lc/UOzivTNszoRSHzv6UopkpNMdBDrZdob2+xSRWYAqg71vQWUEjPxhgT/8NTtVsNBvEyQRLSphXkl2zF9kwK+hovsiWyUWm3bmULAV4ZP8uJq/20dcRJz/Ub1ZnfmYzuuQqpKegjPVWs4Jrdk6OTCCNEc7tsBPftA8lNOIKTsy8l23jEfS8q4SKT6OSuohCKXQEIwXNtBeXcsTbyL2vXeOui8tc8VrZFkiw+TYfmWUeIg+9i9FXn0Gf9XMlLxelDEZ88ZTfsgH8qG+Uk1dG2Z04zYcOPI2ygJI6Sy+W4g3YeWHnNp655xESugWLuosvqC9TI3sRyoIllrXW/AAgq8jNqu04oalJUHFE0glBGmtQGUWo8BTuyT28b7mGy82NaFprKpkq3DtL++g9DEVvpyU2AYELMDKIJ7CCVmxFCvO+pfd3sFhtT+q8Ca7MNqNQfP/iKGp+gD05mXiXonhXVjDeuQNrrQURm1qDFoMATYsT8/WQEarBsVzLhuuZLGeN41mMs7CayUC+F284QlYsjtftZknOmW17BZ5Fk/EeiJhgH3cozidsRwl6c0EeJi1YmnrOEXc/49u/ghRx5nBT1XcRy8jDpAcrSA+Vk13QC2MXf61uCPCbnLRt2ULBV75F+OgSTgU7E2OMiUs4417yLB5zEFg07JVu3lFWgje3gK8OTjGIqaUmkOyXb1Kj9YDUsK5kc1WWprR7DBSPn71G/aXPEKvbi1XVEJcmdkQsTDDsLMGZHrr4ZXIAACAASURBVEREl1mdtZM1HaRTS0eqEXJsBWywb8AqO8np6kLzxDhet50ThSab72achxIamWEb0fAsc3lFSE1gkZI7J2IoJbnhEjy54XZiliTwf22HmGynGMpkibazkR7RyOfVl7D6OqkJn+QL9gCdookG1UE1vSgl6O/bQTjsI90awWwjgFACIXSueq033WGVwncBCCVpmBrBtxRkKKuJ9jIPSsCoeIQSY5QaMcDk5A9QKmGKXWqKPlHLa9wFSITQ+bBT4/7gIldm/Pxoxs+4/wp1775CQakiLD1UzXYzl+5h641WCmfGEMChsz9loKERT7afK9p2ZNIw/qKtn8IXXiWUW4yrIMLSlJP2wAl2/+Hvc/G1FzGkpHB6lIdeeJTR0lpyFOQlq2zmDZSMXzjFD868wfv/+19y/44c+s6n4c5wUuDxMJ8W5oonQixUQZm6BqjkO1NyyfkjgqqUyspL63IamoGed5r8yg/90nHrdm9lQ+E3meo/ztxoFe5wIZodNCFQhmL+Yh/jbQOku1y8Od6HkZ2JYQXL4hx5oSgHfvu3KSkpYWxsjOnoZebOhikczOPoY/+GNBKkhRQz05UgYHamGn22GdsvqIyNddxAGknNOiGp3ZG45fc/i1/7VSSFNUurNV9TeFuj7T8SDx1+F5P//E+MFJRSOjVC2Z4SFnviSMMkJ1gFrCkLmvfVICtwjDM1B5FCw4rOtd5REg27+UHNbcmWo6kqubf/OhtlGa25mRyejdNQUckr9gZibd0cmi6muzCd0sVe1HKQJ6ojxJOEIUMobpRZec/r3SAlHQ27OKbH+PGRcgzK0I39HLz4BiF3GRMDuWzJOMcD6c9y3djGA9O59KRLrqbgEzcTwswMYK0FiiZYcVehWQJMeKCzciuHWs8w681F6gluGxjkQWM/vRbFGWsPK1Ybt7JjJbqRoHy0JwmLVWzo1IjeOcPm9Bzi2S3ocxFq/uFvyE0rYrS4nvk8g9m89Q2HUIpeb8YtyXHj+By+uS6M+CpGupNsQ5rkCqGhK0Xx4AIjM3F0fYKsEhNXqklJQ+Yq84ndfLsll7gu+DvNzTc+WMLGVxbZHFIIi8Zymk7fK8MU1VZS+vhj+C5ewjtxnMELUVR4hdMbTSiGLiWOQIhMA7ZnXIMUWzJBRkGYyIydkaJK4roFpesklMbwpT3symwgPVCP0AWR3OtJOQ/B/NwbzM+9jlIahhImEUoKwqPpZFUspdawiLeb9FA1O9Juo4snUSpZBRNwamWJSxdeoXLbP7GkJ9CUYLPQ2XQ9RNBtwRaX9FQmN/0KXD/QuSfYxmKNj8loJtnhQRbKmtHTShFVrzBRdh3ia48z2f0yHyvOum1kVpdjr3Qz1fM7FJ/9M2YiTl4I1mPfGCNYYLBlaYnqe/+YnNNfIOACTxjcD7wfgJ2V2ditGkcyztOx0YEUy4jyr1PS+jnSg5UoIOrtRmlJNq0SDNYsU7I4QHqwzqxAtn4Hrn8JPvL8//dtrP6zhLDkgYgyI4Kcsw4xkVnFZFY2ry4M85manVRuzcdelklrcJmzrPLu2lzO9U8QlxKLMtgnTyXbhzoDq1sIlrtNNpU0sRtHXn2OnTfiLFw+i/uedGYKt5EVnKMgHEACrjwf1YMD6LkhuqpX8ayUEhyvx+uuY0V6cFe8i8iZv0UGBnk+cx5Dy2eNnSXArPYpQYb00xS7QeO1QdOtoecyRsDBiijjQppBXN+R0vlZF7tN8GH1KJeMB+iw5CS95hRdNFPt7mNOKmpUj5msGbC6YsUfLsRii+HKnCfTphBJeyMlJBFPJ5v9VSYTUyUZmMn01pzRJs7kTPWG9UVXCOJScGH8MFsLswlxzlxYlNky6FRNJJJ2NxowfOJ1nh7r55m7fwejRueoOsIX+BJCg7/S/pxEoZk0Ht9fxDu2biO+EuVYVgWGRWeUcjQMSFYOWxIX0ZVBdMZBZMaRhOetMtjTcRP0HwpnxvDF49irbbjLTAq9ZdHD0EqEjrot1K70cPHi/8RyVbI71MT0dAf++7fxddcW00vQk8AxGGNX+SsmG0pphHQX1dtMzb/UWASEXKC7+78D63T4n43rFybI/DF41EGinqsMNrzOhWApJTKbdM8EXa1jTI4uIYRAGgaGI4NIaS0IjXG35GR7L0fbh5ldnEBK834433wVTSbw1vsp3judHGIa0b5dJIzMX1gZ+1nf0Ma921O/eyv82i8jKaxZWnWceJOO428gpYFusbyt0fYrYm78BvecPUMwvQ13NIpx6I/oLVlhcniS3NAC77pynHhLA7dXbadjcZyfdnyFiLXaJD4J3UzolJnIxC1rfVMzWZpzufnXArdpCp9jZSpUxYWiMZZtOYxlmyzMsZwNeKOhn6s+lZTbyIpN0rH5IJ/62MdZXSOorgH9d92BEhptqo4qeZH7tKd4j3yG0Z4HKVzehqVCYgizhVs90ktPecMt1UJTVkSSbSwwUqjzwzsOYGgmFvW+Ez+hZLwPPbrMULaHMa+Zkt1sQ6hJSXPPZZp6r1I0M5YkaJhrq+3VVs65E5x1e2kPXSf/8J1s7ulkQ+fL0CWY+fjH6XdmsTLlZ57QrZ+rJFULPYTz4zhXHCTSXSAEtdOjRG1ppMeiRJzpdGUvkz1jxW2YiaiQOpXzu2nNziJu8sWIS0VfZQGHf7eC84PznLIYrLwyQOFsPDWv0h9SxH/yCgWX2ikICL50cYq2goNoYRtZwQXusAraV5qoNboAEAZEZ1048iJscl7lgjxIAtCRFHgDjA+m0+QswrfyXXKvBejPziRQpFLLOEhCwy4urWxjxF/Ku9RRsiqWkngyRSSrm8DeozjtFZTlfYzhkUeR0sCQFi6GtlDn7cMizG2EVJJApk7vUBNHQm2MldhROklRYLDUbOLw5CR32f4Hjwf3YbMVciD/IWJZQ4xvm0MJtS73JwUqOTQmTueTuRmq7yvh8kiAh09U8EVxiOpID/bcGFVJjbYpCUWzb+J+4MdYj/6QkQV4/rVZGo+YCgwPbC3GKzzIJI/MtKjqJj1YhRAKR6ABlIYpUGx+d8TbR3qwAdCIySbsRs//P7xH/7OEvdINGkzhZzLTnaJ8W8sSbFkYpGgwncsrK3xweop4khX1cGCBSPgYcb+XMU89bTm3kRVy83Rzg2nanFBsHYqxYShC4/AooXQ7beWFlHZ0UzA4QbS0Ltk7kwSnFrAPSEaijTy+vQmdce6M2WhTw2iMcqfYRFZOLdeyNM7VJLnWSUmNvX3XgRz25HsI97xGIqeA/PAi+SE/Zfoylqr7eMpjJTtmYDUM4oAuDVoCbTiyFynXhghpmVTNX6A3925WkWgY1NNhul5pAjHqQqgYomwVmzNOvnMEGMGQ1/G3H0BTWpKdpJPuryM+cZGaRhf9rhaT6JlkqiklSBL4TUD0TTpQSgiOlh9h/7KbYnEeUChD0NbaSLonCLUKNFMGoGisn7HCilQLIC7hWfUBctU0hrCkXhwJBC+XNqEN95rHCh2pFAfVG/iYp1Z2c23iNjSGk0eTwst5zlxgujgHQwgSjgwSGZlkZMxRv7E9Kaysc/TCe3jmwIdQmuACByhWX6Yub5CiS0doWtzNX0WukHBZUonwoKOUvBO/j1Z2hmAwH3fWOv1+LY8WUieWfZWJycsATE79kG1bn7wlcbs8EuDij7u5W1mZzLpGcOs/kqOZgsphAcsosisEgRdLiMw6EZpGwuEy77cQoGmM+ddxiGv3K57mxOuaMxO2tUORFNf0suLMp2b7tp9Ltn7WN/TmatjN+LVEQnLxxUF23F35H5IAyfTlcPh3PkE0HP65z307fj56jj5L41KM3HCM01taeHHBQkEwRh4mPKIgtEjXlcdIy1vib5reT270Nn4y0ctAMj/ThanplkhCF0CgpJl8IEhZSq0oxXcydFRG+fqXJ9uLk24ftdMj9OSXYmgaFiH42I568j7/JzzVFyGeZNKhlAmREDKl62ag6NEaqBfd9ItqXt5YTmRZ8L6FETrCEUQifsv3rU2Y8oVpNo/3kR8OcK2sHmPNy1nAuS37iGf52Dw7TcCbyVh0GDDN4u+5dobpdCeV3ZdTydoaEFWhEAos8TS2zXUxn1HBS++9w2y53aX4w+8/zoGuMRL6dhI34hiaBzzXQEHt9CgCqJ0ZM3GvKDKsTvqyC3hx056bbLSgt6CMe66dwTZfQP9LUZwlcbTFJhyuJarsx7GqI6xKgUXX2J2VwQ3gI1qY1bhC25vBbx8PUxJIMHDux6zk/RWqyED8N3OTXKF1UEEv168fIaR8WIRiVdbyvRMPscN1nS1b76Px8BQrtseo1UbwyT+nr3cXNTWXqKnoQpRbWW0tJ7j6O/gW+4lYg1AcvyUn96pytg28gz6Hh9J3xFDG06k2aMTXjgKCKwGCI1eZbP0QFvsSS3O1RGMlrISmEOXm3dYUeIOrdIgqjsc38V/j30vhbhFgc2xgtuAdCN8/ctjexsDIx9GEzkp2L4j19VMA3lHonPMRnnQS82eSs93O/Df/jU5LIXFD8JzYx9ccV3B5l2/SaFMEpt/Eqr+L4a+/hoyt0qy/whcv/R49vgoShqTNu4E/3nocJY0U63ZN4Tc9WEFO1weZa3wSMBm1jsWGZPfJwK51gG6D8n2/rukO/IYnbYZ/gMiZv8VXUM1UxaYU5TshdAJBN6GrwxytsrNaZUsBTo0FDedMglhOiO+WPWjqjTlUqjojNMiMSEr9BvGi20hPi+GxzLGwOoUtuoQ+2k3C4cISCZOj3PTeew9f2nuPKSOiJBP+s+SHAqaRrVgk4SzlQmk+iTVTcympmxqhcWqEkDfG1QVBpjMDjzK94FCKSwV1vNiUQUIIrAr+8Og5/NFRtvR3sKP2Ci++ayN/rX2JuLAgfHDPyDE82giX04ao8PaaJAKp88rKewmXCLZx3iQhJDe6uoB03Y2v67dYzmvFNbudPtHAp+5zEBcSU6zDTNk0JAfUUfaqk7TF6umVpaYILyoFNjaAtpVc4kcrceSFCU1nwLTCp6Y4PPsi/ZXN1Ay2J/0+zV2ykWxztIuN6LLJxOFoyZVFCE4EwmjOHNO7UJoW1hsWOynReujtrUHOlTBd0cioz6B0OsTG3pNUjV/HE1mhuMDPSFERLxYfoiuvjEz3LFYtSq3o5bg4xP+166HUuceVhS7RSK3oYyW7l/RgNTv9Tl7JW8cDFg4ECUaqWR7bsE5UkHoSNyZIm9xJWrqTsO+N1NhUap0SvybcfGZsfs0XmYD3BhZtzWtUploQAnAVRlkNZHHoIx+n+8IFumIpqdXU96+BsVESSyRMRkMklbCZvBZB/wCE/dcZ6j1FdtGf/lwCdbNv6M2xhl9LJEzQ8FhngInuNvY/XJuSDfnZWCMivC338R+Pq7NXeTajh1odOktr+Ivf+SQJi54Uzz1DftiPAtISaXzjxDeIDPtZbp8kzatjEcdpydvGn9Rvp+/yUa69eBZvLMJgZSWTnhwKF+exrXjpyxUk9GQytwYagluqXREpSZsZ4wPPP8pYYQV3N9bT4t7C/GKQje1XsO7cTEKaL+nd/stUeVv5rvYICaXQlaROdvGGOMIT2seRLh1c0KUUeGUKT3qzET1CMJqdT6l/Bk1BxJmVxOGZ5zfuyWHSnU3auRss+mOodJK4c0V+yE/5jTNYV2N46nay0GNuFKUApcWwJOyssfPtnoSJfdMEhlL8/Qc/RvBYkMIuE6CvrDCXXsgLm7akzrNueiy5AZTMFJXQX1aXcolYW0ClJljIS2PD1BS+2gzGl0qRXkXuxn8iVxh8Tp3kZN8BGpwCq+cVnlvZwarhMVvXGgznWsgLLzA58xSevKQ8lKZYs49VMkFu7gDuzClCwQLunN/GpcJCcjJqKa7cQX/75xHpgAY19FLvDGKI2ZR2ZNTbiyNYRUxupGD5TYbWVG0BITVK5u6l1l7ILimIWw4yKn+ENFZZUxMQqSEi0a2TBLofwkCxVc7xsdMvoK5aMOoMilxhHBbBhj13czxawSV9kiwuJYsaghX3KLMN30OJOKLcTiXTEFKk++tA6bdUuBJ17+WQy8lYfhY5uk7s83/KbEKyTRN8uayO7xXfzqezP8n7Ei8j1AJImcSwxZibfYbwwShpvWAZgsbZfqyeGDu1Lqb6vaTHP4wjO5iSJAGJU38NBTinwbFUwAU9QXg8ncnwRQ7vL8DX7MG+8j4zYXsb0/bri8jFSxizvbinu7lbTNNWVouh6ViVZJvffOFsm49jrbCaJWSliITbyUmkMe7LJIFZTUlhzJS5MJXNruLVJZW1ewGdXCV5VrQxWFBE7lgHrvE2vPZidjZs5xs7+kloa9UgwaTbR34wgIZGgfKSU1qOz2pgkQYJYZ5D3ewY05keXmrajiE09NKHeeC1p8iJrZBwZzOekU9cM3e3CakIsMQnwvP4/uBhHI6DjC0VsGoxLaQUipdK9vOjq59kmxrmmwk328lmIXSE79fcjdQ0XuZO/lR9iRp6UdIEszriLuY3PoUScaLePi5MbiMuHEhNxxRsMv9KpfAJM9mYz/aws/8qq9Y0svQFjpfsJoGOMAxsp14nMu8gs3IPC7YBtlW46SiJcrzm3RiahYmCCjL0TAazHEkZEpKLhAmULpwaZaJwHQyskotj43APThTV8X62VZ1HEwZ5mxc4YxE8uvmTJLCgS2gavgRAe3EOGelRevPr+PGm/RiaDlTSyjY+oh7lCe3jKNazGw1Fo+pEKAvp/jqEEBwZb2Da/zS9pS4KhsbJHTuIcrhS5xYK5dDf30K5bxb3zHbKpu7C/mHFjckTKLVqwsSESRdfE4GWCcm7leLvMYhjJcvfTKjiOGsm8cnhB2jkVNzF4fsfoLC2gXRho/vYsRTw+macYZawsDrSjh5dJjyRTv5W3XTZVoKBvu34ZTVkQdydzbnXXqX4F1TV3irqduUzNxpmdtgUzJVScfKpXrKLMn5hxW2s40YKzyYNg6OP/evbRvG/IlpnWukuVPzFwzpxZxNxPanpJWAqy0fxfALDtkRluJKKcAX1I3lkZzTy7ZIMYprkzDJ0LUXxnX6BrT0znN/Ugi4lW0d7AZ0sfxkfOD3Ba1sczGVmsW7yboZAITVBR2UT3WX1PPji4+y6fpbcu+7iH0Zm2Lp1O03f+AZ/+6jgevMO9lY0UDaiMeY5QbEco4tmrP0OBtjOU7X3rM8rkqzMpNC1FIL8xXlm3Nkp7JgETtZsQksmk5qSZEWWWExWlqUm6CzMJ2v0Yup8FYqwsUTIa6U8uJvw6AoWxyHmnH0MFE2z2epGu7BoWqErhc1n4ubMizVxykM5VqSSDOYn8K6OMZHlTW32pQCWV2haNVh0O5iIxkiLr67vhDCxvVYSHMr7MTV39CE0hVt1MzNTmaq+18puMjMMcvMHmZs3yJOn0PgSStNNe7/FIRazejFUJW41iJCSXlVHD0n8seolP28AU5OtA8+lrTR1LXMl8Dpjb/6EnXfvIaG6zeoROp75TBYK/bdUk4RFx76jhZz6AwT95wkvjpAW9eHt3ocjVEPU3U+w4DSLvZAZ2QV9p4nnSaK3rWOZlYLwpAMDs6iRtdiLVSbQhwTGkJXzTVv4bu0ddJ6x8sRv+VmevIYy+Q0IqSfX8URSTksQzXbiWNbJcWcS73Qz3eAHodAVHD/n5/CDf8ZtWh/DX3k/4cM27L0atiHB9sFOto70MrNpMzt9HSRurBJw61hXYSovncn8TpQ0WFLgeEbDE1nin/u/js0eZ7bNjXa9CsfeT4NuSbbRE1jFAMHEJ1BYsC0eITH1NMuxSSKMMt72WYo2fBr2ffr/kXn/G520OXZsR9hsqFiMPVfb+Fx/G6caanin1cWmZVACNi3Do3MWzgYjuIPjLC4voATkzIfRvAZSre/+UIpNqxoiPEtdWhAhagCdjiydf9h+uyn50VzPx16G+nAaK94+GmjHwv3JXaeicHGeQulhW6KKPOVGodgWgkOtrzNbZqd0WiM/FORKSR1GcnECnYnsAqr6x1nIEimMhRJgSSTY3HkR35//KY4tWwC4v/cST4yZfnzmYiT4WvlH2Tp9jpYpL4tLE5yrbzETMCFIKCtvxA6S1dVP0YyXNz3/G9NlBptFBTVaD0omaFDtWFUBq0n7KyC1UEWkw6zsZVrBleCu4e/zgeIX2M0rdKpmHFcT5E6PmBW+jikeKNvLdMvfMqbdk1RbN9soL+w+RCIpt3IrtkUwucbeSv1cokuDhrE+fEpSXNp+k+G6YmFTHobQUEJgYNCzMYuAVogUAlYyOWNvTlH4AQxl4SI7U/ds7dp29p7EuRhAW34v6fFqE8ItJZvHvNjaz6PQcJaN4iwM4AgUsxBJw/BOUFl9GYtmEPNOYH/Hu8mp20e58U06z30HOxAa2020vAoxEkQmpNm2AdwIPkmEB+31LLS/k+KSK3g8U2tFWGamqxgehsbdJqB34OpVsyW9hmlMtjHSIvm4rAHsDWOEJ9KIzDjoe6GUzBIXureZ6Rk9VVRxZc6xJM9z5bjk/HOZv5TReTOeTdOEWWBIlqGlUm8pC1LStAFN05CGifNTUr5NQvgV0ZLXgk23MVC8yrJzKYnvMatShYvzqbFuNkphlhBXvQWsCkDoKKX4k+5R9lW0cGr3Ngwh0JViS99JDnaVoMedxK0LLLgKWNtwpMrtQiTtpkQKpzZRdoDb7qvi9/0J4vNTWDWN737rMQ60XeJIZTOzbe1EvL3kdX8Iu20O10yE8YlZXt937y0bITATwpsN7KWm/zwTlnVJEqkE9pUIONat0BQRYH3Mpy+7yVs+gExMsbr0Q8w2l06+fj95Y7ksv7OLjuD3qRi10NZcSnTTAcTyOolDlxJH1ODfD2ZiaKCrXezuv5HCs1kNg009HUxt30djQQ5TXVdN8kPyHFEGzeo6D4hnqBa9rF2ykOYEWfMWRplzL5XEiW5+t+vrXF/eQsnkEIbugUwr4XAuN64fIZhr4bHCDyOFji7j/NeRr7KjvC1pV2EQ9XbDeLHJzE4kyJhrxDP4WaLeHtL9deQ31OOc/REzqwG0lRoc1Rvx7ahhJctJ25XfRspVtDQbVRWfJdYqiLj7GGv5G9ASAIQMjUTrLtzn5tEiQ6xsN4iFbYxfLOC6J5vK8he5uljNkvLxfk1HyAQrVTCx18YH4q8QmTnByHE72dVx81lJYLie8EgOstAcu5rScfgbQYJeWEjT9UGKrsNilpWsxTh7l37CT67cQ7XnHEN360ghCRsS39/r2IZMZnVh22XGdBeeBwJEc3UGy9OS1WMjKQIPyw8luPPvT7HY51gfe4FBIqe/xmTje2jPqaIq/wabw9WohAUw8dZ56cUsxMbRhaIkPQAvfQqmr8Gmh9+utP06w7FlC57f+hD+bz9KR3k1/2flVlalldOrAh4s5I7uGWajo4xlWJBBhVdmEELDUJLMSdjt7eWkrzFV+rYA73VlElnNptPwsceioQtFm9dqgks1wapUdNa1UHr6p1T6t1OrnucL8st0JHedmUHJ5vhWclUmKvknpiSbOMbRvu305J3HIqu5f24nV8sw2w7SoGRyEJd/gcV8F/mhAPe2n8VWV809s4vsXkvYxi7C8Ckar93gj645+LsHH0mW3DVOelo4597OP19aQtkkT2bfKt2RZlXQozMzlsdjf1RP3GLhp6KRz8svUyP78Q1l8ZfHnuW791ZzzbMBlaxASnR+Kt6DwkyQQCdQkIYQklrRS43qZd6VywTZoBSznmb+vcpGmaikUbSjYSbGElLepmtJmZAGnuAVSv1NXK103FT9MjiojtI8uESJPZeheIDgYj5S6gyIKjppwkU4JWmiI8mOJsyEDYGR7sRiT08pyAPoJNjOeTrZgJF8aQilyAg7mL2SjWGbx1nkZ1oPkme4mV0xMS7OvCXKb38cdPBJC/rx/8aYZwFdW3O9iDNw5XnSF6tZGs4jr/8+prUApdLD7KVpKM/AkRxbCeAaBv1Wha0aQm0+Rkc24XbPmnpISmNmphLDMBgeHqakpISqzZu5dOzYum5esoXkdaxQuucJhBYnbyuMn87H3+0hMhPHSO+F0joQAlfmvOlZKAxUnWDgp+W/NJm6RY9NKjx5DhZnIygFFstb+5EW1jZw+yO/x9HH/hUlJbrV+jYJ4VfE5tzNfOuOb/HceBePB+tSshF7+m+QHwogDC9YTVS30AQ+5WKzfxUNW2oMS6U4UdCSqsQaSnG5dj9+2+NUz9joLitDidrU3KqeWWIo14EUGkKZ3QgpzO/dtNXFTGUJ8cEpDMzE+yWjjw0PtbB8eZajW5+jU6vDJafRJu5kXvQxX5FAS3f+zJWZcxjAUGZ1qX5qiIWMzGTlG9MdRZA6L6EUG9vP8+aeu0xxbMOguW/YFKFDJss+HSw7rOjLYcyETTGRV8hEaRrlATv7xqu5x3MnL23LpjVrH/GbEjZNKfb1XSVhhDG0AyZ+Tmp055dR6p+lfsVFRW8/kzWVaMEJzi1OsSteT+aChSulioSmTJKE+gFKg59wPw2yg1rRA1IQm8liOdpAsdWHMb2ZOWsPuXmD9ItqumjCtTDPzq6ToGAqS4IrF9AIB3302yqRhUmxYWFhXN7BdnkVgUIoC3Z/LaORy6YWmgbhSig5V4cjVGMqJGxpZnTEwpV//WuQs1y0XuD9m/6S1cAFpFxlzSpv2d5OwSc+RM/lN0AkUnAMpUsCm3MYsn6Q6I2j/GC5nvvyVyg+Yuf+9K+iiwSblYXZwt+DU4rVCknwDxI0Wm4gFMy+uo2NC0eYrLyGEgZIRe+NMMsz7ThCJeSW6DTFHyQtVI2wmudL8ddwv/hHuEPmOppAcCD6OuNiEJlBasMZqwXb0Fp1WBArlXTscaL09WZNKgQIJLFKA1ufTsBhZyEjneylKFmBQbrUqwQr0mhZOop95QBhTDb2SlYPhRU/IXMqgkPP8nsmIQAAIABJREFUYyx7M5Ggn+rWx+HqU2+zR3/dETl9DIBrm/awarGaLUWl+LO5OTrPPYE0DJ6++6Mkqi1o5HB7dxlN42P05ScYz7ahYyCVQlOCP7e72bIkOC8EiwacXYpTmC+p1ybQVb1peSHgdGUx+X1OYrMjNJ64jxa9lfqeY8ytlpA7O4u0X2d0y3spsVQAgsYMjX93ZzBkDFIUz0CESxAzi3w6OMhlr0722DUKZyYYtZQwPxMj4PPx4T1HeMf2xvULHbsI37kbjFXO+lu4XnUvTcN9ROxpDBaVIjWdVaF4udCOl1mUlnFTEiTZxwnS6tK46GwkoSdBv0qnSzRSQx/pHU+xqX2a+KZKOj0NxBWp3bNUJsJNkwYWlWC/bE1NFgH4S2s4v6WZtJUIx/fchqFbsNDAb8vH15XcU1gshZAGVSM9OFeWaalSiEAv7XIDCaGhI/mI/DaH5DFGBu5i8527OFidx/DwMK+GDvGdtDIMoWMlzm/JxwnjJqutGfvcJlbpB2UwVlzDmZpN5i5MSWrn+rg9/Aa5iQh3Z7/MC9nvRqFhk/D+eBPxjFH64v2M2NpMUU4L5NqtsCrILFoxzek1QMWp3DFALFoL6nUUEoXAP+Jh8Wo/szkLnLFdQ6HQ0bg7ls3ZiM7F1TF2GgnOaxaymqt58kgtudoSfVcvADA7W0WBI5eOoUyWlnzouk55eTkANbffzgOjo7S++SZD5RUp3J/TN4DQ4qzZpxbvnWYlYCcy40CPLmOfGSXu9lFUE0DX11iuCldR9JcmUz+LZwvMRNA1Qf3eAup3FvxSMsLGI3fiKy3/heSGt+MXR3Ysm6VwJQYaawSnFYvVnCMDwzy3ExbK6xHxG7QvPs7GSC0VMy4G8+42Le2USuJDb6pgSYHUs7h9WymHZsv4koIECqsQ7BiaoXlqksksH2nxVc5Wb0IJga4EkekRSmp3mLmUkliIU7r8OE9d1jlnPMRR/c8w0FG6BqUKSk18oyaNpGh5MoS5Ma5UA+TOz1J5ppP8kJ/8ySFmd2yg2O6ibWaF7sIypBJoSnH76RfY3NVKjn+ascJKSiZHKI1sZ8W2QNwRRVuJEMsrAuEHl8ARczCZU8QP3/kwhmbhtIKxq5PccWGa8XAZ8X2mob1AURSYpWWkm/ygnwXDQDcSGMpcA2czzU3IuIT7Y148EyMASCQxEef+hUJmbkQ5nhujpv8U4+TzxN7fxxA6ujL4/e6vU7IwRtmuy2iaIqwslEztZf/8uzjT28hXG3YQVxr6HsmDK8dxrQaYynGQ7Z8nbzmMLbJEabQJrd7cYNqU4M6Feorn/5hRy0sYgTLOT17CH59m1hvGsRLmqcHP88F330va3HY6FsqIvjbIucuvsdUXwlWwzNJUBh0n3sTtWkVkW1AigVA6zlgz7WkGZ20Z1K8l7YCSFiJz9bitFlxlB8i2WwjWFvHgxtMMDJrJsY5BReAH6FISq1VmZUszSS+eInBM11LS+jmCBaeAAUyZe0lsxo4zNsd3nWGsaTHuu7uBorJM0BoRmgUl40nCs0527zMoRxkzm3WUkAgD7L2m77QmzCpxrFaZa+CayPItoRE3NOi3sOCwcqnK7LxoSrHFGKfmoetouqRDOiluvZ30oEbU3cdYy1dRmgHVOitqCiUMlpUFLjVSHe9+mz3664zIq99jpWcAgBa/wWOwvgOViuHcEkCZzB9NIBUcrd/AnCONq2W1qc9pURf54HiQG+l38EyulbIqO1v6I4SMBJnhv2G4M4Ot+x7mQn2T2W7UNK5v2oun7waz2Lgz+l/JHfs2voUudEB43KRrZcm2hsCiNDZEqzEiOgcmjyCUIIRAzBlsHu8AshCOWpyREzhDCYrDXZy5YiVtZYHy8v/F3ptHx3Fdd/6f96q70d0AesPW2HcQAElwl0iRoijJkmzttmNFiXcnjp2ZJE7iOMnYk7GdxfbE44wzkzj+JV7iPZZiWbZoS9YuihRJcQcJgtj3fekN6Aa6q96bP6rQJG0n8Znx7yTnWO8cHgKNQqHqVdWt++79Lg3U1tbChW+Btc7pwGbevf8T5AxbHkMqlXdV0AK+X+PiHeqHuHmnLZ4JvFP/A626n++4PAw0XEFo02nXWXSKHpCK1IE1zrgENz8zyIe3fIwjxi28JG7H0i6n5K05MNVLa+I5tlQOoX32xwO08Snvb5HbYyC0dqQIBKZycz5zP6pwQz7EGVoTTiwxWtuKZRj0aM2v936PDw2tcjbiYldHku3+OUaOVZAYH+T5L32Ct/zJX3DzzTfz5aN9mOtpm0CgPFyJ3UpRzE9hohjpUniK30RR4km6vcXOcdiBqWxyFt/lNHM1LVTOmjwYOEpR8TYOLbnZmtDo0jsZT2dIC5HvIlWV7UEVhcgUZFD8AKksDMPNzlsfpnpuntGxq+/JEl3MnEjQzbNU186QSERJJcuIh9N0GMusTD/KirboFAZ73vhhdtWHmZhYoah4ns2bn3FYrSMUJt6PSofZtb+K6dPHMTIrAMz1XyZrSMcxw55D04raUg9a50kM4dYkRZUZkksRUv46EIJEWuKoAyIEbH/dm38imfpxTbYHfm8Hrx4eZqI3ZlditKY44v1XE7bp/t58snbjGx/6v3+of4HGxMQEX/nKV8j4i5Fd+0EauLTiwJlX2dd9lplAhGPbPmKbwutthPgUV/w/ghzcP5mktNtLcSLO377lHU7L1Jb6cFsmtw7FONR/J4aSVExmOFPqomZvNX23GKRPTrNzvJ9ztW1OdcfWZrucruRrA5NY2ED8t/ElhIBP8CdkDTfXwReuA+Yb+DKrZHyF17RIDUZEC+OlTWxvWKchl6F8l4/52lbM45c4ODJE28IE08FS6kd6aRg4D0D13AQdy1OshXbTU3WcKOUgAlj+YqcXCaApdkcYad/psMvtCuPzOzo4sq2Tu86mkBYIl/2C3DPWR3liGbSmdnKAhw5/mZ7bHuBCoCIfm0ypeUb4eUjbiZ5EElVhukMGX9/qw5Q+JsrfQOPkIJa0me6WEJypejs7ir6JlDMOEcAiHemlItXK+rZ2zNwKWth1wQubG+mttPX1DGVx6NhnuWW+CH8ywlufG2YlavKGTDXbExql2/Ck0pxZegaAqYpahprfSECusr/1MKn0t0j6HmF18IOsL7VwYwgabhtDSI1Wiwz94HHqMrfQ3PAHrJX044+1s7hSwWd6v8m79nwB4Qgc51KVxPpfR0BCS9fT+Jbb2Zdo5vPPPc9QpAQpPXZ71bJoiQ+RNEK4+iVYtpMCGpQ/zlpwCDQkq4+jZZaWao335QIa1lKU+1boNq/webWJwUuTfET20n7lbx1Mng0AkCXNrM0Lckt/Qe3pUTKRXkqmj1BQNE32NoMisU6sp5DF8UK0SudjHspmDG8ayXKu5kE+292Oq1qwz3eKIrkIgBKC+MEyiuVIHmOZjgziS3SQjvSj84LLDgZPgFYWS8ESWmKvsUd/riP94pP5dlH7xaP84ZZb+PRmPwqNS2m2LKySyM3b0ICNAAMMRG1XgY0As46XyVwFX67VoLJ07/RT5z7OLbHH+AcTuhQE5gehfbMTkARXKhtpm5+kMhHjaKlJ91vfzB0/fJxtgwO4S9tsY1wH2aHRTOg0t0y9Ecu9gulJ4F4P4tZRPP5Ku0i7dooNj0rl9aOmZnluZgGX4eKd73wnJaMx0peLeG73HnLyqjyGkpKi1RQrhXZQM9EkpZ8P8zEu6810CltYV0mYKBfMZ4e5KfkFGqvuoCnzdVr1IEJ4iDY+xODJL/Kjmlt5efIGdq52M1OaoLeixAnMkkSujqKR7Ywmx6jfN25rsbGZHC60lLZfm9bO/4I7R8Oc7wBLXr8kisQXiYVKbeVvpRCtd/OmkRx35fqZ8HyBrLaougmUsoj1l3Di2KvMTLmRqXXwa1C2g8zJcBsqAkYjvP3FOPVL5XSMJyhaOcbzN9zqkBQsGkZ7aa6qZmhiABmuoc2som0xRYUKYgt/Cjrc7ZxgBq0hEFgkUrTEuVg5R9ZCtB67mc0BiT/yOjINzXg8JzEcBQBDgDc8yZRIsqXr6bysyKXuOwmXV7M+fRGXoz4uURQujZJIuBga+jZlpYNXcXrCpDg8yfp0Kece+RxaW0gp0RpyHi/pulZ78pz7LzbQDskbqNp30gkyUNqeAKmp1MusXWgglSrDZayRBwUhsFTqumvxL2myNe8oZ+pKHIVGCkFqeY3Z4cRPTdyutbAyXK7XXBB+xjE6Ooplmo7N0lHMrKJm9QodPReRmQzduw84CYLdUsx5O3BnBwE4xtN88uC7UI9O8t7HHqO7IYJ3PcNIbSumx8dqaReX0gZnI252LZvsXDT5T/OL5KTG2LqPm88fxbJsDJwt+6OIeyyySuexZyu6mMtsthn218Aa8iuba0Z4JW4nbdd8roWBpQVXAi7K6+b5lPxNzCmNq34Ldy8uE00sg9LMRMpwV9RS7Qhq57xvQpo11CeOsx6yrln0adCC2eISunfvpMBcspnoG2QDaWNn014Xb38xxUKLRfjidylbnmeipoWZcBm+hk7WfUXcujZPb3GELFcXv41Dyxy6cIWVbXfZrjpC80/hJKb0oaVE4SJTGLnuvBOZNV5YayVLFZ3qEm16CDKbKHtfF1FXFtW/gp0MCJYKA3mcsSUE8ZqD7E1NcjmtMaf7CE6PsSX6MFoYCASNxdsYXblEd8jFt+/7tbxTxAvs4b/yUVpFP8Vl/UgkpZ0nEFI7PqiawmiK+d5xNsf340+0IAzJuZkU7w2OohxygKFBBmao2Pl1hJAsoxDaTfWpD3IoluLs519g5/v/C83yhwTOPUPEyOK7rZmZtQPEL0k2H1piOvECnuZhJpv+ksD0AbSwcW1aQFV9jMqJDKY2OKk7UBpWB1+hfvwTKJFDaE1q0cPKvA/ZVYZPVaJx4UtswpdoptiVoLizPz/Xk5srOT1fhffwGsWVq5SJddrK54jEsxSnNKvGOm9Y7aa7sIqUKiCYslAIDKGpSK+xoqTdclYGvmVbgsu/3IFocqG1BUiEwq7yaYOSUDvc/yevYdp+nsN/6A0sHR1mrqyc8oV5dp99jN+O3claNMiuZYstrls5mrrE8rrJUz5PPqCserz2DpzvXz8S5HDQwYA5idylmgDIaabMErYMaTJen7290+5TwHK5j2jZCH9V2URWCp5u3crHvvi/uHmsH5SFEmAJzd+Ufh/vWDuWK0UichHQUCQILW7FbdqJw3RlK+drStAoWufGKXXwS5ZpcvELX6TpsTPoXDHNK0O4tlu2/hJ2G2PFX5g/H43Ar1O06n4bLKuvQqFaChS+YYtfGniBzaVD6IZbSZULJpJ3cNTcSWyT5FsHDwJwli46p4eAkvx8T5dajNYI1hIH4PgxIrWLeOIWeuvV1ffB6VdZWytAL2ruizfSvKL4aoOb3ghYKzF2XTxOWWzerrQBbgW7Y7Zq+nqk3xasFYC0W37rST+f7VFM9vfhkoItXi+lgQKSPsm5Zi9aCkwUF1tiPLzyadb3LtLWL/n9f/wsr2zdRu3MKFXzk3jcDUjDIF1UyICYYYg59uZaWRc5oipMu7ud0HoFC+FLeLue5ZJo4tPybWS1i2P6Vu480cv2EQ/DPY9z8I0VCOFCK9NmnS5tIlBynrVrJDzKvDmOf22WA29uwuW+KmJb0uLKg4PLK0BridY2dsUVawdrQzRXYSkNaEx/EVf1PJyLISSxgQbSi7MUVaZxF+Uo7Yg7myjC4QVWVspJpaqAHrTKohWc+MZRhl/4cwpDYTbfchszw76f8BQFOPrIAErp/J+8/PI0fcdnf6pR/LUWVmYuR89Lz7+WtP0Mo6GhAQMwlU082HHiGP0RH0v1W3B566hcT2BsSN5oTemKh8XAfbjXenFnBznR10+171cImfPsPf8Y59u3MdhoQypGqxv5jk0kRmo3tSsZssKOD9oweHHnQbQQtpL/7Dht8xOgoS9abxN4gEK1Qp0cQwoLpextG+ZmWfcUseqTxH1+cDw+b72YJB4Ic7lWEFyb4GJtc96gfXPuLFeMzjxbP4difPcB3NOjPFnZTA7Bq9sO8MfTPchckCOpUurnLcpilaxrWyYIrfDMTTBbeSOHt92AJSWGrmb/YDdLxSH6KhvseVJQNzND6XIfwWQamZpjNhDhuwfvxzQMNtzdX9Gad/Y9xYnAJhSCjrkpdq5W415M0vrio4xtvpPjVXGKVkMYugxLCVwa3jZXzKdLLCxpSzyVpuJ8q+VuWx+UN/Pfh0/QceMbKKgPEBubyxMyhLKuQkWcUe/qIuzaxE1Fit75VS7LSZbWpyj31iGEQGpJQ1EXT9YGf4JUdVlvpk33o9a91N3yGRsq4YRhKcDK2Ame3vinFNsm0mSKO5jSh9EqB8Kp0ksb22Uv/kzSkSssXEmCsvj7R0b5+LveQ9XKs6StdtKFH6fY72LPgkV84XF0AfnKFFohtN3ylAo45yItvCzc99/wT+xGDCyyV/bixiRVbDDr9pI5XYRryED0jlFzexLhM50ZsyiQF6/i7jQkhYmWgvS8n8y8j9HSMm7PPQmWwkTQNP7PPLRehGtmC57ydQItq5QnM7Sbpcwv3snij3owS8fxmhFKy3oRGnzxFmpP/yHpSC+FiU7WWgaI6RNEfDfQ8tZP/f/y3P9CJ21LnTfz4h0DWJZCWhYHX3iJB5YFg/veyLmIPTUd5ha+NW5Cm/uqhRFwy1yONUNw+5zJg5MRhmrW6C0hz9C7Z+FlLq4UEk17Odm5zLpxEalvRWlnZaYVLRXnWJZFmE5rwpJw+PY76fjOE0THX0FL+FznSUbXR/nd03UcPXgXV9lQmjXfHO5UkMkSg68fasIymgC41L6L+7qPUJlMIk2T4hdfQudMehrbON/aye888o9cbG0n4/NBCRyt3HV1Nao1Z+P72NIzSbUaRx1IMyDauKw3kx3t57cOm6wUt7JWrEhs+gb9oolPlO7BxINudcrAztM/X1mU3yfAfCDME9v2c9+FY0RiJXim06Qi5XZgEhKhLcqrBnjjd37IZVcFZ2vd+GMd/K7/V7jprr12C00mWE/Xw+EvM1HVyB0rZVDYxpcbPWxe30VQfxetr+qWFW+JMDlYjtJQlhU8sAxiao2pEjfnG7350vbp+ka+XbON23mGlKXY/fcX4Ww8j2kIVDRS2lDK6PKIA9hWvOLuz+PP7s7uJKrCrHj7UMLksuwkh21gr7TmR/u24D1/lGhyiSefkZRl2thUGcCf2UP/qptS2YLQbjQmKBfZ6d2YpmJktpBfet/HiJ+fILS9llzxMdSCDQ42DAm5A3jHA5QvbWdTrpXUfW6eeeykI58BIBGW6VwH8kWzNd883oQm7ThC+CvSlGxKAhqtJGpyP3u2d7J1ZzsT52oZvvwYqWkf6bkCUtMnAOh58Vlu//WP/ISn6JUTM5g5lf+T2rKv/08zioerzFFL2YDxnhefZfMtt72WuP0bo7a2Fk90gbZnZqiYmyfmsogUtHCo8leQwsA0RrjvwjGmQ6UU5LK80nKvXVUKmITmP0XxsC3RI40aPIVvYqzBYV46z68l7EWm0jASsNl0wpE1shD2vY2maG2NaGKZ2WLbmg5hW2F9Vf46D44/iq6VDgheMFJZ5RCSbPmiraMTbB1z07AYJZdYIO1fZ6AyxNbJIdZdbjxZk8ysQXvzZVwuM4+VPacNzlc05ZMKSxqc2n6ApxeTWErjUvCOI5soXYSsMYbMWKQKSpnxruatBpUSVDLHbz3zRR4vv5GRmhbqJwYpWZgmVddqVyjDmxgPROyETRr5rMZUmuPBDorW0lQlFqlIxigvDpKt2Uf28jcZ4ApalBNNxbjXuQa18WUOLNYxnY7zUk0x9akEax7PVX1QbXCicZrysR/Q01tA655dFChFVoPbMnnwxaf50n0PYSFxWYp9M3EuuBaJWgGqyDJe1MrhjmZ2xxTbEhvKoZpN5irHhIl5zbvn1ulzbJtPUhJ+gkWZy2O8hMPbCBlePN56pJBIIW30rYbCZCs1pz5EsuoYiZoj2BaDGyFeAC56BqdYWF/BEgYTnkqeW2lg/MYvUHHkJBHtQggDrWH6ZYHnDhdamwhL4ztuUZCM4toxRPYlH5khD6MuF43vuYnfqk8SVs8wthxi2VXgWEsBbSalfw2eUUVuZoTIpo+wrrbiMy7ikVfsGXDOq9YfxxC1FJSvUVyVZkvIZCy3l8G5FW43zmKgmE4HrnNNEEqwdvqXKU+2UyJu5vji5wndeZZFow9hGVS99A6K4gfwJVpJB/uZDzyCFoo5PUpN/xaCbW/7uT/3v9BJ2+joKJYGLQTToVK+cfeDtMym+Ns9flueQ3v43Kk0vxGH/6QdvBu2EfG9YzFujfvRDoC2K1TB48LWo3EBE4V3Uf7SMuXK3r+ntIw71HHONAR4vnQrSki+bryLt/MlXNjBSGpNZWKZ2I67qbMaQGsejAfpXnsaEfKTLYhdd/zT4UL6G5LkvCUo6eBEsOnxMq24QUPxSy9RurhIT2MrH/zdj5A1XEit+cAjX+Em9xzfu2kzR3GMvp3zuxTu4r/u7eAzn/0LspOKTzz8J5jShWsr1C8nCCxY5FqeokjkuCw3VsDXVHGcsY43n5Dl8StCslThxdW1yil5gBI1ioscljZwYdFBD9m9Jm3RSQdfMQJrNZxObOWbC2uYBNmWXaF6fpLquQlma3fyF4e2k5MgdTM3597HQfEcrbofbQks9w6Uc1zFRQW8UuOlYd6kejFHNJ5jusSdf0m9Kvdyu3gGLSC4LcWN35tmqciHy7QYCA3g3l2CIxqE0IKi4BzBkG1tdTY+xA6riaVkjJDWdKge+/id89Zo+iuqiaaWUFoRT5XTv+RhoSqOci0jM5I3FX2SF0ZfxX2+mPTMIri9TMYC7LqcxVM4z1LvywQCmxycSA6UwfpgJ6GpDnwqCEJTE6ri1ne+l+e++HcoR3BZeGrILznzQ2O4O1C5HrTWpOeKGDzcQFHlCiszRZjpEuKl63x/+ElqyptY6qnEzGavu76WmSMdH+aB37srj2kDuHJsJr/NRvKsNT/VDgts5ujmQ3fQ/eyT9v2rrNfkPn6G8Wjfozy1doLNNV5KQhnOtbVQ6r+VeGaZm2NeKnWYyuQo0eQyZ+varrqRYLdK+ysusXvarui7jHJuvHyW/vqGfBwwlLrKOnY0ZarjCzQtTPNKy2ZMW2+D4HIBnoUZhqP1eUwqgIXBKe9NdmxwYAT5fWGDOToTkq7pYc5HIxzrCjFaWg/AZLgcqRVaSC7WNbN35CjbyrqZMOqYLSx3HBZAWNgvVwRPLsQBYYvhChiqsAin3Xizu3G7Avj0C6xOD2NYB7EAl7I4ePgoo54qAnV+ti3NMltRwyv1m4iuZxxnA6hKLF0HkUHbYiRXKmrRjofzAxeOU7UYJrWrii9UZhnZ0UZVYskmUCSXiaZiCA0vhyr41s5OTGkwVaE52DOFC4WlNS5M2nU30yMvMX++BPHcd3nXzQ9hDlxi+5VLbB4bZvvOm3lxaZ2O/kuMlguGXQrpkqy3FvHV2+/BlAZf0vC5U2m64hZZa51Nrlf4iHqCl+VB0IJNw+t4T9zN894tLN2kaOIpG9ssAC0Q2kW78jPgaretmYIDZCJXkNkiTM8KvuVNuC+UYawWYm6y4RLaAp/rdly1v8qrtcuogucprEwTzKyxt6mEE8OdPKVm+V0stAalFbOTa1RPvInWgzX4FsIYzT34Jp4mfUqyOGTjR6RlsvDcp0jvOMsDTQrd5GbI/QZU7mUbE2fAepvGMybIrQrM5WEKSwcQaExZwFJlLRkxRSSRo0qnuKfrEmO7PSA1y3qB+u4E9YZlS8ELKKlKEq2W17kmpCND+JKdGELT1JRhxdCOZKFFSj1Bkd4LQpOoOpYvAmg0/WP/k7aKzp9qR/j/Mn6hk7aGhgYMw2DSX8zhrv1YjoyDcoyPTaU5G3Hx9pF13nZ2kFNVNqh+0+wEoVQYrRvQwNm0xZV6H8JKA3buMiR9dCpbY6bEU8Uh/33IZYNkyMVzpcJZWblI6QAfVn/O87P3UjKXoSoZI6obENLgQlByJnIDO5a3MxXuBTGTr5TMBMM8sa0DJVw2/X1DQ8kZOY+b8oU4hQs2mPJ8WydZxxzY0pq//uV30nTueR6cO8w3o3djObgXBGgpyRkufnTjAaZqK8gZ7rxWWrbWTziWIZUppFBAp+7BJUxMbTPIFJbNZEOQEhuCsna/31ahtmjO9fAp46O2N6dh8nDqq6wX+eighzb6kaYfJdNsEOLGAx7+8Gw/WQ0Ey/luYYSHK89SOTtOT0WQnLTBogqDFzy3cYyb+d2FT1I1P8FadgbBVqyghwt7QiAEhoK3vpDg1tPn+cZde/LztodTKCUQGqT2Mdi5maxhsOgRrFWWw/QoQghcsUXKAynqu04gpYXWgsGBGEdW+9ja1YcQ0KL7qY8NMxJuzV+TtMdusRuGgWc9w7q/GAvbLsjSistnUpwa2sJbVsdY0KPMr5ykfuU/ky6cZGLXX6JFjsVFD9HIH9B77Bzja5pkchXpPsvduZ1EjTAFTUGSP+iz9c6EPfcli3NMh6K2rIOTvFUWGNzylg48zf+diZ6LzA5PMfjq84BFUeUKyfSr9M/Z+JuF+DQ7Xv9WVnqOMTt0FSMipKR289a8p2gicZZLJ5/CEyojs9Sc304rkFJw4KHWf5GMsPmW27h85Ll8G/g1uY9/exw99QPuOlmBVILzHbfz6u4H0ELylLIYuHCcdy7UEl6MsVwSpDJ+1R9ToOgcm6R2bhSX6+tUDZeAnmExuomD/ecZLqviptkVtk8M8XLnXp6uLnRYmirPolzwLtBbdxsawXM76xgpuYXh+k3XEAnsik7bcA/TJZVc5R9frehL4Lb1MMvNLr69pwxzQ87D2cdGAqil5JVmG3YhlWUnc1pgWBb5xCw6AAAgAElEQVR3nJljvtngbKTc7oRcIwESXr/EatESIAktdxGdXMd0jfHQE19moqGdG2KD+LM+hppvAhFjNhjhiS7bytClLd4y8APC8wYP3LCH/slBLtS1oR35j9qlGcZLK+24KASyeBPTsTlG23w8euMDtkOCVtx//ijRxJJzzoKTviSmlA7GTVNVXs3/vDTAy53n6OASzWqAwRkbM63MHJfOD1KZMugcHWK0ppPhc3M0mRFWvTVYjDtVf4ueyig5aZONNt5bXXGL9tAejKJiytVnaWUArQzq5j+Iv6SVTLCY8Yq/QguN1pLQyF24rUL8sXZKK4opXC8hExhics+n0cJ2PNAItLLvBb3hzOW8di4/5eeFUA9N1SfY33kCQyjukMdpCe2Dpkb+2lVL9eLztCsfWStNubeOgqz9y96gSXBfCG77JOnDX0dcnkArEFKT9RxD4QEhECpLgXaxYrkQ0kJrg9x0FTDNvPIx6fZyxuwiaMDezgJGI2dQ2s+ogq7uJEYwB4a9UFdKEw+5CabsTkS82MVEl5siab/HUSAsiW+53V58I5lZaaWIfrt7YYGnJ0ly+/fozh2i6bqnU5CUcc6eezs7d3zt55q4/UInbbW1tbz+9a/nzy702UKrUjoXBzbcDXbFTC6GDGYDZXTMXaI8uWS7FairpfmzXpPyeBa3011wCSg5/YK9G6DcW4cUBlJIdi4rW3QeC5e2KFlaYWF6lV997vvMVNdQHVujrPEQF0KS9+/xYwpw6QJ+7awXVq8e+1JRxNZCcxhRZak4C4FwfkU8X1LKk6sxDpWUULq0xPb+y0it8+xYLQSjB+6gYCWKdBgxUisbI6NNBIqnDhyy3RoQCG3h0oJdyxYel2bRmwItaJX9fFh/nLGlhzjQ30hq7h/54gMHuSS7HK02i4bkNLWzC4wUzeJKn2eypDmPTzG1Rrm9PMB38xWZeGGAgEg77TxNr2ogB/kVes4wKNh5kP1F0NGymWMLGZTeCPiSnHYxWtpCV8lFSnmK9nNtXApusVfn0lY2H69wc3NPPfecStHfaHHr3A+4vwaCSxmsRBGP6jdjNRv5eyEvKKoVIrdOXWQNQzj4OTQtra8yO9uCMJx2gRKUm/OMcDVpCyzNU7AwzY6b9uPetZPzJ84BVj7ouabSfNTdjitUgwru5fnZb1NUtETG3WcDdKVGYxKbnyUxvpukdwQtnFVraJX1QCG9zz2Ob3Y+L6EgtKZ6fpACmSEZCLBUUQ5CMOGdw9gSpaq2FumqYn78CfwVGVqctkCFfoq17jtIpcpAw8j0DA+967088vH/gmWaCCl53a/9Zr4aNnz5CCMz7wdXjtpbDCaOfJD15Ra7OoENbl5bvcZH8sfGj3uZApz87iOvSX/8K6MuHkCpBWYq6njhwP1XbeGkZCIU4aWpo4ilITyeRiql5L7uY0wHS6lKLFIVq6cyA/7lebrLe2hZbcSSks5Z2yIPYMoD//lyjNun1/hBaRLLTDEdLAUNBdqPwHECkILBho6rVTStiK4kOfTyYWrH+yifmyZe2kGpu4hv7NmCJW17u3dbX6ZMtPOFshIsWXFdwpcf11S37LglaZ8eoWRugrrxfmqTVXRXt18nvCu05sDABaLJJTZkUHKeGMH0KKloCbUKQqkYaVeEUzdG8KcioBNMB0vzrUoLhdma4Zdvu5Ujs8VcLIjaWCmtubnnFOHcOpORCsckXmOl+jjrWuLIeiFKOuQrJOdrWykPllCVWCSajBHKpnBZFpYGN5JDY2sIaglOBQjoEsy+ZtJzw/apI5n0VtE838NiOMypGzpQcgKYoijegFAaLe1n/MZFi9PKsiuIWrBz2UQIgcBgT/s9LFZ0MjN5FO95L/5EK0IaZEoGABMpNEoLDFVIyei9CJdkviqIj2UyJRuxB6d9qp04dM1lcVBDwcZh3tnyJFLmrpHQy3LqhU8hQi2854YdjI3sJnL2R9xa8RDroRGm6v8HQ8Mm0rRoeiJLmbDI3f4HLE58nUhqhfryGLmcZlJ5UMJ+J+f6yhkf+338Zf2k51qpSlymqH6KxQ/YIrmtupudPSkSCVBhv0PcgEeL9/LmxKtIBUrY7d5MgSRR7CKUMomF3CgpnNeMJKgb8X23Gl+gCeFYmV1I3M3rax8gsvQsngFJ2Z8+SG+kgcm/eYkdU/tJVR3Liw4jQKls3o7w5zV+oZM2gEwmYzsIaIWlyAceoRSvP3OGZLiDDzUVYko/ht7P/pkY906ZVKz5HOag5tekB3EixvaA5Eypm+aiRWZnx9HYhIP5tQmUtvVqtsQUv/7U4/SUBdhmTaC9fvpdFeR2NyO0ZKZScbToMVJlbyPnVPxyWnOuspwdgyP5426ZWebVepOcy43Qio6ZUZaLAnnwblViESVgPhqldGmJzSMDfOCfvsxfP/xutBC4tKJRpBiYGMOq32rbPiHZnT7DrDXIHKWsFd8KwkBoky36Eu+emqNreQ/D4y9TPX0esx20Aa1qgLbj3URPfgeWB2lrq+PS5m12iUUDWcl44ThZabG/J8xERwk6LBwtJ4ub42ehQrPB5E26MgTsL0ELgoUZdJqrAV0IGltbuXGv7fBw7ysv8fiaY4yubWupDnocDTKLh7sW+XqvoFfbgq8urejyHqGgNMJNScnDoc8gIjkSStA8nOVSqtbRvbq2n2gfn9SKgnSC5UlB+VanVSo2fq6v8RSVtE2OcjpyI5Y0MJTFlt5TeOPzuMOlvHzqdF6Fe2O1mvV7MVIS6dDHo/56trxuG25dzeLU99GYSOmmsuYA/bkY0itR2vZ5nZta58qZvwZs1uhGL9TyFXH6pp2OGKp2plDnBXiHT/4zE0M/JDWlKapcybcFpFIEg7N20gZIp4r80Ec/+RM6arPDCU4/9wSRjixCaKQLNh1cIOS7m6OPDFyHd/vXxoaX6Wts0p9tFDbXkDg2yHhVQ74FubHYrEwsMlhTw8qOPVQNalLFC0wHI3hzWaaDpSz7A5xuaKc6tkDjxVfwJRfsFqCz79lgmOlgKQtrJqbbomHNz1fbG/Iem++7EueyguwGs3vDcUPbfqR1Hguvex8ub4SmVCXtl15hcdNb2F75HCdqF+gUl2iVA7xaFSYhq51FxtUFc35ck8gJZbucbB66SN1oL8baGpt+5XWIec0zlomJCwkcGLhA58yYHZ8BKSVdWwOc9LWhHAals3ObRi6zhGNbaCmwON+oMJ241Cku4fE0cME4gJI5Nuw9ckoRTSxy34VjzARL2bssyDpOOT+WcjJaWsloaSWGsriv+xjRxDLvO/wtsuXbuNFoRQC/ucdPTvhx60rec/FxipzzfiFyAIBEEYwV1Dji4jil6xw3nLxCIhqiuepuKnSYzacyfMfTy/Z4iK25StuOyyUpaArSVH+Qps6DJMRpkk8n0Ap8S61YTQYChaUNBqM30tzawKhf8tHvX+LT+GC9kI3V9LXndm1+vdHkMdxjSGEinZ/ZllQC7T8L5hm2+b7DS9nf4d23vIPs3BWWm79vV/CwOyVz0sf0MT+vzj+PpasxpMVb/BepSqXY2Z0gFnITjufIxJ7n3PLHWV5oRGqLcOJxsvuUHU8Ne34SAQjHbUKDkmBqF48uvZ6J1U38wcWvMVvuYibqZTrqY6bCixx1EV7NIYQbjUIKg9ZLl6AgQwoTjURL2OSew3OskbrbP8SlaovDw0sUjl6gdP4pCsRDDt7vFZLVR0AopJSEwzf+Xz3f/9L4hU/aGhoaqH7xBe7vPkZ/WQ39FXVYUuK2TO48cpgn7qrClIV22VnDS9URTlQq/u7UGi30sRC5QCJeTnm8i654iK7EOmJnBY8YLiyVRQnF4vok55aepbGoizVrhfrkHA2L89xa+RZ0ysU51yjnXCP5ILOaXKavahS4qgU3VVxIZSCcx1mUZARvezHFxcAc0YUhagqzRFaTzARLqE4uU5GKYUhJx733QF8fWBZN0xPcfex5hBTs9PXww3AXVbLSKRbZD+UZfxd/rB5jdGIb3yqy0Nim57v0cY6YXXjGH2Fz70usN1pkTgBI/CcF5xjlbNjL6P238Z3ND16dYCEYLa0CHgA0j96rrguc7yhKsH2tjyHttWlLCgrjCkIbv69Z9UcgfQ0mS2tWK6vy+/j1zbt58mwfWW0h0Lx59qu0VvTnE5SFvgXuGlpi54JmpiHJ3oa/p625F93oIjGyDyFNW6IKzWLQQ11qGkMoLNvjBKkUNf29eBC0r48SqVhgKbUN7+W3Mt/5TUChLcHiSAXz880Ozq2C8FSEX506wmi5pnZ6iOq5KW5/729ytm/4+ptQg0SQlGXgkihLoaVg29vuzScrm5P/jcWRH1HaeBcVnQfxvWWagRd9xEufwls+yMzFIZi1FwZKqbxnYs5J5JESrVReU9LQmszQk4jKR4ju0lRsF0y+UoG27IRRY5BIRAEoDswTMPo4/PnnuPf9n/0JHbWp/hgrs22EN7kACyHsxDI2nuPAQ62srebyGm4/y7iWTWqZ5mv4tn9h7N11J3888Di+9RHbUF3bMJ8DA90I4PtdB+wkqxKEbsMy8g8QGw+Tq97iV1bSxJa6CS51YfknGYjCE137saTBq872UmsUAoS0yQbuIj54doTvVQl6o3VoaWsahteSxL0hTnnCnLk9wP4zF2ka/y4tO19PeH2N3PRZHqg9BRr6aeMvqx/ExP7dhqUZtPbZ+V9uldFodf5cqxamaJgexV3gZbymBVUc5r17dxIaS8Lp87xz+BI91ZVE1xwsmpZs8hSTqyulo6OD5NCQg+mzz3sj4VBIdrfHybmjtEYKqAqt8qPEGDfoV2hlhOeeD5Hz5hBlGqRCaEXrbDnFy8v4k4I7pgqpLzB40mMvoDrmJumP1jkMWme+nernUrmPPcEeFlMBZqc1mwIW32z0XOeWc6msmL2TgJYI4MHZJwiUp9D1JkEiJFNlICS1E0dJF5o0ZAMEA4vESo7TttTKQwNLDGQzvGQsUu6rJdjVSE19ID+PwTt2A6fJnB0jXt/OZy/8DgeCr1AzHCOSOsziGwxeZjMXlMmngpd4qOObCKFRWuIy7sG1NodZcBZLWwhtV1UdSUsCdSnb1lEL0JLg5H4EgmTNSyDBpUzuCDzLsnyG5d29IK2NiwAWFPRLxv1+GyspwNKSiUyYqsI0wZSJe0SQnvcSKB/ggdA/sJy5GXf8FDV7TpEKuumhKH9nrxXY5b8d3QliQTeBhMkfrn6XxsYmwpMmiaBzHwtQWqAaLeaVQWrhEDsrkoTTbgKJ7yPC3RSoP2Es8G4uXplgb+RWZF+O2cHz/LnIcEGZ7IidZV/GfsfvEnfiT7QSmr4RUf45yg5+6DVM28971DLDO/kOo8kKSq4scXmqhvMtHWzrv8zWqTFOComhcDwvsStfQnKiKk5B1V+iZQ6XMni5+05uXryLqAzjdwWo2/Imxk9/j5aIoNi1n8aiLqSDG6ssbGVsLYXE9i6rtsJ0GyMobGp+21IpzMzTV9Hi4MNgKlDMzLb9zmotRrXLS/WyxrsQw5s6Dd4CPLWt1CRX2TnUTyizQkUsRsNffQa+9lVe6e7l96vbyDoS+IfF7c6q+ppqkrDdC/rFZt6dNTlwKsPftB3DayzxleL3oBtd/PA9e/jQs0E6b/+OLdSjNe4JiX/GYrm1jQutO/P7utYjcKOOriTX/XxQlTBqbuJ77KJD9dBiDWBlrr0tJYXpZdBlVz9RitbkIlABwO5gId/ZuYlHRxaY+PbX2BN4FcrZ0Aol5J9hMnKRyuUuikQ3V+QmpDBpZgC/7EcInT/U7y3todmoYIeVZGYsgTdnsW4JhqMtbO+/TOHICrn5zZRtegPGVAfe1XpWw73MjK2Rm5kjXddAKlkGWlOUXGVTqWCHZ4QVTyGRHb9BS0mU8ac/z+j27eTJAdpOGAtSOT5szPKmBoPtuzqo39NO+tw5hv7355EnjiK0ZsF1lvmPVBG+KAlVnCDX9D00UL0PiqLFzHeXsLZYjBACZZm4V5KYJVF7ca4UO0tqmL00QtXkECtimEDNVcCty2vR/8wmCtoLbIHfVBnFxQtXbaw6BaNXDucTqA1BXH+oiVyylYkjH6Soop/WrtfxzN8pLHP4Ou22n/mZ3LwVw+V6Dd/2b4zt5dv5w0N/zpHHj1DefYypUAnr+hSb50t4sWlrXtNLSaeKfW0/y7nhLSGJRRpJ1vlwmQGYz7BQ4b1KKNh4bh3oBErn22/RpId+Y5S+yjrbFEoYLPtCwFXiQWFxkN31GRpybvyJIEuRGpb0KQZlG4/phzCF3Y5ECcYjURACt4aHRr2Ma43SILVFS2yB8aoGxkpt9ulZZbFlbJJ7zhdTHtmK13Oe7QtToDXl8zlW3IJ/2tFC5cIiY2NPUV5aybnaViodYoDQmsu+EKniOoqsQtZnTjEVC3K48ADK2Eqf2Iw4dZBcoop4eYa3n36VleJiGuZW8dGJkDdBRrPukpS5Dd6Q3cGsjBGdD7D9xYt8eXebzbjNVz81t1c+QT29VNdKTh+v54tzBdROV2M0FdjLJKWonXYWdNpie/IygfIkrQ5koYpZ4uu/x5dOeDE7FYbQjAcW6er6HyBMaJIsl7XguZhjfs7LfMrAe+otNNxeR86dZHR0lIaGBkpKDXKhJWqEyf+aO415/lWeyrayKOYY/Mr/x457305Nbo1G3wsgTMdNAMwLM0yeC5MO16O7wmwNLZENjFx9hRhwbnw7N+/YR8VoM57eMOuhIVLVx1DKBAXbGrrtathG1dBpQ7r/9yieUUFpYZphEcJCYBgGtTtvgvFHSC+6GX+hBG0JjNIu/PvfR9DrQkQ7MTyDVLhH8NZ/lBnVx/T0I0xVepmp8LKzO0HjZIZ4sYu2hh4C8YsgDcIJK1+FA/IxMKyeJ3w2RnHK6bwBhujjpemTVMvGPMxJKc0WJOeAKW8VSkgKDB8gEELiS7QRqPs4gbZrChg/p/HvkrQJISLAt4EGYBR4SGsd+ynb/SVwD3ZH/RngA1pfWzv/fx/r584RXL+BG2Q3qfgcYjjDZgdsXXj77bRtb6e6fwblSjBdXQbCwKWhgx7b3kOAEIri4AyzRoroYpjVk7PcYFWyNRXC2/gwSJctleskMDbRsxClNUpYlOgibjndS1/ERVyaFJZsQaFomxljJlhCvDBgty+FdDApcdqsSpbcBvOrSSwspoIlPHbwASxp8MT+O/jtx79O+cIC6VdPUfq+3+BpfynZ6UU2St0bRsvXYUactsAmdZls7PXsiGtuHV7me+U7oNht48VckvM72ulw6bwF0umHW/ik/jA56cpbm1y3343rqW0RTuX4kiKgJdPLu5o+SVa6cWHypvlvsCAq2c9RNtGHQLA0qhGl2Ir+SrFn4AqukTgnB3vybbrdwUJqAib/NFfIyqr/asVIb1SMFKPlWf654R6bLYfJH+k/pSE9bwNODbucX65mGb5k5gOty/TxZ+//Q3KGC7dl8ldf/DI31L0FpEEmOEQmfAXv8ibmpk5jrK/iH+/D9BcjLBNPdJX6g+cRUlO2xSBz0cXoMyVEpiaoCAeYq2+yV6VO4jZqDNJkrHBxFi7/8CK/NL4P/bEPYuRsLJgAyOXoe+4yN5ZsZjV6ho3LiIZgY4pgfZqw+ACVdbfR9+UvUfDMc1hD08xXlFPavpfe/iYsVyOjdbcQXfmzPI4QAeaaQSJdSXaiOp9sB0OzVwV80Uj/FPCTgri3vefDZNfvoLrtIUfyYxr4l2U+/rXx4/i2/4hVtv8oMcydcCO0oDIZpzIZp/PGAzRta+JI38T1x2GvDOzqgmVXYoXWuDXcGCuh1DfDbNJCGlXUjb/K8W02MQuwyTNa8/4rCXAXsmPZJDifI00Ryr8l7x5yXUKoNW6tuKHlWUJihGn9GWpP/xH+5XZO6HY+yX8jJ1wOXtaeDuVgTnNK861Gr1M1UXRNDnG0xUlC7UnFlJLxjEAKg0FjziH02MertjfxN227yGEvVPYPXuREaxemA2+4/9SzGCsJju++GUu6uKQ196SDTAdLsaQtV5LTkrPhJrp3FNjm8J2HePsLcQpVFiUVYUNS6pIs5jTHVizS5SEul5ZSNn2JiZatIK9/tW6N9dASuoyQ4JIW93meYnnJQltlvO3FFKNlkq4rRylYnkA7lc39hR6Wo6tXmYzaIqdmacuEkIX2PBQHZ+33kNSgLaJNfVTUCQZ/UEd6rhAzN8HFM32c7Hsay7IwhODQCy9SMjvrPPiawfISVFQ4ODxYOHWcB5fG8WWTiA7bBsrQLurSd7KpopFu+Qj+2hfJymukhAClDZo3vYf929/AyvoMM+GnSId7Kel9mMH1V8h5l2wtyI1yvwYhXWTTd3BuXx+N+8/Q4J7nUHGC9GwrdfW/jbvsOKOqgPhiERMlEUpWMlRE2sEpeGgk642/TcHrWhhUrRw528uWgHJw2ppYyG3jzruCNv5Pwa7czQSLuyhYnMWV+GcSVRKHO4cqMzlTVkztRBqXBeFEjpU5H+npGeLVKyw1xvEvt+NdaeOSsHX9Zr1Reqp2cnD1LELvAwyE1BRsiv68HvPrxr9Xpe2Pgee01p8SQvyx8/0fXbuBEOImYD/Q5Xx0FLgFePHndRDrY0kWTnaC1Q6YFFd9HHoWN4wFeG7B4k/X4lgNPgzl5a2nL1EQLaFT9FCXirGqJULZ+KVEvJzGwhBYG7grA0/VToQwEMImOGit6Q4ZnIkYGJNrtLi/yEBhOZH+EWpSM9THLFarS5mtLeSJbQcwZX454gROuG2pgAPZnZSqIH2miZA+LF8hI81dWIbtLJATgpd33cBaSYBoSzP+c+dYG52HUPnG5Ob3CYCykEKzQ5/mHv195GCIhVSQKiS742VsztXzgSqBKTRSQc1kAbrMAf0KuCxtVwMlDaSGUj3Hoqi4ZqY196jvMT93A+crKx3HTc09+vukxDpZ2WGLZmrNo9F3oKKCF7iNj+iP0c4AtZFv4dEfw1QgtaDK18zxnqcoev5HFEbXKT60heb2+zl3aYoLtySpHKmHH0BhncUCW0mlSikOLDJWuYAlWtBCktPw4tz93LD0JbYCLgeD4SnK4a9Ik0qWse4r5lJlCznDhTIMcgJO3NlJi/kjjFwx8+3fQAsTrVxkYw8gpqIYmXmsAh/r0TrKanvyxAQwSWSP8qPucmisJKfXMVIx/NUmweCcY11lL0IBLKW4cG6E7UV16NiQM4ughaDfG+QGoHB2F+mSS1d5EoAWFlfOfpPKutu48aFfZfzJZ9GZOMLjYaysivWVFVzZgI2PCRQ4gdM+d5fXwpVOkXWkQhACqQuv3ioCco7o5o+3MNPxYW58425mhxPXSX5IKf5NLNtPGxv4tv/A4989hp2fP0+31Y0wBFhgGAb7tuyjtraWN09oejcWZ9h4sO3DCSpjboQ1iOWLkw3V8fBclMq1Naa8EZpHnsBacbEpM8xk9Ssc2XMwv/DaMrVI/QqMhm0YxUQWYpbCnOvF1XqD7bJyTdW+MZnm1xLP01B9xbm/LFbDlwkP30P3yMPkWtxOhW2DqIIDMbO/N52uhlCCxeLQda1NO+4Iwp555lD0G9P5zxGC7op2u4KHbWY/Ul6NKWxXFq0EkxV1UK5tkpUDwFqu8FM1t4hUGi0ULgQKndd0s9CMVhRQs2iCr5tifykRFaZNhfimGz53UxGmBDp2X3+RnBhbvhJDBQ2EUqBgddpHiWuUFXUTNQvr1M1bdF14Gcwplot8RNZyeN1BRpdKKFfLthenlly5XMFkNMsaIaKpGKl4BUK7QJnkxW4NaGosZcltIGtHML3n8P8f9t47Oq7rvvf97HOmA4OZQceg90awk5JIShRJybK6FLnFNY578pLYcRyXJL6yXxJ7xc67cVbiOPGNW2Jblm3JVu8SKVGi2AmQ6L0P2jQAgyln7/fHOTMgZScvK9dZku/LXouLIDHlnH32+Z3f/v2+xTNPgW+OWKSMUMBP0Vz2HhUUrW5Y7W8QSjC9soaSGVyBJOmwF0+6goqpe8iLtSCFpLrOy4owvy8L5JOYz7fk8P2cj2bIv7icY7wrqRF6pBrwU9IcMYOcFMilbYydXkXKJ2m8dRylK8ZxmXCRxmnCA6dZqLofVZuHrBYsFWpEnU5Efx9V2h1msc6m4zx8G6+un+Nfjn6BWNJDa5uOXShsShGIpJktc1pMV4HSFHP6FHOu9/DeU+1sVUGOTL5IoHGWkrJFhGbi1CdrTF1CTYLzRSeu0g1K3zTIsn6aFWXDO/12/mw2RGzBRWTvzRRrs5Stn8AVnsAZ2YlT68H55ASU/2rN4uH1S9ruBK63fv4uZhD79GteowAX4MCMBnYg9Ks8iLWzIStB0wA7G+73MX7oOMf1EnbMRend8+bLblpYKXLzzspPokSGdaUzMrwbuyNJNFJGYhIW8wdp1Xah0gZIg/TsWfTiFkvrCHp8Nn53j4eUANHk4P8aE7wUe57D0XKGygvN1ujsEs/vLtlUsLYCkZCKO2bS3LNcigIurGcIG4q0fY1EeStlmRS6RabQlMSVSXOqvp2SyCrXf/KPuK6yhp98/M+QNj23M9Kk5PCp4zy/dx8SQY/Ywa3qIRz2NBWyEIFBkaeT0qjkk30bPFtm43AoQzC2Zs2ZqbnTJvuxCUlamsZbNWqcZVGCUpvnkBBudNciaSowPT0zeFijXfVh424ylvaRRFisU+inkzYxSLPo40szz/ASB3m40sHPq53YKm/n3ccn6LrmRdCHOTXZz18FPk8m0IqtOsO7j32DolOLhCs0yoo02rqexqON8LTYQ0aagOXxzCv0NSSoW8jjA/kN5LsvUtweoag1wnzIzuqqTlX+DDaVIaMUNmHQUP84Swxi0bbMQIlBUel54pN2XNXga4sRjS4RjZYjpW62Fg3B6pwbKQ2MvHz0LQHqygYprxhBIJFKp6f7RrO1mhsCW1kbKStpM7f5BoAAACAASURBVITGg3t/i3fmVSKAwrlDJMvzSAWPspHsQykTWxefcZs4sLvfhuPP7+Xk0VcZzHMioyMQEPhXtuDc8KAPKtReqyJpCFbnsmbxUyTLawCBFCZl2SIF4is38TGvbWF6/A288IN+FifjlhODuebb9v37JvHZcbn36Bs8WcuO1zWGnV84z4ee+hApI0VpWSl3F91NvmZn/cIs0f4Qh8f6eNjt41xLtSmQq2lIY5WtUymihWMYKYGIxXCl0jzuGEIioauEg889Q/HSMne9+Cwv776WDGY88SVm+dzurUihYVfwkYSBb0lSuHyOD/e9TF/HVo6KI0hlKv1vGzlNTM0iKwQaCqTAvdKKEIJblmp5pN60p8sma9kYF1xaYK6o5IoqfXE8wqyvCKltJoVKKb5WsY258cfwZ7JVfXPGtdHzpherLtCBZhvMSGWWWVC40ib+V0ciLX20w2UPYR/fi/foHDFHjDeVOOgzvFw0bBho6IakZm6OjAti3jjLIo7GBDentjNXXoKhQQ6BfwUkxOwORI1inhh5F4vFXipGJykLDREMaLT0fJ2V/AYKV0dxvv8tLJ7twe9aY6XeyerzQyw07SbRU0e01EY3ezi1swOpgU1Jfm/y+zT3JqhO/RGx4CvEKl9CCYmmdEr1Tuxvvg+lZUAcZUuXgaZJpNRxnfYRLagj7G8hEBmkcG2MWxxDDNc0E/aFic+u4wokqb5uHgEYxEiFZwBFonAQW9prCoHLDCDM7xTmOqmoPMaKPEGmdH+O8Q6ScEMh9sk82o9fYia/gkuxDxKdjuHwPUP5rkXTQuvy7r3MEC89bXp5aqChqL42BChiu1f4y3P9/H7LERp2lrORfIjVyS9wV4PEkBoP99xkelZHnOwM9CI4d+VNuThA84l3sI0/4YxqIWq3c3vmKUpYtC7Z5nWUQpEfXMfr2ax4KplhcP4pFs8XctXILFUbTxF9W5pRPIiaCLu6H8QZz4Ch/8rN4uH1S9rKlFJzAEqpOSFE6WtfoJR6RQjxPDCHeVv/nVKq75d9mBDiw8CHAWpqav7DByFe8+8zBa187MhO0kJhV4I/7EvgUJCSCl1CIyNIqxQ9JBt5pWQ3eRM6lbEoSY/ilLGCr2iS9r446dkzpCZe4qJ/DsrbqLBt4WxhGylhJoFKwdfrP87njn+LVdcCSU8B+nqMgaoIpdMjqD1dV9BzbEpx22wmt6AcmqkB5/AGWBULlMfD3H7hOEvuAoSQHG/ehtQ0zktJcWUNnSOD/O3X/pwHPvT7DHvsVF3so2Z+jhd37EWSVeRW9NPJW+2zFBSEUPEGHsh7nKvF2/nrdhdpAecLbXzavUJAbEpblIyW8K6JFzjR0chARS1ntb2Y6FJJVsznBXED+KxZV6aPZrvqpVWf4HOpr9Orl5BPnO+JD5BRJrO0TfZiYV1pM0oZTCsMC7RroLHU2MKwPk+f1smSKr5CRmSuvobigSVONZxkb4mgzSIb5C68hLqlQvYPNFEym8B4cwbRbrUhBFQEh4FhmoFyOUzfZT6spl6R2WsSSkMoHc9KKxVVIUpuOofQDKS8SE/3DfR0H6FEXWJt0sF6yA1ouCsVrdueMy23sKpkWbZmrCRHTGgRQUp+dwcXHoDRBZ1o5S4aPcU4EVmlEVpL3kbBgU8y3PMArz7+18Rn3CRXCqju7GJ2sI+H7vsu6wVFSE/Q+iKFa6Ob7RdOMunNsPxyGf6GOJFR76YzQuMMyxkP8Xgp0YiVeGoSTbdT23w7cGUL0+Nv4PhP4hhG7Iqby2bTKKn2cuaJ8X+XiPDaVuuh932IRDz+Rk/gXtcYdjp0mpSRQiLxLswhzz3GgYJPoJMgZhiIl+/nxtYuupsqzTanEFxsqebg2BNIYeJuAMb0BSQyx3z80Y3ltPeGmS3XrTVutjsX831m61CYOmCzxevkTfVRlinFPXSaA63HQIeoCpBZyceTF6HAtsBYbxdupShZqMUtm9GExraowQdH+vmnljaT3IC5/m2GQdHCONPFxbk2qxLQXdXIgeEeFvN9ObiISYjQmXL78MdWyPW3BJTHlnnLiSEWfNW4NxRP7ii0mJdm6/N4Uxe3dx/nt2e/RyToNJmsYohMfhGJcBWZcAGLMwW4W8bpHJwAFJ2DF6jOryPuz5hOEUIglWROhKmYL0Bvc5LJNr0v734rU48updv4Ue2tJrt/p2SL+zRxu48776qkaribxdJrCO7bB/fs4Ks/+3N+41ItBKpBaAyJVh6uMIkh1mLBUDBda2N39SusPlNFWfR9FMzuJ1FowjU2igYtH0+zhaBr5tzowsB7TZJXC34fQ9jRheLNHaeQO6pwJv6CcpGhTArSiSzYC1AQrTxG0juF0gw0Zcc/eQMJ7wQXYkGaa59DZEkFgpx/aDaxyyid5xIH8TnT/A6DRJbeinO9lbyKU9QemkDoKvc9WbkNoXS8oR0kAoNWcghgkh40FDv9w5zjIO1aP5NPfhbaHAjNbJgeMgZ5pnsrT3gP8paqYnYtnGS23GlJtkAwtIGuMvyx7T4SXkV6e9iMxVbSjzLXubA8qmsTCTyd1zEhHkapDMqA+JwHKQThNhuue+I5yKgUgom8fLbGo6D/6s3i4b8waRNCPAP8sqbun/wH398EtANV1n89LYS4Til17LWvVUr9E/BPALt37/4P40U8O8tYOxPCvNsEZwrtFpNHIyMVMYfO359a54m8GFs9Bs1t20lvaIyoRr6s/Q/ShXZ0v+Ij/WG+1+onIwQ/QePrmVW2Fpn6XF0JL5lTvcSCdnYWNyFw5lTyJXCq7m2sBCdxZtJs2OwUTT9HZThpUuA1E0lfHVnkD4YEXVGXCRcB3JrAryucBImyhFSSYCzKVZMRHuhqzOkNpTW40NZF5/gIW6YnuKUmwA+Gv8C38it5+aYPXj6J6ECH6iNV1c9U8BTJ06XYelf43t4u0uIqpIU3OS2aaDXMAKikTni6k0hAJ+7OuwzAbGVG5sU0ddSsEjVSUhed4RV1A2Ut2+gI/T808RLDwmTLmk1hQWwyn6V1P5HhALNHCpnLuNCVQkiFTUFJ2smXtHtNqr8w0DDMBBeDirFJtLJ6pCY4zzD7gV7VaeLphIYUipR/F5GKfOJlkl2nnkO1ZCPHlXC/FgZpYfCKWAwQiRaDslM+t5/ogkb7Hgcr4oz1fkm01Mb55F4aBtzUx6uxuTbQ9Aqa8+/L4cSydHnQ8bsOUt/ZSWYlRnV+GY3XbsFZW8A2oPaZVUCzaCmWHyGgeWxEo2dJpCcor/ktyoqddBzYQ7ClnVcfvB8jnUYYlj6adfwxbwUjjRVovg2q9pkg5/xyU9Kjav8CQpME1YRZ+YuXcOnimzh8uIq6ujddwYTKtjDPPDF+ZcIGVLcHaNxRakp+vMZM/rXjCu/RVIpn/vkfAF53uY83cgzbXbYbh+6geiLB539okNfQjL3dZkIxBNgKm2mf2WDbaJSzzYVmwiJgsPMA4cwkFRFTdPt0UScJe5yi1QhJu4NANMZ1Fy/x43LTU9NkHZv3pC4VUlj33sRxMuvnKHIGieXdxVe0q0hn7/1iRV9xE59VJ2iUI3R3H6HHVsrJSju7wgZNaojlpiEUrVbVXbE3muTdR7/Hw74SEHs3Ex9LB24x30draIqB8prshKEpRe3kIO7YMnqwgzW7yImg1izYaJ5J8GJrmozm2rSgEgKpCZZL3bSGJAfKf44QEkNp9Br5RPMnEPkaM3In923ZQUbX0I0MrfOTLOnrzBcEmPXX4kqnSNkcVM6uUjhv8JsvzvF8l43pQIkpfyIlFdFlFnxFGAi6q5oszJ6GoQQXOvZyQcHD56a5cyOCWl7mpYFBauqquXfsYzhcOrNt50mUHqfXdeNl7WEzCdMw6BAmrjrdEIVR8MSacUebTL9YoSEa7Ja/sSnki5AoqTE9uw2fzU5RyTiJogHGyvcR7n+YgjprYysUjjwjtzEE0JM+lG/ccnlJs1L7BApFW2AQz+JW1srO5RIvEDw6t4cdWiPOsrPcN9DCSLSe32CGSPqLFOg29uVrnAsuY4VjUFCwEqBkWcI1byZvMI4+n8S5+gmiwRMY9girJRdQCjSlc+1yJ3lji8xd+FccywpahAXn0OlMv5XV+ElKXY9y/ciP0WSKnRcMwj47gWgaXzyDUrBX62e80M2otkkYcfVojCWKSCdt2J0ZtiTy8V3VhavsHjzxI0zPfYtzry6yHnKjKUV+cI30ZU0xEKzOeWHP3bDtnb/yKhv8FyZtSqkb/q3fCSFCQogKa4daASz8kpfdDZxQSq1a73kcuBr4hYD3nx3O2gJKPrSV2NEpkn0r7FrJYFcOMlZSsGMlw5ZwkqW+n7GSmqf6qvcxtgh9qpMMNlNYUiieD/pIaaasQloqzhY52BoxcG17JyBwytvIE4JFTLV9c3ErhISng/lktA6ydT+9ro3f/+G3cWSyGmywZc1DQGksiDCz+goVMkCdw0eNw1Q/vyG1g0UtTIUsYDjyGMGIL6d+bhNw0zvuoaSlBs/ePXh27GD3eIAvlx7KXoxcgJRKmC0EoVBCURRL87Zjiu6Zx3j547tBaiglGXfCUP8W9ruHCQ91sJgK89DBu3NG0ZskBO01M65AKjQlGfXVMCJqeWFJ8PnUAeqc/RxTB8kIm7WLVszV1bDbOMvFyE6+560xrb4k3DWd5pbZNE/V2XPVNZSiNX4JQ9poGbtIUd8iyubhttTvcLzuQU6tLtFe32e5N2Qtw5bMIIpgVr8W1096sG0NUdQaZUhrpk900iEvmZZYl01V9nni8y0jhCThexDX7JvxrGwlrB5FyjSDqpVvBd9LRmicrm/n9v5J9r0Sp2vmRfIb7mFSfhUpTDeFhVATTTM3Q0kVo4OXqMuU4sXgZGQIf/EanvsfwdF0Sw5vkSW0JHzDLEx9n8jaC0iZQRXamO37IyqaC5gbHcfjb0DTNJRut661eQnWvfMMeauorgoj9Ikcc6qgZSOHwRNSEnCPszGpSE+EEV234tu2mbDNj0Zz1lWVLQF0XWBYeE7dJth7WwMzg+FfMJP/ZUnbFd6jgLL+fr3lPt7IMWx76Xa++aZv8ui9H8BmrENyFTDXR0iP01dfRSai2D6pc7HBbEVqCp6q8mJonWjS1FCUugYUmecEOGQHt3Wus2OgF/vNGdI2Ux7mhtkE759e5OXyAEvJKaLpJWqdQYra3s2DTW4yWaFvq7+VUTp9opMmMcRgdZCHt78ZENglfHLkAm1iBI23IJUZEw/PwNXut/BqyUnzM7K6b7n5hll/sbmRtTZ+beP9FGfS+Owl3CyvZzEVZ1YLE1rLZ8R1htqNa3GtLoAou6xrIdExuL7s52zM19DTfSM+/zy96a0M+5sIiiXKo2HGyoVZWdQ0pLATatlFanGKh7ftz8l5CKU4W2Pw7pBBbE3nqotjzO8vwsBsFQbW48z7isHyOc0mXFjJMFLhy1tFrpmVJGUYaJfSOLGz4R9hffc3qBUZDqkEJ+QuMvqmjh7AlKqhV2zhavcWyiEnqL1QIAgG91J99o9Z9/fjDrdxPr5EMv9BVufceMIermqfYGbPV8gXGSQ/x2uRfi/LlUGCbb0UObSPqZVyAsU95vPB0pbRLKyiLe1HSLvZykTQ13Mnx2Saq8q+gy4yvKu9h9m1IIcjBiiTQKALg5qkn4gyuzVC2fAPfwxbtI6S4DDUbSPZ/W3c2jRTwZNmmze3VQVdCJCK5Yt+Kl0ZAg9dh9ZVTF64HWe0nhLXPL6NpxFeUwfOF8/gt5I1aX1S3KuTdGoIw6oxGILIaR+hdHFuLdd5Z0mefJWl1G1IPJTKj+KM/BCXE/b4vLhK2hnnUTM5RlDc+y6Kd+2A2+78373F/83xerVHHwLeB3zZ+vvnv+Q1k8CHhBBfwownB4G/+VUfyMbgIMm+NVAaW6OSfzi1ziNBE1Q7n1hiaf4xlpMzgGBu6hk0l6JDXMKGad2kKej3bQYsKaAgmckFHiE0lFW6OVtoyxkqC6loixv0FVwe7ASGpjNQW8ffPPAMT19zhJ9XOXiiMp+ng4o7L5ylJLaMQLAv3UqrEcQj4BtpB9W2Chx6PwfGeqmsLuX28y8xV1jChw9cw4GWBtizI3fOvXV3sLZkbf5zd6nZcnxE3cUn5Fesll8bujqJTW6+Rgmd3mADX6j4U94++Xf86cRT/KyxY5NBJqWVk2bR8ZdFAitZKoutMOcvsb4TpoquIhU7xjH9MNnMQlPmTlLoMHfoFlJp81eGZm7muqIZukcnsJXtJW19fn/+FgBGtzRTMB6hNt6MTTo4MPpWitueoJSf8Tnu5ZLaQmA+iRYLWDtDndW8vWTS13P16P/NKVs7X2r9U9LY0FD81sK3ub78SUC9Bq6SNaY3WK2NEhsvourUp1goOs/RvC4yQXNOJIpH2qspXxtgh30v7ngrtac/Q6jwHLFIGe2RbayIOMfXu0HAjH0F0orW6UqMSYPMegSkYW1iNRSKhG+E6d1/ZYpTWjgQMHAU9nPsh40oqwV9zc430919ktkSkds1Z/sQkWgZ1VJDYNrYLMRa8JaeISsOvDrrwTU/CcAz//wPFNfUEWxpp+f507zwL8+CVonDXcWdn9jBXZ/cSf8JE9zcdvUmju21ZvK/bLzWezQ7hBC4vd7/wF38uozXPYZtL93O2WtvgO6L2II7QUkW9FUed5zDcEgIaJSuLPPpR0ZZbm/jUoGNo+WWhU92g3XZglZCkNYU377lN7jnkZ/ysYee5cSOGiqiyxhrUYS7hMeqHKREA3p9Dbazffxot5eUdU8iTQansKrdbbKXQdXKI0W35NwaMkKx6HozQfkNlG7W1KWAr7a7aFw16EhnsClptRotKIWSFMeiLBYUmEB+Cz9VlE5xYtchKiNL+MNDNBsV7DDqGewMo+IuThSPsegr3jzPK5JAhc+/wPR0F0O08PA2075Kl5LbL7xC/bziZJPE0DXsusahsjIeSyc2/VutTkhKwHcqdJRwojdu59CZbqLFOsHoMuG8AnqxWiNmoKB2ZoKpiioUAl0adI2exluewOdfIBapoC253dxYBfosPJeiRQ7w5dln+VnzHby4kTAdG5TOd8SHUGg8GFR86bkHaRKNjLmqWIlqFM3Os9/bhDvchBSSjYUFFleLAEWtr5rV4Mumcr8AlHFFqFZWIg0a/ombeWluP5G8Ya7SNYTJ07WyR7OyVTBzNQXTVxGpfAWB4EiigxL/i9i1tPWsS/GpHQMYoRvgkpl8gaTauQvv6VLWA8O4V9pwx5oBRXyuk8TJDGTexYr/EVTWeSbLtBeStUAv9nAtZ1wRtJSXRm2A6Oi7QOhIJVlOTpDndV5xvygghY2fGAep9E2jti4hNRAGeI5reF7VWFsw0BsVrtIE3uAa7uQqw9FD+Bw2hBBoQqMuv4u6/C3omg0RFlSf2sJ6YT+elTbcsSa8XXW/qlv8l47XK2n7MnC/EOIDmIHtrQBCiN3AR5VSHwR+AhwGejDn+wml1MO/yoNYP3eOpa//iHDrAeb1GBUygCLAo5Wm4OHDwWreGrFTGRKATl6qgYzdoFkM8hn155wY/zATrjIGqhybH6oUK9EBNrpfwdX1DpSmm2r0KHa+ppJ3x3SK4XY3SamyhTYAZgshPvIyikMmwFWYwr69ZZUcjC+jlOKBogXyveX4p4rZsZjh/vwUszRwZucR7pLztBYHuebIdVRXV//CeT8eW0fpmzvWXOAGzmp7CE19kO2zAS7GznLhpjsIFRZfobhuYkM07qv9Xa7aMs7+k6f48aFbSAvQleTA4AUWCgIMVNSaO2msnYymIaVByFeY+z5dCLa6L3B0rROJbgV9yQH5Ag0Mk1Y2DHsQLnNA6iPDUf8YzguD3Jn3LA9svQkj29O0EsGZ2mtpGilHKoVQgsRiK0raaGKIBjVCT+hG4krhWZVIvRyETtKxzlhjKT0tTaSxoYSOgeI7wfcTNMZoYSB3DELqFvxBIpXG1Foe/c5ubtT8eHHTmHJzjM35kkpjuipFdLaJAOCONuGKFRPRTJWIcd0q1Fgb8nF9gXZZZR6Do4D48f+JreYa+oLbKHN7cRf2X2EvYyq26CQWWpFWkm1IxdjxUVK1pVd8dvZhuBotoe/lPeRVJS32ajHr6358vgWikVKM6ZUcm1VJydSlHgCe+eZfII00oCGNw5x8xMfe2xq4/p1tV6yz8gYfd35iR64i9+8REi73Hs06jUgpef6738wli2+w8YaIYe/a9yc8NXGecwEHu1YM5OpKzs8WJUk5YkzZLnLk3Av07bqVywW7f2FYDMIzVcVc+PBHecuJQXZM9ZkbiYIAL9S6zARNaBjYOFFdS1pg4n+shCiLG/q9sTm2Gs1833M1MrgZOzQFV8/5eUZ+FFmn52JPRlOcKdQpnI9ze/dx+kurGaioI1ugeqm5y/LzVLTNjVOyGuV481akpnFGStSF4wzFznKLsZPVOg9fFDdjCFO0VyiJYlOQy1AafWyhPhwDKZnzFSOFjhKm3dGSq4UtizpfXDKIHahhnz+f3b48eBLOKIWR3f0oabpIWFIlBoqE18s1Jx9iJljH8a37N+fWOv/JYA1Ykh6Hjj9KW+o8TVsnTckO2YPv9A5ErAjXSitIHVQGiU5r0zY+4A/wytwGaaveZljxUgrJM40V6Gd6WSmrAiEo1LBiu1nR68iv4GKqgoR/mHTbk6wXXtaBFyAwuxVK2Tg9fpC9dc+BkCy1fZ8q1xilClCZLKmc1aFKarW92FL5JAIDsBQhXvkSCINY5UsEun/TFEET5hwNdYcouHY75+I91C8o/EkfyVkHbtpwR9utTb55k8TWnOiZBDoC90qb2eZVaXMhSJBSY24iyfn5+1hOzbKS56aj6CIu+TkWN3YzEAmztKo469rFbflnsGflIDSN8YKD6CE3hd4Qi5aOodJARDTsYxo+PUVlwxqFh6dBgxUpWHpymmuURGDaGCpAE3qu6ueONuGONplTaTcdKP4rx+uStCmlloEjv+T/TwMftH42gI/8Vx7H+tMPMJ+Y4Dmn1xS2RWO08rAVmMxAM1t/G7XR82j2KtQc7FyP8bLjTTjnr6cSH89eb99sBwIOAVtPP8ZyJAEz3eQVNzFOPjI9zg7q+ftTa5wN2GiPxrg67KBobZV/rXdwvrjAxJVJg99+7EVaJkf4l4PdwGZP3MQYKMvYeB9S6Oj18M4XYpS4EiTLYXx5J+tXdfL+Q01XnuzUSU6PXeBl3w7aU6s8o5mlYl0aSM3Uu8mCa+/XS3ncdZKj738/Gd2GJo3sBboicUMJHmvayXuSq5amk8AQAn9ilfaFKVpCU8z5i3GlUxxv6kIKqw2bxb4AnfYMLA/TwahVvVRoGMyvnODn8X2kF65iT7WTJytBSTM7mVpYx9/gRfYHCfu35ipQ2d6lJhUtsWF0Vy/Tyk7ZxtVEY4UMnLib/IJTLGeaiceLCXn9DDTXgBC0zE/SLAbJb7tIO0mr+pRNuAQDWge+WfNhWJtxUDZ7J0JoDBe9TF/cQSxeQkFBiNWt32dNGJZNbEfuuDQk9eEYUylFrUMS0mI87jhvrbtxag2LNWrF0jqjFANFWsDfVnWy26ZxuHYf24VORkJqpTWHWUFp5Bk30f/SVhLLDcjMDDI9BcrJrHMII+oCXwtmhqfhjdQh9QwqFUIVZb/UbN2kBhMs6AFs62H0jfXc8tFtdqo7u5i61IM0NoHBmfXnmOguZm4o+kvdD7Jm8v9f43JiQ2xpkZ7nngSlXvcW6b813igx7JFL/fzhbi9pAXYFHz+lIzZMGANKYz6/hFPV5bQ9PsH2V57jWH0jhqab7VHLtBwAaVCyGmPRG7AgA4qZQj/+BZgvCOQcEqyTBKDONs248pKRZnJkbjBNAsOYPciG8U7yk+aqk1KiI/hU7zpbwhledeZZa32zCv+4d5kC2YYfLHwsZqX6MnFgpRT2lIuxwjzzeIRZqZv1F1MeW2Fo5lGem7sWo6oQJTSUEvjXYhZ5wYxdQkHhCQd1pwRKu0jRVJwzte0YmFW9oo0BRiqDFHU0c5OVsJ2OrjGY70GtG6ArhJS0z09SvBo1Y5s07QOLN6ZIldcwWdWEoWtXxKXc2Wo6yjBIujyUVuk5RwGFwXphH+5oI85IPaEnt5MJzmOrvJmSghrGv97Huws0Rkt1LpFmqbMABNgMg8LFS8w6Z3EYXXhKEiTKBwiLApRjHfdKG6U0cnV7kpndz4IO6Wy3VgHY8Bi/x4ZzlR89ucquvPPIOokmFErLkNdwDI8SphqAkigJzqnteLztzOz5qrl5bFI5Lggqw0bBBNpLd9NZ/S8URA3+bvlq/D99gh2xOhxOOwUuhSaEtQSy8ByJRPH0RtK6sRTuaBNVp/+IjcJeCuTTzFBK38QhomOnAANNCOpLVlAKHKKfwrURqo8XU2FoSFsvL13XyaGSboSAmbU8nuhLYKgksUQ9TY2TKGGqFpRVxsjv0pBOgc3rN1mvmqmGkCme5IW++7AHttOdWqNtbYh6q6tj+rtaLdtSN676/9qEzbxa/z8entIkobw0hjJAE8x6fTwV9OS6SDqK+iU3unsPAV2QjmVwJVqpWUsxGm9krHUdqeXn2oKd8QhfqAxQ9ZufYvrVdaodOgLoAnpW/ShgW0SyLZJC4mRBC/OKfYruomtySYzAbLnaDKgffoxLtbtQ6OhS0RKaMhPJnLGxubu7UC+4WFeB1ARaveTVuRl+l8uStqmTnH7g07yl80uklwU2fTe/M/b3DLh83LJyBsNezWeaP2FWq1SGfv0h9ubvJmOz8GJC0bhwhpHSndmSmYnNUBluGT7HPxa9w7SmEubvLlQ3wdQwc/5iKiJLVFjWWz3l1YS9hVxW8uFCEv5QvYfPci+f5V766GQ2PkD/+gSzobfzldgW/rE0iVIOy5pJcP1uP6Pf+jrNnp3Y6cVGCWllWi9lE5C1czL20QAAIABJREFU8ByroSmK0EkXlUFdDy7fPMuRZlJDCZZLDB7acW3uQTRQUcM9q7OcER8kJvybc6cUOgbtXKJgdo3tiUXyo7tZszeCEBRFA6w5uxFI/L4FsCjq7bIbB79BSpk7spvlQzSm11kxttA/fpaJqqTZwhJgKMmYvmAeuwI9XcJDqggfSc5joIx1/iBjoCNy7OHHojVsnfw8pRXDFDdez/luJ0uJXnRtBBV/FMhYDzrQE6t4JgexOytp8DUiR0eZqO3CqDtNx7bTaJqBNHoYeqqFjYg5xzaHnUMf/B1CY6ZCe1l9A1OXenB7vWi6hjSM7AQh09Nk7EGO/XAQpdR/ygUBrvQezVbd/tsR4d8fj8soaVGM1ExW53lbjDtOX2Qx2EHcV8a3bqogrQX5wkeu59DLj7Fl4Cwg6Bw8B2hc6rqdlHud1pDZBn9o2z6k0tClRsWyqX9mis5egbZGCcFzJS281/hfpGZuJLUa5ydt7UhAVxoPV9pN7+TsUIrq0BLu0DQX/Y18b6uXLLY322ocL6+EnHWVtXiV6RJj7ik0NKm4VF16GX5Wml7LFrFi0e2gfl4hKje9TGPuPHQpTdasUhx56REK+i4yU3wPNZNPUbE6wLufe47epgqCUfNzfnRNHTK8wj+eDXMjDp4WadISVDbOCchPJuiYm6BwPWaKnkeWKI+HUUIQjC6bGp5ZmRJr7nSlUFJiB27vm6Gz7W3Mqr9GSQMlYUWWETF6mFjoYUGD9byDEE8wPPBjfGIrVcsFBJfT4MowFF+hybVM1eRRKkOTgMBdcYa6A4+DbrBohVmhHFSf/mM2AkObiZU1w/HpPObPlJFZ96HZ23nvua+RHxgmvEuh7JuHnm1pusURLj0+imM5Sfm+vk1Zj8vAdgownDGa1vMIjN3OzyIBDs6fZ2epiwvUs2yaI+SIDmZlXRJKTDCYctKfzPCQq4id6Kxq8AFfMUbfCA5nhEZ7PhcjO3F4q1DpKerrX+Th4HYOrE9TPzTN8iUvyjCf3XomRcvEJJgGNUyv+zCUCVdaDXmwX7CT3p5GCRjf7qYjvkb4pwHqlpdZ2SVQNlBSsDbnIZma4m7nE4TW97GcXOWF+fuoy99Cg3drDrLCUoK1xQTrZ+Yp3tuLc8eOXy8iwq/D8Bx5C10XPkgvnRhKZ85fkquwCaXYMjjJeEkRXk1wWwq0FRvz4i9x1X6Hes9fEpNFvCT/CAMde8bgY//4N5SuaWj7P0mNlbBlH7KtngAaWg5ErimYUKNM+cuuEI40NI3zLR10jA1Rll7ircf/maLS91AfiTGeiGIoRTC8iF7bhhSmFEnEvoHU8i1iBIym1q880fEXednbQVqzYQgdKSWPGLdy38DnqNPmEVxgSIR4oPIm/DpsS9ez327jBavyZcPgwNpDLIceJ+1sQwo3GWcdN8WOsUWN8o2yK7FK8Tw3j2zfjyFMzaYDQ92/oGhuDmVKdKA4pq6nWCzRpi5RrI1S57NxQBTjjAteKL1ymZ5NSzoyGU7lJ8mwnfcY3+WktpeLogsldKSmmArWUxmaAgycJZdo3fq0mZxInf7Idubz/RiXVfwMNH7ifQsy1xDEWgcG1/EczWoQ0i58K0Wsen4Lgcn+nVk8RYkWweYtQxvOQ1WbkbJJDfJu9S2+Kz6EBJ7SbqUyOUKpMoiun2Amvw0z+c3ORLZaq5hNLfOUI00wGeJNRWscXB2CxRFoudVk7CJ5QmSoq9jNDvcBRkaXePnSw6h8CXngWXehJ1atqGj2T/XEBp2j/XQd8jKxdIaRpmr8/lCOxappkoKiZTamihGaxqH3fYitN9wM/KIkx65b7+LMoz8zPU6VjuaoQsBmW/Y/4YJw+fh1cER4o4yuTAFPSvMRqEmDoqluHPEpDl1c40fv/RwZTbN0Jm08e+B2lBDoRobOwbNUhsapCR8lU9TBqi+CEpJbu1+kN7DG9v4ZyiMbTDZvZ9XptpI1ddm9a5pwn9Su4oB2jNumD3PD6gY/2r7EuqOYE8p7ZVUeGC8v5t6SQu6azWy2Vcl27C/Dh1hkBqSkILHG9ulhCtdijBZ2sOjRmCsOWEB+g9rFeXbMDOc8mTVPITeGC3h6bpLeYK35OULnjukkmdkzbGwssuH2MFMWZPvaLPb6NsIbk/hWetk5uQoozta05DbFaal4cXGJdEm+SYJQCuRliaKA8miY8miYkK+Qc1VNBCOLlEeX6FoZ4EJx+2a1XUpuvvATjCIH15zs4epwLa5IC9WnP81aoI+F+SocrdWcnPpnc36LynNYOCkNUrYpbKlONE1jxi7ZMTvHlvgAMmVirkHgL54EXeZgE1i6YuuBPlwrbZCtlgHKEMyfKWY95MLmmkGzBVkq2UXJ0BCZH+us3OXAnpdg8/IoygrbSJa107OyztCUncIGy284q+5kZW/5FT2ko12M29fZ52lCnbvEdLgcWjTChuTlVUV10E1lPI1NmXp5gykHqxRw0PlDfs7bKWwO8LFixfQTpwmtlxHJbOetH30fd8bCTL9wDH/RWaZ2RWkUGrNSw3i6EMe8mcxrgQZsxS2s5J0nUTRIcXqDYCKW85TWhcKXv8GiyFZrFYsuJ7oBnkgT9gdK6N22QHHZBlv8czS44lS44xxOXuDZWCPLyVmWk7OMrF6i3FWNx1ZAo3cbmtBQGYPkydM4u/8HvO//HHHdN8ao3kvzu/6Q9z36FYaNbTQt7uVcLWQshmN3YyWGrvOihK2n1tkelawVDDPdehyHZrCHcT4n7+Wlvv2095iSB9+/8Q722jS2RSVZFwQBuLXNbWfWxabMcFMZXkSrbc0JR9oMg+2DvYhAA/uinZQtFlOymkJoebyqVdJjn6I8HuHOCy+jeVupiCwxo6WZrjS1iDQl6YwO8o3He7h615vYXrod6q5l39lHsMss8BSuiZznCWM3H9UeQQHNukHMcx3L2BirUgQXX+Fzxl/Qq7XSYfRiG0vwkcpaRksn+InvD0DYeMrVyu6SaQ4YzzBAU24XXuKcZVkEzJsBjZ7ymitaoijQhfnHMDLoGBwTh5Ho2ESGz+R/kf0Movm/RnLhj9kS6WAqb5NNtm0R1qp28s0bb8HQbdjUb/O20I8ZKG/PieA2b2TlsHT8hau55EQISaBYUDcteFkaOasezWpUXsE0sKps18qjKEPgOqOxZOzB2W4yXDUBLkc+ayvdiNg0jlSG4bUa8mozrOUFGWtusBJDjbQSDDpruHbo2/Q3enO79U1ywOZ3uoONvLtA4T/6CGouwxmlOOCy4zHjMkIJ3omDrS/NE5XQb+tD6TIbt8kEirEl19FtNmoqWgkNj1AWXaMmNovvrjupXFqi89KT9FaWIqWeIx7ElouyB0JobJRXH7w/1xK93P3A6cnj7fd+OafRtjyXT9/xWVQOOvKfc0G4fPwaOCK8IcYNRVXMPnaCUd8Y1bOjVC/MEFhPoFe0sCsssStIW8m01ISJ6UJnqqKerRGDUlceI1qUVUzMTjAa4cbjF7HrBTx11Y4cQF9sdvjA8qIEwSXRRX9wC4G5Ce5elswcP87X2kdRZX9qPsVfk7hJXWM0z5KuUeamM60UFvI9h0vNvifmzuN4Uxf7h3roq/STtrC4Qkp0Kdk5NUDZahSA+YJCzlYX4Vtx8tszTj5bDoYwrbpunU0Tnt/gs7fegqHr2KTk0KkNtkQl8yLMhONsbk6D4SW0WmVtihWHh87xePF11nMBrr10geDiOPmalVwCMb2LR7c3kAaElNx88efcEfgBfXyetNIREu65+BR3dv0UNAMV1Jh9Joy/Xscd7qBo8g7UtXmcOPUghjsPPbGGMCzQvjLnSluL58pTgeQ8LSs/RyoD0EAPoowZZhN7eJEW2lUPzQyAFAilE1loYSZUR0HiKrSOMGtRG0u966yHXICOZqsEBZHOUkLXeDB2RbDbzYQtF6OUxtrcKHUH9jAw3sHisk78qJ+isgHaVtuJB18mVvWCVc2TLLX/AJCsNNoom7iK1Hi+2aEROmFDUaBf4kEk12iS7QU/p7Y+RUV0hYbEKNH8KNuLCnD1HaSqYB9t3qs4GrqfqSWDtsJzFLU9RjxfR2pOs42LweoeDXuTxDVXRaDmD0kUjrG053GUcDEtndSNpSnNVwzay3iv9ygFa+ssS6+p/al0zq51sKtYkH/1x0kUjlHc8lWUliF9rcTTnUDEYXtgDq3tZgZnM6ysLBBemiGSnKHIGaQ+fwtCKDQyOLVuMFL/R4nrvmHGVNkRxnc5qAkNsS2+SP6Mlx8UeLmwGiFSaeobZTTFoxU62yIG8eBxyHkxQos2gDceJhbfyic//iekdTvfQfD1k6t0RUx5hiywGjYTNpSiRuvgt5dXyH/xKS6UlyMyaQ6feomuiEH8ug9h2GIYRgFSwaKIcNE+bb5XgIFkSl8krZsl+du7owznl9I5dJKqyQFiryge/umPEe/8FNua6+jQa/lfR/+Jn7XvxSkX2OF6kVX7GGcTTnYmk4wEtm6C75Xi70v28T9H4QOZSWzDXWhFjcw1/TVj2u0IsSli2yu2cKf2IK7zglcd13BV6hX6ttbRT2fuWMMFfjSpkDmmKtxVGuD9VSW8fPEo0+On+deKW62qm6BfddBKP1JliNSMUh+1Ht5WMG9YU6xu3Y+h6yhLU29EBOlS54iIQg7KZ2l39rFACTbPIV7VX+U2JdBRGEonVXAX7+hyknniB4xe10Zefpg6xixhX/sV31UaXyTT7yZzqZQFyolXTyAa/5XAylYqYztZEU3YXALdWY1bPU0ktEjYqGCysYujYr95ssq0/+oYPkPEHkLjcosvcslbQVLj1IaLV9MB9oyeY28mY+2KBUZ5JwiTjayhuBbNVGch1+3IjYqObXRcdx1ur5fnv/tNDEeaiVKdbZ+4F4DV55+nTkrmFzsIzTeAgIVQA8n1NE4RQinoee5Jk4Gq2dh9+3vRbTYy6XSO0Xl5UnXmiXGylrOI/7gLwn+P/70xPxrlpfuHqEkHqFpMUBQ6S93cNP71NJmlQbrCKf7+1CqPFsVZliELVwq6lGxZjHF9+W+iCQ2bNs3LLJh4LwS6w4+t/jpm/Pac3mMWAKUBZWKZ5FqcFU8tSuhklOSJ+iCNmQw7j8bocA6xmDjGSO1B06Uq2wa1guaFgKklJxTsXE5zssS+WW2zYkRuP6NpSAkzpeWkdX2zwjY9ysHeC0RLijlb07KJm9U0zjbAW4Sbe0bOEcjUsStssCWc5vPtRRi63ao8apwrsrMjliakRy12KyCheXqS30heIlRQSfXEAIdjcW6zrXGu0M6OlRT66DQ9qT7Wa9ty87JhXyat6lGahtI0Hu+6k93qFJ/jXnplJ9vOztHiK+Si1kSf1kG7uETTm4ZYYhJ4hPL8L/HoMy+QkRrUtJiuJGXVZOOHa2EGh3HIfGJLaE7MoikDUBQ6y/F7mrmQV8o/77oZQ9Oxq7fyV2OvUJE4x/R4guWoE5hmdiiOGDR7pDbPrdic6xQGlrDVn8dIjlC24z4yenozpqjLL4Ziyf4Yy6mnufrWz3DisSo2lhtwx8rweHzoQts0h0cAhlXpM1gvGqTwUgkTOkil0EmxM/ZNtgqN6bxKpnYPojTFpATnsJOaph6WhEDsOkX16U/jjNRT5q4mP/1dzmQGUHVuLu/zCnQ29hlsCFiV07jOjJEoGso5KkglWNRddL0yxXf3384FfRtXr/RhnE1RGZhlJhzEoTnI3HYEwrbN9wpliuj67fjiZhJdUmpny9L3mclz8tOlTjLoLCVnORb6IUfKnBS7TuHUB0F38mslrvvrMKampvjud7+LkcmgKY1bUgF2zac4yileau+44rXxzAqQf0UZP9sxkKs7meloIG0zg1xaSk5mBgnOLlFceU0uURuPX8Jl82BIg8q8Rha0OCEtxu6lDEb4FFMVdShgpfUqnnF1m7UfmwYl+3mh3EfRUg0d8xPMewO5HbAmJbd3H6c8ukLr+ARTJDi54yDVM6NcfyGM/gdfJLwzRui0h0hNMw8f2EHaZuMHFW9m68i/8hP3Ob4a7icYX4EAueAqlcaPSurYPr+HnUUZqgsfQokMHeJijjBgw6BDXQQBdzz9PG8ZP8a5fQ30ddUhMKs32fJ+9cosSZuTeX8xKPjpQoRypx1f1S66CkrRFxXSUvH0inUTO2eA2phhS3IcXbaYWlMS5t0abTUl6MkUEoEmBadKzHYswIRWx3uT/0ARi3ReW0iy4bf4Wp+bRodBd/IIOzqayZx4lq75efalTxJgHiGgWk3yTT7GrNhk3M56K/jKzs9wu3iJBm2Irm3PomkGsfpjTB1/P0trAs1ehdAq0PI7IHYM23qcwbIqCw9oJZpTs3gWn2M0mEfKY5lhqyxux3RASHm8eI0CPrW+xCWtEENo6IBms/Ggp4yPYUqmCGG+3tyAKxqMCvr12VyAnZyZYXtHG6HebjIpU6co5c7nxPQM7afO4ZKSVL2k+vAFsCmk1FmYbwBnJa6aNQoCo6zOeUz/VU8Bp472seeW93D64e8gDYNnv/UNgFz7tLIlcIW0R9vVFcCVWm7/ncT96kdWBw9As5UTSJUyW7LKY62d1C1Mkxf6Efp6FdtGQpxva6J1fhIUvPnYi+y116F7dYQQnAkIzha1EIwuUR5dYa2kllpVSFVknDNSYmRxWRb7OxZ+jiOnLvH49X9GWjcrY+eKXHwkoOjyvYnilWYqo+1UDSR5sdVFlraSJeRsuhMoXi25cpOEUnRGUvT7TKN2LPb3RKA89xlCQfNYH2l3M49s7zTxbYoctCWjFPepDbT6Vq7p66Y34KCEOVQshS63YWBW0AqSBn/bkMEf0RGryuI6KIaqq5n161RELpG/OENIRdkSXWL7apQy6eNScoqUv3izKghU6R50zO82OwyCXtXFnfIBlNR4pvQdfLsgn3HtPUhMa7vreI7rxFEa5DDDkRcxMgXWXGhkvAGrtWtW5IuCbaSnS03sW3qaGk/k/2XvPcMjuc4739+p6oRGN7rRaACNjEEGZgaTh0NOYKYkiqRkBSrbFq31ymtpbcvXupa066zda8u+lr22tNeytLKSlS1SpCRmcgI5w4mYwQzSIOfQGWigu6vOuR+qugFIsq/sy91nn0c8H4gB2KH6VNep/3nffyCLRotvFwcr7kUIwdUdTkxNRwqBoXSGzENUDyiCRgpDpDin4uwolMMxkLlh/A11RO76AUIzKEQTFgudxQobFNPWBSjyaE1n6X7vf+Ifv3kD39oUnSU9uBM7qD3/2yz7H6O0pJ548zMgFUI4EHW3M/zIMbq6uvFffYG6mb+xuLnx36Om5hl84goIS3A6X+NB2tw7JU0y5TdwJxppa3yCqdDCFoCPDbQF7mQj2cA4aGAKyXLrY/gXDyCUAyXzYEJ2ysNChZ8D0X6+GnoAJHw1819wreetqDVdkMsOsiz+iJJoO6LFgTLzCGllmAosi7qlvqep0nI0eDd4a1M/p9NvpK6kiVbH09R5L5L0u5hv6aF8568ReI3T9uqOiYkJTNO0KZaSeS1FtVHGO0WA2ZFZTte2YGo6ujRpG3gZU78T/+wRkrUnkcJkhE5OR19Hraqg58ppnIeOkdcdOE2DXS9/j35nOT53ivrSDmbWhhhbvcpsdQPRpj3cY2QY37iIRLGwo5zH97wBU9M4t/8OVi+/gnM9ihIWef9kh22REdoLwIbTVZSoS2ERhWuTCbKBHXzz+GFMXUfffwe7Z/6UtpUbpCcdKBOevOUEOYcTpWkIKXDph9kzX8bXK2v4Wv2HUD9Wsznrr+OsT+BUbv5y4ABB9RjtcoSPiT9gQOykW/XTzjCuGwLXhM71lnb+z3d8grzuoGijbgOT6YoawnYbo7AqfHZ6GUu6oNnuPwKp4B/4JRoYo10bJlX/IhelB1OzrAqkJvhuvRM3goevDRP0tbHg0finemdxATWUgxFPN2EtSs+xQziW/ajoB5jSlhg7XM+IqaHvv5O3JOP0LEN5+QJKQYcY5lfVZ/kT/hBD2QHYQiOv68xUVLGPM9varL7aUQJjOuQm2VFyL+5sBesV9zG+ep1V6fyxb5uBWeIh09hhVcykRBkOdmv15IXJiD7PhkzR4F3lkGMf95uNfCoMS2aMA4cP0D9oVQcKlTWFtaZPZBVTWR8ebw0bJZZPmlKKH33ty3jiVsxlLhgmG2lkeGGJUeCOigrMvaugp4ufJRBcICmgvfeClZUqBVevdpJJV5Ejz8TEjMVhgyJwE3oluWyYuo7yn7D2WBhL8uhfXv7/TEN4bfzbR11HOYYrRca1gEIyVCf4y3d8grzDgVCKB/vOUJuI4ljI80TvMQzdgS4VR8IBQnP9XG3Q+Xad4qm6TqQQ1gbwymlC6RWqZBmPrOyg4dIwzzVFuFZZXuSaBdZcrJSO8tGv/BP/48E3M1fhACEwNbjS1QrCtj+wbRwK7cz21AAd/iGe0N606eO45acAjo/04S2p4kZ5DQW7ikjCYD7kKD5OCcHzR99Ix+IU5tZKIGz2cG1qxpmevYBCl5080HeGh8/cZD5Ygyc9yp8f2YmplaApPw9djdJk5Jg0TL6/51hxQ/zBia+wkozxQ9clS40KeErylkVGcQjK0ot8cKCWz3QHkcqi1wzH9vDdbIBHI6/DbNzOlZVK43lxH6e5k99Rf8zNtUNMNEhqEitEkis40nFMrw+rVKVYmR/AZ1omwfm17yDXoNW/l0Ph+4rc6QNxhUNKDKHhwGRndpwd/l4EAgPF/PKzm+cEkMYU7sAVhGbYSQdWNJ8qWFAJQAm8Kz0I081a9WYLeWXlOS6s3k1ClJEgwAsL36LKU8fSwgy3dZYx0/W83UbXcC2+n/cu7iZnSLSxq/yHMsUj2l6m1gPUOV10rO5kVj2OUha8T/lclk2LPY+VqQkq3B9nuipj3aPs+4pCIGxjXv/sMdb9k2hIhFBkKq6TCQ0TG9pD3ozSdGqZC446ZEQQ0ueoyy1wpGQAY0WwtlyKtzKLtzKPi35Szu/gPucg3FdDtmaGxrIUAWEUMWK3mLC+C1JS6a7luPY2LCh1iCXfR7nem0Dqi2gzf8x+INDx3lftmoefc9BW66lEkwLLxUcjIoModCIqwnu8Au/lK8yXmPQMX8G3OMPznkWqEg3MZm9jscfF34U/gFHpQL/T5DcWh/nUp/8LVzu72TeXYH/4HsxgFdcyNzi5+G1AMFvdyDcf+GVM3cGzUvLA1SCRdJy58jCmZrf6dJjwmHSua8z5A5YSE4oL1lhlLQcnBtGVREoNXSlujQr259v5fG0WU3dYLt4KRpvauXXsJv6mNc77dvKj2263dqPKorPXJaNoSqMv8HpymmvbblcoafHQbFVan6uBHUOvI1Vzhu7AMO0M2SILQbjqMOj9PHn4OHlHATxtAYBCoJSgJLsO/vLiwiqLVT2KliNgga4b7KSdYRCKV7RDm3OAtTznpMLjq+NAzOSx5jQaIUw7gUE3TRrnJ7nnV36N4WU/fV8eosSYY6ltEVM0WPOMzksH7iA3OYR7apWGxgGUUrSqET7B73NK3M5J7kIqawFs3xghuV6FbNS5KVoZELvYp1fR4nPT7NuNLnTAMvL0lTXi9Wz1LocAqxhe/+buWdMQLsUAs7SbNUWlm0SyoCWolgHe4IxwtrSdkTkH+zDQwdrNo0hVeeh8aycOU1EyHKd01snlyXlrdpREX0siTROzpJRsdWPxfJgCliLV6IlSvCpjgUelkUxGCGwRJoBlPppetW4UMuRD0zZVo1JKXvjys+juQ0VQduD1zcXP+7OmIbw2/u0jPX6BRNmlIh/25a795BwOlKYjpGQuGKYmFefS/n0Yum63BWG82s2ljI/fP+QlW7hU7Q3gUKSRufJKlqcu8oH1A7wnWkauzEV/WNmbPYXXaGCkXtA7v0ZN3LBAW2EUyPq2nYOuLJGNhqB+OclTgTdu0jiLVBEDTQmOjVxl5/w0g20LCFkJwolTwtHJLN8L6ptqVNuSxPKE21SJbl2/tv1uC7Tmg2FeP3edN/Xd4Ns9Hkxtt7VWShiqbmB2fZ20p6TYEpYChmub6DbX7CqedczZ6gb01QQ3Ik2MVdXRsjxHz/wk+vJpfnOtnR/WuhiqbeZqRTfXVNc2odk2+w+hYSgH35l9G8N17aighi5N3vbk12iIL4NUZGubQAiy1fW4FmZASbIVEUKGm0Pl9xQBm1KKPQmT37rwKOOHNuihn2D3GNfX30d1Yg+V0sduh4vpqgyhyjT5VAu168dQa/MY8rtgb5u1Lcs2NiCqGH0zQgjWqq5AwQMQhcu8wrTjGMpRS4LbSORnGS3fwZHKrxVbiyhFaXqZ+/PT9AVyvCV0kbtjR0nl30W5Lgl4dbRkG2Vzx0nWPU/BTq92fgNPVlKeyBPIPEWWLlj+EKLpL22bI1i4GqJEluONdXJ5do71kQZads+jt+TQNEDmOFRykuY5yUuHP4C82Gd9LZTJmzwjzC6HmD0TIub2EFv00NW1SF1klUtqljfXn2Jj2YXXyFIiCs54Fg9bU4p4WQ/hZD85tRsLRukoFLGyCqRIAgop88TPfIxAScerymv7uQZtlaul3J/bz7wWp0aWUyUt9/X+oIMPH/KSFwfQDYPdg1auWiw7RzQ7i6dMsVSxC0Po1oWnwdnuWu596bvsSkr8t30EdB2HgIPeOryGk/7180zXNhdBlYntLZSOU5tYQVcSQ1qL0M7rI0R8Lfzd8WNWnh8UL/SW5Tk7HP40lHVwfMFHJO3jZMllQtmgBeZMhdM0OOJ20PjFL+IN5xk/cx7TlqsLKemanyCSiqJh4nca2+clHad7fpKX2nYjhY5DwZR8luvmLMsrpTxixKkPW8ekCSfe8XUyUhLzl22f4C2LqCYlenaDuoUpUqV+0r5g8f9rApSSVoyW9UR8yg7hVYKD6jzXxJ7tLw1U51x88FAJhlaChskBeR7Wp4J+AAAgAElEQVQmTfZPRTnccitLU8tcnHsaLw3I/CwNc1Po5gmrXSM0ZkLVzAfD0AfXsgdZDvtpSM9yR/33aRPDHBcvWlFW5nW6ZuaJDu1gzH2U/2vnBzFw8OgOg09ET5FPzDOhr9BsVhFSPr4Ynmak4tbiedMxuK90ko3MGjklKa5MwrL7ULZHYMErsEZaJP5dzjC7AJVSTKSj4KtB2veOHy4lyWNyoMWqbNWNlTPxl0OsmedwZFLo6xaJ2AKKW8jdgHsjS+DqGhda7sJfvkwyWW0F1SO2CBMEyWR18Tgr6irZ98gHefYL/x0lJUJzgFb3z4KyH2+Z/v8VJrw2fnKMXrliiwus66YmEUUoCdKqyHryOTQ0dsZSvGLH4ukSeldyTHV3kxNgX3zFjdpQTRNKCC42daKe+Tq3eKuZTjmAE/Z1bNI6dZOEu5vpihqqllfQW+oxNfVTj7ErscGNoAdDwPOtR+zW1iawQyla1BjvGYjROO+lSvZSdv6H3CZPEd91GwfiJjsTEi6tcabZzWK5bsXzAZWrSQa3vplS2/5dpGJtUXtWexqY78kTFNaaa0oQKAarGy1QqlQxdUGXJpVzIzgyq0yVlTMXrMSTz7HhdJHTHVxptKr/M+WWeXXP/CSZzBCIXtuM3KrGFOKlAHQM9qqL9In9SOVENyVlGUeRC2eimK2IsGvwKsKZY5rN85st85DzpkHUsagEy/kUEVVOIdpOKkmPZ5DdXEJoCikF8xWXuJgxeV22l4S/n5b7phG6QlNXqT3/ekqSbyA26GG556sIYW3IhLAaJcZiNZGlX8KVbEUgCA28j5Xur6AJBcLJj4ZrmXNInnFO0W7Msev4QX757sOcPQsN6gtWOo5y4It18lvlTzOw/xK6JplVZ6geeB+BmduLoLNs9jZStWfscHiNmsWszSGDrOwiZbwLT7JzU2mbLGHmch8OZSAYt76b6x48s07MD2Yt4awSeKLHyOenafGc46JwWspRFG8x/pHvrdzOiruE8601SCEYSYS5UnqQtDvAw+EXKK1cBSxngb/L38/7HU/hVAZ5HHw6egt/7B7BLfvtbbRCYBJKRplV2HGNUB7feNXFCD/XoM3dEqBaC1JtllnXu7SInRdCrmJwvHLojDe0ElmZBbuBWNYQxy+SVnXIXnxe3nuI53sO8ZDeAvqmtYdCUeuto3/9FcJ5JzoCqaxEhPpElAV/OXPBMLtmRrna0I7UBH/78PtpWMtiaAWllKIuI3nTZBKWp7lW08R4ZS0PzTs5tqo441oAFJF0nAf6zpDNSx54+Qx3/cEn8O6z4qvuqO3jb3J5clKhoXho9Tn2qWFSZSX8XcjOSVOWU/fR0WtEUnEq11bx+XvZGcswtmEg6cFXtkRN6xwFaffiTJaKwYsMN+/llV37iq+z9eeO1AwTpTWM1bVsPwH2HL2nNkwqOsb3NiwDTKEMVoUfIaEk1kP72B4i4TUWWko3d6xS8VLYSd6+aZl2xEmVY4n1dAnDg98GDFRJKauBvbi0MHWLL3PnSz/gmeMPFXkRpqZxuaGNmZBlvaIFJRs3/ezznaUtcpM2NYJmKsr7dCKTN/ja299QzDs1lOJCnWJ+bRiAWS1GkxlmJhgqqmWFMrldPo/3kkZ+PYMzGSVvR3gV5kdLLOEOV3PTdPIW08OcZrnaV8sgOgKloNVXQ4H/JgS8GxfDPxwj1VmF2zawvf29t3HlrI6MJ0iOjCONURyZNLkfqzxkXVaCRzJVidQ0AoFFQJBOha0sxsAC6TkvabOyWDCNRCL0HjxIuLG5qBp96bur/ywo+9ekIbw2/m2jde9eXnnhhWIkVU06wa0zQ7zcsBMlBC+37eHBeIS6/n/COz7F8wdvp3d0Cb8LTgUOW5aLhc3g4goeM81AbbOVeCAUfREnz5VOMr7jl+0WpN2WFzu4uO8XLBqGaXLr8AwztSGmfF7LCBesaq+U5DCL0X0Wl13Z1InNkk5Z1MOkqwsjEKVSTtJTFWc1NknzdCURGaI/WM6j+7zkNdCkye6RPrrmJ+jv3FeMx9q0JLEtHxT8wnSeSHqVm+4UtYkVDib8XHdMI1HoKB7oO8NcMEzaXcKg/blRku6FSXzZdVoGL1K3OMVC/Qke7z2GoRfzQTb5Xls6ID3zkyzYSTDYAgJdmuy/9jLTDb1UuKK8rfTzdGhDjMguJmJvxzFRQrSqjctKIKVCSEXNWoq1iiam2vay4RUWdSdYSd1Cgsp8ChAoAQt6krjMMKEv0mxW0mlGmF90UrfTvvcojUQygonkTOYU4ZpJhK4szCxN1iuG8KbawbWGQBanUSpQ0kHzzAcoibdhCMUT5PjR7GE2VkPsDN9kl/8Ih+MVVGeX6Fl+lCpXNZXnBE9Hc/x9Yjd3+H6DXw+N48yVsh4aIOftR9cKVTqTxe4v4V6twZPoQCnLRNd39reZCwyiUUpg9a8BC7Ct5D6JwoFSGu7EDpzxJibF19l7dzUXpsp5KRqicXWBzrV59tVcRF4zWAnUwvKHkMlOVjAIpz/B2xtnmc4EaPAmqS5Zpal6iVi0pJj2I4VgI+ugq2Sa7IqD1HIJ3mqDayc+yp9d7OIZeZAj2gBnZTeXVAcNXQd5V+arhKY/QV7txiWu4Vgd55VLb+Lh8DOEk1kCGf1VFyP8fIO2pjKCD7WS+N6I3euXeHOf56DrF9BFuwViTJPGuXEAVuoiTHRF2M8s46rFKv8WFjMhiLV34TIOAZtqUYA1XbFWv48njpzAxHra/pUNpKeGxztbLKKvzdVACAwhGC/zAhYvxKXgD/s32J1w8Oma2zjZYVkz/G05QBy5bJlgoiCSjNJ5+QKuO9sYrhPstY/hoNfJHw/8LR9r+w2k0Ph02/v4xtpHeKz6GIbmLC4+VckokaTleXRHrIRblhVX9AWUE5bKKrjU2sAV0WwRaNUwo6abrgsaV+7u+QkDzgIAE/4NVIGUD5u7bHvs9pXQHTnIDy7fJK8kOpIeOYBQLsKjb+aeZBshJfhIRZ5MYJO7tuLZ6t4Jl8UhVD3oNZKHH58kkoqx0dgBYoOsmsGbKWHD47U90QoWIoKpipri3JsCzoQOcYZDZNcd3Jo5zbsn+qgpvYTvjg0ORGf4YvWmEKMpu4JBSZFotiay1CdiXLTdvR0YHOck0mgHpAXaAhUUq20IYtkF5OBFpuru44xvxuJlILg/u4eIKkcgEEIr7qitU63omMiQmpgAXZB9c5jHn/4OpmmiaRolJT5EGvT1NZyxRfIVkc1KWzbLYFcX/mCU3b3PFP3rrl29h3SqknQyhGMtC/7Nc7RuV+62qkYrm/5locHPmobw2vi3jfa77+ZdwEtnTzHpTDFQN8+o7kOxsxjJ9O3WMHf4fpHPdLjI6zrXW5oxdM26HqG4KWxaLKEzMcxwTROGMnEbBsf6U/z1O9+P0javXanrnN3daQEYTccAznTWoYQdYTcbw7E2y6KvDIEgUVaz/aAL9Ay7+qQrxbXyOvrCAl35+Jj8Ap1ikAXVxQuLu6haHMfr95HXKKo+874gNYvT9Lfv3f7atsLR4rNJSrNr/OK0xtVgmMuhCDNqBrlW4HQJIuk4kVSMhbKQVWG0XRA7lqaJJGM4cxtoSrHhUcUNdKHdWqydbemAANu8PlGKQCrGpd7bkEIjKkuxVBgaHWqMigU3H9nXjqkJdAX3zabxLF8mF6riU3f8AlLT0Qp2LUKgNUke6jtDdSqGhkYWgwvOUQBSwSEW3VNEN+qJXruXQGCRAaOXkWAbtcTwL9eRiRoo+QNAoimdkminBZii7YhmkA4wlc6puSME5o7SlWxDA3TAlRfEhWIuuYNdyQ5eRwlCKaSrlkulPeyvuAdN6OxcUZwSGzyTbKKRRY4d/CpKk7boqlDkAJRkNTSEJ9mBsO+XnmQ7qYUWOt8g4fJnwMyRlbtRdvsRLAPe+ZIz+O85iRIGtzU7mbjwYX6UvJsW/VFKHVn0tEKL3ULK7KTQtszK3dR4B6nxpkGBgcaDVeeYMIOMJYNIoaE7nfzmfY3sfua/Mdd3AL28i9jlQbqaF/lyz318bsLDZzKbMXA/TDRQ7b6VN2t/hseu+X7WeIAvpB4mWPc6HmofJbD3vtcsP17tITO2PNkuZzvKyrj/nib+frWGvz59HSM7Cghma5r4xzf+EkrovCgLoGMToDhMg4MxE4LaNosPgNrSdtSOnUWjS6UUZ6tKEJUtW3aKlvN3geeFECAlPfFVPjKisycpkcCFyHa11dMRjbuWYSFQzlwgTMPcGPfMzfHU0BR/9NTLfO6+z7E3m4Mf/S7xmrfa4gWdvFCcC+4lg3fbfCwGKlgIlBNJxnmqzs+XqjYIbqTxLAV4ovdo0SD3Re7m4/L3OPLDMZwG7B0ewGka5IQFNNEsHpuOtDLyCqM4LwVaJzwxPQnZIVDdWM0KDXe6mcqZI5Qk27kW0PjQYS+GjSE0tZndOuj3YGr2TUCIYut5unYHYSNf5JD5y5ao2BelPT7Ay+YdGMVzbp2PYgtDCCbDtcXD/afSt3BbfIzbetLWkn5zN78qzrLUNWsJMRrG6IvfbbcXodOsoTOq0Tj3DWZrFT3iOm3cZKm2lvS0ZoGoRBRPEwSCi6QSEerzh6mSw0ywjMAOpVeSlzInuUs/QrkrUgRshYw+sIxJ1wM3yYQGmTgXxjQspo+pJNJfjZ7WAROlFUQV1vzP1dQQC5UTDoxtE1YEAgtsTIG2kbF4cIVKoK7T3Nz8E9fOzwrKfhYV6dzwwGtmuv+G8aIvwD/UNxFZH+euoVqa5ChfvuN2lHQgBZwLO3ilwlGsdhUzhLeUVTQJKa+g8cxV/mR1kHMlpdx54Qav7D666a+4ZT1LlNk0CGnaAAa72i3J55a5JVXCX7U1Ytr+bsB2nhnQuDJHTTpJ0FHPk/U+O89UMaR1owvJf+X3MWodaDWKW8ZWsLia1vMHa3ewu7KeNz3zfYbe+yFMzYqQ6i10K1DoUuJZ7OeLxhJ/f/AhTM2Brlp449VZIqlYUbewfSNp883s/5cvq6Cjf4DAyBjfuUtsrs32Z2lfmCLh9VGa2yC0lkJH43UrXi41WVmqCogVqupCYAAnh07QntfBcQ9PmSamJpCaBZw9G6tUp2JcauywBRZWRa1YqZSC2WCYE/ESDF8T3w6nCSTLaWfY2nwJkyo1zLWr93LD6OVb7fdjCB3dVLwvtoYr2sLgtSbK8t9GX26A9VUiqZfQT5+m4iUN1+u9+DKdPBk/xppoLraXNQU1GykeNsvo8xv8lu6xVewClE6jr5NscJyNimHc0U72pSz1fatvGSnsCp7Q8S3tYzV8BZREKQcl0e4iYAMo1wWHGyYZ1KYY774X38QgS2WruKJjdranIJ5dwL0jblt5KJQ0uCU0ygvpJsbLgoxXeAkls3gT16Dgc4eJU1wjr3Sel/tQCu7RL6EjaauN8XB5P2Ouewj5O2iO95PKvI6S295v3TukSXpRsWMlwSeFk0enX2BRn8MfNonPhwjrryCFZdYrFfSEQMTgU9fL+CvHAb7a286BV+laL4yfe9DmbgkgHBrKkAghcD/4y2RlF1fO3uBySzmSg1zv3E/9wqBdLdKRQm5Z+CTd8yv8+lf+hq6ECUdvsRUum/5smtA4EDdwSEkebfMiVAJNqaJK5vYLz7NSFuJ6x17ri6Akv3iun15tFwq4FtQZrXBbB25/0dsWl1goK+exXssC5GJjJ8fOnWfH3AjveyLDkOcx9laXgpnjtuRldGkgNYGuTHYkZhiiFVGzCVgUirlAmJi3jJMdhV1FNZXem9uTG5SDC6N3cufVCQB6xof5i09/ktP7DjLc6OFK+13WooNg7ceAoXtjDaPEi8S6pE5m4LRqxxQSJawg9ktlJTR1fw3Paj3/0LzLAmyF3WtO8WsjWVpXt1SelLT4EUqimyYNc+PomTQoib8sWlzU6sxx1Ctuzjbdy1Bts30OJA2xJSbCNVt205uL+Zfq3sj7Fh5HKUWQNVrzaY6o79khzxq9fslQwo/HsJ531jlMYs2HUmsoJawg9+hBdNc4Zu4aQdckHXuGKZja+i904lCHCcpBNLWGtRmQNMhKykssq4OtgK2QdbceuMn0wT9DiTw+5cCfvYf0aiWa0HCbjWj+tyPz0+hOFwZp7Bdivq4WBSST1dvMdZPJCCKfQ+mObTf2umCAhoZNG5SfNv45YPazqEh/PHHh7f/5k68Bt59hPDmwyB+kdIz6vYyxl2P5df7D1Aa9T4/z+SMtXA/oxWsa+IkKN8COVZOZUp3LrSX0Nz3Cn3/6k3x4fIRk2Q6u6AfRpMDcanxrv4aQktK1NKu+wGb1DKhJLtMXaiiqOhWK8vUs6zpsuNzF93XlDcIZJ47kRbS645j2WtgpBzip3YEhnHbFTHG2pYpNuqvVZn1l/zEM+RJvee5RVpp6CK4tUZ2K0xxdYC4Ypja+jGt5mCuNHZubZWmtbZFU3Kqq2cc9FwxbaQfCWpsLXGM0wY2D7axlfbzhYpofHPRTTC6REqcyifkCrGjlzISq+fjFGR6MhcgPZPlys4sZr9gUZtiV+YbVefouSsrd13mo6z08pSwzd4eU7Ll+kcWgRm1iBU1K2yzdsjwxhbJ5ecssltXxF/vD5LUwmmziV+ZHNzdfUlJVNcpETSmmsM6BqZmMhTPUx1yUrt7GcyshMvlpFn1+/urBvTScvI4zU83q7O+jcPCbQKxumpjzGt5YN+5EC86yF6iqXOddzuPos832Kbe+F/mKi8weesoCUi06TXO38u7Z45iqiiU0MCVCOCgffwOh8TewGhpgaKGGztUmlGa5BgghWA/cZO7An+ETeUacGo49AiUuIHb00XDho5QkW+kOHmZ4ZcC28jARSkP3zvNwz2XuqH6USVHCtCph99Uxpsa/QFm2kdqSM7jLB8nj4Mn8O7hLbJATq3j1QRQQzGQJ/+giKn+Omcp2vLf8BgjLDkcVGiIKMCWtXhfZ5AL6rORDTc8QcaQtWiiQU13sjZfyoJwhE7jJrRVXmLr6eg40feRVve5fA21NZYQ/sJu1S4sIIC99nPzGNf76gLfoJ2SikfSuWeHqQtjtK1lUFv77s//IzvERJLDc93Uyu95t5Y4qq80llWRX3ORXfvQ9hjoP8WJLA6awyLHHbl5jw+miNrFC0+Qge69eY6axk1d27eWWa1c4thaG7h6EpnOxXLMXFwFS0bxm0r5m8FRtg1UBEwJTFzx76Dgf+ccRQEL/t8h8/J2w4iSxUgK99uonBFc9h6hcTnF8pI/T7XuQthrLk88xVllbfBxKgV6xqdSyF/5cmyRz1MR7RufGjg5e2nuQfNDHuq+p6FFmKkGe7fYX5RsJ/r3rv/Jd7e30Y4kdivR8ZVpydXEdRZ5MaJAV9/bsybhL8BfdHm5dNjbBnGaBPU2a3PnSD6hbmqW/VSLURXqDGTRh2p1sRad/FPfNajqXZ5gLhGnL32StXGNK3Y8saN233ODc3hTDmh/Pc06qKs8x7n0nSjqw8j11kokqYtoq0qWYZYj5snK+32aBaIcyeeTyCOEFExCYJX7KO2YQ9g5UIMnXnOfp9QQeIUGCM7FMU66cQ2W32adAFEE1bKrlMqHBLdl/Jod9GpOih9i0Cy3nRzh8NM/2EzVNJnxea8suKLZv0skw167eQyCwaIkRkmHc5hR6dn1TMKEU+w/s/xevoX8JmP0sKtIfT1z43zEg/n/H8dxMHEMDNIGpFJ/qsQxHZ7QGwhsKtk6zDTS2gnFNwf6EZNKnW/6SDidX9xxl1/gIp3YfZLRihdY5B8MNm2HrYAED3TSILM9y07f5Jo3ReVAw7bWze+3Hx0vc6NLiy0osIDJWVc/NiIZQOzYBmabT5/s42ewabNFGFTa5W6t9E4EqJu5+M5oqtAzjICCSiqObJtOhKhCCsM2tk8KqxtUmV4oAszC2g6TNHFOEYK0kAm44sdhHyfk2vnswghQSXVnf6YLS1BTQH3LTLHX+724POWGDWzsb9YR6lhPiBdr23uT5zDFGg3dw/7rGpweGOVe9zu7rN2lfkiRLd3EmNcyDNt+uPhFll9HAd+qwVbga4+UB8kIULZ8GxC6OqycRdtuzFA894hqP8lYMZfH3mpPToFpZm89wmEY4uIcj9zazr6mcwXCO6ke/hTKsNuRGYIRY56dQIo9ocVAx8E4cXT+gSlNo2mk2Mr+DJ9ZanD+tchQpCrYhBjvqTjFf+5K1uRRWR8UdbQMUnmQbnmQrVxeusDDzdbK73kW924GuFJmQlWUqNIWmTHvNAyUNkrWnyYQGKYl1UL5QxeCPeqnoWEXbMUxDzTnqOY8urE2tlBrLrlpCz19CmZdY0hWeO51Q3savBjTWQzPMxh6hLvMFnNoIi+IoKjdocRCDrVgm5oWNiAJhopQDpUwWN6ZACDxVWcbqS/Hl1/GlDPKyi2je4t79u8AIcwe+g9IUmvwbksNVr6rtx889aCuM9UtLKMNa1C40OSya/RaCq2SAe8+NstbUyp2R7yFQlrJQXqdFH8PUXcjXP0Bu54NcPb+BW5hUOgTx7Bzz66MsbUzhy85xxFXNqZYGTCEQSqNiLUV1Ko5QkraJaRqiaVLBJFH3Cr50Elz11g5QKTuWxsrDkwImfTqf3d9FXWxh22e5Wd/MjR3t7BwfAcMg+bXPkxwL8sI9BzGwFK95pfNCWStHlwapWEvRGF1gqiKCFBpn2nbTsjRrvZi9UNbFl+man+RMRy9SWcC1WYyTfKfJMB187OFPkHM4i1WrrcNJftvvi8FaLqoDRCnfJCejITC4XT3LMV6klWEkOq54F/t1k+tBfVuLJa8plt3bqwYIgRIaudIWXL5W9sYr+X7P32KYKbqlpRqSUqNf7mO4sZ3aeJTb4y/h2TPBn+q/Z7cCJAcyZ7lQeitKaegYPMCjTB9xE35Zx3VtkUjyOfrL78IfWiSZiJBesxsJ9tdlPhguLuaGEgy5QpStfrbo02aWxLcddkbkkAVRuRBUiBAnyu61uWw/XmGzqg8AnlgXosVpS+B1kolqKs0yEusWSM5n+5n1juFSDqC90I22fkiJUJL84Brz/npMfxB/YJlAY4q1KSfm4jSGvxzXeoCamt5/9rpZGEvyyuNjGIaEnwLMfhYVacPO3egOx2sB8f/Ksd+xypdNzU4dsDRsf9bjsbliVgSlWegKFCpkNg3AoeB3bmzQtip5vM5pVXuU4JayWzlzLM1fP/wApu6wVN9SYWoW7aFrpI9wIkooFWOyrhqwvL00KWmKLfHY3mNWS7UwCpV5DbrnxvFn1y3if02zXf3SbJ8JC3g+tuZFx2NfqyDsvYPcslksvq4QSCUYqm6wuGn+EMPVDQxGLCWoJiUP9p3hTRfPozfVYM7NUJWKI9Ds+CdAKSKpGA9ePbMl9D2GspCidfMWMOGP8WAyhu9kHzca66lNRgEYjjQWwd6OeJLHKyCvldiiBoMqtcSb4v2cCH4OIRTDWidfPvZrGMLBE0rxMfUV7hUDcNzJtdTt3G1EmNFiLGBb66BIinVGIl3kheBmpJn33oxa5wSFriRVi1nKZj6Eu3waT7QDqUfxRT7P74o/ZIBdhC8oPCv78FSM4q0cIrPcSWXmIAeayrk4Gedd38vxjtxRfkWz4vzWt2wGlTSZDz2NQ5MWDRiDjbqblMTbivMXjd6Ps3UUhLXOCw2QBQGK9bCNihvMhG7ScOGjuJKtOGqaSJXcRLb9gOvLXVSmWwlGOxEtOkoZm6Da7g+nak+jhIlocbD0o93Mz2QwwzFqWgvCCisH2eJL6jhnd5I3LwECJSEx5iWzp4W5g3+OEgbxFicjF9/M6fRRfld9nTmtzFLMRodwSQOEDihKs3+Hu2yC81MPUTp1jng4hzeyQesDU+R0ySUVYN/VJMQ2uXcboZEtdARFfO4Hr4G2V3tkx5IWYFNYlYWYiUtB1jYZVEKQKX8vpWvf4vjGkzSJIYSADjWMQuekfB3PHO1irKSFL1VWcWfpDD7dWrjCnjpWpc7wRh5Y4GLIgVnYOQoo8+/lQGySTGIC91qawR3tfPQ/WgDofO+b+dunh9mHVW3pTZh85nyGz7W6ORe2zHXzQlGRlUwVncsFQ82t/PZvfoK/+PQn2TU9CtJAmS72Dg9Y1UIbUNyo6WBHapofdB6ziLZYxyU1DVVmFH9HSVymQc/CBFVVY3wv+CYkgi+LR2gQU4zu6yFf8IeTENYXmaESU+lomNsnW1hqyMfFL2z5m/UfqSyrgg6GEVieZV/2mQyYeWCrj5ylXd2kx9n/sG8wLYlmNIcBUnJ88ATelVOM1Jt4utzcMHr5xu4HrJ13k+RX5keZ1Lox7AgvMPF7V/k99Z8YYCc9XKddDIOAbAe4xiG5M4e/fJF8zk0gYAHmAqcNFDVbdu66hIbp64BZ9GlbXQ0VD1sAvlSLZTCsTKv9W9rAkkwRUcFiC0Kw2eYSgAlkZCcdxqeYmH6a82mTVCYPnCPg7EWsTmBknsFwQMpZiiasgHvNNNl/8RJZtxt3LsdaWwuTzkr0srlNUUKTzrW+u8mmy1j3Sr77xf/Gm9/7VoBtvLNChc3IFwAnPwHMfhYV6WsB8f/6MTc8wNznP8mB/Xdwfu+J4jVgAtgcqWNLeQa8OZZ83mKbTgmBUPCu8RxvnTVQSvE3z97kclMDB+Mmu5Lw6N5bNv0egaboPJMVEZTQGGrfQ9MrMwQ1H493lNt7FcWJm/2sO10/ljGstlXHKleT9MxPWMT/SKMFjIQorrsUOhtK46A8z76ZOjoWHJz3Z/hmV9M/OxfrLg8L/iCP7zmKoW0KLKTd6tw/NcLSvIHu7yJopqlPJhhR02TZQDlcgCiGvoNCCKtlt9WaRCnFy64RPMD+6ZHiWvTgldPMlVdSm1hhLRNH6uXoKoyyNaqLIsL/KK+iVp6iXQ5yg52WVZSmkVcmN1Qn7eIGSINMd55PDo/h9fh2yLcAACAASURBVLn5/p59RYPfW+ajGEKgNEFewnjWyy+dXGW1U6dlboFj8R1UqwAyvocxOclZbxbv1XsJBhY5MWcwdX0U/45yGm//EkIzUNJBZvT3WRhr4exklHBWEEoIXsh9g/Yd1ej+MevzKxDKQWzxAFU1T4IyLe+2uIfojsfxxrrwJFtZT9Wz9OKH8TWdJ9B8GqEXeLebp9WKs8qTrD1NONlKuG0V0fgUmjAo6XSy8fJv4U11bPdrk+CN9uBcryRZ/yJolvdZPjwNM2FW570o094wK0Hp8m4c+QBlc0e4kb5Eh07RKDgxXsra7tEtXLg8K01D3J6XTItywuUrbMScpML9ZG/8CaXrezGiQ5TU9+EJrjFS0sThxVEOJXVSHQpNt3jbUiriASfhWAqruCNxxTrQWkAWbD9q739VrvnCeA20AcpYBLsdpHTBs6k17rya5sk9VUV+Wl4Jplt20ZJM0SCtGBKBRvLyuzmv3cpgyGCnIYicmUe3AVuhSlLnqWQk3UCtGqIi1s8L6hZ7Zwsnog56jWZumPN41td5cgsAMnBwKuJi39Imf6A3nucDo5JLoVLyNs+hfmmU+qVRLlU3MFVj5d/lHE6+8oFf5//wZ2j8/gdJTpSwc2KYN5x9ge8fu6eYtTdVV79dGaUsX7ETJU8xxSMYyokmrbaCiUkfTZhY/A9DKW6onRy5fJ1vtJvkhUDH5I3Bb/JG9U1OcTsnxd2siKotk21VLtniP1T4m0LjpLiL4+pFOsQwGopK/yncqY4tj7PALhJulG8u0ChJ8+wYt98Q1CfKbSWYIJA2MJUilalhZbqOm43ttspVw5RWa+EO+T003UQqrXgMx+SL3LfxJCUlGZuNC9oqLO0tI3T/AGFtE4xayst7LeCmxI/t3KNUp2IARfsNpzO7edhK4HOYvD7by4u5M6z5Sxl2zHOTRd6Q20e1CtjiArsLjAXgdBQVaRNOBxkw9pP0jFNQZW14FnBF+7d9x7eSqAPJJMlAgIsHD1itUkzqA4vbRQkFY11giRxf+9M/xrGxjpRmkXc2P1ZSjFFCQEN3OYcfaPkJYPazCBZeC4j/143p69eQRh633M43022fNk3BS5VODOEo0ikKoEih+NoOF3csG/QmTHpG+thjhkHoLGhJHBvjaKoGKa0KUkkuWxRMSeDJw/W0z+UwdYqbsKlgPe0Jmze5ZRNFkc4hWfEFGGrYTWdsle6Faa7XNm+pAm7/fHERRHOP853KEK58FiGatlAEtrwH4E9GWUFgbhVNFLzZkissBMp5rPc223MyzAN9p4ikFGBz7Oz7fmEelbJq2rLQRt18q83H2u8fSceJrCaKxxRJx3n7yBOcbe9hTLSD0MgjOLXwi1QufA7/6gr6cYlU4MCgh+sgLRpJLu2hpnSG06H92wx+c8YaQpkIabV4a5KLVMSidI3m6N5opEqW2esdpFwWcEinK1lNVRKIpwCJt6IP7OQDMMlkL/JPf17NiSNXGZOViPwM68Fh1o8+g9Dta1ppVAy+i9WGHpR8EjSrXbjU9RW76uUkcuF3SKZvcp98ltmlelZbts6TIJesw+2fsRcuRar2NC/PHeaYMUpsi5jAVfMK5ngXZXO3WlU1mbc6UaNvQgiNVN0Z628mpOe9VLhrqS71YIw70EryaDXTrFVdQSiNxqUrvC48yZkTPchlQSJaSs/8BK6rCbi7cB0o6qoss90FYCHiQwh7W3xkCvVXs7jiAr3FRCL4YfktfOfYcV6/co4WJvGoVZQNykoTtaTMXwV7Y/3fk43cufHr7PNfoLz2/tcSEV7tkbl8mcVPfpKSQx+2+uEI8qlZVt0ZFFXFnaCmoDYZJZ2uov/qvXT7c+QnG5iOHmXaZ+U73pdJoZV4t5DjrQvboWm43X7GXI9w69QNPnN+jUshJ/tjBnuSEiXAHa7lTE8WB7KYWqAQXAvB4kqyWHXJZNfxjl7gbfi4WVVl5QWm4yz4ywnmDaZslZUSgnPlVbwXxbdbOuhRA2SW3LzPeIKn5AnywoFTGdTkolz5sTmRaDSKKT4u/4jJ2NtpGA9yxW3w+O59LASbKfQBdSU58vVB9p4Z48Our3DqwGGOhZ+k3T+MEDCgdhYB3tZFdts2bOsQAlPpDAg7DUFBb+1ZBlzvBfzbKm3FdXbL37pmPTQmLNGDNOaQ+WmE5gV0HJlVcjZfr9jHFIK0EaB+fZ4Tpc/xnLjPAnNKY4Dd+BMKj2fEKvebIH2KpZ5yyrXoNr1CQXkZindTL0O85BwhkrSA2lwwjKfRT8P1fks5Gl0kGdgUAAjlwBvvJqTKCeJnFdOeh81kBAWcEQa34cAK7LHmTQOUqQjlg8x6KN5cNryLaK41dMulw6rw2XMuNY1L+/aSCIW2WROklxuQTde2iBKqNz+ggpy7FLGaAijyznzhozbfTuFwaD8VsL02/ueMhp27EZoDl93mVsoSLr3jwiVK103mwjX8oMc2jJWSnpRksEzHtNuMUik+1+rm391cp6Olhj5exJU9wYgzRnV6e7sQYKimuUgZUUoxX7791jFWVcFEpWVFVBQmCIFmWpV9AQzUNHNDCE7ukDREF7cptotrgf1zVLQxWt2+5W9i++OKf1e0eEpoyQjOKomhQCioTkYJZdLEvGUM1DQVOb+GgisNbVSlE8WsVRQslIUsAUNimZpkDIGJYItNUQFUbgF32455C5gsmxeUlRkQ2TzUMrOB9LVmNgIah6IXKAmnLI4bI/Snj3N67VYqxDqUge5yoZkgNUtU1TI3Sn1s2j6+FSo31klXrJOWgglX1NrcyQBCCGplOX1oVo6zUuRSs+jorEX3oFQfSpogdTLLnUipiF6Z57e83+Y7qV/FV7MORS81AMlKk6TCM8y6sJNShEQVuWMG3wxd42qqkXe5xshFpljFuwXYajQMvRW94U+Zr/FYz9EM6jq/iT57AqEsaodQOoujGo/nLvARMUTwipd0+QLDy2+kJNkKCOpf+W1i+mfxhZcwI3U0Rg4xd+gvrMqZvSpit0kzoTkqVw3uqLpKtsrFs0/v2jwRBRReqPCKzb8XuZM6ZDsUrnGNxUtB3IEVOgLTEIYP1XwfHUnyqoN4wEl5Mo8Wv4tc0ZZEUaFpNPa+n+ZXWYBQGK+BtlfOE6tpY8U5TY2qoEr6+fBMP1fHRzh/60FyumWXcPeFa9SuJ1DAWqqaypU99K8rvu3PMadLumIT3H3jKbj1Ny1fI3sUqm2tHhcXN3Ti4V56E5LepFVtWRQp5rUYnpxB1WoP//l977CrH4AQXGnq4BuZWf7jlLVAlHhK8WnHeH16gZc2hgDL7uP7vXZg+pYdqxKCrFS84NjLwfBVvOE8R7nK1/p+h1eCuzmauMKgaOFHFUfZGiMllc5JdTvHOUlW5HgxEOdU2+1Fu49CZeuYeo6WpRFA48jVS4zvaOaK/yB+/wrtaphurqMhLeNbtixyolDS5icWP4WGn3TxukJIVko3tp2z5lXJiSWDL7W4tr3mMwdriayuUrc4RX71O1Y5Hx3dezuaXKd00UG24OZhv29fQztn5WGaGS8eo0JnLNfGtfA+jqoXuMt8BiEV7mFBqrSRgBxHCHPLoQuSyQidqoxu2QB5wXcrlnh8z1FMoXGpSfGetTJqF4aoWB1jIRUpmtjWRvfjSbQilUnSTAD+4o3BrRzWjU9BuMho22yTFu4fua03MmHNo+EtRV+3Kh+iIH235ztesXlz9fuXCASWyI/WMfT8LkobciSXQ7axbuEDKlzZNXSHs1hp8wZbOP3NEasFoAmOPdz+GmD7XzhqO7px3Ps2TtZ3o4SGphTHb/bz7mQ1laafryyB1m3xxBwKHprOEq50carKgVIKJeBsWOd8hY+DN6Osrj9B+/xlXA1vYNLbgTuXRSCImAFYm+DYSB+n2nuLLc20d3tSi1WFs9uK9u9KKXqmpsm4ShitrSrscDDRmAhHEHJLaoH9nM3X25Ka8FNGcDVJwhcABI/WtfJuRym33bxmHaMQLATDLATDP/W5ExU1TIRr0aXJg31nqFyI8/ixY7ZfWhePPPkYWolOURYIRRP02sQKEZvP9tPAZgH8laWyaFUmSujoSvHG+Txjdb18887DmLoDp8hzTL7IkOrkU2W/jhnQEBFpV0Kta/72K8O87vS3EI29TATXiKQsLqwTB1mbXiOV5Ka+wIIWJyKDVKsg9+f2M6dFySSmOEcVqv4IXn8Dt1+sYSM4gCfWRVyTeLt+iErFiJjXMSoGGF29n2r5D2jCqrQJdA7e/hDR2VVGZ76EJbwC0FFKkVc6p2KtUAb/T+2t1LuWCKgYmrS6VtU33kv5+BRkJAvVylZiCsoCEyz7p/Ak2lB6nrKZ47TI40Rzj+Ep7cNI7icXTZJKvw3p09gI3CRd+xKZuiRrwoXWeI70nKvY6kTZfDZp8dm8sVpgFE2AsSzYEbcoLNmOzWpz8UtX+CmxUJu9QXcPWz0NJRWZJTfvCL3ALm0C3TYhDqYNgmkDqeAU/y977x0eWXKX+3+qTge1pFYrtKRW1kgjjaRJmjw7YcNsTt6AvfZiYxuDjW248BhzuQTfizFc7g+D4cIDGAwY1mkdsTd7vd4wO2FndrImSKOcs9RBqcM5Vb8/zumg3eVe4NqYB7v22aenW+fUqVOnTtVb3/C+KRqwrZAm8NAD7Wxr+OEpwPzYg7bwxmZeGB9HySEkI9wd34p/roct4UE+87//Jyc3b4VkmJqZMQqKNlC3sRJP1WXmucKFqb3ct/Ve+s0UajRK9wR0dn2FvO3vyUw2Wttuupq8MlawaM4zSAeVT4sIz3kuoFAIl+CJn3pvNjs0XbTmxdoKessFt86YPDSeospjUGXVsCTiXHaNMBkIZuk43rDrA+jsvQbpdRrNSLSCVNgkX64xIDdwuK+LV1scmSjn3CjF/E/5ScwyF6JUZ/nkMvUK8sUqoklDH8wUlfLUjsOYhsGr+gAfW/0MPt8SQuQCiqwLNvvy6HWfQpss4c9cRmoXwZU8KMxWU4KkpbkE9Mq6ui2puNaY4EAwTt+pdPqZCSqO27cPsXaahtFeXm/ZlgGpGviC8UFu5vs2HHJY0c/l2XqnPbTh7oWHnnoZz5Ck2opwufQOKir7CVX12yZ1badRhBz5qTarBqPERDmJEUpazG9y8ZGbb+fyX/8+09SwFAuyFAtStFLAojnF5eRlloKF6YcEGhIim8ChzQTalZ9x++ZuEk1vdN15AK7V5ey5xnpuv/Sn3z/rUKEodP1l+p+uJ/xKHpbPhPo0sNZ4Z8a449Gfyagh1G3e6rhGbcubRhNfWZ9s8pPywy/X9VImwx2t8eU381yjh52LKYoTdoyu0Lb34I878rGknaDQEJmjvziY0fA8s/FeHnlygmJXOX+/aU9GZUQA5xsUm8d9zPuL2T7Wz7w/wHhxhe32VIqK5QgLhUUobH5FYB2QM4wkQ45+5htBmZaaDfNTaDQjZVXrwdtblZyxG0lnrTrfXywM4PHI9QoJb/zMrV/YaihmwkAn4yihHc1mxUKVm8pwkrTnebqohKe225x1hrJ44ORzWIWBHBC3CMIGbE9tP5iJRTvUf5m5wgASwSJ5vNzqw3S5bJepcvFa5Dbi8UKsaoceRWTbppSibHGM3d3drMTAv+9uLrvHAVh2JUEL0v/1GpMUFs0yG5ilY+4Q1ZFOyqx8Xlo6QUVylu9YndyxnAS/bf1MFo5TsvsrIE2U1vTMFDI14qZ27AZmLqSo2vUVO65PKY5/6yQbXTcTNH6OhcrP2ZY2BQOT23hteRM3VL/O4eqTGI4ShqUNmNhK/fhBlrpXGLn2fQKJEjwd5SQqx7M2BUMRL7WVZOb8Y3iXawiofSym7gNcKK2p9kA80M/Enj9Ci2R2zRAWpieSQ/thUN790yjvCt6FVnqWZ8k3nsJUm1mNDoCeQgCeXmFnJbvszULlaAHDRgt1opei1yNEB/JJtIK3FzxD9vwnJORXJpjRJWxl8E1DyRRu/kx1kiDBDgw6W8oInLzAq699gYqDe2jbc9u/5pX+F5Ufe9A27fE48QOgtMXo+DO0x0bQQCBezqbRNZbEKABFRTPk7fwuWlq4gPuqL/AnvUVcad+L2dHOiy2/xR89dYb9QiBzQZuz66z2yHXWkmkZsWV6BWitiARKsw3LGRmTfjeTfpsoUwMty4qzpQa7Flu5JxbEmF3ifL3ClPpNrsh3vvAUB/SlzHchJDvu/wiLy41c6vkmzKzRMT1CLC/f1tLTGkPbgMfETToG5k2TntZ0swV3rz25X2ztwJSGQ5IJPaIDn4ihMLJteisXqcj9qnBj2XEewMxqOUevvJeh8vx1fdJUW8SLEgjngEitcQuTtpnvMDObHdaWr4BUQOBVMVKeIkrd8TeBVKUFEV2ccUvnWgvQmlPlN/DOgaOAoHH0Mq6jisUjBQiH1k0KTZM36bgy7TbuzevmSVpJOXExfl8fr764QnjzDrLmeY3l9VFqVBHIj4MYzOwChQMC0y72NsPH4yR5Fx6kszxqx/rWYZQxLEftRAbAuxTAWFvN9IFrdZmUtsdY7kIWCEznUKFY+JvrSMZa8bhqMaZHSbiGcK3GcCXWWFtaWhd3Jl3Rn2iL/ojLZrXE05ZJCpBIvl9diCXArT3sGlpDOyoCysk210IghGan0AwpheUABK0F4dpOEuU7MI0s6NFCkJJyncbmpuFuZKAcrWzaiwP9lwlVDHGiupMrYqudzJMBSop5f3GW0DezYcuCskoV4Fwwz9mwpelscrJPc63zuee/oZ7Z/DzI960/J/PpWADfUJfUUDu/ijQsJDbIdWHSsfUkZU+X0p+/DdOzwmRONriFprt5C9dD9Rlwdv+lE4SWwuuOUwLmCgN2dqmU/GaVAhHMtENqTcGIQQFryFCWbkST5u9URKuDfPZjv8P2+XHM2X4oznOmJoErPIdLllDiq2I52M2WbS8gpcVyQxeDx3+e4aF+wolJDOA9S8PUlK4yueev7KxQx5wkHK/idJWH2yu+zvhqLS7vCs4EhBaC6uQo+b2LxDfMISq182gsms1pmtquIIWZbhIAEouLy5Krl17CQiCbq2mbWCByuYbKyhl0LpNAZu63WC7tZTJ2BxYeDARCKPJK+1hsftIGbOllzXmEK8EuKrrfjfasIpMFWJ4lfAtteGNNnMZDrfoDXAhUjUIOfwY1P4gx7OLiP+2kqmEGczWfv1C3AvC45ygpLYmPFuKNNOMub8HTehmX1Yu/Mc5zxXtZI88midc2ddNZq5UBaig/9H4eLXIzNPkqVXTS0TdKqrSH/MWNVD75O/TADxy4/diDtsbGRgxDYpkmUikqJgdJ/NLHeXrI5Gp1B7UTPYRG7R1BWa22AzBzfP4y5CHlTCBJl5sLTU3smyGz2OaqIyynYhR6A5nvifQAdgZiy9xkBjgB+BJxylYTjJdkCSyfqHHTV2RgSnAp+MDxGHkTF3n7wllObbuB4VqbZwalONh1jt8xbLdopmy6m7Y9t9EGPL2yBWbOMl1UwuXaZtIutMPLx5GFiXX91LAwyUJBCcu+LFGuL7yAMWZTUBStLK2LxSv3TVDHKC5MGzDk7MKFVlkXco6rdDevcx9P0EIvGogM38FUtImrzbluWViQUJxUmfoAignzsPoa7cYlZmdst4jlK2C1fhOIOHF9iTRn0LqiNQYWASIIlLPomECWYmT/3GsZtyMCare9jlVZi9YSlEYrAzVXzUXXMNWqlEodoCM5w3v053lMfBCF4FsVNyGTj1GiJLjTAEcQFymEEFTpUiRDTvCz5ECqlUoVyIwhQ0Mhgl9ilbtw8TY8maWtUgW4ZeN+vt93EtAkCqMYvnyMNdva5krms+V8N+RpzIJ8ehrsoO5oNITSVxDKjmObMfMR9UF0uBDPWj0svA5YSLf7TTQcoaYAhx5pYeDCLM07Kn7iGv13LqsXLnDjn3+RpT0jfO/A3aTcQfpqvGgpSCpFWEwBG5Datq4pDUoopFI8UldB7ec+z5+98/0oIXApi0orn8drvfZUlJ67HFNTLk9ab0ObY+XV1C7OIhAcmAwRCv0T3UYHps59zyG4FGGqOGjHttp/sIUHALfSyNQypvRlQkKqIgtMB8qcuUThTymWPG9Ypt4IwuxaHXem/ZvUmk1Tw5QvR4m7PeSlkswXBugJ1aOERKA51NeF9q+gyOcDU18kUu2hQ1ylWfQx2XYQa2oZEHYcrLbdcIYTh5cLziaLgyBgyetz7s3muxQ5x9lLPQ44VWxa7rYtddF57r90ghVfOSWRSZJetx0Hm0ryyqZtKCl5srmZ+y6dyCo5aIVMrBLLK0HGiynLSSJSwmKtYpCFnhk0UO6t5uayW4hUfJeFHBoPrSHtzRYCDGlR3vgaSY1Nw4IGZWAkC1nc8AxG0o/QLpQybdyilpCYmek7PWy0lgxNVtMkhuz7B7prytADSwhrJxs352O6o6yUX8qupcKgqNSgpWAVrtpegXhggKXdn0FLZ+1Saa5KbTPESI3yrFIQbs8QjAst2HyxiJ+L7GbZ+mkkEikUwT01mONd/INxF3cfP4X7VZOUdPGVQx6OlF/CQOEtN6k8EmQ5/+MIJELcR7HnE/yjaub9xvdwY2Ih+ap1hMHq+/nCeCWW0rRdHubXdv8lpaUptPonpnbbPDWiyYXv/DbC116CHzBok//3Q/5zl7q6Ot53zz4Ol5o8WCAo+PVP8vblOj57+25e2ZrP43d0MlFps8EvjAvQRmbD16vbuFTkBDlqm+foUNyWeMm4zLWteNAdOY1H2BYsIWz+n0WZZqkHhKBxYTojWo+2uOn8YzzyysuZ+gE8CluHTwhSEo5vjJMo81GcX8D+y6/hMk2EsvBaJh87tJuSD/83MLz2RQwvHPyVzL1v374dKaC3sg5LOhYxIThaeCNxvX7XGvVZVC6+bO80tMLQKeaS3+X3HjX45o2S8G1tpC1IAotl4Wej7uXhlW+Sl3IAYHpnLyTBpWnq5VLG0SdQNNFPC70oZVAwuZ97J27jT8mndiaR0xbNnYaXvsnYut12hBK+JD9AdyKbgWhTbNixH/7ALLV1V4hVSY61bMu6a9DcqF9igzPJoBUuFPfpb7NVX+TnrL/mgSdfye7wDlhMHvHgqpxFSIulyW0MnfgwXQjOuQZ51nOeaRGhcPIGlnTA3jkLAxODsep6lDvLCg8Qz3GBVq55KF+R3JvcQbuqRYgcgCmg2edhl3CRVkTI/FUI5uUS6R0yAkff1Ok2a4axglW2HLmJhrU4QtlBykuxci533c7I8HYn+zVITIwTKe3C8hXi8b8dV95BNu7/ENWt7Uz2dnP6219nsreb6cEox7/ex3h3mONf72N6MMpPyr9fWX39DN11TfzVI++lu6GKgWpvhgdHC0F3UxNKaFAWj5y9jFROuIDWnJs5S2pTKQ+MJ3loPMVnz6wxE6zKEFULDVsmktx8ZY39PWuZ88ABcA4QGQ5W8eT2A7ymyrnlzIPcGRmxj017GYTgam0Le+bizn5J2G5RbPWDA/2XcK1MOkDErt8GbE47EHROTuFSOsMr2DI9StHaSvY6zrVEriVf2HQf/sQaHVMjVEfmibvctM6Mcaj/MrWROQ73ddExPZIBUoFZi/vUkzSrPrSWhKO2CsN0oIQTG7eihcSF4OHrY2yaGUMqhXAyVPNSSZ7adpDu6g22VdG+IYJLkcxxhrIwMJHaxMDkemEbZxrbeWrbQSSCeyeX2b3iIxQLs3O0j7jbgyVs2TFLSBsYAsZKDO/MGKnKejzFbtaKBnEttKKUgVICrSXRWA3eoreTdFVSkVePFAYF4XbQcp0jITJcaI8ZJRBaUNh4kuKmYyA04f4dxC69i/n2x5lv/hazbV+hrPtdRC80MfRMPbXzS6BdjpZq+pYlX+p+B3OeIOU7FvFVrqKRdugOmqLIZiqvvZfaS79MzZnfIDl+E2Pjney8HKOl+2+4a+RDFIWGWQv0Md/8hA3Y0uS8sUYWZlpRypWJIxbJQlZKurOccsJirXSCPHkRiYlNgKMo8l+koiPGXrMHtzIx0LiVyfb5AVa1pttbxJTlg6IOcFSPNAYJayub5QhuUriEwsBiUgc5p1qwlGaH6OXR4idAJQEFIgXCyrRlufQ6JR1HfgBv+/ryY29pY+x1eO7XcVuVFBsznE7sIF5UhuUwjZtITu4+woGzLzEmfcwtHmBn/mvUrE7xSupBVJUNdIRS3D+RYnssIxqDELYaQjg5zeTaIMH8jsxltdY0WhVMyLADCDQX6zZCRpxZMFp/Ox889jW8V+/ipUoXt86Y9BRJLpZmEx2yCgWSiuUYt5x4hsttu9iYn0/evhsgUADvfxqGj0Hj4fXitTPXWPJ76KmsTzfKcYdKrqR2gYdsDElBPZGCWu7RTxDXtrVtyq25XmsT6tx05lk8d99ASoIbi3Z9lT7a+Eb+I3aCRLo4k+y8vxKXMjFECoUrm/4OCGGxWn2K5UgbhRM3ccdEkn/wLaEqfciZNTovWzxfoaFoPYlnSrnoy2unjDkA3MkKEoDfP8u27d9DCM0lmtZlTYIgQR6P8XMoZw9jIZELBXw49iUCF5apEHFi2Gzzsb0uNMmsh8a9SnS5GF0YAQGWVvSYAywOSkpdnRi7bNBuKE3NwjTalxOcB1gopkWY5zwXsbAQWmOlHDeRM5CUE+DaEYct2ptVj3BK4aFqEpEZcgPdpLsJYSTQlh2Ea2lN7ze+iuv2e1DxeIa3y46tK89WJgCtSHkiuFP1SFc1haXVb5Ka2nr7L2E6eNM031rp4Cflh1fy9+7hwvVhUoYLZRgIy8qQ1GYHp807eL1Q27JSUmJpzakrEY7tvh8lDAwNCx7J8XK/DZa0rUV6S2+C3TGLhZSmdEVzpT6BRy0xUFmXTTgQAiUkI4V+8sdDbJtw80wxbwJPVQkXLgUm2gF9tst2rjBg87Vl3GTOFk5rEFwgeQAAIABJREFUNDYgqhk7zaNrgi+31aCEpC9Un+2EHKtaRXSB6ZLgOtdndWR+XTyacMI8tJRMBcooXY2BxolNK4Eu7aiDhFhaKwBYFy+stUa7CyAOdYuzrHjzuG88zlBBXkYBxu53O9wm7vFmsnBLo1FWa3xQECMec3Gmcn+G13KiOMgrzDntMAnFwjQvxjjfoLBUVqVBICmPJon7Skk4lE1ohWepkatdd1AUmCIWraIzdAtz7nm8Z+aZjRsobeGNbKBo4hDRuqPp5QVzzQVIbAZjjRbKjkFWmnh4jGVPgiJHoUDpFJcqTtJ/OUShS/LYcicPn17CHSzBSBZieZZ5draZCXeKXzvwF7iEiVaSoRceZHm0F7CYio+zSWvcQlAQ3cjm6EY6sPB5JkB2g5Vk0n+cmc3HHDdu1iUaLxwiWJTF9wLFXNtXsPr2Ymibl1Bq8EcslgIWC/7nMJJ+LM8yqcW7CS43sKt6isXUnazkXSRRNU5L8XU27O9h1nAxZ7loee0iynoUW5/HQsprXFWNHDYuo7UtPV/ICnpimU+LMe5xfZ14rJcuFbDd24CpXUhHCSmx9aNs/0lM2w++jF16hces+7AwMCyLe9auIs1D9h8dd9hwTTNjVY22CLoQHGM//y3vU9QOTGKoHaA1bg33TuZor6AdaiRBqbeKW6rexUxKr7t2m1UDCK4bE0wUFDBcFlr398WCIoabmnl4PJUhwuwqNniqxoMpNIbWtM9M2JsRLZgtLOKlQzaT+TTwwPlentjZyu66vevA2rmRMMcu9BC7eILrdZuyyQ857oaGuOKyhzfEgUieEw9gYKEwkGW30D75B3zi8V481hDxtS/w+oHN3Fz5JC2yl8/zIaw0T9Qb40yExNIGO/UZ8NTQmXqOFt2buRQawjVHyZu4iWMBidXot5nRG/1MnlnlvcNwrNyFJdPIRiOVpm5yCBAY+bdgeDoYznuK+yquIIQtxN6hryBRKJ1d3E6Kw6T5+OwmGjwZvJ1ny47wweRX2ccXiA3mgYbFmTqKNw5mbiOeMhDKnX7kSASbjA2M6zP4Fpb56MAo3WILldfHKVmNkczPoS5BUKVKmJYReyF0Fq3vpLrZ4tpDUEhGUZQiiAMHtQuZyTbIWuHM+TVcujDTBhB4V4vQVq4yhaQsuoxrcBAZCjkWAafkVumc704WO49J0La/ipFLz6+TmlpeGASaMtdMrOaO/Z+UH3bJ37GDreExhGXaay76DZsRbFZ6oCShcCNtbkgkfu23hfikTf1xtNJZBpxz62Mm2/MNOpJg5QHDCUpXEjx+uBYlbOOHwE7AMbRmy0IUCBFzYnbTYRLC4aK8dzJF0+gw32gPMVpalNkcrni8DiBaH/OqhQ3cDvZfRokIQ674eimrdZ+KwPIyM8WOZdmpY9tYHwBnG9scL0JaWcQGVUrA9Yq6TMyZoRQPnklQNla+zsJdHV2vAzqnJnk1R/XhS5vgHf0JpH5zlnxeKkkouohQmmc6D9shLZjc7n3WtpYrew73phLrEhjuv3SCUGyG+xwpq+rIPKFYmC1mHXnCIEU+l1lGaYVE0mpV0zJfRf98mLbmDWxtrGdp4SWinbMsTy3xyvRXqawvJrHaT4ElHBepRMoAiAjpeGLbEqfRlsCMS0KBMELbiVkCTXVwgIqbR/mjs7/EnctdVK90cWLqU5S43ESK+liq7ua2vEXcaUkrNEU1imT47ZipMU4WVNElEnzQW0BRwsJAYGGQ0J3E/QMsFru54p2iTJiOykF6WGqbTSPHFWu3OYVsPeH8W7PYW8tXzSo27byIEN9O+6NZUG7Ms/8Vn7UBtW+Q+T3PoYWiUffYdRl2tZHiUuoX/poX1C3EGOVZ9Q72cg2FLQivNbxPDnK35cVNG5HU7xEIf45N5zWrZT2URKf5mnmEkj1buWf3PQQC/2f5v39r+bEHbcPUYullO+5Aw/nAFszK4vUHSYfXX0CaVLZHdrDd1cVDL8eZ8pdy71ID26xQZuFfWo1ieosoMWwdM+lY09Lae+nSrmpoU9V8qlJk3JPpMhMoo6ckn8Mm9iQobFWEz55Z5Xypwa5Fi8pYI1MywMTMaa4012cmKLCtK3/W1csXD+/I1HluJMy7/+4UN+mLVBnZScnKmRSFVjQUvMxl3ra+H5ygZRM7A0prTX24HZfZi0Cwv+sCZTvGqJc9ThPWg9R0XEh6ktZILrAbUpLL+n3UMWTzszl9nQiM8OnAFfoaOx1yRoGWmi80evjMpTh/e2aVp6vdPFnrdlw7EundTuPdt/Lk5Ekmil6mOrYRr2sp04QWennX6ld43PceB5+kyTS1M6k7/S8kJoLPbXqUO+JnaYv2MX22iLWlIMbSIn6/TagZrOkmvPIsy9M2p5QtRC3paG5kbM+n2SAtdisXQ70PEnG44tJ9iQYvbqpUCZJhLIdbaYEg+3DjAjqcfV8aEqVJNHOB20jPENfyLmTu0RsPIpeG7CQXp+RbAUpW++HESYpuv41ISUl28XOa5PfPESieITmxC52y3fyN28oINQVQ5lakY6mRUlJY1kRuufT9MZo6y39ibft3LI8eeRtPv/T7nIquooSPtaL7MoChZWSUvgbbivXCjk5+ZjBOkSXZuZDEHF7k+Z0mSSHWAT2hbEvYcImLX9zj4rNnVtkasdjkkxwLFmfUDoTWHIxFSC5O4U0leLWuAGthimRsFbfajoMLODCXIpiEgUKDP29vJZU2D6evhz0vWuh1v6dX7ITHS6lVwbRezsSKrSvOxidcWLjOVYpSlMpynt7enFV60cqed7V9j7Y1JDc2TTOXF2C0ooaqyDxVsUVAEIqF13HWTRYH16k+mEIzXJDvWAuzc7cWguMt2yifGyflqSQlhSMfCN817kdhxxre2xVmOuB9U4xcaClMKLZox7E51/LiJm6t4dI13J1sYVpGCKniDLnuWMpiYWiIa/MXKdz1FfJFEm0Jxk+mcB2cwi01WsF8TwnlwV+gtHgWrf7BcUGCVorYqB+NpvbgjJOgJJHJQpR7CSHBrUzuqz5D71Qla8Fxds7/JrPmRvS+SxwRlh0+5MTEaWWwOtdKmbeasoJqytQwN+LGSNgRfgpQUnC9rYKVCj9KQlD1oLRhEzODncWa9ThnHnF62nI87qAEc+4ixoqq2CTOZajbEBotTFu3NLqR1bJehyoExzUMWCBwkSipZja+j9rlo3xa7eGibkELjUIitR1/l1KbHbZMaQM98yMQFmh1nfngX3FtsZGfbf5FAoEfXmLWj31MWyi+hrSc+ARLcW1NZLT8siPEiUnQCukImrfra0SjIZqWE+y9eJTtE8Pr6l0w/ESs9ZNMQmtmkunBKJiRUS4aw/TICcJpJlTIuimF4GhHJ10B6fxsg77A6DzvH0yyLWJRrgJYCybLSyPUTQ1nz3fK9FKW+gHg1OACSVOxm6sYKJu9/9IJGhamspcXkgvSAXrr3hKNwPbtS23ixuLI2JXM+xGMxSiYWckcfpijGI40k9CK9skhqucm19Vri8VLUhh8i0foozWntRpX6XV0Xo57FZjPs8/dFlVUxXUmFscSgonabXgLa+iqfZkZ/zCT/n4WBzvXdUvL2DTbnZ14euI/oI85GWQ5CQ5OPMmnKv8rJb/wcQp/4x5Ct5/LALZ01wTLR0jHkmlgWkaYqTkKaYUBaVJU/yLG2jLemdFM9QbS4VYKcHdyB2WpfJZMg80uiUeDy6nQQGCQfVlFzuIAMCXCWMrKrBmJvDni/vUUHN6ETfY7sGGDDdgyxT7JXzTH1m0v0Nh4gZb9j5FXNkDKHWNk/jTf/dI/Mj867Lgq7B1neV0RuRKTSmsmetdrqv6k/PBLkDnyY09RFM/LjFmhFPOlNfYBziA9XSrQ2qZxMCOj3PHaq2zpcywNzovRuGJlLGWmgLNOGEa5S3LvsoVbg3S41Roml6mOzHFi41ZOb2jjf+9sZk7GuOfSMQ4NDLNzdI6T5W6+XevmDzvybMCWO5cA42VVNE1GslazdFF2IH+RcnO0ZSvHW7bbluFca33meG27+tO/a9t6VawLHd5Ke4NYG57jUF8XbdOjtE0Nc/+lE7TOjGFoy1YbQHN8yy7ONLbz9PaDTKcz+TWEoovsHOsjFFu0xeWdzVX6WpNeK5shm+5zx3U8VtWEMm3LodAWEo0ijTTA7SmgfTIPIydGrjoyn32WQiIyc0WAPMPHVPwsvXKSJbGG0hZaKyZLLhHu+DL9pae5FnzVEV4H4dKUta8hpE1fISQUBZpQS0lWpjTRscJskw0INC5T3LiMMLStniAslGcpxxqv2VLzGg/s+g7DjT6Gd60w2iJxGQpDaqS0WJreytyVBxh95VfJCzdxsEDS4TW4xbcBl0NVotH0YPKMSjC20oVKjw+hWRrax8q1t1Ewu/3NAz4N3rSkZOgutJI2TZsWBMIuVmY3oZULnYm1EwjtwrfYBkD+YhtCu+3EBiWJ9e1DRirRKKK1rzK2+0+p9Nfxj65v0kkv51Ur/z31fkwMTC1QrJDtDBu8rQWGGNv9p4xvWObB3U+wMfEMHPuMHXr1Qyg/9pa2knOvcPOrg8xWVFIxN8OoivGVI+/PGokUtE+N0TASI9zgIb9qiBvFUZp1L1fZQCM1DKhexOIQhPZnMkMjFiwpqPfYljUFjCWh3ZME8pgRUZ71nM+Ify+rdqB8vfkf6AvV8IuVgs+eWWVLxGLRtBCpVaAEIQRzIsK83yQZ91M9PUZoZozpUH3m/PqVJXvwODFt+5ta8Lgk9XqKOznL89zENKXM+52F3Ll2Ao/9PQcA2sUWdr+ZFzmsj9JSOAAYaAEDt93Js60V7OdFWkUvG1Uv9y8+y1ljH01zk5SsxniuIyemLidoV2NwhW1cp4Pf0p+khV6EMjDDmzCSq5iBLJHuXdILrKGBWBrPOa7spEcwGehHrdjga8Y/wmNWHu/rb6esZpz5uTpmplvw1DuEs0IitEkN47xff44z7KdIRDnFIduFqmA27OfcoQ9QVvdVxIDKGqicrpmfq8/pJ0GCJKNynvXObrt4IvN48hvozq/jQ6qCSm1bpq4Z4ywYq/jRhBnlesrnuM9tAs10f2WTEARpzrYqlQPCnC5NFrpwL+T0jbIJigebmtY95zRoCxRPZzLQkCZ5oS7GjCCkFDO9mvwXn8ewbHufskwGzx9DsD3zmhiG+Antx4+gBH1BKpca2dG3k8dvElhoXErTPp7gZHt+Zlz2B9z0BwSy2QV7P4BlOP4mbYMeoTX5pp2RbkkbmAWSDgGHA0b2zSU5UeFBCfj6phpaps03WYiqI/OcaKrHTMdcvSHswi6OixIoWF7GUEU2/Ui6CNAIvr+heR3ROEAwHGW+JLDufcuCOcWGhWk+OmAghOSJ2jIsLZFomuYmObFxa8YFuWl2jBZ9nd9U3+O6bGdeV/CyYcv7KWXHsoVi4fVAEVu26m0Xj9PrJKfVxFZ4cdPmN7TD/hRak3S5+N62ZlvrWCsORE5xKrAfy45pIRV4nXJrmvu6xnIE6+3Nj1yJUVnVhH/RQ6tVSdDyc1ZPMV0VZFrYm+w+Y4o7fCUs7/pL6qVJrTIY7N+N1hIcCiBfWTS7F1WC6OwwecEeIkt+fN43QAAnjCR3fsvFxwicjbu2w2KVwhX1oYOOwovQBGq7GFpopfjKNG3eGWThYYSUtg6o1iBMFLARg1YM1hbuY3rDZZSw49I2JS+w4t6Gb34rq+WXwbHglXc/yrzvIn53GcVTh/BGmlmK5WFuexIhFMEdPTSdamX06K9QUN5HSUpT6XdTEG4nL9KMBvIizVSf+TgDeU9T6+rEaP8qKp2hKkAri1iJwh35Xe6TL3FBt/JVdSu9yToeLBliZfEG7sHeSNuxnZrV0msZ653QKabO/CaB/hUwPPC+J9fHkf8Ayo8EtAkh3gF8EmgH9mqtz/4zx90F/Bm2R/vvtNb/3w+6Lfk33035k58iuLAAAoKBMrzXYyTa7cVUGgKKy3mhqh4tFS4auYmjSAk7qsfxX24gODCOf+O+dJvRWlPsgtE1zYnoNGUywYKyswbL3LYOZ58xZQM2Z5Gd9xenb3rdJKelJKU0Z0sNtkYsgi6DlE7ZFh2HnNfyKKhvZXY1xkxl7bp6ZmbnWf3jD5JfugaGh13ve5Iv//x+ip8spG5hiuqiSX532wezbgSnNDDMfk7yir6NZVGYdWk6sWhlet4GVssGArja2MLH7n4E05C8yI38lvokWgueLrsbSxhMBMpIB+iuL4JC4qzgtrMstaYntZfdMzUUTh6gMlqHK2JzjqlKHyKWZLSkiK6AZFtU0VeUSweimS520VbShmfGQ9JKogBf6ThVVfMYUlFTe53FxXqqI6UY2n7tDBSFLPEl8QFMJyni/fwtMe1ndqKY0+M7ePffneKx93QALpRK5RgNBKur6wHviDWOnm2iItRvm/e1QbgvB9BMXeCG2l1UuQIIBN1ygkFjJqcO6DWm2GRVs5RcYDYxzjkjn4cLWnG/0UUEVOoA1fnlTK7OZXvVXF13jJKC+bIywiXF6YbnPgKikVBGWgttEI1UgjCzbiBfAcZq1s28Eo1nyEcB2g5U/Vi5Rv+jzGFvW9uE58oiBSjuvLBKd62LfVeu0TpXRZ45TW9tIS7LtMlrHQH4jBchB1xo4FrAsMM4NJgC/qgjL3OdT3fk5YSI2JnrflelDfKEbUmvjsxzsW7jm7SMXUqjhHISfbJxX4YQ7J9J0rRygu5QHVOBMiIFRaRjO0m3NWeslq8tIlyKOX+Oe98BgSCpn1mgJKZ4rcRE61Lb9ac184UBlMgBmIEgu/WrNMoe2kQP1/UmjulbMHU28N9pALzhnQvFwjaw0nC+vmW9lU0rAjpCVNi8j5fqNmbiZbUWpCKlvGd6ji+0VaKE5rma/WwLfYqWrhih0aylWiBQviKmovPMGpLSeAnXwmdJFOQ5z88+TmlNpPQybmFb2oVQuNwprk3upr3mtG2ElIrYWBtr834KS2OUd9pKOv7aFVYH7K1lrq0g15CZ+U72u5RuTFOhlUIrg9jIDSCgtPlV5yjFhq3fpOR7Bu65Zmg44OTaWfhSf48o8PO8dQc3UI4LQUG0hdbzO0kFj+FKKvo2gZKnWFbnKO9+N8qzzNpsK9dm6rGsdpqKKjEcS2VxgcGC0Bmuyf3lPdSPvkJPuIpo4Sp5i+/EG21yhpK9NkcmQSR3oXcu2WAr7ZVXwlFU6AAMEmprOl+LLrGJwrIDBBcvYZDEtn1avMQ1bomMsqB1xmAzWemmaloQWE7axpIfMGj7UblHrwAPA6/+cwcIIQzgL4G7gQ7gUSFExz93/L+15N/501T+lw842XQC/aVvUeRZSzcCpaG7wIclbVeeicE1NiMAl3eZwqk+ylYTb15KNShzgtTqyyhzhNTqy9S6kra5W7xhIhDQlHYbOg9+4/QohrLsdHGt2LVoZQJkyzwejo+f4ppedALY7QE51bAlE6eVqWdsiNUpYe+6LHsQ7WoooXnDBgQwEKhzYjTWs5mH1BTf415WRAHOFiTzd43EL2yKCVVoB5x+b5+thmDHgrl5bvlhXpl5AEvYhLtaGk78TO6QsyfcZbxIFFKbuLDYGbEIdr8XV3Qj5+2lAtfEKq6BJazGQr5VCh/Zk8+lgOSWmdS6dreNJSmYL+fX9/y601+K1oIwUipnrbJ1Qt9YhtmAiSvzjJe0n/v1E8xP2iBni9WDOvU8heqDRCJV6eEB2FaqzJuvFfHwEEvRIJe77mBkeCdDxz5CfCFn6GpFiZmlyBjOALbsIYa2J26/p4wNhVvocvn4U+I5UWrrT7iheKtthbNnR7yL6++xbHmN2cqKbAxTbtGso//oO/UzrC5uWNevhlZIw46XNFwu6rccXDeEy+v8b+rT/+TlRz6HrV64gPdX/xeHL1xnskTy/I58hio9fPPmrfSVnaJlsYt7L5+kc6wfkXbp5a7GzgbBn7QDhLS0sz3TKgumgD/syLMBm8DJTsWZA+Bs0MfPdq3x4f4Ev31uHMsXYjhYna0fGzM9en6Mhy6+RmNsApEJTNLcGY+xK7VK5VKYTbNjxHwF685dn1RhU34A1ITn1h+XY+V6tb2Dp4NRLpf5nAQrR20AJ44txwUZjYYyVBkbdT/v6H2WPUPdTiLAolO3zoJc52vmUzgxwTnuUokiKkogDdSw6U2EsjCU4o75fLrzwg7ZsT3X9MgOZw4h80r7lMe+pACFwvSuUVO4h4OFN9vJSA5WlQiKF7dmXH5gsFpyD09MHUBpV6aL/NV9+LuLwLM+tCMQUusMoloL53/HQJ/bxcBMuJroyO8y9sqv2S7Qo79KfGEjseEDoHPCWKTGbAcrMsjSa39K1/QFvrJyhtdaqvl51cZJ/I5Spz3P+WIuakfjJNwulLRBqRYp8J5D9EMifJ1FSxChnNHEsnMPgvzFVoRygZK2ek7kPjxlJhy8QtGOQSb3/DHxwAAAa4F+Fjc8jcy7xtzqKHmLLQidPhem5jZSOHkQhSKJ4GlKnNdEYCrNq33zhIyzlLo/QZHry5S6P8G0cYVfieyH6fzMmNVAuNhtW9oaD7/pvf1/LT8SS5vWuhtYl6XzFmUv0K+1HnSO/SrwAHDtB92e+NRqdnSmUlQvzTGXcW6t34K4sOjQNjWFf/xGtDeGEhJr5hw0HkJjE9uOJSyKiXI49A6ksNOup+PzmWu2WNVcNyYzL9XmqRFc0XkGqxrY6opT3TvAzPQwk4EgO+ZgW6Qu86YlrBSjBVO0JFuRXpnJItoxu8qr7TkB9VqzWlBIfpUGYawfRNt/Gs5/kQPRi3i0RUKJbIaWUlxd2U2qyO3IOllIcxblqgBhrJOaCq4kSeIjXLTeyjKXrKZztg8ZyklyeJOrJGt3b2CQ3Zyhg6tsqn0bj3UlOadMrjmgDUCVemy6AMCUgvOlLn52KIkgzouVLvZMpigfS1Hz9hKemem2FQIE9Ccklra5iFCC2EIpk8FgduftEIK6MDGdZ9ymr/GdnrcxEN3ATtHLF91/QN6wyfGR/YwVbCcQmCUjrh4Jgda4o3O4owvItRWkWYS1vIfl4WLcST8wvK5/5o1xUjTgQlNvVTBhhHPWVI3HtMGwdHitGrwVuKSw8zgyrtFsqS2v4oHtj/D9b7wOkV7E2sq667m0oHh+AUMpx2KSfh5kjAlLsXKWYpWUhLeg3RHnEdlX2XLHvezY3LFOxgoGM4/xx03G6j/CHLb6+hlUMkFJfIikdRZL3o6WEhOD0fo9bJ59HeEE028en+dyfSUIYdODCJHxjsc8GbMN0uGTSQvLa63XSWWliXGRAiU0Ey7N/xhYRYhint+QXbhyTTeJ/Ap+dkLSaiX4zE4whUIok9ue7aKqsAGJZCoQzMliT4MggQR2DI2xlmfRE6qnp7oRqRQ7xvtZdHuI+QoJF5Vmxql2OM2qI7lZn7Y7dNOs7YKsitouyCVtb1QCxdMkkyFunfdx0Jvi+lQ/SX+OZdyZszTgTpTgMvOJF0wAEIra7tKhunLKSscZFo0MipZsfwG3HnuSeF4+9dOjSFlKyBXE0K0onLlGXSMaabCvYO+6aVaVXJMTmbk9pEoo8Ej8uph7k7voM2z36EarilAiwMqZX+NKSRdq+1381VGIpxTHJvdxU80J29omLFa3FGBO3EZB1Zcz03DhzC6ijS+iZQqBpDr4G7z2LUVR3QkbpBVEaA91ZbrCvbiRyfNBIEh8oTnzezK8kaqy32A6/IdorZDCRUPREnIruMrP8YmiW7nIVg7mBbnIPB1OIoJNSgPf0A/QWFVHaEszMv7nWFYCQytql49TUvAK06lNXF87goVmbGWQeu8WJBJvpAn/aw/hrbTID7fjizay0FQGMoKQAq0s1spsy+L47k/blrUN0PTXPsI9i9SxC1HRhSc1h7VxgKjoJ1J9gq+f/WWuRhvs5T9nzTql2vkvrm+Tz3VM4eKU+U7O61a+MXE3j4S+mXHxllTdCXf84g/cygb/sWPaaoCxnO/jwL63OlAI8SHgQwD19fVvdci/qmy51kPX1q1oaduFhTOZdQ4nOJI6zdagm8KZ91EweTN/UjvAlkof7//ow6xeGCL67WOMu4oJVxxko88mNpSOXoh7NYbOqwAklQQyL59GE53pojB2ll1CsPm+n+K0IQnFwlSFF6mNdmL5srFxA2sprm/oo2bxXu5M7mBGhqlQxVydeIbmkVL6N2Q384VHjpBff/jNPG11e2Hne9l99h/4ysU/4cvlv8yTNXkooTG0xa7p60wWVmJJFxpFfuxZVkvfkwWuXKWh5G1UHfIweuZ5SpZj6/rQl4wTioV5sOsEMxWFvFbViZV+AUSOTiGAgFt4mSO8YPdNLdz3C7sIDi4QGovwvWu2JUouJjEcqOKWgl0RO8bq4QmThydMYq0llH6sjlBTADGTXUxHUgZ/NdbOVinx9hfhmk1R7Zp33KP2/RxSR6mZGuKqayfb3VO8OHAL5yJ2P+6X3XiEidCKRj3C0ZV9XO66g0BghuTkTlS0Cv/yPETOZTbia7qR8tU62/olQMiCdf1TWOvl4/NrbLUkl0UpD23dxeDlc/YfpWRkNY7ps+VuTAFXDMXG8kLMaZt8ObtLBQxB/s5KOhuKCJVXc+34OS4+dwWtbMBruFw033s/VQ0bEH/9NwxWVzPctCFHXsjuK0+ijILVOm57xx4mpyc41TNuC8QbBtt276W6rm6djJXL/RMZq/9L+aHOYfl792AatiVn3+UTfP22W0khMBQ0zDicaGgEBp1DFt01NmO+2zI5eOk1hmsPMFjpzigJbJhNcvOVBMvFBv+0Ix9LaAxH+cyS9mL06FCSrzd6SCltE8vOPM7xigAl/YVUX8+H4E3ZjZm2z98btqhUAX5qUbDxzBqv+GMsjX2e0PgWgq3buDu5A/9CgguNAkvY8UIP9kwzJ6F2WlCzqHlpexztxM9pKbjviXaFAAAReklEQVRh+3Z+3mfxFxcH+LxzLbDnlzRFxv3rKDMW0ZARXbcPhkJfJ3fecRd1dXWZnyd799H1+mmsAj+RmTn6pm0rmEYxVNbNQxveR23dIcbnBojOhmmaX6L6ai8FRbP4axMMlrdk2rP70jE6e85Ru6GZ0i0dXDh5nJAf7rt4goVKH53xSWaGN1EdbKCpo5LZiQlSA+PsKriRBhVkWkYJqRIqVYBwSwAxtkylGaDSDDhtsvnvjFgLj8VqCHhKSJq2ceDU5F4OV59GWiYoycpcG/HFFkBQWPMaqSEPG5cepnCuk7VgHzU33cfoUB2J+UFm55pQaHqremmpuIohFEpL2xX6prELNz7aSkfnLdREOwmHT1MyMkhA/D10WJhacoPVzTXRxt1bqjgzvEhXyiIFaGwOymdUMXdu+hB37t9INLqHK0Ov8LUXZjFixzkoL1Pluc7bSn+HieQWXKqHYzMdlHkbWEiMcHPlIHr4t5FIBBalsQXGtUQ4AvK+hRZWSrtzBOYhryHOZvMY+aaFNa4YrM0HoZFSo7RFXlkvMtqAy7DnyJRpR5+f1628O/lb7Jfd+Ntv4dr1YgxT8fLKLXzY30wgfpSS6nsItL7nX/QO/1vKDw20CSG+D28Zi/3bWusn/iVVvMVvbw7oAbTWnwM+B7B79+63POb/VAIPPkDk29+GVArhdvOen7oLz7KLkfFlfGuKtTxBw6xJ7byJYWxj7sCtPDcxxQVWuVpUwaGHbiV/Rz35O3ZgFKRYeuECUgoWlN92Z2k7t7gu8WVcqSpWvR8CDCpFMRf9V3hdnKV5YA2XMHC53Wzbu4/NN93K8PAw3qk1zrwkOGmaBN2CuZTmZO0pLjRPsWWbovuUj1Lh429dJg8/9CgfNGL8dyFIAW4p+ektG22C3bdC/NsfhYuPc2DleXatTPBI6ac5V2pw45mPszvSxc/Gt3Hylj8hGHDzh2Ov4kqNU+XfxLvLVrm7/r3U1DwKO6F++6O8s6ub7wIpx/3QPjvO7t272R5yU/fcezg728LJkl20NN/JdGyS7xdEmdBVpEQe76ooYMvcMZQykNJNSck+GgMl7Goo4dxImFeuz5KyNHnLKf5HTYjFPMGB4kK2brCIHR1DxZIU7AlRu68qc2v3N9/Pd/q/Q0qlcEs3n7r797DWGjjpOYs59Fkaei/wwOoyqSLBofAJFlOtRDf9DL930N49vvPia5nhdlZsRhhPgEpRZyzyvrtu4PKEpP+lFYxEEfmAdNWz5cFm+q6eZiywERHciTgdybTH8HZgJa8CFtJwcfO9d7PJG+LU4AIPNJWxq6GEsb2dDA8P09jYyKwq5NT5KeqWLMb8Bp/Yad/br/7NabYpgyWh+Wh7NRV+L/k7K/E22BQdoaYAoaYjtO2v4urRlwDYfNORDNja2dpK83eeoP/ll5kNlpHyelnYcQBXspq6UAs772wg1BRgMzW0jVVl2pO7qKWv88DHdjDRG6amteQ/ZTzbf/Q5LH/HDkZ//wOcfvbzxHwDvPO5v2Oi8T00zFnUhL1ED/ppKamntXQr8athtnz+7+kL+dkx2MfGX3mEr4enGNX1WFrjkYJPdjbi1TaoOezJ41wizi5vHgMvjjJX4WbzgsmOkkKOrPg4VrGKy9vLw7/yQTorOpns7UZ++zl8L7zKtcZqmqamMZu3UdarCUQ1+Aw0sC1qcZHvMhy4jpxe4VToBko9BYSWC/nb+6u5ng8HigvxuSt45cvXne7ysmncy4VGjSU1HkNyT2MN1YEC/qC1nZpLY3x1cpbS5RU2XV2mfKkIaQXYHnkJ93wBr5qLxIpCrHjjvPOud1KULKK7u5v29nZ27979pn7N1dgdGxtj6LHHMC0TQxq8+85HOLLNBi6dZNVXLpw4xvNf/RLNV65xVxNM7r6JqtdfZnv3WQyPh8Mf+DAA1159Ecb6aVyY4YapTai6vWz74A3sashueiZ7u5k51UOVrx6/1cryWIylzUG23dNMYiRGYjCKzHehVk3G15J84/gQ55RJr1vzPxxQlDIV46vNFNd/DmvkGWZfN0hGWkBAZOhGogOH0KlxrkW+Rs2h+2m/8xG8DUVY7qymsEtK2jpupKS+A3PtHD1DDaSipQipkUJQv6WM/ICHtv3ZeNZAYKfNT2a8Dse+CFYSabjZsOMuvrxjP7saStgU8nNqcIHuNc354yOZtv9OU1mmjoOdO8krCTN0YS/i8kfASlKVN0DVwx+Fyg9T8drTjM2u0FlRTWzDu/j77wzxm5whT14ib22Ccv+nGFu8zMYRKEpJrLIGEC7Q9ua7PrBMvlvCXZ9memqcP+9e4p6GJ2yWCMPNz9z0EO0tNex32vSt8+N87cwYltKc161cYROPH76BLx+2GRn2N5WxveFu4Bf+Ja/u/1MRWv+rMc4P7uJCvAL82lsF8QohbgA+qf//9u40No7yjuP490+c2LmIE86QgzhqVBSClBgnHIWKAnWAIuhBBYIK6PGmFSptX7QgXvUSoq2qqlJVVAFVD+4QWkSDOFMVgQjYSZoDk8QkhDhxnBRilzpKQsi/L+ZZs7F37V02uzNP/PtIo52ZHa9/8+zOf5+Zndl1Xxqm7wRw97uHe8yWlhZvayt4TvCw9q9Zw/7X32DCksVMWJR83cXurX0Db0rAUW9QD616l2c2dHPlgunceN7QPePdW/t467VuGvo/ZPa0Bk6a/R71B16BORdz8MhZHNzaR/3cKXSM30pbTxvz9p9Kw64DzDr7nIGCkf9Yq5/bTn/vQSad8xE7Z2+g5bQWFp66kPbt+wZeNLkNv62vn1d7/8eFjZNomTJxSLaj5F1ZOtCxKzBv7Z61tPW0DfzfQtr6+lnxzk7O6NvL0qbZH7/RF3i8vr7VyR7Z1POYMqV5yHS+QutYimKZd23uYMfG9TR272F8+1omt36eqddfP+R/PrG6CwO+3DyTc0/YMmQdcs8xcFThysm//5RZk+nZtokjh7uYf9HiIc9xqT5pWwxW6PUeMzNrd/eh78DV/7//JOUa9vimx3nh3Re4fPblXDy2tWhHutBzXkqtyK+DI3XOB/+P3N9O/+gIY3f3M37ByXQ29dDW08bivSdSv/YAvY2fYs4lZw957I0v7+TNV3YxsbGe5tYz6TqprrSsr69nxrj1nL74XJi1pKTaNZwdO3YU3XnJl6sruRo+eLrQMsfC4JpQrEbknouGiWP5YMt2Gns7mf25c4Zs/8M93+W8Fgq+t4yQvZLH2bZmJReMeZMZC1sLLjfwHnNoMlN6eo56vPbt+1j79sucNa2TBU2XFPxi3Pbt+1i+ugsHvtI8s6L6O1g59SvLnbY6YDNwGbATeAO40T2cUFbEJ+20iUi8MtppUw0TkRGVU79SuXrUzL5kZl3ABcA/zOzZMP8MM1sB4O6HgduAZ4EO4LGRip2ISC2oholIGtK6evRJ4MkC83cBV+VNrwBW1DCaiMiIVMNEJA2j/mesRERERGKgTpuIiIhIBNRpExEREYlAqlePVoOZ7QW2l7DoycB/RlwqPcpXGeWrTGz5znT3U9IKcyyVUcMg+89TMbHmhnizK3dtlZO75Pp13HXaSmVmbWl8RUCplK8yylcZ5YtDrO0Qa26IN7ty11a1cuvjUREREZEIqNMmIiIiEoHR3Gn7Q9oBRqB8lVG+yihfHGJth1hzQ7zZlbu2qpJ71J7TJiIiIhKT0XykTURERCQa6rSJiIiIRGDUddrM7Aoz22RmnWZ2R0oZZpnZSjPrMLONZnZ7mD/NzJ43sy3hdmqYb2b225B5nZk11yjnGDNbY2ZPh+kmM1sV8j1qZuPC/Pow3Rnun1ODbI1mtszM3grteEGW2s/Mvh+e2w1m9rCZNaTdfmb2gJntMbMNefPKbjMzuyUsv8XMbqlyvl+G53idmT1pZo15990Z8m0ys6V581PfxmshxvUsVvtiMbgmxqBQrUw7UykK1dC0MxVTTm2tmLuPmgEYA7wNzAXGAf8G5qeQYzrQHMYnA5uB+cAvgDvC/DuAe8L4VcAzgAHnA6tqlPMHwEPA02H6MeCGMH4v8O0w/h3g3jB+A/BoDbL9CfhWGB8HNGal/YAZwDZgfF673Zp2+wGfBZqBDXnzymozYBqwNdxODeNTq5ivFagL4/fk5Zsftt96oCls12Oyso1Xe4h1PYvVvrRzlZH/qJoYw1CoVqadqYTMBWto2rmGyVtyba10GG1H2pYAne6+1d0PAY8A19Y6hLt3u/vqMP4B0EHyIr2WZAMj3H4xjF8L/NkTrwGNZja9mhnNbCbwBeC+MG3ApcCyIvlyuZcBl4Xlq5XtRJKN5H4Adz/k7r1kqP2AOmC8mdUBE4BuUm4/d/8X8P6g2eW22VLgeXd/3933Ac8DV1Qrn7s/5+6Hw+RrwMy8fI+4+0F33wZ0kmzfmdjGayDK9Rym9mXe4JoYg2FqZQwG19BdKecpqszaWpHR1mmbAezIm+4i5YIRPgpbBKwCTnP3bkiKG3BqWCyN3L8BfggcCdMnAb15b6D5GQbyhfv7wvLVMhfYC/wxfFRxn5lNJCPt5+47gV8B75J01vqAdrLTfvnKbbM0t6FvkBz9Y5gcmdvGqyT69RxU+2IwuCbGoFitzLRCNdTdn0s3VdmK1daKjLZOW6GjF6l954mZTQKeAL7n7v8dbtEC86qW28yuBva4e3uJGWrdrnUkh6J/7+6LgH6Sw8/F1Lr9ppLsZTUBZwATgSuHyZCp12VQLFMqWc3sLuAw8GBuVpEcWWzLaoh6PcuofZlQpCbGoNxamQmFaqiZfS3dVNkw2jptXcCsvOmZpHTI1czGkhStB919eZjdk/vYLtzuCfNrnfszwDVm9g7Jxy6XkuxlNoZD1YMzDOQL909h6KHiY6kL6HL33B76MpLClJX2uxzY5u573f1DYDlwIdlpv3zltlnNt6FwscPVwE0eThDJUr6URLueRWpf1g2piWb213QjlaRYrcy6YjU0JsVqa0VGW6ftDWBeuIpvHMlJ30/VOkQ4X+l+oMPdf51311NA7mq8W4C/582/OVzRdz7JoeLuauVz9zvdfaa7zyFpo5fc/SZgJXBdkXy53NeF5au21+/uu4EdZvbpMOsy4E0y0n4kh/TPN7MJ4bnO5ctE+w1Sbps9C7Sa2dSwN9wa5lWFmV0B/Ai4xt33D8p9gyVX3jYB84DXycg2XgNRrucwtS/TitTEzB/5GaZWZl2hGtqRcqZyFautlTkWVzPENJBcFbeZ5Mqru1LKcBHJRxnrgLVhuIrkPKYXgS3hdlpY3oDfhczrgZYaZr2Ej68enUvyxtgJPA7Uh/kNYboz3D+3BrkWAm2hDf9GciVjZtoP+DHwFrAB+AvJVY6pth/wMMn5IR+S7IF/85O0Gcm5ZZ1h+HqV83WSnLuV207uzVv+rpBvE3Bl3vzUt/FaDDGuZ7Hal3auMtdhoCbGMBSqlWlnKjH3kBqadqZhspZcWysd9DNWIiIiIhEYbR+PioiIiERJnTYRERGRCKjTJiIiIhIBddpEREREIqBOm4iIiEgE1GkTERERiYA6bSIiIiIRUKdNomdmi81snZk1mNlEM9toZgvSziUiMhIz+6mZ3Z43/XMz+26amSS79OW6clwws5+R/LLAeJLf2rs75UgiIiMysznAcndvNrMTSL5Bf4m7v5dqMMmkupEXEYnCT0h+j/EAoL1UEYmCu79jZu+Z2SLgNGCNOmxSjDptcryYBkwCxpIccetPN46ISMnuA24FTgceSDeKZJk+HpXjgpk9BTwCNAHT3f22lCOJiJTEzMYB60l2Oue5+0cpR5KM0pE2iZ6Z3QwcdveHzGwM8KqZXeruL6WdTURkJO5+yMxWAr3qsMlwdKRNREQkReEChNXAV919S9p5JLv0lR8iIiIpMbP5QCfwojpsMhIdaRMRERGJgI60iYiIiERAnTYRERGRCKjTJiIiIhIBddpEREREIqBOm4iIiEgE/g9uEs9hOq5prQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "yz_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = yz_axes.plot(y, z, '.')\n",
-    "_ = yz_axes.set_xlabel('y')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4ZHd55/s5S+2b9l1qqdV7u7vd7fbSNsbGBgw2MfGExWGAsN65hExIhjs39uWSEAaex0mYSTKXEMJAwjJ4bNYYYoYAwWDjvd1u976ote9SSbVXnf3+cVTVpb2kltTV3efzPHpUKp36nd85depb73l/7yJYloWDg4ODw+VHvNwTcHBwcHCwcQTZwcHBoUxwBNnBwcGhTHAE2cHBwaFMcATZwcHBoUxwBNnBwcGhTHAE2cHBwaFMcATZwcHBoUxwBNnBwcGhTJBXuL2T1ufg4OCwcoRSNnIsZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzLBEWQHBweHMsERZAcHB4cywRFkBwcHhzJBvtwTcLh8WJaFqqqYpokkSQAIgjDvJ/+8g4PD+uII8jWIaZoYhoGu64UfWFx0x8fHqa6uxuVyzRNrURQXFPFiIXfE3MGhNBxBvkawLAvLspiensbn880STkmSlhTNiYkJKioqcLlcmKY5a8z87+VEVxTFwm9HzB0cFsYR5Kscy7IwTRNd1zFNk5MnT3LgwAFcLlfJYwiCUBDdlQpkXrTzjw3DmPV8KWKe36+qqkiShMfjWVDg5wq5I+YOVxqOIF+l5MVP1/VZYiqK4iyRFEVxltW7EJcibMWvvVQxHxsbQ5IkGhoaCs+VKubFFnkpYr6a+To4XCqOIF9lLCTEeQGCi9Zu8fbLMfc1G8VcMRdFEVEUCwuQSzH3GPN3CquxzJcT87nbzp27g0OpOIJ8lWBZFqlUapZPuFiI88y1kFOpFIqi4HK5kGUZl8tVEJs8l0uQF6LUeVyKZV68n8XE/PTp02zdunVR148j5g6rwRHkK5ziiIlz587R3NxMZWXlotsLgoBhGESjUXp6egDwer2FaAtN0zAMY5Y4KIqCpmn4fL6CaC/0W5blkqzXK4HlxNEwDCRJWvB4i780TNOcJebF2yw29lJRLMVflk544tWHI8hXIHmrTdO0gv93MYt47usUReG1114jGAyyfft2fD4fuq4v+lrDMDhz5gw1NTV4PJ6CaOu6TjabnfV3fj55i1qSpCXFe+5zy82/nFjKUl8rv3mpYj4xMUEgEMDv9y8ZluiIefnjCPIVxNyICZi9CLXYAp1pmgwPD9Pf34+u6+zatYuamhqAQgzyYkiShCzLeL1eIpHIiudaLNb536qqkk6nZz2fP6b8sRSLeV60U6kUsizj8XjmifnlEJP12OdqxDyRSMyKPAEK10Hx+5sX9rnjFi/6LibojphvDI4gXwEsFjEx90Mw19er6zqDg4MMDQ1RV1fHwYMHOXv2LB6PZ0X7X40POe/LXo0LI3+8c8U8nU6jaRqxWGze/4rFZq4Fnn+8kHW+WjEvF5862HNZyO+/0jHy5MV87sLoUmMWX5OpVIpwODzPd76Q4K9mrlczjiCXMZZloes6hmHw2muv0dnZSSgUWnT7vIWsqip9fX2Mj4/T3NzMzTffjCzbb7UgCLOs6FI+DBu9qFcsqsVomgZAc3Pzoq/Nn7Niyzv/OJPJzLPWDcOYJ+aLiXfx73IT5EsVtbUU81OnTnHDDTeUPL+lrPOFxDz/BXQlubhKxRHkMiQvKsUpzaVcfLquMzAwQFdXF21tbRw6dGje61YrruUkQEshCEJBUFdK3h00V7Tz1nnx36lUiiNHjhReK4risguexUI/16K9FNZCkC+FuWKevzsqhYUs8+LnFzq273//+4yOjvKpT33qUqZdljiCXEbkBSGfzVaKfxggmUzS09PD1NQUDQ0NHDhwYMkV/NW4Hy4XGdXg52cmGI4p+K0sr9sUWLd9iaKI2+3G7XYvu+0rr7zC9ddfXxCe/HtXLOT5x7lcbp7A599juOinX0rQ54YlFnO5BflSWI1lrigKXq93vaZ0WXEE+TKzWMTE3ItzIUGenp6mu7sby7Lo6OggGAzi9XqXvLDnxiGXwuWKQzZMi2++OEhvNEvYK3F6KsN4Wuc/tbUgiZdXgOaK4ErEfC759YGFFkAXi2TJI0lSYZvFwhI3MpJlI66TbDaLz+db9/1cDhxBvkwUR0ycPHmSnTt3LijEefKiaFkWExMT9PT04PF42Lp1K+FwGLAt5VLSoJfbZrF9bzRTaZXeqQySAKdGU+QUjamszlRapTa0soXJcia/+LnSxdb84ueJEydoampCkqSSIlnylBqOuJJIFtM01130c7kc1dXV67qPy4UjyBvMQhET8Xh82YtYEAQmJiY4e/Ys4XCYPXv24Pf7Z21TivW7WpfF5RBkURRIZDWG4ypeWcTCYiSpc2IkyRsusyCXg5sgvwgpimLh7qhUFotk0TRtQRfLcpEsxaJtGAbJZLKwzVqHJWaz2XnX/tWCI8gbRHHExEI1JhbDMAwGBwcZHh6msrKSAwcOLGpJlSKcV5IgV/ldVPjc9ESzyKJATrOoC0j8+nyU1wYTIAjc3lnFDW2lx0dfjazmy2GxSJZS97eYiyWXyxXCLReLZFlJstBCpWEdl4XDqilObYbSIyY0TaO/v5+RkRGamppobm6moqJiydtaURQLoWFLbXOlCLIgCLx+axXRtIphWqiaymRaJ9kf5y07axEEgR8fH8PvFtnZsHg44HrOrxzYaGt9qUiWbDZLJpNh586dC7527uLnUpEseX95sZh/+tOfRlEULly4wMsvv0xlZSUf/ehHCQaDS875pz/9KZ/4xCcwDIOPfOQjPPTQQ7P+rygK73//+3nllVeorq7m8ccfp729fXUn6BJwBHkdyPt6Y7EYpmkSCASW9A8Xk8vl6O3tJRqNFkLXJEmiu7u7JP9wKRZyucchF3Ooo5IXemK81BfDMkAzwWPBQCzHtrogAbfE2bH0ZRHkcqE4w/Fys9yXw6Uufn7lK1/hc5/7HHfeeSfNzc1MT08vG2JnGAYf//jH+fnPf05LSws33ngj999/P7t27Sps87WvfY3Kykq6urp47LHH+JM/+RMef/zxFc/xUnEEeQ2Zm9o8OTmJIAhLJnPkSSaT9Pb2kkqlaG9vZ/v27fNW8ZcTxVJrG18pFjJAxOfi7h01jMZz+ESdRM4gZYgMzwiyapgEPVf2Zfxc9zQ/Pj6GZpi8fks1911Xt6IoknyiRDmwnot6kiTR1tYGwE033cT+/ftLet1LL73Eli1b2Lx5MwAPPvggTzzxxCxBfuKJJ/jMZz4DwDve8Q7+4A/+4LKsE1zZV3KZsFhqsyzLy7oQYrEY2WyW06dPs3nzZqqrqxe8CEqJjrjafMh5Kn0uqoNuKmSRCq/O6SmTnG4yFMsR8cncuKm8fchpRSee0wm4JV7uizOd0dhaF2Bfc4hTI0m++eIgVQEXPpfEkyfH8LlF3rSjtuTxy2GBMc9GRVmsxIc8NDREa2tr4e+WlhZefPHFRbeRZZlIJEI0Gi3UfNkoHEG+BJarMbGYxWpZVqH8pSzL+Hw+9u/fv2R2WSnWb6nbXGmZetvqArRV+Tg7OIWFSUe1n9s7q2mr8tFR7SNQxhbysxem+Mqz/ZiWxWhcoSrgIuSRefIEvPtAAz1TWXK6iSgIuGWRCp+LIwMJR5CXYKVRFgtdu3PPVynbbATleyWXMaWmNs8VSMuyGB0dpbe3l1AoxM6dOwkGgxw+fLgkd8Ry1vZqfMilsN4XZkY1UHSTCt/C4VFuWeSDt7Tym5MGaUXj4PZNNEbKP1NrPKnwD7/pJ+iRyekGadXAsCw6qv1ohsnfPd2HRxaZSKuMxHPsaQqhGRYR78o/lo4gL05LSwsDAwOFvwcHB2lqalpwm5aWFnRdJx6PU1VVtWZzLhVHkFdAPmIin6q8e/fuZRcw8q8ZGhpiYGCA6upq9u/fPytmdK18v6W6NVYjyCt9Tan84OgI3zkyAsCmKh8Pv3kLFf75dwpuWWRnnQ9dd9EY8ZaVVbgY40kVQQCPLJLVDGRJRDdBMywyqsl0Vud1nZWoIxbJnM6rAwm2NwTYUR9gKq1SFVj5wtflphwF+cYbb+T8+fP09PTQ3NzMY489xqOPPjprm/vvv59vfOMbHDp0iO9973vcddddjoVcjiyU2iyKIqqqLvuGmabJ9PQ0zz//PI2Njdx4440Lri5vpDtCFMV5NZCXO4718iEfG0rw2OERKv0ykijQG83yd0/38sFDrQTcEhHfbGEWBIGJlMaTz/QRTau0VHp5+56GBQW8HKgJujEt0AyTgCdf88JCNUzGUioVPhmfS2JfS5iptEp3NMN0WuPrLwwhCEP84Z3t7G8tb//4XDZCkFVVXVFWoyzLfPGLX+See+7BMAw+9KEPsXv3bv70T/+UgwcPcv/99/PhD3+Y973vfWzZsoWqqioee+yxdTyCJeZ6WfZ6BbBUMXhJkmYVh5mLoij09vYyNjaGx+MphK4tRikW6FqJdrG4WpbF+Pg40Wi0EFdaHJiff5zfdq3pn85iYSFL9gfYJwv89NQE5ycyWJbFO/c38rY99YXtc7rJj88kCARDVPldjMYVvnNkmI/c1oa4QdZMTjN4rnuaVwd1/M1JdjctHkHTEPbwezc3840XhxAE2FTlpa3SXoza3RDkyGCCnGbYFrRqoOkWtUE3smRb1F/8dS+fuW8bkihQH/Jc9vodpbARgryaqJJ7772Xe++9d9Zzn/3sZwuPvV4v3/3ud9dkfpeCI8hzKKUY/GLCl06n6e3tJR6P097eTl1dHUNDQ8vGSa6ly6KUbQzDYGxsjO7ubkKhEFVVVYXuHplMZl7FMkVRME2T0dHRQiePucK9UPbVQllWxdQE3IU5C4JAdzSLJArUBNzohsnjR0bYXh/EtCx+fHyMvokEvVNZfB4DzTCp8LnYVO0npRiEV+F3XSmqbvLIzy5wcjhJOqNzePo8H7mtjbu3L74S/8YdtexvjRDP6tSF3LNC9A73xfj6i4PEshphn4twTietGii6hmaYjCUU/vRfzuGSBDbX+PnDOzvwu8u7Z+FGCPLVjCPIM+T7zcViMSKRyJIZdXMFNJFI0N3djaIodHR0sGvXLgRBKKnYz0LjrXab5QTZsizi8TjDw8PU19dz/fXX4/F4UFV1yQ/R+Pg4mUyGTZs2FYS7uLxkXsiLRTyfMptnbn89l8tFkyyxr87NqyMZJFFEM0z2NoRgxmoWgTNjKV7pjxPxyXhEGEnqyGkTBDs5pGcqw/9xW9uGCPLJkSTP90yTUQ0M3SJl5vjH5wa4a9vCoYp5qgNuqhfwB1/fGuG+lMJT56Y4PZokmlbpn8oWrH3NNJFFqA266RpP86NjYzx4sGneOOXEevv2i42kq5FrXpCLIybyKZkHDx5c8jV5ccyHrgmCwObNm+d1ey5FREvd7lISQ4qjO9xuNw0NDYXU1lI+QMVWbL4y2UoL2RQLebFwv+e6ALc1S6RzGj88ozIdT6FlLAzLIqFAd0+OaMxCCrpIZhREIKuZ+N0CsgC6YfHoS/380V2bl7XIL5XzE2kSWY2gV0azBBDybhdYzV6feG2Un5+Z5Nx4krRiohkmhgWiAC5JIOCW6Z3KUR/2EvDI9E9n1/qQ1hzTNFdVH2MlXCnNElbDNSvIC9WYkGV5WWHM+10zmQxDQ0Ns37590Uy8tRTk1SSGWJbFyMgIvb29VFZWsn//flKpFNFodNk5LTXuSllOyDs67N97d2b5y59fIKUYYFn8+4P17KzzM/byEBVhF5O5GJphC6BuWLgkAZ9o0TMS5cjRJJjzi74v5hcvdrWUKuQVPruymqZbZHULVTWQBHjy+Bhv21O/7BhdE2l+dHyMrGryus5K/vX0BP3TGSZTOrJoi7oI+F0idSHPTA0Pu5ZDWjVory7/gjrr7bK4msUYrjFBXq4Y/FKLdcWdmysqKvD5fOzdu3fJ/a1EkNciLTq/Td7f29vbS1VVFTfccENhVTqdTpdtYkhrpY+/emAnY0mVgFuiJujGMC12N6c4NZqkZ1rHACwgZ4BmWlQFPOxsr+Omg+2zxiou+r5Q947F+uqJorioX7zBY9EcdjGe0lAMcMu2H/zRw8O8OphgV2OI2zurqA/PjwAYmM7yhV90I4kCsijwj8/20zOVxbJAFsG07OOSBAHFMKkJukkpOm5ZZCKlsqM+wNuuq583brmx3oK80giLK41rQpCXipgoZiFLMN+nbmhoiPr6eg4ePIjb7ea5555bdr/LRWPkWSuXhWVZZLNZXnjhBaqrq2cJcZ6FjrGUJpQbZZl4XRKbqi5agpIocNvmShTd5JWeKXwyqCboJhgWqLrBO/c3zhtntUXf5wp5/rGiKPhNjXdsd/Plw1lkwcItgMdS6JtUmIynuTA0yc9e6+ND+yPUh72zyko+fmSS/qk0lX7bn+xxiYAFwsz5NS1MQBQsgm4Xfo/EBw+18IZtNfZCZ9C9YZEkl8J6C3I2m71q2zfBVS7I+YiJaDSKoijU1dUt25UjT75z89jYGC0tLdxyyy0r9o1tlMsib7339vai6zq33nrrotW0FhL2UnzI68lYQmEwlqPS76K9ysvpsTSnR1ME3BJeWeSp81GSOZ24YqCZ4HdJGKaJZlp4ZgrXrxXLCXlTm8E/X3iN1HgKUZbpTdo2u9cj01gTJpbR6Mt56GwKFoT8xyfG+dmpBJMZk+G4iiyCV7JdFK1BOJ2F/Dtruy1MNofgzR1e3IKKLMkYuo6wxoXe14ONEOSrtRYyXAOCnP9QJBIJ6uuXv+XLtzGPxWK0tbVx6623rvoCK9WyXG0csmmaDA0N0d/fT21tLQcOHOD48eNLljYslxZOhmlxdizFsaEEPzo+jiQKmJbFroYg02mVgEcmp5mcm0izrylE0CsTcImkVANTNbAsEEX7vCRzBg3hNZ3eorzUO40gCPhlSKsmhmkhCLar4fhImrYqHz5fgNpauxaFZpg8/0yM+sogk7kkomVhImAIIjvrg6RVHYQ0wsxint8l4pLg6HCGO1qn8YoXu3oUd+3Iu1ZkWSaXyxXqoizmbtkoId8IQb5au4XAVS7I+dA1WZaXdR3k06Gz2SzV1dWFHndLjV3KrX4prDSkzTRNBgcHGRgYoK6ujptuugmXy1XwH5c6TqmstSDrpsXf/rKHVwdiXIjaYV67GoJ4XSI/PzPJrR0VVAfcqIbJi73TvDKQQBJnzje2v9UlCrhkAUU3UfXl3UJrRUYz8cgim8Ii3UkR98wcZFkkoxqousmBtovfDpphYVn2e+aTRTTTwrQs2qu81IY8BBSRwekcqmnilQR0S0BHJOD30dHRPi9bMU8+akVVVZLJJMFgcFYvvbndPIqFfKkFzrn/W6mQOxbypXFVC3KepQRvbufmZDJZkiWdH3O5pI9S57fcF0Z+m/7+fgYGBqivry8IcZ4rpfzmK/0xjgzEqQq4kaZyiAL0TmXZ3RhEwE7AAFu4dRMyqm4v5Gn28xGviMcl45FFO3ttg6y/eFajOWJ39TZMC1kSsCxoCPuRBJAE+MitrbRUXBQMn0tkb3OIn5wcJ63a77EA9E1laa3w0zWZmfGFW2i6hSRAhc/Fze0VS8ZWi6KIx+MpxHfnLfLlKO7YUewnn9sUda6QF3cJWSpqRdf1dbXGc7mc40O+0pm7uLZU5+ZSLF+4KJBrJchLVXLL99WLx+NUV1fPE+I8pXwQSvVrzx13LQU5ntVBAFkU8LrstGFVN8mqdsZdQjEYS+RIqyYVfhlFMwELlyQi6Sa6BZ0RD5IkktEMaoPrV4RnIqnwjy8M8Fz3NGnFoC5kZxGOJi0s0cLvEqkJuECA+zrquaVjdiy6IAjcs7OW//XyEGBb94Jgx1K/2DtFWjXxuUREl0hWM3G7RP7D69pKCqODlacRr7Zjx1whX6y7dSwW4+TJk4W5Fwv5cmGI+YatS5HJZBwL+UplbjhbcThYJBJZsHPzSgR5rSqgLRZBYRgGAwMDDA4O0tjYSDAYpLOz85L2VQ4W8qYqHwICmmGxtdbPiZEUkgiKYXFdU5DxpMbZ8Qwd1V72t4Q5OZICYEIzcEt2gZ7hhEJzhY83ba9ZN0HOp0pfmEwzmdIQBYveyQyqYeGXobnCgyAIvGlHDVvrg+xpCi143Tz+yjB+j0y1SySe1cmqBhaQVE0Mw0I3DURBQBBAFkVqgm7kEutWbFTVu1KF/NixY2zfvr2wKDq3h16xZZ7NZudZ6os1Q3W5XPzmN7/hzJkzjI6O8txzz1FdXU1ra2vJPuWpqSne/e5309vbS3t7O9/5znfmJXMdPXqUj33sYyQSCSRJ4lOf+hTvfve7V3HGVsdVLcjFpFIpnn/+eWpraxcMB8uTF+/lvqklSVpTQS4eqzjUrrm5mVtuuQVJkhgbG7vkfZWDIG+vD/KhQy1866Uh4lmNCq9MbchNTdCFbljsbgxiAUOxHHdsrWYipXJiOEnIJeL2iuRMEZcksrcpxO8ebFo3QRqO55jKaIiCiCwKuGWJ8ZyCIEBKg5G4iiwKRHwu9jUvvqo4lbFdHcPxHIZpFbLxfC6RlGlgWOB1CQiCSFXAxf98aYjbNleWbCGXU+SFYRjz6r5cqkWe/+31ekkkEkxOTvLoo48SjUb5/d//fW6//faSxnzkkUe4++67eeihh3jkkUd45JFH+Iu/+ItZ2/j9fr75zW+ydetWhoeHueGGG7jnnnuoqKhY0fxXy1UtyJZl0dXVxcjICJZlcejQoSW7csDKQtVKiTEuhXzkg67r9Pf3Mzw8XBDitU5DLQdBBrhrew0NYQ//4X8dJ5HV6Z/OYQGtFR4aI15EQcAji2iGxV/+9k4+8b1TTCUyJFWDioAbSRSYSKkcHUxyaHPlsvtbDV6XiGFaeFx2BEhG0TAtYCaZwyMLpBSDqczSjQN2N4Y43BejvcpH71SGnGYScEkYMwt+AJkZ10VW0Ylllx6vmHIT5LXq77eQkL/rXe/CNE127NjBww8/vOIxn3jiCX71q18B8Hu/93vceeed8wR527ZthcdNTU3U1dUxMTGxYYJ8VZdlEgSBcDjMzTffjNvtXlaMYW2TOfKUktAxNTXFCy+8gCiKHDp0iI6OjnWpCbBaV8t6JIZ866VBElkdlyTgkkUEAQZiCvGshmlZKLpJfdiDxyXREHaTM0E1YDqj4XNJdNb6+U33FIa5Pkkr9SEPr99ShYAdppdULp43xYTJlIZLEtlSu/Qt8/tuamZPcxhZEtnVEOLgpgiqYddF9rtn2n0JEHCLKDOXXqkiW04dp6G8w97GxsZobLSTiBobGxkfH19y+5deeglVVS/ZTbgSrmoLGaC+vr6kcLA8pQpWqS6LpaIxNE2jv7+foaGhkuomrwWrtZDXg7Ri2CEHApgzIW0WMBTPkdFMDrRFaKnwcn48hSxAjV8iqxpU+Fy2iEuiHVJmWUirKu+zNIIg8KFbW9nbHOZvnrpAKmcwnFAwTVugJVHA75bYUR9cdIzjQwme75km7JG5a1sVim7ZXy6aWSgWFPHa4+kmdFR7qQq4C+MvRzl1nIb1t9iz2eySrZXe+MY3Mjo6Ou/5z3/+8yvaz8jICO973/v4xje+saHn96oXZFiZoKy1hbyQIGuaVsgCbG1tZc+ePSXVTV4LysVlAfD2vfU83TWFol8c2yXBf7yjnUTO4N/OTnJuLE0ip9ETzeAVwS0JxHIqomj7mK9vDeOS1u8DIwoCN7VXsKkqQN9UhlBOx7AgldOJ+CQ6qr2L1ig+0h/j757uwy0J9E1nSeUMdjUEMQWI+GT2B0KEvXZTU8Oy2FkfxOcWaQh7Sy5GX24uC1jfzM7lOk7/4he/WPR/9fX1jIyM0NjYyMjICHV1dQtul0gkuO+++/jc5z7HLbfccslzXgnl89W6Tqz04lhrH3LxeKqqcv78eV566SXcbjeHDh2ira2tpCpza8VqU6fXQ5Dv3lHLLe0VeSMZtyTQEPLys9OT/Pz0BGGvTEPYg25aTKU1RAFq/RJeScIjS7x+SxVvXKI4/FrytuvqAAHdmpmraIeuDcUU/vqXPaSV2W2xLMvi//t1H+fH05weSxPP6MiigGJYNIU9qIZJ0OsiqRjUBN34XXZMdVXAzXtvai55XuUoyOvJpcQh5/vmAXzjG9/g7W9/+7xtVFXlgQce4P3vfz/vfOc7L2muq+GasJBXwnpYyIqi0NfXx8TEBG1tbRw6dGjWbdBahtAtx0Kp07quL1mCcj2LC22q9iMIAlnNoDuaIZbVePLkBM0VHm6L2LemEa+LkFemwudCUTU2N4TprPFzW+fGdQW+rbOKoEfiB0dHebkvRk7TaanwsrU2wLnxNN8/Osr7b24pbP/kiXHOj6cBsEyLtGbMcqq4JZH/83Wb0AzbB9wY8aAZFkGPtKIiQteaIGcyGQKBwKpe+9BDD/Gud72Lr33ta7S1tRVaNh0+fJgvf/nLfPWrX+U73/kOTz/9NNFolK9//esAfP3rX+f6669fq0NYEkeQ57CWPuR80Pxrr71GR0fHPCEu3udaCt5SH9Li59PpNF1dXSSTyVmiO7cEpSiKZLNZxsfH52VrXaqbZX9LmBMjCQamcnZ6tAiNYTcD0zmiKZXqoBuPLBJwy9QFZTTVzqy4oe3Sm392T2bomkgT8ckcbKuY5yY4PZriNxemcIkCd++oYV9LhH0tEX54dITvvnCBbQ12HeyIT+bCRGbWa5+5MEV1wMVkWivcAeQME79bZDShsq0uQEuld5b4LpIlvSTXmiAv57JYiurqav7t3/5t3vMHDx7kq1/9KgDvfe97ee9733tJc7wUrilBLuXiXYmFvNh2+San+eahu3btKmQCLsRqCv4sNdZyx2maJifIRDvoAAAgAElEQVROnCCVStHZ2UkoFJr1RTG3TVM2ay8+5fvtFf8UlzOdWxdhsZ9ia/xNO2sZSSj8j2f7EQWBtkofTREPqmExEMtyfCSJbpgc6qhEyWW4EFdpq/XzfE+MpohdD2I1PNMV5W+f6rXD2AS4oTXCw/d0FgTy2FCCv/5lD9JMreLne2N8+q1baKnwURdyY1gXr6dUzmBzy+yV/5BHxuMSaav0EsvqiALsagzRWROgrcrHvbvrFrSEddPi1+ejnB9PUx/2cM/O2iX76F1rPewuRZCvBK56Qc5/8EutPbES3/Dc7RRFoaenh6mpKdrb29m6dSunTp1ak+LzeZYT26WsbUVR6O7uJpPJsHXrVnbv3g3YlvzcMTweTyF5JhQKMTo6Snt7+5LzytdEKM7IKi52U9xrLz9HSZLY75e5rkYiqVqEJJ3+SRXDBMkSqQvIBNwSL/RMMZFS2Vwh017tRzNMfnR8jA/f2lbSeZs7179/ph+/R7LLd1oWRwbiHB9OFhI8/vfJcTyyUCjuM55U+U3XFA8ebObGTRVsq5QYS9qLi9UB97yazL97sIlT/5Iiqxl4XSKNkQD/5W3bqSnKKnz2whSPHh4mpxkc6qjk/Te38NgrwzzdNYXfJXFkIM7pkRT/+U2bF124vNYsZKe40FVC3vJdTpBLDWeTJKlQfyJf/nB6epr29na2b99eUheSPCvtLLJchbmFojp6enqYmJigo6ODqampQgGlvDAu5+YopWhR3gIulXy9ak3T+M81af7+2SGOjaRRdJMav8hL/UlEwY49lgR7BXo6ZfCrE/3sqXMRUwVOn83hdbsKceYLtWeai25aZDWDarerMHdBgGRWI5GzF+fssppC8WTpmczwrZcGqfDKvLldpn37FjTDornCi0eeLZidtQG+8O92crgvhiwKHNpcRaX/4rk5O5biH57tJ+KVCXpkfnkuiiDCS70xGsMeREHAsmT6prP0TWXZUruw37ScBHkj1kGy2eyqfchXAtecIC/HcoV+irdTFKVQO7mjo4MdO3bM+3CsVUdpuCi2S92iFounruv09fUxOjo6azGxt7d31valCO56LOrl3RyyLLO12cebd5ucHu8h7HUxklTR8qfEAp2Z4u0uGdnnRwz4aa+SaKirKljei7lU8u9JsVhvCsKF6QwVXhnFsI/tV2cn+NIzfQgItFV5SSsGpmVhmjCd1Tg5mmI4oZDTTHyGxl8d9MwT4mKaIl7u39uw4P/OjqUwDZO+qSzxrB1B8uTx8VkWtCAIdmz2Eqe+nAR5I2KiHQv5KqFUV4QkSeRyuSW3yWazDA4Okkgk2Llz55K1k1da63gpShV3TdMYHh5mcHCw0O3kUhbf1jrK4sJEmuPDSbwukVs3VxH2yiRzOj85OY7XLRHyygzEFayZPnP5Gshht0gsZyK7TAJeN79zoInKEgsL5V0qeaH+w9dX8JUXRjgzkSPkFthSIfFyb5QKt9138UR/it2VAqYl4pZFYpZJpQvcloXXJTCQMDhyYZS9LZGSK5UV45UlzoynUXW7wL0gCEiizs6GIKMJhYBbIqsbNEd8s1paLXRc5SLIG+HPzuVyToH6K5li18GltlPKZDL09PSQSCSora3F7/fT0LCwBVTKeHPneClzA/sDkcvlOHLkCE1NTWtWC2MtP/BHB+L8za96ZjLs4BdnJvmze7eRVHR8bhG3JJLTDFwiKDDTjQMs025qWuuS+PgdmzjUUbmihJC5LpVIJMIj77hY9/ovf36B6kyKsM8+X1JWo7o+yB+/oZ2covLHPzyL1233wRtPqkRzFr8+O4pPmQJTR1FVLMtCEsV5lcoSmsATZ9OMpg2aI17ed7CBUyNxu3g9gHXxDmRTlY/bt1RxbjxNQ9jDvbvrcC9hhV9rguxYyFcJpbosFtouk8nQ3d1NKpVi8+bN7Nq1i3g8zvDw8LLjrWWM8WKWqmVZjIyM0NPTg2ma7N27l0jk0sPCltvvanj8yAh+l4QogG5YDExl+aufX0AUBUbiCh01PkbjCn63REoxsSwwsJNGgm6Rar/E9c12Sc54VqMx7GFrXaAkUTJMi5+cHOe1oQR1IQ/v2t9IxYxftyni4ehggtDMcSq6RXOFD1mWCcoyb9hex1PnosQyOmMpHcGE3rSLZ6YC1Ic8PN8/jSgKvGVXLXdtrSpY4+mcwleeGmQkoZJSdPqncnSPJ/BI+f55kM8ZT2ZVjMQkHbVBtrW5cLkMklMTKG73op08yinKYiPmYhjGiivHXUk4gjyHYgFNp9N0d3eTTqfp7Oxk9+7ds6I21roI0UrHsiyL8fFxLly4QGVlJQcPHuTMmTMbkoK9WtKKwYmRJImsbvtGBYjndDqq/eR0i3NjaXbUB1ENk6awl7GUgmlapFWToFcmljP4s5+cpzbotqMvNIPXbanits3LJ4n84/MDPHliHLckoBoWr/TH+evf2YXfLfHb+xo4NZpiYDqHZVm0V/t4+96LFvS7bmjCI4t89bl+WiJeLC3DUCzH8aEENUE3N7VXYAE/OjZGTcDN/tYIHo+HpCEzmbOYyFrIoozsgr6UwW2bK2Bkwm5uOpP911zhxfRH+LNnYvhdAu+9vhKvqPLDk8PEchpNAZG7WyV8kln4gsyXik2n00uGGq7UpbIayunL4UrlmhHklSR85HI5jh07RjabZfPmzdTU1KxqsW4l25VCPsrCsiyi0ShdXV2EQiEOHDhQSCfdyKy/1ZBRdeIZHUGw/cOWBYmcRtArI0sC40mVB29o5Inj44S9Eof744wlVLzyjGiFJIams2yq9FIbtIvwvNgT46ZNFUu6MPQZ67jCJxcSQCaTKidHkty4qYKgR+bP79tG92QGQRDoqPbNGk8WBd64o4Zfd00hY3J0wCIcEDBMk/GUylPnooQ8MlUBF+fH0+xvte9Q/G6JqZnkEI8sYloWInBqODVrsc4CGit8fOfVCUTBtub/y1Nj7G4MURkMsrVaYjypciTj5RNv6CjctQwNDaFpGjU1NbMWM1Op1LwFzjwrjRkvlfUW5Py1fzVz1QvySsLPUqkU58+fJxaLsW/fPqqrqxe9FV6JT7qUqI1SEASBWCzGqVOn8Hq97N27d9GOJ2vNWvkpM5qJJAroRSUz06rJUCzHaDyHalr83dN9NIQ9TKQMdtUHGUtMYQKbqz1UyQZjikD+5aJgi61qWLiW0Q5rxhItemaWKLokke1LVG7TDZMKn8xLvTEM0y4PKksiGc1EBNyyyPnxNLcWtXGK+FzsaQ7xbNc0+V01hD10RzPMvXqevTBNld+FLNmdpxOKznA8x6Zq22daF3LTP50jq5n43VIhQsbtdhMKhZY++CLmJv7k3SvZbJZkMjkvZhzmi7gsy7jnuFLyi+Hr7dcuF5/5enDVC3KepQQ5lUrR1dWFqqq0tNj1CGpqli5as5EWsm6Y9IxE6RuZJJvNsnPnzkU/gKXur/hDs561KvKMxHP85OQ4yZyObtniaZqgW7ZQXhhPIQi2KB4bTvDaIDMtjQRUw8QtSZwdz9JZKRLy+tAMk/GkwmtDCXxumW+8MMDtW6rZ07TweZFFgXt21vCvpyfxyLbLoibgZnfj4gJczJnRJI/87AI5zUQ3DLIGdITceGSBwekshmWh6iY+t8TcM/mx2zcxkVTtnnmSQMgr0xPNzNuHYYFuWQimXSvZNOxq+KZlIQp2d2uXJMwKtVtNqNncxJ9SmBulUvyTyWTQdZ10Ok02m+Xw4cOF1+SbsC73U6pL5WoWY7jGBTmZTHLhwgU0TaOzs5OqqipUVWVoaGjZ8TbKhzw4Mc3//d3X6IoZmBbc0Crwt9cvvsq8ks7TG3VxjycV/uzJc2RUg6DbrmGsFp06C8jkS3AWFeHxuQSymoXfLeKRRVTD5Pykzn97VweH+2L8+MQYmmHhlgQ03eSXZyep8rtorli4GthHX7eJhoiXowMJ6kJufvdgEwHP8h+BiaTCwz86y1RGwy0JyJKITxbIzTRmtbAt1WROp8Inz0t1bqnw8Zn7tvFSbwzLsripvZKPP36cC5PZefuKZ/SCoAuCvbg4NJ2zaz9jF7svrrmxVp3Pl6OUxJ+pqSmmpqbYsmVL4bl84s/cn7kulXw/vfx1OVewe3t76e7uxjRNXn31Vaqrq6mtrV1RxEUpPfXy5ENaH3jgAb74xS+WfqIukWtGkItdB4lEggsXLqDrOlu2bJn1pqxXgfrlmCuSmUyGrq4u/scr05yPWwQ8bnRd4/Bgkr/6RRefvnfHkuOUsq+N4uW+GCnFoCFsW2TDCYXpjE7EK5FWjYsJIDPkZ5bR7EeyYeJ1yXRUeRmJZcmqBknFoDF8MUPu3HiGLXV+oml1UUGWRYEH9jXwwL6lQxXn8rMzk2Q1k6BbwiWJZBQdt2jRHPEwklAwTIusaiAKMJnWODWaRNXNWeFq9SEPBzdFsCzb9aBo87/MPbKIpptIIvhcEgG3fX72Noc5uClCQ9hDQ3j2sZVTgfqFfMiSJCFJ0opKZs7tcK1pGpZl0dPTQzab5Ytf/CLRaJTbb7+dT37ykyWPW0pPvTyf/vSnueOOO0oee6246gW52IecTqc5cuQIpmnS2dm54LdjqdEYpRYEWqlrQ9M0Lly4QDKZpLOzk6ip4pLS9gKTKeKyLI72xy9pf2tdXW45rHyw7QzVARdZzUQ3rXliXEy+g4iu26nOSUUk6BGZymicHk0xmbJrSbRW+jAti5xmElzG4h1LKDzbPY1hmhzaXElLxfIWViqnU+2XGU+qiKJAVtNJq3aBomxRGWTLArcM58bS9EQzBX+0opt87bl+zo2lSKsGdSE3KdWkwicRy1681mRRQMX2RYdnamjkdB1ZEri+ZeEwxqsxDnmhfnp33XUXe/bs4fjx43zta19b1bil9NQDeOWVVxgbG+Mtb3lLwf2yUVz1ggwQj8fp7u5GVVX27du3ZMPCUi/utUrmKObs2bPEYrFCrLMgCDRFRjk/nrJv57AwLagMLH7bWKqFvJGRGAc3VfDD10aZTKm4JAFREPG7RRLZpb/48kdhWKDqJtG0zqaQwMnhBFnNIOgRGUmoZNUUFT4X+5pDtFcvLrDD8Rx/8s9nSM0Uk//ha2N87re2s7lm6cyv61vDvDIQp0EUGJrOkcjZ527ul0n+z9GEQv9UtiDIz3RFeW0wQddkhmTObpRqmBaVPhcRn+3qMGdCTlySgDTzHhoWyJK4ZEfrq1GQF+NSk0JK6alnmiaf/OQn+da3vrVgqc65/PCHP+TP//zPZz137NgxnnzySd761reueI5XvSCrqkp3dzctLS0kk8kN6x6bZzlB1jSN3t5eEokEDQ0N89KwP/nGrZwYSTKVUjEMk0q/i0+8YfGmi2uZqr1WNIQ9fOa+bfzo2Bhp1eDWzZV84RcXiGX0JV8nAEGPBJZduH13gw8lp3B+MsuhjkqODSdoDAukVYM/uLOdY0NJ/vh7p2iKePnwra2z6kIA/Pj4GBnVoHbm+emMxnePDPMnb96ywN5tJlMqkymVzTV+huM5JlMqPpeIqpuYC5xCn9vuZpLTL74HI/EcPdEMqZyOV5bsqBBst4vfLeKS7KiRoFfmg4daOTqY4MXeGG5J4I/e0FEIoVuIa0mQSym9eak99b70pS9x77330traWtL2DzzwAA888EDh76985St8+9vf5p577inp9XO56gXZ7Xazf/9+4vE48fjit/rrxWK+Zl3X6e/vZ3h4mLa2Nqqqqqirq5v34Wqs8PK9j97EU2cnGB0fZ39LmD2L3L5CefqQwXYrfPyO9sLf//2pHmRJwDKsBYUNbAvZXjSD2pAb0xKoDYicjSmYlsX1zWEsy04a+d+nJnimawq3JHJ2PMXx4SRfec+eWQtsacWgOFRZlgQy6uJW+mRK5bM/OU9C0REAWYQqvwtVN1F1s+BSyeOWBFoqfHhlkeqiu5iGsIeMaiKK9nnXTQu3KOJ3S7RU+miOePmjuzqoDXmYSCocaI3wqXu2EPHJy4ptOXWdXm9BzmQyy9axuNSees8//zzPPPMMX/rSl0ilUqiqSjAY5JFHHll2fufOneOzn/0szz333KrPw1UvyCuJQ14P5kZjmKbJwMAAAwMDtLS0FDpNT01NLWrZBr0yv7Wvkd5eZdnylmtZXW49eV1nFYOxHNoi74kk5MPAbEt5Mq0hCxaqz0QzXPzqfBTLssjpJje0RHiqa4oqvwtBEPAhMZ25mPSR5/YtVTzbPU1GNewIBs3k9VurF53jU+eipBSdxpnFyOmMRlrV2FThIZHVwLLdFtKMHm6rCxD2SGyq9nOgyKq9c1sNf/9MP31TGZSZgkk5C3K6RUulxXhK5UvP9LG5xs8/PT+IJApIAvzFAzsL7oq0onN2PE08o9E/nSWjmbRX+WgVyyc7zjTNebVTNMPk6a4peqMZGsJe7tpejW+5gPFFuJR+enCxp95DDz20aE+9b3/724XHX//61zl8+HBJYqxpGu95z3v4whe+QFvbymt057nqBTnP5RRk0zQxTZPh4WH6+vpoaGiYV/inFJFMqhZPHB1n8tkoTREv77+ljYbI7At0pRZyPB7n/PnzaJo2K8woX184/5Nf+S7u9pHM6RwfTqCbFjvqg9SV2L1D1e0Ei/qQm4mUZjcIFS7Oyy2JKEW3/C5JQNEMJlKQVmBPi4/6sJcfHx8npxlEU5Mkcjpel93qKX9scw3HGzdV8Ik3tPPdIyOYFvz7g83ctW1xQc5pxqwQM1kU2FYXIKNobKkQ6U+BbFjUhTzUBl3UhDy880AT+5rDhegPy7IYiSu8dVctPzg6ymjSrmInChDySgxMK9zcHuH8eJpfno3ilu1mp4pu8v88cYYff+xG0orBP/ymj7GkStdEGsO0uHFThJF4jjNChg82Ltw9eaOZayFblsVjh4d5uS9GwCNzbChJ10Saj9/RjlxiV+1iLtWHXEpPvdXy6U9/mt27d/Pggw+uegy4RgRZEIQVC3KpvrlSCsZns1leeOEFampquPHGGxcsjrKUIFuWfVv/7aNRxpIarbURhmI5/uaXF/iz+3bgK7otL9WHnM1m6erqKsRgezyeQqiRqqqz2jdpmoaiKBw7dgxdt/2+ac3iB10GSR0kUcIti3zwhmraqvzkTJHJrIXf62ZLXQi36+JlppsWf/CdE5weTdnZehZU+l00RryoukHfdG6WkIrYrgBVt1AMizq/wM6GICdGbGEKeGTcsohhWownVGpD9oJZW5WPPU3zF8Nev6Wa129ZXISLuam9gqfOR0nm7BZMKUXnnQca6ayQePZkD//SBzUBF363TNgrMZbUaAjZNZJTis63Xx7iuQvTDExn2VTtI+KXGU+pBLwSacUgoxp4XXbVu5xuIgoUvgDckkAipzMwnaUnmiWa1qj0u5BFAY8kMhJX2Nsc4kx/nIxmsrErIwszV5BTisErA3EaK+zegRGfnRAzEs/RWrlyYb1UQS6lp14xH/jAB/jABz6w7Li/+tWv+P73v8+RI0dWPbc814Qgw8pu01fS7mkxQbYsi4mJiYLo3XrrrUtmRi0UipZRDf7puT5e6Y/hlkQm4jk6Kj3Ikkh10M1YQmE0kaOj5mIHheUiKFRVJZFIkEwm2bFjBzU1Nei6jmEYyLK86C1hIpFg//79hWP911PjiL5xtgZlTNMkmlZ5ui/DHVg8+toUimZimCYtQXhTq13dTRAEuhICp4aziIBLEJhWTFKqQUrR8blEGsMudFNgOqPNRFJIqJqJaoJumQylBH7w2hitlV4QwLQsZFGwxUoSuKGtgqaIh3cdaFqyeHwpbK8P8od3tPPE8XFSOY2wT+axw0NUekVSqRxnRnVckkjALbG5xkfA4yp8mXzrxSGe7Y5ybjyDYVocH07SVuHFAiRBIOCWSCoGumm7LPY0hfj1+SmMGYf6RFLBBN711SMcaI1QE3QVfNZ2FxV7UdEC5DJyWRR/FtZ6laIcu4VMT0/zwQ9+kEcffXRF6euLcc0I8kos5FLbPeX9w3N9ePnCP4FAgH379nHs2LFl01QXEtJvvtDPiz1T1Ie9pBWdwbhGtU8iHAbTtDBMa54/brHaGYZhFBYR3W4327dvnxVxUoqlX7xNTjORZRHZ5cI0LVTLYCgt8LN+k4pwhEq/yy5+E1fwtzSztzmMaZqkzk0gH7uAINgWVJ6cbpHTDaazBm0h2FslMJSCpGqgGLYIeSXwiBYTiRwSJqmZdkuKbhL0SLz3pjYePNi05HleKde3RtjbEubzP+1iPKnQEPZycjjO+QmNgEdC0S3iWY0zYyZv2VVHY8SLaVkcGUzQNZFF0U0EAUQLhhMqAZedcSdLAtUBFy2VXt5zYzN3bKliV8Mof/frPuI5DcMCjyRgAUcGE+yoD7CzPkCFV2YolqPS72I4rrC/3j3rDulyMjdJJeSRuKE1wsv9MQJumYxqsLnGT2NkdX7gS/Uhrwdf/vKXGR8f52Mf+9is5x9++GHe/e53r3i8a0aQV7ISvdo6FdPT03R1deF2u7nuuusIBAIlV6haaJ9H+mPUhTxIokDY56LKLzOc1BDdWUzToj7s5X++NEBTxMvb9zUS8MjzfMiWZTE8PExvb2+haP2ZM2dKPhfFFI97XVOIX56PksxpnB9PM5ZQaan0cHo0xa6GIJUzC2yCYC9I5Y9xf1sVHlcvKUUvWIMw25oaSMGkIlAVcHPH5gi/OBtF1Q0Ewa5BkTOgZ+piY9aMYhCRTTbp/bz00iCSJM3zgS/kFy/2hy9FMqczEldoCHswTItY1q5WF/a50A2LlKIT9Mg8sK8BeSaSYiKZm6nBIaIZJgZgYSGKEiGPXe9CNyzu3lbDG7fbdVOaK7ykVYO8+9ywLCTBfv2mKh9uWaKzLsBtnZU0V/hoqfBiRvvKalGveC6CIPDgwSaaKryzFvVW4z+G8ixO//DDD/Pwww+v2XjXhCCvNMxrJcXsTdMkkUhw/vx5BEFgx44ds25dLiWBJOJzkVENQpLtzvC7JbZVSWxpqWJgKsPhGVeGZpq82DvNXz6wm6xmh2QBTE5Ocv78eSorK2f5rlcT9jb3NZ21AT58qJVvvzxELKuzuzFIa5WPM6Mpjo8kaav0FhInmoqy4Sr8Lv7+wT18/qfneWWRjEPTsq3ekbjCq4MJZFEga9mRB2ntYgKGgL1wF/RImJLM9j37qfS7FqyfkMmpfOfVcc5Fc1R5BO5ulfBLC1cymyvepiChGzov92VIKaadyGGCppv4XCJZTaA25KZtptWSIAhEvC4syy46JIoChmkhCQK7GgJMZzQ8skRtyM2Z0RTjSYXaoJv/9P3Ts+KXdRNEw8Qjixxsq+D+ovrMANG0yhPHVQbMGLdudRc6ZF8uFgp7c0kid29fulBXqWSz2TVtvFCOXBOCvFJKtZBN0+TkyZMAbNmy5ZKSThba5wdvbeO//qKLdEInoxrEczr90wYTSpQTI0m21gZwzbSx75lM859/cILBaBpd17jjxBh3b7ZdJguV6Fxp2NtCXyx7m8OYlkUso1EVsMV+S62fRE5nOKnilUXefaBpXk+4zTV+Wit9vDaURDBN9AWmYpq28I4mVHKaveCVNZlXstK0bPeJ323XgihunJq3pizL4gu/6OaFIR2/28NEwmCq38MX/t1OfC5pXiWz/KJmLpcrlKM0lQzjCR0REGaiJNJZlYkUSCLkcgrPnuxhX3OYuAqxjErQLZFWTQzTrtbWHPHQO5Xjzi1VBL32R28koRBNa/jd0qzIkjyiADdtquC+62ZHUgzHczz8xBkm4hk8PcN8/3iU//ctWxhJKAjYdzDLpZGvNRuRqXc199MDR5AXZDkLOR+hEI/H2bp1a8lZPUuxkCDvagzz+ft3cWEyzT8fHabSK+BDJxT2cmQgTjKnUxV0IwgC0bSGZqSolFQ0DJ4dc/OGg+0LXsCrqWWxkFWdzOn86NgY3ZMZLkxmqA26qQm6ue+6On7vllYkYfE7hNOjKSQBvB6ZeHZ+xl7+TKi6iYUdkwx21IVV9AP2wt69u2oXrdyWUQ1e7ItRE7DdKAG3RDSl0jWeZk9zeMlKZtG0ypef6efUtIUgiiAIyJKFrpoYgkjADV6XyFTW4FuvTtMUEPi3rgS1XoOcYmKIFhkdQi6LiJgjrlm82jPO7gYvFiKpnImZTaJ7dcJeiami7EW3JPDZt23nLbtq553Hx18ZJqMaVHhEAn4X4ymV//jdk4S9MlhQHXTz5/dto9K/cVZzuadOXwmUh/NpA7mU7s65XI5Tp05x9OhRGhoaqK+vX5OV1bn7NE17oUjVTRoiXm7rrMbnkvG7JCwsZEmkKuAmlrVjeCeTCqqm47NyeD0e/D4vsiTRPZFecF9zxbUUt8pCgvzkiTGmMxq3dFRSHXAzmVKpC7p5z43NyKKw5LgtFV5kUSC3VHUhLgpxnnwXakmwrUefS+T2ziruvW7xWFxRFAqdq2EmjHDm+aWwLIv//qteuqNpvLIdG63oJqpmRzhkZ6I/PC4ZWZIZTOoM6iHSUojNjTW88bomGir9iCIolsD5hIjkkkF2kdRlYgq8fpMfn5VlbGyM/+tGP0EXeCSQBXjHFol6ZZATJ05w9uxZuru7GRgYYHR0lNHpFCLWTEikRTKnkVJ0aoNuakNuoimVHx0bW/L41pr1FmRFUa56Qb4mLOS5hdiXE6C5FrKqqvT09BCNRtm8eXOh3kQ0Gl3T9kyJrMaTx0f57itDKIaJV5b46Os2cWtnNftbIzxxNElAsMioBu1VPnY0BukamqJJVmivCDGZA5dLQM9lMS2oXSRRYy18yADDcYWgRybokTnQGmEipbKzMbRsJlYipxfqG2szdZDz74go2FXTFjurIvnC9dBa5eO39zUSz2pLdmb2uSTevLOWn56awCUJ6IZFZ62fbXVLh1ClVYOB6Sx1IQ9Z1SSW1dENi7yOW9jukqFYjrBHIupK0xAAACAASURBVKuZ/PiEXYQ/q5ncvCnCdEZDM+34a0XTSWbhd+5o4q276/G7pVkW7Pbt8JZDtu+80u8i6JFm+cPzrhRVVdlRKXB8KEdKMclMJ9EMiHjshWVBENF06Boco6dHW3BB0+Vyrbl4lkPq9JXONSHIefJCu9xFk7dWdV2nt7eXsbEx2tvb2bp166zXllqkvhSmswb/7ZlRzk6qZDUDtyyypSbAl5/uZVO1n7ftbSCRzvDUqRECWLy508/TZ4ZIG24625v4rb2N/NdfdDGdzpHNmdy6LcKtnQs3/lxN6vRCgtxR46f3XJSAW8KyQNEN2iqXDkvSTYtPfPck58fTaIZVEF5ZtPehGRYC4BJti3auhWwAfhl8LheJrM5vuqZ4y+7aQqLBufE0//T8ALGsxm2bq3jwYBOyKPDhW1tpr/ZxeiRFY8TLfdfVLdmDD2yftDyTNVcdcBGYqVA39wvDtCCWM6gJyHRU+7Esk6ODSUbiCvGsXnCzGNjH8+2Xh/n/2XvvKDnO68z791bs3JPzDHIiABKBBKNIMUlUoCzTluUo6yhYXq29n2T7867Xu/7WXsufnNeWg2zJtrSSLdmSLVmRkkiKJJgjiIzBzGBy7OncXblq/6juxgwwAAaBtFfgcw4OBkChukLXrfve+9zn2bumid0raJKostRoDgJn1cPreG9/wCvZo+w/uYiuSjRFlZAup4bj29WKzb71bSQSsYarx5mNzvp3QJKkCzJS6r/Ol8z8exAX+r8dV2VAvpAehBCC2dlZTp48ycDAADfffPOKX7SLCWwXysy/e7JA3gibd34QULE8js2W6GuOMpU36W2K8iO7utimZTHsIp867FP2IiQiKk8OZ5ktWvzBAzs4Mj5PbnGe+27evGzs98zzuxIZ8n3XtDNXtDg+V4Yg1Iq4fs35G5uTOYPRrIHpeMtEhRw/DMKh/GSA64EqgxqAueSdFzIrZK7tTTJTMDBcn+ZoKPgzbzj8168dx/NDF5F/fHEa0/H4wK0DSEJw79Z27t3avupzVmWJ997Ux6efmgAgHVGp2j72GW+J+sDGtT0phAAhJHrSEfb0JXnoROasbL9kuvzmNwf5pbvWc9vGFqQLCQgFQe28T29X/3ldk0R7cxoCGFqokCnbyJLOu/b28vZdXasqR53psVfPwpe6eti23ZjSPNOaqR68Lcsim82i6/pFUwtXg6uhhnxVBuRzwfd9JicnGR8fp7m5uSH8c779XYy7yPn2VbB8/CAIaVJCIBMG8NmiRSqiUCwWOXbsGIZh0LpuB8aRYdqSIbNBVyRGMlVM12Nnb4pT9uI5gzFcekCeKZh889lZ8lWXnb1J3rajgw/dNkDRdJFE6BV3wWtR4+k6XnDWJJcqw9auJOOLVbJVF8ddbkoqoOHInDccKo5PRA04MV9hvmyjKxKW4zUYH7Ik+N7xDB+49dLFXm5Z30J/c5TJvMli2eYbh+YYz1aYKDgN2p1Ui8hCEvhBWFKq2C7fPJpBUySMM+rkthcwXbD488dGeWmiwA/v6qI7FTmr7FIyXT7+3SFenCgCARvbYvQ2RbllfTNv2NhCW1zj1GzQeCHEdJmOhEZUlVko2VRsb1VMi0vx2PM8b9mIfd3Vo1Qqkc1mG/9WD+Lnc7peiR++EkzTfL1k8YOA+hv6XBntUuGfzs5O1q9fD7DqSb0Lob7d+fZ3XXeCZ0YLxNTwAfaDAFWEIual6WFOeA7r169nfHycVCKGH0DJdMJgCMiyhCpLiODVkd8sOwGfemwCj1A28puH56naHj95Q+9F8V/7miJcP5Dme8czZ83WVp2AwbkyVcdvZJVLN6mzLXzX59RChea4xo7uBP3NUaYLZq12vcRvLuC8teXVor85Sn9zlILh8NCJDD0pncWKQ9WtuaEE0JlS0WSJ+aJNMqJwXW+KZ0bzDLREGZyrnHUekggnE//lwCwHp0qsaY3yi3esbbxMAP7okRFenCiiy4KFssPLkyXakzrfO75ATJP52Zv6OHBqjmzFwfUDSqZHUyRAV+HpU1nyhs2vvWnjqyLPKcsy0Wh0WcY6MTHReHbOxEomqbZtY1nWWf56S59RVVUplUp8/vOfZ35+ni996UusW7eOnp4ebrnlllUf72r99MbHx/nABz7AxMQEQgi+9a1vsXbt2tVfmMvEVRGQ6zgzQw6CgLm5OUZGRmhtbW0MT0xPT2NZ1gX3dyWdp2/f2MTIfJ5/OV4lqgra4ipy4LIx7bC2v5e2tjZs2yYIQuGc/qZIQ4ISArrTURRJIAWvjoXTZNGj4gT01WrEuiKxfzjHT1zfc1EPvBCC//+HtjKVO8Dh2fJZ/162V3E9ISxVAM0JjcH5Mk+P5OhI6sQ0mcWK3SgD/OIbL5+SWEc6qvL/3LmOTz8+wmJZZqoU+uytbYuxuSNBpmLzG2/ZRCqq8siJDE+fytOV1JnKG5St5edVtQNGs2EzMBlRWKw4/NNLM/z8G9aQKducWqyyfzhLwXCxajxsSYJnT+XpTum8OF7g59+whg9fpxHpXsd0weBrh+YbovztCY3jsxXKlreqlcuriUzZ4uR8hbge1tjT6dVlufU+TrFY5IEHHuD3fu/30HWdwcFBTp48eVEBebV+eu95z3v49V//de69917K5fJrPgV5VQbkIAjIZDIMDQ2RTqfZs2fPshn5i5nUs237gtv5CJ4fy+ELla1dCTpTZze+FFnm/s0JfuzWbfz5944ynSuza6CFd920iQXH48lXZnhlIk8lX6V7o4nhesRUiYodNilNx+OJ4UXu3JC+aAun1QRUpU5/qMENPYd4YjgLCK7pTtAaP1vFbiWossR/efMG3vu5g3h+gKjterWvCFmCmB4GsX89MEu26uD6MFUwSegK913TTkyTuWFN0zJd4iuBda0x3n1dK3+wWCamCzRFJqrKqLJAIMhWHUYWQ0GhoukwuljlXLcjCKBoeRh2KPM5OFfmqZEs/+9XjiOAgnmak+wF4HkwlQ9HsiNqeM+TmuCG9c0MLWh87eA8fm0IxfNrzVH5ymfHq0UQBHzt4ByffXaSiu0RUWWu603yC3esXZVUa91br62tjTe/+c187GMf48Mf/vBZmsurwWr89I4ePYrrutx7770AJBKJi/6cy8VVF5Dz+TxDQ0PEYrEVp9jgyma+tuvzN69UmKqeChshsuC37t/Gtu7l/GUhBOVymWz2Ff7Djd2sWbOXp0/l+J/fGmR0scxMIczYBfDYJ58NebFe0HDEyBsuhyaL3LWx6VXx1FvXrNKbCyfEFElQtX10RfC1Q3MQwEPHFT58+xo6U6urQ17Xl+Znb+zlM89MLhvyWA0UWaBKgqQmMVuy8AJRY0MEmI5NwXD56F0rL50vF4+eXOT/+/pIqJUsy2hywOBCFR9Y0xzlc89NUTAcjs6WcT2fgeYoY9kqFdtHgmWlGEmAJAQn5stIQpCKKHz0y0drL6lzB9LFikNUlZgvnU4G2hMaluvz1EgOSYSj3O+7uZ/IJYrBXwkMzlf46iuzuH6oGV2xXIbmKzx4dIH33Nh30ftbjQLjubAaP73BwUGampp44IEHOHXqFPfccw8f//jHL/kzLwVXRUAWQpDP55mZmWkI/5zv7bfaDHk1NeSnR7KM5F26msLOc8l0+IvHRvjEj1/X2GZxcZHjx48TBAH79u1D0zROZSr80UPDaIogU3GoGzcrcsiPNesWQoEIhxxEmLW+Wp56uiLxH2/t4mDGpVB1mC1aTObNRgCeL1nsH8py28ZmBuerqLLg2p7kOafnAD5y13resr2Dfzkwy5deml7RgVoQZsR+cHqwQ1ckXN/HIxRTkqAhWGO5ARM546LObbUYWqjwp98/RdHykAAn8GvDKTL9TRH6myMcna2E03KApoQ60QlNZrHqnsW2iGsSZctHkUIhpY1tMcayBpoinfMFJUR4TbJVe1n2+5lnJlFlWNsSpWR7EATs6H7tM7ylyFRsPD9o3JuIKmM6Hrnq2WqEVwKX66fnui779+/n5ZdfZmBggHe/+9185jOf4f3vf/+VPtRz4qoIyNlsluHhYTo6OkgmkxdcilzJDLlgOIBotJoiqky2En4hS6USg4ODyLLM5s2bGy+MiZzB//jGcSZzBrIkGmJB9aSpHoCSuoLthV/4aFxlU2diVfXhSx2d1hXRUCb7wgtTzJYsXM8nU3HIV22Oz5Z4YaKACEKq1v6hLB++fc15O/1bOhPctqGFlycKnJivLKPCyVKoGwHh8r7OJsgZHrKApK7QHteYK9u1EgogYFvXqxOIjs6WmSuFgdDzwym5oumhKxK3bmjhVKaKropG/VoQkK1YzFfs+qGF51L7WZVlBpo1OlM6s0WLg9NFhBC4tSBWt7FaCgH4BNjeckeUIzMlbDdgtmiBCL8z3zm2wCtTJZ4ZzdMUVfnpfb1n6YpcKaz0fWqNaUQ1hYIZKvsZtossSZd0f1Yz0HW5fnp9fX3s3r270Zh85zvfyTPPPPN6QL7SaGlpYe/evUxMTKy6Nnwxam/nw+bOBJIQmK5PTAnIV21uXdfMoUOHMAyDLVu2kE6nqVQqjX195eVpJBHSmIIgQBYhT1cCPB9kWXDTuhYqtkvJcAkImQBv3dG5rBwxNF/m+4MZhIA7N7ezoT2cTFu6jeu6DA8Pk81mG/SjpTSk+s++7zeuiel4eH7IiKjY4c8Vy+PARJFUVKG/Oco13UnmSxavTBa59RwDKs+cyvGdYwuUTBdNEaxtiTKRM/B8SEVlWmIaUwUTxwtCGl8QUBvsI65LeEHAdb0pXposNcxKm2MqP7ZnuSbydMHkzx8bZSJnsqYlyn+8Yw1dK9TxL4R6eyely2QqbuPlockSf/3EGD+2t4cjs2XaEyotMZWpvInphtOIS8sVuhzWoptjGkMLZY7M2DTHNWw3IK5JBJyeLP2RXZ2Yjs+/HpyrBWPY1hlnc0eCuaLFkUWPE89NUq65i8R1BVH7nvzLgTmSEYW4LjO6WOXYbIk//pFrzjnBeTlYKWBu6Yxz/84OvvLKLDMFC00RPLCrizvPY5t1IVwqY2Q1fno33HADuVyOhYUF2tvbeeSRR7j++usv+VgvBVdFQK5DluUrzp64UODe2pXkp65N8dVBg2zZYnOT4Ib4Ip2dm2hvb1+RklcwbDRZYltnguNzZaKajFJzZxb43Lqhhf/5jm0okuDobAlFEuzoSRFRwxdEEAQMzZf5w4eG0ORw+fvSWJ5fvncTG9rjjYA8OTnJ2NgY/f397Ny5szGmW+eQ1ilJtm2Tz+cpFAr4CL465DJnBFRNmK34pHUJVRJ4EpiOy2LZ4ui0T3sysqKCGYRaz598YpykLlO1PcayJhFF0JmMIEkB/c2hb97mzhjPniqgyiIUIfIDNEUiHVGp2D4jWYP7d7aTrbjEdZkHdnUvm3SzXJ/f/vZJipZHSlcYWazysQeH+KMfueaCk3pn4rYNLTRHx5grmQ23DkmEE3hTBYt/eH6KDW1xhjNVNrbHuGV9E194YYZ0VKFoulAru7g+TBYsFsoOrhfgeT4Vy6MlpjLQFOHGtU28ZUcnLTG1wZDIVhyeHMmhSXBq0cD1AnRF8K0jNrIyieOFOhuK7AGC1rjGfMmiJ60T0eSQfVK2eWWqxD1br3xAXmlKTwjB23Z0cOuGFizHozmuoiv/NjXt1fjpybLMH/zBH3D33XcTBAF79+7lgx/84Gt6nFdFQL4QD/lMXEwNeTX7u7E/zq4OhXyhwLq1a+nt7W0c08vj+TCLDXw2KA5iIs/DxzMsVmyiqsz2niSm4/Mr925kd38T+596ijtu29XY903rlmef9frwo4MZ1JrVE4TUo8cGM2xoj1Mul5mcnKSnp4d9+/Y12CKapp1zEmpoaIiWlhbmbQ1ncoxr2jUm8gZObQQ6qgoU4VG0AsqGxUzBJKGVafayxAsjyEvGczVN4xuHy0ieixIEjC1WqVgutitoiQn8QJDUZbZ3J7h+IM1Y9ji5io2oeQtars9i1UGXJVI1LY0b17Wwb4UpwdmiRdF0aY6F16ElppGr2syVLPqaLm753hRT+dmb+vjjR0Zwfb9mnxSWB1wvNDNtjqqkYyr9zVHetbubB49kGM0ay3nIQSggFYtKZCrhmHxrXGVrZ4K5UqhjsbS04Hg+B6dLyFLYBPSDgIm8yULZRpdByALTCfCCkJrXm47g+aFL9rK6hhDnHRi6HJxp33T6I0VNr+PyVOccx7kkdkUdq/XTu/feezl48OAlf87l4qoIyHVc6UB7oZJFEATMzs4yNTVFS0sLt5wx+ffiWI4/engYXZHwPJ/vFytUDhyuPaAaOcPh0FSJj//wNvauCUns6gUeqMZDIeBM7oLr2rz88stYlkV7eztbtmwBzv0wnbnfIAgaDABJlmhN6JxaNCjbLpYXIBC0JDQKhkMyKnPnphYqboDc1cWevuSy7BtR5fiCSaWmnAbg+AHVQlhvzZUtvGqBYyMKTbKPJUOOcMkuBeA4PiII6EypqJJgrrjyyiemSqEmhh+WPTw/nIaMXSL7IKYpbOuI4Ls+RzI21CbzIopEQg/LA70pnZPzFV4czzORN1Zs0JlOLaOtaWXkqg7TeYPmuMY925aPd5dq9LeEruAHNGrYrh9gulC1nIZB6kLZIaErDDRH+fnbBvjnA7MYTrh9e0Lj+oFXR+D9TPumK42rYWwaXg/Il7Xd+QL34uIiJ0+eJJVK0dfXRzweP4s+860j88RUmVQ09J+byQZUXI+OpE6k9vdV22Nr19nuyRfCnZvbeWksT6Zs4fsBxXKZtpYyAwNbAVhYWLio/dUD8prWKEk9HM2NaRK6IiEJgSQJfD8Uq49oEnv6U7TENcqWx8hChesH0o3xXM8POLxwCsP1lzXx6pAEKKrCvBMhlY4gmSaLZhU3ALU2qhw2xgLGZzKMz2S5oUvmZXd6xfr3XRsSfG+wACKUBP3h67qWTcRdDLpSOkEgaIlJbO9KcGK+QnNMxfZ8FAnSMY0T8xUmciYvjOVWFt+v/T5fDpu7miIIAmhN6Pz3+zbSfMaxGU5oAmt7PgKBJocUuYHmKEemHSQpIAgEuiLR3xThHdd28hN7wzr6hvY4L44XaIqpvG17x6s2JPJaaCH/e/PTezXwekBeAZdTQ17KnNi5cyfxeJyxsbEV91cPLBCuLGVoZKGyJHC9cFncdAnWPBva4/zSPRv5+gsj5HI5fvKmfm7esR4hBNls9qyu+Gq62EEQkNAV3ndzP3/79ATZikMqorKrL01CVxjLVnl+rIDvw0gmtK7vbYrQHF9+/NmKTbbq0pnUmS5YZ2WQfhCWAgw3wPYFL0xVEYTlCh9I6zKpiELJ8kimkzRHVdaua2LHtlZs216msVCpVHhDp0+bUJgv2zSpAWvcCZ57bhJFUc5qZK4U0Jdel939Kfb1x3l2rEgsKrOnP01vk85Y1gyHO2ZLZKoOTRGFmcLZwvtnQgAbWmPIsmBwvhKWV84IyJ94dJSWmEq26uB4AZYX8I6dnVQdj1cmiwR+QEKX2NGTpGS6RNXTgj43rWvmpnVnjwhfabwuvXllcFUE5IutIV+KD55pmgwNDVGtVtm8efMyO6dzfe5bt3fyhw8NhctoP6zD/viuPr5xcLZRK/zI3Rsadj8Xg2w2y8LwCd6yvpkNG25dpnC3Eg95NSULCN03vvTyDKbrk4gojGYNmquhpsYL40Vs10OWwhfNbNEKxXDOCAhxXSEgwHYDZIkVs8h81aEzqVG1Q8qUH5wWIyrbPi1xiYGWcAmeiKgo0mnXj5Ws4mvVmQbOZdtUl6lcGtTr16punrqvyWFLVCLdHE5dRiM6SDJPjpX5wktz7OxOElFlTsyvbBAApyl8EPLKQ8cXn99+cIjfvn/LsgGbiZxJKqrQEldDqc+qw/H5MifnqzRHoOSEZY+5okV7Uj/rer8WeF1688rgqgjIdaw2Q14t6hny4OAgmUyGjRs3LmNOLP3clUasdw808V/u28yjgwtokkybZfDA3Rt56/ZOvnpghu8PZvjE90c4MVfmI3dtQKmxAs6XzVarVarVKqOjo1x77bVnBafZgsmDhzPMZkp4qQI7ahZGF0I9iB+ZKTKZM+lMhfbzG9qiHJstU7ZcqrZfG9sNxXM2tMV487a2xnDISKbKoekiuixx1+ZWvnZoLlwJrFC3CAj95qbz1jJ3agjrwaos6G+OkIwoFAyHPf0XR6U6n23TSgiCoMFCmZ2dJWIYNKV0bDtkoniuQ5dn0yQMVNOgUAqISFCp0xVXOL+6WtxcyUIQlhyKpsPvPzTM7//wtsZ9aYoqHJopk9blkHEjCaYLFposUFSJeFQjW3XoTOn81ts3r3pa8kpiaUAOgnCkfv9wDlkI7tnaxt7LrF2/HpB/wCCEuKIB2fd9JiYmKJfL9Pf3c9NNN50zQzgfPW5HT4odPWGN+KmnpgEYzlT40stTGHYohv63T45xcr7MX/7ErnO6nriuy8jICIuLi2iaxp49e876rEzZ4hOPjmBaFmbV5W+fHuNnbhxg9yr0HoQQeL7P4yezHJ0tM5qViesyWzvjtMRtqrZHc1TBqQ01zBZttnYm2VjjPg/OlfniizNENQnXD5jMmdy9qZWy7fHEcA7HX87VVWo16YLpLcsmIZxWzFXdcBJQk9ndn2ZD26u7nF1qnhqLxZAkiUyQ4B8PzmA6Hps749y6vp9b3QIHp0skBSQKBdICyqZDwV75paMJsN0AVQpojwk0z+TkjMnREydJRHW+eKjIgckCFdsnX3VQJLh+TROyEIwsVpEJh43ius/tG1suiV99JbA0ID8/XuBfD87RntDwg4AvvDhNXJPY2nXpdmfVavWqqCFfVZ56VyIg15kTzzzzDK7rEo/H6e/vP+9y7WIdOv71lRmqthdSxeSwafb8aJ6vH5rlVDHAcpYr1k1OTvLss88SiUS46aabzkkPOjxVxHQ82hM6SU3QHNV4bDCzqmMSQjC4YHJq0SCuSciSoFh1ODhVYldfmrgu09ccpTUePoSKJHjfLf2NbO3p0RypqEJrXKMzqSNJoS7w5o44rfHweOtXSCJkDNQ9784MZYok4fg+UwWLOza1srHGrX6tEAQBC1WPzz47SUSV6EhqfPdYht/69iDH5ip4fsC+tU388t3rSUZUjPPcejcI6XTtSR0TDaHFSMWjdLW3Mlr0+afD+YbvYF1JdHw+z+RCjophUbJ8siWDtBKwK20zPT3NwsIChUKBarWK67oXPZVZx3TB5MBkkZmCecFtlwbkVyaLpCIKETXkP0cViaMrKPtdDK4Gx2m4ijJkuDTroqXIZrMMDg6SSqXYu3cvuq4zN3dhI8mL/VytVppYOmpruz5fenEK17AZ9Yb56D2bMMoFTpw4QXNzM/v27Vvl8luE1NTaQ7raOCaEYLEa2tXv7k8znKlQ8ELBnJ09CQ5NFSmYDqokSEcV7t/RybrW0w/Q0phgOT5RVaZsufzDC9PYno9c88kTkoTj+hAEDbrXmfBr0nCuH/DYyUXeuqNzdSdxBTFXDgNdVJXJlC1MJ8zkOxIaBdNltmRzy7pmNnbGMRyX+bKN6Zyug9ezfj+AaE3E3vMDDNfn1960gVRTioefyiBLoYqcXxP0F0BHczj9uSOp4Rt5btzSxw29MTQRllRKpdKyOviZIvEXamQqisLDJzL83dOToRIf8L6b+7m7Nja/EpYG5IQuN8b9IXzx1kWwLhWvlyx+AHGxGg710kC5XObEiRNIktRgTlzs515MQP65N6zl8aFFHDfkB/tB+IXe0B4nu1hleL7EFx55gV0d6op14jPPYSpvYrk+GzsSxLQF5ksOFcvHNhx+6LruVR2TqEk6Zio2uhqhLa4xW7SIajKPncyxrSuB4fqUTJe9A2netXv5fm9e18w/vjRNrmpzYq4SSk+aDpIkaI/qLFYsTCeAGrPE9AI0WUIIH89b7mHnegGdrTrbuxPMFK0GK+W1QhAExGv8Zj/wObVokCnbqLLEC+N5tnUlyVUdDMdDBppjGkXTw3bdhjZFQO1lWDMa0FWZQMCOniQ7e1NUbQ9JEsQ0mZLphk3NIFw5aIqEIkn0NevYssoDe1fniBIEwVlNTMdxGgLx9b/LVx0+8bJFTAmTAw/BXzxykg4KNMf1c47W11cpd21uY3CuwlTeJAigJa5y82U2Gl/nIf+A4WIVzmRZplqtcurUKSqVCps3b17RYWA1uNiAvLM3zd+9Zze/8+1BFso2sgTX9qaRBbiOS9UuoSf72LNn8zn3EdQe4C88P8lzY2FzJa7L/Pj1fRyezDI6UeGHblnD1u7Uqq7Li1MGjwwXMW3BU8NZXD+gNx1h70AaTZGYKVh84NYB1q9Qy3X9kC5339Y2Pvf8NH3pCJs64nz76AL56ukldQDIAuKaHHJuBcgivHYiON0Ig5CPPJU3OZWp8rdPj7OlPc4tG1oajc9XG+taNPb0hyYB8yULSUBnUqNsehycLvKu3bURbgG252O6/lm6yPU/Vxwf0wvY1BZjqmDy1EiOW9Y3E1XD4ZrvnVikZLoIAboiWCw73LO1japl06Kv/nyFEGiahqZp532Jjy5WSZ48QUtcI/Br1mIVG0+OIAQrMlHqbJRsNouqqry1X2GqHKBrKls6Y3hGibJ3OpBfLCPj9Qz5KobrupimyYEDB9i4cSPbt29fdY3S9Xz+8vFRvn1kDk0WfPC2tbxhTeyizVD3DDTz5Q/dCMC/Hpjmn18YwywaeAHEkyn2rD93Zlt/ARydrfDMqSw9TVEkIVisWDx8fIGfu6WXI/IiW7tXN3BStT0eGi7RFlPY2J2kbLnsH8qxszeFXpt4E4Kz2BIFw2H/UJbPPz+F6fi4no/t+fSmdSI5iS0dMcZzxjIusl/zpotKIZvg+jVpvnMs0/j3+u9DmSqzJYuedISi6fLcaJ6posW79/Zc0DT0chEEAbIk8dP7ciebDgAAIABJREFUesMgKUtENZnxnIHj+jSrMm/Z3kFUlbnvmg5emhiiI6HWsmiB4fjIskS17o4ShJz0yYJJazJceSiS4Mev7+HTT47TltBY2xKlJ60xOF+lZDlM5g16UyqVSsDvfW+YlrjK23d00nUFGBYdSR1dCUtKCV3BsFziEY0ta7pqNlnhvX74RIbBfJn2pM6uLpe4Kuju7m4E63VLgnY2W238XHe+Ac4ySz0XD7xarZJMXlpTcLX2Tb/6q7/KN7/5TXzf59577+VP/uRPXtPeBLwekJehzpyYnAyHBnbv3n3BRsKZrIe/e2qcL780RVSVqHrw+98bIn7fOppXyX8+k0GRzWZprY6xu1NlsKjjVEr8xK7OswTuV9pPvhpaGRUNh7zhIAHTeeOiM3az1kRUpHDSLRlRaU9ozBRMZClKxXJJRhT6mk53wUumy6efmuDxoSzZio0QYLseVTtgvmRzcLpMXJNwztCXDICC4aLLguv6UiyU7LMyy7oTRsFwsd0qyYiKpkjsP5nl3q3tDRujVxuSEOzuS3NwqkRvSmegOcJM0WJvf7oRuPqbI6xtiWI4HhN5i6oThANBwenr7xPqOLueR8lwmc4bfODzBzk6FzbCUrrMHRta+O6x+VBX2Q8YnK+Q0hIMLzh0tYXOJMdny/zGWzcTVSX+8vExHh5cRJMFP3tTH2+/iDp7TJP51XvX84cPj5Aphx6Bv3L3+sY5AXzxhWn2Dy0S12WOzpZ5UXL58E3tDSbKarPZM81S64M9S332fv3Xf52xsTGCIOCzn/0sbW1t/PVf/3VDcP5CWI1901NPPcWTTz7Z0LG47bbbeOyxx3jjG9+4uot2hfB6QGa5t15HRwc33ngjhw8fXtVSvk5pqzMbHjsZOg3Xl86m6/LsWJE3da1eX1mSJKrVKoODg/i+z3XX7mRxuMTI8XkCRFhT9IMGCwHCzLxieyR1pbGf7nSETNlivmyjiHBpvL4thlvT8l0N/CAgHVVpjSlkqw7xZEC+6rK5I8HegRSjiwY96QRv2d6+rHFzbLZEwXCwnHCkOFc9XT8VDedobxnVbSlcP5QdfXGyuOIkX6gbHG7n+D6SL5gvWxRN51UPyEtfmtd0J7htQzNPj+QRIgzAb90Rau0WDYe/eWKcw9Ml8jWZVKjZMa1w+b2AGte7zAsThcZYedny+Nxzk7jBaeftsaxBvmqzMS14brRAEARYns9nn5kgoso8eGyBlK7g+QF/+fgYnUmdG1YQXzoXtnQm+ORP7KRseSR0edmqw3Z9nhzO0pXWkYQgHYXROYOpksu6i7yWK5mlnomvf/3rfPzjH2fXrl284x3vIJPJ0NZ27gbjmViNfZMQAtM0G9m74zh0dr72zeKrJiDXH6C69GS9hpXL5RgcHCSRSDSYE3DpY9apqMpU3kBXTpPkm2Iqvl9d1b5s22ZkZITp+QwdfetY19PBs6M5Hjw8R1eTjmTJfPtohp7WFLdsCIchDk0V+d3vDFK1PdJRhQ1Ri+8tDNMc1/GDMCNDCLpTOgQB3zm6QMw8/7lN5Aw++8wkC2WbgZYo921O88hwnoWiTWdK5ydv6Al90YJQZexMKUvHD2rDDjBdcM+mrskSjreylgWEteTB+WrokLGkEQY1dxSvNiHpBgSGg6X4tMXjJLTX9istCcE7dnbyxk2tOF5Ac0xFlgQl0+EDf3+QsayBV1OGuxBkAaeyBqmaiNDSxXJdD1tXQ8qh5fiULY/BLER0DUWW8e2Ax4ey6IpETJWRpVDdrep4vDRRuKiAXD+31ApTokIAolYDrx1kAMiSRNX2mMqHY+QDLdGGW8jloj46res6vb29F/V/V2PfdPPNN3PnnXfS3d1NEAT8wi/8Atu2bbsix34xuGoCch31AFrPQIUQbN++/SwXkUtVfPvwHev46JcOUTQchBC0J3XeeV034ydz591PEATYts2LL76IGW3niyMRzBNTJPRZulI6RdNldsLCs1060xrHZsvcsqGVouHwO98+gSSgLaExlq3yyoTJzesMJvIWMwWL2za1ElUkRjJVRjIVvnVkHt+wWLO5tCJZv2p7/MXjYwigO6UzU7T4RtHhfbvSrFu7BssNBdP3Dy0ymbfoTOlsbItyz9Z2tnYliKoym9vjPCIvUrXPDkYhq81HlQR+EAbvM+H4EAQeUUWi4vgNxxCoOYkQEFUASSALgSzBjp4ELbXsOF91ODhVBOC6vhTpS9ADOd+9WtqUEkKctf/PPTfFVMEkrss4noRlXFjXgpo9k1l72Zw1EVNbWUDoGtIWCxUBVR8czyOlq8R1GVWSKBouuiLh+AG255OrOHzxxWmSusLtG1suS2RIrU1afu94hpgmY7k+HXGZdFThT75/iqIZNmo3tMd57019F607vRIu1NS7XPumoaEhjh07xuTkJBDKcD7++OPcfvvtl3bAl4irLiALITh69CiGYZyXOXGpGfKOnhR/8zO7efZUDlWRuHNzG3FVMHqe4F7nN3uex+ZrdvD+Lx6vsSsEqiRxZKaE5/u0xDUqlk9uvsodW8PwNFO0cP2gpjkLFcur8U0l0jGdiazB8HyFdFTh5EKFdERhY0eCyckC//jCFL/xti1nHc9cycJyfTprzhLtcY2xBYOyHe77waMLPD2SDcd3JcGxmRKnMlVenChy49omPnDLAO1Jnffd3M+Tw1kUAYoi4Xp+Q7dCEoKetE5nSuOVyVKY6S69T0DO8FFl0ZjakyVBVA5QFUHBDH01pCBAUcJM7v4dHSiSYL5k8RvfGCRvOAhCjeDfvn/La1ZbBhjPGuiyhOX6aKt0fg6CsJa8sS3KYtlp1M5rCSlBEHJ68QJUSbC1I8KJeQ9VlWiOaURVCcP1+eCt/fzu90aYK1kYtociSzx4bJ7WmEZEk/n+4CK/+bZN5/U7DIKwTp2rOvQ3R+ltWj4l9yO7u+lI6gwtVGiNa2zQijwxWqFsucQ1Bcf1OTJTamTmVTu0urrU4Hwh2tvl2jd95Stf4aabbmokZm95y1t45plnXg/IrxZc12VoaIhisUhXVxc7d+48bwf1chTfBlpiDLScbgb6vr/ivpbWiXfu3MnJkyd5eqzMbNEiqYcGnpYbSi92pXSsWtCSBayp7V+RYLpghPY9mtywf9dq3/v2ZDg5NzhfwbQ9mqJhXVGXoWK7WI7D2KlTzM3NIUlSyLv2ZPIFC9lR0FQFLxDhxJdrYxgG/3pwluGFKobjEa19ZkQRlC2XkUyVx4eyvG1HB71NEe7f2cnnn5/C8/za8jUgrghKTsBE3mKqYJGKykTdUNy+btFUv1puLRCnogqdCYXxjEnJDpZrQwgfIUkcmimzuSvJV16ZpWi6Dav5hZLFJ/ePce+2Nta2xK6I1sOFuu9+AIbt4RH+vloosiARkRloiTCZM2v18pDultBD5xHPD7h+TYpre+II36ESRDAcj6rtcdeWVkYyVaKqYDrvMdASwXI8fAS2H9Cf0Jgtmrw0UeQNG1e21gqCgM8/N8V3j2WoLwQ+dNsAt6w/vb0kBHdsauWOTWHZbHCwSLbqMFtwyFYrCAEVy+U7R+Z55HgGn5DT/MPXdbKx4+I99S6H9rYa+6aBgQE+9alP8Wu/9msEQcBjjz3GRz7ykUv6vMvBVROQ5+bm0HWd9vZ2mpubL/hAXUmpzjMHUpbqTmzatKnRoJAkiUo1zOr8IAy8Um1Zf21vGi8I5T09ZJIRFdfz+dNHRlAkiYrlYNgekoCOKBRMl7wZoEgSuipx95YEz43mcX2fE7MlZDtgRzTgxeefp6+vj3379jWO03EcssoMD53IghfgeS539itYlRJ//9gRjkxVcTxwCZuWCmG3XJEFw67LdzybG7tlIrrOT+3tZKZo8tRIHtfzaYkpjGfN2lBFeE0yZTeUHj3H9YupEhXbYyrvY/hnNwFNF2YKFp99ZpKNHXHyhtvISoMgIFO2+f7JRYYzVWRJ8NG71rH9PCyVC+FCDdFsxWa+HJqNum54TxRB42VzPggBk3mTrTUvRoKAhYpDQpPxgba4hu36JCPhiiihybzv5rUIIfgvXz3G3zw1SbbqNK7lsdkKUU2iNx3B8YJGycPxzv2dHcsafO94hraEilSrV3/6qQluWNO0LMM1HI9M2SamyYxkLY7P2xxfMOhKarge5AyH7xzP0JHQ2d6TpCmq8uUDs/yHN6y56BKSYRgXPZBVx2rsm370R3+URx55pJGo3Xfffdx///2X9HmXg6smIPf19eG6LsVi8Yo5SsPqjE7rCIKAqampho/djTfeuKwWKUkS/U06HSmdfMXB9cMl6s6eFOXaks/2AvqaNbZ2hVNqY9kq61pjWJ6P5XhYbsA7NyhIsTRtTQkEofJWTFe4ti/Foakic0WT61Iet3UF7Np+A6qqhi4enB4eeGDvAHvWtZOvOqFgvldhYTHHE8fKeIBf02/2gjAwJxSJrqSK5QaUTYej4wu06T6WZRG1DCJ4BDJM512clRgGnC2sUl+mW66PAIr2ytc5CC8uJcvjU09O8MB1nbw0USDi+ZQMl4Lpsq0zQXtSo2K5fOrJcf7Xj25f1T07F873Qn9hPM9E1qS7KYLr+ZiOhyqHgkuOF5zzxeMHYclp1DLIVuyGSUFE8bC9AEEAgcDyfPqbdCwnHBZpT2h8/LvDFEwXw/GW20UBhu2TrTgkIjKV2vfomu5zZ6kl00WqJQMQNhKLpovp+I2APJEz+Mv9Y1Rtj4rlkS2WaU2GfPeJnIkkCTqS4YRia0JjaKFCTzo0J8hVnUsKyJeaIa/GvkmWZf7qr/7qkvZ/JXHVBOQ6Xg3XkJW2G16oMJ6t0p2OsLUrieu6PPvsszQ1NZ1Td0KSJHZ2xfixPb18/dAsfhDQlYzwm+/YxkLJ4sRsmWpRcPP6ZiKqjCaHThMBEFFkdFkiV3XY2Kqxe3M7TU1NnJwv8+jgIo7nk47ItOsem9t8buqK0N6/gf/+jUGGFyq0xVV+9sY+9tY68UKIUIuipmqZzVZ5fKzKXNnE9U8HS6VW4GyK6UiyzDUdUWKqRFdvH5s74hyfLXPgxRP0toXnOz2aP+e1PDPc1gOLXTN4PR8cP6BVk5jKG9y5uZWi6fKNw/NYrkdnUm+UKaKaXKvPXliQ/1w4X4YcBAFjWRNdDeveUVXG8XwSukxzTGGh5JwzIEuE19P2oWL7FC0Py/XZ2hknW3UYXjAao9MvTpTY1alx+5oY7UmdyYKJKguWKjAv1ULRlNB/cF1rjJ+6ofe8qnB9zVEUWaJiucQ0mWzFpacpQkI/TWv8u6cn8PyAzqTOkFlhoeIiK14oLCWHin6OGxDXZFw/fKHWpxUT56ldnwuvT+r9gOJiAm1dlOVC252ZIX/l5Wn+7NERJCFwfZ+7+xVuarbZu3fveZdd9ZLBe29Zw9uv7cJwfLpSOqos0ZHU2d6TYnTURqtR6jqSOm/Y2MqjJzPINc2LW9a30BE/PY68sT3OO6/r5svPn6JYKrNnTQs/d/d2Hn3qWf74oSHGclXSEZXZosWfPT7Kf7svdKZeCUfnLda3xZnKh9rOARCIUFBna2eMda0xqraPGwSNibH5cjicEur+2ityjs+Fei3cWsV/cn0wTIumhMLJwUF2pTRuuKOFrCX4wyfmKBkWMV0hU3G5bpUa0BcDzw/47rEFnhnNM5atElMVZElgOB6KBFXbJ1s5m/63FGqtzKLJNfnRmp7Hls4k+4eytCc0IqqMIodlkVQkwvFFB+voPNs6Ezx6cpGoIjXU4SC8R3FN5sd2d1G0PN6woWXF8falaI6p/Mrd6/mzx0aZL9msa43xn964tnHNPD8sA9XvsSqHuh4zJasReIWAbNUmHVE4PlMmHVUoGQ73be+4pOaqaZqvq739IKH+ZbqYDHklUfmVtlsakIuGw589OoImC3zPRXguD40HXNsSuWANrB7cJ7JV/uihISZqtcRfumdjwwNOCIHnefzLy9N89cAMkoDbN7aSjCisbYlx7zUdDJ0cbBxTuVwmWjjFB66NsmHjTuLRMDPKGqFQUEoPrdmbY7BYsTkxX1kxIAsh0BRBxfVpT6gUasMpyYjCpvYYu/rSjOVM2hMab6uxHUzHozetEwCLFQfL9dBkETIFzgMBRNXQfTq4QDlILPndFwofvWcTPe16Y/qrybf50c06/3y0xELBZ20S9kZtnn9+EUVRzlI9Wzq+q2kasiyfFbxXyq6fGsmxfyhLTzpCTJF4dGiR1rhGcyxCEAQcmyujyuE1NGz/rBeTLMKVgCxBOqKSiipULY/r1zTx0bvW8eWXZ6jYXk3UXqArgu+cKDCQVhitLJKMKFzTneTYTImoKoVaIAGoisRbtrfjBGA5HkdmStywNlwFHZgs8PnnpqjaHjevb+bH9/Y0ShJbuxJ84se24/rBWcwI2/NJ6ArPjxcawk6OD57nE1FlErrA8TwcT2D5AVFNRpYkNncmuHHtpenBWJaFpr12LJl/K1w1AbmOK10bPnN/+aqD74fKXpqmkojHMRyPY4suPWN5tnYlVlyyPXJ8gT94cBbDm8X2IBGRwy/9WJ7//C+Hef+ta9EUiaZA8Nhwgb8/WCCqygTAVw7MhBrJAr58YJr/tDvCbKHKnzw8xEzBYM+Gbm7p6mKi4LBWUYmoMqocdsqd2kPk1Oq0ETls0C21vYIwCNw+EOGfBh20WsauKxJtidBW6PhcBQRs7YyzfyjLYM2+6Nb1zbz3xl7+1/dHwyVuSqdsOhRNb9m02tn5qiClS2Qq578HigBZhpaYyrq2OD0tCVKp5UvbNWvg/pvDskddFW6phdNSH75yubxMc2GpdGU9UNfrmb7vNwL44akcTVGlxghRuX6gifaExr61TXh+wH/7+olwH7LAkX2WEi8koCOpUXV8HM9HlkIueDqmcsemFj7zzCQla8l/CAJcOyBvuHQnZAbSEabzJh+6tZ+1rbFGAH34xAKHp0s4XsDByWJoFWU4HJ8to6sSf/jwKSKKhCZLfOvwPJIQ/NQN4dDFQsliPGeS0GU2d5zWm35hLM/nnpvk+FxIiUtFFHw/QJdA1WRkIRHTFWYKBpoi2NQeZ7HskDNs/umlaa4fSLGp4+IbqkKIV9Ui6t8LrrqAfLm14fNtl8vlGDt+HF0CW4QPb9V2yVYcvnnK4/H5Y6SjCn/8rp10LqnhHZ0p8jsPniCoUdbyhoMQGs0xjZga8Nxonsn8cWQh6E5IEIRL2Ygqk6vaZKthQ04CnhzKMp2RaVJncJUIiWiSf3hpjm8fy7KlM0FnOsLP376O7rjg9k2tfOPgLAXDJgD29KXZ3Zda9oKpn1ulUmFDk8xH7+zhU09N4rg+TTGNybxJf3OUzqSG4/l8cv8Yrh+OW7clNB47uci79/bwn9+0nieHcqxrjXJkpsShmTJV263xjT3qFWNZkvD8gNa4iuuenUk2rjthzTkQ0JnQ2dmbJB3VMFcy6KPmGCOW/7kuYrOapbDv+w1thfHxcRRFwXVdqtVQNMcslBnP2qT18EMWzYDN0QhNloWNQltUYtR0sQKof61kUS9TCBbLNv0tUX5mXy/7h3Ig4E3b2rlzcyv3/OmzKx5T0fI4uWiBWiWqSnDGgMqbt3WQqTg8fDxDUlfoSuns7Eny2MlFepsieDUVPgglQp8ayfFTN/RyeLrYeIH6QcAbNrTw/lv6Waw4/O/npoiqIdUxqcm4nh/WmS2Qg/DF4gcBqhQKLk3mzJCq5/nM+TYf+84Qv/amTWzpXD31LVQuvDSR/f/bcFUG5Dqj4ELbrTZDrivDeZ7Hnl3X8olNAf/1q0dZKFn4ASQjCnHhk4yEehB/+sgIH37jOtoTOpoicXCyiOMGRBWBV5tIq4uzz9YGP8pWWCLIVwM64jJVO2zuLJbDsoog7Ip7fsBo3mNrR5R1rSkmcwaKCN0f3CDgwGSRuCpzrQrvvakfRQQ8NpQloshs6kyQiEWI1ERkfN/Htm1OnjyJ67ps3LiRSCTCx+6Pc2KujO8HfOXgHD2p8CF0/YCJnElTVCGmSgwvVGiOKkxkq9y+sZmy6XJousRE3mRHd4KC6VK2PMp2GdcPA6YfhMt2IYW0qRXvDaAqgta4SsX2aEtqbGhPEFEkkpfQMFoNJElC13V0XScWixGPx2lvb2/8e8eAzaefmgjvWxCwo1vn7XvakQmv4S/dJvG7j80xW3bQFbDc8DxCbnkYbBYKBk8cm+RDN7SSikXQNMGBkXns2uplaUhSpFpTVRIMzpe5dUML61tj5KsOcyWLqCrT1xzh7s1tLBQt2hM6iYiCIgmKloumSMv253g+zTGVIAj4qyfG0RWJuCbjBwH7h7PcuuE0BzlfdSgYLoIAyw1LGqocHs9E3mR3b5L+5ggvT5TIlMO+gQSkNYHtBDx4ZP6iAnIdr7Xy2r8FrpqAvLSGbJoXtqRZTYbsui7z8/MUi0V27NjR4BNvisM/ffAGDMfnk4+P8M1DcywakHerBAF8+8gch2eKNEVV/sfbt/L8WI5s1UYQkNBlIqqM7QUsVmwqdpg9Fg0H1w/wfMgbLpIkMVc8LVsZsh6ChnGmX8sqbM+n4vi4fkBSl6kKn4dPLCD1yfzvz+xnpOCzvkmiN6pxcMQgMIrcs7kZTdPI5XIsLCywYcMGurq6Gufdpqq0pcKs8sBMhWzFoSWuslAxkYRAU2R0NawbzpZsWhMakiQRVQS2G55PQpNYrPgYjkdrTEUSgtmSjSoJutM6qiKIqgJrJZqYAAg51ork0xxVSUYUru1NviYGnytlay0xlR/d1cWpxSptCZ1ruhKN5qvt+jz4bJZ4NML6SIThTAWEz+l1QYiqB4+OmUyVM7x7ZxMbm2SmFw2adHC9kH3ROAYfohpoImQurIm5PHRogsPzBrKkgBCsb4uxULF59OQiQoTlg7WtUTa2x7ltQwsPHc8wkTMQIrTF+pl9vfhByGHvrDXe6g3ZoumwpiWK43oMZyrIIqBS4y8uVmwiMrQmVYqmi+MHvGdPD1O5kcbqS5UEZdMjHfGxV0PIPgNXQzCGqygg13ElashBEDA9Pc3o6CjpdJq+vr6z1KeECN0eOpIR5kpWWI5wHBwfmmMK6ahKvurwy18+jCaHS81Srbaajml86PYBErrCl1+a4vhsCccPa6ABIaOgOSLTFFVYLJsUrToXN1zCD6QVNrSGUpBBEGDYHu1JDRANsaGXchrxphgp3yDjBnRoMbqTgrmqR6VSYXh4uLGcHx8fZ3R0tHFdlja/bu2S+OejBuNVg4Lls7Y1iipLlCwPxw/oSOrsWdPCUyNZXp6qkIxqTBfyjCyaRJWQHtWR1OlOa6xvizGZDzmsubJNyQqPVRLhOUuEwvRuEGaYs0ULSRJ0pjTu396Grp6+Z692vbEeIEJ1thKffSY0ArBdiGoSH3njGt66sxtFEhyZKTGSqdKR1Di5UMV0zi7FqNLpezu4aPGpF3Ncv6aJd+9ZQ9fICIFkkqs6WG740tVVgR0EZM2A9qTMoVmDwUyOmCLojIHtuDx4OMDywPLC7HUqb6IMQ3dS4fD4Au/f28GpgoOHxPaeNGtrllub2+MMZaq0x1VM10dCMNAcpSsV4c5NLTwzmmfpXInjQ0INy00tMZXmmMqh6RK6KtOVipCpOKHCnxcq/13bd3E15KulXAFXYUC+3BpyLpfjxIkTpNNp9u3bRz6fJ5c7t3CQ4XjENZmKFVKeQi3c8GFORRUG58rs6Elxw9pmJjNFMhWXeE0x7o5Nbdy9pY3RTLWWKZ/WNTAdD0V3iSqCG9e1cHCqhOH4bOlK8As3pGlL6BwracwVTb5zdI5CJZzkW9caZa5kk4qEWeWEMNAUiazpE9E0YhgUixZ79uw5S3AJTuvX1n/plsVP70wyVzDwHIfHxgzmyi6JIAyc93ZHOHHsKE+cNBGSxBMTBglV1K5BKCF615ZW2pI62bJN0XSZypvMlU9TDmVJoIgASYJrexIcmqkgA61xje6UxsuTJcZyBhuX0LlWund1UaClyn9L7/dqEQQBluuzf2iRL708zcvjJfKm27g3huPx298ZwXDhXXu6Q8YDkK04TOeNFeviS3nWAiiaLqOZKn/4yAhT+bAO63gBmiLoTOoEBFRNG9cX3LCujVREYbyUYbZsIWlRTNejZFdDSc/GgYPvwULF4ytHchyfK/OLexNIvsPCyCTzw+GWt7fILGZdxhaqRFWZn9zVgmKXKBQs2uIykqgN8ojTx12woNUP2DuQxnDCl7FRE4Va0xxhoWzhKzL3bG3nrvN4860Ey7IaKow/6Hg9IJ8DZ2bShmFw4sQJPM9b5qt3oYy7bLrYbminpMiixiwIv8UlMxRiWShb6KpMQpcZyZqk4zoFw+Vzz0zwpms66E5HGMtWkaWw5igDruszW5UwXZ8Xxou4fsCuvvT/Ye/Nw+O4q/TfTy29d2vfN1u2ZHmLd8d2EgghGyQQsicM8yMrBAYCw1wGQrh3gAlzJ4E7gH+XzNyBJBCGBBK2ZBiyO0CIk9g4m7Ely5YlWVtrb/W+1PK9f5S63Wq3ZMmxbBP7fR496pZaqurqqvd76pz3vIfPvG8RJSKIJElcvrIS3TBYVe3lkT/3I8sgkFha6SWpmxS6rEJP12gcYcRwpwJ85JxGqqsq6RiLo4ZCuO0yu/vDKJLEhgVFVBc6j/CvjWsGYtRKx3z+LDsdIzGiKZ0FJS7qCmykUinsvT081x5gKKJlWondKqR0aOvso9QlkxIyiz0Su/u1KT7JuiEocMjIisKq+mK6AilqixwUuazbas1MEdOlzJj49OeRjqxyn+crEuWeE9mObmnD/7f6w+wfjpIKR+mLxuicMNgzEMbIGkElsIpbCc3k+bZh3ttUQnO5B4cis3sghDbNqZK++5GwdL26ITg4GiNlCrx2y0rTEGDqAt2w5td57TIJXcKRrlZKYJhWq3kkqU/bqu22qxgCJjQVvbCWSp946JzPAAAgAElEQVSDx9/wE0robF5YxEVLilm/UiMST4ChTxmcOtAfwS5Dypg6uFYCJCPJgYFx4rogEIlT7pEYCukE4ho1hU6uXlPJ9etr52zJGYvFToumEDiNCPlYdMiGYaDrOl1dXYyMjLBkyZIjUhMzpTYMU7DjUADdNK2owgRjclJxMJZiIq7jtFm54N5AAo/NGge0tMqXkS7tH47wvevP4ou/2kNfIIbLJghq1gWcSpo4VJn45MTjPQMhvvl0O3+/uYT6QhuxZIqHX+vlwHAU3RRUex1csrycbftG2d0f4i/9ISp9NipsSc5d4OFDG1diSCr/zwsHiU62xPpDCVZUeZEkmde6A3zm/EZqCg8rRCJJnR++fIixaAqQ8DkVPnneAordWZpRReUtf4KYZi1MKRNSQGwyCB7SnVy1diENxU5+t3sQSRrAlr7oYfLOQlDtMihJ+ql2mgRDOqRi6KaMJiSU2Dh+fyKTSnE4HJnxP4oy88TjbMLOJuvs78/vG+W//zKMXZHoGw0SNRQayzxIksAmMUXGZmAR1IHhKMPhJMuqfBS41SkNG9mQsdqfrTqCdWtvEbCEbli+x+nJKgKrwcbnVLBLglKPytv9YRaXua1GGkXmwEiUSNI4ohAIVn1BVSQM3UoHjUY0fvByj2U4pco8umuAhGZy7brqvLr5mgUav+nazcGRwz2BdkXGhknUkLAZVpdhZCxGsR2SSYO4AQNjUd5s66QJPy6n8wjtd/ZjVVWn3L2cLgNOAZSvf/3rc3n9nF58qiFNsGNjY1OKVNOhs7MTv99PSUkJy5cvz3uCplIpAoFA3ukCY5EUj+/qp9znIKXpOO0KxW4bd3+ghfULii1CLHBS4XPgsinEUgY1PpnKIitVEE3plHodvHeBmyZ5hNpiL5pkIxjXKHRb5kKaaV1YNsWKojwOlSKnghoa4PnWIf7cE6LIbuJWBf5gkjZ/iJFIirhmEk0kGQ4lqC/zIbt8dI4l2DMQIhDTqCxwMhxKMhZNUeZzUFfkIpI0MAUsy/JQ/lPHGG/3hbCrMopkNYNoupjis7ynP8wzrcNUFjpIaCbxHGIajWosKnXRXOnjlc4A7UPRTHs2WLfG719awbevW8PmFY2cs6SSA6MJxuICh13lU1uqaCxxZkb/jI+P4/f7M+O4+vr6GBoaYmxsjImJCcLhMLFYjGQymdEZK4qCoijIspx5nPmZovDvLx2iwAapWAi3281Q1KDC6+DQeDyzcOQiaQhGw0kiCY2nW0eP8JkAi4wbSpxcv7aK7vE4hhBIkhXFuu3y5O3/1AYYt12myG3DpUosLnURSBjs6gkSjmsEJ1MbNtVq3YbDzn9gSe1MrOYOsIptQ+EU5T5L8WNXZA6OxaYd+eRQFc5bXMxrXROMRS0VjNMm4bUJ6kt8bGkqZSSqMRzR6A2ZpCYj/5SAnii0LKzj3GX1uFyuzLTqRCJBJBJhbGwMv99PX18f/f39DAwM8OMf/5gf/vCH9Pf3EwqF2L9/Pz6fj9LS0rz7l4tf/OIXXH/99dx5551cfvnl1NTU5H3dM888w+WXX87WrVuJxWKcd955s/r/c8A3ZvOi0yZCBjLR0tEi5HSe2DAMzjnnnLy+E2nkpiw6hiPs8YfxOVQ2TPpCqLJEpVdBtdmJ6YKmCg8jkwMv06Nxij124kkNjx36J+IokoRAsNwdob09wCGpku3+cQ6NxVEkQZHbTjButUhrhkCWTMq8DoQwqSgpZPPyJlpfOURZIorLbnX3OSSNfYMxhGHgkE3skkRAh5GJEFW2JIfGJXpCJlU+O1FJJ5FMYZomkbiGKBKTUf5UMu2bSNA+HEGVJcTke12YZT36292DPPLnPgaCCUYjEg41f7T6g+09vHxwjJ7RKKoMJpaETwbuuqSJ6zbU8uNXe/jlG37CSZ1Kn4NbzqnnirOqjlqBTzeBZOe+U6kUwWBwyvPsgmB24VJRVcYDExTYBZLDS/+ERiRh0D4UQZZltDx3SOl88u6BCAdG48Q1M+/YJocKSys8PLJrAM2w8q6GCU6bwOdQiSRlYpMLmIRFqKoiI0sSi4tUKnx2/NEEuilw22TMpIkhBHZkfE6VWMpAn1SqeO2Wdj2hm3jsCqVeO692BRCQUacYpkXmQlj7YlflI1IMtUUuVtf6GJhIkDRMq0ipWwMSrL8ziOQZTJAy4PE3/HxsU8OsIl4hBIsWLWL58uU88sgjNDU1ZVRNs8XKlSv59a9/zR133DHtawzD4DOf+QzPP/88dXV1bNy4kSuuuILly5fPejvHC6cVIcPMKYvcPPHbb789Ixmn/1/6Qn65Y5Rv/K4d07SinKVVPj5x3gJ+8KduUimBYhhcsaaGhaVu3HYVkIinDJw2yxSowmfDQYq+UIJiu+DSOoMNTUvYOWTyo99bXVW6KQgmBUWTdpeTsleSuslgMIHboVp5ZkVhUYWPfcNxnOl26VQMpxInakqUFBcRSho4tAR2t4fq6mIKkxpBI0xYM0kZSQYmYownIBiboHNogkq3zEZPgNdfH8yQ1cG+MLFEklKPHVmWGI1omJMDPA+ORHns9X4qvA7CCYND4zGC04yO0k04NBLF4bDhVmS8DkuhYgqTDQuLeeiVHh7Z2ZexGB0IJnhoey+NpR5W1c48PTu7CWQ2Fo7ZhctAIEBvby9rKu285tcYHA0hCfCogomYRbLTzQUEq+MuoRlT5h9Ofd8SL+4fQ3A4jyywpHKqIoGAAodMNGXplSVp0g+72EF/IMR4SmYgmEI3BKOpw14Zcc3A67ARTli6bt2EcMoknLLSZ0srvThsMi5VpmMkxlAoiapI6Ibgps11/NuLXewbtBbaG9dX874lh1N1B4Yj/G7vMPrkCiNJlpJj/0iUmGYwHtWm9VKd0nF4FEiSRGlpKbW1tdTX13PdddfN+m/TmM0Ypp07d9LU1MSiRYsAuPHGG3nyySfPEPKJQL6c79HyxDMhO0L+7raD2GQJp0NFCMG+wQjXrK1h6w2reGX3ARZUFnP+ygVIkkRlgYO7P9DMv71wkLFIitpiF73jEXrGkigS+CUJn6eEv6mo5Pk/7samSDhsChU+B5GkzmAoZU0KcamUem30jFsa4OYKD798c4Ait433NpfRM56g1W/dolfaEmxZW83PdweIpkw0w/IZKHHbUFWVaFTn4hU1GMLkgZd7kFQbRW7LtyFmQmGRj00bWih1Wz4fyWSSIq9GY7HBUETDNAUldkiMD/Daa0PsHTOIRHTshsJYWMvTHp31uUig2m0ossxEXCeU0IkmTWqLHFT6HPxx/5gVMcuWdM8wBNGUzr6hyFEJea5QFAWHw0FfXx/BYJD169ezxenEeOEgf9g/RpnPzqIyD7u6A3SP5VdNCCaHlk6SlkvNz1C546vS2YW4ZpLUrXmM4aSOXYWEJlAUmfoiO639QWRFRdY1a5isYRVKTZj0mobxqI5NkUjkVPdMAW/3hzirxocsWSqIq1ZXEkporK0r5NXuCfYNRia7LwU/2N7LtnZrwvS5i4p5+eC4NVJrsvvRECDJAlUSDEwkKHCpJDSdaE5fjyzB4vK5GwTNdw65v7+f+vr6zPO6ujp27MjfHTnfOO0IOT3kFKbqievr69m8efOc9avZ8rhQQscz2eVm3UYLwkmdUo+dQpftiFE+6xcU88it60nqJq91DPP5X45gk8HpsKGbgtd7goxGknjsKvrkhStLEgV2iYXlXnrG4xS4FGKTxT1j0oxdlSW2d4xz0dJyPtziJTLcS6LQxaaWFjY0ljBh2Dg4GkOVpUmzc4WBiQR1xS4uWV6Obgj+3D1Bz3gcU1hV/0hSR5Fk9g9HeG9zWSba3LQERhNDrKh3ZLZ/2TkNNJV7qBiN8uLQPux2mYQRRJIEKrlG7Za2QAjQUhqqTULTrQkkCU0jmZKYmAigygLTFMRShtX4YloyMrft+OuNw+Ewra2tVFZWsn79emIpg8dfH6B3IoFdlWkut5o+GkrcdI/Hp3fWBxTFyuUmTQkZcVS3u/TvhQAzFWciYWmv3apMuVsloRnE43E0IaGlDAxhZNQO6ekidsUaaoBEJorNRcoQvNkXosilcud7G7hyVUWmiPnQq70UuxSEEIQTGl1jMUzTpK7IyX/t7EOYAo9DYSKmw+R4LbtsuQ+OxXRswvKdsGGS5mQJqC+083fvbZzlp3AYRyPkmebp5ZsOkot8OueT1YhyWhGyJEmZA52rJz5aamI6ZEfcmxuL2X5wHJ9DJWWYyJJESjP424d2oWkaNiXARQMaX7hw8ZTGgqGBPt5u7UbCGtYpSTKqLIjqBoYpuHlLA7v7QgRiKYQpcCoCLZkgGNcIxlNTikqHxmKoiozPobC3tZXf7J1gXHjxuR38du8IA6EUN2+ppzeQwDQFtUVOVEVCMyzvWmnSMtRjt0Y9CaRM3lhVpCOcv7Y0FpPUDF7rCqDKEteuq6Fp0i1uUZmHj26s5bHXBzKSrkK3ZYGZ9akgYbWXN5Q4GQgmWFHlpNKrokiCkUiKtp5hLqyFvQMW+aQHniqSSX9fH/sdoSk537TCwm63z2mBNU2TQ4cOMTIykhl8a5iC/3ipm66xGG67VXjdfnCMJRUeXHaFhSUuOsfiR/yv9OUshKDAqRLXDCoKHIxGU8TyOfRnn1OTHhdOtwubnkSVJSQEwtARQkKWFSKajkuxXPE0E4xJY0K7Yg2ATZpQ7lUZjxrTknJahTEcNabofKsKXfiDCYIJjT0DIRKayVDYstssctkYCadoKHaR0KIkdXPSjxs8NpmwAgkNPHYVRTYodCgsr/YyHtP52IZaVtf6pkx9nw3i8fiMfiMzzdObDerq6ujt7c087+vrm7b4N984rQgZrA83FovR2dnJypUr8zY/zAXZEfeXL1nCt587wI7uAD6nykVLy/mXZw5MzrkTVHhVft8+wvlLyljfUEQgEGDfvn2UlZVx6Tmr+fG+NwgmTeRUEpsiUVvkorrQSU2RxP0fXcUf9o8gTJNQOMpvW8ep9Sn0BKd67OqmRSwDo0G6hjQG4jIlbp2xoDUF+5WOFO9vLrZkUllRQLYFhCrLfHxzPd/bdpDWwQiyZM0JrPA5WFkzNT0gSxLvbynn/S3l5MPKmgJiSQOnIvN2f5CJmJ4hK5fd8ktIaCZNFR4qfA68DsuUyGmzfBSchsKKJYv5YImL5/ten5TXWZ69mm5SUlZGaakvk/ONRqNTCnXp6EdV1SmknSbu9GNN02hvb6ekpIQNGzZkCGM0kqJ7PEZVgQNJktjSWEzHaIyLl5WT0gVvHjqyKUgC7Fkqh1BSR5FlxmLZzUHTB9Zeh8KqugL6AklShtUqD0xac6p4vG4c4TCqKiMrMjZTUOGUqPQ6CCd0HKr1N0ndyhfnlb9hEb9bMXlpn58rFimZ43HdqlK+84de9g1GAGv4gceh0j4cY3mVl+XVPit1FtfpnYhT6ICFFYUMRzUaSjzohkl/MMFQKEmBy0aBy86GhiK2NBZm7iaz6zjpzyhb9539fb5TFhs3buTAgQN0dXVRW1vLz3/+cx599NF5295MOK0Iuauri/7+fux2O+vXrz/q69NkO9Nqnk1qXqfK5y9czDefbmdPf4j//fuDGKY1rUGWYDiiU1OkMhiIsHuiB03TWLVqFR6Phx++3E2p28aQlpxsDRYUuVWeeGuAN3qs232fQ2X7wQDBuMZE3MBhU7CpMhhWZV6GjD/ChK4QdVWAHGBnf5ykZiKE1X79ypt7qXaZvD2i8/aIiU1VeE+Di1U13gxR+ex2vnpxAwfHkwyGdYrcdtY1FM5pfPyO7nH+5ekDDIWSRJKHJV9um4zXoRJJGkRTBpsXFuNz2hiJJPE6lMnIX8MU8P6WMuqLraLkh1ZV8us3/RS4LDKWJImzF1dQWjJzXnI6lUUoFCKZTBIMBonH4zgcDkZGRhgbG8tE2XGhEo/FiSsGyqQ+ttChsGFBEf/8u/14nTaqJn1F0ihwylQXOrEpCvuGInhUGc0UpHTj8NRt62M7AtU+G1+7vIUf7+hjJJwkkTp83HTTyjmvqSvAY1M4MBy1pnIrEgKJuz7QzKpaq1Puyv/YSVwzcDtUHKogNNlJKDicFlEUmVKvC1UWvO5PYCfG4kKrpnJhVYqRgIHbBgMRk3DMmhQzFDC5rLGU3UMBgrE4JS6F0gIXy6p9HBiKMhbVWFNXwOJyDwdHo5xVU8i5i0tYWOrOWJ/ORved3dTz5JNPHnPE+pvf/IY777yTkZERLr/8ctasWcOzzz7LwMAAt99+O0899RSqqvL973+fSy+9FMMwuPXWW1mx4p2N+DpWnFaEXF5eTn19Pa+99tqsXp9OR8zl9upfnm6nzR8mGNcwzMMVc0XG0ukmNaKDXVStbZkyjnzXoQAeh4IOIFnk2j0a495nD3BWjY+usXimEq7IEropMFNGxnAIyExilmUo9Th4Zn8QVVaIaeBz2ie9diWG1QoqK3y8cbCPohIbhmHwbK9GXZWLBQ41o+dNpVLYk0mqNQ2RELSOM0XAnx1hpr/aRxI89voAL3WMEYzrGeVANlKGicehoCgSWtbAzhK3nUBc4+uXt+APJih02WgqPxzJX7+uFkWS2H4wgMer8Leb6jLTt2fCdCqLeDxOa2srpaWlLF68ONNAkq2ySCaTrK5Jsqs3gipZLdNLi2U69rzJeEAjnjApdCjIXplAwsTnkLluVRkXtZQSSAq++dwha9ZdQkdVZCTJkimKaZLJmgkNpR6Wlbv4S+9EJtWTXvc1QzAcTvF35zfyw+2HGJhIoMgSN2+uZ1VtIQAum8I5i4v57e4hgnEto+m2TISkTJNJqdtGQhcMhJJ888VBJAlW1xbwnx9bjVwa4TeH9mOzyawtt+EPJDCE4B8vqKPDP8qbPQF8DgUTifFwjNc7YrgUQbVHZk9nCFlWWFruYFNpEntinNGRyJTzRFXVo15XoVCIO+64g6amJu69996jfs75cNVVV3HVVVcd8fOamhqeeuqpzPPLLruMyy677Ji2cTxxWhGyz+fL3CrNZqZaumCnqrM7TKG4xp8PTWCTrAJfmoikSXMcJMH1Kwu55qJVmYvfNAUPvXKIN3snCMatfVMnlQTBhJ4xoQ8ldCRJIElyZiJEatIvWMm5BfY6VJZUeggndOqKXYxMjlEq9dhxTQ6s3Nk9QYFTxWtXAZWUAZ0hic1Lq6d9f+mJ1LmRZjpN8Bd/jAfejjIYnbl4pZuTWmvZunOIpXTcdpVgQqOuyEnt5FcuFFni+vW1XL++dlafx0zvY2BggN7eXlpaWigunjrFQlGUKe3hn7m4nJ3dAfonEtQWOTl7YTGKLNEhH+I3b/rRhMBmg1LF4JMby9hQ4ySVCCFHE3gkjbiwpmpLQlCgQkyyuhSzUwnKZAedhODOR99gSaHAaVeJG7plGiXSJksmNlnmrNoC/vUjy4gkDQpcKq7JYnKrP8x3tx3k0Hgc3bTunBTZKoKmVR+qbC3qPqfCYHhyWrksIQzBG71Bvv1cB4cCcUJxjX1DlnqnptDJt65chjMxSv94lJrKMhoUhT0DYWyyIC5JrGss5bPnL7Ry2MkUstBJJpOkUilisRiBQCBzzmQb/+dOa9m2bRtCCP7jP/6DT33qU3z6058+LaaFwGlGyGmktchHI9rZtlmDRcaff3w3gWieycLCcvO68+wi7vjA2il/94f9o/x8V9+UtlprbM7kANNJptUNy6glrTQwJzv0HDIgWVX1lCHw2GUkCQ4MRagucnHuomIODEcpdlttxOPRFOsbCjkwHJ0ySkk3BC77zBFLemrGdBfHTzvasDl0RDSRN285BQKq3YKkJvhLzxilLqsQ+f4Wlc7OzrxR+NFaoGeDZDJJW1sbdrudDRs2zGqxVWSJLYtKjvj5RzfU4bapvHxwDJsic+3aas5ZPLWD7DuNCf7zT9384cAYNhlqChx0jEYpVK0xTJGkgSwJ3KpMKGkyFtUJxiEYB82YajpkCIvUV1bYicViOB0OPFnFuNFIim/8rh2A2iIn/mAiE2HLk/K0dA47pZt0jMTQTWsxkCUJIVsR+B87xih22RiJpnDZFCTAY5d5/OVW/nZdGeeuaeGRnQNU+OysqSugYyTGmvoCPnP+QjyTxQi3Y3ZF8rTxf/YCv3v3bnbt2kVzczPPP/88jz76KH/84x8zXiXvZpyWhDxbC87Zvg7gv9/24w8mqSxw0BeY6rcsgJZyJ5sXWAXEgyNRtrWNYArBc23Dlgl9TiXcMMRk0UXwxqEAiYyvg0kyS6SgYJG0qsgU2hUM04qcB5JJzmsqZePCInQB/7N7CMM0uWF9DRcsKaO5wkvbYIT+YByERKFL5b3Nc3PhyoVpmJlxGDMRsgy8d0kpZV4HEzGNhmIXHz6rgmKHNCWqCofDjI2NZVIH6c8i1wI0X/okH9EODQ3R2dlJc3PznLTm08FpU7hhQy03bJg+Yq8pdHDbuQ147Aqv90zQMRojplkLZ2WhC0dMI6GZqJLlXa3IVi0ilDRw2WSafCod48nMcfPaJLa1DlKrBHGgZwIGWZZ5Y1QwEIijyjJOm4xdgbh+WBMN1uOkkc7PTkbdwjKrSsMyoLdSbhKWeX0sGmXMU0hzczOmEPQFEmzvtAqa728p439tqssMNpgLso3/TdPkO9/5Dh0dHTzzzDN57Qje7TgtCXmuBkOzwVg0hSxLeGwqNuVwwUZMakOjKZP/99UxvlAU4r5nDwBWpNsxHIHJKRlCWBeOIlmFwC+8fxF9gThP7x2mzC6TTOmEkocdd2TJiqLAaml2ySZem8RYQmCXJV7vHuWrvw7zf31gEe+7snmKDKy+2MVXLm1m90AQRZJYW1841RBojojFYix1hXlLmNhVieQMJuQmTKZMbNQWOfmbs+tYPIc5a+kcb5q4s3Pe6Z9lE5WqqsRiMWRZpqamBsMwCAQC05rZHC882zrMQ6/20DUSw+tQ0ExBTDNRJKuxumc8Tm2RE5+aZCSioyrWwqgq8mQRVGI0bmSmg5gCJpKCHQNJ+uIy9121jLNqrLxxz1iU37z2NoGEQAgDMDJNJvmKh2nIYmqXoU0CEGiTKRXDsKSGuuykvsz6jGRJ4uq1NVyyvMIa1+V858cvEonw6U9/murqap599tnTJkWRi9OKkOfq+DaXSHpdQyFP7RkiEo2jZemC7YpE+aQBe38wxn+9ZukdS70OlFgKdVLXm3Zsk4GaIidXrq7iomXlPPRKD6VeO3ahYSjgcToJxHRimmEpeNM6UJtEaYGT/gmr8Ffts6PKcGg8zquth1joY4pfQ1oGVm+347A7iAVS6NGp0eZsipmmadLT08PQ0BBXbVlK/cIU//Q/+5AxSRliin9DWu4lTxYt4ykDRZZYX1941O1kIzfHOxOGh4c5cOAAtbW1eL3eo+YzZypYOhyOWZP3231BHnylB103JxdkHc0AhyIR103ckkJKNxmZiPLBlkI8BYX86k0/hinQdBPDFJR5Lc1v7phAzYSe8Th3PraHJ+44myK3jcfe8GdMiNIvT5/h2SmLXOg5z4UATBOZw5G1XQFZaJxTlqKrq2vqMbHbEeLIydxzQVdXFzfffDN33HEHt91222kzHSQfTitCTmO28/JmS9ySJFEpAmwp1/hVh4RdEdhtCtGkJco3DJORqDY5UslgPJbCH4xnpD0eh0J1gQN/KIHbrlDsUvnVG36ebR3BLulMhJO4nHaGI4KUkcSpWpMZRiKaFVljWSCuqi1EM4NIwPBk36pmCCbUEtasacjsrxACwzCmRJgzme1ka3iziUrXdQ4dOkRZWRkbN25ElmUatSi1RW4KnCpv9E4g9MMFvnQ+1GFTaK70UeqxWdNUyDd1+p1B13X2799PKpViw4YNszI4T88QzP6Kx+NTjkt6HmO6GDUdce/um0ACVNUyxE/pVit0CuvNxlLWjMRzGov53AdW0j+RYHd/iKHJGYq1xU7KPHbGIvnnCkpYqYXtneNcvrKSUFxHkg7niLNzz2mfDLAWQrdDJpYyp7wmc9wADau4WOJSqSn2AIK/P7+eBYXqUc+V2aSTFOUwgb/44ovcfffd/OAHP2Dz5s1H/2Df5TgtCXkuE6WPRtwjIyOEw2GKi4u57n1reSvYRoHThiEEf+kPkdJNggnLpLvAbhVb/rB/DBAkJicqOFWZEo+d9zaX8GzbKH/xR6yLOZKkzC1RVujl4GgMSZKoK3IwEUsRTupYsk4Jr11hYZmbQ+NxLmwp42d/HsChSpiA266wbd8oH91Ym3FakyQJVVVRVfWoZjv5yDuRSDAwMEAsFsPj8TA+Ps7o6CgAcVMmHk+QTEpkx9fpnLJdkajw2Sn1WB4NFV5HxvHueCHdhdnQ0EB1dfWsIy5ZlnE6nbMqHuUWo5LJJMlkknA4bKVQRiOEwgm8NtB1QVI/HL1KAjRdsK7Ozf958UIefvUQr3UH0Q1Bc4WHq9dUs7a+iHBC47L783sqCCZNfSaLwRe0lPJK5/i0DSfZPzMFuGwWKed7bb0b6ssL6ZrQOLuxmCtXV1FbNLvGjHwLfTqdlD5OhmHwr//6r3R3dxMIBLj00kv57W9/S11dHXV1dbPazrsVpyUhzyWHPB0hx2Ix9u3bhyzLFBUVUV9fz2hCMBhK0jUam7w9t6wMHapsyZrQaesZob5QpTuQwqHKqIpEqddOhc+BKWA4lETGunh1AcGUTIEpWFTmpmRSKVFV4KDVH8HjgHKvg1KvnUTKwO1QuHR5BdvaRzFNcNpk6opdBOMa0aQxrfXlTMgl74mJCbq6uqiurqahoWEK2aUbMBLeIf79T70gGThtlveGU7WUIitKFQ5OJOjyJ7ErElet8tLe3j5tRDUXDbhhGHR0dBCJRFi9evW8dndlF6PyYXGLwSG9na7RGIVGCiOassx/JscwybJENKFx/4v7eGswRaFdYAcO9ofZTpiCmJef7o0d4R2dhjmpuPk6d9gAACAASURBVKkpsrZ/wZIyAjGNf3n6AIncHEf23wE+h0pVoZNQXKMrp+270A4rFlQgyzK1Isl7mkpnTcZgXTNut3vGVudYLEZJSQkLFizgK1/5ChMTEwwPD8/Kie/djtOKkI8lh5z7OsMw6OrqYnh4mJaWFkpLS3l115u8fmiCx94axqnKJDSDlG6iC/A5FAqdKuU+B8F4CofdhpxI4lQlbDLWxZOK09Ef40DaqAEpE04ldYMyl8RIzMQwTYQk0xtIYFMkSjx2hIDxSApJkrjzgnrqi11UFzgts3q7QiCuUeF1UOg6Nq+ONHRdp6Ojg2g0yqpVq/JecOnb+A+uqmN9YxkPbe/lzb5gxv/i8pUV3LihdnJGnEal14ZTNqdET+lb4XSUldv6nHv7m34ej8fZv38/1dXVLFmy5KTnIV02hX+6bAnf/0MXf+oYJywDQlDosaGZ1jxAj8tGVLZTWqRR4rGKWK6ERtxhp7GxnkOvts64DVWCn/xhL+5wIXa7nXVFDt6/2MtT7fn9gtMezYosEU3qlEx6aocSGjYJCl0KC8u8GAKCMQ2nTWZByfFd1Hp6erjpppu45ZZbuOOOO07653Sq4bQi5DTmMnk6m5CHh4fp6Oiguro64wzXPRbjmy8H0YjQF0zhmKyUB2Iahi5I6AaDYcFEXOfWc+pZU1fIt184iIGOhITHIVNW5CKViFLiUuiNahhCZEzFfXaZj5/l5cWDYV7tCzMSM63J1XYIhDXK3SrnLXSzusbHAmcSPSb4zLnV/PA1P0PhJA3FLv7+wkWZttVjwejoKAcOHKChoYGWlpZZXUQVPidfvrSJ13uCDIeT1BQ6WV1XYKVdil3A4Qt9NmmT3NbnNHknk0kmJiZIJpM4nU4GBgYYHh4+grxziXy+p1Jrhsn//n0XL7aP4JY0ipwKQxEDkTQp9dhoKHYSTBg0lXv408HxTKNSNGXQUOrB6/XSUOZh92D0iP+tpplVktBtPhYvXpw5LoOhQTw2iWgeAyMJq0DnkgzWVNgxBDQXOlnoMDl7+SKqKsr42euDtA2GqfTZuWlL/TteyLPx0ksv8aUvfYn777+f97znPcft/76bcFoS8lwiZE3TiMVitLW1oaoq69atm5Jj/O4LHURSgrCmYZiCmCmIaanM7x2qgtsmI8sy16ytocRj5+uXt/Dj13rY0x/Go5iEI2H+j4uaqCkvYeyJNrrHY6QMk3KPgx987Cxqitycu0bwbOsI332xkxK3Sv9EgmjKIDhhUDEh8eGV7ky+zp5McnuLQTyZQpU1DrW9zUBOASr3cT71QCqVYv/+/RiGwbp16+Y8+VeaHIz6TjFd63MkEqG1tZWamhoWLFiALMtTyDs7l5km7XymQzMR97GQt2EK7nuug9/u9qPpJjZVZnG5mwKPiV2xxiRFUiYf3VDLBS2lBOIabf4ISFBX7OKatVa35Offv4g/HRwnGM/VQkzKKWWJZdU+PB5P5rgU+YZZKGzsGwpPaVuXAIdNZmGJEwl4b1MppeYEkUic4uISkqEx9o8MsNZusrYBFCXBRO8BYkNz03rng2ma/Od//ie/+c1veOqpp077PPFMOEPIM0CSJIaHh/H7/bS0tFBScmS31kAwQcIwM3rgXGiGidfnQJUl7Kp1YS+v9vGV99WwY/c+HL5S1i5tpGhSA/y961fS6remPK+uK8h0PkmSREOJC7ddZiKmEU0Z1mgdIegLafyhz+C2cxfk3QchxBHRZSKRmFY9YLfbMQyDSCRCeXk5VVVVxGIxdF3H4XBMqZKfDAghOHToEMPDwyxbtgyf77CGeS7TQaYj7/S8vVzyzm3xnY689/QH2XVwGIcsUOwK6uSdVH2xi7/ZUMv5S8qwq4fHWX3xoiZ6A3FMISj3OfjVmwO0DkTwORVcNplgjrunLixflLMXFHHrOQ1Tfnftuirue+4AiiwhC4HXIVPosjMc0agtdGJXFd7XXEyJEcDr87F69eq8C85ctd75jktHRwcOh4P7778fp9PJCy+8cFp0270TnFaEnJ1DTqVS075OCJHRr7rdbjZt2jRtlLSi2seBofDUmejp7WH9eDic5ObN9XgnjXv279+Ppmmcf/aaIwpPpR4772nKP8CxqdxDXZGL13smLLG+KSh023HbFTpHYzO+75kKUNlI3w0oisLSpUsxDGNa3W76QswXYaa/H49259z9a21tpaioaIpN5rHgeJB3rt2nYRj8ZTCOritUehR6Qgb6ZD2h0AFrq+zYJQObfDgVoMgSC0vdCCH456f2s6M7gFOV6RmPkzJExirTxDqnVEXi//ub1Zy9oOiIhfHF9lEGginL+lMCzZRYVuXjO+ctwKbI6IkYY70HqK9vprw8v2UqzE3rnW3GlL2oPf744+zYsYN4PE5BQQHnnnsuDzzwAGvXrj3q/5wNbr31Vv7nf/6HiooK9uzZA8D4+Dg33HAD3d3dLFy4kMcff/wIr5JTGacVIacxUw45Go2yb98+bDYbLS0tTExMzHjRf/79i9nZOUJ3IDVltpoCKIplNdlc7uJ/rS+np6eH/v5+Fi1aREVFxZyjTLsq8y8fWcrdT7SxqydIidtGZYGDQEyjufKdVaiFEPT399PX10dzc/OspvrmuqKlo6hswkpHUWl96kzkPdNxFkJkphEvXbqUoqJ3ngqZC45G3un9GxgY4LLz1vLK091ousHiMsvcvaHQxt+t8zEx4me4P3/knRAKr3SMU+hUkGWBKSZbMq0dQBICRZZorvCyaeGRJLOza5z/3j2ETZaQVRndEDhVmavX1tBS6aWvr48xv581a9bMqIKYK/KR9/bt29mxYwdbt27lggsuOG7bysbNN9/MZz/7WT7+8Y9nfnbvvfdy4YUXctddd3Hvvfdy7733ct99983L9ucDUr7xJTNgTi8+1ZC+dR8dHWVsbIyWlpbM73Rdp7Ozk7GxMZYuXUpxcTGBQAC/35932KEQAtM0MU0T3TT53otdbGsfJRi3vAlsMhS5FNyqzCfXuPDoIWusjc2WmX6dS0izlXyldJNvPd/BGz0TgMTyai9f/eCSjOPXXJFehLxeL01NTcc9qoWp+tRsws5+nNuIkk3Ufr8ft9tNU1MTTqdz3otyc0EqlcoYFi1ZsgRFUegajfHD7d2MhFOsqi3g1nMaMumnbKQj72QyyWgoxqd+eQCf3Zr63BtMEdcmW+QnV3qfHb64uZCzqj1HnDc/2jnIQ6/1Y1esyTjG5GSVb125lDJtCEVRaGlpmZfPN/v9PPjgg/zsZz/j5z//OQsW5E+jHS90d3fzoQ99KBMht7S08Ic//IHq6mr8fj/ve9/7aG9vn9d9mCVmFX2dlhFydg5ZCMHQ0BAHDx7MzNWbSR6XTcQwmXNVVb50STNfuHAxYFllvnJwnISmU0kQlxlj6er1U3Kdube/2aqBfLnL3IvvUxtLCK2xZtvVlniOiaCy256XLl1KYeHcWpjngtnoU+HI1MDw8DBDQ0MUFxejKArt7e0zHpvcyDu9AM4XxsfHaW9vZ/HixVP8rRvL3PzfHzn61OLcyPuCliAvdYxjUySKPQpOzaDIpRJNGZy9oIibNtVQ61OnLGjptEk8GMIuC1K6NZ3aEOBSJKK9rZRWllBUZE2pyT5ex/PYJBIJvvjFL6JpGi+++OK86sCnw9DQENXVVlG0urqa4eHhE74P7wSnFSHnEm0kEqGtrQ2Xy8XGjRuPMDTJTW2ku9bSpvW5J3Nab1vitnF2pURnZy8NDQ3U1Cw/4rXpZovZEFS6IyybvNMdYclkkv6OqQW5mSLvdGU8HA7T1tZGaWlppu35VECaoIQQdHR0oKoq55xzTt6Zh7n+zOnjE41GpyxsaUynMJmrTwVYi1lnZyfBYJC1a9cel2KVJEn8w0WLWVzuoW0wQn2xi2vWVpHQTdx2BY99+svVFAJnRYy2SDudI1ZDiVMW3LpUZs2yxkzdJE3eyWQSTdOOSJvMpDiZ6dj4/X5uuukmrr76av7+7//+lDmf/tpwWhFyGqZpMjExwZ49e2bMR6Y79XKj4nxknEYsFst0nq1fv/4du1ZlG94cbf5fthdDNjkFAoHM83T0aRgGhYWFaJpGd3f3nHO684nh4WEOHjx4RNSZi6P5M2cjn9IkmUwSCoWmVZpMt7iZpklbWxvl5eWsW7fuuEaZNkXm2nVTxxUdzQdvJJzkK0+20T+RwBSC97eUscAZZ6EXzlu/8qgDfGda2KYj7/TdR3r23C9/+UvuuusurrzyymN+78cDlZWV+P3+TMpipvPnVMRpRchCCPx+Px0dHciyzKZNm2a8mCRJypyQaanXdK83TZPu7m5GRkZYsmTJSansHs2LIe3x0NjYSE1NzREX4HRdcrnRU24UdbzSAulBo4ZhHJfFLBtzUZrkW9jSSpNQKEQkEsHhcDA0NMTIyMiM5J2WCc4n7n22g75AnEKXjZRu8Md9g9z1vmret352HYtzXdjS5B2LxQiFQrz55ptceumlvPrqqzzxxBM88sgjeSWixwNbt27lhz/8IUIIPvGJTxyxAFxxxRU8/PDD3HXXXTz88MN85CMfmZf9mC+cdkW99vZ2KioqaG1tZePGjTO+VtM09uzZM8UcPbvglL7wUqkU/f39VFZW0tjYOO8X4FyRbnuOxWIsW7ZsTrm97KJTbtokO+KEo0eWM2mYx8bG2L9/PwsXLqSqquqUa6nVdZ329nZM02Tp0qWZqDOf0iT38WyUJunHx3JX8qF/34FTlRGmQSKRIImNz16wiCtXTz+O650ilUrxpS99iVAoxIMPPnhCfCj27NnDjTfeyM6dO7Hb7dTV1WGaJoFAgMrKSr7xjW9w5ZVXcv3119PT00NDQwO/+MUv5m1xmCPOFPVyIUkSixYtQtO0aWVv2ekJSZJYtWpVhhxyC07RaJSenh4Mw8Dr9RIKhfjzn/+c2Vb2hZZLUCcicgLLja6jo4MFCxbMuu05G9lFp6Mh7YCWTdrZGua00xccNuex2WyEw2FM06ShoQG3200ikThmcpoPhEIhWltb87rHzVWvm7ugpSdfH01pMlP7d3WBg+6RMA7ZxOl2YyQNKrxz66qcC4aGhrj55pu57LLL+Md//McT9jm1tbWxefPmTN3lM5/5DA6Hgy996UtTXrdt27YTsj/zgdOKkNOYrXoil7zS5KSqKuPj4/T19dHU1JRXYH+0fG7uSKLpSPtYq+GpVIr29naEEMfU9nwsOJoDWjYMw2B0dJSOjg6Ki4vx+XxHdA9mk9N0x2Y+lRTZHYFnnXXWO44Cj0Vpkn3+5Gv/FkJwQXGCh4clkqZMIppkywIfzYUm4XD4uB+fXbt28dnPfpb77ruPD37wg8flf84WK1eu5Ktf/SpjY2O4XC6eeuopNmzYcEL3Yb5x2hFyPqJNqyfSBi8znbzBYJD29naKi4s5++yzp41yZ+utm+s3nK+gkqsUmIm8FUVhcHCQ7u7uoxbFThZyFQozEVS+Drn03cl0SoqjqUxmQ07JZJK9e/fi9XrfcUfgXDHbDsJgMMjevXu5YN1S3rfJRcdQGBsG1R6YyCrkHg+liRCCn/70pzzwwAP86le/orm5eV7e+0xYtmwZX/7yl7n44ovxer2sXr161n4afy04rXLIQCZd8corr7Bly5ajRsXZf3fw4EEikQhLly49quJhPpAvJZD9PR6PE41GkWUZt9udIe7ciy8dNZ2MlEA4HKa1tZXKykoWLFhwXCPbbNP46Y7RdG3f2d+j0Sjd3d0Ze9VTDemuQL/fz8qVK2fddZeui8xUD8hVmhw4cICXX36ZQ4cOEQ6H+frXv05LSwuNjY3z9v6++93v8sADDyBJEmeddRY/+tGP8gY2d999N3V1dfzd3/3dvO3LccSsTvTTkpANw2D79u2sWbMGm802o1mOECITcS5YsGBOEyhOFLLbipcsWUJJSUneqDL34kt/9rPJdb/T95xWoYyOjrJ8+fKTsqBlI18xLpFIMDIyQiqVmpJ2yc3nHo+U0jvZ79bW1nnvukun3Pbs2cM999xDcXExa9asYWhoiJKSEr72ta/Ny3b7+/s577zzaG1txeVycf3113PZZZdx8803A5YksqKigp6eHi655BJeffXVvxavijNFvXxIR8QVFRXs27cvb9dX+kIDS/DucrlYs2YNTqfzlCPjaDRKW1sbBQUFbNy4MXOBzrXxJJ3XTkfa2V2D2VHldBH3TO3e0WiU1tZWSkpKTvjt/3TILcZFo1H27t1LbW0t9fX10xZy0yQ+nUZ3OpXJXFMm+RCNRtmzZw/19fXU1NQc/Q/eAWRZpq2tjTvvvJNvfvObfPjDH57X7WVD13Xi8Tg2m41YLDblvV5zzTWMjY1hs9m4//77/1rIeNY4rSJkIQQbN27EMAzKysqoqqqiqqqKyspKqqqqqKiooLS0FLvdzuuvv051dXWmnThbIZAtX8q+4E5kxGSaZqbgNN9tz2lkWzJOF3nnapfT5FVXV0dRUdFxIabjCSEEAwMD9Pb2smLFiint7cfyv2ZKCSSTySNSJjORd3b0m75Le6f7ONv38dhjj3H//ffzyCOPsHTp0nndXi62bt3KV7/6VVwuF5dccgmPPPLICd3+POFMyiIf0kW04eFhBgYG8Pv9DA4OZh7v3r2bvXv3ctZZZxGNRvF6vRnCTpN2VVUV5eXlFBYW4nA4jugAyy6i5CPs7MfHcssZCoXYt28fZWVlLFy48JSIOLMhhMi0ZjudTkpLS4/QMs8mlzvfHYOapmUGD8y36U4uTNPMq1vO/p7uEk3ndcvKynC5XHlVJsfrGOm6zj/90z/R1dXFT37ykxOy0GcjEAhwzTXX8Nhjj1FUVMR1113Htddey9/+7d+e0P2YB5xJWeRDemhnTU1N3tu+rVu3cu2111JTU4MQgmAwyMDAwBTSbmtrY2hoCL/fTyAQAKyIME3clZWVU6Jur9eLx+PBMAyi0Sjj4+NTLjo4UtqVS1A2my2jTpiYmDgl8rD5kB1xtrS0HPWWMjeXm/bpGB0dPUL+lq9j8Fi9KCYmJti3bx+NjY1UVla+4/c9V8iyfFT9ciKRYPfu3ZnzKPs4TTcBJVunnG+Rm+kYjY2Nccstt3Duuefy61//+qQ0OL3wwgs0NjZmpKRXX301r7zyyruBkGeF0y5Cng8IIUgkEvj9/ikR9+DgIIODg/j9foaHh9F1HUmSKC0tzZB2ZWUl1dXVlJeXU1ZWRmFhIYqi5FVQJJNJ7HY7Pp9vRvI+WRFzMpmktbUVp9NJc3PzcZUk5esYzD1G6UhyunRAOprs7+8nGAyyYsWKk+JINhukOxfTVrCzQW7KJF/knauicDgcPProo5imyRNPPMEdd9zB9ddfT319/XFtXc9Fe3s7N9xwQ+Z5Z2cn//zP/8yWLVu49dZb+fOf/4zL5eLmm29mw4YN3HnnnfO2LycIZ1IWpxrSzScjIyMZ8s7+ShN4NBpFCIHX66W0tJTBwUEWLVrEhRdeSHl5OeXl5RQVFeFyuabIvPLlcadTThwv9UQag4ODdHV10dzcTFlZ2XH5n8eKtEIgl7RjsRhjY2MZwobpm06y70xOZK5bCEFXVxeBQICVK1fOW0NP9jHaunUrL730Ehs2bMA0TQYHB/nKV77C+vXr52XbuTAMg9raWnbs2MGCBQv42te+xmOPPYaqqqxdu5YHHnjghDQ2zTPOEPJfK9KfycjICBdddBGXX345K1asyKRJ0sQ9NjaGEAKbzUZ5efmUVEllZWWmSOnz+Y7oHDxeRcp0HlaSpCkeD6cahoaG6OzsnBJx5ioociPLtIICprc2faf1gGykUqlMM8rixYvn/U5H13XuueceWltb+elPf3rSFAvPPfcc3/jGN9i+fftJ2f4JwhlCfjcgmUzOGB0IIUgmkxmyzhdxDw0NZQqNJSUlmcJkNoGXlpZSVFSEqh42P88tUub6c6RSKcbGxqitraW6uvq4kNLxhmEYtLe3o2kay5cvP+YFI9+Clvt8Oh+K3IUuX9QdDAZpa2tj8eLFM866O14IBALcdtttrFu3jnvuueekfm633nor69at47Of/exJ24cTgDOEfAaHkfY9GBsbyxQn85F3OBwGwOl0TpEFpom7vLwcu93Ozp07Wb58OaWlpVPkcLMpUs61AHesCIfD7N27l7q6Ompra09I6mG6Vvjs72ndcrpFWtd1EokEtbW1eL3eeTegam1t5ROf+AR3330311577UmVH6ZSKWpqati7d+9JKa6eQJwh5DM4NgghiEQiefPcb7/9Njt27OCss84iHA6jKEpG052bMikpKZmi456pAHc8i5RCCHp7exkcHDxl1ShgpXv27t0LQE1NTd627+y00kzpktlo34UQ/Pd//zf33XcfP/nJT1i1atW8v8ej4cknn+T+++/nueeeO9m7Mt84Q8hncPzxX//1X5x//vk0NDRkcrDZ6ZJcdcnQ0BCJRAKAwsLCI0i7qqqKsrKyTNPITM0mR2vxTqdb9u7dmxmIeqqlUNKYa9fdXFvhs49LOmWzbds29u/fz2OPPXZCCq8TExPcfvvt7NmzB0mSeOihh9iyZcuU19x4441ceuml3HLLLfO+PycZZwj5DE4NpNMl6Sne2cSdnS6ZmJgALELJJuw0iaeLlB6PJy9Bpb9cLhder/cdRZPzifnsusvXCv/rX/+aJ554gmAwSGlpKZFIhGuvvZa77777uG47FzfddBPvec97uP3220mlrAkj2ePSYrEY9fX1dHZ2nvAGlJOAM4R8Bn99EEIQi8WmNOKkiTsdcY+MjKDrOrIsU1ZWRllZGQMDA9TW1vLBD34wo+kuKiqaMobraEXK+VBOZMM0Tfbv308ymXxHBca5YN++fdx+++188Ytf5KMf/egJW4hCoRCrV6+ms7PzlGiRPwVwhpDP4N2L7Bb46667jiVLlrBly5YpqZLBwUFisRgAPp8voy7JboGvqKjIaLrzNVMcryJlIpHgL3/5CxUVFTQ0NMw7SQkhePrpp7nnnnv48Y9/zNq1a+d1e7l46623+OQnP8ny5ct5++23Wb9+PVu3bj0ho55OUZwh5DM4PRAKhSgoKMj7u3S6JBQK5VWXZLfApzXd+WSB2ZrufNadMxUpk8kkfr+f5uZmysvL511fbBgG3/rWt3j11Vf52c9+dkJkdLnYtWsXmzdvZvv27WzatInPf/7zFBQUcM899xzz/xRC8J73vIevfvWrmWkljz/+OA899BDPPPPM8dr1+cIZQj6DM5gL0i3w2UXJNImniXt4eBhN05AkiZKSkimEnSbxdLpElmV27dpFUVERRUVFmbz3XIqUc0UoFOKOO+6gsbGRb3/72yetUWdwcJDNmzfT3d0NwJ/+9Cfuvfdefve7372j/7tnzx6uu+463nzzTQzDYM2aNTzzzDMsXrz4OOz1vOKMudDR8Mwzz/D5z38ewzC4/fbbueuuu072Lp3BSYQkSbhcLhobG2eciJFugR8dHZ1SpOzr62PXrl0MDg7S09PDwYMHaW5uRlGUI4g7ren2er243W40TSMejzMxMXFUyVs+fw5Jkujo6OCWW27hc5/7HB//+MdPSO524cKF+Hw+FEVBVVV27doFQFVVFfX19bS3t9PS0sK2bdtYvnz5O97eypUr+fCHP8x9991HNBrl4x//+F8DGc8ap22EbBgGS5Ys4fnnn6euro6NGzfys5/97LicNGdwBg8++CAVFRV86EMfIhwOT6su8fv9mRZ4VVWPaIHPTpcUFhYihDiiW/AnP/kJ27ZtY3x8nBUrVrBs2bKMSc98Y+HChezatSuvjO6tt97KKCwWLVrEj370o+PSnh2NRlm3bh12u51du3b9tfhcnImQZ8LOnTtpampi0aJFgKWHfPLJJ88Q8hkcF9x2222ZxwUFBRQUFNDS0jLt69NEm+3TnbZ6/f3vf59pgU8mkwAUFxdnou2+vj4aGhr44x//iCzL+P3+U0LZsGbNmkzEfDzh8Xi44YYbMl2N7yactoTc399PfX195nldXR07duw4iXt0BqczJEnC4XBQX18/5bzMRbpIOT4+niHuF154gW9+85sZcprv8U7ZkCSJSy65BEmSuOOOO/jkJz95QrYry/IpN5jheODd945miXypmvmOKnp7e7ngggtYtmwZK1asYOvWrQCMj49z8cUX09zczMUXX5wxvRdC8LnPfY6mpiZWrVrFG2+8Ma/7dwanPiRJyuivV61axaWXXsq3v/3tkxYpbt++nTfeeIOnn36a+++/n5deeumk7Me7BactIdfV1dHb25t53tfXN++Rhaqq/Nu//RttbW289tpr3H///bS2tnLvvfdy4YUXcuDAAS688ELuvfdeAJ5++mkOHDjAgQMH+MEPfsCnP/3ped2/MziDuSJ9zVRUVHDVVVexc+fOk7xHf+VI3wLN8utdA03TRGNjo+js7BTJZFKsWrVK7Nmz54TuwxVXXCGee+45sWTJEjEwMCCEEGJgYEAsWbJECCHEJz/5SfHoo49mXp/9ujM4g5ONSCQiQqFQ5vGWLVvE008/fZL36pTFrDj2tI2QVVXl+9//PpdeeinLli3j+uuvZ8WKFSds+93d3bz55pts2rSJoaEhqqurAaiurmZ4eBjIn+fu7+8/7vtiGAZr167lQx/6EABdXV1s2rSJ5uZmbrjhhkyrcTKZ5IYbbqCpqYlNmzZlNKZn8O5G7vmRxtDQEOeddx6rV6/m7LPP5vLLL+cDH/jASdrLdwdO26IewGWXXcZll112wrcbiUS45ppr+N73vjdthxmcuDz31q1bWbZsGaFQCIAvf/nLfOELX+DGG2/kU5/6FA8++CCf/vSnefDBBykuLqajo4Of//znfPnLX+axxx477vtzBqcWcs+PNBYtWsTbb799kvbq3YnTNkI+WdA0jWuuuYaPfexjXH311QBUVlbi9/sB8Pv9VFRUpBvU0QAABgpJREFUACcmz93X18fvfvc7br/9dsBaBF588UWuvfZawHLseuKJJwDLu/amm24C4Nprr2Xbtm15F40zePcg9/w4g/nFGUI+gRBCcNttt7Fs2TL+4R/+IfPzK664gocffhiAhx9+mI985COZn//kJ/9/e3cQ0nQfxgH8O1RsdXBNNEKbFQsqZbjMoktoLxtSt9BeSwrCUnZz4WqnOkodVDK7lERvgdW8BGbW1Hqh5hjmFnhL6lDSIdbykDNc+74He/9ozrDY9v/rns9NEXwYP77+eXx+z/8fkITf70deXp7S2kiWlpYWXLlyRRkhCofDyqucgMVtkoUtlOzsbOTl5SEcDie1HqEtP58PkVryKafRy5cvcefOHYyMjKC8vBzl5eUYGBiA2+2G1+vFjh074PV6lSvchw8fxvbt22E2m3H27Flcv349qfX09/ejsLBw0duFf9UmSVcLBZhfbl5bW4udO3di165dGB0dlfHANEt0PkSKrfS/f1xjUxaCdLvdLCoqYklJCTdt2kS9Xs8TJ04wPz+fc3NzJEmfz0e73U6StNvt9Pl8JOenVPLz8xmPx1NS26lTp3jjxg2S5Ldv3xiJROhyudjW1kaSbGtr4/nz50mSjx49Yk1NDePxOEdHR7lv376U1JRpEp2PhoYGtctarVaUsRLIgiT57NkzHjlyhCRZW1vL3t5ekmRzczO7u7tJkteuXWNzczNJsre3l3V1dSmpZXp6mlu3bl0S9jIemHzRaJSVlZW0WCzcvXs3L168mPDnFp4P8Udk7E38mcuXL6O9vR1msxnhcFjZy9DY2IhwOAyz2Yz29nblAkuyvX37FgUFBTh9+jSsVivOnDmDr1+/qj4euBbl5uZiZGQEr1+/RigUwuDgIPx+v9plZSwJZAEAqKqqQn9/P4D5caZAIIDJyUl4PB7lWu66devg8XgwOTmJQCCgLGZKtlgshvHxcTgcDgSDQWzYsOGX4c809bY7OjpQWlqKsrIyHD9+HLOzs6t+Zlun0ylv5Z6bm1N2Pf9s4fkQqSOBLDSnuLgYxcXF2L9/P4D5Ebvx8XFVxwOnpqZw9epVjI2NYWJiAt+/f1dmsZ1OJ968eYONGzeip6cHABbNbDudTly4cCGp9STT/4veCwsLYbPZlM9dpJ8EstCchcvNASjLzdUcDwTmn9yj0ShisRhmZmawefPmNTGznZWVhVAohA8fPiAQCGBiYkLtkjJWRt/UE9rV1dWFhoaGRcvN4/E4jh07hp6eHphMJng8HgDz44EDAwMwm81Yv349bt26lfR6ioqK0NraCpPJBL1eD7vdjoqKit+e2U60yF0rDAYDqqqqMDg4iLKyMrXLyUgSyCKh9+/f4+DBg3j16hWMRiMikQj27NmD58+fo6SkJOW/f7nl5sPDw0u+p9Pp0N3dndJ6IpEIHj58iHfv3sFgMKCurg6PHz9OWAugznrXP/Hp0yfk5OTAYDAgGo1iaGhI0+2VtU5aFiKhLVu2wOFwKJdU3G43mpqa0hLGWjQ0NIRt27ahoKAAOTk5OHr0KHw+H758+YJYLAZgce96YV87FothenoaRqNRtfqX8/HjR1RXV8NisaCyshI2m23JEiGRPvKELJbldDpRUVGBzs5OvHjxAl1dXWqXpBqTyQS/34+ZmRno9XoMDw9j7969qK6uRl9fH+rr65f0tW/fvo0DBw6gr68Phw4d0uQTssViQTAYVLsM8UPGvuRUrMyTJ09QU1ODp0+fwmazqV2Oqi5duoT79+8jOzsbVqsVN2/exNTUFOrr6/H582dYrVbcvXsXubm5mJ2dxcmTJxEMBmE0GnHv3r2UjQmKVWFFf40lkMUvtbS04MGDB3C5XHA6nWqXI8RqtaJAlh6yWFYoFILX64Xf70dHR4cyAyyESA0JZJEQSTgcDnR2dsJkMsHlcqG1tVXtsoRY0363ZSEyhE6nawLwF8m/f3ydBSAA4BzJf1UtTog1SgJZCCE0QloWQgihERLIQgihERLIQgihERLIQgihERLIQgihERLIQgihERLIQgihERLIQgihERLIQgihEf8BkqDs+3jich4AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "from mpl_toolkits.mplot3d import Axes3D\n",
-    "fig = plt.figure()\n",
-    "\n",
-    "# 3-Dimensional plotting!\n",
-    "ax = fig.add_subplot(111, projection='3d')\n",
-    "\n",
-    "# Only look at the 1st egg\n",
-    "for i in range(1):\n",
-    "    ax.scatter(x.transpose()[i], y.transpose()[i], z.transpose()[i])\n",
-    "    \n",
-    "# Set view angle\n",
-    "ax.view_init(20, -70)\n",
-    "ax.set_xlabel('X')\n",
-    "ax.set_ylabel('Y')\n",
-    "ax.set_zlabel('Z')\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Other Tutorials\n",
-    "\n",
-    "There are plenty of other ways to extract data out of FluEgg. If you are interested in learning more, try out the other jupyter notebooks in this directory to see the capabilities of FluEgg!"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/hydraulic model.ipynb b/notebooks/hydraulic model.ipynb
deleted file mode 100644
index 0f512a3..0000000
--- a/notebooks/hydraulic model.ipynb	
+++ /dev/null
@@ -1,300 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8FeXZ//HPJQlLMaAs9hEhBv25sYQtUCBYsVawLrS1+FOkVm0VqdUq1gX0qaI/n9/j0qq11lraWmyLYqvightiESxQY1KwhE0QQUFUFtnKA7Jczx8zCYeYZA7L5Exyvu/X67zOnHuW+zqTgevcc8/cY+6OiIhIbQ7JdAAiIpJ8ShYiIhJJyUJERCIpWYiISCQlCxERiaRkISIikZQsREQkkpKFiIhEUrIQEZFIOZkOIFWbNm28oKAg02GIiNQbZWVla929bdz1JCpZFBQUUFpamukwRETqDTNbURf16DSUiIhEUrIQEZFIShYiIhJJyUJERCIpWYiISKRYk4WZnWFmi81sqZmNjrMuERGJT2zJwswaAb8CvgF0AoaZWae46hMRkfjEeZ9FH2Cpuy8DMLOJwDeBBTWtsGzNvzn/N7NjDElERPZHnKehjgI+TPm8Mizbi5mNMLNSMyvdsWNHjOGIiMj+irNlYdWU+RcK3McB4wCKior8ySv6xRiSiEjD8peRdVNPnC2LlUCHlM/tgY9irE9ERGISZ7J4GzjOzDqaWWPgAuD5GOsTEZGYxHYayt13mtlVwKtAI+BRd58fV30iIhKfWEeddfeXgJfirENEROKnO7hFRCSSkoWIiERSshARkUhKFiIiEknJQkREIilZiIhIJCULERGJpGQhIiKRlCxERCSSkoWIiERSshARkUhKFiIiEknJQkREIilZiIhIJCULERGJpGQhIiKRlCxERCSSkoWIiERSshARkUhKFiIiEknJQkREIilZiIhIJCULERGJpGQhIiKRlCxERCSSkoWIiERSshARkUhKFiIiEknJQkREIilZiIhIpNiShZk9amafmll5XHWIiEjdiLNlMR44I8bti4hIHYktWbj7DGB9XNsXEZG6k5PpAPay+h34f20zHUXm5X4JfvAatD0+05GIiAAJSBZmNgIYAXBS+5bQ70cZjijDNq2Gf02EDR8oWYhIYmQ8Wbj7OGAcQFFRkfP1sRmNJ+M+fDtIFiIiCaJLZ0VEJFKcl84+AcwGTjCzlWb2g7jqEhGReMV2Gsrdh8W1bRERqVs6DSUiIpGULEREJJKShYiIRFKyEBGRSEoWIiISSclCREQiKVmIiEgkJQsREYmkZCEiIpGULEREJJKShYiIRFKyEBGRSEoWIiISKTJZmFmxmTUPp79rZveZ2dHxhyYiIkmRTsvi18BWM+sG3AisAP4Ya1QiIpIo6SSLne7uwDeBX7j7L4C8eMMSEZEkSefhR5vNbAzwXeCrZtYIyI03LBERSZJ0WhbnA9uBH7j7x8BRwL2xRiUiIolSa8sibEX82d2/XlHm7h+gPgsRkaxSa8vC3XcRdG63rKN4REQkgdLps9gGzDOz14B/VxS6+49ji0pERBIlnWTxYvgSEZEsFZks3P0xM2sG5Lv74jqISUREEiadO7jPAeYCr4Sfu5vZ83EHJiIiyZHOpbNjgT7ABgB3nwt0jDEmERFJmHTv4N5YpczjCEZERJIpnQ7ucjO7EGhkZscBPwZmxRuWiIgkSToti6uBzgR3cT8ObASuiTMoERFJlnRaFme5+y3ALRUFZnYe8NfYohIRkURJp2UxJs0yERFpoGpsWZjZN4AzgaPM7MGUWS2AnXEHJiIiyVFby+IjoJRguI+ylNfzwOCoDZtZBzObZmYLzWy+mamfQ0SknqqxZeHu7wDvmNnj4XL7egf3TuAn7v5PM8sDyszsNXdfcGAhi4hIXUung/sM4GdAY6CjmXUH7nD3IbWt5O6rgdXh9GYzW0jwLAwli3QsegHWvpvpKDKvyaHQ7UJolM6hKiJxSedf4FiCO7jfgOAObjMr2JdKwuV7AG9VM28EMAIgPz9/XzbbMB16BDRqDGXjMx1JcrQ9ETr0yXQUIlktnWSx0903mtl+VWBmhwJPA9e6+6aq8919HDAOoKioSHeGH340jP4Adm7PdCSZt2IWTBwGu3ZkOhKRrBfrHdxmlkuQKCa4+zP7H2aWyW0WvLJd4+aZjkBEQvt6B/cTwCbg2qiVLGiK/B5Y6O73HUiQIiKSWek8z2Irwd3bt0QtW0UxcBHBU/bmhmU3u/tL+7gdERHJsMhkYWZFwM1AQery7l5Y23ru/ndg/zo6REQkUdLps5gA3ADMA3bHG46IiCRROslijbvryXgiIlksnWRxm5n9DnidoJMbAF3dJCKSPdJJFpcCJwK57DkN5YCShYhIlkgnWXRz966xRyIiIomVzn0W/zCzTrFHIiIiiZVOy2IAcLGZvU/QZ2GAR106KyIiDUe6o86KiEgWS+cO7hV1EYiIiCRXOn0WIiKS5ZQsREQkkpKFiIhEikwWZnaumS0xs41mtsnMNpvZFx5iJCIiDVc6V0PdA5zj7gvjDkZERJIpndNQnyhRiIhkt3RaFqVm9iTwLBpIUEQkK6WTLFoAW4FBKWUaSFBEJIukc1PepXURiIiIJFeNycLMbnT3e8zslwQtib24+49jjUxERBKjtpZFRad2aV0EIiIiyVVjsnD3F8L3x+ouHBERSSLdwS0iIpGULEREJJKShYiIRNrnZGFmV5rZ+WaWzj0aIiLSAOxPy8IIHrWqm/JERLLEPrcO3P1XcQQiIiLJFZkszKwJ8B2gIHV5d78jvrBERCRJ0mlZPAdsBMpIGUhQRESyRzrJor27nxF7JCIikljpdHDPMrOu+7phM2tqZiVm9o6ZzTez2/cjPhERSYDaBhKcRzCAYA5wqZktIzgNZYC7e2HEtrcDX3P3LWaWC/zdzF52938cpNhFRKSO1HYa6uwD2bC7O7Al/Jgbvr4weq2IiCRfbQMJrgAwsz+5+0Wp88zsT8BF1a6493KNCDrG/w/wK3d/68DClaxiFrxPvBBymmQ2liRo0gK+/wo0b5PpSCQLpdPB3Tn1Q5gAeqWzcXffBXQ3s8OASWbWxd3Lq2xvBDACID8/P62gJUu06wn9roLPt0Qv29Bt+BDeex02fKBkIRlRW5/FGOBmoJmZbSLoqwD4HBi3L5W4+wYzewM4AyivMm9cxfaKiop0mkr2aHIoDP6vTEeRDItfCZKFSIbUeDWUu/+3u+cB97p7C3fPC1+t3X1M1IbNrG3YosDMmgFfBxYdtMhFRKTOpHMa6mYzO5dgPCgH3nT3Z9NY70jgsfC01SHAX9x98v6HKiIimZJOsvgVQQf1E+HnkWZ2urv/qLaV3P1fQI8DjE9ERBIgnWRxCtAlvBQWM3sMmBdrVCIikijp3MG9GEi9TKkD8K94whERkSRKp2XRGlhoZiXh597AbDN7HsDdh8QVnIiIJEM6yeLW2KMQEZFEi0wW7j7dzI4GjnP3qeFlsDnuvjn+8EREJAki+yzM7HLgKeA3YVF7IJ1LZ0VEpIFIp4P7R0AxsAnA3ZcAR8QZlIiIJEs6yWK7u39e8cHMctDosSIiWSWdZDHdzCrGiDod+CvwQrxhiYhIkqSTLEYDawhuxLsCeAn4zziDEhGRZEnnaqjdZvYs8Ky7r6mDmEREJGFqbFlYYKyZrSUYLXaxma0xM913ISKSZWo7DXUtwVVQvcNhyVsBXwGKzWxUnUQnIiKJUFuy+B4wzN3fryhw92XAd8N5IiKSJWpLFrnuvrZqYdhvkRtfSCIikjS1JYvP93OeiIg0MLVdDdUtfPZ2VQY0jSkeERFJoBqThbs3qstAREQkudK5KU9ERLKckoWIiERSshARkUhKFiIiEknJQkREIilZiIhIJCULERGJpGQhIiKRlCxERCSSkoWIiERSshARkUhKFiIiEknJQkREIsWeLMyskZnNMbPJcdclIiLxqIuWxTXAwjqoR0REYlLbw48OmJm1B84C/gu4Ls66RLLCu6/CmsWZjiLzmh0Oxw8Gs0xHkjViTRbAA8CNQF5NC5jZCGAEQH5+fszhiNRTzdsE79PvymwcSfLjOdDqmExHkTViSxZmdjbwqbuXmdnAmpZz93HAOICioiKPKx6Req19EfzkXdixNdORZN6SKfDyjbDz80xHklXibFkUA0PM7EyCZ3a3MLM/u/t3Y6xTpOHK+3KmI0iG5m0zHUFWiq2D293HuHt7dy8ALgD+pkQhIlI/6T4LERGJFHcHNwDu/gbwRl3UJSIiB59aFiIiEknJQkREIilZiIhIJCULERGJpGQhIiKRlCxERCRSnVw6eyB27NjBypUr2bZtW6ZDkRo0bdqU9u3bk5ubm+lQRCQmiU8WK1euJC8vj4KCAkwjTCaOu7Nu3TpWrlxJx44dMx2OiMQk8aehtm3bRuvWrZUoEsrMaN26tVp+Ig1c4pMFoESRcPr7iDR89SJZZNKoUaN44IEHKj8PHjyYyy67rPLzT37yE+67774a19+wYQMPP/xwrDGm48EHH+Skk05i+PDhmQ5FROohJYsI/fv3Z9asWQDs3r2btWvXMn/+/Mr5s2bNori4uMb19ydZuDu7d+/ev4Cr2LVrFwAPP/wwL730EhMmTDgo2xWR7KJkEaG4uLgyWcyfP58uXbqQl5fHZ599xvbt21m4cCE9evRgy5YtnHbaafTs2ZOuXbvy3HPPATB69Gjee+89unfvzg033ADAvffeS+/evSksLOS2224DYPny5Zx00klceeWV9OzZkw8//HCvOEaPHk2nTp0oLCzk+uuvB+CSSy7hqaeeqlzm0EMPBeCNN97g1FNP5cILL6Rr166MHDmSZcuWMWTIEO6//35KSkro378/PXr0oH///ixeHDymc9euXVx//fV07dqVwsJCfvnLXwJQVlbGKaecQq9evRg8eDCrV6+Oa3eLSEIl/mqoVLe/MJ8FH206qNvs1K4Ft53Tucb57dq1Iycnhw8++IBZs2bRr18/Vq1axezZs2nZsiWFhYU0btyYQw45hEmTJtGiRQvWrl1L3759GTJkCHfddRfl5eXMnTsXgClTprBkyRJKSkpwd4YMGcKMGTPIz89n8eLF/OEPf/hCS2T9+vVMmjSJRYsWYWZs2LAh8nuVlJRQXl5eeYXSK6+8wrRp02jTpg2bNm1ixowZ5OTkMHXqVG6++Waefvppxo0bx/vvv8+cOXPIyclh/fr17Nixg6uvvprnnnuOtm3b8uSTT3LLLbfw6KOPHsBeF5H6pl4li0ypaF3MmjWL6667jlWrVjFr1ixatmxJ//79geDU0c0338yMGTM45JBDWLVqFZ988skXtjVlyhSmTJlCjx49ANiyZQtLliwhPz+fo48+mr59+35hnRYtWtC0aVMuu+wyzjrrLM4+++zImPv06VPjpawbN27k4osvZsmSJZgZO3bsAGDq1KmMHDmSnJzgsGjVqhXl5eWUl5dz+umnA0Hr48gjj0xjr4lIQ1KvkkVtLYA4VfRbzJs3jy5dutChQwd+/vOf06JFC77//e8DMGHCBNasWUNZWRm5ubkUFBRUezmpuzNmzBiuuOKKvcqXL19O8+bNq60/JyeHkpISXn/9dSZOnMhDDz3E3/72N3Jycir7Ntydzz/f80zimrYF8NOf/pRTTz2VSZMmsXz5cgYOHFi5japXNrk7nTt3Zvbs2dE7SkQaLPVZpKG4uJjJkyfTqlUrGjVqRKtWrdiwYQOzZ8+mX79+QPBr/YgjjiA3N5dp06axYsUKAPLy8ti8eXPltgYPHsyjjz7Kli1bAFi1ahWffvpprfVv2bKFjRs3cuaZZ/LAAw9UntIqKCigrKwMgOeee66yhRBl48aNHHXUUQCMHz++snzQoEE88sgj7Ny5EwhOf51wwgmsWbOmMlns2LFjrw5+EckOShZp6Nq1a2U/RGpZy5YtadOmDQDDhw+ntLSUoqIiJkyYwIknnghA69atKS4upkuXLtxwww0MGjSICy+8kH79+tG1a1eGDh26VzKpzubNmzn77LMpLCzklFNO4f777wfg8ssvZ/r06fTp04e33nqr1tZEqhtvvJExY8ZQXFxcebUUwGWXXUZ+fj6FhYV069aNxx9/nMaNG/PUU09x00030a1bN7p3717Z4S8i2cPcPdMxVCoqKvLS0tK9yhYuXMhJJ52UoYgkXfo7SZ0pfwaeuhSufAuOODHT0WScmZW5e1Hc9ahlISIikZQsREQkkpKFiIhEUrIQEZFIShYiIhJJyUJERCIpWaTh448/5oILLuDYY4+lU6dOnHnmmbz77ru88cYbaQ29EZeBAwdS9VJjCG7WW7t27X5v90DXF5GGp14N95EJ7s63v/1tLr74YiZOnAjA3Llzqx33SUSkoVLLIsK0adPIzc1l5MiRlWXdu3fn5JNPBoKhOIYOHcqJJ57I8OHDqbjJ8Y477qB379506dKFESNGVJYPHDiQm266iT59+nD88cfz5ptvAsGwG+eeey5nnHEGxx13HDfeeGNlfVOmTKFfv3707NmT8847r3KokNrce++99OnThz59+rB06VIA1qxZw3e+8x169+5N7969mTlzJgDr1q1j0KBB9OjRgyuuuIIk3agpIslQv1oWL4+Gj+cd3G3+R1f4xl01zi4vL6dXr141zp8zZw7z58+nXbt2FBcXM3PmTAYMGMBVV13FrbfeCsBFF13E5MmTOeeccwDYuXMnJSUlvPTSS9x+++1MnToVCFosc+bMoUmTJpxwwglcffXVNGvWjDvvvJOpU6fSvHlz7r77bu67777KbdekRYsWlJSU8Mc//pFrr72WyZMnc8011zBq1CgGDBjABx98wODBg1m4cCG33347AwYM4NZbb+XFF19k3Lhx+7oXRaSBq1/JIoH69OlD+/btgaDFsXz5cgYMGMC0adO455572Lp1K+vXr6dz586VyeLcc88FoFevXixfvrxyW6eddhotW7YEoFOnTqxYsYINGzawYMGCyqfxff7555WDF9Zm2LBhle+jRo0CgiHIFyxYULnMpk2b2Lx5MzNmzOCZZ54B4KyzzuLwww8/kF0iIg1QrMnCzJYDm4FdwM4DHr+klhZAXDp37rzX0+iqatKkSeV0o0aN2LlzJ9u2bePKK6+ktLSUDh06MHbs2L2GK69Yp2L52rbl7px++uk88cQT+xR36lDjFdO7d+9m9uzZNGvWrNblRUSqqos+i1PdvXtdDHQVh6997Wts376d3/72t5Vlb7/9NtOnT69xnYrE0KZNG7Zs2VJrsonSt29fZs6cWdnvsHXrVt59993I9Z588snK94qWyKBBg3jooYcql6kY6vyrX/1q5bO5X375ZT777LP9jldEGiZ1cEcwMyZNmsRrr73GscceS+fOnRk7dizt2rWrcZ3DDjuMyy+/nK5du/Ktb32L3r1773f9bdu2Zfz48QwbNozCwkL69u3LokWLItfbvn07X/nKV/jFL35ROaT5gw8+SGlpKYWFhXTq1IlHHnkEgNtuu40ZM2bQs2dPpkyZQn5+/n7HKyINU6xDlJvZ+8BngAO/cfdae041RHn9pb+T1JmKIcoPL4CcppmOJuPsqpI6GaI87g7uYnf/yMyOAF4zs0XuPiN1ATMbAYwA9ItWRKId3R8KL4Cd/5PpSBKipE5qiTVZuPtH4funZjYJ6APMqLLMOGAcBC2LOOMRkQYg7z/g3N9kOorkOP9PdVJNbH0WZtbczPIqpoFBQHlc9YmISHzibFl8GZgUXpKZAzzu7q/sz4bcXZd2Jpju+BZp+GJLFu6+DOh2oNtp2rQp69ato3Xr1koYCeTurFu3jqZN1dEo0pAl/g7u9u3bs3LlStasWZPpUKQGTZs2rbyLXUQapsQni9zcXDp27JjpMEREsppuyhMRkUhKFiIiEknJQkREIsU63Me+MrPNwOJMx5EQbQA921T7IZX2xR7aF3uc4O55cVeStA7uxfV1dNqDzcxKtS+0H1JpX+yhfbGHmZVGL3XgdBpKREQiKVmIiEikpCULPfx5D+2LgPbDHtoXe2hf7FEn+yJRHdwiIpJMSWtZiIhIAiUiWZjZGWa22MyWmtnoTMdzsJhZBzObZmYLzWy+mV0Tlrcys9fMbEn4fnhYbmb2YLgf/mVmPVO2dXG4/BIzuzilvJeZzQvXedASPNqimTUyszlmNjn83NHM3gq/05Nm1jgsbxJ+XhrOL0jZxpiwfLGZDU4pr1fHkJkdZmZPmdmi8Pjol43HhZmNCv9tlJvZE2bWNJuOCzN71Mw+NbPylLLYj4Oa6qiVu2f0BTQC3gOOARoD7wCdMh3XQfpuRwI9w+k84F2gE3APMDosHw3cHU6fCbwMGNAXeCssbwUsC98PD6cPD+eVAP3CdV4GvpHp713L/rgOeByYHH7+C3BBOP0I8MNw+krgkXD6AuDJcLpTeHw0ATqGx02j+ngMAY8Bl4XTjYHDsu24AI4C3geapRwPl2TTcQF8FegJlKeUxX4c1FRHrbEmYGf1A15N+TwGGJPpuGL6rs8BpxPceHhkWHYkwf0lAL8BhqUsvzicP4zgGeakLhfOW5RSvtdySXoB7YHXga8Bk8ODdy2QU/U4AF4F+oXTOeFyVvXYqFiuvh1DQIvwP0mrUp5VxwVBsvgw/E8uJzwuBmfbcQEUsHeyiP04qKmO2l5JOA1VccBUWBmWNShhk7kH8BbwZXdfDRC+HxEuVtO+qK18ZTXlSfQAcCOwO/zcGtjg7jvDz6mxV37fcP7GcPl93T9JdQywBvhDeFrudxY8TTKrjgt3XwX8DPgAWE3wdy4je4+LCnVxHNRUR42SkCyqO5faoC7RMrNDgaeBa919U22LVlPm+1GeKGZ2NvCpu5elFlezqEfMq9f7IUUOwamHX7t7D+DfBKcCatIg90d4nvybBKeO2gHNgW9Us2i2HBdRMvr9k5AsVgIdUj63Bz7KUCwHnZnlEiSKCe7+TFj8iZkdGc4/Evg0LK9pX9RW3r6a8qQpBoaY2XJgIsGpqAeAw8ysYsiZ1Ngrv284vyWwnn3fP0m1Eljp7m+Fn58iSB7Zdlx8HXjf3de4+w7gGaA/2XtcVKiL46CmOmqUhGTxNnBceAVEY4KOq+czHNNBEV558HtgobvflzLreaDiioWLCfoyKsq/F1710BfYGDYRXwUGmdnh4a+xQQTnYlcDm82sb1jX91K2lRjuPsbd27t7AcHf92/uPhyYBgwNF6u6Hyr2z9BweQ/LLwiviukIHEfQgVevjiF3/xj40MxOCItOAxaQZccFwemnvmb2pTDOiv2QlcdFiro4Dmqqo2aZ7twJO1jOJLhS6D3glkzHcxC/1wCCZt+/gLnh60yC86yvA0vC91bh8gb8KtwP84CilG19H1gavi5NKS8CysN1HqJKp2nSXsBA9lwNdQzBP+qlwF+BJmF50/Dz0nD+MSnr3xJ+18WkXOFT344hoDtQGh4bzxJcxZJ1xwVwO7AojPVPBFc0Zc1xATxB0F+zg6Al8IO6OA5qqqO2l+7gFhGRSEk4DSUiIgmnZCEiIpGULEREJJKShYiIRFKyEBGRSEoW8gVmtsvM5oajgb5jZteZ2SHhvCIze7CWdQvM7MK6i7ZmZjbWzK7PYP3XmtmXMlV/VWZ2h5l9PdNxSP2kS2flC8xsi7sfGk4fQTBS7Ex3vy2NdQcC17v72fFGGc3MxgJb3P1nGap/OcG18GurmdfI3XfVfVQi+0ctC6mVu38KjACuCu8cHWh7nkdxStgCmRsOiJcH3AWcHJaNClsab5rZP8NX/3DdgWb2hu15psOElLH2e5vZrLBVU2JmeRY8C+NeM3vbgrH8r6guXjO7xYLnF0wFTkgp725m/wjXnRTe7XqEmZWF87uZmZtZfvj5vfDO4vEWPAdglpktM7Oh1dTZ3MxeDOMtN7PzzezHBOMdTTOzaeFyW8Jf928B/Sx41sB0Myszs1dtz/ALl4ff8x0ze7qidRLG8msLnpGyLNz/j1rwPIzxUX/LcP2h4fRyM7s9/JvMM7MTq1n+EjN71sxeMLP3zeyqsJU5J9yXraLqlAYk03cw6pW8F8Gv8aplnwFfZu87sF8AisPpQwkGyKucH5Z/CWgaTh8HlIbTAwlGDW1P8KNlNsEd740JxuPvHS7XItzuCOA/w7ImBHc/d6wSYy+CO1u/FK63lKCVA8Gd0qeE03cAD4TT88NlryIYHmI4cDQwO5w/nuCu4UMInpuwtJp98x3gtymfW4bvy4E2KeUO/N9wOheYBbQNP58PPBpOt05Z507g6pRYJhLcyftNYBPQNYytDOge8XcdDwxNia1iu1cCv6tm+UvCfZgHtA3/XiPDefcTDIyZ8eNVr7p5VQzWJRKluhEsZwL3mdkE4Bl3X2lffCBbLvCQmXUHdgHHp8wrcfeVAGY2l2Bc/43Aand/G8DDUXrNbBBQmPLLviVB8nk/ZXsnA5PcfWu4zvPhe0vgMHefHi73GEECgOA/7GKCh9D8f+CM8Lu+mbLdZ919N7DAzL5czX6YB/zMzO4mSJRvVrMM4fd/Opw+AegCvBbus0YEwz4AdDGzOwkeiHQowdg/FV5wdzezecAn7j4v/I7zCfbf3Brqrk7FwJZlwLk1LDPN3TcTjDG0keAHAgTfuXAf6pJ6TslCIpnZMQT/0X0KnFRR7u53mdmLBOPv/KOGztNRwCdAN4JfwNtS5m1Pmd5FcDwa1Q+jbAS/hF+tZl6qfe2Ee5MgyRxNMJjaTeE2JtcQ5xeyobu/a2a9CPbDf5vZFHe/o5q6tvmefgoD5rt7v2qWGw98y93fMbNLCFphVWPZXSWu3ez7v+eK9Sv2fW3LVK1zf+qTekx9FlIrM2tL8GjLh9zdq8w71t3nufvdBKeFTgQ2E5y2qNCSoKWwG7iI4Bd0bRYB7cysd1hHngXDUb8K/NCCId8xs+MteGBQqhnAt82sWdh/cg6Au28EPjOzk8PlLgKmp6zzXWBJGON6gv/0Z0btm5T90A7Y6u5/JniYT8Wzkavui1SLgbZm1i/cRq6ZdQ7n5QGrw+86PN04UuL5o5n12df1RGqjXwae7WS7AAAA9UlEQVRSnWbhaaFcYCfBaKD3VbPctWZ2KsEv0wUEz/jdDew0s3cIfiE/DDxtZucRDD3979oqdvfPzex84Jdm1gz4H4LnHvyO4DTLP8OO8DXAt6qs+08ze5LgVMwK9j6VdDHwSNhZvAy4NFxneXgaaEa43N+B9u7+WW1xVtEVuNfMdhOMHvrDsHwc8LKZrXb3U6v5nkOBB8PTZDkEz/iYD/yU4ImKKwhO99SUcGpSyJ5TWiIHhS6dFWlAzKwF8Ht3Py/TsUjDomQhIiKR1GchIiKRlCxERCSSkoWIiERSshARkUhKFiIiEknJQkREIilZiIhIpP8FgxllWVU9rGYAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "cell_distance = hydraulic_data['CumlDistance_km'].diff()\n",
-    "beginning_of_cells = hydraulic_data['CumlDistance_km'].values - cell_distance.values\n",
-    "beginning_of_cells[0] = 0\n",
-    "end_of_cells = hydraulic_data['CumlDistance_km'] - 0.001\n",
-    "\n",
-    "x_position = 1000*np.hstack((beginning_of_cells, end_of_cells))\n",
-    "x_position.sort()\n",
-    "\n",
-    "y_position = np.zeros(x_position.shape)\n",
-    "z_position = np.zeros(y_position.shape)\n",
-    "\n",
-    "position = np.stack((x_position, y_position, z_position)).transpose()\n",
-    "\n",
-    "hydraulic_results = hydraulic_model.hydraulic_results(position)\n",
-    "\n",
-    "depth = hydraulic_results.depth()\n",
-    "\n",
-    "water_surface_z = np.zeros(x_position.shape)\n",
-    "_ = plt.plot(x_position, water_surface_z, label='Water surface')\n",
-    "_ = plt.plot(x_position, depth, label='Channel bed')\n",
-    "_ = plt.xlabel('Distance down stream, in m')\n",
-    "_ = plt.ylabel('Depth, in meters')\n",
-    "_ = plt.legend()\n",
-    "plt.gca().invert_yaxis()\n",
-    "plt.autoscale(axis='x', tight=True)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH5NJREFUeJzt3Xt4XXWd7/H3N2l6L73Q9Jqm6Y3S0pYCESgVuYoFERQHhRFFUas8OqPPnCPC4Dme8TKD4zPi8Ywz2gN6UAF1lApDC7QgUBgo0Jbe71eapm3SpmmSpmmT7O/5Y6+0u3En2bvJ3mtfPq/nyZO11/7ttb7dD/w+Weu31m+ZuyMiIpKogrALEBGR7KLgEBGRpCg4REQkKQoOERFJioJDRESSouAQEZGkKDhERCQpCg4REUmKgkNERJLSK+wCUmH48OFeVlYWdhkiIllj5cqVh9y9OJG2ORkcZWVlrFixIuwyRESyhpntSbStTlWJiEhSFBwiIpIUBYeIiCRFwSEiIklRcIiISFJCDQ4zm2dmW8xsu5ndH+f9Pmb2u+D9t8ysLP1ViohIrNCCw8wKgZ8CNwLTgTvNbHq7Zp8Hjrj7ZOBh4AfprVJERNoL84jjUmC7u+9095PAb4Fb27W5FXgsWP4DcJ2ZWRprFBHJCks3HuRnr+5Iy77CDI6xwN6Y1xXBurht3L0FOAqcG29jZjbfzFaY2Yrq6uoUlCsikrmeW7efX7+Z8D183RJmcMQ7cvCzaBNd6b7A3cvdvby4OKG75kVEckZF7XHGDumXln2FGRwVwLiY1yVAZUdtzKwXMBioSUt1IiJZZN+R44wdmvvB8Q4wxcwmmFlv4A7gmXZtngHuDpb/Cvizu8c94hARyVctrREO1DVRkqbgCG2SQ3dvMbOvAi8AhcAv3H2DmX0HWOHuzwCPAr82s+1EjzTuCKteEZFMtf9oE60RT9upqlBnx3X3xcDiduv+Z8xyE3B7uusSEckmFUeOAzBuWP+07E93jouIZLmKI40AeTE4LiIiPWDvkeOYwRgFh4iIJKKippHR5/Sld6/0dOkKDhGRLFdx5DglaRrfAAWHiEjW23ukkXFDFRwiIpKAEy2tHKhrYtyw9IxvgIJDRCSr7TtyHHd0xCEiIonZG9zDUXqugkNERBKwtyZ6D4eOOEREJCHv1TTSu1cBIwb1Sds+FRwiIlnsvcONlAztR0FB+p5xp+AQEcli79U0Mj6N93CAgkNEJGu5O3trGtM2uWEbBYeISJY60thM/YkWShUcIiKSiD2HjwEw/twBad2vgkNEJEu9F1yKOz6N93CAgkNEJGvtOZz+ezhAwSEikrX2HG5k1Dl96de7MK37VXCIiGSp92qOpXWqkTYKDhGRLLX7cCNlCg4REUnEsRMtVNefSPsVVaDgEBHJSm0D42UKDhERScTuU/dw6FSViIgkoC04yobnyRGHmQ0zs6Vmti34PbSDdq1mtjr4eSbddYqIZKrdh44xfGAfBvbplfZ9h3XEcT/wkrtPAV4KXsdz3N1nBz+3pK88EZHMtvtQIxOGp/80FYQXHLcCjwXLjwEfDakOEZGstOvwsVAGxiG84Bjp7vsBgt8jOmjX18xWmNlyM+s0XMxsftB2RXV1dU/XKyKSMeqbmqmuP8GE4nCCI2Unx8zsRWBUnLceTGIzpe5eaWYTgT+b2Tp33xGvobsvABYAlJeXe9IFi4hkid2HopfiTgjpiCNlweHu13f0npkdNLPR7r7fzEYDVR1sozL4vdPMXgEuAuIGh4hIvth5qAGAicUDQ9l/WKeqngHuDpbvBp5u38DMhppZn2B5ODAX2Ji2CkVEMtSuQ8cwC+ceDggvOB4CPmhm24APBq8xs3IzeyRoMw1YYWZrgJeBh9xdwSEieW/XoWOMHdKPvkXpnRW3TfovAAbc/TBwXZz1K4AvBMtvADPTXJqISMbbWX2MCSHc+NdGd46LiGQRd2dndQOTQhrfAAWHiEhWqao/wbGTrTriEBGRxOyoil5RpSMOERFJyI5D0ckNJ4Z08x8oOEREssqOqgb69y5k9OC+odWg4BARySI7qhuYWDwAMwutBgWHiEgW2Vl9jMkhjm+AgkNEJGs0nmxhX+1xJo9QcIiISAJ2VEUHxhUcIiKSkG1V9YCCQ0REErS9qoFeBcb4kKZTb6PgEBHJEtuqGigbPoCiwnC7bgWHiEiW2F7VwHkjwz1NBQoOEZGs0NTcyp7D4V+KCwoOEZGssLP6GBGHKSMHhV2KgkNEJBu0XVF1noJDREQSsfVgPb0KLNTp1NsoOEREssCWA9Erqnr3Cr/bDr8CERHp0taD9UzNgNNUoOAQEcl4jSdb2HukMSPGN0DBISKS8bYdbMAdpo5ScIiISAK2HIheUaXgEBGRhGw+UE/fogJKh/UPuxQgpOAws9vNbIOZRcysvJN288xsi5ltN7P701mjiEim2HygjvNGDqKwILyn/sUK64hjPXAbsKyjBmZWCPwUuBGYDtxpZtPTU56ISGZwdzYfqGfaqHPCLuWUXmHs1N03AV09M/dSYLu77wza/ha4FdiY8gJFRDJEdf0Jao6dzJjxDcjsMY6xwN6Y1xXBOhGRvLEpGBifNjoPjjjM7EVgVJy3HnT3pxPZRJx13sn+5gPzAUpLSxOqUUQk023aXwfAtNGZc8SRsuBw9+u7uYkKYFzM6xKgspP9LQAWAJSXl3cYMCIi2WRjZR1jBvdlSP/eYZdySiafqnoHmGJmE8ysN3AH8EzINYmIpNWm/XUZdZoKwrsc92NmVgHMARaZ2QvB+jFmthjA3VuArwIvAJuA37v7hjDqFREJQ1NzKzuqG7hgTGYFR1hXVS0EFsZZXwncFPN6MbA4jaWJiGSMzQfqiXhmDYxDZp+qEhHJaxsrowPjF4wZHHIlZ1JwiIhkqA2VRxnUtxfjhvULu5QzKDhERDLU+so6LhhzTlc3S6edgkNEJAM1t0bYtL8u405TgYJDRCQj7ahu4GRLhJljFRwiIpKAdRVHAZgxNrOuqAIFh4hIRlq/7ygDehcyYfjAsEv5CwoOEZEMtG7fUS4YMzhjnsERS8EhIpJhWlojbKisY1ZJ5o1vgIJDRCTjbD3YwImWCDMVHCIikoi1FbUAzCoZEnIl8Sk4REQyzJqKo5zTtxdl5/YPu5S4Eprk0MxmAWWx7d39qRTVJCKS19bsreXCcUMy7o7xNl0Gh5n9ApgFbAAiwWoHFBwiIj3s+MlWthys597zJ4VdSocSOeK43N2np7wSERFh3b6jtEac2eMyc3wDEhvjeNPMFBwiImmweu8RAC7M4OBI5IjjMaLhcQA4ARjg7j4rpZWJiOSh1XtrGTesH8WD+oRdSocSCY5fAJ8G1nF6jENERFJg1Z5a3jdhWNhldCqR4HjP3Z9JeSUiInmusvY4B+qauLg0c09TQWLBsdnMngD+k+ipKkCX44qI9LRV70XHNy4uHRpyJZ1LJDj6EQ2MG2LW6XJcEZEetmpPLX2LCpg+JvOmUo/VZXC4++fSUYiISL5buaeGWSVDKCrM7Ek9Mrs6EZE8cfxkKxsq6ygfn9mnqUDBISKSEd7de4SWiFNepuCIy8xuN7MNZhYxs/JO2u02s3VmttrMVqSzRhGRdFqx+whmcElpZl+KC4nNVdUH+Dh/Ocnhd7qx3/XAbcDPE2h7jbsf6sa+REQy3ju7a5g6chCD+xeFXUqXErmq6mngKLCSmMtxu8PdNwEZO/OjiEg6tbRGWLXnCB+/pCTsUhKSSHCUuPu8lFcSnwNLzMyBn7v7gpDqEBFJmQ2VdRw72cr7yjL/NBUkFhxvmNlMd1+XzIbN7EVgVJy3HnT3pxPczFx3rzSzEcBSM9vs7ss62N98YD5AaWlpMqWKiITq7V01AFyW4VONtEkkON4PfNbMdpHEJIfufn13i3P3yuB3lZktBC4F4gZHcDSyAKC8vNy7u28RkXR5a9dhJgwfwIhz+oZdSkISCY4bU15FHGY2AChw9/pg+QagOwPyIiIZpzXivLWrhptnjQ67lIR1eDmumbXd817fwc9ZM7OPmVkFMAdYZGYvBOvHmNnioNlI4HUzWwO8DSxy9+e7s18RkUyzsbKO+qYWLp94btilJKyzI44ngJuJXk3lRE9RtXFg4tnu1N0XAgvjrK8EbgqWdwIXnu0+RESywZs7o3cbzMmF4HD3m4PfE9JXjohIfnljx2EmFWfP+AZoyhERkdA0t0Z4e1cNcycPD7uUpCg4RERCsnpvLY0nW7liUvacpgIFh4hIaF7fdogCgzkTdcQhIiIJeH37IWaWDMmK+aliJR0cZrYp+PlqKgoSEckHdU3NrN5by5VZNr4Bid0AeAZ3n2Zm5wKXp6AeEZG88Mb2w7RGnCunZF9wdHYD4Ic6+dy17r4oBfWIiOSFV7dWM7BPLy7Ogif+tdfZqarFZvaymY2N894DqSpIRCTXuTvLtlYzZ9K5Gf988Xg6q3gt0bvHl5vZ7e3e04M0RETO0vaqBvbVHufqqcVhl3JWOgsOd/f/C1wH3GdmvzSz/m3vpb40EZHc9MqWagCunjoi5ErOTpfHSO6+lehkhAeBd83sspRXJSKSw/68uYqpIwcxdki/sEs5K50Fx6nTUe7e4u73A18CngSmpLowEZFcVNfUzDu7a7jm/Ow82oDOL8f9h/Yr3P0VM7uEaICIiEiSlm2tpiXiXD8tB4PD3f/UwfojwEMpq0hEJIe9uPEgQ/sXcVFp9l2G2yb7rgMTEclSza0RXt5SzbXnj6SwIHsvTlVwiIikyTu7ajh6vJkPTh8ZdindouAQEUmTJRsP0reogKvOy877N9ooOERE0iAScZ5ff4ArpxTTr3dh2OV0i4JDRCQN1lTUcqCuiRtnjAq7lG5TcIiIpMFz6w9QVGhcd352j2+AgkNEJOXcncXr9jN38vCse2hTPAoOEZEUW1NxlIojx/nwzNFhl9IjFBwiIin27JpKigqNGy7I/vENCCk4zOyHZrbZzNaa2UIzG9JBu3lmtsXMtpvZ/emuU0Sku1ojzrNr93PVecUM7pf9p6kgvCOOpcAMd58FbCXOg6HMrBD4KXAjMB2408ymp7VKEZFuentXDQfqmrhldrxn4mWnUILD3Ze4e0vwcjlQEqfZpcB2d9/p7ieB3wK3pqtGEZGe8Kd399G/d2FWT2rYXiaMcdwDPBdn/Vhgb8zrimCdiEhWaGpuZfG6/cybMYr+vTubjDy7pOxfYmYvAvFGgh5096eDNg8CLcDj8TYRZ12HTx40s/nAfIDS0tKk6xUR6WlLNx6k/kQLH7sot/7mTVlwuPv1nb1vZncDNwPXuXu8QKgAxsW8LgEqO9nfAmABQHl5uR5tKyKh++OqCkYP7ssVk4aHXUqPCuuqqnnAN4Fb3L2xg2bvAFPMbIKZ9QbuAJ5JV40iIt1xsK6JZVur+dhFY7N6CvV4whrj+FdgELDUzFab2c8AzGyMmS2G6ONqga8CLwCbgN+7+4aQ6hURScofVlYQcfhE+biuG2eZUEZr3H1yB+srgZtiXi8GFqerLhGRnhCJOL9fsZfLJgyjbPiAsMvpcZlwVZWISE55c+dh9hxu5M5Lc/NCHQWHiEgPe/ytPQzpX8S8HJhCPR4Fh4hIDzpY18QLGw5y+yUl9C3K7gc2dUTBISLSg5546z0i7nzqsvFhl5IyCg4RkR5ysiXCE2+/x9XnFefkoHgbBYeISA9ZtK6S6voT3H1FWdilpJSCQ0SkB7g7j76+i8kjBnLVecVhl5NSCg4RkR6wfGcN6/fVcc/cCZjl1p3i7Sk4RER6wIJlOxg+sDe3XZxbExrGo+AQEemmjZV1vLylmrvnlOXsJbixFBwiIt3076/uYGCfXnxmTlnYpaSFgkNEpBu2VzXw7NpK7rp8PIP758Yzxbui4BAR6Yafvrydvr0K+eKVE8IuJW0UHCIiZ2l7VT1Pr97Hp+eM59yBfcIuJ20UHCIiZ+nhpdvoV1TIl6+aFHYpaaXgEBE5C2sralm0bj+ff/8Ehg3oHXY5aaXgEBFJkrvz0HObGTagN1/8wMSwy0k7BYeISJJe3lLFGzsO8zfXTmZQ3/y4kiqWgkNEJAnNrRH+cfFmJg4fwF2X5+7U6Z1RcIiIJOGxN3azvaqBB26aRlFhfnah+fmvFhE5C1X1Tfz4xW1cdV4x108bEXY5oVFwiIgk6HvPbuJkS4Rvf2R6zs+A2xkFh4hIApZtreaZNZXce/UkJhYPDLucUCk4RES6cOxECw88tY6Jwwdw79X5dbNfPL3C2KmZ/RD4CHAS2AF8zt1r47TbDdQDrUCLu5ens04REYAfPL+ZyqPH+Y8vzcmLadO7EtYRx1JghrvPArYCD3TS9hp3n63QEJEwvLatml+9uYfPXlFGedmwsMvJCKEEh7svcfeW4OVyoCSMOkREOlPbeJJv/MdaJo8YyDfnnR92ORkjE8Y47gGe6+A9B5aY2Uozm5/GmkQkz7k79/1hLYePneDhT8zWKaoYKRvjMLMXgVFx3nrQ3Z8O2jwItACPd7CZue5eaWYjgKVmttndl3Wwv/nAfIDS0tJu1y8i+e1Xb+5hycaDfOvD05hZMjjscjJKyoLD3a/v7H0zuxu4GbjO3b2DbVQGv6vMbCFwKRA3ONx9AbAAoLy8PO72REQSsXLPEb63aCPXnj+Ce+bmzwOaEhXKqSozmwd8E7jF3Rs7aDPAzAa1LQM3AOvTV6WI5KOq+ia+8vgqRg/ux8OfmE1BQf7e6NeRsMY4/hUYRPT002oz+xmAmY0xs8VBm5HA62a2BngbWOTuz4dTrojkg6bmVub/aiVHjzfz73ddnDfPEE9WKPdxuPvkDtZXAjcFyzuBC9NZl4jkr0gkOhi+em8tP7vrEi4Yo3GNjmTCVVUiIqH7wfObeWZNJffNm8q8GfGu65E2Cg4RyXuPvLaTny/byWfmjOfePHt++NlQcIhIXvv1m7v53qJNfHjmaL79kQvyetbbRCk4RCRvPfn2e/yPpzdw/bSR/PiO2RTqCqqEhDI4LiIStkdf38V3n93I1VOL+emnLsrbp/mdDQWHiOQVd+fhF7fxk5e2ceOMUfzvOy6idy+FRjIUHCKSN062RLj/qbU8tWoft19Swj/dNpNeOtJImoJDRPLC4YYTfOWJVSzfWcPfffA8/ubayRoIP0sKDhHJeWv21nLvb1Zy6NhJHv7khXzsIj3JoTsUHCKSs9ydX725h+8v2kTxoD48de8VzBirO8K7S8EhIjmpqq6Jb/xhLa9ureaaqcX86BOzGTqgd9hl5QQFh4jkFHfnT6v38Z3/3EjjyVa+e+sF3HX5eI1n9CAFh4jkjJ3VDXzrT+t5Y8dhLhw3hH+5fRaTRwwKu6yco+AQkax39HgzP3t1B4++tos+RQV896Mz+OtLS3UneIooOEQkazU1t/LYG7v5t1d2UNfUzEdnj+WBm85nxKC+YZeW0xQcIpJ1Gk608Lt39vLIazvZf7SJq84r5r55U/UMjTRRcIhI1jhY18Qv/2s3j7+1h/qmFt5XNpR/+cSFXDFpeNil5RUFh4hktNaI8/r2Q/xxZQXPrd9Pa8S5ccZovnDlBC4qHRp2eXlJwSEiGWnrwXr+uLKChe/uo6r+BIP7FfGpy8Zzz9wJlJ7bP+zy8pqCQ0QyQmvEWVNRyytbqnlp00E2VNZRWGBcM7WYj19cwrXTRtCnV2HYZQoKDhEJUc2xk7y2rZqXN1fx6tZqjjQ2U2Awe9wQvvXhadw6eyzFg/qEXaa0o+AQkbRojTjbqxpYW1HLun1HWb03+tsdhg3ozTVTR3DV1GI+MKVYU4NkOAWHiPS4SMTZdfgY6yqOsrbiKGsratlQWcfx5lYABvbpxQVjzuFr103h6qkjmDV2MAW6WS9rKDhE5KzUNTWz78hxKmuPs6/t50j09/aDDdSfaAGgb1EBM8YM5o5LxzGrZDAzxw5h4vABCoosFlpwmNl3gVuBCFAFfNbdK+O0uxv4VvDye+7+WPqqFMlPkYhTVX/iVCBUBqFQGRMQbcHQpndhAWOG9GXs0H7cetEYZpUMYVbJYCYXD9RT9nKMuXs4OzY7x93rguW/Baa7+5fbtRkGrADKAQdWApe4+5HOtl1eXu4rVqxITeGS0dwdd2h1pzVyejniTiQSXRdxiHjbshOJnNkm4px+L7Zd2/q2Nqfad7Bdd1ojnN53sI3TdSSw3Q5riv5bW4PtevB+dDlY39Ym9rv4i38XZy5HnMbmFg4cbaK59cy+YXC/IsYO6ceYIf0oGdovGhJD+p8Ki+ED+ugoIouZ2Up3L0+kbWhHHG2hERhANBja+xCw1N1rAMxsKTAPeDL1FZ6d0x1Egh1S0LF03EF03dF11GmdatdhR3d6fx50Rmd0PLEdUlubdp1W/M4ypoPsqrOM7WAT7SzbdYSxNUfC+TuoxxUWGAUGBWbBcvT1qeUCozBYV1BwZpszPlNAtF3wujBYV1RQQN+iM7drwft9iwoYPaQfY9t+hkbDYmAfndmWqFD/SzCz7wOfAY4C18RpMhbYG/O6IliXEjf/n9doPNnaeWfZRQefC9p3JNHl6LpCC9YHHZKd6qSI6cyCjq2AoGOyMzrCosKCU20KLLZji+kY43WYf9E+prZTy201c6q2aJ1B/fHaBJ3pmfvs6N/1l/tv+3e1vY7dbvzvLlgu4Mw2Md+dSCZLaXCY2YvAqDhvPejuT7v7g8CDZvYA8FXg2+03EeezcbtnM5sPzAcoLS09q3onFw+kOeJn/iXXQUdYEHQ8Z/4lF69ja9d5xrbpooPt/K/L9p/p+K/Ljjvhdp1qsKwH3ohIZ0Ib4zijCLPxwCJ3n9Fu/Z3A1e7+peD1z4FX3L3TU1Ua4xARSU4yYxyhXepgZlNiXt4CbI7T7AXgBjMbamZDgRuCdSIiEpIwxzgeMrOpRC/H3QN8GcDMyoEvu/sX3L0muGz3neAz32kbKBcRkXBkxKmqnqZTVSIiycmKU1UiIpKdFBwiIpIUBYeIiCRFwSEiIklRcIiISFJy8qoqM6smeomvRA0HDoVdRIbTd9Q1fUddy+bvaLy7FyfSMCeDQ85kZisSvcwuX+k76pq+o67ly3ekU1UiIpIUBYeIiCRFwZEfFoRdQBbQd9Q1fUddy4vvSGMcIiKSFB1xiIhIUhQcOcrMxpnZy2a2ycw2mNnXwq4pE5lZXzN728zWBN/TP4RdUyYys0Ize9fMng27lkxlZrvNbJ2ZrTaznJ5lVQ8Rzl0twH9z91VmNghYaWZL3X1j2IVlmBPAte7eYGZFwOtm9py7Lw+7sAzzNWATcE7YhWS4a9w9W+/jSJiOOHKUu+9391XBcj3R/+lT9rz2bOVRDcHLouBHA38xzKwE+DDwSNi1SGZQcOQBMysDLgLeCreSzBSchlkNVAFL3V3f05l+DNxH9KFr0jEHlpjZSjObH3YxqaTgyHFmNhD4I/B1d68Lu55M5O6t7j4bKAEuNbMZYdeUKczsZqDK3VeGXUsWmOvuFwM3Al8xsw+EXVCqKDhyWHDO/o/A4+7+VNj1ZDp3rwVeAeaFXEommQvcYma7gd8C15rZb8ItKTO5e2XwuwpYCFwabkWpo+DIUWZmwKPAJnf/Udj1ZCozKzazIcFyP+B6YHO4VWUOd3/A3UvcvQy4A/izu98VclkZx8wGBBehYGYDgBuA9eFWlTq6qip3zQU+DawLzt8D/L27Lw6xpkw0GnjMzAqJ/iH1e3fXJaeSrJHAwujfa/QCnnD358MtKXV057iIiCRFp6pERCQpCg4REUmKgkNERJKi4BARkaQoOEREJCkKDslJZvaKmX2o3bqvm9m/dfG5hs7e7+Rz3zGz62P20/9sthN8/hEzm362n+9i23ea2YOp2LbkD12OKznJzL4EXO7un4tZtxz4hru/1snnGtx9YDf3vRsoz8RZUs3sMeAnmkJEukNHHJKr/gDcbGZ94NREj2OA14PX3zCzd8xsbbxncFjUD81sffCMhU/GvHdfsG6NmT0UrPt/ZvZXZva3wX5eDp6H8nkzezjms180s07v5A+OlsqD5QYz+36wr+VmNjJO+/9lZo+Z2ZLgmRC3mdk/BzU+H0w90zabwGxglZldFTw3YnXwnI1BSX27ktcUHJKT3P0w8Dan5526A/idu7uZ3QBMITqX0GzgkjgT0t0WvHch0WlIfmhmo83sRuCjwGXufiHwz+32+xOgkuhzGa4hOr/TLW2dN/A54JdJ/FMGAMuDfS0DvthBu0lEpz6/FfgN8LK7zwSOB+shOkPyGo+eZvjvwFeCyR2vDNqJJETBIbnsSaKBQfD7yWD5huDnXWAVcD7RIIn1fuDJYObcg8CrwPuIhsgv3b0RwN1rOivA3Y8BfyZ69HM+UOTu65L4N5wE2qZAWQmUddDuOXdvBtYBhUDbdBfrYj4zD3guWP4v4EfBEdIQd29JoibJcwoOyWV/Aq4zs4uBfm0PtgIM+Cd3nx38THb3R9t91jrYppH8g54eAT5L8kcbAM1+eiCylY7nlzsB4O6Rdp+JxHzmBmBJ0O4h4AtAP2B5EGoiCVFwSM4Knuz3CvALTh9tALwA3BM8qwQzG2tmI9p9fBnwyeAhT8XAB4ie+loSfLZ/8NlhcXZdD5waMwgeDDUO+OvYOszsJTNLy1MZzWww0Cs4hYeZTXL3de7+A2AF0aMukYRodlzJdU8CT3H6lBXuvsTMpgFvBrOZNgB3EX0CYJuFwBxgDdEjjPvc/QDwvJnNBlaY2UlgMfD37fa5AHjOzPYH4xwAvwdmu/sRADMrACYDnZ7q6kEfBF6Mef11M7uG6FHMRk6fwhLpki7HFUkDM3sWeNjdXwpezwDucfe/S9P+HwEecffl6dif5DYFh0gKBQ+Jepvo1Uy3h12PSE9QcIiISFI0OC4iIklRcIiISFIUHCIikhQFh4iIJEXBISIiSVFwiIhIUv4/HdJtWhfEoigAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "x_midpoint_of_cell = (hydraulic_data.loc[2, 'CumlDistance_km'] + hydraulic_data.loc[3, 'CumlDistance_km'])/2\n",
-    "\n",
-    "cell_area = hydraulic_data.loc[3, 'Q_cms']/hydraulic_data.loc[3, 'Vmag_mps']\n",
-    "cell_width = cell_area/hydraulic_data.loc[3, 'Depth_m']\n",
-    "y_midpoint_of_cell = cell_width/2\n",
-    "\n",
-    "num = 100\n",
-    "x_position = 1000*np.tile(x_midpoint_of_cell, num)\n",
-    "y_position = np.tile(y_midpoint_of_cell, num)\n",
-    "\n",
-    "eps = 1e-6\n",
-    "z_position = np.linspace(0, -(1-eps)*hydraulic_data.loc[3, 'Depth_m'], num)\n",
-    "position = np.stack((x_position, y_position, z_position)).transpose()\n",
-    "\n",
-    "hydraulic_results = hydraulic_model.hydraulic_results(position)\n",
-    "\n",
-    "velocity = hydraulic_results.streamwise_velocity()\n",
-    "\n",
-    "_ = plt.plot(velocity, z_position)\n",
-    "_ = plt.xlabel('Velocity, in m/s')\n",
-    "_ = plt.ylabel('Z, in m')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VGXax/HvnR5CIISEHgg9hC5FBAVxLRRBsZd1xbKsa1nb2nvXFXWtq1jWhqirCFJVVARR6Z2E3ltCCQRC+v3+MQffLBvIBDI5U+7Pdc3FycyZc34nE849pzzPI6qKMcaY0BPmdgBjjDHusAJgjDEhygqAMcaEKCsAxhgToqwAGGNMiLICYIwxIcoKgDHGhCgrAMYYE6KsABhjTIiKcDtAWUlJSZqamup2DGOMCRjz58/fparJx/NevyoAqampzJs3z+0YxhgTMERk4/G+104BGWNMiLICYIwxIcoKgDHGhCgrAMYYE6KsABhjTIiyAmCMMSHKCoAxxoQov2oHYEx1U1WycgvYuT+f7NwCsnILOFhQTGFJKUXFSqkqcdHh1IiKoGZ0BPVqRdM4IZYGtWOIjgh3O74xJ8QKgAkZpaXKqqxc5q7fw9Kt+1i18wBrsg5woKC40ssSgUa1Y0lvVIv0hrXo0Lg2PVLrkFAjygfJjfENKwAmqGXl5vN9RhbfZ2QxZ/1u9ud7dvZJNaNoUz+eC09qTMt6NWlYO5bk+GiS46OJj4kgKjyMyPAwBMgrKiGvoJjcgmJ27s9nW04+W/ceYm32AZZv28e0jJ2oeopCh0a16d2yLv3T6tEjNZHwMHH3F2DMMYiqup3hd927d1frCsKcqL0HCxm/aCvjF29j0eYcVKFxQiyntU6iR2oiPZsn0qROLCJVs3POKyxm2db9/Lp2N7PW7mLhpr0UlShJNaM4p30Dzu3UiF4tEqtsfcaUJSLzVbX7cb3XCoAJBqrKz2t2MWbOJqatyKKwpJR2DWsxsEMDzkqvT1qD+GrbAR8sKGb6ymwmL93OD5lZHCoqoXlSHJf1SOHCbk1IqhldLTlMaLACYEJWQXEJ4xdt492Z61m5M5fEuCjO69KIi7ulkN6oltvxOFRYwtTl2xkzezNzNuwhMlw4v0tj/tKvJa3q1XQ7ngkCflsARGQDkAuUAMUVhbQCYLxVUFzCJ7M38cb0tWTnFpDWIJ7rT2vBkM4N/fbunDVZuXz460Y+n7eZguJSzmpXn5vPaEWnJgluRzMBzN8LQHdV3eXN/FYATEWKS0r5Yv4WXvl+Ndv25dOrRSI3929Nn1Z1A+Yc++4DBXzwywbe/2UD+/OLGdyxIX8/py3Nk+LcjmYCkBUAExJmrdnFYxOWs2rnAbqkJHDXOW3p3TJwdvxHys0v4u2Z63ln5joKi0u5rGcKd57Vljpxdiup8Z4/F4D1wF5AgbdUdVQ584wARgA0bdq028aNxz22gQlSW/bm8dSkDKYs20FKYiwPDErnnPb1A3bHf6Ts3AJe/WE1n8zeRM2YCO4ZkMal3VMIs1tIjRf8uQA0UtVtIlIP+A64RVVnHG1+OwIwZZWUKh/8soHnv1kJwE39W3L9aS2IifTPc/wnauWOXB4av4w56/fQOSWBp4d1oH2j2m7HMn7ObwvAf61I5FHggKqOPNo8VgDMYWuyDnD3F4tZsCmH/m2TeWpYRxolxLody+dUlXGLtvLUpAxy8oq45YzW3Ni/JZHh1m2XKd+JFACftQQWkTggTFVznemzgcd9tT4THFSVf8/awLNTM4mNDOelSztzfpfGQXO6pyIiwrCuTTi9TT0enbCcl6at4tsVO3jhks6kNXD/tlYTXHz5taI+8LOILAbmAJNUdaoP12cC3K4DBVz7/lwen7iC01ol8d0dfRnWtUnI7PzLqhMXxcuXdeXNP3Zj5/58hr42iw9/3YA/tdsxgc9nRwCqug7o7Kvlm+Aya80ubvtsEfsOFfHY0Pb86ZRmIbnjP9KADg3okVqHv/9nMQ+PX86sNbv4x4WdqV0j0u1oJgjYiUXjKlXlX9PXctW7s6kdG8n4m/pwde9U2/mXUbdmNO9e3YMHBrXj+4wsBr0ykyVbctyOZYKAFQDjmgMFxdw4egHPTc1kYMeGjL+pD+0a2nnu8oSFCX/u24Iv/tobgIve/JUv5m9xOZUJdFYAjCs27c5j2Ouz+Gb5Dh4Y1I7XLu9KXLT1Tl6RLikJTLjlVLo19ZwWevTr5RSVlLodywQoKwCm2s3fuIdhb8wiK7eAj647mT/3bWGnfCohMS6Kj67ryXWnNuf9XzZw9Xtz2HeoyO1YJgBZATDV6uvF27j87dnUjIlg7I296dMqye1IASkiPIyHzk1n5MWdmbthDxf96xe27M1zO5YJMFYATLV566e1/G3MQjo3qc1XN/ahZbJ1h3yiLurWhA+u7cmO/fmc//ovdnHYVIoVAONzqsozkzN4Zkomgzs15OPrTybROjyrMr1bJvHVjb2JiQzj0rd+46dV2W5HMgHCCoDxqeKSUu75cglvzVjHVb2a8cplXf22v/5A1qpePGNv7E1qUhzXfzCXSUu2ux3JBAArAMZnCotLufmThXw+bwt/+0NrHj+vvQ2S7kP14mP4dEQvOjdJ4OYxCxgzZ5PbkYyfswJgfKKguIQbR89n6vIdPHxuOnec1cbu9KkGtWMj+ei6k+nXJpn7xi7lnZnr3I5k/JgVAFPl8otKuOGj+UzLyOKJ8ztw7anN3Y4UUmKjwhl1VXcGdWzAk5MyeOuntW5HMn7KWt6YKpVfVMKIj+YzY1U2z1zQkct7NnU7UkiKigjjlcu6EiaLeGZKJiWq3Hh6K7djGT9jBcBUmcLiUm4cvYCZq7P5x4WduKRHituRQlpEeBj/vLQL4WHCP6auRBVu6m9FwPw/KwCmShSXlHLbZwv5ITOLp4Z1sJ2/n4gID+PFS7ogwPPfrCQ2MtxOyZnfWQEwJ6y0VLn7iyVMXrqDBwe348qTm7kdyZQRHiaMvLgz+UWlPD5xBTWiwrnMTs0Z7CKwOUGqyqMTljN24VbuPKsN15/Wwu1IphwR4WG8cnlXTm+bzH1fLWX8oq1uRzJ+wAqAOSGv/7iGD3/dyIi+Lbj5DDu/7M+iIsJ484/dOLl5Ind8vpgfMne6Hcm4zAqAOW6fzd3EyG9XcUHXxtw7IM3u8w8AMZHhvHN1D9Ib1uLG0QtYsGmv25GMi6wAmOMybcVO7hu7lH5tknnuok6EWQvfgFEzOoJ/X9OD+rViuPb9uazJynU7knGJFQBTaYs353DzmAV0bFybN648ichw+zMKNEk1o/nw2p5EhIXxp3fnsGNfvtuRjAvsf66plC1787jug3kkx0fz7vAeNopXAGtWN473r+nB/vxirnl/LgcKit2OZKqZFQDjtf35RVz7/lwKikv49/AeJNWMdjuSOUEdGtfm9StPYtXOXG75ZAHFNrxkSLECYLxSVFLKTaMXsC77IG/9sRut6sW7HclUkX5tknn8vPb8uDKbxyasQFXdjmSqiR2/G688OXEFM1fv4h8XdqK3DeMYdK48uRkbd+cxasY6UpPiuM5aC4cEKwCmQmPmbOKDXzfy59OaWxcPQezeAWls2p3HU5NW0CI5jv5t67kdyfiYnQIyxzR3wx4eHr+Mvm2SuXdgO7fjGB8KCxNevLQzaQ1q8bdPFrIm64DbkYyPWQEwR7U15xA3fDSfJnVq8OplXW00rxBQIyqCt6/uTlREGH/+cB778orcjmR8yAqAKdfhQV0Ki0t5+0/dqV0j0u1Ippo0Tojlzau6sWVvHjePsTuDgpkVAFOuR8YvZ+nWfbx4aRda1avpdhxTzXqkJvLk+R2YuXoXz3+z0u04xkd8XgBEJFxEForIRF+vy1SNT+ds4rN5m7nljFaclV7f7TjGJZf2aMofezXlrRnrmLRku9txjA9UxxHArUBGNazHVIHFm3N4ePxyTmudxG1ntnE7jnHZw+e2p2vTBO76YjGrd1qfQcHGpwVARJoAg4F3fLkeUzVy8gq5cfQCkuOjedku+ho8XUj/68pu1IgK5y8fzSc33y4KBxNfHwH8E7gbOOpVJBEZISLzRGRedna2j+OYo1FV7vx8Mdm5Bbxx5UkkxkW5Hcn4iQa1Y3jtipPYuCePu/6zxFoKBxGfFQARORfIUtX5x5pPVUepandV7Z6cnOyrOKYC78xcz/eZWdw/KI3OKQluxzF+pleLutw7II2py3fw71kb3I5jqogvjwD6AENFZAPwKXCGiHzsw/WZ4zR/416em5rJgPYNuLp3qttxjJ+6/rTmnJVen2emZLDQBpIJCj4rAKp6n6o2UdVU4DLgB1X9o6/WZ45PTl4ht3yygIYJMTx3UScb1csclYgw8qLO1K8Vw82fLCQnr9DtSOYEWTuAEKaq3PXFErIPFPDa5SdRO9Yae5ljq10jktevOIms3Hzu/HyxXQ8IcNVSAFR1uqqeWx3rMt4bPXsT363Yyd3n2Hl/473OKQncP6gd32dm8Z5dDwhodgQQolbvzOWJiSs4rXWSdf1rKm1471TObFefZ6dksGzrPrfjmONkBSAE5ReVcMuYhdSMjuCFSzrbgO6m0kSE5y/qRN24aG4Zs5CDNpxkQLICEIKenZJJ5o5cRl7cmXrxMW7HMQGqTlwU/7ysCxt2H+Th8cvdjmOOgxWAEDNjVTbv/7KB4b1T6Z9mA36YE9OrRV1u6d+KLxdsYfyirW7HMZVkBSCE5OQVctcXi2ldryb3DkxzO44JEn/7Q2u6NavDg+OWsWVvnttxTCVYAQgRqsoD45ax52AhL13ahZjIcLcjmSARER7GS5d0obRUuePzxZSU2q2hgcIKQIj4evE2Ji3Zzm1ntqFD49puxzFBpmndGjw6tD1z1u9h1Ix1bscxXrICEAK25RziwXHL6NasDjf0a+l2HBOkLurWhEEdG/Didyvt1tAAYQUgyKkq93y5hJJS5cVLOlsXz8ZnRISnzu9IYlwUt366kPyiErcjmQpYAQhyY+ZsZubqXdw3qB3N6sa5HccEuTpxUTx/UWfWZh+0oSQDQIUFQETiRCTMmW4jIkNFxDqNCQCb9+Tx1KQV9GlVlyt7NnU7jgkRfdsk88deTXlv1np+W7fb7TjmGLw5ApgBxIhIY+B74BrgfV+GMieutNRz6kdEeO7CTtba11Sr+we1o2liDf7+n8UcsFbCfsubAiCqmgdcALyqqsOAdN/GMidq9OyN/LJ2Nw8ObkeTOjXcjmNCTI2oCF64uDNbcw7x1KQVbscxR+FVARCRU4ArgUnOcxG+i2RO1OY9eTwzJZO+bZK5tEeK23FMiOqemsiIvi0YM2cz01dmuR3HlMObAnAbcB/wlaouF5EWwI++jWWOl6py/1dLEeCZCzraAC/GVXec1YbW9Wpy39il7LcB5f3OUQuAiNwnIl1V9SdVHaqqzwGo6jpV/Vv1RTSV8Z/5W5i5ehf3DkyjcUKs23FMiIuOCOf5izuzc38+T03McDuOOcKxjgDWA7eKyEIReV9ELhWROtUVzFTezv35PDFxBT2bJ3Llyc3cjmMMAF1SEvhLv5Z8Nm8zP63KdjuOKeOoBUBVP1XV4araFXgZaAGMFZEZIvKwiPSstpSmQqrKg+OWUVhcanf9GL9z6x9a06peTe79comdCvIjXjUEU9WFqvqMqvYHzgWWA9f7NJmplCnLdvDdip3ceXYbmidZgy/jX2Iiw3n+ok7s3J/PM5PtVJC/qPBuHhEJBwYDqWXnV9URvotlKmNfXhGPfL2cDo1rcW0fG97R+KeuTetw/WktGDVjHUM6N6J3yyS3I4U8b44AJgDDgbpAvPOo6cNMppKenZrBnoOFPHtBJyLCrXcP479uP7MNzerW4L6xSzlUaH0Fuc2b+/mbqGonnycxx2X2ut2MmbOZEX1bWDfPxu/FRoXzzAUdueLt2fxz2iruG9TO7UghzZuvi1NE5GyfJzGVll9Uwn1fLSUlMZbbzmztdhxjvNK7ZRKX90zh7ZnrWLIlx+04Ic2bAvAb8JWIHBKR/SKSKyL7fR3MVOxf09eyLvsgT53fkRpR1jjbBI57B7YjOT6au79YQlFJqdtxQpY3BeAF4BSghqrWUtV4Va3l41ymAmuzD/Cv6Ws5r0sj+rZJdjuOMZVSOzaSJ87rQOaOXN6eaSOIucWbArAaWKaqNtCnn1BVHhq3jOjIMB4cbP3ymcB0dvsGDGjfgJenrWbDroNuxwlJ3hSA7cB0p2uIOw4/fB3MHN24RVv5Ze1u7hmQRnJ8tNtxjDlujw5tT1R4GA+MW4p9x6x+3hSA9XjGAYji/28DjfdlKHN0OXmFPDkxg65NE7jCBnkxAa5B7RjuHpjGrDW7Gbtgq9txQk6FVw5V9bHjWbCIxOAZTCbaWc8XqvrI8SzL/L/npq4k51ARH53f0bp7MEHhyp5NGbdwK09OWsHpbZOpW9OOaquLL1sNFQBnqGpnoAswQER6+XB9QW/hpr18OncT1/ROJb2RXYc3wSEsTHjmgo7k5hfz9ORMt+OEFJ8VAPU44PwY6TzsJN9xKin1dPZWLz6a285q43YcY6pUm/rxjOjbgi8XbOHXtTaOcHXxab8BIhIuIouALOA7VZ3ty/UFs49/28jybft56Nx0akbbPf8m+NxyRmtSEmN5YNxSCoqtm4jqUGEBEJFkEblfREaJyHuHH94sXFVLVLUL0AToKSIdyln+CBGZJyLzsrOtr/DyZOcWMPLblZzWOonBHRu6HccYn4iNCueJ8zqwLvsgo36ytgHVwZsjgPFAbWAanjGBDz+8pqo5wHRgQDmvjVLV7qraPTnZGjSV55nJGRQUlfLY0PY2xKMJaqe3rcfgjg159cc11jagGnhTAGqo6j2q+rmqfnn4UdGbnCOHBGc6FjgTsCs8lTRn/R7GLtzKiL4taJFsnbCa4PfwkHSiw8N4aPwyaxvgY94UgIkiMug4lt0Q+FFElgBz8VwDmHgcywlZxSWlPDx+GY0TYrmpfyu34xhTLerXiuHOs9swc/Uupizb4XacoObN1cRbgftFpAAoAgTPTT7HvA9RVZcAXU88YugaPXsTmTtyefOPJxEbFe52HGOqzR97NeM/87fw+IQV9G2TbDc++EiFRwBO529hqhprncFVn10HCnjBufB7TvsGbscxplpFhIfxxPkd2LE/n5enrXI7TtA6alkVkTRVzRSRk8p7XVUX+C6WeX7qSvIKS3hkiF34NaHppKZ1uLxnCu/N2sCF3ZqQ1sC+d1a1Yx1X3QGMwNMd9JEUOMMniQyLNufw2TzPKF+t6tmFXxO67j4njanLdvDQuGV8/pdT7MtQFTtqATg86Luq9q++OKa0VHlk/DKS46O55Qy78GtCW524KO4dmMY9Xy5l7IKtXNitiduRgoqNIO5nvlywhcVb9nHfwDTiYyLdjmOM6y7ulkKXlASemZLJ/vwit+MEFSsAfiQ3v4jnpq6ka9MEzu/S2O04xviFsDDhifM6sPtgAS99ZxeEq5IVAD/y6g9r2H2wgEeHtLeuno0po2OT2lzRsykf/rqRjO02JHlVqXQBEJGGImIddlextdkHeO/n9VzcrQmdUxLcjmOM37nrnLbUiongYWshXGWO5wjgIyBTREZWdZhQ9sTEFcRGhnPXOWluRzHGLyXUiOKeAWnM3bCXcYts9LCqUOkCoKpnAi2Af1d9nND0Y2YW01dm87c/tLYxfo05hku6p9A5JYFnJmdyoKDY7TgBz5vuoEeKSPuyzzmDvSz3XazQUVRSyhOTVtAiKY6re6e6HccYvxYWJjw2tD1ZuQW8+v1qt+MEPG+OADKBUSIyW0RuEJHavg4VSj78dSPrsg/ywOB2REXYNXljKtIlJYFLujfh3Z/XsybrQMVvMEflTV9A76hqH+BPQCqwREQ+ERFrIHaC9hws5OVpq+jbJpkz0uq5HceYgHH3gDRio8J5bMJyuyB8Arz6yiki4UCa89gFLAbuEJFPfZgt6L343UoOFpbw0OB21sTdmEpIqhnN7Wd6uoz+dsVOt+MELG+uAbyI5zTQIOBpVe2mqs+p6hCsu+fjlrljP5/M3sRVvZrRun6823GMCThXndKMNvVr8sTEFeQX2RjCx8ObI4BlQGdV/YuqzjnitZ4+yBT0VJUnJ2YQHxPJbWe2djuOMQEpMjyMR4e2Z8veQ7w9w8YQPh7eFIArVTWv7BMi8j2Aqu7zSaog90NmFj+v2cXtZ7YmoUaU23GMCVi9WyYxqGMDXp++hm05h9yOE3COWgBEJEZEEoEkEakjIonOIxVoVF0Bg01RSSlPTcqgZXIcV/Zq5nYcYwLe/YPaoQpPT85wO0rAOdYRwF+A+Xgu/C5wpucD44HXfR8tOH3060bW7fLc9hkZbrd9GnOimtSpwQ39WjJxyXZmr9vtdpyActQ9kKq+rKrNgb+ravMyj86q+lo1ZgwaOXmFvPz9ak5rnUT/tnbbpzFV5YZ+LWmcEMsjXy+nuKTU7TgB41ingA6P+LVVRC448lFN+YLKP6etJje/iAcHp9ttn8ZUodiocO4f1I7MHbmMmbvZ7TgB41hDQvYDfgCGlPOaAmN9kihIrc0+wMe/beSynk1p28Bu+zSmqg3q2ICTmyfy4rcrGdqpEbVr2IBKFTnWkJCPOP9eU31xgtczkzOJiQznjrPauB3FmKAkIjwypD3nvjqTl6at4tGh7St+U4jzpiHY0yKSUObnOiLypG9jBZdf1u5iWsZOburfiqSa1tunMb6S3qgWl/dsyke/bWT1zly34/g9b25DGaiqOYd/UNW9eFoFGy+UlHoafTVOiOWaPqluxzEm6N1xVhviosJ5fOIK6yeoAt4UgPCyI4CJSCxgX2O9NHbBFlZs3889A9OIiQx3O44xQa9uzWhuc/oJmpaR5XYcv+ZNAfgY+F5ErhORa4HvgA98Gys45BUWM/JbzyDvQzo1dDuOMSHjqlOa0apeTZ6atIKCYusn6Gi86Q76H8CTQDsgHXjCec5U4K2f1rFzfwEPWm+fxlSryPAwHjo3nQ2783h/1ga34/gtb5uiLgR+AqY706YCO/fnM2rGOgZ3bEi3ZoluxzEm5PRzxtl49Yc1ZOcWuB3HL3lzF9AlwBzgIuASYLaIXOTF+1JE5EcRyRCR5SJy64nHDRwvfLuSklLlngE2yLsxbnlwcDvyi0oY+c1Kt6P4JW+OAB4Aeqjq1ar6JzxdQD/kxfuKgTtVtR3QC7hJRNKPP2rgWLFtP/+Zv4Wrezejad0abscxJmS1SK7J8N6pfD5/M8u2WufFR/KmAISpatlL6bu9eZ+qblfVBc50LpABND6ulAFEVXl6cga1YyO5ub/19W+M2275Q2vq1Iji8Ql2W+iRvCkAU0XkGxEZLiLDgUnA5MqsxOlCuiswu7IBA830ldn8vGYXt/6htTVFN8YP1I6N5O9nt2XOhj1MXrrD7Th+xZtv8ncBo4BOQGdglKre4+0KRKQm8CVwm6ruL+f1ESIyT0TmZWdne5/cDxWXlPL05AxS69bgypOtr39j/MWlPVJIaxDP05MzbPjIMry6C0hVv1TVO1T1dlX9ytuFi0gknp3/aFUtt/M4VR2lqt1VtXtycrK3i/ZLn8/bwuqsA9w7sB1REdbXvzH+IjxMeHhIOltzDvHOTBs+8rBjdQedKyL7y3nkisj/fJMv5/0CvAtkqOqLVRnaHx0oKObF71bSMzWRc9rXdzuOMeYIvVsmcU77+rwxfS079+e7HccvHGtAmHhVrVXOI15Va3mx7D7AVcAZIrLIeQRtH0Jv/bSWXQcKud8afRnjtx4YlE5xifKPqXZbKHh5CkhEThWRa5zpJBFpXtF7VPVnVRVV7aSqXZxHpS4eB4rt+w7x9sx1DO3ciC4pCRW/wRjjiqZ1a3Dtqc35csEWFm/OqfgNQc6bhmCPAPcA9zlPReHpH8g4Xvh2FaUKd53T1u0oxpgK3NS/JUk1o623ULw7AhgGDAUOAqjqNsCGtHIs37aPLxds4ZreqaQkWqMvY/xdfEwkd5/Tlvkb9/L14m1ux3GVNwWgUD1lUgFEJM63kQLH4UZfCbGR3Ni/ldtxjDFeuqhbEzo0rsWzUzI5VBi6t4V6UwA+F5G3gAQR+TMwDXjbt7ECw/SV2cxas9vT6CvWGn0ZEyjCwoSHz23P9n35vDVjrdtxXONNQ7CRwBd47udvCzysqq/6Opi/O9zoq3lSHFdYoy9jAk7P5okM7tSQN39ay7acQ27HccWx2gG8JiK9AVT1O1W9S1X/rqrfVV88/3W40dc9A9Ks0ZcxAeq+gWmowrNTMt2O4opj7blWAy+IyAYReU5EulRXKH/nafS1ih6pdazRlzEBrEmdGozo24KvF29j/sY9bsepdsdqCPayqp4C9AP2AP92+vZ/WETaVFtCP+Rp9FXA/YOs0Zcxge6Gfi2pXyuaxyasoLQ0tG4L9eYawEZVfU5VuwJX4LktNMPnyfzU4UZfQzo3omvTOm7HMcacoLjoCO4dmMaSLZ5bukOJNw3BIkVkiIiMBqYAq4ALfZ7MT438ZhWlpXC3NfoyJmic17kxXVIS+Mc3KzlQUOx2nGpzrIvAZ4nIe8AWYASeMQBaquqlqjquugL6k2Vb9zF24Rau6WONvowJJmFhwiND0snOLeD1H9e4HafaHOsI4H7gV6Cdqg5R1dGqerCacvkda/RlTHDr2rQOF3RtzLsz17Npd57bcarFsS4C91fVt1U19C6Nl+PHlVn8stYafRkTzO4ZmEZEuPDkpBVuR6kWdgO7F4pKSnlqkjX6MibY1a8Vw039W/Htip38vHqX23F8zgqAFz6ds4m12Qe5d6A1+jIm2F13anNSEmN5fOJyiktK3Y7jU7Y3q8D+/CJemraans0TOTvdGn0ZE+xiIsN5YFA6q3YeYPTsTW7H8SkrABV448e17DlYyEOD063RlzEh4pz29enTqi4vfreKvQcL3Y7jM1YAjmHznjzem7WeC7o2pmOT2m7HMcZUExFPb6EHCop54bvgHT7SCsAx/OOblQjwd2v0ZUzIadsgnqt6NeOT2ZtYsW2/23F8wgrAUSzYtJcJi7fx59Na0Cgh1u04xhh+SB/YAAAS8UlEQVQX3H5mG2rHRvLohOVBOXykFYByqCpPTFxBcnw0fz29pdtxjDEuqV0jkrvOSWPO+j1MXLLd7ThVzgpAOSYs2c7CTTncdXZb4qIj3I5jjHHRpT1SaN+oFk9PziCvMLj6CbICcIT8ohKem5JJesNaXNitidtxjDEuCw8THhvqGT7yX9ODa/hIKwBHePfn9WzNOcRD56YTHma3fRpjoHtqIud3acRbM9axcXfwdIlmBaCMrNx83vhxDWen1+eUlnXdjmOM8SP3DWpHZJjw+ITg6SfICkAZI79ZSWFJKfcNaud2FGOMn6lfK4Zbz2zN95lZfJ+x0+04VcIKgGPZ1n38Z/4WhvdOpXlSnNtxjDF+aHjv5rRMjuOxCSvILypxO84JswKA57bPxyYsJ7FGFLf8obXbcYwxfioqIozHhnZg05483p6xzu04J8wKADBp6XbmbtjL389pS60Y6+vfGHN0p7ZOYlDHBrw+fQ2b9wT2wDE+KwAi8p6IZInIMl+toyrkF5XwzORM2jWsxSXdU9yOY4wJAA8OTkcQHp8Y2BeEfXkE8D4wwIfLrxJvz1jH1pxDPDLEbvs0xninUUIst57Zmu9W7AzoC8I+KwCqOgPw6+Ekt+Uc4o3paxnYoQG9Wthtn8YY713bpzmt6tXkka+Xc6gwMC8Ih/Q1gKcnZ1Cqyv1226cxppKiIsJ44rwObNl7iDemr3E7znFxvQCIyAgRmSci87Kzs6ttvb+t283EJdv56+ktSUmsUW3rNcYEj1Na1mVY18a89dM61mUfcDtOpbleAFR1lKp2V9XuycnJ1bLO4pJSHv16OY0TYrmhn/X2aYw5fvcNSiM6IoyHxi8LuC6jXS8AbvhkziYyd+Ty4OB2xESGux3HGBPA6sXHcPeAtsxas5vxi7a5HadSfHkb6BjgV6CtiGwRket8ta7K2HOwkBe+XUWfVnUZ0KGB23GMMUHgipOb0SUlgScmriAnL3DGEPblXUCXq2pDVY1U1Saq+q6v1lUZz03J5GBBMY8MaW+DvBtjqkR4mPD0sI7kHCri2SmZbsfxWkidApq/cS+fzdvMtac2p039eLfjGGOCSHqjWlx/anM+nbuZOev9+g7434VMASgpVR4at4wGtWK41fr7Mcb4wK1ntqZxQiz3f7WUgmL/bxsQMgXg4982smL7fh46N92GeTTG+ESNqAiePL8Da7IOBMToYSFRALJzCxj57UpObeXpxMkYY3ylf1o9zu/SiNd/XMPKHbluxzmmkCgAT03y9N392Hl24dcY43sPD2lPfEwk93y5hJJS/20bEPQFYObqbMYt2sZf+7WkZXJNt+MYY0JAYlwUjwxJZ9HmHN7/ZYPbcY4qqAtAflEJD45bRoukOG7s38rtOMaYEDK0cyP+kFaPkd+sZNNu/xw3IKgLwCvfr2bj7jyeHNbBWvwaY6qViPDksA5EhAl3fbGYUj88FRS0BSBzx35GzVjHhSc1oXfLJLfjGGNCUMPasTx0bjqz1+/hg183uB3nfwRlASgpVe4fu5T4mAgeGGxdPRtj3HNx9yb0b5vMc1Mz/a7H0KAsAO//soEFm3J46Nx0EuOi3I5jjAlhIsKzF3YiOiKcv/9nsV/dFRR0BWDDroM8/00mZ6TVY1jXxm7HMcYY6teK4bGh7VmwKYe3Z65zO87vgqoAlJYqd3+5hMjwMJ4e1tHu+TfG+I3zujRiQPsGvPDtSpZt3ed2HCDICsDHszcyZ/0eHhqcToPaMW7HMcaY34kIz1zQkcS4KG79dCF5hcVuRwqeArB5Tx7PTsnktNZJXNy9idtxjDHmf9SJi+LFS7qwbtdBnpiY4Xac4CgAxSWl3P7ZIsKdCmunfowx/qpPqyRG9G3BmDmbmLpsh6tZgqIAvPnTWuZt3Mvj57enSR0b4N0Y49/uPKstHRvX5t6xS9iWc8i1HAFfABZvzuGf01YzpHMjzu9id/0YY/xfVEQYL1/WhaLiUm76ZAGFxaWu5AjoApBXWMztny2iXnw0T57XwU79GGMCRovkmjx/cWcWbsrh6cnuXA8I6ALw2NcrWL/7ICMv6UztGpFuxzHGmEoZ1LEh15/anPd/2cD4RVurff0BWwA+n7eZz+Zt5q/9WlpfP8aYgHXPwDR6pNbh3i+Xsmpn9Q4gE5AFYPm2fTw0bhm9W9bljrPauB3HGGOOW2R4GK9dcRJx0RFc/8E8dh8oqLZ1B1wB2HeoiL9+vICEGpG8cnlXIsIDbhOMMea/1K8Vw9t/6sbO/fmM+Gg++UXVM6B8QO09S0uVOz9fzLacQ7x+xUkk1Yx2O5IxxlSJrk3r8NKlXZi/cS93fbGkWsYPCKgC8PTkDKZl7OSBwe3onprodhxjjKlSgzo25O4BbZmweBsvfrfK5+uL8Pkaqsh7P6/nnZ/Xc/UpzRjeO9XtOMYY4xN/7deSjbvyeO3HNdSMieCGfi19tq6AKABTlm7niUkrODu9Pg8PaW/3+xtjgpaI8NSwDuQVlfDslEzCRfhz3xY+WZffF4Bf1u7its8W0TUlgVcu70p4mO38jTHBLSI8jJcu6UypKk9NzkAErj+t6ouAXxeAqcu287dPF9EssQbvXN3DBnY3xoSMiPAw/nlpF1SVJydlkJNXxO1ntanSL8E+vQgsIgNEZKWIrBGReyvz3jFzNnHj6AW0b1SLz/9yig3taIwJOZHhYbx8WVcu7Z7Caz+u4boP5rIvr6jKlu+zAiAi4cDrwEAgHbhcRNIret/BgmKem5rJfWOX0rdNMqOvP5k6tvM3xoSoyPAwnr2wI08N68CsNbsY+vrPLN1SNSOK+fIUUE9gjaquAxCRT4HzgBVHe8PuA4X0e/5Hdh0o5JLuTXhqWEciraGXMSbEiQhXntyMtAbx3PDxAoa89jOntkriulObn9ByfVkAGgOby/y8BTj5WG/Ytu8QJ9eryag/pXFS0zo+jGaMMYGnW7NEpt3ej9FzNvLhLxu55v25J7Q8X369Lu9Kxf80bRORESIyT0TmJUYUM+bPvWznb4wxR1G7RiQ3nt6Kmff05+XLupzQsnxZALYAKWV+bgJsO3ImVR2lqt1VtXvj+nXtHn9jjPFCZHgY553gIFi+LABzgdYi0lxEooDLgK99uD5jjDGV4LNrAKpaLCI3A98A4cB7qrrcV+szxhhTOT5tCKaqk4HJvlyHMcaY42P3WBpjTIiyAmCMMSHKCoAxxoQoKwDGGBOirAAYY0yIElXfjzvpLRHJBja6HCMJ2OVyhqpg2+F/gmVbbDv8S1tVjT+eN/rVeACqmux2BhGZp6rd3c5xomw7/E+wbItth38RkXnH+147BWSMMSHKCoAxxoQoKwD/a5TbAaqIbYf/CZZtse3wL8e9HX51EdgYY0z1sSMAY4wJUSFZAEQkRkTmiMhiEVkuIo+VM0+0iHzmDGg/W0RSqz/psYlIioj8KCIZznbcWs48p4vIPhFZ5DwediPrsXi5HSIirzifxxIROcmNrBURkfdEJEtElh3ldb//PMCr7QiIzwNARAaIyEon673lvD5cRLLLfCbXu5GzIl5sR+X3Waoacg88o5XVdKYjgdlAryPmuRF405m+DPjM7dzlbEdD4CRnOh5YBaQfMc/pwES3s1bBdgwCpjifXS9gttu5j7ItfYGTgGVHed3vPw8vtyNQPo9wYC3QAogCFpfztzUceM3trFWwHZXeZ4XkEYB6HHB+jHQeR14MOQ/4wJn+AviD+NlwZaq6XVUXONO5QAaesZgDipfbcR7wofPZ/QYkiEjDao5aIVWdAexxO8eJ8mI7AuLzAHoCa1R1naoWAp/iyR5ovNmOSu+zQrIAAIhIuIgsArKA71R19hGz/D6ovaoWA/uAutWb0nvO4V5XPEczRzrFOd01RUTaV2uwSjrGdvz+eTi2EIDFzhEwn8cxBMrn4W3OC51TWV+ISEo5r7vNm+2o9D4rZAuAqpaoahc8YxX3FJEOR8zi1aD2/kBEagJfArep6v4jXl4ANFPVzsCrwLjqzuetCrYjYD6PCgTM51GBQPk8vMk5AUhV1U7ANP7/W7Q/8WY7Kv2ZhGwBOExVc4DpwIAjXvp9UHsRiQBq44eH9iISiWenOVpVxx75uqruP3y6Sz0jtEWKSFI1x6xQRdtBmc/D0QTYVh3ZqlKgfB5eCJTPo8KcqrpbVQucH98GulVTtsrw5vdd6X1WSBYAEUkWkQRnOhY4E8g8Yravgaud6YuAH9S5uuIvnPN77wIZqvriUeZpcPg8oIj0xPOZ766+lBXzZjvwfB5/cu4+6QXsU9Xt1RayigTC5+GlQPk85gKtRaS5iEThuTj6ddkZjrh2MRTPNSh/U+F2cBz7LL/qDK4aNQQ+EJFwPP8BP1fViSLyODBPVb/Gs0P6SETW4Kmil7kX96j6AFcBS53rGQD3A00BVPVNPH8IfxWRYuAQcJm/FTK8247JeO48WQPkAde4kLNCIjIGz50+SSKyBXgEz00GgfR5eLMdAfF5qGqxiNwMfIPnTpr3VHX5Ef/X/yYiQ4FiPP/Xh7sW+Ci83I5K77OsJbAxxoSokDwFZIwxxgqAMcaELCsAxhgToqwAGGNMiLICYIwxIcoKQIgTkRKnB8TlTvcEd4hImPNadxF55RjvTRWRK6ovbWBxev6c6OL6p4vIMce8FZHHReTM6spk/EuotgMw/++Q0yUGIlIP+ARPC8JHVHUecKwBp1OBK5z3BAwRiXD6Sgl5quqX3VGb6mFHAOZ3qpoFjABudlp4/v4NVkT6lekvfaGIxAPPAqc5z93uHBHMFJEFzqO3897TnW+jX4hIpoiMLtMatoeI/OIcfcwRkXino77nRWSu00HXX8rLKyLjRGS+c/QyoszzA5z1LxaR753nHhWRUSLyLfCheMaE+LeILHW2p78zX3snxyJn3a1FJE5EJjnLWyYil5aTpZWITHPmWSAiLZ2Xah5lux92tm+Zk+vw89NF5DknwyoROc15friIjBWRqSKyWkT+UWbdZ4vIr856/yOePpW8IiLvi8hFzvQGEXnMWc5SEUkrZ/7hzu99goisF5GbnaPGhSLym4gkertu4wfc7ufaHu4+gAPlPLcXqE+ZvuvxdJjVx5muiefo8ffXnedrADHOdGs8LRRx5tuHp/+SMOBX4FQ8/ZqvA3o489VyljsCeNB5LhrPUUjzcnImOv/GAsvw9HyYjKdHxOZHzPMoMB+IdX6+E/i3M50GbAJi8HTQdqXzfJSz7AuBt8ust3Y5WWYDw5zpGOd3Ue52l83lTH8EDHGmpwMvONODgGnO9HDnd1XbWf5GPP2+JAEzgDhnvnuAh8ssq3sFn//7wEXO9AbgFmf6RuCdcuYfjqf1b7zzu94H3OC89hKejvxc/7u2h3cPOwVkylNer4KzgBdFZDQwVlW3yP92NR4JvCYiXYASoE2Z1+ao6hYA8XT3kIpn57FdVeeCp6M05/WzgU6Hv5ni2em1BtYfsb6/icgwZzrFmScZmKGq651llu0M62tVPeRMn4pnZ4+qZorIRifvr8ADItLE2c7VIrIUGCkiz+EpeDP/65flORpqrKpfOcvLd54/2nb/DPQXkbvxFIpEYDmeIgtwuDO8+c78h32vqvucZa0AmgEJQDowy1lflLMNx6vsui84yjw/qmfchlwR2Vcm91Kg0wms21QzKwDmv4hICzw77yyg3eHnVfVZEZmE51vpb1L+hcPbgZ1AZzzfePPLvFZQZroEz9+eUH53tYLnm+g3x8h5Op5O/E5R1TwRmY7nm/HRlglw8Ih1/A9V/UREZgODgW9E5HpV/UFEuuHZ9mdE5FtVfbyiZTn+Z7tFJAZ4A8+3880i8qiT/cj3HP49HXVZzrq/U9XLj5GhMo627vLmASgt83PpMd5j/JBdAzC/E5Fk4E08w+PpEa+1VNWlqvocnlMyaUAunlMBh9XG842+FE/nbuEVrDITaCQiPZx1xIunG9tv8HSYFuk830ZE4o54b21gr7PzT8MzLCF4vv32E5HmznuPdk56BnDl4eXj6XhupVMA16nqK3h6V+wkIo2APFX9GBiJZ6jE3zlHLltE5HxnedEiUuMY2314Z7/LOV9/0THmrchvQB8RaeWsu4azPf9FRD4UT++jxvzOqrWJdU5NROLpDfEjoLwumW9zLpSWACvwjAdbChSLyGI855LfAL4UkYuBH/nvb9z/Q1ULnQuqr4qnW+5DeL7Vv4Pn1McC5+JoNnD+EW+fCtwgIkuAlXh2hKhqtnguCI8Vz+2sWcBZ5az+DeBN5/ROMTBcVQucPH8UkSJgB/A40AN4XkRKgSLgr+Us7yrgLfH0zlgEXHyM7c4RkbfxnDLZgKer3+PibO9wYIyIRDtPP4hnXOWyOgH+2F2zcZH1BmpMkBORWsC7qnrUomRCkxUAY4wJUXYNwBhjQpQVAGOMCVFWAIwxJkRZATDGmBBlBcAYY0KUFQBjjAlRVgCMMSZE/R+4t6u0mSXGdwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "y_position = np.linspace(0, cell_width, num)\n",
-    "z_position = np.tile(-hydraulic_data.loc[3, 'Depth_m']/2, num)\n",
-    "\n",
-    "position = np.stack((x_position, y_position, z_position)).transpose()\n",
-    "\n",
-    "hydraulic_results = hydraulic_model.hydraulic_results(position)\n",
-    "\n",
-    "velocity = hydraulic_results.streamwise_velocity()\n",
-    "\n",
-    "_ = plt.plot(y_position, velocity)\n",
-    "_ = plt.xlabel('Distance across channel, in m')\n",
-    "_ = plt.ylabel('Velocity, in m/s')\n",
-    "plt.gca().invert_xaxis()\n",
-    "plt.autoscale(axis='x', tight=True)"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/lateral transporter.ipynb b/notebooks/lateral transporter.ipynb
deleted file mode 100644
index edcec08..0000000
--- a/notebooks/lateral transporter.ipynb	
+++ /dev/null
@@ -1,339 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import LateralTransporter\n",
-    "\n",
-    "transport_model = LateralTransporter(simulation_clock, carp_eggs)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "1000"
-      ]
-     },
-     "execution_count": 6,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8XHd97//X58xosWxJlmVZkuVFUbzGS2JbEGdxCEtCSCgJoYQSSgMF0t7yuLfbvW3g3tJ74XdbltvS3gstTYESKKQEEkhIICSEJE5w7ETyvsuRJWu39sWypJlzPr8/zpnRzGhky4ktaZLP8/FI5BkdzXxnzsyc93y+yxFVxRhjjDHGZCZnphtgjDHGGGNeOwtzxhhjjDEZzMKcMcYYY0wGszBnjDHGGJPBLMwZY4wxxmQwC3PGGGOMMRnMwpwxxhhjTAazMGeMMcYYk8EszBljjDHGZLDwTDdgOi1cuFArKytnuhnGGGOMMedVW1vbpaol59vuTRXmKisrqampmelmGGOMMcacl4g0TmU762Y1xhhjjMlgFuaMMcYYYzKYhTljjDHGmAxmYc4YY4wxJoNZmDPGGGOMyWAW5owxxhhjMpiFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMZmHOGGOMMSaDzWiYE5Fvi8hpETmYcN0CEXlaROqCn0Xn+PsCEWkRka9NT4uNMcYYY2aXma7MfQe4JeW6+4BnVHUl8ExweTJfAJ6/NE0zxhhjjJn9ZjTMqep2oCfl6tuBB4J/PwDcke5vRWQLUAo8dckaaIwxxhgzy810ZS6dUlVtAwh+LkrdQEQc4O+A/3a+GxORe0WkRkRqOjs7L3pjjTHGGGNm0mwMc1PxR8DPVbXpfBuq6v2qWq2q1SUlJdPQNGOMMcaY6ROe6Qak0SEi5araJiLlwOk021wDbBORPwLmAdkiMqSq5xpfZ4wxxhjzhjMbw9xjwD3AF4Ofj6ZuoKofif1bRD4GVFuQM8YYY8yb0UwvTfIg8BKwWkSaReQT+CHuJhGpA24KLiMi1SLyzZlrrTHGGGPM7COqOtNtmDbV1dVaU1Mz080wxhhjjDkvEalV1erzbZepEyCMMcYYYwwW5owxxhhjMpqFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMZmHOGGOMMSaDWZgzxhhjjMlgFuaMMcYYYzKYhTljjDHGmAxmYc4YY4wxJoNZmDPGGGOMyWAW5owxxhhjMtiMhjkR+baInBaRgwnXLRCRp0WkLvhZlObvrhKRl0TkkIjsF5EPTW/LjTHGGGNmh5muzH0HuCXluvuAZ1R1JfBMcDnVMPB7qrou+Pt/EJH5l7KhxhhjjDGz0YyGOVXdDvSkXH078EDw7weAO9L83XFVrQv+3QqcBkouYVONMcYYY2alma7MpVOqqm0Awc9F59pYRN4KZAOvTkPbjDHGGGNmldkY5qZMRMqB7wEfV1Vvkm3uFZEaEanp7Oyc3gYaY4wxxlxiszHMdQQhLRbWTqfbSEQKgCeA/6GqOye7MVW9X1WrVbW6pMR6Yo0xxhjzxjIbw9xjwD3Bv+8BHk3dQESygZ8A31XVH01j24wxxhhjZpWZXprkQeAlYLWINIvIJ4AvAjeJSB1wU3AZEakWkW8Gf3oXcAPwMRHZG/x31Qw8BGOMMcaYGSWqOtNtmDbV1dVaU1Mz080wxhhjjDkvEalV1erzbTcbu1mNMcYYY8wUWZgzxhhjjMlgFuaMMcYYYzKYhTljjDHGmAxmYc4YY4wxJoNZmDPGGGOMyWAW5owxxhhjMpiFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMZmHOGGOMMSaDWZgzxhhjjMlgFuaMMcYYYzLYjIY5Efm2iJwWkYMJ1y0QkadFpC74WTTJ394TbFMnIvdMX6uNMcYYY2aP8Azf/3eArwHfTbjuPuAZVf2iiNwXXP7LxD8SkQXAXwPVgAK1IvKYqvZOS6sn8ZVv/A2/WraE5uwyIhfxqc0iyhw9y1mZc1Fv19ryxmvLbGmHtcXaYm15Y7VltrRjtrRlLme5oeUQ/3jPX8zI/ae6KM+CiFyhqodTrrtRVZ8719+p6nYRqUy5+nbgxuDfDwDPkRLmgHcDT6tqT3BfTwO3AA9eeOsvjq9842/4h1U34c54PjbGGGPMpTRAET9cuhge+PKsCHQXK3k8JCLfA74M5AY/q4FrXsNtlapqG4CqtonIojTbVABNCZebg+smEJF7gXsBli1b9hqaMzXHi/JwCYHIJbsPY4wxxswSqhwoWzrTrQAuXpi7GvgSsAPIB74PXHeRbjuddIlJ022oqvcD9wNUV1en3eZiWNU7TKjExVULc8YYY8ybwYb2pvNvNA0uVpiLAGeBOfiVuZOq6r3G2+oQkfKgKlcOnE6zTTPjXbEAS/C7Y2fMf/vDz4KNmbO22LgWa4u1xdryBmzLbGnHbGnLbBszJ6qvv1glIvuAR4EvAMXAvwARVf3tKfxtJfC4qq4PLn8F6E6YALFAVf8i5W8WALXA5uCq3cCW2Bi6yVRXV2tNTc2FPDRjjDHGmBkhIrWqWn2+7S7W0iSfUNXPqWpEVdtV9Xb8cHdOIvIg8BKwWkSaReQTwBeBm0SkDrgpuIyIVIvINwGC0PYF4JXgv8+fL8gZY4wxxrwRXZTKXKawypwxxhhjMsV0V+aMMcYYY8wMsDBnjDHGGJPBLMwZY4wxxmQwC3PGGGOMMRnMwpwxxhhjTAazMGeMMcYYk8EszBljjDHGZDALc8YYY4wxGczCnDHGGGNMBrMwZ4wxxhiTwSzMGWOMMcZkMAtzxhhjjDEZzMKcMcYYY0wGszBnjDHGGJPBZm2YE5E/FpGDInJIRP4kze8LReRnIrIv2ObjM9FOY4wxxpiZNCvDnIisBz4FvBW4EniviKxM2ezTwGFVvRK4Efg7Ecme1oYaY4wxxsywWRnmgLXATlUdVtUo8Dzw/pRtFMgXEQHmAT1AdHqbaYwxxhgzs2ZrmDsI3CAixSKSB9wKLE3Z5mv4oa8VOAD8sap6qTckIveKSI2I1HR2dl7qdhtjjDHGTKtZGeZU9QjwJeBp4ElgHxOrbu8G9gKLgauAr4lIQZrbul9Vq1W1uqSk5NI23BhjjDFmms3KMAegqt9S1c2qegN+F2pdyiYfBx5R3wngJLBmuttpjDHGGDOTZm2YE5FFwc9lwJ3AgymbnALeGWxTCqwG6qezjcYYY4wxMy080w04h4dFpBiIAJ9W1V4R+UMAVf0G8AXgOyJyABDgL1W1a+aaa4wxxhgz/WZtmFPVbWmu+0bCv1uBm6e1UcYYY4wxs8ys7WY1xhhjjDHnZ2HOGGOMMSaDWZgzxhhjjMlgFuaMMcYYYzKYhTljjDHGmAxmYc4YY4wxJoNZmDPGGGOMyWAW5owxxhhjMpiFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMZmHOGGOMMSaDzcowJyJ/LCIHReSQiPzJJNvcKCJ7g22en+42GmOMMcbMBuGZbkAqEVkPfAp4KzAGPCkiT6hqXcI284F/Am5R1VMismhmWmuMMcYYM7NmY2VuLbBTVYdVNQo8D7w/ZZu7gUdU9RSAqp6e5jYaY4wxxswKszHMHQRuEJFiEckDbgWWpmyzCigSkedEpFZEfm+yGxORe0WkRkRqOjs7L2GzjTHGGGOm36zrZlXVIyLyJeBpYAjYB0RTNgsDW4B3AnOAl0Rkp6oeT3N79wP3A1RXV+ulbLsxxhhjzHSbjZU5VPVbqrpZVW8AeoC6lE2agSdV9YyqdgHbgSunu53GGGOMMTNtVoa52IQGEVkG3Ak8mLLJo8A2EQkHXbFXA0emt5XGGGOMMTNv1nWzBh4WkWIgAnxaVXtF5A8BVPUbQVfsk8B+wAO+qaoHZ7C9xhhjjDEzYlaGOVXdlua6b6Rc/grwlWlrlDHGGGPMLDQru1mNMcYYY8zUWJgzxhhjjMlgFuaMMcYYYzKYhTljjDHGmAxmYc4YY4wxJoNZmDPGGGOMyWAW5owxxhhjMpiFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMJqo6022YNiLSCTRe4rtZCHRd4vswF872y+xj+2R2sv0y+9g+mX2ma58sV9WS8230pgpz00FEalS1eqbbYZLZfpl9bJ/MTrZfZh/bJ7PPbNsn1s1qjDHGGJPBLMwZY4wxxmQwC3MX3/0z3QCTlu2X2cf2yexk+2X2sX0y+8yqfWJj5owxxhhjMphV5owxxhhjMpiFOWOMMcaYDGZh7iISkVtE5JiInBCR+2a6PW8WIrJURJ4VkSMickhE/ji4foGIPC0idcHPouB6EZH/G+yn/SKyeWYfwRuXiIREZI+IPB5cvkxEdgX75Icikh1cnxNcPhH8vnIm2/1GJiLzReTHInI0eM9cY++VmSUifxp8dh0UkQdFJNfeK9NPRL4tIqdF5GDCdRf83hCRe4Lt60Tknulou4W5i0REQsDXgfcAVwAfFpErZrZVbxpR4M9VdS2wFfh08NzfBzyjqiuBZ4LL4O+jlcF/9wL/PP1NftP4Y+BIwuUvAV8N9kkv8Ing+k8Avaq6AvhqsJ25NP4ReFJV1wBX4u8fe6/MEBGpAP4LUK2q64EQ8DvYe2UmfAe4JeW6C3pviMgC4K+Bq4G3An8dC4CXkoW5i+etwAlVrVfVMeA/gNtnuE1vCqrapqq7g38P4h+cKvCf/weCzR4A7gj+fTvwXfXtBOaLSPk0N/sNT0SWALcB3wwuC/AO4MfBJqn7JLavfgy8M9jeXEQiUgDcAHwLQFXHVLUPe6/MtDAwR0TCQB7Qhr1Xpp2qbgd6Uq6+0PfGu4GnVbVHVXuBp5kYEC86C3MXTwXQlHC5ObjOTKOgy2ETsAsoVdU28AMfsCjYzPbV9PgH4C8AL7hcDPSpajS4nPi8x/dJ8Pv+YHtzcVUBncC/Bd3f3xSRudh7Zcaoagvwf4BT+CGuH6jF3iuzxYW+N2bkPWNh7uJJ983I1n2ZRiIyD3gY+BNVHTjXpmmus311EYnIe4HTqlqbeHWaTXUKvzMXTxjYDPyzqm4CzjDebZSO7ZdLLOiCux24DFgMzMXvwktl75XZZbL9MCP7x8LcxdMMLE24vARonaG2vOmISBZ+kPu+qj4SXN0R6xIKfp4Orrd9deldB7xPRBrwhxy8A79SNz/oSoLk5z2+T4LfFzKxu8O8fs1As6ruCi7/GD/c2Xtl5rwLOKmqnaoaAR4BrsXeK7PFhb43ZuQ9Y2Hu4nkFWBnMQMrGH8D62Ay36U0hGC/yLeCIqv59wq8eA2Izie4BHk24/veC2Uhbgf5YGd1cHKr6GVVdoqqV+O+FX6vqR4Bngd8ONkvdJ7F99dvB9lZtuMhUtR1oEpHVwVXvBA5j75WZdArYKiJ5wWdZbJ/Ye2V2uND3xi+Bm0WkKKi63hxcd0nZGSAuIhG5Fb/6EAK+rar/e4ab9KYgItcDLwAHGB+f9Vn8cXMPAcvwPzA/qKo9wQfm1/AHpQ4DH1fVmmlv+JuEiNwI/FdVfa+IVOFX6hYAe4DfVdVREckFvoc/3rEH+B1VrZ+pNr+RichV+JNSsoF64OP4X+ztvTJDROR/AR/Cn5m/B/gk/jgre69MIxF5ELgRWAh04M9K/SkX+N4Qkd/HPwYB/G9V/bdL3nYLc8YYY4wxmcu6WY0xxhhjMpiFOWOMMcaYDGZhzhhjjDEmg1mYM8YYY4zJYBbmjDHGGGMymIU5Y4wxxpgMZmHOGGOMMSaDWZgzxhhjjMlg4fNv8saxcOFCraysnOlmGGOMMcacV21tbZeqlpxvuzdVmKusrKSmxs5EY4wxxpjZT0Qap7KddbMaY4wxxmSwWR/mROTbInJaRA4mXLdARJ4WkbrgZ9FMttEYY4wxZqZkQjfrd4CvAd9NuO4+4BlV/aKI3Bdc/ssZaNsbVnt9Py3He6lYVURZVeFMN+c1ma2PYSbbNVufk5jU9tX0n2FH3xDXzp9HdeHcaW3LaOMAo/X95FQVkrO8YFrveyoSnxvgdT9PrceP0HToAEvXbWDxqrVp72e69kFTUxMNDQ1UVlaydOlSAGobe9lZ382qeWPkjnQn/S5Vun1XU1PDkSNHWLt2LdXV1dPyOF6r2GPdWlXMluWZXauobezl4d3NCHDn5iUZ/3hmq1kf5lR1u4hUplx9O3Bj8O8HgOewMHfRtNf38+hX9+BGPUJhh9v/dNOsPPAnaq/v5+jONgBKluZz7OV22k70g4LjCDd8eBXrtlVctPuKBY7uliFe3XOayzctSrr9yUJTe30/P/373bhRJRQW7vizzdP23M72/RprX0Ohw6m6Nq69YQlf6esh4ilZjvDjq1a8pjCR+NpYs7U86TFPFthGGwfo/Nf9EFVwYP7tKzi6pmDS8BQLPEXhEL1R95IHn++1dPGZumZcHe9ecYEQ8MVVS/hoxcKk7dMFssTrFnec4qH/9VncaARxHKrf+35y8ubSs2Idf9gdYcxTEGFlXg6fWlLC2nlzLknAq23s5dkXd3LmxMuoKo7jsHnzZk6dzeGX+xo5qyGuDjcSEhCgMARnx6IsKFnIre//AEuXLmW0cYCubx5Aox4Sdlj4yQ0c6DzO448/DsCrr77K6Ml+1oaXIUDe5tIZCes/2HWKH75yitKCXP7gbZfHQ05tYy8f+eZOxqIe2WGH739y65QD0MX6AjJZ2yYTC2xdg6OU5OfEQ1ttYy8fvv8lxlyN3+5NV5RO6TbNhZn1YW4SparaBqCqbSKyaLINReRe4F6AZcuWTVPzMtvRnW1EIx4AruvRcrx3Vh30U+145AR7njo16e89T3n+B8corpj3uh9He30/P/273biuIgLqf0bRdLgXgHXbKs4Zmo7ubMON+n/kRpWjO9su6XObGCpbjvfiRj1UZ+d+bTneS0Ohw3dvzMd14JmuLnDE/6Wn7OgbuqDg0F7fz+6nGjm5rwuC/XR0R1s8QI82DtB5/35wFQTm37GCeVeXAzC8u8MPcgAefLumgS8Pz8HFDxEx2Y7whRUV/NWJFkY9jd0N2SI8smkFG/rci17dq+k/w2fqmuPNcxN+5wL3HW9m7bw5SaHtt/eeSArFR4bOct/xZjwgS+C+pv240QgA6nm88tjDIMKuTW9jtPrt4IRAlePDo/y3482Eg9f+VEP2VCpNP9h1iv/72EvcFD6CA4iA53nU1NSgCleG/O0cFBBUlb4o4IRo6+7l29/6Fr//iU9QWA8a9UBBIx5HH63hV307x+9IYc/+vSyPZANwpraDkk9tnNZA94Ndp/jsTw4El/r51ZEO/r87NnD31ct4ZHczoxEPBSJRj5313VMKPulC7FQeUywANuQ5vDB8lsGzEb6xvT7etmePneY/7r1m0jakBjaAH9U28+CntrKzvjvpegWeOtxx3tucbplUtZ1Mpoa5KVPV+4H7Aaqrq/U8m7/ptdf3c+TF1vhlxxEqVs2ON1w6h15oOWeQi1HlogSn3U814gYfTpryanp1z2nWbatICsPRqHfJA9tkUkPl9XetJBR2cF2PUMh5Tfv1UnbTVqwq4kBLB27sSI76T7IIIZF4RWwq7cudm8UL/3E8vq9i3KjGQ+yZ3R1+kMO/q75HT5BVNpec5QUk/tX+Qocvrcn1NxWSfjfiKf/a3MmIl3w/Y6p8/tAp/vkXPWjEA4F52yqYf2vVa3lqkuzoG8I9xyeZCzzU3hMPWDv6hoh4iguop/znfXWcjGrwHMOYwnPZBVwd/H1L6VIOrboKgEVdbYiC6vj2MJ5zdQoh+3yVptrGXr74iyO80tDLhtAAQtJdxTmS8p6LfZsKNlZV9te8zLs23wQO7J/n8HxxlIHBA5S6Y0m31eMM0SH9lGohRNUP3NMY5n5xsC3psqfwV4/6w8J/WNMUf42FQg5bq4qndJuj9f3jITbqTekxxQKgF/XIU+VJhjkkbtI2EVfPGSh31ncTSXlBjkU9Pv+zQ5QW5CZ96U28zUd2N8+KMFdTU5NUtQXOGehmaxd4poa5DhEpD6py5cDpmW7QG8XRnW143vjlRZcVzKrqTarDv2k9/0YXSXt9Pw37uib9/eWbFrHjkRMc2p7QJoVDL7Qy3D/G8vXFDA+M+aUdhVBIWLO1fEr3+1oCVGolbuRMhOvvWhnvFr7Q/Xopu2ljVbRQXsKcrNgRXWFz4ZzzVn8OvdDC8z84Fj++px5AAJzQ+JeTCXnBI34AnLu5lOFX2sGD2gVhvLR/4Ds+PJr2+pdHR3l4kcOdLf4Bdmh7C+HiOfHq32tVFA5xjiwHwA9au7mrbAHVhXO5dv48shxBPcUDP8ilaDszzM5NNzCSnUPNxutRx98P4rpoumQV8IL2pBPrejvU0s9Y1MNTv9L08O7m+MEQ4EP/soNo8JnT7hXg0YLE9iHE07NOvJC0o9vzi3h0VMhv6WVvWZgvX5FLVED0erbV7eeK9kaIBXJV2pxeSt1CCEHONH/GvWd9OS/UJX+WuJ7y1aePEU0IRjeuKplyYPDORsa/aWhwOUVqN2wsAIpCFnAzYQ5qcpjLCsk5A+XWqmKyQpJUgQPY19wP9E/6dzNZWWlqamLfvn0ANDYmr/xx5MiRScPcD3ad4nOPHsRTveAu8EstU8PcY8A9wBeDn4/ObHPeuNpO9HPohZYJ481mw0D6Qy+0cLphcMrbZ+de+Ms9tZsyXUAAyMvP4sBzzXS3nJn4S4WT+7r87r6ACGz7nVXnfe5eT4CqWFWUVIkbHY7y8mMn8VRpq+u/4G7npIpj5OJVHA+90MJz3z8GwBXFYV4pz8cLJRysBV7uH+YvjjXFA8q5bgPSBzmAhUvHq3t5m0s5U9M+3k+ZcFDPWV7A/NtX0PfTE2zpiZKt2Yx6Ot7tO0W/LsvizpZo/PLZg12vO8z1Rt3Y94FJRRmvzlUXzuULKyr4p1OnOXl2NLnspYoA9UtXUbd8NUgQpmPVrlBo/HJKdQ78fHtg6OyE+0/X9SZAyBF+XNtM1PWrdB/YvCQe5AA6dR41Q4u4pqAH1Wj8ccbvNnZBE0KdKqdzcnn8yuvwQmF+MdyDe0UuXlDiUxxeXHklC84MUDbQ64+jxaHcK0p6rNPp7quX8dyx0zx1uCPp+s6h5AqiAl9/9sR5q0CjjQMMvZj8xXboxVbmrFsYr86ldsMWvreKaN8IGjzJDnAb2TztRMldVkBL31kQYV35uat7W5YX8eC91/D5nx0KAtz5hQQ+sHnJlLa92JqamvjOd76D67ppf19WVpb2+trGXv7qpwfiVfGxC+gCnw6ZsDTJg8BLwGoRaRaRT+CHuJtEpA64KbhsLoKSpfnJFQiF7Q8ep71+/E0aCxi7Hq3n0a/uSfrddGmv72f7g8cn30Bg083LKF85Hjb2PHWKHY+cuKD7SHycLcd6J912eDCSPshNQhU6m84fRNONc7sQq68p44rrF3P9XSvZ96smPE9B/e7fC7mt1O53gMMvtr7ufZ+6H5d0R3nPnuGECoP/Dw/4bks3H9hzgpr+MxNu4/kHjzEVpxsH46/ZnOUFzH/fivFPwZSDujccBYWN/R4fahi70BwHwLvOJv/RnPULJ9ly6q6dP4+sKbalpv8Mf3Gsif9e10LDSBAUEoMQyttyHTzH8cfFwXhYSq1+iUw4YCjwH209E/ZJuq43Ba5aOp+oO16lOz2YXNUsG2nnxpanyDl5ADwvqcqqKa+J+P4SaJ9biBsK44kQcYgHudgNqAj9hUvYEF1OdfRybh3b7HexArh+N+t0+4O3XU52aHxHptulzx07zd89dYyPfHMntY2Tv19H6/v9vtpEXvLjSuqGjXj0PfoqZ3a1+58JKIK/fzd6IV5p6KWlb4SW3rM8dbiDD/9r8v3XNvby9WdPJF23qCD3vO8RAcKO8IU7NsxYCGpoaJg0yAHs2rWLpqamCdc/vLs5aXiDyLkrltNt1lfmVPXDk/zqndPakDeB9vp+Xvjh8Qlf+T3VpMHys2Egfcvx3uBDaBIKYyNRwlnJh589T5+i6qqSKbU38XFGIx5NRy4sSL0WiZVAgMGeEZyQ4Hl6QePcUit6QNLz5ciFjYX0n+/k69R7/eMQ0+3H4RzxKzLxoziAf1Aecz1+Wd9F9abx6tzuXzaiKW1LIlBUmkdvhx8SE1+zscAGxA/qsUpGTlUhkuWwLw++f1k23mT9rClCwPrsbG7bO8AdTZF4G+Ztq3jdVTmA6sK5PLJpJV8/1cGTXQNpK3QOkB9y+O29J5ImZox3Xfvp6K37XmTsyrfgOHNwNelINaG8eWOOMCc/n190DSRd7+rEcXOTdb31nBnDEcEtzMJdmIPOz45X30pkiLdkNRFZPD5RTVBUJ3ne45VCIZybF7xM0jwbqjgefLSzjI1u+rlyTt6lORRONr4qdv3/fN96Drb2I8Blo0rD3g724HIoKBfHAvFoxOPPH9rLvTdczt1XT5zIN1n7E6/PqSr0S2JR9buaPb8qG/uEVPxu+D24E15TiRMxYlXXiKtkhYTfv+4y/vWF+nOO4wS446rFrCzNn/GxZpWVlYRCoUkDneu6NDQ0TFj2pivli8eWZfNnTVUOMiDMmemz+5eN8ZmWQPyrYjicHCJSu+9mYoJExaoiQiGZMMA91eWbFsVnmgJwARMhEh9nbCx+kvP1daVK2D7Wm9Ve3x9vS2IAcxzxP1yDz5vLrlzI5ncvn3JwSg3cAOEsh2jUjyTLN1zYN8qpPt8XKndu1oTcUHk6SsgDF0U88BwNnjtFFJafHh8L1F7fT8P+yccxgn+8X7xqPoPdI0mv2dHGAaJ9I/4BzlUk7MS7WUcbB9hZ38UjN8zn4NBZXD8zJFWohPEeWgGuLsxj1dw53FW2gDO7O9geHmR/ocPGfv/148zJumjPW3XhXP5tQxU1/Wf4+qkO9g6cpX0sEn85esC/NHfiapqXqCrieVTvf5HaDdfiSti/TvwZoqQJdaIeFT/8Jk3X3gSLKpNuLiRMmJx5zQ/LAAAgAElEQVSyZXkR//N96/nvPzmQdP8nu88Qyc9mrLoYCTk8JUp2cQ7Fvd3clHWUUDa4JHyeiCAKC718upzBpOqpJPx7JCsbP/A7yZXHoP0q0CNngDkTn0yFvsdejU9+uVgSx1eFHeGD1Uu5M+haTJ0Qsp4Qp/91P0ouEZT/wnA80AVNpKF7OD4DNjXQecNR0hlrHUq+IvbFKf7Dr8gBeChPMMYhJnbjZ4XHJ2I8vLs5HtLHXOVfXqifdFhDou4zY/zD21fEq3ozFeqWLl3Kxz72Mfbt20dbWxstLS1Jv3cch9RzuNc29vLcseSh+a809vLFnx/hvlvXMhtYmDNA+oPiZVcupLSyYMK4uO6WIRZUzGVuYc6EgDFdY+nKqgpZc1158mSDBLHJBWVVhRzbFaw5dx6pbS+rKoxPGEBJqsxtunkZVVeV0HK8l9HhKCdqOhjsGf/mJg7j1aLEylBAFQ5tb+XwC6287e7VrNtWkRLAkj8dT+7vYvO7l0/5+YkFUT+8CSVL81mztZyjO9s4uqONhv1dNB3u4fY/3QRw3n1WVlXIHX++OWGpD/9AWbI0f8ptStVe38+LD9UlHQiai8M0LArz7j3DDOcIA3kOtVU58YOyJ9BflhPf/lzjGAEQf0bgmq3lrNlaHn+cRSEZX0cuBLlrFxDK95eqGG0c4JkfHuQPNs8hEsJfzAySQo4yfrAT4KOLi/nyav+bfE3/Ge6RQcZWZJOl2fzzK8NsPKMXbZB96ppxsVCXWoVLG+SC9m48WkPu2CiuE0qaDeo/z56/VULKrt73IovbG9Hf/JLQ+z6BGwqn3OJEvcNjSUE9LzvE8JiLtyA7GMsGUVU2rCth86leQu2afHtBVTaEw2q3gm7n6PgkCFWuv/qtnFV/NuLivi4cz8OL9fMl9s2K4OHx45Iu1vYXjHevJnKVM7s7LlqYq23s5XOPHiTqjYee7+86xcO7m/nA5iXxCSGrIkL3rxppikB21MNBCAGbCSWFuUS/ONg2IczFqsgaSS5RD9e0MzdYR8/vip14e7FXjAdcSZiP5oXoqMznxtWLePbYaU52DlFVMh7WU/f2VIIc+JM+zjWzebpniRYWFpKTk0NbWxteardDip313UQ9pUSGKHMGaPcK6NR5fGN7PcuK56atlk43C3MGmHhQFIHNN0+sBCUPNB+kq2mQLe+pPO/6apfCmq3lHHupHdf1cERYc105JUvzGTkTSQom1965wl8bzlNCTvoZpOnaDvDiQ3XxQf/gPy9X3bSMa+9cAZB0H4deaInPFO1sGhwPmgq97cNJt5FYPHj+QX8NvMQANuEorP6yKLf+4cYpPTexILr9weN4qrzwH8dZc53/uD1X4xW73U810ri/268enGeflVUVsvhOj38f/DFb69+PqLD9h699/b6W471Jz21zcZjvBWvMhTz4ve2DdOSHkipiAH/b283V/f5EiIpVRUkVx8qNC5lfmhcfH+iIcP1dK+Pti/3s+u4hEhdqGznaAwrDu0+Ts3I+tYUhoolrZKhy2ZBLc14Iz/G7UhG/MpflCHeVLYg/jh19Q0RU8RwhqnDgyvncULwgPn7p9QSGmv4z3LnnBBFVsoK17GKTHH581Qoeau/hP9p6iKqmO24jQBbKuuN7AQh5Lm7qBABxgqdcY4u9kTvmf1Gp6GjiQz/7Nodvu5v9WfPwSN/NWtvYy96mPkQEUT8uDI/54cTpGfP3p+cP4Ti4v5u+M8pNweJ17QVFtBYupLyvi0XdcKtW4QQVJMUDVXI6TjFvbD3ZC/3XdNlgL2vaT3F48WVJbzD/cXiEPI/yvk7aQi6XX3sFzpwsxpoGGDncE29ztGPqY17PJ3bwTzUW9dePyw47rIoIf08eOXXjY2djXZ2n52dB39iEvwconps9obKVs7yAhZ/cwGh9PyPHuhmLTQxz8ZfgAUabBpJ7B4L/x1oZAi7D4d5h2H54gOHsbDqPdrHVC7Gns4sPH+/kwU9t5c7NS/hhTVPSrFvwK7TvXFvKjasX0Ts8xtaqYo61D/KLg228Z305d1+9jK8/eyIeZMci/vIl6ysKWbe4kM8/fug1LZR8oZqamnjggQeIRtNXMz3Pm9DNWpSXTTFDvDv7aLDOYQsHo2XsdpemDdczwcKcAUg6KDrinzEh3QH61T3JpebBntF4uOtsGpzWxYbLqgq5/U83TbmqdK7tEoNF4uQAN5p8SFQgZ5LxKeu2VcRn/bbX93Pspfa0way4Yh5dzePdH+r597/llkpu/9NNvPx4fXLXcKBhf1dSt+z5dDYNxsejua5yaHurPzk0WKYChYZ9XfFgeb4ZqntP7+XLr3yZcKQUUX9GoOfqa97PFauKcByJt7FhURg3JKiAOtC/oZDhtjP+8xdbZEwET4mHh3SvgdonG/wggn9wHDnjd8vGKq/lroeXcBAH4hULjXq4A2NsGYwS1mwiCd9wmuaG+IvDI/RnO2zpiUJIOHpzBTdctjApyMSWAsHzxxRtu7yE/n+vu+DFXNN5qL2HsaBNY6pJ68nFQt1dZQv4Pyfb2d47mBTowsDdi4t5+9gAR7ta8VyXd/zmCZ7e9r5g1vB4qLu6MI+a/mFcVcIo6zsHWVu4ldMjp3A6W7mpvIj/1BONL0Sc2M2aOpNVEgIEgNM/RvhIP17pHApP97JisJlscXHm5NMaDvGzjdfhiUNYla+/cpbyfo99oQa/ghS00Qtlcaa4kuW5BX7IU2XV6SaOlC9HcYLuWeWWpkFOhbpRFEccFt5wGQfmtFBZWcmiqqV+iA+epLGGQYZ2tV2UcY1bq4pjvfdJHBE+sHkJ6xcXMry9mZzuWJemH1Y9lJeI8ruLS2jrH2G/TqzO/XRvK46QFHoSlxxx+0bGwxwwWtfL8MvtSftAE/4vQaAbD3fKDYSJ7O3jHeTh4M+O/pPoMDvru/n021fwjtWLJszE/dS2qgldjluWFyUFna1VxWSHHUYjHh7+8iX7mvsT1wZnNOIvX3OpwlxDQ0PaIBcbZiAizJmT3B3fOzxGmTOAg8Y/ijaE2xnUHN6zfsMlaeeFsjBnAJK6FFNPTZVowhi0wOHftNLdNB5QRJiWsXSx7tDXu13u3ITxTAqjw1GqrirBcVLGiam/7fm6k2Mh4+jONg690Jp8MAtLcjdswv2XVRVO+hyrMuXg1F7fz9HftE24XhXU1Qn3H3N0R9uEU16BH+Q+/uTHiWqU0oJBXMcFD8Kh0JT3c2Llct22CsqqCrnhw6vi1cPLe1x2OEJU/YCw+gy0nY4S9iDK+Li5LMdJCg+p+zbdmM5Y5bVAlZK5IZzUalR4fNzc3LeUsfGxV/lwwxjfrcqOB4goyrGCEJ85Mt6dfn2vQ8FVyUulxKpksa7QVbt7GEizmOtrOfVS59jEtcNSVRfO5b9eVsaOvkHGgtddCPjbVUt455lOmk4cYsttd1Dz+E8Yyc0jdaxZluPwPy733/87+oZY+FIt14bejlMUwlOXuvkHuWnDOn48yTlbH0kYUwX+zTqM9/B5hdlE1xaCCAMLSlg8epyygV68YWhduhJPHNRx8Dxl74Iwm/sjlHsLcGjAVb8yty9cxWXd81i9u5uSeVfy5MIz5EYSKlmqhD0I9zdw9IorcMXhWOkyuk8eYjgUZknNXn5/2zUsXTyPSMIXq7MHu+hdHE06L2y688Sez7H2wbRd3J+8/jIAPv/4IVZGhJvIw0GCQOX/xbWECR/p4x9lLn+vZylEkiZFAPHZwDvru7n8UC9DL7T4uzHLX3Ik8Ql3eyaug9hWkkNd5yDXkYW/eItMCHjh4N9BnZZbyKL0UC/781pYmJ8z4Ta/+eJJblpXds4QtmV5EZ977zr++08PJH0mJq76o8CPa/3uaO18NX5mhtLS0rTn642d93Xd4sJ4RfBcbaisrMRxnAldq8uWLaOpqQlV5cknn6S0tDR+P1urinnCyUrqJFDgpsWRWVGVAwtzJhAbv+RGvfgaZDBxLNW6bRX0d56dcNaFuYU5SWu+TXUcxXQ6VwCLVW9i9v7Kn/WablxeZ9Ng/Lk6V3dyLGRk54aTnq8rrltM57LBpNt9+Wf1HP5Na3w9u0SxD46QIwz2jEypOnd0Z9s5JytMNvsz8QwJiX726s+Iqv9ttiO/gcev+DrXy7v5w/d8dErhMrF7PvHUZ+u2VVBcMY9f1XVyZIHwjlyhJDuLd3rZnHzoMEtc5aPPDdKwKEzeqDKcI7x98fxzLiA8WbXOjXosyXUmjPmZd0MFc9YtTApW++eH+EHreRakdvyFWQeebZoQyGJVMoDRKhcJO/HKXE5wKrHENb8af3clNbl6znOd1vSf4Znu8ZmkYUjq3k3c7qH2Hirn5CQtaLyzuZXHtz/NkuZ6lvW08a5P/Cdy2zrZqUrEcxFVVjTV8dnqjUnVvuZnF6IyEkw4UKKnhmg9foTqVWsntLW2sZcf1SQv65AddrhxVUm8khMbM4cjuJ7D8dKllA/6r4nFfV04qn4XucKWHhdFWaSFvGdsEy96J3kyGuZo3nL+86DLvrnwpS3LGRMADxUn3jW8or2BEwvmxccFuiI8f/kGVOAVVbprD/CFFVeS1+y3s0P6OUUrB79zHM/zCIVC3HLLLTz55JO4rksoFOKee+45b6CLjZdL7WV1BPLnZPGb5xv4YCTMkAzwi1Aj83FY4ZbFx/KFAVEIK/w5uQh+ZezPQ2fZ50bHx2qKsKZjlKG941VmjXh4w1GyUkLqBHOz+FzXCGs0wiZCnHHgT7Ln4oyMVwr9ap3gBT9vIwtpPku0+VWuuaGcH6ZUHl3v3GeKiDnU2p/2+FCQm0VfsNBxNOrxrZ/+ikW9hwD/zAyxCS+x/XDamzdhLUPwlz75/O3rJw1ZS5cu5dZbb+WJJ56IV/Adx6GkpIRTp06hqkkzWpuamhg+1cAHr8inMWEFJAHesXXzOR/rdLIwZ4CJsx+P7mzzx6OlCSzX3rmCqqtK2P1UI33tw8wvzWN+aV7S7V1IFem1uNCJFucbz1exqih5LJsHO35yIrlih38GAeCClma59s4VFJbMSapKxdZti305HB6IMDwQmbAIcigsbPvQKjqbBjm6o43DL7Ry7KX2c45tm6wqN1Wpjxmg62zy5JiO/AZ+5vwbd8y7HuovO+++SO2e3/dMU7z621wc5rOnhhgbAob8okJBZA4LgqPhku4oS7rHu0UKTnTQ6mQhi+fS2j9G7tysCeMk01XrirMdCkOpUc6fZZqzvCApjNXkThxzFvLgttaE0O/5Z3UAvyKS2H2aNElheQGF763i7MEu5qz3F3H99WNH+c2SsN9dK/BHra1EOPe5Tnf0DcWH+Ql+l2nqdv6Yurp4RS62bUjgsTNRoptvJHTlNj70xAOcHRzkjz76e8x97DGeOHKMJS31LOlsYcH8EGxYx9CuNs680g6to/GzJqgqp8+eounQARavmjiLL3Ws2JVLCvncb60DYHtdJ5Goh/SNEY0tOSPCkfLliMCqjiZ68gpQceIL2QJosP5ZqRbyAa7i1awRjhLh18PDOMVhIgLqCHh+1yqqOOqxuqOJ42XJwUuD7mRFeWHFRrZnDfM771/Bydpj/KJrD9Gm8eqX67ocOXIE13UnHOAn03r8CC/+7DlKhrNpyx1ffDbWLXpV/RBL6gbplBF+nn2QdpR24FiohdvGtlCm88eDlEBIJb58yGeXLuLuU23x5zfqKf17O1Cyxr+giD8ZwskL09ecfk1NdeBvm07jKhwKKn4hhXdULeKqwwMkLGRDfBJ30IZg0SCO17SwZXkRLzeMf/EMOVNbd22yr5h9CWes8IBIVxPqJA5bDR53NMq+fftonLtmwlqGseflc48eZHVZftpg2dTUxNmzZ7nttttob28H4MorrwRg79698eBeWVk5YYFhcRw0+NBevnw5paWl532808XCnAEmdk3BeGBJd37RsqpCNt+8nEe/uofe9uEJi6hf6DpmF6K9vp+f/v1u3KgSCkv8xOnncr618cqqCqm8ciEn946Hlra6iTNg115XnjTxYqpLsySOp4vd38Jl+ec9g8Waa8tZt62C535wNL5sTDTq8fLj9bz1vVWTjv9LWrst2DeOcP77lDRVytN7OXakiU3976K14AQd+Q0AuOry8r4D6GN9561SLlySn9R13Ns+zKEXWiiumMfXX21hLOGTyAP+OessH1+URfnp8VMUNReHeWVNLt48h47mLt7/chutwy6nIn4X7LkmcBSFhOvmhoOxgjo+ps6RCbNMh3a1sbauk+wKGAuevpsXFvCRQ2dY05++pKkRj4Hnmyj5vXXJJ7YHvptTxOW/aEajHmMNA+x2x/h43lkiwWzX97ZFiBAsc3KOc50WhUPxgKnAhnkTl9nY0TeUFORi3llcwC+7BtBg0kZzRRVL1/ljfW5as5K+H30HNxolFA6zdN0Ghna10feT8TDgV2g8Tg4doCvSwREW8ehPDtA1OEpJfg53bl7CluVF8TFRYxF/eZ0PvWVZ/ID6/U/6J17fMzjMk2eGiObPCY7UDofLL+NoaSXI+IK/rqPsXhBmY/9o0LXlh7AV+Q6RJYXcT4RPSy4h9SdSIIKjytqGI6zo66IsqPYdLVuOhz+uQMSJT+zwUH4QKuD4/Cir1mcR/XXy+DTHcRgsW0LtmMPi/i7KBnoZGRlJu//BD3IP/a/P4EZd7sDhp+XvozOvnE9efxn5c7J4+1khP6jGtzt9eLGhA/hfIutC7ZRG58eXCgmVzME9fTZ4/uFs/8iESRXPEuUt8Q5RIe/KhUlfTAZfbEFHIkjYIVSYQ1bpXF4cHOadh0d5B2GeJMJhXLLCDovftoz8hb0MBl22seV3Yvev+MuXRIFfD49wqOEMWcFyRU5QDZvKOLcPbF7CQ6+cIjpJ70BMg1vEYmcg3YlH2L17N9e8pwrHATfN7UxWJUwMZ6FQiI997GNJ4fyee+6hoaGBkdxiHq5tJnry5XiQ84eoeBQsWMjwQC+nTp3igQcemFK1djpYmDPAxK4pgKO/CbrqdHwsFYx3vSZOGkgsmzvO5BMoLoajO9viwcaN6pTWjZvK2nibb16eNCEgVTjLiY8nm8rEi/O54rrFnG4495kLSpbmTzz7gvpdlW11e9KGl9THev1dK+NnmyhZmk9308QT0APxQJT63Oz89TFuPfCf4uN6Xqz6ET15bVQMrEI6FhI5z6SX9vp+DjzbnHRdc3GYfzjZDi+P8MuNefEqTYwHzLljGeuOnOXojjYaC0M8cGM+XrBKyOFguZD3N8PgkEuvq+eskg7v7oBgkVQN/muPeNRHlRtdJVZD6ft5PUPbW1gL/FOTw6Ftpbx9Qzkb+lw6D5y723X0cA9Du9rYUebET2yPpzx/sJ2qhDFzL57qIVKCP9vVU0Ilc8hyPH/CRMpkgkSdnWeSqiS90YmD46+dP48QTFjUoiQ7iyz1GFMl5LosazsZ/93iVWv54F/9b5oOHWDpug0sXrWWjq/tmdgAx6ExZwHR8o/yo10jHGJ86MCDdR1cuXUxY67Hzdct4+fbG/FU+fzjh+IVki3Li9D52Xxpzwmibm7ybYvgJZ6JI6jcFYy58ckBqsr++SG+XL0AN6iwfl1h2+koz5eG0WC5k/yzZyjr7wYRygZ7ub5uPy+uvBIvNi5NHGLjBA+PuRxu7SasefxWwQJKB8a7LBuq1vKN0Hzcy+YT8lx+a/9veOmll1izZk3ag/eh53+NGwysL80p5c/CwoKNy3nLnHnkVBUy8KtGRvCDcY4Gh97xmQfxKhgAYWHOmgUMdfrBSoHlvRF+iyx+hv9lax0hChGeJMLNZOEAI4d6GG0ciIc5t3P8VGvuQIS8TaVsfLSdq/CX4bmNLP69Mofb3rOKLcuLGKgfmrj0SLxd/qvvHxmJj9+7oryAm9eVXdByIluWF/HDP7iWh3c3c6JjMKm6l6hP8+h2cykOjSQ+TYA/47T5xBHQ3LR/q/gzUFPt27cvHs5c12Xfvn0T9uW+pj4eP3yC6lAjsbMOx+cHKQz2jn/hn0q1drpYmDNxqV1TiePFXFfZ8ZMTtJ/wxzuEsxw2vH3iufVE4IYPr5p0AsXrEeta7Wm98CUEphLAyqoKedvdq/0B+SnfgFMX7Z3qxItzmWz8YVxQJTu6s23C2RdgfNZtunasvsaPJ7EAnjjGb9vv+N22nacGOd04GP+0XrQ8n5Jl4+vGfa+li0dOdbHg1BI2MRIPc9vqP4gnHo46jDI+Bs1xxquxqee0TZwVHF+CJASyOG/81EsJskR4d9VCqjfNZc3Wcr54oAnPiSQtFfJsaRbvb46wMCz0uuc+Q0bi3pQgLPS50D02PkZwtHHAH0ge2Njv8ZZjZym5fi4Du5smni4pjbMHu7h2TRVZAJ4SVtjSHR0/EjjCVY3DZC3MIxr8/rfaXX7nmsXnHDM3tKuNcE0boTU5eALZKZNAYqoL5/LFVUv4y+PN8SpelghvHxvAe+xbNJYtZ2nrScpPNyd1lS5etTb+79HGASKpi83ij+N6R84yVOGD6vE/x1p4btEi3MVzcCvm8lLUH59XG4acgiykbyzpzAHgVw5dVXCCCRcp35wcgiobfoXu/6ydw4ohZV3vGCFxeGKxP+M59jpwwf8S4kHU8Rc3Lh1LOFesKiPhLP+5cBLPBpP8eosCLYXFlA700F5QxJ4lK2gsDma1iuA6Dq2F/qnYvlrfyt0FE88RXJebz85NN7C+c5DfDr0DkRCyt5t+enCyHOZeU85oXR8KjEo0qQmCsNJNmEXrKkMvtiQtIxIC/oxc6oM9+4/kEWb8tS0kT7A5ezBlMW1X6XilnSxvfKHgMIqeGq/U51QV+uM7Y1/Sg/8njp8rTGj4J6tKeRs55MRjz9TEwj3AXd/YMSHQlcj4MiAuMLewhLL5eTQ2Nsa3Odw6gDtJmBP8GaiJmpqaaGubfPhJU1MT//Ydf8mSt4SCymTsoSY9yeO7LtYdOxtYmDOTSloQVpO7HaNRj67mid11ysRuuoshNuYtmrIophMi7bpxr+X2Y+Hjhg+vYs/TjfSfDrpUBEovK7gklcacvHC6MyclVcmO7kz/AZSuKzt1bGBsodzxLnOXkx2neO/d14xvG6zT1908RGfjoL+kyicv5ws93f4OrfbHQ26uHw0OAkJIQwhO0viaZeuLKasqnNCG6+9amXQmjYZFYVzHH7+koglrmvkz5969sIBPLyuNHyzLqgr53eIwP6qtSzrl1MoBFw/oiioiJK0nl2ru5lKGd7XHu1cBRoNwFhsjOLy7Y8KAnti5VFMPcpOZs95fpuQHixfzzAsNbOmKcOUwFN5+Od5wFLdvhI272vnnV4apXeCPmVvb77H/9AmiN1dAmoA22jjA9ufq+cqWPKICjsJ9Q1mTTpT4aMVC1s6bw0PtfpXprrIFuL9+gvK2Rsrb/IOhhELxbtYJ91ffn3ZgU2wmnyNClgqb5/TzdPVaf7xaYiB3FHdBNtn9Y0lnDgC/chgW8FzXrzg5TtICvxKr0Aa3F3GUny/OYkNflEeWZPPokqDaEu970+S2xvavCM7wINlnh9j4lmt4ObWfbvwP/IytyuK+Ltrzi3hs43V4KeepFYXcyJi/bIoX4qE9dfztyiV8tMJ/fXyvpYu/WbKR6OL1vOQpHa0u722NsKHfjYesA11n2DEfrhuG0kgRIXVw8Rf1vtZdnbyYcax8nHBRgnfcpiA4hYEwghu8C6P4X2hiwwbmrF/ISF3f+I04cLjA4QogO7jxKFDrRVkYBO6cYHxn36Ovxr+8xL7ExbpYS3FYR4gl83PZ9JsOBlyFkFBy78YpzcpOXRz4L9+zlg//605/PKX4d5u4DIiDcH31RiorK8fHr4nDc115k95H6uuupqaGn//850kzWEOhUHysHPhLlnhuNL70SPy5j4W3hHGc66PLyZEwKzatnRVVObAwZ85h5Ewk6QWcSPCXKWmr608KWOm66S6G1AVmY5ZvWHhBEyBit1G+opBr71xBWVUhh15oiS+PEQoOTG7CSPNL9Zgg+UwNid/+lq4tShoTd3RHW9Kp1orCwsY1/pkMEqVbL69iVRESAjfq4orL/+v4EmePfYQPrv5gvFo52DPC4Rda42MKn+js90sBwf4/siSLzfWj8fZ56sVrcs3FYfZVZiMyzMl9TZw6fQan0GFJl4freoycicTvp6NhgNqB4EuAp4Q8uHnPEEcXdzG6qI/7r74rbUipLpzLlyLz+Me+HppK/PD1YGU2FU2jZPX7z0usK3kyY/lZHHFcdi8Is6knSs6IB+KvQzfaOOAP9g/sL3TYv66Ad60poJrkRVmdvDBnXmmfMFswu7KArDK/7deuXsSW3NwJS4+MNg7wUl0ntYUhCsc8nlicxXcrhd+UhHF7e/m//X0TJkAM7+7gibIsIkGpwEM50DuU1J2W7vlKvI39+cln6thy2x1pJzBAyjk8U8RP+YVweGE+6jC+BmDsCOiB0z2GiPC5965L6n6rLpzL5wdO8fjho+S4UX699d3BeDZl/vAQ/XPzSf12s6PY4d7qPPYtCPsTIxLCXyj4SIgGXw488StoZf09eHn56EAvowlnuZgomLupXnyyhOckjbqPb9WVX+jPjMVfDPozdc2sDcYtfqaumSiA4xAV5ZGlDk9UZPFPrwyzsd9DBR463EahDLLHGeQairl1bDNtTi/lXhGXvXU14J+xId2JH+IPWYTs5QUMjkTRdj/GOfh/8jgRFmwp5+7gNXGsLJd/l7Pcoll0ofxIIty1ejl/frSNd3phCLpo68LKXycEH/98xePPfyzENeOylBC/RRbvIYuzoRxwg+qXq/Exo+eSegaI//e+5eSOdPP125dzfCiborxsPv/4IU67BXi04YgSDoWYM2cO+/btY+XKlfQNj/F8fTBsJDgjQ7hwEWtXVk0Ywwl+xS1x5irA5Zdfzo033sgirzA+G72yshInFM3iLJAAACAASURBVCYajZL4Mouvkxj8+Ybociq9EtrCvWRVpB8SMRMszBl/9mNQ/UlcY6xiVRHhsJM2RF1107J4V2qsW9Jx5JzVkdcjdYHZmLyCieMi0kkNg20n+nn4K7VsumlZ/GwBMPE0WsK5Kz6vV+J6dEd3tOF5/rfrxCBXVlXIHX8WnEprbxdFIeHauSGcpgFO/8t+ioKqT05VIaOJ52hUf728sqpCQre38NIre2gtqKNjXgN/s+tvWFm0kquqropX0xInddxWUsjuWGUOWNscAZR5FWHe/ZEt/PL7exlsidJSnMV3gy5TgNrubpwwOG/L56PPD1LZ7yUF4RM5yi825xE7d7oKLByIMDfv24xoM+HRTcBVaZ+rd60s4cFfd9NU8v+z9+bxcVRnvvf3VPUitZbWvlqWLduyZXm3sM3qYLawBxIISWYCZCGTWe68M3cymWQuN3lvJpOZ3JvJzJ2ZJIRsZIEkEHYbcCAYgw3GsuRdtmzL2vettfdSdd4/TlV1V3fLGEICmZfn8wFZ6u7qqlNVp37neX7P7wcIQUyTPLkuwJVNMwSH0qu5A44MyIkA/OkFAaICvNLHZ16aJH9EkpHldVkdHQ5qfOaCADHd4FvNp3h0/TIaglkuYrm3LEtJi0RNdZFogoj1PXZXa+L77e7WfI/OvZuyLNutVLAUNuNCwLYOXXRgOtVS1ORN2U/NTk66nk7+QPqs3oGOMU429XGplCncKcARVTWlSf3QBE+a4Ko7SYmnJYQWimCSWuoCWB/wMty8m/Zl66z9Ufs0npXjbCMR0PUFdPrsJEziE1ZKLhqKsqfY64ykBlSEhp3Xjdx8tlVV8PPhqBKATgJp9jalpnO8fDGaJdHiOjcWgJ72urXVDKnKxva/XdsVgojVwLE2FKFHhz+WYZ71HWUEydO0U20UsdpYBDoc8nSwdN1ysiljel+/63sy1xUxe2QEYUg8wIcWFvHU7rPoFu9NINBttFERBxevtY3wuIzymMWxw4CVvSHqL6jkX/Z1Ojy0j2xc6ALc/pogNkIUYOUOJdXoTkerBmSMuM9t+MToORcY9j7ZDhBBY4I9z/wKIU2X7MvyshxeaxuhNns1I/3dHO2f5amnd1hFXhXLdFiiD2EXzvW5fj7RsCFtluzQoUMuIAdQV1dHiRl0yQOVfGo1d991J4/sfIWxrlMITEcWSiBYYVQ4pfAdviZMYXLwuQ7uLHuvAeK9eBdEf1tIWV1Zs9GJvX1Od2hZTZDVly9wcbpyCvyOfReo7J19o5hSMtQ1+TvzZ61eU+jqNtX09NZc6SJZegQACc2/7kzJPLokSvjdlI0Twx7rRO/QdOPWcXiEfF2wPENTSTMhMA2T8cdV16EJdEy5Qc2h57uoWVdM/sIMmnt/7fw9JmM0DjSyrmSdsw8pnMJD8ODxflZ0hVnfFiYmYvyi8Fuszb6Xkg1+WuZgd30GRiK5REo1+XsE5tYSbl5SzkjPlJP5fG5jAFPzO+83NcmR6gyGci4jymuufUo3TuWdQTDjnKjjQZ1TW3P4+EuTfHCeayHcFkLGTA4U+IgK1XgQMSV7qn1cNzTD7odauWpdITb7ZnuFlQUDIhKXy4IdiZk6Y3yOaUthP5Gz5AJwp3uIWL6pEhLqNjjjhvXaz3pHqIsIrvpFO8Qkh4MaI0EfmlTsJY8lkSLehIlEZk4OmiWroHu9aUusdtbkz6M+S+4i0RkAB+BIKysWMefcrH37yedTg5dc6rJj9+gkr1x8PTNZBVaZVXMBNE0IVs7NctSfMX9GTUow4TCmk7EUwFY5R9nEmLM/F75vG3V+jTue+gFHlqxiKjsPv8fLtNdPe1G5+2YXAik0VvS1M5ydx1BuvqvM6s0tcO2PLlTZONI/jW6axOzXrM9IIBhRAKQiCns9ffEOVgkd+jCd+jCarmE2SfYceo2PXPMhMprc5fzZwyNxvqaE7N29fDQByDlDguDLT8UbTvIDvpTlwsONXfy/N63C79WIxky8Ho0PbkjlPifq8thdrZpVbpUofmwKh1TiXPvzhd3tHI2ZVHgmwTRUiTimhJoBTh1uIWrk0Bn28uS+DjKJUKubrktBE2oNYA83Mm7BlVzGnZpK5X8+s+MZ/EVT5EfVKtS+bwdrsrmvPY9cYznrtCkagnnkV2ZQrxeR26zA60G9HVOdyfcaIN6uEEL8FfAp1BRyBLhbSjl/7/h/8XgrIKqndcyVjUoWjU3mxU2NhR1BYYhnzOyu15Y9vSrDZMi3zZ81HV9OCLjsjvPvmC2rCbLuqoWpzQZpSsiL1hbRfngYaYKu/+4kVtLt43zH09M6RlDARdm6sxqV1gPD4XRISaEmGE04KFOq8xmqTJVZCfpSv6u9u5tdx/cQXjLImugWLjsWob3Yy4EaH52FA/QGJI0DjTTlzfL45VswhSdOprLDQgCDZT4OhedoS2goca2QrY7FQzWZSHEFQm4lkHPuTOsnygt4rruHKPGZPKpJQleVzDt2Nt9tw2gMXfowpUQKOLjIz5qzEVaPG/jOjCcBh/nKcgnbtTJv4Y4JZpoGXaLAtjyJC8DZx2ztt2sc4ikADODeoWFKsxRS+swFAQdcCgmfa5ljzaS6F94oEwJw+PlneP7730aaJkLTuPzOT8+rEbcsKrjW0i1LNGAX1v7FLY80ZhZfqHY7oeyJlOhjEa5eWcpnti5J6XDc3trGPxUswShaijBNlQWTZlJNC5ZLP8clFvhJyqYJpScXGI8QKvE7r+lCkH+syfmu6upqatespavxVcr72inraSNcWE6kuIL+YAFdBSUYCZ2tSImGZOVIL8ZgF0+tuVi9LgRSCE774mR7AXxmQTGrxw0Gf9LKTct8PFrlje+rdTwhn9LME1IyS0ImK+GQDNOmRcTYe2I/F910AbmHo4RPj6trIgk0OdiZuGtEDHiWKJFY3AorXVY0ZkiO9oa4dcMCBLjKkXYkcyaVeoyy7hOawFehunOn9va6SvH2tX+u2Fid70jU5IyatB2Jd7mfPn2aF1/cRcxQXNhRYK2urj97nkum/STeRosWLXKVcT2a4Pa6AN62Uyn7YRgGHT1d5LNI/UGCFvA4mcNiGeRvzXI8I2CMgE+PL+jLzXxlZShNdE171zRAaG/8lndnCCEqgf8GNEgpV6EYPne8s3v1zoUNePY90cYT32ymvy314Z0uFBhz/y1RNHbJ+hLXa7YYsB1lNUHHwB3ANBUgTNRz+20jHV/urWTMLrp1KeuvPrf1iqYJqusL43ZPacDeOxGVtfksy1QZOXvfJDBmSGu+Vz/DiRN/At+vobQBj/AkvCQIReLXSH9biF99o5G55girOiqo+vUq/mPgGX6yNZcXV2XyTEM2xxavYKzki+yareGpyQpMzRP34EkMocpOzwxP8Mm+PjrzrdUvklUdcwjTUA8o2w9VoB6mmo9hMX+mNdwxwcIft/I3x+ecVbkdnnncLhpD09zHLB1/tAxtZSEVIYuQJASmUM0YRR73MSyfMtEtDr5PiLQuC4lhk8b9S/PUz+pcdp8dJmxK50GkDtQCJslAzvkpnTcbwIECDwcKlCiu/TkpBKerA6AJpl/vZ/h7Rwh3xF0hkqO3tcUBcgDSNBk425b2vVtqCtkgPBZVUhW1dhPlu4TZVZ2JYXEl1fAJNo4ZCEu3zw69fYp12ZlpgRzA40ePY2jCEgbWWN7Xweb2Fjb3jSKkREiJTxN8bMkC/qgjEh+bhO8QUmUnZ/J9TqMEwMrJCUrGR5z3dXR08MADD+ArKUezJjnPzARISVlolBsP76F6pE9de/bpEBrykitoaGjg7+UkC8aHrC91nzMpJd/vHmbPoV6ImayYUMK7iaDWa8LF5UH6ivwMiBBdurVvMv6fAHQt3gl65swZHnruEcYqrQ5oAcKr4VsU5zwKbCCnfjuEwZ8z48iFPNzYxYGOMZUFS+LUSuAX+7v4+eud/KrJLRdkh78miPBaY6IJ8j6wlJJ71pC9uQyhCaI9U6rT1r7nBHgXZCsbMWDixa5zXpMbq/O5aamf9mNu+ZuOjg5M00ATcbquaoBwL61c95Q9Jtb5scFYndS53fDS33LGkSJJOU7pFkc3Z2JsqSlkuT7IRu9RdnsOMyImVMYrYX4plUGui2xgo7GE2zfd8K7IysEfMJizwgNkCiE8QAB4A/+d/7rR0zpGLEHk93xAlJ3JK01cTQk3SKq/tJLaTW6V62SHgBVbyvF4NYSmVMAtjvDbJhxsZ/8S461u+6Jbl1J/WUXa12xZlbnpqJNJsjNb72SEOybQX+mm3BMnZgshEEJQ6InfwhqwJqCzosjP+z62nC031ziZ0XUl6/ji5i/iER7FsRG6KzPX2HScPODibA91GTqXZvnxZNYR0804YBMaCJ3np/OJ+tTE7aQFhVVvczIs6uUYksOLfVY3nEl77kNccHwn69vmnI/Yx2SXreYdh7aQIlr77DSV+i5dwu0VqeW8r5zu4aamU3ytrY87env5TO4cnQWK+C2kcnRYNBhjOBbPnh3K0/hGXQbS2p+vLqs8p3WYfX5CT7cRPj1O6Ok2JTr8694UoOOMV/Lf7KwcxDM2SCZ1q0yXmPkUIHy6yohIkFFVHpovuo4dcYDcfHGgY4wvPnaE+146QzMxTFRGzAAeJMpPiXCi1M+RS8t53pjAwMSUBqvGolSMusGOzPVxuDvEx773Ggc63PdNb2sLWa/+Bs00EabpuDRUjA/TVBK0yPySryytxFeWxS8W+93jJQSahM3DBjf2RBPGTo3Fhf4Auu6WyDAMgykTFq9vAECfncY/0AkoQGfonvh2hAKwj06E+bKZRb8vgws6TqKbBo42kO2DJwQR02RPf4jDQZ1v1GVgojqN148avG8gxo09UeamJinUdfq0MZVFUyl09GiMrAgUDIdYtXyZe59jBqf2HlMLHiEI3lBD8NqalGSxAHIuq+TVzUUu39aYoQRzAT7UUMXSEvc9ZZjS5e2aHDaFIPeaRRR/Zg3Zm8vxV+fiyctQoEbiRlQSot1TjD95hqH7DzOxs/0NFxnt7e0p3qh2JCavk6iNqpua1DWkaaoy65aaQtZqHv6dAPfg59NmCRLNSm66PxQW0Tiu1pV4uBw6wyZPB0KbolMfZrvvAAMi5HB87SiVQdbFFpG1Z+acx/n7jD/YMquUskcI8X+ATmAW2Cml3Jn8PiHEPcA9oIx0/6tGRpbXdXOFZ2LsevAEoCRGku2O5pP6SFdWLKhIeJiJ1IxYIt8qI8vLy79odT3Qf9twGbJbjRa/jSjxii3lcUHkhCiuznGstt5IYPj3FY6Hp3WeHP6S3WWXkDEQQingL4saeD2C8vcvcm3rtuW3AfCP+/4RU5p8ff/XWZavHiQvxJ7iA74rHS4eUlJoRoC4AburtSsdlykRdCSUzJw/CZPRQB/QR+HspRZ3zAZ/kov1w3jCMF8DhOqyhA2jMXzSR9QSAf6CL5eLlrszyD/pGeY/u4ac3yMWoV9a2Y56n48tO0coH4kxBuyZMijyCH5V6SEiJVIowJdOmDc5bE6ezZmbPTqMNExLZiNlgNwlxSTwmzhuDy72cXN3ImhRAPOaQ27wpgXmn8ar6lejezyOmK2m69Rv3ebwivIDPr785FHH37I+TqV34cscv4fPvXqasEfj+NQhLo9MMjTXSV1LBd3FNzsnWRuYRUKKvhwoUd2qzlZueeVpOquWOa4KTQuXqS5R6wk9FjPYOz6lGhY0DUwDzVTnxCsF95xRXdVPVXqJWosuvX2SkpoKbrrzTg4dOkRzc7Pjr5qtwYHmRmc/PNEwYevc1Az10p1fkgKwYxJ+IDO5Wde46fAemhYsZSIzB380zGCwANN6uueGTZoK4pZimilZPG2wvVLxM7dL+HbHDOVmARrtGNIEKTE8GtNCMl2YzUjLCdd3SyRlsTznejBnYvirc8nalNQcoUFmfRG3ks/DjV3OOfR6NPIDPkfuQ9cFuiYwksq1up6e0whxCoHrbzVBdY7m83xO+HsidzRdLFq0CF3X02bNEqcWIWDWl48vPK7GAitjl7QLtt5bVVU+X6gqwds+xaAIMaSNEYiV06ZNkplXSMlsl3J/EBplZr5DJ9hjRFmGsm8T4NyPppQMamOUG3mgCbIvqSDaN+2UwN/oOH+f8QcL5oQQ+cDNwGJgHHhYCPFHUsqfJr5PSvld4LsADQ0N75Ki2dsfyQArhdgv3HZHyUKu9ntWXFSeApIqa/PxeM8Nbmy+14Fn2zGtm9o005u2v5WwDdnfjsaKspogl95R6xi/27Hy4grn9bfD4eHtCAcoJIQkDuLs7kKZ8G+kZPTlHsovTM1AhiIhDKkkDSJGhB8e/SG7u3ezbHohVf6rrO1LTGHQmTGrvswmOydliKwdSPg9oTRtvVc3YG17RHXASZ2KiaU0Vz7PTOwhhPwEUlqZFGlyqPsJPtn+73z/mu/P2wSBhNXjBn/dMseTxR5WleViLsymMTTtyqBtH0oAPDbQkGBYu9gSiXDVtnLEzzuRUpWrxwxJaX8UfUUGpgCvPr8bQ2I4GnQWZy5zVREHjsymiiHbY2RlE28TfkJFfp4dUjZbwhpjG+QaSEZ8Ao8EA4mO4EsEWDPm5rGaM/N38lbU1nH7l77GsZd+A0D91m30+cscXpEm3A/59ejogG7xsdajcxyD771yFsPi/7XIMOWh1wBY16KKIa019cQmYcBXgszz4Z2OpQUKB+saOFm7jkUTY5SFxkBAxfgwut1koCsx5KHOdjQjhtQ0dMPg8r07yM1bznWzC1kTMjkc1FSV3n7oVucQrMimqqqMqqoq1q5dS3t7O4sWLaK38VVXFihQVcO0lUVe2ddORhRaquvpyrYqDhagNoDS913N7IlOOorsY8lhwUg/vQWlSCH4l7oM/rplDq/EEYEWCKfRJmZKDhR4uDsU5NrIek4ZbZyOtWHk5NlktJQxEkIgdHUhJPLQAhtKmd4/4GqGCLeF2Hh5FQ/dcyG/aup2eHCPNnUTseaNmCHZtCif/e1jrkfChzam8uUSo7e1xXEFAZXlrVywEDqS6C26cJVc4fz4c+cTQgiWb7iY77x0hjJtgn4zl6X6MLX6kHNrVVZW8v73v99pfjjQMcpSbZC93laHU1gBiOlp3n/dtczOzlLYoZNzNA4kR5CYTX1UzxVyhjPqj1I1fdigDynRMr3kXlnNcPuEiyP7bog/WDAHXAmclVIOAQghHgUuAn56zk/9F43K2nx0yycPSCUVSLfdUkaWN0EzCgfspesOfTPg5nxss95qvB2uC3bMTUddafzF64pSvFPfSRBnR7rVsMJJCavg5LLdOSLoCyYQ2012de/ClCarZ5ahIxxStUBjfVcuraVgiMTMEW5Qh4knEsLw5iNFQuYOEBKuaZ5mwYgCG0JAb67qvJ30vIx/Zglz2Zer8q0URDPqiEycnrejNdwWQppwNE/nX+oyiAg4Zs6gnZnFpwkeWR/XZ6vPzmDX2KQLyCVCYgP4V2OK6xb74/p5wILRGNcenmH4okJuXVj0hiVWiJelJl7qwpyIEBuZ5eKSXO4Tc7hgVsK+fP5EmM/csIQjeTovjk4qH1dN8P6sLB6fnraGWvBKiQfD+syX/Tn8cVUxQ/pg/HrwpHrLJkeiuwPAYy+eduQhVPdofHPNGNY+K22xZlS3oQ3kADKMcOLmWdfSSMnYEL+46ZMYFjftf1SUpQCFExsv49dL1NY7y6oBWNnXQfnEOP/UPMLAVbVctliN+b7Tx/jwrpfoLFeOFZUDXZRkD7G2VNGiDxR4XGBZapIjs/Het6qqKofLpM9OoWma02gw3XEaFtaC5dd60eFGsnLq6MqOb89uqLgyI4+v61YZzZowugvLnCxvREheLfJwfY9y8b2hV5Xunq70OuBuw2gMKSWlMsiJyUGM4tz49ZCwGLNDSknnyjBLyxa5NAr91bnk3bxECfpK6QISiY4KQAofLhjwpfiYrqqY/7rpbW3h4a/8PbGoAm72vNBQdA1LsuNCu/6VBWQuL1Ad9XY6V8Phjs4XibZaAIFAgJmZmZT3LV++nCOzfoZkNkOGtbAyYIk+rESTPTrr1693OmFfawvzMqMM2kAuIRluGgan+0a548armfL1MXbsNKZUdIICBBe/PoKQOVysreCk3kMWGayOVcfFnK1SbGIne+L5eafjDxnMdQJbhBABVJn1CqDx3B9594et+TYzESGQ63Ppvp0r7EYE234rJQQOuHJEck2lnL/sglIKKrLOCdTOF9y8m7Ja54pk0Lnh6up3epfShr86l4zl+cwdj3tGehdkMxaKMDEyS7YmyNEVf+5wUKOxQGfDqMGG+vTlk1AkpDqxMFkxs5g1M7WE9CmKo/nWXKysfoSEDwyWc6I9TNOSuJSIA9QA32wTmRNPs+nsInTPLTy7MceaQK0HLJKWBV5KQyZVYzGmN7UxonUjpOLsbc4v5OWYwJQGyBjeuRYgfZctWBkwXdBYoDtlLaTEFBA1THafHaZhXRY/6Rnmvu6hhDqhWrQk816kgGc2BigJGQ7gnF0TZGedh9jcHM2ne6jLzjwvQBftnyZsnaNo9xS1wOcX+vjnOr8CY8CaMYOaKZPr+6JctEbxkBqAR9YtZe/4FBflZbN3fIon26atDlIcuQspJX0nRqCqmOJ71jDdNIAAvBXZDmcu3UOlt7XFlZWrqK1zyUN4PRr/84Z6HmvupqOjC02b4ItmHstlHkc0g1Oayq4KK4MngezMGurQGZrtZDTap8BH+SIM4s/z0YzUMvweLQDCyipKSVtxBasGuti29EIuuGSza/+r6lez8NGfUznYhaZp1F95LfVbt1Hor2TipS429ozjkT5VigWECQ/vPMXt+cEUEFlRW0f9+67i8PPPAIo3F+hsJZJbSEZ2NuTp9M6cBuqdfUNK7pkZYFVvIdv6o7xWoMdL4FKqLC/qmtpV6lH3gyUZs3o8xmdODvBoEeTOTDM0F2E0rNE2eYhO/yCISmc7nvERMmdCFGy+jI6e+Nx95PQxNl5yAVVV7nOavbkcb1lWWiDR1dXlZCM/uGEBjzR2ETUkXl1QkuNPsQRM1+3qbOvYEQXkHMkc9bN98giLc1ajSQ10Qe7WqlTHEBOm9/fjLctKe012dXXR1BTvOtZ1nW3btrFv3z6GhuLUCCEEhUvW8PDj7VzT/iqX9B7hlYrVPLfoQp6LrGBLicGdl9by7LPPqtKprnNxw3XMaNNMJwA5nEW7oN/IcTiuqt9IaeZdjFc14CCoMytZYVaAS/gFVyk+XRn6nY4/WDAnpdwnhHgEaAJrEWmVU/9Qo78txGPfOICZQCNI1H17o1ixpdxR8U+OytwpVi6J0vHQMzR2lzg3n5RwunGQW/7m/L7jfOKcwK/rdWh/GRZdClWbznubb7d23R8K6Ax3TDB30k0kj/ZMkQVkepUHw+E8ne0VHp6q9GEI8Er49oF+cosyyd6sMq0HBw/SONBI0BfEo3momarka51/iVfqFriTGJhoVkflkTydxgIf9RMGh0wwEkkqViZhaU4BQ8Nn6M2NcdOxOQQaz2zMQibM7GfLvHSVeFlz8km6xaMYvlqWVt7K5uKVfHdAzbaaEARGf4o3chqB4MSom0Nkh786l+J71nDBwV6+zyxRUwE5TVoeqGMGjaFp/q612/HsRKK6Hy2UEdPdzx0pBO0lHgfMHYiEiZq6yvqYkr3jU+cF5lJ8MIFbuiKsqSvmUE0WF+Vls+LEhJNVmX61j8z6IgXoglmsHjcIN40SqfDj04TDB1TKD4orFJwzCLeFyL28Cn91LlP7+uIZkSQ7JRvEHfnNTqQ1oRzb9Ty3f+kf2Vhb58hD2KXQnu4urra8ME16kcu2cu+lqmnA5tb9r6ePURsV3Ouvwu9fiCww6Sxv4/W9j1HV24ZubsUUXqdUmhzVkWkXV/C6olzu/sTdabsBK2rruO3erzplvsTMor8qlzXHR7lv/wxPVyjB4OO9k3SEIo4sR3LUb93GsV2/driDALG8QqY0nWlfgFVdZ2iqrScqlKPCLa+/wqc+eBV+f5Bljd2sHzU4aAE6rympDs1wKj/LAWVSCGJCcqBAZyo7wn/WFmFYzRh/v8Dgtp0PUuKfQBgxVBOFygr6JoZhboaVRXkUl1fQ2KjyETahP93YpAMSXV1dPPCA8hXVNI3rrruOh+650HWOE3l1vnk0AO2oql/trtxYMRzupbOijUXZ9WTlqXFOx9mMdk8xdP9hij+davF16NAhV9m7OD+fZ599lljCubGPYd+kjyvO7OUvDv4KgI2DrQA8t+hCLrxoNbOzHRiGgZQSwzCY3nOMy80idtDhePzaN/wJs5TPr19BuC2EGTOxl5y2EHLiYhbSUL6NN9bReyfjDxbMAUgpvwR86Z3ej7crTrzW5wJykKr79oYRr3LFQ0p6xzLJfugJWpd9GJxymAq7Y/PtBDQ2+MrI8sabL7wn4YGblAWM7oM7nzwvQJfs9fl2aNfBO1tK/UnPMNuHQlxfHHT8HdOF3cFpx+GgxoECD7kRk5BPkBeR/O+6DEeHDGHxdPJ01jx+mknjKO3Bl/nlgf0UDq1iV85ZLll6CcXNXrxSR0dHIi1td8lkTNJe6HGcEnT7q50sV3zfFuvVXDFyLQczT/DK4l9xydkPURyKcXiRj9OlE0xml4DQMIQkx7iC7NggbVV3MxLz0NhncfMADQ3Nk2d9jeTRU49y45IbXaXWcMcE7UdaOBI4xdILV/HQWCUv7D5LcM4k5NPYGDLY8uEl/EnnQIob0taBGB/viJB92QIOVmYQisa4r3sIU4JXEyxKcI8IhCW2cK1XOz/OHCgfzHCiDyaKN7Slpoit1uQ/MTOK3XmZSJx2mlxiJtUejR9fu4BfnBnkRLbgWFBZUWmmJJShK5ePjgmmmwaYsYSKATCk4wjhlMgi7syLEYvSdewIFbV1DuB5rW2E3vFZmNrxEAAAIABJREFUCuUEOipTr0lJxcig856N1fkc6Bjj1g0L2NAzh79HScMIqbG4bA0HPE9ROdjNHdsfwHvjh/nguo0pAPiZI8f4WSgMmoaQgmvC49xZXEHwNITN9Fp5yeVhO2zqwZqQyZpQGAPJ/Zh0MH/PVXJ2LpJbiC1JIoGKGHx7/zTNBV7Wj0aoLVpJRW0djaFpPntBgIiUeCVs65kga/AQLaWVkL84/gVWtm7tqMHjlbMYWtCZYw1d45XNV9PQcZKy0DD+gS6k7sEzM4k+q0rqmTk5rF2+ioMHDzpZpjejX9be3u6AIdM02bFjB3fffTd/dvlS5z3JvLpz8eWGO9vTdkELBGca97GgtJopbY7pxn6yGsrSbyQm3xj8SMlQdwdmRvx6SbTayurqZ+HksPXd6lzd2nuArX91Dx/dvJCuLuE0UuhCozymjqnQzGFIm3BdELduqmFjdT5hdMWdTZP1SNTuSwmrzGqLgV+Ul31eC73fV/xBg7n/P4TuOX8Jjp7WMadz3glrJSyBrsrLkcL2KbTJTyrC5yBRv9lI1ymrewQf2HaCMiMC0oDYHBx68Jxgzi45954ad7aVyPv7fcdvexPbnw9FY06n5S6LzD4foHM4c6ZyAvjsBQHCgjjRWJLgV4nzUNk4GmN/RS+7Zpqpmz3MjeVnqej5EJ6z7+f5yqO0e06hoSXw59S/IhIOWGVMUxNIu/HB6pQVCAWCBNyyZ5ZVo9dyu7ia/7Hw33mq/t9ZNtTA4m4Iaf1MBz6BaXWFBuYkkeKtqClHkct16z+vJrgg189hq2chJmM8deYpB8yFOyYYvP8QGTGDjVTyncPfpeHay/nbq69xeGpZW8v4pSfCs8NJMgFCsKEsSN6GPBozpHPuri3Oc87lkVA3O9tHCIQlz60PYKJA7FeWvrEsiR12BnTylR6IGXjLs8nZWuV6kCU3Sth8J1c3bNRkrmWUJ6s9LqFgnya44tJFAK7uZtehWj+7jh1xZaCc1zXNIbMni6tuJA8PfZbnrsaG/gBT+/o4WZbBr5q6ebixi5ghOa572KxngaE4W0WblrE+ciONTz1KeX8nnh/9KxVVX4VgHIQ1hqb5SvcIMb/lu2qajPb18eC+V7gusoFSPS9tBme+SOSOSVMSRXH7dE1Qfw4eWP3WbRzf/QKxaBShCdeCVsvxsmosyppxA1OadGd3UQtOV60JGFKiz4UonhjBECYt5YviHdmmZEnvBNtnzrC6cBE7TRPD2b6gu6CUvrwibjy0h8qpCbL749IcQghmJydZU1XFnXfe6ZRKq6qqXKXTc+mZzWUUYkiBZgHydJm9ZF7dfNHb2sILP/hO6gtCAZ1i/wI0oRi2ZsxkenzM3QRhh05aPmdZmQX+pARp4hkbJmrZkOm67gC54e8dISdmsm7NR5gZ7cIYU/qI5UNdlIy2AwupShizioxixh87zQ5vE4YjYmnvu0ZhmXK68FfncuSSMvbtbieE5L+TYfVw4wJy7ickBBpKOZKnc2vzKaLWHGhb/b0b4j0w9y6KFVvKaXml1+E2CAFrtlU5OmfzAZhEnp1AxpWyTQOExfVAYybLam5Ilg2R0Lyzk2BxpqsJ4K1GOpFfIyY5MVxPmaOpJaH5QVj70bSALtlmzA5N+/05MiRGY2iaW5tPE5USrxB8dVklYzHjvIGd7QgQNVPXfduHQvODuYQH14FCjwJyCSJLbg9J+3+S09ka31i5hKhYiodb+KL2ZTKXPEn+mRtZOFbCqNGLaWXkVGkBdDQKPLBh1HC68zSrPGkK9e+Lh6IURiXX98VYPWYg0JES6meW8pL/JBeObqFE83LhaJTvipc5U/0+TAHPbcghY9Zdiry6KJf1uaoEueO4yeGE1xKPa6ZpAGIS3drbP+2/nc/95ptkr/Ky5lQxMmby8mw7X2jITBlbHzAT9HJ7Xy+mBYoeWaeyFd1zEf7hTA+v585irg4gTKmM463Fz/nIkiSHMaSsxoyxUTKWF7jB3DzE6eQmlye8UaKa1yVb8pXaBVxUWcTEi10p3c12CL8q69lyJEGtmBJ/FYNznYxG+7nyk591Ml2JHpkxQ3JJbhmbJzPpt4zfS2WQgf39fGygn7mEe/mgEeOxlVncVVWEvybISLiHA9sfd8pxRjSe/QN13d/SdIqoP+67KlD+qSYmfdoYpbEgM2/CZxbc3LGXZuc4+coppJT8r6fjdlbJkVi69ZWU8/RvdjlZsKqsAsSUysxoCBgzCHdMsOrQGF4rOatLiX/irHUcsHCkj87CctVFLqFwpo1yvZOpA93ctekSfqDlKSkcUN2xmsbJ0ir68oq4busVzD3yI4xYDN3jcUC23bjR1dXF008/7UisaJrG+vXrWbt2bVpQ1zrlY190IVu8nYofimBwdp4MU1Ikd62++KP7MZMlQ4SgcsVK+k+1MjjXqXiuSExpMqL3sPKeK5huGiA2ME2kY9JCQql50q6uLp599llrDCX+gW4CMyEuu3IbUyYOaHWucwlCaEyu3EZgT5taV0qTlmd3sf7ay1xjFu6YoEXbj4mtzQhFZg4FMocWo5C/eLKDn5WUswodf980BzE4isENeFlptX9JJIeDOk0FHoIRk5BfY+NojLXTkLWhlP/sHCBiDWtEwv890cOPN9ee1zj/ruM9MPcui6KFOQy2q2yNlHDw18oQ2TNPedENeiSYBkUjR/BF1DZ6Ky6xugUthZ4Ekc3kmsSZ5sG3Bcwliwo7YWWOnDAi82bnkm3G7EgnnfJGMV9Gbaa5mZnX9xPYdAGB9evPuY1f9o8SsfY9IiWfa1XlCr8FDt4I0O0dnyJqypQSIKjOy3Nl/ewH12Vtw3ybCVdXZroJ09QEvyn1EhUaptCISclutnK8cJiV+U/gH6rlUOYZPsa1DkfE/qkJyeLQDN/aD00FHjaOqgzP9govT1Z62V3iwSvh+p4oCGW4bgqTw4FWLu+9gksDGWjAcnSe9C7mlDBB6JhSMpO1EF0o71avgD9bWOocq2fJTTxx+gmiZhRdKFBycPAgdbM1TO/vh8R9RGNbaBMHXt/DqthNCAmNQc01tgLYOhDloqEY/7RSYloAOGIZ2f+8b8SZlO0PSB3sLgkTyPe4BWjfKJJ5c7NHh52MnR1p9buqc8lqKI1riLn2S+2PDSyd7F6azNzU7h48hZmQDyvr3kdtaDWaUHZS+vX5VF6yxnnvlppCPJogYqis08REmFJywYQ+bQxM6M3NJdKT+j39OR5yL1eAouuxZ138p8TsH6jrPpagnYeUzlpOQ6PczE855PMNeyw7X1RdiYlCuG+UgSotLuKuu+5ysl7aa4MYA1OW5I/GwullDH3nELUSvhXUOFDkIXesm7HpUfqD+Ty15mJMy+sWTUcKeG3paopnJiibGONobz+yOs913Eg4WV6NFIJmIbjvb79CweljLk5gV1eXo5OX2O1pGAaNjY00Nzdz1113pQC6LTWFfJNSZBQu9HYikBx57SU21S1OC/5sTuVIdye9J1uQUlm9SVO6z0YCiOs9qRqURmK97Or/OSUZCxmO9nLllr9wzsXEi10KzAEYqWXWw42vx7lxmkb1+gt437bLU8rpWsAT3w0JXTUrWPSqF48ZI6Z5GFhcn3JM4baQstrSNQxpIhAsMypYYlbyM2aIxgxONvVR2jhKnSH5NwL8JTPsIMpKi25yOKjzpwnVDyEEfvw8WFFBX57Oc20JmX8peWFqmr0nB1N0Lt+JeA/MvUtiPhFfG/vYrg7JQMYNegQIjdzJThZ17iSUu5j+si2YdnZOS+jIUlsnEdElW3e91Uhns6XpsKL4GPS56OfQ9NO02bnK2vwUBXBQAshvJhIzYl4LeK1sayX0+BOEHnsMGYshfD4W/vAHbwjokkOi7LPOhyR/UV42XqtsmXiGBXB/9xD3dQ1hkJq6D3dMOJmcrZfX8NnTPS4x3MSwaXMeU1I7YfB6kQLxAslusQ0THY8e459iL+HVO3ik4HluH706hSOSI/0OGVgCa8YNDhR4lJ1TgnbWmskISNU+UTBTziVTa9B9OFp3H/SX87K0Hg5CgBRs8A9zVeXaFNC6rmQd37/m+zx15ikeP/04j7Q+wmOnHuN+42uUmVlpKcmHAic5mAcH831MeQU6qmFAA+6aFPzpwTm+VudXzQzOOTM5MNBIRC4mJWyUYVGg32xmLpk3J7zaeXmngupKteP63iiPV3oxLB8jj4hz9+zs3nTTADMHBlzemADj+zp4ZN8/UZvVgMjXEFiAo899T/YeG+bDhpdxJLVo3IiPARHiGV+zaoQRgvqyXHynNMJR07lCfLpwGbNX1a/G4/USi0bRNI3yT/wFj/gLWHbkGJ7XduHJyMFTuYqoM0UpUN6XV8wHR0qV7INQWY+3GsndufMR+20uoZ0Nu+3er3LppZcCEDaDDBxoTtBqRP0bm5sXoWmuk/Eg9AaLFJATWoI7isq89QaLKJsYo3x8CFG9XGUsrfnWZ0SJeHwgBFHgRV8uX7/ldmf/EpsY5gvDMDh06FAKQCvRpvh/Vhk0tYQQVqlVmgZ7DrawdGCAlpYW6urqqMjN4thLv+HoiztTsm/pOHKVy1eyeO1GBfgSXh8J9zIS7mXNlde6m1PmoRLY439053YoqXLGzKunN6FK1k5csXIZ/7HuA1zYfYhXF6zlE7dsS/mMvyZImZ7PSqOKo3oHUkj2+U/z46iXllgmAig+NoY0VHbYB7wfL4dXBvnfx0fZioefFejx6oe18AgDjRmS7v7R+Nzt0Jckr/SOvwfm3ot4pBXxTYh09lX9bSEG2u2VgpVtQ+CNTgEQnDjLukP/l/G8ZeSNn2KocDVdC69yVjxCxli1PpvxaIAl60velqwcpAdi1auLKFvYCUc1XD3yZjRtdq6sJsjWjy5n14MnXQvF8/FjtbNc+R6dB/tGmbNN3k3Jg0dbyXr0V6xtOUK9RRCX0ajK0J0DzN1eVsBPe0dIPkOC+S2o7A7SQE4DB8OFXF6Qw5mZMK0zcZ0um6dmR0SqLGBDMIvxHW1MvdyjsJBXo+hTq7l3aSWLMv38S/sAfRH3WFg9cqwMGfxskc/ZV9WjqoB+TMIJuYqPBqr4vP8f6fMN84HRy1kYKQcr8/XoAg9fX6mEc30mfGv/DBtGY3ilz9HO2jgaw65maFLnltHLWeRT04mUEjTBqloPgY5nmMm5TpXXZIyPVJTw0er0D+51JetoHGgkakaRSJZOV1HQ4UsBmzEMXgju40iezmeXBzBsxou0+X/wsyzJJcGkB4WUeGcO0DO5A0r+Hsd3zvmsRDcFppDoJuQcHId59jVdJPLmjOFZ5lpGCZ8ap+hTq98Q0CU+vNaETD7fMsc/r8xQnMOk47ezIFkbSpl4qcuRRAEY8w1hGAaDc51IaTrjMjrSSyUbAXhqxynqdvexGj868SXdab1fcY2E4lAee20Xn7v4Or62exDDlOia4Ms3rVIkcmuRUVhT6ZQuR5fW89nRGJG2PrRYlNuPHKVyoIsr6jt47pIbnH3RpKRifIiwKAABeR9Y+qZKrMmRaN6+paZw3qyczSWUpokRi7nKwf7qXLRqP7Ld3TSSmLk2pobJj05RmTvCAdNUJPoEFw9NqvIxQNnEGJeeOszuZXFNtojHl7BdeLBXWWndXlZAQzDL1cRwrpiamnIfVwIIXKi7CyDPvH6Cxbq6Ps6cOUNgsBt9dCAt+T9d9La2sPLS96F7PCkNNQCli2tcvycuNpJrBsde+g2G7YNrjdmp5ka6XthOw423ctnH7nbeqwU8OHqWuqAie4I/O/YkMhxhw/Bpcr4+ysynPpkyZ59ZGOJoT0dCUs/kwpV+Xj0MK6RO7ZQNYOPLQwns0GI8LaNcM65ZXxsH4QKVpX9k3D3uSDVPXFKVdz5D+TuP98DcuyQSdc8EwvEGBRzP0MSs3N5HT9O8szO+AZujYBpEvXFwkTdxluDEWSZyF+Mx5qhtfYipbLUyKh/cz9KNN1P03+55W4+lrCbIorVFnD0YLzsFxDg8+3cWkEtuuU3fg2aDy90PtWJK6ZjGnyvsTFwkKQMG6iH/y7DEvPYWvFffyDf+9avUt59GeL0ENl1wzu02BLO4piiXZ5II9p+tKk6blTs4eJBP7/w0U3oVYyXrQEv1QDxXTO3rY2p3j/O77cF5JE9nLGbw14tK+ftT3e5SoXWMzZaxfdxOy5pApUSXgi0DQRpr9sA0dPh7KYsWoYCcxuGgZoEI9fmIkOzI1fiimcGPYlm80j3OxuEoaybjvBQBrDTKrT4JJWegZXnZMdrOTPZV2AuNoJjkYLiC2iS3hsSYCE844G3NTC06mvMwlUhezT7MI4W/5kTgLGbmBzCFFgdyDsdMENUkBwo9XN8b5clKL1FNAjECkzvwRk6TPfYAUwV3WRQENXIXHjvL8v5iOkq8LBqMMjMyxrGC7De1yPGWZWGMzDmXt9212pLZRuNAIw2lDWkFkW1zc7t8GvJp2AUvQ5I2++uvzqX44/VM7etjen8/wiPIz/BTnLkA0zCsXVAahHntqgv2KAb7X+5gNT481rhqCPrFOCf1Htf2TdNkdKAbU3otgCAZm4m4um/RBFkNpXi9xTx09CTh0sVIIZCaRlfFYioHuugrKE1oFDBZ3tehslfmEgKbylJK0W8lzofcn2htlshTs6P4upUM3XcIaUolgC2tHK01Pfm1TKLDh1gbiRE0stlXkcfJ8mpMqa7QS04dpmwiLiO0sr+D4ewgxysWp6VDxICf9I7w854h7iv2s2rRorRyIMnR2tpKV1eXk51LBIEOBrFuhTLhtn4LB3IIjPQnb3L+kJLZyUkuv/PTPP/9b6dk7wbOtqX92GzTIDJmMtM06FrMCCOGk3iQJp6ZSaSU7H/yV/SeOsFlH72LQn8l40+cVt8lJbG+I0w8OYyIKE44pmTqhReYPdJN4We+wHhtkM7+bozXR9ijtdg5DfV9QtBn5mAyzfvxJsiQqOfDr7Uox1uHnMXKdasrmRsY55kyjzOYt5Tkpc61NtDTwVf2XgPEe5EQyf6mr/zyFLGoiRCw7qqFrgfKsZd73EDODmmiSYP88VPxPwE95RfRuuwOEBpCxthw8N/InTiL8HjeEMS81dhwdTWdR0acm2RF8THoj4Dtrmc3Qug+WPuRebfzZm28bG7afDnOmBCga0SAgyvq2VyzkMI0K7zkaAxNU+zz4hXCESrdYnVFpn3/QCMRI8Js7sXqjj/P0FAr9dlXkiZJAUcr/Hw0oWT86QXF7B2fZjgSpSuckKVzeJEy6W8mW8ZCrAl5KJm8lCNzR1gzU+tozQE8U5eNaWvKSTUZ3rSthsq6UiqBizomVDYoNGrNyXFdpsQJlKkoc2cWwBKvAkxIxinkx70jPNQ3ymPrU3mGD598mB8e+6Hz++FAKybSyisKTExOZXbQlt3DbUtvY2n5TXzxLCrzaq/iE7IkF+YG2LQsj2/kDHL/RDPdAzvwRJQDReb0LrzRHioqP07beBv+6ZeZ1VbRUfJ+qgejLBhRK/jdD7VSWJl93jzNcFsobrdkjXtn/iCf3vknRIwIPt3H/VffnwLoksunG8esTCi4JFISyep2VslblkW0b9ppoNhW/lF6zTY0qcVt31DSJa/lCZpkjI/jA6STmTut97segqC0vtatrMV3usNVwgy3heKcPUPS9vpJtvsOEMjNQxQvRAoNzZRU9Z6lp7SKo8s3WNeTOpfLB7oAgfCI36q8+majz1/GyGWfwDt4losv3ZzC0/JX58KFWchXJp1r2gZXEpPBOTXnTk10kNUNl00Xs3ywi95gEeXjw5RPjqV8Z+1AFy1l1UhNSwvo7Mz8v+3eyw+uuoTly5dz4kSqzmJ2draTkTNNkz179nDHHcoNIzMz09nP5IpIhnCXUn3TbnA3bwg1ArrXS1X9arqOHUn7tmO7nnfEqO1IvD7sRai/Opc5oRMuXYiNNP0DXY40C0BPyzF+/qXPc9NFf0mG6UUI1ZzlKVsLRhTPwl704EKEXwFDT9lq2o8OsqP1OUxhKuk+cF3DV2/ZRnern4PMkZxAaM/zUL+8ksOvdzqLlb2ZJi8GfNiNOpuDWWR59DhNwAmVzzY4fy3K33W8B+beRZGse2a7NBx6vsvVaXqmeTDpk/bDV7Ls9MME7Y4rIJS72AFyqsbvobd0EznTHZTf+z/eNE/szRzLB/77hjgI82bBcR/EwoAJUqgy17Vfd5VY04kD92efpbmyET27gbJ5TNjtuCgve548nx0WF0LTyJ2cYLpxL4Wf+uQ5P5HIu9MFXFuUywsjk+y3/p6uAaKhtAGf7sPU31yzxjVFaqL6x2U+Ih4/1/dGlRdlnsaPRkedjKM0Jfd1D9lVCDzgto6yO1tl/NoAwd6CHPaXneGCkxV8g7/hSFkb6JoqmXo0fAuyYdL2/pRcNmTwviWZrn0Mt4y65sXEUlQiuGsYjqHVeDFtzpwVUSmdUnJiPN/5vOv3E4Gz/GfZL/jz/g+j/C4NDgdO8Xeb/o7blt8GQOvoWb4zbvHUEoDc354Ic+kNS2jJbOOfn7uHiBlJmewyomfZ6j3M0NgjzGRt5WDdzYCGbgj+eNcEVSMGpmnS2HScG2oufIMzp8KVYdMEeTcv4Vl9OxEjgolJ1IzOa1dml099FdlccHSYnwRyOViZ4fAL03G+KmrrUrQIMaFieR1Gy4w6H1aq5ljPBPkVxbTqJg8bET6KDxAMihCteq99Mh3i93XXXUdDw0p+VlLuKmFO9c+59rtPG7POMfGyo3W6j9WuU+K5iVm5SeXJGtrk/63Kq+cTBzrGHNHjLz95lIghgBp+snOEh6rHUrJ5U6cGySIQB3FSdWw2jexkJKzGSB2mypuWTYy5snHJcc2CUsZOq3KrckdJKP3b96YQHKldx8+ff4HbbryZkydPurJzDQ1KvNkWFAY4ceIEjY2N9Pf309TU5Lw/sbfNBnbZwXxKiwqoq6tjrHmfo7U3X2i6zhWf+BNmJyddiwY7qwlxfp1pGq5yNaSKCHecPMhY7/McaWqE4sp4xUBPhR/SNOluOcaS3HXOPC6EQGo6GWs/mrIw7tPGMTFJwVpAdVE5VS8LKmNzrCPAvzFHBPCgrOr+dXKC2yoqXXxLM99PdEx1pEtgX2iapolpNEhosJJ4YgamEHiMGBsGe98UHeN3Fe+BuXdpzE1HnVKraUpXhmDJ+hK6jidOIMJ5eEf97slxvGA5UhPx7AnQU6Sx5K++RP622/ldhg1O+199lQMHz1C5/l8oG30Y2naBVCl0ZuPlx3TiwP3ZZ/n0zk+fM6uRGC1Ts2k6Ru0Zzq4LCoRpMpGVg4xE3pAv5+pElTBrSAxp/Z7UANEYmuaR7lP4wi3ctvZ/8m/DyhbmfEIHLsPHrU2niABUqQ7Sz7XM8Y26DMJz6iFq83NNafmNSvhYRSELMnw0T0xbpWDheljYYUqNXXVNrJqaITO0lLX9S8i+rBIt04u/Jsg6T4SfT06qsrYJHz8bJlwS70ibbhogeeYU8xzfmmnJX2ZLvjltolpF3fuSHFcuvJK9vXtdf+vw9/JsnvrbC8F9nAic5cToCYePuH96A/FMr1pN3zuu84kbVuKvzqXxSCMRM71tkUQyE50h6lvKVP6d6gwIgaFLDi/ysWBkBkPE+Nbg/2HB4L0A5yyVQnr5kYbBBjyax+nUbShtmHcMpvb1OS4RS9on2Pyp1fita+vYS79xeEuxBAkQJW1C3HzWIyjetoKhotPIPVOoArPkUPc4O3uGuEgMUegdp9Uooc5cQJ82huNjiTIuX79+PbOzs3R1dbGxusoFepLJ6eWWEXlvsEhJcQiBKQTHatelz8pJlfVbum75vOPwdsSBjjE+8t1XiRrSuV/smK/rNTu/ADkQB6sSSdPITtqmDrve5w2NEMkrJmmd4oSmaVx44YX09/ezckBlfnYvWwvChloJIQSmpvPa5Cx3zE5x/fXXs2PHDqSU6LpOZX6QgbNnUr5j+/btKSVZLbuAQ+M+Vnv6nds/4smirq6O/v5+emZjzJUtxBsaQZ+dRtN1Fq+/gPaDBzAM5R5xxSf+hDVXXuvabqKsS2ZODi8+cL/S6xOCzBx3U5o5E3MoGKY06Wo+zInQa3gyAo4iAFLimZkkXbRPHWVx9io0635U/DXNGqr42EkpKTPz0NAwMK3XFABHSrJODmJmGQgEPgQ34uU1YowieZYoJ0yDK2ciLr7lcY+BGB9H2JVg1DppTU6A5knlHatJybV7XqR0bIR1rcdZsmkDXPC7SYq8mXgPzL1Lo7I2H02Lc+cSXRrqL62k4+gIZw8lSiGoCatq/QLotJoMhCC3PgdmJdKyB5LCZN21q6g8NcxMfvPvLDNnR/+rr/LEj8cxZCn6oRg3ryygTPOCGVOZuVC3sviq2uQ0gUipunebdnbQmXGavKly+nPOnjOrAcpV4W9buxOwhrojC0LjjAbtcmgc5KxrPQ6miTE5kWZr8bA7UbHKm9cXB3ktNKXGVMQlLBpD03yw+RRh0wBZQ+b0HozsynmxnAdoCAYYjRosCfj5tC+bF15uJ7rYq9CaEMQ0yW/KvKrDKn4EfGZBMd/vGXZKrjaJujE0zYujk0Ss0qNtph7/rEm2GGem4ASZIaW3Fu2bpviTq2kMTXPvwR4kytj9cyfmWDvtFv5MPpRExXQb1HkXZOOrzCawoZTPV+dy8uBBdozFH2I6qpScHHa27bHTj+HTfMx1jPMPnX+BV+pEhWp6ABieHXYAfj1/BlUXOMf4x20R7ihU2554sYtKz/zuGoY02H52O5HcG53MdfJxTfiHickYPzz6Q3Z378aU5hsuKpLlR06NncIwDSSSmKm2dfequ1M+H+6w7L7shp2YyfDrp+huOkNmTg5HX9wZf7OU7oeojVY0oM7P6adeJm9dFcWfXceLj7RQOxTmBrwsEYPs856lF+jVxpiIzbHILFaWbtJ3b/VWAAAgAElEQVRE93hYv369Y6+kaRr1W95Hv7fCycz5a4KptFcU+V8zTUwBup250dJk5YBVC5afUwT3rUZiJu4X+zsd+ypDOg2Karg0QX7Al/J5sSwDo2UGDc3Jzvn1AACVdfX0tp5QXaCzc+yfLuXqunzytDk6Ozut7So9OL/fz969ex2wNZxjO0Ik3sjx5hshJQt62ug6doTNt9xOaWkp7e3tZGuw+zvfJBaN4qmsIZYTB5/puHX+3EKaR/KYlH5q9SEKtFkiI908/XS3813kFRMNFhHobOWqP7qTNVdem7Z8nxzJjhwv/OA7mKbJiw/cT9HCRfFmEquj1Ywqm61wbDphX91gVtjyLgkxMtfDsRPfY2XhpeglK1W51ck8yoSSsqDUDLIlupQ9vlZsvczsyRnM0U5mzCBGpoFH86jbAg91KJHpZ4kq+aGAz+Fb/qRnmC+c6lbXCqrp0LC+16+Bz/rdY5hcs+9l6s9adKZNG9KO1+873gNzv4OYaW5m5HvfJ3L2LL7Fi8+Lk5UcZTVBLvtIrVNq1YRw9Nv620IEgj50j1AdsKZB0chRqntfpPiDWxnz+ZDRKNKj8x/FTzOcfZAVw5vZumArpbmD5P/DlxiMmWhvUZLjvKPrdXp2vYAhNyPRMZD0dJqU5Zqw/Fr6j7bT89IEGa98k7l1f0ZG5WI0TSipFYnVQFHADdqfsr3+24wFe9NmNRpD0/yyf5Sf9o64gRwCYRpcfKiR7RdfjqnHU/Qf3vmUczOO/ugBcq64Yt5xaAhmuczQ7SzcF051Y0q41zJk3zs+pVaeVinA0HJwwKOVOdWBC4IBarMyHQBmx0svttHvVUDKnkQwoTPXE9cdsY4s6PWk3aeGYBZfWVrJE32dzE02coCNyvXDsgYx0XhAfJKGyFlsAYfMVQrwJPINdU0wV19I0Y1lLmAS2FDKtC2JoUH2JZVEh2cJn1ClV+HRyLtxCYBjAP+ni5fxm5BqStEEfG3ZAhqCWUzt62P26DCZq4ocEvxty29zQN3jD/wobjkmVUNEW3YPhZmFTtkyNrOdLxxbxYulPrYNRLm1J0YkNs3/x957h8dVnun/n/ecmVHvXbIsWV2ukiwXXCjGlACmhkDaAunZbHazye/KAvmSAhuSX37fZJPdtA09Cb2Y4lCCMcbGDcuWm6wuq/c2KiNpZs55f3+cMjMq2BCnXVeeXMGS5syZM6e87/0+z/3c9+T/HgcdlioJLM3O53SkkdnIjMqkz9OHJgP5W6GNEwzyFQkrWmcQCBKm07n65FfYwc/xRxsZKa/mfd9FRXAc6z/G/YfuRzPzxTo6uzp28W7Xuzx0xUOhlmWz+XbAW68+yMBUpzGBzZr0psxyeEiZVQf9hIcYovG1D3Jko4f9g+OUEIYDQYdqUjRMMHbS0YZP87PeV8SM4qOgvJSm3t4Qa6jj+97mdV8J/6PG8vjn1rM6J4Hw0kSmzS5aI7NndHBuO7GP7rhkIt2DdMaZQFrqqFKnuL/DbirIaY0+Z9mWc4kjbSP8+p1mdtUZnbfzRWVOAsOTXloGJxcUGO4cqKN7+Dirky5DSoEujc7g5JwlJGUtpi9lGftPttEZnsmAM50rkhLpOvWW0fSjKHzkIx8hLS2Nhx9+OARsyXkSctYLQuqsPvEuWX0dzHgMDpklhPvmA7+ws7GuoV78UXGgzC/nAVC4JJvsxmayRmtxxDhR42ZpfgYtWPyR0Qy9tQtPUjqZ5eVoEdE0t7aiRXScFWhPjY/bGbDZncFDM10MZw0T3xqHEILypK24fYN0xTlCFk3+yBgcM1OhgM6sE8d3nmZmwE1kchFSMVxjbP7nLGA3qAS6TKWEzIh8vLox9pi5OgK1KYEDSTkqNVLju68Y94CMd3FXY6et9COBrUkxvDE4hgYcdHtQgVtckg0//n4AyDkcxF1/3fueq79U/APMnefwVFfT9qlPg6ZRs6SQY45oyu65l6vu+/YHBk2zuznffca4gd59phHNbzRHZHa/S0bvIZsnN/xoK+n3/B+0UTdPRZ7ilP42cIb+mDZSi3RqfvscN/n8CAn6zAzuF1/684C5jvfgsWvJ8ixGZTWaCeeyXDWg+9nfsJJjg3fYOR12z4CoJy45HPdAKCfHobu4MerTJK2RVPUZvBFrErT4bDOznRWk8R+X5ueKQ3u54tBenrx8G0NxCVy172227dsV2FbXz1pqrYyLCgFeI37NLnPOmEK0H0tPxCWEmZmzSlFmicAGdLAlKY5/ncWxqHJPcpsYx7vIiZCBqplUoHtW/4TEyAbOPiZrP/c0deHVQZFlqGjopl6SNMsWfunk9eRELvBFEL0xywZSG+KjUc0EjypgS3mWXeKzIiwnlpTPr5zjYhCshwcw8MAJA/A5BCs+v3IO8Jw41MPodqMZwdJmm93VWJy1FFnrQUNDExrJJYt4aM1DALzU9BJe3UttZAt5o0/wP9W3GBUsBXyWAj2g6AqXja03ul/R6Z3sRRGBDlkAqcYEXSednJ42Fg3FIEwEraJS2F9Jb7TxjClCed9Sacj16KsKAY5WzJdlns2360nsYKClwzjG2eU0NdCNGewgYU9c5sTnq+5lREaajQ6SJVoq3cpIIEEioU7tAhVyZArJkdMcPXh01tFK0sQYQ/5ouzQZc1E21Q0naRX9JMoYFCHQpSTdbIx5edVGIysHCCnZ2HSSdLeZlfMvJlWLtb1k/9SwyqneeUTGrXCogmOdbnz+AL9qvlJr9rIV7H/2cdzeAVLDF9M/3c6QtwfaJINtRtNYf8Z1DDhTcToU0tVx6oKA79TUFK2trXOuV3F/Bw2ZuehCmC7Igaq4FILq5RdQ2FqH2LGdgjXrySwqNYR9d79p70OdmiSsrx2vZSM2T5w+9A7XDNeiTo4xHZ6FT6aH1oGDjkuLjGXq8FHaX9uJ+uP/y1P799uOGPMJEweH1Rk8u9Rq8ToLI1cTF78JxWx+iojJxhfnDRyDWWaVUpK/eh1njr6HrmkIKVnWNUiCZwbd04LnwE+Jve4raO7owIJFBjemGNm44ISfIhRSI3IAiTCfdWsTMOgx1ebiyroHtLyYkHWUJR8YvHzSAO+ZMyxrCjSoRF900Z+9unWu8Q8wd57D/eJLNpD7xte+hU914NT8xJ+oZetZLvp85P/pSZ+5AjJ8SZur++1SpJQ64dPDIQ0P6DraqJvOG9by0Ou/CvwZncGpQToXaVyvgKIBUjL6/PMAxF1/3fm9KVv3gn+GdFc91yV+hy7vMgPIAS8M3UePb6m5oVWvMbpbZwM5MMaipctz+Mbhf57DnbOySbMHN0VKrt77Vkg6/KdNx5ncuxfp9QaI2oBwuT5wV2+CQw0MxsATPUOsiI7glowkWkabOdqzF0/sVQRnfAQSp6LMq0u358wgXmk4FQjr+8ynmmyesYUEbfePTuDVdXSjUMDFcieJDHJEK+SMI9Bo4o3qJbK8JARA1U5MYSZFeT+e33wuBsFh2W8B4JcMP9dAfl4cKyrSbHB4NreEiUM9xOyaQaIihY730hi+vPVr9uvXFVzHcw3PIZG8nvAulSvWc7m4CG/HmJ0xsiInNpelyUs5PXjaIEtLSw7ZCOd0LUqcBihI6UfMvInODXYXbXCoQuXudXefU1YOjEaYMDWMaS30vp4PEM7m29X+8fiC+03NzQt5n+UgYTeiSOPYI70qmY4W9qFQqGVSqi9izD/FKUd74NYyv2KbGKD9wFvzlO8E/TLW7mbt6Ohg34F91DmMSa2LYdK1eKbxMqp4OJZdGCivYtxPA9GB0qyhbgeeI31EVaT9yYDuYMsQvvcBcqoi2FKcys7aPoK/8nwCw5lFpVz6mS/x1sO/ZnisB6EoIc+g1DS+tkyhJ7eY9XlJyIFmgntPIyIiSEtLs83frUgfG+Gb04OIZauCeK3YpVe/6qCmqIysvg5q3tlFZlGpoYs3W9hXdYRooM0OTdPwh0eiOV34ktJDXwzm0EqJFhVD1QUbiNn1Nl1//CNaRIS9j507d3LHHXcseE4zi0ptuRJd09j5kDHXTI2Po/n99E+1ocddABgNJD3qCIgY+7Mdo4OoU5OoDidrr7uJvIFR2g7uI2liiqSwLByFGxmZOEOP1kfSM98i8wvfR+txMOMZI0omGN3tUtI6foq0yFgaoozfBZCkR9PjrSavYi1Kr2J3Lhi3nwhpl7DuARnvwqWIkOrByYmpWd9a4h8JbXZxJC9M4/hLxz/A3J8p3li3Ga/DiVQUfMCxolK2vs/2NXu7QvTULOuuYP05VVXIL0+lp9GNpukougyRIYEAMFkoI9CwSPD2CsFlx6SRd/D7GX36adzbt7P4sUfPH6DL3YwlP5Luqgegbuoiaqe2optm60YsVH8wojPJgXdjMr3K8Xk7Ai0+mx4E6ARwa7jg888+BsGWOG430u83MqYly9i0KJ3K6IhzsvOaHbPBlF/CnQ2d5jeKRY+9mmBivmumgU8sLuaji+Z2vs60jVH6ZjfO8nDD4N5q1Jhn0BYYFmILCRVviI/GiR+fFDjQ2Mw7uLyN1Ewuw5FYjiYdqPhZF/k0M5m5QDZV7kl+0d7H64Nj9jn0y3NvuQ/WHRMOBWdW6Hu0gSkmB6aYPNJnG6rPdkuwSr1ASNZOAEIqpI+HEtVLE0tRhYoudZyKk4Lly4lNzWZ4e6gsj47GgzxF03AHDsWBJjVUoaJJzX4+InytfDvPyaDIYHrsPZ7o3M+7eX42t9wMCDSh0ZByGICC+ALqhuu498C9XJt/7VlBXVlqGQ9c/gC/Ov6rOc0d80UwUF520RZqdu9E888Vyu5tbuDp797J6quvJywyikUpJUZWz6/b2bl+McarziNIoA5oUHu4wFdEGA42+IrpUIZod4SC6mBOkhUFKytISyxlfV4SqcrEvC4FvcooAjidkUNrcpAHtBn1GTkU93WQMTZKhm7yJeexe/owsT4vCVWBhTTXrbFBsTQQBVxamsYXL8qfV5tu5daPkLw41yb7v/Xwr223BFV1sH7jWjKLDL7p3vapEA7X1NQU2dnZ3H777ezbt8/uTFVVlRtXlJKdncY36ztCP9B8zk8VV7Cs4RhZnQb/LiImZs5iztBpI2RsUE36iK4bzh0OzzgzyZnmG0ToODLrd11R6E9NxdvZBQX59t/b2tp48803ueyyyxY8731nWuzyqNR1dj70K7Z+9ssoisLQTMDyq3+6Ha/ihvgiDP0QiWtsCKEobLnjC2QWlSIionH2jzKZUUxE5VcRikqy1DnV8yRhEQWoTRGoCFwko6PRMnac1vFTxIWlUBmzCr/PxX6nwZs74GwkXA6j9pwkd9lyOBlYSAnAheCORUlUZ4VzY8Ui+x64ryCLJ3qGSQ9zUBodQWl0BE90D5kqARLVr7H1tZcD59Hp/JspscI/wNx5j7jrr2Nf9Qle33CR0dklJaqus96xMM+ht8Vtc+Mg1LorWH8uOGPXXN1Pur+NmD1tgR2pKml33UlkeTmV/QKn4rQ7+VyKi6SIJASCM+nBRSZzxeL1nv+Sq1BAatRMXsae8S+Y2aJZJGAAZqUIzBjMCefxdRH4xDTKaCEJ4cU4ZhpwKs6QrMYliTGcGp+iy9RacymCTywvJP6jH2X06aft7aaOHKEmv5hvfPVOvKqDR1WFHxRl8+msZDzV1UZWlfmzlLO9UzfER6NCSOes/bMMGjjNKIhycWsKlM0DjmZa3KwY9vOrwx5+XBJGTZw6b1ZOAS5MiOH/WZK+IMiqjIvi19ldvNb+LqWyhkIaeGbSyeBkC9eF34caWUwM45xWSsmSrWS4K7ixunGO+LBgYWeL+Y7fMsWWPj3gzTg7/IHJ25keRdjSRPQxL1FrAsKxE4d6GH2xac5bgw/vWP8xfnT4RzYw++aab9qgKqoiDU9Vn1FyFDq/SHua05HNqFLlpsKbyIjOIM4Vxw/f+6H9/rvX3c3Nucb7HzzZh0RSm3aA4cgeMscK6I5toi+mFYD6kXrqR4zFyUtNL83hvc2OY/3HeKX5FcLVcBtEggGaFuLdBZPRt9zxBd588JfzZmh1TePwy0ZmXXU4uPyGL9P+1lGmfJOUJ26h0dVjZnjN7aVkv7M+6Gmbu4gSQnD11VfT1NREfb3xPdtrj3PbbWVkZyewd++pOdkic2dICS0pQSDC+KJGtybCtPBKNSy8AFQR0lzzYWN1TgK3rFnM44fm0d7EuHd21/fjt5vJYE/jAF+8KH/BfVpk/+6G2kAHpVBwl13NL2r83BhmyJrk5ubaWThVVcnNzQUMztutt95KR0eH7f9qlS0/lp7IUz1D+EzmhR4ErDoyl5BVvYcTO18zOJGzxgFbziNobNlQUY5vZBAtKgZ1cpyamvdwjI+gRcXOWhAaaffe2ES645PJHB0kc3SQ1H6DR9mSnxey73379lFSUnLOjSpS12mpPhLi1RvpiCU3ejlMnKK/vQF/ZCwOz7ihL6coNu8zctM1DNVMMZGSSariQAgFBUFJ/DqyIovMwzKOS0HBo40x5O2mPPlSAGaEKUYsjA5af2QMvc0N9EzWkh6RG3KvC0WwbVsxHw1aRFS5JwPCwOPw1tA4L5QX8GJFIc/0DtNx/ATRtbX2tQhfvpy0u+/6mymxwt85mBNCxAMPAssxntnPSCkP/DWPKbK8nP3/cY8hp2ZKYFx54B1K0mMXbF/uahgJcXyYbd2VnhfHUNcE7+1oIXlRDCff7kTz63T5wymPzgkps2qjBvGzLLWMO9feyfam7aREpHDHciNlvr1xO7FTmkFyJ3SSnD59Gk/1eepwbd0LUqfXW2wCOcs6KfgTg0GcHvSzMZ40bQ7D6zWIUBqSKVcBBaqbz634HCd9i7irqoET454QQKVgrLCWtjTgBlDVQHZOSo4VFDPjcIKi4AfubOgg5anHyXnkQTCzDbOzlFaXky4NoGjpyv2waBH/0dA5S6A4qJRhfibodHf9lttbz/Ctdd+yCf5W2JwnoC5GDXpfIATgELwvkLNiQ8pifL2nGBhv5plJJwcmneTF5fGpgk3s6G7iUT6PjuClXsEtYngeQUy4PDn2nIUwg/0YFyoNA6AYGlRzMnnpAR9aQ5Zj7vuCxWUtQWZL165uuI4HTz5oSIbklDF6cwT9tW3MLFJ4q/U9hC5Qhcq2/G2UpZbx4MkH8euBzJLbGxBStfQBfbqPodhOBmLaSRlfTHnX1hBQB/Pz3oLjWP8xPvvGZ+0FlYqKKlSklLhU17y8u2AtOUVRSMnJW/h8BoXm91N99A36Rg3l/DHfIKJkhWEsCfY5tcGdhNnkBAvIVVZWMjU1ZWeVNE2jtdX43m63+31dCvIGuulMSJ1T0lMkbO30U6Ln2ttGrv7TS6xW3FixiGerOhbkzQWXYSUw49N5/mjnWV0jOmpO2uBEl5ITzT0cGWrn2SOdPPn59azOyea2226bA9issBoZgqMyLooXygtty8F7mrqY8WuomkZ2tzGWNxzaz4abP4HD6TS03UzNO4dnPCDvYY4xB998jfDedlRVJb2gGKEouEYH0Z1hRqnV5KiF9bXTk5rNH8o24Ueg6hrffei/SR4y5KFK6uqoKw3tZJ3PB9aK2VZeAM1HDoGUJIVlcnH6x1HNZrAl0St4ffQFIkrzGThehVAU24Vjpm2M8d3TxBVcTbRuSIlYNIEYR6L5VQP3nC51+qfaSQrLJM5ljAvperz9vmDZk86JOtLDcwN5AgHx1+XPue/2j06EjIM+szLxrzlpTDc08Mm4ZHwbL+GP6zfz459+n+XmQudvKf6uwRzwM+B1KeVHhRAuIPKvfUDvHq7muWndMGE2W87jJ8LZPzjFtQu8x+pStWLV1uwQ8eCavV3sfty4eYL15aRQGYkvNMCcECG2VFb2wuKYWVIId6+7m6c77kVTdYM3R6DQOV1TQ/sdnzk/Ha65m0FR6fIuQ7ezcfOVVK2/6wTfjhFXZvGWdxwrLQ86zulaur3d3H1qL+OJBfPsy7Szau1gzVc+Y3DjLOV1cyCItVa75rFoEv4ju4R7spfY3DorS3k6r2hO+dEbpCv36axkTk5M8buQLloRVEGWgCR6+FGc3iY04PuHvk9hQmEIAPD1ToIu+W1umGmubhxv+YjG0pwEnpmYwL9gO1xodHU9SX39d4hCw+WCPnc44Wo439vwPTqGT/IIlxjAWgi8UjLg9c3BTk4h+MricxfBDOZ6KZEO3DtaAg4BwSHBvaOFyIrUOQrxAGM72+Z0cwJErgntqLUAl1fzgoTnG59HlzoKCmlRafR6ekGCo9WBLuceRzBgm53ltcqiVX1VdE90c2pvF5vOfBQhBZriZ8fSX9iA7myacZbPrBU6OjcXGkB+cGqQl5tftj/TihD/UF2nt7khZJ9CMbLbUp+bHYtKSCSlLxtXRDp9DjdJuWlQN8hcdGztLPBjSUkJGzdutCfu2RmniIgIHnvssfmzcmaGaYOvmI3tAjjGiUX5uCOjjUlZGlZXYd3ViOQltkD1+XR/WJ2TwM2V2TxxqN0eZeyEGqGayuYh89yRTm4KKrPNFxbR3+fzoaHSFW5kHr1BzRPzAbazRXDzUml0BM9XHWFmx5Nk9RklWIsTufRCI/MUFhnJ4ZefN3hmE6NolkSJNGSnrK7Srroa+zMihnoZiIiiPbuQxR2NZI8O0l1Yhh/Dbk0D9lWsobjjDMlDQ6w6cZKhpGQG0gKm8bN9YK3obqjl7ccemPuCOc6mhi82Go3MizCgTNCflYI+7EbJKWbNkmxWrjVcOPp/cwBMG0sL/AlhdBKP+4eJdSXbC4/+6XZOjuxhaKab1UmXowo1xOUE+/9GWPqAy7IuJLEgm5iLsuddQGyIj8YpAj7ZThGgsuw904kvMRNdVU3K1FKWtbectWnuLx1/t2BOCBELXAjcDiCl9ALzq4P+hcJTXc0bTz2P/yM32KJGuqLw5OUbce4apuQ3z1P0hZtsLaRlrnBixv30nQnSORMQNktBO8TxIUjmQpEaCWPN4HIRf8MNIeVBK3sxm2NWmFBIU7bK2ys0mzdnuaWi6+dkOn/Okb6CrKkaVDQ0ZpeZrQdOQ0FyYewDsPHfaG6LIr88lZ9G1KKPJWLZUDm8gXLydETl+1Lt/H39BpAzV9TRW7Yw/tZbAIxFmzyUICX2vuRUvvb1b/PTn9zLsjON1Cwp5DdZRZw42jDnQ2aXH62SSaBMaXcQIIRgtdxH2+Rue3tNaiHZnJm2MUZfbOJErMKe1NDrXpISTU5KNPr4OBLwSZ3nOhupjJs/E/TuiW8wPfiifcROAbcvLmJJwT2UpZbxaJ9ulnQMMGsdcrDebHlMJPcVZn1ge5pgrpczPcqwparqDa1DS5B+Hf946GPq65tg7M35gZxwzp30y1LL+Oaab3L/ofvxS799vjU0uie77e2CxYKDz3swYJtPANjaZk/VYeLPjBi2WAjQHWSOFdhgTiJpHGlcMDNXmVYZQnVwKk5KEkv44Xs/tP/2QuMLIdna4C7BOdlZRSG9bA2tbe04PGMhVkiqw8maC66ld7SdPziOoBPNcP1pWn25LHV04RHe0Ft51rOTlZUVAkiyswMZp4iICGpra9E0bcGMnBUJMorlPfUs7WmjNzbBKOe5B0kfGyFuaTnx6wvQPf6QTujzFTdWLOL5o522mv+3r1nGqW43T703f/lV0+YXDg4OSyz3oWd38oeBSHrDA00F8+nUfZiojIui8tIL2dPbTNUrhk7m0Vdf4sgfXkTXdVRV5WPf+QEAh19+niHVQUt2IZnuIdLdg7jG5vd97kzJ5LnLbsWvqhxYuob8tnoWD/WhSB1dB0XqhKmS3ZdcTPnRambCwiiKiGBIUexsZH19PVVVVbYLhRXWomOh6J9uR5cGQEMYdnGabvg567pOVE4+mUWleKqrmdj9Ns7sTQQNTUipo0udOvd79EydoTCtksbewzY4W1G0jMSOGTBvoV5THsdobFNRkzOgw6BrtEycIDo7i6J/uvJ9r8EL5UZJFQiRjdq8ZBG/HvbiA5ya39AnFeLPZoX5YePvFswBecAA8IgQYhVwBPg3KeVk8EZCiC8AXwBYvHjxn/WAPO8dZlXdSdQrrkW3tIBM4dfXK2LIePUQOzzP8+vBSGIinKSkRqEiWNnpZZG5D1UVc8zkDccH00LJJrBKVsafIeeKSuKuv28O+Foo+2A1RgTz5kKKn8q53aSeN57A8/pTRGYKIkvzIH2V4eaQu9nY4LFrzW5WnZLIXdR4LgcUElRBVqyTsAydmK6fM61FkeWqIT2sERLXs+y6b3Cs/xjv7H0FEm7HEmjyu/IYTb2T+P4fEuY5jC98BcGILhjAXC+nbSCHruNakosUIKQhFOzU/PiE074+AH5V5ViR0WH7b1+/B011zAsY5y8/WmfQeoOOw9vCLQmj7G54JGRLlxJaXht/x9DeOpLoCOlgVRF8cpUxuSroaFIipZ9Xa37CrSl3zQEQ7574BtMDLwYOx4zSxKWUmNu6XCmARXg3jjnF5cSlCFt8+MMAudlhATsBTB6aZeqtzmVqTR0bZN4QEHdN3ryTvtvrnrfBZ6FQEXMycGdrXogaTEGVRrlGYpivd8cG+Hya1Pj+wdBMq+VMYYHE2VSH2dk6TWrcf+h+ex9Wl+DJXW/Sd6Y5JAPnD4+icUpDpmTilRlEttejTk2Snl/EJbd/nvAaB42iJ2CtJXUyFTcTwhuylCopKSEpKYkDBw7Y5HyL6xUcFribr+EhJMwhab+zgWItE8tNIn1sxBYJRoIc8OPe0RJivH4+Y3VOQoia/+qcBL61/eQcyQmHajSUzdfNOl9kFpVy1afSefR/D9gLDgGMeM5P7sDi48bFJBljgJlls0Lz+6l5ZxeXff4rTK5cy0/7pvELo0z60T8+SczU5Jx9dqVls79yC36Hoe0mpaRpyVJacopZPNxLpNdLUV8H6eMjaIrCkcrVSMDhcFBUVGT7w0opefXVV8Xaj74AACAASURBVElLSwsF++aiY7a9lxVDM91UD73J6uQr6BdjAbs4DGHl3NxcPNXV9N3/A7SxOJyLNprTW2BWanAfZmimm6GZblrGgzq7hcCpScIa90BqJVJRSdNiEaqORKA6HGy54Sbe+eWP7czysou2nNM1mK39CbBpTTm/vOdeDox5KGs4bVRwVHWBPf314u8ZzDmACuCrUspDQoifAXcC9wRvJKX8DfAbgMrKyrOTT/6EiFy7huW/+hVXHtjDK5u2GCU+M5PWneTk//3E5Xz8lWqiU+PoXptEl3k/VC8J47a3x1k05Gfx8qQ5pt6+4gGifB1MOsyHyZzw++v7SWp/ad6OmoWyD5VplTiEg9gpbwhvzmKt/e7SAnAJPuqeXHBS97zxBG3/fq/xBkWSs2UfkckPg1A4FhFF1ZJKKh2SMr+R8yvJH6e+ViFLFawMV1GkRAyoJG+5gbBD/wJSBzXMBoIvN7+MpkQZRyTUoEyag+moTajaEI6ZOvzhJfYxKRiWVh9LTyTrJy9i90kqCjO1dRiikZKlZxr5vz/9T/7P529lPK7Uzn44NI1VDac5VrQULUhWIThUmFN+3D9qlUDNE4kENKJHHqfO4w3hZq1IXhFC1p9pG2O61lgJrh7245IufKZTx9d8Po61P0mcK47YvqeZDivCOV2L8LbM4Wm53UeZGnzJLi0FKDUqGRk32Nt9LD2RJ7oH8ZvZQ4fwcVX0AB8rK+aZ3mG83gF6el7AzTLi4v50VfPIijQmD/eFZNzCihKYrl/Yy3J2zLaOsqIyrRJFKOcE6ISUXD/upmzmg02+WUUJOJwKfr/RJfhu7vMhnDkwsoGPnHqEn235Gcf6j4VYz31zzTfnUB1mZ+sgNGtola8soVj7OwiBLyk9APgBX1wS6tQkA20Gz2q+RHWsMs500AtRUVEUFBRQWVlJSUnJglwvK1pbW+cvrc4OgZ21U1DQpB5yQAIo1DKQ6Oelg3WhsNT8rZg94F9amsaXLsoPAXznGltKUtlV129wHs8RCJ4tgn2fHdGLuCl1kV1qnS8aY5PRB3vMUUbSlZROdntoKb4rLZunt30WTTUbzkK6V1Vak7NQdY2ivg7jNUUJ1EmkJDo6GiUoO6frOq2trSH3iBYRTfoV1zMxPEzF6tW0H3iHpsMHQ47Dcs5oUnsDCwxgRcEykgYHabvtdpSoRURu/CLWLBTcTZ0QNktaxQxVdZCzcRMzL7+G590f485dxWnHABHqGP7IWCo2bKR842bSUpLP6mox+xo4FcH/pqaT3DZlNxx6qqvJe+l58oKfSSn/UWY9j9EJdEopD5m/P4cB5v5qEVleTtpdd7LqrTd5Vd+MhpNgPTO/qtKZV0oRwhCCtR8wSfUSWDQEkbGhqXtrgrg0KpXs6a8BQbZDUiLfR/h3vuyDxZt7tvM/8Tu84McWsTy9pJDfX30n/n7J7/obuTw5lq8sTpsD6vbsPsADn/t3huISuWr/23y89lUiN49wzOXg8ylxeD3NLPUncXfDBPmJHtKvWce1FSX4X242hF0xym0zrk2E3fGa0SyRuxmy13Ks/xgvNb2E07EYYs2JXCgIjFX1dPRFWEcssCUjkUgSjh8j/5iH3u3b7WMVDgcxl1+G58gR9JlpNAEHipoJH/sBKYMX4VQvImV0hFve3MGyM43sW7l6NiICXaIMTBPRMYnIy4Gg87EhPtp0UpJ2STh8Yg9ObxOXFt7Bk3VP2tnRGwpuCBE9nmlx27PNSrfOrw57OJLkoGLUz+NxP+FUXyOKUFClTuSMwZlUhIM4Vxz3HbiPwalBkiKSuNhRi2IOltZhN88IXhsLo+L0Dq7NVyhLLaMyLoqfJe3m+cEZxognTo7yUmcudWo0Jycm0aXkBVnEt3q+x60V3/mTAV1YTizx1+UHLKoUMyu3gEL/7BAOZcFux7LUMi5adBG7OnbN+7oDBUXX0AQ4pWTb+DgcfwKy1867/XxhdZLXHewBID7jCuo7Dhml3aB4p/MdOyMXTG3Y2b7T/j3aE82ud3Zx8/qbuXPtndx38D670C2RjM2M0dHRwd5dbzOjulBnMUaSl5XRogVlA4RANzsbNc1Q4C+ruJLCIxnU02XfB9MiVNZkcnKSHTt2AIaB+9m4XhGm9th8IYRgw4YNRoZPNziLhVoGhVoGRx0tdCnD9gReIrNII+59r+mfI26qWMRzVR34NIlTFXwpSI7kYItRnjwboDvSNsInHzyI16/jUAQ3r1kcImnxp0Sw77NEGN2ss8CcojrszJIl7K3pxoIsfNozZ59t67eiOcyp3R6Xgp45IdAUhe74ZNLHQhdWqqqyatUqZmZmOHnypP334Pugo6ODRx991Ab53bt2c82Wi2k5etiWcAHon+mgV4xQr3aZx2L8E33ax0T/KfB6ceQUgaIiFHWOLE7n5PxNBssu3kp61mLahEAfaWFEDDC0KAVVCNSpSbwmz3S2/dhCsft0A15NogsFNJ3f7mxh4+kp2x/c8d5huznOOn8fRpv0zx1/t2BOStkrhOgQQhRLKeuBS4HTf81j8lRX03P//Vzs9ZLY3c+vbvwYjbnLQh6kGafKQGyQdYkJzLzhQ/ickJsQalpc1VfFjDbDH1a3c/3hp0n33QJSIKRGRt97ICXu7ds/kOjvzcU3U/i5QvZlP8yiZ/ZR0OhBAY4XLUUThgacJiWvDbjZOTTG9vLCECP5z265Dc1MM9ctKYAn4F8Gn6EqP5wZISjolNz5pETVImlXIllceZqonEsZC57DhSlLkJ0dMsFW9VXh1/04vU1Ej/yeicTb7POU5lTp9gYGJ4mwle2dXi+FjzxAb2tTyGfE3XADCbfcQlhREe+88kseUg9Sb9a0x13vUNi5m1vf1ijthFNLCnnmsqvt94IkDpjomkTtmkJze+d0wFXGRfHP6fDf3RoGmvITMbmPO5bdwdcrv86WxVuo6qsizhUXkqV54PIHKM3LC1H837Aqg00RTh73PM/JQWNAsuQzLP7JFblXBLhiwAVRPrwJPkvSzziHHoXHh8MBaG54lleaX7FFlpe5hhmgivv5Ll4c4FEAa0JQ8SOpkcWMjBw6L9k5S3LEMo+frh8x7CU0GUgHB4US6yKyLAUlwnlWXtUdy+/g3a53Q7JcYGRAb+g9Q53HyGBcOzFpZuXO3kAyX9Qf6EXz66iOBH522294x/c6zzU+ZzdXWDIjwY0ZAkFxQjFH+44S7YlmU/cmxrrHeLTuURI3z/Wl3XF0BxP9E4ZO3OIiu4QKoKgqScvLaDl+MuQ9WnQ80ylZCF3j9PFqxgYHWHrlZpYeGqZmrMX+ulLCjFQJVwITbW1t7Rwe1Ozo6OjgtddeW5AnV1xczGWXXUauonDy1/9L2qQgddkmhOok13SakFLiUFUqr95M7ETUn4UrB0Z2emTkEAkJ6wDsn1fnVPDkFy4IycQFgzOXQ7EtyhaKF452MuMzpGY1XZIZH3FegByE+j47FMHinrY52yy/5DIblNROTAUspxSFXRuvJmW4j+zBbqNk7nCQnl8InqAHy5pn9OBuc0G4L5RHuSQsjA1r1zLd0EDNydB7bWoqIKB7/PjxkGytpmlM6LD66uupeuUFJAYoTCvJpKXhDeTitKCmMJiWXtTkIkNRYLABl66ZGWfDHxgJde5DtEycwBkRiW8qAFiForDsoi143t5rqxR4HUGLHClprDnO4Ud+w5o7vnBWz1lPdTW5P7gPx1fuxO9woOiwuNeHlAansnV3DVknThjnTVHA4ZjDT/9bib9bMGfGV4HHzU7WFuCOv+bBeN47DD4fzvg8VkSsoXBiCY2SgDeIlBwsCQ/MX+aDJaSkqK8dv2OM6bvuxZMe6CatTKtEFSpLOnzkt+2juK+b0fhC4kcbbUkS6fd/qJTvo+IA2etn+F4zCN3gkylSGr6gVilHDyXd7z7dgKaEZgdfveASPvPGS4wVCCRw4Ukdp4ZR2NQlQ3u7SCh1ENxtEb0p0x7UQzTc0ipxKA68ute0WRIG5wNJty+Q5bT+/WRmEgnHj1H4yAMBvzzr9AaJOkaWlzMReTn1B0NLAQDF3cZY8+a6zUHK9RIFwSSgZUWhZUbiOjzEs1UdczrgUn1VJPS9ije8BNd0HZ/ILefrlV8HAtnRB08+OLchZUUZcdfkzfEnrdt1JuT4ylLKOD5wHF3qvH7mddvnE2BlRJDHKAag6/OF8jmCG2AyMm6gtseHXzqMEvYsqRgHGkvFaZzO8zdQ6R5DWsFoWpaElSaCT0c4lTluDfqYl4n93ba48PtFWWoZD13xEK80v8ILjS+gSc3IgDrT+ZFynJmYaFQpKZ3xUubTYdXHP/Cx1x3swW923vr9OnpDDPd84h5KEku4/9D96FK3ZUasxozvH/w+mtR4vPZx7lx7J2cOnsFjAmZN01BbVUrHSukN62U43Pj+SVNJ6JbqrRD4I2NsMLf66uuJzM5BOVkTouGFWXoFaNN1Bvbt4dTbf2TxhktCsrQ6ggY9hZVKgL9YWnr2jEXIpD1LwFoIwcaNGwGI3rOXUnPy97h/gufKT3DQ34QlXrx1/SXkrymZs//zFW73UY5Wfxpd9yKEAzD4pUI4WV3xOKtzKkKe14MtQzY48/revwniSNsIz1Z1BJqFFHFeyqtWzPZ9dvmvCdEVVIL4XlXuSVMiKXAtNFWlMyuf26+9lr4zLcZ7nCKkqQkIvX7mvDPtdIW8Hn34MP7fP87pkhL0ZUttD1iL4wYGwD9y5EjId1AUBe+Ym8MHD6KER+H0TrHlji+S2dxBbdNOGrKSTF9sgYIgUyTiSFVBUdBHWvDs+wmO5CImhJeutHT6ZzoYmjE4dr7pKRRVNay+FIWtn/2y0TgxOW3w1vx+kiamQEq60rLpyMoju6uFhr27ydq42Zb5UR0Obr7n+3MAnfvFl1jUO80nd0/QmhZGbr+fRcPGQlkBePCHTAyb84qqkv6tu5lZcyW1DSNktbjnUKL+mvF3DeaklMeAczNJ/AtE5No1KMmFRK79VyJVJzdMwhs6aHZtEfRgYpM0TJY3N54gfWyEiRjJ4eXLmHrxJbS8IvMBL+SrzsupePJlnH4QnCF+LHSyR1E+cMq3qq+KaW2axkWCBy9X2NCYz/GCpdy88w88vfVqpJl5U3QN19BewABzZUd3oxRttoUuAepz87n30n9ir8uQWoibDEnB4akfQ7zYFMANEib2dxOxLJmT8SofPRYwYf/nIJqEc7oWYs3GgmAOW1CmIF4O8SXpoXcWkDM/JiSC9cSsSJ7M52cf24QA2tKzQo47y+mg0+s3wLgOeqILv9s7Z/CvTKsk+vj/4htvwak42Zb/7TmfE+eKM3wKJXZDykzbmCHj4dfxto7hTI+iNqKFd7vetd+nojKjz6BLHR2zOywoTkyplITr9inRgKaZAN1dIEIaYOLiKrihCF5oMPZnd4YAF0eNc/HkjyiU9TQ0/ifR0cXnJTsXokOnCGYaRozMnCIM8Tz/rCvlP3dnAAssb8vfZmTHRCRVO+9iJj4GKQR+4P7kJArjKjk3A65A9La4qdvXE/iDhLr9PZSsz7C7T3e276Q4oZiqvioaRxrZ3rTdBtte3cv2pu1cHnk5rbQG9tvaSymllCgl7Enfw3DYMKORoyhuga7pBOtkIaDDM8yZ118PBXIQ1AwlAMUGgM1VB2BxsbkIghp/GsflYj65YSmevjZKS0vPmpWbN8zPUhSFq666iuzsbDzV1bYlIIA+1MxA4gjagJm1ROKL+PNQla1s3PR0N7o+Y3yaDGRppfTS07N9zj2cEOmyxwad9+9KnW0Vpp8jReCDhFX12D86wYY1F3IZsPOhXyF1HRHUdb9/dMJgKASVTVVN58bVZURPT7Jr1xscLa7gzTwvUlGZk5ELEg9WhWAyIore2ASj1ColwwmJDMbHk9rbi1paggYh1xoMgD87U5udnc2+qiPoiemQkEpkRxNT4+NErl2DeOop0nt7GY+JITktm3UlF7KkvIjx15+ym9T0kRZIgNQ1a/DmplH7xnv2vgWw/JLLiU1OCcmuRZaXk37P/6H33vtI8MxAWALPbPsMmqqiVlxM/iP/RcvONwIyP36DihAM5jzV1ew7coznbvk04zERrGzzsWhYM3vZJAX1TxE3HDSv6Dp9XTPs3nsUzS9RHYLrv17xNwPo/q7B3N9aRJaXU3vZrayecKAIwapRje8dmOC3S1w0ZgYGEKRE0TVKettJnnAz7XTRG5dAunuY5vx8DkbFsqOqHr+i4ETynQMjOPwwnJREf2oqKf39ttCjFALta7fPycrN7qqbHcOk4YndhnO6ljfWwbPX3AnCgdB1hGKw0RRdZ/WJR1khdsCSCyB7LW1xmpkCkvYAIYFnCj9GzNA4Kxp2U9Fifk2MTZ1Z6+zUvh3mhL0/z8WMbnQh6VLy8x5JnCMHh7cRp7eJYt9OGsKuDAJmQVw2qVHr7mH6dO2810P6fbzzyi/JyPqKwRlLq8SluOyynM9VwCtb7kIqzllvlAhNRznchKzIswdPZdiLqs5dmZ9N6sLS/PNLPwoKHy/5OGWpZYy93RFwTvAbxPCq5KqQpgkE1AzWGNcDQyIjODN3YNI49nVRfsY1hV3jLtq8FgvSmEytz7MiOroYqDM30ciSPXw62cv1sf00t9QDOrruO2+l1mAdOm10msn3eu0sXeRaA72HyJg4PrgzgM0P3ftjGv1+uysQYVAGqtreoqzmNbjt5XPmzc0W8wZjMu9qGKE3+gw/OvwjZrQZ9nfvJ9RTJRAnB08yPT7NSlbOeU2RCrfF38awGKasvAzviXaqD+wDvw9vbBLEJcK0h8N9Z4j3L+ABaS8MdRyecfwRUXiTMw1ej5mqXe7oIyMrn5suv/CcvrcVxRERHNF1w8kmaAF61VVX2WDQ897hEMs8ANHcArEBusj78e4+bHR1PUl9w3eRUifA+p0bM96BOX8b8XhNnqvx+2/2NAPwiXVz1Q6CgR8Y77EWc/N5afe2uG2OZcn6jHOa6GcT8L/nCdIm1DUbhGyIj8Zh6kMidQpa6yjoaqFu3Sb6nn6O9uRM3ty0zdA4tUJKVF1DRxgLdAFg3Bu1Gbk0pC/m6mN7SXcP07Uoi57MDC7Z9TYXv72b/vR0Sq+5mqVBwH8+3bn29nZk0KJCj44le9kKhiKi2XXRhUYmEZicGqespR/Kiwyg53LZElLe1lZ83d0se+RhwrKzeevhXyN1HdXpZNlFW+YtkVr0mb77f8BIUja6oiIVFV1CT2oO6989ZHfcWgLFYIA4z3uHOdTZy7//6934HMYYejQ/nKuOeKhoMRYG49GLcMcuYSS+kITRRuI8HXSqeWh+Y/7Q/JKjf2zjqi/Nfbb/GvEPMHeewx2pcdLh4J0kH1mjg2wcCWP/SCINmS5be05IyaamkyROjvHKqo3oioKi62w7vo/08RFqM3OZsaqYmk6zkkhyXh5HzfZxReqsOrSbkbBhdqxXaQt/igf6Lw2RRwjuqrP4UlZUuSf5n8FMfHE3Qayf8Ml30RWz7GYNBNZMoMTwo7hoCuue5+Sowj2ZWwwR4KDB3frZG7WWZe27UPVAyU/HyEzOgnL2hJ0w1oCUZrnPBIa+8FJjRR9einQf5aurruTnPVbZwNyz1ED6qRzoYTSo4cEKq9vrIfUgbX88xgOXGwKX1xdcz+DUIK1jrZySpUjFEVIytlayV+/bxb88/RiP1W3jncoljEccQY0eBbWUHW3NqBGb58hRxLniQhoc7PNt8h7BEI793enfsWXxFgoi0+zzbBHD46YDGTwhhN2tqaCQG5dLi7vF3m+uS6MgTKdpRuF/+qMNwJqbR9RwLacGT9nbWfZTVuzqrTf8BoUCUtBLBmVJCk68CKGYDW5Om390PsKSK5k41BPynS2j9aiKNCaP9iEwumA/NK8qdzO1x35u/GzLvEDl1JQBOlr3njOYs3yR/SbgRoCqKmQVJbCjb6ftQgHMC+QAEqcTWTq0dN7XpJS017ejazp76/ZSsiQPVUo8aYvtZwEBcVYfkJkV03U9JDuSlZGOo6ed3rAIZtIXYz1pgUdTsjnjg2eUEpqaWV11hKrK1dYBIAjlT0WuXQNOJwR1+o2dOQOrVtrHHLz9+Qi3+6gJ5KxFzwKmrMDg4Nt0dT3J+LhBp87IuIH1eUtwORSmzfJ565CHu7cbZeLZgG62/Ihqlll7W9y8+OOjaJpEVQXXf6OCoa4Jdj9Rb+PKuv0955S5CW6CQJd0ZC0hZh4QYoQxfwgTib55wUeQioLjU//C0obqAPA2I72vgy0HXqOmsIzjy9Zi3RtWMlxHUJ+abTdC6IpCf3oaS0/Xkjw8zODQEK+2tlF44WbCi4poaAjtnAXsxgUwrvcVt36KzKJSduzYYVwZq9FPSjqGBkn6zQnir80n8Z9/yXRNDTP176E4o/CPNOF57zArv/gF2xv3bJ2okeXlpN19F2Xfuc+QnCKgBRd5ppEr//UrjGak2vsZefppeu/7T9B1DlxxLX41MP5LJK+tjiR11M+iIUl3xka6MzcBoOh+ymt+OefzW08M0vs3Um79B5g7jzHTNkaybwlfXhOBT4lA0aO59vh+CibGEbLUXr1IYNrpojs+GV1RkEJBE7CrpIK8gW7qrAFZGr6uub1dHF1dYT+ofuC5K5ZwLNlN4nQiuUOp7Du9zwYQCwkGW7F/dAINNQRdOfx+/KoIpOOlRAdGY/JIHCvgBfcoDyvSKK/O7va0Uv4zrZxeLPCrEjTQFHh7heDIuh4KopysGdJZ6dYJX5poK3GPvNOKYAnSlCCR6KCNMZpqZAonpZ+2sVYEuYGDFeCaOk2Uezuje5qRfv+81PYdaxTqF4Gq+3jk1CPs6dxjc5y+ueab3Hf8OSal2bgQ/F2EoKijFZfU+Nz+F7ntPbj34yoNWQJiTvPcGcGO9t/aAPHzf/w8M9qMnT2bDaAt3qPVtKBLnaZTp0h5e9Lu8oy7Jo/aiBZ+uOeHdgYvOIQQTPsDhtG5Lo2vpHpxCPDpkl8OwJH+IxwfPM6nSz8dAua2Lt4asq9SWYMiS9GwMleCvcODyKH/NCdIQWyMMYEEE8v/1CzdxKGekM7WYA25YNHhPyWOhbl4KTYOpN8GcncPj1Pm1UB1BXQQzyGCfZHDo5xMT/rsLExlf4Db+X6RMp2CIuf3ZY4RMKYZ9kW6plPb1Aypi+x70IC80i6tR0dHk5WVhRauUX/MAOg6Op5oL6riCAC5oI5AiaEdtrHs7By52aHGx5HfYiweLB2y2Zp0keXl5Dz2KF1f+3f8fX0ApPb3o2oauqouqGH3p8TIyKEgIGfFHJaYGX7q6r9tv9bd8xyrKx7n29csswGcFa+d6pkD5tbnJRHuVPD6dBRFcO91y1mdk8DuJ+rQzPKrphkZmtbjgyEJQs0vbY/t94vgJghVwFh0PKu/eR+JTTUhYMaSQZLCyLI1LSnFut5ehxOX7kDRdZsCo2oaW/f9gYz+ThRdp660Ep+qzjlLdRm5CAFFfR1kuIdJ7esHKRlMSmL3po1oUufw7t1k1dTMLfWbIYSgqKiI6Ohokhfnzt1AGpSPDD0RpGR0exMgUSKKCF9VBEhcuh+nea7OtRPVinLNy49/+n3eWLeZ4dg43lhnPOdrjxyj+KEHAQwg993v2fNV7NiYadITmMt0JK2pDqPcSiCxoSsORmLyiZ04BGIVmM+0lJzTNf5LxD/A3HmMB3c8xvaVmfiUJUihoAvoik+C0cGAjIZ54wzEJJA93Iei62gmj24sIppjiw1TYQtYrDt9nASfh067pGkM7rnjuYy6Rlk1vApFKgzuGaQq2lDqfj+7IjAGD5cimNY1g5/jbSWv28npInOis25uRaFxyRpUrZzpsSY0EWSNpes4pMSvYBPpPbFXcbx4gEe2vsX6esnBYoU31hUxlno7O4WDh/IFTy3KYkNxwC5mQ7iOc9yP1xJZRjIVcwUIl71i6iA3JO+hIIl0v4DD28TJRXCTQ0HVTJCpGd8JReCNdBjt6kJld8dugyMGeDUvbq+b3158F/c09XN4JoUQQKfrjEbHmJ8FDg2WtUsaFwnz1EgbJHeNTDGtGWl5YF4AbcnBBBPmV3gKkWa6HinRPX5ebn7ZBgcGny3wnTUZ6m5QEKbjECAwJoCCMJ1Wr4pf9zPhm+Db67/NzvadbF28dY4X7IUZy/hI90vs4HrzWiuokydM3pHx/Ubdh6k68nEzU+dHUVxUlP9uXkBnlS0i165ZsAnHcroI8Cblghpyf0pU9VUZOnomGLop8yJuvvSfQuRvPkik58XNO1CXpZZxXcF1PNvw7Pu+fyB8AGFyLkNC1wkbHESkpCBF0IW2NQut7xBYpoyPjxtirgocSzpGnDeO3PFchpuGEDI4ow4gaNPiyV6UxeeuXv+B7abA9HkWgvyWFuLcbvrTUkkbGSVp2zajC53AtY/ddg3DDz4EQPLQEBfvepv+jAxWfvlLH+qz3y8SEtYhhGMWoNNRlHB0fXqedwROvpQGfeBU96Y5W31keca8n3djxSKE+e9CjRKjfZ4Q9Q8r+s6Msf+FJgY7x4mIdjE14SW/PJVlmwP8XKsJ4hftffxxcIzfdQ/xOHB5QSVbomIZaesjwaHSOe3FoUt8SHNhr4RURw4vKzckiqREkZKbd72GjEhFdU5wU9Uxrr9N4efOGN4ZGQ8MLWZy4XTGEmrTc/jUmy+TPGiIePenphrNboohOtw5HNqslJKSwsCAUcbWdd328q2urub2229n1apVVFdVoUlJX2wijphSeoeiSBs1ulcD2TxjDMLhQjg+mMWbp7qatttuNzLDSwp5fcNFdtn0D5u28G9Nx7h4+zMoo6P0PvoY/rR4hqIj6E3J5te33BZoTrSoNBJyB7QgLir2Mxk/0cx/q++gLWlg85mPoqDicChzRP7/WvEXA3NCiH8BHpdSnrti6N9R/H+/vp//0ofhigAAIABJREFUKb0UHw4DbkkNFUmme5Cu+ORARgtASs4kZ9CemMb6xjr2WSsQO8sl7Unv4IoKVui9KON+m+MhzP/ljueiSAUFBakHlLrLso2uOmsyn83hqoyL4r6CLO5s6EQTMJFwG6cTlFnHQFDHlIP6BLMbTddRpM7XnnyY/L4unvrnL7I3PN0szwomE25jXVMbK1obKe3QqVu5gZM4DTK6lOwY7mQDBpirck/yzFQkuVPdNETlmIOTiua0BjoJQuWCxBROTw3iNQV185of5aM765HAnhUK7911NdeO5aPGx9H3gx8ifT4Up5PVV36K7sgGhqaG5pQauye6IQ2+s2wj1x2tD/FuFFIS3z9qHQGKhLEg2o91emJkMU8degs1Rdqna3bDgRU3F99MYUKhzavLncpj8FDAbD4sLw7RPV9+cf6Ii1+LqhzBr08jJUwGNzkiuLn45jkgLjgimUagI4VqsPCiViKm1FkTpB8pjfzQQhw6T3U17XcYPrjC5VrQ13fyaF8orUnwZ9EbM3iRqsk/crBt1ecgtewDg7jZMR8/6tr8a+0u2oViOHyY8ZXj3JB0AxEREfT29jJ08iStHg+DKSmAcb2k9dxbYT57OTk5OBwOmpubA6/pEKaHAdg8SoumYGS3QUehRsvAGbnkQ4OpyLVrEGFhyJkZkoeGDJ6uqtqd87OvfeLnPot7xx/Qenvt7aP37IVLL/1Qn79QxMVVsDj7M7S1/ybk7/MDOYvwEfjd6Yyfk8kvTY9hxOPlSNuIDdhmS5jcWLHI3j4lOyZk16N9HmP4mgXazxyf625i+WsHAzqAN4fGbNqoBrw2OMZrgwGrRwVwKIKNx6vYv7zCcBkKKqlafqsIgdQ0nt1ilGBdSH4fq7BpTTnh7kn2j44H2Q8SVGZU+P3Wa1l3vJplZxoJm5kJqVZY0RubQG9CKjctLWTkzddtdxAppWHhFpeM470j3HXT9dy6eTMvPv8Sf9i4DZ+q8kI+/MfpaW7smruQ+zAahJaCBBieqb6gsqmuKPxXYTmn9r5MWW0VpMXb7zteVBpSYjXoT/CRqkkWDc4Q8AQ3ItPXTPu/V3J6sg2d/QBcMH05F1+y/m8iKwd/2cxcOnBYCHEUeBh4Q57N6O/vKBoSIvHjMCZH6We5PMkFPdUo7kSDeiY1dBkq+qkpCl1puSGlTYBieZp6sRSEgiYlh+NzKJrYS6yegWV3IhDEe42b0/rdUuoeChuyNc2O9h0NsRuyZECqxybNB9/KthFyDELXjI6ooOM1Hmqjgyqvu4O1mbH0u2fYGx544CUKu9ZsprypEfxw82kfdYuxnQ1E3xAzbWP8tqWX7+JBIwssDd5ZINKKOKfDbt/3VD/DR/7rTZzmqHfJSY3vf/J1Kj73GGWpZYQVFeF57zAH08e5x/17tFFtDp9JAs81PM/2xpfYEP8Z4ibfZjLyAnQ1FkUbZ907Y1xVvcc4FIyBNWYqhB6IJjV+efy/kc64kEO+IPMCvrzqy/M2ncwWcQ6WJQnLiWVbxDZeaHxhjijtfLEsaxvhcgXjXb9GEXBjvI8en0KnL4xt+dve970jI4f+f/beOz6u8kz7/z7nzIy6Rr03y5Zky0XFDVzBdAglQCCkQoBs2m52s7t5AwkbSsImu0mWFPZNgVCS0GIwBgeCC8Y2Ni6yZcm2qq1q9TrqU855fn+cM2dmJLmGTXl/e1M+9sycM8+c9lzPfV/3dVHMcezcik9KbEKyNiGJgoSHqav/NkGdCGZmTpvBofOXX0V1t0ViPpuv7/TJM3x+wodSVp0epW4Pv+rqpcKhsMyjG/py7QcvOjMHBpDb/F+V+MxS27q7Cq2JeHp38dKUpdyQf0OIFuCu0V18ZtVnrHP/6smTyKmpkMWbmD5pmn9ua2tj1apVIU4MqqqSl5RHWGOYCSZkyL074ha8L+bTJ6PZ1dAXAlAuJCLLysh55te4Xt9sdKz6fKDraKMGwHC9vhnpdhsA0u1GHx0jZv16hl9++YK/60LC5TpC++nnz/qZqKgFjI83EGoODKBT3/AoNxX/nN8fVvD6dFRVcKp/nB9urTdEgZdlc2t5FvubBvD4dHQJXp8e0vjw/iuNIRhxOog7V5yq7A0Bc690D85o6p4euvlr5re1kNXdyUtX3xQCOEJUEpDoikAqCl4pOZKSwRoCHqQPNXZQOTpNcFgYn39n5VoWNjfiDgszqxwBYNPrTOAPpWvRhMLRKcHXV66md+8uwAB5by4xOOCHdZ34H/6YG5oaGcuYg1cRSMVoRvp+cThzxyZYMqxZw45amXZRXNlgzmbs2Ggo+DTvpe1rbyR5sMcQYzbfC3dPhs53Eq4/NMotu/6AzxZBZ/oqK0EBki7bHNRWN3qSTupoHqtaPoqqq+x+uZ7EzOi/CkD3ZwNzUspvCSEeAq7G0IP7mRDiFeBpKeWps2/91x+FQxO8k+wzJkc0buUVGI2nRySQNjrETVV72Tt3MX2x8SFgxe0IC9lPkTzBnfJFHucRQ71B6mQOD1DYptOTIY0VvOLPzQkm1AmitCgLsNSM1KD2qLNy5vxdUx5dTqv6CONqNieWjI4t/OvLFexYtpZjBfNpTc8K+qiCpqgcnb+QRTvepiMmG27MAX8rPIJ3Ll1PQVsLo9ExxLrdLBjyUpVoRwK/iU0k7Q+1fK/IYZWXre5YmLEStAth6M85o1jmjOLYqwMoWgAc2DRYXe2j6+dPUnjjl4gsK6MhU/DQH+85AygyumaFMEql77bvQI1qJNZjZO4KTkseeltHMYriRpe6EHTl5wFtIUMc0OqwORWQNiSGxtmZgJw/jvYe5c1Tb5I0GMNHPliK0LBkSVLcYdwxtJLtsoLeeHfIdn7Q4OfluTwubKP7iQk6hFcnxrK29Ofn9ByNj19JkfIzHtQfpYYFFMta9IYmRtNvZ37RIyFkcYCurtAGk+BOQpGlkpiv4GhSEHb7GSVyIstTGT/cYzCvFQgvmimc+6FEyx5KJycondCM8n/VC3D0JdA8BmfuArpZ/dHRMGRpzem6ZPeLDSRmRlMxXmEJBwsEHyv8GA9dargJ1g7WsrFhIxIZYtcF4BsaDux82sJleq1OSsnevXuZP9/IjEdHR1NSUsIHxz/gBCcCINAfXje13hz67NHGd52HmfzZwg/MhzdutMbnL6cOb9oUUhZ2bdpE6jcfNLoUvV6E3U548QL6f/HLs5bgLzSGhg6gn5GrKFCUMOKcZYyPn6HLXXpJDavhxfs/zv6mAarah9laY/D9PJrkhQNtvHrkNP/2kYU4bAbgC/Zx7WgYQvNdIHqbFnPLAlSTCtc4L3QOnNd2UteJHRmGqBiElEjF7OT1c7/M62HhyQYa5szFq4JN81He2wm5RglzmTOKxwoyuaWyMQhAGs/u4Ejp7UXVdSvbhxB0xCaiIdABty7Z2DvMOgwgV5E737JC1AW87Uxk4dHfs7ipDXHJeoszriHZ4nRRXNOI9IwSvSqX+I9eWKe1P/ycTdfrm/HkFJh5iVBAJ1ECzhrm8WnOLjB2IAyuYlmTm/JmNzZtCpv0GPOZtR9jNvA2LiA1LI+MkXmouoqCiq6dHy/yzxF/Vs6clFIKIbqBbsAHxAMbhRDbpJRf/3OO5cOOf/3Cg/he+iJdyVEUixPMlQ202kut1Vva6BCrTx3jjZLVhjAtoEroDTezX1Ki4mM1e3hfrCPP1Y5jQlLQ206aa4De9HSzu83IoklhZOMiNcP/TiDQ0anurOb+5ffP4MxVuMb5QXM3bv1MfXcGoAsf3cln//ASJSclpScbeXP1Bn501z3mxW2M0yY11iSGI71eSutrCLvOh9sWaJ7wKipPfOLewHitrxB4JexIVgNAbnpMm8zuSg81Ps7KXEAXgUWxLuDyYzq26n20vVZBzjO/5o2pN2cFcgIFT/9abAn7kPhA2vCOLkKNbMLsJaO4zewWC/qOzWsTGQ2PIsmdRH9Yv/+nGMNFR5vMQLoz+ej8W84J5O595148uoc7+q9B95WioqL7dPoPNrLxje/i8Hq5WqSy7ZI+hhI01mSuITEikQUJC/iPQ/8Rck7HfIeZCmoULEsuOyeQA6NMVV72G+KafkLB0GbA0Knr6HwBIRwsLf8dTmc5LtcRuro20dm1ESl9dHW/RmHBt0I6CaXUcc9VcbSEkfrAN844YYflxhJ341zLCcK1pQl7WtSHn53LW2uANj94Qxh/lhr4pi7Y0guMrlZFEZZMiS6NB/iy8lBuanBG9Ka5N/HmqTdn8FYnKivJ2LWLujWrLS1Haxo1J5qIsVEmowww5ufJ1tXVoaoqd999N9nZ2Rw+ediSQwnQ5AQ4wlnp6GfAnUifjEaXZ9dRO5+YTX5keOOrVnnLH9LnQxt2kfPcs0wcPBSgPZyjBH+hER+/EkVxoOtehFCJjS1B6h7i41dis8USH7+SsbHZraAAhDCyzHlOA+D+aGvoZyWGmPDQhIff3XfJDB/XGV3O00JVjWtlet0pNimc8Gg7xaszQrJyRkPa+YRhOfWTO+/hy9ufxi69eHEY4GXaozSv+zR/t/kljhYWU9pYy/ybb4DlgWO/zBnFvxdk8UDjaRPQmZwxXafgdAtgcB/LjlRSsWwp3bEJdMYlEe5xI6wqjKQuLQeH10NVdoHB4wOQBhUn3TVAb0oKC2trubT6CHtLAwu9Pm2QqUM/B5uNtG+cPct6rogsKyOyrIxrXeM8dfSkMccFJwgI2J4NZeSzdenltGXkmWM1eHJLWtwoQpK9NIfodetoe2scn3e6YLYgY2QenbEn0RQNdLCp6v8vOXP/AHwW6AeeAv5VSukVhipiI/A3DeYA4rsTGEkcYKNyJ8vlfpJcKqlRLuwJbbhcaTACN1XtpT41m0QZQ6ruZFOW4d8qpEYph3lO3IeGDeJAdWqUjlaTPtmOLXUElyud0ZEkq9QKBmdGmv/oQqdG1vDE4SfIiM4gLzaPexbdQ8dwLF/saMAza8+nP4zVnd3Taj2fTswp4Mk7PkOwXInQda7dv4eVhQvoVlWKmxv58ivP88TH7zFUvs20fAB4hpaOFCkpdGnsT1RD3lMElHadoMHpZCwiHaTALgxzeDAmQdfrm5mqqbGyERJw5SUQ3zKIkEaZ79TOzWxK2nymX4hnrBjPWDG2yCZ8E/nok7lMuNMIT3sVJayXmhyBNLkvAuhLTERLXc+CIYX5Yj7vxjUw7DwR8qBWI05DeA+LMj571uujoqfCanCojmzAKzSjZItG01A9Pq/XAMso3BJ2GWuu+UQIOAvm3JWmlOIKu5+K4Z1I6UUodhbn33/W7w8Op7Oc/Px/YOjIAWYTWh0bq58m/wC67qG3953AaybNK6zBOB/a8ExR5uAIdoLw6+p96GAue4WRffOXVQEqf2uCEQmVL0DJJy7Yo3XdXYXsfrEBXUqL9JyWkndGfcHSlFK+v+T7VFRWkBKWQqLbyOpMHDxEUm8vG3a+R3NeHt0ZqYxHRoeUfHzeSeIG3AwnhWrLaZpGVVUVA2EDvHTsJQopnNH1bIROmjJCnxaNwkx5jQuNyBXLwWYL8afUh4dnflBRUOOcVjPMxMFD51WCv9DwL0bO1mU9NHRgxmtxzuVERRUQE1NMV9cmuro2sa1hCZqMnPFZHUgJayRRbuNT5StxOudZ7wV3ObsnfBzd1mY9D+aUJJG7KJHdL9bPAHMj/VOMDU7RlzMaImexKi4au8DQj7Nitme1Adp8qsrxK3N5kIfZIzewS1wZUqJVNR/XHHifhc2NLGxuPKOP6KczjevrD30uEu0qr/cOo6sKP7vrcyy77mryN23EPTFOd2yCJaEldD0Ivwp0ITiaXRBCFYobH+WyhqOkD/czERlJf2IiK2ur+aBkmVUROrBgIXWX3s7qZcsZP2JD93RZDjgXG8FuGpUj4wG+oZTUFJaBlOxYc6PpRoE13rQhL4p7N+pteSy66p8BuLnI4Mj2Hm+n6aQH/5JryjZOT0wLR5Zv4o6Yu1lWXvxXkZWDP29mLgm4VUrZGvyilFIXQnzkzziO/7HYG7GYbWoRAMfVEq5K3MOnM3+Gomjousqx6qtgFNJGhhAI5kZcypbMJLxSYsPHuIw2vFH9jQcoVBfmUSAPkCca0PXjxj4AZ1w3Nd4lnLTPI93VT+RkC0eSjoCEsYYxhsOHedf1LuVh5WxqcODJLTL3688DSObYVOwOOw0TU+ZrPnQlit2LFS4/pvHHlWvx2OwBzoSuY9N8XH1gD1rK9aQ99C06v/0wI9ExgZs5WG08uDMPUHSdu9oaGLPnG6/7gRzw9ZoJPtqeRWWc4OGCI7jsY3x3yQaWOaNCO5b8oShgt7F5wRifbDfKrYpNpSZHQRuffZ0rpcQW2YRn4HI0dx4ZsWGcnpxCn8xFm5iDEtZrOWLcv1WCLulLSUEKBYGCkJLkgSsZUCRqTE0oVhUadcNHOdy6aMZK3h9+iRJNatRFNvNAzo9ZMlHI8ciTLEksxCY0FCnQhc6ysjWUppTS2VDLiV2GmfzC9Ru4b/F91v6cznKWlb/woUmH+GNsvJGOzpeYpQUz9K8ConbacbQaMjeT1dVMVFaeOTsX5ARxoWTn8+mYtSJ7RShYK/sUVDwDSNB9F6Q15w9/JuVUZS9zy1KsB/h0HqQ/2tvb2bt5L5qm0UILz9Y9y9133010nBMUhaTBQZIGBjjEUprmRYds641PYVjXjXtJUULm9f7Jfn6171cMhw0zT8yzbmejCcr4jI5gQDhRBSHlwQuN4GOe+5vn6f3hj5isqAj9kP/ZoKok3P1Zer77uFVinV5y/bCMyc9HLsfI3oWbFl8KRYUPk5l5FydPfp+6+ofwp9TKo37PXOdXOOWaE7L9XGczcVP/zakmr9XJPTkw12qC8YczOcJofDAfOa3H+4l0OmbtbAXjlJ7Y3Un9B93c/E9lpOU7KaCe70b8lpfGC6lkuanjCTMAXdDiVypQIBoo0Bq4PcLGnskS2o6dJH7ExTUHdrOw+SSoKtGXXUbifffOes9UuMZ56GQHXjPjbDLY8Cgqz6Tk8M3jx0mJiqLLmWhaOCpGxiuk2mKWeYNec0XFoiYkI4b7OTU3n/0l5WxZelnANUgINEVybOX1LG/xAcO4G43FwcUCugrXOK90G922d6QlsCoumh0DI1ajR0daDp0pWUZZelqX6mVHTuAY+z0rSgIZQn8X+2Gg6VSTmevQCfdF41AcfO26s9Np/hLx5+TMzfQ4Crw3O7nhbyy6CwsIbiRoTU1DUTQT22jk5x+iqWk5o6PJSClJEId4QB6gRhYRpY/yrBqYqP38sxNiMQ1iAQ/yMPOUBhYV70axT3FSzGOjuBYvdhRd54ZqnYWDbpLcxmpLR6c1ppXjE8eZiliGVf83dg5Ai8eH4ud+SIldwgLXMKeyBD/4WCHvrVpvpM4tPpvxP6HarAezUBRKGmoswUbVbJzwKUEZAzOjV36qgmOOao5nzre+UxWCb/YJPtKucdxp56vLIvEoy1DQKYw3eA3BHUv+iLr0Uj64Lofm+t+za5FACIF6/XoaEgZg/AwnSKr4JvIRwIb5KQxPeDg9bHTAeUfKCUs4DGi8vzScgqWryfn1NhzBHV3Ap9YUclRPY3PPQ+hWqRGQghd22fidez8+LWDgvWCwxZoQS8vK+ObKb/Kd/d+hcCKXJROFVEc2UBfZTERkHG0re0gbCGfKoaHvfwtxcoCKLZuQprbTife2c8e3H7f0l/5UDThDr8s77VUVl+sIZxJiHRx6P7guiPOSy2GzYXo9tmMH43v2kPPcs7NOHsFOEBdiuN7zgx8w+OtnQEpEWNiFl+tK7oKjLwZKrxegNecPP+ld8+l0NbrOSXoOblgAI6vWuG8fGf/+Patk2Z9ogCyh68YkE0zcFoL4wSGGEhOCyqmC54eepy+sD8JhT9oekqeSGQgfAFTSuq5E+mI4pSVRtiCfT2bHzbqoOJ+YrUs5eu3aGWAu4XP3oMbEErliudEQYS64pMfD4HPPE7V6NbakpA/NmDzYh/VscjmzZe9Onvz+jA5YVfgoTjoZAuYyfApXxZ5CwQvoaLqHw0e30rjxEjSf0QSDAF0zzkmw9JquwcSI56xlWDBM3DsahohIPMXhI58kQ3qYy0epZHkAICFRkJRHgc0WzcGhMaSUqMLHOnZhti1T/OY+rlnQxejuFxmsC1BSEm67ltRHf3DGYxksVjw9D7jdC+Ef/STX7N9NVlcnB+YuCq2yBMc0zrOUktdy5rPW7SZhYoSK3Pl4FKNM6W/Q0IGmKP/vNPY5ebz/nGAuxMfbpN9UuMa5tbLRAm4vdQ3yWtk81quSbV6CAPDMLHZW9xCralo5cMnsz8/MwnhsNgVN07EpCqvyV3KH7WOkjc2BlFk3+YvF/+rMfYhxkzLAMS3ZurBX23cAgXsgJnaAJSVbqa66mrGRJGLjuikQNRSIE2xWbjW5D37gYPK2hIpXwm65nnk0YHNMIIFasdDsnjX07LqdKZS1G6sbf3NE/mg+PUoCVYVmiWCa7IgENHNwQkpuOq3xjfrbOLDAwZFIGz6/6by1jYKmSpq/8U0aMgVdP3+SXClZ1NzID574LlWFxcSOj7L1lk9wPDIysK2UKFLgSyijNrYYTQmMZW2vl5sqp5DAoQQFrwApFKQUvPXcC8T/8XXUhATLVBkAm42kr3yZ+UONfOtFHzYNfKrk8cW7qA16sgY3DQgE2uhSmMxFEfBuXQ9awNeczy+/nGuXreLNU28ikXjs0TSlChLU+JBjV9nUg0ydT4ajjNPuQ4HDI3S8urTM0r0+nZrte4n66UNGx5+qkvbQtyhMFvyf6hIusX8WFRWv0Hgw5ydW+TVqUqX0pBNFP80hTodcX5oW8Bc830ntbGHodYXKkcTGLGJktPrMG5kdzf4uygH7YcIv8RC11+R/naOcdqHiwEMvv2wR7gGk233m/bcfNDhxCAPA+bNv00uvF9HR6ie9Swk+n07d/q6zgrnZLKxGW9sMsCNNQdbLL0NTFITUievqwDY5zkDePKQQqLpOflMTR+Oc+GwKOpKpeVP0+QL2VIPhgwyG+7W/FDqi+slvjOHy/gOkpdr48mcu3rZ61hLpiuXGfRgEUicOHCT1wQeILCvD9XoovcHT1ISnqQnhcOC85eaLG8e0jGxX1yZLgkTXPWe1nHM6y633XK4jtLY9NcunVD617qMMK+G839hPuk/hjjEHMZ3F6AVvIxXQpMo7e+MoMMGZpksLpM3GQI6MdXDzP5VRt7+Lun1dhrjwtAqq30lkaOhta0FVzAlsGE10CjrrxS7WyvcommihOOoh9vzXyxy4toC5849RoDSADpEfKOibj9O6pRZHVFjgC5C4jx8967GdLlbsDRqmFPDm2it4a9VlFLY1m7udRpshCMcFPev9c8vughJzDjOAnPXYMD/7x0wHUzaFz7R4WOLSqV0Qy4utPSFALTim255tLJ3HMmeUAUplABR6pWTH7n2EV1bDmg3mD5Imd0ZYP1LRNNbtf5WO5JVktl/Cgxsf454rPo7L47JoE9OFw99/RaHNN0nHrkors/rXEv8L5j7EWHFkC7dEhHGqoJjl7OcKsT3QEGNd/zpxcV28b28hzzuXbGlD6l6KxXEc+PBKiQJcJ9/gbXEjmjS6cXaLDayVuygUDQhMFX+hoZs6YGFeTwh4AeP2aUjJMbz6gm/EoBqAAggpsUm4odOHQOXqnjjSxnbynLzLAntIidB17D4fmZM93L/1MXLUSR5SJQ4fLGpupDkjmx/f9TkjJQ8h36cpcDTRDoT6oCZOBcZS4OpBIQOkDbvXS/Hbb+JpboKmppDSrVAU3A0NqFteRfhMnW4Nilp91GYGVl8SiU3YkEjsip1PLfkYv+zW0KaRk6WEE10jzOn28PrJ1/HqXhLdiSxasBSXL8/6kI6g7lgH+Vs/wFE4BmaC0RiWZOHoYdYdP0T81CijkbGUeFIt6QZ8ProeeRQhdJbPvRb7AkP2Awklk4X0DvZRciAVRTfO4myMGUVRLWufQEffxfuozqbXFR+/krHxenPfgjhnucFNdFWEXDf+cDsGcH/C+HPUXvVDK6f5J/HR7dtD3xBi9v23H4RnbzCybwBHfgP3vBUK6MAAe1UvhoK98wh/E4R/Yq7b13VW783ZLKyqJidITE0lsbeX3vT0IEFWwYQKYe4RIlvrSZ+S5HR0kTgwQNSoi5evSqUhdZAN+RuwNdpCmntsig1N19B1KOia5Dvv/wK77kM59S4T6/MvOhtmeWdOL5FOy8xMHTtG22fvJue5Z3HecrPR4eoJ5ehJj+ei+HLTs4Pxv/o/dIy+EvQJHbs97ozbB4fBoZuZbRZCIVHdz71FeymNUmmtv5roMJXI5AZ6Kj9Oe5SL7aNzcY/kUuA3dJUBTGCzKSy+PIuj29uQOqg2YV0XaflO5l+SHuIg4p7w0X961CrVu1wrARXwUUADD/IwNSykmBoKpOnyoav0Vv2ehSfryGo/zviCgL2cvd08H5qGZ9SORWQFYq6++qzHJJhjtioumifbeoJ07Yzso6aq1M4xkwEh978xAH/vxIwHqj8bZhxkALLC7Jx2e62uVqTkvTQ7+1PsfCsshu94h/E2hQI1CGTjTk95QmzP9g2PscwZxRJbByo+fNJuHBMkc3/x38zVNN66dB2aasKcIM/azK5m1h/YRmZPO9LhRLWlkzycGyLs7nfxSct30h3dzJ63TqL5DKkxn0/n9d3buCR63l9NufV/wdyHGNnL1nNt0yNE81oAO4Xy/wEB8VE0qQ1smVT517YNjOa9QwENfJpfc1Bewgr2k00bb3GTsaEQ+KSNLeJm5sqTFHPCXOUY074Ugn0Fi0mYGCFtZNAqySCt2y0QQTw2Rdf4isNLuGpjwe5xFrskAo2wsa2sUWq4e9eveHb9/WamQOPafbu4+sAeZHkE7kI3DVmCR+9Suew4pI/M5cdXWMlsAAAgAElEQVQfv8fkVohZJ/6QAyEldh2u7wyU+dYMxnPfvjfxTkJZZRULmxtnjhtjcuh+9DEU3cgQaAJ8KpzICZ1oHIqDb6z4hrXS+v1eFU1vm7XysfdkP4fHN6E6PSRMJbC6ezWKVNDVgAr/uMfGF6tfJ7WvB71W4elJwY4y473C0woP/2E/tiDBKdFmMzhFmoYSn4+aVIjS3wDuMeO8SYkiFLTJSdT97Sh6OMpZmlQWXX6VVWK12+P4MHxUbbZYAlZICjZbLOVlv6Gl9ZcM9L/LsOswVirOPzT/AQz6u/eKeOKyrvtQymnBkzjTSiMJn7tn9v237AEtqGSsew3Q5gds7QfhmesMzhxA5e/g7i3nDejS8p3MX53Oid2GC4eun12SIC8vD1VVQ0qtUkpG1q1jLrBk3Vpqdu9G03VAYps0NLKUqXFiuwdJGBhGAVL6B0jtGOZIfgQ3zr2RG+feyDPHn6F3spdb590KwHf2fxeERtnYLuy6hgrg8/1JDQd+jbngrFj/L35JSE3R/7vMzF3S332e3Oeepefxf2fqWKhVluvtt/F2dl7Q9TE9O9jf/A4kBfNhBV7vLI0Ys0SAQxcqLCylx1rMlKZASfIxpK4ghIbUVWr3fo0k1xx6wiVzrsqi5Z32gAqIAmvuKGDh2kzyS5NniEpDqIOIX68wtFRfTmbGHXR0vgBAAQ0UEOp/KoRKpCuNsTnHGb/CX04AdPBmBz3NhEL0qlLkUA8xV19N/BfO3VPol3wC+HJOKlv7R0I7a4PBu65bnawKoPndEwIiToS4Uvi3N7dpd3u5LD6a94bGQvbtUeBp1Y3Ha0pmBQG14GycKkA192dXDMkql+sIzt6f8FkZzk4uJ0EO85nhFhaerAPg+r3vsWXtFaE0Bimxa5ohVYKx6NcVjS7nKWuh5NE8lpzQ0d6jPLjxMeb0lFDEShRhQxNeXh97nqe3ds3wPv9Lxd88mBNCqEAF0CGl/Is2UmSsvY0C7QBd2qsBzISR+QJjFTi/6DGSDm7FISVuZyPDKSdQgJOikN/wOXzCRj3FrGXntLKr4DArOSJWYMfLWrkTHdW6ITQUDhTMZ2VjHakjA4hcgdIKhT1t1KXlomG0aKaMusgY7iPTG8mc1kaumAeljjHGcSLUHiLVHYQpxo1wx/ibLPmvLo4VFFPaUENxcyMS+FWRgrGahMYswaI2nZ6UBQFFcrPdW8Ewu1fMhaSuBB48pYMa/9DoZrHLtHbBAJ/3jl7JVNVv8bUGAbnZQtMQGKTdnjh4Y6VCY1bgwaOgkKnfxW+3pXNp/iKerBxnR23HDCDn30KXxjylEvDTDOkUlJIYu5d969dw2c73SBwY4L6tCs3hxdSnx7JqvwubPB4KxTSNiKVLcZ8aJHL110BRCZManrZ9IHWEoqKhUd6WSu1ws/lItI5G6DhNUNPZUIuMOmp2mmoIoVJY8K2Lbn6Ij1+Jgg1delGEzQKFAwM7LbmWWWPagRTHXTg/9uHwooIncYQg+oorkFNTxFx9FfF33jn7RnlrCWGiTx9k1QsBIAdGBm9aI8S5mizmX5JO3d4uNF2iCHFOSYLFWVl0t7TSY55VRdOIeW8Xw8PDpBUv4CMIKk810G/TUCcNoqeQkr2LPeTsAnwgFMHyog3cevXnrAnjxxt+bH3HU8eeQkdHCBiNlCGd2JPV1Qy9/DLasOuidN78kg/W3/3ZOn+22R+qamXu/MbnrZ/6dEg51lNXh6eujuFXXyX3N8+f11is7/N4QAhi1WJ6xH6r+9ovMXI+4efQNTX9xOB9hqxIQjNOwuQ5IzSWzd3GosE5TPQXQVeG9bPDE08RmVzP2MQkkHlG27fgCC7V+zlzaflO0tM/Slf3a1amPTQEGem3k5C1iIEio9JjDVnAxKU6kQd0HM0KQoHEO24gsniecW23H7yg7PMyZxRfyE7myfa+Wd41gNCd27cQ4/Gg3Hobv/AEvQfYNB1dGPImeX2dnErLDsnM+Qf9n4VZ/Op0Hycn3H7aH81T5jkFC6gBPNnWw5TZoCElzIt0oGmTxDDKU/U7KB3/JUiN3/AwPmycFj7iMlLBtgVPtoe1vMcf9fV4hVkRMk9gUXMtIBCqQvLiLDp8b6N7u6xfq6PjdBjn82DVMa45fj+KriKRNMcfoypzBz0xLSiaMsP7/C8Vf/NgDvgqUAt8+HLyFxELL/sP+jc14Y2pDMpcCJIH3OTGXIFTn0vm8S18PcLO/nzDEkYIqJEL8QkbulANM2UJduEzSZ0BkCSFgkfaOS2yEOgYdksAgu6oFN4oSWZN41FWu3qoj4mgw5nM6sZqpuwOMlz9pI0MgYRlvnxSRxOJqv49fY5/wrgUfESqO6zfUpLgRVxVyMJfbLZgjQDu2abTliws8HQ8R3DHvhpsmobXvHGFhK/XTuFyKCwd9CGBn2ZNUpWRAEJQG6cG7dEPdo08YnjJJ5gY6UQfMky+bZmZaH19Frk6OBQgdQju2a7THjQmTUrq+rrxDLioOn1myYzgx7jHVU54whH6wvvQhYFAhZTEusYYjY0BRUFTFJrz8kgaGEBIyfzGLI6LK7Dpr83Yr5ASbWwMW1IhKCpCUZFSMDonGwMGaGho9E62oRhnM6TEKkwysb+mU73jjzTXvsHcjzTj7z2TUj/v7MRsYW8SJDyh4p6jEdasYn9E0Bu/HxkCivwag+ZrGjhfsTG5SsWTY4gbj1/u5eTbDzKPx/9kQBdc4kNVsSUlEV68AG3YdeZu2ewVsOrvYa8JdFS7IUFixTR4LJSQRojztSULnkjPFO3t7Tz7zDNomoai6yw9fAR3WBgpvb2GJRbQ/dh3iPzS3zFccxDVG8hYn8weYk+Jhym7wn1bdYQuKXh+DzmX3zMr4drokFbIb/fxuW06ih8LmA0pYzt2GJzYi2kcmRb+bF3/z55kfN8+K9MRd9ttoaCvrIy0f3uI7kcenZnJ8/lwvb75/MBcWRmpD3yD7kcfM37PI79l4dPfZijmBGCIWl/IIsYvxzNcecjqck1NuYHuntmljABiMqqIyTiKlIKeI58C1hGeeIqc9T9EKD7GlC3U1e0/r7FY+nRe49niNr2Jzww0DcAadSKW7se+Q1iOYPRaTG6M+QEF3IUSR7PEmTtK5MGvwkFhZKkVBa7/ISy7+/yPkd02A96aIwEhSS0r46sFWTyVkIFo6rIIPUid6/buJHVogNKGGoadTv7tvq8ihRoA/gI2RLtYEJ1GWxB4m168vSHJyTJnFL/p6A+xM9MhoLwgYzlKLFv4N9bzLj6MuVNDoS79UhY88hkaon5OplrHOt5lB1dbWcPVIozlp+eiRTiQ+gA9R/6IKiVXKUm8s7KHvniDsuTyGPNGhmsezfoYCgaYyx1eSFXmDvP8iBnWjX+pmE2k6G8mhBBZwA0YunV/HdF+kOiRwxZIM1Z4ktgxH0493lgx6RouVcUhpEU3mC9PIPCB1JBoRA18wNcbX2f5aLtRKg3huwnqWYgefPrML5NCsLeglH1hqby5ZA0H5yxgT8ESwr0e0lxDVrXMjY9jttMMqisxeGwKYGfI+/e49UC36ZLb70DedIU1fwkCxvMAeQ6N3AU+Gq8c57qmLrPJ0VAAr49VuLvJzRKXzpJhjUtO9xmq5ULgE1CRELALkxjuFob5soI9+xLjDUUhes0aUr/5IOGLF4ccaltqKggDagSPyTwg+Cbyz3m6VCUoCzaZy+q4exkOH6Yqocrci2A0OiqkXNCcP4e+xESkELgckdhsChEfuRGvYXMdIBFjZCR8/Q2ga0jdWPEn2eahoCKE4L2Y9xnwdKIj0YVEKgKhKNgcDq6870ssufI6E9TpICWRKSMh2SchlIsusYJhyeRo0Ih5R8XRoOF6fbNZkgoDFISwMb/oERbFPErkXhuRexSSnrATtVfF1uY1LgjF+K9vRQOND3+GicrKix4PBEBD9GWXgaYx/MordH/7Yfp+/GPa7vnc7PtvPwgHfgEIQ+D6uv8MzUqU3AWqSRAXKtzwo9Cs3CyE/+nR0TCEbpr4aprk4JYmuptmLhSqqqqM8qkQ6IrCUHw8xbW1FpADQNdpaKwNSCUIAYpCYqbRwR07CUI3fIH9nDMwhKefOvYUR3sD5HaBYN0xHbt2hge6lCH7+FMisqyMpK98GREWBqqKCAubtbkh/s47Sfv2v4WW6S4ixnYbndJICR4PY7v3EB6eccFAzh9+4DQ3/2sUFT5MVFQBaakzx29VCoU0HA8VSdrS31kZOaH4EIoE6aWj80WOVH7a7AI/c6TlO1l8eZa1/8qtbezZ/AZ1dQ/R1bWJlJRrMApNgbANKgw+9RT4fDiaBEk/sZPgKkUIB0gBGoQ1gFAlzjkTBojT3IBuZKLf+mfj3jjPWBUXTZgyszIAoCIYKimlJr/Q0sYzjxZ2TeOair18cscfKBManavWGfehKYcVTz/3yp9TNvQd3u2ut1yIZlsXbeod5jcd/fx3W+8sozBnIfOe8WHjNFlGi5vUsaGxKi4abWk0OBRQIY9mYxsTVMYfGkKo6Uh9Cs1da8w7gKIL0gbCAbArdpwOJ4998BjV9v0optOGQCCkoLDPVHM426ruzxx/65m5JzDEhmPO9AEhxOeBzwPk5OT8z4+oZQ9RqodhwvBfQEJC/ChwtZkpUB3MT4a8WM26FIpEA9/UHuXpycWU9g9y24iDDl8a1XNz/fhtFh6CMg3kGe/pSJqSMw15EGGICr9fUELC+AhpI0NI4JitDWKgA7je4yJVGkRin8yhz/PvJDseIIx6aNmDfu069D/ssPxQ/fy0PIfGl5Ld2AQoi1vp6jrK23o2XsVQ4H4zy8ENnT6WuDTQfSyu3oO9PB+PIlAlLB3UrJXZqJgghkgrE2XPW4cIj8Vzapvh9agoxNxwPVP19YZMid1O0pe+SNfjj6N5PCGcOYHCZPfN6JO5s56iW0oziAwzVqALM5w8uuWEZdmTEqcjhyRxnjjjRhUCVBE47oBUFPpSUkgcGOAL1W9QdEkZn740nzf2XIaz8Tg5Y73WpKrE52NLKmTq2EvYUhahJOShRsSbDwWF1HaVQQlSSA4sHKS8eC1XKcuJiIlhcnTU+L6gkpbmthlgBA1QyMn+3IemL+cPe5Mgv/V2PAU6KQuNSbPrlw8T97KJ2oxRhW5kHqKJ8rN0m15AuBsaGNu5MzSzo+tIt3v2zE7LHrP5QTcmuclp9kjZKwyOXMseiEg03jfLUBOVlUxWmx28QoSUDYNjemalvWaIzvoj3PLP5WctsYUcKX/m2uHAlpIMna2BtxSFK9fczlsNJxiNmMIv3ICu88H4cabqf295LvsJ2hU9hqVY8JQy6/SiKBfcmHKmsvNsfLrZojNjDdUf+RFKUw257dtxjjSDohBevOC8v3/svfesv4+v1ugseQeatl50BzdgbWN0g7sRQiXOuZzh4UMhtN4QOTUBEp3IlHomeouQulHJEIqxfDvfJqT+06PWn8MTTzEV8Z90dPo9Sh2BTKF50Xjjpuj/GkRtV1CmBMoYRNlSKCq8Ha93mIh9Fagx7xB5+RSRSV4IXDVG6NoFuZ6cUXjXjN929vPK6V5+G6vwWlkhLxxvwNfbyy36FEtuvN5y/Sh+Zwv2+Uvw2m3Y8PFVfkQBDYyMgmvsaXTuA5PRHcKjw8jAfaPh9JlJHiFznqSehdZbV7GFAhSIX4lAReo6o8QYovKKitAl42EC3deJ5jZkdgL0FuhOnEIg+OSCT/K9g9+zVAYW5a1lTfPtZjJEUNS7kobkQ/THtv9vmfVPDVNouFdKeVgIcdmZPiel/CXwS4Bly5bNxn3/cCNvLekV36czLcy4QCQUnZzAueZ7uGJtDA0dwH7zV3H3PW2SSbGWJ0WigcdGPYRntyOFj2ry8QbJeAT9qOk/MuTPqq6TNDpMR1yyMQZh6FR1xiUZZdag79SkpEsZJDa6j4mEeiIH5xPhmsuw9zOkRj4CeWs5NFzN259Q+UzzKjKjytkZV0lj1j6uDNMNICcAJOkZz3HFRA7vRJUghUATUHddFmuGFDzNhyg62cpt25+nPm8Fl7UMsERZhr9KXBN9ihWji1DMjiMJ2NLLsKUuYeL9H6APNTH65hYS7rvX0rXy9ms4P/KPuLwt7F08RHamoDQikaKoy3mocYzZutcUoCA1hi9fHlB0L0qLsYR+1Yh0trQ9T7gWfsZjrOg6yb0GYLPpXq6q3krrU/tYoml4hYJuFk3V+HyLK4cuDVkH/M8i4/Hh8U5YfMHyhnjmpyXRNdxA05GDhqaUqqKqNjTNR3TaFFlr+giYh0vaTz9PcvJVFw3orA5EEyCHFy8IKTfan7kVzoDLIg8oTKzWp5V9Lhw0TI+Jykq6H/vOrGR7pOEBOoNIP93GazYtOf+E9txN1ueGkr5G90+fD7Wrmu17CWRWKre2Wa9pmpwhU1JSUkJlRQWarqPoOnNaWkLGj6qS+sA3iC1bQv3xo2g+nwHk7v0iS1Zex9NzcuhqfhLEXqNUL+BQ/Q42J+7C7/bi91xelmpYiu1ZrHN5tQ+bPjuYS7j7sxcEsM9Vdp7Op5seJ/Z08N7v6gEHJJfSn7yEooaXyezeR/d3H2eqpvaMzRB+EDlZXW2dl/HVGq6P+02Z5TllSc4VRje4G5BI6WN4+DCgTqMXzHz0xielMr80hzH3NYRFjTE2tQ8ptfNuQppblkJ7zRCAmeELbpDxMjnQ4u9FCoQC41cHOlhdbKW7cbcBZtcuhaY/gE8DxQaF10LdHwipD1yg64m/KaLCNc7OwVG8umEZp5sd/R4J77z0Kl9Jj+P+Z58zGiMcDiJNgC89Hgr0Oh7gYWr0hRSLEyFNHaMy0uoG9i+/b0uJ47XeYWvU04HcbSlxvNk3HHDJkEaznvQfKPNEtco8uro24fb0BSRf5Akcmg+vNNblcwZ8aO6awHE3v7UpY8wqsdYP1ePVAw1V/ZGnEclTyN5wBAJFKmSOFOKK6/6rKbP+zYI5YDVwkxDieiAciBVC/FZK+am/6KiyV+BMv4qlVX9kKM5O/LAX56iPjr7N1I88bpLKVax6p3XPCYS0kepLYlg0gyJZoB/HLjU8Ug0obwevSoJ0fYJXKoVDpziWNdcCSgbAk2QM94c+6c3vdjrfoq2sEoQG+TZyKv4PuBbTG/saTn0+y1IdNEatozzp4wB83F3M5LiT01FvWAlDM5vOJZEv8y4L8GHDLhTWzUnCJhvoeOIRajNzefXKz+BVbRyf5yP/pTfJSMhiU3YVCxeUwk7jxhIIs9wKUlHR81fDYYM/566tI+fpp3Btq2BkqwvEHGJkDp9Kc+LcELip5jmHePTNEzP4crZZFPGX5sYHCavG85U5X6HxZKN5iIzS7/zaWjx2BwLIa2khcWAAaZ5JsW83YJJ3kbydt4LYqVEWpSwmQrWhCAWzTyvAg8MonYapAW/dCI9K6/Y9IWPTNY3FV1xLbFIyEdm19I38NuQEnm9GoL29naoqo3RcUlJCdnY2EDCqPpcFk/OWm3Ft2hTCW3Q0KzhfUnHdqZmXtEr+tQ//6d2sBw+FWEcBIbOq1LTZs3+lHwfE2WVHql4EnyEbMtGt0/27Z2cujs60f0IzK2eK7OxsPr52Lcd+/guSu7tIGhwM/YCuow276G9rITk3n+iEBJbfdJvVqVyaUkrhjV+i7bUKNI8bnyI5nmN4L4PR3OP3ey1NKeXry7/O4/rjPPpJuOwErPfNw3asPiRbr8ZcGKX4T7XiOlU5vUQmqJ93B9FjHThHmhl++WVcmzfPAIkWiAxqsvDM0Y1rzL9okMZ99KfQC6ZrLEopGW5ei5SSiPh2wuObrcIHmJefLhgdr8Hu+zXYvHgmBeFh6cTEFJOb+3kAWlr+71lFvBeuzcTVN8nRbW1M9BUhddUCdELYie5Iw5VQFfqc9s8TQRq7FpjN+6KhoejXV0wrgZM7DB9i/wP+Il1PgrN08TaVh+pa8Uiwaz5Kao8x+FZj4J50u+mrfh3PYh1PgYJ7DhQoDRSIhhn7LRZ1hAnwSAO37hoaRRVQHBXOiXF/t7H/njQORNOkh+8WZNE11oar82lGZQRNzKOClSHPhhXsp6PzXUCzKrIFNPBw9aNsdFyGTffSb5sgLnICxeP/iJHsyOuOon5oDFciXJlzJQe7DuKTPlJH8/hIzZfQdbtJIzI8WVcvL+WfSj79V5GVg79hMCelfAB4AMDMzP3LXxzIgVG6adyKU/Mx3hNB3UQiiRkjtDqChVj9Br7GfzFdlxA2kUnk4HzcaiUiw4bUNQplE0/UnmJbbB6bMx1o/m5Qc1VSOniMjLZG/lh6K5r0C/xCbWIBFq/Af7OZ5PrAxCXMfyW+jHpQzItf+nBl7CPCNQ9Pl6TvV9UsuH8Jn1JuNbcyLvyP+q7mOfUPSLxGZs58yBRIUytJLuaq9MUsc5bRf/AQeDxUFRbjVW3oqooXOBzrY7ThJ5xMUDhVsYeSustIKPqY8T1BNQ5XfAp6ZBjxE25irjbszCaPtIJINJoKdMHEwQ6cVxlg7nDrEPubBrhzeQ7HO48bIp/G8Lh9adY5FfEHOgdQUKzfCnCyuJj12wzNs9bMdE7HR5Pb2U38hDtkWylge84yahPyuH6kl3+VhpehouugqlbJVEqJlDq9k62cLYSisHC9IXx5Yn8VIkNBWCx3cV4Zgfb2dp599llLJqOystIybIeZWZbZ9MUiy8osA3VtdITBZ54FTSNqr4q9z0HkNz5KysKPAuee0M4V2ujI7Nlom8249qdr2Vkac16z8eGuMxyIg3AkYNnjag6fCeTgrFp5wZkVf0Q0H2WicjLkGGYmJBBdXIwvJYWxXbsscDoUGcagM5rO8UGO/uoN48OnYE7pUgvMQaCUeWrnZh6f2kRjZiBbGKvM4c7q+Qy/8j1+mFtG83UqmtSpz4LGLIXw8hu4rebjVnbzTN6cZ4sz6sydZ8w8TgKEQmv2FSw5YVCcZ9Ofa9t5jObU9cQPNRhlWQyCf0j2V0Bi0oY/iV7gdJZTVPgwdXXfRkodqduYGsxBDRtjeCib1LLTYGZ2JCoIaQAvBFJ6zBKsZMrdwZS7g8nJ04xPnEJK3zlLwKtunWdKmeQTkaIy5t1CeFgKubmfx94kcD/0HhPLvEwt0NEte17zAWsxPqZxZY++hCtSY6hvI/FXfgVnSw3U/9HY7iJdTyBUuiRz/17e3f0BpQ01IbJREvDkaXRk/A4xJVC+aiO95wpGlW3MVh25NDGTjbmFPNTYQeWoIYLvk1Az7gegIWk7ACpHJ6gdn2RjaREFaffS0vpLvtofaoNXxAk2sJ2QMrO5n5xFddyy6wamBgoQKGhaBz6akWgWoFOl4CqxnHkrrqBusM7aReZIAYp57nV0YjPsXPPJUtLyN1zUMf2fir9ZMPdXG2aDQ/VQKju656EjSMvqJ030z/ioBLLbJ8k46WVCL0CXgjBuw15RxlR8HZFDCygYTmcZbgSC17Ltlr2WROGYcyGr7Fv5rP4rnlE+j5SKBeiMLwgsKzVFwRObT1avG8Uezml1yNA5Q6B7woERAndP0J3kk7ibXMxZuZChTSfxS2ckLZPcErEO98C7IH0hWcYC2UiRaKU83cjk+ZXjS4Nsv+yaj7KGGhY2S8qaNCrzBW2uwzT3x7A06dqQ+zEjqoDqso8wEgvqSCItz28iLjscW79u/WZtLAF36wjH0fjkU/vx+AxLrfvXzOGp95vRpcRhU7itPOucp7C0qJSdNTtNLpJxHDQh6P3Y7RwfHLTOQVN+H2Un6pjT0W1tq1+yBnviXP5pfIQrjr6GW+rYC67BkV5iHVd/dq5r4hQDni6wjmpogUwoCld87gsAvPLIA2g+Hwnzk8ha021YdirnJ0sym7XU5s2bycvLoygigviTpyzuk7+DcHTrNmKuvuqMpbWYK66wFP+dt9yMN1/S1bWJzq6N5zWhnSmmOz5Yx8LhIPWbD84us1H1QkAsWPOcmSNk3puBMFdTwcddUUj95oNnzEL5PVqrdrQz1D0BUudwSzz8/SMs/um3iSwrm6mTZ5ZthyLDODgvC10RcHBvyH4bDuxjyZXXhbwWWVbG4rIybtlZQsQH79MR20B3dAvlFSfZ8I4hKHtdQxU/Hb4cfYMBODSpEiOLiL9zLWGFhefvZzstzsiLaz94Xk4a/gxUcEkaAf2JS3DFzrH4c36Q2N3k4vibx2hsyEDPS0fJuZayqp/gHGslrMXGqHCD1Mw1qp08MxP2p0Rm5l30nkyg/uh2fFNRpJa9hFC8SKngPrKQMcccxvsNgB2Z3MBEXxFIiXPOHpB6CKdubDzgSKnrbrq6Np3z2veJE3QP/QApvYyPO8jN/bxx3D/9bbof+w6eHC/9/+gFNbCINw6ASlHhw4H9V72IK8LHkcWx6Aoo489R3j2O0+94sPLvLsr1ZHos6e8hfesbMxZAAvAUSoTwc9jm8Nvc1Xi9C1ilvTVDN6+//108kds4MZY37RvM0qn0d88DIpB8mNIlT5yq5zsJB9jqXU6dnysnJQoad/ECM7i85gClCklFO5gabGKir5CpgXkQcxvd9ndIco0iJNhsNpZfcj3/cugx3JrbWsh3xDZSLq5BSGOBP9btpa+1kdaqJrIXLg5ZhP0l4/8JMCelfA947y88DCPy1tI5FW8BORCMdkaTJoeMMmZQCAEn4jLIUVrxanORGKT8KFcBkS6D06ULiUDn+k43WzLteIRugAmh4FNUasUi7pHPICQ8K+5Hk+YSdlpJVpFw2YCDJe4c4kmnTxulUTUEUCN77mI8+2eGvpJuw9m5OjBIBcsQPbw4AX3Eg17eT53nH9GnPCAVovrLGU+uMn6fBMd4OslTRodYS8v/JT5/JWn/9hA8/Ag/fOK7HC0sDlnd2TRY1ihxRU5ycKQKl6ef5cnXEWtPssSPlyRdhZQ64qSCQ8bRPdVMRtwcFA/4V3ITR3rYH0WkQsoAACAASURBVCfw+HR0aVhqxUTYefnvLrU4cWfLylVUVFBbW0taWhpzF8yle6gbT68HqRvctT67CabNp7g3PoVDq5KIeXen0amoquTcdT/ffK+b3pgpptZ8DmfVWzjSlhAM4vwxpU+Y5wi8qocEzc6cgkWIXKNxY+H6DWQULuDAplfQNI3I1Ani8kfNDmksWZL29nZaWlrIy8uzsm3Br+Xl5aEoCnoQF6y/v5/+/n4O6zpLDx9m7k9/iiMnBxwOPI1G+WTi8GHCCgtnBQLBwC5gLWZwkAB03UtX16YL9o4d3bot5O9qWhox69efQ2x2Okts1hYAk1dnt4BfePx0X1pASrThoNJ8xbNQuxkW3GxJPCxcm0lf+yhD3eMgFKQi6EwoZ66ZZQrRyQNQFFwxedRlZqOJjlmzgYUrV8065Ja3D+F6I5rl8jrKlKvYUvwklzScsn6lBFa1dvBO233YIpvQJ/LpzzP8Lf3Hy9/FeqGcuYmDh4jMiyZy7F1oN49VEN+Qz75xVpAQFjl9ejHuna7UFTjHWolevx4wgNzrPzyM5tPxZ/B0VeC7/QskO7uJXLGcPHOxABcuSTIjTEDabVtF1fZ2whIl4fFtCMVr2qLqhC89Qc+71zE1OA+kNCZ/87z1HLmLtKUvBAGN6SHp7Pr9GcfpFw92zttJ0kIPQgmlS8TfeacFxFXxLj0cxCStEebRmJN9H5mZdxnezC0biT/5IkNxNnSTX61LnaEYiXPYpOF88DOYf8NFAbpg/2fLzs3MMgf/esXQQadBFvJd8TC+KUPX7V1W8i2+PQ3Qafyx/QO85BJ8r9qQlMgKKliB5dYg/T2vCgjY7hLkDldxUFyKVfNEUqgOUeCrP+PvEEBM5lFiMo8iNTuDDRsIS2ijQ46wbN6/EN45RURMDLsrdxI7Bb3xgV/XE9NCfcoBintWIVDQ3V1s/9WTSKmh2mx87KHv/lUAuv8nwNxfVWSvoL3oy+hN71ovTfZHk5vyPcblVvr7Q9PAMbGj7Ir8NItcthmZGYnkF6m/49OuUUqGP8+Th8Z5PtfO7jQH/m7WrLEs1MrL2VC+g2za2C3Ws5OrgrJ0EiEld9a1s24wliOj1ZQ5UpFIGtQuktPqsSW3kdp2GVBJgmMS8GESU4i72QCV/U8dQ/p0hE1hMvK4AeTQzVWPB4ujAHiiO+mI+SWdR54OZGmu/Q3hGxex8NgxFpriw8GsCAEkTLjJ6xumKUXQN9VOrN2oMVhuFsKQ8xAIMiPmgR/IWccLLslPxGFTrO5UP4A7V2m1oqKCLVu2AHDqlDlZqoIbrruByclJIiIirPetEAKpKPTPm0deaSmJ991LW+v/x96bx8dxlfne31PVi9RSq7Wv1m5JthxbtrzG2EnsOCYhCQkESICBBIYZwnCHOzPMnXvnhRDCwDDDLJCZYSAhCTAD2RPihJDNJHG8xLts2YoWa5e1r61utXqpqnP/qOrqbksG3ve+MLzvJ8/nk7TVXV196pyqc37n9zzP79F51XEaAwPFoXB9w3aKhWJp6MVdrAa6NOgPngcgPbLIDR2mYKU420fxfV9NEcctX7MWb0mY6usHEaoJ/sxCE4KxMR+vvvpDO1nizjvvBODHP/4xuq7b7zU3N3PykiLpAFIITm7ciG/OT35vb+pnSZmjv0pQNzmYPNE16rIsXfLisNxC5169ioXDCdaq4HN3231x2Ta4sxKbF9V9eTdr+Ra460XYfy+hUycYb1magWq7FIeOw4t/AWNWJYOe12G2D667DwBtciqF1BMiUWbsUhelcdsfc2qoFi3aBosjZj8JhfyKShwOJ2t3X7eElYtfb/v9j2JUvg8hFFRDpXR+JUcbemnqk8xlVTOXXcfpgjLqhyXrpgzaCrBjQn9dEsNYr3/ZqgUp3xM6Fbtn8RT9A6y8NhGLpUd+ZRzWWK+fwEwY1SHQNetplwCCkZLtlEycINq3n4svvMpiYyP5TTn4B7YTnqqxwkgkhdkxkBDQOlmcnf2/BeIue68MHbcBabu4jbKdBxGKhjQUM5jeYtykNMgo6DDbY4lRCykpH/oljr4IBb5PEdt8Dr9/ebkXKbWUWNbk+37gwii+lW+ghTOtrFgdaSgYoTWEWlrwP7cPbWoKR34+Bc23Mjl/CsMw59eIW6Fr4hEYrqLrwtfNbNw1HvJmogiri4VQcWrJrkbj/1HM3HL1n4vv+TJjf/N1pKETE5KhXKiZBCMTMKBdXYOOw97watLBO6yh2ZtOIHCeeIjRankeRcSdnOZjtMfrp3luHy3KRnQr4FtBw6WNE3aswNrBcpytbJFvc06sIz7n3Jo9D0udX/aOx15rBKDGyFv9CgB7BaxcsYDIWc9Tf/MltFiMvaKA87uGyc+P0B1R6I+qdBWcoH5yCw7pAGPYHA9poGuJetn/1fYumPstWPn2G3D88hBaNIoQgo033srKtR+kv3+cqalfkrzoKUIylTuL9Mfvu3h8l7n4f3JOUKplMI9gvV9yOmBwsAikIlCkJDOngZqeCvzvlEHjTwE4IK61Kj6YQG7nhbPkTgxxJpxBb7CVEk8N/T6D8qqTlFeYWT2RnFEEKmPCQCn7Ng18m7za7bgrs5h/YwhpFZmWmoFnZjWK4rLrd7rnKwjlvoMtPQ+AbmqjJQXpZ3/oNkaTyvwkhdrZ4G4+3dQC6w+2UZ3ZZMauLaNVteQ9VZDRXMTGyix++pltvxETl2wtSdpl8SQMQzc433ueuz5yFwcPHoz/cArjiRBs+vrf2IzYufYX0S2Qa0iD8UyV4iRCdmJhhPHIBSbCg0xHRhBS0jQ4Y/cHwNzTz6SAudL61ay7cQ1BehPVcoCBUzVcXEzseHVdp7+/H7/fj2btnjVN4+zZs2aGZUtLirvVvh6whZBTTErmnnmGtMbVjH/z7y4LCsz6mHFXkHkhblcB4cgoybVjgSWLQ/LiHGppYfYn5j2MopD76U+lALnBu+5CRqKgCIq/cJdZrui1e+HwdxJt3va5X71olW+BlXsIvXQOqce3EZC2di1pjY0mA5gfg0euh0syGzl8v81wFI8do0teYcZTSUkot5K3numn5kQvuXKaor/+X7ZL+K1n+jH0cbTFA9gxRNJgaqAP1eEkv6Jq2ab6n9tH9kwnSvl7MQQoSBbVBYL5Kodqr0Qr/TBSUalB8sEz/0KuvxtDdVA7cyVU5vzKJIb+l07w8vN+dKmgKIJt70mnPNi6NAlGQGjcgScvCB1JmxlpmBIvy1hy2SpFERRWeZnoDyTNDSoTTVVk3NYBDpCcIzsHfNWHGXzzfxCeqkFKmHnoYRbze5mujCHnBRgqyrGPUb3xfVTdcPkYvl8JYuMSNlJHlvch1Jgd/xYYWYe39BxgIDRJ+ZGz+PwGzlgQrTKGp7ATjz6LkQm5BX9E+cbHGR5+jI7OLyf1i/UqhF03dnj4Matii4EQDnBC/pooUgoWp1cSnS9lfvBK0rPmiPz4T1Iyq8WzDhr/bC0j2SeZyTZBkmHoTHQ/Ys2/ZtWPqXyXlQUrkOh01mWRGTLw+aMmGA3Pw8//DBC/cV3i5eo/V93+Odz19bz+wD10z5mbv6pJibtLENBhtXgHRdFtMAYCrwjRUP9lgsFOOjrvBXTq6OJz7pf5XuR6JAKXolBjtNIfURDp5mqgYHCnfBhDgR9zt925WzjKbvZTXHgLh2P13Fjg4/2ZkpNTccmm+DSkkO3byJz/RCKAKAnjxiOShkeeQl5U0WIxkBJvYZg/qF5AKBJdwr9Puun39vPzxu+y1/UBbqi7ltcfOYauaagOh10v+7/a/j8tGvz7aqX1q9l15x+hqCoSaHn5BUa62i0xVheJbldQFCfnYo0YFpyJs3NSSmJS8mBkI2/iRscMmG+ejuE0DFTDrG26aUZHFQozExGQgndYY+4wLbCxerSfxrEBDAz6GAYgrC/gyBpmRbkJ5GxcJHRAYqARrenDXWlmwCkea6clAEWQ7q+lOvcvzbYqOnNVr5HpWHuJd0tBCKf1ak5sObffzqk7N9Na7qa7MJsZjzs51A4J5KkhEDAdGeb09KvExYQNGa94kJRAYH0zrTGXgj9eZ7d3Y2UOn9+18jcGckNDQ4yMjNh/JzOkk4tmaZtMBdNtlpQab/ZdKqicN7yoKAhpZh0WyxybldOBXyx20+4/asXKwYqZALmhSErXTWe3cvKtDzI8/Jj9nhEqS01eBsjLWHIt4XCY06dTxUvjf99ww1L2J3HNlzFNY+7pZ36loG5KBQprQMORYeIaC/EkjdHRn1kMXirAi5v/uX1mFiNwaQZm6LVnE58ZBmPfeYTZb/1ZouJD3MZauZyFWlqYeuBBQqES1PRUvbzsD91GyX1WJu7ZR5cCufixL/8vGDqOb76P+gtPWhsYhVlXGT2TWbx2Motfvhqk618fs1khR0EBhnaRpYILoOvmzv5y5pvvY8XFN6xBV7iq7zb+7IUKVsQyLMFhBUVC0FeDAqi6ZscyxhlCLGFiNdtk32afeIKW77+EbsS70+DtAwG6H9nHwCc+yWJrK0JVMAVzJZ7CyPKNu1TLz7LkslWGlBRUeG3AFDd1xZiVCo6djC8UHV/lEfuN0aItROoMpAoIiRQ6U4X9vPTsNP0vXV4A+VcKQFftBEXF73Ugy80EC/O5Upjtup6smXsont5J/cLd1DReRdXI6xSkHcJ5x2Fi103h/5hO4Gadrqzv03f0W5SVfZQaz2fNoTWs/ySmKHTn1yywd6+VNWsgZRRJFKGAokg8BRfwVR9GQeJ45gHQdfxZ1fRX7MWfVY2MxVBfOU5Nf8is7mGYITOF7edQhCO1A9XEbCrRGd10jSWLpJkbnpM/hJOPwI9u+o2EhBPrlbok0arqUB/XnZHsbpXoKqj9CtnfdVI8l8PGESt7WwiEkPhKP4PP10xmZgOJmcbgyvDD3CO/xId5nO+V9bF94ftE01ZbZSrN53NBeNkj9nN99EHWyrP8Id+3khwEN2f08/j6Wj5Rlo/P14yn9I/QpVWaUcITMw7GYgmIswTIWX8Hg+/g8E7ab3hLQqgiXgsWNnk09nhjeAsG2XtrM2t3bWLHnddSv9fBjjuv/b1g5eBdZu63ZouBgAk8pESLxTjy1KNs//DHaN7wn6bWnDObWGyO8UgjT74aJECEv8SNQGIYBn3BVnoXznO0uIpO/Wb+zYIYV8zp/P2RIS4UF7NpRmftnFnbVC0cRxc6XhFAIBFSx4nOhkCrRXsZROeHcSoCTT9Csa+QsEi9qRNuI8PeVUYG5vH/vNd8OqxjFo6PMR08jCw1qX8pYjCuIgpdmHUTVVY1mO6oeA3Rzq6vAjBQX4SztRTVEKiGZEvPCLlWRuisx023J89uzHTkGK+PTdGcu4ccV7Hdt/HYszjomvQ6eaJ3gm3ovzGAS7azZ8+mxLLZ7lAkGzdsBCA6MYpnsAvNk4mWkYXh8doo+OCLL3DN7l2U1q9me0YxwegGxpU5io1simW2ObcD/0SYk94SPhRyIAzTbbNiNlXqwtbTip3F33mWubkTrFnzz1StuokDLz5Nwdopa5FU8fuLUr4rpeTIkSMp1wLmYt1vaZ1dGrcHIBSF1fn5XM4chYWICxcum9mYk7MVDAXE0sw1j6eGnOwtBIOdjIw+TbJzPSdnq+0O0wPzzD39dAIkXyLc6/EMYfuRLMQ49sOXcV/rsMRSLVu9VM0flrI1vj03AW/Em2LHyYVaWgi9dA7Vn44eVfEURlLPP3yK0D9+gOCBHGKl15qLTgqgV5jKb2I6bw0ZT77OFRs2UNJcTfu5fgib1YqTTVHUy+7sfbfeQtvBYQbL9xBftBUpWfDVkjt3gQFDNxk7qZM9l8gunApPUcLSclhj3/hbAE49+EtGaj9E3G2FEEgBs76V+Py9ZgkwVSG7JoSvOpR6/XFT3VwuQzIurqzrBqqqsGpbCQXlXg78tMNkp6ROdusM4W0k1nbrVQLxQP/RkispHD4AxiBmKLAku/oI833bGDweSGHnkl3GWSk1ZA1UOZc45niUsshKwqV9Ng6SBhgzO6goWI38zrdQZrtZcJ6m4sc/Iq1xNRfe/ooJPC1FqbhESO/Cg+T69+A9m03+PieROgM9R5rai6oZNzo49KMlY27veOKbMkVjBU/h81/En1VNS9MXMBQVxdBpbr2fysITeAIxmlv9SXJXOqy6kg55EJAsZ5HY9CUJP5YtU5d4OfP5mqmv+zITE69QWPjehMv4uX0omhURbsCxOugtVeioVPH4x2nyPksLn0HHgUtR2V1shuqYm7dUyaE6uqiTXSj9JzAUjTWijX1oaFLiQGe1bEMAH3e+iuDVpNtlaeWbtlgO+ybcrHQbtns0+s4kf1DpQAjzd5NVveyRkDozswlwGxz1IA1hbiCA7V6JQEMIQbXboPvcs8wY3yatXDJjtNJ9roSVaz/4K/vyd2HvgrnfkpWvWYvqcNjU7UBrC0NtrVxx/RUUNbqorDNjhl58oxtDdvICMXoxeL/WjnPiHWYjoxhI1rsU1um1OI1i4rNI9dQUO0K59m8JBMXBHbzOOP/JpzEQKEg+wcPsXnmAnrFtlFRso3DDFZTnq/CLv+JU327SaxwYQrM3dok5QRAIWO7XXj9GzHxwQ75uFnM7UKOZLGYMpFyvGvaxSn6baE0fTmc2U9MHCMyfS9Jx0ujs+irrtA/QaZhxb7oCw7lZ5IRM9msmM91OFAfwx9KoTS8gx11sX6cp6SFtUCIFvHB8kFqp8BOlj85bGjg/4kcAH2xOyJCMdLUz1HbuN8o+EtYsu+GqDexet9seT9fTj6JOB3GEAoQqGsxFUNe5eOwgTx3ez4fv+QY1zWVMnBinWM9OYbsOEeMFYpBWzHOlt/JF4yyFB95cIm2yuCFplgHGxveRnb0ZMqCwadaaiAQ93ZsIBJYW67wUqMVteHiYlStXoqqq7YIFUISgKd3DTH0+4dZW8sbHE+DEMBBOJ5lXmYu2NjFB9oduWxIz5/M1U+//Ywb6HzBlJDyJz0KhHkKhXoRQSBVk1Zlp30/k7seQ4XDK+RAC3wc+kJJB6Zl5gdyGNGY6vNi7DikJTbgTYKNy+2XrUF7K1hCaRagG0hAm+5Q1meTKjQDmZkaomRRtCBCedQASX/UioQlA03DGgnY7ktsOIFEZOn0R14PPcOhcHoqjFNW1Bj2ayhwaUvLMqYtsdxcv2YjM+2roqr8jHghl/0723AV8832s7H6KyYINFEy24J3vw8CszvJ3OUf4nxNnWF+4nvA77Qm3XTRKy38eprP2wwkQaq1sQhrkJAFCdIPYgnPZvgSg7rrLflRc4+OWP9+QEo9XXOMjIzjCmQdeRhoG6lg6niMKoZ1GogulQDlTQDymUEqF+fl15HdH8DeMm2SNMMgo7KBiVaLurplAcRpdl6iq4PqbMkmrq2DxXCdIGP/XR/BnVfPy4XwTYHIvW9PvxyjvQ6AjDZXRtitZmIigrPkTM4t2vg//c/twlpbivqAQSA7yBev5lEwcf4DMUxO4Bhy4enUW3qNj794MSSjUs0wPyZQ4LmkoDOm3kZn1PLPZdRiKCkLFUEBuLMOTfwQAX0DDF7CeXdVNQA2aY5sc+pFk0wzi96qJ78TtN5Qq8ftPW3F5Ueb8J8jMbMDna0abSg1Om88QnLlGcpXTxXrfIELpo1QO0s46Nkb2sGK6CnzWpo+EK9TuDQk6A2AI6pQu/pqv0i5NseGVdNlrU/LVLSdNs6loE/922kV/1Dx/UaCK9e98noGeQbKq3ia76ggILQHiZZyjEPQeHgHcKWMkMfePiojHfOrMzh5jdOgcwiUt8lAyOrT/XTD3/2crrV/Nh+/5Bm/86AeM9ZhxTWn5ASh6gok5ydTpx9nY/FO21VTbAfudQudFbYKrIqbLTwAXg7n8SeMw9ORbN59Bh/84SCjLqLfdfJ75OroX9qB5HUhLDDMgvCB06kph12fuTgThfuo+ml+OMtOxgqmKV9Ezx5JYOQDJ8MjjeL2NTHuuIgtJ1NfNxU3/gBTR1KdKAoYD39gO8q7ZTji7kJOnPsqlOzAwd0BVtelcUFXQTdmPi/k+BJKsUIS5dNPtGsnOQ/PmooRDLGYUMi78NsNl4ixhu1kPakE+6jCruW0xHPzjzzrYh7m4P3XqIt/fm4feeYK2N/ej6xqKJfeRHHC+XDyZQJDnSMQEldav5iP3fpO2A6+zMDdLd0c74YxsMx0/KRBW35RJe80MeT0qRdKHBHQkj5JgNzTd4Kzu4VrVgSRijzVA5kAeM6snU/ptcOhHLC72A7rtrnI6I/FOXTKJJwYmPqiCjo4OOjs72b59O2lpaaSnpzPf08PEc89xpq4OuRDEcc3V3JKbR+0OM5s5dPwEarbP1CuzAOB4Z+eyGa7pUz68rzuJXBFN/LxItEMmMWrxA3qDD5JfouLquyTaQ1EY27abZ9/oNuMeB01JEdWVGJ34eVSXNWaqC/bct0w/mHZpUoKvfBbfrmkTDBZG8GgnmTpeYMbkJUVzSl0wdtJn/56/L4PM8hAAMacV9R0vJi4ERmyYqDqI7skEOUzbi21oJTvMy3I3okffIfnZkIbBgQNHuf9clNs3V6RsQDqOjiKtjYW0kgLypkyXrD+rmu6VH8ZQVPy+lfR7Iyx4WnhrraC31Fi2xJA/q5qO0ptSgZxFTWUGLi7ps4VxN6GpQiqumcSTnxCLHos2MHzSTVnbFyn+439awvCM9frpODq65HxpDfWMlQVw+i4Q2dVA/qBE6n1mAoKE4GgT6bE5FDQMoSKQuIwwrpU3Az9EGgbSUKkpa05h5TqOjqLbNXMNjj18iHXn47GkAqlL2o9OoOt5gEDHSffo+wkcUEgvuGBJVZh1nA2hMptdZ2vcebZshl84QETjp7PvbSFVQt95A61HMZMtry7A/8ERE6+A9br85ioZnwsBUijMZtfhjAXN+tXoqGhUZV8SNiBUaLgBf/MNDF+07vfLbOAkBudKPXSMwaZwmPXxe/vXxZVatlzMnLNXEHjrgH0Ns75q/OsK+HzBYVQiNjFQbzFuc/2TPPucytUfbWDNzmZWNdxHR+dXwNLfJN4P8TNKqBddZvZr0tSWPMUJ1GWladYXrueTaz7JD9t+CEDp/EpUQyU8vZLQdA2RmXKKNz6G6e42IeXJBRcN49cSHO23z5NT50fEy8rav5sIF9HKi+gbfRWQSENQUr7n1/bl78LeBXO/RSutX43qSuxuM0tCCNVE9PGHY2NVsx2wv1qdoXvfAvOWA9EAnIseLhDmfa4vMRXexJvjEaYjI3TOS0oyalHimjzAewZLeXJNgqJulG0IqZBTtNWO3YjX9PRuXE8w1Iq06Ockj4tlBp2d99I98TX2UMpibocJ5JJUyJHg9tdQdOHjlFzzXtyVWYz2L6XS7TAzA2Jz+QlvGeYiNZibBRbRGM3OJ1JcBYCekUUnM1xgjvdFN1JkZJkxdBgYCH4Qm6DZlWc134xLuwMX3Ri0oZMXHKHl+w+aMSNWIwxdZ/9D/w5gA7ry8nLuuusuzp49S0tLC4ZhoKoqVVVVS8YzLhXS9U4bWnYuCIWYL4/M4R5chSVmFqmmIVyCer2UlXoJb8s02qzdaHF4jFvGXkCVOkdqSike19g01md3adrP50nLVwlvTgDLUKgXe7qzmDm/vzh1Ek9hh+z/XTIOphv205/+NOXl5Zx7+ygHV6605VY0KWkryGcuGCQ9PZ0ZLUbGTx8lN4nJu1w1AM+WzUS7RKq4a4oJcnO2MzN7iKTRJ1IvcfVd0k7gqy+0cc4XwOVQeHlnGlUIM3ZLyUzRIR0/nY27aSueO770691Gt9xiswrT5wdxzKXjq140mb3Vt6D2pCe1wHq1ywBYjJshCQyY1GPOXBeKoWOoAApGbJhF/SVCZStBRDm+bRXe8UJclvwMjhKc3tswIu3o0TbAQKASdq5AM+CnxwZ56tRFHvujbUtYuniXTuevYza3keKxoxiKA4SCIaAsnE9pr8HhdU67OgRY5dqefhqp68xm1yWkdZIfSgSBrEpamr5gs1LmZ+ZiFUrfhUfsB6kzFm1g38x9aDhQgpKrXmtjzafNfo+DuPbDI7Z3r+PIKLf+hVm7drhrFld2D+VXfxuhaNCoMt5yO+6cIbKrj+AtPQO3K1zRl8m50zciJQxduQkc/wxSR0qF8TN3kLsulVUyM4uljQqmcq9IaNlZlI6ztAL6E99RiRGeXs3idC2KwMq6NVCkbjKULpcth+P5n7fC4qMpLuE0ZQX5T+oYPVPmG4YknD9sBlnFj1seY5lMqBBJeVSSjMIOMjNmOZ//MUvHEvKV7qQbQIWNd9rJC7P93yMF7VjmdpcRiQzbfx9IT+fJHBcumcUPxiZMQPcbSpXEY+YMI2YDmdArJ0A3/ScXS7bTWX8HKz0v4yDxqCSvIxKJNODNRzuZHAqwatv72LSxgbbTP2Fm+hRpORcTLk+boQVdkiJGbwNoFBoa7ls2q/nMxBke63gMgUBBoWSlD3HRDDMxMFDcC4C02iYIpTVx49p7mNx3mPjN4SkKkdcwFx+mlFjP8hWfxOdrxre2mUisn8nJVyko2Pt7wcrBu2Dut2qt+19iuL3N/js46rEy6CRSh+lug6oqM2C/JDLGk/f9LXqSho+BynBaKR69E7fSSZmng2uLvAyFfJR7OwhXfQylL8FUbbpYwh8VH+Kt3Fy2iKPUyS4cWhUFm7OTgByAQSByOqU8jv0QQlL8ik6pPIdCKWrUmwr4rAcw6hsk+9ZaMhtMbat4rJ1tic0/053ZTIz0IC+tfZm0RY3mFi95z0ByzjnAwPAIgdgkBWkVvO708ox3JfNobMFhx7mVoXA/Hv47ITKio2bMyCU7Vyklrz3074z39bLm6t3o6Zn09/fT1NREU1PTEs22S1205WvWor31VoLhQCHqzWVkYgJd0+JcFB3qMBfUUc5FV4M0AcAqOY4q69tDagAAIABJREFUdeIFvnrzC2ke60e12h+t0nGOCpTQCkKeBFtilh4y+637wmYCgYLEIKRkRiTNiMuAOikl/f39lJeX05OZgZxKZWk6Ojro6Oiwzyua1rFR06iNy5ZcpvaqZ8MGKrSv0Oa/F7kMKws6M7NJpcqsJirB5Q7Vubv/SQ6s38A18izlR04BEk++QXZ1iLmeDPu6pCEJnWzBc8cy57FsuRJRpmXi7/dS8eWP49l0F/qpB633E30m0tKQi4tJjbY/wTffz4az9zNVs5FJxyrm1YtoGRn2OEggrJ5GCQwi3KsZUg1KYyOo7kac7tXI2DDCWUaJKOK8xdxGNYO/f6mdqxsKqfbExVMt/TXLP2QoKlGX18IuEkXq5M514TIUPq1tpWTv521WzrNhA7E//xTinx4y4+qkdR3WQ5m2OEk4vcAChamsFJhsoCd6GG78Zxg7Q8epOjTMxCYDyVsnK8m7xow33PftFrRY6rOta5LhrlmKa3yU1efQc6ELoZgF6qXUUF1BtFAeQmgWGDCIVO+jIruVud4dpOUOEk8YwABX+gJl9alAd4XeS6csARLxi+Z19IKA4s0LGKtz6Bo0NSPBYExbhV3XE2iu8TP98hvkWC7s3M/8ob1hKVzzAYZOP23FA5vMUOa3ZzA64/e5eV+I0w64Sr/0kUsyxRpLzGcLE9BhKKyffosJ7ybbxYqQjNPIczNf49b8+yi+9bMpIQRmOTKn3SYAIVxUV32Ozq6vIWUMA4Vji04MIYgBJ9PSTDBn6JcX1k4yn6+Z5g3/aev7gcVUOp3MpJVxoe52876JeEHIZUCZwvzAdruL2t4a4Z1DI1z90QbckS8QuPhvpGVfTEjKJU1ntisUwUjETEaY1BSqKj5LWdlS6aEzE2f43tnvEdWj5logoDanlpgpHIiKSmiyHilVBDpCONm95kv4fOsZudptem60WAorl7psSAYGHyI9vYLMzAYm5h/GcEaZmH+YFf5r/s90D/9fsnfB3G/Ruo4dSfk7NO6h+8UKMktCBEc9FBSNsdFiaIfaztluvjhWavc2MJNRQuXGSnjpYTA0Sj0BSj1B2HQXkbUbGf9eiznNC8EZn+AHOVejCUEnjZQrg9S5L1jJB8sEwsbjBgyF8fFagoFcVq48hpIg+yjKKUIDYi4zUN8GcnHAJzX8iycpwNwtm5mNSWgvHpYDLE66mevvQSjKsoAump2PdKfFT2x/JCUMZcRwLbShSp2x6ATtudvZOHeaE2mlfCutnI/hoswqwuUCPrUiD3fharqfO7FsDDBS0rr/JVqPvU2ossFm4+6880527kzs/Ee62m39oWQXbe3GrbR3dyedTqIuBFLbLgS6NIg6/IiYB1WBcH41+vhxkDq6UGnPWklMOY0wNLRqnak/06wsvxHMx1NHCAcN9V+hr/88x4/5mZ/PtwFc2sQQhqKip2WgexNAWkQXEWnpdt5K3JIZR0dBAQwM2G29tH/iOnqnNm3E5/eTPzND8Vfuuaz4bNHmO0jz1zM7ewxNm2di4lUWw/3LHguAAv6P6DhHRIqrVSCp7h/l6upzRGskXYVmYe6S8Qi+6kXm+jISCTkCPAWhX7k42fFyy7ijpAGh+QI8gKcqkxTaGJEE5KwfS6EKTBvy7jAD1jWJI9RKVFqV0qWBI+RHj45A9BwlgIHECDtweW/Dkb7FYppTb9Dj/bMM9/j5SMBlTtASs102S2gmWcSz4tPD0wQzSskOD3P1zX+C5xL36vGtPnquq2Vz36ZEu637p3DyDEMrdiMVzLg5f3fKd33VITw5IWjfx9jKv6J9PBnYCgxpZq8GZsJLgByYjFccfBXX+Nh07c30jb4I0tSQc3pmCM9VkKLxBqTl9lGc20e8wHQ847Qwcw2O154glKQfV7FrLQ0vfo+u2g8hESiGTs6c6WbNLA3j91Zw6NWwGdQurXFNAn6GNAi0nKFq8FW73ZH2RDknn6+Zjc0/ZXT0Z2hTU6iPD0BnHPAm7gVXn0r+dyC01QTfRrogvDlek1k1Y0bjGywpyZ+K4AtqhPtX0H98O47oAqJOIkVigtVxMnzFP1C8aUfquMTbdOH7ROZ7cWfVUFJ3t501Ojr6M6YWp3BOvo2KxCkkm8Jx4Ceh5VFo+thv5G419SKjDI88waqG+4h9+0u0/PIX5Ba8wuLkKlR3MIXElhKkoTB++mOW+zqZ2YYDj3VScqWbhck68g2VZDH9+PjbPIOUnFl0sj9gergy559Bc1fyYavs45mJM7zQ8wLPdT9HzIiZmxurdnHuQDXjegQzglwiSNJ1EhAMdpphR0Vb+ci9f0tP10NE0trt+y3+muyt6ui8lzRnLYYeAfGb18b+Xdi7YO63aPVbtzPQ2pLyXmjcQ2jcZGnq359QfS9fsxZVVW1mDkWlcutV/OneK1lVmQPin+AXXzSfBtUNTR/DXZ6F0TCC0lkMCFpyncSEghSKWeuONdTRZSchLGdmMP1mxsfqQErqqySoVmaPFIiJVgbXn0NzzqPGt8fJWM1w4OyoAGv9MKl5tx1rETchYMUOq+xVYB0zw0NL2qJ5cxIHX7JNi4X8HCnbS+bCNA49wjXThxAY6MLBc8U305tWxv14cGDy81eud/P0Az/FMAyEYk4NchlUF3Gl2SA6rtMWZ+TABNnxJBZD1/nlI98nv6KK+uoqOrp7iGcs43RRVF1L4cgY4wuLKQzZXVvKOa6VcuDgCWIzw7yVu510I8JwWiljacX89Y4c1k/1cNMHOsDRafVvXOPAtJmZWTo7u5Cy0O6j4ox0ir21+CfHGZ8YI5Tps/ssfXSAdXtuIKOylvT0dMbGzL5vamqyr6+pqYlTp04tnzSRxNZJKZkoLGRFaWmK/t1y5vM12xNbQcF1nDr98RT2wL554hOkatbezBQ1JqDv6THHSkomRRo961xmJiMwUpzGRjVEcf4mxp44abN70+2ZsGouOe8ixTwp2Y2XXGsS0+jxjFJ57TTT7RksTjrRo0naGSnfsxbvfIVQ5ToMRSXmWiCaPoO+6EYN+pFOF865KdTFhZTvmFevoccuIhylSGBCXQqCGiOqFXol4qsaCUYteYWRLHiK6az/KBcXruLkE35yj7bS/N5KWwi4PtJEOLKC0dIkKQtprr5DK3bbTKJwOsncvRteGATdTIzyVYcBA3rfZPhcAYYRp0DN31eEIC3DyYkX+rjUhICdt9enCBLnlWUyF7yJoc4ePMXnya49hDQUe4Fdwu4Iaf87OHoFEwez6YsFydh/gPXXmZp+emCespFDZAYuMptdZ7Fr/QAEh9PoyLgOrTQeAHUJ6hCgolGuvJECqeM1oOPm8zXj7BUM/MldEI2y1Mxzu/rMGFD/LTrhHbp1qwsqFgoY9IzZsWFCQtXFRRana3l5+j70KgcYEmcsQMzlS2L3BGll1YmfSSqn5gN8Lz9vVeQ4D0WfAaurR8eexTCifDYf2voNdk0ugBA85Mtik5VwdPLo37LJ/dXLFor3+0/T2fX1pOdXp7PzXmbSN9Gw+5g1TTkYP30H0nBiih8L/P3vYW5gG4vTNYScfjJivhSyUhowciSMIWsYb/koxRt/mjLOJndqSjsJRaU7olDl0q0sVT9fO/o1+1zfOPYN9KTEKgWFbaXb+Dh7eOdnYSAh1u4p6DTrWguTFY5r/ymKi/q6LxPL+Lm5vF3yuKcCOp3FqBWPaYCiqr+2Nvbvyt4Fc79Fi8dknXv9NSb6e03VaMCbV0BRdY0tFhp34+3+1Gc5ffgo7/QM0eZdRc+gyvvjJ9t0FxQ1LqmLWLVyhHDfd4gaa9k1v8AD8i8wJDjQaKSNX2eKIsjzKfjHJatW1rBp+62cOvUHSCMGUsFfcgAUgwRZZ7kKpELm5Hpy+9+HGigkcuU87sosm5qPy68M9T9DMNwS90ZSvnOMC8+nIZSMJeycIzCLnpHFpSYECClxpjm5qJfywdF9KFaxNKRGWXiEU2nF3E+Ya3DwpqGxtqXdBMbWk1hUXWsnoqScW0+KB5OS9PT0lM/L16xNkfPIcRQx+PhxuvqO4nItEimuACGIZfp4Yf/rrKupZPxCb/yEuMcHKdGuoCSscPPI86hSQ6LwZt4OxtJMl3JHbhUduVVcEztKSv6gtdhIqTEx+R0qK3XKy1XOtV5HIFCAv6+LhZkJwCTzPIOdaB4vjtA87nCAdd5pSnfetey4zz7xBFMvvUhdVQUXhHN5QGe1QTUMCicmyP7Cny5/zKVmLTi+qp02oxGJJpI6pqbeADQbjClhByXf+DoAA3feCTGzxFG0XlqSFNauHsnoxp3k/yLBsIAkOJxG8N9PUFzwxLJg81KJDrsdBfks3nEHmfn5JhBMzzMD/VdLBkYTyS/C6cRZXm4DTatj8L3/Ngpnszk3P8dcTjsIA3yV9vciRR7UyGISoDO/J4TgVGYxWyyiZveikylVMuIwKNUUyjWFXD35G5Dl7yboq7Fcg3FgYn1orT4LGWUwp+Ofm2Lg/DQf+KIZqzZ/bAxBWhKIiZfNEkih2myRBIJ1V+JT/gN0gVQdUNYM0WMgDcqcrajiw1bJQPPHc/JV3jk8YicgpJiA8EIi8cfvP83JUx9FGhqeYjOL2Bxaw17MLwV1yaaFs9CcXjSnl5CnhP0ndZrPPgJSMlt+HTlzF5LYNfME/qwaRoq3Y7uXIenkZqnEnd6HqC9pZbb+NgK9JpBb7j4KHT+xDJC7tKGShffoLOw17D6Q0sAx0U1D1KCjLjNlMzwcXYMhHIAKiiTmyk4BcmAw+U4P7CxLqV6B6oL1H7UFkJPlRpITFwBGsh1cmFX4Vl4OUSEQMgtdCFjoxvXyXTx8/Y+WJsvY1R9SM80lOjmLx+3bDkUjLWeIwQNfxFPQycJknRmHiIJAkh7zWgElZl3TxIkECiqKO2iOQxzIScGr4yW8Z+0txKK9vD07TYV3npvSulAFtojvT9p/Qr+/H4PUNUQRCp8ruZqLP/0lmnGbycZhurRDk/VIw4FQDGtON4UBDSPGxMQrSKmnJqUkgbjk8KJ42FBgOIOinE/8XrBy8C6Y+63buj03sG7PDTZgS/d6eePHP6Dn1HH6z55mw/U3c+rF52w3n25AgaGzMzrDrCuPo73TiWDo8i1LafGqnbic38KhdbEx6OCqrmbyV03RSOuSAsfLm8FcUBBBobV3gMrztawte4Deln8l5OvCcCWU280bWpKv34Tn1HrSrfqxCFPCJC7aG2dnRrraaX3mR1TfgB3OIoHSK8cYPVpC8YprmL44wNyYmfnmmjOD0yMFZaA6LFYIkOa0NGZkURHuQlhAzvxIYTitlJtx8hekoQBNOPh6fyZNqgMwVbrX7r6OqaF+tEsmY6mmPgKLKW416/Ks+Kc8dynXFH8UZUGhpKCSl6L7GYszHZiBtj0tbRS7s5nX5olFA7h0jfI1axk+fJweqVlTi8Gu6YPMuPJsQFfr68OxYsJqFKZXXAJOxZb1MAkUA1/2GIFAAbpQUx5gdXEB5+I81ZkzZPhicPg7DHky6E9bkxIDOPvEE7T//Tc5VluK8c40nows8rfvYmB4hGRbWVVFYShE7vk2ar/wp7+WlQMIvfIooR/+X3gKFvEU/QO+O58n6G1kJGkXvKrhq0xNHzCroSgGgdslsRqJz9fMyf/+tyi/+AFbi9rJjYUZMtxIJbFgjsTOkrPr0/DcCZu1tTqfsb/5+rKZtqGWFrPma3Jt2rw83ti1C2NykmOPPMxdN15J+eI0IAhNuMFIACZ3QwOerVuY6UmSmVAUPE2rqSlczdF/e4hZkZ+4wZNc1prHewmYE+wq6uaicCF0rCVPst6dhhIN86GgK66la90KZsJPbd8LqEj6y69luqCJ+EK/hM6yzNDNWDWAmZ4RkNUkgxmBgRQKimJei2ExSGJ00MxcNlPnCamb8ahnQI9SnN7Prdvf5vRJB32RzYDC9IQBpGolJrpIpMS39Zz5HlJqVv1TGW8KGMIsc6omMbZANFCAK3MaKc0s1vn+K1OuUaIyWriZseJtti5bIoHDZDRHi7aQSE3kkpVaQUrJ9Hg+s2Me9GqV/P9292XDCOzapPaGIOn+s/o2u3aBwNUKkBp4lTMXYzbbaeFwgRSS2WwnZdNtKGhWxQSRdH3SPn/H2Qirev0UDx9MBW9IE9TFwZ0lN5KTsxUDBbNsIHREFIa9mUSFwEhJCxVEpc4LPS8sAXMJQLhkVAEjJSrDlTWCp6CT0GQ9vVFJsTCQ0pSfUqwZT1qCWSkDjGRxssFi9TSkFIyf/hgV/dvpz+7jkSkzxnaPN4aabmkiAyvdBr/099mMW7LpUuf17hfYXzLPXr+OaslgAYSna9FGvsbqa6ZxOrPtcmggcblyLY9SOEGEJ70iFfILrmV66k0MI4Y0BJNnS9h6903L9NF/jb0L5n5HlpwJqWsa0jDQolFOPP+MfUzcxWrK1+isiIzadRYva+VbUO56gdEzr/K23sjnq/oJzzwLLHXdmObA46kiFIrHxghUNWROHYbBK4//hJs/1UCw8NSSTWc8s0cbCyWAHCAcCu6apXUuh9rOERh24h/IJLs6EemeURim9sZ+qksa8bhv48n7/tq+dhPQSTOjVUoLtJmPY606xVxGHvqcA6SGEAo5197BtZFq/viihmIfKSl3FqBceStlcxfwZPnoOnaEDdffTCQUouXIIbT0DByhAK7IIrqqpmSwJic8DLWdwzAM8tylrM/djWrVh5VIaj2NjNGZQiMseDMJEANXOmSkY+SXoKdnsu09W+h95WmkdU0gWRXstMFcY343Ir6KG+A5ohDtyCH8gXRcRSGkjGvMKcz7S1BVFVckGSSY5wRB/0IehhS0RmoJHbqIoYyhqg7uvPNOysvLCbz6GsM5XnNiFwJpGAwlVcBwBv04p8eY7mllzd1/TnDdOoJVVfw6OeZQSwuDX/wGUktDKGlUXDtLrPcpOo3nbVe/YUSJxebwZTWZYE6AgW7HnWxel0bl4BGcRFHnobnVT3tdJqEMc3GUGCzW+8jcvpHg4dRKFxjGkkzbyyU/9FdVkeGbwpc9jn+uiLMvPkT5jTeCIw1PYcxUG7HW7PD580QuXCD3IzcS2v8cjnSN2Eo49+Lf49r7RUbKCy4ZhsRK4AhdCnQkU+EMynzn0cPF1jIHgw6dsgUFlQTAEybkYlD62REcIuQtZyb3CpIryCA1E6xAyuImFEjLcPLcP59G11Ym1lBrY3Ix8ygjeX7+cO8d5C2W8tZjXRhS0jJSyIbcOrJmuxFOJ8G17+f84HUQGGXVeyooXqFSdO4h+iJbSF2Yl1pF0QzFzk7A3IAuTM3H5fviTUFKmO3fQc5bATJWniW0w2KjdXBlTmPKSCiMt3yM8HQtyZOSkAZRV1ZKVq+dwOFw4L1qCyRHc1y6QktTX8/VMcDYvBdOHEDsO0rFj360LKDzbNhA8VfuYey+ryVtDOJAGoo3zpGzchFjwU0Hmfaznn9Gw9knyKmOoRhgCLOKQ868xDnfy4Yz99NeczsL3oqk64snvSgYBgwfP0fxe3aaoC1eHzeyAOvvMI9LKtHl8zWTXfM1nmj5Gp1hSX9MxZHmREHYlXRSQfFSUJScyZrYOFixoCjYzDrgKbiAJ78baTg4dLGc7qlqdvR9GGEBOmGne6WCXwksTtfarF5osoHwdC0KBt3t42A9Vt0RhTjxq0vz75Q2J21mpDT4sf88Rpbk543fpX5iM6smt6FIBUVV2HDVeymuMteqxcVBBgYfBCRj4/vwepsIBM6BMJA6TLTmorrMcS4uupWmPfcwPPwYQ/3PEJut5Ka7P/N7U/0B3gVzv3O7VEw4xYRAqCq6ZgbHj6aV/oYn3UJZ+RY+hEWPzz2MYcQQQqW05EN4vY22CLDX20hnVyLmwKwkUBLnuJHRKJOTr5p3RoL+stpn/jvZJeeuyyZrT6XNysVtpKud0W6TGZxszcNXEbT1l4QAVElAe56Ciio+cu83eePZpxkYHEQNzePxT7Apd5g21xpmyUEIUCQ0qJPomdBV/R5iwUVWVpTSxCzb5j0o5CLsRRB2aRGGjh9hIJzICB1obaH59k8SqWlE13U0ATfvuZb8iio7g1VdDPLU33wJXdMo8JTTdMV11GSuozl3D4pIOJuFEESERmpMk7n4JrtRdF3n7Nmz3HTTTeQ3NjPVdiqln1yq4JqGQlZkvweUV8GIgiaJduTQsbOG2vwTyZ5BRkdXU19/PU1NTaiLQdoOvM5EX4/lQrZ+39rlRz1ZVo3e1HhA797rkA922ufUPN6URAllMYgaChDxeHlh/+tIzMSJG3ddTXRi9LLCy/7n9pk1fBFIQzJ6LAvj/fNINVW/LydnKzPt++25PV7uDSC3+1ncIkqcvAl6VEKepIwcJJo2T+F/+0uCJ+5KdXs5HEsybf3P7UuIEgtB2hVXmGcpj7Cu6TWEMMFC7GwNtO+D6/8Oz+I0RVfojP3Lj+0SbjISQY2NU713ipFQJs8OrkWTCtGXDmIUlKV2hIVSXAEDt9iKprSAMZv0ucK63VfytV9GKYspDDkMRiMGJQ7FImSlxX+YqRGHszI4t+Oz3IwLlEuEfBVTzBh7GyMJuGaorCni6KsX0DRTz1EKaT8fhgInqk8w6R2ky72aDVMFVuynmVciP/1XFMTOE6zYwMs/D1ou1AI6+sPc+hfNlH3gU4gfLywDAZJNki5/Qf9rr5Cz4+/w1f8BZUU30hM+TZzZiU8jkdkKJqIFbHiqg5obv8yst43hkceRVkIEhjSD7IUwx8Pyd0kpmcq7ggQ7KZn3VtJRfwcNmwtJm3kJbxALlZsu5ozgMAvecnuM8qbP2/F1IJDR6LLSO3HL2V6N+7o5QqMC1S0Jh3Ih7E+plDHVpeI57UBrMkhrUXAedjGoplPBNM1YVRz8Or7SvUy9/SYTOU0WkDOHMt/RxxWelzkY+Aw6Kgo6Za5zUP452PpZszSXlHDuSfPaHWkmmEuyzVW385PeI/TPvw6YRH+Jms6IFkxhDIUQrM5NfZb9/tOMjv6M3NyduF0mohoeedweV2/6TmamzuDwzCWRnBKh6HxwXR1fajvITPoI9VNbaBjfhopKQmwrbon7dXG6mkVL5y/ORdcUVfKGdXh/VOXJwRoaFTfn9UX6HXEPxiV3YFKMrwDGvf2Me/vpKjxB6Xwdn9n70ZT4zUCgPeXrgcDZROsEGFGVseNmlZ1hjuHN/S7zjn/HMCKIjHPIjE3Au2Du/9iEEOXAfwDFmHfJg1LK+3/1t/7rLV639dATP2Fx3p/yWVZ+AaHV13Dk3AAX00qZdBelull/hZ0amLWKy1fbMWs5OWaVCb//NLHYHDk5W5mdPZbEkgjeGt5K10Q9q91TIASRonLcaTUsaBdM1wfYriMpJbrhIGt8h7kIO5TLArlkti007mG6M5v8xrmUSXxm9hBzLScoK/0n+jSBVliGIcsYXISIMkJrbAVVzgXUJC+SKqHctYDMhfS2X9K6GMCZt5dsb6696RMS6tQsaovv4I3RR5mOJFinjvPnMWScyRAEDdhQXm67IF/7wXfRolHy3KXszLsNZUylOfc6FKHYsXPxXWGxkZPq4oq7/S6ZY1paWmhqamLvHXfw+FfPInUdFAX36q18enU1P3q7n/2ahzdzP89Xit7G89gJutNWkFs0ZJ8azNN7PGY9TDtJY/wdGD3LpKpg6KbkCQJ0KVFDAUQ8yDspizXn9tvJf+4ZhjRTd8mxMI8uJYaioCgKrsgiQlHQsvMxrOvTdZ1XHv8JzsmRZYWXl5ogOu8g+i8HEX+uEpcrkQhm2vfTN/cAFg2FRKOj815G+9tZ2/GEjYVHit101mWaHZBEAg0OPUJB83VU/vhHTD/0MME33jCrVVzSglBLC3PPJJhvpCT7Q7cxlZ+PMvwthIi7iwwKi3qgewoG3oY7n0d/50yKWxYpUSvXwuTLDIV8aGYwH+rCPOSVJAYp6T7waBtwub1s9B7i5LiOjkAFImveS+nqndy/Gr6zv4uxbrNE26jD4ElvlPKYwqKQpEvBkMNgxGEwklvF7Y3lhI6kqu8LBTNLk8TPZ2l5zHZoSxiXuELjoeqnmPAO4FbdbCraRHFGavmtqmvWkF+znfOPdqDrCWZR1yQdR0fx5pawfq/GmdcGl41tA4knrwt55Zv0KC6UoftoLmokr1Ch70QxsmjU3HRZsUeqe4GC6VGKv3IPOZtvZ9HSUEvMFQqhyQbz+lQrE14otsvSPlCJZ/nCyJBBpfu9DNTVxzuJhguPE8gsN8GcZa5ogMQDa26E4jVsl7X+g3hyF/HkxDcoS7V1RqbTKT+hoh5UbS7KMCA04SY/P5ioyFBfQLBoJYPZexKDhyRd9ZPnHIyPqPlSYrlBl9QelqBHlpTnOjNxhkPDh+y/K10aK91zuMKC/qidWoOQkm8d/yZ1OXWsL1yP3386JWlJCBcN9V+xWDrzvUDoEI5063lO8vQLVK6q+wy7+gZ4XfYznjUAQOP4dgQKQqhkF3mYHVsAa2MhMegoOsam8vUsnEwDzFg69e0K/seub3A4+0WudlyP/xkfuiZpVmIMN36X8cy+FFCaFHSHU0quC4Z4MSsTMEHdhHeALncjV5HY7BUWvjdVLumSbg2OpqZUjU08T1qxuTGUUqOz8167Ksbvgym//pDfW9OAL0opVwPbgM8LIRr/i9v0a22kq53Xf/jAEiAHMD85gX7kWSYyVzCZXozTofx6NysmkPv4Q0f5x1c6uf2Bt3mxI5+qqs/ZQO50yyfo6f1nTrd8AqczG0VxIVHQpIMjI1sIqenIuGaaojAwWoeIWF1phXJ4JtbT230r3zr5p7xU3ETW3iryP7OWzguHefob99C6/yW7PW0HXk9k5Vq2OGVKjqRmBkkMI8Lw8NN2iSlFQL5H8JzYwxGjkW7d3Bkmr5VCgIJE85iF5vuD59GlbrJSCIQw/1NQKEyrSGnHqisbUDtrAAAgAElEQVSuQFVNV6mqqqSnp3Pw4EGGhobMmnuRH1K2Y5SisjQUoRLJ7mW25hcs+rqt34+7DgSFRhaVfqtgY+qFUWQkFoR4bdTS+tXc8dVvUn39h3i+7FZem0rjoUN9RDUDQ4KmS8Y8eeB04o5EmJqssPssPmdNTVbQ0tLC0NAQrU9+jyf+7WFa24ZBj7G2qZaP3LaZ3Xs2AQrqYoj0wS7cU6PcuOtq1MUgx372JL/413+kxQiZgFxKmrr7uQnBpnVXsLm6nM27riVzdRNRX1ISAKAE5iApq3ekK3Vn67v1FjOmKMlcFwxyJqqIL0pS6nT1PGEWT1eTca+OP/wowSwFIcCf5bCAnP1V26RVVgcgeOCADbqkpqUUVQ8dP5GS8IAQ6HN+OhcXkcpyLkJpurDOPmoyfA5H6ndFNtz1IuUbd6BYY60uLuAZ7CRdS3WnOhc9qIuLRBdPEJUePlx5jh0FA9xWeY49Uw/wDw/9BwB/tqcel0NBFeB2Ktx9VQ3N+V6KdcUGcgC3ri9lXWHqpqmwysv7bvayqXyC/AKV6qZ8ija6bdmWeKxQ3GXL/2bvzePjusr7//e5dxZppNFotI4ka7Fly7Ll3fKSOM7uJE6ahC2QpPxKWBJK29+3LRTaUkKhNECh0FLgyxIKSSEECAlJiJM4Trxm8SLbim3ZshZLtvZdo5FGmpl77/n+ce7cmZFMy5fX79cUXjyvl1+2Z+7ce+65557znM/zeT4PcDF4htbSw1xRfgUP3/Qw60rWEVoS4Kp3L2NRfZCr3r2MkPs8gz/8LK2HMjPONV2JAB955gKn9/Wybkfmu5Xej9XlLyiuoxBYWJxv+0eO93wGQv1IKUBqSEsgpZtqUcKV//wRh5OZ1FBTzxrGzu8gMbmUhqvLueIqH5pl2DVH5yMzIjVBCI2LiXocLUihEcmtpGzoCJo0QFoIaVA2dIS0GDSQqtN7WavZbqOhlzGhQelqygvnMLUUDmUKVbrYV5JWuk9zw9p7Gdv2kJr0nOwPqPW+oRIj7N2OhYu+sNLxvGztYaExvzxX01AThqXm1BqPyZ8Ux9gZSPBnJXGuyE3NzZYQJCyDpqEmAHuzn0pakTJOJHKWumWfQiTVDEjyHgWz4zVIy36RhYTmx3l/6TZbUkfSVnQUQzOwMLE0k+AmELoaExYWh5b8nJmtHRwc2Z+GLysncWafn8/WfonygRVYhvpOs3TKpxTFR0iJR0o8ErSMXYXg7ulpPjBaw4a+HYQii/EKjUaR6ZxVVNxDddUDzHeDhHBRVvinlFVe73zmK42SVdJld0ryLzNDg++ttt9aZE5KOQAM2P+OCCHOARXA2be0Yf+F9bScXuDopJs0Tf6iQWOgZrkqZfRroHKHL4wRSyhXxrAkDz5zhuUhPxurgwwM/MIheVpWgkRikg3rf8iZrv18ebeXznANy7ThDDpDa2srrrX5BNNK1enxAM907aATk+F6F3nXVXLq5RfY8/A3ARwJll+F1uQUZIEkJZWVumMseYCyss0MDCwD1J7t1hqd86KI5ZrEuDiy8IRpfKSxWD/7Bx9n89LbyYvm218rFGJ47pLzk9rGrVz3jnfjr2ri3Llz+Hw+nn/+eaSUBAJjrFr1IoUr7MV/xS5GukzCNXuRIsG4dFPZ9ImMpA9N11hUms/gxRMqq9VGMJEQsLIZFpNIodLXczWcvurLraPXHVdrrpRomqA2cIGPbvwGHt1k7M912ptrCA8WAYKKReeQEvr7VjA0VIcQFqeajtL21C47FURgoZEnwpS/+9849s//mHpuszPoszOMnj3FwYOvZCaA2Pypqdxslm1az8GfPooRj2Nm59i1Z1MOamkwwPTZFEfPsix6Wk5nhFsdTtFnPpO2Y4by/gkmSlyKOGxCf1sWi4pJIb/OSJA0l1RQOxXDDITtagUZj9w5MhKR5M531tJkRo5fnOCsq5yNLhcioRYn4XYzsbSWk6+/TlFRATKUvBeNV4eup5QDVDIAJ3+Mb+29hB78lCplZlkIj0edu3I95e/fzA2VL/DK97+NtCy8Row1sSYO6NeQzPbODkvikZ8DJqdiFnVVgk1FfWoTIjU2yhYOXxjjT69b6lSAafBk0frjdnJNyRpcrIrr/CQ3zqDbYlmpn4rqIC53CkHbtBbm/vYB8uJx1no8xL76t/zT8f1s5e028RwntJq0Wc80Xt3LR9Z+BIDvnf4edbG1tPw0YidNjFOY/yB9c8sxZUo6CQHVq4roPqVQRNOwGD11BliYfe5yadTM9HPR5oehCTuEpcaTplm4BgspKFpP1dYPE9ixENlICmRrGhTVv8Km697DkpX1jH7nu4x1HOW8LVg7b2BkIjVkbrAAApELXDPxBS5OrSM40WaHWJOTn0KxfTW5C9ozr3Vp/aIp5279e51Q57Iv30mXjc6aArpDUF0TxVcioWA5FC2DbX+u6DGbw+iHjmOailO23vc0DTl7GIwvR8fABHSXnkokabwPJrrg9X8DKRk0VtBX83EqEsvhQtiphxvwBNDsBI+lXgtdqAQCCbwrmGA4LuiJ6ZhI3HqqYsjlxIj7B36OZ/ZaLGk6o0nlx2gwl4+mXbThxwQTXY+xrj/BD9wuvhT0c9rfzXMrv0n51FIG8jqYnBjkL9/1SfYcfo0e/3mG/N2IYUGJv5p1YofNswMQWFIhwWcPpSIrAo05l5qHNAl/MzbBskSCb+UHOJydhSUEJpLDczeTdfGP2IwAYbC69CHWXfoozMVhsFk977X3sHTpX5OdXWXLlJgIobO87jNUVNxDwwY4+NgPOPbskwSXhZHCdKIGYt4w+J9gv7XOXLoJIWqA9cCRy3z3APAAQFXVr9pJ/vdZZcPqy4jmpnZluu5i67bNlNctvezvL2dblxSiCVIkUUvynQOdfPlOjf6BnzvnFkJ3Qq/b1m2gses0bUcuUWxOItzp5FQYGK7En+tC1wyk5eJ7Axs5i4nHpfGODYsAJbmSbm1HXmfNjTtpuOZ6Tu/dnXGPJWXXkrAeJTlhZs6xFrVLD2NZksHBOgAOXJiiU44y7R5k7Tz8WADZo/0ZWYKT5jD5dy/F1+Fl+lCfws6EQNNdCE1Dd7nYfOc7aWpq4vnnn8eaJ4vi9/eDMDPaNbl4dzIWgbQMogWt5Bj1+DaWosUH8WqnWVSeR+mxAk72aXS71HPUhCAy0kJ2fBgzJ4+qyir2fePLTn8I1x4Wld1Jn7sEt0vj03/QgGfmRTx2FQCJxJ8/SDhSzNBQndIAFMk7V+igPhNxikSr4KWk0jtMf9s5Oo8fnddhNuJwuU2EEMytrKdzoFfxOFEcOgfhsG1gfBJ3cQVZI32pZ+D3Lzhd8D3vgVM/Y/CpFmct9V+4wMxwDZMBF9MDSmcxu2huQdgdwCqb4cnhHfSOZbNz8S50EoDG2GgFBYU9zvFjYxep3Xw3kwE/o16dwmiMFX/1CXzr1ztIddwQrN7+ET6XfYniXC+Bt93J8elpfL5Bapc22edSOovhSCndLFLOnGVA9yGC7/kY3ro6xaFKE6kFKKqqYdV1NwHQcM319Lz+Ar79R2xpmGlyXBbTdmjZlJKTYhPl+msYRpwELo6LBj5uo+4bq4NsrA6y/8etjsSHQOEFm+d0XsxW73ioOrOAvWvPT5mNx8GykIkEF/aeYPP4HaSWw5QjJxU2Qm1gCXfXq3J2H9z9QRJWgg19O9ho3IKGjmGYNBkNNHretGnrKerATDiGpgssU6ITozb6GP18EBNVNFdosPKqcuoXTxC6WIe3cy8XqrKIe7V5L7ykVPZS/0YbaCGY58wp1DUdUTXQfC3A1fg2byLy/FAKcYMUKm5Zdg2o1HzqzH2YlA0fASkQZwaokUMZ3yf/LqifwedT2fXNw800DTXRWNqYyvbsPkSGCnn5erjlixkhzqi5Es2y3xMpqR0QaKN5RO/+Im3rV6pzej2sA/LCF1j/5r8xnlNDQaST1RvVEhbynOfOgr+n1f9hqN6W0T/s+CzU38bg/hd45o0rMcd0tJMnQKgsZqHDL1f+BDPHRBc6k1oJUvY5e00h4a9rryZ7Kp8mY4pGVx7rLjUTPvcYAzlh8vLWMj19HtOcsrvX4EDvfjZkq0oMloSjMzq9ccHNwRP4bF6uJiE4GQPTYJ2Z4BPjBveHShjO7XLCopopOGC8yInyw46siEQy5O/muYZvsuXi7ZRFbKFhKRjvn1kQyi+aWcT6/h0M5HUQDpUROhvm9vBaesr76c+7SPlUNdbQHyGTeeEScqaXQe5p2PVRnMymEz+E9z9PZOYsUtpsVSlt4XtlsWh0QYkvUMihtMCVuDy38q2w33pnTgiRCzwJ/IWUcmr+91LK7wLfBWhsbHzLfenyuhXc+MGP8PK/fwtpWeguN9e//wGGui4wMzlBTv5/jcTNt43VQW5YUcpLZ4ecz15pHebMmlZSgsGC8rJ3ZcT337FhEU809aBPRcCb2TWj/W7a+ndiVcC1q27mw/dsZe2FMQctPPXyCwxeaM/4Td2WK517vPuz/8TRZ55kZmKc1dfvYM2NO+k43UBf788xvE1IzAUcp6XLjhKNBglPFZMlDCwL+g0/a7P0jAlUAtVXXkNNjpdsv5+hrgvOd1p2iiCuoXHDrR+k19VJZcNqzOxcnv/JEwscOYDJyRKqlXyeWiOcrZeaDITUyB5fjjVjMPN6H0Wuv8XLaTgBS4ybKTA+wjlrkG7XCItXVtHS+R/g8iKEoO/8WfS0a85HX425U0xFXkxBVRZExornIQ6AsNCExq233kp53wHOCxNDqoT/G0IdlE8NceTxTy3Q79M0ndLFSzjrci2QZgEYHuxnbCQ1dlzRSKqKQdoinCgMoSVieCZHkcC+Rx+mqKpmQTLE3ITHXhsVx/DkcBltI6XJTgVgoi1AYV0YdJlaZIRCZKqqTzE9vMqWIlBuzdhYOfnBfidhobzyOibJ4mhtGYZh4HK5qFm/hiAKqU6Grs8Eqjh00w7+9Dq1Oarp6aGtbQhNS2lK5frH8XpOUzp5SalspIWtfOvXLyDDn3ztELt/8iO0SBh3fBavz8f4SBRXLIprdgbd7cJquA7ZtAdhj6HK+Hm0nf/EWPsRBqdifGZDA/XVQQZtNCUrx8251zKlYQSCZaaLt92yUiH0PUcJ9R0i1LAdKmuIJsWQEwmESyeq56NbOpqteJ/kyJ0q34vHzGb58Bay2kO0XIjQvOVZ4jYHqjevjXXaDrBACkmP5qcs3sBa3zO8Gb3TDvcJhrsjCAE1FRNsiH6JkKeVQtclWgs+CuVrqd9aprJXH307fYWS1mU5qUfu+EwSpKrmAVKR+YOL/9NSVUK4HWFW3/r1+K+fgXOx1PkApIWmSYRLxzQyx7/AYmP0UfLCXSTf5/RvUybR3RbMTdE83Mz9L91P3Izj0T1OSFqFWdPkSQbPMN98KyoR+3txCj4A0rDo3Ps694/8S8Y5Fx09Rt54O3mj50HXiQbfjk/7OUlx+PN9izEu9nP2UD81a4oyxKD7TveRvNV0nT9pSlYYfpb741yIu5HeJZwNT7E6P2Jz2yAQqyI+3QGX9pHQ5nizxMVooQfCLEAzLeDwtODwtJdGn4EAehMa7wwm0NPCw5W90RQfEMm6uMHDQ2P8IC+Hvb5sRdEQsDy4nBNDJ4ib8QydOC0UY3Hcz1xEorYyJuZMJn1BAMuHt6BJDVMz8Wzp55mJMkzp4vawgb746xQMr2YorValhqTC05LsnLQbSxA+/U36s4869yCEtkAEOLcs6uwdpAWT3bnMjmQzPeAj7zqDpasXDIG3xH6rnTmhiBVPAo9JKZ96q9vz69qaG3dSVFWTUe8zWTbKNAzOHnyFux586P8q7fnD19TyyrkhB52TUtI17qLMeVkkfn8mpfD8YARTQrtewYpLr5AIVapyWkIgpKRsZJpXR+rIL17EXVcGnZBvf9s5Xvn+tzOcjdrGrU6INSntsfnOd2bcw9LV7yCcdx373/gAa4tPZcyjSdmTQGCQ8FQJg5YK34wLP9t2vpPu5tfo60sVkJ6anaP8mmvRZ6fZ9+jDmIbBqSNvULPxeqq1IkJWEOHSKNq8jIrqjQAcOnRooSMnJf68EZYWD+CZriSR1zNvsk8iGynekTRMZuR2YqIejSkmjY8wJKY57G7HwmLofJgr7v4Arx5rUlmCBaX4LrU5SGI6+nr84gQ/OvAL7lxi2uiCJKvdTeGb0yRCuURzc5JeDhUMcQuvUjkh4eTXuKsqV9Xp9YUp96lJr3LmCC6xGkOmuGvSMpmNRFh/y+0ZUjh5xSVMjY6oSdayKChfxHhfj80DayOeV4iRX6RiXfZD0ksqYFIVNjcNIyPU2t92jguPfx3t6DlbxkSR2Hs9AUjRcEBKokPZdDxXRW55FOExKV074RwfDA5wZf5gWv9beL0JTp/aQUlpJ0IIaqptyoL9PM20sG/Q57E5bTKDdxoOn2B8/CUMw4uUSf4PlIU6EcKiz5KUnnIRmP5Vsj7Q09PDs3teQRaEIFiC71Ibh/e8qBA5bzau2WmuLmrnkQvVKJq9wsdihgaDzRR3PEmxGYcXn6Ol/ykO7k5gJSV4fsVW0x8xUoKxRkw9j1u/gq/xPqp+8H2ie57C1/d9DmbtRooNdjaf4iW1lr7BkernWN+3A81O2jAMk9keoUgpKIL46zW/4KqudyGkhjl+G4eRaCLB1f6H6cz5Q3oG85KPju6+fDYEVWNDnlZC185CY7062aFDhH0m55f5cRIUkj9MjuPBubRFH5VFnObMpZfPAigre3vGJnTV7atpaz1u55moFbYg3MYV79tE1vI6Dv3wJMMDJskJRqIhl6xHnDhu12ZVz8Vpk4YKpWsSX0mM5uPf4Vsj+4mbMSwkCStB01BTCp0LrYY+OyvdSixIPvDd+SeUHn2FwaM5qXuUEu35/VwVg9xZSWu1pGmoibp0h9ztxvf2P4aiD0L3Ifr6tmDsjzvd1/XmKJdaxnjbRzcQ6jtEzPCArePm3BOQVXCBm1a8jtBMTJng1ekjrAokHWOFRl86d5AHPb2UFWezqETHndxIznPkJPBGRKM7rlPjMdmcY6pwrTRtql/q+Ub8biBNp3PJtaxbcScceyjj3E1DTXxi0ycIx8McGzjG6wOq7KU56GG6PYjLdsJ0TFZW9jI2UoNpSBVVL5xEHwkgUKTESHMIZJIPpFO36Kuc6+olHZ1d63uGkCeVvZ9uE9roPI5g5rvfcM31dHzjKaSpJLOkhEhPLuOtQXSXm8qG/yGeHL/FzpxQo+jfgXNSyq++1e35v7Wk7lzSWg7sdVCT+Yvkr2Mbq4N87m2r+fQzZzAtFerLdc9AIjmotQz4+MdHLvGpp09jSRjMCvHL/Bu4zWzHSKsrqUcjLJUXFlADelpOY6VxlTRdZ8n6jRz5xc8cUWTTUGK9853S5s5DNBSqXdLCzHLBZLiMNxJVjEjFW1lZlseOTSvpCfl55JFHnNJbfX19PProozTWLMI0DAxvNtHyxZwevMgZvZv6sBt3mQ/viUHWaJuprKykpqYGl8vlJFsoR26U1Wv2oGlWhr/hWHJu00yiha1kh2sAi6h5IyodUyEvA9okFhZSgGmZtJ1rV46cUMiS4fOjz0VZ2riFTXeknNzDF8Y4O7aUOxaDsFRo4djsNUzWli5oShnDVMo+eO1rgLTr9GbuXMt9Ee6qbuHE1BbaR2ewhEBYFtrkJE0vPZdxbEF+ATMT45imiaZp1G7czMRAn0KMZ2fInp1hzjJJFJU5v5mLx6GmHvfkKNnTYWcy6287xxP/8LcY8QTa4nK2dPYTjM4RWBylzD9F73jA6avkpB4d9iEFLLvtkgoIyvTobrJwt0DiwpD1wDilpRfQNJOe3r+keulD6C4XpmGgaRpToyPsPXiUf9gzhmlJdE3wxXpB9YtPMLQhj7Mzn8M0Yyxekprok9msCEUGn8h3E5hemB2YtJdffNEGHdVzjRWUYuYGQGjEZRm+S+cZmc2iIieMJTRc0kQXFpW5UZgeUZmHwOBsDQdfnFO8I7s1WYWd+IrPY8Zy0bOmiQ4vx5hapvhS3U8qRw5LhRN3fRRKV+Jbvxnf9F7YO8tmzvCl6p+x9eJ7EFLgLWqjsP4FagXUN1Ti6tfxBDrIKjmHyE1lRWpoZBu5CImD6mEnSL1mXsWqmgJ6BtMrpUDr3LVqgRQazI6lOqhmOxMd/2qr48yLodv/9kfmhfsvQ+pPLws330JLAlxz73KljWdJdA2ueN8manYqvmRxmWY7c8qEJqh53/3kXVlOdP8L6NWrGfr2444DVfrH92Du+zq+4lnaKgT3lxYSi4+pXhCqzmdjaWOaQ51WFUFakD0vSa1yM71Lb0c7us9xtQQgDIsPvKRKeRm6hdiaRzvtjG2vozi7mNp7PphCgSs3U3EhjHbwBFaabpBp2GLQZhlvRpOORKYD5is+j25nagsB1/rjZDwOKRiKTRH3CmqzVOg0w+lGETdAZRkei6qNYTr3zoS0Ta/6R8lIWoKH0GHFnTzhz2GvLytjg3x69DTnx87xN1s+yeGBw87n5VNLnQ0HmNT7DlC44g7qs9TWsLjSz4HHzwJJCSoNZlPEbs1WFbacCiUAFl4tymVNcxNccg+i73NpESyZUWu1vG4F2+74K068+hAV2wYQAiq3j7Co9loatr739zpz/x/ZNuD/AU4LIZrtzz4ppXz+LWzTb2T9bedo2Z/in2ma/ht5/PduUZzATz9zBktKvnM4j79q9IA00LRUqOL4xQkefOZMhraYBDyXWnBn+0jkFTrzw4i3iK1de9jz8EFKFy9hNhIhFs0Uq11+xXbHgRNCKPRLSsxEYoFTWuhuQbNSOlOZ873gtFFKu1XiHP+eTeqeKisr2blzJ7t27SKpc2cYBmaOH03TbJ6XwsIl0JkbJRE3kc2naDp1httuu43S0lLWrVO768mRETq6uwkEBtG0TEXz9GSQ5CQkhIvyYBSv6zFMWcyMeTPKmVOTQJkVQEPDkpbKog17GRLpBdcjFJQvynDkQHGhnj0qsNDRhM2xQlPoS5q4qY7JGs7BAtcaMjlCkB+NUXvwLAVeN2O52RROzzLYdDgz/Cols8ePQzDPQeaanvsF0q5lq6pOWOSGR1i183ZOtZ4nHJnCylIZYbFQDr4sL2a2crp7Wk5jJgxU9iKM5WYTnJujPbuC4+NJ6oDEp8eJmh6ng/1lUYQuk+oRyaY542JiIkT3xXVEpnSqqgad8CgYuPxD3PXgQ7Qc2EvLvpdURvXelwiG7mDAG2LZaBdLvvBdhi2DmZ0S69Y4Qkj7T/Ia0rmmRCM+GSAciNDtPkrktatx6dlUVt5HRcU9nHztEBd7ejL4hNLtSeNvaRi+PCxT47B3Lf2hPLbETvGBTVmU7/gsvPljp/v74g1YMtOBK13/Y4Rm2v6uAOlhcdm3VVjNvX0eFcxUTv22P4dwD2gu1sUN3p63h+82DHO1V2fL4lMsFrAdjaqKcSKlTxGeeRGJ5G4J4yNeuuM6AW+Avrw2NoibEI5zqRbLeLSBk4fncy2FGvtCz6g8AEDlZoLbvoDW81lVvjDdi7D/TuSXQnA1jHaoZIDSlRk1R4EFZQvnW8P2Cgorch3+YMh9Hp77Cxhpo757jFY+i4kLITSuuWe56sMl9+K7+V4AvFt2ZHIhG0vg+Y/RlJVNXAikEGhSsjWrjI9c908KlTv0lVTlBcfmObMort0PJ17lg+mPSygNUd00EVKiWQJz90HMXa9QYoKhQ/stV7OWVEg/tCTA1ffUceDH5zPyOrJivfS9th+Lu0gNitQEFh1ZjrRcgOlsVtIdOaP3vayN/m88/iI65wQyz37eyTENdMY0hhKCY1GXI2XSEUtWCgFh6gydvBt/2SmK/GepGZykYijNmZMWvPg3vFzfmPlC29eIWwlePv9kRpi1P68DSzPRpIZLWBSv38DTj81hGv3oOkTLJpBWPinNOocPA0DVqkI8WUmXRtpPx0yFWDNMwIb3Eqh7L8tz9Iw6rfPDrGtu3An5RxkO/xAhJCBZevUiymv+5zhy8FvszEkpX2X+luS31JJVBgAQgoZrb/yNPf6JaBxLSiwJrWM17Or7W965aoRVi691dhtPnejFtDKdguXT5x2dbiO/UCENgWLW97YxcKRZpQ3b7dO0tJ2PEEwM9DuoYvpZpZQZJPnjFyf4zuE8/t91LrAMNCFTk4PNl1pX1szBiQ1UF/p44Opabqsfpbt7F8HgFmZnZ0kXLAaIxBKUrNlI77kzKZ4XEPd6nfZJKdm1axeapmGapiNdghCEw6ULEuAybsQeYdnuUsZcBykL9uILL2XGvDGjHaUywK3x9Qxok5RZ+QTKfXQeP2AT4iPoszOM983wxOf+LgOt3Fgd5JPXnCAxY9qOqCCQP8zUVIm9oEtKBwfZNnuUqiUDXNbqb4X2lxXqI3SiwbeBeZBgNEYwOsdEThbdkXGbL2MjUhK8ccNBOuc7equu30FeUTGVDasZGhklHA5nODFIyUQszqOPPqoqSzSstisdWehCUh2YYDKaTZMIKikKoabgPHfMduZUF0cGfITseVmz6UzpDn4kEmR6qghNQCLuTV4asDhzsZmqnGHG+s+q5A4hwDTYMtJET245W/vOoxsKlXC3gnWLBiKJ2AgnvJnkzg8O1uJZtJye4uchqqQaYkDr+U8B0HykF39a1YjIVDHuyVFipdkknXb37DRPFP4BzbIOzSfYcs8O1m5JS7w6+RiYCSqyzpOT3UXF1f+M0AxsmbQ0k6QT/zPGZNJad8H5520vWIP6WwlXLCWr9+dsKZ5zFC+ktOjrV45kMkHYhUJauuM6U7Ewpn+C8yVHHE2wZOKEyMCWlGk61N91B81dZ2maHaKx62XWpTldgbr3sqF0JQOnvkBf7Lh9L+qhCgnBxe+BipsUyjXWAe0vqfNbhjp58t+6B9737K906EJLAspJ6yrY8r4AACAASURBVDkKj9xmO1oAy6nPfgUQ1G/IIbT9+gW/TedCNg830+Q1aHzH12ls34Nn8hhxJJqU3BhsSIVX56bIEL4VGuhexwFNJkycHjlNXtTEQm33TGCmthRfaBG83oQmwRCSY/1H2Goq7UxM6Hl1D2uvf3dGOwsrcqlZW0RXs9IXlBIO7Z5je+4ELgwMJI4au21zdlWFguUv4i9vdiLKAGOtNzPRejV1107z6dmfctCsZHgqTigw7jhbQkra51zsjmS6BwINXdMQ0kIKQWyqkqmuq1m06FUqjH+Z18MSjDlunJnh9WTD0/8GgtNjZOlZxGy0elFtIeuXR8jZs4cK15ucaHobplEACExT0tWblzq33aJ06z6VrsGoHL4V2S/bIdYUrQI0VS4SAT1Hqai8h9zc5RnarPPN512d0p62JEZkYeTkrbbfWmfud8mSVSGSocmGaxZOPr+uRWYTDuImgV+cKeD580U89qHFbAykPk83TaSUdtIRLg0wsnLAsjKcEss0VUauVLu5wQsdXNaEYDaSCgM+daKXc2M1fKXpz1he0M50PIfleV1srjhGki+1ouw09UPd/OO772Vpfpdd7DmOpnmoKP8KmhBYSaVKJK2trWBZ+ADfpTZiReWYOYHUhtVeh6SUKcdFSscpjEyVMHlpIwXVdvkyqRHsvoV4ziAzxc0kVeij8V6iedC/NsDq5gSMKiQm7WYplQFKzTzAoLhumK0Ftzh8KlAyIfND6H19j2NE9ycVTQCN8GTIceSElKw4e5Yla3rTN7Yp072w9CZo30N01EN0JBv9ulpwvQaGwYTPy9HacoyYgRQQjMzijyVYNKGeS09RnhNSce5E05wx2NNymuazrSlHLsPzTVWW2F7j5a6qM/RM51DpC+O5KHgjp8CWF0nuymF1wRgjA7mYUoVyTkdWMtsbYG31KeeZpW/kKyvPMT5exdRUMW5POu8HsoyXGQ5D4VbBxGgV0SFFsl4U72HRRA+az6KnwE/VeARXt5tjZ7ayafVBJ4ybGhvqnNGZQvRVuSTmrAX9PDy8m2CglIqql9E0E8vSOb9vFYmwgR6bxfDlUVNdxbV/+/cMeENsSEsWcqxyM9y3C978MSEEVYnDWJqxgFaWtHQ0ne5McdOw36UqCUwmCETsUkvnX6Bx1TdoHc30uy9nQkCpv5aNmpcTk20gBKO+HiyhSlwltRTlgtEBK7aVM5h4ivtjHcR0gdb5GNeMHuP9V/29cnx6jhLoPkSg5uP4L/2I87PPqfNIWC63Etj6qRTKJU0w00pjpUvNXEYM97LWfQjMBM1eD0dlA+bQXyOlCx0DzdjLc6e/l5mRmmaXS3T4RPN/8Pn+l7CE4It9uzn37B9yR34D617717RfarDxPlh7D81eD79843M83fE0CSuBRLKsSmAocAxLQG7nIKJjMOPaw9qMomWgkLmBZQUZ3w9eCPPMv5zESGTyuExLY44gV+V9nzcif0hMpuRhPD6deFT1YW7Zm+msBiUnYmSTW3mAruAzZAfd3EyqTRLlyCFhxpo3JyB4W0U9WqLZ3n1b+IrPE5+opWL2RZhXmCR5xrvKr4ZT/87LvixiQnA8y+u8wLsTQ3xy64OE4+HU8zn0FfA9wWB8Gd2xjfPOl0pquByOM4/uhoZFffYBJR1j31fqYAnHH4Xmx+F9zxKo3Hz5sH7PUXjzx3S90kKHWUVuWVSJCYf2s3T1Oy5302+Z/d6Z+x9g5XUruOvBhzISIn4TO35xgu+92pXxmQQShpVRSeKdGxbx86YeEqbErQs+sG0xZ5qnkW+eA9PAWeiQCNMgWlVnc4IsspNEfstSobjLZIaCChPp7hRB9PjFCX56TGm+dYYX0xleDMDBPpV2v2XRUcVFFpIPb51SGbNH/hjLUvwUy4rhmT3Ircv97GqNIslEBw2fH+/YIK7IBGZOHoq0k9YJGY1Lfba45gQFVbY0odQpbf0jAr1XM5vXgRbzM+Y/hjs/mhaCkIwFCskd1ZkNdBItaMU3Xk92uBYwydFfwqfvxXukg8W3/pgDnQ2YpklcWvguteFJxClc6qK7+1sEg1sYHt6d0c7eqTKmZ0KqhqIUhPovsWFNG9lFKeRzdtRNdNiLb00dvvf9E3QfIjqscWlfPtIUcOZRx+kay/Vh2oEJISWTudmsGJ4gGJ0DTVLsmmbYyCV9crzhA38MoDhwCQMzOweq6kiWREqHkKSUZL/5CHT0KzTFNl/jBoqeHKRd2hiPUKiga6aMm6oSPDldwS7PdgazQtw0cozVlS12pip2KAPH6crPH2RqqpjJyVKF8pGqDiAEoEtyy6PKmbOhJ4EKbbVUFCOBvtL15IT6LuvkJM/ldseYCodwexZ+7/evIFQ9wLQdutKEib80wnB/gaPlNzgxDG9/F/+lNf8EzDj5iysYT5Npy4xE6dQt+5RaYHqOKsK97fH3larKGFIohHV5+zQJj0ZwMgHte5ixFP6aAWIn178k+gJscnVyZNaFBEqnqrny4juVtCCpsQ7QG2ilMrICKZWGXP3WMp57dTcxOxxpAnunOnh19wf594IrWNf0GOFcnYmOfyXoX8/Gi+GU47ncRjRqtqeKxGu67WnMY61ejo92ue6UMX5QUsABn4+1fetplC40W9Tm3wdMmk98PTMjNc2ahpqcrMpkokP/+FlVVk0I4sDPx9/kl+OneNjrYV0sif5ZEFhEs9fD/S/dT8yMka7n175I8A/36Nzelsumo2G7X1OPQTfhzqM2L1TA8xsFP0vsZsPwPU4b+9omFmTmguqurG1/xKsvzdmVSFJ25duXcmmqh+m+11WJrbT9l7RcaK5Zilc9jZz/DpE8TiA1uCM/Rm/C64RYdU1ntX8j4ZFTNjqlEx1ZTlHeOCF3pnh4WkshK4+7lt/FXU3f54ncHE5meVVVGXvchONhPrT6Q6mf1GwHTaMv3mBvI5K9loq6KFvozGm6WndMU3HGr77ZR6jgPRDuhaYfpB1p2cLaUo2/X7VhSEd8o7VEJ8uIDvnU77K6Fh7/Ftvvnbn/ITY/IeI3scMXxhaETwF0PbOSxMbqII8/cAWHL4wR9Hn4zLNniJu5xEuvZGX+LM6LIsHICZDOCUrkFeKatesyzt8KpVnpkmVcd9/9GUR/8zKHawIODF7FhvKT6MLElDqtE0vpO/0FRqZTav5CSoL7vk9Nw4fp4AKtLCU9fuCKThHPL1TivZezeSFUAaxc1ExBVUvqeyxMd4S5QCe9jV9CCgPXPAK3kFAYHmMy0EZP41eRIoFY4qay6eOUzewm1/WiOtYSdL/+FKalSj3588YoXD9ORekSesYexBpRaGNJ8c1JvxmAfX3bWL/mRkJ6hPjUEH+o/xualZLRmB11c2lfIdLSEG2TVN3mxleznejI15Ujh0hDOgSGljZT2yeJry2gONKKryRGQpfsGVzm3OKK9atZc+NOjjzyVVt3TqDPTuMd6lF9e5kVoKtnjHJ5mifseqUakhtCQdZ+6zOMfu9rtI2OoMKa0Nk6w7KxCf7s2jOczF7LsAzx5tQKlp+6gYpFLXi9c0Rn/JSUXgQkUmpMTip13+lIMT09K6iqOpvJtxRgzOkk+ZJWdg5Gth/XbAQ9Os25RcV013i5rbh1wbCQCKUZJTUmJ4opKziPLZuWcY2LF3/A8OkARauw1wKdMaOOaFUhrvAonvAYYnaG53Yf4qvDlcQNC49L47EPbc1E57oPOYhU7eggExV5l+GOKkskJheEEMN5Hlrr/M6YlUha6xRvUbNgaGAvd5S7MtqfdM3mb2qkTLDYCx1xN+VTy2xZE51k5raFRXfwNK+seJQ/KfsYG83tip+2JEBj781onY8pIrw9FhJWnKa2Z1icq3FiTR6WBpo8y4aLUNOTzHK0G1G5WYVQk9y4174GrZkJOgB0vJSR6Tpf+615uJkPdv2EuE9xOfsCHazvM8ECUzPpy1MZ5nEznpmRaltjaSMe3UPCSuAWGlMtT/PUXK/9Tqq2SiGIS0lTVlbKmdPcULPdcQYvV6y+fZFAhIsRMuy4HslpSLO7IlmD+PZjkqY6gx+c+QFfu15VpayoS5VZS/rh6pkKRmaKMK2UlE2gJIv1O6pp2F7Ba3v2kj+vPbGpMibabqR0w49AyAXjTSadeKGevC5SYXgAaRm4u89TeG4Jrb4GoiN1zI0tYevqU5Cu6R5aDcPnSEqrOCHoM4/zpcJgKkgtQQpJwDOvdFrlZrj1K2Q98bxN+1ElCpVMzh1YzOPECUn1WsWx9uV58GS5GO2NULu+hIbtFcBV6h06+aNUGF7oCq1LhvKzCxUiOJ+jmXxXgYbAMC2TpXZJPknDtt88evb/l/3emfsdsq1LCvG6NacaBKjJ45q6Yp480ctTJ3p5x4ZFjkjpxuog39zXQcLWM5n1F2GJPtIrHZn+QMZbb+QXYUyNpRy6tOuk23B354K2uXVB3L6Wrgnuv2ox/mw3F7qz+MWJuwnkD3FivIFL0zls9/xMQff2rJM9axKYnIW2F8glrbC5gHJPK1mrBhhhFbHIPOglzYHz540QyB8kPBmixiwgf/GZVOPt43zj9UQLWpHCAE0RlVVYVh22vH2a4ukxRst3IUUCNCUoHK+/RG7lTnj+ZafUUM34QXT5Tnx546xe8zKaMBFal119SmJZcwwNPadyt6Rgd/f1nB9YyzXZp9lWOkllYABLZhYlnx7y2k4bWMmi4B9+AN/7P4/42EN2oXt1OxM+L13F+fY9JsO2UBLppWilqim5hiEm4z6axiuQQHtzM/2HniR7tpeU5KzAysrGidnM4790D3nI95Y49Uot4OWjYxT9QRYNO99O54++p/hpUlI4PYs0YbbLzTs2HKLZrOOGxpUUzOyjqEhJz/j9YzYCl4YW2Bw3y+bbJR9xsjmuLBMJxPOLiIeqAOGgodrsDLVL29HmLWKmpdPbXo/w6kxMhtCQePwvOrw9Z4gJkFaC4tWjzv4hMqU2R7mBMfKrhghPFhM7o3M8Xuho3M1HxIEMRCoQ1Sl0/QGjxnOpV8xGWjTdDrGe2gdmCrGaCNgZ1GKeeyAElpCEAhAXKbV/4Ry70FsUwk1XwgtY9Oe1Y2mmndirYWFhaganKvahC53Na1ezrqTG+e26qz/JNW0/Za/LdMaCBjTOzTFQ6cXSsNsEE8EsApEZ0FUJqwXWugvOv7Dw8+R3TY9A430LQqKf2PQJXj79KAlpOf0xlNvFrhXfoGxqGf2BDob83ao/heZUOUha0jH8xKZPEB4+Q6DpER7Kj6P2RJnj3AJeDRTS6K9hXW6VU8Gh0evBo3sWaKapJyOYWb0YY1cHbjPjK8ehSyJ1mgUNlyS/rDxA83CzU2YtKRIdGZ9zKiFYliQ6FUcI9Ya6XBo33tfg6M8VXFxM+OIVBBe/AZqBlBoTbTeie6ed5J/0Vqr5TWNCXkGR+ziWlUDTNDpjKfdASknTpX18yJjG05dDZ7yC2p1eGjZsg0e8yunRPXCbLSwxL4GladFq4sZABuVCk5LwqcfAV51yonqOMnhplkORB5zeXOt7mivzfkRc5tAye7PdYyYl7gtsv3cNlFZnhqMFDLSHKazIVX1SuRl2ftkWDLaUI7f1I6rObWgNvPg3qfbf8kWV0FKzXf2xM7PKfRHeXX1aSUFtvYXyOz92+fH6FtrvnbnfIdtYHeSxD23l2wc62WMLCEtgb+uQA9Y8cbyXx+9PoQXpTtaglYdFvyrW7sAFpDy1JE/K58dla6aNuYLkG1NoKgfTMcs0aTmwlwFviMM2f+jxB67gyRO9CHCcyidfOshQ96vkAFY0xFS8mBsD+5lz2fUR7Ql1Nlsn7HcRGGlnLVOcpAETjbLSNmqXNSGBkBzi9KkdRCLFC1CI0lAbS5cdRQiJZenkDCxhLj32AQS7dpIdXooW8DAmn0VaBkLqGCc2URY4RPVMROljCY2iqV4GpAtpmQjpwtNeQ2zDO/DeCrz+NRjvopJ+7hNP0VJRn5aFmdkwaSvda5pAt3Rudp2l55Lk0R6T92l7qNDcGGYCicbDxk7chSab9TNopoUpdHqq6ikCKFlhh54dzX76gv5MzhqweGQCvx4jOurGV6SQN2+oFsbnAIEpBS37dnO2bdhhS5nZPhKBohS/LPlcpESfDiOBGcOddm/K8Xrue4+w+uB+ynO9CAEVY1MqvAuEu3zcufhVpoM+6gYrGS8+4wyxZKhVNV0SCAzQNFFPoYyQFw5hWRqalibCbClkzszOIV6qHLkkkmxk+wn6R6itueSgG5aEcyMrebb7ZoKRBB/3PM1uVlFR2ZIRflJdpiZzKckoOhDIH2bN2t2AQAgLy9J52bidiZwyXBNhTNO6fG3lJCL15o8JaxPMhLMIj2whUH0UVWkEsn0rKA1tU5UQSksJaC4nBBkMmw4FItVhOA/GzNEVtmYjOAvirRKKxGK85VdQVvZ21p99js62JxjKu8hzthM0554hy8ihP085Q7UemB15irDXyuAVXVV1Awf6X8KUEl3C32nFLPYM0BTKcq4lNDfBqz4DQ0OZyIcj85GmS5Y0zZ0ZcrV16NJDonPmHP94+HNIaWWgaAAj/m5G/N2Y9sPS0Pjklk9moHILuHKl1/OsS1voyKUh0Mc1g/v0Kf5u/du4y76PdSXrePimh/nWm9/i9f7XM29DaJRs3s6uvwyz7vETVPcZthRuhk+j0GQNWqoUH/iXnb902ppM8jjYdAz5ugWGhrSg+81Rm/EgVD1d25EbvBBm9GQC01zG0Im7CW18HIFF6fqfMHTyblVHVaQ8S2lphLuuYvLiFlz15dy05SbOXnqCDncF1y5bSk/LI1jSwiMljdEoSIuGnJdpyDsAG3bZPNDnFmYfzwtbNq57P55jnyeOcow1qeqqNna8DufvUO/E0Fl4/mO0Tn4Q06oj2TvN0bexJOsY9dn7OT97HSY6Oibbb/ETuuIKjr/YnckrlCoRq69twumXVMaxVJujN76hHkDXQZxyDkYMnv+Y+jzp2AndiUCV+yKU585B/erLI3lvsf3emfsds43VQdZV5vPKuSEnESI9vDkfLUiGXJ880ctoJMbEXAEFk63o0bHMOFMGpKFyqEx09hVfC8DmiWNUzfVmIHQj0zH+9OHDJAy1sH3m9gYq8rMdYnhPTw9vvr5P4S72ShvSpri1Yr96j9OuLaVUGmCROSoZ4D5+zoXCaoy6TkAlYmjSpKSkk8hUUQa04vePOI6cEKBrFrrbrr9o35K//wpKOt4NLkHpxuuRBxPM5J0ja7KO3BVFVLz5In1FOheqfZSMGVRUbGfZ+FrGJ88pztxULbFDe/Fe+FiqCLjQqNRG0LLKaU1eayHVAwBLunBNelUeodAwgW6rjMrGG3m6U+NHg5WckHWQD/Xbulkz2klLUS23ZpWz/ORJRr/xTYc8ftlL2KtGd3E+pZ1RZvZmUXX9KL4lxVSW1KCfO4spBbqQ4C/DNPrtH1noOT4H3ZHAcCKb4Nwonlwfpj+faG4eHZdAkClZM3Khm8OVhVhCyTxUjE2lWicl3ZEKKgMTHG71E6SK/OBA2hqqIy1V7WEyHKIq2kP+zBDTeiWnT+2guLSLvGCC3KxuhCZZtG0Q7yKNgalCIpESe6xKXLMRcpdHVXUAobJWhwaXMdK+ielEMX16HoOrbqQi3Ew8noVl6WiaibQEF1pWEx8WFJddpLA+pdGYGlrSHnsghEWwcJSfdU7g0gV3b65yNiyXs3DHzzjRkIXlEeRVac55hW4xF2/h4qUWQKAJNxvyXAQmE2phWX0XQr6YooRmwOOpnYkQwgmduRMmCbfmvE+BeBY1ObdDYAN31Gr8suNpEmac8dwudAkNFOIrPs0EYWqADxfGmBl6jOPDP3XqVn616as8OvAKlhC4LItPjk1y19wop7auAtFrh4BhVJTSlb8K8lelyliVrFOLf7peW8bLkHLkmr0emopCNA43MxWbykC/LBt1FFKSb5pM6LozV6S//5qmsSy4LOMSTUNNDs8tZsb4JTMOV9DpTnASpZyNLBafP/J5AFrHW5FIVhSsIGbEmG/ritfxxaNfJO6O03S95NOPg8uWIRm5bRMVz51AmiZSF3x/h0b7IvX8nu54mttrb3ccuubhZj7W+icsrtrA9gvvUlqANmJtScncTKq/+tomHF063TsDKDFkMHFlTXPpwMcpWfcTsgu67VdakogWMDNew+6pb5Oz6wRfys8lLjpxaa9zk3klxe1FlM/lMMkEg9n7VXaoZaa4Zsk//4mtW3UvDwNN535GoOckYWHRODenwtZCV7I9J36oQp8Z+12FyvfFG9iY+xR3Fvw9ffEGKjwthOQ24F6ycuZlXwhFLXLq2UImR1NB7fYfWwbKiTrYn5txOPkfGTxgQP1/119id/B/mm39322/d+Z+B23rkkI8rsxwa9JcuiDo8/DNfR2OU5VccN7zndcxLFitZ7HehVLRT9/V2/+3dA9n/CtpzV2OmZ1LSJuiTV9DVf+AU3ZL6DrPz1YQt8N+ccPiwWfOIKV0uERvvNasQn/OZQSuQCkV+dlMpDdaSlX3L2w7SUAlA5i+MJ1k2xO4OjRU1snopTKmjBo1EUsI5A+mwgs2qmG6bcdDAJbAG1Wh26y6ILlbyqgMvYPYhTDeJQG8I0/RNx6ktVK92ONBN+hhspbVYhx5jXD5awgditsfBpEqn0bhMhhtp2tsBOnP3I1nICtAOLKFrZF2TmnrVHFtaVIl+mHtQ1SvXsap777hFN9tLaihtaAGj0vjyrl+Lr3/z5GxWIrjY7cgNBnlYlHARlrVtRwNuOicSqIo6qd86nvcVeVXIYTcGSheyVlMDJuAbM5EoVA5Lrqmo+eX4794gZg/x3HyEr48PLNRsEOzFoKwN4esxPSC6wKMFhVyYPG1GOgQkAwNFANQVHyRRTmNrLzyfRw9/UsOvDaJO5qHzw/x3Eq8Qz3MjbrY030FK66KsinrIpqQoEPJkn6KrCFOn7qRSLgI7+BF9Og00wM+LEvYi7PG8FAtLiG5uWiKoN5MTvAX5AQTWJZOZ0cjhXnQM5BHJFKKv2AIT35XqpxPBs8oGQqWSCloGlsFgGFKyvOzf6UjR/chJvzSDkWCsJSIhbQsJ/nDvgKWjNOyNIvqHouKYYMJ96RCV5IkbpHpuCT/nUzee2oyi/cPTmHWaVjCfo9ajsDRnXDrV1jXeB8Ph3bQ1PI4dZOLaE/spOqaryO0BNuBljkNXSQdG4PzbZ/h6FgfP2h51LmkKQRhXSOcHWdE9Kb2LBJaw/184YX7bFRXphIRarYv7FDbmr0emrKyCAg3XwzmkBh+Ff3Fw5flpSXDuxEtJc8hhG7j0+p40zIX8OUCnoBzPonkyYFX+SNfETpRLClxS8nfWHn8yBXngkwrHSYEpjR46PBDmMyLnaaZR/OwJH8JJ4ZPAKmEiIZLkqhP5z7y8F97La6iIoavWcm+3s+TLDVlWEZGe5OIZJbhs3s2OYMoon+605Lk2RmGNU9vzsXi+uvwrHPR2VZFVn4vCBMpwYz5OF9yhP7cTl6e9RAXguLpxdSNbKJ8aCs6OhPABHBu9gZW+PZSn/M6oXR9wV/D1q26l3Wr7lVh88P/G8JtqS+nR7D5J9Rn7+fc7A0OP07HcLTiQp7zadUcVPnIuZlERoSlpNrP9nfXpVA5yORoZhdePrSa/jmkqnw4Zl/EATV+zWzr/yb7vTP3O2gbq4N8+g8a+NTTpxfMlesq83nQrvzg1gWPP3AFG6uDfOdAp1PnLyPcOi/1z0LwavY6WvOqWaYNc4W7FZBYuYJXFt3CHflhAj4P3+rJp2cqN+O3BTJCSJti2Mzj8IUxmifdhOzYnQSOGFV84T3bqY1Ncfzip5FCrUgVQ3P4I4biC0mXXQpIEJyMg/TN4zhZrFjvo2H1B3jtmUc4P5IgbGdBKv4QIGEu35ZTkSCkjm+8HpBoQiEw3uo8vNV5auJ57s8ZXpUHuJ0FqM/dw3T/A8hFNjF90QGKmyfxphdkGGuniZUcnVzDarmHJIpzuTUpxKtY2mK2cJIBWUI9HXw7cTPvspaxsTrITx+4gv/1k5P0Taiw1M3db3DbeCtT7X688biSFACi5VWcsPxMZvl5paqRd2kHKBq6RJerwAlvFE7PIjTwlaTQhPRqElbH93lXVQ77h5YwOOdHn43iu9SG4fPT6qoiGr9IhV03M5mBoJtxBBYCiYELgaTIGHb6K3ndpHXX1GDgctAk18QIE6M+ItEK8pfMEti5gZbRGPrMiymUFg2pu/CODZLIC3GyNZuNV6jC4tiHaMKk0NWOeWkMJMQKyzCnIpx9LURuZYxwOKTC8EDWqX0ULu8CmbCdNYtc/zhTczkgNLs6yF40YaZuFZiOBJmLqVJNhYX9KnQvBZMy27m/oG9eSmy61WzHffbLzvhDwNi5G3B75wjUvgbznITZbE0lOWhRglkr0ebexDLnUhDsPCRKOdPw8wk3R6NuNqz5AHdZUSbCxwi2n06V0npe8X7WxWKsi8xxfGYFvooLCE31hyahIdvKuISUJsPDz1LjMVnqteiIaVyKaTTOzTFRojvvopSqDU1Rl3J67L5zEhFWfwiu/F+qNqtjgmavm/tDJcRtxM20L2zI+cLFynTgmpko+x30GKoDNVyauuT8RhMaAU8gI3kiHA9nnMeU/6e9Ow+P6yzv//++Z0aSJWuxLMuSbEuW7diOEzvxomwEyGqSssQJS8seIPzSQhfabwtNoQtd4JfSFkovKHzTBAgpZQuhSSBAszUkATuRl8RxvDveZUm2tdmStcy5v3+cM6MZLV6CbWniz+u6dGnOmTNnnpnnLPc8a5JvJ44ROMTdueNQG++6+pPMrVvMbT/7YDSG5eAXcbxArq6kjs+9PpzC6sdbf5xOx9YZ4Q+Kz343SWLgcY4Alp/PpkWxaLgl0unNbN9Xll9GzGIcS3STGi4mzOeAl36qAgAAIABJREFU2BsPZwUtqXZ2m1Y2selXxp5f/inFVVtouO5tVEwvZs3aD1A+py8scDLDzKla8gO699aSF0twfU8fe/rm8aZNv088SJAaoiYlIMGG7jexue8GVvTPp3rUb2EUe56Dn30yY0xAwiB2yy/STQaq8zdzy+S/YlPPVYBxfqo0MFNssP3l9HnlxGOWnp/24J4jI793Zgli1QXDB6kGOO9aaFoPHbszXmjhWJ5dB7IDPPeT6m19tiiYe40KBw/OXhePhUOEBOkLq/OjNXsBeHzj4ETrrV7MowPn88GZRznYtCdd1VA5rY77dk3kQF4xlXaEy/N2Dd5n3UnkJ/hC1yIuqShnT35W2RpV8SMsT2yKhiPdR+yVXq6YfQHf21tHfbyNnclybnpDGRN7vsjOvlYqSi6h4OBuarZsAw9Yc1FZ2DsugKXruyg7anR2VbB960XMmtuYfh93Y/bkhdTW1vLuFTew55u3sbOrmol7Y7TVDoBbWLSeai8XGKX7X09hx2ygn4llGwknF4lsfBCAkq7+sEQuultNKJlD18Edg9tZQFN1IWVd/aSq3/Z4NY9wLUFXjG1bL+W8uavCTSG7VMLhWDG8WHoeXZ1TMZzdTGepbcD/720cnHQhsUXLOdDew/mHd/Khl37KRYdfCV+7O5wxIlUukXdgPz96/e+xaXI95x/eySVPv0x+coCpRcfSs0FMjR/hlbcu4/yJ/zMssAwsHrYDBFqPpeaWdOI9R7CebrbUXMH8wj1Yb0YE5QFHSyYzzXqpnjaDbRs2pz5WuIk7F+w7SHl32FP6YMUUXqmflcowcCfee5T89kPhq0rCHtDV8S7astowOYnuMOBc2rmO4kM9Yalc+hgMv9ySiS0cnZJHa9EyUkPq9PT3076nIH3DT8TzyOvp4mhTIUEQC2+RblRH87QGQZzm5tnpto6pYCYI4FjvRCoq9pE5hErMAuZP3sr2jlkYsLt5VXqw62HjV9VeSv/Ct8KxJ6KSOZgR38qc3b0kL/8wm1q/QfbgtGECWirymP7YV1h62dvZ0fFweDyaQeDErICA3vT3vfNYjOeOJMiLGQ3zb6Gst4+yb34ju9ooGICf/nH4pcUSTL9oJpuak5Dxec1h+zFj9gSPRvly5sQO8PtTwzaySYd1O52HiyeStBiXeTTJncOP2vPSvSFTUoHKupZ1NFbX0nDtn7N482NQUgNXfoKH1n6Z3rYXj9ciIcsFvX3M7B9IdyZw4JWOV4gRY375fLa1b8Pd+fyqz+N4unTwPee/JyswAkhGP17djI4LV0DDh1gM3FE0n88d3ZgO30b4LZblQxd+KN3TNmaxwUJ4jIv2xogPDAYy3t/PBbsDCqYW0JfsI2bZ7fvWtazjC89/gaQnKRwoBjzdQeVg8V6uO2/hsPdPtbM7//Ia9m2ZxfR5v0317DJ27vwaQdBHWPUaZm54OiS5KlFHPhfAFdN5x5Nl9AR56e9ncF7q9BnNQJLsNmknKxoTcJggbL+b/gxZJXAp0cC/Foc3/3M6MKueXUbdwgpeeSEcNDhIOptWNh0/banALnPO4yEdWNLM4Mo/hhe+O6S0zuFnnwoDw3FQOqdg7jXq8tkVJGLGQEZEV1lcwIHO7LYdRjhsSGbgZwYfa6ii+uhODkVtUOLxOJctvQgvbuInL7dQa21ZzdoAjnk4ZtXzO8NArtKOUB3r5EBQyuVFrST6B9+kefcOYnt38voJEAQBy2asYW7BKvbtHzyhbGI+NW/9Ek0v/ANBLGzrEJiHJXSL3s723c/R1T6ZbVsvS7eJA4OVX4VEIRxYRy1NlJY0sWZ6OKCXOUza+SbaZz6B2wDmCcr2X8mE2CpK8v6bgmm3h2+eml6o+iI6Wn7JnhlF6S9sUtklVFRcRevBJ8gqRZl/IwStdLQ8TdukBLvapxB0GSUlB8nL7+XQoRlMmbI3VWdF+uIVXSfLJrXQ1Tk1bDPnUHGsh+JHdtEavExB/AGWL7qF33vhv8n3ZObL6MovpKzvaHizDZJcdHA7mybXc9HB7cST4QDLk7p7mdQd5n13rICjF38Ypp4Pz/5r+hLdXb6AnQOVzO98hj3dZQTpQTpDQdTF5cKi/VxbsI5HfBpBdGvJO9jMkWM9bO/cHs4H64ODzboZfYl4el8tUysJYhn1lmb0Vs0k3ttDoucIVdPD3/tXLl7A5jUr8SAJ7hQ07w7HOCS8rJfUHCWzf0cqoCubdYSSmVs59mJ92H6OGJ4XzQgSBYVzamewe0OcI80T2fQ/51O0IJ/i4oNMmbI3XcIX7zka9hyO++BLsXQgl9lRIsA40jeROWWvcMW051hcuIrtO8LpgZYuuW9YQFe+8OPE1jwbDojtzsLutZTFk7BrGSz5OzZt/ivSN8/oBIsnnY6iJGUbf83s/m7aysrwmEfV2Nk3yDkTAv60t5NFbX1hu6QX/mt4+5+M74NkP9Xlh7nowpk0t6ULSTBg1gSnfcCoyIuCVwISUdVrzOBQeR6/SITtlla3JDlvgrOtN5YVyBlG3OJ8+rJPA6THZotbnE+/8dO8a/67WNeyjh+3v5wRMqRaRYSf0TBmlc1iR8fgj6j1BfmsL8iPjonB4CNJkq1tW6PjNsgq+epN9nLfy/dlBXIJSxCzGElPhnOxLvvd9HMd1RcQbN84rJZiqGkTp/HRRR/lXfPfBYTVowPRdx4jxuXTLueWZfOwJ+8efFE8zpxrVvAf02/OGnIlJXPok32lW1gSW048iGPEqDxSx8Z7jzJvckdW4JJZArnsxsF9lZdfRiyWT5Dsw4PoxLEAD+IEmy/lwsP1rHz5ZeraZkWzTqeCOGBIrsRsSJu0k1X/hnBAuJGOxawwOdWdLtVDNerFndpkyBRqRWXHKQk/nvTwI6MPs8XCdw4Ga6vvTVeHA8cfp+4sUzD3GrVsZjl/t2Ihf/3gSySD8LI1NJDLixtvXzoDgIK8GH39AbGY8ZeXFNHxwL/RkiggqJ0L0WwPP/vZz0gmk1yeGDynMk/xy/J20d5XRKsXMzV2hDflDZbEWV+6UCstNYVZaUkrc+asJPtkBvc+moLN7K8Iop/dYYCQ1wdr7H8I6p1FweM0N8/OuLk6+0smUPX0p2grjVE+Mew4kRoqwR3iyYlM3fReuqoaKWluoLDjPPLzVlIQ2xi2mYCsNhVtl19NYOvScU17x/N0dL7AzLrb2L37HpwAszxq5v4eHQOPsKb6BYIYWNBEzbYtzDpvTTRrwGB7pvRF0lPpitHRXpUO9GIElO8+GHWkMiyZ5B27nibPk8MuryV9PSQtDp4kiMV5ccocADryizImZhrMpwQwa+9mvjrtAzRcWErB+v/kWJDPksNbmc9mHJhe1EncgvRwIwBxksw4tp+VhQt4d/BzJu7eRG9RGYnuTuI94WTWyaSzo2gms7p3ESMcjmSwitU4WDGZ3ooJ6bzKPCCOVc5g4u7NPPngz5iy+GooLA63iyK26uoaWvt6GSicSKK7iyNN3dEwLZ4uTSI6xmKxgLKyZro6K6MhaZrpaK+mq3MKibZDzF68kKqPf5r1z69m4SXLoO0pBoruSuePB0b/kQvp7imiuHhbev/d3SVMnNiZ3ePVjJg57zn//ihoGZzVIQj6w16pkDVd0JHdv2BifxETeoyZ25oHqz7X/CfTj7TSM7GaXUVNg7ns0Doln9aKfCopZeYLMK35GPtqJpB9QKTrQ3lDoo/6Y8eiOWGHByLZs0gMwNr/om7eFznYOYEg6E03S4g7TM4bPIoGPGM4V4uzuS+ezsedfXF29jEs8Fk4ZSGVhZVsPLyRjYc3pjsfDPgAn1/1eeaWz+Xh7Q9nVadm3l4NKIgXsGxiLa+0bw+PiRGql2NRqVW47MQtHrZpHHJtSQV3qSDrYxd/DGDEgKph/i3kvfIgfT561WqMWDg4bhTIwZAx7GJ5fOzijzFtx3O0xmJhEa8Zk97xDoqWLCH1bo3NYS1D6v0bqhpIxBL0BX00l+zkJxd8ldftvIWpR2ZiGAMD2b0217Ws47Zf3JZ+z3tuuCe9r7KypSxdch+7tz/F6h+XkAycosrN0Zhx5xHHmdW2CBic/WN4OWQY4l98fe2pl8pBGPQs/WA0iO8oZZyxBLz5X8ISr9SxW31xdju3Ie31zr+8hk3PNpEMnHjMOP/ymhOnZc9z6XmNw/bIIwV0BhsfDretvTQceuWn/2cwoBshLWNFwdxr2Hsvq2N+dQn/+tgWntl6MCvwWn5BFb971Zx0I+3vfPTy9BAiA2se5dmBAfonV6cvlsGQmR6MsP11j+cxMRaWCsQd5sRbaR0o5prpEG/1wUIohpSgZEh1UBhJX19reFGJqpMS/QGHKvIIomrSWCxJcfFh3GPp8ZIq+jpZvSgcIR+HmXt6iAVEUxUZPaXb6Z7yEm5Jesq3UHC0hsruF0j3Ytr4YMZUQ32U580m5pvSs1FAGGi2ta1i/vy/pb+/PT3t0pbunw4GjubMqtyYrqrLrJbLrLZrb6um7fCVdHVFba4sYAkbqD7aSjtF6fesndBLAMOCMwiIpQtxnLgZNy+exqwtu8MbcrqMw8KeW3l5/PWufNa3b2apxbgvby/58f4w+IrSNq2wk1vqNvDA4WVwpJfAIWHO2+ccZX/nHn7cfgn0dJMgRl/pFHxyAksOEOtoZ23ZEg6VTGdR/y6qW/Zz4Su7Ke/upbWigqeuuZpkPE66hXzmpygqoW9SJbQf5Mlv/Qf5cy8gSCbTX1jR3AX0JorCGTWCgP6OCjb9spyi2TAxo1Qtdbz19xdQVb01XWrrHuPFddeT3HWYwpISLnvjpVz7xkt58bGfsbX1PymbFaQ7tDXvn8krHdXM6drJxOLBUKinp5TCwqNgyfTcp1h4nCcslc+DgZ4ZDAx0Zk1LV1u6nF1tD0Ecuoqhoig+GMwF/bDpJ5wHFFYV0FJZQDzptE7Jj0pSoJW9HFxSwfy2amLWTIATszi1uzvYPWMCjhMLCGeEwGHtf8FvfSHsfZfsBYyOkkR6YF8LwsCwpqWfsuZmli65j6amH7Nv//fxjFLgVI6lqjQDh474dGbkNXNeQR9Hk1Acg1jXAI9SlDETZoyXD71MMr2v7OrNwAMamxs52JM5t2bq0Ai/zKkDA1xYMp1De35NzAarRDMvKHGLc0P9DTzyyiM4Tl4sj/cteB/f3vDtrDZuMWLEY/F0Kdz1ddeng7is2Qgii6cu5p4bv8U3X/omT+55clhgCJCIJYaNY5catiQzQOy+1LH8fLy/H8vLo+zmFcDI04otnrqYxVMXs+K8Ffxwyw/T+604Oj3KC8diztEprXziiS/R0tNCQayAviCsxu0L+nho+0PZHT/KlrJo6VIqJ3WwcfUTdPRt5UhrkoDUFG6xEapWU9eQwQv3+if3Mntx5asL6C5+TziN1sAxhgd0FgZyqYGiM0u8Mtu5DSkJq55dxs1/upR9W9rSA1sfV6p6NTUDScOHwoBx1b9Da2b1rmeXvjV8KDvIvPg946JUDhTMveYtm1nOH18/j19vP5SucjWDi2snZfW2y+zVur93ET6xNBxbLGKpLv+RVK/MTi9gYkYVzwTCm9JT++HG/PA1WaUYDF4aUjraq8meCDklRn5+JWYJ3PsgZvTnx2itiG4nUW/CkpJDBEGM5ubzqG7uI696C2756Xq33bWFzC98K10Fx9jf8QRHp66LPhR40I9N+TIFe6MGrxaDvKJohHAgFt5ol877C7Z0PEBn1wvp1HV2vcCRrZuZN/cvo5vfDyD6/KlSxJrWbprK4oRTVaVK5oKM7yTO7l0XDQZyQIIkF7ORslndtO8oHCycaRocST4ZpdU9SLeXMyDhAQtbt/Hghll8/7IS2EhWle7EK67gqdfdzPpt4YwMl8Y2kscAcQvHJgt8sPpsWmEXV9XsZGpvK3u7y6gt6qDm6K8JYrC7pJwf9FxKTzTVWypffdJULhlopiLRS5Iq9lVW0ltRRenRHgxIRtWrgcOUCUkO98ZSBxi4M1BSTn77QQ5s30Jy/36om0tqGrEjhw+HwV20ff+kSg7HquhrbyG/4OiwHw3lk/dRUbE3HWBBwLSJa9nfM4XVjzzEml+tZN+xOJWlq5h9yZH0cY1BZ0847VRL8xyqq7cDAQNBnCd2XsOhVyZyw7yfMatsF0Mn2IDB7zDVHmnX7lS1WkAQ9HOg/YmshLZUFjC9efjQFtObe5ne3Mu2mYWkp6WIOAH9y97D0vLLwhK/XTso23k3lYd6s0vbIKzS6jkUBnRRqULbpMTgj46Ys69mAk1VE1haVZWuEt7e8iQF/U3DOp2mjg8HJge7ecfkweuBA5Q5b+yu4PHii/nfPf8blpR5Ztqzb+CpDgrP7Hsm+wvIeOOD8ThPdG4L50j3aAL79AXFScTifOCCD/Cdjd9J7z/wgCP9R4a9X5IkM0tmsqxqGQsmL+ALz3+B3mQvMWJcVXsVH1744WEzRSyeupgvX/tlvtj4Rb654ZvZycS4+bybR5z7NRWQpRQtWULdN78RDvZ96SUULVkCZE8r1pfs42svfI2PXfwxFk9dzE1zbkp3pJjWeR4xj5GaoSM59xCfePmTo3YQGTrcSkphxXao/EuKg14mVMHzjW9n0s7leLTfGLHolUbYwCLImH1hhHHcTkXGWIus+c/sMQXNhlWhZr3uOIFTqq3gSdn59GA7uWQAR5rD962YOySYs+GlbycxFMtYUDB3DkhVuf7Vf68nGV10j9fbbtq8BZz/llt4/oX1g+umTWPfvnCE/nSpksOEIW11auMdzA1amMAA6/uruDDejBMOFLktWUmfx7koL3vC6aNHq6ia+ie0HvxyVBIQVZjE8qmpuQWAffv/K9w4885ikGomF7OAmexlatVhDpblkQ4XLSwF6O8/yITpb8A7nwz3H43dEHOnsmNwWhw8CZseCR9PqoXO/bD6XsrWfZd5v/3PNHa9RGY7uSA4xuYtn81IdyqN4U3LJx+jZkcR+xJVHGqv4QCVlE1qob+vgLz83rDqL+pdmXLjlUuo7T0KR1qZ1L6b9sbsEgsn7KjwwHlv4Jo9a6k81jH4G9qMF6bMoX8g4FfTX8/b5j9M16ZoPkGMkjctZ1/JHNgWtjtaGSygnwR4OHZgPFVF5WHHimafzOLCHUwv6krfEuMGMwsPkygLe32mophUYdvkRO/g90CMgzXTOBh+WYPHD3C4N8HsaVPYsb+VVFVpomuw40y850i6F22iu4vZi9/B3sPtWUW9xcUtLLroUWKxjIFQo+zNDuRSh0z42sP79uD79lAATHnznsHkRq/Pz+/Fgc7OSl544U3ES9t4pW0Wa9sXUFraSm3J3szyzsHXppazcizIetybGo8v+hxTW6Pvq7AcerI7DnWUJNhVW8RQRixdZVtWthTiz8HT91HWdWwwiEvlSupmtPNp8ICOkgQdxYmsNGBGEIcdRx9j6r44W7b+AxOCY6nWDYN7i06/dMAafeZYtD4M8owJE/dQTt2wWRFG4jjP7HuG/qFzs0bq+vvZnZc3WEuA866uI9QMJOk0Y/OEAq6vvYaOgtKsfSQ9nJU4VU2ZaUfHDnZ17uKqGVelq3yTJHlizxM8s++ZrOrJdPvZ+jdQWlCaVbJoGAXxAt42520n/JwpRUuWpIO4lFSVbCqgW7l/Jc81PUddaR31pfV84IIPcN/L99FUuj09U0cQS/LTvP8avaevxUdNV1vbKoKgD8OJGcwu7OcwAM5A6Sqm9Sdo62nAgQQDvL70G7ROfSebdk4lCHz4OG6nKhUQXfzesEfz5p8DnjUF2BlVWMHgeenhTCObfgrESA8UHIuHVcIjlb5lHBPjJbDL6WDOzG4Evkz4Q+1ud79zjJM0bs2vLgl7MCWdpMNnH97A/OqSUcfCuqjhUtZu2EgymSQej7NkyRKam5sZGAgvHKmLeXl8sEQh7P3mXBH1cnWgOVlMHwkqSydQY3ksXHQxVQMHaGwc7IE6b948Fi16Nx0dl9PU9GN6+1opyK+kpuaWsH3Rkc2kS+6GjrUS1ePGHPqru9ln0ejzmY1lgUMdz1H97EtQnd0OpHZvd/bNL3O+2fZdg4+TfZQ1N1NasjCrdA7CkrZh1QXRHb61Mh+mDHDe7leY2FXIVi6gq6tqMI0j6JlQBcvDIRvK5q+l/f0fSA8InLKvuIKbtz2d7gzhQNJifOXiW9g8uZ6CRIy9Exfyo/jVXM/z4bdnxoO/3MjXSwaHjFnj83hf36d5e/xp3h1/Mh2YBMBThW/ip3YV13evIR59L+maLeDiol08Q+2wunPLjIpSLwI8Ntj+LrVJb18/b439krX9czjU0kde++Gsz5maxB5g4FAree2t9JVNSSekrOzAsB6ng0FFduzvbrTsqwN60lkE0L6jhNIZRzO2C9svWhDQG8To6qyEzkrKgRvzN3Fs8gHilswKEtOffcQczZQd8E/pKmB6c1QSMSSQA2iqKsiOFgGIMX/+32Z3qsgs7VgbdXaIxWHJ+7NuRh2TJrDmwqKwVI6h+4XDbU9zuO2ZjHQONqlwSFfnZ74qOgWz8sAcJvTv4mQkPQyiBj/dYLs3A/bmRYPCpjqCAG87Eh4TqWFM1hxu5FPnLScvlpcO3PJieZw/+fyszg9D3/epPU+lOz6k9Af9g+O8ZVbHxfNpuPmLFMQL6A/6iVucFeet4KY5N41YKncqMmeS+PX+X6c7bezo2MGOjh0kYgk+fdmn6ejroKV2I5s37GFf6Vaai3eOus8LKi4YNV3pzhBBPzHiHGtZkJ6Xt6DzdRzGiTPA+YVPhEODTNgOV7+F83dvYl/fIqZfuujVlcoNVXspvPu/wiGgNj4IC1acneBotNI/ooGEGz48ehXqkGNivAwcnLPBnJnFga8Cy4G9wPNm9pC7vzy2KRufVu44lB6HB0aZNzJDbW0tt956Kzt37qS+vp7a2lqqqqrYuXMnLT3Oy+saSXZ3Dntd6iKf6llYHY/G/OmGImD/8/u5+Ld+i3g8TjIKULZu3cqePXsoLYWmAw+k2xbV1NxCR8catmz9B1KldXHLJ8lg27XiiQsoi0+DrgPsCzZk32Uy7jDtxQHtE48w4ViSYxPi6fVdJXmkbu7HZQb1b2BabBqdmzODuewenyO/FnbVTSCgA3alK6MYLNcYzBezGIWFhUNeP7j/1Jb7iiup62rJasu0smoBv6i/gpjBX7/1QuZXl/B3j17BVZvWEU8OQCKP7/VnlwJCGNBd7huBICtYe6prGg8P1PKRvFksjm0f1uYxPz9Kv8Wyg+zUQ/eooXrqNZbuJZnSdKiDG/0AF7W18Ex7/ajfZSweXqoSHYfpK51MqrdbR0c1QRDHLJkVuKW+2swgo/nAXI7tHRzGJbVp26bwHJi88CjHgjL27V1IV+cUYj1d5BeVpNMNYUlub8dknFi6uvzVsliC+vK3AP8BowT2QxUUTGdKxVUUF88f/mRmacdIpQa1l9J2zUcIDn5/MAIbEnCHMo5HBo/QDT0xFhUGw46D9IapVzsMOMyveRuJ5u+MWnJ0MmIOQVbRp/P2riMs7u3j7rJS+swIzOgPknT0dXDPDffw8PaHcZyb5txEY3NjVqA2lOMsqVzC6pbBISfisfhg+7dUb8eo/ezitqZh7eBOl8VTF1NeUD5im7yBYICOvg4+uuij/DD/h3y3/Rsn3N8t590y6nOpzhBtbato2zWbTYfC3qKDpY4xksQpibdSXbANrvhD+PkdVCf7qI7nw5UPAacpgNnz3GDnhl2/PjtDfdS/ISqBG+nYcCibMXoahhwT6s36m7sU2ObuOwDM7HvACkDB3AiGTnQ/4ryRQ9TW1lJbWztsubGxkfUjBHJDZRbQpK71yWSSnp4elixZki6dC4KAnTt3Ulv7UnocpMxegOG6MN2ZgRzAkaMb6Y69Qm3tB2HXhuEld1l3HedYQXxwPRlVXCcSzWwxffp7OHToKVoPPpr55Ilfb4bVHabk8MGoWjW8RcZJMpdX6GECu5kOnuTnP3uEqqoqamtr6X7u+axSOQd+OPdqVtYs5LKmlwknuwm1TyhJf7S27r5w8Og/fzfrl9Vy0cHtfLd3Cpu6J42YvJXBApw47mFQNOBQ5uGYbt9PXs3i2PaswAhglu0l5gGBD7m7Z9ztw8nAh5fcpD+Pw06mM6doE3ECkulQK9vCa5Zz4VXX8sLKZ8msQu/qqmT9i8spKztAX38BFRVNVFTsznq/8C9GX9eFxHs2DWYJg4FK26ZyWnfNGGwD6EF6mp+h6W7prOHZllu5uua+jOr1zCA93HthYR09PaOXTtXVfoSygmvgl9/KHkQ1Q01zL/urJuBxgAR9fa3s2/89mg48MOKQJ8Bx2/SU178TDt0PJIeVyg0XlagC97eFt4pFhcGInZhSsSGEZ0N/+S3cctGfMav6+nRwtWDyAp7Z9wxP7X0q3cN0pMAlswrzqp4eniksIPXt5Du8rXg2VNbQ8Mqj5LvTD+F4elFwNTTAyiytGyoRSzB70mzWtqxNdwJ4+3lvH9xH5jRQUXX1SO9xOvxw8w/56Ss/HfX5svywJGzogMcjmV02O6tn7Yj7K1tKz6E5rPrBGlLXMM8I6AzCmRfm3wgTSs9cADMWwdFIPVNTTtRDdYRjYjzI5WBuOrAnY3kvcNkYpWXcy5yD1eC480aeyMaNG7OWi4qK6O4Oh6bICuAyqroG1xn19fUArFu3Ll2NW19fT2npxMGi/1heuodoat3QUqyUIOinq2tjdO8ZEikMla5HdKYc6hux4fnILH2RmTnzdg4dfpog6I86hoz+y3+oskkH6OqqxDCW2QYu9vXU0sTTXMJupuPESCZTwW0tRZdeAvE4RNXbFovRm1/Epsn1fGXx2/mDdQ8Qw+m3OI/XhaUJ8ZilA/VlM8tZdttbAdiwajff+/H6EdO1xufxV/0f4u/zvoV5QD95rPJw8N7vBddRN9DM7yZ+GpXURFaaAAAdhklEQVS2QRxjOgdo6HyWdb1zGCiZRDBhIuk5QTOrXckoi8ysirNwLtj6YB/Tirr47foNbJh4I/uPFHBw1yvp18fiCS686lqmzVtAxYVLONJxJL0jB7q6KunsrKQ1KGJezR8yKfnXxOM7st7vwIE5TCy5iM7ENpID2SVFqfTFe46y85BTkegmcbSLA6W11E/ozw4Mge3JSuYUXsWypW+mrW0VeXmT6Op6mf1N9+M+gFmM+fM+S3HxfFaveV/YeWcYI5EojSYq/2lYMpE5IKnFIZag7MgAyzYco+2aD3GsIM6+/d8j88fOiMHccZSVLaVyyrVZP0YKCqbT27tv2LZTplxPWenFtDKZ5/feydXFPQSEbSZT4euwTxV9mb0DYXX50MAnNZ5cY3Mjnb2dwzoTQNjWK9Ub9cM1y/jwpp/wcPFEHLjpyFEWv/7DYVC17XH+o/kQjYWFNFz3uVE7IGSW1h3qOZTukZrquPC2OW/j4e0Pp4fzyGpnljkN1BluH/XY7sdGfS5GLB3ENVQ1RFPNj37def+C95/Ue+7b0kYyOTieXGZwbRPXhAP3Fl95ZgOYsQqOUj1TU1N8HVgH2Il7qJ7FY+JU5HIwN9K1ZNjd28xuB24HqKurO9NpGtcye6z+JhYsWMD27dvTy9deey1tbW08++yzQGYbpSFtloCLXndNurRvaDUu1KaL/jNHzk+tGxjoZNfuuzJSEpacxGJ5TJ16A23tq8Ibp0fvlj4aoluPGxYLpxyKxYz63hqwjWEpTDwPLrgZ1v+QwRdGM0W4QWKwYW5mFUVe3iS2bP0HgqA3/TqzBHW1H2Fg4AjtHWs5ejQsDQqCGB3t1cRiMd785jfTUPXmsPHvpp9Sz9705TkeT6QD3qIlS6j+q7/kwN//AwQBsfx8fvujK7Bj5dhldWx/2+tpefpXPOjVbC6fSSJm/N2KhSPm83svC4//n73URMXEfB5+YX96WrfP3rSQl/bX8S+tF7Mk2MDMZW/iHcE81kZTv30h+V4eCxq4MrGJt9z0Ls6vLsV2Pk354Uri330AkgP0VU/MCt6HyjwO5ixaxqypk6gv7Kb251+HZJxpJX1Mu/WjUBsOF7L+iUcpnjyZS256B9PmhYHl4ssuZ9cvHs04wGIEHpYrrPWZ3LbkfEp6/5Sdu/6AWNTAyz3GwYNzeec7riF+6SVseOoJjraH7dN2rGuMgjtjdenFNE56He5OMqrp7hrYw8LEAYjeY1X/TDripbx96QzKysqzgqmamluGHbvLln4nfZxs3vJ36cDObPDHCrWXhvNDpkaij8UGx9na+TRl9W+grPZSOjrWRM0Qsn/snKqZM2/n4KGncO/HLI9Z9R/LSluYvnzqZ95OWdlS6oFvFs3nyS33QN8vIBoq2iyG+wCZl93AwyG76qtuGPX9MwO82pJa7l5/N01Hm4BwLLlPXfIpOvo6wpK23j546ScsPhS1J0w1kI9uqIt3Ph3O83qcG2rm+61rWcev9v8qK3AbaQiRLGep9+L1ddfzq/2/GrY+Roz8eH666nfx1MV85vLPpOeHjVucz1z2GSAMCK+vu/6EpXIp0+eVE4+npsKKzhcCAktyUclD4fedCm7OVAAzlsHRq83bcdij1Xyk0oscYGZXAJ919xui5b8AcPf/f7TXNDQ0eGbDe3n1Ghsb2bhxIwsWLKChoSG9buXKlRzrT5IsqWFm1STOq5nM+q27aO48xrKlS1h+yQW/0fvu2/ddWlp+wdSpN1BcPD/r5tnRsWawA0VfQE3LMcBomloAxVXpnrFZN9yhvZL2PJc9hhCc8CLT0bEmfcNOjTmXeZNPPd/XN4vm5okZwWvqy/wWrP02exKz2Fl5HfUXvyH7eaB77dphwxlkWr2rLT1O4MkG7CfzmtW72vjRmr0c7OqlsqRgxBLdJ375HOufX82UaZUEAz1UV1fT29vLkSNhe8ni4mJ680tZu+kVDHjjFZdkHwen2DNs7bNPs3H9ehYsWsSarkJWvbiRvEnVfOSGhnTatmz5Ofv23U88EceDy5k9+/ph3ynA/i0bWfnsc6wbqCA5ZWZ6EO3UZwaYGjvCwrI+KqpnsOVI/il9x5lSxyeQ7tyT5SS+h9SxNOI0YaeYlqHnzvGO4ZFeB2S9punYEfZ2bKS+6gYuqf+dU0pP5qwFw4Kpoefkb3gTPe57jbEfbv4hj+1+jPnl8yktKKUsv2wwsB2S1tP1OQ7s6GDTyjCY7ilrZ1frXi6Y7rxxwu5xVfJ0rjKz1e7ecMLtcjiYSwBbgOuAfcDzwHvdfcNor1EwJyIiIrniZIO5nK1mdfcBM/sD4BeEvdW/cbxATkREROS1KGeDOQB3fwR4ZKzTISIiIjJWcraa9dUws1bg5EayfPWmACNMMihjTPky/ihPxifly/ijPBl/zlaezHT34QOEDnFOBXNng5k1nkz9tpxdypfxR3kyPilfxh/lyfgz3vIkduJNRERERGS8UjAnIiIiksMUzJ1+d514ExkDypfxR3kyPilfxh/lyfgzrvJEbeZEREREcphK5kRERERymII5ERERkRymYO40MrMbzWyzmW0zszvGOj3nCjOrNbMnzWyjmW0ws09E6yeb2aNmtjX6Xx6tNzP7tyifXjSzVz/JpRyXmcXNbK2Z/SRanmVmq6I8+b6Z5UfrC6LlbdHz9WOZ7tcyM5tkZveb2abonLlC58rYMrM/ia5dL5nZd81sgs6Vs8/MvmFmLWb2Usa6Uz43zOzWaPutZnbr2Ui7grnTxMziwFeB3wIuAN5jZr/ZrPJysgaAP3X3BcDlwO9H3/0dwOPuPhd4PFqGMI/mRn+3A187+0k+Z3wC2Jix/I/Al6I8aQNui9bfBrS5+3nAl6Lt5Mz4MvBzdz8fuJgwf3SujBEzmw78EdDg7gsJp6d8NzpXxsK3gBuHrDulc8PMJgN/A1wGXAr8TSoAPJMUzJ0+lwLb3H2Hu/cB3wNWjHGazgnu3uTua6LHXYQ3p+mE3/+90Wb3AjdHj1cA3/bQSmCSmdWc5WS/5pnZDOAtwN3RsgHXAvdHmwzNk1Re3Q9cF20vp5GZlQJvBO4BcPc+d29H58pYSwCFZpYAioAmdK6cde7+S+DwkNWnem7cADzq7ofdvQ14lOEB4mmnYO70mQ7syVjeG62TsyiqclgCrAKq3L0JwoAPmBptprw6O/4V+BQQRMsVQLu7D0TLmd97Ok+i5zui7eX0mg20At+Mqr/vNrOJ6FwZM+6+D/hnYDdhENcBrEbnynhxqufGmJwzCuZOn5F+GWncl7PIzIqBHwF/7O6dx9t0hHXKq9PIzN4KtLj76szVI2zqJ/GcnD4JYCnwNXdfAhxlsNpoJMqXMyyqglsBzAKmARMJq/CG0rkyvoyWD2OSPwrmTp+9QG3G8gxg/xil5ZxjZnmEgdx33P2BaHVzqkoo+t8SrVdenXlXAjeZ2U7CJgfXEpbUTYqqkiD7e0/nSfR8GcOrO+Q3txfY6+6rouX7CYM7nStj53rgFXdvdfd+4AHgdehcGS9O9dwYk3NGwdzp8zwwN+qBlE/YgPWhMU7TOSFqL3IPsNHdv5jx1ENAqifRrcCDGes/GPVGuhzoSBWjy+nh7n/h7jPcvZ7wXHjC3d8HPAm8M9psaJ6k8uqd0fYqbTjN3P0AsMfM5kerrgNeRufKWNoNXG5mRdG1LJUnOlfGh1M9N34BvMnMyqNS1zdF684ozQBxGpnZmwlLH+LAN9z9c2OcpHOCmb0eeBpYz2D7rE8Ttpv7AVBHeMF8l7sfji6YXyFslNoNfNjdG896ws8RZnY18Gfu/lYzm01YUjcZWAu83917zWwCcB9he8fDwLvdfcdYpfm1zMwWE3ZKyQd2AB8m/GGvc2WMmNnfAr9D2DN/LfBRwnZWOlfOIjP7LnA1MAVoJuyV+t+c4rlhZh8hvAcBfM7dv3nG065gTkRERCR3qZpVREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHKZgTkRERCSHKZgTERERyWEK5kRERERymII5ERERkRymYE5EREQkhyVOvMlrx5QpU7y+vn6skyEiIiJyQqtXrz7o7pUn2u6cCubq6+tpbNS0giIiIjL+mdmuk9lO1awiIiIiOUzBnIiIiEgOUzAnIiIiksMUzImIiIjkMAVzIiIiIjlMwZyIiIhIDlMwJyIiIpLDFMyJiIiI5DAFcyIiIiI5TMGciIiISA5TMCciIiKSwxTMiYiIiOSwMQvmzGyymT1qZluj/+XH2bbUzPaZ2Vcy1r3HzNab2Ytm9nMzm3J2Ui4iIiIyfoxlydwdwOPuPhd4PFoezd8DT6UWzCwBfBm4xt0vAl4E/uAMplVERERkXBrLYG4FcG/0+F7g5pE2MrNlQBXwP5mro7+JZmZAKbD/zCVVREREZHway2Cuyt2bAKL/U4duYGYx4F+AT2aud/d+4GPAesIg7gLgnpHexMxuN7NGM2tsbW09vZ9AREREZIyd0WDOzB4zs5dG+Ftxkrv4OPCIu+8Zst88wmBuCTCNsJr1L0bagbvf5e4N7t5QWVn5G3waERERkfEncSZ37u7Xj/acmTWbWY27N5lZDdAywmZXAG8ws48DxUC+mR0BfhTtf3u0rx9w/DZ3IiIiIq9JY1nN+hBwa/T4VuDBoRu4+/vcvc7d64E/A77t7ncA+4ALzCxV1LYc2HjmkywiIiIyvoxlMHcnsNzMthIGY3cCmFmDmd19vBe6+37gb4FfmtmLwGLg82c4vSIiIiLjjrn7WKfhrGloaPDGxsaxToaIiIjICZnZandvONF2mgFCREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHKZgTkRERCSHKZgTERERyWEK5kRERERymII5ERERkRymYE5EREQkhymYExEREclhCuZEREREcpiCOREREZEcpmBOREREJIcpmBMRERHJYWMSzJnZZDN71My2Rv/Lj7NtqZntM7OvZKz7HTN70cw2mNkXzk6qRURERMafsSqZuwN43N3nAo9Hy6P5e+Cp1IKZVQD/BFzn7hcCVWZ23ZlMrIiIiMh4NVbB3Arg3ujxvcDNI21kZsuAKuB/MlbPBra4e2u0/BjwjjOUThEREZFxbayCuSp3bwKI/k8duoGZxYB/AT455KltwPlmVm9mCcJAsPYMp1dERERkXEqcqR2b2WNA9QhPfeYkd/Fx4BF332Nm6ZXu3mZmHwO+DwTArwhL60ZLx+3A7QB1dXUn+dYiIiIiueGMBXPufv1oz5lZs5nVuHuTmdUALSNsdgXwBjP7OFAM5JvZEXe/w90fBh6O9nU7kDxOOu4C7gJoaGjwV/+JRERERMafsapmfQi4NXp8K/Dg0A3c/X3uXufu9cCfAd929zsAzGxq9L+csATv7rORaBEREZHxZqyCuTuB5Wa2FVgeLWNmDWZ2MoHZl83sZeBZ4E5333LmkioiIiIyfpn7uVPz2NDQ4I2NjWOdDBEREZETMrPV7t5wou00A4SIiIhIDlMwJyIiIpLDFMyJiIiI5DAFcyIiIiI5TMGciIiISA5TMCciIiKSwxTMiYiIiOQwBXMiIiIiOUzBnIiIiEgOUzAnIiIiksMUzImIiIjkMAVzIiIiIjlMwZyIiIhIDlMwJyIiIpLDFMyJiIiI5LAxCebMbLKZPWpmW6P/5aNslzSzddHfQxnrZ5nZquj13zez/LOXehEREZHxIzFG73sH8Li732lmd0TLfz7Cdj3uvniE9f8IfMndv2dmXwduA7525pJ7cv7p65/nsboZ7M2vpv80frV5DFDoPfRY4Wndr9Ly2kvLeEmH0qK0KC2vrbSMl3SMl7RMpIc37tvAl2/91Ji8/1Dm7ifeyOxx4F/c/ZGMdXe5++2v6k3NNgNXu3uTmdUA/+vu80fY7oi7Fw9ZZ0ArUO3uA2Z2BfBZd7/hRO/b0NDgjY2NrybJJ/RPX/88/zpvOckxPshFRETk7PidPY+e0YDOzFa7e8OJtjvZyGMW8Odmdom7/2207oQ7P44qd28CiAK6qaNsN8HMGoEB4E53/2+gAmh394Fom73A9NHeyMxuB24HqKur+w2SfHxbyotIEgezM/YeIiIiMk64s766dqxTAZx8MNcOXAf8m5k9DLz/RC8ws8eA6hGe+szJJ486d99vZrOBJ8xsPdA5wnajFi+6+13AXRCWzJ3Ce5+SeW3dxCuTJF3BnIiIyLlg0YE9Y50E4OSDOYtKwj5uZh8CngFG7LSQ4u7Xj7ozs2Yzq8moZm0ZZR/7o/87zOx/gSXAj4BJZpaI0jQD2H+Sn+OM+eTvfRrUZk5pUbsWpUVpUVpeg2kZL+kYL2kZb23mTvZb+Hrqgbt/Kyoh+/3f4H0fAm4F7oz+Pzh0g6iHa7e795rZFOBK4Avu7mb2JPBO4HujvX4sfPL3Ps0nxzoRIiIicha8ZawTkHZSQ5O4+/8dsrza3T/yG7zvncByM9sKLI+WMbMGM7s72mYB0GhmLwBPEraZezl67s+B/2Nm2wjb0N3zG6RFREREJGedVG/W14oz2ZtVRERE5HQ62d6smgFCREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHKZgTkRERCSHKZgTERERyWEK5kRERERymII5ERERkRymYE5EREQkhymYExEREclhCuZEREREcpiCOREREZEcpmBOREREJIcpmBMRERHJYWMSzJnZZDN71My2Rv/LR9kuaWbror+HMtb/gZltMzM3sylnL+UiIiIi48tYlczdATzu7nOBx6PlkfS4++Lo76aM9c8C1wO7znA6RURERMa1sQrmVgD3Ro/vBW4+lRe7+1p333m6EyUiIiKSa8YqmKty9yaA6P/UUbabYGaNZrbSzE4p4Esxs9ujfTS2tra+2vSKiIiIjEuJM7VjM3sMqB7hqc+cwm7q3H2/mc0GnjCz9e6+/VTS4e53AXcBNDQ0+Km8VkRERGS8O2PBnLtfP9pzZtZsZjXu3mRmNUDLKPvYH/3fYWb/CywBTimYExEREXktG6tq1oeAW6PHtwIPDt3AzMrNrCB6PAW4Enj5rKVQREREJAeMVTB3J7DczLYCy6NlzKzBzO6OtlkANJrZC8CTwJ3u/nK03R+Z2V5gBvBixmtEREREzinmfu40I2toaPDGxsaxToaIiIjICZnZandvONF2mgFCREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHKZgTkRERCSHKZgTERERyWEK5kRERERymII5ERERkRymYE5EREQkhymYExEREclhCuZEREREcpiCOREREZEcpmBOREREJIcpmBMRERHJYWMSzJnZZDN71My2Rv/LR9kuaWbror+HMtZ/x8w2m9lLZvYNM8s7e6kXERERGT/GqmTuDuBxd58LPB4tj6TH3RdHfzdlrP8OcD6wCCgEPnpGUysiIiIyTo1VMLcCuDd6fC9w86m82N0f8QjwHDDjNKdPREREJCeMVTBX5e5NANH/qaNsN8HMGs1spZkNC/ii6tUPAD8f7Y3M7PZoH42tra2nI+0iIiIi40biTO3YzB4Dqkd46jOnsJs6d99vZrOBJ8xsvbtvz3j+34FfuvvTo+3A3e8C7gJoaGjwU3hvERERkXHvjAVz7n79aM+ZWbOZ1bh7k5nVAC2j7GN/9H+Hmf0vsATYHu3jb4BK4HdPd9pFREREcsVYVbM+BNwaPb4VeHDoBmZWbmYF0eMpwJXAy9HyR4EbgPe4e3BWUiwiIiIyDo1VMHcnsNzMtgLLo2XMrMHM7o62WQA0mtkLwJPAne7+cvTc14Eq4NfRsCV/fXaTLyIiIjI+nLFq1uNx90PAdSOsbyQaZsTdf0U49MhIrx+TdIuIiIiMN5oBQkRERCSHKZgTERERyWEK5kRERERymII5ERERkRymYE5EREQkhymYExEREclhCuZEREREcpiCOREREZEcpmBOREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHGbuPtZpOGvMrBXYdYbfZgpw8Ay/h5w65cv4ozwZn5Qv44/yZPw5W3ky090rT7TRORXMnQ1m1ujuDWOdDsmmfBl/lCfjk/Jl/FGejD/jLU9UzSoiIiKSwxTMiYiIiOQwBXOn311jnQAZkfJl/FGejE/Kl/FHeTL+jKs8UZs5ERERkRymkjkRERGRHKZgTkRERCSHKZg7jczsRjPbbGbbzOyOsU7PucLMas3sSTPbaGYbzOwT0frJZvaomW2N/pdH683M/i3KpxfNbOnYfoLXLjOLm9laM/tJtDzLzFZFefJ9M8uP1hdEy9ui5+vHMt2vZWY2yczuN7NN0Tlzhc6VsWVmfxJdu14ys++a2QSdK2efmX3DzFrM7KWMdad8bpjZrdH2W83s1rORdgVzp4mZxYGvAr8FXAC8x8wuGNtUnTMGgD919wXA5cDvR9/9HcDj7j4XeDxahjCP5kZ/twNfO/tJPmd8AtiYsfyPwJeiPGkDbovW3wa0uft5wJei7eTM+DLwc3c/H7iYMH90rowRM5sO/BHQ4O4LgTjwbnSujIVvATcOWXdK54aZTQb+BrgMuBT4m1QAeCYpmDt9LgW2ufsOd+8DvgesGOM0nRPcvcnd10SPuwhvTtMJv/97o83uBW6OHq8Avu2hlcAkM6s5y8l+zTOzGcBbgLujZQOuBe6PNhmaJ6m8uh+4LtpeTiMzKwXeCNwD4O597t6OzpWxlgAKzSwBFAFN6Fw569z9l8DhIatP9dy4AXjU3Q+7exvwKMMDxNNOwdzpMx3Yk7G8N1onZ1FU5bAEWAVUuXsThAEfMDXaTHl1dvwr8CkgiJYrgHZ3H4iWM7/3dJ5Ez3dE28vpNRtoBb4ZVX/fbWYT0bkyZtx9H/DPwG7CIK4DWI3OlfHiVM+NMTlnFMydPiP9MtK4L2eRmRUDPwL+2N07j7fpCOuUV6eRmb0VaHH31ZmrR9jUT+I5OX0SwFLga+6+BDjKYLXRSJQvZ1hUBbcCmAVMAyYSVuENpXNlfBktH8YkfxTMnT57gdqM5RnA/jFKyznHzPIIA7nvuPsD0ermVJVQ9L8lWq+8OvOuBG4ys52ETQ6uJSypmxRVJUH2957Ok+j5MoZXd8hvbi+w191XRcv3EwZ3OlfGzvXAK+7e6u79wAPA69C5Ml6c6rkxJueMgrnT53lgbtQDKZ+wAetDY5ymc0LUXuQeYKO7fzHjqYeAVE+iW4EHM9Z/MOqNdDnQkSpGl9PD3f/C3We4ez3hufCEu78PeBJ4Z7TZ0DxJ5dU7o+1V2nCaufsBYI+ZzY9WXQe8jM6VsbQbuNzMiqJrWSpPdK6MD6d6bvwCeJOZlUelrm+K1p1RmgHiNDKzNxOWPsSBb7j758Y4SecEM3s98DSwnsH2WZ8mbDf3A6CO8IL5Lnc/HF0wv0LYKLUb+LC7N571hJ8jzOxq4M/c/a1mNpuwpG4ysBZ4v7v3mtkE4D7C9o6HgXe7+46xSvNrmZktJuyUkg/sAD5M+MNe58oYMbO/BX6HsGf+WuCjhO2sdK6cRWb2XeBqYArQTNgr9b85xXPDzD5CeA8C+Jy7f/OMp13BnIiIiEjuUjWriIiISA5TMCciIiKSwxTMiYiIiOQwBXMiIiIiOUzBnIiIiEgOUzAnIjICM5tkZh+PHk8zs/tP9BoRkbGgoUlEREYQzfP7E3dfOMZJERE5rsSJNxEROSfdCcwxs3XAVmCBuy80sw8BNxMODr4Q+BfCAXg/APQCb44GFZ0DfBWoJBxU9P9z901n/2OIyGudqllFREZ2B7Dd3RcDnxzy3ELgvcClwOeA7mji+l8DH4y2uQv4Q3dfBvwZ8O9nJdUics5RyZyIyKl70t27gC4z6wAejtavBy4ys2LCydJ/GM76A0DB2U+miJwLFMyJiJy63ozHQcZyQHhdjQHtUameiMgZpWpWEZGRdQElr+aF7t4JvGJm7wKw0MWnM3EiIikK5kRERuDuh4Bnzewl4J9exS7eB9xmZi8AG4AVpzN9IiIpGppEREREJIepZE5EREQkhymYExEREclhCuZEREREcpiCOREREZEcpmBOREREJIcpmBMRERHJYQrmRERERHLY/wM05tTeOPvDwwAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X2UXHd93/H3x17Ms4NsybLAOMKpAPMQTNhADAcOwRZQwsEOSQoEgiAQBxwXaAuJOeTEaZOTChKa0FKa6hhqkVACARLbjQ9BljEmAQNr8LOLZcyDbQl7KU4oDz1B1rd/zBVZr3dXI+3O3Pmt3q9z5szcO3dmPrua/eqz987MpqqQJElSm47oO4AkSZIOnWVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWrYVN8Bxmnt2rW1cePGvmNIGpOrrrrqW1W1ru8cK8H5JR1+hp1hh1WZ27hxIzMzM33HkDQmSb7ed4aV4vySDj/DzjAPs0qSJDXMMidJktQwy5wkSVLDLHOSJEkNm/gyl+R9Se5Kcv2cdcck2ZFkV3e+ps+MkrQYZ5ikUZv4MgdcADx/3rpzgZ1VtQnY2S1LCzr1wzt4xI4ZTv3wjr6j6PB0Ac4wHSLnl4Yx8WWuqq4Avj1v9RnA9u7yduDMsYZSM0798A6+unYt9xx5JF9du9aBqLFzhulQOb80rIkvc4tYX1V7ALrz4xbbMMlZSWaSzMzOzo4toCbDV489dnAhufey1K+hZpjz6/Dm/NKwWi1zQ6uqbVU1XVXT69atig+Cl3SYcH5JGkarZe7OJBsAuvO7es4jSQfDGSZpxbRa5i4CtnSXtwAX9phFkg6WM0zSipn4Mpfkg8BngcckuT3Ja4CtwOYku4DN3bIkTRxnmKRRm+o7wIFU1csWueq0sQaRpEPgDJM0ahO/Z06SJEmLs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzGlVO2LfviWXJWlSOb80LMucVrU6wLIkTSrnl4ZlmdOqVsmSy5I0qZxfGpZlTqucv9tKapXzS8OxzGmVm/+brL/ZSmqF80vDscxpdZt/WMLDFJJa4fzSkCxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSw5ouc0n+TZIbklyf5INJHtB3JkkaljNM0kpotswleQTwBmC6qp4AHAm8tN9UkjQcZ5ikldJsmetMAQ9MMgU8CNjdcx5JOhjOMEnL1myZq6o7gD8CvgHsAf6xqj4xf7skZyWZSTIzOzs77piStKBhZpjzS9Iwmi1zSdYAZwCPAh4OPDjJK+ZvV1Xbqmq6qqbXrVs37piStKBhZpjzS9Iwmi1zwOnAV6tqtqp+CHwMeHrPmSRpWM4wSSui5TL3DeBnkjwoSYDTgJt6ziRJw3KGSVoRzZa5qvoc8BHgi8B1DL6Wbb2GkqQhOcMkrZSpvgMsR1WdB5zXdw5JOhTOMEkrodk9c5IkSbLMSZIkNc0yJ0mS1DDLnFa5OsCyJE0q55eGY5nTKpcDLEvSpHJ+aTiWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGtZ0mUvysCQfSfK/k9yU5NS+M0nSsJxhklbCVN8BluldwMer6heTHAU8qO9AknQQnGGSlq3ZMpfkaOBZwKsAquqfgH/qM5MkDcsZJmmltHyY9SRgFvgfSb6U5PwkD56/UZKzkswkmZmdnR1/Skla2AFnmPNL0jBaLnNTwE8B/62qngx8Dzh3/kZVta2qpqtqet26dePOKEmLOeAMc35JGkbLZe524Paq+ly3/BEGg1GSWuAMk7Qimi1zVfVN4LYkj+lWnQbc2GMkSRqaM0zSSmn2DRCdfw18oHsX2K3Aq3vOo4lTQOYtSxPDGaYlOL80nKbLXFVdDUz3nUOTLAdYlvrjDNPSnF8aTrOHWSVJkmSZkyRJapplTqvcvgMsS9Kkcn5pOJY5rXK+5kRSq5xfGo5lTqucw1BSq5xfGo5lTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhYytzSc5JsmZcjydJknQ4GOeeueOBLyT5cJLnJ/E91pIkScs0tjJXVb8NbALeC7wK2JXkD5L8xLgySJIkrTZjfc1cVRXwze60F1gDfCTJO8aZQ5IkabWYGtcDJXkDsAX4FnA+8Jaq+mGSI4BdwG+OK4skSdJqMbYyB6wFXlxVX5+7sqr2JXnhGHNIkiStGmMrc1X1O0tcd9O4ckiSJK0mfs6cJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNa77MJTkyyZeS/K++s0jSwXB+SVoJzZc54I2Af9tVUoucX5KWrekyl+QE4OeA8/vOIkkHw/klaaU0XeaAPwF+E9i32AZJzkoyk2RmdnZ2fMkkaWnOL0krotkyl+SFwF1VddVS21XVtqqarqrpdevWjSmdJC3O+SVpJTVb5oBnAC9K8jXgL4DnJPnzfiNp8tQBlqVeOL80BOeXhtNsmauqt1bVCVW1EXgpcFlVvaLnWJJ0QM4vSSup2TInSZIkmOo7wEqoqsuBy3uOoYnkYQpNNueXFuf80nDcMydJktQwy5xWuRxgWZImlfNLw7HMSZIkNcwyp1XO15xIapXzS8OxzGlVe3jdMbhQde9lSZpwzi8NyzKnVW1D9gwuJPdelqQJ5/zSsCxzWtX28PAllyVpUjm/NCzLnFa1DexeclmSJpXzS8OyzGlV+7m6kCPZC7WPI9nLz9WFfUeSpKE4vzSsVfEXIKTFbOJmttT5fCE/w0/XlWzi5r4jSdJQnF8almVOq9ouHs2f51fZyxRfzuM4ob7B5r5DSdIQnF8almVOq9pNeTx7mWJfjmRvFTfl8X1HkqShOL80LF8zp1Xt5LqBKfZyRO1lins4uW7oO5IkDcX5pWG5Z06r2iZu5q31u9yUx3Ny3cC/8DUnkhrh/NKw3DMnSZLUMPfMaVXbxaPZmt9lL1NMZS/n1u/6AmJJTXB+aViWOa1qvoBYUqucXxqWh1m1qvkCYkmtcn5pWO6Z06rmC4gltcr5pWFZ5rTqbeJmHs3NFFB9h5Gkg+D80jA8zCpJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSw5otc0kemeSTSW5KckOSN/adSZKG5QyTtFJa/py5vcC/q6ovJnkocFWSHVV1Y9/BJGkIzjBJK6LZPXNVtaeqvthd/r/ATcAj+k0lScNxhklaKc2WubmSbASeDHyu3ySSdPCcYZKWo/kyl+QhwEeBN1XVdxa4/qwkM0lmZmdnxx9Qkpaw1AxzfkkaRtNlLsn9GAzBD1TVxxbapqq2VdV0VU2vW7duvAElaQkHmmHOL0nDaLbMJQnwXuCmqvpPfeeRpIPhDJO0Upotc8AzgF8BnpPk6u70gr5DSdKQnGGSVkSzH01SVX8HpO8cknQonGGSVkrLe+YkSZIOe5Y5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGtZ0mUvy/CRfTnJLknP7ziNJB8MZJmklNFvmkhwJ/FfgXwKPA16W5HH9ppKk4TjDJK2UZssc8FTglqq6tar+CfgL4IyeM0nSsJxhklZEy2XuEcBtc5Zv79ZJUgucYZJWRMtlLgusq/tslJyVZCbJzOzs7BhiSdJQDjjDnF+ShtFymbsdeOSc5ROA3fM3qqptVTVdVdPr1q0bWzhNhn3feSIAVfdelibAAWeY8+vw5vzSsFouc18ANiV5VJKjgJcCF/WcSRPmeS/+a+75xydyxP87knv+8Yk878V/3XckaT9nmJbk/NKwpvoOcKiqam+Sc4C/BY4E3ldVN/QcSxPIAahJ5AzTMJxfGkazZQ6gqi4BLuk7hyQdCmeYpJXQ8mFWSZKkw55lTpIkqWGWOUmSpIZZ5iRJkhqWqvt8zu6qlWQW+HrfOYC1wLf6DnGIWs1u7vGalNw/XlWr4gPaJmh+weT8+x4sc4+XuZdvqBl2WJW5SZFkpqqm+85xKFrNbu7xajW3htPqv6+5x8vc4+NhVkmSpIZZ5iRJkhpmmevHtr4DLEOr2c09Xq3m1nBa/fc193iZe0x8zZwkSVLD3DMnSZLUMMvcCCV5Y5Lrk9yQ5E2LbPPsJFd323xq3BkXcqDcSX4sycVJrum2eXUfObss70tyV5Lr56w7JsmOJLu68zWL3HZLt82uJFvGl/rQcyc5Jclnu+/7tUle0kLuOdseneSOJO8eT2IdqoP4Obqnm2FXJ7lozvoPJPlyN0vel+R+jeQ+J8ktSSrJ2nFkXqHcj0ryue72H0py1CTl7ra9z89/kpd0s+yGJO8YR+bucZeb+2VJruuyf3ycz5WFWOZGJMkTgF8Dngo8CXhhkk3ztnkY8B7gRVX1eOCXxh50nmFyA78B3FhVTwKeDbxzXINjARcAz5+37lxgZ1VtAnZ2y/eS5BjgPOBpDL7W85b6YR6BCziE3MD3gVd2z5fnA3/SPY/G5QIOLfd+vwdMxC8tOqBh/11/UFWndKcXzVn/AeCxwBOBBwKvHWnaf7bc3H8PnM74P9NvubnfDvxxd/u7gdeMNu6PHPLPf5JjgT8ETutm2vokp40y7BzLyT0FvAv42ar6SeBa4JwRZj0gy9zonAxcWVXfr6q9DJ4IPz9vm18GPlZV3wCoqrvGnHEhw+Qu4KFJAjwE+Dawd7wxuyBVV3SPP9cZwPbu8nbgzAVu+jxgR1V9u6ruBnZw35IyMoeau6purqpd3eXdwF3A2D4Udxnfb5I8BVgPfGJkAbWShvp3XUxVXVId4PPACSucbzHLzf2lqvraSocawiHn7mbxc4CPHMrtl2k5P/8nATdX1Wy3fCnwCyPKOd9ycqc7Pbj73h8N7B5d1AOzzI3O9cCzkhyb5EHAC4BHztvm0cCaJJcnuSrJK8ee8r6Gyf1uBqVvN3Ad8Maq2jfemEtaX1V7ALrz4xbY5hHAbXOWb+/W9WmY3D+S5KnAUcBXxpBtKQfMneQI4J3AW8acTYdu2OfjA5LMJLkyyX3+Q+wOr/4K8PHRRb2XFcndg+XkPhb4h+4XcBjvPFvOz/8twGOTbOz2dp3Jff+/GZVDzl1VPwRez+D/v93A44D3jjrwUqb6fPDVrKpuSvJ2Bnt8vgtcw333Xk0BTwFOY3AY4rNJrqyqm8cado4hcz8PuJrBb4I/AexI8umq+s5Ywy5PFljXzFu7k2wA/gzYMmFFejFnA5dU1W2DX2Q1CZJcChy/wFVvO4i7ObGqdic5CbgsyXVVNfcXjPcAV1TVp5eTda4x5V5xo8oNLDR7V2yerUDuBX/+q+ruJK8HPgTsAz7DYG/dihhV7u4XlNcDTwZuBf4L8Fbg95cVeBkscyNUVe+la+tJ/oDBb0tz3Q58q6q+B3wvyRUMXqfWW5mDoXK/GtjaHT65JclXGbw25vNjDbq4O5NsqKo9XelZ6PD17Qxe77ffCcDlY8i2lGFyk+Ro4G+A366qK8eacGHD5D4VeGaSsxkcmj8qyXeraqnXqWjEqur0xa5LMtTzsTvcT1XdmuRyBv/BfaW7j/MYvAzg11vKPSojzP1R4GFJprq9cyewgof9ViD3oj//VXUxcHF3X2cB90x6bgbfb/aX/yQfZunX3I2ch1lHKMlx3fmJwIuBD87b5EIGT5Sp7pDm04CbxpvyvobI/Q0GexNJsh54DIPfTibFRcD+d6duYfB9nu9vgecmWdO98eG53bo+HTB390aTvwLeX1V/OcZsSzlg7qp6eVWdWFUbgTczyG+Rm2zDPB/XJLl/d3kt8Azgxm75tQz24r9szHuPl5W7R4ecu/vF+pPALy51+xFZ1s//nP9v1jDYE3b+OEKzvNx3AI9Lsv/1ypvp+//uqvI0ohPwaQYD4hoG79YBeB3wujnbvKXb5nrgTX1nHiY38HAGLwa9rsv9ih6zfhDYA/yQwd621zB4/chOYFd3fky37TRw/pzb/iqD12zcAry6hdzAK7rbXD3ndMqk5553H68C3t3389zTAf+th3k+Pr2bA9d056+Zc/u9DPZ07X+e/k4jud/QPbf3Mti7dZ/n8ITmPonB0ZFbgL8E7j8puedtf6+f/26m3NidXjpJz+8D5H4dgwJ3LYM9i8eOK/tCJ/8ChCRJUsM8zCpJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZI0gZK8LsnV3emrST7ZdyZNJj80WJKkCdb9YffLgHfU4G+ZSvfinjlJkibbu4DLLHJazFTfASRJ0sKSvAr4ceCcnqNognmYVZKkCZTkKcB24JlVdXffeTS5PMwqSdJkOgc4Bvhk9yaI8/sOpMnknjlJkqSGuWdOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhU30HGKe1a9fWxo0b+44haUyuuuqqb1XVur5zSNIoHVZlbuPGjczMzPQdQ9KYJPl63xkkadQ8zCpJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsN6K3NJjkmyI8mu7nzNEtseneSOJO+es+5lSa5Lcm2SjydZO57kkiRJk6PPPXPnAjurahOws1tezO8Bn9q/kGQKeBfws1X1k8C1wDkjzCpJkjSR+ixzZwDbu8vbgTMX2ijJU4D1wCfmru5OD04S4Ghg9+iiSpIkTaY+y9z6qtoD0J0fN3+DJEcA7wTeMnd9Vf0QeD1wHYMS9zjgvQs9SJKzkswkmZmdnV3Zr0CSJKlnIy1zSS5Ncv0CpzOGvIuzgUuq6rZ593s/BmXuycDDGRxmfetCd1BV26pquqqm161bt4yvRpIkafJMjfLOq+r0xa5LcmeSDVW1J8kG4K4FNjsVeGaSs4GHAEcl+S7w0e7+v9Ld14dZ+jV3kiRJq1Kfh1kvArZ0l7cAF87foKpeXlUnVtVG4M3A+6vqXOAO4HFJ9u9q2wzcNPrIkiRJk6XPMrcV2JxkF4MythUgyXSS85e6YVXtBv49cEWSa4FTgD8YcV5JkqSJk6rqO8PYTE9P18zMTN8xJI1JkquqarrvHJI0Sv4FCEmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWpYL2UuyTFJdiTZ1Z2vWWLbo5PckeTdc9a9JMm1SW5I8o7xpJYkSZo8fe2ZOxfYWVWbgJ3d8mJ+D/jU/oUkxwJ/CJxWVY8H1ic5bZRhJUmSJlVfZe4MYHt3eTtw5kIbJXkKsB74xJzVJwE3V9Vst3wp8AsjyilJkjTR+ipz66tqD0B3ftz8DZIcAbwTeMu8q24BHptkY5IpBkXwkYs9UJKzkswkmZmdnV1sM0mSpCZNjeqOk1wKHL/AVW8b8i7OBi6pqtuS/GhlVd2d5PXAh4B9wGcY7K1bUFVtA7YBTE9P15CPLUmS1ISRlbmqOn2x65LcmWRDVe1JsgG4a4HNTgWemeRs4CHAUUm+W1XnVtXFwMXdfZ0F3DOCL0GSJGni9XWY9SJgS3d5C3Dh/A2q6uVVdWJVbQTeDLy/qs4FSHJcd76GwR6888cRWpIkadL0Vea2ApuT7AI2d8skmU4yTDF7V5Ibgb8HtlbVzaOLKkmSNLlSdfi8jGx6erpmZmb6jiFpTJJcVVXTfeeQpFHyL0BIkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSw3opc0mOSbIjya7ufM0i292T5OrudNGc9Y9K8rnu9h9KctT40kuSJE2OvvbMnQvsrKpNwM5ueSE/qKpTutOL5qx/O/DH3e3vBl4z2rhq2fE7Zjh+5xc5fsdM31EkSVpxQ5W5JDuTvGDeum3LeNwzgO3d5e3AmcPeMEmA5wAfOZTb6/By/I4ZOPJISODIIy10kqRVZ9g9c48CfivJeXPWTS/jcddX1R6A7vy4RbZ7QJKZJFcm2V/YjgX+oar2dsu3A49Y7IGSnNXdx8zs7OwyIqtJR3RP8eTey5IkrRJTQ273D8BpwH9OcjHwigPdIMmlwPELXPW24eNxYlXtTnIScFmS64DvLLBdLXYHVbUN2AYwPT296HZapfbtG+yZq/rnZUmSVpFhy1y6PWFnJ3kV8HfAgm9a2K+qTl/0zpI7k2yoqj1JNgB3LXIfu7vzW5NcDjwZ+CjwsCRTXaYTgN1Dfh06zHxz8/Tg0OoRR8C+fXxz83J2KEuSNHmGPeb0p/svVNUFwKuATyzjcS8CtnSXtwAXzt8gyZok9+8urwWeAdxYVQV8EvjFpW4v7ffNzdN887SfsshJklalocpcVf33ectXVdWvLuNxtwKbk+wCNnfLJJlOcn63zcnATJJrGJS3rVV1Y3fdbwH/NsktDF5D995lZJEkSWpWqg6fl5FNT0/XzIzvZpQOF0muqip3yUpa1XxrnyRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDXMMidJktQwy5wkSVLDLHOSJEkNs8xJkiQ1zDInSZLUMMucJElSwyxzkiRJDbPMSZIkNcwyJ0mS1DDLnCRJUsMsc5IkSQ2zzEmSJDWslzKX5JgkO5Ls6s7XLLLdPUmu7k4XzVl/TpJbklSSteNLLkmSNFn62jN3LrCzqjYBO7vlhfygqk7pTi+as/7vgdOBr484pyRJ0kTrq8ydAWzvLm8HzjyYG1fVl6rqaysdSpIkqTV9lbn1VbUHoDs/bpHtHpBkJsmVSQ6q8O2X5KzuPmZmZ2cPNa8kSdJEmhrVHSe5FDh+gavedhB3c2JV7U5yEnBZkuuq6isHk6OqtgHbAKanp+tgbitJkjTpRlbmqur0xa5LcmeSDVW1J8kG4K5F7mN3d35rksuBJwMHVeYkSZJWs74Os14EbOkubwEunL9BkjVJ7t9dXgs8A7hxbAklSZIa0FeZ2wpsTrIL2Nwtk2Q6yfndNicDM0muAT4JbK2qG7vt3pDkduAE4No5t5EkSTqspOrweRnZ9PR0zczM9B1D0pgkuaqqpvvOIUmj5F+AkCRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIb1UuaSHJNkR5Jd3fmaRba7J8nV3emiOes/kOTLSa5P8r4k9xtfekmSpMnR1565c4GdVbUJ2NktL+QHVXVKd3rRnPUfAB4LPBF4IPDakaaVJEmaUH2VuTOA7d3l7cCZB3PjqrqkOsDngRNWOJ8kSVIT+ipz66tqD0B3ftwi2z0gyUySK5Pcp/B1h1d/Bfj4Yg+U5KzuPmZmZ2dXIrskSdLEmBrVHSe5FDh+gavedhB3c2JV7U5yEnBZkuuq6itzrn8PcEVVfXqxO6iqbcA2gOnp6TqIx5YkSZp4IytzVXX6YtcluTPJhqrak2QDcNci97G7O781yeXAk4GvdPdxHrAO+PWVzi5JktSKvg6zXgRs6S5vAS6cv0GSNUnu311eCzwDuLFbfi3wPOBlVbVvLIklSZImUF9lbiuwOckuYHO3TJLpJOd325wMzCS5BvgksLWqbuyu+1NgPfDZ7mNLfme88SVJkibDyA6zLqWq/g9w2gLrZ+g+ZqSqPsPgo0cWun0vuSVJkiaNfwFCkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSGWeYkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhqaq+M4xNklng633nANYC3+o7xCFqNbu5x2tScv94Va3rO4QkjdJhVeYmRZKZqpruO8ehaDW7ucer1dyS1CIPs0qSJDXMMidJktQwy1w/tvUdYBlazW7u8Wo1tySnQq+SAAAEcklEQVQ1x9fMSZIkNcw9c5IkSQ2zzEmSJDXMMjdCSd6Y5PokNyR50yLbPDvJ1d02nxp3xoUcKHeSH0tycZJrum1e3UfOLsv7ktyV5Po5645JsiPJru58zSK33dJtsyvJlvGlPvTcSU5J8tnu+35tkpe0kHvOtkcnuSPJu8eTWJJWP8vciCR5AvBrwFOBJwEvTLJp3jYPA94DvKiqHg/80tiDzjNMbuA3gBur6knAs4F3JjlqrEH/2QXA8+etOxfYWVWbgJ3d8r0kOQY4D3gag6/1vKVKyAhcwCHkBr4PvLJ7vjwf+JPueTQuF3Bouff7PWAifmmRpNXCMjc6JwNXVtX3q2ovg//Afn7eNr8MfKyqvgFQVXeNOeNChsldwEOTBHgI8G1g73hjdkGqrugef64zgO3d5e3AmQvc9HnAjqr6dlXdDezgviVlZA41d1XdXFW7usu7gbuAsf2Fg2V8v0nyFGA98ImRBZSkw5BlbnSuB56V5NgkDwJeADxy3jaPBtYkuTzJVUleOfaU9zVM7nczKH27geuAN1bVvvHGXNL6qtoD0J0ft8A2jwBum7N8e7euT8Pk/pEkTwWOAr4yhmxLOWDuJEcA7wTeMuZskrTqTfUdYLWqqpuSvJ3BHp/vAtdw371XU8BTgNOABwKfTXJlVd081rBzDJn7ecDVwHOAnwB2JPl0VX1nrGGXJwusa+ZzepJsAP4M2DJhRXoxZwOXVNVtgx26kqSV4p65Eaqq91bVT1XVsxgcmto1b5PbgY9X1feq6lvAFQxep9arIXK/msHh4aqqW4CvAo8dd84l3NmVnf2lZ6HD17dz7z2OJzDY09inYXKT5Gjgb4Dfrqorx5hvMcPkPhU4J8nXgD8CXplk6/giStLqZZkboSTHdecnAi8GPjhvkwuBZyaZ6g5pPg24abwp72uI3N9gsDeRJOuBxwC3jjPjAVwE7H936hYG3+f5/hZ4bpI13Rsfntut69MBc3dvNPkr4P1V9ZdjzLaUA+auqpdX1YlVtRF4M4P8S71RQpI0JMvcaH00yY3AxcBvVNXdSV6X5HUwOKQJfBy4Fvg8cH5VXb/43Y3NkrkZvCPx6UmuY/Duxd/q9iyOXZIPAp8FHpPk9iSvAbYCm5PsAjZ3yySZTnI+QFV9u/s6vtCd/kO3bqJzA/8KeBbwqu4jba5OckoDuSVJI+Kf85IkSWqYe+YkSZIaZpmTJElqmGVOkiSpYZY5SZKkhlnmJEmSGmaZkyRJaphlTpIkqWGWOa1aSX46ybVJHpDkwUluSPKEvnNJkrSS/NBgrWpJfh94APBA4Paq+o89R5IkaUVZ5rSqdX/L9AvA/wOeXlX39BxJkqQV5WFWrXbHAA8BHspgD50kSauKe+a0qiW5CPgL4FHAhqo6p+dIkiStqKm+A0ijkuSVwN6q+p9JjgQ+k+Q5VXVZ39kkSVop7pmTJElqmK+ZkyRJaphlTpIkqWGWOUmSpIZZ5iRJkhpmmZMkSWqYZU6SJKlhljlJkqSG/X+CQr6ppORceAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
-    "_ = zy_axes.plot(z, y, '.')\n",
-    "_ = zy_axes.set_xlabel('z')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/longitudinal transporter.ipynb b/notebooks/longitudinal transporter.ipynb
deleted file mode 100644
index 89d01ab..0000000
--- a/notebooks/longitudinal transporter.ipynb	
+++ /dev/null
@@ -1,326 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import LongitudinalTransporter\n",
-    "\n",
-    "transport_model = LongitudinalTransporter(simulation_clock, carp_eggs)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VfWd//HXJyuQsMoWshCQXVDUCCqIKDtSsK1a7WatLb+205nOTFtrnfn9Ou3MWDu2tfZhR4exVu2o1dFa1yrI4lqpN6KIoIgRSNiRNfv2+f1xTzSGBBJyk3tP8n4+HjzuPed8783n5Hjg7fd7vueYuyMiIiIi4ZQU7wJERERE5OQpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIilxLuAzjRw4EDPz8+PdxkiIiIiJ1RYWLjf3QedqF23CnP5+flEIpF4lyEiIiJyQma2rTXtNMwqIiIiEmIKcyIiIiIh1q2GWUVERETaatUzL/L2O48zeGiE3X36846dRu6uJG746o/jXRqgMCciIiLykUgkwksvvELPnhGysjfwYvp5PJcyn/JJ86llEWXWB4CU/Bq460cJEegU5kRERKTbikQivB55hL79XyUj40OeT72A506fR7mdRhXpVFrGsR8yo9ZTWTd0YOcX3AyFOREREek2IpEIL65YTa8+b5CVu5GX0s/judHzKGP2ccNbc6ysfwdX2zoKcyIiItIlFRcX8/LLL7Nnx8sMzX6L3X368+fUBRSfM4laO6v14c39mCZJXs+Fu492UOVtozAnIiIiXUJxcTFPrVgNFcsZlrsxer3bwPmUD7qUWi776Hq3Y7QivPWoL6eH19GjJp2xh5NYuKuIq//xmx2wF22nMCciIiKhFIlE+Otf7ueUQYVE+p3BcylzKB+eA1zTtiHTZsJbz/pyetQl0a8qjSu3VTFvxxHqU4xefZIYeOGpZF51Tux36CQpzImIiEjCKy4u5oWnnuLQkbcYmPs2kf6TeC5lLuUTLqGKzzQf3KD14a2ukp51yfStTubKbVXM2XWE1B7J9M/Ppvfi0aQPb6FXLwEozImIiEjCKS4u5rEHHiO116uU51fxbPocikeNwCyfOpZw0Jp5ZGkrgxs4mfVlpNal0K8qlc9sK+WSPeX06tmbzNwBCR/emlKYExERkbhqmKjw3jtFVOQe5PXcMRQnDaf27AnUMqld17pBdMg0/aPr3YzLth9mXFk1vXL7kzN3DOmLwxPcmqMwJyIiIp3u/gdXsGX9a1SeeoDXc8ZRPDCPyguGUWa9m/9AK3vdeng56V5NUl0P+lam8OntR1m4uxxSk+mVnULO3ImkXxXu8NaUwpyIiIh0uAdu/A1bjuxj28Q0IkNOp/yUXtRdPL358NbCfd2ON8u0X1UqV7xfw7xdRyhLr6Ti7B5cuGRRjPciMSnMiYiISEwVFxfzv7+9ny0903h73DD29epP7ZTxVNtkKq3XsR9ow7Vu/eoPM6AK0qsyWFhcxoLdpdSk19Jjejbjv3NezPclDBTmREREpF1evu1eXir6gK1DerNxXDb7evWncvp5lCe1Z8jUyfBSUryOHrVpjDmQzOXbjpBfeSTa6/aZi2K+H2GlMCciIiKtVr5uHct//ygrBp1CZMSpHOqXgY/LoXZcfvPhrU0zTEvpQRWjS6u58p0URh8tY2fGXpIvGMqC+ZfGfF+6CoU5ERERadFTtyxjw+49bO/Xm8iIURzql0HNwtnt7HVrmKhQRSp1jCqt5sp3k8kvO8rz2W8ycuYZXH7p5QCcFcud6aIU5kRERASI9ro98btH2Nwrhbdyc9g4YjjVk0bBpFEcSeoHNAlqrZ6o0DBkWksmlXx61y4WvzOIipRqNows5uwFFzH50skAnMvlMd+vrk5hTkREpJv660PLWfPaOrYO7EXh8BHRIdPFF1NFOlVJ7ZuokOGl9PRKRtTv5IriDzmjaCyVqdVUnJXGhV+69qOWU2O3O92WwpyIiEg3cfeP76C48gBv5WSxcUQO1QNSqJ3X/okKmX6UZOpI9dqPwtvEraM42K+cwbMmMXHu2THfF/mYwpyIiEgXVFxczIPL/kBRZjqFw0dGe92mjYlJr1umH6UHleTXl7CkajWnb80lbe95JA3tybhLPkP63K51U95E1+lhzszuAhYBe919YrDuX4CvA/uCZje4+9PBth8C1wJ1wN+5+7PB+vnArUAycKe739SZ+yEiIpJIHvjN/WwpeZ+3cnJYnzeS2jSj/sKp7Z6o0NPLyfAyBtUfIdtLmFET4Yytudj+c6g4awgXLv6fGO+JtFU8eubuBm4D7m2y/hZ3/3njFWY2AbgSOA0YBjxnZmOCzb8B5gAlwGtm9ri7b+zIwkVERBJBcXExj/z2IY5Ul7IhO5sN+SOpGTOM6rHDY9LrlkwdmV7Bwuo1LCpKCXrd+jLukrmkD//7mO+PtE+nhzl3f8HM8lvZfAnwB3evAj4wsy3AlGDbFncvAjCzPwRtFeZERKTLaZioUJFawdvZOWwcOZzq6We2e8i0p5eTRhWpXku+b2dx1RrO2JqH7S+ITlRYfHMH7I3EWiJdM/dtM/syEAG+6+4HgWzg1UZtSoJ1AMVN1jc7IcbMlgJLAfLy8mJds4iISEz99aHlPB95g4qUSnb17c2GUXns79+XunnntD68taLX7ZLq51lUlErKninszNxP8vkDWTBHQ6ZhlChh7nbgXwEPXn8BfJVjbmgDQZukFtYfu9J9GbAMoKCgoNk2IiIi8fLs3Y/w2uZNrM/OZsPw4dT0T8PmFlBLCuVJmTT7T2Erwlu0162SVGo/MVEhdc+5QXg7nynfjj5VQTfmDbeECHPuvqfhvZn9N/BksFgC5DZqmgPsDN63tF5ERCQhrXrmRda+8hLVddW8PSy41i37FKpzLmq+xw3aOGRaSaZXsKB2BbOrIvQsvhD2n82GEUc4e8H3mLwoemNehbeuJSHCnJllufuuYPHTwIbg/ePA/Wb2S6ITIEYDfyX6vymjzWwEsIPoJInPd27VIiIix7fqmRf5y0svUeNVbBwWXOs2Y2oMbg/y8fVumV7BgpqVzD1URI+Smeyt703y+Rcxc/6tH7XVjXm7tnjcmuQBYCYw0MxKgB8BM81sMtGh0q3A/wFw97fN7CGiExtqgb9x97rge74NPEv01iR3ufvbnbwrIiIin/DwT+9k09G97OiXwbrhwUPoZ7YhvLUQ3DL9CMnUghuZlLOg+nk+VZSC7zub54e9wciZ5zFj7C87YI8kDMxb+A+nKyooKPBIJBLvMkREpAt4Y+0mVj35LKX1pezs25sNp+byYZ8+VFla6+/tdpzh0mhwq2RhxSvMPfgB6XvOCXrdTmHBBZd2wB5JojGzQncvOFG7hBhmFRERSXR/fWg5Lxa+QVlyJRuyh0Wvd5sxmTpLaj68ncy1bjWrmHuoiIzts6iryA5uD/JvHbA30pUozImIiDTj2bsfIbJ5EyX9+vB6w+Ow5hTE7N5umV7OgppVzDtURNKO6bzU+5CGS+WkKMyJiEi3V1xczBN3/y/7K8rZ3bcv60dl82F2X6pyZsTsIfSZHr3WbeEHxr7DI3ln3B7mTf8ykwdHZ5hOi+0uSTeiMCciIt3OeytX8uzyV9g4oD+F+SM41K8Xft7klu/t1taH0HsV+b6dT1WtZkJxFi+QzN6xlVxWcA2TF0bD25KY75V0VwpzIiLSpRUXF/Pc8tXs3FbCm0OygofQp1I/58KYPIQ+jUpSvS56Y96jhQzZMYBV/fcxbcosLh97HwAXxHKHRJpQmBMRkS6luLiY5Y88yc59+3lrWA4bR+ZQPTyHquGnxvAh9OUsqFnJnMPvc2T/mWwclsS86UuYPPirACyO7S6JHJfCnIiIhFokEuH5Py/n/fQMChvu7TZxLFWc3q7w1nBvt1SvCx5Cv5pxxUN5kZTokOnZ13x0vdunYr1TIm2gMCciIqHy8fVufVg/Kri323nT23Vvt6YPoV9Q8RLzDm4nae+ZrMnYx96xlUyZ8n0mL5rMjJjvkUj7KMyJiEjC+mjIdO8edvTtw4ZRw/mwT1+qWrrera3XulFLfn0xi6tWM754KK94MiNnncPlY3/6UVvNMpVEpzAnIiIJ5alblrFuz05KBvRh09hs9p12KpUTT4tBeIve221+7XJmV71G+Z5JbOjdm3mzvsTkwV8DNFFBwklhTkRE4uapW5axbu9O6qyWopEDeDNvPOWTRlE7aVw7wtux93abX1TPyw4j557L5WN//VHLS2K7OyJxoTAnIiKd5uGf3smmIzt5K2cYG0cMp3rSKGBUcH+39oW3hnu7La5azfjtQ3mlriG83QzA9JjvjUhiUJgTEZEO8/BP72S1VfDm6Gw+7NObunNGUsX45meZQtvDW30Jlx4pZEhJXzYOqdKQqXRLCnMiIhIzD/3kbl6ww7x1+lD29epP5Tlj2n1j3mh4K6WHV5JfX8ylR15nWEkfLDuDBZf/MxC9t5tuDyLdlcKciIiclPJ163j4d0/x1Ohs3j41h+q0ZGrPH9muiQrgZPhRUrwumGm6k0t37MIO7+Hs2VOYPPFa4NpY74pIqCnMiYhIq7x82728/MEHbDitH2/mjKYiqQdViy9q1415G2aZpnod+bW7WHL4TbJ39cDGZLNg4bc6YC9Euh6FOREROUb5unU8/vs/8+jILN4eGe11Y1wOVePa80isj3vdMilnQfUazis50uj2IHM6ZF9EujqFORER4a8PLefFwjdYmzeIjSOi4a1q4YWtn6jQ4pBpKT0bXev2yYkKPwd0exCR9lKYExHpZnYXHebR/36ED30H743K5M28cZQPSKdqzrQYDZnWkl+/g0t37ObDwzsYeW4el597HQ3XummigkhsKcyJiHRxK+/8M3/dvJFN41JZnzOa8qR0mJVPLaNaN1mh2V436OHlpFNFhpezsPp55m2tb3Rvt2s6YE9EpDkKcyIiXczdP76DZ07pwfr8PGrSk7D8dKryz23XkGlDrxsOmVRwSWkh89/ryabMI5z92c8yeXD0xry6t5tI51OYExEJsTUvl/DXR56mcGQabwXhrXrapHbelPfj8NbQ63ZJkbH3cD7vjN/HvOlLmDw4eqXb+bHcGRE5KQpzIiIh8sJ9z/PEO0W8Orkf+/tkUmfJVC08rV3Xuh07y/R5zis53GiW6c0ftVwSu10RkRjp9DBnZncBi4C97j4xWDcAeBDIB7YCV7j7QTMz4FZgIVAOfMXdXw8+czXwz8HX/pu739OZ+yEi0tHK163jpd8s5/djclg3cXD0prxDUijPmtz8B9p4rVvDvd0WHVlH7aG9DDn9jGCiwiJAs0xFwsK8hZO9w36g2QygFLi3UZj7D+CAu99kZtcD/d39B2a2EPhbomFuKnCru08Nwl8EKAAcKATOdveDx/vZBQUFHolEOmzfRETao3zdOv50+1M8eVou60cPozothSrSYjDDtBIwMr2CS0ojnLu1WjflFQkBMyt094ITtev0njl3f8HM8pusXgLMDN7fA6wBfhCsv9ejifNVM+tnZllB2xXufgDAzFYA84EHOrh8EZGY2frn11jxWCEvn1XNG/nRWaZVV8TiiQqVZHgFC2tWMe9QEek7ptP71NGM//QS1N8m0vUkyjVzQ9x9F4C77zKzwcH6bKC4UbuSYF1L649hZkuBpQB5eXkxLltEpHUanmO6Nqsvb48fzN6M/tSmplB1WQuTFVp9U96jpFAXnahQs5K5h96nZs8ZDDnjDCbO/mWH7IuIJJZECXMtaeZ/RfHjrD92pfsyYBlEh1ljV5qISMs2L3uEZwo3UnhOb97MG0t5Ujq1i2dQnpRJs3+FteH2IKley/D6Yj5zZB2TPhhO76wBjP/itTRc6yYi3UuihLk9ZpYV9MplAXuD9SVAbqN2OcDOYP3MJuvXdEKdIiLNeugnd7PlyA6KJhuRIadTPrI/VSMvjskTFTK8nHnVq1lSlEzPw6MZN3cS6edc2wF7ISJhlChh7nHgauCm4PWxRuu/bWZ/IDoB4nAQ+J4FbjSz/kG7ucAPO7lmEemmXrjveV5/5Q08dzMfjM/kxV4XUHZ+HtU2mko72SHTTz5RYUH1amZtLWVwahIT518Dub/ogD0Rka7gpMOcmU1w941N1s109zUn+NwDRHvVBppZCfAjoiHuITO7FtgOXB40f5roTNYtRG9Ncg2Aux8ws38FXgva/aRhMoSISKz9988eYe/+d+kxcDvbxvXjxcHTKfv0JKrtbCot49gPtCK8ZfgRUqgDhwzKmVf6V07btZmJfSuZfMENCm8i0monfWsSM9sA/B74D6BH8Frg7ufFrrzY0q1JRORE1rxcQuGDq6hMLaJswhFez51AcVIeNaRQbWknHd4+7nWrYGHpa1zyXga9KnoybuoppM+7qoP2RkTCrDNuTTIV+BnwCtAbuA+Y1o7vExHpdH++fQ1vbyikrPcBakZXEMmdQPHiPCotnzJr5iH00Prw5lVkUMGi0gife7+SUf2qSJ97JeT+S8z3Q0S6r/aEuRqgAuhJtGfuA3evj0lVIiIdYHfRYf50+5Mc8G2kDwqGTEdNp2z0mdRZSvPhrZWTFRrCWyaVXLq7mM9vTyVnzgTSz7kY3dtNRDpSe8Lca0QnKpwDnAL8l5ld5u6XxaQyEZF22F10mKfuXc3usk3UpZRRdOog3sgbQ/m8LCCLapvRuiFTOE54qyazvpr5u7ZzVfXrwUSFi2O/MyIix9GeMHetuzdcgLYbWGJmX4pBTSIibdbQ6/Zh/XscHOm8OWIkO6dnUcNUakmhPKmVQ6bQTHhzMupLSaGOzPpqzt1fyNf5azBR4aKY74uISFucdJhrFOQar/t9+8oREWmdp//0HhtWPUVFr32UTMzgtSGnUz4vi1py2xncoCG89aSKEWXlnLVzHZ8+LY3JM24Its+L1W6IiLRbotxnTkTkuBomKiTlbGbrhP68mDGdssWnU23prbu3Gxz//m5eRSp15JUfYcGh1/nbi5ZA7oygxZLY7YiISIwpzIlIwlnzcgnr73uVSt/IvtPqeGPkSHaOzqJm9JlU29R2XOsWPMvU6wAjs76aBfvX8W9jhkLBVxq1+2zsdkZEpIMpzIlI3N37xLvsevLPWJ8DvD85g7WDT6P8MwOoZWbrh0xbfBB9KT29ivzaXcw5+gpjD33A/DOvahTeNGQqIuGmMCcinapw20HuffJdBm96kbfHD2T9iByqe6bA5e0fMm08XDq8ZjcL9r/At8dPaxTcvhzTfRERSQQKcyLSoQq3HeSZ/3oar36PbZN78NqQiZSP7UXV2PObfwg9nNS93Wbve4eZe19iwbTFjcKbJtiLSNenMCciMXP/2u2sf3AVvZN3svOUDDaNz2J3r37UXpxFteW3c6JCdMg0xRtuD/I6X8/xRjNMFwL/GLudEREJCYU5ETkphdsO8tCDGxm4bTtpw9by/sR0Xux1AWUL86hlJOVJmUAzQa1V17o1HjKtJb9mD1fte5EvTDhf17qJiDShMCcirdIwXGo1u+kxsIit4zJ58cwLKDtrCNV2WbueptDTy0mjChwyqGDe4Rf46fDxTWaYashURKQ5CnMi0qzCbQdZedtvqU4up3z0EV7PHUfxxXnUkNX624OcoNctg3Jm1SzngkMrWTz6+43Cm55lKiLSWgpzIgJEr3fbfN8D9M3aTtWYo6zpcwHF806n0no0/wB6aFV4y/AjpFAHDplUsuDDV/m3/c/C1G8G4W1RzPdFRKQ7UZgT6aZWvLaRtX/8Exn9dvDBuMzo9W6Lz6HOzqXM+hz7gTbPMK3g4vI1XLF/Oef0mgjTvhM8hH4h8JOY74+ISHelMCfSTay69Q7WvV/MwTOqiOSOozgpj5pZ51Jtae263u2j8FZfw4Id27my9nUmzr8mCG6XADfHfF9ERORjCnMiXdQDN/6G3baRDyYEvW6njaFu4oTWD5lC84/Dqi8lhejtQS7dtZ3rhmaSPu+qmNcvIiKtozAn0gU8dcsy1u3ZSa9+u9k+rh/PZ0ynbMp4qu2MdvW6NYS3nl7FyLIKPrVzHV+fMrzJLFMREYknhTmRkClft46Hf/cUHw7bTdXoo6zpM53iSfnUTBpFnSXH4Hq3atLcGX60nC/vX84VZ53VKLwtjum+iIhI+ynMiSS4rX9+jSef/gtbxx3hzRG57EzLombx+S0HN2j9Q+iDIdPe9dV8tmQ7/3hoBekzFjYKb5ppKiKS6BTmRBLMuvte5fm16ykZs4s3R+azMy2LiiWTKU9qz7Vun3wI/ajScv5xx3pmTM1tMmT69Zjsg4iIdB6FOZE4+9296ykr+hPlk4pY1WcaxUOGU7F4HOVJ5xzbuLngBs1PVAieY9q7vpolJdu5zjeRPvdKyJ0StFkSy90QEZE4SagwZ2ZbgaNAHVDr7gVmNgB4EMgHtgJXuPtBMzPgVqI3rSoHvuLur8ejbpHWWvNyCYUPrqLPqWt4d3QfVqbNpnxYL2qzL6TMPnXsB05iokJ++VG+XLGFK6bNbBTcRESkq0qoMBe4yN33N1q+Hljp7jeZ2fXB8g+ABcDo4M9U4PbgVSRh3PvEu5Q8t5ry098nkjuW4qQ8apfkUMVX2zHL9ONet1R3hpbu56sD9vP5i7/VIfsgIiKJLRHDXFNLgJnB+3uANUTD3BLgXnd34FUz62dmWe6+Ky5VigC/u/VhSo++TPn4g6zuM43insOpXDyBMmvh/zPaEN56ehUjqvdx/gdvsmBSXybPuCHm9YuISPgkWphzYLmZOfBf7r4MGNIQ0Nx9l5kNDtpmA8WNPlsSrPtEmDOzpcBSgLy8vA4uX7qTe594l73PreDI6dt4JzuHXUlDOXBafyrt0nbdHuQT4a1mL1MPbmbR7E8zefDkYPvnY7kbIiIScokW5qa5+84gsK0ws3eO07a5K8GP+ZcxCITLAAoKCpr7l1PkhAq3HeTpu1YypHYNh846yqo+04Net9Mps2nNf6gNs0zTvIo0dwYfPcD8IQe4btr/ifEeiIhIV5VQYc7ddwave83sUWAKsKdh+NTMsoC9QfMSILfRx3OAnZ1asHRZ96/dTsl9T5EzvJB14zN5Lm025RcMoNYub32vG7Q4ZJrsdfSugXO3vsvXL+jD5InqbRMRkZOTMGHOzDKAJHc/GryfC/wEeBy4GrgpeH0s+MjjwLfN7A9EJz4c1vVycrLufeJdSgsfonTC+6zqP41iG07tkrFUMan9j8MKhkxPLa3grF1bWPLZixsNmV4Uy90QEZFuKGHCHDAEeDR6xxFSgPvd/Rkzew14yMyuBbYDlwftnyZ6W5ItRG9Nck3nlyxhVLjtIPc++S6TS+/g8ISjPNtjPtt75lF5wQzKrIUnHrQqvNXTp/4wBqQ6ZJUe4pozR/L5/Bmx3gUREZGPmDfbm9A1FRQUeCQSiXcZ0snuX7udd5+9j0n5T7N20GSeS51HufWilvY9x7Rxr9uwioN8ZdIYPp8/uZl2IiIibWdmhe5ecKJ2idQzJxIT96/dTvnDN3Lg7FJWnXIhxZZH7bQp3MMF7RoybTxRIb+mhn+ZdgEFfZv5PhERkU6kMCehVbjtIHc8/z57iw5z1ilP8Zcx4ylOHk4tKdTOv6r1D6GH405UyKip56u9TuFvL2xh1qqIiEgcKcxJKDQEt407DzMn4zFeHTOJPUlZJGfVcWRYb9Ymfan5D7bxcVjpXkP+kQq+MjyLKwp0rZuIiCQ+hTlJSI3D28SBr7B2+JmUD+tFXXYqd1gLc11afXuQhiHTapJrkzi11Llh0gTOHzu4mQ+LiIgkNoU5SQgN4W1w0bOUTTrM831mUDasF9XZPXi/uRmmbQhu4PSqLyXZ68msTuKKw/CP0yaTPryFYVgREZEQUZiTuGgIb7Vlr7Ju5KmUJ6djw6Aq+8KY3Nct2WtJ8XryjlbztT6DuGy2hkxFRKRrUpiTTnH/2u3ctm4baYN2sK/PAGothaph6VQmtfJRWC0Et0F1e6i3ZMAYVnqEq7b14opzJ5M5NSvWuyAiIpKQFOakQ9y/djtvvnAXb4zPp6THMCroQfmY3sDYYxu38dYgqdQxrPQIn91tXLNgtoZLRUSkW1OYk3ZrGDLtefhVXhxzKmXJ6dSRQtnZS45t3Orh0o/DWwYVXLD7XS7dM4Rpl31K4U1ERKQRhTlps/vXbueul4qY0H8tL+aeRrn1ig6Z5jQzZNqGXrd0qnCHXvVVzCnezVeHn8b42Q3feUlsd0JERKSLUJiT42rodUuuf5m12adSbWn09AoOnNGfDUlzj/1Am27IW0sG5Vxc+hdmbTby5n6aiZPP7pD9EBER6aoU5uQTCrcd5ImVT1La7x1W9j6PMutFdXY6ldbCbNBWTlTI8FJ6eAW59SVcWFzEGYcGsPC73w22t/BwexERETkhhblurnDbQX775//llZG5lCelY0DV8BFU2sRjG7dxyDTFa8mu2c3sor1MOn0UCy64NPY7ICIi0s0pzHUzhdsOct/z97E6Kz96rRvpVI45p/nGrep1azxRoZwLy15m9LaDTLvyG0wePDnG1YuIiEhTCnNd3OMP/ScvJBezss+06JCptW+iQoYfpX/9QSqsJ2nUcP7uTVyYmsoVn/tO0EJDpiIiIp1JYa6LueWO23g2pzfFPbKoJYWqU06n0s47tmGbe90qmLZ7IzM+2MsV//fmRi00y1RERCSeFOZC7rv/85+sGpJHufWilhTKxpz8ExWa3h7k/A82c9EZVVx+7nVBCwU3ERGRRKMwFzK/XHYDy4efSnFyLmWWQeWwVvS6wXGfqJBBOReVvsypJe8xbeZnmDzx80GLBbEtXkRERGJOYS6B/fy//x/P5Q1nT/IQkr2OI9abI6MuP7Zhm8NbBVN3vckZW1/nm1+5DnIvRte6iYiIhJPCXIK49cHf8VTvZHakDaWGFOoshbJTP9184zbc2y3Zaz8aMj2/1zt88Uu3B9s1ZCoiItIVKMzFyS/u+SdWZI2gOCmPSnpQNqiF23g01+sGxwS4jx9CH72326yiPZw+IoMFC78VtNCJvMf1AAAgAElEQVSQqYiISFekMNdJvnv3z1iVHX2Oaa2lUJZ72bGNWhncgpVkeCl9/ChT977NxHcOMP2K0xtd7yYiIiLdQajDnJnNB24FkoE73f2mOJcEQORwGT9c+SQ7e/enxlKi93bLO9nnmAI4g+r2UG/JgDG09DCzDu/nhqu/EWzXkKmIiEh3FdowZ2bJwG+AOUAJ8JqZPe7uG+NV08133Mhj+WPYkjYS+o05tkEbH0KfSh1DSw8xa38JN3ztHzqkZhEREQm30IY5YAqwxd2LAMzsD8ASIC5h7uY7buRXY+ZQ1/ArbUOvW/Qh9JXk1Oxh+uYtjJs/kcvHNjNrVURERKSJMIe5bKC40XIJMDVOtbC5fy/qSP5kiDvO7UFSqSPn6BEmvbORqZ8Z93F40zwFERERaYMwh7nmZgsck57MbCmwFCAvL6/DihlzsJzkQXXUeeOyPh4yzaCC83dvon/1YS5b9NlGD6H/bIfVJCIiIl1fmMNcCZDbaDkH2Nm0kbsvA5YBFBQUNP8A0hj4/jdugDtu5Lm8HPamDWBI/R7mbtvKuJFzWTj74qCVJiqIiIhIbJm38ID1RGdmKcBmYBawA3gN+Ly7v93SZwoKCjwSiXRShSIiIiInz8wK3b3gRO1C2zPn7rVm9m3gWaK3JrnreEFOREREpCsKbZgDcPengafjXYeIiIhIvIR2mPVkmNk+YFsH/5iBwP4O/hnSdjouiUfHJDHpuCQeHZPE01nHZLi7DzpRo24V5jqDmUVaM74tnUvHJfHomCQmHZfEo2OSeBLtmCTFuwAREREROXkKcyIiIiIhpjAXe8viXYA0S8cl8eiYJCYdl8SjY5J4EuqY6Jo5ERERkRBTz5yIiIhIiCnMiYiIiISYwlwMmdl8M3vXzLaY2fXxrqe7MLNcM1ttZpvM7G0z+06wfoCZrTCz94LX/sF6M7NfB8dpvZmdFd896LrMLNnM1pnZk8HyCDNbGxyTB80sLVifHixvCbbnx7PurszM+pnZw2b2TnDOnKdzJb7M7B+Cv7s2mNkDZtZD50rnM7O7zGyvmW1otK7N54aZXR20f8/Mru6M2hXmYsTMkoHfAAuACcBVZjYhvlV1G7XAd919PHAu8DfB7/56YKW7jwZWBssQPUajgz9Lgds7v+Ru4zvApkbLPwNuCY7JQeDaYP21wEF3HwXcErSTjnEr8Iy7jwPOIHp8dK7EiZllA38HFLj7RKKPp7wSnSvxcDcwv8m6Np0bZjYA+BEwFZgC/KghAHYkhbnYmQJscfcid68G/gAsiXNN3YK773L314P3R4n+45RN9Pd/T9DsHuDS4P0S4F6PehXoZ2ZZnVx2l2dmOcAlwJ3BsgEXAw8HTZoek4Zj9TAwK2gvMWRmfYAZwG8B3L3a3Q+hcyXeUoCeZpYC9AJ2oXOl07n7C8CBJqvbem7MA1a4+wF3Pwis4NiAGHMKc7GTDRQ3Wi4J1kknCoYczgTWAkPcfRdEAx8wOGimY9U5fgVcB9QHy6cAh9y9Nlhu/Hv/6JgE2w8H7SW2RgL7gN8Fw993mlkGOlfixt13AD8HthMNcYeBQnSuJIq2nhtxOWcU5mKnuf8z0n1fOpGZZQKPAH/v7keO17SZdTpWMWRmi4C97l7YeHUzTb0V2yR2UoCzgNvd/UygjI+HjZqj49LBgiG4JcAIYBiQQXQIrymdK4mlpeMQl+OjMBc7JUBuo+UcYGecaul2zCyVaJC7z93/GKze0zAkFLzuDdbrWHW8acBiM9tK9JKDi4n21PULhpLgk7/3j45JsL0vxw53SPuVACXuvjZYfphouNO5Ej+zgQ/cfZ+71wB/BM5H50qiaOu5EZdzRmEudl4DRgczkNKIXsD6eJxr6haC60V+C2xy91822vQ40DCT6GrgsUbrvxzMRjoXONzQjS6x4e4/dPccd88nei6scvcvAKuBy4JmTY9Jw7G6LGiv3oYYc/fdQLGZjQ1WzQI2onMlnrYD55pZr+DvsoZjonMlMbT13HgWmGtm/YNe17nBug6lJ0DEkJktJNr7kAzc5e7/HueSugUzmw68CLzFx9dn3UD0urmHgDyif2Fe7u4Hgr8wbyN6UWo5cI27Rzq98G7CzGYC33P3RWY2kmhP3QBgHfBFd68ysx7A74le73gAuNLdi+JVc1dmZpOJTkpJA4qAa4j+j73OlTgxsx8DnyM6M38d8DWi11npXOlEZvYAMBMYCOwhOiv1T7Tx3DCzrxL9Nwjg3939dx1eu8KciIiISHhpmFVEREQkxBTmREREREJMYU5EREQkxBTmREREREJMYU5EREQkxBTmREREREJMYU5EREQkxBTmREREREIs5cRNuo6BAwd6fn5+vMsQEREROaHCwsL97j7oRO26VZjLz88nEtGTaERERCTxmdm21rTTMKuIiIhIiCnMiYiIiISYwpyIiIhIiCnMiYiIiISYwpyIiIhIiCnMiYiIiISYwpyIiIhIiCnMiYiIiISYwpyIiIhIiCnMiYiIiISYwpyIiIhIiCnMiYiIiISYwpyIiIhIiKXEu4CWmNlW4ChQB9S6e0GT7V8AfhAslgLfdPc3O7VIERERkThL2DAXuMjd97ew7QPgQnc/aGYLgGXA1M4rTURERCT+Ej3MtcjdX2m0+CqQE69aREREROIlka+Zc2C5mRWa2dITtL0W+HNzG8xsqZlFzCyyb9++mBcpIiIiEk+J3DM3zd13mtlgYIWZvePuLzRtZGYXEQ1z05v7EndfRnQIloKCAu/IgkVEREQ6W8L2zLn7zuB1L/AoMKVpGzM7HbgTWOLuH3ZuhSIiIiLxl5BhzswyzKx3w3tgLrChSZs84I/Al9x9c+dXKSIiIhJ/iTrMOgR41MwgWuP97v6MmX0DwN3vAP4fcArwn0G7Y25fIiIiItLVJWSYc/ci4Ixm1t/R6P3XgK91Zl0iIiIiiSYhh1lFREREpHUU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCLGHDnJltNbO3zOwNM4s0s32cmf3FzKrM7HvxqFFEREQk3lLiXcAJXOTu+1vYdgD4O+DSTqxHREREJKEkbM/cibj7Xnd/DaiJdy0iIiIi8ZLIYc6B5WZWaGZLT/ZLzGypmUXMLLJv374YliciIiISf4kc5qa5+1nAAuBvzGzGyXyJuy9z9wJ3Lxg0aFBsKxQRERGJs4QNc+6+M3jdCzwKTIlvRSIiIiKJJyHDnJllmFnvhvfAXGBDfKsSERERSTyJOpt1CPComUG0xvvd/Rkz+waAu99hZkOBCNAHqDezvwcmuPuReBUtIiIi0tkSMsy5exFwRjPr72j0fjeQ05l1iYiIiCSahBxmFREREZHWUZgTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCbGEDXNmttXM3jKzN8ws0sx2M7Nfm9kWM1tvZmfFo04RERGReEqJdwEncJG7729h2wJgdPBnKnB78Bo3N99xI8/l5VCSNpSaGP5qU6mlp1dQYT1j+r2qpevVkih1qBbVolq6Vi2JUkei1JJBBTN2vM2tV18Xl5/fVIf+Fszs28B97n6wA75+CXCvuzvwqpn1M7Msd9/VAT/rhG6+40Z+NWYOdQmfj0VERKQ9jtCfB3OHwT3/kRCBrqOTx1DgNTN7HbgLeDYIX63hwHIzc+C/3H1Zk+3ZQHGj5ZJg3SfCnJktBZYC5OXltX0PWmlz/17UkQxmHfYzREREJEG489bQ3HhXAXRwmHP3fzaz/wvMBa4BbjOzh4Dfuvv7J/j4NHffaWaDgRVm9o67v9Boe3Op6ZigGITAZQAFBQWtDZJtNuZgOcmD6qhzhTkREZHuYNLu4hM36gQdPibo7m5mu4HdQC3QH3jYzFa4e4t9k+6+M3jda2aPAlOAxmGuBGgciXOAnbGuv7W+/40bQNfMqRZd16JaVItq6YK1JEodiVJLol0zZ60f9TyJLzf7O+BqYD9wJ/And68xsyTgPXc/tYXPZQBJ7n40eL8C+Im7P9OozSXAt4GFRCc+/NrdpxyvnoKCAo9EjpkYKyIiIpJwzKzQ3QtO1K6jI+1A4DPuvq3xSnevN7NFx/ncEOBRi15/lgLc7+7PmNk3gs/fATxNNMhtAcqJDuOKiIiIdCsd2jOXaNQzJyIiImHR2p65hL1psIiIiIicmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIgpzImIiIiEmMKciIiISIglbJgzs2QzW2dmTzazbbiZrTSz9Wa2xsxy4lGjiIiISLwlbJgDvgNsamHbz4F73f104CfATzutKhEREZEEkpBhLuhpuwS4s4UmE4CVwfvVwJLOqEtEREQk0SRkmAN+BVwH1Lew/U3gs8H7TwO9zeyUzihMREREJJEkXJgzs0XAXncvPE6z7wEXmtk64EJgB1DbwvctNbOImUX27dsX+4JFRERE4sjcPd41fIKZ/RT4EtFw1gPoA/zR3b/YQvtM4B13P+EkiIKCAo9EIrEsV0RERKRDmFmhuxecqF3C9cy5+w/dPcfd84ErgVVNg5yZDTSzhtp/CNzVyWWKiIiIJISEC3MtMbOfmNniYHEm8K6ZbQaGAP8et8JERERE4ijhhlk7koZZRUREJCxCO8wqIiIiIq2nMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGmMCciIiISYgpzIiIiIiGW0GHOzJLNbJ2ZPdnMtjwzWx1sX29mC+NRo4iIiEg8JXSYA74DbGph2z8DD7n7mcCVwH92WlUiIiIiCSJhw5yZ5QCXAHe20MSBPsH7vsDOzqhLREREJJGkxLuA4/gVcB3Qu4Xt/wIsN7O/BTKA2c01MrOlwFKAvLy82FcpIiIiEkcJ2TNnZouAve5eeJxmVwF3u3sOsBD4vZkdsz/uvszdC9y9YNCgQR1UsYiIiEh8JGSYA6YBi81sK/AH4GIz+58mba4FHgJw978APYCBnVmkiIiISLwlZJhz9x+6e4675xOd3LDK3b/YpNl2YBaAmY0nGub2dWqhIiIiInGWkGGuJWb2EzNbHCx+F/i6mb0JPAB8xd09ftWJiIiIdL5EngABgLuvAdYE7/9fo/UbiQ7HioiIiHRboeqZExEREZFPUpgTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQU5gTERERCTGFOREREZEQs+70bHoz2wds6+AfMxDY38E/Q9pOxyXx6JgkJh2XxKNjkng665gMd/dBJ2rUrcJcZzCziLsXxLsO+SQdl8SjY5KYdFwSj45J4km0Y6JhVhEREZEQU5gTERERCTGFudhbFu8CpFk6LolHxyQx6bgkHh2TxJNQx0TXzImIiIiEmHrmREREREJMYU5EREQkxBTmYsjM5pvZu2a2xcyuj3c93YWZ5ZrZajPbZGZvm9l3gvUDzGyFmb0XvPYP1puZ/To4TuvN7Kz47kHXZWbJZrbOzJ4MlkeY2drgmDxoZmnB+vRgeUuwPT+edXdlZtbPzB42s3eCc+Y8nSvxZWb/EPzdtcHMHjCzHjpXOp+Z3WVme81sQ6N1bT43zOzqoP17ZnZ1Z9SuMBcjZpYM/AZYAEwArjKzCfGtqtuoBb7r7uOBc4G/CX731wMr3X00sDJYhugxGh38WQrc3vkldxvfATY1Wv4ZcEtwTA4C1wbrrwUOuvso4JagnXSMW4Fn3H0ccAbR46NzJU7MLBv4O6DA3ScCycCV6FyJh7uB+U3WtencMLMBwI+AqcAU4EcNAbAjKczFzhRgi7sXuXs18AdgSZxr6hbcfZe7vx68P0r0H6dsor//e4Jm9wCXBu+XAPd61KtAPzPL6uSyuzwzywEuAe4Mlg24GHg4aNL0mDQcq4eBWUF7iSEz6wPMAH4L4O7V7n4InSvxlgL0NLMUoBewC50rnc7dXwAONFnd1nNjHrDC3Q+4+0FgBccGxJhTmIudbKC40XJJsE46UTDkcCawFhji7rsgGviAwUEzHavO8SvgOqA+WD4FOOTutcFy49/7R8ck2H44aC+xNRLYB/wuGP6+08wy0LkSN+6+A/g5sJ1oiDsMFKJzJVG09dyIyzmjMBc7zf2fke770onMLBN4BPh7dz9yvKbNrNOxiiEzWwTsdffCxqubaeqt2CaxkwKcBdzu7mcCZXw8bNQcHZcOFgzBLQFGAMOADKJDeE3pXEksLR2HuBwfhbnYKQFyGy3nADvjVEu3Y2apRIPcfe7+x2D1noYhoeB1b7Bex6rjTQMWm9lWopccXEy0p65fMJQEn/y9f3RMgu19OXa4Q9qvBChx97XB8sNEw53OlfiZDXzg7vvcvQb4I3A+OlcSRVvPjbicMwpzsfMaMDqYgZRG9ALWx+NcU7cQXC/yW2CTu/+y0abHgYaZRFcDjzVa/+VgNtK5wOGGbnSJDXf/obvnuHs+0XNhlbt/AVgNXBY0a3pMGo7VZUF79TbEmLvvBorNbGywahawEZ0r8bQdONfMegV/lzUcE50riaGt58azwFwz6x/0us4N1nUoPQEihsxsIdHeh2TgLnf/9ziX1C2Y2XTgReAtPr4+6wai1809BOQR/Qvzcnc/EPyFeRvRi1LLgWvcPdLphXcTZjYT+J67LzKzkUR76gYA64AvunuVmfUAfk/0escDwJXuXhSvmrsyM5tMdFJKGlAEXEP0f+x1rsSJmf0Y+BzRmfnrgK8Rvc5K50onMrMHgJnAQGAP0Vmpf6KN54aZfZXov0EA/+7uv+vw2hXmRERERMJLw6wiIiIiIaYwJyIiIhJiCnMiIiIiIaYwJyIiIhJiCnMiIiIiIaYwJyIiIhJiCnMiIiIiIaYwJyIiIhJiCnMiIiIiIZZy4iZdx8CBAz0/Pz/eZYiIiIicUGFh4X53H3Sidt0qzOXn5xOJ6LGCIiIikvjMbFtr2mmYVURERCTEFOZEREREQkxhTkRERCTEFOZEREREQkxhTkRERCTEFOZEREREQkxhTkRERCTEFOZEREREQkxhTkRERCTEFOZEREREQkxhTkRERCTEFOZEREREQixuYc7MBpjZCjN7L3jtf5y2fcxsh5nd1mjdVWb2lpmtN7NnzGxg51QuIiIikjji2TN3PbDS3UcDK4Pllvwr8HzDgpmlALcCF7n76cB64NsdWKuIiIhIQopnmFsC3BO8vwe4tLlGZnY2MARY3nh18CfDzAzoA+zsuFJFREREElM8w9wQd98FELwObtrAzJKAXwDfb7ze3WuAbwJvEQ1xE4DfNvdDzGypmUXMLLJv377Y7oGIiIhInHVomDOz58xsQzN/lrTyK74FPO3uxU2+N5VomDsTGEZ0mPWHzX2Buy9z9wJ3Lxg0aFA79kZEREQk8aR05Je7++yWtpnZHjPLcvddZpYF7G2m2XnABWb2LSATSDOzUuCR4PvfD77rIY5/zZ2IiIhIlxTPYdbHgauD91cDjzVt4O5fcPc8d88Hvgfc6+7XAzuACWbW0NU2B9jU8SWLiIiIJJZ4hrmbgDlm9h7RMHYTgJkVmNmdx/ugu+8Efgy8YGbrgcnAjR1cr4iIiEjCMXePdw2dpqCgwCORSLzLEBERETkhMyt094ITtdMTIERERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMTiEubMbICZrTCz94LX/sdp28fMdpjZbY3Wfc7M1pvZ22b2H51TtYiIiEjiiVfP3PXASncfDawMllvyr8DzDQtmdgpwMzDL3U8DhpjZrI4sVkRERCRRxSvMLQHuCd7fA1zaXCMzOxsYAixvtHoksNnd9wXLzwGf7aA6RURERBJavMLcEHffBRC8Dm7awMySgF8A32+yaQswzszyzSyFaBDM7eB6RURERBJSSkd9sZk9BwxtZtM/tfIrvgU87e7FZvbRSnc/aGbfBB4E6oFXiPbWtVTHUmApQF5eXit/tIiIiEg4dFiYc/fZLW0zsz1mluXuu8wsC9jbTLPzgAvM7FtAJpBmZqXufr27PwE8EXzXUqDuOHUsA5YBFBQU+MnvkYiIiEjiidcw6+PA1cH7q4HHmjZw9y+4e5675wPfA+519+sBzGxw8NqfaA/enZ1RtIiIiEiiiVeYuwmYY2bvAXOCZcyswMxaE8xuNbONwMvATe6+ueNKFREREUlc5t59Rh4LCgo8EonEuwwRERGREzKzQncvOFE7PQFCREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMQU5kRERERCTGFOREREJMTiEubMbICZrTCz94LX/i20qzOzN4I/jzdaP8LM1gaff9DM0jqvehEREZHEkRKnn3s9sNLdbzKz64PlHzTTrsLdJzez/mfALe7+BzO7A7gWuL3jym2dm++4kefycihJG0pNDH+1qdTS0yuosJ4x/V7V0vVqSZQ6VItqUS1dq5ZEqSNRasmgghk73ubWq6+Ly89vytz9xI3MVgK/cPenG61b5u5LT+qHmr0LzHT3XWaWBaxx97HNtCt198wm6wzYBwx191ozOw/4F3efd6KfW1BQ4JFI5GRKPqGb77iRX42ZQ12c/yMXERGRzvG54hUdGujMrNDdC07UrrXJYwTwAzM7x91/HKw74ZcfxxB33wUQBLrBLbTrYWYRoBa4yd3/BJwCHHL32qBNCZDd0g8ys6XAUoC8vLx2lHx8m/v3oo5kMOuwnyEiIiIJwp23hubGuwqg9WHuEDAL+LWZPQF88UQfMLPngKHNbPqn1pdHnrvvNLORwCozews40ky7FrsX3X0ZsAyiPXNt+NltMuZgOcmD6qhzhTkREZHuYNLu4niXALQ+zFnQE/YtM/sK8BLQ7KSFBu4+u8UvM9tjZlmNhln3tvAdO4PXIjNbw/9v716D7TrrOo5/fza05aImMW0JDRWKGQkTpcEztVrHYWgDCEzTF2UEESK0VkYUvFCNZcaOLzoTr6jDzUxaiE4H1MDYyDg4IQ0Dg7R6altaUpik4RYTm0gvdCxThP59sZ9TDqfnNNntPnvtlfP9zJzZaz3r2Wv/z3nm2fllrbXXhg3AR4HlSZa1mtYAh0/w91g0V731avCaOWvxuhZrsRZrOQlrmZQ6JqWWSbtm7kT/Ch+YWaiqD7UjZG97Cq+7C9gMbG2PN87t0D7h+nBVPZJkFXAh8CdVVUn2ApcBH1no+V246q1Xc1XXRUiSpDF4ddcFPOaEbk1SVX8zZ/3WqnrLU3jdrcDGJPuBjW2dJFNJtrc+64DpJHcAexlcM7evbft94HeSHGBwDd11T6EWSZKk3jqhT7OeLBbz06ySJEmjdKKfZvUbICRJknrMMCdJktRjhjlJkqQeM8xJkiT1mGFOkiSpxwxzkiRJPWaYkyRJ6jHDnCRJUo8Z5iRJknrMMCdJktRjhjlJkqQeM8xJkiT1mGFOkiSpxwxzkiRJPdZJmEuyMsnuJPvb44oF+n03ye3tZ9es9t9IciBJJVk1vsolSZImS1dH5rYAe6pqLbCnrc/nW1V1Xvu5ZFb7Z4GLga8ucp2SJEkTraswtwnY0ZZ3AJcO8+Squq2qvjLqoiRJkvqmqzB3VlUdAWiPZy7Q7/Qk00luTjJU4JuR5Mq2j+ljx4492XolSZIm0rLF2nGSTwLPnmfTu4bYzTlVdTjJucBNSe6sqnuGqaOqtgHbAKampmqY50qSJE26RQtzVXXxQtuS3JtkdVUdSbIaOLrAPg63x4NJPgVsAIYKc5IkSSezrk6z7gI2t+XNwI1zOyRZkeS0trwKuBDYN7YKJUmSeqCrMLcV2JhkP7CxrZNkKsn21mcdMJ3kDmAvsLWq9rV+b09yCFgDfH7WcyRJkpaUVC2dy8impqZqenq66zIkSZKOK8mtVTV1vH5+A4QkSVKPGeYkSZJ6zDAnSZLUY4Y5SZKkHjPMSZIk9ZhhTpIkqccMc5IkST1mmJMkSeoxw5wkSVKPGeYkSZJ6zDAnSZLUY4Y5SZKkHjPMSZIk9ZhhTpIkqcc6CXNJVibZnWR/e1yxQL/vJrm9/eya1X5Dki8luSvJ9UmeNr7qJUmSJkdXR+a2AHuqai2wp63P51tVdV77uWRW+w3AC4GfAJ4OXLGo1UqSJE2orsLcJmBHW94BXDrMk6vqX6oB/h1YM+L6JEmSeqGrMHdWVR0BaI9nLtDv9CTTSW5O8rjA106vvhH4xEIvlOTKto/pY8eOjaJ2SZKkibFssXac5JPAs+fZ9K4hdnNOVR1Oci5wU5I7q+qeWdvfB3y6qj6z0A6qahuwDWBqaqqGeG1JkqSJt2hhrqouXmhbknuTrK6qI0lWA0cX2Mfh9ngwyaeADcA9bR/XAGcAvzbq2iVJkvqiq9Osu4DNbXkzcOPcDklWJDmtLa8CLgT2tfUrgFcAr6+qR8dSsSRJ0gTqKsxtBTYm2Q9sbOskmUqyvRnGCB0AAAaCSURBVPVZB0wnuQPYC2ytqn1t2weAs4DPtduW/OF4y5ckSZoMi3aa9YlU1TeAi+Zpn6bdZqSq/o3BrUfme34ndUuSJE0avwFCkiSpxwxzkiRJPWaYkyRJ6jHDnCRJUo8Z5iRJknrMMCdJktRjhjlJkqQeM8xJkiT1mGFOkiSpxwxzkiRJPWaYkyRJ6jHDnCRJUo+lqrquYWySHAO+usgvswr4n0V+DQ3PcZk8jslkclwmj2MyecY1Jj9aVWccr9OSCnPjkGS6qqa6rkPfz3GZPI7JZHJcJo9jMnkmbUw8zSpJktRjhjlJkqQeM8yN3rauC9C8HJfJ45hMJsdl8jgmk2eixsRr5iRJknrMI3OSJEk9ZpiTJEnqMcPcCCV5ZZIvJTmQZEvX9SwVSZ6bZG+Su5N8Ick7WvvKJLuT7G+PK1p7kvx1G6fPJ3lJt7/BySvJKUluS/Lxtv78JLe0Mfn7JKe29tPa+oG2/Xld1n0yS7I8yc4kX2xz5mecK91K8tvtveuuJB9OcrpzZfySXJ/kaJK7ZrUNPTeSbG799yfZPI7aDXMjkuQU4L3ALwAvAl6f5EXdVrVkfAf43apaB1wAvK397bcAe6pqLbCnrcNgjNa2nyuB94+/5CXjHcDds9b/GHh3G5P7gctb++XA/VX1Y8C7Wz8tjr8CPlFVLwRezGB8nCsdSXI28HZgqqrWA6cAr8O50oUPAa+c0zbU3EiyErgG+GngfOCamQC4mAxzo3M+cKCqDlbVt4GPAJs6rmlJqKojVfWfbfkhBv84nc3g77+jddsBXNqWNwF/WwM3A8uTrB5z2Se9JGuAVwPb23qAlwE7W5e5YzIzVjuBi1p/jVCSHwJ+HrgOoKq+XVUP4Fzp2jLg6UmWAc8AjuBcGbuq+jRw35zmYefGK4DdVXVfVd0P7ObxAXHkDHOjczbw9Vnrh1qbxqidctgA3AKcVVVHYBD4gDNbN8dqPP4S+D3g0bb+I8ADVfWdtj777/7YmLTtD7b+Gq1zgWPAB9vp7+1JnolzpTNV9V/AnwFfYxDiHgRuxbkyKYadG53MGcPc6Mz3PyPv+zJGSZ4FfBT4rar65hN1nafNsRqhJK8BjlbVrbOb5+laJ7BNo7MMeAnw/qraAPwv3zttNB/HZZG1U3CbgOcDzwGeyeAU3lzOlcmy0Dh0Mj6GudE5BDx31voa4HBHtSw5SZ7GIMjdUFUfa833zpwSao9HW7tjtfguBC5J8hUGlxy8jMGRuuXtVBJ8/9/9sTFp23+Yx5/u0FN3CDhUVbe09Z0Mwp1zpTsXA1+uqmNV9X/Ax4CfxbkyKYadG53MGcPc6PwHsLZ9AulUBhew7uq4piWhXS9yHXB3Vf3FrE27gJlPEm0GbpzV/qb2aaQLgAdnDqNrNKrqD6pqTVU9j8FcuKmq3gDsBS5r3eaOycxYXdb6e7RhxKrqv4GvJ/nx1nQRsA/nSpe+BlyQ5BntvWxmTJwrk2HYufGvwMuTrGhHXV/e2haV3wAxQklexeDowynA9VV1bcclLQlJfg74DHAn37s+62oG1839A3AOgzfM11bVfe0N8z0MLkp9GHhzVU2PvfAlIslLgXdW1WuSnMvgSN1K4Dbgl6vqkSSnA3/H4HrH+4DXVdXBrmo+mSU5j8GHUk4FDgJvZvAfe+dKR5L8EfCLDD6ZfxtwBYPrrJwrY5Tkw8BLgVXAvQw+lfpPDDk3kryFwb9BANdW1QcXvXbDnCRJUn95mlWSJKnHDHOSJEk9ZpiTJEnqMcOcJElSjxnmJEmSeswwJ0nzSLI8ya+35eck2Xm850hSF7w1iSTNo33P78eran3HpUjSE1p2/C6StCRtBV6Q5HZgP7CuqtYn+RXgUgY3B18P/DmDG/C+EXgEeFW7qegLgPcCZzC4qeivVtUXx/9rSDrZeZpVkua3Bbinqs4DrpqzbT3wS8D5wLXAw+2L6z8HvKn12Qb8ZlX9FPBO4H1jqVrSkuOROUka3t6qegh4KMmDwD+39juBn0zyLAZflv6Pg2/9AeC08ZcpaSkwzEnS8B6ZtfzorPVHGbyv/gDwQDuqJ0mLytOskjS/h4AffDJPrKpvAl9O8lqADLx4lMVJ0gzDnCTNo6q+AXw2yV3Anz6JXbwBuDzJHcAXgE2jrE+SZnhrEkmSpB7zyJwkSVKPGeYkSZJ6zDAnSZLUY4Y5SZKkHjPMSZIk9ZhhTpIkqccMc5IkST32/3v6W4m5GlwXAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUZWd5H+jfK7UBB9AgoasRssBLDsgTW+AytqNxDAYJQ7wQl8wKLF9kAtPmorGzZpAtTAYcnMGKGULwEFAUmSAyXCeOBuGlwQgBJmNMTGkQkhAGCRks0QI1QYaw8DhI/c4ftdsuNVXdVd1V55yv+nnWOuvsy7f3eb9T53z1q733qVPdHQAAxnTMvAsAAODwCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIHtmncBs3TiiSf2mWeeOe8ygBm5/vrrv9rdJ827jq1g/IKjz0bHsKMqzJ155plZXl6edxnAjFTVF+ddw1YxfsHRZ6NjmNOsAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgu+ZdwHqq6gtJ/kuS+5Lc291LB6z/2SS/Ns1+M8mLu/tTMy0SYA3GL2CWFjbMTZ7U3V9dZ92fJfnJ7r6nqp6W5PIkPzq70gAOyvgFzMSih7l1dffHVs1+PMnp86oFYDOMX8BWWuRr5jrJB6rq+qrafYi2L0jyf6+1oqp2V9VyVS3v3bt3y4sEWIPxC5iZRT4yd25376mqk5NcW1V/2t0fPbBRVT0pK4Phf7fWTrr78qycwsjS0lJvZ8EAE+MXMDMLe2Suu/dM93cnuSrJEw5sU1U/mOSKJBd093+ebYUAazN+AbO0kGGuqh5cVQ/dP53k/CQ3H9DmjCT/IcnPd/fnZl8lwHcyfgGztqinWU9JclVVJSs1vqO7319VL0qS7r4sySuTPDzJm6Z23/Hxf4A5MH4BM7WQYa67b0/yQ2ssv2zV9AuTvHCWdQEcivELmLWFPM0KAMDGCHMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABrawYa6qvlBVN1XVDVW1vMb6x1TVH1fVX1XVy+ZRI8BajF/ALO2adwGH8KTu/uo6676W5JeTPHOG9QBslPELmImFPTJ3KN19d3d/Ism3510LwGYYv4CttMhhrpN8oKqur6rdh7uTqtpdVctVtbx3794tLA9gXcYvYGYWOcyd292PT/K0JC+tqr93ODvp7su7e6m7l0466aStrRBgbcYvYGYWNsx1957p/u4kVyV5wnwrAtgY4xcwSwsZ5qrqwVX10P3TSc5PcvN8qwI4NOMXMGuL+mnWU5JcVVXJSo3v6O73V9WLkqS7L6uqU5MsJzkuyb6q+sdJzu7ub8yraIAYv4AZW8gw1923J/mhNZZftmr6y0lOn2VdAIdi/AJmbSFPswIAsDHCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBLWyYq6ovVNVNVXVDVS2vsb6q6neq6raqurGqHj+POgEOZPwCZmnXdu68qi5K8vbuvucwd/Gk7v7qOuueluSs6fajSd483R+x1172mrz7+x6bPcc8IvsOmncrSW9y7xvb5v6tatWa9bbdyH4Pp97N7mO99Rt97APbHWy7zbTd36LT93s+t/J5W6vd4T5fG3G4227F6+Bg+9vs/vf/PA6+zTHpnJ478pyvX5Uzvv6sPO/5z95cmbM3l/GLneXUa5eTY45J9u3Ll89bmnc5LKhtDXNJTk3yiar6f5O8JckfdPdW/Ra5IMnbpv19vKoeVlWndfddR7LT1172mvyL7z8/nWO3psrDtJW/avkbntdx7Uvy53lU3vCwf5xfyevzzn+bEQLderZl/GJnOfXa5eTY6XfRscfm1GuXBTrWtK1hrrv/SVX9L0nOT/L8JG+sqvck+d3u/vyhNk/ygarqJP+6uy8/YP0jktyxav7Oadn9BsOq2p1kd5KcccYZh6z5c8f/rXSOSaoO2RaYvX19TO447nty382HGkLmai7jFzvMMdOZoaqk+2/m4QDbfWQu3d1V9eUkX05yb5Ljk/z7qrq2u3/1IJue2917qurkJNdW1Z9290dXrV8rbX3HgZdpEL08SZaWlg55YOb77/lW6qR96RbmYBEdk3155Df25IxH/ti8SzmYuYxf7DD79q0cmdt/QmvfvvnWw8La7mvmfjnJhUm+muSKJBd397er6pgktyZZN8x1957p/u6quirJE5KsHgzvTPLIVfOnJ9lzpDVf/KJfT1wzdwT7cM3c5rZ1zdzhXTP37IU+xTqv8Yud5cvnLblmjg3Z7iNzJyZ5dnd/cfXC7t5XVT+z3kZV9eAkx3T3f5mmz0/y6gOaXZ3koqp6V1YuHP76Vl1vcvGLfj0Xb8WOgC32I0kWN8Ql8x+/2FkEODZiu6+Ze+VB1n3mIJuekuSqWrlubVeSd3T3+6vqRdO2lyW5JsnTk9yW5FtZuSYPYN6MX8BMbfs1c4eju29P8kNrLL9s1XQneeks6wI4FOMXMGs+GgMAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYAsb5qrq2Kr6ZFX9/hrrvreqrquqG6vqI1V1+jxqBFiPMQyYlYUNc0l+Jcln1ln3vyV5W3f/YJJXJ/mtmVUFsDHGMGAmFjLMTX+l/v0kV6zT5Owk103TH05ywSzqAtgIYxgwSwsZ5pL8yyS/mmTfOus/leQ50/Szkjy0qh4+i8IANsAYBszMwoW5qvqZJHd39/UHafayJD9ZVZ9M8pNJvpTk3nX2t7uqlqtqee/evVtfMMAqWzmGGb+AjajunncN91NVv5Xk57MysD0oyXFJ/kN3/9w67R+S5E+7+5AXEC8tLfXy8vJWlgsssKq6vruXZvyY2zKGGb/g6LPRMWzhjsx198u7+/TuPjPJc5N86MBBsKpOrKr9tb88yVtmXCbAmoxhwKwtXJhbT1W9uqqeMc0+Mclnq+pzSU5J8r/OrTCADTCGAdtl4U6zbienKeDoMo/TrNvF+AVHn2FPswIAsHHCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBLXSYq6pjq+qTVfX7a6w7o6o+PK2/saqePo8aAdZi/AJmZaHDXJJfSfKZddb9kyTv6e7HJXlukjfNrCqAQzN+ATOxsGGuqk5P8veTXLFOk05y3DT93yTZM4u6AA7F+AXM0q55F3AQ/zLJryZ56DrrfyPJB6rqf0zy4CRPmVFdAIdi/AJmZiGPzFXVzyS5u7uvP0iz5yV5a3efnuTpSf5dVX1Hf6pqd1UtV9Xy3r17t6ligBXGL2DWFjLMJTk3yTOq6gtJ3pXkp6rq/zigzQuSvCdJuvuPkzwoyYkH7qi7L+/upe5eOumkk7a3agDjFzBjCxnmuvvl3X16d5+ZlYuDP9TdP3dAsz9P8uQkqarHZmUw9KcrMFfGL2DWFjLMraeqXl1Vz5hm/+ck/0NVfSrJO5P8Ynf3/KoDWJ/xC9gui/wBiCRJd38kyUem6VeuWn5LVk5nACwk4xcwC0MdmQMA4P6EOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGFh197xrmJmq2pvkixtoemKSr25zOYtK349OO7Xv39vdJ827iK2wifFrFkZ9vah7ttR95DY0hh1VYW6jqmq5u5fmXcc86Lu+w6GM+npR92ype3acZgUAGJgwBwAwMGFubZfPu4A50vej09HcdzZv1NeLumdL3TPimjkAgIE5MgcAMDBh7gBV9dNV9dmquq2qLpl3PVutqr5QVTdV1Q1VtTwtO6Gqrq2qW6f746flVVW/Mz0XN1bV4+db/eZV1Vuq6u6qunnVsk33t6ounNrfWlUXzqMvm7FOv3+jqr40/exvqKqnr1r38qnfn62qp65avqPfD6xvvffJGu3uW/WaunrV8rdPr52bp9fjdw1S90XT672r6sRZ1LxFdT+qqv7TtP27q+oBi1T31Pa4aQx646pl/3Aabz9dVb89i5qnxz3Sup83/S69sareP8vXylqEuVWq6tgk/yrJ05KcneR5VXX2fKvaFk/q7nNWffT6kiTXdfdZSa6b5pOV5+Gs6bY7yZtnXumRe2uSnz5g2ab6W1UnJHlVkh9N8oQkrzrYG39BvDXf2e8kef30sz+nu69Jkuk1/twkPzBt86aqOvYoej+wtvXeJwf6y1WvqWesWv72JI9J8neSfHeSF25rtX/jSOv+oyRPyez/p9+R1v3Ps/L+PivJPUlesL3l/rWN1p0kv5nkD/fPVNXDk7w2yZO7+weSnFJVT97OYlc5krp3JXlDVn6X/mCSG5NctI21HpIwd39PSHJbd9/e3f81ybuSXDDnmmbhgiRXTtNXJnnmquVv6xUfT/KwqjptHgUeru7+aJKvHbB4s/19apJru/tr3X1PkmuzdlBaGOv0ez0XJHlXd/9Vd/9Zktuy8l44Wt8PrFjvfbIh3X3N9F7qJH+S5PQtrm89R1r3J7v7C1td1AYcdt1VVUl+Ksm/P5ztj9CG6q6qH05ySpIPrFr86CSf6+690/wHkzxnm+o80JHUXdPtwdNzf1ySPdtX6qEJc/f3iCR3rJq/c1q2k3SSD1TV9VW1e1p2SnfflSTT/cnT8p36fGy2vzvpebhoOi3wllVHF4+GfrN5671PDvSgqlquqo9X1Xf8QpxOr/58kvdvX6n3syV1z8GR1P3wJH/R3fdO87N8rx6y7qo6Jsnrklx8wKrbkjymqs6cjnY9M8kjt7ne/Q677u7+dpIXJ7kpKyHu7CS/u90FH8yueT74Aqo1lu20j/ue2917qurkJNdW1Z8epO3R8Hystl5/d8rz8OasnC7o6f51Sf5R1u/fWn/sjdhv1lFVH0xy6hqrXrGJ3ZwxjSmPTvKhqrqpuz+/av2bkny0u//jkdS62ozq3nLbVXeSb6zRbsveq1tQ90uSXNPdd6wcyFrR3fdU1YuTvDvJviQfy8rRui2xXXVPf6C8OMnjktye5H9P8vIk/+yICj4Cwtz93Zn7/1VweuZ86HSrdfee6f7uqroqK6fSvlJVp3X3XdNpxbun5jv1+dhsf+9M8sQDln9kBnVuqe7+yv7pqvo3SX5/mj3Yz3kn/vyZdPdT1ltXVeu9Tw7cx/4x5faq+khWfsF9ftrHq5KclOSXRqp7u2xj3b+XlctCdk1H57b0vboFdf94kp+oqpckeUiSB1TVN7v7ku5+X5L3TfvaneS+Ra87K8939of/qnpPDn7N3bZzmvX+PpHkrOlTQQ/IykXhVx9im2FU1YOr6qH7p5Ocn+TmrPRx/yc0L0zy3mn66iS/UCt+LMnX9x+WHtxm+/sHSc6vquOnU5PnT8uGcsD1js/Kys8+Wen3c6vqgVX1qKx8AORPssPfDxzSeu+Tvza9Jx44TZ+Y5Nwkt0zzL8zK9abP6+59M6l4xRHVPUeHXfd0XeKHk/yDg22/TQ5Zd3f/bHef0d1nJnlZVq5NviRJprNEmcbWlyS5YhZF58jq/lKSs6vqpKnpeUk+s/0lH0R3u626JXl6ks9l5S+0V8y7ni3u26OTfGq6fXp//7JyvcV1SW6d7k+YlldWPs34+axcG7A07z4cRp/fmeSuJN/OyhGoFxxOf7NyOvK26fb8effrMPv976Z+3ZiVgey0Ve1fMfX7s0metmr5jn0/uB3yNbTe+2QpyRXT9N+dXlOfmu5fsGr7e6fXzQ3T7ZWD1P3L03vm3qwc3bpikLofnZU/wm5L8n8meeCi1H1A+19M8sZV8+/MSpC+JclzF+n1fYi6X5SVAHdjVo4sPnxWta918w0QAAADc5oVAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHAAuoql5UVTdMtz+rqg/PuyYWk38aDAALbPpi9w8l+e1e+S5TuB9H5gBgsb0hyYcEOdaza94FAABrq6pfTPK9SS6acyksMKdZAWABVdUPJ7kyyU909z3zrofF5TQrACymi5KckOTD04cgrph3QSwmR+YAAAbmyBwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwHbNu4BZOvHEE/vMM8+cdxnAjFx//fVf7e6T5l0HwHY6qsLcmWeemeXl5XmXAcxIVX1x3jUAbDenWQEABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwOYW5qrqhKq6tqpune6PP0jb46rqS1X1xlXLnldVN1XVjVX1/qo6cTaVAwAsjnkembskyXXdfVaS66b59fxmkj/cP1NVu5K8IcmTuvsHk9yY5KJtrBUAYCHNM8xdkOTKafrKJM9cq1FV/XCSU5J8YPXi6fbgqqokxyXZs32lAgAspnmGuVO6+64kme5PPrBBVR2T5HVJLl69vLu/neTFSW7KSog7O8nvrvUgVbW7qparannv3r1b2wMAgDnb1jBXVR+sqpvXuF2wwV28JMk13X3HAfv9rqyEuccl+Z6snGZ9+Vo76O7Lu3upu5dOOumkI+gNAMDi2bWdO+/up6y3rqq+UlWndfddVXVakrvXaPbjSX6iql6S5CFJHlBV30zye9P+Pz/t6z05+DV3AAA70jxPs16d5MJp+sIk7z2wQXf/bHef0d1nJnlZkrd19yVJvpTk7Kraf6jtvCSf2f6SAQAWyzzD3KVJzquqW7MSxi5NkqpaqqorDrZhd+9J8k+TfLSqbkxyTpLXbHO9AAALp7p73jXMzNLSUi8vL8+7DGBGqur67l6adx0A28k3QAAADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADCwuYS5qjqhqq6tqlun++MP0va4qvpSVb1x1bJ/WFU3VtWnq+q3Z1M1AMDimdeRuUuSXNfdZyW5bppfz28m+cP9M1X18CSvTfLk7v6BJKdU1ZO3s1gAgEU1rzB3QZIrp+krkzxzrUZV9cNJTknygVWLH53kc929d5r/YJLnbFOdAAALbV5h7pTuvitJpvuTD2xQVcckeV2Siw9YdVuSx1TVmVW1KytB8JHrPVBV7a6q5apa3rt373rNAACGtGu7dlxVH0xy6hqrXrHBXbwkyTXdfUdV/fXC7r6nql6c5N1J9iX5WFaO1q2puy9PcnmSLC0t9QYfGwBgCNsW5rr7Keutq6qvVNVp3X1XVZ2W5O41mv14kp+oqpckeUiSB1TVN7v7ku5+X5L3TfvaneS+begCAMDCm9dp1quTXDhNX5jkvQc26O6f7e4zuvvMJC9L8rbuviRJqurk6f74rBzBu2IWRQMALJp5hblLk5xXVbcmOW+aT1UtVdVGgtkbquqWJH+U5NLu/tz2lQoAsLiq++i5jGxpaamXl5fnXQYwI1V1fXcvzbsOgO3kGyAAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAY2FzCXFWdUFXXVtWt0/3x67S7r6pumG5Xr1r+qKr6T9P2766qB8yuegCAxbFrTo97SZLruvvSqrpkmv+1Ndr9ZXefs8byf57k9d39rqq6LMkLkrx5q4p77WWvybu/77HZc8wjsu+gebeS9Cb3vrFt7t+qVq1Zb9uN7Pdw6t3sPtZbv9HHPrDdwbbbTNv9LTp9v+dzK5+3tdod7vO1EYe77Va8Dg62v83uf//P4+DbHJPO6bkjz/n6VTnj68/K857/7M2VCbBDVfcGgkXVdUle193XrFp2eXfvPqwHrfpskid2911VdVqSj3T3316j3Te7+yEHLKske5Oc2t33VtWPJ/mN7n7qoR53aWmpl5eXD9rmtZe9Jv/i+89P59jNdAmYkWOyL7/yF6/PGV9/9iEDXVVd391LMyoNYC42emTuUUl+rap+pLv/6bTsSAbIU7r7riSZAt3J67R7UFUtJ7k3yaXd/X8leXiSv+jue6c2dyZ5xHoPVFW7k+xOkjPOOOOQhX3u+L+VzjFJ1SHbArO3r4/JHcd9T+67+fPzLgVgIWw0zP1Fkicn+Z2qel+SnzvUBlX1wSSnrrHqFRsvL2d0956qenSSD1XVTUm+sUa7dQ8vdvflSS5PVo7MHeoBv/+eb6VO2pduYQ4W0THZl0d+Y0/OeOSPzbsUgIWw0TBX05Gwl1TVLyb5f5Ks+aGF/br7KevurOorVXXaqtOsd6+zjz3T/e1V9ZEkj0vye0keVlW7pppOT7Jng/04pItf9OuJa+aOYB+umdvctq6ZO7xr5g59ihXgaLHRMHfZ/onufut0hOylR/C4Vye5MMml0/17D2wwfcL1W939V1V1YpJzk/x2d3dVfTjJP0jyrvW2PxIXv+jXc/FW7hDYIj+SRIgDWG1D/5qku//1AfPXd/c/OoLHvTTJeVV1a5LzpvlU1VJVXTG1eWyS5ar6VJIPZ+WauVumdb+W5H+qqtuycg3d7x5BLQAAw9rQp1l3io18mhXYOXyaFTga+AYIAICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABjaXMFdVJ1TVtVV163R//Drt7quqG6bb1auWX1RVt1VVV9WJs6scAGCxzOvI3CVJruvus5JcN82v5S+7+5zp9oxVy/8oyVOSfHGb6wQAWGjzCnMXJLlymr4yyTM3s3F3f7K7v7DVRQEAjGZeYe6U7r4rSab7k9dp96CqWq6qj1fVpgLfflW1e9rH8t69ew+3XgCAhbRru3ZcVR9Mcuoaq16xid2c0d17qurRST5UVTd19+c3U0d3X57k8iRZWlrqzWwLALDoti3MdfdT1ltXVV+pqtO6+66qOi3J3evsY890f3tVfSTJ45JsKswBAOxk8zrNenWSC6fpC5O898AGVXV8VT1wmj4xyblJbplZhQAAA5hXmLs0yXlVdWuS86b5VNVSVV0xtXlskuWq+lSSDye5tLtvmdr9clXdmeT0JDeu2gYA4KhS3UfPZWRLS0u9vLw87zKAGamq67t7ad51AGwn3wABADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCEOQCAgQlzAAADE+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwOYS5qrqhKq6tqpune6PX6fdfVV1w3S7etXyt1fVZ6vq5qp6S1V91+yqBwBYHPM6MndJkuu6+6wk103za/nL7j5nuj1j1fK3J3lMkr+T5LuTvHBbqwUAWFDzCnMXJLlymr4yyTM3s3F3X9OTJH+S5PQtrg8AYAjzCnOndPddSTLdn7xOuwdV1XJVfbyqviPwTadXfz7J+9d7oKraPe1jee/evVtROwDAwti1XTuuqg8mOXWNVa/YxG7O6O49VfXoJB+qqpu6+/Or1r8pyUe7+z+ut4PuvjzJ5UmytLTUm3hsAICFt21hrrufst66qvpKVZ3W3XdV1WlJ7l5nH3um+9ur6iNJHpfk89M+XpXkpCS/tNW1AwCMYl6nWa9OcuE0fWGS9x7YoKqOr6oHTtMnJjk3yS3T/AuTPDXJ87p730wqBgBYQPMKc5cmOa+qbk1y3jSfqlqqqiumNo9NslxVn0ry4SSXdvct07rLkpyS5I+nf1vyytmWDwCwGLbtNOvBdPd/TvLkNZYvZ/o3I939saz865G1tp9L3QAAi8Y3QAAADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICBCXMAAAMT5gAABibMAQAMTJgDABiYMAcAMDBhDgBgYMIcAMDAhDkAgIEJcwAAAxPmAAAGJsxa8Hp0AAAEZklEQVQBAAxMmAMAGJgwBwAwMGEOAGBgwhwAwMCqu+ddw8xU1d4kX9xA0xOTfHWby1lU+n502ql9/97uPmneRQBsp6MqzG1UVS1399K865gHfdd3AMbiNCsAwMCEOQCAgQlza7t83gXMkb4fnY7mvgMMzTVzAAADc2QOAGBgwhwAwMCEuQNU1U9X1Wer6raqumTe9Wy1qvpCVd1UVTdU1fK07ISquraqbp3uj5+WV1X9zvRc3FhVj59v9ZtXVW+pqrur6uZVyzbd36q6cGp/a1VdOI++bMY6/f6NqvrS9LO/oaqevmrdy6d+f7aqnrpq+Y5+PwDsBMLcKlV1bJJ/leRpSc5O8ryqOnu+VW2LJ3X3Oav+r9glSa7r7rOSXDfNJyvPw1nTbXeSN8+80iP31iQ/fcCyTfW3qk5I8qokP5rkCUletT8ALrC35jv7nSSvn37253T3NUkyvcafm+QHpm3eVFXHHkXvB4ChCXP394Qkt3X37d39X5O8K8kFc65pFi5IcuU0fWWSZ65a/rZe8fEkD6uq0+ZR4OHq7o8m+doBizfb36cmuba7v9bd9yS5NmsHpYWxTr/Xc0GSd3X3X3X3nyW5LSvvhaP1/QAwFGHu/h6R5I5V83dOy3aSTvKBqrq+qnZPy07p7ruSZLo/eVq+U5+PzfZ3Jz0PF02nkN+y6uji0dBvgB1LmLu/WmPZTvvfLed29+OzcurspVX19w7S9mh4PlZbr7875Xl4c5LvS3JOkruSvG5avtP7DbCjCXP3d2eSR66aPz3JnjnVsi26e890f3eSq7JyKu0r+0+fTvd3T8136vOx2f7uiOehu7/S3fd1974k/yYrP/tkh/cbYKcT5u7vE0nOqqpHVdUDsnJR+NVzrmnLVNWDq+qh+6eTnJ/k5qz0cf8nNC9M8t5p+uokvzB9yvPHknx9/+nJwW22v3+Q5PyqOn46NXn+tGwoB1zv+Kys/OyTlX4/t6oeWFWPysoHQP4kO/z9ALBT7Jp3AYuku++tqouy8ov62CRv6e5Pz7msrXRKkquqKln52b+ju99fVZ9I8p6qekGSP0/y30/tr0ny9KxcEP+tJM+ffclHpqremeSJSU6sqjuz8qnUS7OJ/nb316rqN7MSbpLk1d290Q8XzMU6/X5iVZ2TlVOlX0jyS0nS3Z+uqvckuSXJvUle2t33TfvZye8HgB3B13kBAAzMaVYAgIEJcwAAAxPmAAAGJswBAAxMmAMAGJgwBwAwMGEOAGBgwhw7VlX9yPSl8g+avv3i01X13867LgDYSv5pMDtaVf2zJA9K8t1J7uzu35pzSQCwpYQ5drTpO0U/keT/S/J3939NFQDsFE6zstOdkOQhSR6alSN0ALCjODLHjlZVVyd5V5JHJTmtuy+ac0kAsKV2zbsA2C5V9QtJ7u3ud1TVsUk+VlU/1d0fmndtALBVHJkDABiYa+YAAAYmzAEADEyYAwAYmDAHADAwYQ4AYGDCHADAwIQ5AICB/f9/oRjBOVBIjgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
-    "_ = zy_axes.plot(z, y, '.')\n",
-    "_ = zy_axes.set_xlabel('z')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/mean velocity test.ipynb b/notebooks/mean velocity test.ipynb
deleted file mode 100644
index be1153c..0000000
--- a/notebooks/mean velocity test.ipynb	
+++ /dev/null
@@ -1,479 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20.0</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40.0</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60.0</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80.0</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100.0</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  Ustar_mps  \\\n",
-       "1             20.0        1     10         1        0.0       0.0       0.08   \n",
-       "2             40.0        2     20         2        0.0       0.0       0.08   \n",
-       "3             60.0        3     30         3        0.0       0.0       0.08   \n",
-       "4             80.0        4     40         4        0.0       0.0       0.08   \n",
-       "5            100.0        5     50         5        0.0       0.0       0.08   \n",
-       "\n",
-       "   Temp_C  \n",
-       "1      19  \n",
-       "2      20  \n",
-       "3      21  \n",
-       "4      22  \n",
-       "5      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "from fluegg.hydraulics import RoughBottomSeriesOfHydraulicCells, SmoothBottomSeriesOfHydraulicCells\n",
-    "\n",
-    "import numpy as np\n",
-    "import pandas as pd\n",
-    "\n",
-    "cell_number = np.arange(1, 6)\n",
-    "\n",
-    "length = 20\n",
-    "cuml_distance = length*cell_number*1000\n",
-    "depth = np.arange(1, 6)\n",
-    "discharge = 10*cell_number\n",
-    "vmag = cell_number.copy()\n",
-    "vvert = np.zeros(cell_number.shape)\n",
-    "vlat = np.zeros(cell_number.shape)\n",
-    "ustar = 0.08*np.ones(cell_number.shape)\n",
-    "temp = 18 + cell_number\n",
-    "width = (discharge / vmag) / depth\n",
-    "\n",
-    "data_dict = {'CumlDistance_km': cuml_distance/1000,\n",
-    "             'Depth_m': depth,\n",
-    "             'Q_cms': discharge,\n",
-    "             'Vmag_mps': vmag,\n",
-    "             'Vvert_mps': vvert,\n",
-    "             'Vlat_mps': vlat,\n",
-    "             'Ustar_mps': ustar,\n",
-    "             'Temp_C': temp}\n",
-    "\n",
-    "input_data_frame = pd.DataFrame(data_dict, index=cell_number)\n",
-    "input_data_frame"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "hydraulic_model = RoughBottomSeriesOfHydraulicCells.from_data_frame(input_data_frame)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "30000.0"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "cell_number = 2\n",
-    "\n",
-    "try:\n",
-    "    cell_length = input_data_frame.loc[cell_number, 'CumlDistance_km'] - input_data_frame.loc[cell_number-1, 'CumlDistance_km']\n",
-    "except KeyError:\n",
-    "    cell_length = input_data_frame.loc[cell_number, 'CumlDistance_km']\n",
-    "\n",
-    "x_location = 1000*(input_data_frame.loc[cell_number, 'CumlDistance_km'] - cell_length/2)\n",
-    "x_location"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "2"
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "depth = input_data_frame.loc[cell_number, 'Depth_m']\n",
-    "depth"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "5.0"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "discharge = input_data_frame.loc[cell_number, 'Q_cms']\n",
-    "vmag = input_data_frame.loc[cell_number, 'Vmag_mps']\n",
-    "width = (discharge / vmag) / depth\n",
-    "width"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "ny = 100  # number of points along width\n",
-    "\n",
-    "# eps = 0.00001\n",
-    "eps = 1e-6\n",
-    "\n",
-    "y = np.linspace(eps, width-eps, ny)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "nz = 100  # number of points along depth\n",
-    "z = np.linspace(depth-eps, eps, nz) - depth"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "yy, zz = np.meshgrid(y, z)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "y_position = yy.flatten()\n",
-    "z_position = zz.flatten()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH35JREFUeJzt3X+sX/V93/HXyxjTjabDgAfmhzE0LBtJN2fcMaJUnQKmI14UQwQtbM1cDWRNKlLSrG1ASFUWFYl0bekfi6q6QOs2KCQjsbCCUwKELYoWE65TBwyE4DpEsXHAdUjTlBUwfu+P73H0vpf7+3s/9z6P7/spXfn743zvfRg7Pn7dc53riFBVVVVVHWvZYgOqqqoqVnViqKqqqsZUJ4aqqqpqTHViqKqqqsZUJ4aqqqpqTHViqKqqqsZUJ4aqqqpqTHViqKqqqsZUJ4aqqqpqTMsXGzCXTj/99Fi7du1iM6qqqnrVrl27/iYiVk13XC9PDGvXrtXo6OhiM6qqqnqV7e/O5Lj6VFJVVVU1pjoxVFVVVWOqE0NVVVU1pjoxVFVVVWOqE0NVVVU1pnk7Mdi+0vaztvfavnmC50+y/Znu+cdsr03P3dI9/qztfz9fpqqqqmr2zcuXq9o+QdInJV0hab+kx21vj4in02E3SHo5It5q+zpJn5D0y7YvknSdpLdLOkvSw7b/WUS8MR+23K7vvqyd+w7r0gtOk6RZ3b74vJVDvb71bbqvT1a6r09Wuq9P1vG+i89bqVbN179juETS3ojYJ0m275W0UVI+MWyU9LHu9n2S/qdtd4/fGxGvSvqO7b3d+/vaPNkkDU4K/+nOnXrtyFEtX2bJ1pE3ZnZ7xfJl+u33vV0f/8JTc3p969t0X5+sdF+frHRfn6zjfSuWL9M9N17a7OQwXyeGsyV9L93fL+nfTnZMRByx/beSTuse3znutWeP/wC2N0vaLElr1qyZNXDnvsN69fWjCkmvvRGSBt/reka3Xz+qL+45OPfXt75N9/XJSvf1yUr39ck63vf6Ue3cd7jZiaE3F58jYktEjETEyKpV0/6L7je18h+v6P4Tz76jkk47ee6vbx3dl6Nb6b4c3Ur35ejW8b6jGvyZ1qr5OjEckHRuun9O99iEx9heLumfSDo8w9cO3cuvvCbP8bWWdPjv5/761tF9ObqV7svRrXRfjm4d77MGf6a1ar5ODI9LutD2+bZXaHAxefu4Y7ZL2tTdvkbSlyMiusev675q6XxJF0r6+jy5ftIwiyHE/tsE3ZejW+m+HN1K9+Xo1vG+UNvFMC/XGLprBjdJelDSCZLujoinbH9c0mhEbJd0l6S/6C4u/0CDk4e64z6rwYXqI5J+rcVXJB1bDHP5hc9na+JvHLovR7fSfTm6le7L0a3jfa0Xw7z9v6tGxA5JO8Y99tvp9j9IunaS194m6bb5skxULQZGdCvdl6Nb6b4c3brQi6E3F5+Hra4xMKJb6b4c3Ur35ejWvl5jwFeLgRHdSvfl6Fa6L0e31mJoVC0GRnQr3ZejW+m+HN1ai6FRtRgY0a10X45upftydGsthkbVYmBEt9J9ObqV7svRrbUYGlWLgRHdSvfl6Fa6L0e31mJoVC0GRnQr3ZejW+m+HN1ai6FRtRgY0a10X45upftydGsthkbVYmBEt9J9ObqV7svRrbUYGlWLgRHdSvfl6Fa6L0e31mJoVC0GRnQr3ZejW+m+HN1ai6FRtRgY0a10X45upftydGsthkbVYmBEt9J9ObqV7svRrbUYGlWLgRHdSvfl6Fa6L0e31mJoVC0GRnQr3ZejW+m+HN3aq8Vg+1TbD9l+rvvxTd+Z2vY621+z/ZTtJ2z/cnruz2x/x/bu7m3dMJ6pqsXAiG6l+3J0K92Xo1v7thhulvRIRFwo6ZHu/vhekfSfI+Ltkq6U9Ie2T0nP/2ZErOvedg/pmbRaDIzoVrovR7fSfTm6tVeLQdJGSVu721slXTX+gIj4dkQ8191+QdJLklYN+XFnXS0GRnQr3ZejW+m+HN3at8VwRkQc7G5/X9IZUx1s+xJJKyT9dXr4tu5TTHfYPmlIz6TVYmBEt9J9ObqV7svRrQu9GKb9ns+2H5Z05gRP3ZrvRETYnvSEa3u1pL+QtCkijnYP36LBCWWFpC2SPirp45O8frOkzZK0Zs2a6dhvqhYDI7qV7svRrXRfjm5d6MUw7YkhItZP9pztF22vjoiD3R/8L01y3M9IekDSrRGxM73vY2vjVdt/Kuk3pnBs0eDkoZGRkVn/+h1bDHP5hc9na+JvHLovR7fSfTm6le7L0a3jffRrDNslbepub5J0//gDbK+QtE3Sn0fEfeOeW939aA2uT+wZ0jNptRgY0a10X45upftydGvfrjHcLukK289JWt/dl+0R23d2x/ySpF+Q9KsTfFnqPbaflPSkpNMl/c6QnkmrawyM6Fa6L0e30n05uhV3jWGqIuKwpMsneHxU0o3d7U9J+tQkr79smI8/m2oxMKJb6b4c3Ur35ejWvi2G3lSLgRHdSvfl6Fa6L0e39u3fMfSmWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6Nbe7cYbJ9q+yHbz3U/rpzkuDfSd3Dbnh4/3/Zjtvfa/kz3rUDnvVoMjOhWui9Ht9J9Obq1j4vhZkmPRMSFkh7p7k/U/4uIdd3b+9Pjn5B0R0S8VdLLkm6YB9ObqsXAiG6l+3J0K92Xo1t7txgkbZS0tbu9VdJVM32hbUu6TNJ9c3n9bKrFwIhupftydCvdl6Nb+7gYzoiIg93t70s6Y5Ljfsr2qO2dto/94X+apB9GxJHu/n5JZ8+D6U3VYmBEt9J9ObqV7svRrQu9GJbP5CDbD0s6c4Knbs13IiJsT/bf9ryIOGD7Aklftv2kpL+dKdT2ZkmbJWnNmjUzfdlPOrYY5vILn8/WxN84dF+ObqX7cnQr3ZejW8f7Wi+GGZ0YImL9ZM/ZftH26og4aHu1pJcmeR8Huh/32f7fkt4p6XOSTrG9vFsN50g6MMnrt0jaIkkjIyOz/rWrxcCIbqX7cnQr3ZejW/t4jWG7pE3d7U2S7h9/gO2Vtk/qbp8u6d2Sno6IkPSopGumev18VNcYGNGtdF+ObqX7cnRrH68x3C7pCtvPSVrf3ZftEdt3dsf8C0mjtr+pwYng9oh4unvuo5I+YnuvBtcc7poH05uqxcCIbqX7cnQr3ZejW5HXGKYqIg5LunyCx0cl3djd/r+Sfm6S1++TdMmwjumqawyM6Fa6L0e30n05unWhrzHUv3yeQX372wQ5upXuy9GtdF+Obu3jNYZeVNcYGNGtdF+ObqX7cnRrH68x9KJaDIzoVrovR7fSfTm6tRZDo2oxMKJb6b4c3Ur35ejWWgyNqsXAiG6l+3J0K92Xo1trMTSqFgMjupXuy9GtdF+Obq3F0KhaDIzoVrovR7fSfTm6tRZDo2oxMKJb6b4c3Ur35ejWWgyNqsXAiG6l+3J0K92Xo1trMTSqFgMjupXuy9GtdF+Obq3F0KhaDIzoVrovR7fSfTm6tRZDo2oxMKJb6b4c3Ur35ejWWgyNqsXAiG6l+3J0K92Xo1trMTSqFgMjupXuy9GtdF+Obq3F0KhaDIzoVrovR7fSfTm6tRZDo2oxMKJb6b4c3Ur35ejWXi0G26fafsj2c92PKyc45j22d6e3f7B9Vffcn9n+Tnpu3TCeqarFwIhupftydCvdl6Nb+7YYbpb0SERcKOmR7v6YIuLRiFgXEeskXSbpFUlfSof85rHnI2L3kJ5Jq8XAiG6l+3J0K92Xo1t7tRgkbZS0tbu9VdJV0xx/jaQvRsQrQ37cWVeLgRHdSvfl6Fa6L0e39m0xnBERB7vb35d0xjTHXyfp0+Meu832E7bvsH3SZC+0vdn2qO3RQ4cOzRpai4ER3Ur35ehWui9Ht+IWg+2Hbe+Z4G1jPi4iQlN8H23bqyX9nKQH08O3SPrnkv6NpFMlfXSy10fElogYiYiRVatWTcd+U7UYGNGtdF+ObqX7cnTrQi+G5dOCItZP9pztF22vjoiD3R/8L03xrn5J0raIeD2972Nr41XbfyrpN2bonnXHFsNcfuHz2Zr4G4fuy9GtdF+ObqX7cnTreN+iL4Zp2i5pU3d7k6T7pzj2eo37NFJ3MpFta3B9Ys+QnkmrxcCIbqX7cnQr3ZejW/t2jeF2SVfYfk7S+u6+bI/YvvPYQbbXSjpX0v8Z9/p7bD8p6UlJp0v6nSE9k1bXGBjRrXRfjm6l+3J060JfY5j2U0lTFRGHJV0+weOjkm5M95+XdPYEx102zMefTbUYGNGtdF+ObqX7cnRr3xZDb6rFwIhupftydCvdl6NbcV+VdLxUi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzd2rvFYPta20/ZPmp7ZIrjrrT9rO29tm9Oj59v+7Hu8c/YbnIarMXAiG6l+3J0K92Xo1v7uBj2SPqApK9MdoDtEyR9UtJ7JV0k6XrbF3VPf0LSHRHxVkkvS7phHkxvqhYDI7qV7svRrXRfjm7t3WKIiGci4tlpDrtE0t6I2BcRr0m6V9LG7ns9Xybpvu64rRp87+d5rxYDI7qV7svRrXRfjm7t42KYSWdL+l66v7977DRJP4yII+Men/dqMTCiW+m+HN1K9+Xo1oVeDDP6ns+2H5Z05gRP3RoR988vaVLDZkmbJWnNmjWzfn0tBkZ0K92Xo1vpvhzdutCLYUYnhohYP+THOSDp3HT/nO6xw5JOsb28Ww3HHp/IsEXSFkkaGRmZ9a/fscUwl1/4fLYm/sah+3J0K92Xo1vpvhzdOt6Hv8Ywwx6XdGH3FUgrJF0naXtEhKRHJV3THbdJUpMFUouBEd1K9+XoVrovR7f27hqD7att75f0LkkP2H6we/ws2zskqVsDN0l6UNIzkj4bEU917+Kjkj5ie68G1xzuGtY0UXWNgRHdSvfl6Fa6L0e3Iq8xTFVEbJO0bYLHX5C0Id3fIWnHBMft0+CrlppWi4ER3Ur35ehWui9Ht/ZuMfSlWgyM6Fa6L0e30n05urV3/46hL9ViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3dqrxWD7WttP2T5qe2SSY861/ajtp7tjP5Se+5jtA7Z3d28bJnof81EtBkZ0K92Xo1vpvhzdutCLYdjv4LZH0gck/fEUxxyR9N8i4hu23yJpl+2HIuLp7vk7IuL3hnRMWy0GRnQr3ZejW+m+HN260IthqBNDRDwjSfbk59mIOCjpYHf772w/I+lsSU9P+qIGHVsMc/mFz2dr4m8cui9Ht9J9ObqV7svRreN9x9U1BttrJb1T0mPp4ZtsP2H7btsrW33sWgyM6Fa6L0e30n05uhV3jcH2w7b3TPC2cTYfyPZPS/qcpA9HxI+6h/9I0s9KWqfBqvj9KV6/2fao7dFDhw7N5kNLqmsMlOhWui9Ht9J9OboVd40hItYP+0Fsn6jBSeGeiPh8et8vpmP+RNIXpnBskbRFkkZGRmZ9Yq/FwIhupftydCvdl6NbcYth2Dy4AHGXpGci4g/GPbc63b1ag4vZTarFwIhupftydCvdl6Nbe/XvGGxfbXu/pHdJesD2g93jZ9ne0R32bkkflHTZBF+W+ru2n7T9hKT3SPr1YTxTVYuBEd1K9+XoVrovR7f27auStknaNsHjL0ja0N3+qjTxiTgiPjjMx59N9VVJjOhWui9Ht9J9Obr1uP6qpMWsFgMjupXuy9GtdF+Obj3urjFQqmsMjOhWui9Ht9J9Obq1V9cY+lQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrLYZG1WJgRLfSfTm6le7L0a21GBpVi4ER3Ur35ehWui9Ht9ZiaFQtBkZ0K92Xo1vpvhzdWouhUbUYGNGtdF+ObqX7cnRrrxaD7WttP2X7qO2RKY57vvtObbttj6bHT7X9kO3nuh9XDuOZqloMjOhWui9Ht9J9Obq1b4thj6QPSPrKDI59T0Ssi4h8ArlZ0iMRcaGkR7r7TarFwIhupftydCvdl6Nbe7UYIuKZiHh2iHexUdLW7vZWSVcN45mqWgyM6Fa6L0e30n05urVvi2GmhaQv2d5le3N6/IyIONjd/r6kMyZ7B7Y32x61PXro0KFZA2oxMKJb6b4c3Ur35ejWhV4My6cF2Q9LOnOCp26NiPtn+HF+PiIO2P6nkh6y/a2IGPPpp4gI25OesCNii6QtkjQyMjLrE3stBkZ0K92Xo1vpvhzdutCLYdoTQ0SsH/aDRMSB7seXbG+TdIkG1yVetL06Ig7aXi3ppWE/1mQdWwxz+YXPZ2vibxy6L0e30n05upXuy9Gt433oawwzyfbJtt9y7LakX9TgorUkbZe0qbu9SdJMF8isq8XAiG6l+3J0K92Xo1t7dY3B9tW290t6l6QHbD/YPX6W7R3dYWdI+qrtb0r6uqQHIuIvu+dul3SF7eckre/uN6muMTCiW+m+HN1K9+XoVtw1hqmKiG2Stk3w+AuSNnS390n6V5O8/rCky4cxzLRaDIzoVrovR7fSfTm6tVeLoU/VYmBEt9J9ObqV7svRrb36dwx9qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1loMjarFwIhupftydCvdl6NbazE0qhYDI7qV7svRrXRfjm6txdCoWgyM6Fa6L0e30n05urUWQ6NqMTCiW+m+HN1K9+Xo1l4tBtvX2n7K9lHbI5Mc8zbbu9Pbj2x/uHvuY7YPpOc2DOOZqloMjOhWui9Ht9J9Obp1oRfDUN/BTYPv3fwBSX882QER8aykdZJk+wRJBzT2u77dERG/N6Rj2moxMKJb6b4c3Ur35ejWhV4Mw35rz2ckyZ7xefZySX8dEd8d5uPOpWOLYS6/8PlsTfyNQ/fl6Fa6L0e30n05unW873i7xnCdpE+Pe+wm20/Yvtv2ysleaHuz7VHbo4cOHZr1B67FwIhupftydCvdl6NbcdcYbD9se88Ebxtn84Fsr5D0fkn/Kz38R5J+VoNPNR2U9PuTvT4itkTESESMrFq1ajYfWlJdY6BEt9J9ObqV7svRrbhrDBGxfp4+1nslfSMiXkzv+ye3bf+JpC/M08d6U7UYGNGtdF+ObqX7cnQrbjHMY9dr3KeRbK9Od6/W4GJ2k2oxMKJb6b4c3Ur35ejWXv07BttX294v6V2SHrD9YPf4WbZ3pONOlnSFpM+Pexe/a/tJ209Ieo+kXx/GM1W1GBjRrXRfjm6l+3J0a9++Kmmbxn7p6bHHX5C0Id3/e0mnTXDcB4f5+LOpviqJEd1K9+XoVrovR7ce71+VtGjVYmBEt9J9ObqV7svRrcfzNYZFra4xMKJb6b4c3Ur35ejWXl1j6FO1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0ay2GRtViYES30n05upXuy9GttRgaVYuBEd1K9+XoVrovR7fWYmhULQZGdCvdl6Nb6b4c3VqLoVG1GBjRrXRfjm6l+3J0a+8Wg+3/Yftbtp+wvc32KZMcd6XtZ23vtX1zevx82491j3+m+97Q814tBkZ0K92Xo1vpvhzd2sfF8JCkd0TEv5T0bUm3jD/A9gmSPqnB932+SNL1ti/qnv6EpDsi4q2SXpZ0wzyY3lQtBkZ0K92Xo1vpvhzd2rvFEBFfiogj3d2dks6Z4LBLJO2NiH0R8ZqkeyVttG1Jl0m6rztuq6SrhjVNVC0GRnQr3ZejW+m+HN3ax8WQ+y+SvjjB42dL+l66v7977DRJP0wnlmOPz3u1GBjRrXRfjm6l+3J0K3Ix2H7Y9p4J3jamY26VdETSPS2gtjfbHrU9eujQoVm//uVXXtOy7nSb/1Ywk9vLPDhbz/X1rW/TfX2y0n19stJ9fbKO9y1z28WwfCYHRcT6qZ63/auS3ifp8oiY6KR7QNK56f453WOHJZ1ie3m3Go49PpFhi6QtkjQyMjLrE/ulF5ymFcuX6fUjR3XCMku23nhjZrdPXL5M733Haj3+/A/m9PrWt+m+Plnpvj5Z6b4+Wcf7Tly+TJdecNps/xiccTM6MUyV7Ssl/ZakfxcRr0xy2OOSLrR9vgZ/8F8n6T9GRNh+VNI1Glx32CTp/mFNE3XxeSt1z42Xaue+wz/5Dzqb2xeft1JvO/Mtc35969t0X5+sdF+frHRfn6zjfReft1Kt8sR/wZ/FO7D3SjpJg7/9S9LOiPivts+SdGdEbOiO2yDpDyWdIOnuiLite/wCDU4Kp0r6K0m/EhGvTvUxR0ZGYnR0dCh3VVXVUsv2rogYme64oRdD92WmEz3+gqQN6f4OSTsmOG6fBl+1VFVVVQFaMv/yuaqqqppZdWKoqqqqxlQnhqqqqmpMdWKoqqqqxlQnhqqqqmpMQ3+56mJk+5Ck787x5adL+pt55PSh+jkvjernvDQa5ud8XkSsmu6gXp4Yhsn26Ey+jvd4qn7OS6P6OS+NFuLnXJ9KqqqqqsZUJ4aqqqpqTEvxxLBlsQGLUP2cl0b1c14aNf85L7lrDFVVVdXULcXFUFVVVU3Rkjox2L7S9rO299q+ebE9rbN9t+2XbO9ZbMtCZPtc24/aftr2U7Y/tNim1tn+Kdtft/3N7uf83xfbtFDZPsH2X9n+wmJbFiLbz9t+0vZu203/76WXzKeSbJ8g6duSrtDgW4g+Lun6iHh6UWENs/0Lkn4s6c8j4h2L7Wmd7dWSVkfEN2y/RdIuSVcd57/GlnRyRPzY9omSvirpQxGxc5FpzbP9EUkjkn4mIt632J7W2X5e0khENP93G0tpMVwiaW9E7IuI1zT4HhAbp3lNr4uIr0j6wWI7FqqIOBgR3+hu/52kZ9Toe4hTikE/7u6e2L0d93/bs32OpP8g6c7FthyPLaUTw9mSvpfu79dx/ofGUs72WknvlPTY4kra131KZbeklyQ9FBHH/c9Zg2/69VuSji42ZAELSV+yvcv25pYfaCmdGKolku2flvQ5SR+OiB8ttqd1EfFGRKzT4HumX2L7uP60oe33SXopInYttmWB+/mI+NeS3ivp17pPFTdpKZ0YDkg6N90/p3usOo7qPs/+OUn3RMTnF9uzkEXEDyU9KunKxbY07t2S3t99zv1eSZfZ/tTiktoXEQe6H1+StE0Nv/PlUjoxPC7pQtvn214h6TpJ2xfZVM1j3YXYuyQ9ExF/sNiehcj2KtundLf/kQZfXPGtxVW1LSJuiYhzImKtBv87/nJE/Mois5pm++TuCypk+2RJvyip2VcbLpkTQ0QckXSTpAc1uCj52Yh4anFVbbP9aUlfk/Q22/tt37DYpsa9W9IHNfgb5O7ubcN0L+p5qyU9avsJDf7y81BELIkv31xinSHpq7a/Kenrkh6IiL9s9cGWzJerVlVVVTNrySyGqqqqambViaGqqqoaU50YqqqqqjHViaGqqqoaU50YqqqqqjHViaGqqqoaU50YqqqqqjHViaGqqqoa0/8HsywYZYxtcFsAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "_ = plt.plot(y_position, z_position, '.')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "(10000, 3)"
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "x_position = np.tile(x_location, y_position.shape)\n",
-    "\n",
-    "position = np.stack([x_position, y_position, z_position], axis=1)\n",
-    "position.shape"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "hydraulic_results = hydraulic_model.hydraulic_results(position)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "streamwise_velocity = hydraulic_results.streamwise_velocity()\n",
-    "streamwise_velocity = streamwise_velocity.reshape(yy.shape)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAFyCAYAAACugdh7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcHNd13/u9tfQ6+wwGC7GR2BcC3MQVorhoI2WL2i3ZTpT35KePHOclL58kL9LTs/PsWInz/PKcFylOrFi2Fcm2IstSJEqkJYqiuJPiTpAgCJAECYDYMXvvVXXfH9XdmAFmpnpmerpPDe738+kPBl3dVbeqq+69557fOUdprTEYDAaDwWAwGAwGw9LDancDDAaDwWAwGAwGg8GwOBiDz2AwGAwGg8FgMBiWKMbgMxgMBoPBYDAYDIYlijH4DAaDwWAwGAwGg2GJYgw+g8FgMBgMBoPBYFiiGIPPYDAYDAaDwWAwGJYoTTP4lFLvV0q9qpR6TSn1+Wm2J5VS/726/Uml1PpJ275Qff9VpdT7mtUmg8FgMBgMBoPBYLiYaYrBp5Sygf8E3AFsBz6llNp+3sc+AwxrrTcCfwT8u+p3twOfBHYA7wf+uLo/g8FgMBgMBoPBYDAsgGZ5+K4FXtNav6G1LgPfAu467zN3AV+v/v0d4HallKq+/y2tdUlrfQh4rbo/g8FgMBgMBoPBYDAsgGYZfJcARyb9/2j1vWk/o7X2gFGgv8HvGgwGg8FgMBgMBoNhjjjtbkCjKKU+C3wWwMa+OkPXQncYdbzZv29FbAdQEfZ0A/soBwWKlTE6UoNY0yhdddQuGjiGjvrMLJuDwCc/foJEphc3mZ3lGBFtaOByRi1PTN6H9n1KZ47jdvVip7MNtQGY9VzPP8a0NHAMf2Icf3gUd82q6e+zhtqpZ98c9ZNGfB+gcnKIoOyTXjcw7XYrYh+2CiKPsdB92Mz8fQ2c3j9Mpi9J1/LULMeIvhYWEe2IaKc1SzsbPUbUtYo6Rj6neesNj/WX2WSz099kjbQz6hGI6jsbedRVxKca2cdCjyEF3cBvMvv3F36MqH00dAy9sGMAnDqtOX3SZ/N2F2uaW1hH/KZBAwNNELEPP6KDDhoYaPzIdkbvY+x0iYnTRQa39qCmGcP9iHNtqJ2R+5j/9tKpcbyJAulLV8y+j2D2Y0TcVtUPRfzuM3S9ldNnwfdxVwzOex81GhhmiBwyNeggoHT6GG5nD3amY27fr+5jQW3gwnPxSjlK+WHSXSuwbAcVRBykkWNE7CPyGNUbY6J0FkspMom+adoR1c4GGhp1A0bsI6pfbIRxhs9orZdFfa5ZBt/bwJpJ/19dfW+6zxxVSjlAN3C2we+itf4q8FWALtWnr1O3z9yaqNkuoBKJhW1Pzr4dQKVmnmQC6FT0Pg7nXuKVY/dy9fpPkXQ7p9nH7D+hH7EdwM9E7CM588BQLo7xi5/8Ppdsu5XlG2+c8XNeMmIQnf1SVdsx+z68SfvwcuMc+ON/Rf+1t9F35U3V70cfI0jO/vBF7SPq+wCjTzzK8F9/j8F/9Bns7gt/U5LRnYyd9Gfd7ia8Wbcn3Nm3Axz/8vcYf/EwO7/86Wm3Z9zKrN/PuuXIY3Q4pVm3d7rFWbd3ObNv/+r7fsjGGwf44O9dOfMx7Nn3AdAR8ZkuqzDr9ow1+3kCZCM+k1WzX8+Umv03PXnc484bjvP3P5PlU39v+sWZVAOzEjdieypiocuNWggDrIhJtRsR5m01YMzZDbRDAr6evT8IImZwQQOzq4qevT+pRLSh0oC5VoyY2FQamPf80/9tjKceK/Gte5bPcIzZ74t8ED0I5PTs43IuYh/jfjryGOPB7APeRAMD4vf/7X5e+v6b/P1vvXv6Y3iz72OsEn2Micrs55rzZr9W+crMvcVrf/gjxvYeYdP/+5lZ91Esz97jVMoNzHFKEWkhStP3BSf/6E/AD1j+z38Ta4bP1LCKs/c5dqmBPilimLBLUB4b5uBX/zXLbnwfvZdfN3V79FCGXZz9QXMitk/3mZNvPMEbz/4t2/Z8hmSmB6cYsUBaaGCOU5x9PLPzs88/VCEcLx8/9OcknQ6uWvPxCz9Tmn1M1YUGLmhp9h9NF2ffHpRnP4/wQ7P3zz/V33kreifNk3Q+BWxSSl2qlEoQJmH5wXmf+QFQmzl+DPiZDk3bHwCfrGbxvBTYBPyiSe2KPbXV8oWu8i4Wtfw6upGVkBai7HAQ0H60YdNqVCIcwIJytEHUTuxMAj8fbahIJtOXJDck+zq3isEVNh2ditcOyHsmDIZGeONAhQ2bYyNMWlTyQyUyfQ2sYgrFz5VwMrLbr0vl+ngthdqcpjbHkYCuGiTKkpdvUaMbcgJdDDTljtFae0qpfwT8GLCBP9Nav6yU+j3gaa31D4CvAd9QSr0GDBEahVQ/921gH+ABv6V1xHLjRYSq2uQ6YoW1XdQe8CDwIlzbrX3glFM1+LxzqyeNSCoiacI+rKr3WM+0utTAMaJUAE1QCeBkkvj5MlrraImzUNJ9SXJn4220NgulFBs2Ohx81ZtRquU3cPO5EbdC1D4ak7caLjaiZI6+rzn0msdHf23m0IGLifxwiXSvbINpNkmnly9jSTf4ymVUT3e7mzGF2pxGlMFXnZ9KNfiUGVGAJsbwaa3vAe45773fmfR3EbjQpxpu+xLwpWa1ZUkh3cNn1Tx8smz0WmcYSPTwVeXAWrqHL5uEQBMUK9jpaPmxRDK9KY69OdbuZohhw2aXn/+0AZmKwSCMo0d8ikXNpq2yPC7tIj9UoueS+Bq/fq6E29cR/cE2EpQrDYXvtBLth3Mty5Fj8AXV+Z8l0eDTQWwXrJuNMXuFc87DJ9Pgs6pxMOIMPqVQto32jME3X+xsuPrqT8TXQKhJOqU+P61m42aHobMBQ2dlPa8GQxQHXw378o1bjMEHkB8qxl/SmZXdfl0qYwmTdAY1D58jp111SafIEtrGw1fDXAXh1FcmhEo6w0ykSpzBB6Bsd4qkUwo1SWcQETDcbmoGn5eLryQy05/CK/qU8/Luz3awYVO4Kmzi+Axx48D+sC+/dKMcz0a7CAJNIQaSztnw8yXsjCzv2fnoclmgh09gDJ+uxfDJMyniHJLSbOTcMYZpqXv4pEo6lUJZlsgYQ+U4MpO2xM3DJzhxS1Ra8HRvmIkuN1QimV287i4qVXtzjrHwQavmHXn9gMe1N8R3shidebKB3yOiz4pLFs8o/CXi3T74qscla2wyM5QUgcZKDSyUVhwjisJIGR1Atj+ez7DWGj9Xqo8xi3/AeXxFa3S5Epmxvak0Er9fVS1Zkgy+IAAUqpl9ZpO6LU0QmxI8i037ey7DrNSzdAo0qGooyxbp4bMcl0CipDMqaYsQanIbP84evqrkySRuCRlcbtHZpTh4QJ7n22CYjYOvemw08XsA9czDmf4G6hkJRJc9tBdgC07aoithIjpLnIevJumUZPD5IhO2QDUcaoks3i0UcxWEI93DB3INPmU79c5REjUPX1CS17bJ2B3hZMKfiK+xlOmreviMwQeEC0gbN7u8biSdhhhRLmnefMNj42Zj8AFMVPuzuMbw1cIEWubhmwc1BU5LPXwNUFvElibpFGvwoY2Hr4qcO8YwPTHw8FnKrmdpmjeLYM8qx6kHOEuitmKoIwp2thsrExpLXq6MjpBOSiVTlTxNtNngCxpYW/OjpGJN+gk2bnb48Y8KJrZBAFFF1ePCYstGD73h4fuwwSRsAUKJOkCqNxUpa5eIP8ngk9r+mgKnHsMnZM297uGTZPAFwVQ5p5BrBdUsncbgA4yHTzyx8fAJLJ2oHFdmlk7HAcuSH8OXib+ks5bUoDZBMsCmLS5jo5rTp5aGsWFY+hzYH/bjpiRDSG0BK9sXT0lnLS5ctIevJNPDp71aWQY5z4LWvsiSDCG6ubGFMcZcBeGIz9KJXEmnZctM2gLhqqH0LJ1W0kHZFl4uvmUZbNcm1eUaSeckNm4JV4YPvirP+20wTMeB/RVcF9ZdJser0U5yQ2WUrUh1yzJGGqW2iOhk5RqsQXVBVlxZBoExfIHoGL4woYzBSDrFo1pReD1Y2L6V1QRJ5yKgHJegVGh3M6bFSibFJ21RSmFnk7GO4YMwk93E2RLBAjp9qbKj+bCpZvDt97jp5rl/P+pJb8b0KCoLp83iTy6i5JaNZPFshmQziOj7ozOWRuNHHCNq+2Jz4FWPSzc4uO7CnsNGMt1GSqsjj7H46+i5syUyvUmU1d5+ab79oj+HGL4otfBiqYkvkHRKQJ/L0qksR4x0UnTSFkzoQg3j4RPOucLrxsM3V8KyDPLaBaCSrnhJJ4SJWySXZWiEbH/SePgm0dtnM7DM4jWTqdMQEw7ur7Blm1mfrjFxthTbDJ0wN4OvXdSTtiRltVFLTNoS+EKLrteSthhTB4zBJ56a9lhyDJ8l1OCzbFdk0hYIBxHpkk6g6uGLr6QToGMgZWL4zmPjFqceF2UwSGZsNOD4sYBNJmFLndzZUj0hVRyJQ5bO2vhsCYvhC/wKynFEea1EZ+nUgahr1U6MwSecWnYh0R4+JdPgU46DFmrwWYmE+CydAE5HCi/mBl+2z3j4zmfLVpfXD1TwPLkLSQYDnEvYYjx855g4W45twhaoevgU2GlZxtRkREo6CT18krx7EHr4pCZtMR6+c8i6awwXUvPwLXLa64UgJUunOu8SWbYTdo6tvHQNHkslEwQT+cVtSxOws0nKZ8an3daKuLZggfE0EEo6SxMelaKPm7pwUGokricOzOU8tu10KZXg0OveFM9JM5aVovYRNNCX2TFYkV0qJRVahR/xs/sz9Cf7XwkNvg1bEksmljaqX5stjlBr3ZCkc6brKQF/ooSdaX8M4myck3QKM/j8iqgMnVBN2iI1E6bx8NUR+gsZatQ9fE2Zii0OcmP43HpGK2moZCI+MXwx9/B1DFRLMxgvX51tO8IJw76XZD4fBkONA/srdPcolq8w0xWA0riHXw7IxjiGz8uXRMs5YZKkU5jBF3geypZl8OkgCJPICCQMhzIGHxiDTzz1VRPhHj6JWTotoXX4IMzSGRhJZ0vI9tcMvnifRzNZv8EhlVLsf9kYfAbZHHilwuatrlmlr1KrwRfnGD4/J9/g0+UyKAWCyh9AVdIprU2Bj7LkmRM1ZZxY72OLkXXXGC4gDh6+MGmLPMNKVevwhUG7DT7wkTKY5hjeKpFoa1mGRs/CzibRFZ+gVMFKzm1VsRH51UJKJTRKx0C4Ej5hPHz1661sxZbtLi/vrbTkN2g2fsQCWCNKsahyB1YMr8t0NKNsQ7sIAs2BVz0+/IlMu5sihppSIbPAGL529s/+RBFHusFXLKGSCXELDdqvYM0Uw9cmv0BYeF2W1xHOzZvVEunLF4oxe4Wj4hLDF8ibVKiqzl2il89KyS+8DqGHD86l0Y4j2T4j6ZyObTtdXt1XIVhgHU6DYbE4etinkNcmYcskJqpKhexAfCWdfq6E3SG7/UG5LE7OCVVJp7AYPqlJW4yHbyrmKggnDh4+qTF8VlX2oH15Bp9KJMDzxNYJrFEblL04G3xV6dPEmfiew2KwbadLbkJz+E15z4fBAPDqK6HkeMt2WRPcdlLrxxbq4Wsn3kRRvqSzVA7HaWHoalkGSQRC6/AZD99UZN01hguo36hBgJrGyydhbV4pmTF8tVWwwKsgqivS5zJ/6UIJlW2+XEk3KUNb3cMX4zg+27VI9yTInVm8c2hFRjy/yetz23ZWE7fsrbD+sqU1oW5ExmgJWO+MkpXGhcXq/V99pYJlwcbNjd2frci42+zncK7kzpZQtiLdI88YOZ+ZxiE/F2bpbNY4tWCmeQx1qRyO041m3m5ui2ZEex52Kt2iozWG2Dp89TmzkPuszbR/xDPMSk0/Lr7wuoCyDOdj2YIlnclwdTMQnqmztgrrjcfX4APo6De1+M5nw2aXRBJeMZk6DUI58IrH+svCBEOGkImzJTr6ZZc0mA0daPx8qb6YKJWgVK6P05IIvIpISafIpC0YSedkzFUQTq1gpJF0zp3JHj5p1D18wuP47M74e/gAsgNJJhbRwxdHXFexeavLvr2y70HDxcv+fRUj5zyPiTNFOuKcobNQAo34GL66h08Y2pdYlsEXWZZBayPpnIwx+IRT9/CJTtriCDX4qjF8Ig2+cMCWbvA59Ri+eBtLHQMpxk8bD9/5bLs8wf6XTeIWgzzGRgOOHfVNwpbzyJ0pkR2IscE3EfbD8mP4SjJj+Dx5hde10MLrxsM3FdOTCqfu4dOyPXxBRFmG6eIPz/tE8xpUxRLs4atl/5q2Fl8jc+8Wzc9t4TF8jcbTdPQnyQ2V0Fq3Jc22r6PbGbRhUNq+0+Vvvqk5ethn7frGhoNW9ER+ZMmExacZZRuaEaMXFY8YVaKioWNE7KMdo8+B/dWELduaN7lt6DkUvg4+cbbE8i1dDZVVkIhfXTyUbvAFZZkevlDSOf+pu1qEuYPWgcgYPuPhm4rsns0wKYZPrsFnSS/LIDFLZ93DJ9vrZDk2VsqNf/H1gRRe0aeck3cvtJMdu8Jn5OUXZXuaDRcf+/eFBt+2HbK8Ge1EBzqM4YtxSYbaWCI9hk8LjeHTnifOwxdILctgPHxTMFdBPNWfSLSk0wYdiDP6rHodPsEevqL8ibadTeHHPWnLsmpphtPxPo9mU0vcsm+vvGfEcHGzb2+F/mUWA4PyJpLtIj9SRvuajjhLOqtjifwYvpJMD59fQc1UeL1N6MATGcOH8fBNQeAvZJhMHLJ01lz50jI11ZO2VORNZuPg4atJhuyOFN5EKb4SIm2R6Q/TWI+eLtOzfu73aLtTsTfCfFLSu65i8zaXfU308EVJDN02SGoXg6VSUqFVzHU58KUXKuzcNdWT0YqyCwtlMfvJWg2+peTha8lTNMeDaN9HVzwsYTF8OgjCEl2C6vBprdFBINKLVp83zzTmCHakLAbyfiHDFGoPkeQYvporPxBWmuFc4XV5Bt+5GD75Hj6nIxV7SWfHsnByYTJ1XsiOyxPse8kkbjHIYWI84NDrHpfvljXhbje1/ivWHr4J+R4+XS2XpFKyrnMtH4EoSacOAC1b0mlMHcAYfOKJR1mGqmElLFOnKcvQHOzOlNikLY1SWxGfOBXv81gMduxyyU1o3nrDxDcaZLBvbwWtYeduQRNbAZzz8MkyROaCN1ECBXZG7jnUFmItYZLOWniKpLIMQU02KVDSWU/aItD72A7k/UKGKYgoyxBx6JqMc9GTo8zxEtR07s2M4WuWWEc5Djj29Fk6heF0pMi/frItx26WPCrZ6eKk7Glj+IIGMvctFaaTxG3bHU68XnyxwuZN0avu7gJFWFEZOCE6A2ZU5kqb6NXmqH1YS2Q9tJHrLQG/rr5SvPhC2Gdv350giIGMc65ESVNnOufxqsGXGUgTtVTYin5tPv2znytiZ1MNF47XUcdYjKyTVYOvmTF8zciOWZtjLaakc67t1NUM7ZLCeWqYLJ1TkfcLGaYQJw+fPElnzcMn03NhJZPoonyDz+6Iv4dPKUXHspSRdE7D+g0OqbRi34vyPOGGiwelVH2Bc+/zZdass+nplScTaycTp4skMjaJTHzX6r3xYgwydIbjshKWpVOipLOm7BLp4atn6TQGHxgPn3hEePgisGqSTmHlD5TgLJ0QDiZxkHQ6HSmCQhnt+SgnvhOwzmUpk6VzGhxHsW2ny8svyL8XDUsP39f84oky+w8EdPVYrF5j8y9+u5tCXu6Y1y4mzpbq8chxxZ8oYnfKOwddqRAUioDC7u9j9b//XXFZOuuSToEGn4nhk48x+GKAwhKdtKUu6RTWRqUUynFExvBBGB8QB0lnbXD2Joq4Pdk2t2b+dCxLceKVkXY3QyTbdyX4zjcnqFQ0rmtWQw2t4dmny3z9z/Ikk7B8tctrByo88oCmf5nNhz+RAcLFTrNCHzJxuhjrDJ0QjiPSPHyVE6covPAy5bePExSKKKWwB/rIXHk5qU2Xtbt5dSR6+IK6h0+gwWdi+KZgDL4YoJSKSVkGWR4+CIOb6x4+YZdQpZKiyzLUcDrCkgb++FSDLzK2Qhgdy1JMPFhclAlk0IIVxMiYnAWc0o7dCf7ya3DwVY/tO+VMJuZLVGkIAFuAEREVRxgX5nsW3/l2gZ2XO3ziUxkKQXh/j45o7runwB/8X6P84/+9i8uvaNzLEofyKQth4kyRFdt6mrKvRmIjF6PEhD9RJLGsq+n7nS/e6SGGvvU/SKxbTeete7BSSbTnUz58lNEf/ZTyji10veddIuYP9Rg+QXX46pLOORhVqkWKNRPDN5UF9Y5KqT6l1H1KqYPVf3un+cwVSqnHlVIvK6VeVEr9yqRtf6GUOqSUer76umIh7VmqKKx6AUmJ1GP4hBVeh3AlTK6HLxmLsgznPHyFNrdkYXQOpqkUfUoT8hYm2s3O6qT6pRdkPiuGpcnQmYDB5TbdPRY9vWHM3rpLHX7jtzrJZBWnTsiKC28346eKsc7QCVUPnyBJp3d2GDyP3g/fSfLStbgrl5NYs4qOm66l55ffS2HvK+1uYp1Edz8rb/8oyb7BdjeljpvMcumVH6Gjb227m1JH64BAB6TdLrYOvodscqDdTRLBQpcJPg/cr7X+A6XU56v//5fnfSYP/H2t9UGl1CrgGaXUj7XWNW3Vv9Baf2eB7VjSKGWJ9vBZkj18jis3hi+VRI+Nt7sZkdTkN3FP3NIxWCvNUCDVGX8vVjNZvTacdL/4QplP/Fqm3c0xXCT88y908q9/Z4wf/qDIrquTrFlnMzBog4YTx3zWrJfjyWg3pVyFSsGPtaRTa40/XhRVg8/KpFGZNIV9B3CXD4Bto1wXtKb02iHsrs52NxG/WED7Prbj0r39GiwBHr7A99A6wLJdBi+9VoxscnjiLU6N7CdfOIvWGtdO4dgJVnRuxbYu7nF/oXfNXcAt1b+/Dvyc8ww+rfWBSX8fU0qdApYBJpimUZQSFx83GcmSTvEevjZl6ZyLHNPuDCWd3tiFHr7Z5JGNyIEWQzI0E52D4XmMnyoysKG1kqKoNOztRinFjt0uLz4X/az4EWtPzQgBDCIkP62QYzajbEMzJJtR8tSmHCNiQbERiex82LjJ4ff+bRd7X6jwxluaZ39R5q1DHqWS5gu/283mrfImaH6bpOy1GqJxTtoSFCtoPxAVw5dYu4rOW25k9O4fo2wbK5MmKJXwh0dJbdlI76c+3La26SAgf/h1xl5+ltKZE+hSGWU7pAZW0Hv59WQuubQt7Ro/e5ihYy9RGD+FDnxsJ0ln/3oG1l6Bm+xoS5sA3jjxMEMTb7KiZwcrMlsA8Pwib4+9xOmJ19m+/L0knIt3QXOhBt9yrfXx6t8ngOWzfVgpdS2QAF6f9PaXlFK/A9wPfF5rLT+oqcUorHiUZRAo6RTt4Usm4hHD15Umsbx72hiG4rERxl89wbJbt4pPrNBZ9fCNn4q3NHWx2HlFgj/98ji5XEA2K2O11rD0WbfeYWJc09EHnV1JNm9zTeKgaajV4OuMscHnjYd9r1NdRJRCevsW0tu34I2MEoxPoJIJnIH+tteWG9v3HKMvPkXPVTew7NYP4PguulJm4vABTj3+E3p2XEPPtqtb2qZTBx5j6M0X6Vu1nf5LLgelCLwyZ448z2tP/XfWXf4BuhLtkZyeHNnPrvUfJpsaQBXOhcsMdFzG42/+BWU/Zwy+2VBK/RRYMc2mL07+j9ZaKzVzyUal1ErgG8Cn9Tl31RcIDcUE8FVC7+DvzfD9zwKfBUhxcf1gSriHT7Kk03IFe/hSyVhk6XQ601SGc5x94CWy2y8htaoPCL17VtLlyF8/Qd/1G3AyslJYn0/HsnMePsOF7NydIAhg30sV3nFdvOOEDPIZHQn4i6/luP++Etdcm8ByLWwbnv1Fmdvfn2LV6vbL1iRRKylTW7iKI7WwAGllGbyzQ5TePIJ3ZggqHsp1cFetILl5A1YbSzOUz5wkvWotXVt3A2CXgESSnm1XUx46TensyZa3aeTYK6zctIe+VTumvN+17DL2P/YXFMZP0dXfHoMv6WYZzh0hlejGqtaFVlgUKqOgNUpd3H1K5Nlrrd890zal1Eml1Eqt9fGqQXdqhs91AT8Cvqi1fmLSvmvewZJS6s+Bfz5LO75KaBTSpfrkBrQtApb4sgyhwRcIq8MHoYcvKMn06KhkEjwf7XkoR3ZHlN26iuzmVbz1H+9l5SdvouuK9SilSA50oCyLoFAG4Qafm7JJdbnGwzcDO6qJW158zhh8hsXn+98rcOSwz1f+pIdcTjMyoTh9KuCRB4rcd0+BL/5+D1u2y5N0touawRfnGD5vPDwHSZLO8tETjH73PnSlQmrbJlQygy5XGH/gEcbuf5jej3+QxCXT+TwWn0T/IBOvv0L+8Osk+gfRZbDcBOXRIYpnjtOxfkvr25TtY2L4KB19a7GdcJxQlo1XyuFXivX32sGOtR/klSP38ObJR0naHdjKoeiNo3XAlsHbyLjNyXAbVxY6y/wB8GngD6r/fv/8DyilEsD3gP92fnKWScaiAj4EvLTA9ixNxCdtqRZe1/IyqlmOi5cba90B5/AzqVTYMQalMrZwg0+XPZZ/6B10v2MDR776U4q376R/x3IqI3ncnvZ53OcaA9i5PM3EPAy+yJIITWChcX4NtVHN/Iz29dusXmOz9/mFecSjeoGlMoVfKiUVWsX59/exYwGXbXK5ZF14R1Sq9+97P5DmP/7fo9x3T+ECg2/Bz0gDcZd+C571+TBxuoiTskl2hmNFHEpQnN8/V8ZDRYuVTbc0fns2Cs+9jN3TTd8nPzTl/a733sLovfcz8ciT9P3KXW1pW/fl16Acl1M//T5+qYDtpPAKOexUmmXXvZuuLbtb3qY1V36Ao0/fzcs//2PcVBe2k6BSHMf3SqzedjvdyzdBm0Q0SbeDKy77BJ5fpjh+mkD7JO0sKbf9iXcksNBZ5h8A31ZKfQZ4C/gEgFLqGuBzWuvfqL53M9CvlPoH1e/9A63188BfKqWWEVaQeh743ALbsyRRKHSL6pbMh3rSFl+ewRfG8MnzPEIo6QTQxRJkZcuU7WyKynCOju2r2fDFj3D4P/8Aqa89AAAgAElEQVSE/IuH8HIlVv7S7rYafXOhczBtJJ2zsOtKl+eell8qxBB/fulDaX73i6McOexx8y1JegYcUmlFKq049JrHu94txwskgfHTRTqXpcTHSs+GX4vh65ITw2d3d+KdHMYbGkElXJRtgwIrlSIoltoq6QTo2rabrm27CTwPNV7ETqXbWuTcdhJcduVH0DqgOH4G3y/jJjtIZiZ7z9q3GFb28gyNv0kxdxaNJmGn6c+uJ+12t61NUliQwae1PgvcPs37TwO/Uf37m8A3Z/j+bQs5/sVCWJZB7mryuSyd8gw+6Vk6gbZl6pwLKz95I25/mH0rsayLjb/zMezRYey0i5ONj/yvczDFyVdNguCZ2H1lgnt+UOTUCZ/BFe2bVBiWPtt2uPyH/9zLT+4p8sJzFYrlCl4Fnn+mxHvvTPPuO+QYBRIYP12MdYZOOCfplFSWIXPNLiqHT3Hma39JcsN6lOuA51N89XWc/l56PnJn29qmtaZ8+gS5Nw9SHjoNFQ/LTZBZdSkd67diJ1t/HbXWlAtjjJ8NjSq0xnZTdC3bQLpzsK0LEqdG9nPw+AN0pVfS4fQCilz5LG+cfZzV3btY338dlrp4xzXZOjIDUDX44hDDJzBpi3LCrFaSUFUpS83g04VS/T2Ykyp0RprtEC6fGcft68DpTIfeZg3JgdAA1IFGWXJXnSdLhzoG0+TOlqiUNbZrhXWh2pyJrZVEyahqBdiffbbCe+6YfnhwZ87N1VgbGvhM1JAcVUagkV80qtRAK0o/tIKoEhftZMVKm499Ks3J4wFlLBxH8YW1vfXt8pYQo2mG1HI6Wen4qSIrtvaIlZw2gj9RRDkWVkqOsNvKpOj7+F34EzmKrxwgKBRRCZeOPdfjDvSHH2rTIzRxYC9Dv3iI1PJVZNdvwvItgkqJ0X3PMPrKsyx/1y+T7F3W0jaNHn+Vt5/7O1Id/WR7LkEpi0phjAOPfZ3eldtYs+09hHkYW8/B4w9wxaWfIJvqn5Klc8vgbTx66Gus7N5xUXv6jMEXAxRKeAyf8fDNh1oMXxxKM0weoJVSTA6lkWzsnU+yM8Guu9bhVwJs16qvRga+5sH/+hrv/MwGHDe+E6qFsm2Hi5uAvc9XeI/xsBgWiXw+4N67i3z0VzJkMhaXbrD4wd0lbFsRaFizzkxNJqO1ZuJUkY6b5XjG5oM3UcDuTIuTpXojo/gjY9jdXVgdWaxsBiuZnLXObCsY3fsMvVfdRNeOK4Fqlk6gZ9vVHPnhNygce7PlBt/be+/j0t0fpGtgag3AtTvez96ff4X82AkS2bUtbVMN23Kp+IXqonRAOFHR1CYsSng93MXG9KoxQL6Hr5q0RajBp71KNQZS1sMeJ0lnz3WbpsSR6kATeD4EOizP4DqxMPxeuvstPvSH15HIhPfsocdOsunKLKkOl71/d4xrProm1nWuFkoiqdi2w+XF52R5xQ1Li9cOeNzzgwIf/ZUMx4/5/NXXc7zyis/EeEBXt8UX/00Py1ea6UmN4niFStGna3m8F2G88aKoDJ0A5bdPMn7vI5QPH8Xu7sRKJvFHx/BHx+m4+Qa6btkTyjzbgNvTR+nMCbyJMZTjQmXSImW5iHJb70lzEhnKxbFQ0aU1KAvQWJYTGshtjC/ctOo2Xj58N53p5WTtHhSKsp/n9MRrrO25ioSTbVvbJGB61BgQJm2RbPA1QdLZFB3jhW8pJ/RMac+DZLSMZIFqtTmhUuHAd4GHr4HsZboFGc4mH2P0F6+hg4Ce6zcDMPb8mwwdOoqVcCgeH2Xg5s10X7666W0ImmykJ7IOln1un/f8q2f4n//0OlIdLplul/xI5aI2+AB2XZngO3+Vp1LRsS2A3UgGTUtAlsMoWWlc8Od4Goff9FlejRE9+GqFt970+crXBwD42lfG+NOvjPPFL/XOtotYM9esv+Mnw2QnHYONG3ytyII513HIHw89fAvZR7MZ+8FPSa5bz8Df+8QF205+5U9x+nrJXt1ANsxFeJQHbnoPJ3/yXY5++09JDCzHxsEvFSmcOEzv5dfTtX5bS+csAKt3v4+3nvwuZw4/R6Z7Jcqy8CpFho+9zMDaK0l3Loc2Rff0d17GjVs/x5mx1yhMnAY0abeHDQN7SNjxXixpBsbgiwFKeFkGpRTKssV6+AC0V0FaQvhals44ePgmXjmKnU5AzeB75g3GnzrAJR+9huFn38TpTC6Kwddskh0ub+8dws04jJ8s0Lk8zbP/4wg9K9Mk0lONwYuVXVcm+Oaf5Ti4v8L2y2XXVjTEk6NHPF58rsK3/yrP9/4mz7XXn7vPOrssRkfkLnC2g1pm4a4V8Z60euMFEoOyYqhUMgGWhQ4C8H2wbfB9lOui3PbOGex0hlV3/TpefoLSqeNYRR87kSK9fE2YTbQNZPtWs+vW/5WxM4fIj51ABz6pbD+XbL6VRCqM68drz/Nbk+Au696ESqyrvleTdhqMwRcDpEs6IZR1SjT4apKHoFLGQlbpgHrSlhgYfE5HCj9/rp1OV5rB9+xg5S/tRvsB5eFcG1vXOO/49Y089c3XeOvJ01QKHld/agP5Y2O89dww1//qevrXXdySD4ArrgonOS88aww+w+Kw5+YkXd0WlbJm2w6XK685d5+9cbDCZZtlLc61m5qHr3MJSDozly1vdzOmkL3hSsbvexx/ZJTE2tUox0b7AYUXwrLQiTWr2ta2oFxC2TZOpgNn/SasnIefn8AvF3HS7RurvEqRRLq7vtDvpjpx3PZn6z565hlW9e/GtlxKXo6XT9zLcP4IKbeLHSvuoCfdvt9SAsbgiwEK+QafZdkis3TWPHyBVxEg4JqKch1wbIIYJG1x+zrIv36CwuEz+GN5SseH6bzqEgCspIOypV3d6Vl37SA9qzs4uX+Y3rUdLNvYTYddopz36nF9FzsrL7EZWGbx/LNlPvVpYwAbms/O3Ql27k5QLGqKRU0tRKpS1mze7nLVte2fPEpi/GQBFHQMxFtuPp2ks51orUlt20hiYBW5p5+n8PIr6IqHlUyS3rmN9O6dWIn2LT4MPflzOrfuJrlsBZWxYU7e/W1KQ6cIKiUGb7qDvstvQLU4y3R++BhHn/kRxdwQyXQ3ynYoF0bRgc+6nR+gd+W2lrZnMkfPPseK3h3Ylsv+U/fTn1nHVas/xlD+MAdO/YyrVn8cx754+xYzw4kBSlkEWp4xVUPpqofP91quJ49iqqRTHlYySVCUXwi89+btVEbyvPZ//jV2NknfrTsZvH07AN271+Dn5ButAK/8+CiJrMPm20JjNfACAqUXbOy1IlW63yJZilKK3VcleOHZ6RO3tGLpKbrswuJfi2aUbWhGjF5UPGLUtWrsGLOzWNqNVEqRSoXXsRBo3ITiI5/qmPf+5hobN69jtGHpcPxkgWx/EruJGYRbEeM35XgVj6BYwelsg9E6w7kqFDrQ2F2ddN32zgu/FrR3ob1w9E06Nobj7Omf30PXpl307bqBoFLize/9KZmV60kPXtLSNr3xxLdZt+399K7YMuX9cmGUfY9+jUz3Shy7PbJdBQQ67K1ypTPsWP4+APoya/G1Jzo0qhUYgy8GhElbZN+oltAYPjXJwycRlUrGQtKpbIvlH76W5R++tv6el5/AySRIr+xpY8vmxvKtPUyOrrccC2tSdtF2p+GWwhVXJ7j/x0XOnvHpH7h4C9UaFh/f19i2qj93P/xujl/6iPEsT2bsRIGu5bJCEuaKNxbKUh1BHj5gSn8/2cBTlkXuF8+S3r4Fu6uzHU0j8D283DgAleGzZK68FQDLTYbJ8towVCmlSKRDg64eH6eD+nvtxAtKHDx2P46douTl6sYfhG01ZRkM4gmTtsiWdCrLJhBo8FnVGD5pxddrhB4++QYfQFDxKR4+Tf71k/jjBRKOj5V0SK/qpefKtbGQdfatC70H4ycLjBzNMXGmCLkC6S6X9df00dHf/tpLEthdjeN77uky736/rAmaIf5MjAe8+YbHqtU2ff02uYmAo6cCenptRodlj3XtYPxkgb718/d8SsAfD5UsTpfM/kT7fj0RSn2BXSlosWRyMpbtcPax+xnd+zTl4TNTDFLteyjV+sW4/kuv5s0Xvk/fqh2kO5eBsvDKBc4ceZZs9yrcZKZtWTo3r3o3fuCBgm5nsO7Rq/hFlnVsxGrD9ZKEMfhigFKyyzIA1eBdebJT6R4+K52KhaQzKHuc/M7jDD3wMp271uL2d+J7Abm3zjL0xBsUTo6x4s6pqasbkQy1WlYEcGzvEC9+701yQyUsR9HZbWM7ikNPnWHrrSvYdFPzC9k2IjWLlIVGXKpmSj537kqQTMLTT87d4IuUBzagVrBiYHAvlZIKrcKvPusHX63w1a9M8Oq+Ctt2utx4c5IXny2jleKKdyT5tc/M7E1ZqGSzkWekVdLpuTB2ssC661pbYBua2z9746GHb64xfFGP2ULLOgSlMqW9b+CPj5NYuZzEmtX1unt2R7atmTqX3/FxdLmERtN/w224ybBUSVAp0bP9GtyOrimfVy3ok1Zs2UNv93rOHHmB0TNvgA5wEx0sW3sNfau2o5TVtiydgz1b63+rwrlFftdOsWnZze1okiiMwRcDFLLLMgBh0U2JHj7hBp9KJgkm5Ge4LB0bYuSxV9nxXz9Xfy/thte0eHyEl7/wNxcYfBI588YYP/t/XuTKT1zGxptXkux06bBL5EfKvHzfCR7/xqFFMfjiRiKpuOLqBE89EQ/vsyE+PHBfkcHlFn/45UG+9Nsj/ORHBT7+q1lGxjQ//NscqZTi1vfJ9AK1g9JEhXLOi39JBqGSzvGfPETxpddwVyxj/P6HyL7jKjpvuQkrnWLk7h+z7Df/J6xke7IVJ3r6pvzfqa4NW26Svsuvb0OLQrI9l5DtaW3s4EI5NX6QZR0bQoP0IuXiPfMYEY+yDEKzdNYknUINPiuVioWk00q6YFn4+RLeWB4/V6Qykqfw9jBDT7xOdpOsVNszosEr+ez4wFqSnedWbjM9CQbWZxk/K/+3aBXX3pDk1X0eI0ZiZ2gibx/xuXSDU//b9zW7r3L5wEeybN2Z4K1D8saRdjJ2IjSUYh/DV/XwSZN05p58nuX/5LP0/9rHWfU7/4LCKwc4/Wd/ifZ9sK221buLYujFx/HLssarE288QeC3//nVWqN1UP03dJaMlU4Kd5ssPsbDFwPiYPBZtkPgy/Pw1SWdzYrha3KPYaWT6DZIOucqg3EHuui5YTMHPv+XdF+7ESvl4gQVymcnqIzkWf2r7VltnKvEKzuQIt2T5Om/eo2e1VnKEx7eSI6hIznKOZ/b/uHmab8nUeY1H6LOI5i0/ZobksA4v3iizLvvkDVJC6KkSw39XLP3qVYL1kOjMnA2g2Zk8WwmjgNr1oZTjw2bHf78T3IEQSgffOOgxwc/nm2L1LtZNDtT6Fi1Bt/5Hr64XSNfqIdP2TZBLo/d3RWWadi6kdEf/oShb32PIF9snqSz2Y+hUuJizZVSYdxjm9BaM144yZmxg5QKowAknSzLOjaycWBP29olBWPwxYA4SDqVZRNUZK02AVhOtfC6UA+fSqViUYfPcm1WfmoPA3dcydizb+CN5nE703RfsZauHfGRdqS7E/zSv7mGR//Lfg7cf4zOwTSd3RbpngRbbu5h057BdjdRDDt3J0hnFE89XhJn8Bniy29/6VxW30Ove6y71KZ/wCbvaRwX1m8w05LJjJ/IA9AZd0nneAGVcLBS7YuJm47kxvV4QyPY3V0opQgKRXAclOvinTotNhlZaFwJa5tqbx7MQycf4eTIflb0bqc3swbQlCrjvHT8HgY7NrJhYI84I7mVmJ41BsTCw2c5eEG+3c24gNrqnOQsnbpURgdBywuozgdlKTq2rcYbzeN4BfxCmbGXj9K1Y3W7m9Yw2b4U7/0/rgBg6K0JnFKeTE+CnpXxnlA1GzehuPIdCX7xmPwFCUP8CALNs0+Vub0ar1epaL7w+7309MqU0LWLsRMFlAWdy+JddN0bK4jz7gH0/uoHITcp+2W5jJVK0veJu8hefzXKad80uTI+AkEAlo2ybFTFBqWwkylOPvZjujbtDl3mLcQrF9DlAKVUNR4u9DRatsuRfT9h2ZorgfY8w2+ffY537vjHwNSkLev7r+Oh1/8LGwZuoi21LIRgDL4YENbhk23wKcsRGcMX1qqxxHr4rHQSAF0qodLyBsPJFN46zbFvPEjh0Cnc3g6clIWu+Lh9HeQPD7Hijl3tbmJDeGWfNx45ydHnzlAp+CTsAGVBbqjM5XesYuuty6fU5ruYufbGJP/h345x9rRP/zIzETc0j9cPeoyNaq6+NlRhpFIWqXjbNIvC2IkCHQMpLEf+guBseOMFcfF7EEo61SSvoy6WsNLhjZhc296FzLe+/mXsVBqUQnsVymdP4Xb2YqfSeBOjbYkvfPneP8K2EqF0U2uKuSFQilS2j3JhrK1JURw7yXj+BNnUAEoHHDj1AMfHXuG6db+OVTVOL2aMwRcD4lCHz7JlZulUSmG5bvNi+JqMqs5wgkIJS7jB9+a/v5uVv/ZOeq7bBJzL0lkZzfPCb32DZbdsxU63J5vZbPjnxWI9/dcHef2h42y7Yy3LNnfTnfHxSj5n38rx2DcOsXxrN72XxDtBQrO47sZwQeLJx0rcedfFdU2i4utaEeMH0TF4kfGMjRxjgfuYz+j07FNhn3zVO+T1GYtNVAmWyfF5YycKdK7IxC5mD6bGintjBezO9ILLKCw2QbGESiYveF+1I6pGwaq7fh23u5fiiaMc/uZ/YvCm99N56XZe+29/2BZVkA58Nt/w6yRSnWit2ffwV7HdFJuv+3VevP8/tDWGb+vq9/PCm39LOtFNyupgpPA2FT/P00e+xbbl772o5ZxgDL5YEEo6YxDDJyA703RYTkJ0lk4gFrX4tOeTXj+1ZEFQ9ghKHnY2QVD2RBp857P/745w55eupf+ysIZRpx1e+9W7ennim4cYPVYwBl+VrTtcOrsUTz568Rl8hsXlmSfLLBu0WLPOeI5nY+xEgeVbu9vdjAXjjRVIr5Nf8iYolurjcrvpv+F2dOBjJZJ1Q8rNduOks3Reui1UMLWYwU034ntlnEQ4Hmg0tpsikeqke/mmqoevPQ6K3o517Nn+W4znT1DKDVP0xil5OW7e8LnoL18EGIMvBsRB0hnW4ZNp8CnXlSvpTFUlnTEw+Dq2r+bgF/+K/tt3kdmwnJxfojKaZ+LACQbfszMWxh7AwMZuXr3vKOuuCxO0uOUCE2dKvPXMEIObOulbl21zC+Vg24prb0jy5KMmjs/QPLTWPPNUiauuTVz0q+6zobVm/GSeTbesbHdTFow/lsfplq1igXAstru7oj/YAnqvurH+t66Ec5ha5vFL3vsrbWnTqp234xTPOSB04GNZoSmx6ZpPtqVN59OZWUGX6uPk+KtMWGfa3RwxGIMvBsRB0hnW4VtkSec8nZyWk2hZBtFGZB+TP3JO0tlkg68JspngvHPp/8DVnLn3Ocb3vsXEvqM4riIx0EHfjZvov2Hjgo83Hf4iyH9u+We7ePjLL/Hwl1+ib30nmTRYtiLTm+DyO1bRNTj31d3zZaOLQZQMbLHCE669Mcn9Py5y9LDH6rVOZGkHtwkZhaN6Owk+oVaUVJBCs8/0rUM+J48HvOP6C6VzC6EV5VMin8MmUhgu45WCeWXoDATFK+lA400URSZtOZ+gWMJZ3tz7shnUwlIsZ4FZTpssFgsC70JPoxBBmtYB7c0bKgtj8MWAOGTpVII9fJbr1lfHpFELDo9DaQanO5Rw9Ny0lYE7ryabkHlNo0j3JHnvb18NwPG9QzjFPOkel5VLQDa1GFy/J5z8PPFoiY+tNUOGYeE8/nDY3914s7yJtSTGqiUZulfGW07t54oQaJwu+ecRFItiJJ2TqYWlWK4sJY0OfCxb5rig0W1NIiMNmb+SYQphHT7ZBl9YeF2mwaecBIEnM2lLTdLZdA/fIlBbna2M5NGBRtdcgIrYybJyZ4oceeY04ycLWKUiXingiW8eYvWuXq76yBrsmGfEaybrNzgMrrB48pESH/uUkbsaFs5jD5dYvdZm7TozBZmNsaVSg69adN0WmKXzfHSxWB+XJVHz8KmFeviaTBB4KCVBc3EhWgfG4JuE6W1jgFLzj+FrVWap0KWv0YE/fSBxG138luvi5Sfa14DzmXQtrGS4kqjzxXPvN3Kt2nA9lWNjZZP44wWUpVBNKF3QjsxzuTNFHvr/9jJ6LMe66wbpW5bEcS0yvQmOvjBMpeBz46cva+oxG5F8BguUhTZDVjqtJE4prr0pxSM/K1IJwI0Y2/2Ie7OR2yZq+hCVudJqQMYTtQ/bSIGaSk1iWKlofvF4iTs/lJkiO2xEjrlQyWYjcsyghZLNKEaPhYZS14rme8Ya6XujPtNo/+2NhYbrdB4+EVk7q12B9n10xQtDLdoxxs5yzJpKyXJlGXyyPXxG0jkZmb+SYQq1FQqttVhPSi1oNwh87DZkjpoNyVk6Vc3DFwNJJ4QDtl9drY0rh586RX6oxCe/dgtwLksnwOuPnebhr73WdIMv7ly3J8kP/zbPgX0Vrrhc1vNtiBcvPlcmN6G5YY88L4o0xk7kcVI26R5ZMr654o+HY4b0GL6a0kayh2/BMXxNRvvTxPAJIZwzy1nAaTfG4IsBqrpyH65WyHywagZfGMcna3BSboJAaAyfsixUMhkLSSeA05Wur9bGlY5lafyKz8jRCZRSBIkylYLPmUMTvHjP22y4QX7q8FZz3U2hJ/qJR0pccbn8OByDXB57sIRtw3U3yZtUS2PseJ6ulRmxC72N4o1WPXzdsvuOoBguvIqM4TsvS6cEtNYEk7J0SiOcMxuDr4bMX8kwhXMevgCEaqWVHbYrEJi4xXLlxvBBmLglDnX4IPTwVYbG292MBbF8ey9r3jHId37zYYpjFa752BoCX+OXA9Zc0csVv7y63U0Ux7LlNhu3ODzxcJHP/absSZtBNo8/XGTXlQk6u8xELIqx43m6Yh6/B+di+BzhMXy18ki1ZGqSCLwyynFleax0AGjBHj4TwzcZY/DFAGuywbcINCPOr+7h8xe5NMM8sBwXXRFs8KWS6Lh4+LozFA6dBKLjN1oRmzGf1OOJjMMN/8s2AB79Ty/TOZiiazBF35osK7ZMX39JUlzPQoguqTAz1+1J8TffnKBY1KRSsj0OgY7u1CwBXpOoOMJmICnd1/CQz8svVviH/7Sz3U1ZNJpZGmLseIHBLT3TbotTn+SN5sMY8PnUam3GONLgY1ZbeFXJeXifF/lR1pWKODlnrRSXaoeHr4E+3pRlmEp8eoyLmMmSTqmoegyfPA9fTdKpG+gg2oGKkYfP7krjjRXEXstG0VozsCE07tbu7mX7u1fOaOwZQq5/Z5JyCZ75hdzFE4NsHn+4hNZw0y3yPCjSqBQ88sMlulfF36PujRVwuuVLU+uSTokevkpZXEmG2nxPtKTTePjqmCsRB6qdpORafLUsTRINPstJAFps4hYrlYpRDF8GXfYIijKvZaMopeiq1rYaOR7vJDSt4urrkrgJePSheCQYMsjj0QeL9PZZbL9clqdCImMnqhk6Y16DD8IsndLlnEBdaSPS4PMqKEeWwafrBp9USadJ2jIZmWa5YQqLLelsBqou6RRo8FXTGDe0QtYGx5WVSuENDbf0mPN10NXSanujeejqaGKLFo+ZpKcdK8P2Dx8rNpSuvd0stGzDQklnLK68JskjD5b4Z1+ceaXebYJG3I+4QVshx2xG2YZmSDaj5KnNOEaUED+q1EYjMsYg0Dz2UInr9ySxmlDSZdp2xOA5hmgpuo/FcHUhqmNltiklV9qJN1ZYvKLrTRyzFyTpXGR0pdwaSeccrmdQDeFRgssyWMbMqRPvXuQioSbpbCQupV3UVnjkeviQ6+FLp9DFeHhNalnW/Jhn6gRIdbm4Gade68oQzfU3Jzn4qsepk/JidQ2y2f9yhbOnA/bcKs97IpGxY2Ef270q2+aWLBxvNC8+QydMKsuQlueNDCoVcZJOLV3SaTx8UzBXIgbUs3RKjuGza2UZ5E0Ea51kUJYZe2SlUwT5eBgdtUG7lmY7ziil6FqVYeRY/M+lVdx4czhZf8zIOg1z5JGfh/fMjTfL855IZOxYDstRdCyLv4HsjcZD0hkUi2BZqIQ8ybEWHMPXlqQtDRB6+IyZU2PBv5JSqg/478B64E3gE1rrC/RpSikf2Fv972Gt9Qer718KfAvoB54B/p7WWubMvE2oaimGaSWdQrx+9cLrbZR0zqQkq3WSUj18Kp1CVypo36+Xt5BK3eBrkYdvsTPRda3MMnIst+D9RGUsbYRIOZqAfAebtrn0L7N49KESH/r49Cv2UctSjSxbyX4KQlqRYXMp8fADRbbvcukZcCIlpJJplbxy7HiejsE0ljO/4/ktyJIcRaBBez5+rojdnSEQ/sjoQhErlRSZXCbwyjjpzraEnczEYsbwqSbMbU1Zhqk040p8Hrhfa70JuL/6/+koaK2vqL4+OOn9fwf8kdZ6IzAMfKYJbVpSnKvDJ3eYrBt8gTyjqibpFOvhS4Urn3FI3FI3+EaWhlfMePjmhmUpbnxnkscfLuFHBXYZDFVGRgL2PlfmxnfF31vVKmpF1+OON16rwSf/XIJiESWw6DqE8xd5Hr42lmVogNBJIs94bxfNMPjuAr5e/fvrwIca/aIKl1FuA74zn+9fLJwryyB3glWXdEqsw1eTdFZkytBqGcGCgnxZp5VOoBx7SUg6IYyPKY17FMfkLVRIZc+7kowMB+zba66ZoTEefahEEMA7b5M5mZbI6LE83Zcsjfg9IDYxfBIzdEKoULKkZemsKrosyUlbVBz0Iq2hGQbfcq318erfJ4DlM3wupZR6Win1hFKqZtT1AyNa65oO8ChwSRPatKRQcSjLIDlpS93gE2Qo5G0AACAASURBVOrhqxt88j18SimcnkzLJJ2LTVc1IcLI8aVxPq3ghncmUQoeeVDmAopBHg/9rERPn8WO3bImrFLxyj4TpwtLJmELgB0TD58l1cNXKdczjkshEF6WITCSzik0ZJYrpX4KrJhm0xcn/0drrZWaMSf3Oq3120qpy4CfKaX2AqONNlQp9VngswAp5HcczaTu4WuTwRetpVYoO+yI9DwNviZkcp9539VUxroZBt8itLOWEUw3sfi6bkL8xkz7cLoyVEYWHvcmgdqEauTtPCu2dC/acRqKp1ngT9ZIvGNUaYeggQi7vn6bHbtcHnmgyG/+k86G29dMolvZwIMa8ZFWlH5oReblqBIXi358X/PIgyVuvDmFbc98TRsp7bDQ+LlGSptIKIEwfqIAWn4NvkZil+Pm4XN6ZhgH2vgYaa0JymVxdfhqORskSzqVkXTWaehX0lq/e6ZtSqmTSqmVWuvjSqmVwKkZ9vF29d83lFI/B64E/hboUUo5VS/fauDtGb7/VeCrAF2qT662cRGIQ5ZOCUlbZsJyw6xwQUWmBC1OHj4Apye7ZCSdXauqxdffXhrn0yr23JLkT/7jBCPDAT297Z8gG+Sy94UKQ2cD9hg5Z8OMvh0uqBlJZ2vRhSLWyplEam0k8EEH4mL46klbbFmexxoaU5ZhMs24Ej8APl39+9PA98//gFKqVymVrP49ANwE7NNaa+AB4GOzff9iJw6F12su/fl6+BYT6ZJOVfXwxaY0Q1cGf4kYfKnuBImsYwy+OfLOW1JoDY89FI9FCkP7ePBnJWwbk7BlDowdW0oGXw4UOJ3xKMugBMbw1RarpRl80iWdJkvnVJrhh/0D4NtKqc8AbwGfAFBKXQN8Tmv9G8A24E+UUgGhkfkHWut91e//S+BbSqnfB54DvtaENi0pajdsINjgq0k6ZXr4qmUZyjJjjuoeviZKOheTmoevGW72hZZdWGjqcaUUPavSkQZfI3Kzi4mdu116ei0e/nmJO++Sv3I/H6Lklq2QfEJ0+YdmjAoL3cdsz+HPf1rkiqsTdPdcHBOvZpSSGX27WoNvcGYjKVhgn9SIHLMZoQHeaB67M42yp78uQipLhbLJQrGeNbv5B5j/V2sJ58QlbZGepZOgHhK1aEivNTKJBf9KWuuzwO3TvP808BvVvx8DLp/h+28A1y60HUuZc1k6BRt8ygKUyKQtyrJQtiPWw2elqpLTuEg6uzMEpQp+sYydkjUAzYeeS7KMHF0aMYmtwrYVe25J8tDPilQqGtc1BrHhQk4c99m/z+Offr49sZ5xZfRYns4VGaxZYh7jgjeaj4ecs1yBIBCZpbNWUkqch096lk7j4ZuCuRIxQMVA0qmUwrIdkR4+CDtKqQafsm1UMhmLsgwAdnXwrozEo71R9F6SYfjtPFrKUnNMeO+dKUZHNE89IdNzbmg/D94fLmLdcru8SbRkRt/OLQk5J9QMPvnnUht/JRp8tYRz4gy+QH7SFssYfHVk/koXCaoBV7AmHgYfhA+9xBg+CDvKpmTpjKIRm2Gaz1jpFEG+GG5raB/tW/l1q4O3N5KHFTNntlyo5KhZREmXui/JUCn4TAxXyPYlW9SquSNFVlr7Xa+/OU0mO8JP7ily/TubK4OKquYpIWKkFRk2pTDfkefB+4usXmtz2SaHVowMjWThlIAfIfscfTvHZe9a1ZDsUjreaI7UusF2N2N2dJiwBQglncIe7cALY/hUlMHXqnZXj1Ovw6cccdcMrauSTiVHN9xm4tE7XuS0uyxDo4j38JVlevigavDFxMPn9NQ8fEtDBtmzulqawcg650Qqpbj59hT3/7iI55kB1TCVfD7gyUdLvOv2VL2WrCGaSsEjP1RaQh6+QiwknbWQCokevrqkU1gM3zkPn4QluAsJyzIYM6eGuRIxwIpBWQYISzNI9fApN1EPfJaIlU7XVxil4/R0AFBZIpk6ey4xpRnmy3vuSDN8NuCZJ+UuphjawxOPlCiV4NZ3y5tAS2a42g8tBYNPez7+eAG3R/65SJZ01pO2CJR0KssRuaCjtTZlGc7DXIkYEIcsnUCYGEWqh8+R7uFLx8fD11X18A0vDQPJGHzzZ8+tSVJpxU9+ZK6dYSoP3Feis0tx9XWyJqnSGT66dAw+bywc02qqEMkE+XDBtVYmSRJSY/i079VrMEtDVzWmxuA7h8xfyjAF8TF8VTWXZTkEfkWelhuwEkm8wjhKYNsArEyKysmTLTveQtJtWykXK52gMrw0JJCJjEO2P1mfaM0HP2LtrJHYooXG6DUjxq+RfUwusZtOW9zy7hQ//bsiX/g9jeOoyH1YDcRTWBHN8KP20dCK8+z7sFsQMxlVcqE5x2g9vq958GdFbnpXsp7BNSoerZFyBgsv49LAcxjZzsW9L0aWkIfPq8r+a4uE8yFyrGrk92jgMQuKkj18Mg2+IPBQ9jzknC2Yh9Xmy0pI7LsEjOkbA+JQlgGqBp9QSafkLJ1Q9fDl4yHphLAWX2Vk6Xh1eldnTAzfPHnvB0JZ59MmW6ehyovPVRg6E3Dbe+RNnqUzcjSPm3FI98pNINUoXlX278RC0lmN4cvI8/CJNfh8D8tyoz/YBmrzZePhO4e5EjFAvIevirLdetYmaVhuUrSkU1UlnXEpDeB0Z5ZM0hYIE7csxMN3MbPn1hSZrOLHP4yHJNmw+Pz03gKOC3tuMQbfXBk+GpZkkBgXNVdqY0QsDL58AWwb5cozYKTW4dOBYEln3cNnzJwa5kosJlrP/moQKyYGn2UvrodPaT3ra9a2iU/akgrTCJfktnEyrfLwBVrN+moWPaszjJ3I41dkP2MLxUfN+poPqZQKZZ33FqhU4rFg0Qg+etZXqwgiXr7Ws75a00ZVf1V8uPfuAntuSdHRbdffNzTG8NE83asXbiAF2pr11Qq86hjhdHegtZr2JYWgWMRKzz+jrNKzvxpCT//SlXJYr1dYNswg8EQXXQewlKxr1k6MwRcD4pK0pR7DJ5CwLINcY8rKhDEOQT4eXhKnO7tkkrYA9K7OogMYPb50zqmVvO+X04yOaJ54RO4zZmgNTz9R5tTJgDvvkieNk47WmuG38/Rc0tHupjSFykgO5VhYWfny1CBfwBKYsAVCD19kDb42EPie3KLrdUmnnEWFdmMMvhigqmWGxcfw2Q46aEeKgGisRBKCQK7ktBooHpdMnW5PFm8sj/Zl35ONUsvUOXzEGHzz4aabU3R2Kf7ubnP9Lnbu+R95sh2Kd5lyDHNm4nQJr+jTvUa+BLIRvJEcTk885KlBoSgyYQuEMXxWQp7RrAV7+AIj6bwAmb+UYQrnYvhkGlM1lOikLWFnGZTL2OlZbvs2KdJqgeLN8vA14zRmk9vYPR2gw1p8ib75r0YvVOrVLGlSb3WCNXxk+rjEVkmgZiMyw2CL5lTTST/tpOK296X56b0FSkVNMrXA3zViuwSRTitlnYuNH3Eqjcp9S0XNffcWuP39adLp1j8zzchU2842DFcTR/Wsju5To7KJRtFQVtSIc4l6AmoGXxzQBcEevkqpafF7zcxUHsQhhs8kbaljrkQMiI2k03ZFSzoBsXF8tYEmLpJOtzccxJdKaYbOZSmcpFWfcBnmzvvvypCb0Dz4QHyyzRqay4P3F5kY13zgQzInztKpLTgthZIMUDX4uuNxLkGhIDJDJ1Q9fEbSOSdMls4LMVciBtTriIg3+AQXXq95+ISWZqh7+GIi6ayt2i6VOD5lKXpXZ2f08BmiueaGJH0DFvd83xh8Fys//F6eZYMW194oT34WB4aO5FEWdK2Kh5EUhTeSw+mNx7kE+aJYD58ul+tzGElIlnTWk7YYM6eOuRIxQCmFwpLv4bMctFRJZ6Lq4RNamuGcwRePybLTE0qOloqHD6B3bZahw0vnfFqN4yje84E0D9xfZGJcdl9laD7DQz6PPFDkjrsy2Hb7pZVxZPhIju4VGWw3/lMzrTXeaA63Jx4JaIJCHisjNYavhErI9PAZSWd8MFciJihliU/aomyXwPdE1pI7F8Mn06CyUilQiiAfD4+Z0xsO4uXhfGTphFaUVZgNH2v2lw5fves6GT6So+Kp+nu1VxQSUqBL4I67MpRL8JO/K+FrNe0rqsxAI72cH/FqhIW2wTCVH99dwPPglz+SmXZ7M0qCLEZZkbkS1Z80wuQyFpNfQ0dy9KzJiOk7F4I/XkR7QWQM30zlGlpZtkFXPHTFw0rJ9PCJlXQGMZB0GjOnjrkSMUEpS34dPssBtMjkMvakpC0SUZaFSiVjE8NnpxNYKXdJefj61mbxywFjJ+JhdEtk11UJVq+x+dH343EfG5rHD76bZ9NWhy3b5RWujgvDR3L0rY2HRyyKWp3WOCRtCQphW8XG8JVlZukMggqWLfN5D4yH7wLMlYgJlrLlG3xVLbfExC11SafQGD4IB5u4GHwQJm5ZUgbfuk4Aht6aaHNL4otSijvvSvPEIyXOnJK38GNYHA69VuGl5yt88KPTe/cM0RRGyxRGK/StlW8gNUJ5KOxH3RjE8AX5UPkj1+BrXpbOZqJ9+TF8xuA7h7kSMSGM4ZM9gaqt9EyXuEXp2V9NQc/8spyah29hWToX8zzsdKZhg0/r2V+tYOkZfOHK+mIYfOdLRKd7LVQW2sgxIuWtEZK5RmRzH/hQmiCAe+9u3+KFr3XkK4pWSD4bkbdGnguzy1ubIaGN4vvfLWBZ8P4PZed93zTj3mvGMQKsWV+LRS1hVO8SMfjqHr5e+R7LWijFrAafVrO/FrN9lVLo4ZtljtOOKjFhDJ9MD5/J0nkh5krEBKWUfA+fJdjD5zbH4FtMrEy6Li2JA25ftr6KuxTIDiRJZB3j4VsgGza5bN/pcvf34uOtNswf39f86Lt5brg5xcCghAqJ8aSWMKp39RIx+IbC84mHpDPsqyRm6dS+B0EgzsOndYDWPv8/e+8d5tpVnf+/+xS10WhmNH1u8e33undjmgnGwUAIGAcHTKhxcCAQAiH5UZLwJQkOIcGQhJCAwRAMBscETAl2aDEhAdz7tX09t/i26VVdOmX//jg6mrkzkvaZ0ZHO3pr9eR49mCuNztKRTll7vetdisrnMS9dOlcj94QgEKJyb9riVvh4dOpccunkOOHr8F7h4wG9J95WFT5CCJKnxWXC5wOvfE0UTz5u4NAof4s/En+55xclTI5beNU1Us7ZCJWEbwv/CZIXjPksiKZCjfPpfLkcq3zd5VHS6d6z8DaWwVVycdvDJyt8q5B7QhAUwv9YBsJxDx9RVBBN4zvhi4rXw2elC7BL/CX46yV5Whxzz8qEr1Fe8aooFAWyyrcB+O63cuhMELzoCv5ulkVi/lgGiaEo9AifFZO1UprPQuvuACH8O4ralYSPv0UL12iON9MWu7ywz62kU/bwrULuCUEgROXS/XI57oHPY8IHOCtkTU/4WDp/Smr3GcZisHI5UNvD+zQaJsMK24sdttuM38wqXy37cvfhN8ltcSyO52AWTz3WWL1xGwkvdvF9Ayqe98IwfvCdPGx77c0lFq3/4AEvvXGijH5g9xFWH7GxsEjx47uKuPJVMYQj/N/YtwJWL26tfty5Y1lfq3tBj3Uw5pyEr9HrDKttjdXP7qWnvdLDF4k0rT+O1f9fywPANsoVPs7m8NHyfR5R+FygqCR8Ms2pIPeEIBAIMJahYtrCZ2KqhMKgnLt0wrRADT4T5pWEku03fL33tE6AAnPHZJWvUV71W1GMn7Rw7y/5PeYkjXHX9/MoFCiuel17yBCDZO5YFr3b+Dc48Yoxn4WWFOPz2Lk8SCgEovHnOFmRdPJa4eNU0ukWSBRZ4asg94QgKAIMXud5LAPgrJBZnA5eB5b6B+ysGMYterJc4Wsj45Zk+YZLyjob5yVXRtGTVPCNr7TPgoDkVO643Zm9d8bZfN70iUJ+sYT8QqltRjIATsKnC+DQCTgJn9LBn5wTEKGHj78kGVjew8dnBTII+PymJEuU9QjE7eFrlef+OqgkfDavCV+E7x6+cv+AnckBPd0BRwOm7MdN+Epz67+hb1Ra5Ic0afl7dJdn8c0cybRE9rQWmmkJ7yeu1FaPEFx9bQxf/tcMjh+3sGmLc37wYq+vMDRUrKUvL5d41mgGtQW9R17GQ/DKwWcMPP6IgQ98JOGpT8uPsQrMbQgir14Z5/SzziJf99ZOz5/By6iWun/vw/dR6xxJLRvGQpafkQyMc7mdy3Hp0Aks9fCRFlX4vI6Xchf2XXf29bxHM5GSztXIPSEIhCjC9PDRKnP4eEDRQ2IkfIIYt+jdHQBprwpfKKqhcyiKuWfTQYfSFrzujR0gBPj3r8oqX7vx7dty0HRn7qKkMebLEvL2mcGXBSigd3OS8DGwc3kuHToBwC6rknjr4XMlnYRbSWd5LIOUdFaQe0IQxOrh47TCF26BaUsDqB1lSacgCR9RFejdHW2V8AFA77ZOzB6RCZ8fDI1ouPzKCL71jSxyOb7PXxLvlIoU3/t2Hi95aQTJXimZapTZZzNQNIKeLWIkSCwqM/gE6uHj0aETAGzDdenka7wF5X0sg3TpXIWUdAqCQlSYNt/mBw0lfC2QACh6xJFHcCA3qEalwudHD18L5IiUEug9HSjNZau6rfEiiVxrHL3bO/H4d4+CUurZUpwlV7M8rK15eU09vEg+WTIwT7JRsrbE7Xd+N44f31nAnd/J47VvaE0Fw4sWgpWm8CD5BNifhfVtNMPV9O6fFLAwb+Pq15XPWT4c656OkUZljB7+nrWNRqWU1Zg9kkb3pg6ouvPejZ4L/GK936ub8InTw5fjuMLn9vCFmPcurZRSWnUknTzgel5ISecSck8IggiSTp7n8AGOy5XNs2lLh48JX4vQezthzLZXhS+5LY5SzkR6SoxKK++cf1EI+87UceuXMqAC96xJlviPb+QwNKLi0hfwZSQhKrNH0ujdLkZy5IVSWfUhUoVP5T3h40zSScteDbyatrj3y7LCt4TcE4JAhHDpLFf4bE57+MqSTl5vOkkoBKiqMJJOwDFuaTtJ544EAGDuSHt9rqAghOCN18VxaNTEr/6XX0m1xBujBwz86n+LuObaGFSVjyq+yNimjbmjGfRu7ww6FN9wrwmaAD181DBADQNKB5/9k3apCKKHuEtcbM4lnXSZ4aHEQe4JQVBcl06OURQVIErlRMAbSigM2Da3pjKEECixKKyMOAYXoWQcxkIW1OL7t7kW3FlYso/PP172yih6+xV87WaZRIvOv92UQTRK8Lo38XmDLBrzJ7KwTdp2CZ/WFYWi89/f6S6w8izp5G0GH7DcpZPPhM+GO4eP/99gq+CzFitZBYHKvWkL4Kz28CzpBMonUI3Pk5Ta0SGWpLPPGVRuzGUQ6k/4/v5B9AF29EUQjuuYPZxaiqMFlvKiwOpXrHZkhcIEr39TBz77qTQOjRrYubv+8efH2IVmI/JIhZWwvlP39z8xbuEH383jt9/YgUSPyrnmRAzchSW/E74gz1mlOe8z+Kr1f7cSq3y9bXgsgw+ng2o9eHapCDUU5mLUwXKWBq/zmUbIsQyraWhPEEKShJAfE0JGy//bU+U1LyaEPLLsUSCEXFV+7t8IIUeWPXdeI/G0M4oAPXyAc/Dzm/A5Llc8O3UqsZhQCV+o3KNRaiNZJyEEvTukU6ffXPPGDoTCwC03i/P7lpzK176YAbWBN13Hv1RPFGYPNyfhCxJjNoNQrxi/ETtbrvBxPHid6woft5JOGwTEs/HaRqDR1PeDAH5KKd0N4Kfl/38KlNK7KaXnUUrPA3A5gByAHy17yZ+6z1NKH2kwnraFEJV7SSfglPf5TfjKFb4i38YtQvXw9Tk3KcZMeyVHvdtlwuc3yV4Vv3l1DN/9Vg5zs/wvXklOZXHBxn98I4uXvyqKTVv4XNUXkZkjaXQORBDp5PPGeT2U5tLQhUn4nBYKleMePpnwrR2bWiBSznkKjSZ8rwbwlfJ/fwXAVYzXvxbAXZRSucS7Rprq0kkbfCxDFElnLQit/2h6jB0x2BkPhwcl9R+sP6fshxdCvU7CV2ozp87eHZ3IzhaRX+RnFIpFlboPXrBAaj7ecF0nikXg1lvysCip+WBug9Z/2GA/LMajFbBi8CMOL/vCC/9+Swa5LMVb37G+SpRNlboPP7Ch1H20AtZxuvJYnTmcRu+O9qnuUZvCmMtCT8ZhU8J8sN+wsWsdC68VvqDuDZyEj68ZfIBj2kKIyq0pCoXNbWxB0ejeGKSUjpf/ewLAIOP1rwfwjRX/dgMh5DFCyKcJIfwtY3CCQhTYAnRM8CzpVMPOSdPiuMKndsQqK44ioHXFQDQFpTar8PWVnTqX9/FJGmfHbh2XXR7GbbdkUShw1pQiqUkuZ+PWL2dx2eVh7NnH54q+iFBKMXekvRw6zcUcYFOEknxWzFbitlBI05a1YdsGt/17gDN4XZH9e6fA3BuEkJ8QQp6o8nj18tdRxwO15hWcEDIM4GwAP1z2zx8CsA/AxQCSAD5Q5++vJ4Q8QAh5wAC/PVjNghBp2tIoovTwUcN0BsQLAFEI9GQcxmy7JXzODdjMofb6XDzw1uvjmJu18b1vSaGHKHz7thzm52z83rvaJzHhgdR4HqWcif6d/hteBYWr9tB7xfit2NkcoKogYf6SKgCwSwU+Ez7L4FbOCZR7+KSk8xSY6Tml9IpazxFCJgkhw5TS8XJCN1XnrX4bwB2U0ko2sKw6WCSEfBnAn9SJ4yYANwFAgiQ33NIwwTolnS12knMSviaNPWjwoyxJOhuo8DFi8CTtqCNDcWcB2ZkclCRfg1ZrEerrRGmdCV+jLpxenOhYcjGryrpXx3AcWkTF9OF01efXug0vn5MpZWQ8zXJa9PIaL+/R6CX+4ktDOPMcHV/5Qga/9Xp+Z7mxzrZebiX8kmTW3UaTT/GlEsVXbsrgwueEcN5F1W88vfxuWHiRdTYqy/RyLLNe489ndd5jqryglNyROOUc4eV80fC504dtVHPYrCR8yRYlfI3uh2wOSizmuDlyeGdp8VrhswwQhd8KH4UlDVtW0Gi983sA3lL+77cA+G6d116LFXLOcpII4nwrVwF4osF42hYR5vAB5YTP5rTCV5Z02kV+K3xu47hITp16X2fbSTqJQtC7I4HZQ1LS6TeEELz1+jiOHrFw94/5lVdLHL737Twmxy1c9wdiVGxEYqZ8fulrox6+0oxb4RPDtMXK5qByKuektg1qlDhN+EyonFf45Ay+U2k04ftbAL9OCBkFcEX5/4MQchEh5Ivuiwgh2wBsAfA/K/7+VkLI4wAeB9AH4GMNxtO2OKVpCsr57Ce+JZ1OxayhCl+TUWJO47gt0vD1vk4YM2nuf5trpW9nAjOyh68p/PrLI9i8VcXN/5ppu99NO2GaFF/4bAZnnqPj+S/i76ZTdGYOpdDRF0a0u332rTGbBgig9wjSw5fJVpQ1vGEbzuK0yqVpC9+STpvacgbfChraG5TSWUrpSyiluymlV1BK58r//gCl9PeWve5ZSukmuqIJjVJ6OaX0bErpWZTSN1JK28vqz0eUstsQ77P4eE74CFGghMJ89/DFnQuPJVjCZxdNWBl+E+n10Lszgex0AYWUGP2UIqFpTpXv8UcM3H+P3L+8ctf3Czh21ML1f9gp5VFNYPZQGn1t1L8HAKXZNLTuDiiaGNUVO5vjdwZfWY3EZYXPNkA4Nm2h1JIunSuQe0MQ3OZTHmWdy62JVUWHbZZaPs7AK0ooDKvI75w7dVkPX9CwpnG4ttp6r3PDUphKn2K3TT08eMa9EZuRss5TqDd2YS39TVddE0OyT8FNn1ldHfZrG/VodFRBK0YqtIpqozEMC/j8P2ewe5+GF1wRbfr3sdGgNsXskXTFEbhdEGnoOuAmfC2o8K1xxBWwpEZyDed8GQ2xxhiqQSiFbRpQFR2E0lUPHrAhJZ0rkQmfILgrFZTz2whFa6Jpiw8o4QjfFb7ySqNIoxkqw9fbzalzVxcAyD6+JhGJELz9XXHc84sSfvE//B6TG5Uf3VnAoVET17+7E4oikzq/SY3nUMqZ7Vfhm0kj1C/GZ6KUwsrkoHJa4XNHSCkcOog6Yxn4lXQ6Lp0yxVmO3BuCoHBc4VsOz5JOwFkpszmew0dUFSQagSWQaYt7cS9Nt1fC1zkURahDw8zBxaBDaVte/8YObDlNxSdvSME0+VgZlgC2TfG5f0xjxy4NL30Ff/1D7cB0eSGpf7cYyZFXSjMphPrEMKGhJQMwTX57+MqL0+4MYZ7gvYePUkvO4VsBvwJcySm4zaci9PBRaoHaFojS4nK6h/tFlfMKHwCo8Y6GTVtaqarQe+KAQlCa8b8S1qj1eCMQQhzjloMpWB4s45tNK6RzXmzrdYbKgPWd2ct6wdQQwXs/2IX3v3MO3/5mHq+91rnxUhkHM3PZy8u5gIOiVSuW79bzu/npfxVw8BkTf/dP3VBV4kucLfn9cnCcehkVAwAzB8sOnU2q8AVx7rTyJViZIkJ93j9TkApAV0nDbQ/fCkknT/Ce8NlyDt8qgj87SjwhUoUPACxOq3y89/ABjnELDz18XiGq4gxfb7PRDIAj65w5uCidJJvIFS+P4PyLQvjsjSlkM3yf3zYCtk3xL/+QxvadGq58JZ929e3A9GgKnUNRhOP83jSvFXc8jygVPvc6q3Je4ePStIXzhE9KOlcj94YguCsV/Ff4yqMPeE34whGu5/ABgBKPCTWWAXBknaXp9ut169uVQH6hhOws378ZkSGE4E8/0oXZaRtf/Jf2WzQQjbu+l8foARPveE8cKg9l0DZl+uAi+ne1mZyzfA0I9YuR8Llu2LxKOt0ePj4lnSbXCZ80bVmNlHQKgjuWweY84XMHca5K+DgokBDqzLOxiwWunENXosY7YJycqP+iBuP32yEz1JdA7hAj5iZgefgcLIlVPelTclc3AGByNIV4X+2LLkuu5kUqld5WLgAAIABJREFUaTe4/uZFzsaKQyfBnF/OOjeEV74miq9+MYPXXtuBLVvqX6jVFhzAvNQaLcZH9SNO9xjJZmzc+DcpnH6Wjpf+ZsyzPNEPuaaX92h0O57OFyxJsg+y0ZIBzB5JY/sLhqsek1624fW7qfn3TZB8LiV8TiLL8WUWwNK8WzXuQ8LXhA+7VOHjMeErNTfhsxvboXIsw2rk3hCEiksn75JOTYAKX6nI9X5U4h2w06JV+DpRmk61nfSxb6fj1Dk1KitPzeY9H+iCQgg+/fH2qxSLwuf+MY2pSRsf/utuWd1rInNH07BNir52q/CVJZ16UoyxDK6kU4lx2sNXLIBoGojKV6WK2hYotaFwPIfPlqYtq5B7QxCWevj4rvApSo0KHyeo4SgACrvE77BnJd4Bahhcx7iSUH8C1LBgpvjuj1wrsWQYHX0RTI3KJKTZDA2reNs74/jRD/K4/x4poW01zzxt4Gs3Z/Ca18Vw7gWhoMNpa2ZGHeff/t1dAUfiL6XpFLSeDighfhOB5ViZLEAIlBifvap2qQAlzF9srkeDqvJ7nqDStGUVMuETBKXSw8dvZQpw5vABTrmfR9zmZ5tj4xZXXiJSH1+o37lxKU213wiDvt1dmHpGJnyt4K2/H8fwJhV/+5eLsFhaRolv2DbFDX+2gM6Egvd9qL2qTjwyPboIRSNIbm+vfV2aTiMsyAw+wLnGKrEodxU0F6tYgMqjnNN2Zi1z3cNHLdnDtwKZ8AkCEayHzzL5rPC5q2UWx7P4FDfhE0jWGRpwZ/GtLTGyKan74IG+3V2YOpSGbfK92NIqbKrUfVgg636Eoire++EuHHjSxLduq+1Uy3ofL1i0/mMj8f1v5fDwAyW870MJdPesvkkS4TgF/PldtIKZ0UUktyeg6nzfglFK6j5W/g5K0ynofQlffxeU1n80gp3JQonzKecEHEknl0PXTWdBf70JH6GU+WgUCunSuRK5NwRBGElnxaWTzwqfGnYrfPwmfGqnk/BZIiV87vD1qfarhPXv7oZVsjF7VJzvQ2R+/TeiuOg5IfzT36exuCCT7GYzP2fjxhtSOP+iEF59Db83v+3E9DPt59BJKUVpOiWMQycAWJlcZYGVR6xSgVPDFmdBn+cKH6W27OFbgdwbglAZy8CNd1x1lFounZywVOHjV9JZqfBlMgFH4h01EQUJa205mqF/jyNXnTzQfnJVHiGE4IMf7UJq0cZnPtl+vyfe+PsbUsikbfzFx7uhKPxUwdqV3GIJ6ck8+vd0Bx2Kr1iZAuyCgdCAOH2JdiYDNc6vwYxdLHA6koH/hM+mluzhW4EYnbWSZS6dKyp8nOV/63XpbNWYBLWc8NWs8LHiaPR5sD+rOwTWSmcD9bVmjW449XmCUH8XSlOpyr/7IenhQS6W3J6AohFMjKZxRoCyMKZVuw+hebKcb8Hohn1n6Hj9mzpw21ezeO0bOrDvjLXdWHg5LbI+KUvW6YeJpRfpKOuzMEeC1DmG7vtVEXd8M4/r3hXHrj3NvXljjQTxNFbEh5EIzYYV4/gBZyGvf29zE6NWnztddUeo1T18Xq6RNV5jZ7JQtm3xdv/Rimvxim3YxXKFz+u2/YjRw3twYdrCkH1SalfGmUkc5N4QBFEknUs9fHxKOpXyahnPPXwkFgVUVagePsDp4ytNt18VTNUV9O/sxOTT7ffZeOZd7+9EV7eCj/35AuwGZzJJVlMsUPzVhxeweYuK6/9QHBme6EwecBKjdnToBJb6uXmHUgork/NnBl+TsIr5yj0LT7gtO7LCJxYy4RMEYVw6Vb7n8LnyCJ5dOgkhUOMxWAJJOgGUK3ztmRQN7OnC5DPt+dl4patLwR9/KIFHHjTw1ZvFWvwQgZv+OY1nD1v4yMe7EI3KW4FWMXFgEbHeMOL9/NntN4J77hdF0knzBcCyuO3ho9SGXSxyLunkcywDpRQUssK3EinpFAQiSIWPKCoAwq1pC9FDgKJwXeEDAKUzDivVQMIXQEEkNNAFcyEHu2hACbdm5c+LBLGepM15D7b0aWhfFx7//nFkZ4vo6F3tmsaKw1ucjUk2bQ/rd+zXsM8vLAmhH9+8Xd7Gq66J4e6fFPDpT6Rw4aVhnHG2c4OhBql1LiOyk+foAQM3/2sGv3l1FM97YQQGSxbKeN6TFJgDvBwjTOlpg9rpyQMp9O/tblhyyTqvtZrS1CJISIPWtTbjH1brQLOw0s71Venks4fPmcNLOTdt4TOFcL0umBW+FihHqA+Oo34hxllaUlmp4D7hIwSKFuJW0kkIgRqOcu3SCQBqZ1yoOXzA0spuO1b5Bvc6MqUJadzSUggh+Mu/60Fvn4o/fdccMmm+FQ4iYFkUH/2AM3Pv//sLMeR37YJl2Jg+lG47wxbA6eEL9SdACF+JaC3c6yuvkk675NyjqFwOXnfu71ROJZ227dwnK5CSzuXIhE8QCFxJJ98JH+CcBHiVdAJOHx/Pkk6gXOFLiyXpDA+6CV/7OSsOlg0WZB9f6+nqVvCJz/Rg7ISFv/rQAlcrpiLy9X/L4tGHDXzgIwn0JOUNUSuZPpyGZdgY2Nt+CV9xalGY/j1gaeyRymmFz1Uh8dnDx7uk07lPlnP4TkXuDUFYMm3hf4VbUUPcSjoBZ8WMd0mn2hmHLVjC184VvmhXCInhKCZkwhcIF1wcxrv/JIH/+n4e//H12gPZJfV57OESPvW3KbzoJWH8xlX8VQ7aHff80Y4JX2lqEeFBcT6XXZF0clrhKy9KqxH+jlPbLCd8Gp8Jn3ufrEjTllPgU4ArWYVSaywDhyia3hRJp1+jG5RIFFaB7wqfmoiDFkuwiyUoYf9Pqs0okujJOKAqKK4h4Quqf2M9DO3rCrTCx+ot4gVWj5Pq4TtXqxzsb3tHHA/cU8Qn/nIB556nY9+ZdeREnn5W9Q+CVuztVizfuf2QM1MW3vuOOQwMqvjYp5KgRGlpJ2Qr+vx47yWceGoRekRF99b6rqh2C8a/eOkh9NpnaBcNmAu5VRU+ns/vVlnSqcTjgYxcYMFzhc+VdCpKjRQiYBWGrPBVR+4NQRDFtAVwZrPwXeETQ9IJQKgqH1EVhPoTKE0sBB1KUxja14XZoxmUcmbQoWxIFIXghk/3oLtbwR//wRzSKf7VDrxQKlK87/fnkFqk+IebetHVLS/9QTDx9CIG9yag+DHEkSMqM/gEcegEnGsrCYeghDjtQyvy28NnWwYUVee2X9O9T5YVvlORZ31BIISAQOF+LAPglPl57uETRdIJQMg+vnaUdALA0OndAHVW6SXBkOxV8XefTeLkcQt/8aeyn88LlFJ87M8W8OhDJXzsxh7sXeMQe4k/UJti4ulFDJ8uTlLkleKks8gnkqTTSmegJvidP+mqkBQuE75SsEPXGVAp6ayKlHQKhKKowlT4SoXWG3d4lXwqkSj/Fb5EOeFLpau/oAX3uSw5TjVHY32wG6n7D8Km3uVA9bfBx5qURRUMnpkEAJzcv4hNF/T7v40G19+YYx0AWIwVWS+W861IF+rFce7FEbzvgwl88oYUvvalLN50XXNMF3hZWmN9Jyx7/lu/nMV3vpnD77+nEy/9jeo3jw2PCPBBgujPWJH6eDlGGqWWHHP2WBalnIXB01uTFPlx/mXhXiOKk871Xh/o9l/G2aRrnZXO+DqSwa+WE5dKD99ySScn61uWaXDbvwcsVfikpPNU5N4QCELESPgULQSb07EMgFPhs0tFUIvffal2OiuPdiOz+AIgNNAFcz4Lu8hvhXe9xPsi6ByMYnz/fNChbHje8vYOXH5lBDf+TQoP3V8MOhxu+cXPC/jkXy/i8isjeOf7+K1mbAQmnnKqYEP72q/CV5pcBNEUp49bEOxUhluHTgCwinlAUUA0/irytlWCwulIBmCph0+OZTgVmfAJhCJIwqeqoUpTL4+4rlcWx1U+USWdobKkp11lnSNn9ciEjwMIIfjY33djZLOK9//BPGam+D8vtppDowb+5F3z2LVXww2f6oGi8Nlvs1EYf3IRqq6gf5c4owu8UppaQGigC0Sg35iVTkNN8Jvw2cUC1EiMyz453iWdlQqfIhO+5UhJp0AoRBXDpVPV+azwleUQribeLuSBKIcnfAoQTYMSi8JaTHMj4/BCeKic8E0sADuaL13y5jRXf11rLVLK4TO7ceCnY8gvlhDtWrrgsaRifkjeeIG1v1RGX53lQfvE8o+0QRDvUvGpz/fija+exjveOocvfL1vyYzEyzHD+ErUFhx4zfpdLMzbePd1c9BDBP/0xV50xBuUQrbR75cF63yxXpn5+JMLGNiTgKorsM3GZLqNxNEMihOLlcW+tdJwG+46/p5aFuxMDspaevhafB22CvmmGLb4IT21TL4rfLas8FWFnzOGhIlIkk6uK3zlkyjvoxmURCesdI0ePk5xL/rFNnXqHD7L6eMbe0JW+Xhgzz4dN34uiUOjBq7/nRksLvDSeRccRonife+Yw+SEhX+6KYmRzXJdN2gopZh4egHDZ4hjarIWSpMLYjl0ZnIApVxLOu1SnsuRDIDj0qly3MNXkXTKHr5TkHtDIBSiCJHwqVoI1LZAbT5jFUHSCTiz+ETr4dN6OkDCGkqTbZrwndkNEGD8cZnw8cILXxzBP3y+F4dGDbz92hkszPN53mkFlFL85YcXcP89JfzVJ7px3oX83pRtJOaPZ1FMmxhqQ4dOK1+CuZirqDtEwF1I5TnhswoFLoeuA84cPoVrSaez8EekS+cpyIRPIBxJJ/8r2O6JgNcqnyJIhU9NdNZ26eQUQgjCg91tO4svHNfRt70TY0/MBR2KZBkvvDyCf/xCLw4fMvB7185gbnbjJX2WRfFXH17Ed76ZxzvfG8crXxMLOiRJmfH9zvlw5KyegCPxH3dxLyRSwldeSFW6+DUysgo5LmfwAYBt8p3wUTmHrypS6yEQjqQzgKHPLM33iufdZl7bKAEafycsd9XMLuRWP8n4rEz9uxd9vEcNfSMJn+/W2GsgNNjtWdJZy8KcN5b3Cg6fk8TBn43DstHShnpmX48PoXixrdcJn8nU818UwWdu7sV7rpvFddfO4gu39qKvf/0XfFbfmpcePz9631jfuw2CQoHig++Zx3//sIDr/iCOd7w3UTm2eOm/Y46X8BAnu1c2+DXsajGe3L8INaQguaOrJaMhvODXNcI913M9g2/FoWqnllX46OrnA2NZHHYx7yxO8xLbMixX0slhbABg2859csMJX7XZUwLDx5lH4glhXDo1vit8asRZ+RahwkcLRdhFPvdjLUJD3ShNtu9Q7JGzksgvlLBwPBt0KJIVPPeFEfzzl/tw4piFt71uFpMT/J8vG2V+zsLbr53B3T8q4IMf7cIffaCLS2e/jcz4/nkM7u2CqrffLZer5ggNiSNXtRbdhI/jCl+xOaYtfsD7WIalOXyywrec9jv7tDGiJHxuqZ9Lp04ARNNBVBVWtQofR7gOYqLJOsPDPbDLfR3tyMg5ZeOWx6Wsk0ee8/wwPndLEpMTFt5yzQzGTgSgimgRx46aePPV03h6fwmf/Jck3vA2fnuSNiq2aWN8/wJGzk4GHUpTKE4sQImGoCXEkRBb6QxISAeJhIMOpSq2aYCaJpc9fJTajmkLx5JOW0o6q9JwwkcIuYYQsp8QYhNCLqrzupcRQg4QQg4SQj647N+3E0LuLf/7vxNC+P0VBUyzEj5Cad3HWlE15yRqLUv4CK3/aCWEECiRGP8Vvi53+HqVhI+S+g8WrL9vQO7j9nLkxxYqaplaDxY2SN1HEPTtTCAU0zD22FLCx4rTpoqHB6n7YGGBsB9UqfvwAutz+EGj++LCS8L44q29SC3YePM1szj27Oqkz6Kk7oOFl/3dTB5/tIQ3vmYGC/M2vvD1Pvz6K9Z/c8j6HKzv3AL7wQNe4vT7GJoaTcEsWNh0TmsTPj+OU9ZxaFMn4QsNdYPC+f/LH5QS5oNFo39fDSuVhpro5LYS7t6bKBxW+GzTAOC4sfOK63UhE75T8eMs/ASAqwH8vNYLiFNX/SyAlwM4A8C1hJAzyk9/AsCnKaW7AMwDuM6HmNoShWiwOXW+XI7CuaQTcGSd/Lt0OgN6rcVUwJGsjfCwY0xQGG9P4xZFJRg+qwcnH5MVPp455/wQbv5GHwp5ije9dga/+J9C0CH5xn//KI/ffd0sYjGCW77dj/Mu4rNSIUHlPDFyTvsZtgBAcWJeKIdOwJF0rmkGX4uxy/cmbvsJT9jl+zoRKnxEjmU4hYb3BqX0KUrpAcbLLgFwkFJ6mFJaAnAbgFcTZ3nlcgD/UX7dVwBc1WhM7QohihCD190ePl4lnYBj3FLVtIUjVFfSuSiWpDM06IwuKLZpwgcAI+cmMfXMIkr59pULtgOnn6XjK7f3ortbwe+/eQ5/9WcLyGX5dzquBaUUX705gz+6fh679mr42h192L6T314aCXDykTnE+yPoGuHv5r1RqE1RmlhAaFisZNYuV/h4xW034VHS6Sq3XCUXj7jmhrLCdyqtcuncBOD4sv9/AsBzAPQCWKC0Yj15ovzaVRBCrgdwPQBE0H4nTi8oRBOih29J0ln0/kctlnWqkRjM9GJrN7pGlHgMUJTAKnwsNW8tOQ3Rdei9CRTGmp/weZF1siSAXiSCK9l0Ti+oRTHxxDy2Xty/5r9fDzYnsjgWLCmj4uE7YzlgrkUuuX1PCLf95wD++cYUbvlCBr/8eREf+1QPLrq4/go1S9ap+qBF9yIddX/j83MWPvU3KXz3mzlc8fIIbvh0D6JRhbkv1vP7bgatcKf0sj9bzcnH5rDp3OQp8kGWxNWL5JKH79WYS4MaFsJDYiV8ViqN8O4dLd3mWk4XrqRzrQlfK9pj7PJ9nRBjGaCwb2Q2EJ7OwISQnxBCnqjyeHWzA3ShlN5EKb2IUnqRDn5XFpqJaKYtFtcVPv4lnURRhJzFBwDhkR4Uxtp3OLlr3HLikdmAI5F4IRwheP+fdeFLt/eBUuBt18zgxr9ZRLHA/82AZVHc/rUsXvXiSfzgjhyu/8NOfPJfkohGxVgA2MhkZgpYOJHF5nPb1LClfI4Pj4iT8FHDhJ3NQe1KBB1KTdwKn8KhpHOpwsdvwleRdAqySNoqPFX4KKVXNLidkwC2LPv/m8v/NgugmxCilat87r9LqqAENYdvjayrwtdi1EgUVp5/W321KwFrQawePgAIDfUgfd8zQYfRNKJdIfTu6MTJR2XCJxIXXhLGf/zXAG68YRFf/nwWP/tJETfc2I1zzufz5uWh+4v4m4+k8PSTBi6+NIQP/XU3du2REk5ROFleEBpp04SvNOEkfCGBKnzuAqqa4NfRtiLp5NK0xUn4eK7w2bYFQlRuTXmColXp7/0AdpcdOUMAXg/ge9QZ1HU3gNeWX/cWAN9tUUzCoRC14j7EM4qqASCV5l4eUSMx2KUiqMV3xVTtTsBKiZfwhUeSMBZyMLP8Jv2NsuncJE4+OgfaZsNZ252OuIKPfLwHn/9qEvk8xRuvnsGnPp5CgaNq3+SEhQ+8Zx5vfu0sFhZsfPJfkvjibX0y2ROM4w/PQgsrGD5DnIRoLRTH5kE0BaF+fqtlK3FbJNRufmO21ynpbAWiVPhk/95qGu7hI4S8BsBnAPQD+AEh5BFK6ZWEkBEAX6SUvoJSahJC3g3ghwBUAF+ilO4vv8UHANxGCPkYgIcB3NxoTC0hAF0wWU+FL4B7GEIUKFrI/wqfj59FjZaHrxfz0GJ8rfSRZb0ZaqITxYNHTvk3AKCsnRHwvavbxF8cm4e2e6jm63joQ/FCtZ6b4XP78dgdRzF1OIPtexuXmTdqXe+p74fhWuatT7D5iyTsPsDGf+DPvSyKb/0wjBtvWMSXPpfBt27L4qrf7sDr3tSBzVs15jaa0S9WKlLccnMGn/9MBpZF8Y73xPHWd3YiFmvu2ixrf7P7BBuPz0uPX6OjLlpxvlm+jROPzGHozB4QTQVv60J+jLUpjs8jNNgNojbw/Tf6nXj4++XXT7tsgqYlulZdV5sdh1esQg5KKAKitD5pYfUB2oZzXycTPvFoOOGjlN4B4I4q/z4G4BXL/v+dAO6s8rrDcFw8JQwUxenho5RyX6pW1SYkfD7i2h1b+Sx3Cd9y1K4E7GwO1DBB9FZ5LDWOO5ohf3IeHXUSPpHZfH4vAEe2tX3vSMDRSNZDZ0LBRz/Rg1e9NoZbv5TB127O4JYvZPC8y8J43RtjuOzyCDStuedaSilGD5j40Z15fP9beZw8YeHyKyP40z9PYMtWLbB5k5LGMPImJp9ewCVv3h10KE2jODYnlJwTWHK95tulM89ldQ8QQ9JJqQUFMuFbiTh3kBIoxPm6KGwQzn/Mqh7mfCxDOeHjfvh6FwCn70DrFefCGh52elba2bile2scsWQYJx+eAV4nEz6RueDiMC64OIzJCQvfvi2Lb30ji/e8fR6Dwwpee20Hrn5dDIND/p1zKaV46gkDP7qrgB/fmcfRIxYUBbjgkhA+8vEuPP+yiG/bkgTD2ONzsE2Kzef3BR1KU6CUojQ+j/hZW4MOZU2YiymAECid/C70WoUc1GhH0GFUxV3I530sgxJAdZR3ZMIXJGuUhbolatu2oKh8/5hVNdz6Ch9rdy57fnmFz0/5o6e1+DVsT+t2h68v+prw1Rqp4BdKREeorxP5E/MNyahaI8FanxyJEIJNF/ThxMMzTDlao1I0nmDLLevvC9XDeU8l9WWjzN+Fh91dbfTD4JCKd743gbe/uxM//2kBt9+axWc/lcbn/jGN57wgjL2n69ixW8PO3Tp27lTREff+27EsiicfN/CjO/P48Z0FnDhuQVWBi58bxpvf3onLXxpBb3/5HO/5XT1sl5PfnihjRVjnA68V1xMPzwLE6fVdvY0WnNd8+N7rHamluSzsgoHwSLLm9YRHR3xrMQU10QmiLPuePcTZyqPIKuSqGra0YuwCC1uEHj7blpLOKsiETyAqCR81AfB7sAHOyYBvSaezemblOR++XraONhdSwg0jiWxOonByLugwmsrm8/sw+pOTSE3kkRjiU4IjWTuaRnD5lVFcfmUUx4+a+OatWfzv3QXc98siTGPpdYPDCnbs0rFjl4Zt2zWYJsXcrI2FeRtzszbm55Yeiws2KAU0DXjuC8J4+7vj+LWXRtGTlDcm7cjxh2YxsLsLkQTf1+r14qo3QiNiOZBaiymuRzIATsKn9Q0HHUZVLLMIRdFAGP3gQWJTk3sVXBDIhE8glhI+vp0lAUDRwjCKmaDDqEnFtKXAecLXXZZ0BjR8vREim3ow+/Ongw6jqWy+0JFrHX1wFmf/xuaAo5E0gy2nafjjD3fhjz/cBdOkOH7UxJGDJg6PGjh80MThgya+/e855HPO8ruiAN1JBcmkgu6kgt17NfQkFfT0Kjhtm4bLXhJBV5dzsyT789oTy7Ax9tgszn71aUGH0jQKJ90ZfL0BR7I2rMUUtCTf7RFWIQctyt8MPsBx6eRZzglI05ZayIRPIBTF+bpESPhULYxilt8ZZUo4AhDC/Sw+pSMGaBqshcWgQ1kzkU1JWOkCjMUc9C4+L16N0r+7G6G4hmMPyYRvI6BpBNt36ti+U8cVVy712dk2xcy0jXCYoDNBoCgykdvITD69ACNvYcuF/UGH0jTyJ+ZANFWokQwAYC0sIryD30ScUsp1D59tFqFwn/CZlftlyRJyj/DOMhG86zpk2yaf4vhlqFoAPXxrgBAFaiS2StLJ1Mgzey/8/V4IIdC6EqsTvhZ8/aw+P9bzkU1l45aTc01L+Lz0wvhRRam5HYVg03l9OPpg8xc3mH2CHiQ27Pdg76tWTIJj9Z1V679rNaf8rhSCvkFl2XP+wR6J4Mfvm9WD2vweVS89fuz+Oj5kZscfnAEAbLlgfdWvVp3XGqFwch6h4Z7GRjJ4wcdDnRom7GyuopzhEbtUBGy74jPgOw3uT6fCx7dMmdqywlcNPs6OEk+c2sPHN7z38AGAGu2AVeC7wgc4sk5TxArfZkc2UzjR3n18my7ox8zhDDKzhaBDkUgkHHD8wRkkt8XR0du+bquFE3MIC9a/Z5ZbIzSOe/hc1VHTEr4Gsc2ilHQKikz4BEKkHj6nwlcC5bgSqUY7YHJu2gIAak8XrAXxevjCQ90gmtL2Cd+WixzZ1rEH2/tzSiQSNrZp4/jDM9h6cfvKOallozC+gPBmwfr3ygunPFf4XF8BldcePkOEhM+UCV8VpKRTINw5fLYtQIVPDwOgsC1+G3zVaAzGIodz4lbkyFpXAvmFBVCbgniQ3PECURWER3rqJnytsCdvNgP7eqBHVRy5fwb7Xrqp6mu8jH5gvoaTXcWShbLklhZhCx5Ze4spIfSyzsR4i1bIRlsxMoGXsQw8xMGSpjqvqR8n6/c/fiCFUsbE5gsHPG0vKBo59xYnF0ENy5cKX8MjgtZwmPKe8BEK2DmnwqdFOrgYw7ASyywiHG6wQupB897IZ5cVvurwezaSrMIdJClKhQ9wVoN4RYt2cG/aAgBqd3el90A0opuTyB/n17zHD1RdwZbze3H0/pmgQ5FIJAFz/IFpAEsOvu1IvryIF94kWIVv0U34+JV0mgW+JZ2WCJJO2cNXFZnwCUSlwidED1854eO4j8/t4eNZdgosG80gZB9fL4pjC7BN/hcpGmHbJX1OH9+M7OOTSDYyx+6bRnJ7J+L97TuX01VtRASTdJoLKZCQDiXK73fjGsnx6tIpRMJHrcr9smQJuUcEQqwePqdZnfeEj5omqFECCfF7AtN6nITPXFhEaPOItz9iOWw2GpSXEChBZEtvud9jEdF13BywZEdeZEkW6z18kJptu6Q8j+/+GZz58uaMZ2A6JXrZFwxJMEuuBgA6af75hyVvVVsQAw8SRID9G/cjTrYTKOu31/jasZf3YB8Dwa5hW4aNEw/P4MxX1rf9Z7uNenDp9OHcuN5t5I7NQUtEoSY66hp3zxyNAAAgAElEQVSGNyzX9ItyjNb8ItTuLhAQ3y+CbIdvb++zZNqyjqS0BRd22yyVW3ZqE7QUVfbwVUdW+ASikvAJ08PHf8IHAGaO3wHxAKD2dAMArPmFgCNZO5EtTpJXONbess6hfV0IxzU8e5+UdUokG5WxJxdg5ExsvaR9DVsAp8IX2SyWQycAWAsL3PbvuViFHJRwFEThL2GxLdMZeaDyu0AOOPfIMuFbjUz4BEKswev8V/i0csLnumLxiproBBQFpoAJX7Sc8OWPtXcipGgKtl7YJxM+iWQDc+TeGYAsOfe2K/ljs5Vzu0iY84vQOE/4zHwWGq8OneX7OSnpFBOZ8AmEkD18Br89TWo0DoD/Ch9RFKhdCSErfGosjFB/Avk2r/ABwPZL+zB/PIuFk3wvIEgkkuZw5J5pDO7rRrSb7xviRjBSeZiLOUS2ipXwUduGtZiqKGZ4xcpnK/cmvOHez2kMSWeQ2NQGQGWFrwoyBRYIXnv4SBURv7Ys4SOUMnvKgtB8q7Fyhc9Pp04Pn4P1Was9rfV0w5xfrP8in2H1X3jtEYme1ofC0Wk/QgoMZh8VVbD1kkEAT+DwPTM49+ptq55nwUvPGAub1UfF8NxWPKwzqqh/jvNlXzV4DCk+nLRaMZbEy0iQVhB0fx3gz3iUWv11pZyJE4/O4/w37BZi3Mx6Y3Tl+S2r8Pm0L61UGrDtqhU+T4dyi+5RrHwWWpzPKqTruq4qYXiYrhMIbsuTTPhWE/wZWOIZVaQ5fAJU+CqSTs4rfIDTx2fNczgz0AORrX3IH58FtTi9QvhE385OxPsjOHLPVNChSCSSFnP8oVlYho2tlwwEHUpTyR93ZOtRwSp8VnnBVIQKn8axQyfAt6TTVcBJSedqZMInEKRS4eM/4VNUHSAK1z18Sjjq9Mbl+U/4tGQ3zIVFUFu8pCm2rQ/UsFAcF0+SuhYIIdj+3AEc+dUUbFO870kikayfw/dMQ9UVbDq/fefvAU7/nhLWEBrgswpVC7cHXuM44aOUwsxnOB7J4Czg853wOeoQWeFbjUyBBYIQAoWosJZJOqvJKX3f7jo2QQiBpoUrJ4hWxLHW5wmIM3w9l116rsFtNAutpxswLdjpDNQufofGViN6mmNgkHt2apWzm1+y0UbwMs7AKztfMIjHv3cMY0/MY/N5/q6AM23YiQ9yNQ/vAYbc0g9Ykk0/VipZ21AZJ4NWyfZYcfozloEl02WNNvFhLIOHz8E6Vlmfo5kc+dU0tlyQhB5l31b5MQqGuQ0ffp/Vzs/5o7OO+7Knc4WHbbToDawFJ+FTkxwnfEYJ1DRrJ3wBjztwJZ2aHgk2kDosSTplerMSWeETDIVosKkRdBieUPUITIPfCh/gGLcIIelM9gAAzDnxqmSRrb0AAfLPit3H54Vtzx0AUQkO/d9k0KFIJJIWkZkpYGo0hR3PbW85J+A4Lke2iFfFNOcWQEIhroeum2U/AS3GaYXP4L/CR2WFryYy4RMMhWiwbb5MW2qh+lzhawZaLF45yfKMK0MxBezjUyMhhId7kH+2/UcWRBMhbD43iUM/nwg6FIlE0iIO/9Lp293xvPZO+MxsAcZMGtHTxEv4rPkFaMluEMKvoY67+MyrS6ctRA+fTPhqsXFrnnbAtfF1oiia/z18TdoVqhbh2rQFANRYHMbEsaDDOJUq34fWU67wzc57+r6YSl8/5D6M55dLiqLb+pF7dtp3GZyX9/PDpXAtUrFdlw3h7n/Yj9RkHolB76vJzDg5uU9hyi0Zn4MllQQAlWEBx95X7B5KVhyNSj69vIcXmHJKxr7gxf3VD9lnozRrXxz6xRQ6esMY3JNA1vbhO/d0Xmv99+ou2sW29XuKgSXZbxkUMOfmHcMWjm/93BFRWjQeXJx1bh7MEkcVvhqneMsqSzqVjZve1CL4M7BkTahE5W4sQy00PQJThApfjv8KnxKLgkQisASUdAJAdNsAimNzsAtiyJEbYecLhwBAVvkkkg0AtSmO3DONHc8bAFE4SXCahCvLj24Tb7C8Ob9QWTjlFXdEFM+mLYoWBvGpf7MZyLEMteH3W5NURSEaLFuMm2ZVD3Nf4dNicdilAmyT/32q9fbAnBNP0gkA0e0DAAXyx9q/j69vZye6RmI4KBM+iaTtGdu/gNx8CTvbXM4JOAmfGgsjNCCWcZhdMhzDM44NW4BlFb4Yn5JOyyjyUd2rw9JYBpnwrUQmfILhSDrFqPCJIukExJjFp/X0CNnDBwDR7c6KcP5I+yd8hBDs/rVhPHvvFEo5/keoSCSS9TP6PxMgKsHOF7R/wpc7MoXo9n6u++Cq4c6w1ZJ8V/jMfAZEVaGE+HTBtIwCVI4dOoGlHj5VunSuQu6RZtKEmWmOS6cYN5GaHoXJ8Rw+ANBinQCclTU90aKLwTq1+VpvDwoHD4O2YBQH4KEPcA2Eh3qgREPIHTnVvTKIPpSV+NHjt/Jz7HzRMB74+iEcuWcau1884osNO9M638PnsBhSHC/vobfgK2N9VtWH0RCN9ujx0hvnB8w+wBb0CXo5Dll9gH6cT5ifdcXzB+6ewJbzexFKRGB5HRHAwXlvrf11lFLkj0yj9/IzmxRRre02/h6uMqZmwudlG8y++DWFVBUrl4Ea7WxqQt3IKC/LKHA9kgGQYxnqISt8gqEqGixbjIRP1SOgtgnb4jdeVzph5tIBR8JGS/aAFgqwc/mgQ1kzRCGIbutH/tBU0KG0hC0X9CEc1zH6s/GgQ5FIJE1i4UQW06Mp7LpsKOhQmk5pahFWrihm/165953/Cl+W25EMgNPDp+piSDqJlHSuQiZ8giFWhc9ZCeLZuKVS4csKIOnsdYaWm3NzAUeyPmI7BpA7MtWyCmWQqLqCnS8cwsGfj8P2uuwvkUiE4pm7nQWdPZcPBxxJ88kddhbrYjvEk66ac/OAokDt4rv30MymK/ckPOJIOvmdYwgsJXxS0rkauUcEQ6SET9WchM8q5aGAzxOt7xW+Jt7bVxK+mTmEdmxq3oZ8YqVkKLp9CPYPHkZxIoXwkLfmeZbsyJMMzAf51HreY/eLh/HkXcdx8tFZ7L2Y/fsXRSLIkryphCWFZEvdWd8qc195+F0ojNENvHwfjY5dWMtIkWbiRS7cbPyQby/nmf8eQ//uBHq2LJls+LG//Tiv+X3eyx6aAggQ3jZQ+XemytGTVLLBOD38vTU3B7WnC0Tlu+pj5TII9w4GHUZNTBF6+MpzquVYhtUEfwaWrAmRJJ2VCp/BrwRRCYWh6CExJJ1uwjcrZoUvusO5kOUObQz3yu3PH4SqK3jmv8eCDkUikfhMdraIE4/MYs/lI0GH0hLyR6YQHklCjYSCDmXNmLNz0JLJoMOoC6UUZj7NrUMnUHbp5FzSaUmXzprIhE8whKrwlUv/FseSTgDQOjphZflP+JRYFEo0Km7Ct60fUAjyhyfZL24Dwh06TntOP0b/e2xDyFglko3E6M/GQG1g7waQcwJA7tAkYjv4rT7Vw5yZ575/zy4VQU2TW0kntS3YZhEa75LO8tgyadqyGrlHBEMlWsWFiHeWKnycJHw17rnVWCfMbNofpy4/qLMNrS8Jc8ZDwseQuXjJP1hyyrW6vClhHZEtvcgdWkr4+HDpbJ6D5u4rNuPwRx/EySfTGD6jsRlQTGmfh2G4LHdAy4M7nOpBcFk/BnacLIdMttrSg0MyIw6W5NMP/JYYrheWLJTljumHXNOLFJLtFuqDnJK1L8rH0NM/GUP35g707ele8zmEh+99LTGb6TxKk4vof/n5TYyoOdglA1YqBa2P7wqfu+isdTSQ8DXx/sQyHMd17iWd1ASBAoXj4fBB0dAeIYRcQwjZTwixCSEX1XjNFkLI3YSQJ8uv/aNlz32UEHKSEPJI+fGKRuLZCCiKBosaQlQM3JUgniWdgHOCNQWo8AGOrFPUCh8AxHYOIb9BJJ0AsPNFIyAqwVM/kW6dEkm7UEiVcPS+aex5yYhwM+nWQ75s2BLdKV6Fz3JHMvTynfC59yC8VvjchXvuEz7bkv17NWg0BX4CwNUAfl7nNSaA91NKzwBwKYB3EULOWPb8pyml55UfdzYYT9ujEh0AQAUYvu6eGMwS5wlfLAEzlwo6DE9ovUmYc3OgTZjx2ApiO4dgzGVgzPHviuoHsZ4wtlzUj6d+LGWdEkm7MPqzcdgmxd4r+DfP8gO37zomYMLnKmJESfhUTnv4rPLCPe9z+CxqSDlnDRpK+CilT1FKDzBeM04pfaj832kATwHYGGfJJuCuXFgC9PGpWhggihg9fIU8bJP/far19QKmBWthMehQ1kV0lzOvKndw41T59lyxCbNHs5gaFWNRQSKR1OfAj08iMRzF8Fl894X5Re7gBPS+Tujd/M6Iq4U5XU74+noDjqQ+VsYHSWcTqVT4Qpz38FETqqzwVaWle4UQsg3A+QDuXfbP7yaEvBnAA3AqgfOtjKkmnFZQ3Nkitm0CHkyISIBVBUIIND0C0yiA4dTuT//cOj+q3uFY5pu5NNSOFlzAmb0TtT+Ie9Eyp2e5b0KvRmzHIECA3MFxdF2yi/l6Zj+NB+t8L69hvkcDPTe7X7IJP/34w9j/o3H076ndx8fcRguUY54+J2H06DECFaWzgoc+K6DxsQtePkcrRibwMObCSwysfVFIlXDkV5O48A27qso5WzUGhvW9rrXHut57ZA9OILZr2Jf3XHsQjW3TnJkF0TWonZ21L60c9JKb2TRACPRIvPb9UoAikaUKn4eEzw4uUNs2ZYWvBsyzPCHkJ4SQJ6o8Xr2WDRFC4gC+BeC9lFJ3qftfAewEcB6AcQA31vn76wkhDxBCHjBQXMum24qlCp8RcCTe0PQozFIu6DDq4q6omVn+KzBaXx8AJ+ETETUWRnhT74aq8HUkI9h6YR+e+pGUdUokojN6tyPn3PfrG0OoZOWKKJ6cQ6yszhANc2YOWm+S+15LM5uGGu0AUfhYaFqJ25rDew+fRU3Zw1cD5l6hlF7R6EYIITqcZO9WSum3l7335LLXfAHAf9aJ4yYANwFAgiQ37F2Tqjg9fKLM4lP1SGVliFe0eLnCl0mB7wkzgNbTBahqRaYiIh27h5F+9Nmgw2gpZ7xsE+7660cx9UwKg3u7gg5HIpGsk6d+eBxdm2IbR855aAKgQGy3mOMnzKnZykIpz1jZdEVtxCNWWdKphaKeTJCDwrbNiteF5FSangYTZ1nlZgBPUUo/teK5YUqpa1/3GjgmMJI6uKVqm6cKX70xAnqMf9MWV9LpQ4WPKV1t9P1VFVpvEsbUTP0XtmBJhCXvqaXqiO4extzdT6AwnUZ4OPh+AH8kn/Xf4/QrhvHDjz+G/f91ct0JH9M634sMjGlVzTaDYkneFIZwRPVwkFisOwpf5K+N3bUwR0d4oBUyRz+20ejYBk/b8PD79UO+2gjZuSKevXcal7xlD+wGBjuLNI4mN1o2bKlS4fNjdE8zRQ+UUpgzs4js2d3wezXalsL6ezOd4tahE1iSdKpaBA2L7Jr4pduywleTRscyvIYQcgLAcwH8gBDyw/K/jxBCXMfN5wN4E4DLq4xf+DtCyOOEkMcAvBjA+xqJZyMgWoVP06P8zOGrgRaLAyBCSDoBQO/rFVbSCSytFOdGxwKOpHXEesLYfmk/9t91Uso6JRJBeerHY6AWxb6XbQk6lJaRGx1DqD8hpGGLnUqDlgzuDVsAR9Lpqo14xCwVoOoRbiWnLpbs4atJQ3uFUnoHgDuq/PsYgFeU//v/UGO9lVL6pka2vxFxTVuE6eELRWEafPfwEUWF1hGHIUjCp/X3oXDoMCil3PclVCO6YxBQFeRHx4HLdgYdTss482Wb8L0/fxgnHp3HlvP4tgiXSCSrefzOk+jdkUDf7o0jy84+M47YHjHlnEZ5YVTnPOGj1IaZ5bvCZxo57vv3AMC2Dag6v/sxSGQaLBhKucJnt7LCx6xI1E46XEkn78mJ1tEFM+Mh4WtFcYYhg9H6+0CLJdipNNSuda4IevgczSpEKWEd0W0DyB4YY4bBkh15c7PzQbLZoJzSogp2Xb4JWuQxPP6DExg5d3VPSSucElmwJHMAoHuQfTYcB2NfqAynUE/bYElPGZLPVrlOtkLGyJJksr4PL79dVpy+yEKZx6mHOGu8x8LJHI4/PIcXvPssUCg1z4/+fB+Nuw/7IVUvLeRQmlhA78vOD854sYHtmpNO64PW38+FE2ctrHwOsG3o8RYsJKxTemqV8tD0aNPbVhrForLCV4vg7zAka0LECh+lFmyrFHQoddHiCW8JHwfo/f0AAGOS0cfHMbE9w8iNjoMGaN/casIdOna/aAhP/fAkLIPjrneJRLKKJ+48AQDY9/KtAUfSOnKjjsVCbM9IwJGsD3N6FlAU7kcYmWlnrq7GsWmLWco7hi2cY9tGpfVJcioy4RMMEXv4AMAs8i3r1OMJGBkxhplrA+XRDFPTAUeyfmJ7N8HOFZE/Lm4v4no465VbkV8o4eDPN85YColEdCilePw/j2PL+UkkRsTrZVsvuWfGAFLdsEUEzKkZaL09IOr6DXZagbvYzHvCp3qZwRcwli1NW2ohEz7BWJJ0ilHh00MxAODfqTPeBSufgW3yn0hrPT2ApsKYFDdZ6tjnzLDKPL1xjFsAYMfzBhDvj+DRO54NOhSJROKRsScWMHskg3NetXGqewCQPXASkdP6ocZ4H1hUHWNqBtpgf9BhMHETvpZIOteJZeShle/neMamhhzLUAOZBguG+0MWRtKpuwlf8BW+etpzvcM50VrpFNTu5hpqNKqBJ4oCvb8P5uR0a3oK10k9S+7QcC/UeASZJ8cwcOU5LYxqNV7s4P1C0RScc9Vp+NXNB5CayCExtHQBZfcJMvqomCMX2L1WuofeOFaflMrqB/MwDoE9PILxnXnoo1IIq0ePj/VQ5vfO2Bc89IYC/uzPRvtx17svHv/+caghBae/dMSXEWR+9Nc1CnPKgE2ROzCG7ufvq/0a5lgGHwJZJ5RSmJPTiOzewXxt0H1pflX4mvk5zFKutZLOdZgIUEphU8t7hW+DOWbzcSWQeEYpz/6xBKnwaZUKXzbgSOrjrqyZosg6B/thTIor6SQKQWzvJqSf2lgVPgA456rTQG3g0e8cDToUiUTCwCxZ2H/XCey9fBiRzo1TOSicnIOVKSC2V8z+PWsh5YxkGOB/6LqRXoQaiUHR+KzB2LYJ2zK4r/DZ1FFoyR6+6siETzAIIVCJLk4PX3lFiHdJp97ZDWCpeZp39MF+mNOzoFbzHRObRce+Tcgfm4GZ4XtOo9/0bO7AtksH8Oi3j8I2pXmLRMIzoz+bRH7RwLmv2jiz9wBUFuM6Tt8ccCTrwywviOpDAkg604vQEvzKOV2FFu+mLW4hREo6q8PncoJkiSouhqqiOz18PjkckiaWtbWQ0+Dui6STqUFZ/1vrcSfhM9IL63+TBmNYC9pQP2BZMGfmoFfrUWDEwZLiOC/yQa5Th9jpWwAKpJ4aR/dF1WU3vIxlYMk+2db5p/79eddsx3fefy8O/t8Udr3I24wrPyznWbJPL/JWlmQTDFmoF1mdytImMSfFeEikGXGwJJ9+4IeFP3MbHtZ1mb8tpkzXj2PMS5zNH1GxMo6H7ziGzoEItl46BIsS9jnJh33hx3mt0fNe5smTUDsiCI30ebteBEWNc4GrgNEGfEr41jnOwMvfm+lFaPEuD9sIRoLoLti7LTq84npbKIq24eSaXpAVPgFRFR2WzfeYAxdV1aEoGswi35JOJRyBoodgpgSp8A0NAACMiamAI1k/sT0jgEKQ2X8i6FBazq7LhhHvj+Dh2w8HHYpEIqnB/IksDv9yEudevQ2KynHS0wTST44htm8TiCLm5zYnpkFCOtRufp0vXYzMIvROWeFrFEtKOusiEz4BUYkOU5AePsCp8vFg2lIPQgi0eHfjFb4W4cpUjHFxEz41GkJsxwDS+08GHUrLUXUF57xmGw7/chILJ/heDJFINioP334YRCE47+ptQYfSUsx0AfljM8LKOQGnwqcN9oMofN/mUsuElc04FT5OWUr4+K7wuZJOOXi9OnKvCIiq6EsunQKUrbVQzKnw1YnVm7tUc1ca9c4uGKn5+hG0YHd72YYSjULt7oIxPtn8gNaJFxlQ51mbMX3Xo7ANC4oezKykVsjqqnHeb23Hr24+gIdvP4wX//HZXLgpepH/AY1JNr1IJVkSQT/2lB9On62gFS6crPdgPe9JTsyBLHAtcksjb+LRO45i70tG0Dnob2WDi31RJ4bU/jGAAh1n1O9bZN5+ePiczOvEOq+5xsQUwtudMRpBu3DWw3HopNAT3UGHUhPREj5Z4asOH1c0yZpQ3B4+QdBDMe4rfIBj3GKmxKjwAYA+PACT44TPC51nbYFdNJE7uPEGkXcORrHn8hE89p1nYeTFMGGSSDYK++86gULKwEXXsm392430/hMgqoLYbjEdOu1iCdbsPPThwaBDYWKUjeK0To4TvmI54QvznfDZlYQvFHAkfCITPgHRBJR0Gpz38AGOcYuZSQvjfKkPD8KYmAK1xXV67DzTkQyln9h4fXwAcOHrd6KQMvDkXceDDkUikZShlOKBrx/CwJ4ENp/fG3Q4LSf9xHHEdg1CiYhZKTHLve1urzvPGOVFZo33Hj6iQNUiQYdSF1f5Jit81ZEJn4CcIukUAD3Mfw8fAOiJHgC0suLGO/rIIGjJgDVbX4bKM3pPByKbk0g9vjETns0X9GJgTxce+PohUAHk2RLJRuDofdOYHk3hojfsBCHByy9biV00kB2dQOfZ4o6hKJWVL/oI/xU+M+1cv3WOK3xGKQs9FOP+WJCSzvrIHr4gWecNnuPSyU/Cx2rJ0XVH0kltm+sG6lCiBwBgphYQ6ko2b0N+3NdTQB8eAgCUTk5A61uxCu1DXwSrt8IPq25KCTrP2Yq5nz0F26QgqrLq+Xq0aiwDq0eJtY2advIEuOB3duO//t8DOHLvDHZcWttCnBWD5eFizNwXHnYVyxpfQf0TAnOsAwCV8R7MXkMPv2+VceLyY9SAHzD751owMsEP2HGyfxfMY8CnkQj3ffUQYskwTn/51lXHDCtOP/rzghzLkHl6HNSw0Hn2Fr7HMbhUOdaNsUlAVaH193m73ga41makFqCEwlAjUaAYXBz1MIs57vv3AFTc61VFZ7Wab0j4vfuW1ERVQsKMZQAAPdQBUArT4H34upPwGYtzAUfiDbc/wRgTu/+t85zTYOWKyB4Uux9xvex72RbEkmHc+zU5okEiCZq5o2kc+t8JnH/NdmjhYIykgiT9xHGALMntRcQYm4A+2A+i8v/9GamFsrqIX8xSDlq4I+gwmFh2eSyDHLxeFZnwCYhK+KrwsagMX+e8j8+VVBiCGLco0QjUZI/wCV/iXMdJLf3os8EGEhBaWMV5v70Toz+fxMyRdNDhSCQbmvtuGYUaUnD+b288sxYASD12DLEdg9DifPdr1cMYnxTCsAUAjNQ8NI4dOgHAKGbFq/BJViElnQKiKiFQ2LCpBQL+f9h6OeEzihlE0bwmasKSyDLkKYoWghqLN1bh80mu6RV90xCMk3wmfF5lSWpXHNHtA1h8+CgGr3leE+JoTI7p5TWNbuOca3bhvi8/jV9+5TBe+dHzqr7GF2t80pj9PtC4ZNPy8ANXWGuRzNEOHtYyGzxWWZJQwJ+RCY1KNr3E0PA2fFg79nIcsuJgSj4Zz2dmC3ji+8dw5m+ehkhvrKoqrNFzgZfX+CFDZ1FNrmmXTGSePImB37zAk5zTF9m/D6MdlmMXCo5D5/MvWdPfMWHGWf/pWqMhzNQCYsOneRsd0WAM9eKo9x5mKQs9vLXyHOteqzXjq1ZvxLZLAEj5+iE1nSuRFT4BcVcvRKny6WExKnwAoHf1MGfx8URo0zCMyWlQQ2xb/87ztiGz/zjsohi/ab+JJcM499Vb8fj3jyMzUwg6HIlkQ3L/N56FZdi46M17gg4lEDJPnwQ1LCTO3hp0KOvGGHMNW4YCjoSNXSrCyme5nsFHKYVZzFaUWjxj2SZURefeXCYoZMInIFp5xohpc9rhuwI9FAfgVPh4R08khenhA8oXNduGUbahFpXEedtADQuZ/RvTrRMAnvOmnbBMG/fdKnv5JJJWU8yauP+2I9j1ayNIntYZdDiBkH7kKKAQxM8S16HTbXEICZDwuYvLehe/PXyWWQCldmXhnmcsuyTlnHWQkk4BWVOFz268tt5oed49UTQ6i68VMgG9qweZg/tBqQ1STf7WYslmLUhZ5hLevAkAYJwYr/w3ALbFvxe5Dut5H2VH8bO3gGgqUg8dQeKCpd4ZlrTJjxhsTlwMu7YmsO+KETz470fwnLftRaRzxYWrBWF6kea14nLasAunB7kla72TJV1thVyzVTQqF/biTMnahh+yUBb1jvUHvnkUhZSB5/zuvubH0QInz/WcGxcffhYde0cq/XutkJb6TenEOEgkDLV3WRLlgxSyGZQWywlfIhloHPVw79v8TPiadS9n2UalICJZDR9XG8maUMs/aFEknYqiQdWjMAsCVPi6e0EtE2ZGDPMMbaAPRNdROjEWdCgNoUZCiJ+1BYsPHgk6lEB57nV7UcyYeOh2WeWTSFqFWbRw7y0Hsf3Sfgyf3cSRPBxjpgvIPjOOrgu2BR1KQxgnx6GPDHE9AsrFSDlqIr2ZY6AaxCwrs0SQdJqywlcX/o8IySq0suWsKJJOwFkdEkHSGeoSazQDURTom4aET/gAIHHBdhSOTqM0I0ay3QyGTu/GzhcO4t6vjKKQFmNBRyIRnUe/cwyZmSKe/3u7gw4lMFKPPAvYFInztwcdyrqhlKJ0chyhTcNBh+IJY2EORFWhxfmVEC9V+OIBR8LGso1KQUSyGpnwCYiqhgGIU+EDAD0SFyLh07v7AADGwmzAkXgntHkExvExtoyTc7oudKScqQc3dnXrssP7FqQAACAASURBVHedgcKigftuGQ06FImk7TFLFn5x8yg2n5fEaRf3BR1OYCw+cBhqPIz4vpGgQ1k31uw8aL4AfYsYn6G0OAe9K1m9fYQTxEr4SjLhq4Ps4ROQpQqfQMPXw3Hk09O1X8BJrhJK9AAgMOZnW9IzWJU1bje0ZRMy/3cvrLl5aL2tk4Yw2wQ9vcdSj0j4tAHofZ1YfOAQel/qjCZgWqB7aGzzo0eP9R7M59fQCzN0ejf2vXQT7vvqQVz4+p3o6A172gbLst6JgzXugG1lzbbwr//Ns3rjAACMOBVPPXr1Ye8vPm7CGh274KVP0Mtvp1H8Gd3Q2NiFas8/8p2jSE3k8fL/dz5sqE0fweIFL6MdWD167M+x9DylFIsPHkbivO2giso8t3uNwdPbsPYXc9zB0t8bxx2lS3jzplP+3Q+acT9gLM5yLecElkk6hTBtMRDW+a2WBg0fVzTJmljq4RMn4dMEqfApmg6tswulRYEqfFscs5bSsZMBR9IYhBAkLtyJ1ENHYBsbe4bOZe86HWbJxi+/eCDoUCSStsUybPzy5gMYObsH25/bvBmxvJM/MgVjNoPERTuDDqUhSifGAEKEGMkAOJLOUFdv0GHUxShmoGhhqBr/lTPLLknTljrIhE9AlsYyiJPw6eFOmMUcqM3/jXyouxel+Zmgw/CMPjIMKAqKx8VO+ACg6+KdsPMlZJ/cuOMZAKB3WyfOveo0PHT7Ycwf53+hRCIRkYduP4zUeB4vfOfpG3p21+L9hwAAXRftYLySb0rHx6AP9kMJ8X/TbxXzsAo56N18V/iMYkaIkQwAYNqGNG2pg5R0CojvFb7G1VFMQpE4AAqzkEUommj+BqvhUZIR6u5F+vBT69pEy2Sgy7aj6Dr04UGUjh5f+vf/n73zjo+jvPP/e2b7rrSr3qur3Huh2xjTayCEEiCV5HLJJXckFy7JL5dyl14vueRCChAgBEhC72CaccHGGFfJkotsq/eVtpf5/bGSMbakZ6RdaXbEvF8vv2zvzD7PZ2dnZ+Z5ns/3+xXZLVX5LZN7ABpPWvDMJdVIFhN9W+vJXFSVVP9DjMXaNBKitPPC7Srm1k7VcdZn57D36WO88st9XP3jVUmnzgeICR5qVR2LJMsZmFQcC5PAWpp02QbAJLCFTobNUQ3JWjbVlI8QWiUFfaixjSZrlUzoSN7iPUTAG2bj72qpWl1A9Znvre4layNPhc18skvF9L3VgHNmEZac98dppUmkhWrCR49jnz3j9A2T8UHGWPoh3JNwEVk9uWl9oCPBAW3i98aRkyARw2ebADEjo6fcCcYKnw6RJAmTbNXdCh9AJJT+GRit2XnEfP3Ew/rJgmqtKCN8rElXF5/hMNmtZC6qou+tBt1/lmTJyHew4taZ1L3YRNMufWSNNTDQC5vuqiPojbDujvkf6NW9SJ8fX20TnpXDDJR0RKzPS6zPi7WiTGspqhhKDGfNSu9EQZFQPxZ7+sfFxZU4cSWK2VjhGxFjwKdTzLJVV2UZrIMXjHBQHwM+QFe2TltFGfEBH7HuHq2lJI1n5QxCLT0Ej+nn+E8Uqz42C1eujQ0/2fWBHwAbGKSK7sYBtj94kIVXVVIwy6O1HE3xbmsABd0P+MKDIQ1DMe3pTrg3cX+zZKV5DJ9WK3xjZMjxZmTpHBljwKdTzLJVV0lbhmaIIroY8OUD+hrwWSvLAQg16j/2zbNqFgB9mw9orER7rE4z535hHs27utnzjP5jNA0M0oGXfrwLs83EeV+Yq7UUzendUo8lLxPnDH0kOhmJUOMxkCSseinJ0NOJyZmByWbXWsqIKEqcSMh3YsI+nYnGEs/DRtKWkTFi+HSKSbalj6VTxcLDiQFfIIkB3xg98uNlaIUv1DNMGYkU9DER5iFraTGYTYSPHMO1dNEE9HA644nRO5X4MMfTnJuJc1YJPZsPUHHzKsH7U6Fh4u1cycTGzb2ymh0PHeKln+9j5tpirM7hL9spidVSUQ9KFvwIRDF6orINiT4EgcXC8hLCLtI6buZkko3RS0UsojiGNfm541SUFRHHuUoc3NjKwTfaWPOl+ThzHaddg1JRPkJESq5bSZaCURSJeDBC39uHyFu/CJDHHDYl3F/F5xS3oW57uPE4lsICZJt9zL9tLQy94Z7OE88aJ3QIS1Aktx1QUebivX9HggOAgsWW+f620/DaGRt0vA3VqU4JyiQkuJhEjBU+naI3S6fJbMVkthMOerWWIkS22jBnuAl3j1I3MM2QzGasZaVTYoUPwHPGLAL1LYTa0/98mWgkWWLtvy+mvz3IpruNYuwGBuMlGo6x4ce7yK7IYPnN+rYwpgLvzsMooSie1bO0lpIUiqIQajyGtVIf8XsA4d6u9I/fG3RkJZLupTdDCyDGCt/IJDXgkyTpw5Ik7ZUkKS5J0vJR9jsiSdJuSZJ2SpK0/aTXcyRJelGSpPrBv7OT0fNBwpxOK3wqsTrcuojhg4StU08DPgBbVQXho8dQYulf+kKE58zZAHRvMgY4AGVL8ph3aRmb726g+6hRpsHAYDxs+3M93Y0DrPv3hZgsxnx376Y6TC47GfMrtJaSFLHuXuL9A9iq9PE54uEQ0f7eE+Ej6crQ85rFrlFm9TEQMwZ8QpK1dO4BPgT8TsW+axVFOTUo6k7gZUVRfiBJ0p2D//9qkpo+EJhlK9GYflb4IGHrjASGX7GZtHIGIgZ1WHPy6a/bNXbrgiqrzuiNqjkWw9lgbFUV9L+6kUhTK5ZpgjiGVFhthO9X08fw+9hK8rBXFdD9Rh3FVy8b8f1qrFGpsX0mXxJB3MfoOi+4Yx71r7Xy/A92c8P/rh5XZkFhWns1tlCB3TLZsg2gonSDoKSC0PIJ2vi4xkGylk115Q6SLP2gYu5Y2IcancISFSMfi57jPjb9vpaZF5RSdXYJ450WS7ZEixpScV0TXb6j4Rh9W+pxr54JZtOw9nrRNTwVtv5UEDpyFADrCAO+lDxfCD7rWPoYSthizdHHgM861gGfBs9zQ443I2nLyCT1lKIoyn5FUeqSaOIq4N7Bf98LXJ2Mng8SZpNNV5ZOGFrh04dFz5ZTQCzoJ+rXz2qKrboSgNCRRo2VpAbPmTX07z1OuEs/38FEkplv57zP1XBwYzt1G1q0lmNgoBsUReGFH+xO2KO/PDkxzunOwK4jxHxBss6s0VpK0oSONCJZzIlYdh0w5B6ypfkKX2TweU0PZRlOJG1JZQzfFGOyPA0K8IIkSW9LknT7Sa8XKooy9OTSChROkh7dk7B0hnSVqt3qcBMOeHWh2ZqTKMQb7m7XWIl6TDnZmNyZhA5NjQFf1tlzQIHujcnMKU0tVtxYTcEsN8//YDfB/ojWcgwMdEHtiy3Uv97GmZ+di7vIqbWctKB3Yy2yw0rmkmqtpSRN+PBRrOVlSCaT1lJUERoc8J2atCXdCAf7MVnsmEzpX9tuaAHEsHSOjNDSKUnSS8Bw+Xq/rijK4yr7OVtRlCZJkgqAFyVJqlUU5fWTd1AURZGkkRfFBweKtwPYMS7YZjkxixGLhSZ+RmM4r8dYUcBq96DEo0RDfiw2V/JtnkJKMlgNYstNzD2Eutpwlk0bVxsjMkHjXUmSsFVXEjp0JDUNCnSKxu3Jjuvt5Xk4qvPpfLWWgitHDBEWIrI+pcI+Jd6uJoOmikyIJplL/nMpf771NZ7/4R4u/+57dtd4CopHq8mUmOytX2QPTOgQnVyCBkSWT1Bn+xwFk4o+Jit75ejvV2OVTC4Lp7rf0MRnEx2OgDfMc9/fRdEcD0tumjXhv+VU/NYnOnNwPBKjb1MdnjNmI1tHfgxM1rKp6h4g6kNkKw1HCB07jnvN2eO/t07GHPRJfYS72rC4s5Ettvf3nWZz4eFAH1a7PupUDoU4DT0bG5yO8MqkKMoFiqLMH+aP2sEeiqI0Df7dDjwKrBzc1CZJUjHA4N8jLqcoinKXoijLFUVZbsH4QocGedFYUGMl6rE6Ej7wcKBPYyViLO5sJLOZUJd+VvgAbNOriXZ1E+vTh3VWRO55cxjY10SoLf3PmcmiZH42Z35yFrufOMqBV5q1lmNgkNa8/NO9+HvDXP6txchmI1ELQN/bh4n5gmSfM0drKUkTOtYE0Ri26iqtpagm1NOR9glbAMJB74nntnQnGg8jSyZk2ag2NxITfvWTJMklSVLm0L+BC0kkewF4Arht8N+3AaoHkR90LHKiWGdER4lbhmaK9DDgk2QZW04hoa42raWMCdu0KgBCDUc01ZEqcs5LPJB0vbZfYyXpxVm311BY4+HZb7/DQKd+Jn0MDCaTw1s62PnoUc64bTpFc7K0lpM2dL66H1OGnYzF+rdzDjlahmLY0x1FUQh3tWPLLdBaipBw0KuLouuQWPwwGat7o5JsWYZrJEk6DpwBPC1J0vODr5dIkvTM4G6FwEZJkt4F3gKeVhTlucFtPwDWS5JUD1ww+H8DFZxY4dNR4harUz8DPgBrbiFhnQ34rOWlSFYrwfrDWktJCfbiLDLmlNC1Ya8uYj8nC5NF5srvLSfsj/LUN95GSYXt2sBgCuHvCfHEN3aQW5XBOZ/Vf2KSVBELhOnZ1EDW2XOQLfqIeRuN0MHDmPPzMLl1MjDp7yUeCWHNHS5SKn1QlDiRgBerQyeWznjYSNgiIKm1T0VRHiVh0Tz19Wbg0sF/HwKGTYulKEoXsC4ZDWlNKh5QR2jDLCUCU0WWzrQpd8BQLReJ0DgHfJPyWU7qw5ZXhHf/DmKhICarXdXbJy3Gb4R9JNmEbVolofpDyfch1JB8nImatN+558+n8X9fwH+wA+f0wtO2J4u6UgSCmJskt6vh1LienGkezv/yQl747528df9Bzr5NPFsvjD9ScWLEJFHZhSTj71BRukGgQdX5rSbOb9Q+1MQiTs75OaoGNfF1SZZdUFeWIQXHQtDGUKyhoig88c2d+HvCXPc/ZyDbLMSU1MQaTkZMsBrGq6NrYz3xUISsNQsmPkZvgu/ZSjxO6OARHAvnjd5XCnSk6vljKExkKE/AmEjB8Vb7OSKhARQlPjEDvgmYvI3GglhOWuGTjEnQ0zAM7TrFYhqydOrHziXLJiz2TML+Xq2lqMI+OAMX6tTXKp9t+jQiTa3EfX6tpaSEnPPmIJlNdL64W2spacfi66qZuaaYV3+5h5Z9+vhdGRhMNNv/coiG11pZ+6/zDCvnKXRu2Iu10INrTpnWUpIm0tpO3O/HPl0/1tRQVyswzgHfJBIerJmsm6Qt8RBmk7qJ+Q8qxoBPpwxlItJT0hYAmzNLN5ZOW97QgE9fNc/sM6aBokwZW6c500HWmTPp3LCHeDiqtZy0QpIkLv7PpThzbPztK9uNUg0GH3iadnWz4We7mXFeEctvmq61nLQi3OHF+84R8s6fiySnR9H0ZAgdSDhZbDob8JkcLszODK2ljEo4kJhAtDl1MuCbjIz1OsdIZzNeNF4uTukKX5LL65Kq9yduLjZnFr7eYQZQk2zXVIMlKwfJYiXUcZLeybBsqrLZjNyIrbICyWIhWNeAc/G88WkgFSm5U1fuIO/iJfS8Xkv3xgPkrJ132vZkdKixW4pLJiS3HcZvm7NlO7jih6v566de44n/3Mm1P12BNEKJBlF6fVmFzVFsC03SjgmYRHORSvJ9JP1bTsGxUoMau+SoGlSVZUjWxqimFEHy5QxEOge6wzz6lbfILHRw2XeXoyCP+fY2GfbtZG2joM4OfyodL+8DBXIvWKjq+iy2bKZg0JjE7zBYdxBTdhbmvFzNNKhtY8hKGepoxZ5XnFbhNu9jSKc/MTFvtWed/tnSQfspJ2c0FkwshBix/iNirPDpFFkyYZIsRKP6WuGzOrII+Xt0kYBDkmTseUUEO/SV+l6ymLHNqCJUd1BrKSkjc2EltuIsOp7bqbWUtKR0SR7rvjSX2pda2PaAIH7TwGAKEo8pPPm1bfi7Q1z9k1XY3UYB5pNRFIWuF3eTOb8ce0m21nKSRlEUQgcOYZ85fcQJrnRDUeKEOltPuIfSmVCgF0kyTUjN5IkgEg+9L4bP4HSMAZ+OsZjsRGIBrWWMCZszO1F8PezTWooqbPklhDpadDFAPRlbzQwiTa3EvP1aS0kJkiyRd/FiBnYfJXC0U2s5acmqW6cza20RL/1sL0d3dGktx8BgUnnl17Uc2dzOBV9dRNEc/Q9oUk3/rqMEm7rJu3Ch1lJSQqS5jfiAD/tM/dh2I95Ehk5bXrHWUoSEA31YHR4kNW4JjVGUODEjS6cQw9KpY8wmu66StgDYXIkA+pCvB4stxR72CcjEZc8voXfXFmLeXixuFQ8RkzUuFFhp7DUz6AOC+xtwrVwyzj4Em8dhKUqG3AsX0XzfG3Q89TYVn7sIUJkRT2TBmoRMn+osb8npjEsmLvvOMu65+VX+fsc2PvbgWtyFjlP2Sd6aFxO0ISdrx0SFjVH0lanoQ5XtcxRE9sJUocYOPPr71WTQTDZLpxrLsroMm6Mx0m9573NNvPnHehZeW838D00bsS9V2USTtGen4pqUSjv8EG1P7sCUaSfrnDnEFSklttGUvH+cmSeD++sBsM+cKbaWamw9HWLILWTPH37AJ7J5TqYNNOTvwebUx8TJ0HOwxUjaMirpP3Q3GBGL7NDhCl8OkLiY6AFHQSmA7myd1vJSZJeT4L4DWktJGRaPk+zz5tD18h5ifv3Un5xM7G4r1/1iNZFAjEe+sJmQz0jiYjC1aa3t48lvvkPZkhzW3blEN/a+ySTc6aV38wHyLlyEbLNoLSclBGsbMBfkYc7Rx6AEINjeBEjYdbDCF/L3YnPqI8PtUD1qI0vn6BgDPh1j0eMK3+CMUcjXrbESddgGZ+IC7U0aKxkbkixjr5lBYN8B3dlRR6Pg8mXEA2G6XjJKNIxE3nQ31/xkJR0NXv7xb28RiyRZb87AIE0Z6Azy8Be34vBYuO5nKzBZjEea4eh8dicoCvmXjtPtkWYosRihAwex18zQWsqYCHW0YM3KRbamt/VQiccIB/qwOfQx4DuxwicbA77RMK6OOsZishON6muFz2x1YLI4CPr1MeAzWe1Ys/MJth3XWsqYsc+vIe7tJ3JMX6uTo+GaXYJrdgntT2xHiRkDmZGYdlYhl35zCUe2tPPk17cTj02dQb+BAUDYH+Xhf9lKoCfM9b9cRUau8bA3HPFQhI6nd+BZOQNbsX5Ww0YjdPAISiiMfc4sraWMiUB7E/ZB11A6Ewr0AQo2V47WUlRhWDrVYcTwaUmSKy8Wk4NwLICiKBNqY0mFb/zkNuyuHEIDPWNvN0kd4/0c9sIyAk2pq2mXCp++aB9FAcfcGpAkArv3Yy0/5SaTgpiGSalQMYzOgmtWcvgHj9G79SAF50wT9pFsbJzafZLvI9nU+O/fPv+qKny9YV79+R5sbisXfm0xMUHcmqziWxWXZRCd4MIuxDpEMlVVNtHHhIGorIIo9k1N3FqyZRdSUpZBTRzgYBvRUIxHvvgWLft6+dDPVlEwJ4eYkqrfevKfVdzHxJeKGaL7lb1EvQEKr16pav+TSTpOe4LmmYJ762DQxaKGdIiNiwUCRPq6yF6wasKOi6rPoWKf0OCEvN05vgGfulJdAsZweR4KbbKYHII9TyEd3E+TeB8yVvh0jFV2oCgxYnF9xenYXDknLih6wFFYRqS/l6h/QGspY8LkzsBaWUZgd63WUlJK1pk1WPPdtD+2VWspac+q22ax6uOz2PnIYd74zT6t5RgYJE0sEufxr27jyNYOLv32UmatLdFaUtqiKAptj2/DMa2AjIUVWstJGYE9tdhmViM79LOiE+xIhIXoYYUv6EvkWLC59LEiHD2xwjfGAd8HDGPAp2PeK77u11jJ2LC7cgj6ulF0MsPuKCwHINB6VGMlY8exYA7hxmPE+qZGeQYAySSTf9VKBvYco7926thVJ4rz/mUeC6+pYvPv63jjrqmTxMfgg0csEufxO7dx4JUW1t+5kIVXVmotKa3xbj9IsLGTwmtWTplkNtGuHiJNrTjm1WgtZUwEBsNCHIVlGisRE/J1ARJWh0drKaoYWuEzkraMjmHp1DFWkxOASDSAw6phcO0YV8XtrlyUeJRwwHsiC1SqbaPjZpg27IVlgESg5RjOmrljfv+49kkSadBq41wwj74nXyCwaz+ZZ696T4IaK0OSqa5VdSG0YA3/es5Fi2l96E2a/7qF2d/6kKCNibd0psSiJUpbP97U+RJc8I1lRCNxXvl1LZJZ5sxPzBy3zohiEu4zGmpyBMZFfh5RSQU1vzGdPP8ma9lUc34nW3ZBVVkGwecQnVexSJzH7tzGgZeaOf/LC1l6w4zTrg/JWlPVtaH99QTU2eFbH96CJd9N9rnzTrvWqrpVJemsVsUYbaGBXQmngmPhXFAm7r4/1n1EOgKtR7FkZmN2ZianY4KRFIWgrwubMwuTZEoP26OAcCyASbJgko0hzWgYK3w6Zmj5Oqy7Fb5cAII+fRSHNlnt2HILdbnCZyktxpybQ2DXXq2lpBSTw0re5cvo2dyA/4hRiF2EbJK4+NsrmHdJKRt+sY+t9x3UWpKBgWoSg723Twz2VnxUX9kZtWBg3zEG9h6j8EOrkMzJTdKkE4F392EuKsBSmK+1lDERbDuGvSj9V/cgkUV96DlND0RiQSxmw84pwhjw6Rjr4AkeiepswJeRB0BwQD8P6o6iCgItR3VX4kCSJByL5hGoPUA8oK8SHiLyr1iObLfQ9NfNWkvRBbJJ4qr/Xsqc9SW8+OM9bL67XmtJBgZCoqEYf//yNva/2Mz5dywwBnsqaX1oEya3g9wLF2ktJWXE/QGCBw4mVvd0RCzgI9zbdSI8JN0J+rrGnbBFCyKxgJGhUwXG+qeOsQxaOsORwMgZjdJwgGJzZiHJJgIDHWN6X9LWjSTe7yippHfvW0S7O7HmTPDMYoptoc4lC+jf8Ab+3fvIWLlU9fuTPXWEGdxU7DPadlOmi8IrltLyt62U3Hgmjoq8lPcxhMgKFhVsN6ux1U2ClUwxmbni+ytA3s7LP99HX1uIdV9egGxKvFdNlk7RPrI0uh1TVuOlVEa/NVmIjv5+keUTscXQNJY0cRNIspZNdVk6k8tMqcoqKbKFDtNG2B/l71/aypGtHay/cyGLbphFbLQ2BJ81kgKdou3RuHg1baJtoQN1LXi3H6T41jVINuuw1ng11z0hSdr+E/uMvlk6qY3Arv0Qj+NatOC91ycpjCKZ549Ac8Id5CyqTO45RujjTaLtQaKRAJGwD3vGyCt8Wj6LDUckGjjxPGwwMsYKn45JFJmUdLfCJ0kydleerlb4nMWJ5AD+piPaChkHtupKTFke/O/s0lpKyim6diWyzULTXzZpLUU3mCwyV35/BSs+Op3tfznIo3dsJRIQDKAMDCaZgDfMXz/7Jo3bOrj8v5ax/MbpWkvSDU0PvIkp00He5cu0lpJS/O/swpTlwVqpD2vkEIHmRpAkHEXpv8IXHEiE2jhcw0+gpiPhmB+rkaFTiDHg0zGSJA3W4tPXgA/AkZlHoH9sK3xaYsstQrbaCehwwCfJMs7FCwjsrZtytk5LlpPCK5fS/dp+/Ef0cz5pjWySuOArC1n/1YUceLWFBz65kf72gNayDAwA6DrSz323vkbrvl6u+ckqFlwxdUoKTDQDdc30vXWQgmtWYXLatJaTMuLBIIF9B3AuWYAk6+vRNdDUiC23CJM1/W2HAV9iIn4o9EYPJCydxoBPhL5+NQanYTW7COtshQ/AkVFAcKALJT6aQSd9kGQZZ0klgeOpK8A+mTiXLYJoFP+7e7SWknKKrluFyWHl+D2vay1Fdyy/aTrX/nwVnYe83HPTqxzf1aO1JIMPOPWvtXDvza/i7wnzkd+eyex1Rp09tSiKwvG7X8fsmYKre+/uhWgU59KFWksZE0o8TqC58YRLKN0Zcl7pJWlLXIkTiQWwmg1Lpwgjhk/nWM1OwlFfUm0I/dgTkPbYkZmPosQI+rpxZKQoJm6CffrO0um0v/kMUb8Ps9M15vefIBXHe4xt2KorMeVm49v2DhmrlqvogKTLLqgryyDaLo6/M2c6Kbr+DJrueY2+nUdxL3r/jTUVJROSjdFTE+Mkiv2xCGLj1MT9DJf6vnpNOTf92c1jX9rEvZ94k8u+uYiFV468oiKMcRLFe6k5wQWfVRTjJ6uIvxPG6KmIA0wWNd+ZCHGMn/hzCEsijCP+bqz7xGKw6fe1bPztfgrnZHHNT1fjKXG+L/4sGhfE0gp+Q2qORdKxtCquJ6mIKx5un763j+Dd2Uj5Z9YhO+yjXl9TE2Mter+wC9X3Mv/2nZiys7BVVb7/PZN1zx1nH6GOVuKhIK7SaeNuI5UIy0cMdGBzZGEyW8ffySSmjhiqQ201YviEGCt8OsdqdunU0lkIQMDbrrES9QxdsANN+lvlkyQJ1/IlBGvrifV5tZaTcoquXo61wM2xu15GiaVHsg09kT/Tw833n0/Zohye+MY7vPiTPcSjxnE0mByC/REe/bctbPztfuZdXsHNd5+Hp8R4gBsLSlzh+N2vYi30UHDpEq3lpJTYgI/A/gO4li/WnZ3TP+gKcpZWa6xEHYH+DhyZ+il5MeRwM1b4xOjrl2NwGlazk3AkuRU+LRi6oPj72zRWoh5HUTmSyYy/UZ81zDJWLgVFwbf9Ha2lpBzZZqHs42vwH2qn4/mpl5xmMnBm27jp/85g+Y3VbP3zQe771Ca8rUZcn8HE0rSnh7uuf42GN1q54KuLuOy7y7DYp07duMmi65W9+A+2UXrLOcjWqWXe8u94N5Gdc7n+BrKBY4cwZ7ixuNO/zIGiKAQGOlLnupoEhgZ8FmPAJ2RqXRWmIgJPhM3sIhoPEo9HkWWNvs5xLN+bLQ6sDg8Bb9u42xgzSfYhmy04yqrxNTaM3JYat5ooDbUKLaI2hjttLIWFWCvLGdi8jYwLz0GSRCm1RZ2MsZn/+AAAIABJREFUvllNSm6RZUiYcv4ki5fnnHlkPLOT4/e8hueMGsyexA0gLidvhUw2jbqqPgTfvCilvCyw5SX2EXxpZjPr71xM8fwcnvvuTn537Sus/+pC5l9efuJ8EZZlSMGP2SLaQWj5VDGXKfhKYmlS0UZkQxTZLVXZGEXnXnz0e4vIEjrcPoqisO2Bg7zy8z1k5Nu58U9rKFmUO6rRVmhfFR6L5EuwTMZvfazXpJgvyLE/voJzVjHZa+YTV6Sk7Ziq9knBPUDNPgNbtmMpLcZaNjHxnCkJxRjuLYqC72gDrsqZSEjJP+cIS1gk10E40EcsGko4sDS+/gk/y+D2cHQAAJvJlZZlyNIJY4VP51jNGQCEkozj0wJnZiF+r35W+ABclTMItTcRDejveANknLGCSEsb4cbjWktJOZIkUf5PFxHzBWm691Wt5eia+ZdX8IlHzid/eiZPfeNtHr3jLfzdIa1lGUwRBjqD/O2LW3j5x7uZfnYhn3jofEoW6SNJRDrSfP8bRHt9VPzzRUhyCurrpRHhljbCjcfIWL1CayljJtzdTszXj7NCHyVFAn2J5zFnZoHGStRzwtJpxPAJMQZ8OsdqTiQPCQ3OcugJh7uIQH8biqKfWCFn5UwA/I31GisZH65li5EsZnxvvqW1lAnBUZlPwVUr6Xp+JwP7jmktR9fkVGRw85/OZe2/zqPh9Vbu+tBL7Hn6GIoxi2owTpS4ws6/H+b317zE4c3trPvKAq79xWocniQSRHzA8Te00v7k2+RfugTXzGKt5aQc3+ZtIMu4VujPzulvbAASE8V6YMhxNZRjQQ+Eoj4kZKMsgwoMS6fOsQ2u8IXTfMA33PJ8hruIlniUYH8HVluRuBENM20N4SwqR7bZ8R2qwzN78cRoUMM4j4Vsd+Bcsgjf1nfIuvYyZPsodYFSkEFThLANwfvjw+xQeNM59GzcT+Mvn2b2/3wKUThLaiydyVnNQE12wOSzMYo+x2nWPBmW3TaHirNKeOHbb/Pk17az56kCLv76YrLKhs9UOxkkbfkEYgIbomkSfswiK6UakrV8gtiyKbQgquijtc7L8//1Ds27uilflsdF31hCbnUmCgknligDJ6iweE9CRt6UWDpT0IaiSCjRGEd+8Qxmj5PiW9a873oqakPN9VmcqVkUFiDuYtS3R6IMbN2Oc8FcTBkZw7anxo6ZkjVPoZ3y9Nd8h+uweHKwevIgIu5CZGNUZT0VMUof/t4WLLYMrLaMcbehhmStpycTjvmwml2nh6gYE5OnYazw6RybZdDSGUnvAd9wOD0JP76vr1ljJeqRZBOuylkMHKrV7UpH5jlnooTC+LZOveQtACaHlfIvXEroeDetD27UWs6UIH+GhxvvWcv5dy6maWc3f7j2ZbbeW29k8jQQEvZHeemne7nnxg30HBvg0u8s48Y/nENudabW0nRP2z+2EjjURsXnLsacOfVWOPzv7CY+4CPj7NVaSxkzSiyGr7EBV9Uscbx8muDva8HpVjH5nkaEIgPYzNpNPuoJY8Cnc96L4evXWMnYcWYWIEky/r4WraWMiYxpNUQH+gh1tmotZVxYK8uxVJQy8Opm3Q5aRbiXTiPngoW0/30zvnp9fk/phmySWHrDDD796DoqV+Wz4Wd7uPvGVzi4sXXKnkcG40dRFPa/0Mz/Xb2BLfc2sPCqSj792IUsuLJSNw/A6UzwWCctf3mDrLNqyDpzttZyJoSB17dgzsvBPnum1lLGTKDlKPFwkIxqfXw3SjxOwNumvwFfzHfC6WYwOsaAT+fIkozVnKHLFT7ZZMaRWciAjlb4ADKqawAYOLhPYyXjQ5IkMtecSaS5lVCdPktMqKHkU+uwZLlo+NHTxIIq/DQGqnAXObnul6u55qcrCfuiPPzPm7n/Y69zdHun1tIM0oTj73bz54+/yd+/vA2728Jtfz6Hi7+51IjVSxHxaIwjP3kC2WGl/LMXai1nQggfayZUf5iMs1brrvYewMCh/SDJuCr1MVgNDnQSj0VwufUVBxqK9BsDPpUYMXxTALslk2BkhBW+FOReTqXf+lQyskrpad0PcUU46yvWkez7UZUi2uLOwl5YRn/9XvJWrxO3OdY+UnG8BX24Viym99Fn8L70OvbZIwSUJxmfoSrT9QTGCZpcTsq/dAWHvvkgjX98jarPrR9XH2r2EcUGqYlPMkui2CFBeQk1sVqCuDVh2YYT/UjMWlfG9HNL2PXoETb9vpYHPvkGVasLWPuFGkoXZI9bQyqQVRwLUYxeuphVky27EFMT2yksCTL6dxaJJ7Y3vdvFm7/bz+FN7TizbVz0jSUsvKYK2SQJ2xCVXACICtqIxtXpHA1R7JtIQypi+ESxiMfv24S/oZWqr30IU3bGsLHMqYjhE36WVMTVj7BP/4aNSFYLGWesGr2dVJRUUBPPOMY++hv24iyrxmRzJrZNUOmHVL3f15uYeM9wl6oJgR6ViXxmPJm4EiMc858IbTIYHf1Nmxicht3iJhTxai1jXGRklRIJ+wgH+rSWMiYyZ84j0NxI1Kc/Ky2AZLGQce4ZBHfXEmnRV2mMsZC5ZBqF1yyn/Ykd9G6buquZWmGyyCy5fhq3P3kRa+9YQFtdL3ff/DoPf3ErbQf09Zs2GD/Hd3bx8Oc2cv9tr9G6v5c1X5rPZ56+iMXXVSObDPtmKunfe5zmh7eQc8FCss6s0VrOhBDzDuB76x1cq5djcukv3X7E20Ooo4WM6XO1lqIaX08TkmzCqasMnQlnm91sxAOrwRjwTQFs5lFW+NIcV1YZAL5ufdWFy5wxH1Dor9+jtZRxk7nmTCSLBe/zr2otZUIp//h5OKryOfSTZwh36HNiJN2x2E2svGUmn3nqIs77fA2N2zv5/XWv8tAXtnJ4a4cR4zcFUeIK9a+1cu/HNvLAx94b6H326YtZ9bFZWJ2GgSjVRLwBDv7wSWwFbkpvH96xMBXof20TRGNknn+W1lLGRX/DXgAydTXgO47TU4QsT7wDI1UMPfcalk51GFfkCUT0kCMN58MYI5Ki4LC4icaDxKJBzCbb+zUk3YMaDSp2GmEfl6cESTIx0H2UnLL5E6sjhWUbbPklWLJy8dbtInvRGeo1qNlH1fFMzr6qKGDKyCDj3NX0v/Im7kvWYSnIG5MOJS6y+6iwDAnaEG1XVBQZVsxWqu+8mtp/vZcD332M2T/6KPJJtRqiKr40kyCGxCSwbJpVJKkQpYOXRdtV2NVkefTPmqzdUnaaWP2puSy+fgZvP3iQtx88SP1rreRUZ7Lkw9XMv7yCzCxxHyIdIgui6FgBxJP0LcnJ+p5QV0pDhMiymQqr78l9RAJR9j13nLfua6DzYD/uYgdrv7KIBR+qxupI/K5iw+kQWSVVnL/Jll2YjJIJaiy0McH1Yji7pRJXOPSjp4h0+5jz048iO+yjWuKFNnTR9RtU2PqTvwecep+JBwL0b3gTx6J5WAoLIJL6Pk4l1fdt74FdWHMKsOUUnng9NSUVkm9iOB2KEsfXc5y88mFKTalsQwuCg842u8U9MR1MsYnKpO42kiR9WJKkvZIkxSVJWj7CPrMlSdp50h+vJElfGtz2LUmSmk7admkyej6oDJ3sQR3aOk0mCy5PMQNdjVpLGROSJOGevQhfYz3RgE9rOePGvX4NkknG+9wGraVMKI6KPKq/fAX+Ay00/upZY8VpgrG7rZz1mTn803OXcNl3l2HLMPPyj3bxmwuf5env7KStzrB76o222l6e/95OfnXBszzzrXeQZIkrvreczz55IctunnlisGcwMbQ8tJm+7Yeo+Mw6XLP0lVhjLPS/ugklEMBz6Tji49OAqH8A/7GDuGct1FqKaoIDXcQiQVw55VpLGRNDK3wTNuCbYiR7hd4DfAj43Ug7KIpSBywGkCTJBDQBj560y88VRflJkjo+0NitHgACkT4y7Pkaqxk7GdkVtB97GyUe11U2LvfsxXRt3UD/gd1kL9JfnSAAkyeTjHPPSKzyXbQWS6H+zh+1ZJ0xi+Kbz6blgY04qgoounaV1pKmPBa7iflXVDL/ikpa9/Ww4+FD7H7yGO/8rZHShdksurqCuReWYncLS6kbaICvK8Te546z68njtO7rxWSVqVlfypLrqihbknsi0VYKzCoGo9C7pZ6m+14nZ81c8i9borWcCSMeCNL/8hvYF8zBWlGmtZxx0d+wBxSFTB0N+Aa6jwKQka2vYx6MejHJVsyyTbyzQXIDPkVR9gNjqamzDjioKIq+lnPSHMfg7EYg3KuxkvHhzqmk9fAm/L3NuLJLR94x2YxhKhiLbcNeUIo1O5++fW+TvXC1eg2psJcI3GSiBSzppGPpWb+WgY1b6Xv8efI/fctJbYg8nQK7pRrHm8CSKbIliSxeAOaT9im64RwCjZ00/XEDljw3OefOVfWVJWvzEmX2A5AFT80yo7dhUnHiCK2Oqr4zFfsMQ+6cPNb/Zx5r/3UBe55o5N1Hj/DMd97lue/tompVAbPWlTBzTQnOHBtysp4hFXbLuChjqeDMUGPdE2pQYbcUkQpL58lthP1RGl5vZc9TRzm0qR0lplBQk8Xaryxi7uWVJ0orROHEtUxNFtpkbbqJfpLLwimyTavpQ/RZU20b9dU10/CDx3HOKKLyXy5FQUZR1NhCR9eQggTe4jZUWSXf+6z9L75G3Ocn67ILT7wu+ilPXhiFin2Avv07sGblYS845VkmFTon6P39XY3IZhtOTxGEktOgCjUzRKKTK64QDPfhMLsTn3s8rp14uuRinhwm24NxA/DgKa99XpKkW4HtwB2KovRMsibdYzNnIksmAhF92qTcudUAeDsOjz7gSzMkScIzbzkdG58l3NeN1ZOjtaRxYXJn4l6/hr6nXiB0uBFbdaXWkiYMSZaouuNK6nsGaPzpk1iyXeQu0c85NxVweKysuGUmyz86g5Y9PdS92ETdy0089513eP6/3qF8aR6z15Uwa10J7kKH1nI/EPS3BWh4vZX611o4srWDWDhOZqGDVbfOYP7lFWRNH7nMhsHEEWzupuFbj2DJzmDGt65Htk/dlfBonxfvy6/jXLYIm05X9yL9vfiPHiT/zAvHshCiOf1djWTmVCBJMpOT+SE1BCJ9OCwerWXoBuGAT5Kkl4CiYTZ9XVGUx9V2JEmSFbgS+I+TXv4t8F0SZ9h3gZ8Cnxjh/bcDtwPY0V+a3olEkiTsFo9uV/hsziyszmz6Ow9TPOtsreWMCc/cZXRsfJa+fW+Tf4Z+s6a5zz+Xgdc30/OPpyj8t8/p6mY1VmSrmen/78Mc+MqfOfTdv+H42U04q6aulTVdkSSJkgU5lCzIYc2/zqe9ro+6l5s48HIzL/5wFy/+cBclC7KZtbaYihX5FM3JwmTRj+U7nYnHFFr29nBwUwf1r7XSsjdx78gqd7H0+mpmrS2hfGku0uAKfEQ/z4BThkivj4ZvPoyiKMz8zvVYsl1aS5pQ+p55ESUaI+uKi7WWMm68tTsBBc/cpVpLUU0sEsTf20LZ3Au0ljJmApE+shz6nBzQAuGAT1GUVJ0FlwA7FEU5UfTr5H9LkvR74KlRdNwF3AXglnKM288pOK1Z+MP6XRx151fT21qHosQHZ5n0gdWTg7N8Or273xoswq4f7Scj2214Lr+I7r/8Df/2nbhWTN04EQBzpoPp37mBA1++l/13PszcH92AoyJXa1kfWCRJorAmi8KaLM7953n0HPFS93IzdS818+r/7AMS8YCli3MoX5pH9fJsSudnY7HrJ4W4lkTDMVr393H83W6O7+ymcVsngb4ISFC2MJs1/zKXmWuKyZ2WOaUne/RC1Oun/msPEu7qZ9b3bsReNrWvTeHjzQxs3ErmuWecni1aJyiKQu+et3AUV2DN1s8EorfrCKCQmVelsZKxEYkFicZDxgrfGJhMS+eNnGLnlCSpWFGUlsH/XkMiCUx6kC5Z/FTqcFpz6PEfR1GU99+w1ViUk/W3q9AoCVJAewpm0Nm4g0BfGy7PxGQgS6Z8xGhtZC9cTdPTD+A/Uo9j1uyk+0hJPIFo+zDnRcbqFQy8uZWevz+JY24Nktsu6ENU+kFFyYQkU4er6SM2QhvmvCymffdmDn79fvZ99SFqfnQT9tLhbbkxwckTEyQbiqqIWRCVbhDFOKmJZxSmvlcxXyELgjMjglhDNWRXuVn9STerP1nDQGeQ4+90cXxHJ8fe7uSN3+7nDSVR9L14fjYVy3IpWZBDwWwP7iIHkiSlJDZOFMOXCiYqhm+gI8jxd7toGhzgte3vJRZJfG+eUifTzy2m+qxCqlYV4My2ERv84k+OyzsZUdyamnIeojhWUfxdoh/B70y0XUWsoagNYVyxij5G+61G+4Mc+PpfCTZ1M+0/r8cxu5zYMD854SVeFOOnQqe4E8H5q6L0gxJX6H7oMWSnA89lF53eZzrcL1UQbG4k1NlKyYXXD/ucMFHPH2N5/3D7eNsPIUkmMnOq1B8H0f1sEkLjhhY4nNasie9sipDUgE+SpGuAXwH5wNOSJO1UFOUiSZJKgD8oinLp4H4uYD3wmVOa+JEkSYtJnGZHhtluoBKnLYdYPEw45tNlEUpPwUwA+trqJ2zAN1G4Zy6i1fEY3e9uolTNgC9NkWSZnOuvofUnv6L36RfIvvFKrSVNOPbyPGq+fwO1X32Q2q8+mBj0lRjxSulERp6dmvWl1KxPxFoGvWGadnZyfEcXR3d0suWeeuLRxAOI3W2hcLaHojmexN+zPeRWZ0xZK2g0FKOjsZ+OBi+dDV46Gry0H/DS1+wHwGSVKZqbzbIbp1O6OIeShblk5Akmcgw0I+oLUff1hwk2dlL9/64jc3G11pImHN+2dwgdPEzOTddhcuk3XKdn1xZkiw13jb7cMd72BjJyyjGZrVpLGRP+SMKG7rQY92u1JJul81HeX2Jh6PVm4NKT/u8DTvMkKIpyy6mvGYwPpzVx0vtDPboc8NmcWdgz8uhrq6dk1rlayxkTstlM1vyVdG1/jYi3F4tbvzNOtspyMs5eTf9rb+I8Ywm2Kn3V5RkPjsp8Zn//Bmq/+hdqv/IAM799Ha4Zw4UtG6QDdreVmecVM/O8xMRQ2B+lo8FLW20fbbW9tNX18fZDh4mGEtPMslkiu9xFVqmTrBInnsE/WSUOPKVOXDm2tLUxKoqCvydMf1sAb1uQ/rYAPcd8dB4ZoOvwAL1NvhPZcCWTRG5lBiXzs1l+03RKF+VQWONBthj18fRApM/PgW88gv9wO1Vfuxb3sulaS5pwYj4/Pf94EmtlORlnrNBazriJBQP01e7EM2cJJqt+SgREIwEGepsonb1WayljZmiFz2Gs8KnGuBOMF1U55yeBQVudy5qwovlCnWQ79RnEmlU0m7ZDW4lFw8PONonsDKmwO4y3jZxFZ9G1/VV6tr1B4flXJNWHiozyQiOYqI/R3JjZV1xCYPc+uu5+iKKvfRHZOkJmuFTYeUSlHZK0fALEBDGhsbiCrbKIWT/4KA3fepjaf/8L1Xdeg2f5ew9cMXn0L0VkFVNjD4zKgjIBSZZtGNxpdFSce6LyD7LI4q1isU2Utt580vchOUwULMinYEE+C4beH43T3ThAR10vnQe9dB/24m3x07S7l2Bf+P1t2WTcxU5cuXYc2VacWTYcWVac2VacWVYcWVYcWTbsbgtmmwmzVT7xt2xWv3KoxBUiwRih/gjB/gih/ggBb4TQQJRgf/jE/wfaA/S3B+hvCzDQHjxhxRzCZJXJqcqkcE4Wcy4pJ7vaTd4MD9mVGZit7z8HFCCSgjIBIsummrIjk1EyQVzuQE0fE28bPdX2GWrro/7//ZVwu5dpX/8QrmWzhRnjhZZN0T1AqBIU0fU1SStkz0NPEPf5yf3cp5CQh73+JH3fh9SUQhpln76dW1CiYXIWnz1yX5NVPmIMfXjb6kGJk10468TrUrqEMwnwh7uwmzMxyyOsTOrkc0wmxoBviuCweJAlMwOhTq2ljJvs4jm0NryJt+Mg2cVztJYzJqyeHNyzFtG7czN5Z63HZNOvbUp2OMi96cO0/+YP9D3xPNnXXa61pEnBUVXA7J/exsFvP8zBbz9M+ecuIv8S/WRbM3gP2SyTN91N3nT3advCvgh9LX4Gmgfoa/YP/vHh7w7Rdaif471dBPrCKDEVsckymK0mTDYZs9WEoijEYwpKNPF3PK4Qj8aJxxRVD2tmm0xGvoPMQgelC3PJLHQM/rGTWZD4tzPHjmx670E8ptNEUQYJfAdaaPj2IyjhKDP/6wYy55cTiWqtauLxv7sX/9YdeC5Zj7VMv6VxlHiM7u0bcZZPx3Fq7b00p6e1DpPFTmaO/kox+cLdOK36LIWlFcaAb4ogSTIuWw6+UJfWUsaNO38asslCT8t+3Q34APKWr8Fbt5PenVvIXbVGazlJ4Zgzm4xzV9P/8hs4Fs7BPmvq24sArLmZzPrhLRz+waMc+/VzhJq6Kf34+caVcgphdVnIn+GhaEbmiPsocYWwL0ygJ0ygL4y/J0TQGyEWiRMNxYiFE39Hw3Fi4RjRUJxoOIYkSchmCdkkI5ukxB+zhDT4f7NVxu62YMuwYMu0YM2wJv6fmXjt1BU6g6lNz8Zajvz0KcxZTmZ8/yYcFfrMUDlWYgM+uu//B5ayYjwXnq+1nKTor9tN1NtD8dprtJYyJhRFobetDk/BTCSBuyTdUBQFX7ibYvc8raXoCuMxZgqRYcunx39szO8TLeGLt6voRIVVQZYtZBXNprtpL9WLrz69PEOSdoeJtn44CytwVsyga+srZC85E9kygtVAZJtTYcES2hUEVhw1ttGsay4jWNtA5x8eoOg/vog565T0x0nYRk/sI9AhshSJbE0AcVmQYfPUPmw2qr5xPU1/eJH2R9/Cd6CFGV+7CmvOyLGxoiyeURUnn0loC52Em7KaxaLY6LcNsxwb/f0qzr24IKZOlAnRpKKTUfuQQM4w48pw4pqkMNaE/fL010U2RRFqMmiKrI6ibKJqMmyKrJCpaCMsODfDKvoYLuvp+7YLzj1V2XLDcZrv3kDH49tw1pRS/fVrsWRnnMjGqaYNkZ1dmOFYVQbNJG37w2UXjcfp+tNfifv9FHz+k0gmy+j3khTYSkVZwtVck4a7ZypKnM43X8Sak4+7au7o99VJsJ6qesYZxNfbRDjQR3bRKZPrKbGepuKZceSdQhEv0XgIly0NypUIvdfpYy01vCBTiAxbAcGIl0gsqLWUcZNbupBI0Et/V6PWUsZF/jkXE/P107Njk9ZSkka228j7zK0ooTCdv78fJfoB8BkNIplkyj5zERV3XEWgoZW9n78b7y59npMGBgbpQ7jDS8N/PEDH49vIu3IFM77/USzZ+ku0Nl68z79CcG8d2ddegbW8RGs5SdFfv4dQRwt5Z6xHEpTmSTe6mnaDJJNTPFdrKWNmINABQKZNP/UO0wF9naEGo5JpLwBgINiusZLxk108B0k203V8l9ZSxoWzfBquqll0bXmZWEi/A+8hrCVF5NzyYcKHGul55Emt5Uw62WvmM/OnH8fsslH3H3+l+aHNKMMVxTIwMDAQ0LfjMHs+fy+BI+1UfvVqym5fj2zRl50uGQL7D9D35As4Vywm47wztJaTFIoSp2Pj81iz8/HM1VcpBoDu5j148qZhsbm0ljJmhp5xM4wB35gwBnxTiKEBnzfYprGS8WOy2MkuqqHr+LsocYE1LE3JP/cSYgEfXVte1lpKSnAtW0TmBecy8PpmvC+/obWcScdemc/cX95G9tmzabrnNfbfcR/+w/qdVDEwMJhcYsEwR/73Req+9jAWj4NZP/sY2efob2UlGcJNrXT+/n4sxYXk3Hxd2pZCUUvf3h2EOlrIP+tC3cXA+fpaCPS3k1M6X2sp46I/2IbNnIHV5NBaiq4wYvi0REWQkyTw/5681W7JxGbOwBtoee/9KvoQ7iFa0FDhURbHAb538c+vWEZ38x56W+veZzeYjLIMwn0Ex0KKg7OoEs+85XS/9SpZ81Ziy3n/LFQqfPiiGDzRdjXxdSfHPWRfdRmxzh56//Yk5sxMXMuXiCuTpCBGRBS/JIzNQBzLIirbAGCyO6j692vwrNrH8bteZO8X7qHw2tUU33AWss0iLNsgq4g1jEg6eWhIsrRDXMXxlgUnsEWwPaoi3lHUhzyWgJhxkmx8XqKN5OLvQBwzJiqHEElBSQV1ZRmSK5kgir9T00dEFMN3ynbvjkM0/vp5wq29FFy1nNLb1hAz20cN/VEVmyyM0ROUbVBx7Uy29M7Q9Tna00vHr/+IbLVS8E+fwGSxnbhOCO9lqShjlOL4/ng4RPurT2EvrsA9Z0lim7APNUHtE7x9cJ+OxreRJJm80sUpKfUw2Xj9rbhthUbphTFirPBNMdyOYvpOGvDpkeziOZhtLtqPbNNayrgpOO9yJJOZtg2PokyBi5Iky+R97EZsM6fR+eeHCOw/oLWkSUeSJHLWzGPu/91Oztr5tD28if2f/wP97x7RWpqBgUGaEen1cfjHT1D/jYeQTDKzfngz5Z9Zj2wfoa7pFCXuD9D+mz8SDwYp+NwnMedkay0paTq3vEzU56Xo/GGSy6U5SjxGx9EdZBXV6NLOGY2F8YU6cduLtJaiO/R1phoI8diL8YW7dJ24RZZN5JcvpadlP+Fgv9ZyxoUlw03+WRcxcKiW/gP6jEc8FclioeD2j2EpzKfj938meOCQ1pI0wex2UvWvlzPjv28EBeq/9hcO/PfjBFt6tZZmYGCgMfFwlLZ/bGXv7XfR88Z+im86i7n/+0kyF1RoLW3SiQeCtP/2T0TaOsj/9G1Yy/SdpAUg1NVO17ZX8cxdhrO0Sms5Y6a3vZ5IqJ+CimVaSxkX/YFWAGPANw4MS+dEMhnpWE9ZPcpyJgp/9vqPk58xXd2Sd5I6U1WW4WSKqlfT0vAGrQc3UzH3wnG1MebtiC20ksiCddIo6MhfAAAgAElEQVTbc5acQ9++HbS88DecJdWYM9zqdKjJCSIs7TD6ZjU2mOEsm7LdQcHnPk37r39Hx//8kbzP3opj3uzhG4ipsHTKyaUOV1TEgYjsUaKyDTBM6QbAtXAas371adof2UTHY1vp2VRP/uXLKP7ImZg9TmGbekVkEYwLrZLik88i+F7V2EJFiHSYJsHSqSb9vgihpVNNiv8kyy6kxI6ZitIOsdHbUFOWQdTGSLZQJa7Q9epejt/zOpEOL5lLp1HyyQuwV+QTB04OSRd97yK7ppp9hG2kwtI5yk8k7vPT/qs/Ej7WRN7HbsYxa+aw9y3h5SDJe13K2lASJSWan3kwMfl53hXve18qQkrE1tPkyx20HnwTiy2DnKI5w7c3CeUj1D2XDv9yr+84kFjcSLqPKeC+GgvGCt8UI8tRioRMj2/s9fjSCUdmAdlFc2g9vIl4LKK1nHEhmUyUXnYz8UiI5ucfnhLWTgCzx03hv/wT5qJ8On5zD/539mgtSTNkm4Wij57HvD98htx1C2h/Yju7P/Fbmv78GtH+gNbyDAwMJoG+HYfZ94W7OfzjpzC7nUz7r5uY9u0bsVd8MLMIxvoHaPvFXYSbmsn/1K24lizUWlJK6Nr2KoGWRorXfQjL0ASujgj0d9DTVktR9WpkWZ/rPb3+4zitOdjM+rOjao0x4JtimGQLbkfRuAqwpxvFM84hGvLRcewdraWMG1tuIQXnXs7AoX30vrtZazkpw5SZQeGXbsdaUUrn7++n//UtWkvSFGtuJpVfvJS5v/kUnmXTaP3rJvZ84rc03/c6ke4BreUZGBikGCWu0Lu1gdqvPMCBrz9E1Bdi2r9fwcyffYLMRdVay9OMaHcv7T/7HdHWdgpu/zjOBfO0lpQSgh0tdLz5LJkzF+Ces1RrOeOirX4TkmSiqHq11lLGhaIo9PqOk+Us01qKLtHnEN9gVHKclRzp2ko0FsKk46/Ykz8Dl6eU43Uvk1+xFNBnsHvO0rMZOLiP1g2PYssvxl41NR4GZJeTgi9+ms7f30/PX/5B+MhRsm+4Btmqz+8pFTgq8pj2tWvwH26n5YE3aPnrm7Q+spnc82oounoZGbMENhQDA4O0JuoL0vnCbtqffJtQSy+W3AwqPnsB+ZcsRraaCUf1XW4gGYK1DXT+8QGUSJT8z38Sx7QZWktKCbFggOOP3Y1sc1K8Xp8lJcLBftoPbSGvbBFWu/5WJwF8oU4iMT9ZLmPANx70Oxr4oDAOG2BexjQOd22my3eEAod4di1pv3VKPN+n7yABFXMvZP/mu2k//BYFNWeN3oYo/k5FzEKyKaCH2y4hU3bZLRz+yy84/tg9VH3sS1jcI2cqU5VmWpgOW1DOQ82xEJVBlBN1Ews++wn6nnmRvmdfItzYRP6nbsVSkIeq8CRRjJ4gDlBVLFdMcF6oaEMaYzyXtaKIyv/4MEXN3XQ+tZ3ul96l8+V9uOaUUnDlcrLOnK1JwWVRPJdZRSyWebR88oBZHv3EMQtKWABEBRcMUckENXGCJp1k1xPGe01CDJ+oDVF8HkBUEcQBqmhDVFZBFKMnis8bTUfgWBftT7xN50u7iQcjuOaUUXTLGrLOnI1kNhEDYjGVnyMmKO0g2A7i2GRh/LOKGGtxGaJEG4qi4H3xVXoffxZLYT75t9+GpagAKZJ8nKDwnqzicyRTxkiJx2l+7D4i3h6qrv8cFkfmuGIR1d3XBTsk8azWsv8V4vEY5bPXjdqOqrJQwmfCJLePQNfAYQByM6ZNTvzdZOThmESMAd8UJMtZilm20TFwkII8fdspsgtrcOdWcazuJXJnrMBktmotaVyYHS4qrv4Uh/7yS479/U9U3fx5ZKtNa1kpQZJlsi6/CFtVBZ33PkjLj35J3i0fwbFM3+deKrCV5FB6+4WU3XYOnS/souPJ7Rz+4eOYPU5y1y8k78KF2MtytZZpYGAwDPFIjL63D9H+5A68Ow4jmU1knTeX/CuW45xhrNYDxAMBOv/8MIF39+Bctojcmz+MbJ8a9zaAjjeexXeoluILrsNZqk93TjjgpfXgJvIrl+LI0G9cadfAIZzWbBzWLAiFtZajO4wB3xRElkzkuqrpGGhAUeK6qxNzMpIkUTn3Ena/8Vua92+gfMHFWksaN7bcQsou+yhHH/0jx/9xN2XXfgLZos8B7HA45s+h+M4v0fGH++i4616cq5eSfd3lmDIztJamOSanjcKrV1BwxTK8Ow7T+fxO2v6xlba/bcFRXUD22TXknzcTR7kx+DMw0JJ4OIp3x2G6N9bRu7We2EAIS24GpbeeQ/4liyEzU2uJaYN/1166//ooMW8/2dddSebas3VpdxyJ7rc30rX5ZbIWryZn0Zlayxk3x3Y/C/E4pXPXaS1l3MTiEXp8jZRkTY0EQFrwwR3wDZdzftI1pGC5eIQl56LMGtr6a+nuP0JupmBWKslUv8LlfTVtjOIC82RXk1+2lOb9G8gtW4jLM/zMqqhkQkosFUnaNtxVcym55CM0P/sQxx75AxUf+uRpK32p0CncLrJrgjCl03CWIHNWLkVf/Dx9L7xE30uvENxdS9a1l+NavWz4BwFBvIsimKwQlQAAQNBGTM2xEKCY1D7kyLiWzsS1dCYl3f30btxP78b9NN/3Os33vY69Mp/sc2rIPmMW9qr89x0zka1OjXXPJLBTKor4YMQFpTREqfNFllAQWzLFlk7xNUnNPulAst+7KkunyBYqsHymwo6pprSDqI2IaPsIls54MELf24fo2VhL31sNxANhTC477tWzyTqrhswl05DMJhQgmgI7ZjQ6urU0rqINkSVTiQraUGXpHH6fWF8/3Q89RmDHbiwlReR/8lZsVRWn3R/V3GdE+wi3T9D9snvHG7S99CgZM+ZRvO7aCX82AJIupzTc9r72BjqObKdk9loczjykUArslsmWoFDznZ2io6u/gVg8QqF7tqpnzqlmx0wFH9wB3xQnP2M6JtlKa+8e8YBPB0ybdwU9HXUc3PYIC87/ZyR58uOfUkXWgpVIsommZx6k8ZG7qLjuU5hsDq1lpQzJYibrsotxrFxI9wN/p/vPD+PbvJ3sj1yNtdQoljqEJSeT/CtXkn/lSiJdXvo376dnY20i2cv9b2At9OBZNYOsVTPJmF+ByTZ1Zs4NDLQm2uenb/tBerc24N12kHgogtntIOvcuXjOrCFjQZUmcbbpjBKP49u0jZ5/PIMSjpB1+cW4L1iDZJpax6lr++u0bXiMzBnzKbvq1sTnS4M1grESj0U4tOPv2Fw5lM1dr7WcpGjtq8VicpLtqtRaim4xBnxTFJNsoTBjFm29tdSUXoxJ1nfmRIvNRfWSa6jfcj9NtRt0f/HyzFuGZDZz/Mn7aPzrbym7+mNYPTlay0op1pIiCu/4J3xvvkXv48/R+r1f4DpzOe71a7AU5GktL62w5LopuGoFBVetINI9QO9bDfRtrafzuXfpeOJtZKcN94JyMheUkbmgHOf0QmTz1HrIMjCYSKLeAL27WxjYe4yBPcfw1bdAXMGc7SL3gvmJlbwFFcSMx6LTUBSFwO79eJ9+mXDjMWwzp5Hz0Wux5hRoLS2lKEqcjjdfoHPTC2TOXEDZlbcgmfR7Phzb9yLBgU7mnPNpTCb9PgPG4hE6+usp9sxF1nGIktbo90zWGjXLxamwjSaR7ajMs5Bm7x6au3ZRnrtsQvpIbB99M4izRqpJ6ZhXspCe8iUc2/sizsxickvnn9KHSIOwCxW2DIH9VU3GsMHndM/MRchXWzn+9H0cuuenlF5yI+4Z89VZVEQ2F4HtTpJVfGkCu6Uwc6UkIWEi84wzcC5cSN8zL9K/aSu+N7fhXLIIz/q1WKoFiQ+io29WVJQSFR5OFeee+CcisFep6CM2ZHXMzMK9bjnudcuJhyIMvHuY/u31+PccoXdrA5Ao+O6YWYyrphRXTSnO2SXYc8WFaC2m0U8ckWUOxLZQkVXSrOIEF51bhqUzddtBfH5OhqVTlI1UVRuD2xVFIdTcg6+uGd/+YwzsPUawsRMAyWzCMauEguvPxr1iJo7pxSeul1FF/FlSkWFTtE9cZMdERZbNZLcDhOL439lF3wsbiDS3YsrNJvejH8G1cimSLCOJ7hGpyKApaEOVbVTFs0E04KPp6QcYOFJL1rwVlFx4PZL03sqe2FoqyhKeGp1qt3c17aK57hUKq1aRnT/rvc8hCuERZLVWs4+wD1W20ff2ae7ZTSwepsSz4L3XUxASpUxGps80whjwTWGyHGW4HcU0dm6lLGep7oOpJUli+rIPExzopH7bg9hd/4wrq0RrWUmROW0O02+5g2NP3suxx/5E7rLzyF93+ZSzyJhcLnI+fDWei87H+8ob9G/cjH/HTuzza3BfvBb7DP3bjicC2WbBvXIW7pWzMJtiRHoG8O1NPMD665rpeGwr7dHEndxa6MFVU0pGTQmuOaU4qguQLcYl3mDqE+0P4Ktrob+2BV9t0/9v78yD5Lju+/553XPuzszeu9hdHAQJAiBBErwskiZFHTRdFHU5KSeRnchREpWSKqvilP+Ik/I/yX9JpSqVuFJOosh2KYkqNEu2Y0ZmZIkUJRFUJPECARLERZBYYLHYe3dmZ3Znprtf/uie+3gNYsndBX+frd73+r1fv/ebmZ7p/va7yJ+dwc2tA2AlY6Ru283Ao0dI3raXnoOTWDH5XnRDlx3yP3+V7Pd+hLOwSHTXGEO/9SV677v7hrs2AazPTHHpmW/hFLKMP/7rDNz10I6+X8qvznDulT8lNbiX/Ud/bavduS601kwtvUI6MSYLrl8naicq3Iwa1A+oLrMNhfiimn60VKz77IkqEuKCYViAWsVDTF1suGHThjquFM5y8tJfcPe+v81o5mD7MuKGAeTx7j54MfMFwIsZnooa8v0y/M+1tJ7lxAt/ACju+tTXiSX7gjK6f+5uNMQTZMOkmZ6hV4QXog6vTR2e4zD742dYev0YyYl9THz+N4kNdp4+2TOcfmY/zd97w7JZxjJ0pHO+V1gn9+JPyf7oRby1PPFbbiL1yYdI3nl745TetsHPLnVUUBFDi5SpDsAytIzZhjJsO8S6cIaWs0gbH7ximfULs+TfnqZwdpr829OUF3MAqIhFYt8IvQd2kbx5lMTkEKl9/cSG0x1bgO0QrV7SwvfhIi18NcpFTXF2heL0MhuXFylcmGPtzBWK08u+gYLE3hF6D03Qe2iCnkOTJPcOo2y/btOEK2Fey45p4TOV0aZ1zl3Nkf/Fa+SeP4a7skpsz276nvg0yTuPoKzW8kwtfFaIdfiUoReHqQyrbKwCq0Md2vNYfu0l5n74DJHeDHu+8BWSu/a0L8OwCoBVNlwDQqwiYHotdslUh6ZczHPiR3+A5zoc/dQ/rd4f1WwMv9/FENcqg41V7n69tDYMHzqgSr7NUv4iL7/3be6Y+CyTA0drBqXub5Yqmk8MXTJ8KIY6wpShDWVoJ8QJbNBpz+nvvKq1vt9UjAi+Tvk3iOBzoxbHzvwhthXjoVu/iqVaX/dOE3wAayvTvPmjPyQS7+H2h79KT2ZsRwu+CqtnjnPl+0/jlUsM3Pswww8/TqSndVmDnS74Kri6SP6ll8k+/yLuwhIqGiFxx2F67r2L5J23YfUaPpCPuOBrPN73obSQJX/6CoVzV8mfn6Fw/ipubqNqZ8UjJCYGSOweJDHeT3y8vxr2jKaqN8fv108RfJvLR03weWWX0lyWjasrbFxZYWN6iY3pZTYuL7FxdbVhOEV0KEXvwXF6D02QOjxB4pYJ7J7O11URfPX5/vHuao7C6ycpvHqC4vl3QWvit+4n85nHSN56sGtL104WfPmL55h9/hmKs9Ok9h9m8sm/SyTZuVv8ThB85ZUl3j723ygWljny6D8hPdg6wclOEnxaa37x3v+gUFzi0YO/3TgXhQi+KiL4DBgFn0HQmQQhYBZ80RCDaA1lmAQfsSiz2TMcn/oOh3Y9xk3DD7aYeIbuLUZBGGImM6Pgi1+b4ANYW7nMqZ/+CZ5X5vADv0V64tbudRgEIZgFm0lIhRGVpjJKxSxzL32PlZM/x4rGGPqlTzJ0/ycblm8wlaFNgjDE8wqjoLtOQQg1Uag9j+KF9ygcP0Hh9ZO42awv/o4cpue+u0jecVv7xXxDiDWTjQojGg2CTRnqsAwiCa5fNHaqQ2uNs7xGaXoR58oCG9OLFKcXKV5Zpjy3gnZqx6mIRWy0n/iufmLj/cRG+/xtJENstI/oQArTBLnXKwjB3NK4GWLNOAbVQBgfwoit68Uo1kIty2AYg2o4PszYz+r4OtejvJynNL9KaXaV4tUVSldX2Li6Qunqst9CXSfqVCxCfHKQ+MQQsYkhYhODxCf9eCTdOLux6XVsihgz5XdYyqCe615SAYxjrDstqQDgZnOsv/om+ddOUDx/AbQmumuUnnuO0nPvUWLjYwAok9gyjuHr7iKYRY5J8JkEY3MdG/NXmPvJX7F24W0i6X7GPvF5+m+529iF0yjGDILPJBhDldElv7Ayw+mffBPXLXP7g18hM9R+mIRlaiUMIfiskuHhY7F7fqX1zmRzZfUtTk4/w5HxJ9ld37pHCEEXRqyVDTbForkMk6Ard3+tIvgMiOCrEUbwaa15fepplvJTPHLrPyYRzTSY7FTBB7BRWObUT/+YjbUFbv7Y32JkX+fJaXaK4KvkFxdnmXvxWXLnTmL3pBh56HEGjj6EsiM3nOBrSKuIv9dPkD9+Ai+bQ0WjJG4/SPLoEZJ3HK4t5i6C75rqiDTZaNejvJijOLPs32zPLgfxFYozK7j5jQZ7FbGIDmeIjWZ8ETicITacJjqUJjqYIjqUIt6f6DqdvQi+zWU7CT6v5ODk1ikv5Skt5ijNZynN+2FxPkt5LktpaQ3cxvMwMtBLbNcA8bF+YmP9xHZVwgGiQ7UuyCZhKYKv3pHGfGdllfUTpyi8epLi2XdAayJjI/TeWxF5rUvm3EiCr5xbYf6l77Hy5stYsTjDD/4Kg/c8ghWNhWsl3MaCLzt/gTPH/gTbjnH7L3+V3kzn5Y92iuBzNwocO/9fiUdSPLj/Ky2CXARfDRF8Bj5Kgg+gUFrmpXPfoL9nN/ft+ztYVu317WTBB+CU1nn7598iu3CB4X33sufOzxDv6W+tY4cJvgqFKxeZ+8l3KVx6BzvZS+bwPWSO3kdifG/Hp5I7WfA1lGG5FM+/S+H1k6y/8Rbu8ioAkZEhYvv3Er95D7H9e4ntHkd16v4sgq9Ks+BrqaNp9la3UKQ0t+rfuLcJy0trbWcstpIxIukEkXSSSDqB3RvH7o0TSSWIpOJEUnHs3kQQxrF7YtjJGHaPH48afnNE8NXYTMHnlV3c9RJuoYSbL+LkN4KwhJvfwMkXcdeKftraBk6ubsuu47W5CVMRi9hwhmjwgCA6UvewYFcf8dF+rEQUN4RQEsFXRxex5ZXKlN+7QvG9KUrvTlF89xLukj/OMTI2TM99R+k9epToxK7uXTZ3uODTrsPa+VNk33iF3IVTKKUYuOfjjDz4GHZd982dKvic8gbTp57j6rljxHsHOfLQV0n0DBj82P6CT2vNqYvPML1yggdu+nLbyVpE8NUQwWfgegUfIcSa2gzBZ7DRcUMZdTfB0ysnefPKdxlNH+To7r9RXc9EmwSfIf9DG8MX7WzjeQ4Xzz/HlXM/RimLiVs/weShT2JHat0AN0OMmcowCa0wZbTzQWtNfuosS2/+jNyFt9CuQ2xghMzhu8kcOkp8eLzhwr0Zgs9chmkMn7kOz3Dq1AtCrTWly9NsnDlLcWqK4sUp3NWsnxmxiU1OENs9SWxPsE3sQkWjaFMrYJhlfQzjAI2iMsQyGGbRaKojxIXaUIYpv9lGux7Oah5nMYuzlMNZzuHmCrhr67i5YMtv4OU3cINNb5gvcCpiYSXjWIEItBIxrHgUK1G3xWO1eCyKFYug4hGsaBDGoqhoBKuSFrVREbsaWjHLX8vQtrbtjHxaa3A9PMdFOx7acf2t5OCVHHTZxS26aMcJ0lx02cErlvE2yn5YLOMVHbyNUmN8vYS3XsRdr8RLaMd8h67iUV+YpxLY6SR2KomV6vH3U0nsdJLIQJrIQJroSB92Xy/KUkYhFGbpElMZJjEWqg6TGNuM5Q5MNiFEY2X8nHYcyjOzlC5PU5y6TOm9KUrTMxAs82IPDhDfu4f4vr0kDx8iOu6LvDAtY8YxeobTZVPG8Bnym4/X2qNw+V2yp18ne/o47kaBSE+avsP3MXT0kbbr3YYRfGYx1v140xg/v45wZWjtMT/1KhfffJZyMc/ovvvZd+fnSJAw1mEca2gQawDKNA7QIOiUoY7zsz/mwtyL3DL0yxwY/nj7MgxCKtz4O4NN2azSRfB9wIjgq3Etgg/g4uLLnJ59jom+O7lj4rMopW4IwefXodjILzH15v9l4fJxook0e488wei++1HK2tGCr+H44jorF95g9e3XKFzyu+bEhsbIHDpK36G7iQ/vuiEFXzvKuWX/KfbFKUpT05QuTeOt+9OxY1lEJ3YR21sRgRNEJ8dbxwKK4AudH8oPQ8uXcp2q+HPXNvAKRbz1Eu56EBaK6PViTYwUijXxslEK4qVqWqg1Ubs65K/NpmzLF3+2hbKUPythZd+2wFK+MFQKFKAa9yuiUYN/ga66VYtrT4PnBaFGex7a9apxPO0LOzcQdo75MzViKV8sB5uKR7ETMaxk3ZaIV+N2ILStXr8V1u5JYPXGsXoT2D1xVKT1S+uFGMMngu8abDq8Tq9Upjw9Q2lqmvJF//eudOUquP4NtEokiO/bTWzfXhJ79xHbt4dIJtO2rBtJ8GmtWZ+Z8kXemTdw1lZRkSjpA3fQf8f9pCcOoroMPt5Jgi+3NMW7b/xv1pYvkR7cx/6jXyQ14M8sapqQJYwfWy34Li+9xqnpZ5nsu4sjY090fBgngq+GCD4DH1XBB3B+/hjvzL/IRN+dHNr1GNFkunsdO0jwVcgtXuS9E/+H3NJFejK7GL3pl+jbc4REethQR3cftoPgq7dx8jmyZ0+QPXOcwqULgCY+NEbPvgPExyZIjEwQH9nVMOEL3DiCrzlfa42zuOTfCF2apnTpsi8C1/JVm8jIENFdo9j9ff42kMHuD7a+DFZvT+tFRgRfeD8+hBk0K3VordFlF69YrrV6lRy8Urku7ofacf2WsrIvpnBcvLKfrssu2tO++HJ9EVYVYJV916tdeD3tazhPB+JOB4v4qsA/Gq9D9SLR8jcsX1hiW/4i1pbyRWXErgrQaqtkJW77rZIqHsWK2qhoxN9itVZMv6Wz0goaBTtibMG83jF8IvjqeJ+CT2uNXt/AXc3iLudwVrK4K1l/f2UV5+o85dn5asud1dPjP8yq69UQGR6qLp9gXLB8Bws+r1RkY26Gjdlpilcvk794jvLqEsq2Se2/jczhe0jfcnv1umcWY0Y3t1TwuU6RlZkzLF08zuL0CaKJDDfd8STDexrXV97Jgs/TLpcWX+HMzHMMp2/hnvFaL7S2ZYjgqyKCz4Bx8dDrFYSEGOcXqoxrF3T16Db5WmvOLx7jwtLPiFpxbhl7lD2D97ZdssEvwzCGL4TgM5exCYKvSUhprVmYOcGlcy+Qz80AkEyPMjB2iP7RQ2SG92Pbje+vUYxFTGItxA3FZoyva+NHOZ9l9cIJsu+cpDA/hVeq9T+PZgZJDI+TGPK32Ng48YGRrt8Do+AzirXu+RBiHKBJ8IVYA9hTGnd1heL0NKWZGUozVyjPz+NkV/EKhdYDbBs7lcLOpImkM9iZNFYmjZ1JY6cz2OkUdiqFlUphJRN+K7mp22gIP7VJbJlOrRBizWgTorXTKF5Ngi7E/bBxfJ2hjE3poflhLNuwCWP8NuUSbihDm7oYhlr6wWAQohuj0cZ0vxvCT5NQMtXRfLxXLuOt5XFzOdxszg9Xc7jZrB+vS283xbuVSGBn+ogODRGbnCQ+OUl8cjeRTH/38XeG+3aTmIMQrWumOsKM4es2Bs9zKS0sUJy/wsbiDBsL/lbOLlVt7HgPPbtuou/AUfpuvgM7nmwpxyRyTK/TL8OQ7xiEVAjBV1/G+to8y7NnWL56mtWFC2jPIRLtYXzvA+w+8CkikdZZq60wgs/gp2l8XhgbZViWoXkM3/zaO5y5+jz50iLDqZu5e/ffxDY9sDCN4TONzyPEGD6TqATzsgyOQfC5Ib4kIvhE8AHvS/BVyBXnOT3/Q5YKF0lG+zkw9gnG+460XER2quCrZ6OwxMLC2yzNnCK7+C7ac7GsCJnhm+kfPUj/2EF60mNGP7az4GvItz3K2WX/Alm5UC7OUFyeB+1fFJRlExscIT44RnxwlNjgaBAfwYrGbxjBp7t8pF65jJNfxc1mcVZXazdkuWzjDdraWvsf3UAcWuleXySmU1ipXuze3obQSvdgp3r91sMOvy0i+OpMRPCFL0IEX12+yYnrE3xaa3ShiJsv4OXzvpDL5/HyBdzcGt7aGm4274dra7i5NXSHiR+sZDJ4iBQ8SMqkiWQy2H19RFJ9QTzT0juj6qdReBryt5Hg81yH0vICpaVZiktzFBdnq5t2AyeURXxghPjQuP/wcnicxMgk8WR34Qs7Q/B5bpnc1XdYnj3N8tXTbOQXAUimRugfO8TQ+BH60/u6d03dYYJvrbjAmdnnWVi7QE9sgENjjzGSOuB/ngaxJYKvhgg+AyL4gnytWShNcW72BXIbc6Tio9w0/ADxSC+2HSdiRbFiSWwrhm1Fsa0IqqmZfScIvvp81ymRXbjA8txZVubOsp6bAyCWyNC36yCZ0VuwowmUFcGyIijLxrJs/4c2FkUF8crm50VQloUO0731QxB8ncSW5zgUl2dZX7lKcX6GjcWrlJbmKK0uNvyoRNP9xIZGiQ+NEhsYIdKbCbqgWaD8UEcs/z2xFCpIw7KCbms2RFXVFsvyz5vA1t9X6EOt+TcAAAtySURBVEgtXg0bXucHK/j8MkLMtqg8vHweZzWLl8/j5vwbOi8I3XzOT8ut4a3lu14ErGQSqzeJ1dOD1RtsPf7EF1ZP0t+PxYJugI1dAWtpqvo7Vx1HZkMwmKw2pqzyfgbdvLBrY82wVM2eSh316dRCpYLdwKZdl8VKaGlU3XG1/Eq9jeXVxJuqBr7gq8urq0tV35O64+pPG6XaXwKayzCxTQVf9ZqtdX1QbxCE1YTGoP6AahfVwEA3pQf2VcFXHZuoW4/XoOvravbT09V0jW4sS9fK8PPry/Zq5XjK979ybPDwyu9iq8HVdXXrWrrWQfdbat1vK3aVLrmeh1dYR6+t4xXWfVFXWMcrFPDy/uau5avj5VqwLP+hTsrvAeA/CKrEe/2eAZkMdjpNpDfd9R7C2MrIByf4tOdV3w+r7PnvleehtRe8h353Z+15KMers3eDsahu9XgcL7B3a12kPRevVKS0NEdxYZbS4hyllcXaZwlE0wPEh0aJD4+TGBwnMTxBfHAUK9J6PxROrH3wgk+V3eB9cfxzyXOC1+2iPQdVcvBcP17J8zyHUmGVldmzZOfO47llLCtC38gBvyfS2GGSqaGaD4YZNreb4PO0i+uWcb1SsJVxvBJuscDi2rtcWn4N24pxy8gj7B28r7GXmQi+OqNtIviUUv8O+DxQAt4B/oHWeqWN3RPAf8S/Lfmm1vrfBOn7gaeAIeBV4Mta667voAi+Oq5T8AHVtfqurp7i3NyPWS8tdzW3VATbimJZUV8E2rEg7gsky4rU2QT7kZgvjFTFxsaqixOLYqk6caXqQtUktpTt9+1WjQIhrOBrplhYDsTfOVbmz+GW1s3vWSdUZTyOXfW1tm/5+7bdsF8RQ5U0f9bAipiqxCuCqWZDQ3oQqmCyiUhlPxgbpBoFly/Wau+h9jyc9RzlXBZnbYVyLtiyy+H6mG8WgUipCEA/7vtd/bzrxWFVYFaETp1N5b2oE0qV98gvo27SjYoNrWlKKXSlPlXzsWprBel1ZaC1P3Ni/VZ2wCnjlcrguuhyGV12GkJhm2O6tpguPZ3EmbC9sCxUNBqMkWwKI5Uw2KJR/36iMpmNWyd0PV946jphWROfQXrDONBgnKiHL4B067E6EF0NZVRsveZ4RazVjtENx3q+oK76sgmTBF3DexxN9xNNDxBN9xNJ9xFN9RNJpbHsSM2fqqisvY6qyNQ10Vl5LVrXi063ZlM5zvPQ2q0eoz3XH7freRDY+8LNreb7Nm5dekXI1fK1fv/vXbx3iIHxwwyOHiYzfHPLUJPqWxZS8Ongvam9Thcv8JtyIDjr0mqhgy6V8AJR6mmnLu4G8TJeuYTnlXE9B0+Xcd0ynnZwvTKeV8ZxfXGndTcxo9gzcA8HRj5OLNLTmi2Cr85o+wi+XwV+qLV2lFL/1vdN/16TjQ2cBR4HLgMvA7+htT6llHoa+HOt9VNKqf8CvKG1/s/d6jQKPuF942mPPFlcnGBzcSjj4uIF+241bEzz8PBwg80L8mv7HwQKhcIK/ltNcdWQ3xpvTQPwcI2TFOjao/A2/+tD3Sa1Nb32X7ekNB9Ts/oQL85bQuUT8eOV/5rm++oQD3io3WvXx6+N9ke1pprs5CZfEHYuqu5/+7zuKZ1TN5fWX5zab19z3o35m6SCrgD1f7T875xOnQVNFs02jXXW9pr/t/PRxm64ruuGP6/lf22v3b5Xd3+yefh3SjYWNnaHsBK3idRtNpEgbgUxmygJksRV63hL4doJK/hCNP90R2v9/brdnwG/3sbsY8B5rfUFAKXUU8AXlVJvA58GfjOw+xbwr4Cugk/44LCURZrWRcuvF61rP0YVAVj7c4N0r87Ga0rTgZ2uy2+O1/8ENqa1+yGtldf8V7Ojg0WjOBM2n+aLY+W2RNXtNeZ1OrLZotVaN+23WnW7Qbv2W7x2r6FSa5jzSc45QXj/hHlAFPZb/X6pPLba3O9y+AeVzfab78t2oPHh6odLo5Bs/SN4MN2abzXt2YAi2pBXC62m42oPvq1qSi3VDuJWNaU1brcNt+tapUJ4rlvwNfEPgT9tkz4JXKrbvww8gN+Nc0Vr7dSlT26yT8I2QCn/KZbfozfEugM7iEoreSeRWMmjab9zSx40isn26Z3y/bAxvV1Ou7CzXWsaLXvtrbsf096+U8mNR7X0j+t4OxPmqXbn24L2tYeLte6Fqa/bUWE86cS13Pq8v9ukMK/cbHFtfm6e1Y1D95uzTrntWieur9bwZbQTWddj1/qIpX2eydJcb7v2m85ppjrb19Oc2rrfvebO+631te9ZQYdjavF2qd3sOts3W7Q7trbXnNvu6E4tdLX8bq13zeKtPr21BRERR8K2JJTgU0o9B+xqk/X7Wuu/DGx+H3CAb2+eew0+fA34WrBbfE5/580Poh5BuE6GgYWtdkIQOiDnp7BdkXNT2M6EPz8/as+XhK3mUBijUIJPa/0r3fKVUl8BPgc8ptsPCpwG9tTt7w7SFoF+pVQkaOWrpLfz4RvAN4L6XgnTX1UQPmzk3BS2M3J+CtsVOTeF7Yycn8J2RSn1Shi7EKsuGSt6AvjnwBe01m1WMQb8SVpuVUrtV0rFgC8BzwTi8AVq4/7+PvCX1+uTIAiCIAiCIAiCsAmCD/hPQBr4gVLqeDDTJkqpCaXUswBB693Xgb8G3gae1lq/FRz/e8DvKqXO44/p+6NN8EkQBEEQBEEQBOEjz2bM0nmgQ/oV4Mm6/WeBZ9vYXcCfxfNa+MY12gvCh4Wcm8J2Rs5PYbsi56awnZHzU9iuhDo3r3sdPkEQBEEQBEEQBGF7shldOgVBEARBEARBEIRtyI4SfEqpJ5RSZ5RS55VS/2Kr/RGECkqpP1ZKzSmlZLkQYVuhlNqjlHpBKXVKKfWWUup3ttonQaiglEoopX6hlHojOD//9Vb7JAj1KKVspdTrSqnvbrUvglCPUuo9pdTJYA6VrrN17pgunUopGzgLPI6/QPvLwG9orU9tqWOCACilHgXWgP+utb5jq/0RhApKqXFgXGv9mlIqDbwK/Jr8dgrbAeWvUt2rtV5TSkWBY8DvaK1/tsWuCQIASqnfBe4HMlrrz221P4JQQSn1HnC/1tq4RuROauH7GHBea31Ba10CngK+uMU+CQIAWuufAEtb7YcgNKO1ntFavxbEc/gzJU9urVeC4KN91oLdaLDtjCfRwg2PUmo38Fngm1vtiyBcDztJ8E0Cl+r2LyM3LYIgCKFRSt0E3AP8fGs9EYQaQZe548Ac8AOttZyfwnbhP+CvNe1ttSOC0AYNfF8p9apS6mvdDHeS4BMEQRDeJ0qpFPBnwD/TWme32h9BqKC1drXWdwO7gY8ppaRbvLDlKKU+B8xprV/dal8EoQOPaK3vBT4D/HYwvKgtO0nwTQN76vZ3B2mCIAhCF4KxUX8GfFtr/edb7Y8gtENrvQK8ADyx1b4IAvAw8IVgnNRTwKeVUv9za10ShBpa6+kgnAP+gi7rmu8kwfcycKtSar9SKgZ8CXhmi30SBEHY1gSTYvwR8LbW+t9vtT+CUI9SakQp1R/Ek/gTs53eWq8EAbTW/1JrvVtrfRP+PecPtdZ/b4vdEgQAlFK9wURsKKV6gV8FOs4Uv2MEn9baAb4O/DX+pANPa63f2lqvBMFHKfW/gP8HHFJKXVZK/aOt9kkQAh4Gvoz/dPp4sD251U4JQsA48IJS6gT+g90faK1l+ntBEITujAHHlFJvAL8A/kpr/b1OxjtmWQZBEARBEARBEATh2tgxLXyCIAiCIAiCIAjCtSGCTxAEQRAEQRAE4QZFBJ8gCIIgCIIgCMINigg+QRAEQRAEQRCEGxQRfIIgCIIgCIIgCDcoIvgEQRAEQRAEQRBuUETwCYIgCIIgCIIg3KCI4BMEQRAEQRAEQbhB+f9z2bmFBV1QWgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1080x720 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig, ax = plt.subplots(figsize=(15,10))\n",
-    "extent = (y.min(), y.max(), z.min(), z.max())\n",
-    "ax.imshow(streamwise_velocity, extent=extent)\n",
-    "CS = ax.contour(yy, zz, streamwise_velocity, colors='k')\n",
-    "_ = ax.clabel(CS, inline=1, fontsize=10)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VHX2x/H3SS/UkNAJISSE3qQJijQBBcWuiN0VUVYRu7usq6yra8OOK2LXtWFDRZoCCioISAuQEJoJUkILCZB+fn9kQH5IkglkcjMz5/U892HKnTufjCZn7v02UVWMMcYYgACnAxhjjKk+rCgYY4w5yoqCMcaYo6woGGOMOcqKgjHGmKOsKBhjjDnKioIxxpijrCgYY4w5yoqCMcaYo4KcDlBR0dHRGhcX53QM44fyCoo5VFDI4fwiDhcUkV9YTGFxxWYECA4MICw4gPDgQMKCA4kMDSIoQDyU2Jg/LFu2bLeqxpS3n9cVhbi4OJYuXep0DOMH9h3M5/sNmcxPyeT71EyyD+YDEBUaRNvGtYiPjqRZVATNoiKIrhFCjdAgaoQGERocSEFhMflFxeQWFLEnJ58dB3LZkZXL5t0HWb/jABszD1JQrOwHWjesSe+W0QxoXZ9e8VEEBdoJvKl8IrLVnf28rigY40m5BUXMWbuTz3/dxoLUTAqLlajIEPomRtMnIZousXWIj65BwCl+u88tKGLd9gP8uHEPP27czXuLt/L6os1E1whhaPuGjOjchG7N6yJiZxGmaom3TYjXrVs3tTMFU9m27jnIG4u28MmyDLLzCmlYK4wRXRpzTvtGdGhSm0APX+LJLShi3vpdfLVqO9+u30luQTFJDWpy1enNubBLE2qE2vc3c2pEZJmqdit3PysKxp/9smUvU77fxNx1OwkKEIZ1aMSl3ZrRK76exwtBaQ7mFfL1qu28/fMW1mw7QI3QIK7q1ZybzmxBvRqhjmQy3s+KgjFlWJG+n6dnp/DDht1ERYZwVc9YrurVnPq1wpyOdpSqsiJ9P68v2sJXq34nLCiQq09vzk1nxhNT04qDqRgrCsacwKbMHB6dsY6563YRFRnCLWe15KpezQkPCXQ6WpnSduUweV4an6/YRnhwIGMHJHBDnxaEBVfv3Kb6sKJgzDEO5hXywndpvLZwE6FBgYw5K57r+rTwumv1mzJzeOyb9cxZu5OmdcP5+7ltGNq+oTVIm3JZUTDG5ZvV23noy2R2HsjjktOacu/QJOrXrD6XiU7GorTd/Ourtazfkc3A1vV55ML2NKod7nQsU41ZUTB+b09OHg9OT+brVdtp36QWE0e0p2tsXadjVZqiYuWNRZt5enYqgQHCfee0ZlSP2FPuLmt8kxUF49dmrN7OhM/XkJNbyLhBidzcN95nB4X9tucQD3y2ikVpezgjIZpJl3WqVg3mpnpwtyj45m+J8VuH84t44NNV3PrecprWDefL285gbP8Eny0IALH1Inj3xp48emEHlm7dy9DnfuDbdTudjmW8lO/+phi/k7ozmxEvLeT9Jenc0q8ln9zSm6SGNZ2OVSVEhCt7xvLVbWfSsFYYN761lIemJ5NfWOx0NONlrCgYn/D5r9s4/8WF7D2Yz9s39OC+oa0J9uGzg9Ik1K/BZ2N7c32fON78cQujpv7Mruxcp2MZL+J/vzXGpxQVK4/OWMcdH66gY9M6zBh3Jn1blTsRpE8LDQrkn+e14/mRXVi9LYvzXljI8t/2OR3LeAkrCsZrZR0q4Lo3ljDl+01cc3pz3vtLT6/valqZzu/UmM9u7UNoUCBXvPIzn/2a4XQk4wWsKBivlL73EBe+vIifN+3hPxd1YOKI9n55uag8bRrVYvpf+3Ba87qM/3Alz3+7AW/rcWiqlv0WGa+zOiOLCyf/yJ6cfN77Sy+u6BHrdKRqrU5ECG/d0IOLujZh0pxU7p22ioIia4A2J+ZdY/yN35uXsoux7y2nbkQIH4zuSUJ9/+hddKpCggJ4+tJOxEZF8OzcDezMzuOVq06r9nM+mapnZwrGa3yxYht/eWsp8TGRfDa2txWEChIR7hjUiscv7sDCDZlc8/piDuQWOB3LVDNWFIxX+GDJb9zx4Qq6x9Xlg9GnW4PyKbi8eywvjOzKivT9XPnqz+zJyXM6kqlGrCiYau+1hZu5/9PVnNUqhjev7+F1M5tWR8M6NmLKNd3YsDOHy6fYWAbzBysKplr774KN/OurtZzTviFTru5m6wdUov5J9Xn7hh78vv8wo15dzG47YzB4sCiISJiILBGRlSKSLCIPn2CfUBH5UETSRGSxiMR5Ko/xPlN/2MR/vlnP+Z0a88LILoQE2XeYytYzvh6vX9ed9H2H7FKSATx7ppAHDFDVTkBnYKiI9DpunxuBfaqaADwDPO7BPMaLvLloM498vY5hHRox6bJOPj2hndN6xdfj9Wu7s3XPIUZNXczeg/lORzIO8thvmpbIcd0Ndm3Hj5oZAbzluj0NGCi2hJTfe2/xVh76ci1D2jXg2Ss6W0GoAr0Tonnt2u5s2n2Q699YQk5eodORjEM8+tsmIoEisgLYBcxR1cXH7dIESAdQ1UIgC6h3guOMFpGlIrI0MzPTk5GNw6av/J0Jn69hYOv6vDCyq41SrkJnJEYz+cqurPn9ADe/s5S8wiKnIxkHePQ3TlWLVLUz0BToISLtT/I4U1S1m6p2i4nx78nOfNmC1Ezu/HAF3eOieGlUV2tDcMCgtg148pKOLErbw7j3V1BUbFNi+Jsq+a1T1f3APGDocU9tA5oBiEgQUBvYUxWZTPWy/Ld9jHlnGa0a1GTqtdbLyEkXdW3Kg8PbMjN5BxM+X21zJfkZT/Y+ihGROq7b4cDZwPrjdpsOXOu6fQnwndr/gX4nbVcO17/xCw1qhfLWDT2oFRbsdCS/d8MZLRjbvyXvL0ln8vyNTscxVciTo4AaAW+JSCAlxecjVf1KRCYCS1V1OvAa8I6IpAF7gSs8mMdUQ5nZeVz3xhKCA4W3b+hJTM1QpyMZl7sHJ7Ft32GenJVC07rhjOjcxOlIpgp4rCio6iqgywkef/CY27nApZ7KYKq3w/lF/OXtpezOyePD0acTWy/C6UjmGCLC45d0ZHtWLvd8vIqGtcLoGf+nfiDGx1hLnnFEUbFyx4e/sipjP89f0YVOzeo4HcmcQGhQIFOu7kazqHBGv7OMzbsPOh3JeJgVBeOI/3yzjlnJO3lweFsGt2vodBxThtoRwbx5fQ8CBP7y1i82s6qPs6Jgqty0ZRm8+sNmrjm9Odf3aeF0HOOGZlERvHzVaWzdc4hx7/9qXVV9mBUFU6WWbd3H3z5dTe+W9fjH8LZOxzEV0Cu+Hg+PaMe8lEyemHV8R0LjK2wOYlNltmcd5uZ3ltGwdhgvXWmjlb3RqJ7NWb89m1cWbKJNw1pc0MV6JPka+600VSK3oIjRby/jcH4hU6/tRt3IEKcjmZP04Hlt6dkiivs/XcW67QecjmMqmRUF43GqyoNfrGH1tiyeubwzrRrYMpreLDgwgBeu7EKtsGBueXcZWYet4dmXWFEwHvfBL+l8tDSDv/ZPsJ5GPqJ+zTAmj+pKxr7D3PXRSoqt4dlnWFEwHrUyfT///CKZMxOjGX92K6fjmErULS6Kvw9rw9x1O3l5gU2F4SusKBiP2Xswn1veXUZMzVCeu6ILgQG2VIavua53HOd3aszTs1P4eZPNZekLrCgYjyguVu78aAW7c/J5+aquRFnDsk8SER69qANx9SIZ98GvtpynD7CiYDxiyg+bmJ+SyYThbejY1Kaw8GU1QoN44cou7DtUwF0fW/uCt7OiYCrdsq17eXJWCud2aMjVvZo7HcdUgXaNa/OPYW2Yn5LJqz9scjqOOQVWFEyl2n8on9vfX0HjOmH85+KO2JLb/uOqXs05p31DnpiVwvLf9jkdx5wkKwqm0qgq90xbxa7sXF66sqstluNnRIT/XNyRhrXCGP/hCnLyCp2OZE6CFQVTad5b/Btz1u7kvqGtrR3BT9UOD+aZyzuTvvcQD09PdjqOOQlWFEylSNuVzSNfr+XMxGhusJlP/VqPFlHc2i+Bj5dlMGP1dqfjmAoqtyiIyG0iUrcqwhjvlFdYxG3vryAiJIinL+1EgI1H8HvjBiXSqWltHvh0NduzDjsdx1SAO2cKDYBfROQjERkq1nJojvPkzBTWbT/A4xd3pH6tMKfjmGogODCAZ6/oQkFRMXdbN1WvUm5RUNUJQCLwGnAdsEFEHhWRlh7OZrzAorTdTF24mat6xXJ22wZOxzHVSIvoSCYMa8uitD28u3ir03GMm9xqU1BVBXa4tkKgLjBNRJ7wYDZTzR3ILeCej1cSHx3J38+1BXPMn43s0YyzWsXw2Iz1tr6zl3CnTWGciCwDngAWAR1U9RbgNOBiD+cz1djD09eyMzuPSZd3Jjwk0Ok4phoSER6/uCPBgcLdH6+0ZTy9gDtnClHARao6RFU/VtUCAFUtBoZ7NJ2ptmau2cEnyzMY268lnZtZ91NTuoa1w5g4oj3Ltu6z0c5ewJ2iEK+q/++CoIi8A6Cq60p7kYg0E5F5IrJWRJJFZNwJ9uknIlkissK1PVjhn8BUud05efz9s9W0b1KLvw5IdDqO8QIjOjdmaLuGTJqdyoad2U7HMWVwpyi0O/aOiARScumoPIXAXaraFugFjBWRE114/kFVO7u2iW4c1zhIVZnw2Rqy8wqZdFlnQoJsqIspn4jwyIXtiQwN5J5pq+wyUjVW6m+0iDwgItlARxE54NqygV3AF+UdWFW3q+py1+1sYB1gq3x7ua9Xb2dm8g7GD2ply2qaComuEcpD57djRfp+3li02ek4phSlFgVVfUxVawJPqmot11ZTVeup6gMVeRMRiQO6AItP8PTpIrJSRL4RkXYneB4RGS0iS0VkaWZmZkXe2lSi3Tl5PPhFMp2a1uamM23Usqm48zs1ZlCb+jw1O4Ut1hupWirrTKG16+bHItL1+M3dNxCRGsAnwB2qeuC4p5cDzVW1E/AC8PmJjqGqU1S1m6p2i4mJcfetTSX75xfJ5OQW8uSlnQgKtMtGpuJEhEcu6EBwQAD3fbLKBrVVQ2X9Zt/p+vfpE2xPuXNwEQmmpCC8p6qfHv+8qh5Q1RzX7RlAsIhEux/fVJUZq7fz9ertjBuUaJeNzClpWDuMCcPbsHjzXv635Den45jjBJX2hKqOdv3b/2QO7JoO4zVgnapOKmWfhsBOVVUR6UFJkbKFXquZfQfzefCLNXRoUpub+8Y7Hcf4gMu6NeOLFb/z+DfrObttAxrY9CjVhjuD18aKSJ1j7tcVkVvdOHYf4GpgwDFdTs8VkTEiMsa1zyXAGhFZCTwPXOEaPW2qkX/PWMf+QwU8fnFHu2xkKoWI8OiFHcgvKuYhm2K7Win1TOEYN6nqS0fuqOo+EbkJmFzWi1R1IVDm5Hmq+iLwojtBjTMWbtjNtGUZjO3fkraNazkdx/iQuOhIbh+YyJOzUpidvIPB7Ro6Hcng3jiFwGNnRnWNUwjxXCRTXRzOL+KBz1YRHx3JbTZIzXjA6L7xJDWoyT+nJ9tKbdWEO0VhJvChiAwUkYHA+67HjI97Zm4q6XsP8+hFHQgLtrmNTOULDgzgsYs7sONALk/NSnE6jsG9onAfMA+4xbV9C9zryVDGeWu2ZTH1h02M7BFLr/h6TscxPqxrbF2u7tWct3/awuqMLKfj+D131lMopqQX0cPAQ8Drqlrk4VzGQUXFyt8+W01UZCj3n9O6/BcYc4ruGpxEVGQoEz5fbVNgOMyd3kf9gA2UNAhPBlJFpK+HcxkHvfPTFlZlZPHgeW2pHR7sdBzjB2qHB/OP4W1YmZFlYxcc5s7lo6eBwap6lqr2BYYAz3g2lnHKjqxcnpqdSt9WMZzXsZHTcYwfOb9TY3q3rMcTM9eTmZ3ndBy/5U5RCFbVoy1AqpoK2NdHHzXxq2QKiop5ZER7bDluU5VEhIkj2pNbUMRjM0qdld94mDtFYamITHWtfdBPRF4Flno6mKl689bvYsbqHdw+MJHYehFOxzF+KKF+DW7u25JPf93Gz5tscgMnuFMUbgHWAre7trWux4wPyS0o4sHpa0ioX4ObzrSpLIxzxvZPoEmdcB6ankxhUbHTcfyOO72P8lR1kqpe5NqeUVW74OdjJs/fSPrew/xrRHtbOMc4KjwkkH8Mb8v6Hdm88/PW8l9gKlWp01yIyGqg1L5hqtrRI4lMlduy+yD/XbCREZ0bc3pLG5NgnDekXQPOTIxm0uxUhndsTEzNUKcj+Y2y5j4aXmUpjGNUlYe+TCYkMIC/n9vG6TjGACWNzv88rx1Dn/2eJ2au58lLOzkdyW+UtfLa1iOb66FE1+1dwN4qSWc8blbyTuanZDL+7FbUt+mLTTWSUL8GN57Rgo+XZbBs6z6n4/gNdwav3QRMA15xPdSUUlZIM97lcH4R//pqLa0b1uTa05s7HceYP7ltYCL1a4by8JfJtkpbFXGnRXEsJWsjHABQ1Q1AfU+GMlXj5flpbNt/mIkj2ts6CaZaqhEaxP3ntGZVRhafLM9wOo5fcOcvQZ6q5h+5IyJBlNEAbbzDb3sO8d/vNzGic2N6tIhyOo4xpbqgcxM6N6vDE7NSbHrtKuBOUVggIn8DwkXkbOBj4EvPxjKe9q+v1xIUIDxwjjUum+otIED453ltyczO46V5aU7H8XnuFIX7gUxgNXAzMAOY4MlQxrMWpGYyZ+1O/joggYa1rXHZVH9dYutyUdcmvPbDZrbuOeh0HJ/mTlG4AHhbVS9V1UtU9VVbR9l75RcW8/D0ZFpER3LjGS2cjmOM2+4b2pqgQOGRr21eJE9ypyicR8l02e+IyHBXm4LxUm/9uIVNuw/y4PC2hAbZamrGezSoFcbY/gnMWbuTHzfudjqOz3JnmovrgQRK2hJGAhtFZKqng5nKtzsnj+e/3UD/pBj6t7YOZMb73HhGC5rUCeeRr9bZYjwe4lY/RFUtAL4BPgCWUXJJyXiZp2encLigiAnD2zodxZiTEhYcyH3ntGbt9gPWRdVD3Bm8do6IvEnJ6msXA1OBhh7OZSpZ8u9ZfPBLOtecHkfLmBpOxzHmpJ3XsRFdYuvw1KwUDloX1UrnzpnCNZSMYE5S1etUdYaqlvtfQkSaicg8EVkrIskiMu4E+4iIPC8iaSKySkS6nsTPYMqhqkz8ci11woMZNzDR6TjGnBIRYcKwtuzKzuOV7zc5HcfnuNOmMFJVPz+J6bILgbtUtS3QCxgrIsdftzgHSHRto4GXK/gexg3frNnB4s17uWtwErUjbNE84/1Oa16X8zo1Zsr3G9meddjpOD7FY3MbqOp2VV3uup0NrAOaHLfbCEq6u6qq/gzUERFbGLgS5RYU8dg362jdsCZXdG/mdBxjKs29Q5IoVnhqVqrTUXxKlUx4IyJxQBdg8XFPNQHSj7mfwZ8LByIyWkSWisjSzMxMT8X0SW/+uIX0vYeZMKytzW9kfEqzqAiu7x3Hp79msPb3A07H8Rke/yshIjWAT4A7VPWk/sup6hRV7aaq3WJiYio3oA/bnZPHS9+lMbB1fc5IjHY6jjGV7tb+CdQOD+axb2xAW2Xx6MprIhJMSUF4T1U/PcEu24Bjr2k0dT1mKsGzc1M5VFDEA7Z4jvFRtcODuW1AIv/6ai0LUjM5q5V9aTxVZZ0pDKdkNPNM1zbKtc1wbWUSEQFeA9ap6qRSdpsOXOPqhdQLyFLV7RXIb0qRujOb/y3+jat6xpJQ37qgGt91da/mxEZF8OjXNqCtMpS78hpwtqreq6qrXdv9wGA3jt0HuBoYICIrXNu5IjJGRMa49pkBbALSgFeBW0/txzFHPDpjHTVCg7hjUCunoxjjUSFBAdw7NImUndl8sswGtJ0qd+YxEhHpo6qLXHd6415X1oWAlLOPUrKIj6lEP2zIZH5KJn8/tw11I0OcjmOMxw3r0IipzTYzaU4q53VqTHiIzet1stxpaL4RmCwiW0RkCzAZuMGjqcxJKypW/v31OppFhXNNb1ti0/gHEeGBc1qz40Aub/64xek4Xs2db/zLVLUT0AnopKqdj4w/MNXPJ8szWL8jm/uGtrZZUI1f6Rlfj4Gt6zN5fhr7D+WX/wJzQu7MfdRARF4DPlDVLBFpKyI3VkE2U0GH84t4enYKnZvVYVgHGwNo/M+9Q1uTk1fI5PkbnY7itdy5fPQmMAto7LqfCtzhqUDm5E39YRM7D+Tx92FtKOn8ZYx/SWpYk4u7NuXNH7ewbb9Nf3Ey3CkK0ar6EVAM4JoMr8ijqUyFZWbn8d8FGxnariHd46KcjmOMY+48u6TH3aTZNv3FyXCnKBwUkXq4BrIdGU/g0VSmwp77NpW8wmLuO6e101GMcVTjOuFHp79I2ZHtdByv405RuJOSQWYtRWQR8DZwm0dTmQrZmJnD+0vSubJnLC2iI52OY4zjbunXkhqhQTw5K8XpKF7Hnd5Hy4GzgN7AzUA7VV3l6WDGfU/OTCEsKIDbba0EYwCoExHCmLNaMnfdTpZt3et0HK/iTu+ji4DzgSSgFXCeiAwUEVvktxpYtnUvM5N3cPNZLYmuEep0HGOqjev7xBFdI5THv0mhZJyscYe7g9em8sfcR68C9wGLRORqD2Yz5VBVHpuxnpiaofzlzBZOxzGmWokICWLcwASWbNnL/FSbct9d7hSFIKCNql6sqhcDbSlpdO5JSXEwDpmzdidLt+5j/KBWRIS4M2OJMf7l8u6xxEZF8MTMFIptsjy3uFMUmqnqzmPu73I9thco8EwsU57ComIen7meljGRXNatqdNxjKmWQoICuGtwK9ZtP8CXq353Oo5XcKcozBeRr0TkWhG5FvjC9VgksN+z8Uxppi3LYGPmQe4Z0tpWVDOmDOd1bEzrhjV5Zk4qBUXFTsep9tz5azKWklHNnV3b28BYVT2oqv09mM2U4nB+Ec/MTaVrbB2GtGvgdBxjqrWAAOHuwUls2XOIaTa1drnKvRDtmt56mmsz1cCbP25h54E8nr+ii01nYYwbBrapT5fYOjz/7QYu7NKEsGCbLLI07nRJ7SUiv4hIjojki0iRiNgq2Q7ZfyifyfPTGNC6Pj3j6zkdxxivICLcMziJ7Vm5vLf4N6fjVGvuXD56ERgJbADCgb8AL3kylCndy/M3kpNXyL1Dk5yOYoxX6Z0QTZ+Eekyel0ZOXqHTcaott1ooVTUNCFTVIlV9Axjq2VjmRLZnHebNH7dwYZcmtG5Yy+k4xniduwcnsedgPm8s3Ox0lGrLnaJwSERCgBUi8oSIjHfzdaaSPTd3A6ow3tZdNuakdImty9ltGzDl+022EE8p3PnjfrVrv78CB4FmwMWeDGX+LG1XDh8tTWdUr1iaRUU4HccYr3Xn2a3IyS/k1R82OR2lWiqzKIhIIPCoquaq6gFVfVhV73RdTjJVaNKcFMKDAxnbP8HpKMZ4tTaNajG8Y2PeWLSF3Tl5TsepdsosCqpaBDR3XT4yDlmZvp8Zq3dwU994m/TOmEpwx6BEcguK+K8t2/kn7lw+2kTJ5Hf/EJE7j2zlvUhEXheRXSKyppTn+4lIloiscG0PVjS8v3hyVgpRkSH85cx4p6MY4xNaxtTgoq5NeefnrezIynU6TrXiTlHYCHzl2rfmMVt53qT8Xko/qGpn1zbRjWP6nYUbdrMwbTd/7Z9AjVCb9M6YyjJuYCJFxcpL8+xq+LHcGdH8MICIRKjqIXcPrKrfi0jcyUczqsqTs9bTpE44o3rFOh3HGJ/SLCqCy7s344NffmN033jrwOHizojm00VkLbDedb+TiEyupPc/XURWisg3ItKuko7pM2Yl72BlRhZ3DEokNMiG5RtT2W4bkIiI8MJ3G5yOUm24c/noWWAIsAdAVVcCfSvhvZcDzVW1E/AC8HlpO4rIaBFZKiJLMzP9Y7GMomLlqdmptIyJ5MIuTZyOY4xPalg7jFE9Y/lk+Ta27D7odJxqwd0RzenHPVR0qm/s6uKa47o9AwgWkehS9p2iqt1UtVtMTMypvrVX+OzXbaTtyuHuwUk2NbYxHnRLv5YEBwrPf2tnC+BeUUgXkd6AikiwiNwNrDvVNxaRhuKa4lNEeriy7DnV4/qCvMIinpmTSocmtRnavqHTcYzxafVrhnHN6XF8vqLki5i/c6cojKFkTYUmwDZK1lQYW96LROR94CcgSUQyRORGERkjImNcu1wCrBGRlcDzwBVqq2sD8P7i39i2/zD3DEmyqbGNqQI3940nLDiQZ+emOh3Fce70cRRVHVXRA6vqyHKef5GSGVjNMQ7lF/LivDR6xUdxZuIJr6YZYypZvRqhXN8njpfmbeSvAw749YST7pwpLBKR2a5v+nU8nsjPlQy9z+eeIa3tLMGYKnTTmfHUDA3imTn+fbZQblFQ1VbABKAdsNy1XvNVHk/mh7IOFfDKgo0MalOf05rXdTqOMX6lTkQIN5zRglnJO1mzLcvpOI5xt/fRElW9E+gB7AXe8mgqPzXlh40cyC3krsG2gI4xTrjhjBbUCgvi2bn+2xPJncFrtUTkWhH5BvgR2E5JcTCVKDM7j9cXbuH8To1p08h/r2ca46Ta4cHcdGY8c9ftZFXGfqfjOMKdM4WVlPQ4mqiqrVT1PlVd5uFcfueleWnkFxUz/mxbQMcYJ13XJ446EcF+27bgTlGIV9XxqvqTx9P4qYx9h/jf4t+4rFtTWkRHOh3HGL9WMyyY0X3jmZeSya+/7XM6TpVzpyhEi8iTIjJDRL47snk8mR95/tsNICXzsBhjnHft6XFERYYwyQ/PFtwpCu9RMhleC+BhYAvwiwcz+ZWNmTlMW5bB1b2a07hOuNNxjDFAZGgQN/eN54cNu1m2da/TcaqUO0Whnqq+BhSo6gJVvQEY4OFcfmPSnFTCggO5pV9Lp6MYY45x9enNia4RwjNz/KsnkjtFocD173YRGSYiXYAoD2byG8m/Z/H1qu3ceEYLW2bTmGomIiSIMWe1ZGHabpZs9p+zBXeKwiMiUhu4C7gbmAqM92gqP/H07FRqhQXZMpvGVFOjejYnukaoX/VEcmdE81eqmqWqa1S1v6qepqrTqyKcL1u2dS/frd/wYW5QAAAVi0lEQVTFmH4tqR0e7HQcY8wJhIeUXNr9adMeftroH5M420T9DihZZjOF6BqhXNc7zuk4xpgyjOoZS/2aoTwzNxV/mMjZioIDFqbt5udNexnbvyURIe5MVGuMcUpYcCC39mvJks17/eJswYpCFTtyltCkTjhX9ox1Oo4xxg1X9IilYa0wvzhbKPdrqoiEAhcDccfur6oTPRfLd81eu5NVGVk8cXFHQoMCnY5jjHFDWHAgt/ZvyYNfJLMwbTdnJvrussDunCl8AYwACoGDx2ymgoqKladnpxAfHclFXZs4HccYUwGXd29Go9phPDPHt88W3Lmg3VRVh3o8iR/4cuXvpO7M4YWRXQgKtCt3xniT0KBAxvZPYMLna/h+w27OauWbZwvu/GX6UUQ6eDyJjysoKmbSnFTaNKrFsA6NnI5jjDkJl3VrRpM64T59tlBqURCR1SKyCjiDkhXXUkRk1TGPmwr4aGk6v+09xN2DWxEQYMtsGuONQoICGNs/gRXp+5mfmul0HI8o6/LR8CpL4eNyC4p4/tsNnNa8LgNa13c6jjHmFFxyWlNempfGM3NS6dcqxufWUi/1TEFVt6rqVuCRI7ePfazqInq/d37ays4DedwzJMnn/gcyxt+EBAVw+8AEVmVk8d36XU7HqXTutCm0O/aOiAQCp3kmju/Jzi1g8vw0zkyMpld8PafjGGMqwUVdmxIbFeGT4xbKalN4QESygY4ickBEsl33d1HSTbVMIvK6iOwSkTWlPC8i8ryIpLnaKrqe9E9Rjb22cDP7DhVwz5Akp6MYYypJcGAAtw1IYM22A8xZu9PpOJWqrMtHj6lqTeBJVa2lqjVdWz1VfcCNY78JlNWV9Rwg0bWNBl6uQG6vsO9gPlN/2MzQdg3p2LSO03GMMZXowi5NiKsXwbNzN/jU2YI7l4/+JiIXicgkEXlaRC5w58Cq+j1Q1iTkI4C3tcTPQB0R8am+mi8v2MjB/ELuGtzK6SjGmEoWFBjA7QMTWbv9ALOSfedswZ2i8BIwBlgNrAHGiMhLlfDeTYD0Y+5nuB7zCTuycnnrxy1c2KUJiQ1qOh3HGOMB53dqTHx0JM/OTaW42DfOFtwpCgOAIar6hqq+AZxLFS/HKSKjRWSpiCzNzPSOvsHPfbuBYlXGD7KzBGN8VVBgAOMGJbJ+RzbfrNnhdJxK4U5RSAOOnc6zmeuxU7XNdawjmroe+xNVnaKq3VS1W0xM9R9avnn3QT5ams6VPWJpFhXhdBxjjAcN79iYhPo1eHZuKkU+cLbgTlGoCawTkfkiMg9YC9QSkekiciorsE0HrnH1QuoFZKnq9lM4XrXxzJxUQgIDGDsgwekoxhgPCwwQ7hiUyIZdOXy16nen45wydybEe/BkDiwi7wP9gGgRyQD+CQQDqOp/gRmUXIpKAw4B15/M+1Q3a38/wPSVv3Nrv5bUrxnmdBxjTBU4t30jWjdM47m5GxjWoZFXT3hZblFQ1QUi0hxIVNW5IhIOBKlqdjmvG1nO8wqMrVBaL/DU7BRqhQVxc9+WTkcxxlSRgADhjkGtGPPuMr5Y8TsXn9bU6UgnrdxyJiI3AdOAV1wPNQU+92Qob/XLlr18t34XY/q1pHZEsNNxjDFVaEi7BrRrXIvnv9tAQVGx03FOmjvnOGOBPsABAFXdANisbsdRVf7zzXrq1wzl+t4tnI5jjKliIsL4Qa3YuucQny7PcDrOSXOnKOSpav6ROyISBHh/E3sl+3bdLpZt3ce4QYmEh9gym8b4o4Ft6tOpaW2e/zaNvMIip+OcFHeKwgIR+RsQLiJnAx8DX3o2lncpKlaemLWeFtGRXNatWfkvMMb4JBHhzsFJbNt/mI9+SS//BdWQO0XhfiCTkhHNN1PSa2iCJ0N5m89/3UbqzhzuGtyKYC/udWCMOXV9E6PpHleXF+elkVvgfWcL5f4FU9ViShqWb1XVS1T1VfWl2Z9OUV5hEZPmpNKhSW3Obe9TUzcZY06CiHDX4CR2Hsjj3Z+3Oh2nwsqaOltE5CER2Q2kACkikikiJzVuwVe9+/NvbNt/mHuGJNkym8YYAHrF16NPQj1enr+Rg3mFTsepkLLOFMZT0uuou6pGqWoU0BPoIyLjqyRdNXcgt4AXv9vAGQnR9G1V/affMMZUnTvPTmLPwXze+mmL01EqpKyicDUwUlU3H3lAVTcBVwHXeDqYN3hlwUb2HSrgvqGtnY5ijKlmTmtel/5JMbyyYBNZhwucjuO2sopCsKruPv5BVc3ENV2FP9uRlctrCzdzfqfGdGha2+k4xphq6K7BSWQdLuC1HzY5HcVtZRWF/JN8zi88923JjIh3D7ZlNo0xJ9a+SW2GdWjEaws3sycnz+k4bimrKHRyrc18/JYNdKiqgNVR2q5sPvwlnVE9mxNbz6bGNsaUbvzZrThcUMTL8zc6HcUtZa3RHOham/n4raaq+vXlo8dnphAREsRtNjW2MaYcCfVrcHHXprz981a2Zx12Ok65bKRVBS3ZvJc5a3cy5qx46tUIdTqOMcYLjBuUiKry/LeVsT6ZZ1lRqIDiYuXfX6+lYa0wbjwj3uk4xhgv0bRuBKN6Nufjpels2X3Q6ThlsqJQAV+t3s7KjCzuHpJkk94ZYyrk1v4tCQ4M4Ok5qU5HKZMVBTflFRbxxMz1tGlUiwu7NHE6jjHGy9SvGcaNZ7Tgy5W/s2ZbltNxSmVFwU1v/7iVjH2H+fu5bQi06SyMMSdh9Fnx1IkI5olZKU5HKZUVBTfsO5jPC99t4KxWMZyRGO10HGOMl6oVFszYfgl8n5rJjxv/NDa4WrCi4Ibnvt1ATl4hfzu3jdNRjDFe7urTm9OodhiPz0yhOk44bUWhHGm7snnn562M7BFLUsOaTscxxni5sOBAxg9qxcr0/cxK3uF0nD+xolCOf3+9jojgQO48u5XTUYwxPuKirk1IqF+DJ2amUFBU7HSc/8eKQhm+T81kXkomtw1MsIFqxphKExQYwH1DW7Np90E+qGbLdnq0KIjIUBFJEZE0Ebn/BM9f51q4Z4Vr+4sn81REYVExj3y9lub1Iri2d5zTcYwxPmZQm/r0aBHFc3NTyalGC/F4rCiISCDwEnAO0BYYKSJtT7Drh6ra2bVN9VSeinr/l3RSd+bwwDltCA2ygWrGmMolIvzt3DbszslnyoLqM1meJ88UegBpqrpJVfOBD4ARHny/SrPvYD5Pz07h9Ph6DGnXwOk4xhgf1blZHYZ3bMSrP2xm54Fcp+MAni0KTYBjL5ZluB473sUiskpEpolIMw/mcdvTc1LIzi3kofPbIWID1YwxnnPvkNYUFhfzTDWZ/sLphuYvgThV7QjMAd460U4iMlpElorI0szMTI8GSv49i/8t/o2rezW3LqjGGI+LrRfB1b3i+GhpOut3HHA6jkeLwjbg2G/+TV2PHaWqe1T1yHJEU4HTTnQgVZ2iqt1UtVtMTIxHwrreh4enr6VORAjjB1kXVGNM1bh9YAK1woP511drHR/Q5smi8AuQKCItRCQEuAKYfuwOItLomLvnA+s8mKdc01f+zpIte7l3SBK1I/x6HSFjTBU68kV0Udoe5q7b5WgWjxUFVS0E/grMouSP/UeqmiwiE0XkfNdut4tIsoisBG4HrvNUnvJk5xbw6Ix1dGhSm0u7VYumDWOMH7myZywJ9Wvw76/Xkl/o3IA2j7YpqOoMVW2lqi1V9d+uxx5U1emu2w+oajtV7aSq/VV1vSfzlGXSnFR2Zefxrwva2yyoxpgqFxwYwIRhbdiy5xBv/7TFsRxONzRXC2u2ZfHWj1sY1TOWzs3qOB3HGOOn+iXVp19SDM99u4E9OXnlv8AD/L4oFBUrf/9sNVGRIdwzpLXTcYwxfm7CsDYcyi/iqdnOrLng90Xhf0t+Y2VGFhOGtaV2uDUuG2OclVC/Jtf3juODX9JZmb6/yt/fr4vCruxcnpi5nt4t6zGic2On4xhjDADjBiUSXSOUf3yxhqLiqu2i6tdF4aHpyeQVFDNxRHsbuWyMqTZqhgUzYVgbVmVk8WEVz6Lqt0Vh5prtzFi9g3GDEkmoX8PpOMYY8/+c36kxPVtE8cSs9ew7mF9l7+uXRWH/oXwmfJ5M20a1GN033uk4xhjzJyLCxBHtyc4t5IlZVddb3y+LwiNfr2PfoXyeuKQjwYF++REYY7xAUsOSRuf3l6Tzy5a9VfKefvcXcUFqJtOWZTDmrHjaN6ntdBxjjCnTnYNb0bRuOPd/sorcgiKPv59fFYX9h/K5b9oqWsZEctuARKfjGGNMuSJCgnj0wg5szDzI5HlpHn8/vykKqsrfP1vD7pw8nr28C2HBtpqaMcY79G0Vw0VdmzB5/kaPT6/tN0Xhs1+38fXq7Yw/uxUdmtplI2OMd/mHa4Dt/Z+s9ujYBb8oCul7D/HPL5LpHleXMWe1dDqOMcZUWN3IEB48ry0r0vfz6g+bPPY+Pl8UCouKueujlSgw6bLONgOqMcZrnd+pMed2aMjTs1NYsy3LI+/h80XhydkpLNmyl4kj2tEsKsLpOMYYc9JEhH9f0IGoyBDu+HCFR3oj+XRRmLlmB68s2MSVPWO5qGtTp+MYY8wpqxsZwlOXdiJtVw7/+abyB7X5bFHYlJnD3R+vpFPT2vzzvLZOxzHGmEpzZmIM1/eJ480ftzA/pXKX7/TJonAov5Ax7y4jOFCYfNVphAZZ91NjjG+5b2hrkhrUZPyHK0jfe6jSjutzRaGwqJjb/vcrabtyeH5kF5rUCXc6kjHGVLqw4EBeufo0ioqV0e8s43B+5bQv+FRRUFX+9tlqvl2/i4kj2nNmYozTkYwxxmPioiN5fmQX1u84wL2frEL11Mcv+FRRmDQnlY+WZnD7gASu6tXc6TjGGONx/ZLqc/fgJL5c+XuljF8IqoRM1cIbizbzwndpXNG9GePPbuV0HGOMqTK39mtJ8u9ZPPbNeqIiQ7nktJPvben1RUFVeXp2Ki/OS+Pstg145AJbRc0Y419EhEmXdebA4aXcM20lAlx8koXBo5ePRGSoiKSISJqI3H+C50NF5EPX84tFJK4ix88vLObOj1by4rySM4TJo7oSZOsjGGP8UFhwIK9e043eLetx97SVfLo846SO47G/oCISCLwEnAO0BUaKyPEDBm4E9qlqAvAM8Li7x0/blc01ry/ms1+3cc+QJB67qIMtmGOM8WvhIYFMvaY7p8fX466PV/LEzPUczCus0DE8efmoB5CmqpsAROQDYASw9ph9RgAPuW5PA14UEdEymtAPFxQx9r3lzFiznbCgQJ65vBMXdrHRysYYAyWF4bVruzPh8zVMnr+RT5ZncP85rd1+vSeLQhMg/Zj7GUDP0vZR1UIRyQLqAbtLO2jarhwCUjMZ2y+BG85oQVRkSCXHNsYY7xYeEsjTl3ViVK9YHp6ezPgPV7r9Wq9oaBaR0cBo1928NROHrrkHuMfBTNVENGUUUD9jn8Uf7LP4g30Wf0hyZydPFoVtQLNj7jd1PXaifTJEJAioDew5/kCqOgWYAiAiS1W1m0cSexn7LP5gn8Uf7LP4g30WfxCRpe7s58mW2V+ARBFpISIhwBXA9OP2mQ5c67p9CfBdWe0JxhhjPMtjZwquNoK/ArOAQOB1VU0WkYnAUlWdDrwGvCMiacBeSgqHMcYYh3i0TUFVZwAzjnvswWNu5wKXVvCwUyohmq+wz+IP9ln8wT6LP9hn8Qe3PguxqzXGGGOOsNFexhhjjvKqolDetBn+QkReF5FdIrLG6SxOE5FmIjJPRNaKSLKIjHM6k1NEJExElojIStdn8bDTmZwkIoEi8quIfOV0FqeJyBYRWS0iK8rrheQ1l49c02akAmdTMhDuF2Ckqq4t84U+SET6AjnA26ra3uk8ThKRRkAjVV0uIjWBZcAFfvr/hQCRqpojIsHAQmCcqv7scDRHiMidQDeglqoOdzqPk0RkC9BNVcsds+FNZwpHp81Q1XzgyLQZfkdVv6ekt5bfU9XtqrrcdTsbWEfJSHm/oyVyXHeDXZt3fOurZCLSFBgGTHU6i7fxpqJwomkz/PKX35yYa5bdLsBiZ5M4x3XJZAWwC5ijqv76WTwL3AsUOx2kmlBgtogsc80QUSpvKgrGlEpEagCfAHeo6gGn8zhFVYtUtTMlMwj0EBG/u7woIsOBXaq6zOks1cgZqtqVklmrx7ouQZ+QNxUFd6bNMH7Idf38E+A9Vf3U6TzVgaruB+YBQ53O4oA+wPmu6+gfAANE5F1nIzlLVbe5/t0FfEbJ5fgT8qai4M60GcbPuBpXXwPWqeokp/M4SURiRKSO63Y4JZ0y1jubquqp6gOq2lRV4yj5O/Gdql7lcCzHiEikqxMGIhIJDAZK7bnoNUVBVQuBI9NmrAM+UtVkZ1M5Q0TeB34CkkQkQ0RudDqTg/oAV1PybXCFazvX6VAOaQTME5FVlHyJmqOqft8d09AAWCgiK4ElwNeqOrO0nb2mS6oxxhjP85ozBWOMMZ5nRcEYY8xRVhSMMcYcZUXBGGPMUVYUjDHGHGVFwRgPEJExInKN6/Z1ItL4mOemikhb59IZUzrrkmqMh4nIfOBuVXVr4XRjnGRnCsZviMhEEbnjmPv/Pn79BRGJE5H1IvKeiKwTkWkiEuF6bqBrfv7VrjUtQl2P/8e1nsMqEXnK9dhDInK3iFxCyfTN77kG1oWLyHwR6ebab6TreGtE5PFjcuS48q0UkZ9FpIHnPyFjrCgY//I6cOSSTgAlUyCcaE6cJGCyqrYBDgC3ikgY8CZwuap2oGR981tEpB5wIdBOVTsCjxx7IFWdBiwFRqlqZ1U9fOQ51yWlx4EBQGegu4hc4Ho6EvhZVTsB3wM3VcLPb0y5rCgYv6GqW4A9ItKFkvlfflXVPSfYNV1VF7luvwucQUmh2Kyqqa7H3wL6AllALvCaiFwEHKpApO7AfFXNdE3j8p7rmAD5wJEpKpYBcRU4rjEnzYqC8TdTgeuA6yk5cziR4xvaSm14c/0x7wFMA4YDpc4pU0EF+keDXxElZybGeJwVBeNvPqNkOunulEyueCKxInK66/aVlCxrmQLEiUiC6/GrgQWudRxqq+oMYDzQ6QTHywZqnuDxJcBZIhLtWm52JLDgJH4mYyqNffswfkVV80VkHrBfVYtK2S2FkoVIXgfWAi+raq6IXA98LCJBlMxC+l8gCvjC1eYgwJ0nON6bwH9F5DBwpNigqttF5H5K1j0QSmav/KJSflBjTpJ1STV+xdXAvBy4VFU3nOD5OOArVfW7FcuMAbt8ZPyIa8BYGvDtiQqCMcbOFIwxxhzDzhSMMcYcZUXBGGPMUVYUjDHGHGVFwRhjzFFWFIwxxhxlRcEYY8xR/wfawHub/NS0KQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "depth_averaged_velocity = np.trapz(streamwise_velocity, -z, axis=0)/depth\n",
-    "_ = plt.plot(y, depth_averaged_velocity)\n",
-    "_ = plt.xlabel('y position')\n",
-    "_ = plt.ylabel('Depth averaged velocity')\n",
-    "plt.autoscale(tight=True)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcHWWd7/HPtzsbZCULWckGgSRsAVqQRS9LlMUloOCgFyaMcpnrjHNHHb3KMHeG8Y734jjKOOMyZACJygUUzRAVhyUsimExhJCVkI2EJJ2ks3b2pLt/94+qTk46pzun02fr7u/79Tqvrnrqqarfqe7UL1VP1fMoIjAzM2urilIHYGZmHYMTipmZ5YUTipmZ5YUTipmZ5YUTipmZ5YUTipmZ5UXJE4qkayQtlbRc0lezLO8u6bF0+auSRmcsuzMtXyrp6mLGbWZmRyppQpFUCXwPuBaYCHxS0sQm1T4DbIuI04B7gW+k604EbgbOBK4Bvp9uz8zMSqDUVygXAssjYmVEHAAeBaY0qTMFmJ5OPw5cJUlp+aMRsT8iVgHL0+2ZmVkJdCnx/ocD72bMrwUuaq5ORNRJ2gEMSMtfabLu8KY7kHQHcAdAz549Lxg/fnzegjcz68giYOH6HRzYsHxzRAw6Vv1SJ5SCi4hpwDSAqqqqmDNnTokjMjNrH97euJMP3vtbVn/jw6tzqV/qW17rgFMy5kekZVnrSOoC9AW25LiumZkdp9Vb9rSqfqkTyh+AcZLGSOpG0sg+s0mdmcDUdPpG4LlIerScCdycPgU2BhgHvFakuM3MOrzVW3a3qn5Jb3mlbSKfA54CKoEHI2KRpK8BcyJiJvAA8GNJy4GtJEmHtN5PgcVAHfDnEVFfki9iZtYBrdm6h97dc08TJW9DiYgngSeblP1txvQ+4KZm1v068PWCBmhm1kmt3rKHUQNPZGGO9Ut9y8vMzMrU6i27GTWgZ871nVDMzOwoB+sbWLttL6P6n5jzOk4oZmZ2lPXb91LXEIwe6CsUMzNrg1Wbkye8RvuWl5mZtUXjOyijB/qWl5mZtcGqzbs5sVslg3p1z3kdJxQzMzvKO1t2M3pAT5K+eHPjhGJmZkd5Z/NuxrSiQR6cUMzMrInGR4Zb034CTihmZtbEum3JI8OteakRnFDMzKyJxkeGx/qWl5mZtUVjQnEbipmZtcmqzbvp3aML/Xt2a9V6TihmZnaEVZt3M3ZQr1Y9MgxOKGZm1sTKml2tbj8BJxQzM8uw90A963fsc0IxM7O2OdQppBOKmZm1xcrNuwA4dVCvVq9bkoQiqb+kZyQtS3+elKXOJEkvS1okab6kP8pY9pCkVZLmpZ9Jxf0GZmYd08qa43tkGEp3hfJVYFZEjANmpfNN7QH+OCLOBK4B/llSv4zlX46ISelnXuFDNjPr+FbW7GJ4vxM4oVtlq9ctVUKZAkxPp6cD1zetEBFvR8SydHo9sAkYVLQIzcw6oRU1uxk7qPVXJ1C6hDI4IqrT6Q3A4JYqS7oQ6AasyCj+enor7F5JuXfYb2ZmWUUEK2t2HVf7CUCXPMdziKRngSFZFt2VORMRISla2M5Q4MfA1IhoSIvvJElE3YBpwFeArzWz/h3AHQAjR45s5bcwM+s8NtbuZ/eBek49ziuUgiWUiJjc3DJJGyUNjYjqNGFsaqZeH+DXwF0R8UrGthuvbvZL+iHwpRbimEaSdKiqqmo2cZmZdXYrapInvMYe5xVKqW55zQSmptNTgSeaVpDUDZgB/CgiHm+ybGj6UyTtLwsLGq2ZWSfQmFBOO7l9JZR7gA9IWgZMTueRVCXp/rTOJ4D3A7dleTz4YUkLgAXAQOAfihu+mVnHs3zTLnp178LJvY+vWbpgt7xaEhFbgKuylM8Bbk+nfwL8pJn1ryxogGZmndDyTbs49eTWdwrZyG/Km5kZkCSU046z/QScUMzMDKjdd5BNO/cfd/sJOKGYmRnJ1Qkcf4M8OKGYmRmHE8o4JxQzM2uL5Zt20a1LBaf0P/G4t+GEYmZmLNu4k1MH9aKy4vie8AInFDMzA5Zt2tWm213ghGJm1unt3l/H2m17OX2wE4qZmbXBoQb5wb3btB0nFDOzTu7tjTuBtj3hBU4oZmad3rL0Ca9RA46v2/pGTihmZp3c0g07Oa2NT3iBE4qZWaf39sadnDGkbe0n4IRiZtap7dh7kOod+xjXxie8wAnFzKxTW5Y2yI/3FYqZmbXFWxuShHJ6Gx8ZBicUM7NObemGnfTu3oXh/U5o87acUMzMOrGlG3Zy+pDexz1KYyYnFDOzTioieGtDbV6e8IISJhRJ/SU9I2lZ+vOkZurVS5qXfmZmlI+R9Kqk5ZIek9SteNGbmbV/1Tv2UbuvjgntPaEAXwVmRcQ4YFY6n83eiJiUfj6aUf4N4N6IOA3YBnymsOGamXUsS9MG+TOG9MnL9kqZUKYA09Pp6cD1ua6o5GbflcDjx7O+mZnBkg21AIwf2v6vUAZHRHU6vQEY3Ey9HpLmSHpFUmPSGABsj4i6dH4tMDzbypLuSNefU1NTk7fgzczauyXVOxne7wT69Oial+11yctWmiHpWWBIlkV3Zc5EREiKZjYzKiLWSRoLPCdpAbAj1xgiYhowDaCqqqq5fZiZdTpLqmuZkKerEyhwQomIyc0tk7RR0tCIqJY0FNjUzDbWpT9XSnoBOA/4OdBPUpf0KmUEsC7vX8DMrIPad7CelTW7uPasbP/nPz6lvOU1E5iaTk8FnmhaQdJJkrqn0wOBS4HFERHA88CNLa1vZmbZvb1xJw0BE4fmp0EeSptQ7gE+IGkZMDmdR1KVpPvTOhOAOZLeJEkg90TE4nTZV4AvSlpO0qbyQFGjNzNrxxavTxrkJ+QxoRT0lldLImILcFWW8jnA7en0bODsZtZfCVxYyBjNzDqqxdW19OrehZH9T8zbNv2mvJlZJ7R4fdIgX9HGQbUyOaGYmXUyDQ3BkupazhzWN6/bdUIxM+tk3tmym90H6vPaIA9OKGZmnc6itEF+4jAnFDMza4NF62vpWqm8DKqVyQnFzKyTWbR+B6cP7k23LvlNAU4oZmadSESwcN0Ozh6e3wZ5cEIxM+tU1m3fy7Y9Bzkzz+0n4IRiZtapLFyX9K17lq9QzMysLRas20FlhfLa5UojJxQzs05kwbpaTh/cmx5dK/O+bScUM7NOIiJYsHY7Zw/P/9UJOKGYmXUaa7clDfLnjOhXkO07oZiZdRJvrt0OwLlOKGZm1hbz1+6gW2UFZwzJ7xvyjZxQzMw6iTff3c6EYX3y/oZ8IycUM7NOoL4heUP+3BH5f/+kkROKmVknsHzTLnYfqGfSKYVpP4ESJRRJ/SU9I2lZ+vOkLHWukDQv47NP0vXpsockrcpYNqn438LMrP14892kQb5QT3hB6a5QvgrMiohxwKx0/ggR8XxETIqIScCVwB7g6YwqX25cHhHzihK1mVk79ca72+jdowtjB/Ys2D5KlVCmANPT6enA9ceofyPwm4jYU9CozMw6qDfWbGfSKf3yOoZ8U6VKKIMjojqd3gAMPkb9m4FHmpR9XdJ8SfdK6t7cipLukDRH0pyampo2hGxm1j7t3l/H2xt3cl4B20+ggAlF0rOSFmb5TMmsFxEBRAvbGQqcDTyVUXwnMB54D9Af+Epz60fEtIioioiqQYMGteUrmZm1S/PX7qAhYNLIwiaULoXacERMbm6ZpI2ShkZEdZowNrWwqU8AMyLiYMa2G69u9kv6IfClvARtZtYBzV2zDYDzTjnq+ae8KtUtr5nA1HR6KvBEC3U/SZPbXWkSQpJI2l8WFiBGM7MO4Y012xg7qCcn9exW0P2UKqHcA3xA0jJgcjqPpCpJ9zdWkjQaOAV4scn6D0taACwABgL/UISYzczanYhg7prtnD+ysFcnUMBbXi2JiC3AVVnK5wC3Z8y/AwzPUu/KQsZnZtZRvLNlD1t3H+CCUWWQUCRdCtwNjErri6QtfWxhQzMzs7aa885WgPJIKMADwBeA14H6woZjZmb5NHfNNvr06MJpg3oVfF+5JJQdEfGbgkdiZmZ5N+edbZw/6qSCvtDYKJeE8rykbwK/APY3FkbE3IJFZWZmbbZt9wGWbdrF9ecd1RRdELkklIvSn1UZZUHSv5aZmZWpOauT90+qitB+AjkklIi4ohiBmJlZfs15ZyvdKis4t8BdrjQ65nsokvpK+nZjf1iSviWpcCO0mJlZXrz2zlbOGdGXHl0ri7K/XF5sfBDYSdIFyieAWuCHhQzKzMzaZs+BOhas3cGFY/oXbZ+5tKGcGhEfz5j/e0kef8TMrIy9sWY7dQ3Be4qYUHK5Qtkr6bLGmfRFx72FC8nMzNrq1ZVbqFBxXmhslMsVymeB6Wm7iYCtwG2FDMrMzNrmlVVbOWt4X/r06Fq0febylNc84FxJfdL52oJHZWZmx23fwXrmrdnO1EtGFXW/zSYUSbdExE8kfbFJOQAR8e0Cx2ZmZsdh7pptHKhv4OJTBxR1vy1doTSOZN87y7JmR1g0M7PSemVF0n5SNbp4DfLQQkKJiPvSyWcj4veZy9KGeTMzK0OzV2zh7BH9itp+Ark95fWvOZaZmVmJ7TlQx5trt3Px2OLe7oKW21AuBi4BBjVpR+kDFOe1SzMza5XXVm3lYH1wSZHbT6DlNpRuQK+0TmY7Si1wYyGDMjOz4zN7xRa6VVbwniK3n0DLbSgvAi9KeigiVud7x5JuIhkJcgJwYTr8b7Z61wDfIbkquj8iGsefHwM8CgwgGfzr1og4kO84zczak5eWbeb8Uf04oVvxbyQ124Yi6Z/Tye9Kmtn0k4d9LwQ+Bvy2hRgqge8B1wITgU9Kmpgu/gZwb0ScBmwDPpOHmMzM2q0tu/azuLqWy04bWJL9t3TL68fpz38qxI4jYgkcfq+lGRcCyyNiZVr3UWCKpCUk47F8Kq03neRq5weFiNXMrD34/YotAFxabgklIl5Pf77YWCbpJOCUiJhfhNgAhgPvZsyvJRnwawCwPSLqMsqzDkkm6Q7gDoCRI0cWLlIzsxL73ds19D2hK+eMKM74J03lMh7KC5L6SOoPzAX+XVJOb8lLelbSwiyfKW0NPFcRMS0iqiKiatCgQcXarZlZUUUEv1u2mUtPG0BlEcaPzyaXziH7RkStpNuBH0XE30nK6QolIia3LTzWAadkzI9Iy7YA/SR1Sa9SGsvNzDqlZZt2saF2H+8fV7r/OOfyYmMXSUNJBtf6VYHjaeoPwDhJYyR1A24GZkZEAM9z+PHlqcATRY7NzKxsvLi0BoD3nV7eCeVrwFPAioj4g6SxwLK27ljSDZLWAhcDv5b0VFo+TNKTAOnVx+fS/S8BfhoRi9JNfAX4oqTlJG0qD7Q1JjOz9urFt2sYd3Ivhvc7oWQx5NJ9/c+An2XMrwQ+3vwauYmIGcCMLOXrgesy5p8EnsxSbyXJU2BmZp3angN1vLZqK398cXG7q28ql0b5EZJmSNqUfn4uaUQxgjMzs2ObvXwLB+obuGL8ySWNI5dbXj8EZgLD0s8v0zIzMysDzy3dxIndKqkaXbzhfrPJJaEMiogfRkRd+nkI8PO3ZmZlICJ4/q1NvG/cQLp3KW2/vbkklC2SbpFUmX5uIXls18zMSmxJ9U6qd+zjqvGDSx1KTgnl0ySPDG9IPzcCf1LIoMzMLDezlmwE4PLxpb9xlMtTXquBjxYhFjMza6Vn39rEuaf04+TePUodSk5PeY2V9EtJNelTXk+k76KYmVkJbardx5vvbucDE0r7dFejXG55/T/gp8BQkqe8fgY8UsigzMzs2J5Jb3d9YOKQEkeSyCWhnBgRP854yusnQOmvrczMOrmnF21kZP8TOX1wr1KHAuSWUH4j6auSRksaJel/Ak9K6p/2QGxmZkW2c99BZq/YzAcnDj7WuFJFk0tvw59If/5pk/KbgQDcnmJmVmTPvbWJg/XB1WeVx+0uyO0przHFCMTMzHL3nws3MKh3dy4YWdq34zPlcsvLzMzKyN4D9bywtIarzxxMRYkG08rGCcXMrJ15Yekm9h6s57qzhpY6lCM4oZiZtTO/XlDNgJ7duHBMeT0XlcuLjbMkXdekbFrhQjIzs+bsOVDHrCWbuOasIXSpLK9rglyiGQN8RdLfZZRVFSgeMzNrwXNvJbe7PnzOsFKHcpRcEsp24CpgcNoFS98Cx2RmZs2YOW89g3p3L7vbXZBbQlH6hvyfAT8HXgLa1HGMpJskLZLUICnr1Y6kUyQ9L2lxWvcvM5bdLWmdpHnp57ps2zAz60h27D3IC0tr+Mg5w6gso6e7GuXyYuO/NU5ExEOSFgB/3sb9LgQ+BtzXQp064K8iYq6k3sDrkp6JiMXp8nsj4p/aGIeZWbvx1MINHKhv4KOTyu92F+T2YuN9TeZfJxkj5bhFxBKgxe4CIqIaqE6nd0paAgwHFje7kplZBzbjjXWMGdiTc0eUZ8tDeT0i0AxJo4HzgFczij8nab6kByU1+6qopDskzZE0p6ampsCRmpkVxvrte3ll1RamTBpWNn13NVWwhCLpWUkLs3ymtHI7vUjabj4fEbVp8Q+AU4FJJFcx32pu/YiYFhFVEVE1aFDpRzQzMzseM95YRwR87LwRpQ6lWbm0oRyXiJjc1m1I6kqSTB6OiF9kbHtjRp1/B37V1n2ZmZWriODnc9fyntEnMXLAiaUOp1lle8tLyTXdA8CSiPh2k2WZ/Q3cQNLIb2bWIc1ds52VNbu58YLyvTqBEiUUSTdIWgtcDPxa0lNp+TBJT6bVLgVuBa7M8njwP0paIGk+cAXwhWJ/BzOzYnn89bWc0LWSD5Xhy4yZCnbLqyURMQOYkaV8PXBdOv0SkLXlKSJuLWiAZmZlYs+BOn755nquPXsIvbqX5JSds7K95WVmZvDr+dXs2l/HJy8cWepQjskJxcysjD3y2hrGDupJ1ajyGUirOU4oZmZl6q0Ntcxds51PXTiybN89yeSEYmZWph5+ZQ3dulTw8fPL++muRk4oZmZlaNf+On4xdy0fPmcoJ/XsVupwcuKEYmZWhmbMXcvuA/Xc8t5RpQ4lZ04oZmZlJiKY/vJqzhnRl/NO6VfqcHLmhGJmVmZeWr6Z5Zt2MfXi0e2iMb6RE4qZWZl54KVVDOzVnQ+fO/TYlcuIE4qZWRlZvmkXLyyt4db3jqJ7l8pSh9MqTihmZmXk/t+tpHuXCm55b/m/Gd+UE4qZWZnYtHMfv5i7jhsvGMGAXt1LHU6rOaGYmZWJB196h7qGBm5/39hSh3JcnFDMzMpA7b6DPPzKaq49eyhjBvYsdTjHxQnFzKwM/Gj2O+zcX8dn/8uppQ7luDmhmJmV2O79dTzw0iquHH8yZw3vW+pwjpsTiplZif34ldVs23OQv7jytFKH0iZOKGZmJbRrfx33vbiCy88YxHkjy3/Mk5aUakz5myQtktQgqaqFeu+kY8fPkzQno7y/pGckLUt/tu/fgpl1Wg/9fhXb9hzk85NPL3UobVaqK5SFwMeA3+ZQ94qImBQRmYnnq8CsiBgHzErnzczalW27D3DfiyuZPGEwk9pRJ5DNKUlCiYglEbG0DZuYAkxPp6cD17c9KjOz4vrBiyvYdaCOL199RqlDyYtyb0MJ4GlJr0u6I6N8cERUp9MbgMHNbUDSHZLmSJpTU1NTyFjNzHK2dtseHpr9DjecN5wzhvQudTh50aVQG5b0LDAky6K7IuKJHDdzWUSsk3Qy8IyktyLiiNtkERGSorkNRMQ0YBpAVVVVs/XMzIrpW0+/jYAvfbBjXJ1AARNKREzOwzbWpT83SZoBXEjS7rJR0tCIqJY0FNjU1n2ZmRXLvHe3M+ONdXz28lMZ1u+EUoeTN2V7y0tST0m9G6eBD5I05gPMBKam01OBXK94zMxKKiL42i8XMbBXd/7s8vb7Vnw2pXps+AZJa4GLgV9LeiotHybpybTaYOAlSW8CrwG/joj/TJfdA3xA0jJgcjpvZlb2ZryxjrlrtvPlq0+nd4+upQ4nrwp2y6slETEDmJGlfD1wXTq9Eji3mfW3AFcVMkYzs3yr3XeQ//PkW5x7Sj9uuuCUUoeTdyVJKGZmndG3n36bLbv38+BtVVRUtJ+x4nNVtm0oZmYdyZvvbmf6y+9w63tHcc6I9v8SYzZOKGZmBXawvoE7f7GAQb2686UO8hJjNr7lZWZWYPe9uILF1bX82y0X0KeDNcRn8hWKmVkBLd2wk3+ZtZwPnTOUa87K9q53x+GEYmZWIAfqGvjCY/Po3aMLf//RM0sdTsH5lpeZWYF8Z9bbLK6uZdqtFzCwV/dSh1NwvkIxMyuAl1ds4fsvrOCmC0bwwTM79q2uRk4oZmZ5tnX3AT7/2BuMGdCTuzvBra5GvuVlZpZHDQ3B5x+bx7bdB3lg6nvo2b3znGZ9hWJmlkf/+txyfvt2DX/30YmcNbxvqcMpKicUM7M8mbVkI/88621uOG84n7pwZKnDKTonFDOzPFi+aSd/+eg8zhzWh/9zw9lIHa+vrmNxQjEza6Otuw9w+/Q59OhawX23VnFCt8pSh1QSnae1yMysAPYdrOe//WgO63fs45H/dhHDO9AIjK3lKxQzs+NU3xB88afzeH31Nu79xCQuGNW/1CGVlBOKmdlxiAj+5j8W8OSCDfzNhybwoXOGljqkknNCMTNrpYjgnv98i0dee5c/v+JUbn/f2FKHVBZKNab8TZIWSWqQVNVMnTMkzcv41Er6fLrsbknrMpZdV9xvYGadVUTwzaeWct+LK7nlvSP50gc77vgmrVWqRvmFwMeA+5qrEBFLgUkAkiqBdRw5Dv29EfFPhQzSzCxTRPCPTy3lBy+s4FMXjeRrHz2rUz4e3JySJJSIWAK05hdxFbAiIlYXLCgzsxY0NAR//8tFTH95NZ+6aCT/MOWsDjkufFu0lzaUm4FHmpR9TtJ8SQ9KOqkUQZlZ53CwvoEv/nQe019ezR3vH8vXr3cyyaZgCUXSs5IWZvlMaeV2ugEfBX6WUfwD4FSSW2LVwLdaWP8OSXMkzampqTmOb2JmndmOvQe57Yev8R/z1vPlq8/gzmvH+zZXMwp2yysiJudpU9cCcyNiY8a2D01L+nfgVy3EMQ2YBlBVVRV5isnMOoF3t+7hTx76A6u37OabN57DTVWnlDqkstYe3pT/JE1ud0kaGhHV6ewNJI38ZmZ589KyzfyPR9+gviH40acv4uJTB5Q6pLJXqseGb5C0FrgY+LWkp9LyYZKezKjXE/gA8Ismm/hHSQskzQeuAL5QpNDNrINraAi+9/xy/vjBVxnYqxsz/uwSJ5Mcleoprxkc+QhwY/l64LqM+d3AUb/JiLi1oAGaWae0edd+vvL4fGa9tYmPnDuMez52dqcaIKutfKTMzIDn39rElx9/k9p9ddz9kYlMvWS0G99byQnFzDq12n0H+cZv3uLhV9cwfkhvfnL7RYwf0qfUYbVLTihm1ilFBE8t2sDfzVzEpp37uf2yMXzp6jPo0bVzjmWSD04oZtbpvLt1D1/71WKeWbyRCUP7MO3WKs49pV+pw2r3nFDMrNPYsecg331+GdNnr6aiAu68djyfvmwMXSvbS6ch5c0Jxcw6vH0H63nktTV8Z9Yyduw9yI3nj+CvPngGQ/r2KHVoHYoTipl1WHsO1PHIa+8y7bcr2Fi7n0tPG8BfXzeBM4f1LXVoHZITipl1ODv3HeRHL6/mwZdWsWX3Ad47tj/fumkSl542wI8CF5ATipl1GIvW7+DhV9fwxBvr2H2gnsvPGMTnrjiNqtGde6z3YnFCMbN2bd/Ben41v5qHX13NG2u2071LBR85dxhTLx7N2SN8a6uYnFDMrN05UNfA71ds5sn51Ty1aAO1++oYO6gn/+vDE7nx/BH0PbFrqUPslJxQzKxdyEwiTy/eyI69B+ndvQuTJw7mpqoRXDzW7SOl5oRiZmVr7bY9zF6xhdnLN/P80pojksiHzh7K+04fSPcufrO9XDihmFnZqNm5n9krNvPyii3MXrGFNVv3ADCgZzeuHH+yk0iZc0Ixs5LYX1fPso27WFJdy8J1O3h55Rbe3rgLgN7du3DR2AHcdsloLj1tIKcP7uXbWe2AE4qZFVzNzv0sqa7N+OxkRc0u6hqSUbl7dK3gPaP7c8N5I7jk1AGcOawPXdwdSrvjhGJmebHvYD2bavdTvWMv63fs5a3qnSxOk8fmXfsP1RvSpwcThvbmqgknM2FoHyYM7cOYgT2prPAVSHvnhGJmLYoIdu6vY8OOfYc/tfuo3rGPjRk/t+4+cMR63SorGDe4F5efMShNHL2ZMKQPJ/XsVqJvYoXmhGLWgUQEDQENEdQ3xOGfDVAfyXxDQ1CfUd4Qwc59dVTv2HsoQWyoPZw4NuzYx54D9Ufta0DPbgzp24NhfXtw/sh+DOnTgyF9k8/Qvj0YNaCne/HtZEqWUCR9E/gIcABYAfxJRGzPUu8a4DtAJXB/RNyTlo8BHiUZc/514NaIONB0fSsPDY0ntzh8cktOaEeXN2SeCCOob+DQdFvLj9xfsqw+spU3iSWj/Ojttr688UR+aLvNxdd4XJp8n2Q+S+KItv+uulSIwWlymDCkD1eccfIRyWJInx6c3Ke7n7Syo5TyCuUZ4M6IqJP0DeBO4CuZFSRVAt8DPgCsBf4gaWZELAa+AdwbEY9K+jfgM8APWhNA4//mjjgBHDqJNCk/9A/66PKIjBPkESdKmpy4mi+POPIkduQJhCxxHF0eceSJ6cgTIlniOLo8Dh0HssRx+Ps3F0dziaO9qhBUVghJVEpUVuhQWYVERUVGeQVU6sjyigpRmZYrrZeUQ9eKiqTuoe2mdY/aX1J+1P6ylB/6KdJ9Z5YnZRVqUl4BPbt1YWjfExjctzsDe3anwu0ZdhxKllAi4umM2VeAG7NUuxBYHhErASQ9CkyRtAS4EvhUWm86cDfHSCiL1tdy+t/85tDJNtrpeU7i0MmgImM68yTRUvmhE0rjSTHjBNmlsoIeXY8uT06Y6XTjyeqIco44oTVXfviEli2Oo8sPn1jJEsfhk/ihuhkn7Mbp1pQfeYLHj6qatUK5tKF8GngsS/lw4N2M+bXARSS3ubZHRF3XELXTAAALL0lEQVRG+fBsG5Z0B3BHOrt/2devW5iXiPNrILC51EFkUY5xlWNM4Lhay3G1TqnjGpVLpYImFEnPAkOyLLorIp5I69wF1AEPFyKGiJgGTEv3NSciqgqxn7ZwXLkrx5jAcbWW42qdco2rqYImlIiY3NJySbcBHwauish6A2odcErG/Ii0bAvQT1KX9CqlsdzMzEqkZM/0pU9v/U/goxGxp5lqfwDGSRojqRtwMzAzTT7Pc7jdZSrwRKFjNjOz5pXyIfHvAr2BZyTNS5/UQtIwSU8CpFcfnwOeApYAP42IRen6XwG+KGk5SZvKAznsc1qev0O+OK7clWNM4Lhay3G1TrnGdQRlv9NkZmbWOn6N1czM8sIJxczM8qLDJBRJ10haKmm5pK9mWd5d0mPp8lcljc5YdmdavlTS1UWM6YuSFkuaL2mWpFEZy+rTtqV5kmbmK6Yc47pNUk3G/m/PWDZV0rL0M7XIcd2bEdPbkrZnLCvI8ZL0oKRNkrK+v6TEv6Qxz5d0fsayQh6rY8X1X9N4FkiaLencjGXvpOXzJM0pclyXS9qR8bv624xlLf7+CxzXlzNiWpj+PfVPlxXkeEk6RdLz6TlgkaS/zFKnJH9fxy3S7jba84ekn68VwFigG/AmMLFJnT8D/i2dvhl4LJ2emNbvDoxJt1NZpJiuAE5Mpz/bGFM6v6uEx+o24LtZ1u0PrEx/npROn1SsuJrU/wvgwSIcr/cD5wMLm1l+HfAbQMB7gVcLfaxyjOuSxv0B1zbGlc6/Awws0fG6HPhVW3//+Y6rSd2PAM8V+ngBQ4Hz0+newNtZ/i2W5O/reD8d5QrlUBctkXQQ+SgwpUmdKSRdtAA8DlwlSWn5oxGxPyJWAcvT7RU8poh4Pg4/Mv0Kyfs0hZbLsWrO1cAzEbE1IraR9Md2TYni+iTwSJ723ayI+C2wtYUqU4AfReIVkvejhlLYY3XMuCJidrpfKN7fVi7Hqzlt+bvMd1zF+tuqjoi56fROkidZm/b4UZK/r+PVURJKti5amv5iDtWJ5HHkHSSPG+eybqFiyvQZkv+JNOohaY6kVyRdn4d4WhvXx9NL7MclNb5cWqhj1aptp7cGxwDPZRQX6ngdS3NxF/JYtVbTv60Anpb0upKuiYrtYklvSvqNpDPTsrI4XpJOJDkx/zyjuODHS8kt+POAV5ssag9/X4eUS19enZqkW4Aq4L9kFI+KiHWSxgLPSVoQESuKFNIvgUciYr+kPyW5sruySPvOxc3A4xGROUhHKY9X2ZJ0BUlCuSyj+LL0WJ1M8h7YW+n/4IthLsnvapek64D/AMYVad+5+Ajw+4jIvJop6PGS1IskgX0+Imrztd1S6ChXKM110ZK1jqQuQF+SLlxyWbdQMSFpMnAXSY8Bh8ZJjYh16c+VwAsk/3vJh2PGFRFbMmK5H7gg13ULGVeGm2lyS6KAx+tYmou7kMcqJ5LOIfn9TYmILY3lGcdqEzCD/NzizUlE1EbErnT6SaCrpIGUwfFKtfS3lffjJakrSTJ5OCJ+kaVK2f59ZVXqRpx8fEiutFaS3AZpbNA7s0mdP+fIRvmfptNncmSj/Ery0yifS0znkTREjmtSfhLQPZ0eCCwjTw2UOcY1NGP6BuCVdLo/sCqN76R0un+x4krrjSdpJFUxjle6zdE038j8IY5sNH2t0Mcqx7hGkrQHXtKkvCfQO2N6NnBNEeMa0vi7Izkxr0mPXU6//0LFlS7vS9LO0rMYxyv93j8C/rmFOiX7+zqu71TqAPL4x3IdyVMSK0h6Mwb4Gsn//AF6AD9L/5G9BozNWPeudL2lwLVFjOlZYCMwL/3MTMsvARak/6gWAJ8p8rH6v8CidP/PA+Mz1v10egyXk4yyWbS40vm7gXuarFew40Xyv9Vq4CDJferPAP8d+O/pcpEMArci3XdVkY7VseK6H9iW8bc1Jy0fmx6nN9Pf8V1FjutzGX9br5CR8LL9/osVV1rnNpIHdDLXK9jxIrkNGcD8jN/TdeXw93W8H3e9YmZmedFR2lDMzKzEnFDMzCwvnFDMzCwvnFDMzCwvnFDMzCwvnFCs7KS9Cn8+Y/4pSfdnzH9LSU/NwyQ93sw2XpBUlU7/dUb56OZ6nG3P8vW92rIdSfdLmphO//Wx6lvH44Ri5ej3JO+WIKmC5GXFMzOWXwLMjoj1EXFjDtsri5Nb2kNDhxURt0fE4nS2LI65FZcTipWj2cDF6fSZwEJgp6STJHUHJgBzM/83LekESY9KWiJpBnBCWn4PcEI6lsXD6TYrJf17OgbF05JOaBqApI8oGTfnDUnPShosqSIdG6NfRr1l6bJBkn4u6Q/p59J0+d2Sfizp98CP05h/J2lu+jmUOCV9X9Jbkp6R9KSkG9NlF0h6Me2c8Km0t9nG8jclvUnSE8RR0mPyoYz5hyTdKKlS0jfTWOenfbY1XbeHpB8qGQvkjbRfMNJ1/0nJuCHzJf1FWv6CpKqmx1zS15pccX5dWcb+sA6g1G9W+uNPtg9JVxIjgT8leXP4f5O8RXwp8Lu0zmjSrjSAL5KOjwKcA9SRvlVMxlgp6Tp1wKR0/qfALVn2fxKHuwi5HfhWOv0d0reSgYuAZ9Pp/0fSiSBp3EvS6buB14ET0vkTgR7p9DgOv8F+I/AkyX/yhpC85X4j0JUkwQ5K6/1RxvecD7w/nf4mWboVIek6Z3o63Y2kh9oTgDuAv0nLuwNzSLo9yTymf5Wxr/Ek3aT0IBm753GgS7qsf/rzhRaO+dx0uoLkre8Bpf4b8yf/nw59CW7t2mySW1uXAN8m6Zr7EpJhB36fpf77gX8BiIj5kua3sO1VETEvnX6d5ITX1AjgsfRqoBtJggN4DPhb4IekA7Wl5ZOBiZIa1++T9iILSZc6e9PprsB3JU0C6oHT0/LLgJ9FRAOwQdLzafkZwFkkvdxCMhBVdXqV1C8O93r7Y5KBtJr6DfCd9MruGuC3EbFX0geBcxqvgkj6sRpH0vVJo8uAfwWIiLckrU7jnUzSL15duqzFcUYi4h1JWySdBwwG3oiMziqt43BCsXLV2I5yNsktr3dJ/sdcS3Iyb4v9GdP1pLfHmvhX4NsRMVPS5SRXGgAvA6dJGgRcD/xDWl4BvDci9mVuJE0CuzOKvkDSf9u56TpH1M9CwKKIuPiIwozbbi2JiH2SXiAZkOmPSAauatzuX0TEU022OzqX7R6H+0n6yhoCPFigfViJuQ3FytVs4MPA1oioT/8X3I+kbWV2lvq/BT4FIOkskttejQ6m3YS3Rl8Odwc+tbEwIoKkC/Nvk9zWavyf9tMkwxKTxjCphe1Wp1cit5JccUCSQD+etqUMJhkqF5IOSwdJujjdbldJZ0bEdmC7pMZxTv5rC9/lMeBPgPcB/5mWPQV8tvG4SDpdUs8m6/2ucbuSTie5lbeUZHTAP218yEDp2OtNND3mM0iukN6T7ts6ICcUK1cLSJ7ueqVJ2Y6I2Jyl/g+AXpKWkPRQ/HrGsmnA/IxG+VzcDfxM0utA0/09BtzC4dtdAP8DqEobqReTtPtk831gatqQPp7DVy8/J+kFdzHwE5KBqHZEMhzujcA30nXmkT4BR5IkvidpHskVR3OeJhm87dl0e5BcMSwmebhhIXAfR9+x+D5QIWlB+l1vi2ScnPtJ2lPmpzF9Kss+jzjm6X6fJxk2oj5LfesA3NuwWZmQ1CuSkQwHkAyxcGlEbCh1XPmg5PHvucBNEbGs1PFYYbgNxax8/CptG+kG/O8OlEwmAr8CZjiZdGy+QjEzs7xwG4qZmeWFE4qZmeWFE4qZmeWFE4qZmeWFE4qZmeXF/wfndM96MMfO+AAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "width_averaged_velocity = np.trapz(streamwise_velocity, y, axis=1)/width\n",
-    "_ = plt.plot(width_averaged_velocity, z)\n",
-    "_ = plt.xlabel('Width averaged velocity')\n",
-    "_ = plt.ylabel('z position')\n",
-    "plt.autoscale(tight=True)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "2.01214778177025"
-      ]
-     },
-     "execution_count": 17,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "cross_section_averaged_velocity = np.trapz(width_averaged_velocity, -z)/depth\n",
-    "cross_section_averaged_velocity"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 18,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "0.0"
-      ]
-     },
-     "execution_count": 18,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "round(cross_section_averaged_velocity - input_data_frame.loc[cell_number, 'Vmag_mps'], 1)"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.7"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/nonrandom constant particle.ipynb b/notebooks/nonrandom constant particle.ipynb
deleted file mode 100644
index ded47bb..0000000
--- a/notebooks/nonrandom constant particle.ipynb	
+++ /dev/null
@@ -1,259 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>100.0</td>\n",
-       "      <td>4.94</td>\n",
-       "      <td>125.0</td>\n",
-       "      <td>0.25</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.013555</td>\n",
-       "      <td>23.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                     100.0     4.94  125.0      0.25        0.0       0.0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1            0.013555    23.0  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import pandas as pd\n",
-    "hydraulic_csv_path = r'../test/nonrandom/data/highQ_1Cell.csv'\n",
-    "hydraulic_csv = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_csv"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "%matplotlib inline\n",
-    "import numpy as np\n",
-    "import scipy.io as sio\n",
-    "\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "mat_file_path = r'../test/nonrandom/data/constant_particle_property.mat'\n",
-    "results = sio.loadmat(mat_file_path, squeeze_me=False)\n",
-    "expected_x = np.squeeze(results['ResultsSim']['X'][0][0])\n",
-    "expected_y = np.squeeze(results['ResultsSim']['Y'][0][0])\n",
-    "expected_z = np.squeeze(results['ResultsSim']['Z'][0][0])\n",
-    "expected_time = np.squeeze(results['ResultsSim']['time'][0][0])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import os\n",
-    "import sys\n",
-    "\n",
-    "test_classes_module = os.path.realpath('../test/nonrandom/testclasses.py')\n",
-    "test_classes_path, _ = os.path.split(test_classes_module)\n",
-    "\n",
-    "sys.path.append(test_classes_path)\n",
-    "\n",
-    "from test_simulation import run_nonrandom_constant_simulation\n",
-    "\n",
-    "simulation_results = run_nonrandom_constant_simulation()\n",
-    "\n",
-    "time = simulation_results.time()\n",
-    "positions = simulation_results.results()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHkCAYAAAC357IRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XuclOV9///XZ2dnWGaBhQXEw4IQ8BgV0C3RqNRAVTT+oEmTSGMaIKk0xkRta6yYpjVWU40+Gk1stMRDNNHiqXylpkY8xJjWKC4RCZEoYJBDFDkusAdmZ/bz+2PuXWd3Z2EPc9h79/18POax933Nfc99zcXF8uH63Pd1mbsjIiIiIuFVUuwKiIiIiEjvKKATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZDLa0BnZsPN7HEz+72ZrTWzM8ys0syeNbN1wc8RwbFmZt83s/VmttrMTs34nHnB8evMbF5G+Wlm9tvgnO+bmeXz+4iIiIj0RfkeobsD+Lm7Hw9MBtYC1wLPu/sxwPPBPsAFwDHBayFwF4CZVQL/DHwMmAb8c0sQGBxzacZ5s/L8fURERET6nLwFdGZWAUwH7gVw94S77wHmAA8Ehz0A/HmwPQd40NNeAYab2RHA+cCz7r7L3XcDzwKzgveGufsrnp4d+cGMzxIREREZMPI5QjcB2A7cb2avm9k9ZlYOjHH394Jj3gfGBNtHAZszzt8SlB2sfEuWchEREZEBpTTPn30q8HV3f9XM7uDD9CoA7u5mlve1x8xsIek0LuXl5acdf/zx+b6kiIiISK+tXLlyh7uPPtRx+QzotgBb3P3VYP9x0gHdNjM7wt3fC9KmHwTvbwXGZpxfFZRtBc5pV/5iUF6V5fgO3H0xsBigurraa2pqev6tRERERArEzN7tynF5S7m6+/vAZjM7LiiaCbwJLANanlSdBzwZbC8Dvhg87Xo6UBukZp8BzjOzEcHDEOcBzwTv7TWz04OnW7+Y8VkiIiIiA0Y+R+gAvg48ZGYx4B1gAekg8lEz+zLwLvC54Nj/AS4E1gP1wbG4+y4z+xfgteC4G9x9V7D9VeDHwGDg6eAlIiIikhPz71/B5l317K5PMKg0wpfOGg/AkhWbaUikaGxKccrY4fx4wbSi1jOvAZ27rwKqs7w1M8uxDlzeyefcB9yXpbwGOKmX1RQREREBYMZtL9LQlCIei7C7PsHRlXE2bK9jbsnzLIg8zajltUQtyfkM44fJ2SxpnsmZk0YWu9p5H6ELhaamJrZs2UJjY2Oxq9IvlZWVUVVVRTQaLXZVREREWrWMvgGtI3AGvFfbyDWRh/ls5JeUbHMGRROUlyTanDuU7fxr9F4uPOFwpp/9ySLUvi0FdMCWLVsYOnQo48ePR4tN5Ja7s3PnTrZs2cKECROKXR0RERmg7v7lBp5e8x77G5Ntgrc/1ja2jr5VJOqIkmRIrIGYNX94chAatA8RHJje9OtCfYWDUkAHNDY2KpjLEzNj5MiRbN++vdhVERGRAeTuX27ggZc3AhCPRWhIpNi2t5HJvM03Ik9xQmIjQ2ggHmukzFJZP6NDAJdlorWXomcwPcd17wkFdAEFc/mjthURkXxrf+/biHiM92sbmWpvc01kCceVbKIk6gyzhqznZ/unKlsA1+ClJImwp+UeulUf5ZtHbeDSsyfm+Bt1jwK6PiISiXDyySe37s+dO5drr732IGf03p49e3j44Yf56le/2q3zrr/+eoYMGcLVV1+dp5qJiIh0riV9unlXPYNKI8RjEUqs3b1vtU5pNMmwko73x3c2zpAtgKvzGAc8SrNFeCw1ne+mPs/UsRXsbUzSkEhR2ZTi/9bvVEAXNnf/cgOnVFXw8YmjWste3rCD1Vtq+cqf9vwPc/DgwaxatSoXVeyyPXv28MMf/rDbAZ2IiEghzb9/Bau37GkN3hoSKd7f28gU3mZh5Ckm16+j3BopjaUYbMkPT+zk3jfIHrw5sM8HYzR/OALXPJOpYyt4d2c9IypiHJlIUduQ5IWrz8nHV+0xBXTddEpVBV97+HXu/PxUPj5xFC9v2NG6n2u1tbVMmzaNZcuWcdxxx/GXf/mXzJgxg0svvZQhQ4Zw6aWXsnz5cg4//HCWLFnC6NGj2bBhA5dffjnbt28nHo/zox/9iOOPP55t27bxla98hXfeeQeAu+66i+9///ts2LCBKVOmcO6553Lrrbdy66238uijj3LgwAE+9alP8e1vfxuAm266iQceeIDDDjuMsWPHctppp+X8+4qIiGTe+3YgmWJQaYTDhw1iV10Tc0t+zmWRJxlh+/BoSa/Tp3UeoxmjnsGsap7E4tRFrPJjObyijMFB4FjZlKIiHuM3l5+Vw2+ZewrouunjE0dx5+en8rWHX+cLHxvHT1/d1Brc9UZDQwNTpkxp3V+0aBEXX3wxd955J/Pnz+fKK69k9+7dXHrppQDU1dVRXV3N9773PW644Qa+/e1vc+edd7Jw4ULuvvtujjnmGF599VW++tWv8sILL3DFFVfwp3/6pyxdupRUKsX+/fu5+eabWbNmTevI4PLly1m3bh0rVqzA3Zk9ezYvvfQS5eXlLFmyhFWrVpFMJjn11FMV0ImISE60n7j38GGD2FbbyJSWe9+aNlHS4MRiiawPL3R39K3BY+xlCPelZrGkeSZHZgRvjU0pTh4Z54KTjuhV1q0YFND1wMcnjuILHxvH919YzxUzJvU6mIPOU67nnnsujz32GJdffjlvvPFGa3lJSQkXX3wxAF/4whf49Kc/zf79+3n55Zf57Gc/23rcgQMHAHjhhRd48MEHgfT9ehUVFezevbvNtZYvX87y5cuZOjU92rh//37WrVvHvn37+NSnPkU8Hgdg9uzZvf6+IiIy8GS7960hkWozdcio+lrKYgni1pT1M7oz+nbAo5SY85aP47vJuazyY/nI6HJ21SUYMTzGRGBsZbzoqzzkggK6Hnh5ww5++uomrpgxiZ++uonTJ47MSVCXTXNzM2vXriUej7N7926qqqqyHmdmNDc3M3z48B7fi+fuLFq0iL/5m79pU3777bf36PNERGRga58+HRGPsWlnPSf7W23ufSuJOeWW6HB+V4M3gEYvpZ4ydnpF6+jbpJbgrTxGQyLFGIfPVI8N3ehbVyig66bMe+Y+PnEUp08c2WY/1773ve9xwgkn8J3vfIcFCxbw61//mmg0SnNzM48//jhz587l4Ycf5qyzzmLYsGFMmDCBxx57jM9+9rO4O6tXr2by5MnMnDmTu+66i6uuuqo15Tp06FD27dvXeq3zzz+fb33rW1xyySUMGTKErVu3Eo1GmT59OvPnz2fRokUkk0n++7//u0PQJyIiA1u2iXvjsQjv1TZyakb6NFqazBq8QdcDuJbgrckjbdKnk0aXUx+kTieWx6iqjPPc35+T2y/aRymg66bVW2rbBG8t99St3lLbq4Cu/T10s2bNYsGCBdxzzz2sWLGCoUOHMn36dG688Ua+/e1vU15ezooVK7jxxhs57LDDeOSRRwB46KGHuOyyy7jxxhtpampi7ty5TJ48mTvuuIOFCxdy7733EolEuOuuuzjjjDM488wzOemkk7jgggu49dZbWbt2LWeccQYAQ4YM4ac//SmnnnoqF198MZMnT+awww7jT/7kT3rRgiIi0h+0T58adJy4t76h0/RpV6cOcaA+eHgh88nTzOCtJX1a1U/Spz1h3tnYZT9VXV3tNTU1bcrWrl3LCSecUKQa9cyQIUPYv39/savRZWFsYxER+VC2iXv/sKPuw6lDbB3DrL7X97450OAx9hFvffL0DY5lwqh0+rQsGqGxKcUpY4cPiODNzFa6e/WhjtMInYiIiLTRpUXra53S0t5N3NsSvDUSo87LeNPHtwZwY4aVAdDYlOKkkD55WkgK6EIqTKNzIiLSt7WfOqQ8FmHD9roeL1oPnY++1XuMJkpbnzx93Y9lYmb6tDzGSWWlCuC6SQGdiIjIANJ+0frd9Qkq47E2Adyo+tpuLVoPXZ+497d2HEePjKfTp/EIh/fjJ08LSQGdiIhIP9Y+fToiHms7cW/JJpprSxgUTVBe0vOpQzLTp5lTh7SfuPdEpU/zQgGdiIhIP9GViXsrEnUMjh7oeO9bN9OnnU3cO3lsBdv2HmidOqS/TNzb1ymgExERCan26dOGRKp16pBcTtzb2aL12SbuPV+jb0WhgK6PeP/997nqqqt47bXXGD58OGPGjOH222/n2GOPzXp8T6ctefHFF7ntttt46qmnOj1m1apV/PGPf+TCCy/s1mefc8453HbbbVRXH/LpahER6YGWqUMyF61/v7aRqRnp05Ko93rR+gYvJUnkkIvWD6SJe/s6BXR9gLvzqU99innz5rFkyRIA3njjDbZt29ZpQJdPq1atoqamptsBnYiI5E629GmJtZ06JNaQpDSW7PXEvft8MEkvodkiPJaazndTn2fS6PL0fXEhX7R+oFBA11ObV8DGX8H4s2Fs7+4N+MUvfkE0GuUrX/lKa9nkyZPZv38/M2fOZPfu3TQ1NXHjjTcyZ86cDuffcsst/PSnP6WkpIQLLriAm2++uc1o2Y4dO6iurmbjxo1tzluxYgVXXnkljY2NDB48mPvvv58JEybwT//0TzQ0NPC///u/LFq0iIsuuoivf/3rrFmzhqamJq6//nrmzJlDQ0MDCxYs4I033uD444+noSH7/whFROTQ5t+/gtVb9rS59+39vY0fTtwbpE9LYykGW7LD+d1NnzZjHaYO2VWXYERFjCMTKZodXrj6nJx/T8kPBXQ9sXkFPDAbUgmIxGDesl4FdWvWrOG0007rUF5WVsbSpUsZNmwYO3bs4PTTT2f27NlYxt/ap59+mieffJJXX32VeDzOrl27unzd448/nl/96leUlpby3HPPcd111/HEE09www03UFNTw5133gnAddddx4wZM7jvvvvYs2cP06ZN48/+7M/4j//4D+LxOGvXrmX16tWceuqpPW4DEZGBpn369MQjhrKrrom5JT/nssiTjLB9eLSk1+nTlnVPs03c25I+1dQh4aeAric2/iodzHkq/XPjr3o9SpeNu3Pdddfx0ksvUVJSwtatW9m2bRuHH3546zHPPfccCxYsIB6PA1BZWdnlz6+trWXevHmsW7cOM6OpKftyLcuXL2fZsmXcdtttADQ2NrJp0yZeeuklrrjiCgBOOeUUTjnllJ5+VRGRfq39xL3xWHr5qjbp03eSxGKJrHO/dXf0rcFjbRatP7Liw1UXNHFv/6SArifGn50emWsZoRt/dq8+7qMf/SiPP/54h/KHHnqI7du3s3LlSqLRKOPHj6exseMSK9mUlpbS3Jyezbuzc771rW/xiU98gqVLl7Jx40bOOeecrMe5O0888QTHHXdc176QiMgAl5k+PZBMcXRlvMPEvVFL9jp9mu3hhcx1T1sWrdfUIf2fArqeGDstnWbN0T10M2bM4LrrrmPx4sUsXLgQgNWrV/Puu+9y2GGHEY1G+cUvfsG7777b4dxzzz2XG264gUsuuaQ15VpZWcn48eNZuXIl06ZNyxosQnqE7qijjgLgxz/+cWv50KFD2bdvX+v++eefzw9+8AN+8IMfYGa8/vrrTJ06lenTp/Pwww8zY8YM1qxZw+rVq3vVDiIiYZRt3dPyWKRt+nTbvk6DN+gYwGUL3uDD9GnmxL0tU4e0LFqvdU8HJgV0PTV2Ws7SrGbG0qVLueqqq7jlllsoKytj/PjxXH/99VxxxRWcfPLJVFdXc/zxx3c4d9asWaxatYrq6mpisRgXXngh3/nOd7j66qv53Oc+x+LFi/nkJz+Z9brXXHMN8+bN48Ybb2xzzCc+8QluvvlmpkyZwqJFi/jWt77FVVddxSmnnEJzczMTJkzgqaee4rLLLmPBggWccMIJnHDCCVnvAxQR6W+6tO5pfbLTpbO6e+9bk0fapE8nZax7OrE8pqlDBADzzv4b0E9VV1d7TU1Nm7K1a9dywgknFKlGA4PaWETCqP3UIQeSKSrjMdZnpk+pJW5dX/e0s392W9Kn7SfuzVy0HpQ+HWjMbKW7H3KCV43QiYiIBLKte7pxR92HKy/YOsqbej91SEvw1kS0Tfp06tgK3t1ZT9ngSOvEvQrepCsU0ImIyIDUMvq2vzHZmj416LjuaWmWdU8D3UmfJoiSINo6cW/7ResnlseoiMf4zeVn5faLyoCggE5ERAaEg617+o3IU5yQ2MgQGnp971tn657OPH40a9/bR2NTiiOjEcqiEZ7XvW+SIwroAu7eZsJeyZ2Bdp+miPQNLRP3xmOR1vRpMdc9TTm8vGhmjr+lSFreAzoziwA1wFZ3v8jMJgBLgJHASuCv3D1hZoOAB4HTgJ3Axe6+MfiMRcCXgRRwhbs/E5TPAu4AIsA97n5zT+pYVlbGzp07GTlypIK6HHN3du7cSVlZWbGrIiL9WFfWPS2pdUqjyazp0+6se9rgMZJE2qRPte6pFFshRuiuBNYCw4L9W4DvufsSM7ubdKB2V/Bzt7tPMrO5wXEXm9mJwFzgo8CRwHNm1rJi/b8D5wJbgNfMbJm7v9ndClZVVbFlyxa2b9/e828pnSorK6OqqqrY1RCRfqTH654GgVtv1z2dMraCbXsPtKZPte6pFFteAzozqwI+CdwE/J2lh79mAJ8PDnkAuJ50QDcn2AZ4HLgzOH4OsMTdDwB/MLP1QMsjP+vd/Z3gWkuCY7sd0EWjUSZMmNDt7yciIoXRPn16dGU8L+ue1nmMZqzDygvt1z09X6Nv0sfke4TuduAaYGiwPxLY4+4t/13aAhwVbB8FbAZw96SZ1QbHHwW8kvGZmedsblf+sVx/ARERKayurHtass0ZFE1QXpLocH4u1j3NfPpUKy9IGOQtoDOzi4AP3H2lmZ2Tr+t0sS4LgYUA48aNK2ZVRESknfbpU4OurXvazfRpncc44FFKzFvTp6v8WD4yWuueSvjlc4TuTGC2mV0IlJG+h+4OYLiZlQajdFXA1uD4rcBYYIuZlQIVpB+OaClvkXlOZ+VtuPtiYDGkV4ro/VcTEZGeyJw65EAyxaDSCIcPG9QhfVoSc8qt4+gb5Gbd0xHlMRoSKcY4fKZ6rEbfJPTyFtC5+yJgEUAwQne1u19iZo8BnyH9pOs84MnglGXB/q+D919wdzezZcDDZvZvpB+KOAZYQfr/ZscET81uJf3gRMu9eSIi0ge0T58ePmwQ22obmdIydUjTJkoanFgs0au53xIeYT+Dte6pDFjFmIfuH4AlZnYj8Dpwb1B+L/CT4KGHXaQDNNz9d2b2KOmHHZLA5e6eAjCzrwHPkJ625D53/11Bv4mIiLSRmT49kExxdGW8Q/q0LJYgbk1Zz+9u+rTZIm1WXgDS654G6VMtnSUDhQ20SV+rq6u9pqam2NUQEQm9ztKnr2+uZW7J863p01J6t+5py9xvjcSyrnvakj4ti0Y0dYj0O2a20t2rD3WcVooQEZEuKVT6tOXetzov400f32blBUDrnopkoYBOREQ6aL/ywoFkisp4rFfp085G3+qDud8y1z2dmjFx74jyGCeXlWrqEJGDUEAnIiKto29A67qnG3fUMbll5QVbR3lTlpUXAr1Z9/QNjmXCqPTTp2WDI1Q2paiIx1iq0TeRLlNAJyIywLSMvu1vTLamTw34Y21j6+hbRaKOwaUHsq57Ct1LnyaIHnTdU03cK9J7CuhERPq5zIcXWtY93ba3kcm8zTciT3FCYiNDaCAea+zVvW+dpU9nHj+ate/t07qnInmkgE5EpJ/Jlj5t8/BCySZKot7rdU+7mj5NOby8aGYuv6KItKOATkQkxLqcPo1mT59mC96gYwDXMnVIkojSpyJ9kAI6EZEQKWT6dJ8PphlrXff0dT+WKRlPnyp9KtJ3KKATEenDZtz2Ig1NKeKxSGv69P3aRqbmOH1aF9z71j59OmZYGYODwPFwh/M1+ibSJymgExHpI9rP/RaPRSgxeK+2kWsiD/PZyC8pqXVKo8lep0/3+WAaPNZm3dMjKz4M3pQ+FQkXBXQiIkVysPTpwshTTK5fR7llmfstCNx6kz5d5cfykdHphxda1j0dq3VPRUJLAZ2ISIG0pE8z1z0tVvp0jMNnqsdq9E2kn1BAJyKSB11Jn8YakpTGklmXzuru6JvSpyIDmwI6EZEcmH//ClZv2dMavDUkUry/t5Eph0qfBroz+nbAo5SYK30qIq0U0ImI9ED79OmJRwxlV10Tc0t+zmWRJxlh+/BoSa/Tp41eSj1l7PSK1tG3SS3BW3lM6VMRARTQiYgcUpfSp+8kicUSOZn7rX36dNLocuqD1OnE8hhVlXGe+/tzcv49RSS8DhnQmdmJ7v5mu7Jz3P3FvNVKRKSIMtOnB5IpRsRjbNxRd+inTwO5WjqrJX1apfSpiBxCV0boHjWznwDfBcqCn9XAGfmsmIhIIWRbOuvwYYPapk+b9lESdcotkfUz2gdw2YI3OHj6tCwa0cMLItJjXQnoPgbcArwMDAUeAs7MZ6VERPKlffrUoOPSWfW9XzqrJXhr8ojSpyKSd10J6JqABmAw6RG6P7h7c15rJSKSI4dMn9o6hkXrs04dAt1Pn+5hGD9Mzu4QvCl9KiL51JWA7jXgSeBPgFHA3Wb2F+7+2bzWTESkm3qbPu3OwwsNHqORWJv06dSxFby7s56ywREqm1IK3kSkYLoS0H3Z3WuC7feAOWb2V3msk4hIlxQyfZog2mHprMljK9i290Br+rQiHuM3l5+V+y8qInIIhwzoMoK5zLKf5Kc6IiKda5n7LR6LsLs+wYh4jD/sqPtw8t4cpU9bls7KTJ9OzQjeyuIRxjicr4cXRKSP0Dx0ItInZUuflscibeZ+K6l1SkuTDCtp7HB+b9Onk0aXp99LpKhsSlERj7FUo28i0kcpoBORPuHuX27ggZc3ArQunZUtfTok1kDMMp7LCgK3XKdPdf+biISJAjoRKYps6dP3axuZam9zTWQJx5VsoiTqvV46S+lTERkIFNCJSN51OX0aVfpURKQnFNCJSM4VKn1a5zEOeJQSc6VPRWRAU0AnIr1WzPRpy9JZI8pjNCRSSp+KyICkgE5EuqX93G/xWIQSIy/p030+mAaPdVg6KzN9qqWzREQU0InIIRwsfbow8hST69dRbo2UxlIMtuSHJ+YoffqRlhE4LZ0lItKpvAV0ZjYWeBAYQ/o/24vd/Q4zqwQeAcYDG4HPuftuMzPgDuBCoB6Y7+6/CT5rHvCPwUff6O4PBOWnAT8mvc7s/wBXumf7p0JEuqolfXogmWpdOquY6dPPVI9V+lRE5BDyOUKXBP7e3X9jZkOBlWb2LDAfeN7dbzaza4FrgX8ALgCOCV4fA+4CPhYEgP8MVJMODFea2TJ33x0ccynwKumAbhbwdB6/k0i/0pX0aawhSWksmXX1BaVPRUT6hrwFdO7+Hum1X3H3fWa2FjgKmAOcExz2APAi6YBuDvBgMML2ipkNN7MjgmOfdfddAEFQOMvMXgSGufsrQfmDwJ+jgE6kUz1OnwaUPhUR6ZsKcg+dmY0HppIeSRsTBHsA75NOyUI62NuccdqWoOxg5VuylItIoFDp00YvpZ6yDnO/KX0qIlIYeQ/ozGwI8ARwlbvvtYx/IdzdzSzv97yZ2UJgIcC4cePyfTmRougL6dP6RKrN3G9Kn4qIFEZeAzozi5IO5h5y9/8KireZ2RHu/l6QUv0gKN8KjM04vSoo28qHKdqW8heD8qosx3fg7ouBxQDV1dV6aEL6hcz06YFkihHxGJt21nOyv5XT9GmDl5IkQj2DWdU8icWpi3iDY5kwSulTEZG+Ip9PuRpwL7DW3f8t461lwDzg5uDnkxnlXzOzJaQfiqgNgr5ngO+Y2YjguPOARe6+y8z2mtnppFO5XwR+kK/vI1Js8+9fweZd9a1LZx0+bBDbahuZ0pI+bdpEtDRJuSWynp+L9GlZNEJjU4qTRsa5QJP3ioj0GfkcoTsT+Cvgt2a2Kii7jnQg96iZfRl4F/hc8N7/kJ6yZD3paUsWAASB278ArwXH3dDygATwVT6ctuRp9ECE9BPt06cHkikq4zE2bK9jbsnzLIg8zaj6WspiCaVPRUQEG2jTtlVXV3tNTU2xqyHSxiHTpxakT8lz+rQ8BsBYpU9FRPoEM1vp7tWHOk4rRYgUQSHSpw40eIxGYkqfioj0cwroRPKskOnTeo/RRGmbud8mj61g294DSp+KiPRjCuhEcqxl9A1gd32CEfEYG3fUfTh5r62jvCk/T5/+1o7j6JHx9AhcPMIYh/M1+iYi0u8poBPppfbp0/JYpM3oW0WijsGlBxhW0pj1/O6kT5NESBDlsdR0vpv6fJulsxqbUpyo9KmIyICkgE6km1pWX4jHIuyuT3B0ZbxD+jQea6TMUh3O7U369HU/likZ6dMjoxGaHV64+pycf0cREQkXBXQiB9E+fTqoNILRdvWFkm3OoGiC8pKODzDkMn16uNKnIiLSCQV0Ihm6kj6NkmRIrIGYNX94YhC4KX0qIiLFoIBOBrTepE+hYwB3sMl7mzGlT0VEJC8U0MmA0TJ9yP7GZJsRuEKkT9/gWMYMK2NwLEJDIqX0qYiI5JQCOum35t+/gtVb9jCoNEI8CKTe39vIFN7mG5GnOCGxkSH1Db1KnwLUeYwDHqXZIp2mTzV5r4iI5JMCOuk3sqVPd9U1Mbfk51wWeZIRtg+PljDMGrKe3530qdHMHobxw+RsljTPZOrYCt7dWc+IihhHJlJKn4qISEEpoJNQKmb6dJUfy+EVH6ZPK5tSVMRj/Obys/LwTUVERA5NAZ2EQubi9S3p0217G5lchPTpyUqfiohIH6OATvqk9unTEfEY79c2MrVl8fqSTZREvVfpU0gHcM2Y0qciIhJqCuik6NovXh+PRSixdpP31jql0WTW5bO6OvqW8Aj7GUyTR9jLEO5LzWJJ88w2I3BKn4qISBgpoJOCO1j6dGHkKSbXr6Pcsixen4P06ZEVZQA0NqUYMTzGRKCqMs6PF0zL7ZcUEREpIAV0knftV184fNggttU2MqWH6VPoPIA7VPq0LBpR+lRERPotby7+AAAgAElEQVQdBXSSc+3nfzPosPpCWSxB3Jo6nNudxev3+WAaPKb0qYiIDHgK6KRX2qdPd9cnqIzHOsz/VhJzyq3n04e0pE9LzFuXz1rlx/KR0eXsqksofSoiIgOaAjrplq6kT5trS3o9/1ujl1JPGTu9os3o2666BCPKYzQkUoxx+Ez1WE0fIiIiA54COjmoHqdPu/EAw8HSp/XB3G8Ty2NUVcZ57u/PycO3FBERCTcFdNJGy/xvB5IpBpVGOPGIoTlPnzrQ4DH2EW+zeP2EUUqfioiI9IQCugGsK/O/xd5JEoslKLNUh/O7O/9bnZfxpo9vDeDGDPtwChEtXi8iItJzCugGkMz06YFkihHxGBt31B16/rdAd9KnSS/psHxWS/p0RHmMk8pKFcCJiIjkiAK6fuyQ6dOmfZREs6dPoWvLZ2VLn7Z5+jRj+ayXF83M/ZcUERERBXT9RaHSpy1Pnx4sfarF60VERApLAV1IZc7/1pI+3bSznpP9rZylTwEavJQkkQ6rL2zbe0DpUxERkT5CAV1IHHL+t6ZNREuTOUmfNhJrM/9by/JZZYMjrasvLNXqCyIiIn2GAro+qH369EAyRWU8lvPlsxq9lARRmrE2qy9MzhiBm1ge0/JZIiIifZwCuj6gZfQNYHd9ouPTp7aO8qb8p0/L4hHGOJyv9KmIiEioKKArgvbp0/JYpM3oW0WijsGlBxhW0pj1/K5OH6L0qYiIyMCggK4A2s//dnRlvEP6NB5r7NXTpw7Ue4wmSpU+FRERGWBCH9CZ2SzgDiAC3OPuNxezPi33v+1vTLZ5gKHN/G/b9uUsfVrP4Nb5335rx3H0yDi76hJKn4qIiAwgoQ7ozCwC/DtwLrAFeM3Mlrn7m4WuS0satSGRYvu+A5zsb/GNyFOckNjIkPqGXo3AtaRPk0RIEG2z+oIDDcEKDCdq/jcREZEBKdQBHTANWO/u7wCY2RJgDlDwgO7MSSO56WfbmVvyPJdFnmRcyY6sx3V1+pB9PrjN06ev+7FMyUifHhmN0OzwwtXn5Py7iIiISLiEPaA7Cticsb8F+FgxKnLp2RM5busTnL323tay3qRPW1ZfGByL0JBIcbjSpyIiItKJsAd0XWJmC4GFAOPGjcvbdaY3/Ro3yIzjDjb/28HSpycpfSoiIiJdFPaAbiswNmO/Kihrw90XA4sBqqurs4RYufFS9AzO9hdof4E6j9GMtZn/bebxo1n73j6lT0VERKTXwh7QvQYcY2YTSAdyc4HPF6MiP/rVBm5a9VHmlnyZBZGnGW511PqQ1vnfMkfgKptSpBxeXjSzGFUVERGRfibUAZ27J83sa8AzpKctuc/df1eMuvzf+p1MHF3Oa8xm4rTLufTsiSz71QZeW7GZiUBVZZwfL5hWjKqJiIhIP2ee7Savfqy6utpramqKXQ0RERGRQzKzle5efajjSgpRGRERERHJnwE3Qmdm24F383yZUUD2ieikJ9SeuaX2zC21Z26pPXNL7ZlbxWjPo9199KEOGnABXSGYWU1Xhkela9SeuaX2zC21Z26pPXNL7Zlbfbk9lXIVERERCTkFdCIiIiIhp4AuPxYXuwL9jNozt9SeuaX2zC21Z26pPXOrz7an7qETERERCTmN0ImIiIiEnAK6HDKzWWb2lpmtN7Nri12fvsTMxprZL8zsTTP7nZldGZRXmtmzZrYu+DkiKDcz+37QlqvN7NSMz5oXHL/OzOZllJ9mZr8Nzvm+mVnhv2lhmVnEzF43s6eC/Qlm9mrQBo+YWSwoHxTsrw/eH5/xGYuC8rfM7PyM8gHVn81suJk9bma/N7O1ZnaG+mfPmdnfBn/X15jZf5pZmfpn95jZfWb2gZmtySjLe5/s7Bph10l73hr8nV9tZkvNbHjGe93qez3p3znl7nrl4EV66bENwEeAGPAGcGKx69VXXsARwKnB9lDgbeBE4LvAtUH5tcAtwfaFwNOAAacDrwbllcA7wc8RwfaI4L0VwbEWnHtBsb93Adr174CHgaeC/UeBucH23cBlwfZXgbuD7bnAI8H2iUFfHQRMCPpwZCD2Z+AB4K+D7RgwXP2zx215FPAHYHBGv5yv/tntdpwOnAqsySjLe5/s7Bphf3XSnucBpcH2LRnt2e2+193+neuXRuhyZxqw3t3fcfcEsASYU+Q69Rnu/p67/ybY3gesJf1Lfw7pf0gJfv55sD0HeNDTXgGGm9kRwPnAs+6+y913A88Cs4L3hrn7K57+W/Ngxmf1S2ZWBXwSuCfYN2AG8HhwSPv2bGnnx4GZwfFzgCXufsDd/wCsJ92XB1R/NrMK0r/s7wVw94S770H9szdKgcFmVgrEgfdQ/+wWd38J2NWuuBB9srNrhFq29nT35e6eDHZfAaqC7W71vR7+/s0pBXS5cxSwOWN/S1Am7QTDzVOBV4Ex7v5e8Nb7wJhgu7P2PFj5lizl/dntwDVAc7A/EtiT8cspsw1a2y14vzY4vrvt3F9NALYD91s6hX2PmZWj/tkj7r4VuA3YRDqQqwVWov6ZC4Xok51do7/7EumRSuh+e/bk929OKaCTgjKzIcATwFXuvjfzveB/iXrsugvM7CLgA3dfWey69BOlpFMxd7n7VKCOdKqplfpn1wX3XM0hHSgfCZQDs4paqX6oEH1yoPR7M/smkAQeKnZdekoBXe5sBcZm7FcFZRIwsyjpYO4hd/+voHhbMPRP8PODoLyz9jxYeVWW8v7qTGC2mW0kPeQ/A7iDdJqlNDgmsw1a2y14vwLYSffbub/aAmxx91eD/cdJB3jqnz3zZ8Af3H27uzcB/0W6z6p/9l4h+mRn1+iXzGw+cBFwSRDAQvfbcyfd7985pYAud14DjgmecomRvvFxWZHr1GcE9wvcC6x193/LeGsZ0PLU1TzgyYzyLwZPbp0O1AYpgGeA88xsRDAKcB7wTPDeXjM7PbjWFzM+q99x90XuXuXu40n3tRfc/RLgF8BngsPat2dLO38mON6D8rnBU1gTgGNI3yg9oPqzu78PbDaz44KimcCbqH/21CbgdDOLB9+3pT3VP3uvEH2ys2v0O2Y2i/StK7PdvT7jrW71vaC/drd/51Y+nrQYqC/STxm9TfoJmG8Wuz596QWcRXrYfjWwKnhdSPo+gueBdcBzQGVwvAH/HrTlb4HqjM/6EukbVNcDCzLKq4E1wTl3Ekyc3d9fwDl8+JTrR0j/0lkPPAYMCsrLgv31wfsfyTj/m0GbvUXGk5cDrT8DU4CaoI/+P9JPBKp/9rw9vw38PvjOPyH9tKD6Z/fa8D9J34PYRHoU+cuF6JOdXSPsr07acz3p+9ta/l26u6d9ryf9O5cvrRQhIiIiEnJKuYqIiIiEnAI6ERERkZBTQCciIiIScgroREREREJOAZ2IiIhIyCmgExEREQk5BXQiIiIiIaeATkRERCTkFNCJiIiIhFzpoQ/pX0aNGuXjx48vdjVEREREDmnlypU73H30oY4bcAHd+PHjqampKXY1RERERA7JzN7tynFKuYqIiIiEnAI6ERERkZBTQCciIiIScqG5h87MNgL7gBSQdPdqM/sXYA7QDHwAzHf3PxavliIiIiKFF7YRuk+4+xR3rw72b3X3U9x9CvAU8E9FrJuIiIhIUYQtoGvD3fdm7JYDXqy6iIiIiBRLaFKupIO15WbmwH+4+2IAM7sJ+CJQC3yiiPUTERERKYowjdCd5e6nAhcAl5vZdAB3/6a7jwUeAr6W7UQzW2hmNWZWs3379sLVWERERKQAQhPQufvW4OcHwFJgWrtDHgL+opNzF7t7tbtXjx59yMmWRUREREIlFAGdmZWb2dCWbeA8YI2ZHZNx2Bzg98Won4iIiEgxheUeujHAUjODdJ0fdvefm9kTZnYc6WlL3gW+UsQ6ioiIiBRFKAI6d38HmJylPGuKVURERGQgCUXKVUREREQ6p4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREJOAZ2IiIhIyCmgExEREQk5BXQiIiIiIaeATkRERCTkFNCJiIiIhJwCOhEREZGQU0AnIiIiEnIK6ERERERCrrTYFegqM9sI7ANSQNLdq83sVuD/AxLABmCBu+8pXi1FRERECi9sI3SfcPcp7l4d7D8LnOTupwBvA4uKVzURERGR4ghbQNeGuy9392Sw+wpQVcz6iIiIiBRDmAI6B5ab2UozW5jl/S8BTxe4TiIiIiJFF5p76ICz3H2rmR0GPGtmv3f3lwDM7JtAEngo24lBALgQYNy4cYWqr4iIiEhBhGaEzt23Bj8/AJYC0wDMbD5wEXCJu3sn5y5292p3rx49enSBaiwiIiJSGKEI6Mys3MyGtmwD5wFrzGwWcA0w293ri1lHERERkWIJS8p1DLDUzCBd54fd/edmth4YRDoFC/CKu3+leNUUERERKbxQBHTu/g4wOUv5pCJUR0RERKRPCUXKVUREREQ6p4BOREREJOQU0ImIiIiEnAI6ERERkZBTQCciIiIScgroREREREJOAZ2IiIhIyCmgExEREQk5BXQiIiIiIaeATkRERCTkFNCJiIiIhJwCOhEREZGQU0AnIiIiEnIK6ERERERCLjQBnZltNLPfmtkqM6sJyj5rZr8zs2Yzqy52HUVERESKobTYFeimT7j7joz9NcCngf8oUn1EREREii5sAV0b7r4WwMyKXRURERGRoglNyhVwYLmZrTSzhcWujIiIiEhfEaYRurPcfauZHQY8a2a/d/eXunJiEAAuBBg3blw+6ygiIiJScKEZoXP3rcHPD4ClwLRunLvY3avdvXr06NH5qqKIiIhIUYQioDOzcjMb2rINnEf6gQgRERGRAS8UAR0wBvhfM3sDWAH8zN1/bmafMrMtwBnAz8zsmaLWUkRERKQIQnEPnbu/A0zOUr6UdPpVREREZMAKywidiIiIiHQiFCN0YTD//hVs3lXP7voEg0ojxGMR3tvTwIFUMwDNzVBSAs0OOJSWGEn39GQs1rGspOTg5/T2fV2zb32mrqlr6pq6pq4ZjmuWxyKUlpQwojxGQyJFY1OKU8YO58cLuvysZl4UNKAzs68DP3X33YW8biGcOWkkN/1sO3NLnmdB5GlG1dcStSRNpVFwJ1qapIlg25I4JRjNBy871Dm9fV/X7FufqWvqmrqmrqlr9v1rppxoc5I9tcP4YXI2S5pncuakkcUOQzB3L9zFzG4E5gK/Ae4DnvFCVgCorq72mpqavHz2S0u+y9lrb8rLZ4uIiEjf86sTvsn0udfk7fPNbKW7H3K9+oKO0Ln7P5rZt0hPO7IAuNPMHgXudfcNhaxLPkxv+jVu6dFaERER6d+c9L/9fUHB76Fzdzez94H3gSQwAnjczJ519/yFuAXwUvQMzvYXKOiQo4iIiBTNS9EzmF7sSlD4e+iuBL4I7ADuAb7h7k1mVgKsA0Ib0P3oVxu4adVHmVvy5fQ9dAT30GXk47udr+/COb19X9fsW5+pa+qauqauqWuG45p7CO6hW/VRvnnUBi49e2JR45BCj9BVAp9293czC9292cwuKnBdcur/1u9k4uhyltfP4peln9RTrv34mv3le+iauqauqWvqmt2/ZvunXCubUvzf+p0DK6Bz938+yHtrC1mXXCv248oiIiIycJUUuwIiIiIi0jsK6ERERERCTgGdiIiISMgpoBMREREJOQV0IiIiIiFX8ImFe8rMNgL7gBSQdPdqM6sEHgHGAxuBz/XHdWJFREREDiZsI3SfcPcpGWuaXQs87+7HAM8H+yIiIiIDStgCuvbmAA8E2w8Af17EuoiIiIgURZgCOgeWm9lKM1sYlI1x9/eC7feBMcWpmoiIiEjxhOYeOuAsd99qZocBz5rZ7zPfdHc3M892YhAALgQYN25c/msqIiIiUkChGaFz963Bzw+ApcA0YJuZHQEQ/Pygk3MXu3u1u1ePHj26UFUWERERKYhQBHRmVm5mQ1u2gfOANcAyYF5w2DzgyeLUUERERKR4wpJyHQMsNTNI1/lhd/+5mb0GPGpmXwbeBT5XxDqKiIiIFEUoAjp3fweYnKV8JzCz8DUSERER6TtCkXIVERERkc4poBMREREJOQV0IiIiIiGngE5EREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyCuhEREREQk4BnYiIiEjIKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEnAI6ERERkZALTUBnZhEze93Mngr2Z5jZb8xsjZk9YGalxa6jiIiISDGEJqADrgTWAphZCfAAMNfdTwLeBeYVsW4iIiIiRROKgM7MqoBPAvcERSOBhLu/Hew/C/xFMeomIiIiUmyhCOiA24FrgOZgfwdQambVwf5ngLHFqJiIiIhIsfX5gM7MLgI+cPeVLWXu7sBc4HtmtgLYB6QO8hkLzazGzGq2b9+e9zqLiIiIFFIYHiQ4E5htZhcCZcAwM/upu38BOBvAzM4Dju3sA9x9MbAYoLq62vNfZREREZHC6fMjdO6+yN2r3H086VG5F9z9C2Z2GICZDQL+Abi7iNUUERERKZo+H9AdxDfMbC2wGvhvd3+h2BUSERERKYYwpFxbufuLwIvB9jeAbxSzPiIiIiJ9QZhH6EREREQEBXQiIiIioaeATkRERCTkFNCJiIiIhJwCOhEREZGQU0AnIiIiEnIK6ERERERCTgGdiIiISMgpoBMREREJOQV0IiIiIiGngE5EREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyoQrozCxiZq+b2VPB/kwz+42ZrTKz/zWzScWuo4iIiEihhSqgA64E1mbs3wVc4u5TgIeBfyxKrURERESKKDQBnZlVAZ8E7skodmBYsF0B/LHQ9RIREREpttJiV6AbbgeuAYZmlP018D9m1gDsBU4vRsVEREREiikUI3RmdhHwgbuvbPfW3wIXunsVcD/wb52cv9DMasysZvv27XmurYiIiEhhhSKgA84EZpvZRmAJMMPMfgZMdvdXg2MeAT6e7WR3X+zu1e5ePXr06IJUWERERKRQQhHQufsid69y9/HAXOAFYA5QYWbHBoedS9sHJkREREQGhDDdQ9eGuyfN7FLgCTNrBnYDXypytUREREQKzty92HUoKDPbDryb58uMAnbk+RoDidozt9SeuaX2zC21Z26pPXOrGO15tLsf8n6xARfQFYKZ1bh7dbHr0V+oPXNL7Zlbas/cUnvmltozt/pye4biHjoRERER6ZwCOhEREZGQU0CXH4uLXYF+Ru2ZW2rP3FJ75pbaM7fUnrnVZ9tT99CJiIiIhJxG6ERERERCTgFdDpnZLDN7y8zWm9m1xa5PX2JmY83sF2b2ppn9zsyuDMorzexZM1sX/BwRlJuZfT9oy9VmdmrGZ80Ljl9nZvMyyk8zs98G53zfzKzw37SwzCxiZq+b2VPB/gQzezVog0fMLBaUDwr21wfvj8/4jEVB+Vtmdn5G+YDqz2Y23MweN7Pfm9laMztD/bPnzOxvg7/ra8zsP82sTP2ze8zsPjP7wMzWZJTlvU92do2w66Q9bw3+zq82s6VmNjzjvW71vZ7075xyd71y8AIiwAbgI0AMeAM4sdj16isv4Ajg1GB7KPA2cCLwXeDaoPxa4JZg+0LgacCA04FXg/JK4J3g54hge0Tw3orgWAvOvaDY37sA7fp3wMPAU8H+o8DcYPtu4LJg+6vA3cH2XOCRYPvEoK8OAiYEfTgyEPsz8ADw18F2DBiu/tnjtjwK+AMwOKNfzlf/7HY7TgdOBdZklOW9T3Z2jbC/OmnP84DSYPuWjPbsdt/rbv/O9UsjdLkzDVjv7u+4e4L0mrNzilynPsPd33P33wTb+0gv03YU6TZ6IDjsAeDPg+05wIOe9gow3MyOAM4HnnX3Xe6+G3gWmBW8N8zdX/H035oHMz6rXzKzKuCTwD3BvgEzgMeDQ9q3Z0s7Pw7MDI6fAyxx9wPu/gdgPem+PKD6s5lVkP5lfy+AuyfcfQ/qn71RCgw2s1IgDryH+me3uPtLwK52xYXok51dI9Sytae7L3f3ZLD7ClAVbHer7/Xw929OKaDLnaOAzRn7W4IyaScYbp4KvAqMcff3grfeB8YE252158HKt2Qp789uB64BmoP9kcCejF9OmW3Q2m7B+7XB8d1t5/5qArAduN/SKex7zKwc9c8ecfetwG3AJtKBXC2wEvXPXChEn+zsGv3dl0iPVEL327Mnv39zSgGdFJSZDQGeAK5y972Z7wX/S9Rj111gZhcBH7j7ymLXpZ8oJZ2KucvdpwJ1pFNNrdQ/uy6452oO6UD5SKAcmFXUSvVDheiTA6Xfm9k3gSTwULHr0lMK6HJnKzA2Y78qKJOAmUVJB3MPuft/BcXbgqF/gp8fBOWdtefByquylPdXZwKzzWwj6SH/GcAdpNMspcExmW3Q2m7B+xXATrrfzv3VFmCLu78a7D9OOsBT/+yZPwP+4O7b3b0J+C/SfVb9s/cK0Sc7u0a/ZGbzgYuAS4IAFrrfnjvpfv/OKQV0ufMacEzwlEuM9I2Py4pcpz4juF/gXmCtu/9bxlvLgJanruYBT2aUfzF4cut0oDZIATwDnGdmI4JRgPOAZ4L39prZ6cG1vpjxWf2Ouy9y9yp3H0+6r73g7pcAvwA+ExzWvj1b2vkzwfEelM8NnsKaABxD+kbpAdWf3f19YLOZHRcUzQTeRP2zpzYBp5tZPPi+Le2p/tl7heiTnV2j3zGzWaRvXZnt7vUZb3Wr7wX9tbv9O7fy8aTFQH2RfsrobdJPwHyz2PXpSy/gLNLD9quBVcHrQtL3ETwPrAOeAyqD4w3496AtfwtUZ3zWl0jfoLoeWJBRXg2sCc65k2Di7P7+As7hw6dcP0L6l8564DFgUFBeFuyvD97/SMb53wza7C0ynrwcaP0ZmALUBH30/5F+IlD9s+ft+W3g98F3/gnppwXVP7vXhv9J+h7EJtKjyF8uRJ/s7Bphf3XSnutJ39/W8u/S3T3tez3p37l8aaUIERERkZBTylVEREQk5BTQiYiIiIScAjoRERGRkFNAJyIiIhJyCuhEREREQk4BnYiIiEjIKaATERERCTkFdCIiIiIhp4BOREREJOQU0ImIiIiEXGmxK1Boo0aN8vHjxxe7GiIiIiKHtHLlyh3uPvpQxw24gG78+PHU1NQUuxoiIiIih2Rm73bluD6bcjWzWWb2lpmtN7Nrs7w/yMweCd5/1czGF76WIiIiIsXXJ0fozCwC/DtwLrAFeM3Mlrn7mxmHfRnY7e6TzGwucAtwceFrmzb//hVs3lXP7voEg0ojfOms8QAsWbGZhkSKxqYUp4wdzo8XTCtWFUVERKSf6pMBHTANWO/u7wCY2RJgDpAZ0M0Brg+2HwfuNDNzdy9kRVucOWkkN/1sO3NLnmdB5GlGLa8laknOZxg/TM5mSfNMausTfPxfn6exKcWI8hhDykq54KQj+MqfTixGlUVERKSf6KsB3VHA5oz9LcDHOjvG3ZNmVguMBHYUpIbtXHr2RI7b+gRnr723TflQtvOv0Xv5Z3+A+m1l1HkZb/p4FjdcxBscy/a9B3jw5Y00NqUYOzKuAE9ERES6ra8GdDllZguBhQDjxo3L23WmN/0aN7B25e5QZknK2E+l7WcsOzgvUkODx9jXEGdV8yQWpy7ijS3HUteYZPEvN1AWjShNKyIiIl3SVwO6rcDYjP2qoCzbMVvMrBSoAHZm+zB3XwwsBqiurs5bSval6Bmc7S/Q/gLWPsIDcIhbgjgJzo/UcF6khnqP0Vxr7GEYP2xUmlZERES6xop0y9lBBQHa28BM0oHba8Dn3f13GcdcDpzs7l8JHor4tLt/7lCfXV1d7fmYtuRHv9rATT/7/Yf30FFL3Bops1SHY7MFeNn+GBq9lHoy0rSpi1jlx3J4RVn6/SDIG1sZ1yieiIhIP2RmK929+pDH9cWADsDMLgRuByLAfe5+k5ndANS4+zIzKwN+AkwFdgFzWx6iOJh8BXTtn3I98YihPP/79EMSl0WeZITtowSn3BIdzu1qgOdAg8doJMZOr+C+1CyWNM9k6tgK3t1Zz4jyGA2JFGXRCC9cfU7Ov6OIiIgUVugDunzJV0DX3vz7V7B6yx4GlUaIxyIYsH57XZsRvDJLELemrOd3Ncir8xgHPEqzRXgsNZ3vpj7PpNHl1AdTpShNKyIiEl4K6DpRqICuvfYjeIcPG8Qbm2uZYm9zTWQJx5VsogQnRqJXadqER9jP4Kxp2sGxiObEExERCREFdJ0oVkDX3t2/3MADL28E4EAy1Rrkvb65tktpWugY5HWWpt3ngzGa0w9bBHPiKU0rIiLS9ymg60RfCeiy6UqaNmpJSkkx2JIdzu9NmvbIdg9aAHrYQkREpMgU0HWiLwd07bVP08aDlOkfaxu5JvIwn438khKcQZ6gvKTnD1u0pGmbPMJehrQ+bDFpdHn6QQylaUVERIpCAV0nwhTQZTPjthdpaEoRj0XYXZ/g6Mp4ztO0kB7Fa8aUphURESkiBXSdCHtA196h0rQV1BElyRBrIGbNHc7vbZo280ELzYknIiKSWwroOtHfArr2WtK0QGuq1iDnadoGLyVJhCaibebEU5pWREQkd/7/9u49Ss66vuP4+zuzO9mdDZtsSEpAEghgIBQJF2vxRjmmFUQOaCs9qVYBL6naenqjFA//aM/x1KJtvbQWOCrVHhWFqlhOUSEI9njDCwm3EEggIWDAzX3Z2dnZmf32j3lmMzs7z+7szjOXZ+bzOmdOZp6ZeXb2OQ/rx+czv99PgS5Epwe6amqpaZ0EgzZW9f311LQbzljBtr0jZCeKFa1qWhERkdop0IXoxkBXqbKmHcsVeOFIlnN4kk3Ju1hnu1jMWN01bdZ7yNFLjl7VtCIiIgugQBdCgW6mmx7Yyd2P7uWlbH6qph1IJdkxPBODcroAABiaSURBVKqaVkREpIUU6EIo0NVmtpp2IUuXzXc07YtHxqdqWne46rUna+kyERHpOgp0IRToFqZyTjyDqjVt2rJ1LV1WqmknMbb7am7Mb2SLr2V9WchTTSsiIt1CgS6EAl00qtW01ZYuq3dVCwfGPEWW1LSatjQnXl9vUjWtiIh0LAW6EAp0jVM+2GI8X6i7poXZv4tXXtOetmKATNlAC9DSZSIiEn8KdCEU6JqnmTVthr6qS5dlNJpWRERiTIEuhAJd69Ra00axdFkp5KmmFRGROFOgC6FA114qa9qhdIpd+0ZZH1zFW29PMWDZur+Lp5pWRETiSIEuhAJdeytdxdtzIDNjfdrSnHgp8qTIqaYVEZGOp0AXQoEufkpz4o3nCyzqSXLm8cew+YnhyJcuq1bTnrZigAOjOYYGUozlCpoTT0REmkqBLoQCXfzNtXRZVDXtqKcY914S5tPmxDulLOSBaloREWkcBboQCnSdp1k1rQMj3s+Yp1TTiohIUyjQhVCg6w5R17Qw+3fxVNOKiEgjKNCFUKDrTqppRUQkjhToQijQCdRW0yZwejzPYCI74/311rQnLOmjPwiW2YkCq45N86azjtdVPBERmUaBLoQCnYQp1bTpVJKDmRxD6RRPD49yrj3JdcnbOD3xLAm87pp21FNMYmToZ8vkadxSuIytrOW4waMhTzWtiIiAAl0oBTqp1U0P7ORLP94FMFXTvngkG/mkx6WreJPYtJp2/aolvHhkXIMtRES6mAJdCAU6WahG1LQwM+Q5MOYpsqSmDbZQTSsi0n0U6EIo0EmUVNOKiEgjxTbQmdky4OvAycAu4I/d/WCV1xWAR4KHz7r75bXsX4FOGmmumnad7WIxY6QtG8mceKppRUQ6W5wD3Y3AAXf/uJldDwy5+99Xed1L7r54vvtXoJNmKtW0L2XzHMzkWNRTrGl/fTjLxsRmrknezRJG6WdcNa2IiMwQ50C3HbjI3fea2fHA/e5+epXXKdBJLF1964PsOZABmKppd+0bnTbYYtAypG2i6vvrqWkfsdM56dg0B0Zz9PUmVdOKiLS5OAe6Q+6+NLhvwMHS44rX5YEtQB74uLt/u5b9K9BJu6kcbGHQsJo24ykm6JmqaR/ytZxasXTZ4r4eXcUTEWkTbR3ozOxeYGWVp24AvlQe4MzsoLsPVdnHy9z9eTM7BbgP2ODuO0N+3iZgE8Dq1avP3717dxS/hkhDtKKmHfU+HveTpw22AFTTioi0WFsHutnUWrlWvOc/gbvc/Y659q8rdBJHzappSyFvhLRqWhGRNhDnQPcJYH/ZoIhl7n5dxWuGgIy7j5vZcuAnwBXu/vhc+1egk05Qa03bZ7mqIW8+V/FU04qItE6cA92xwDeA1cBuitOWHDCzVwLvd/f3mtlrgJuBSSABfMrdv1DL/hXopBNVq2nTqSQ7h0c5r2xOvF7yDFiu6j5quYqnmlZEpLliG+gaTYFOukX5nHjj+QJD6RTP7s/wCt8+bemyBF415NVT025lLWuWD3BgNMfQQApAc+KJiCyAAl0IBTrpVtWWLhvLFaYNtljO4Uhq2hHvZ8xTHGHxtDnxANW0IiLzoEAXQoFO5KjSYItSTbtycBFb9xzmnAhrWoCs95Chr2pNq6XLRETCKdCFUKATCdfMmrZy6bLSYItSTTuWK9DXm+S+ay+K9HcUEYkTBboQCnQitWt2TZv3BJOW5PbChdxYeDunaTStiHQ5BboQCnQi9amlpk3gDNpY1ffXehUv50leol81rYh0NQW6EAp0ItEqr2lLV/DK58RTTSsisnAKdCEU6EQaq5aadraly6D2OfHCaloHxoKqVnPiiUicKdCFUKATab5qS5c9Mzw6raadJMEizzGQWPhVvDHvIU+SDP3T5sRTTSsicaVAF0KBTqT1Kmvag5kcy9IpdgyPsjGxmQ8k72TIRhpW056zagkvHhknO1GsaFXTiki7UqALoUAn0p6uvvVBHn7u0FRNazAV8KKsacc8RZ4kOXpV04pI21OgC6FAJxIPraxpt/haVi45WtNmJwqcvWqpli4TkaZToAuhQCcST3PVtKU58dKWpc8KM94/35rWmOQQg3wufzm3TW5gwxkr2LZ3RDWtiDSVAl0IBTqRzlE5J95AKhl5TQvFpcty9KqmFZGmU6ALoUAn0rmq1bS79o3OmBOvhwL9lp/x/npH065ZXpwTr683qZpWRCLRtEBnZpuBf3b3/y3bdou7b6prxw2iQCfSPSrnxBvPF+ZV08LMkBdW02Y8xSQ2raY9t2w0rZYuE5GFaGagexrYA9zn7h8Ntv3K3c+ra8cNokAn0t1qqWl7ydf9Xbys95Chb9rSZaXBFsBUyFu1LK2reCISqpmB7lfAq4DPAKuAPwV+oEAnInFQWdNWhrzSnHj11rSlKVOypNjvS/hi4ZKpq3i792dU04pIVc0MdA+5+7nB/auBvwWG3P3EunbcIAp0IjKX8jnxxvMFTlqW5qE9h6fVtH2WI20TVd8/3+/iqaYVkTDNDHR/5u43lz0+H/hzd393XTtuEAU6EZmvypp25eAitu45PG1OvAROipxqWhGJlEa5hlCgE5F6lc+JN54vTIW80lW8uZYug9oHW8xW0w4NpBjLFTQnnkgHU6ALoUAnIo0w19JlyzlMr+Xr/i7eqKcY914mLTltTrxMMB+ealqRzqJAF0KBTkSaobKmTQfLiP36cJbrkl/lyuQDpMjXXdPmPMlL9FetabV0mUj8KdCFUKATkVZ5wyfvZ2yiMFXTnnn8MWx+Yjjymrba0mWqaUXiSYEuhAKdiLSLVta0J1QMtAA02EKkDSnQhVCgE5F2VUtNm8BZ5DkGEjOv4s23pp3wJEdYPDXYonJ9WtW0Iq2nQBdCgU5E4qRU06ZTSQ5mctPmxIuqpoXiVbxqS5epphVpLQW6EAp0IhJnc9W0paXLFtsYKZuc8f56a9rygRaaE0+k8RToQijQiUgnqbZ0mUHkNW1pVYsJeqfNiaeaVqSxYhvozOxK4CPAOuBV7l41fZnZJcCngSTweXf/eC37V6ATkU5XS03rJBi0sarvr6em3XDGCrbtHSE7UaxoVdOK1CfOgW4dMAncDFxbLdCZWRJ4EvgD4Dng58CfuPvjc+1fgU5Euk1lTTuWK/DCkSzn8CSbknexznaxmLG6a9qs95Cjlxy9qmlFIhLbQFdiZvcTHuheDXzE3S8OHn8YwN3/ca79KtCJSLe76YGd3P3oXl7K5qdq2oFUkh3Do6ppRdpMpwe6twGXuPt7g8fvBH7X3f9irv0q0ImIzDRbTVuaE6/PcqRtour76x1N++KR8ama1h2ueu3JWrpMhDYPdGZ2L7CyylM3uPudwWvuJ6JAZ2abgE0Aq1evPn/37t2R/B4iIp2qck48g6o1bdqydS1dVqppJzG2+2puzG9ki69lfVnIU00r3aytA10tVLmKiLSPajXtysFFMwZb1LuqhQNjniJLalpNW5oTr683qZpWukqnB7oeioMiNgDPUxwU8XZ3f2yu/SrQiYhEo3ywxXi+UHdNC7N/F6+8pj1txQCZsoEWoKXLpDPFNtCZ2VuBzwIrgEPAFne/2MxOoDg9yaXB6y4FPkVx2pIvuvvHatm/Ap2ISGM0s6bN0Fd16bKMRtNKh4ltoGs0BToRkeaotaaNYumyUsirHE17YDQ3VdOuOjbNm846XoMtJFYU6EIo0ImItE5lTTuUTrFr3yjrg6t46+0pBixb93fxSjVthn62TJ7GLYXL2Mpa1iwvhjzVtBIXCnQhFOhERNpH6SrengOZGevTlubES5EnRa6umtaBEe9nzFOqaSVWFOhCKNCJiLS30px44/kCi3qSnHn8MWx+YnjBS5fB7N/Fq1bTDg2kGMsVNCeetJwCXQgFOhGReJlr6bKoatpRTzHuvSTMp82Jd8oK1bTSOgp0IRToRETirdaatod81SlToqhptXSZNIsCXQgFOhGRzlNZ064cXMSWPYc5157kuuRtnJ54lgRed01bbeky1bTSSAp0IRToREQ6300P7ORLP94FMFXTvngkG/loWtW00mgKdCEU6EREuk8tNW0Cp8fzDCayM95fb017wpI++oNgqTnxZD4U6EIo0ImICBytadOpJAczOYbSKZ4eHm1YTVs5J95xg0dDnmpaCaNAF0KBTkREqpmrpi0tXbbYxkjZ5Iz3z/cq3iQ2raZdv2oJLx4Z15x4Mo0CXQgFOhERqUW1pcsGUsm6alqYGfIcGPMUWVLT5sRTTSugQBdKgU5ERBaqlTXtI3Y6Jx2bnlqfVjVtd1CgC6FAJyIiUam1pk1btu6lyzKeYoIe1bRdRoEuhAKdiIg0SrWa1oBfH86yMbGZa5J3s4RR+hlXTSs1UaALoUAnIiLNdPWtD7LnQAZgqqbdtW902px4g5apuqoFqKbtdgp0IRToRESklSrnxDOoWtP2Wa7upcsqa9qHfC2nrhggE1zBGxpIsbivR1fx2pgCXQgFOhERaSfVatp0KsnO4VHOKxts0UueAcvNeP9CatpR7+NxP3nanHiAato2pEAXQoFORETaXflgi/F8gaF0imf3Z3iFb4+0pi2FvBHS0yY9XrNcS5e1CwW6EAp0IiISN42oaaH6VbywpcsA1bQtoEAXQoFORETirt6aFmq/ipf1HjL0qaZtEQW6EAp0IiLSiWqpaQcsSwKv+bt4tda0W3wtp6w4WtOO5Qr09Sa579qLIv0du5ECXQgFOhER6QaVNW1p4uPyOfGWcziymjbvCSYtye2FC7mx8HZO02jaSCjQhVCgExGRblWaE69U064cXMTWPYc5J+Kly3Ke5CX6q9a0pYmPNSdebRToQijQiYiIFM21dFmUNe2I9zOJzZgTTzXt7BToQijQiYiIVFdvTQu1hbzZaloHLV1WRoEuhAKdiIhI7WqpaSdJsMhzDCQWfhVvzHvIk5y2dJlqWgW6UAp0IiIiC1dZ0x7M5FiWTrFjeJSNic18IHknQzaimjYiCnQhFOhERESidfWtD/Lwc4emalqDqYB3TfJuljBKP+MMJrJV36+aNlxsA52ZXQl8BFgHvMrdq6YvM9sFjAAFIF/LLwsKdCIiIo1WqmkBDmZyDKVTPDM82pSadouvZeWSozVtdqLA2auWxnbpsjgHunXAJHAzcO0cge6V7r5vPvtXoBMREWmuuWra0mCLtGXps8KM98+3pjUmOcQgn8tfzm2TG9hwxgq27R0hO1GsaONU08Y20JWY2f0o0ImIiHSkysEWA6lk5DUtFJcuy9FLjt5Y1rTdEOieAQ5SDOQ3u/sttexXgU5ERKT9tLKm3cpa1iwvDrbo6022VU3b1oHOzO4FVlZ56gZ3vzN4zf3MHuhe5u7Pm9lvAfcAH3L3H4a8dhOwCWD16tXn7969O4LfQkRERBql3poWZoa8sJo24ykmsbasads60NVirkBX8dqPAC+5+yfneq2u0ImIiMRTLTVtL/m6v4vXTjVtRwc6MxsAEu4+Ety/B/gHd//uXPtVoBMREekMlTVtZcgrzYnXQ4F+y894fz017WPJM1g11M+B0VxD69nYBjozeyvwWWAFcAjY4u4Xm9kJwOfd/VIzOwX4VvCWHuCr7v6xWvavQCciItK5yufEG88XOGlZmof2HF7w0mVhNe2wL+Vf83/EbZMbuOHNZ/C+1zfmSl1sA12jKdCJiIh0j1qWLkvgpMgtqKb9v3U3cOHG6xr2+WsNdD0N+wQiIiIiLVZZhd70wE5eODLOXs7mg/nfngp5pat4lTVt5XUvs6Mhz4ELJ37SnF9kDgp0IiIi0jXe/3unzhjIcPWtD7JsoJcHet7M9/OXzFrTVga8H/a+mgub+PnDqHIVERERKVNLTTvCwNQUJ+3wHTpdoRMREREpM1tN+8jrLueC15/Ktp372P7dJ1i2P8OPduxvWKCrla7QiYiIiLSpWq/QJZrxYURERESkcbruCp2ZDQONXvtrObCvwT+jm+h4RkvHM1o6ntHS8YyWjme0WnE8T3L3FXO9qOsCXTOY2S9quTwqtdHxjJaOZ7R0PKOl4xktHc9otfPxVOUqIiIiEnMKdCIiIiIxp0DXGLe0+gN0GB3PaOl4RkvHM1o6ntHS8YxW2x5PfYdOREREJOZ0hU5EREQk5hToImRml5jZdjPbYWbXt/rztBMzW2VmPzCzx83sMTP7y2D7MjO7x8yeCv4dCrabmX0mOJYPm9l5Zfu6Knj9U2Z2Vdn2883skeA9nzErLZ/cucwsaWYPmdldweM1Zvaz4Bh83cxSwfZFweMdwfMnl+3jw8H27WZ2cdn2rjqfzWypmd1hZk+Y2TYze7XOz4Uzs78O/lt/1My+ZmZ9Oj/nx8y+aGa/MbNHy7Y1/JwM+xlxF3I8PxH8N/+wmX3LzJaWPTevc28h53ek3F23CG5AEtgJnAKkgK3Ama3+XO1yA44HzgvuHwM8CZwJ3AhcH2y/Hvin4P6lwN2AARcAPwu2LwOeDv4dCu4PBc89GLzWgve+qdW/dxOO698AXwXuCh5/A9gY3L8J+EBw/4PATcH9jcDXg/tnBufqImBNcA4nu/F8Br4EvDe4nwKW6vxc8LF8GfAM0F92Xl6t83Pex/FC4Dzg0bJtDT8nw35G3G8hx/ONQE9w/5/Kjue8z735nt9R33SFLjqvAna4+9PungNuA65o8WdqG+6+191/FdwfAbZR/KN/BcX/ISX49y3B/SuAL3vRT4GlZnY8cDFwj7sfcPeDwD3AJcFzg+7+Uy/+V/Plsn11JDM7EXgz8PngsQFvAO4IXlJ5PEvH+Q5gQ/D6K4Db3H3c3Z8BdlA8l7vqfDazJRT/2H8BwN1z7n4InZ/16AH6zawHSAN70fk5L+7+Q+BAxeZmnJNhPyPWqh1Pd/++u+eDhz8FTgzuz+vcW+Df30gp0EXnZcCessfPBdukQnC5+VzgZ8Bx7r43eOoF4LjgftjxnG37c1W2d7JPAdcBk8HjY4FDZX+cyo/B1HELnj8cvH6+x7lTrQGGgVutWGF/3swG0Pm5IO7+PPBJ4FmKQe4w8Et0fkahGedk2M/odO+meKUS5n88F/L3N1IKdNJUZrYY+G/gr9z9SPlzwf9L1LDrGpjZZcBv3P2Xrf4sHaKHYhXzH+5+LjBKsWqaovOzdsF3rq6gGJRPAAaAS1r6oTpQM87JbjnvzewGIA98pdWfZaEU6KLzPLCq7PGJwTYJmFkvxTD3FXf/ZrD5xeDSP8G/vwm2hx3P2bafWGV7p3otcLmZ7aJ4yf8NwKcp1iw9wWvKj8HUcQueXwLsZ/7HuVM9Bzzn7j8LHt9BMeDp/FyY3weecfdhd58AvknxnNX5Wb9mnJNhP6MjmdnVwGXAO4IAC/M/nvuZ//kdKQW66PwceHkwyiVF8YuP32nxZ2obwfcFvgBsc/d/KXvqO0Bp1NVVwJ1l298VjNy6ADgcVADfA95oZkPBVYA3At8LnjtiZhcEP+tdZfvqOO7+YXc/0d1Ppniu3efu7wB+ALwteFnl8Swd57cFr/dg+8ZgFNYa4OUUvyjdVeezu78A7DGz04NNG4DH0fm5UM8CF5hZOvh9S8dT52f9mnFOhv2MjmNml1D86srl7p4pe2pe515wvs73/I5WI0ZadOuN4iijJymOgLmh1Z+nnW7A6yhetn8Y2BLcLqX4PYLNwFPAvcCy4PUG/HtwLB8BXlm2r3dT/ILqDuCasu2vBB4N3vNvBBNnd/oNuIijo1xPofhHZwdwO7Ao2N4XPN4RPH9K2ftvCI7ZdspGXnbb+QycA/wiOEe/TXFEoM7PhR/PjwJPBL/zf1EcLajzc37H8GsUv4M4QfEq8nuacU6G/Yy430KO5w6K328r/e/STQs99xZyfkd500oRIiIiIjGnylVEREQk5hToRERERGJOgU5EREQk5hToRERERGJOgU5EREQk5hToRERCmNlSM/tgcP8EM7tjrveIiLSCpi0REQkRrDt8l7uf1eKPIiIyq565XyIi0rU+DpxqZlsoTrK6zt3PCpYKegvFNUpfTnEh+hTwTmAcuNTdD5jZqRQne10BZID3ufsTzf81RKTTqXIVEQl3PbDT3c8B/q7iubOAPwR+B/gYkHH3c4GfUFxGCeAW4EPufj5wLfC5pnxqEek6ukInIrIwP3D3EWDEzA4D/xNsfwQ428wWA68Bbi8ulQkUl78SEYmcAp2IyMKMl92fLHs8SfFvawI4FFzdExFpKFWuIiLhRoBjFvJGdz8CPGNmVwJY0fooP5yISIkCnYhICHffD/zIzB4FPrGAXbwDeI+ZbQUeA66I8vOJiJRo2hIRERGRmNMVOhEREZGYU6ATERERiTkFOhEREZGYU6ATERERiTkFOhEREZGYU6ATERERiTkFOhEREZGYU6ATERERibn/B+d6nJ6zOl/FAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, expected_x, 'x', label='Expected')\n",
-    "_ = x_position_axes.plot(time, positions[:, 0, 0], '.', label='Calculated')\n",
-    "_ = x_position_axes.legend()\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, expected_y, 'x')\n",
-    "_ = y_position_axes.plot(time, positions[:, 0, 1], '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, expected_z, 'x')\n",
-    "_ = z_position_axes.plot(time, positions[:, 0, 2], '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAHjCAYAAACQHv+fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmYHWWZ///3p7vTWViSzjIQEpIAooLKENISiDOIC6tLUBQZ+A1RYBB3Rh0N4lcUxAluoyg/IgoKjMgqkouBwQAC3xkg0AElQERCSEhCgEBCCASS7uT+/nGeDoem19Onu6q6P6/rOldXPfWcqruLJ8nNs1QpIjAzMzMz66marAMwMzMzs2JyImlmZmZmFXEiaWZmZmYVcSJpZmZmZhVxImlmZmZmFXEiaWZmZmYVcSJpZmZmZhVxImlmZmZmFXEiaWZmZmYVqcs6gMFi7NixMWXKlKzDMDMzM+vSwoULn4uIcV3VcyLZT6ZMmUJTU1PWYZiZmZl1SdLy7tTz0LaZmZmZVSQXiaSkvdspO7hK5z5c0qOSlkia3c7xoZKuTMcXSJpSduz0VP6opMO6e04zMzOzwSAvQ9tXSboM+D4wLP1sBA7szUkl1QLnA4cAK4H7JM2LiEfKqp0ErIuIN0k6FjgX+ERKbo8F3gbsAtwi6c3pO12ds98tXL6OuXc8ziNPreelzS00twQ1wFagvlaEoLklXrddyfG+OKev2bfXHLvDME58124cN31S3zZCMzMbdBQRWceApO0oJXDTgB2A3wLnRsTWXp73QODbEXFY2j8dICL+vazOzanO3ZLqgKeBccDs8rqt9dLXOj1nexobG6Ov5kguXL6OT/ziLlp6dbdsoKuvFXW1NRUnp3V1NYwaXu+k1MxsEJC0MCIau6qXlx7JZuAVYDilHskneptEJhOAFWX7K4HpHdWJiBZJ64ExqfyeNt+dkLa7OicAkk4BTgGYNKnv/uG9Z+nzTiKtS5u3BJu3bGFjO8c2drDdtuy5DZv5xnWL+O4ND4PUrUS0fkgtx0ybyOwj96ryb2RmZlnLSyJ5H3A98E5gLDBX0tER8fFsw+qdiLgQuBBKPZJ9dZ0Ddh9DXQ1OJq3fbGx+fWPrNBHdvIW5dy7l4v99grramk6Tz61bYa+dd+DrR+zFtMkNfftLmJlZr+UlkTwpIlrHfVcDMyX9cxXOuwrYtWx/Yiprr87KNLQ9Eni+i+92dc5+NW1yA1d+eobnSPqabzjesmUrm7dkP30FXusRbdVR8nnvsnUcfcFd7DC0lppatft7qkZOOM3MciAXcyT7SkoM/wa8j1Kydx9wXEQ8XFbnc8A7IuLUtNjmoxFxjKS3AZcD+1NabHMrsCegrs7Znr6cI2nWmTk3LuaqphVsbtlacfJaA7y0eUtnl8nM0Loahg+peUPM29XXMnVSA59+9x5ONs3Meqi7cyQHdCIJIOlI4CdALXBxRJwj6SygKSLmSRoGXAZMBdYCx0bE0vTdM4ATgRbgtIi4qaNzdhWHE0krukqeDJCXHtERQ2pAel1sTjTNzDrmRDJnnEjaYHX5gie5+H+WsublTZ0mn81bg5c3ZdPr2TbR9FxNMxvsnEjmjBNJs64tXL6OOTct5q+rX6S2pv1eztgavNKPK8uG1tUwpEZ+DJKZDSqFSCQlbQA6DCAiduzHcPqUE0mz6mkdZn/gyXVs3LzlDfM6m7cGm/oh2WztyWztZR09Ygiffc+eTjDNrPAKkUhuC0I6m9Jq7csoLWY5HhgfEd/KNLAqciJp1r/KezcjXj+c/urmrX2aaNbXivramm3X3G7YEN42fkfPxzSzwihaIvmXiPj7rsqKzImkWb50lGj29VzN7etrt62E98PazSyvipZI3kXp/dVXUBrq/ifgcxExI9PAqsiJpFlxtB067+vHIJW/vtJzMM0sD4qWSE4Bfgq8i1Ii+b+UHrezLLuoqsuJpNnA0NFjkDZt2UpzlR91VF8rRtTXEoJa1bj30sz6TaESycHAiaTZwHf5gic5/0+PsW5j87ZezGqvMm/tvfTQuJn1pUIlkpLeDFwA7BQRb5e0D/DhiPhuxqFVjRNJs8Gr9VmaL7zaTPOWrVV/WLuTSzOrtqIlkncA/wb8IiKmprKHIuLt2UZWPU4kzayt9h7WXq05mOXzLr1q3Mx6qruJZF1/BNMNIyLiXknlZS1ZBWNm1h+Omz7pDQtq2ntG5qstW3m1uWfD45u3BJu3bGEj8MIrLaxa9wp/fOSZbe8mH7vDMC/oMbNey0uP5E3A54GrI2I/SR8DToqIIzIOrWrcI2lmvdG297JaQ+PDh9RQP6TGr4U0s9cp2tD27sCFwAxgHfAEcHxELM80sCpyImlm1dZXyeUOQ2sZWl/rxxCZDWJFSyR3i4gnJG0H1ETEhtayrGOrFieSZtYf2iaX1Vg13voqSL8C0mzwKFoieX9E7NembGFETMsqpmpzImlmWal2z2XrcLifbWk2cBUikZT0VuBtwPcprdputSPwbxHxtkwC6wNOJM0sT+bcuJirmlawNaLXr4Wsq4Hth9Z5dbjZAFKURHImcBTwYWBe2aENwBURcVcmgfUBJ5Jmlmdt3z3e28cQbV9f62damhVYIRLJbUFIB0bE3VnH0ZecSJpZkbR9FeRLr7awpcKplu6xNCueoiWSlwBfiogX0n4D8KOIODHbyKrHiaSZFV35cHglz7Ys5x5Ls3wrWiL5QOsbbTorKzInkmY20JS/W7w3q8PraqBhRD1TJzW4t9IsJ4qWSP4FODgi1qX90cAdEfGObCOrHieSZjbQlb9T/KVXWyrusdxhaC07jqj3MLhZhoqWSJ4AfAO4OhV9HDgnIi7rxTlHA1cCU4BlwDGtiWqberOAb6bd70bEJal8GvAbYDhwI6Wh95D0A+BDwGbgceBTrUPynXEiaWaDTbV6LIfW1TBu+3o/w9KsHxUqkQSQtDfw3rR7W0Q80svzfR9YGxFzJM0GGiLi623qjAaagEYggIXAtIhYJ+le4IvAAkqJ5HkRcZOkQ1N8LZLOBWh73vY4kTSzwa4aPZb1tWLk8CEeBjfrY0VMJP8B2DMifi1pHLB9b95sI+lRSsPlqyWNB26PiLe0qfNPqc6n0/4vgNvT508R8db26pV9/yPAxyLi+K7icSJpZvZ6rT2Wz720mU0V9laOGl7H2B2G+VWOZlXW3USyrj+C6YqkMyn1Cr4F+DUwBPhP4F29OO1OEbE6bT8N7NROnQnAirL9lalsQtpuW97WiZSGz9sl6RTgFIBJk/wXnJlZueOmT9qW/JU/x7JlS/eHwV94pYUXXnmJb1y3iO/e8DDD6uu8EtysH+UikQQ+AkwF7geIiKck7dDVlyTdAuzczqEzynfS3Maqdr1KOgNoAX7bUZ2IuBC4EEo9ktW8vpnZQDJtcgNXnzpj2375ax03btpCczde6bixeSsbmzcz986l/Op/lnoluFk/yEsiubk82ZO0XXe+FBHv7+iYpGckjS8b2n62nWqrgIPL9idSGtZelbbLy1eVnfuTwAeB90Ve5gaYmQ0g5b2V8Now+LMbNnUrqWzZCmte2swfH3mGPz7yDDsMrWWnkcM9BG5WZbmYIynpq8CewCHAv1MaMr48In7Wi3P+AHi+bLHN6Ij4Wps6oyktsNkvFd1PabHN2nYW2/wsIm6UdDjwY+DdEbGmu/F4jqSZWXWU91au39jS4+/X14rthw3xELhZJ4q42OYQ4NC0+8eImN/L840BrgImAcspPf5nraRG4NSIODnVO5HSo4eg9MihX6fyRl57/M9NwBdSr+kSYCjwfPrOPRFxalfxOJE0M6u+8lc5Pv/y5h6vBHdSada+IiaSOwP7U3oMz30R8XTGIVWVE0kzs77Xm5XgfsOO2WsKlUhKOhn4FnAbIODdwFkRcXGmgVWRE0kzs/5VvhJ8U8tWNndjbmW5hhF1vHPKGCeVNigVLZF8FJgREc+n/THAXW2f+1hkTiTNzLI158bFXNW0gpc2tTipNOtC0RLJuyg98Htz2q+n9ADxGZ1/szicSJqZ5Ufrgp2VL7zS43mV47b38LcNfEVLJC8F3gFcT2mO5EzgwfQhIn6cXXTV4UTSzCyfejOv0kmlDVRFSyTP7Ox4RHynv2LpK04kzczyr3Ve5cOr1rOxhz2VOw6r47j9J3n1tw0IRUskh0XEq23KxkbEc1nFVG1OJM3MiqU1qXxwxQts6sGcSj9SyAaCoiWSDwKnRMQ9af9o4N8j4s3ZRlY9TiTNzIqrdU7l6hdf5eVNW7r9PSeVVlRFSyTfAVxM6fWEuwBjgJMjYmWWcVWTE0kzs4Gh0qSyrgZ23nEYn33Pnn5No+VeoRJJAElHAZcBG4CDImJJxiFVlRNJM7OBp9LV38Pqathn4ki+fsReXqRjuVSoRFLSRcAewKeANwM/pfRu6/MzDayKnEiamQ1slSaVfkal5VHREsnTgJ9GCkbSSODHEXFStpFVjxNJM7PBo9Kk8u92qOe097/FQ9+WuUIlkgCShgOTIuLRrGPpC04kzcwGp9bnVD67YRPN3Vz97aFvy1qhEklJHwJ+CNRHxG6S9qX0ru0PZxxa1TiRNDOzyxc8yY/nP8pzL23u9nc89G1ZKFoiuRB4L6XXIk5NZQ9FxNuzjax6nEiamVmrSh987qFv6y9FSyTviYgDJD1Qlkg+GBH7ZB1btTiRNDOz9lTy4HMPfVtfK1oieRFwKzAbOBr4IjAkIk7NNLAqciJpZmZdqWTo272U1heKlkiOAM4ADk1FNwPfbfvaxCJzImlmZt1VydC3eymtmgqVSA4GTiTNzKwSlQx97zisjuP2n+TXMlrFnEjmjBNJMzPrrZ4OfdfXin13HeVeSuux7iaSNf0RTFYkjZY0X9Jj6We7f4okzUp1HpM0q6x8mqRFkpZIOk+S2nzvK5JC0ti+/l3MzMyOmz6Jpm8ewrWfmcE7pzQwtFad1t+8Jbh32TqOvuAu/mHOrVy+4Ml+itQGiwHdIynp+8DaiJgjaTbQEBFfb1NnNNAENAIBLASmRcQ6SfdSWvizALgROC8ibkrf2xX4FfDWVP+5zmJxj6SZmfWFnvZSbldfyz8fMNnD3tapwg5tS7o/Ivar0rkeBQ6OiNWSxlN6TuVb2tT5p1Tn02n/F8Dt6fOniHhrB/WuAc4GrgcanUiamVmWFi5fx9w7HueuJc/x8uYtXdYfPqSGCQ0jOPFdu3nFt71BkYe2O++n75mdImJ12n4a2KmdOhOAFWX7K1PZhLTdthxJM4FVEfGXKsZqZmZWsWmTG/jlCY08fNbhfO8j72Ds9vWd1n+leStLnn2Jb1y3iP3Pme9hb6tIXdYBtOO/elJZ0i3Azu0cOqN8JyJCUq+7X9Ojir7Ba48q6qzuKcApAJMm+f/2zMysfxw3fRLHTZ+0bcX3fcvWdVr/2Q2b+cZ1i/jejY8wY4+xfh2jdVvuhrarqS+GtoGfU3p4+sZ0ionAU8D+EfF0R7F4aNvMzLLS02FvgP2nNHi19yBW2DmS1STpB8DzZYttRkfE19rUGU1pgU3rvMz7KS2eWdvOYpufRcSNbb6/DM+RNDOzgrh8wZOc/6fHWPVC99754TfnDE5OJAFJY4CrgEnAcuCYlCA2AqdGxMmp3omUhqsBzomIX6fyRuA3wHDgJuAL0eaGOZE0M7Mi6mkvpVd7Dy6FSiQl/V1EPNum7C0R8WhWMVWbE0kzM8urOTcu5tK7l3XrdYx+yPngULRE8lHg/0TEVWn/K8BJEbF3tpFVjxNJMzPLu54Oe08cNYzPvmdPD3sPQEVLJMcDFwKvUnpEz2LgKxHxUqaBVZETSTMzK4qevt/b8ygHnkIlkgCSPgecDmwFjo2IuzIOqaqcSJqZWRFdvuBJzv3vxax/paXLuqNGDOFrh73VCeUAUKhEMj0L8ilKK6R3BS4C7oyIr2YaWBU5kTQzsyLryasYtx9a6+dRFlzREsmjIuIPZft1wOkRcXaGYVWVE0kzMxsIuvuQ81Z7j9+Bs496hxPKgilUIjkYOJE0M7OBpKePD3JCWSxOJHPGiaSZmQ1Uc25czK//94luLczxSu9icCKZM04kzcxsoJtz42J+u2A5GzZ13UPpld755kQyZ5xImpnZYLFw+Tq+ed0iFj+9ocu6XumdT4VIJCUtAjoMICL26cdw+pQTSTMzG2ycUBZXURLJyWnzc+nnZenn8QARMbvfg+ojTiTNzGyw6slKb7/TOx8KkUhuC0J6ICKmtim7PyL2yyqmanMiaWZmg11PVnq7hzJb3U0ka/ojmG6QpHeV7cwgP7GZmZlZFUyb3MAvT2jk4bMO59SDdmdorTqs+8LGZr5x3SL2PeuPXL7gyX6M0noiLz2S04CLgZGp6AXgxIi4P7uoqss9kmZmZm8058bFXHr3MjY2b+20nnso+1ehhrZbSRoJEBHrs46l2pxImpmZday77/T2HMr+UaihbUk7SboIuCIi1kvaW9JJWcdlZmZm/eO46ZP4y5mH8b2PvIORw+s6rPfy5i3MvXOph7xzIheJJPAb4GZgl7T/N+C0zKIxMzOzTLQmlJ5DWQx5SSTHRsRVwFaAiGgBun4svpmZmQ1Is4/ci0fPOZJTD9qdEUM6TlecUGYrL4nky5LGkB5OLukAYMDNkzQzM7OemX3kXjxy9hFdDnm3JpT7nzPfCWU/ysViG0n7AT8D3g48BIwDPh4Rf8k0sCryYhszM7Pe6+6iHL/Lu3cKtdgGeBh4NzAD+DTwNuCvvTmhpNGS5kt6LP1s6KDerFTnMUmzysqnSVokaYmk8ySp7NgXJP1V0sOSvt+bOM3MzKz7ujuH8tkNm/nGdYs48qd3snB512/UscrkpUfyDW+x6e2bbVKCtzYi5kiaDTRExNfb1BkNNAGNlIbVFwLTImKdpHuBLwILgBuB8yLiJknvAc4APhARmyT9XUQ821U87pE0MzOrvu4+h3Lv8Ttw9lHvYNrkdvuVrI1C9EhK2jk9jHy4pKmS9kufg4ERvTz9TOCStH0JcFQ7dQ4D5kfE2ohYB8wHDpc0HtgxIu6JUqZ9adn3PwPMiYhNAN1JIs3MzKxvtM6hPPWg3Tut98jqDRx9wV0cM/cu91BWUdZD24cBPwQmAj8GfpQ+Xwa+0ctz7xQRq9P208BO7dSZAKwo21+Zyiak7bblAG8G/lHSAkl3SHpnRwFIOkVSk6SmNWvWVPp7mJmZWRdmH7kX135mBu+c0nmP473L1jmhrKKOlz/1g4i4BLhE0tERcW1Pvy/pFmDndg6d0eY6IalaY/h1wGjgAOCdwFWSdo925ghExIXAhVAa2q7S9c3MzKwd0yY3cPWpM1i4fB1zblrMfcs6ThRbE8pTD9rdb8nphUwTyVYRca2kD1BaZDOsrPysLr73/o6OSXpG0viIWJ2Gqtsbgl4FHFy2PxG4PZVPbFO+Km2vBH6fEsd7JW0FxgLucjQzM8uB8oTym9ctYvHTGzqsO/fOpVx2z3K/drFCWQ9tAyBpLvAJ4AuAgI8Dk3t52nlA6yrsWcD17dS5GThUUkNa1X0ocHMaEn9R0gFptfYJZd//A/CeFPebgXrguV7GamZmZlU2bXIDN512ENd+ZgZ77bxDh/X82sXK5WXV9oMRsU/Zz+2BmyLiH3txzjHAVcAkYDlwTESsldQInBoRJ6d6J/LafMxzIuLXqbyR0qsbhwM3AV9IQ+T1wMXAvsBm4KsRcVtX8XjVtpmZWbYuX/AkP57/KM+9tLnTelPGjOBHx+w7qFd4d3fVdl4SyQURMV3SPcBHgeeBhyPiTRmHVjVOJM3MzPKhuwnlYH5kUCEe/1PmBkmjgB8A9wPLgN9lGpGZmZkNSMdNn0TTNw/p8rWLfmRQ13LRI1lO0lBgWEQMqHdtu0fSzMwsn7r72sXBtMK7EEPbkj7a2fGI+H1/xdLXnEiamZnl22lXPMAf/vxUp3UGyzu8i5JI/rqTwxERJ/ZbMH3MiaSZmVn+deeRQTDw508WIpEcTJxImpmZFUd3E8r9pzTw9SP2GnAJZaESSUnfaq+8qweSF4kTSTMzs+Lp7grvo/bdhZ8cO7Wfoup7RVu1/XLZZwtwBDAly4DMzMzMWld4n3rQ7p3W+8OfnxqUDzTPRY9kW2nl9s0RcXDWsVSLeyTNzMyKbTDNnyxaj2RbI3j9u67NzMzMMtX6ysXvfeQdTBg1rMN6rc+fPO2KB/oxumzkokdS0iKgNZBaYBxwVkT8PLuoqss9kmZmZgPLwuXr+PKVf2b52o0d1hk1YghfO+ythXtcUNEW20wu220BnomIzp8KWjBOJM3MzAamOTcuZu6dSzutU7T3dxdtaHs8sDYilkfEKmC4pOlZB2VmZmbWldlH7sW1n5nBO6d0nCQue37jgBzuzksieQHwUtn+y6nMzMzMLPemTW7g6lNncO1nZjB59IgO6w201d15SSQVZWPsEbEV6Pgt6mZmZmY5NG1yA3d87T187yPvYOTw9lOZFzY2843rFnHwD/7EwuXr+jnC6spLIrlU0hclDUmfLwGdTzYwMzMzy6njpk/iL2cexlH77tJhndbh7mPm3lXYhDIvieSpwAxgFbASmA6ckmlEZmZmZr30k2Ondjncfe+ydRx9wV3MuXFxP0ZWHblYtT0YeNW2mZnZ4Hb5gic5978Xs/6Vjh9Mk5fV3YV4/I+kn/Ha8yPfICK+2I/h9CknkmZmZgZw2hUP8Ic/P9VpnVMP2p3ZR+7VTxG9UVESyVmdHY+IS/orlr7mRNLMzMxaded1i1n2ThYikRxMnEiamZlZW90Z7t5/SgNfP2Kvfk0oC/VAcknjJP1Q0o2Sbmv9VOG8oyXNl/RY+tnufwFJs1Kdx8p7SSVNk7RI0hJJ50lSKt9X0j2S/iypSdL+vY3VzMzMBp/urO7O82KcXCSSwG+BxcBuwHeAZcB9VTjvbODWiNgTuDXtv46k0cCZlFaK7w+cWZZwXgD8C7Bn+hyeyr8PfCci9gW+lfbNzMzMKtKd1d1z71yau2dP5iWRHBMRFwHNEXFHRJwIvLcK550JtM6zvAQ4qp06hwHzI2JtRKwD5gOHSxoP7BgR96SHpV9a9v0AdkzbI4HOZ8yamZmZdaH1YeZdPXvyYxfclZs34+QlkWxOP1dL+oCkqcDoKpx3p4hYnbafBnZqp84EYEXZ/spUNiFtty0HOA34gaQVwA+B09u7uKRT0tB305o1ayr/LczMzGzQaO2d3GvnHdo9HsD/uf6hXPRM5iWR/K6kkcBXgK8CvwL+tTtflHSLpIfa+cwsr5d6Fau1sugzwL9GxK4pzovaqxQRF0ZEY0Q0jhs3rkqXNjMzs4Fu2uQGbjrtoA5ftbh1a3DP0ucziOz1cvE+64i4IW2uB97Tw+++v6Njkp6RND4iVqeh6mfbqbYKOLhsfyJweyqf2KZ8VdqeBXwpbV9NKfE1MzMzq6rjpk/iuOmT3vDsySF1NRyw+5gMIyvJRY+kpEskjSrbb5B0cRVOPY9S0kf6eX07dW4GDk3XbAAOBW5OQ+IvSjogrdY+oez7TwHvTtvvBR6rQqxmZmZm7Wod7j5u+iSOnz6J3/3LAZm//QZy0iMJ7BMRL7TuRMS6NE+yt+YAV0k6CVgOHAMgqRE4NSJOjoi1ks7mtVXiZ0XE2rT9WeA3wHDgpvSB0krun0qqA17F7wU3MzOzPjZtckMuksdyuXgguaS/AAenVdOtj+S5IyLekW1k1eMHkpuZmVlRdPeB5HnpkfwRcLekq9P+x4FzMozHzMzMzLqQix5JAEl789qzI2+LiEeyjKfaJK2hNLzel8YCz/XxNQYT38/q8z2tLt/P6vL9rC7fz+rq7/s5OSK6fORMbhJJ6z1JTd3phrbu8f2sPt/T6vL9rC7fz+ry/ayuvN7PXKzaNjMzM7PicSJpZmZmZhVxIjmwXJh1AAOM72f1+Z5Wl+9ndfl+VpfvZ3Xl8n56jqSZmZmZVcQ9kmZmZmZWESeSZmZmZlYRJ5IDhKTDJT0qaYmk2VnHkyeSdpX0J0mPSHpY0pdS+WhJ8yU9ln42pHJJOi/dywcl7Vd2rlmp/mOSZpWVT5O0KH3nvPR+9gFLUq2kByTdkPZ3k7Qg/f5XSqpP5UPT/pJ0fErZOU5P5Y9KOqysfNC1ZUmjJF0j6a+SFks60O2zcpL+Nf1Zf0jS7yQNcxvtPkkXS3pW0kNlZX3eHju6RtF1cD9/kP68PyjpOkmjyo71qN1V0rarKiL8KfgHqAUeB3YH6oG/AHtnHVdePsB4YL+0vQPwN2Bv4PvA7FQ+Gzg3bR9J6b3qAg4AFqTy0cDS9LMhbTekY/emukrfPSLr37uP7+mXgcuBG9L+VcCxaXsu8Jm0/Vlgbto+Frgybe+d2ulQYLfUfmsHa1sGLgFOTtv1wCi3z4rv5QTgCWB4Wdv8pNtoj+7hQcB+wENlZX3eHju6RtE/HdzPQ4G6tH1u2f3scbvraduu9sc9kgPD/sCSiFgaEZuBK4CZGceUGxGxOiLuT9sbgMWU/rGZSekfcNLPo9L2TODSKLkHGCVpPHAYMD8i1kbpvfDzgcPTsR0j4p4o/Ym9tOxcA46kicAHgF+lfVF6K9U1qUrbe9l6j68B3pfqzwSuiIhNEfEEsIRSOx50bVnSSEr/0FwEEBGbI+IF3D57ow4YLqkOGAGsxm202yLiTmBtm+L+aI8dXaPQ2rufEfHHiGhJu/cAE9N2j9pdhX//VpUTyYFhArCibH9lKrM2Utf+VGABsFNErE6HngZ2Stsd3c/Oyle2Uz5Q/QT4GrA17Y8BXij7S7H89992z9Lx9al+T+/xQLYbsAb4tUrTBX4laTvcPisSEauAHwJPUkog1wMLcRvtrf5ojx1dY6A7kVLPLPT8flby929VOZG0QUPS9sC1wGkR8WL5sfR/xn4WVhckfRB4NiIWZh3LAFJHadjrgoiYCrxMaVhvG7fP7kvz6mZSStB3AbYDDs80qAGmP9rjYGnzks4AWoDfZh1LpZxIDgyrgF3L9iemMkskDaGURP42In6fip9Jwyykn8+m8o7uZ2flE9spH4jeBXxY0jJKQyvvBX5KaTirLtUp//233bN0fCTwPD2/xwOnnkkqAAAgAElEQVTZSmBlRCxI+9dQSizdPivzfuCJiFgTEc3A7ym1W7fR3umP9tjRNQYkSZ8EPggcnxJn6Pn9fJ6et+2qciI5MNwH7JlWbtVTmlQ7L+OYciPNCbkIWBwRPy47NA9oXUk4C7i+rPyEtBrxAGB9Gm65GThUUkPq9TgUuDkde1HSAelaJ5Sda0CJiNMjYmJETKHUzm6LiOOBPwEfS9Xa3svWe/yxVD9S+bFpVeFuwJ6UJuAPurYcEU8DKyS9JRW9D3gEt89KPQkcIGlE+n1b76fbaO/0R3vs6BoDjqTDKU0R+nBEbCw71KN2l9pqT9t2dfXFCh5/+v9DaeXc3yit6joj63jy9AH+gdIQyYPAn9PnSEpzRW4FHgNuAUan+gLOT/dyEdBYdq4TKU1+XgJ8qqy8EXgofefnpLdGDeQPcDCvrdrendJfdkuAq4GhqXxY2l+Sju9e9v0z0v16lLJVxIOxLQP7Ak2pjf6B0ipXt8/K7+d3gL+m3/kySitg3Ua7f/9+R2l+aTOlHvOT+qM9dnSNon86uJ9LKM1fbP03aW6l7a6Stl3Nj1+RaGZmZmYV8dC2mZmZmVXEiaSZmZmZVcSJpJmZmZlVxImkmZmZmVXEiaSZmZmZVcSJpJmZmZlVxImkmZmZmVXEiaSZmZmZVaSu6ypWDWPHjo0pU6ZkHYaZmZlZlxYuXPhcRIzrqp4TyX4yZcoUmpqasg7DzMzMrEuSlnennoe2zczMzKwiuU8kJX1BUkPWcZiZmZnZ6+U+kQR2Au6TdJWkwyUp64DMzMzMrACJZER8E9gTuAj4JPCYpO9J2iPTwMzMzMwGudwnkgAREcDT6dMCNADXSPp+poGZmZmZDWK5X7Ut6UvACcBzwK+Af4uIZkk1wGPA17KMz8zMzGywyn0iCYwGPhoRr1uGHhFbJX0wo5jMzMzMBr3cJ5IRcWYnxxb3ZyxmZmZm9ppCzJE0MzMzs/xxImlmZmZmFXEiaWZmZmYVye0cSUkbgOjoeETs2I/hmJmZmVkbuU0kI2IHAElnA6uBywABxwPjMwzNzMzMzCjG0PaHI+L/j4gNEfFiRFwAzKzGidMrFx+VtETS7HaOD5V0ZTq+QNKUNscnSXpJ0lerEY+ZmZlZkRQhkXxZ0vGSaiXVSDoeeLm3J5VUC5wPHAHsDfyTpL3bVDsJWBcRbwL+Azi3zfEfAzf1NhYzMzOzIipCInkccAzwTPp8PJX11v7AkohYGhGbgSt4Y0/nTOCStH0N8D5JApB0FPAE8HAVYjEzMzMrnNzOkWwVEcuo0lB2GxOAFWX7K4HpHdWJiBZJ64Exkl4Fvg4cAnQ4rC3pFOAUgEmTJlUvcjMzM7McyH2PpKQ3S7pV0kNpfx9J38w4rG8D/xERL3VWKSIujIjGiGgcN25c/0RmZmZm1k9yn0gCvwROB5oBIuJB4NgqnHcVsGvZ/sRU1m4dSXXASOB5Sj2X35e0DDgN+Iakz1chJjMzM7PCyP3QNjAiIu5NUxNbtVThvPcBe0rajVLCeCxvnHs5D5gF3A18DLgtIgL4x9YKkr4NvBQRP69CTGZmZmaFUYRE8jlJe5AeTi7pY5SeK9krac7j54GbgVrg4oh4WNJZQFNEzAMuAi6TtARYS3V6Qs3MzMwGBJU62PJL0u7AhcAMYB2lldLHR8TyTAProcbGxmhqaso6DDMzM7MuSVoYEY1d1StCj2RExPslbQfURMSGNBxtZmZmZhkqwmKbawEi4uWI2JDKrskwHjMzMzMjxz2Skt4KvA0YKemjZYd2BIZlE5WZmZmZtcptIgm8BfggMAr4UFn5BuBfMonIzMzMzLbJbSIZEdcD10s6MCLuzjoeMzMzM3u9IsyRPFXSqNYdSQ2SLs4yIDMzMzMrRiK5T0S80LoTEeuAqRnGY2ZmZmYUI5GskdTQuiNpNDkekjczMzMbLIqQkP0IuFvS1Wn/48A5GcZjZmZmZhQgkYyISyU1Ae9NRR+NiEeyjMnMzMzMijG0DTAaeDkifg6s8ZttzMzMzLKX+0RS0pnA14HTU9EQ4D+zi8jMzMzMoACJJPAR4MPAywAR8RSwQ6YRmZmZmVkhEsnNERFAAEjaLuN4zMzMzIxiJJJXSfoFMErSvwC3AL+sxoklHS7pUUlLJM1u5/hQSVem4wskTUnlh0haKGlR+vnett81MzMzG+iKsGr7h5IOAV4E3gx8KyLm9/a8kmqB84FDgJXAfZLmtVkRfhKwLiLeJOlY4FzgE8BzwIci4ilJbwduBib0NiYzMzOzIsl9IpksAoZTGt5eVKVz7g8siYilAJKuAGYC5YnkTODbafsa4OeSFBEPlNV5GBguaWhEbKpSbGZmZma5l/uhbUknA/cCHwU+Btwj6cQqnHoCsKJsfyVv7FXcViciWoD1wJg2dY4G7m8viZR0iqQmSU1r1qypQshmZmZm+VGEHsl/A6ZGxPMAksYAdwEXZxpVKZa3URruPrS94xFxIXAhQGNjY/RjaGZmZmZ9Lvc9ksDzwIay/Q2prLdWAbuW7U9MZe3WkVQHjGy9tqSJwHXACRHxeBXiMTMzMyuUIvRILgEWSLqe0hzJmcCDkr4MEBE/rvC89wF7prfkrAKOBY5rU2ceMAu4m9Kw+m0REZJGAf8FzI6I/63w+mZmZmaFVoRE8vH0aXV9+tmrh5JHRIukz1NacV0LXBwRD0s6C2iKiHnARcBlkpYAayklmwCfB94EfEvSt1LZoRHxbG9iMjMzMysSlZ71nV+ShkXEq23KxkbEc1nFVInGxsZoamrKOgwzMzOzLklaGBGNXdUrwhzJeyUd0Loj6WhKi23MzMzMLENFGNo+HrhY0u3ALpQev+M3yZiZmZllLPeJZEQsknQOcBmlFdsHRcTKjMMyMzMzG/Ryn0hKugjYA9iH0isSb5D0s4g4P9vIzMzMzAa3IsyRXAS8JyKeiIibgenAfhnHZGZmZjbo5T6RjIifAMMkvSXtr4+IkzIOy8zMzGzQy30iKelDwJ+B/077+0qal21UZmZmZpb7RBL4NrA/8AJARPwZ2D3LgMzMzMysGIlkc0Ssb1O2NZNIzMzMzGyb3K/aBh6WdBxQK2lP4Iv4geRmZmZmmStCj+QXgLcBm4DLgfXAaZlGZGZmZmb575GMiI3AGeljZmZmZjlRhB5JMzMzM8shJ5JmZmZmVpFBnUhKOlzSo5KWSJrdzvGhkq5MxxdImlJ27PRU/qikw/ozbjMzM7M8yP0cyXKS7o+IqrweUVItcD5wCLASuE/SvIh4pKzaScC6iHiTpGOBc4FPSNobOJbSIqBdgFskvTkitlQjtkosXL6OuXc8ziNPreelzS00twQ1lJ6TVF8rQtDcEq/bruR4X5zT1/Q1fU1fM+trDpTfw9cc+Nfcrr6WqZMa+PS792Da5AaypojIOoZuk/RAREyt0rkOBL4dEYel/dMBIuLfy+rcnOrcLakOeBoYB8wur1ter6PrNTY2RlNTUzVCf4OFy9fxiV/cRYufrmlmZjYoDKkVV5xyYJ8lk5IWRkRjV/WKNrT9X1U81wRgRdn+ylTWbp2IaKH06KEx3fwukk6R1CSpac2aNVUM/fXuWfq8k0gzM7NBpHlLcM/S57MOo1iJZER8M+sYeiIiLoyIxohoHDduXJ9d54Ddx1BXqP+SZmZm1htDasUBu4/JOoxizZGsslXArmX7E1NZe3VWpqHtkcDz3fxuv5k2uYErPz3DcyR9TV/T1/Q1c3ROX9PXHAxzJAdzInkfsKek3SglgccCx7WpMw+YBdwNfAy4LSJC0jzgckk/prTYZk/g3n6LvB3TJjfwyxO6nMpgZmZmVjW5TyQlfQj4r4io6izAiGiR9HngZqAWuDgiHpZ0FtAUEfOAi4DLJC0B1lJKNkn1rgIeAVqAz2W5YtvMzMwsC7lftS3pP4EDgWspJXt/zTikivTlqm0zMzOzahowq7Yj4v8DpgKPA7+RdHdaDb1DxqGZmZmZDWq5TyQBIuJF4BrgCmA88BHgfklfyDQwMzMzs0Es94mkpA9Lug64HRgC7B8RRwB/D3wly9jMzMzMBrPcL7YBjgb+IyLuLC+MiI2STsooJjMzM7NBL/eJZETM6uTYrf0Zi5mZmZm9JvdD22ZmZmaWT04kzczMzKwiTiTNzMzMrCK5nSMpaRHQ4dPSI2KffgzHzMzMzNrIbSIJfDD9/Fz6eVn6eXwGsZiZmZlZG7lNJCNiOYCkQyJiatmh2ZLuB2ZnE5mZmZmZQTHmSErSu8p2ZlCMuM3MzMwGtNz2SJY5CbhY0si0/wJwYobxmJmZmRkFSCQjYiHw962JZESszzgkMzMzM6MAQ8SSdpJ0EXBFRKyXtHdvX40oabSk+ZIeSz8bOqg3K9V5TNKsVDZC0n9J+qukhyXN6U0sZmZmZkWV+0QS+A1wM7BL2v8bcFovzzkbuDUi9gRupZ2FO5JGA2cC04H9gTPLEs4fRsRbganAuyQd0ct4zMzMzAqnCInk2Ii4CtgKEBEtwJZennMmcEnavgQ4qp06hwHzI2JtRKwD5gOHR8TGiPhTimUzcD8wsZfxmJmZmRVOERLJlyWNIT2cXNIBQG/nSe4UEavT9tPATu3UmQCsKNtfmcq2kTQK+BClXk0zMzOzQSX3i22ALwPzgD0k/S8wDvh4V1+SdAuwczuHzijfiYiQ1OEbdDo5fx3wO+C8iFjaQZ1TgFMAJk2a1NNLmJmZmeVaERLJh4F3A28BBDxKN3pSI+L9HR2T9Iyk8RGxWtJ44Nl2qq0CDi7bnwjcXrZ/IfBYRPykkxguTPVobGzscbJqZmZmlmdFGNq+OyJaIuLhiHgoIpqBu3t5znnArLQ9C7i+nTo3A4dKakiLbA5NZUj6LjCS3i/6MTMzMyus3PZIStqZ0pzE4ZKmUuqNBNgRGNHL088BrkqPEVoOHJOu2QicGhEnR8RaSWcD96XvnJXKJlIaHv8rcL8kgJ9HxK96GZOZmZlZoSginyOu6bmNnwQagaayQxuA30TE77OIq1KNjY3R1NTUdUUzMzOzjElaGBGNXdXLbY9kRFwCXCLp6Ii4Nut4zMzMzOz1cptItoqIayV9AHgbMKys/KzsojIzMzOz3C+2kTQX+ATwBUrzJD8OTM40KDMzMzPLfyIJzIiIE4B1EfEd4EDgzRnHZGZmZjboFSGRfCX93ChpF6AZGJ9hPGZmZmZGAeZIAjekVxH+gNJ7rQPwo3bMzMzMMpb7RDIizk6b10q6ARgWEb1917aZmZmZ9VJuE0lJH+3kGEV7jqSZmZnZQJPbRBL4UCfHAnAiaWZmZpah3CaSEfGprGMwMzMzs47lNpFsJelb7ZX7geRmZmZm2cp9Igm8XLY9DPggsDijWMzMzMwsyX0iGRE/Kt+X9EPg5ozCMTMzM7OkCA8kb2sEMDHrIMzMzMwGu9z3SEpaRGmVNkAtMA7w/EgzMzOzjOU+kaQ0J7JVC/BMRLT05oSSRgNXAlOAZcAxEbGunXqzgG+m3e9GxCVtjs8Ddo+It/cmHjMzM7MiKsLQ9nhgbUQsj4hVwHBJ03t5ztnArRGxJ3Br2n+dlGyeCUwH9gfOlNRQdvyjwEu9jMPMzMyssIqQSF7A6xO2l1NZb8wEWnsXLwGOaqfOYcD8iFibeivnA4cDSNoe+DLw3V7GYWZmZlZYRUgkFRGtcySJiK30fkh+p4hYnbafBnZqp84EYEXZ/spUBnA28CNgY2cXkXSKpCZJTWvWrOllyGZmZmb5UoREcqmkL0oakj5fApZ29SVJt0h6qJ3PzPJ6KUmNDk7T3nn3BfaIiOu6qhsRF0ZEY0Q0jhs3rruXMDMzMyuEIiy2ORU4j9Kil6A0p/GUrr4UEe/v6JikZySNj4jVksYDz7ZTbRVwcNn+ROB24ECgUdIySvfv7yTdHhEHY2ZmZjaI5D6RjIhngWOrfNp5wCxgTvp5fTt1bga+V7bA5lDg9IhYS5qjKWkKcIOTSDMzMxuMcptISvoZnQw5R8QXe3H6OcBVkk4ClgPHpGs2AqdGxMkRsVbS2cB96TtnpSTSzMzMzMhxIgk09dWJI+J54H3tlDcBJ5ftXwxc3Ml5lgF+hqSZmZkNSrlNJNs+/NvMzMzM8iW3iWQrSeOArwN7A8NayyPivZkFZWZmZmaFePzPb4HFwG7Adyi90vC+zr5gZmZmZn2vCInkmIi4CGiOiDsi4kTAvZFmZmZmGcv90DbQnH6ulvQB4ClgdIbxmJmZmRnFSCS/K2kk8BXgZ8COwL9mG5KZmZmZ5T6RjIgb0uZ64D1ZxmJmZmZmr8n9HElJl0gaVbbfIKnDZzuamZmZWf/IfSIJ7BMRL7TuRMQ6YGqG8ZiZmZkZxUgka8red42k0RRgSN7MzMxsoCtCQvYj4G5JV6f9jwPnZBiPmZmZmQGKiKxj6JKkvXnt2ZG3RcQjWcZTCUlrgOV9fJmxwHN9fI3BxPez+nxPq8v3s7p8P6vL97O6+vt+To6IcV1VKkQiad0jqSkiGrOOY6Dw/aw+39Pq8v2sLt/P6vL9rK683s8izJE0MzMzsxxyImlmZmZmFXEiObBcmHUAA4zvZ/X5nlaX72d1+X5Wl+9ndeXyfnqOpJmZmZlVxD2SZmZmZlYRJ5JmZmZmVhEnkgOEpMMlPSppiaTZWceTJ5J2lfQnSY9IeljSl1L5aEnzJT2Wfjakckk6L93LByXtV3auWan+Y5JmlZVPk7Qofec8Ser/37T/SKqV9ICkG9L+bpIWpN//Skn1qXxo2l+Sjk8pO8fpqfxRSYeVlQ+6tixplKRrJP1V0mJJB7p9Vk7Sv6Y/6w9J+p2kYW6j3SfpYknPSnqorKzP22NH1yi6Du7nD9Kf9wclXSdpVNmxHrW7Stp2VUWEPwX/ALXA48DuQD3wF2DvrOPKywcYD+yXtncA/gbsDXwfmJ3KZwPnpu0jgZsAAQcAC1L5aGBp+tmQthvSsXtTXaXvHpH1793H9/TLwOXADWn/KuDYtD0X+Eza/iwwN20fC1yZtvdO7XQosFtqv7WDtS0DlwAnp+16YJTbZ8X3cgLwBDC8rG1+0m20R/fwIGA/4KGysj5vjx1do+ifDu7noUBd2j637H72uN31tG1X++MeyYFhf2BJRCyNiM3AFcDMjGPKjYhYHRH3p+0NwGJK/9jMpPQPOOnnUWl7JnBplNwDjJI0HjgMmB8RayNiHTAfODwd2zEi7onSn9hLy8414EiaCHwA+FXaF6U3T12TqrS9l633+Brgfan+TOCKiNgUEU8ASyi140HXliWNpPQPzUUAEbE5Il7A7bM36oDhkuqAEcBq3Ea7LSLuBNa2Ke6P9tjRNQqtvfsZEX+MiJa0ew8wMW33qN1V+PdvVTmRHBgmACvK9lemMmsjde1PBRYAO0XE6nToaWCntN3R/eysfGU75QPVT4CvAVvT/hjghbK/FMt//233LB1fn+r39B4PZLsBa4BfqzRd4FeStsPtsyIRsQr4IfAkpQRyPbAQt9He6o/22NE1BroTKfXMQs/vZyV//1aVE0kbNCRtD1wLnBYRL5YfS/9n7GdhdUHSB4FnI2Jh1rEMIHWUhr0uiIipwMuUhvW2cfvsvjSvbialBH0XYDvg8EyDGmD6oz0OljYv6QygBfht1rFUyonkwLAK2LVsf2Iqs0TSEEpJ5G8j4vep+Jk0zEL6+Wwq7+h+dlY+sZ3ygehdwIclLaM0tPJe4KeUhrPqUp3y33/bPUvHRwLP0/N7PJCtBFZGxIK0fw2lxNLtszLvB56IiDUR0Qz8nlK7dRvtnf5ojx1dY0CS9Engg8DxKXGGnt/P5+l5264qJ5IDw33AnmnlVj2lSbXzMo4pN9KckIuAxRHx47JD84DWlYSzgOvLyk9IqxEPANan4ZabgUMlNaRej0OBm9OxFyUdkK51Qtm5BpSIOD0iJkbEFErt7LaIOB74E/CxVK3tvWy9xx9L9SOVH5tWFe4G7ElpAv6ga8sR8TSwQtJbUtH7gEdw+6zUk8ABkkak37f1frqN9k5/tMeOrjHgSDqc0hShD0fExrJDPWp3qa32tG1XV1+s4PGn/z+UVs79jdKqrjOyjidPH+AfKA2RPAj8OX2OpDRX5FbgMeAWYHSqL+D8dC8XAY1l5zqR0uTnJcCnysobgYfSd35OemvUQP4AB/Paqu3dKf1ltwS4Ghiayoel/SXp+O5l3z8j3a9HKVtFPBjbMrAv0JTa6B8orXJ1+6z8fn4H+Gv6nS+jtALWbbT79+93lOaXNlPqMT+pP9pjR9co+qeD+7mE0vzF1n+T5lba7ipp29X8+BWJZmZmZlYRD22bmZmZWUWcSJqZmZlZRZxImpmZmVlFnEiamZmZWUWcSJqZmZlZRZxImpmZmVlFnEiamZmZWUWcSJqZmZlZRZxImpmZmVlF6rquYtUwduzYmDJlStZhmJmZmXVp4cKFz0XEuK7qOZHsJ1OmTKGpqSnrMMzMzMy6JGl5d+p5aNvMzMzMKuIeSRuw5t7xODc9tJqXXm1h3cbNDK2rBeC5DZvYSrA1gIC6GtESAQH1daK+toa/23EYr2zewqvNW9h1zAiOePt4Tn33Htn+QmZmZjnTZSIpaQvwA+D0iIhUdn9E7NfXwZm1ai8pfGlTC5tathJbY1siWFMDW7eWfkZQSha3aW733M1llTa1BJtatrBhzcvbyja8+iJrXtzE1U0reGXzFoYNqeW2rx7cN7+omZlZgXSnR/JhSkPgf5T0iYhYC6hvw7KB7pO/vpcVazduSwo3tWyheUvw6uYt25JCxLYewy0R3UoKt2x9/c9qaN4aPLX+1W37U3cdyft+dPu2Hst9dh3Fbz61f/UuaGZmVhDdSSRbIuJrkj4B/F9JJ1D6Z97sDQnhiPpaVr/wCptSJtfaO9h2GFmU9xa2nxS2trLmrflqbg+sWP+6/fUbN7PfWX+kYbt6th9W52FwMzMbNLqTSAogIq6U9DBwOTCpGheXdDjwU6AW+FVEzGlzfChwKTANeB74REQsS8dOB04CtgBfjIibOzunpN2AK4AxwELgnyNiczWvkYVKhnzbmxvY1fHy3sG233ktzeu8lxBeSwrzlRr2TmtiuXZjM0Nq5GFwMzMbNLqTSJ7cuhERD0n6R2Bmby8sqRY4HzgEWAncJ2leRDxSVu0kYF1EvEnSscC5wCck7Q0cC7wN2AW4RdKb03c6Oue5wH9ExBWS5qZzX1Dla/S7fSaO5Ke3/I1Xmluzte4P+Zb39HV1vL3ewWoOHw8U7Q2Dz/j3W3m1eQsN29Wz6+gRHgY3M7MBo8vH/0TEwjb76yPi0ipce39gSUQsjYjNlHoL2yaoM4FL0vY1wPskKZVfERGbIuIJYEk6X7vnTN95bzoH6ZxHVfMaVbgfFZmxx1gu+uQ7GT7ET3LqrhpBbQ1IpY7WITXatl1b5dm/D6xYz1PrX2XtxmYeX/PytmHw9/3odmae/z/MvePx6l7QzMysH2X5+J8JwIqy/ZXA9I7qRESLpPWUhqYnAPe0+e6EtN3eOccAL0RESzv1q3WNN5B0CnAKwKRJVZkN0K4Ze4zlX/5xd867bUmfXSOvamughvaH6AHqa2vYZdTwbQtjuuoVbJ3zCbBu42Ymjx7xhjmRvdHeMPildy3zoh0zMyskP0eyD0XEhcCFAI2NjX02LfCux5/jl/93aV+dvt8MqSl1B7Y3L3MrQX1tDQ0j6rclhEDVh4rbnuuTv76XPcZtt23+6c47Dq1aYtl2GLxWeBjczMwKpcNEUvp/7d19nFxlfffxz29nn7JLstkNW1iTDQ+Biil3ah4sCFZpQhGjJVZRsFYSkSJa0Wq9b0C8W0pFELCvorSmudGQoPKordGXaUBksS1CTFADCijBYDYECFnYxGyyT/ndf5xrNifDzO7szJl9mPm+X6997ZxrzpxzzXmdJL9cv3P9Lhu2TqS7P1rkuXcA7bHtWaEt2z6dZlYNNBFNiBnus9nadwPTzaw6jErG90/qHOPioa0v8aFbfxJ7RnJiqLIodZxrAk9NlXHkEXVDQdNEnZiSGcgtvrGDtqZ6GmpTGPB0rN5kse5/ctfQ666efgyGygy5w/LTj9VscBERmVCGG5H8YvhdDywCfk40RjQP2AS8schz/wQ4Mcym3kE0seUvMvZZBywHfgycC/zQ3d3M1gHfNLN/IpoIcyKwMfTvVccMn3kgHOOOcMzvJHmOIq9FwbZ0dvP7R08dt1nbhvF7U+sAhoLCci6BEw90V6zeODT7vBRp8HiQWlNlbHh8p9LgIiIyoVhYrCb3DmbfBv7e3R8L2ycDV7n7uUWf3Gwp8M9EZXS+5u7XmNnVwCZ3X2dm9cBtwHygCzjf3Z8Jn70SuBAYAP7G3dfnOmZoP54oiGwBfgr8pbv3JnmO4SxatMg3bdpU3AWTCW3F6o1s6XxlqJ7mtPrqRAPLuPntTTy7u6dkKX4REalsZrbZ3ReNuF8egeQv3P0PRmqT4SmQrDyLb+xgf/9gSdLgmU5obcRBaXAREUlEkoHk7cA+4Ouh6f3AEe7+vqJ7WUEUSFa2zBWA5rZNPeyZyCTVVBnHzGiga1+fJu2IiEhBkgwk64GPAG8OTT8CvuLuB3J/SjIpkJS4eBrcgF17e0u2FKTS4CIiMlqJBZLhYFOA2e7+VBKdq0QKJCWXzGUumxtq+e3unpIFlie0NtIT6mq2z2go24lRIiJSuCRHJM8BbgBq3f04M3s9cLW7n5NMVyuDAknJVzqw3N7Vk3jtykx11VW0N09RGlxERA6TZCC5mWh5wQ53nx/aHnP3/5VITyuEAkkpVHzSzv6+wZKmwTVpR0REIP9AMp+VbfrdvTtafnpIyVZpEZHDxWtXZkuDb3tpH4MJ/YmMzyxPGYfVrlQaXEREMuUzIvlV4H7gcuDdwMeBGne/pPTdKx8akZRSWPngVtY8tA2g5LUra6qM1tFzKj0AACAASURBVKl1TKlNAZq0IyJSzpJMbTcAVwJnhaYNwD+6e2/RvawgCiRlLCgNLiIiSUgykHyPu989UpsMT4GkjLVsk3a2dHYnlgaPSxkcd2Tj0KSdcl4mU0SkEiQZSD7q7gtGapPhKZCU8RZPg5e6dqXS4CIik1vRgaSZvQ1YCrwXuDP21jRgrrvrX4VRUCApE4lqV4qIyHCSCCT/EHg9cDXwd7G39gIPuPvLSXS0UiiQlIksMw3eWJsq2drg8dqV9TUp6mtSh81MFxGR8ZdkansasM/dB8N2Cqhz955EelohFEjKZJJeGxwo+aSd+e1N7DkwoEk7IiITSJKB5MPAme7+u7B9BHCvu5+WSE8rhAJJmaxKXbsyLmUwb1YTL+zpVRpcRGQcJRlI/szdXz9SmwxPgaSUi8zalQYlS4PHJ+3s7xtUGlxEZIwkubLNPjNb4O6PhgMvBPYX20ERmZwuecucw0YIV6zeOLTUVdJp8P6DznPdB4a257c3seSLHewPE3fmtU/XbHARkXGUz4jkG4A7gOeIqoYcDZzn7psLPqlZC9FM8GOBbcB7s03eMbPlwGfD5ufcfU1oXwjcCkwBvg98wt0913EtWt/xJqJZ6D3Ailhg/KpzhCLsdwNzgEHgu+5+edh/BXADsCN85mZ3v2Wk76wRSakEY1m7EqLA8tndPapdKSKSsMRS2+FgNcBrw+ZT7t5fZOeuB7rc/TozuxxodvfLMvZpATYBi4jW9t4MLAyB4UaipRofIQokv+Tu63Md18yWApcSBZKnADe5+ym5zgH0Aqe4+wNmVku0ROTnwzlWAIvc/WOj+c4KJKUSxdPgvQODHNPSMCZLOCoNLiJSnMRS22F07lPAMe7+V2Z2opm91t2/V0T/lgFnhNdrgA7gsox93grc5+5doR/3AWebWQcwzd0fDu1rgXcC64c57jJgrUdR88NmNt3M2sK+rzqHu98OPADg7n1m9igwq4jvK1KRsqXB57Q2Dk3a2d7VQ19Cw5XZ0uCnXXs/B/oHaW6sVVF0EZESyOcZydVEI3VvDNs7iNK+xQSSR7n7zvD6eeCoLPvMBLbHtjtD28zwOrN9uOMOd6xs7UPMbDrwZ0Sp8bR3m9mbgV8Bn3T3+DHin70YuBhg9uzZ2XYRqSjxQK7UtSvjI59dPf1Mq69mwdX3qnaliEiC8gkk57j7eWb2PgB37wnPHA7LzH5A9DxlpivjG+HZxsSfoEriuGZWDdxOlDp/JjR/F7jd3XvN7MNEI5+Lc/RhFbAKotR2MX0RKTfDTdp5uacv0TR4lcUDy35N2hERSUg+gWSfmU0heoYQM5tD9AzhsNz9zFzvmdkLZtbm7jtDivnFLLvt4FCaGqLUckdon5XRnp74kuu4O4D2LJ/JdY60VcCv3f2fY99rd+z9W4Drc31PEclfZiAXT4OnJ+4UGlhmTiLPPE7KUBpcRKQA+QSSfw/8J9BuZt8ATgdWFHnedcBy4Lrw+ztZ9tkAfN7MmsP2WcAV7t5lZnvM7FSiyTYXAF8e4bjrgI+Z2R1Ek226Q7CZ9RwAZvY5oAm4KN6pdKAaNs8BnijwGojIMDIDucU3dtDWVF+S2pX3P7lr6HVXTz8GQyOWSoOLiOSW76ztGcCpROV/Hnb3l4o6aXS8u4DZwLNEZXq6zGwRcIm7XxT2uxD4TPjYNe6+OrQv4lD5n/XApSGVneu4BtwMnE1U/ueD7r4p1znMbBbRs5NPcmj09WZ3v8XMriUKIAeALuAj7v7kSN9Zs7ZFkhNfwjHpNHim+BKOSoOLSKVIuvzPu4A3EaW3/9vd/734LlYWBZIipbNi9Ua2dL5CXXWKhtoU0+qrDwssq4CDCZ0rXrsSUBpcRMpSkksk/itwAtGkE4DzgK3u/tdF97KCKJAUGTuLb+xgf/9gyWtXApzQ2oiD0uAiUlaSDCSfBF4XajBiZlXAL9z9dYn0tEIokBQZH+k0eHrSzty2qYc9E5mk+e1NvLCnV5N2RGTSS3Kt7ac59MwhRLOfny6ibyIiYybbbPCWxhrqqqNJO0muDT5c7Up3WH76sVrCUUTKSj4jkg8CbwA2Ej0j+UdEywp2A7j7OSXuY1nQiKTIxJMuiv67AwMln7RTU2WcPHPa0IilJu2IyESWZGr7LcO97+4PjrJvFUmBpMjEl5kGL6Z25UiWnNTKEzv3Kg0uIhNSkoHkXHf/ZUbbGe7eUVwXK4sCSZHJJz1pp6E2xf6+wUTT4Jnik3aUBheR8ZZkIPk4sBa4AagnWsllkbu/cdgPymEUSIpMbmOZBk8ZzJt1aOJO+4wG3nZymwJLERkzSQaSjcAXgIXAVOAbwBfcPamybBVBgaRIeRmpdmWSaqqM1ql1TKlNAapdKSKll+Ss7X5gP9EqMvXAbxREikily7WEY+/AIM0NtWzv6qFvMJk0eP9B57nuA0Pb8SUclQYXkfGUz4jkz4nWrP5H4EhgJdDn7u8pfffKh0YkRSpHOg2+vaun5LUrUwbHHdlI174+mhtrOaK+WmlwESlakqntRel1qWNtH3D324rsY0VRIClSueJp8KRrV2ZKp8EBjVaKSMGSXmv7TcCJ7r7azI4Eprr7bxLoZ8VQICki8OpJO80Ntfx2d09JAktN2hGRQiU5Ivn3wCLgte7++2b2GuBudz89ma5WBgWSIpJNZhq8sTbF07v2leRcddVVtDdPoWtfH/U1Ka0NLiI5JRlI/gyYDzzq7vND2xZ3n5dITyuEAkkRyUe6KDpQ8tqV89ub2HNgQJN2RORVkpy13efubmYeDtxYdO9ERCSr+GzwbGnwbS/tI6HJ4IeVK0oZbHh8J2sf2qY0uIjkLZ8RyU8DJwJ/ClwLXAh8092/XPrulQ+NSIpIsVY+uJU1D20DoKE2mrhTqjR4vHbl/r5BpcFFKkzSk23+FDiLqHzZBne/r8jOtQB3AscC24D3uvvLWfZbDnw2bH7O3deE9oXArUS1Lb8PfCKMmmY9rpkZcBOwFOgBVrj7oyOcowNoI6qhCXCWu79oZnVEK/0sBHYD57n7tpG+swJJEUlafG3wpGtXZlIaXKSyJBpIJs3Mrge63P06M7scaHb3yzL2aQE2EU30cWAzsDAEhhuBjwOPEAWSX3L39bmOa2ZLgUuJAslTgJvc/ZQRztEBfDpL6aOPAvPc/RIzOx/4c3c/b6TvrEBSREopc9LO0dPq2NLZnVgaPE61K0XKX5LPSJbCMuCM8HoN0AFclrHPW4H73L0LwMzuA84OAd40d384tK8F3gmsH+a4y4C1HkXND5vZdDNrC/u+6hzA7SP0/arw+h7gZjMzH4+IXEQkuOQtcw4L5FY+uJXn9/QC0DswmOja4IN+KKXe1dNPTZWxa0/v0POV89qnawlHkQoxXoHkUe6+M7x+Hjgqyz4zge2x7c7QNjO8zmwf7rjDHStbe9pqMxsEvkWU9vb4Z9x9wMy6gRnAS5lfwMwuBi4GmD17dpavKCJSGpmB5YrVG5nT2liSNHjmEo4pg9OuvV+TdkQqwKgCSTNbkH62MI99fwAcneWtK+Mb8RnhSUrguO939x1mNpUokPwA0bORo+nDKmAVRKntIvoiIlKUbLPBS1W7Mr4c5L6+vew7MMCqB7eqdqVIGRrtiOQtwIJ8dnT3M3O9Z2YvmFmbu+8MKeYXs+y2g0NpaoBZRKnqHeF1vH1HeJ3ruDuA9iyfyXUO3H1H+L3XzL4J/BFRIJk+VqeZVQNNRJNuREQmhWyjlen/6b7c05doGrx34GAsSO1nfnsTS77Ywf6+QaXBRcrAaANJS+i864DlwHXh93ey7LMB+LyZNYfts4Ar3L3LzPaY2alEk20uANKliHIddx3wMTO7g2iyTXcINrOeIwSI0939JTOrAd4B/CDjHD8GzgV+qOcjRWQyywzkMtPgz+7ex8DBZM6VGaAqDS4yuY1q1raZvdPd/6Pok5rNAO4CZgPPEpXp6TKzRcAl7n5R2O9C4DPhY9e4++rQvohD5X/WA5eGVHau4xpwM9FEmh7gg+nZ2NnOEYqu/wioAVJEQeSn3H3QzOqB24hW++kCznf3Z0b6zpq1LSKTkWpXilSmCV3+pxIpkBSRchCvXVlXnWJu29TDnolMUrx2pdLgImNropf/ERGRSShbGrylsWaoduVjO7pLlgbv7uljwdX30txYC0B7S4MCS5FxpkBSREQKljkbvFS1K+FQYNnV0w9ED+2nn6/UaKXI+Mhnre2vAl9295/F2q5y96tK3LeyotS2iFSasUyDnxAmB7lDc2Mt7S0NXPzm49nS2a3JOyIFSOwZSTPrJCpv80V3XxvaHnX3vMoASUSBpIhUuhWrN7Kl85WS1K7MVFNl9B90Tmg9tJQjKB0ukq8kn5F8EfgT4OtmdgrwCZIrAyQiIhUiHsCVsnYlRKvtwOFLOUL0j1e6jqVmhYsUL58RyZ+6+/zw+irgTOA17n586btXPjQiKSKSW2Ya/OhpdYkGltnMb2/ihT29HOgfHEqHa7RSJJLkiOS69At3v8rMNgOfLKZzIiIicZkB3OIbO2hrqqch1JTctbd3aJQxKfFAtaunn2n11Sy4+l7qa1K4w/LTj9XzlSIjUB3JMaIRSRGRwmSuDV7KSTtpNVXGyTOnDY1Yala4VBoVJJ9gFEiKiCQjPmmnoTbFtPrqkqfBl5zUyhM79yoNLhVDgeQEo0BSRKQ0Ft/YwbQp1bwQalg21KZ47pX97O9PqDJ6Fie0NuLA/r5BpcGlLCmQnGAUSIqIjJ10Ovx3BwZKMis8LmUwb9ahiTvtMxp428ltCixlUis6kDSzx4CcUaa7zyu8e5VHgaSIyPgZy3R4TZXROrWOKbUpQLUrZXJKIpA8Jrz86/D7tvD7/QDufnmxnawkCiRFRCaOxTd2sL9/kN6BQZobatne1UPfYGkydEqDy2SU5Mo2Q3UkY21a2WaUFEiKiExMYzkrPGVw3JGHVts5or5aaXCZkJKsI2lmdrq7/0/YOA2oKraDIiIiE8Elb5lzWCC3YvVGWhprqKtOYZBoDctBP3y1nZoqY9eeXtY+tE2jlTIp5TMiuRD4GtAUml4BLnT3R0vct7KiEUkRkcknc9JOc0Mtv93dk3hxdNCkHZlYEp+1bWZNAO5e9NPJZtYC3AkcC2wD3uvuL2fZbznw2bD5OXdfE9oXArcCU4DvA59wd891XDMz4CZgKdADrEgHwtnOYWZTgf+KdWUW8HV3/xszWwHcAOwI793s7reM9J0VSIqITH6ZafDG2tTQCGPS6qqraG+eQte+PuprUlobXMZUks9IHgV8nmh97beZ2Vzgje7+1SI6dz3Q5e7XmdnlQLO7X5axTwuwCVhENHt8M7AwBIYbgY8DjxAFkl9y9/W5jmtmS4FLiQLJU4Cb3P2U4c6R0ZfNwCfd/UchkFzk7h8bzXdWICkiUn7Sa4QDJVvKMW1+exN7Dgxo0o6MiSSfkbwVWA1cGbZ/RTTqV3AgCSwDzgiv1wAdwGUZ+7wVuM/duwDM7D7gbDPrAKa5+8OhfS3wTmD9MMddBqz1KGp+2Mymm1lb2PdV5wBuT3fCzH4f+D0OH6EUERE5rKxPtjT4tpf2kdRk8Hi5opTBhsd3svahbUqDy7jKJ5A80t3vMrMrANx9wMwGizzvUe6+M7x+Hjgqyz4zge2x7c7QNjO8zmwf7rjDHStbe9z5wJ1++NDtu83szURB9SfdfTtZmNnFwMUAs2fPzraLiIiUicxJOysf3Mqah7YB0Wo7BomlwQf98MBy74E97NrTy92btrO/b1BpcBkz+QSS+8xsBqE4uZmdCoz4nKSZ/QA4OstbV8Y3wrONiecBEjzu+cAHYtvfBW53914z+zDRyOfiHH1YBayCKLWdQF9ERGSSyDYb3GFotDLJ2pX9B53nug8Mbc9vb2LJFzuUBpeSyyeQ/BSwDphjZv8DtALvGelD7n5mrvfM7AUza3P3nSHF/GKW3XZwKE0N0YSXjtA+K6M9PfEl13F3AO1ZPpPrHOl+/iFQ7e6bY99rd2z/W4Drc31PERGRtGxp8PSknaOn1bGls7tkafB7Nm1n1YNbVbtSEpdPIPkL4C3AawEDnqL4OpLrgOXAdeH3d7LsswH4vJk1h+2zgCvcvcvM9oSR0UeAC4Avj3DcdcDHzOwOosk23SHYzHqOWB/eR+x5SYB0oBo2zwGeGPW3FxGRipYtDf78nl4AegcGE10bfLjalQf6B5nXPl1LOErB8pm1/apVbIpd2Sakyu8CZgPPEpXp6TKzRcAl7n5R2O9C4DPhY9e4++rQvohD5X/WA5eGVHau4xpwM9FEmh7gg+6+abhzhPeeAZa6+5OxtmuJAsgBoAv4SPz9XDRrW0RE8pWeDV6KNHimJSe18sTOvZq0I4dJYq3to4kmnnwd+Aui0UiAacBKdz8pob5WBAWSIiJSCNWulPGQRCC5HFhBVGMxHgHtBW51928n0M+KoUBSRESSEK9d+XJPX6Jp8Ezx2pVKg1eWJAuSv9vdv5VYzyqUAkkRESmFzDT4s7v3MXCwNOdSGrxyJLpEopm9HfgDoD7d5u5XF9XDCqNAUkRESq2UtSsz1VQZrVPrmFKbUu3KMpTkiORKoAH4E6JyN+cCG939Q0l0tFIokBQRkbEWH62sq04xt20q9z+5qyTnUhq8vCQZSG5x93mx30cA6939j5PqbCVQICkiIuNtxeqNbOl8Zah25WM7ukuWBp/f3sSzu3tobqwFoL2lQYHlJJLkWtv7w+8eM3sNsBtoK6ZzIiIiMvYyi6KXqnYlHCqK3tXTD0SlX0679n6NVpaZfALJ75nZdOAG4FGipRJvKWmvREREpKSyLeE4p7WxZGnw+LOaKTsUVDY31mq0chLLa7LN0M5mdUC9u5emzkAZU2pbREQmk3gavJS1K+FQGry+JqW1wSeIJOpIvmu4D6qO5OgokBQRkclqLGtX1lQZJ8+cxgt7epUGH0dJPCP5Z8O854ACSRERkQqQGchlpsGPnlaXWGDZf9APO5bS4BPbqFLbUjiNSIqISLlafGMH+/sHaQg1JXft7aX/YGniixNaG3Fgf9+g0uAllGT5n7/L1q6C5KOjQFJERCpB5trgpaxdqTR46SRZ/if+dG098A7giUI7JiIiIuUr22zwlsYa6qpTNNSmmFZfXbI0eHdPHwuuvle1K8fQqFPbYeb2Bnc/oyQ9KlMakRQRETmUBu8dGKS5oZbtXT30DZYuDd4TVtrR2uCjk+SIZKYGYFYBnxMREZEKF1+Pu9Rp8HjJon19e9l3YIBVD27VpJ0E5fOM5GNEs7QBUkArcLW731zwSc1agDuBY4FtwHvd/eUs+y0HPhs2P+fua0L7QuBWYArwfeAT7u65jmtmBtwELAV6gBXu/mg41n8CpwL/7e7viJ37OOAOYAawGfiAu/eFEdm1wEKiVX7Oc/dtI31njUiKiIgML1670qCkk3ZUu3J4SU62OSa2OQC84O4DRXbueqDL3a8zs8uBZne/LGOfFmATsIgokN0MLAyB4Ubg48AjRIHkl9x9fa7jmtlS4FKiQPIU4CZ3PyWcZwnRKOuHMwLJu4Bvu/sdZrYS+Lm7f8XMPgrMc/dLzOx84M/d/byRvrMCSRERkfylRyt/d2CAl3v6aG6o5be7e0oSWKYM5s1qGpq0ozR4soHkqcAv3H1v2J4KzHX3R4ro3FPAGe6+08zagA53f23GPu8L+3w4bP8b0BF+HnD3kzL3y3Xc9Gfd/fbM84ftM4BPpwPJMIK5Czja3QfM7I3AVe7+VjPbEF7/2MyqgeeBVh/hQiqQFBERKVxmGjzJ2pWZ6qqraG+eQte+vopNgyf5jORXgAWx7X1Z2kbrqHQQRxSIHZVln5nA9th2Z2ibGV5ntg933FzH2kl2M4BXYiOv8XMMHSsEmd1h/5dyHEtERESKlDkbfPGNHbQ11ZekdmXvwMGh5yu7evoxYMkXO1S7Mot8AkmLj7a5+8EwEjf8h8x+AByd5a0r4xvh2cbEx6lLddzRMLOLgYsBZs+ePZ5dERERKSvDTdo5elodWzq7SWoyeHzSTspgw+M7WfvQNqXByS+QfMbMPk40CgnwUeCZkT7k7mfmes/MXjCztlgK+sUsu+0AzohtzyJKa+/g8Fnjs0IbQK7j7gDac3wmm93AdDOrDqOS8f3Tx+oMAXVT2P9V3H0VsAqi1PYw5xMREZECZY5WrnxwK8/v6QVIvHbloHPYsfYe2MOuPb3cvSlKfFZaGrwqj30uAU4jCqA6iSarXFzkedcBy8Pr5cB3suyzATjLzJrNrBk4i6h+5U5gj5mdGp5lvCD2+VzHXQdcYJFTge5YCvxVwgjsA8C5OY6VPse5wA9Hej5SRERExs4lb5nDj69Ywo+vWML9f3sG3fsHaGuqp6WxhjmtjdSmLLFz9R90nus+wNZd+9i6ax+dXT2cdu39LLj6Xpb9y3+z8sGtiZ1rIhqXtbbNbAZwFzAbeJaoTE+XmS0CLnH3i8J+FwKfCR+7xt1Xh/ZFHCr/sx64NKSycx3XgJuBs4nK/3zQ3TeFY/0XcBJwBNHI4ofcfYOZHU9U/qcF+Cnwl+7ea2b1wG3AfKALON/dRxyh1WQbERGR8VfqNHhcTZVxzIyGoUk7R9RXT5o0eNGzts3syxyqH/kq7v7xwrtXeRRIioiITDwrH9zKmoe2AZS8dmVNldE6tQ5gwq8NnsSsbUU9IiIiUtbiz1eWunZlOg2eljI47dr7J/WknXFJbVcijUiKiIhMLplp8Mba1GEzuJMUr11ZX5OiviZ12Mz0sZZkQfJW4DJgLlCfbnf3xcV2spIokBQREZncVqzeyPauHoDEa1dmmt/exJ4DA+zvGxyXNHiSBcm/QbR+9duJZnAvJ1r1RURERKRixAO5Uk/aySxXNFHT4PmMSG5294VmtsXd54W2n7j7G8akh2VCI5IiIiLlKz5pp6E2hUHJ0uDpSTut0+pKFlAmOSLZH37vNLO3A88RlcQREREREV5dFH3F6o048HJPH3XVKea2TeX+J4tP6Kbs0KSdV/b3c9nZTUUfsxj5BJKfM7Mm4G+BLwPTgE+WtFciIiIik1jm84wrVm+kpbFmKA3+2I5uBg6O/rjp1HlDbYpbli/itDlHJtDbwo0YSLr798LLbuBPStsdERERkfKT+XxlegnH3oFBjmlpGPUSjhe96bhxDyIhjyUSzWyNmU2PbTeb2ddK2y0RERGR8hRfwvHR/3sWTQ21zGltpKWxhramepac1DriMf7tR8/w0NaXxqC3w8sntT3P3V9Jb7j7y2Y2v4R9EhEREakYw6XB47UrDahJGX2DTu/AQS5as2nc09v5BJJVZtbs7i8DmFlLnp8TERERkVGKB5bpSTvHzGjgoj8+ntPmHMn/+6+t3LFxO0fUV7Ols3tcA8l8yv9cAHwGuDs0vQe4xt1vK3HfyorK/4iIiMhkkVj5H3dfa2abgPRKNu9y918W20ERERERmdy01vYYMbNdwLMlPs2RwPg/eVs+dD2Tp2uaLF3PZOl6JkvXM1ljfT2PcfcRZ/0okCwjZrYpn2FoyY+uZ/J0TZOl65ksXc9k6Xoma6JezxHL/4iIiIiIZKNAUkREREQKokCyvKwa7w6UGV3P5OmaJkvXM1m6nsnS9UzWhLyeekZSRERERAqiEUkRERERKYgCSREREREpiALJMmFmZ5vZU2b2tJldPt79mUjMrN3MHjCzX5rZL8zsE6G9xczuM7Nfh9/Nod3M7EvhWm4xswWxYy0P+//azJbH2hea2WPhM18yMxv7bzp2zCxlZj81s++F7ePM7JHw/e80s9rQXhe2nw7vHxs7xhWh/Skze2usveLuZTObbmb3mNmTZvaEmb1R92fhzOyT4c/642Z2u5nV6x7Nn5l9zcxeNLPHY20lvx9znWOyy3E9bwh/3reY2b+b2fTYe6O67wq5txPl7vqZ5D9ACtgKHA/UAj8H5o53vybKD9AGLAivpwK/AuYC1wOXh/bLgS+E10uB9YABpwKPhPYW4Jnwuzm8bg7vbQz7Wvjs28b7e5f4mn4K+CbwvbB9F3B+eL0S+Eh4/VFgZXh9PnBneD033Kd1wHHh/k1V6r0MrAEuCq9rgem6Pwu+ljOB3wBTYvfmCt2jo7qGbwYWAI/H2kp+P+Y6x2T/yXE9zwKqw+svxK7nqO+70d7bSf9oRLI8/BHwtLs/4+59wB3AsnHu04Th7jvd/dHwei/wBNE/NsuI/gEn/H5neL0MWOuRh4HpZtYGvBW4z9273P1l4D7g7PDeNHd/2KM/sWtjxyo7ZjYLeDtwS9g2oiVU7wm7ZF7L9DW+B1gS9l8G3OHuve7+G+Bpovu44u5lM2si+ofmqwDu3ufur6D7sxjVwBQzqwYagJ3oHs2bu/8I6MpoHov7Mdc5JrVs19Pd73X3gbD5MDArvB7VfVfg37+JUiBZHmYC22PbnaFNMoSh/fnAI8BR7r4zvPU8cFR4net6DtfemaW9XP0z8H+Ag2F7BvBK7C/F+Pcfumbh/e6w/2ivcTk7DtgFrLbocYFbzKwR3Z8FcfcdwI3Ab4kCyG5gM7pHizUW92Ouc5S7C4lGZmH017OQv38TpUBSKoaZHQF8C/gbd98Tfy/8z1i1sEZgZu8AXnT3zePdlzJSTZT2+oq7zwf2EaX1huj+zF94rm4ZUYD+GqAROHtcO1VmxuJ+rJR73syuBAaAb4x3XwqlQLI87ADaY9uzQpsEZlZDFER+w92/HZpfCGkWwu8XQ3uu6zlc+6ws7eXodOAcM9tGlFpZDNxElM6qDvvEv//QNQvvNwG7Gf01LmedQKe7PxK27yEKLHV/FuZM4Dfuvsvd+4FvE923ukeLMxb3Y65zlCUzWwG8A3h/CJxh9NdzN6O/txOlQLI8/AQ4MczcqiV6qHbdOPdpwgjPhHwVeMLd/yn21jogPZNwOfCdWPsFbWM4IgAAAtJJREFUYTbiqUB3SLdsAM4ys+Yw6nEWsCG8t8fMTg3nuiB2rLLi7le4+yx3P5boPvuhu78feAA4N+yWeS3T1/jcsL+H9vPDrMLjgBOJHsCvuHvZ3Z8HtpvZa0PTEuCX6P4s1G+BU82sIXzf9PXUPVqcsbgfc52j7JjZ2USPCJ3j7j2xt0Z134V7dbT3drJKMYNHP2P/QzRz7ldEs7quHO/+TKQf4E1EKZItwM/Cz1KiZ0XuB34N/ABoCfsb8C/hWj4GLIod60Kih5+fBj4Ya18EPB4+czNh1ahy/gHO4NCs7eOJ/rJ7GrgbqAvt9WH76fD+8bHPXxmu11PEZhFX4r0MvB7YFO7R/yCa5ar7s/Dr+Q/Ak+E730Y0A1b3aP7X73ai50v7iUbMPzQW92Ouc0z2nxzX82mi5xfT/yatLPS+K+TeTvJHSySKiIiISEGU2hYRERGRgiiQFBEREZGCKJAUERERkYIokBQRERGRgiiQFBEREZGCKJAUEZlgzGy6mX00vH6Nmd0z0mdERMaDyv+IiEwwYU3477n7yePcFRGRYVWPvIuIiIyx64A5ZvYzouLMr3P3k8OSau8kWj/6ROBGoBb4ANALLHX3LjObQ1QkuhXoAf7K3Z8c+68hIuVOqW0RkYnncmCru78e+N8Z750MvAt4A3AN0OPu84EfEy03B7AKuNTdFwKfBv51THotIhVHI5IiIpPLA+6+F9hrZt3Ad0P7Y8A8MzsCOA24O1rKGIiWCBQRSZwCSRGRyaU39vpgbPsg0d/pVcArYTRTRKSklNoWEZl49gJTC/mgu+8BfmNm7wGwyB8m2TkRkTQFkiIiE4y77wb+x8weB24o4BDvBz5kZj8HfgEsS7J/IiJpKv8jIiIiIgXRiKSIiIiIFESBpIiIiIgURIGkiIiIiBREgaSIiIiIFESBpIiIiIgURIGkiIiIiBREgaSIiIiIFOT/A7MffrHczLNdAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, positions[:, 0, 0] - expected_x, '.', label='Expected')\n",
-    "_ = x_position_axes.set_ylabel('calculated x - expected x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, positions[:, 0, 1] - expected_y, '.')\n",
-    "_ = y_position_axes.set_ylabel('calculated y - expected y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, positions[:, 0, 2] - expected_z, 'x')\n",
-    "_ = z_position_axes.set_ylabel('calculated z - expected z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8lOWZ//HvNTMJFERUjLZKFUU5FOVkyks8IOIJ0Z8W7YGl/kqpK6tr1/52S1nQ1dLVqqv2tNsuXauiVlltcVmtWkVEartWbUCLYDgvKh4DKkUQk5m5fn/MMyEJkxBIZp7nyXzer9e8MvPkmZkrgLffPPc9123uLgAAAERbIuwCAAAAsGeENgAAgBggtAEAAMQAoQ0AACAGCG0AAAAxQGgDAACIAUIbAABADBDaAAAAYoDQBgAAEAOpsAsohoMPPtj79esXdhkASmTp0qWb3b0q7DoAoJi6ZGjr16+fampqwi4DQImY2Wth1wAAxcb0KAAAQAwQ2gAAAGKA0AYAABADXXJNGxCWhoYGbdq0STt37gy7lC6pe/fu6tu3ryoqKsIuBQBKjtAGdKJNmzapV69e6tevn8ws7HK6FHfXli1btGnTJh111FFhlwMAJcf0KNCJdu7cqT59+hDYisDM1KdPH65iAihbhDagkxHYioc/WwDljNAGAAAQA5EKbWa20cxeMbOXzawmOHa9mS0Pji00s8PCrhPoDD//3Xo9t35zs2PPrd+sn/9ufYdeN5lMavjw4Y23m2++uUOv1x4ffvih/v3f/32vnzd79mzddtttRagIALqeSIW2wOnuPtzdq4PHt7r7UHcfLulRSdeFWBvQaYb27a1vznupMbg9t36zvjnvJQ3t27tDr/upT31KL7/8cuNt5syZnVFum/Y1tAEA2i+Koa0Zd/9Lk4c9JXlYtQCd6aT+B+unk0fom/Ne0g8XrtY3572kn04eoZP6H9zp77V161YNHDhQq1evliT91V/9lX7xi19Ikvbbbz/9/d//vYYMGaIzzjhDdXV1kqT169dr/PjxOuGEE3Tqqadq1apVkqR3331XEydO1LBhwzRs2DA999xzmjlzptavX6/hw4frO9/5jiTp1ltv1ec//3kNHTpU3/3udxtr+f73v68BAwbolFNOaawHANAO7h6Zm6T/lbRM0lJJ05oc/76kNyStkFS1p9c54YQTHAjDq6++utfP+cGTq/zIf3zUf/Dkqk6pIZFI+LBhwxpvDzzwgLu7L1y40E888UT/z//8Tz/nnHMaz5fk9913n7u7f+973/Mrr7zS3d3HjRvna9ascXf3559/3k8//XR3d//yl7/sP/rRj9zdPZ1O+4cffuj/+7//60OGDGl8zSeffNIvu+wyz2aznslk/LzzzvPf/e53XlNT48cdd5xv377dt27d6v379/dbb711r36+Qn/Gkmo8AmMYN27cuBXzFrU+bae4+5tmdoikp8xslbs/6+7XSLrGzGZJ+qak77Z8oplNkzRNko444oiSFg3sq+fWb9Z9L7yuq8Ydo/teeF0n9u/T4Stt+enRls466yz9+te/1pVXXqk///nPjccTiYS+8pWvSJIuueQSXXTRRfroo4/03HPP6Utf+lLjeZ988okkafHixbr33nsl5dbP9e7dWx988EGz91q4cKEWLlyoESNGSJI++ugjrV27Vtu2bdPEiRPVo0cPSdIFF1zQoZ8VAMpJpEKbu78ZfH3PzBZIGiXp2San3C/pcRUIbe5+u6TbJam6upopVERefg1bfkr0xP59ijpFms1mVVtbqx49euiDDz5Q3759C55nZspmszrggAMKhr/2cHfNmjVLf/M3f9Ps+I9//ON9ej0AQITWtJlZTzPrlb8v6WxJK8zs2CanXShpVRj1AZ1t+aatzQJafo3b8k1bi/J+P/rRjzR48GDNmzdPU6dOVUNDg6RcmJs/f74kad68eTrllFO0//7766ijjtKvf/1rSbkQlr86d8YZZ2jOnDmSpEwmo61bt6pXr17atm1b43udc845uuuuu/TRRx9Jkt5880299957GjNmjP77v/9bH3/8sbZt26bf/OY3RflZAaAritKVtkMlLQiaZ6YkzXP3J8zsITMbKCkr6TVJl4dYI9BpLj+t/27HTup/cIevsn388ccaPnx44+Px48dr6tSpuuOOO/Tiiy+qV69eGjNmjG644QZ973vfU8+ePfXiiy/qhhtu0CGHHKIHH3xQknT//ffriiuu0A033KCGhgZNmjRJw4YN009+8hNNmzZNd955p5LJpObMmaPRo0fr5JNP1nHHHadzzz1Xt956q2prazV69GhJuQ873HfffRo5cqS+8pWvaNiwYTrkkEP0+c9/vkM/KwCUE3PvejOJ1dXVXlNTE3YZKEO1tbUaPHhw2GXslf3226/xilgcFPozNrOlvqtNEAB0SZGZHgUAAEDrCG1AmYvTVTYAKGeENgAAgBggtAEAAMQAoQ0AACAGCG0AAAAxQGgDuqB33nlHkyZNUv/+/XXCCSdowoQJWrNmTavn77fffvv0PkuWLNH555/f5jkvv/yyHn/88b1+7bFjx4rWPQCwC6ENCNsbL0q//0Huaydwd02cOFFjx47V+vXrtXTpUt1000169913O+X199a+hjYAQHOENiBMb7wo3XOBtPj7ua+dENyeeeYZVVRU6PLLd20eMmzYMI0YMUJnnHGGRo4cqeOPP14PP/xwwef/y7/8i44//ngNGzZMM2fOlNT8qtfmzZvVr1+/3Z734osvavTo0RoxYoROOukkrV69WvX19bruuuv04IMPavjw4XrwwQe1fft2feMb39CoUaM0YsSIxjo+/vhjTZo0SYMHD9bEiRP18ccfd/jPAgC6kihtYwWUn42/lzL1kmdyXzf+XvrsqA695IoVK3TCCSfsdrx79+5asGCB9t9/f23evFknnniiLrjgAgVbx0mSfvvb3+rhhx/WCy+8oB49euj9999v9/sOGjRIv//975VKpbRo0SJdffXVeuihh/TP//zPqqmp0U9/+lNJ0tVXX61x48bprrvu0ocffqhRo0bpzDPP1H/8x3+oR48eqq2t1fLlyzVy5MgO/TkAQFdDaAPC1O9UKVmZC2zJytzjInF3XX311Xr22WeVSCT05ptv6t1339WnP/3pxnMWLVqkqVOnqkePHpKkgw46qN2vv3XrVk2ZMkVr166VmTVuSN/SwoUL9cgjj+i2226TJO3cuVOvv/66nn32WV111VWSpKFDh2ro0KH7+qMCQJdEaAPC9NlR0pRHclfY+p3a4atskjRkyBDNnz9/t+P333+/6urqtHTpUlVUVKhfv37auXNnu14zlUopm81KUqvPufbaa3X66adrwYIF2rhxo8aOHVvwPHfXQw89pIEDB7bvBwIASGJNGxC+z46STv12pwQ2SRo3bpw++eQT3X777Y3Hli9frtdee02HHHKIKioq9Mwzz+i1117b7blnnXWW5s6dqx07dkhS4/Rov379tHTpUkkqGAil3JW2ww8/XJJ09913Nx7v1auXtm3b1vj4nHPO0b/927/J3SVJL730kiRpzJgxmjdvnqTcFO/y5cv36ecHgK6K0AZ0MWamBQsWaNGiRerfv7+GDBmiWbNmacKECaqpqdHxxx+ve++9V4MGDdrtuePHj9cFF1yg6upqDR8+vHEKc/r06ZozZ45GjBihzZs3F3zfGTNmaNasWRoxYoTS6XTj8dNPP12vvvpq4wcRrr32WjU0NGjo0KEaMmSIrr32WknSFVdcoY8++kiDBw/WddddV3BdHgCUM8v/ttuVVFdXO/2dEIba2loNHjw47DK6tEJ/xma21N2rQyoJAEqCK20AAAAxQGgDAACIAUIb0Mm64pKDqODPFkA5I7QBnah79+7asmUL4aII3F1btmxR9+7dwy4FAEJBnzagE/Xt21ebNm1SXV1d2KV0Sd27d1ffvn3DLgMAQkFoAzpRRUWFjjrqqLDLAAB0QUyPAgAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABiIFItP8xso6RtkjKS0u5ebWa3Svo/kuolrZc01d0/DK9KAACA0ovilbbT3X24u1cHj5+SdJy7D5W0RtKs8EoDAAAIRxRDWzPuvtDd08HD5yXRDh0AAJSdqIU2l7TQzJaa2bQC3/+GpN8WeqKZTTOzGjOrYQshAADQ1UQttJ3i7iMlnSvpSjMbk/+GmV0jKS3p/kJPdPfb3b3a3aurqqpKUy0AAECJRCq0ufubwdf3JC2QNEqSzOzrks6X9FV399AKBAAACElkQpuZ9TSzXvn7ks6WtMLMxkuaIekCd98RZo0AAABhiVLLj0MlLTAzKVfXPHd/wszWSeom6ange8+7++XhlQkAAFB6kQlt7r5B0rACx48JoRwAAIBIicz0KAAAAFpHaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIiBSIU2M9toZq+Y2ctmVhMc+5KZrTSzrJlVh10jAABAGFJhF1DA6e6+ucnjFZIukvQfIdUDAAAQuiiGtmbcvVaSzCzsUgAAAEITqelRSS5poZktNbNpYRcDAAAQFVG70naKu79pZodIesrMVrn7s+15YhDypknSEUccUcwaAQAASi5SV9rc/c3g63uSFkgatRfPvd3dq929uqqqqlglAgAAhCIyoc3MeppZr/x9SWcr9yEEAACAsheZ0CbpUEl/MLM/S3pR0mPu/oSZTTSzTZJGS3rMzJ4MtUoAAIAQRGZNm7tvkDSswPEFyk2VAgAAlK0oXWkDAABAKwhtAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGKA0AYAABADkWn5UUrjblui197foax747EmdwFESMKkGeMH6fLT+oddCgCEqtNDm5n9naT73P2Dzn7tzjK6/0HasHm7ZiTnaUrySXVTQ6vnWvC1UKYr5feKebyj5xb7WLHOKeXjzjq3vd/bl/OidF+S3vED9Xfpb+llDdDQvr0FAOWuGFfaDpX0JzNbJukuSU+6R+s61vcnDtXZb87RmLpHwy4FQCsOsw80v/J7WnHurzS0/8FhlwMAoev00Obu/2Rm1yq3d+hUST81s19JutPd13f2++2r07LPy635b/YAosY1tOEV5YYTAChvRVnT5u5uZu9IekdSWtKBkuab2VPuPqMY77m3fpc4UWN8Q8EpSgDR4DK9UnG8hoZdCABEQDHWtH1L0tckbZZ0h6TvuHuDmSUkrZUUemi7ZsFy3b/pfM1I/oU1bZ1wLmva9vyYNW0dWNP2cIPuq9qsk5giBVDminGl7SBJF7n7a00PunvWzM4vwvvttT+uf1/JhOnW7GTdmp0siU+PAlGVMGn5pq2ENgBlrxhr2r7bxvdqO/v99sXi6WPDLgEAAGCv0FwXAAAgBghtAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGKA0AYAABADhDYAAIAYILQBAADEAKENAAAgBghtAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGIgFXYBTZnZRknbJGUkpd292swOkvSgpH6SNkr6srt/EFaNAAAAYYjilbbT3X24u1cHj2dKetrdj5X0dPAYAACgrEQxtLV0oaR7gvv3SPpCiLUAAACEImqhzSUtNLOlZjYtOHaou78d3H9H0qGFnmhm08ysxsxq6urqSlErAABAyURqTZukU9z9TTM7RNJTZraq6Tfd3c3MCz3R3W+XdLskVVdXFzwHAAAgriJ1pc3d3wy+vidpgaRRkt41s89IUvD1vfAqBAAACEdkQpuZ9TSzXvn7ks6WtELSI5KmBKdNkfRwOBUCAACEJ0rTo4dKWmBmUq6uee7+hJn9SdKvzOxSSa9J+nKINQIAAIQiMqHN3TdIGlbg+BZJZ5S+IgAAgOiIzPQoAAAAWkdoAwAAiAFCGwAAQAwQ2gAAAGKA0AYAABADhDYAAIAYILQBAADEAKENAAAgBghtAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGKA0AYAABADhDYAAIAYILQBAADEAKENAAAgBghtAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGKA0AYAABADhDYAAIAYILQBAADEAKENAAAgBghtAAAAMUBoAwAAiIFIhTYzS5rZS2b2aPB4nJktM7MVZnaPmaXCrhEAACAMkQptkr4lqVaSzCwh6R5Jk9z9OEmvSZoSYm0AAAChiUxoM7O+ks6TdEdwqI+kendfEzx+StLFYdQGAAAQtsiENkk/ljRDUjZ4vFlSysyqg8dflPTZMAoDAAAIWyRCm5mdL+k9d1+aP+buLmmSpB+Z2YuStknKtPEa08ysxsxq6urqil4zAABAKUVlYf/Jki4wswmSukva38zuc/dLJJ0qSWZ2tqQBrb2Au98u6XZJqq6u9uKXDAAAUDqRuNLm7rPcva+791Pu6tpid7/EzA6RJDPrJukfJf08xDIBAABCE4nQ1obvmFmtpOWSfuPui8MuCAAAIAxRmR5t5O5LJC0J7n9H0nfCrAcAACAKon6lDQAAACK0AQAAxAKhDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYiF9rMLGlmL5nZo8HjM8xsmZm9bGZ/MLNjwq4RAACg1CIX2iR9S1Jtk8dzJH3V3YdLmifpn0KpCgAAIESRCm1m1lfSeZLuaHLYJe0f3O8t6a1S1wUAABC2VNgFtPBjSTMk9Wpy7K8lPW5mH0v6i6QTCz3RzKZJmiZJRxxxRJHLBAAAKK3IXGkzs/MlvefuS1t86+8lTXD3vpLmSvphoee7++3uXu3u1VVVVUWuFgAAoLSidKXtZEkXmNkESd0l7W9mj0ka5O4vBOc8KOmJsAoEAAAIS2SutLn7LHfv6+79JE2StFjShZJ6m9mA4LSz1PxDCgAAAGUhSlfaduPuaTO7TNJDZpaV9IGkb4RcFgAAQMlFMrS5+xJJS4L7CyQtCLMeAACAsEVmehQAAACtM3cPu4ZOZ2Z1kl5r5+kHS9pcxHI6Kur1SdGvkfo6Luo1DnT3Xns+DQDiK5LTox3l7u3u+WFmNe5eXcx6OiLq9UnRr5H6Oi7qNZpZTdg1AECxMT0KAAAQA4Q2AACAGCC0SbeHXcAeRL0+Kfo1Ul/HRb3GqNcHAB3WJT+IAAAA0NVwpQ0AACAGyjq0mdl4M1ttZuvMbGaR3+suM3vPzFY0OXaQmT1lZmuDrwcGx83M/jWoa7mZjWzynCnB+WvNbEqT4yeY2SvBc/7VzGwv6/usmT1jZq+a2Uoz+1aUajSz7mb2opn9Oajve8Hxo8zsheA1HzSzyuB4t+DxuuD7/Zq81qzg+GozO6fJ8Q7/ezCzpJm9ZGaPRrS+jcHfwcv5T1xG5e84eP4BZjbfzFaZWa2ZjY5SfQAQKncvy5ukpKT1ko6WVCnpz5I+V8T3GyNppKQVTY7dImlmcH+mpH8J7k+Q9FtJJulESS8Exw+StCH4emBw/8Dgey8G51rw3HP3sr7PSBoZ3O8laY2kz0WlxuA5+wX3KyS9ELzWryRNCo7/XNIVwf2/lfTz4P4kSQ8G9z8X/F13k3RU8G8g2Vn/HiT9g6R5kh4NHketvo2SDm5xLBJ/x8Hz75H018H9SkkHRKk+bty4cQvzVs5X2kZJWufuG9y9XtIDym1QXxTu/qyk91scvlC5/0kp+PqFJsfv9ZznJR1gZp+RdI6kp9z9fXf/QNJTksYH39vf3Z93d5d0b5PXam99b7v7suD+Nkm1kg6PSo3B+3wUPKwIbi5pnKT5rdSXr3u+pDOCqyoXSnrA3T9x9/+VtE65fwsd/vdgZn0lnSfpjuCxRam+NkTi79jMeiv3y82dkuTu9e7+YVTqA4CwlXNoO1zSG00ebwqOldKh7v52cP8dSYcG91urra3jmwoc3yfBVN0I5a5mRabGYOrxZUnvKfc/4vWSPnT3dIHXbKwj+P5WSX32oe698WNJMyRlg8d9IlaflAu6C81sqZlNC45F5e/4KEl1kuYGU8x3mFnPCNUHAKEq59AWKcFv/qF/lNfM9pP0kKT/5+5/afq9sGt094y7D5fUV7krT4PCqqUlMztf0nvuvjTsWvbgFHcfKelcSVea2Zim3wz57zil3BKCOe4+QtJ25aZDG4X9bxAAwlTOoe1NSZ9t8rhvcKyU3g2mbBR8fW8PtbV1vG+B43vFzCqUC2z3u/t/RbFGSQqmzJ6RNFq5KbH8dmxNX7OxjuD7vSVt2Ye62+tkSReY2Ublpi7HSfpJhOqTJLn7m8HX9yQtUC78RuXveJOkTe7+QvB4vnIhLir1AUCoyjm0/UnSscGn+yqVWwz+SIlreERS/pNtUyQ93OT414JPx50oaWswPfSkpLPN7MDgE3RnS3oy+N5fzOzEYF3U15q8VrsEz7tTUq27/zBqNZpZlZkdENz/lKSzlFt394ykL7ZSX77uL0paHFyleUTSJMt9evMoSccqtzi9Q/8e3H2Wu/d1937Bcxe7+1ejUp8kmVlPM+uVv6/c380KReTv2N3fkfSGmQ0MDp0h6dWo1AcAoSvWJxzicFPu02drlFsbdU2R3+s/Jb0tqUG5KwqXKreG6WlJayUtknRQcK5J+llQ1yuSqpu8zjeUW5y+TtLUJserlfsf8HpJP1XQOHkv6jtFuWmn5ZJeDm4TolKjpKGSXgrqWyHpuuD40cqFmnWSfi2pW3C8e/B4XfD9o5u81jVBDavV5NODnfXvQdJY7fr0aGTqC2r5c3BbmX+NqPwdB88fLqkm+Hv+b+U+/RmZ+rhx48YtzBs7IgAAAMRAOU+PAgAAxAahDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA4Q2AACAGCC0AQAAxAChDQAAIAYIbQAAADFAaAMAAIgBQhsAAEAMENoAAABigNAGAAAQA6mwCyiGgw8+2Pv16xd2GQBKZOnSpZvdvSrsOjoD4xdQfto7hnXJ0NavXz/V1NSEXQaAEjGz18KuobMwfgHlp71jGNOjAAAAMUBoAwAAiAFCGwAAQAwQ2gAAAGIg1NBmZuPNbLWZrTOzmQW+383MHgy+/4KZ9euM9x132xJds2B5s2PXLFiucbct6YyXB1AmwhrD0HXw/yPsjdA+PWpmSUk/k3SWpE2S/mRmj7j7q01Ou1TSB+5+jJlNkvQvkr7S0fce3f8g3f/CG/rs0ls0qdfL+nPPU3X/pvPVp2eFjrn6MZ1ybJXunjqqo28DoAsLcwxD17Fh83Zt2LxdZ785R6dln9fvEifq/k3nh10WIirMK22jJK1z9w3uXi/pAUkXtjjnQkn3BPfnSzrDzKyjb/z9iUN1XfcH9TfJ36j3jjc0pm6eartP0VkfP6F0VvrD2jqN/OeFHX0bAF1baGMYupYZyXkaUzdP/v4GjambpxnJeWGXhIgKM7QdLumNJo83BccKnuPuaUlbJfUp9GJmNs3Masyspq6ubo9v/o2DXgmel3vc3Rt0U8Wdeij1T0pnpe2fpDX42t/u1Q8EoKx02hi2t+MXupZLk49LkqzFY6ClLvNBBHe/3d2r3b26qmrPjdF/lzgxeF4uuOXD28jkBv0xdYU+ybhM0jFXP6avz32xiJUDKHd7O36ha6lQts3HQF6Yoe1NSZ9t8rhvcKzgOWaWktRb0paOvvE1C5ZryqbztckOlpQLbrn3yH39dHKr1lReogsyTzFdCqA1oY1hAMpTmKHtT5KONbOjzKxS0iRJj7Q45xFJU4L7X5S02D0fsfbdH9e/rz49K3Tqzn/Va5nCwa3CskyXAmhLaGMYgPIUWmgL1nd8U9KTkmol/crdV5rZP5vZBcFpd0rqY2brJP2DpN0+Ur8vFk8fqx31GaUS0tj0v+q/MicHNbU9XZrOZDXgmsf189+t74wyAMRYmGMYgPJkXfGXvurqam/Phsvjblui19/foXTWNdLW6JcV31cPa5C0K7Tl/3h2ZCv0f9PXaJkPUCohHXFQTy2ePrZIPwGAvWFmS929Ouw6OkN7xy90Df1mPqYNlZMbLxbkLx4cXT9PG28+L+zyUCLtHcO6zAcR9sXi6WM1/ZyBqkwltCo1SEPq72l1urRHokHzK2frB6mfKZ2VXn9/O9OlAACgZMo6tEnS5af115obzpVLBadLpV3TpSbpouT/aEnqKqWzucdMlwIAgFIo+9CWV3v9uTrioJ5KJUzfTl+pWQ2XyrXrUrW066rbkcnNWlk5RYPSq1Sfcd325Cq2HAEAAEVFaGsiP12aSpgeyJ6hL9bP1rZMN0kFpkut+XTpxi3baQsCAACKhtDWwuWn9W9c57YyMVBD03O1LHO0pN0/XZqfLn0iNV1Zpy0IAAAoHkJbAfl1bj27pVSRkC5O36BZDZeqwXN/XC2vug1MvsUuCgAAoKgIbW1Ydt3ZOvnYKqUSpkeSZ2lA/X16J9NbErsoAACA0iK07cHdU0dp3Y0T5JK6JU2j03O0OnOYpPbtosCnSwEAQGcgtLVT7fW56dKkSePTt+1xF4XlFVM1JLs6+HTpaoIbAADoEELbXlh23dk6ss+utiAX18/WDq+QtPtVt16JTzS/crYmJZ5WOktbEAAA0DGEtr3U3l0U8p8uvbHiTnZRAAAAHUZo2wd72kWhWXgTuygAAICOI7R1QMtdFC6un60dmcLTpeyiAAAAOoLQ1kFNp0tfsQEakr7kwYXzAAAgAElEQVSn1bYgLXdRYLoUAAC0VyihzcwOMrOnzGxt8PXAAucMN7M/mtlKM1tuZl8Jo9b2yE+XppKJxrYge9pFIT9dms5kmS4FYqarjWEA4iGsK20zJT3t7sdKejp43NIOSV9z9yGSxkv6sZkdUMIa91q+LUh7dlE4MrlZKyum6Hhfo/qM64cLV7OLAhAfXXIMAxBtYYW2CyXdE9y/R9IXWp7g7mvcfW1w/y1J70mqKlmF+2hvdlHokchNl85IzlN9xtlFAYiPLjuGAYiusELboe7+dnD/HUmHtnWymY2SVCmp1TlEM5tmZjVmVlNXV9d5le6DQrsoNJ0ulZpPl16RepRdFIB46dQxLErjF4DoKlpoM7NFZraiwO3Cpue5u0vyNl7nM5J+KWmqu2dbO8/db3f3anevrqqKxi+zLadL56TPl7R7WxBp910UmC4FwlXKMSyK4xeA6ClaaHP3M939uAK3hyW9Gwxk+QHtvUKvYWb7S3pM0jXu/nyxai2m/HRpwqRbMpN1cf1sbct0k9T6Lgr56dJn19TRFgQICWMYgKgJa3r0EUlTgvtTJD3c8gQzq5S0QNK97j6/hLV1urunjtKM8YNUmUpoZWKghqbnFtx0vul06dzUTco6bUGAiCqrMQxANIQV2m6WdJaZrZV0ZvBYZlZtZncE53xZ0hhJXzezl4Pb8HDK7bh8W5Ce3VLqlrSCm85Lu666jU2+0mwXhWOufozpUiA6ym4MAxC+UEKbu29x9zPc/dhgCuL94HiNu/91cP8+d69w9+FNbi+HUW9nWnbd2Tr8wB7NdlFobbr0yORmram8RBdknlI6Kz23bjPTpUAElPMYBiA87IgQgqa7KOSnSwttOi9JFZbVTRV3am7qJtVnnOlSAADKFKEtJE2nSyuCTedb20VBaj5dyi4KAACUH0JbyJZdd7Z6da9gFwUAANAmQlsEFNpFobXpUnZRAACgPBHaIqLpLgqpYLp0SeZ4SeyiAAAACG2RU3v9uTrioJ6qTJqmpmft1S4KtzyxiulSAAC6KEJbBC2ePlYnHXPwXu+ikHXaggAA0FUR2iJqX3dRoC0IAABdE6EtwthFAQAA5BHaYqDQLgo7MhWS2EUBAIByQWiLiaa7KLxiAzQkfU+7d1HYuGU7bUEAAIg5QluM5KdLU8lEwbYghXZReCI1XVmnLQgAAHFHaIuhlm1B2tpFYWDyrWZtQW57chXTpQAAxBChLabybUHas4tCvi3ID1I/UzorbfpgB9OlAADETGihzcwOMrOnzGxt8PXANs7d38w2mdlPS1lj1BXaRaHppvNS87YgFyX/R0+kpqs+49q2s0HHXP14aLUDccb4BSAMYV5pmynpaXc/VtLTwePWXC/p2ZJUFUP56dJUsOl8W21BBibfUk3qMjVkpaTRFgTYR4xfAEouzNB2oaR7gvv3SPpCoZPM7ARJh0piPq8Ni6ePDYLbrrYgre2i0Ce5XWsrL9FEX6R0Vmw6D+w9xi8AJRdmaDvU3d8O7r+j3MDWjJklJP1A0vQ9vZiZTTOzGjOrqaur69xKY6JpW5D8LgqFpkslKRW0BWm66Ty7KADtxvgFoOSKGtrMbJGZrShwu7Dpee7ukrzAS/ytpMfdfdOe3svdb3f3anevrqqq6qSfIH6a7qJQEUyXzkmfL1fhtiAjkxv0x9QV+iTjymZdR896jLYggBi/AERPqpgv7u5ntvY9M3vXzD7j7m+b2WckvVfgtNGSTjWzv5W0n6RKM/vI3dtaPwLldlH4+twX9dy6zbolM1mLstW6P3W9uicyzYKbu/Tp5FbV2tf01fQ/aZkP0G1PrtKv/vSGFk8fG/aPAYSG8QtA1IQ5PfqIpCnB/SmSHm55grt/1d2PcPd+yk0x3MuA1353Tx2lfzh7oJIJ08rEQA1u+GWrbUG6J9K0BQHaj/ELQMmFGdpulnSWma2VdGbwWGZWbWZ3hFhXl3L5af21/sYJSiSssS1Iy0+XttYWhF0UgFYxfgEoudBCm7tvcfcz3P1Ydz/T3d8Pjte4+18XOP9ud/9m6SvtGna1Bdn16dKd2aQkdlEA9hbjF4AwsCNCGWn56dLBDb/UlkxPSXveRYFN5wEACBehrczkP12acakiIVWnf9GuXRTym87TFgQAgHAQ2srUuhsnqFf3ilbbgkjNp0vzbUFM7KIAAEAYCG1lbNl1Z+vkY6tUmTTdkpmsL7axi8Knk1u1pvISXZB5il0UAAAIAaGtzOXbgjTdRWF15jBJuwe3iha7KGzb2UBwAwCgRAhtaLaLQtKk8enbWm0LIuV2UViSukoNwfZXtAUBAKD4CG1otOy6s3Vkn+ZtQXZ4haTdr7odmdxMWxAAAEqI0IZmmrYFWZUapCH197S6i0LLtiCvv7+dT5cCAFAkhDbsJj9d6lLjLgpLMsdLar0tyJLUVUpnpXQmS3ADAKAICG1oVX4XhYRJU9Oz2mwLcmRys2pSl6khK9qCAABQBIQ2tGnx9LEaM6B9bUH6JLfTFgQAgCIhtGGPCrUFKbSLgrR7WxB2UQAAoHMQ2tAuTduCNN1FQWq9LUh+F4V0JktbEAAAOiiU0GZmB5nZU2a2Nvh6YCvnHWFmC82s1sxeNbN+pa0ULeV3UUiYdEtmcpttQT6d3KqVFVN0vK+hLQi6FMYwAGEI60rbTElPu/uxkp4OHhdyr6Rb3X2wpFGS3itRfWjD3VNHacb4Qe1qC9Ij0UBbEHRFjGEASi6s0HahpHuC+/dI+kLLE8zsc5JS7v6UJLn7R+6+o3Qloi2F2oI03UVBar0tSDbrOubqx0OrHegEjGEASi6s0Haou78d3H9H0qEFzhkg6UMz+y8ze8nMbjWzZOlKRHvk24Lkd1GY1XBpm21BXk59Q59kXEmjLQhijTEMQMkVLbSZ2SIzW1HgdmHT89zdJXmBl0hJOlXSdEmfl3S0pK+38X7TzKzGzGrq6uo67wfBHuV3UUglTA9kz2izLUjv5E6trbxEE30RbUEQaaUcwxi/ALRH0UKbu5/p7scVuD0s6V0z+4wkBV8LrfPYJOlld9/g7mlJ/y1pZBvvd7u7V7t7dVVVVTF+JLTh8tP6N25/VagtSP7TpZKUoi0IYqCUYxjjF4D2CGt69BFJU4L7UyQ9XOCcP0k6wMzyI9g4Sa+WoDbso0JtQWY1XKoGz6W1ttqCZLOuo2c9RlsQxAVjGICSCyu03SzpLDNbK+nM4LHMrNrM7pAkd88oN63wtJm9otx69l+EVC/2Qr4tSCphWmBnakD9/dqa6S6pcFuQ2oqvaUh2tbIu2oIgLhjDAJScuRdaihFv1dXVXlNTE3YZkHTM1Y8radInGdeS1FU6MrlZ0q7Qlv/n55IWZE7Wt9NXKpWQKpIJ1V5/bjhFI3bMbKm7V4ddR2dg/Cov/WY+pg2VkxtnIfLLSY6un6eNN58XdnkokfaOYeyIgKJad+MEJRJWsC1I0+nSlm1BTGIXBQAAmiC0oehatgW5uH62dmZznQ8KtQVZWTlFg9KrVJ9x3fLEKtqCAAAgQhtKJN8WJP/p0sENv9SWTE9JBXZRsNwuCjOS85R12oIAACAR2lBC+U+XZlyqSEjV6V8UbAuSny69IvUobUEAAAgQ2lBy626coF7dK1q0Bcn9U2x51Y22IAAA5BDaEIqmbUEeSZ6lAfX3tTpdSlsQAAAIbQjR3VNHad2NE+TaNV36WuZgSbsHt+6JtOZXztYPUj9TOiu9/v52pksBAGWF0IbQ1V5/rlLJBG1BAABoA6ENkUBbEAAA2kZoQ2TQFgQAgNYR2hAptAUBAKAwQhsiibYgAAA0R2hDZNEWBACAXQhtiDTaggAAkBNaaDOzg8zsKTNbG3w9sJXzbjGzlWZWa2b/apb/XzTKCW1BECWMXwDC0K7QZmZPm9mEFsdu7+B7z5T0tLsfK+np4HHL9z1J0smShko6TtLnJZ3WwfdFTNEWBBHC+AWg5Np7pe0oSf9oZt9tcqy6g+99oaR7gvv3SPpCgXNcUndJlZK6SaqQ9G4H3xcxRlsQRATjF4CSa29o+1DSGZIONbPfmFnvTnjvQ9397eD+O5IObXmCu/9R0jOS3g5uT7p7baEXM7NpZlZjZjV1dXWdUB6iirYgiADGLwAl197QZu6edve/lfSQpD9IOmSPTzJbZGYrCtwubHqeu7tyv5W2fP4xkgZL6ivpcEnjzOzUQu/l7re7e7W7V1dVVbXzx0Kc0RYExcT4BSBq2hvafp6/4+53S/q6pD3OM7n7me5+XIHbw5LeNbPPSFLw9b0CLzFR0vPu/pG7fyTpt5JGt7NmlAHagqBYGL8ARE27Qpu7/0eLx0vd/RsdfO9HJE0J7k+R9HCBc16XdJqZpcysQrlFvAWnF1C+aAuCEDB+ASi5MPu03SzpLDNbK+nM4LHMrNrM7gjOmS9pvaRXJP1Z0p/d/TdhFIvo29e2INms65irHw+3eMQN4xeAkjP33ZZixF51dbXX1NSEXQZCMu62JXr9/R1KZ10jbY3uT12v7omMpF1X3PL/7Ldmumt4+i51S5oy7jrl2CrdPXVUSJVjX5nZUnfv6CfaI4Hxq7z0m/mYNlRObvylMv9L5tH187Tx5vPCLg8l0t4xjB0R0OXsTVuQ3smdWlt5iSb6IqWztAUBAEQXoQ1dUnvbgkhSyrK6qeJO2oIAACKN0IYurXBbkFxaa7rOTWreFiSdybL9FQAgUght6PKatgVZYGdqQP392prpLqlwW5CVFVN0vK9RfcZpCwIAiAxCG8pCvi1IxqVuSdPw9F2ttgXpkWigLQgAIHIIbSgr626coETCCrYFkVpvC5LOZAluAIBQEdpQdmqvP1dHHNRTqYTp2+krNavhUrl2fUBB2nXV7cjkZtWkLlNDNhfkjrn6MX197othlQ4AKGOENpSlfFuQVML0QPYMfbF+trZluknaPbj1SW7XmspLdEHmKdqCAABCQ2hD2br8tP7N+rkNTc9t1hZE2hXcKlq0Bdn6cQPTpQCAkiK0oazl+7n17JZqbAsyJ32+pN23v5J2tQXJeG66lLYgAIBSIbQB2tUWJGHSLZnJurh+tnZ4haRW2oJUTtGg9CraggAASobQBgTunjpKM8YPUmUqoVWpQRpSf0/rbUGseVuQjVu2s84NAFBUhDagifx0qUuNbUGWZI6XtPt0ab4tyBOp6co6218BAIqL0AYUkG8LkjBpanpWsP1V7j+XllfdBibfatz+irYgAIBiCSW0mdmXzGylmWXNrLqN88ab2WozW2dmM0tZI7B4+liNGZDb/uqR5FkaUH+f3sn0llR4nVvTtiDPrqljnVsXxhgGIAxhXWlbIekiSc+2doKZJSX9TNK5kj4n6a/M7HOlKQ/IyW9/5cptfzU6PUerM4dJar0tyNzUTco62191cYxhAEoulNDm7rXuvnoPp42StM7dN7h7vaQHJF1Y/OqA3dVen2sLkjRpfPq2ZttftWwLMjb5SuP2V7QF6ZoYwwCEIcpr2g6X9EaTx5uCYwWZ2TQzqzGzmrq6uqIXh/Kz7LqzdWSfXdtftdUW5Mjk5mZtQW55YhXr3MpPu8cwxi8A7VG00GZmi8xsRYFbUX7TdPfb3b3a3aurqqqK8RZA4/ZXTduCtLbOLd8WZEZynrLO9ldxU8oxjPELQHsULbS5+5nuflyB28PtfIk3JX22yeO+wTEgVE3bgiRMGp2e02z7q5ZtQa5IPdq4/RVtQeKDMQxA1ER5evRPko41s6PMrFLSJEmPhFwT0Kj2+nN1wKcqGre/aqstSH77q08yrnQmyzq38sAYBqBThdXyY6KZbZI0WtJjZvZkcPwwM3tcktw9Lembkp6UVCvpV+6+Mox6gdbkt79q2hZkS6anpFa2v6qYouN9DdtfxRxjGIAwmOf/z9KFVFdXe01NTdhloMwMvva3SmeyashKS1JX6cjkZkm7Qlv+PzWXtCBzsr6dvlKphFSRTKj2+nPDKbqLMLOl7t5qv7Q4YfwqL/1mPqYNlZMbl1Tkl1gcXT9PG28+L+zyUCLtHcOiPD0KxErt9ecqlUw0bn/VtC2ItPv2V/m2IOlMlnVuAIA9IrQBnSi//VW+Lcishkvl2vXbs9S8LUhN6jI1BP3c2P4KANAWQhvQyfJtQVIJ0wPZM/TF+tnalukmaffg1ie5vdn2V7QFAQC0htAGFMHlp/Vv7Oe2MjFQQ9Nzm7UFkXbf/irfFmTbzgaCGwBgN4Q2oEjy/dx6dks1tgWZkz5fUuHtr0YmN2hJ6io1BP3caAsCAGiK0AYUWb4tSMKkWzKT97j91fKKqRqSXc32VwCAZghtQAncPXWUZowf1Gz7q9cyB0vaPbj1SnzC9lcAgN0Q2oASabr9Vb4tyJLM8ZIKtwVh+ysAQFOENqDE8m1BEiZNTc/SnPT5rbYFabr9VTbrOnrWY6xzA4AyRWgDQrB4+liNGVClyqTplsxkfbF+tnZkCq9z+3Ryq2orvqYh2dXKutj+CgDKFKENCMndU0fpH87OtQV5xQZoSLr1dW7dE2nNr5ytH6R+pnRW2vTBDta5AUCZIbQBIcqvc2tt+6umbUHy2189kZqu+oxr68cNrHMDgDJCaAMioOX2VxfXz9bObFLS7lfdBibf0h9TVyjjbH8FAOWE0AZERH77q/wuCoMbfqktmZ6SCq9zY/srACgvoYQ2M/uSma00s6yZVbdyzmfN7BkzezU491ulrhMotfx0acalioRUnf4F219FEGMYgDCEdaVthaSLJD3bxjlpSd92989JOlHSlWb2uVIUB4Rt3Y0T1Kt7ReP2V62tc5PY/iokjGEASi6U0Obute6+eg/nvO3uy4L72yTVSjq8FPUBUZDf/iqVkL6dvlKzGi5Vg+f+k2X7q3AxhgEIQyzWtJlZP0kjJL3QxjnTzKzGzGrq6upKVRpQVHdPHaVTjq1SKmF6JHmWBtTf1+7tr55bt5l+bhGxpzGM8QtAexQttJnZIjNbUeB24V6+zn6SHpL0/9z9L62d5+63u3u1u1dXVVV1tHwgMu6eOkrrbpywV9tfzU3dpPqM6/X3t9MWZB+Vcgxj/ALQHkULbe5+prsfV+D2cHtfw8wqlBvs7nf3/ypWrUAc7M32V2OTr2hJ6iqls1I6k2Wd2z5gDAMQNZGdHjUzk3SnpFp3/2HY9QBRsDfbXx2Z3KyVFVN0vK9RfcbZ/qrEGMMAdLawWn5MNLNNkkZLeszMngyOH2ZmjwennSzp/0oaZ2YvB7cJYdQLRMnebH/VI9HA9ldFwBgGIAxhfXp0gbv3dfdu7n6ou58THH/L3ScE9//g7ubuQ919eHB7vO1XBspDoe2v2lrnxvZXnYsxDEAYIjs9CmDP8uvcKpPWuM5NKrzOje2vACDeCG1AzC2ePlYnHXOwEibdkpmsi+tna1umm6T2bX9FcAOAeCC0AV3A3VNHacb4QY37lg5Nz93j9lf5dW7sWwoA8UBoA7qI/Dq3nt1S7dr+6qLk/zTbt/SYq1luBQBRRmgDupi92f5qZHKDalKXqSErJY11bgAQZYQ2oAsqtP3VO5neknYPbn2S27W28hJN9EVKZ9n+CgCiitAGdFFNt79KmDQ6PUerM4dJ2j24pYJ1bvntrzZu2c46NwCIGEIb0MXVXn+uDvhUhbolTePTt7W5zm1s8hU9kZqurEvbP0mz/RUARAihDSgDy647W4cf2EOphOnb6St1cf1s7cwmJRXu57a8YqqGZFcH21+tJrgBQAQQ2oAysXj6WE0/Z6CSCdPKxEANbvhlq9tf9Up8ovmVszUp8bTSWfYtBYAoILQBZeTy0/pr/Y0TlEhY4/ZXhfq55be/urFJP7fX39/O9lcAECJCG1CG8ttfpVrp5yY137d0SeoqpbNSOpNlnRsAhITQBpSpxdPHBsFt1zq3HZkKSbtPlx6Z3KyVFVN0vK9Rfcb1w4Wr6ecGACVGaAPKWH6dW2UqoVdsgIak72m1n1uPRIPmV87WjOQ81Wdcz66pY50bAJRQKKHNzL5kZivNLGtm1Xs4N2lmL5nZo6WqDygn+e2vUsmEuiVNo9Nz2lzndkXqUc1N3aSsl+86N8YwAGEI60rbCkkXSXq2Hed+S1JtccsBUHt9831L56TPl7T7Ojcp188tv84tm/Vy3LeUMQxAyYUS2ty91t1X7+k8M+sr6TxJdxS/KgD5fUsTJt2SmayL62drW6abpMLr3F5OfUOfZLzs9i1lDAMQhqivafuxpBmSsns60cymmVmNmdXU1dUVvzKgi7p76ijNGD9IlamEViYGamh6bqv93Hondzbbt/QPa+vY/qq5do1hjF8A2qNooc3MFpnZigK3C9v5/PMlvefuS9tzvrvf7u7V7l5dVVXVodqBcpdf55afLm3Zzy2//ZW0a9/Sh1L/pHRW2vpxQ5dY51bKMYzxC0B7FC20ufuZ7n5cgdvD7XyJkyVdYGYbJT0gaZyZ3VesegHsbtl1Z6tX94rGdW6zGi5Vg+fSWst9S0cmN+iPqSuU8dwHFuLez40xDEDURHZ61N1nuXtfd+8naZKkxe5+SchlAWUnv84tlTAtsDM1oP5+bc10l7T7dOmnk1u1snKKBqVXqT7juuWJVWWzzq0lxjAAnS2slh8TzWyTpNGSHjOzJ4Pjh5lZ2X0MDYi6u6eO0robJyjjUrekaXj6rlbXufWwXf3cst4117kxhgEIQ1ifHl0Q/Abazd0PdfdzguNvufuEAucvcffzS18pgKbWtdi3dEnmeEnN17k17eeWX+e2bWdDl2oLwhgGIAyRnR4FEE35fUsTJk1NzwrWueWGkpZX3UYmN6gmdZkaslLS4r/ODQDCRGgDsNcWTx+rMQNy69weSZ6lAfX3aUump6Tdg1uf5HbVVnxNQ7KrVZ9x3fbkKra/AoB9QGgDsE/y69xcUkVCqk7/otV1bt0Tac2vnK0fpH6mdFbauGV7l1vnBgDFRmgD0CG11+f2Lc2vc/uvzMmSCq9zuyj5P3oiNV1Zl7Z/ku4S/dwAoFQIbQA6LL/OLZUwfTt9pS6un62d2aSk3a+6DUy+pT+mrtAnGVc26zp61mOscwOAdiC0AegUi6eP1fRzBiqZMK1MDNTghl/qnUxvSYX7ueXXuWVdrHMDgHYgtAHoNJef1l/rg7Yg3ZKm0ek5Wp05TNKe17m9/v52pksBoA2ENgCdrvb63L6lSZPGp2/b4zq3JamrlM5K6UyW4AYArSC0ASiKZdedrSP7tG+d25HJzY393EzSMVc/VrbbXwFAawhtAIomv86tMpVoXOfWVj+3NZWX6ILMU0pnpWfX1LHODQCaILQBKKrLT+uvNTecq4zv6ue2LHO0pN2DW4VldVPFnZqbuklZlzZ9sIN+bgAQILQBKIl1N05Qr+4VqkhIF6dv0Jx0bivOluvcJGls8hU9kZqu+owrnc3SEgQARGgDUELLrjtbJx9bpYRJt2Qm6+L62drhFZIK93Obm7pJ6aw0tG/vkCoGgOggtAEoqbunjtKM8YNUmUpoVWqQhtTf02o/t7HJV/TAhIRO6n9wSNUCQHSEEtrM7EtmttLMsmZW3cZ5B5jZfDNbZWa1Zja6lHUCKI78OjeXlDBpdHpOq+vchja8Ek6RbWAMQ2eqV6rNx0BeWFfaVki6SNKzezjvJ5KecPdBkoZJqi12YQBKp/b6c3XAp3atc2vZz61BSc1cun/IVRbEGIZOc1dmvCTJWzwGWgoltLl7rbuvbuscM+staYykO4Pn1Lv7h6WoD0Dp5Ne5pRLSt9NX6rt+mbYdPEzLepykSfXX6oF3DtNz6zeHXWYzjGHoTLdkJuvZqsmyg47Ws1WTdUtmctglIaKifA32KEl1kuaa2TBJSyV9y923FzrZzKZJmiZJRxxxRMmKBNBxd08dpa/PfVEJk8afOlP79z9YJ0g69/frlVn+tpZv2hrHdW3tHsMYv8rX0Qf31Oj+B+m0iXMkSadJ+uqC5frj+vfDLQyRZJ5fQNLZL2y2SNKnC3zrGnd/ODhniaTp7l5T4PnVkp6XdLK7v2BmP5H0F3e/dk/vXV1d7TU1u70kgC7KzJa6e6try/bxNUMZwxi/gPLT3jGsaFfa3P3MDr7EJkmb3P2F4PF8STM7+JoA0C6MYQCiJrItP9z9HUlvmNnA4NAZkl4NsSQAaDfGMACdLayWHxPNbJOk0ZIeM7Mng+OHmdnjTU79O0n3m9lyScMl3Vj6agGgOcYwAGEI5YMI7r5A0oICx9+SNKHJ45cldeo6FQDoKMYwAGEo2gcRwmRmdZJea+fpB0uKVj+B5qJenxT9Gqnv/7d397FyVHUYx7+PfYPw1hYRkRJpIyLFKFRsRJGYkkgpRCRKQkIUFGIiIKB/GEwToihRIFEkGolBECIIWMAoaqQiBAzSyktbClh6KU0oIhUQRRIpLz//mN+Fvevu3bvt3Ttn7n0+yWTPnNnZfe6dM7tnZ87s7rjSMx4YEbvVHWI8jOH1q/Rt0U0TczcxMzj3RBqvzO+MiL163ankr/zYbmP5w4dJum+8rzobT6Xng/IzOt+OKz2jpElzuWWv16/St0U3TczdxMzg3BNpojMXeyGCmZmZmb3JnTYzMzOzBnCnDX5cd4AeSs8H5Wd0vh1XesbS842npv6tTczdxMzg3BNpQjNPygsRzMzMzCYbH2kzMzMzawB32szMzMwaYEp32iQtlbRB0pCkgf4moKQrJW2VtL6lbq6klZI25u2crJekyzLXOkmLWtY5Je+/UdIpLfUfkPRQrnOZJPWZbz9Jd0h6RNLDks4pKaOknSStlrQ2830j6+dLWpWPeYOkmVk/K+eHcvn+LY/1tazfIOnolvodbg+Spkl6UNKthebbnNtgzfDXZJSyjXP92ZJWSPqrpEclHV5Svjp0aFNHSXogt+GfJL2r7oyddMi9JHOvl3S1pOK+cqqf/aMUXTKfqOp18nVJRX6FRrnSni8AAAb4SURBVJfcl+S+v07SLZJm152zXZfc38zMayTdJukdAwsQEVNyAqYBjwMLgJnAWmDhAJ/vSGARsL6l7mLgvCyfB1yU5WXA7wABHwJWZf1cYFPezsnynFy2Ou+rXPeYPvPtAyzK8m7AY8DCUjLmOrtmeQawKh/rRuCkrL8c+GKWzwAuz/JJwA1ZXpjbehYwP9vAtPFqD8BXgOuAW3O+tHybgbe21RWxjXP9q4HTszwTmF1SvjqmDm3qMeCglnb007oz9spNdYDgSeDduewC4LS6M3bIPOb9o5SpS+aDgAOBO4HD6s7YR+6PA9OzfFFp/+tRcu/eUj6bfG0fxDSVj7QtBoYiYlNEbAOuB44f1JNFxF3A823Vx1O9SZG3n2ypvyYq9wKzJe0DHA2sjIjnI+KfwEpgaS7bPSLujarVXNPyWGPN93REPJDlF4FHgX1LyZjP85+cnZFTAEuAFV3yDedeARyVR1WOB66PiJcj4glgiKot7HB7kDQPOBa4IudVUr5RFLGNJe1B9eHmJwARsS0iXiglXx3a21QKYPcs7wH8baJz9dIh957Atoh4LOdXAp+qI9t26Nb+ihURj0bEhrpz9CsibouIV3P2XmBenXnGKiL+3TK7C9U+OhBTudO2L9Unv2Fbsm4i7R0RT2f578DeWe6WbbT6LR3qt4uqU3WHUh3NKiZjnm5ZA2yletF/HHihZSdvfcw3cuTyf1G9cfSbux+XAl8FXs/5PQvLB9WLyW2S7pf0hawrZRvPB/4BXJWn1a6QtEtB+erQ3qYATgd+q+oH6z8DfKeOYD20534WmN5yqu7TwH51BOuhn/2jFJ0yN0Gv3J+nOhpemo65JV0o6UngZOD8QT35VO60FSU/+df+/SuSdgVuAs5t+/RQe8aIeC0iDqH69LUYeE9dWdpJOg7YGhH3152lhyMiYhFwDHCmpCNbF9a8jadTDSH4UUQcCrxEdTrqDXW3wYk0Spv6MrAsIuYBVwHfnfBwo+iUO7fbScD3JK0GXgReqyniaEreP7oZNXPBuuaWtBx4Fbi2rnCj6Jg7IpZHxH5Umc8a1JNP5U7bU4z8pDcv6ybSM3nKhrzd2iPbaPXzOtT3RdIMqg7btRFxc4kZAfKU2R3A4VSnxIYHNLc+5hs5cvkewHPbkXusPgJ8QtJmqlOXS4DvF5QPgIh4Km+3ArdQdX5L2cZbgC0RsSrnV1B14krJN9H+r01J+g3w/pb/0Q3Ah2vK102n3D+LiD9HxEcjYjFwF9XYvKL0uX8UoUvm4nXLLelU4Djg5OwkF2UM/+9rGeSp/26D3Sb7RPWpfhPVKZnhgd0HD/g592fkhQiXMHKA68VZPpaRA6xXZ/1c4AmqwdVzsjw3l7UPsF7WZzZRjfG5tK2+iIzAXsDsLO8M3E21Y/+CkQP9z8jymYwc6H9jlg9m5ED/TVSD/MetPQAf481B48XkoxprsVtL+R5gaSnbONe/Gzgwy1/PbMXkq2sablPZDp7lzQH9pwE31Z1vjPvC2/J2FnA7sKTufG1Z+9o/Spi6ZW5ZficFXogwyv96KfAIsFfdGfvMfUDLfb4ErBhYhrr/CTVvgGVUn/YeB5YP+Ll+DjwNvEJ1ROE0qjFMtwMbgT+0vLEI+GHmeqh1p6M6zz+U0+da6g8D1uc6PyB/7aKPfEdQHfZfB6zJaVkpGYH3AQ9mvvXA+Vm/gOqNeIiqgzQr63fK+aFcvqDlsZZnhg20XD04Xu2BkW9UxeTLLGtzenj4MUrZxrn+IcB9uZ1/SdXpKiZfXVNbmzoh/961VG/KC+rM1kfuS6gucNpANfyi9nxtWfvaP0qYRsl8AtX7zMvAM8Dv6846xtxDVONRh9+DBnYV5jjnvilfV9YBvwb2HVQG/4yVmZmZWQNM5TFtZmZmZo3hTpuZmZlZA7jTZmZmZtYA7rSZmZmZNYA7bWZmZmYN4E6bmZmZWQO402ZmZmbWAO60WeNJ+qCkdZJ2krSLpIclvbfuXGZmvUi6QNK5LfMXSjqnzkxWLn+5rk0Kkr5F9SsDO1P9fuW3a45kZtaTpP2BmyNikaS3UP3ywuKIeK7WYFak6b3vYtYIFwB/Af4LnF1zFjOzMYmIzZKek3QosDfwoDts1o07bTZZ7AnsCsygOuL2Ur1xzMzG7ArgVODtwJX1RrGS+fSoTQqSfgVcD8wH9omIs2qOZGY2JpJmAg9Rfeg8ICJeqzmSFcpH2qzxJH0WeCUirpM0DbhH0pKI+GPd2czMeomIbZLuAF5wh81G4yNtZmZmNcoLEB4AToyIjXXnsXL5Kz/MzMxqImkhMATc7g6b9eIjbWZmZmYN4CNtZmZmZg3gTpuZmZlZA7jTZmZmZtYA7rSZmZmZNYA7bWZmZmYN8D+BIx8ddQa8XAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(expected_x,expected_y, 'x', label='Expected')\n",
-    "_ = xy_axes.plot(positions[:, 0, 0], positions[:, 0, 1], '.', label='Calculated')\n",
-    "_ = xy_axes.legend()\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(expected_x, expected_z, 'x')\n",
-    "_ = xz_axes.plot(positions[:, 0, 0], positions[:, 0, 2], '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = zy_axes.plot(expected_y, expected_z, 'x')\n",
-    "_ = zy_axes.plot(positions[:, 0, 1], positions[:, 0, 2], '.')\n",
-    "_ = zy_axes.set_xlabel('y')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.7"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/nonrandom single egg.ipynb b/notebooks/nonrandom single egg.ipynb
deleted file mode 100644
index 490827a..0000000
--- a/notebooks/nonrandom single egg.ipynb	
+++ /dev/null
@@ -1,259 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>100.0</td>\n",
-       "      <td>4.94</td>\n",
-       "      <td>125.0</td>\n",
-       "      <td>0.25</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.013555</td>\n",
-       "      <td>23.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                     100.0     4.94  125.0      0.25        0.0       0.0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1            0.013555    23.0  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import pandas as pd\n",
-    "hydraulic_csv_path = r'../test/nonrandom/data/highQ_1Cell.csv'\n",
-    "hydraulic_csv = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_csv"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "%matplotlib inline\n",
-    "import numpy as np\n",
-    "import scipy.io as sio\n",
-    "\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "mat_file_path = r'../test/nonrandom/data/single_egg.mat'\n",
-    "results = sio.loadmat(mat_file_path, squeeze_me=False)\n",
-    "expected_x = np.squeeze(results['ResultsSim']['X'][0][0])\n",
-    "expected_y = np.squeeze(results['ResultsSim']['Y'][0][0])\n",
-    "expected_z = np.squeeze(results['ResultsSim']['Z'][0][0])\n",
-    "expected_time = np.squeeze(results['ResultsSim']['time'][0][0])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import os\n",
-    "import sys\n",
-    "\n",
-    "test_classes_module = os.path.realpath('../test/nonrandom/testclasses.py')\n",
-    "test_classes_path, _ = os.path.split(test_classes_module)\n",
-    "\n",
-    "sys.path.append(test_classes_path)\n",
-    "\n",
-    "from test_simulation import run_nonrandom_single_egg_simulation\n",
-    "\n",
-    "simulation_results = run_nonrandom_single_egg_simulation()\n",
-    "\n",
-    "time = simulation_results.time()\n",
-    "positions = simulation_results.results()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHjCAYAAACq4oKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8VPWd//HXZ2ZyIVxEBNEa+IXi3YqoqZd6WUVRtP6gdtvK1m6BurK1urW7dbuiba1d3Z9Wt9WurSz1AlYoWi0ra2sF67V1FUNVRGkVFEtYlHCVS0gymc/vj3MSBkggl5k5c5L38/GYR2a+c2bON9/HIb79fs73HHN3RERERCS+ElF3QERERES6R4FOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiLhV1Bwpt8ODBXlVVFXU3RERERPZp8eLF69x9yL6263WBrqqqipqamqi7ISIiIrJPZvZ+R7ZTyVVEREQk5hToRERERGIu74HOzJJm9qqZPR6+HmFmL5vZcjN7yMxKw/ay8PXy8P2qrO+YFrb/2czOz2ofF7YtN7Nr8/27iIiISC+1ahHM/SLcdjj82yFwx7FQMzPqXrUqxDl0VwPLgAHh61uBH7n7XDObDlwG3B3+3Ojuh5rZxHC7S8zsaGAicAzwMeApMzs8/K6fAGOBWuAVM5vv7m91toNNTU3U1tayY8eOrv+W0q7y8nIqKyspKSmJuisiIiIds/AGePVB8GZoTkPjll3fb9wKj18dPK+eXPDu7S6vgc7MKoFPAzcD/2RmBowBvhhuMgv4HkGgmxA+B3gEuCvcfgIw190bgPfMbDlwUrjdcnd/N9zX3HDbTge62tpa+vfvT1VVFcEuJVfcnfXr11NbW8uIESOi7o6IiMieVi2CP9wBa94IglrDR5BJd+yzyx7r+YEOuAP4FtA/fH0AsMndW0apFjgkfH4IsArA3dNmtjnc/hDgpazvzP7Mqt3aT26rE2Y2FZgKMHz48D3e37Fjh8JcnpgZBxxwAHV1dVF3RUREJFAzE176KWyrg6Z6SNd3/buOmpCzbnVH3gKdmV0ErHX3xWZ2Vr720xHuPgOYAVBdXe1tbaMwlz8aWxERiVR2+bSpAdLbu/d9qXLodyCc/s2imJ2D/M7QnQaMN7MLgXKCc+juBAaaWSqcpasEVofbrwaGAbVmlgL2A9ZntbfI/kx77SIiItIbdad82pZUBZSUg2dg6NFw7o0w7KR9f67A8hbo3H0aMA0gnKG7xt0vNbNfAp8D5gKTgMfCj8wPX/9P+P7T7u5mNh+YY2Y/JFgUcRiwCDDgMDMbQRDkJrLz3Ly8mf7cCkZV7senRg5ubXtxxTqW1G7mq381ssvfm0wmOfbYY1tfT5w4kWuvze/C3U2bNjFnzhy+9rWvdepz3/ve9+jXrx/XXHNNnnomIiLSQTUz4YV/h/oNgO25eKGzUhWQSEDFoKKagduXKO4U8S/AXDO7CXgVuDdsvxf4ebjoYQNBQMPd3zSzhwkWO6SBK929GcDMrgKeBJLAfe7+Zr47P6pyP66a8yp3ffF4PjVyMC+uWNf6ujv69OnDa6+9lqNedsymTZv46U9/2ulAJyIiEplclk+TZZAsCR79hsLJV8QmwO2uIIHO3Z8Fng2fv8vOVarZ2+wAPt/O528mWCm7e/tvgN/ksKv79KmRg7nri8dz1ZxX+dLJw3nw5b+0hrtc27x5MyeddBLz58/niCOO4G/+5m8YM2YMl19+Of369ePyyy9nwYIFHHTQQcydO5chQ4awYsUKrrzySurq6qioqOBnP/sZRx55JB9++CFf/epXeffddwG4++67+fGPf8yKFSsYPXo0Y8eO5bbbbuO2227j4YcfpqGhgYsvvpgbb7wRgJtvvplZs2Zx4IEHMmzYME488cSc/74iIiK7yF680NwIzU3Q3ND172spnyaSMPpSGHtjzroatV53L9dc+NTIwXzp5OH8+OnlfH3MoTkJc/X19YwePbr19bRp07jkkku46667mDx5MldffTUbN27k8ssvB2Dbtm1UV1fzox/9iO9///vceOON3HXXXUydOpXp06dz2GGH8fLLL/O1r32Np59+mq9//ev81V/9FfPmzaO5uZmtW7dyyy23sHTp0taZwQULFvDOO++waNEi3J3x48fz/PPP07dvX+bOnctrr71GOp3mhBNOUKATEZHcyy6fZjI5WLwQz/JpVyjQdcGLK9bx4Mt/4etjDuXBl//CKSMP6Haoa6/kOnbsWH75y19y5ZVX8vrrr7e2JxIJLrnkEgC+9KUv8dnPfpatW7fy4osv8vnP75zobGgI/k/m6aef5oEHHgCC8/X2228/Nm7cuMu+FixYwIIFCzj++KB8vHXrVt555x22bNnCxRdfTEVFBQDjx4/v1u8qIiLCqkXw1A3wwZtB6Opu+TSRgrL+QRm1z8BYl0+7QoGuk7LPmfvUyMGcMvKAXV7nWiaTYdmyZVRUVLBx40YqKyvb3M7MyGQyDBw4sMvn4rk706ZN4+///u93ab/jjju69H0iIiKtcnntN+jR5dOuyPu9XHuaJbWbdwlvLefULandnJf9/ehHP+Koo45izpw5TJkyhaamJiAIeo888ggAc+bM4fTTT2fAgAGMGDGCX/7yl0AQ0Fpm9c455xzuvvtuAJqbm9m8eTP9+/dny5adq4HOP/987rvvPrZu3QrA6tWrWbt2LWeeeSb/9V//RX19PVu2bOG///u/8/K7iohID1IzE350bHDf05sODm6Tte7PQTm1K2EuVQ599ochR8JFd8K318C/vAf/vLzXhznQDF2ntXVpkk+NHNzt2bndz6EbN24cU6ZM4Z577mHRokX079+fM888k5tuuokbb7yRvn37smjRIm666SYOPPBAHnroIQBmz57NFVdcwU033URTUxMTJ07kuOOO484772Tq1Knce++9JJNJ7r77bk499VROO+00PvGJT3DBBRdw2223sWzZMk499VQA+vXrx4MPPsgJJ5zAJZdcwnHHHceBBx7IJz/5yW79riIi0sNkl089EyxcaG7s+ve1lE/LBsBBx8JpVxfltd+Kibm3eeOEHqu6utpramp2aVu2bBlHHXVURD3qmn79+rXOpMVBHMdYRETakevyaWn/4NIhKp/uwcwWu3v1vrbTDJ2IiIi0r+XOC6tqoGlb9y8dAkH5tHw/qPykZt9yRIEupuI0OyciIjGSXT5tbur+pUOSpVDaV+XTPFOgExER6c3ysfq0l1z7rZgo0ImIiPQWuS6fttw6q7SvyqcRU6ATERHpqVpm33ZshsZtObhxfTkkSoLrv2nxQlFRoBMREekJWmbf1rwBjVuDR3cuHQJB+TRVCkOPhnNv1OxbEVOgKxIffPAB3/jGN3jllVcYOHAgQ4cO5Y477uDwww9vc/uuXrbk2Wef5fbbb+fxxx9vd5vXXnuN//3f/+XCCy/s1HefddZZ3H777VRX73N1tYiIdNfu137r7uybyqexpkDXVasWwcoXoOqMbh/w7s7FF1/MpEmTmDt3LgCvv/46H374YbuBLp9ee+01ampqOh3oREQkj1Q+lb1QoOuKVYtg1vhgKjtZCpPmdyvUPfPMM5SUlPDVr361te24445j69atnHPOOWzcuJGmpiZuuukmJkyYsMfnb731Vh588EESiQQXXHABt9xyyy6zZevWraO6upqVK1fu8rlFixZx9dVXs2PHDvr06cP999/PiBEj+O53v0t9fT2///3vmTZtGhdddBH/8A//wNKlS2lqauJ73/seEyZMoL6+nilTpvD6669z5JFHUl/fzZVRIiISyEf5tLR/cOFelU97JAW6rlj5QvAPy5uDnytf6NY/jKVLl3LiiSfu0V5eXs68efMYMGAA69at45RTTmH8+PGYWes2TzzxBI899hgvv/wyFRUVbNiwocP7PfLII3nhhRdIpVI89dRTXHfddTz66KN8//vfp6amhrvuuguA6667jjFjxnDfffexadMmTjrpJM4991z+8z//k4qKCpYtW8aSJUs44YQTujwGIiK9Wq7Lpy2XDlH5tNdQoOuKqjOCmbmWGbqqM/KyG3fnuuuu4/nnnyeRSLB69Wo+/PBDDjrooNZtnnrqKaZMmUJFRQUAgwYN6vD3b968mUmTJvHOO+9gZjQ1NbW53YIFC5g/fz633347ADt27OAvf/kLzz//PF//+tcBGDVqFKNGjerqryoi0rssvAFefTCcGEh3P8CV9g/CW5+BcPIVuvZbL6RA1xXDTgrKrDk6h+6YY47hkUce2aN99uzZ1NXVsXjxYkpKSqiqqmLHjh0d+s5UKkUmkwFo9zPf+c53OPvss5k3bx4rV67krLPOanM7d+fRRx/liCOO6NgvJCIiO+Xj1lkqn8puElF3ILaGnQRnfDMn/4jGjBlDQ0MDM2bMaG1bsmQJ77//PgceeCAlJSU888wzvP/++3t8duzYsdx///1s3x7cmqWl5FpVVcXixYsB2gyLEMzQHXLIIQDMnDmztb1///5s2bLz/xbPP/98/uM//gN3B+DVV18F4Mwzz2TOnDlAUDZesmRJl35/EZEeZdUiuP8C+H/D4d8q4d6x8Kdfw7YPw3PhOhnmUhVQ2g/6DYUjL4LLFsJ1tXDt+zDlCYU5ARToioKZMW/ePJ566ilGjhzJMcccw7Rp07jwwgupqanh2GOP5YEHHuDII4/c47Pjxo1j/PjxVFdXM3r06Nay6DXXXMPdd9/N8ccfz7p169rc77e+9S2mTZvG8ccfTzqdbm0/++yzeeuttxg9ejQPPfQQ3/nOd2hqamLUqFEcc8wxfOc73wHgiiuuYOvWrRx11FF897vfbfM8QBGRHm/hDfCDkUF4u+mgIMC9/yI0bO5aKbW0P/Q7CIYcCRfdCd9eA9ethmvehomzFeCkTdYy65LzLzYrB54HyghKu4+4+w1mNgKYCxwALAb+1t0bzawMeAA4EVgPXOLuK8PvmgZcBjQDX3f3J8P2ccCdQBK4x91v2Ve/qqurvaamZpe2ZcuWcdRRR3X/l5Z2aYxFpEfIdfk0VRFcNsQzKp9Km8xssbvv8wKv+TyHrgEY4+5bzawE+L2ZPQH8E/Ajd59rZtMJgtrd4c+N7n6omU0EbgUuMbOjgYnAMcDHgKfMrOXibD8BxgK1wCtmNt/d38rj7yQiIr1JzUx44d+hfgNgObh4b2mweKHfUC1ekJzKW6DzYOqv5VYGJeHDgTHAF8P2WcD3CALdhPA5wCPAXRZcn2MCMNfdG4D3zGw50PK/L8vd/V0AM5sbbqtAJyIiXdOy+jTdEMy85eLab1p9KgWQ11WuZpYkKKseSjCbtgLY5O4tJ2zVAoeEzw8BVgG4e9rMNhOUZQ8BXsr62uzPrNqt/eR2+jEVmAowfPjwNvvq7rtc301yJ19lfRGRbsl1+VS3zpII5TXQuXszMNrMBgLzgD3P6i8Ad58BzIDgHLrd3y8vL2f9+vUccMABCnU55u6sX7+e8vLyqLsiIr1ddvk0k4H09u59n8qnUkQKch06d99kZs8ApwIDzSwVztJVAqvDzVYDw4BaM0sB+xEsjmhpb5H9mfbaO6WyspLa2lrq6uq68nHZh/LyciorK6Puhoj0Jrm+dVZLeEuWqXwqRSlvgc7MhgBNYZjrQ7B44VbgGeBzBCtdJwGPhR+ZH77+n/D9p93dzWw+MMfMfkiwKOIwYBFgwGHhqtnVBAsnWs7N65SSkhJGjBjRtV9URESi13Lj+m110FQP6W7eW7qlfFoxCE7/psKbFL18ztAdDMwKz6NLAA+7++Nm9hYw18xuAl4F7g23vxf4ebjoYQNBQMPd3zSzhwkWO6SBK8NSLmZ2FfAkwWVL7nP3N/P4+4iISLHILp/m4s4LqXIo6aPyqcRW3q5DV6zaug6diIgUsXyUT5NlunWWxEIxXIdORESk83JdPk1VQCKh8qn0aAp0IiISrZZrv3kzNDV0b/Vpy7lvyRKVT6VXUaATEZHCaZl927E5KJs2fASZ9D4/1q6W8mlJOYy+FMbemLOuisSJAp2IiORPrq/9pvKpSJsU6EREJHdUPhWJhAKdiIh0Ta7Lp6mKoHSaSKp8KpGbfP8iltRuoiyVpKI0ycbtjTQ1O4aTSiTYv28p9Y3N7GhqZtSwgcycEu1KaQU6ERHpmFyXT0v7A67yqURmzO3PUt/U3BrYylJJ1m9rpCmdoU9Jgu1NGaCpjU82s2H7zvbTDj2gYH1ujwKdiIjsadUieOoG+ODN4Jy17pZPEyko6w9lA+CgY3XjeimYyfcvYtWG7a2BraI0yZpN9TQ0Z0gATZnsrXeGtO27vtGu6z99JJefMTKnfe4KBToREcnPtd9UPpUCaa88urUhjQGZ1nso7Drb1tzN/Z5UtX9RhDlQoBMR6Z1UPpWY6Wp5NJ/3w1q0ciM/e2FFUYQ6BToRkZ4uu3zqmeC+p925dZbKp5IH059bwRNL17B1R7o1sG1tSNOQzuAZB7zb5dF8uPnXfwKIPNQp0ImI9DS5Lp+W9g8uHaLyqeRAe+XRbQ3prNIotL0YIVqlqQTlKdtjlesflq9XoBMRkW5ouXH9qhpo2paji/eWQ/l+UPlJzb5Jl3R99Wj0kgkjk3EG9S2hLJVkR1Mz5SXJork8SXsU6ERE4iS7fNrc1P3wliyF0r4qn0qnxLU82iKZMMDpW5osymvKdYUCnYhIMcvH6lPdOks6oCW0rdqwnbJUkoZ0MwZB8ElnYlEebWrOUJIwhg2qaA1s5SVJykuSPH3NWVF3MacU6EREisXu5dPmpmABQ3eofCr70F55NJ3OsHMurfgCG8S3PJoPCnQiIlHJvnVW4zZo3NK970uVQ0kflU9lF90pjxaDZAISGH1KE6QSidbAtn/fUoYNquhVoW1vFOhERAqhZfZtzRvQuDV4dOfSIRCUT1OlMPRoOPdGhbderCeUR5szGUqTCT42sE9reVShreMU6ERE8iG7fNrwUffPfUuWBZcOKe2r8mkvNf25Fcx6cSUADelmylJJANZuacAzrvJoL5e3QGdmw4AHgKEEF2qe4e53mtkg4CGgClgJfMHdN5qZAXcCFwLbgcnu/sfwuyYB3w6/+iZ3nxW2nwjMBPoAvwGudvd8XhRaRKRt+SifJkqC22fp2m+9xt7Ko+ZOQ3P2f+KKL7ipPBqdfM7QpYFvuvsfzaw/sNjMFgKTgd+5+y1mdi1wLfAvwAXAYeHjZOBu4OQwAN4AVBMEw8VmNt/dN4bbXA68TBDoxgFP5PF3EhHJT/m0tH9w4V6VT3u8nlQe3b+itDWwAQptEdpnoDOzo939rd3aznL3Z/f2OXdfA6wJn28xs2XAIcAE4Kxws1nAswSBbgLwQDjD9pKZDTSzg8NtF7r7hnDfC4FxZvYsMMDdXwrbHwA+gwKdiOTa7rfO6vbsW3jpEJVPe6yeUB7FnaEDygFay6PuMOm0Kr76V9Hfu1R21ZEZuofN7OfAD4Dy8Gc1cGpHd2JmVcDxBDNpQ8OwB/ABQUkWgrC3KutjtWHb3tpr22gXEemehTfAqw+CN0NzOnerT/sNhZOv0LXfeojdZ9oqSpOs3dIQrh7NFPXKUVB5tKfpSKA7GbgVeBHoD8wGTuvoDsysH/Ao8A13/yg4VS7g7m5meT/nzcymAlMBhg8fnu/diUic5OPabyqf9hgdL48WX2ADlUd7k44EuiagnmDhQTnwnrt36L4dZlZCEOZmu/uvwuYPzexgd18TllTXhu2rgWFZH68M21azs0Tb0v5s2F7ZxvZ7cPcZwAyA6upqLZoQ6c1UPpXdxL08mjAwYGBFCe603sZK5dHepSOB7hXgMeCTwGBgupn9tbt/fm8fClet3gssc/cfZr01H5gE3BL+fCyr/Sozm0swK7g5DH1PAv9mZvuH250HTHP3DWb2kZmdQlDK/TLwHx34fUSkN8l1+bS0fxDe+gxU+TRGJt+/iFUbtreuHK0oTbJmUz0NzRkSEIvyaFkyQZ/S4Dy2lvLosAMquOATByu0SYcC3WXuXhM+XwNMMLO/7cDnTgP+FnjDzF4L264jCHIPm9llwPvAF8L3fkNwyZLlBJctmQIQBrd/JQiWAN9vWSABfI2dly15Ai2IEOndcl0+TVUElw3xjMqnMZA909ZyGysDtjQ005TOsLM8s2tgay5gH/dG5VHpDuttl22rrq72mpqafW8oIsWvZia88O9QvwGw7s++JUuD2TctXihaHS+PFieVR6WzzGyxu1fvazvdKUJE4qOlfJpuCGbecnHtN5VPi05PKI+mEkZpMsGBA8pbb2Ol8qjkkwKdiBSnljsvbKsLgpvKpz3K5PsXsaR2U2tg27i9kaZmZ3tjmkwGlUdFOkmBTkSKQ3b5NBeXDlH5NHItM21A62xbY7qZjdubKElYeBur4ptha6HyqMSJAp2IRCOX5dOW8JYsU/m0wPZWHsWhuZ3bWO16T9LoJAxKkiqPSvwp0IlI/uW6fJosg2QJVAyC07+p8JZnXS2PFouShOHAgf3LAFrLo/3KUwpt0mMo0IlI7uWyfNoS3pIlKp/m0Zjbn6W+qbk1sJWlkmxtSLN1R5rSpMqjIsVOgU5Euqdl9m3H5mD2rXFr98unybJgAcPoS2HsjTnram/X1dWjKo+KFD8FOhHpnOzyaXfDG6h8mmPtlUe3NqQxaPfeo8WwerQkYWRwDFN5VKSTFOhEZO+yb53V1ADp7V3/LpVPc6Kr5dHimGcDM+hflqRfWUlrYKtvbKa8JMnT15wVdfdEYkmBTkR22r182vARZNJd/z6VT7tM5VER6QwFOpHeLNfl09L+gKt82kEqj4pIrijQifQWqxbBUzfAB29CIpG78mlpX6j8JJx2te680Ia2yqPrtzXSlM7QpyTB9qYMxVoeLU0laEpn6F+u8qhIsVOgE+mpssunjdu6f+P6lltnJZIqn2aZ/twKnli6hq070q2BDWDdlgYy+F7Lo9ubor+VfDJhgNO3NEkqkWgNbDuamhk1bKBuYSUSEwp0Ij1F9rXfMpnuzb6Byqe7aa88uq0hnVUahWItj6bdKUkYwwZVtAa28pKkZtpEeggFOpE4Uvk0L7paHi0GKo+K9G4KdCJxkL14oake0vXd+77S/kGA62Xl07bKo1sb0jSkM3jGAVd5VERiSYFOpNisWgR/uANW1UDTttyVTxNJGHo0nHtjj559awltqzZsby2Prt3SQEM6Q7o5s9fyaDEoTSVoas6oPCoinaJAJxK17PKpZ7q/eCGRgrL+UDYADjq2x5ZP2yuPptMZds6lFV9gg2CmLZNxBvUtoSyVbA1smmkTka5SoBMpNJVPO6Q75dFikLDgjggqj4pIISjQieRTPsqnqXIo369HLF7YvTzakG7GIAg+6XiUR5szGUqTCT42sE9rYNu/bynDBlUotIlIweQt0JnZfcBFwFp3/0TYNgh4CKgCVgJfcPeNZmbAncCFwHZgsrv/MfzMJODb4dfe5O6zwvYTgZlAH+A3wNXuXgzX4pTeLLt82tzU/fCWLA1Wnsa4fDr9uRXMenElQGt51IBN9Wk84yqPiojkQD5n6GYCdwEPZLVdC/zO3W8xs2vD1/8CXAAcFj5OBu4GTg4D4A1ANcGF0xeb2Xx33xhucznwMkGgGwc8kcffR2RXLbNva94IbpuVq/JpaV/oMzBWN67fW3nU3Ivm/qLtSSYggdGnNEEqkWgNbJppE5G4yFugc/fnzaxqt+YJwFnh81nAswSBbgLwQDjD9pKZDTSzg8NtF7r7BgAzWwiMM7NngQHu/lLY/gDwGRToJJ+yy6cNH3U/vEGsyqdxL4+23HtU5VER6YkKfQ7dUHdfEz7/ABgaPj8EWJW1XW3Ytrf22jba22RmU4GpAMOHD+9G96VXyXX5NFUOJX2KunyaXR5tSDe33sZq7ZaG2JRHcWfogHKA1vKoO0w6rUo3ixeRHiuyRRHu7mZWkDqMu88AZgBUV1cXd+1HopGP8mmqAlKlRXftt86VR4svuKk8KiKyp0IHug/N7GB3XxOWVNeG7auBYVnbVYZtq9lZom1pfzZsr2xje5GOyXX5NFUR3IKrSG6dFffyaPbq0f0rSlsDG6DQJiLShkIHuvnAJOCW8OdjWe1XmdlcgkURm8PQ9yTwb2a2f7jdecA0d99gZh+Z2SkEiyK+DPxHIX8RiZmFN8CrD4I3Q3O6+xfvbSmf9hsa2eKFuJdHEwYGKo+KiORAPi9b8guC2bXBZlZLsFr1FuBhM7sMeB/4Qrj5bwguWbKc4LIlUwDC4PavwCvhdt9vWSABfI2dly15Ai2IkBa7l08bPoJMunvfGVH5dPL9i1i1YXtrabSiNMmaTfU0NGdIQFFfWBeC8mhZMkGf0iCotZRHhx1QwQWfOFihTUQkR6y3Xbqturraa2pqou6G5FLMy6d7K482pDMU+RU/VB4VEckjM1vs7tX72k53ipD4iWH5tKeURwdWlOBO622sVB4VESkOCnRS3HJdPk1VQEk5eCbn5VOVR0VEJCoKdFJcambCC/8O9RsAy8HsW1g+rRgEp3+z27Nvk+9fxJLaTa2BbeP2Rpqane2NaTKZ4HYmgV0DW3O39po7Ko+KiPRMCnQSrezyaVND7i7e243y6V7Lo+7hJT+Kb4athcqjIiK9jwKdFE724oWmbcHdF5obuv593Sifxr08mjAoSRqlyQQHDihvvY2VyqMiIr2TAp3kT8Tl055QHrXw3qP9y0tay6P9ylMKbSIisgsFOsmdXJZPEyko6w/JMugzsN3yaXZoaymPNqab2bC9CQOVR0VEpFdQoJOuqZkJL/0UttVBc2PuyqeJJIy+FMbe2PrW5PsXseq57Wx8YsEe5dGUWXjv0ZbQtjO8Fcvl21QeFRGRfFOgk47JLp9mMt1fvJAsDS7cGy5emPzG0TvLo0uSbHxpQQfLo9HHtpKEkcExjAP7lwGoPCoiIgWlQCdtaymfphuCmbfmxq5/V1g+rat3ttCPeWXjmZ0+m7JMkq11abY+kqY0uW63mbbikzBIJYzB/cpaA1t9Y3D/0aevOSvq7omISC+mQCfemN+fAAAgAElEQVQ5LZ86sJ0yGkgBSX5bci7fq/8CTdszpBLh6tEdEAS3neGtoUjub6XyqIiIxJECXW+UXT7tQnjz3Z7voJQdlLIusx/3N4/jF83n7NxgBxDe2GrXS4FEQ+VRERHpiRToeoMulk/bmjPbkUlRTzlbvZy3vIoZzRfxRz88t/3tpoqSBPXpDCUqj4qISC+hQNfTdLF86ns8CdR7ijRJNjGAn6bHMzdzzu4fjUzCoF9ZklQi0RrYdjQ1M2rYQN3CSkREehUFurjbS/k0O5vZbh/zNqbfWsJbEyWs9/24r3lcpAFO5VEREZGOUaCLk5bZtx2bg9m3xq3Q3LhHadR2+wltB7gdnqKREhop4ZfNZ/KD5i/mp997UZpK0JTO0L88Sb+yEpVHRUREukCBrpiFAa5+4xoSzdspJb3r+2FIs92m39oKbxBd+TSZMDIZp3+5yqMiIiL5oEBXJKY/t4LBL93MWfULSAKlNFBBIziUZ223S3gLnxdD+bSlPFqaTPCxgX1aA9v+fUsZNqhCoU1ERCSPFOgKaPpzK5j14koAqpPv8Jntj3AE79EnU88U6im1Pa/rsfvsG0RXPlV5VEREpDgp0OXY5PsXsWpDcFusjdsbW28WX1X/JlMTj/Mre4cBtp0Ky7ojQlZo60j51IEt3gcjk/PyacKCPvQtVXlUREQkLmIf6MxsHHAnkATucfdbouhHS5AzYEXdNiYmfseU5BPs17iNPjQwoGTHHp/p6OxbS/l0O314LXNot6/9lkwEP1UeFRER6RliHejMLAn8BBgL1AKvmNl8d3+r0H057dADuPnXdUxM/I6flzzCQYnNe2zT0QC3zUtp8BIyluxy+bQ0lSDdnGH/ihLKUsnWwAYotImIiPQwsQ50wEnAcnd/F8DM5gITgIIHusvPGMkRqx/ljGX3trZ1JsBlsE6XT1UeFREREYh/oDsEWJX1uhY4efeNzGwqMBVg+PDheevMmU3/g9ver//mQL0H9z7tyOpTrR4VERGRfYl7oOsQd58BzACorq5u5ypt3fd8yamc4U/vcfP6Ld6HDMaffTg/SE/c4/y3RBgChw4ILlCyoylYNeoOk06r0t0QREREZK/iHuhWA8OyXleGbQX3sxdWcPNrxzAxcRlTkk/QN9nI0vTOm9ebQWnS6FeRYpDTWh5VaBMREZHuinugewU4zMxGEAS5iUDh718F/GH5ekYO6cvaAyay/ozrOGLkYJ54YQWbF63iON13VERERPLIvL37RMWEmV0I3EFw2ZL73P3mvW1fXV3tNTU1BembiIiISHeY2WJ3r97XdnGfocPdfwP8Jup+iIiIiEQl9jN0nWVmdcD7ed7NYGBdnvfRm2g8c0vjmVsaz9zSeOaWxjO3ohjP/+PuQ/a1Ua8LdIVgZjUdmR6VjtF45pbGM7c0nrml8cwtjWduFfN4JqLugIiIiIh0jwKdiIiISMwp0OXHjKg70MNoPHNL45lbGs/c0njmlsYzt4p2PHUOnYiIiEjMaYZOREREJOYU6ERERERiToEuh8xsnJn92cyWm9m1UfenmJjZMDN7xszeMrM3zezqsH2QmS00s3fCn/uH7WZmPw7HcomZnZD1XZPC7d8xs0lZ7Sea2RvhZ35sZlb437SwzCxpZq+a2ePh6xFm9nI4Bg+ZWWnYXha+Xh6+X5X1HdPC9j+b2flZ7b3qeDazgWb2iJn9ycyWmdmpOj67zsz+Mfy3vtTMfmFm5To+O8fM7jOztWa2NKst78dke/uIu3bG87bw3/wSM5tnZgOz3uvUsdeV4zun3F2PHDwIbj22Avg4UAq8Dhwddb+K5QEcDJwQPu8PvA0cDfwAuDZsvxa4NXx+IfAEYMApwMth+yDg3fDn/uHz/cP3FoXbWvjZC6L+vQswrv8EzAEeD18/DEwMn08Hrgiffw2YHj6fCDwUPj86PFbLgBHhMZzsjcczMAv4u/B5KTBQx2eXx/IQ4D2gT9ZxOVnHZ6fH8UzgBGBpVlvej8n29hH3RzvjeR6QCp/fmjWenT72Ont85/qhGbrcOQlY7u7vunsjMBeYEHGfioa7r3H3P4bPtwDLCP7oTyD4Dynhz8+EzycAD3jgJWCgmR0MnA8sdPcN7r4RWAiMC98b4O4vefCv5oGs7+qRzKwS+DRwT/jagDHAI+Emu49nyzg/ApwTbj8BmOvuDe7+HrCc4FjuVcezme1H8Mf+XgB3b3T3Tej47I4U0MfMUkAFsAYdn53i7s8DG3ZrLsQx2d4+Yq2t8XT3Be6eDl++BFSGzzt17HXx729OKdDlziHAqqzXtWGb7Cacbj4eeBkY6u5rwrc+AIaGz9sbz72117bR3pPdAXwLyISvDwA2Zf1xyh6D1nEL398cbt/Zce6pRgB1wP0WlLDvMbO+6PjsEndfDdwO/IUgyG0GFqPjMxcKcUy2t4+e7isEM5XQ+fHsyt/fnFKgk4Iys37Ao8A33P2j7PfC/0vUdXQ6wMwuAta6++Ko+9JDpAhKMXe7+/HANoJSUysdnx0XnnM1gSAofwzoC4yLtFM9UCGOyd5y3JvZ9UAamB11X7pKgS53VgPDsl5Xhm0SMrMSgjA3291/FTZ/GE79E/5cG7a3N557a69so72nOg0Yb2YrCab8xwB3EpRZUuE22WPQOm7h+/sB6+n8OPdUtUCtu78cvn6EIODp+Oyac4H33L3O3ZuAXxEcszo+u68Qx2R7++iRzGwycBFwaRhgofPjuZ7OH985pUCXO68Ah4WrXEoJTnycH3GfikZ4vsC9wDJ3/2HWW/OBllVXk4DHstq/HK7cOgXYHJYAngTOM7P9w1mA84Anw/c+MrNTwn19Oeu7ehx3n+bule5eRXCsPe3ulwLPAJ8LN9t9PFvG+XPh9h62TwxXYY0ADiM4UbpXHc/u/gGwysyOCJvOAd5Cx2dX/QU4xcwqwt+3ZTx1fHZfIY7J9vbR45jZOIJTV8a7+/astzp17IXHa2eP79zKx0qL3vogWGX0NsEKmOuj7k8xPYDTCabtlwCvhY8LCc4j+B3wDvAUMCjc3oCfhGP5BlCd9V1fIThBdTkwJau9GlgafuYuwjuh9PQHcBY7V7l+nOCPznLgl0BZ2F4evl4evv/xrM9fH47Zn8laednbjmdgNFATHqP/RbAiUMdn18fzRuBP4e/8c4LVgjo+OzeGvyA4B7GJYBb5skIck+3tI+6PdsZzOcH5bS3/XZre1WOvK8d3Lh+69ZeIiIhIzKnkKiIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMZfa9yY9y+DBg72qqirqboiIiIjs0+LFi9e5+5B9bdfrAl1VVRU1NTVRd0NERERkn8zs/Y5sp5KriIiISMwp0ImIiIjEnAKdiIiISMwp0ImIiIjEXGwWRZjZSmAL0Ayk3b3azP4VmABkgLXAZHf/3+h6KSIiIlJ4cZuhO9vdR7t7dfj6Nncf5e6jgceB70bYNxEREZFIxC3Q7cLdP8p62RfwqPoiIiIiEpXYlFwJwtoCM3PgP919BoCZ3Qx8GdgMnN3WB81sKjAVYPjw4YXprYiIiEiBxGmG7nR3PwG4ALjSzM4EcPfr3X0YMBu4qq0PuvsMd6929+ohQ/Z5sWURERGRWIlNoHP31eHPtcA84KTdNpkN/HWh+yUiIiIStVgEOjPra2b9W54D5wFLzeywrM0mAH+Kon8iIiIiUYrLOXRDgXlmBkGf57j7b83sUTM7guCyJe8DX42wjyIiIiKRiEWgc/d3gePaaFeJVURERHq9WJRcRURERKR9CnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMZeKugMdZWYrgS1AM5B292ozuw34v0AjsAKY4u6bouuliIiISOHFbYbubHcf7e7V4euFwCfcfRTwNjAtuq6JiIiIRCNugW4X7r7A3dPhy5eAyij7IyIiIhKFOAU6BxaY2WIzm9rG+18Bnmjrg2Y21cxqzKymrq4ur50UERERKbQ4BbrT3f0E4ALgSjM7s+UNM7seSAOz2/qgu89w92p3rx4yZEhheisiIiJSILEJdO6+Ovy5FpgHnARgZpOBi4BL3d0j66CIiIhIRGIR6Mysr5n1b3kOnAcsNbNxwLeA8e6+Pco+ioiIiEQlLpctGQrMMzMI+jzH3X9rZsuBMmBh+N5L7v7V6LopIiIiUnixCHTu/i5wXBvth0bQHREREZGiEouSq4iIiIi0T4FOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOZiE+jMbKWZvWFmr5lZTdj2eTN708wyZlYddR9FREREopCKugOddLa7r8t6vRT4LPCfEfVHREREJHJxC3S7cPdlAGYWdVdEREREIhObkivgwAIzW2xmUzvzQTObamY1ZlZTV1eXp+6JiIiIRCNOge50dz8BuAC40szO7OgH3X2Gu1e7e/WQIUPy10MRERGRCMQm0Ln76vDnWmAecFK0PRIREREpDrEIdGbW18z6tzwHziNYECEiIiLS68Ui0AFDgd+b2evAIuDX7v5bM7vYzGqBU4Ffm9mTkfZSREREJAKxWOXq7u8Cx7XRPo+g/CoiIiLSa8Ui0MXB5PsXsWrDdjZub6QslaSiNMmaTfU0NGcAyGQgkYCMAw6phJF2D9bu2p5ticTeP9Pd97XP4vpO7VP71D61T+0zHvvsW5oklUiwf99S6hub2dHUzKhhA5k5JdpT+xXocuS0Qw/g5l/XMTHxO6Ykn2Dw9s2UWJqmVAm4U5JK00T43NI4CYzM3tv29Znuvq99Ftd3ap/ap/apfWqfxb/PZqckk2bT5gH8ND2euZlzOO3QA6KOIZi7F25nZv8APOjuGwu2091UV1d7TU1NXr77+bk/4IxlN+flu0VERKT4vHDU9Zw58Vt5+34zW+zu+7y9aaFn6IYCr5jZH4H7gCe9kIkyz85s+h/cgtlaERER6dmc4L/9xaCggc7dv21m3yG47MgU4C4zexi4191XFLIv+fB8yamc4U/TYxKqiIiI7NXzJafS4Tsd5FHBz6FzdzezD4APgDSwP/CImS109/zNWebZz15Ywc2vHcPExGXBOXSE59Bl1eM7Xa/vwGe6+772WVzfqX1qn9qn9ql9xmOfmwjPoXvtGK4/ZAWXnzEy0hxS0EBnZlcDXwbWAfcA/+zuTWaWAN4BYhvo/rB8PSOH9GXB9nE8l/q0Vrn24H32lN9D+9Q+tU/tU/vs/D53X+U6qKmZPyxf37sCHTAI+Ky7v5/d6O4ZM7uowH3JqaiXK4uIiEjvVehz6G7Yy3vLCtkXERERkZ4iEXUHRERERKR7FOhEREREYk6BTkRERCTmFOhEREREYk6BTkRERCTmCn5h4a4ys5XAFqAZSLt7tZkNAh4CqoCVwBeivE+siIiISBTiNkN3truPzrpJ7bXA79z9MOB34WsRERGRXiVugW53E4BZ4fNZwGci7IuIiIhIJOIU6BxYYGaLzWxq2DbU3deEzz8Ahrb1QTObamY1ZlZTV1dXiL6KiIiIFExszqEDTnf31WZ2ILDQzP6U/aa7u5l5Wx909xnADIDq6uo2txERERGJq9jM0Ln76vDnWmAecBLwoZkdDBD+XBtdD0VERESiEYtAZ2Z9zax/y3PgPGApMB+YFG42CXgsmh6KiIiIRCcuJdehwDwzg6DPc9z9t2b2CvCwmV0GvA98IcI+ioiIiEQiFoHO3d8FjmujfT1wTuF7JCIiIlI8YlFyFREREZH2KdCJiIiIxJwCnYiIiEjMKdCJiIiIxJwCnYiIiEjMKdCJiIiIxJwCnYiIiEjMKdCJiIiIxJwCnYiIiEjMKdCJiIiIxJwCnYiIiEjMKdCJiIiIxJwCnYiIiEjMKdCJiIiIxFxsAp2ZJc3sVTN7PHw9xsz+aGZLzWyWmaWi7qOIiIhIFGIT6ICrgWUAZpYAZgET3f0TwPvApAj7JiIiIhKZWAQ6M6sEPg3cEzYdADS6+9vh64XAX0fRNxEREZGoxSLQAXcA3wIy4et1QMrMqsPXnwOGtfdhM5tqZjVmVlNXV5ffnoqIiIgUWNEHOjO7CFjr7otb2tzdgYnAj8xsEbAFaG7vO9x9hrtXu3v1kCFD8t5nERERkUKKw0KC04DxZnYhUA4MMLMH3f1LwBkAZnYecHiEfRQRERGJTNHP0Ln7NHevdPcqglm5p939S2Z2IICZlQH/AkyPsJsiIiIikSn6QLcX/2xmy4AlwH+7+9NRd0hEREQkCnEoubZy92eBZ8Pn/wz8c5T9ERERESkGcZ6hExEREREU6ERERERiT4FOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiToFOREREJOYU6ERERERiLlaBzsySZvaqmT0evj7HzP5oZq+Z2e/N7NCo+ygiIiJSaLEKdMDVwLKs13cDl7r7aGAO8O1IeiUiIiISodgEOjOrBD4N3JPV7MCA8Pl+wP8Wul8iIiIiUUtF3YFOuAP4FtA/q+3vgN+YWT3wEXBKWx80s6nAVIDhw4fnuZsiIiIihRWLGTozuwhY6+6Ld3vrH4EL3b0SuB/4YVufd/cZ7l7t7tVDhgzJc29FRERECisuM3SnAePN7EKgHBhgZr8GjnT3l8NtHgJ+G1UHRURERKISixk6d5/m7pXuXgVMBJ4GJgD7mdnh4WZj2XXBhIiIiEivEJcZuj24e9rMLgceNbMMsBH4yr4+t3jx4nVm9n6euzcYWJfnffQmGs/c0njmlsYztzSeuaXxzK0oxvP/dGQjc/d8d6TXMbMad6+Ouh89hcYztzSeuaXxzC2NZ25pPHOrmMczFiVXEREREWmfAp2IiIhIzCnQ5ceMqDvQw2g8c0vjmVsaz9zSeOaWxjO3inY8dQ6diIiISMxphk5EREQk5hToRERERGJOgS6HzGycmf3ZzJab2bVR96eYmNkwM3vGzN4yszfN7OqwfZCZLTSzd8Kf+4ftZmY/DsdyiZmdkPVdk8Lt3zGzSVntJ5rZG+FnfmxmVvjftLDMLGlmr5rZ4+HrEWb2cjgGD5lZadheFr5eHr5flfUd08L2P5vZ+Vntvep4NrOBZvaImf3JzJaZ2ak6PrvOzP4x/Le+1Mx+YWblOj47x8zuM7O1ZrY0qy3vx2R7+4i7dsbztvDf/BIzm2dmA7Pe69Sx15XjO6fcXY8cPIAksAL4OFAKvA4cHXW/iuUBHAycED7vD7wNHA38ALg2bL8WuDV8fiHwBGDAKcDLYfsg4N3w5/7h8/3D9xaF21r42Qui/r0LMK7/BMwBHg9fPwxMDJ9PB64In38NmB4+nwg8FD4/OjxWy4AR4TGc7I3HMzAL+LvweSkwUMdnl8fyEOA9oE/WcTlZx2enx/FM4ARgaVZb3o/J9vYR90c743kekAqf35o1np0+9jp7fOf6oRm63DkJWO7u77p7IzCX4PZkArj7Gnf/Y/h8C8Ft2g4hGKNZ4WazgM+EzycAD3jgJWCgmR0MnA8sdPcN7r4RWAiMC98b4O4vefCv5oGs7+qRzKwS+DRwT/jagDHAI+Emu49nyzg/ApwTbj8BmOvuDe7+HrCc4FjuVcezme1H8Mf+XgB3b3T3Tej47I4U0MfMUkAFsAYdn53i7s8DG3ZrLsQx2d4+Yq2t8XT3Be6eDl++BFSGzzt17HXx729OKdDlziHAqqzXtWGb7Cacbj4eeBkY6u5rwrc+AIaGz9sbz72117bR3pPdAXwLyISvDwA2Zf1xyh6D1nEL398cbt/Zce6pRgB1wP0WlLDvMbO+6PjsEndfDdwO/IUgyG0GFqPjMxcKcUy2t4+e7isEM5XQ+fHsyt/fnFKgk4Iys37Ao8A33P2j7PfC/0vUdXQ6wMwuAta6++Ko+9JDpAhKMXe7+/HANoJSUysdnx0XnnM1gSAofwzoC4yLtFM9UCGOyd5y3JvZ9UAamB11X7pKgS53VgPDsl5Xhm0SMrMSgjA3291/FTZ/GE79E/5cG7a3N557a69so72nOg0Yb2YrCab8xwB3EpRZUuE22WPQOm7h+/sB6+n8OPdUtUCtu78cvn6EIODp+Oyac4H33L3O3ZuAXxEcszo+u68Qx2R7++iRzGwycBFwaRhgofPjuZ7OH985pUCXO68Ah4WrXEoJTnycH3GfikZ4vsC9wDJ3/2HWW/OBllVXk4DHstq/HK7cOgXYHJYAngTOM7P9w1mA84Anw/c+MrNTwn19Oeu7ehx3n+bule5eRXCsPe3ulwLPAJ8LN9t9PFvG+XPh9h62TwxXYY0ADiM4UbpXHc/u/gGwysyOCJvOAd5Cx2dX/QU4xcwqwt+3ZTx1fHZfIY7J9vbR45jZOIJTV8a7+/astzp17IXHa2eP79zKx0qL3vogWGX0NsEKmOuj7k8xPYDTCabtlwCvhY8LCc4j+B3wDvAUMCjc3oCfhGP5BlCd9V1fIThBdTkwJau9GlgafuYuwjuh9PQHcBY7V7l+nOCPznLgl0BZ2F4evl4evv/xrM9fH47Zn8laednbjmdgNFATHqP/RbAiUMdn18fzRuBP4e/8c4LVgjo+OzeGvyA4B7GJYBb5skIck+3tI+6PdsZzOcH5bS3/XZre1WOvK8d3Lh+69ZeIiIhIzKnkKiIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzCnQiIiIiMadAJyIiIhJzqX1v0rMMHjzYq6qqou6GiIiIyD4tXrx4nbsP2dd2vS7QVVVVUVNTE3U3RERERPbJzN7vyHaxL7ma2Tgz+7OZLTeza6Puj4iIiEihxTrQmVkS+AlwAXA08DdmdnQUfZn+3ApeXLFul7YXV6xj+nMrouiOiIiI9CJxL7meBCx393cBzGwuMAF4q9AdGVW5H1fNeZWZY51RTW+wpORYrlpo3PXF4wvdFREREell4h7oDgFWZb2uBU6OoiOfGjmYmWOdw397KRnSHE6KmeNmM2rk4Ci6IyIiIr1IrEuuHWVmU82sxsxq6urq8rafUU1vUEqaBBlKaWZU0xt525eIiIhIi7gHutXAsKzXlWHbLtx9hrtXu3v1kCH7XPnbZUtKjqWRFBmSNJJkScmxeduXiIiISIu4B7pXgMPMbISZlQITgflRdOTFFeuYvNB4e9xsEudcz9vjZjN5oe2xUEJEREQk12J9Dp27p83sKuBJIAnc5+5vRtGXJbWbueuLx4fnzJ3HKOCuIetYUruZT+k8OhEREckjc/eo+1BQ1dXVrgsLi4iISByY2WJ3r97XdnEvuYqIiIj0egp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiIScwp0IiIiIjGnQCciIiISc7ENdGb2eTN708wyZlYddX9EREREohLbQAcsBT4LPB91R0RERESilIq6A13l7ssAzCzqroiIiIhEKs4zdB1mZlPNrMbMaurq6qLujoiIiEhOFfUMnZk9BRzUxlvXu/tjHf0ed58BzACorq72HHVPREREpCgUdaBz93Oj7oOIiIhIsesVJVcRERGRniy2gc7MLjazWuBU4Ndm9mTUfRIRERGJQlGXXPfG3ecB86Luh4iIiEjUYjtDJyIiIiIBBToRERGRmFOgExEREYk5BToRERGRmFOgExEREYk5BToRERGRmFOgExEREYk5BToRERGRmFOgy5Hpz63gxRXrdml7ccU6pj+3IqIeiYiISG8R2ztFFJtRlftx1ZxXmTnWGdX0BktKjuWqhcZdXzw+6q6JiIhID6dAlyOfGjmYmWOdw397KRnSHE6KmeNmM2rk4Ki7JiIiIj2cSq45NKrpDUpJkyBDKc2Manoj6i6JiIhIL6BAl0NLSo6lkRQZkjSSZEnJsVF3SURERHoBBboceXHFOiYvNN4eN5vEOdfz9rjZTF5oeyyUEPn/7d1/kF1lecDx77ObLJGA+WEw/AhCEhkrAzGRFWnU2goFij+irc4wMBXEmqq1tdZKoZlqHccZlVpbJ61pqhaloFa0RVGKoA6lpkA3ApsooFmJsgiaAAlUMD+f/nFOwjWTzWY3Z++55+73M3PmnvOec8/73HfeLA/vOe85kiRVzXvoKjI4vJWVFywp75k7m0XAyqM2Mzi8laXeRydJkiZQZGbdMYxLRFwBvBrYDgwBb8rMLaN9r7+/PwcGBiY6PEmSpEMWEWszs3+045p8yfUm4JTMXAT8ALi85ngkSZJq0diELjO/kZk7y83bgHl1xiNJklSXxiZ0+7gEuGGknRGxPCIGImJg06ZNbQxLkiRp4nX0pIiIuBk4ej+7VmTmdeUxK4CdwNUjnSczVwOrobiHbgJClSRJqk1HJ3SZedaB9kfExcCrgDOzqbM7JEmSDlFHJ3QHEhHnApcCL8/MJ+uOR5IkqS5NvoduJXAkcFNE3BURq+oOSJIkqQ6NHaHLzOfWHYMkSVInaPIInSRJkjChkyRJajwTOkmSpIYzoZMkSWq4tiR0EfHNiDhvn7LV7ahbkiSp27VrhG4+8BcR8b6Wsv421S1JktTV2pXQbQHOBOZGxFcjYkab6pUkSep67UroIjN3ZubbgS8B/w08u011S5IkdbV2PVh471scMvPKiJgEKmMAAA3lSURBVFgH/FGb6pYkSepqbUnoMvOf9tleC1zSjrolSZK6nY8tkSRJajgTOkmSpIYzoZMkSWo4EzpJkqSGa2xCFxEfiIjBiLgrIr4REcfWHZMkSVIdGpvQAVdk5qLMXAxcD7y37oAkSZLq0NiELjMfb9mcDmRdsUiSJNWpXQ8WnhAR8UHgjcBW4LcOcNxyYDnAc57znPYEJ0mS1CaR2bkDWxFxM3D0fnatyMzrWo67HJiWme8b7Zz9/f05MDBQYZSSJEkTIyLWZmb/aMd19AhdZp51kIdeDXwdGDWhkyRJ6jaNvYcuIk5q2VwG3FtXLJIkSXXq6BG6UXwoIp4H7AZ+DLy15ngkSZJq0diELjN/r+4YJEmSOkFjL7lKkiSp0NgRuk606pYhFs2bwdK+H8HGW+HEl7Fm+wIGh7fy1pcvrDs8SZLUpUzoKrRo3gxWX/15XhwfoHf3Dnb1TGV1/hXLLzy/7tAkSVIXM6Gr0NKFczhu0WPkXduB3eSu5P2LH+OEhXPqDk2SJHUx76Gr2AmnnUP2TGVn9pA9UznhtHPqDkmSJHU5R+gqtmb7AlbzXt58woN8avg4lm9fwNK6g5IkSV3NhK5Ca4Y2845r7mTlheezdOEcevdsX7CEpV52lSRJE8RLrhUaHN76K8nb0oVzWHnBEgaHt9YcmSRJ6maRmXXH0Fb9/f05MDBQdxiSJEmjioi1mdk/2nGO0EmSJDWcCZ0kSVLDmdBJkiQ1nAmdJElSw5nQSZIkNZwJnSRJUsM1PqGLiHdHREaET+6VJEmTUqMTuog4Hjgb+EndsUiSJNWl0Qkd8DHgUmByPR1ZkiSpRWMTuohYBjyYmXcfxLHLI2IgIgY2bdrUhugkSZLaZ0rdARxIRNwMHL2fXSuAv6S43DqqzFwNrIbi1V+VBShJktQBOjqhy8yz9lceEacC84G7IwJgHvDdiDg9Mx9uY4iSJEm16+iEbiSZuQ549p7tiNgI9Gfm5tqCkiRJqklj76GTJElSoZEjdPvKzBPrjkGSJKkujtBNhAfugFs/WnxKkiRNsK4YoesoD9wBn3kN7NoOvX1w0Vfg+NPrjkqSJHUxR+iqtvHWIpnLXcXnxlvrjkiSJHU5E7oKrbpliMGppxYjc9ELvX0MTj2VVbcMPX3Q/i7HDlwJV72u+JQkSRojL7lWaNG8GVx8TXDlb3+WRTvWMfzQw/Cfl/OGefNhwaXws+/D194Fubv4wpRpQA/sfLLYHvoW3PAeOPJoeOm7of/iun6KJElqkMicXC9O6O/vz4GBgQk7/5qhzbzjmjv5xNzrOP2nVwEQ4z1Zbx/0TYcj5sKL32aCJ0nSJBMRazOzf7TjHKGr2NKFc3jPyVvoH7wK4hCSOSjuwXtqOzz1GFz/TrjhUuidWixEOfGiZZ0Acmz7x/Md6+yu32Gd1mmd1mmdY6/z8NkddTXNhK5ia4Y2M3fdanpib1cgqjr5rm3FIkmS6rX9/4rBFuiIpM5JERXac7m1/1nbfiWJ2+9F7b4joe8IeMYsmHkCHH0qTJ9bXGaVJEnNcM91dUcAOEJXqcHhray8YAnPfOySp7N2YMu045mVj8PUaTDvRfCSdx742XQDVxYzYZ96FHbtcFROkqRO9fxldUcA4KSICTNwZZG1P3/ZoQ/F3vQ+uPNfYec2JsV9CU2ps1t+h3Vap3Vap3WOvc423UN3sJMiTOgqtuqWIRbNm8HShXP2lq0Z2szg8Fbe+vKFE1avJEnqPs5yrcmPH/kFV9x4H88+8jC27dxFAI/+Ygc9PcEVN97L7gQSpvQEOzOfnjWxT1lPD+zeXX7u5zuHut86O+uc1mmd1mmd1tmMOqf39TKlp4dZ0/t4avsufrljF4uOn8mVb6r3NZ+O0FXs8i8Pcu3AMDt2T652lSRpslrxyl/jLS+bmKtwBztC19hZrhHx1xHxYETcVS7n1R0TwKtfcCzT+nrpibojkSRJE20ik7mxaGxCV/pYZi4ul6/XHQwUDxb+kzOfiwN0kiR1t9NPnNURyRw0P6HrOGuGNvPxb25whE6SpC53x8bH+Odbh+oOA2h+QveOiBiMiE9HxKy6gwH46t0/5ZfbdzlCJ0nSJPDBr93bEUldRyd0EXFzRKzfz7IM+ASwEFgMPAR89ADnWR4RAxExsGnTpgmPezdwzIxpzJ4+lWdNn0oAvT1Bbw9EFBNopvbE3vX9lfX2tHxOwH7r7KxzWqd1Wqd1Wmcz6nzmtF5mHz6VhUdN59gZ05h9+FS+s+ER6tYVs1wj4kTg+sw8ZbRjfQ6dJElqiq5/Dl1EHJOZD5WbrwPW1xnPHvtL2pYunPMrCZ4kSVKVGpvQAR+JiMUUjwHcCPxhveFIkiTVoysuuY5FRGwCfjzB1cwBNk9wHZOJ7Vkt27Natme1bM9q2Z7VqqM9T8jMo0Y7aNIldO0QEQMHc71bB8f2rJbtWS3bs1q2Z7Vsz2p1cnt29CxXSZIkjc6ETpIkqeFM6CbG6roD6DK2Z7Vsz2rZntWyPatle1arY9vTe+gkSZIazhE6SZKkhjOhkyRJajgTugpFxLkRcV9EbIiIy+qOp5NExPER8e2I+H5EfC8i3lmWz46ImyLih+XnrLI8IuLjZVsORsQLW851UXn8DyPiopby0yJiXfmdj0dEtP+XtldE9EbEnRFxfbk9PyJuL9vgCxHRV5YfVm5vKPef2HKOy8vy+yLinJbySdWfI2JmRFwbEfdGxD0R8ev2z/GLiHeV/9bXR8TnImKa/XNsIuLTEfHziFjfUjbhfXKkOppuhPa8ovw3PxgR/x4RM1v2janvjad/VyozXSpYgF5gCFgA9AF3AyfXHVenLMAxwAvL9SOBHwAnAx8BLivLLwM+XK6fB9xA8T7kM4Dby/LZwI/Kz1nl+qxy3x3lsVF+93fq/t1taNc/A66heJcxwL8B55frq4C3letvB1aV6+cDXyjXTy776mHA/LIP907G/gx8BviDcr0PmGn/HHdbHgfcDzyjpV9ebP8cczv+BvBCYH1L2YT3yZHqaPoyQnueDUwp1z/c0p5j7ntj7d9VL47QVed0YENm/igztwOfB5bVHFPHyMyHMvO75foTwD0Uf/SXUfyHlPLzteX6MuCzWbgNmBkRxwDnADdl5qOZ+RhwE3Buue+ZmXlbFv9qPttyrq4UEfOAVwKfLLcDeAVwbXnIvu25p52vBc4sj18GfD4zt2Xm/cAGir48qfpzRMyg+GP/KYDM3J6ZW7B/HoopwDMiYgpwOPAQ9s8xycz/Ah7dp7gdfXKkOhptf+2Zmd/IzJ3l5m3AvHJ9TH1vnH9/K2VCV53jgAdatofLMu2jHG5eAtwOzM3Mh8pdDwNzy/WR2vNA5cP7Ke9mfwdcCuwut58FbGn549TaBnvbrdy/tTx+rO3creYDm4B/ieIS9icjYjr2z3HJzAeBvwF+QpHIbQXWYv+sQjv65Eh1dLtLKEYqYeztOZ6/v5UyoVNbRcQRwJeAP83Mx1v3lf+X6HN0DkJEvAr4eWaurTuWLjGF4lLMJzJzCfALiktNe9k/D155z9UyikT5WGA6cG6tQXWhdvTJydLvI2IFsBO4uu5YxsuErjoPAse3bM8ry1SKiKkUydzVmfnlsvhn5dA/5efPy/KR2vNA5fP2U96tXgK8JiI2Ugz5vwL4e4rLLFPKY1rbYG+7lftnAI8w9nbuVsPAcGbeXm5fS5Hg2T/H5yzg/szclJk7gC9T9Fn756FrR58cqY6uFBEXA68CLiwTWBh7ez7C2Pt3pUzoqvO/wEnlLJc+ihsfv1JzTB2jvF/gU8A9mfm3Lbu+AuyZdXURcF1L+RvLmVtnAFvLSwA3AmdHxKxyFOBs4MZy3+MRcUZZ1xtbztV1MvPyzJyXmSdS9LVvZeaFwLeB15eH7duee9r59eXxWZafX87Cmg+cRHGj9KTqz5n5MPBARDyvLDoT+D72z/H6CXBGRBxe/t497Wn/PHTt6JMj1dF1IuJciltXXpOZT7bsGlPfK/vrWPt3tSZipsVkXShmGf2AYgbMirrj6aQFeCnFsP0gcFe5nEdxH8E3gR8CNwOzy+MD+IeyLdcB/S3nuoTiBtUNwJtayvuB9eV3VlK+CaXbF+A3eXqW6wKKPzobgC8Ch5Xl08rtDeX+BS3fX1G22X20zLycbP0ZWAwMlH30PyhmBNo/x9+e7wfuLX/zVRSzBe2fY2vDz1Hcg7iDYhT5ze3okyPV0fRlhPbcQHF/257/Lq0ab98bT/+ucvHVX5IkSQ3nJVdJkqSGM6GTJElqOBM6SZKkhjOhkyRJajgTOkmSpIYzoZOkEUTEzIh4e7l+bERcO9p3JKkOPrZEkkZQvnf4+sw8peZQJOmApox+iCRNWh8CFkbEXRQPWX1+Zp5SvirotRTvKD2J4kX0fcDvA9uA8zLz0YhYSPGw16OAJ4G3ZOa97f8Zkrqdl1wlaWSXAUOZuRh4zz77TgF+F3gR8EHgycxcAvwPxWuUAFYDf5yZpwF/DvxjW6KWNOk4QidJ4/PtzHwCeCIitgJfLcvXAYsi4ghgKfDF4lWZQPH6K0mqnAmdJI3Ptpb13S3buyn+tvYAW8rRPUmaUF5ylaSRPQEcOZ4vZubjwP0R8QaAKLygyuAkaQ8TOkkaQWY+AnwnItYDV4zjFBcCb46Iu4HvAcuqjE+S9vCxJZIkSQ3nCJ0kSVLDmdBJkiQ1nAmdJElSw5nQSZIkNZwJnSRJUsOZ0EmSJDWcCZ0kSVLD/T8/37hbOIlqlAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, expected_x, 'x', label='Expected')\n",
-    "_ = x_position_axes.plot(time, positions[:, 0, 0], '.', label='Calculated')\n",
-    "_ = x_position_axes.legend()\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, expected_y, 'x')\n",
-    "_ = y_position_axes.plot(time, positions[:, 0, 1], '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, expected_z, 'x')\n",
-    "_ = z_position_axes.plot(time, positions[:, 0, 2], '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHjCAYAAACq4oKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XucXWV59//Pd/bM5AA5kjQmhBiIkeMPDczDybYCKgIiUQRKoQqCorWeap/WID5qQS22gvXAT0RAgYqACCUPQhERtBYITEBDwjEccwIChBASkjldzx/rHtyMc1gze6+Z2TPf9+u1X7PXve691zWLleTivtZ9L0UEZmZmZla76oY6ADMzMzOrjBM6MzMzsxrnhM7MzMysxjmhMzMzM6txTujMzMzMapwTOjMzM7Ma54TOzMzMrMY5oTMzMzOrcU7ozMzMzGpc/VAHMNimTZsWc+fOHeowzMzMzPq0dOnS5yNiel/9Rl1CN3fuXJqbm4c6DDMzM7M+SXoqTz+XXM3MzMxqXJ8JnaQ9umk7uJBozMzMzKzf8pRcr5Z0OfCvwNj0swk4sMjAzMzMzIaLpU9t4ILfPMZ9T29gS0s7U8c38IlD5nPi/nOGOjQgX0K3P/AN4A5gAvAT4G19fUjSJcBRwHMRsVdq+wrwUWB96vaFiLgx7TsDOA1oBz4dETen9sOBbwMl4KKIOCe17wxcCewALAU+GBEtOX4fMzMzs15dseRpzr/tUTZsaaUOeKWl/XX7t7S084Xr7gcYFkldnoSuFXgVGEc2QvdERHTk+NyPge8Bl3Vp/1ZEfLO8IZV1TwD2BGYBv5L05rT7fOBdwGrgHkmLI+IBsiTzWxFxpaQLyJLB7+eIy8zMzOx1zrnxQa5uXkVHBFvbOtjamifVgZuWr6uZhO4e4HrgfwHTgAskfSAijuvtQxHxW0lzc8axELgyIrYBT0haCeyX9q2MiMcBJF0JLJT0IHAocGLqcynwFZzQmZmZWR+uWPI0l/zucdZv3kZrW9DW3kFLewzou47Ya2aVoxuYPAndaRHRuc7HOrKE6oMVHPOTkj4ENAP/EBEbgB2Bu8r6rE5tAKu6tO9PVmZ9KSLauun/JySdDpwOMGfO0GfRZmZmNnjKy6fREbzalm/0rSeNJfFnE8bU1j10ZclcedvlAzze94GzgUg/zwVOHeB35RYRFwIXAjQ1NQ0sBTczM7Oa0Fk+bWnrYFt7B60DHH0DqK+D7cfUU19fx+RxjZz6tp2HTRJXblAXFo6IZzvfS/ohcEPaXAPsVNZ1dmqjh/YXgMmS6tMoXXl/MzMzGyWqWT4FGNdQR2NDHSXVcfy+s1l05O5VjLY4g5rQSZoZEevS5vuB5en9YuAKSeeRTYqYD9wNCJifZrSuIZs4cWJEhKTbgGPJZrqeTHafn5mZmY1g5eXTSpM3gDH1dYxrqGPahLHDdvQtj8ISOkk/BQ4GpklaDXwZOFjSW8lKrk8CHwOIiBWSrgYeANqAv4uI9vQ9nwRuJlu25JKIWJEO8XngSklfBe4DLi7qdzEzM7PBt/SpDZxz04M8tO5lIqi4fNpYEuMbS2w3toE9Z07kY2+fx75vnFLFiIeOIro/MZI2kSVe3YqIiUUFVaSmpqbws1zNzMyGn/Ly6daWDrZVYfJCfalu2C0C3B+SlkZEU1/9ehyhi4gJ6YvOJpvdejlZCfQkYHjM0TUzM7OaVc3yaWfy1lhSzZdPByJPyfXoiHhL2fb3Jf0B+FJBMZmZmdkI0zn69tLWVlrbO9iyrb3i8mljqY7GhlJNTV4oSp6EbrOkk8gmHwTw18DmQqMyMzOzmlZePq00eQMY31AHUk2XT4uUJ6E7kexZqt8mS+j+hz8+ocHMzMxGufLJC6U69evRWd3pLJ9u11hiwZwpI2ryQlHyLCz8JNmjuczMzMxeVz59taWdzdva+/5QL1w+rVyfCZ2kN5M94WFGROwlaW+y++q+Wnh0ZmZmNuSqXT7dvrFEB7h8WkV5Sq4/BP4R+AFARCyTdAXghM7MzGyEcfm0NuVJ6MZHxN2SytvaCorHzMzMBlG1y6cTxpSoK6nmHp1V6/IkdM9LmkdaZFjSsWTr0pmZmVkNWfrUBi74zWPc9/QGtrS0Ex3BqxUu3rt9YwnVid3fMIHPH7G7R9+GSJ6E7u+AC4HdJK0BniBbXNjMzMyGsa6PznqlpfLJCy6fDk95ErqIiHdK2g6oi4hNknYuOjAzMzPrn2o/Osvl09qRJ6H7ObBPRJQvJnwNsG8xIZmZmVlfXD61cj0mdJJ2A/YEJkk6pmzXRGBs0YGZmZnZHxVRPh3fWGK7sQ3sOXOiy6c1rrcRul2Bo4DJwHvL2jcBHy0yKDMzs9HunBsf5OrmVbS0ddDaEVUpn45pLDF5XOOoe3D9aNBjQhcR1wPXSzowIu4cxJjMzMxGla7l07b2DloqXLx3TH0dE8fWe/LCKJHnHrqPS3owIl4CkDQFODciTi02NDMzs5GpvHza1l75vW8un1qehG7vzmQOICI2SFpQYExmZmYjRufo2wNrN/JKS1vVZp+6fGrl8iR0dZKmRMQGAElTc37OzMxs1Ckvn27a2lZx8ua13yyPPInZucCdkn6Wto8DvlZcSGZmZrXjiiVPc/5tj7JhS2tVlg4ZU1/HuIY6pk0Y69E3y63PhC4iLpPUDByamo6JiAeKDcvMzGz46Vo+3bKtndYKJy+Mb6ijVKrz2m9Wkbyl06nA5oj4kaTpknaOiCeKDMzMzGyoVbt8Or6hDiSXT63q+kzoJH0ZaCJbl+5HQAPwH8Dbig3NzMxscHWu/dYRQWtHsHlbZYv3unxqgyXPCN37gQXAvQARsVbShEKjMjMzK1jX8ukrW9tor2AArrEkGkt1fnSWDYk8CV1LRISkAJC0XcExmZmZVV21H1zfWT6dOr6BTxwy36NvNqTyJHRXS/oBMFnSR4FTgR8WG5aZmVllysunW9s62Nrq2ac2cuWZ5fpNSe8CXgbeDHwpIm4pPDIzM7Ocql0+HddQR2NDHR0duHxqNSHvLNf7gXFApPdmZmZDpnzttzrglZbKJi+4fGq1Ls8s148AXwJ+DQj4rqSzIuKSooMzMzOD6pZPO5+80FiSy6c2YuQZoftHYEFEvAAgaQfgDsAJnZmZVV355IXWtqCtvYOWChbv7SyfllTH8fvOZtGRu1cxWrPhIU9C9wKwqWx7U2rrlaRLgKOA5yJir9Q2FbgKmAs8CRwfERskCfg2cCSwBTglIu5NnzkZ+GL62q9GxKWpfV/gx2Sl4BuBz0REZct1m5nZoKv2o7NcPrXRKE9CtxJYIul6snvoFgLLJH0OICLO6+FzPwa+B1xW1rYIuDUizpG0KG1/HjgCmJ9e+wPfB/ZPCWDnwsYBLJW0OCI2pD4fBZaQJXSHAzfl/L3NzGyIVLN8Wl8H24+pp76+jsnjGl0+tVErT0L3WHp1uj797HVx4Yj4raS5XZoXAgen95cCt5MldAuBy9II212SJkuamfreEhEvAki6BThc0u3AxIi4K7VfBrwPJ3RmZsOKy6dmgyNPQveNiNha3iBpWkQ8P4DjzYiIden9M8CM9H5HYFVZv9Wprbf21d20d0vS6cDpAHPm+P/czMyKUu3yqdd+M8snT0J3t6TTy0bDPgD8C9madANW/vSJokXEhcCFAE1NTb7PzsysCpY+tYFzbnqQh9a9TARsa++gtYLRt87y6XZjG9hz5kQ/uN6sH/IkdCcBl6Qy5yxgB+DQAR7vWUkzI2JdKqk+l9rXADuV9Zud2tbwxxJtZ/vtqX12N/3NzKwg1X50lsunZtWT50kR90v6GnA52QzXv4yI1X18rCeLgZOBc9LP68vaPynpSrJJERtT0ncz8HVJnf+LdhhwRkS8KOllSQeQTYr4EPDdAcZkZmbdKC+fVnrvG7h8alakPAsLXwzMA/YmK7PeIOm7EXF+H5/7Kdno2jRJq8lmq55D9mzY04CngONT9xvJlixZSbZsyYcBUuJ2NnBP6ndW5wQJ4BP8cdmSm/CECDOzAat2+bSxJMY3llw+NRsk6mvpNkmfBb7ducabpEnAeRFx2iDEV3VNTU3R3Nw81GGYmQ2papdPvfabWTEkLY2Ipr765Sm5/rukcZLmRMTDEbERqMlkzsxsNOp8cP19T29gS0t7xeXTzkdnbddYYsGcKR59MxsG8pRc3wt8E2gEdpb0VrLS59FFB2dmZv3XOfr20tZWXm1pZ/O2yh5c31gSjaU6GhtKnrxgNkzlmeX6FWA/stmlRMTvJe1SYExmZtYP5eXTLdvaK7r3DVw+NatFeRK61ojYmD1u9TWV3WxhZmYDUj55oVSnih+d5fKp2ciQJ6FbIelEoCRpPvBp4I5iwzIzM6h++XRMfR0NdXL51GyEyZPQfQo4E9gGXAHcDHy1yKDMzEarapdPt28soTqx+xsm8Pkjdvfom9kIlWeW6xayhO7M4sMxMxs9XD41s2rJM0JnZmZVUO3y6YQxJepK8qOzzMwJnZlZEbqu/RYdwasVLt7r8qmZ9cQJnZlZFXR9dNYrLZWv/ebyqZnl1a+ETtK9EbFPUcGYmdWKaj86y+VTM6tEf0fo1HcXM7ORxeVTMxvu+pvQ/aKQKMzMhpEiyqfjG0tsN7aBPWdOdPnUzKquXwldRHyxqEDMzIbKOTc+yNXNq2hp66C1I6pSPh3TWGLyuEZOfdvOfnSWmRXOkyLMbFTpWj5ta++gpcLFe8fU1zFxbL0nL5jZkHFCZ2YjWnn5tK298nvfXD41s+Goz4RO0p9FxHNd2naNiIeLC8vMrP86R98eWLuRV1raqjb71OVTMxvu8ozQ/bek/xMRVwNI+gfgNGCPQiMzM+tDefl009a2ipM3r/1mZrUqT0J3MHChpOOAGcCDwH5FBmVm1p0rljzN+bc9yoYtrVVZOmRMfR3jGuqYNmGsR9/MrKb1mdBFxDpJ/wWcAXQAiyLilcIjM7NRrWv5dMu2dlornLwwvqGOUqnOa7+Z2YiT5x66XwFrgb2AnYCLJf02Iv530cGZ2ehR7fLp+IY6kFw+NbNRIU/J9XsR8Z/p/UuSDiIbrTMzG7DOtd86ImjtCDZvq2zxXpdPzWw0y1Ny/c8u223A2YVFZGYjTtfy6Stb22ivYACusSQaS3V+dJaZWeJ16Mys6sonL9RR+aOzOsunU8c38IlD5nv0zcysCyd0Zlax8vLp1rYOtrZ69qmZ2WByQmdm/VLt8um4hjoaG+ro6MDlUzOzAeoxoZN0P9DjGgERsXchEZnZsOLyqZnZ8NfbCN1R6effpZ+Xp58nFReOmQ21apZP6+tg+zH11NfX+dFZZmYF6jGhi4inACS9KyIWlO1aJOleYFHRwZlZsa5Y8jSX/O5x1m/eRmtb0NbeQUsFi/d2lk9LquP4fWez6MjdqxitmZn1JM89dJL0toj4n7RxEFBXyUElPQlsAtqBtohokjQVuAqYCzwJHB8RGyQJ+DZwJLAFOCUi7k3fczLwxfS1X42ISyuJy2ykq/ajs1w+NTMbHvIkdKcBl0ialLZfAk6twrEPiYjny7YXAbdGxDmSFqXtzwNHAPPTa3/g+8D+KQH8MtBEdq/fUkmLI2JDFWIzGxE6y6ctbR1sa++o6NFZLp+amQ1feRYWXgq8pTOhi4iNBcWyEDg4vb8UuJ0soVsIXBYRAdwlabKkmanvLRHxIoCkW4DDgZ8WFJ/ZsObyqZnZ6JXnWa4zgK8DsyLiCEl7AAdGxMUVHDeAX0oK4AcRcSEwIyLWpf3PADPS+x2BVWWfXZ3aemrv7nc4HTgdYM4cjyjYyFDt8qnXfjMzq115Sq4/Bn4EnJm2HyG7162ShO7PI2KNpD8DbpH0UPnOiIiU7FVFShgvBGhqaqra95oNlqVPbeCcmx7koXUvE0HF5dPGkhjfWGK7sQ3sOXOiH1xvZlbj8iR00yLiaklnQPYsV0kVLUQVEWvSz+ckXQfsBzwraWZErEsl1edS9zXATmUfn53a1vDHEm1n++2VxGU2XJSXT7e2dLCtwtG3xpKoL9V58oKZ2QiVJ6HbLGkH0iLDkg4ABnwfnaTtgLqI2JTeHwacBSwGTgbOST+vTx9ZDHxS0pVkkyI2pqTvZuDrkjqHFQ4DzhhoXGZDqbx8Wum9b+DyqZnZaJMnofscWVI1T9L/ANOB4yo45gzgumw1EuqBKyLivyTdA1wt6TTgKeD41P9GsiVLVpItW/JhgIh4UdLZwD2p31mdEyTMhrPO0beXtrbS2t7Blm3tLp+amVlFlE0e7aWDNIZsvbhdAQEPk42wbSs+vOpramqK5ubmoQ7DRpHy8mmlyRt47Tczs9FE0tKIaOqrX54RujsjYh9gRdmX3wvsU0F8ZiNS54Pr73t6A1ta2isun3be+7ZdY4kFc6Z49M3MzLrVY0In6Q1ky4CMk7SAbHQOYCIwfhBiMxv2ysunr7a0s3lbZQ+ubyyJxlIdjQ0lr/1mZma59TZC927gFLLZo+eVtW8CvlBgTGbDVrXLp9s3lugAl0/NzKwiPSZ06bmol0r6QET8fBBjMhsWytd+K9WJrW0dbG0d+PIhLp+amVlR8jz66+eS3gPsCYwtaz+ryMDMBlu1y6dj6utoqJPLp2ZmVrg8j/66gOyeuUOAi4BjgbsLjsusUF0nL1Tj0VnbN5ZQndj9DRP4/BG7e/TNzMwGTZ5ZrgdFxN6SlkXEP0s6F7ip6MDMqqnro7Neaal88oLLp2ZmNlzkSeheTT+3SJoFvADMLC4ks8pVu3w6YUyJupIoqc7lUzMzG3byJHQ3SJoM/BtwL9kjwC4qNCqzfnD51MzMRrs8kyLOTm9/LukGYGxEDPhZrmaVKqJ86kdnmZlZLettYeFjetlHRFxbTEhmr3fOjQ9ydfMqWto6aO0ItlU4+jZhTIkxjSUmj2v0g+vNzGxE6G2E7r297AvACZ1VXbUfnQUun5qZ2cjX28LCHx7MQGx0Ki+ftrVXfu+by6dmZjYa5VmH7kvdtXthYRsIl0/NzMyqL88s181l78cCRwEPFhOOjSTVLp967TczM7Pu5Znlem75tqRvAjcXFpHVrGqXT8fU1zGuoY5pE8Z69M3MzKwXeUbouhoPzK52IFZbOkffHli7kVda2tja0lFx+XR8Qx2lUp0nL5iZmfVTnnvo7ieb1QpQAqYDvn9ulCkvn27a2lZx8ubyqZmZWfXkGaE7qux9G/BsRLQVFI8NE9V+dJbLp2ZmZsXJk9DNBFZExCYASRMk7RERS4oNzQZL1/Lplm3ttFa49pvLp2ZmZoMnT0L3fWCfsu3N3bRZDal2+XR8Qx1ILp+amZkNkTwJnSLiteGaiOiQNJDJFDZEXD41MzMb2fIkZo9L+jTZqBzAJ4DHiwvJKlFE+dSPzjIzMxve8iR0Hwe+A3yRbLbrrcDpRQZl+ZWv/RYBr7RUNvrm8qmZmVntybOw8HPACYMQi+Xg8qmZmZl11WNCJ+m7/HH9uT8REZ8uJCJ7nSuWPM35tz3Khi2tREflT19w+dTMzGzk6W2ErnnQorDXdD68viOCrW0dbG0deALn8qmZmdno0GNCFxGXDmYgo1VnCXX95m28srWN9goG4CaMKTGmscTkcY0un5qZmY0ieR79NR34PLAHMLazPSIOLTCuEav8HrhXtrZVNALn8qmZmZlBvlmuPwGuAt5DNuP1ZGB9kUH1h6TDgW+TPWf2oog4Z4hDep3yEbhKlhCpr4Ptx9Sz3dgG9pw50eVTMzMze02ehG6HiLhY0mci4jfAbyTdU3RgeUgqAecD7wJWA/dIWhwRDwxVTNUagRvXUEdjQx0l1XH8vrNZdOTuVY7UzMzMRoo8CV1r+rlO0nuAtcDU4kLql/2AlRHxOICkK4GFwJAkdFcseZovXHf/gD7bWBL1pTqmjm/gE4fM9/1vZmZmlluehO6rkiYB/wB8F5gI/H2hUeW3I7CqbHs1sH/XTpJOJy2GPGdOcYnSTcvX9av/9o0lGhtKHoEzMzOziuRZWPiG9HYjcEix4RQjIi4ELgRoamqq7DlYvThir5n896PPd7uvcwTOS4iYmZlZteWZ5Xop8JmIeCltTwHOjYhTiw4uhzXATmXbs1PbkOgsk3beQ9fa3uF74MzMzKxweUque3cmcwARsUHSggJj6o97gPmSdiZL5E4AThzKgE7cf47vfzMzM7NBlSehq5M0JSI2AEiamvNzhYuINkmfBG4mW7bkkohYMcRhmZmZmQ2qPInZucCdkn6Wto8DvlZcSP0TETcCNw51HGZmZmZDRRF9zxGQtAfQ+WSIXw/lOm+VkrQeeKrgw0wDup8dYQPh81ldPp/V5fNZXT6f1eXzWV1DcT7fGBHT++qUK6Gz/pHUHBFNQx3HSOHzWV0+n9Xl81ldPp/V5fNZXcP5fNYNdQBmZmZmVhkndGZmZmY1zgldMS4c6gBGGJ/P6vL5rC6fz+ry+awun8/qGrbn0/fQmZmZmdU4j9CZmZmZ1TgndGZmZmY1zgldlUk6XNLDklZKWjTU8QwXknaSdJukByStkPSZ1D5V0i2SHk0/p6R2SfpOOo/LJO1T9l0np/6PSjq5rH1fSfenz3xHkgb/Nx1ckkqS7pN0Q9reWdKSdA6uktSY2sek7ZVp/9yy7zgjtT8s6d1l7aPqWpY0WdI1kh6S9KCkA319Dpykv09/1pdL+qmksb4++0fSJZKek7S8rK3wa7KnY9S6Hs7nv6U/88skXSdpctm+fl17A7m+qyoi/KrSi+zxY48BuwCNwB+APYY6ruHwAmYC+6T3E4BHgD2AfwUWpfZFwDfS+yOBmwABBwBLUvtU4PH0c0p6PyXtuzv1VfrsEUP9ew/Cef0ccAVwQ9q+Gjghvb8A+Nv0/hPABen9CcBV6f0e6TodA+ycrt/SaLyWgUuBj6T3jcBkX58DPpc7Ak8A48quy1N8ffb7PP4lsA+wvKyt8Guyp2PU+quH83kYUJ/ef6PsfPb72uvv9V3tl0foqms/YGVEPB4RLcCVwMIhjmlYiIh1EXFver8JeJDsL/2FZP+Qkn6+L71fCFwWmbuAyZJmAu8GbomIFyN7vvAtwOFp38SIuCuyPzWXlX3XiCRpNvAe4KK0LbInulyTunQ9n53n+RrgHan/QuDKiNgWEU8AK8mu41F1LUuaRPaX/cUAEdESES/h67MS9cA4SfXAeGAdvj77JSJ+C7zYpXkwrsmejlHTujufEfHLiGhLm3cBs9P7fl17A/z7t6qc0FXXjsCqsu3Vqc3KpOHmBcASYEZErEu7ngFmpPc9ncve2ld30z6S/TvwT0BH2t4BeKnsL6fyc/DaeUv7N6b+/T3PI9XOwHrgR8pK2BdJ2g5fnwMSEWuAbwJPkyVyG4Gl+PqshsG4Jns6xkh3KtlIJfT/fA7k79+qckJng0rS9sDPgc9GxMvl+9L/JXodnRwkHQU8FxFLhzqWEaKerBTz/YhYAGwmKzW9xtdnfumeq4VkifIsYDvg8CENagQajGtytFz3ks4E2oCfDHUsA+WErrrWADuVbc9ObQZIaiBL5n4SEdem5mfT0D/p53Opvadz2Vv77G7aR6q3AUdLepJsyP9Q4NtkZZb61Kf8HLx23tL+ScAL9P88j1SrgdURsSRtX0OW4Pn6HJh3Ak9ExPqIaAWuJbtmfX1WbjCuyZ6OMSJJOgU4CjgpJbDQ//P5Av2/vqvKCV113QPMTzNdGsluflw8xDENC+l+gYuBByPivLJdi4HOWVcnA9eXtX8ozdw6ANiYSgA3A4dJmpJGAQ4Dbk77XpZ0QDrWh8q+a8SJiDMiYnZEzCW7zn4dEScBtwHHpm5dz2fneT429Y/UfkKahbUzMJ/sRulRdS1HxDPAKkm7pqZ3AA/g63OgngYOkDQ+/b6d59PXZ+UG45rs6RgjjqTDyW5dOToitpTt6te1l67X/l7f1VXETIvR/CKbafQI2SyYM4c6nuHyAv6cbNh+GfD79DqS7D6CW4FHgV8BU1N/Aeen83g/0FT2XaeS3aC6EvhwWXsTsDx95nukJ6GM9BdwMH+c5boL2V86K4GfAWNS+9i0vTLt36Xs82emc/YwZTMvR9u1DLwVaE7X6H+SzQj09Tnw8/nPwEPpd76cbLagr8/+ncOfkt2D2Eo2inzaYFyTPR2j1l89nM+VZPe3df67dMFAr72BXN/VfPnRX2ZmZmY1ziVXMzMzsxrnhM7MzMysxjmhMzMzM6txTujMzMzMapwTOjMzM7Ma54TOzMzMrMY5oTMzMzOrcU7ozMzMzGpcfd9dRpZp06bF3LlzhzoMMzMzsz4tXbr0+YiY3le/UZfQzZ07l+bm5qEOw8zMzKxPkp7K088lVzMzM7Malyuhk/QpSVOKDsbMzMzM+i/vCN0M4B5JV0s6XJKKDMrMzMzM8suV0EXEF4H5wMXAKcCjkr4uaV6BsZmZmZlZDrnvoYuIAJ5JrzZgCnCNpH8tKDYzMzMzyyHXLFdJnwE+BDwPXAT8Y0S0SqoDHgX+qbgQzczMzKw3eZctmQocExGvmzobER2Sjqp+WGZmZmaWV66ELiK+3Mu+B6sXjpmZmZn1l9ehMzMzM6txTujMzMzMapwTOjMzM7Ma1+s9dJI2AdHT/oiYWPWIzMzMzKxfek3oImICgKSzgXXA5YCAk4CZhUdnZmZmZn3KW3I9OiL+/4jYFBEvR8T3gYXVCCA9SuxhSSslLepm/xhJV6X9SyTN7bJ/jqRXJP3vasRjZmZmVmvyJnSbJZ0kqSSpTtJJwOZKDy6pBJwPHAHsAfy1pD26dDsN2BARbwK+BXyjy/7zgJsqjcXMzMysVuVN6E4EjgeeTa/jUlul9gNWRsTjEdECXMmfjvwtBC5N768B3iFJAJLeBzwBrKhCLGZmZmY1Ke/Cwk9SpRJrFzsCq8q2VwP799QnItokbQR2kLQV+DzwLqDXcquk04HTAebMmVOdyM3MzMyGiVwjdJLeLOlWScvT9t6SvlhsaH36CvCtiHilr44RcWFENEVE0/Tp04uPzMzMzGwQ5S25/hA4A2gFiIhlwAlVOP4aYKey7dmprds+kuqBScALZCN5/yrpSeCzwBckfbIKMZmZmZnVlFwlV2DnPwBBAAAgAElEQVR8RNydbl3r1FaF498DzJe0M1nidgJ/em/eYuBk4E7gWODXERHAX3R2kPQV4JWI+F4VYjIzMzOrKXkTuuclzSMtMizpWLJ16SqS7on7JHAzUAIuiYgVks4CmiNiMXAxcLmklcCLVGdk0MzMzGzEUDbY1UcnaRfgQuAgYAPZzNKTIuKpYsOrvqampmhubh7qMMzMzMz6JGlpRDT11S/vCF1ExDslbQfURcSmVCY1MzMzsyGWd1LEzwEiYnNEbEpt1xQTkpmZmZn1R68jdJJ2A/YEJkk6pmzXRGBskYGZmZmZWT59lVx3BY4CJgPvLWvfBHy0qKDMzMzMLL9eE7qIuB64XtKBEXHnIMVkZmZmZv2Q9x66j0ua3LkhaYqkSwqKyczMzMz6IW9Ct3dEvNS5EREbgAXFhGRmZmZm/ZE3oauTNKVzQ9JU8i95YmZmZmYFypuUnQvcKelnafs44GvFhGRmZmZm/ZEroYuIyyQ1A4empmMi4oHiwjIzMzOzvPKWXAGmApsj4nvAej8pwszMzGx4yJXQSfoy8HngjNTUAPxHUUGZmZmZWX55R+jeDxwNbAaIiLXAhKKCMjMzM7P88iZ0LRERQABI2q64kMzMzMysP/ImdFdL+gEwWdJHgV8BP6xGAJIOl/SwpJWSFnWzf4ykq9L+JZLmpvZ3SVoq6f7089CunzUzMzMbDfLOcv2mpHcBLwNvBr4UEbdUenBJJeB84F3AauAeSYu7zKA9DdgQEW+SdALwDeCvgOeB90bEWkl7ATcDO1Yak5mZmVmt6c/iwPcD48jKrvdX6fj7ASsj4nEASVcCC4HyhG4h8JX0/hrge5IUEfeV9VkBjJM0JiK2VSk2MzMzs5qQd5brR4C7gWOAY4G7JJ1ahePvCKwq217Nn46yvdYnItqAjcAOXfp8ALi3p2RO0umSmiU1r1+/vgphm5mZmQ0feUfo/hFYEBEvAEjaAbgDuKSowPKStCdZGfawnvpExIXAhQBNTU0xSKGZmZmZDYq8kyJeADaVbW9KbZVaA+xUtj07tXXbR1I9MKnz2JJmA9cBH4qIx6oQj5mZmVnNyTtCtxJYIul6snvoFgLLJH0OICLOG+Dx7wHmp6dOrAFOAE7s0mcxcDJwJ1m599cREZImA78AFkXE/wzw+GZmZmY1L29C91h6dbo+/axoceGIaJP0SbIZqiXgkohYIeksoDkiFgMXA5dLWgm8SJb0AXwSeBPwJUlfSm2HRcRzlcRkZmZmVmuUrRfcRydpbERs7dI2LSKeLyyygjQ1NUVzc/NQh2FmZmbWJ0lLI6Kpr35576G7W9IBZV/+AbJJEWZmZmY2xPKWXE8CLpF0OzCLbNkQP5nBzMzMbBjI+6SI+yV9DbicbIbrX0bE6kIjMzMzM7NcciV0ki4G5gF7kz366wZJ342I84sMzszMzMz6lvceuvuBQyLiiYi4Gdgf2Ke4sMzMzMwsr1wJXUT8OzBW0q5pe2NEnFZoZGZmZmaWS95nub4X+D3wX2n7rZIWFxmYmZmZmeWTt+T6FWA/4CWAiPg9sEtBMZmZmZlZP+RN6FojYmOXto5qB2NmZmZm/Zd3HboVkk4ESpLmA5/GCwubmZmZDQt5R+g+BewJbAOuADYCny0qKDMzMzPLL+/CwluAM9PLzMzMzIaRvCN0ZmZmZjZMOaEzMzMzq3FDntBJOlzSw5JWSlrUzf4xkq5K+5dImlu274zU/rCkdw9m3GZmZmbDRd5Zrq+RdG9EVOWxX5JKwPnAu4DVwD2SFkfEA2XdTgM2RMSbJJ0AfAP4K0l7ACeQTdaYBfxK0psjor0asQ3UFUue5pLfPc5LW1tpbe+gtS1oLIkQtLYFdWTrvZS39bV/IJ/xMX1MH9PH9DGHxzFHyu/hY76+ber4Bj5xyHxO3H8Ow4Eion8fkO6LiAVVObh0IPCViHh32j4DICL+pazPzanPnZLqgWeA6cCi8r7l/Xo7ZlNTUzQ3N1cj/D9xxZKn+cJ19xfy3WZmZjb8fP39/1+hSZ2kpRHR1Fe/gZRcfzGAz/RkR2BV2fbq1NZtn4hoI1syZYecnwVA0umSmiU1r1+/vkqh/6mblq8r7LvNzMxs+Bku//b3O6GLiC8WEUiRIuLCiGiKiKbp06cXdpwj9ppZ2HebmZnZ8DNc/u3v9z10VbYG2Klse3Zq667P6lRynQS8kPOzg6pzyNX30PmYPqaP6WP6mCPt9/Axh/c9dEOd0N0DzJe0M1kydgJwYpc+i4GTgTuBY4FfR0RIWgxcIek8skkR84G7By3yHpy4/5xh8x/XzMzMRodcCZ2k9wK/iIiOah48ItokfRK4GSgBl0TECklnAc0RsRi4GLhc0krgRbKkj9TvauABoA34u6Ge4WpmZmY2FHLNcpX0H8CBwM/Jkq6Hig6sKEXOcjUzMzOrpqrOco2IvwEWAI8BP5Z0Z5o5OqHCOM3MzMysQrlnuUbEy8A1wJXATOD9wL2SPlVQbGZmZmaWQ66ETtLRkq4DbgcagP0i4gjgLcA/FBeemZmZmfUl7yzXDwDfiojfljdGxBZJp1U/LDMzMzPLK1dCFxEn97Lv1uqFY2ZmZmb9NZBHf5mZmZnZMOKEzszMzKzGOaEzMzMzq3G93kMn6X6gx5WHI2LvqkdkZmZmZv3S16SIo9LPv0s/L08/TyomHDMzMzPrr14Tuoh4CkDSuyJiQdmuRZLuBRYVGZyZmZmZ9S3vPXSS9LayjYP68VkzMzMzK1DehYVPAy6RNCltvwScWkxIZmZmZtYfeRcWXgq8pTOhi4iNhUZlZmZmZrnlfZbrDEkXA1dGxEZJe1T6yC9JUyXdIunR9HNKD/1OTn0elXRyahsv6ReSHpK0QtI5lcRiZmZmVsvy3gf3Y+BmYFbafgT4bIXHXgTcGhHzgVvpZoKFpKnAl4H9gf2AL5clft+MiN2ABcDbJB1RYTxmZmZmNSlvQjctIq4GOgAiog1or/DYC4FL0/tLgfd10+fdwC0R8WJEbABuAQ6PiC0RcVuKpQW4F5hdYTxmZmZmNSlvQrdZ0g6kRYYlHQBUeh/djIhYl94/A8zops+OwKqy7dWp7TWSJgPvJRvlMzMzMxt18s5y/RywGJgn6X+A6cBxfX1I0q+AN3Sz68zyjYgIST0+kaKX768Hfgp8JyIe76Xf6cDpAHPmzOnvYczMzMyGtbwJ3Qrg7cCugICHyTG6FxHv7GmfpGclzYyIdZJmAs91020NcHDZ9mzg9rLtC4FHI+Lf+4jjwtSXpqamfieOZmZmZsNZ3pLrnRHRFhErImJ5RLQCd1Z47MXAyen9ycD13fS5GThM0pQ0GeKw1IakrwKTqHxyhpmZmVlN63WETtIbyO5ZGydpAdnoHMBEYHyFxz4HuDotf/IUcHw6ZhPw8Yj4SES8KOls4J70mbNS22yysu1DwL2SAL4XERdVGJOZmZlZzVFEzxXItO7bKUAT0Fy2axPw44i4ttDoCtDU1BTNzc19dzQzMzMbYpKWRkRTX/16HaGLiEuBSyV9ICJ+XrXozMzMzKxq8j766+eS3gPsCYwtaz+rqMDMzMzMLJ+8j/66APgr4FNk99EdB7yxwLjMzMzMLKe8s1wPiogPARsi4p+BA4E3FxeWmZmZmeWVN6F7Nf3cImkW0ArMLCYkMzMzM+uPvAsL35AesfVvZM9NDcBLhJiZmZkNA3knRZyd3v5c0g3A2Iio9FmuZmZmZlYFfS0sfEwv+6jFdejMzMzMRpq+Ruje28u+AJzQmZmZmQ2xvhYW/vBgBWJmZmZmA5PrHjpJX+qu3QsLm5mZmQ29vLNcN5e9HwscBTxY/XDMzMzMrL/yznI9t3xb0jeBmwuJyMzMzMz6Je/Cwl2NB2ZXMxAzMzMzG5i899DdTzarFaAETAd8/5yZmZnZMJD3Hrqjyt63Ac9GRFslB5Y0FbgKmAs8CRwfERu66Xcy8MW0+dWIuLTL/sXALhGxVyXxmJmZmdWqvCXXmcCLEfFURKwBxknav8JjLwJujYj5wK1p+3VS0vdlYH9gP+DLkqaU7T8GeKXCOMzMzMxqWt6E7vu8PnHanNoqsRDoHG27FHhfN33eDdwSES+m0btbgMMBJG0PfA74aoVxmJmZmdW0vAmdIqLzHjoiooP85dqezIiIden9M8CMbvrsCKwq216d2gDOBs4FtvR1IEmnS2qW1Lx+/foKQjYzMzMbfvImdI9L+rSkhvT6DPB4Xx+S9CtJy7t5LSzvl5LF6OFruvvetwLzIuK6PP0j4sKIaIqIpunTp+c9jJmZmVlNyDvK9nHgO2STE4LsnrfT+/pQRLyzp32SnpU0MyLWSZoJPNdNtzXAwWXbs4HbgQOBJklPkv0Ofybp9og4GDMzM7NRJu/Cws8BJ1T52IuBk4Fz0s/ru+lzM/D1sokQhwFnRMSLpHv4JM0FbnAyZ2ZmZqNVrwmdpO/SSyk0Ij5dwbHPAa6WdBrwFHB8OmYT8PGI+EhEvCjpbOCe9JmzUjJnZmZmZklfI3TNRR04Il4A3tFNezPwkbLtS4BLevmeJwGvQWdmZmajVq8JXddFfM3MzMxs+Mn76K/pwOeBPYCxne0RcWhBcZmZmZlZTnmXLfkJ8CCwM/DPZI/quqe3D5iZmZnZ4Mib0O0QERcDrRHxm4g4FfDonJmZmdkwkHcdutb0c52k9wBrganFhGRmZmZm/ZE3ofuqpEnAPwDfBSYCf19YVGZmZmaWW96FhW9IbzcChxQXjpmZmZn1V6576CRdKmly2fYUST2uDWdmZmZmgyfvpIi9I+Klzo2I2AAsKCYkMzMzM+uPvAldXdnzVJE0lfz335mZmZlZgfImZecCd0r6Wdo+DvhaMSGZmZmZWX8oIvJ1lPbgj2vP/ToiHigsqgJJWg88VfBhpgHPF3yM0cTns7p8PqvL57O6fD6ry+ezuobifL4xIqb31Sl3Qmf5SWqOiKahjmOk8PmsLp/P6vL5rC6fz+ry+ayu4Xw+895DZ2ZmZmbDlBM6MzMzsxrnhK4YFw51ACOMz2d1+XxWl89ndfl8VpfPZ3UN2/Ppe+jMzMzMapxH6MzMzMxqnBM6MzMzsxrnhK7KJB0u6WFJKyUtGup4hgtJO0m6TdIDklZI+kxqnyrpFkmPpp9TUrskfSedx2WS9in7rpNT/0clnVzWvq+k+9NnviNJg/+bDi5JJUn3Sbohbe8saUk6B1dJakztY9L2yrR/btl3nJHaH5b07rL2UXUtS5os6RpJD0l6UNKBvj4HTtLfpz/ryyX9VNJYX5/9I+kSSc9JWl7WVvg12dMxal0P5/Pf0p/5ZZKu0+ufW9+va28g13dVRYRfVXoBJeAxYBegEfgDsMdQxzUcXsBMYJ/0fgLwCLAH8K/AotS+CPhGen8kcBMg4ABgSWqfCjyefk5J76ekfXenvkqfPWKof+9BOK+fA64AbkjbVwMnpPcXAH+b3n8CuCC9PwG4Kr3fI12nY4Cd0/VbGo3XMnAp8JH0vhGY7OtzwOdyR+AJYFzZdXmKr89+n8e/BPYBlpe1FX5N9nSMWn/1cD4PA+rT+2+Unc9+X3v9vb6r/fIIXXXtB6yMiMcjogW4Elg4xDENCxGxLiLuTe83AQ+S/aW/kOwfUtLP96X3C4HLInMXMFnSTODdwC0R8WJEbABuAQ5P+yZGxF2R/am5rOy7RiRJs4H3ABelbZE9zeWa1KXr+ew8z9cA70j9FwJXRsS2iHgCWEl2HY+qa1nSJLK/7C8GiIiWiHgJX5+VqAfGSaoHxgPr8PXZLxHxW+DFLs2DcU32dIya1t35jIhfRkRb2rwLmJ3e9+vaG+Dfv1XlhK66dgRWlW2vTm1WJg03LwCWADMiYl3a9QwwI73v6Vz21r66m/aR7N+BfwI60vYOwEtlfzmVn4PXzlvavzH17+95Hql2BtYDP1JWwr5I0nb4+hyQiFgDfBN4miyR2wgsxddnNQzGNdnTMUa6U8lGKqH/53Mgf/9WlRM6G1SStgd+Dnw2Il4u35f+L9Hr6OQg6SjguYhYOtSxjBD1ZKWY70fEAmAzWanpNb4+80v3XC0kS5RnAdsBhw9pUCPQYFyTo+W6l3Qm0Ab8ZKhjGSgndNW1BtipbHt2ajNAUgNZMveTiLg2NT+bhv5JP59L7T2dy97aZ3fTPlK9DTha0pNkQ/6HAt8mK7PUpz7l5+C185b2TwJeoP/neaRaDayOiCVp+xqyBM/X58C8E3giItZHRCtwLdk16+uzcoNxTfZ0jBFJ0inAUcBJKYGF/p/PF+j/9V1VTuiq6x5gfprp0kh28+PiIY5pWEj3C1wMPBgR55XtWgx0zro6Gbi+rP1DaebWAcDGVAK4GThM0pQ0CnAYcHPa97KkA9KxPlT2XSNORJwREbMjYi7ZdfbriDgJuA04NnXrej47z/OxqX+k9hPSLKydgflkN0qPqms5Ip4BVknaNTW9A3gAX58D9TRwgKTx6fftPJ++Pis3GNdkT8cYcSQdTnbrytERsaVsV7+uvXS99vf6rq4iZlqM5hfZTKNHyGbBnDnU8QyXF/DnZMP2y4Dfp9eRZPcR3Ao8CvwKmJr6Czg/ncf7gaay7zqV7AbVlcCHy9qbgOXpM98jPQllpL+Ag/njLNddyP7SWQn8DBiT2sem7ZVp/y5lnz8znbOHKZt5OdquZeCtQHO6Rv+TbEagr8+Bn89/Bh5Kv/PlZLMFfX327xz+lOwexFayUeTTBuOa7OkYtf7q4XyuJLu/rfPfpQsGeu0N5Pqu5suP/jIzMzOrcS65mpmZmdU4J3RmZmZmNc4JnZmZmVmNc0JnZmZmVuOc0JmZmZnVOCd0ZmZmZjXOCZ2ZmZlZjXNCZ2ZmZlbjnNCZmZmZ1bj6vruMLNOmTYu5c+cOdRhmZmZmfVq6dOnzETG9r36jLqGbO3cuzc3NQx2GmZmZWZ8kPZWnn0uuZmZmZjXOCd0gueA3j3HHY8+/rm3h+b/j1B/f/bq2H/73Y5zyo9e3mZmZmfWm8IROUrukcySprO3eoo873Ow9exKn/biZH/73YwDc8djzPPLMJn790Href/7vgCyZ+/ovHmLHyWO54DePDWW4ZmZmVkMG4x66FWSJ4y8l/VVEvAioj8+MOMtWb+SYfWbx9V88xANrX+a/lj/LQfN24NcPree+VRs5/Fu/4eFnX+GtO01i8R/WcdTeM4c6ZDMzM6sRg1FybYuIfwIuAv5b0r5ADMJxh5W9Z0/ipuXP8rY3TeO6+9YybftGbn1oPYfuNp2S4KFnXwHgoWc2AfDet8waynDNzMyshgxGQieAiLgK+CvgR8Aug3DcYeWgedN4606T+N3K55k1aSyrNrzKXrMmcvvD62lP6W0Are3Bp9/xJpat3jik8ZqZmVntGIyE7iOdbyJiOfAXwKcH4bjDyhnXLuPOx16gvk6s3biVads3snzty68lc5016LaO4Js3P0KpDt9HZ2ZmZrkUntBFxNIu2xsj4rI8n5V0uKSHJa2UtKiXfh+QFJKaKo23Grqb0frsy1vZ1tZBW0dQXyde2tLyuv3BH5O6lrYOvnPrSvaePWlwAjYzM7OaNmyXLZFUAs4HjgD2AP5a0h7d9JsAfAZYMrgR9uypFzbzscuXvpbU3fHY89z52AsANJZERwRtHVnf8tkhAew0ZRwAb5q+ncuuZmZmlsuwTeiA/YCVEfF4RLQAVwILu+l3NvANYOtgBtebzgkNH7t8Kef98mE+dvlS2gPOOHI35s/Yno5UZq3rMte3oU6s2vAqe86ayEPPvOIROjMzM8ulsIRO0j69vXJ8xY7AqrLt1antdccAdoqIX/QRy+mSmiU1r1+/vt+/S38dNG8aP/jgvrS2d/CdX6/k1ZZ2/vHdbwZgxdpNryVyHfH66b6tHcGub5jA8rUvc8w+WVLo++jMzMysL0WuQ3du+jkWaAL+QFZh3BtoBg6s5Msl1QHnAaf01TciLgQuBGhqahqUJVP+7x/W0p6G4iQ475eP0NYRHLrbdGZOGstPlqx6Xf86ZQnew89s4s/ftAM/a17Dtfeu4X0Lduzu683MzMxeU9gIXUQcEhGHAOuAfSKiKSL2BRYAa3J8xRpgp7Lt2V0+NwHYC7hd0pPAAcDi4TAx4o7Hnuc/71tDW3vw/gWzGNtQoqWtg9b2oKUtuGLJKmZMGPO6z7wllVfrBM1PbUApwfN6dGZmZtaXwbiHbteIuL9zIy1dsnuOz90DzJe0s6RG4ARgcdn3bIyIaRExNyLmAncBR0dEc3XD77//+4e11Jfq+MJ7duM3jzzPO3efQUfA3B3G87uVz7PnrIk8u2kbAKX0X+C+VRt5x27TaayvY2trB9vaOjh23x09McLMzMz6NBgJ3TJJF0k6OL1+CCzr60MR0QZ8ErgZeBC4OiJWSDpL0tEFx1yRN+6wHT/44L589C/m8Tf7z+G6+9ZkSdzL23j/glksX/syAIfuNp3LT9uf+nRT3W0Pr6e1PZv+Wl8H1yxd4/XozMzMrE+DkdB9mOx5rp9JrwdSW58i4saIeHNEzIuIr6W2L0XE4m76HjwcRucAPv72eRw0bxp3PPY8/7Hkaf78TTu8NtFh1zdMZOaksQAcOG8HDpo3jctO248FO00iAto7YLcZ29PeARHh9ejMzMysT0VOigAgIrZKugC4MSIeLvp4w8UZ1y7jhmXr+MEH92XZ6o28cYfxXLFkFXvMmsi2tg7OfM9upME4Dpo3jd1mTmTFuk28+c+2Z/nal9n1DRN45JlN7DkrW4/uoHnThvYXMjMzs2Gr8BG6VB79PfBfafutkv5khG0k+/jb5/GevWfRUBIr1r7M3+w/h4/+xTw+/vZ5r/V54w7bcdy+O7J87cvsNGUsDz+z6bX16Fx2NTMzs94MRsn1y2SLBL8EEBG/B3YehOMOqX85Zm9+8MF9Oe3Hzfz9VffxscuXMqahxKcPfRM/uuNJzrj29bcR7j17Ejctf5Z37DadVRu2stOUcSxf+zIHzZvK929/3GVXMzMz69FgJHStEdF1quagrAU31A6aN43D95rBdfetZVtbBz/44L4cMG8HAG5Ytu51z3tdtnojf3vwLtzx2IvsNWsiqza8yk5TxnHrQ+s5Yq8Znu1qZmZmPRqMhG6FpBOBkqT5kr4L3DEIxx1yZ1y7jF89+Bx7zppAS1sHP2tezccuX8pRe8987d66Th9/+zzaO+CYfWa9VnZdteFV9po1kWvvXeuyq5mZmfVoMBK6TwF7AtuAK4CNZLNdR7Q7HnueG5atA+DM9+zB+xfsyHX3rWHb/2vv7qOsqs48j39/VUUJEkWEWolaoFIotrHRMiUoxuhg4msi3Zm42hDblzi6TIc2iZ3OaOxlojNxOjHjpA0mROMLHSQmGpOm1YwaXxgjESmDQVGIVahQahQQSwUFinrmj3OqvAVV1Av3nFsvv89ad9179jnnPvvubMon5+y9z9ZtfObwfZlWM7bDGDr44LbrxKqRO9x2vf6hBl5ev7EUP8XMzMz6uTwSutMj4oqIOCp9/QvQr9eRK4ZlTc385O8/xqcn78MFty3ht8++RmW5kMTyV5s7vdrWdtv19Xc2U1GmDrddt7WGnxphZmZmncojobu8h2WDSttadBOqRvLe1lbe39rKxcfX8PWTD+aae1e0PyFi+3O2tcJRB4xmWLnak7qKMnH0hL09js7MzMw6ldk6dJJOBU4D9pN0fcGuPYGWrOL2B3MWNjK5ehTLmpq5s34NleUCiR892khlRRlHjBvF4w3rufC4mh3OnVw9ihseaaClNYh07khLa/DEqjc5pmYMcxY27nCr1szMzIa2LK/QvQrUA+8DTxW8FgAnZxi35CZXj2LW/KWseXMjjWs3IgkiaGkNNm3ZxsrX3+WiT0zo9NxlTc1ccuJEWluj/akRAO9v3cZ1D/zZ4+jMzMxsB5kldBHxp4iYC/w1MC8i5qbb/0EyQWLQmlYzltkza7n7j6/y8Ylj2NzSypZt0X6b9egJe3f55IeLj69h1dqNVFaUUSZY8fq7TPrIHrRGcqVuQtVIz3Y1MzOzDvIYQ/cAMKJgewTwuxziltS0mrFceNyB/L5hPRVlApLntP5t7b48vaa5wxp029t/zEguPelgypSct/Iv71BRJo47aKxnu5qZmdkO8kjohkfEu20b6efdc4hbUosa1zFv8Wo+uu8etLQGlRVlDB9Wxu+ef4MvnTBhpxMcJleP4sePruKw/fZsL2tpDR5vWE9L2wNgzczMzFJ5JHQbJR3ZtiHpY8B7OcQtiTkLG7npsUZmzV/Kl06YwOo332O3ijII+KeTDgbg+ocadvoor7blS1b+5Z0O5ZtbWpFEmeC8W5/M9HeYmZnZwJFHQvdV4E5Jj0n6PfALYFYOcUticvUornvgBb50woT2JUgqK8r451MOZlsr7WvT7ewKXds4uoryMmrHdUz89hoxjPmL11DupM7MzMxSisj+saqShgGT0s2VEbE186BdqKuri/r6+kxjLGpcx6z5Szl76njmLV7N7Jm1XU6C6MqchY2UlyVX8955v+MqL7XjRvH0mmamH1LFtoDbzp/S6XdM//6jvLd1G7tXlrNh0xZ2qyjn3c0tvPt+C2Vl0BpAQEWZaIlInrCrHcvKyqC1lQ7njBhWxojKciJg+LBy3t+6jXFjdufUw/bxsipmZmZFIumpiKjr9risEzpJuwOXAvtHxIWSDgImRcQ9mQbuQh4JHcB1D6zk+ocbuGT6RC49aVL3J3Ti8ruX8Zulr1BRXsamzS1sK/if6sRDqnhoxVomVo2keu9kSOKaNzcBtCdvAl5tfn9Xf0qvlCUrtHSbEPYliSzmfsd0TMd0zKxjDpbf4ZgdY+49chi7VSQXMtouaEwet1eXF1d2VU8TuswWFi5wK8n6c8ek268AdwIlSejy0DYh4pLpE5m3eDVH14zp9RW6NhXlZaj1N9IAABV1SURBVJxx+D7cvnhNh/KHVqwFoGHtRl596z02t7R2SPigNBdBW9M6bG39oDJt8zgK53MU7qcP5+zqfsd0TMd0zKxjDpbf4ZgdY67fuJUP/hubvB87cQyllscYupqI+B7pr46ITSR5brcknSJppaQGSZd1sv9iSc9IelrS7yUdWtyq917b7dbZM2u59KRJzJ5Zy6z5S3e6TElX9h8zkjMO34f5i9dw4iFVXR63aev2yZyZmZnl4YrTD+n0yU95yyOh2yJpBGluK6mGHiwsLKkcuAE4FTgU+HwnCdv8iPjriDgC+B5wXVFr3gfLmpo7jJlrW2S4L89hvfj4Gl55632mH1LFwyvW7jSpMzMzs3xNOWB0v0jmIJ+E7lvA/wXGSbodeAj4Rg/OmwI0RMSqiNgC3AHMKDwgIt4u2BxJ+wXR0rn4+Jodbq9Oqxnb54kCt50/hW0B09Mxc8PKenRx08zMzDL25EsbuOmx/vH0pswTuoh4EPgscB7wc6AuIh7twan7AYUDx5rSsg4kfVlSI8kVuks6+yJJF0mql1S/du3a3v2AfuC286ewbuMWhpWJltbYpSt1lRVlCCgvAym59z2sTO2fOysrL2OHc3Yrd2JpZmb2nXtX9IukLo9JEQDHAx8nuYI2DPh1sb44Im4AbpA0E/gX4NxOjrkRuBGSWa7Fip2nUw/bB4CxIyvbJ0R0pwz4yKjhjKgs570t24o6E2fOwkbmLnoJoH1ZFAFvvddCa2sMmNlKjumYjumYWcUcLL/DMTvG7GyW6+MN60t+6zWPZUt+BEwkuToH8HdAY0R8uZvzjgG+HREnp9uXA0TE/+ri+DJgQ0R0/QgG8lu2JCvn3foky5reYreKcja3bGO3inK2tGzj3c0tVJaXscfwYby/dRujR1byoeEVXhfOzMxsAOtPy5ZMB/4q0sxR0lxgeQ/OWwIcJOlAkqVOzgJmFh4g6aCIeCHdPB14gUEuq3VuzMzMbODKI6FrAMYDL6fb49KynYqIFkmzgPuBcuCWiFgu6WqgPiIWALMkfZJkSZQNdHK71czMzGywyyOh2wN4XtKTJHehpwD1khYARMQZXZ0YEfcB921XdmXB569kUmMzMzOzASSPhO7K7g8xMzMzs77KI6FbGxHPFRZIOqGHS5eYmZmZWTfyWFj4l5K+ocQIST8EOp2pamZmZma9l0dCN5VkUsQikpmrrwLH5hDXzMzMbEjII6HbCrwHjACGAy9GRGsOcc3MzMyGhDwSuiUkCd1RwHHA5yXdmUNcMzMzsyEhj4Tugoi4MiK2RsRrETEDWJBD3JKYs7CRRY3rOpQtalzHnIWlf86bmZmZDU6ZJ3QRUS/p45LOB5A0Fvh91nFLZXL1KGbNX9qe1C1qXMes+UuZXL3TJ5KZmZmZ9Vnmy5ZI+hZQB0wCbgUqgXkM0okR02rGMntmLbPmL+XsqeOZt3g1s2fWMq1mbKmrZmZmZoNUHrdc/xY4A9gIEBGvkjw9YtCaVjOWs6eO5/qHGzh76ngnc2ZmZpapPBK6LRERJI/9QtLIHGKW1KLGdcxbvJpLpk9k3uLVO4ypMzMzMyumvBYW/gmwl6QLgd8BN+UQtyTaxszNnlnLpSdNar/96qTOzMzMspL5GLqI+L6kTwFvk4yjuzIiHsw6bqksa2ruMGaubUzdsqZm33o1MzOzTCi5Gzp01NXVRX19famrYWZmZtYtSU9FRF13x+Vxy9XMzMzMMuSEzszMzGyAyzWhk3RknvHMzMzMhoK8r9D9NOd4ZmZmZoNe3gmdco5nZmZmNujlndBd1dMDJZ0iaaWkBkmXdbL/UknPSVom6SFJ+xe3qmZmZmYDQ64JXUT8pifHSSoHbgBOBQ4FPi/p0O0OWwrURcRk4C7ge8Wsq5mZmdlA0V9nuU4BGiJiVURsAe4AZhQeEBGPRMSmdPMJoDrnOpqZmZn1C/01odsPWFOw3ZSWdeUC4Ldd7ZR0kaR6SfVr164tUhXNzMzM+ofMEzpJN0s6Yruybxfx+88G6oBruzomIm6MiLqIqKuqqipWaDMzM7N+IY8rdCcDcyWdU1B2RjfnvAKMK9iuTss6kPRJ4ArgjIjYvKsVNTMzMxuI8kjo3gA+AZwp6QZJFXS/fMkS4CBJB0qqBM4CFhQeIKkW+AlJMvdGBvU2MzMzGxDySOgUEc0R8RlgLfAoMGpnJ0RECzALuB94HvhlRCyXdLWktqt71wIfAu6U9LSkBV18nZmZmdmgVpFDjPZEKyK+Lekp4GvdnRQR9wH3bVd2ZcHnTxazkmZmZmYDVeZX6CLiW9tt/2dETM86rpmZmdlQ0V+XLTEzMzOzHnJCZ2ZmZjbAOaErojkLG1nUuK5D2aLGdcxZ2FiiGpmZmdlQkFlCJ+kZScu6emUVt5QmV49i1vyl7UndosZ1zJq/lMnVO53Ua2ZmZrZLspzl+un0/cvp+8/S9y9kGLOkptWMZfbMWmbNX8rZU8czb/FqZs+sZVrN2FJXzczMzAaxzBK6iHgZQNKnIqK2YNdlkv4IXJZV7FKaVjOWs6eO5/qHG7hk+kQnc2ZmZpa5XBYWlnRswca0nOKWxKLGdcxbvJpLpk9k3uLVO4ypMzMzMyu2PBYWvgC4RVLbQLK3gC/mEDd3bWPm2m6zHl0zpsO2mZmZWRYyT+gi4ing8LaELiKas45ZKsuamjskb21j6pY1NTuhMzMzs8woIrINIH0YuAbYNyJOlXQocExE3Jxp4C7U1dVFfX19KUKbmZmZ9YqkpyKirrvj8hjLdhtwP7Bvuv1n4Ks5xDUzMzMbEvJI6MZGxC+BVoCIaAG25RDXzMzMbEjII6HbKGkMEACSjgYG7Tg6MzMzs7zlMcv1UmABUCPpcaAKODOHuGZmZmZDQh4J3XLgeGASIGAlg3gdOjMzM7O85ZFY/SEiWiJieUQ8GxFbgT/kENfMzMxsSMjsCp2kjwD7ASMk1ZJcnQPYE9g9q7hmZmZmQ02Wt1xPBs4DqoHrCsrfAb7Z3cmSTgH+DSgHfhoR/7rd/k8APwAmA2dFxF3FqbaZmZnZwJJZQhcRc4G5kv5rRPyqN+dKKgduAD4FNAFLJC2IiOcKDltNkjB+vUhVNjMzMxuQ8nj0168knQ58FBheUH71Tk6bAjRExCoASXcAM4D2hC4iXkr3tWZQbTMzM7MBI/NJEZLmAH8H/CPJOLozgf27OW0/YE3BdlNa1tc6XCSpXlL92rVr+/o1ZmZmZv1SHrNcp0XEOcCGiLgKOAY4OIe47SLixoioi4i6qqqqPEObmZmZZS6PhO699H2TpH2BrcA+3ZzzCjCuYLs6LTMzMzOz7eSR0N0jaS/gWuCPwEvAz7s5ZwlwkKQDJVUCZ5E8bcLMzMzMtpPHpIj/kX78laR7gOERsdNnuUZEi6RZwP0ky5bcEhHLJV0N1EfEAklHAb8GRgOfkXRVRHw0w59iZmZm1i9lubDwZ3eyj4i4e2fnR8R9wH3blV1Z8HkJya1YMzMzsyEtyyt0n9nJvgB2mtANRHMWNjK5ehTTasa2ly1qXMeypmYuPr6mhDUzMzOzwSzLhYXPz+q7+6vJ1aOYNX8ps2fWMq1mLIsa17Vvm5mZmWUl8zF0kq7srLybhYUHpGk1Y5k9s5ZZ85dy9tTxzFu8uj25MzMzM8tKHrNcNxa8tgGnAgfkELckptWM5eyp47n+4QbOnjreyZyZmZllLo9Zrv+7cFvS90lmrw5KixrXMW/xai6ZPpF5i1dzdM0YJ3VmZmaWqTyu0G1vdwbp7NTCMXOXnjSp/fbrosZ1pa6amZmZDWJ5jKF7hmRWKyRrylUBg278HMCypuYOY+baxtQta2r2VTozMzPLjCKi+6N2JYC0f8FmC/B6RLRkGnQn6urqor6+vlThzczMzHpM0lMRUdfdcXncct0HeDMiXo6IV4ARkqbmENfMzMxsSMgjofsx8G7B9sa0zMzMzMyKII+ETlFwXzciWslh7J6ZmZnZUJFHQrdK0iWShqWvrwCrcohrZmZmNiTkkdBdDEwDXgGagKnARTnENTMzMxsS8lhY+A3grKzjmJmZmQ1VmSV0kn7IB+vP7SAiLskqtpmZmdlQkuUVOi/2ZmZmZpaDzBK6iJib1XebmZmZ2QfyePRXFfDfgUOB4W3lETE969hmZmZmQ0Ees1xvB54HDgSuAl4CluQQ18zMzGxIyCOhGxMRNwNbI2JhRHwR6NHVOUmnSFopqUHSZZ3s303SL9L9iyUdUNyq99x5tz7JTY81dii76bFGzrv1yRLVyMzMzIaKPBK6ren7a5JOl1QL7N3dSZLKgRuAU0lu135e0qHbHXYBsCEiJgL/B/hu8ardO8dOHMM1965oT+pueqyRa+5dwbETx5SqSmZmZjZE5PEIrv8paRTwT8APgT2Br/XgvClAQ0SsApB0BzADeK7gmBnAt9PPdwGzJXV41FheLjyuBoBr7l3Bg8tfZ8lLG/jm6Ye0l5uZmZllJY+Fhe9JPzYD/6UXp+4HrCnYbnvKRKfHRESLpGZgDLCu8CBJF5E+nWL8+PG9qELvXHhcDQ8uf50nX9rAlANGO5kzMzOzXGR+y1XSXEl7FWyPlnRL1nELRcSNEVEXEXVVVVWZxbnpsUaWpMnckpc27DCmzszMzCwLedxynRwRb7VtRMSGdBxdd14BxhVsV6dlnR3TJKkCGAWs38X69knbmLm226xt24Cv1JmZmVmm8pgUUSZpdNuGpL3pWSK5BDhI0oGSKkmeB7tgu2MWAOemnz8HPFyK8XMAjzes7zBm7sLjavjm6YfweENJ8kszMzMbQpR1/iPpHOCbwJ1p0ZnAdyLiZz049zTgB0A5cEtEfEfS1UB9RCyQNBz4GVALvAmc1TaJoit1dXVRX++nkpmZmVn/J+mpiKjr9rg8Lmily420rT33cEQ8t7Pjs+SEzszMzAaKfpXQ9SeS1gIvZxxmLNvNtLVd4vYsLrdncbk9i8vtWVxuz+IqRXvuHxHdzugccgldHiTV9ySbtp5xexaX27O43J7F5fYsLrdncfXn9sxjUoSZmZmZZcgJnZmZmdkA54QuGzeWugKDjNuzuNyexeX2LC63Z3G5PYur37anx9CZmZmZDXC+QmdmZmY2wDmhMzMzMxvgnNAVmaRTJK2U1CDpslLXp7+QNE7SI5Kek7Rc0lfS8r0lPSjphfR9dFouSden7bhM0pEF33VuevwLks4tKP+YpGfSc66XpPx/ab4klUtaKumedPtASYvTNvhF+tg8JO2Wbjek+w8o+I7L0/KVkk4uKB9SfVnSXpLukrRC0vOSjnH/7DtJX0v/rT8r6eeShrt/9o6kWyS9IenZgrLM+2RXMQa6Ltrz2vTf/DJJv5a0V8G+XvW9vvTvoooIv4r0InlEWSMwAagE/gQcWup69YcXsA9wZPp5D+DPwKHA94DL0vLLgO+mn08DfgsIOBpYnJbvDaxK30enn0en+55Mj1V67qml/t05tOulwHzgnnT7lySPwAOYA3wp/fwPwJz081nAL9LPh6b9dDfgwLT/lg/FvgzMBf5b+rkS2Mv9s89tuR/wIjCioF+e5/7Z63b8BHAk8GxBWeZ9sqsYA/3VRXueBFSkn79b0J697nu97d/FfvkKXXFNARoiYlVEbAHuAGaUuE79QkS8FhF/TD+/AzxP8kd/Bsl/SEnf/yb9PAP490g8AewlaR/gZODBiHgzIjYADwKnpPv2jIgnIvlX8+8F3zUoSaoGTgd+mm6L5BF7d6WHbN+ebe18F3BievwM4I6I2BwRLwINJP14SPVlSaNI/tjfDBARWyLiLdw/d0UFMEJSBbA78Brun70SEf+P5DnlhfLok13FGNA6a8+IeCAiWtLNJ4Dq9HOv+l4f//4WlRO64toPWFOw3ZSWWYH0cnMtsBj4cES8lu76C/Dh9HNXbbmz8qZOygezHwDfAFrT7THAWwV/nArboL3d0v3N6fG9befB6kBgLXCrklvYP5U0EvfPPomIV4DvA6tJErlm4CncP4shjz7ZVYzB7oskVyqh9+3Zl7+/ReWEznIl6UPAr4CvRsTbhfvS/5fodXR6QNKngTci4qlS12WQqCC5FfPjiKgFNpLcamrn/tlz6ZirGSSJ8r7ASOCUklZqEMqjTw6Vfi/pCqAFuL3UdekrJ3TF9QowrmC7Oi0zQNIwkmTu9oi4Oy1+Pb30T/r+RlreVVvurLy6k/LB6ljgDEkvkVzynw78G8ltlor0mMI2aG+3dP8oYD29b+fBqgloiojF6fZdJAme+2fffBJ4MSLWRsRW4G6SPuv+uevy6JNdxRiUJJ0HfBr4QprAQu/bcz29799F5YSuuJYAB6UzXSpJBj8uKHGd+oV0vMDNwPMRcV3BrgVA26yrc4H/KCg/J525dTTQnN4CuB84SdLo9CrAScD96b63JR2dxjqn4LsGnYi4PCKqI+IAkn72cER8AXgE+Fx62Pbt2dbOn0uPj7T8rHQW1oHAQSQDpYdUX46IvwBrJE1Ki04EnsP9s69WA0dL2j39vW3t6f656/Lok13FGHQknUIydOWMiNhUsKtXfS/tr73t38WVxUyLofwimWn0Z5JZMFeUuj795QV8nOSy/TLg6fR1Gsk4goeAF4DfAXunxwu4IW3HZ4C6gu/6IskA1Qbg/ILyOuDZ9JzZpE9CGewv4AQ+mOU6geSPTgNwJ7BbWj483W5I908oOP+KtM1WUjDzcqj1ZeAIoD7to78hmRHo/tn39rwKWJH+5p+RzBZ0/+xdG/6cZAziVpKryBfk0Se7ijHQX120ZwPJ+La2/y7N6Wvf60v/LubLj/4yMzMzG+B8y9XMzMxsgHNCZ2ZmZjbAOaEzMzMzG+Cc0JmZmZkNcE7ozMzMzAY4J3RmZl2QtJekf0g/7yvpru7OMTMrBS9bYmbWhfS5w/dExGElroqZ2U5VdH+ImdmQ9a9AjaSnSRZZ/auIOCx9VNDfkDyj9CCSB9FXAn8PbAZOi4g3JdWQLPZaBWwCLoyIFfn/DDMb7HzL1cysa5cBjRFxBPDP2+07DPgscBTwHWBTRNQCfyB5jBLAjcA/RsTHgK8DP8ql1mY25PgKnZlZ3zwSEe8A70hqBv4zLX8GmCzpQ8A04M7kUZlA8vgrM7Oic0JnZtY3mws+txZst5L8bS0D3kqv7pmZZcq3XM3MuvYOsEdfToyIt4EXJZ0JoMThxaycmVkbJ3RmZl2IiPXA45KeBa7tw1d8AbhA0p+A5cCMYtbPzKyNly0xMzMzG+B8hc7MzMxsgHNCZ2ZmZjbAOaEzMzMzG+Cc0JmZmZkNcE7ozMzMzAY4J3RmZmZmA5wTOjMzM7MB7v8DmFS585rlEp0AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(expected_time, positions[:, 0, 0] - expected_x, '.', label='Expected')\n",
-    "_ = x_position_axes.set_ylabel('calculated x - expected x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(expected_time, positions[:, 0, 1] - expected_y, '.')\n",
-    "_ = y_position_axes.set_ylabel('calculated y - expected y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(expected_time, positions[:, 0, 2] - expected_z, 'x')\n",
-    "_ = z_position_axes.set_ylabel('calculated z - expected z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xu8XHV97//XJzcjtwgE0BpoMHIT2ElgmwICchGIyIFiq6ZgBfSYYuVobSsFcwSx8qsWrdbSglERPCRChabglQRBoCcH4g6BEA2XbA0QqpCNEEG55PL5/TFrx52wk+yd7Jnv7Nmv5+Mxj1nrO2vWfL6TyXe991pr1kRmIkmSpDKGlS5AkiRpKDOMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoaUbqA/hg7dmyOHz++dBmSGmjhwoVdmblb6TokqV4GVRgbP348HR0dpcuQ1EAR8WjpGiSpnjxMKUmSVJBhTJIkqSDDmCRJUkGD6pwxqZTVq1ezYsUKXnzxxdKltKzRo0czbtw4Ro4cWboUSWoow5jUBytWrGDHHXdk/PjxRETpclpOZvL000+zYsUK9t5779LlSFJDeZhS6oMXX3yRXXfd1SBWJxHBrrvu6p5HSUOSYUzqI4NYffn+ShqqDGOSJEkFNSSMRcTyiHggIu6LiI6q7e8jYnHVNjci/qARtUj1duUdnczv7NqgbX5nF1fe0blN6x0+fDiTJk1af/vsZz+7Tevri2effZZ/+7d/6/fzPvWpT/H5z3++DhVJUutp5J6xYzNzUma2V/OXZWZbZk4Cvgtc1MBapLppGzeG82YvWh/I5nd2cd7sRbSNG7NN6331q1/Nfffdt/52wQUXDES5m7W1YUyS1HfFDlNm5m96zG4PZKlapIF0xISxXH7GZM6bvYh/mvsQ581exOVnTOaICWMH/LVWrVrFfvvtx0MPPQTAn/3Zn/HVr34VgB122IGPfexjHHjggRx//PGsXLkSgM7OTqZOncqhhx7KUUcdxYMPPgjAk08+yemnn87EiROZOHEi8+fP54ILLqCzs5NJkybx8Y9/HIDLLruMN7/5zbS1tXHxxRevr+XSSy9l33335cgjj1xfjySpDzKz7jfgF8C9wEJgeo/2S4HHgSXAbltaz6GHHppSCT/72c/6/Zwv3PJg/uHffTe/cMuDA1LDsGHDcuLEietv1113XWZmzp07Nw877LD81re+lSeddNL65YG89tprMzPzkksuyQ9/+MOZmXncccflww8/nJmZd999dx577LGZmfnud787v/jFL2Zm5po1a/LZZ5/NX/ziF3nggQeuX+ctt9ySH/zgB3PdunW5du3afMc73pF33HFHdnR05EEHHZS//e1vc9WqVTlhwoS87LLL+t3H3t5noCMbME558+bNW6lbo64zdmRmPhERuwPzIuLBzLwzM2cAMyLiQuA84OKNnxgR04HpAHvttVeDypW2zfzOLq695zE+ctwbufaexzhswq7bvGes+zDlxk444QS+/e1v8+EPf5j7779/ffuwYcN4z3veA8B73/te3vnOd/L8888zf/583vWud61f7qWXXgLgtttu45vf/CZQOz9tzJgxPPPMMxu81ty5c5k7dy6TJ08G4Pnnn+eRRx7hueee4/TTT2e77bYD4NRTT92mvkrSUNKQMJaZT1T3T0XEHGAKcGePRWYB36eXMJaZM4GZAO3t7R7KVNPrPkes+9DkYRN2reuhynXr1rF06VK22247nnnmGcaNG9frchHBunXreM1rXtNrqOuLzOTCCy/kL/7iLzZo/9KXvrRV65MkNeCcsYjYPiJ27J4GTgSWRMQ+PRY7DXiw3rVIjbB4xaoNglf3OWSLV6yqy+t98Ytf5IADDmD27Nmcc845rF69GqiFtBtuuAGA2bNnc+SRR7LTTjux99578+1vfxuohavuvWnHH388V1xxBQBr165l1apV7Ljjjjz33HPrX+ukk07iqquu4vnnnwfgiSee4KmnnuLoo4/mP//zP3nhhRd47rnn+M53vlOXvkpSK2rEnrE9gDnVBR1HALMz84cRcWNE7AesAx4Fzm1ALVLdnfvWCa9oO2LC2G3eK/bCCy8wadKk9fNTp07lnHPO4Wtf+xoLFixgxx135Oijj+Yzn/kMl1xyCdtvvz0LFizgM5/5DLvvvjvXX389ALNmzeJDH/oQn/nMZ1i9ejXTpk1j4sSJ/PM//zPTp0/n61//OsOHD+eKK67g8MMP5y1veQsHHXQQb3/727nssstYunQphx9+OFD7ksC1117LIYccwnve8x4mTpzI7rvvzpvf/OZt6qskDSWROXiO/LW3t2dHR0fpMjQELV26lAMOOKB0Gf2yww47rN+DNVj09j5HxML8/SVxJKnleAV+SZKkggxjUosabHvFJGmoMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYNIj86le/Ytq0aUyYMIFDDz2Uk08+mYcffniTy++www5b9To//vGPOeWUUza7zH333cf3v//9fq/7mGOOwUvUSNLvGcakenl8Adz1hdr9AMhMTj/9dI455hg6OztZuHAh//AP/8CTTz45IOvvr60NY5KkDRnGpHp4fAFccyrcdmntfgAC2e23387IkSM599zf/1jFxIkTmTx5MscffzyHHHIIBx98MDfddFOvz//c5z7HwQcfzMSJE7nggguADfdSdXV1MX78+Fc8b8GCBRx++OFMnjyZI444goceeoiXX36Ziy66iOuvv55JkyZx/fXX89vf/pb3v//9TJkyhcmTJ6+v44UXXmDatGkccMABnH766bzwwgvb/F5IUitpyA+FS0PO8rtg7cuQa2v3y++CPads0yqXLFnCoYce+or20aNHM2fOHHbaaSe6uro47LDDOPXUU6l+ggyAH/zgB9x0003cc889bLfddvz617/u8+vuv//+3HXXXYwYMYJbb72VT3ziE9x44418+tOfpqOjg8svvxyAT3ziExx33HFcddVVPPvss0yZMoW3ve1tfOUrX2G77bZj6dKlLF68mEMOOWSb3gdJajWGMakexh8Fw0fVgtjwUbX5OslMPvGJT3DnnXcybNgwnnjiCZ588kle+9rXrl/m1ltv5ZxzzmG77bYDYJdddunz+letWsVZZ53FI488QkSs/yHyjc2dO5ebb76Zz3/+8wC8+OKLPPbYY9x555185CMfAaCtrY22trat7aoktSTDmFQPe06Bs26u7REbf9Q27xUDOPDAA7nhhhte0T5r1ixWrlzJwoULGTlyJOPHj+fFF1/s0zpHjBjBunXrADb5nE9+8pMce+yxzJkzh+XLl3PMMcf0ulxmcuONN7Lffvv1rUOSJMBzxqT62XMKHPU3AxLEAI477jheeuklZs6cub5t8eLFPProo+y+++6MHDmS22+/nUcfffQVzz3hhBP4xje+we9+9zuA9Ycpx48fz8KFCwF6DXpQ2zP2+te/HoCrr756ffuOO+7Ic889t37+pJNO4l/+5V/ITAAWLVoEwNFHH83s2bOB2qHWxYsXb1X/JalVGcakQSIimDNnDrfeeisTJkzgwAMP5MILL+Tkk0+mo6ODgw8+mG9+85vsv//+r3ju1KlTOfXUU2lvb2fSpEnrDyX+7d/+LVdccQWTJ0+mq6ur19c9//zzufDCC5k8eTJr1qxZ337sscfys5/9bP0J/J/85CdZvXo1bW1tHHjggXzyk58E4EMf+hDPP/88BxxwABdddFGv571J0lAW3X/FDgbt7e3p9YlUwtKlSznggANKl9HyenufI2JhZrYXKkmS6s49Y5IkSQUZxiRJkgoyjEl9NJgO6Q9Gvr+ShirDmNQHo0eP5umnnzYw1Elm8vTTTzN69OjSpUhSw3mdMakPxo0bx4oVK1i5cmXpUlrW6NGjGTduXOkyJKnhDGNSH4wcOZK99967dBmSpBbkYUpJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUUEMubRERy4HngLXAmsxsj4jLgP8BvAx0Audk5rONqEeSJKlZNHLP2LGZOSkz26v5ecBBmdkGPAxc2MBaJEmSmkKxw5SZOTcz11SzdwNeeluSJA05jQpjCcyNiIURMb2Xx98P/KC3J0bE9IjoiIgOf4pGkiS1mkaFsSMz8xDg7cCHI+Lo7gciYgawBpjV2xMzc2Zmtmdm+2677daYaiVJkhqkIWEsM5+o7p8C5gBTACLibOAU4MzMzEbUIkmS1EzqHsYiYvuI2LF7GjgRWBIRU4HzgVMz83f1rkOSJKkZNeLSFnsAcyKi+/VmZ+YPI2IZ8CpgXvXY3Zl5bgPqkSRJahp1D2OZ+XNgYi/tb6z3a0uSJDU7r8AvSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpoIaEsYhYHhEPRMR9EdFRtb0rIn4aEesior0RdUiSJDWbEQ18rWMzs6vH/BLgncBXGliDJElSU2lkGNtAZi4FiIhSJUiSJBXXqHPGEpgbEQsjYnqDXlOSJKnpNWrP2JGZ+URE7A7Mi4gHM/POvjyxCm/TAfbaa6961ihJktRwDdkzlplPVPdPAXOAKf147szMbM/M9t12261eJUqSJBVR9zAWEdtHxI7d08CJ1E7elyRJGvIasWdsD+C/IuJ+YAHwvcz8YUScHhErgMOB70XELQ2oRZIkqanU/ZyxzPw5MLGX9jnUDllKkiQNWV6BX5IkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVU7IfC6+HKOzr519uX8dyLa0qXohayy3YjufeiE0uXIUlqUX0OYxHxv4BrM/OZOtazTdrGjeGFl9dwSDzMp4d/g/2GPUaQm31OVPe5ifm+LDPQ8yVes9nnS9bAOuBTaKAMHwWH/SWccEnpSiSpKfRnz9gewE8i4l7gKuCWzNx80mmwIyaM5T9OHcmbfnAJw7cQwqQ+iR6hTANj7cvwf79UmzaQSVLfzxnLzP8N7AN8HTgbeCQi/r+ImFCn2rZK2+oHGBZJBN68bfut9Ae6lS29uXQFktQU+nXOWGZmRPwK+BWwBtgZuCEi5mXm+fUosL8WjzyYN2Vs8fCk1CcGsvo54NTSFUhSU+jPOWMfBd4HdAFfAz6emasjYhjwCFA8jM3v7OJ9N6+mLS/2nLEWmy9WQwLDYDgaMJ4zJkkb6M+esV2Ad2bmoz0bM3NdRJwysGVtncUrVvHqUSO498V9OWXNP5QuRy3Cb1NKkuopmuwc/M1qb2/Pjo6O0mVIaqCIWJiZ7aXrkKR68aKvkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklTQiEa8SEQsB54D1gJrMrM9InYBrgfGA8uBd2fmM42oR5IkqVk0cs/YsZk5KTPbq/kLgB9l5j7Aj6p5SZKkIaXkYcrTgGuq6WuAPy5YiyRJUhGNCmMJzI2IhRExvWrbIzN/WU3/CtijtydGxPSI6IiIjpUrVzaiVkmSpIZpyDljwJGZ+URE7A7Mi4gHez6YmRkR2dsTM3MmMBOgvb2912UkSZIGq4bsGcvMJ6r7p4A5wBTgyYh4HUB1/1QjapEkSWomdQ9jEbF9ROzYPQ2cCCwBbgbOqhY7C7ip3rVIkiQ1m0YcptwDmBMR3a83OzN/GBE/Af49Ij4APAq8uwG1SJIkNZW6h7HM/DkwsZf2p4Hj6/36kiRJzcwr8EuSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSqoYWEsIoZHxKKI+G41f1xE3BsRSyLimogY0ahaJEmSmkUj94x9FFgKEBHDgGuAaZl5EPAocFYDa5EkSWoKDQljETEOeAfwtappV+DlzHy4mp8H/EkjapEkSWomjdoz9iXgfGBdNd8FjIiI9mr+T4E9G1SLJElS06h7GIuIU4CnMnNhd1tmJjAN+GJELACeA9Zu4vnTI6IjIjpWrlxZ73IlSZIaqhEnzb8FODUiTgZGAztFxLWZ+V7gKICIOBHYt7cnZ+ZMYCZAe3t7NqBeSZKkhqn7nrHMvDAzx2XmeGp7w27LzPdGxO4AEfEq4O+AK+tdiyRJUrMpeZ2xj0fEUmAx8J3MvK1gLZIkSUU09Npemflj4MfV9MeBjzfy9SVJkpqNV+CXJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpoIaFsYgYHhGLIuK71fzxEXFvRNwXEf8VEW9sVC2SJEnNopF7xj4KLO0xfwVwZmZOAmYD/7uBtUiSJDWFhoSxiBgHvAP4Wo/mBHaqpscA/92IWiRJkprJiAa9zpeA84Ede7T9T+D7EfEC8BvgsN6eGBHTgekAe+21V53LlCRJaqy67xmLiFOApzJz4UYPfQw4OTPHAd8A/qm352fmzMxsz8z23Xbbrc7VSpIkNVYj9oy9BTg1Ik4GRgM7RcT3gP0z855qmeuBHzagFkmSpKZS9z1jmXlhZo7LzPHANOA24DRgTETsWy12Ahue3C9JkjQkNOqcsQ1k5pqI+CBwY0SsA54B3l+iFkmSpJIaGsYy88fAj6vpOcCcRr6+JElSs/EK/JIkSQVFZpauoc8iYiXwaB8XHwt01bGcZmAfW4N93Lw/zEy/Si2pZQ2qMNYfEdGRme2l66gn+9ga7KMkDW0eppQkSSrIMCZJklRQK4exmaULaAD72BrsoyQNYS17zpgkSdJg0Mp7xiRJkppeS4axiJgaEQ9FxLKIuKB0PVsSEVdFxFMRsaRH2y4RMS8iHqnud67aIyK+XPVtcUQc0uM5Z1XLPxIRZ/VoPzQiHqie8+WIiAb3b8+IuD0ifhYRP42Ij7ZgH0dHxIKIuL/q4yVV+94RcU9V1/URMapqf1U1v6x6fHyPdV1YtT8UESf1aG+Kz3VEDI+IRRHx3Wq+5fooSQ2VmS11A4YDncAbgFHA/cCbSte1hZqPBg4BlvRo+0fggmr6AuBz1fTJwA+AAA4D7qnadwF+Xt3vXE3vXD22oFo2que+vcH9ex1wSDW9I/Aw8KYW62MAO1TTI4F7qnr+HZhWtV8JfKia/kvgymp6GnB9Nf2m6jP7KmDv6rM8vJk+18BfA7OB71bzLddHb968eWvkrRX3jE0BlmXmzzPzZeA6aj9M3rQy807g1xs1nwZcU01fA/xxj/ZvZs3dwGsi4nXAScC8zPx1Zj4DzAOmVo/tlJl3Z2YC3+yxrobIzF9m5r3V9HPUfhT+9bRWHzMzn69mR1a3BI4DbqjaN+5jd99vAI6v9uadBlyXmS9l5i+AZdQ+003xuY6IccA7gK9V80GL9VGSGq0Vw9jrgcd7zK+o2gabPTLzl9X0r4A9qulN9W9z7St6aS+iOlQ1mdqeo5bqY3X47j7gKWpBsRN4NjPX9FLX+r5Uj68CdqX/fW+0LwHnA+uq+V1pvT5KUkO1YhhrOdXenkH/tdeI2AG4EfirzPxNz8daoY+ZuTYzJwHjqO3l2b9wSQMqIk4BnsrMhaVrkaRW0oph7Algzx7z46q2webJ6vAb1f1TVfum+re59nG9tDdURIykFsRmZeZ/VM0t1cdumfkscDtwOLVDrCN6qWt9X6rHxwBP0/++N9JbgFMjYjm1Q4jHAf9Ma/VRkhquFcPYT4B9qm94jaJ24vDNhWvaGjcD3d8WPAu4qUf7+6pvHB4GrKoO9d0CnBgRO1ffSjwRuKV67DcRcVh1vs77eqyrIarX/TqwNDP/qcdDrdTH3SLiNdX0q4ETqJ0bdzvwp9ViG/exu+9/CtxW7R28GZhWfRNxb2Afal9OKP65zswLM3NcZo6vXv+2zDyTFuqjJBVR+hsE9bhR+zbew9TO2ZlRup4+1Pst4JfAamrnyXyA2rk1PwIeAW4FdqmWDeBfq749ALT3WM/7qZ0MvQw4p0d7O7Ckes7lVBf7bWD/jqR2CHIxcF91O7nF+tgGLKr6uAS4qGp/A7WgsQz4NvCqqn10Nb+sevwNPdY1o+rHQ/T4Vmgzfa6BY/j9tylbso/evHnz1qibV+CXJEkqqBUPU0qSJA0ahjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklTQiNIF9MfYsWNz/PjxpcuQ1EALFy7syszdStexrRy/pKGnr+PXoApj48ePp6Ojo3QZkhooIh4tXcNAcPyShp6+jl8eppQkSSrIMCZJklSQYUySJKkgw5gkSVJBRcNYREyNiIciYllEXLCt67vyjk7md3Zt0Da/s4sr7+jc1lVL0isM9Bim1uH2SP1R7NuUETEc+FfgBGAF8JOIuDkzf7a162wbN4bzZi/i6hOSttUPsHjkwZw3L7j8jMkDVbYkAfUZw9Q63B6pP0pe2mIKsCwzfw4QEdcBpwFbPZAdMWEsV5+Q7PvDM1nHGvZlBFdPnUXbhLEDVLIkrTfgY5hah9sj9UfJw5SvBx7vMb+iattAREyPiI6I6Fi5cuUWV9q2+gFGsYZhrGMUa2lb/cDAVSxJv7fFMay/45dai9sj9VXTn8CfmTMzsz0z23fbbcsX4V488mBeZgTrGM7LDGfxyIMbUKUkvVJ/xy+1FrdH6quSYewJYM8e8+Oqtq02v7OLs+cFD0+dxbDjZ/Dw1FmcPS9ecRKlJA2AAR/D1DrcHqk/Sp4z9hNgn4jYm9oANg04Y1tWuHjFKi4/Y3J1TP5E2oDLd+ti8YpVHOFxekkDa8DHMLUOt0fqj2JhLDPXRMR5wC3AcOCqzPzptqzz3LdOeEXbERPG+sGXNODqMYapdbg9Un8U/aHwzPw+8P2SNUjS1nIMkzQQmv4EfkmSpFZmGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklRQkTAWEe+KiJ9GxLqIaC9RgyRtLccwSQOp1J6xJcA7gTsLvb4kbQvHMEkDZkSJF83MpQARUeLlJWmbOIZJGkieMyZJklRQ3faMRcStwGt7eWhGZt7Uj/VMB6YD7LXXXgNUnSRt3kCMYY5fkvqibmEsM982QOuZCcwEaG9vz4FYpyRtyUCMYY5fkvrCw5SSJEkFlbq0xekRsQI4HPheRNxSog5J2hqOYZIGUqlvU84B5pR4bUnaVo5hkgaShyklSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgpquTB25R2dzO/s2qBtfmcXV97RWagiSdJQ47ZI/TGidAEDrW3cGM6bvYirT0jaVj/A4pEHc9684PIzJpcuTZI0RLgtUn+0XBg7YsJYrj4h2feHZ7KONezLCK6eOou2CWNLlyZJGiLcFqk/Wu4wJUDb6gcYxRqGsY5RrKVt9QOlS5IkDTFui9RXLRnGFo88mJcZwTqG8zLDWTzy4NIlSZKGGLdF6quWC2PzO7s4e17w8NRZDDt+Bg9PncXZ8+IVJ1JKklQvbovUHy13ztjiFau4/IzJ1XH5E2kDLt+ti8UrVnGEx+olSQ3gtkj9EZlZuoY+a29vz46OjtJlSGqgiFiYme2l69hWjl/S0NPX8avlDlNKkiQNJoYxSZKkggxjkiRJBRUJYxFxWUQ8GBGLI2JORLymRB2StDUcwyQNpFJ7xuYBB2VmG/AwcGGhOiRpaziGSRowRcJYZs7NzDXV7N3AuBJ1SNLWcAyTNJCa4Zyx9wM/2NSDETE9IjoiomPlypUNLEuS+mSTY5jjl6S+qNtFXyPiVuC1vTw0IzNvqpaZAawBZm1qPZk5E5gJtev01KFUSXqFgRjDHL8k9UXdwlhmvm1zj0fE2cApwPE5mK48K2lIcAyT1ChFfg4pIqYC5wNvzczflahBkraWY5ikgVTqnLHLgR2BeRFxX0RcWagOSdoajmGSBkyRPWOZ+cYSrytJA8ExTNJAaoZvU0qSJA1ZhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkgvoUxiLiRxFx8kZtM+tTkiRJ0tDR1z1jewN/FxEX92hrr0M9kiRJQ0pfw9izwPHAHhHxnYgYU8eaJEmShoy+hrHIzDWZ+ZfAjcB/AbvXryxJkqShYUQfl7uyeyIzr46IB4AP16ckSZKkoaNPYSwzv7LR/ELg/XWpSJIkaQgn0nPWAAARb0lEQVTx0haSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFVQkjEXE30fE4oi4LyLmRsQflKhDkraGY5ikgVRqz9hlmdmWmZOA7wIXFapDkraGY5ikAVMkjGXmb3rMbg9kiTokaWs4hkkaSCNKvXBEXAq8D1gFHLuZ5aYD0wH22muvxhQnSVvQlzHM8UtSX0Rmff6gi4hbgdf28tCMzLypx3IXAqMz8+ItrbO9vT07OjoGsEpJzS4iFmZme4HXHdAxzPFLGnr6On7Vbc9YZr6tj4vOAr4PbDGMSVKjOIZJapRS36bcp8fsacCDJeqQpK3hGCZpIJU6Z+yzEbEfsA54FDi3UB2StDUcwyQNmCJhLDP/pMTrStJAcAyTNJC8Ar8kSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQV1Lph7PEFcNcXaveSJJXgtkh9UOy3Kevq8QVwzamw9mUYPgrOuhn2nFK6KknSUOK2SH3UcnvGrryjk0cX3lL78OdaWPsyjy68hSvv6CxdmiRpiHBbpP5ouTDWNm4MFy/embXDRkIMZ+2wkVy8eGfaxo0pXZokaYhwW6T+aLnDlEdMGAtnTuMDs+ADez7B11e8nulnTqu1S5LUAG6L1B8tt2cMav8J2g47gT9/+EjaDjvBD78kqeHcFqmvWjKMze/s4tp7HuMjx72Ra+95jPmdXaVLkiQNMW6L1FctF8bmd3Zx3uxFXH7GZP76xP24/IzJnDd7kf8JJEkN47ZI/dFyYWzxilVcfsbk9buDj5gwlsvPmMziFasKVyZJGircFqk/IjNL19Bn7e3t2dHRUboMSQ0UEQszs710HdvK8Usaevo6frXcnjFJkqTBxDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIKKhrGI+JuIyIgYW7IOSdoajmGSBkKxMBYRewInAo+VqkGStpZjmKSBUnLP2BeB84EsWIMkbS3HMEkDokgYi4jTgCcy8/4+LDs9IjoiomPlypUNqE6SNq+vY5jjl6S+GFGvFUfErcBre3loBvAJarv3tygzZwIzAdrb2/0LVFJDDMQY5vglqS/qFsYy8229tUfEwcDewP0RATAOuDcipmTmr+pVjyT1h2OYpEapWxjblMx8ANi9ez4ilgPtmdnV6Fokqb8cwyQNNK8zJkmSVFDD94xtLDPHl65BkraWY5ikbeWeMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBXUumHs8QVw1xdq95IkleC2SH1Q/NuUdfH4ArjmVFj7MgwfBWfdDHtOKV2VJGkocVukPmrNPWPL76p9+HNt7X75XaUrkiQNNW6L1EetGcbGH1X7KySG1+7HH1W6IknSUOO2SH3Umocp95xS2x28/K7ah9/dwpKkRnNbpD5quT1jV97RyfzOrtqH/qi/gT2nML+ziyvv6Kwt4MmUkqQ6W78t6mGDbZHUQ8vtGWsbN4bzZi/i8jMmc8SEsczv7OJH1/4j54+6EW5/Blj7+4Xf8ldwwiXFapUktaa2cWOYOes6Dl83gwASmDnsUqafOa10aWpCLRfGjpgwlsvPmMx5sxdxxR43se9//yeH8xzxUi8L/98vwW/+G/7kqw2vU5LUuo6YMJYp62Zs0Pa1dTMYMeG8QhWpmbVcGIPaf4Ir9riJKU/8HwiIzS38wL/X7g1kkqQBNILaHrGe81JvWvKzMb+zi/3++6b1QSzpQyDrvA3+7FsbnmA572L4f/8G617e/AsOGwEHvtNAJ0labx0bbnvW0YInamtAtFwYm9/ZxcxZ13EVz63/T7DZINbtd13w9RO27kXXrakFuu69bJI2bfgoOOwvPV9TLW1+ZxeHbaL9iAljG16PmlvLhfTFK1ZxSdszr+jY+l3Fu+0PY/ZqcFWS1lv7cu18zXkXl65EqpvFK1YBvGKnQHe71FPLhbFz3zqBPzz0JBg2fIP2gNq3Jz98D3zsARi7X5H6JFWW3ly6Aqluzn3rhFdsYIdV7dLGWi6MAbXzvk7+Qu1cLoAY9srLWJy3AA5+d5n6JMEBp5auQJKaQsudM7Ze+9mwx5s2f+XjP/lq7XbjB2HJjbXfD9vY6J3hbZ+qra83HVfDrZ+CF58ZqMql1uY5YxoqPrUKPjVmw3mpF5GZW16qSbS3t2dHR0fpMiQ1UEQszMz20nVsK8cvaejp6/jVmocpJUmSBomWC2P+HpgkqTS3ReqPlgtj3b9N2f2fYH5nF+fNXkTbuDFbeKYkSQPDbZH6o+VO4O/525Tv/aO9uPaex9b/aLgkSY3gtkj90XJhDODMr95DAl++bRkAZ3z1nrIFaVDbZbuR3HvRiaXLkDSIjL/gewB85Lg38uXblvGR4964flu0/LPvKFmamlDLHaYEGDW8Tz+AJPXJ5L1eU7oESYNUdxDr3jkg9ablwtj8zi5GjRy+5QWlPjh+/934+tm9XKNOkjZjxjv2Xz/dM4j1bJe6FQljEfGpiHgiIu6rbicP1LoXr1jFV/78UGZ/8I8GapUaonZ41XCDmHpVzzFMrWHtulcGrxnv2J+16woVpKZWcs/YFzNzUnX7/kCt9Ny3TuCICWP5X7PvHahVaoh6/qW1fODqBaXLUPOqyxim1nDuWydw6fce3KDt0u896G9Tqlctd5gS4NC/n8vTv11dugy1gB89uNJAJqnfuk/gh9pJ/L21S91KhrHzImJxRFwVETtvaqGImB4RHRHRsXLlyj6t2CCmgbTosWdLl6DmtMUxbGvGL7WW2R/8I/76xP08dUabVbffpoyIW4HX9vLQDOBuoAtI4O+B12Xm+7e0zr7+ttuVd3TSNm7MBtdzmd/ZxeIVq9xFLA0ypX6bcqDHMH+bcmhxOyTo+/hV/IfCI2I88N3MPGhLyzqYSUNPs/9QeF/HMMcvaehp6h8Kj4jX9Zg9HVhSog5J2hqOYZIGUqkr8P9jREyitot/OfAXheqQpK3hGCZpwBQJY5n55yVeV5IGgmOYpIHUkpe2kCRJGiyKn8DfHxGxEni0j4uPpfZtp1ZmH1uDfdy8P8zM3QaymBL6OH4Nxs/CYKwZBmfdg7FmGJx1D1TNfRq/BlUY64+I6Gjmb2ANBPvYGuyjug3G92kw1gyDs+7BWDMMzrobXbOHKSVJkgoyjEmSJBXUymFsZukCGsA+tgb7qG6D8X0ajDXD4Kx7MNYMg7PuhtbcsueMSZIkDQatvGdMkiSp6RnGJEmSCmrJMBYRUyPioYhYFhEXlK5nSyLiqoh4KiKW9GjbJSLmRcQj1f3OVXtExJervi2OiEN6POesavlHIuKsHu2HRsQD1XO+HBHR4P7tGRG3R8TPIuKnEfHRFuzj6IhYEBH3V328pGrfOyLuqeq6PiJGVe2vquaXVY+P77GuC6v2hyLipB7tTfG5jojhEbEoIr5bzbdcHxull/fy+Ii4NyLui4j/iog3lq5xY73UfFxV85KIuCYiSv3M3iZFxPJqfLgvIjqqtl7Hn2ayibrfVY0x6yKi6S4XsYmaL4uIB6vxfE5EvKZ0nRvbRN1/X9V8X0TMjYg/qFsBmdlSN2A40Am8ARgF3A+8qXRdW6j5aOAQYEmPtn8ELqimLwA+V02fDPwACOAw4J6qfRfg59X9ztX0ztVjC6plo3ru2xvcv9cBh1TTOwIPA29qsT4GsEM1PRK4p6rn34FpVfuVwIeq6b8ErqympwHXV9Nvqj6zrwL2rj7Lw5vpcw38NTAb+G4133J9LPhePgwc0OP9u7p0jZurmdof9I8D+1aPfRr4QOkae6l5OTB2o7Zex59mum2i7gOA/YAfA+2la+xjzScCI6rpzw2i93qnHtMf6R7P6nFrxT1jU4BlmfnzzHwZuA44rXBNm5WZdwK/3qj5NOCaavoa4I97tH8za+4GXhMRrwNOAuZl5q8z8xlgHjC1emynzLw7a5+ob/ZYV0Nk5i8z895q+jlgKfB6WquPmZnPV7Mjq1sCxwE3VO0b97G77zcAx1d7804DrsvMlzLzF8Ayap/ppvhcR8Q44B3A16r5oMX62Cgbv5eVBHaqpscA/93oujanl5p3BV7OzIer+XnAn5SobStsavxpapm5NDMfKl1Hf2Tm3MxcU83eDYwrWU9fZeZvesxuT+3/Z120Yhh7PbW/1LqtqNoGmz0y85fV9K+AParpTfVvc+0remkvojpUNZnanqOW6mN1+OY+4ClqG6VO4Nkeg1DPutb3pXp8FbUNW3/73mhfAs4H1lXzu9J6fWyUjd9LgP8JfD8iVgB/Dny2RGGbsXHNXcCIHofL/hTYs0RhW5DA3IhYGBHTq7ZNjT/NpLe6m92Wan4/taMXzabXuiPi0oh4HDgTuKheL96KYazlVHt7Bv01SCJiB+BG4K82+oujJfqYmWszcxK1v/qmAPsXLmlARcQpwFOZubB0LYPdZt7LjwEnZ+Y44BvAPzW8uE3orebq/+004IsRsQB4DlhbqMTNOTIzDwHeDnw4Io7u+WATjz+brbtJbbLmiJgBrAFmlSpuM3qtOzNnZOae1Go+r14v3oph7Ak2/MtsXNU22DxZHX6jun+qat9U/zbXPq6X9oaKiJHUgtiszPyPqrml+tgtM58FbgcOp3aItfuE5p51re9L9fgY4Gn63/dGegtwakQsp3YI8Tjgn2mtPjbKK97LiPgeMDEz76mWuR44olB9vemt5msz8/9l5lGZOQW4k9p5b00lM5+o7p8C5lD7Y2lT40/T2ETdTW1TNUfE2cApwJlV+G0qfXivZ1HHQ/CtGMZ+AuxTfcNrFLW/2m4uXNPWuBno/rbgWcBNPdrfFzWHAauqXe23ACdGxM7Vt4JOBG6pHvtNRBxWna/zvh7raojqdb8OLM3Mnn/pt1Ifd+v+hlBEvBo4gdq5cbdTO3QDr+xjd9//FLitGqBuBqZF7ZuIewP7UPtyQvHPdWZemJnjMnN89fq3ZeaZtFAfG6W395LaOUxjImLfarHuz1BT2MS//3sjYneofXsW+DtqX+JoGhGxfUTs2D1NbdxYwqbHn6awmbqb1qZqjoip1A5vn5qZvytZY282U/c+PRY7DXiwbkUM1DcBmulG7dt4D1M7Z2dG6Xr6UO+3gF8Cq6mdJ/MBaufW/Ah4BLgV2KVaNoB/rfr2AD2+TUPtWPyy6nZOj/Z2av+JO4HLqX55oYH9O5LaIYDFwH3V7eQW62MbsKjq4xLgoqr9DdSCxjLg28CrqvbR1fyy6vE39FjXjKofD9HjW6HN9LkGjuH33wBsyT4Wei9Prz7z91P7ttwbStbWx5ovoxYaH6J2CkLx+jaq9Q3V+3k/8NPuz9Wmxp9muW2m7tOpbSdeAp6k9gdp8Xq3UPMyaueDdo//dftW4gDXfWM1ni8GvgO8vl41+HNIkiRJBbXiYUpJkqRBwzAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMqWlFxJsjYnFEjK6ukPzTiDiodF2StCUR8emI+Kse85dGxEdL1qTm5UVf1dQi4jPUruT+amBFZv5D4ZIkaYsiYjzwH5l5SEQMo3al/ymZ+XTRwtSURmx5EamoT1P7zcIXgY8UrkWS+iQzl0fE0xExGdgDWGQQ06YYxtTsdgV2AEZS20P227LlSFKffQ04G3gtcFXZUtTMPEypphYRNwPXAXsDr8vM8wqXJEl9EhGjqP3w+0hgn8xcW7gkNSn3jKlpRcT7gNWZOTsihgPzI+K4zLytdG2StCWZ+XJE3A48axDT5rhnTJKkOqhO3L8XeFdmPlK6HjUvL20hSdIAi4g3AcuAHxnEtCXuGZMkSSrIPWOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJU0P8PsdO+cZ3A8gQAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(expected_x,expected_y, 'x', label='Expected')\n",
-    "_ = xy_axes.plot(positions[:, 0, 0], positions[:, 0, 1], '.', label='Calculated')\n",
-    "_ = xy_axes.legend()\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(expected_x, expected_z, 'x')\n",
-    "_ = xz_axes.plot(positions[:, 0, 0], positions[:, 0, 2], '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = zy_axes.plot(expected_y, expected_z, 'x')\n",
-    "_ = zy_axes.plot(positions[:, 0, 1], positions[:, 0, 2], '.')\n",
-    "_ = zy_axes.set_xlabel('y')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.7"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/ras.ipynb b/notebooks/ras.ipynb
deleted file mode 100644
index e6e5c72..0000000
--- a/notebooks/ras.ipynb
+++ /dev/null
@@ -1,311 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.ras import RASProject"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Help on class RASProject in module fluegg.ras:\n",
-      "\n",
-      "class RASProject(builtins.object)\n",
-      " |  RAS project.\n",
-      " |  \n",
-      " |  After use, call close() to keep the RAS process from lingering. The\n",
-      " |  RASProject interface facilitates the use of the with-statement. See\n",
-      " |  below for an example.\n",
-      " |  \n",
-      " |  ```\n",
-      " |  with RASProject(project_file_path) as rp:\n",
-      " |      hydrauilc_data = rp.hydraulic_model_data('Unsteady')\n",
-      " |  ```\n",
-      " |  \n",
-      " |  \n",
-      " |  Parameters\n",
-      " |  ----------\n",
-      " |  project_file_path : str\n",
-      " |      Path to RAS project file\n",
-      " |  \n",
-      " |  Notes\n",
-      " |  -----\n",
-      " |  The values in the output of hydraulic_model_data are in metric units. If\n",
-      " |  the quantities in the RAS project are in English units, the output will be\n",
-      " |  converted.\n",
-      " |  \n",
-      " |  Methods defined here:\n",
-      " |  \n",
-      " |  __enter__(self)\n",
-      " |  \n",
-      " |  __exit__(self, *args)\n",
-      " |  \n",
-      " |  __init__(self, project_file_path)\n",
-      " |      Initialize self.  See help(type(self)) for accurate signature.\n",
-      " |  \n",
-      " |  close(self)\n",
-      " |      Close the RAS controller\n",
-      " |  \n",
-      " |  current_plan_name(self)\n",
-      " |      Returns the current plan name\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      str\n",
-      " |  \n",
-      " |  current_reach_name(self)\n",
-      " |      Returns the current reach name\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      str\n",
-      " |  \n",
-      " |  current_river_name(self)\n",
-      " |      Returns the current river name\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      str\n",
-      " |  \n",
-      " |  hydraulic_model_data(self, profile_name, temperature=22)\n",
-      " |      Returns a pandas.DataFrame containing hydraulic data for the specified profile.\n",
-      " |      \n",
-      " |      If 'Unsteady' is specified for profile_name, the index of the DataFrame will be a pandas.MultiIndex\n",
-      " |      \n",
-      " |      Parameters\n",
-      " |      ----------\n",
-      " |      profile_name : str\n",
-      " |          Name of profile. The name must be in the list of profiles or 'Unsteady'. If 'Unsteady', the\n",
-      " |          RAS profile must have an associated unsteady file.\n",
-      " |      temperature : float\n",
-      " |          Water temperature\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      pandas.DataFrame\n",
-      " |  \n",
-      " |  plan_names(self)\n",
-      " |      Returns a list of plan names in this RAS project.\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      list\n",
-      " |  \n",
-      " |  profile_names(self)\n",
-      " |      Returns a list of profile names in this RAS project.\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      list\n",
-      " |  \n",
-      " |  project_units(self)\n",
-      " |      Returns the RAS project units.\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      str\n",
-      " |  \n",
-      " |  reach_names(self)\n",
-      " |      Returns a list of reach names in this RAS project.\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      list\n",
-      " |  \n",
-      " |  river_names(self)\n",
-      " |      Returns a list of river names in this RAS project.\n",
-      " |      \n",
-      " |      Returns\n",
-      " |      -------\n",
-      " |      list\n",
-      " |  \n",
-      " |  set_current_plan(self, plan_name)\n",
-      " |      Sets the current plan name for this RAS project.\n",
-      " |      \n",
-      " |      Parameters\n",
-      " |      ----------\n",
-      " |      plan_name : str\n",
-      " |          Plan name. The plan name must be in the list of plan names of this project.\n",
-      " |  \n",
-      " |  ----------------------------------------------------------------------\n",
-      " |  Data descriptors defined here:\n",
-      " |  \n",
-      " |  __dict__\n",
-      " |      dictionary for instance variables (if defined)\n",
-      " |  \n",
-      " |  __weakref__\n",
-      " |      list of weak references to the object (if defined)\n",
-      "\n"
-     ]
-    }
-   ],
-   "source": [
-    "help(RASProject)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Current plan name: case1\n",
-      "Profile names\n",
-      "----------\n",
-      " PF 1\n",
-      " PF 2\n"
-     ]
-    }
-   ],
-   "source": [
-    "project_file_path = r'..\\test\\data\\ras\\steadyflume\\rectangular-flume.prj'\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    plan_name = rp.current_plan_name()\n",
-    "    project_profile_names = rp.profile_names()\n",
-    "\n",
-    "print(\"Current plan name: {}\".format(plan_name))\n",
-    "print(\"Profile names\\n----------\")\n",
-    "for pn in project_profile_names:\n",
-    "    print(\" {}\".format(pn))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>1.835397</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136210</td>\n",
-       "      <td>5.0</td>\n",
-       "      <td>0.013188</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>1.835564</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136198</td>\n",
-       "      <td>15.0</td>\n",
-       "      <td>0.013187</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>1.835687</td>\n",
-       "      <td>24.999996</td>\n",
-       "      <td>0.136189</td>\n",
-       "      <td>20.0</td>\n",
-       "      <td>0.013186</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "    Depth_m      Q_cms  Vmag_mps  CumlDistance_km  Ustar_mps  Vvert_mps  \\\n",
-       "1  1.835397  24.999996  0.136210              5.0   0.013188          0   \n",
-       "2  1.835564  24.999996  0.136198             15.0   0.013187          0   \n",
-       "3  1.835687  24.999996  0.136189             20.0   0.013186          0   \n",
-       "\n",
-       "   Vlat_mps  Temp_C  \n",
-       "1         0      22  \n",
-       "2         0      22  \n",
-       "3         0      22  "
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "profile_name = project_profile_names[0]\n",
-    "temperature = 22\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    hydraulic_data = rp.hydraulic_model_data(profile_name, temperature)\n",
-    "\n",
-    "hydraulic_data"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/reverse longitudinal transporter.ipynb b/notebooks/reverse longitudinal transporter.ipynb
deleted file mode 100644
index d39f80c..0000000
--- a/notebooks/reverse longitudinal transporter.ipynb	
+++ /dev/null
@@ -1,326 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import ReverseSimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.get_hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = ReverseSimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([1500, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import ReverseLongitudinalTransporter\n",
-    "\n",
-    "transport_model = ReverseLongitudinalTransporter(simulation_clock, carp_eggs)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8XXWd//HXJzdbk+77GtJCCy0CLUT2fS2LFB0QVBARpyPKqOMKzDg64+g46iAwKEwF2UZEfqgjOggUBBErSyraUrovaZPuNEnTLDe5yef3xzlpbtO0Sdrc5STv5+MR7j3f883N9+Q8Tvrmu5xj7o6IiIiIRFNOphsgIiIiIodOYU5EREQkwhTmRERERCJMYU5EREQkwhTmRERERCJMYU5EREQkwhTmRERERCJMYU5EREQkwhTmRERERCIsN9MNSKfRo0d7aWlpppshIiIi0q3FixfvdPcx3dUbUGGutLSU8vLyTDdDREREpFtmVtGTehpmFREREYkwhTkRERGRCBtQw6wiIiIivbbpDeLP/5Tf5BTz8MQjqc4ZxgdadvD5y/4u0y0DFOZERERE9rXpDZ79/XPcN3Iaa/PG0GK5JErfT70N2VvlO7Gp8Mx/Z0WgU5gTERGRga38YX696mUWjD6L9TlTaKSQ+olXdF3XLHh155mcoXw+fa08IIU5ERERGTjKH6b2r3fzg7Fn8fPCi9ljRSRsGvXjT9i/bntw68wdgKN29GixacopzImIiEj/Vf4wO978GfdPPIn/LTqVPVZCvPS/aLLi/et2Fd7C4NapkDPefYNpbzbBDX3e4l5TmBMREZH+o/xh7lq/kseGn8EeKwJKiM/4x8MIb06x7yHmCXJJMLa+hmNWbmJqRR2XX/e3qTiCXlOYExERkWja9AYvL36Yuwrey5q8SbSQS9ym0zSqiyFT2D+8HaDXrcj3MMibmNiyheM2rGdoVQu0OdbWRmFdK+OKT+G9153GsWdN6vNDOhQKcyIiIhIJv/3DN/hZYyEbbTLbbVSwUGHoAXrHejhkWugN5Hu8o9dtzRbGV2+H1jZizS0MT0ziyGMu4MRLjmD8tGF9fER9Q2FOREREslLV0n9nQdU2fhO7kJqcodTbFV0nlx7PdesIb4Pa4hy/eTVHrtkObW3gTm6LMTr3GM66/Oqs6XXrCYU5ERERyQp3Lfwhj1ESzHUziHMWTfmd5rp1s8I0WXtwA8Lwtooj12yDNrC2Ngpq6xiVfyynXz0vUuGtM4U5ERERSb9Nb3Dnmy/xkyHvYY8NIm4FNMVO67puD+e6tS9UKKKBsu1vM3llI7QmgiHTeJyiPTmMGn4q731f9sx36wsKcyIiIpJy9y78NQ97AXU5eYAH4W34xftX7NGQaRtD22oByCMRLFSoWM/QysQ+Q6YjbTql007K6vlufUFhTkRERPrUopXbuXPtYlbk5dJiMeIU0BSb3HXlHvW6QYE3UOz1HYsUdu+C1paOIdO6VsYUlDFh+sx+H946U5gTERGRw5Ic3hqtgPqcIVA4fv+KvVxh6kBhSyszKyqZVbl2b69brKWNIY15DC8+sd8NmR4KhTkRERHplVcWVXD3rndYWXCQ8HYIK0z3m+sW3tstv66VCcWnKLgdgMKciIiIHNCildt5Yv02lrdtY0ued4S3okMLb4XeQAFx3OkIb+/s6eh1i7dQ1DKWmbPmDrjh0kOlMCciIiJ7PfDqWn5UX0VNrJUEsSC45QOM2rdiLx+FVUwDZ9W/yhGra6mrGbF3rltezW6GxI7i/OuuVa/bIVKYExERGaAWLv0j926tZK2NpIVwoUJOEeQN2bdij+/tFoS3Qm9kctsmTqpaQf7awqRet2Za6vIZN3E67//4B9Tr1kcU5kRERAaILnvdYjP2r9jj+W4HDm/W5uQ2DCMn72gmnVrIR6+5ss+PRwIKcyIiIv3QopXbuWvtKpbntdBsECe/571uXQa3NoZ5DWDkeksY3paH4c0xN3Li42iemcPfzLuA2WNnp+KwpAtpD3NmVgi8AhSEP/8pd/+amU0FngBGAn8GbnD3ZjMrAB4FTgLeBa519w3hZ90O3Ay0Ap9x9+fSfTwiIiLZ4KGllfz3lipqLE6LEa4wLd6/Yg/D2yBvIJ84ud7CFN/IObtfJX9tIXU1o8AhliggXljKjAsm8+Hz3p+CI5KeykTPXBw43933mFke8KqZ/Rb4PPB9d3/CzO4nCGn3ha/V7n6UmV0H/AdwrZnNAq4DjgUmAi+Y2Qx3b83AMYmIiKRNeW0996yoYsnunTRavKPXLTefcLVCoJfDpcFChXrOb36Boyq2s61q2t5etzhH46cO4qrTzlOvW5ZJe5hzdwf2hJt54ZcD5wMfDssfAb5OEObmhe8BngLuNTMLy59w9ziw3szWACcDf0r9UYiIiKRPcnirs0TQ6wYQGwQM6qjY6163rh6FBdY2grfHFHPuDbO55uhrUnNQ0mcyMmfOzGLAYuAo4AfAWqDG3RNhlUqgfX3yJGATgLsnzKyWYH30JOC1pI9N/p7knzUfmA9QUlLS58ciIiLS1x5aWsn9WzfQYHFi3sLW2FjAwvAW6lWvWx25tFLkXfe65cSH0TwzprluEZWRMBcOhc42s+HAL4GZXVULX7taD+0HKe/8sxYACwDKysq6vvW0iIhIhpTX1nP3XypY2lRNY6y5Y8g0VgwkzXnrVa9bE3kkmNzWPtdtEHU1I8O5biOpyC9l81EreN/pF6rnrR/I6GpWd68xs5eBU4HhZpYb9s5NBjaH1SqBKUClmeUCw4BdSeXtkr9HREQkKz20tJIfbd5JjTUSz2npGDLNKwKKOir28Ka8g72OWNjrdmHieU6qXUJVxTHU1YzC3GhtOp7aIUM45qIxWqjQT2ViNesYoCUMcoOACwkWNbwEXE2wovVG4Ffhtzwdbv8p3P87d3czexp43MzuJFgAMR14I60HIyIi0o3ke7t13B4EoDD8oldDpoO9jkKamNxWwcXx5xlUkRsMmboTaylmbctVNL2njb/5mIZMB4pM9MxNAB4J583lAE+6+2/M7B3gCTP7N+At4MGw/oPAY+ECh10EK1hx92Vm9iTwDpAAPq2VrCIikkmLVm7n3tWbeSc3TlMsTpPFDuveboO9juFt79JqeYzzzfuEN/McGhtPJx6bROsxlZrvNoCZd5n8+6eysjIvLy/PdDNERKSfeODVtTxYW0ttXnzfIdPOOoe3g/S6xfZZqLCDbRtLwQwjn9zmSeT4EBoU3gYEM1vs7mXd1dMTIERERHogXrGbB8s38EhxDTW5SUOmg4xDGTLdd6FC8pDpkWB55LQdQU3zSRQOy+H0y47m7LL3pvT4JLoU5kRERLrwyqIK/mtHBSuKWjsehzWiCDi0IdP2e7sVeT0Xtj7LmfFFbN40g21VR5FDPo3Nc2n2YUw7tUDPMZVeUZgTEZEBb+9ct7x6WmNNxDzB1tgYGNLFsGmvhkwTFNPAefH2e7sdibVBLDGFFYkvMaxwNNdceizHnrXfbVJFekxhTkREBpwubw9SBMF/ent7kP2HTOe2/JbxdbuoqpjJnprR5CTGU584nSnF4zj10ukKb9KnFOZERKTfS34IfccKU+h2rhv0fMi06pig581zqfOzsdYSZpZO58Srj2D8tGGpOjQRhTkREel/ury322E9hL7z47B2dDwOy8awxD/KMCvhmrmnqtdN0k5hTkREIq28tp7vvbWUZS2NHQsVenJvtwMEt+FezeC23eG93bYEj8NaXxQ8DqsNjJHUJI5nxsQZnH/l8ep1k4xTmBMRkUhZtHI7d67/CytiRqMVhPd2K4BYwb4VexDeurw9yKY8tm2cCgZGDq2tMynIOYaZJdM48RINmUr2UZgTEZGs1bnXLUEsCG/5Y/at2MuFCsU0cEGi01y3NmhIlBHzWRw/bhIjJxZzzKkTFN4k6ynMiYhI1ohX7OaeJf/HE4XDqLHBPe91g+4XKux9CP3M4CH0jGFZ242Mjk3n5MlT1OsmkaUwJyIiGbFo5XbuWruK5XktuLVS7I3stGHUFx+zb8UerzLtaqFCcG83HHJ8LJVNH2Pi0JnMvXSKFipIv6EwJyIiadHlXLfC4r37dyZX7uFihWLfQ6E3MsU3BgsV1g4Ke93yyG0rpaHlbGYMmcQJFyi8Sf+lMCciIinx68U/Y8GuJtbbBBop7PlcNzhor1uutzC5bRMnVb5D/ppCsBxyvICcpnMYmj+VmUeM0pCpDCgKcyIi0ifu/P0v+EnzIPZYAQnLpd5mQKxTpR7f2w0KvYFi35PU61ZIXc0ocjyH/PoR5OScw+TSkbo9iAx4CnMiItJrL1f9mbtWrWNN6zBaiBG3Apps6iGGN2eYVzOkrY5GKyKPZsq2v83kd/ZgbZDbUkx+08XkFY3imiuO03CpSCcKcyIi0q2FS//IvVsrWWsjaaT93m5HQk6nij0Mb/vNdVtTyJ5do7CcHGItRRTGJzNk8hSuvOZE9bqJdENhTkRE9hGv2M19f3mN/yky6iy3495usRn7VuzF47CKfA+DvDGY61a1gvy1BdDq5LUUkBu/gNyxE/i7vztZwU3kECjMiYgMcK8squC/dlSwoqi143FYQ8bsX7GH4a3QG8j3OLkkGFtfwzErqxhfsxMjj7zEUAoSJzL3/edouFSkjyjMiYgMIA8treS/t1RRY3FyLU6ut7E1NgaGDNm/ci+GTGOeoIiGvXPdaHNyPJ+i+okU5RzFOX/zQYU3kRRRmBMR6afKa+u5Z0UVS3bvpNHiHQ+gz80H8oGkANeLIdNgvlsTE1u2cFzFBoZWtoBDrK2AovpxDB92LJd/4mwNmYqkicKciEg/UV5bz91/qWBpUzV1sdZwkQIQGwQM6qjY43u7BUOmBcTJ9UQY3tYztDKBteWGQ6bTNWQqkmEKcyIiEfVY1U7uX7WF6sQe4tbSEd7yijoq9eK+bvs+DquBs+pf5YiVNdTVjibH88lNFFGcO5VrP3GVet1Eskhaw5yZTQEeBcYDbcACd7/bzL4O/C2wI6x6h7s/E37P7cDNQCvwGXd/LiyfC9xNcFejB9z92+k8FhGRdEue79ZksWDIFCBWCBQG73vxAPpi6ihsa6LVchnnWzoeh1U7npjnU7TnCI497jTmfnle6g5KRA5bunvmEsAX3P3PZjYEWGxmC8N933f37yVXNrNZwHXAscBE4AUza18b/wPgIqASeNPMnnb3d9JyFCIiKdY+3+3t2gYavZHGnDaaYsnz3UI9XKQw2OuIhQ+gvzDxPCfVLqFqw0zqq8djlk9uIp8hu0/ghAtKOeuDH0jloYlIH0trmHP3LcCW8H2dmS0HDjbRYh7whLvHgfVmtgY4Ody3xt3XAZjZE2FdhTkRiZzy2np+sHEbS3buobG5ieacFvbEwl63XNjb6wY9fgD9YK+jkCYmt1Vwcfx5BlXksm3zUcFwaUsp2/fM4dgTRzH3K+p1E4m6jM2ZM7NSYA7wOnAGcKuZfRQoJ+i9qyYIeq8lfVslHeFvU6fyU1LcZBGRPvFY1U4WrNtKdVOCOHHqYkk9bXl5QF7wvhdDpvk0kUdiv/AWayuAugspaszhY1fPofTS96bmoEQkYzIS5sxsMPBz4HPuvtvM7gO+AXj4+p/Ax4Gullw5+z9Apr28q581H5gPUFJScviNFxHpheTh0iYaac5pZU9OcbAzBnuHTHuxwrQ9vBXTwAWJZzkrvoiqjTPYtmUmMc/Hdp/PtEmDuOWbN6XkmEQku6Q9zJlZHkGQ+4m7/wLA3bcl7f8R8JtwsxKYkvTtk4HN4fsDle/D3RcACwDKysoOtIRLRKRPtK8wrW1uIZ7T0tHr1t1wKRx0yDRGIghvLc9TVvNXKitm0VAziSG7Z5K3JY/rrj2NEbdem4IjEpFsl+7VrAY8CCx39zuTyieE8+kA3g+8Hb5/GnjczO4kWAAxHXiDoMduuplNBaoIFkl8OD1HISIS6DzXrTGnlcZYGNjyjIP2unUT3PJoocQ3ckni/5javJHNG2dSXXESQ2qPpygxlFv+/mqK5sxJ1aGJSISku2fuDOAGYKmZ/SUsuwP4kJnNJhgq3QD8HYC7LzOzJwkWNiSAT7t7K4CZ3Qo8RzBQ8WN3X5bOAxGRgaf9przLGpqoy205zLlunYNbBZcknuHIxDr21I1g88bjiO+cSvHOsxiVu5kLP3UDRbcqvInI/swPePPIbr7RbFbnW4GY2bnu/nJfNCwVysrKvLy8PNPNEJGIWLRyO/eu3szynFb25CX2DW/tetnrVkgjk9s2cWniGY7ylSQSBWzeOIMdVTMZuns0R29Zw6nXnsaIazVkKjLQmdlidy/rrt7h9Mw9aWaPAd8hmAjyHaAMOO0wPlNEJGPaw9s7uXH2xBLB7UGKIFhz1bsh044Vph29bqXNG9m8cTo7Nh1FnZ3I6roLOLJxCzdqyFREDsPhhLlTgP8AFhE8rfknBMOoIiKR8MqiCn64dScrips6nmVaBEFw6014S16kUM9Frc9xduKljl63yqNI7D6dnKb3KLiJSJ87nDDXAjQSPL25EFjv7m190ioRkT4Wr9jNK3+q4MG8OCsGxzvC2/AcwgQX6EV4K6Rxv7luVRXH0LRzEuvrPs+4CQ3c8vXPpPKwREQOK8y9CfwKeC8wCvhvM7va3a/uk5aJiByizsGtNaeJHFrYNnYswZqpww9vwZBpR69bvHI8oy4cxnW3fSeFRyYisr/DCXM3u3v7aoKtwDwzu6EP2iQi0it7Xt/Cq29V8eC4PawY7DRYjPqxQ+gIbocT3oLbg5TGN7J503TeXTcNdp9FbcM6plx7JLfc+oXUHZiISA8ccphLCnLJZY8dXnNERA4uXrGb3b/fxGM563l8bD51OXkkiFE/YwgwbN/KPX6qwr7PMr205beMq32XzRuOpmXDYIpr5/DOlMEc9YmruOXoa1JxWCIihyxjz2YVEemJPa9voe7VKn46diuPjwvCW3xiPk05k/av3OvbhDQxpa2Ci+LPM2hDDu+um8bIXQUMrm/lj2cWcvYHLuYahTcRyXIKcyKSVZKHTJcPbqPFIH5CwWGEN2e4VzO4bTetlsd438xF8ecpWp/DnmWzKK2s5O1jN1NxyXu56YPXMXvsbAA+2veHJiKSEgpzIpIx7UOmT7Q08D+TGqnJbT3wkCnsH94O0OtW7HUMCodML44/z6ANMXatP5rhteMp2vNXXjt5J4WzT+Cma69i9tjZaNWWiESZwpyIpE37KtMFg3axoqiNZiMcMi0iuF1lkh4OmRZ6AwXEyfUWpvhGzqn9AwWrC2jdOInR1Vs6gtsHP7C31+2mFBybiEimKMyJSMrEK3bzYPkGHhlUT01eCwkjXGU6dP/KvQxvRd7AWXv+wBErq6mvHkPx7qE05W3ktfNquf4D1++d66bgJiL9ncKciPSZB15dy4O1tdTkxonl1NMKVI8YRXBf8cKOir1YqFDsdeTSuje8lS7fRWJTCcMbprJtSB2vXLCN62depIUKIjJgKcyJyCFp73V7rKCF6rwmmmIEw6WDjEMNb8HzTJOHTF9h0DuF2KZZFDbDihlVVJw2iptufl84ZHp9qg5PRCQyFOZEpEf2Psd0UAuNuXGaLJf4iCKCh9D39qa8sG+vWz3nN7/AUeu28O66aQzZPZqaQet47YLdXH/tlep1ExE5CIU5EenSK4sq+OHmHSwraqY+r42GWHH4HNOC8CvUoxWm7b1uTeSRYHJbsFChcM0gWjfNYGj9OHYMbWPFVRP2uT2IiIh0T2FORIBwvltNNdW5CZpjiSC8jYwBgzoq9WK4tJg6CtsaybNWzmz5PSfV/IWtq4/BNs5iWL1TMb6Jre8bwU0fv0BDpiIih0FhTmQAWrRyO/eu3szynAQNsThNMYjnFEFRjOB5pmHPW6/mujVRTAMXJp7ljKZFbN00k4blpzJkdzHW0sy6C6dx2Sc/rV43EZE+pjAnMgC0z3dbNqiZ+tzWoNetCDoeRB/qxUPoYySC8NbyLGfEF7Ft/Sxalp3LuC3NbDl5Kqd+8stJwe3mlByXiIgozIn0S+1Dprvy4iRirdTnDAnnux3a7UGC55g2UuIbuTj+Wybu3kX1O2dTtHIEI2o2UXDFRcz/3HfC+n+bgiMSEZEDUZgTibjkuW6xnAZazamJjQyHTHu/yrRjoUILJb6RS+K/ZWJNLbvfPo+8dcUUWCFHz/80J3zog+F3fD4lxyUiIj2jMCcSIe1z3d6xBI2xFppiTjw2aP+5bnBoQ6aJZzm7+RUad49h99vnUbCumJL6QRx3w3WM+PdrU3hkIiJyqBTmRLLYQ0sr+dHmndS2JWjKaaU+Lz9prluso+IhDpnObfk/Sps38u6qObQuPZ+x7yYonTibaZ/6PEUfmZOagxIRkT6lMCeSJcpr67lnRRVLa+qItzoNea00xfIhD/YJbz0Obvve221KWwWXNP+WiTXV1C67CKs6gjE1kyh939lc+aUvhN+h24OIiERNWsOcmU0BHgXGA23AAne/28xGAj8DSoENwAfdvdrMDLgbuAxoAD7m7n8OP+tG4J/Cj/43d38knccicrjKa+v53usrWdHcRl1e2OsGkJeTFODo9b3diqgn5s5ZrS9xZtMitq0/jvjy8xiyu4ERJ7yXK2+7I+m7FN5ERKIu3T1zCeAL7v5nMxsCLDazhcDHgBfd/dtmdhtwG/AV4FJgevh1CnAfcEoY/r4GlAEefs7T7l6d5uMR6bGHllayoHIbte7EY2F4yzXIPZRet+S5bvVc1PocZ8XDuW5LT6FwXRHjits4/TM/pmiehktFRPqztIY5d98CbAnf15nZcmASMA84N6z2CPAyQZibBzzq7g68ZmbDzWxCWHehu+8CCAPhXOCnaTsYkW60h7dqa6Ex1hYsVCjICff2vtetfYXpEWxgbsszTG1ZT2PdOHYvPZOiyjym3PRVTnjfB/f/PBER6dcyNmfOzEqBOcDrwLgw6OHuW8xsbFhtErAp6dsqw7IDlXf1c+YD8wFKSkr67gBEkrTPd3u7toEGr6ex/YkKBe3PMg31eoVpPRe3/pazW35PW1uM5poJ5L48jLGJGMd/7lGK5qjXTURkoMtImDOzwcDPgc+5+27r6h+4sGoXZX6Q8v0L3RcACwDKysq6niUu0gvltfX8YOM2luzcQ31LHc05rTTkDAYsvKIOcm+3blaYHsEG5iae4cjWNSRaCqleVcbQV3OZ/L6bOf4T4SKFG1JzXCIiEk1pD3NmlkcQ5H7i7r8Ii7eZ2YSwV24CsD0srwSmJH37ZGBzWH5up/KXU9luGbgeq9rJgnVb2dXUSBPN1MeSwlru4d2Utz28TW3eQHPNBFreOIEJ6wdz3A1fY8S14X3dvtTHByQiIv1KulezGvAgsNzd70za9TRwI/Dt8PVXSeW3mtkTBAsgasPA9xzwLTMbEda7GLg9Hccg/V97eHu3sYEGS9AUGxTsiOWy95I5hNuDtC9UOCfxEm2tuTTXjCf/5RGU5gxj2qceoeh9c9TrJiIivZbunrkzCP65WmpmfwnL7iAIcU+a2c3ARuCacN8zBLclWUNwa5KbANx9l5l9A3gzrPev7YshRHqrPbxtb6qlycK5bgC5eYT3COlxeBvsu4mRANjviQqNb81mzJJKJn1QQ6YiItJ3zA/Qm9AflZWVeXl5eaabIRn2WNVO7l6xgdrWRppzcjrCW7JezHWLkaDYGzg//jvO9Rdpa42xdf1M7C+zmWrrOf0z87VQQUREes3MFrt7WXf19AQI6ffuXrqKh6q2Uh9ro9nygvBmMcgd3FGpB+Gt8wPo5yb+j9L4Rraum07irzOZWFPJETPO5sgP3ax7u4mISNoozEm/Ul5bz3dXbGBJTTWJnERHeMsfsm/FXoS39rluZzf/gfq64bz79nFMfKuFIycNZdqndFNeERHJLIU5ibS7l67iwap3qbc2PKeNhljY25ZXvG/FXoW3YK7bOS1/oL5uBO8uO4mJf05wxKQTggfQf0jhTUREsofCnERGeW09//bXFSxvqKct1kar5dCQMwTyC/et2MtbhOxdqBD/E9Urp9H45hEcuWcXJ974j4z40LUpOhoREZG+oTAnWevupat4aOs26mntCG7kdD9kCt2Gt4sSz3F+42vsXjqFxteLOK5xC6Xzv8KILym8iYhItCjMSVbYO9ettoaEtXTMdYsN3rfiIT2IvoGLmhdy1o6/svnNYoasyeM9E8Zz5N//iKKrNGQqIiLRpjAnGfFY1U5+VLmDrbt3kbDWsNeNfZ+oAL1+lmn7StNL488x7d2d1P8+hm3P56hP3cGcj94DH03J4YiIiGSMwpykxWNVO7ln1QZqmhtojsU67u0W6/3jsJKfZTqltZLLW37L0W1rad4xmOZXC4hPPZPrvvrzoKrCm4iI9HMKc9Ln2h9E/+bWrcRp7hgyJQZ5SfPdev0s0wQlbRu5vPl5jt3VQPyPxbS9W885d/xbx015P56aYxIREclWCnNy2B6r2skP11ays7Ge1uTbg8QGAYM6Kvb2qQrhXLdLqtcR/+txtC5exp5z5nDdV/9fUFWPwhIREVGYk957rGon/7VqI9XN9TTHkh6Hldf7IdPOvW6XNj/LsbVx7M1p8MabjLh+PrNvuQc+nKKDERERiTiFOTmo8tp6vrdsDUt2V5PIdRLEwsUKBnkHeRwW9PDebq/Rtu4UBr0yjLqWFUz91D8w58NnK7yJiIj0kMKc7KO8tp5vlL/EmrZ8mqyQ+vZVpvnD9q14KEOmiec4p+k1Cta8lyHPVNE2sZjjP/8ARVfOgc+l5HBERET6PYW5Aa68tp5//sNzVBQM7ghvNgliSZV6PWQaPoi++VlKanfDG1Ox1aso+fQ3mDPv3qDyF1JzPCIiIgONwtwAc+cbC3m0OkFDrIAEucGQadHUfSv18t5u7UOm57a8SnPdGPIXjWf4rgJmf/GrFF02Bz6UssMREREZ8BTm+rmvPvUjfj1kMg2xApopoClnNOR1qtSL8FboTUxureLS1t9wZKKCxPKjmPK/6xl74smM+sTDwS1CFN5ERETSRmGun7n98R/x7KjJ1LeHt5Fl+1fqYXgr9j1j22FMAAAgAElEQVQUeiMlXsHc+AuUvJPHxP+3kqLjTuLIv/9qENyuBL6SiiMRERGRnlCYi7jPPv5dXhkzkwYrIk4BTeN7EN4OsFihPbxNaavk1KrVzHx9KFPq1jL7i7dSNGc+XAF8ORVHISIiIodKYS5CfvLrH/FYTj6bCibQQi7NVkDT+Av3r9iD8FboDRQQJ9dbmNJWyVmb1vCeFxoomD2TuV/5ZFDpphQchIiIiPQphbkstXnVcr79u2d5ZdoxtOTkkuMJdhSfBHQxRNqL8FbkDZxb/0dOf7OOsS8tYdj1NzH7lpuDSjf3/XGIiIhIainMZYmfPf4QDxQWsXnICFosN5jvNuPc/Sv28DYhncPbWa/XMG3Kycy+5SbgCpjX54cgIiIiGaAwlyF3//BufjVxPNuKR9BohTSMn911xV6Et3yPU0wD59T/kVPf2MnRZ97AnEuvQOFNRESk/1KYS4dNb3Drs3/g1SNm0ZAT3t/tmLP3r9fD4Na+WCHmCYpp5Mwty3nfygQX/9tt4X6FNxERkYEi7WHOzH5MsC5yu7u/Jyz7OvC3wI6w2h3u/ky473aC2VytwGfc/bmwfC5wN8GzCh5w92+n8zi687lHvsPvJ86i3oqCIdMjz9+/Ug/DW7HXMaJtF63kMiaxi/OWrWfusecx59L2z7y8bxsvIiIikZGJnrmHgXuBRzuVf9/dv5dcYGazgOuAY4GJwAtmNiPc/QPgIqASeNPMnnb3d1LZ8O589/5v8ULJZFbnl9Iw5aL9K/Ti/m5Br1sD5+9ZxHu2NHHTLXd2VLm0T5stIiIiEZb2MOfur5hZaQ+rzwOecPc4sN7M1gAnh/vWuPs6ADN7IqybsTD33fu/xV0zLqI1+Vd6CPd3O3vDCo489UquPb691+2KVDVZRERE+oFsmjN3q5l9FCgHvuDu1cAk4LWkOpVhGcCmTuWndPWhZjYfmA9QUlLS123ea9WIIlqJ7RvgDrLKNM8TTGnbxGWrV3Hz6ddRNKeLOXQiIiIi3ciWMHcf8A3Aw9f/BD5OlzdVw4GcA5TvX+i+AFgAUFZW1mWdvjCjuoHYmFZafd8mJ68yvXj3a5y/awSXfOILHRUuTlWLREREZCDIijDn7tva35vZj4DfhJuVwJSkqpOBzeH7A5VnxJc+eQeEc+Yq88eTTwtnVb3Nxy+9hNljzwhrachURERE+lZWhDkzm+DuW8LN9wNvh++fBh43szsJFkBMB94g6LGbbmZTgSqCRRIfTm+r9/elT97Bl/Yp0SpTERERSa1M3Jrkp8C5wGgzqwS+BpxrZrMJhko3AH8H4O7LzOxJgoUNCeDT7t4afs6twHMEtyb5sbsvS/OhiIiIiGSceZcrLPunsrIyLy8vz3QzRERERLplZovdvazbegMpzJnZDqAixT9mNLAzxT9Dek/nJfvonGQnnZfso3OSfdJ1To5w9zHdVRpQYS4dzKy8Jyla0kvnJfvonGQnnZfso3OSfbLtnHR1iw8RERERiQiFOREREZEIU5jrewsy3QDpks5L9tE5yU46L9lH5yT7ZNU50Zw5ERERkQhTz5yIiIhIhCnMiYiIiESYwlwfMrO5ZrbSzNaY2W2Zbs9AYWZTzOwlM1tuZsvM7LNh+UgzW2hmq8PXEWG5mdk94XlaYmYnZvYI+i8zi5nZW2b2m3B7qpm9Hp6Tn5lZflheEG6vCfeXZrLd/ZmZDTezp8xsRXjNnKZrJbPM7B/Cv11vm9lPzaxQ10r6mdmPzWy7mb2dVNbra8PMbgzrrzazG9PRdoW5PmJmMeAHwKXALOBDZjYrs60aMBLAF9x9JnAq8Onwd38b8KK7TwdeDLchOEfTw6/5wH3pb/KA8VlgedL2fwDfD89JNXBzWH4zUO3uRwHfD+tJatwNPOvuxwAnEJwfXSsZYmaTgM8AZe7+HoJHVF6HrpVMeBiY26msV9eGmY0keEzpKcDJwNfaA2AqKcz1nZOBNe6+zt2bgSeAeRlu04Dg7lvc/c/h+zqCf5wmEfz+HwmrPQJcFb6fBzzqgdeA4WY2Ic3N7vfMbDJwOfBAuG3A+cBTYZXO56T9XD0FXBDWlz5kZkOBs4EHAdy92d1r0LWSabnAIDPLBYqALehaSTt3fwXY1am4t9fGJcBCd9/l7tXAQvYPiH1OYa7vTAI2JW1XhmWSRuGQwxzgdWCcu2+BIPABY8NqOlfpcRfwZaAt3B4F1Lh7ItxO/r3vPSfh/tqwvvStacAO4KFw+PsBMytG10rGuHsV8D1gI0GIqwUWo2slW/T22sjINaMw13e6+j8j3fcljcxsMPBz4HPuvvtgVbso07nqQ2Z2BbDd3RcnF3dR1XuwT/pOLnAicJ+7zwHq6Rg26orOS4qFQ3DzgKnARKCYYAivM10r2eVA5yEj50dhru9UAlOSticDmzPUlgHHzPIIgtxP3P0XYfG29iGh8HV7WK5zlXpnAFea2QaCKQfnE/TUDQ+HkmDf3/vecxLuH8b+wx1y+CqBSnd/Pdx+iiDc6VrJnAuB9e6+w91bgF8Ap6NrJVv09trIyDWjMNd33gSmhyuQ8gkmsD6d4TYNCOF8kQeB5e5+Z9Kup4H2lUQ3Ar9KKv9ouBrpVKC2vRtd+oa73+7uk929lOBa+J27fwR4Cbg6rNb5nLSfq6vD+upt6GPuvhXYZGZHh0UXAO+gayWTNgKnmllR+Les/ZzoWskOvb02ngMuNrMRYa/rxWFZSukJEH3IzC4j6H2IAT92929muEkDgpmdCfwBWErH/Kw7CObNPQmUEPzBvMbdd4V/MO8lmJTaANzk7uVpb/gAYWbnAl909yvMbBpBT91I4C3genePm1kh8BjBfMddwHXuvi5Tbe7PzGw2waKUfGAdcBPB/9jrWskQM/sX4FqClflvAZ8gmGelayWNzOynwLnAaGAbwarU/6WX14aZfZzg3yCAb7r7Qylvu8KciIiISHRpmFVEREQkwhTmRERERCJMYU5EREQkwhTmRERERCJMYU5EREQkwhTmRERERCJMYU5EREQkwhTmRERERCIst/sq/cfo0aO9tLQ0080QERER6dbixYt3uvuY7uoNqDBXWlpKebmeRCMiIiLZz8wqelJPw6wiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEZab6QYciJltAOqAViDh7mWd9n8E+Eq4uQe4xd3/mtZGioiIiGRY1oa50HnuvvMA+9YD57h7tZldCiwATklf00REREQyL9vD3AG5+6KkzdeAyZlqi4iIiEimZPOcOQeeN7PFZja/m7o3A7/taoeZzTezcjMr37FjR583UkRERCSTsrln7gx332xmY4GFZrbC3V/pXMnMziMIc2d29SHuvoBgCJaysjJPZYNFRERE0i1re+bcfXP4uh34JXBy5zpmdjzwADDP3d9NbwtFREREMi8rw5yZFZvZkPb3wMXA253qlAC/AG5w91Xpb6WIiIhI5mXrMOs44JdmBkEbH3f3Z83skwDufj/wz8Ao4Idhvf1uXyIiIiLS32VlmHP3dcAJXZTfn/T+E8An0tkuERERkWyTlcOsIiIiItIzCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEZa1Yc7MNpjZUjP7i5mVd7H/GDP7k5nFzeyLmWijiIiISKblZroB3TjP3XceYN8u4DPAVWlsj4iIiEhWydqeue64+3Z3fxNoyXRbRERERDIlm8OcA8+b2WIzm3+oH2Jm882s3MzKd+zY0YfNExEREcm8bA5zZ7j7icClwKfN7OxD+RB3X+DuZe5eNmbMmL5toYiIiEiGZW2Yc/fN4et24JfAyZltkYiIiEj2ycowZ2bFZjak/T1wMfB2ZlslIiIikn2ydTXrOOCXZgZBGx9392fN7JMA7n6/mY0HyoGhQJuZfQ6Y5e67M9VoERERkXTLyjDn7uuAE7oovz/p/VZgcjrbJSIiIpJtsnKYVURERER6RmFOREREJMIU5kREREQiTGFOREREJMIU5kREREQiTGFOREREJMIU5kREREQiTGFOREREJMIU5kREREQiTGFOREREJMIU5kREREQiTGFOREREJMIU5kREREQiTGFOREREJMKyNsyZ2QYzW2pmfzGz8i72m5ndY2ZrzGyJmZ2YiXaKiIiIZFJuphvQjfPcfecB9l0KTA+/TgHuC18z5rv3f4sXSiZTmT+elj781eaRYJA30miD+vRz1Zb+15ZsaYfaoraoLf2rLdnSjmxpSzGNnF21jLtv/HJGfn5nKf0tmNmtwE/cvToFHz8PeNTdHXjNzIab2QR335KCn9Wt797/Le6acRGtWZ+PRURE5HDsZgQ/mzIRHvlOVgS6VCeP8cCbZvZn4MfAc2H46gkHnjczB/7b3Rd02j8J2JS0XRmW7RPmzGw+MB+gpKSk90fQQ6tGFNFKDMxS9jNEREQkS7izdPyUTLcCSHGYc/d/MrOvAhcDNwH3mtmTwIPuvrabbz/D3Teb2VhgoZmtcPdXkvZ3lZr2C4phCFwAUFZW1tMg2WszqhuIjWml1RXmREREBoLjtm7qvlIapHxM0N3dzLYCW4EEMAJ4yswWuvsB+ybdfXP4ut3MfgmcDCSHuUogORJPBjb3dft76kufvAM0Z05t0bwWtUVtUVv6YVuypR3Z0pZsmzNnPR/1PIQPN/sMcCOwE3gA+F93bzGzHGC1ux95gO8rBnLcvS58vxD4V3d/NqnO5cCtwGUECx/ucfeTD9aesrIyLy/fb2GsiIiISNYxs8XuXtZdvVRH2tHAB9y9IrnQ3dvM7IqDfN844JcWzD/LBR5392fN7JPh998PPEMQ5NYADQTDuCIiIiIDSkp75rKNeuZEREQkKnraM5e1Nw0WERERke4pzImIiIhEmMKciIiISIQpzImIiIhEmMKciIiISIQpzImIiIhEmMKciIiISIQpzImIiIhEmMKciIiISIQpzImIiIhEmMKciIiISIQpzImIiIhEmMKciIiISIQpzImIiIhEWNaGOTOLmdlbZvabLvYdYWYvmtkSM3vZzCZnoo0iIiIimZa1YQ74LLD8APu+Bzzq7scD/wr8e9paJSIiIpJFsjLMhT1tlwMPHKDKLODF8P1LwLx0tEtEREQk22RlmAPuAr4MtB1g/1+Bvwnfvx8YYmaj0tEwERERkWySdWHOzK4Atrv74oNU+yJwjpm9BZwDVAGJA3zefDMrN7PyHTt29H2DRURERDLI3D3TbdiHmf07cANBOCsEhgK/cPfrD1B/MLDC3btdBFFWVubl5eV92VwRERGRlDCzxe5e1l29rOuZc/fb3X2yu5cC1wG/6xzkzGy0mbW3/Xbgx2lupoiIiEhWyLowdyBm9q9mdmW4eS6w0sxWAeOAb2asYSIiIiIZlHXDrKmkYVYRERGJisgOs4qIiIhIzynMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhCnMiYiIiESYwpyIiIhIhGV1mDOzmJm9ZWa/6WJfiZm9FO5fYmaXZaKNIiIiIpmU1WEO+Cyw/AD7/gl40t3nANcBP0xbq0RERESyRNaGOTObDFwOPHCAKg4MDd8PAzano10iIiIi2SQ30w04iLuALwNDDrD/68DzZvb3QDFwYVeVzGw+MB+gpKSk71spIiIikkFZ2TNnZlcA29198UGqfQh42N0nA5cBj5nZfsfj7gvcvczdy8aMGZOiFouIiIhkRlaGOeAM4Eoz2wA8AZxvZv/Tqc7NwJMA7v4noBAYnc5GioiIiGRaVoY5d7/d3Se7eynB4obfufv1naptBC4AMLOZBGFuR1obKiIiIpJhWRnmDsTM/tXMrgw3vwD8rZn9Ffgp8DF398y1TkRERCT9snkBBADu/jLwcvj+n5PK3yEYjhUREREZsCLVMyciIiIi+1KYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCLOB9Gx6M9sBVKT4x4wGdqb4Z0jv6bxkH52T7KTzkn10TrJPus7JEe4+prtKAyrMpYOZlbt7WabbIfvSeck+OifZSecl++icZJ9sOycaZhURERGJMIU5ERERkQhTmOt7CzLdAOmSzkv20TnJTjov2UfnJPtk1TnRnDkRERGRCFPPnIiIiEiEKcyJiIiIRJjCXB8ys7lmttLM1pjZbZluz0BhZlPM7CUzW25my8zss2H5SDNbaGarw9cRYbmZ2T3heVpiZidm9gj6LzOLmdlbZvabcHuqmb0enpOfmVl+WF4Qbq8J95dmst39mZkNN7OnzGxFeM2cpmsls8zsH8K/XW+b2U/NrFDXSvqZ2Y/NbLuZvZ1U1utrw8xuDOuvNrMb09F2hbk+YmYx4AfApcAs4ENmNiuzrRowEsAX3H0mcCrw6fB3fxvwortPB14MtyE4R9PDr/nAfelv8oDxWWB50vZ/AN8Pz0k1cHNYfjNQ7e5HAd8P60lq3A086+7HACcQnB9dKxliZpOAzwBl7v4eIAZch66VTHgYmNuprFfXhpmNBL4GnAKcDHytPQCmksJc3zkZWOPu69y9GXgCmJfhNg0I7r7F3f8cvq8j+MdpEsHv/5Gw2iPAVeH7ecCjHngNGG5mE9Lc7H7PzCYDlwMPhNsGnA88FVbpfE7az9VTwAVhfelDZjYUOBt4EMDdm929Bl0rmZYLDDKzXKAI2IKulbRz91eAXZ2Ke3ttXAIsdPdd7l4NLGT/gNjnFOb6ziRgU9J2ZVgmaRQOOcwBXgfGufsWCAIfMDaspnOVHncBXwbawu1RQI27J8Lt5N/73nMS7q8N60vfmgbsAB4Kh78fMLNidK1kjLtXAd8DNhKEuFpgMbpWskVvr42MXDMKc32nq/8z0n1f0sjMBgM/Bz7n7rsPVrWLMp2rPmRmVwDb3X1xcnEXVb0H+6Tv5AInAve5+xygno5ho67ovKRYOAQ3D5gKTASKCYbwOtO1kl0OdB4ycn4U5vpOJTAlaXsysDlDbRlwzCyPIMj9xN1/ERZvax8SCl+3h+U6V6l3BnClmW0gmHJwPkFP3fBwKAn2/b3vPSfh/mHsP9whh68SqHT318PtpwjCna6VzLkQWO/uO9y9BfgFcDq6VrJFb6+NjFwzCnN9501gergCKZ9gAuvTGW7TgBDOF3kQWO7udybtehpoX0l0I/CrpPKPhquRTgVq27vRpW+4++3uPtndSwmuhd+5+0eAl4Crw2qdz0n7ubo6rK/ehj7m7luBTWZ2dFh0AfAOulYyaSNwqpkVhX/L2s+JrpXs0Ntr4zngYjMbEfa6XhyWpZSeANGHzOwygt6HGPBjd/9mhps0IJjZmcAfgKV0zM+6g2De3JNACcEfzGvcfVf4B/NegkmpDcBN7l6e9oYPEGZ2LvBFd7/CzKYR9NSNBN4Crnf3uJkVAo8RzHfcBVzn7usy1eb+zMxmEyxKyQfWATcR/I+9rpUMMbN/Aa4lWJn/FvAJgnlWulbSyMx+CpwLjAa2EaxK/V96eW2Y2ccJ/g0C+Ka7P5TytivMiYiIiESXhllFREREIkxhTkRERCTCFOZEREREIkxhTkRERCTCFOZEREREIkxhTkRERCTCFOZEREREIkxhTkRERCTCFOZEREREIiy3+yr9x+jRo720tDTTzRARERHp1uLFi3e6+5ju6g2oMFdaWkp5uR4rKCIiItnPzCp6Uk/DrCIiIiIRpjAnIiIiEmEKcyIiIiIRpjAnIiIiEmEKcyIiIiIRpjAnIiIiEmEKcyIiIiIRpjAnIiIiEmEKcyIiIiIRpjAnIiIiEmEKcyIiIiIRpjAnIiIiEmEZC3NmNtLMFprZ6vB1xEHqDjWzKjO7N6nsQ2a21MyWmNmzZjY6PS0XERERyR6Z7Jm7DXjR3acDL4bbB/IN4PftG2aWC9wNnOfuxwNLgFtT2FYRERGRrJTJMDcPeCR8/whwVVeVzOwkYBzwfHJx+FVsZgYMBTanrqkiIiIi2SmTYW6cu28BCF/Hdq5gZjnAfwJfSi539xbgFmApQYibBTzY1Q8xs/lmVm5m5Tt27OjbIxARERHJsJSGOTN7wcze7uJrXg8/4lPAM+6+qdPn5hGEuTnARIJh1tu7+gB3X+DuZe5eNmbMmMM4GhEREZHsk5vKD3f3Cw+0z8y2mdkEd99iZhOA7V1UOw04y8w+BQwG8s1sD/Dz8PPXhp/1JAefcyciIiLSL2VymPVp4Mbw/Y3ArzpXcPePuHuJu5cCXwQedffbgCpglpm1d7VdBCxPfZNFREREsksmw9y3gYvMbDVBGPs2gJmVmdkDB/tGd98M/AvwipktAWYD30pxe0VERESyjrl7ptuQNmVlZV5eXp7pZoiIiIh0y8wWu3tZd/X0BAgRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYkwhTkRERGRCFOYExEREYmwjIQ5MxtpZgvNbHX4OuIgdYeaWZWZ3ZtUdq2ZLTGzZWb2nfS0WkRERCT7ZKpn7jbgRXefDrwYbh/IN4Dft2+Y2Sjgu8AF7n4sMM7MLkhlY0VERESyVabC3DzgkfD9I8BVXVUys5OAccDzScXTgFXuviPcfgH4mxS1U0RERCSrZSrMjXP3LQDh69jOFcwsB/hP4Euddq0BjjGzUjPLJQiCU1LcXhEREZGslJuqDzazF4DxXez6xx5+xKeAZ9x9k5ntLXT3ajO7BfgZ0AYsIuitO1A75gPzAUpKSnr4o0VERESiIWVhzt0vPNA+M9tmZhPcfYuZTQC2d1HtNOAsM/sUMBjIN7M97n6bu/8a+HX4WfOB1oO0YwGwAKCsrMwP/YhEREREsk+mhlmfBm4M398I/KpzBXf/iLuXuHsp8EXgUXe/DcDMxoavIwh68B5IR6NFREREsk2mwty3gYvMbDVwUbiNmZWZWU+C2d1m9g7wR+Db7r4qdU0VERERyV7mPnBGHsvKyry8vDzTzRARERHplpktdvey7urpCRAiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiIiEaYwJyIiIhJhCnMiIiLy/9u7/2C5yvqO4+9PE37TlsQAiYQoWFQcrGBvKZaO4wgRqw7hDxy1/ogKTR1ttT9EUpgp9Q+cWGpRpwrNAJp2GLFFR6Lj2AkhjNYK7aWAgSAN4A9iIknlZ0sGTfj2j32C13AvyYW9d/fkvl8zO7vnOc+e87375Ln3k3PO7qrDDHOSJEkdZpiTJEnqMMOcJElShxnmJEmSOswwJ0mS1GGGOUmSpA4zzEmSJHWYYU6SJKnDBhLmksxNsibJxnY/Z4J+O5Pc1m6rx7Qfk+Tm9vwvJtl/+qqXJEkaHrMHtN/lwNqqWpFkeVs+f5x+26vqxHHaPw5cWlXXJLkcOAe4bOrK3TuXXP4xrl+0kE37z+fnfXxp92MHB9V2tuegvm7XWva9WoalDmuxFmvZt2oZljqGpZZD2M6rf3wnn1r6kYHsf3epqj13StYCn6iqr49pW1lVy57VTpO7gddU1ZYkC4Abq+ol4/T736o6dLe2ANuA+VW1I8mrgL+uqjP2tN+RkZEaHR19NiXv0SWXf4xPvngxOwf8j1ySJE2Pt9y/ZkoDXZJbqmpkT/32NnkcA5yf5Ler6qOtbY8bfwZHVtUWgBbojpig34FJRoEdwIqq+grwPODhqtrR+mwCjppoR0mWAcsAFi1a9BxKfmb/PedgdjILkinbhyRJGhJVrJ9/9KCrAPY+zD0MnAZ8OslXgXfs6QlJrgfmj7Pqwr0vj0VVtTnJscANSdYDj47Tb8LDi1W1ElgJvSNzk9j3pLz4oceZdfhOdpZhTpKkmeDlP7l/0CUAex/m0o6EvT/Ju4F/A8Z908IuVXX6hBtLHkiyYMxp1q0TbGNzu78vyY3AScCXgMOSzG41LQQ27+XPMWXOe98F4DVz1uJ1LdZiLdayD9YyLHUMSy3Dds3c3r4Kl+96UFWfb0fIPvAc9rsaWAqsaPfX7d6hvcP18ap6Isk84FTgb6qqkqwDzgaumej5g3De+y7gvEEXIUmSpsEbB13AU/bqo0mq6h92W76lqt77HPa7AlicZCOwuC2TZCTJFa3P8cBoktuBdfSumdvQ1p0P/HmSe+hdQ3flc6hFkiSps/bq3az7iql8N6skSVI/7e27Wf0GCEmSpA4zzEmSJHWYYU6SJKnDDHOSJEkdZpiTJEnqMMOcJElShxnmJEmSOswwJ0mS1GGGOUmSpA4zzEmSJHWYYU6SJKnDDHOSJEkdZpiTJEnqMMOcJElShw0kzCWZm2RNko3tfs4E/XYmua3dVo9p/+Mk9ySpJPOmr3JJkqThMqgjc8uBtVV1HLC2LY9ne1Wd2G5njmn/NnA68MMprlOSJGmoDSrMLQFWtcergLMm8+SqurWqftDvoiRJkrpmUGHuyKraAtDuj5ig34FJRpPclGRSgW+XJMvaNka3bdv2bOuVJEkaSrOnasNJrgfmj7PqwklsZlFVbU5yLHBDkvVVde9k6qiqlcBKgJGRkZrMcyVJkobdlIW5qjp9onVJHkiyoKq2JFkAbJ1gG5vb/X1JbgROAiYV5iRJkrknEb8AAAiNSURBVPZlgzrNuhpY2h4vBa7bvUOSOUkOaI/nAacCG6atQkmSpA4YVJhbASxOshFY3JZJMpLkitbneGA0ye3AOmBFVW1o/T6YZBOwEPjumOdIkiTNKKmaOZeRjYyM1Ojo6KDLkCRJ2qMkt1TVyJ76+Q0QkiRJHWaYkyRJ6jDDnCRJUocZ5iRJkjrMMCdJktRhhjlJkqQOM8xJkiR1mGFOkiSpwwxzkiRJHWaYkyRJ6jDDnCRJUocZ5iRJkjrMMCdJktRhhjlJkqQOG0iYSzI3yZokG9v9nAn67UxyW7utHtN+dZK7k9yR5Kok+01f9ZIkScNjUEfmlgNrq+o4YG1bHs/2qjqx3c4c03418FLg5cBBwLlTWq0kSdKQGlSYWwKsao9XAWdN5slV9fVqgP8AFva5PkmSpE4YVJg7sqq2ALT7Iybod2CS0SQ3JXla4GunV98JfGOiHSVZ1rYxum3btn7ULkmSNDRmT9WGk1wPzB9n1YWT2Myiqtqc5FjghiTrq+reMes/C3yzqr410QaqaiWwEmBkZKQmsW9JkqShN2VhrqpOn2hdkgeSLKiqLUkWAFsn2Mbmdn9fkhuBk4B72zYuAg4H/qjftUuSJHXFoE6zrgaWtsdLget275BkTpID2uN5wKnAhrZ8LnAG8LaqenJaKpYkSRpCgwpzK4DFSTYCi9sySUaSXNH6HA+MJrkdWAesqKoNbd3lwJHAd9rHlvzV9JYvSZI0HKbsNOszqaqfAqeN0z5K+5iRqvp3eh89Mt7zB1K3JEnSsPEbICRJkjrMMCdJktRhhjlJkqQOM8xJkiR1mGFOkiSpwwxzkiRJHWaYkyRJ6jDDnCRJUocZ5iRJkjrMMCdJktRhhjlJkqQOM8xJkiR1WKpq0DVMmyTbgB9O8W7mAf8zxfvQ5Dkuw8cxGU6Oy/BxTIbPdI3JC6rq8D11mlFhbjokGa2qkUHXoV/muAwfx2Q4OS7DxzEZPsM2Jp5mlSRJ6jDDnCRJUocZ5vpv5aAL0Lgcl+HjmAwnx2X4OCbDZ6jGxGvmJEmSOswjc5IkSR1mmJMkSeoww1wfJXl9kruT3JNk+aDrmSmSHJ1kXZK7ktyZ5EOtfW6SNUk2tvs5rT1JPt3G6btJXjnYn2DflWRWkluTfK0tH5Pk5jYmX0yyf2s/oC3f09a/cJB178uSHJbk2iTfa3PmVc6VwUryZ+131x1JvpDkQOfK9EtyVZKtSe4Y0zbpuZFkaeu/McnS6ajdMNcnSWYBnwF+H3gZ8LYkLxtsVTPGDuAvqup44BTgA+21Xw6srarjgLVtGXpjdFy7LQMum/6SZ4wPAXeNWf44cGkbk4eAc1r7OcBDVfUbwKWtn6bGp4BvVNVLgVfQGx/nyoAkOQr4IDBSVScAs4C34lwZhM8Dr9+tbVJzI8lc4CLgd4CTgYt2BcCpZJjrn5OBe6rqvqr6GXANsGTANc0IVbWlqv6rPX6M3h+no+i9/qtat1XAWe3xEuAfq+cm4LAkC6a57H1ekoXAG4Er2nKA1wLXti67j8musboWOK31Vx8l+TXg1cCVAFX1s6p6GOfKoM0GDkoyGzgY2IJzZdpV1TeBB3drnuzcOANYU1UPVtVDwBqeHhD7zjDXP0cB949Z3tTaNI3aKYeTgJuBI6tqC/QCH3BE6+ZYTY9PAh8BnmzLzwMerqodbXns6/7UmLT1j7T+6q9jgW3A59rp7yuSHIJzZWCq6sfA3wI/ohfiHgFuwbkyLCY7NwYyZwxz/TPe/4z83JdplORQ4EvAn1bVo8/UdZw2x6qPkrwJ2FpVt4xtHqdr7cU69c9s4JXAZVV1EvB//OK00XgclynWTsEtAY4Bng8cQu8U3u6cK8NlonEYyPgY5vpnE3D0mOWFwOYB1TLjJNmPXpC7uqq+3Jof2HVKqN1vbe2O1dQ7FTgzyQ/oXXLwWnpH6g5rp5Lgl1/3p8akrf91nn66Q8/dJmBTVd3clq+lF+6cK4NzOvD9qtpWVT8Hvgz8Ls6VYTHZuTGQOWOY65//BI5r70Dan94FrKsHXNOM0K4XuRK4q6r+bsyq1cCudxItBa4b0/6u9m6kU4BHdh1GV39U1V9W1cKqeiG9uXBDVb0dWAec3brtPia7xurs1t+jDX1WVT8B7k/yktZ0GrAB58og/Qg4JcnB7XfZrjFxrgyHyc6NfwVel2ROO+r6utY2pfwGiD5K8gZ6Rx9mAVdV1cUDLmlGSPJ7wLeA9fzi+qwL6F0398/AInq/MN9cVQ+2X5h/T++i1MeB91TV6LQXPkMkeQ3w4ap6U5Jj6R2pmwvcCryjqp5IciDwT/Sud3wQeGtV3TeomvdlSU6k96aU/YH7gPfQ+4+9c2VAknwUeAu9d+bfCpxL7zor58o0SvIF4DXAPOABeu9K/QqTnBtJ3kvvbxDAxVX1uSmv3TAnSZLUXZ5mlSRJ6jDDnCRJUocZ5iRJkjrMMCdJktRhhjlJkqQOM8xJ0jiSHJbk/e3x85Ncu6fnSNIg+NEkkjSO9j2/X6uqEwZciiQ9o9l77iJJM9IK4EVJbgM2AsdX1QlJ3g2cRe/DwU8APkHvA3jfCTwBvKF9qOiLgM8Ah9P7UNE/rKrvTf+PIWlf52lWSRrfcuDeqjoROG+3dScAfwCcDFwMPN6+uP47wLtan5XAn1TVbwEfBj47LVVLmnE8MidJk7euqh4DHkvyCPDV1r4e+M0kh9L7svR/6X3rDwAHTH+ZkmYCw5wkTd4TYx4/OWb5SXq/V38FeLgd1ZOkKeVpVkka32PArz6bJ1bVo8D3k7wZID2v6GdxkrSLYU6SxlFVPwW+neQO4JJnsYm3A+ckuR24E1jSz/okaRc/mkSSJKnDPDInSZLUYYY5SZKkDjPMSZIkdZhhTpIkqcMMc5IkSR1mmJMkSeoww5wkSVKH/T8PAm9C38yPKAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUZWdd5vHvkzQhSEA66U7SkxA6ccUxmRklWOIlXrgkAaKL4Mgsw1IMCtOGmEHXDNEGXIjgYITBUUegpw0sgwMmGZChcSHS5CIqBqiW3Egk3QkgoZt0I+GShReS/s0f5+1YFOdUV6Wrzjlv1/ez1l5nn3e/tc/vPefUW0/tvU9VqgpJkiT16YhJFyBJkqSHzzAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHVszaQLGKd169bVxo0bJ12GpDHZsWPHF6pq/aTrWA7OX9Lqs9g5bFWFuY0bNzI7OzvpMiSNSZLPTLqG5eL8Ja0+i53DPM0qSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLH1ky6gFGSfBr4KvAg8EBVzczb/lPAr7S79wMvrqqbx1qkJA3h/CVpnKY2zDVPraovjNj2KeBHquq+JM8CtgLfO77SJGlBzl+SxmLaw9xIVfXhOXdvBE6eVC2StBTOX5KW0zRfM1fAB5LsSLLpIH1fCPzZsA1JNiWZTTK7b9++ZS9SkoZw/pI0NtN8ZO7sqtqd5Hhge5K/q6oPze+U5KkMJsMfHLaTqtrK4BQGMzMztZIFS1Lj/CVpbKb2yFxV7W63e4F3A0+e3yfJdwJXABdU1T+Mt0JJGs75S9I4TWWYS/LoJI85sA6cB9w2r88pwJ8Az6+qO8dfpSR9M+cvSeM2radZTwDenQQGNb6jqt6f5GKAqtoCvBI4DnhT6/dNH/+XpAlw/pI0VlMZ5qrqbuC7hrRvmbP+IuBF46xLkg7G+UvSuE3laVZJkiQtjmFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjk1tmEvy6SS3JrkpyeyQ7d+R5G+S/HOSl06iRkkaxvlL0jitmXQBB/HUqvrCiG1fBF4CPGeM9UjSYjl/SRqLqT0ydzBVtbeqPgZ8fdK1SNJSOH9JWk7THOYK+ECSHUk2PdydJNmUZDbJ7L59+5axPEkayflL0thMc5g7u6qeBDwL+IUkP/xwdlJVW6tqpqpm1q9fv7wVStJwzl+SxmZqw1xV7W63e4F3A0+ebEWStDjOX5LGaSrDXJJHJ3nMgXXgPOC2yVYlSQfn/CVp3Kb106wnAO9OAoMa31FV709yMUBVbUlyIjALPBbYn+SXgDOr6iuTKlqScP6SNGZTGeaq6m7gu4a0b5mz/nng5HHWJUkH4/wladym8jSrJEmSFscwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUsemNswl+XSSW5PclGR2yPYk+b0ku5LckuRJk6hTkuZz/pI0TmtWcudJLgXeXlX3PcxdPLWqvjBi27OA09vyvcCb2+0he/2W13L1t53B7iNOYv9DeTdALcfuv0EoiozcevDHXM66lvp4K/OcjH68cTzGUh9vfv9DrXcc412KYfUstsblfD8Nth3Nv/Cj99/IG086FmZesIgaJmoi85cOLydun4UjjoD9+/n8uTOTLkdTakXDHHAi8LEkfwu8Ffjzqlqun1QXAG9r+7sxyeOSbKiqPYey09dveS2//e3nURy5PFUexDT92Jam3T/xKN71mKfC567jjfxhD4FulBWZv3R4OXH7LBzZfhYdeSQnbp810GmoFT3NWlW/yuA3z7cALwB2Jnltkm9bzJcDH0iyI8mmIdtPAj475/49re0bJNmUZDbJ7L59+w76oHeu/RaKIyBxcXGZxgX4q2POhDves4hpZGImMn/pMHNE+xHd3vcP3ZfmWekjc1RVJfk88HngAWAt8M4k26vqlxf40rOraneS44HtSf6uqj40Z3uGPdyQx98KbAWYmZk56IGwb7/va2T9fqqG7V7SNPjB+2+HMy6YdBkLmcj8pcPM/v2DI3MHTmjt3z/ZejS1VvqauZcAFwFfAK4ALquqryc5AtgJjAxzVbW73e5N8m7gycDcyfAe4PFz7p8M7D7Umi+7+OXgNXOL7LMyz8noxxvHYyz18eb3P9R6xzHepRhWz2JrXM7302Dbv14zd9xUn2Kd1Pylw8vnz53xmjktykofmVsH/Meq+szcxqran+THRn1RkkcDR1TVV9v6ecCr53XbBlya5CoGFw5/ebmuN7ns4pdz2XLsSNIK+IFJF7CgSc9fOrwY4LQYKxrmquqVC2y7Y4EvPQF4dwbXCawB3lFV709ycfvaLcD7gPOBXcDXgJ9drrol6RA4f0kaqxW/Zu7hqKq7ge8a0r5lznoBvzDOuiTpYJy/JI2bH42RJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY1Mb5pIcmeTjSf50yLYnJLk2yS1Jbkhy8iRqlKRRnMMkjcvUhjngF4E7Rmz7H8Dbquo7gVcDvzm2qiRpcZzDJI3FVIa59lvqjwJXjOhyJnBtW78euGAcdUnSYjiHSRqnqQxzwO8AvwzsH7H9ZuAn2vqPA49Jctw4CpOkRXAOkzQ2UxfmkvwYsLeqdizQ7aXAjyT5OPAjwOeAB0bsb1OS2SSz+/btW/6CJWmO5ZzDnL8kLUaqatI1fIMkvwk8n8HEdjTwWOBPquqnR/Q/Bvi7qjroBcQzMzM1Ozu7nOVKmmJJdlTVzJgfc0XmMOcvafVZ7Bw2dUfmquplVXVyVW0ELgSumz8JJlmX5EDtLwPeOuYyJWko5zBJ4zZ1YW6UJK9O8ux29ynAJ5PcCZwA/PeJFSZJi+AcJmmlTN1p1pXkaQppdZnEadaV4vwlrT7dnmaVJEnS4hnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6thUh7kkRyb5eJI/HbLtlCTXt+23JDl/EjVK0jDOX5LGZarDHPCLwB0jtv0qcE1VnQVcCLxpbFVJ0sE5f0kai6kNc0lOBn4UuGJElwIe29a/Fdg9jrok6WCcvySN05pJF7CA3wF+GXjMiO2vAj6Q5L8AjwbOGVNdknQwzl+SxmYqj8wl+TFgb1XtWKDb84A/rKqTgfOBP0ryTeNJsinJbJLZffv2rVDFkjTg/CVp3KYyzAFnA89O8mngKuBpSf7PvD4vBK4BqKq/AY4G1s3fUVVtraqZqppZv379ylYtSc5fksZsKsNcVb2sqk6uqo0MLg6+rqp+el63vweeDpDkDAaTob+6Spoo5y9J4zaVYW6UJK9O8ux2978B/znJzcAfAy+oqppcdZI0mvOXpJUyzR+AAKCqbgBuaOuvnNN+O4PTGZI0lZy/JI1DV0fmJEmS9I0Mc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHUtVTbqGsUmyD/jMIruvA76wguVMM8e+Oh2OY39CVa2fdBHLYYnz10rr9b1i3eNl3YduUXPYqgpzS5FktqpmJl3HJDh2xy4tpNf3inWPl3WPj6dZJUmSOmaYkyRJ6phhbrStky5gghz76rSax66l6fW9Yt3jZd1j4jVzkiRJHfPInCRJUsdWVZhL8tYke5PcNqftVUk+l+Smtpw/Z9vLkuxK8skkz5jT/szWtivJ5nGPY6mSPD7J9UnuSPKJJL/Y2o9Nsj3Jzna7trUnye+18d2S5Elz9nVR678zyUWTGtNiLTD21fC6H53ko0lubmP/9dZ+apKPtNfw6iRHtfZHtvu72vaNc/Y19DnR4WvU/DCk34Nzvo+2zWl/e3u/3Nbm3kd0Uvel7b1eSdaNo+Zlqnvo9/W01N36PrbNu78/p+0n28+ZTyR53Thqbo97qHU/L8mtrfb3j/O9MlRVrZoF+GHgScBtc9peBbx0SN8zgZuBRwKnAncBR7blLuA04KjW58xJj+0g494APKmtPwa4s43vdcDm1r4Z+K22fj7wZ0CA7wM+0tqPBe5ut2vb+tpJj+9hjn01vO4BjmnrjwA+0l7Pa4ALW/sW4MVt/RJgS1u/ELh6oedk0uNzWfH3z9D5YUi/+0e0n9/egwH++MD7rIO6zwI2Ap8G1nX0fA/9vp6Wutv23wXeAfx+u38c8PfA+nb/SuDpHdS9Bth74P3R9vWqcb1Xhi2r6shcVX0I+OIiu18AXFVV/1xVnwJ2AU9uy66quruq/gW4qvWdWlW1p6r+tq1/FbgDOIlB3Ve2blcCz2nrFwBvq4Ebgccl2QA8A9heVV+sqvuA7cAzxziUJVtg7KMcTq97VdX97e4j2lLA04B3tvb5r/uB98M7gacnCaOfEx3eRs0Pi1JV72vvwQI+Cpy8zPWNcqh1f7yqPr3cRS3Cw667fZ+O+r5eaYuqO8l3AycAH5jTfBpwZ1Xta/c/CPzECtU536HUfeCXlEe35/6xwO6VK/XgVlWYW8Cl7VDpW+ccaj0J+OycPve0tlHtXWinzs5icJTmhKraA4PQAxzfuq2GscMqeN2THJnkJga/RW5ncFTtS1X1QOsydxwPjbFt/zKD35y7HLsO2aj5Yb6jk8wmuTHJN/1AbKdXnw+8f+VK/QbLUvcEHErdxzH6+3qlHbTuJEcAbwAum7dpF/AdSTYmWcMgUD1+hes94GHXXVVfB14M3MogxJ0JvGWlC17Imkk++JR4M/AaBkcsXsPghfs5Bql7vmJ4AO7iI8FJjgHeBfxSVX1l8AvF8K5D2mqB9qk3ZOyr4nWvqgeBJyZ5HPBu4Ixh3drtYfe6a2FJPgicOGTTK5awm1OqaneS04DrktxaVXfN2f4m4ENV9ZeHUutcY6p72a1U3cBXhvRbtu/RZaj7EuB9VfXZuT93quq+JC8Grgb2Ax9mcLRuWaxU3e0XlBczODhwN/C/gJcBv3FIBR+CVR/mqureA+tJ/gD403b3Hr7xN4ST+dfDqKPap1Z7870LeHtV/UlrvjfJhqra006j7m3to8Z+D/CUee03rGTdy2HY2FfL635AVX0pyQ0Mrpl7XJI17bf4ueM4MPZ72m/J38rgsoSFnhN1rKrOGbUtyaj5Yf4+drfbu9t77CwGR4BJ8mvAeuDne6p7paxg3e9i9Pf1NNT9/cAPJbkEOAY4Ksn9VbW5qt4LvLftaxPw4LTXzeD55kD4T3INg+vuJmbVn2ZtL+IBPw4c+KTrNuDCDD7hdypwOoPrPj4GnN4+OXQUgwvFtzHF2jn9twB3VNVvz9m0DTjwidSLgPfMaf+ZDHwf8OV2GPrPgfOSrG2nJc9rbVNr1NhXyeu+vh2RI8mjgHMYXDN4PfDc1m3+637g/fBc4Lp2vdOo50SHt1Hzw0PaXPDItr4OOBu4vd1/EYPrbJ9XVfvHUvHAIdU9QQ+77vZ9Our7eqUdtO6q+qmqOqWqNgIvZXBN9maAJMe327UMjoRdMY6iObS6PwecmWR963oug7l1cpbrkxQ9LAw+UbUH+DqDow0vBP6IwXnvWxi8uBvm9H8Fg9/UPgk8a077+Qw+FXkX8IpJj2sR4/5BBofcbwFuasv5DK6zuBbY2W6Pbf0DvLGN71ZgZs6+fo7BdQ67gJ+d9NgOYeyr4XX/TuDjbYy3Aa9s7acxCGO7gP8LPLK1H93u72rbTzvYc+Jy+C4LzA8zwBVt/Qfa99HN7faFc77+gfaeOfB998pO6n5J+/nwAIOjW1d0UvfQ7+tpqHte/xfQPhXa7v8xgyB9O+3TuJ3UfTGDAHcLgyOLx42r9mGL/wFCkiSpY6v+NKskSVLPDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0nSFEpycZKb2vKpJNdPuiZNJ/9osCRJU6z9f+nrgNfV4H+ZSt/AI3OSJE2332Xwv5INchpqzaQLkCRJwyV5AfAE4NIJl6Ip5mlWSZKmUJLvBq4Efqiq7pt0PZpenmaVJGk6XQocC1zfPgRxxaQL0nTyyJwkSVLHPDInSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktSxNZMuYJzWrVtXGzdunHQZksZkx44dX6iq9ZOuQ5JW0qoKcxs3bmR2dnbSZUgakySfmXQNkrTSPM0qSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHJhbmkhybZHuSne127QJ9H5vkc0l+f07b85LcmuSWJO9Psm48lUuSJE2PSR6Z2wxcW1WnA9e2+6O8BviLA3eSrAF+F3hqVX0ncAtw6QrWKkmSNJUmGeYuAK5s61cCzxnWKcl3AycAH5jb3JZHJwnwWGD3ypUqSZI0nSYZ5k6oqj0A7fb4+R2SHAG8AbhsbntVfR14MXArgxB3JvCWYQ+SZFOS2SSz+/btW94RSJIkTdiKhrkkH0xy25DlgkXu4hLgfVX12Xn7fQSDMHcW8G8YnGZ92bAdVNXWqpqpqpn169cfwmgkSZKmz5qV3HlVnTNqW5J7k2yoqj1JNgB7h3T7fuCHklwCHAMcleR+4F1t/3e1fV3DwtfcSZIkHZYmeZp1G3BRW78IeM/8DlX1U1V1SlVtBF4KvK2qNgOfA85McuBQ27nAHStfsiRJ0nSZZJi7HDg3yU4GYexygCQzSa5Y6Aurajfw68CHktwCPBF47QrXK0mSNHVSVZOuYWxmZmZqdnZ20mVIGpMkO6pqZtJ1SNJK8j9ASJIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscmEuaSHJtke5Kd7XbtAn0fm+RzSX5/TttPJrklySeSvG48VUuSJE2fSR2Z2wxcW1WnA9e2+6O8BviLA3eSHAe8Hnh6Vf074IQkT1/JYiVJkqbVpMLcBcCVbf1K4DnDOiX5buAE4ANzmk8D7qyqfe3+B4GfWKE6JUmSptqkwtwJVbUHoN0eP79DkiOANwCXzdu0C/iOJBuTrGEQBB8/6oGSbEoym2R23759o7pJkiR1ac1K7TjJB4ETh2x6xSJ3cQnwvqr6bJKHGqvqviQvBq4G9gMfZnC0bqiq2gpsBZiZmalFPrYkSVIXVizMVdU5o7YluTfJhqrak2QDsHdIt+8HfijJJcAxwFFJ7q+qzVX1XuC9bV+bgAdXYAiSJElTb1KnWbcBF7X1i4D3zO9QVT9VVadU1UbgpcDbqmozQJLj2+1aBkfwrhhH0ZIkSdNmUmHucuDcJDuBc9t9kswkWUww+90ktwN/DVxeVXeuXKmSJEnTK1Wr5zKymZmZmp2dnXQZksYkyY6qmpl0HZK0kvwPEJIkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktSxiYS5JMcm2Z5kZ7tdO6Lfg0luasu2Oe2nJvlI+/qrkxw1vuolSZKmx5oJPe5m4NqqujzJ5nb/V4b0+8eqeuKQ9t8C/mdVXZVkC/BC4M3LVdzrt7yWq7/tDHYfcRL7H8q7AWq5HuIhoSgycuvBH3M561rq463MczL68cbxGEt9vPn9D7XecYx3KYbVs9gal/P9NNh2NP/Cj95/I2886ViYecEiapCkw1+qDj4pJ7kWeENVvW9O29aq2vSwHjT5JPCUqtqTZANwQ1X92yH97q+qY+a1BdgHnFhVDyT5fuBVVfWMgz3uzMxMzc7OLtjn9Vtey29/+3kURy5lSJLG6Ce+eh1vPOm4gwa6JDuqamY8VUnSZCz2yNypwK8k+Z6q+vXWdigT5AlVtQegBbrjR/Q7Osks8ABweVX9P+A44EtV9UDrcw9w0qgHSrIJ2ARwyimnHLSwO9d+C8URkFFHyyRNVBV/dcyZcMdWj85JEosPc18Cng78XpL3Aj99sC9I8kHgxCGbXrH48jilqnYnOQ24LsmtwFeG9Bt5eLGqtgJbYXBk7mAP+O33fY2s30+VYU6aVj94/+1wxgWTLkOSpsJiw1zakbBLkrwA+Ctg6IcWDqiqc0buLLk3yYY5p1n3jtjH7nZ7d5IbgLOAdwGPS7Km1XQysHuR4zioyy5+OXjN3CL7eM2c18wt9WsX6rOUa+YOfopVklaLxYa5LQdWquoP2xGyXziEx90GXARc3m7fM79D+4Tr16rqn5OsA84GXldVleR64LnAVaO+/lBcdvHLuWw5dyhpGf3ApAuQpKmyqD9NUlX/e979HVX1c4fwuJcD5ybZCZzb7pNkJskVrc8ZwGySm4HrGVwzd3vb9ivAf02yi8E1dG85hFokSZK6tahPsx4uFvNpVkmHDz/NKmk18D9ASJIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscmEuaSHJtke5Kd7XbtiH4PJrmpLdvmtF+aZFeSSrJufJVLkiRNl0kdmdsMXFtVpwPXtvvD/GNVPbEtz57T/tfAOcBnVrhOSZKkqTapMHcBcGVbvxJ4zlK+uKo+XlWfXu6iJEmSejOpMHdCVe0BaLfHj+h3dJLZJDcmWVLgOyDJpraP2X379j3ceiVJkqbSmpXacZIPAicO2fSKJezmlKraneQ04Lokt1bVXUupo6q2AlsBZmZmailfK0mSNO1WLMxV1TmjtiW5N8mGqtqTZAOwd8Q+drfbu5PcAJwFLCnMSZIkHc4mdZp1G3BRW78IeM/8DknWJnlkW18HnA3cPrYKJUmSOjCpMHc5cG6SncC57T5JZpJc0fqcAcwmuRm4Hri8qm5v/V6S5B7gZOCWOV8jSZK0qqRq9VxGNjMzU7Ozs5MuQ9KYJNlRVTOTrkOSVpL/AUKSJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6ZpiTJEnqmGFOkiSpY4Y5SZKkjhnmJEmSOmaYkyRJ6phhTpIkqWOGOUmSpI4Z5iRJkjpmmJMkSeqYYU6SJKljhjlJkqSOGeYkSZI6NpEwl+TYJNuT7Gy3a0f0ezDJTW3ZNqf97Uk+meS2JG9N8ojxVS9JkjQ9JnVkbjNwbVWdDlzb7g/zj1X1xLY8e07724HvAP4D8CjgRStarSRJ0pSaVJi7ALiyrV8JPGcpX1xV76sG+Chw8jLXJ0mS1IVJhbkTqmoPQLs9fkS/o5PMJrkxyTcFvnZ69fnA+0c9UJJNbR+z+/btW47aJUmSpsaaldpxkg8CJw7Z9Iol7OaUqtqd5DTguiS3VtVdc7a/CfhQVf3lqB1U1VZgK8DMzEwt4bElSZKm3oqFuao6Z9S2JPcm2VBVe5JsAPaO2Mfudnt3khuAs4C72j5+DVgP/Pxy1y5JktSLSZ1m3QZc1NYvAt4zv0OStUke2dbXAWcDt7f7LwKeATyvqvaPpWJJkqQpNKkwdzlwbpJq5tvSAAAFzklEQVSdwLntPklmklzR+pwBzCa5GbgeuLyqbm/btgAnAH/T/mzJK8dbviRJ0nRYsdOsC6mqfwCePqR9lvZnRqrqwwz+9Miwr59I3ZIkSdPG/wAhSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkdM8xJkiR1zDAnSZLUMcOcJElSxwxzkiRJHTPMSZIkdcwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktSxVNWkaxibJPuAzyyy+zrgCytYzjRz7KvT4Tj2J1TV+kkXIUkraVWFuaVIMltVM5OuYxIcu2OXJPXD06ySJEkdM8xJkiR1zDA32tZJFzBBjn11Ws1jl6Ruec2cJElSxzwyJ0mS1DHDnCRJUsdWVZhL8tYke5PcNqftVUk+l+Smtpw/Z9vLkuxK8skkz5jT/szWtivJ5nGPY6mSPD7J9UnuSPKJJL/Y2o9Nsj3Jzna7trUnye+18d2S5Elz9nVR678zyUWTGtNiLTD21fC6H53ko0lubmP/9dZ+apKPtNfw6iRHtfZHtvu72vaNc/Y19DmRJE2Bqlo1C/DDwJOA2+a0vQp46ZC+ZwI3A48ETgXuAo5sy13AacBRrc+Zkx7bQca9AXhSW38McGcb3+uAza19M/Bbbf184M+AAN8HfKS1Hwvc3W7XtvW1kx7fwxz7anjdAxzT1h8BfKS9ntcAF7b2LcCL2/olwJa2fiFw9ULPyaTH5+Li4uIyWFbVkbmq+hDwxUV2vwC4qqr+uao+BewCntyWXVV1d1X9C3BV6zu1qmpPVf1tW/8qcAdwEoO6r2zdrgSe09YvAN5WAzcCj0uyAXgGsL2qvlhV9wHbgWeOcShLtsDYRzmcXveqqvvb3Ue0pYCnAe9s7fNf9wPvh3cCT08SRj8nkqQpsKrC3AIubacT33rgVCODH/ifndPnntY2qr0L7dTZWQyO0pxQVXtgEHqA41u31TB2WAWve5Ijk9wE7GUQvu8CvlRVD7Quc8fx0Bjb9i8Dx9Hp2CVptTDMwZuBbwOeCOwB3tDaM6RvLdA+9ZIcA7wL+KWq+spCXYe0HW5jXxWve1U9WFVPBE5mcDTtjGHd2u1hNXZJWi1WfZirqnvbD7z9wB/wr6eP7gEeP6frycDuBdqnWpJHMAgzb6+qP2nN97bTp7Tbva39sB/7anndD6iqLwE3MLhm7nFJ1rRNc8fx0Bjb9m9lcFlC12OXpMPdqg9zB8JM8+PAgU+6bgMubJ/wOxU4Hfgo8DHg9PaJwKMYXCi+bZw1L1W77uktwB1V9dtzNm0DDnwi9SLgPXPaf6Z9qvX7gC+307B/DpyXZG07LXlea5tao8a+Sl739Uke19YfBZzD4JrB64Hntm7zX/cD74fnAtdVVTH6OZEkTYE1B+9y+Ejyx8BTgHVJ7gF+DXhKkicyOG30aeDnAarqE0muAW4HHgB+oaoebPu5lEGIORJ4a1V9YsxDWaqzgecDt7brpwBeDlwOXJPkhcDfA/+pbXsfg0+07gK+BvwsQFV9MclrGAQbgFdX1WI/UDIpo8b+vFXwum8ArkxyJINf3K6pqj9NcjtwVZLfAD7OIOzSbv8oyS4GR+QuhIWfE0nS5PnvvCRJkjq26k+zSpIk9cwwJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHM6bCX5niS3JDk6yaOTfCLJv590XZIkLSf/aLAOa+2/HBwNPAq4p6p+c8IlSZK0rAxzOqy1/6P6MeCfgB/w31BJkg43nmbV4e5Y4BjgMQyO0EmSdFjxyJwOa0m2AVcBpwIbqurSCZckSdKyWjPpAqSVkuRngAeq6h1JjgQ+nORpVXXdpGuTJGm5eGROkiSpY14zJ0mS1DHDnCRJUscMc5IkSR0zzEmSJHXMMCdJktQxw5wkSVLHDHOSJEkd+//ydLMlwBBpIAAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
-    "_ = zy_axes.plot(z, y, '.')\n",
-    "_ = zy_axes.set_xlabel('z')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/reverse simulation clock.ipynb b/notebooks/reverse simulation clock.ipynb
deleted file mode 100644
index 2d5d85a..0000000
--- a/notebooks/reverse simulation clock.ipynb	
+++ /dev/null
@@ -1,7353 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simclock import ReverseSimulationClock\n",
-    "\n",
-    "time_step_size = 5  # seconds\n",
-    "total_simulation_time = 10*3600  # hours to seconds\n",
-    "\n",
-    "simulation_clock = ReverseSimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "36000"
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "current_time_index, curren_time = simulation_clock.increment_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "35995"
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "7198\n",
-      "7197\n",
-      "7196\n",
-      "7195\n",
-      "7194\n",
-      "7193\n",
-      "7192\n",
-      "7191\n",
-      "7190\n",
-      "7189\n",
-      "7188\n",
-      "7187\n",
-      "7186\n",
-      "7185\n",
-      "7184\n",
-      "7183\n",
-      "7182\n",
-      "7181\n",
-      "7180\n",
-      "7179\n",
-      "7178\n",
-      "7177\n",
-      "7176\n",
-      "7175\n",
-      "7174\n",
-      "7173\n",
-      "7172\n",
-      "7171\n",
-      "7170\n",
-      "7169\n",
-      "7168\n",
-      "7167\n",
-      "7166\n",
-      "7165\n",
-      "7164\n",
-      "7163\n",
-      "7162\n",
-      "7161\n",
-      "7160\n",
-      "7159\n",
-      "7158\n",
-      "7157\n",
-      "7156\n",
-      "7155\n",
-      "7154\n",
-      "7153\n",
-      "7152\n",
-      "7151\n",
-      "7150\n",
-      "7149\n",
-      "7148\n",
-      "7147\n",
-      "7146\n",
-      "7145\n",
-      "7144\n",
-      "7143\n",
-      "7142\n",
-      "7141\n",
-      "7140\n",
-      "7139\n",
-      "7138\n",
-      "7137\n",
-      "7136\n",
-      "7135\n",
-      "7134\n",
-      "7133\n",
-      "7132\n",
-      "7131\n",
-      "7130\n",
-      "7129\n",
-      "7128\n",
-      "7127\n",
-      "7126\n",
-      "7125\n",
-      "7124\n",
-      "7123\n",
-      "7122\n",
-      "7121\n",
-      "7120\n",
-      "7119\n",
-      "7118\n",
-      "7117\n",
-      "7116\n",
-      "7115\n",
-      "7114\n",
-      "7113\n",
-      "7112\n",
-      "7111\n",
-      "7110\n",
-      "7109\n",
-      "7108\n",
-      "7107\n",
-      "7106\n",
-      "7105\n",
-      "7104\n",
-      "7103\n",
-      "7102\n",
-      "7101\n",
-      "7100\n",
-      "7099\n",
-      "7098\n",
-      "7097\n",
-      "7096\n",
-      "7095\n",
-      "7094\n",
-      "7093\n",
-      "7092\n",
-      "7091\n",
-      "7090\n",
-      "7089\n",
-      "7088\n",
-      "7087\n",
-      "7086\n",
-      "7085\n",
-      "7084\n",
-      "7083\n",
-      "7082\n",
-      "7081\n",
-      "7080\n",
-      "7079\n",
-      "7078\n",
-      "7077\n",
-      "7076\n",
-      "7075\n",
-      "7074\n",
-      "7073\n",
-      "7072\n",
-      "7071\n",
-      "7070\n",
-      "7069\n",
-      "7068\n",
-      "7067\n",
-      "7066\n",
-      "7065\n",
-      "7064\n",
-      "7063\n",
-      "7062\n",
-      "7061\n",
-      "7060\n",
-      "7059\n",
-      "7058\n",
-      "7057\n",
-      "7056\n",
-      "7055\n",
-      "7054\n",
-      "7053\n",
-      "7052\n",
-      "7051\n",
-      "7050\n",
-      "7049\n",
-      "7048\n",
-      "7047\n",
-      "7046\n",
-      "7045\n",
-      "7044\n",
-      "7043\n",
-      "7042\n",
-      "7041\n",
-      "7040\n",
-      "7039\n",
-      "7038\n",
-      "7037\n",
-      "7036\n",
-      "7035\n",
-      "7034\n",
-      "7033\n",
-      "7032\n",
-      "7031\n",
-      "7030\n",
-      "7029\n",
-      "7028\n",
-      "7027\n",
-      "7026\n",
-      "7025\n",
-      "7024\n",
-      "7023\n",
-      "7022\n",
-      "7021\n",
-      "7020\n",
-      "7019\n",
-      "7018\n",
-      "7017\n",
-      "7016\n",
-      "7015\n",
-      "7014\n",
-      "7013\n",
-      "7012\n",
-      "7011\n",
-      "7010\n",
-      "7009\n",
-      "7008\n",
-      "7007\n",
-      "7006\n",
-      "7005\n",
-      "7004\n",
-      "7003\n",
-      "7002\n",
-      "7001\n",
-      "7000\n",
-      "6999\n",
-      "6998\n",
-      "6997\n",
-      "6996\n",
-      "6995\n",
-      "6994\n",
-      "6993\n",
-      "6992\n",
-      "6991\n",
-      "6990\n",
-      "6989\n",
-      "6988\n",
-      "6987\n",
-      "6986\n",
-      "6985\n",
-      "6984\n",
-      "6983\n",
-      "6982\n",
-      "6981\n",
-      "6980\n",
-      "6979\n",
-      "6978\n",
-      "6977\n",
-      "6976\n",
-      "6975\n",
-      "6974\n",
-      "6973\n",
-      "6972\n",
-      "6971\n",
-      "6970\n",
-      "6969\n",
-      "6968\n",
-      "6967\n",
-      "6966\n",
-      "6965\n",
-      "6964\n",
-      "6963\n",
-      "6962\n",
-      "6961\n",
-      "6960\n",
-      "6959\n",
-      "6958\n",
-      "6957\n",
-      "6956\n",
-      "6955\n",
-      "6954\n",
-      "6953\n",
-      "6952\n",
-      "6951\n",
-      "6950\n",
-      "6949\n",
-      "6948\n",
-      "6947\n",
-      "6946\n",
-      "6945\n",
-      "6944\n",
-      "6943\n",
-      "6942\n",
-      "6941\n",
-      "6940\n",
-      "6939\n",
-      "6938\n",
-      "6937\n",
-      "6936\n",
-      "6935\n",
-      "6934\n",
-      "6933\n",
-      "6932\n",
-      "6931\n",
-      "6930\n",
-      "6929\n",
-      "6928\n",
-      "6927\n",
-      "6926\n",
-      "6925\n",
-      "6924\n",
-      "6923\n",
-      "6922\n",
-      "6921\n",
-      "6920\n",
-      "6919\n",
-      "6918\n",
-      "6917\n",
-      "6916\n",
-      "6915\n",
-      "6914\n",
-      "6913\n",
-      "6912\n",
-      "6911\n",
-      "6910\n",
-      "6909\n",
-      "6908\n",
-      "6907\n",
-      "6906\n",
-      "6905\n",
-      "6904\n",
-      "6903\n",
-      "6902\n",
-      "6901\n",
-      "6900\n",
-      "6899\n",
-      "6898\n",
-      "6897\n",
-      "6896\n",
-      "6895\n",
-      "6894\n",
-      "6893\n",
-      "6892\n",
-      "6891\n",
-      "6890\n",
-      "6889\n",
-      "6888\n",
-      "6887\n",
-      "6886\n",
-      "6885\n",
-      "6884\n",
-      "6883\n",
-      "6882\n",
-      "6881\n",
-      "6880\n",
-      "6879\n",
-      "6878\n",
-      "6877\n",
-      "6876\n",
-      "6875\n",
-      "6874\n",
-      "6873\n",
-      "6872\n",
-      "6871\n",
-      "6870\n",
-      "6869\n",
-      "6868\n",
-      "6867\n",
-      "6866\n",
-      "6865\n",
-      "6864\n",
-      "6863\n",
-      "6862\n",
-      "6861\n",
-      "6860\n",
-      "6859\n",
-      "6858\n",
-      "6857\n",
-      "6856\n",
-      "6855\n",
-      "6854\n",
-      "6853\n",
-      "6852\n",
-      "6851\n",
-      "6850\n",
-      "6849\n",
-      "6848\n",
-      "6847\n",
-      "6846\n",
-      "6845\n",
-      "6844\n",
-      "6843\n",
-      "6842\n",
-      "6841\n",
-      "6840\n",
-      "6839\n",
-      "6838\n",
-      "6837\n",
-      "6836\n",
-      "6835\n",
-      "6834\n",
-      "6833\n",
-      "6832\n",
-      "6831\n",
-      "6830\n",
-      "6829\n",
-      "6828\n",
-      "6827\n",
-      "6826\n",
-      "6825\n",
-      "6824\n",
-      "6823\n",
-      "6822\n",
-      "6821\n",
-      "6820\n",
-      "6819\n",
-      "6818\n",
-      "6817\n",
-      "6816\n",
-      "6815\n",
-      "6814\n",
-      "6813\n",
-      "6812\n",
-      "6811\n",
-      "6810\n",
-      "6809\n",
-      "6808\n",
-      "6807\n",
-      "6806\n",
-      "6805\n",
-      "6804\n",
-      "6803\n",
-      "6802\n",
-      "6801\n",
-      "6800\n",
-      "6799\n",
-      "6798\n",
-      "6797\n",
-      "6796\n",
-      "6795\n",
-      "6794\n",
-      "6793\n",
-      "6792\n",
-      "6791\n",
-      "6790\n",
-      "6789\n",
-      "6788\n",
-      "6787\n",
-      "6786\n",
-      "6785\n",
-      "6784\n",
-      "6783\n",
-      "6782\n",
-      "6781\n",
-      "6780\n",
-      "6779\n",
-      "6778\n",
-      "6777\n",
-      "6776\n",
-      "6775\n",
-      "6774\n",
-      "6773\n",
-      "6772\n",
-      "6771\n",
-      "6770\n",
-      "6769\n",
-      "6768\n",
-      "6767\n",
-      "6766\n",
-      "6765\n",
-      "6764\n",
-      "6763\n",
-      "6762\n",
-      "6761\n",
-      "6760\n",
-      "6759\n",
-      "6758\n",
-      "6757\n",
-      "6756\n",
-      "6755\n",
-      "6754\n",
-      "6753\n",
-      "6752\n",
-      "6751\n",
-      "6750\n",
-      "6749\n",
-      "6748\n",
-      "6747\n",
-      "6746\n",
-      "6745\n",
-      "6744\n",
-      "6743\n",
-      "6742\n",
-      "6741\n",
-      "6740\n",
-      "6739\n",
-      "6738\n",
-      "6737\n",
-      "6736\n",
-      "6735\n",
-      "6734\n",
-      "6733\n",
-      "6732\n",
-      "6731\n",
-      "6730\n",
-      "6729\n",
-      "6728\n",
-      "6727\n",
-      "6726\n",
-      "6725\n",
-      "6724\n",
-      "6723\n",
-      "6722\n",
-      "6721\n",
-      "6720\n",
-      "6719\n",
-      "6718\n",
-      "6717\n",
-      "6716\n",
-      "6715\n",
-      "6714\n",
-      "6713\n",
-      "6712\n",
-      "6711\n",
-      "6710\n",
-      "6709\n",
-      "6708\n",
-      "6707\n",
-      "6706\n",
-      "6705\n",
-      "6704\n",
-      "6703\n",
-      "6702\n",
-      "6701\n",
-      "6700\n",
-      "6699\n",
-      "6698\n",
-      "6697\n",
-      "6696\n",
-      "6695\n",
-      "6694\n",
-      "6693\n",
-      "6692\n",
-      "6691\n",
-      "6690\n",
-      "6689\n",
-      "6688\n",
-      "6687\n",
-      "6686\n",
-      "6685\n",
-      "6684\n",
-      "6683\n",
-      "6682\n",
-      "6681\n",
-      "6680\n",
-      "6679\n",
-      "6678\n",
-      "6677\n",
-      "6676\n",
-      "6675\n",
-      "6674\n",
-      "6673\n",
-      "6672\n",
-      "6671\n",
-      "6670\n",
-      "6669\n",
-      "6668\n",
-      "6667\n",
-      "6666\n",
-      "6665\n",
-      "6664\n",
-      "6663\n",
-      "6662\n",
-      "6661\n",
-      "6660\n",
-      "6659\n",
-      "6658\n",
-      "6657\n",
-      "6656\n",
-      "6655\n",
-      "6654\n",
-      "6653\n",
-      "6652\n",
-      "6651\n",
-      "6650\n",
-      "6649\n",
-      "6648\n",
-      "6647\n",
-      "6646\n",
-      "6645\n",
-      "6644\n",
-      "6643\n",
-      "6642\n",
-      "6641\n",
-      "6640\n",
-      "6639\n",
-      "6638\n",
-      "6637\n",
-      "6636\n",
-      "6635\n",
-      "6634\n",
-      "6633\n",
-      "6632\n",
-      "6631\n",
-      "6630\n",
-      "6629\n",
-      "6628\n",
-      "6627\n",
-      "6626\n",
-      "6625\n",
-      "6624\n",
-      "6623\n",
-      "6622\n",
-      "6621\n",
-      "6620\n",
-      "6619\n",
-      "6618\n",
-      "6617\n",
-      "6616\n",
-      "6615\n",
-      "6614\n",
-      "6613\n",
-      "6612\n",
-      "6611\n",
-      "6610\n",
-      "6609\n",
-      "6608\n",
-      "6607\n",
-      "6606\n",
-      "6605\n",
-      "6604\n",
-      "6603\n",
-      "6602\n",
-      "6601\n",
-      "6600\n",
-      "6599\n",
-      "6598\n",
-      "6597\n",
-      "6596\n",
-      "6595\n",
-      "6594\n",
-      "6593\n",
-      "6592\n",
-      "6591\n",
-      "6590\n",
-      "6589\n",
-      "6588\n",
-      "6587\n",
-      "6586\n",
-      "6585\n",
-      "6584\n",
-      "6583\n",
-      "6582\n",
-      "6581\n",
-      "6580\n",
-      "6579\n",
-      "6578\n",
-      "6577\n",
-      "6576\n",
-      "6575\n",
-      "6574\n",
-      "6573\n",
-      "6572\n",
-      "6571\n",
-      "6570\n",
-      "6569\n",
-      "6568\n",
-      "6567\n",
-      "6566\n",
-      "6565\n",
-      "6564\n",
-      "6563\n",
-      "6562\n",
-      "6561\n",
-      "6560\n",
-      "6559\n",
-      "6558\n",
-      "6557\n",
-      "6556\n",
-      "6555\n",
-      "6554\n",
-      "6553\n",
-      "6552\n",
-      "6551\n",
-      "6550\n",
-      "6549\n",
-      "6548\n",
-      "6547\n",
-      "6546\n",
-      "6545\n",
-      "6544\n",
-      "6543\n",
-      "6542\n",
-      "6541\n",
-      "6540\n",
-      "6539\n",
-      "6538\n",
-      "6537\n",
-      "6536\n",
-      "6535\n",
-      "6534\n",
-      "6533\n",
-      "6532\n",
-      "6531\n",
-      "6530\n",
-      "6529\n",
-      "6528\n",
-      "6527\n",
-      "6526\n",
-      "6525\n",
-      "6524\n",
-      "6523\n",
-      "6522\n",
-      "6521\n",
-      "6520\n",
-      "6519\n",
-      "6518\n",
-      "6517\n",
-      "6516\n",
-      "6515\n",
-      "6514\n",
-      "6513\n",
-      "6512\n",
-      "6511\n",
-      "6510\n",
-      "6509\n",
-      "6508\n",
-      "6507\n",
-      "6506\n",
-      "6505\n",
-      "6504\n",
-      "6503\n",
-      "6502\n",
-      "6501\n",
-      "6500\n",
-      "6499\n",
-      "6498\n",
-      "6497\n",
-      "6496\n",
-      "6495\n",
-      "6494\n",
-      "6493\n",
-      "6492\n",
-      "6491\n",
-      "6490\n",
-      "6489\n",
-      "6488\n",
-      "6487\n",
-      "6486\n",
-      "6485\n",
-      "6484\n",
-      "6483\n",
-      "6482\n",
-      "6481\n",
-      "6480\n",
-      "6479\n",
-      "6478\n",
-      "6477\n",
-      "6476\n",
-      "6475\n",
-      "6474\n",
-      "6473\n",
-      "6472\n",
-      "6471\n",
-      "6470\n",
-      "6469\n",
-      "6468\n",
-      "6467\n",
-      "6466\n",
-      "6465\n",
-      "6464\n",
-      "6463\n",
-      "6462\n",
-      "6461\n",
-      "6460\n",
-      "6459\n",
-      "6458\n",
-      "6457\n",
-      "6456\n",
-      "6455\n",
-      "6454\n",
-      "6453\n",
-      "6452\n",
-      "6451\n",
-      "6450\n",
-      "6449\n",
-      "6448\n",
-      "6447\n",
-      "6446\n",
-      "6445\n",
-      "6444\n",
-      "6443\n",
-      "6442\n",
-      "6441\n",
-      "6440\n",
-      "6439\n",
-      "6438\n",
-      "6437\n",
-      "6436\n",
-      "6435\n",
-      "6434\n",
-      "6433\n",
-      "6432\n",
-      "6431\n",
-      "6430\n",
-      "6429\n",
-      "6428\n",
-      "6427\n",
-      "6426\n",
-      "6425\n",
-      "6424\n",
-      "6423\n",
-      "6422\n",
-      "6421\n",
-      "6420\n",
-      "6419\n",
-      "6418\n",
-      "6417\n",
-      "6416\n",
-      "6415\n",
-      "6414\n",
-      "6413\n",
-      "6412\n",
-      "6411\n",
-      "6410\n",
-      "6409\n",
-      "6408\n",
-      "6407\n",
-      "6406\n",
-      "6405\n",
-      "6404\n",
-      "6403\n",
-      "6402\n",
-      "6401\n",
-      "6400\n",
-      "6399\n",
-      "6398\n",
-      "6397\n",
-      "6396\n",
-      "6395\n",
-      "6394\n",
-      "6393\n",
-      "6392\n",
-      "6391\n",
-      "6390\n",
-      "6389\n",
-      "6388\n",
-      "6387\n",
-      "6386\n",
-      "6385\n",
-      "6384\n",
-      "6383\n",
-      "6382\n",
-      "6381\n",
-      "6380\n",
-      "6379\n",
-      "6378\n",
-      "6377\n",
-      "6376\n",
-      "6375\n",
-      "6374\n",
-      "6373\n",
-      "6372\n",
-      "6371\n",
-      "6370\n",
-      "6369\n",
-      "6368\n",
-      "6367\n",
-      "6366\n",
-      "6365\n",
-      "6364\n",
-      "6363\n",
-      "6362\n",
-      "6361\n",
-      "6360\n",
-      "6359\n",
-      "6358\n",
-      "6357\n",
-      "6356\n",
-      "6355\n",
-      "6354\n",
-      "6353\n",
-      "6352\n",
-      "6351\n",
-      "6350\n",
-      "6349\n",
-      "6348\n",
-      "6347\n",
-      "6346\n",
-      "6345\n",
-      "6344\n",
-      "6343\n",
-      "6342\n",
-      "6341\n",
-      "6340\n",
-      "6339\n",
-      "6338\n",
-      "6337\n",
-      "6336\n",
-      "6335\n",
-      "6334\n",
-      "6333\n",
-      "6332\n",
-      "6331\n",
-      "6330\n",
-      "6329\n",
-      "6328\n",
-      "6327\n",
-      "6326\n",
-      "6325\n",
-      "6324\n",
-      "6323\n",
-      "6322\n",
-      "6321\n",
-      "6320\n",
-      "6319\n",
-      "6318\n",
-      "6317\n",
-      "6316\n",
-      "6315\n",
-      "6314\n",
-      "6313\n",
-      "6312\n",
-      "6311\n",
-      "6310\n",
-      "6309\n",
-      "6308\n",
-      "6307\n",
-      "6306\n",
-      "6305\n",
-      "6304\n",
-      "6303\n",
-      "6302\n",
-      "6301\n",
-      "6300\n",
-      "6299\n",
-      "6298\n",
-      "6297\n",
-      "6296\n",
-      "6295\n",
-      "6294\n",
-      "6293\n",
-      "6292\n",
-      "6291\n",
-      "6290\n",
-      "6289\n",
-      "6288\n",
-      "6287\n",
-      "6286\n",
-      "6285\n",
-      "6284\n",
-      "6283\n",
-      "6282\n",
-      "6281\n",
-      "6280\n",
-      "6279\n",
-      "6278\n",
-      "6277\n",
-      "6276\n",
-      "6275\n",
-      "6274\n",
-      "6273\n",
-      "6272\n",
-      "6271\n",
-      "6270\n",
-      "6269\n",
-      "6268\n",
-      "6267\n",
-      "6266\n",
-      "6265\n",
-      "6264\n",
-      "6263\n",
-      "6262\n",
-      "6261\n",
-      "6260\n",
-      "6259\n",
-      "6258\n",
-      "6257\n",
-      "6256\n",
-      "6255\n",
-      "6254\n",
-      "6253\n",
-      "6252\n",
-      "6251\n",
-      "6250\n",
-      "6249\n",
-      "6248\n",
-      "6247\n",
-      "6246\n",
-      "6245\n",
-      "6244\n",
-      "6243\n",
-      "6242\n",
-      "6241\n",
-      "6240\n",
-      "6239\n",
-      "6238\n",
-      "6237\n",
-      "6236\n",
-      "6235\n",
-      "6234\n",
-      "6233\n",
-      "6232\n",
-      "6231\n",
-      "6230\n",
-      "6229\n",
-      "6228\n",
-      "6227\n",
-      "6226\n",
-      "6225\n",
-      "6224\n",
-      "6223\n",
-      "6222\n",
-      "6221\n",
-      "6220\n",
-      "6219\n",
-      "6218\n",
-      "6217\n",
-      "6216\n",
-      "6215\n",
-      "6214\n",
-      "6213\n",
-      "6212\n",
-      "6211\n",
-      "6210\n",
-      "6209\n",
-      "6208\n",
-      "6207\n",
-      "6206\n",
-      "6205\n",
-      "6204\n",
-      "6203\n",
-      "6202\n",
-      "6201\n",
-      "6200\n",
-      "6199\n",
-      "6198\n",
-      "6197\n",
-      "6196\n",
-      "6195\n",
-      "6194\n",
-      "6193\n",
-      "6192\n",
-      "6191\n",
-      "6190\n",
-      "6189\n",
-      "6188\n",
-      "6187\n",
-      "6186\n",
-      "6185\n",
-      "6184\n",
-      "6183\n",
-      "6182\n",
-      "6181\n",
-      "6180\n",
-      "6179\n",
-      "6178\n",
-      "6177\n",
-      "6176\n",
-      "6175\n",
-      "6174\n",
-      "6173\n",
-      "6172\n",
-      "6171\n",
-      "6170\n",
-      "6169\n",
-      "6168\n",
-      "6167\n",
-      "6166\n",
-      "6165\n",
-      "6164\n",
-      "6163\n",
-      "6162\n",
-      "6161\n",
-      "6160\n",
-      "6159\n",
-      "6158\n",
-      "6157\n",
-      "6156\n",
-      "6155\n",
-      "6154\n",
-      "6153\n",
-      "6152\n",
-      "6151\n",
-      "6150\n",
-      "6149\n",
-      "6148\n",
-      "6147\n",
-      "6146\n",
-      "6145\n",
-      "6144\n",
-      "6143\n",
-      "6142\n",
-      "6141\n",
-      "6140\n",
-      "6139\n",
-      "6138\n",
-      "6137\n",
-      "6136\n",
-      "6135\n",
-      "6134\n",
-      "6133\n",
-      "6132\n",
-      "6131\n",
-      "6130\n",
-      "6129\n",
-      "6128\n",
-      "6127\n",
-      "6126\n",
-      "6125\n",
-      "6124\n",
-      "6123\n",
-      "6122\n",
-      "6121\n",
-      "6120\n",
-      "6119\n",
-      "6118\n",
-      "6117\n",
-      "6116\n",
-      "6115\n",
-      "6114\n",
-      "6113\n",
-      "6112\n",
-      "6111\n",
-      "6110\n",
-      "6109\n",
-      "6108\n",
-      "6107\n",
-      "6106\n",
-      "6105\n",
-      "6104\n",
-      "6103\n",
-      "6102\n",
-      "6101\n",
-      "6100\n",
-      "6099\n",
-      "6098\n",
-      "6097\n",
-      "6096\n",
-      "6095\n",
-      "6094\n",
-      "6093\n",
-      "6092\n",
-      "6091\n",
-      "6090\n",
-      "6089\n",
-      "6088\n",
-      "6087\n",
-      "6086\n",
-      "6085\n",
-      "6084\n",
-      "6083\n",
-      "6082\n",
-      "6081\n",
-      "6080\n",
-      "6079\n",
-      "6078\n",
-      "6077\n",
-      "6076\n",
-      "6075\n",
-      "6074\n",
-      "6073\n",
-      "6072\n",
-      "6071\n",
-      "6070\n",
-      "6069\n",
-      "6068\n",
-      "6067\n",
-      "6066\n",
-      "6065\n",
-      "6064\n",
-      "6063\n",
-      "6062\n",
-      "6061\n",
-      "6060\n",
-      "6059\n",
-      "6058\n",
-      "6057\n",
-      "6056\n",
-      "6055\n",
-      "6054\n",
-      "6053\n",
-      "6052\n",
-      "6051\n",
-      "6050\n",
-      "6049\n",
-      "6048\n",
-      "6047\n",
-      "6046\n",
-      "6045\n",
-      "6044\n",
-      "6043\n",
-      "6042\n",
-      "6041\n",
-      "6040\n",
-      "6039\n",
-      "6038\n",
-      "6037\n",
-      "6036\n",
-      "6035\n",
-      "6034\n",
-      "6033\n",
-      "6032\n",
-      "6031\n",
-      "6030\n",
-      "6029\n",
-      "6028\n",
-      "6027\n",
-      "6026\n",
-      "6025\n",
-      "6024\n",
-      "6023\n",
-      "6022\n",
-      "6021\n",
-      "6020\n",
-      "6019\n",
-      "6018\n",
-      "6017\n",
-      "6016\n",
-      "6015\n",
-      "6014\n",
-      "6013\n",
-      "6012\n",
-      "6011\n",
-      "6010\n",
-      "6009\n",
-      "6008\n",
-      "6007\n",
-      "6006\n",
-      "6005\n",
-      "6004\n",
-      "6003\n",
-      "6002\n",
-      "6001\n",
-      "6000\n",
-      "5999\n",
-      "5998\n",
-      "5997\n",
-      "5996\n",
-      "5995\n",
-      "5994\n",
-      "5993\n",
-      "5992\n",
-      "5991\n",
-      "5990\n",
-      "5989\n",
-      "5988\n",
-      "5987\n",
-      "5986\n",
-      "5985\n",
-      "5984\n",
-      "5983\n",
-      "5982\n",
-      "5981\n",
-      "5980\n",
-      "5979\n",
-      "5978\n",
-      "5977\n",
-      "5976\n",
-      "5975\n",
-      "5974\n",
-      "5973\n",
-      "5972\n",
-      "5971\n",
-      "5970\n",
-      "5969\n",
-      "5968\n",
-      "5967\n",
-      "5966\n",
-      "5965\n",
-      "5964\n",
-      "5963\n",
-      "5962\n",
-      "5961\n",
-      "5960\n",
-      "5959\n",
-      "5958\n",
-      "5957\n",
-      "5956\n",
-      "5955\n",
-      "5954\n",
-      "5953\n",
-      "5952\n",
-      "5951\n",
-      "5950\n",
-      "5949\n",
-      "5948\n",
-      "5947\n",
-      "5946\n",
-      "5945\n",
-      "5944\n",
-      "5943\n",
-      "5942\n",
-      "5941\n",
-      "5940\n",
-      "5939\n",
-      "5938\n",
-      "5937\n",
-      "5936\n",
-      "5935\n",
-      "5934\n",
-      "5933\n",
-      "5932\n",
-      "5931\n",
-      "5930\n",
-      "5929\n",
-      "5928\n",
-      "5927\n",
-      "5926\n",
-      "5925\n",
-      "5924\n",
-      "5923\n",
-      "5922\n",
-      "5921\n",
-      "5920\n",
-      "5919\n",
-      "5918\n",
-      "5917\n",
-      "5916\n",
-      "5915\n",
-      "5914\n",
-      "5913\n",
-      "5912\n",
-      "5911\n",
-      "5910\n",
-      "5909\n",
-      "5908\n",
-      "5907\n",
-      "5906\n",
-      "5905\n",
-      "5904\n",
-      "5903\n",
-      "5902\n",
-      "5901\n",
-      "5900\n",
-      "5899\n",
-      "5898\n",
-      "5897\n",
-      "5896\n",
-      "5895\n",
-      "5894\n",
-      "5893\n",
-      "5892\n",
-      "5891\n",
-      "5890\n",
-      "5889\n",
-      "5888\n",
-      "5887\n",
-      "5886\n",
-      "5885\n",
-      "5884\n",
-      "5883\n",
-      "5882\n",
-      "5881\n",
-      "5880\n",
-      "5879\n",
-      "5878\n",
-      "5877\n",
-      "5876\n",
-      "5875\n",
-      "5874\n",
-      "5873\n",
-      "5872\n",
-      "5871\n",
-      "5870\n",
-      "5869\n",
-      "5868\n",
-      "5867\n",
-      "5866\n",
-      "5865\n",
-      "5864\n",
-      "5863\n",
-      "5862\n",
-      "5861\n",
-      "5860\n",
-      "5859\n",
-      "5858\n",
-      "5857\n",
-      "5856\n",
-      "5855\n",
-      "5854\n",
-      "5853\n",
-      "5852\n",
-      "5851\n",
-      "5850\n",
-      "5849\n",
-      "5848\n",
-      "5847\n",
-      "5846\n",
-      "5845\n",
-      "5844\n",
-      "5843\n",
-      "5842\n",
-      "5841\n",
-      "5840\n",
-      "5839\n",
-      "5838\n",
-      "5837\n",
-      "5836\n",
-      "5835\n",
-      "5834\n",
-      "5833\n",
-      "5832\n",
-      "5831\n",
-      "5830\n",
-      "5829\n",
-      "5828\n",
-      "5827\n",
-      "5826\n",
-      "5825\n",
-      "5824\n",
-      "5823\n",
-      "5822\n",
-      "5821\n",
-      "5820\n",
-      "5819\n",
-      "5818\n",
-      "5817\n",
-      "5816\n",
-      "5815\n",
-      "5814\n",
-      "5813\n",
-      "5812\n",
-      "5811\n",
-      "5810\n",
-      "5809\n",
-      "5808\n",
-      "5807\n",
-      "5806\n",
-      "5805\n",
-      "5804\n",
-      "5803\n",
-      "5802\n",
-      "5801\n",
-      "5800\n",
-      "5799\n",
-      "5798\n",
-      "5797\n",
-      "5796\n",
-      "5795\n",
-      "5794\n",
-      "5793\n",
-      "5792\n",
-      "5791\n",
-      "5790\n",
-      "5789\n",
-      "5788\n",
-      "5787\n",
-      "5786\n",
-      "5785\n",
-      "5784\n",
-      "5783\n",
-      "5782\n",
-      "5781\n",
-      "5780\n",
-      "5779\n",
-      "5778\n",
-      "5777\n",
-      "5776\n",
-      "5775\n",
-      "5774\n",
-      "5773\n",
-      "5772\n",
-      "5771\n",
-      "5770\n",
-      "5769\n",
-      "5768\n",
-      "5767\n",
-      "5766\n",
-      "5765\n",
-      "5764\n",
-      "5763\n",
-      "5762\n",
-      "5761\n",
-      "5760\n",
-      "5759\n",
-      "5758\n",
-      "5757\n",
-      "5756\n",
-      "5755\n",
-      "5754\n",
-      "5753\n",
-      "5752\n",
-      "5751\n",
-      "5750\n",
-      "5749\n",
-      "5748\n",
-      "5747\n",
-      "5746\n",
-      "5745\n",
-      "5744\n",
-      "5743\n",
-      "5742\n",
-      "5741\n",
-      "5740\n",
-      "5739\n",
-      "5738\n",
-      "5737\n",
-      "5736\n",
-      "5735\n",
-      "5734\n",
-      "5733\n",
-      "5732\n",
-      "5731\n",
-      "5730\n",
-      "5729\n",
-      "5728\n",
-      "5727\n",
-      "5726\n",
-      "5725\n",
-      "5724\n",
-      "5723\n",
-      "5722\n",
-      "5721\n",
-      "5720\n",
-      "5719\n",
-      "5718\n",
-      "5717\n",
-      "5716\n",
-      "5715\n",
-      "5714\n",
-      "5713\n",
-      "5712\n",
-      "5711\n",
-      "5710\n",
-      "5709\n",
-      "5708\n",
-      "5707\n",
-      "5706\n",
-      "5705\n",
-      "5704\n",
-      "5703\n",
-      "5702\n",
-      "5701\n",
-      "5700\n",
-      "5699\n",
-      "5698\n",
-      "5697\n",
-      "5696\n",
-      "5695\n",
-      "5694\n",
-      "5693\n",
-      "5692\n",
-      "5691\n",
-      "5690\n",
-      "5689\n",
-      "5688\n",
-      "5687\n",
-      "5686\n",
-      "5685\n",
-      "5684\n",
-      "5683\n",
-      "5682\n",
-      "5681\n",
-      "5680\n",
-      "5679\n",
-      "5678\n",
-      "5677\n",
-      "5676\n",
-      "5675\n",
-      "5674\n",
-      "5673\n",
-      "5672\n",
-      "5671\n",
-      "5670\n",
-      "5669\n",
-      "5668\n",
-      "5667\n",
-      "5666\n",
-      "5665\n",
-      "5664\n",
-      "5663\n",
-      "5662\n",
-      "5661\n",
-      "5660\n",
-      "5659\n",
-      "5658\n",
-      "5657\n",
-      "5656\n",
-      "5655\n",
-      "5654\n",
-      "5653\n",
-      "5652\n",
-      "5651\n",
-      "5650\n",
-      "5649\n",
-      "5648\n",
-      "5647\n",
-      "5646\n",
-      "5645\n",
-      "5644\n",
-      "5643\n",
-      "5642\n",
-      "5641\n",
-      "5640\n",
-      "5639\n",
-      "5638\n",
-      "5637\n",
-      "5636\n",
-      "5635\n",
-      "5634\n",
-      "5633\n",
-      "5632\n",
-      "5631\n",
-      "5630\n",
-      "5629\n",
-      "5628\n",
-      "5627\n",
-      "5626\n",
-      "5625\n",
-      "5624\n",
-      "5623\n",
-      "5622\n",
-      "5621\n",
-      "5620\n",
-      "5619\n",
-      "5618\n",
-      "5617\n",
-      "5616\n",
-      "5615\n",
-      "5614\n",
-      "5613\n",
-      "5612\n",
-      "5611\n",
-      "5610\n",
-      "5609\n",
-      "5608\n",
-      "5607\n",
-      "5606\n",
-      "5605\n",
-      "5604\n",
-      "5603\n",
-      "5602\n",
-      "5601\n",
-      "5600\n",
-      "5599\n",
-      "5598\n",
-      "5597\n",
-      "5596\n",
-      "5595\n",
-      "5594\n",
-      "5593\n",
-      "5592\n",
-      "5591\n",
-      "5590\n",
-      "5589\n",
-      "5588\n",
-      "5587\n",
-      "5586\n",
-      "5585\n",
-      "5584\n",
-      "5583\n",
-      "5582\n",
-      "5581\n",
-      "5580\n",
-      "5579\n",
-      "5578\n",
-      "5577\n",
-      "5576\n",
-      "5575\n",
-      "5574\n",
-      "5573\n",
-      "5572\n",
-      "5571\n",
-      "5570\n",
-      "5569\n",
-      "5568\n",
-      "5567\n",
-      "5566\n",
-      "5565\n",
-      "5564\n",
-      "5563\n",
-      "5562\n",
-      "5561\n",
-      "5560\n",
-      "5559\n",
-      "5558\n",
-      "5557\n",
-      "5556\n",
-      "5555\n",
-      "5554\n",
-      "5553\n",
-      "5552\n",
-      "5551\n",
-      "5550\n",
-      "5549\n",
-      "5548\n",
-      "5547\n",
-      "5546\n",
-      "5545\n",
-      "5544\n",
-      "5543\n",
-      "5542\n",
-      "5541\n",
-      "5540\n",
-      "5539\n",
-      "5538\n",
-      "5537\n",
-      "5536\n",
-      "5535\n",
-      "5534\n",
-      "5533\n",
-      "5532\n",
-      "5531\n",
-      "5530\n",
-      "5529\n",
-      "5528\n",
-      "5527\n",
-      "5526\n",
-      "5525\n",
-      "5524\n",
-      "5523\n",
-      "5522\n",
-      "5521\n",
-      "5520\n",
-      "5519\n",
-      "5518\n",
-      "5517\n",
-      "5516\n",
-      "5515\n",
-      "5514\n",
-      "5513\n",
-      "5512\n",
-      "5511\n",
-      "5510\n",
-      "5509\n",
-      "5508\n",
-      "5507\n",
-      "5506\n",
-      "5505\n",
-      "5504\n",
-      "5503\n",
-      "5502\n",
-      "5501\n",
-      "5500\n",
-      "5499\n",
-      "5498\n",
-      "5497\n",
-      "5496\n",
-      "5495\n",
-      "5494\n",
-      "5493\n",
-      "5492\n",
-      "5491\n",
-      "5490\n",
-      "5489\n",
-      "5488\n",
-      "5487\n",
-      "5486\n",
-      "5485\n",
-      "5484\n",
-      "5483\n",
-      "5482\n",
-      "5481\n",
-      "5480\n",
-      "5479\n",
-      "5478\n",
-      "5477\n",
-      "5476\n",
-      "5475\n",
-      "5474\n",
-      "5473\n",
-      "5472\n",
-      "5471\n",
-      "5470\n",
-      "5469\n",
-      "5468\n",
-      "5467\n",
-      "5466\n",
-      "5465\n",
-      "5464\n",
-      "5463\n",
-      "5462\n",
-      "5461\n",
-      "5460\n",
-      "5459\n",
-      "5458\n",
-      "5457\n",
-      "5456\n",
-      "5455\n",
-      "5454\n",
-      "5453\n",
-      "5452\n",
-      "5451\n",
-      "5450\n",
-      "5449\n",
-      "5448\n",
-      "5447\n",
-      "5446\n",
-      "5445\n",
-      "5444\n",
-      "5443\n",
-      "5442\n",
-      "5441\n",
-      "5440\n",
-      "5439\n",
-      "5438\n",
-      "5437\n",
-      "5436\n",
-      "5435\n",
-      "5434\n",
-      "5433\n",
-      "5432\n",
-      "5431\n",
-      "5430\n",
-      "5429\n",
-      "5428\n",
-      "5427\n",
-      "5426\n",
-      "5425\n",
-      "5424\n",
-      "5423\n",
-      "5422\n",
-      "5421\n",
-      "5420\n",
-      "5419\n",
-      "5418\n",
-      "5417\n",
-      "5416\n",
-      "5415\n",
-      "5414\n",
-      "5413\n",
-      "5412\n",
-      "5411\n",
-      "5410\n",
-      "5409\n",
-      "5408\n",
-      "5407\n",
-      "5406\n",
-      "5405\n",
-      "5404\n",
-      "5403\n",
-      "5402\n",
-      "5401\n",
-      "5400\n",
-      "5399\n",
-      "5398\n",
-      "5397\n",
-      "5396\n",
-      "5395\n",
-      "5394\n",
-      "5393\n",
-      "5392\n",
-      "5391\n",
-      "5390\n",
-      "5389\n",
-      "5388\n",
-      "5387\n",
-      "5386\n",
-      "5385\n",
-      "5384\n",
-      "5383\n",
-      "5382\n",
-      "5381\n",
-      "5380\n",
-      "5379\n",
-      "5378\n",
-      "5377\n",
-      "5376\n",
-      "5375\n",
-      "5374\n",
-      "5373\n",
-      "5372\n",
-      "5371\n",
-      "5370\n",
-      "5369\n",
-      "5368\n",
-      "5367\n",
-      "5366\n",
-      "5365\n",
-      "5364\n",
-      "5363\n",
-      "5362\n",
-      "5361\n",
-      "5360\n",
-      "5359\n",
-      "5358\n",
-      "5357\n",
-      "5356\n",
-      "5355\n",
-      "5354\n",
-      "5353\n",
-      "5352\n",
-      "5351\n",
-      "5350\n",
-      "5349\n",
-      "5348\n",
-      "5347\n",
-      "5346\n",
-      "5345\n",
-      "5344\n",
-      "5343\n",
-      "5342\n",
-      "5341\n",
-      "5340\n",
-      "5339\n",
-      "5338\n",
-      "5337\n",
-      "5336\n",
-      "5335\n",
-      "5334\n",
-      "5333\n",
-      "5332\n",
-      "5331\n",
-      "5330\n",
-      "5329\n",
-      "5328\n",
-      "5327\n",
-      "5326\n",
-      "5325\n",
-      "5324\n",
-      "5323\n",
-      "5322\n",
-      "5321\n",
-      "5320\n",
-      "5319\n",
-      "5318\n",
-      "5317\n",
-      "5316\n",
-      "5315\n",
-      "5314\n",
-      "5313\n",
-      "5312\n",
-      "5311\n",
-      "5310\n",
-      "5309\n",
-      "5308\n",
-      "5307\n",
-      "5306\n",
-      "5305\n",
-      "5304\n",
-      "5303\n",
-      "5302\n",
-      "5301\n",
-      "5300\n",
-      "5299\n",
-      "5298\n",
-      "5297\n",
-      "5296\n",
-      "5295\n",
-      "5294\n",
-      "5293\n",
-      "5292\n",
-      "5291\n",
-      "5290\n",
-      "5289\n",
-      "5288\n",
-      "5287\n",
-      "5286\n",
-      "5285\n",
-      "5284\n",
-      "5283\n",
-      "5282\n",
-      "5281\n",
-      "5280\n",
-      "5279\n",
-      "5278\n",
-      "5277\n",
-      "5276\n",
-      "5275\n",
-      "5274\n",
-      "5273\n",
-      "5272\n",
-      "5271\n",
-      "5270\n",
-      "5269\n",
-      "5268\n",
-      "5267\n",
-      "5266\n",
-      "5265\n",
-      "5264\n",
-      "5263\n",
-      "5262\n",
-      "5261\n",
-      "5260\n",
-      "5259\n",
-      "5258\n",
-      "5257\n",
-      "5256\n",
-      "5255\n",
-      "5254\n",
-      "5253\n",
-      "5252\n",
-      "5251\n",
-      "5250\n",
-      "5249\n",
-      "5248\n",
-      "5247\n",
-      "5246\n",
-      "5245\n",
-      "5244\n",
-      "5243\n",
-      "5242\n",
-      "5241\n",
-      "5240\n",
-      "5239\n",
-      "5238\n",
-      "5237\n",
-      "5236\n",
-      "5235\n",
-      "5234\n",
-      "5233\n",
-      "5232\n",
-      "5231\n",
-      "5230\n",
-      "5229\n",
-      "5228\n",
-      "5227\n",
-      "5226\n",
-      "5225\n",
-      "5224\n",
-      "5223\n",
-      "5222\n",
-      "5221\n",
-      "5220\n",
-      "5219\n",
-      "5218\n",
-      "5217\n",
-      "5216\n",
-      "5215\n",
-      "5214\n",
-      "5213\n",
-      "5212\n",
-      "5211\n",
-      "5210\n",
-      "5209\n",
-      "5208\n",
-      "5207\n",
-      "5206\n",
-      "5205\n",
-      "5204\n",
-      "5203\n",
-      "5202\n",
-      "5201\n",
-      "5200\n",
-      "5199\n",
-      "5198\n",
-      "5197\n",
-      "5196\n",
-      "5195\n",
-      "5194\n",
-      "5193\n",
-      "5192\n",
-      "5191\n",
-      "5190\n",
-      "5189\n",
-      "5188\n",
-      "5187\n",
-      "5186\n",
-      "5185\n",
-      "5184\n",
-      "5183\n",
-      "5182\n",
-      "5181\n",
-      "5180\n",
-      "5179\n",
-      "5178\n",
-      "5177\n",
-      "5176\n",
-      "5175\n",
-      "5174\n",
-      "5173\n",
-      "5172\n",
-      "5171\n",
-      "5170\n",
-      "5169\n",
-      "5168\n",
-      "5167\n",
-      "5166\n",
-      "5165\n",
-      "5164\n",
-      "5163\n",
-      "5162\n",
-      "5161\n",
-      "5160\n",
-      "5159\n",
-      "5158\n",
-      "5157\n",
-      "5156\n",
-      "5155\n",
-      "5154\n",
-      "5153\n",
-      "5152\n",
-      "5151\n",
-      "5150\n",
-      "5149\n",
-      "5148\n",
-      "5147\n",
-      "5146\n",
-      "5145\n",
-      "5144\n",
-      "5143\n",
-      "5142\n",
-      "5141\n",
-      "5140\n",
-      "5139\n",
-      "5138\n",
-      "5137\n",
-      "5136\n",
-      "5135\n",
-      "5134\n",
-      "5133\n",
-      "5132\n",
-      "5131\n",
-      "5130\n",
-      "5129\n",
-      "5128\n",
-      "5127\n",
-      "5126\n",
-      "5125\n",
-      "5124\n",
-      "5123\n",
-      "5122\n",
-      "5121\n",
-      "5120\n",
-      "5119\n",
-      "5118\n",
-      "5117\n",
-      "5116\n",
-      "5115\n",
-      "5114\n",
-      "5113\n",
-      "5112\n",
-      "5111\n",
-      "5110\n",
-      "5109\n",
-      "5108\n",
-      "5107\n",
-      "5106\n",
-      "5105\n",
-      "5104\n",
-      "5103\n",
-      "5102\n",
-      "5101\n",
-      "5100\n",
-      "5099\n",
-      "5098\n",
-      "5097\n",
-      "5096\n",
-      "5095\n",
-      "5094\n",
-      "5093\n",
-      "5092\n",
-      "5091\n",
-      "5090\n",
-      "5089\n",
-      "5088\n",
-      "5087\n",
-      "5086\n",
-      "5085\n",
-      "5084\n",
-      "5083\n",
-      "5082\n",
-      "5081\n",
-      "5080\n",
-      "5079\n",
-      "5078\n",
-      "5077\n",
-      "5076\n",
-      "5075\n",
-      "5074\n",
-      "5073\n",
-      "5072\n",
-      "5071\n",
-      "5070\n",
-      "5069\n",
-      "5068\n",
-      "5067\n",
-      "5066\n",
-      "5065\n",
-      "5064\n",
-      "5063\n",
-      "5062\n",
-      "5061\n",
-      "5060\n",
-      "5059\n",
-      "5058\n",
-      "5057\n",
-      "5056\n",
-      "5055\n",
-      "5054\n",
-      "5053\n",
-      "5052\n",
-      "5051\n",
-      "5050\n",
-      "5049\n",
-      "5048\n",
-      "5047\n",
-      "5046\n",
-      "5045\n",
-      "5044\n",
-      "5043\n",
-      "5042\n",
-      "5041\n",
-      "5040\n",
-      "5039\n",
-      "5038\n",
-      "5037\n",
-      "5036\n",
-      "5035\n",
-      "5034\n",
-      "5033\n",
-      "5032\n",
-      "5031\n",
-      "5030\n",
-      "5029\n",
-      "5028\n",
-      "5027\n",
-      "5026\n",
-      "5025\n",
-      "5024\n",
-      "5023\n",
-      "5022\n",
-      "5021\n",
-      "5020\n",
-      "5019\n",
-      "5018\n",
-      "5017\n",
-      "5016\n",
-      "5015\n",
-      "5014\n",
-      "5013\n",
-      "5012\n",
-      "5011\n",
-      "5010\n",
-      "5009\n",
-      "5008\n",
-      "5007\n",
-      "5006\n",
-      "5005\n",
-      "5004\n",
-      "5003\n",
-      "5002\n",
-      "5001\n",
-      "5000\n",
-      "4999\n",
-      "4998\n",
-      "4997\n",
-      "4996\n",
-      "4995\n",
-      "4994\n",
-      "4993\n",
-      "4992\n",
-      "4991\n",
-      "4990\n",
-      "4989\n",
-      "4988\n",
-      "4987\n",
-      "4986\n",
-      "4985\n",
-      "4984\n",
-      "4983\n",
-      "4982\n",
-      "4981\n",
-      "4980\n",
-      "4979\n",
-      "4978\n",
-      "4977\n",
-      "4976\n",
-      "4975\n",
-      "4974\n",
-      "4973\n",
-      "4972\n",
-      "4971\n",
-      "4970\n",
-      "4969\n",
-      "4968\n",
-      "4967\n",
-      "4966\n",
-      "4965\n",
-      "4964\n",
-      "4963\n",
-      "4962\n",
-      "4961\n",
-      "4960\n",
-      "4959\n",
-      "4958\n",
-      "4957\n",
-      "4956\n",
-      "4955\n",
-      "4954\n",
-      "4953\n",
-      "4952\n",
-      "4951\n",
-      "4950\n",
-      "4949\n",
-      "4948\n",
-      "4947\n",
-      "4946\n",
-      "4945\n",
-      "4944\n",
-      "4943\n",
-      "4942\n",
-      "4941\n",
-      "4940\n",
-      "4939\n",
-      "4938\n",
-      "4937\n",
-      "4936\n",
-      "4935\n",
-      "4934\n",
-      "4933\n",
-      "4932\n",
-      "4931\n",
-      "4930\n",
-      "4929\n",
-      "4928\n",
-      "4927\n",
-      "4926\n",
-      "4925\n",
-      "4924\n",
-      "4923\n",
-      "4922\n",
-      "4921\n",
-      "4920\n",
-      "4919\n",
-      "4918\n",
-      "4917\n",
-      "4916\n",
-      "4915\n",
-      "4914\n",
-      "4913\n",
-      "4912\n",
-      "4911\n",
-      "4910\n",
-      "4909\n",
-      "4908\n",
-      "4907\n",
-      "4906\n",
-      "4905\n",
-      "4904\n",
-      "4903\n",
-      "4902\n",
-      "4901\n",
-      "4900\n",
-      "4899\n",
-      "4898\n",
-      "4897\n",
-      "4896\n",
-      "4895\n",
-      "4894\n",
-      "4893\n",
-      "4892\n",
-      "4891\n",
-      "4890\n",
-      "4889\n",
-      "4888\n",
-      "4887\n",
-      "4886\n",
-      "4885\n",
-      "4884\n",
-      "4883\n",
-      "4882\n",
-      "4881\n",
-      "4880\n",
-      "4879\n",
-      "4878\n",
-      "4877\n",
-      "4876\n",
-      "4875\n",
-      "4874\n",
-      "4873\n",
-      "4872\n",
-      "4871\n",
-      "4870\n",
-      "4869\n",
-      "4868\n",
-      "4867\n",
-      "4866\n",
-      "4865\n",
-      "4864\n",
-      "4863\n",
-      "4862\n",
-      "4861\n",
-      "4860\n",
-      "4859\n",
-      "4858\n",
-      "4857\n",
-      "4856\n",
-      "4855\n",
-      "4854\n",
-      "4853\n",
-      "4852\n",
-      "4851\n",
-      "4850\n",
-      "4849\n",
-      "4848\n",
-      "4847\n",
-      "4846\n",
-      "4845\n",
-      "4844\n",
-      "4843\n",
-      "4842\n",
-      "4841\n",
-      "4840\n",
-      "4839\n",
-      "4838\n",
-      "4837\n",
-      "4836\n",
-      "4835\n",
-      "4834\n",
-      "4833\n",
-      "4832\n",
-      "4831\n",
-      "4830\n",
-      "4829\n",
-      "4828\n",
-      "4827\n",
-      "4826\n",
-      "4825\n",
-      "4824\n",
-      "4823\n",
-      "4822\n",
-      "4821\n",
-      "4820\n",
-      "4819\n",
-      "4818\n",
-      "4817\n",
-      "4816\n",
-      "4815\n",
-      "4814\n",
-      "4813\n",
-      "4812\n",
-      "4811\n",
-      "4810\n",
-      "4809\n",
-      "4808\n",
-      "4807\n",
-      "4806\n",
-      "4805\n",
-      "4804\n",
-      "4803\n",
-      "4802\n",
-      "4801\n",
-      "4800\n",
-      "4799\n",
-      "4798\n",
-      "4797\n",
-      "4796\n",
-      "4795\n",
-      "4794\n",
-      "4793\n",
-      "4792\n",
-      "4791\n",
-      "4790\n",
-      "4789\n",
-      "4788\n",
-      "4787\n",
-      "4786\n",
-      "4785\n",
-      "4784\n",
-      "4783\n",
-      "4782\n",
-      "4781\n",
-      "4780\n",
-      "4779\n",
-      "4778\n",
-      "4777\n",
-      "4776\n",
-      "4775\n",
-      "4774\n",
-      "4773\n",
-      "4772\n",
-      "4771\n",
-      "4770\n",
-      "4769\n",
-      "4768\n",
-      "4767\n",
-      "4766\n",
-      "4765\n",
-      "4764\n",
-      "4763\n",
-      "4762\n",
-      "4761\n",
-      "4760\n",
-      "4759\n",
-      "4758\n",
-      "4757\n",
-      "4756\n",
-      "4755\n",
-      "4754\n",
-      "4753\n",
-      "4752\n",
-      "4751\n",
-      "4750\n",
-      "4749\n",
-      "4748\n",
-      "4747\n",
-      "4746\n",
-      "4745\n",
-      "4744\n",
-      "4743\n",
-      "4742\n",
-      "4741\n",
-      "4740\n",
-      "4739\n",
-      "4738\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "4737\n",
-      "4736\n",
-      "4735\n",
-      "4734\n",
-      "4733\n",
-      "4732\n",
-      "4731\n",
-      "4730\n",
-      "4729\n",
-      "4728\n",
-      "4727\n",
-      "4726\n",
-      "4725\n",
-      "4724\n",
-      "4723\n",
-      "4722\n",
-      "4721\n",
-      "4720\n",
-      "4719\n",
-      "4718\n",
-      "4717\n",
-      "4716\n",
-      "4715\n",
-      "4714\n",
-      "4713\n",
-      "4712\n",
-      "4711\n",
-      "4710\n",
-      "4709\n",
-      "4708\n",
-      "4707\n",
-      "4706\n",
-      "4705\n",
-      "4704\n",
-      "4703\n",
-      "4702\n",
-      "4701\n",
-      "4700\n",
-      "4699\n",
-      "4698\n",
-      "4697\n",
-      "4696\n",
-      "4695\n",
-      "4694\n",
-      "4693\n",
-      "4692\n",
-      "4691\n",
-      "4690\n",
-      "4689\n",
-      "4688\n",
-      "4687\n",
-      "4686\n",
-      "4685\n",
-      "4684\n",
-      "4683\n",
-      "4682\n",
-      "4681\n",
-      "4680\n",
-      "4679\n",
-      "4678\n",
-      "4677\n",
-      "4676\n",
-      "4675\n",
-      "4674\n",
-      "4673\n",
-      "4672\n",
-      "4671\n",
-      "4670\n",
-      "4669\n",
-      "4668\n",
-      "4667\n",
-      "4666\n",
-      "4665\n",
-      "4664\n",
-      "4663\n",
-      "4662\n",
-      "4661\n",
-      "4660\n",
-      "4659\n",
-      "4658\n",
-      "4657\n",
-      "4656\n",
-      "4655\n",
-      "4654\n",
-      "4653\n",
-      "4652\n",
-      "4651\n",
-      "4650\n",
-      "4649\n",
-      "4648\n",
-      "4647\n",
-      "4646\n",
-      "4645\n",
-      "4644\n",
-      "4643\n",
-      "4642\n",
-      "4641\n",
-      "4640\n",
-      "4639\n",
-      "4638\n",
-      "4637\n",
-      "4636\n",
-      "4635\n",
-      "4634\n",
-      "4633\n",
-      "4632\n",
-      "4631\n",
-      "4630\n",
-      "4629\n",
-      "4628\n",
-      "4627\n",
-      "4626\n",
-      "4625\n",
-      "4624\n",
-      "4623\n",
-      "4622\n",
-      "4621\n",
-      "4620\n",
-      "4619\n",
-      "4618\n",
-      "4617\n",
-      "4616\n",
-      "4615\n",
-      "4614\n",
-      "4613\n",
-      "4612\n",
-      "4611\n",
-      "4610\n",
-      "4609\n",
-      "4608\n",
-      "4607\n",
-      "4606\n",
-      "4605\n",
-      "4604\n",
-      "4603\n",
-      "4602\n",
-      "4601\n",
-      "4600\n",
-      "4599\n",
-      "4598\n",
-      "4597\n",
-      "4596\n",
-      "4595\n",
-      "4594\n",
-      "4593\n",
-      "4592\n",
-      "4591\n",
-      "4590\n",
-      "4589\n",
-      "4588\n",
-      "4587\n",
-      "4586\n",
-      "4585\n",
-      "4584\n",
-      "4583\n",
-      "4582\n",
-      "4581\n",
-      "4580\n",
-      "4579\n",
-      "4578\n",
-      "4577\n",
-      "4576\n",
-      "4575\n",
-      "4574\n",
-      "4573\n",
-      "4572\n",
-      "4571\n",
-      "4570\n",
-      "4569\n",
-      "4568\n",
-      "4567\n",
-      "4566\n",
-      "4565\n",
-      "4564\n",
-      "4563\n",
-      "4562\n",
-      "4561\n",
-      "4560\n",
-      "4559\n",
-      "4558\n",
-      "4557\n",
-      "4556\n",
-      "4555\n",
-      "4554\n",
-      "4553\n",
-      "4552\n",
-      "4551\n",
-      "4550\n",
-      "4549\n",
-      "4548\n",
-      "4547\n",
-      "4546\n",
-      "4545\n",
-      "4544\n",
-      "4543\n",
-      "4542\n",
-      "4541\n",
-      "4540\n",
-      "4539\n",
-      "4538\n",
-      "4537\n",
-      "4536\n",
-      "4535\n",
-      "4534\n",
-      "4533\n",
-      "4532\n",
-      "4531\n",
-      "4530\n",
-      "4529\n",
-      "4528\n",
-      "4527\n",
-      "4526\n",
-      "4525\n",
-      "4524\n",
-      "4523\n",
-      "4522\n",
-      "4521\n",
-      "4520\n",
-      "4519\n",
-      "4518\n",
-      "4517\n",
-      "4516\n",
-      "4515\n",
-      "4514\n",
-      "4513\n",
-      "4512\n",
-      "4511\n",
-      "4510\n",
-      "4509\n",
-      "4508\n",
-      "4507\n",
-      "4506\n",
-      "4505\n",
-      "4504\n",
-      "4503\n",
-      "4502\n",
-      "4501\n",
-      "4500\n",
-      "4499\n",
-      "4498\n",
-      "4497\n",
-      "4496\n",
-      "4495\n",
-      "4494\n",
-      "4493\n",
-      "4492\n",
-      "4491\n",
-      "4490\n",
-      "4489\n",
-      "4488\n",
-      "4487\n",
-      "4486\n",
-      "4485\n",
-      "4484\n",
-      "4483\n",
-      "4482\n",
-      "4481\n",
-      "4480\n",
-      "4479\n",
-      "4478\n",
-      "4477\n",
-      "4476\n",
-      "4475\n",
-      "4474\n",
-      "4473\n",
-      "4472\n",
-      "4471\n",
-      "4470\n",
-      "4469\n",
-      "4468\n",
-      "4467\n",
-      "4466\n",
-      "4465\n",
-      "4464\n",
-      "4463\n",
-      "4462\n",
-      "4461\n",
-      "4460\n",
-      "4459\n",
-      "4458\n",
-      "4457\n",
-      "4456\n",
-      "4455\n",
-      "4454\n",
-      "4453\n",
-      "4452\n",
-      "4451\n",
-      "4450\n",
-      "4449\n",
-      "4448\n",
-      "4447\n",
-      "4446\n",
-      "4445\n",
-      "4444\n",
-      "4443\n",
-      "4442\n",
-      "4441\n",
-      "4440\n",
-      "4439\n",
-      "4438\n",
-      "4437\n",
-      "4436\n",
-      "4435\n",
-      "4434\n",
-      "4433\n",
-      "4432\n",
-      "4431\n",
-      "4430\n",
-      "4429\n",
-      "4428\n",
-      "4427\n",
-      "4426\n",
-      "4425\n",
-      "4424\n",
-      "4423\n",
-      "4422\n",
-      "4421\n",
-      "4420\n",
-      "4419\n",
-      "4418\n",
-      "4417\n",
-      "4416\n",
-      "4415\n",
-      "4414\n",
-      "4413\n",
-      "4412\n",
-      "4411\n",
-      "4410\n",
-      "4409\n",
-      "4408\n",
-      "4407\n",
-      "4406\n",
-      "4405\n",
-      "4404\n",
-      "4403\n",
-      "4402\n",
-      "4401\n",
-      "4400\n",
-      "4399\n",
-      "4398\n",
-      "4397\n",
-      "4396\n",
-      "4395\n",
-      "4394\n",
-      "4393\n",
-      "4392\n",
-      "4391\n",
-      "4390\n",
-      "4389\n",
-      "4388\n",
-      "4387\n",
-      "4386\n",
-      "4385\n",
-      "4384\n",
-      "4383\n",
-      "4382\n",
-      "4381\n",
-      "4380\n",
-      "4379\n",
-      "4378\n",
-      "4377\n",
-      "4376\n",
-      "4375\n",
-      "4374\n",
-      "4373\n",
-      "4372\n",
-      "4371\n",
-      "4370\n",
-      "4369\n",
-      "4368\n",
-      "4367\n",
-      "4366\n",
-      "4365\n",
-      "4364\n",
-      "4363\n",
-      "4362\n",
-      "4361\n",
-      "4360\n",
-      "4359\n",
-      "4358\n",
-      "4357\n",
-      "4356\n",
-      "4355\n",
-      "4354\n",
-      "4353\n",
-      "4352\n",
-      "4351\n",
-      "4350\n",
-      "4349\n",
-      "4348\n",
-      "4347\n",
-      "4346\n",
-      "4345\n",
-      "4344\n",
-      "4343\n",
-      "4342\n",
-      "4341\n",
-      "4340\n",
-      "4339\n",
-      "4338\n",
-      "4337\n",
-      "4336\n",
-      "4335\n",
-      "4334\n",
-      "4333\n",
-      "4332\n",
-      "4331\n",
-      "4330\n",
-      "4329\n",
-      "4328\n",
-      "4327\n",
-      "4326\n",
-      "4325\n",
-      "4324\n",
-      "4323\n",
-      "4322\n",
-      "4321\n",
-      "4320\n",
-      "4319\n",
-      "4318\n",
-      "4317\n",
-      "4316\n",
-      "4315\n",
-      "4314\n",
-      "4313\n",
-      "4312\n",
-      "4311\n",
-      "4310\n",
-      "4309\n",
-      "4308\n",
-      "4307\n",
-      "4306\n",
-      "4305\n",
-      "4304\n",
-      "4303\n",
-      "4302\n",
-      "4301\n",
-      "4300\n",
-      "4299\n",
-      "4298\n",
-      "4297\n",
-      "4296\n",
-      "4295\n",
-      "4294\n",
-      "4293\n",
-      "4292\n",
-      "4291\n",
-      "4290\n",
-      "4289\n",
-      "4288\n",
-      "4287\n",
-      "4286\n",
-      "4285\n",
-      "4284\n",
-      "4283\n",
-      "4282\n",
-      "4281\n",
-      "4280\n",
-      "4279\n",
-      "4278\n",
-      "4277\n",
-      "4276\n",
-      "4275\n",
-      "4274\n",
-      "4273\n",
-      "4272\n",
-      "4271\n",
-      "4270\n",
-      "4269\n",
-      "4268\n",
-      "4267\n",
-      "4266\n",
-      "4265\n",
-      "4264\n",
-      "4263\n",
-      "4262\n",
-      "4261\n",
-      "4260\n",
-      "4259\n",
-      "4258\n",
-      "4257\n",
-      "4256\n",
-      "4255\n",
-      "4254\n",
-      "4253\n",
-      "4252\n",
-      "4251\n",
-      "4250\n",
-      "4249\n",
-      "4248\n",
-      "4247\n",
-      "4246\n",
-      "4245\n",
-      "4244\n",
-      "4243\n",
-      "4242\n",
-      "4241\n",
-      "4240\n",
-      "4239\n",
-      "4238\n",
-      "4237\n",
-      "4236\n",
-      "4235\n",
-      "4234\n",
-      "4233\n",
-      "4232\n",
-      "4231\n",
-      "4230\n",
-      "4229\n",
-      "4228\n",
-      "4227\n",
-      "4226\n",
-      "4225\n",
-      "4224\n",
-      "4223\n",
-      "4222\n",
-      "4221\n",
-      "4220\n",
-      "4219\n",
-      "4218\n",
-      "4217\n",
-      "4216\n",
-      "4215\n",
-      "4214\n",
-      "4213\n",
-      "4212\n",
-      "4211\n",
-      "4210\n",
-      "4209\n",
-      "4208\n",
-      "4207\n",
-      "4206\n",
-      "4205\n",
-      "4204\n",
-      "4203\n",
-      "4202\n",
-      "4201\n",
-      "4200\n",
-      "4199\n",
-      "4198\n",
-      "4197\n",
-      "4196\n",
-      "4195\n",
-      "4194\n",
-      "4193\n",
-      "4192\n",
-      "4191\n",
-      "4190\n",
-      "4189\n",
-      "4188\n",
-      "4187\n",
-      "4186\n",
-      "4185\n",
-      "4184\n",
-      "4183\n",
-      "4182\n",
-      "4181\n",
-      "4180\n",
-      "4179\n",
-      "4178\n",
-      "4177\n",
-      "4176\n",
-      "4175\n",
-      "4174\n",
-      "4173\n",
-      "4172\n",
-      "4171\n",
-      "4170\n",
-      "4169\n",
-      "4168\n",
-      "4167\n",
-      "4166\n",
-      "4165\n",
-      "4164\n",
-      "4163\n",
-      "4162\n",
-      "4161\n",
-      "4160\n",
-      "4159\n",
-      "4158\n",
-      "4157\n",
-      "4156\n",
-      "4155\n",
-      "4154\n",
-      "4153\n",
-      "4152\n",
-      "4151\n",
-      "4150\n",
-      "4149\n",
-      "4148\n",
-      "4147\n",
-      "4146\n",
-      "4145\n",
-      "4144\n",
-      "4143\n",
-      "4142\n",
-      "4141\n",
-      "4140\n",
-      "4139\n",
-      "4138\n",
-      "4137\n",
-      "4136\n",
-      "4135\n",
-      "4134\n",
-      "4133\n",
-      "4132\n",
-      "4131\n",
-      "4130\n",
-      "4129\n",
-      "4128\n",
-      "4127\n",
-      "4126\n",
-      "4125\n",
-      "4124\n",
-      "4123\n",
-      "4122\n",
-      "4121\n",
-      "4120\n",
-      "4119\n",
-      "4118\n",
-      "4117\n",
-      "4116\n",
-      "4115\n",
-      "4114\n",
-      "4113\n",
-      "4112\n",
-      "4111\n",
-      "4110\n",
-      "4109\n",
-      "4108\n",
-      "4107\n",
-      "4106\n",
-      "4105\n",
-      "4104\n",
-      "4103\n",
-      "4102\n",
-      "4101\n",
-      "4100\n",
-      "4099\n",
-      "4098\n",
-      "4097\n",
-      "4096\n",
-      "4095\n",
-      "4094\n",
-      "4093\n",
-      "4092\n",
-      "4091\n",
-      "4090\n",
-      "4089\n",
-      "4088\n",
-      "4087\n",
-      "4086\n",
-      "4085\n",
-      "4084\n",
-      "4083\n",
-      "4082\n",
-      "4081\n",
-      "4080\n",
-      "4079\n",
-      "4078\n",
-      "4077\n",
-      "4076\n",
-      "4075\n",
-      "4074\n",
-      "4073\n",
-      "4072\n",
-      "4071\n",
-      "4070\n",
-      "4069\n",
-      "4068\n",
-      "4067\n",
-      "4066\n",
-      "4065\n",
-      "4064\n",
-      "4063\n",
-      "4062\n",
-      "4061\n",
-      "4060\n",
-      "4059\n",
-      "4058\n",
-      "4057\n",
-      "4056\n",
-      "4055\n",
-      "4054\n",
-      "4053\n",
-      "4052\n",
-      "4051\n",
-      "4050\n",
-      "4049\n",
-      "4048\n",
-      "4047\n",
-      "4046\n",
-      "4045\n",
-      "4044\n",
-      "4043\n",
-      "4042\n",
-      "4041\n",
-      "4040\n",
-      "4039\n",
-      "4038\n",
-      "4037\n",
-      "4036\n",
-      "4035\n",
-      "4034\n",
-      "4033\n",
-      "4032\n",
-      "4031\n",
-      "4030\n",
-      "4029\n",
-      "4028\n",
-      "4027\n",
-      "4026\n",
-      "4025\n",
-      "4024\n",
-      "4023\n",
-      "4022\n",
-      "4021\n",
-      "4020\n",
-      "4019\n",
-      "4018\n",
-      "4017\n",
-      "4016\n",
-      "4015\n",
-      "4014\n",
-      "4013\n",
-      "4012\n",
-      "4011\n",
-      "4010\n",
-      "4009\n",
-      "4008\n",
-      "4007\n",
-      "4006\n",
-      "4005\n",
-      "4004\n",
-      "4003\n",
-      "4002\n",
-      "4001\n",
-      "4000\n",
-      "3999\n",
-      "3998\n",
-      "3997\n",
-      "3996\n",
-      "3995\n",
-      "3994\n",
-      "3993\n",
-      "3992\n",
-      "3991\n",
-      "3990\n",
-      "3989\n",
-      "3988\n",
-      "3987\n",
-      "3986\n",
-      "3985\n",
-      "3984\n",
-      "3983\n",
-      "3982\n",
-      "3981\n",
-      "3980\n",
-      "3979\n",
-      "3978\n",
-      "3977\n",
-      "3976\n",
-      "3975\n",
-      "3974\n",
-      "3973\n",
-      "3972\n",
-      "3971\n",
-      "3970\n",
-      "3969\n",
-      "3968\n",
-      "3967\n",
-      "3966\n",
-      "3965\n",
-      "3964\n",
-      "3963\n",
-      "3962\n",
-      "3961\n",
-      "3960\n",
-      "3959\n",
-      "3958\n",
-      "3957\n",
-      "3956\n",
-      "3955\n",
-      "3954\n",
-      "3953\n",
-      "3952\n",
-      "3951\n",
-      "3950\n",
-      "3949\n",
-      "3948\n",
-      "3947\n",
-      "3946\n",
-      "3945\n",
-      "3944\n",
-      "3943\n",
-      "3942\n",
-      "3941\n",
-      "3940\n",
-      "3939\n",
-      "3938\n",
-      "3937\n",
-      "3936\n",
-      "3935\n",
-      "3934\n",
-      "3933\n",
-      "3932\n",
-      "3931\n",
-      "3930\n",
-      "3929\n",
-      "3928\n",
-      "3927\n",
-      "3926\n",
-      "3925\n",
-      "3924\n",
-      "3923\n",
-      "3922\n",
-      "3921\n",
-      "3920\n",
-      "3919\n",
-      "3918\n",
-      "3917\n",
-      "3916\n",
-      "3915\n",
-      "3914\n",
-      "3913\n",
-      "3912\n",
-      "3911\n",
-      "3910\n",
-      "3909\n",
-      "3908\n",
-      "3907\n",
-      "3906\n",
-      "3905\n",
-      "3904\n",
-      "3903\n",
-      "3902\n",
-      "3901\n",
-      "3900\n",
-      "3899\n",
-      "3898\n",
-      "3897\n",
-      "3896\n",
-      "3895\n",
-      "3894\n",
-      "3893\n",
-      "3892\n",
-      "3891\n",
-      "3890\n",
-      "3889\n",
-      "3888\n",
-      "3887\n",
-      "3886\n",
-      "3885\n",
-      "3884\n",
-      "3883\n",
-      "3882\n",
-      "3881\n",
-      "3880\n",
-      "3879\n",
-      "3878\n",
-      "3877\n",
-      "3876\n",
-      "3875\n",
-      "3874\n",
-      "3873\n",
-      "3872\n",
-      "3871\n",
-      "3870\n",
-      "3869\n",
-      "3868\n",
-      "3867\n",
-      "3866\n",
-      "3865\n",
-      "3864\n",
-      "3863\n",
-      "3862\n",
-      "3861\n",
-      "3860\n",
-      "3859\n",
-      "3858\n",
-      "3857\n",
-      "3856\n",
-      "3855\n",
-      "3854\n",
-      "3853\n",
-      "3852\n",
-      "3851\n",
-      "3850\n",
-      "3849\n",
-      "3848\n",
-      "3847\n",
-      "3846\n",
-      "3845\n",
-      "3844\n",
-      "3843\n",
-      "3842\n",
-      "3841\n",
-      "3840\n",
-      "3839\n",
-      "3838\n",
-      "3837\n",
-      "3836\n",
-      "3835\n",
-      "3834\n",
-      "3833\n",
-      "3832\n",
-      "3831\n",
-      "3830\n",
-      "3829\n",
-      "3828\n",
-      "3827\n",
-      "3826\n",
-      "3825\n",
-      "3824\n",
-      "3823\n",
-      "3822\n",
-      "3821\n",
-      "3820\n",
-      "3819\n",
-      "3818\n",
-      "3817\n",
-      "3816\n",
-      "3815\n",
-      "3814\n",
-      "3813\n",
-      "3812\n",
-      "3811\n",
-      "3810\n",
-      "3809\n",
-      "3808\n",
-      "3807\n",
-      "3806\n",
-      "3805\n",
-      "3804\n",
-      "3803\n",
-      "3802\n",
-      "3801\n",
-      "3800\n",
-      "3799\n",
-      "3798\n",
-      "3797\n",
-      "3796\n",
-      "3795\n",
-      "3794\n",
-      "3793\n",
-      "3792\n",
-      "3791\n",
-      "3790\n",
-      "3789\n",
-      "3788\n",
-      "3787\n",
-      "3786\n",
-      "3785\n",
-      "3784\n",
-      "3783\n",
-      "3782\n",
-      "3781\n",
-      "3780\n",
-      "3779\n",
-      "3778\n",
-      "3777\n",
-      "3776\n",
-      "3775\n",
-      "3774\n",
-      "3773\n",
-      "3772\n",
-      "3771\n",
-      "3770\n",
-      "3769\n",
-      "3768\n",
-      "3767\n",
-      "3766\n",
-      "3765\n",
-      "3764\n",
-      "3763\n",
-      "3762\n",
-      "3761\n",
-      "3760\n",
-      "3759\n",
-      "3758\n",
-      "3757\n",
-      "3756\n",
-      "3755\n",
-      "3754\n",
-      "3753\n",
-      "3752\n",
-      "3751\n",
-      "3750\n",
-      "3749\n",
-      "3748\n",
-      "3747\n",
-      "3746\n",
-      "3745\n",
-      "3744\n",
-      "3743\n",
-      "3742\n",
-      "3741\n",
-      "3740\n",
-      "3739\n",
-      "3738\n",
-      "3737\n",
-      "3736\n",
-      "3735\n",
-      "3734\n",
-      "3733\n",
-      "3732\n",
-      "3731\n",
-      "3730\n",
-      "3729\n",
-      "3728\n",
-      "3727\n",
-      "3726\n",
-      "3725\n",
-      "3724\n",
-      "3723\n",
-      "3722\n",
-      "3721\n",
-      "3720\n",
-      "3719\n",
-      "3718\n",
-      "3717\n",
-      "3716\n",
-      "3715\n",
-      "3714\n",
-      "3713\n",
-      "3712\n",
-      "3711\n",
-      "3710\n",
-      "3709\n",
-      "3708\n",
-      "3707\n",
-      "3706\n",
-      "3705\n",
-      "3704\n",
-      "3703\n",
-      "3702\n",
-      "3701\n",
-      "3700\n",
-      "3699\n",
-      "3698\n",
-      "3697\n",
-      "3696\n",
-      "3695\n",
-      "3694\n",
-      "3693\n",
-      "3692\n",
-      "3691\n",
-      "3690\n",
-      "3689\n",
-      "3688\n",
-      "3687\n",
-      "3686\n",
-      "3685\n",
-      "3684\n",
-      "3683\n",
-      "3682\n",
-      "3681\n",
-      "3680\n",
-      "3679\n",
-      "3678\n",
-      "3677\n",
-      "3676\n",
-      "3675\n",
-      "3674\n",
-      "3673\n",
-      "3672\n",
-      "3671\n",
-      "3670\n",
-      "3669\n",
-      "3668\n",
-      "3667\n",
-      "3666\n",
-      "3665\n",
-      "3664\n",
-      "3663\n",
-      "3662\n",
-      "3661\n",
-      "3660\n",
-      "3659\n",
-      "3658\n",
-      "3657\n",
-      "3656\n",
-      "3655\n",
-      "3654\n",
-      "3653\n",
-      "3652\n",
-      "3651\n",
-      "3650\n",
-      "3649\n",
-      "3648\n",
-      "3647\n",
-      "3646\n",
-      "3645\n",
-      "3644\n",
-      "3643\n",
-      "3642\n",
-      "3641\n",
-      "3640\n",
-      "3639\n",
-      "3638\n",
-      "3637\n",
-      "3636\n",
-      "3635\n",
-      "3634\n",
-      "3633\n",
-      "3632\n",
-      "3631\n",
-      "3630\n",
-      "3629\n",
-      "3628\n",
-      "3627\n",
-      "3626\n",
-      "3625\n",
-      "3624\n",
-      "3623\n",
-      "3622\n",
-      "3621\n",
-      "3620\n",
-      "3619\n",
-      "3618\n",
-      "3617\n",
-      "3616\n",
-      "3615\n",
-      "3614\n",
-      "3613\n",
-      "3612\n",
-      "3611\n",
-      "3610\n",
-      "3609\n",
-      "3608\n",
-      "3607\n",
-      "3606\n",
-      "3605\n",
-      "3604\n",
-      "3603\n",
-      "3602\n",
-      "3601\n",
-      "3600\n",
-      "3599\n",
-      "3598\n",
-      "3597\n",
-      "3596\n",
-      "3595\n",
-      "3594\n",
-      "3593\n",
-      "3592\n",
-      "3591\n",
-      "3590\n",
-      "3589\n",
-      "3588\n",
-      "3587\n",
-      "3586\n",
-      "3585\n",
-      "3584\n",
-      "3583\n",
-      "3582\n",
-      "3581\n",
-      "3580\n",
-      "3579\n",
-      "3578\n",
-      "3577\n",
-      "3576\n",
-      "3575\n",
-      "3574\n",
-      "3573\n",
-      "3572\n",
-      "3571\n",
-      "3570\n",
-      "3569\n",
-      "3568\n",
-      "3567\n",
-      "3566\n",
-      "3565\n",
-      "3564\n",
-      "3563\n",
-      "3562\n",
-      "3561\n",
-      "3560\n",
-      "3559\n",
-      "3558\n",
-      "3557\n",
-      "3556\n",
-      "3555\n",
-      "3554\n",
-      "3553\n",
-      "3552\n",
-      "3551\n",
-      "3550\n",
-      "3549\n",
-      "3548\n",
-      "3547\n",
-      "3546\n",
-      "3545\n",
-      "3544\n",
-      "3543\n",
-      "3542\n",
-      "3541\n",
-      "3540\n",
-      "3539\n",
-      "3538\n",
-      "3537\n",
-      "3536\n",
-      "3535\n",
-      "3534\n",
-      "3533\n",
-      "3532\n",
-      "3531\n",
-      "3530\n",
-      "3529\n",
-      "3528\n",
-      "3527\n",
-      "3526\n",
-      "3525\n",
-      "3524\n",
-      "3523\n",
-      "3522\n",
-      "3521\n",
-      "3520\n",
-      "3519\n",
-      "3518\n",
-      "3517\n",
-      "3516\n",
-      "3515\n",
-      "3514\n",
-      "3513\n",
-      "3512\n",
-      "3511\n",
-      "3510\n",
-      "3509\n",
-      "3508\n",
-      "3507\n",
-      "3506\n",
-      "3505\n",
-      "3504\n",
-      "3503\n",
-      "3502\n",
-      "3501\n",
-      "3500\n",
-      "3499\n",
-      "3498\n",
-      "3497\n",
-      "3496\n",
-      "3495\n",
-      "3494\n",
-      "3493\n",
-      "3492\n",
-      "3491\n",
-      "3490\n",
-      "3489\n",
-      "3488\n",
-      "3487\n",
-      "3486\n",
-      "3485\n",
-      "3484\n",
-      "3483\n",
-      "3482\n",
-      "3481\n",
-      "3480\n",
-      "3479\n",
-      "3478\n",
-      "3477\n",
-      "3476\n",
-      "3475\n",
-      "3474\n",
-      "3473\n",
-      "3472\n",
-      "3471\n",
-      "3470\n",
-      "3469\n",
-      "3468\n",
-      "3467\n",
-      "3466\n",
-      "3465\n",
-      "3464\n",
-      "3463\n",
-      "3462\n",
-      "3461\n",
-      "3460\n",
-      "3459\n",
-      "3458\n",
-      "3457\n",
-      "3456\n",
-      "3455\n",
-      "3454\n",
-      "3453\n",
-      "3452\n",
-      "3451\n",
-      "3450\n",
-      "3449\n",
-      "3448\n",
-      "3447\n",
-      "3446\n",
-      "3445\n",
-      "3444\n",
-      "3443\n",
-      "3442\n",
-      "3441\n",
-      "3440\n",
-      "3439\n",
-      "3438\n",
-      "3437\n",
-      "3436\n",
-      "3435\n",
-      "3434\n",
-      "3433\n",
-      "3432\n",
-      "3431\n",
-      "3430\n",
-      "3429\n",
-      "3428\n",
-      "3427\n",
-      "3426\n",
-      "3425\n",
-      "3424\n",
-      "3423\n",
-      "3422\n",
-      "3421\n",
-      "3420\n",
-      "3419\n",
-      "3418\n",
-      "3417\n",
-      "3416\n",
-      "3415\n",
-      "3414\n",
-      "3413\n",
-      "3412\n",
-      "3411\n",
-      "3410\n",
-      "3409\n",
-      "3408\n",
-      "3407\n",
-      "3406\n",
-      "3405\n",
-      "3404\n",
-      "3403\n",
-      "3402\n",
-      "3401\n",
-      "3400\n",
-      "3399\n",
-      "3398\n",
-      "3397\n",
-      "3396\n",
-      "3395\n",
-      "3394\n",
-      "3393\n",
-      "3392\n",
-      "3391\n",
-      "3390\n",
-      "3389\n",
-      "3388\n",
-      "3387\n",
-      "3386\n",
-      "3385\n",
-      "3384\n",
-      "3383\n",
-      "3382\n",
-      "3381\n",
-      "3380\n",
-      "3379\n",
-      "3378\n",
-      "3377\n",
-      "3376\n",
-      "3375\n",
-      "3374\n",
-      "3373\n",
-      "3372\n",
-      "3371\n",
-      "3370\n",
-      "3369\n",
-      "3368\n",
-      "3367\n",
-      "3366\n",
-      "3365\n",
-      "3364\n",
-      "3363\n",
-      "3362\n",
-      "3361\n",
-      "3360\n",
-      "3359\n",
-      "3358\n",
-      "3357\n",
-      "3356\n",
-      "3355\n",
-      "3354\n",
-      "3353\n",
-      "3352\n",
-      "3351\n",
-      "3350\n",
-      "3349\n",
-      "3348\n",
-      "3347\n",
-      "3346\n",
-      "3345\n",
-      "3344\n",
-      "3343\n",
-      "3342\n",
-      "3341\n",
-      "3340\n",
-      "3339\n",
-      "3338\n",
-      "3337\n",
-      "3336\n",
-      "3335\n",
-      "3334\n",
-      "3333\n",
-      "3332\n",
-      "3331\n",
-      "3330\n",
-      "3329\n",
-      "3328\n",
-      "3327\n",
-      "3326\n",
-      "3325\n",
-      "3324\n",
-      "3323\n",
-      "3322\n",
-      "3321\n",
-      "3320\n",
-      "3319\n",
-      "3318\n",
-      "3317\n",
-      "3316\n",
-      "3315\n",
-      "3314\n",
-      "3313\n",
-      "3312\n",
-      "3311\n",
-      "3310\n",
-      "3309\n",
-      "3308\n",
-      "3307\n",
-      "3306\n",
-      "3305\n",
-      "3304\n",
-      "3303\n",
-      "3302\n",
-      "3301\n",
-      "3300\n",
-      "3299\n",
-      "3298\n",
-      "3297\n",
-      "3296\n",
-      "3295\n",
-      "3294\n",
-      "3293\n",
-      "3292\n",
-      "3291\n",
-      "3290\n",
-      "3289\n",
-      "3288\n",
-      "3287\n",
-      "3286\n",
-      "3285\n",
-      "3284\n",
-      "3283\n",
-      "3282\n",
-      "3281\n",
-      "3280\n",
-      "3279\n",
-      "3278\n",
-      "3277\n",
-      "3276\n",
-      "3275\n",
-      "3274\n",
-      "3273\n",
-      "3272\n",
-      "3271\n",
-      "3270\n",
-      "3269\n",
-      "3268\n",
-      "3267\n",
-      "3266\n",
-      "3265\n",
-      "3264\n",
-      "3263\n",
-      "3262\n",
-      "3261\n",
-      "3260\n",
-      "3259\n",
-      "3258\n",
-      "3257\n",
-      "3256\n",
-      "3255\n",
-      "3254\n",
-      "3253\n",
-      "3252\n",
-      "3251\n",
-      "3250\n",
-      "3249\n",
-      "3248\n",
-      "3247\n",
-      "3246\n",
-      "3245\n",
-      "3244\n",
-      "3243\n",
-      "3242\n",
-      "3241\n",
-      "3240\n",
-      "3239\n",
-      "3238\n",
-      "3237\n",
-      "3236\n",
-      "3235\n",
-      "3234\n",
-      "3233\n",
-      "3232\n",
-      "3231\n",
-      "3230\n",
-      "3229\n",
-      "3228\n",
-      "3227\n",
-      "3226\n",
-      "3225\n",
-      "3224\n",
-      "3223\n",
-      "3222\n",
-      "3221\n",
-      "3220\n",
-      "3219\n",
-      "3218\n",
-      "3217\n",
-      "3216\n",
-      "3215\n",
-      "3214\n",
-      "3213\n",
-      "3212\n",
-      "3211\n",
-      "3210\n",
-      "3209\n",
-      "3208\n",
-      "3207\n",
-      "3206\n",
-      "3205\n",
-      "3204\n",
-      "3203\n",
-      "3202\n",
-      "3201\n",
-      "3200\n",
-      "3199\n",
-      "3198\n",
-      "3197\n",
-      "3196\n",
-      "3195\n",
-      "3194\n",
-      "3193\n",
-      "3192\n",
-      "3191\n",
-      "3190\n",
-      "3189\n",
-      "3188\n",
-      "3187\n",
-      "3186\n",
-      "3185\n",
-      "3184\n",
-      "3183\n",
-      "3182\n",
-      "3181\n",
-      "3180\n",
-      "3179\n",
-      "3178\n",
-      "3177\n",
-      "3176\n",
-      "3175\n",
-      "3174\n",
-      "3173\n",
-      "3172\n",
-      "3171\n",
-      "3170\n",
-      "3169\n",
-      "3168\n",
-      "3167\n",
-      "3166\n",
-      "3165\n",
-      "3164\n",
-      "3163\n",
-      "3162\n",
-      "3161\n",
-      "3160\n",
-      "3159\n",
-      "3158\n",
-      "3157\n",
-      "3156\n",
-      "3155\n",
-      "3154\n",
-      "3153\n",
-      "3152\n",
-      "3151\n",
-      "3150\n",
-      "3149\n",
-      "3148\n",
-      "3147\n",
-      "3146\n",
-      "3145\n",
-      "3144\n",
-      "3143\n",
-      "3142\n",
-      "3141\n",
-      "3140\n",
-      "3139\n",
-      "3138\n",
-      "3137\n",
-      "3136\n",
-      "3135\n",
-      "3134\n",
-      "3133\n",
-      "3132\n",
-      "3131\n",
-      "3130\n",
-      "3129\n",
-      "3128\n",
-      "3127\n",
-      "3126\n",
-      "3125\n",
-      "3124\n",
-      "3123\n",
-      "3122\n",
-      "3121\n",
-      "3120\n",
-      "3119\n",
-      "3118\n",
-      "3117\n",
-      "3116\n",
-      "3115\n",
-      "3114\n",
-      "3113\n",
-      "3112\n",
-      "3111\n",
-      "3110\n",
-      "3109\n",
-      "3108\n",
-      "3107\n",
-      "3106\n",
-      "3105\n",
-      "3104\n",
-      "3103\n",
-      "3102\n",
-      "3101\n",
-      "3100\n",
-      "3099\n",
-      "3098\n",
-      "3097\n",
-      "3096\n",
-      "3095\n",
-      "3094\n",
-      "3093\n",
-      "3092\n",
-      "3091\n",
-      "3090\n",
-      "3089\n",
-      "3088\n",
-      "3087\n",
-      "3086\n",
-      "3085\n",
-      "3084\n",
-      "3083\n",
-      "3082\n",
-      "3081\n",
-      "3080\n",
-      "3079\n",
-      "3078\n",
-      "3077\n",
-      "3076\n",
-      "3075\n",
-      "3074\n",
-      "3073\n",
-      "3072\n",
-      "3071\n",
-      "3070\n",
-      "3069\n",
-      "3068\n",
-      "3067\n",
-      "3066\n",
-      "3065\n",
-      "3064\n",
-      "3063\n",
-      "3062\n",
-      "3061\n",
-      "3060\n",
-      "3059\n",
-      "3058\n",
-      "3057\n",
-      "3056\n",
-      "3055\n",
-      "3054\n",
-      "3053\n",
-      "3052\n",
-      "3051\n",
-      "3050\n",
-      "3049\n",
-      "3048\n",
-      "3047\n",
-      "3046\n",
-      "3045\n",
-      "3044\n",
-      "3043\n",
-      "3042\n",
-      "3041\n",
-      "3040\n",
-      "3039\n",
-      "3038\n",
-      "3037\n",
-      "3036\n",
-      "3035\n",
-      "3034\n",
-      "3033\n",
-      "3032\n",
-      "3031\n",
-      "3030\n",
-      "3029\n",
-      "3028\n",
-      "3027\n",
-      "3026\n",
-      "3025\n",
-      "3024\n",
-      "3023\n",
-      "3022\n",
-      "3021\n",
-      "3020\n",
-      "3019\n",
-      "3018\n",
-      "3017\n",
-      "3016\n",
-      "3015\n",
-      "3014\n",
-      "3013\n",
-      "3012\n",
-      "3011\n",
-      "3010\n",
-      "3009\n",
-      "3008\n",
-      "3007\n",
-      "3006\n",
-      "3005\n",
-      "3004\n",
-      "3003\n",
-      "3002\n",
-      "3001\n",
-      "3000\n",
-      "2999\n",
-      "2998\n",
-      "2997\n",
-      "2996\n",
-      "2995\n",
-      "2994\n",
-      "2993\n",
-      "2992\n",
-      "2991\n",
-      "2990\n",
-      "2989\n",
-      "2988\n",
-      "2987\n",
-      "2986\n",
-      "2985\n",
-      "2984\n",
-      "2983\n",
-      "2982\n",
-      "2981\n",
-      "2980\n",
-      "2979\n",
-      "2978\n",
-      "2977\n",
-      "2976\n",
-      "2975\n",
-      "2974\n",
-      "2973\n",
-      "2972\n",
-      "2971\n",
-      "2970\n",
-      "2969\n",
-      "2968\n",
-      "2967\n",
-      "2966\n",
-      "2965\n",
-      "2964\n",
-      "2963\n",
-      "2962\n",
-      "2961\n",
-      "2960\n",
-      "2959\n",
-      "2958\n",
-      "2957\n",
-      "2956\n",
-      "2955\n",
-      "2954\n",
-      "2953\n",
-      "2952\n",
-      "2951\n",
-      "2950\n",
-      "2949\n",
-      "2948\n",
-      "2947\n",
-      "2946\n",
-      "2945\n",
-      "2944\n",
-      "2943\n",
-      "2942\n",
-      "2941\n",
-      "2940\n",
-      "2939\n",
-      "2938\n",
-      "2937\n",
-      "2936\n",
-      "2935\n",
-      "2934\n",
-      "2933\n",
-      "2932\n",
-      "2931\n",
-      "2930\n",
-      "2929\n",
-      "2928\n",
-      "2927\n",
-      "2926\n",
-      "2925\n",
-      "2924\n",
-      "2923\n",
-      "2922\n",
-      "2921\n",
-      "2920\n",
-      "2919\n",
-      "2918\n",
-      "2917\n",
-      "2916\n",
-      "2915\n",
-      "2914\n",
-      "2913\n",
-      "2912\n",
-      "2911\n",
-      "2910\n",
-      "2909\n",
-      "2908\n",
-      "2907\n",
-      "2906\n",
-      "2905\n",
-      "2904\n",
-      "2903\n",
-      "2902\n",
-      "2901\n",
-      "2900\n",
-      "2899\n",
-      "2898\n",
-      "2897\n",
-      "2896\n",
-      "2895\n",
-      "2894\n",
-      "2893\n",
-      "2892\n",
-      "2891\n",
-      "2890\n",
-      "2889\n",
-      "2888\n",
-      "2887\n",
-      "2886\n",
-      "2885\n",
-      "2884\n",
-      "2883\n",
-      "2882\n",
-      "2881\n",
-      "2880\n",
-      "2879\n",
-      "2878\n",
-      "2877\n",
-      "2876\n",
-      "2875\n",
-      "2874\n",
-      "2873\n",
-      "2872\n",
-      "2871\n",
-      "2870\n",
-      "2869\n",
-      "2868\n",
-      "2867\n",
-      "2866\n",
-      "2865\n",
-      "2864\n",
-      "2863\n",
-      "2862\n",
-      "2861\n",
-      "2860\n",
-      "2859\n",
-      "2858\n",
-      "2857\n",
-      "2856\n",
-      "2855\n",
-      "2854\n",
-      "2853\n",
-      "2852\n",
-      "2851\n",
-      "2850\n",
-      "2849\n",
-      "2848\n",
-      "2847\n",
-      "2846\n",
-      "2845\n",
-      "2844\n",
-      "2843\n",
-      "2842\n",
-      "2841\n",
-      "2840\n",
-      "2839\n",
-      "2838\n",
-      "2837\n",
-      "2836\n",
-      "2835\n",
-      "2834\n",
-      "2833\n",
-      "2832\n",
-      "2831\n",
-      "2830\n",
-      "2829\n",
-      "2828\n",
-      "2827\n",
-      "2826\n",
-      "2825\n",
-      "2824\n",
-      "2823\n",
-      "2822\n",
-      "2821\n",
-      "2820\n",
-      "2819\n",
-      "2818\n",
-      "2817\n",
-      "2816\n",
-      "2815\n",
-      "2814\n",
-      "2813\n",
-      "2812\n",
-      "2811\n",
-      "2810\n",
-      "2809\n",
-      "2808\n",
-      "2807\n",
-      "2806\n",
-      "2805\n",
-      "2804\n",
-      "2803\n",
-      "2802\n",
-      "2801\n",
-      "2800\n",
-      "2799\n",
-      "2798\n",
-      "2797\n",
-      "2796\n",
-      "2795\n",
-      "2794\n",
-      "2793\n",
-      "2792\n",
-      "2791\n",
-      "2790\n",
-      "2789\n",
-      "2788\n",
-      "2787\n",
-      "2786\n",
-      "2785\n",
-      "2784\n",
-      "2783\n",
-      "2782\n",
-      "2781\n",
-      "2780\n",
-      "2779\n",
-      "2778\n",
-      "2777\n",
-      "2776\n",
-      "2775\n",
-      "2774\n",
-      "2773\n",
-      "2772\n",
-      "2771\n",
-      "2770\n",
-      "2769\n",
-      "2768\n",
-      "2767\n",
-      "2766\n",
-      "2765\n",
-      "2764\n",
-      "2763\n",
-      "2762\n",
-      "2761\n",
-      "2760\n",
-      "2759\n",
-      "2758\n",
-      "2757\n",
-      "2756\n",
-      "2755\n",
-      "2754\n",
-      "2753\n",
-      "2752\n",
-      "2751\n",
-      "2750\n",
-      "2749\n",
-      "2748\n",
-      "2747\n",
-      "2746\n",
-      "2745\n",
-      "2744\n",
-      "2743\n",
-      "2742\n",
-      "2741\n",
-      "2740\n",
-      "2739\n",
-      "2738\n",
-      "2737\n",
-      "2736\n",
-      "2735\n",
-      "2734\n",
-      "2733\n",
-      "2732\n",
-      "2731\n",
-      "2730\n",
-      "2729\n",
-      "2728\n",
-      "2727\n",
-      "2726\n",
-      "2725\n",
-      "2724\n",
-      "2723\n",
-      "2722\n",
-      "2721\n",
-      "2720\n",
-      "2719\n",
-      "2718\n",
-      "2717\n",
-      "2716\n",
-      "2715\n",
-      "2714\n",
-      "2713\n",
-      "2712\n",
-      "2711\n",
-      "2710\n",
-      "2709\n",
-      "2708\n",
-      "2707\n",
-      "2706\n",
-      "2705\n",
-      "2704\n",
-      "2703\n",
-      "2702\n",
-      "2701\n",
-      "2700\n",
-      "2699\n",
-      "2698\n",
-      "2697\n",
-      "2696\n",
-      "2695\n",
-      "2694\n",
-      "2693\n",
-      "2692\n",
-      "2691\n",
-      "2690\n",
-      "2689\n",
-      "2688\n",
-      "2687\n",
-      "2686\n",
-      "2685\n",
-      "2684\n",
-      "2683\n",
-      "2682\n",
-      "2681\n",
-      "2680\n",
-      "2679\n",
-      "2678\n",
-      "2677\n",
-      "2676\n",
-      "2675\n",
-      "2674\n",
-      "2673\n",
-      "2672\n",
-      "2671\n",
-      "2670\n",
-      "2669\n",
-      "2668\n",
-      "2667\n",
-      "2666\n",
-      "2665\n",
-      "2664\n",
-      "2663\n",
-      "2662\n",
-      "2661\n",
-      "2660\n",
-      "2659\n",
-      "2658\n",
-      "2657\n",
-      "2656\n",
-      "2655\n",
-      "2654\n",
-      "2653\n",
-      "2652\n",
-      "2651\n",
-      "2650\n",
-      "2649\n",
-      "2648\n",
-      "2647\n",
-      "2646\n",
-      "2645\n",
-      "2644\n",
-      "2643\n",
-      "2642\n",
-      "2641\n",
-      "2640\n",
-      "2639\n",
-      "2638\n",
-      "2637\n",
-      "2636\n",
-      "2635\n",
-      "2634\n",
-      "2633\n",
-      "2632\n",
-      "2631\n",
-      "2630\n",
-      "2629\n",
-      "2628\n",
-      "2627\n",
-      "2626\n",
-      "2625\n",
-      "2624\n",
-      "2623\n",
-      "2622\n",
-      "2621\n",
-      "2620\n",
-      "2619\n",
-      "2618\n",
-      "2617\n",
-      "2616\n",
-      "2615\n",
-      "2614\n",
-      "2613\n",
-      "2612\n",
-      "2611\n",
-      "2610\n",
-      "2609\n",
-      "2608\n",
-      "2607\n",
-      "2606\n",
-      "2605\n",
-      "2604\n",
-      "2603\n",
-      "2602\n",
-      "2601\n",
-      "2600\n",
-      "2599\n",
-      "2598\n",
-      "2597\n",
-      "2596\n",
-      "2595\n",
-      "2594\n",
-      "2593\n",
-      "2592\n",
-      "2591\n",
-      "2590\n",
-      "2589\n",
-      "2588\n",
-      "2587\n",
-      "2586\n",
-      "2585\n",
-      "2584\n",
-      "2583\n",
-      "2582\n",
-      "2581\n",
-      "2580\n",
-      "2579\n",
-      "2578\n",
-      "2577\n",
-      "2576\n",
-      "2575\n",
-      "2574\n",
-      "2573\n",
-      "2572\n",
-      "2571\n",
-      "2570\n",
-      "2569\n",
-      "2568\n",
-      "2567\n",
-      "2566\n",
-      "2565\n",
-      "2564\n",
-      "2563\n",
-      "2562\n",
-      "2561\n",
-      "2560\n",
-      "2559\n",
-      "2558\n",
-      "2557\n",
-      "2556\n",
-      "2555\n",
-      "2554\n",
-      "2553\n",
-      "2552\n",
-      "2551\n",
-      "2550\n",
-      "2549\n",
-      "2548\n",
-      "2547\n",
-      "2546\n",
-      "2545\n",
-      "2544\n",
-      "2543\n",
-      "2542\n",
-      "2541\n",
-      "2540\n",
-      "2539\n",
-      "2538\n",
-      "2537\n",
-      "2536\n",
-      "2535\n",
-      "2534\n",
-      "2533\n",
-      "2532\n",
-      "2531\n",
-      "2530\n",
-      "2529\n",
-      "2528\n",
-      "2527\n",
-      "2526\n",
-      "2525\n",
-      "2524\n",
-      "2523\n",
-      "2522\n",
-      "2521\n",
-      "2520\n",
-      "2519\n",
-      "2518\n",
-      "2517\n",
-      "2516\n",
-      "2515\n",
-      "2514\n",
-      "2513\n",
-      "2512\n",
-      "2511\n",
-      "2510\n",
-      "2509\n",
-      "2508\n",
-      "2507\n",
-      "2506\n",
-      "2505\n",
-      "2504\n",
-      "2503\n",
-      "2502\n",
-      "2501\n",
-      "2500\n",
-      "2499\n",
-      "2498\n",
-      "2497\n",
-      "2496\n",
-      "2495\n",
-      "2494\n",
-      "2493\n",
-      "2492\n",
-      "2491\n",
-      "2490\n",
-      "2489\n",
-      "2488\n",
-      "2487\n",
-      "2486\n",
-      "2485\n",
-      "2484\n",
-      "2483\n",
-      "2482\n",
-      "2481\n",
-      "2480\n",
-      "2479\n",
-      "2478\n",
-      "2477\n",
-      "2476\n",
-      "2475\n",
-      "2474\n",
-      "2473\n",
-      "2472\n",
-      "2471\n",
-      "2470\n",
-      "2469\n",
-      "2468\n",
-      "2467\n",
-      "2466\n",
-      "2465\n",
-      "2464\n",
-      "2463\n",
-      "2462\n",
-      "2461\n",
-      "2460\n",
-      "2459\n",
-      "2458\n",
-      "2457\n",
-      "2456\n",
-      "2455\n",
-      "2454\n",
-      "2453\n",
-      "2452\n",
-      "2451\n",
-      "2450\n",
-      "2449\n",
-      "2448\n",
-      "2447\n",
-      "2446\n",
-      "2445\n",
-      "2444\n",
-      "2443\n",
-      "2442\n",
-      "2441\n",
-      "2440\n",
-      "2439\n",
-      "2438\n",
-      "2437\n",
-      "2436\n",
-      "2435\n",
-      "2434\n",
-      "2433\n",
-      "2432\n",
-      "2431\n",
-      "2430\n",
-      "2429\n",
-      "2428\n",
-      "2427\n",
-      "2426\n",
-      "2425\n",
-      "2424\n",
-      "2423\n",
-      "2422\n",
-      "2421\n",
-      "2420\n",
-      "2419\n",
-      "2418\n",
-      "2417\n",
-      "2416\n",
-      "2415\n",
-      "2414\n",
-      "2413\n",
-      "2412\n",
-      "2411\n",
-      "2410\n",
-      "2409\n",
-      "2408\n",
-      "2407\n",
-      "2406\n",
-      "2405\n",
-      "2404\n",
-      "2403\n",
-      "2402\n",
-      "2401\n",
-      "2400\n",
-      "2399\n",
-      "2398\n",
-      "2397\n",
-      "2396\n",
-      "2395\n",
-      "2394\n",
-      "2393\n",
-      "2392\n",
-      "2391\n",
-      "2390\n",
-      "2389\n",
-      "2388\n",
-      "2387\n",
-      "2386\n",
-      "2385\n",
-      "2384\n",
-      "2383\n",
-      "2382\n",
-      "2381\n",
-      "2380\n",
-      "2379\n",
-      "2378\n",
-      "2377\n",
-      "2376\n",
-      "2375\n",
-      "2374\n",
-      "2373\n",
-      "2372\n",
-      "2371\n",
-      "2370\n",
-      "2369\n",
-      "2368\n",
-      "2367\n",
-      "2366\n",
-      "2365\n",
-      "2364\n",
-      "2363\n",
-      "2362\n",
-      "2361\n",
-      "2360\n",
-      "2359\n",
-      "2358\n",
-      "2357\n",
-      "2356\n",
-      "2355\n",
-      "2354\n",
-      "2353\n",
-      "2352\n",
-      "2351\n",
-      "2350\n",
-      "2349\n",
-      "2348\n",
-      "2347\n",
-      "2346\n",
-      "2345\n",
-      "2344\n",
-      "2343\n",
-      "2342\n",
-      "2341\n",
-      "2340\n",
-      "2339\n",
-      "2338\n",
-      "2337\n",
-      "2336\n",
-      "2335\n",
-      "2334\n",
-      "2333\n",
-      "2332\n",
-      "2331\n",
-      "2330\n",
-      "2329\n",
-      "2328\n",
-      "2327\n",
-      "2326\n",
-      "2325\n",
-      "2324\n",
-      "2323\n",
-      "2322\n",
-      "2321\n",
-      "2320\n",
-      "2319\n",
-      "2318\n",
-      "2317\n",
-      "2316\n",
-      "2315\n",
-      "2314\n",
-      "2313\n",
-      "2312\n",
-      "2311\n",
-      "2310\n",
-      "2309\n",
-      "2308\n",
-      "2307\n",
-      "2306\n",
-      "2305\n",
-      "2304\n",
-      "2303\n",
-      "2302\n",
-      "2301\n",
-      "2300\n",
-      "2299\n",
-      "2298\n",
-      "2297\n",
-      "2296\n",
-      "2295\n",
-      "2294\n",
-      "2293\n",
-      "2292\n",
-      "2291\n",
-      "2290\n",
-      "2289\n",
-      "2288\n",
-      "2287\n",
-      "2286\n",
-      "2285\n",
-      "2284\n",
-      "2283\n",
-      "2282\n",
-      "2281\n",
-      "2280\n",
-      "2279\n",
-      "2278\n",
-      "2277\n",
-      "2276\n",
-      "2275\n",
-      "2274\n",
-      "2273\n",
-      "2272\n",
-      "2271\n",
-      "2270\n",
-      "2269\n",
-      "2268\n",
-      "2267\n",
-      "2266\n",
-      "2265\n",
-      "2264\n",
-      "2263\n",
-      "2262\n",
-      "2261\n",
-      "2260\n",
-      "2259\n",
-      "2258\n",
-      "2257\n",
-      "2256\n",
-      "2255\n",
-      "2254\n",
-      "2253\n",
-      "2252\n",
-      "2251\n",
-      "2250\n",
-      "2249\n",
-      "2248\n",
-      "2247\n",
-      "2246\n",
-      "2245\n",
-      "2244\n",
-      "2243\n",
-      "2242\n",
-      "2241\n",
-      "2240\n",
-      "2239\n",
-      "2238\n",
-      "2237\n",
-      "2236\n",
-      "2235\n",
-      "2234\n",
-      "2233\n",
-      "2232\n",
-      "2231\n",
-      "2230\n",
-      "2229\n",
-      "2228\n",
-      "2227\n",
-      "2226\n",
-      "2225\n",
-      "2224\n",
-      "2223\n",
-      "2222\n",
-      "2221\n",
-      "2220\n",
-      "2219\n",
-      "2218\n",
-      "2217\n",
-      "2216\n",
-      "2215\n",
-      "2214\n",
-      "2213\n",
-      "2212\n",
-      "2211\n",
-      "2210\n",
-      "2209\n",
-      "2208\n",
-      "2207\n",
-      "2206\n",
-      "2205\n",
-      "2204\n",
-      "2203\n",
-      "2202\n",
-      "2201\n",
-      "2200\n",
-      "2199\n",
-      "2198\n",
-      "2197\n",
-      "2196\n",
-      "2195\n",
-      "2194\n",
-      "2193\n",
-      "2192\n",
-      "2191\n",
-      "2190\n",
-      "2189\n",
-      "2188\n",
-      "2187\n",
-      "2186\n",
-      "2185\n",
-      "2184\n",
-      "2183\n",
-      "2182\n",
-      "2181\n",
-      "2180\n",
-      "2179\n",
-      "2178\n",
-      "2177\n",
-      "2176\n",
-      "2175\n",
-      "2174\n",
-      "2173\n",
-      "2172\n",
-      "2171\n",
-      "2170\n",
-      "2169\n",
-      "2168\n",
-      "2167\n",
-      "2166\n",
-      "2165\n",
-      "2164\n",
-      "2163\n",
-      "2162\n",
-      "2161\n",
-      "2160\n",
-      "2159\n",
-      "2158\n",
-      "2157\n",
-      "2156\n",
-      "2155\n",
-      "2154\n",
-      "2153\n",
-      "2152\n",
-      "2151\n",
-      "2150\n",
-      "2149\n",
-      "2148\n",
-      "2147\n",
-      "2146\n",
-      "2145\n",
-      "2144\n",
-      "2143\n",
-      "2142\n",
-      "2141\n",
-      "2140\n",
-      "2139\n",
-      "2138\n",
-      "2137\n",
-      "2136\n",
-      "2135\n",
-      "2134\n",
-      "2133\n",
-      "2132\n",
-      "2131\n",
-      "2130\n",
-      "2129\n",
-      "2128\n",
-      "2127\n",
-      "2126\n",
-      "2125\n",
-      "2124\n",
-      "2123\n",
-      "2122\n",
-      "2121\n",
-      "2120\n",
-      "2119\n",
-      "2118\n",
-      "2117\n",
-      "2116\n",
-      "2115\n",
-      "2114\n",
-      "2113\n",
-      "2112\n",
-      "2111\n",
-      "2110\n",
-      "2109\n",
-      "2108\n",
-      "2107\n",
-      "2106\n",
-      "2105\n",
-      "2104\n",
-      "2103\n",
-      "2102\n",
-      "2101\n",
-      "2100\n",
-      "2099\n",
-      "2098\n",
-      "2097\n",
-      "2096\n",
-      "2095\n",
-      "2094\n",
-      "2093\n",
-      "2092\n",
-      "2091\n",
-      "2090\n",
-      "2089\n",
-      "2088\n",
-      "2087\n",
-      "2086\n",
-      "2085\n",
-      "2084\n",
-      "2083\n",
-      "2082\n",
-      "2081\n",
-      "2080\n",
-      "2079\n",
-      "2078\n",
-      "2077\n",
-      "2076\n",
-      "2075\n",
-      "2074\n",
-      "2073\n",
-      "2072\n",
-      "2071\n",
-      "2070\n",
-      "2069\n",
-      "2068\n",
-      "2067\n",
-      "2066\n",
-      "2065\n",
-      "2064\n",
-      "2063\n",
-      "2062\n",
-      "2061\n",
-      "2060\n",
-      "2059\n",
-      "2058\n",
-      "2057\n",
-      "2056\n",
-      "2055\n",
-      "2054\n",
-      "2053\n",
-      "2052\n",
-      "2051\n",
-      "2050\n",
-      "2049\n",
-      "2048\n",
-      "2047\n",
-      "2046\n",
-      "2045\n",
-      "2044\n",
-      "2043\n",
-      "2042\n",
-      "2041\n",
-      "2040\n",
-      "2039\n",
-      "2038\n",
-      "2037\n",
-      "2036\n",
-      "2035\n",
-      "2034\n",
-      "2033\n",
-      "2032\n",
-      "2031\n",
-      "2030\n",
-      "2029\n",
-      "2028\n",
-      "2027\n",
-      "2026\n",
-      "2025\n",
-      "2024\n",
-      "2023\n",
-      "2022\n",
-      "2021\n",
-      "2020\n",
-      "2019\n",
-      "2018\n",
-      "2017\n",
-      "2016\n",
-      "2015\n",
-      "2014\n",
-      "2013\n",
-      "2012\n",
-      "2011\n",
-      "2010\n",
-      "2009\n",
-      "2008\n",
-      "2007\n",
-      "2006\n",
-      "2005\n",
-      "2004\n",
-      "2003\n",
-      "2002\n",
-      "2001\n",
-      "2000\n",
-      "1999\n",
-      "1998\n",
-      "1997\n",
-      "1996\n",
-      "1995\n",
-      "1994\n",
-      "1993\n",
-      "1992\n",
-      "1991\n",
-      "1990\n",
-      "1989\n",
-      "1988\n",
-      "1987\n",
-      "1986\n",
-      "1985\n",
-      "1984\n",
-      "1983\n",
-      "1982\n",
-      "1981\n",
-      "1980\n",
-      "1979\n",
-      "1978\n",
-      "1977\n",
-      "1976\n",
-      "1975\n",
-      "1974\n",
-      "1973\n",
-      "1972\n",
-      "1971\n",
-      "1970\n",
-      "1969\n",
-      "1968\n",
-      "1967\n",
-      "1966\n",
-      "1965\n",
-      "1964\n",
-      "1963\n",
-      "1962\n",
-      "1961\n",
-      "1960\n",
-      "1959\n",
-      "1958\n",
-      "1957\n",
-      "1956\n",
-      "1955\n",
-      "1954\n",
-      "1953\n",
-      "1952\n",
-      "1951\n",
-      "1950\n",
-      "1949\n",
-      "1948\n",
-      "1947\n",
-      "1946\n",
-      "1945\n",
-      "1944\n",
-      "1943\n",
-      "1942\n",
-      "1941\n",
-      "1940\n",
-      "1939\n",
-      "1938\n",
-      "1937\n",
-      "1936\n",
-      "1935\n",
-      "1934\n",
-      "1933\n",
-      "1932\n",
-      "1931\n",
-      "1930\n",
-      "1929\n",
-      "1928\n",
-      "1927\n",
-      "1926\n",
-      "1925\n",
-      "1924\n",
-      "1923\n",
-      "1922\n",
-      "1921\n",
-      "1920\n",
-      "1919\n",
-      "1918\n",
-      "1917\n",
-      "1916\n",
-      "1915\n",
-      "1914\n",
-      "1913\n",
-      "1912\n",
-      "1911\n",
-      "1910\n",
-      "1909\n",
-      "1908\n",
-      "1907\n",
-      "1906\n",
-      "1905\n",
-      "1904\n",
-      "1903\n",
-      "1902\n",
-      "1901\n",
-      "1900\n",
-      "1899\n",
-      "1898\n",
-      "1897\n",
-      "1896\n",
-      "1895\n",
-      "1894\n",
-      "1893\n",
-      "1892\n",
-      "1891\n",
-      "1890\n",
-      "1889\n",
-      "1888\n",
-      "1887\n",
-      "1886\n",
-      "1885\n",
-      "1884\n",
-      "1883\n",
-      "1882\n",
-      "1881\n",
-      "1880\n",
-      "1879\n",
-      "1878\n",
-      "1877\n",
-      "1876\n",
-      "1875\n",
-      "1874\n",
-      "1873\n",
-      "1872\n",
-      "1871\n",
-      "1870\n",
-      "1869\n",
-      "1868\n",
-      "1867\n",
-      "1866\n",
-      "1865\n",
-      "1864\n",
-      "1863\n",
-      "1862\n",
-      "1861\n",
-      "1860\n",
-      "1859\n",
-      "1858\n",
-      "1857\n",
-      "1856\n",
-      "1855\n",
-      "1854\n",
-      "1853\n",
-      "1852\n",
-      "1851\n",
-      "1850\n",
-      "1849\n",
-      "1848\n",
-      "1847\n",
-      "1846\n",
-      "1845\n",
-      "1844\n",
-      "1843\n",
-      "1842\n",
-      "1841\n",
-      "1840\n",
-      "1839\n",
-      "1838\n",
-      "1837\n",
-      "1836\n",
-      "1835\n",
-      "1834\n",
-      "1833\n",
-      "1832\n",
-      "1831\n",
-      "1830\n",
-      "1829\n",
-      "1828\n",
-      "1827\n",
-      "1826\n",
-      "1825\n",
-      "1824\n",
-      "1823\n",
-      "1822\n",
-      "1821\n",
-      "1820\n",
-      "1819\n",
-      "1818\n",
-      "1817\n",
-      "1816\n",
-      "1815\n",
-      "1814\n",
-      "1813\n",
-      "1812\n",
-      "1811\n",
-      "1810\n",
-      "1809\n",
-      "1808\n",
-      "1807\n",
-      "1806\n",
-      "1805\n",
-      "1804\n",
-      "1803\n",
-      "1802\n",
-      "1801\n",
-      "1800\n",
-      "1799\n",
-      "1798\n",
-      "1797\n",
-      "1796\n",
-      "1795\n",
-      "1794\n",
-      "1793\n",
-      "1792\n",
-      "1791\n",
-      "1790\n",
-      "1789\n",
-      "1788\n",
-      "1787\n",
-      "1786\n",
-      "1785\n",
-      "1784\n",
-      "1783\n",
-      "1782\n",
-      "1781\n",
-      "1780\n",
-      "1779\n",
-      "1778\n",
-      "1777\n",
-      "1776\n",
-      "1775\n",
-      "1774\n",
-      "1773\n",
-      "1772\n",
-      "1771\n",
-      "1770\n",
-      "1769\n",
-      "1768\n",
-      "1767\n",
-      "1766\n",
-      "1765\n",
-      "1764\n",
-      "1763\n",
-      "1762\n",
-      "1761\n",
-      "1760\n",
-      "1759\n",
-      "1758\n",
-      "1757\n",
-      "1756\n",
-      "1755\n",
-      "1754\n",
-      "1753\n",
-      "1752\n",
-      "1751\n",
-      "1750\n",
-      "1749\n",
-      "1748\n",
-      "1747\n",
-      "1746\n",
-      "1745\n",
-      "1744\n",
-      "1743\n",
-      "1742\n",
-      "1741\n",
-      "1740\n",
-      "1739\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "1738\n",
-      "1737\n",
-      "1736\n",
-      "1735\n",
-      "1734\n",
-      "1733\n",
-      "1732\n",
-      "1731\n",
-      "1730\n",
-      "1729\n",
-      "1728\n",
-      "1727\n",
-      "1726\n",
-      "1725\n",
-      "1724\n",
-      "1723\n",
-      "1722\n",
-      "1721\n",
-      "1720\n",
-      "1719\n",
-      "1718\n",
-      "1717\n",
-      "1716\n",
-      "1715\n",
-      "1714\n",
-      "1713\n",
-      "1712\n",
-      "1711\n",
-      "1710\n",
-      "1709\n",
-      "1708\n",
-      "1707\n",
-      "1706\n",
-      "1705\n",
-      "1704\n",
-      "1703\n",
-      "1702\n",
-      "1701\n",
-      "1700\n",
-      "1699\n",
-      "1698\n",
-      "1697\n",
-      "1696\n",
-      "1695\n",
-      "1694\n",
-      "1693\n",
-      "1692\n",
-      "1691\n",
-      "1690\n",
-      "1689\n",
-      "1688\n",
-      "1687\n",
-      "1686\n",
-      "1685\n",
-      "1684\n",
-      "1683\n",
-      "1682\n",
-      "1681\n",
-      "1680\n",
-      "1679\n",
-      "1678\n",
-      "1677\n",
-      "1676\n",
-      "1675\n",
-      "1674\n",
-      "1673\n",
-      "1672\n",
-      "1671\n",
-      "1670\n",
-      "1669\n",
-      "1668\n",
-      "1667\n",
-      "1666\n",
-      "1665\n",
-      "1664\n",
-      "1663\n",
-      "1662\n",
-      "1661\n",
-      "1660\n",
-      "1659\n",
-      "1658\n",
-      "1657\n",
-      "1656\n",
-      "1655\n",
-      "1654\n",
-      "1653\n",
-      "1652\n",
-      "1651\n",
-      "1650\n",
-      "1649\n",
-      "1648\n",
-      "1647\n",
-      "1646\n",
-      "1645\n",
-      "1644\n",
-      "1643\n",
-      "1642\n",
-      "1641\n",
-      "1640\n",
-      "1639\n",
-      "1638\n",
-      "1637\n",
-      "1636\n",
-      "1635\n",
-      "1634\n",
-      "1633\n",
-      "1632\n",
-      "1631\n",
-      "1630\n",
-      "1629\n",
-      "1628\n",
-      "1627\n",
-      "1626\n",
-      "1625\n",
-      "1624\n",
-      "1623\n",
-      "1622\n",
-      "1621\n",
-      "1620\n",
-      "1619\n",
-      "1618\n",
-      "1617\n",
-      "1616\n",
-      "1615\n",
-      "1614\n",
-      "1613\n",
-      "1612\n",
-      "1611\n",
-      "1610\n",
-      "1609\n",
-      "1608\n",
-      "1607\n",
-      "1606\n",
-      "1605\n",
-      "1604\n",
-      "1603\n",
-      "1602\n",
-      "1601\n",
-      "1600\n",
-      "1599\n",
-      "1598\n",
-      "1597\n",
-      "1596\n",
-      "1595\n",
-      "1594\n",
-      "1593\n",
-      "1592\n",
-      "1591\n",
-      "1590\n",
-      "1589\n",
-      "1588\n",
-      "1587\n",
-      "1586\n",
-      "1585\n",
-      "1584\n",
-      "1583\n",
-      "1582\n",
-      "1581\n",
-      "1580\n",
-      "1579\n",
-      "1578\n",
-      "1577\n",
-      "1576\n",
-      "1575\n",
-      "1574\n",
-      "1573\n",
-      "1572\n",
-      "1571\n",
-      "1570\n",
-      "1569\n",
-      "1568\n",
-      "1567\n",
-      "1566\n",
-      "1565\n",
-      "1564\n",
-      "1563\n",
-      "1562\n",
-      "1561\n",
-      "1560\n",
-      "1559\n",
-      "1558\n",
-      "1557\n",
-      "1556\n",
-      "1555\n",
-      "1554\n",
-      "1553\n",
-      "1552\n",
-      "1551\n",
-      "1550\n",
-      "1549\n",
-      "1548\n",
-      "1547\n",
-      "1546\n",
-      "1545\n",
-      "1544\n",
-      "1543\n",
-      "1542\n",
-      "1541\n",
-      "1540\n",
-      "1539\n",
-      "1538\n",
-      "1537\n",
-      "1536\n",
-      "1535\n",
-      "1534\n",
-      "1533\n",
-      "1532\n",
-      "1531\n",
-      "1530\n",
-      "1529\n",
-      "1528\n",
-      "1527\n",
-      "1526\n",
-      "1525\n",
-      "1524\n",
-      "1523\n",
-      "1522\n",
-      "1521\n",
-      "1520\n",
-      "1519\n",
-      "1518\n",
-      "1517\n",
-      "1516\n",
-      "1515\n",
-      "1514\n",
-      "1513\n",
-      "1512\n",
-      "1511\n",
-      "1510\n",
-      "1509\n",
-      "1508\n",
-      "1507\n",
-      "1506\n",
-      "1505\n",
-      "1504\n",
-      "1503\n",
-      "1502\n",
-      "1501\n",
-      "1500\n",
-      "1499\n",
-      "1498\n",
-      "1497\n",
-      "1496\n",
-      "1495\n",
-      "1494\n",
-      "1493\n",
-      "1492\n",
-      "1491\n",
-      "1490\n",
-      "1489\n",
-      "1488\n",
-      "1487\n",
-      "1486\n",
-      "1485\n",
-      "1484\n",
-      "1483\n",
-      "1482\n",
-      "1481\n",
-      "1480\n",
-      "1479\n",
-      "1478\n",
-      "1477\n",
-      "1476\n",
-      "1475\n",
-      "1474\n",
-      "1473\n",
-      "1472\n",
-      "1471\n",
-      "1470\n",
-      "1469\n",
-      "1468\n",
-      "1467\n",
-      "1466\n",
-      "1465\n",
-      "1464\n",
-      "1463\n",
-      "1462\n",
-      "1461\n",
-      "1460\n",
-      "1459\n",
-      "1458\n",
-      "1457\n",
-      "1456\n",
-      "1455\n",
-      "1454\n",
-      "1453\n",
-      "1452\n",
-      "1451\n",
-      "1450\n",
-      "1449\n",
-      "1448\n",
-      "1447\n",
-      "1446\n",
-      "1445\n",
-      "1444\n",
-      "1443\n",
-      "1442\n",
-      "1441\n",
-      "1440\n",
-      "1439\n",
-      "1438\n",
-      "1437\n",
-      "1436\n",
-      "1435\n",
-      "1434\n",
-      "1433\n",
-      "1432\n",
-      "1431\n",
-      "1430\n",
-      "1429\n",
-      "1428\n",
-      "1427\n",
-      "1426\n",
-      "1425\n",
-      "1424\n",
-      "1423\n",
-      "1422\n",
-      "1421\n",
-      "1420\n",
-      "1419\n",
-      "1418\n",
-      "1417\n",
-      "1416\n",
-      "1415\n",
-      "1414\n",
-      "1413\n",
-      "1412\n",
-      "1411\n",
-      "1410\n",
-      "1409\n",
-      "1408\n",
-      "1407\n",
-      "1406\n",
-      "1405\n",
-      "1404\n",
-      "1403\n",
-      "1402\n",
-      "1401\n",
-      "1400\n",
-      "1399\n",
-      "1398\n",
-      "1397\n",
-      "1396\n",
-      "1395\n",
-      "1394\n",
-      "1393\n",
-      "1392\n",
-      "1391\n",
-      "1390\n",
-      "1389\n",
-      "1388\n",
-      "1387\n",
-      "1386\n",
-      "1385\n",
-      "1384\n",
-      "1383\n",
-      "1382\n",
-      "1381\n",
-      "1380\n",
-      "1379\n",
-      "1378\n",
-      "1377\n",
-      "1376\n",
-      "1375\n",
-      "1374\n",
-      "1373\n",
-      "1372\n",
-      "1371\n",
-      "1370\n",
-      "1369\n",
-      "1368\n",
-      "1367\n",
-      "1366\n",
-      "1365\n",
-      "1364\n",
-      "1363\n",
-      "1362\n",
-      "1361\n",
-      "1360\n",
-      "1359\n",
-      "1358\n",
-      "1357\n",
-      "1356\n",
-      "1355\n",
-      "1354\n",
-      "1353\n",
-      "1352\n",
-      "1351\n",
-      "1350\n",
-      "1349\n",
-      "1348\n",
-      "1347\n",
-      "1346\n",
-      "1345\n",
-      "1344\n",
-      "1343\n",
-      "1342\n",
-      "1341\n",
-      "1340\n",
-      "1339\n",
-      "1338\n",
-      "1337\n",
-      "1336\n",
-      "1335\n",
-      "1334\n",
-      "1333\n",
-      "1332\n",
-      "1331\n",
-      "1330\n",
-      "1329\n",
-      "1328\n",
-      "1327\n",
-      "1326\n",
-      "1325\n",
-      "1324\n",
-      "1323\n",
-      "1322\n",
-      "1321\n",
-      "1320\n",
-      "1319\n",
-      "1318\n",
-      "1317\n",
-      "1316\n",
-      "1315\n",
-      "1314\n",
-      "1313\n",
-      "1312\n",
-      "1311\n",
-      "1310\n",
-      "1309\n",
-      "1308\n",
-      "1307\n",
-      "1306\n",
-      "1305\n",
-      "1304\n",
-      "1303\n",
-      "1302\n",
-      "1301\n",
-      "1300\n",
-      "1299\n",
-      "1298\n",
-      "1297\n",
-      "1296\n",
-      "1295\n",
-      "1294\n",
-      "1293\n",
-      "1292\n",
-      "1291\n",
-      "1290\n",
-      "1289\n",
-      "1288\n",
-      "1287\n",
-      "1286\n",
-      "1285\n",
-      "1284\n",
-      "1283\n",
-      "1282\n",
-      "1281\n",
-      "1280\n",
-      "1279\n",
-      "1278\n",
-      "1277\n",
-      "1276\n",
-      "1275\n",
-      "1274\n",
-      "1273\n",
-      "1272\n",
-      "1271\n",
-      "1270\n",
-      "1269\n",
-      "1268\n",
-      "1267\n",
-      "1266\n",
-      "1265\n",
-      "1264\n",
-      "1263\n",
-      "1262\n",
-      "1261\n",
-      "1260\n",
-      "1259\n",
-      "1258\n",
-      "1257\n",
-      "1256\n",
-      "1255\n",
-      "1254\n",
-      "1253\n",
-      "1252\n",
-      "1251\n",
-      "1250\n",
-      "1249\n",
-      "1248\n",
-      "1247\n",
-      "1246\n",
-      "1245\n",
-      "1244\n",
-      "1243\n",
-      "1242\n",
-      "1241\n",
-      "1240\n",
-      "1239\n",
-      "1238\n",
-      "1237\n",
-      "1236\n",
-      "1235\n",
-      "1234\n",
-      "1233\n",
-      "1232\n",
-      "1231\n",
-      "1230\n",
-      "1229\n",
-      "1228\n",
-      "1227\n",
-      "1226\n",
-      "1225\n",
-      "1224\n",
-      "1223\n",
-      "1222\n",
-      "1221\n",
-      "1220\n",
-      "1219\n",
-      "1218\n",
-      "1217\n",
-      "1216\n",
-      "1215\n",
-      "1214\n",
-      "1213\n",
-      "1212\n",
-      "1211\n",
-      "1210\n",
-      "1209\n",
-      "1208\n",
-      "1207\n",
-      "1206\n",
-      "1205\n",
-      "1204\n",
-      "1203\n",
-      "1202\n",
-      "1201\n",
-      "1200\n",
-      "1199\n",
-      "1198\n",
-      "1197\n",
-      "1196\n",
-      "1195\n",
-      "1194\n",
-      "1193\n",
-      "1192\n",
-      "1191\n",
-      "1190\n",
-      "1189\n",
-      "1188\n",
-      "1187\n",
-      "1186\n",
-      "1185\n",
-      "1184\n",
-      "1183\n",
-      "1182\n",
-      "1181\n",
-      "1180\n",
-      "1179\n",
-      "1178\n",
-      "1177\n",
-      "1176\n",
-      "1175\n",
-      "1174\n",
-      "1173\n",
-      "1172\n",
-      "1171\n",
-      "1170\n",
-      "1169\n",
-      "1168\n",
-      "1167\n",
-      "1166\n",
-      "1165\n",
-      "1164\n",
-      "1163\n",
-      "1162\n",
-      "1161\n",
-      "1160\n",
-      "1159\n",
-      "1158\n",
-      "1157\n",
-      "1156\n",
-      "1155\n",
-      "1154\n",
-      "1153\n",
-      "1152\n",
-      "1151\n",
-      "1150\n",
-      "1149\n",
-      "1148\n",
-      "1147\n",
-      "1146\n",
-      "1145\n",
-      "1144\n",
-      "1143\n",
-      "1142\n",
-      "1141\n",
-      "1140\n",
-      "1139\n",
-      "1138\n",
-      "1137\n",
-      "1136\n",
-      "1135\n",
-      "1134\n",
-      "1133\n",
-      "1132\n",
-      "1131\n",
-      "1130\n",
-      "1129\n",
-      "1128\n",
-      "1127\n",
-      "1126\n",
-      "1125\n",
-      "1124\n",
-      "1123\n",
-      "1122\n",
-      "1121\n",
-      "1120\n",
-      "1119\n",
-      "1118\n",
-      "1117\n",
-      "1116\n",
-      "1115\n",
-      "1114\n",
-      "1113\n",
-      "1112\n",
-      "1111\n",
-      "1110\n",
-      "1109\n",
-      "1108\n",
-      "1107\n",
-      "1106\n",
-      "1105\n",
-      "1104\n",
-      "1103\n",
-      "1102\n",
-      "1101\n",
-      "1100\n",
-      "1099\n",
-      "1098\n",
-      "1097\n",
-      "1096\n",
-      "1095\n",
-      "1094\n",
-      "1093\n",
-      "1092\n",
-      "1091\n",
-      "1090\n",
-      "1089\n",
-      "1088\n",
-      "1087\n",
-      "1086\n",
-      "1085\n",
-      "1084\n",
-      "1083\n",
-      "1082\n",
-      "1081\n",
-      "1080\n",
-      "1079\n",
-      "1078\n",
-      "1077\n",
-      "1076\n",
-      "1075\n",
-      "1074\n",
-      "1073\n",
-      "1072\n",
-      "1071\n",
-      "1070\n",
-      "1069\n",
-      "1068\n",
-      "1067\n",
-      "1066\n",
-      "1065\n",
-      "1064\n",
-      "1063\n",
-      "1062\n",
-      "1061\n",
-      "1060\n",
-      "1059\n",
-      "1058\n",
-      "1057\n",
-      "1056\n",
-      "1055\n",
-      "1054\n",
-      "1053\n",
-      "1052\n",
-      "1051\n",
-      "1050\n",
-      "1049\n",
-      "1048\n",
-      "1047\n",
-      "1046\n",
-      "1045\n",
-      "1044\n",
-      "1043\n",
-      "1042\n",
-      "1041\n",
-      "1040\n",
-      "1039\n",
-      "1038\n",
-      "1037\n",
-      "1036\n",
-      "1035\n",
-      "1034\n",
-      "1033\n",
-      "1032\n",
-      "1031\n",
-      "1030\n",
-      "1029\n",
-      "1028\n",
-      "1027\n",
-      "1026\n",
-      "1025\n",
-      "1024\n",
-      "1023\n",
-      "1022\n",
-      "1021\n",
-      "1020\n",
-      "1019\n",
-      "1018\n",
-      "1017\n",
-      "1016\n",
-      "1015\n",
-      "1014\n",
-      "1013\n",
-      "1012\n",
-      "1011\n",
-      "1010\n",
-      "1009\n",
-      "1008\n",
-      "1007\n",
-      "1006\n",
-      "1005\n",
-      "1004\n",
-      "1003\n",
-      "1002\n",
-      "1001\n",
-      "1000\n",
-      "999\n",
-      "998\n",
-      "997\n",
-      "996\n",
-      "995\n",
-      "994\n",
-      "993\n",
-      "992\n",
-      "991\n",
-      "990\n",
-      "989\n",
-      "988\n",
-      "987\n",
-      "986\n",
-      "985\n",
-      "984\n",
-      "983\n",
-      "982\n",
-      "981\n",
-      "980\n",
-      "979\n",
-      "978\n",
-      "977\n",
-      "976\n",
-      "975\n",
-      "974\n",
-      "973\n",
-      "972\n",
-      "971\n",
-      "970\n",
-      "969\n",
-      "968\n",
-      "967\n",
-      "966\n",
-      "965\n",
-      "964\n",
-      "963\n",
-      "962\n",
-      "961\n",
-      "960\n",
-      "959\n",
-      "958\n",
-      "957\n",
-      "956\n",
-      "955\n",
-      "954\n",
-      "953\n",
-      "952\n",
-      "951\n",
-      "950\n",
-      "949\n",
-      "948\n",
-      "947\n",
-      "946\n",
-      "945\n",
-      "944\n",
-      "943\n",
-      "942\n",
-      "941\n",
-      "940\n",
-      "939\n",
-      "938\n",
-      "937\n",
-      "936\n",
-      "935\n",
-      "934\n",
-      "933\n",
-      "932\n",
-      "931\n",
-      "930\n",
-      "929\n",
-      "928\n",
-      "927\n",
-      "926\n",
-      "925\n",
-      "924\n",
-      "923\n",
-      "922\n",
-      "921\n",
-      "920\n",
-      "919\n",
-      "918\n",
-      "917\n",
-      "916\n",
-      "915\n",
-      "914\n",
-      "913\n",
-      "912\n",
-      "911\n",
-      "910\n",
-      "909\n",
-      "908\n",
-      "907\n",
-      "906\n",
-      "905\n",
-      "904\n",
-      "903\n",
-      "902\n",
-      "901\n",
-      "900\n",
-      "899\n",
-      "898\n",
-      "897\n",
-      "896\n",
-      "895\n",
-      "894\n",
-      "893\n",
-      "892\n",
-      "891\n",
-      "890\n",
-      "889\n",
-      "888\n",
-      "887\n",
-      "886\n",
-      "885\n",
-      "884\n",
-      "883\n",
-      "882\n",
-      "881\n",
-      "880\n",
-      "879\n",
-      "878\n",
-      "877\n",
-      "876\n",
-      "875\n",
-      "874\n",
-      "873\n",
-      "872\n",
-      "871\n",
-      "870\n",
-      "869\n",
-      "868\n",
-      "867\n",
-      "866\n",
-      "865\n",
-      "864\n",
-      "863\n",
-      "862\n",
-      "861\n",
-      "860\n",
-      "859\n",
-      "858\n",
-      "857\n",
-      "856\n",
-      "855\n",
-      "854\n",
-      "853\n",
-      "852\n",
-      "851\n",
-      "850\n",
-      "849\n",
-      "848\n",
-      "847\n",
-      "846\n",
-      "845\n",
-      "844\n",
-      "843\n",
-      "842\n",
-      "841\n",
-      "840\n",
-      "839\n",
-      "838\n",
-      "837\n",
-      "836\n",
-      "835\n",
-      "834\n",
-      "833\n",
-      "832\n",
-      "831\n",
-      "830\n",
-      "829\n",
-      "828\n",
-      "827\n",
-      "826\n",
-      "825\n",
-      "824\n",
-      "823\n",
-      "822\n",
-      "821\n",
-      "820\n",
-      "819\n",
-      "818\n",
-      "817\n",
-      "816\n",
-      "815\n",
-      "814\n",
-      "813\n",
-      "812\n",
-      "811\n",
-      "810\n",
-      "809\n",
-      "808\n",
-      "807\n",
-      "806\n",
-      "805\n",
-      "804\n",
-      "803\n",
-      "802\n",
-      "801\n",
-      "800\n",
-      "799\n",
-      "798\n",
-      "797\n",
-      "796\n",
-      "795\n",
-      "794\n",
-      "793\n",
-      "792\n",
-      "791\n",
-      "790\n",
-      "789\n",
-      "788\n",
-      "787\n",
-      "786\n",
-      "785\n",
-      "784\n",
-      "783\n",
-      "782\n",
-      "781\n",
-      "780\n",
-      "779\n",
-      "778\n",
-      "777\n",
-      "776\n",
-      "775\n",
-      "774\n",
-      "773\n",
-      "772\n",
-      "771\n",
-      "770\n",
-      "769\n",
-      "768\n",
-      "767\n",
-      "766\n",
-      "765\n",
-      "764\n",
-      "763\n",
-      "762\n",
-      "761\n",
-      "760\n",
-      "759\n",
-      "758\n",
-      "757\n",
-      "756\n",
-      "755\n",
-      "754\n",
-      "753\n",
-      "752\n",
-      "751\n",
-      "750\n",
-      "749\n",
-      "748\n",
-      "747\n",
-      "746\n",
-      "745\n",
-      "744\n",
-      "743\n",
-      "742\n",
-      "741\n",
-      "740\n",
-      "739\n",
-      "738\n",
-      "737\n",
-      "736\n",
-      "735\n",
-      "734\n",
-      "733\n",
-      "732\n",
-      "731\n",
-      "730\n",
-      "729\n",
-      "728\n",
-      "727\n",
-      "726\n",
-      "725\n",
-      "724\n",
-      "723\n",
-      "722\n",
-      "721\n",
-      "720\n",
-      "719\n",
-      "718\n",
-      "717\n",
-      "716\n",
-      "715\n",
-      "714\n",
-      "713\n",
-      "712\n",
-      "711\n",
-      "710\n",
-      "709\n",
-      "708\n",
-      "707\n",
-      "706\n",
-      "705\n",
-      "704\n",
-      "703\n",
-      "702\n",
-      "701\n",
-      "700\n",
-      "699\n",
-      "698\n",
-      "697\n",
-      "696\n",
-      "695\n",
-      "694\n",
-      "693\n",
-      "692\n",
-      "691\n",
-      "690\n",
-      "689\n",
-      "688\n",
-      "687\n",
-      "686\n",
-      "685\n",
-      "684\n",
-      "683\n",
-      "682\n",
-      "681\n",
-      "680\n",
-      "679\n",
-      "678\n",
-      "677\n",
-      "676\n",
-      "675\n",
-      "674\n",
-      "673\n",
-      "672\n",
-      "671\n",
-      "670\n",
-      "669\n",
-      "668\n",
-      "667\n",
-      "666\n",
-      "665\n",
-      "664\n",
-      "663\n",
-      "662\n",
-      "661\n",
-      "660\n",
-      "659\n",
-      "658\n",
-      "657\n",
-      "656\n",
-      "655\n",
-      "654\n",
-      "653\n",
-      "652\n",
-      "651\n",
-      "650\n",
-      "649\n",
-      "648\n",
-      "647\n",
-      "646\n",
-      "645\n",
-      "644\n",
-      "643\n",
-      "642\n",
-      "641\n",
-      "640\n",
-      "639\n",
-      "638\n",
-      "637\n",
-      "636\n",
-      "635\n",
-      "634\n",
-      "633\n",
-      "632\n",
-      "631\n",
-      "630\n",
-      "629\n",
-      "628\n",
-      "627\n",
-      "626\n",
-      "625\n",
-      "624\n",
-      "623\n",
-      "622\n",
-      "621\n",
-      "620\n",
-      "619\n",
-      "618\n",
-      "617\n",
-      "616\n",
-      "615\n",
-      "614\n",
-      "613\n",
-      "612\n",
-      "611\n",
-      "610\n",
-      "609\n",
-      "608\n",
-      "607\n",
-      "606\n",
-      "605\n",
-      "604\n",
-      "603\n",
-      "602\n",
-      "601\n",
-      "600\n",
-      "599\n",
-      "598\n",
-      "597\n",
-      "596\n",
-      "595\n",
-      "594\n",
-      "593\n",
-      "592\n",
-      "591\n",
-      "590\n",
-      "589\n",
-      "588\n",
-      "587\n",
-      "586\n",
-      "585\n",
-      "584\n",
-      "583\n",
-      "582\n",
-      "581\n",
-      "580\n",
-      "579\n",
-      "578\n",
-      "577\n",
-      "576\n",
-      "575\n",
-      "574\n",
-      "573\n",
-      "572\n",
-      "571\n",
-      "570\n",
-      "569\n",
-      "568\n",
-      "567\n",
-      "566\n",
-      "565\n",
-      "564\n",
-      "563\n",
-      "562\n",
-      "561\n",
-      "560\n",
-      "559\n",
-      "558\n",
-      "557\n",
-      "556\n",
-      "555\n",
-      "554\n",
-      "553\n",
-      "552\n",
-      "551\n",
-      "550\n",
-      "549\n",
-      "548\n",
-      "547\n",
-      "546\n",
-      "545\n",
-      "544\n",
-      "543\n",
-      "542\n",
-      "541\n",
-      "540\n",
-      "539\n",
-      "538\n",
-      "537\n",
-      "536\n",
-      "535\n",
-      "534\n",
-      "533\n",
-      "532\n",
-      "531\n",
-      "530\n",
-      "529\n",
-      "528\n",
-      "527\n",
-      "526\n",
-      "525\n",
-      "524\n",
-      "523\n",
-      "522\n",
-      "521\n",
-      "520\n",
-      "519\n",
-      "518\n",
-      "517\n",
-      "516\n",
-      "515\n",
-      "514\n",
-      "513\n",
-      "512\n",
-      "511\n",
-      "510\n",
-      "509\n",
-      "508\n",
-      "507\n",
-      "506\n",
-      "505\n",
-      "504\n",
-      "503\n",
-      "502\n",
-      "501\n",
-      "500\n",
-      "499\n",
-      "498\n",
-      "497\n",
-      "496\n",
-      "495\n",
-      "494\n",
-      "493\n",
-      "492\n",
-      "491\n",
-      "490\n",
-      "489\n",
-      "488\n",
-      "487\n",
-      "486\n",
-      "485\n",
-      "484\n",
-      "483\n",
-      "482\n",
-      "481\n",
-      "480\n",
-      "479\n",
-      "478\n",
-      "477\n",
-      "476\n",
-      "475\n",
-      "474\n",
-      "473\n",
-      "472\n",
-      "471\n",
-      "470\n",
-      "469\n",
-      "468\n",
-      "467\n",
-      "466\n",
-      "465\n",
-      "464\n",
-      "463\n",
-      "462\n",
-      "461\n",
-      "460\n",
-      "459\n",
-      "458\n",
-      "457\n",
-      "456\n",
-      "455\n",
-      "454\n",
-      "453\n",
-      "452\n",
-      "451\n",
-      "450\n",
-      "449\n",
-      "448\n",
-      "447\n",
-      "446\n",
-      "445\n",
-      "444\n",
-      "443\n",
-      "442\n",
-      "441\n",
-      "440\n",
-      "439\n",
-      "438\n",
-      "437\n",
-      "436\n",
-      "435\n",
-      "434\n",
-      "433\n",
-      "432\n",
-      "431\n",
-      "430\n",
-      "429\n",
-      "428\n",
-      "427\n",
-      "426\n",
-      "425\n",
-      "424\n",
-      "423\n",
-      "422\n",
-      "421\n",
-      "420\n",
-      "419\n",
-      "418\n",
-      "417\n",
-      "416\n",
-      "415\n",
-      "414\n",
-      "413\n",
-      "412\n",
-      "411\n",
-      "410\n",
-      "409\n",
-      "408\n",
-      "407\n",
-      "406\n",
-      "405\n",
-      "404\n",
-      "403\n",
-      "402\n",
-      "401\n",
-      "400\n",
-      "399\n",
-      "398\n",
-      "397\n",
-      "396\n",
-      "395\n",
-      "394\n",
-      "393\n",
-      "392\n",
-      "391\n",
-      "390\n",
-      "389\n",
-      "388\n",
-      "387\n",
-      "386\n",
-      "385\n",
-      "384\n",
-      "383\n",
-      "382\n",
-      "381\n",
-      "380\n",
-      "379\n",
-      "378\n",
-      "377\n",
-      "376\n",
-      "375\n",
-      "374\n",
-      "373\n",
-      "372\n",
-      "371\n",
-      "370\n",
-      "369\n",
-      "368\n",
-      "367\n",
-      "366\n",
-      "365\n",
-      "364\n",
-      "363\n",
-      "362\n",
-      "361\n",
-      "360\n",
-      "359\n",
-      "358\n",
-      "357\n",
-      "356\n",
-      "355\n",
-      "354\n",
-      "353\n",
-      "352\n",
-      "351\n",
-      "350\n",
-      "349\n",
-      "348\n",
-      "347\n",
-      "346\n",
-      "345\n",
-      "344\n",
-      "343\n",
-      "342\n",
-      "341\n",
-      "340\n",
-      "339\n",
-      "338\n",
-      "337\n",
-      "336\n",
-      "335\n",
-      "334\n",
-      "333\n",
-      "332\n",
-      "331\n",
-      "330\n",
-      "329\n",
-      "328\n",
-      "327\n",
-      "326\n",
-      "325\n",
-      "324\n",
-      "323\n",
-      "322\n",
-      "321\n",
-      "320\n",
-      "319\n",
-      "318\n",
-      "317\n",
-      "316\n",
-      "315\n",
-      "314\n",
-      "313\n",
-      "312\n",
-      "311\n",
-      "310\n",
-      "309\n",
-      "308\n",
-      "307\n",
-      "306\n",
-      "305\n",
-      "304\n",
-      "303\n",
-      "302\n",
-      "301\n",
-      "300\n",
-      "299\n",
-      "298\n",
-      "297\n",
-      "296\n",
-      "295\n",
-      "294\n",
-      "293\n",
-      "292\n",
-      "291\n",
-      "290\n",
-      "289\n",
-      "288\n",
-      "287\n",
-      "286\n",
-      "285\n",
-      "284\n",
-      "283\n",
-      "282\n",
-      "281\n",
-      "280\n",
-      "279\n",
-      "278\n",
-      "277\n",
-      "276\n",
-      "275\n",
-      "274\n",
-      "273\n",
-      "272\n",
-      "271\n",
-      "270\n",
-      "269\n",
-      "268\n",
-      "267\n",
-      "266\n",
-      "265\n",
-      "264\n",
-      "263\n",
-      "262\n",
-      "261\n",
-      "260\n",
-      "259\n",
-      "258\n",
-      "257\n",
-      "256\n",
-      "255\n",
-      "254\n",
-      "253\n",
-      "252\n",
-      "251\n",
-      "250\n",
-      "249\n",
-      "248\n",
-      "247\n",
-      "246\n",
-      "245\n",
-      "244\n",
-      "243\n",
-      "242\n",
-      "241\n",
-      "240\n",
-      "239\n",
-      "238\n",
-      "237\n",
-      "236\n",
-      "235\n",
-      "234\n",
-      "233\n",
-      "232\n",
-      "231\n",
-      "230\n",
-      "229\n",
-      "228\n",
-      "227\n",
-      "226\n",
-      "225\n",
-      "224\n",
-      "223\n",
-      "222\n",
-      "221\n",
-      "220\n",
-      "219\n",
-      "218\n",
-      "217\n",
-      "216\n",
-      "215\n",
-      "214\n",
-      "213\n",
-      "212\n",
-      "211\n",
-      "210\n",
-      "209\n",
-      "208\n",
-      "207\n",
-      "206\n",
-      "205\n",
-      "204\n",
-      "203\n",
-      "202\n",
-      "201\n",
-      "200\n",
-      "199\n",
-      "198\n",
-      "197\n",
-      "196\n",
-      "195\n",
-      "194\n",
-      "193\n",
-      "192\n",
-      "191\n",
-      "190\n",
-      "189\n",
-      "188\n",
-      "187\n",
-      "186\n",
-      "185\n",
-      "184\n",
-      "183\n",
-      "182\n",
-      "181\n",
-      "180\n",
-      "179\n",
-      "178\n",
-      "177\n",
-      "176\n",
-      "175\n",
-      "174\n",
-      "173\n",
-      "172\n",
-      "171\n",
-      "170\n",
-      "169\n",
-      "168\n",
-      "167\n",
-      "166\n",
-      "165\n",
-      "164\n",
-      "163\n",
-      "162\n",
-      "161\n",
-      "160\n",
-      "159\n",
-      "158\n",
-      "157\n",
-      "156\n",
-      "155\n",
-      "154\n",
-      "153\n",
-      "152\n",
-      "151\n",
-      "150\n",
-      "149\n",
-      "148\n",
-      "147\n",
-      "146\n",
-      "145\n",
-      "144\n",
-      "143\n",
-      "142\n",
-      "141\n",
-      "140\n",
-      "139\n",
-      "138\n",
-      "137\n",
-      "136\n",
-      "135\n",
-      "134\n",
-      "133\n",
-      "132\n",
-      "131\n",
-      "130\n",
-      "129\n",
-      "128\n",
-      "127\n",
-      "126\n",
-      "125\n",
-      "124\n",
-      "123\n",
-      "122\n",
-      "121\n",
-      "120\n",
-      "119\n",
-      "118\n",
-      "117\n",
-      "116\n",
-      "115\n",
-      "114\n",
-      "113\n",
-      "112\n",
-      "111\n",
-      "110\n",
-      "109\n",
-      "108\n",
-      "107\n",
-      "106\n",
-      "105\n",
-      "104\n",
-      "103\n",
-      "102\n",
-      "101\n",
-      "100\n",
-      "99\n",
-      "98\n",
-      "97\n",
-      "96\n",
-      "95\n",
-      "94\n",
-      "93\n",
-      "92\n",
-      "91\n",
-      "90\n",
-      "89\n",
-      "88\n",
-      "87\n",
-      "86\n",
-      "85\n",
-      "84\n",
-      "83\n",
-      "82\n",
-      "81\n",
-      "80\n",
-      "79\n",
-      "78\n",
-      "77\n",
-      "76\n",
-      "75\n",
-      "74\n",
-      "73\n",
-      "72\n",
-      "71\n",
-      "70\n",
-      "69\n",
-      "68\n",
-      "67\n",
-      "66\n",
-      "65\n",
-      "64\n",
-      "63\n",
-      "62\n",
-      "61\n",
-      "60\n",
-      "59\n",
-      "58\n",
-      "57\n",
-      "56\n",
-      "55\n",
-      "54\n",
-      "53\n",
-      "52\n",
-      "51\n",
-      "50\n",
-      "49\n",
-      "48\n",
-      "47\n",
-      "46\n",
-      "45\n",
-      "44\n",
-      "43\n",
-      "42\n",
-      "41\n",
-      "40\n",
-      "39\n",
-      "38\n",
-      "37\n",
-      "36\n",
-      "35\n",
-      "34\n",
-      "33\n",
-      "32\n",
-      "31\n",
-      "30\n",
-      "29\n",
-      "28\n",
-      "27\n",
-      "26\n",
-      "25\n",
-      "24\n",
-      "23\n",
-      "22\n",
-      "21\n",
-      "20\n",
-      "19\n",
-      "18\n",
-      "17\n",
-      "16\n",
-      "15\n",
-      "14\n",
-      "13\n",
-      "12\n",
-      "11\n",
-      "10\n",
-      "9\n",
-      "8\n",
-      "7\n",
-      "6\n",
-      "5\n",
-      "4\n",
-      "3\n",
-      "2\n",
-      "1\n",
-      "0\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "number_of_time_steps = simulation_clock.number_of_time_steps()\n",
-    "time_indices = np.zeros(number_of_time_steps)\n",
-    "times = np.zeros(number_of_time_steps)\n",
-    "\n",
-    "while True and (current_time_index > 0):\n",
-    "    try:\n",
-    "        current_time_index, current_time = simulation_clock.increment_time()\n",
-    "        time_indices[current_time_index] = current_time_index\n",
-    "        times[current_time_index] = current_time\n",
-    "        print(current_time_index)\n",
-    "    except IndexError:\n",
-    "        break"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XeYlOX59vHvRUcQECmigIBiQwR0BAQLghRLRBN9gyUQGzFRidGooFGw/cRobFFR7CRRJFZiowjYKQvSi6yKsoCgUgSRsrvX+8fczI64LAvM7DO7e36OY46d6557nrnGRU6eMveYuyMiIpIKFaJuQEREyg6FioiIpIxCRUREUkahIiIiKaNQERGRlFGoiIhIyihUREQkZRQqIiKSMgoVERFJmUpRN1DS6tWr582aNYu6DRGRUmX69OnfuXv9nc0rd6HSrFkzsrKyom5DRKRUMbOvijNPh79ERCRlFCoiIpIyChUREUkZhYqIiKSMQkVERFJGoSIiIimjUBERkZRRqIiIlHFvzl7BNaNmlshrlbsPP4qIlBc/bs7lyCFjcI/X/zi3DWaW1tfUnoqISBn03MdLaDW4IFDGX3NS2gMF0hgqZlbNzKaa2Swzm2dmt4bxZ83sSzObGW5tw7iZ2UNmlm1ms83s6KRt9TOzxeHWL2n8GDObE57zkJXEfzERkQy2+sctNBv4JoNHzwPggg5NWTL0dA5uULNEXj+dh782A13dfYOZVQY+NLO3w2PXuftL280/FWgZbh2AYUAHM6sLDAZigAPTzWy0u68Jc/oDk4G3gF7A24iIlEP3jV3EQxOyE/Ung7rSqHb1Eu0hbaHi7g5sCGXlcPMintIbGBGeN9nM6phZI6ALMM7dVwOY2Tigl5lNAmq5+ydhfARwFgoVESlnlq39ic5DJyTqv5xyCH8+pWUkvaT1nIqZVTSzmcAq4sEwJTx0ZzjEdb+ZVQ1jBwBLk56eE8aKGs8pZFxEpNwY9MrsnwXKpzd3jyxQIM1Xf7l7HtDWzOoAr5rZkcAg4BugCjAcuAG4DSjsfIjvxvgvmFl/4ofJaNq06S6+CxGRzLN45Xq63/9+or7jrCO5sOOBEXYUVyJXf7n7WmAS0MvdV3jcZuAZoH2YlgM0SXpaY2D5TsYbFzJe2OsPd/eYu8fq19/pd8yIiGQsd+fiZ6clAqVyRWP+bT0zIlAgvVd/1Q97KJhZdeAUYGE4T0K4UussYG54ymigb7gKrCOwzt1XAGOAHma2j5ntA/QAxoTH1ptZx7CtvsDr6Xo/IiJRm/7VGpoPeosJC1cB8OgFR7P4ztPYq0rmfOQwnZ00Ap4zs4rEw2uUu79hZhPMrD7xw1czgcvD/LeA04BsYCNwEYC7rzaz24FpYd5t207aA38EngWqEz9Br5P0IlLm5OU7Z/zzQxas+AGAJnWrM+HaLlSumHkfNTT3oi7IKntisZjr64RFpLSYuGgVFz0zLVH/59IOdD64Xon3YWbT3T22s3mZs88kIiIJm3Pz6HTXBL7/cQsAsQP3YdQfjqNChcz+jLdCRUQkw7z26TKufrFgAcjRV3bmqMZ1Iuyo+BQqIiIZYv2mrbQeMjZRn966EQ+f365E1uxKFYWKiEgGePKDL7jjzQWJeuJfu9C8Xo0IO9o9ChURkQh9t2EzsTvGJ+rfd2rGkDNbRdjRnlGoiIhE5O53FjJs0ueJesqN3WhYq1qEHe05hYqISAlbunojJ/x9YqK+ruehXHHywRF2lDoKFRGREnTtqFm8PKNgLdxZt/Sg9l6VI+wotRQqIiIlYOE3P9DrgQ8S9dBft6ZP+7K3wK1CRUQkjdydvk9P5YPF3wFQo0pFpt/cnWqVK0bcWXooVERE0mTaktWc+9gnifrx3x1Dz1b7RdhR+ilURERSLDcvn1Mf/IDFq+JfftuiXg3G/uVEKmXgApCpplAREUmh8fNXcumIgkVrR/bvSMcW+0bYUclSqIiIpMCmrXm0v3M8P2zKBaBji7q8cFnHUrXESiooVERE9tBL03P4639nJeo3BxxPq/1rR9hRdBQqIiK76YdNWzkqaQHI3m3358E+7SLsKHoKFRGR3fDYe58z9O2Fifq967pw4L6lbwHIVFOoiIjsglXrN9H+zncT9WUnNOem04+IsKPMkrbr28ysmplNNbNZZjbPzG4N483NbIqZLTazF82sShivGurs8HizpG0NCuOLzKxn0nivMJZtZgPT9V5ERADufHP+zwJl6k3dFCjbSeeeymagq7tvMLPKwIdm9jZwDXC/u480s8eAS4Bh4ecadz/YzPoAdwO/NbMjgD5AK2B/YLyZHRJe4xGgO5ADTDOz0e4+P43vSUTKoa++/5GT7pmUqAedehh/OOmg6BrKYGkLFXd3YEMoK4ebA12B88P4c8AQ4qHSO9wHeAl42OLX4vUGRrr7ZuBLM8sG2od52e7+BYCZjQxzFSoikjIDXviU0bOWJ+rZQ3pQq1rZWQAy1dJ6TsXMKgLTgYOJ71V8Dqx199wwJQc4INw/AFgK4O65ZrYO2DeMT07abPJzlm433iENb0NEyqG5y9Zxxj8/TNT3nHMU58aaRNhR6ZDWUHH3PKCtmdUBXgUOL2xa+FnYJ4S8iPHCzgd5IWOYWX+gP0DTpmVvVVARSR13p8/wyUz5cjUAtatXZsqN3crsApCpViJXf7n7WjObBHQE6phZpbC30hjYtl+ZAzQBcsysElAbWJ00vk3yc3Y0vv3rDweGA8RisUKDR0Tkk8+/57wnCg6MPNk3xilHNIywo9InnVd/1Q97KJhZdeAUYAEwETgnTOsHvB7ujw414fEJ4bzMaKBPuDqsOdASmApMA1qGq8mqED+ZPzpd70dEyq7cvHxOvndSIlAOaViT7DtPVaDshnTuqTQCngvnVSoAo9z9DTObD4w0szuAT4GnwvyngH+FE/GriYcE7j7PzEYRPwGfC1wRDqthZlcCY4CKwNPuPi+N70dEyqB35n7D5f+enqhH/eE42jevG2FHpZvFdwbKj1gs5llZWTufKCJl2k9b8jjmjnFs3JIHwAkt6zHi4vblbgHI4jKz6e4e29k8faJeRMqdkVO/ZuArcxL1O1efwGH71Yqwo7JDoSIi5ca6jVtpc1vBApC/Obox//h/bSLsqOxRqIhIufDIxGzuGbMoUX9w/ck0qbtXhB2VTQoVESnTVv6wiQ7/V7Be1+UnHcTAUw+LsKOyTaEiImXWkNHzePbjJYk662+nUK9m1egaKgcUKiJS5nzx7Qa6/uO9RP230w/n0hNaRNhR+aFQEZEyw9254vkZvDXnm8TY3Ft7UrOq/qorKfovLSJlwpycdfzq4YIFIO//bRvObtc4wo7KJ4WKiJRq+fnOuY9/wvSv1gBQr2YVPhrYlaqVtABkFBQqIlJqfZT9HRc8OSVRP/P7Yzn5sAYRdiQKFREpdbbm5dPlnkksW/sTAEc0qsX/rjqeihW0xErUFCoiUqq8OXsFVzw/I1G//MdOHHPgPhF2JMkUKiJSKmzckkubW8eyNS++CG7XwxrwVL+YFoDMMAoVEcl4/5r8FTe/NjdRj/vLibRsuHeEHcmOKFREJGOt+XEL7W4fl6j7HNuEob85KsKOZGcUKiKSkR4cv5j7x3+WqD8a2JUD6lSPsCMpDoWKiGSU5Wt/otPQCYn6qq4Hc22PQyPsSHaFQkVEMsbfXpvDvyd/nahn3NydujWqRNiR7CqFiohELnvVek657/1EfeuZrejXqVl0Dcluq5CuDZtZEzObaGYLzGyemf05jA8xs2VmNjPcTkt6ziAzyzazRWbWM2m8VxjLNrOBSePNzWyKmS02sxfNTP+kESlF3J3LRmQlAsUM5t3aU4FSiqVzTyUXuNbdZ5jZ3sB0M9t2Gcf97n5v8mQzOwLoA7QC9gfGm9kh4eFHgO5ADjDNzEa7+3zg7rCtkWb2GHAJMCyN70lEUmTm0rWc9chHifqh89pxZpv9I+xIUiFtoeLuK4AV4f56M1sAHFDEU3oDI919M/ClmWUD7cNj2e7+BYCZjQR6h+11Bc4Pc54DhqBQEclo+fnO2Y9+xKycdQDsV6sa719/MlUqpe3AiZSgEjmnYmbNgHbAFKAzcKWZ9QWyiO/NrCEeOJOTnpZDQQgt3W68A7AvsNbdcwuZLyIZ6L3PvqXf01MT9YiL23PiIfUj7EhSLe2hYmY1gZeBq939BzMbBtwOePj5D+BioLC1FpzCz/t4EfML66E/0B+gadOmu/oWRGQPbcnN5/i7J7Bq/WYA2japwyt/7EQFLQBZ5qQ1VMysMvFA+Y+7vwLg7iuTHn8CeCOUOUCTpKc3BpaH+4WNfwfUMbNKYW8lef7PuPtwYDhALBYrNHhEJD1Gz1rOgBc+TdSvXdGZtk3qRNiRpFPaQsXiq7w9BSxw9/uSxhuF8y0AZwPbFvQZDTxvZvcRP1HfEphKfI+kpZk1B5YRP5l/vru7mU0EzgFGAv2A19P1fkRk1/y4OZdWg8ck6p6tGvLYhcdoAcgyLp17Kp2B3wFzzGxmGLsROM/M2hI/VLUE+AOAu88zs1HAfOJXjl3h7nkAZnYlMAaoCDzt7vPC9m4ARprZHcCnxENMRCL23MdLGDx6XqIef81JHNygZoQdSUkx9/J1NCgWi3lWVlbUbYiUSat/3MLRSQtAXtixKXec1TrCjiRVzGy6u8d2Nk+fqBeRlLh3zCIenpidqD8Z1JVGtbUAZHmjUBGRPZKzZiPH3z0xUV/T/RAGdGsZYUcSJYWKiOy2G16azYtZBR8jm3lLd+rspdWSyjOFiojsss9WrqfH/QULQN5x1pFc2PHACDuSTKFQEZFic3cuenYakxZ9C0CVShWYeUt39qqiv0okTn8SRKRYpn+1mt8M+yRRP3rB0ZzWulGEHUkmUqiISJHy8p3TH/qAhd+sB6BJ3epMuLYLlStqAUj5JYWKiOzQxIWruOjZaYn6+Us70OngehF2JJlOoSIiv7A5N4/j7prA6h+3AHBss314sf9xWgBSdkqhIiI/88qMHK4ZNStR/+/K42nduHaEHUlpolAREQDWb9pK6yFjE/XpRzXi4fPaaQFI2SUKFRHhyQ++4I43FyTqiX/tQvN6NSLsSEorhYpIOfbt+s0ce+f4RH1R52YM/lWrCDuS0k6hIlJO3fX2Ah5/74tEPfXGbjSoVS3CjqQsUKiIlDNLV2/khL8XLAB5Xc9DueLkgyPsSMoShYpIOXLNqJm8MmNZop41uAe1q1eOsCMpaxQqIuXAghU/cOqDHyTqu3/Tmt8e2zTCjqSsUqiIlGHuzoVPTeGj7O8BqFGlItNv7k61yhUj7kzKqrQt3mNmTcxsopktMLN5ZvbnMF7XzMaZ2eLwc58wbmb2kJllm9lsMzs6aVv9wvzFZtYvafwYM5sTnvOQ6YJ6kYSpX66m+aC3EoHy+O+OYd5tvRQoklbp3FPJBa519xlmtjcw3czGAb8H3nX3oWY2EBgI3ACcCrQMtw7AMKCDmdUFBgMxwMN2Rrv7mjCnPzAZeAvoBbydxvckkvFy8/Lp9eAHZK/aAECL+jUYe/WJVNICkFIC0hYq7r4CWBHurzezBcABQG+gS5j2HDCJeKj0Bka4uwOTzayOmTUKc8e5+2qAEEy9zGwSUMvdPwnjI4CzUKhIOTZu/kouG5GVqEf270jHFvtG2JGUNyVyTsXMmgHtgClAwxA4uPsKM2sQph0ALE16Wk4YK2o8p5BxkXJn09Y8jr1zPOs35QJwXIt9ef6yDlpiRUpcsUPFzGq4+4+7+gJmVhN4Gbja3X8o4g95YQ/4bowX1kN/4ofJaNpUV7xI2TIqaynXvzQ7Ub854Hha7a8FICUaOz3IamadzGw+sCDUbczs0eJs3MwqEw+U/7j7K2F4ZTisRfi5KoznAE2Snt4YWL6T8caFjP+Cuw9395i7x+rXr1+c1kUy3rqfttJs4JuJQOnddn+WDD1dgSKRKs6Zu/uBnsD3AO4+CzhxZ08KV2I9BSxw9/uSHhoNbLuCqx/wetJ433AVWEdgXThMNgboYWb7hCvFegBjwmPrzaxjeK2+SdsSKdMee+9z2txasKLwe9d14cE+7SLsSCSuWIe/3H3pdoet8orxtM7A74A5ZjYzjN0IDAVGmdklwNfAueGxt4DTgGxgI3BReO3VZnY7sO3r527bdtIe+CPwLFCd+Al6naSXMm3VD5to/3/vJur+J7bgxtMOj7AjkZ8rTqgsNbNOgJtZFWAA4VBYUdz9Qwo/7wHQrZD5Dlyxg209DTxdyHgWcOTOehEpC+54Yz5Pfvhlop56Uzca7K0FICWzFCdULgcepOBqq7Hs4C9/EUm9Jd/9SJd7JyXqQacexh9OOii6hkSKsNNQcffvgAtKoBcR2c6AFz5l9KyC609mD+lBrWpaAFIy105DxcyaA1cBzZLnu/uZ6WtLpHybu2wdZ/zzw0R9zzlHcW6sSRHPEMkMxTn89Rrxq7j+B+Sntx2R8i0/3+nzxGSmfhm/FqV29cpMubGb1uuSUqM4obLJ3R9Keyci5dwnn3/PeU9MTtRP9YvR7fCGEXYksuuKEyoPmtlg4ifoN28bdPcZaetKpBzZmpdP9/veY8n3GwE4tOHevDngeC0AKaVScUKlNfHPm3Sl4PCXh1pE9sA7c7/h8n9PT9T/vfw4jm1WN8KORPZMcULlbKCFu29JdzMi5cVPW/Jod/tYNm2N/zvthJb1GHFxey0AKaVecUJlFlCHgjW6RGQPPD/la258dU6ifufqEzhsv1oRdiSSOsUJlYbAQjObxs/PqeiSYpFdsG7jVtrcVrBe1znHNObec9tE2JFI6hUnVAanvQuRMu7hCYu5d+xnifqD60+mSd29IuxIJD2K84n690qiEZGy6Jt1m+h4V8ECkH/qchDX9zoswo5E0muHoWJmH7r78Wa2np9/+ZURX/9RB4FFijBk9Dye/XhJos762ynUq1k1uoZESkBReyo1ANx97xLqRaRM+PzbDXT7R8EO/s1nHMElxzePsCORklNUqBT61bwiUjh350//mcHbc79JjM29tSc1qxb7W7tFSr2i/rQ3MLNrdvTgdt/mKFKuzc5Zy5kPf5SoH/htW85qd0CEHYlEo6hQqQjUZMdftCVS7uXnO+c89jEzvl4LQL2aVflo4MlUraQFIKV8KipUVrj7bSXWiUgp8+Hi77jwqSmJ+tmLjqXLoQ0i7EgkekWFivZQRAqxJTefLvdMZPm6TQC02r8Wo688nooV9L+MSFHLoP7ie+R3hZk9bWarzGxu0tgQM1tmZjPD7bSkxwaZWbaZLTKznknjvcJYtpkNTBpvbmZTzGyxmb1oZlX2pF+R4nhj9nIO+dvbiUB55U+deHPACQoUkWCHeyruvnoPt/0s8DAwYrvx+9393uQBMzsC6AO0AvYHxpvZIeHhR4DuQA4wzcxGu/t84O6wrZFm9hhwCTBsD3sWKdTGLbm0HjKWvPz4RZFdD2vAU/1iWgBSZDtpu9bR3d83s2bFnN4bGOnum4EvzSwbaB8ey3b3LwDMbCTQ28wWEF96//ww5zlgCAoVSYN/Tf6Km19L7HAz7i8n0rKhPr4lUpgoLqC/0sz6AlnAte6+BjgAmJw0JyeMASzdbrwDsC+w1t1zC5kvkhJrftxCu9vHJerz2jflrl+3jrAjkcxX0l8tNww4CGgLrAD+EcYLO4bguzFeKDPrb2ZZZpb17bff7lrHUi49MP6znwXKRwO7KlBEiqFE91TcfeW2+2b2BPBGKHOAJklTGwPLw/3Cxr8D6phZpbC3kjy/sNcdDgwHiMViWilAdmj52p/oNHRCoh7QrSXXdD+kiGeISLISDRUza+TuK0J5NrDtQPVo4Hkzu4/4ifqWwFTieyQtzaw5sIz4yfzz3d3NbCJwDjAS6Ae8XnLvRMqiG1+dw/NTvk7UM27uTt0auqhQZFekLVTM7AWgC1DPzHKIfy9LFzNrS/xQ1RLgDwDuPs/MRgHzgVzgCnfPC9u5EhhD/BP+T7v7vPASNwAjzewO4FPgqXS9Fynbslet55T73k/Ut57Zin6dmkXXkEgpZu7l62hQLBbzrKysqNuQDODuXDYii/EL4t+UXbGCMXtwD2poAUiRXzCz6e4e29k8/d8j5dKnX6/h7Ec/TtT/PK8dv2qzf4QdiZQNChUpV/LynbMe+Yg5y9YBsH/taky67mSqVCrpCyFFyiaFipQbkxat4vfPTEvU/7qkPSe0rB9hRyJlj0JFyrzNuXkcf/dEvl2/GYC2Terwyh87UUHrdYmknEJFyrTXZy7jzyNnFtRXdKZNkzoRdiRStilUpEzasDmXIwePSdS9Wu3HsAuP1gKQImmmUJEy55mPvuTW/81P1O9eexIH1a8ZYUci5YdCRcqM7zds5pg7xifq33U8kNvPOjLCjkTKH4WKlAn3jFnIIxM/T9SfDOpKo9rVI+xIpHxSqEiplrNmI8ffPTFRX9P9EAZ0axlhRyLlm0JFSq3rX5rFqKycRD3zlu7U2UsLQIpESaEipc6ib9bT84GCBSDvPPtILuhwYIQdicg2ChUpNdyd3z8zjfc+i3/RWtVKFZh5Sw+qV6kYcWciso1CRUqF6V+t5jfDPknUwy44mlNbN4qwIxEpjEJFMlpevnP6Qx+w8Jv1ADStuxfvXnsSlStqAUiRTKRQkYw1YeFKLn624Ltvnr+0A50OrhdhRyKyMwoVyTibtuZx3F3vsmbjVgDaN6vLyP4dtQCkSCmgUJGM8vL0HK7976xE/cZVx3PkAbUj7EhEdkXaDkyb2dNmtsrM5iaN1TWzcWa2OPzcJ4ybmT1kZtlmNtvMjk56Tr8wf7GZ9UsaP8bM5oTnPGRaKbBUW79pK80GvpkIlDOOasSXd52mQBEpZdJ5tvNZoNd2YwOBd929JfBuqAFOBVqGW39gGMRDCBgMdADaA4O3BVGY0z/pedu/lpQST7z/Ba2HjE3UE//ahYfP14rCIqVR2g5/ufv7ZtZsu+HeQJdw/zlgEnBDGB/h7g5MNrM6ZtYozB3n7qsBzGwc0MvMJgG13P2TMD4COAt4O13vR1Lv2/WbOfbOggUgL+rcjMG/ahVhRyKyp0r6nEpDd18B4O4rzKxBGD8AWJo0LyeMFTWeU8i4lBJ3vb2Ax9/7IlFPvbEbDWpVi7AjEUmFTDlRX9hxDt+N8cI3btaf+KEymjZtujv9SYp8/f1GTrynYAHI63oeyhUnHxxhRyKSSiUdKivNrFHYS2kErArjOUCTpHmNgeVhvMt245PCeONC5hfK3YcDwwFisdgOw0fS65oXZ/LKp8sS9azBPahdvXKEHYlIqpX0x5JHA9uu4OoHvJ403jdcBdYRWBcOk40BepjZPuEEfQ9gTHhsvZl1DFd99U3almSY+ct/oNnANxOBcvdvWrNk6OkKFJEyKG17Kmb2AvG9jHpmlkP8Kq6hwCgzuwT4Gjg3TH8LOA3IBjYCFwG4+2ozux2YFubdtu2kPfBH4leYVSd+gl4n6TOMu3PBk1P4+PPvAahZtRJZfzuFapW1AKRIWWXxC67Kj1gs5llZWTufKHtkyhff89vhkxP14787hp6t9ouwIxHZE2Y23d1jO5uXKSfqpYzIzcunxwPv88W3PwLQon4Nxl59IpW0AKRIuaBQkZQZN38ll40o2At8sX9HOrTYN8KORKSkKVRkj23amkfsjvFs2JwLQKeD9uU/l3bQJ+JFyiGFiuyRUdOWcv3LsxP1WwNO4Ij9a0XYkYhESaEiu2XdT1tpc2vBel1ntd2fB/q0i7AjEckEChXZZcMmfc7d7yxM1O9fdzJN990rwo5EJFMoVKTYVv2wifb/926i7n9iC2487fAIOxKRTKNQkWK5/Y35PPXhl4l66k3daLC3FoAUkZ9TqEiRlnz3I13unZSobzrtcC47sUV0DYlIRlOoSKHcnate+JQ3Zq9IjM0e0oNa1bRel4jsmEJFfmHusnWc8c8PE/W957bhnGMaF/EMEZE4hYok5Oc7fYZPZuqS+JqddfaqzORB3bQApIgUm0JFAPj48+84/4kpifqpfjG6Hd4wwo5EpDRSqJRzW/PyOeW+9/jq+40AHLbf3rw54AQqVtASKyKy6xQq5dg7c1dw+b9nJOqXLj+OWLO6EXYkIqWdQqUc+mlLHm1uG8uW3HwATjykPs9ddKwWgBSRPaZQKWeen/I1N746J1GPufpEDt1v7wg7EpGyRKFSTqzduIW2t41L1Occ05h7z20TYUciUhYpVMqBhycs5t6xnyXqD64/mSZ1tQCkiKReJKFiZkuA9UAekOvuMTOrC7wINAOWAP/P3ddY/ED/g8BpwEbg9+4+I2ynH/C3sNk73P25knwfme6bdZvoeFfBApBXnHwQ1/U8LMKORKSsi3JP5WR3/y6pHgi86+5DzWxgqG8ATgVahlsHYBjQIYTQYCAGODDdzEa7+5qSfBOZ6pbX5zLik68S9fS/ncK+NatG2JGIlAeZdPirN9Al3H8OmEQ8VHoDI9zdgclmVsfMGoW549x9NYCZjQN6AS+UbNuZ5fNvN9DtH+8l6lvOOIKLj28eYUciUp5EFSoOjDUzBx539+FAQ3dfAeDuK8ysQZh7ALA06bk5YWxH479gZv2B/gBNmzZN5fvIGO7O5f+ezph5KxNjc2/tSc2qmfTvBhEp66L6G6ezuy8PwTHOzBYWMbewD094EeO/HIyH1nCAWCxW6JzSbHbOWs58+KNE/cBv23JWu0LzVUQkrSIJFXdfHn6uMrNXgfbASjNrFPZSGgGrwvQcoEnS0xsDy8N4l+3GJ6W59YySn+/8etjHzFy6FoD6e1flwxtOpmolLQApItGoUNIvaGY1zGzvbfeBHsBcYDTQL0zrB7we7o8G+lpcR2BdOEw2BuhhZvuY2T5hO2NK8K1E6sPF39HixrcSgfLsRccy7aZTFCgiEqko9lQaAq+GJUEqAc+7+ztmNg0YZWaXAF8D54b5bxG/nDib+CXFFwG4+2ozux2YFubdtu2kfVm2JTefLvdMZPm6TQC0PqA2r13RWQtAikhGsPhFVeVHLBbzrKysqNvYLf+btZyrXvg0Ub/yp04c3XSfCDsSkfLCzKa7e2xMsmQsAAAKfElEQVRn83RpUCnw4+ZcWg8ZQ37I/1MOb8ATfWNaAFJEMo5CJcP965Ml3Pz6vEQ97i8n0rKhFoAUkcykUMlQa37cQrvbCxaAPK99U+76desIOxIR2TmFSga6f9xnPPju4kT98cCu7F+neoQdiYgUj0Ilgyxb+xOdh05I1AO6teSa7odE2JGIyK5RqGSIQa/M5oWpBavOzLi5O3VrVImwIxGRXadQidjilevpfv/7ifq23q3oe1yz6BoSEdkDCpWIuDuXPpfFuwvjq9FUrGDMHtyDGloAUkRKMf0NFoEZX6/h149+nKgfPr8dZxy1f4QdiYikhkKlBOXlO70f+ZC5y34A4IA61Zn41y5UqVTiS7CJiKSFQqWETFq0it8/My1R//uSDhzfsl6EHYmIpJ5CJc025+bReehEvtuwGYB2Tevw8uWdqKAFIEWkDFKopNFrny7j6hdnJurXr+hMmyZ1IuxIRCS9FCppsGFzLkcOLvhql16t9mPYhUdrAUgRKfMUKin29Idfctsb8xP1u9eexEH1a0bYkYhIyVGopMj3GzZzzB3jE3W/4w7k1t5HRtiRiEjJU6ikwN/fWcijkz5P1JMHdWO/2tUi7EhEJBoKlT2wdPVGTvj7xER9bfdDuKpbywg7EhGJVqkPFTPrBTwIVASedPehJfG61/13Fv+dnpOoZ97SnTp7aQFIESnfSnWomFlF4BGgO5ADTDOz0e4+v+hn7r6F3/xArwc+SNR3nn0kF3Q4MF0vJyJSqpTqUAHaA9nu/gWAmY0EegMpDxV3p98z03j/s28BqFa5Ap/e3IPqVSqm+qVEREqt0h4qBwBLk+ocoEOqX2TT1jwOu/mdRP3YhUfT68hGqX4ZEZFSr7SHSmGfJvRfTDLrD/QHaNq06S6/SLXK8b2RA/fdi/HXnETliloAUkSkMKU9VHKAJkl1Y2D59pPcfTgwHCAWi/0idIpjydDTd+dpIiLlSmn/J/c0oKWZNTezKkAfYHTEPYmIlFulek/F3XPN7EpgDPFLip9293kRtyUiUm6V6lABcPe3gLei7kNEREr/4S8REckgChUREUkZhYqIiKSMQkVERFJGoSIiIilj7rv1WcBSy8y+Bb7azafXA75LYTvpoj5Tr7T0qj5Tr7T0mu4+D3T3+jubVO5CZU+YWZa7x6LuY2fUZ+qVll7VZ+qVll4zpU8d/hIRkZRRqIiISMooVHbN8KgbKCb1mXqlpVf1mXqlpdeM6FPnVEREJGW0pyIiIimjUCkGM+tlZovMLNvMBkbUw9NmtsrM5iaN1TWzcWa2OPzcJ4ybmT0U+p1tZkcnPadfmL/YzPqloc8mZjbRzBaY2Twz+3Mm9mpm1cxsqpnNCn3eGsabm9mU8Jovhq9UwMyqhjo7PN4saVuDwvgiM+uZyj6TXqOimX1qZm9keJ9LzGyOmc00s6wwllG/+7D9Omb2kpktDH9Wj8u0Ps3s0PDfcdvtBzO7OtP6/AV3162IG/El9T8HWgBVgFnAERH0cSJwNDA3aezvwMBwfyBwd7h/GvA28W/G7AhMCeN1gS/Cz33C/X1S3Gcj4Ohwf2/gM+CITOs1vF7NcL8yMCW8/iigTxh/DPhjuP8n4LFwvw/wYrh/RPgzURVoHv6sVEzD7/8a4HngjVBnap9LgHrbjWXU7z68xnPApeF+FaBOJvaZ1G9F4BvgwEzu090VKsX4ZR4HjEmqBwGDIuqlGT8PlUVAo3C/EbAo3H8cOG/7ecB5wONJ4z+bl6aeXwe6Z3KvwF7ADKAD8Q+PVdr+d0/8O3uOC/crhXm2/Z+H5Hkp7K8x8C7QFXgjvG7G9Rm2u4RfhkpG/e6BWsCXhHPKmdrndr31AD7K9D7dXYe/iuEAYGlSnRPGMkFDd18BEH42COM76rlE30s49NKO+F5AxvUaDinNBFYB44j/632tu+cW8pqJfsLj64B9S6JP4AHgeiA/1PtmaJ8ADow1s+lm1j+MZdrvvgXwLfBMOKT4pJnVyMA+k/UBXgj3M7lPhUoxWCFjmX7J3I56LrH3YmY1gZeBq939h6Km7qCntPfq7nnu3pb4nkB74PAiXjOSPs3sDGCVu09PHi7iNaP+3Xd296OBU4ErzOzEIuZG1Wsl4oeSh7l7O+BH4oeRdiTS/6bhfNmZwH93NnUH/ZTo32EKlZ3LAZok1Y2B5RH1sr2VZtYIIPxcFcZ31HOJvBczq0w8UP7j7q9kcq8A7r4WmET8OHQdM9v2jajJr5noJzxeG1hdAn12Bs40syXASOKHwB7IwD4BcPfl4ecq4FXiYZ1pv/scIMfdp4T6JeIhk2l9bnMqMMPdV4Y6U/sEFCrFMQ1oGa62qUJ8N3R0xD1tMxrYdiVHP+LnL7aN9w1Xg3QE1oXd5DFADzPbJ1wx0iOMpYyZGfAUsMDd78vUXs2svpnVCferA6cAC4CJwDk76HNb/+cAEzx+gHo00CdcddUcaAlMTVWf7j7I3Ru7ezPif/YmuPsFmdYngJnVMLO9t90n/jubS4b97t39G2CpmR0ahroB8zOtzyTnUXDoa1s/mdhnXLpO1pSlG/GrKj4jfsz9poh6eAFYAWwl/i+PS4gfK38XWBx+1g1zDXgk9DsHiCVt52IgO9wuSkOfxxPftZ4NzAy30zKtV+Ao4NPQ51zgljDegvhfttnEDzdUDePVQp0dHm+RtK2bQv+LgFPT+GegCwVXf2Vcn6GnWeE2b9v/K5n2uw/bbwtkhd//a8SvisrEPvcCvgdqJ41lXJ/JN32iXkREUkaHv0REJGUUKiIikjIKFRERSRmFioiIpIxCRUREUqbSzqeIlE9mtu3STYD9gDziy3sAbHT3Til+vRjQ190H7MJzhgAb3P3eVPYisrsUKiI74O7fE/88Q4n85e3uWcQ/OyFSaunwl8huMLMN4WcXM3vPzEaZ2WdmNtTMLrD4d7XMMbODwrz6ZvaymU0Lt86FbLOLFXxfyhCLf4fOJDP7wswGJM27yeLfiTIeODRp/CAzeycs5viBmR0Wxl83s77h/h/M7D9p/Y8j5Zr2VET2XBvii1GuJv5dFU+6e3uLf0HZVcDVwIPA/e7+oZk1Jb5MRmELWCY7DDiZ+PfSLDKzYcRXAuhDfPXnSsSX7N+22ORw4HJ3X2xmHYBHia8V1h/4yMy+BK4lvsaZSFooVET23DQPS5Gb2efA2DA+h3goQHxtsSPiS6MBUMvM9nb39UVs90133wxsNrNVQEPgBOBVd98YXm90+FkT6AT8N+k1qgK4+0ozu4X4emFnu/vqPX3DIjuiUBHZc5uT7ucn1fkU/D9WgfiXYv20m9vNS9pWYWsrVSD+HSttd7Ct1sTXkNp/F15fZJfpnIpIyRgLXLmtMLMd/eW/M+8DZ5tZ9bAi8K8APP6dNV+a2blh+2ZmbcL99sSXT28H/DWsUiySFgoVkZIxAIiZ2Wwzmw9cvjsbcfcZwIvEV39+Gfgg6eELgEvMbNsqwb3NrCrwBHCxx7/r5FrgaUs6RiaSSlqlWEREUkZ7KiIikjIKFRERSRmFioiIpIxCRUREUkahIiIiKaNQERGRlFGoiIhIyihUREQkZf4/uZdOPm57W5MAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "_ = plt.plot(time_indices, times)\n",
-    "_ = plt.xlabel('Time index')\n",
-    "_ = plt.ylabel('Time')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/reverse simulation.ipynb b/notebooks/reverse simulation.ipynb
deleted file mode 100644
index 77824fc..0000000
--- a/notebooks/reverse simulation.ipynb	
+++ /dev/null
@@ -1,361 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import ReverseSimulationClock\n",
-    "\n",
-    "mean_temperature = hydraulic_data['Temp_C'].mean()\n",
-    "total_simulation_time = BigheadCarpEggs.hatching_time(mean_temperature)\n",
-    "# total_simulation_time = BigheadCarpEggs.get_gas_bladder_inflation_time(mean_temperature)\n",
-    "# total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 10  # seconds\n",
-    "\n",
-    "simulation_clock = ReverseSimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([500000, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "False"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "carp_eggs.diameter() == 0"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import init_transporter\n",
-    "\n",
-    "transport_model = init_transporter(simulation_clock, carp_eggs, 'parabolic', 'reverse')\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "147810.0"
-      ]
-     },
-     "execution_count": 7,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHjCAYAAACzRa5KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8HVW9///XZydpmrTp/X5Jb7TcbyVAoa0gdwHB49EjRxRElK+KR8/3nJ9HUfRUUb4o5+hRUSsCCiggWlREEVBA4HCRlFuF0lJoS9P7LWnTNG2y9/r9MZNkMlmzd5Im2Un3+/l45NG9116zZq01a9Z8OrNntjnnEBEREZHCkcp3BURERESkbykAFBERESkwCgBFRERECowCQBEREZECowBQREREpMAoABQREREpMAoARURERAqMAkARERGRAqMAUERERKTAFOe7Av3dmDFj3PTp0/NdDREREZGcli5dus05NzZXPgWAOUyfPp3q6up8V0NEREQkJzNb25l8ugQsIiIiUmAUAIqIiIgUGF0CFhEREekFixYtCl5kMjw740jeGjuJmVvW8aePfjCv9QIFgCIiIiIH7Oabb2bDhg2QyQCweOFFsPCitgxmALw0/XDOu+2uvAeBCgBFREREuqh9wJdi8cILYVZVW4Yw4GvHDJxj2bTZfVbPJAoARURERHKIXs59beIMnjhkbucCPo90P7gFQwGgiIiISMQNN9xAY2MjkIFMitcmTuOJBReChYFbQmDnTXeuQ9KkzAbghB6rb3f0WgBoZrcBFwJbnHNHhWk3Au8G9gNvAlc452rDz64BrgTSwGeccw+F6ecB3wWKgFucczeE6TOAe4BRwAvAh51z+82sFLiDoGe3Ax9wzq3Jtg4REREpXF/96ldxLYFahuBybipylq4LZ/d8AV80bVJmPS8s/Rc4+90HUOMD15tnAH8G3EQQjLV4BLjGOddsZt8ErgE+b2ZHAJcARwKTgD+b2ZxwmR8AZwM1wPNmdr9z7jXgm8B3nHP3mNligsDuR+G/O51zh5jZJWG+DyStwzmX7sU+EBERkX5kyZIlLFu2LHgT/f5edwI+X7AXS5/p3uCrfJFMcwm7fv8Z3j/1W/CFNd2uf0/ptQDQOfeEmU2PpT0cefss8L7w9cXAPc65fcBqM1sFnBR+tso59xaAmd0DXGxmy4EzgJZbaG4HFhEEgBeHrwF+DdxkZpZlHc/0RHtFRESk/7nuuutIp8NzPZkMz848kpcWXki7RyEfSMAXS7vA/ZZ/yvyCVff9iKsnvL/tg0V1cB7Ap7rahF6Rz+8AfhT4Zfh6MkFA2KImTANYF0s/GRgN1Drnmj35J7csE55prAvzZ1uHiIiIDHDV1dU88MADbQkZ+Mthx/PG+Mm0BnwH+P29dmkuw+2ZD7Dqvh8DmbaAb1Ed554DUNf1RvSRvASAZvYloBn4RUuSJ5vD/0slLkv+bGVlWyZev6uAqwAqKyt9WURERCTPvva1r5EJn7sHgIObF5xPJhUJb3rw+3vegK+4nHMXnxVm6L8BX1yfB4BmdjnBzSFnutZvXFIDTI1kmwJsCF/70rcBI8ysODwLGM3fUlaNmRUDw4EdOdbRjnPuZuBmgKqqqoQL/CIiItJXfGf3lhy/gK3DRtBjl3Nj6YMze/jckn3huzRXT/gnuPC7AzLgi+vTADC8o/fzwGnOuYbIR/cDd5nZtwlu0JgN/I3grN3s8I7f9QQ3cXzQOefM7DGC7xDeA1wO/C5S1uUE3+17H/BomD9pHSIiItLPtD53r4WDnyx4F+lUSVtaT17OBYZkdvFvS4Jvl40rWsn7x10Li3dEcgzcgC+uNx8DczdwOjDGzGqA/yS467cUeCS4L4NnnXOfcM69amb3Aq8RXBq+uuXuXDP7NPAQwWNgbnPOvRqu4vPAPWb2deBF4NYw/VbgzvAmjx0EQSPZ1iEiIiL51S7gywAGixf03uNYcBluq/8kq//0/2i9nLuoLnjuCABn0V9u2OgN5pJOgQoQXAKurq7OdzVEREQOGt/5zneoqwvPpoVf4Xtw/tGsLZ5Gb13OxWVYvGkR65/6V0rZxccqPwNfrOlW/fszM1vqnKvKlU+/BCIiIiK9ynd278cLLsClitrSe/hyrmXSXLukjtazexd+F856AD7UkuO9nW/AQUgBoIiIiPSott/NDf657dRz2V9S2j5TD1/O/cHa/2bT81dSxF4+MeFDscu5B89393qKAkARERHptg5n9+jkT6klpXficm6Hs3uL6oC7g98CAxTw5aYAUERERDotfnav12/WAKY3r+XDSyoglQkexbKoVmf3DpACQBEREfFat24dt94aPmQjDPjuqTqd2iEVtPt9hZ68WSOT4cu/qg3vBclw9eJzgLlwbkuG2q40QRIoABQRERHAf3bvtYnTeGL20fTKT6kBRZkmvrhkNwAltperfvTuyNk96S0KAEVERApQu1/W6KvLue2evQeWSvGpH56hgC8PFACKiIgUgNbfzY0Ee3AAAV8nLucOz+zgM0vaPho3bTjnX/M8vKdrdZeepwBQRETkIOS7nAudvEO3W5dzHdfu/zr2u6vD9ykqRpVx2eL5Xau49AkFgCIiIgPcjTfeyJ49e4I3kYDvlPl3cnnql2C9EPC5DLc3f4hVv70pTEgxbtoXef/iE7vTBOljCgBFREQGmKSzez9bcCaNqSGt+RZzUc8FfJkM33h8KY3bZ4UJKc5d/DrnntfV2kt/oABQRESkH0u6WQN64YHLkbRBmb18fsne8F2KqxefAWfn/IlZGSAUAIqIiPQjSWf3jp/7W/7PkFu6dzkXcgZ8kzLruHJJcPawYlQZl10/X3fnHsQUAIqIiOSJ70HLLQHfTxa+i3SqJJL7AC/nxtLHZDbzySUltJ7dY64CvgKiAFBERKSPfOc736GuLvzpsgytwd5J8+7hoyU/z312Lym9Ew9cHl6f4TMP7mLq4SO56LPHB4kK+AqWAkAREZFeknQ59+YF55NJtR2Cu3SzBnTqho0vL6ll3LThvP+ayF25F3e66nKQUwAoIiLSQ3wBX6cfxZKU3onLuSfvW8o5988KL+WGdHZPslAAKCIi0g133HEHb731VluwB8w+9EkeHTefP6QuouW3c3v87B5w6ut7OXPZvkjANxfO73obpHApABQREekE39m9E6qW8Mmym2m20jAxIdiDbp/ds0yGa5fsYuSEcj64aF6QeGZXay/SngJAERGRmKS7cztezu35s3tj6tJ8+rF6PvH9d7Yl6nKu9DAFgCIiUvBuuOEGGhsbgzfh3bmz5zzJz8ZdyrLUMXTrcm6nzu6luXbJTq5efE77PO/tehtEukIBoIiIFJykmzU+kroHZ0VhYg9czo2lzdzYxKVP1bUP+HR2T/JAAaCIiBzUrr/+evbv3x+8yXI5t1cexfKrWkZOGtr23T2AD3W9DSI9rdcCQDO7DbgQ2OKcOypMGwX8EpgOrAH+yTm308wM+C7BPUwNwEeccy+Ey1wOXBsW+3Xn3O1h+gnAz4Ay4I/AZ51zrjvrEBGRg0fr2T1ovZw7fsJKfnLIB9iQmkLLw/h6+nIumQxf/uUOrr5FZ/ek/+vNM4A/A24C7oikfQH4i3PuBjP7Qvj+88C7gNnh38nAj4CTw2DuP4EqwAFLzex+59zOMM9VwLMEAeB5wINdXUevtV5ERHpddXU1DzzwQPAm6+Vcevxy7tFr9vGe5/cw9fDR+mUNGXB6LQB0zj1hZtNjyRcDp4evbwceJwjOLgbucM454FkzG2FmE8O8jzjndgCY2SPAeWb2ODDMOfdMmH4H8B6CALBL63DObezJdouISO+57rrrSKfTwZvIT6mtW5Dp3WfvhZdzSaX4x/84gQkzhwfpV3arGSJ519ffARzfEnA55zaa2bgwfTKwLpKvJkzLll7jSe/OOjoEgGZ2FcHZRSorK7vYRBER6Sm+y7knnnQvnyn9IXtsWNtnPfzsvaJ0hi/etwug7WHLOrsnB5H+chOIb8913Ujvzjo6Jjp3M3AzQFVVVa5yRUSkB7R79h60Bny9frMGLXfn7uH0Sw/lyIXh+YRzOi4mcrDo6wBwc8tl1/AS75YwvQaYGsk3BdgQpp8eS388TJ/iyd+ddYiISB585zvfoa6uLngTuZx7QAFfZ2/W+FUtqZIUn/xB5LdzdXeuFJC+DgDvBy4Hbgj//V0k/dNmdg/BjRl1YQD3EHC9mY0M850DXOOc22Fmu81sHvAccBnw/e6soxfbKiIiEb7LuSdULeGnZVfytC2gxx62HEsLLufWMnJC5HEsupwrBa43HwNzN8HZuzFmVkNwN+8NwL1mdiXwNvD+MPsfCR7PsorgES1XAISB3nXA82G+r7XcEAJ8krbHwDwY/tHVdYiISO/wBXynzL+T/5P6GY02JPyghx+2HLlZ4/hzKjn1vYcE6bqcK9KOuaTT5QIE3wGsrq7OdzVERPo132/njp+4kpmznov9di49f3fukloqRpVx2fXzu1d5kYOImS11zlXlytdfbgIREZEBxHd276R593BVyU9pttL2mXvw+3uD92X43P079FNqIgdIAaCIiOSUdDm3UzdrQPcftrx2H/+ye3Dbg5Yh+DKPiBwQBYAiItKO77dzjznuD3ym4ns0p9rO7vXG3bn/uWQzn1x8QTdrLiKdpQBQRKTAdebsXo/frAGQybDp7NhXlXQ5V6RPKAAUESkwrQFfeHbvlAV38qnUre1+WaM3fkrt67/fwce+p9txRfoDBYAiIgexG2+8kT179gRvMlAxbCunnPqnnv/uXjw9k+Erv9nFp34YedCyzu6J9BsKAEVEDiLxy7mnLLiTN1Nz+JpdR8uDluHKHv8ptQuW7uXW/4g9hkUBn0i/pQBQRGQA8wV8H0/dwX4rA3rv7N6Xl+zi6sWRs3tndq3eIpJfCgBFRAaIeLB34sn3Mn/BPj5MN383Fzp9du+89CDef82JbYk6uycyoCkAFBHpp3xn9z6T+jF1NgoIgz3o+Uex/HYXn/yBzu6JHMwUAIqI9BPRgO/443/L/AW7O3d2D7r9KJYhezO8eaEexSJSaBQAiojkwZIlS1i2bFnwJjy7d/+Cb7PBpgAGXT27B5383dzYz6iJSEFSACgi0gdaf10j8uy9xQt6/1EsX3ugnqu+e3pbms7uiQidCADN7Ajn3GuxtNOdc4/3Wq1ERAa46MOWjzjqEb534nchlWr9vDdu1pi5qYmnLz25fR4FfCLi0ZkzgPea2Z3At4DB4b9VwCm9WTERkYEifnbv4YWH89bCC2l77l7vnN371mP7uOz6+f68IiJZdCYAPBn4JvA0UAH8AtCMIyIF6+tf/zrNzc2QgdmHPsn3Tvxmu7N7XQr2oFNn98bUpfnzcXOYMHN4W6LO7olIN3UmAGwC9gJlBGcAVzvnMr1aKxGRfuS6664jnU5DBm5beDb7Tzk/8mkPXMqNp/setCwi0oM6EwA+D/wOOBEYDfzYzN7nnHtfr9ZMRCRPFi1a1Hpn7uWpX8KpF7R92NOXcoGZm5r56NK9fOzbp7Ul6uyeiPQic0kTVEsGsyrnXHUs7cPOuTt7tWb9RFVVlauurs6dUUQGpJZgr2LYVm489or2l3Khx2/UKGraxxd/u1dn90SkV5jZUudcVa58Oc8AxoO/MK0ggj8ROfi0BHzHHPcHPlXxI1h4UduHvfKbubVAqn3Ad15Xay0i0rP0HEAROWjdcMMNNDY2Qia8Mzc1KxLw9fxjWMr31PPvf2wGaAv4dClXRPohBYAictBoObsHcPfCBdSdGPnFi746u3dRh6VERPqdvASAZvZ/gY8BDlgGXAFMBO4BRgEvAB92zu03s1LgDuAEYDvwAefcmrCca4ArgTTwGefcQ2H6ecB3gSLgFufcDWH6DN86+qLNItKzomf3Tjz5Xq4q/SnpXJdzD+BGjcPfeJn3vTSN8ooSrrhxYZCos3siMkDlvAmkx1doNhl4CjjCObfXzO4F/gicD9znnLvHzBYDLzvnfmRmnwKOcc59wswuAf7BOfcBMzsCuBs4CZgE/BmYE65mJcHUXENwF/M/O+deC9fVYR3Z6qubQET6h+gva5yy4E6uSN1NxiL/hz2QgC+WdvaT93PCm46SIafpZg0RGVB67CaQXlIMlJlZE1AObATOAD4Yfn47sAj4EXBx+Brg18BNZmZh+j3OuX3AajNbRRAMAqxyzr0FYGb3ABeb2fIs6xCRfiQa7J186l0UF6c797u53Qn4Mhk+d8siBo/8NzC4+kdnwJlzD7wRIiL9WJ8HgM659Wb2X8DbBA+YfhhYCtQ655rDbDXA5PD1ZGBduGyzmdURPI9wMvBspOjoMuti6SeHyyStox0zuwq4CqCysrJ7DRWRTouf3fvfBV9imR0DpIJgD3o04Pv8z+5mUMUFkRs1HjiQ6ouIDDh9HgCa2UiCs3czgFrgV8C7PFlbZmzfN7ddlvRUQnpS/o6Jzt0M3AzBJWBfHhHpnurqah54IAi4Tjn1TlIpOnd2D7od8H35V7WQityscXbOqyMiIge1fFwCPovg5+S2ApjZfcCpwAgzKw7P0E0BNoT5a4CpQI2ZFQPDgR2R9BbRZXzp27KsQ0R6ScvNGuPHr2TmrOe4JvVtNix8N2BdP7sHnQv4luzCUvCpH+pRLCIiPvkIAN8G5plZOcEl4DOBauAx4H0Ed+leTvDzcwD3h++fCT9/1DnnzOx+4C4z+zbBTSCzgb8RnOmbHd7xux64BPhguEzSOkSkh7Rczj15XvDdvf+paju7B/T441hSmQxfiv9urgI+EZGs+vwuYAAz+yrwAaAZeJHgkTCTaXtEy4vAh5xz+8xsMHAncDzBmb9LIjd4fAn4aFjOvzrnHgzTzwf+h+AxMLc5574Rps/0rSNbXXUXsEiydevWceuttwIw75Rf8FbRIXzNrqPdNzF6+GHLFyzdy9zV+4KbNUREpJ3O3gWclwBwIFEAKNLmxhtvZM+ePa03a1ye6t2ze2QyfOU3u9ou5YqISFb9/TEwIjIAxO/O/e/ju/koFujU2b3i5gwPlU/kyIWRG/R1OVdEpMcpABSRVtHv711RfFfkd3N74Nl78XSd3RMRyRsFgCIFrOW3c3+y8F2kUyWtAV+PP4oFGFOX5jN/3cNV3z29LVFn90RE8kIBoEiBWLJkCcuWLeOEE5bw8bKfBpdyF2Z5DEtSeifP7n15SS1zTprI2R89si39vd2ru4iI9CwFgCIHqZaze3cuPJ09qWEwYgYsnAG99N29a36zi5ETyvngonlBos7uiYj0WwoARQ4SixYtYt4pv+AjRXf3/tm98Jc1SsuL+Ni3TwvSz+1+3UVEpG8pABQZoH7/+6P517Lvs8eGBQkLL+qVO3MnbW/mykfrAagYVcpl18/X2T0RkQFOAaDIAHDL129ictX3uLL452Qs3G3Lb+/xs3uWSXPtkt2t71t/XeOfulNrERHprxQAivRD9913IkMrdnCZhc/dO+VU4NSe/1WN5/cwd00TEAn2dHZPROSgpwBQJM9uuukmZs/5DqkUfJgw4Bv+4+DDHn7u3peX1AIpyitKuOLGhcEvcYuISMFRACjSxxZdu4hT3nEnb6bmBL+be3h4dg8OLOCLpjnHFX/ZzZSdGQDmnDQ+eByLzu6JiAgKAEV61SOPPEJDw+coH7Kbb/Elltkx8M4sN2tA9wK+yJ25EF7OPasHGiAiIgclBYAiPegbi65j7rw7KS5OcyV3sD81GobeFnzYg9/fS2UyfCm8nAthwKezeyIi0kkKAEW6ad26ddx77w0cdfSf2r6/t/AC4IIgQw9+f2/wvgyfu39X63sFfCIiciAUAIp00k033cSMGT9kUOk+PsGtwfP3jrsSuDLI0FPf3wNmbmri0if3AHD8OZWc+t5D4PwDbICIiEhIAaBIgkWLFnHKqXeSSsEV/JzmXDdrJKV35vt74eXc0y89lCMXTg7SLz2Q2ouIiCRTACgS+v3vj2ZwWQPQcjk3vFkDevb5e2HAN+ekicGduaDLuSIi0qcUAEpBqq6uZvuOD5BKweXcHfy6RvntbRl6/Pl7u9oetAwK+EREJK8UAEpBuPPn/8C4ca+0f9hy0a+CD3vyci4wc1Mz/1U2KvjeXgsFfCIi0o8oAJSD0kMPz2of7E38ctuHPX45N3Z2T0REpJ9TACgD3kMPH0Iq5druzIWeO7sXT89kuHNdWdt390Bn90REZMBRACgDzkMPz2r7GTVSUHRv8EFXgj3o3M+pPbaH//eNdxxQfUVERPqbvASAZjYCuAU4CnDAR4EVwC+B6cAa4J+cczvNzIDvEjwFrQH4iHPuhbCcy4Frw2K/7py7PUw/AfgZUAb8Efisc86Z2SjfOnq3tXIgfnPfyQyp2MZHLLxRA4Kzez0R7MXSU5kMX/7tLj75g8jlXP2cmoiIHITMJR0Ye3OlZrcDTzrnbjGzQUA58EVgh3PuBjP7AjDSOfd5Mzsf+BeCAPBk4LvOuZPDYK4aqCIIIpcCJ4RB49+AzwLPEgSA33POPWhm3/KtI1tdq6qqXHV1dW90g3gsunYR+07byE9TH6flZ86AA//enif9gqV7ubi0nIs+e3z3KisiItLPmNlS51xVrnx9fgbQzIYB7wA+AuCc2w/sN7OLgdPDbLcDjwOfBy4G7nBBpPqsmY0ws4lh3kecczvCch8BzjOzx4FhzrlnwvQ7gPcAD4Zl+dYhebD9nuU8P/IiPlJ0d3CjBsA7L+r57+0Bw+ozfPZPu7j6R5Gze2d2o9IiIiIHgXxcAp4JbAV+ambHEpy5+yww3jm3EcA5t9HMxoX5JwPrIsvXhGnZ0ms86WRZRztmdhVwFUBlZWU3mylxX7/2a5z4jju4PHVPEPCNBfhlz96VC6135o6cUM4HF81rS7+4uzUXERE5uOQjACwG5gL/4px7zsy+C3whS35fJOC6kd5pzrmbgZshuATclWUlsOXWV/jh6vtYfNqFkGo5u3chcGEvPGS5llRRqv1393RnroiISKJ8BIA1QI1z7rnw/a8JAsDNZjYxPDM3EdgSyT81svwUYEOYfnos/fEwfYonP1nWIQfoumu/yk9OO4v9qbIgYTowvQcu58bSLJ3m2vvqqBhVxmXXzw8SFeyJiIh0SZ8HgM65TWa2zswOdc6tIPgm1mvh3+XADeG/vwsXuR/4tJndQ3ATSF0YwD0EXG9mI8N85wDXOOd2mNluM5sHPAdcBnw/UpZvHdJFi65dFDu79+5eeebel5fUAqn2D1o+p1tVFhERkVC+ngP4L8AvwjuA3wKuILjl814zuxJ4G3h/mPePBHcAryJ4DMwVAGGgdx3wfJjvay03hACfpO0xMA+GfxAEfr51SA6TH/4b6aLIcEm6WeMAvrtX1LSPL/52D3NOmtj2oGWd3RMREelxeXkMzEBSiI+BWf/1Zzjh5JK2s3vQK2f3vrSkllT87J6IiIh0W799DIz0P0uveYALzpjQFvCdUtqzN2oAl+27mWn3v49x04bz/mtODBJ1dk9ERCQvFAAWmJqvPs0fm57nK6fNbwv4zpp0YAGf5zEsn7tlEYNH/lvk7N7i4EK+iIiI5J0CwINczbVPceGJu9k0dCyQggWDgYU9F/C5DLdnPsDfbzuVY875QuS7ew/0RPVFRESkFygAPMj85rrb+fS8w0inSoKEd5aDDfFn7mbA9+PNl7HjpR9zxY0Lw8Q3OVd35oqIiAwYCgAHuLt+cSb/Nu6bbZdzTz26R7+/Nzyzg6tuuZl//+W9kQyvwaXdr7OIiIjklwLAAeaoRx5kW2p8W8KEG3v0+3tHZV7iz2d/tH2es8/qRk1FRESkv1IA2I91eNgyQNEEf+ZuXs69pe5qLvzH5yIZ5narriIiIjJwKADsRyY/8lzbd/eg5x+2nMmw6P5VfOL7l0QyPNdhERERETm4KQDsByY8Uh2c5Ssa5M/Q7Yctp9l09ontPz8757MhRURE5CCnADDPJjxSDUVFbQkH8FNqQ/ftZdX583uwdiIiInIwUgCYby3f74sGfp38KbVNOpsnIiIi3aAAMN8ymeAMYDzoi72vqK/jjYvf2YcVExERkYOVAsA823R2Vdt3AEOpTDMbzj4pj7USERGRg5kCwH5Al3JFRESkL6VyZxERERGRg4kCQBEREZECYy7pjlMBwMy2Amv7YFVjgG19sJ6BQv3RkfqkPfVHR+qTjtQn7ak/OjrY+mSac25srkwKAPsJM6t2zunLgCH1R0fqk/bUHx2pTzpSn7Sn/uioUPtEl4BFRERECowCQBEREZECowCw/7g53xXoZ9QfHalP2lN/dKQ+6Uh90p76o6OC7BN9B1BERESkwOgMoIiIiEiBUQAoIiIiUmAUAOaZmZ1nZivMbJWZfSHf9elJZjbVzB4zs+Vm9qqZfTZMH2Vmj5jZG+G/I8N0M7PvhX3xipnNjZR1eZj/DTO7PJJ+gpktC5f5nplZ37e068ysyMxeNLMHwvczzOy5sH2/NLNBYXpp+H5V+Pn0SBnXhOkrzOzcSPqAG1NmNsLMfm1mr4fj5ZRCHidm9n/DfebvZna3mQ0utDFiZreZ2RYz+3skrdfHRNI6+oOEPrkx3G9eMbPfmNmIyGdd2v7dGWP55OuPyGf/n5k5MxsTvi+IMdIlzjn95ekPKALeBGYCg4CXgSPyXa8ebN9EYG74ugJYCRwBfAv4Qpj+BeCb4evzgQcBA+YBz4Xpo4C3wn9Hhq9Hhp/9DTglXOZB4F35bncn++bfgLuAB8L39wKXhK8XA58MX38KWBy+vgT4Zfj6iHC8lAIzwnFUNFDHFHA78LHw9SBgRKGOE2AysBooi4yNjxTaGAHeAcwF/h5J6/UxkbSO/vCX0CfnAMXh629G+qTL27+rYyzff77+CNOnAg8R/IjDmEIaI13qv3xXoJD/woH1UOT9NcA1+a5XL7b3d8DZwApgYpg2EVgRvv4x8M+R/CvCz/8Z+HEk/cdh2kTg9Uh6u3z99Q+YAvwFOAN4IJxctkUm8dZxEU5ip4Svi8N8Fh8rLfkG4pgChhEEPBZLL8hxQhAArgsPSMXhGDm3EMcIMJ32wU6vj4mkdfSXv3ifxD5KDojfAAAgAElEQVT7B+AXvu2aa/t3Zx7Kd18k9Qfwa+BYYA1tAWDBjJHO/ukScH61TPQtasK0g054yeB44DlgvHNuI0D477gwW1J/ZEuv8aT3d/8D/AeQCd+PBmqdc83h+2g7Wtsefl4X5u9qX/VnM4GtwE8tuCx+i5kNoUDHiXNuPfBfwNvARoJtvpTCHiMt+mJMJK1jIPgowZkq6HqfdGce6nfM7CJgvXPu5dhHGiMxCgDzy/c9pIPuuTxmNhRYAvyrc25XtqyeNNeN9H7LzC4EtjjnlkaTPVldjs8Omj4hOKMwF/iRc+54YA/BZZUkB3WfhN8nupjgst0kYAjwLk/WQhojuRR8H5jZl4Bm4BctSZ5s3e2TAdFfZlYOfAn4iu9jT1pBjZE4BYD5VUPwXYUWU4ANeapLrzCzEoLg7xfOufvC5M1mNjH8fCKwJUxP6o9s6VM86f3ZfOAiM1sD3ENwGfh/gBFmVhzmibajte3h58OBHXS9r/qzGqDGOfdc+P7XBAFhoY6Ts4DVzrmtzrkm4D7gVAp7jLToizGRtI5+K7xx4ULgUhdel6TrfbKNro+x/mYWwX+cXg7n2CnAC2Y2gQIfIz4KAPPreWB2eOfVIIIv196f5zr1mPCOqVuB5c65b0c+uh+4PHx9OcF3A1vSLwvv1poH1IWn1x8CzjGzkeHZkXMIvpuyEdhtZvPCdV0WKatfcs5d45yb4pybTrC9H3XOXQo8BrwvzBbvk5a+el+Y34Xpl4R3580AZhN8YXnAjSnn3CZgnZkdGiadCbxG4Y6Tt4F5ZlYe1relPwp2jET0xZhIWke/ZGbnAZ8HLnLONUQ+6tL2D8dMV8dYv+KcW+acG+ecmx7OsTUENyJuooDHSKJ8fwmx0P8I7kxaSXBX1pfyXZ8ebtsCglPmrwAvhX/nE3x35C/AG+G/o8L8Bvwg7ItlQFWkrI8Cq8K/KyLpVcDfw2Vuop98MbmT/XM6bXcBzySYnFcBvwJKw/TB4ftV4eczI8t/KWz3CiJ3tQ7EMQUcB1SHY+W3BHfjFew4Ab4KvB7W+U6COzkLaowAdxN8B7KJ4EB+ZV+MiaR19Ie/hD5ZRfAdtpY5dnF3t393xlh/64/Y52touwmkIMZIV/70U3AiIiIiBUaXgEVEREQKjAJAERERkQKjAFBERESkwCgAFBERESkwCgBFRERECowCQBEREZECowBQREREpMAoABQREREpMMW5sxS2MWPGuOnTp+e7GiIiIiI5LV26dJtzbmyufAoAc5g+fTrV1dX5roaIiIhITma2tjP5dAlYREREpMAU5BlAM1sD7AbSQLNzriq/NRIRERHpOwUZAIbe6Zzblu9KANy4+HpWjixnzs4GPveJL+a7OiIiInKQK+QAsF+4cfH1fH/OmTRTzENjm2Hx9QoCRUREpFcV6ncAHfCwmS01s6viH5rZVWZWbWbVW7du7dWKrBxZTjPFZKyIZopYObK8V9cnIiIiUqgB4Hzn3FzgXcDVZvaO6IfOuZudc1XOuaqxY3PeSX1A5uxsoJhmUq6ZYtLM2dnQq+sTERERKchLwM65DeG/W8zsN8BJwBP5qMvnPvFF0HcARUREpA8VXABoZkOAlHNud/j6HOBr+ayTgj4RERHpSwUXAALjgd+YGQTtv8s596f8VklERESk7xRcAOicews4Nt/1EBEREcmXQr0JRERERKRgKQAUERERKTAKAEVEREQKjAJAERERkQKjAFBERESkwCgAFBERESkwCgBFRERECowCQBEREZECowBQREREpMAoABQREREpMAoARURERAqMAkARERGRAqMAUERERKTAKAAUERERKTAFGQCaWZGZvWhmD+S7LiIiIiJ9rSADQOCzwPJ8V0JEREQkHwouADSzKcAFwC35rouIiIhIPhRcAAj8D/AfQCYpg5ldZWbVZla9devWvquZiIiISB8oqADQzC4EtjjnlmbL55y72TlX5ZyrGjt2bB/VTkRERKRvFFQACMwHLjKzNcA9wBlm9vP8VklERESkbxVUAOicu8Y5N8U5Nx24BHjUOfehPFdLREREpE8VVAAoIiIiIlCc7wrki3PuceDxPFdDREREpM/pDKCIiIhIgVEAKCIiIlJgFACKiIiIFBgFgCIiIiIFRgGgiIiISIFRACgiIiJSYBQAioiIiBQYBYAiIiIiBUYBoIiIiEiBUQAoIiIiUmAUAIqIiIgUGAWAIiIiIgVGAaCIiIhIgVEAKCIiIlJgFACKiIiIFJiCCwDNbLCZ/c3MXjazV83sq/muk4iIiEhfKs53BfJgH3CGc67ezEqAp8zsQefcs/mumIiIiEhfKLgA0DnngPrwbUn45/JXIxEREZG+VXCXgAHMrMjMXgK2AI84556LfX6VmVWbWfXWrVvzU0kRERGRXlKQAaBzLu2cOw6YApxkZkfFPr/ZOVflnKsaO3ZsfiopIiIi0ksKMgBs4ZyrBR4HzstzVURERET6TMEFgGY21sxGhK/LgLOA1/NbKxEREZG+U3A3gQATgdvNrIggAL7XOfdAnuskIiIi0mcKLgB0zr0CHJ/veoiIiIjkS8FdAhYREREpdAoARURERAqMAkARERGRAqMAUERERKTADNgA0Mw+bWYj810PERERkYFmwAaAwATgeTO718zOMzPLd4VEREREBoIBGwA6564FZgO3Ah8B3jCz681sVl4rJiIiItLPDdgAEMA554BN4V8zMBL4tZl9K68VExEREenHBuyDoM3sM8DlwDbgFuBzzrkmM0sBbwD/kc/6iYiIiPRXAzYABMYA73XOrY0mOucyZnZhnuokIiIi0u8N2ADQOfeVLJ8t78u6iIiIiAwkA/o7gCIiIiLSdQoARURERAqMAkARERGRAlNwAaCZTTWzx8xsuZm9amafzXedRERERPrSgL0J5AA0A//unHvBzCqApWb2iHPutXxV6ON33cTrg47g8PpmmjPrcbU1bJlSRdng4Zy0cyPF9W/y7IQxFDdX8O70G1Sm7mdb8yRqh49gWLoOVg9h6/ZxbBkyiI3lk9g5dBLHbWmE0k2smFLKtFQR2xufpfLtQexKz2Rp5RE0pRzTtm5lQeUTjBn1Eg3p8UxoPJ2SVZvZO7SCPUUbGbLzcIasn8a+yj+RPmwlbNvLiGdGY8efy6NuPftX1JPePZgZRbMordzNvknPU8QOit7Yy5xXh7Hl0s/y8NgJlK58jZnNexnu3mDE4G0Mrz+M+h2V1O1/mIphm0k1TWLLiDTPlB6LDZlEaufLDBs8hNqRR3JSaiQT1v6N/UNWwZ5S6svXsKssze4Rx1I//DgOb17K0YNG8VDtbh52M2isG84xm15ixNR9rG88jm0NJawcN56S5kYm7t7C/L0bmL7/GVhTzJ6KMhi3nV0bmtnZtJ+RQ97DmklHcfzuJkasX0Hp8BEMtRGUHjqC4z94Jhuf2cC6R9/g7bpX2T61lCcmGK+WpRm8fxTDGks5dyu8p2QKG8qrqS95mkzDbJp3l1JudQwqeZG/D9rI1E1TGdQM2yc20dyYYtiwMkbtOY4psyfySvGrbF0xltk7p5HZuZ6SomFs2r+XrXuWMWXMIcwceSJlxY1sq3mQXRsyDBo6C4Yu4/XDG1k2eQZH2CtUvradZ+s/SE1lJSc0r2dS+UvU7xxFZvtIpg3ZRe3kV2keVMuw4ZXMHXUeyx97nef37mNQYwmzGMOIklKKGobT3Ox4ZfZq/jp1FOwfwml7VjJ+9wbGlhVTufdoNqbG8uK+FdQP2sbbEyZQwn5WNx/LnuJSRg1az2nNyzl60xR27ahl78g1lDYOZvD4/ayaegR/bRxGUW2KEzbu5qSyGkoaj2HP/mJS2zfz/NRdrJk6Hts1gYamMor37GbtsGEMSsH4nW/RlElz1P4VVI1YTtnohby8fwh/KZqMNaYZ7GBU0362pqaSaqqnausORr79Co0NtQxyadbNO4lnJk5i5KgUc5qqeX3nVJoah3FS01OM3rGDdNn5vFo8Fivax+rBFbiGbRxVs5wxo/ZRM2M8U5o2UlQylJnN00n/by0lQybw5pg3GbKrmSMaj6O8ro5de15g9awR7CkuYrSrZNyE52gY/ior9s3mrYpDmFnnGPpWI654AxPGvUlxcTlPlPwjfx5yCCO37uDS+gcZPeY13hoyg5V2BMeuTnP48OE8MruZ5u3DOWWlY8aG3RQdvho7dBWvlh/HmyP+gSNtBL99cQWvDXbM3/8sx9XVUTf4HUx7YwXTazbQeMQunjrM8bf0PMZtqaBu6HaaMnupHzqaUsuwYM9bHLd2OpP3Hsr/ltfw9OgSqobUMHLrA+zcMo7U4EOpnDCOVMUfaC7bRtmOKoZVnsuzu3+P27eAJ5smsLmsieFuJycsX86YHauZMGcYRSVDebHUWFN+JIOba1lbOoqGpqGM3zSINSOHsa/CmMNKmuqambJ7IpszjYyrXcusdDNDUqMZVzaMpsYGXpyc4u8lRuW6Wkbs2sPOYTuZMXw9xxZnSDGePRO2s6+5if37jmbDykGsHTySuuFjmb72RSZU7GPpjHN4Ztgw5mX+zsWNP2Pvm1PZtPd8/nDUbAanjIlra2kcuY3jmpcx9dUd1GSOoW74ZoZNLuec4ceSrlnG7wbVs27WaA4tepOx21bTsGUOb9pctg4q5t17luG2NLBmUDmHH1nGkBmvsXVXDbVNV/La9kPJ7NlGw+hGxgzayqa6IRTtbmTCjL3MG5ZiTcMbvMY4jti0hXFuFy/sPYzlDRVM3bqZ49OTGeQmsntIOWXj/0xJ0QqKdsxhz67xuKJGxs7Zwlsjd/Py3hM4Ypfj6OZqXqmfzCNT5pEBjt+xiZJDZvPXxhSHr99G1bZaVk0uZ/mYMUwra+CkHXtpXFfCquHlzNs/nGNLX2LD4N+zZtskhm6pZFw5zLzkA0yaczir7/oDW19YzbaGtdRtr6G5eDIVg4cyasxodhTVs6GiluUzRzCzeB1NG4103SSKZh3D6v3lzHx7A4eVlFP1jlPI1Gzk1WXP4twadk9cz+tNh7HTzWRS7Q7WDNrL1gkjOGnLOsaV17JjTDlPF8+jeM9gjnm7gVlDdlFV+jI1r6doTB3FpgkT+OuIejaX7qNu+AiOeX0lx+zYxLiKcUxNVTLhxErc7JGseupn7K1/gd17jfWjp/NC2VlQNp4it4PJe5+mufh4RhePofZvj1FbDrUzD+H4kaNZt3E79fV17B9ZwuSK7bxdPpWyYeN5x+5ljFuzirKSDM07j2VL+XZKh75O8abD2FM/hxfHreD1ykpq06Mpq0tz+todVG4vpWTSVN7xgROZMHN4vsKNdix4lnLhMrPfATc55x7xfV5VVeWqq6t7bf0fv+smfj9hfuLnRaQBRzqM1VOkOd/dTzkNDGU39VRwmHuVsnXF1JRP5MdjP04zRRiOFBkcKVKkObrmFSbv28MfZ84nY0WtZR3vqhlOLQv5K7PdSl7YfCrrxk+gwnaxm2EU1Q1my/Ah1DGitU5D9zYyZt92tuydypymlSwY8QxPVhzFn+x89lPKNNZwzOZafj7+DJqtiBQZpu1fQ2NJKcU00UwJI+v384/lP2WOvc4bNoflHMlhmeVs3zmZpzidZaMPJYNhwKmZJ5mcWsfhvArAk5zG43YWGVIYjlPdkzxtC3GtJ7SDtmcw4ie5i2jmNPcXpmXWUJ+qoIJd7KaC0nrHL4deQrMVUZzJ8JHav1BfVIY1OBoGFTOsMcPbQ0eQyRQxl4cpGdTIt4f8e+t2AUi5NJevfZ2GymUcxiscwkoado5lb/1wmuvGsGH0IJaOPYpNJePZzTAmsoGJbGANMzjZPccU1vKknQ67JzAtvZ7GVAVHbd/L9tRG1g2fRVnJBnY0VFK+fRyuopmGURtYXjaRtTaztS9mu9dZZYeRJgU4JriNlNPAifXP8+6h9/EoZ/E4Z1BCE5OpwfYaK4sPZ4TbyWm7/5eTV89i3Zgi/lxp/LXoHZH2ZZjk1nMef2BK5m2WpU+g3pXzaOk5pD39DBlOcM9zIfczmxUAPMpZ/Mw+Toai1jwjXC0T2ITbO4qtVkpdWQUZUpFt2VExTVzmbmUNM3jCziBNUZjfAdFfhMxw3N7lHNn0Ik/ZqaytmBH7vK28czMP8MfUxTgslidIaZklj868zISdkCpLM7XoNd5KTaWpuZQjtqxlZvNqtu0aC0DDlCZeGnYk2waNZjfD2GiTcKQoIs3pDY+yumw6JTQBsMKObF3boe5VDFhhh+MwjAxT0utYX1RJBqOIDO/a/xfKS7bRQBkP2kVkMJxzYEWt5VyQ/g2zd73N30vnY8X7KS3ZzB/sPWFr6NBXxTTx4cytvLTvNF4uOxSHUUIT17hFHOJWUl8/go1Dx/EHu5hNTGIou5jSWE/TjqN5YnJ5h21/qFvOZGoop4EH7aKEMeJnZDiicTnHvv0mwzY63pwxir9UzsdhFNPM3Oa/sTo1i0NYwRSraTcvrGcKGzKT2V0UHGBTLsOhTStZPujw1vLHus2czNNhvYrarTtFmo+kf8Ikt4HHms6mqamcI+v389LYMl4uOQZHMCcf616gnqGstCOCerk0x29extbyMRw5pJohqT2sZwpP2zvCsdMyiiwcU44LNj3C3LFPcn3Rf9JMMUWkOc4t5WWbS5oiijIZ3lXzB16dcATbUuNYaI9Rlfobr7mjGLejjnRzMSvHV7buAy37/0o7DBe2y0i3vgY47u2VLJs6i3Q4VooyDrMMzWYYjjnudSZTwwL3BDXrjuDvxWeQGWyMKNnI6XuXM2n7foZWbKd56CqWDxnPk5xBY1MpRY3w7OiqcDtDpVtDcVOG1YNm4YBi0nxl253U7TqDJWOnkCndxdSSV1jBoWyz8eEYbMaRIk1wzJiXeZKnUwsgMl+MSddR3tzIflcKRcamkpEdxs9RjcuYtfttGgZPI11Sz9E7XqVq/EOsSh3CT/kYb9vMdmP1MLecQ9xK1mTmMG7nXv46Zi5pazuWtN92bcsF89vvOMStJPglWodzxrIdZ/HfY65sd2woIs3R+5YzdP9eTn2rmH+edx4TT5mUtAscMDNb6pyrypmvkANAM5sOPAEc5ZzbFUm/CrgKoLKy8oS1a9d6l+8Jx/72UTYPGwlm4Fz7fwFcBrDI+5bt1TYwi8hwufsJa5jBo3ZuWxlBY8LXLX8pT1nBAeBw93eW2XFhim/QxwUT2URXwwar7PBZa70TxpiR5gSqeZETyFBEijSGo5liz7KOYprJkCJDyl92vF3xvmz9rONObQT97CyFuWZSEDlote+HliDyUTsHLNWubAv7pJhmrnGLmM1KAN5gDt+wr9JMSWJvWhiwx/sohYsERZmwTi3/Rtoe74tYv5e6BvZZ/GAd5Tg18wTPpeaHB0bfuGvL29onif0cHFDfyZ8pcw38wS4O2pBYZqzuHfaFtrTgPzdBb2fN7ys7WhaE+1hk3/CVkWUct7TzdPdnprnVrLUZ/NXObHcAyFmG77NObNMO6b793ZfXM88Yrm38mYHLUMx+hro9jGdju8DCW4cW2ero7X/XsV4E+0Nl8xrWFoeBe1ineIBeRDr8D09CW7PNRZ46WBBSR/6j4iszR1rS/tFuPY5D3Wu8bkcm1LU5bFNbe1Okw/8YBOvr6lw4yO1jvw1qm7eix5d2bWh53f4/CSe7p3mNIyllH5tsIsl93jFtjNvcGux1EN22udriXdYlbIdgvr7c3cJP7eNt47c7c5BnXiiimePcUoZTywxbzW5XwZscwlI7OXGfSJHmqtVvcs1Z76J02jD/+g+QAsAczGwo8FfgG865+5Ly9fYZwHf+7l6WV8zOPSBbJA1MHBPYyCYm+cuKHyRaPo8HmknriPPtcNkOAkll+CZn32vfBOFrR3z9vskhsQ+hJah18WAgtr4xbGYbkcmsQ/kZJrEOw5jIBurd0LaJPls/+g6K2eqca7v6tkd8O3V2vGTr16Sxku1gmTgmYnlzjQ1f/niZSX0TH4O+PJ0pq8PB0/z9nK1P4+lJ6862/TszJrIcLDt1YEyqU3c/T2p3tuA3W1uT1u0ryzdmcvVdrnZ0Zvu0LhOb/+KBYLweSfXvTH07c2xJ6gOgY/DtWWe240XSMp39PNe+EV0+tmy5q6fBhiZvx85sq1ztChJaKpF8fHTBf2B/Xj+EMy46LLlNB6CzAWDB3QQCYGYlwBLgF9mCv75QVfRc8MK5yGBJt89knoNThx3OguAvXlZ02Zb3LXna5Y1MNvFB3a5utM9nseVa/uLrTWKeIRhdPtvBKrquaFpSHX3ti9Y/eNF2FiS+7shyrcFf4mRmbKCS9UylmpOD4C9a53j5SRNTh+2V8dfNt13jfZItqMn1eXy7JvVNtqDC11bfuPJtL994ShrjHcZ2Qr1aD7Se+saXzbYPdGhnqv1y0c/i688VUPj2xaTxHh9PvgNaUrm+bdJSRrb+9W2rpM+T6pvU3vi4idYpXl629QQJye1NWr+3nCzr8o1z3z7TvjBPexxj3Jb2ZcXXl21fjW6H+LqjdYy/Tjpu+I4RSftptB7xfSbbPpp0vPCN2XjZSdsokt5gQzv2UbzNbRk69qOvLr6+svZnbDu0PSw3Q4o/793VMV8fK7gA0IKL9bcCy51z3853ferTI4FYIBU9TZ3rIB8PFOKTdtLOQ6zMltfeCSthx/YFAr5gNV7vJPEJIl62L2980vAdlKNl+dKjdc3VBl9do+X5JlZfXbP1X7T9nvUPcbGJI17XqHgA4BsT2frId5DwtTdpzPne+/omWp+k+kXLSDpY+F4n7QvBh5D0v/WkNkb5DvZZD6KevsvWjmz7TlLfx7dnu4Oco8Q1ti87vs3jdfH1a9JY60x7fNs1vn18+3+0LUl9HO+b1jZZ+zJ87fbNi77t5+uPeD7ftsjWH+36zmgXQ2TbPlFJc1z081z7fryP27Uv07GceHty1TNpn4r3gW/7xtuYNFclrStJh/Hj2c5myenxMeBrQ/R9+O+23euS69RHCi4ABOYDHwbOMLOXwr/z81WZhv0VQI5AoEVSkNLCN4nGy2jL3H65pAOYc+3z+urmKz/pYJ50AEmavH2TtW/5lrSkg5BvkvFNlr4DuK8v4+XE+yAx4Ih8Hl9vvG2+7Yuxxyo6lhNfNl5OvA7Zgr0kvjb6Pkvq/1wH0+j7pLxJAUa8z+J1S6pffOz7lknap+Ll+trjk22fTgp24gdLXx0S999IOzGabHD79vuClnifZOvfeD8mSdrHfOX71uE70Pr6IP6vL7DwBT1BoR3XF69Ltv0maTwlBWYJwcM2xiW3JykgirfLt78kjbX4POft+1T7z3zzQXwM+LZVvK5Zx2usHF+b42Mo2/Eovm5f+RY7AdO6fGzsZ5s3kua7SPqGIQnfp+1DBfcYGOfcU3SIaPJn5Yjw5on4wE2aILN9Hi8nadl4GS18E3Q03XfQ9i0Tn3B97311yBlgZDkgdLVM30EhqWxfO33/+pbzricNzjPJJPVhnKX8B/2kyd73Ptt48y2X1C7vQTTHuuLr9C3Tmb7Otv185Sb1VbZx3e615yAQr6+vPr5AKmm9ievOUk68LN/y8fe+Pkkac9n6Kmn+8c0juYKZeF9k23cB73fSfJLGb9I6fEFQvJ/i+X3bPtf8lDQnmtHuirVvPAGEN64FwzLLPpZtfknan3zjxfdv0r6T1Fbf2Ewa7/ExmtRfSZLanrSN48vF5zZf0Jk09yYtG33dtCd3G3pZIZ4B7FeafXdRJck2aKN5ogMvPvHkOhDHB3l8R0g6sMd3ZN+kFS/Ht1NF6+2rqy/QiJcbD6p89Yu3N1dbkyaTeBuTDtDRdUUv8Scd8OJ9Gc+Xa0L2bQtfGb66dmZi95Wf1F/RZZLGULYDa9IBMKlu0fVnC8p86b52tr3pWEZSX0U/zxZgJY3Xlte5xm38fdJ2zLYf+AKYpH992zAuui/52pRURnybxffNeF2DhOT+a83Scpd3ZD3xcpPGZDTN99oXwPjmlGi5vvZ0ZnvGyh9Bbft2ZWtTUrujn8XHqG+OidfN99eZ4MzXTt88F83jq5/v3+iy8XbFy4gfv5L2k6S52ldW/DjmWaaIZuZknupcH/WigjsD2N8Uu3Tyh9kOXvHB3NkDsm/g+tYRzePL5wuGOrvj+ybEpLbE69qZevva4Ft/tn6NT9ZJQYfvQJkUtPgOIrHJtYRGmhgELnIXcsuZp6TgLj4B+vo3nh7lKy8pIIu/9q3X1+5sy2TbnklBhG9bxfMljdVs/REfh751Zls2KS3eH0n19431pO3mG6edrZtvzPjW6w2osmyT+OfRcZQrOPD1sW/ctKbH+iG67shro0OY1HG98bKTxnu2/cBXl6Sx4OuHbPOMp/xaRnWsf7wuSW1Nml/j+XxjNEmu/TGpbknbOJ43qQ5Jc2u8Dkn1zzXOsi3rG6u+9cbacIhbwTuPSuibPqQzgHl20ubgIbmdmjxbZDvgx3fc6AEtaUduWS6+fFLeFtGyk9Yfr2+uICLaHt/rbJOA77WvH+J9ma1votvAF2wllRWtR9KB1FP/JgZD/PuZSZcdo+2L1jXbpBRbX4eystUz3lfxsuLbP9v64uMyvh5fG339Gm1nfHnf5B0tKz5BJ42rzkz+8fe+/S66/mwH1KR9xPc6abvmCsiSxnW29kXz+raJb2wkBRYtr5P2+3gbsh2IfWVGyg6eFZnjSku2AC+pf3zzQTy99XWszGjbk8ZfUh2Tgqt4Ob79Oak98TkkaT255rGW5XztyzUW4stH6xBNT+onX17fe9/xylfneJnxtiSNfV85sTbuZhhzJy4k3xQA5tk/bK7hQvcbBrvw+wDZJmLf4EyaRH2fRdNbXvsOCD65DrbRPNHXvgNgPC1x4stg8TOk8aAmaULKFrTF6+Fbd3xnzhXQxOvna29SoBDNFw34kvgm5qT+9rU324E/qVRPePgAACAASURBVGxfEBUPauLlJI3F6AEx6cAT7/ekbRHPk+sA5js4+8azr71RSQfWeJ3iy2QLlHxtaU3zHJB87fbtX/G8SW2Il5/UB7kCg1wBY7YDpK+eSXVJKsc3vn3BQ64x6wsKffWI/vnmFedo3ad99Uja7vG2ZMvvC3h8Y9Y3L0T/jbc3vu6kOiTNw74yfdvEtz07O1Z92zFpHEXzJARnHdKyzSPZxlBSOcBENtDUVOuvWx9SAJhnr09v5E92IY02JEhIOkBExQ8kLctFP+9MkNSaHhvgnTl4JZWVNFHHg0zfhNOhzilcyx1Z2QJGX52z9VHShOHbeeP1bik7qX+z9U+2ScaX5uur+Oe+iT9pW/kmRl9dk7ZTroDA1w5fX0UPiNE8vgNYrgAxqW7x9nQmsIjXPdrOeDuSDiC5xr/vs+hyScFLvL98dY8fZDv0OR3b4ssbr3fSmM61/eP9Eq970vju7FwRX7dv3vS1qTMBTrz+La8T50jPI1Li4zrXPpc078fLi67Hty/E15V1nGU6ricpf67jkq/vc+VLKi/XMSjap9kCs/i8Ef03adzFy8z2PtuYSNjnjDTvdvczcuTJHdvYxxQA5tnLuw8NfvrMtxNnm2DjB6houi+QafnMN7lH/3ea7d+kuvkORL6DR7ZJuyXdt3P5JvBoedF6+A5cvoO5b33ROiXxTfBJBySfpODEF+BE83SmrJa0pIN2vK99+ZMmVN+BJ6nsaN2SAouutC3pgJG0zVuWz7U/+bZ7fFxnO1j52hHdltnWl/RZfLzH1+Xr+6RxE6930oE9Xvd4fXzlRrep7+CYKwCJ1z+pvfE+yjZe4vuSr27x+vjqnTQnRNfdoa7R346lY/t96/K13zN+yt3ujmXFt49vTCTOY+m2evoeBxZdPqkP27Ud/zZMWiZJru0c7/+k9iWNo86uO76OXMdF3/aNvo5soxRprnA/4RBWsurVrZ2rWy9SAJhnxZuGA7GdONuAyhZ4+ZZJCi58B31fYBU/GPkmoHjeqFwTgi/A8LU1vq5oH/jWm9QP0eXir7OVEW9vUiAUX6evHfH1+SY+X//4tmFSnnh94pOiry+T8kXrl2us+A722QIoXzt89Y+vK6kPW15n2z9yHeBby4ydHfEFQ/HyfGMp1wE0V91b8yRsw6T+iW8L37aMSto/osvH5w7fcrnmptZ6hW1KGgPxsZYU5PjmjKRxEW9DvL/iZeTad+PlRv8znWtuSqpnbJkGq4Bsv1iTtD8mlR/9ne9OrL9dO6N97jtexZdNmgOS+ia+jvhy8fHnO1Ym1T8+rnzbKGnfTNpvfH2QOPYzXMFPONP+DOaoXX1PQr6+o7uA82zv0FEEk2Cq4+BrER98HXaANFDkn7iiZeUKArMdMIJEiP9qgm8HiDKj9Xldndm5kuroK9fXpmx1SmprZyStJ9tkEJ1wuhPkxNuQLQCJ96FvQkrqI1+w0pXAzpeWa/L2BVzRvEkH8g5jMsY3ppPKzdmXuX8SMHGMZeujpHZkq3uwkL/uvm0TLzO63mi+DuuL7OO+/EljPi5X/zpHMc3BY7Bcwpj31bvl82jZvu0arauvrZ3pE1+9k9oZXV+0rGxlZqtzvF4tx4d4v/rGS9J+15n9LV63eDvj643vC755I76ebP0Ql2veyTbuo597+zTHMcjXdl9/JdWnQ1kpbuMqnIMz3KNsb9zWsb19TAFgng2rXQ1uJuAZYL4JzveeovafRfNkC0Y6E5i0y9d+4ix2+2m2Qcn1iy4XrUOug6avLkkHrKRgyreDJk6uCWW1mxxiB2FfGUlBTbxOvskkaftm69toPbMdAJIm+c5M/PHPfAee6Pt4X/j6IVu5vvbE+8mX11f3bP2RFEDFxfNnKyOpPr46Jx2AouuMj9XosnHZ9o+sc0e8rQCOdiecfNuztezIf+6yBVKe9Q6ikWYq2rfRu44s2zjeLt8Y6My+4Ssv13qSxqGv7b46RT/LFYwkzV251hVvT9I49bxOuTSl1shehrSve7xMn2z7V1fHZFIbsm2/pM+j60mqV7a5Mlvds7W3dZUpfmr/h/27RvOh2ZHfJ84TXQLOs60VI2n3iIKkST+uZVKOv27Jn23Ci5fT8m98uaQJ2Dkg3f6iRLwOndnJfZN69GCTdBD0idcvWp/4Tp90kPC1pzXdgr/4epImoPg6fWUmrTO+7bL1bWcnSF+gkfQ6Wx3j5fjK9Yn2VyRviqb2+XztSaqDLy3eZ9kOvkntyDZ2cvV9rvrlqnN8PfHx6hsLviAiqX7R9iXuWwnjOb5fOteW1xfsxfsytt6GaPAXb2e2fd+3D8bzJx3A42X46h2tg2++iPeLr47Z9n/f5766+ebwbOJjxrffx9M6zOttMlbUPviLb8foMvHXucqP7y9Jx6/4NoiPqWySyohvB99xLmlb+eoer3fSfhwu6zDuGv6PbOSC3G3oZQoA82ztpFnBi/jOG9+Rkz73/a/DN3h9E5RvovDtWN6drYi0DepYZvS1bydP2pk67FQ5JgDvMp3gO4DGxSeOpINFUl9lq5cvEMqVv+XfdpNJbDKNT66+uvvW4TtI+JaNl+Nrf3yc+uoVzQNkKOnY3qSxGl9v0tiNtye+/nhaQt3CQtrnjR+AfAFCrr7qzAHMN+66Eoz8/+y9eXxc13Xn+b2vCvsOAgQBEsRCggsoLiIhkRIlS6JkLZZsJ44d23HSju2Ok0wy3WlnJrHsOFG6J+Oke9LTn3Q8sdWJ095id2zJm6x9sSiJEklwE3cSJEEAJAhiIfatqt6dP2rhq1vnvgL9sQjaeL/Ph6yq++4995xzz/KrBVU2smMjIN49Tf3NM5HyIFuTtNU0W3xmIz1++WeLe1sNldZL52zb28whmx9N2/zyxwvJH2ZfkOJLIjZ++5r7Z4vRuci0xYWth0lxm7wvxYJkXzadso0lYYtDv9zy85nHXo3ihZO99rnXCQEBnGcsGRuN35GKou2DvybM4iPNl5JaKvC2gmsr2raGaq4x9zH3SmvaGmU2XlMX89YsBBmkwM2UYTZMSR+pwEg+8msotqYi7WuusRYUwe8SUfIjDlIjjxtjt8u89SMLZsyY5yWts521GUfZyJ8pw1bAbfNSOhpnJcWX95rU4Ez55jl5b019zMbnFzu2M5AIhfda1lgz9PHuJ9niJ9fMIykmTD1teifl2YiatDbD35ZfYpJiy8wnPyJgypHqiZh7hk1SvNlqvLSf137T16bsudYJswZIPvDuI9noHTNro82Hc80R81yk+mPaMlfbpPl+/cPUI3EthwjLBo5k2nOdERDAeUZXVUH8jkQwvB9CNwuqLSC987ONS83a1MEmw69YSwlmKwBm4scvoHEyE1fSTyoA3jmpccm/lqJr6uddJ825OiF9nrmfKUciQpJ+0jwbIRLkhPVs5ho/QmN+LZBkrzRma/o2QmDTwQuLTWL8mT6wNQwAYla9cvRMpg5SfEtEQNLf1pC8Mryy53LWXnnmfja53ltTptT8/Owy7fHuKfndpqufraIt7tVrJhnzq2e2cfOvdrMRAElXc50UE3PNEUkHqTZ510n3bbUjW6xK52Hby6/GmeNzIVTmfZvutttsfvWzxby1nZdfD5Jke21NoIIBHtWP0VT+HPONgADOM4YLCq4+8Gu4gPi1FH7J7UfAvMXLj8wlH8+F+Jn7Sc1dIofePWxEcS7Ew+YD6b6pu41ASklvLfCWxuUt4HMpFpL9tuLuXSM0jzq6cL1fpm3Ky3YG0jlKjdkshhLpkeLKz05pjtd+87EUa2ZOJW6b9RkqdL+4R1SFZZv89pXOxLvWhBQXtjMxYTsTKS5NXbyPTd3nSty8Onj2LGZUXu/XbP3GTAKgFKmWlZor1DcbWRLhzJ30ZLtmqxdSrZNyUIoj7xqp1vrJluLDu9avHph1Lluc+NV5vz1sdks11zvXr15LxMwW86Zu2ezUGvx+OMGmv+e2laO0cAonb/7p1/xrcJ2hlPqqUuqyUmr+X38FNvWdi9/xI0hKAZo8ptLnJO/7kSNzvkRObE3bK99MPFuT8pvnhWSD1MRshMsmM1sTsJGmbIXXVqy8/6TC4pVpFle/RiXJNkmCX2NOXLvIclxC8rkbeuYxmemna4FUZLM1d1vBNm2ViJVf/Ep6eOScVS1cUdXpc5LqSX9VL8WgpF+2x9J96TzMs7XlfIbtnlfIJJmSn2xxnC0njLozTgkKN+PMHe/brNnyUqpB3j2940qB+VEIM19teWSuyUaCJTlpa4XzySZXImqS3ZKupmxznjknOTaXuLLNM8/ArEs2HbyPJUj1wOY7W4wa+2XEnK0GS76R5qb5yhK/2WQkrr3FHZxmFVX9wW8Bzwf+J/DgfCuRxJbLp1C2YAVPoCpmKLw6J3lNSjJpTEpSqYCY66W1fo3ECxshNfc2yY2tIGYrJqY9UsGSCrVZdLyJ7H1s87WfD7LZLK0z9ZDOIzlPam62BmEjBQlEdTjuH2muX6OyFVezAZl+MG01fWH6wA9ZizZx21LP3h1/Xfxi1xzznlGCDOTqadZzgDrdRY6eTl8j5YLkXzO/bY0wzc/Gx0bM+b7+IV0HiUDY4jtBxjSZfnUxXoHOtre0l3QutpjMdn62emcjMX5yUntniU+vvhLJkfTyrjN1TY6b18w10nlJa6Qc86kVonxTnl8Pkc5Lqit+JM3mQ4yY84s3W2/xq/PSOUgxZYlXF4cjsY30TzQw31hw3wOotd6plGqcbz2S6G7OJ+1tiCT8CrP52FYsvLfmfdt8c8zvuneOLSGkBPM+zkYSpAKWzQ6/faVXDGzyMpqrsMZSgKx+k5qotEZab9s7W2OViKbgo7S/6vYjH1JxN+9LOtuKrK0R+snN5mdxf2Fvc45NpnddtnhBMavyOMzNmbzA1hjNfW37eOWY96V1UpO02Wyul2qI93E2vc3aYIsP6ewlMjFXUmdel+w0fW9+yb1ffktEMZtOSsm2eSHl6VzsM9dIuevnPz+/eW9NG7x7mfP8+pCfrZJfpXXZ6qp4fY7fWemFTa4pYy4+STzWaFa7xzg6Xcqv+Fv7jmMhvgKYFUqpTyul2pVS7f397+zv9a3gcPzl6mQQScUP5EbhvZXWmoXKvG8jSjZCY0uE5K3UOMxG7v35J0kvSR8hicw9czA+uC+RjaRvshUjv6YlNg/Sz0Bq8KZ/TD3MxmQrLl6ZNnleOd7H0lzTL+Y1c08vpCZj7uHXQOdyHuZjKW68e9vyx4Rt3HamZhxIuZOmp/AKo2Sb5Hvvfn5x4dVR0t27hxmfki0SgZBi2tTfu4dko5/Nkr/97JPuS/lty0PvWo8tChe8r36b8211wLwvEQHzLCUbgIxvKjBlm3NsZyPp5edf7xphLMSsrK93nS03zL38zs3UQ4oRsy7a7BDtzFILpBpps0WqkZIfTJsAcMjJiVDQYNHnOiIggAK01o9rrdu01m3V1dXv6F5XBpclvvIkS7NNXpMgFT6pENlkSYXCeyvNybbW3DeVyCr+TypaNkLhhdTYACUVT7/GKBUVqZl510nNU2o+pgyzQUgNWNJTKoq2gi2dOYJcc43U7LzIVpDNuVKMSHZJjdDcay4y53pNIgPZ8sOPJM5lvhTPfoRJIgmSvGw+NudK/pAaFoA2vxZFyEcbmTFts+VJtuadjRCYMs155mMptoy1Ovn7uN75Zl316irljy2HpDOT6pxy7NdSuhs/GmDWFltspMYt/rIRQyCG550Bs894x723ZlykdBDOOpvuyXlzqTuiXwViJ+1hPrbVJNs5e/fwxpBXbuLxU7yf1TVDsj3XEQvuLeAbDT2zdxMlROq3HudSPLzjEpEAe4KZpERqHFJzyEhkro2w2RqhCSlxbXt6MKsK0gfS5mkw/0LXOz4Xm0y9JX/4kRKvXn42+5GybE3NOzc+mLmXn21+OmTsqRPuE+ZJ8iUd/OZnibcyPcSIqpSLvN9eybeBzCJtIyumbt49bLE/V7I3lzjxEg2vTbbcNW22naVtvvcvxpVK9WsrmcyWz965GXsZNkpzvDB18GvEpnxJD9u5eq97r0nnYNtXil9zjU2+bU1WcuWjU2qPLLradPPCr+Zns8/8iilzri22/fIrWx6aupi5KY3PJR79YiFLTzhPEzmdPjlznRC8AjjP2DZ5OZ4S3mYkkbc0CMnhV8jMgiERweR9IfHif6TiIr79YCauLem812wNydYcbIkm2WAjRtL6ufy0m1TEpCJl2m8rPOZ929l5Y8GUa2tOphxpreQPrcF8Zm7Go2c8Hg8+PpIgnZUJPzLm1QmYVoVxnc2zT7OJdH/G76TPNW01r9liOCVNg44mBcnr/Wy3NXHveWVrbH4+lewz53r3N2PGRkSk/DV1s+1ljpsxL82TziHbXKlGmWNmfCVvbbFgy23Tb145tniUYtBGbGw5ntpL+OtvKaZtOnph7uX1m3eOtJ+kr+Rz6XYueeNX/209yDxfE6ZMv7ou+c+ETVePn/OnisjLWybrcx2x4AigUurbwJvAaqVUj1LqU/OpT13eTm7Sh+IPzESTAlMpMF7ZyUH4ot/kGqGBp133zjORGFNaJ/YUiolfU5DmGbIzxqSEMgtotn0z5Pk0dtt+pv7Jx34NzUb6bEXFlGHqYxZQ21xbw7U1DKl4m29/SfIT4+HkX63bGoc0ZiMSkq1mwxZsmyE/rrO5n60JeGVIzdqrl3eNlI+edRV6gFQZVUI5teWwlKdaA5oiRkn9QoVffHpl2vLLL1/MuMoWL5J8wx8Z17z6SgTHlmO2W9NuaU/JhoRv85nInGP6SYpjPzJis8ckONmQJHG2vWzkEUh9/Y+fbdI1c565RiJpJgGSfCXFublHNl9LOnmv+9V+SZZNfzNXbLXZu58tViQdhfhoujJL9dRhu97XCQvuLWCt9UfnWwcvjrkbOKo2xB/YmpYXQoOOJD+jYQamKc+WxN4xoZC6yS/G9WvitkRLwq8Y2oqEVPTNImi+pWfb22uz0MivqcnMxQ/SWc6l+NpsmEvR8cK01/SP5BdbsTNsTYu35FyxKRmybMU8G9GQ5kj72UiADdIcUy+bXYnxIe93CUpnb9qQVT/FBKX+a205Yds/27mb+thIjG2uXz7Y7JXstzVnvzogyTQbbkqmYpqiTP3MminZa+rhF+uSLXOKd0t8SLUhYw/Pd1d6ZfjlpXTm5lrv/rack+baclOyO1u++MVUtnM0x701TYpnCba640cOpbkeHV5bWs7OvlJa/Xd+x7HgXgG80XCkpALX/BoYbzB5/yWvgVykvfAjH2aA2gqMd75ECJJzzb28OvklmWmnOSY1HUOHIj12ddzc11bEvLdeO/yKlx/hsBUem3zBjgybbU3MjwjYdPNet9lv00siRFKjtDU6795+TUbyg1cHSYYUZ174NT+vrtnywDxXc9xW6CXdvfb5ESfTx342+dUGUxdbszV9YsrOuKZJe9XJO0dq8ADSF0LbiIEtxmyNPBuZ8dPPjxyYPstWi7ORLZOMmL4wz8rmS5uvzGtpftXCGPIZm7ZIpMevF3gf23wrrZHkes9A8pVtL7/6b47NtS9IjyX/SPU3bUzx4/pm5hsBAZxnFJd0ge2vYk1IhUwKSr/CmhyzNRxvQJt7eDGXxmEjEt7rNiIh2RsfTNtmUhVnjGUtYhn6GeM28uR339zf1hRsZ2jOtTUgL/zIjSRDKpi2+TZ5ZuzYSJIJKb5MPSQSJsmQ5mRrxmbTnYs//XLQVvyzxa+f7hI58O5l87sEWw4kx6Ta4df8MnR2yPhZtmyN3fsq1Vx8Z9rsly+m/qbuNuKX4W9N/F0Fn7djbQTA1MXvjGzrbL6w5YUtd0x/JUhHmj5+ZCVbLkp6Svqa6+dCwMz4NPUx9zJ7lbnPXHNVihdb/zP1t8n0XjfkDOQJr9peZwQEcJ4xqfIg+WF2M+BBbnpS0nvn2oiUNG5riKYcqQBLe/qRAklf7xrvHpLN3iKW2EPjkPb1CZJNZtJnFB6jcNrss/nFts60WSoI5h5+TUoqcKbfbc3YOzfhuTQ5ZhEzz8Wrp59taX417PDuY9vbnCM1WZsPpIIuFWepUZv6mvlo2i81W79Gnrr1kIuMOcK4rXlKvjHnZWlAaXK896VYsJEZ0x/muLnO9ImNREg6SnrY6ouN1HjvC4RC4bJF77n6ZqxfvnvnSLpKhEWCLYcksiLNNfPfRpTM9X510q+PeOXY8lmss4Iefn70jtvixJaLfuulvZPr/fLJ75xMm201xbO+tb9Ptvc6IiCA84ya82NgfpjdFqB+iZ28LxUqv6abXGfO8Ws8UmPLVuyyNR6z2UhN12uPLfGVAjSFetxup2SvKWsujc9rg0iyPHZ5v+vR9IGtcNtIk63Z287W1FspMD9vZDZjqZHamobZMGyEQtLHlOXnc9t30kl62vSRirkt35JjUmyaxT4jBo31qTFFWtlN84+lSZr3U/YIhNFGFmznaKspUp6Ye3ltN9fbYsrMa0kHq91u+phUJ2w2Ss3btFfFvw+wg5bEE0tB97nUEK9cr3xzf0kvKWa982013cxDr0xzH6m2+sW+97Fpm3dc0tm7p+18TL0kvb3rzDVS/ZTmmdf94ttvLFs9y4bE+nNVVde+9ueMgADOM/oKmsD7dRa2IuKFLRhNspRcbyZD8jZBluzXyEw6P0jNVbLBluCmHL/1NhlaAyrx1rCPLTbZ3jV+hdZKrAwbU/MSpMuvefgVZqngmvZ5r5kypCYkNWBbQ5IgnV+2om3uJ+nsXZem4xwKs40Y2hqAFxJpMe2Scswv58ycsuW55AM/kqYUeH931xbXfrkrEYpstcWmU7YzNsdtdUmalxpz5Dl+5Eoay2LLiKr010PSwTtH8mXyupTX2WpJcmwuse1HwiS9/GqrrW7brvvVbZtPTN3mijQfWHqkLW9sZNGmm01PiXR7x21nm8BY3s9AHn/OCAjgPKPGvRD/GSK/Z37mNfP+XIqQtclbCofZCLMRUVOvjGQSEiGj2Pg0EVOfbGTOJBLmMz6xeRhJ7EeevftIDdvW4E17JNl+zVGyxbTTXGNCIkLm+mwNXNJbIk7mGpvN5pjXJlujn0tTlnRNzjGbsO3MbH71Fn9TT7/YtZFPW9PIRpT8SJlXR78mbJPvnW/qL5HZa4lrG4Ex5XvvS3PMfaS9JRul5u3VLeMshNg07fIjHV7dzevZSJ85z9xPeizNM+uiqZNXD9P3Zh5LPshG9FK3PrXb1MlWD1M2+JBpr77mflL9zFY7bPpKfveLb2Bt33F5r+uIgADOM/LKhuNvN4B/sTaTUCq8yXGzqUvEySbL9gzHr2mYc72PU7ZYiENakfMhlOYaU9ckpAKWJtPz4e6MppTFH9IeXt1sRFAq5OYa6Xy9siQdfIsign2kP7aRHlM/059Skzdjzaa3rdnaiIx0hpKO5h62xmiTORc7/EiGbb6kW7Z9zbW2hm/mspmv2WLIFicS0bLpLeWkN0aupWb5yUnfOFMHGzmSfGASF1t+ZtwX2qUtX20xJuko6SLlrG1c8qkJM+/TbPPZSyJO3rmS/VKPyfCJd52+qoNtna0/ea9Lukq1w9QlW+6Z67P5JcNWj76JdVW6j+2drzPfCAjgPONw6Xowf5HCFnTZyFDaHEtxM2ErduY+fgFu09k7z0aOpPumHNs1qbmbfjKLg0nysjUnG3GTirXZjCU9TJnmehvZSbPdJeM3W6Vz1C5hPUMek5D660bLfIkM2IqcrcmaPjD1szVb237mfS/M+ZIMkxTYSIXUFCQfeW9tpEg6e/O6zR5zjp8MyZ+m/jbCYNqTLa/8/GDqaSOKtvw3CZyfH1JyBN1tJMpGpEz5Zp1KXs/W2P1y3C/fs52xJDNjjYVgSDHmJ0c56ePeNeZ9m942AiXFqJmX3o/HSPtLZynFrF9ee+eYOpqwnXG2nJNqvKV/NdDJ8opJef/riAX3RdA3GnLyx9IH5lIYpDkZwSwUMhsZE9eTmUymDFsTkNabiWNrCiZs1/yKqF8RlnQyZdjIj63xSvua+pvzpAKUjVykYPwgvFc/r1zlECWPqLncPIerylKoJ+Kfn8zmW7PweW9T4rKQSBN+RVna39TDnGOTb56pXx5YSUgW2d5xm+5SMzFhyxlzX3O+ZEfyS9NNe2w6maTMjyD8LPDzlV9+JO+nxfocmrPXfmmerU6aOkp7mrDJt0EiLtn8oD1z0saF2mHKkeLV+6X6NjmJazl6mojKBZ2UafjE1iP8CJPt/LPFmam3TXfTDunM0+QKcW+re16brfF3Vf4St5dqfYe/jtcBAQGcZ9RHOyGHzEaRNegtBct2m5HsPsVXGstGTCXS5Z2frbGa67M1SVtjkpq7X0E1SYqZzKbNNvJg+tqULxZcH//a1vg2eB8iI9luytIwqYoydZPstekt6eSNP8m/5j7Z9PcjbpKvvPeznYdEsEx9bAXepreplzlPihc/gmLKsTSZtMdag/R5X7+4ySZXyllbPvg1Uz/i5aePn88lHU2SYmvski5+ZM6v8dts9eot1R+//DZtTzvjLH6wXY8/yJRvmRtR+ZnXzfO2+dF73SvbtGEufvXqba639RTTxrnWFJvPpRg173tlas3ZqTaWVVZmXr/OCN4Cnmf0jjSC9FfAtkAym6dfMZRk2BLbXG/TR5IvJiVyA/DKsOlkFgdznvd6Nn/Z1ku62AqMpK+teXj1s8nM1gBsc/38ZPORbW9Jd6VIa5LeW+98rz6SL6Via8aoua8Ul1Lh92tmkq3evcz7tjjwi2dzrvexd735z2an7Yz8iJA5li2fpNxOfu5Kashmw5Ri2/vYnOOnq+QTU5aJaxk3z1byv1+u2uZ4586l5tj8l7xm3vfznxQ/fnmQnGuzU/KNTb7ZB7z6mdf84tXPP+Z1KVfNtX6ypFyWbJVyT8pR0y9SjNl8YMZT4nabuw+9ooT5RkAA5xnhwXJA0z78kwAAIABJREFUZSaorVFYAsracJKwNey5NFOpCNjIjZRYUqKY920NwdZM/AqsV4/4hMy1pq0ZRMhio42o2BLf+3guxcyru+18/BpEVoInjEuwETZbMzOJld+Z2vQViQrpvvDKl2JAKsSSLK9d0lybnja7JD2BkJ5FhB+ZlBqOWRf8yIVEyrz6aQ3Jz12ZPjHP0PS79NhvX4mASbpLckybbLlrq5ne/eZCIqTHtuYu2eRXz7LVPr8cM+310yN53y9P/fxi84d3L9Muc8+s9RiPncZ6yYfmdb96bNppjtnkmntmyz/vHlJtN+ug4etjhVXse/nZTD9dZwQEcJ4RKguB7XsAbQ3Ue9+W2OZ1P5LgvW4jmVJTt8316mPel/byyrM1FSkhJX1NfeKL7etNmDrbCq60Rppj2888F6kI+RVXqSFmIwPmfVujkJqRea42eVeVSdfB1lCkgm8r0tmaYzYSYotnW6PxIwlmQ7LESUzlymvNMVNXrw22Ju3dX5ojNSvTNjNfbLqZ/rTpIumQ7fxssqU6kS0GvPvORc9sdcWmhy1//UiYTa7pfz/9rsVW7x5+ttrWzbUWee2S8kAif1eVkvWdqx9tee6X1+aY93E2ImuLRVsOWWrIkdAG+qaE39K+zggI4DyjsvgEYASd2VySsDUCL6SgNIPWLEBe2dkav3cfSY6ki0k4zCLqS97ITFpTB2l/qZFla6i2pmc2TdPHpi4Zvhb2nWujN89S0tGvKUnN3marn9+9Okh2Z+hjuZ5NvunnbDngJz95HchnknKGMmXYzs+MWYvcjDGpocwlpm0EMRuxMx/PpWGbes6VWJiy5kI8/M5O0s129mbO2Xzkl0OSbjb9TPm23LXpaMqQbPJbL8VLtvrkF2MmKfIjmVKdkGpLSrZBZMyeI9kg+dWmt0QGbUTN1ltM2HQ095XizOZH85o57rlt1mcIVQ/Je19HLEgCqJR6UCl1UinVoZT67HzqMpOXDwhBPpdC5jfXluDJW1tASzKyNWEpUcxi7deIbEXetF2SaerpnW+u9+ph+sckq6Zt2UiIuWfamOF/j+6r9dGrP1sn2Wbq771vayS4IH07vk2OJMO0RWom5hlI8sw1NthIje0cbXol1xo+nKaQYYRfePA+zqafGZt+xMMbU179bP+89kg5IcWErXGbuS01MSkXTHm2xmqT7ecfaX7aHIEIZiNTfr4wYSNtfjK9Y+atefbm+WSraX7nIu1v6uq975d7Ukx450hEyFaTr04wdLHEQza9JV3NPc3abKvhUk1MjgtIfTQjW32R1jJLle6D5A84eNf51byUbJe16ih59d2i/OuJBUcAlVIh4EvAQ0Ar8FGlVOt86bNhcBTH+0sgSXgD3tboQE4QE35FSBzzITt+41IyZCOWUlOSEtAc8yOR0nxpvdQITL3Nc/Culezys1lYs5Qe1nI0c76tmdqIaNp8B2zfLZlNb8lOySYz7kw9vPdtzc6PEJkFVSr2tjM259l8JemYjSDZmq2NpJl6eNf4yTTn2eLcK8M7z7uv7ZxS89z0cYk0SHL9CIifnSK5MPaUzs4kLFKzteWJHyGR6qk07oU0xxaHku3SudjyzLaP97rpo+Q889xNmPlt+kp6bBI+my+9kGJX0k+KO8k2rxxJR7+eieWjGdIeAmLkMqBq5mRjEePgfYFHa8ChSI8RvVDku8/1wIIjgMCtQIfW+qzWehb4DvD++VKmavogjfps/IGNCMHcCkPysdQYbY1GTKIsTcfWTPwKsp+ONrlJvfxInCnXzy6pQEsFXyoAUiHys9Hcx9QrcdvIOd6rfohDTJYpFUibTAkmCfCzT9Ld9KnUHGyF2ZRlKa5pb83afGkSk2uxwZxvs8GUJZ2D15/S/uY8v73MczH182v05n42+21NMk2WJR8kmSZMn0i+MfXLIBTINpvjfj631TyTYNls8iOv0mMbIfSz3zbm5w/vuF8dlOyca77YYtVmm81Xc621tlj23ko+MPX1ypTi0PSFKdfmU79z99qKA96/pM/YQ7OVN66+wOOZM65KmZyYYb6xEAngUsD72mtPYmxeMB3T3M1L8Qc2smULZq3B+3K8mOx+BM545m9L2kQw1+hetutXKdIj6WsswS/K9Sse3q+mkJLcqlty3CUtIf1gTWrSb02/+hVmya+Sb1JyNOOUsFKf4s/5AhUMCHM8+vgVq7SzN4qo5DsbmZP2l+wwyY4pfy5FPnFts957lQBL9nohNldNA+fk/czYM0mBrVmbzSwtpoUPb2drnjYCI52xN6dsBMyrT9o8nWmjGaNSTJpxYiOm2pQvxZrPuXnXSvLEfLL4SfShp4bYbLM1/gw7TN+S7jebzVJ+SrkqyfPa7d3XfJVW2tuWnzY9TRtMv9tqnm1MssPcw+ZP6bqt3kp5IfnUVvds8jNscC1ncfX+an0s/cm71xbgXbzKZtrT1jq4tHKEqope5hsLkQBKzCDt5JVSn1ZKtSul2vv7+99RZWa4k3vcF/mk/jJ1uot40CV/r9bzu7VA6ue/EsGmcNmud6aNXZ3rEiLKI/oHiQB1cYixXb9Ksz7FFr2bT+rHCRMB7aKIsTz5SmRChjeww0T5Xf3f+cORH/Lds9/j4elnKdRjmXt75n9Sf5nV+iigBf0y78fXfCVdD2GeQ4yQTk86pWPkEk33hyTDfKVNmjeXMWKEiaB0lBAxHtHfZ4d+jh36OT6pH5f3Mc4nhyiVfZNoDSv1KX5Vf8/Q3fjdYptPjDnr9UFCRD1xEks7S0UMZRY3m62CHxxibNG7Wa2PUqe7M+ImvndU1LfO7Uo/S+2yrb+X3479I8qjo5PS0cXRsVQMZ+gFPKJ/wG/r/5GIZe9+OjP2tAZctujdPKK/n+kH67m75BLhk/rL7NDPp+lqbRCJ22Z9ihI9LOuScX6GzpLMxL9QIgbR0UQteJXcREw6xFitj6aui/Hkk4uKGM2zHTja6/dYSk4yBj7hfiUtthxiPBz7gdEUY5To4cRYDPDUMe9tQnYyn7bo3WB+PCY11xXtCWmXh90fkJF/GXan61AYm5L3suZdeixumW7PyLFM27LI9YznuZMpG0NEWa2PWeVt1zuF2Hep0Rcy9rs6N5ZxLV2+zpyTkKu8PytpiZ2H3R9YcssnBm23ibiSa5rlt90t57ZaH2WHfo5H9PcJpeIx3W6l43n1Sf04O/RzifqWWZdCOsqHYt/mC/oLnnnp57JSn+Jh/cOUzx1i/LZ+nJXuaZrWPMB8Q2nv4S8AKKVuAx7TWj+QePwogNb6i9L8trY23d7eLl36ueFr//AYeWoneZUTdBU2cNzdRNFUiMmiCO5ILv2TdZROR6C2n+qiHs5HVoPOYYf7JmvUcV4MbeflvDuYnM0nFIN1M2dwZ3JZFzrKxpIXOBbZwKGpbbRFTrFyaohpNc5opIhF5ZfpLq/mhLuZ287VUBV+ipebl7LHuY2NsweoGh1nf+EtaB3mtokjbOkpYclgC2euHOTc5CCr7h+is87llZl7uTBajVK5hJwcysK9vCv3eVomh7nSczNdrOPA6hk6CpcypiqpmboCeZOURUdZeWmWnpJCCksGuIOfskZ34I5X8WN9Hzsr2phwSymcgbrpS/QX51E0FeX9J6ZZ5lbyxNII0/mjrMh/m+mCHDaM99NwKcxT1Us4VLiG5TP99LtLuVRUTdjV3Dn9AiuL9/MM76GbBlQsRNXUCOtDhzidt4Zup4GoC0unB2jKP82xvCZUDEqiM5RwhaloLqfCq6iYGeLBsWdQ0WIuljSyfKSbdbnHKSSfofEyYrnjXJ7eRnvZFnpyJiBvmsKCMZzwLKV6hLrJy1wea6G2e4qqyV7yqs6zqKaXPDeP9tDd7K9YRoM+S4EzSdFoiG5WoKdLWNE7y/m6fAYqJ6kMDdI0NUjvxCLG8kMcLlpHJBRm2+Qufq3veQbd7Txf3cwksHXmdQpchzed+3HzJtkRfh6XCG+GbmUothhCDg6KsegiJsIONc4FKoYnGMhbSbEzSFeoCic6zaLcQcqdYdZ1dXFTr0tRyzEonGS6r5rnSzdwuGwd22beYslAIfsKmnGLZjhb1ABOjBxXcWf3EOv7j3CgrpjXKraTP+XyyLkBmrtizBY9Tc+aKt4ueIgwsEk9y5Sa5djMbTRccMgpvMjFhhDFDDMWymc6VkJ3aDmbJk5zl/4huZVDHBi+lZ3Ru4gtUlSErtA2vZfIVAE7cx/mTHE1UZ1D05VJdlzezerSXRTEcjk20cibNY1Mhmsod2Yo0pMcL1lMyI2i0ERDIVbHjpMfcVk9eY768T6G+lZzZbyJnZuXcrG0CCcKYRc29R+gp6Ka44VrqZwZptiZ5JaJE2zt6yaWM86x6Zs5VNxKbwXMFIbJVVHCxFg92c1wrJRQzgzbxo8xPFXLG/ktXMnJYduFAcbzFKdqamm+MkEkJ8zFQkXh9BR3jZyksvoSJwobaJl9mxZ9gnOTd3C8oIXG0T7WhI9yoqSEk7krKJiZ5fLUcqqmp+moruJcbh1OVNM2fpShijyuOJWsmD3DpMonFoOV5y7SeLEcp3QFhyoKySvtIFI+SsGkZjqcz4qZs5R15zKlYgzWhmjP3UZ+LMRtk2+yuFdzdqqO/Q3NOHkFPDzSSaOzh9f0Ct7Ob6R18iRubZi9ResIjbmMO+U093ZSOjvDQEUdt+fuorX8FaKDVZwrX8rrxetxZ/LJdaa4GFtFa18PjTl7OZXbQEUoSldFJSOxagr7C2ntGaIxdJLeJS7PFWxnuCifpTkXCOtZToXWUKzHWBHrZG1PL7tLtnKyspab+i/xl7td3ioK8VRzGKdgnHU55+gprMYNzbJcn6FdbaJb11MQCbFm+AxlFReZDivOzayl7fQkm4cGuFQb4a1li5idzad56ASxRTGOlLZyy/BJYqN17Fm8lFXRXsajeZA/QWnuJEfzmoi6uUy4pcw6DnnRCJvOdXHrpctcqJ3mcl0Oa92TrBod4sfDmzlavYmW3l6caJgzK2vYGnqTe/RPOTy5mb1lrUzkFlDOMNvGjrJ0bIT9i1bzXO5doB0eGG7nztwnOKJX0z62hZLIGBeWLWMkt5Q7Zl5nyKlhr7qFNYMX2BJ+kzO5Tcz2w8W8FmZyiyiZmGbz+dM4xeWcr1xEVIU5saiERVMRyiK9nKmqoDgyyo7LL7HiUD9d3MurG2oYLc6jwhmjMdbJlUgtboFLV8ViZtwcQk6MJTOXGY8sIW8mzHhuPkuHp8iPzbJY93GhXDOZk8+W2C5CWnEwdCdu3gSbJ9phUtNTtZzC0RK6oy0MFs2SkxtlPJzHbK6G2Tz6cqoIR2YpjM7SNniYByKvUzJVTnn5NIfyFrM7tp5uirlQXs2tF0fY2nOJ9tWj3JS/n/qeApzZMJXLO+gZeYD2vAaWhPYwNFbKufAKlvddoHJ0gNrmCyypuoA7vIQnF7exv3A9a8dO8v6pb1NcPIWOFHGGtXTkNLNi5jQrRs6zdMVDtO34P98xTqGU2qe1bss6bwESwDBwCrgXuADsBX5Day18Ev/6EMAAAQIECBAgQICfB+ZKABfcbwFrraNKqT8EngNCwFdt5C9AgAABAgQIEOCXEQuOAAJorZ8Gnp5vPQIECBAgQIAAAeYDC+4t4GuFUqofOH8dtqqC5J+BBiDwh4TAJ+kI/JGJwCeZCHySjsAfmfhl80mD1ro626SAAN4gUEq1z+U9+4WCwB+ZCHySjsAfmQh8konAJ+kI/JGJheqThfg1MAECBAgQIECAAAsaAQEMECBAgAABAgRYYAgI4I2Dx+dbgRsMgT8yEfgkHYE/MhH4JBOBT9IR+CMTC9InwWcAAwQIECBAgAABFhiCVwADBAgQIECAAAEWGAICGCBAgAABAgQIsMAQEMB5hlLqQaXUSaVUh1Lqs/Otz88TSql6pdQrSqnjSqmjSql/nxivVEq9oJQ6nbitSIwrpdTfJXzxtlJqs0fWxxPzTyulPu4Z36KUOpxY83dKKXX9Lb12KKVCSqkDSqmnEo+blFK7E/b9L6VUbmI8L/G4I3G90SPj0cT4SaXUA57xX7iYUkqVK6W+p5Q6kYiX2xZynCil/kMiZ44opb6tlMpfaDGilPqqUuqyUuqIZ+wdjwnbHjcCLD75L4m8eVsp9X2lVLnn2jWd/88SY/MJyR+ea/+HUkorpaoSjxdEjFwTtNbBv3n6R/yn6M4AzUAucAhonW+9fo721QKbE/dLiP8Gcyvwn4HPJsY/C/xN4v57gGcABWwDdifGK4GziduKxP2KxLU9wG2JNc8AD8233XP0zWeAfwGeSjz+V+AjiftfBn4/cf9/A76cuP8R4H8l7rcm4iUPaErEUegXNaaArwH/NnE/FyhfqHECLAXOAQWe2PjthRYjwLuAzcARz9g7HhO2PW6Efxaf3A+EE/f/xuOTaz7/a42x+f4n+SMxXk/8517PA1ULKUauyX/zrcBC/pcIrOc8jx8FHp1vvd5Be38IvBs4CdQmxmqBk4n7XwE+6pl/MnH9o8BXPONfSYzVAic842nzbtR/wDLgJWAH8FSiuAx4ingqLhJF7LbE/XBinjJjJTnvFzGmgFLihEcZ4wsyTogTwO5EQwonYuSBhRgjQCPpZOcdjwnbHjfKP9MnxrVfBb4lnWu28/9Z6tB8+8LmD+B7wEagk6sEcMHEyFz/BW8Bzy+ShT6JnsTYLx0SbxncDOwGarTWvQCJ28WJaTZ/+I33COM3Ov4b8CeAm3i8CBjWWkcTj712pGxPXB9JzL9WX93IaAb6gX9W8bfF/1EpVcQCjROt9QXg/wG6gF7iZ76PhR0jSVyPmLDt8YuATxJ/pQqu3Sc/Sx264aCUeh9wQWt9yLgUxIiBgADOL6TPIf3SfS+PUqoYeAL4I631qN9UYUz/DOM3LJRSjwCXtdb7vMPCVJ3l2i+NT4i/orAZ+Aet9c3ABPG3VWz4pfZJ4vNE7yf+tl0dUAQ8JExdSDGSDQveB0qpzwNR4FvJIWHaz+qTXwh/KaUKgc8Dfy5dFsYWVIyYCAjg/KKH+GcVklgGXJwnXd4RKKVyiJO/b2mtn0wM9ymlahPXa4HLiXGbP/zGlwnjNzK2A+9TSnUC3yH+NvB/A8qVUuHEHK8dKdsT18uAIa7dVzcyeoAerfXuxOPvESeECzVO7gPOaa37tdYR4EngdhZ2jCRxPWLCtscNi8QfLjwCfEwn3pfk2n0ywLXH2I2GFcSfOB1K1NhlwH6l1BIWeIxICAjg/GIv0JL4y6tc4h+u/dE86/RzQ+Ivpv4JOK61/q+eSz8CPp64/3Hinw1Mjv+bxF9rbQNGEi+vPwfcr5SqSLw6cj/xz6b0AmNKqW2Jvf6NR9YNCa31o1rrZVrrRuLn/bLW+mPAK8AHE9NMnyR99cHEfJ0Y/0jir/OagBbiH1j+hYsprfUloFsptToxdC9wjIUbJ13ANqVUYULfpD8WbIx4cD1iwrbHDQml1IPAnwLv01pPei5d0/knYuZaY+yGgtb6sNZ6sda6MVFje4j/IeIlFnCMWDHfH0Jc6P+I/2XSKeJ/lfX5+dbn52zbHcRfMn8bOJj49x7inx15CTiduK1MzFfAlxK+OAy0eWR9EuhI/PuEZ7wNOJJY8/fcIB9MnqN/7ubqXwE3Ey/OHcB3gbzEeH7icUfierNn/ecTdp/E81etv4gxBWwC2hOx8gPif423YOME+EvgRELnbxD/S84FFSPAt4l/BjJCvJF/6nrEhG2PG+GfxScdxD/DlqyxX/5Zz/9nibEbzR/G9U6u/hHIgoiRa/kX/BRcgAABAgQIECDAAkPwFnCAAAECBAgQIMACQ0AAAwQIECBAgAABFhgCAhggQIAAAQIECLDAEBDAAAECBAgQIECABYaAAAYIECBAgAABAiwwBAQwQIAAAQIECBBggSEggAECBAgQIECAAAsMAQEMECBAgAABAgRYYAgIYIAAAQIECBAgwAJDOPuUhY2qqird2Ng432oECBAgQIAAAQJkxb59+wa01tXZ5gUEMAsaGxtpb2+fbzUCBAgQIECAAAGyQil1fi7zFuRbwEqpB5VSJ5VSHUqpz863PgECBAgQIECAANcTC44AKqVCwJeAh4BW4KNKqdb51SpAgAABAgQIEOD6YSG+BXwr0KG1PguglPoO8H7g2HwpdPHUcbqPHqZ+3XrqVq3lzN4TnNh7kJyJAZbpcYbueYD9i+u4vbwYgF3D46zpfZOaPV8h95RiyZ0fp+L2Juh8DRrvhPpb6Tj8JL3dL1Jbfx910SZePrGTJ6qqmZ4tZFsszMo1rZzJK+L28mLayooydLpw4dtcvvwceepdXHq7ETfaQ+sdt1C3am2GvgAXXvgX+gafQuUrKkdWcm6yihP6PBdrVvC+9W0U9NVx5sBl+pdNciJ/kh31dTy0fp2vX0ZOfZNjXd/lialpDk7HeE/Te/hM22cA+NFP/oErl3bSk3MPrH+AhsI8Zi7soTL2OlPDmsJFUxxklJNTET6w8gN8aPWHmDk/yszZEboqLvNW6ACFJW0MjES5feQAbU0buRRZzYVTVyjp2kf+7mcouf/dVHz4wxx44zWO732dteVT3HzvI1B/KwDd3d283b6H0MQYG27dyuXyGdr72mmraWPT4k1X7RjZz9Hd32G4fZbihl9lJreASO4I6zevob6+Ps2f5RPTTO7ZS+Gtt3BqqaK9r52y3DJGZkdoq2mjOnKc7s4niJxzKO4LMb50K43bf43xk71M7bvExXAfqrmSDW234jiv09H1FN1TW1m74rfisfPMm5T0nWPLu7ay/p42Dl4+yI/P/Jj+sWnKRtaz9MoEoaE+lsRcila20HL77Sx2yzh34BS9oWFWblrN80f7OHj8FJvWruJTD7ZlnFt3dzednZ00NjYSmhqne9czVF85S2mkgitb7ub0uEvObBnrt6xmSXMZz/zkLc4dHKBpUxXVd6xn1/B4WlzuO3+Ft84Osq15EVsaKrj05pscf+sEx/NKuFC7mg/XVdI46TKWc4We/hMMrVzH0fFZNh45y+bCZUw3FNDTfyIVrwcvH6TjrZcZ7V/ES7Xl5Jcpfqs0wt3DnVy4spLhrjBqaRVvnh5laPQSNbWFlJb1MDrRQ9twLTXLtlN8x1ryGkr5yamzvNTbz7211UzqfbzY9SL3lazg9v5Zvja2he7iZfxKy2LWh4boPnqYSGQJQ5dKGK7t5o3yn7C6YjWleaVsLCmhmiHGxjSDg+dZtKiBcecSL04sYmR4E7d2z7J9dQ1L79jAwcsHOXfkGZbNjtHY9BAXKko4ufNHtB67xIrlxRTe+8FUjHpx6ewIz76xk0M5b3L7zTfzodUfSl1rH5lg1/A4FeEQ/f0TbLkSY1tzFccLztLe107pzM38aCyfS0pz92wOv1pQzNjp85QPdzBdEKOn8xKlG26naFEDS1dVUBFSzJwdIa+5jOnyDp4+vYevX1lBv1vCTVGH//2mFrY0VDAysp89e79F57lcGht3sNhtp2/iGabVImpa/4itq++ivb2d4wfeonrwHHl9ozTc+whX1r8rLSYmDxzg9PM7OagaKSqsI6+5nDOzAywJjbF901pyIqXsf/48E5eHaF12jqk7buJ7kRxyZ47zgWVrU/k6eeAAIz/4IUxcpuymYoZXbOWF7it0l+Tz4OrVqLyVHHztMOXjg2zaspYVt6xh5vwo+7/+Xc5PDJBfMEV+cQkrNm2i5d57oXsPky99j8nLeVzZcjeXcnNpbGxk0cAAZ15/gzPhCOHwJIV5DgPnelAlS6mZAaeskOb7HkANljH89gAFZVMUjxxK1YXDPT+gbnac0fONRIdyWb72Crk5uQz2dVJbdzeR5ibeOPYG1QOa6gvnGbw4xOmNWzjUvJWH6xuYOTfC0yNjVBfnMVKWy8PVZbRGQ5zc38vNhBmefJ0LQy+weGIN6yo3U7zkInk330x76Tp2DY8zPtXL8ZEeHqpZxm80bmJkZD9XruymomIrp/ti7Oo9z+21DZTPdHPy1DP06jZuvuXX2dJQwaGX/5VdzzxPd24tdYtq+MAj93KAPF7q7Wd6bJQTE1M0jF1grZvHts3rKWxpZdfwOKt6pqndO8hF4OzSPLbdWkftzCVefPXrdBTPcLzkJm5pqKb6wH5yOnNYVL2J2s1NnD5zls6ZEnqWTbMq8hOax84xfflmOsaKmdL5lIZcVi1rp3DJGYrdeo4er+KNinoWd5xn+sJiFrdup3lxhNlIKYdzihkuC7M69wyVky9RW3cPVbFqnnnjx5wu7GT9tm18pu0znH3qh5x/43VmVq2hP5xLY9kA+sLTqFiYWGw7d//7P/PtfdcLSms93zpcVyilPgg8qLX+t4nHvwVs1Vr/oTS/ra1Nv5OfAbx46jjf/ctHiUaj6IJi6jbeQcfwIBqNg4OKFvE/7rqLSMghpOJrYijCzPK52GOsdE8T/kkJ+Y3DnC52WT8co3jrZzg3+/+hHI12HY6cei9/u/YjRMkBwNExFApXOYS1y6dOn2L9qTPsLW9iwwN3cteyNzhx8s9Agwa6d9YxdKKM3tpGuu59P4ODQ2zsPEPrWIzN99zBopEDdCz+MjixuIKuw+WntvOn7/09ok4OYTfGx16Zwo0N8K17lxNzQoTcGJ+72EXzQOfVYunByKlv0t7155xUqznGOvpnxumIlnN3zUruGoiQn/v/csZZwRfVY0TIwdEu79Iv0cRZxlUJa/UxmjjFl/pz2TSwis1FpdT1t1F3ZSOzKsofrHqSQ8s/DoTIcaP857e+xFDXfURmewg5tWw5+l3KR88x9Puf5oXBK6AUaJf3R5/j5tu3073kQf7nM3uIRaOgNcPTEzx9+02E8iq5e+ogn6jLJ69Ac/HiCOGcJ3F0FO0qTr/yEH25VaA0yglRUt9K9I0nya+NUFHRR9NbYyw6OsNweTNP3tnCmSUXcZwog/mDrK3g4B+OAAAgAElEQVQa4APlkykfdXet5XznFpRSPDyzBYBncg9wuLaeC8vKuavwWXboFwH4lzPvZvDoVh7U/0Jx7TjjvcU03Pv7fGH0ryieLGb52HKaxhtxdPJNAZX6f1u0hT3hM7i4aAVaKxSaS6WLuFi+gUdWLWc7uZw78Ro5tU8yGT3Ppd6VXL68mpuHiimNhDg/eoTq3g723n4n2nEARelAHXmlg8T6l8btKR/n2w9tJeY45AD/aayL+vIl/MFr+6maPczS4QI+tWkDp3cvQeMAmpGiQX49p448FDE3wtdir/D4g+8nFnJQWvGb52Z41+VZvl++n2Z3Dw1U03m5loqi1XyxrZ6YCgEQIsod/bv5zTMb2DiiuaxGeDrvAC4atEtB10mWREvZuvYWZhadpnCklWN3beUPxqeIOYqQ6/Khg3/LRr2PohOKnurt/O29f5i4pvndF37MlpEQXW4fw/ll5MQa2N24l2hkF7dPxFh/zyyhhOtPs4rjrKOYMb6pPkmEHMIu/NXePqbdn/LTpkGqFi9iLYdZpc/y5pF6HvmnHsIxGCnKI3avS/lDd9Jw86coK9sMwKU33+SJb4ziug4zucN0lz/HPTkl3H/rLRwrmOCD7hamNaDj557jwpfaxznc//fMOE384wMfwnWuvmH00O4L7DhzjsV59VSd/AnToxc5tPHfMZs/RTjvIltzllGjy5kqO8Urt3yf/+Q8RszzesODR87QXHScE415gMt29zUKexzql199Hq61w+Dpj3CiLwRaA4rcqRn09DAxxqmthx+W7+A36lcR+tJ/YfeWu2goWEqlLuVQZT6jY4dZMjpIOBSirL8VZ3ISN9rDxdpVfPPdDcSUg3JdFo0c4tYVW7jv0gQb/vj3GMkLMVRcQF4sxgtbbubbj3yKWChErnb5THsvJ3M66SlfREFklsqyZdx+Pkrn1F5iuEnNwXVZXzfF+ui/cnFXDa/V3k1760bqRgepGx9mY3s7z9y5gwuVi8mPzKKLI2zMaadh9jyX+5qY7lJUz+TwQPmvEc82GNj/Dfqm36ajLZfQe0o46bSy2j3OKnUKhZtMWbSGs70ruHDmNpSG0pI+zi4q5YmGj8pNSCnQmjtOHuF3uh1ql5yhv/WbaGI4Oodle/+EwpEGumq+xodv/g9EUpRBE3ZjPHr0Wdau+zracTmt1vLX7p8xq3JwdIzPuY+xyjmJduHJt2/illmHla/n8OqWtcQUnGms5Hh1AxcL6nGVStUdgAd3X6B6ooBv3VOOqxxyXPjy3kluGo6xczzKEwUH2JG3i/A90/y18+dECaNclzW9XbRc7mHJyBWUgkulFfx403ZiSuGg2aZfZ4RyartHWXFuiIbGfam462AV/7d6jChhwkT52K5/pio/xOKaM3TmLufLi36XmOMQIspd+iW2u68xfWg5p9UaBmvy2TCzh3V9xYwdm6SnTBGpqqWktJ/1G17gjLOS46yjVR9n9bkV3PM7fyefx88BSql9WuvMZ+cGFuIrgEoYS2PBSqlPA58GWL58+TuqzNkXnyMaiRArLGZyeQu97jHq6vsYGVnC2Gg13Y2riIRCuI7Cdd14sipFVIc4FlrHCnWKyPvGiOJQhcNf9hXye50/IrRMoxTguJxoLo4XXxU33SXegFEKVzt0jg5z30+/x8cmI3Q8W83BPx4lrzwxXUPFTWMcmryF797/G8RCISiq4nj9St538HV6975GbaPL2877aFVHaeEUOC77dmwg6uTgqhBRBy40jjI1ESXmhNCOQwx4NjLN5pFR9vz0p2z+6XdZvKGQyfAFqlQrY/0/4qXmd/M19TvEUJDvoHD5zniM8oGvc9uyGMfVOqKE0cohhuIV9W5eiVNbclSUz+rH+GBkhNo1x3CcGCP1bzHbdRehkj5q1D1ACO2EiADPLW/i1v5vMBNZRLSgk72btlIRW81k1wgUq4QzHI5H6rm5/ascHzpFrKINlOJSaSU/uvN9uKE4mfh+3nIqJ77MPRMvEs5JLeW0amFf2xLC54tZMnYF143Rf2QPVWtLWbPxJRwnxvT6EEOPL+Xtij+gbmKCouGj9JaVMZ1TSWX+94AjKAWn9CqOL19DeMahtFdzOHSeal3G4dp6dq6Kv5pxht9DKbhHv8j2+peY7hxh5T3nEk8M+ul87Qlud2+nIlSOUire/FWyi8RDRGvocC6lyB+aOPkrq+CpDbcRUyH2Tw/zqQPHuWPTX6BCLiVASckACo0z+yAroo0UlzbyytK9aEfFM1BrJkMH0WfPx52D4u1NDxNN7D+rNf/SdYl3f+efuLumnxUXy4kVFLN37wiDVfdwsbqRVTOdbM9/k0mqmMibJH+wheNVW+IxqhQazTea8/h2Uy6uupMwt/Gnsf9I4UyUF8qXE1NOyt6YDvNq9e28tUjxD3sncceH0XFjOVbbROfaLdwz2E396v+KVlGU/jHPdH2BWNXaePw5EN1UT73eA+vhhz3biDoKHEUUjdv8bhafH2Bf7kFixJjW3Ww6v4r3vPoaM/fGGFPQoVaxU9/FTrUDlxAKjYtCK4eoE+PFlhPc3FHAazW/S0w5hPkAn3UfozU3h3AM9q5p5cUdN7N8TTcTsQJa2/+CteEP0Dw7w5XnO2Hxe3hlOUwWR7h1ppBzfTMc+Lsf8JNfW8F042ZQocQBKyKO5lsNeVTl/wpnlxTEyZ+6yjA6106wkhgD46O4bQ8zORihpmSKIyWH0GieoZ/bIqtxm57kmGolRiht/cnltbxU0kgkQcB3hnbwJ7V/BVydBi7R4na4tBWUoqSkn7L6S4yM1HBab+YfN91OzAlxIKZR/+7zxJwQSrsopXBxcPRtfLjjJ7SGDwLTLJ0a50j9BC/UtMaJv1JoRzFQsZmnhzTPhvJ59KZ1RNwxKlqHKW8a53KsjlgoXieirsOrS/PYXXs7scSTGAU8Va155FAZNWNXEnmjKCkfpHTlC3SpHE6uWcxXnA/Hz0zH+NDpn/Daplv50c13euRodrORR/VjbKh9ibfVu7k0UsnOwmk6K8rJH+kkdusycsZKyF/j8jehj8ZJSijKo/oxVqlTaH3Vd25diI7cSpZcGWb7ipd51nmUlHOTL/p47wNHlzXwnHqFaMs4raygRZ3ilG7mhZUh7jiTzzfrPhUnf8l1ysF1NAeaFWtUnPwec9cwq+J1H+CE08pqdRIcaGoM8dbkFsbeU0bh9HHONlXyQvm7rjbDlNz47cn6PHpnwriJPI04mu8t1WwYhoZch5Wzh6lcd4U9ajNRwvE9HYejS5s5XtvA+w69wZLRK1woryKqHFAOMa15Q90FwJHlMDN9kFtqnkht/5q+i1lyQDlENQy3rmBH6VfoUC08w32pmhHTYV5W9/N66B62Nu3ljfLb0Ap2s4nPLf+/2Kju5dzUEABl5X2ccVbyxSSxVFE+1/Qf2TyyP/UEbb6wEAlgD1DvebwMuOidoLV+HHgc4q8AvpPKVI5P42iYKSihpGyQ9RtexHFiuG6Iw2+/m7zRc4T1UqIuiWdIgNY4uKxxjwEKpeJkL6ThvpkyKpwmxuhO7dE4eZ5QXpSoTr4C6AIKrRWOhg2TYS4tqmOsqoXiyDhTs93ASGp91Mnn1dseTDVWiJPIi+VVADxefwcxBWESxcjtYGXRS4TZTlRrwsRYq4/SO1yGo11cN65D3cgAOHES2pcboqviJCfUWtboPYxPNCfIXyhVELQKoYEzM81sdUOsUccIO1FmNUA8wZPzolpzXN/EfbNHcJy+BG+OMdP4MgBLqUXxLnDjZPHWpXtYUdvJ4cMrmRxdzBCaIcpwEkVe6/grQaMThTwW+h2WXb6EKnPRjsPFskW4ofQGuYdt7FAvpnx4Sq/ii85jRCvDOBWaRw7Gi1NVFMrKL+M4sbiZTgzuW0zzkRlO5pzlUmkZT23Yjus4HNCrcfknOnXTVZLQolld3MWW3n4+PFTOuerc+IYJn73CDu7hRUaiito1Z1FO8omBpnj5MItP1BArijchnXweZER8oc7DYQJXu6nXBXvLqog5DlrFCc4bqwq403HpUKs4xjrW6qNUV3dT21XJZWeUZ3IPJV4BSgrXuHl5ifvx5jFRkP5RhImCIlQsRtXEWt665SaqEk9afrxxFa4T4g1WsMT9BiH1dDwPmsNE+v8IaEjzQVSpREHXnHBa2Vh+lrzIDCmGm4RyiDia9soQD49WojjH0SXLU4T6azXLCevD7FAvonWE1v7dPFW5OhH7MVo5AqF4nhaV9KWILkrhRKe45Izg4qbiRIVGCEchOg6n1Sq+yGNEVA46YafSURw0WkcJE+O2iuc51nYTUeWkYvyEWkee6mHP/R/nLx65j0goSShccojyie5v8drpMhoXvYu/bish4gCs5W1W8fklf8E5dwODRYXx/PEyCODVmhyoWYPS7lUfJfxVWHKFH7Wd4EzfZqr7RviEamQw1Jsiza7W7Mo5yYa8AdZylBAxYvqq7NwYiaZ8lYDvCt1JBy20cpSV+hQANbUd9F1uBmD9hhdStfGtvk1EnBy0csC5+sQ4rl7yya0i0jJOIwdRDYc5zSr+e+gL8QbvRbKmhRz2bbmLtsKzHFirWctRtvEWL+uHiGkIqRi6tBvXqfbUGkVMwcXyampGr6RElpX1oZSLcuCEXktMqcQTVZfIykn6curj5C8lxyGiwxxX62jhFKfqa9m1cjtDxeW4KBy9gvceusSSsKajbGmK8ES15jjraEn4C+JPJL7IY0Sqw4SrXFp4iwZ1jsNsSo93j+0AEcfhuy3vSTy5iPJb+qt8Q32SaFUuX6/UuOZLJ1oTJso652Dy+SKtHMXBxdUODi5rOQrEX9X++4o/JVoR5tmlUT7rPs0p1ZaWpyndkjE2HSIWGgNKU1uOqEkgH+1OcL5mgOmCLeynLR53HmLrOiFO1tTTwklqi0NAaxq5TN6eWV5NLBZ/ZfvbfIyX1P0k64JDjPXuWTpUC19UjwlxEz+z1ytuT+XsrFZ83fktPrr0bTgTBgVnnSb2so4IOYlzhmOqlStXdgcEcB6wF2hRSjUBF4CPAL8xX8oUrr+XnOM1TOd2s3TZSykioJRLWfklFndV88f7z/FsUx0HFuXHA9d1edfwORbrMXrG1rJ02UlwYmhXsfnofZQvamJs6S60iuJqh9zOYn69/xlebriVgfAiyiYnWNfbyUxOHnXD/YzrK5xvupvyqjLyK3ZS7A6l6fhk3q/RW5j4SqFEkjlaUzc8wMXyKmLKwVUqVYxWqtO0qBN8jsc4ptexRh/l+GwJVQMNvPfgNBcrFlN35TIoh/31LSwbHqRi6RX+NvEyflhF2Vq+CzeRVN7C4GiXjSO76NrXxOWaBjYW7OdC9VIuKg+n1y4hHaPk9UEGnAYKGs6glEuSfHSoVXyTT+ISJ6K/6X6VVc4pXBRlZZcZG6tJvQLmap0iPX2li/jqHe8jGgqRE43yB//6OHmFJdyxeIB27ZKkRwC38FZ8VUL946y7+iwVl97yapaMXmG8LA9npBbXfRvHcVEKplccoHHofipGW3ipbALXcdDKwSXE1/gdYp5XcEFzrK6JU0sauGfvNPddGuWfK66eUycr+CqfpuHiGHVFbwEDKR2jeTFiRSUp3ypSLoq/JqE1Dor1sQaWuVWcC/VRO1tIfqiYyaFx9jZotBNv+EdKG/l27Dd5gfekzvDPp3/MYreUI/VPsHbJPvr7l9N3adXVc1Lxwrsot47FBcvZOaPp8MRd0dQ4F2rq+e4jnyAaCuNol9V9XQl/xF8FP+7Em59SGldFuF09zy7a0DqUkuNonfhIRfxJ0+hwI9PluXFjlQM68dEFrVBa0zYUS5Hhs9V1eA9yD9u4J/G2ek1RF7994ACX6sZYMTtIS30H2lVo7dCpVqSt+2n5KIsmSti5dCMazapLXbT0FzJW2sRUS3cqPnSCEMQbkObj+h8TH2k4yip1CjTkELv6xIqj1BYX8ZUNy4mG0p8ERTR0FdexvrSbXaWKiOIq2dEhnnbey0dqf0Bf4a+k6ZrK8ySpSrzd7n1isE/dwr7QVqjThJa4rNr//7P3ptFxXde95+/cWygABVQBhXkmpgIJgPMgURIpSqQGW4NlWx7iyLYcyXb8Oi/d/YaVxIpfIiVx3kqyXnen815WXhxbHqS0Iw8yrcmyOYgiKVHiPGAqgAAxz1MV5qp7d384t25VgfTrT229taLzRSKq6t4zn//+7//e5waByBqpRRDGxhoJBd7jG/In/JAnCKsWBEVPXjaGCJbzUIXNKfMANhp8fJ0EqyXk5Y3pcUzZG1ukjffs3cSUjbJtzb47buLEeGcQp8VhzMWweIVHWMObAji0IZyc/4KvyOCvaz9NHNM1aP/j6je5nhXSYCYXzslWYuJxZSFKhFCsh6rqq9pzEy0mFst07YsW2sgg7o5ZC9cY9a5wTO50ALNyx7tZ2jgq93O46JGUdaKwbW1whwjjz+rFw9aU57WlYah2WokrD6JMLBQn5R7e5t7k47BAEuOaLEWLEfqzyxyQIrzKYw5oUWDczBoaWDxhPU/5wiRkpQ68AiWIA/jX73/acGm5CZQWyQRTqkgz0SK01wU5cLUdwy7DVgZKbOJY/KTS5OLqEOOB+zlZcjdpJRXQ+mDL1iOcN5666bNE8WfOkS2LHOM+XuUTKW20OWC/RUN8gNecupOyNt2GOfPc/QxFrwrxV5X1PDJ5GoBXah7RzKEzIQSDHHuBYPD2m+rzmy7/6gCgiMSVUv8WeBMwge+ISNsHVZ+x0RjxnAD5m7ooKhpy6gigmJ8rA6Blbg36hrkSrMVWBiY2+wM/IKhGycsbZ6ytCKlexphqIdo4yWwkm4Lzv0d/4XvMxIW8/DHeCWxhLFM/b9qfz8ncbTx26SSl0VlsBG95LzV3HUcZ8ZuMxCuZ2/T/pDBcu6IXtLt3DkxnUXiwaFFtepKLopEwDXaY7q5N7Ji4lxv+i9Rd66cqUMRcXS7/svXTxJXJBdtm36o3bYPIyFolg1R2T6HE4m45xpYdF+mSTfx342lEadewgYUtJgYW98gR7lg+xVoHXNt5P78Y30kz16iL9VFd00676A0SZSJiEyWAbWvN0fx8GWP+ICP5RVTMTVEWmSVBKowEi4mZHsRQxDwZhA82ct/EVYqaXuU/8SavymOMr1XyEesd7s06muS6BJpVGx7nEDAFyucmQcFofiG9WZvxLi6yyf823aqJdqOVnU1XOXj249zRP8T5DRaWAYYS7Q5fvxEpRdwweKNwkZLhs9QW7+ZGUbnDgpgcU/djNtpsnm7hY/aLNKlOwrKJt9RjFOYtUzY/Q9byKjvMLcyYi4gIxYE5rGAP+TNbYA3OZISxsRnN0ixH1gIULTQwEQi6h8J79gFiZsLKVVwpXyNbTvBeRQbN+AkF3wNgfCwEgGd+ioLMcu4p+xyGMvjynOK8bRFXBqZt0Rq+xGBFHXFTywb0GIFh29iGZt2a7Ta9r9oglqJ7vgFVmmQzyxbGGc8p1XheDHK6PkXNtMlbedkkGcDkQWgpRXeugb0wiyDUT44wFCxx+3oPZ1wX/LWKTQQqz+MzcsmnDcRCRHG9Zxdr/tQTERa9Xr65q8xx+UFXWQ1PTPYzUH0If/YPaUbPjzUR9LYEFh6Ugo/Jy+482ih9/KeZ73M1mEWLaqORMGNGiPK5SQy7CSsB8pyDxvQvsXnrryjo2s1PSRg2eh3PEqSs/Do+NZes6Dq3YKL4JUJUBZJzzzmkUQaWobhUVsqDkVTDUR+GS0tBDQQURAm4TIkouGtmntOFfmwMBEXcYfvTWS3F/Lzet7rsTXQZLTRLB/XzO3jEjjGzOsq8sczF+o1O3Wx2LVygxBhlt+8dzqs9/IP8PiUyxlVjR3JBYqWNe6LGI8VCDDPpRaCVjxiv05oAkgL/YfWvODzzBF3ltdhKe2DqGt6j1uh0PTcZ3lW3OxWwT44Div3yNo1ynaWJOhrNIbrLajT4FJuPzx0md1k4kfcA5KSMhWP4NsZ6NAuqLJ6RSdpppUXaCKkk+6cUNEuShTNthW+uCasgKQESMSifn2bU8eAkWn9X1tsMy+PEBESZjKty/UyxMYkDEBeTxH6MKHrGd1ITjVBUOAwIr8rHiRum4yaFV+c+w5fk2xSsLeEpi6cZLh20kjTCbLZykbe4D9sxPgRh0h9kX89VOso3MJ2bz/sVZbxfCciem+fsOoBXlKE9KyOqKqWZ6XN7SWVzTA7xI55Ie5YC9nMCr2fNXZtxEcfIN9zvFcokM6rIrXOixDG40lSNvZzpyg2SzKPF9NBt5N3/wbJ/8K8QAAKIyOvA6x90PQCmb7zJqpFJZXE/kJwnCwtBolHNuk0bC9w1W8Zjl99lKL+And6zNJV3giEo26Js8wRKCeRr1sm2TS737KE0c5HGujaUsunhadwXoDe7c7Wb2H2jk7L5aQKF4ygjrkkZO72OWyOXOBa8P83ye8j/Exq2Xocr8PXzG+gtF+rK/4kG1Y2IgYFCsFCiOBh5HN9qI7Y001vYx+Xyc4xvAUsZrn4qRtxdZB4s9nOCuznhaKIO6c1M4uznLZQBL8nnkISORxIHvrbi93OCsvkRjoUe5eVdd2EZBu/YO3n0srbI6kv7MDP1YW2KTUZPDv2e7VpbRBM/375PA22x+d/P97Cy2IUtNlVzM1wUIS7gUWvsKjtBYWkYFDSpMI/IYTq8m6mSNtcKTpQQYZcR3RjrxvDlcJnbeWWbdu8e52t8Qbz8gKeIKw8/K4jjr7xO2bkrfOaVNkbvvI324mLGVeUtXRkK8NrvUht6l4cZ4h/5MnExtZXvaCQvFzXTJs/x8NQbvFb0UeIVBqpc2B++xOPXRjDyFGFzlNzABLNbb9BltOCv62JutBR7MkXjBKBg01i/BoCuBT/KFEEHfCiGqeDrlXe4guqvy7M0VIVRcwXMDXiZyMxmYMshoqqd3NxZbsgOHu1Z5HrGEtsnF2iZiyOqFyUHwFaaAZwYZOP4IGuBenYbVwlt6HHJqff7dvHzxs9qjavTL2O5Ze68jwsMZGzioBVjLZCRXA8pQBoRjpV62DdSgMENChcjKMfVZ2BRzQDdNPFN9Rxxj4dUd+szSgdl5SyO0DJ+ha7yGkeLZpOztua4/ByXp2Fyo2CE6rxi8i4WI61QRzfXVcgFQi7jiCMlsA2KOn6bmRWbR3e+oJ32ohgfb6AsOsujl09zrnaTBqzO799QH2OXcZY9/tMcjORxLK/Obe89HEMpm7vVCefg1cAz0d7UvjlgH+eX5kPExEQw09kzIFsyCVkVhM1RbBHGAwUsZ9fS7DtLDyH+XP05tgNsNdsFwXjcAYQGbjCiaKZWG5KwvJBPNFKsNafG72ApQzPlzWApE2VXc//AJKZjFGQQ46HcnyCi+CFP0EUrKFwwk2xTCovurCMlQswHBoItFh5s/AMw6y2ntOwGItqVeXFlbwL/aCMLRZfRzCbViVI2+XljrK1peUNYmrT2S3kwRdh9A3KnHuT9fL8Gf04RZTA5Wc/E4gwHSn9JL7/r9v2uhT72DfZTntnmsqAhCWsDfB2p1U0TJzngsG+CrWxKl4YxgtXaeARMsbEMM+08QOBczmae4U/41srvM5Jd7vZN5eoIT3v/G0Oqhuf5ij4eRFAiVC+M0NB4DhCOyX2cM25zxxGluJi/jerLn6YsMsunIm8wHfDSOjFAqLWHQaMmZTwU8xIkRCddKpkdYsXwcCq0SesAU8fPMJLrdj1rLfosuD/rFQDWxJveTylAbVQqeN74WvIz51l32G9TL93YPh9Qzj6OowR6CNGv6t2vm8STnp80cKnoy6kF3zpjSgRTbCp7x/ifofyrBID/M5X37AvkzmczNVlFMDjqzqGx0caUbwklVi4PnR2hs9xHWaAGKTWBuGOESxoeUMqiPvSejh1z9rhGCTNOedokHQqWMJpXyKOXT+OPVVJhX9ELZd18/sjY68yPBemoayGgIrR4Lyfd1HljlPVFuG0uyI2xPSwFSwh648Qq33E8fMJqQSe5kRAKg4nsGP78MVrUEod53GHEbLYvXmFj1lXOqr3skTM0SjfdEgIF2+Q8ecyxzz5ByNBi5xFSrDog0VBLFP8Hf8iD2b9ioK7ZBZm2gunSbCpLu6g2LD5vf4fjiw9TMzZFYFQYUltAhHBTtSs6tjC4UVrHU505jBozlE3m8dB7C5wK9VJT8JJ2Gzt91E1Tmsj36/azhAinGaUhwjQShgygCU5O3e66d+Ni8r7am8aC/qr0OqHVEaCGU8WtxJSzXNe76oBN02EebHgBw7App5tCe5BTSgcUWC4QVFhicN5zmyuKFoRTTdsJ9Q/hzehGEMLVZbxq/o4+MEwDVSWYFY08evlUkhEVaBnVRktvcQX1kyP0VJem1a99ndung1aafC/TsOtNTsQ/z0t7P4dlmryKPggtTNct1bEB/t6uY2vnP3MlfIqJkjqap+Ypm59lLBDEg8GYd4wmZSc84Yw1VmMb6Yd6OkgWds5YTBoRtkzCpaLK9E3b+f/9kRHAJGSVc7akygVDtpic5AAKdER9gmlz2tcurTRY3SwMmAQKbmAoG8HAUDblak2roRJGlNi0TkxQkj3H6eBH+Y7ai6U8N9VljySlBChhNXADb8mgNvgApYQc3yzRiJYUPD58mb/LP+SCYEsUHbQyVLnAcaPWfXwCzIaliVMccJ6n2abc5UWiPr9bh7sjPfxW7gvs5n3apZUcidI39VFOFm/AQvAIPDwSo0QCPLy2i1PBFb69rYG4AUelim1UafCX4kGoj6xRnXEV4d40AJ5g+UMqjAA+/wzlZd1c8D5E3DH4LHfJK8QwOLKhlPsGT+EtmmVn9rsMqRq+qxJSiVusF6WShkxKfxticUntwkLr1x6ffIuimRXmtmbxHp8gR6K8oJ4mnu9BBbTrV4ngEWGjdGAr7f5fGy8mkKdl5R2qlRjaHWwsot0AACAASURBVGuLzUXjHj49u8p0Q0rdnPf3FlfwaO51thndGAjvid4LD+UcQTYaDA9ucr6bUm9n7ndLE29zgLc5iKU8LtNqidBXueBIYHS7vij/RPvS3qTx5tShS7WAQJ26zgjl7ivKliYJecN0SGuKYWDTNDpAsGCEV50AwPdlb3qb0FzC6fot3HX9KmWj05SduUwgo4gr1gMMbmiAgqT79LxxG0ZidJ3xmiwocffjNK9HanHqk4ry6lb72OjtRCk4YB+lV4VungNATGWmzxGHoStcidA7uBurbpm/Un/k7utb5SL9JAHguKog1ZDIIcISfk1F3IpNcd6VuyJcmriUli7sgygfAsAPuHiXsyix88i+VsPw0ioFpcMMRxtTtFJC9tQiy5f/BtMfIjuvhquZEV4PP0mzXKVseZ4NO3pQyqJHNdEhrWyinSbV5R6MIrCSEGmkbDgohaUMTjdsgeuwafEkA4EKOlQruRJ1tUdFpVH2XBkkx/RwKrSVcXU/p7iXP5Q/Y22+nA2SwcmiNwnkjRKZL+e2TD9rSm9KHaqVuzzV3AWMG/OMBC9T4Z+iiCG+Ls/SQSvN0s68WcJ/V/8LcbQQemK8jjfK7tNBIOgDa79xwm1ChQzRRd4t+zSq8vhx/qcIrQzo/dG2MUXYZ/djGLqfXjR/h1ggg8HccgqWIpTNz2gOcd3+sqRWKbEDFFu59N14mcbBHmq3FDH6qW5SNO2uW1mDHWhXm7WFTrLb1xFNlPiGHZLQxoPFbZyhixaXBd0QvQrAYEWT47I2br0BAj0F9VynUevEgCbCNBFOY1Et28QQm/rJEYbzi1z9kY2ivaqcbZPDjOUV8ErhvjQWTQNoQQWa2Dg7RKc57B48BYsRVjK8FCxG8C6WQHayTqVqnEUCaVolTfjYDDZk6IhwZTgANcW1rXTE3yt1K9xeUkS49gBxZXA6X2+m7zRuwVIGJl+kTLppcoC21lpZTpqKVIbAxsTm00svkWkU8rp3ldwJm3vMKWYrStnt+xnjqtQ1PnYWHef1wfuxsImqwvSOThIWySJ6/DauthEZyUG82Yw0NWGj22eLwVieD9fdZdvc2TfEw949vJF7iSs1BUk3EXoS5kiUz/Iih9SRBKGBiEGk8jRn1D2c5be5TZ3hXjlCRdEI42MbyQ1MsKX5VzwkC7yqPuEyXUvKx4/Vb7mgAHDB7CnjXq3zStGURn3+tIkaWYsBBo0SdoHZwGo1J2VDorpO1yhK7ABdpSU62EQpYhjakHP7yjFYRm8wU56BwtZMvgiIZlLvVidSX09ZZTtZI/el/D59D7MR8qqG+Jj6Mce4j+f5qmvwpIKG3LUoi95ch21M9gWAfy1O6dIQPfm1DthXdKgqCqt7+D9NJ8WIEu2uVgYoqJkexWNks2V8Bp/PYKU4l6nJapayTPx5MZQo/ESTuk6lOLbBy5XxONVro1yjIW09N0e7KK28DujI/XvkCAm81U0jl8p2sJ24XuMJvCM6gOgveTZ9HN12G4xQ5bDKBrYI/aqWc6Wb181rDYo7aGXjeD9nqu7AMgwUUBnX0iS/iup+dfpvtCjIP3i/gji6zQfUa7cMNJl00rAcvHoOI7eCjeJnLdLN6lQQCtI3RnFTDej3RPz5t6jnzaya2xnORwPeDXTTREjC1KgBTOJaUoGl+0hSgp5SnqmcObgz+13qG6/zytoXXCM2JsINu1ErNNw6pM8jU8Rlhm9lXGpQbnK+eQd54+c+BID/2std2z5G3bUqDGUg4/s5FX6dsbJsEhGEntlJBqd78fpDZMQWGAjM8uKheiyjlpPcx29deol4Tz7RcpO/8/++djVg8cf2czSpLhBF7uRW5koLki9dZwklFmjQbudF9ZRjsWptXYaK89Ta94hUGJwKbUmG5Ivi0thv87WpPMbzL9O69ZdOhN5VFqZC9CXcZHh4uc7mHyZXUcYVJrdavGF8iT2c4ZA6QpMDkr6df7fLqsQlg3fybktLHWGLyas8xr/nbwDYx0m6aNYLOXXDSzlEe8pqEIf5ubPnCvbiPHa5SZux2RFJO8xgSTa7A9eYny9l48QgXWU1WnSM4I9Ocm11lC77Omu+Ue5cHcY/2ENip0m8rkXa8CiLuCg8YtNit6VjEPeQ1D/toYmf+D7jBKIIT9jf4V7jCFUMaFBstzE4VEb3jt1krcxhxi3iHucJ65GkUsTw0G4nQWdiI03oMKuuxenK3kCDXCc3d4ZTbHGYPNEBPbPjgDCSV6SjzdM2RSFD4JGpABm2H2XqAJGxQNB1YRu2zV09VxkoLNVuT2w+Ky+i0KL0FrReTUSPZWFkDVVi6+o7IRrrN/aR4j4ul6y6EZS2rdlGy2FNLefASsyhEGH+w8QL/CSwn+6sBhIBHlvkCp/kJUK+MLLTJOfK/USixdy2eJatvl/Soxr5rvoyFiZvqEfZ6buEhY0/MElR9ghQ59bNJ0vsVmc10yI6VUud9HIPR9mYGYY6CNSGmZzYkCZpqIu005FViaUEU4RPerqYyI9hL9mUz0+hxEZSUOU9sbc4mJGMIo9EilhcDNJevoHvKO2yusp2BNg4uYagtb6GYeFTSyQPUZt+qUuyKCmTcZiqmwJP0ia18+8rhRv5/uz/Rk+wmKDM8iiHOZfTiuWAPEuE1yo8bJtfQymFlTEPJPVl8yrI+mIsj2GOz2PmWVgCBja7ohf5aO7LmiVPAdimGUdyYylg0dHvOXNUR5tepUc18T2+kg7+HHZIAQveXJQIdWs36M/c4Lq8AZYyPMRjmWl1ND2rjAcCLgDQUdk2tmigMFBYjihFXzCPbcTJJkp1TTtV1R0opUUpUfzJsQAshPNBg2DGHGCjtZQ2zYtdHIifcAPBbBuWlwP4fBGOcR/fVV/BzjR4g4d5xv4zmuQ6mVMhVoqTmubkODro0OmDKQpJbkYG73B3WgqkxDh7iFMwvkSD5zoHIsUcD96PoHit6KNsk3eJ4kepJGCf8+a78yUugo8ldsl7nFe3p/c/YGFwbOttiCiOic2ne3pYLreS882Zf4bDmFlCWhvcuZlIhZa6V6S4kRP/tjHokFaalMNcujpy2ClnmY5Wkj+3xNWqBleXu0UusYkO/EToUK0oZdDMVTw8QEwEwWTKLLx5jaTUZUHlkrZHp9YxpVwvtPmD0v/PNH3/v5cPAeAHXLb597JojKJQLOV1U9uwwsTCIvORYpSANzKN5bud3oItDARmeXOXj7hpuhvv8PZiVlBMU4ilHEYFoT3yUbbHDVZGSompZZpLrnE9lQZPlJQFes7Y6xwIJgnXVkyg31dDbul0mi7IELh7uIgSO5uZ4CDKYdbajVY25UxwmhYX0MVQvF6RQZE3j+fNhwAcSxEOckQv2/T1gdezDKQfHLMEQWl36/fU09zyJsOU9mkiyEBsm97iCgoWI9hXhGDpKka5IA4zdE/pYVfAzRXY1xPgVGgbtjL46cYaYiuDlEYCqPxNHM0qYGFzgHrjKk0qrPPxqVaaaeMBeZWz3MHu5S5C2V3uvrSykkNW1iLH1X28L3vZu9pGfH4nVokJhkLEZsHQrEuTCtMkYTpH7uN7d30Zy/Rg2hYfv3CJ0rzNjOaM84vSYpbN7OT4OW1emtlC1HuC1dVsVpYCVDnJTZUBdVntxCVOLLRIj6pIB3lKyCyyYExROTtFRq1F3MkW+RH752TPVvDRni2URGZ4vmiSwfxGKuamCJdWay2RUtgKVstjGMp2ASBASIVplLD7qsXFAD3ddzKUs8FxkShwggTWb+wLKge/iqDQInnTYS9H8gr1XETwE02R/Sh2LiwxUXyEXuqwRUeCPq5ecuuAYZGfN0E0Ukx+3gQ9NPKP6mtunkxLFK9Zn+Zg4Axbtv6KnxgH0vq5nc18jhf5onybtzhIv6qnTzUwyAaqGXAAuM023zk+L5bLKi7587AMZ60pg7aq6xysPEHgyn3IPNxtneCE56ALWJYzvC7OQQz6endrnWP5nrT6nFy9D++4jmEzDR2FuyS+tEMxwDwetHGS+tsofifwBFxAlVhDKvUwVfyy4C53XC6ym9uybqxbeNooWM7roaj4HPCVmw/plHdfrG5kx2APIqYeS1Fsj1wjlJucK4mfLCwU0Mw13mMbccegs1IMht1jV2ks6eYVeQwrbV4n+0AcsCUI/d46Dg2c4lTlLpZN3VcW4mg6k3vI1sAZatQAL+PohbH5onybycUazsdvZyS/0AUbr8pj/Hv1N85rk5KcJeUjFRAobBrb/5GuhnugKMmmTaoi/mvpV/movMwhfgUYDA81I6E5x51tOoZ3BuGZT3Douslc+UmWgRYnwCwBUtIYUkCteSAz2fcrKjvtc4DC6BwPjr7NnQ06YfEJdchlE+MY/F3sP3Kn5y0yVJw1TXGlgbNEqq9m2rgiO1OipPU7DPS+IIYe61jjIn6VzEjgVAghkfY68ScbE4u62UH68mrdNZTm9r2F4aIQNtraLb9ROvCY2hgzsLnEbuyAwWCuzZah61yuaURQtKsteGWNy2onNiYeI85/WvwhX896lp/yGa6qbS6QT5ugTt2VU/9k3eDXeW3M3CUqZ6NQctNHv9HyIQD8gIsCjlZd51zlPJtzjxBSHWzFINJ1P6uj27H9lSz7hYna87xQf19SvOtM8rfVvdjo6FcDy12MLfmvskQ3FIRp79nFKJXOC9ftrs7kNMVmt/0eXWZLMhJRNDOTZ02ykXYynE3GAB6ZeoO+ZZtmYyeWb4w+dO6puPJg5lhskws3gbpzOaG0OhyNfZTp5Xq2555gvzrBCeMQlpiYWBxaeZMXM74IKVZ6OaMg0K4SYfnpbYCkFaiw8diKmNJtHQqWMJZXyCOXoax7ljsXdGRZkTGO4bMdT4BF0NuLJ7gRUdpqjyuDs7Wb2N3fyYwvwKkDH0eADPU4T9jf4UXjKcc9ZLs3HbzmK6NUOjjkiPdXVnyczryD59XXQMHVrO3sH+rGKLJc90lqKgcFnMrYh2U6oMQwOdlUz9e6xvAvHGFzaR9/zp8l2U/nhwOFgp9pcnJMVnzRtOFeq1vmR96HsDBRmnd054GIwWx5FoHxFUqjs/xu5wnGN07QzDUapYfA9X9L5ZzFTwtX+dm2O7ANfYOCrNtws30RR+ul3Z4dKj0/GYBtZ2ihemhrUlt3SxE1RAjwA57CQlvum4e0e8x21oBg8D2+TLVo4DXZXc904QrfV/8rlhOG9IC85rotE4+vXqnCsoO0GY/wQ6M1qRVzyg2zirw8zaZ5VXpqkwzWCEuTe0OHe0iK1gAmIjJ7zVpeUE+5kga/bz5t7r9v7OWgfYzN/jg9vjCl5iyn2e/k6lS8rQ6y3zyhAaUofL45PBkrNM3c4FrhNrcx+zKO4g+YRKPF5Pp1hHaH2pz2rgh5Og2LfIFOo9n97biq4En5J95Sh+gldMsxWM+sgGZw49lTeKghLjq44Y7RWZTysVTQSdTISWHrbCdYJf25/UUVOnxGKT1fnHrvt99AHF2nCNi2YniolTzi/GHpn9FlNDMlxRxT94Fhgm3jtdcQgVwVJY12d0omS8TJxErMd4ShwmIN/lLKYkaKm15s+lUdNQykfaeaAYqNaY5m35P291luZjkB+qlLGwvB4HJLLQsL0yQZQGHKpxnT5/ldlAj3iM5XepIDen46v1cC1X152BIhUnkShdZ3f51n+QG/o7VuSYsIJTbbo2F+lVl0y30/8d0s7yLBgmEMw6ZDta5LwaWY9QZ5jU/wiLzMqKrgPLe7z2iMh/mt2E+o8/QxPVXJw2PvMpUVoKikn8GCMmYpoIVrvMkjer4Qp4WrDKmadXUxsNcZKaDhe4E5Q6+qW8cIKrZYF7lh1BFVeSRwo8Lm4PJRVjpr6c/Lwohl8oeNz9JltDJFEW+p+13vz3B+cYo+WnFe3Qbumlb0sp375Oc8brzEVbbdAvjh1l0kjsJAiYWBcx6sdwE5pVxG6O+8QPHG/becN7+p8iEA/IDL9wd/yn/ZfA9xPPycO3iGZ2mUMLkbf0nvisIIKjZvOcJl89F1bhybDfRxgwadW06Ee+QIRUy56SE0uRLHk7HC8HKtTi2QKOs2g4OD73Cw6ig10s9P+CzX1Fa9EdoWy6aXEGG+wHd4X/ayhzMUDnmIUsyxql6GykNMUZiS5w7m50shH3fi18dGyc/+Jef5svu3QW81/d4aXpWD/Nb4j1FlyQXv75mhfntv2obWQxPdNGktWWobUl0ATptEDKpmRomZphsVaRsGM8Xa+j3ZuAUxTCYJ8k2e4xn7WRqlBzPDYH/RLzjFXm1RK/17zToZLmiJSQYn1CE3azzrNq63OORew5afP8k59qZ9frmynDt7LrMmwu2lJwnlh92PEfD40oHHRCDIX+zK51OLuWA0s4H+5OHi9Oce0YE3PaqRKxk72cZ51wU7lVGEhem4siB50GmreE/uSVRpHhkZq8zPl7FzcICi4hFGJjdSOF/PuDHPlWCWG7Ti6lwcf1Xx6gQDmdUobIwURiClyQAYRoyVKsdddQvXTapLJaAi2nBxmJtL1SFKonPJ76ITCCeAZoWvhH/2PO4yzyLC6+oxdslZNyBHBMbzOji/WsvPN2xO0zomSobEmJ8vw7ZNKoxhOlOiEisZSruBJum60jncBO2l6vfVuOvBFoPZhJbQec8G6QMxiM3WULbxZ/iZ5gDHOMoDSQCNdmGJYdEQeg+lhF5SU3cASpgvMbmUHyIeXaQyeI0b6+bFbZwBBVu5iLkSoC2r0ukfxQJ+viDPa7mGeJJjcSuwkPK3AHN8gz+lTTYTHFklP7IbkVqyZppotn+GMhOgT0dJC+nrExFWsk0yiBEXEwObJV8GPTS6IFpEMXxlK9FIkf7tZZut+b20x3PxhARLLAyElVyDt4yDnFV7SQVViXrXSR8NEuYN4zFEFBnEWPWti4IFMuPLQI47J0+oQ8xLvpsDzhaDkxzgpO8gMdLZwgNyzDUyUqfTBunjqtqe9sHJ4jupzb9OGlhN6Ze31EGihp/ZmhLeMg7hslwibB3spnUuTnTjO04CbD1iIQlTS28SyIMGJSiswiib7HY6jZabx9Mpw5mV/H3m77JkK5ppI0M5jOI6I/OC2s0+eZs1vLpdwICnFtOM4iFGSekABWv9LPsq8HpXuOzc0jFALY/NvcLEUjV7M98hVKBds6iU8UotaaDQZHXNpxOSJ66qdOpzzdxGMp+hvuIU4K2se8lV71A2WERD43ssODcQ1dHHCWwQPS9LMkaYTAXvKWtaYbMjEoWgyYBdA8Yt1kZafU3NNKOoYpB+NtzctoRRpvKZmbb4oMuHAPADLm0lmWmRkkkWQWt69Dkdp0VdwyR5m4eHOPfIUV5QG9JSpzRKj6afE2ySmETmyynzzDGWU5I+GVMnsj+OUjZNKszj9r/QqVo0G6cstuVcopsmN0VJJ608rN6FALy26U6dmiGFgTREyFgSVD46fYYIU4FZNhh9jhhXXznlRiqiuJD7CLZzcNu2h77cPYRiYXq9Sbf1uCrjL3mWZ+RZNsgN+o30g249uykIu/s7GcsvxEbpPis/zOGsJxAjqS+MS4ZO7TCYT3FBL5VM8gzP8hP5DNfUNsdaTN8IQehXdSRdEClABggyk3YQ3KbOpAmkI9m5nA5t42Nnj1FXeOOmefHAUi/Hc3cQV0mQaxvwkv/TzntSNiMRHh7r42DJcbrsJr5pPIfl9fBzPq5dLyqdIU7qbAwM4Et8iybViYR0TjPbVhhO4teqmna6ll7m+sQGvJE8JykrrmYtYT2PZ5UBOuVKJYN8hNfSgmASJScnQkXOFeDOm0/LdeOYIwugJG1MrXWgxEgBmh0Vc5w3Uq5uVPqWmcP2J7EMD7dxhns5gigYyb9Z6+ge5lNtRCPFXO/ZTUnVtDacnM9q6aOGASfvpK4B6HQsiYNIKZwbEISkHitFdC5xsllidKye0vk6li0NRvZzgpPcS1xMN6dmWPTNKi1KJ4I+K+mGxJvqYSYqKrAwuSDNbLD7sMxUUGuDbfAX5nNYyoORKU4iad2PuURpUmG+wZ/yffkSvaopHYg7/e2XWaIqmNYPjRKm3u5hQjVSFGhEZrVW8czwg9g1SYBlrzu0E6VprQePL0pE5XORXZzP38ZlWvkGf+rMHSG3YAkiOugiGi0lGi2lMjDJF+x/4oRxL/2qnrOBHZxll26rw8AIeh+ylUmXauY6TTxpfYtFI5dm2jiiHtRgKWXsC5aijOUX4ur1xOSi2k1ijSfWjZsU2LbxxS0+MjnKodLjqcvfbWq6HlO/qyHaQW9BdfoXU/qln3r6VCOSva7flOJKdSMdi2fYXHkybcmIaF30CaW9KKmVUQoa6aIzcRsGUDw/zWSgIPkFtNH8XeOr7I28y77Vo3R6WhjJT78KdZQqfqQ+lwRdSrk3mDQRpptGXtjwWd1HiBv9HZcMJnwFfDXw1xhOBLt/PWO7bv0rEQ2oBPJmVtm41k97RV3aPJI0o8JIRj+jGMkroiwyy43MGr6lntaeGpKeGluZ1GWF6aIpmd8wZU8SIJIzQFAJb6lDN8/htPom1rkGfOuN8/XjHJsvYXrkFhKm33D5EAB+wKV+fBZPSVIsnkuUw/IJNkkHy3Nl+qiXqzTaYb4uz/Hz2ScA4bGCF2lSXdQwQLvoA6JBwkxPVzHsK+eGr5pWuUaIXjbHa3g/nmLx3mKhFU9GsQMmhkrk5scVpStjfToDGMkrQgGW8uiD1GEgc5bW8ITzKCwYoodK9zBrXR3gfVpI5KVbb/HlyywZdi5xRyS/t/6XdBjNpFn0yiBue2gbfZA75Bz9lXW/HtACvrVVyuZneXrkB8xWeGlR12hU3cxnZ6b9RiHszH6XhsbrTE5UA5M0SphP8hKdspm44FyHZThBG7BnboazwQJQOnXFTjmrU0iIiYnNIxx2X6EUVMkApkqAXwfQKYPhxE0TaG1ju+iAiX3TWfzngXGe3ZbHYmZKaO1NAnetN6qfu4GUCq+px1w9my1mMv2GpDDEDoP6NgfcuunHiYM1JW2qZFdexZqopjQ6y8cun2Y0r4Sy+QkuVTdyo6jipvoMU80PeIoqx33W4dwG06Q0C9cvdWnzz8DmITnMabWf2RSGK585iphiklL3bwXK5KHeVX5QnwkkD2WloN1ovkUEnsUlU4utr7IdWxRF4yYVTOERC8txQFdJPxnK4oB9lNuX1ugJ+GgMneWk2ppW1xtot6BeG4lD0MBG6KSZjaoTETjPnmTeO0geEGJjImyyOxifqGdSjVK1UAz5E2m5IpeUj+/Ll+hX9QgGh508ihtIvz1hhCrXQIgLXE+kqHDHw+DI6heI+zKcg1FolDZ61CZsFC+op6iWAZoIEyR5ldn6EmCRBfIQZaLEYkHy8ExuIV7UTnlZN8ulN1g99wf0LsY4XbIjrc9AOYA5Abht6qNTnMnfQ8y53jExr+OSwdsccI2HzGwLEwNbbM0oKoO12gV+YP6eAzJSQLwTqFEuw4yoGvfqMlEGcRT9Ri1FaoohaniH/evqCEUL8zpHnrPv6VFV7hq/m2MapMtBV+O2lOHhlfJyttDgRuAnuh8gV6Jp77jTPsGB+EkCa81cp9b9e4304sEiyAwX1Z5kZHRiP3P+a2PQX+xls7Jc9s/9WuqVfU4lPMTYJyf4Fv8mrb2T/mC6Qev8v4jBu4GE3nMda0sCcKUDJVDkShQBOtic9ARJOsO1lJFNIjUZAlFJDSqJE2Q2bf0XTo8yVVSBreBUaCtbB3scUIg7j3RQTqJ+SePQxGJP7glqGwf4UeYnf62npl/Vcbu8w2V2EmBW3yglkGDIL+QUUKtsgiolyXkKCaDfv053uf6MTZ0QzmfTvmwa5tZdLfcBlA8B4Adc8ssX+INLp7hS48VeW+SFsqfcnEOfyvkFuyKrWhbrLPbA2gLNco0mdJBBozi55QRsMZgpzOVvjX9HHA+HVZxn7OfIKHwfK55+lVtq2TA9SmBMuC67CYXep1O1ulouy0kXUSt9SZcXBnlrNndE/FzaADFDp8Goo4+oz09T6SLNZT9DJML7jgi+IXOUBYnhuZWIGOGxtSN8vv9OrnlrKDV/RqhOJ1X1poiblViYxClducZEXX6azij9eTrPWtPEICCERn2Ulf0UpeLYgO0109pfLkM0qTC2Ungzkxn8EWhe6mPMKqJibpIrVQ2AiSlwcCSXC/kKGy1SfoTDbOci78teJwgk/TDooDUd/DrtrpifxhNc1XkEHQ2lhzjPbPpzqi4oQuMhLtU03XLcEhUVgeulHm5XNrO3iLhMgKz9nHBdoWFp4pS6lzgeTqp7eWr8e9xZfASlbI5xiBMcpIBZHuYwwdUl96Apm5+ldtTHcs4svrXVm96TqFNcTE6qA5xCv8NUcZ6RZwlJmPUt2Rm/wufMF9nNWf6C57DEg0eg1h7kuHlf2rPrlq4zaTgpkpz5mbg1YpPdToZhseYcXIokK5eYG6fWDnEo0kYZs3xl5J/pqijlbXWQIVWLhzjVMkTp9INEq15HKTv9FgE04NK6rBSRu9h4xHJF5yI47sjke72sskYWoLDwcGb4ARois+CJYE9VM1kZoxMdTJRLlJd4IkniKEdjaG/HZ6QwSk4xRJI3EaSyEU5ZNdOZhgWlb+QQZbIm8KPYE3w640Xy+PU3glQuKMb9OmLXxOLOG1WMeop41wjRoq4RsntYKuiExQbiRvqx4pMon1Mv8jxfxRZFhtjU5VymTx1MAp2UkphrAL6iG+z13c+bRh7hglwaYz2M5ScDzFJZFSUWGVhksZpsgzN3RMS9P5tE1Pk6cDVfkMkfy59wirtRSrtvf8DTxEGnp+EEAuxaukCv1eTeghPH5KTcQ4djiDdKmNVVH5neJRaU392nlMSpVMPMz5fRkDvPLnmPOVXAATmqg+GcdXmVHcnAHLipf8ojxYQLmtz3hVSYbpp4mc84XhUDJE6pTPAwhwkRGVEewwAAIABJREFUZn59yizjfxBA54LC9OhwbT7cPF7iGBJV9iBFE0sYZVaSJEv5Xh5zKVu+omJ+koxgkvz4hPyY76kvY4kHJTbTBckk7jYGl6tDLimhUy/FeZJvc1wO0asak2tCbO6WY9xRdJRumjivduhZ5YDV1LYu4nNd2Qv40/rCEKFxaYjunKa0v+u+sPkd+Uf6pI7jxgMkdKPJ96R8P9Vd7Hx2u+c42Rs33DwGv+HyIQD8gEtlh2Lr4k4eGzf567vOpLmDZ8syKTFGOaru4bg6yA3VgF1hcEp2Ebdj3Gv/ElAMDTZjWV4ysxbpLG92mbrEpdPNsRFWvF79wltQ2DUzEyDgz51FKaFFtTkWu4FgcELdRzz2NipDHBBoM+81mFq6zF+cy+JS61WyfD364nA8eCosviBzfE89jeWI4LdF3qMx+F/5I/s5XlMf06kCnPc/Ij+juuA1VP4v2XH0oyzERqDWJOSImztoJZcoC/hppo3G2jA9NKWIy9MXdZ7Msn/8fcrmVwBFz4KX2FAT1TXtKGCr5wIDbHC/v8M+7yZxXYgGyc8fo5uQ1kXlaCtt0p+fDFqwhU6/kbafDKkavsfTxJWHjuwt1HDZDYAQSV4Fl3rVlyiDxUJFXt4kb7MvXQpgbKKm4F288dqUcUs52Ncd0MbaMrZtcEAdo9doStvME8l1ReDn6hM0i76GKTlPFBeW78J/RdFbW8BPgp8EoBe4qHbx2dnXeXCtkTXDotQK0B1dY8VYpWhhPmmRpxQlFh6HR0myAVresBbPYk2yMTPj7oXxQVnQObsI8w35UzrsHdzZX841z0PYNenRqXOxCs7X+Nx/CwY5EmV8sBZ1YZnPNJ3m/2ndj4VKichLHmKBzGlitQtk3Mgld2KNwoopLEfPtyaKE6sP8MjsdqIV7wDcdAF8BD9rUpeKr8iSJXbNXKN02WTMaCQ3d4ZGf3ri9WxZZk1lufXp8G+iQb2rmZBy4W+NZ4nhwUAIylT6GDsHZNHkPKulFqmHjCHCvu7LjAYr6S4uXse46QCjqowrjJG8OksEzfQ7hlW7t4Vv8hxP8m0SVyqmfRlYyFjWeQ2dhl8tnuCF3I8TU1pa8Yx8k5qZTTRaRWwa608zWnbIhcTEABSihFrpgUQS6LR2asbKHXJsTlUM888Vh7CVwXnZSCOd62accKd1kkpjkGZpZ0hVp7t3AaWUO85pTFnKd9qKQnxchKfVt3S1gMnxeq76Wrg35zVEwTcNvScosTHERkShxNZRs05ffJ7vsJCp96oW1YZJAjjb1M3NYln387fFDdjO96tkwJ1PIcI8I8/yNgfS3bkpa6At18sx41n3hp3Py3f4vtJ7j54bFmAyoUp5gadQwCK5yTavBySp/yZFZyeCSZy6eC+2qfCqNTppvSWrlXADl5jzzohojV3q97LtZWyl01Evdj7IymQRj257lXBePbepM1SKw6w7HggxVFrd0m+n0evbtrUcoV/VYznsngfnxiilDe/1SchT5RGuZjKVCQUQm53RSyxP1/F/lXwhuQ843yuXYWrUAF3SzE3gct3enNLZ+CXCAXWMz6l/JnvP793iO7/Z8iEA/IBLacZ+DGWykn+dVt8JDnPAtYjq13p5wbuFN419yR8oHcX2XfMreIYzyJuwACEvf5x4LIMcSSYeFQxyiVJW3kO13cn7NLv0dupCmMzNIz+6QLG9iKA3oW1ywc3nZInJosfnCrZNsamYn8JGCEYn+FLfMt9q9ackzISf8qm0vH5HfRt56vzvUVj3U/5d0d9wTO7jLHu5TZ2hmgEOq0/Qojqor1im+/Qq/GIHhU1RYkW5kA81aiAtnUiIMDmyoKO/1rVnXgX5RdlBfi/zv5F1PZfBQDEXajax4iRR9bFEag6uyHgl/SvbiMUyaWg8i1L61gqX5UF3mymQiGYczYpjGdqtYIvBcQ4l24vipBxIcwmFCPN5+Q4v8QQLyu/W9UzFNiz1FepUX1reuGbayKrtZc+Vbs7Zzdi3sthJjKWN5WT+SE16qiuuE5vW0sdfGs+5h8YX7W/jwSYu+oq1qrF+omtFXM5McXmigyz6zBCF5DLGPG9W+Tm5LYPM6BrnG5qdFB6p7JNFiYzziDpMlQxwUt3rtsmvovwX7x+5WpxyGWZclXMk4y6OczsH5Bi19CHGGrN1r1MxvB1DHk9GCQPL+JP33QKI0E89JROKHVYLI/76NDeVEn1PdKmMMq7Kuaj2cGXDTh6efRfmIRLzIN7kBv62bx9vBadYWjSpF51culclwcyYqkxjIUCxonI4XXg7G+2L3CPHGR7aSKV/KGWOWTQSToucbI52ufTIeGHQBeOWCFOqOG2IK2SQp+1/IGDbPL/8RfAl13DJ/DQFixEGi6q1QeTkPqyV69TSx93qBDaKS7JT65wUjKhqTOKUy4h2eSmDuGRwSXakJTdPzi+hPauBBBCxxOT93AZiSrmJz4eHv0qYIBdqPTwxNseaL0p7kWZU3jPu4h32u6xbXOASO0lD0UDu2gKfNl9wb/vRw2twLmd7yu08ps7/6Yy9rh+cMfbx+3P/N1XeUULZ3RzlQa3RTaxfhwWXhPdhXft0uwza2QwCJ9UBIpLPpdLdWJi8wJfZttpOPMsJMMJgw9QIJdE5FrKy6Sivde7AFp5XX0VQmFg8Kf+k8QGaxVq0mxkJBtxbTWKiODX9EUKFPSRujQipMCEJc7ecSAGCej0bYrOS302cUjc58cspey0iBIgSxe/eUPO+7NVNvhUwSQNzwi45qyNhldZSbpfzXPHsdHXbblnPFgKb7HYu+Pa63iP3Vc532hZ3MzZ0nsyZJtqtAO3lGziZvxVB0c5mStWoNhZV8i7vNLJinWvVEg/fNb7qrEcbv8xRqYb5jP2izjmK1uKaKqmdT3/Wr7kpRv+RsqVpzge2s4b3pr4bUVXaW3HTlXpyc9+kzNOoCuhuFJjNT8p/PqjyIQD8gEtBhnbZLRV0EqLT1QBtknaWB+toq024u9Invy1wafV2DnCaLVuPYBgW3TQ50aaJgyfOAn7O+nfwU/Vx1jNliaKA4I0BrC2TpDtHU76jSIsCDgVH6J/fxSoW3WxkSm6ksQqz625QGMoZZ2lhhKmcIk6zmxbVxkE5Qrc08ZeJK9SMOH9SeJjKulLmpmfonNjH8w17iSsDA+FJvqUjax1XyYKRm96eFFdwXDK4mt/Mvp0n+ZHxJBYmh9FuyBaSSZsN26ZwYpmhyBaqqq5iGDY9qokpinQ/ppyI5TNjDBeWIcDZoizXitQs1sz68yytdNOkrfR10YNRT4BjPIiHGE/ybaLo21eaVBhRBkNVnhTwdwvL3QEuyyoLpXQKh9S0EaDYI+9yRe1IA+SX2cGO0R5WrSxa+zooWF0k7s2gbmqYnpr6FIbJpjQyyevebq6V1/B2kyMcL21NTgzQTKDjNhpXZXyPp/mG+lM9n51E0KlXwyGGBh/OM+KSwVH1gNNGzTU9Wfkt7uEIx5zIWGzB9K6Byk631pXQXN9DhXUbteoiBiWOLkhf0fVZXqSDVn7M57CViYjWsCLwPlvS2mGLwZmKWR4rP4tSsIQv+bmI62JTEidHltLA/FvGQRbET75njYLxJbxlSUD/qDrMVvsiJ9Qhgsywt/JNVqZriUaKKZ2exSgTN02JlknZ6Du1LZpVO4YhlJd3s7Juy171ZvLKtrucZLYJltigVzXSTwMb7D7ulWN8bv4NXsh/OCmSF48+2FLKKBXaxbee4UnMPaedBsJt6oyWNYhCWbCyCP9mTzZxpTClBEsl96p4KovlzMkLxu6kGzbhjvPm8CJPscHJpygC8/OF5OVNrltN6YyYBgyK0fxi9qATJ+sArdQ2KKplIAkK1wMhERCIzeTwF4V/5hh/iZ9q0DqTmZ4oOm/VYudAN2N5QcJlNW6sc2pakV/wsJPDT6c4+fvCe7l/ut99p6AYNcq4cvkBNjW/TWbmkvv8jSvjhLK+xX45wUkOOInqB2hoeJ9T3IEt6pZ7bRQ/Jha26Gs2W5c66PS1Ekv03S36L/FJOSOY2G4OzTzm3Ih3JXF3Xrpg0P2PwY+WnuQO3zHXkAW9khN9XTw2i8/+bd5omcIjM5ws3JLWV+vlFom+Txurdf9OziFFVOXTST5H1YP8cO1J7so4ziF1hD+WP+WHPEFYtZBw4N409qnPd/7WVlpPPynSqbQz2HCi5m+uU4FMMqOK05+bsrZfVZ+gxJ6geaaDPbU3N/k3WT4EgB9wseZmgSC+mU1Q7yFkh2kgzNxMOe2RYhonR3Uak/WTSYSKrE6uFdXgMxpQCv4zz7KGh2RklckSiWugbs78jggeW7ijrY1l/2YIXnNfkaYHAqKSq7PRK0UXLXy95ln8M5McoYDXWjcTU41oinuBqAqk6AV1KTRXCB9o56/MP3ZZqK/zLJej24kFki7rfylr4vGSn7B8ZQOX8wuIGQY4zMj31Fe0YF2FOcWB5GGVssmnlnmVzyn265QNytCuVTazY2YVgoYO61c6x9qmyuP4fBHCspFvqueSDBq4LNtQQfKuW31Nkj7MbDFpmopwsUgnO1WiI7JTh+wkB9J1S6nPxmHapI4iHPefKMKykaN596TU4RaHlvP3PlPfE9oiiXyCyc9Oq7tJs96BC8YeVIWBxxa2LF+lzNOptUk3dG3bS+rJXomx+cYAZZFZbPQtHL+uLoXL06xlZhAx81xG6W05oK/1crwjuUR1PdZrNlM2Vd2m5Hjv5ZT+ruOTW8iY/X/Ze/Poqq8r3/Ozf/dqnkFCA0JIIAkkzGjAdgxm8BDHs1NJKlVxnMSJXamq1726VvfqqiT9Kk4lL6+qq1dVrR6qX8Wxk9hxVcVVieOBOIkxg/GADZhREkgCgRAggSTQgADp/n67/zjn/qZ7SXWv7hW/ruSsZXN17284wz777PM9e383UEI6MCjt25gzq4/Ta/5nzg98wlJYm4XuqCxhH2uY0kJzJKWCeEr+zLQxnMLErrbkF/XgOC4iMKbRVFQOCpqyPq+9HGalf+9JmjkpzTh1Ho+dfY5H9JkgtzXdqMCAzOckCzmcWMnn5zyPMwEcm8Mnin7Ev5b8rvGRI8VdbKFTl3BKFrCdO9klm/gqT7JR34gcb5ZNTXKxsDjoO/8Yyvah8wTzvAGulY8HATK2+EijfVaOzGTKli3G3cLQbNztvcJcThs1g4Cj7CubZsYBFUG9eDqs2IIr6ZRf0ZLOiR3mU8zJucZ62c6bbDSZV1QRUf+4z9xo/MHaLJdmPFI6/W+/zI+OdRypEeF0RW0E+U/Lp5KgXTo4xQKfq3SOe5IPGlqouzTMfQffZmROAUfmLORiMsi65BvZaUNV4d2mKCdr1+xW6i8PMmuon3kNnX61DlzazEBiGYty3+ajY+/gJKepaT5OrzQHKDQQ8dWzxtBtbKNShyk/N43TU8HvFn1Af10CLbjGropbsyKBadokxcj5Z3mGevrZpZt9Xk03sIoj96LK0ZIWTjDfl93LbilDyRr/95lZSf6kciEpFuFn/5HrtMMf27QcZiKChl4odDLi67sNkAfdLPJ/7aYt6hJiS443zYwTQ/jsvyckQL2zonrWyzisa8Hjv+Fv+Yl+ksOyMtrHoev2ODdzf94JPuzyWwPwQy5TboIJZ4zzzjnyCCK7KmafY2HDXqqu1rAL18+JGxbEV+oeQHF4g02s0+3MSJIgYlZAXU7RFHCdpe+3Bs0CPU7LcBFa2sDlyvfJKQ6c+m9jp5/uysGjRxb7vhTTKuxiA5vL93As73amJeFP3nGxzsbpNAZWOd81fpI91YsieRV/wqdYXbTbJ5hWEhyRpRxLtPGFOc9Te2HYOLhj6mzycxqH/zFiOSJtn4Qn96QWZ9A4rBydZvvIelKzHR85mGmepFJMvsst/EHUwT8++X0FQIjI2OFQcr05pgJUEpz2Gmh1uv3MRWE9F6mrpveknu+kniDFZ86/zfOVtzGT+yuoAkIP9RdvsYt1ZKztIhy63gQBCClHudY8SaMcwPMSHD50JytGLrAhtZOxsRp6aPUXuQUXzkY3IxZtAiyRbXRROUM937aBLQ4uKhKNjA31gzme08DJ3KIC0WhNj4rECLnU+YTkn9OnTMSogDozdJbMypD3LTwEov5ioeJwtGa+n8Ukrtz78itQNajtAbnRfw7APfoShTJFu3bwnVhkZfi9+wpXctDyBXbJEhrop0sDBDSlcDy3mVYdpbR0mFXe+yzWI3TJEs5oPVvkIQs+pxFtpdMGiYi6FpHxqEoNcTLkaxg/dlIVjkqbpZFyA8PJGgrYgBJRl4S6UVstZAQarMr03y/kPi5MzCNVaqPNEXJyr5LwPMsI4EXy32YYXDYDjwdoxN/QoOnt0hESD49m7eFrfJ1OXUpObxHX5qT4SflDKA6CS/30We5IbPGPjiOR0hGZN+Mj6jJHzzEkcyPtVFUuSna9IuraDCvmKxeHrQ23ml7xPD7du4VbeY3RmUciBmCjnGRcy4z/py2Xk5lGy6nqWuZcHfG/6tZW/qbmU6QkSY63hK+WPEmz9ICY4+l4EFLYUHHwaNQ+JilhcnIWpcDCiSvUDfXySuu6qJyExkWsTlNLajyhJTRrD0+Mfpeu2QvYLneSNWNMSPamNcmrPGS+TwNk6pJQj/yC8UhavbiMRWQ44/lhuVWS7gyl7gSjubMy5St03Wt6j3XbiLEn2DLjRE9kos9wov2b5fnGEFcC1yqHV3mQy1IcbUv62fYZa7zdtNc/wYddfmsAfsjloozzdm4vdbMPMt+xNBwYOams7+UXE1OhnUt0oqeVwIzCGaknkk9VzT5uvneSrsQNGWmgAPpkASfmODhV1Xzp7D5EMOncLBXJ1/TrdMkShrXSTP7QZNwpt1NYAEerGwgQmvTE9Viqh1gru5nQEhZMDHHzqc1MVv0ryUTY2FvGsUS7j5QcYZn1W4EuWcpsnWLh2Gl6yhtABQfP53z7VRGL6c/d0haa+CYyrCrVxVVW+HVWxKQbs1U/pY1Zx6lwZoqpnBCTdsygO1Eapdl5WR5mk/eG7RZlne5kp2z2yXZFXRtA4fgZNVwSNioS9lbMJeXEoobjiFm4z6+l8HIdOp0lUWfpsPIM9VECc1yfVKVdDlsj1WNO9XGqq09w3FnIPp3PTrnVpHZTj/sPvc1t3Qc4VdnAnOl+9tYsMyafr1ijqO8EQR5VYzOHjNDITl99w+qM1psdvKZxiKDdjkLLuTPcULiXnc4mKrjIPPojwz9v4ixOhRfxG4xTVyiGWDujD23xvCQjI/V0VS6J5KNGlXPUsVB7MwJfjEiov9hRNh05cn9TN9BIn8El1TWO6rN+wfyqZnIWvQ5OihZGGKDBtD/cr3ZRb9MOdrHRyIjdvJyproxdmxkRv8jrMiwCjmJXKpNaD7MIm2ARl3aOZARPBHLn+GPtAhevzSM8h1bNepOagRE6SlpJ5F/hVMH8SL8aHsFyK4vGh67y2ggX8iojekWNw5xfzhTW0YVxiWnvGWBosJV3ZwXzWjXB6dx5PMcXmY+hMzriLTNxVnHDwn528DgvtRl9DEIRlxHcrIbpGOURwyvdH54jDDbnUys9fILn6eSbqCYQXGr0LHvlpoicVDHIEHMj9bo15w3ycof8v3exwW7oHWYcl2f1szTJCdbpTs5ofUz/BO10cPmYvmwz1SRxmpX7L7/NpYpS3pz/0cDtIouxVeyNcTlRYoYcNdHo1z5DyajD7NnDmfMXQF18N5m0Dog816NJj/OIfg8KYC+rUBU7s73IEXH2zUIAWIQbnUrkMJqYFb0vy/3npD5a7/hakQUVTP+d9h92/RMFSM+f8HU5TDND4B7QxRIK9XLolkDHFKeu8OkrP+eOPii7cxUfdvmNMgBF5JPAk0AbsFZV9364NYKxoiG8GY9LYzU0ZNkAVQ1P4MwyuSglPmHsRYrDMRYHN1uBE/VITRTz3zr/K/+l5AmmJBQJlla2FsHaVrSJGu3lL+XrARUJT/KAvkgPrezgDjQ0UV1Nsrt6he+0G17Qk6T4OC/Qah1xKRE+qFpLl9zAI/oM73MLHbLUd1KepISP6wsck3Zm1EQ2MpHkleW3kpJg8rkk2ccaWqWb9bqTHdwRjVj0myagbgTyF5RG+kiUD1BSPADYvI7qGYdphe1yB8NSHXR+6N/kjIcfEJqhROCaI5G/h6Wa3SObaZzup7a2xyfb7dQl5F0RRkeXMnKtiPcWNNmFzJo79nhxbXIb3TQybVODZT2GCNXvRFkDP+95BLcqhVY4WRSaRWQtmrFC95G6PJ854xN01ixFVQyJOHDcWWgioNNRhWKi7c6VVbKyv4ebLu/l5PIi9rA8c4cbKqUyzjDVfg5OF4fI0V9o4f+l3MtX9EkrmTF6H/vcG4cOUlw0wlPOl8zvwEFW8TX9uvGZVEgmp1k60s3orDwuySwmpYRs1BWI2MTyRAwOwWXJ8HHOjN7A4tldJrdxmr8O2C9r2M8ag2rrFs4yz3/2vfpTCvQKc0bH6Jq9IPK6MSnnhzxmqYrN8VqLcxS39hI4Kb8rsjvsm4wM7pnVOBWV0Yw+MVM0qdOkJFiMZk+N0JrfzSvyoO+cj7o0cZzP6vcAw/HZph1sv3YPhqkmvqGLy51SUDwCzPG/OyQrONiwmhQJy5kZLb7xZ5/pKVxz8zKe72qSV3iQP+Gv6RVLjUQSR1xW1h5i7tRlpqfzow+3RvZT/CGDUmtSKIafG7oO9SjUy0yEfDfDbTsiKyx+7lHDOQaZa6UiGQ3OiemAMSlDBAZoMPIGKAl2c2vG9V/m/6Dv6mK25m1kWvKYrydpkGAj062tvCmbCQxshxPSwgla2CG3U8O5jP5Nt22jbqWAqYCz1XHpaGqgp7wxS91DyBUwkQjQT5ckz8gTUCAkWjwe9b5r8+kGwRRiM28YvsVs89p8f1IWMEAD80Jp9TS0/lzf6At/70HcWAzfE7kv2AQZf0XvOrLgWrBFozKviuCyQE+QwwxHpT32PpdwitJineBiaM5NSTFThPzTQ5uztc5bzC3aS2rJccbGPqCs7MM1An+jDEDgCPBx4B8+7IqkS1vTIo5072VivIrzQ41U15z0ZXXwXAtXL1cY+gI7wYoZZ5LSLMordlRod+bJsglW8Q6baeJVHs40DGzpLW9kl3ebrzimVfmxfoqH9QV6r7bhZUmdNCzRTNaFOkk7HdznvUyzE6Q269EWvr3gZlI4Pm3BMdpxNYh4baGbP/P+gu2DDzL7/BXOllUa/ywnepS0RR7iRt1Dq3SzUvf6kcphAzSdi1EtgWza2P2hPMa83H6qcwcIDAvxj3ayLr7283hhid+v5l+XcJqfdAq88D3dzmIKh3KoqekFlBYxnI2Dl1roO17CqoKl7G3ycFVJ4LGCDyjVS6zH0GCs0+30u030JrPwAMaOSTwc9hcvpeTSFaQCG53rWZ81o27NkZtBUg/KKlLFCSiuAZrJUZdP9m5h7uUL7KtpICVRnrWEeqwcSTFYWsHx+aXMk2PRI8VQu9OlTgf4NM/7QSDPhnOVxtqS0gRdsoRincBB8dRFlFC2Do/GOV3sk3YfAQOTxeUn8ik+ri8g6vB07aNBQER6tx5R9pB2TRD1MOmygl29kmC6oJaJ8XFmne7nM7XP8lzu5zCpo6yTv924FDLFY/pfeJ+bWau72SxbURwGLi/m1OyaiLxMajEzkiZST5lNBzCtDnkq9NBClywxqcNCRM+mfxxchPcr5zI/731glf97o9fH+UStH2iRkmhgx0jhbI57LTbrQnqOOJxkAc/xBWo5yzlqOU4zZxPzyChxubO9ej6/NPJdLy2kSCOTNkggZFxENjH2u/HC0DFZ6D37ZQ29lhQ9JUE6vT2lN7JvucuN5w8HdQvJ0hnqg/eE6x5D+SZ8N5WY8WDblp7Xg0R9Xkd1VsTOCZdJLeYlHmYvayM6ZIqCyHUNeoKFXi+10xdoyjvKf+ZJ9ksVh1lp0oDSzaGZG3FzE77cmzqks5MkKWH8OvUXCplihEobBGI241NlsWAF/74sRlXE+EpHXgs7nc3czavmeDdkXGm6bhFDJ7rGeJrgB/I4K3RvkEXF6iZP3Uz/dMnUKUXuFS4nirO/I/LZkkOHXE3q9IwJMAn7+6oJZlo+dZCDhSuCrD7qYbSp0icLo4OsZhW+l5c5p3VcZBZFTAa+flmNUw32aOKwXe7gLTbwZ943qDr5S5Yv/60B+GsrqtoFIPEF6MMsJYv42LUUvclBfjbzIGcpZS3vsknfYHS0gYPNgfOqasIYfxAydszuKCP5tG8wPchq9lCoYeqT2I7LXrtHbgkdIyc4Iss5Ju1UFgxFrgOL0sT8yqakmP2spn3wHM3V3WjCXNuly0hJAs8GYkxSwu+nnuGDxE0motiSE7foMXKv/YKBsaUUFV7iAIssb15UwaSJf8t0PKKQF2gPG/QNTkkTO+V2ewxoLxCHac1hl2ywgRZBX7zmPMga9rDa2x3k7Qy3N9sRg0SPfDP7R5k3cZaJiSp6e9bS0vqe1TvC0NBCPDwGE5doHVSmC4WT5XP5gDUkJUWj9vFDHmNGkkhSqR8ZZKo0l+lkkkkJjb9vHJl3Hq1tZH3PQRzP840gxaNVj9Iri3wfOJeE6RVfcTukFHpzWqgby2PmWgnhdWvOzBAPnf8ZieJ5vNK6Cc9xSLAu8H/BGLDGGDTIXQKX29hpKC1sROdG3sg8YiQw2E/QzAFZhYcgCstO93K4fiGeOJZGZsw6ZhOR3yMs45i0s2ZiFLc0hEjHcvV+gacY1xKmh8vonlnC0drGKAph/32zcAVfbvxb5jV0cpWUaZulrnFshGR447KZrSG7w6O8YihIBWWfed6tRZNpeqYEJ2imh1Yq3Cn+8eofsL3wdhRIiEc1ZxmiLipbgJt3iQlKIrK7O7GOB0Ze4fis+RyRZQGxsm2PKrzKgxxihQ2OwV+U06iSFVihFEsQAAAgAElEQVSIJyaIy7zfHmFQohQW/rNtWaSdxm9YrTEeQ4pNmjYyvjd1EzrV+Dsa7kzxn+E5CQZnzSZDl4XlOavhF6p/SHaiczZEdCwSLNxpI15KiCzoodLjtNFDG3Huuwb6DXde+vWuw89PPML66i10EfYJNTyZzXSzNLmfLdxPSvGPIDWEQtfpALeyi/flZvK4xj7SmUNcfiYPAua+jfo6t8lO/pnPAPXR9opgUCwzf40xBllRNuCEtNDHgmAs7TXG0PRsv4XdD9J8leY5rkrEHzuBx+d4mj5tYqfcYfkOY/UL9WPBVIrLIZ7m7HKp5Oo17uI1tsiDqDokSLFK9nI2feQeapOHw8GC5VSlzlOeGKFXFuFZ3ejh+FlvwnyzirCFB7lHX+Ju9zW+nfPnv6LeSoN3kn6nyf/dUAUZv+All4IMRx9W+Y0yAP/vFhF5AngCoKGh4d+4+v9dOdw5SuO1XHrqm/llg/FLOsJyVGFh2SDnCwsybwoJ2cKxU6wsfZd2OcxpGvhHPstVKfKvU3UC5/FwxJK9P1x84yImrBnvVmWV7jEoUphfSQxH2HNzH+DS0DrW6XbapofYML6Kny7xmMHz0939MPkY0yTN4q1tzNUBFmkXVy/VUFJ6gXULt5KvZ9nOZrvoJ+wOzDiJ92orztUKEoWuJRR2KddR9ntrOJ+Yc51ADmEHd3CLvmW/Si84Dm/qRj6vT3NxpJZDs9oM6Xb8eDnLopHxu/1ttp5nbn0XV0cbKS0NfHtElMLCi/SyiFeXLyfl4NdNrYG8h5t9JFZVGZhdA2Hfk2wGvL3iWk4etZeHGCip9TcNxhcyjIwQBInYfxPi0jzTi5SdZ2PuW7zDGp97bDRnFrV1PXRpAZ7j2HpG03BV6jmGfKNA7BFPtJvmkeYojOYqbdUujksr+1gbqqdLTWk/d0+/wPaZjzLiVvFs+RcNykT0wQaRE846Uf688DUeCYa0mk95/8wvLz7CcE151FcyVEpnrlA/rxMgI7XeSt3LQumlTY3x1ysmV2+bdtCaTl+WvEaD9kU2ExeTFcFYqbKXtRySldxWso1t+Xf4v7kqDNmcyvF2NEof87TfLtZpA084X1hJFUPWOE2LU2CQXZQK6494HQMpjr6kkQvCfRMYPgZhEcI+n0vG+9lTXIrrGP67W9nFXAYY13L2y40Bjx0uS4e7WXahlH9qqw58k8P1QfwcxV/RJ/nu9B9zJm+uf1lV8ixDVDNjEZnaifOcK64ONnwZ7QmhaHGEKfRuzcYLF+oj3y9QlfrJqwyUFPjXxfsjXWZ5I8Yf0X5/KtnIQPM88k9PUFw64fuNpnM/o9Aqhg6sQ5dQd+kCQ7nV/HPRp0HBUZePTBwlWTLEhJZQzAQHZBUpdUinqvTnJMM0e90UyWSGLAXtM6hXkY4zV87QzeJQFH28f+LuNgYV38wbzNc+TkpTyC3Hbtz9dwX+vGli+k1sZROwePA0P8l/iMHyyux61XMZLY4CH/7YpL+z309LPlt4wN/sKsJr3B+tS2iD6CEMJWsYooY0j6aqhyA2s0yKdVO72FawmTSyq+qwxXmYQamL+kDH+xgxxl/svQ5Km3ZQW3t7Zlt/zeXfnQEoIlshrkEB+JqqvpTl+4yiqt8BvgOwevXqLBL5/1056w5STTE7aqI7oD1yC5Vje6hKnWci0XTd+3NyrvKg/NggaF43yekSvpP/mdAOLUU7HTTTTZ17hjOJhnQjM3fI/t+B75Xi0KgnbI7EAP1bzn7u5yWe1S8EaXh8RenwcnUlv/A+yd/vmWLtmMffyXF2tO2nmIu8Lzcbuhpr4LwtGxAUx/G4dWEnmy/vZ7ts5PvO44EDrq2bR4K9uoZfyr3MFCYRlFaLNnzg3EQMiAjaatvnacI62UeHdWJyNod77+RjDdtZzns8xxc4QahdeNRcGo0oKQfX32Xm65XAgMb4AP5V4s/5D81/R3XxScD4GL6vN7O04TBnBmeTcvAzEzgoYv3/VutuOmVpiBdOyThmiRxv2nFRJVGQMsZfaIxV7aIdCQQK79Y9lus+7l74PENDC6h1etjIG7xh+fdSmmSXbGC97iSHj9vjRiLHLH5EpVXKnk0hmCbvFjE5gYNUVUFbRr05eIlEEDlqsyzcVLYNgH35K2J5X6OBDqIeOR40XFb60m6uWYybt9nAhfGF7GteSiqbEZBGbZKnEDEBUftYHbmkTC7xIC+iEKTvs6kbv6JP0ko3uQWTXInxB8bHCru5Opgby5trETaxspW+T9S16F+0voqwu+AWH8cBxRHDSKeqJEmxgTcMehOnXokbA5Fi6pCnV2nxeuhKLLEE3sot+ha7ZV1IPj3KLw/zyXf+kTOza2idk+D7jV/CJUFCXD6v36WPJkRgne4kZ7yQ3HN3UFr1Ml2zF3BW6g1KFpKJk9KEKjRrD+1DJzjTEARNrJD9PMBLdOgSqocnGL1YxwutH8Mji++f7fsEKVPfcKBcNmT/eiW22RIJH6umGQ+UdJaf9DN7UqsMg3xI5l3HYV/RKjqkGReTDecz3vdYaKPZe2hll24AoL2sgwnyrdHtgMIZp57n5Q99Oq1l3gE+cFYTRbw92uhAEQqnr0KUwjDafgIOPZOrNxZ49iv6wlOH2TrMZrayTe8IucJkEiSbSH8DAqTdXFShbmqQ6uQFBqnMHAsRcMKGbRphzdIW+54wl+X1EOiMMfV1aAolgdrtxF26hcKCK77xF77+olSQ62d3spsP3/bLsomw68hK9uIIXBx5C7g7y8D8+sq/OwNQVe/4sOvw/6TsqniD9SP3sHFQ6ZiFLzSpyUJ6aOXG0T5O1DaFJoVN1WOFcWYmj5f0d2jTIzRrL+sPV3Gs7ACdtfOZzTCfLv4ezZhckWcTc7PWQTwXdYLFvIIRLjKLdKaMQ94qY1ilkUEcfiiP8VWe5FG+x7f5BtOaIGJ9iZASZd+sBMsuuaw5U4cq/Hc3NDGDvTakfNX6Ob1ZegPvlC42EbHh0P3QtXGE7Ji0EaEngKgSCX8XN6hUTd7gc2coLxukK9XI38sfWT7FYBI7wM19nZTkL6SzIcGKgp8yz+k3EdPSwXfky8HxfLr9muB08VxWYYy/p/kyCBwuWMGKRDfieagDCXF51Psul8Wkj2qRbkThB/I4blqBhZVWluOp0qkJNh/bz562hf77g8VAucf6reyXNajaKGDEIjPCQVnFdtnEYHETqz2HBukzPIlWue3kdtbLTr6iT9IlSyjyJviB87jZ7ccXUjsO41IewRHa6MBBo4YtkLyWxCkAD7uQIuYRaigv4nlfHc/zu8DB4zbdzuYLI1xgITtZG9QhtpiMSRnvV1RkOp/H5OZIvkEy34xxTYql13iJh1msnbw3volUeXCE18US350ho2QxSB2U1osnuTC7OoYQeBjONXurRSLavQ46ucHPipF+jheeJ5ZwGIvB3q2vcrts5UX9BBclvMAq+TrFVSkk7huVrq9qgqtSRIez1Ee4VJV3ZR236FuhaG2htqabOUM5PHC2kr9bXOqjpq4KB1nJn8hfo2oCHN6uXEPNzAjXRufCbGFac0GUMGqZlu+TPTfTMzsq0yd1IfP0NJBg9GIdF6pK/AAX0RTletGQI4dyw27QbXROrWCwaA4ZOsWWuRODDJVU+tRXigQGRBiBB04XhY3NLMih/feGqSPszF3rU1mZDYtyqqzWl2tPhZ6ZNjbnvE4PrSYAy57Hb5c7MOiZkVnPgQ+4NXJ0LBIKlrJG0m26zeQ3V7jN2c4ubsP3ycxmAIX+lrBf3q/adGrgCiECe8jOvwgGiPicfpeTBGCGkYfF/KjqUxwraQ6+zNDjkvG5QU8wlprFWE4pWY16f95L9LmR66JBZopHhS87Zm15TR7g8/pUyMUlKONaxl1sYYpC3pTNAcl/XAFE1iKHfRb9/+rQYaLx4b/+8u/OAPz/W1l6tYHZyVx+d/wEM6N7ebViMedkLsdKFtK7YgGbx3sIoiJd6nTAhLarg+N5nCibz3Exiew/e+oFyi+7tE2dom3wFPX1h2ks6kYcg75kEG+q4qjLgvF+TpQ14NkgjSApt1F+k8kY8mCNm05dwoP6Ev/x2t/yvbyHTMos/9lmp1Y27RroX6Ejr9EabnG6GoLJaMlgCSsg+8705zWym5/xAEH0VrYVl+jEy2JIpv/deOEMH1v4POK4HODjljg6EVFGngqD5VV8qdejdGyI02u2s003mTzFOsHH5GfGwPOVqNnptmkHCOzg9kg9zlRUBRtKlAbp9yNZAW6XrczTfj64cguHp1ZzsrI21IYQAmbbWXrN7lJnHBPJGXqXh8PPuY+v8XXu05f83Mo7CJKop9Th+84foKXC62zmNt0GaTQAg+h1sYQHeJEWNdHdgZEqRAz6WPenq91CNw9f+gk/Lv+E1eXmh3OFFSQ8jwXj1+grKzB8gerQxZIMn/uG8UluP7Kf/EQ/I2sSLOYwzdqDVMEheQhYHR270OIVQR8zDOqg7sWpSTQBZ4nSbVRcTfFcvjmGdlDmpYb8XX0acUk3f73uNItCWpYjKJEZ809M/IiKIwXkrdnKtsLbfSOzlrPGZ8kaNDfoYT7OCzRLN3gmFaNPyJsFtTffG2PtZ/IgN+oe6r0BLiYqIxuIq1IYvSc+T+zfnh/UoaRR9E6WkPbDE01xWUooKevj/MUZ+vMqImN2ljq26R1sZzOnnAVoqYNTalw3IsFT/mbLIESn+9vZN7WGU63RA50xSvmWfMO4EjR7zLo2bvwzrfG8gOMcoNxfsBO4NPZf4FzOZQYjEdQhIcVjntPPSt3NKWlitbebisvjvF58V4ZvpTkqjM6/cFmkHeh0kluTO7i9/HUK9TNskYf88UWESzlRvsGzubX00kqX5Y5MP1tjvnEJFe48P82R4iBL0TniBO1CI33+UCcS08QN2Izxtu+bp30008M2uSvDYFyqB0zAg/37Rn2P+3iJVgsw5Oo1ayuHdTrM5ySf16cA+KHNF/8Wm3hEn+EHzuO4JTH/v/jczLIOnJYmjPeRZLQha9siY6R2gyFg4/LNNemsKhKSdYc+mvB3JKEyLNW8ysPMpy8U3KIROW6ZGKC7aB7qBOuZcaHJpb/6w6eByXZg9u+2iMjDIjIA3AJsEZFffNh1emByLtfKTzCw5q+pK9/OkNQZl1xJ4IpDjptPDilLnOlwVhpAlZrL51l0pdsn7kyR4OS8ORxYUoTXPEpJyQXGxmrAwtLtYhyqAyXmUqenQYTe8kZElE3e63zV/Tqb2cp87TMVjMHegOUQ82iYPEsPrRzOm8tGtpFkxjr0u8ZPSZS/aStgd84woKwanSGpLqJu6NlKydQEt1w4QZIZnDRBaKQoaApQbtWdzNGhtKt1aFfoBZPPKtpy92Ks7lYBp99v2zNaNk6vsxAE2jniR85GFbxw49QcqrxSCsZa2Dn2RZ6WL3NYVvCMfBmA+/RFqvUcq6d38wn9J/7Me5Jm7aFbW4Odr31nmTtmkRwHD4ddsoGX9GF6aPUva6GbVaeP0jA6hKOe9RWaoZLzoa4xzxuomMPLy9dxNRy9ETIGUuSwiw200E27dPBDecxGuQnp5PFplCFFDmel3ngU2f500j5KoTKPfjboVjbr69zr/RQHN6IAD8iNdGtrpCtvd7byee8f7LVp3yyDbMzPO0CueiQ8JenBYu1kvvbZMTPISfHkBY5XlnA4p57ajjLyThYwNLQQEY8SGSfDEPU/2//ixk74s5Wbm88f5LXeRzkmiyPtHc3PtWmxEriS4GRlnTVgJCJm3dpKF0u4W19lqR7iPn2RCkYj72zSHu4v/gmzZ47QfHrAzE1ASXCGNKenmWe/Iy/4yGKzHOXR6eep034EIxMJUsybHoA0yhRa+DwcXpv4HSYuV0ben5aL6/ZFuEEI8/VUpC8uSiVgyKhzcFmsnczM5HGm4iBzc3oi1+Yww9PyZU5IK24auSIZIJnh92GoTFro5urVEs6WV0bRKGBSinElaRgCnASjBYYpYZYarrr9soZIpgyEq9dKWDl52HAfhuQuaLfD7qK1vCoPc4RlPO88xrVrJXycF0jg2mAAk3c9yAUdXezT8/PTPM+f536N253X6ZVWfuHchy9/hOhPQm06IQv5lnyTKS0M5l14PKzh+aedV5kpHLSZigyxeiSFmm3PSWniZR6mV4xRKeHxzEDYgjJHLpjj2XAwi70+V6cj19YOXaL16iA9tPJtnmS/rCFBigXaw+rp3dgYYU7TwGka6GIJ03b8p0mG0uTJ9eUvXny0Togg1+HxuB4C57c1jHzGTKAICm3G+iz1mfUMfTYBXxJ5vjktOM6xkvnG+Au9X6wu+3j7osz2/ZrLbxQCqKovAi9+2PUIlyonxcnZB/Bkhk5niT1qEX/Bu2XmXdboYZ6VL5iIPTH5HweLqrjALDMR1BzL7nQ2oVUOb3Ezf1rzF1w91MjMhRZy55hIzP+Jr/OmbmCMcg7KKqs4zPtcFcaljKOyBEdgUzxiM6ToNuobrGcHWiR82/m674vyqD7NpJQwrJXskDtNejfH42h9HTf3TZM7cZo/uvRzDpe3sUPSzsLCRGEJs84f4lMXO+ipnctQoor+woZg58kBjrACgPfkI7zLOsjIWWpRCoJd/zrZkUF94+Ayd+Ys/TkN/o7tQF47nTzJV3mSFrr55NQ/8ULh7wVBIPa4YOvcaVZNFrB8zOMXuWtCvymv6b0MSzUpkozmVHKPvkqrdNNNKz/h06FjOo8G7aPCuYij88zRELCT21ExwSy36TbmzpzlwLUNDNRXcamwGBVz3Pk5nuYtXR/wFaaLXexHSsoi34XbfoZ6XuZhRqj0DZngyKwyoji7aQuMbMyyFd6Ed+si/rM8SYoEOaR4hGfYyFYO6QpTNzHHy2+5d9OaDJBNz01YACq8CJmo4Q15r7CAg+ybvotl5y7TO30TP2q5N3DoFqGzril9E+8orOup5aahvVRXn2DCKSVylBjf/YePfcLf+6icxxf0OzS5w/yi+KPR6yIboMwjMleTdOoSEJOScYYkJlOFRxc2P3PoXbVyDhQa6yrorFzg54s1z0sjhTaYJlTNY7qIZ3N/H08SOLhs0Ddo7B+moGicf6j8UhCUFRrLiclZVM1c42QpEXnIgGizIe5iNggLpZvTNMTmhLn2Tm8LR6WdRc1dzBka5T45wQFWWfcCZYqi6D3xTVtoHueS8tMH1tT2Un98hPfTiI29f4BYYJ793p8TsXa4muBccz7to8d9aY7Ih99WG6Vt01KeyF3AbD2NJ/YINttRr/280rPBQRYFflkfpo0Ok/1FwoheNl46JZ267zV5gHt4mS08ZLspeFe+6zFQ4NCVH+d8jaHawA7uABGSpPiM9ww5iRTTCnE3nbgBqGp4ISOyb685pFF/1XfK1/LQxa3sqtnAtA0yclRZzfsM51T5Os9T4fvyBLfoLgIU3OGszI2+OF0t9cyeX7LPv2i9NFRXw0uo6QxFMfLoQM5ihmO8H2LvNC5GsWt+5dwx6Lt/IhYCIOZrH41X+/EuzmX1h8wBCL9hCOB/jWXUHWXPpHHQb9MOH+1z1GNdzyHmzPTSTDeNxPIGWuTI3/Xj4ZIwadZI8KLzScbmJLgwsNyfKy108xhPsZBey9kVHf79soZ/ld/j2zxJvfZzq+40zw/tmBS4wBxEoEvag9RuJDlJEw/yIibjgYluc9SlcmyIQ8l+uhNnuSHvAx7jKZrS7UnvouYb7/0PilbQXxjmI/NMVDRppDMZ9XkKLyAhFnoXh1NOk0FfdNj/XXFoTnSTVM8QAdvvU5gjbVW4N/9l/qP+R27U9+xu3FAadJdX8+W1eexqe5dSvRjpu0tSwTQ5eBYdOipt9Eorf+k8SYdzAwG9jtAvC9hbuorA7HBCyEgO2+Qunsv9AodLFnCxqMQqQgePBH3axKhU/gqJCu1SY7vhbmnjX+T32cHtBqXVFDm4LOB4cLtVVAqEqW48cugbux9VB88TuriBlM1cMkOC78sTbOOuKFkuMCFlEf/pblr5vjxuDai0/AkuCfbKGp6TxziU18g/Ny6iY1aL4YLMQInMmHkivNWyzKDQh+4kOVxtnNhji2G0bVH0psHrA38klLneAGNjNSzL2UsOKQinrALucV9ik24lyQyBQ7pBCqYoNNx11rgGTIRy2J/V1v9d1tNDK8mCGW6ZOR/UO7ygiEF4ujByee5cC89M/TGuJK3PbJKxS9Xkniym8HQOn3WfpkRDGXLsWK6cPMxkZTpVYLYF8ToLLIB65GKoiSL32XsUeM15kH+V3+OvEn/OQEE1LXTzMX3FH9sLcXJ1MQEmlVyIDE+dnuarajZhAAU43HYuj/yZKPJ0VWPMCOF6Z/vbfuwoXBXN8xu/346nQTVTrC3ZyZYwgXa8/8KPAB6w2MK3+AYvyO/zn+QbFDPhI9ihDgw9K2Tdi0mrV6hT3MtPzW+hOXwlkeDZBblMMBWpdzpjRbAWmACtNNI66ZTyiD5DHRYlzkLUnS4XmeVzcUYMZGAmEeUJys+b5KfVH+ENuYu0gSQo7dLBGNGNqIdj3QbCfRhGdpUqHeJW3ckNepBaTkfHJtLZYb2WHnMjp1/Qf2Czvs6N+h6zGIm+L6wX7Jrp4Jn1Nt1/WWQn4joV/zcDcYyvSaH5jHBKmni34CNsrnmOsbEPMtv2ay6/UQjgf43lTOo8Y+OVDA0tpKW2m6/yJJ26hKrhcdxzdUxVVbB77h0c1Tai/hVmsqV5yXzHcXVQEnTIUo7W3cAT49spHKuivPyCf2uRTobQhkDZpw2rlCq7dAO7nXVEd4KG7+mILOMY7XzGewYnYXx5FIc3ZbPhsJPH8DDpfj6rT3MlmWBvsgoB6j0jcht5g+MhhHEt7zI0tx4vnP5MhHAKKmw7HTxLexCjBPH9oEw9D7PcZBwJLfoOHuvYQfPZAV4uup/B8tmIBs7M42NzKCs/T6t08yf61/TSyo/5lDFCJcEMLv9b/XwquIAwn3SkZoT5XZXF2smbbGBa0vQbQSYOgzKECIhjO+0MuooYineB2IIaQ0iifZK+xvMVmavCjfoeC+ilHXOse5BVpDSBoNzjvcwvnPtsH5tnJDy47egyzhffRW7dQUomPJLzXRtZSdQoD5UJyeMlHvYj0bcVbsYLo7d2bFUdg3rY9k8r5OZOZZJNh33pxBxUzbSOc+bMHF6o3JjpqRM3qmLf90ujPwaeJvhh6jE+wTYaZ/r9gJczWs8xdwlNwwNsdN8DgUSqgB11NzOTDAJUOmUJn9XvW+46JeBUi/rQmXcZH8fm0sMsvuIGpObh+oF/9C7A7oI1nElHeNtyPHch80rHGZQKXnU+YjPnBPffOvI+dy98nh3O/xLp7wwjOSsaYvjaPsszlrg6G3Iq/qlFSqE3t5k1vMUpaYo8r1IHLUJn/k7gUanDmUh2qOSUDJOqPM3iwXIONARk6J4TzHvBpca9wPlEJeksM17G6QAUelN0FjRFXxAyPhZpJ2XDucy5MMP5+isUlwwjAuc0ynd4PdSoXC4hAm8RBC2lNIeDrDSBT+l7xegng6jH6Fasfipmgp/wqeg7Q+3pLynx6ZQEjyY9QTtHeE0eMHPF1k1sHvYSxnlWvugHlmS0JfS5TxbSTyP1nOIUC6LXxJBGD4dXnYcj/eHh8Io+GPglhtpVeuUKFwtDj8Pk/7Z5+7gg1Va3ZUHj1ByrRtI6xsbhEX2GefT7afDixnW4nenAqrRsT2khr8rD2fvmV/2doaNjf2dBBw3p/SIuXnzvt5lAftNLWVUKRhJMTsyCWmhWky1CZzscKr2LPVVtPC8hvqCQwFXODDOSM9sekXk8qk+zh5s5bJ2WU7hcWDxEeWin3UMru7114GiGEWhQCONePiblxtHc/82jfvoMA7n1QQo3p5TFV49yJH+pVXhJXpRP+BQvnqa4LMUsLOtjYqIKVRgdqaeoqJNNuhUF9sjNzMckLp+Vc56kuhisIgatqwIen9enmEe/oWkJZ5VQU7/8qRSXCosYzq0iiIjEV7zL9QNA2Fa0yVC6YNTEXWyhWbsZnGqhtMwSRWPGY63sDmVncKLBLlnGxROHQ6NreXP2Zr8dCTwENzBcfcMg9ozwwpxFQZ/SJiKQWhzVsn3h4DEvdZJTyQXp3owYR2VcYnP3u+TPnSCn6LKfpq7NGmqDWudnWRH1uGv8OA3FnZxvewMkxcaylxm/lMuxshbGKKVfFmT2CXA00cpRFpHA5WO8wuG8ZZlts21Pk62m+6ZIJvjvL/81ewtXIQLzbYL7M1LP22zwr6suHGCipdRmDUlE5SbbEU24r2PcbX15TeQvO8lk7yyaa/YA8FP5JDPJHMZrSrlHDffedrmFVDiAAchlhhYMd91zIZcNVMnTK1yTwlDblTY6mEyMInN7uY9RDnAjriaChS7tL2bLkaL2oO62XCoq4ZXlt7Ji/DCuJDLm9ERJPo7jUirjnA3LUgbiFw1SMd87eKr0aRPr2UkCl5TNJNOqR22KrCh1T/N0LxTCfKIZTdxQWkFUWej2UecMREiSz0o93+SbfJ6nTFYVVXR2Dzf3JRkuKrV8mPiGqKjLJn2DDb2HSDVf4pjTxhR2IY+17bXE/fj5oeMBMwjd0kZOlcs9l/exv2Q1rjjs5HaDQGfrs7AModzq7UIduER5xKY7R13GiUUSpXJmlMGcqgwDwiXJO7I+GvkeHjdgyikkTdeiKpyQZgaYz836Fu/IbVbfpNjANtbpTuuCEEM+rzM3jG53MojMw+9Pl8Ew9ZN9jqoT28gYXfQ57ynm5Q/wLb6Bp8Z9YQmHjIykn+HXKxYkmN4027FKy1tc1g/KSiYp8Rki0mtGxC/YXlvOKA/rvzJPDJNDJzdktjfbxtH/PsvxchZDMxva7ODRTiejF26ksZEPtfzWAPyQy0DdXBgZJif3Gj02CiyNllSUnef13N8xF2bZtScuJ4s1BcIAACAASURBVHDL03QLSQ6ykly5RtjPooQJ/9Z0bs3pZIjiJCSgpTZhu4dx4A8vCB/RXVxNFnCGuag1Es8ylyP5dlGyi/dFKv2/lQQHWUkyVcLckvOUlQ1SUDjuN2ezbqWBfr7Nk6QkieR6VOs5SrwJpq+W0VdYRxTZcmiQflvbTMV4LrcGzXWiv4X7DuGA3MhBuZFUedSX6ZQanrJUKgdVQzOSHo9hrQQJZR7IBv9HFAy8W3aTj0SIGl+ta5LP29wWq1Oo2L8bh8/RMDrE2TnlDJZUMZko8q+/6hRGrw8pHlGXVu0ilxka9CQ/SzxAetFVTQfAGE609eykpHXQf1S/GidtkzIMDsoq/x0OLqvLnuFCaQ+IIgK9XjM/LX/YEjPH2hFqCyHUcRt3Zm97fPdsfx8pLmcZ+1jGPoLTGeF7fCkwgtVwxq3XnbyUgbzF+ghIeClc5zpqz47dUaed5bknOHTwLg40LmSmIsdG7iWsfxR+AE94TvbSSg+tNKtx2TghLf6jS2SCawRjt5hOkyGl1MjZq/Ig6Wwavr+ZGP+pv+FP+QT/xA2XOzmWuzjDCFFHoOya7w8cLodzl3HMXUydc4ajEhhbfn+QQlVI4lLGRYPAhHSN4rBTbvePgE3NPD7CLo7TiqsOYn2bVl46zI2l7wCYzENpf0z1uMjsSL3Gr9XykanTOJVuiKvNwVXh+zxOvfbTQjdO4TBe8yhnZkX9+9LHtG0jxxkcbKF+8jJrag6zrWQjlIbmqtUbHmrZB1JUc54KHY0YsOlNbe/8Alyx0clhYuiwnGbIL5wZaGNe5VlK8yf9gwmAJDPBuFjDYclwNxP5eZBTlWkoqDKk1YFtETp9CRvQEP7OYUYT7JZ1JkRFhY96W/i0/NBXSQlSmf6h2YzAEFLl/x3aZPt1CMtRaOMZ+V2VpXqQ3xETwd5DqzFcTe05TIwDM1uJGFAxaprIvcI+bqJWzyISSnigsevsfRep5Fn5ImDSeMYzuETak3XcJfP6yN8hwzPcDlUWajdLRz0unc+DNdmb/esqvzUAP+TSVTRCackgw+XF/L38j35AxVe8v6BqtJ1b5AIHyioyhHDBdC9uqjDyrA/C0W9pwyZ9FAO8qeEjycwd7ZhUkJ7Ari/n5pq3ZT1hn0EXtYTKZN3lpO87Ju0ca1nMF7ynOOU0UUwlk6zxMymE832ijiGcFqAwvcuLIjrP6JcYlHoL8ROZkEH2D5eA+Di6S3MtY35c4a2V3YgKsysHcBzDv/U9nsBDMDxbsT7LgP6JfH8+OYeEjYpN4lLIFNv4aGZ/+WNgko+vvfIeZ0dvoL+mkk1FWzjkrGBfmC3qespSlQQux6UVjwQdLDULXuhdK709LBRz7CtiHNXbpYN+bfAjmQ+zgsV0BFFvqrYPSHsGogpvyYaAriJen2x9Y77IvAYyFzd733zp42V9mBKZYFxLaJcO6x8WlTcBWunmLt3Cq/JQ9nrYZ7uxiLwMA5EUbdrBCaednupWYNpPt5im9RExOVZn0uuwpI01c6zbIt2sZydvshlXEyRwuZl3IgFJH9Fd/iYjzPuWrT/HKeMZ+TIPeS9xr/sS7zi3UqITnJEGFOPoX8YlU5lYZK8q7L28nrbp42yr1MiGqkjH+R/4S3/T6ctBTM5dTbKD2/EwZN2eOkxQwhcHv0/3nEbedDZyUhZyuryRG9hLq3RT5E1EFud42wYLini2YKNF5ew1/vscusSke6yuOck/8slY1haPVbqHUh2je+oGJhoqKRxxuNxbREXtNXJLzdgEgTrpI1eT+3aIGkakMupeYJGZtbxLN21BwMS/hejYvw/Ma2azvMgG3mAXt+GqSR0YQcYtSjotCU4UL8iUUVtuZRevcX8ke8oq3ctB1hreP7tBdUPPNfrPGIOK8rPEA1TrIJsxEdWP6tP8C59mQkL0M78S4crcoJlc2Fk2v7aORToZy7OsfqpPBXaxwdfRcXqbDKQxA/CwOjioZNQItPd9IDfG6p1N15rP4WxGokqdnrbrT3DdYu1gigL6pSkyd64rF+GNb/idoXu6pY2u1FJuyYv1+4dQfmsAfsilNNnNDct280riYR+6nlHYPvQA7ZfP0TDrX3hMZ/OifCJA14Aad4izNEWeFadLAOjgBrq1lV1sYIfcQVjRpq8ruXqZifwi3zAU9cJLtS0xZZjNiMw2ie293088gTEhTGRkDim+ypO0a2a+T//54cXBln5pMorI8iJm1Mvu+D/mvcibegcTiRCHof0t+Gz+vdd7iU3yBqoJVM2i/D0e949uNL6LDN9vFxhTz3CfwG1so5Jh2rSDH6d9eq6LfiWo0FGOj9/AnlZzLPI9/gDiO9Os/WvyIDfJCbZzp6UmsXXS9Ai4lMuY7/OXRl2TpKjnVKRuR6Xd3qu+sn6TDbSEeAqzlqztCj6v5APeZj0+kXlsN53OCdxIHzV61vg0iQAOIoHMzPdOEPaHvUo+3bSyRR4kjkBE6iAC6rCYDnJ0BmfS4VDx0pCPqSEMdgR+OP+TfiSvidqE1fouLdINCn+m3+At2cAOMTl8/bkkE6DQKmbRfZ+bWaPvcVmKEQn4PHdwO+e1mj3cHOF9yzqX7Ofd5WsZTcwmRZLLUsrvXvlHUvkOJTJhMm3gEc4Z6xs1xW/yun4UYobzZSlln65hSgt5kw2s050smuniWG5bhnwlppNIXihtGR0srDpO98gf41YlrU8rdHpLadYeJikl4C+NGRlijrbduL4KGYxTWuj/eVGivIKVep5DspIZyYEGQYA985VFg7msYwdf0Sd5VR40Gyf7PC8kZwZpTNKkvT4PZjo92Wa2IsBP0sTZv0quQ+WSzEIEn22hU5ewT9YaP+dQuzxxODq7OWhvqCRTKe4efoNPVz/PHB3iGXmCNAn0cvZz11GXrfnlTOYX0FU7P9DBYVcBf846/EAeZ572g2J9ANOb5jhxdDA+Rob8GelnKmq8cgFNwKncOZmNt/quVY6G+tyUH8pjzLNobtZyvTUkpl8b9CRnZV5gtF1nLM4yL9q3cb0ZfkfoOUqCJk5wjrmor5/gqLSTywwljDFByHiOy3T8+depX3o9eU8beejChczff83ltwbgh1zWyHmuOmbhSEeKKg5M5oLAtZlck2xeCXbnQNGVK0zl5EaelQ31GmQu35K/CPKvRiaYsmbwIHMHx3l5+To8TB7PlezjA1YbpWnf5+BGc+PGnPEju5xwuh47GcLOu+njlk6W8KC8yFd5ku/wh8HkDb030+HXHuhoKvDpSZfQxOuVViackqy/xZXe+NBcTl5dzthYDbNm9dNVtCjw2wmXuJIKKRIBg1Kogj2earQ+a6hBGI+kfaL8ukSRr33OTVAdXwwDFMOPGUkHdKQvxaWRE4YzT2ymGNs3CZ2hgKtckQJ2yB28xUbW6fYgelshh+nMvon3bWBLIgLrvB3slM0+ShGtc/D5Rt5jWvOYL338Uu7N3pe2L8p1lIf0x8znFN90vhlBIX2Z0SUMS6WpkJWNt9nACCG+uPDz4+OPCYJawHFyzhUzPTufrtkmwCBJivXsoFNCkbyqmGho5R3ZQBtdbPS2UjsxDKUaBByo+fwcjzEP46aQJr3tkhtYfOUYToH66chOSIvxEYz3R/jv2GI45Jic0Om+mMl3aNMu/lL+3FCNhJ3eMXLyef0O4ijvsD46RvZfg5iavtkmd0Kuk1kPlBN583Dt5m2p7mdAGuh0llBTfIocbialCZK4lJ72OOUup67iPDkVMeqRiHwZNC67/jB0KKvZQzPdtGuH8bu17apkhFHmhPSJ4DrQWdfIUX2Uz/MUC7XXnIj4vmBRw1gxVFf9NPoo7Xp2so07+AGP241HeFxCz8hipNfoWRPsJB2+H3cJE5FAN3OPoQiJ9Ictcy+dZ4O3gx5a+bncC/4G1OEZeYJvzvoRq48Oc6kWumvrbR5lIapP0lU17gNdLOEQKyI+hQu8ExTJeITUGT+SWPxNutH5Dklcbsh/OwiSyLIZdfC4T19iBft5VR7kPDW+20SnzZDTJH1Z5IBo/2SbBxjmhAXazXmpZZJi4gwWwfX2f1k2Hf7zsupxj3dlfcTnNj1e05pkmizIaYaBZ2Uk68YzuN7Bo1AuM9mwiV/F5/DrKL81AD/koldmQeEJJijxd8yiHldzckGVkuJRemhlh2w2N1hhemPW7Xi+bjIf7tGXOMRyc+wQEmz3ekd1CAXjoWeISe5dxqVQxJ/Hjfo+9/ESu9gAQO3VIS55s6Bghp87DwSZIOxzHDyW6KGIgvHRCcRHeoa1kh5aaaGbx/k/+Qv5Vmj3ZRaesBGJGj+2R72nOCVNhksw1P7whD+XJkfN1u6YApLJHAYGl1JScp7RyiKGqYyiKWGjlpjiss8JAmiUVexlqbef5xxjAORIikf0GaNQw/5pMXTT1P86zsXG8rMLQvReJcF2uZMcUtRwjjMExxiu5DAZOl6cVmGMcl+5Kw7HpZWPeDt517kNPxAj8m6lEaO8u3URR2mnTTpYofv8QJEMhWj7ZLnuZ1JKfO7BjCAN/x7holTyrHyJ+VdHcPNj6JCGIiTlU8E42Gt8p/XwuIT/Dm1kDsoqPmAtNHuRFIhpH7w27SApKWYsMhB+z3t6Cxt0O3su3cbR0vaoXIkwo0lDd6EwI2kj0qGjwKKq/jhnyuG/iRxYPDKdM7qdDvZe+QgzRTnR7DpAFUPcry+ySbfyCg8T+OPFF92wAZF5bOXg0qJHOSZLfPRin9zEPm4yqGxBirt0C52yhFl6iblOIQMnl7IwbzePlD/DDtlMHwvxI159fSAB8hoMVMR46dQlLNRupiTKI2gk1My3CN+bGC6EH/A4H+NlE30bdy/wkS7zKrXomSKcpsFktgkZ9cF7o2MRNyLeddYDxr/2bl7lFE2s0d3cyk7eltui/RwuoTqVM8Z4dYK/kj83vHrhsVeHnUXtPDqTx/7yXaSDhMJjmcClhWN004Yq5JBiSgojgTYAqas5dBYuC9Xfo1oHKWfUH2dPhRY9ygw55MqMQe7D4xXZyBq/ti5MENka3W0zn5gterE3AQ70xQPY4v0Zn7OxzUo005Re9/5KHWJUqqxvqd1Eh++J6x6r88IcvNHfruMLGv4OAhmxzyhjhHEqrOyHL3P4SdXtrHHLaOTDLb81AD/kMtzfRvGifbTRQY5ddETFcl8J5wvn8nfyRFQhgBFWJzpBzlFHGeMQQkcyjIx0SaNO8xcxf2TQpqox/j0DWh9aUMzxQ6t004o5AuzJN5kOFnldLJro4R+K/4jLUuw/M1ev8nH+hfmcZI/eTDPd7GYdrpjMAYsmj9Nb0sR2uZO32MRX9UlUxR7tAqok1GW+d5wTidbI5F5EF7fLVl7mYQLFHo/qg/EwLUsGYhcyLFW5UFzGeI3Q3dzIm87n8TC5QF3SaFrajVyCfokZlrVXpjlbkI+iHGIlJYzhWhQppcoeuTlUX5dZ7iRNU1fYV1IdUjbGz8xDA8f4kCEftDG+8w/Ia4t1nPDxaObOV/hA1rCILo5inOBdTVAvA/yH4f+d14rupbegKWosIMZhWuE55zFc66e6VPfHhCoqa4ryrHzR9qfJEKNhoyp8j62nqwlO5M/x+yP9m6jHmqk9TBaURBdo+5wr4Qjb+EJinkylDpPLNOdkrvXbC80FTLq7XWzgMZ7iz7wnOSpL2CtrOEGAPuVdm+bn/Z/hR833BhGioXcpDsVM2JaF0etYhG1G/WJjlmWBS+Dxu1P/TKrAZPZpppvhK/NwCjxch6AfVblANd+Xx5lJJSlOTpAZ4XsdpCJUD8HjCzxFH00cCxsRIVR2WmHL/8Xem0dpdVyHvr99vh6g6W4aaMQgoBkbAUIIMSmSEAhNtiQjkzh+8fUky5YyvHXXyr1/vBvbybNs3zj3rqz7/rg368WxYtny8Jw4jmXJkuVICAk0IQECxNwMzTw20NDQQPd3zn5/VJ1zquqcxvkjEX7PrrV69fedr07Vrl1Vu/betQd5GCVin8DGccqfnuhg40XhJ/Ih5xrd71vTw9kR8CZoJ4dkEqhSS5Umevi5rOAIfg7zDpkBmNw1H9Zn6JUGXuOeLC91rGJDCjn0LxDaVJXXWOblLH6Nu73IB2WayfI500z7XNXaTFO2hZvt5bMMOKdue82VM+yKZthUlL6DEcCqxhsZNeEX7BlykyfUt+oJapKYU5Xr2MUMI4Tqeh7iWRNORvz+Dg0e75g9GPyckNGcwA/J0yEz0Iz5cceLv8eAXTKDXcwk0+zaEhPxdOUx3te55owgaGegz+EclNBwk8t6SAGPy/kZ4/UgO5jFwWQCayuLS/eeoExne0YHDb7LBYaBhDL/ub/WzjEsR5xHqyPiKOHAiCAszzUoA+hRf1s+qFJTN4s9uxcyVXdbLRGoCG9Onc3x5mFsr5uY5xmEgTcOJpDzVrkJswjNgTtdd/jpj4J3L9YbexKTnsZo5nZLHmleUC7QlNGi3bTzV/JEFvi1qbGbm9ngtXlZhvCX8lXms47/S/4j13PYS/t0WQcT2yDCVSqskSU8I7mht6C09Xca5s/Ckba9m+nskfYstV2kVSqpvVuqrUulvuy7X4YGQZzPNjTxT9Me4NXoHqo2mHOCsExf5s7Lb7BMX+LDidEoDBRE1TB/oBLRRy2XLg3N4KshZoGupcZJ6Xem0sR7TSPz8QFjL57mzuQ1Hkme5Pf1R9x++h0ilyildQtMHRnzsVtuSHUrxTr2XSViFzeQEislopcGFg5fw50n38YLSmz/qtTYAzINWG2IvJ/SLbjqI8qummMiFl15m/k9mzKLLFOnZCxWEzpMT9v2TZDW2sMN9J1p9BmrUKvmjjstIkCFLhnFURlvrrg0xvP8s/XXyDL2SDvt0sFH9Gc06CWv/bP1Q1l7/WzjTBIygGICHF+gyY+D58ITwFmjfTRyvli3hEH4UPIcDwx+huU8gyo8xwouXWzmI5vfZNal7YV+Eir8sPZRNrvelmUanPS3whwo7+qtXEmTS5cy11F+9S5CLML20WPZ1DibPuqygNjlgZT98R2RCRi2OeG+5AW+L4/yE/lExvDlb5lUmQlCrzTwqD7JI/qkdbqKSe3mzNW9seFs5hwZjbBMT50NOJWW09WRxpjDw39s90OJl6gtQ7Sn8CwdZ5gxhpQpDfYXwBvDbmNIcsHff2lbYi5lr0y9QH9fvdfVGRnJ8cqYTOBMqLBJ5iMC83WtD7cIKgbHaXrNfH7S/ZuQx9xzYQyYM49BTfeD49xh202osEEW5ZrIwt7MBWCvffdZyAQiXJYGImKu5xDYQM7pnm6XDpbzDP1RnQ+Pg1tF6aPWodP9jHTTbKb9uvswgz3x4TUfAtqWercXha2ImGlxF9e6/JYBvMbl/JkznDjezp7dC+mhOdMyJZFwtKWVKX17HEanarNaBMTBLq7EEkYhZrLuscyckQjn6btkuVrTkjIEEjH92AFuOfs+E3S/pwoPk9xvZ5aT/aPCT/k4g+QyJjF8DlOVWn6uD/OsruCiNpCnrBNONrWYSxfrnbeGZSbhuj2Ya+mnu2ZoYXyI8fRdo0uYqibe2sf0H5ip75NJXpa4u3lss6ImPtagqp9ZoKuxhX4xHo5pPaXCKb2O0fUHaUs6eUkeIrbtekxP2rQHq9BV38Js3chSXckX9QmWYf436zk7lsja2ihRokRJzImGYbwa3c335fPU725i9tbjLN/0Oi0Xe3xclMxh+jlxcvoCVLRKm+6zQoBL/PwD+Xl5mD0yjd7WKP/NI/Imin2aQSQiYbPcglqiZ/LSJmROKzmAGT4bTgiDehIPvhwGpZUTdt6Mx99ZGW6uzC2T8fq0m9jbOAmf2S8y+O64wvWT9nWjvs+cZFOhboxxeAE4d66V0ZdP5rgA9ssU9g1ps+MqClW1xMYpQycVxufWS9urSh0XaPb6KBuLENMgJgPEHsmFsO+3fZyGId08mDxn5jjQtCVEnGW43zeJg+cBip2zLXKT7+1ftv4C2A/XV9k+eoL/PGRq3bmzbaQMjCIcSGZkdEYLx5RmgssaltGh7dylK/lz/QvG6hEfVnsQ99BIRiPsfAzhgpfR5VxtC54zBWDWnrkBGJRm4AiY+IiSebPvZ1lALDwVElp7TxfqmT0pvH9+EcP7u4ttWdo1gy0sqayiotUs73oCBeErJuKf9eOM08N8vOcfmawdVOw5UkeVJT2ricK94zAykd3TIQ3wcYNPf9w2wnkXf679enm/3jtWCMzqF9aQYS6vUAc2W4sS8V15PMupflactU/KrKcMfUQnU1GEibqPz+i3ma2bSvBRti9zO2sXD2b9JP64C8yrckfPNlq3vF/S7gdbfnsFfI3L0OMnGTqui9aRB5nJWZ6lSlVN6JCp/XsYd+kEX2x5gtdlCWtYZhe0FDeY871iPSn3M9UQUFX6pN5mG1hIeL0Qacz5pkHsamqzx7exq4lI+Kw+CZAZOM/UbTxLbh+1RW6yx7OSBAfYe7KQ91hAJObQSe2/ep2rACOzRdZWqsp1epIH9Dl+ph/LGwolKPtomnZwWCb48aQsDqax015J5Ju0SbvplUZO1PqZNKo1gXec7W9LNJct3ExUSbNoRKjG3KLrQCh4vLlzsadmusVkzETtZBoGVnMtkJfBepHRPeeIkn72tUxApUIMHBs2lPsqb7K39g66h5QxCErhWrFEyxRLDXfrSwjwbR4jNbw3Er4biiHiH/gkp9Pr11DTI8b+a4m+QitddDGSV+Uex8jeCAuD9DKXUpstZ7JEY+LBSvPwI8ACH1YraHQz3Np02mkLPEiViG31s3Cl+FKmJNwTIX4Q6rhC75VmaPB/T5mKO3Q104buYbicJF+7sXUOikBjhumZ3FMU44m9lFd4Wj5vnTLyPl3HHSGmMQ2ZUXawOXgzY0uoIWHy5f3sHtTO9/lclntVVTk+dTCbedCBzdeszWQrB5iUOexUUJb1rmb94JuKnq7ZHko1GZUifO7hHcwjwJkGgajEIacwTvfwt81oTA1VFlReYwdTrCkE3nocfrmbM4OGGQZXIxPfUE0WjgvS7OMwW7v2ytkxbdkst3B/z3rW18/iRF1TgYnKmBMxNnHmedA20CP5/oxscJaEyAQ/15/zC3mYxJq4fFifo1Pa6UrN/wMcbRw2O7NFTUsT3SzQd7iT1UyVDmjq4Mt6mp3MpEl6eIrHUWefpHBvlZvYEd3IH155kq81fok9tLOdWczQbfxw8CMUsve4grY6GkHSSBENA+DIx0c2roHqZM9saBcXbmc/1yi09J3nbP3VXSW6cDyT7Zr4uT5MH/WM0aMmHqeF4WKwPlQqxBplwbQ/zVMIMX6YGmdMLpzpZ2d8EQnj9WB+AxDiVk24rnu6D1EXDSDwfYDltxrAa1yGj6hh8E0HeH3YrQBGq8U/8EV9ghtrtpoMIcApHWXz9wYqdvd6wj6bo++xmNXZlaNSYSs3sVluoaKJTRHUzzx9h1uSdwA40jTGEgQ/u8FJRhltAyZHMMCfJV9llm4hPRgTm+cig8EudqPNrFirkCKcqYYiQu3VaIWTMorvR4/Sj+Ph7BCGNEzIs7qC3bTzrt5a6BegX+sMbpznwzljbWf8WGn5Zk7x6WxwK2WmcCiRCZIdEoXwsLPtJlT4jjzOj/STfJfHcBlMgEsymH3NY9nXMj7TrtVQ5Y7WX3L95A0cG99c3g9grrtcnKovtdu673Kr1UjlKbLadWc+Vlt2ySy6KiPycbjEzeL+TlnNcp6h9cLZgo1bAjnzlzE+mqVdahuxnRcrH/HxbuvNuthtbfuCNF4ug2fXywT2+7gGBnPRjH2AeQg/b5CF7BrU7mtobJ2YiA2XbkMkYaZso44qkcZUSDJtfB1Vlp15m4rG2X66S17hNe62HpdmjY3VQ0zXbZbZNn2M0hNcL4d9OENNiTO2sXqYL+lXSJKIr8nXrfew2PVYYXV0V5BvGm9NNNDLUl4h3Q8JsKphSa4dKTnQTH5ZtWuMbK1JeotQxgzaz0eGtIC7DsN6QJuGuc3N77P0fb6oT3C3rOROXZXBnLYVEfNw3T9SUaOFF5R9MpW/jL7GKrmf8wz1+sk/i2/CIUKVCi823sqJOkc76L4TaLcuB2s7hz2lJ+Z5mjs4pkIvDZkdoBLxS3nIfzfAURJGawCW6Kuco4XvJY+xinsQgXbZxUf0GcbpQcbr/mJbWOZGIvbUGG/zqdrBcn2GQ0xgT43jUFHKyPmMd632WZz7NAGgLenk+stHGZz0MlTPUsFoJ02dLFqhZY4T0ivmCSncIT7sup3XfYZD9eN9nAdr1b9yTeslbJBFbJGbeVOWMEqP+nXK9plE9FNDp07KTYrc/kJB06WxzhpRIg7LeDzaGtDuYXqahediLkQ3F8f/AZffagCvcdk77jLfqPx5FgD6SzzBcjVJxXf3L6JreCPflP+Uh3FxN4AtY/WwCWDplKnawZ/pV3lGft9cr0qFRJWluor+Yy2Mv3CMxiGneanpXpLmYu7MNI3a8/JR41MgEVVVdjCL+678C7ed3ci2MTehGYEe2NOqlphP8xQv632Bh7IhzB/mOQ4wia3clKUiupAmHnc2nJDwgD6bhdeoocr85G1zrnqMSsxd8gqdTM4lY1VOlzndO/AKSrtuN55wAZ5Hxt2crAyz0nFNbieZjtWWivYRS53XrmrEL6KPOrhSQBmmp40GxmoY5up6prCHGZiAxyKwUN9mK3MCnNmQP0SG9dbEhmtI+LQ+yRuyOB8DsJC1uR2YLU1ygdt1jbne85gGo+kapmeo4wonZCwp4xJT4aBOYIp2cLgm8LJWJ1Crs5ZSHc99vMABmeSFTXEJ68jBG4i424RJKdOGZXMlHKaNUXqEE3J9Vu9ufYlfykM2NIY9wK6qoYjQCEb0nqarYUTO0FumavCp0STjKyQi3MFqTp8Zxx28RuuIQ+wQo0WZOqyDcd172dIygyOMjV0F6AAAIABJREFU4zvyuElH55Qb2M5+Jnu4Oi5jOc5YImKuu3iapp7L7B493sBQctgcl7Ec0gm81bDYMJKeEJBYxtn1hs3HXbG5hA8xwawZxV5SCZl2zyljkyO0dFfZNWy8cYhQGN9/gKN14zBhohLm6HoANss8Ek2PYF9T2EAvvTQVGPgUx+dppqD9QannSgaLCaZ9t51TSCfplIxCxKyFmBrWszAft8VJuma9taiSP9YEUUgEHw9l3v7O3Jn/YeByxwvZsxUUtsns3GkJqGoNV64MQQYl/tV2sG7SMoF9vCgfMYJrBfbxR6CwjJXspp1vuEHEXTgtDBUSFjW/6v1kHNJ83BT6Dxzrugc38zvJG9ajGW/8B6KJMMi8fwljl7fo4jpmNmxkndya0fXECU+lCA1ccvrzz40KCcNrjhMz/Or7WBX/JiShIblMb9SQvXdCxvjvOXVDOnEwnkQ1y+9t7LW9G+DwnAzgVpvNpnQ+bOljEFubG5jbeAPXuvxGaQBF5K9FZKeIvC8iz4i4YdGvTdlYNzWzdalSYbvOYo+08xwr6BrRyBsttwZaq1CyEGrEGjPb5+/JfP5RPsmP40/SRie1jjPCHbzGcn5KY+Npvj32M+xvvj5/N2TebPuKZAFgZ7CNQYN6GdPTRdvpE/5gJD18c1jG6iE+pU8xTg9Sk8au99pXemng9/gxtVRziTE9CAPpao+0e/jaL5P9+hjiYrr3idoFafK+11QdI3A19omt0kWrHs/xbMcxPDrqvetpGpwNHktgdGzHqSlTktWVgn3KULq599LKjPnr0HZ6aGbG6Q4zEmtjN4QL2XVfgrCsu5P/cGQ/X0y+wng5yBw2cTurGaXHeIhnuFtWMlR8u6IebWSt3AGutJtpWWEFP+E6OeXhVjHBZfdIO5frfdlxrB6mzaYLy8YNpHY5L7Kcc2EsLafeYnmNR0gN+UuMwR04EiqckOsRYoZpFw/xDPNlHXlojOCaqlR7ajQFXQ2teMyCrZPUNLKn4z/z3+SrvBrdw/YRUxkxPNXa5VX3trSxSu5jl8zKr2DtXNXQT4P00pmuURceq81s4CKzju1net/OvI6FLYUpocLT8hhHxPGGtfUqxFSIrcalhGnGpPkzgc1zLWRmI+vgOSLhzsuvcl4Gmzh41nHrUF0bceZ4ETFF9vCf+Gs+Vf0OM3UrrdpVmK9LDCkC4uyVszLCf24aYIMs4r/K1+jQVEOl+bisNv4FeTgPIm2f++0782mfiSbWycw4hczS93mAZ8mYnIx2if++C6MjtIZwA3YOfCHoBGPyPuy7e1ra8nYDzavLxNbQz1TdnTOQ9reUgdtp41WW0Uoj0Cbc3ruBdnZ5Py1wHUMCxtynZ/l6TYh4y4a6KcbgE/x1XWFofw/LWMkCXUvm1BLgNVvP4bmDcXga338suGUQZ57M98xuOxtgZJi/cH7se62coFVP5JpDp54iuWbU0sGH9Ge0J9v8uqUMcwlD6J1z+W890swXx93N2ZnXnP34jdMAvgx8UVWrIvLfgS8C/+VaAjSoeoFIFSWmoibOWZalobVKq/pMVqRVEqn1FlaPNlu6ZRkgrZhQBLWwk5nMZiMndTQLWMtU3Y2MhhdlqU0en246ZThdnGGkv5hFQGNu5H1+V39Mu80G0TryILd1reNw64fz6Ox2k89ONnJRhnBAJnNcrudpvmAtxMo2jbCGZdzJaj6lT/FdeYzE7TstFs6dzLRXxsY7L9N8Bhq31XK3955hwXxpMbP9c4jumyzx+UYRc42eKSFcYhXn2lfFhzc7xI1mpoISp/1nddzYiTF36OscPjSTKVPXs0em8I3oq1SpQYYrcw52cGpYE0eaxnDRCXGjRFw/9GVmXTpITwTfkCey0BsiCS/xIPN0HRPpxNWUZiEeMo1GXq7rO8H36tLMAeKNOVFhh8yiBZ+hvIHt3KFr+Jp8DUrSPCUqDOm/BHWx+d3B1WC9yOssYaJ2cjPr85SG7qFbwgyqVjgrI3iJB+nVBpMBpUxCD4m1HbPnCBMQ8FljfsCPGr9An9gwIUS8wZ28IXdl2uf7eCEPjuv0GxGzVFcykU6elsdyrV0gLIDQOWQi+26eQGh64TEZFn/DOGOyEThtzNQtbJM5ufG5O3Yx2up/5JO55hUT7qYs7dUs3cw/N3yc/obafN5dpsfGdWuih9208//UfNYJ85L3O0y7jHAj/tpBExr0oonrVxYWx8IXaw2vs4RW6cquU92DV9VoImNrNpK2Y8KCNBRw3aTdDK5eoatmpGXxlHou29BBTrpJb33k36/vOcbRxtGkbIKpEzAmqkzSvYB6Qatz5sMpSiG1XUPfZXrrcoPUybqHT/MdDjHBvpDD02Zjcs5gO168Uk8zZoLR33blPXYPms4OnZndLIznYG6TWiZklTK5FOu7jGIwlSPqj7Gbdn4gj+Y2jSEjRODo55w3DXKJw5emFn9PcZq14++Twn4P1nAXJXmWs/9+iK+ECi/Jg36mpLTNkGkN17qLH02oENOs3XTLCFQi+iVh/SDlNq5t+Y1iAFX1JefrWuBjA9X9oMr0Uzu5o3cQe0aOZWrNdtY13pqlhKuqMkaOmgwZdjElEuYMVcbpIXOVOADTtIW5IPA8K7jQO4wvNP4N5ws5ITHMX/bdsmtqYnK1aSc/5eMs0LUsYyVdpyawcPgqBulRfiyfNBkvbH/HZAxjOO44d5QctE7fiUZsVxMiIA9AHTKhmsFp2CpzmHiG9E7p1womKbixE7qRzWzlZtRjdkLCGWgOSEPjFJls83vEWDnGJO30r1IdaTRtd2YQGDuco1HJcd44fR/Nl6D3/WH8cuZCqvXmKkJRNk2YlhNZBx+iVS5KE4cGX8crLM3WDprGaVO+Kf+RcWqJvlQs81NyaNhyIW72MgcM5QznGZathRm6zR5MZO9Pkk7a2cWkvuN01l3vtS3pYZSsYX/SxsFokvfuJRmS50lOtTAh0deYCGWa7mSvTCfWNPxIRL9W2I/xUM6uX8rGNgAjGR5os9nIxmgeu1smZs/T0DpuusZ1FK/SBOWzyZMmVqWs8DzqRZUbLu2kYfB5zjKcTplqNRglMFtHE8HErKsQM1V3m5ykjsZri9zs4AsfHlsuSpgO0Vwrhzjx23KYK+cAjanwNJ9niawKsqXkODCa7ZxBSrWNEQlXZBBF5tI5yJ0ykwHSRCLcyhts1luMVt8+vyyB5sc+75EWerJbUuP8tEEW2dEkJGpY2MIetXPWWB3qwFjCcNgyUfZxILjuz5ijkAl04STick09kcYoERWqfEa+g6pJ4ebnlU1o0F46dDpvnr6fic0H6KyfXGwb4d74BWqHHuavoq9kQsun1ATnLjJ/KZMfMDZOe8UuSvaSHdeOuums5dbMWclj8EKGy2NcjUOhXKihttob4CnotwynZfXLmEOPtgRnjdNPn9YUMyWFYy85c93Pk3UPS3mF/TKJNSwj0RpqVbmtxYmLeI3KbxQDGJRHgX8s+0FEHgceB5gwYcK/KxD7jl/izftvoj8SDrOUlL1Jr1zn6EY2yTw/lZsPLdujm8DTbqWap+JBt7ppCXcmL9NMd76nC0yWIQYP6jM00MtFbeD5KA9ueqFnGG29Pei07iDHpOmvS0YbSctqDTzi7cCfxteqkHCDbivX/LjFORwTFc/7LsTLaWnNnDcUyT2FPdRdRWrL3jSXBd6B6by7noVUxCabd4KJZnkbbL2TMhpP2xAwOCei0ZwYOYaoNeHh7i621t8YwInPgFpYaokZoj387bA/ybUxHmGrcIIxnJAxVKiilkmJqSkyvmoY3ouDBntoMjkwDWG+N3mBHTKL09KaMZSiMT3aBCrcIBvpJLfNm6wdDJFeFuhaoijhUNTmj8stJYeCENOuO7mewyxmNdPoYJXew2ss44BMJlFBqbBPphGRUE8vV1zX3oEIdXgl79TbwY1slTne8zbtpC3pRCvmHSViStLBicoYB9aER/kWKvDf+XPatDMP7g4sP/M8s1vWsYsZ9NJgnDnKDtyUYcSfn0l0mjXk2hgNxMgXDlv3f+J7gDrClbtuCm3Z/1WtZYfOxKQddJiiDHb/kEyAKeyjVvtMnmlv7SsNyUV6Iydwu9VkqsKX5Al+rg+bjDMO/CawfLBnrfbIsy0s0LX8N9UKCTHzWE+zdrOY1bTpftZxK9dxnK0yB5WIXcMa/PUTMgyqmbd/dvNg67TRmTOFbgnmO4kiJuseJuo+s86lg2dZkQd8ztoUNlVv5ae1/xvxyMgw1y6T6cC0I7qRIfRmJjN9Ct+RPyw3FAgD3JftmRJmzXvXebaxstCrZ8LVCDhZMVKzBc+uVY3m7Z+bfo+bh2wgO9cCfHvfQ3isg0kstVQ14qSMxctw5I4r3H+F8UXskenM1o1GQCrBcykMzrNhnMns1iNiFl9czx+8NYSZp34Jn/gy17L8/44BFJGVwOiSn76sqs/aOl8GqsAPy9pQ1W8B3wKYP39+6X75typHpt1Bf+QQY2uEf6O+z+/yY3YwK9N0lG5MkVzrYUO3PKJP8haLTXiEApFXdspM7tA1rOYeY0tDyabSmF4aaJBednBj3qcqa6K7mN22jTMy29MUeZtKIkSrTNK9HJRJVNUGCXU2WPppsnbwnizIr9PsWGyn2aOxeogTMibPP2u1JAZ+POJwkSYPZu/zQJvfg98QqyRjrK2NVRiQ2xp+m/zEhvG7vf91mmu6zXhsvSHaAzLGG7/bd35Fp3S0TM41dFlf4cEP8/Qd5mAMrXPNX3AAOvPexj7m6zq6aOVVudfX3jjMoHs9lVovGiPuKr+MlqOI8VgmIVbDyPfSwLPyUU7WjMzxpFUOyBQUYZfMZHbtxpwpdnGY4iGb93xtq1bYJbPYww1MohMBfkBOTEfoabpkVCYUXGGw33bJgWWuv4K14ayFWJ1Yivb5/AvvcaDR1+4Mii7zqH6T12QZw/QsD/Esh5hgcnZjhKXbWc31epgZbIPh8Ff2it52SvEqVC3ec89Rw3TVsIm5+Nqg4tx5peywtgehEQbMHksoavH8OQkORig4nRX6S4vdR3uZOoCQJQXmL0J5zWYJ+qI+wZ/qX/P1K1+nY9CMDP44pYmJYSAvVQYbdKJ4Bg1XWQfp+trAAhBjivLnfIVP8EOe1RUmd3cZDoJ1IyTc2/dLzjASrcvNKtIUml6KywAGQTPmpFOmcJg2FutqVKGRHjOagKHuqJ2SfY+zdGf4eweT43umbCNN+5hFLHTOhCxsjVaKayoQLCpUmUgne5mC7zjj5IV323f29Fxdz2a5hSomxuAD+hwN9LKXqYa5D9ZMrBU2RvOouFp9rwyg5ADQiEMy0e4d+xOxVS6UXHs78xHCASY7kdGOB78NsKb8/ZJwjLH0Y9I1qsKoht1U4m72v7KHmb9lAP9ti6rec7XfReSzwEPA3apls/7Blvq64NrCSh31XEEg28BqvRvL7TByqUoRRGAshws5IFNidVpaQeHzR7/HquFL2Dt4ktVeuZ5fxo7OaAp8InpyyAheHrKkOJjgEKkl5lP6Xfr763hTlrA9mU1XfatDIMwG3iWz2IWN9u9oIN12I2I+xAscYBKvcF/2bgVlqu4wXq+2DE+6OBMNLx6u4WGgNn4hSsicpsWEjqhmXreJQ4zSq60aYj6ZPMUFmpnBdtprdvJKcq+nRNkn04LxFUuq9V0oa9nBLKrqpgqKHJSYK8GbZSPf51H6qKFADN35sM9n6jZmsI3XWUKFmKradjMAxDJ3KTML03Qne2S65z2qNrakeWJ0EB7zbvtOQ0SrRPQrHGNscS4cglkhprl6jrM1RfuxWCt8h8dZqi/TL4aYJip0yXV+v+Gce4dZzGT2MoajxtazRHoXy8y7GtK2cwfR5pijQUqyc7SwjJUs05XZs5/yca/ft7iTz/F3vC5L2K+T/SsxFw+qNpAzmbOGv9eFDbLA4LxMC+L+t23drBv8q2ZbRzRmia6ilVO8LzcbOlEmKHnfB8hRHdRt030MlkumTW8eonJYC0yhZNrJNOrAoEM1XBrT6PUrgGgVAa5EJlNJhPKh5DlejJYbhsaW4drFkP5L1PdWjQOGhIJo2l8ta3QJ06SDmbKNClV/D5YI0+n7r9Tdx6fjb1PjxHF9iGdplw4+p9/iKflD3KvgmrhKtWIFjRQOa1rwvDzMULpZwzIKnvUeHLn3cRmd2yPTUYU7WcUquY+iJi1hKStp0F5ekI9S0JI59VqSs/yu/JgJcpCv83XHWz9mtr5PG528J/M4xjjbve/wBnl4HFUjMH5CfkiHtrOBhR5u0n7VRkYwN0Mh7JbxLc1vnc9pPhRztR6Hntcho1um5S0z0Sg7V7x20/0SeXbqSkQT5zk3bAtnaqZyrctvmhfwhzBOH8tVtfdawwNwuDHN3essMmC9LOQb8gSH1FxBK4b9S69NTSqZnfk79k+J+C6PMVE7/RRwkm/CVdzLN6InWDVkKVyJyGKhuQsdzdK1ZQGDMQxkFkIiMP52N9xYPcSXeIJ26aCuto+1tbdzun64Xz/dfCJ4hCctTnsJwtPyGIO1lzr6Ea1SIeaz+iR/wA+pod8yUP18VH5i4w6qhxtw4Uy4tfdd/vj037FMV/pZFOxGN9rUb7FUV7KEVczV9d5cKcpE3ccDp19kyv4uFh7fQrvsRATWRYuCMUg5wXEOwTF6hD9LvsbS5BUWxm8V8ZD9Nw41P9WPWYYidCAox2MvDfyVPMFrci+KMFaPOHOPZRwSlp9+nrt0JREJHTLDZGgw1mhUskwg5FqyAnwpfiS70lciG44hiLunSqQxdyUv8ef6FwyuXCzCbusnROyVabmZQGqTFWpWXJicsdUQs1RfYS13+G079ebxLkv0FbPP7Jo5NHQc/yx/wC4phm1wh7xH2qlLw5ikhxjwlDzOKu63QkDA+Nj/QsLNusFctEvkMQb5eAJy7WlN8zJZd/MX/J/8qf41v3/px9Ta/QK5kDH83Dm6aOWI+kxtaclwXWR+fFiUw9JGBzOoUM1iIHoZiMr+e/hwHaOMU9yaYbeTVPz+RnGUWbqFG6vvk0hkA6hHXJIGlmoe8xDgjLRytHYsjef78RiTEkHsHC3spp3tOovP8m3m6TtkdCEdZ8gwiAlHczFqyrITfVGfAOBZNYJRq/opxqoV62AVrFUlYgOLWMV9XjzJcD4qVJmn7+b716WhGUwV3u+fxx26hho3ExAgmlBHPxO1k5fkQX+MXl/mhuVcNIwfyKMc1AncrOttvyZ3+Qr9MbfoerrsxZugjEhOZXMgxAylO1sHSsQaWcYreg87mMVQPZPPh4MLweS3D5k5B7jCPBTqZWMWa0YV/FaC2zLafFUaY8+TDJ7wLA3a6GQSDVEbza3XXv927SH4YMvfAPXAy2ImY62q/tG1BOgezrJRE/qwSbSzBR1R1RreqS6jWpt6wrlWQcp1coLd3FCQqBONeJPFXtgHt04aa29PyyTbWlHyr6Gaa7w8jV2V1DDdk3SCQ+FDvMA0OkBgh85yDMadK0qXIFn2dsAiFWJVXpTlfFafZLPO5YBM5DlWMFH28xn9NpuZS7cNrfIIT5rQF+pu+hwXNcTM630PgFOMwsuioGYzt+sOROANjOdnJHF+ZSPm+mifTOPgiIkMv3CBG3U7JBUSSVjAWrbKzVeVFI1Hd74FLzGYc+daWU8rbw9bnM9J+L4auxkvi0NGOK1knErU9p0KVfYz2bkqjjgq4wpzrwizW97l1b77qdY7SentVfcYPUq99jOT9/mX6KFAS+n3GcamUzVMZyYR27o39m9hZO0pRKBG/fysYTmuo/FsIV2CHfYffK8S8Qwfy0OIhIReE5q1GxAiTYzXttVi5mYAeRnqeEKv4h6+y2MkItbeKbKoDZjUAQQAVeEYY+3B6jiGFISrcG5NmsdNMo9YK0SaUEsf39PPsVRe4a5Br/C/d/8vjgwdTS8NHGASo64c52ctH/Xjx5WtU09gKYbNyA/gnCFPQ5aIKiM4zUJZa2hUODcO/HmbktMHlJiIp+ULaLNzzWnLScZwUsZArXoCwWq5m//Q9z2iuiSnXZgYlt0tDbiOUAXhwU5XFoWBKnfwqum7zGvZwYVJ07aNdulgmnawR9r5Bk/4XtIhnl38Fp6VO0ikc7FEX+FRnuTr+tX89iOgFRHK5Cv7aK/dxZ/zFdboEgAGJ5fYGM0D4C0WD6iVHqpnOCcmc5FKRJ/WGE1miii7P94+/GHeu+5G+gbVZfCfjlqd+TTRKKZoB7tkJkhErJGN+BA4QTk4SKgUTQ2cMY7kFKcYVc6cldKFqNiOK4B4azOIJVnGDHr4ioCraMkdGM/RwrkRCQd3tXAT17b8RjGAqnrtda5Bua/aTveZ1fztiCWe7YpoTEVjphw9y442zVXutsRa4c3IBuUsaJYSnyiUHTrpb5DTVvt8RHKSVjEH8i5moE64EsGEi8i95YoHlWjCBZqyR430kGaEMInOYuvFWQGrVZyuO9kt00m0khkMq8u8ZcytsKG6kM21t2Q/dTGK9TKf9M51r0zjUf0mv8MbeR7TDLFmc8/R93hDlrJ1RDuJGM2p8fhNrBWSSTG1kxmkDKsWDizTXlVr2T9hJMvYRZIIl8+PoP3cUT437u/4RbSckzLau4JLSxKkC+uWEfztsD9hUd/bRRu17HvMiOpZTtfYK24XlrDYiPvtupPdckN+DV12deQwIr+IlrOxfj75wW7eUSoclQkgcIgJLOItc5Xq9RkS4Hx9RCR8iBd4mi9kdpxCzLa6G3mfOfZwjgZuD4oZYvIvObxlzB2AljDNXn3hVbnXtuMEtgbEhnJIUBKNqGjC7cnr7JJ23pAlvMY9uR2nxkxmD/uYWnqwljOoYg+7MuYrP8xmJ5vYEuWeqreffpcPn3uZ4TV9bBkxnRNDRrDLmn6YjCFwV/NKmjH5g6vUsH3QbD+OXtkBWHg+wOFXGIf5TamwVW5iO7M9T+ji2AhKeuUZoSrGQk2Mt7uxZRPLeki+pxy4Yq1wpHYcj+iTfEcey2hIpMqcK5s4zChrj1w+9oNMNCYV1mniCOMYyFnIZWI/nXybaTZE1m7a+al+nH4p8ZIuw12KQhJLY0psMh3c1lDl9uR1du9ZxODrB5FGhQr3wwP6LDcPeYfdtLODWSxmNSLwtcrXMwe5LLppCfNzLo1Tmo0ztD81yQFeHn9HcV04wp8616BGwImtOUmJ3WGGjPL179Zp0Is5vzWgAPMrTBfSZ26xZ2gWBFqC9Vu2T4BSB78B+uk+dx210UiudfmNYgB/Hcta3cqpYWcD4/iESbqXW3fv4PbKXkboRiMtlWmzwoWpJpq+Fw8rLGWL2bneOR1dx+ksv6IflDeh4ntIpsVZ7IIyg22ImGDGJhaUuUKco+8xhqOsk1s5yWhrGCvslJlUiLlLX+IOXc0LYj3/AlgrxJyIRpf078ee+yUPFDRNblub5Raqrc41jHW8GckJay+TzoXLZIlTPyAsKHuknTXREo4MHUfP0GbGcIwHeZYf8Cj9aq/SSw9BSygloqoVuhlq4gZa6blFuzkvQzF2LDEPV/7JMlFlhAuH6ZAsSZ9LbFs5SRcjQQMmQI02JbO5yWArMgCx1rBH28m0cQMxBM6avlNXsYyVnNRRmc2gWpEgZT69d0vmLgmvu0ONiVOG6DkuylAfjtK1nz8vXDfZ5/V6iTY6vQwwa4/cz2vjf4d+8dN3CcpdvMJBJgYxMp02vfly1zH+bx4cMTNke+apOl/XMupCLz8c9Ek6xkwwV6GBtnGd3Mp4DvIkf0wfdVk72X4P+8/guBqzmn4v0Yo5dVLHIa+vsO2BDuTgIK0l5j59gRdluclQkjHpweGMsEbuYhL7iFBynW3CmPgYd6pjD1ei5TmFmyc8okMc22QXZm+8ZLlfd1tGO/fId/pwxm1CVLnX3TG3xm/wVuVOvFLAkRFejxyewda6uRyvDvWq1+kl+myonV/IcgBekgezG4wWPVOMl5mtiZxuhHNZNr9purfMaSyc2xKhwYS5iZmmO42TojtOoKJV4lQwluL7LgwndDQiscWjlKwbk7pRMTbE3j4sYy698QXKhzIclDH24doYAI+CcGXsrzDd+QDKbxnAa1yqvduZQRcVPuZcpwn7ZQrjuUh0Rlk68YeMk4O8IUvYntzE8cqY0kMq/XzZy3Dvl8jGvSo4PYhzzeIt6qLdkerVNU9zdZ25/gV2SH79q6psEJu2KVWXO9qoWIWNMo8Getkst/h92DFO0Q52V6aX9+/gwVxvlktubeznABPxr1ki2qQzbah4OGp6RS2ZJtNckZtQDOdo4et8LSdewFHGs5F5PKJPsl8mcU5b6JKRJixEBpNxOhA0czDZXjcbEwEObtPXqfQrb9YtzniD8RxkKa/kzjBBERtPDDFegidklPd7M+eo0z7/eiUcp6f5cb6nxB9zzf08Kwr4LTvsI5SJdCIC29X3Ki+fQ+cAcdv8VY49Tpt/ID/iDV3sOQgV+wngDTVe9rfL0pBp1hAhRtjUciNVCQIVgzUTcMHXHIdpm+Gh5vbvjs05qCKgSXr4Gb9PlRpelOVom/XsLJkjgDbt5OuSa3zStV7oL2TCgPxKSzy4avUyValDXY/KwgGXIGq0vlmYqIJQoOXz582DKQv0bRrotWuzAlqlSXvokZbC/CUa8a7e6jE6CRE7R05iCauMSYdWENQKUUF+dQcXBae7ARjBc9LCc7qC09Lqmbu06injqKT5mEb3XKBernCgaQQmWkLMXF3P2sodFNZJ4b+wSeaxacJ8YknNDPLSJ4MdPFR4QT4KaJaKrSugBXm7gbPJQMKBfT6bjYzUk7wm9xgQShnjkn0qJkvTWA7TwQ2O93FiA4i3+vWv0tblKDjngjVYp1e4T15kPuvYziyO6Djekjvz/WJLAxdo0Is5bsrW6UC4CT9fbW/bcoFGxg07yaibPlv6+wdZfqPOyYBRAAAgAElEQVScQH4dy+WuQUxNdvOl5CuM1UPmoRiD9zXtc1g5NWaPTGOnGBX+H0b/Cy8he7hRPGnMpA4zn029WWxmtm4Bx8hd3HbchVy20N0FPgBxuFk2Akb716WteI4GWeqecunnLK08LyvyFEdB6aduYKNgzcfkEdKsriLEHKCNMibvBR7mFyz33/HwYGAfoadYpG9lEe4TKmyQhXnMLucvocJm5vIGd7FRFnCYNkw8wJwJTm2EjNdsZO2oKigRb8oS1tQtsQ455rfneRjDwhfXQUTM1HhXBrtSYVy6rmydYXqWibrPe+Z/dgigs5bE06dUuI4TPKrfZLZuytPA2XGlKdrm8Q6p49D35PP8SD/JPplc7Dt9N3sWZLUIr969uSaH1TKPN+g2xnOQ23m9+J77346vVU/kzgq23et7jlGXXPHbd8rFIbWIgiQmH3NaTxFe7n+w3Ii/wGilGta4iJPgIBESOnUS/Taum8kvI1zNFGALc3Ltb7gfyhjwrB3LFJS03S+DMuvI0MnMZYKX6kru1FVktKaE4Y6oMkStI1z6W0h7gDflThrpoYaqdWipmCDwbt9gMwQl1HEln0/LOL1RWQKQOWrc2bOGaCCGu4CPoI73W8JmbuEn8glWs8yMxTJVhqnwx32yaYhh/pAsSPpQuvPYjGndcH3b/wmRYf6krL5f10ChmbbO2yfhHg9L4YxJ+4gZqScd22kZeC0R4NQKvHfKah7Q5xy8CGdlJDndHoDJ+tf8t/X7ZBDPs4Jv6R/TqD0MksvWtMZf0700cEZawVsvFHFUtj7KmD3rpDlB99Gk3YzWI16dXTKL11puoPOtC+V4/wDLbxnAa1zqBi/k6N42RIrR+RXhmWEP843oCX4in+Cv5AkOywQy6aVs43kbVvy6wBbmco5mcgZIGHvB5r7N2kpyzyznUJ2tGy3T4RxWEsACdOokVnEPX5f/yiq5Dy8VUAkjWXqQhEyImqu1MRylPD9kOv4ky49aPExSu8Oo+J4YRswLkIsypdpBJXBMOMMIa1voHL6FfKR5MXGg0kNbbGgZe8BCxtgl4WGe4TZ/pkRskEW8ivHkbaAnGIMwKLqSzyewXW7iIX2GsTYbyHuygLVR4Albdhg442jiXG7Mbuus41aWsZIHLr/AIXEzg0R02xRtxmfBHFZVanlePgpO4NchnA/wZpg3KcxRfjBM0H2k3vAFxsHW3Skz+Tpfs4F5E7x16v63ZaLs5xF9MsurWyHmSNNo+qL6Yvt2rfZWGklEGHL5EuKEShKUI3Vu4PASjY43LoPXpvis31fADMZEvC9ziuu/7FCy39OryUL/7n+3nfxBsY63RgzMY/UwhWIFn3O0gJCvd1c4su0m1HBRLD0KaYk3NuGXPMin9Cmbco2SvaJM0j0I8J4sIEFo0AsO/iq8zhKm0cEMtrGmaYnPdAVrycRiTIq4dfAhJNygO0io2PzkkU/vACPsxozSY8zTd2zs7PToVT7NUyxmdcFT11s7Tp/pjUEpsxoI8BEJN1zaycxLO8g88MvG4rTvrvNRyVGGaZel/YndGyZO4xa5ifwccdtLLB2u+vnBTaWsm14ayOlUkeGrob94LpQJEmkdt66zB47KeJ6SP2IV9/jwZn1WrIY88t8P8ZnhyBFOS/ApKA/ocxyXcVyUZpsEwKevbw+6le4TO4r4/4DLbxnAa1wuD9vExWn1PMkf4+brTDd3QpRFcq9S4V291XcQsAxbphVMS8g8OM8OphoYu/Fqavqo0SQ7+B7VbzGPdQVYm+U8n9Unc5I0ALOwVm7nKXk886zVcJl5UpOJO3cD271xZ/WcTabA23IH3mYqSJ2GCZrJluBp7BOIUJpzmWYnCPWBmsk0uUwWjvOGR4wMwZuu28gIrf3NZOEw+K2l6oeTcZhNUWf8BULnE0K1RKs3CHitQL/4uVxjIo7JWI7JOEyYkdQy0J+3MuY1/W7ydvpwGQ/Pdv5p0McLWiaViCoVP/Zfil9n3Vyk2RuXoEyVDoMfj3k3/VZIuIeXaNftpq3CYZuv+5gaE4AYx4M3xW8wzr1qgut+Vp9kDIf9zDu2zcakh4f0GYbpaa+vC4MbsvELCW3a6WtGPAbDD9mSH0gVeirD7DOHsfXWQpSF2gjphFe8A1lyXIaMTqjZCPFYxiw79RRhTPdpG4IpsQxTXjbKAl7j3rzPARjbUvgL+9oc5N+Vx6gj8BR35nMYZ73wVb3i581eI8uMU4TMKnFOMWupVU8wn3e4RdeZXRLuSQdeJWKPtDtCbEnGJjUs4QLWMlS6C8xbD01Mo4Mv61dYxr8wWXfj3xK49ZUlvMItGtLnMmbE0Nftg2fSMWg6bb1HyvGctW009yltEoFT0WjOynC2yFxrlqLG9IWIgW5xprODefouo/QYh6Qt78vCFVPheXnYCmcp/n169JD+jM/ot2nVEz6s2diMveMENbaekJrS+GGt3PpKqAkPBYgBaGLahn1vOKeDGw8Ka2M7N9JHbaap9xlPqNU+Zl7aU4q/D7L82toAisgrwP9Q1V84z76lqo9fQ7D+zculKwl/E33FuOIHRSxTASZSew0xC1jLLmbSZ9dSm+5nquymW1uMfd1ANlLuZ4/oCwcGtzG1dw/tcQejGw9ygSYacPIwioDCmyzhNK1+Gxmw+fdenKCt6c8k9ueo8F6iEUO4YL1/K8UNnF3ppoGYQ4nMJ8qJVtjCzR5cBSbUhblMurTfq1pDM910M3wA/IG5vjNE8XZe5/f6/okfyOc4WNuWje8uXUlzfw/Da0+xXyYVItyLvQDO7CsLMAVXcQOE3wFhJzODd4X3cB071LIF6qyXxNpUDS1hisnrWeb4dtYwnoN8Q57w1659R2yMsOvikxytCZxxyubAflYVnuejZMTY6FZIVIiAD+tz/EAezfssk9C99g3cDfTSzDmOO2nqXDyelVae4o/yNei2nTJ6USMv8hHrhEBhPaTXeTPZyn4me0HDU1hM8GIT2D09TL0gycCvyp1dKGVj9/aE847dy4V3ryoUUaxjS1NNN1/Wr7BDZjEk6eF7kfHwTrOtZF6wbqdu+2X72AtI78OYaIWdMsN6BFf83xE2ynzcUE3m93yvxFphB7OYoduyNH04ZhgAp2Uk3Qw39p3hvhuARnjMr1MnzUCRUOF5WWGNPBJri2163qtTWcU99NDEYl3NYlbzl3zVeiuHIWSEidqZB863/dyua3hT7sS1NQRIvaVjEloHH+UQ19t1GdAXNZrrJs7TzXDSrEZZzFdVkApJGMarBCe7mEFB8ZBpzQzT/B7zc4bMEcqGaRcr+AkT5CD/la/6oYq8uTb2jgeZlM0tWuUW1vmBpQcQaAuf3TLQ2WbX0xlG2CtjPNjT7xGJ1bwHOHLKyOPHuf3++eX9f4Dl15YBBCYB/0VEFqjqV+2za4+xf+OyM5pnUkOFIQ1UuVE3s0J/jAiGaFnP2jv0VUAYfu4cz7U8zEEmYtRHVzlg3YUaxsBSZU/DVKYnW/iefJ6YlKA5DIJ994SMopaqZUCjYvtp8Yh3wi26jrMMZ5+EaYTUEgQ3y0FCY3yBC5U00XuINSFlurLvZRvN28gl2o6SzWuq+kzqQZnE7azmfZ1jjM5tGaZdXMcJ42QgJkzMU/I4k2r2UX9STEJCO76J7GMUx/kf8qUsjdl03cZJRnFWRtjgv0pb1zEOjRhrj88ARoubCdrJQZnojzs7cCiGx1ANmL+EB/VZfiHLnTiPEWM5zG4afW/zAjNgvr/DbVzWQfRJSbJ3TZiku5lIJxMrnWxhjpO+L1ij4WEfmCygEVPZwRw2MUO3ZU5FpakRvbn1vbR7abSCiQ3v4DDH7vsFLXywLmIN4Uv7jBmsl2jmHL+Qhx12wDA/RusTUSHhM/ptLkgTjdpjvfvFn+PsVR2gL/vMfV72nlscvKdCZZyFQwmYyrC97HkodAivNS1lSHKWIfTawz0TLSzjTmYCUNhvLrPnwV6CY28cEaP1kHH0CpjnRCvM03fYKPOzdWyY0Uq2D/bJVHq1gVY9DgiTZB9vkjNPquKvsTIa4eFUfGbGKS161jg2pPtQKiSqjNCTdImxodsgi9jAIgSlln6+xBOBt7LPlG+WuWzACTSvCZdlUGG6hmkXF2Vo5vCyURZkVscKhfEplfx2iFRXHYYxCrRmZXQ3FGAsjkST7PpbQ+HIluvkBBe0iTW6hKqU2IGH+90RTCN7r2GcSUYOvA/CdtzxhGPz5j4In1XGYEJg8mTERQ2cKZvjMzTMvKXw7gddfp0ZwG7gbuB/isjPgU9dY3j+XcroKw2+TQ9kn+frWiZcOcKgQRcRgTW6hDUsI5EKNVSZPnhnMYhncBCKJna75wtwrB7muIzND3r7zqtyT5bbN9ugAeGbqdu4QXbwFI8bIjKQZGx/MxeQhvik+U3LNpsG4VYuVIYMjDQRwrAvPu6M1ijODpfgkBvoYAmfZZsc3mQxUZASbwU/4X2ZG8AV0RlNzbNRW/j2M4nNtXOzUByJKrvlBrJAqJa4tp05yWdPHuKFGdjUXyEBFg7JRApSOJhr7jIhwBmPkPA5/RbLWMkW5niJ6jtkRpHXLhMogKrWsFGCWIEOg3lQJrGfqdRQ5RH+nmdZQRe5B2Kt9rGQtzkvQ9nKHCcVIYSOEx3M4Ho9zCEm0KWtRJKbOwzRHnqkCaw39lJdyUQ62cxcoxHXHGYznshqWu2aCPaLp1kqMIsD4cVc/fVKo6/9dg4oU9t4WG9mLkO12+aHDtrz9kbIHDsw/WuYvpIQJMPo4nf5CZt0rg33UyYwKQUtoSYMrl7hUu3gQv0Xoo+a7xX18BUDk690sq9+ygDMXwmz5/WpOaPrfgeiJEEq6Tz6OJjDRuakobNwsqrYdtaz0OvvKOODNgQvY00Z01fGILtt2HpnZUThN6VClxSv8k3KxBrWsIRJ0mlpGIRzeEAnWpKW49AXoE29szKSh/QZemngNbknM0tQjR36eJWg2C6NdfofUEAKcRTgzZ5IRUbSKbuYRYfMMAJTCW0pfE7POUz81vUsyvdU2TvumgrHVHIGYzWht+nr1HOZNbIsj2Gbhc7x8ZefneYW5DP6bX4pD5p1Zvt5ber9vLZ3JUvHL+Rall9nBlBUtQr8iYg8ArwBDLv6K//fKz23TIWL+JvPLpIL0kySVExsKZ4wOVDtQutXZVv9LDyGKtx0GDo+WzezVeagmtvb3XX5FX5R/6AnKfVKUxFATxKKuZ7DdKrNHVx2MAbPprPTBJO22Seyk6VU4nI1DD6BSIPAXjUoa1bffG7VLpsrVkqJhvc5PGzcNi08CS7MCW+ymJM6yuMty3AAhpk7h5sKr2Ik7EC7d254PSeubGKTfJrsMLX9pePwpEnnfRP09uoEM73q+gc+mTN/7m/hAZcyBAEO8+vLdN7yrg0rWrEZZ5QebeImNrFK7s/Abkh6mR7t4KSOYqvMycwdTMwufy+oRs67Ng9ysp73o3n0SDPpYZJQoYFe9sskNjEvbyOYzwHYYx7SZ5jHOl5nCedoMdk1AgbcaDFyPGXZEgbSVHjaBKNB3CCLLDhJtp8L71g8kmrhoXhQlzEm3ueAuVLlLCN4ms8b7cpAbZW0GQHtl3ezufamcjhLGaWIhroL+RhKhasSJsttYwDYDlfGUwxMbGjUBZqI4xqSGin2C5Rp1UJmup7LXEnDaQ0kHGZ9GzYzCYWKEI8hjQvbUqOhfJV7WG2vXw3VsXve3WtB2xr2az8fYBIzZFvwuzCSYyZrjPTTr7W+QqCk/TKmKSKmPY3nF9KBcG7V5G1PUD/vfAluTciwEnvtEF+4Grk0Y085Xk1JGbbiMAt7RwST9coIEO/IbXwpeYI7dA07mEUj57koTTTSw34msVruzm85nANBiRinB7mB7V5c2kSF1YPGsLQElA+y/Do7gXwz/aCq3wUeAV66VsD8e5UL5w/lX7wFq8xIdrC2626+z+foozbPkqBpcN8Sqc1lWsQQpC0y1x78xhZlldzLPwz6NDWuY8FAEq0HU0QjPZx3rkEHfM8+P69NvoZTIrwQHw6DY7x3q/5mtL8P1y4m6148r7yQiDt9xNTYEAzib2oP5gEkWnfsWbsxmfG2JaK7ZJYft+oqDGbG/A2Ea9vmttaprB9ys2+g7h7mZfC5fZblDg36/SUP8II87I99ICbErqH8WUJq30UmofsMmyF7SqRVBBP7cbD2Wq8+44xxrtLCU/JHPC8rSHMGL9K3eIS/Jww+7sNp5rZTplC14XLc35+XFaziPhuSx+DCeHE70n+qEQ7Gfoyx7LDhlobSnaU1MyNNWKYvccOlXR5az0sLkev0UyKEleJUJNuTpQKHxaM4bRe820loTroplFKhKJ/LqoMbf9/kOA7fS0TY0nQjqVPC5LiDmfFW38tTwjVrHBwqWuLlPxDTZzrGC3Vlr9HzdwwtCgU2k9+2SiM9nK20mFUZMnfuuMoESVsy5i/ET0hH1KzeB/RZJqtv1G/C2/iMkLjcR9q2neu0TTPTNdZZC0bFx/J1gHBaWsnWszeu4r5plnPMZBu1VMHmgwbhONdzVMZzgMkZYzJWDzFKj3iweLiyf2LNV5bqSqbaeK9XpVG2jOS4paFx3kc4D6HwkhaXbmafjdbf5CYPcvE681SjfbTpPsvshLQKH/8eTGlgdRPB4Ad9X+D06XFcuDCCxjP9LOcZxnOQVrr4MD+nSbt9+MTcf6Uh3MKwRGPqhhfx9QGXX1sNoKr+XfB9A/DoNQLn363MOLqfl8ePzzMGZEV4s+fDvDp+UZ79QE3E+Im6jzEcNaFIQmJ2tdQ3aT2bV/eUjPLfdet70lVOwDYzN9euuJLhAIfeGI5Z1bd7qISGzWQwT2MXO5lVgLtLRtFFml/SlywhRhQapYdeGn17s4FwI1LY86WHUybhp6Q7uBYMpPvpup1Oppho/GW4Dw+TAPexRvQNjogwmUAilNF6NLd3KsyTJZZue94chp5uBtfqtlGiORhIi9Gk57kozX6KK1VcWxwQ2nQPp+Q6emhhL9PYG01jUfVN3qm5bQAcK2/KndTr5SKxL2EUzNXaAExEoPWJJTUkHyDPri3GFmuBcyC4uBBaOcXEwfvYwYzsuapwl77MEcZxlOsZwkVOyNiiZq9sDYTjC+t5Rfmw/pz5so41LAGFxbqalXK/ScdX1mbJnkydFdSbY8NyJCqZrVyu0ckPZFco2VeZxjx9l8Fc5ACTvD5cGA7IZCrEXr5i02Z4Pe3uK/yr6cJ8Ob9ZpupB/Rm9NHCOFp6WL1gv7rK1EayZqzLLUHoNHzxTIl6Q5bTrTntTYdbYRfE99FPb2xfkYYpBtIO1kj2vcLwy1moCzT7zNP0ejrTQxtss5h79F77IE/xP/nNujxiURCt58HwXTw4exuphbmA74+ND/KjmM3Skjiiehle8deV+P871xfkow/9A50kwR6LK75xZT/3wbtbIMh92p1SlzgT+925UnP2hahlIyrNt2bJv0CT+70GPY7KZ3M1FreUH8mie9SWt7o1BaKSHdulgqa7M7DpFYy73XC7i4wMuv84awN+I0ry9hz/s+nuW6UvgaSlgS/MUksiRdDFG6vtkGm/LHeYYDzU4Axxu4YIvvudoGzAsgonf5V85bOKWPODxQP0QM1l387n4mzyozxbjW6X9uhtVhJgazmtzsb2sbqVkfIZIIsIVGpjLBvMsZIgy7MTF57/iQKi4Ho1h8RhwoZUum4qppF13vF4/uUZUqbCt/sYsDMnv6BvcwHZvbkrbC2AGk4UgCuI2RsSMlaPksQjL3nWeBc8vShMRsQ3Gi9N2AtYG0Rjat9NDi9f29oo1WSjTyIgAwh6ZRna4lq3ZDG+Bt3QZI+itHajTPijdM87nNK1bQcOkzNBt7GdS3oad8wbpZa+0c0GGmrzP4fpLYSmDsQxmh9HJnAsQXpCHOagTaNUu2rST12UJb8ni4li8taXeswkcoF2d+GP2vZvZwF26kizYt8uUhOvAwrNBFvGezC/p08d9TMRQun3tl3dYKw3aG8DkzG84T4HQeZuuYb6s4w25ywnI7njQhkxVWZvh/NjvmWYpxGcAj1Jhl8zKQ34A7tV9RMzn9FvMl3UZs+HTMMrHadvxbIUt/n18Of05zxOEHcxCBGOq4IytsMfcPRXgLCLhFllPK10cqow3TI8NVu/D5ZRwvYeCXbhmryYIlexVFeGdEbewn8lWW1+iWMj6ucrNiC3TdKf/zF1naZ+2n5gafmlT7Kl7C1HYJ2ppBixmNXX0E2mVGo2p6+orh+kDLL+2GsDflDL6Ugt6uoNHRzzJfp3EPmnPFu8oOcoZhnsp4sw/sZJKerUilNpUlGgFRukRTshYinYaDmkTY0+m9nLOlcZzbQoegXC/T9a9/B89f83RxlHslFncnzzPi9HD1kfLJ94h0YiS2BiTu/Cl43Gk0UYucJHGzONVpUK/Ks3aTZ3029y7wUGiyl26kiOMY5fMLNByb0wOXDN5nx3cSNUNn2BLrV6hX+qz99azwG8H8PNslozLgzFxbOvgTVlidS/WkaCsjVSzZWFuis/TU2nOUhuZK9vUHF7ZkIaEcfHvEvyB5sfCdKeuAoFzahg8YytXwUupVdBkQL1cySMqhhoCWw5ZYlmAoeyAdsuvYgTBYcwDLbn7XhmzACjCP1/5BDsGz8A78DThPZ1PVQZwngIMY3w1z2rK8R3sX9WIp+Uxsxqy1I3+fpqtG9nPJCdFmnOYqbEJq5H+wNlFeI/5jJWjuR2oC0OZoJDiJdVGOVrX1BkptVWNSNjPZHtlH5WsDeFymsLsX8skO2N6U+7kNK2+564LbxnzXbqP8u9j9RBj5SjvMT/Asd2vAzEoJczLPH2XpRfWMLfxHZ5jhbErDWjvgLA5goYH70DjAnJNt8kWNINtbNdZJBLObUK9XuLKQHnjne8JkUn7KLkWOYfDRghUx0EJKJgSlOE8pLdZXRsqx/UgD4sIVa1ln0yz7wR0NmRKw76c74lG/y97bx7tV3XdeX72/b33ND5NaJ5nIQkZCUkMxiDAGDsgQ5E4ZPKAwbjdXV3d1b2qay3HiY0TO+7qrNXVtbpXxzFlsB07cSdxORCwHcxgMZlBQpJBEnpCs/Q0Ij3pSU/D+/3u7j/Oufee6T6xVlWkLMNhiXd/955hn33O2ft7pr0rE2du/UOg6oTTOgwkIZeCvv2s3MoNugYoLHjA/EN7aHbPSuZ7McP7K4CXOOxrHaC9/RzbmM9OmWteOh30D/OvsFxfgdQssZh9mQ/mT6C4OtRfZj4sk3wCvEERCjWjZDzDpSkFFczI+xjOQ52f48+yr/D38nv8NLuTyMuFG8rB0mJfY6ZPR0LgNWhxj/6Advopz7WoWT3rZiqf1Ie5irV4KwA23VD6eFsu9+sf0uKWDbzBUpolr10eBWd6gHMyBD/kjNUj6bICGsT1bOG89ww3B7y+Xp+j8AZb8LA0CVGClwxsHq1wxlqrRBx+OPQVfo+f4xbWy0o2yAqr0GpWDywF1+druFZfcuiE0fkxvxzUXz1L8azsg4FSCfq9ny9x33W/leUk3LE5Y+PNIUsSq9/CAUlsbXlA6V2sVhbf675Z/uRkTvu5l0OUJaxnqyzmVMJFmltGkzY69YT3Tmmwn2mU4Dac2IW0eHS6MsRMsj6r3zKrz86uRfL2ss3fbkwPSHfFh/C9mGMj7o6FBiCliBsBDnOmdUbhGtGGTk4ym7dxL0+YeLtj2kKeeH1ROcAk/nbQ7/I3+gds18IweQKchPUK+2dybAU0AB/Mny95LygiMJxe4raVyMi9xzuXLsfjkbnOUcnWNlp8Vv+S5a5xaq//K9PZwXTX/eQFZOFofYd79aFq98jN0wGJ7vvZur3SlW7cEICmJnsIRyUAgGH6IJyU0YHJlyBf+09p8BD/PV+Xr/IL+QgvyM2MH7+LCXP6kvlezPCeAoAi8qci8isR2SAiT4pI6KbgooeeYXDixASe05vwbmFiHLnPly5G4hwuTQrA6u8gdQw4A7fx09KljlkJcpR1ODicTlu8a6fFB/U5cA/YOvmnwkGZzDq5hmbSErri+pT18wkUpRscMFGsSP4hDzK7ECo2zVuymO/J/WzX+cm8npC7/O2CUNmHZZbpGzF/kGpVqSxL8ExIkNmbyIm6OHxuo5+b9UlW66NVHE/Q+W0mqqzWHzNYzvq262jQn3Uk6hbk4dUvFIzBTUM1W8dX6asArJOrnbY1fIjAesCTF7Mbec21XQYcz5wtqSIfN6+U0i/5okzU/czWbb5V/hAIuorTm+iEbWA8607XHQwuxlAIGl16nG/+uA2UtirRpadwEhXmGyp+hz9arvaHfINNfCC4LFYHiIUT4lxKCugahFP/unxSskjNVuEs2ckpOssD9F5eoRwBIg8aLj2hvKmbgFLYXzPPGTnX6xp7QSfhusv+FZTP6rdYIhu991tlMft1aun6stjCHSuH4/LJGanHWa6vsAIHgFhed8t09nZM44ns7vIGeMS/iCeJvlAne52+LuTWR7LhfYuMH3GPNUyce3EhZwa7gjwTfS/VJ52/4/UgIhgbr8l0QjfTGCpn0nWP+GkA+C08xZX6ul8m0Kk9FuD6Yabs4OPyqLGvUAewbb0jmedO1GwwXkjyRDz7yu3fbnDljQ3dMq2UmU0avCWLODGkK057kcN7CgACf66qH1DVpcDjwJcvNUETBHpPjmP72XhVajNX8KzcWh1wHQB0Fd/OydDyVUaLFfIaX9KvcI/+dcJ9UFFWGgSN00N8Uh/mFflg8bFKc6GVllB5O6BJ3a3CoM4RbaFgkoycBo/I59mj0xnNMT++XeHokdFRXq1i5jqQQAuEm5n51wjqsJ4WyE3gYFiROF8nTNa9/BFf4T4e4nf5gXU3dpQZ7LCCzk8rKJ8889f8Lj8w/lZTfEuA1SoPB6hYAR3RG9RvJtuZI29H4LlBbvGPi2YAACAASURBVFcXnLJDZWZB1yF3vuUK3BSdyTy08lFNxkGZwk6Zzb7CvEIEKtx8Qv/VIbg0q6N7ZSb90uGnTa04pCYLwOxTO3Gdygs51/MCo4tV4DDPupAq0+k7laH2oq0yUi6n/PzexfgluAFrHmIg4K5WO3nlNPgOn+NXspTIvilmO7RcfUz1zVoQlJq0hLys+nxOxiDO2ng+3yZqd1mekvEz7mALV0S8eVFutNvkRgL8g3yCHdZlYJWh6ccnZDSvywpUoY2mPSObaLsaUN0odjIk4IUzQRFyJji0hyC5cDU5ghPlREFp8CZXsoZbyIJ2FGCprOc+/aZ1AYcd2zXAPzW2gW6Zyrf5AseJbR4W6ZpkdpWWsj0jcO6UtVdm8gy3skGcC4c2vzEct5PeSg5ltLhB1zBXu/iM9emdGq9iTfZ4Mtm5Ye3SbY7QZH77lXSE2+AalJUG6YWHpAX5FnqOzuNSh/cUAFTVk87PYUStdPHDpMnjAEHbYmCwQ+bxHR6wZ2eCma87+FOzcysEf8Q9ANwlP+ZK1leXCTyAlh7w09nFLmZZ49DudnMQQhpCkJSgLSlYUnQ4Cs79pmR8Rx5gg3sIvVS6wWAM83fLDWlwZ9lW0bRzzhFWGsXPaLFcX+EW/Sc+po9zqPB/G/KgyN/53aDJA/wFqvAwD/CnfJWfyF30yBj2MaM6D+jURYFzdqd5hNaYAUmBAI8PCaWUUlI2n5v0mWq7yOHNHO2ij2F+fTGzZ+/iSipvl16XxgHoLg+yW54UJjPC/EfrO6zWH3OL/pPdFkrUMTEBUWnY84zVu2Gc4npd4/sltX8NECtWVnJ2DJ+Je95PyXiRVcbeZiqkgJh9N1n3MFYTK072aEbm8jeZp1ZKkODs1rtYTSraeLLuRVxljQFS04uV12BC1KLNd0foxBksZ+l1/PNGgCcMlseX62ZKPjtjWWg5k4Kqbhk53TKVPFi5V4SDhRFmG7plGtuZ4/PGThLMuTmz7XmMsZXZJ5dmpy+uE2PY9ypdyxQc37t1oNzKgEXyhh/P+5uzgle5Qx/1LTc47TiDHdysP+c2nuBFWWV3SYo+ndGiwTJdW5kiwfSg73I/h2VCNWF2dUvIjxL4BDQ628Meb7DQWZ0zsA7oF2uTtmw/px8pGb/gw5UpJtsXp+sO9sr0qJyZup15dCEC09jDXN4q6+/Gu0wPVxMAG7wjOnVgvWy/9DEdG5FitXg1/1DuvIEB58UuzwNHv83ZjdOZO/I6LnV4z10CEZGvA58GTgA318T5PPB5gOnTp6ei/DcLp3uE3knC+PZu9jItUoat4uJBCNrCgRoCMPOSN7iSLbKYa/Ql4yuyjDOAUVkbRtIT2/wLwUUKOJkHvAGY8EqQLNvNL6UUHKFbmFtwZ13L9VUmSbc5sBzSVJd3WUaLhiqtwgWRVTTnMWjrct3EB3me78n9NO0B+st1C3PpYuu5Jcw8s58tI+bb3awAfCaATaee4Lf5G0SI/V6K0FLHs4c32xc6pRcUZrLT8FqJ+RXyrqQnuAQRgl6nDcdxmI+rsXf1DR6sRJ+lY6vEil7s1tJQPW1cS9VNWFKTmrCdo75REz+o63G5jCe5gy/qgzzPKryD+2H8qC/4bTVET/OyfMicdQziG5MQTVSNym255aTav64vAkO11xhjt3GW6Tp+mt3p0VKcxxVgsJ6hT4bXgqexephJHOBN+YA1rmuUaKQY68aa5YWxE+enUW2wR2Yl4hdxfLNAJv8WL3IDSe8qIa+cb0pGl1xOGzlNxdIiBpipck4GJduli8v9/HHThu3iXKoJ6xK2WR3ttt4tzdggK6pzuyVwrng4Pd/BXNnGCUYxSnp4W+dZ0iQuj8xYXxDfn7cbZzez2SszDLhx87F/M5TVPMpI7alczGE8+pS+t8Mxl5SRLv8CEzmJfq4uTwOet7RhTX5RfbdphZydMtvPH+MFKbWLM+z8Gba2Xc4+mcr3sgfisWrzNqt6fp0u42jlpWigCZVtizo5m2F9J1t5fKM8w0lGoWp06VD66Dq/iI6j07h1+2ayxt6oqIsdfu0AoIg8ReWIyw1fUtVHVfVLwJdE5IvA/wh8JYyoqt8CvgWwYsWKRI/4bxf6shn87bzp1vG4HSxOhzOdSqGwz+UTav6mBFP5LqOp7cZmoPO+U094fm3DPBs0mclOHuNu/3tYRviujFcoALNC1skJYwzZpXMgIJlYnYnpDBWt+TlU+1jCet6QpT4/3bycsoUW4/Ugh2QKrSJqQiHtk+neZlJGzmVy1IDNwbBt8FyW6Ho//1S72NArI/k+9/EhfbYCnan6BSsNqLJTZzFN5vN97qPsNxE/67wOBPysA6sKxxjLYZnAj/lE6cYOzyG8m6/hJVCddXLzx49bD8SDZ5dvIYBNKkxsv2+wRRaXt5W9Mt1QB9RtXu/IuPqjA6oM0jOMlh6G60m65HJUE7TV8cIJ4+QI+xhCC+O79aBM8Q2CA4XLK7Wu5zxeBWPoWnmJ8XqIzSyp3CImb+FWYRgnOc2INJiL6h++d+SX06aZqImG4z0m4DHuJCbkF8Y+2zzdZN0V+gr5rLsCbctWydDU9mJKhpbjyi/zXXtecb/ZSVtxU1u0yRX6BjNkJ49zF8ZlYYvfPfP/MWRoL1+Xr9rbywkZ55RlJpwJ+6NOnMqWn0uPcYt5Lw8xjy72Mt3cri297Th9NaxbKLM0bF8LdlJnysu8CldzTqgbE04fX6BbKg8jRRoJXYbmjOUIx7mMNwctYQuL6o/5eGO86reiLYbLKSr7jTlD9Qx9MhQ0kU8Yynzz8qJjrsLjcjfVeCisODRgEHRdDo22Uazaub8+34sUfu0AoKre+i6j/jXwBAkAeDHD9jHj6Bfr0SChCOfzFltZhKZWFYqQUqBQK0wBRkivOajtGr60HXm0vsP18rw1qOp0kZTyDEM0YMzzCUZTmsNIKdpyezUQcmG9IqHkr2a9LitZx9XVu5RiD3ihmlXn02pXQuAUndYHcjXQX+RGL912mUcpFF2zBIkVH0To1zZOMIoGTcfcT0mkX+egHpt1Mf3SVvUd237G123CZmIKsIftEPSzllrzDx4vgq0ercxmdOtks2Lk5uMI9g/q885qWkLpuDSlgF3IFxvX1Lmiqzhrs4hN7Chu13t1IEmj9x2YwU72MCMN/mzok0766DSyvjyblzhdE5Xhg/EjOp6WmLNNqso6WYExr+EqGccsRh2osXFfZwWHZBItMgtJAkO3Qf2FFh16ntNCgueJekSTpOK7D5xm6tvMZCdD6eMncqcDPsJyAhAYjN29zGBAA9ve3+JiSaIudROACBSH/LXtVTN2xnKQ44yjZVfJzJm8Fit5me9zH4I5l/0ZfYglQ9bxCA+UvtcHkuti/dGWMCqcNHn8MnQW/munyD6Gay+9dPIMt/J9uQ+1268eUEqM/ehv2CbuCmDdBM0Fiu6zs0Xt5jebt/mUPsKj+W9WJylC3tjnwXqGmbKLY4yzbichWqErZY9Smakp6DbenTawvFytvV5f4H+Q/5sv6v9hdi/qeO6+K+sV8q4Ypw0zhp00P5k7iVmn9nGpw3vqDKCIuKcu7wTeulS0FGFmz3H/cC5UwgjlvLbju5AhKYDMTchgEIezOOd3N1P9dSBnVtcjl/EEd1Vnq+pAgvsu/O7Eqw7sJizYe8K2xkxMxBcSAy9xyzkUWiEPvTwkojtFR2z41OeFOQ9X8NJuKyWEV5G/krFRruLT+m1mtnbGdAOj9Wi0sjhLdrJINpVbgm77DeN0mm9luc6FiLCPuPV2+Rv2gyDuQZnMBq6qViCKbw4NSsZmFscmgVy+DwT6w7Kdb+P1oPdNgdv0CVRhveu5xs0jpci9MpSxHLZutFp+upBv9p8WbV4Hnrzy/LqaFT23b2XVaFFz2tE791cHXG27dTOtNIqsNJhIN15/DBS/0rAeVqq8ooP6YR1SQCRYodsp83hObuFnshpFyMJze+U4qgFzNnj8KdIl2sCTMWUcrW511gC4KK8gThtNVuuPGaq9yXTD9Iw9AtBAaHGF/oo/5EFO0VkaTs4RdsmsZJfzgq3HdN3BFbqR23ks0AM1YxYozoieZCSd9PI9uZ+/ld/nO/KAY8DZoX+gCVeq7e3v0kh2BGBTMsNp3+hmuMlPyDmrg/khf8CvGsvS5Trvzsow1nINQm7dTtbx0XBr4dlu42oU7E6FuThlxoiZML8oq3iGW6tzzS4/nP6VkVfG8N26pCZOCXCtwJ4xgdODSxDeUwAQ+N9F5E0R+RVwG/A/X2qCRvTs5nf6fliaGwA8YLJD5iMoy/UVhnHKfE8o4v7wBqDTWSMvEoCW1uUhFHYqGTpQ10gBPrfMcMbm0Voj+UKAASS3DpJ55ixhY3zLuQ7geM+B0AsFf2rmm6LdBbKh4NMWUvo5bmLsiVWAPSfjFJ18Jitur/nljJbjjOOwaUcRhBa92slepjvnjLRs71MMj2lz+LZAt1hBOABIifjklBHmKcbHdORjNsGr43KZ6VsamHGoASW1oDP4Xq7gOsD8p3Inz7MqOEiO314pEOUoso1cxW36RGRr0QsBYFmivkkRqbmRmJzYhDwrVxLV/j9IU5dHcjxh7ao5YDbipysTcm7Sn3MPf+2bN/HoqwPP1V+VjKbtHwZ8CBM5QAmU3X410LhLAbaw36QmdCYjjsp4M2Eq5OFAID0EoWKsC+xmFuPkaKK+LXs5QSw4Umawkx/pPZzWoeW4NpcbbuXLfKP0EBFNgspyhb0yizflSn7Kx23bG3nuXWQIaS1u/8oHeJjPl5f4jKGjIl7Cfl0ABGdrlzGpYi2IemWUXM19+ot8wr6VeheynAbdMq3yqOKm88r16Z2hO/iE/pA7cExouXWz8uCtwVNKm6WRJQqHpp/qHfTS6RPn9LM2mtyr32KWbo95qLZ/pegoyc9pp8n1nY4JsUsUfu22gAcKqvpbl5qGMDRG7eH2wf/AEO3lO/JAvMwvQkvbGEkPfYRGhik71iQOcICplY/WUvko03W3sQMVgTO7TRIOyJqOm9Hidn2Ml7mOozIxFjzFsze4JY7j5at+nHJAOuAvJagDQblSX2a67GEjV1V+lSOFkfDr6ZxVrJ29lfQE/LtQGvtttm7nUzzCXqbzXXmAFrBbZppaW+PKw+lliyxmkf6KN2SZl+dO5rBHZpZndwrTK4/wAKFXgtJzi8cfrfihSjdTqpXSsD5u+wxUt0QwK9lNC0rrvACYMjvppZcRMWCMlNkA9IUhaJdcxVQbpdxGLfmU49nxSp2XFHPRyNhQK/jXIqk8y985/c1B0J5jtuad+Lacyu/oANvgkYefjFyt6kuWG4xBN9jfZnVWWaBb2CaXm+3gur6sOR00uYE17NXpHGO0ITXVTmH7JNuyamclY6ssdgmkdi4S5unW2SvL2OLLyM0qpus9ouzPGapmAmU2VB2gGNHtyCVnQvCGXInXZjadFJvsNm6LzJ4DgzdkKZfrJt6SRbYdG5X3Ci9//H6o1VhuOedK1elDfh4588/uYVD7Kd5sLKx0gR/RLzM1puzzORli69RAwxVwMWcOB9FXmQ0K2y0EfYB3DMil3U1TPIfANMzL/r2JZ6wbQ7MTsZZr/DQ2Xy36YZhvEDyfyG59gAW6mQ/qc5ySTjro9+OUPAzkQ8BXQfnssWeZs3NksvyLGd5rK4D/4kL7Fb2IwCnprM5kBJ1XgaPNCZViDwb1At3Eah6lnSaZNu3qTmFbP2O3e20eSgW4Wh9jtf4Y3Jl4Ua6NBy1Gcowp7OVeNXbqbpGniY2K4g/MusHrxLust4cxvSdq0jrCuU7wVy/5rnyOtbqS8XogqmsVN6RFI156oYyXc4s+yfWs8ctOKeKEUGnS4L/IPWxkmTkfJIVtMbHz+Yzvyuf4W37fgL+ybKOIVBo0yewBZ2PwdiPL/AP1VmmVt+5S9bZhEOfK1cioPjVCMeJLKGCB+WzhJn2KUYGXiVQYpGer1c6Ukg/Tlfwg3WaJWXZG4WM2jF+YCtKgvxHlISgdeq6MKzZ9EnSp2aa9rO0IlaLJPKApwO36mC0/UHY2P6HFLfok9/NNluurdrupVdmETI7TnGF6iiWsZ6xrh9IbOxmQ0SULuV0fo0EL0Ra4YMLG7+A8t+kTbD2ziIflC8ZFZagUgzaarHu5XoMxEtFQ8+z+dv+GYzUFEGz7nZAxdgu7AM5BGQUQKI5x1BnENwmr9F6/TN8ujY+G+Lsr52m3q681dNWFBDAD4aBM9nd27Pttg6cxI+tKH1sQKetV9KcJ/Ydim3k27C8mii6oCYJrM9JbJUy002iOVrm449kNGrRzOBlVx5yRE/oOXY4q3KGPWtmmiXa1Zab6EFAcI/L0TkDPcO3l+9n9/J38nrmkUuYd1Bu1Ywu/PPvc1zePjpPvbwG/58O+wy26dD5HdWw1oMPOC2xqu4I2Wog2o+X4TjnFXqbzIZ7lJn2KVfo0Pnjym7mwk/ek3FG+qT76ik2AXkbRzRS+K5/jy3yDF9SacnAHZgQecntmJSEU7O93ho/kWOcoL01JQ52ADJ9t3BZtPC53011sw9SBM+e9sbEW0JUSPAhHZAKD9Gy5DevRUjdrtc97ZDZvsNTejA0VijjnUMKVJbHCuUnlKcFs5ayXFQGAUkbrO5QeS8J6O/R+XH/M3b0/RlwllZhYeCEl1AMl+BaLeE5u4YSMiOMFPDkmY5mie2ppjPho6+jx2wXw0azeAOufyp3xxMk1mlymSRt5btHGOrnaxi8UfWzguFBoc3UrL8kNPi3uKgTCZq7wt7jcPCxAeUsWcUgnWHMiJszTrZDofxN1P5BxWobzBssqkxapNrX5D6WPP+aPuYrXKj44eZ5nEI/L3fyXQb8d8BU/rvP+PB0MlrM+jXVpPLAXKMi68e6ENj3PAt1UgQEHoAk5s3WbDwTMvVxEWwb4Juj386npjyFdA01anHiL2JRO75br8iIMASg205vgMpZt25/KnSxgE94qvDdWc8brIT7Tepj/s/E/8Uf6x8zWtxPlufUK6x/KamWEa+DbHfuW9uOMrSat4aSrTvYkJhLDg6NQT3AXhwbN4kyfkTujecfnWfmck6mWNvmGF2aBbbzReoz5uiUu28nnuIyhScN3p2kie2mWntrI3NZW753pfzkNVaYczDk06dKvAL6ntoD/JYYDfRnfzR4056e882g57dpPU9rtmTxllf6csXKU7TrXGBy12xxruZq1Yg7DNqTFZN1LCTQAitMj6m4RNuhX5Sm5zSlTo06v2ii3nVqa1W9duEEENLOrUU5IDCgf6CUugYRKISWYw/w8wJACN+a9cdEWzDDD2ZoVVG/yARpilEd028zmPVKPGUPFye2nd6fY/LJzPtBaz/rG8igvVeEmfYr9TLXbaeIbqQ3zAtr1PB/lCW7haR4Z/oAPjEK+hs8pxRiBr8zffk/x1eaRa4MecTwHJNonbrea+WoKkKsxBdJSyr4f93HTTtEtyzLfYpKTMIOSfFa6ZJG/BR/SCIyWY+ym5W3r+XwwFzi6Cw8nYrav3pKFRFtYqvQU3mBKXmdx2wVKtvDesp4VJHltf59vDKqth0+zsbH2NB8hmhzW9S/394UmAAGNLWljuJ4K4kCxajua49zMf2aDLmO9rEQxpq2u1NfZKFc5K+UJUy8XmgwFPKpNY9+N4xB9DK286NTJmQF4G/8OJhcOv1oqvMHSmDdl+ozDMoEfND7DdOtu9CZ9mh3MC8pz28R9biEUbgkrekr3glVhFW502zGsq7U80SNj/CNM4rSPU/fT+OaPDskkvjbmU3xS+42NVkJrCiZug5zfOPQ0h89M47pRT/LCqOtYR2Wu6riM4QSjHJMwfrmCsog32ccMzhf2ecu62fpi/LN/Yej/w1fk617dh+sJFvdtZWLXOToOXkbnb10b03mRw/srgJc4bJ85kSZt1q+qmaUUA6VfOshokWmTNnseZ6FuYqNchQfw7MqR2Spsrwy0loMsqw6Pmw9GQdKIbWilFHwKgIXCKhT04J+xCvMeSOCH+Yfx3bh1M3ZiwVHlWaQZwFRHUD/jISJjuu5kHEfidMBp6YwP2SeAaofW+MR028CC9SxL2/Jrt/3hVLHaFoEIfP4A/dLBz2Q127CmahL1Huoq1TqFVAv6HUXxLtJN0n019CbazW3nkpeJOkfAVKqJSAQ2zCr1LH2b63gB70B7ET/Vhi4tHo/EB9Vh29rfk+iutqBTvKmtb3Bpy6Y5V/ijDsdSeImqTJvzM27nP+n/6h8jSPUhl4YUrS5PQhojRR/Sl+qDFwCI9lnJeF1WEntDMSvq6+Qavsv9gF37sx5ejssYu/rawNiROxzXy6U7JV9SsmYAwHiECayRD9szsglvLGFd3RDKzZAXKbldbnGn5Q8YedZPG1tYjCr8yjt6Ev4Ny3Xyd+ks/pYgMaE/wrpaOfeb8vf2SEKO57YxIQtyhGGuUy8R+mnnNbm2sqmY0FktGowbv5PfOP8EJ0cOZr3rRQoodgZcn9IubxXhp/JxZrONkXq8Shvo4bMMRkQZI8e9KvfKKNYNu4rx47fD6F2w+xSXOrwPAC9x+NC+/dX1fjIIVgVGaA/z9C2m6m6eko/yTf6N7/rKDUFHjIWzVOcM3cGZmp0PBNjCgZ8Cg7a06GZzanCm3js8iPIP4wbCJTrHEQY3fV1dnIHdsL49lQY7ZS7vELiDsn+btDFHYwffw873QrldKZyXIXF6N9hyFbFCyufLZN3LF/VB1rGS/ST84IZ5Ofxt0sYWWcxQ+rx04zjEffpN/jf+LNg6S4Q65eg+h2kTQOB6nuc+/SaTi63gsI8U6TzlHJxXC/tSsj3TwKkACztkDi+yqoIeyclIghcFXVq1bbIPB3V6UW9w3Csm6uHSENbXfhNajNajXK6bkFIZK4WrqgZNZrAzro+VM90y3a4YS1AHINxWjcZkCKTVb7viXUrxu/Wrkz1u3m78AJgpkp6wOH39dWf8KBk7me3dhO1hTGViqSosBk5JGags0E1czpY0vxy+t2irbuyneDHQOw9kDACsMVvjA8ZzaFQyhtPLNuazlhUxDWX7hfUOVv+StGREBpk9XVSFq/Q1ploZUEjc2vi23U67E1+b/0p9OTEhcOqC8J3sv+OlGVfwveyB6hhGHLlWthg3h4vtameLoZyyRzAoebVOruE/6r9nQt7tn9MUYwuiZ3IH8679K463Xk6UfXHD+wDwEofrX9/ODfmzUJxFC4TIcbmMrbKYHTKPF1nFIZlE4egbiDupkzZSnt73tADx3qnx4lEcQk+aAkgpu+ITjvIN8y6f38WMOAUeQwXp1NE7kF2XX019y3qUbaFM0O5yu8nY8grSOIJyqyykFCA2dGTObbEQNNW1HVCdVaMsQ8h5gL/g3NmhPCF3pfP08rK2uhyQcuL8GHYzy4vbqSf4sDzFPLpYquv8fMK61n2rC0lQpuxiFtefe4GP8ZNqtSBVlnnJWD3EAt1s+mEIWgYaB06+3pmxsi6N4G9ct/LWZaoPqTKoeT5d38RYKbfqLwSSTGaJd2b1/riMoUsuB3u2KCsghpinPcyM6+rSWL5TfFBXTSCFFiMIznYNtEKbag+3rgneVsazBc+ERt3EwunLvTLSz8+RD+amt6PkxfjrVWdC0KKNfc5Wu32IywxpsuV3yeWV3+OQFwHPox2Rur/uc2rMDdDXmxJsf0ZA2wX3LU7RyfOyiujscEpvBLWJ2sSTmwP0h+DvYDnrLGwkbtCGdCT62wLdzDT2cK8+5NuudIOdNPx88Mcq01CRnLF1S01oov7e4BxDWKibKn7Y+Ouyq3kiuxsDV40JsExbtNE09lulxdkxzyX4enHD+wDwEocDK5Qb5Rd00O/fGio7e43AwB3QiVWC1Ky1GHDF6k+tYFEm6H469AzjOcQ83cIk3W9toQ3gUL68RRUInToF4dYjuepgL5LU3P4sAamX7kKrF/i/UwA2UDLdMr1SNGpMPkgoAMs6OuCzUPhtYyhBYQhqi1Cn8Mrvhrd38Cjz6GKTXlmezYwUlMcn8bdigJ8P+ighT3fKHLp0PiJwShw7giEtFwJ7KX6HQNnydY18mP930L/hESm8qwT194SwcFQmsFUWs4C38PpYLfB16LGgs6QuNYkJ+Wf/Xq6bWKZrfbqCvn2uvcPPLwV2wvGQ6n9uSNYLRyY07JaVsa1X1a30SJqoT05kWN4FJgmlf4qEy7kUyB1wnBMrVaDwDmPknzHmK7lvZ1FQMq0sG/j9JK3CJute5jS3+y/DNlDTH44zOv7uEVBTLwsovbHtyUV/wizuFrBDg/fbLWOgv0lQhk+LW4b9PV13Onk1GE5vel1Syh6UpM3b3UnRXryrq1P5TdMLG2U+ykT2W1CX2E2yk5etspCvy1fZLbO4V7/l6zi3XVLgNODnAt3Mcn0F71ImOfNaW/yxI2K87JyYGVs0KPuZOUN/dd+rfEL/hk/qw2zWxWxjAYMaC1Ocv6jh/Usglzg0J04EevkQz3JCR7FeVvjumoowwCwUdwgnhYa1vYTZzhyuvZyVoTX5ASiHZAoABxnCwcLILvgKMFCYDXJrx25pWsG66cOBUjiq1yrOYM5wjiFGyBc3YR16VeOzKCP1uFmeD5V5avacqnuiXqESU8wGh6Zsx9XxKOBv1WZa5ZECIOVvo+Cf5A6W5esYd+Qk2QwlrwEtVX7GrZibn2rGm3KlVzfVBt+Uf81i3qRbp5LWCgH/wvdh+anfTvyWtlU+g8P2iQBj9e2kdqbpcN5dr8/zktwQbEOJz2sbprCXFhkHmZJor5zzdHC82GovQh0PUv0+rEcdT1J8SJWV6h8iaCA32mjRtIrepFFW66Ms5zX+uvUZjjYuYwS91s5hEJy+Umd+qrbfJfIxz4EdTpv/S3IDd+ijPCF3mfbK8PIcricYxxFOMoKjMqGeF87fuSd38sLI62M+BfHMQuGEdgAAIABJREFUCdHQnFKRd8puaA3QSYzzkdpjZFEJNjNiO3iOLIj6lCsbfJeX9eM97IOuXcEWbdIyK6PSQLTFKek0RumFqA4ZudmBSNTVO1Pu1nsgWRTyy/zw3hkf9SMdmjHj0t57VvLEmMYYG9eMp/koDSlskdbQNJCsBabIPm7QNYykp/QjPpIebsjW8Lyu4hm5jeqildDZ6OGP8i/zeHYXB3QyB2WydXeYWV41ODp4DAv5Fd+X+2jSRkNa/IdhgR3BSxDeB4CXOOzPb+QbspImbYjkRFf7Ux3WHah1gMV7V21ttdRxx5ZSMCKE5xDLkCrbSddSKjt2wBA9zRkZ5guIFCBSI05msY0dzC/fj9F3jFmXoA71wlMZLqc5wZi0Ig3rUvwNBZjHC03wJyMvt82UWqfhkbIxwlhTt0pDfqbaXTKa2uDFY7ex/FgXH5iykQ1tV/llljQnDFd7YCH22HGIKRxiioNNE0LzgiBAq3LDetnvbTRj5/YpBWHfTdT9HJQp5e9JHKCbaSS9jhQgkZHxClgKXKJ0M7Va63B5Zdvau/ke9hEXSARGfNOKzzEMnRrTqb7q8tAps24cgjEyvUzXclxGs4M5FGaEfiarGa+H2N02i/O00cPo0sB4mnZnjIX8rONv0N4Oc6v8gr74S/2QGRcJMNEro+hlFKSOoHh0QuGDe+uIeQk7mUEaEfs6r2Se/S7aZIT2cMK9qR7Uq5xsuu0iVd16Cey8iYA2WKCb6Jd2xnCcQXqWF2VVWg55ALQG0KRktMcXl+aMXcymQYtclTZaLNRNbGax4Z+zmjqheZBGo7/Wr7d303ygPpuS+SlgaP/2ygiS/dAao05ORgJ+tNRa1KiTWWWZwXhVc+Rppu7kG2Isc2Riysxp8By38Gn9Np5heVXe6BzNJ/K3+bf5n/O2zOdP+RrhZaht2eVsZ55ZqZcGqvDqtq38/g3Xp3l3kcL7W8CXOLx6vFneAm7R5m+FDTBLqR0AbkgBRbuVVr4LlYgqyW1eN777vlCAakwDuHmdEcdCfIr2gO49zMJ1s9VdGLCOlF8LzxhoqYThAI5LsJDOlDBw6+bSFgqqkF5rVNczKBy2m/3dqT2M1UPMty7YxDPAnGjPBG+KOIIyY8wWdi0dytTG7uo8XJHM2rgydr0CsBLVIQF83T6BsoT1lLccvW9E/BVyxvcfiXlW1k+5n7/kS/oV3+5YKt8yrTG9ULiua9DkStb7Wy7BGBGUq+VlJNUuEW+Lm7uJiVcd0HL7kn1npjADnBMsf9ddSKl4ZH/UlxnmmejnGTkb5Spj2sOxOdikjdfkWvqt/1NjHEMZqqcTtCbOUdUp05oJl7G16X5Pq5zSlE2RZ9gfRSgngRj/2GUQA14bFP5ZMw7JBErwVAP+DJ9ghmuPEjCu1KQCf27/tG20XF9lLtsG5E8ubdE7gCns40/0D/m3+uecZXBQttufU2My4E+dPHPbxeFlToPxepBlupYP6bMAdNIb8apf2jjguld0abQ8ele01X1L5mvrnOpLmlNK+WQ+Ph8kpDGiNS17cxr8I3fTb3VykzajlyWjSTu7mBW5nNspc/jHvt9i0/ml/F/8u3jiYcvNrb4QbdHIlcVbdnGpw/srgJc4zM03kPFBa3eIWGEXoVRKuV2aD1x5eXFqZlil8MuIBKMXgi3oFAh03s/QHcxhm2OTrowcK88ozxzI7BJ+mx83VKR2Vjz9fDd7OqZW9bCDWd3tTk/Q16zMDAQMwjhlvMKmoomjmjFUT9Enge9IJ1+zggFHmUBGi5v1KU7KKNZyNbUz6WQ9lBzhrxr3Wa8gGR5Q0BazHLdzu5htV3YS9UnVNShXNGcchxnLkcq4cEKZLucV5vA2w7WXjW3LOMz4ZJ0ycqbqHubRxaf4Dn/C11DN4r7htYtwglEUrutyzfmF3FK0AimFoCjT2MMk7a5s6bn1DNs10WZ1ADzqQ46rtlIHhWlDkBrm4aVxgFIdUA+2AzPtJy8O/9t8Jmo3B2RK1L8ylKt5mU0soVrFaNDJCfoYXsYt7YXWnc1MjdHEWJ9w9ig9g8diTvcl+rr928rak++9cp3yzYSgipfRYqmupUfGsIM51p5ck07tDbYU/XzHccD68PUKc9ohTpORs15Wlof7za7KAMDGA5wtbmANz3Arr8m1HNBJfrpUv3N5kIqTKi+k3WmTbplKN9MQlBe4uboF7aQ/1hjr5+G07+j8CKOlx18Zj8oPtrodIBf1qbKcoD5lMDrCa5OQJwEvqv/XyL+I3irOEXFlXSwnfld/4LmcU8342857ikyj+FUfzfmN1j9y8tAUJu1ssHDclXHcixzeXwG8xGHkwUZlOiSloLwBn7NcX+Vefcg46U4pJGAi7rV06gGV9y0xWyr+hqDPG6DKbpnFs/IRxhZO0usUhJMmo8XlbKqOrtvB5h+8LejIvTin2gdTKn7A9+ea2F5LbZ8MNINOgdXynWMy2OZdgr+UUC7yK2eBBlxfyXo7S1Wfv2H5gYJVMpq0OZbo3cP7GXtkJvtkOt+X++w5mFacT1293bIt2H2WW9Pgz/l9Xjs4yli+J/ezXlbie2fw++DzrOIxuZt9Mj2+WevmW/LcfCtc1ykNdjDPmnBI3BgUAzT+Rv+gKjuqq/p8iPqbw4u6vmD5czmbnTKCfjYQyHT7YZ1Sqp3QiV35tT6FXfBnQ7kFHtD7Wb7FVN3DRO32SDpcrPZYniv4fctT4AT80oqnXv9S5vW9zZR3DtndASdNSWvqHfG7oA3PMJzK44g5X7dOVrKdOZYWA0A88JcIh5lM7oHDRD9w6cGsEuXWLugqfZrZxUrgQLLSgr/b9TEe5y4eli/wBkur3RiPb8X4CdRzCmxTgK2gPDd+1I8Ku7EZ53FW+sI07m/n+Xg2jkXyZnyZyHkep0ep2ie3ct5eEHTzS46/cOV5YL4m49gdmlT8LHWUoCxKnD4d82EofTwmd/MBdXYhpJgwODQE+g7MKcYnGnfyxri5nMyGkt/igP9LFN5fAbzEYfeISdaUgw2p2Y3TyTfKVaAwjoP+oXWnwx1mYpzeE3DifSu211rEisQLydmp2FmQ8iI3+vGSIBYzODXnpI4wQMYBodG5m8SNxmMyzqfTCs0p7Gc/U0neaKw7RD3QJQxbfgk2y/IGMnabWG10eQCckFF8l/urg9QuEEgBkSKOxgezxd4OLlaEW5rxql5LU8wWXwwelMHax9nibGakNKozakrCLErEV7XnPl0+NiluPDassM01IyPnObmFnIaF0RLTIGJpkKLR2ShXcY2+ZM5KAZGniyI4dLor0Zk2q+24VJpUu6fqG/xeohtYyGa2ykK74pTwKgHm0H15TjRxscAtIwR+Ll3e72DL2v0OlYFwJyzQzUxlD9+QB80WMFB4zvDPVuV4qzcpMODxK6EwgcHax6OXfdxfSYzqEvJA47hReXBa3JvJUgFWDfwPpXY7nDZX6zM69+pC3D5hUHO4fyY7ETBnl916YTzv9EtH2aeX6VqelDs4j79aa4IrnwL55ciqMXqU4zIWLSYckiGqTGOHPUKTAiBVWeb8Gl4/6tSTnmhMhmCcrOHmkiYvsf1+xPWyZO1HJMetjd+pPZyRYbQ08+VOEvQSfw9DcPllNMdYpJs4wCR2y+yK7rK/+zwXe7++pQ3n0kmrdC3ZJk2u5QVeZFUs5yOe+R6FetpH87PrRtP2zmZuZOUFGP/PG95fAbzEYeusKZS2qsLZViiA7TmEdXKNvRnlxC2CSGxw1AMj/rexHCJHKvDn5hcOwGg2GHT2AZa/w0GSkSdmno47oXKwO8olpZDKASscYmJlCLQc2K0yby+PMvdgthkJGjF5ePkGAs+jJaHYA0Eu4FusD3kVpi1pUmbqDtyZ9RW6kdt5jEKYKQ1GcMKs4YTtaNvorAzzy3PoKK0cplZkUnX2ZtxYwdsoNuX5GI8zR7sYpr0Mp9fxemNNxWqTNvpZrq+UbScoQxwzDi0abC4AXR0gGmjFxjmLFfmOjUBWcP7Vq6PPkzdkGc9xU7XSFk4wbNzhegIYoO94zwY4l+aPauoYnVsMy3VptmE4p9gii+kvV5DVGV1GwTVoMblYHUwpteJ9qOjc8WW/nZVh5da9l0/KRput8xLdkC4zRUP4HLaVm8597/SfBjnz9a04jhc3YZtQjHmlXcxin04Fd7zZ+vVLh0NDxm5m0u8aAPdoKywa+EeBJuh+k7cdUcflMjJaTNZ95QqckrGXmXjgr0a2XOHy1/meeatZAW0JoNXLqHgV3muT1AQlYcbH5nuP/JAv6VeYpTtMXd2JRGC03qMpbCsbZ4FutrsGRtIc5zJelFXskHnW3mADocVs7WKsOp6dHL3zMR6vfAPbNszJ7NnABgd0cly2JPSVBv3HlrEjv/QrgO8DwEscznQMq36kBFnx2/1bdKJSaffjb5MmDrSH+VplOEN3VTOcFAh18wkEpGdTKqWEa2fRyng9SPpGVyw4PDMNkeA3wlHFmKz2AGNx7shNF6TXFDB0B6oIxQ3KKH2QLtN+oi3o8B9wTEfjKQw31CkuNbdnJ9FNdZYq4yQj2KxXUNklzHlJbsQ1dhuBiLAtHTpa4aZAapYdTgb8BPaPMWL9OHexVRbTK6PowdpDtIr3M/oQn9Af8kd8hcGctS6YQGlwxnFRqGSccG21pWjz/ia2KUswdhJxee/kMVu7GKnH4iqFkyAnv4MyhaiPBaFXRuP1n3DS4PHTgKncPd+Z6pvusybqE9IMvC4r2c9U0ze0gOhSKsMl+iu+lP8xH+OJmH8lXxOAOwU4wn4GTDx9mKWnNiTqogzXU9yujzFIzvvpUzwLaUuFdwkgczJ6ZFQct6yzMvv8joAP2H4pPCu3lr64ncyTPDgqE/D9514AWFNszVfAUO1lwW6Z6p0b9119Jupc9tfJ3m+Ac/lQFuuv/DSuPqgDhmFZYb8L6mQmX3mUx3J9hZv1KXNuWWYDPh9Kd6WpCUkIsso+Q7XyDA5QreRzhrJbZvvb8LauSsYT3EWXLHTyNZNTsWXtkDk19IRtoaS26e+eMI5LHd6TAFBE/p2IqIiMvXDsf94w8vzZ6kedYk3Naj2l3Q4uSCriOnE6Wz3EoEPYIMspB1xKubjlJWgbqweJZzyx4PFnbEK3TDU0D2S42Qrg5G1OR0BXPiTt6qc32BP5emA3VN6B4nQVs8vTJKBMzIYTwmqHzCXa5gnzsrSUN4YtXeUtZxt3t8xmh8yzisVs33qrQ0mA5BZRM7kIJw0hyAgVfq1Czvz4VpDeqM9wC08xnF6+p/fyotzopw8AgGIURQqkjWodLa3/m/XCwji6swJs6euVUZaXTvsWM3KZH69Al/XJWaCb8FaCQz54/ZJ024bjLORXmZ9A3cQnBWbK/A0Pxuoh/5tVai9xo6l7QHeDnBvf+SWNbWO4JX+a+/SbzNYuuzLUsqtO+6s86+oQ0unwflr7dt4YvoRyLJV1EU5JJ4/L3eZgvZs+1fdS5aTk1oV4Z4HTQZydiCgoJ3VU/NpOtrzJc/E+BY5Ceso2Vr+eTj3EGptK9qnQZE5iGzZ6xvglLtPY91dkGyK7oGWckK+puqXeJ+hQMgapr+8yclbzKNuYz3ekxj1bHfh0AKRnVQDYyqIqr5C3NuT2Gk9Slll6XZuDhcUHMxVyzFjV1b38lhHqZ9EW182ZHae7yOE9BwBFZBrwEWDPpaYFYPLp4OJEqICLb3VxQoBVPAdpexujAH/gmFWzwO9iSnCEAs6GPTKbozIRT6Cnyg/rAxagJLaCglnxBO2Ort27+Q/WM/YMEyRdwFnAMVqP4l0wCeO4ghXoyM8E9NYIdSevYdrrf08pMGAgl2NuXCFnknZjtnzNCudojsW8sHX02lcDF1suwC3LcF1w1fQ392/4vXi26aU0w5GI49SxjSY3yhqelVt5WL7ADpkPBH3a5Zmare3BcpbdMocTMtojZ2h2hmX6Grfok9ysT1mh3SBDmU2wpSSO9wYX7JffEwfvxVxhuJINfDb/Vsyr1Lhz+R3yIxwP4ZgOFW8YUu3lTFQylBns8r+XdQ/S2HLGnj5O997FTGqNoUvmcYpObpZnrNIzcTo56edX1z9S9QVe67iWVup8rBPH409KbtQBvFSfrJvcOPXP3DHgyteynIyjg8Z6+Ri3XsZASDmeUjR67aLJOk1Qx1+sV65zCztV5zr+hbKmtv+YsETX0ydDPaDjpQv1Qeq9m28d2LYg9ZzrgAC4Tp9HBP6KeyvAVpbh64ehesr3U27jLZX1fIpHquM/dSA1Av+BvgjHVRBGaE+87R3WM2wHK2c993S2X73Uc6q2rIsV3nMAEPiPwL9noJa+iOF0ZoVIahYBacEYgguIO36doIwG+bucbUWDeQCllxqEXtrib3HuxaXTT3dEJrFcX6sc2wfhrAyz5+ncQelsNahZIbybv+fK1ut0quPXdIAuMFYsYAwHtDez8+vdKyN8Ye7yok4whuA6ACrdxRajBUFXsp77Masznk/c4KC9kHOHPhqciQQfdGc0aFll1qx4FtUtUAJJZSBk5NysT7NAN3t8qfqcMkN3cKM+A8Cz+mE/Xp3StzS8xA12xu6vbnbLNNbJNTwjH2EzV5gk2qKNFov0TQgnBWW+ZhIykIsuA2pbtFsfnsZrRg2IcWhyMhuwz6SAv5dPSrGX4D2IZ/+Vkzr3u9dP4noeHDaex5Zez18uXMyfZV/l7+X3eIQHSv+sOQ22yqKq3FSfrgPD5W+j+AZU0imZVjd+QlmYoivsu7YfTtcd3KL/xGd5yJxYTYI2l/bib85SXccn+CGfyr+NDATwPVpsmwV5H5FJfFCfj+vljmeI+2eKPiBz3YnWxXfevSlLS28X9XW25avSkZ/D01dhv0z0R68NgnwPMIk/48HIpMwC3cRk3ee9W8gmPqP/2c8PZSezmEcXHzn/03KLto2mBYsXsIIQ1SOh72xoJ+HTPQzJ/u/4dAdEcxra4oOjApeblyC8pwCgiNwJ7FfVjReI93kRWSsia48cOTJQ1P96ms4FtwLDQZQQjFlqlaVOQKaEtEdAQhGFM+U05fH3lGIK6ahTgu47p94KbJHFDNY+v3ivbo7Ctrf63K6tCN+Vz7GhsaL06Wv8Lsd+J0uFKJODreeE0on4nzFft/ggMKVU3s0MtSzXBbbKz7iDqbqHP+EPucr1TxvwMiNnghyqLgSVZfpbHhPo5hNqDmDP0N1EISUUHX5NcC4M5DS4jKMMpzeRhwm7ZTbPym18ja+yU2ZH3yMeOXwZ0CWZ5dVBmVIaXP2kPsxQ+mIg77RLA+Wz+pcs11eJtnfJmaVvc7P+nC/qg6jCLpmVrltqklUH+oP+UJqlSI2RuslCcUYwNX4Re1TApcGu0KI+gHbKbEmDdXI1TdrtRZ0QaCRMa0QgJ2zLGplj05uLH+uTfEnzQX3+hjIkknGpPiPskdkMpY+b9Sk+ow/5Y71O9qmRKxtkOQt1E6elM94CDtM543hEMS4c+nMydjIrrq8bD2OPMwqJOucSfEvypMpfEbJTbdakidkUzRwTQ6J5aSUCEc5ngwxPQ0PQdYCqDlTZ53MyxBol9yd1HZxnMGcozB01aPHR/p+wi1n4bSqs4cM8w608034bYFZ1P63f5o/5MrPZXtJe0RfoV5ffqb82TnEBJ6kD3Hzdunqg14zZKceP8PvPPMGiHV1xm1zk8GsHAEXkKRF5M/HvLuBLwJcvlIeqfktVV6jqinHj/nkPaspldrXK64wBgAsGcD7QFqI786qbpXhCzpwZ8kIt6AvyCGnF+GAdyqk0fWFICalgRtmw7or66YjLjwZvzmV6qJpt2Xoasebfuu3gLJ57OfNQ/s5pME4POnQmlHNIO/C2LOCDPB+9r22PEBzXAWdLQ7dM42vyJ6w7cR3NZkdtPi0aPKp3E50NLfMy4aSO4ihjWcfKyiesFoo8VPD4tCIccrwFKEKfDmEkPXE9geogu7VlmDrvE05eQmVeN1kI+r6ScUo6Wcgme0bUAfxOHe/lIaaxx5hXQvDtJmbslLm8IDezTlbyNflTdjDXfk+cXQ1pSwCIBs1gFRpvdSAJHsNxZHlf8iMEn2DP2LqKObObuQrludKA3zYeYM0LpQBQgh4vrdtf7e6GmzYIinC+GNupvhClE79vpAC4U16psMvkFY8el3/FNuYzjT1E3o/CMemNrTaeZxULCzumdWM2qNOkYkUr4PkxxvrxIwCa8Q7+NnRSxotAIPscwoj6v5rjGBNO290OG3Ln0ttV+ipTdQ/hebcp7PO3YyNeJfpKIviXkqr4b8gydsh8lAbLWmv5dP4Qb7fPN2a+Al61aPAa19KUhr0kI/yCD7NHp7OHmXjjwOoUr1+kJhEJ/aIIN+lT3KL/VJ0H9vp3AkC6/UnNpv6KXW8x9vRptj353IC8uRjh1w4AquqtqnpF+A/YAcwCNorILmAq8LqITLyU9I5qP0q8LTKQ0oXUDL5dz4IrjEIw5aZ33hlXTTWXFwYCkJ4iKvLO+aV8iD6GedHbOeuXn6pXsixDZ7O/nUW86dPuCJqM3M5Uc96R8Ym6xvU+x1C/Lgn6DiduzNXFdYXRr/RK711Ydi0YdkGMS1vApxZt7B85kZEFkEjlhePyr3iX4PEpGcEz8lEel38V1MsBGHVKLdF+a+RWzhXurUJllQR1TgjL8IBojd07dRSb0+cbNBmuvTzOXdbFogNObBjJcW7Wp3icu2iW5jl8LzgqDc7TxhPcZbefG6TPrjo0O3RVBptzLmcTS3Udk3GAgDuRCpSFx7d3EyIwFvDKrhqO1uPet061F8RsWcZbzZNMD49Jh3057AdhPPegfMgjB6ibrWXne/gvNS6ishweOO/HFC7jUpMFhOdlFVtYnF7Jc/MLzqO9xSL2Mh3CybqbxslDyJknXVV8p6yz7rm4MK2Nl7srvqGMd/nq8iSSVcE5P3I+0fdD2sacKo9W5Pj95jij2S0zCYMC1+qLdGoPI/WY3fXwDeRHISXvUy4Yg3Y+kY3kB9l9/L38nm8zt6y/MIOd1XEXjP/uR+Tzlbktm5+grNKnGcrpmG/hCp4nv3PaaHHN+Ve5j4e4UjYYTolzWz/UnQmZ26FnmEcXnadPcaTnQMyjixx+7QBgXVDVN1R1vKrOVNWZwD7gKtVimefShJP5ZZQD2w0pZRkKIydNvwyuL8QRGIJ/JuIdGedvrSXLqwEvntAzKwbeIVkbt5/BcZoQVKWAql0peqntQwylD2+ltFRWeTl7Le5pJZVmnZIKBbcDPKK8LgSIrTDqDc1KuPXEmCKJyotADem/tg3XcjUj2o/TRj/ROZc6EJmaqZdxAx5YcD0otMEVPgc0n5JOx2BzUCePf0HdUnwAZus2IP4mtBhZXIjxxFjOcn2FT+u3+Z7czzq5purfgVI6wWj+A19inQTGWCPg7t8GJJzpp+invI9t42e8xWLWyTW+u0Rbz+v1OZbnr/rnEcMxkWrHmklCejyZle1GIAOa0lHxGLhdH+N+eYh+DUwCaeFFQdP01JTp55Hoq+ZF1U/qxkDqOeBjEsQNEATolF6//CD9bLqi82jdMo3vygM+cEzJCStLrtCN/IQ7TYmhrE1OfJz0WlzoCnidqmdd/yjHt38RYf2QZYxpP4JrGqiiGzror2h23nczjRdlFb0yihMyJp5g1fEk1XZgwVtxtMnv/2PkeOmbVwkAo833AJOZq1u999ElD83JaDKUPk4RG0qPJk1OmK1v80V9kNkt4/VlEZtoo2nOXCbqk9TfmC3vE+MbjDjWz+yzu+J0Fzm8ZwDgv9QwPHfcmtUJNW8QKWM5RCmw3JA0MFr9HU4vYznqvYtuf3mgIAgp0GTDFPYRzfpCJZBSGGFZIXBBWJPdQh9D6bDuwIq0GS2uYi2K8SVsYicUk8uTlLKqCZUyToDJBA/aNLBhFgp5236lH9OEgGgUeYS8sM+iLZQGO2Qej8vdfEwfZzmvxWnqFEUKeIft4IBZb6U0zNcLFwDJbr4uGKvpG6M4xgLdxK7C1lbQl5QGJ3BMtpT0ZxxnDLtlVrTtH+cj1otJzQ3IMl5qxS9o3xDMi9i7fwOYCXGe9+fTaD96GVfu2cbU40cY13c04N0AbvNC2kNQHaQ5KuO9Yx9nvDbO7WQLRshJL91IPca9+pABBe455Ajk1dAIzNbtiTN/ATgP+1rIsyiOs9Uc8OAdGRu9K34LOUPo4zt8Dk8VBkBwB/M5L/ERlFa4sxAC8rI808+iW672XGY08Qn6rJAzVn257fHKa/+aflKm89N3ySI2siyIYybzgvK2OB5OwjIHevZCAlw7/bVBk8+0HuIe/SH3801u0SfLiUaDJhPp9gCqf/mtqMeCymafm787wbCpi4titbJK46MiN8vTzKOL06fHlK8/pM9yk/6c1Yd+juTVucmoji7fEF7NlrF/xGm46rp0+RcxvGddwdlVwEseXs+d7cLUjLAIjrA8irNrHboeC9M478frAWuDLpE3YGym1ZwhqZux2nedehKVqfWDKkVfWH5KeIqQa4OfyJ0ss5ceNsgKWhjXYhO1GxFF1Nh/M2qpEeSjVO543DKs27PUQFXK9ZvaEKRrygDeVBxlEJoxqeIrLenw04XR3POfqmxmMae10+rQEJjmxMcL8NKXzwUN5XPCrVkdCLT8StYpBfBUidyNGYaXcXoYQ09hQDnsFzUAvMhrh8xjN7MwLtgGACc1/S2uY2izsUbRRzwSS8MFQBuwqzGbXePLCNEqXURz6lv5vQABQX3KOmZOVcLvGcPpRRUms4+3nNXKXhnFuDNHWDn4l9Uqr0tHQi6E7TSTHfYgP/V8t++G60lOSadfDzddmd6xJhCMu8jLkvOsZPyEOyuQXke7qu8P277LUPtfI26Luv7k1cGcsXtdVqBabCVmUTzVzLpWC/iZ4HuDnBm63ZhWSoDJFP8OuHYQRUBNzZA3tyNlAAAgAElEQVSMXDPG6uH4OIn7nKqj875N+80qcyjT7O+luo7rzv6SoUNPgUIvd2PaM0M153Vd7sm38XrQnj2u8usl8PkcyU/zraVKO+dj2h36x3KYdxhn28SE7/A5djKbmX1HaDav4AftnyVHaKfJFyc8yNyeLTw/4kbWNZYF4y4ei9o+iL7pc+mSkVxqS4DvrwBe4nDmdM3ZJvdv+N17TijocBCIAGqv2icuBYhRVEkXUCklE854UXs2owbkufkkhGuyXsFsOsfcUFxvwZ/ZHm7wE7mrnIlPYS/eLVcLqtpKl0A+TR00Wc2PWcIGrtc1EK6qFvlEs+yE4LCzu6geqfxSt+JMBD9tyD9XmNu0u2QOh4pjrCHoDelICeCUcrTgxSvbpcUjOaBZA/uDYdvbeOb8YnD5KMozYcw6NSkJ+6OYs5iaao8UUk0pSq9eYX+v4YNb3zKeMP/IYeb0d/nnpFJ1durdItyO8unr1OMMK86ARuAm6D9hneraV8zqyik6EYEbZY23QqXAa4Ov5iW5IaCtBvy4v9Ws5tzAGkZzPE1fAGiMP+OETIxkRwIQDQRSnH6Su9uEYV+P+oMdV9Zl3jJd628Bp8BWqo4OfYM5S2WXMkvHK+s4QJ+zv1tIZFKllje2TYx3ITdeZRopI+dOfhxfpnFpSMkbJzSD1dN2Pef9HkkPQ4acLpMvLLdXja3FfhnkxS/Bnzc2g9vpQb1NP27ZVc0F1Ln3AzjKeLt9XOXdoo1n5Da+O+N3+H77Z418kQb9tLGFxYwcdZiNDWvk3KGjjSar9R/Km9Vt9HPn6B/QOfIdWsM6Y35e5PCeXQH8lxLG9R9iBwPcQ0kJskjJaDzwQsDigouEgFbU3hx08qubaSYGWLSVnKJLlSVsAFWz9ZYChQPxQDJydWkwZlzNLFnZzawozRLdwG/ydzwud7GOa8r3K3iF1TzKPLro0vl8Xb4al1enDOq+hYCnThmEwDfVfm76OgBE7m8red/MCkUelpOiv65OKZBeByiDsr2Vx0T9+qWdEqwXSS5EY6rvhjy3ISOPV3ZMggQ/ctBgIubQbgyN14yvur5Sgibl/Og+9jbmOLyRKJ6bXuw5Oa9GAR97ZXRlPqYIHg1Zmqbgd6ZN2jlvlKxibCfKJlM1IJPcgFG1520F/2xs+aKeBwVA+A39R7bIYq7U9axnBbk2MJOAxApaCPQL8BVt1wcr1WH6un7u8UPxLiOk2tSRoSt4ldU8ylpZSQkeU2MhKLtdz5qz2k78t5nv8yukz5MtNfXw+mKNkeJE+4u2+FDrF6zKnmUDy2mVZz6zsqgWGbtlFvP1LbMaHLarmqM41+kLZlW4BFxaFRfQUu6U2LQ3yppKjyjMo4tP6sO8JteyUl/mRW7giLsCGaz2FmWJ65nFq3eTOT172TFqegX47XvBrDJ6O0HlblE8hgyPqvpnKAvZxBZZ7F84UWWsHuJf85+YRxfL9TW2sJhFsok5so3dowbzgRVXc6nD+wDwEoebTvycV6YsMQooMaMbUKi+a+VuhVcq7/Kdv7X4rpSvk3+DnKYG23pRmhYr9WW+Iw/U550CRwPFcfmQIG+rLAb9O/4X/XOe4VZek2uZoTsZKn2lkqtugQ5QdkirSKV8irh1IMnNK8wvAQBqQ8SDtNeK4ts83WRuWGqQh5NXg37rSjBBW0h3isYEr1RD8zpxPQdxjj4SM+BUny/S17V/oMwvZzMf1OeNaymVdH+x+Yjm3Kw/ZxfGpV48cYIr2MgbLIvbs67dvPTCrrYZuEoHd7vbiS/kXNe7lf1DBrO7bXqa5065ntuskDcD9SeH7lzaOEcbDZqs0qe5gTXmtqrAFhbb1XYTv0WDIdpnf4b8TxwZ8OiFJ+Qus84lBXANAEuYxqPZcRvphKGcpo/haV6l+l8Qb7rupFum0dR2omDrlQUTrXM6iHnSxY+4J6Y9LM953y5NY0rYeT+MXmBSXOcUGAy/hfVK1TeSkVW+DVqsyp5lHl3MYytvEQA8QLXB09xWL8dUWcZazuJfQvQmTEHfdEFaTsYenc5c6WIb89nCYjqll+9zH03a2CqLmM22uG1K2VsZKxJVMmk6QLYou8FphlO6CVUt00/XnbRJi+3MAWl430I5UIQMRbVJBtzLQ8yjy2JCe+TE8uqYjCtPt86ni3lq4uXaoO+dSUybNi2u10UO7wPASxwWnNrGcn2NdWJ9YIadLqXk6oRBnWIsO30C0ITvvM4+AHAs4oogCtedf5H29rM8Kx+pBnhIFw1+JPfEiqsOMKqCPQ9VDuqA9oyWWevSRHoRmtpgiyxmnnYxXfawS2fxM1lNToM2afJJfZjXw1ugnjB2VoeitqgBS6HwDfkQtmMdsKgDLmFItmGx1QHQYqieoU8cRWnjluAv7GNh+7n0p8oO03jfnFUem8dxLsM7cxqGARTOgGUrbONyfocfcLs+xuNyd008tUrQuKW7QdfwJ3wN1Szge84enUF5BqmurinQX/52lU4jTmfTqGa83LnAGmCWiNYLAk77LLQY3X+cY+1jLxy/6AfaYFSrh3mNyjhtJ734K7kGxE3XXewujHiX+dXU33k2l7WEXCE2SVKEmhXBFLhT9cFf7cQw+Ovkt1+m8xv6j7zMddatpZ+/geUNL81KXkbV/H1Dll4YvNnn8uyZE3YWZ7Lr2rZuQhTyJDV2UyCwjJtzpb7OfDE7IF045lVC2sPz00HZ61lBLgkZ6cZLjV3bpx6Rz4PC98WAPkHLYz7nFc5rRyRqyxfu+EGYqTvMOfeA5p6hw/FAnR1ju2W2vRCVBd9cmtVLezuPMlT76JReerWTbcxnHSurG8q23FzhL/g3rOZRbtanADhwYB6HD81Bu6/m4I4TTJw9MqzYRQ3vA8BLHFozR7KaR+2WSHGV3gFekAaBYedMDc4aoTkgKPHKIp0+KKNBi8XHuugeNRYGB3kEdShvbhZ5hIrU/YaZbS3VdayTq/GW5K0QW6ZruZL1drXHF9QGIOYs1E1sYz7f4EH6pZ3CLEhTlV9wi79tEAGPRBuEvLBhrB7iHRlbHQoPQWBKERXvLwRs3GcLJsqtyXCrwobyFqwKY/Uwe2R4PRh6twoo9a42Tm4PgAeuyZwJQW2+Do8y7SeX9ohvg7TP+BYNaMk143lWWcf3FoAVeRbl2LLmaBfzpIsu5lN2eI/G4NJO2EdqaE73pYHrCVTb1hcaw6l39q/SYHDbmTi+bRNPttgyMpS2M/DY8LtZxCYAXtVrQRz+WZB6tjiTlVLudSCs/G2322pDsBPhV9SjuYx3If4U8RMgqaUNnpC7KuUd0u2k79Bz3CY/YRp7eEwMnxboJt+sT0iDk88oeoz8c2iILiml0htK8SZRYd1cXrh6IZWv7dfrZQVdOp8tspjIy45X9zydl/3mHUNJ8T5VL0eOqmb8gg/TtKZezCp5ETejJQ0yWpV8T7WxKm20uImn2cPMaEX3TMcgJ60/BjTMN5pAQCFHRI0ZmYVs4hs8SFPMlnCe3EHLOMQkvs0XyBVmbHmHw91X0KaXMbQ1nP1dx98HgO/1cKhtHOuYG3gDGGDFzg0hSEvNDlMCEuoH9bsBCB74NCHP21jS2MATfJyWuzVZlzal4BK05javjNzfziuF2EruyB/lmr5X+eWwawlnfnPpQgR+pPfQTztqv4vd2jknQ0KuBrQO8M2jJaeD80Q2FUPAmOJH3Ww5KYwrggwAzGJeJgTknmxW+ltdO5TvjRHjoZxhnB423kK0hqYoX6kOgNfUIXqfoD0vzgwF4Hm0HOcIHdb3rRG4BgAJa+TD/gF/UwBhn++SRUYJusaAXVqKZCnehKFOgdYBwYhvOQ0trsZkA9Kd4odPQwLM1gEjYO7Zbfxd52+jiPGcglrg7tdXaHGIKWleDMQbG0brOxyXy6pxGp6JLGi6QN+/IPB2t/FS48k+l2MoJWODupyXDn7Kx6sdBJqs5JdsdeM6+XTqcXplNKhZad7NzKie9hSzlXPOEZpIZiZ4BKzWH3NAJrOOq4NxqX79E22Va4PHuYvV+qg565k6UmLNApUrrVFf8vnWwRnOMyTJv4HC4DP/f3tnHh/Hcd3575sZnASIg7gIXiAIggTvU6QOUhQlSrbEWHZWjiUrthwl3iPZ+5Ps2utLcQ5tNnvkk+zGthTHycaKL20kOXJsyZIo6uQpniBIACRAgLiIg8R9zfTbP7pnprunhzo+skAL9ft85jPd1dV1vHr16lV11XtRwjmWQw2vMnUxcVbWVaf4vdqHzjb1NrMi7xAj2fls4C2OcINn4oJCSJX4ifyE3u3mQQ/dvROVEArOoZQ6Te75sxXWVLu8fmXy9enbyeqrh0yYop+prCuEi1xma2YI5hTwDOPswDp+IvfaN0GKQFoF7u0GE4h3kMR78Y6rLqEbpDQECdegmaez+hQlzPN5ezg3usZrSf4aA8416+SrdwFXEyZgPPHFPsX3mPwOPbkljjFR78b4s6ziD/g6p2S9rZw5eczjMorQGR/MgpQPv/CMXwcOqCE6ZRHpzcpocD3j90Hv+OER4KEAP7/ueJI8wWlHClZGUcrpBHztm7gWBGG3/pzP8VcUaMAJTvGlHRTuqaeyVo97w4KU2Gv9A2PkuQyPi6sOVuKUnhCjRLvxKBquPBThVW51/BenUY6D7oPq5i6fv07Xal/nulrP8+/OvsavTjzLZj3oqk9qPvapwgCf4M71R/gnIgGfHFPScvJuzK51FCH7xKO9od27lzNLx7x2RP0yIaUcLlM2zrOF0o6bzmv1uNel2LXSDEK6vubmh6B2FPv5fDreQV7xtk3SxpIw04QDTkQn0xl2rRzP1avgn2AAn9PH+Yp+hd08T9B+yMCT486zaquRXMZYr8dcO+HiZQmQwwEy5YpTRk0jSxbTykY9msw3HR874Xfqz0ixbXiN+HF5sOFSE7va30xyZ5AsEltJLtI+5wBUsm90leTyg5xP8yN5gCNs8ZZX7dO4t7e/xtbWBj528YDj+9inxLpolacjnnLeyKvcp9/ni/oI7SzmiG5FsBCNEXLbXgwaN4FVI2dc9QCRGMNTPlufMwCjAM4w2vJcKw9vN5vW+IzH8WsaFN/zXpAgTSMM3k5pCYqbyCtE69yFPFlwX3Bd3GkGXQcJKKeu8T1a6zmWNm63LOCCLLeVAXe2zuAZczsbd97ro8x2ESYBe9BESBiX9Q9qQYOUWzG8Vt3eTvFLtwISUGf7pGgaZcsZ3NKm6ym/0ENlcF2dd5UQz8on+H35o1QbhmlXfQIUO1ee52Q1e/UpstXlkilIWfQrUa68FMul1IttdtmZpdv+f20VuV/KSSjAQfwMjh9k9dLQEzdAsL9dO6Xww7WUJajT0xQXdxDJHGE9xwinMxKMbagjK25Owz9o6wVOsJFokP/sgPiJsrnC7RUP72RqUnKdz+qktgu2oWhv+vFVrXiYxSk2eOKclvV8jr9KKrzusqab7PrD/PydyF9JWZ1xT+AQ5mlfUgGNp5HSl7z0iptIsXtZmn7vk7NXxOXv11X2c9irQAm6+tIIcmEYj9MSWs6P5AG+I/889cuDv85+2jhxdulLzuq3my7J521U+5TcNOOHcz9GLvfwjLeebyPrS/QyG/PehLw0BvITZbLdsVVz3mNgXQnTKYsSkz5cvoyzGWOl1vMl/SqfWfAX3Hr1DW6MvcSXra9QTpe3LC762CaIks/e5Bb6xfaZ/tfyL7kgtcSIsHK0kd/uf5yVWu+Kn1QIBYu9+hT35DxNfn5vIjwkSlVVFTMNowDOMKxS1x6AdELP02mU23iBzXrY+467cwcNYu5BKJ3yEqSAeK4t7zt+IRyUrvvej6C8E/VVVlLPl/Wr1Gijd4D2CSlvnf3mHAKUaHe8gAHcNiqtjp9kt+BUx+cyqe3jvw8aFPxtm66d0tEuka7FGj3JTbFXven5JgDqrpc/D39Y4MptqrIYaG8rXZv46+YKmyZCrozxoPydN72EAHW1XRqlbUzzPM+zdZxd+gIP8W3n057t2D5wf5OTX4gYVbSwn912/dyKnaddJaAdIKVN3ddBtHCHe9KwGJc5fL3skzwZup/vysN8xPqxs1IRC0gn5N2+kKhfjE5ZZO+Z9dMuXXnccOLcyKtU0+xdzbmGchwixqDbBWJCcfJPCL3pKCGO60auUEwKjX0Ki8eNpb9egZPVNKZdXHFPyUYWaruXHoHpJfklvtpmxevj5xe/0hikLDlhb7GVR+URTrHOm5abVgFKqF0iQRPu0SS9fPbwpkWYKNXaxF59ihHyyWPY4TOX1yNXGQPdIPrp6qBVqtmsh9nLU0kf00ETT1c9r8g8uvKLKO0bJoNoKr/76nxcNqfSyt83nfsJcjkrq7kkiwmFLMrKztM/VEYNTZTFvcAGTTB86VnYp6H9X+smyaKoqN3nMcWrVpXRQ07OMGvX/Zz8ub2AsCQSui5OARsFcIaRK75PapraAb0dWjjPcqcTEKx8uK9TBjLrGgpeqkKVxxC79Tn26lOJ/SqBHS+ZaWp61xIA/rguZSNuI6uJWl7mdhKd3p9f0PtxZc6nAEbiqyZByiOQa41QE2skRsSxfu9OT6ikM5lmuhmxW8G6Fn2D6OSPF7/31CvENBnsCf0s1YC1692IX3kIyj9tO1os1hZvkEdh0WS+rvJl6gQSHyj8ebjyDaGsop7dvMBefQp3O0riYFOAeHKVMyzeT2NjkscrspsWXer1Se2frLiuBeWixOP72jNoYhKk8LnjX0v5dxSIJVzwpuG06SAFRCWMJWGihBlnju24Xse86fkVBA+Nw87n24B9uP76X4PP3mAHF1gO/v4VWPeQ176aH4n4AQoZ8JbcEOyhyNdutqIT5Es4vVFfDx3STKwuSpXv/QCFwCmB7Xk8zlsB5o78kytP26T20zJ6mPZ/bg9SbtOVyVVne3uGBrRPPD07nRo9x/aJAzwv9/CkPMD/ld9Mtp9/m0RAPilpu9rpAjX8oXydn/Irjk90p338PqBd71uEac1eynI9x+9N/zHVej64/A6fxRJ91SI3/qnWH9cn137KPc49DA+V8p2Jf+G4gcTLM0HjQiItx0OKK6wo3Me50CpXmbzyQwnxt/J5mqUWEYuCAlvpjEwsSaXlDMAogDOMZe0DSSvrCeZL9XXo7oAXqU6e8IzDo1D49ox4Oq7fw0AazwQORpjLTtlPLmOOHaU0M0C1u+ZefZqEEEq7YuALC6qn2J9uG1jNy9Yd3vp6/oXNepAi7fOm7fyrO10gKlneOL78x0J5NIdrvXFcZb0o1b4VpYCBMUgA+2amnnf9isPbpQWcldX8kfw+d/Acm/WQt5wOXWpoTBWmAWkl8vGUQxi3AjZzJ/jS/uSaw6gnyQhRVDSYPq60VnESVXhGP0ETtbiVh3C6FQAfvxRrf8rzKBl0ykKv54J0M3xn8FG1yy0as1e8UurqeiedwpxWkfY+X60nGdU53rgiiUmFoIRUCSnsl9vZJ3sYY05wmmkVTkkYk/a0a1A90iis8f2Aes1Tue66xQf6AJr5J7OednE+4wetLLtpKnHlJOxNz5lMlGuH9x2/LAyajPkV6cR7QcpuvIwBQ6Z/YuDnE7+sdZ5Vahu385z3IJcfzru5OhoY7saQFCXL7i6HS4GBEOdkNX+f/etMk4ElYWwnmiFfWfHWIajOnutkHjFnE0YyvRD+/aRuxVGBgVAx1F6hLnKaz/Cd1M/ygKhF2NmFKRolhLKYi95Vaj//Jcpo/0WnM+ieW8xLObcnyxHUR9wTWw9veOvRn1HCHGvY1YaS8r6FcEZXA8LgoG1qaGGhy/vKDMIogDOMvPp9bLScAw6JjpbGmnsQQ6YoUS4m9M3OgoRwvrocvgcqWHBGVzNGLil+ZZ3/+OAVQinVHm8FgwRvHO76+AcGtff/1VFP/3RpahldaW6QY/xb/qd3M3m62VyQIuouV4DS6Inrim/v73gmqWykKAWW9113ne1Abz4eYS3B77meR8ngWe51Pp+lYopMVnE6pX7J8gUP/nFB1hue7623b1CzCKV4o7BtDYZIrjwG89R5reFReYQn5QHOifc0nMd1lJ9nXWVOGhT24hyrqKHR9b5P0Y7XUZPuyb5gPcJt+vPgtr9mf3PF8ffTgDROyQb6pCzlPcHihGyyJ1mqVF0dIyZh+9R6vGn8efrzccmAndGXk/uSki944yXq4l/Zv/akMLgPKbbcClb40yo4QUOQX2kMqrcLFmF6ZEFq3s7TxDtpy53EAtqZ419VcufrK1MofhDHXe605fUqWZXS5fWLHFC3+P1iaUuTZvJawato+fu3T94qtiH0kDqnkf3yJ2X8sV2Z3az7yWIsuLz+MvrTC5B1AuwP38aj8oizUpZIwEUbizWc4Ev6NT6r33amG2HOymrsmmhqfV3l2yT2GFtY1GObK3PHceLF9+utsM54aebpL9765kxO0D261A73K9BOumFi1FFPd9cyhoftsaxr5FJ6un2AMArgDKO4roteKfWFBgm/gFlp0Mws6N0g4eKEZTFhpx00O44riTKcdLMWIOBswWP7L90vvplViuBNChNvIt54gsVDfJvlNKJ+NvUpwi26lOU08hW+ymL1fV4L2DtzrbTs9+xPTWGdTo3rKudSbeZXRv+Rzd2ngtNKt+k/UUmfoh4krN3tHzCIvSVbuSDLvHk4//O1k8Ns9+YVVP+g6wBB5hHijpI46vfm8XaTGAdjksd03IyCf9XCr+QHzcbB+Rwfw69oK5I0bOuflSfKpFRrE1/ma9SKbSroLKtIWWEKGtAhucLmp5273QIVDufno8tGPWKvRkoIS6C50O3dIs2kIOjfyaM83JVUghNlCVKGXT4bHLqUaG9KfVP4xM8PiXq599YGKJJBk6J0SKdcBNE1KC0RAu0KusodwnImjhYQo4OFjEoAT6eRqZZEkuHpFL9E2bxxjnIDg/j2Tfp4J1eHqdR25sVPX/vrkCib0wZ+vgsqUyKOsuBKLzc3nUrVnV31WaG2vcNlNPNZ/TZ38ByTcVMvblmXIud9PJCmPeN7GaOEOaOreYVbvQf31CKTKL+qP2Q5jYyQn9yXKPZEdJ5eDs7DKdM4uTRRy7PhXyF7eiow7m/oY2yRwzSHXPv5HDolD5hFifv1DRNlx5UDVI21Of7mgxRoZae+RI02cfnyskRefbF5gbT4oGHsAM4w3iq5jTa3Vf04ggSsv4MpwUpDWqQKCfuEpN1ZS7WXPilL2MpDBNEow+SzhBb7BJ9vFmx3P4uYgqjSItXePNwdQpW4Mc1CveI9GeeG2MZB9+ntLKSN8qwO6lntpYurHENSyI/1E+TpMG1SlcwvXmU/XX15Bc8cw8Tis+lA5Qd28RJDQ+WMUJA+rSBl3b8qkqLsBZQvDQKNWDv3B+QWYkGrjEHlSzdZ8OcfFJ6O566pRNq2HVWj8fm7L++kq6eUyYST76Rmpp7idpSa5Gd6y5uG8y8ou3iR5dguqB6VR5hyu8QLopMr73n00kfFO29fP1zpL9YL/Io8wwk2JfQ9e+XPrVz560javAUlj2GelPsD2kE89SjUq1yVApJ2+YQrMo8wUWKaPE3pbRufUp1W5gStLzjKShrj5YEI6gOB/JmGTkF86OBu/TFl9DgnaQOM+brbPqi/BKUfwC8hYuTqGCNx5VIEVdvEVYqRYxfGJJ8x8ulkESl089TdNUakyFzvuCHO2BFWiy0Xz9JZUGJ78ki0sUWJXiZGmFVSz0G5yXaVCbSKvVcvdTzCl1cayxZu2rnv1TbkXEc9P+FeT7IL9BKfl2/YLgqBVdQTJuoy9izJVfU0vHhVC3lUHmF6TgahGovlA+00zVvsaieLE2ykVZcSk4iHByJE+ax+mxHJp85ZVW9gNXXUMzc0RXl5K2XawqvcypAUcszlVznifGFobrqB4aGSBIuOTY9z9OIVNi8pCizvB4VZpQCKyCPA54H4FPe/qOo/zVyJ4M28PfZF4GqB69oneGzH1wEuk/zwDboe4e3cxX0g9kuJna4mO2YYizwd5mn5pPddZyC4h2f4GXsBHLt0qbauvAqERQYx1g6d4ZWCnd7y+XBBaniUR7hTf0KKwutK9y228JZsdTboBuTvRhplwp+mJ27KM2WODvET7qUlv4HM7MHUNILefQcDRfrBSoLL647jSyvuTiklj6DypVP83HHT8ZpvUhAYnsLDykP6OK0sZZ/c4XvXYgEddLAgtfyu63RutAq4wjh5RB1lKEYkhRcV4bvyMIu0zeXIPRRczwCesF3ZBdDJFy+DCabJDh6YHZSSXHFT9yqdG77BPE+HbGUi5dQ73G09Tav7YEtQfZzwq/GN+i5F2dIQS7UZEeE8NaQexkkz+LvL6s7HVwcB1FkJrLaauBCqTc///vr7EURT16COezLqa4O4V4dWlhJoDDqNwncz+xmigH4tplMWe+iZrtwWwoi49nI6cXPjn1Ld4W9XjkAaBYQF0h8WaQsFDLGVAyzKGaY1fG+STvaLDEgpChzglqQ/aCCmEdpYkraeKfnHn7nvA+Ks1HrulyeooZECrnqirOSM/SXIeb2GRr7E1/i+PEibVjEuc7x910Mvi4hahIcjTM/NSKywZ2WOkTD27Ex8jso2FkQvBWpFi2izffk6qBW7PFPFWYn7WscncJPU8oreCsAO9oMK+/J3UTw2TsXQAKiiXZd4440jbF6yJzWzDxCz8RPw/1LVDc5vRpU/gIlQZvCDdIOt05mSAssnoPyC2C8AUk55JQWkvZbnnvErZdrNRVnqnFTzmk7Zq087h0PcxngDyp8oh7LUOs+vX/wRBb01dtmDhFlCcISYJsxP5WOp9XTVzcI+OZmYwbsQ+BnXfR04WF1DqXZoOCoF9Mh89uXvpidSlhonbdqk1jnIknyaugY9EywydTwg/VShnOH+/OHnH0cx86Tvr5evLCVcTo0TdBLRR4OVnOF2eYES6ZKVhUgAABvmSURBVMO/NyoEjoFun5cT30AS1uBPOfPp4ov6CLt4gVv1Re6xnqJwchAPvzm81SCrqdN676GRRD18167nMfG6mko89/XDaQL2MwYM4md0dbIf+fJL2d8EjEh+0pita+AOE2WLHPZ+WvTn71GEQggxKvUScft2SogLspxWlibzfjfw08FHk/hBmxAWGTKdShu/En6t/N386OZPZ1C/VhlDKHXUp4Snlte2CSpY7OUpfpu/4Av8IStp8JbdLz88CpDvlLTzf4bVSUU9ZXLrTedmfQXPAUFP+n4eTT8utMlS6mUd35WHGVto0Zdf6Cu/fdpWJZz6BQEYk9y0tIofBgQrtU39bZVIM8aneIJllq1g7WB/oj+GiNlKlA9H2co5VtvKn6987rpU6iV+q/O7bGrMJGRZiGUhalGfV4tnscD575N5KelYhGiQ1WnnJgk4LFejjTzM4zzM44jAo6Gv8WrlFp5ddxP9sRi5becIj4+yYGLmD4LMRgXwukLutZQmN3yDQoQoIY06Klt8cPCeMksrRF0KWWJQTAhM76enTlnEPu7wnFRbQDsP6ze5nyeo03rnVJbLhpS7vJ5yC+2hKgYGFrHxyjQRS1OFmesd210bthAKMtgcVwScE5yJd11pLaDdW//Acvne8694+IWWLw2P/bOA8gWtXtnP48IyWFiX0OM9Ie4eFFzlj2iMJdbF4DL46jkdiXjKFELZq09RSZv3BGygoHbVywnbrm8QYRrPQYL4QOdf9XKV41P6BKrJzznxNEU1sSfIa0SYlLRG8RprjaMSe4P1a9zGy7KH50N7WXexhYh6zVEoYfIZZjmNbNC3UtNKM6gE5RmohNgBvvKnKjNTUzmUdyoZlhCylLBqok8LFps4jMfwuzPgb9Cj7OY5qrXJbjsJoQgNstq7iuKnn/MfIkZIo4SxuCwVyQ8EQPw05xxcByL8Skm6SQJQqe2s8BjHhSLtY7MeJH7q1yJMowS4w/LTOcFHaeSju38EtVlQesASvUBR3xir+xsJ9F7hyNT4iWhBEyt2aXXSNBMHictpVxsIFsVuM2C+RIuHB9nb/Rxr9TgP6zf5V/wFy+ImhNLVy893Kcqp/SxuaugMq6kbPpfMP6Xfp/mM70nXPQGxuJsfk+mMT5Km/3sVwjAHBncTjdqTqnYWJ1yjWoRpY7GnaZulNsUeX/60M/745FU2E8y9PM3KoQk+fuJNtrY2sLK7DQ2aVAOT4Wx7LHPkmWgs4f7NXX+7PCGGhrz79+Pl7OmuwrLC1OsaokRQCRELhenOKyQ8PgYSonCZcQU3E/jXInJSRP5axO/WwIaI/HMROSIiR3p7AzZEv49YnZ8bVIDUGbSLqVdoPV/ma9yn3+fXRn9IBtOENEomUfbyFGv1eNLWWBCc9MLEkqe/PB3ZVQ5nBoRrQLpZX2E3L9DVsIC8C3O5r/FnbG1pYGfTSbvj+Du9K70YIToLS4gMX+RPL73Ibn2eClwmHBKKSYzb9Hke0scdrwQ+4ewMCHv1Kb6sX+U2/bmjiMTdY9nKVU3cmG3AKg5AJhN+4gQoatf+36SHvUpQPO2Yy1WXK/+wKvfEnuaT+vfcar2IBHxSK9Ee/sz6HcdN1HNs1oPs1udYoQ2eeKWj/dxz/E0KR11mIlQB+8SePUlwlMwAobcueoz79Qlu0VftqYhr43VQ2d1tK1gUjOfyZX2EtXqCxKxfbVMmWD5vNc71TdZ+apzPKTXayJf5Grv1ObYOHeWuo0cIWzFCjuC16xAjTJQ58RPrcQVZfH3TOaW4k/00kPTVGSXCREYme4+/TtVQ0u2dYDHsHGIpkKu+tFIHE39egf8uOtlDbFKBt08ZPu0cXEmmGxrO4IaGrfzl4XE+ceosv97zVKJPZxBlrz6TNPzuQgFX+U0e5zN8hwxnwI0PVrfofvzmpAq5kmgjwWKXvsh9+n126kuu1UdvHuKrf6Ve4sGJv6FaGynFd+LfhRV6hgV4TzqunT7NXp7x9GdbxbAcry1eW3EJpcyRB3v16VSTWUHGixPv+yZPPll6q7WPjktrmK5fzG1jL3nyDrvoGfHRNo7t02+CT6lLUVSd+4d5jIf1sUSdBIuHeYx79Bmv7HD1z7AqVcem+dXGn3Pz5BsA7OJFX14E1i3tGKKxhFyIEKOgw+LW6H726lOJFeA4Xe02Udxffux+aZthARxXaPH2DKFAro7xX3iE+/QH/OqQ342cUjHS7QkLqUVOayZTU/bBkkO+g2uH2c7o6Fwuta8C7NVy9dXx4+1RMi27fu52XNbezehQOctjlfxG32J2nG+itqedkJXkLffEXoCVXRfZM/AyD+s3+STf4wvWI4lP0Kohss/cR3/Dek6e2EPHpTWoSmLeC9DdtZymph2cOrmHos5JIpYiVoywpSy9upSM7G1QXkVDLNh6wweJD90eQBF5AagIePQl4BvAH2D30D8A/gfwsD+iqj4GPAawZcuWdHO99wW/s3w+zx8dxFJJWJmPahj356+IThGVDFBbMH1Kv8cybaJaz3P+0hb+c83XOReqYxX1iZN/TVrLH8rXE5tR7YpZhNRiy+glirjCjXN+SDuL+Rv5PJaGCGnMVtLUdfgBEs7hLbUdoK/UenpPreBK/QMszoRPFxTSHLbd6pRHW/lR3dLAuopahCyl8mofE1OXubWzmvIF/x1LpvlL/Te8Ed6ZUEwfsh7nNl7gUvsqbpk8xWu167DU+dThCKbPjv8926dfpburhh2cZMP8es5JHcU6wdjICla3zGFgLry2xiKKPaCUaxfdUolqiDBR7tSf8qx8IlHXPb0DvFRaTMxRYqpGW7mQV514Xhlr46rMIy82zJSVQ113G/eHv8fNc19jv9zJ4fxNWBoirMrXX23mRzXTHF241hZ0lsXtDFMzfZVtJ7PpmHea+mg+4RqLqOARaA+1TBKZWMvylacTwqe/fyH9fQ/w6EqIYqe35+f/QO14mAWhUo6tX0dUw4RQPqePs4g2zoztZP5wEd8o20JUsP1WhpSY05ZrLnQy1fdpKuvOECmKOvvmLLaNH+LqWBkN85ajjv2tlcPnsEJhGnOXYyFkWMq6w0tZH84hWnmGhqVriTk8dnPTKSYyMsmenuT15euIhUKgsLO/h7uGXuXk4EcoLm5j0eIz1Ggj1dZ5Tp+/g71dr7Nu3xberNtGnZ5mZLSYqdCNbJnqJDvrBb5d8lHO51exgaPcwXP8cegRohohTIxd+iK3sJ8aGrEsiIRiRBHCFtzVm4PVH6VovJW/2zafWBgyiCYG9B3WK+wP7bY3lmsMkRAal+ruvWTYK2e79EWquMCwFjBxeR7dufM4OncDltr9dv3VHh4aPkXW0BKeLVzAWGY/2+UfWB45R2Qkkx8vvNvexWtZ3NuSy8pYEbErk/Q27GeiuI8v3nOMhlAdq6wGyruGuGf+P3I8nNxcHtIYt1ivoAK12szXRr7NsaxSFk9fIG9YudxTzYO5z/LKwi30ZZexiTe5I/QzHpVHiCqELGXJgRbWltfTk7WC1yr3MC1Wgj8sDREmxi2x/fw08rFE3e+y/omqi8PcVfMVmmUZfxz6fWKaQchSENtMc0SjzDtxjrnFRUSWRIlqmAxVNu2PMjavin+2/EmezL/P7oOW8pm2lxktv0Jd9lscZSuH2U7NQBu3X6jgdIVtiuiG4TPMLznClpwWnp7aS39OJutzjpHLGKPWHH4S/rhLqVZutl5lD8/zCrfSNrGa8RyLfIZQhcnJErYPHKKkB4aHSwBl87kWlqz7FodD27iBAyyijQZWUzXayuhEMSentrAh8wDL5zl70TTE1rd2sbPiEq9ULUrkvVLruYlX+Vv5LWIaRlB+Qx9jNy8AsOJyPkdK8cjqL049youx23kze7tnG8vm5hjVLbkseLOdi9uXUXHXaXbJC6jAy+ymiKuUXxihJWcp07lCRsYEQ9ZcOvIrUxTkBcPdFAxPsqLrIhXRflqrCqnozqbw8lwGSyr4Net7bA4dpoHVzNERLnZtJXM4m5dqVxIVW/6v6GqjtruNfNroLS9idDiLhuwcNrT18/JNdxMjQhilDrtPL49dYGHDf2Jp2UWenp8Lk6OsaWmjYrCPS7mlnKvdxnS0nw3tTVQMXaGzo47ltQfZqgc4JRsSdbjBOsj5ppsYGiplYiKfpYtbyciJMq0gKtzdNEFx6z+yYSyfsbJcSjKy6Q0v44aOKDd1FjLfqqJM5wIWhQMDVEQsPnbidY4vqqFtXiUWSVqFLIva7jaqYy1s3LQPEQvVEB2NO4iERsnuKKfjYj+jeXMYLikBEZqbbqBm+SFb/7PC9mlftQ1O1wyU8uCZZ3htaT6VQzmssLq4s/Ilfi/yAL9XPfMngUXTrmV/uCEiVcCzqrrmWvG2bNmiR44c+YWW5cjgKN898TyVzc+RPbCQhtI1dGfNpyVXWDXcwEdCLzBYtIRmay7renKYaykTWQfIvlrM9JXlxIqizKtoJHfuGNZkAb3dWUyFuxgq2EFT8S6mZZL8gTZapqZY1jbOR3rnUD5nCAZ/wJWVAzyXv5auyK3snF/Npd5ezlydJmtkmCtFpZBxha0Zb5BRXEfbcBYbC6+QV5jB8ReyqbhcS8XqOeRMvcmCzmI6KgcY3LqNfYeGaMwNESoqZtHCUkozMyjqqKfpXCslw4NUZ/ewvS6DzPY6hvq6CZd3MtE9lz+LraV5yRIeXDLC1r7nuXgsSufkXMYjhcSWrmcsM4OsoTb68rLYOh2lJOcImZkVjPTnEM4oYbTPIi88j7LKRazcPp+Jc400vHaJ1qpyejaEqJh6GS4PwOK9TJWsYH7rk5SM/l/25dzKcWsPO5qi1EahuSCP1kmhOtpPcf8x9i1eQmfFAvZMnuHWwQjHm4SxiT7CpeVcthZxVQ+zLj+XdUULOdjRS2dhCTfOL2be6dcIX+jgUNVGDtdkc/eyMj698RMAnDzYQdPRc1iF4+RuqeN871kG+y5was4G9kxm8GttLzE9PEbfupWcvXqIzsv5jGVtY8WilbQNjHJm/iSF08dZd6iTOb1zCMeusq82RtuScm6KDXBDxhGKJzcwt2UrOZuW8GJXNy/3T7Jh+DxT2ec5Xb2GpT0WVd1RTtVayJJscoqqODUmrD55kuKGXhbFSrm8eSfHsiOs6u/hYxvK6LKiPHOqgZb8OeTndVAR7aWmI4+CUejIK+XAggWUFg2yZ9Bi6nw/yzZsoLmsgpfaOynuHGDt8Stkzyunc24fcyMt9OowWXMvE5mqYMeWu1lUXgStr3LkcgYNHYNUlpXDxVyyRksZnj5He+frlK5eT/G2+VjjFzjYsZHjoUK2TZzhhqJDREN9ZE6HWZi9k3MjC3itcAGr+qYo6BqktUO4nHuGxiVX0GW3sC40xgKtZ868XEK9J+k5mc8pWcrtmd0U3Lmbp66MEb0UxbKKWFg5RrPEmBoa55YTlyhTKF3WSNbYMrIW3cJwXh5vtFzkrViEm0LCfbk1XB5vo6x6GRMt/UwO/IyrE1N0D81l+ZIsBosL+FFPHtWjOSwuzIKRGFf6mpBoGasKcqi6Ey6Pn6D52Dht3WMsWDjBcEUOL0a2Mzcyh4eXLyW3+Q26WvYTvrqS7t4MevIqyVm9hvG+o5SNdLJmfIS5pWEaCm+ncvAC3dkvcSKvio7ivfz6tpvJPPwKrz/9FENTY7TfuI68G+7ktquTtDae4OS8ECvDOXy8vISXR/t5JmMRm2nm5rNnGT8TZmTeKPOWTXKZO9h3RVl26RBLGOXiznupWLyecy1HCE83kjNcwpXxMLuu9rFzTSn905c4NbiAYxM5NFjj3NLSwKfWr6XoU5+io+N7nD3xDXqbc1ion2DR+HJauo4wGBqibtVtzKkr48ihFxg630VhdwfDS3uYrstlWKq4uOiTvDwaImewj4/2T3JDTozc/HrCV1eSO7CIi4WHGM49QmlnLWW1d9Ia6uXs4QNkFZaQQwZSkkv+yBHysgYoLoqQvSqXsrK7WLDgAdrb22l64w1CHZ3ElkQpqYlRVXUnl168yNRrTfxwSRFvVFdya7iJvZcP0Zo1SqO1kvb8Cqqm25mX2UqZXqWidxn5RXfTbbVA3pswNUBexw1kN2fRFWpjX8XNHKyqZiQnj11T2fzuusVUVBfw9BM/o/Pl1yladolIVgOTFJA1p4jCrHXkjOZytf0czXPDZM9bwsLKOs4vqeXNWJiajEEm2w6w4fgB6shgdO3tVOSUU9R8nm+N7OdIZJL1Uzu4d81O2tt+hpV7kOmQxdBoJYsnt7FU5tOSNcpLlRbjg8eY2xEjkxg7du4kr2IHBy70s716HiPdr/JPB04wUFDLfcurWDa3g672F5iacxM9A5vYdrGB/O43aCpeRMPgNFmhESoWl7Gqbgc953s41PQmoZExFudVo4tOECk/y+HcW3ktYz1bou08FM3nauMEr02OEY1kkkeEC+HLjOSWsPHCCCvChzh3cwkF1bsZnBpkS/kW6sarmbwwSFa1baEhft0/2cHJQweJzcln3aI8Wi4M89pEBUXRYboLrpCvYSKRxezYuJLsrpdpa/gJc7qWkjmgTC0L0dwxRHtBDVM12/jonCY6Go4zMp3F2lXlZGsX0xNrabcitJ5voGo6h9u2b+f5xS28cOpvuWOwnztkIS8WP8DSjbf9Qk8Ai8hRVd3ytvFmkwIoIvNVtcu5/g/ANlW9/1rvfBAKoIGBgYGBgYHB+4F3qgB+6D4Bvw3+m4hswP4E3Ar8i5ktjoGBgYGBgYHBB49ZpQCq6mdmugwGBgYGBgYGBjONWfUJ+L1ARHqBNDY23leUQNzfjwGGHkEwNPHC0CMVhiapMDTxwtAjFR82mixRVb+P2RQYBfA6gYgceSff7GcLDD1SYWjihaFHKgxNUmFo4oWhRypmK01mox1AAwMDAwMDA4NZDaMAGhgYGBgYGBjMMhgF8PrBYzNdgOsMhh6pMDTxwtAjFYYmqTA08cLQIxWzkiZmD6CBgYGBgYGBwSyDWQE0MDAwMDAwMJhlMAqggYGBgYGBgcEsg1EAZxgi8hEROScizSLyhZkuz/sJEVkkIvtEpEFE6kXk3znhxSLycxFpcv6LnHARkT93aHFSRDa50nrIid8kIg+5wjeLyCnnnT8XEfnga/ruISJhETkmIs8690tF5KBTvx+ISKYTnuXcNzvPq1xpfNEJPycid7nCf+l4SkQKReRJETnr8MuNs5lPROQ/OH3mtIh8T0SyZxuPiMhfi8hlETntCvuF80S6PK4HpKHJnzr95qSIPCUiha5n76r93wuPzSSC6OF69rsioiJS4tzPCh55V1BV85uhHxAGzgPVQCZwAlg10+V6H+s3H9jkXOcDjcAq4L8BX3DCvwD8iXN9N/BTQIDtwEEnvBi44PwXOddFzrNDwI3OOz8FPjrT9X6HtPmPwN8Dzzr3PwTud66/Cfwr5/q3gW861/cDP3CuVzn8kgUsdfgo/MvKU8DfAr/lXGcChbOVT4AFQAuQ4+KNz802HgF2ApuA066wXzhPpMvjevilocmdQMS5/hMXTd51+79bHpvpXxA9nPBFwHPYThxKZhOPvCv6zXQBZvPPYaznXPdfBL440+X6Bdb3GWAPcA6Y74TNB845198CHnDFP+c8fwD4liv8W07YfOCsK9wT73r9AQuBF4HdwLOOcOlzCfEEXzhC7EbnOuLEEz+vxOP9MvIUMBdb4RFf+KzkE2wFsN0ZkCIOj9w1G3kEqMKr7PzCeSJdHtfLz08T37NPAE8Etevbtf97kUMzTYt09ACeBNYDrSQVwFnDI+/0Zz4Bzyzigj6OS07Yhw7OJ4ONwEGgXFW7AJz/MidaOnpcK/xSQPj1jj8D/hNgOffzgKuqGnXu3fVI1N15PujEf7e0up5RDfQC3xH7s/hficgcZimfqGoH8N+BNqALu82PMrt5JI4PgifS5fHLgIexV6rg3dPkvcih6w4i8jGgQ1VP+B4ZHvHBKIAzi6B9SB86uzwikgf8P+Dfq+rQtaIGhOl7CL9uISJ7gcuqetQdHBBV3+bZh4Ym2CsKm4BvqOpGYBT7s0o6fKhp4uwnuhf7s10lMAf4aEDU2cQjb4dZTwMR+RIQBZ6IBwVEe680+aWgl4jkAl8Cvhr0OCBsVvGIH0YBnFlcwt6rEMdCoHOGyvILgYhkYCt/T6jqPzjBPSIy33k+H7jshKejx7XCFwaEX8+4GfiYiLQC38f+DPxnQKGIRJw47nok6u48LwAGePe0up5xCbikqged+yexFcLZyid3AC2q2quq08A/ADcxu3kkjg+CJ9Llcd3CObiwF3hQne+SvHua9PHueex6wzLsidMJR8YuBN4SkQpmOY8EwSiAM4vDwHLn5FUm9ubaH89wmd43OCemvg00qOr/dD36MfCQc/0Q9t7AePhnndNa24FBZ3n9OeBOESlyVkfuxN6b0gUMi8h2J6/PutK6LqGqX1TVhapahd3eL6nqg8A+4D4nmp8mcVrd58RXJ/x+53TeUmA59oblXzqeUtVuoF1EVjhBtwNnmL180gZsF5Fcp7xxesxaHnHhg+CJdHlclxCRjwD/GfiYqo65Hr2r9nd45t3y2HUFVT2lqmWqWuXI2EvYBxG7mcU8khYzvQlxtv+wTyY1Yp/K+tJMl+d9rtst2EvmJ4Hjzu9u7L0jLwJNzn+xE1+A/+PQ4hSwxZXWw0Cz8/sNV/gW4LTzzv/mOtmY/A7ps4vkKeBqbOHcDPwIyHLCs537Zud5tev9Lzn1PofrVOsvI08BG4AjDq88jX0ab9byCfD7wFmnzH+HfZJzVvEI8D3sPZDT2AP5b34QPJEuj+vhl4Ymzdh72OIy9pvvtf3fC49db/TwPW8leQhkVvDIu/kZV3AGBgYGBgYGBrMM5hOwgYGBgYGBgcEsg1EADQwMDAwMDAxmGYwCaGBgYGBgYGAwy2AUQAMDAwMDAwODWQajABoYGBgYGBgYzDIYBdDAwMDgfYKIFIrIbzvXlSLy5EyXycDAwCAIxgyMgYGBwfsEx+f1s6q6ZoaLYmBgYHBNRN4+ioGBgYHBO8R/BZaJyHFsI7F1qrpGRD4HfBwIA2uA/wFkAp8BJoG7VXVARJZhG6stBcaAz6vq2Q++GgYGBh92mE/ABgYGBu8fvgCcV9UNwO/5nq0BPg3cAPwRMKaqG4E3sd1MATwG/BtV3Qz8LvCXH0ipDQwMZh3MCqCBgYHBB4N9qjqM7V90EPhHJ/wUsE5E8oCbgB/ZrkcB2wWcgYGBwfsOowAaGBgYfDCYdF1brnsLWxaHgKvO6qGBgYHBLxTmE7CBgYHB+4dhIP+9vKiqQ0CLiHwSQGysfz8LZ2BgYBCHUQANDAwM3ieoaj/wuoicBv70PSTxIPCbInICqAfufT/LZ2BgYBCHMQNjYGBgYGBgYDDLYFYADQwMDAwMDAxmGYwCaGBgYGBgYGAwy2AUQAMDAwMDAwODWQajABoYGBgYGBgYzDIYBdDAwMDAwMDAYJbBKIAGBgYGBgYGBrMMRgE0MDAwMDAwMJhl+P+T9jDGcSTcGgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl0Xdd15vk772EkCJAgCIITSIiTSI2UBNGyqMmSLMuObMeJ07a7MlVcrU6nanVVre6knKRWOkmtSnVVdfWqqk66XYrtSlKey4k8xbIsD7JoyxpAUTJFUpxBgoQAghOIgZjeO/0HHqjLw33ue5QpXhn4fms9vjucs8/e517gfO+7AOi89wghhBBCiGzIZZ2AEEIIIcRcRmJMCCGEECJDJMaEEEIIITJEYkwIIYQQIkMkxoQQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDJMaEEEIIITKkKusELofFixf7jo6OrNMQQlxFtm/fftJ735p1HkII8VbxcyXGOjo66OrqyjoNIcRVxDl3JOschBDirUSPKYUQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDMv0BfudcNzAEFIAp731nlvkIIYQQQlxt3g6/Tfku7/3JKxnw33/yz9jXPI8NZ0b53d/+gysZWgghhBDiivJ2EGNXlH//yT/j/9nwAFNU8WTrFHzyzyTIhBBCCPG2JeufGfPAd5xz251zj1oNnHOPOue6nHNdAwMDZQPua57HFFUUXZ4p8uxrnnelcxZCCCGEuGJkLca2eu9vBd4L/GPn3D1hA+/9Y977Tu99Z2tr+T/CveHMKFVMkfNTVFFgw5nRtyBtIYQQQogrQ6aPKb33vaX3E865x4EtwDM/S8zf/e0/AP3MmBBCCCF+TshMjDnnGoCc936otP0Q8KdXIrYEmBBCCCF+XsjSGWsDHnfOzeTxee/9tzPMRwghhBDiqpOZGPPeHwJuzmp8IYQQQoi3A1n/AL8QQgghxJxGYkwIIYQQIkMkxoQQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDJMaEEEIIITJEYkwIIYQQIkMkxoQQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDJMaEEEIIITJEYkwIIYQQIkMkxoQQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDJMaEEEIIITJEYkwIIYQQIkMkxoQQQgghMkRiTAghhBAiQyTGhBBCCCEyRGJMCCGEECJDJMaEEEIIITJEYkwIIYQQIkMkxoQQQgghMiRzMeacyzvndjjnvpl1LkIIIYQQV5vMxRjwT4E9WSchhBBCCJEFmYox59xK4BeAT2WZhxBCCCFEVmTtjP1H4PeAYqyBc+5R51yXc65rYGDg6mUmhBBCCHEVyEyMOeceAU5477entfPeP+a97/Ted7a2tl6l7IQQQgghrg5ZOmNbgQ8457qBLwL3O+c+m2E+QgghhBBXnczEmPf+9733K733HcBHge977381q3yEEEIIIbIg658ZE0IIIYSY01RlnQCA9/5p4OmM0xBCCCGEuOrIGRNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIkMzEmHOuzjn3gnPuFefcLufcn2SVixBCCCFEVlRlOPY4cL/3ftg5Vw38yDn3hPf+uQxzEkIIIYS4qmQmxrz3Hhgu7VaXXj6rfIQQQgghsiDTnxlzzuWdcy8DJ4CnvPfPG20edc51Oee6BgYGrn6SQgghhBBvIZmKMe99wXu/GVgJbHHO3WC0ecx73+m972xtbb36SQohhBBCvIW8LX6b0nt/FngaeDjjVIQQQgghripZ/jZlq3NuYWm7HngQeC2rfIQQQgghsiDL36ZcBvy1cy7PtCj8svf+mxnmI4QQQghx1cnytyl/CtyS1fhCCCGEEG8H3hY/MyaEEEIIMVeRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIkCsixpxz/8Q513wlYgkhhBBCzCWulDO2FHjROfdl59zDzjl3heIKIYQQQsxqrogY897/S2A98GngN4H9zrk/c86tvRLxhRBCCCFmK1fsZ8a89x7oK72mgGbgK865f3elxhBCCCGEmG1UXYkgzrn/FfgN4CTwKeB3vfeTzrkcsB/4vSsxjhBCCCHEbOOKiDFgMfBL3vsjyYPe+6Jz7pErNIYQQgghxKzjiogx7/0fpZzbcyXGEEIIIYSYjejvjAkhhBBCZIjEmBBCCCFEhkiMCSGEEEJkiMSYEEIIIUSGSIwJIYQQQmSIxJgQQgghRIZIjAkhhBBCZIjEmBBCCCFEhkiMCSGEEEJkiMSYEEIIIUSGZCbGnHPtzrkfOOf2OOd2Oef+aVa5CCGEEEJkxZX6j8LfDFPA/+a9f8k51whsd8495b3ffSWC/7PPfJ5tLWsZzU9RzXnqq87z4Pg27ik+yfD5BnqO3UQuV83oknp2+g2cG6/nZOsC7qh6mgfz38EPtFEcW0Fj7Rlc4yFO9TRz+NXNLNl0kiXLezjSt4ln67ewotDDO/KHaPY5ik1H+dHwJrbX3MzNp7u5b+FB9jcuZlfdKoZz89ldu4yxQi1jroHqSbir+yXud3/P/sbV7B69kxsOjrN1oonqugUcaHF8alU9p+qquen4APeNdbG08TiFnmF6j5ylelkL864borZmiuqxpSzovQX6GhkvjNJStYQXlr/O7huGaajuZ3BsGevOnmf94FmKi/fhakc4cWgZoydu4cCmZexe2sLtY9t5z9BhXhneyhPLl9M/v5a2wgDvH/oJk67As/NuwuULbB3cw8Kz6/jvbevpybdQNTZB61Q/a6v20Fu3guHxZRTG5lE9dZ6VJ3roW5znTGsLhXyedcMHGRlfyghLKdSdp7n6de4dfo2VB1tYNLCI5ok6+q59hT3r+9hbtYFrBvvoq1/E8+4Olg0OsbjpGAtzpxkaXMTm3lFqVp3n7xZuYaDYxB1Dz3HzgUMcbVvBj1ZupC/XxsrCSW6c2sng0Cpu7S+ybP5T+JZ+qmrH+dz4o7xcdzNbzr/C9ZPP8Z0FD3CoqoOCr6Hj5DGaas9RnGzkuqNnme/r2beoieWn+lnX8AxNy46wc/BOBs53cqyhikPLmrl1qotFZ6rY1tDJwuIZPnj2GTb2NfGTRXleX+lo4hRnTzSz4rUhVnZ0c2ZFLduKD3DeL2Rp7VlWspfD1UsoTtVx574xmgd2kls2wJneImOrr+XI6kbOTTVybGIjy0aaeK1xCu8LLBodpu3cWXILRrnLH+S+3g52na7miBtg8WiOulMnWHLdWQrr+nhuaAsv+810DJ9h/cSrTLTUcITb4Zxn75IJxhtqaDpfxYqjr1NdHOfVVTcxVFfLrYcPs8V3Ub/gCPtGF/HS6tshX83Nrx/j4NAxeudvYbitmdHGBtoKJ3l45EdsHDnHiaH5fGvpbfy07gau7e3nHftfZuPd9/KL73/PlfgSF0KIWYPz3medAwDOua8Bf+69fyrWprOz03d1dZWN9c8+83m+2LHJPLfR7+IjfI6jfhU/dPfT7dZSJAe4C20e8Y9zGy+yjXsBmMcoR7iGG8/vpK5+hG/zPl53K/FAHs97/deZxyjzGeKz7reYKGncpf51+tyyUmx3SS4AN/od7HY3UcCRw/PQ0HMMVDezvW4jSePyHxb/Cw+4p9jnN/DK+O201PUzTCPzGaKbawDYeqab8f7reWLlcnY1dlCEUgwPeFr9AO/gWUaZxyALOVdYyP6qay+Msdof4qhbjSd/4ZijQA5P4YJuL5RquVKmapGtxW0M+VbaC0c4X53jafdg6ZoUIZHLG/jE643zawr7OJTfYI5SxSS/7j9NN9ewixvodysuyiFWj6MA5PBAjiK3+C6W0cu33AdLOdo4Cryz+CN+krsHXzoy/W+Rdt9Nj+vAR/rnKNDhD3Edr/I6y9nhbk9cy9h4RaqZ4hPFP8HtX0jrkkPU149w6Pzt/GThBo6zkn1uEx5HjiL1foQR12QH80VwF4+13PdwDYf4ibuLYmnOHQUcXNhPBOAR/1UAvuk+dOHowslBbjp8mA8uaOQffOzD0Vouqc257d77zoo7CCHEzxlvCzHmnOsAngFu8N6fC849CjwKsGrVqtuOHDlSNt7mbzxLX0M9uEAAXai1wEWLvHPT52be8Th8dLG8pN8bAwDu0uPJ+GY+VizeaO898/wQH3Of46/5OFNUYYm7HIVS5rlIXRXWkcxz5ngil0vazBwvd6zcHEwf4JI5DOsIz4VxrDG9fyO2VXcszzCHJJeTj3Udyo2ZNpZZY5EF/gwtnGIZvRzmGnrdSi4ScZXcm2m1WMcj17TaTzDpai4Z8559L/N7nTfS2VmZvpIYE0LMdrJ8TAmAc24+8LfAPwuFGID3/jHgMZh2xsoG7HmBKQrJAMnBSsfyb+ybC+y0HLto0YktuBctklx83CJ5LiYyjEVw1DXyaR4FctH2xWRd1lhWbuUW3li7sB5rfqxxQi6pJZcuFsL2YT2p4s/Z5604sRytuJfTN61fWt3h/Jn7jkG3iEEWcYj1F8ey8rJIuz9iYtCK7f20EDNi7Fm2mm9+85u0tbXR3t4ejyOEEHOETH+b0jlXzbQQ+5z3/u+uSNDubby7d8/0tiUA0hbVi5O7dJF2zl4cw4U22aacQEmKmFAcJMd0DtPhqMTBCeNbdVp1h3mHucfyTY4XG7fcHIRjh7WEx8Nrk4wXG9+6XmHcMKdy4s/KpxJRatUQbseuRfIesdqljZk8lzZPafd7GC+WbynGqfkL6Wtq5pVXXonnJYQQc4gsf5vSAZ8G9njv/+8rFrjjbh6c/1/Y6n/IG1YV8U/0lTySqURcJAVAGNc6nvbIaaZfUuiEMWKioJzwCseJ7SePx8SlJZqsONYchrFDgZFsExNgYe6xsdP6WnladZZzDMN8QzFYaT7W/Zh2D6bFsOoK9y2RXS7v2IecNKcvEccDvQsWX3pOCCHmKFk6Y1uBXwPud869XHq972eO2r6FwwtW8qy7G2YeS1liIekiJBfQmFizxJO1SMfEV3jecsgsdyfmesTyi7k9sT7JvGLblgCrpO7Y/FjbsRxji3tMLFUi3CxhG/ax3LpyAte612JzFo6bFjPZJyacwvhJ0u63WPuwnmQuobiL3e+WkPWenC+yfPAkS5cutccXQog5RmY/M+a9/xFEfsXwZ+Qb/PL0D7EnF8TYI5gL54vT6YRiK9kubTGOuVSWwxFbqGOPf2K5W1jirJy7dDkLtZVXTDil5Z3mCM68WwIzJphDwWMJSquuNNEajhGOlya6w9iWsLHEXmzMWE3J4+H9Fd4DaV8P5Y4n87FEVkyMB1QXJ3jngd0sPXeG8+fPXzpnQggxB5mVf4G/L5/4xF1uIYfSIpLiOCXjxBwB61y5xTeMn3ToyrkdoXCLCblY+xjl3BIrf8udijl8sdhpjl84frKNJT7K5Wth5RbeM5U4fbE4Vm0x4Zm8/mluVMwRDO+pME4YL61GS7yG+VlzEF6TUvvJXA3b1t9EX1Mz9fX1l86VEELMQWalGGt0Z9/YibkNoUhIvsBe6KyFJ4a1cId9yuWS5m6FNaU9HrIcKytGbN8SVmHcWM2h+2eJz3JCwHJtLJFhXZtyLpYl+sIxLooRESpWPUnSxKUpRouXxkiOWYlQTKszjGXlYt1Xye2YAE9r7xze5di7pJ0DBw7YNQohxBwj8z9tcaUZP3KOBVVn7ZOXs9iH52OPZGKCxBJEscWq3Phh27CPdT6W2wyWuxVuJ9vG8ojVGNZ0QchExFTonlkCKjY3sblIbqcJyMsiMk9WrpY4ion8MMbMH10tJ5xjzlfyfJq7aM1/eC3Ceq0xyollY9hTp06Z54QQYq4x+8TYoUFO+NaLD6Y5CDEhlCS26Ib9Q2JOVix+bPxQ7FiCLCbCrAUy2SYmvsqJ0nKLrjlnFThJaeLVEl1pQswShNa1NoVjJFZIrG1a/9jcpwnM5HlL+MRyjwnrNAcwbJtWb+w+id2nQM57NvT30LK87dL4QggxB5l1jylr1yzgbG7RxQfTHqekLbCWA5GMYT2GCQkFVDKf5CscP8zXEjsxBygUTaHAsYRQWn5hHjEhZc1d6HZZdcSEShjTEr3hHMTESxhrZjtNiMWuTbJv6T8qShU0ac5ULC+rviTlBJ11b8XEuBU7vN5WjmFt4T0R+QB0U89+lp47w9atW+3ahBBijjH7xFjuNZZNvf7GgTR3wnJ6KsVa6CyhEBMtoUBJc50sIZiWVzmHrZyrkswx5vrFYofHYnNkXYvkuMmY1vlYn1guYV9rnDD35DjR+In/esrKNTmmdc4SxTFhn2xfTpRagjC818KxLDFqjRFzxWLjBv17F7ayfvN6/fV9IYQoMevEGN3b+Ej/80DRdnXSBFglj2CsxTxsE8aKLcKxdrFF0hJNMQEYOx+2iS3i5cRAzC2JLdjlxJIlwGJtreNWvzTBEs5zzF2a2bfEYCViMq0uy3mK5Rj2ScaMiclY7bFxrWuZ9jUR1m7dd8a9P+Uch3Yeoqen59K8hRBiDjL7xFjH3Ww51cAj/mvT+zGXIrmfbJf2aCe5bzkmFpYoiOWSPJbmUlmOm5WL5bLExJ5VY0xApOUfjmHNQUzIhbnE5ie8BmnOo5VXGDsU7WmiJy0fq/606590qGLuW+z+SgqqcsI1Nhfheeves3Ky7oPYfWnEqcJTKBTo7u628xVCiDnG7BNj7Vs41fwar7N8ej+2WFmPe2KLoeWmWc5BJYKiEgcnjJHsGwooS3CF59NihjmUEwWWC5Im6kIHyBI7M33DaxKOYYmetNpDKp3TcGyrf6Xzmmxj3Ucz25aDFo5XiQuVbBsTy8l8kjFiQipNGJZzIMO8gOVnBnBAR0eHnZsQQswxZp8YA77Xuort7h3TO5UuiMk2SdGQtjglY8RcsthjnnDRtcSh9djIyjfZNnR3ylFJfeUcpWQeYa3l3KU0QRwTIzGBm+ZAVXo8GT8mwsPcrPPJY2niJi2ONWfJd+t+iV3PZKy0DxAxsW/dn8karFrDfs4BnprCFA3jI/qZMSGEKDErxdiO2s3TG7FFtdLHMeEiExNh4XnLwQlfaW5OpQt6mohK9rfqt/IuN6ZFWHMsbjg/sXxicWPXIc2higngme2YsLTmI+bYlRPMVm0zbWMCJy3/oE+OKTvnZHvLkYyNGdZlCXtLMMZiBNfNAcvPnqR6XkP6+EIIMYeYlWLs9pHXpjfSFuoYMXFhvScXm3CscPEL3SJLfFhOUBjbcmpi48SEn1VvTEzGREs4TviebBPOizV+mEOaQLP6Wecrdd2s/WS+4RyErlGYf1in5TrF7gdL9FnXuNS/OPOnAmPOVFrNyZytbavGZF5hOyt2MG7T5CBLz53hTAG6urou7SOEEHOQWSnGOvcd40a/Y3on5lJBXKTEHrskz8UWoXLumZWLJeRi7kWaaApjViJ8rFpjC3is7jCn0EmycrDGTHMMLacsJl7DvMNrXs7lignBsLZwjFi+sbmxro8lWMN6YvNg3RtpAjskTVAlx4p9bVg1B1Tnxpj527979uwx2wghxFxj1v0FfoB9ba3scjdN78QWzHKL6cyxmEgoFyvNMUgSE4ThI55YjpZ4MR4PXRKn3KKf5nKF52JCp1w9sVixOQ/HiNUQE3UxwRT2CXOJxapUGCb7WeNb4js292GsmFMZxrHumbR72IoduycqEdGl/UKuptQeNm3adGldQggxB5l1Yqynp4en626jSP7iRSZtsZ3BEjIzxESVtUBZi1Sa65D2mCh2Pi2XWN4xkWDVEnM/rFhpQiJNLKQJplg+sVyS7WPXPS1GpeI5OU44vuXyxVy2ZLs00RXrM7NtCaW06x/mFxOoaQIzTYSFtQZx50+emzlBW5v+OyQhhIBZ+Jiyu7ubyYm6Nw7EFuLkQnk5i0oo3iwBkTwfW9zKxYnlGi7glrCMuTaWIJppm7aIx3Ky9pPvlqsUE5aWgIoJsfDaJceNiTlLEIXzFc6ZJd6TuZZztmJzZdWS9kHBEnuxc2E91vUPY4VzkqzPmt+0eyNtzoCemg52L+sA0N8ZE0KIErNOjHV0dFAzOTm9E1uEk++WKAtdg1i/UMRYi25MSCTjxpyO5HnLxbPGizky4QJb6cIe5mgRisNw3xIvac5RWGfsOsScqGRdseufjG8Jx9i8J2NcrrNV7jon28auXxjTEqFpeaRh3V+xDwmxebGEYzCPe5atBvR3xoQQYoZZJ8ba29vpXlZ6/BETGuUcD9ORKeNwxUScRbhwhq5D6ArFXCgr13KOTMwNSuYWW+STY4a1WAt5OaFaiSNnidDYuzXvMQcoHMPaD6+NJSLTRLElHK0xrOtY7kNEWv4zhGIxJvyS+Yb3RHh+Jq41jnUvJ9uX9k/OX0hfUzP9/f123kIIMceYdWLs5RMvM1Gd+FE4y8WILagxIeYcYCy4ltCzFq9wkYs5F2miK0myhtgCay2o5QSe5Q4lz8cEQfJcrDbLCavElUuei41frm+aKLXyT3Obyl0Ta4xKxg9rSeYVuneWixa7f5P1WNc3dh+Uy7Xch46Ue8w7R++CxfptSiGEKDHrxFhXfxcNxXMXH7QencxQblGJLfQxFyG28MZcA2scy1VJHrcW2LCOy6kxOb7l5liuV6yNlUMoHK25jDlMltCI5WnVU4nYC/uE41rtYvmmxbaEVFrMtPup3JzN9C/nNIbHwj7lBGUsfmzevCfnPcsHT7J06dJL2wghxBxk1omxzrZOqlzxjQNpTk2MmGsREyWWsxFzO2KL7sx7zOkIx7QeP8XEijVOsg5L+IUOi7XIhrkk28QW9DQHyZqLcOyYg2fNR2wMa57CWCHJ41Z/ywWKzbeFdW/FxE4aYZ5phNc4OXal8awY1j2XiLtk8BRLz51hfHw8PT8hhJgjzDoxtnnJZtykUZYlEGKLbqXHyomscEGOCaVQ2KUtfuUW55iYsvJKa2Mt0rExk+ctJy9c0C1HxxI6Vn7WdUxzh2Zip13/tNzS3J9wnLQcLjfHNEcu5pglawjbh3nH+obXLHad0vJMxjLGK+Ty8RyEEGIOMuv+zljX4Ai9NYm/X5S2oCTPx8RA8liaM2QtgNZinLYwVuoypC2qVp7l+ljE3D6r5photGpOxrdytebNmtNYPZW6Y2nHrNyTuVxOjVZcq19sP9bXahebmzShHxO8VltL3Fm5W20T25v6jgBQW1uLEEKIWeiMPXP45KVOE9juTPJ8eMxadGYIRUnyvRKHK+bmJBcwy5kInZvQ7QnHssRD6L7EBFWa+xQTfOEcXjR2wa7V6hcSE7dpc2/lbdVXiYgK7wcr17QxYyLbEtrWvIYxku5jWFM5N8u6dy33LJZbWGOaADTvf8+i0XOA198ZE0KIErNOjN12poDzxUsft1RC7JN9bPFJUomTFGuX3E5zzMJcYwtycpyYYEirxSIUs1ZeqcIwH88rJkwsVyrMIzamVXcsx+R4MQFuzVFa25iYt0RoKPas/GJiqZyItN7D87FxrXmLXavkdopb54DeBYsBR2Nj46XjCiHEHGTWibE71izm49t3kptxYkI3aYaYuzNzLtlmZjt0rGLnK1lAy4m5mHsREyKhKxKOleZ+WE5bTFzG5tASkWHfcu5bmHcyp5j4jIm7WO7WdUvGKjdPlvsTu3bh+GnCyaohHDeZX9pcponb8L6sJFYytzCHtHyMezTHFMvPngRg69atl86BEELMQWadGKtd3UR97QDF2MIWW5wtxyLZP9lnhnBhTntkU65/GCfmkKW4DqagqSQPa+xwQU9bbK25TnNQKnFokvVcjkMTc6FCUVeurpjwCrFqiYmcNIfOameJ+jSXbebduheS58K+Vk5pQj12XZM5h7XMNCeHB+bNm0d7e/ultQshxBwkUzHmnPuMc+6Ec+7VKxl3x4pFQM5eGNIcCUuwhUIndE+S7UK3YAbLVYstlmHMsH8YM+wX7sdcsOT5MGaawIjlnCb6LleEJHOx+lhiaaZd2jVOE1jhfFt5WdcsvA5pTlLsWsfilXOfYqLayis5Thgz9kHEuh+sr4fk8TB+MlfnKJJnf1s7o6OjdHV1xfMXQog5RNbO2F8BD1/poNXVU2/slHODku1CR2IGy5mwHIOY6IktzJFHORfekwLCEnAxxygcN3SIwhhpOVsiM1xsY3Ng1WeNl+Y4VXL9rLlJjh3GjwnjtFjheDExXmldyTxibpUlFmNi0xqn0rbh2JY7GMYK5zCs1xKPJUZqpn+LUn+BXwghpslUjHnvnwFOX+m4d+W/DxQuFTzh4hpbbMNP+TOUW9jCsWKLcszVCceN5RlbZK28Y26QJT7LLcjJuDH3JjlmLIeQcPw0BygUQuG8JHMKhUyaM5UiHi5qY8VPE8fJ9pZQteY+TezG8gnf0+7pcN+a77T4yRytGGEeQS4zLTdt2oQQQojsnbGyOOcedc51Oee6BgYGKuozNl7LhdJiztPMubCNJaJigqyceLBcpZhLFIud5jKF9STHDEkbxzp+Oe6LJWasHGaOW0JmJp513BI9sfjlhFx4zBJhabEt9yoWM9neElzW+JZrlyZmrfs2jdi9kcwx7eulXB7JdpHc502MQ6FAZ2dn+XyFEGIO8LYXY977x7z3nd77ztbW1or67K1dP70RukDh4mAtZJU+1km2tZwZq00o0pJt0gRSbGFPcyrC+pLEBGmYW8xhmWmfJsLS8rQEgSWi0lyXmHsTxgiFRSgvRuOvAAAgAElEQVR2Zo6Xc8+s+yIUZ5aQT8s5ed5yFi13LYxtCTkr3/D+sdxGy+2ycknmEOYcqz2xvXh4kHz4d+eEEGIO87YXY2+GkcJ8wHBZYotbmlMTYokVayEqt6DGREnoqoQxk7mFAiqMl+YgJeOmCZRK67b6WHmUG8MScTGBEZuLWJ2hyAi3w3xjwjRNAIZ5WoLGEl7JbUvkhsfDvK16YuIzPBfGT8Yrt19ONBrbRxe1ka/Sf4kkhBAzzEoxtru+9LMol+N2hc7BDNaiFRKeL7dIWo5K2D7cttylcEzL5QrHTBMQMafHGieWe5rzY+1boqecwLMEgiUswvpisawawrkMa7dEeExwxcRVspYwV6u2ciLdul+sc9a9GLZJ1hTuVyJ4k8eDOP2NzdS0pHxIEEKIOUbWf9riC8BPgGudc8eccx//WWP2HRrEe8NRmCEmFmbaJt8vTja+qFruijWeJThiQiMm0CrJNcw5FA8xwWG1tURAmF84prWdPBYTBlZdoSixBFC5/pUIMOs9OUaasIoRy6ucw5bmCFrCMZmXJdyS926sbsshCwVjJaLPyjE45p2jfqoBIYQQ02T925Qf894v895Xe+9Xeu8//bPGPLL/R3Tmn50ZIO64JKlEaFgugdUmOa4lFpJtw/wsJyuWo5XH5Yi+tDrSxEu4aKcJ15nty1iooyI0lrc1TkwozpyLOUOxuSjnapW7Lmn3neWCpQlJa/wwXjKHNOFr3YNWzpbos9rFhGog5ttP9zMwOE5PT8+ltQkhxBxk1j2mHKnbyTw3ChTTH7ukiZPYYmc5R8l24SIaLrIh5Vy1S/obi2/yvCUcKhU6MVGXzDEmGpL9LKck1ifNnYot/mn5hzWkuUWW0I0J4HJuX3LM2P0VE4iWY5VWU0xchY5W6IiVcynTRHOynjTBF3Mpgxyazw8D6D8KF0KIErNOjB0uXMf84jCQq8wFsYSUJShi7lZ4LrboWotoKF7KOnSGSAyFUmycZG1pjlsoSmLui+V+hONb/cJjlgiy6kgScx1DoewcFwSsJZzTHLRKiAmjco6ZVZvlMCX3kzmHr2TcSp20mAAMc43lE3PUwv6hCAZ6mxaBL9LR0ZE+vhBCzBFmnRi7dXwhh0dvn96JOQOxxSk8P7NtCbWwnRXbeuwULp7h2Mm+Vh6hkIst3JZLFXOtrBrDsWJYdaa1CwnHC+uY2U7mYrl0Vu3ec0HAWlgizxKsVj4xR6ucM3W57lPadUi7PrF7NjwfO5c232H8WJzwfGm7f0ELqxvq9H9TCiFEiVknxtqPvsaEG3vjQMxxshacJGkCJE1EhW1mjluOVNguma/l+KS5edb4lvhLEzFprlasT3Ks8HgYO+YcxQSD4aqkOnKxVxjPysGKFY4XCtw0MZc2F9Z44bGZbWue0wRQeI2snNLEZiUul5WfJTIjX1NT+SoOrNhgjyOEEHOQWSfG5m25naa6k9M7sQUm5nDFHKpyi6rVJxkXYwGPuVppbl1s0a5EOJZzZMKxQvennPNR6X4yB8s5CvvFnK8wjhU/bdzkODExbl5LI34sxsy5cmKoEpctFjccI3aPhPuWaC3n8oX1hnnE7uXAGfTOsXNsXP9RuBBClJh9YuyWWzia65jesR6zWI9vKlnswsUnJiCS5y/0yV08TphTeCxN/IQLtLUoJ9uGC31sEY05SKEbU+n8hfXG6iwn1izBEOtjxQhrseq1hJ/lfMWOpQmx2LYlfizBHIo4azvMxardyjkcy8oznL/k/KTlYV2vRP/lgyf1H4ULIUSJWSfGAG4bf3l6I81RmSHWppKFMoYltmLum+VcxdrHFs1Y7jE3I2wbqy0mPKyxZraTrzSBEhNJluiwHJtY7mHtoctnOTmW0E6rzaojLddwPkJBk4yXnKc096vcNbOEY3LMNActzNHCuo/LCb/gfd68eXZsIYSYY8xKMbasG7AeDSaxnJcklnORtkCFAiEmiKz+aYv0zPFwMQ8X/pjQDEWD5XAlY8bGt2oM85/ZtuoJsZwV63qEAsm6VuXOWceS1ymWb0xQxxy2sE1YU9jXmhvrOibnKhRhafWmffiwSBPvydixr4vYsXA+naN3wWJGR0fjuQghxBxi9omxnhf4Wts9gOEepDkR4THLgbDaprlNaY7OzLslcCyxczkuShgj5qKFAswSDdZ44bghsbkLBWTo9ljtKpnD0JmynC5LWMXEjDVusl8YI5yLWOywbit/y0kKawnzDfOwYiXjxVw1K26sXeyDTJqIT2zXTU6wdOlSe2whhJhjzD4x1r2N8/OrLj0ecyasRbyc42SR5jrFcrDaWOetx1+xxTnZv4w7ERVSaS5bKCSSL0tQWefD+Y2J4LQ5jQkfqy7LjSonUiqZj7BPWrs0EVwplmBP1h/GTROEM6Sdt+6fZOy0eLH7s3R+rLqGU6dOpecmhBBzhNknxjru5p7JbdPb4YIbEw6x7chCkuomhPtpwi7mHKXlaIkza7/SXCt1A61xKxESlmiyXL6YOEkTw6EQiblrYfvYOOWEYbnra7ldVi0xsWwJyzCXcKxYrlY+IdYHkbB9JfWVi5O8d7zHec+ywZMMDQ1dmpMQQsxBZp0Y6z3fyIl8s30y5kyFi2TozMQW9dD1SFs8wxzC/uGYsbwsRySWk7EQmrlV6vKE8xXmljxWzkmxnJzk2JabVol4CHMo52rF5iKWdzIvS7ha4jAmlGJ9rVySY8dIE+nWXFbiYqXdw1Ytaa5jqU3D+HmWnjtNR0dHvBYhhJhDzDox1rNrJz+qvmd6J03QzGC5QWkOVZoQsRZPy82IuWWh0Eh5zBN1UJK1WM5NLEdLWIbORwxLCIZxyzlelogM8wkFjXXtkvFiwiTMMRk/WVMs39j9kHZN0vIrJ7qsuJYotca16grnNvY1Uun1T8aOie4Ek/k8eKirqysfUwgh5gCzToy1X38juanEz4xZi1dysUkTPOG2tSjGBIflNqS1C8ePiRXrWCigLAETxgjrj7k5FpWIxJjzFjpL4ViWCLPmIE1Ah+fD8coJb0skxcR8Mkbsesf2Y8fC/Ms5bWmCNBwjdg8m60gej30YscRgMi/rnkq0cw45Y0IIUWLWibHlGzaRz52/9ES4aIWLUcyJCGNU6hJZ+5ZYmhkvmaO1sMfEjTW+FTt53nJLwprTBGNsgbb200SRtR86Vmnzbc2lRZroS+aYNp/WGNY8hNc77Tokt2P3TBg3Im6iIjC896wPD+XuP2vMtPsobBeIwk19RyHt/wwVQog5xqwTYwBjVdUXHwg/xYfbUH7BLkdsMU1zNJL90hwJy72xFkGrxjQnJ7kfEw2Wa5TmXiX3L8cJisVJE0OxY8m8LfER62sJv9icJs/HhH45Jy+tvpggSxOEhvCpYYxLuJw5TQq0kPC+DGNExGPH6T4Auru7L40phBBzkFkpxjZP7ZjeCD/xJxetmCia2Y45MmkOSrlHPDG3J81lssYMBZwlCMIcrPpjWMLPWvCtPNPqCNvEYllzaeVX7jpUknMy17T7JLk/0ycpVCqpwxLBllAM3azweCx/Y84mqLvk2CXjl7tuMcGXjFvufkqMv3dJOwD19fXxPkIIMYeYlWIsbd29pKG1GIaLU2yxtRb9JOFCbS1+Vl9LiITCKBRi1gIZw3IGrTFifZNtrWOhUAnHCfO0roMVOyZcLPFyuQLMEkqxui0hmFZrTFjG5shqY8VKc+XC3Kw6kucqEX3JeNb1T55LmYPpdB3nzxs/TiCEEHOQWSnGXq26eXqjnLOQJlhii1w5Ryv2yCbctlyKtPNh21CYxVyYmGBK1pjMLc2RCvOzxIOVp1VnMsdkvJjwLZdPct+ak3Jiybq+sRySbWNCNBkr5nql1RW2T7a1BL513cJcrXNp9114rcuNMTNOzFEs9V88NEgul6OjoyNetxBCzCFmpRjbOLZ7eiO2yMYW/XKf9q3+aYtZGO9yXYg0587KL1z80hbbMK+YaLFqTY5r5RzWmzZuOax+sXlNng9zseYnJlDCWsLxk8dC4REjKVKs+OF1SBNP1nhW7JhraOWWfFltk+NborYSx7B0bqy6hlXNC2hvb7fzEUKIOcasFGNrzvfYJ0LRkjwWO271tRbgUKy8GbFhiYaQmBtluRexhdWKExM3ocMRti3nuJUTNGFcK7ZFmsiw8reuVZo4ThNYaQ5e7L6xcr8cYvdobK6T58O5CoVXmmi2iJ2L5ZHMHzhTP5/uU2fo6Yl8nQohxBxjVoqxp+ffO70RLhoxoRMuWtZibTkwIZbYC0VPmitm5VGJ4xJbWK3xYiIiJm6s7XC8cF5jzlRMUIRtk3NRybmYmEirJSbIwzlJE2rWdbYcrnLCLplDTODHBHBYl9XecgFjY8TmoFzcZNuYa1c63tPShvdev00phBAlZqUYm8zlLz4Qc0HS3KS0/Zm+ae/h+Mkxre0k1sIcxou5aGE9ac6WlV85lyktb0soWP2s62G5Y2HsNLEaExGW6CrnEFliMyZmwjxidVg5W85VEkt0pl07q/40kiIp9kHDct9icWPiOdjO+SKg36YUQogZZqUYWzie+A+Ik4tvzCmzFkfLJUj2s97DuGHM8Fysb7hfictiiYpQSMQEXhiznBsXxk7OmSXYrPzTHBhLEKbllDb/oTtXrs60cUIRZ/VJOxfmGzpS1v0WznEYI7xnLSx3LCbqLAEaxonVVSFNoyMA9PX1vekYQggxm6gq3+TnjwW5hBgLhUlMZFnnLNei3OOmcv3ChTPmfJRbWJNYi3GsnXUuJlhjrlMa5fJLm89y7kts7mLjWX2SOaa5Xcl2leSYdn/F7o0wZ4s0wRiK3LQ5K/ehJPleifsWcx2tsQMWnR8CLuOeEkKIWc6sdMbKPkZJe+xS7tGRFS82RqX9wsU05kqUi285dWGd1ljlYsUeY1kuV0wAWrHCnGL9Ym5aMm7sOsZyCNvEiLmfaf2teysUwsn3NHFWydxaYjEmpK3rGNYTE+VvRsSFH0LwbOib/sH9pUuXIoQQImMx5px72Dm31zl3wDn3iSsV99xUi30i7fFXcmEMF5mYMxDGSXOmQqFlLdTJfjHBkOZSxcSmlWM5QWjVas1NOHa5HMM+sfpirlR4nZLtrHOV5hkTc5W6b2EcS3gm+1nuXVh/DKs2S2Qn67D6J3OJicXwWOx+CnOO1uM43dAEwIEDB+I1CiHEHCIzMeacywN/AbwXuA74mHPuup81bu++PUzlC5eesMTQzH644FqLqLVIlhNpyfGS5yoRWOWERFr8tFzC46EYLScMk++hmLBytmqOiYm0tkksEW3VE563BJc1ZppTmIxjiddQGIZjxcRO2C7N4Yq5cVa/crVaNcZyS/aNff2kidjS9qHW5eBhaCjx4wRCCDGHydIZ2wIc8N4f8t5PAF8EPvizBu3ZtZN7/Hemd9JEkOVmhJRzu9JiWItdeDxNkMXESOhQENRWiYCL5RYj5tKUEzMxUWsJljQRk8wjdq1CMRe+Wy5UWF9MSIdiLryGMYcsJmKT/dKEVVhXGLvcXF1yrxg1J7fTrksyfrn5s+YpcX7NQC84R0dHx6V5CSHEHCRLMbYCSP7Vx2OlYz8T7dffyD1TP+Rav+uNg8kFJrYIJfdnthP7Nd74f/TS3Jwk1iOd2HnL0Ui+h2PhLj1nbSdztnKcaZ9cSGPuk3UstuiHY6UJ0HJ9wnxiYicmXtLih25QeD7mOIUOWRkhYuaXdm9YY8bu1+R7mtiz3KzkuZjrF8YPc7nQp/S6qP/0sZwvsGj0HAB1dYn/xFwIIeYwWYoxa/W55Lu/c+5R51yXc65rYGCgbNDlGzbBVI6P8jnyTF3ibtT5UaAAvgh4HJ6cn6KKSW7zz5f6FKfbUARfpIpJfpW/LvV7I1atHy1lbTg2lqNivWbOW+2glIsdw1G8dLzoGDM1lcmLyHhWnslF17nSftHui3Usknslx615j+UazKOjMD13yblNvpcExgJ/yo4bxgzzSopa8xpEakibb2tOQmLzYAngaMzpr4uLxFVw3iW/DkrzmaMIvkCeAr/l/wuP+K9eNI4DcDm8c/QuWEw+n5czJoQQJbL80xbHgOR/TrcS6A0bee8fAx4D6OzsNFagS6md/xDr+Vv+pf8jtnEvx4qrmMpVcZ//Hu/iu+wb28yO4maWnBykft4g3fXtdIwdY83kQd7d/BQH3PVcX/MiAHu4nk3sZkNhHysnT/Il96ucqJ3PVrbxkeLneKr4C/x97v0M5xpo4hzv53G8hyf8ByhM1XDj6AFGaGBqwSg4GKCV076VfLHIYFVTabFyFxb2+X4ID+Tw3FR8mZahCepGchxvWERPfhmDVQvJV42x2h1k3fAhHl/4i0z5KhxFVhR6GB+vozZfYKymmoliDXWFCbZU/Zh5bpSNfheTk3Xsy1/LUKGJffmNFFyOSV9Lw+QYy/NHuH38eY6xiudr72DKVXE+V0etm6BjspcRv5glZyYYzkH9/NPcV/gJx0Zv4jNL30XRO6qZ4mNTf0VPfhWDLGSAVgYLLdxydj9b8j/iRXcfhxuW0l3dBt6Tp8DDxW/wE383Y7l6aotjkPNsZRutvp9vuA8xSgONDNLvloF3UCzSPD7F4sF+qooFWDhGW1UfK88NcGzeKqia5PhUG/vnbQBfJEeRB8e/w9RAG4tre2HxINexC3yOVwcf5jTVnKhup9mdZVvDRvBvfD75hf5nqW3p58mq9wCO284fZG+ug4HqZq49M8SCYo7vLFmC93mgwLJCHyfySyn4HM57NhT3MsY8zrGQdYXdLJk8RdvJQQZrF7CzeT1rcvs5OrmWY1UrOV9VS84VWHp+lI2jZ8nNP0h3bjVVo1Ocmz+PnqpVFP204G0qnmNecYJbpl7hO3UPUPA5chS5z3+X+uIYu0fvIX9+jHxhir3L2t8QRN5z2/GdjCxy7Jl3Axc++nhPy/AgHYVu7q9+kh63gi/P+9iF8WoKk9QX4Jqz47xn5Bn8ooM8kfsAA/nFNPte7h3aRmPjaQ76m9nY3UDbwv20rPguS3w/L3AHHRzmO+4XmPJV5L3ngWWt/NJD9+j/phRCiBLOW5+wr8bAzlUB+4AHgOPAi8D/6H3y+eLFdHZ2+q6urorif/vvf4+x0R/TlLuHzvz7Ga/6NiPtUzR3fJgFC26lp6eHn3a9QH5kiJtWN1IYPMhPzzRydmyUszVnWHpmlOrGU7S2rGT+qsWMDmzg/Pyb2TUxxi3nv8dg3w85MlDH/rYVLKh5JytGllMz9mNaa35KsXE1e8bnsyK/nnvX30xt3wgj+d0cb36NXZObGBhbz9mul+ioG2b47i20rWrnzMlubjrzPTqaB6lefCOTk2ep3zdI/ge7OLLiDo6MVrGucRlLzk1Sf+tqFry7E4C/2/k9nunbzz2F09zRcC09JwuMLa9j/7wTdLZ1cu6pHRzd/wQrNjdx67t+h3PnWi/UvWLFDRw5NcmrZ5/Ej/SxpriCwf5B6qryLFu9iuvvvX/aaQR++vxxXv/JXlzNCW548GaWb9jEE3//HK/9ZB97lnXTv3YhH9l4D3fnWzh48K8Yn9xGz+s1HB7ZyIKpVdzROsyG1e/i9J5GusfHeHHFIGsX7qbdz2fNmgdpOXmS0RdeZKi4j8Hzr9Cy+iGaHnyA3T/9BsePNDOx5gFONpxn8ZG/ZXR8D6err6XvzCRbapfy4NBCzq1o4+WBsxyvW851+TGe7T3C7oUt3Dyvhtuu2cS+4RruWNNC0X+HnUe/wmCujXdt+EdsXrKZ17/wFc6+NsK+Wyb46wWLGThfy11Dg1S91EvDWAPrFjVw10PraF5+PeOHBqldswCA8UODPL/4KM8WTnJvazv3rbiVZ/ee4PsHBlg35rjvlhU05x3DT/6Q44ef4fCyFs7VNHOWdhaPTFI7/Co3tg1RuO1BvjfcwTWDnqmjw1Stms8oO3lnfjcrNj8E7Vt47PG/4oXiCNdP1lLTdh93rGmhum+UbfsHONbRwHuuGaJj8nm6eyd59afHWLPsDtpqb+Xk6nq+l5tg6uRJ3ndgD3fetIl5t9xC1+AIn9l/lKHhIe4/d5L5u17gVAssar+Od97wTvqbFvHs2WHuXDifE10vceK1I9BRxfz6Kdq759E49DyLlwwxvv6DdJ+fR0f9KPlDP6bnxATtS2po2LyBMzVDNDe/A4BnXt/FHnc99y+9ls4FDZf7vWK7977zsjoJIcTPEZmJMQDn3PuA/wjkgc947/91WvvLEWNCiNmBxJgQYraT6V/g995/C/hWljkIIYQQQmTJ7PwL/EIIIYQQPydIjAkhhBBCZIjEmBBCCCFEhkiMCSGEEEJkSKa/TXm5OOcGgCNZ51EBi4GTWSeREXO1dtX91rHae9/6Fo8hhBCZ8XMlxn5ecM51zdVfxZ+rtatuIYQQbxY9phRCCCGEyBCJMSGEEEKIDJEYe2t4LOsEMmSu1q66hRBCvCn0M2NCCCGEEBkiZ0wIIYQQIkMkxgKccwudc19xzr3mnNvjnHunc26Rc+4p59z+0ntzqa1zzv1n59wB59xPnXO3JuL8Rqn9fufcbySO3+ac21nq85+dc6503BzjKtb9z51zu5xzrzrnvuCcq3POXeOce76U05ecczWltrWl/QOl8x2JOL9fOr7XOfeexPGHS8cOOOc+kThujvEW1/oZ59wJ59yriWOZXeO0Ma5C3f++dK//1Dn3uHNuYeLcFbmWb+Z+EUKIOYX3Xq/EC/hr4B+VtmuAhcC/Az5ROvYJ4N+Wtt8HPAE44A7g+dLxRcCh0ntzabu5dO4F4J2lPk8A7y0dN8e4SjWvAA4D9aX9LwO/WXr/aOnYJ4H/pbT9O8AnS9sfBb5U2r4OeAWoBa4BDgL50usgsKY0p68A1yXGumSMt7jee4BbgVcTxzK7xrExrlLdDwFVpe1/m8jpil3Ly71frtZ9r5deeun1dnnJGUvgnGtiesH6NID3fsJ7fxb4INMijdL7L5a2Pwj8jZ/mOWChc24Z8B7gKe/9ae/9GeAp4OHSuSbv/U+89x74myCWNcbVogqod85VAfOA14H7ga8YOSVz/QrwQMn9+SDwRe/9uPf+MHAA2FJ6HfDeH/LeTwBfBD5Y6hMb4y3De/8McDo4nOU1jo1xRbHq9t5/x3s/Vdp9DliZyOlKXcvLvV+EEGJOITF2MWuAAeC/Oud2OOc+5ZxrANq8968DlN6XlNqvAHoS/Y+VjqUdP2YcJ2WMtxzv/XHg/wKOMi3CBoHtwNnEQp3M9UJ9pfODQAuXPx8tKWNcbbK8xrFYV5vfYtqhgyt7LS/3fhFCiDmFxNjFVDH9GOf/897fAoww/TgphjOO+TdxPFNKP7v0QaYfFS0HGoD3Gk1ncr1Sdb8t5yPgatSU+Tw45/4QmAI+N3PIaPZm6/55vv5CCPGWIzF2MceAY97750v7X2FanPXPPDYqvZ9ItG9P9F8J9JY5vtI4TsoYV4MHgcPe+wHv/STwd8CdTD8uqzJyvVBf6fwCph9/Xe58nEwZ42qT5TWOxboqlH754BHgH5Qerabl9Gau5eXeL0IIMaeQGEvgve8Depxz15YOPQDsBr4OzPy23G8AXyttfx349dJvw90BDJYePz0JPOScay65Tg8BT5bODTnn7ij9zMyvB7GsMa4GR4E7nHPzSnnN1P0D4MNGTslcPwx8v7SIfx34aOm3564B1jP9w+wvAutLv21Xw/QPcX+91Cc2xtUmy2scG+Mtxzn3MPAvgA9470cTp67ktbzc+0UIIeYWWf8GwdvtBWwGuoCfAl9l+jflWoDvAftL74tKbR3wF0z/FthOoDMR57eY/oHkA8A/TBzvBF4t9flz3vjDu+YYV7HuPwFeK+X235j+Dbc1TC+OB4D/DtSW2taV9g+Uzq9JxPnDUm17Kf0WYen4+4B9pXN/mDhujvEW1/oFpn82bpJpd+bjWV7jtDGuQt0HmP65rZdLr09e6Wv5Zu4XvfTSS6+59NJf4BdCCCGEyBA9phRCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMgQiTEhhBBCiAyRGBNCCCGEyBCJMSGEEEKIDJEYE0IIIYTIEIkxIYQQQogMkRgTQgghhMiQqqwTuBwWL17sOzo6sk5DCHEV2b59+0nvfWvWefys6PuXEHOPSr9//VyJsY6ODrq6urJOQwhxFXHOHck6hyuBvn8JMfeo9PuXHlMKIYQQQmSIxJgQQgghRIZIjAkhhBBCZIjEmBBCCCFEhmQqxpxzDzvn9jrnDjjnPpFlLkIIcbnoe5gQ4kqQ2W9TOufywF8A7waOAS86577uvd99JeL37ttDz66dtFbX0nS8n9duvZ2Xlizn1hO9bHzpReZtuZ15t9xyUdv2629k+YZNZWOP7tjB6AvTMX5YVcP3e3q5v305773x+gttXuz+Et39T9LR9h5c8yN89pXjLOjZzb0rX+O2zQ+xYMGtdA2O8OzZYe5cOJ/OBQ2X5G7l8/SPj7Hr5X6u39zGfVtXXsjl+PqFfL1+Lx7PB9Z+gM1LNl/o09PTQ3d3N2N1LewbruGONS3ctrqZ/d/7Hgdffpm1mzezat3tHHqpjx1Mce2ty7htdTMAh775NXb/4DlqVtzCitu3MjYyyYoNzSxdswCAvkODHH9hJzUTXextWsU1t7zrQl+Al0+8TFd/F/MaOzl0Kk/La3u5trCI1vYmRs8eYmXrRhonm6lds4Da3GvQvQ067ob2LRf6drZ1snnJ5gt1dHR00N7ezsDebXS/9N8Y2X+K5uvfwc2//HsXjTnTD+Dz3S/zRILz+4cAACAASURBVP8x3p9fxsNDSzjd38vRvUdZtaWDk3ded8l1GBx8iTNnnmdi4hr6+xtYOjHB2O49DCxpZf2dd3KiOJ+9L73O9YNFXH01r7ZP0TU5zAPLWrlzx4sMfecpGh96N80f+chF1/WVv/0SNQNF1q7fyrL3vZPa1U0XXd+ZGvMnT3Lu0CFq1rZwaO0UnW2dtIy3cODlvVT3n2Jw6CCHm1s4e+Od3D5vCYuPnGf5ghqKx17nxPmj9N2ygf1Ni7mp6jgdk8/T3PwOFiy4le1HzvDcoVPcsaaFZeN9PPXafp6vytF0Yjf3NK+jrfZWJienOHdimGOLBvh24UlWujraGrZwrPEa5k/U8OE1S1i38DDd3d/h5IE8h//+MENnTnP+pndw94OddHR0cKh3Bzt3/Igbm1az8vXdvFp3jH1ja2lY9V5+51feXfZr7OeBt/J72OiOHWz77DaOuhW8vKSV0229TNUe4MPX3cv7C/PpfupJTs+vY82D72H5hk386MUdfOvAEVbVOJY3jHC0+2WaVt1K1fhN3EIVhWuGeC6/g/WjS6ju38v85aNMnJvHoW3dsPp6OtbWc374KQoNeXYNLuf869eSXzDBoYlBrtvbw93nG1n3q/8D5xas4fi+MzQMb2NkcBsTU8tpWPsOzg8NUdU4wOmTrzJ85lr6RjznBg5T39TO5psfoPtIL/1nemmb18g91YcZGj7PARZRf7bI2PJxFtTWU3uwyMJNLRy+6x7+7lAv+fMnGT9/kgPVK9nYd4rmqQlOLG7moUITxws5vlU/xqZz+/hY/gesGa2ifnwjhzruZvuxfsaHztFQOMHr1UMMTTSw9tpOfvtXP8jXntvNl06cZrymmtqRkzS6UdYXi1RVreLuWzZe9L1LiKuJ895nM7Bz7wT+2Hv/ntL+7wN47/9NrE9nZ6ev5FfDe/ft4b//qz9kYa6VuvkreGb1Ur56WydF56guTvBvv/Cv2PzcYfwfvZ/judd5/FQbO5feQsuZM2xcexsfvvkGlg1/nYN7v8xg91IW1j9ETd0k7dffyPDuT3Gi/ymOnrmXb9bfxQ+vW0sx58gXi/zl0nm898breXHH/8lzp37IPnc984vDfNZ9nKlcnmom+f3iH7OW/bzQ9z4eW/abTDqo9kV+9+kf0H7wFZaubeXHvX1M1M6nZuI8t77vA+w7dojxpZ76/PWM736FBU2HGOprpKZ5Ayu+/w2mzg/RNDrKX36gibGmJWxs6uHOxnHGztyEP34XJ5f+kEWLjzAwsJpXXt3Ia4sHuaWhj0VD11B0DoDVfgkrCi2czA2xnQIPf/Be1vbv52+//Hkm5zdRNTpC1bx3UaivZteKFfR2tvDBBa34v3iawngPVdXLeKT1L/nsyC+weEk7B9vqua6uSOG1V9m+pJqv3fA+Ci6H855feelVrtvXxVh9NXfOu4eBBa1sb8nhjz3JaH0tJxqXsbbPc83UGF9d/QQTzYf5raWb2HN6HntzG2npm+CR/HyKHY/h3RTOV7HwM8sZeed9DLol/HnuCXrnH2ZB4T6WL/11Ruc7uiY93uVxHn718AT/ZP84Px6aYOeCHJ9/cCHjDhxw58RJPjL2XRY1Pg4U8d5xYP8W+nvX0r+ghePNrawYPEn96XM0tb+bztMFTrth/qBzMYXSffDHn/pPXLdvJ9tuuJEjt93KncvW0NrbyOir3yU3r4Vc42LqfA2ncufILxxn4+QA+alTvDhcw+G6BUxnMv11Obw0x9m2+azlFdpHB+jvX8N+NrCjfR1HWpZdaPrLvf38ZuErABw99yD/fNMGJvM5chT4Tf6SVRznYNVHOX3wNdpePUb1sXHGN9Xz2bt/m0mqcMD6nv0sHavmkbMNbPHH2b78BF/Ir+BkTTNHW5bhnaOKKf7x65/n1iXfJJfz7C1uoGvkHpbsfZ3B/DWcWtrAJnaxaPdRhoeX0dh8huvuepEDufXs5gaq9zewrmXrZQky59x2731nxR2uEpf7PazS71+jO3bw9S9+lk/f/W76qprZOtBHu3uaZ+qWccvBKt7Tu5Aji14gN28Xwz017Gh/lG/euh7vHHkKrB86yPy+Ah8aHmBV4276pyY5sWge3dVruOZEPzesexznChR9np2vPMDxhjYm149wnXuVHlbxNA8yNdlIT81iPDmqmOLRV77N2clW+pfUcGv+VRqW7mVb7h48jiUHRzkxUcNd1z7LhtxevIdTp1bwwpn7eXZRJ+fm19Poz7F47Awrp46xt/ZaRurq2Dr1Q9qLvRwfeZjbR85ypmUnf5t7mN3z1+Ad5HyRostfmJecL+BdDkeRIm8cv80/z01+B/191zI83IyfP8lNNV10jB9lz9QN9DQuZ8nJc/hzbXzx1tsp5vIXzXfOF1gz2EPtoOdX1rTz2/fe/ibuBiFsKv3+laUY+zDwsPf+H5X2fw14h/f+nwTtHgUeBVi1atVtR46U/5Mdzz/+ZV776vdYuvwevrr4FF/dvBXvcuAczhf4lcIX+NCurzN1fYEf5B7kM+63L+pf7af4A/6I9ewDYNur9/BK9VZuqPkp913z9xxgA3/m/phJqvG46bjFAu85tIs/bJ7kT6tf4PuN/xNFHDk8RRze5cn5KT7MF/mAf5yv80t8xX2MosvhikXuevH73LHjhxRq6xntuBZcDnyRvqYWeptbWTexjy2Lnqal5TjOeYrFPDt/+iBDgy3MO7IP5z0jHdeyZNkBNmx44Y25OHUv/S2L2MQu1rOPw9uv5cyOHIXmRsZbN4BzM+s+fU3N9C5czPKzJ3nHou+xtKWb/lOr6e6+DUr3ye7lHTyz4Q3X7d3PfJ3Ne7qAPOsWrCPX8QH+5y2NFHPgvOe9gwc5mavnhaYVpbE8Ds+HdvyItexlaEk1n1n2a0zlcjhfAKBIjmoP/++LoyxyXYzc9uf8IPcAf+2m5zRPgXee7+L+2m9Of/MvOgoH1nNqdAXnT93OyOnV7G/+EX/3rl+ikHfJm+lCHb+/6zx3HR7mUx1VPH5D80XnbvPP8whfY4PbN3OIb+3/Nb607hEKuRx4Tw4HOKo93PH6aX64YlEpRpE7du1g7d4X+NIHPk4hX0WVd9w5MMm8yXHqB3aw5Nzpi+f79Aka5g9yorWJ1pNDNPV58J5zy3J8ZcPDTFFFFVP8vv9jvId/7f6Ugqu6pKaP+09yP9/la/6X+XLuYxfO5SiQKy1gVUzxicKfUPOS5/HbfpHtuS0XxQDI+wK/UfwUf5P/LaaoDuavQLM/zYf4CqvcUf6MP2aKKnIUmBkpR5HfKHyK6/q7qa4+z5nF8/g3brpd3hf40PYX+c+/94/Lfh2/MezbVoyV/R72Zr5/ff4v/xP/+9qtFwmOHAXAQdHTPHGOxbW9rOAYHf4wf5V7lCK5S64jFLnW72E9+3jCfYAijurSfTRzb+8cu4X/UP8vmCJ/4R4JigTvaS6c4mx+0fQhPOCDtkVqmOIPmL5Ht3EvT7sHL40XkGeKIrlSTN5oX/paovT9dbouX/q+6C/K7Q38dHuKVFFgrd/HfrfxwvfhxZMnOVG9ZDpGkuS9XyjwqaX1Fz3lEOJnodLvX1n+0VdnHLtEGXrvHwMeg+lPlpUEbq2u5cj8FTxXc4DjC9fhnUsIAdiU20XhxgIOeNHdUcqm9IXtHAVy7PHXs8HtY5/fwKdv/B2mqKKLm1nh97PHXc8UVdMCz3vwRXLeU3fuDP/hbJHv3voovvTNseAL5PEU/RQAB/06DrgNXOdfpYpJpnwVVb7ITQ3bqVlbzSDrweXBQV/TYr62+S68y7GdDaz3L7AYj3OQyxVYsLAfgLY7C+wa3cCupo3cu2Q/+9nAHnc98/0Qf7P44xSoIs8Uf+j/DzquP0hD8xL6exsYL3Kh5r6mZr5x01aKuRxVfoqb+TbVjLCyYTceONJ9G+A51Lr8ovnav+Y6Wk/30bN8DdXnFvKtDfUUc9PnPfCthetKCwkX+nkPA211/GLbU3wz9wGmHBSdw+FK4jbHRLHIky2j3JL7MQdyD/Bf3RtzOuVzbKu/g+e5jU8U/4R1fj+5dQdYwj58cRuTOz/KwRX/P3vvHlzFdef7fn7dW08kJCGBxEOAQBIImYdtwE/A4NhJDLHj5CSZnDiO40w8qTrnTNWZulN18pgTJ5lJpiq37q1bc+dMZhI7ycSZzDiT8eAB23Hwg1eCDRgwSAKJh3gJCQSS0BNpd//uH6t37+7evUXmHpNMyP5VqbS7e7179Vrf9f391m/V4theOfHq6dUVVV6aN8CMnrPMHStBKEM1PZntlzs4xG18ha/S4E1ag7VqgJhYmInIpD3hKhfz3XQeCG81rcCtGMZJ2KhYTKiyvToPyMOafQ8PH9pFcXE/WxvuIik2Mn8RKqbuiWlJHi94nvzOEi5VlZIkgSs2SVXaxEwQrtjpegXexU/lk9RyhhEK0+URwVXLm6wtkqoctZZQsHzcALFAuHT/t3nT2oBDIrP9sOiTKp7lC6zkLb98rgLe+3FV+L79FLfPfJuNupmjNPvhFOipmMbZs2epra39dT7n/8hy3THs/8/49db0qWlwZRLx3x+WcrmwgstUcIxmLHHCYSEQz+KYNHOMZv/+uAeUduo6AM4XziHpvWdXJRw/IH12pf9Mg2DIKx9iM67KDl3HLlnPOHn4QCrcIKF4DjaIFZ9mRvNqDEAj0HctvyxJr+6p564qF/OqA2lHxMvXtS3+ueVoDozl5Dcuv00wdg4IjsZzgK73IuGivQdwB7soWZDHioLL7NdFON6HLWYa9b/f1ezhMCvSH6iaVVUTLYAZuFKDVVITbOERyrQfSxyPdXC59eq7zD4xTM1gH79a0uCzcOY5fFBfZKs8jIvtT/Rf5qt8iadp0WaW0EJDUzvuYpvD785k8Op0UDhYW++n5WiCrfIIm9hMqzbTRAuF1jhLl23jhLWQH8sjTJDHfhqR1KpVUv+FpOaxk3U0FLYzY0EX0+u6efdQJYODM0Chq6wK17JQsXCw2anraJNmmrSF2ulnPTAmVA32c65iht9eRSNDPL/pszi2zR4cinQMKEm/DBFvolZ/mkowgV06zLetLzJPTpEgSdJjzBwS/oDd457niHsL/yQbfSCWHoAtkprgtfEPsk0forBwiLWynTPMZe+KOqZqPxBZOQfZryn/SldFgmtXp/O+sU5+UfjB0OCe1Dx26DoaxLCjtxW+zUt8CEcDE0GKdSrpASr9FbdaFgMzp5FHkgklXXYM63d5RhF5NedwxEbFRgnne2huPcV5FoVDYySmmbZJ4FDKIKekDgvHlCNVJ0+uUsY3+HpateP3QdewHmqRwKGEQbbmPRJuk8gEVcEVOj01beq7QMIAoYuZhtFQh9BeII9t3S93cEhu43F9xn/HtrpUDF7kBz/4AU888cTvOiC7IWPYaor5KW4aHAGhvhx4564atZ1qoP1jwVIqvsUb8j70OoxVBmCJSyv120/bposUuLPCYbKkLagBYnFpZojgA7Rg+fyxWyNjRKTM2dom8N/CYUb/u8BHJ2+fnOTkPZbfJhjbCzSISB1wHvgD4D+/V4mXW+eYtuw4luXQobN5Qx70WYJWbqHebUcE1us2XBd2J++nrG8YGc3n/VP20TDdTMLnmRNK94AYewILh/W6jXvcnYyemMfg4Ayu1sBgZV4ofANtjFBsBj9vAEhqglaaWaItZmjxxh5xXcrKu+mgkZ6yGYzml4TS6tJZfFOeJilGbfXHFf8vtZYTYuocDSSoTij+AOWBMc6lrKyHwaszAJjV34vtuoalQnhT3gcICUny3wd+6qeR7xiGDxFwXS5U1+IkUnkrMznNVZpD4BZs8JRYt7GPareLraWPAnCYFWxyX6CIMS5LpZkoxAZ1GcvL52zBTNzQStjF9kCChcuewjsNgAPe5H1pe5BUPTOYHeUedrCBbXSWr2BwcDp3nz5CbeNpXuA/0SdVoTZLVaOBdp7gu3yfp8wEqC7LLh/jtood/KjoSfzJ0svvItV8mmc5pXVsl/tx1JTRUpcmjjBTOtgcA9YA3pHVMAtsdfm0+12GpZRSGeRHPEmSBIJLMUOMpEBvYIJJ5ZNmgl0+y3dRhb3cyTxO8Zw8yXjq04+yC6rY6jCu+SF7nZBqx4vTzRxcj8/UOBUSpq8f4laWcoA+ncbqkX2UXy3GAQ4dOvS7DsZuyBg2s+U1vnLHD/h/5P9gQKal300UQAAWLtPopZfqGLUdsUAlOBZlgKVgXqpM1x4uSXVm/lkA2VFpMp9eHFgCwGEeZ7CZYIm2cJjlnJYF2QFTaDFlhfOO/o/GjdY/rl0iadyq+1khB+JeS05yckPltwbGVDUpIv8V+Dlmtn5WVVvei7Q7GtdzufIi1dYxRGAtb7JLN5BUG0uVvONTOJtYQf54GWP5A5xLNDNSWkbN1WGaLxyncTowHV7T96Wpbu/jVcRXT1bSS/XJIQ4PVNFdVuGrnYLhj7OIQQI75lSxUIqSo3wr7+mQPdBCPUHrxDL+bblRF4rrhtKaSRfdzPbVVofdZazglzRpCwlJMqGemi8QJ7hqPii3066NNNCOqsXAgKHtFzjVrLxSgn16hJ/VlQIEGDU4UTybOxp+zsWehcwaqMB2HRyPJemfOg0wtngJHD4pP2afrmIvd1LvdnAlOZujBQtRTxUxpoW0yS2mjN4AeFrq+Pzl79GZv4DtpffjoIgqQwVF1FonySPJuCqCsFE3s1L20kozvVrlg2wwLEEw3WCbp+8Jv+Jexihi0UQ3U1Xp6W5kSuUZllccZKe9HkeN3dM8PRXSiMzRM55aSBBV7rd/wTmr0m+rIMPUJ1X8iCf5Ik+zlu38mz5Cz/gcmnpOsKToEFWc44v6NDtZFwJrqT5m1IUwTCmPyAts1kdJilH1oVYAiLmgGKsbVVTC9bdwUYXn5EkmSNDKUg/c2rET5vzeC0xP9rC35tZ0W0bb0LPnSanH1APJ8ROwsF/uSP3kdPECPjR1NzVX+/hdlxs1hl2YepZGaadBOtjHHdFMzX/vXbiIAWIxz7ICk2hawd+B/wkmWMpBXueBdH+ZDPCJgFphPa2/KEyxWjZnmctD+iIvy4f8hVSob0WBXiqPmDLG1jtOhRkqj1KuV+iXaRl1KdOrFA00kJOc/Kblt3pQuKq+BLz0XqfbfnKUgporXh6G1fhcz/dpcVfQpEdYeLWI0mOLGKqZw6u1RexYYAzSz1XM4GphMU1Ff8M04E3ZYBIMDAhmcjOqzMXaStGldVxxCzm4cAFJT+3kq208pqJLPHZNjbroCf0uA1Z5yB5o38jdjLTXcby83lcXIrD08hmsQpsVA53Mr36Zw/atvtpqsR4BoFHa+ZI+zT9M/DHt+TUhlYSq642Dpiy/GNtISZ9ysWeBUVEC03QKy5Pz+Oupeen6eoNfgiS3TH2VmVM7qKk5AYeUDx2CltmLOT59OmpZ4Lo0c5iP8k/U047rCm6/zcRwOVcSFjLTMFkqFkdkGaJhkLmKPUyr7OYyUxFxTbnFonVWHcd0Lh/UF3nJM0B+RTaxkr08rC/QQSM72EBSvXIbrDW5iOCqzX5ZzcF65b9ebYNpR/ibqj8y6hUPzrpY/Nh6krl6hgZtR1V4e2gdzlRPBWPBufJKmmgxqu8oEPTU2m0YVe9huZWJggQX507nbn2FKu+9NWg7KwYP8fLgx+ipKOdKUXgzwWJtQYEl0kKCJOOK37dS4NLsqHSpGbhCT3klrn9fUBX2uPcyYed57KXr2TA6YdWvn55yrGpBuN9HRTMbulhHGJGS66qJHGy6yqqYOdjP8uXLr/Oy/uPLjRjDhruL0CaLqfSHm9kDvQKk1ZIRe7EgiLkeWMn2fr3ny/Ud6uRUOo1oPnHgJxU/VGbwVzWAqzZb5MOhe9GyirchJI3s0n36uixdXDkiZZxGL/1UEFKnAov7bLqrw+x4TnLym5DfKhi7UVJy7R3sinNA+htcXryPu6dsw7IcpCYPYQ3XKjo5PvsxggEPzm2k1y1iGjCNPk6mElVj0/S48z2GrBKatIXiswla7MW8cF8jE5YAZkegjQM4OGp7E57ZGVmqV/m4/IT1bOOdkdVYJQaUWKrktRQwODqdWfRiuS6ugI3DRyv+lgY5BoU2w5fn88XpT/u2XDXWZWOsj7E7W3it14CxVH1M6qG26XMrOdFxp39dNrUXZ+ppjl5ZzNTLM6AybT83lQHW6uu+3RS4zJraz9KTVWwan8J/qRLGXRdblWXHT1NRMcKh4lX838V/QnJaAiq9MrgOWCmwYqEIC8Y7mJI3zDxO0Ukdz/J5o/n0DHpTA6uDzTu6MmT7tkPXUU87DbTzGZ7hWYxxv4hrVDABVsjVcP1DwMCCM9X1FEw7Z3bGRtRsE5pnjOYV9o3ezXB3NVaJeTcJSXKeObwsG9Or+1T6AOpie7aHaTVywBBfMUCNFroTM+kprWAoURwq6m3uXhq9tm+gncf02UxVamqCw6KnbBquV29jiyMkcJh9vo+2WgO0LBc2XX6Jwao8j5GzCc74nZUz4ye6YN1i2JHpcpHTlGRhx9K/LVVm9feSk+yyMO8Odl+cCdUBZttr80XaxjHxfA9G303IfovM9xQNex1gdlrms5/V+P0jG/MWTD8WoFkxYSLxgHvYTiFjqMI8PcXfW38Y/raidYjLNwrU/DCe4b862LjebuRMYPe2NvPntVcz2iInObnRctOBsYMXD7Kj4ABLL82louKC/z1eu1ZEackV893JBO7tbzAdZSZr6WKmCeTbPTSzSNrZqJs5ILfjaAJBed+ZXcwdvUp9wzZEFHeOzf6iURzLqH1Ek9yih/moPA/ADvW2d3sT3qCU8X0+zynqqLlwjU3Dv/RdSZBXwDvTZzOrv5cvvNNGd00+S2f9wAAhASyHgopOGnBo0HY6aOS5/Md4S+40LgskyeKCE6YeEabDgBKjPj1W3IA0FHB31wBNdDB92atYloM7fzer330AbYfWeXPoLajiKmVskUdB4ZP8GHFtRO7kn1blkbg2yp+02ZxihLLL45SXXmLawi5etD5IUgIGvCL49kaBAb9CRiijJ6SqsEli4eC6Ejs5REXV4hQL/E0OqjaLaCFfJ1jFHsCwm6dYiKYMnVOrbS/9CwVJhrnd8GGRyUYRRjBuGSamJLAalMaRDgpGldICYWfpunRhImxAVfIy9w7shmnQq1VY4qAKCRymuIN8yzIqahEXpyg64Rggt0n+1X+NHdroqxr9dxzID8yOVMTCVWUBJ6jTU6zuP0lrUa1pI8C1hJHRqdzjvsoOe0MoT/O+rPjJLNAukZeATZJ6OjjN/Ij606VEhxiSqWkwMXqUmsE+FOjs7Pxdtxm7IXJ0Xinfq3k8bdcX2PzSLoshltEkHqBEv6NscWIAnK/+zAbO4/pDMPxkoD4KnlQ5potZxkHWsJ1Wmr2dlqk0IF9HGZcCUuCwhEFUYVhKI2mZCKKu1+8VG+WD+iIjFLNd7uc0deEyerK/cgaXzl7JrFNOcnKD5aYDY/t69pEc6+PShXsBqJp+ht5LcxkdqWD6tB7UnfC+ZeMiYpNu5h1Woh5YEVymuIOoQD3t/Peeb3J6RgNL5DALZ5+gp2dBSuuHLcrigl+R4BZfdfgRnvdssmChtnPQuZ0riaoQRf+6PEhevcvHjm/lYXbQOmUp/9jwIVyxsNTlc++8y1OjR+ilnQ5ppNVjUBoShiU5Lo18i6cZL0pvH59Q5d38xaYRAgPffx59ju7CGbwuD5qJGpvWWXW0zXR5uPccK6yFtEkzi6WVsrJulpw9TVvNPChIp7NVPsxK3QtY/PmCO33fUy/NUP5y5wWqLicoqhugxapnu9wPRAd7Dd0THA7lLSXJMr/8qbZZM/4aw6NzOVDWiKuKpS7OtTwoNBNSggnWynZQGBioxCnNC/diL9uLUs2rbPR8YLnMGj/HA3lbEcE3wrfUZe/0QhwpDrebP6g7nKbOZ7UclLYpi0hMSVKqA1nimAJcTkxjS+VDbGGj8b2lyqquizQMv83F2XNITknZf2VOXNXazRf4K78fiRhgP06eB3KTVGgffVKZBpYabGOLUzRwTuazpmwne2VTqKx7K1cw1lOEM8sDza5L4cQ4Y3n56XcWB4bjJl7zJTFGIRD1AWUxJKWhsAUFw4ZltoT58+fHpvf7LqerJfCuw+o/nYTpvS5zFXwW/R35RkltyIjmE4wbTCMObAXLFADoGTtvPemVal7n/exgAx9gS7o8XphxKQrlOcTUIKkb6bPGt6P5aeGoQyvNVEhf2mVL9LsVs1w72NjE+zJbLic5uaFy04GxldUruXr87ykuvYTlrqalu5GUl/LOPZ+ivOEVyqZ3Z2XnFYsf2Z8ztkK0s6L6XaYwRps0oyKUqouqjbguojYrzk/nf5R+naPSxBQdpFVu8QHBTlnHlUTgeA1/ILNwLKW7voik1HFCZ+J6jISLxYnq+RSdU9oXLOZb/E9j5C/GoWID7bRqc4h9EnWxwHjzClSoWAd5qHAzHTSyi/VMaMK3E1IsXqx6iK3yfhxsLEt51DpAFeeZMj7KJbxyi/EL1irNXLaqfDcfABPAc80zeeDgGVZi1G5ucDULoC7LLx/jtiFl+7wE0zCG2/vkjoxJw8Jhat4gu/MX4uIiKrgIPYU1fnIf0C3U0w4K5eWXuI9fsJt7SarZZZjacHGYFUZVJxaoxdn8OTzHk3xRn+bP+Ao7ez9Ad7KW1pl1WRmfBA6rdA9t0uy5GTDMk7FRi2EUgtHFJqmmVqa9Haq5QukFpbqmnZ/z/rTLD8LG9JtkM40BINZBYwTk2vTLNG8XY6QDp1g9sUiqzQ5Zw2AEEDlWgsqeUahxwTJgeCy/IBQ/OElZONylu2iVZvqo9KseBNG/ZE04frpAoXuH7VuZP3WEhsqhHCuWRfIHL0FhjBoxBbghk12CyLXDYj3KKeq4JsWTs1sQfqchwTAUBgAAIABJREFUYB+QGDY2fR1wbxLtA6E6WPFpBb6flBseHxBmUz2Gyh8ZzDPax+KkNPqujQIBQwsaG5f6gh7gVnKSk9+k3HRgbMWMFbxbXMWlq51MEZBZ01FVUGGgq5phXUpp5SVEHETg3/QRs4IKDQYJ2qSZRozT15T38ISV5NPJf0a6IS9/jJrR2QDU6zFEXP7C+prPxBiOLTWBS8bgIDjssO7z/YGFRSkcWMj+0x9jYkHa1qhVm6mn3TfmTqpRQa7jdebpKX4gnw/5JirgGselkUba+RJPs0PX8QYPBACZGJZLBEeVF+at5EN9I6w4e5zTldW+L6IEE5QyyL/Ix4kO0gcqC3n3vnpuHdzAMvZgk0wb1AMJktxxbQ+rpu/gfgYRgWf08+HqeizUCt3Py/Kwr55QAg4eAVR99UKqlo3SzuP6DG+ygZPSEEjPAyq+k0gDTlLOcM9MmYNcDex8jUxQog5reZ25cia2n/XJ9Mgri5kMSE88Fg6zeIvSqQ7jjuWBKMuri0ORjjCFUTbpv7BettHu2QI2aQs7WWdsXAJlTG8UCbahpuvrbZJ4Ux5ITz9e3MHCIq5MmeqrLmOZlcB1mdvPW9bdvgf/cr1CrwR38Hme0uJAbaRdHbU5Vl3LiuTF2HbNCVzJLyaDmQpK9F3HAi2bdlmc1aO+L1kWE8Gw+TpGo3sUsWC17KFHq3lDHmAYc46r4NKoR81CKPAd5OkYjuQZE4nrqTcj1wMyLXw/buUcB9CyATfvnmEWUwAt5XYHf0z+jPtdKrttYGNme+QkJzdQbjowBnDvRz/Dzn/cQmF+Dd064X2IDmdKjnGueDF7zzVBqUPtYBfdNXOMSg4CH6/wlt5FL8ZQesJTU00oXK0VasR4ud/NLJr0EA2i7JJ1PrAJebIOrlwDg8OM8V568qtxxUbUMfYNKljqUnbpMC9daWfGuTESdc04QEKVheMnIB/qtZ3HeJa93Mkq9rCBbQCUXxjhu2WfZbDYsFp9UsXX+QZ/pn9GA+0s1OMMn6/g7dpVXlHCg7iLklfaROX5X/LJjq101xeCKGs9Gw7f83tkxe7YFvvKl/MuS/gAW3iJR7wjSFw+7T5DXbKLwqJBf7NBMSOh9hB1ySNJGf0hn2KiJkxQMzNPTvlATAnaUmXx+B0xPh7RYp6XT0Ex5i/4nlKX6pBHkjW6nVZJsX1W5gSSVRVDqH1EHZbrO3TkL+Te5a9yWppCDKKqzYiUkKSAWj1DB+kFgE2Spe6hNPqMrPZ98e5VTVzmSn6F5+bVzihLSvbWeUdhTTZJetd9VmXoehkHjU83NcfYbGQzL/MhnDjXIjGT/Wh+Id3Hu9m3bx8rV/6HO+Xoty717rvYrIt17BtVxQFZAXAmSz0J8IpTP3pSxUUedl5gidXCG7yPl+QR49bEC6cq3qYCTwXppZWUfO7WnfxK7g1spImpSzZGKxtwzNa3JvsOQ/dT+YW/j5naxQb3DWbW/mVm++QkJzdYbkowNnvpejbsKuWgfQ7kJIg5WmjL2rtJWhaeVybsCpfbe45wvmZ2xoR0WhZwmgWeUbnieEceLZHDHJdG/oKv+erDL+tXQxqEYDoEt2SnRJUL+TXY6iI42Oqy8fIrXBmvpvLiKNVXrzBaN8L6lTuopYs2z+N+Q75xG9GWXMqPCsy5gcdYAgqDTGXaQCVOeUDdhFEh7Ru5m5IB5cDgnexvuNXwGClqPrDKttVlxniCE3NuZZpzkI8MvEB5+SVTZAi7cPAHuDDzlDaMNTtIh6WUObVtHJdG/ly+joONiNcuXphb9BAfledR8NSphjdqHDqJnRinpajZAzUuxTpCO43sZJ1f9NBOyKzqEfNsd4Y6zWuLwL26iS4+nfhfNEo7gmH3JtRzlqku0RW1/z/Snnj+12wcDsrtONNtdnAXn+GZDAYRsZhQm6PSzGWpCtgMQblcCe+qC0qgHpYovfmV6f4WndACgGw0L7xz03+XGmBkIiyDeK5ZAJ7wdhWXMEgndUbNHuh3gUQJfxhwtcDY/rS1teXAWIzM0iE+o9/jWXmKzJMNsgCNONAVvA4CnzjAE7dw9OJ0SS3/Z/6XeVC3soVHyHCnAel7AbZO1eJXci/if2DedxPHcsWxW3GLhDjgFhMnn2uM+6vsgGQDfkC3zOKdlvVUrViQGS8nObnBclOCsWsnBxBsZrnTOEgnjrqcmlNF0kozHCoWLsq04m42uSd53XofI5RmDBSO2p6rAHz/PjtZQ1IMC5bUPP5K/oS73J0kxJw1GUFl5l/MINp44QxV9HJf9WasSpdWXUreUDEMCKUzriK2UcMF7YcsSzmRvxDH87g/oTY/lM+jCPYih7yJzJXkoktJykqvMVZUgWPZIMYjPuCDhbX6BqW94/zt4odwrHJsZtKtBaxhuw9KfPskfwBzWal7OSi34WqCBA4r3T0cs5b4GxqWSAuCsoVHfMNZDQ74CFMZoFWbWSItPKbP8qZsoJOFHCs151ommAgd5fPn8jUcbxOBiBPeCRksX+RdupKgz2M7U+HLkqMMJIrD7/zaFOPrzTKbOP6HPs0uuY8BypiqA7TKLfTIrHB+fpu7iLrMmeiiNnGSQSljQvI4SrPfXzqp4wNsYTdrKNBrdItZDCg2w+4UttsbTL9Ro95cK9sp1hG2yocDi/vw5FmtF0yZoiosT+bpSc7K/IDtW2TyxQPbImGVo/fcwuFW3cchuZ035AFs22EF73CQ20xfjGUlIeTHyXt+zbNPa2pqygyfE0ZGKhiq8Oz8sql+IR50pS8g+L1GJRo3Li8fAFmMR32DZQVy3okM3mIv7YjZguDxTlGgNRm7lQ2URYFYIMw4+Zn1zaYeDagwzy6dyptv/AUrPvFTcpKT36TclGDMHZ0ALEpLL7K+spedY3M4XLUIApO2qEuCJKXSz8+sj2Z6gvbEQDbxwdsuXUsn80P5XaGKrdajbNIXeJflnEkd75GSmEFOVJk+NMCDiZ8zYblGLSUJ7AaXuzhCS+Es6t3pnLZMXmtlO/WeS4teqTKHbyueg1LxzjiEKRPDjOSHB6L+ed0Uc4ZyWoF7AwOTQ7Me5iP6PKrC94r/2DCHHmh4XR5kF+v5oj7NLlmXPpDYj28xJCXcob/kkK6i6eo51hXvYG7eGd8XWj3GYepZpw7CJ0X5ae2WdQjGnQOC53zVDLaOCou0hXwmWC17GKQ0dIC1ZvO6H5ToSlxdapL9LBxoZ0/l7ekwnpwuqeBb+jX+qPfvmD9xhuNDd7Kj4X4csbBxyXfHCJnihAZ68y7O5s/mLLWewXC4XB3aYPoIpPGSxyrsTN6PY9v+9Vp9AwVekU1eKpFJ1iv3pZQNlydl2seQTMVVG5skG7tfp3LGKXZba9khG3DV2K0Fj2KKbUuvn9wzvpOavC4OsMqzYbTS3uHjwG/0XgDYzem7zKZNm3KsWBaxnEGa6CLj3MY4ljMKXvywEaY4jlENxouOVynx07AznwWv/fTcgJ/WVF+N9I1sTFyo/JMzu7GgLHQ/xqwgmm6ofsa1ThNHKBoeISc5+U3LTQnGJi4MM1p2nHMrv43KBId5KmzvhAFZj+mzHC9cFJrcU88rJ3opt67SZB3iVdnoHWTtssNabwzMIUTJo8o73E6lXIGACi7MkuGHVbHYXb+UOcfPMKHD/lE3LsKuhuW4AjtZ5Ufbzv08Id/jh3zOsyVyuHfsV9QXHObv5XMkVUBh/uULHCwuCeW1lzuZK2f4ez5nJl+vngkc1l3+Jd3X6nlm1uM4UyKqN0/1uJN17CDN1gTlKEu8ARH2ljfyz/oxZtBDmzZTKoM0aDv7Bu7hYnllOO3IbzPBpwb28EDa4Tm5PMYSHuNZb/NCnv8e3ZCjVwdXxVONeK4AIoO1oPyR/W1ap92CsioTyIngYNFGMzPHLnO2ZCaOpA5Rh1o57amHYyYVf7C3vfccMbQH43crGNZvC+FqQalRBaqLTZJ79U12BuwRs02e5tIBz0XLgEzjHrZzlTJW6R4aE0eplPMs4hj3utvZJcYHnobSipssXfJJsiHvVQA2x50C4LGkGTZsUXcJHsCsHhnJAbFJZGrFCtr1dNo1Q/SdxzFlkz2Lhsum7ozryxHVY+yCJ+NehLWK9qtQfqnFStT8YRJAFlfvbHWOux9M1/stKI/rMzRKO72S20mZk9+83JRg7GdjO2lZ2k+zNd84TdXIdmZv8hqilOGg1/PAANGXN40+pnGWOTymzzJEKb1U8aY84E2wSUqdEQbtUn9A6JK5dDGH9ASUWhUSu6JzxOJndR9gQV8n9jQ3tXfQd3MRXME5muBl3eirRx0VhgsS1HLGUx8KKsK7tQuJeqJfxR7PiWIQdLqs1depujzEy/nr/LMmU88Ew94lMLtOQ+cvhv6n2xRVtst6BikHjHsJBTrL64h1JhpJL+U53jdc9gCwgr+jdEhK+YBuYZd7H9VWF3/Aj9nPKn8zwwx6+KF83t9A4CDp9g8AcRFoco+YsyaDqjsvXwuXNVWvML+qnfvcMX6lt+GosR+7hx20syjQxh4QiVmhizoeYARViwQT3K07PWe6kYnG+20O307firdFBHxP+xYCVGqv2eXohfklaxGUY7KE/1H5NH3SYBhLWqiiN8SKhSfHYB7KUjUHJzdKO1/Up/kRT3BSGglL3AQYw5IhkBzhx//6Yz714U/FxMlJ7TyL/3XlLnMxGYCKynXUcOl7gUViFKD4ErAPDZlauNjq4EjQ3jEYN/INxJUzsgAJfXvRMNF0oqAxjumKxo+rX+S7U3XZK3dSq2dYmBjLLHNOcgJ8+zvfpL2imMa+Ef70C196T9O+6cDYt7/zTf6q6X6SJNjM/XxRn2YN270zDI36K3Wo9RJp4TKRc8i8AcIAAIukKp1SR5X2UsyIeaIOYDNkl+B7dY8wIqmJzdZkeuCKMA6IcC0vn7bKRhYMneR0yTwDHvxyEBpoonYQB2QVZdof2jUV3kHncru+TS1n2KnrsMTxgU6CJGvYzuw53azDZb8uSueNYOFwH69xr24HYLun2sqoR2Q1bQfOwkSVV+QhLjKTKKtmGCzLu29yfkhfpFtmGfWXF79R2zglDb4N2ogWGyBjQz8V/KN+iuOyCBebV9jEWn3dUyvbOMFVeUrE7HZt1WYWaZvXXlEQpTzBd2mgHRFYZB3ljy99n73J5cwoOsub5fcH3rlLlV6KuHpIyyLaOI4BLpa6fHz0H2koamMrj6RZSv99pSc0FeMGopVbWKPbeUMeCLN8IuAfDG+UvL0StodLqdcnFLbKIxyQVbgICUnyuD7jbQqI1t1bQPhMiMV+Wc0hbmOtvk4xI145AosMDYaPmfAik+VYXj4dBzvYNye3mzJOzrTuZn7NrRxhebjt4tRxwd9x7FbwuaS/b/86+sy/F7MhQ5UKrlAg1+hmdvb0s13H5RMHrK6XbhBMZmuHoGQDmqG2sjjCco7JEr6SeM+PS87JTSDf/s43+atGgy1+Pj0J3/nmewrIbjow1l5RHDqAu02aeVhf4Mv6VVr1Fkq5ypCUskRaqNd2zjDXm3/CqpTUgeAWLjvYgCPeOZOeMT++Q9GkiRcdKLwJyo3uTPPC5bkTTFj5/r2e4hmeEbQdPzAB86STK1T5fnv8IkcnVb88wphbwDfsbxgDfxxu17col37u1e000A7FsJy9fIU/47uj/42uopke82bTT7l/NuJyfYf9MY5aU2Krw526m8tSST/T/PviAQUTz6FCr3C37uIV2eRpNx1S4PdV2chMzofSnc05/kB/bM7flBZ+Jh8PvCf1nbwixs5tL3cA6h1GHjBGD7SLYlMwMc5PRv4Qt9zKaOtq7eJt7kSB+z23IY2FbzFlSiffsr/qn0CQauPLng1f6sipYPnO6VzTd8QGXLqLZpDM5hwz8v4UixG3iAarnSfcv+OH1lNpFi8INP3JKuLKIpDOO7LKB5BJzePdoCrGD58CVVHP75ZvQ2ieh8sZkmxMTiBsX1EJSm43ZTaZOL+I4eopoUVNrEzGJqWex4GtjLAR9j6bWhDSG2CCeUYBVWweWSQOTEXLkCFZAB1Qw3m6mZXZh+PSjCwSzOI7we5L5Tx1/ZLn5PdMotiivSJmR/r/hmTxKvi7K419IyRIYmmSBA5N2oLrWpRcUO65/DYbZBuPyAvUqwEZQ5QCgUFEFQtzjlmzHma5voOLnbbfkNSxSWmGzNwwH/WcZK8HBFL3hKLkcLqAXrgF0mGuvcGhKXmEBEkkCO4CasMEE3yIzTzEi54K0SWBwxq2M19PhtIODogt9gq//A42CznOZ/W7PshKBW2gnT+Y+Ik51Nub6PdzBz/RT9GujRyUiKF7ZCJwxOIt6y46ZFEgnDmPUXARdcgnyR/zf1HMiG+D5WJOHVCxGSfgGkONinKenqKBdh6RFwDI12uTlmNQyk19fYaHjEFecLk4UkvvlDLipEdmc1hW8Kx8gde9g1HyC0bYba1Jn0AQaGvFGMmHyuPlOSQlBgSpcUK7QzYwRQfNZgXPtYmFY3zNEeg3Xjov249wXBqZK2e4T3/BLD2XESarBMJEdzt26az0vag6KToR+20dZkuqtDvFIcfEdUNhg3n0lBmwnttNGS9d7mLeEO9AnmA/j3vn2digoGTrJ3FgORt4mywtDY+fGWzoZH018i3FXkfLFdcG3r0Cxr2xWePz9MZk/3cwbTW2Y5UXcw6Jc5IpUWzR2PfebvS46ZixP/3Cl0j+9Tc5Xj2F6sGz5LnFnBhfRUnJFSorDeuiCu3ayFExRuY2afWdEeUV2YSLbSZKXG++sXwHpY+pcbp6WJaT4Sk7sKIVlLFEIX7GGBVdA+0co9mPsizvIBv1RdqkmfM6h1/KWlSVBEnW6uusYbvPHoEBjH8w/hwNee2sl9c4SUPM5BldOQpLpAU0fgwfGSmF0jBrs1U+zAWdFTrPzbRHyu9WeqJ21A5M8Aaodok58maRtjCbc4jAKEWknUMGDXfDg6Ri8Zz1JHP1DPt1FVvlw16QiFosOOgG7mnU+S4YEKsOq0vfZL+1NPzeYlbmb+udrGcbR5O3sL0gcu5mIN+JlE8j71mpDjAknpf71FExYrb6n5Y6v5vYuDyuzzBEKedlDrtZF5rcXLXYwTp2yXpzRmZkZ2ao7JOs/P2deZ70yExsHJKq4PtPi2/HVD/W1DtKMVxUhgFdpK9Fy5CKt+BiF8vu3pBjxbLIT5fXQNRudDKWJ8vCJBQ3ypKFwDfh+FGGK/qdRd93sAzRssWVJRo+msevU9e4NIDTzGOudqZ3K8eWKaafe+Jg0z2zPiPdnOTkT7/wJcjZjP375COjFQzun81P5vWzu2YVq0p2MiTCv/FhlkgLrgt/aT3tHV0U3umWmsQNA2Khqp45tWCpw31sYy3bQaCTurSK0BuUatxuLlLGhBql5grdx35ZHRq0akZ76Cxc4OeHKnvlTjboNlD4V/mY2V+kLo/zDPfLNlThRR71D61WTTJqF9JBI6eoM2oyPBusLGoC9W4dl0ZatZmF4ydpzj+ECLgunMivDwFJ0xbKSRaG0rlN91Im/cYLu5dnyl8ZQFItot6t22UJHTSxi/XM4XToWep/mfanj0Hxnk9ogp9d+yRHCpcG4rjh+sUN0OoGuTE/3gzt5iHdzCLrKPOlk17SLiESOk5S8kMD9Cr2ALC36PbwAcNBZ7Gp9ANlWCV7PAe2ttd7kp7HeriaYu/EwlWLTuqokl4KdAxEiapYrlLu0+OGOQ0aV5N90vXbw+Vu3cm7LGdQyv0+vk5fo4pehrWYrdaHw+8ko+8EgLMnIVvIaPtnmUAbx47xhbZ+Vt+zjJzEy9XElMybAZY8Y0GQBYDHMlQx73ZScBV9j9F+FmXFogxrtvip7Upx35AXJk/HmZCgnWzmgi30W0x6xg448n1OFidSp9PVuTNTcxIv7zUAC8pNCcasUyc4s2gaP238AEkS/IINAP7ZevfKm/7kpkrG6j69q88ADTdlR+N94DvEuHowzJmL6wGyBEk2Jn7CJteiVZpoooUzOtfYWgUGwPrx45QWXOGILPfvz3VP8Zo+wL/pRxlPGECgwCG9lSFKaaKFJsyZlONqVF5ndS4vykeNB/o4A+qUeAONqLKTdexivTlovEAp0z7u0Z18gp8wvXcQu1xxrOAkKvT558QZ32yb2MwuXRdyF1KoYzw4eARnpI+tNQ+EHYd6ktK15zEeSD8t9XRwgJVp2yuPOTtb4BkLB9JbpC1MkM9MurjALMYopEvmeEDGIeXcIpyPcFGq+ZF8jtO6gGXuAQ5Yt+Oo+QySEnaEtkhb2MA2jksjx1gcedbKKEV0M5NxKYwM/Moa3c58Tvk7O1Om9i7CQW7z/MSZvrZDvL4kTpil9RjGK1qBiDk43QDMwPNU/ULAJ8IcYrFb1oX6g4Vyr+6kUY56nt4jbAkpBtSU3fcxF2zT603cwXteXRqd4wwOjnK25TCzGnNqyji5v/cNnq+O7LaNMo5ByfbdRyXunVwvTDZAlQoTjBNNI5peqLwxFjKRdCYywH42FpZQXx9OuY6J5jsZaA38X9M3nlm2nOTkBstNCcauFjeyZ85lktQb310KKTXRhMJA/wysCgdV8cCUpNktVVbofpZzwBy87fEaoi6iyg7ZEPI4Lgrr9RdUSS9LaPFcaVjUXezHnt7NFnnEFCrw4VdPPesNqS54fqjOTCxka8Gj6Up4gGu/3MF+VvvHLj3IVrbwKAq8lbjHqI98B49RtwSwwG3npGVUmDZJOlngn7WJKn1SxRYeZWiogsUXBlhY3kv7jBlhBspjZG7Rw2y8toWGgnZ2Bid3YFSK2Tx1NfPHL0SAmDJPT3Fean0v+rM5xzGa8DcreD61lnOAQ9wWZvjUZUDKM97xMVkCKKdZgHq7PxMB9sn1ym02WKQN61MOS1+XB8jH4RPne3mjupALiTKijjLvYac5xomvGfAarC9Fk6hChHMyl716Jw4WRoUrfp0chUZtI18mKOAa77DKAFtV5utJTkp9gB2zzDVmMaARG8Vo38K34YqZMAO/G4aP01h8lOPSyA7WB+Kn6gGKxe36Nss54Pmyi3jtnQwAxE50FkPuFEZKLWqbl2aN+vsuzcX7EB4OmwEE23pSFpTM93I9xiooWftVzPNsDNtkv68bPvVnZTDEseAxmnY0zL+z7MtHj/KJ7umZ+eQkJzdYbjoDfoALBXNZOnY+YBAfsEtSYcqlNLsgKI16NBS/jH46pS59QDRQp8e55XI7jqdeSqWnWNRxiof1BRq03cyBojiuOc6kL6h28wabUYppooV8zxgwnyTD+ea8vtjBUCyS5LFL1nFa60LPFLA0iU0SO+VcNEW9A51WPSnaxiHBSan3DMrDBtYH82+le2oFJ6rS7hFSXvFFzf6/eXqKA2N30kEja3S7MVqPpDNUmke+1+4Whuk5K/NxsZiigyzQDnQoj+CBwqBUazeHuDXU5kbVGPDhFWJ9zBmjDrbnLNdirb7OreyjWrs8I97AGZIZLI7FuNj806waA8Qiqh9BGaKUHZpyuBp2SnlGwu/Bf+ZdP8sfcViWBdIVbA/oKRbHpJkjLOMAZmNEyt3KenmNfCYQTXqcrIK/eSTibiCDEcNvl9DzmEk6f1Q55i7m7/Wz6U0JGfUQDsgqajnDl/WrlHElnX9o0ov48YtKIPyOkrWcq5jGxfJrk8f5PZa35daMDRd5eL6voirH6L0oGIkDMNFnkzFkwbBBVirw7YaeTZZXsHzZQFOw/04aLmaREf0ugmEn+2a834LLouHjuBMnstcjJzm5QXJTMmOFeXms6C3gi9UBB5XeYKEi9M40O9xSNjvGoBz/45zPKTq1LqQRmM9JmvQkLdrg7ZtLA4RO6nw7rCXagroJ9sk6bldhiR7hpASM6xG2yKNc0Fm+M9nF2so5qQ0Z4fvnuwVEFebJKQ6zIpReI0fpYBGO2EQleIRRkLGaMnaV4cIyP52SoVF+sWQVjhUMbwFG5ecAW6xHoVz5Betp5GhGXgDz8k+wSTfTJs30qnGSm2J9BqWco5RzrMSwWmmAY9EltXRRaw5m99R3a/V1LiencyjvNj/9Kr2Y9ukVnByAaxSynzsC7y1msvLSVlVQC0dIr8AD6SnCCMWhPhC7so6bHPDAfiBdUYcFw8N0lJQG+qLtqcLBUofHeJYNso1aztCqzUxxh/ix/VnGNUGmd/tAmaJ9xlMJztJzRnWL2UFqzvAULHWZMdLLX1R9Le2XLo4tEeOTbQuPsInNXCXAUIYYjSz+0mLayEU4M206O958mRUfX0FOMqWqpQdj2ZB+JxMENgFNxjoFn8epI7OpFrOpnOMAXijf6zBTwXJFr4MgLo7hipYlwu5mrVd04RYFZarM4ySnmU/Q35hi8S9V72dB9T97S6Sc5OQ3JzclM7ZAx3Dzh2jUdurkVPqB98H2lxT4W1QFDZwTKOAxImslxfyob+RfUtLLl/WrzNKwL6x+yvkmT/PP8km+wdf5C+urvFyznr+0nzYTuncAc7AM++UOnpMnWawtTLs8bMaQgOFR6vBrUQXXqPHmc4pXMbspg2n1UO0Zl8e9Ts0cuIC6/h7u6TzD1NEh5lzu5lxlDcMFYVCKWDipY9ID7IyLzVHfo3+YMVquB2jQdh7WF1jDdhJR9kyMQ1N/kIyAmWrt4j/xjzyuz1BFL7fZb5NgwnPlMcHDvOC/l2C9XGx+KWtCaWW0h7f6fUg3G6WfpO+H620evCSPUMepcH5+ma+zYg+CJHXII0mxnsqanysWnSxAFeq1nQ/pZtY6b/KYPpvuF174RdpC1fildN4+S2rql3IjMpMLpNQ9iu1zwSAcr5md9v8WZTZCINeoyn/gHUZ/XfVWpG5Vbjf+cVBeeqN6lb62a5w9ezYznZww8/IV7r2w3VxEmZ/rAaw4hjPEZMWEi5No3AwwFHFdEnUjMxmQS8WLlisU30mnGconJo+KTsjgAAAgAElEQVSYccT8Tn3/mf01SR5TdCicvghJbFqnV8SXOSc5uYFyUzJjvXqN8iuLQROscXfwmvVAegWE8WS/gA7GNZ8rVNEvFaFJpokWIAWOFBebN+QBdhWt50HdSrfMMhl5QK3PrWbCzkPFSptqi7FPO88cLBQ3ZgKeUJt/kU8w3+lmq/VArN+n6v5e5vZd5BbrAENzSxlPAaDAAGSrk4EN0oNcZHXo/W+rWcAn2l9i6dvKlmWBo1eCcVVJ2SrFrrQjg6BokiEp5Sf6KfZxJ6tkD4/ps7zkfohue3b8ajxi59YtcyjRQZ6TJ0mSICFJPu0+w7CUUiqDDEopT/A9DuqtxpFp4HDreMe3YVky2kavO8ucwxk3sQUBkgqDlPIV/Z/sZB39Wg5Y9Et52q4r2l6RyadEr7KaX7GG7fxD3pOBekeZDeFNuZ8VgwexLWX/yF2sLN5NZ14d0WOLlnGIvM4S/qFhI+FdqxaCw326jWJGfB9pftVS7jWA83mzYuscO7Gphvy/ZW23KEBQl16rJnJP6S0tgx6hs7OT2trczrWoOCMVNLmddGiXGWvimKM40BMFN5MxZKnnQcnGqsWCtyjDFinDZGxa3LNIHyzTfhxJMMTUzP6ZDXDGtYdIGosF2uY8tVnHzEYpyCxfTnJyg+WmBGPnLx2nfE4ViAui2LjGkNr72Hql2rg0mGRx2KrN3m5Bz2Gn2Eyoegb56aNwQDhlz/WYLCe9a05t3zYIMic31Jwf2SLLaK25JTzhBqS7vIq8POGWwmFK1SWsUjM2Rb0yPZ1uSvy8Yo418co3PNdh9vBlFlzq4lzFjDSTEz3iKSoxA6phfxzjK8sz7t/Co4goasdMEH55w4yhqxZ7uTPk6fji8DyqS07zA8yGChuHdfI6i7SNo9IcAjQZ7RC5TiQd9paszAwX8ztBkiW0UE87s0e6OVc0i6PSxAjFaZVy3IQWkCGZynbeR7GOYBVciw2Tqr+rNltLNprjn6Yk2MFd6c0MgTglepWCqcOIBE4Y8MqiKhynIXNzgV8+Y4M3Hp1wMoBUBJRNBgjirmPebfCRbdvMnz8/voy/59Jb2cSPZq0jKWH3MLHfYzbQE/0dt5DKlkZcnOuxob/uWBEXJwZkhVzcxKWVDZjGxYnWcZKFxBznLLctyqnPc/Kbl5sOjHW1t1FYMIVTdT8jIS6t0hyymwKyf5jeKmon61gr2303EmCnvepH0lLwDw4XLI+HMoxaGjhZsQNGaiekZpvgvHzOTqnkWZ5iJW+R3oGpafVV9AilWAYqfM8myYqCvSxcdgLeBdrhSO08rhUmGJaScFkiTBy+19j0CrROT/Bpvs93+G9mDvbuR22nMssVPWdOyeea7/rBxqXKusr35SnSx/lYvMaDMQO7GypT3AR0qDTqryzdNpYmcQO7Jj+gW6inHVWhZXwZfz3lv3i+6dz0+422cQyQcdQ252kGQXncYc3ARap9IBrcBZxO2+G01OFMD7gzSYkae7iw2p3Iu5d02ScDU/8eiWv7YJtEJuuVZ8/zmc98JseKZZGrc20cCewmzAZoUhLDZMaOcYF7+YwxTmF2cBMdM+JAXzSv0GIzC5sVU5bYsk8CmK77LFubpK7j5gLv+rw9h9e69rNh2Yb4+uYkJzdIbjqbsXfffot9U3txyk+hwBJaDESK0tfBASPyf4dsQBUe02c9JZCLAnk6EcqriovkeTsHxZtYVWxvY7bi28pAzABgJkVRN0zQTbJy7dT5oZ2KjdrmHasTc4RStrQwexAf12dolHZEHEbmTHCppIy+wqkMSymEJvnMycDKsntOJO0kNWMwTknG/QjDBuyX1bhYzNeTfFqf4Ujx/EymLm5nYZQZCzqH9evg/cW0rw/EvOtW74QEEeVweZO/qzJk9B6tlyd5OgbeSQXpySqo1ozE9eLfw87wsVhBUdOz3pT3sd2+L6MeVfQwVfvTdfDTDU88ApnHbsW9r+jEFTdRZmNEghLoO5WD/ZSOXeb43l9NHuf3WBZyxPyIG7Pivqc4gBHHFgV+j5Ofvuffd2K/i1Ba0b9sef065YgDUdn6VTawFQwbl38wn2g7Rp+JOdqsw4lh5XKSkxssNx0Yc6aU4uAiYibiBtr5jH7XZ1oyJ47MDziJzb/Ixw0D4Ruvi3HuCX4aj/ACj+mznlWVUVCm1HWLLh+nLDkAwXzjVoQQNtCeZGIb1WK+qE+znm1YuLSLcZq5OOiaI26A8+qV/i8M6lTatZHvy+f52+l/SNus+Ybhyyhj5sAZdj9hnp+Ser7J06yUvWzSFyjVfjKAnCp4p1Fmrm7d9I4/D/CclHqekye5QMC+KZtkgFCHBdqRLn/cajsK3iKTWqfU00FjFlJAM+sXCFgoY/Eg25cwMJulZ3lSv8Pt7KVOO7znMRmLd/B6jFq7l+qAg97Uu8/sTzPooo4TQMCwPhtzEdc212vLbMwNMGOwDwWOHjmSWbecADAyXh/xIRzThycDZ9nYqlDYNABJv68sPuwy+m4W0BfHggXDB9OLWzheD8zF9c3oGHe9NsqyQA1eJ4pjP/ic5OSGyk2nply2cjX7Dx5mZLiCsnJz4OsGtnFRqz1VkSf+R+ldh1ZcFkdY7h3+HDMBqbJIW6iVM/yMj/se+kWTNOthEsNwsDJod6DpdFLZe+ySUVMGypSNUQKGrVJQqKLXP/zbVehjWnycuJWpt0vpneQdvJD/sZAD29jBLegNPigRtZSKxbjatGozM+jxGLawLNAOPs33Oatz+b71Rx6ZJaAOS/Vd8rlmTivw87dIqs1MuuiiNsvqOqxqTJ0jauNSQV+ojKF4cZNU5JmrFlvlEXbSz3EaIuFjXE0EyjdIWTjvuHfr/Z+l53hK/oYdrOOH/KHZpRp9f34ZA+0eJxI8Z1LDZfDS6mF25rOgxPT3rMyG+RGbTziO8Vl369BhABbfckt8+XNCS0UDGerplGQDWal72Vgq48U3ECYGoER/x4F0L6nrhg/1n5jnoaLFgKy4dILho/GjaWVb1GZ77t2zcLjz3Mn4uDnJyQ2U3wozJiIfE5EWEXFF5D09Lbi2tpb7RhoYPrkOVUHVHAq+lztTmacDex/kUj1AkY6Enqvn1gHiBzcR+CZPc0SWoVg+I7aaPRwqWRbJKzXQGAbkdn2L23SvcRqhDrFOM7NQ7m0006QtgdPjk6ySPZlxIhO54LLIU9m62JzIX0iSvIADW+M6ojzo2DNuQPPKsUA7SDBB2G2BTZss4fvyVAZ7ZuOQxzjPyWdB4PHkM55DWeOG4SM8z3IOhOoh6voq0RR4Nfm7VOsFNukLzNJzkbbGd+g7TElGuUOr57hVdaQd97OK13l/ph1WJE6BjlCmVyjVAQj5UIvkESOlXOWbPM0bPJg+/zKOFQDKncB2/CgrEZxoIVyG6CQe5wZlskk9xKIot+tbLNKWkDuWlOTpGHZKpR/4BhRhuMJCkxOUzs2yweB3RG7kGDZQHGPeEP2LPg8XLq7E5l8U+Ey2AIz7TuLyjVvgRAF9HMMWB9wnA1HZyj9ZmGxgLvpcFcHh4yde5Z695+LLkJOc3ED5bTFjR4CPAH97IxKvknKKr9zDzkND9M2w+N7sx+OdW3qsTKss84BXQDTl9DSePbiqU0mKOVYodVTQR3ieNmkO73ALpAfCbbKPV9lojiTyFZyBxWY2EKSeh2i3lXrp4Is8TaveQhOtgMsFMTv9hlNbwQODT8qDvoExVuagiQE7C7WDQUrpD+xkWkSrObpIgzZbSp2c4j59nRf4GH1S6T87zIpQm1k43Kr7eEdWejtL4YQ08KT9Hb6if0abGHDZQDu7UkcseXFLdIARKeEdWR3xcWVxUWp4hU04hB3dptScSbVpZ1G4DaOTQbbJJvAO4ozk4+SaFHMt5VMuyjpkMEvhMCUMeQfARzZKiBBmIB2KrX76Kc0oZyy74OcZOFjcDx8oQwwIDbVXRhsJhYxxUFbGsKoOEyl1fiQtV21enL6RR6btZMuWLQCsXPme4pjfpNywMSwxNA6p4xWzsarBZ0GJhg1KXFrBOHGAKK4PxJUhCtqvB6rMBRDps9GyTMbUxZUxLk6236F5wGW9bmPT/B9y/uITOaevOfmNy28FjKlqG4BkYQr+d6T75ABJp4BqyWeGU8aWaU1p55axqzALJ7i7LDS4ZB/oumUWljf5JHD4CM/TQDso2KI4gY/cxLVAk+zWNYxLHsGdluoBHF+NEBok0gPTA+MvY50qp7u0nt78Wtq5lQOJu+ksn4Pr7eT0yxkSU8ejnkF6EIClwIuq7Z336InHSn2SH7OPVWzhUR+I2Ti8wQMkJMnciU768iqDjRQCbQ/pi1xgNpp6B17+L8qjzNQLrGYPDbTHNvmgRFR9gTZRsUhqjDrP3+lp4caxUxnvUsN5RJ6Ldwh8oGHS4YNp+9dWKP6kLEagfyRIklSzG3KhttMhTaiCjYMi3mHmVsjHXUaaWUDlLD2fPkTdC1et3RQyxmmpy4ybMem5lGm/cTfgpblb1kbazaFC+xin0OzGjVuMiMdU19RSM9hHW1vb7ywYu5Fj2F3vnuTtmUsI2QXGAauUZCtDXB/JJtExJ1u8KNMUt5iJ6/Ox6f8au0XjAGe0bNnAZ7RMXpyEjpOU/Eg6LmtlO1hJJorfzZ5OTnJyg+Q/vM2YiDwFPAUwd+7c64Y/395H17jNC0susHN+A50Ets9no+GjDEHqGcSvGL1V/qrxNublv0OpDNJGMyLQoGbDwA/kKVw1PrEExVHjBb1PqsJpeVLsDDNiB1xKZAyKLlMYo77hbY5LA38rf2h298XVLTKYZriXUKXEHWQd2/i5tckDNVGAYQzF9+kqXpFNgZKqYaPEIqmKvxc0blWLsFUeJgPUYozNe6Waw6xAgQ26jbWyne3cj6O2V544pihYx5i843xbeQNwiQzRTwVBtw4L3A5OWo2BMjugabZtkR7lqCzx4rgs0lbapQlNMYXRVX0c85DBIhC4LxyS23hcn2FISmnSFhqlnWPuIvaP3sXK4l+yk3W8Lg+Cd3wXsYuHiC1ZoH9NlatciIDKHplp1Mwp1iwLeEq9x4HgxoCMOjgQ7NvROkckdaupqSnj2c0m/97xC6DYKjELOsgOZEzi6d/RPhcFTdkkmu71wM9kC5tflxGLZYtj6hm3MI1+b8H04tKJGceTkpdZJmx+oe83rmzGL2dvr5zk5AbJDQNjIrINqIl59GVV3fzrpqOqfwf8HcDKlSuvs7yD2Y0V/PDIeZ6va8xWsCzsRLaBJHhQdcA3FDDklrNEW/iGfB1HbATlSf6OuZzxbJxsFGGF7uc0882ZinE0OzCVQUaCNk4Z4Ea4mFeFoLRJc9q2KBX2eqvgyCA7ZJXwczb59lUZZUoxIKwJHyQdUXedyqvPzDcwGKramc8jbNSbbGCIUkp0MH1UUpbyZL4Th/S7CwC4SHxXbBZqBwdkJa6K/z5PWwvBg5Qb2Uy3zvr/2HvTILuO687zl/dVFVAFFAorsRFAAcRCEuICAiApUSQkSpZskyatbrmnvaitli2PY6YnYiKmPR1utS3Z7RlNTE+MY5YYe6wxLbnttsbubo7cVGslJYqkRAoEwRUEsRT2HQRQWApLvXfPfLh578s89+QryGaRFPROxIt3l8yTJ/PmPeef52ae5Hl3V1XeNHeePsZpSg8ZLXa71W0P5I/inVDtErZVS3o4zyAPyaNVllXsYOjsZeYP7OUAS+M6hnwtl6Kq/07W0CMtxl2860CxL6aS2/RkGHWs+kNOn4xzxcXe5ymM+c+2MV9HzppjB+hpZO96r9hbocN+VP0FsPO23K/iTnimCsZhIfE9C6RpSg1MrcFECvTofNZ5SvZUuk517jhgoC5bqu56YY1P+313Lzfmr3PfzLFEvi51afJo0sCYiHx44lRvPS1YMcT21cbnK/ViOlptoFBd1ApJ/Me/3GeX4nObp9f7F/Bnzf+aVtbjgYfwiPsN1sj2Cizl4tji7qRmLAOg5SRnw4mX+fqCud4rJED5+bKtOL7v7uPD8g1u5jUaNGlKwjOmzy0F7jJa0gi8Zi2iFVw+7Rk3q5CnpnDzdnT4wNUPma1ko/aP5dnnVrCXleAXF9QUbA3ohYCwXGThyxcjBpj3ZG5xd3pPZeElyvB18PUfkDGGGI3EnskZfkUe4fvN+5jWOM/WbAP4IL+E89W04p/IExBcFxxPcx/TOccS9vM6a5nuznFuwSCDrGSzu7uon/fORW1uAUID7LXKJq3eh7yMdNfZwxDyNY2bi6P5ex45FgiHJWMHWXD2FLTe/QbvndJhN858AfhQve8XQhX/FrCZCARZZA2iwrJSIC3lrbL4pACTpaNCSumvqwGFKfk6ADoh40+z32Ra3wgfTbdYl7o0KfSu/0z5d6HlZ/bx8vRV1Ut30/hr7OtZypgPt9CgxYMnvsbBnusZmnmcXayMV8tVL3hWeFEAR85S9rf36HOOXIR9jSAGlnOIZGx36vOLFYE+UAxzOMHMY6dYOns/p3uHuIenWM9m/lf+e865mQFveIyHucIUfprHGJMBRpnJS+6O6jNoclToz5cxwkGWkktWrVRsCX5VXI4Ee3gW2TKWyp6ifSLesQF35KxnM89zJ7WVhEmlmDNXjnPKzSu2ngqD5Bqy13hWvEpvWMJYBM+hJVKGfS2yUwKijEHOMZZPKzCWz3eJqfy5+zWavT1kfh6dSADKTU9SzgrZyVmGCm9oqj5BvsNuCY/wm2S02iC39CBGiwIm8DiE5yYgz1kqe7ibH7CblXEoEd+GQ5xmlFmgulDMM2dAxhhz06l9TgbGy6Ciqs4H+pdwdMZebmpdk6rnLaG+s3uYP/cwx9zi4kIncJPq6ymyANZEHqvUtZCndd2SLyyrk5cLiAZ3Bv+pcoFLblq9vzsXt4elP3SbBPm/2z+Xf1lP1aUuTSq9U6EtPuacOwi8F/iqc+4bbxXvLftO84+3TeG3X7vE6tErLD53hJ29q7lYbvHjHDkZR86v4P69z3NP/l0OOT+XQ48upR1OQcjYx7IonUO9+NWL7gzFkqaTbh7/7tZ/xEjfDZx2c3nMfYwDLOUX+LIqr8UWdxevcDuP8TFGmckD8rd8Rj7LB+XbKvwDdSWLcIPsxFF4Y3L/K6BYowJkVV288Z/HieK6KwGC4g08kH+FW/OtVKDBUoC1a47Tbi4ZuQ/T0WqXH1JUnzyWMVLynYFo8Z8V/k6Xtee7ef7fcR/iuSzeNH2brG1H3ncNZl05xXIZabeH4QFzwAfdE+1VqaGB8HwXXTnkd0+In1kUEqT6N4JxWh6JQIZUO2QIn3L/Dw/xKFPkUjtd0HdHmQ2qbep9KWPMTYvYT22F4T0w20ec48UlK1mz6Md7K6TJ1GGvNldz0i0sTsJnM4Fnx/RsprxKVwu6dPmRbgjyhfktb5e5G4YfQFkAzvexOp92uZfcQHzdeid0/ayylN5YdWgvXerS203vCBgTkUdF5HoRmSIi80XkLfMKb//WFpbnM1gi+9kzo8GhwQW1eFpOhIXTR1h8/au8ka1tfxoLXuQMPxepJFf6U8oXPufmi6/TEGMLEa2UUp6dSnm4YuVfIMPXeYDzDPKgPMoKdrCB51jE4UAW2OLu4n/KPotzRSDYGl9dFjDKzGoCvtBor3L0gHOF7G7X0SuqIXemAEqhZyYAEY6cGefmceTCPXEbaENuKMIWGWsuvsHH5cv8Kz7Lg3yl3U5V+xUeMyc5fTRZL5vbMiqgFZUT1t8AFZly/YywihOlJ8vn7eNKlOZE33Xsd8P00Kq2pYp2WQDek7/EWRmMP7kqA3Zj76v8K/kdlrInljVoG11/E3RpL0BAs+Qkt8jWwgMqOY4Wd7CZ/bKUP3S/xfezTXGbXMXziuRQHtBLjX5G3ez2Kli/q8JMORWxudDXz/zlN9Tk/XGiydRh547eUYTasd6jTv2kLVxnYKTTpq4Zg4io3E68anKVA6nwvfU6VevJTl7AiK/xXmu5LY+bas8MYQ2vsUJ28g9P/0cePLe/XrcudWmS6ZrbDmnFmQtcnjnCf7h5n5+wHICwYlos4uBr8z7CqTnTuMnPvyoVV0aL5fluFkgAfKp7eRBstcW05hirzo8Qje4CRTIg57mFrcySk4XXyQBHiPhNyGPldcQt5t+7X+Sb7gH+CV/kAfkKR1kYl+GKrZu2sZabKALBViDJJMfWMjaUHkWK0KDJB3jc8ymvtbiPJ7lPnqjq6Wix5MpBehgnkya9NFl5uJcLhl6v+KdG6Dhe67+J3axEBAZkjLYXDorJ9QUozMj5BI/wc+4r9IUBZ1PGooN30iHccXlLXSaVdxoXanyb9LCIAyxnN+vkeWa1zkT5d7uV7GjejIu8fMXOB2Vw3WH28Jh7mAMsD/LWG3C+HKKPy7F8YR0tj4A/Pu3m8opb5z/2FMFPtrCRR9xvsoU7Yx5hO1jGPLyv26rylsZgeJa8yaf4E+ZzJMp/09F9HDodz83rUpvuPTmdHtEeasx3tqKwH1jes9QztigFYsL7IaVAW+196hSE2ABPhk5NAjWLLHBY8+7l5MAb3MRBt4yFrWOc4XyKY5e6NGl0zYGxpXcv5+LsNxBXByXFGMghrkHTR4tfxQ4+I5/lfr7BenmOjJx92XKOhZ8JvMFZJ89zH09wB88D8PzgenZOX14BtOozoacBLvAK6zjt5iI4BkS/5KGbPvb0CI7cNRinh22yltdZS7VZtv/IWILCMmjqrx39Eitkl90wXtnlNGq35sox7pdv8Kv8KecZ5KflMV8XqZrgXp6krwJfLX6x+ec89ObXWDG2j037n+P48aNMOXOm3Wbhvz5WMkHGFncX/4P7PaZzLt7Y3T8z/I4IL7KOlbKD35bPxXW1vAP680p57IoPtefcjKKelnHxwPzmcNPm6t+xnxWMsJot7i5ON2ZG2cfcdF7qXefnfvl6UoTryMj5aR7jz92vsYW7VDBbbWhbHHOLuUK/arg8rlOqrSujVizUaPkttIpryjBqY5rycmgwEMqt0p52s3iE36iC/YKw8eiL3HR0H11K0009B/kn+RdYJAeYJmfpkcA7q0FSJy+SvtbJcxWCOetd1aS9bpYXzgKBuh4pz5zlnQtlT9WrE3AN8jiEITlFYQIzcA2u0OB1WcuVUo91qUtvI11zs2gXv/9Wzmwe4r78ab7XuN+vTqQNZPyL6RDeZC47Wc1qt4NVsoM/5Lf8/CAH4pjPoWIfP29wXnTri62PKOJriWuQASvldc4wmxtkB8+59/to/o6T7rpCKF/umGvHEYsDrnqPXaWg2p4yIWM3K7ndba0Cg/bQ4hM8wh5ZXrF/Qj7M4/M+FIddsLwbQBT+AZjjP3F+iV8rJtIjVXu1xPEUm7iXJ3m/fAfn4P3yJPTD3w78DE162LVkmJ0DxxgYvwTlqr9SsFAe731rkRHFtvLpmtLD1/nZOHZZ0H7g2MJdfJlfZkp+mQ9kTzDCKqpguVrxa29RdD9jVe/r7OYGmgLRRGGfdh3PM1bOS9Gj9ug4GNMEdRYd9d4VqzqfkXtpOhWaRJchOdPzMc5ng7V0lS/KMkhh/wnuZeTFCt9OQFl9vkn2n1R71Nq9EcspgN/q57bbbqvz7BIA21Y0+VLj19p7lJbUqb+U11NguiQNVmrvGDa/MM1E+6Nq71Ykl0prAbLUe5uS62rrExyLwKibpdI6Vl4ZYd6i6+x6dalLk0jXHBgDWJJN4YYX3s8/W/l/sW/a9ezvvT5eNUYRN/877qd4mg/y2/I5DrqlbMGn8S/m8fKzoDdw5VyrYq6QIH6+WDnyP+YWsvHKc+zqLSbia9CjPV8l4ILMf0J15FIa27bHZIu7k5e4g9t5AREY4gwCPO0+yDg9PMGHwTWiSAvmKLlSxD6MhT9/w63lDW6mUrBqVeMoM/kD9/u0/CT/fsbY5ta2gSvC3rkLQXIyydtgStE8OcbPUcTS+qL7tA9gGipjx+FyMYUGT0Edvup+HhpCQ3IWtw5wqKGCaaaMlrp3xC0iWlupDIMDDnN9vSK1UX1ilG7JAsX2UfpTcc1gOs5n02t5ccWq2lpolgg4xe0/S06ygt3FO6CBVgXeSIDa0vCqFZPWs7HAmzLGp/M5ODlAl9L09f4b4jiCJXUCWCmvZng/zKfBeCdvk+ZhDZYsfZMqpxPISsms+5UFtLS8gA7iHJHq0xnC+QuzuTJFe6K71KXJp2sSjB16cxuvDPVzx4zvsyFrsZPVbGUDucQTqsU1aIrwOmt5XdYWOibh2XB+zo348Aa3yQtMudTkcN9C9jZWVApjc18QU8wahVb/OmYUrJPNvOg21PfJdBlN6fVhIxxlkNLI2wd1pWZ5NCjBXuDBquQpRr3FZuLt/CeZVxkHEeEx9zGiIW7VZhnLLo9wpG9+vOTc8zrh5vPn/Dqfkd/ld/kdtsla9oyvYHPfe+u8aoCnLU/hbWnQxDHjWIsjC304CFF1KvlZhoViE3ArtlpJM+QMp5gdY5sEQAzLWXTlENN7zrAjW2t7K8K4bupZhR7TsokzaRUeS1+GA+bIyXYQ4Up2D8RUffq5yEk3jxpVMhcBis16kVF9Fo2eZ8I7kjK2/njP0BKODu1n7969LFny472icrJoXM9ZSoEw6zy8rsFzJ8+RLsO6FqadEAQlZLV0YSd+oewh/07ewEp2YRoXuMAgUXihxGAhl4z90xfS7E+E2OlSlyaRrrk5YwCvyGJmDB0ly1rVe3q97CsOIgVVrKycfWyMxa2D8X310pehH1bJdnIavOA28nz/Rm4UNaeozFONFrUnIVjijaMRLAgoPF6OcNFBlDcIdSB6MqylfEMK6iN+Mrxui0aec9v4i7WQD6cI9p6slHJQflDWvinDXHL9ybZs0sNjPMwqdvAQjzIqc2O+pnLOQYpgrSvYQeVVwjHFTePG83tZIbsYIj3Xo18u+IUaYSiJuPv3yIZkjqQAACAASURBVOWorYbZwwd4PLq2Rl5jqYzU27XiKdzT+12udwfb12pApgQ51IzQe+Sldhp/L3fxyF6gHb8ses7aQBX3Drsl7GNF3CARgDNWoQbl9+k5S1U+ow10/1PPP3eOw0NzGR4epks2rdq/C/SCH2ugZbV76twCX508aTqPlUa/31Y/1zJaYD2U0SpL59e8rXZyDnBcYAZtfWHwiOrpuK7/AFMl2AmlS116m+iaBGOufwHj41MQgR2ymj9wvx8HdQUfU6s4ve66fcxojEIU0kEzLSZA73A3FT4yP7m+Xy7zKfljbuFFHuTRNsiBxCixrSwcOfeMP8XH5cv8Sz7HvTxZhEqoVkQqObRCsUCYLi/yfpQ8Gvys/C3rec4Hfs1pkPOzx79NfmmIaINiYJZ7s14ffzxfDkXnOQ5c4rOAp61uI4/Lh/kK/6AOOI1YYWvkdf4Rf8Vn+Vdckv6ofi8uvI5tgzcw4lYx6oKJ9OoZXvQxsRZzMG6mwOhFmweTs5flfMh9m3vkySr9iFvl466pcqpn4LhIEYy3RvpTkeHVfMWtA+1ZDcpwBB4pi19kaNR9oPB8tpgrx6AKKqs9IfEzqCLsB89kAUftuqXqGXj1Fo6erLdNlyoapsUa2da+MJH3KOVlqg0A1LHWI1qnpPJqHanL0fdSuik81n1d18fi20neTnXTbRfwfnroLs7v2UaXuvR20zX5mXLujJMMrdyMc/AUm8z5F+WcrJbkbHc3+Yna8Uud0fIR+DOcn0cVfhrMEJaeP8SGoae5n29XzojH3MeUYTOUk/cuHOy5nhtkBytlBzvd6iD6OraSkybF5y0iJTRTTnGlOYWx3vrnQWgxKOc552ZQzHnLGWCMG9jFVjaCayDS5Oy8Hg6I3uxZOMhwux5qZDmdMY6TF6v09EKEUO7gOBfHl9yni0UQUwOvjN7qJ6DdrGQLd3KBONBo1E7hRHpDibekwRS5SMM14x0IsDYmz/ieu59h2cMP3PurcprS036kCe/DV91Ddc+lNdpPeQAsL4hvnzvYzAtsbLdxJ++F4Q1xwK/mX2CfW84TfDThJVD5w7mP/tpZBuvyhseWAQVmjp9m4egpHv/B43xyySft+v+E07yZcVw2812yyAIl2hOV8kxZXrOUF8mSK8xrpe0kky53InmsfFY9Um3WoR2PZYs4uOSaNItdepfTNdnrLk4foS/Li/c2vGEoDaHBGAN8lYeje8sYYS4nOC2zWZO/zkh2Q3uJvudzV/40M4+PIzNgl1vN67KWIyxq8wEQ46X3ZQgNRtwqRtwqmudncb4vI+/L0opEijCtrRAYASvYwX63nGZvr1kONHwgTnCS08s4N/EaCGSuhYjDITzTuJdmOHeoyOG9Xcroe7lmcooGw7Sk2GbqLr7PM2zqrFjLGXi1eRy2gnzD3UT7U5p6lol2Kv6DVYWe/x63igZNPijfAuC77qeoLbTwsrakwdd5oB281YOZITdKEQutYXolos3RQ/kCucpdECIAaLWxFAs7RHIaCLfJVqZyiWfcps6GJ2GgROBlt67dT1Wda/Wx2hcYY3p6EUFISsZTvXPYtnCY/pPdSfwpern/fTVdU1EK6FgAI+UZ0+fWMw/zTwSSwnMrry7Dyp+i1Huhy7T6bgjcUiDSeEdfd3d0lqlLXZoEuiY/U144JOR5xg5ZjQj+019q9CRsc2EMr4L2McwW7mLEreLrjQeKEAplHp/u2exexhbn7M5W83n3Of7G/SJb3EZVjqGUqrLb/89MW8es3pOA1GX152vkNT+5P47Wf4FBmqX3L1RGhnKcyZv8tnwOKLyG4uUr4lD1EG29E5RRk1mKOFy3u61VfoA3UXPAwjoH1x2Ck2b7vn8WxbMqI87n/rNcXN9eUUFQE0ZoQC7UromPV3aC+Qyzhzgwa0BSzKw74mLQsk42c0/+PRq1z9EqSr5ut6COa1uv8j55qmgxtR1SxENyemixhm04oEXGn7tfY6orQ4gEfUv3L1XvkP9Wt5HDLlglmjJ0pkxlmvI5tuPRRfmS9YeReYuYkwebi3cpoq/O97sThG3p+0513XrHU+BGPxMNZrTXKeQXpgvz6nc6zK/TWzpE10PfC/N2AqBavk4Az7IBtQE63HpmyM7fpS5NIl2TnrEjR0fZuf2n+KO1nyw8PSUm0qMkD5YuYE3YbIMzkUYRzb/M45VELhn/77Rf4G5+wDg9/lOdMRLUCs4w/r3uCl/k05j42DmQnHPMiOQq+WyUZ/mqe5jo86ClNIHr5BhPuU08yYeCz3OF5wU90TUsPyQpIvN/ki9wTgb9Sr+MpmRsJxjRV7JIxNuJ8MD+55i6dA8X6edr7iFycfTS5BM8wjkZZIwBtrGWPe6GGr9xN4WMnFz8c0oo4AEucJH+2HsjOUKDV92tvM7aODBrVWcJ2qVdZ4BsHJ4Z/Qi3z3mBLdlG2l41tXG49fx9f8uyZuHZUm1apuvjIstlhOmc5yV3B9uDsCNN6WWnrCraNDGyNw1T2fbRak3DoFpgzvKqOEe12tjYKNzM64/7L1/i8JsXOXDgQHdFpUWZClhdtWEaCDXkCi2nNmfXPCxPkuITHVsepPL+RJTQPzV+EwGsEMyl6mB5zzrVXwNEJffx6438XerSJNM16RmbP+UsR24aqCKOW18KQ4VwrIwnVl63jhOjxv1uBd9yHy1CRaRedD2KjfgUE6qdQLRHZk0Ox2G32JRtb7688kwlPYAiQM5ut5on+Ij3goVhIIpgr7GSDJRbIP98Ocwn+QJ7WM5uVhYfMsV7sML6BV6UNfJaxU8Qti5ayhY2ch3H+Cf5F3iPvMwneIQl7Ockc/m6e5A9bhWi28TzLjdJimRWlJP5Tb3bMk2X8wUgcQ2a9MQR8Ku6h+0S12lz3518Z969vJStMzf6Lp9n1P7que9xK+M86plfYQpvuJvZ6jYUgwkXv6bFYhSjzoH3rWqX4NosOcn7eAqxQHfVb5SnK+zTUd/K/Zw7w3PRyXgCF6dMJRfhpZdeqtehS3x49HvFgeVdsjxLEAMxa3DSCUylvFwpXWidh9ctUJ4CTmEeY/BgHuu61AZSxOWl8mq5/b1vzDUW33SpS5NM16RnbOjmN1nrXuNRWogU+/IJYgQZLclwh0sTaNjKo8pWXD/NXEwDZnmXagqpWNdZzIsK8gf828eGQhXh1cbtQZoggCd+bpJkgLBIDnHELU56RTKEPKy3N/jz5RDHAiB40l3HF/l1D+gqof3PUvQhcCo+sx7sLfiNsIrMFXHCXuWWQga/fU/SWwMUOxc0iZ9nXP4pN4+Zcjpq0+Xs4g3W0hQpnEuUUduUzFXbiyrDIc5P5Dfqu0gO8mn+iINuKV+Tn+WwW4LuX7fxQnteXdROJRXez1yCPqONZM0b1cJ5L6EjD+KutfvZGTebZ3l/8BysOru2vPqe8vDpEChxXVS7BfVfceIwXUrTe45/lwdnTuEx9/NttWKBqZQnKyRLB5XXU3rNIq2LOoE9i8yBqAHaOgGyCa4PcJ4xpqVl6VT/4N6ZTtv7dqlLk0TXnGdsdPQFepZeqHRY6TFyJJRSSf6lLOYyFZOllzHiQx8U4R+qvFfhMes4ClPu8mJavhHAteaVCHhrkBIY3YycFbKTe3iq8CzhgIzDbklRTmIz8TvYzKJwg/TSc+gWRddaNPxuBOGI3c9ls+oKnGWQhvYeVl6uwvtTfPzsKSb2h21Zq2N5z3vzEJbJHpbJ3lq5I25VdL7N3cqvyCP8Q/ky/+zM/8E9408XPCyPgyv7Tqvd9kE767lsAAs5zBY28h/5uJ+XFQMxR4uf4hveU0j9OQey2vWOQ4EslREWc6BoWw8t8+qZh21YBDlueSlMr10AwGuk+7Xz9df3K9k1QCvm/3344re4+eg+nHPdLZES1D+7yXo2gwa7lj6xAJUF1n4U8BSWZ3miShKlj1LlW0Aq1AGhjgvTXY13LkgzyChV37bKsWQ0AF7WaqbbpktdmiS65sDY6dPP4Ry87tZWRr74cBR87rGUhCt9NwVsa9HDfoZp0OR++Sa/fOlLNBivKwf/66HJjaGBDctJHUfKRWylFSgWh/M1acblhOSKzcBH3Cqe4b44nXOAMEvejOOZef5T5JL35MTlRoCiMthK6aWUtr9/2C1mCmPteloerypPAHwtQ+TrUYCoAnjsc8s5UG6lFHofiZV7i4yv8wA38xobZz7NB3u+4T83GvKIUGySklELxJsY4e9yq3jMfcx7S7NYfucQMr4nm+qQR7dlWVVyyk+fD/Iot/ASbfAoHHDLOcT1HsQGwYAV4HUImTTbL3zKK2L13U6ypsCAem59cpmFcohpZ4T5/VP41Kc+1Z0vlqDmRcdj4epu6AxKwuvhz+qjKVAWApuUN602GAryab6Gbk2S7ksWEOsECMtBI/GgMaqb1q2W/P7a4gtxLMIudentoGsOjM2adRd53uAmeY0eH93e1T41ebJGflAZ3sKTkDGXk/zMlK8yPL63nQ8YklMskgPcPLaN/+7i/8zHL/4nekRHeTfIUJJzW8ei8zblDEoRkFZcRl56pcq0lhKsyrBGmY4zbk7hAYzkydnF6vZ5xVd50UylaIEYlDJuMMYg4FgmI8yXQ0yVC8weCwLKSrGacqqMxbyMOjZo4RSArebcaYoMmuOwW8Lvu3/NZ93nOeiW8p7xl+t1C9ol7DtLZU9cR1XnUYLNh4N6hUD2CfdTbHc31+Wr9YsWmf8YmJGzXjazTPYE8jjiHRsCz5YyqjPkNMOym9miAq52ai9NnfpbeG4AhytuKofdEr6y8CPsdDO7QKwDHZ22Kl6VDTYouhpvjwWgwmPLG9Xp+dfkMQZXmrfOp+XQIFANYGpl6zRVPsNTa8lveeICnmN9A3b9u9SlSaRrbs7Y0NAdXDhyE6sWv8q/5HN8TzbxXffh4qY2dnoFoVYKUsQCG3TnCp3TE7/gZ90szjGTY/05/aMPsKr3dVZf3Mm2gRtjoQy+WqGebCwgo0UPV7hCf6CEsipGWDsoan1Pw6tSfGXVXUZLdBrHFC7GPJ0DKXYKKC4l9nfTZVnevSDNKWZzzkfLvzQwLbp3HUc5Gi5UCOsWpNskjzPgxniMdoDdYoWlB6ETGCyRBrtZxW63CnoNYwW044G1y23SWy0AMD1Eei6XNYqXLM4T3o+uN4qYci6jKQ3+I/+oHfTWql8Hb8Kom8NouK1Vqi/qe0CDJgNyvnpmEX9zMJPoH57nsytu6K6k7EDbxt+P3gUjogSISIKuDsBjQgCXesZVGQnPWSfQFf5rUKXlCGULy9WAKlWuvmbpKNV+1589QZe69HbTNecZA8hObiTPG+S54zjz46ClgaG8kW08KI9SixEVzA9yCOdkkF1uNbOIJ4MLxb6BLdfDlpm38eVpv+iBmFMKQH12S3gjchrMkLPmPSgmh/cwThWHy8u3Jt/WjpdlueLL80CBFR/M8kip7ncrfNwoIpAGUk3Bj3iJoD1HppIL8wENZ4yAPR3VQXMjWfCy59zLk/xj+UseyB+lfF7R7gUJ/qEc7evqufj7lRcqoCNusf+s2Yp5WIawPLeMg66f6ZXzsokAGa+429hTbut1tZ4NDc5SRjwB5AZllJt5pQ3EovICr6nlGYnq0b4+eP40f/bFP+PAgW7gV4s2nGjE8e9SAzkLiOhfmKc8Dv9LssDXRGBHg6nwPwX+wvNQH6eAW1h/LYP1Dmi5Uu9eahAEzOo9TZe69HbTNQnGLo8u5eu7f5nPu8/xqruVwqPTaifwL90b3MTr7j0F0IiUSftFFhxjDPA/8jle0J8OcAHQyuL/oJxFHKj41RSLUhYDXAAMBQXcKNv5RP6n7QsiNGjygQMvc+OFHbVyTcMcAM45nIzTufLjZQDsXAHbBM2rmJC9jH1xmaGRsGQAzjIjrntUT5dWtv7cIRxgKX/Lx3jV3dbOE5ZnGbJORsUAEPvdcOQVK6/fJi+0F4RoYBf9B30upLAPWCN59ZzaPDO/IKPkr/LpvJbRDOtoGSRl2M65GbxCsFrXp+lhnGkEQXW9rFPLQLvamAf5r/T0krdy9u7dW5e/S6wafJwH5CvFSW3gQGegczX9Prw2kadIP0MN1DQ41GSBx1BuCzyG9y2gqettvUO6LSwQlhikzR3rbhTepbefrkkwNn8MDk5fRMs1wDVwtJiP3xg5eIGFjN2sTKwwLNI6WuxjeRGTSken95PhGzShiiavvAXActnDkLxJZZxT3gmoNjSve6jg8IVhnpZNhJ8wFskBDs+bxvVvnij2z7QUpKEAhQYnuK5dtv9l5MwPN4G2RpZVCzn2MVy/r4GZUqg5WbBC0VCiuo1KXkH+L7lP8zfuF9lXeop02vgCFcDV/Kz0/l7hD4zBTQYMcaa9+jXlcRChFgi2um54IWqgRVgjr7Uj/QftUU7Gb4Qe3eq+xP/Ws4jKm8hIB95Gf22mnOI2eYHrZZ9qZ8clF+wdaoE9z805GB4epkt1Gs0uMlAudtF9TL/LHQYtURpNiWcTkQV2OoE2C+Cnyi/vWwNUnT9Ma8mm5dJpwvz6nTN4jLeC3Sm61KW3ia49MPb8F8nOHeJ9Pa9UE/h7abGRZ4v7Na9BRuTBkGJjoAzBSYteWtzpnlXb9JSKwXHazaHl1zniQwtUafzL/YzbxKibQ2WcQzIVTOZnKsVgavvgSnY21kTZ97vlfHXgAb6z9G5qsaMssrxQgdLKyTjGApXJUoguNtSl/DXFKkwvP70G7dZeoahAly7HAHcOH0EtBMdR/TRIKX9wVQbG32uQMySjUZoWjstMLfjVnp0hcycSJWfUNx1zOcmvyhfQQHKOHOfjfJlV8kZcFxfWs0PYCVVO/Ro1+WfJCfqk2IbpjJvNFncXO9yNaC9qXGa8WrcE+7eP7OC+W27uzhlL0JFDC5km54j6mAWwLHAWHof9wvI66WMLDOl3UYM/zSss26LU4C6VR9dRy2bJqe9fLfmBUu+JV3+0fF3q0ltA1xwYu7zlhyyZcTdrZYTfls/xcb7Mr8gjfI2fIzY84iPfN3HljChXmPnCDBdpN8oP2CNlhHtDcbgMKIOUBrG2OimoDt6m9v2GOgc7lpcjdw2aBIFSdRlaoVkKLqpPZt/T9bBkr6VznHcz1DWprYSMV6AKvVyxeQKD+RkyxADHFBu8S/D5NTRGKU9UyD/gdTMvMxpOWvf12VZu4hwBqHIfTTobKQBXeAZvkZeZTnqO4C5Wcz/fZo1si27P4SQ3yWu84dRCEctb4UFRbU5hyghaHg7gtJvDFedBqE8jVZw3YnBQ8fMAVYH9E/klTo9erNe7SwCcvzCXPZLYpUHTRN6nTvdC/roM3Vd0v7H4pzxw4fs3kQwpoKf7ZY2XH7zq9Kk6WMATuPf09xm6cN6Ws0tdmkS69sDYtI9wZPYryNztrGIHD8mj7GW5jxavDQXlh6gCyEiLNpgq4ks94zbxhDO2D9JGvXrBO4wyS0opmPCelyG6rkeo5S1JzE3y4LJ+TcmlR5mWByWUVY9IrTp08Gw1aPGAfKUITyE5DZptwOHbcJy+ehmezmUz2xumq3rtYzkn3fyrq2Pq3PPaKyvi+kgxR+9MGb6iZnwSyl4bGClm4fVxmakYoMSnm8UpdrnVvE+eiq7vcmt4jIeptooyjKDzYNWR80D+FX7p4l94725dFvOZB+1QUFbvA84RfYqttaH/qXbdcst7OTCWMMxdYmxVkycbHyxOOnl8OoGkMm15zwJKKRCUAlW63BSwT8mcAoWWngn56rKtPJbetfp2EsxBj1xh6rmcab0zbDm71KVJpGsOjE25937OLHqa3dkq/tZ9jJ1l7KySgpcxp1GswHMNIKe/dam6F48MjYjwKYMbAiBvvJcxUs9fy0NdWaSMZJSvxVp5maVh9PlSRGnRUwaJ1XPiAn6DcobZnGTW1cSgsijwDsXnYihAYb4c4aaxHXwm/yy/IP+Oz+S/y2IOUhvZUijIuByJY2ulAG1wbamMMCc/wSI5wD3yJFheIsNTNoWL9FbzAXOWMcJ8OdIGQWEbefBeq7/leUJo0WCLu4uTzI/TBrTd3cwf8Hu87NZF9WrRYBer6vWt6izc3HoJfByy/5w9xPapa1gnz8dtnGq/lGG2+md4HILalGcFaNDDkoGEYe4Szy26mWhPVossUGJRCpDo9KkBVHi/E+ALeYfyhX1Ty2yBufK+7kcWcAzzFCdpOWpp69R0fXxr6b2MzBnumK5LXZoMuubijE1ZNoO9PYv4vPtFmvTQ45pslB8AQhH7NTY8ZXiHHloMnznI63NWG6CpjDeViP2jlUeFcUVNci+8PhWlvGIpxRqChqqsBhvlWfa55ewnnMxe7L348fN/w5rpr/IYD7PF3WUCyipsQSmaAQxq12qKM+cWeYmzDLHPLU8rVh909Q+n/XM+k/8OD7tH2cFqvufuJ/KieGqGGyBHQqr2oJjXNOpmt/d09HIdcMuq+WXHWcBMznCG2XHdjP+7+QEIxR6BwD5WgEsYgpQXwgTwCeNTq1dGU3rZ4u5UvBzj1sbQwf3Xgv1KRRxb3F04Wj5mnOXhqrdnCeyIQrUUns2Wj+dW7GfqqDxnV9EOP7PrEHd/7E66ZNNpq29qsgZq1nur++hEXiLdJxMDFTO9lu9qZL5aPaPzpAY8+l2wBmlW+cH1566bZde1S12aRLrmPGMAu8ffS5MectfgCg2ecZuIjDhUL+NaeamaV7Zr9nKo7UEorJcfxkvN/c9a8Vide9d5ERW+/JST2HMxlEl7mUKeSnZc8ZH1ghvkXp70MciCUBtOyKcLq9jBDW5XIa/y3NX4p5SrpTQjhVd4fPa55fX8Rts0afCU+wAi8LTbRLP8jIwhE8JE2xABnHZzfayxsH4u8jI06WEANSckYcCecpv4qnuoqJsOXVLzMKTaS9r3tAHQbVgDVRWzmndhLsfb+SxPV1iOvyY0mCY6HAX1PhcZ6qC+nt9i2Q8+pluOY4EcqctiGjth9aV9rNj9XF2GLlW0/sTu4kADIqj1A5+wfa+6JOnzFBAK06b4hPf1v+57FihKgbSUhy3pBUvkn8jD1wkE+ns3jr5ol9OlLk0iXZNgbPigI5McJ01qE+rVy/iKW8chruc8g4y7cP/KNhh6xa1jPZt9gNjCuDpy49NgQolpI9tp9FrxSHmWUIpOuNkVe2LeJ0/47XqKtBk50znHI+7TjLAyCNMQtkn682VqJF2sqiNWvMArrh6PKjnqBp509/OH/BaP8+GivqHXKChvgRxmwAIRNSpBU2IRhRTLMH6G/xzvzRmxaOcZZXb8SVLXKapb6lUKgZwBdC2DYckUgL8GTVbKzvo93U9qgBHOu8FYhqh8o14h+edThF9pt3W1Y0Inj4bPu3vK9by4eiUv/7ALyFK0afxb7RXIIVnP1Q/6ouupfpbyhKW8RPpYg6ar9IRW9zuBtTCPTpsavIbpLB0ZtkeHQVx5PpNTfEr+mHsvfdsur0tdmkR6Rz5TOuf+DfBzwBVgN/BPReTMW8V//vkzfPDAD3hi6fvqYTcNBfIMm7iHJ6m2+4nSZ4xLD6+zljEGKL0UIsoLZHnHQoqMZRm13v+r8mr8LP7+WMh4XjbyTfcAV+ghxNctMr7kfr1YfGC1geTgVzZWrF0glwUaRfyqOiWXc20c2Um5B7xa0uM/wWnFK+12gHh7pNTIWpenDUc7McdkPrk2YpYyL+8llHfIs2izLH6mFlBSbRDyy6RVxTbLaZjPf4hT/Lf5/xJvih6WFfI26+/SdUvlSfVlK08qv8+TS8bhWdcxmgqI+2NCk6nD+sbeZDYnOY8xkdzSDYVAxvs4weAwRal3TPcbDXJSgM96pxI6ofa+pAauEwG1lA615PX/5xhiiRygZ+A+m2eXujSJ9E55xr4FvEdEbgV2AL/9VjJf6Kbgpjepb6IckBpFbuWO4nroJfAvaYZwE68ZJWkQUQ/42k7aVgIrZJefSK6UU9KAKlLKbTN3F0BMBaWVclNxPSJtIy/KsBxFbLWWX5mp69HBQGtlZwUbLf+11waox8MqPCjmKNlSzJZST4EzV0xoL+aAqfl/+jNop9G4LsevGrxFtrJefhjXN5VXgb/ZY29y59jzfFC+xWq2B+ljHmeZxQG3lM3cDdVnZzobOE2RXMJMThVBeDUwmwiQpjwtKW+K5GSSs+jMSaRHzwX8saNJ02FnLw8zirEPqD63vE36fyJvWHiv00AnPLfAeere1YC+UPdZuqpT/0v1vcRAsvYL5M6BVy9vYOnUn0/L3KUuTRK9I2BMRL4pUoas51ngLQ15PHBxF3cfG/DgIoj/1MEwjZWfb2r3WizgMAdYyr086Y2W4uf/p8hlk3d17M+PuwVsZX1dphD4dPI+KODWYJzIq+fLKmLV56biifi49pZHgvPwrKinI2cFO+t5pfhcdr98gwflUR+mooyqT5y+qlfevp8wAHPleDC3rX7fX6yDgZRnqOZFKIBTvS8Y5YXPwwI9kTF0vOLWsdAd5lPyx+2VqaFslhfD8zo1MIdnp93Jk+5DbGetkrddruD4M/cbvFJt85XgmTKQtXo4zpSfY8P7URsEba7T6L5lGXkPKmePn+aeXa+w4Nxppk//8d5yZjJ12OFZ1zPqjEnkPwpALs9r/d9Ib3mj9PuTAnwhr7BMXV4nMGgN0qz8HfsX9eupwZA1iPPv2rTGGbbue8s+0nSpS1dN74Y5Y58Cvpa66Zz7Defc886550+cOHFVDEf6BniyMYUWDT/DKxGawpr4Wp5X1xocYgmPuN/k3/JJb7RshThIEGneUl7++DyDjLnp9bRFwvZh4FGIeCklc7j8ZKVGygvlIIMqgnxkVKMRYjsqfu6D4DqgQYvDLKnXBZghZxiWPaxnM5vk26yW1xmQsbgdPRVzvsqo+2Ed2rJktFjGXg/smm0+tdGx5Z2Ky0vOB+tkKKo+UTwTR85cOV7nnRFqXAAAIABJREFU0cFb8FV+niXs52P8+3agVQ1itOGpys8KT6YpU1BcFY4lqJMBiPrDeXY1YxcY4E6eiGqgcTHdbgDWYpYIDDhO987imZW3cHRwFgsW6F0efqwpqcP+LvprR99yogGD5dFJge7wGVqAKnqPhIaMl4K2BbAAfkgWyLGAUYfBr9ZVZjqdxqpzqixr4GDJH9wXMv6y7xNsH/iuLVOXujSJNGlzxpxz34bavjoAnxEpliY65z4DNIG/TPERkT8B/gRgw4YNlpukRs/OH+SpVbe2Q1HoEWLkrbmKl9inH3Gr4ntKKSzkCAMyVkxwNg0ScX5drvZa+DzO7wqQHOlZZQBH3OK2x0NTUlGX6xEd4jKaktGkv94+FKsXH3G/SYNmPQirkmUs3LPQOdrz0jKQJivYzT5WsMXdSYMWC+Uwh931xAsq1Ii9LEe3CzBTTnPGBSECUiCqdp4DDd8Owhq2F7HANDC2+o0r5hI+xsO85O5oDwJq5StQGfUj61opU5kvB8nsfuX7tSPnYtnmNTCYMyij7ZAmWj5t0IHLbqDebtEzSYzrgjqLy8gdHJ45l2MH9sGGDXaedwm9FTrs76K/Zk3bB7y/PqhLDQIsr1a7Eub7UVyHluut86ulS4CzlF5N9cuUx83ia9XTqoMmq66aR8qTBrSkh8sLEwCxS12aRJo0MCYiH+503zn3q8CDwIdEUm/Q343eWLqwmKAdjaJ8dP3AOBSxwwiUQwuiqOEtYiNoeVaEcrL5K2VwzqKC9TInGmGG14I8TmC1vMYBlsUeNZ3Pg5ypMsaw28t2bjYUllLWhsdkiFOcZi7OG1vRsiuFWu1u0FERZxFwysiDSeoN+mScliv4tMRx2C2m/Rx8O2sAFJYRtYFwxg3Z7TSR4q/AaxFc9Qfu/bSfcc4K2cksTvOC24CIAroeTFVxwVJleACKBtgRSA3zNur3U/XxRjaKiRfm8TKeK7eouhrPh1WOBo4WjyCtowT6xZyxN8+O18t4l9E7pcMu9Uyl6nNFQWGh9WMN2PT7kALa4bnmHea3ytDldQJsKQBn1UXzs/in6mCBvZKHRYkB+vUXfrwXl3Tpx5Pekc+UzrmfBv4F8JBI+F3r70/Pj17ghVnLKA25I+cenmS+HIMo+ngQfwpAillT7TR+dVw116n+2Wvo0pm6sokMEHGZZdpKkQjLZIQ18pr/pJX7ifTtspwU5zvdjW0gViod5wBhqYwU5Xije9kNsJM1/prUlZFSvnM5FpxnnGJeNX9MwjlsKQUZ8uw0mvfXB+Q8C+RwdO1sbeWYDrCrFGvY7pZsepueUM5Unqhdi7x5+Vnag4+97gZecBtp78sY9Jkqbwjo6+S89zGsfyGHBk0Ybel5W3WIqP3sG35xRvwsGkQbquvnpIFkynhq46j7hD8P3i4AWm/t+Ottp8nUYSsPZu1P3CVZAGcisBGmtQCMBYo0zxSwssCOpQ/0+zfhYEiVaQKmgFdqIGH115R8wflHr/xnph17N8ze6dJPGr1Tve7/BAaBbznnXnTO/fFbxfj7Z87Tcm1DLjie5R6Ou/lUBlIbGw9qivlVpSerCGrZjltV/yzUO+Vyx5GqeB5Oii2JBuR8nA7HQbeUXW4NgiMj5w55PvBEtXiPvMxt8oIPHuvqihHHfjdMZaQBcZkPZ2GMar1koWI+yby4LSIlp7f+6aAMLeBj0EU3UHyCDGghh9uAofZsAjksEADcKK9VCwnMOXaJkfuAnINwbpcFXgNeOY0qmn/RNwLgFQFzv1jB8ARcJ0f91kS1QmK5wzasGY+cjBY38lq7XwXpGuSsl+e4X77BL13+C4ZLwO7zJwFhaLR1e6eMrpU27CvV9YzcNdhx3fUMDy8z6v9jRZOmw4ZOXWGmnG5f0GAqBXDK4zBP6v3UIC0kUw+o+yE/nWYicKfTpsBkAjCZ+TrpIX1d1zsYJN7Zeons8ogtT5e6NIn0jsQZE5GVk8X7fTOn+7hZ5QtH8Bkt+GxYUxiO0XKOkTVirNK1/99084i8FCVFBqzFe3iZfyB/zVNs4gk+GqVpSaPikYvjPNMLECcCNFjGHs61htpPyhw16jANpZLJEkpXlNwB0NQKsFZ/43oki65/XQlXIUeC8hZyGHieLdzpxdNKWtrXozo6kJxbeZGH3aOsl808xsOF90qMzzxKnsLbWAIHbazK1Z/tMUvVt0JgbxmzUmZjscGDrtjNYQsbwW8r1JmPrrfwgdYTrMh28hfuU1xxPbU2EXHcwC5ulNf4fN/v0XRFPys9rcPs4SCLucwAEU1YJ5UuvFfLG8x1C55BfzPj8tg5fpxpMnXYm4tbnHZz2xcm8iyZg0vsc81jIq+aLj/MH96zwKJVdphnorSpvJZclterTNMJUAY05qbz+f7f4reG/6yevktdmmS65vyxG4am8Q8PfaPt5o8MhqruRKOpyNOB+s89qCiVg+F58dfflDk8xsMsd3v8pt2hByYu8zjzCT0YX3MPsSLb0c43EVkjTyD2FmX1a1KsZuzXke47Kb+UF0nLErVbOX8oNCLC19xDbGUjaM9b1bbBVj3hiFyKnQZulNcQgQMs5UW3IV5/WJM1CMGR2ubIU1aWLcWn6ipMiv5sXfMSWN5U4UEeBeARPk3lfQ3rZbWbokEZ5dezP2Ivy7lCL9XKyuBTrgAvu9v5C/dPaboe783LWSiHcAi7uaEOxDSlDG5oQFPeCQC9MtSnnXb5DD8c2c+BAwc6l/8TSgf6vdfYHHgofWR5jay0ZZoUr+pe2d+vAhwlBltJSsmowXwKZHUCeOV9y1sX8tf6Q+Vv0suzM2+duC5d6tJbTNccGAP46Og2HpCvFLOedJwxaxRpKAVHi2WMtNPV/rMqBENGizWyze8N2YzT0uCwW8IWdxd/yn/J/HKuVClP9TmrkPG0m0PodWmRccENskkeJwRp7TI6jAiDaws4HIOgIpFPU8xVmy0nuegMT0kt6GtnsGDKUClu1wZ8vs2LyfzFJyx7RaYj+kwZgCtHi1WynafdJp7gw3zJfdoHuk3MGXOel/ZGmcYna88Z87/ic3GwclTv56gBTHTu2Cmr+SKfJtwvMzkoSHinNvEddrnVfNcF20i5UkaflAbbWcuIW1UMGnyfPewW0wwBnAZYGnyHBszyyISyWfXXPIBLvX3kubB37166VKeLg0EYEd3Oum9YzyfVB8trFt92Atp9W5Wh3xULXKVk1f2rI4hXZJWry7cG0ilQp8/Vvdal2XSpS283XZNg7LVzt/N196D/SJSzWl5v35xoJOdf4D65TKOMRq9Hov78dtnCB+XbfoL9TQCsCOfm1EawLo4J5g2kv+D/MnXfMZ1z3OeebAdwjQX29UkEtvXnR1nchlQ1z4sgNDhZzqurjUC1UrfSTEBB2jDA7jw5xnvl6QAwECtaS8kCkPuFD/CGW8sT7qP8mfsNWlq2ToYnNequASnDe+aB9ArZWXgtOwWzDcp+w90cy6iNgr6mPHDz5RADjPFX8svteYSRrK7+i+RQdbDeg4qn2onBMrSWl0a3v5Jx6vgVXAbDw8P1srvECz3eM2MMPpKerfJaSVbfLq9boDv1HHU/0sdWGZo6vRMWD51Ov5O6n4W8NWjUZXXSDT79rHNGAPAudWmS6ZoEY99fNtuP/gvPxnTOx5/5Qm+PNZqniKtUxBVT+1UGx+eZzgnm06JB7oqth2Zxip7wU2SYz1JAYACwMH3OeQZZKTv4pHyBaNuaSkkJK2Sn7ZmLyjXiXoUGOmVsEwAvOTrWbZUaIQMn3PwgfIQBLLTx8McOxzh90cKGcsGEKZNljFJKXbevBeA9kD7B/MBbZlCtTV1bxqi+Qj8X4nKr9ELpvTzuFvLX7pd4w93cuc3DuhjtZ9dHXdMLCjQo0Iavk8cifObTh+hf1s+SJUvsNvsJp/GWWlncEVwHpJ93eD3Mr5+V9ews3hZYKu+VeToNLixwPtG9FLBKlZkCiJZsifbcNmcKXerS203XJBjrm3Ghdu122VIcVC+fAYy0Mptg5LfT3cQr7tZqwr2Q8aJbzw2yw38aNQBRWI7Ft0onOGnRQ4uXuJ3f5fM4Bx+Ub1MBF8+nQYth9vCJ/E+5RV5p3w/LS5Elh2VkyzSpUW7K02JdUzzj8BGGh0/L6MFLL1eMCqnnahmYmjzqM3Ytrf8ZwOKcG/JePWNOm66r1Q5Bf7zItPieSLs+gNCg3CUhvG4CfWvAYYFqD+ZrcoVp/PkCDgVpW3EaC3BboK2oKhvWvbsDvr6TNOu8oSsm6kMpHZN67vrYAkO6DJ3XOg/L1rw1oEuBy04DQassC2SGPC3AZw3QPA3Jm53L7FKXJoGuSTB2y8GXIk/Yi249rVawcNRUAglwZF3z89ByoD15ukjXooc33M2B0SzzKFATXreOEebICZo0eMMVc3/+lN/kRbceAu9POa/tCfcRvph9upjQbX3OtJRaDVwJi2R/e46dB0dFHLOgDpUSUwAkAmSt+J5ZR4w2mUD5+nSCY4e7kSgshVVPyxiFdQH6McJERXK64idGXC7PexZvskaMzeS1Vwp8vwjbOJDb9E44zACgYX6znga4tYxi7TO0JbdwlEVeFkfkTdVGsNY+7bo2aHH9yWPcf+v99bbqEgBznQ6tkPD8pCg1oAxpgoFm8rmmykr1HV2eBZ40Pw08Ow1iUnzCtCFf6/1SPIbP9hqMutSlyaVrEoz1HII1Y35zaw+QDjb8CiVtvPxLmJH7z3wdAmG2T6AMeWApK73/ojX6C8kcnWZ+DlcWKdVTzA3y5FyQaT50R4Z44FaUbgSN1CAp/Pf1Kua0FeU5ctazmbvdD1gme9rldgJOnt898nQM4jTg1byqNFcxEoaqvskurJV60O7T5Wwhi79WeaT0M49G79Lee9QAl2eZySp2kGx3PRKv5M6r6PQVaWNWGwwYo3+rvHIytjZYFb+cKSUQtYx3JLfnV50b/cfydojQoPjECkIuMNC8wn/45vfokk3LGy8XB1qfhNfCYwsIWWlT51Y/6zSImag/psq6Gi+XtTjI8pjpgWF4Xw8Odf6wziH5+3v653WWs0tdmgS6JsHYwPwbmelORdcKYENSIeRk3CXf58Yrb1CbtB8qE/8T7RkIjZlWAlrZpbw4miyjHPHM2vUK7gsZK9gN+nMlOYO1wLPUlJWAB6XCVjbw1/wS+9zydrlJeUoeOd939/lgtAT3nfdYJgCvCrURyWeN0sM2r4E6VbegrPNuBuh5W508CV72c2qXgLnS3rkgx/E191CcR/ehUJ6qrKxaaEI5HzDlCbCAkmFgnP/EXSPDSFfhLULjVgOOVt7iOUd1Mb0hOVO46FePZohr8OKSlbzyg+90Q1sk6PSp2UQ6SPelklL9NcyTAivludWPdDlXW55OV6VNADiznAl0olWG1fes9GW5hk4I8y+6eOjqZOhSl95CuibBmJw/wJopr/gT46U33dWOZ9wmxnqn0EOLeogK1GhMKTZrNFhSpCwMo2zlSfG0lKsaKQo5bzIn9rh4w38utWdjcM15r1/h0wgmp/vyGjKu8uT+E13pFcp8DLZ6eInFsp9UvLcG47Fs1X+wHVVK4Vqj+5RBCY9rZSmgGYG7rP4cq22sCkBf1NnfVzwz3a8Cz4fQYI1s9x4k6s854pXoZ8UFMlrMkRPtdClgpbyuun0qQFdrB6jNW7PK8X1hjOlRstH+QRC6oS0S5C5OJxmcOqVvOuk3ncfq25bumejYKtsqV6+UtuTVvKyBVycZrPc2RZ1sAsD03em8XerSJNE1Ccbmz37Fe3Ik/XLqEaH/3+9WIDgWqb0Tq2OdpzqXOl9TIRijsiqdPi9z5CqNUk5xxYAGo8xury6MmBlKrVJEwlyOIRMY6ZbrjfJnCDvdjUTziBL1P8l1STla9MX3nKP4rOqorfjUSj/ZHsTPSRsW/ezCMjryde3PyB6+tsNzlDzjPjbIaL0eATVdHy7cBSBlKC0QVOUptsKyPnEPypl6rLkOg4g+d9modtiOV9HmXqaQpo5fppE5hoeH0/l/gunU9X5+a8obVv7rPjTRYDDl/bLeI6ucEOSlwJ9VbnjeaTDZqcxOZVngSvPQYM2qp0/Tn1+iS116u+maBGN7B5bxpPsQ1YjMe28yWn60r+InqRFjiwZTxDBENfAU5McV/PWE8jB9SgFUysG4TzzHyRXhUevKqFJEzlY4hgclKsvXoSdcJZeqg1J6eRUMVQGemjLMGXPBikFIhHMIy7SjuJukyw6frfYKRN4rw+iFMqQ8CIHMUm4qX/HPaulHmU31fPz10nvZwzib5HHvPSu9Y8bke21kdL0tD4G/Vqz8tAC/cI88GczxK8q9TH9cbtgeWi6r/az3Bei/NMYyN94NbZGg3oaxSjg1MLC8YBbYKEm/X52enX7XkoMZ6u+Ffud0monypMq0dFmqTikPmC5HyflyYz1d6tLbTVcFxpxzjzvnflZd+5PJEenvSQd+yPZLG3wU9rZSWiOv85nW7/IL8lesl81xnpqhcVx2fe1rOp1FroBJCzlIDehEvOv5TKUVKJ0LbpAemmTSpJcWn5QvcD/fYAPPMZNTdZ6dlF5l4K1PhcJRFibrl+atJhhbo2Sgvfl6u261yfNRWyRAbChTyjiEaTQolWLBxnr5IZBo905tqENGSLFKsA3uqsLrsihepTdtRmuUZ+Te4lOnDgRsAUzqn26LvmDUIQLq6tOxHwT8wN3Lfrfc8yzbS3nxUv3XarPquP4uTDs/yvCKFXVeXQLgBuc/k2lQYfXJlDcpTKNBR0md8ljHYT59nnpHQzktD5eWS6ez6hH2XV0/7R0Lj0M5OgwkzvV1I/B36e2nq90ofDnwL5xzG0Xk9/y1d2egoL1P0XdhLqgJ2uP0sSZ7gwzheL4AGlLYifAlDf4PuyUUhk3tWWgpiwoUOA4TRNjXZCmPkBKKLxfHKnbQJ+Ns5FmWuv3sleW86O4oQGeZ1/KQhLJY/KN8lkJV7RTmgRjcWSNS3bZWe/j/aXKWHpqMulk4ER8+JAgdkuIRlqllTIzuBceC/DBZIyeXDoZEAzXfJFCAnyHO0EOLD/A4L7GO57mrns9qg6guGacac9VKWVXnGkAsQFTI7wyz4zYIeVntFLRPrvfR7NSXrHrovFU+dU9yVp49xdjATLpk07lc9YNO709I1ntnXU/l0Xx1mfqdSsk10T3rndRldKrnRPLoek2kj1Sen51m6MkudWmS6WrB2BngQ8D/7pz7T8CvTJ5If08avpexl3dQASn/gt3sXmUXq/k8n+NKo4ea16FmpIivkziP8hiAKAH2Oo4SwYOcklfGG6wFJ7zOWgCaztfBOYpJ4VkdNFUeHAKDadTD8rx4eZayh/2sSNfbr5BseTkLHqF3xWiXRFtecOFqxZz3ytM8494P0rDzJMFWUL6ulz8Xyfhq4+FYzpK/9awMpd4i4xBLaNLDblYwV06Cy0HUTgeh3Naz1+kmAtYS9O0UUJqoz+m6WvKGbdnJqKaeiQEiHY5T04doTetuOZOivksC07CBEtggJPxPPetO+U0grWTQgK3TICM18Ej1ox9VT1pyWzpKl9mxLYW7L23h/dsyuP8+m1eXujRJdLVzxpyINEXkvwL+A/A0lDOx32W05E7yGf2gPGOb5U7+SP4bxvUmydanMHNEJ1GeKTLGGnmNaXK2nSQFxMpz6z8sOyi3l/GizFAJuowmPdVWT20+IVgJ5xmVP4K0QrRsPqxbVN3CMzXAxXr7KLmXyQjrZTM9jJNJIaEZeBbokSvtvFrxB9eFjGfcvURzxlIjZKCY6J9TW3kZKNqa/GFg3tTouQM1pTd4Fo1gQn9QFwVuO47yxT+bsO2i51/vT/M4BkzAP2W840SJPpowXirvdM7RoImTJjqWXfUp3TnEOZ5adRusXWe3Q5c4dOW24kAPAsDuS528Qe2MdZ4WwAqPJ+pTYVrNLyWbxSP1rln6oXxP9EBEy301Mtfq5nh+6m28eO54PW+XujTJdLVg7I/LAxH5IvBJ4JuTIM9bQvvnTS0OghftmFvMMbcw3pDaG5tayIHwv+IRKkbHZdfPTncjF5wxwu8AMqJzrVSC++P0QShrUHbFWwG1Sk4thwJeDq08lbw+vZDxBjfGdQuj7vv0I24VL7k7WCQHGJLT3CXfZxF2rJ7rONbeHUEDjhp46RDlvQYuygCw5bFKo1examXdyVNgKXHgohuIr6cAqwXK9X2fZ0jOxDHirPT+39HiFl6M90JNyW2BTWWIavJZz6VMo/rPeYr34IPybT4rv8OD8mhRB4QzzIx4inPsnhIv5OhSm0bdrPaJ5Q3S91LvRPR+GP3f0j0a7OjrZdoUkNMgSadN6LurBlCdytVl6Lay6hfec44mvTy1qhv0tUtvP10VGBOR/1udbxGRT02OSH9/6pNgaXLCkIYvdY6Lg6Fq5aZfeK/cohhc+uVOKYxOctW8IYbx0/WwyuxkPMsYYGZ5UHlI/DUhC1b45cyT4yxjTyyHy2jSy363gtNuLs+4TRzG2PEAmMrFKhDEhLHDNFnKWhsdq22ie4lnpNtKU+2+B8aWUbMUvzZI+r6nUTebEVYWvMOo/Lo+Usx7280qbpMXogC0nQBcsuxOg4V2obY8Pm+LBjOuXGAVOxhzA759ggUJnl8mOTdcru8f26WCLvYGeyPqd16/7xP12zBtyccC5BaAsQZBoQwW6XfUADzm9avQ00mQGMqq66jTpIBtcNzX30zXr0tdmiS6JkNbzGsdVleMlzJSDkEw1JJSL3N4v7wXGPr5csjOY40qrdFiZCQDgBTy0Io4lNe63kkJ1ZRhLFMPTd7L0+BX+Z1w89nHMrudIiCbteUOro+4VTQrEGt4vvQnRl3fSl5jb0fLSNTaOABkUb3rQLgeNLf9X8QMU2VY5508AinQb3k5TcrYxwq2uLs46dRoXqQeQNb/93LZLr88rs41cE3IHbTtdP/ZvgLjQXoXtPuRo0cmqNtPLs3qO5q+2amfp/RJSjeUpIFZCrBdDfizBgLWtZRMKZAWymKBNa0vUrwtIBfca9DkvitBUOsudeltomsSjN12/uXCEAVGZFbzFHPyE0WCTqMxy2NgkQYB/vyYW1jnp/NpRaYVTHjNMoI6HVDbtFvLmVKIWukGYGSRHGATT7BHVig57Qj6dWDkiLb4qeQylGdxQA2gGW3ToOnDUuT1tJZMKSAanQdt4WWPWky143C5V6el7EO5g7pNZSyOI2bxrg0UOlD0vALvk883R06CMZ9snCl2eVbf1HJYg5QqjfDSlNv5Mr/Mdm5S9ZNKFsGxebTrGUvRnRdegFqYFE+6v1mDr/LfAio6neatdZ8Gdhbpfq/T1t6FhKxhmdaAxWqDVH0svWblCcpaJPv55yf/N+Zd6G4U3qW3n645MDa2dSvzTp5jtWyPrp/umc3pzO/5VpIenV2NMa+Uk6WgvFHsZET1CNbySoTliBBNiNbKzntABmU0rpNVh/DfMrzBtYycI24xj/MRH+aDuoKN2oOYT9UGepPjAFzWQIcyIBZ/V3wOO+IWUWvr1Ghdy1Zb1KDlLuVSOxj4smbJCV51t7evaeOhjZgH1JcYIKfBNDlflKG9bqqcqzLGVj5PhbdMtaU2ThYQ188jLCsF6n27vuJu5zH3MeKtoyAjp+GDLmeSM7BnV71uXQJg9PRSv1cp9fcgBSw6DSAtIKSfp363LX5mH0mUZ/WblNwWpfp5arBZHlsDG61fEzp/IUe4ZdYP6Rv9/2yZutSlSaRrD4z9cDP9jSss5mB8w/k5XuEWMZ1GliJEwK28Fry8t8hWMD7FtfMbxxNRbVQoTA+j1BuyCg37M2utPtQBgAI/y2SENfIaOZnfFkltcRTKmQKRkdJVytsa6VptENaj5o1xHGZxPb2Wz5IpNUK2yg7LD9KcdnP93psGiLd4KPkulBuV4+KtriwD12mgUPK2wHbpZUx5FhLAvkadDLLFyyrPFbs03CdP8NNnv8XPvfQMQ6eOdzcKT9DW6e/xG6sbfcwCTZ10T5jWuq+fp/WcJ+jPZhlXQxZgCvmkyrHAVcoL1ul9V+VsdRvY4W7g8tDZep4udWmS6ZoDYwN3bmT2hYUMl5PMLeOqDUhJE4GmSDEWXgDTe1Cm7WQIwRtiBfhCPh54nGdGcO5/WknrEA3quEeusIBDxUrGVN2AuZzgDXdzXC+DX5TPGrWnDEhQlklVHanzipStrq8BCiwgofma9TLkjgzGBMD7aoxBBaSVvJ08Fql6heX69pvOuXq5Fh9rYFLVwT+LsDxtOFN11HnIGGYPdx55mQXnTgPwzDPPdJbxJ5QuTJlSv6jfL6svd3pfU+9CCgRZ1y2ZUv+Wjk29JxaYTPUpDcCuBozq9Jp8/pwGT/EBLh57d0Zt6tK1TdceGFu3DqbtYy/LiwtaWYXGPrwenlf5jOZJjQY1+NDGqDJu7TxixQFLKVv/X60UreaIGWAuNNj+v+n6OMpiWgSbfNfqnbPF3YkJxKwyAv4RaU9NmM4CGTVwYbSjVvRajpQM4bl+LgDk7TbVSj3MZxkxy2hosGT1g6jNXL2tQl4T9V/LG1AD8KT7ia5rJLfU72tvSeq4TB/U6yXW0dvb3vP13LkJAONPKE0dD/amTAGT8l5JVtubfSe4n+KtAU+qbGtgEJ6ndKU+/rtQ2O+1jugEzlLvt6ezo9cx89xiutSlt5uuOTAGcK5xfoIUHUaTKXBlvPSu9BpYyq4GQup7CdZAj6VYFF1xPqCtXmlZ5o/qk7fv1zxLZXYJ6mPIdDXG3AIoqRFoyLOTIbB+uszIGNQnsEdtGeZThuiKCya0WyN2oz59ZTBcXc+o/OCZh/f9vwv3s7wa41Q9pyAwrP6FclfUAu3tSxnZ6F59L9GkEU+B1iDdCDcw0lhe8Vq3rhv41aL3nn3dL/SY4Bnp55LSJeX9MF0KsFjAJjwvr1nAyhz8A6aVAAAgAElEQVQYGHJP1Acn0h8pSgFOfd9qC3/thp436JXE/rxd6tIk0jUJxo6fWEm/JIwlJMGICS402AmoCJ/aCkIgWIqg/DmiYKSaQmOWum8qvYxoxaL/uXLDZx0HzQJMzgESz4Oq1dlQyjWlaihsy5tS3teGQRt8fazLFKEWCkPXywLX0fMNAEe1KMOYPK2eyRWmsqxcURnVrewLxUbkD8pX6u3mHJDTkOCTse6n2nAEsgsNYjDeosF4PV/UR6jVwSTLyKbaLqh3QzqEA/BpTru5/Nul/wVHZ8ymt+HYsOHdub3tO03rB59jgfjwPKlnZgGxiQCx9R6mdF9q4GT105CswYklk5Un9Q5Y6ax3sxMfSxcZbbZ7+jBHpo3UZexSlyaZrkkwdoBVfM09VJyERjYk//ItkgMskmAi8UQj/8ioFpPc258bldJrJ7RBljUCtJRfStn4/wf5W9bLc7Q9YeW/UkBROQF4lCKtq653kMeQq4+LLOZAvU415el/lpeqkxfABBjVzZjnjzraju4p4JkyIK541vvcMr+bQAmqSh4FANrqNnDULYp4FPMEi71Em24KUd/o5DGoAegs+G/QCreZDflNVOdUGstoaqAb9IGW64llt4ylczRdg8Mz5zLeyrsT+BPU6BtjIUGsRK2PrGdm6ayQUqAp1e9S/K6mX2kZU8AuJVt4zSovBSp1ntTANsyjyt/qNjC6oD+dp0tdmiS6JsHYsaEB8uiFTXt1jrmF3MHz7Wt65GQZZot35K0KynJGE2vFYeW1QJgu23tYBhjzjMvVj1l7NZamCpzW61ZNJrfkDNtAteEV+jnE9VTgr7oXK7vZnIzrZylMyYtPNGG9dVtEStTF5Vpyal6WcbM8A6Gc5kg6o0VGn5T7iMYrT3Ma7JXhWAwcvWWcMW1Uan0LdL9w1R6cyoBaCzjaDVJvm1R7Wd6HWswrSZdv8SzPpQiku2j0JODYu3evIWuXpo5N4wp9xYkFlLS+0MepwZDVp8I81gCwE1DSHqqrAfX6ndbvl05rgSzdDta9FJ8JBpc5jn2D77H5dKlLk0jvCBhzzv1r59zLzrkXnXPfdK50H7w1tOKKH1VaL7hSQi162ObeQ7V5tlYwYR6t6LRSDPPocw0+OikxrWT0qrbqP6eHFrtlJS+4jekGqY2ClRKvgRtFqdFwJGf8KcyRM1/inRBOMS/gH9Spek7CVBljrbzMEMaWMGGZ2oCE9YzqGvLIGZBz7bQTPTfLYJVexwCQXXFTqQPRgk666xQ/x7hLBJWs5Y+N6AIO0d5/k3rfSAHWTt6KULZO74qWK8UjvK7KzWjxof3PsGD0FJlzDA8P2+3wY0CTqcOevPIzvOLWlQVNJEj7WOuuTs/T8irV9IRKOxFv6z3VZVl9JNVHtczWuZbRGkyl8mv5RICMqT2n7TK61KVJpHfKM/ZvRORWEbkdeAz43beS+bqBAywt5/OUZCkGTy1p0KMnzKaUXEpRhccGUGuU3pMUoLFGmdU1WyHNlePkNNji7vQxwcJ0eb2s1Mi4E2kld5UgRnCcIdjwuDaKV8DP1/P/b+/Noyw5rvPO332vqrq6qnqv3rfqBtBAY2sAbAIkAZEUKG7igqFtWdRYpmht9szo2LLP2Jat4xnJHB+P7bE0xzNzrENK1GJTojQaytxESoRIgRRIgmjsaAC9r+h9qaW7uqqrXsb8kfnei7x5I/M1VNXVXYjvnHdeZmTEjRuRETe+G5kZMSH9vCT3M8KKYr7Nf2vQaRETKBjhrH5rON7Gd9vvemnd/PNcmAPXQEi4J3mhrbcmMebAYRGUTNeyAY90odQm2drq9nKK9dl7ff4smEGgrbZbds/99mfONGinQ61fVjL7ISTs5CkedX/GL479R245fAGAjevWsnHjRlufmwOzZsMeX5VtJVVVxyHHUZMbixhV3nMV1//34csJ2cUqAqXlhfLxy23lEXIOynQw0h+c3lQeNyJiFjAnZMw556+q109rFJ0ZTFy4lU+6z9IiJJYx8Y6HZQmr3KliHB23QDwCG11rowY0pJvcIN6SYRA0Eu5gN29xT7XfZzM2JD8nq0n8hVk9OQN4G5/717TxLDO+GtZMkRU3IwmT0pcP0963JVMPQJ5+Pc2PMkTIfSnq5VnQ1yujo8Y35f0ckc3kZpP0rJL/30L6buDLtR1FvUNyQrNVFF94Tzf6ztdNeyN64aDcli+TX0Y/vFDHgQHP/y8hhQvd5eI1I14uf0+Hu3mBX3T/gZ/mM9T3L28lH714c88+zKYNSwYC22V1At23Q+0UzD5WuI+WfC1LE8CmHK2TYRfNc8sB9PMMkUcfVnsMETl1Pi6rbZkREbOIruooswMR+TfAJ4AR4IdL4v088PMAmzZ15rGsTBbzDd5CcWFQzA48wgpGZEVpnBZC3pxFMsq8Uu+87qbTF6Bb4TUGuMQ/lv/Ar/NPOcHGfDpfFytv4KpbUOAmhTTae64yVJbxtoyslttpXZUZYdK10vL6GYbZIj/ZtfbXonqLJsrrQ2pZWA0X+tIy5K3rcmfXG81HlS6hRkIPV/Pl8fUTaQ/1rfPsa1mdb4EwlRAuX0ez/A2uyMLq+gkReud4ifv4df4pY8lihm9Zwx2njnDnySN09fZys6MTG/ZG7Fd37ap9QfenQN8PkjAty09X1sc1qmacLD21zqGZLMu+lOUVcjYtcmj1dUPugkbcNzXi+mPWZsZE5HERedn4PQbgnPtl59xG4HPAL4TkOOc+7Zzb6ZzbuXLlyo7yfm3zMf609lhTkXCnb173//O5+wUy0gUMgZ+P9sh8ZLIKX6IBJ9w6fs39U3bx1va10OBn6H7VJy6hmRBLZhZnQfOjAMvD1WXQ3nGovKEBwJLnx8tmeJLcRwmq6VplCpFC6/7rtMEBzEtnybcIpjmI1BAabGUfNRJOyIZiPQT0FJfQwxSbm7tMhOKq+svrbQx4hfaQfgxiD5LNNdSse+XXifCMPMTe+nbOLF7Gt7fdxytrN/PQOx4u1skNhpmwYW/Efj0y+b1mYjuC5VDlFQ+f677avK7tpJ9Ox2vKsX6WrqF+VUb4QmUpi2eRSE3mLGdNxb19eKSzPCMiZhCzNjPmnPuRDqP+PvBV4H+dqbxf6l+fDhHWwG4N1j5yxErNPoQMYMi4FGaNEgokwprRAU7IuuKMWEhvi1A1syzzCHV6D5PkP+/uZpIpFgT1zZfVsdRdZFiW23qXkcmQbP2eljkgJQiu/SWpRZKtPPx7XWbQQ23Iah9Wfl64uAZ1EnDCtHTRmn2zZgJyZXQ84H7ADp7j6/Kjdh5+2laeHQyA1n3QOjmXfe2afnmGNTsZqrcs7NW1mxk5fSqsxw2CubJhW4anyHW/0D0tIypWG7fi+Hlop8JyMvx0ln0NHYfImhXP6t+WrmX5hc51XjrcJYwvKyaJiJhtzNXXlLd5px8FXptJ+X0jmUevBwarQ5d5n+SXKjDThQZvcyambPkBHa42CjbKki4462/83SQvXpilW2EGBMNo5cnDFN5+eSFy6OU1JouLm2DrmSLtzYbKqz13baC9WRhn1XGJNy7Zy/lYr/xogqP1CeWTqxdXjJfl6xAOyi20CH8unyRfX14Zn5Wd/I78fJust/KieG9DJM0jZym5ahTrXd8XYKvbxwPsSolYaDkN6/56ss8PLOWP9xy4qdcZm00b9jx3pO3S6r9tBdJ/636HiLROp/uVDytfq79XpdVtyLIDvu66X2u9/b4QshdV5bB0z2TUSLi19gM7TUTELGKu3hn730XkdtKpoiPAP5hJ4ZOLAH/dJ7BJQRNlnpflpVkeW8hwhK5ZHl9IHx+tdAlLuchFlqvZD9ca6AsyW7oYM3S+fJ2X1jc0A9LKq0bDKTIaSheaVanyqC2SqTfdzt2f5qxZLRfu8NLpcobqw9LbumbplB07J+2PLwx5b3FPc0kG2MNdBdnO1fMzvxahbi3qW7Prz9NRXAOaj7VDBD7DIdnKQbaCNWMcqnvVhpxzvL5kkMOHD9/MX1TOmg3bNL0X4UGc34csaEJhOQ2hPmbZNUuu1bYsWX46rZPV9y1CV3AYFHR4yEZe67XWeUrGupNGIUlExGxjTsiYc+5vzqb8267so4tHmHZqPSerk1sGSnuWlsGyjFmIYJmzOIZelnxTRvpI7SLLaQ22rfxrpCu8O3KTPV6+daZpNBeVtPQMGUOrDJZBLit7QWb2eLBMD+se6Tw1eTPuR27WrBW/VpQbIqG6LlrhGbkNEfNC+0pf2m/QFWwXR2SIze4wiCLOZQTIOaCBIBkZN+6F/5+hYRGxQDt2Tm3p5de3r583wOl2KDg2XrrI0NA7uVkxmzbs7NT29P1ICPfFtiLteJ2SqOb1kI0pI3h+vlb/C8UJ5W85rqE+3jwPkbZOSF9puWs0XI2T9UfsMkdEzCLm5Qr89486PuF+i9YoEBo4mmHNOFXHfvwyctXKMzAY6mNflp7pKKRxLHPnU9lSp7gRddLe8NvPxytHgYhZZdQ/rbdfl1b6KkOdXmzrGapjX/9Q/VlEsKCzkqPrOET+fBlBzzzbH9TSTd9byBbEPdl+FFXYQB7OsZpn5CFQM3lm+XJ51rPZv3SbpEp9rHJ1MothwUrjn2ft9/YTh/kbtw7dzLNis4rnFt2aHui+ZvVHH9qBbKb1ZVhp/Hj62Iqrj3X+Oo5Fgqrakd8urXZqlUuTtKBdNnTNZDnqLG2cDusWETFLmJdkrLFoL0/yQ6BfyC4MKo5l7lz73abSAd7lDYA2DOZgbhjECjKzkPF2XgZBqpEwIstS2dksA9nm1EKDO3glffzl62EZKW0grXoKebVVZc/VG/ly5vIx3slryTDWcAvUiTnQFAy3QUIsYq3ztMJ1PYpgbsYdGAwcdU7IhnT2yjXyaUuJeMm/1f7KrllfUyr0+0tpdThoL3EXdIHzJAFh5eVRTh87auYZAUPjr6cHui3oPmT2qYDN84+ttlFGYMoIoI4XclhC4VVkMaRLFbHT/T9ks4z+tq9uPDWIiJhlzEsytnfRevbKdvuiZ4TqNFjIley9IQKDrmO1ex30ozRr0PSJQcG4GYOY4clOsJB73PPt+MqQOMgt8eCoZ7qlL6/vYbvKV+nln4dmLyzymBtQDahrC5xaGsOqG3Ngb770rwiKS0t+u9utyLPL59WSnZ8xFP+jBouIlRHQUB3k6lWVU6fXZW69zxggcVY+zWOtfxW5DIVpHVWcK9Kf7oUZdDYonC/kCljbM7XK6Jjo7mHhsvYCsBF5nF2eLZas+46GH27N9HRCxCyZZedW/Kq2Z0E7DJbOZfpaNtTS2+pDVnv3rvdNXynXPSJiFjAvydgzU/fnX3A2jNomd5AGXZyQjeCRm9zehS6deZqS7EtCPbDmjIRrr6puDVZVSwtkejok25fOGsC9rwV9tPSpZdd9AxV4fKaNc0EvrX9R16BMYFLyS2MUZPppcnkrcqKuPSLf4UPui9lXkCmhrutHtUCPm8ild1LPyyvzpkuNtUHeOp1VKCN8IZJUFKgGMWeEdaCX/rilmd5Lk1Bnm3sNrI3bW3nndT0l6yk4Ll4Zaw7WjZzjxdf23NRfU84mDvSsygdYDp8Pq02XES4tWxN9a9bJbIsU0+n4ZTNUof6i9fOPdT5+uJ8+dF3HKeiTcHoqOgoR1x/zkoxtmX4lv9ek6uB1ptPrUDAI47IoF+6ocQG1XpblbSHtVdV9uSHj4hPFkBEzZyMMI6ONaaZ5urF0XaUHrCUn/PL45FGXU5dLe6tWeo8smml0uS2Dnf3/kfs4X5OPtL4WbdDFuPSj0SXZchWWUS4QZVVGq25acozyW4OZTqtnsKw60Hn60Pm3woQeN2nHtYh26P4F8k13PagF7kvFAGeU8d5j+1gzehHnHIcPHy6WM4LJemAjeQj3jar2lOubAZmW09XJTNe1EL9QvBDRKpvxsuRV9eeQXM++bhnZW16OiIhZwLwkY7dNnmGHezY9MUhOgxqjsjg9tzp3gQhVfNmkjYhlDC0i0IxrGdLQQBokQ8YsBesMvdXXi6FB1Jq9scqm0+pruixVHm3zOFAPY7I0/QoxR2CLJG+c/rScoQFI62aVoWLwGnSnWMdR1nOMgdxWhSXQM1BNeZqwqbxCA47g2CBH83E6IZYdDHo1GvS5S5CbadWoWEvOzw9HT2O6FTw0NGTIi6hLu46ChMjqT/qadb87IVfNNKG0VnpLnk8C/ThVDonl/Gm9dDwdlrMPFbYsd93R33++WJaIiFnGvCRjryZ38YI8kJ60DIH/qKXGOfKbwUr2ErwJPaNRNZCFwlqZVcxW6MdC/gKg2mi1dNEeYRZWGCBr7fAynTWBChlHP88QWQyRSosI6jrRaULedSE8UEZdPh1mxdPXsuMVnOcMaznBei755N4aJEJtxiIw1n3QZcziOOAwt6RHhfIa6yWFBnZflwwJteyRua+/a79HpssXaiNem+ydutp+RzPCxIPjz6QHZU6cj04IluXghBy7EEnSBDskz4+jHTyrjZTZV+1gVDkUVXakLDyzj9/ve5edJiJiFjEvydj+xYM0cvsYJjzqvsFmdzA9NbwmBwy6M+lR2UxOE9qoWEZGy9DGS6dv6ZV/b2rAXbJl+zItHbXxC3mmZZ6jVYZQnTSvt3RqljfJVnlPivr66XSeZdCDQdmAoI29r3eoHqvIFLBH7mKa7vb7aBlZKaQJETQ/H4uwWoOk1ltq2ZpUYtSB2sUhVDZr5iKTndPFpV/zbnJHvHiGCcmRS1+m4+zAEiRzHOJjShsrz6r9eDQps2Z8dPsM9WmrPeg+Ysn3ddF5WnbRQpWzU0auQs5YyNmz+luoDyqM1gYr40REzDTmJRlbfepieuDNBo3KUo7J5nakwgAnnJPVYL0T5P/7x77xsmZ6yjy1kDdrGIvWrIuWUWUsS2ePOiABBUJgeMkhEgT4L4lv5AgDXMrrZtVZCD6hyensKM4kZuEh41tGqnUcv5xVRC5b5b9UXjN+q7xZveqvPcv0sP4tPS0Ybafm1PuTVtvMriXUOCJbSmUuaC3Pki5uW2c6kyXsWbuZU4uXUa/XGRoaCuv5JsbupWvTg5AN0bDIRyhdqG2E4oacGy0r1I9C/dvvAxbJ0nlZ0ARSywj2OVVmVXcrpwJPSCIiZhHzkozVzi8o9OE93JFtP1NCALRx0F6ZPnbeWlhlg75/3TJCZbNBFnEom2lpDfCGQbGMq/9o1vKec3VkGEytl1UuhCNs5RIeqdTlDg0kZd4+0F7cVA8QaT10uav5cD8/i9BYMwR+nVjlb+/Knl/lv2ywal0X0O/w5WaWdHnFrht9r4K6Fq8lzZk9XR6tqzR1NQZW73+Svla8hDob3LFUpghOhJOLl/PBD34wLvoawFbZlx6U2QWr/fqw+pXVJsocthA5t9qY1R78OPo81D4tQqXtXjO8jECabdeI68vKHM4Hrcf7ERGzjHlJxk4vXq46GIyxBKz99Mo6fZkHCNT82Qz/eiFtwJhqtAyVMaCXkcOCfkLuCzjLm23NWgWMVMhIBja+zhFTLcsiuG8EoUEJyD1Sa/1L9jUg7TBdn2WEOdRW/LAWQdF5k5flwyT9xr219A4NLlpHi2CWEX6rPGVxNULtlHRrpzoNam6aLtdgzcgFvva1r8WlLQK43JsdWO0JimGhvhW654X7jW3jgjagAmXt15KrUWZ3rb5YlpfWR/dxhT53iaGpPy/XLyJiFjBXG4XPKrZOH6dOkm5WbRmdjr2zhE3uEEdlS8pBlHFL9NpVZTKta6HZoNBMjY4b8lD9Vd1b8jKSpmX5xk0b+Fz61gUjP+8LzZBxt8hNGbTRDA1ILRJIMY5Fki2dcjqn+xckLkBKrPJVzSD4eXVCcELttVVmX06TfBvlLiuzKauYd41GbpHhQtmt/Ar6gkN4t/sL1uy7wuKx9MHyCy+8EGfHDCT1q+GLIVtgtUfrvOpY37/QrJJGWZvVcaz2HDrW/bQTfSz52lYGZCxgklWLXq4obETEzGNezoxtW/kMP+U+A9ZimNDu5LlB05jRAfrkSrriu5+umcbySK0ZFmt1dit9aFbJGvz8MhRmRCyiU0IEQ56jJhU6Tus4QMQsuWWeq2+s/Z9VxpYcAev+WHXTzCvUHrJ7dZt7lXXuOAXowULXl5VH6eyCrkeK5608vTKGZFh6FfI0ygIsdRfYzEFyX+5Ce8PqpswQCXXZV5Z+3l69OoQVnGP95TNFXSJyuJJkax1a7bkKIdJs9aFQXw/lY4WHHA9L55CdtBxLnca6XmafQvbLqhMv/E52s/BAX7GcERGzjHlJxuquwaM8zh280g4MGbNWuE1gXuOudMuhMtJVSGbMHoU8UiudZZB8Y+TrWyB1jkF3Lq+nn2eZUTPlKT30vyZNPixj24lnaxlTi/y0wuvczu7Wml8PuydY1qyDkBdulTsjd3vkLk7IumIcrV9Ijo5jzVxokq5lFUiVnumkdb9zYTli2fngPSzLOcLWYjksgq3u3yCnedT9GQ+4Xbk0g+50tnVVQp0Gixjl5Vs2cWrRMkSEHTt2VOv3JsTurjvTA93v/Vke3UdDhPtazi2iovttqXMROC9zWCw7GiKEIQfLSh9yiLQ9UPW3ZuoMlw/GFfgjrj/m5WPK2vgS9rGNde44r8md7TGpzPjol6gt4pUjHQm5ATI0U+IbUDNfI72lZ8GwhIykcF4Gwzpo/fzwUPwqg+zrr8O0UdfwrxUIp4pTUpd72c6H3Bfpk3EGGOMcg1xkMFB3Sj+rrvxHc2UzEqF2Yl0377GjiymmUZsThwa93P3y2qB5j4w61/e1QP5qhhxDh+xfaHCve54f4gm+wmO5rAblHMMsZ5ouHMLvyc/QWFyntsPxT0aOx0eUAdSsj2/KEOofVh+2+lBZe6iKU2YT/LRNffx/61qZoxay31XOXVU6T5+JejfLNw+Uy4uImAXMSzJ2uHeIX5ePM00XoIyQf5wzWrU8IbFIQg7GTEXuPBsMyzzJMn3KYA3qnlznsq8L9cr0oYE4RJYs4+nrC6Rv/9TIvbNlEocSI+/npwcNSwej3M7V+Ip8LCu3AKpuLb0KZamAVX96YPEJWZnurX/aRKyMABnXBcfd7oV0YdYQQbZIdqi8ug2WDFqprAaC8C15L3/Jj7Ccczlx59wg09INIjRcqjEiJJLw7ZHL/O1jxyIhM7Bh/ASvLL6tHVBmiyxnoolO2nbBySTfPn1YOpTpVUboNKqIv9UPrP5ccKqMvK16ycK+Xv8Im5f+Fx4oahgRMauYl48pn+y7g2m6KXxhF4I2RJYnZxk93xAV8jCIiZalUaaDlqX1Uf819e5PoZy+PK2D1qPUs6yxmhPhMpYZX4scmAQwAf1YNkjOavl/q3wF+VS3ER3XOSCh3422dStcr8jbmqHQx1b9ZHXgqLGSM6SEuOkAGDpYg62vh04T0r3QLoUEwUmdhHp7VwuXIDSydfvacZvHNZewdvgcTz75ZDGfCLZN7EkPfGLfPPfDoTPbFiJVVvuznEV9bKHKpvl5hPq8zjskM0TydBvV9ivU15r5SfrW45HFG+x8IyJmEfOSjHUtuNI+KfOemh24zNCEvClLhmUEQoN+maEpm3EhYZM7mF9ctCCrufioyz4+MHQLDcyWQXRqoM/lK5xBLVJprVMVIl9+PGtgyAhfc1Ylp6t/rGVa4aE4vo76ug7P6S9clsVt3aoInkXeq/QODbbZ9QPcRvpINasjLadqhiA0+ObCA8uWNNcc04Ogv96aureLr1ziIy8+yZrRi4yNjdlle5PjmNySHpQ5ZRbZ9sPKyFGnJEv3R98eWO20Ku/mtbL2r/Ouctqq8ivTQxM454A6PecqU0dEzDjmJRnbxt70wBroQt5SGVmwBkaLQPgLqFreqzUQ6jAfpgdb45gMpfv7BWeIJNtMu5bRIoN0WoO0V9aH3RP0Om/F/BBE2nsNWkZRD/ZlhMo/DxEDS3/rXrSFMcBo+3rIU7byNcrR466wzh1LSa7eLqiqbNbMBo5eN14sq0WUjPZwgvVFPS1iaelg/ZsySsiyL7eMQGbXHjr7LGtG0x0y7r//flvHNzku9HovkJc5EKF+YV2zHIsqMm4RLstuWWlCCNmdTuLqa03dNLnrlJzp8mfHF+rrAwkiImYP85KMDctacrNBUD4TUTZjEzJWCsvdWRa5kbxMn6RYxq2KhFjH0px1qNkkLputah/XWrNkuTwsnTy9T8parsrCdj1YX+21/r29GTMyaJbHrwuLDFcNPKHZHj++HjiQ9sr/2qsvQ0Cvq7KQU7IuewysVuoODTIhEp/pN9Gs505mLVQ7npIF+Wut+6Jms5x6KbwwCAZmOKxB3f9vXXekM7LNTcSL/a3ONFu6DoBzrBkcZOfOncXyRXC111tOxHT6Av2qimCHbJm2B5q46XCt27WgrO9ZzkqVc1FFAH29rbIZ/W3pwHCHhYmImDnMSzI2cVKttg/ZcQXRAdv4WQZBGaYLspIxWapkBoiGL08PfKEZsjIv2Arz0rjWYywVL6uTuptSYcJBtrUX+3SOmr/FUq6OlNHURLTMYJeRDYsEVM2GZfmK/75cKJ51T7SHbUHSLX4aqMeCvgw/vTVrpsl/694YaUKDZii/tjJAI5vF80ijX/ZcXRpl8fVt5WHc71YZau39R3V9itCgzp8PvJdTi5fTncQtZ0LoR5EB/75b91zbJt3mdRsK2ZiytNfQP3JtLJRPSPey8yqHzc8/1Let60q3scHe4rWIiFnGvCRjl3proGfGANGzA1AYMEyvUl/z05V5ipbhsvLSA6Q2vKEZIYvIae/SGlRzcoSGdNv6Aelmzw3WcgIKexJ6K+8XymuQKauOyoyyTlc1a5Tle7d7gUFOVcu3yLWlp0Wa/ffYQp52J+XIyczITmtWy9huK+QQWO2JOudlRZ6M6/bl52+1/1z5HLfzSpvsGkR7AbOPLagAACAASURBVBPFcnsk//DiDXxpx8MsvD/OioXQJ6PFwLK2W+bA6HDLOdK2pyxfnb+fRh9b+ui2ZzlJOj9dFssOW9cCbTTXJo1+2+Xm5bAYcYNjXrY6NwBQNDDO2r4oBG1sLOJkxfXP9fUyo6fjW3Fa59ZAqcvVgGzBzUJ6yyDqgdk5IOF29wo1kuzdpIBeJhFQeVrGux0pH98y1lUDi5fmZbmv/WWfZfRDhNvKL0SOrTrXbSLURoI6NWfbJHu03EG7qmh76abdRvksWPewVQ8JQsJetrfvllEP51hVlKfKnNTqPNmzKKzHmxx9U1fyAdZ9LyMaVcTfOm7G1/3Xj1vmSGo9y9qZpW9Zf7PKErKhIWJqpdF2NvtfdvhEZ7pHRMwg5iUZ2zewJT0IEY7mOeQ7v8tmJprQxMAP969bhMO67hJyyzT48kJeoA5LL4QNckvfWv7mhgiARRpa58J+uYMGdZzUERqsc0dZTPZunLV8RIiU6bxzcQIetFV261jFdwiFNdb88vp5h4iO9UWo31b8a7rt6HuTu+4ovM9lDGhOz0Lm2pFd7iAJtga00CDtD1CttCkxdNTT9xWlXpTXKrv3UYPV1jJcvniBCBtbj5wHXPE+V91ry16FHDv/mj7WeVrtLmQTy851nwuRLj9/rW8VQg6QH2bZPE+HA4uXVecTETHDmJeLvl7t9orlEw6/I1qDjwUrndXJ/bj6uNX5PeIRGjgLBC5gXLRBLBCrbEdNfzHbEImwZlecA6nRcI7mxwI1HCdlffrYy4+v67jM+7TKHBoULM/ekmvl0QrPHqVaA4lV9lY6O9swQQZQcgv30CCjVlsswNFaVFfXtamHTq7vh3q8XKmLMVDmypnJKyN7Xpi4hB9fv7Jc5zcxFk0D/sxoyPHyUWW/QsfWNT/P5rGWF3JiLFIVytOyO6H8rPytcJ1XKL7loGRh9ThpGzEHmJczY5dr/e0Tq9Np5GYAVBornUVuQoZFk44qj/JajZslqyWjRHdLT8tz9ZpIg1p+n05rcHAOaNDt1LtDliH09dFl1gbUSmMROV+Gc6RbVFvE2Ch7rgyU5x0ij1aY/oVk6/pp1Utgk/Cye1vWdq1tkjQ0gQv1H1+edV2Vu/fqBA+d+wEfvOeuah3epDi8LvsAqYx8NREiRU2Uka0qWH08JKNTedphCuVT5qCEHEjr3IpvOQwte5HwwInz1WWJiJhhzEsy1ptMtE90x7M6b6uDZgOLHzeXzrGEC3S5yWLasoFSx9PXLV3KjGtwJkTNWFjyQyTKyqdAIkLNpV2u9Js5x5QYey2WGXLLWGpiGPKoLb2za+9w36GbKcRN23r4+mm9LHKjf612Y+ihZYTankEi82Wt59OF9Nb3NkQqqwbuTtqIJpZl99P7n+hZwNMr3spX9x4sl/8mxkAyRsEOlbX5JkL3rMyehNJadso/L8tLxws5VWX5hHTTbUvbQ4s8VhFSL+zeqedZfzZOjUVcf8wpGROR/1lEnEhzZ+uZwdDlQ+mB7qx6EC0MOoFFPFtxhBGWM91c26nKwPh5+rAMqzUg+3GqBvT0LaNyw9OUG/IUy/ILxQFWu5OeTikdy71X5KcLEYpOiIoPa7bGGLwm6OVfJL/CD7vH2eQO2mWuykOXv3AeqHOg7qZYyem2vLK8dVl02w21AT9NaHALtSl9TcvRMqz4VhyTQDiQGonU+OqhY3b6mwyzYcPODqxoCs//W3UaIuA6jnXNitsprP4QIl0h+6htcSifa8krFLcZL9SPs//75BnGuWzrEhExi5izd8ZEZCPwXuDoTMu+0LesmUn+gtXp/UGvilRpWGlCZMLPwxpgNUJyfb1yxiX7/s6l+xS23uvS5SChtWBsQQa2sW/N/ljkxHFa1rXCXKaJq/LGtcyQgQ3NHFkwrh1hiO/Iu3hC3pOSREuP0ADiE3ZN9Kz7mKuXFA3p5jyDCAnO1crbmC8/REY7IYeh9lxWdzkZ6X0RGgiQOKPeLJ1Dx86x0F1mSnpouC5qLmHVmdfLZd4EmC0bNjXVDXqpK6v9+ecaVf0PyglQSJbVtkL3/1rz1fKsfHwdrkV2qN6UXT5W38Sm/r3l+kVEzALmcmbs14F/BsFXpd8w+i4pz8afEQO7s2tiZM0C+P960Gwi5JnliFi6dlduHakqPcpIWyu9YxWnudu9mC8nLtvQGtq3XL2HZOWT6SI4bnevFPMGipuxZ2u86booGFXHUi4Wy6IJq69TSzeXkU6Kuiuck9V8U97X2h4qp4se4HT6qsFKXe91l9Oy+/dS0kVinU5r5LPAjaeU2lpfLJBG51Vor7rt+vEs4u0RZEed29xrrOMo7a+AAwOiHiiV7leknwZ1tp84zEdeeJLawX0cO3bTz47Nig17+8WXoLWTQQZ9zyBMVqw2Vta2r5XQlaUt6Yu5NGW2Qbch3XZ1Gku+lm229WL+Iyxl1doDYdkREbOEOSFjIvJR4HXn3AsdxP15EdklIrvOnj3bkfzNJ7wFP/XAVEaW0gwN8hSAT2RCnqMx6KW7OSoD1KkBDRFDlw6ip1nDy7KjED/d0NrXpxaWqQzdYncxW1m9YZNPNYvkrMe9Ko86jfbjTT/PQhpLJ8mvGWcR6Fy9qWaeG0CU4baIjJXOICIT0g+hdw6pFcmSGlwnpS/fLnwZFjmtiueXyW/XmoTiqJFQc9PNb3Bb2Ct3cpKNmf7ergOaxKu6KOThtYs1YxdJnOPw4cPcrOjUhr0R+3XXiVPc4V6zLxbuHflzi2j710L9NyTHylvHtdq7lmnpbZFHqw9XETzLhofidEBeG/WKmeCIiFnArD2mFJHHgTXGpV8G/iXwvk7kOOc+DXwaYOfOnR15oOfW9jeVKJIs/zjYMbPZAT9uyHBog+QbPcuIiOCcsU5TgQQ2yD1O9OHLLRjSGq6w00CAKBbKrXTKMCLLeYaHivk30xXqpqlffgmFJe4CI7I8qwNhPcfZw3bwH98VSLAmVgFDGypLTi8jjbFm22peZ9gtY1KMBVPLiGhV+wrVvdbVWo7El2Fg0J0GgXHXz7gM2AOvVX6XIDjuci8AwgiLOSpb29FCj5Gtwc8lDLhLXJKBdhl0tl69LVy40NbtBsFM2LA3Yr8aA3XG8eqmzOaUzVD6/0XF7OsdziCZeYT6h+4bOh+r71t9KFQWi9xpXaz8AvLOXO4zwyMiZhOzRsaccz9ihYvIPcAW4AVJO8MG4FkRedA5d2om8p7sNTqTZbCszu48IubHtYyURdBCXqceHENEsSUjsKBqmceo9Q8RQj1IBg27t36UL68TQ+0cg+4M52R1K/6YLGldSxBOyAaWMswwy4u6WOchPUN12Yqj7mloAMv+T7O+HV3XuV/WHHkO3PcyMi1CYR00gwzn5Jjla3BeVmYLsuaT9THGOItK6jBd/OMluT+97M+MtdqsR6pL2qwA7+Zx/pSPkjh7gJ6u1VvlP3VqRrr7rGGubNhzvRs4Klv8DJsK5c9DhMUizlVOg/63ZFa1aauv+AjZPl9HXT59rcwGheR0QtIyjLkBNpzvJyLieuO6v8DvnHsJ2numiMhhYKdz7txM5TGxYIHONDwjYRmfVLHygT9kTJxjKRfoYiq/JU+Z8SkzllX6W4ZTy9TQeVWRUktX61jpMEV3Tp6/8TjUeA1vrSmlw0Iuc4X+4vVOiZh3bD4WLjPuZQSsalCwSJ4IrZlOHcdaBFifh+5li8zV8iv2e+1zpTvHUelPH+tabUGV2TmtY4Nl7iIXZQWh2a4mFruL/Ll8iCT0VbJznF6yPJj+ZsFs27BjqwPrjFlEx2oneWVt8mb1+zJ5IUJYlneZ46jTWgjZZr8sVjzLnun/AHHcV9vOBBOF8IiI2ca8XGdsCm+NK38AtzzLJvzrPvTg6hytl9+tDg8Ms7xNxCy5embDmu0IebhWubR+2kiFyhQiDj50ProuveM6U1lYQp1pRsTYVsQ3nPrXkuXo51IxrU6vzwPlcT4JstKWGX1dztAgpttXQRfV1aoGKn0vrbQtwizF9pLFOc6G9qNBq8x+mKlfPSViiB3Pkz0qS5nyP5TQZQGWXb0ADur1Ojt27CjKiuCu2vPUmpuxl8Fq75Bvy7q/+nH8dJYttO61FTeUPqRj0GFRbb6MhFlEsSnP6ptl+npyHPDqhjgzFnH9MedkzDk3NJOzYgDbG682hZcTmrYS+XNrFiLXyQP7HmqD6P/rMIvk+NfKyI//XzC2js0c4mH3RF5vLdP/WXtlatllhjm71mjOhOFY5s5T6t1rcpOrK8mTWV8vi3TocgGLGC6WpWxg0uF+HtZ91br50PVleeY6fplMizxp2QFdGtJN7mONEKz73NLXMxNOPcb0fg6hhoPml646HnB0yQbO9ffzyU9+ko0bN4b1uYkw0zZsy8g53u6+0xTuZ5SPaNkpC37b1/dXt58yctQM9/UJESZ9bNkerYNlF32UkbSAg1jow6H+kqWp4ViTPF+UHxExy5hzMjYb6J7uhtYSA4Y31oSeEQl5i5aBCBmZ5rE2Btq4lRmPkNHRszc6rqSzJEfYzCG2enWg0hfIXckg7+fll8dCS4da+q6YlqnjphHy8SzDDCxzZ8P5a4IHTDZfgK4gKwWZIRIeGrRCumuUDZz+QGkNZFb6UFtthvnydPtVeuzkKTZxMH/NGvjTg3y4F19wfJLP8Kj7RvrumTEQOmocWL5o3hCx2cCLyR18Tx5JT/z7bDkNnRD7KhLjX7PaYCidZdO0XjqsU0eiyumpsr9aRyu9oUuCcHZ0RTF+RMQsY36SsatLofVStDFAhgZfaxbFmomxOr32KNML7UGpbMAOGcCg3ICcVrlqnJCN7TqwjKVGyCPV+VyrN17mxWbk0QxXeVxiSTF/TWC9/K6yIB+nddwopg2RJ31/Q0QpJ987ttqHjmeVp4pAhmYeqvQLOAxr3AleZ7OXLuC4aBlKvwfc02xwRxnkHO/wZ3ZUW14yOslzT37HLlsEL668Q71f6cGyDc1w/z9E2KpIk+4XIecx4DQV4lr2QyPk3Fl5WWUrOw+VU+fRilPje0tvDesTETFLmLMV+GcTxxLjna5OvEmLAPn/IePnG65cOKx1x1nEKHvkTgqzCpZR1VAzC+bMTfO/yjMMEcFQPTSPS2ZVCiibWdFkS+dn1Ud23NrrMqRjiFwV4tRB7yYQkluVl1XPocFGfzXppw8NupbcUF5V7cSPl5OdcIQtJP57Z9bSJKG+kcWrkbDGneDf1H6VabrSd56y7Y9yaZKE8SWDfPnxbzK4aSjOkBkYrS1un1htRJOfUNsLkRzLgTOdOux8/Hi+biF7a7XfEEJOhWWPQgQvdB5yNBV6e+M6YxHXH/NyZmwsMdbosbxD7dU1YZG1AtFy+fCAkTkhG9knd9g6VOUZ8mirjE2V96vzCekTIoslsyNt3Qxd/XRW3efKHLhHmhxaOmjvXMvOvQPVjBcguQW9jHzKwjTBsfS38i1zHsryb8kukZ/LQ9gsh6j7K7638ivm2+0mtUAg3VPiq7XHmKYbpEZCPf3G001To0GdacQ1qLuEdSPnbvpFX2cT4zW1F1Knzlqn4b7MKmKm05WRKssh6qSfWvnoeGV6W7ItVNmsrN88PPr9alkRETOMeTkzNtrvPfPXRsmacbCMRJlR0MZBhysC0trbr8orDOWpy1E2AxLyYKuMaCdeb5XB88vvVJh17EPpVHdTNPRsWCEPox7M+z1NewHdUP2nL+8mTr3sHiKrVhsK3Y8WMVWzRBZCsqw6yMKEBs5JVsbmEhpiy1P3QlyDPjfOO/km35T3tXUM6NGQLqWD0tvDcneWJTLKu9xfsJGjvMLddO8fYPGoQ0QYGhqy6+BNjinU0jyhGSD/esgx1O2tE8LVhOlUdJBfiS0MOoll9knLCNWBBcuOha4Dm91h7lvybVtWRMQsYl7OjI32LCmPYBk3a/DzDY5PAMrIhU7nd3bvvEYDcQ3Ef4cpNJujjZtlnPzwTkiTn5clQ+ug66nMG9dl1vWj0xg6tYiYH0cf++ksXVr5NR9NBki5ZEQGx+1ud15uWV3rMlkDH5AuhRIYoHR9+XmG8m6my47XutfZ6vazyR1kmbuQljOko9K3ToPt7GaIQ20dfeR09taKK1zzdUtfEzgnqznAbfyu/Cwi8Bhf4M6udN/Uu+++Oz6iDOD28cPpgd82TJJvhEOxnVaRmUDbMNOW2Qqdt4VQeOh6qNwWQnXh6xTqqxlGGaCnPi+HxYgbHPOy1S2eGmmf6MFNExHLU/OPQ2nKZotCpMibyfh7fIYfdt8A/fiqyoiFDKdf1k6MjxUnlK8uexmJtdK10hh6ttI6FjCer4tcObOfpUeJB77SnU4/opA6hGbFMlkJwhnxFuq9FmjC7ofjbX/VKg/Fe6LblNXejDKekvUclG0cla1clEE0qep23iKWuXvVPn4xW4E/T6gatOrcObC+uvXvcRa+nuP4hLBBF9927wJgZCTdXeill15i165dhWqMgAVTdSCx7VGoH+vjMhKn25U+1rgWh0rnbx2H0ms99bVOHE6jPQbzMvrVRVnJ/np8gT/i+mNekrEVwxfbJ2Xem98RdccMDfpVcq1ZLBXmqPO8u5/DbMm2sAkQnhDR0QOz1leTAauMWoaVLnRszeRY+hSMp0qXiyNM0pdP7/+nCfOy/f+A8b8gK7L3oaaLZS0MXjUuYnzWbrWJKpIfInNl9+5aBqVWGZN0xfsSMj8lvXkZrf8a09T4Du/iGXYayhoEtkWq2wS7m6uta0KD290r7a+IM4ywlLGxpYyNrmyFvfrqq0aeEct7T5Lbl7aMKDWv67as77XV5pvXLQfOIj2hWa+QbG0n/PzKSGIoPPRv6Wc5dGV20Uv/xNUPFfWIiJhlzEsy1jU81j7RBKQZ5l+3DFHIuPmw0up8rfyAZ+QhDspteXmWIbQMlzX7og2qn68mQlYZLK/aL4fWySqvlq/C6tZioNa5qW+A3PpxDYPboIvFDGMSC9NLD68ebxKiQrsoDjI1f4YpRNL8/Pw8Qvclp49q29b9CQ2A1HlWHmw7Be0ERYeilSZ/3NrxwjnqJLxTnuB2XstltYRhLl1a2a4HYPv27eV18SbFSGMZ+I+aIWxn/Gvm/aXY7gr9R6HK6dSydbjuL1ZeIVJo9klDhxCpK5MRiq/kT14aLOYXETHLmJdk7MHJv6SLKVqrhWvPrPlvkhaKRkPP5GhYBrOJkDcK7YHfIotlA7fluVpeaK4sykMO6VZmMC2UxSmUu4QcFOpOGXJfv4LehkfsXR913hplWq9AmjxKZiV8iJh6r3Sn6HdjFemwSbC+V+o+pymT4gDrkzLLyfCOh1lGi9BVzVjo+6PqLaHGl91jvMYdXpkcC904Z07fAkBPV40Pf/jD7NxpzcZFbD5yPD2wnIAyhOzQtfRRq91V5WWRtyrHpWx2yyKhWrZp46ius7K6cOm6kO89fiQcJyJiljAvydg9q17hE+632o9PoDgoaQ+uzIj40NvBdOoZlv2XeYlath9fe576uKxcIYIT8lA7PbaIYoaGv2doGdkM6R/yuK2ytPJ3bJfd+fihvINeuVF3ZYOVkn1RltMnV4r5hO67/7FBxQAkzS3QQ7MfoftotVOtv1W2UDvJzhPqPCMPgv+iP8JXax/jqf6UfHXVu1i9enVRdgQA0/WRYmAVSe7kmkVs9PVQW6iC4Sjk9Ak6pOXkqJQM+m0xZHPLYPSLTzY+Q3IpkrGI6495ScZebTzI78rPtj8RtwaeKsMTMCaL3AjgiobHGmBz59YgX2Kw9ExISD/LGHUyw1Y18+brHJhRCeueZF+JBupdl0XnqwlzmVE29W6jz11msztMPyNF2VUDUiieVfcl3v80C1jub13YGjA8Yt+M7xz4m3/71/RAI0KSruZVWgeVpFeT2kxGq62XzZ6YbdIzK57cgyvXATB+dYrf/d3f5dixY7Zeb3L8YMl7Kdz/kDNlOXih9loFyzm1yHvIGetEtj4vS2/ZmrK4lv46j5A9BRa5YVZOnuViNxER1x3zkow9tfhhGnTlPfgqQhKarVJpx2QJ6MHPGjQL+UnByKWrlHtprP80QrnXWWVs1OxFqUedK3OHBs0qK7V8+bRRt/TuxHvWszElxhVgXAb4inyMy6jlTspmjsoIYFU96jAREhznZUWxLqw0uszOgV+PzWut/D3iVnVfqwh467pjHcf4Mf4gvYdaZ2ugcwmQUGea1scSqh4Hx4ZbaRuNRlz0NYBa3fiQJQSrz3RKkK5FvuWklMkrI49+O6yyZ2U6VjkrVaRRxRuTpfxa3z/HrZyXy29G3OCYl2Qs8T6cMztkGbHxj61rohYF1fLKZo1yBsG1ZzQsUpGLa6QPGbugDJ2/ca5n1ULlscql4juppVvsWPpZBLlTQxqszwDKZuKMcvVxiaXuQmdpLH3NNlXnHGva11tyKxwF6/6EZkuCs1Rp2EJ3uSjLOs8I3gnW89vyc9k9dIDjYfdE9i6mL7utYxcNfsr9Jo+6x9tEvBUvoacx3Ypeq9UYGhoqljuChT3ZLGpolitEePRxlQOnHRrd//V/meNj6aQRsilaB0tu2XGVDD+sLJ4I03Tz4qa4/l3E9ce8JGN9jWwwDRkzfaw7Z6eEShsXy3AFDYPkl7UIza4FZugKxtQiWjp9Ln+tjzoOyS3zcv34rZXgsXWzfpb89IDN7hC5F9V9fToZJEJEW9XPOAMMy/J2vE6IUk5ntS+qdf9CxMmCCLl6NAdHY1D1/4Er0sFsSyu+A6njqKd5S7qi/wIm2OGebcfNiFt6XmOaOodlC2dZnXKuTJ64hG4arBs+14q+YcOGuOhrALsX3J4elBGeTmePmgj18U6ulfUDfV23Ua23pXNIfjONVV4tw9e1Km4ZWQPGkw6cvIiIGca8JGMvL34gPbA8PevLuE6NXmgALTOElgGwyF2ZAbH0KDNeZXKs4yqP05JVcv4wT7CI0Xx6S3/907q2woVjsoma3q+yqpxa/xDZ9vXT8a26sfJvxQukt9pR2UCn8wgMoLe73fQwRWEdteZ/Tr4xG2KUQQL1fEBuYwnDtp7OATX+kvfykuxIHY1sh4m17jgfG/sCa0bb6/8dPXo0vjMWwKTzHpNpwmLN8DTP/fh+mA9rRqwK19KO/fYQcjS1PtZ17aRpParImxWnymY6ByTsvPy0HS8iYhYxL8nYeFdfMbDVEVVnLSMBPoHTA5vV6atmaUIIDZadzPh0mo8mYrosWmYVOfTlKjl73B3pO3sF/dQ7ZFZ+uvzZeYKwyA2X6/bXQYjgdTJoWTNSuTTWbBY2EbMGI4sUunT9so/zOX7SfZZWV7baZTaDtY5j+XyN+l/GuZSM+bpkOMIW+pq7JARIe9KaSQOo4ahzQjbyhUV/g9G14lVF3Cg8hDUT59snZX3bIjE6zLpPZSTNCtfpyoiZPrfC/XatZWrnrMrGhmDNupXNmjXVA9xEh3Y7ImIGMS/J2NKp0XxAmZEJzfJ44Q+7b7PAjdsyrIHYkhWa4fKw2p3IZiXUV3Yh3f1jiwD4+lmGqNPZtlC5AjNQ52Q14wyofFNCUOm15v79e1FjpPn4sMzTDoU1w8tm1Ky0VbMPWh9TlhQHmZB8TfZDBBG4zaULq/6lvIdc3QZknmADKKIlOO5xz7WiX2Qwv/9kLk/h2eZK/dbAHNJVhGm6ODu4iPZrhMLQ0FAxfgT3N/alByFC0YQ1a1TpGGD3j4IDauBa2n2oP/l5+ek6dVx1vmV9ssxx1GjFFS6sGOpcl4iIGcK8JGNDlw+1T0IDoG94QgYoS/ekvJNJWViU0YxTZnxCxMEgR6dlff4hqmUgy4xtLq5B6Hx52isNGU3retnAECQTqaErGEir3lr5aYJWy8fRhlaXS8vVXrkuayjcL28nxl3XQaicZdeqBjRgP9v4lHyKg9xWTGMOOjX0shMO4TgbDX1th2DE/yrVqn9f31zfELjUni3dtGlTfGcsgO/33pMeWH0/NKvVjG8RlbL+oMM0tH2p6l9ajyr7ZxFF3YbLHKVOnLEy56z575Xz3snX7fgREbOIeUnGlp/0HsdYA4RGaLamHYHcavnNuBYRChkiP43ONxcnfVm6AG2kLFKTK6O3ObU2apYHbA2mirh0M5G/bkGnzdWJLbcUnZJmi2CH7oUVr5RIBNLp676sUJ13Uh5f35L73JDu9iyWLqtu+6XtLl8moZFt9u3l2YpZK4aHHBCv7ELCRFdvK6vjx4/Hd8YCONuzuH1SRn78OP51y0my4vphln0M2QvLTmhYcXSbtpwZy15Z6XVcy9GyHNaK+nPA8LllxTgREbOMeUnGTrt+sBartAbEshkRH604Lv1ZpCzkaVrh2uiF5Og012KYrWsWETLJo6PGdC75FIENp8vy9/LsYpqtbm8xjaWPktPFVYL3NCTHL2sVgeykbsvyDcntRJ41aDTPNcm3Zh808W1nirmwrMK09KSPx7P2/QC7WONOgPHC/yK81eFDehszG91Mc5/bS3NLrLjOWBh3jB9ODyxCHSLVFkHRccrCdH46XsiBswiVjlPlEFu2VpOqqjL58bSeZeeF8grPLl0TLE5ExGxhXpKxVTIBGJ2yibJZoeb1YBzJfgFZ1nkrzBgc9YBaZjzLZoZ8Q2SRkua/5XmaxlJIzJfwCdeVf6zK0efG+IT7rfbm6GUDQlmwlXeufkvK70Mbeq23NdBUDSahgadF4g0dLALml02X1c8nOx+YvlRMS0KurZbMXlxigGbbrNPged7CM/JQO21TNRwTLCykN+sunxHvTb5K75krOZkLF6pH/xEADPXto+V4lM16dYoqRwTKiZV1fwt9T+not0WrDBYhsghllUNjzXhZ/TNE7LRewMqBA8XrERGzjHlJxuqb67TWpNLoYAZkgNE0vUsoDKLaIIUGUyO/1ZzIX+uEgOkwP43lUfrxymTq2ZaOZstUmcq8dWUk3x9rSAAAGl1JREFUJ6SP78oPgbXNS4hEemhIDzly4OveSlNRj5bh1rNnncxgheCTwmb8lsySQa4KVpv1wjZOHke8lfKFhHXu9bzOoTYvgqOePX5Mt1dq+I8+c/HSvSeDOrbqt5HXE+FrtcfYx7ZckitXrhBRxC0Te3L3EwiTJWMWMvffvPZGSJyf3grrxHHUjo6VznKGm//aVljEzbIbVQQ0YLsEx8TCeTksRtzgmJetbnnvVaAW7qQhMpOhznSaXs8sWMYAymd5vHinWU+OjJR5aCGPUJMXH9oD1PqVzdqFDKIVz5KloTzRhDpH2Rwuqy5XWdl0WiuedX9CA0EndWXpXfD+HQNulNY99uNoAmsNOFZZdHvz/126vMWevtu8d7kSHnBPAyq+VWZjoHRIfgsk1db6miv5+8QziyMkfCj5E/5m44/4sPuTNqGQdLGME0sHc2rEmTEbExOLyC1VEkLIqWim67SNaXmhtt+Jg9cMs0iYlc6KE7LZoWshHap0Ngir4NgyHl/gj7j+mJebcO3pfQAahL2mihmOEbwlFEJGIETMrHzKvFTLeGbHixhmjCXkPh4o83JD3mKns2Qhffxzy/iFSGXu2DGOGnxDZXENFjDJpPR1XscFedlslEUwdVnL2kiIIJl1LFySxbZM7QCU3UdNtksGouWTFzm/YIWnR41n5EFaToSWFSpzdr1Og0/ym/yV+yH2yF2FMp6urfPkJggO5xoI8CG+yMflc62sV3Oa3+HnSJzQxTTrRs615IlInBkL4ODVd6VbpVX1M90ny9qqFWY5eT6qbIhGmVMailNmi0P91HIqQ3E7ke+h343Qfag3nCYiYpYwL8nYvqtLKTxNCXmKFkIzTyZxCBgGi7gEiQPm8RCHeIn7w4YlRBatclqDsJ6Rsspl1VUZQc2whAspqc3iSnMvzqoBAkDqTNJnl7GTe5Dl2E6TvT9V5sWHyu3XlaWHNRthydPHVQOXRfaMel/QNY6wDOf8+qyF772BzRzkGEMkpI9pNrij7JDn2cOdmF8Rt3SR1v6qDvg6H2anPM2tbi8i8CiPs8Ed5VXuYvnpcRhZ1ZJVq9cZGhqy6+BNjjPLvI3WQ46OZVeulWD5aX2EiJ2f3nJItPxQvwjZD62nldZKZ8kP6VtWbtLNwg9MxCVXIq4/5uVjytxLxroDhgiEHmBDKDMgvhwrX2tgDs2SAS+xo5inZaT0saVnGWm04oUGcougGPW1lpPpY6osjYP2dkZaB+tc36sQEbPKlNMxobDyv1Wu7H+Q0+TWaAsRqNBA5x87BzjWNN8V7MRTD+hVyD/DcG1J8T0ufW8D96ip361ki4xKjYQar3IXA24M1P0qLEis7tU0Xbzi7splsU32sp3dHFhwK6cWL0Mmxuk5e4K3btkY1xkLYG//+vTAIhd+uI7jn4faUUimj5AT0EwfIjihfC1iFyKZlqyQc2PpEypjlf1oxXWcXbgkHC8iYpYwJ2RMRH5FRF4Xkeez34/OpPxG6GtH3zCE/lMFi/+teIGvIXV+ZbNqHXhoKdTtCc2QWYbPmrkpXFMDq2WAm8eFa4mdLsMYi9vXnaOGY1u2Ynwliak69mVYA0UurmCuuVbIP31f5ByrwN/AXccrGxiM8BoJE/Sa1wr6eNf6GCuGG/ldFq+e/X+VZgBFrlr5ChOuly6mqblpumgwTh+/Iz8H6qODFePnWXp5TKVv61jDcafszmW/123j38qv8Piyd/PlHQ9zctUGuibGuffBhwpluZkwmzasK2m0T0IOnNUm/L5aRs7KbFMzrrY1ZfbRktEMK7MrGqG+6ZcrNGsXIpeWAxbUN93QftXl0eK1iIhZxlzOjP26c+6+7PenMyl4/VXvBczCoJHNlOhOHTI83vnD7gn63KWw7FCYhkWQrlUfw6j1cCWvQyi9COlLdYZe7ZO8Htm1O9idvuBd8eWig/aL4Bn2yB1hfap0VvIrw0PkVxv3dqTsMWrNTnctunllSagzzNL8tapZB6DmirLM2cLQByZK98tka+814ZX/RdnBBneYB9jFT7rP8qfy0Wwx2bx5mJA+hvsGimV36YcEf49Pc2u2jlxTlVe4iym6cVIjkRonlg6y6t0fYt227UU5Nx9mxYY5/fZIGdnQ7aMKwXZkxAsRmZyyAYcp1Hc6JXJaXz9emb46nkXgLPubJuAnk9/i1q64tEXE9ce8fEz5lpGn0gNz0KzRRQNx01zr46j1HGehmwjkahguy6CVkYTQQB0ybOSv162B3TLWzpHOFqmwHClS7woBfe4S97rng9d9nU+yPnufKJWbzjvVisRLz+AFZv8El92zfJ7SWoJE149r5W3Cqh9fdtWMRC4v7LbWkl+cRTLPPX0m6bHlqfMaCZvdoXDZMnlOjCUpMnljLOWgbGMXD/EC92ebfRfrrSuZNge3W9jHv3L/ih92jxeqb8XpcWpJgiQJNZewdvgc67ffV9Qloo0cPwi0z04dkLIZNB3+RqAdgDIdjNnUQrrQLFYZ2QyVIWRDtc3z+t0R2cLKgVO2vIiIWcRckrFfEJEXReSzIhLcf0JEfl5EdonIrrNnz3Yk+HSyisLsV6vDOd7pvsmP8fn2WkxpRqWDZI2E7exm8PJFI47jHcl32udGnjUSxE0jNICGPbAr1FwjLYeW6Rw1w5A9wNPpshyWbMswabLoHYtrZLq26+GRqSfYzu7WIy193SdBTuqklC+h5qap45XF1ylU7y2dEmquwQeOfJcfS/6QO9zuXNQH3NPc7l7J6+ESusjyDNWzF7dYhnzY2uR17nHP0eWu5utP6bp56hB110BcgxqN7J43splEnW/6/2H+hL/tPsca8p/Tr+X19r000jXb3UfPf5lP8hm6mPLKUnxHTlyDLlK9muFLGiOsdKdzZbrIMrp0G3IJ9QQ+dnQ8nbHz7luNhL+T/A63JPs5efI2Tp26LVdFG8ZP85EXnuSth1/lIy88yaKRs+y9ZBDNmxOVNuyN2K8NF0/bF3T/bd6j1r0y+pE1K+TL8MNDToeVXy5e0ZkwnayCvuTzCeli/fvxTOeuZOcJP10hf2Hh+aGiThERs4xZ+5pSRB4HrH0lfhn4z8CnSHvxp4D/CPy0Jcc592ng0wA7d+7syI372CPv53v7rzJdg9Z6YwAuoYcpHnFPcJvbywBjfFb+QZ50iSNxaScVEZxLH7f9xNjnGNy9mr9d7+ZTb0mg1uaxj5z9Pv/9vhPcs+3rfGPFLSzjAguSSb5X/yFw6VYwP37hzzh9ZSNbTwqb+xJ+544eTsg6LsviND+1DEOdaf5l8iscOPBWnly2kys9C9l49jRydZru3jEGG8v4+i23MyWpMXz3ySv88NjTPLT2GZ5oPMqFxiqOrFhNQo0aCQ+4Xch0H89130HD1XDUSRfndKy9epF7Rg4yMjWJdAvrrgyT9C5mYHiYl3vv4ODgOm47fYr7h09xy70H+CX5VV7lbrr39fG6bOaVtZs5P7Ck9WhScCQunYH8iUNPML75LHfyMsdkE5+VnwPnzdK4BMm+40ucUHMJW0eOsTIZ49aul7gwuZW3HF7LRy7cy+WTC/n2lif416u30XB16jR4+/lnWXn+Mn+17iLPLbyDDRPH2Vg7xvrRUySNLp5a8BDSl/BS33YSJ9Rp8AH3FY6wlU3HeqhdEiamL/HyunWcXpE217pr8L7kixypbeGtyfdZ9WI3vX0X2LPhNT7f/xPefWow6M7Rw1Xen3yN7S8u4bS7ykvrT/D21d8ASR/TLWKM35OfYdp1UcPxtuQ7jMkS3sr3eZTHAbjT7eZfy6dIXA1xCT+VfBaRhFflLs4Mr+MAd1GvTXBkycYWCXrPke+y5rDAmmX8w7X/F3sm3sHYcC8T3T30TU0x0r2Uaelh0+V9yOBZtl89jhvZwanuu9ly9ABMfYnj79/Eb9f/fqtM9114jZ8Z38vXF9zFxSlYO3qeWv9SfuzkWnaM9LMmucK/v7OXBoI4x48ce5JF0ws5ef4jjIyuprboMKtXHUBqDudqjIysYc3oRdaMXsQBT7tb+YmtKzrpxnOOmbBhb8R+feJt23nxQCOdocxLI28nHMvcOaZYwHqO8TDf4Xfk50hy/auRJXPgapCtSJc4vcdok8CnxGaBu8JOnuYpeQfTrruVX6+7zIT0Z/zLsa3xGh+/+t/4rz0/xsH6LXk+6NldwbHCnaWPywy75UwnPfRfvsLZJSvyjhcJG9wRjsqWFtF7aPp7PNX1tkz/fPn9P0jtz4+6L9LHOP1ujN+r/SwNVzfSSSu/VNXUNtzx2jhv/8BPVtyhiIiZh7i/7jT1X1cBkSHgK865u6vi7ty50+3atasjub9/+Hm+8vwBBk8fYXrRNOJ6GFvYzZqzl9g+Osym5cNw8U523flW/ngh1EbGeN/Z51l1Yg/7730v96zYwOjh53nuCmyrOVZ2r2Hxgldw51/jonyQz2/cxpWuCR489DTbG3uZvLicUxe66N+0hKHu3Vw9NEVj7fs4vXIlgwtOcd+2e+h5rpeeM8MMdJ1gyaOOgxN7+O6Zfg71LWDRpXOcXPoIsuYWBi4e4oFT32LqxDRHztTYMHaeR7ffw4pTL9G38Ah97/047Pwku576I757bB9bjvay+cwQE7f3c2Zl+ihvYHoBu14/w9ntg7x98XF2vNKN29/Ll1fv5ul13TSu9nOlsZx7jhzlQZbx1tvrJCtXsfu1U1wevkj/0mUM3nkvlxIYGhriTDLAd557jQ3dL7Bm6TEaI4twB6c5+XoXrncA99Z7+U5NGHj1WW5dfZbTW7cx1L+V0ZevsCl5ii23N1ixoIe/Oj7KnzQe4Uo9Ydv4Ea6Mr+X9Kzez9u3b+fLLh1i+dz8bj+xhYvgEm7Zu4+rVAZzrpjuZZJCLTL11A1+qvcJIY4AHx3uYfhr63EbWPHgPY2uu8trj32LZ5BTdXdMcHTlKbXEvt2//GN13beW7o7tZc+bLbHMjbFn+bra6s7zWu4O/uDTE27auYM/rJ/j6vv1sPbGftwweZ9PGU3SPbObI8wOM9i6GiQs8t2aQbw3dw+KpLn68byFb3dNMj+zDnb6bgSurGDn3HZZMHuDWxx7gyrYlLFuWvqj+hWe+xF8dX8raYfjo/Uu4ePkLjJ87zMiC5YjUWTV1mrNX3sNrfIx6AptHvkpvzz4ahxMGV99Kfd0OGv2LODlwkZeunGXz+Qkmz6zkQOMsm+qrefCWrfRMjdO9oJ/JsSm23Hkrx64OsPv509x132revekErz//5zx/cIANE8Kiu4Y4OzXJilu7+INTF/nmxEbuv9Lg7zpH8vx5RsYPMPTe+xl9cDO7Tu/ibY372XRxFQu2LuGlpXX+9PDrrBs5y/u3bGp9FfnNb/+Al55+httuWUB3fT/TF2HbyCVOyr28iGN82QZ++JG38ZbN17YRs4g845zbeU2JriM6tWHXar8+v3sfk4mD6X76rkxwV+O7HFxwG7sX3Mmi5AIfGn2cgVPTTJ1fya1rTrFgy6vsT+7mL6beQ9elLladPcrZvi52diUkyTCH1tTZMXmM7nPb+PrqBzmxUFhy6jArFg/zlgVPsfDMBn6wYAu39n6PrVNHuTy6nJP9S3m6+yEmp5dy59WXeGTxcY5euJNdXSu4f88zJKOjXF2+io/VHuLgykF+b+0Yl+U8Qz37mezqom/8EheGB9l45Sx3LtxL96kVTJyDSytHGV26lh/03cKJ5bez6eJlltYvcXfvLrZMHuKLPSsYnriTweFjbLgAV5Zs4/SKrUxNTXJm+RgDPdNsO3WKBb3j7Fm3hhEZoH9ygtv3n2LHZVi+4gxHx1awe5Hj/OKFLB5dyYWeuxAc7zz4Iqw5yvNr1nLv5Ai1vkmeZQW3n2nw4/e+izVvf/tfv1FERGTo1H7NCRkTkbXOuZPZ8T8GHnLOfbwq3bUYs4iIiPmBG5GMvREbFu1XRMSbD53ar7la9PXfi8h9pPPFh4G/P0d6RERERLwRRBsWERExY5gTMuac+7tzkW9ERETETCDasIiIiJnEvFzaIiIiIiIiIiLiZkEkYxERERERERERc4hIxiIiIiIiIiIi5hBzvrTFtUBEzgJH5lqPDjAInJtrJeYIb9ayx3LPHjY751bOch6zjjdgv27WNhX1vr6Iel9fXKveHdmvm4qM3SwQkV032qf41wtv1rLHckfMNG7Wuo16X19Eva8vZkvv+JgyIiIiIiIiImIOEclYRERERERERMQcIpKx2cGn51qBOcSbteyx3BEzjZu1bqPe1xdR7+uLWdE7vjMWERERERERETGHiDNjERERERERERFziEjGIiIiIiIiIiLmEJGMKYjIUhH5YxF5TUReFZG3i8hyEfmGiOzL/pdlcUVE/pOI7BeRF0XkAU/OT2Xx94nIT3nhbxGRl7I0/0lEJAs387iO5f7HIrJbRF4WkT8QkV4R2SIiT2U6/aGI9GRxF2Tn+7PrQ56cf5GF7xGR93vhH8jC9ovIL3nhZh6zXNbPisgZEXnZC5uze1yWx3Uo93/I2vqLIvInIrLUuzYj9/KNtJc3M0L1e6PDal83A0Rko4h8S1J7v1tE/tFc69QJMhv9AxF5IdP7V+dap2uBiNRF5DkR+cpc69IpRORwZtufF5FdMyrcORd/3g/4XeBns+MeYCnw74FfysJ+Cfh32fGPAl8DBHgb8FQWvhw4mP0vy46XZdd+ALw9S/M14INZuJnHdSrzeuAQsDA7/yPgk9n/x7Ow3wD+h+z4fwR+Izv+OPCH2fGdwAvAAmALcACoZ78DwNasTl8A7vTyKuQxy+V9J/AA8LIXNmf3OJTHdSr3+4Cu7PjfeTrN2L281vZyvdr9jfgrq98b/We1r5vhB6wFHsiOFwF7b4Y6z+zFQHbcDTwFvG2u9boG/f8J8PvAV+Zal2vQ+TAwOBuy48yYBxFZTGpQfgvAOXfVOTcMPEZK0sj+/7vs+DHg91yK7wNLRWQt8H7gG865C865i8A3gA9k1xY7577n0jv7e0qWlcf1QhewUES6gD7gJPAo8MeGTr6ufwy8J5v9eQz4vHNu0jl3CNgPPJj99jvnDjrnrgKfBx7L0oTymDU4574NXFDBc3mPQ3nMKKxyO+f+3Dk3nZ1+H9jg6TRT9/Ja28ubGWb9zrFOHSHQr254OOdOOueezY7HgFdJHdQbGpm9uJSddme/m+KLPBHZAHwI+M251uVGQSRjeWwFzgK/nU2f/qaI9AOrnXMnIe24wKos/nrgmJf+eBZWFn7cCKckj1mHc+514P8AjpKSsBHgGWDYG6h9XVvly66PACu49vpYUZLH9cZc3uOQrOuNnyadoYOZvZfX2l7ezIh1MofIHqHfTzrLdMMje9T3PHCG1Dm8KfQG/k/gnwHJXCtyjXDAn4vIMyLy8zMpOJKxPLpIp9n/s3PufuAy6eOkEMQIc28gfE6Rvbv0GOmjonVAP/BBI2pT15kq9w1ZHwrXo0xzXg8i8svANPC5ZpAR7Y2W+2a+/9cbsU7mCCIyAPx/wC8650bnWp9O4JxrOOfuI53RflBE7p5rnaogIh8GzjjnnplrXd4AHnbOPUA6Pv5PIvLOmRIcyVgex4Hjnnfxx6Tk7HTzsVH2f8aLv9FLvwE4URG+wQinJI/rgR8BDjnnzjrnpoAvAO8gfVzWZejaKl92fQnp44lrrY9zJXlcb8zlPQ7Jui7IPj74MPB3skerZTq9kXt5re3lzYxYJ3MAEekmJWKfc859Ya71uVZkr9P8JfCBOValEzwMfFREDpM+hn9URP7r3KrUGZxzJ7L/M8CfMIOvVUQy5sE5dwo4JiK3Z0HvAV4BvgQ0v5b7KeCL2fGXgE9kX8O9DRjJHj/9GfA+EVmWzTq9D/iz7NqYiLwte2fmE0qWlcf1wFHgbSLSl+nVLPe3gL9l6OTr+reAb2aD+JeAj2dfz20BbiN9mf1p4Lbsa7se0pe4v5SlCeVxvTGX9ziUx6xDRD4A/HPgo865ce/STN7La20vb2aY9TvHOs1rZP30t4BXnXO/Ntf6dAoRWSnZ188ispDUqX5tbrWqhnPuXzjnNjjnhkjb9zedcz85x2pVQkT6RWRR85jU5s/cl8Oz8VXAzfwD7gN2AS8C/430S7kVwF8A+7L/5VlcAf4f0q+fXgJ2enJ+mvSF5P3A3/PCd2Y38ADwf9PeBcHM4zqW+1dJO/LLwH8h/cJtK+nguB/4f4EFWdze7Hx/dn2rJ+eXs7LtIfuKMAv/UdKvlA4Av+yFm3nMcln/gPTduCnSmYifmct7XJbHdSj3ftJ3lJ7Pfr8x0/fyjbSXN/MvVL83+s9qX3OtU4d6P0L6KPhFrx/86Fzr1YHe9wLPZXq/DPwvc63TGyjDu7lJvqbM7NsL2W/3TPfNuB1SRERERERERMQcIj6mjIiIiIiIiIiYQ0QyFhERERERERExh4hkLCIiIiIiIiJiDhHJWERERERERETEHCKSsYiIiIiIiIiIOUQkYxERERERERERc4hIxiIiIiIiIiIi5hCRjEXcsBCRt4rIiyLSm61+vPtm2HstIiIiQkQ+JSL/yDv/NyLyD+dSp4gbF3HR14gbGiLyv5Gu4L6QdN/QfzvHKkVERERUQkSGgC845x4QkRrpzhsPOufOz6liETckuqqjRETMKf416X59E0D0KiMiIm4KOOcOi8h5EbkfWA08F4lYRAiRjEXc6FgODADdpDNkl+dWnYiIiIiO8ZvAJ4E1wGfnVpWIGxnxMWXEDQ0R+RLweWALsNY59wtzrFJERERERxCRHuAlUmfyNudcY45VirhBEWfGIm5YiMgngGnn3O+LSB34rog86pz75lzrFhEREVEF59xVEfkWMByJWEQZ4sxYRERERETELCB7cf9Z4Mecc/vmWp+IGxdxaYuIiIiIiIgZhojcCewH/iISsYgqxJmxiIiIiIiIiIg5RJwZi4iIiIiIiIiYQ0QyFhERERERERExh4hkLCIiIiIiIiJiDhHJWERERERERETEHCKSsYiIiIiIiIiIOcT/D+XKde0+YPHmAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "yz_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = yz_axes.plot(y, z, '.')\n",
-    "_ = yz_axes.set_xlabel('y')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/simulation clock.ipynb b/notebooks/simulation clock.ipynb
deleted file mode 100644
index ea0dee5..0000000
--- a/notebooks/simulation clock.ipynb	
+++ /dev/null
@@ -1,122 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "time_step_size = 5  # seconds\n",
-    "total_simulation_time = 10*3600  # hours to seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "0"
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "5"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "simulation_clock.set_time_index(1)\n",
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "number_of_time_steps = simulation_clock.number_of_time_steps()\n",
-    "time_indices = np.zeros(number_of_time_steps)\n",
-    "times = np.zeros(number_of_time_steps)\n",
-    "\n",
-    "for current_time_index in simulation_clock.iter_time_index():\n",
-    "    time_indices[current_time_index] = current_time_index\n",
-    "    times[current_time_index] = simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4lHW6xvHvQ++9l9CLIIg4UixYVhGxIKse2wqr7qJ79Li7uivYsa3oWlb32FCxnFVRKYKIIirYRYJCEkILRQiEGnoJKc/5Y17WWQwQYCYzSe7Pdc017/zmN+88Q2Ju3/aMuTsiIiLRUC7eBYiISOmhUBERkahRqIiISNQoVEREJGoUKiIiEjUKFRERiRqFioiIRI1CRUREokahIiIiUVMh3gUUtwYNGnjr1q3jXYaISIkyZ86cje7e8FDzylyotG7dmuTk5HiXISJSopjZT0WZp91fIiISNQoVERGJGoWKiIhEjUJFRESiRqEiIiJRo1AREZGoUaiIiEjUKFREREq5RWu38+hHCymOr48vcxc/ioiUFXvzCnh2ZgbPzMigZpWK/KZPK5rVqRrT91SoiIiUQvNWbeG2cSksWredQT2acc/5Xahfo3LM3zdmu7/MrIqZfW9m88xsvpndF4y/ambLzWxucOsRjJuZPW1mGWaWYmY9I9Y11MyWBLehEeMnmFlq8Jqnzcxi9XlEREqC3XvzeeiDdAY/+zVbd+fy8tAQT11+fLEECsR2SyUHONPdd5hZReArM/sweO6v7j5uv/nnAh2CW2/gOaC3mdUD7gVCgANzzGyyu28O5gwDvgOmAgOADxERKYO+WbqREeNTWZm9iyt7JzHi3M7UqlKxWGuIWah4+IjQjuBhxeB2sKNEg4DXg9d9Z2Z1zKwpcDow3d2zAcxsOjDAzGYCtdz922D8deAiFCoiUsZs25PLw1MX8tb3K2lVvxpv/b4PfdvVj0stMT37y8zKm9lcYD3hYJgVPPVQsIvrSTPbt03WHFgV8fLMYOxg45mFjIuIlBmfpK/j7Cc+5+3ZKxnWry0f/bFf3AIFYnyg3t3zgR5mVgeYaGbHArcDa4FKwGhgOHA/UNjxED+C8V8ws2GEd5ORlJR0mJ9CRCTxbNqRw33vpzN53ho6N6nJ6KtDHNeyTrzLKp7rVNx9CzATGODuWR6WA7wC9AqmZQItI17WAlhziPEWhYwX9v6j3T3k7qGGDQ/5HTMiIgnL3Zk0dzVnPfE5H6ZlccvZHZl80ykJESgQ27O/GgZbKJhZVeAsYGFwnITgTK2LgLTgJZOBIcFZYH2Are6eBUwD+ptZXTOrC/QHpgXPbTezPsG6hgCTYvV5RETibc2W3Vz3WjJ/HDuXVvWr88HNp3LzrzpQqULiXMcey91fTYHXzKw84fB6x92nmNlnZtaQ8O6rucANwfypwEAgA9gFXAPg7tlm9gAwO5h3/76D9sAfgFeBqoQP0OsgvYiUOgUFzluzV/Lw1IXkFzh3n9+F357UmvLlEu8qCiuOy/YTSSgUcn2dsIiUFMs37mTE+BRmLc/m5Pb1eXhwd5LqVyv2OsxsjruHDjVPV9SLiCSgvPwCxny9nMc/XkylCuV45OJu/FeoJYl+jbdCRUQkwSzI2sbw8SmkZG7l7C6NefCiY2lcq0q8yyoShYqISILIycvnmc8yeHbmUupUq8gzV/ZkYLcmCb91EkmhIiKSAH5YuZnh41JYsn4Hvz6+OXef34W61SvFu6zDplAREYmjXXvzeGzaYl75ZjlNa1XhlWtO5IxOjeJd1hFTqIiIxMnXGRsZMSGFVdm7ubpPK24b0ImaxdwAMtoUKiIixWzr7lz+9sEC3k5eRZsG1Xl7WB96t41fv65oUqiIiBSjj+ev5a730ti0cy83nNaOP53VgSoVy8e7rKhRqIiIFIMN23MY+f58PkjJ4pimtXh56Il0a1E73mVFnUJFRCSG3J2JP67m/inp7MrJ56/ndGJYv7ZULJ84/bqiSaEiIhIjq7fs5s6JqcxctIGeSXV49JLutG9UM95lxZRCRUQkygoKnDdm/cSoDxfiwMgLunB138RsABltChURkShatmEHI8an8v2KbE7t0IC/De5Gy3rF3wAyXhQqIiJRkJdfwItfLufJTxZTpUI5/n5Jdy45oUWJarESDQoVEZGjNH/NVoaPTyFt9TYGdG3C/Rd1pVHNktEAMtoUKiIiR2hPbj7//GwJz3++jLrVKvHcVT05t1vTeJcVVwoVEZEjMOenbG4bl8LSDTu5uGcL7j7/GOpUK3kNIKNNoSIichh25uTx92mLeO3bFTSrXZXXru3FaR0bxrushKFQEREpoi8Wb+D2Cams2bqboX1b85dzOlGjsv6MRorZJZ1mVsXMvjezeWY238zuC8bbmNksM1tiZm+bWaVgvHLwOCN4vnXEum4PxheZ2TkR4wOCsQwzGxGrzyIiZduWXXv5y7vzGDLmeypXLMe71/dl5IVdFSiFiOW/SA5wprvvMLOKwFdm9iFwC/Cku481s+eB64DngvvN7t7ezC4HHgEuM7MuwOVAV6AZ8ImZdQze4xngbCATmG1mk909PYafSUTKmA9Ts7h70nw279rLjWe043/OLF0NIKMtZqHi7g7sCB5WDG4OnAlcGYy/BowkHCqDgmWAccD/WvgE70HAWHfPAZabWQbQK5iX4e7LAMxsbDBXoSIiR2399j3cO2k+H6atpWuzWrx27Yl0bVb6GkBGW0y33cysPDAHaE94q2IpsMXd84IpmUDzYLk5sArA3fPMbCtQPxj/LmK1ka9Ztd947wPUMQwYBpCUlHR0H0pESjV3Z9ycTB78YAG7c/O5bUAnfn9q6W0AGW0xDRV3zwd6mFkdYCJwTGHTgvvCLjv1g4wX9hP2QsZw99HAaIBQKFToHBGRVdm7uGNiKl8u2ciJresy6uLutGtYI95llSjFcpTJ3beY2UygD1DHzCoEWystgDXBtEygJZBpZhWA2kB2xPg+ka850LiISJEVFDivf7uCR6ctwoAHBnXlqt6tKFcGGkBGWyzP/moYbKFgZlWBs4AFwAzgkmDaUGBSsDw5eEzw/GfBcZnJwOXB2WFtgA7A98BsoENwNlklwgfzJ8fq84hI6ZSxfjuXvvAtI99P58TW9Zj2535c3be1AuUIxXJLpSnwWnBcpRzwjrtPMbN0YKyZPQj8CLwczH8Z+L/gQHw24ZDA3eeb2TuED8DnATcGu9Uws5uAaUB5YIy7z4/h5xGRUiQ3v4DRXyzjqU+WUK1yeZ74r+MYfHzzMtcAMtosvDFQdoRCIU9OTo53GSISR2mrt3LbuBTSs7ZxXremjLywKw1rVo53WQnNzOa4e+hQ83TljoiUGXty83nq0yWM/mIZ9apX4vnfnMCAY5vEu6xSRaEiImXC7BXZDB+XwrKNO/mvUAvuHNiF2tUqxrusUkehIiKl2o6cPB79aCGvf/sTLepW5V/X9eaUDg3iXVappVARkVJrxqL13Dkhlaxte7j25Db85ZyOVKukP3uxpH9dESl1Nu/cywNT0pnw42raN6rBuBtO4oRWdeNdVpmgUBGRUsPdmZq6lnsnp7FlVy43n9meG89sT+UKagBZXBQqIlIqrN+2h7veS+Pj9HV0a16b16/tTZdmteJdVpmjUBGREs3deTc5kwc+SGdvXgG3n9uZ605pQwU1gIwLhYqIlFgrN+3i9okpfJ2xiV5t6vHIxd1p06B6vMsq0xQqIlLi5Bc4r36zgsemLaJ8OePBi47lyl5J6teVABQqIlKiLFm3ndvGp/Djyi2c0akhDw3uRrM6VeNdlgQUKiJSIuzNK+D5z5fyv59lUL1yef5xWQ8G9WimBpAJRqEiIgkvJXMLt41LYeHa7VxwXDPuvaALDWqoAWQiUqiISMLavTeff3yymBe/XEbDmpV5cUiIs7s0jndZchAKFRFJSN8t28SI8Sms2LSLK3q15PaBx1CrihpAJjqFiogklO17chn14ULemLWSpHrVePN3vTmpvRpAlhQKFRFJGJ8tXMedE9NYt20PvzulDbf270TVSmqxUpIoVEQk7rJ37uX+9+fz3tw1dGxcg2evOonjk9QAsiSKWR8DM2tpZjPMbIGZzTezPwbjI81stZnNDW4DI15zu5llmNkiMzsnYnxAMJZhZiMixtuY2SwzW2Jmb5tZpVh9HhGJPndn8rw1nPXE53yQmsUff9WBKf9zqgKlBIvllkoecKu7/2BmNYE5ZjY9eO5Jd38scrKZdQEuB7oCzYBPzKxj8PQzwNlAJjDbzCa7ezrwSLCusWb2PHAd8FwMP5OIRMnareEGkJ8sWMdxLWrzyCW96dxEDSBLupiFirtnAVnB8nYzWwA0P8hLBgFj3T0HWG5mGUCv4LkMd18GYGZjgUHB+s4ErgzmvAaMRKEiktDcnbGzV/G3DxaQW1DAXecdwzUnt6G8WqyUCsVyTMXMWgPHA7OAk4GbzGwIkEx4a2Yz4cD5LuJlmfwcQqv2G+8N1Ae2uHteIfNFJAH9tGknI8an8u2yTfRtW59RF3ejVX01gCxNYt4b2sxqAOOBP7n7NsJbEu2AHoS3ZB7fN7WQl/sRjBdWwzAzSzaz5A0bNhzmJxCRo5Vf4Lz05TLO+ccXpK3eysO/7sabv++tQCmFYrqlYmYVCQfKG+4+AcDd10U8/yIwJXiYCbSMeHkLYE2wXNj4RqCOmVUItlYi5/8Hdx8NjAYIhUKFBo+IxMaiteEGkPNWbeGsYxrx4EXdaFK7SrzLkhiJWahYuMvby8ACd38iYrxpcLwFYDCQFixPBt40sycIH6jvAHxPeIukg5m1AVYTPph/pbu7mc0ALgHGAkOBSbH6PCJyePbmFfDMjAyenZlBzSoVefqK47mge1M1gCzlYrmlcjJwNZBqZnODsTuAK8ysB+FdVSuA6wHcfb6ZvQOkEz5z7EZ3zwcws5uAaUB5YIy7zw/WNxwYa2YPAj8SDjERibO5q7Zw27h5LF63g4t6NOOeC7pSr7rO+C8LzL1s7Q0KhUKenJwc7zJESqXde/N5/ONFjPl6OY1rVeGhwcdyZmc1gCwNzGyOu4cONU9X1ItIVHyzdCMjxqeyMnsXV/VOYsS5nampBpBljkJFRI7Ktj25PDx1AW99v4rW9asxdlgf+rStH++yJE4UKiJyxD5JX8ed76WyYXsO1/dry5/O6qgGkGWcQkVEDtvGHTnc9346789bQ+cmNXlxSIjuLerEuyxJAAoVESkyd2fS3DXc9/58duTkccvZHbnhtHZUqhDz66ilhFCoiEiRrNmym7veS+Ozhes5PqkOj17cnQ6Na8a7LEkwChUROaiCAufN71cy6sOF5Bc495zfhaEntVYDSCmUQkVEDmj5xp2MGJ/CrOXZnNy+Pg8P7k5S/WrxLksSmEJFRH4hL7+Al79azhPTF1OpQjkevbg7l4ZaqMWKHJJCRUT+Q/qabQwfn0Lq6q3079KYBy46lsa11ABSikahIiIA5OTl87+fZfDczKXUqVaRZ67sycBuTbR1IodFoSIizPlpM8PHp5Cxfge/7tmcu8/rQl01gJQjoFARKcN27c3j79MW8eo3K2haqwqvXHMiZ3RqFO+ypARTqIiUUV8t2ciICSlkbt7NkL6tuG1AZ2pU1p8EOTr6DRIpY7buyuWhqem8k5xJmwbVeef6vvRqUy/eZUkpoVARKUM+SlvL3ZPSyN65lz+c3o4//qoDVSqqAaREj0JFpAzYsD2HkZPn80FqFl2a1uKV357Isc1rx7ssKYUUKiKlmLsz4YfV3D8lnd178/nrOZ0Y1q8tFcurAaTERsx+s8yspZnNMLMFZjbfzP4YjNczs+lmtiS4rxuMm5k9bWYZZpZiZj0j1jU0mL/EzIZGjJ9gZqnBa542nVAv8m+rt+zmt6/M5tZ359G+UQ2m/vFUbjyjvQJFYiqWv115wK3ufgzQB7jRzLoAI4BP3b0D8GnwGOBcoENwGwY8B+EQAu4FegO9gHv3BVEwZ1jE6wbE8POIlAgFBc7r366g/xOfM3tFNiMv6MK71/elfaMa8S5NyoCY7f5y9ywgK1jebmYLgObAIOD0YNprwExgeDD+urs78J2Z1TGzpsHc6e6eDWBm04EBZjYTqOXu3wbjrwMXAR/G6jOJJLqlG3YwYnwKs1ds5tQODfjb4G60rKcGkFJ8iuWYipm1Bo4HZgGNg8DB3bPMbN+VVs2BVREvywzGDjaeWci4SJmTm1/Ai18u4x+fLKFqxfI8dulxXNyzuVqsSLErcqiYWXV333m4b2BmNYDxwJ/cfdtBfskLe8KPYLywGoYR3k1GUlLSoUoWKVHSVm9l+PgU5q/ZxrnHNuG+QV1pVFMNICU+DnlMxcxOMrN0YEHw+Dgze7YoKzezioQD5Q13nxAMrwt2axHcrw/GM4GWES9vAaw5xHiLQsZ/wd1Hu3vI3UMNGzYsSukiCW9Pbj5/n7aQQc98zbptOTx3VU+e+80JChSJq6IcqH8SOAfYBODu84B+h3pRcCbWy8ACd38i4qnJwL4zuIYCkyLGhwRngfUBtga7yaYB/c2sbnCAvj8wLXhuu5n1Cd5rSMS6REq15BXZDHz6S56ZsZTBxzfnk1v6cW63pvEuS6Rou7/cfdV+u63yi/Cyk4GrgVQzmxuM3QGMAt4xs+uAlcClwXNTgYFABrALuCZ472wzewCYHcy7f99Be+APwKtAVcIH6HWQXkq1nTnhBpCvfbuCZrWr8vq1vejXUVvfkjiKEiqrzOwkwM2sEnAzwa6wg3H3ryj8uAfArwqZ78CNB1jXGGBMIePJwLGHqkWkNPh88QbumJDKmq27Gdq3NX89pxPV1QBSEkxRfiNvAJ7i57OtPuYAf/xFJPq27NrLA1MWMP6HTNo1rM671/cl1FoNICUxHTJU3H0jcFUx1CIi+/kwNYu7J81n86693HRGe246s70aQEpCO2SomFkb4H+A1pHz3f3C2JUlUrat37aHeybN56P5a+narBavXXsiXZupAaQkvqLs/nqP8Flc7wMFsS1HpGxzd8bNyeSBKensyStg+IDO/P7UNlRQvy4pIYoSKnvc/emYVyJSxq3K3sUdE1P5cslGTmxdl1EXd6ddQ/XrkpKlKKHylJndS/gAfc6+QXf/IWZViZQh+UEDyL9PW4QBDwzqylW9W1GunFqsSMlTlFDpRvh6kzP5efeXB49F5ChkrN/O8PGpzPlpM6d1bMjfft2N5nWqxrsskSNWlFAZDLR1972xLkakrMjNL+CFz5fy9KcZVKtcnif+6zgGH68GkFLyFSVU5gF1+LlHl4gchbTVW/nruBQWZG3jvO5NGXlBVxrWrBzvskSioiih0hhYaGaz+c9jKjqlWOQw7MnN5x+fLOHFL5dRr3olXrj6BM7p2iTeZYlEVVFC5d6YVyFSys1atokRE1JZvnEnl4VacsfAY6hdrWK8yxKJuqJcUf95cRQiUhpt35PLox8t4v+++4mW9aryr+t6c0qHBvEuSyRmDhgqZvaVu59iZtv5zy+/MsL9H2vFvDqREmzGovXcOSGVrG17uPbkNvzlnI5Uq6QGkFK6Hew3vDqAu9csplpESoXNO/fywJR0Jvy4mg6NajD+DyfRM6luvMsSKRYHC5VCv5pXRArn7nyQmsW9k+azdXcuN5/ZnhvPbE/lCmoAKWXHwUKlkZndcqAn9/s2R5Eybd22Pdz1XhrT09fRrXlt/vW73hzTVHuIpew5WKiUB2pw4C/aEinz3J13klfx4AcL2JtXwO3ndua6U9QAUsqug4VKlrvfX2yViJQwKzftYsSEFL5Zuonebeox6uLutGlQPd5licTVwUJFWygihcgvcF79ZgWPTVtE+XLGQ4OP5YoTk9QAUgQ42Db6L75H/nCY2RgzW29maRFjI81stZnNDW4DI5673cwyzGyRmZ0TMT4gGMswsxER423MbJaZLTGzt82s0tHUK1IUi9dt5+LnvuGBKen0bVef6bf0U0dhkQgHDBV3zz7Kdb8KDChk/El37xHcpgKYWRfgcqBr8Jpnzay8mZUHngHOBboAVwRzAR4J1tUB2Axcd5T1ihzQ3rwCnvpkCec9/SU/bdrJU5f34OWhIZrWVkdhkUgxuxLL3b8ws9ZFnD4IGOvuOcByM8sAegXPZbj7MgAzGwsMMrMFhFvvXxnMeQ0YCTwXnepFfjZv1RaGj09h4drtXHBcM0Ze0IX6NdQAUqQw8bi89yYzGwIkA7e6+2agOfBdxJzMYAxg1X7jvYH6wBZ3zytkvkhU7N6bz5OfLOalL5fRsGZlXhwS4uwujeNdlkhCK+7zHp8D2gE9gCzg8WC8sB3SfgTjhTKzYWaWbGbJGzZsOLyKpUz6dukmzn3qC0Z/sYzLTkxi+i2nKVBEiqBYt1Tcfd2+ZTN7EZgSPMwEWkZMbQGsCZYLG98I1DGzCsHWSuT8wt53NDAaIBQKqVOAHNC2PbmM+nAhb85aSav61Xjz9705qZ0aQIoUVbGGipk1dfes4OFgYN+ZYZOBN83sCaAZ0AH4nvAWSQczawOsJnww/0p3dzObAVwCjAWGApOK75NIafTZwnXcMSGN9dv38PtT23DL2Z2oWkktVkQOR8xCxczeAk4HGphZJuHvZTndzHoQ3lW1ArgewN3nm9k7QDqQB9zo7vnBem4CphG+wn+Mu88P3mI4MNbMHgR+BF6O1WeR0m3Tjhzun5LOpLlr6NS4Js9ffQI9WtaJd1kiJZK5l629QaFQyJOTk+NdhiQAd2fyvDXc93462/fkcuMZ7fnv09tTqYJarIjsz8zmuHvoUPP05Q5SJmVt3c1dE9P4dOF6jmtZh0cv7k6nJvqWB5GjpVCRMqWgwBk7exUPT11AbkEBd513DNec3IbyuiJeJCoUKlJmrNi4kxETUvhuWTZ929Zn1MXdaFVfDSBFokmhIqVeXn4Br3y9gsenL6JiuXKM+nU3LjuxJWbaOhGJNoWKlGoL125j+LgU5mVu5axjGvHgRd1oUrtKvMsSKbUUKlIq5eTl88yMpTw7I4PaVSvyzyuO5/zuTbV1IhJjChUpdX5cuZnh41NYvG4HF/Voxj0XdKVedX0zgkhxUKhIqbFrbx6Pf7yYMV8vp0mtKoz5bYgzO6tfl0hxUqhIqfBNxkZGTEhlZfYuftMnieEDOlOzSsV4lyVS5ihUpETbujuXh6cuYOzsVbSuX42xw/rQp239eJclUmYpVKTE+nj+Wu56L42NO3K4/rS2/PmsjlSpqAaQIvGkUJESZ+OOHEZOns+UlCw6N6nJS0NDdG+hBpAiiUChIiWGu/Pe3NXc9346u3LyufXsjlx/Wjs1gBRJIAoVKRHWbNnNnRNTmbFoA8cnhRtAdmisBpAiiUahIgmtoMB54/uVPPLhQvILnHvO78LQk1qrAaRIglKoSMJatmEHIyak8v3ybE5p34CHf92NlvWqxbssETkIhYoknLz8Al76ajlPTl9MpQrlePTi7lwaaqEWKyIlgEJFEkr6mm3cNn4eaau30b9LYx646Fga11IDSJGSImanzZjZGDNbb2ZpEWP1zGy6mS0J7usG42ZmT5tZhpmlmFnPiNcMDeYvMbOhEeMnmFlq8JqnTf8bW6Ll5OXz+MeLuPB/v2Lt1j08e1VPXrj6BAWKSAkTy3MxXwUG7Dc2AvjU3TsAnwaPAc4FOgS3YcBzEA4h4F6gN9ALuHdfEAVzhkW8bv/3khJizk+bOe/pr/jnZxlc2KMZ0/98GgO7qaOwSEkUs91f7v6FmbXeb3gQcHqw/BowExgejL/u7g58Z2Z1zKxpMHe6u2cDmNl0YICZzQRqufu3wfjrwEXAh7H6PBJ9O3PyeOzjRbz6zQqa1a7Kq9ecyOmdGsW7LBE5CsV9TKWxu2cBuHuWme37C9IcWBUxLzMYO9h4ZiHjUkJ8uWQDt09IJXPzbob0bcVtAzpTo7IO8YmUdInyX3Fh+zn8CMYLX7nZMMK7ykhKSjqS+iRKtu7K5cEP0nl3TiZtG1Tnnev70qtNvXiXJSJRUtyhss7MmgZbKU2B9cF4JtAyYl4LYE0wfvp+4zOD8RaFzC+Uu48GRgOEQqEDho/E1kdpa7l7UhrZO/fy36e34+ZfdVADSJFSpribJk0G9p3BNRSYFDE+JDgLrA+wNdhNNg3ob2Z1gwP0/YFpwXPbzaxPcNbXkIh1SYJZv30P//3GHG741xwa1qjMpBtP5rYBnRUoIqVQzLZUzOwtwlsZDcwsk/BZXKOAd8zsOmAlcGkwfSowEMgAdgHXALh7tpk9AMwO5t2/76A98AfCZ5hVJXyAXgfpE4y7M+GH1dw/JZ3dufn89ZxODOvXlorl1QBSpLSy8AlXZUcoFPLk5OR4l1HqZW7exR0T0/hi8QZOaFWXRy7uTvtGNeJdlogcITOb4+6hQ81LlAP1UkoUFDj/991PPPLRQgDuu7ArV/dpRTk1gBQpExQqEjVLN+xg+LgUkn/azKkdGvC3wWoAKVLWKFTkqOXmFzD6i2U89ekSqlYsz2OXHsfFPZvriniRMkihIkclbfVWho9PYf6abQzs1oSRF3alUU316xIpqxQqckT25Obz9KdLeOGLZdStVonnf9OTAcc2jXdZIhJnChU5bLNXZDN8XArLNu7k0hNacNd5XahdrWK8yxKRBKBQkSLbkZPHox8t5PVvf6J5naq8fm0v+nVsGO+yRCSBKFSkSD5fvIE7JqSyZutufntSa/56TieqqwGkiOxHfxXkoLbs2sv9U9KZ8MNq2jWszrgb+nJCKzWAFJHCKVTkgKamZnHPpDS27MrlpjPac9OZ7dWvS0QOSqEiv7B+2x7unpTGtPnrOLZ5LV67thddm9WOd1kiUgIoVOTf3J1352Ty4JR09uQVMHxAZ35/ahsqqAGkiBSRQkUAWJW9i9snpPJVxkZ6ta7HqIu70bahGkCKyOFRqJRx+QXO69+u4NGPFlHO4IGLjuWqXklqACkiR0ShUoZlrN/ObeNS+GHlFk7v1JCHBnejeZ2q8S5LREowhUoZlJtfwPMzl/LPzzKoVrk8T152HBf1UANIETl6CpUyJjVzK38dN4+Fa7dzXvem3HdhVxrUqByLjF4VAAANmElEQVTvskSklFColBF7cvN58pPFvPjFMhrUqMwLV5/AOV2bxLssESllFCplwKxlmxgxIZXlG3dyWagld5x3DLWrqgGkiERfXC5AMLMVZpZqZnPNLDkYq2dm081sSXBfNxg3M3vazDLMLMXMekasZ2gwf4mZDY3HZ0lk2/fkctd7qVw2+jvyCgp443e9eeSS7goUEYmZeG6pnOHuGyMejwA+dfdRZjYieDwcOBfoENx6A88Bvc2sHnAvEAIcmGNmk919c3F+iEQ1Y+F67pyYSta2PVx3Shtu7d+RapW0YSoisZVIf2UGAacHy68BMwmHyiDgdXd34Dszq2NmTYO50909G8DMpgMDgLeKt+zEkr1zLw9MSWfij6vp0KgG4/9wEj2T6sa7LBEpI+IVKg58bGYOvODuo4HG7p4F4O5ZZtYomNscWBXx2sxg7EDjv2Bmw4BhAElJSdH8HAnD3ZmSksXIyfPZujuXm3/VgRvPaEflCmoAKSLFJ16hcrK7rwmCY7qZLTzI3MIunvCDjP9yMBxaowFCoVChc0qyddv2cOfEND5ZsI7uLWrzr9/15pimteJdloiUQXEJFXdfE9yvN7OJQC9gnZk1DbZSmgLrg+mZQMuIl7cA1gTjp+83PjPGpScUd+ft2at4aOoC9uYVcMfAzlx7shpAikj8FPtfHzOrbmY19y0D/YE0YDKw7wyuocCkYHkyMCQ4C6wPsDXYTTYN6G9mdYMzxfoHY2XCyk27uOqlWYyYkEqXprWY9qd+DOvXToEiInEVjy2VxsDEoCVIBeBNd//IzGYD75jZdcBK4NJg/lRgIJAB7AKuAXD3bDN7AJgdzLt/30H70iy/wHnl6+U89vEiKpQrx98Gd+PyE1uqAaSIJAQLn1RVdoRCIU9OTo53GUdk0drtDB+fwtxVWzizcyMeGnwsTWurAaSIxJ6ZzXH30KHmJdIpxXIAe/MKeHZmBs/MyKBmlYo8dXkPLjyumRpAikjCUagkuHmrtnDbuBQWrdvOhcc1494LulBfDSBFJEEpVBLU7r35PDF9ES9/tZxGNavw0pAQZ3VpHO+yREQOSqGSgL5duokRE1L4adMuruydxIhzO1Orivp1iUjiU6gkkG17cnl46kLe+n4lrepX483f9+akdg3iXZaISJEpVBLEJ+nruPO9VDZsz2FYv7b8+ayOVK2kFisiUrIoVOJs044c7ns/ncnz1tCpcU1euDpEj5Z14l2WiMgRUajEibszed4aRk6ez46cPP58Vkf+cHo7KlXQFfEiUnIpVOIga+tu7pqYxqcL19OjZR0evaQ7HRvXjHdZIiJHTaFSjAoKnLdmr+ThqQvJKyjgrvOO4ZqT21BeLVZEpJRQqBSTFRt3MmJCCt8ty+akdvUZ9evuJNWvFu+yRESiSqESY3n5BYz5ejmPf7yYSuXLMerX3bjsxJZqsSIipZJCJYYWZG1j+PgUUjK3ctYxjXnwomNpUrtKvMsSEYkZhUoM5OTl88yMpTw7I4PaVSvyzyuO5/zuTbV1IiKlnkIlyn5YuZnh41JYsn4Hg49vzt3nd6Fe9UrxLktEpFgoVKJk1948Hv94MWO+Xk6TWlV45bcnckbnRvEuS0SkWClUouDrjI2MmJDCquzd/KZPEsMHdKamGkCKSBmkUDkKW3fn8rcPFvB28iraNKjO28P60Ltt/XiXJSISNyU+VMxsAPAUUB54yd1HFcf7fjx/LXe9l8bGHTlcf1q4AWSVimoAKSJlW4kOFTMrDzwDnA1kArPNbLK7p8fqPTdsz2Hk+/P5ICWLzk1q8tLQEN1bqAGkiAiU8FABegEZ7r4MwMzGAoOAqIeKu/Pe3NXc9346u3Ly+Uv/jlx/WjsqllcDSBGRfUp6qDQHVkU8zgR6R/tNcvMLGPZ6MjMWbaBnUrgBZPtGagApIrK/kh4qhV1N6L+YZDYMGAaQlJR02G9SsXw52jasQb+ODRnSt7UaQIqIHEBJD5VMoGXE4xbAmv0nuftoYDRAKBT6RegUxd3ndzmSl4mIlCkl/YDAbKCDmbUxs0rA5cDkONckIlJmlegtFXfPM7ObgGmETyke4+7z41yWiEiZVaJDBcDdpwJT412HiIiU/N1fIiKSQBQqIiISNQoVERGJGoWKiIhEjUJFRESixtyP6FrAEsvMNgA/HeHLGwAbo1hOrKjO6CsptarO6Csptca6zlbu3vBQk8pcqBwNM0t291C86zgU1Rl9JaVW1Rl9JaXWRKlTu79ERCRqFCoiIhI1CpXDMzreBRSR6oy+klKr6oy+klJrQtSpYyoiIhI12lIREZGoUagUgZkNMLNFZpZhZiPiVMMYM1tvZmkRY/XMbLqZLQnu6wbjZmZPB/WmmFnPiNcMDeYvMbOhMaizpZnNMLMFZjbfzP6YiLWaWRUz+97M5gV13heMtzGzWcF7vh18pQJmVjl4nBE83zpiXbcH44vM7Jxo1hnxHuXN7Eczm5Lgda4ws1Qzm2tmycFYQv3sg/XXMbNxZrYw+F3tm2h1mlmn4N9x322bmf0p0er8BXfX7SA3wi31lwJtgUrAPKBLHOroB/QE0iLGHgVGBMsjgEeC5YHAh4S/GbMPMCsYrwcsC+7rBst1o1xnU6BnsFwTWAx0SbRag/erESxXBGYF7/8OcHkw/jzwh2D5v4Hng+XLgbeD5S7B70RloE3wu1I+Bj//W4A3gSnB40StcwXQYL+xhPrZB+/xGvC7YLkSUCcR64yotzywFmiVyHW6u0KlCD/MvsC0iMe3A7fHqZbW/GeoLAKaBstNgUXB8gvAFfvPA64AXogY/495Map5EnB2ItcKVAN+AHoTvniswv4/e8Lf2dM3WK4QzLP9fx8i50WxvhbAp8CZwJTgfROuzmC9K/hlqCTUzx6oBSwnOKacqHXuV1t/4OtEr9PdtfurCJoDqyIeZwZjiaCxu2cBBPeNgvED1VysnyXY9XI84a2AhKs12KU0F1gPTCf8f+9b3D2vkPf8dz3B81uB+sVRJ/AP4DagIHhcP0HrBHDgYzObY2bDgrFE+9m3BTYArwS7FF8ys+oJWGeky4G3guVErlOhUgRWyFiinzJ3oJqL7bOYWQ1gPPAnd992sKkHqCnmtbp7vrv3ILwl0As45iDvGZc6zex8YL27z4kcPsh7xvtnf7K79wTOBW40s34HmRuvWisQ3pX8nLsfD+wkvBvpQOL6bxocL7sQePdQUw9QT7H+DVOoHFom0DLicQtgTZxq2d86M2sKENyvD8YPVHOxfBYzq0g4UN5w9wmJXCuAu28BZhLeD13HzPZ9I2rke/67nuD52kB2MdR5MnChma0AxhLeBfaPBKwTAHdfE9yvByYSDutE+9lnApnuPit4PI5wyCRanfucC/zg7uuCx4laJ6BQKYrZQIfgbJtKhDdDJ8e5pn0mA/vO5BhK+PjFvvEhwdkgfYCtwWbyNKC/mdUNzhjpH4xFjZkZ8DKwwN2fSNRazayhmdUJlqsCZwELgBnAJQeoc1/9lwCfeXgH9WTg8uCsqzZAB+D7aNXp7re7ewt3b034d+8zd78q0eoEMLPqZlZz3zLhn1kaCfazd/e1wCoz6xQM/QpIT7Q6I1zBz7u+9tWTiHWGxepgTWm6ET6rYjHhfe53xqmGt4AsIJfw/3lcR3hf+afAkuC+XjDXgGeCelOBUMR6rgUygts1MajzFMKb1inA3OA2MNFqBboDPwZ1pgH3BONtCf+xzSC8u6FyMF4leJwRPN82Yl13BvUvAs6N4e/A6fx89lfC1RnUNC+4zd/330qi/eyD9fcAkoOf/3uEz4pKxDqrAZuA2hFjCVdn5E1X1IuISNRo95eIiESNQkVERKJGoSIiIlGjUBERkahRqIiISNRUOPQUkbLJzPadugnQBMgn3N4DYJe7nxTl9wsBQ9z95sN4zUhgh7s/Fs1aRI6UQkXkANx9E+HrGYrlj7e7JxO+dkKkxNLuL5EjYGY7gvvTzexzM3vHzBab2Sgzu8rC39WSambtgnkNzWy8mc0ObicXss7T7efvSxlp4e/QmWlmy8zs5oh5d1r4O1E+ATpFjLczs4+CZo5fmlnnYHySmQ0Jlq83szdi+o8jZZq2VESO3nGEm1FmE/6uipfcvZeFv6Dsf4A/AU8BT7r7V2aWRLhNRmENLCN1Bs4g/L00i8zsOcKdAC4n3P25AuGW/fuaTY4GbnD3JWbWG3iWcK+wYcDXZrYcuJVwjzORmFCoiBy92R60IjezpcDHwXgq4VCAcG+xLuHWaADUMrOa7r79IOv9wN1zgBwzWw80Bk4FJrr7ruD9Jgf3NYCTgHcj3qMygLuvM7N7CPcLG+zu2Uf7gUUORKEicvRyIpYLIh4X8PN/Y+UIfynW7iNcb37EugrrrVSO8Hes9DjAuroR7iHV7DDeX+Sw6ZiKSPH4GLhp3wMzO9Af/0P5AhhsZlWDjsAXAHj4O2uWm9mlwfrNzI4LlnsRbp9+PPCXoEuxSEwoVESKx81AyMxSzCwduOFIVuLuPwBvE+7+PB74MuLpq4DrzGxfl+BBZlYZeBG41sPfdXIrMMYi9pGJRJO6FIuISNRoS0VERKJGoSIiIlGjUBERkahRqIiISNQoVEREJGoUKiIiEjUKFRERiRqFioiIRM3/A1nLS8ZyyF4jAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "_ = plt.plot(time_indices, times)\n",
-    "_ = plt.xlabel('Time index')\n",
-    "_ = plt.ylabel('Time')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/simulation.ipynb b/notebooks/simulation.ipynb
deleted file mode 100644
index cc03fab..0000000
--- a/notebooks/simulation.ipynb
+++ /dev/null
@@ -1,361 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "mean_temperature = hydraulic_data['Temp_C'].mean()\n",
-    "total_simulation_time = BigheadCarpEggs.hatching_time(mean_temperature)\n",
-    "# total_simulation_time = BigheadCarpEggs.gas_bladder_inflation_time(mean_temperature)\n",
-    "# total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 10  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "False"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "carp_eggs.diameter() == 0"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import init_transporter\n",
-    "\n",
-    "transport_model = init_transporter(simulation_clock, carp_eggs, 'parabolic')\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "147810.0"
-      ]
-     },
-     "execution_count": 7,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnoAAAHjCAYAAAC0K7IaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcXXV9x//X59ybyTqZ7AtZSCCZEMIWCHvYElCrFLSbWosIWvpoa6u0/VWtW1BrqfZntba/YgyLRBZRNEYQKSAEBAWSsIQQMgkBs0wmC0kmk3Xm3vP5/XHOvffcO3cmM5ktmXk/H49h5n7PfuYwvPlux9wdEREREel9gp4+ARERERHpGgp6IiIiIr2Ugp6IiIhIL6WgJyIiItJLKeiJiIiI9FIKeiIiIiK9lIKeiIiISC+loCciIiLSSynoiYiIiPRS6Z4+gWPFqFGjfMqUKT19GiIiIiJHtGLFip3uPvpI6ynoxaZMmcLy5ct7+jREREREjsjMft+W9dR0KyIiItJLKeiJiIiI9FJquhURERHpiAVVbD60hEL9WcjEW6/oyTPKU9ATERERaY8FVexuup792Q8QhgF3VNwMFcsKy0P4xGc5JsJelwY9MxsGLAJOAxy4EVgL/AiYArwN/Jm77zYzA74DvBc4AHzM3VfG+7ke+EK826+5+w/i8nOAu4CBwC+BT7m7m9mIcsfoymsVERGRXmrTC3D7VVGtXRjwy4qvUJvaDak43BnUDR3OkjMuhiCAMIRlD7GAng965u5dt3OzHwDPuPsiM6sABgH/Auxy91vN7LPAcHf/jJm9F/g7oqB3PvAddz8/Dm3LgTlEYXEFcE4cDl8APgX8jijo/Ze7P2Jm3yh3jNbOdc6cOa5RtyIiIgLAV8dQu/+7hIwjDOGOiicLLbMWfbtt7tVRsAMwK94+m6XuqjlddnpmtsLdj3iALqvRM7OhwKXAxwDcvRFoNLNrgcvj1X4APAV8BrgWuNuj5Pk7MxtmZuPjdR9z913xfh8D3mNmTwFD3f23cfndwPuBR+J9lTuGiIiISHML55HZvIK6xp8Shml+VHEz+yvWAGui5QaLLvoDMul+hW1Kw13us3shAPawrmy6PQnYAdxpZmcS1cR9Chjr7lsB3H2rmY2J158AbEpsvzkua618c5lyWjlGETO7CbgJYPLkyUd5mSIiInJcumUEYTZLbeMSwvDLUa1dxTPRMoOHTjufzcNGt1xrV64s11LqYdeddzt0ZdBLA2cDf+fuz5vZd4DPtrJ+mbuHH0V5m7n7QmAhRE237dlWREREjjML55GpXUHdoQeBfixK/33UHFtR6GvXanNsS2Wl3eA8yz3BB4E3O/Hkj05XBr3NwGZ3fz7+/BOioLfNzMbHNW3jge2J9Scltp8I1Mbll5eUPxWXTyyzPq0cQ0RERPqQzBeqCAKobVzCNj7NL9IroeI30UKDhXPfRxikChu01BybVG58Q6Im757gg8yf1/MhD7ow6Ll7nZltMrMZ7r4WmA+8Hn9dD9waf/95vMlS4JNmdj/RYIz6OKg9CnzdzIbH670L+Jy77zKzBjO7AHge+Cjw3cS+yh1DREREerHGBSM43HQl9dm/BgIWpW+OFlQsa9sginJlrQU7YLDtZaF9PBHujo2QB10/j97fAffEI243ADcQVZI+YGYfBzYCfxqv+0uiEbfriaZXuQEgDnRfBV6M1/tKbmAG8NcUpld5JP6CKOCVO4aIiIj0JguqCMOoxg4ClqQ/z85UQ9HUJ9+/+L1kU4nIczS1dsnPca3dnHN+TFXV2XHhsRPukrp0epXjiaZXEREROQ58bTxh5gC7Dt/MIb8snrC4nVOflCtrQ3MsBMyft64zrqLDenx6FREREZFOsaCKEKg9tAS4n0XpJ6EfQAuDKKDDtXan28t81v71mGyObQ8FPRERETm2fGUUYaaJ2sZ7gSE8H3yLValNRaNjj9gcW66slVo78yw/DD5Ev36juPSS54kmDrmxM66mRynoiYiISM9afheZhz7FzkPfIEM1YfhgPKdd3D2/SwZROAvsC0y3N5k/ryYuOz5r7VqjoCciIiLdr2gQxVR+nP489RVbga3R8i5ojsVC7rHk1CeP0Nsp6ImIiEjXW1DFofAUdjbeCgSE4dK41q7QHAtdM4iif/8JzL346Xhh76u1a42CnoiIiHS+BVUAbD4UTXtCuJRFyWAHXVJrN8q28R37JKfM+BoTJnyYvhbsSinoiYiISMfdMgI8y+ZDi4EqYCl3pJ8kLAl2D512PptHjCY/H0pHa+3i5lizAcy7YnW8sG+HuyQFPRERETk6Rf3sfkYY0jlz2kGrtXYX29P8jX33uJ/6pDso6ImIiEjb5Oez+ylRhFgazWlXUmv3vblX4x1tjk2UpayJu+3PE8HubODTR38dfYiCnoiIiJT3lVEQNiVq7ZaWrbX73dSZvDzpZDqvOdZZwBeYkdrCFZe/Gi9Urd3RUNATERGRyFfHQPYwYQh1jQsJeRBCjjyIoqPNsQYD2M/t9rE+NfVJd1DQExER6cvi5ljytXZB3By7BlgTrWOwcO77CINUYbsONsdGgyiuY/68NYmFqrXrbAp6IiIifcmtUwgP7YZ8rd1Sfp1azYbU9q6d085gMHt5c/7liYVrmq8vnUpBT0REpLeLR8dCC7V2cV67fe67aQr6F7br4Jx2gWV48ZQ34/nspCco6ImIiPQ2iWC3tfFOnKUsSS9nZ9DQxbV2IffYh5g/b31i4XlHfRnScQp6IiIix7sFwwjDQgCrbVxCGAbxK8biUavlgh10rNbO4HRe5rH5NyYWrkeOHQp6IiIix5tvVhPu3wZxrd32xm/QmK1maf+VzWrtjhjsypUdodZuxSnrEs2xZ3foUqRrKeiJiIgcDxLNsWZQu38JYZCrtdsKbG3bZMUtlbVSa3c1v2DR/C8nFs7pyJVIN1LQExERORZ9s5qwYVv+Y23jYsKwqjBZ8aCo1u6Oi95NY79WBlC0VHaEWru6+ckwp1q745WCnoiIyDEis6CKIFlr17iEu9O/oTHIQsXKeEEnTVZcUnZ6sIrH5l3fwSuQY42CnoiISE9ZOI/M5hX5t4nVJQdRBER97QzunTuXvcGIwnYdnawYGGXbeG3+HyQWqtauN1LQExER6S4P/iWseiDf125b43dpCr/EHRVPFYIdcMZZD/M3lf/bedOeAKfby/zviTuYNu0zHb4MOX4o6ImIiHSlr4wiDJsgjLLZlsPJ5tgNwAYw+L+5M9kQnEyU+K7plMmKF9t1zJ+3Ni5RjV1fpKAnIiLSmb5ZDfu3Fb2J4tepNdErxpx8cyzAwrnvJQzi/xR3tNbOQ+4JPsj8ecn3xa5tvr70KQp6IiIiHVX0irEf83ywiVWpTVGgSwS7Cy9ezPXBj8BaaJI9iubY4smK32y+vvRpCnoiIiLttaAqmqs4Dnc/zHydDekd0YeK5/LBbuy4Gm6Z9g/5vna3taVJtpXmWE17Iu2loCciInIkj32ZzLPfzk99Utv4Y+5Lr2B/cDgq6Lcjv+riuZezPxha2PZommRzn8OQuqs0ObEcPQU9ERGRcr4+kfBQAxC9YiwTLmFRxbJ4dGyh1u6+uXOpb23qk5bKWgp3QUjdPIU76RxdHvTMLAUsB7a4+9VmNhW4HxgBrASuc/dGM+sP3A2cA7wDfNDd34738Tng40AW+Ht3fzQufw/wHSAFLHL3W+Pyssfo6msVEZHjW+YLVfkZTWobl3Bn+mmygRe9Yuwnc89nZzC2sFEnTFgcBCG1CnfSBbqjRu9TwBogV4/978B/uvv9ZnYbUYD73/j7bnefZmYfitf7oJmdCnwImAWcADxuZtXxvv4HuArYDLxoZkvd/fVWjiEiIlKQGESxrfG7ZMOfs6jiqaLJis+/8F5uSN/b8gCKlspaG0gROA+dfQpzqgZ3wkWItKxLg56ZTQTeB/wr8A9mZsA84M/jVX4ALCAKYdfGPwP8BPjveP1rgfvd/TDwlpmtB86L11vv7hviY90PXGtma1o5hoiI9GWJYFefuZ794RIWpXPNsYU57TbNDXk4uAYI2jaAAo7w7lgYU9GPV+ee3okXI3JkXV2j923gn4HK+PNIYI+7Z+LPm4EJ8c8TgE0A7p4xs/p4/QnA7xL7TG6zqaT8/CMcQ0RE+pJbp8Ch3UVz2uWDXRogqrW78OIfckNwL6F10px2oL52ckzosqBnZlcD2919hZldnisus6ofYVlL5UEL5a0do/QcbwJuApg8eXK5VURE5Hjy9YnQ2FA8p11qE6uC1ue0O+paOwU7OcZ1ZY3excA1ZvZeYABRH71vA8PMLB3XuE0EauP1NwOTgM1mlgaqgF2J8pzkNuXKd7ZyjCLuvhBYCDBnzpyyYVBERI5xC6oACEPY2ngnzkgWpZ9sNjq2dLLio5rTLlnWbE47kWNPlwU9d/8c8DmAuEbvn9z9I2b2Y+BPiEbFXg/8PN5kafz5t/HyX7u7m9lS4F4z+xbRYIzpwAtE/+pOj0fYbiEasPHn8TZPtnAMERE53jULdkv5cfp56oMDUPFqtE48iCKdznIdrdTaQdvntDOoTKVYd9mZnXxBIl2nJ+bR+wxwv5l9DXgJuD0uvx1YHA+22EUU3HD31Wb2APA6kAH+1t2zAGb2SeBRoulV7nD31Uc4hoiIHG8WDAM8/yaK2sYlQBDV2iWCHUS1dn8V3MUhGxwFOzj6JlkjqrVTc6wcx8zLVUv3QXPmzPHly5f39GmIiMjdH4ANvwaiWrtcsPth+jccCpoK61lxsCuUd2AghUHKArZccVbHr0OkC5nZCnc/4v+F6M0YIiLS83LNscD+pndTn13C88EGVqU2RQMoIF9rN3ru83w1+CotTn0C7ay1g29WT+a6CaM662pEjhkKeiIi0v0WzoPaFUBxrd2i9JNRZ5xU+dGxANi1zffXnnntAhhkARsun90plyJyLFPQExGR7pEYRLG98Rtk+GLiFWOFWrvKoTv45hk3kHsXWYcnLDbAAh46e7reRCF9joKeiIh0jUSwg6jWbkl6JTuDhqJ3xwIsmvtuMkH/wrYd7GcX7Tegbp5q7aRvU9ATEZHO8dUxkD2cGB27GKhKzGlXaI49eHEdP0h9gvzc9x3tZwdgCnYipRT0RETk6HyzGvZvA6Jau+jdsR8gDAPuqHgSKlZG6xksu+gk1qRPpcPBLlemqU9E2kRBT0RE2i4xOtYcthxeUgh2uXfHAhjcNvfqfD+7zgl2zkNnn6J+diLtoKAnIiIti4MdFI+ODUPiWrtCsLt77jwOBEMK23ZkAEW8z0GBRseKdISCnoiIFDQLdj8CBjYPdsBtlyRq7KBjAygADMxCtqo5VqTTKOiJiPRlybdQUNwc+2J6PasqfldYt7OaYxPBDkLq5ivYiXQVBT0Rkb5mwXAgTAS7aHRsuebY/5s7kw3BybQ4iKLdzbEKdiLd6YhBz8xOdffXS8oud/enuuysRESk82x6AW6/Cmg+OvbOiifx3OhY4MK5pW+h6Hhz7ATbyop57+uMKxGRdmpLjd4DZrYY+AYwIP4+B7iwK09MREQ64D9Ph/qNhGGUy3LNsUsrlrMz3UBudOwFF9/DJ1J3k7FosuKjfguFmmNFjkltCXrnA/8OPAdUAvcAF3flSYmIyFFYUJWYrPinQLpZc+yFcxfz3eB71NsIoIVgB+16C0Waw2yer//3FzkWtSXoNQEHgYFENXpvuXvYpWclIiJHtnAe1K6IR8cuBpYShsTNsc8AMHZ8Da9OO4/ngrlA0PZgB63W2k2zt/jNvD/u1MsRkc7XlqD3IvBz4FxgJPA9M/sTd/+TLj0zERFpbsFwwvjlsbWNUXPsrypepraj/eyg9cmKmzXHnn3UlyAi3actQe/j7r48/rkOuNbMruvCcxIRkZxbRhB6Nv/u2DBcEk17ktqUb44978L7+VK/H+aD3VH3s8uVxat+c8ZkrpswqjOvRkS62RGDXiLkJcsWd83piIj0cV+fSNjYEE1qR6HWrvTdsT+Zez47g7FAJ/Szi/cZWEDtPL2FQqQ30Tx6IiI9KZ76JG6NZWvjnWTDkdxdsYxMEOZr7c6/6F5uSN/b8ebY3Ocg+kedgp1Ir6agJyLS3b46BrKHCUNo9FPY2bSEJemV7AwaoOJVIBpEccu0f8i/haLDzbEAgYKdSF+joCci0h2Kpj5JNMcGRLV2Bt+b+z48SBW26WhzbADfrFY/O5G+TEFPRKQrfGUUhE3x1Cc/BpZyX/o59geH882xD1xyIbuC0YVtOqGf3eUjhnL/WdM65xpE5LinoCci0lkWVOX72hUPongOgOkznuEfx/x7vjm2w/3sAIKQunl6C4WIlKegJyJytIqaYx8kDJdGc9oFu6FiGZVDd7DozL8gE/SPN+iEfnam14uJSNsp6ImItNWDfwmrHiAMYVfTzezL/pwAi2vtfgNEkxV/qb2TFR+hOfaPx47gf2ZN6bzrEJE+Q0FPRKQ1t4wgzGYB2HhwCYH9BWtTW3g2XQP9nuLEqSu4a+I/cygYDHRgdGwi2PWzDJvmndfZVyIifZCCnohIicyCKoIQaht/Rhj+DIjfHzswGkRx4dwfcltwf1xr1xmTFas5VkS6hoKeiPR5uWBXn7me+qYPENhS7q34DYcqns6vs+mSkIeDa4CgU2rtKlMp1l12ZudeiIhICQU9EemTMl+oIghg44ElBMFSgKivXaLW7vp8rR0dq7XT68VEpId0WdAzs0nA3cA4orc2LnT375jZCOBHwBTgbeDP3H23mRnwHeC9wAHgY+6+Mt7X9cAX4l1/zd1/EJefA9wFDAR+CXzK3b2lY3TVtYrIse/gglH0D5uoa1xIJhwHLI2C3aAo2M0+Zwn3Df4P6m0E0MG+dvFqfzt5LF+cNqGTr0REpO3My/0faGfs2Gw8MN7dV5pZJbACeD/wMWCXu99qZp8Fhrv7Z8zsvcDfEQW984HvuPv5cWhbDswBPN7POXE4fAH4FPA7oqD3X+7+iJl9o9wxWjvfOXPm+PLlyzv/RohIz/jP08nu3oiRq7ULeLDieeqDAwBUDt3Bg2deyobgZOIXv3a41g4LqLvirM68ChGRssxshbsfsXNvl9XouftWYGv8c4OZrQEmANcCl8er/QB4CvhMXH63R8nzd2Y2LA6LlwOPufsuADN7DHiPmT0FDHX338bldxMFyUdaOYaI9GK55tjaxsWE4X8DFNXaXTh3Mde3d+oTaLXWbng6zZpLz+isSxAR6VTd0kfPzKYAs4HngbFxCMTdt5rZmHi1CcCmxGab47LWyjeXKaeVY5Se103ATQCTJ08+yqsTkR7zzWrChm1Aoa9dNKfdSiAKdncFd3HIOjj1SVQYr683UYjI8aPLg56ZDQEeBD7t7nut3B/VeNUyZX4U5W3m7guBhRA13bZnWxHpGYWpT5YQht/nqX6r2ZDaDoOWceHcxVwcwHVEtXZlgx20rzkWmDSgghcvOq3zL0ZEpIt1adAzs35EIe8ed/9pXLzNzMbHNW3jge1x+WZgUmLziUBtXH55SflTcfnEMuu3dgwROd7c/QEy639NXePPCMMU+UEUFcsYO76Gk05+nm8H36LWJkbBDjo8iAILqNMIWRHpBbpy1K0BtwNr3P1biUVLgeuBW+PvP0+Uf9LM7icajFEfB7VHga+b2fB4vXcBn3P3XWbWYGYXEDUJfxT47hGOISLHgcwXqtiZ+QaHw1MwPs1dFWcSxnPaldbaAUdfa5dvjlWwE5HeqStH3c4FngFWEU2vAvAvRKHsAWAysBH40zi0GfDfwHuIple5wd2Xx/u6Md4W4F/d/c64fA6F6VUeAf4unl5lZLljtHa+GnUr0nMyC6rYeegbZKgmDAN+UPEU2SD623Th3MUEAdzMf7PTxhY26kitncHlw4dy/1nTOvU6RES6S1tH3XZZ0DveKOiJdKNbRrDz0N9zyC9rFuxmn7OEQYMbgE6stTMATX0iIr1Hj0+vIiKSlFlQRd2hJYRhwK8qvkxtv91AYdqTIIBP8j1us2sKGx3VCNlCc+zsyoE8MmdGp12DiMjxRkFPRLrGgioOZU5hZ+ZWwjDgjoqboaIQ7KYGsI5qvmJfbXkQRbmyFmvtopq/uivU105EJEdBT0Q6x1fHEDYdjqc9iYNdAFQs48K5P+TiuGn2On5UqLU72gmLE82xfzxmGP8za0rnXYeISC+ioCciR2fTC2S+fxW7Gr9MI7NZkv4MO4OG1oMdHP2ExebkXlWmWjsRkbZR0BORtivbHLsXiCYrnhHADfyw9WBXruwIzbHqaycicnQU9ESkZQuqCEOobfwpkObu9D/RGGShYhnnXXg/F/dryk970in97EB97UREOpGCnogUfLOacP82iF8x9sv0V6gNdkPFM0A0iOJ7wd/xnM1tX7CDVkfHgoKdiEhXUNAT6cuW3wUPfSqutVsCfJ9F6ScTgyii0bHtfncsaHSsiMgxQEFPpK9ZUEUI1B1aSMhUng++xarUpqKpT/4muJ39NrRj746NCvPB7m8njeaL0yZ03nWIiMgRKeiJ9HYLqgDytXZhuJQ7Kp6EijXAGi6cu5gxQTSfHbSj1q5csHOPB8YGBECtau1ERHqUgp5Ib7PpBbj9KsIQdjXdzCFfwg/Tz3EoaMo3x17cWc2x+XfHxs2x8xTsRESOJQp6Ir1BPDoWolq7H6c/T31wAPrBGWf9M2dX7uKjlgh20MHmWIBAwU5E5BinoCdyPHrwL8mseoAghNrGB6ljMQ+lVxYNorgxuJes9YOOTnuSaI4dngpYc+kZnXstIiLSZRT0RI4Xca1dXeNCQv6CRekJcbD7DRdcfA+LU99nvw0FUHOsiIgACnoix64FwwjDKITVNi5hUTr37thoEMWmS0IeDq6hXQMoQM2xIiJ9iIKeyLEi/xaKe4EhLEp/OvdqV6hYxrOXTGZVcAb5wo4GOwALeOjs6cypGtzx8xcRkWOOgp5IT/jKKMKwidpDPwIGcl/6OfYHN0fLKl7kgovv4bbUffnmU6BjwS7RHFsZGOsuO7MzrkJERI5xCnoiXe2xL8Oz387PY/fr9Bo2BJ+MllX8DoD/u2QmG4KTydXWdbgpNh/sIEXAFjXHioj0SQp6Ip0tboLd2fhlNtlJ/CJlkK+tW8b+i3awuN8NFNplKR/gWipvKdhBvtZO/exERAQU9ESOXsncdYvSy+LsFoW6F+ZWsnLgRGBy8XbtCXWgYCciIkdNQU/kSBI1dL9K92dDsCNeEAW62y65GoKA/Hx1OS0Ft9aWlR04gYKdiIgcFQU9kZw40G1tvJOfpd9iZ9AQL4gC3cL5lxAGqebbHU2ggyOHOgCDQUHAhssV7EREpP0U9KTPyXyhiiCAl5ru5BepVxNd5aJA99A5A9k84jKK+tBB5we60mUGEFI3f07L64uIiLSDgp70KrkQV9v4Mxaln26W1Z44bybrrniCwoIpzXfS1YEuvy+FOhER6VoKenLcyIW4r4Q3NwtwJ05dwa0TP0X9FU8mSkv6zEHrQa2t6ynQiYjIcUJBT3rcWbc8yv1Nn2ZaUMvXyoS48y+6l/8n/R12FoW4Ui3MO1dOW9drZ6BL22EeHfdjZs36Vtv2LyIi0sXMW/uPWR8yZ84cX758eU+fRu+QmCB4ER+klhOKFl84dzHXBz8qfuvDkXRniDvCemZZ3jgnRVXV2W3bh4iISCczsxXufsTmItXoScGCqvyP/++aC2mYPgeC6BE546yHGVK5i49aGwJacC1ccm2Li1t868ORdEOIKz5eyM8Gf54LL3i0bfsTERE5xijo9SL3LfhHateshjDgtL9cG03tBlzPfYTWhl/1JYmm0UtKF8b93Y4moLXkaPbViSGubf3mFPJEROT41WuDnpm9B/gOkAIWufutPXxKrarbUM89n/sop338Nd4MqvmKfZVmndWO5JKPlAlodG446+z9HU3Xgda20YTCIiIieb0y6JlZCvgf4CpgM/CimS1199d76pxOeuwpDgRDW1/ppi9H3zs7mHXFPjuzb2db96UQJyIi0i69MugB5wHr3X0DgJndD1wL9EjQO+mxpziQqjryikldEfY6e+BNJ+yvMp1i3WVndsLJiIiISKneGvQmAJsSnzcD55euZGY3ATcBTJ48uXRxp8nX5LU3vHXFiOhO2ucfjxvB/8ya0in7EhERka7RW4NeuUTVLOG4+0JgIUTTq3TVyQwK90Y1ep3dH629wix1V53befsTERGRY1pvDXqbgUmJzxOB2h46FzZcdXnb+uiVCkPqrtIbFUREROTo9Nag9yIw3cymAluADwF/3pMntOGqy3vy8CIiItIH9cqg5+4ZM/sk0SRoKeAOd1/dw6clIiIi0q16ZdADcPdfAr/s6fMQERER6Sl6123MzHYAv+/iw4wCdnbxMY43uifFdD+a0z1pTvekmO5Hc7onzfW2e3Kiu48+0koKet3IzJa35QXEfYnuSTHdj+Z0T5rTPSmm+9Gc7klzffWetPMdWyIiIiJyvFDQExEREemlFPS618KePoFjkO5JMd2P5nRPmtM9Kab70ZzuSXN98p6oj56IiIhIL6UaPREREZFeSkFPREREpJdS0OsmZvYeM1trZuvN7LM9fT6dycwmmdmTZrbGzFab2afi8hFm9piZrYu/D4/Lzcz+K74Xr5rZ2Yl9XR+vv87Mrk+Un2Nmq+Jt/svMrPuvtH3MLGVmL5nZQ/HnqWb2fHxtPzKziri8f/x5fbx8SmIfn4vL15rZuxPlx93zZGbDzOwnZvZG/KxcqGfEbo7/nXnNzO4zswF97TkxszvMbLuZvZYo6/LnoqVj9LQW7sc3439vXjWzn5nZsMSydv3uj+b56mnl7kli2T+ZmZvZqPhzr39G2s3d9dXFX0SvYXsTOAmoAF4BTu3p8+rE6xsPnB3/XAnUAKcC3wA+G5d/Fvj3+Of3Ao8ABlwAPB+XjwA2xN+Hxz8Pj5e9AFwYb/MI8Ac9fd1tuC//ANwLPBR/fgD4UPzzbcBfxz//DXBb/POHgB/FP58aPyv9ganxM5Q6Xp8n4AfAJ+KfK4BhffkZASYAbwEDE8/Hx/racwJcCpwNvJYo6/LnoqWLfh2NAAAgAElEQVRj9PRXC/fjXUA6/vnfE/ej3b/79j5fx8JXuXsSl08ietXp74FRfeUZaff96+kT6Atf8QP0aOLz54DP9fR5deH1/hy4ClgLjI/LxgNr45+/B3w4sf7aePmHge8lyr8Xl40H3kiUF613LH4BE4EngHnAQ/EfkJ2JP9b5ZyL+Q3Vh/HM6Xs9Kn5Pcesfj8wQMJQo1VlLel5+RCcCm+D886fg5eXdffE6AKRQHmy5/Llo6xrHwVXo/SpZ9ALin3O/0SL/7o/k71NP3orV7AvwEOBN4m0LQ6xPPSHu+1HTbPXJ/0HM2x2W9TlzdPxt4Hhjr7lsB4u9j4tVauh+tlW8uU34s+zbwz0AYfx4J7HH3TPw5eQ35646X18frt/c+HctOAnYAd1rUnL3IzAbTh58Rd98C/AewEdhK9HtfQd9+TnK647lo6RjHuhuJap2g/ffjaP4OHZPM7Bpgi7u/UrJIz0gJBb3uUa6vUK+b18bMhgAPAp92972trVqmzI+i/JhkZlcD2919RbK4zKp+hGW94n7E0kRNL//r7rOB/URNIS3p9fck7u9zLVGT2wnAYOAPyqzal56TI+nT98DMPg9kgHtyRWVWO9r7cdzcKzMbBHwe+FK5xWXK+swzUo6CXvfYTNSXIGciUNtD59IlzKwfUci7x91/GhdvM7Px8fLxwPa4vKX70Vr5xDLlx6qLgWvM7G3gfqLm228Dw8wsHa+TvIb8dcfLq4BdtP8+Hcs2A5vd/fn480+Igl9ffUYArgTecvcd7t4E/BS4iL79nOR0x3PR0jGOSfHggauBj3jclkj778dO2v98HYtOJvofpFfiv7MTgZVmNo4+/Iy0REGve7wITI9HO1UQdXRd2sPn1GniEUq3A2vc/VuJRUuB6+Ofryfqu5cr/2g8OuoCoD6uFn8UeJeZDY9rO95F1H9kK9BgZhfEx/poYl/HHHf/nLtPdPcpRL/rX7v7R4AngT+JVyu9H7n79Cfx+h6XfygeDTcVmE7Uafi4e57cvQ7YZGYz4qL5wOv00WckthG4wMwGxeecuyd99jlJ6I7noqVjHHPM7D3AZ4Br3P1AYlG7fvfx89Le5+uY4+6r3H2Mu0+J/85uJhoQWEcffUZa1dOdBPvKF9FIoBqikVCf7+nz6eRrm0tU1f0q8HL89V6i/h1PAOvi7yPi9Q34n/herALmJPZ1I7A+/rohUT4HeC3e5r85hjoJH+HeXE5h1O1JRH+E1wM/BvrH5QPiz+vj5Scltv98fM1rSYwiPR6fJ+AsYHn8nCwhGvnWp58R4Bbgjfi8FxONnuxTzwlwH1EfxSai/2B/vDuei5aO0dNfLdyP9UT9y3J/X2872t/90TxfPf1V7p6ULH+bwmCMXv+MtPdLr0ATERER6aXUdCsiIiLSSynoiYiIiPRSCnoiIiIivZSCnoiIiEgvpaAnIiIi0ksp6ImIiIj0Ugp6IiIiIr2Ugp6IiIhIL5U+8ip9w6hRo3zKlCk9fRoiIiIiR7RixYqd7j76SOsp6MWmTJnC8uXLe/o0RERERI7IzH7flvXUdCsiIiLSSx3XQc/M7jCz7Wb2WqJshJk9Zmbr4u/De/IcRURERHrK8d50exfw38DdibLPAk+4+61m9tn482d64NxatWXLfWzf/iibwlE8vKuBKydfyZ/O+FOW1+/nuT37GOVbSS1fStXKDPuCoUycPJP+BwLqJw3hicH1DB/4LBeO6sepE99PVdXZsOkFePsZ3hhwJs82HOCUEesJBmTZXL+G0dmzGLhtHJNmnc4J1TMB2LRpE2+//TaHBoykZl8FF5w0knNOHJ4//kXDhrD5zad4eucWqg/sZErdK4yY8m7Oe8+NRdfx8vaX+fkbz1C/dh9X1sAUP5VBA9KMmjucIe+5KL/etv/4Dxoee5yDF5/B66cO4dSNIWMuOYWDo3czfPj5rGNG/rhzqgZ36+9CRESktzJ37+lz6BAzmwI85O6nxZ/XApe7+1YzGw885e4zjrSfOXPmeFf20avbUM8zv/0pTwzYxfLBpzC23yau5udMp4Z1zw/gMTeY+kV+O64aB1Lu/ONTb/DSyL28Nmk6JzYN5IodRn2FUTl8EaePfBIAd2P39rmctvkEMuOeYH96Gw2j0wTmYNGxPQu/fu5S1g84lXMnVLJ301qCxioMcIetDQMZs2Mnh+ZWc++0s3ELMM8SmJMlRZoMn/cvY1lYtfsGTtsO6X0b8YF7eGDAb5ixaxLnNpzFBDuBw9ZE5cyHyI5aTfrgEFKvnQZrmti7czjD9qxjX/Ug9s4yrP4dtl/Rn6f7Xc5eG8ardi5ZD+gXGD85a5rCnoiISCvMbIW7zznier0w6O1x92GJ5bvdvWzzrZndBNwEMHny5HN+//s29Wtst7oN9SxdfCdvXfwGdwZ/lS9PkeEL/iXGbdrM8zUf5q4r/yB3YuBO/8ZDHK4YULI3J0WWL/iXqLYa3KOwFngKgiy532a8C8ygxqv5OgtoiitwT9ixlfO2vMm4ht3ROjiEIb86/QLeHnVCYePEjubwPC9zNlnSBGHIH77yLOP27mbr0OHUDRvF+D07AWicto9zh/yG6dTEQdKoW/ER6jdcwoDh65k87z+xIEONz+BfU7eQzVUqW/QPAz530nj+/sSxXfCbEBER6R3aGvSO96bbDnH3hcBCiGr0uuo4W2p2M2ry0/zY/jAqsKiqLetp1jCLoe/s5OmzLihaBhRCXq7MHSwg68ZDdi3/wDcxg3VUs8ZmcaqtZjo1lGb3NcyiydJgKXCndswElo4+gT98+RnGN+wGB4KAPQOHtHgNbzOFDP3AjGxgrB07CQx+ceZcQgswD3NZjce5kn9hAdOpAZxx59zHmIOT2DV6JZbKYAYP+zVRyCu6NseB+qZMR263iIiIxI7rwRgt2BY32RJ/397D58OAwf2orDjMufwuKshVwwFDaGDM6bsYHO4ubJBMaongl7SHEbhHtXX/arfwgP05X+MW1lFdVCEHcIBBQFCo4jMjNGPX2IFUVm5n4qTXqBy6g8Hh/havofQsDlYMoGbMJEILwAy3gNACQkvRSD9+wbWJw2UZM64Gt+ikaryalXZumeuNjvKj2m0tnoeIiIi0XW8MekuB6+Ofrwd+3oPnAsCh/U1wYBDzeJwRRE2cuQD3is3GUnBl+GghACbDXS4ElXwfRy1m8AyXxTVtARn68YxfFu0+cfzfM7XomLl9DB27hTPOfIwpU1/m9DMeY9yQjcUnnkiMg7w0BDplq0DdAWMF5/OkXRlvbgzePZP+Q6LM/YxdhhMUzqfoemFn1li8ZWe5vYuIiEg7HNdBz8zuA34LzDCzzWb2ceBW4CozWwdcFX/uUROqhxNunMOT4VXsYlTRsj2MAODVymnNghhQ3Nku9xnY6ifgDvUMS+6OPbnPiV2dZ4maxMQ+fh9MwSyMa93C8icfr7vfmg+OmLF9E0GYhTAsXj/e5gWi5uh+eycyYM/JeP8GAPaWnHO54z28o77ldURERKRNjus+eu7+4RYWze/WEzmCcSdV8cLeASzLvB9SFNWU9aOR+/kITwy+Klq5tN21hcEyI2wXBlT5nqLyYRR/btbym9jfieHbuBnujruxzypbvIaDDCz6vLf/IABm1G1k75CRbBk6tFlQPZG3oms8GIXbAamo793Q5DmW1mAS1QjOGlI6CEVERETa67iu0TueDB24jlRFojkyDjdvMIuH7NqismStWNHPkA9RZ/hLAFzCMtJkwJ1+HnKJL4uyUqKl9xHe13z/OAd3jQAsPoSxOTOp+PwSfQndix+VA/0H8oszLuaNE6ZQN2RwYd18cHMG+YFo3TGvcrBqPf0qDgNwKcswwjIhD3JVkQ3ZFmoYRUREpM0U9LrJ2hmHedOqow9tGGzRUt+8aP0s+6jEHaZTw0d9EWcdfpuP+veZbjXxeoXVG72i+HhxP7rh/XYWNd02pfo1P4/4/PpzsOg8Bh8+SBgEuAVkLSgTRo1KGqJiy7L3hGfxMAVE5zzcdzW/1kIBOxqbyt8XERERaTMFvW7y0pApZEk1D3bu0Tx2LSmzPqQ4YIMwg/VWzd32cV7pfyI/CG5kXT5MFlYfaSUDG+J9HgiK+93198aS4xRkrB8Q5mvrxjTsxsKSWrnEd8NpKGkKzsS7XEc1u2xk83NKHHN0RZnQKSIiIu2ioNdNBof10UjTkgB1kq/jbC95I0dLI28Tzbivcxru8LRHo249HnX7NJfF6yY2Kd13vL/UAQhDIwxhbTiDfbngV6Zf4Am+hQoymGdJhSEztm1i8q5txeeVO+84vJ7K6nzgHNAwheyWs6Nz91mF7XLfE9sC/Nm4Ea3fUBERETmi43owxvGkcWgFEE14nAxbl/MEk9jICs6LxyG0MPK2xAh2lV2Um7Q4ufleH1qc9uJAtXXMMAzDzPmlXYNbKhG2PL8jI+TDdg84LG+4gvSb/RnXsJtBjYcL+ywJp9NZwzSviY7rkK3Yx4FNZ/LO4N9z0ti3CAZkCb1cn0QYFAR6BZqIiEgnUI1eN9m/bwz5BJYPNs4+q2Q6NfT3g4WVS2vzkv304p/PJBqMMdeXkaYJ85A0TVzCsmgXic3HU1v2nHbbCMxC1ls1K630LSqF8OUEPEQ0YOTde59h3N5ocufqbZsIPGzejxCY4JuLWmMfGTST/2/OJGomTqB//wNMD9dS1L6c2PZA6JpHT0REpBOoRq+bbAyiZstk+jHCqHkTGEsdGzmp+YbJ0Jeo7WugEjOopobP+5dZQ+EVaOuo5nVmMZPo85m8xArObxbILgufgCBqSnULmjelJppTl3M+r9psbm56FAjBYVzDbq55+TcEQ6vZMCjg5fFj8vueam/lN/+1X8ntE84EoIa/IiBLaKniY+WvszCP3nUTiuccFBERkfZR0OsmVXU7YfjgovDkpNjok5lGDaPZUT7olXInSATE3MhbgNeZxSafzGK7kYylSZPhX1jAKz472jYfFENm+OvMsycAONVWkyZDxvsV1iuZXgUzMp5izchBnLBxX75J1jAO9h/C5qHFIfFln808exz3wsTJuWVh6aCUZmEP3je6qt33WERERIqp6bYb1G2o511vPszV2SVA8WvOHrX3Nd+ghUmSc+Uf84VR/7fYKwfO4d9sAT/hw9xlf0kTaUJLkSHF034ZLyWbZeOpT960atYxHXfj5DCqFZzhqwvrFDUxEwdTeH7QLF4ffyI4bBs6nF+cOZdHJg5h5+DiPnUv2bnUePTe3dzEyYXrCovn3Su6XseAmUOKJ2gWERGR9lONXjfYUrOb0adsYkzQPFc70XQjL9s5cUHx6NOWJFd5e9CJZOJwZ54hwHHPkCYbH8OKNzAj6ynWcDq2bjijRm9k+vAa5tozrGVW4uSKa9mcFNvS49hWPQ6Ad4YMIxMUh8HcNqEba2wW1dQwiANEU7OkwDNYbkKZcn0R476Lz+3ZpwEZIiIiHaSg1w0mVA/nqXdO5i67AUpC11Dfy0NcS5Z0+YCXDH7x96V8gPk8ns9Jlb4XwzHP0o8s1/kdNFDJTFZjBk8zL57DLsjv0wk4uH0E2+oGcuDAcKqqtvN8cEHUJNtS0EwEulcnnEz9wEGFc0yuE9caDvHo3banspr+Dk2ERNM90+yaktuawUXDhnTklouIiAgKet1i3ElVPP/spYW+aYmA84bNIohr3oAjhyxgp43lCb+S+fY466jmh3YjIUaAc53fwTwez0/BvM6rcTPyIS8R1vaPMSq37qBh7xhWvXoVmVkVUEHLxy+q4XM8CIpr80rW3WeV4HD6Lrj1wBM8VuWMq9zA3fZxMq5eAyIiIl1N/7XtJv3pX36BWaGeq1zfuNLmzfjzr3gf7tEAjAxp3FI4RG+jSGz+DJcVagubHdoZM3YDAFsGj+GNipnNj5k8du67h5z7zivgib52ZdYd4g04cGj4m4yZsJAPDV7IPB7nTF/Z/DiJIBkCz+3ZV/5+iYiISJsp6HWDug31zD38GkbYvLnSHQg4yd8kTWOhrNy7bhPBaKtNZB3VnEo0YjaI++TN9NX58R5A84mS8/t0LmEZAwfu4czZv2TF9GkUJcRSRaEsYP8Ej/rclS5LfN4XvwLNLQuBk+uiWGV7Cus2u77oc31Tpvx5iIiISJv12qBnZjeb2Woze83M7jOzAT11LltqdlMfNlE0QXBOHIo2WDUZKgrFhAzONhSvVzJgYQ2zmOY1vMsfZrRv513+MNVWk9wtl7KMFJlmNW8z/HWmeQ3Dhu3gxcrZrLVTC8cq13Sb7EcHvBokpmxpoUavkob4WgqXnjunNE3gWSAs2c4AY/W+Q83PQURERNqlVwY9M5sA/D0wx91PA1LAh3rqfEb6DtaNHhy96zbXLFuu5izRXOsEhNbCr8dDUmQ51VbzpF3JQ/YBttl4HrIPcB8fyc9xBzDNa/gD/wVFSQsYwj6amqLm5BctMc9d6fc4tI3zLfGxc2/mWFn0eUBjIpjF2zd4ZaKsuPLuTF8ZP3ylr0GLVtI8eiIiIh3XK4NeLA0MNLM0MAhaeA9YNxiy8SVm7n+boHT+OCiuDSupGTsYDCyUx8tSHha93uwFLw5pD/F+1lEdFR0ewNqDp/FLrqW0WXYfQzh8ONr/efyu+DilI32BCWyOagZxAs8y3x/jav9ZbqIUDlUMKNpHmiZOtdWFluMwAIx1VPNvtoCVdh4hAVhhJDDx+3UDNI+eiIhIZ+iVQc/dtwD/AWwEtgL17v5/peuZ2U1mttzMlu/YsaPLzic1rIpBuyrLL7T8hCOFz4mAVcmexHqQtQC3gJCANTaLc5MhzaJmz+/7X7OOarz/IdYOqCYsU4P4DiMZPDja9xX+OCf4pqLjlIbO3TYirpEMcAKerLuWbQ2TC3P0JbfFuZ7bmeY1OFC55QJGvflH8MY1vO6nx4NHgjLHibYPgQfqdrV8Q0VERKRNemXQM7PhwLXAVOAEYLCZ/UXpeu6+0N3nuPuc0aNHd9n5ZPfU8/SEEwvTqxS9cSKkqPmycHJAQANVic+FZQEhM3018+1xhvjeouNtsUl83Raw3qqZaa+RTvbRi/ez08bxVHBl/rDv4eGi45Q21Z7KawRkMQ8JPGTktoPs3zey+cXGYfMtnwrAjrqpNO2dzJ7hr7EhtY1+6wcX12gWhdDWJ4kWERGR9umVQQ+4EnjL3Xe4exPwU+CinjqZQeedy55+wwoFidB2kq9nkB8oXpboq5Zv2iwJiJf6r/PvuB1KffEBzciQ4nWfxXRquJ7bGeD7i/cD/Ir35jeZxEYm+4bcSbDDxkXNsmYYIQd8ULwk2n5cdhgDbEjx9SQC3NM2j1cPnsXgoe9wcOYDNI18g5Orf8eA/g1RzWDuXIoGmBScrqZbERGRDuutQW8jcIGZDTIzA+YDa3rqZAbNns2gxvKTIl/hTzCPx6LyoqlXWpjLzp0UGS5hWT4bldbG5Wv8WM06qlnMjRyygcXrRCeCu7E2rOZr9hU22klxcUA21/suHvhhBtm4RjKL8ciUUawcP6pwPUlmZEnx9sCpDBq0t2iVHaOH4sm3b5RpKjZgdyaLiIiIdEyvDHru/jzwE2AlsIroOhf25DldfvhFyA3GSLgr+ETzlZs14VJU03eZP5GfRsU9qo0bm92a2DbM1/i9dOh8GkkX5rxL7HPcwW28+sq7edrnFSZVzgfNaPAE0cvVGOgHopq4+DwODSt500by5/gVa0NoaJbjJuytIxWG8dQqNAue4DgwPJ04XxERETkqvTLoAbj7l939FHc/zd2vc/fDPXk+1f1WMcMTlYpxqMqS5lkuKZTFtXbR+yFy4S4ZiowdjMnvZr1FtXHbUuMT6wQM4gDb6qZwcMdwSAS0/HGAuoFjWTGxmncyhf0llxfOMcWLXFDUlDss9U7heKXz6MXbv21TS6ffY+LBbfzhK89y1tZV8TVSUqsX/awaPRERkY7rtUHvWFK3oZ5MqokhJF7rlQ9Izh4bXijLLY5r08yzWMlgjVU2myf8StzhIa4tfsVZ/P1hez9P2lVQmaUQGCmqgdtqE3ly9Fxer5hFUW1jsz53xjYbh2OYh/QjwwQ2F++3nJKW2TAM6N9/P9NZy4D6TPGI3fy5RcdWjZ6IiEjHKeh1gy01u1m54zJesjlRQcngA8+NxoXE9wDIchqvMjA3kCKx/CnmsdQ+QK2fUHyweN+O8ctxVzFp2Nry8/cRRSq3FKEZw7N7io9R9nwiH25YyhTeIj8Lcun0LXE/wkttWf6QL+6Zyy+C97NvvPH6GaN4rXp6YfvkuatGT0REpNOke/oE+oIJ1cNZtf6UeILgRBWXWfMZRYpq1VKc6G+xys5stvz3dhJvMw2s/LtwMSP0gH1WyWxfzgo7v3iUK+QDYECW3aky07iUno8Z7s7y9Exm8TIQRn3/SqdK8ZDL/AmmUYO78ez2d3H7uI+RJcWDOGEqUVuXfIVavkbPVKMnIiLSCVSj1w3qhrzFaU1vRR9a6M9WLqgBLLMryL/VIt62qqkhfkVaKm7ipVmIS861tz83DUpuvXjfYw7vYJa/yjRqIDnHX5l1C+durB44iy1MJN/3r+T4ASGXsIz9+4eyedNM3hkzhCwpQktFYbf0upPbxw3VqtETERHpOAW9brD26aWcUrGKq31JVNCsD1xYWLmkz1t+wuTYoEyWP9r9EmkyBJ4hRZY0TfEo1ngAh4cYIde884to+hRmlj2vuv7jeM3OoIZTihckR9+WNs3G39dTnR+cUXrujuEeMHjwXiZOWsOptio/2XJRFWaZfoPEs+xdNCwRTkVEROSoqOm2G5y6MeSNdBUf4h5weJELGGN1vMNIDGOKb+BZu6ykv1r8xgwLimrqDqRTLB59MR/177OPSmaymtX1s/npsD+O42IhbA0evItnuDR+dVlJzWEc5NxSuGeKl5VrvrXiWsVp1LCN8c2nf7Eo5L1hM5lhb+DuuFt+WsAUIVkcPG6aLTOPXhZ4ZMce5lQN7vC9FxER6ctUo9cNTr7iWgaG+1hHNf9n72O7jWUVs6llMluYxHOWmF4lX7tVpmkz/spYin1Ucq39jOnUUDdwfNz/rzg8vdp/Nnut5I0cpUHOc++pKBmZW1rbVtS3L8tOWpgsOV5nCA35w62xWWRJ4fF7cmf4GzTvnJgT7e+XO+pbWC4iIiJtpaDXDQbNns07PoDXmUUTaTwZyMwKrwSDkoEJNK/xKglS66jmt/0vLLvOibxVfCLJfebDnhPGExUXjcwtU1OX2zYkoJaJxfstOd+nmM86qjGDmf5a1MzrIY5TYzMp7XdYCIzxuQ+saP2mioiIyBEp6HWD+vqVnHDab6ikofB2CShpIi3Mq5ciU3hzRAvuto+zjmqe4bL8q8mAotA1yA5QxZ7mGyePawHRY5AcJFGmtq3k9WwNyffclgZDYINN51/tFmq8mpV2LiEpwHBShabksq9AK6nRFBERkaOmoNcN3lx7PxY4v7epUUHZQQiFgDOxvpYp2bcIyMZ99WhW+5WhH4u5obhpFopCVyUNTLW3isvjMDmcnYlDl9b0tVCbmCszA0r62CXlmphJ8zqzeJELWl63aMBHofh9o6uarysiIiLtoqDXDfbXR29fK9srrTREAb+vmszbqZNw4BReJ1/bVzLdyQabzkucE71KLLk8rpV7y6fS4JVE891FZf2zBznHX2CgH2x+DuUmP86dV+n0LeXOP7du4o0aBxnEyV5TtK7hmIcEZBmQmww6XpYi5PLhQ7huwqgW7qaIiIi0lYJeN8hWngceMMVL5tKLv5/gG4vLASzASVHDTMaxtVCeDFsWvSt3mL9TvH0csn5t7+IAgyjMd2ccTg1khZ1PrZ3Q/Jil+8/VJrYl3JXKhVamksoU98M7hxc4mxcY57UcskGFZQ5ZjKd27+Or67c036eIiIi0i4JeN9hUsQ4cniUxujY23HdyCmsojHotruELMap8N8k+fP2yjUX7322JEbBFtXLGb+yy4mO21PSaGAxxiq/mRr+Nd+95grFhSeAqHXiRbFIu01fvXH7HXituht3uo1nB+dTaJJoNytCoWxERkU6joNcNpto21gXT4tGmsTgs7bZRPGlXQv69rwZk86EpIGStzSIXgAxoSsUjUuPmz3xILK1pAw74wOKCZgNASidrNtbaKTzFfEZWbGW4lbwDt9m7aSnZPnKCb+JGv415PE4YFj9muxlZvH7RW0Gifb5XffREREQ6TEGvG4S7N7GGWVGEKfPGCSdFoUYvJF/bBoW+dIm3TuRq/k73V7iB75PK9dEr3T9wLi/EgzrKBTSjaARE7n22pNhg07l30HVsYlLz7RJTszQbORv/PJJ3mG+Ps45q1vQ/Nb88RYYT2Nz8JrkDWQZbyB+PGcYXp01oy60VERGRVvTaoGdmw8zsJ2b2hpmtMbMLe+pcDu7cwUxWU0EGPENR82x+EuKQwDOF2BUHpv3JaUxy5R694faPeIAr/HGm5ObLS9So9fNGrvafcSWPFo5V5nVlLc3TVzh+ZQvbOKN8e/OLTczh5x5Nlhzmp39xpvlahrCv7LEg4KAbD++sZ3n9/ub7FhERkXbpza9A+w7wK3f/EzOrAAb11IlYxTCmU8O/sIDXfRZvMo0Vdn68MApu49jCSN8FOKtsdkmwy1DhTTTagPw+Jx/cyPQBNZjBZf4Eb9r0olq70ALm8CKvMyuaELl0cuKWRsuW1jjmK+9KtzV25foGlgY293gQCJzK6nhUcEDULDyL/E6bnUfUJ7ExdJ7bs0+vQBMREemgXlmjZ2ZDgUuB2wHcvdHdy8wc3D2y8atkp1PDNfyMAXYoKkg0sW7jBFbbGbxuZ0TL4tBkHlJBlpN4s2ifh3wIt/JFnvArmw96jUfjPsNlDPEGSE7SXG6i4qIBFSEQNttfXn5bj1+7lhhAUqaPoHvc3JzcjwWJY5Vu54TA8HQKERER6ZjeWqosB8wAACAASURBVKN3ErADuNPMzgRWAJ9y96L2QDO7CbgJYPLkyV12MgOzg1lDNWuYxRAaeC45+tadIeFeDgRDCC0VN+2SDz8z/HUu4hl+YJ8oKt82aCTbGMlrnMkw3x13tyuuIdvjw/DkJM0lU6cYYdQ/sCSgjQ23sS0Y3+w6RmR3sCcYheMEZMmSTgwgIX9+KTJcwrLoPbc+q9CvsKR5OCBkqO9ljw0vqikMgN2Z1t8MIiIiIkfWK2v0iALs2cD/uvtsYD/w2dKV3H2hu89x9zmjR4/uspN5Z8Nk/s0W8BM+zA/sL4sHZQBn8FI8iXAWK6n9aqQfbzP1/2fvzYPrOO5730/POdh3EiAIcCcBkABErZSsjaR2W5ttxY4TX69xYufmVV5e6t23XCW5sZw4S+VW3XdTL6+SKLHs2JEjx3YcypLjRaJEkdq5SKLABeAKguACkNj3M/N7f8ycgzl9uuccKhIpMfOtQuHMTPevf739+js93b/2SZW+ri74Pxw+HSM0+6YUHJZWg0YeCTyulZ1kNoGEXLJkSJ5GzO6Z+Rm/cepb3Dv2b2yWZ3PjBmlfwy5a6UYEOlQXRcHaRIXHCjk6Hw8oT6/Xy0AodhQ311YWXL4xYsSIESNGDDMuV6LXB/SJyKvB9Q/wid8lwUurPswcRXgqgYd/MkR4Fu1V5xY8FA7CzbLdvxk8P65WZx9zZpgZy/ii0yDAkFqYq5BKIECNjMyfqhFel5dOR0NZ6QRNTT1UVA5RziSE42rpptEi3XzG/SbKp7KcUMtxEBAXBVw/3ZM56k3h8uHyPn5wdUu8Pi9GjBgxYsR4F3BZfroVkdNKqRNKqbUichC4E9h3qfQpOTOEaliEBDNplYwzzPznyvRsnUiKEqaDT6r++jdPHKplGKVcRBIZAtYoJwGHUjXFcVanM+7/D8IcZTVjZO/aVYHT5YQIib4yWKayP/uKT0WzEDz7mbqXQbWYOZK+fuHnIdTiL4ecnioHBcdLV4Xyk17T5+fy6bJNPvHFP/6s032ZDTUP/vsLPUaMGDFixIhxeRK9AP8r8Hiw4/YI8GuXShFnfDbko04xTHVOGCUuSVxGqM2QIkQQFCs5yv08yVM8lCFsg6oRwUEiNkKMUAuZDRN+mGuH38RJuszOlHMyuRTRTrcokSlmlLZBOXh2Si31L1UiYkOHBJ9n4UTZUvbTST+aTzzlbw4R5eBKMAOoHDxxOIrpU3OMGDFixIgR453gsiV6IvIGsOFS6wFwbE0N4jigHFwRsshXQJBWyWE+r77JC2zWYiu+rX6dTbIVpbyAZHnza/ZyfNHNo4EBBmkgJUUAJJnjyppXeNz5EqmqJEoEJfhkMZA1o8py5KTlizi+AxRJ5W7iSM8YAt9Wv86bcg1vqmtxSczP/mU+ObuAgxLXd/aM4IlDEpcWbw+XkJPHiBEjRowYlxUuW6L3fkJpcRdFNDMnieAUDLJnxICVHPE3MADPcVfWZ9qUJEFBApdU4I8uIwMsx58JX/H+CqVge0Aeb5UXOKA6SJHEUwkUqWBGMEwYndC6u+CZRiJvl2dYpY7ynNzJEdUSxPFdpYhySEkRu9QN83GDvCpxuZbXqZFh+tVS5qSYO2d20lyyl32qk3bpYn3FynehxGPEiBEjRowYcPluxnhf4c6iXh6WR7iCvf7mB90vHVCuJgFoU92slQNZzxXCJrZxNbv9e7ZTLUI7XxfPDLFs+hStdLNJbWMhg4yMNFAhY5kdvn7la0RO0m5N/HN2M/Izn55hgEZEYKU6QpIUjqRIiEuSFCodX/OVp8SliBRXyR5eUHdwgE4Oq1YeK/1lTrA8s4MjUbb6HZVxjBgxYsSIESMX8YzeRUB9w0dYOPZfeUj9MwedDuZE5j99BjNer8uNXMfrKAXdap0fMfM5VALHw2TvkwhvnNAcIY8XJ+mjCWjiT/gaKZXEqfXwT9P1d/jeKDt4SW1CMnp41Ml5htVCRDl4AplZvYw+DnvVlezlagASpLhNnqF+fJjDlSs5rZo5TRMiCgePTbKVFXKUo1PXQdE0R2Q9bkkyNFuZ4FvqywgKB5ebzrzF/900Ee+6jREjRowYMd4FKDEs4v+PiA0bNsjOnTvfE9l/9ZffpL+6i4GGakpmp1E1c+xiA0dUWyaMQihijvWyxz8eLWuWzeMO7+c879zlnxsboDY1xHCyBkybI/AdEi+T4xxXq3LW8ylJoYIjx7LZo0fORG9GbkAstePS1koX3ao9sxYvQYrN8iy3yjbaVDc9tPEn6mukSJLABRRukA8HF0GFNnhAqePw1wuSLDjUxdKGdVTN1VGyuoaSFdWcPjLCa6/2c+7sUa6d7qH1nk2UX3MNnHiNNw78kJ2lpdQsuoKzp87SMNXATVfcxCKvhvEd+3EHuzm1voTXG0bZ0LiBqxdd/e+r2BgxYsSIEeMSQSm1S0Ty7kV4X8zoKaV+G3hcRIYutS7vBU46x3h8xS+TIkmyPMU98nQWyYP02rYEQ9RlRxZ/b61ShI4cI322GAk8XIGcY84ATxyf5IXgpH3fEZKXtdbPyZKR7SdP22Ub4KDqIPwJ2JUEx1jNRuWfjrGDzaQoAqVwRXGdvOr78FP+2sR/UL9OStKEUzHjunz98EEePPsM9eNvsbWhEfYWs/7fDtE5d4Zds2t5tXkFW8qLWd31XQ7vfolRpxrPW0/TYA8n68+RLFnMNeN7+f7kWbrLruaamUl++1QNz5TN8vOJhezc+3Pa577H4eRSOqffZPHcEl6p72TJuRe5rnWG5Ws3Mjc3TF3dh6ipuWQuGGPEiBEjRox/F94XRA9YDLyulNoNPAb8TC6jqcYzjbWZDRApEV7UjkAjcyoGNHGKI7Rlba64T7awiDNkNk0EhEpEBT7oQjNy+lm2WjpflEcZV1W8KVdzUHVmPw+7ScmkH9qQYZg1zMwAZm0IURxRrXydP+I2nqVPlmZPGir4Eo+igB6yCS/iIjgcqW7hr6pXIvjn9lIMz7ddx33yJD9Vd/vEEXil6sas6AdXdWZ+H2BFZvPLT1dWsH/pYY4n1wCwr2IlTwaziz/gQ5nZyKIFy/ic9xhjB3fRwX7WOn/Ftdd8JyZ7MWLEiBHjA4n3xWYMEfkDoBX4BvBFoEcp9adKqTWXVLF3Cav7hjObFpK4NKozWgjJfEZ9Rd1K1tFiwBTljKsqSG/kCAjVcun1P4Gq0CxczqkZYfjyPsaPWEJfKHnxZYfj6e5aTH7zdJKZScbX3SXJs9zDQdWe9XhQFmXU2ac6/c/RyoGAeEEww0kyyJ8vzyPB0+pjpNKuZcKbUgzXGbcuwf3jydVZ1x6J4LSSRPD52GGWIh5zfpN/5j/xdb7KQW8lQ0PpA1ZixIgRI0aMDxbeF0QPIJjBOx38pYA64AdKqb+4pIq9C6gcLuY3B/+WT8oTPCyP0EK3/yBDmBy8YJ2av2c1+1ixPpbSQRdJ3NAGDZf17pv+Bg19Bg9yd/YG1z/lPn8WTREcPSYoPH6dR/mS/A01nJuPE6RklC1pkqc/l+wZQeWgN7NRVZX57ecr2Lmbjh/IV3jzn5pDDqez3cFYyG3GPUw4/4ZPz8Gu4HCeBAXKIUUR29lIUVHoCLoYMWLEiBHjA4T3BdFTSv2OUmoX8BfAi8B6Efkt4DrgE5dUuXcBkw7MzFQySD071Gb2yRX+gyyClCYaCapkNCt+dzAjFnavIiTY6txDVhUaZuMy7k4C9KulfJ2v8Rx3Bxs7hAQuS7xe7uAZlnMiV7cwkdJnCjUffs3Sxx3yM671XvU3XuQQKZ/c9dDGFnkIEXhYHuGT8gRfkL/LIrMOQoOc0eJreolG5kKfqR9gC5mZyrQM46fn0HMt78PUMjc3TIwYMWLEiPFBxPtljV498Esicjx8U0Q8pdQDl0indw1uQynfaP48rvLnrJQKyFfIfQr4nysRlzEVmkFSChHFPjqpluEsnjNY3JAJY/5Ui7+bNZ2WUiAq+PQZbN5QDq4keHPuetqKeqhmxE8jLE/fdWtMyA9/LTv5tHqcg9LGm1yXHSbQc1pKM7twk6T4vHwDgOWql81s5VnuwT8STXFGNeXK0NI0nQqyVvZRzmSQZW0GMIvsJXLihmf8ahmhru5uc55jxIgRI0aM9zneF0RPRP4w4tn+i6nLe4FUxQhuaMesiD+TBsJabz83y3YeT3yJlARrxSCLvCVw6aALFDzPXXjB6RgpR/sUaSJ7oftKPBKkAHDFCXz5+Z9Hx4rL6aGVUWq0eGkHfr4eHg4i+uaL+fATUsFBWcs/qi9kH9MWIk+naM7swk1JEd9UX0FQJEnxEZ7CQfBsPgJNeTTc61Ht3CLbAx+Ehs+8evnoYYLrGxuvjDdixIgRI0aMDyzeF0TvckfT1BwJITjnNoDyz3pdovpYrnq5ledAoJxJnlIP5RASEdilrs/yo+fPyqVAc76cu1bNX493mzzDRnyXJy/IZrapO3FJ4JJkq/owz3MXN7EjK54SEOXTz3v5MYvkjE/M0u5QND27J9azrequwD+fBvFI4Obu8whIcEqKeJqPZTZRiH7Um3GWUbKJYABPHF5UG7PLS4+n39cIKeIxlWzMzUeMGDFixIjxAcH7Yo3e5Y5zNKX3kqJwM5sgBIfn1F18Xf0Rz3M3O9TtXMfrrOCoHzG0e3U7m3maj83fBxAhicdyORIca+bP2FW5Q1TJCHUMZsILihFq2U8nJ1jOAI05O3Y9ErzMRm6RbTTKKVZMnsDncw6Cw7/xUc6qxoCImdy3wMnKxYF/Piejow8PEARFP0uCZx5Za+SCEsrZQRs8CZdJtmyySF56JvK4rLY8M8QxhFMI7dJFjBgxYsSI8UFFPKN3EfBmdQLXIZjF81jJEY7Q4hMoCXbaKkVKhP2qk4TMzfOogHAoRc4n3RVjp+mrqqdXpc+H9VgivfQmtPNiA1K5S32IXVyP7/cu2NgQnsFSCk8cXla3+mStTPCZnh/GFYdfyIeDzbYhsqXPqmV09GiWk/SrpaRP7/Cy8qCCkzIELzgyzU07fs6ZsZvPSwamGcz5h0yrMk2G5F7nuIyZT8PBI5msIkaMGDFixPig4rKe0VNKJZRSe5RST11KPTpnJkiIhyMuSVxuk2dJpN2GBORCiUcyWIvXxCk/YkA47pd/5VbZlu1eRYRFcjLLzxw49KZPwtBnxDL/g0+ZyrBbN5gJy/i1U04W4QTFjCrPjaf/DsHfTKGTqvmduIJiw9huPuk9wb3yY3shGjZc6CQ18980I2giiBF6p3V74Zzu8zBGjBgxYsT44OByn9H734D9QPWlVOI6dxb31LcZbiqmQ3WxRroZGV7Ej2ofQsR3b7KZZ9mottEry3lRbc7EXS97+LR6HIBNspWt6p6ApAlD3kJyZ+WciFkuzDtnM37rhLWyjwP6iRmm/+nngcxSmeQ6dvqzgZLI7PDN2ZABlMsE06o8+PTsck/5FiZGGvjLut8m+5SNkDsV04aKKPKXIXLpT8Mq+36W/pIrSzwUwoqJLYyMXB9vyIgRI0aMGB9IXLYzekqppcD9wN9fal2aK1ZTe8blAe9J1njdgOKKs4f56BvbuffkXv7A+yq/xt/RIt28roIjvQLi8ba6mm5pQwQ2so1i5oITNlKkUsXzYbWdtTVy3n+WRXyEYpnNVVB858S/Jn+b7cw59Nx4L0PeFNOqglfVzdzo7fD3DYuFpAGTqhIPh8XSz+d4jDZ1kP2Jdf4GjiwyZo6v5znrXih8s/T6DpdN+TDN9GXJ80nqTjZw7PijuWUWI0aMGDFifABw2RI94H8C/xf6av8QlFJfUUrtVErtHBgYeM8UKTml2DT4YSa670bhoJSwpmUnrXRzPz+kxTmY+dp4A6/4kQIyIih2BDN8baqbz8pjdMpePiffoLRkIiudRjnJL8t3WTPdw4hakM5k5nmVN8La0UPz8kPPBcXP1P28ys3z93XfcznkKPt5iiSvOrfOn9ahpZ9BcK9fLeM7fImtchdn3cYQQQzFC/+Pcq1i3GShQserac8su5P1vD7Nx3lrsjg33RgxYsSIEeMDgMuS6AVOls+KyK6ocCLyqIhsEJENDQ0N75k+tXX91LuVTFUs50n1cQ6pNpTyGFmU4Knqm/0jyfC5xlLpJXcnqo8e2vhH9SW61JX8o/oSqbJs4nNWNXGSpXSXBmfLauSoTR1kXfWbpDdXZBJVvquUkyxjQFnciejEKIiT/UzN77gNr+3TCWKIVM2S5B8SX2ZP3ZXzLllsGyd0eVm65GKIBdlh9A0j4fsmAhgQ7WMVH3if3TFixIgR4z8oLtc1ercAH1VK3QeUAtVKqX8Ukc9eCmWW3L2RPz7VxaNL78RVvmPgz8g3+U7z53CVw7PczsPyCK10s19bH+fgsinwfbdPOkmpJJ5KkBLBo2Q+EeWfoPE6N2TFD5Okq9UelkovxcyRkqS/C1Y5wVK4MBmT+XsZ4uPRwAADLCLskiV77VwKBxDxQBRe1g5cg04i+HtbJVhbqB1HZloXmNGRwFWN4Epwnq4WbkpVZIXPIXT6b33WMFi3uHFBfWEVHSNGjBgxYrzPcFnO6InIwyKyVERWAr8KbL1UJA/gxVdOsnNxCSnH8UkaSXbM3YmnHEQlSJFgHz7Bq2KMDGkB7pMnaQ3WzbXTRZJUsEbP5arpPkjv3hXBwctekwYhQiOMSRWtdPN7PMIn5Al+o//bdE7tyw4L3CIvBL7+PPDSZ+UqzhPa/BEKnwh0KsblXnmSlXKYZVMn53XLyNd0U8oPk5FpmFXTCVnouo0DwTkieXbY5my00D7ZhomnJuNmXmDl3KvEiBEjRowYH0RclkTv/YYT+w/RNDwQcrGS4tbiZ7JIWwddKGBMqgAvQ4LK1STg8470Gr2VHGaV9LCl8kbCVSg4zKjSXAXEQ4nAeBIRhxavhwe9LYxPLKSGYVTIbQsQ8KaA8Djz7ljc9CkT2vq5FjlIp+zlHp7mp+oBjqg2jpcvm9ctCFfPWf8INgmf9evvIJ4nffPhy2UsFC4XOU6fTesCwwROf67PGBrClKo56uo+ZEw/RowYMWLEeL/jcv10m4GIPA88fyl1qE5W4JDimrE3qKoaZJPaRgvdLPdOsF910E4XbcGsXWXWjJ7DJOUZ7tEtbfyD+o3AZUkgPERaRDko8U/fEHHSH0UREohS/KDyl0n2lNGZfIuu1JV8r+V+PEfNHzUWEJ0X2USWO5IMATLvgu1WHQjQxfpgjZ7Zbcl5GviiPMrr3MhedSW+E2UXR0BwUYg2H+nPRGZcxoR09OVpM4y2nbimT8em2T8dCkYq7oxdq8SIESNGjA8sLnui937A9LIOnmqqZs6BIubY6L0AkqS8L8mDy340v69BYFylZ/T8kyT+jY9yHa/TSjfb2Tzvlw5ySYoISoQ7Z39OXfF5jqgWdvKhTHgPh9N1tVwzO8FIo+OTPJXI/aSquznJIkou2b7uyBxb5oldL38NIRxjFcXMBGv5XJLiclNPF2WLBimqGcs653dSVZrlZQibmQAa1/fl2wVsmtUT2DkGD3x3G7dMDHKgbpLUdAlX9c1yg9fH5MKjpCrOcKJecYBOxkbX0J9YxYKBHoqdSarKh/GK19IyeobV5/6Fc2Or6b/pPq5ZM82mps6YQMaIESNGjPccMdG7CHiueJaUUohSzEkRLw3fxYnTN3JicSU3qznalD+bJ0CHdOEowQuIhyeK/XT66/TCHEUnMIEETyXYWnw3f8Af8orclLX7VSFsrP8pTfSwAcXP+DApCZ1bm96IEUqo1J1mmTfIkaLFeKKCc25DyDeLFtJXgOfVXb7LE8DB5ROTP2Ct9NFa8yqP8eX5+CaYXKnYYHPHEhVeTyO4t3NxNTtDPre3NrmsopgOJulhIwdVB6AgvWejbgPpclR4OPVraFy1itOqGcEh0Z/iv536Gr967VdjshcjRowYMd5TxGv0LgLKE0U44oLnb04YGF/Ct9fdzy8W3MbX1R/zrNw1H1gRbDAAxD81o0N1oRSslKOZ+1n//QvSM3GuSvIEn5k/Di1AM3200p2ZuFrE6SDN+U+Z9ZzNijObKOXOgdNcLbuCT7whEpY1++X5a/1y9CJE3JzAr10wA4hDz2w7k0s9nuQhRlVtbuHpbl30mTndVYoezqSHvllDTyMsw+CKRVSCI6qVp9RDHFSdZGZAs/Tyu5aoBC5J+tUyPBKIckhRxJNyH0ND8SaPGDFixIjx3iKe0bsI+MyyNpydb/KtdYsR5fDmslYkIA2uKL6pvswxWcVGtrGfTn/WTCmUuGySrbTQjQDHw+fYZmb00hsYnCyykpllCrtX8XaC8v3x/SmPMEvRvJJBmLUc4BwNiDjBjKLwt80bkBCRDIcPI4HHR+RJjrEaNZpkb01n9jq9HFKl2F17JW+qK/Bw/J2+eCBOLnEyzWDqblfCaTCfRhbyxdfTNMUJp1Po7KOm+251PceKYKU5dowYMWLEiPGuIJ7RuwhYOekxUlmfIXeiufMQEmxVH+bP1CNUMZbZjVtEio2BDz2AEbQZL0l/HjTsLDXMMnnj5YgoXpDNPskL71YNwoxKDffLlpD8gDIpS1MJzWB5OJQzyS/JPzOmapjfTWuB8jeCpPB9A7okaOTUfNo6WdLX0eluV8Jh07OPtk/L6f8mEhe1ucMkR58RNJFP7b+g+Mn4e+ekO0aMGDFixIB4Ru+ioGR1DefOnM66VzY7w1RJyBWKUsxJkjGp4mEeYb/qpF26Muv3AKoZzhasFEpSXMtOdnN9ZhbOn+XL/YxZ7k5wYOROttXdxfxuVRdIZMJczyuMU4XCCzZqaATS5KIEUOKRxKVKjfHn6qvMVidDaaT1CPTSiG5ajuBwhuZ5+SbXKGHYZvRsz6JmAKNmDk3hcuRlr23MP+MHExM9wDLz8xgxYsSIEeNdQDyjd5GwYCZ7Z2vN1Lj/I0SgBIeG8020eIdY53Wxn066pS0TZxPbAj90viwlHkW4PCBb+KL3KA4eSjwc8cBwbmyidoqXa1cFvufSBCSRkb9CjrJc9dJBF4m0w+QseCzmZLbeARw8PiuPMSZVpEiC0nzu+RfZ4pRGjJDc+4a0rO5S0sQwTErDYfUZOH02Tydm6Tim3bt6+qZPxLbP3MGn5VvcXxAjRowYMWK8l4hn9C4CJnaf4YH+FE8tKSalhITn0TGe4HStzK+tUwrlCd65m/nF6SH+qeNjpJRDESl+j0doCfzspb3eOaTYPHSEjw8NULdwgpaqrSyXXrbL7Tyv7sA0o1elxhjEcJxXQFiOq1X8KY/wOR6b962Xjq8UiMNpfcYt+C0C41SxTrqCzSQX+BlU0jNiGuEyzbjpemXuCzUyxIiqJfPp1qBrTrr6jGWY3IXLyBQnh6wa9DLOMipOqHg2L0aMGDFivLeIZ/QuAhRw5YjL374+yW8dmuG/v9THkrFJsj5tin+EWVVvD4fcJlIqkXM82j7pzOzcFBSNzlnOr/g5P66+gUOqhTbVzUJ1FlGOcS3bUVnFJraRZA4lHui7ZJVijiTPcUfgr8/UPJSRLAmKKjVGn1qOa5oVC9Lwj1YLpasRsHLGs+PaPhkbZ8sUI6oO38+f4TxeXY5tI4aJ4EWtwQsTPxMptWzgeHpieW76MWLEiBEjxruIeEbvIqD82kbGXzvJFcNC59Asu8+9ylTTZkif+gAggqegof0om4v38brcQAohiUu7+O5V2sU/6zYl/n3P6edPE79PiiRJUjwsj9Au+3CUiysGEgO00s0fyFfZRydvcTUHVGcWMVFAMXPZkWzrzLT1dd/iN/CUA+HTMYLnAKulmzqG2KOux/MpKysmjnOkcnUmzBo5xF51FUgEUYsiWtru42wZoeemjR2FrgksZAOHacOHJrN25hyTe/ZQfs01cOI1OLadflZyYtBlWed6mtvaOX1khJPdQyxpq2Px6ppM3J0jE7w0PM7NtZVsqKnI1TVGjBgxYsQgJnoXBSUrqum64iA1O4s5PdrNyNw5lgwPgtQD84RDRPF68xgfZSe/xx+yc+JmNpS/lNmQ0Uo3n+MxXuNGrpdXOCWrMjtWUyLsp5Pbx5/j6srd7HJuyCYvQDn+ubmtqhsEvq8+naPrIjlFDkc0rUtL/w79dyUBpp2uwfVR1cKR0G5YT1yoCFyqBMeh7VNXBh9wPXImnKM2hOifXnPIVfg6ewPKfPhQmlrZ5XyitX2S1tNNb0DRySTCoFTTOTDDip98j7FEBWcSGylPpfhw/2ladv2Yk80/4PDyOiaSFZS/lWL5zpOMVApedSvPznXgoSh2HH5wdUtM9mLEiBEjhhEx0bsImDk+Suf+DqTYpWnhCt6c3sMriUGc9NmuASlIkqIdf/auVbpZwmlKvfHM5FYPbXyHL5EiyUHVwe3Dr5GsdjMzfO10cbpqEW9wnR9BIyP7uCIj54fqU5mjy7J0pYRxqc7eW2Baw6ZvZtBhWMMm4aPTglnA42qVPzsZzCa6qAzpM8krlimq1SiDLPK5m/4J1kTOMuv/0kiQhSB8ZjuIMT65+TWtz8sJZ1hrGOhzpGglAAeS8xtuRouL+H77KhavKeFscWPmFBGK4SWCEzdm52XOeh4vDY/HRC9GjBgxYhgRE72LgJkjI+AKTrATdaDMpb928fxaOnFZLYf5HN/0jzrDJ2M7uZmawx7XVLxMWfkw+2s7MzN4cwJeXS0Pe4+wX3XQobpoVd1skYf8NXIGolXELN3Sxp+pR5gj5P4kROSWqhPMSnF2BkyfLHNmtVxqGGaEBea4JgSzmLfMvsDiolNMUh4669a8fHRWlTFIGf7sm2X9XHgWLX0vn04B8cyKb9HZCBsJtH0K1omfRhRPFzdny8nIcrR4ws21lWadYsSIESPGf3jEmzEuAkpW15AihSsunni4kqJ5eNB3gxL4n/u8+mbmeLJuaeNP1Nd4uuJ+vtd6Pz20MTVVSztdwWYGn5Q8X7WOEyzL4iSV0VMTygAAIABJREFUjAGhdWohgrGEPvbjk0VRCXyyFCAgFPu40pwJfZOBdl1MilZ6ssPbfgfx0r73bky9zEf5EeVq0tfJRKbCa+qUItN09fvptXjpPNk+rYZ/52yg0NLXZzRtn5B1fW2bOkwkTw8btVEk9Kye4Xg2L0aMGDFiWHFZzugppZYB3wYW47OZR0XkLy+VPudmTvLcqe/RWLyUs9O9VFQsgsaKzCFdHg4vyGYEaKOb7WwmRREohYviUHMzt3o/YbEIm9jKVnUPKIc5SfAt5yv481/CvTzJ7vRn25xPiR6b1DZEyGzoUAhumBQqhSeKObQZvSw5UCKTzKjyzO06GeR3+B8A7FHXza/VC+uRs6ZNuI7XuF+2sNw5DkAHXf7nbJ38RM2O5cyWhWYDTevooj475yOYWjlE6hgOa7qnp2UjdlFxgOpkIudejBgxYsSIkcZlSfSAFPBfRGS3UqoK2KWU+oWI7LsUypzo2svQdD9vVzucWN3CxpEKehqX4KlEhlxtVfewg9t5WB4xcgDHESYnK1lZfpT5z5IKL1hn54rwFA+BMs+eVciYvwlDwWflMV7nRuYomt91GxCSBC638Sy9rMSVJAiZo9vSMsuZYIbyDMmp4zytdHNItQX+9wwkL4eQKfawgSvZwzI5CcxkZzpq1kwnj+l74dk422yZHt5GKguFiQCGZdmIZZhA6jOK+Qhe6F7/tMP//i9Ps3ThDP3Tx+g8V8yJ4gRvlSSpHpti0+SbLJ4qZW+ija6actbMneZjc9dxsOcAb9b3cWZZLdeP9NI2eoTSoTYG55ZysryG2brTrGo6wEIpIjG8kl9UN/BSSRtVnqK3JsFCb5i7D/wMp7SM/ZUbWHZwnCuLB5ltOsDOyeW8uHgDk7WlbJLn2Dj7Am85N3O4YjXrzvVw7NQSdqy4lsXFIzww9jyJkXXsKV7AancXDecUHeduZl+5wz+3LWKopoqmkhIaE0VU92/HHR5iYsFV3FE/ydKZ7zOTmuH44TrGzq9kWWUtR0t7qRurZtGYx6GmcroaFW3nZvjUZAXTo4f454Y1bF/Zwg3SQ/ugy/aJRhrOH6HFdWhPLGamfBX9I0UMlzlMrRzgeP0Ubae6mWaAYzXrKUvOMOBV4UqSUyW1XHn+MPenXuRcooNDEyvoqnAoOT9ExUwDo4sqWHt+nJrkFG83Q/Noit65dRyq8yiZOcmN7oukxmvZ56yjWKapbV7PQ2dLWHT0ebYsOMrelVcxSiPTUk69C7+pxrghtYRXXcULxRM0lnkcGhigen8Xa9RBKtoSnFvyID+cbma4xOW2qV18Yf8AXt1CzlQf5fhIBfumGuhd0UZR+QgrZns5IusZTcyyqWYfv3PDL/PM/lF+1NvDYjnBxrpdKDlLKQsYeWUKdc5j9spaxkcaKU80sGTpAebUWfom2pgqVbxc3o6bTLB09jSj7mLKxpeSUk20nzlE4+j3GVk4TPV4A7WVFRyuv4Z/bV6Kk5pgwfgQLeePcW3ROBXVDQyOnuLI1NUM1raz+Nxxrh1MMtA8yJt1VawcmqZ95gS7vFZeKmmiaegMjSOH6GpeTn99K7cuaKZ7bJI+d4qrjvZw08AkI2qMwyVl9DY0subEcWpLHV5rWQlFKVoTZ5mQOtpme7nydDUdCxdwbvh79JdDcbIDb241i9qXMzuxkMN79lE9d55DrQO83dBCT2oNcyPnWd7bz0RlHW3nRkgVzbF7+VoWpBw+dWyGlYPjvFwzwhvNNSxSwnTJEmrLFX1zfbQkX6Jj9hCVXWU0zHwUqVrOz2pGeGFhCqVKaT3dR8fZ80wsO0nliv3MuCmS0y6LxltxahbSJ6voqaigffYUV5+qYfGOZ3i7bSV9bgNFZU0ULzxMo7zC91d9ge0VV7DYm+KzA6+zoucUxaeO4xw9x3BtB+qqRlTtKRKnGiibXsORonHOLKzhuivPUTrzIjK4kFG3hCqnkfGBFiYHRzjjjlE+cx65sYpfVDUwqhZRn3TpOD9Hw7FpBpb2sqthEbPjZdx0YpA1R0+g6tewbuEC3mhYzLOzcDYxw2RtKbfMHKR2ooT99YtZPr2bdcMTHCst5i21lFsO9nGLs4rEsgQnz7+EVMwxeq6JvtESJirHGFq6mKVTAzTN7WZ6xuFUwzL2lbRSOzhB5fgMlLZwvaynevIcFdP9VG2op/r6DTz92m56x8doPDdA8VAl7YkGlhZ5vFbyCnNVB5k8Xc5sqhL1oY/zQqoBN3GcytIT9Mwu5/buk9zvvM3syBJGp6qpLh5kKNFDffMcxWV38Hrfct6omGHDggT/y3/65IWNJ+8RlEQtqL9MoJTaAvyViFiPItiwYYPs3LnzPUm/v3s//8/f/DX/9JHP4iYSJDxh6dAZjtU3Zw30jqT4JE/QLl38ifpaxm3KH/BVWsRfu/cYX2ar+rB9psw2ywR8Sf6GZfRmZAeBsuIkmeP35auA77dv9sStbFmxIpSb9Pq17E+lX5XfZ4fazLNYdAtfh/RN4PJfJv6CK8t38Zj6MlvT8aNm40zywumkEZV+zn3DJ1tdpql8TcQsLcsk30ToomYubXnOIrDzuqvAN6JkNpx4VMkIY6ouE7ZEZrjWe41XE7cEmz2EejnDKHWsSXXTOXGAAzWt3MArAPyU++hXJp9/Emwo8tOulDFKmWJQ1RPe8LJcjtCnVgYLBYTszTBp3f28rHZ7KJudo6usndyVJfNhE3h8Qf6OZfTyFB/jnNfADZOvs7ZnisGyZnasWEZX+dogNZfV7hEGvEUMFdWF5HkZeS2pHpTymHEraEv10FvSTHeiPVOm8y8wuW1knXRxk7eD7zhfJqUcCELPt7b0VXpXd1qGi5N+WcvcE1a6RziWWJ2TVpIUV0+/wa7S6wLZvlxHPO6VJzmtmtmlrs8qt2KZYTH9NHCWcSrpVu3+WtQcCMvlKP1qOS4ODh4r5CgdvM0k5ZxkKXMU00Q/I9RwvbyCUn7bmKAy8F+psuSF87RO9vErPE4r3TzBZ3hKfTzreZlMUcx0JvaoqgskCE1z/fQXNWfyWyPD807RRVjq9dKXWGnIE6yfeYur2MV3Sz6PhxPSS69H39n6Gu8wzU4fr3ATM5SxKbWd6+cO8Hjxg5xymqiVIRoY4K3ENf4JQ1kiXHx3Wb7sBC63TT7Pc+W3h+p4vlwcXG6TZyiXKfbN3chscpaTiaWZ+lEirBjt41x1FQk8GjnFEvoYYBGHWMuMKs2U0TWyk/u8H7OL63lZbSQhsxQ7c0xRypAKn6ktrJV9jLtVDEk9palZZkodZihloQyyNnWIxZNn6a5ayahTQwdvU84klYwxRjUrx/vpLH2dbc7tPKl+iXNOQ069L/eOcdJZ5vtiDe4tdk9ROjeD47gcLV6T7ZAff8qCIC9FMhN8MfK/Ot099QxXe7vYWX4tI9TSx1IGWYSrigAhSYo10s0Y1ZxWzX49C5TPTVM9OUFxIsVMqWLGSTLtlNLsneRooiUoZ48iL0WT28+sU0TKKWIFRynxptnrXB2c2Z6LFXKUz3t/z/R0JUdKV3GF8xYA27mNbepOXBIkPY/fO3v0PSV7SqldIrIhb7jLnegppVYCLwBXiMio9uwrwFcAli9fft3x48ffMz1+d8fzPDFb7RsC8VgxeIrjC5uySEKCFP+NP6SVbrqljZ2TvnuV9AYNIJsMgWXWKnAf4mcyE269vMEidWaejBkIiyMpPilP8FF+hHgJhrf9nzx6ayV7i9dlZyiLiHh8Sr7LoKrP1S0cFmEJffSzJLPxQYnLx2d/xEOJf+JbTojEmma5cghPiDxdAOHF5LpFz5fpdxo2smkjZ3o4Xad8pD1iRs+61i9y1tOS33woiHQa8mdK60JkpGFoT4Q/1QPrvT3sc9bPDzL58pwv/1Fty0S2872kROVd1yUn/6FNQlEz1rYXG9PzQttJIcjXJvFolFOcUUsK1zNKL9u1rb/b6iBvfvO8BF5I38v3pcEW34YsOSG7/++RGQEHlwUyyKBqzJWty49K02azrPUbUQfv1KZdSDiw9/nADqngTKiwHbi9/wj/9NlP5E/jHaJQondZb8ZQSlUCPwR+Vyd5ACLyqIhsEJENDQ0NuQLeRZxMTJF+AwWVTfKC/+k3ORHfZ97dk89kNmikg5XLJJlAFgOjcFh67nR2OOB6XiGrWRsGUgcv4+JFKZeihoOcpskcPohTzBwdqotNbMtsFsnoFopTJ4OMUkWFjPvzGOJSRIqWOT+PG9nmv9mZiEw6/ayOadAnpJc5DmSdwxvWUf9vkheWZchjTpxQ+RsNYpRxC9evzYDayGA4bPrPpq8p3+/kt60sbOnr1+H/hcgJDgMMh9/rXBOc6mIgXSaCpetu08GkY5b+hrKI+h0Oq7fx8P2sdmdIW49rKlv9z9QeCy0fWzz9nlEvJ5vk6XUTVQ/5rsNp6+UbHuZsZRAp16Jb2M7Z0reVhx4+qn5s5ZLWIXPfYNdM5ZPvT89/6L9HYp7k6frq8Uz3TX0gXEa2tE11YIuTL5+mstXjmGTmlHc6nH9IgO+uLJtSjdWmcvN6CXDZEj2lVBE+yXtcRP7lUuszMlvr/7B1bOWfYrtPOlHKd6/yi/K7OOit81/k8e/9m/podvzwW2tITt+C0BsXwgPyI+7gGTaxDcJkLI1Ar2vm9tNGd2ZcOVldRdVMcFKGTnKADbzKw/IIrXTTIt20cSA7nyEMqQbGqGVcVSM4XMfrPCyPsNo9lsmOk94JbEgr57/NaACKVG4c3QCFiVi4LG0EKtzJdRlGJUwGy6C3bizD9/W4ev5Nz03yomYdogahcDnoxMNGMKP0NRHWQuLqcvSwUbqEdY8abExyTOUYll1AWzTKseXDpHv4t2mgsskwpWkqJ9uArJe9KZzpBcimj8HmWWHq81GzL/nakq2thG2AqW+Y4prSM+XHlFdTeYXbp404muyYzTbZ0sl5cTDAlH4UmdXtSlTe9XRM+THZmah2EmVLTbbDpkc+FFK/hnIYSb4/tkFclkRPKaWAbwD7ReR/XGp9+rv3U7YnWP8XNASlGxcJzotljB7m3av8qfM13hq5HUifdZvbGdbLHpo5mZ1o1sCgmKQcpfyZwg2ycz5MSCeABe5M5lEPbfz58ns5VrXAn7JnkHXS5c+6KYXCY7UcyvL91432idc2QAAzUkIr3UxOVIXy55g7VJRBMHRWCX+6MxIujxrOk5C5nLiRg6nJ0JsG+XDZ6sYrfV8PbzOmJv3yDbA2faL0jiKshcaNymM+khGlgx7GNghfCOEx3bMNWjY9TO3QNKBG1aeOfGFtZWYi0YXmxSYrqg/Y5EXVoU5m8pFRfSCN0jks35SWKayeN10Hva/Z+kAUwbLlK4qcmmybKS82MlVIn9V1s/Uf3ZbZ5Jtge67bZVs8U7vL1770MtL76YX0RT2OjXiH21JI/niirPC03kNclkQPuAX4HHCHUuqN4O++S6XMLw70sLPzRsBvNLf0neNjb2zn5qkXaZYT/n2lULiMURVyr+LgqgQvJG4GoEN1UUSKzKkRQYPaq66hn6X+PfFyFQDe4mp6aEMEqhnODSD+ou72c75rlW5p41/4FCnlO2gGuIuf8Ss8TgIXJR6J4DSOdDvfr8xE1Da436D8xf4lxTOZ/DlYOlYoXg5sBjp8L8dYO4ywIFjQGyE7iiTYjLvJSIcNm2mgNg0mhb7VXshbqQm2weNCYKpjPc+musyXlokkh+vXYmBzZBRS9rY8RLxQRJKSQghNITCRNdNAk4+EFVL/JiJiI0RR8vLVqQm2eriQgVkPb5JlIo9RaRZCakxlpLdxU7+Oar9R1++k7US9CET1n3AcG9kqVLdC9NbTsZWtrU+G0zHVt80+h+Pa6tymi6XsqmU8f34vAi5LoiciO0REiciVInJ18PeTS6XPa40rcRNJCE7CeGmJf3rELd4OzqgmCNbuJfDoUF3oTXd2pgwRaJFu7pGn/fA6gt1+jXKaNHEMN+ZB1cgf80ccUm2ZM2/Tz+qDOJ5y+Oumq3hl8Hf5M/U19qqr/CWm4uHgMSj19KnlwV4o/P8hXtZBF4kwUctjONJ9Zmy8Ds9zaJFuviB/R9anZb3D6m+XhRhhPY5OQgoxIKZBztTp9QEi3xurLR+mt3UT8ctHJEwkVA9j0reQQS3K2JoImilNWznreTURNRsptQ0Upv+mfOrESW8nul62ASOKcISh5ymqfGyky9Ye8umgl48p7SjCqIfJR+AvlMTla7/htPT6zEdMooiCLS2TXqZ2dCFEN4rU2OLYbEYUAbORMdPvfATRVH752kuUDYpKz9ZHbS8jpr5psrdRsk266/Vsq/sQSqbeH35OL0ui935DRW3IpYNSiFIcbFzG0+rB+YXjwFWymxbpZhVH/bBBI2t2j6NUeI2e5S0FuJ8tuQ0wCOOSZB+dvMrN8/eBQbU4I3PWgefrq0mRIH3cVtnMFB4Oz6u7+SZfDnR2cEmyQ23OZK2VNFGLMFghvZ5XdwKQLJrjzJk1ABxU7eQsKrYZgjDRsHVoU1wboTN1WhORsg38epiowSlcR6ZwpjfFKNIYRfhM4aJkmshR+rcytL0LITcmGTZdTTJM8qOMr41859PBRrJt7TkfYdHjROVJH6BsdRtFEKMGf5seOqLqz/Tc1l7zESpbenpaen/R40YRmSiyYItj+q3rF9bbRvj1a5MtsbUjGyGNItEm2xaOZ2t/prq1yQjrrutqyqMe3lYG+craZLOj7GQ+uSaZeh7z6W7SMUBfYqE93YuImOhdBKyvDL7ThxrAmao69pWtzQo3QANKwRtyjX8jaEQnFi4CDJ9GNdQwxDhV/ufPMIKGnCDFpJQzYNoan5Ep3CAvkSSFkhQoxWRJOR4JPJUIfFHNY4TarLa+XPWSCHy5ZRkcg6GdoZQe2igqmuLsmTX8k3yGF9ms6UPudbjTmQZuHVEDcRRxMKVvMxom4mCSl48wFDooRumh66TfjxrQ9AHnQghMFGzEKZyGicDrYU16h+/Z2oHeBm31YApvewGwyYz6HU4zX5sKP8uXHz0vUaRDr+d85NyWRvjapI/eX/X6zDf42tKOIj82wmuSqYfX85JjGzVdouyKjVzq+TDpaUNUOzHJtpE1k61K3zeVSSHkU7fzernnI5163Hy2XG/DUW1Jr1dT34yyvSb7bYpjKNPx0niN3n8YDKVcfH+Z8w1gpriE9KfcNHrVap6VuxhSC7Lj41930OV/NLU0znGq+YH6dA4ZA1B4fJG/Zx+d83Ehx+j+6skz3OZt5WHvETq9twHRwvprCdPh31TX0i1tmcf7CG+oMAymoY7WzxL+TD1CDz7hfZ2bcsOnYeqkumGyDSAmo6TpYjVypoFAjxeGzbjqYWxGVpdpMj75Bpko6GWUz4ibDLEpnim8SW8TmdRlRuXPNCib8hJFgsKyTO2i0LxGwRTf1kZNg1W4DEwDoN5GbNdRg71poNX7k618TDJNaZiuCyEBJqJiIjT5yiwqXVMbiyJo4TAm2Or8QmTYEM5XWEdb2dnsWFS7tBFkk+56my2E8Ork0UTAbP3OJD/fc1PbMMUz5SNfu7CVldaPF3EqV69LgJjoXQTcXFtJIu3+JGgErWdOkBA3pwM+z53cJs/6EYOw6071ZoJlSFxOg5TMrFsOlO/KcUyqWKCGcp6lZdS4Uyx9ex+HfryMyteHuGHHNpKeB56XlVa1jJAmgB4O+1Vn5nGVjPn+AANSGAVRCVIkOFq6gvVX/oJWdXA+37aBUDdOwXWCueywUaQhyiCbBhjboGEjRPpzE7nRB/asgjEYZf25LY7puW0w1ElZFKEwGT4bMdLTMd3PRxr0OCaCF5ZnQlQaejnkG+BNA6fpvikvuvxCBjaTHD1cFFm36RH+HVU/hRCmqMHVRBDTvwutu3yDbz4yGAWbDbDpY+uv+e5F9fN8cgqRoZdBPuJlSjPKVpriRJVdIXqanuk65yuzQvpqPvJnG2OiZJnsp0m+CCB8PvXN6HxcJMRE7yJgQ00F/7XvqYzfbMfzWDl4mnvPPAtk75ItYpZl9JIgBQiOuNRPDyHisN82G6cUBH65leehRPNFJ/OOkB+QLeRsdgjCjSZK+cu7N3NiwQoAlp0/zqd3/JyEl63juKoiSQpHUiRxaZeuTHJH1apsHdMPTG9AgV5XFu3GcVxK1fT886j4hjAuRblhTZ3aNkiHER4ETYNmPkNeCFEzDfa6MQnf09MNX5vKxlTeOkxkw/RcLycTYciXVj45+QamfOQmSq8oYhKVVljvKJJhim8jNPmInf5ioOfFpqcuJ6yHSV+9bvO9eETB1F+iyICpTZvaRyHpm8hKlKxwWnr6NoIczkchBCKfrmF9Cwmrh7elH0VA9Jca0/NCyLLNHpnKJqpMTf3YRlQLJe/5dNSfmcojqu+a7EukXVLsVnkPrbgoeH9487vM0d+9n6dHm5AlfsPwHIeji1ZQXD4Imt+4SsaDtXgOKAcPYaC+Csfxd+QCxg6l8PjVqcc5dPo6xkvK2Ne8KqsRXiW7aVO+v7s6hhiiPscoiHJIOcLYrfU0qQHEVXi/eJGy2U2Ml1VkwrkUkWSO2+QZNrKN1rSDZeCkLCUzkZclX8g8yAwsHptkKw1Dw3iLEvQ5obj5DGoUmTGSCY8EHp6o4NAalTmGLUuGTsBMA65uFPUBNYyot22bbB0mwqITmagBy5SP9H2bzHdCHm2G3ibXNihEIYr8RNWDTU+9/mxyTTJNYW31aCKe+XSK0l/XzSav0EEvSla+fBda1rZnhYS5kLTzyQwP5oWUc1heoXVnaoeFEjRTvV1IGUeRdv2ZqV3aSJse36SzrZ1HPcvXZ2x6mMoh/Cxf28lXRra0omyPRv62Je4wp3GRERO9i4ATXXsZqKnPunemsoLpikpj+CrCnz8dGE8itYoWurlFveBvWMgyKMLNsp3DqXWMl5Qx5wSfb0MNsibkO2+E7F3APlEUlLgkxKXDeTuIJlQvPE/7qQFeX12R1fA9cahnMOuItm5po1u1z8vOMoDkpAmKcibxpIjDhzYw2lpLztfefG+N6ft6eiGsky5+VT2OCOynk8O0sEvdYDZ6+n/d+NkIkMm4m+K/kwG8EAJlMu4mo2wbrHQ9TPqG8/UO6iGSRBdCci6ELEXBNihfSB7SYfPpmw53IYSskLIphDyZ8hGWpd+L0t+mqy2sSXahxNL0YmB7UQk/iyrvfATRVu/52pNNTqH1E5WWiYgU0u9sLyD5dI+CqXwK1SV9P+qZjnw2yKRL+nk+ghd1L5yGLc9R0OS6trOHLzLiT7cXAcs61+MVFWXdcxMJxp0qY/ijssr/ETSYk8mljIz4RHEd+w0xFC+qzbxadT37mlfR07hsPn7QMMuZzLTRJLmnQSySfhamBrj1zLPzM3QKKsvKUCUlWfogHgLsYBPPqbsycverzuC8PwM5shjp3WygqGiKNS07KVazxvLQ85ID0xtmKM1B6jObUDpUF2+qa/3MiUB6h3A4nfB/Uxq2sFFGSNfdRDALlWMqC5N++YyyjkLIaDpcPnJgyo+N5OmydTmFopCBy/amHm6r4bCmeOFnennr+uQbcPO1M709RxFQk9woUhFF2sKkzpZXXbdC9DLB1L5N+dDj6P3BVGZh/aJ0yUe8ovKW1iOKmJmISCFtPV+b1vNqimN7QYiyp7byKpQEm+rEZOdsZZCPMEfpYiOfaZiIoE2GXr75dNbSWiRn7PpfRMRE7yKgua2dLy0OyFLQONpPHafBO511LwND256a9M/KfZ47gzAGg2Ey3sHvI24rAFvlLmYpnU83SPuMWsJAcjHPLb6XrdyVEVGxfJipolJNG4WQoF8t4xv8Z7bik71KGWOeQGWnb7uepZii5CyO45JQhuPI0hDBX88YMqqFGAp8Z9Hf59N8Xf0xT8hnSGV8F3pk+ewLywkbO33QMw14JhKmx7WRLr0Ow7J1gxs1YOnyCx0k9PR0eYUgisiGr21lqP/PZ4gLSc80CJpgIxY2ImojgxdSXuG4Ufm2kWU97XB4vU3m08FG2mykM3zPJEvPn+l3IbqZZOv90FQ+pj5j0tlGzGz39DxE2V0dppcK23VYvonA6nJN/T2qfxRComyw1bHe5i607drsgd42CyHFUbZAT0u/tpWJaawpoPwWzo3kDXMxEBO9i4Sbmuq4aegl2k708CtbX6bj1HEkvYFAazCb2OZvxhCPhHi0nTlBKuWHnZPQVLDtrSONUAP/kLMDmHdSHEUKM2QScCVF+dxMboZCcdMyx1UVBOfgFmrEV3CMouJpRBQdYlmDmPntYGTB4fxaOp+oBC4JDqhO5smowQDZOq/tuW2AuZC3VZMB0w29yfBfCCkz1Ymevq3ebHVpIri2QU8nzRdCkC6gPRnj2Uh1VHno9/IRDBPykVFbGaXD6vWjk+XwM12OjYjp0OsrigxFtX0TCrkfJd9EPsNho9qqifhEDfhRJMnUX211kI8o2tqEyRbo6Zjart6+TXYqqp5MpC0qvK6Dieza+n/6v404m9K39V09D/kIYD4ini9uOK0L6PMzU9UXnuZ7gJjoXQTsHJngE32Kl+tu5NCS1UjGh2LuubTptXTK/wiKEkUCh9pafwo4pbI/AUc2vMx9YbnqRSmo5Xx2XAPqOJ95dPqtGpacOozjuWTO0dWMbJH4n1zbpWvejUxafhQJBa5iD5OT1RzquSE4ms1AFHVDZ+x4WjomA5pjwCzGSL+X720uquObDLNtYI566zYNbKbyDQ8Oepo2I2vKg8nwmu4XShLC4W35CYeLGpQLMbamwdmUTvjZBbypW5GvXeTLW1oPvd3aBj3b4Gpq/+n/UYTDpIMJUaRRv6frke+FIPzbpIetH+jlZtItH9nJV/emtmVL0/RSoOfJ1O9t/SrKPoTv2+rGRKyi2mu+NmPLswk2YhpOO984FmW7THY+n85Rz23P8rUf7bqoZDK8vDQRAAAgAElEQVQ3/CVATPQuAl4aHmdGOaASeE6CH37oRvY1rWDCCzZjhBrVjCplH524JBDl4ClFRdUViOs3sGm0z6iFDK4otrMZEXhQtqDSZCzT+SVzT7ku17+xg7G+Ck68sJjzBxbQNDrMR998kY2z8zONYSxRfYB/BNoKOTqfrs2IhDrjm1zD0PklALTT5Z/qYerQ+gCZM6gZ3gL18KYB3TaY6OVpGzj1MDYjpsexxbUZs7Ac/Xf42jQARBFJXRd9UDLpYCJ+UUSh0MHAlJYNUUTVNjDYdM1HVAslAlF1Z5Nv0slEdmwDj02OiWCYCIcNeluMCptPt3CYQtIOxzWFNZGl8P/wb1M/1X+H9TO1FVM7MumZr21EtYt8aYTzpMvNd22ymSY7ma9PRZFyPW1bm46yL/naWPp/FJHTCZ+J4ObTIdxfCiGLEeVUHBO9/zjwHSY7mUbhKtjRehVjRcG0bqhx7JHrqAw5HfYULJkpxRtroIc2zlNvTyjC2JxkaeaRg+ZnL+1qBEgoxWhvOUd+spzzB+pYWLKYG9zVLB4d4lbZnvEFGI6fOZsX6FBvzz+L6iABjrOSyqrz1Df0AppDaAs5jDRI4ef6ABcOrxsEk0E0Gap8Bjsir9a3eFNcXU54oDTlI58+JsMXlqnLNg1w4d+mMo4aVPLpZ0rXdB1O06SbXme64Y4qL11GvvrMRxhtbcVEwPSy18PbBqV8+TPVVyEDqk1n/dpGcvQy1OurkPZu0tV2HVV+pjyY+pGNEJvakSntQomSKe828qrDRlr0dEyEPx+xt/WpqHow5dHW1vKNB/nSibLL6fu6nYwizqbnun202Yx89RSg0h2LfH6xEBO9i4ANNRX8edtSEuLhuC6OCJ5SoMzFP66q/Bk2pXCAvpIZTp1akff4MuubGdCj2umhLTNbaHyrUQpPOZxsWo3veUexqHQF7d5SEhUtbEk+FMTNPp3jqKzKiDlNc67cMLR7xcxSVDTF+Fgd29kMGDq0yZjpHdNmZExlEjX4mtI1EYhCDEnUoBo1ANpIbSFksxDoZWYLYyKA4Xs2MpiGjSCayGY4TV2vfIQrKlwBbdCoQzgdm1GP0suUtmkQM8XJR8b0sLp8U5sxlWch9/TyyPeCEkUoo9qbKV+mPJriR5V7IXVg+m2r66gXAVPd5esftv5ti1tIXzD1T1NcmxzdjubLS76XGZssk50rxPbrNihf/sIy9Xo0ycrXRsN5MP0OXa/iSGGy3mNctn70lFIfAf4Sf1vl34vIn19KfT63pJ6G//477JBlzJSV8t27HsR1QpsLgoZRK+dpp4silSIliqQHE2NvMVvir4FzlO/0NwtBIy11p1g8NMx0sojTtfXzcpVCxD+HdpJyP01DR3FESHoezWf7Ka78JbxUP0Os4scLzvM3166b11e8eb3nk6eHNrsncMtA/xGeZm62DNcrzl+IGRnefB7Cz8JGIB8Z0Du9/ttEvPRBJJ+RjhrYTMQxipiEDZNpMIlKxyRfz28+I2kKayo/W1xb+vpvk+7676h0C5GbjpsOYyIlUUQt3329DUTpahuo8pFWU7u0EdIoHW3tOqo+beFtJMsmL+p+VD4KHezzDdymvmrLi0m+LR9RdWdqd6bn6TCFlJ2eT51kRdkHW54uhPhE2Zao+CY7q8cvhPiFw5pspS4/fK3rna/+TWnb4oowkdQ9VlwaXJYzekqpBPD/AfcCHcCnlVIdl1YruGpshM/8bAutAyd58M0XqfHmnRinG82oqqOVbn5PHuGT8gT/x8FXWDR6npra07SpbhYymBU+jOlEGScWLKLtbJ9PhkKGLIFLB13sYYMhvnDL7Kt0nD7H5hd/zKrhgySLFpEs3YAqWsiOhSk8xz+pQ+HSLCeCNX0eSea4VbahlO+M2EPldio9vdAz8eDs2TUknFk2ZnYbG0iNUoDQKCcplplsmXoHD9/T09ff5MI66XHC8vSwJgMRTstUBrrOYUQZSj1u1G9beqbB2UZmTEQ5yvDpZa/DZMz1uLbwNuj1YcqD/ltP11aGUfrY8moagPKRGH0gM7U1Xb6J1BRSh6b8Fjowm/TR+1q+8CaY8m7rU3oc/d6FpKnXZz4iGL62tSdTe9RtmCkPNgIYjq+nr8crtP+bEJUnG6nSf0eRYlvbzCc3qr3aiLHN9uuyTeNLPptu65t52u4Jb0WuHpcAlyXRA24ADonIERGZBZ4APnaJdaJmYycgjFVVsnj0PLVhohc0jKvYjVLQqrr5GD/kuuRBHBQjw4vxvASzEtp1ayA3nuNwfMEisj+vCptkq+8IGVMnU7xcfD1djXU8d/N9nKha4c/XKSgpGad25CSO5+GISwKPs6oJgAQen3O/QSv+0WrtdJFAoo2PZly3OXdSXj7E0mX7aaWb/8YfUiOGncEigOKMWsKs0t6SMmWQ/sPcIbPyrJcBGI2ejZDZDN07JUNhw2IiFqY8hdOPyq+J2Opp6vd12boeJllRxMYkW7+nG9uogTaK6JoGiUKJgKntRums/7aRZ9MAYiId4Tim34WGKYS8RNWNTlZs8m2ET49vSs+Wtg16+4tqA7aBPPzc1L7CBNxgX7P+2+ouqr3YCHsh9WWyBya5YZ11e2V7FmW39DzZyiWKBNn0jeqnhRBQGzG0tfMo8m3Ll55OIXUX3Dui1uY+uwS4XIneEuBE6LovuHdJUX7nJ1nQPkXVmL9As63f362abjgrUkf4Lf7f0C1Fw7mruG/2Wsr7azi4+26K5iwnOSA4kiIpLlPFZfPPxHfTspFtiMC96idZaabh4SBOAjeRoLepFY8E4HDKGaZxdIgH33qRB2e2sEm24pFAVAIBRmVBRkab6uYL8neAa+7kBtThb8RQSlAKWqSbenUuN2C4Q4U7Zea+sFoO+bt2bR0UFyesm62D2t4ebca0kIEsHE6/jhpITINJOH19IL3QwdSmk8mAmso/rH8YJmNpeq7rbRqw9QHJNEiYdDENiFE6ROmbDzp5i0rblMfw7yjioOczX1s23bO1ERvxselge2YbdE0Defi+nhcbgS6kTYWRM0gLDqnouPpgburrUW3FRvjDz/LVQxQB0/XS40SVlY20FGizC9ItHCaqb0f9LoRARtW5qX3ZiHa+fNnag02H4N6Hxt4fa/QuV6JnaoE5taGU+opSaqdSaufAwMB7r9WyG2j8/T/iFrUbxGPN0XPc3budlskj3N27nU/t3YqIyrTJmZ1XU3JuirXOd9gw9COKeqDz2MkgN9lk4wFvC5/wvs9n39rJutPH58MAVx3vprTXX455hzzDA96P/OII4ju4JD0X5bkkXJdbRveTIIUiRWqmCoXD4pEhrjl2mI1sI0kKR1Ik8Kg5OZelzu3yLP95z/+kfrCfkrk5Wk/3cnfvC9TPDuTo7eBxn/djpk6343kJvGAz8GZ5Nkt/RyeOht9JXG6TZ0mSAknlhFPiUizCQ0NbuE5e9Xcei2tPRyT03MvISJCiWU6wXI7QOHfarpvp2hjGNYcTATzKZRx0vfBYK12slS4cPJS4JJljrXT5u6Ijyiny3oX+hcouUn7e58JiMbVrj+VypDBdTbrgsV72ZLX1gnWMSjNvfjz/T7xoOab6zxs+nU9hveyhWXqDtN6FetPqxN4uL6DcovKn/a6S4cLSfCdtLpTnB+Rf+aL8fU5+FS5KXBTufJsppKwutI3YZL4T2flkXUg5+heF6/H/s/fe4ZEc16Hv73TPDIABBjkNMrAAFsDmnLiB5IqkKCZZtCxayZIs+/k+f8++7/m9q3QlSt+V87vP9vN9V5YsWsHKopiWFDO5u9zl5gxgkXPOaTCDme56f3RjMAi7FGWRS+327/sG01Nd3V116lTVqVNVjV813dcpixXDrpempXGul8Zl97nO7/+o3FaIv868wL6+Sd4LiIrN9E2CiOwCHlVK3W3//jyAUuqvrnXN1q1b1ZkzZ96dBHad4twbL/CL0RAYs2wcX0WaSieY4WYouZnp1DfJL7mND67/CzjzHSbO/ZyzifsIDMUz1tjKidWbeK2inNm4OJICIW7vaOIuXy35JQfpaQvSHjrGxcxNXPFVUqo8bHvjSbICk+Rm+EhPHcI1WsHLyX2cWpWNmHHUXGljeMhgoKCEgwU5/OGuUi6/dpzWDp1qXuH85Ba6TD/x4WSKcg4zWDlBc8r74MIQSROjVJX34a8YYXYontGLW2kYniPVO8GGDTV0dXUzNDxEmhlPU8X7eLEwhZArQk6gh4OBI7im+rgQKuQDwTxcaZcIyzjJ2S0cTdzHadnJ5rmzZPbNcCljN6KbFM310BafhZIwxcOjdCaWEwx6OHBlmk2Bek5vjONSciYjCT6aXVVkmkPsCb/J3EQ1O1pzSZqaYCKzno68II3uMsJJM/R4cikf7iZ1LExLYRZTWhL6pEZVaz9JmpfBlCzik1qIpIdYPzZJwXgXY9MFzE776c0LUVeSgq4beAIuGuNLISykB0ZIjBujyVOJxzRwxc1g6gKm0KfnkqqmqDLq2Bo8zRXPGo55dqPQ8RqQHp4kIzjG1tmLFIabGUhL5iXt/QzFZeKPjLKlvYUiLuMvvkKbp4R6YzNrx6dImW2lP8dNs6ecAHFc1daQbEySGR6j1rOGOXGTYUyQq3pI1CZo0GpwqwiIwQiZhHHjVgrDdDHjisNtRhAxSDUniVdBxvQUABLMWTz6HNlGP9OSxmwog96EZDQiRMRDjjFM0cw4Z5LKMTSN/HAfM64EpiSReEIUB3tYN9FHg16MyxXidu1VCnriOebZwjOlFcxqCeSa/Xws9D1WTU7wknkvR7KrCWs6XjVDRNxopokpLjyEEcPEE5ljPC6NsvExfGEvs0l97JGXqfFcpFlbxU/l92mXUhRCljlEWaQd/8wwR7y7GfOkkqimCGiJJKgAqWqSKqOBWeWl15XNlPgIEs+UJJOoAmyfuUgoTpgmlYDyEdR0Mo1Bhl2ZZKgJDkwcR4+fokGrwhMy6YnLJuCJY9pIY1qS8DGFlynStFH2qtd5RTvIGdlBPCFqIvX061nESRCvCjBENqNk4TINSswWtrhOMKVSKQ83slqvRZRGo6rmEA/Rq/lJVpPMiZshVyaIIlsNkKmGGSaLYbLxEmSbcRyvzJIQmeW0eyd9mp9cYwAXQdr0MrIY4uPh79Kj5fG63IkxG8+M28ukx4tXBak2ahnSs0lV41SHrnI1vpx+zY9f9eEyIjRq1cTNhSmnmb3qMO2RVfwy/m4M3UW6McSEnkK29LPKbOJNtZc5EtgTOsZH9e/wmms/T8sHmZEk4swwWZFR0qdmiQuH6E7PIqIJHlcArzlDp6zCENANSCRAmX6Vfvwkm5OsMy5z2V1Dm1aGiU5BuBsRjS3hc2wdbAc9wPGUdZxI2EVyZIb39zfhShjlclIOVaoelyiaZu6gRU+nOy2RLNVPQBJxM0e+6iXBDHDRtYFRySCCiwQzhCEabuYoiXSwzrhEtyePMSOTvkghQbeHKlVLrtHPrPLRqxeSZEzS4S4ipOLJZpCA7mKKVCoiDSS6ZhgK+QnPxhFJhHG3j5AWh4ZinXmBWRIZVRnkql6mJJVUc5J+3Y+LWWZJYESycSsDnxonIhpJKkBueIjC4DCt4Wq6U3wEPB6qzFqCJDAhqexXr1IwEeQ59wfol2RWq8uMJybRIuVMk2S9cQHLO5RgBlCmTnJkilxPF2mME2/McVWvIoJGBDdJapo8c4Ahsmh2lwIQR4h15iWyI0P4zBlqPdWMSRqiDAY1P2sjl5gkmXpXDS4M7ho7yzb3CV5zb6NFL2VakqgZ6mBd8ArD+W6StQk6zEp69Vz6tCzCuPGpSUsfZrro0/KZVBkcHOyDrCae924HgYPG8/QFSznu3YmhCRnhURL1aWZIYpJkZjUvcSqALgZ+1UdZpJ1acx3KbeDR5lgdaeCEtpMJLY1cY4AcNcCAnm21RWKwf+o8a/p9fPx//T/fUVNCRM4qpa6xAzIm3k1q6LmARuBOoAc4Dfy+UvP/Y2s576qh5+Dg4ODg4ODwH+BXNfRuyterKKUiIvKnwAtYr1d57HpGnoODg4ODg4PDzchNaegBKKWeA5670elwcHBwcHBwcLhR3JRTt78OIjIEdLzDj8mE+RfhOdg4MlmMI4/lODJZjiOTxTjyWI4jk+XcbDIpVkplvVUkx9B7FxGRM7/KfPqthCOTxTjyWI4jk+U4MlmMI4/lODJZzq0qk5v19SoODg4ODg4ODrc8jqHn4ODg4ODg4HCT4hh67y7fvNEJeA/iyGQxjjyW48hkOY5MFuPIYzmOTJZzS8rEWaPn4ODg4ODg4HCT4nj0HBwcHBwcHBxuUhxDz8HBwcHBwcHhJsUx9N4lROQeEWkQkWYR+dyNTs9vEhEpFJHXRKReRGpF5M/s8HQReUlEmuzvNDtcROSfbFlcEpHNMff6pB2/SUQ+GRO+RUQu29f8k4jIu5/Tt4eI6CJyXkQO2b9LReSknbefiIjHDo+zfzfb50ti7vF5O7xBRO6OCf+t0ycRSRWRn4vIVVtXdjk6Iv/ZrjNXRORHIhJ/q+mJiDwmIoMiciUm7B3Xi2s940ZzDXn8nV1vLonIEyKSGnPubZX9r6NfN5qVZBJz7i9ERIlIpv37pteRt41Syvm8wx+sf8PWApQBHuAiUHOj0/UbzJ8f2Gwf+7D+z3AN8LfA5+zwzwF/Yx/fC/wSEGAncNIOTwda7e80+zjNPncK2GVf80vg/Tc637+CXP534IfAIfv3T4GP2MffAP7EPv5PwDfs448AP7GPa2xdiQNKbR3Sf1v1Cfgu8If2sQdIvZV1BMgH2oCEGP34g1tNT4B9wGbgSkzYO64X13rGjf5cQx53AS77+G9i5PG2y/7t6td74bOSTOzwQqx/ddoBZN4qOvK25XejE3ArfGwFeiHm9+eBz9/odL2D+X0KeB/QAPjtMD/QYB//C/BITPwG+/wjwL/EhP+LHeYHrsaEL4r3XvwABcArwB3AIbsBGY5prKM6YTdUu+xjlx1PlurJfLzfRn0CkrGMGlkSfivrSD7QZXc8LltP7r4V9QQoYbFh847rxbWe8V74LJXHknMfBH6wUpm+Vdn/Ou3QjZbF9WQC/BzYALSzYOjdEjrydj7O1O27w3yDPk+3HXbTYbv7NwEngRylVB+A/Z1tR7uWPK4X3r1C+HuZfwD+L8C0f2cA40qpiP07Ng/RfNvnJ+z4b1dO72XKgCHg38Sazv5XEUnkFtYRpVQP8PdAJ9CHVe5nubX1ZJ53Qy+u9Yz3Op/G8jrB25fHr9MOvScRkQeAHqXUxSWnHB1ZgmPovTustFbopnuvjYgkAY8Df66Umrxe1BXC1K8R/p5ERO4DBpVSZ2ODV4iq3uLcTSEPGxfW1Mv/VEptAmawpkKuxU0vE3u9z4NYU255QCLw/hWi3kp68lbc0jIQkS8CEeAH80ErRPt15fFbIysR8QJfBL680ukVwm4ZHVkJx9B7d+jGWkswTwHQe4PS8o4gIm4sI+8HSqlf2MEDIuK3z/uBQTv8WvK4XnjBCuHvVfYAD4hIO/BjrOnbfwBSRcRlx4nNQzTf9vkUYJS3L6f3Mt1At1LqpP3751iG362qIwAHgTal1JBSKgz8AtjNra0n87wbenGtZ7wnsTcP3Ad8VNlzibx9eQzz9vXrvcgqrAHSRbudLQDOiUgut7COXAvH0Ht3OA1U2LudPFgLXZ++wWn6jWHvUPo2UK+U+u8xp54GPmkffxJr7d58+Cfs3VE7gQnbLf4CcJeIpNnejruw1o/0AVMistN+1idi7vWeQyn1eaVUgVKqBKusX1VKfRR4DXjYjrZUHvNyetiOr+zwj9i74UqBCqxFw791+qSU6ge6RGS1HXQnUMctqiM2ncBOEfHaaZ6XyS2rJzG8G3pxrWe85xCRe4D/AjyglArEnHpbZW/ry9vVr/ccSqnLSqlspVSJ3c52Y20I7OcW1ZHrcqMXCd4qH6ydQI1YO6G+eKPT8xvO221Yru5LwAX7cy/W+o5XgCb7O92OL8D/sGVxGdgac69PA83251Mx4VuBK/Y1/8x7aJHwW8jmAAu7bsuwGuFm4GdAnB0eb/9uts+XxVz/RTvPDcTsIv1t1CdgI3DG1pMnsXa+3dI6AnwVuGqn+/tYuydvKT0BfoS1RjGM1WF/5t3Qi2s940Z/riGPZqz1ZfPt6zd+3bL/dfTrRn9WksmS8+0sbMa46XXk7X6cf4Hm4ODg4ODg4HCT4kzdOjg4ODg4ODjcpDiGnoODg4ODg4PDTYpj6Dk4ODg4ODg43KQ4hp6Dg4ODg4ODw02KY+g5ODg4ODg4ONykOIaeg4ODg4ODg8NNimPoOTg4ODg4ODjcpDiGnoODg4ODg4PDTYpj6Dk4ODg4ODg43KS43jrKrUFmZqYqKSm50clwcHBwcHBwcHhLzp49O6yUynqreI6hZ1NSUsKZM2dudDIcHBwcHBwcHN4SEen4VeLdtFO3InKPiDSISLOIfO5Gp8fBwcHBwcHB4d3mpjT0REQH/gfwfqAGeEREam5sqhwcHBwcHBwc3l1u1qnb7UCzUqoVQER+DDwI1N3IRD3/41/Q0vomM9lx9MZXUqVd5nxiAidZxx11TRR11HK+5nby9X4yctvpTChhTZ9OfOMcWtY0RnI7dZH1DLnWsbG1k5zhiwzlleDLbSHdf5XjcjcnzV1UzF7ifXFPM9lfhGs4meGSFM75tkLCMIVaPaOzefi0UULxbtwzOmNmOqUTPZTONSAug+SMIdSsl7PTn+ZIVhXxc0HK+88wlJ1Gu6eYGY8HlxZEc0fwMUH6TIDsriHiXeOMZWVSNtbN1mA3LXGJ/LJoN2OSQWVPkPRAPkUDUwzHjdCdZpI/C5PeREpHpyiYmqTAdDHm6aExPUi5b5icqQ30k4LKjCMwcpHu9mGGqwuZLivmI+u3cqDvEpz/Hv3mBgbnbuff42Y5khxPVcdl7h1o4sXiFKZ9fnbMnWVrMI04VyUnkrs4EVmNv3WazVomyXsLGWw9it/bRsiM0NeUzFR8IvdU+8kfTqUxO4uW6Wl8GEQ6W6jcsZvCkUlaXj/MiY276cupZNu4h4xpg2BCDwNt7ZxLTGAq38PugjYSujpJuOQmd9t+gv4QqakDBOJ0RnqbSO+rImkonsSMaua8ETraL7Fq40Yq7rwTgLoLjzHc90syIrdRnP1hJjp7qRs7T0vhKGuaggyc72E2bpYNDz9CX/5mXu0e446CNA54ExhpOU4gvZ6s0v2kpGzmhyc7OfzGabZ4Rrjv7r3kVVZH9bK3sZ6u2stklLuYMRsZH8+hrOwghYWFy3R4YuIc/9bRxivTBWwM9fNwej0lJXeRMhmB9qN8P3U/P5wUcsPD3JGRwVhyIatCM1xpvULT5BzV425GcnMY8CWTmeZln9dkpuUM/f0zuFsg7G5hwz3bSay6k+Pj00yEI7w5OkQh7fxhdogsRklL20FKymYC58/T+UwtIfJwby2m5t5VXHz1pzS/+Cx6VhHb7/99Xh9L5JdX+qiuzsSMC1DY08ZeTTHTeJ66Io2sytugfoi0unpygfiaarp76qkr0li97wGaxpp4ufNl7g9Usm58krkKk+w1HyR+vJzWc/00T81S7kugbHMug9oE7e3tBOMzaJz2sDvYS2HnVbzbt+HdtMkSYNcpaD9KLyV0DRu4UyLMRtqZmixgsMGgxAyw9b7d1KeX8Pi5bgT4eMEAocsvcaYvnuyK9WS7DUKBGQbbW6ncsRtzvZ8zA2fYmrMVY7aYCy1HqUpvxpWwhTO9+ewsy0BP6OAX3fXMxVXzcEEFNa2NBE6dZqx8Ff0eDyUJAQYCnfw8vgiPa5R15+oJXmyiaNdtbKvezfSRK4wlpnM59U1OJ7q57N3CQ/l5fCChgcHBFxif8VN7xWDdptvYv+MBOPMdrpw5yqBsJHvHboIRRX19PSUl59DUebyTm2F0Lxd9abwymsD71/pZnevjROsIO8sySJu5THvT68jcOqoLcsmNHIeSvfTO+jhx7BQXIhkYmcWkpPXSMH6Bu8p2s6p4M8fHpxlo66K5u4d7UnP5UGIej2cK/9LbQ8XYSX4n9UW2r/so+fmPAHBmYobj49PsTk1i3bjBhfr/yoTnOMH4nXSF/ozKpDnigyOUJAQonL0CJXuhcDtdXV0cu1CP6nOxfS6NhNIU+qZ6yfdc5k33C7SHWwiPb6Kjdx+lVUX8xcN3EeqYJNQ6wZR7jO7mlykwFb70XcRtWktccTIAgfPno+XSODmOPjPF+u07rPpq605XwlqeONPA1YgQzC3g92dmWVejMcw5jKkwyZnr6TZOMTQ7SJr2O8TXlZI63kzR7eusZ5w6zWR+Dg2Xz9MQFsZ37OO+ndsB+Gn/KAAPEcfa3hCa10Vd84v0RI5ypughWtKqWT0zSXxPN3tLC0icm6a2/lskJDUy0ZtLmfZBqiYMErIHSLnvTii07tvfOkHdG2eZvXqYvN42OjZWU++BorwiijKKKCkpoWmsifN1h/C4Oug1Kxk197EqGKBGXiTYqtGatZ7ncnII6j7Kx6eJpCQQCc3we940RPPz40Avxuwwm6f6qBp5ncS0CTJy7kfN7mSs8w2aQ4OEJgeZKdtE1bpkmD7Hm6l7uUA+t3UPU1n7EmZJPDl5jSSlGEwX/DHPtaVS0HqM4nAOnoBBcU4WxcFh3GWb+dlYmFcIsLcoh8LxID/qD+LS3DyYnsaH7qv8jdsP/xFEKXWj0/AbR0QeBu5RSv2h/fvjwA6l1J9e65qtW7eqd3KN3rf+37+j3hWgoSKH89o2FCAoTPSFdCsFAhoGJhoKQcPktolj5CR3M0sCz8mDmGhoGBRGOqmRS/i0aXoo4Jjsj97rPvUEAbxMkMoF2YKxyKY3sZy5Viqsb0hSUxzgFbwECODlkHzwbeTQsO8pCCYfUE/xS7l/yXMBZYIsPOJwVCQAACAASURBVFtQaMpgW+AsxlQcXb488hPauU+epMJsxujbxGyzn7GJdJo2TvHvxb/LnH3P9LlR7pk6zO0TPbwa92F+lJ8bfUxFdwfNBUUAuAnzceM7vCG30ahVW09WsHf0GHcOn6C0/BSaZlqSMIWmZ0oxByqJcyu6V2XPJ5xhpejJ9LN+4hJS4uZbeZ/AEA2XMvnyxLfI6tP5sb6No5XrUYCbCB81HmNgLI/cmQkOFBxC04wYWWiMNtxOb385k9ospjLRTYOypDFm14UoiX+NZiqpYw172orZ1bQeUxm8OvBjXHolifkdRHK66ZzdzD9tvJeIpuEy4R8am0ir/K8oLQJKo23gQb47volNjW+ycWyOkqS1JBSX0+fzcjx4FP+ZM3gzpyi/rwvRTUxTuBLcxkDGvezyzLF9Mp+MVbsJpjbzt+e+zbetagXAFnWSjeoic90V6GaI75Tcs6i4RUAzTJSAKWLr2wK6aXD/xWPkTo4R19+BZ3yI7txCfvbgZ4iIPq+aAHzK/AYHtZcR8bAm6StMPnqY+LWPRM/X08HApR8xlARKhIjXx2TmRqYz3Px82wFMEVymwe899W32NMwwkreZnuJxlIBumtRcGqahaCd9KTPsuvA8332fix7/Jra1DPGJSycwPzkCOojmwXvmPzE0mYLfTCNbpXDa1cIVVycKhanANR1k/dUr5CfuJS53La7yVEbiLtB0/BXivBP0j8fhzQpS/oFORAdTaVy59D5mJnO4/exV/qbgNi6nFrNZGvlg3Os8E7+bgt428ga6yYzLIzu+iMFgJyOhXnozJ+lLNxnICOPiLv58zc9wSYSIcvF/n/1TSoKKyTwvR1dtRIkQB/z3f/xLskcHeH3/fkyXi8HkZJ5cvw9D0xAzwkef/Db+wW4EjbVzfqoqfo9gWht/u62LQ/pDUZnfxxM8on6AAkaOryapezehlEI09wXWm/fjUjp1ejcn3E0UF5+lsMgaawuQ0noP3c0GgSI3j5vbOJ2YgjtYz11TDfzOpjcQzUSZQmiimKSmCbIvTvNcwgZCXh8SmObNzDTKss+RlTlL/ewajlT/BREEhSCAy1Q80DHN46W+aHo/rb7BHbyMN+sLeIo/wsMXmgmbCl0p/rTve2zOfTraIj458AE6ZneSPzGEf3KIofRX2Dk+Tmb2pzg5MIsyLeVcFykiWSVQK4PkemdI2/Fv/FQe4Qy7qOww2X/Sjau4BT0YpsTIxvSfIJB1Gu/QNmq6H6Jfm+CN5F4qcpMo+3/+nmFfMq/ffgBT00CZ+PvH2ZNSRWH4J9Tq8GLSAfpSMji0fg+mpuEyInyRr1ChNS40LfMHps7Y4f+D4YFiVjX+MyHG8EQi1OZl0J1bxE8f+AyGpqMLIBoR2x7QTfjW6QDlNNC99e94Rfbxbe1/WVR3XWaET3T9iDuKnoqGJQ5sJKP9XhLGSulKe57ZVSHSc+/l2A+HCY3/DDAIJ6cTzCux0imQm9NEVnYnk5OpFBQ00KKV81fyKBFcuIjwefNRlCl8Tb4Gus5SRClEzGhfqimTL5pfZrVcpVFV8XrPg6SPzJI7OYqGxn7RCO/5Pq9qt/OYLOTpQ2NP8FDKDxCBH/NRnpWHUICuFA8cf4PyKy8DOim+tRzbexcvFiRiiqCZVn9qaFbb5lYmf3TlFXb7q7nzw/cvS+9vEhE5q5Ta+lbxblaPnqwQtsyiFZE/Av4IoKio6B1LzOGTT1M/qfPjXR9YMOxEiBrZIqAUSgREMJREw00lHEnZx4JRNh+u0+EqpYPSZedQarmRJvZ5pUB0+1tb9D0tyRxi/jq1wnUriXU+emy+NA7JQ1aall1vrxawn6lEw0A4kbgDEq1T/WRzgc18SfsyFfln6fFXcTG4m2lvlmXk2ekf9WTyw4wPMZn+BM9K9qL8NxUUR3/PKTeP6Z9BxcoexZGM2xhITyOfdeyTw1TQiGiKtIpRegY6mChYb8eHfl86z2ywGtazbGadOo8hOogQQXg9pZS9KYc5Kp/GRLOfC9/R/xgyFe7MCIWqnkppjIpCYTK8uptfZh0gPBdP5WAX/vERakd0eiWfVg7y7/JpIrh4sszgG0Nh1o4ryhLX0lHSg2/TC2iawRuqAkMTlAgGipP+Ye7WIiDQSDl/mfthIrk67ZWVvO/0LBUTcMnUeSnRxZRnN0n+ObIzX0I0ExFo0Sr4h8Q/JxJ08aNghM8bX2Pzj5uQLX28JvstVbPlfFZ2cFZ2IEVqoYbFlLlCMGy9nr8m9tvQdBpyCsmdHCOUW4QeCtDtLyWi5nVnIf4Z2clBXqbBLOFQXzcHavawCRC7LlVTTG9WASrYg+FNYraoArfM0pZdhKlplnwEuu6q4qnNipyeDBIiEyBgajqntu7iBzvXYGgaT+zfjikKpem8lGFSXTXKZtebiAamGaYu4whdgTVoaMQnruZohoe8iVRyJ8fQUJhJcbTcUUxvVoB+EzZOdhM38xJSMoQZb5DgViT5A4iuEA3ENElO7WdqMovBVRv5dCDIE6Fx0tMH+dzOL2HoOrph8Nnnn+Zh/XY00TGVwfOjj5Nhhiid7cUXHGGk8HVcWhhNrI74A+lnaZjaaBt5ll6GlMmP7riHe84dwdCs+liXXYKhWfqsNDeXV2/CP9SDQhHJLgbNxcnSdp7VP7i4neEhtsppylUjuRvGyNX9xI0XMzhbTCSrlan0BnomTfr1Agbz1xEkQqU0goKpgmMklwTplzJOax8jjJuI6cfdP8Az+oPUSC3l0kh8ejvGDmgNlTOtKkE0kn2DHMwxafHvI0OukK4KiChQmhZtSyOieD5PX5Te1+UOClUn57vbGZ6uJWS4USKYStGW6WWzXd+bVSVP5X6UCG7OmZXcd+kYu4ceoWoyndrJHlSiiS95mJSUfgbDjYy5QxgTuUyn9PMyj/Cs3f4OlEBwbogtfQMgECk4QUXlSXwAmc9wHoOLQ1kYsyaHRiJMf/JrlPdcAQlF20t/5hY8SRFOZVTxSzOPZk8F0/EJtk5rRHSdOrWGCmmMNt3RplozKC4/xdxgKldyBEUqYsuns7gKQ9NRmkbENBddaGiKZ/Pc/NHsVZTM8bp25yI5IkJEc9GcV8AdMcGBnAvMZtWRVf8IwepnQMKMhF7A47uH0LgBKMLJ6eTkNpGZ1clcKI6c3HYAUlP7AKiXNURwYYpOWMFRbT8Tkmq1+yv0Rwqstt3+baJxTNuLLiZ/zZcJF7nRCkzuv3SM3IkxgmWXcWkGp2Xnojw1ppbyGgd5Xu6ll6LoOQPFk7v38rBvhmz9Cv9Y/RBzokfbQUNjUV8XQRhcO8TFc23wU95xY+9X4WY19LqB2HmnAqB3aSSl1DeBb4Ll0XunEtP18lkub6iyjLxYRYWF3/M15VrhUaMsxti63rnYe8TeN/bZS58zf86yQhbHj+2kl95n6T1ir5+/Zun189cuMXajDY1yUc8aROAv9UcxEnU0TGD5fV6Wu1DEPGOpfABlG19L89Mga2hgDa/yPoppZxVNZKYO0HJXOZ60OEoHe0juV/SmZlqdomjMKZ1WWbVM1PVqzZJ0aJYYRGNOCUc5QLnZGD3dLJX8pTxKJNMNQL2/mJLhPrrSc4joGjoKE0GJTkQJZ9JN1o0bXPUFcaU3o2kGIlDDZZ5UvwtK0JVJpX42avrXs4aI6NY9EF6sqKNt0ORvV+8kogmQzuGS3+FP3pwh13wahaJe1hDGhbIb2nqtGl/ec5SfuQf31rnFw6joIEVbXqaxsl6qR7G3mP+jhLnkDAp726zOaMn9immjiUq+Ll8lkuTiZ3eZfONMiPXjRtTYq0rezvmUHxJXpRgLjjA1lU18OGSVg7LkeSRpLyoJtGLY12RS3deOhsZIituSiSZE5vVFBBNFd3Ium+2kKIRQ2E1+0WXqw+v5SXm5dZ1SlE90csfMa/inhzHLJ/hr/RNRz8QXzBDl0g8Kcg2h63gOyrA7K6UxMZ6LIBR5q+jPTWdVms4JXx6G7rI6FF04sWE32qyXKv0M2cnPIiNpxAVSqVzfjCYGfiWgrIGMUhrGZDK9aZnRQaQlS+H42k1khqfYkHiKzKwuTmvFsKxUrM9gsANT7eKiN93W51iDHZ5RD/Kf+TsiiYP0bPt7xuof5bTPS0nBk1RIHc3qfTyl3YYS4Wke4kt8hXIa0SJxRNzTHNX2MYcbREOJi5/nfRSFhk6EL/EVy4BRYKwNwhUNX/Iwces7+Rv9y1HZfozHcGEQMTWU5ZpHUybJswFm4rzRXAVI5GvydVQ8yKyJYIISNGWSMzIGOVbW6rCMDSUapqYIFBnkhcPkzBWBlsJw8vOsW//SIg+9aWq0NG9bZkBcKkklfyaN3Kkxcv3Ni5omI/ciPaEP0ZBTSIO/GIXG4fWF3H/hKNlTo2hKyE6epGvL/0ezVsrP5TOEcaEphaZMTAW6MqlRtaBBkz0DUKNqo4ZfUOYIJvcTCSWgBwPRpjl3ety6h2nJS0UdAJZOBiREbySER8ClltR7G5drbqFq22qjJMJ0zhmUhGnSKqiTtRRXJkKXDhj4M2spqWxZrG0xzUK1qkXEBKWh0DjCHWTTvxD5Wn1HTNqvUgMKIrJQhiPZCfgnxvCqeOaA7ZzgMhuj90mWCR4jxmsZo+cK+Pn6uylV5YRj65KKcbLMe0OJUMMVkvyK1tdfdAy9d5DTQIWIlAI9wEeA379RiQm5K6j1ViwOXMk7FqvtsR3kSkbWtYyaeSWcZ6WOdv44NuxaBuZKz18ad+nxUsNw6X2W3nMFI1QnQjW1PKMexBCrozPVEpnZcYPzrsCV0gXk0ssgucuvj42rNDooo0PKIH/h9KnUDaxNb7JGcPNGJjpjZESf6SLMXg5Hp2vDduW3jD4t2hi8LndSPdJCwUwfBYX1HGE/ETtvYBmjbVn50XSZykBQoEx0E7aOWp3KiCdIejiOJio5qvYDcPfAK4RmU9hdeIjSxKtWg6/WkGhOI5pCYU1vjKSPM5wmRLSFvEc0RW9ZIWMtSaRXTJHElGUYK4VCI4kp4r1jjMo0BQRpYM2y8hSl0DAw7On7+XMFMybdidrygUxMeXki4cXFYWIZjovKR9FHHkfUfiLiBhHCuvBsnosNE2b0ej1rlPJdnTTrFbSrJNzNQtDtsQYetjE2b/SbKI5UrKd0KsyBUS+9EwMgVVG9FGXayycMaqQ2ZvBjUl5xGhGTi2qVZeTZyxGaU0toT/0YXzC/wjHZHzVgwkpRp62hXDVaUVG44w1ee3MvwzWrKKKTBLAM7RQPX9qaSFgA4hep66X8HC4KaOzkk+oyd2S8zPBwQdTo15WyPBxKaG7eRu94EXkyjK5MLO0Ru+MSukpT8aTmU8049/FTLqh1GOjopsltA9PkldyDmvXQN/Asz4/9gsIZweW7zfK2xvT6Z2UbTaqSSmmkUcr4+ppVRERD50t8km/zXT4TlXlEuTmi9lNBI77+bZwq6eSw5ROK6sP8gDii3BxhPxWqEQX0Dlt1IyWln0taddTrE1GKaXx8feBJ2ifvRyKznEnowz8+DMDTG/faQ0SDfhbql0Ko6m3DF5olb3wYH6CyrQHYsMpEFwNTKVwY7E57CbW5hd6zXkbUZlrLyvFqrYs89JpmkpQ0SuboDAMZC/od8rh5ZsMefq/5EImJI7GqT9PsVg5tuM0edFllYyiFN6uI1ZdqiQ/OEX/7NNMSjnq6lOgoIhwwXyXcn8rqYD3lpY00YQ8c56c81aNU0Eh9wGTa30B6VQRXczI5I9UMJISZspdN9KZmMh2XQF1e6aI6HQg00xPfTQlQIN0L9R6sNgmDvRwG4DU5yCm1k2LVRoAkvHoFOeplvs8niIgLd5nwh20VJLa/Skbe6aXNR/Q73L6b2cQUzCyNeY9ZROlWPYqJWBnswzsrXErLxppB1xad75VCBvCjYdhttMGBnKfI79lBTs8BuvKOUah1okvE0nkM+lRe9JmLDMd5Y09ptEq5ratmtLzm5ZFHN9XUsZfDlNNIn6ogHLNS50ZyUxp6SqmIiPwp8AKgA48ppWpvVHrqU9IxYz09Sw0mWNHTschwWen8SsbiStcufdZK1y79vTT+SumNDV/J6Fv6PX98LWMv5txOdYwKGukjb3k6rue5RC10yHZ4CuOkqHEaZM01Dctr5cdQLi5mVi2+Z6wXFUWymuD78in28wpf4FHq1Bp7jeODi+5lKp1Dqe9n7+hlmrpWc7j4TmI7uEX3VwodA2X5HEAUoaRuRtPOEp5L5jn/HZyTDQtrIHMM/qTlm1RoDTRplfwlVoOPKEyxpq9MdF6Vu9DEXPRcwWBNzouk504BMC0+BGuELyrCND683knwX2AvM7zKQZTSFsmsZHqcdG8jZ2VrjGxg3bhBn1csI+MaA47e1CxQ9aAU7vERuqo2r1jOY5JOihpfXPbMe8QUsynNjBa/SKtewdflqxjiQqsw2dN0GU0ZmGrxNJ7V2Sv6K0aobblAS+JWS39EA8NAzXe+QKcqsjwlUks5jYA1zT2r4hdkGaMzb8h+DstC+Sp0ksypaFRlCvWhar63508wdR0XEf5L2tfgEryWHCYsYGqCZio0BaYyEaWsdY6iYSjhu/JZClUnuXEjmKaOJkbMOE+Rnz5AR48Lb+L4grvFlrkok4tpaznP+qhR8GdT/8gbI/dQ3j8A+gyN+hRavEau7KYnZZrJSQ0WlsHGyFLjKPupVI0c5QBhWTDUXlN3YspiXZk35nXDS2/PH2MW2YMd0yQ1MM14om/RI5SCgYESBgYq8SUPERc3Q5Wqt9chWp14jVnPzvYPcftEGBE3PncP41oABD7S9AwzxQaXPWtplYpFbcBQqo9J3UOKPsKE7uLf5LMckTswRUfD4HZeJkEF+IV8mG3aCdLyu/ln/x7C2j6eYXfUmJr3pGXFTZI4OQcZi/XMFI2hzGS0JRMLzZJnre2arzPKxATa8jpZW5bN0+54qkcm2F0uVKvaRXm+jdfxBBPISuikmUoelw9HPfERZXnmK1Qj3qQRSstPW97HYhehc2vwTOaD9Fpexqkx6nKLF9dNpdDTJsmI60IpuI3DHJY7iChXVI8EhWlq/Eg+xrPyEAiWh0yAdNDUZ6xBh2hERDHi97JlpJSZjn4ouLrM1yCmzmSrlxPV65d4oDWGJVbxFK3xWfyB+Qtm1Ro6pYRZvCyd2TKVzu3qRTIZpkZqWSWNUBZhrv82EMtra1iLbjEU+CLT4GZlx0RUeTVQBgnhELPuhJjzwgB+qlUdnRRRy1rc016qwkvbqxvDTWnoASilngOeu9HpAMieMG1DYQUPFiwPW2p0XE/x5uPEXvdWHrf5OCt1vNeKv5JRudJ1K6XrevdYyYupFHWyBgHy6KU3dhZ+pTzGpMOrpvFKgGGyQFmjvAbWkMnAiklMVJPMSPK1jWywvTXm8vMioGBUMhklkxap4D71BFs4zdflq8R6PebpcJXQU5nPPvXqwnSyMsE0QVtYaKyrMBs4z3nbcDIwea36LANc5jHtUXuEGzOiROe5zAfYYx6hTtYSEcvbgZhL5KQteDajshdrnZg9C1FDLW4WOpRqavF4Qij/RSqV8GnzWzym/ZF9qXWPtqQUuthkzcDGlOMLeW7WdzVyoTDGo72kzHJDQp6ZSmikDZ+ZzN7JJI4phbmkTPyql3YptTYrKQ23Mjk40callAJO+MfJy3+ScmnjKJ8lguX1MxCGklKo6u9c5rFAmbgJs913GLVBo5ZPEbXEtAWPYkTpfFc+i0Iso4hHKVdNKAXtUrZElpY3Gli2VGNoogSVLIhYA4T2zHIMXY92zFe1ajaktFE0OopbFRCZN/LmvQymiSbWejLL8yPUswb6egnMJFNTfQxPfMBKDpCkK4pTO6gv16PrRufznTM1Sn9yptUJK0U9a0gas9KZ7srEmJu0NtAoEz1vgIKMdl6Iv9saWESNkoUyFECb85E4vhFyFsosdzqBjiQwWJDNbeowSkCbS2LnWCrfLRDmRCHAnsEQL5T4iKDQibBPLI9Rdk47k5M5rCo/g6YZ5JjwkfD3OCO7WDt7haQpk1FtmnygX8YtIw/w+YbIWtVOg1ZNDVdopWJROzPszQSgpygfjd0oexPc/AxCtyqwBojAZdlITVodYY2oJ7Fe1iAKa2AlLrQMk92jV9BNA8M2cMU0cZmK8qZe1FZBNBWVWbI2Yz0vxmAAOKbv4829Jgo4ahhEGsPsXX2Ij/EYp9nJNk7QRSGHc+7GHxzgtGy2jDw0RBlWvVW1KAVJvtGox9cUg/6Mc/QE1i/oOjCclLJIjzUUezOfx8dItCz3qVdpp4w2KbemQ5XOLycf5kza+kXXRg0twKXA2iZhsEHGWJu2l/7AWs43/owJv0aDXslW73HLMyomiTUtHMjp5DgbiSj34jbDrkfWphHhX70Ps+gNcUvcgzoRSmhjimRM075FejMDaa0gUC81MTIQplyJ3Kee4Bh7GZP0aP+x/N6aZeQtybOhXLwid89fgF5h8vGhV3gvcNMaeu8lLvuCtrFgcz3jaCUD63oG01sZaUs8ZSt62a7FtYzB63nBlnohV0rjUs/mCmmJI4RScJ88xVm2LXiQVjJ6Y44D4iNgTcIsedZyYxJMssxhZnTf4tGg7akrNjvplUJ7J58JLN/xtVQGh+Qh+lRe1NBYZKjb8SPKzQSpuOxpXoW+YFjYGOLmPFuinYBgUi2XqbOnb1bqbEcSsnmy6+/JS+jBnS2ERaFME6XrKwwQbM+nCEpBnVpLBdZaqApp5OPqMU7JTrapE9YmFQHEJLl7P/d7hrmac8Ta5R0tAw1TafhVD71SGM2ricJjRKjpb6fOv9TQUohpsKr7ElOpTeRUtpKjUsjqG2d/7wSvFaQtih+7q3yLOsl96mkGq3X+Sr5KWEvAxRf5Ao9Giz62iCr7u6i310DN37NMNfMJ+TcqpJFv89lox4ypiJ3CsRxQsuApUeugKQ23J0RJQj9XcjdE01ilavk9fgDAEXWQiN1xuwhTZLQhmkLEWksVyEhCUyYK2ytFLeFwGlWTIf7n6QBn0nUuZ8xyND3VKiddp2Bsgq60lGiHExjIZGAgCZSivXMdFZUno6o+0Xob2UVv0C3llofWNvB1ZbJ77FWeSvoQhqbQMQkMZPJ44UFMTeNCCdx3cZzsyVFyc5soqjgFYnLADPKm2oy1pH5xW1BMGwnjFdw9NMJzOSkYyoVOhD1DJqcTxfZNKz7Jv9rTnYLpmaZ8uoE/GArwrexdmKLxfHGaXdckevv5Kpabu7AutUWr5Mf2+sdmXwXVSRc5n/Miz/WsImNwDmasW0zk6PyjvZbP2vZlRpclLKq/Si0Y5tE6KzTMv37VDp/xeNFNEzS7zFRtdD2fKTom0JqVx57mywTdHhLCcyQkrMJLHJvVA6T2jDJZeJj5NakBnxb1ni+aDlQq6gk1gIvuLUw3p/GTig9giEYt66yBXCK0JpbGpNFgrbrM7/ATylUjoOHzxU4XC+MTuSgUvoCXYHgYES+mubj9qQy3UeGy6n2jqozughWrJoAycBGBRBegLWsHAVxK8btX3yCyuosauUJ+VTN9M/8bg1PJnA9s55kka3PbS9zF58yvUqmaic9po1JgI+c4w47F5bGsn1jiHo0ppzzVxT08y/fkM0RwoYvJfvUyXgnQQSnb1QnaKF9Uz1ulkk5KiaCzsGlwYXBkNSzaoucszXPsgNrQoDXnLf872buCY+i9C7RkpVkH1/OqLVXYWK6l7G/llbuWkbcSK3kUr+fFu57xuTRNSw27t0o3MEkKr3KQi2zCpeYIS/zKz7lWOuaD50esxFS46DUa7XrZ4rAYT123VsAnzW8yRTKtrOKs7Fgui9jn2td1ULIsP8vSDnyBR/mm+hPLMIo13Oy40alGwECniyJqqLU9WgJLOtsZj4vHS/PwqFy2Tzdw1ZuONxSiw1u4SN7zjbWJZQDqSrF1wAVZApqiSVXyfXu3b4PUUKg6qVBNaMpNcu8e/n1dE8dl76IyEGXiwiAlNEtv/GJ5jiUkEUhcvMYmd7ofV1ijbKiXchpZt/5FNM3yPnryzpLXbIC6b9EzYo/HSKNeq2FEZVnTnKIRVm6OqAPsM49wRL8jamxsnLpEd2IxumkS0Rc6NDdzlKtGmqSSI7KwTkxToJkmER10FO/naV7kA0SU1XnFtVfzqq+canWF6r4uPLxCY04GJbThJYBSkNGawWd8J3gpO5t0GeVe8yn8nhGU0mhUFfy19hXC2ZbxcUC9wj6x1vV0uDdRbvjJGTcoVw2cWhUBtkXTPJrgXiSHwdlCClQjvuQh3J4QXZ01pHsnMdq30tu2j3BVM/8un46uNVwfucD98gSri66yxrzM8c4HSRqZpTe1cGEXpyiu5hQylBNPdq5l5InAau0qf977OK+l7uVsYu7C4FWZTKlkpjpLKUs5yxfN71KvraHGrKc9+XeJSBFoGkqZXDQ3c7t6BVE62lwS3dv+jjHtPpBdllEzb2zbHss3ZD+VWJsKQnMJJJo6IsainZkRpTgq+3lDv51IkRtXAdx7sZvcyTHqWbtghCmAJQPGmDqs2WsyoxuqYs/b3ztmT5LdXseljCzWuc+Q5RqnJrV20aCtJy2b/pQs9vSNsXra4DvlSYRFOJTv5h/q7ibVfBMlEZTSqBhUuEst77lJTJ2eR1kvi0n2jHE4Z0t0p/9yr/x8GjW28yYVNNrjOHNJFNubKIJWopNjdBDuyyfoWmwKuOeSEZd1XX2MIWt5uazBwcfUY3ToMe+LswfIWzlFippgT5siK+5l0qTNSoMGY3lHyan7KH2p7qi+hZWbN8cPsioi6FlXEYFkfpUpz4XB6lJ8TNIhpQuefSW8KndZ8hXLO1umGpnGF9Pmm4sH0cv6lxUMy9h4y4xdId+zeI3tjcIx9N4F9hjQCsuVYiVj51pesqUV+lcx+FYy/Oa5XpyVDENZ0rBcyzBdWgbvmQAAIABJREFU6ZqlXM+AtAmQtPCOI4mJs9L1K1U0IIceUBrxErReQ7NURm8hX0NpTIuPB/kFzVLJebauuM5rpfSvmOcYWV2UzfhV74L3y24kPSrInCQsl5VSnJadFKrOxX2BfV+PGWJOiwMRQpgc9VVZ5+c3HM438EqxmdOcl20ggiiDzVPnSZ05CzmWJ6tOLe5E61nDmplx0trfT5Os5tve9Ys8Y/PGSoI5y7PxDy6TT1NuEVHL2w4fSLLm9/pSMlg3+qb1HsNovkwSE4dXlp+djw4po51ya12avXNSIRzlIO8fmuQT2d/mtLaTreYJRtMKOJK1cVmRhMUNysqvOf/qBtMkd8xgfXMjHZUJ7Ep+kTu1l8hhgFPsoiw0wk9K9xERjZNs4L/kfo19o1dYh5f/Jl+zFnaLwYdyHucXSTsxReikhGQZZ6/vMKvMMU7P7CPsc6M0DaUgUw1b3hdTo+h0iK7wcVzJGyC9nmTJXJTmmXjvovKc0134koftHaAmpqnRfqmKBPNN4lMzuSzV0QX8oiIkqwka9Gp0MamUBmrinmO4eJhzUzs5p1ZbnjelaPAXYUoRJ9nAF3iUcmV54TIiVxiL2868UQwgKHxdioZpN4XGasrNp6mgCWVqtI9MoTLn0yuc1bbzt1Nf54/bAmTF16MkTI1csQ2leS1ZUHAVDYOx0Xx6utdSUXmcaq9lXM0vL5jfYWmKRkRTjCT7yZ0cI2NwFs2vsCaP1WJnr61TcWaIfd0nSRqG+uJCrmaURB/qIsLdxiHaqGCHHOPOpJcwa3QSLr0Pr3ea+OJpyhnkCzzK4+rDXJENlrGswZH8dN7IU9HXC4VNxYn4HB5seIi+3DcYHipksl+xXz9Jlz+TctdVnpMHlrUxqcFxDhftWNiQEEu0TVG2gRLhEA+CwO28vCiKCGiaIie9nokJnYrKH9CiraKuppjRcNqi2/bq6Zjte5nzn6XKY60NtMrHevOAUibT+Dgwd4bDCXuJKBcaJp9S36KQTurUOrzBanJ8uczRFr1vJDRFXe9zbEm8nTPFCkNMNExWzXaiuRbK3UvAypNSaPbk79I2Nk6FCMkSQ8rObIOsIfrqgWh5LzbgghJPmWqkVSqtAS8GYG2GIdbra128RN5c2+ibP2eaqPT1y8vsBuAYeu8Cs8ZF4PaFgBXc3NccGcTGW8nAmf9eajyuFO9Xec5KabvWc6/nRbwWS8+vZHAtDV+anmula0n4EH67fqrlcVZK19K8AUlYGxS6KFr0cuuVPALzFNPOGBkYyt6pu3RkKIKhdI4t8YqBsI1TnGQ3EWVPH8Rct9U8QZ2sWb5OCpjTPDHpWWF6wR6xahjM4VnUSZb39xJMcM3vXY7m2YpvUk0t4cQhhqp/xMmeLRj4F917zcRVdMPN2biN1rsQV/DALU3vvNfE0OCJ/5+9N42O47rufX+7qhtzYwYxkAQ4ACABzqQoURIHkRocW5PlJE5iW44jR4rzhpWV4b3YyU0kJbF974d3381N8l6uB0mxncRxEsmyZEuOJYqTZg6iOIAEQIAjCBAEMYMYumq/D6e6uqq6G3LueldKfHXWwkJ39al99pn/Z589VN3DC9zBbfoyu3gJVYtTsibreM5jmjV6lMOy2bvugiV6xljDeUYKe/I28RNroZFIWu1UFo2EefF4mNZCdnMH7WJAw6wCYtFXFaOvylzZdevnAfX9GZ4s0NA17imrnV35e3meX/H6xZMelNxmHD6L4KrFbrmLA+zki/I4jeN9xEsgqS4xkrTLCdSFa9caOB5r5NSSchZf3ssNXdfYtvwE++ydaSX4yHw52tjCrYUv+0DZslyWresAFHWfYNZq5gXuJOltmK/Ft+FiewYYj9O64BjlwK6KZ1ikHZyijavU8Irc6evvnWQVzXQyMVHG84230yNLQu2pWAwVldGiBRSPthI/8DkuFD7HxOUCzjRcN/ymVBNUOZZo5bdWu9xxtZab9RTN7kl+X/+EPQP3IxNxXmtZg4P4Vp2pKsfzZhjvr+bSxTZaWt/kS/oYHayiDaOLtk92oSpYJFnsdABQNzbMLV3HuNJUAnkznJKg5agZB9ve3M2KgYtcbGylq7KR1KYuuHxi/GlqZq7h5hXRmDjnDUmXpiWHKC8f9Ek1aycP6D/RwRqSnpTJ+LV0sVQNX+pSPfcO11c8TbmVpLRsgE5Zwe5Ft+BaFj0s53P6dV6VbcbC1eOvlDFGKCNosGHhcrMeoJtWqkZtTpVVY+yqbQaknm/yBQP29CWiqcTNx6ob5Yy13FzJSgw3LzzPhgosdjcWcLs1RbPbxRfdxzkg242hitrY6tLYUcXG/Gn+w7JHjaESJ0CMvuKcxPjnlbBicgnT3Mdt+jI73Ze5cGyGcRnhcuEAbsowBmWu/jpPsh3YRpFOhvzAftT9AefHWzlWlm4TwWFWwrcE0b1iXBLh3zWtEgAwpSVckXoMfHX5Ofc5fmzdi1k/jZ5jkrzAnuCycHKI+PVZzlbVkXFlHVj3LFVsVyg5Pmhicn3A6UOg9z6kk6X15kMuEDUfOAqCoPneySXhi9LK9Xv0pJILTAXTe4G8bNLF+dogV12ifKkDkkVfLpDHXE0KKSspcEDnAWrRNjYP+ZZ8HhSe4RfC+QKAMGrQUS99HGVjZjsE/gvKCBUZv78m2/k1/W9MkCAh47yjGxhM1rFx7B1ur3zJWLwiWdouCCi9714eGwfH9fR9JMYxNrBGj7CSkyTOQ97lEi6ULqViYRfdNPMt+bxR3oe0LpYoKklGikdAGkI8nyht57i0I+pmtmnW/nE9S1JDIyXV7KEFnSpn24lSKkvKoSGTVr1e5l6e5bhuZg4DlOqljx6aQV1EXa6XdzFHk+cHUGAu7HohlfpkMU/wBR7Sv+bT7pM8ZT1ifLAF+iqJxdt6sy/hFE1ioagmieFQ4o7z7fhneZewxPCq1EbawmLO8w15oxxj10APxyoWsSH+As1WJwgMVZXw5AOfM9FWXJelh16kTZ7iD/VR9ssO9hG2ekSMfuXr5bdyMwGlb1GvuVxapdO3BL9KNXvkTl9Se1LX08ppv7oXZREdsoom7SWuLkkghsNK9wSuWvTYLbwq2zPngSpH89fziOcTsGB4MVdOVwKwmF4s1/WioqTHgGNZ/HhBPa+4j/J/9j3DzOAwq8b7SCQG2Ta5m67iWtrF+IJLNeHcbD4AJTEjwWu1OmlRo0d2WsMhp0qKh0iUOowusNnfcC8qFkbbLbwOrDx/hfZLZ8nLL2WorihkIawqXC2p4PuJB0gS42V28kX3cZq1i7KywdAQV4UWTvFLXT/kQtEtvNZQgWsZ451Pu0/SPbCRqoHrNNT+GKykB8odBqsT6StztZkgwUK9GPIQUK4z9JFkVhWjJyy42LwhW3GwGCg3YCk8x5S32MJOXspY2nR6KUvHV/J3ejFttKVuxvvfsn+dJs6xXDppldOskNNsc/fSOf4xtl6ooiD5Nm5JBS10+r4On+UBX4LsWMrJRDlQTg8tnO1dx6aBH5GsTNDTWOM78HY0Zoy7fMOK8NrWIauQovDhtYE+LrEo916BgWpCysenS57OMBuQAMZkzr/adVXokNXGPZRYoJ4vzQBdC5ePFDzNxaE2zlY3pH8LNLCFw71TByg6u4GCPqi/+qHV7f80qZHznGRlzpNHTsCW7XNqxkYlYak8uSRWUXrR8qNi6CCtnwb05aKb7Xs2HqPleXltnUMBV+IBPuzM96KSOB1lXMoDEq4sIHk+Pjx6SY3xN/Kw5x8us46Csmy2l2P56/x3T+pqT5cm6EQ45dLEwUZZ7x7kkHVjmG8xTn/PspTPy9dRNdcvagspTHhWlob5jB4ERBAVWvUEI1Sy2X2D0jM2322+x3PN4fHIaqYoYT0j1NDH+HgNL3R/hneWLyNpp337OWpzktU0u12IWvTaizL6y6fraTgpkX4P/Bd1sdVl9YUz9NQ0MFZYEmqD47Mf4zevCd+pHDR9JuF2t5mjhU4eG3mCPfkbOFdYEDLSUEso0knSfgAlzU228ajKgdnbqR0aQRuIjENjLbiZ1zlNmy8BvUt/SI/bwoKpq3w78RDJwixXatGxpKZV2jhJR30TL3oOty/xcS5rPffKs5yiDUcss0li8cKqTcQxFokt2slW3cebg/8rP14QPjj2xhp4We9gkgQr9QStdJMObam00MkFaeSAbjNHgJRVphzxnQHs5g5fVeKYtZ5PXeqnYqqSsuRB8vKLODZ6F4cWtUKxRsa1+b/z2ii12oSinKq0eWPhDlYNjtGUV8vmrg4ONbeSjOVlrFdJsTg/fQeJsX2Ulg6weu2/YIlLm8eXBpoxHp8BIBkzblP+Xj9tLFD1DQplChfbtwY9k9fMr679S75s/bEPKFRtouvAxQUlPH37z7N8sI92fYfX2JCOTITQx8KAL0R4feQOapPTlNWcy3oeXhU7zs+daqFNnmO4Ic+447G6WD49yCh1LKjtCjYbi8f7sMpd3JRxh5zg7/XToWE0Hbf5A32MP5ffYZhqn3cnaDziH2jTTN3IG6GyUlmTiYuc1s1cmW7CKnJRxQPjloks4mV2VPgn/SQP6D8iwAG2g8DWxI8YXCVGiud20OrG6JTlnJR2EjoeueZNz+1Xlt9M3fFjLM87T2XlBSAdbzusFwlBxntlORoPH+xLdAzPxD8sRAjMtwECYAxhVvK972ZeV+nV9IEMo7MbJ3xFLZqkXi/RL4tQhO/Yn6OsbjRcXmCuWbjcfL2XsiNXucgKiirm2Y/fx/Qh0Hsf0kCeOd1GN/WM/8EUBS/ZRMTRAR78PRuN6Pu5aEXpRD/nStl4TH1+L1rZ2gBjfZrxXrZ6BQGrqgF5IT4ke5tH388AJngK4lGdDZMa5obIy5sOPauQa/SyPEJTEBx26kts1b1coJFD3JSlLsI+2cU23Zu2dlVPQiP4LlAy2i5QV8GlW1bgYvOifQ87C0+ZuJmBvI7EOUMLZ5rgtpmjVEyO8lzLLaaugc0iRpKFI1e4MLyBldPN3Fh7kLfZldkWmjLwiCi7A3UjV2mZ6qW59jCTVgmTbjEvLL7PSE+C/AN3XMrDkiSNI9ew3CZcK1zZShmmS1uhvIdX5LNpvSWvDV21OMsywDUHAnW5XFaVUU7we9nwJFUD15F6T4srOGaARjnPZ9S4tSiVUV6Q+3Bt4VQiUN8ITZukBxgMD6LKvVd/RGv1KZ6RsHT4kNzEUTbyWb5pNhpXcEU4XFzPuzzOH+qjRmrCaZrOv0NV0uLvFtb5ZQ1LFU/KFxBc4pLki+7jlPa7TI5Xsaz5LXZbuwyIS01xXB7kCVqlk2uXqpGiOC8W3g+FaZ6OltTw1PFJLstCXsxfgwuUXYS8amWWoHWoS4NeZK3Vh2oj75bb/NHmlcxZK3lNXSxRkljZz1TqEsOlpfq7jMXq6KpYTpHV7Evx5ubixONz3l5qMTpaByKUJIb5Lp/2r/ee5wFu1b2eOgLYrmDn1XBGmrkS2MhTtQ/210RBERMFRVysWEDpuevs0N3slju9+e5yWtpIzQdLleJzNlO1eZQFKaaGiwqVQ2s4aw9SN3GVbbxJl7byAz5OwoalZb1Yloam+zKnl3uPvsrYItha9WMUyeDZoZAWOlnOGQ6S1tk0ltTqjTFzoL2VvYxpGTfKG/617cxMAfn56TXqQkUB/2VRuzE8QCnXa6w5d4YHr7TzV62FvFMZ8+mdkHWcsldhZFUGbO2V231jrpid5PNjL/HN0jtJYnwPrucwqnBYbvDAtWkkRbnQsJQNeoTt7GE/O3HUGCQpEYf4gTVaNSzNA6VbVuAP6PcSHITAsEvL2ACfKv4LnrfuC71S6E7zJesx9ssO9nI7rlrYuLRJB/0s8tQ1YNIuzl6WWCTV4nBlPg/UO1zuPk4ynp/J2weQsogpPkz/f6dRqQw/yHYCgQyQkVWS9tNIpILvBp8HAVcuEBk6oeSgmcoT5TMbL1k2wZxlzFef6OkpF7DNVm6uFG3fDMCrVM1dxVIl29UGQF+8indkU4heAdNhqZb3jmIzJuWIwEHZAmgmnyK4WMY/WoqkACqgsE32Gj9t2erqnVRbOYXjhW9KEmf/wtZwPSPvjVatQEpbzYlebASHZdrJ7fpj/lAfZVPZ6yyeXsz1FU9zS+X/w0P615ToeIhmmTNGi57KaF/LdWi9cpGCggkarXO0ywletO8NO9ENtP/w9U76ZYQbRmy2dh+jZHoK20mS505j4XKQG/kzeZznud+XtPgNpcaQoMntJa3fKFnGQ7DfHcrzhqkbu0bTUCDMUqAv9rGD78hDHJe1vMoOHIzvO99KMjIfLBy2DB0KLK6m/OKSYVSFzfpGmmevnCRxjoq5Ui9ypkLP97PDr0KiroPfPl7Eb116h1q9bFxdeG1gwtzZnJJ2pmeKudzfwiudv8Y/uJ8J9bli0atLcdVmaHIZoyO1SDJc9bgDc84co1Y6ZFb92AhffnuI+/qHiDEHmgSEy7KILy66g2PlNt9ekmduysVY0M5h+RI1v84igMua2R7+gD8iWXaOP1/yUb5ftoOvyGN0YcZrPJ6OmJJqqkRiEJEkbxMIM4aJZnGX/pAyZwxH4KWyFXzVepR290SYAMG+Cs//1+taSEllUmMnLZVSFg0NUDc2zMR4ZYik/x/hTGyAsfJOpha5PMHDfFke55/kV/hW4yfpsZf6+YPgtYVOPlf5V4goX7UeZVjCB5PVg0lctbhbn/Xnvk2Su3mWWr1Cah0RHKY1bJwwMlLD7GwYmHTnNwfcwdgMSzX7lt1ETyKWln97bWJikdvelaYZPw52OhYtMQ4kFpLENioBxDnITRyVjawY70nTUiWmsHpwnLGhKprdbv6D+xi/6H6XjzrPB/omov7h6SMGn63Uk2lXOLn2tWAKdJStLr+S/AGt1umMA7NtJblAI2dZ6ltfu1hMa4H5pg6iypRdmJM+2ExRwOjC80xXNNOVvzqTnw8gfSjRex/SjqmD9CSWZYIqyC7p+mlASipfRJI1r7QOsoCZyPPogpwNVGarQzR/lEaues3HT/B/trKiebPxnYtnk9kEoI+6KglIdK7mVWO5LhXuMMN2cAH2NgKxPMe+qROjw6tsJy3xCPN/lib+TP4UJwgSMNINE3LJMnpReoIuaaVDVtGmJ1gyMkW8vC910M5oQ8HlNvcltrGPA7ItpHQ+bUVPlervcQC3DFynVHqIUelfT36Wp2j2JIoKTC/ZTYGnW9TIeVboybREEhizE5S5RaHFM29ulsrJMQ60GE/3r7CVRj3rWyGG+lgEQTlcFcOaOMS1glr2NW/2nUj7EUDE+CE8KAHLz8B42za3n+L4ZKZvsmDypLOiLnEcls92gyxg/YVuzlfW+dLPlMuYlEVnKBZosCMy5hxcii8MSftU4R8KP0WLdrCLlxAXnpZfYDhgVXuYzQYUzbMqF2oeCvzKsSXUjfTyh+0L0ocKNdvTSu1gdGQJV0oreW7FrcxZmWN/ZqaYPQP3cbalBkQp0WGg3v+9bE65Fr/OsarXWFh2mbm5fOLxGSqHYjwy10uN2nxTfsMUKxZzlss/r7jE3rLmcFMDGlkHTLsn+WTyWZbEO3lSHg6FitunO9jngdutupdW6UTEZcGCM4zV2eyztrKAfgao92kW67iR8KVu+ESY0zizEyWQCK4FwXUj/HUov4pXuDOtKxY6XAoXqmrpL6tgkXeFnLm0pXn8T/YfM0fcv5J0EY5VrjTB3sQMy5G+lYyP1bBo8TEsK+0yJmod2ps3CUALnfyh+xhH5zZSlXeF78hDzInR2RR1sVDfBdQx1qPAzrKXuTLQRCIx5PO6aKSfWHWS2dS655Xz18vzGC6w/bGU6qtUhJ7glXYqj2JRygjigzTx5+j0TDF2sYMjNgL8Su8MK6fz6KjaiHWmjJqa86yctvmzhnsDzsU9f3UZNygG7DXpWYqZIOgXMutekE04guIK/KhiHRZnmaSEYBqkJu3pwXvPVfFUQ7y5NX2KE4XtkTI9nXGvnP3sYBPdjNVcpmwuKlH+YNKHQO99SJtGTvD3JVNMS8A1Qi6J2k+T5pPaRT/nApbzlZsNfL0Xj9nyzffOfOAwF+35vkfBbZBWLvCrqeVDMvP5tC3UggVuv4lv6/+e4tecOAXFUQvFzk7L+zzEgoBrEodldLNEe2kb6qGy4iKnrXbaPOu1lJPSmCR5xHmCoqOreb51G05xLLIJwd08yy/L33L16iKWVPWmdtisoHeFnuS6FjKkTdwwfBWn7EXeSdTxGX2CCUnQzgkT1klMvNw2TtBSaHyZpZynmg3GJWV5pmpx3loSarrZeB795dV+eyQ1bkJQEeYttUnESdI8140ryrsNlQbk5QL0QSAdeF4aH6KNE8YARcWLv2sT8rfl5d/EW9ytz9K8oIsXxh7kdMliX2dNVFl77RT3VXwHy1IOsDPt3NrnPQwiBXNFG8Nh3cw7nHPrvTBqeJuGkdS2SieL9TwbOMIejBWjceQbOWh5fBYxxbP6AO1uBwvGPsKLywrYcG2OgoEk1YvHuFKadizdpD0sGB1ipKyAqwXr03F4A/QEh4Vzl/ibpl/yAbRIOChngQxysvI1ozNnpX+TpmOMAq/yx6E+UGCg7FokdBXUah/90pBuf3VZpe/y8/wDS/PP0EUrewiHitsjd/gW7ntll7m6lk4Gy0v5L/bveo57g/PZZZJE4Lt60huHwVnPQny+dc/jNRSbOsv65GJzumUBY1Pb2apTtKZUK/zuEs7mN7LPutmAvFC7CwdLNvBNfYRtupdWPcP1AXMYGx2tw3VtVspJYlYAgHkpnjdFyh+e4DI7U8zZ+DL/8CHqslqPMklxKMTbi/IxdvESRUXjwaZi44jNFweP8ExTEceK1vj1H87PPLgILp/Vb9Io5/kav2miFIXaxuF12eoZb4WRs4FWlula4LtL8uGiTV1iyI9w8jTlIUfV4gEqV1PjiNDv52QZ51iWtf+i/Z/xu1ioCgflJg5zgyeRT6crqTBrQRp+XS1UlYsF9cbdS+Ca2ZJw3KRRqWRkQRz6XWqrhvm3kD4Eeu9Dmri4hIaFF31/PRmSuGDKBnpygaJci1cuqVww5aIV/TyfRG8++tGUjddc7+Sin6usYL5s7aeKD0oy3pfs+UPPNK03E+0Lb2n6Vf0Gb7OFY7LWnO6ytRukN3NVbJQH9SmWu2cYmF1GvdXFSjnNbu7geb3f3yySqrw7t4lFxZfpKGoJ0UvR6vKsDgVhQhKkddQy+eiUlUY6BeytrmU/n8HFIkbS1wfrotUP6xQj6ftS62CVH08zo71SRURP1cGFN0sfbtS3WC7drHRPkhcr5KK2Y8/OZPZvtN5Z2uEFuY8adyC43yCqBoAEeBB1WUY3rdJJJ638Y8vHTIxWr39UIS9vihWWsUp9kCd4RXcZxfCUo2lftyglRlKWaA879GVap/o4K8tNnGRvw0+5qunUVr4aDGPnXRdm11NK8oLchyJYtoOsMtdocc3j1w7ns7L/nAF6Xt1uYzfl5YOUlw+yw53mddaRVDtwuHCN7lZJMhSiTdXypSQ2DjdW/RWSdPxIFH4XiAMCl2RhqPkLdYJSGYnwrvQH83nz5UZep1U6QSy6J+7ESYRDxQUloUmN8bR8kk/o9+jObw6MPSdEs5nOkIRvk77Jrqk97Mm7g7PReNmh9SQcjSI9pgPxoANj7XRxK6eLW9mvN/MHPOpb/QpwbPQ2/lvVIyRF0u8Gxqpi8YrcyQFu47fG/xyxxoECumjljYF1tOlxdjpvcbKqjUvFFbhqIeriura5zlb4sjxOsjSO5el9CuaA9Am+xyHZnA7xBvTRyG7uYKN7FNe16JZmTrGGjbNtDA1eYPl0GSfWm/jJ/hyJzE9XLXNNrhjA7rc5iAYcr/tAzUVdI52fjeUZHVuP1pylDFcuZUWRAXnd0spZXRrqmlbt4Fb286Q8QigaUrY1xZ/Tmu7DaJ7AWAzXyw7nBaYpynwvkkalEpsktXqJAW9sh9xueWUdK29je9271A1UZ9D4INKHQO99SH0TVfRY3gY9H8iZDwS+FzgKvv9e70TpzweegjSioOGn4Sn4bq68uUBmNoAbncS5ysrIa2X/PSe4S/9XLBP7MFpuYNE4y1J+Xr7HadqNP7bo/WoAGKZo1I1f4fJYC12TW7hQUk+ze5h3rfXm+iXVtN71YctcJ2PN5nScDUCelna63FYWzuXRrh3kScAdQ3Azw2zqQZ5SC3VS4xxw7qLV7vRDrfmuODxfam2cQFDS13Ep/Rky+znXQSXQjpa6fMx9jlY5jarFiaFdtA3lMTd3lhPLV/luXvyUdQNWv3xXhbfl5oAFZnADc4wOkncddVWr6fSC0SezGNxMxMzC36mtPCW/jiPp62PUYYe+TB+LzDW5GKvOHmnmvCzhDxsf5baRH9PBcubUxgI+p1+nlU6elQeYC13RGT798HGpTVNN7VN++1Tx6zKnLheWjXDTuU4WXT/GsYI1RgHfc5IrYiJZ/IH7KM/L/WZMeeNvlHKWSi82ST+eaMpZrIvZpMWLo+a6lh+xRNXowp1kFZU6nDZ4wlznb3f3s9e6HUcD20rGuuIyTimoIGrTPDCJVeJGpCvB8S0cZx2npZ1brx9AE6k+Co/hd1nPGj3CFerYzBv8Mn+LFlp0SCuwKUAvNX58hjwJjWeE5AMWZbW+wzHZkAY2mNizKjYKnJjcQmuRcSvS5bbxvPVJ33dixuHTr5qFozbnSxq4d92zvND9GZ5r3oojFvu5gRjgijF9WO++zVG5gcPlazlGO2s5knYHgkXT9XPInM36uUNQCf/C3YRAjyp72MXOspfoYiX/0TKh4J5ZCffMjNFXXu3HUVY1+q3pZgm0v6w1IdcisZtX61HydNZ4D/DSCuc0ndZKVCwGUkZQXn5b4eOTi5m43sbpphm+aj9KMjWnvPK6ZCVb2c+v6dd4Sh5q2m0vAAAgAElEQVTBVTMegw7aM1I0HGR0Pwu+k0sokWvtyrI/OGpzJQV659mPltZc4MrJHG7A3uf0IdB7H9KZlQEL0FTKNeCi+VJ5U8/nk27kojcfgMxGd77JEMw/X1nRz+8FBlP5o/RzAVA/X5K01VmW8qO8Rydw8J1sANB/nkU6FiirmxYGtZa7+CGXaUhvrFkXe/PsUqKebxR/FhXjXHU/m/F3IC/PAvr5gv4FdeVD9EsVcX7eXCGq4BsiiNm4TrKa5trv04zLF93HeGnmbq7MLGQoXsVwcdB5aBhwBlPh2BK6Klq5qtVY4oCq70vN6MRYuL4Ay9BpcM/TZzVmtmm0XQP/bWeOxcNXWX+hi2mWcK6sgNHROtaM3EJbyWKKpJeurnfZ15J2W2OMRHqYlGL6Q1KadN8KsGSgn8464w4lJXFQT4fpYzzLlBaxT3axR+7kADv5jD6BhYujYVBZZZsYoT+U+31nyOm+tKgYq+KV0rbQO8byzhhQbMp7h63uXkRctrKXFrcLtaBdT2CJGg/8AWBxOSIx2aRvsU6O8G0e8h0eA7gawyLJ9YrrFJSdZc1Fi5bGDjp0FV20mvBX6rWK4LmVSEt4D8mNHGMDn9VvGnc9ajLuljs8IGLRwWqWDBjdsPr6LkSgy23lK9ZjgbixiqrxL7Zr4HXqJ2u5Pf46P1m81QDSQF1SycZhFcdBhbKzt7N86be5jTi7uYu0i5Cw8UbKx9ylvMUB3cvwGjUuZRxjAwAvcg8rxrvZUPImJ8VThvfauUEvsdTt5VXb8wfot2p4TqtaXKYh9O5iPUu/LDKh8EiyqvBNcG1Oje3kq+UPkyxL6belwGRYWphS6E+5URFcuusW4ViWP4eT3hhClVnJ9wykjFT/GuHoFRcKF0MhXKKWMS0IHx68VCnDCHCKtnQYM8vlcnkNCwrPA+1+nVvHr3E6Uekf4BI6xoQkvENG4HLSG4uf4HsgcJQNfrjBRbNjnC40BxJVE07QxVgs/3bveerHYjyfF+e14U+TrA7EA/fa2VWbJ3iYxZwLgP/MtTOUQutO5CCY7b+nbuMiEDz0RullWbOB+YGn9307e4mV91OVtwf4TT7o9CHQex/Sirk3+CG3QlB5dD4gFQU5uSReP216r3eiwO6nAaTZwFx00P805QbzzSetyzmpMkXwWXnM4DUs5ZoXuEbfzVLWeTF6I8dYzw28Sc6r0+jCFojtmZLuBIFhM+a6dNy6xAZ9my/xGPt1J4NztRzPX0XKfYGNg1xxea72ftrlBLjC2wU3kSy0UTdstVajgwxKbYAXU56lLkv6y/hKxZ+QFHOVl7qKFIEneYRjyXVgh0/2fVZjZrvPd6oGHDvOhcoFrL/Qxfh4DeNjNVQ6xbS5ixER6rWSwZK5UNsoFmekmSCwIyLBqJ++TNvl85SOvUhX3UIOJdb7oMPF5kXuYTu7cVNWgqoclQ1pYw+PrqXK6uEOqIVrWuEXma6fy2uFy9IWpZH6jVLOfy76PVyxsTTJyqEepi4so6homJqaCzw8fYSvN2zEURNPt4VTnGJVqF2X61l26UsskvN0sMr0qwr75j7Kvryb2CN3ss/exdJFZzgjrSgQJ8mD+gTjkiCh43xbHjIAIBhlxYsvOkGCh/TriMDLeoefR7GZvlLF+FgRAtTX9qLicJI1/tVp+orZSJ9GxhbwjNvMq4uWRvT0gv3jUq0DtHjX5ScX1tFuLWe77OUAO0mqbXRdIxFhUuBoo/MmZ2kKS8yzHCyTGudVazvr3INUWNdCfVcqY7xmb033o/+eRVTn8qosCPXpeVnCp67/LaNuBTcUvUar1Ynrwqvly0KSvEXXB7gz//u8KxsCklTYOH2Q5fmdxreeGp3XEidgEJAChJ4U/0be4JSuxkBflwodxhZjgZvyV5mKDjNKebg9PGB5D88C0EYgZJwqd3GWU7XXSDkUFnUpKe4GbvQPcJNSEjgApddNC5eP6Q/8Mflz+jxvi/FnuKBgAIsbcNWopuy88Brliy6yiuO0NvXQP/QgOgWTsYjlaoB3VdtfT813M878W4NcggCP7/B3/H4VNfbD6/QwR2UjLkEJfQ4wGfmtmgGq9KpxaB3N7+WzcDysqfQtS1uOf5DpQ6D3PqRz1y1CVw3Z0nsAiZx5c31P0YnSzQbc5qOV651s7+aQds1LO1fKJgnLVb/o82z8ZZzSXEKSwGB5IeAVeD96OszB81maCOkDRsEeeKd77yooY3FyECwUeJUdiLjYCYftupsm7WW/7CSZb3mnUvXcAMA/1n4aRImTZKvsISnm+hIr3P+FTIbawsJEEbFEOb7wEklZZQCoWv5VpGKiapCXpR8CtP1rXeZpQy+/KxZDtYUsqD1Dd3w5G2b7uH6hm6KxFmrdMsrnRqMNnKU9w/27Ie8t1qx9iaLuGxhMJsJuXDA6X9ZMKVaB40ujhrUS/0rco7V46DJn8pqppZedspseWiNjSLicl766DLeBy9xcPk6e2fwdYryVfyO3ccS8jnLTyHHcyi5ez2/jRnmDXl2atpT2yqk8twG3/kVa8jtp9SNECKdmd+HkeS5e1KLLXumXP6vwhPwGoFiSDtcWHeeKMHutBK0QQM11qn84cUjEqrghmU/d1U0kD63gxYU9HCm+GS23wu0uJpzfkYWtdBSvDI8Nv49S0SiEAVnIH/EVLsoS5gpixLmLL7qP8/v6J7w1fhuThQUcyL/VB16beIvl2k2bnmTx7DVWFJ7kSfl1zrMsy5xOpz6p59i7d7Kp9iSH6zejWGYDVskKzkUd72rWKOwbVGFFxpvFoYKNLNQ+DuhOUKMbCOHyW/Pf5XZ5iUbOm/jY3mH0nfyN3K3P+NbsKNw69yZ7tNlXUbDV4TZeZon00MtSWiY6YaaQrupFHJHNWDjs1J+whF4Tls+bc0dlY3gdAVr1JM2edLclECGl5LrF0YYCHIpIRdlRhAkpTo8RjH7eMu32wwuiDmv0XTbzhh8SUHB9lQbj19CTyAJrrr/D0lg3I5IHorzs7uCt9jXUDZ2lsbSLbpaE504whdbtHAfGbIKF0LjzvCpgYanDluk3uNU9QG/eco7EN2ccqrPyEVnrHbW5TiQWeeR9VRM/e7me4ejcx/i3kH7mgJ6I/CLwGMbt9o2qevCD5QgmLK+zs0nBUulfI6l7L4lbrhNP8LefBrj996T3Am+plIuHLKAoF1gK/ZYLWOYEWxHgnUUy4H+O0sxWr8CCcZWA4UaOtIm3WKpn6B9pYn/FrSH+LFVPd8aTsIhNUi12y0ewxPGU1S0cb+NPnYLx3pn1TsCWZ3ka5WXcKTMz3ysvpfzuqotVeokYrcyqZyggFo7GvNu9LIAtcg18C/t4V9eF9LfSeU0sztQzC5fm2sM8Zf8aSWIcIEmi7s/Y9fYD5I8sJTk3Ee6P+dpeBDRJkTWF5To0t7wFMsxutgXcQoAoXMwrJemFklKEOu0z1oo+cHC4WFXHOalnN9v5rPt17tZn2c1dXLcLA+1grHp9/S4fOLvE47MhNhMlV1mz9sdYlsnTXdHJU/I4SWxO085neMKjlZYMncgf49b4RKgJ45c3sni6BS0JSuiCY9Xy+srC8aKwONHrUI/+ZXcVT/IwoBS6U2Cn9d8axmpYlzRXhU9bDXyj/haSVpbDqprNdNQuy/qbjYutc8wGJF49tPqSpDkVXh+5g1sGD/Lp5q+zR3ZygK3+Br+eI+zkJcYnyhgcXQhlSS6kAEKg3kU6zpQk/DY5X9TIm8U3UHllDKlTVIxE6JQEwChQoJN8im9zlqXsk9t96ZlnC55Rp9Oyypfm7GEX//vwX7K1bD/7xISni+GwTfbQLa38s34yZFjiYBurazp9emtmBll34QynaxdSODtLM5OMlpTxFJ5OaAKkxLtcFhtXlROylqX0+sDtdHI1R+NriV7bLpKLoDA3V0Be3rS50ge+UvS459xYSYF70SRzBNwweXSc6TwoFH9cjFHKj+XutA9LDY8pAoYZR4o2crRwvVlGcHGsGBTDseLF3KPPEGMuHNLvvUAcgLoU6SS7+ImnIuO5Wcq6z+GFwTT+EAsKJlirB7k62YzElay3OtkO+gFehqXaRCeJ8hnYAxSbEsYZOrOIdVcitx0fUPpZdJh8HPgEsO+DZiSVlnERCEszgOwbVyrlkmZF8+R6J9fGmO3dbPmCp+UoQMt1ks72PBftbKAsG9/ZJrBEJrZI9jaN5gvRCQz9XHxnKyNKM9Ae1TqAD3yiEsnIorFWj9CmJ7iUF1HqBVzPN1b6XdfP43oAJbXwZrSN93xGCjKuI1PSJtuOeMfFLHqCsl328iV9jE36Vvq5uhnjMcEoaWe9LiU6zq26lze5JQ3y1LzfPHKWje6baW49ccbG8Xc4Zy1hlrjnbNXmpLWSM9Wv8870YXobajLaJqOvvP+iLnk4tLknURVElFbpZIe+bOrh0VARTlmrTNuJhUPMsyZM90/T5bPGz6HnLPYp6xFetO/hul0QassYSX7V+Qa7BvezyX3Lp2EkK2H+lkovKQMHEYwBiO9k1mZCEnxOv+4563WxXYeNhQcgEEkBIFn7LodKIuA9x+HHRtmiBwhtpIF+fLtmKbutu9gtH+FH9v0+/xYw5dR6pITu8lJPj8zKSuej+gM2jx/K+tsvXRpk0cxI+rdUP3hj2HKh+JxNPD6DZTlMWAkjnxYBXHpZCkBJyRix+BwdrEofOrxybJJs4bV0H3pl9NQ00FdWbcJ6ieVFYgnP30Kus5jzXKHOd4SdcvIx7+FCjOPgd8tX0sJp7h95jiVjl9jQf5z9eht/xuOckLX4c9WbewnG06wDryTv4UhjC1P5RQwlynkzsZCDclNaJ1Q8CSSC0V+0GaCeb/IFDrKZq1RzPL46XU6A52nMeJ2aSqDqSZpY7V+/G2qKpUliuORfC6h4qNGvO1fYGBpr52QZl1icLi/ozDi6XgKuWLhi+1E1Us/PsowH3W+yTLs9SasLuJTrtVC+zMOlMCUlvCD3evM20k/ZhBxqJJb7ZBevyO38beJeT//PjdAOWnKHk61zYZrRfBoee+OU0jexguTY6QxaH0T6mZPoqWoHmAXq30paFj9Eta4LxdUDwoM4G78/jeRuPnq5pHfv1TbBd95LWpgNlGWZ8Bk0c9V5vrpE6WQDzlHaWUGnt8r+a9snx4aa+j9OgtBGkosvdTnLUr5jPcRccSycJwv/MZ0jKXnZy47y59F/V81JOpUv4UwxaRegkOF5PwUEHGKc10Ya5TxH2eg/VyxuvfYWr1WlQxpNUuJv1mAxISW8qoGA9wF+rIIZLkkjwfBogsuwW8UhWU9q0zDOfk/QMb6U8fIx8mJZzqGS2vCCtExouVvdfUxNl/I9HqSmqI8JTVDEVPY+CKQKrhFTF0ch5iT5uVf38bWfX0rKslhV0pEBVGmYmqBm6gI3zbxB2RWb+IIzdEsDNg6uptX7SQFhTfKWbmEh531pjtGZcj3Ffoc2NREctlx/nSszCylOXqe0cjDEZ7e0ss+6jb01YaONDOmDB9pvcg/wurWV9GYYNg4IO3Q2el/iKnGFJcOjHI0NkF96mcrCS9j6WZKpORPp48s0sOviMXZdO8a7Te1cLTBSHVGlo7CGnoKI5aE/dlN/KV9yFm3WCWxxSKpRd9nHLrbLXu+KFFa4HeTZKYtyi1q9zG/KX6LAHu4IuadZNthHaekAFitw1UiQHWKheVPBNeMXkhiK53jY481s++F1xLigSbebiDHE+kHZvcxJjLOli7w6pdo5acYqRqr0Lfk8jZynmU6mJkt5sSoSOzoD2KRGUmRNVeWHfNxMnejB0vvc7UUYuT5Vzrmzmygr62ckthgaU+1vs4W9jGoZ9oTF0aq1fhGJmSkmCooz6QZT9LAZPdSGnofbsezaNN+p/HWSnh9AEbPOjEgguFy2vcaj62jMA5xRfsLvpf1TGmvnF0PSSDeUP485ZoPxgz2aNkm2yGu8yo4sa3nmXmOTpGpgkvHxWkri4Tn8QaWfOaD3r0ki8gjwCEBj4/84EWtiZBn3us/wpP2F7GAhF2CC3GAm+FvwvcipLvROzsk6T55sJ9r5eIvyEy0jWudcdc0F8N6rHsH3gzzkqk+OE+B70s/yeSblEDtXXb3ntreFJKP+6LLxB2mQp+pbOzqa9vmWyacwnlowPXqLpkbpSBSScvy5evoY6pYxGC/gSnyBz+PbbGGChOehPwX0wEpMs1NfYrcY60g3emUjKYepRPoKOgtWBPhzPY1Ci+7yJSEaLhbT00Vm+xdh3dA1+uorIu3jepdqgQ1XhWq5imUpf178296mbSSNWS8tAmNdcLlbn2NF1wBnZ2pYcuYYk7Z52/HbL7BRAWV6ifvPvUWirpM3lm7mmfKPe9DOtIGLxWFuAB8I2xyTdZxiFV/SR2mlkxa3iz89fYIXC0pYar/B9IJi/u/C/4PZwhgUGp47eNT3X9gtxq/hnMQDG7uRS6irHrByMXFDzaXcG9bWkI+zYB0y2gJYOXmaRYNJWi659CR7GawcZM3an7DNcph1Z3nKeiQsTfPSIbmJyqpZbjzTz2dGlvMbm4uYs4yrjiMV2aJMeEks1HKZanLgHIxcW0hrdSfrOcxBbgIRHLX4Z/2ksfAcr2B6oILtK/fyUuGdAAxIAwfZzGVpCLloEa+cH9ft8l3GlOiYCUcZmOe9YiJ5pKKoNI1d4iPjP+FqcRn/XP5AqKmqtZ/75fs8iXH7ESPJNvZ67nlsgu5yUoA7NQpTZSY1xkk1roqGhhZRVDgNpTnWjYx1KdJ12W4OAjSatTPU7f+SvId36psD9B1eZxuuCH6QiNShtaA4zE/0c6AP0/PJ8QqLjDOP5go9QR5JNuvrjFeUkZQbUUnFQU7VJXAoyLaH5WqjUDulD7wb9W2OykaSGkexjMNnL4/RcU6vv7MUBH5zuH36X8hzHGqLLrJHbs9eZka7uPyqfoNbal7hxOW7WDb34dXtf3cSkZdE5HiWv/v/NXRU9WuqeoOq3lBTU/M/il0+uvPj7Dy0hM9c/zYNep5qHaBRe4DglZiLaER07D33PwefextQQoexdTbLe1CjA6zRI0CWdwM01uiRgPicjN+btIdN+iYr9AQNesHL6xi6hK/1mrSHWr0UoiO43OM+wwo9EaYf+GzhpOsP2SdUMEWBYPS34OdQfSAEkHIBwmAZod/dTJpRUBelESmjQofYhgnC7jt+ne9EH6C7SM9lMd4wKU+nw7yKAErN1FVOJRaQAh4WLp/I+3senvzPrHUOh+g0SS/tGNcPQdquE2Mbe8ljDtHo1S+RNgq0S6T9EjoKwauxwLuKcLZwCWvW/oRE6SBnY1ncEmFiBvthqrz6tOkJOliVBs8AErguih4evLH9EF+jVU4xWWlxvqGJwapazi1absKgee3XwKVQNa/llcH6LiYahO+X3+9JxlJlWZ4PPzs8HsQiKTYdKXcfWFybOciKC8dZPN1HT8ESZomFeJ4jzkldhYhR7k568YvT/WV0BNcNnaJtqJMF2k+LmquidCzebP1jUqN7NkALbi7aw2cX/yklRW8BUFbe7ztMnrASRh0rCkA8mm/Vr6ZMi1gz4rBqxMn4PVv5JorIHDdX/IQ1a39CWf4MXbTyDht9vhSb47KWr8pjXE4Y3ajTAeMTgOf5uAnHl5JQinFX1FHX5I8HF5tRCbgn8caCYhlooi4xdXmw+K/Z1vBDrpWWpMvw6nuvfp+F7gU2uAdZON3Pg84TLHc7WaknsdVNr5/pGqYKC8xnISEmUkVh0RgN04E1cb6DbRagE1qzQ2MtNW4vAkJ9fRdX1zrsa13PWGGJ1/aub6hAxGAp1FfRvvZoh9ox9T9DXy+8fpcwwe/zp9xuvUQbx8yBN9uhOkg3yksU1GbwENwDhXUcYQe7DS+RtWiDHuQenknzGWjDFj1Fef4w8WmHb8nnjSPqFN1528birCzFslxuKLGoWr0ps24fQPp3KdFT1Ts+aB7+NSl/8xZ2APXf6eTG2jeYqulibrgRp/wke5uKwFJuGjrN5qvChblbOFpWTrKgm+GiWdbED9M7uY7XEhuoil2menaIDl3LguQkv9hxjroL+5hrvUxX5XqOWu1MF8Tps5Zw02Qnt+c9z8zAck4UneZyfRFFyQnO08qwVqLMUDg7wc2Tx2hJXqa/7iecjq0kPuVwsaCaq1PlJK5ZbJnqoa3mZeJlRnfi+mQ1pyZv5mxJPavOXWB2to4fr1jKRMLmlsnD3HT9ABWJIXpG7+ClwlXEioe5ZfIEm3tWYc0M8HRzN3sqN1A8M8OKmdOcZTkA91d+mz+X32OULI6JIwAWCG/cwf+5wGEuaV1UophLChmlG93wspRdzjVGqMxYyK7KAg6xmS/pY/xX+Z3syr3BFODrgiwNn+QDfMxK6kQa8CWFcLWokmBkhO3sRgReq96c1lXxrC2LdArEqPSnJFo2SZouDDFRX8GakiMckc0ZFn6ZfHuGF5HndhI0HrF69P7HSBr/YuIyusDmVHUFGSnj1K4+6Eu5kEiHKgu2A1kOD0ZvaTd38GzNPQBc3H4/TZd6zNLvtV8VV40kwHt3IF7Hl3mM23jZ0+XLPJT4V3yBci2Udo57QkiX0rLLuCjNLW8CrUY6F6oXlGBAQbuk6gaiGCmMWDgqjBQXca6wyfBGPTZJLE1F20i5xwi4D1EXmyQV165zvtrwJ+owIQlEXErL+hkbr2F0xITmEnGZ0iKwcx++RuMVXKpr5xmN805lIF5qNqDiSX+qkyPca3+PVunktLTSkVjFENUBKWTaCCGpSnd8OZ9b+1fsttZwIXRtl+XgBgwlSj33IGmwnW0sbO18l+l4HkXVV/h+yS/QJL3sk12BsaPc4u4j/4rNl2v/BEdsKIBv6a/TyDlaOc2X3Ed51drBXtkVkra7QQmVV6deljLOA7RVnyA2PkXIFVM0+YApsmapskTPsISz7JXbvTJT77jYnj5gt7TQIas4mHJq7L27QPupkGvGpU+25PeXV36ItSigC/AVKH+hnue8LPV/LmME1PSBSIqk+m2VGif1o0NcLq/OAgCVupEhSpigp2yxZ6mcff6l2nqCBFt1L/tlJ7PquRkK8FOkU4hoOlydl07LKk7TjlRp+FCas4/S9T+jLfyAj9OYXEzTWLXn3fGDTf8ugd6/x5S/eQtrNm9hTeT5F7Lk/eWflujHAX5vngy/A8AD8+T46dIfz/vr7/uf7gs9/18Cn//6//ojfmPqv7LlNHzdeYg+uwwE6ulkZdsrVMtF6uVyGuhFwVg2EBb8PZovCuiySe5yAYBQOZGFKIv1YtYyVRkhIkHw34HneYAFDPCA/pMJpD0fiA28r1F+g9cl3vMSJowOnaeHEnTuKSgzWsDj8mXA+N+L4eCqcYzcxgn2s8MoT3uL5Xo9xGBBBd9N/K4HDCOShmibBa3xIla5xRMuI4FmqRu5SuXUOIWxOT5W9S2WSxeqFh2yOjMkUxRMp6QyKnToatq6LvG/1f8l7yRWmc0PGxuHBvccF6xlWXl9my04TjxkhXxuYdqHF6ocZ13G2HE0xkVdFAIPlh9CLMnP6fM8L/eTcrNj4fA5vp52ZqwxxkbrmVo8y3PyAO1ygrt5lud5IFBH4TvyEIv1PC108iUe4/jIx+gvdXjV3uHls8MK86rUah9Vco3N+gYAT8nDpGI6Cw4b9SD2hEXZ1DRxncPB8vUEO2nl1cR2EglgHC5dXMFYbR4v5N8bKCPgby7QN6/VFjETi/gmiwKVwDy6GqvgOzyEuvBt6/MkiRl/kLiIZ9Fs4p5a2OrSMnsGy3JYL0c4zGZUrYAqQ2Qr8/qqQq8a3ejoXPJ+rxu5SuXkGEcWN3Mu0Q4YX5hhXoWD1s3kL5jBCUi/HCw61MQuXmGdZgWnWUoPr+guzkqzZ40dHm8A+9hl/Cvi0Fhwzh8j4TIBL8zZDQPvcrhuTRrMeb+3ywmKdIpPTX2Lk4XtHPYPYMZQ5G/k10k5DBcJ+9K8m2c5x9JMoOePvRS4M4eAevqYkzwGibRlpL1Ta8xH+QEvyL0hmoU6Rf/5VRRXXmZ/YkfYCbmX6kaHyEtGbqj8dQAGyqsYoBIbh4SOmqv4HHyAUKzjNHtzZ7/exityB4oJ87dd9qJq1sBkKr5wZB3T1PjNsu6k+qhYx5mUUj/POVnGeZYSW+nwmdOz/CIffPqZA3oi8gDwF0AN8EMReUdVP/IBs/U/fYrPDKPAJannsl1qHnrrf1HRGAANXEwvPFGgk0sKF8yb7Xu297PRz/U8ctIL5QNIaQBpGNCE3s162lTeli18Qr/HJn2Tc3PLmaKIqbyIvk4I6Bj9NPXoCQ712keMOeNg1Ht+m77Ev8jdRi9FNR2lANPkr8oOnw9HhU36JsulmzY9gQjsJSjNEN6RTWijFTKmML8ZCWDQrUVmPcN1jjnTXqglxXJdtvSepMmpYbi8gZ6RG8mPFTA6WksV15F6ky8b6K/lEgMsxEi+jBPhfjnHTWcOUrXumucrzYQWa5EuFjBIp64IWwQDTfSywB7gJKtC7e2Hg/KAZEafAONSSspNCKrcMnOAhrwLtMsJ9rGDoMFInfaxWM6bETNbREP3Jxkrb+Vr1ctxEeIk+Yw+wSbepIfljEg1KkJSY8Ylh3TSop20OcLvWl8ItUVUqjEgDfSziNPSzho9EjG6sDksmyEB8USSB/WbTGiCdjmBAv/RepRkTQyrWvns+e+yuPEkT/Bw2h9hqrxg8sptvnKZM1VVQCI6ECJ5PbtksUhqjL1yux/ay1HxdDhBUH6VbzKuCRZNXKKeYTp1Jd+Wh7ylwzjurWWAp/kFhqU6ND4tXPIl4OYmAvYsHJY7Z/jBek9PLZon8F5SbUSMfm1KQpiSQKdSF618m4eYlbDkKEhvpZ6kU9pwPR+IPXnLw+X6Y9ChVgfYMbGPe2qe5owu5ySrGE+WccFqYqnVbea4xPRBJZAAACAASURBVLCLkqx1j4T9A4p44NcAFkuV9clDOLZNk/QyQYIm7cWWJI7GSPkQzHboVWz6WOTrFkcPn6F6evPlbd1iJJ+BdfgF6z6mGotZO3oyo31Tdb9SVpnZF4Fy0oYVRiI3SmXu9V9d3pUNTGLG91bd4x0ArVDR75Ua9CJVs8MM5VXQJwvTfevNhUlJhIlpKpqLcql26r0LeB/SzxzQU9VngGc+aD4+TOE0WL2Z5KW/o1cXpQ6KpG4F5mYLoGiMpfSazPMBq1yALzW5s0jBskr6sj2bF9CRnRaWASN+hbJIu4LvBZ6V6mja4i8vh7psqKywby9V28RGxejrLNEedsrL7OQlVox3s//q3RTOzbK/ZV1aITxbyB/gfp5BgR/oA+kF2ivbVSvHdbFNDVc5RyJ7u2dpxwtV9aT80a69eAZB+H83rmROBEvv5t53y6kbH4YElMxNMp6XyErT1RhI+sqrP7+C/tYKKq5epOrCKHajsbazVNknu7zrwIhER5V+aaCWgRCflsKm/mscri/HVXP6d7AJBVkHLtOABsB9bNYNO5QOpD5ZxFd4jC/xGC15nRxY+SZfsz7mW/POKvyNPOzzHFPFwSVGkgTjPKsP0K4d3Np/E1qVpYAUcNVeLkgTrtjMqXJYAkYhKbDnlZlUZUIS3KfPgMITPOxbJCoOQ3VFdNEaucYkPJa9DbV55BwbLl+i3x6BBeszx34gNWov/bKIOY0RI0mlXKMnWBWPP0dtxklwH88YY4ESeEs/4esyqio/kvsQSLvvCPC0XXdTxBSXZHEYDHhAqk77eL3qBt/XWmh+ZoBClyX0MqqHuEwD9fRxrzxrIlx4ZI87a5mLxcgaEQczR29hPz20pKN7ZBwGU58tBqSOpxOfoE2P+kA/ZTT8HA/4blJUScfijiQLBU0Sw2HH+H7Ky6/wVR4jKSaMHZhVJTS7vAOaiQGcknRZuOrxF4wiEm03b50akLqMMeOqzSvWXeyv2MWD7jeMT9DAlbOgvkpCtB8KdJJpKQr8pqHoGRn7g8fHIbmJw2wmTpI1csS/qXA0xnN6P8ul21sbshzove9TFDOQX592bSXh+RRqvNQhXF1sx6F28CywLWvfvJ/pZw7ofZj+baY7P3Ifz339H9hs93i6SPgL5NRUGWXlVzz3JN5CAmRsFsHFJAragvlzSQKzfc/2W47FPvupUcmwtovSDG2K3kKA8oZsDUcuyHUlEgF72ernqsUNvMUuXkKB4ZIE44XKgqsDbO8/xZ76lekFKbJQlTHikyth3Gy0wQUL46TZ1Uywd4mF2dsxVecQsHa9hdwgvXcWt3ChYgGzlnnmuBZ9ZdWg8IN1t+Ja4auq4OfBlKuiSF+9UbWJRyr+il/s+hHd8WYm8gvpaFgS1sEJ9OM1reAttpix6NFwBY7UlvPz4/8EJUkSMs6TPJzW2wtIx9Jlu+xLbMf1roU2cAibZEBfy8RrTUnnTlorcQIHDoH0WMDljpHTlJcdIiEmjFmSGDFJ8p+K3uAj7o940v6NrPPDC4zlRXogbHUb6LdUmK2V7klO6wr2unfwanwbqc3ZUmXJ1Dk68lYFrvGDwMeoDKiasGufKv0GlK3iasmWHOM23e41DPJrzhMcvHYPGyuf54i1ifSikO5nxaJEx0Ok2jke0mX0nVX77aigLnHPIvb5lH1eiH9jjd0ni0LvhlIAyIg6rOMw35LPG8kjcIU67tFnQ0tCGyeJqcsc5hCUbY6+zRYe5Ale0duNk+5I/3mFB8aMiZvcop2hsoLzVLFo5zjnWJoebx6tj+mzFDFFGycoGItxuGw1SYl5EsUUiMs8pJkwZ8/yI7nPt0xVDeoSGhUFVcHCpZZ+4+4ktCaG3SCl6pnUGHvn7sT4Z06vaYqJB+RG45cDDVzyotMY/b+sV/LRlJoTno7ncCRW8GHZTL32IaJkqCME3h+RytD3rKoL/nvKre5+GvpixA+eZMf2X8rO2/ucPgR6H6b3JW2yutgQexVRWDlXQkd80gceExNmIk1pUeZpKeuJMZCiACwbkMsG0oK0swG8XGUFy8kFzrIAk2g+FQvH2+AzgqAH6Ubib2aU79G0cWnDXCO9InfwBF+A2P/H3ptH+VVd956ffX+/UpVKVSoNJZVUGktDaQIJEEKAEAKBsZmNY2doG4ON8Uu/XunVef2yXhwnsZ33Eq9O3srqvNV5cYzB4MSJ7QwOmCE2EiAkgQAJITSXhtI8zyWVpKrf7+7+45x77znn3p+c9bofOKT2Wlr61R3OsM+553z3PnuArWPmIFSzMoJFvUw/t8oKUBOn7R1uJDMOr3CVbuIh/RH7mcAz0eOZBG7LcEO/FLVv3PkjHGwe6yD7GJw4ZCeb/RydY+NTHK0f7KcuKxqv8Jr9+5iM4f8q/T7/66j/zk36Mut7FrItnohGBf0HbpdXOEqbsctyNyOJONwzhccb/5inoy+ZZPBFmlqwoEpTUFVVYa3cQETMTLawk05ijVIbSIBmerKxBm7WlbwjN9Fv9grk3Anua36W56MH0425osq6tj4+Ict4k1uy3LhOe4yWI6aEMl73sdcxhk9AUETMJO3mhotvcfLCeJ4Y9Rj9pSxsi2jMjMP7GdbTz7Bhm41jTsFcv453GKpnTJw76WLb1fVsq/tlf8w0Nh1yjstOywiIlC+c2cprMo6XWh9wxsbXFG2Qa1mqy9Ii9zPR87hOgYKlkRxjHu9xi65gmu7gMO3ZbVdYAnxtmg3FY59p1WOckRHpuKFQkSzkUHKk7gKwiZf38ZmDL9I/7QIHaWejzDNhjlKWCZtkLtuZzcPyFPuYnGWGSPvtxHezdJZhOSx2XkxgaZUSolV6pdHV96cAtZFeHpQfowo9w0cyCxOCJ/by1+bXvTHVYzRGvc5YxKQCuG3MNbqOFjkDCudkmB/XTmuENrK0u36KN87JuMQoM3QbO2RmmhZuhJ5gt3SmPJzeu5ftDZN84SBch12h2uZKvo1X6GYaiWZeNeJFedB3CnGpxhrTFJ/lfDSsYJ1X7tN/4tfk+9Aesat8G63nfjEg1r/K8CoD9K+QVv9ZqjTpjS6aa/a7qqu7DJBtSkWaMxf4hR91kURXBP5qSX7uPffZpC637uT/IuDphjqo9bzXlshuWubatDN76by03St32KWzJqBoumE67XXatrDnvdTQ/2290atLE42Mw5OJ7OZqfY/P65OommO7/8I32MRcjHG4OQy7IX6L0o7hzD+7gdt0mWlD2L8iXqrx1u0csjF9R1CatSd7LhxTlPqOfcwceSDP26K/vWt2uZaIfspsHDaL4cMPs3TiPzHjUldWTwrsTVyv23WZ8TROszFkvN0/aDz/vOthenpaw1q9NnfoTsbooeC+CbPSxUzm6bvcpsv47fjrTLeBf3vIMkAIVcZxgM/GTxkoLBE/nXAzf9Dzx5QumgwcohUE6O+dzHM8VDyVU36WUKCfknd7pB7jOn0HQdkjU/nHxl/mteZb6aMuDdsiGlNHP/df3khrOWK6dvEoT5CG27H9jimxlhtYJben5XfVTcnsxCxvprDDRvXLxqqbaXxTvsbO/mt5v+96z3PZAyvAehawQzs5emQyPT0jeQ0nnpn54T1/gjZWsBTViJ07bmD4pXPZzfAbdH6bOeDyEr6qX+PT+gM+p0/xnswnBeZqxmSmDReVFNvYeJ6G+h66Tl3DW9Et1h40qSuZnyYTSg/NfFW/xr0XXuC+Iz9lSfVVSlR8IGppN1NZrnciYuwAn5OHaKLHZlFR+z/ZEaRtVB0VZrE5bd/ly4PplG1p8Oncd+wKov0l1rIA4xhTIbW3cXh3gSZeZymvyl2sZ75tfwxU0ziG2bjGaTiYxAbT+x7TOROxXWZnYV8QTkmr187d9eNttpNgfXb7oEbrfJ/+mM/o3/JbfX/EUpYxn3c83sZEBixjwb5tq7jrXLDWno8K0v2ZC7wk97NDOlGJaZ11nGEHVvOLQL8YcHOAPvrUczj9eVYuQJIYWkxUfFVYwBo2yjXOZhxQuDB4mq8raNeKgGOomaklEdYCdUC99nJZBpNkP/CNdIM2hL8LtBdxSz8nGenVf7ahheuPbOBkcws09hvJNmhPWWPuHPKP6Ws36BpfQ1XQjgNM4oAIW63zS9VmBjD1VhB7OPd06THuGPwGD7escbJMFGgec1q2KpPoppEL6bOKMFfe8yPMO+2KiGmWc/xV26f9dhdp8MyLzsaW9VGJeF2WcisrmKZdjB28j63MCt4XdkknO+lklm62OWH9Nu1pHcuBkffw6d6/Y51eY7QgQZuFmL0yxbER83kTa4l1cgOD6GcxK9K2zo63UleqUFHj7TxbNrOFOU5wXRNQeg/jWBi/wRvRrVQRfjhqGjCVFAwUzM3kWLZdDnOILGDrCWnjFK3mcNfa8G1pmJW2N6LK7Swz2rBJO9i54waO6Uy6dQoimh1dpxWZ4+gtmADAs2UzJSpU1BxvlqgyWbvpluke30yO2zJv14+B80dwvU5v1pW8IYsdrYuwRebwQNuz7JRpmTBY63sXoaJ1LLt8N4t6tzJ9+0m2zLOOBjW0NhExE3Qf22V2xitG8zwP0sIZdss0z0O0XffzJf0WneIfp3ZpJ3896Zdtnmjw1x1SjWri4Tw13gkHhjN12lqT/k2HsE4W5tan09LKU/w6x7SNn8m99GOcLNTOuSplBmsviL+m3aUv0NvbzA/lEcadO8LU6m6W68fYJo7Dm/O/cfQybT3cMArjz5g0Pr8en6DVc6Jp04MclXag5DjdG+B0s67kLbkZJcocnQIBIFvXCa77dox9pbJjP+hQMB8UoU2Ocrsu48yFUTDMpJ5cKwtza7IRSyL7XmQBbqKpj7I2ueu2yz/Ln6qWWckSk/mk4TLacDLHtw+DBjR6A/SB0OERC0jsjAfHdYXPLGUZwziVXQi1d+H/V9IsXeleKEVeSTvobv7B85elPl28heCZEJwUluFv1nulI0tPZp9VhLVj5rJ7SAd7ZCpTtIsmerha17NUf8p8fYub+1YjouyUTp7Vhxiv+7m5dwMk3i4FfIltntUqpYJAvCUrwJv7yyYu4ofyWZ6Xh2ybBS+Qt/N/Fvg6opupvBQ9QLZRVDmnLUyJu/x3U82jsIcOs5GFeVVz4xME9w54HBMZT1pgMSsybYlTZxUDUqbTxSP6BCQBXJ1nYhGONY4gkjjDCE5dg6p9FgSY9rZfPMLi06utBizRXET0U2Kr3WAVmHL2Il+Jv8Gn+QFfUaPpm8Vmk37L6U+FMm9Ei/FieblHaMDw6glviBX4WPwCc3V9js+xBQeRViz0EY//WdXK4eZW/ij6Bq/IxzJbP6fepH9NVks7Tbv4vD5JkgJOUCbTbTU56s0VJaK1ZSsNrafT+SHEcKkcPCc2P2zMVpmTOmok98PjyoQuN5S5eu7LNDaesRrF/PeW5HG+//iLzN+5059L1pD/Ffk461jg8TeOy1zee2Nuam5ljtGiRk49zgP1lYt8Ov4hX9GvM013sHvnAgbZHL87pdNqDbP2Nep5r1+rdInVvpZSkJfc2ypz0qPO5NoW5vBnQ/5Pnm+8l6fGPML5dmGFLM3xKvk2R+pRq8kK+RlozSz146/jR2Vc9mzw/Bq5xeYSNjmHmytB7thQ+A6vJ7+tEDSGQ2TrSsEaJyYY9tM8Tpd20tJygh0Y0xRPW2fnXYue9upNsssM0XO4woHJqV3hPv0xU7SLMn2E1K1T2B7P5NixKXTHxU4yHzQNaPQG6AOhw7s2MgbzHV1V6eBweX+69k6ZugYRYyN2Fid1V7ixhEcMRVJ9kZQfPlv0TvhseD3UJgJoKRM+w02kqO7wKEBjJvbup6fczMjoOLvL0/AcOqx4nWxusZbolul8Uf+SpbKMHZi0WJX6Mm9gjmtjKRlvtsbAQ6zQ/s9slCaOVAk/fyy4uV5XJ55jaR+C1Fa2P7exjOPaxiaZZz0C3b6YVGC1FnFVszh7NmFFY+fWH44ZIFolIuaEtrKDTqbpTj6v32GFLKVCOQ1Fkxj7x7FwVNoIbZASbY+IcywWbN6XowavGVOiXUw/t5fVw27ytBpKKXUs6NJO3huygLm6zni82uZP053cceANlk1YlGoXUo/IWvMaOF1ytMAACi9FD3JV3/vGCziY34pwXfVdpp86wt+NutuECxFjs/SKfJzXWcrD+hQvtdzre2CHtqQY4Pg9eYwhJ/rpjLrYEN1IPCyZrxEb5NoMgKQDZOwAz4w8zE26iVe4hYqWEYWjl8ehg/2wHHvoAGA2WdBoTWFqgaYReE/ms0um0jsp9j05nXIH9ffTfvYkcqCZoefOMGb0SY4Mc47pk03fhnxJAmAfKY3lv06+h9+J3yQS2KpzmC2bTcBurWJcCaoMoSeLCwpcKjeyW6cwVM6ylauY3FSHHjvLhLjE5uiqIBxJzEUZnLYV4FzUQtE3DEar533vwCDpTz1z+1VZKUvYa3mZF55KnJAxWb9d0Ftj3p2TYZSoWLtdzYHwtHgpUdWqiU9gBdyeunLuOYBIq4gosZqVCetUpMEcGso5DqVatdrrd1Ujfiy/zFDO8obcatdr8eayoAznlAlc7679GtGTZFOx69swPcmn5O+JFfZED6SCk1vvbpnON6Nv8CBvMuLU6ULefdA0APQG6AOhkZf2pb9HxeMZUT3FqdIFABobjUZgJUsye7KEigBaLaB2JU1f0YJVJEWGv0OA4bYrrFvcTZD8O+57doE60Gik4HM02w2r9rGA2Yzhu/Jlxus+o0EQm+JJIQFqqo6mRhWImaK7GMsh71gsacPD8ZOskKWOwTNM0G72SweoUkc/zfRkGTzCjcYp67I2sIA1bGYu6h5Np+9F+TFMx0UYsXc4i1ve5rXhN9UGzSFvNdHYQKQx00/uYVfrJF6Vj7FSl3LNsc2sHTOX5IDGHd91lYWcvTCaF5K8pt48Mf8PttHzcyElEu1HCo5j7hj0IlsnzrHBnv2+vi/Xskc7eF2WUq0v87zezxKWc6usYGrcxZEjU7nm5HYujFPeKBlgHVl7oaqmPczzItjgE9C8r39KFu7Fm9fwbuk6WlqXcaOuMnEVnfsVrTOON0P8+duo503MxGB+V7TM69zJ/n3zWD/36rQ+QVnP9T4AsPciYmaxKcPWGFDbMvQYMDkYc9P3aXTxn+Kv84/ya2yJ5jjznlz/q1pmpSxh8aAV/IT7fcHBUl/dIPa0jmX/iDYW7XyfIy1BVh6Hv6PjIxyNxqTCQJUSL0YPslGupYIJVXIrr/Dxo69wqqWJhobzNNJrtODOHFgnC1nHQkRiyuOqfObCS/D+xzg+rR2axR/TVPCKaecAhxkXrFlVpuhubrz0Jq+W7yFVsNlnhuj51NtcKbFRr/HjIdZa49QyXCAnICb3RUCFa3QdfdQzlLP+PEJp6TvD2UFJruqI0XqII9Ju3y15bU3ei6VEiYqxnZVeA0xV2SjXps8IMUP0fPbtpW0u2iPECJfunE3BoZIIK0nO41wfnTkLwmlp5Wm+RBxF+Xnt1F0lojyilZ733uQXgQaA3gB9IDSovoHExOt0qTsFeQC9vc00N58JFfAZhaAuXHSS67kP03nH/b/W7yIQEZaX1B0CnfSZAm1V2G7n/yz8hSuxOh6A4cZuNSUrWUIjvWShULKjTkmk67T+iG6ZygEmcTMrPRs5VWHvydn8ypB/4E8a/yNVLRERc1AmYUqN+Zw+lWn0cvxNNgXTn9WyhDUssmMZk4ZJKFpAg81ZNObUkF6ODhqdvx+CvuBvAXv8HFM3sic1su4H3hljF/oCsN9TbqKrpSAel7X/q2jEC/JJy9HYHm9mG7BrXyaY1E6zNNE8WS2LpXdZgEqW57eK8ApGg/Y7fI0W6aNr/BjeKN2atqeqMEV3MJluJtNtQnxoXnvj88Z41g6JL3CGofn7qfbuY/bo0wHglkxsuUSDaTb7XnHyv3pjIGxqnc7gweeyHMGqdJ6/zLamxtycF5TPx08wjR38hE8SiznSU5QWTtuwNGZrKlFhsaywGmaYEXWxkNVsYbb/veXGz1CndOXBrNsHoBpFrJ88FVwQlCAd+/fRaGzWZ/vuaUZQoZwGP35F7qI0JvPALuStLS8J+fH+9Ek07OthX9O4HG8VEK1SR4XrdC0vyLgAxJS4jeUs6F/LtvoZHHYFMWKTcsxJr5aFJCoQJp3/ReFTe3rgzAYOTKvnnebr0hAr7tqnqE2HaIJH36c/5l2Zz2HGA3BukOO0oBWOJBrDlFLpxRuXqpY5yzBWcbs1KwnHVzhPk1NMwX7genuHwqUL9ux7aVD0AoEg3BfcFHfhuCb/R8TMGv83NM8qCnr5wdOAjd4AfSA0SCrp70ORdcyw39ORwzMAmKzd5kIIqhKqtdmHz4Tgr5ZmqBYAKajDeIoFdmFJHSF4ceocxCVAgwUGv925xOQF7Qj6eVDG86I84F8Xc8SUeoA64Dfx9junLaQeplYLNb/xTWY3vMtX9Wt8Rv+Wa3SdjZ1mPEdXs5jtoQF3Ea+ShdAeF0EgtQc8zTZU7MYhTBq5hbONQwr77AP2mEZ6aOUoM3SzSZ2lZo71U0fqJZp4NYdg37bhNpZzg6zJromR9EuJtyElC8xKxEQ0cdZ53xr4Wz7HRPyDmvAiX4m/wQzd4tVl4uQlgDwb8wp1rJIltI3Zw3vDrwp4JnTLNF6XpeyVDj6vTzIDv1x/DmYx+Y40jaakMSaemUPpe47Xt7NBmplSNYnvtUq7HkifT993N30xWpH+RryyZp07RZ06tor2vev0bSbKPnYwnRO02rGqAkoH3Tyq32GKdnE9b/GIfoetzGGndCJivE6fkS/lbNS88bPz6hZdSRzDOQq8JJM+qPGgvVwO7YYL5ow3LjCWQ5SpZPyViCplKtRZ+1cT9ii77/K5ilJis1zNM5N+hT1J8F9vrTL1LtA3+Zncm2EiZ715hxt5u+l6zshwUhtTjD//ZLqNta07VihX6fvM7N9kNNVWYxxplTFnThhHCYGfTBrCda1nGHMx4EXQvkygqmMvHczUrVboKmXHrWoi5HnleKzOXz8s7fRZPob9VmCHzPTbE67nCMOSbzWkwn2kYKzDtS5d94M+5ASZ2KQ7jLbSOv4Cvwg0oNEboA+E6ppHwQUD5M7pCOB0usfXDK9SY3P2fodArQjY1dLYFZVb9KzGJKl3CgFhrcVLlT4a8MTWgjrTbAZplPjagDN5f69O9mPN2WcEZaic41D4nt1sJ9HNFq6yie4NLDjZ2IKgdEoX0+Iu/vzib4GDtY7R5vXJ18gF9QBZmjZ3PIK/7fOT6GYvU9Lre6WDdjnEoSQmVw0wH6HM0i1skOs4JaOs9sRsPNtljgXm6oMTp4wRnOCT+vcsZRldcSdRVE21FiVironXcVqGs1um4gaJ7cG12Qk0Ipg4aYkXalfixWnnUIkY1djqeUK7NdihnewvB/3GgnSNWM5dlKWSefi6vHS0ZWC8amNiZvbs5EjTcD89WHKIrcGYaszVuoEbZA3P8BgKlEQZq4ez8ajR94gqw+QMSWw3NKY8ZjVf4X1WxrfzmixN5+u7LGAD14GYI9CEFzHwtM3PWqXEHpT1Mh8lokzF5CvFyZHq8in45sf1HOHizsnsbWlgUuNRNo7JnlmkK3hTbiEmIiLm8/odnpOHOIFvbxmWmdrp2f6vkVt4RJ/gNbmD3UwveLfE3fyYXm00x/UaEQF363PslQ42Mdfar7nfky9Eqka8IYl9bD6w+kkZwXclyJguxp53Dx08ok/wXfkyiX2hCdUTs61unve8oFAXp/mlKxEsHz8IOJU605iZU8K10XQFko0yz6ZJU0Izh4a+y/TV1ZlQOmm9eZtXbID2o4wlExoC21kDTe3fVYpOPVDlEsUxPpv1LEt4hZfk/ix/sNuekGpo7XLCu/3GH+UJG/tRiM7Py5f3IdCARm+APhCq1A9Lf18sWc9a+82b8CpiksSH5EjeKV0BWF3xmaLrIUDMLTyJBCc5zUTu+SKQ6GroajxfosLkJAmUBIt+es1fgC7JENKF0GlvErsti2mV/DNal5fkfjov7DTliVkwn5HH2UEnXdrJc3yKcf0HiTSLeTU+DuLaFfXZZalrC2efGxMf9v4epqd5jG/RoBe9d9/nGubq+jRGmDcODliLMWFLEu2J0UtkGiZFMq1esDiXqPC/86csZRl9fQ28c34JaRosCzLejRawTyabkfM0Ik57gI/3vch8fYvhesIAXClRpY7tMsezkywRczfPMVl3kd8kYzro9r1KCzULkTnK8rINmPeTZ5LcGGZjFrqap/ie3KYgPOchW1aEckP8Fm/rjalGt0pEC6cp0+/P/7QoU841uo5bdAV1FkjUaZVZbKRTuhgpxy3Is8KFGE/vSqr5Je1z5gVewmz55mi0n3IaCihHLr/sGC/YuSPpKrMO7+eebVtpu9DLmMunudQ/0vLQtOe82DRrHq/NXChp4lVpM444GrIY4TzNzNZN+Xdte0wQeJin73K7LuP3+D1+le/zKf0RdVSItGJjZIbfezY2qQ4p5X8VIWYKXVn4nILvcJvMtkJaAu5jbojfYGN0ba6eiCrHh7g2isqrcievyF0owgT2ZlrUmuYpRqOZpgpz6NKgehbt2Mj80+8xt28DZdv3EpVUKCtRYan+jCW6HDc/c06YT8fBCWlVtEbSWMibURxjNNbDGGOeYlLFVUlPbYr2j1DI9/pv2nS3PpcG+EaFwxcP5Mv5EGhAozdAHwjtOXEhTUAzmwpHqCNZwXp6RnFg/yz6JzqJQkMpyqVaElb4TKiBCt8PgURROUEbhCqD9DKXpSCLR1FdRWUlz9oy98jUzDOxVtsKNuZECzNcT5rN3G5csZacmFYOqMDEebogjaQbi2Q2fyvldqpSJhpWJemtImyK5oKnHQs2JpdHaf+SuGUGQByLxoA9zAI4I8M5qm30BDZkJ6SNZ/iS05fVjAAAIABJREFU76kpQs4oXDWVwJM0bYqk2pESVabpdnPk7ICimWyhXQ+wXyayhTlMru7hRG8bDI08PpvMJSVGcpwT+OnWRnAcVWERK5lf9w7flK+b/Ks1Nmsh5m59zsRAkywDRca/iGd4jE/o86jE4Gl4QgeQcH4ZbYza50XtXxJBrFQTgBWC84L5Pl238kzJpFsDsUe35v7n9Un20MFrcqcdG3+8WzjDiZMTmFg+xIVoOHPPbCQeJ/yTforeuBFKoRYw4Y/VyNh7Sbo9ddun1kOaHmbLZlZwR2rD57Mia9OFkULDuD28H83iQDyB93QqveVBQCNHGE5ENW1Ok/YwgX3M7t3K/tJ4euqb0zZWJYmJZ1IAztDNdMksktRfs9jMX/EFv/60j8oKucNqII1Ad6uNpdgpXfwOX2eLzuG16p0cK7d5/RWqVnuWaLSqCEJEhSW6nMWs4Fv8hv28A/Bh6RAT0lzYRjuovKs35No6iW6m0cUrfCydc+kYi/mmUm/dcO5cSaD2hKyYwaNP8KXmJ4iiKturM9kWzeYkrbwmd5qwK6ocp41J0p3xMFyT7bgoMc163mQeCb+N9PligWm3TKebqd64Ys01PHvOUNgOhM0Q5Koqz8snadOjLJVloDGXmw4W8+cDpgGgN0AfCPVezmz0Rl2eSlvDWY5Gxoaiufk448Zv4zaWmyOQIm1RCKZCTU147FGLCrQRHl1pAZMIVTEgLyyzqH1uHTXAoBDj5SO9EngMy7aL2yJW8iIPZLloSWJaQW6hBE4M9nM3JpJtNTUsBxyJ2oQ8qaYBSiNirmMtAD3aZMCU26a0zxGi1SzKfbBoPi+fJBePTyQ7TnHGtEwF42IQHl8pM3QLv8L3OSATeYovW2gpORA5UbvZLdPZLrN4hQiRmLrGCq2Dj/pjZNsToUzSPSanZnaDU4wCgZe4nyMYWyL/2EdT5YJQZT5r6aUxi1eo6gM4jOeqycuaP6YyRYZJ5LO/k2O5ZCxNMFnjgSxAldqhL9y/L8ngNAAuqgy52MulwfW8xseIqDJR9zgmDDatnh2bxqPw30d/GbX5iY8238wybjKavKhAaLO/p7KLJbqcPdKBYMwYnpEvUcWfL6IVztPMNO3iq/r7rJIlnGMYa+V68I7fTLlvj72KFaWFBoCXQqFBUyATU+IZe1xcaTQhXry2Bsd5IqRHzVXKHJCJNjRRnp/mmSyKQFXLvK5LULKQLE30cKw8OnvPgqIJ/QfZXzfBzpc4/YZUY1oxcRPr5WJ+PK8kfAGX3HBAibZZKwym18kHbYCPvwYGwkm4RtZcd9VmW6mwcOgrRFJFBDplG5d6m9nPVKTRzGeViI0y1wR7D04Ewr6olsx351JRe5x2DdKL9Mng9JtJYqBi53SsSndiK/kvEPoL12yFp+TLTNB9TJMuBl0eXIMvHywNAL0B+kDowqCRYLHeob7hLCiP4vlB60BhdNsuoijmDlkGCn/D57gkTf/yxeRK4KgIdLlUY9MrlCbd+mr9LgKSVwCBueJrSrEF7bcbYCO93KPPZaEcitrjXE+9Jy1dxzssZoXxctPEFseve46+zya5xh4AmfRXETET2OfUFeTlVSVSRSSmqg7YcBZFHJAr9vgk0e0kdY/iKBN1D+tlQQGgF7bJHA4wkW7tSFNwxVqySeuzPuyXyYBkISekRJ+adGS5MUB5RJ9gAvtYz/XWftL1hjYb91oWkACepG2D9DJXs4Ej0s4RxvIuC4ikmto6RcTU60UuyNBgbArAmDOGbhL5qdrFDpmVS0yvjoYvEvjisTVsHd7P64NuJc0xXDRPVTmnQ73hOz+40Wz5EhFrxG6ZlvXVgv8xeoiRfafY1jDDgDzb/jh1VKlh92SprH0sZVk64Z6Th7JjO/ue8Tw12UNQmFLtprPcxQ/ks6QOPwH1SYPRTLp2bR6JM46JYBElulF/LqfzM87Zq76tNxpwHPAym9949a9hESvkjlR4qkoY79LEtRxc7jH8c8B+Eh9yF9P4R/llGzuPfN9qrSE1tG8nGckL8km//Z7GPshbG36Dabnq9UWI+UL8bQPiM3ajamKm/tmQ36RCGSFm3OVDHKxvd8YrKijf70cqcNdaK4N51yc+6NJgrVKiYtvggvIzwTcfI1I14h/kl/mU/ogx2s8vAn3kgJ6I/AlwP9AH7AK+oKpnPtxWDVD3uAfo3/FT6rTKqLqLDI/HMygu0xdVqKvL7LSOSRuXCMI4FC1kV6KihSFZmELg9/PAXI1FpqZUV9S+3HuJTYgNY/E/SlZj04SJQ5gZwjsGyj9HQxgRc68+y3S6+Ip+3Xg46jTejRY678cmNZ27IdkjDy8lVdCXwZWL3HJoLYw+z5r6m0zuzysA6U7dwk6ZabQ5TtuPM5rTMsIetyWpn/xN5VVdmudPqnmK0gU44ZsLWHokH6S7VY9yXppZpwucoKhFJs2Sm59Ncp6NXEs//jHtbSyjVU8wi838Kb/tvVOin2qR8bgDGq5lHVN0J0308NfyRYsj/BA2quLY1ymnR+/hNt3Mam7xtWQu2WvX973DsvqPkzkcWKziaD3ceW/A9AQO1U9A6mOvvMTuSlVAaie43y6z+Qv9Dc5JCwt0DbN0MyLWmcfyrUnP0cn2FDedOzuSkyOH8gIPpm0Jv73JZ/eza+Rk+lRxhQbv+RRAV42Np0puTrq/FeEUfqy9MX2H2Vx/1RXGzQdYbogaEyA8P3+qlDMv97S9MR26i73SwTq5gRAc1iY7iOE65bxzVnwNf1Jfux5gLIc4THt2BFyrbyGwRbknfpZj0sar1s5vhSzlq/o1psY72RrNSUPTiCr1gy6QpjWrpTULxyRdxwIBM6QrCftXLFfzfbTXb7N2eK/JnSY1YnBsvIm5bJfZ/MfWFbXb9QHSR9EZ42XgKlWdC3QBX/mQ2zNAwILFn+Cp6j0A1NPA0egsfZENh9FvJK0ddPI8jmSZULiYFYGw8ONMfof3w9/huy7VWriLAF9YXrigOs/dp8/ye/p73KbLaNXj+ffDha3WwkOWmaBZkiTnFkQWpJ0Kf0dUeVS/TScmZ2endPEAP+Z+eRY/bZWvNcrx3xXXnb5eLA9m+cSbebnhbpvgPXgnbU9MmX7GcTA75rXXzbPGXHqevstoPWY0f17KNtgrU7Kgp/Y90aoJb0Geb35bTPw9t7xTMoq/59d4QR70nw146Tl8WGrQi0FaOZPf9FZW8KAYo/8eGeLVFxNkCijQvgzVMzzAjzkvzY4jQz6ETWLoXqbCQRnPn8pXvCPEHP8xx/H1p40XatoOEUyw7Z2U6bdOA8G7duxNAI3YCh9V2jjsGO9H+TFIfwurZQkbuYan5Nc5IBO5Vtd6/e6RYayThfyhfIPleic/iX6J5X2fSO0S07Kc/u0c2cFd+gJRcgyJMkJPEGFymEZaZXT/UebrW/wev891QZ3eGLjzJnEeQVmkK6gOiohD3obHnkXaL1XriJBPu+fy1TwbE8UxZy63eun2vLBMSb3h+IRHoOHagsM7b60SDks778l8DidmIJo4/WhWd7i+Obx6MXqA5+WhFMxWqDNe05V6Zupmu8bEqA1YnJgd5PvlkJ2T7ndXmAavBliveS+cm7Xet/3vEBPX0gOYrlBgHYg21fvp8z4s+shp9FT1Z86fa4BP13p2gD44mj9pOBNH7oEzgNRzJLLJngXO94yAsfC6LsmDBo/U1yrkFq2AirRsV5IUiwBg+HwtKpKWQyna/v+O3MhoPcoqud0mKMeRSp0gvOGmWASyMEeIq3QxVTFlmWCtcbYRum106CZWsUc6eFIfZ7GuYDpdqMJ06eJ2lrGcuzJ+19JYFrXRuR6HqdKCMq7W9cySLczSzajCKrkttXlKNWl2Md8g11FJPPqsR3G7HqJdDrGOBVabaTapEhWm6Xa6ZBY5aT/YDMQCsclHDrBzzEQ0qVuENAZa4ZhWnYPSrI5mznFUx5LI0RExD/MU07TL2Gcxh/CYVkMgHcynEhUWW0P+XCowh++L9HVmylbe1htBldXRkqxpteayGBOCLW1T/PJUKaty94ll1Df0sLZhAavqbjXH2MF4RsTcw3Ns0TnslSkcod2rq6T9VGVQ/hsK+vq23sgkuvPtxdgxPh39O3SEpPmUc/POPl/RiC1c5R0Dz+nfxO3ll1klt/K6LOV43SjOMJz7eZZ5rGc9C4hVbIgQsrAnhd8ivCm3kPrEeu3Irxv1epHLztFhu+7ny/IXrNTbWC53XVEwBCWOSpxqGI5LjXrBD2JdtDyl34RtVzi3as0LEVQtJ0TAxpTM+wIFoFGza+ra2jpUN+giB5joOVyZdIlwmy7jLC28KwtQN4i8IxSWUJZe/hn7+qbS3yTMZpMNlZLAGcfEQqsM11MsYqX/TBEfwj6pMlF3s086At6KyY4hUe77y8YxpqQxV+/v4ReBPooaPZe+CLxU66aIfFlE1orI2uPHCzQrA/T/K50rmzAPF+LdjImHmzVDszh6hZjNWWQFEDXBXKdoV3bf/b8W2TKa9YyptOgjTxbaGhJ4WNYVQWkRMLNlHGUsT8mX0wTlQpU2PUIaxT5sTy2QZe9HVNnuxmyD3IZdxIvVJmkTr8jH+UP5Blt7byCumOPDxaywwWBDDU9aud9Gj1weBvzzyqjykP4dD+iP6ZQuOsUcH9/GsuxI2z7fpOcymytzAyhxVMZyWQfhZQIRk4KoS2bhhSvRfJun0MVVuoGH9UkmlPaYtjtj7iYwT7UvaX+Sozd/GW3iPEtY7pXVo82mGcD0y91I7GsCIzewbtLvlOfKEl1Op3Slt2/RV5nPO6ShVWw9J2jlr/gim2UuG6NrCnhOfizV2CeZY3izSaExc/s28KWjTzFyxAEONI3j9vLL3KPPZePrlK0IL3E/u2W6r3VKRloG+bx156YzNuOr+/KBwHP8FqvNLBCA0v6UsniDlo7VjWKbzEbExu+zWpef6IM8I48TIzYMzk9oIwnqHmh5nPpiorym1FK99np/X8X7qQYrosrj/AXTtIvF8es2dE3B+pL+jvzrVgPeXBgQWNM6fO1Y4NWfFJ+8k9xzvxWnPk9zXMAXwQlNcoX1czEr2CmdPC2Pk+aPtvdFldL+wbzPdY7JAM46a8qIiXi1/k52NXfQLVN5SR7gRl1Nu+7DsydUJTHNmM87PKLfAQLBLVxPg2ujOM5j/GXGI9ueahjmKNmj7Ngs1Z/xu/p1xldW8ItA/yo1eiKyDAjzqQB8VVWftc98FWP+//1a5ajqt4FvA1x//fU/BykM0P9X6r/xN+h/fiVjBv0V23u/yb3MZ2NpL/2nJxFPep9bohW8JgWhE+yHd8vpN6irVLmmYQ3XNb3ND/SzJj2VZs+VqJignFrKvR9R5dGTf8W23mt4ZeLNVmKPUrB0ra7lOKM4yIQsrALUlv7CxTnQwuSe8aTqbDEqEXMvz/I0jxPXkjLdepxyhZjxut9s0jnpOrGbCuS5gk2lqmV2NI5jNm+bg66kqYAJ9RDZa0k/I9AKzdpDPZc5Ja2+rYrLE/e3t4FEvCAPso2dzNLNTLdHyMdpy/hk6awMx9OcWKpq2eTBDOvAGtYXaBndcdrNNESErczh4ZFPIrooNdIWlAX6Jo3Sy8P6NN+O/z2Ho/Ge5sZsSH6IkPVyPY/qEwyin34tpXaUXdrJVuYwa9AWrju3kXXD5uFqqOfrO6yX67PA2Yk2jDjV5u2gkz/kGyYMDknC94wywB854++Pde6a5Yf5HrK6Nw66moltu/mOPEqFssmWER6T2XeNbWC5eP4XabpsjEYw2kQB7tVnaSxdJBd+pgYIMoG5A/ssZ4z3ymTv/e0yh+3MxqSyi1KA+64sSDftqiov8UBmJ+r20yVVyjY4cEUjvFR/qo6jQEyZCg1yKfX0TVLlvaJ38pbcTLOe9QNaF60jThuu522ujtfzdPRlrz0ZX8y4x4nJhTcOfmikQk1yUF+7HuCQjCPTDobjmlDJ47/3nG3RKlnCGR1GLGGkgZgFvWupDlYqUrICXTj+FpaK2DSAgERU1aRe9NZXp+5YozQGoxCZoNBuuV4/HOEU2MC17NapDtisQXbvWaLLuZUVTJcuUOH0sPra73yA9K8S6KnqnVe6LyKPAPcBd6jW2jEH6IOmmQvuZBs/Yu+6n3Hm4iYae4dwF01oZQ5vru1h+Kjt/FbTf2NN0yL2RaPp0wZaK8c5oyOYsv8k8/f2cqHuGP0M49jYa/hM2yo6z8ZsqVxH3aWzDGo6x/WDd3H8whheHjmHs00wuHqBo4PG0CbH+KWjb6LvNjKPLYw/u58T7eO5dEG4VG7gusGrmVnaypHD0/i7oZ9my9gO0+gibVgtDVbgpecDO38BcZ+bql0sZRnvcy1rWZivK1yQnEVHVbINzWuvWeSNbqtiwIPGWYDa5Bn7fIkKs9hMghy2MoeYUhreYazu57CMRxMvTzUx8XpkmHUFqTr9LwghkrYrzkAuwjpZyLssoI4Kn9On+Gu+aI+zfT4LZoHPgUWXVwHfIpS4sA0uRXbjqOMNWZzZ1YkBIGYDiRGBYXoqX6dWGKyXAeWiDLEbS4n35Vo+p0+lmqLvyWOWSyUiURYOXZX10W5GLZxhvO5lXxLiwWpKrnHsx1ayJA2BUrXxv/wNM5sHkQ1Z4csaBUANKNLaqEZZyBeR2hkcwrntAoqQ7/bvdj3A4/xF2ifAaiihjkrmRJFrZ4Hg5F73tFKO5296L0rDBCXt9I/fxB5XBrEHHf4JVTp0N7fpcibIPrYyh63MNgJHIVDab+cRlo9l/pbP2hiPfvG1+OUCK1V4R27ybRTT500IKO+ep32zLHPeE60Ye0qtkuXJzvjTwEX7LSX1VIkQz+O78Jg1bIPN7pLFsMnul4i5a/Bz7B88AeXWGiAMb5w8bXYqfAZj5jisTWCfMWlR8cvz+O+XUZFBnE5yCOfIXfeNecmtsoJp2mVuxRFyYUmNdz9Yko8aDhKRTwB/CixRLbJ0L6brr79e164tMMgdoI8WPf+b6NqnEODwpT/nh3WHOBP1pgAHgS1jJvF658859gok2nbdzyFpxwv3UEtSDsqJiHlUTRiCFdxhj5wCCbJQgnaoSBq3/zdXz9HZs5vDLSON95zThnbdRwOXuV2Wc7suYwdG69RLIy/JA1ZnlAQ/NkyKiOlgN7uYRu5IKAR1gS3aUv0p25idtcO2U7RKh+4ywaOt5/CY6mEao17GyiHe5BbH+9WtpzaAnqGbOUmriYN3Ja2F/d9scgUajpp8L/AmTYHMfmbJFsfO0TlCU7U2lFExv9JykgNspY4KX9Gv87ou4dXo41cQJrJ3Z+gWdklnGgC5Fl2t60GEjczF09rU0PD4debDkAA1+ueP273xP9GrTaws3UZMyaQ5068jAt/TL5hwLp6NaAF4dMpLQUo6niZfSvG8CSi9XpDeK9A8RRZNl61wcp5mmqWHVbrYalTz/Ej/BlClgV6TuaEIjNXimTdPFTNXaoQ+KapflYb4MpdKWSy9dvZxi66kVxrZqx1cr2s4Lm3mpCQz7vT6JBpzOz8DJQ2gLbYdXlYcKQB/NQTlRbxOvV5iD8apSl1b7JAHtrzWyyc4Ud/q8y73PRh+1VHhLn3BhKByqdYa+/P+B65mPahJe6hSQrTCVWw0YVXOnUS67qOj/jbm/R+38j+LRGSdql7/8577V6nR+zn0/wD1wMtiBnGNqv76lV8ZoH8zNO/X0HXfg7gC9NOijZzBsadRuFSX2BPlg/x65Hz4h2QCQpXB2mMNpIOFKSkjec95P1b4rvw7u01plv/1CvXVXNAL2tlTGsq7w+YxUbv9sog5JmOJKfFXTCJW+H70RZvlwYC7LOtCsuEajUhZ+yhLhYoWHHHb36KKUiU5Ri/TT4d0s4I7cnxQojSxu4mbVuGRvqdoaLjIN/l6Zrgd8NDA0ArD4tOcjFpxAU2TnGcnM4K6CsCCmqCuSQy+HH8LNvsZuoUzjOCojM2PK8YhYwVLSedBcITmBjnO6grj6EnK+z4VXu3/BFef28zK1n6qWrYOJ11skyA1mH13h8w0x3dX2jS1AggLdA2b5WrfdKAGIB6uJ+mRFnNUr/jHcKrM0K00SQ/rZAFp7D6XPyKg8EL0EO7GXFE1R9u6mX0y2eEdJksHVXM87ALO5KcNJuzW06lbaaj0saHuGjxNTW6MbTmpFjAg71khSZfXr8oz8ngmDEkB6Hb556wHkcY+9g7Xitx4Zv/nglYX1eGOn9OOS6V67/kGvcQJWnmdpcRSYgtXGbZ7Glrf6UURJtu1JAHR6oDpFOTn+uTyOWm7+beaJXl+hPwL5tHC8ipe4n4nRziM4CSnaPXWB5MrWnmHG/PlXQFQ5+oNntvINcxgCyWqNk5oiU3MZavMYU7/TjrKx7n/xC7m8T8P6P1L6SPnjKGq01R1gqpeY/8NgLwBymjCDZydYGKuRVJlbnWSuZ5uGNB+5gQlrdrFKL9Y1gJYSoleaSZd7MMFt0iToI4kbPN77mVyvs5am0BoGJ9qJcgWKTFG7PtkcmoQDjGjLp+iSinNJfpTuddmeXADyBbX2yWz+YQ+zxTtYoiey92PtGJ7ZST8iCqP8CTd2uEnpXf6aFKCGxumq3U99fUX2cocc5Rbw5hcJSJGKEvF8MLyIKJKi57JvGfT+nzpf0HfW8w7sTUb5dxYOcbbzmbfJbOYJoFDkP0tVOlhqHUecTbi9JkgfEQtwO5dE1bV3UKJKl/Vr/EZ/Ru+ql/jV+X7WSgccbUpiaVWsOF6ANYcv2+UuTwjjzNaj1BIgefxIlnJIzzJHN3ITawy2hwbemPW0UPslukmuLVXhs+jrD1ZqJAkpVhiNmCeianXXpr0HDfqapPDOSSHRy7vtsscNtTNxQOMroOCpUYu5Mvz2qx5/lqBoWq/W68vbhmF7YSlvGzzUV9hfUnLUdr0IO7YmnlW451wDrm/g+9oj0zlFbkrzRldTZxYitYchwevcQcvxoHTTLrWFGcK8UL3mBf8etLfQftrCMxDogvczjLS7x44RStClSm6g/v0x9TRb0MNVVnAGr88d3yL+lkEBr02CNtlDhUimvQ8Sa7rCnVsaJ3FT+Yt4rWWvvy7HwJ95IDeAA3Qz6MD/SYTQn30Pm3awsxqEgqC9P+qWCm9lg2Qe82l8CjA/MjuOeALoEF7cQEKab34i2BRXRhDae994D6ezXsli4lSdZsuY2HPWkTheP1IzyjdBEUNFzhxwCFOWcKL8iB7ZFou0wbABPYaGz8bFy8mols7avPLi5lXYp3cwB9F37DxATXHd2P635/aFx2VNsM3a+R/jz5Hh3ST2vGEYMf8YMOgaymPPGc2wPC+CIWZFywvV7OYHBCkgJfB/TG953PXxO1j0eYvQizCkZHDmU4XD8qPmU4X0+niHn0OL51TyiO7aUrQDrCb4S4ST+8qJY7I2OKx8QCU8q7O57t8mY0yl9WyxIyx3bS3tbVTESM8ZKCoSMBxAZOpI9HazpbN1uPbJK2/LI30SAurZYkvJEigFXWFq7S9mZ2fEHO7vsx8fdtrQy9D/HKc94WYGWxxns94ojZKXyEwKNKoWZqou/lVvs+jfIfheiJra9E8tXUek7EpjxNhLtVZFQkHRSDN8jsiEWA15/lqvr4wBmcYP1HYLdM5UmoPynaFzhBaaBbqJqScFrLGM84/ocoupjFJu613sSvUlhgWn+VX+T4P8xRz2Mjn9Cl+le9zn/6YFLgD6VF9CCTDuRD20VvHS/RIixGKHV7FEnFoWC37vg+WBoDeAP2boyFcAiCiF4ipS44f7bfcPX4UhFJtwQJVps+69FO8QKfvFywiduG4JIMpBgRkfxdJ6FZr9Qle8Bc6lDV6M7uls7C+RnqpNCXHlAUaiJzkbKLAz1B3szMUExGLBXNB2/fS4du7Ibwud3Lk8lS/HFe6Bw/wVajjVb2Du3kuBzZLxDzCk1ylG/HD0pgN+CW5n2d4LGtb0eItQj9lTifZDlyeu1RLO4P1thS/n+nG4WonbLklqowbvNVvE8JV+p7dYAvCP9h/Zeswk7y2Uzp5Uh/nn+U+1K3HtjcEAk2J5lUMBJzM7gBER4UaL4JxPCQ2Bpo4zhLJJmuFABOsWmnRUwzlrLEDLOKtAyJjSvyQz6IKt+hrNGuPX344PqHGLbnmjod9L8m3upgVTJWdpp8eYIxJUvCloULUgJ5xrjDl/oNM411D61T093TZwQ46eYbHjLet25ewn47w4II80uPiEBSSB5pOewXoZJv5FQJl4KbLb3Kjrk6bEFGlVY/l+1IIKhVvvntl23/e3879QAD2341pZx/tup+JutseDZdYJwv5njxm++PT+tJ8fsBneYbH2Mg8npbHeYU7+TX5fmbC4grV7hhcyVs9FL6L2o2ZbyVibjh2Kde2D4M+ijZ6AzRAtWn/20w6/CIA9aWNHI1Ps7G819yz3+qgetdmz1/AM68toUKZQzLR3pD8wupuarXAQhhQuEiKdNviUEyJY9IW3BfjfBDWactdIzdxgrbc9ULJFWNwfqus4Hv6aL6fQM7mzQVuAU8qWmJLwzSnnECa1pjhnPS83HbLNPYxOQMtaVllurWDBawxSdCDjdLNX1pTu6JmA52lm4wTSJr6K5+zN3yvEHgUjWFC9tokdtPC6dz1LTKXhdVVvFFa4laUtR/lEZ5Mg1q/KnfyNI9TlUyblptvqVeuKeO8GE22aJUyVRazglPVkbxXymy5J+geTssIehgWjHPBXA7nTMoTY9lZpZym19ok8/z+hGVY2iaz+c/8Z3KpAT0e+3OuTQ9xVNp9jOGMQxI6aZiYTJiz2UwdFfrV2FUlNqGf06dYje9QERPRId3WDqvgGy6c+y65XuYGON2iK9jKHP9oP2lzOJdcDVcK8oI1w+FPG4c4ytg8n+3zqtCng7zp7ZazK5qaaXbFeJCfkFE+T93xSH8rhfPQfc8LQ+TPTa9EpNb+AAAgAElEQVTMAEgJylHaUYnwHKYwQbSz4rL3VeF5+WTapliFp+TLHKPNBED2G0hmO+in8stRbh6SvQtpfxRYemY9rfv358v4EGhAozdA/6bo4Hs/Q9XEsRok29hcWmduOMqX8302yX0oIWPywl6tG/C0SFeS5JNrtRaz8PlwcXbLKJCi39EbM2k/0DYUAbgTjCG/ObltSuKbKVBlsPaylgWMEAecpM+Gm1DQn1qLpsOP1E5JzbHRIl2ZC/RaoWzsfgLN2euylD10gKudsWWVqKapwCQ5Xi0C4yhD5CL36LMIagOeWns/byy0uD+h1i6tw4C60C7pNn2FW3Sl2fQcjUCViF2Ro4V167EakG7tQNXE0nuax9Octv5zePwsuZpQiYAqV+n7PMxTbGUOIy6f8dq3T6YYkJf02eujevMmnSduvSlfffOD7JjT0ViGYMH20xwnlrIyLD/N+FT994CjMg5CYGjfK1Hl7vg5Nsq1vMrH+KZ8HVVYoG8yhF6u1vV8hr9NvX1NjtnsO4op0a0dLFE/AHZNoG/5ZsB0PzPV0d5a7Xi1WubgpYnZcX0RaVCXA6LTa+m7JiyKoJxkVN4MwFkDImKW6HLfPtBpw5FBGcjLKKoxJ69AhcKQ61Bl1w7nuUYtziKRfM2xlKwu0w02LpxKtKLhPAxPUohsik0fkLbrflITD1cjf6X+ugA8/duve9mw69g/Y+SV+fQB0QDQG6B/U7T93CBKZN/jhcjdpM1/Bxud9E0emSPBoZzFDZCbvV+spail3fHuqbE7yeV6LNpQnMV7AWtMDtLkWriBOoDG27i9Npk6xKYXMn+YY8keaeF5HmKnTodwAwmM39O2eXzTmv1YxOvcrT9JL8eUeEnux2wJceZkULSgitGoHmS8abNTr6A8ynf4qn6NX9IfFOcxdQBhE+f4mdwLmI3wEZ5kkb7u1TdJu5miO/3+OKDOa5ttxQEmOdoHZb6+xc2X3uTdY4szgGbLEGCBrCkoB7/M/bPZwhwT0DcErgHvveDGabkl+qjjab7Ej+R/4dXBS81zLmB1QUWqFYvTo2Whyvz4bb6g3/azp7jAohAIKPP1HYZVTmfPu2AmBKu2Te26PwXfEcpE9jgsCcBQypOYpfpTHuUJ9soU+q2zQR9l/jz+D6yWJZynmY1yLQd1PFuZw6t6R9B/Q29zE5dpsEC16FjP5/MM3cJn+Fs+r0+yMzGhsHNtMt38cfl3eWPwIjSZO+43m+uHM3YhTx1QrWAdkyLGcjD/nC1rvO7luLRZe8hgnXDLLJqD4bpVMOc88pyOAkGhwH70opv/OSeQmfLqqNrvOam3Sp0WODzUbJfk2m3saUOv/oJ8u4W/3bXN500swtm51xbz5gOmDxXoichyEbknuPbtD6s9A/TRpxlD+4xUKHCpOpPR1Q5zQ7N/U44fstfyUnWVMuu4PruWPJf8XyAlFy4QDkiIrEQeocy5vMm3h1N/MXTLatUjNOglrsVd+JJnHKBUJKkWaAsUmM62QAtk7p2REXiAy+1PkbauCKACqUcw8BY3m3AOTj1VyibvJdAY9/ptVYXUfsr0abvMYWG8KpPyxRzuvK03ImKO6XLtCDaAvdJhtIa23vf0WtbILbgb4V6Zwh6mmrAYOUBdcJQmiderkth63cez7Ksfx4tj7iTUKlyl79GrjUzU3Vm9jrauTD+LeY1qdRCHTk0z77satIJ5knlQ+pvYdpmdpilLAkSLVnPA0GjQTMrB1OEDkybsE9UXmcA+7/lioIYzLvCeXM/Zcos/HmEZgDvGR6Q9TVkWAz0yNP98MCaCMplumw7uasdQPuJEaaTHj9VyK38nv0Y3U/yyLJ2XodbpxH5DuVR4SVvMN9fEeU5oK3vo8FKkVSnxz9ybpj700h26vAqFteS+C5C852y71AR66WC3b9PqjMU+6eB5eYjEScovO+h7KES47XTJFcbscwv7V9OSBBi389+bswEoArKTiaSeYG2Zyk6+ol9nLIeysigxPD5ZuGbl20iuzET7Ft5r6j/vP1MkvOfq8UF6pEr9hvfzbfkQ6MO20esA/pOILFDVb9hrPzf43wAN0P8ojbvmLuJ1f4Iq7IgfZEv5UO6ZG/dsZfe40Zwr2SOs4EO/lEieCdXYaAsXg2DBSGxOVCKqKmysv5pSeiRWHFIkKfuEjOHv5VeI7OFGrHFqc1SiyjW8yyFt55CM50qR/rMyYRtzfk4IiwIqAnVFmjgRXJvEitZRR1++j2psp85Hvjdvu+7nqIzNcpjaNh2RsUTERsulCkRslHls4SpEjK1Yrp3J5qsmmXokVdNE1KQhSzZoZwxjImYd6mZo8wkqTTGHafcDPydFEyNqjtKSuquUOSATeY9r82VrzCaZh7pyt6OZateDfIIXmBbvYuPZj3GwdVzxmBRsZiajgZ+iLYyrl0Cj0D5Sgfm6lvt4lhfkQScjR8SO8nTbLwsktYIQZVqqUIegSgnjealuDDgt6AcpnDGAWcXon+z8Po0FarUCKAOqBlQlAN6PORd+C2IB7xU2c+f7btYeemRYAL5MOTEm2wuWOx640UR75JeXIxFy9qvpdQfsJXyWBOQZI4XVLCFxLunQHcYx60rrktojbp7jsLZnKeG8Op02J9ec+euOwxA9y1t1N5J5rItN0ziJJCB3iZjBeoHzLmgHJ0tHfl4na8VeOry2bS6ZGKGp7V3aXj/dG64tnvtcwRg39V3kfN0QCuNApsfOTvkuTzDryOKjbzJy4+78+H4I9GEf3Z4B7gDaROQnItLyIbdngD7qNOEGTtaN43zl4+xlPDGxu04DcKR5OD3R0Py7oTasCMgVAbtai7pktkuS2C5JYtXlJ733wni49drYe4qwlGV8Ub/F7byMIqzlBpOj0mur0sIp0k2toP1xrUXe7dOVtJkuL4pAoHNtHAf4on6LNg4XHCFmMdZKVGjgkh/jy5ZXlbp8cnmJrJVeXZbWLNSWqNGiNtKb8jDJp1BLy1E/+hRLSj/jN/kTxkogJKjRvH2Rb/Np/QGT6fb6+6x+MgMBHl8dr8rcpmJCtXxPvsRLuz6LAnOa1nrPNHDR52sK8pwQHOF9DxwZh44U5KXjK6yX63lZP56l5rMgvIkemqWHNDCuhXFJm0O+zde3uFFXWc2aASiLeN3xNA6Amnc0rT4Es+PZqEH8u8Dm7bCMI6Jq7TTt5pwDhcH8LtB0h9+Ahpo4b56741jKeO+CpOQ927dc+KIiISnXvsjWFqf9S2JxmvvGG363TOdqXe9HBwhoiu7gd/X3+FX9PlPYmfHJaaN5P/t+ImtmIlrN2aFekBbCqAXHacUVNu7W57iN5d57QpXb1axhU9hh6nPK2MYc/lC+QX+Sh9yZpyZtoKRjOlF306TnszKo+mFywjUs+CaODBlFLuNIsC4JMAU/jFVml6u8OWYB8aIPW5dm6MMGeqKqFVX998A/AKuA0R9ymwboI06nxyziUnwzY+Ph5oIrqAGHhrWavKq5TbeAigBOQrXKCADQaA7TwU5KVBCt2IOYUPtUHIQ0WaBiIrbqbHOcpqRHc24swMTR4BzDyG16AfgxtleOE4P7f9jHon6FUn+4Idr6GullIvsY724kns1gfxr3bLc4R5bpQh2zn4nZ9aI2hrxP+1nlHp7lJXnAhguJSBLP+2A6a/d75ev4vxt/ix100qJnvGqmsoOv6tdMXwRmscmrP+cN7YKDsK1B3RVKrB5xPaPbdnlekQBNnPPebeUo7brf6HSkAGw4/U95XkOIiYl4I7o1x4d35EYbF9FxhCk4Jga4+uxm7ol/Yo/Dk3vKCW1lCctYqi/zicoLfv890JbFY3SpJBX7zRjHh6v1Pa/tijBVu5isuwgDf4sDkML2enO3gDfnCZy1wt8ur4vmo/e8CRA+imNZHek7mgeA3vcaoShDXCeGUPuGsFGu5SwjyECPX9YIOYWIcfI5eCkJqu6vaya6gKS8e1Sf4Lf7/oDb9eUU2Hh8DATbQdJPEtJGiGmkl14agz5HtHKCpSzjYf0uIXA330Ed25iDawLilWGB6T6ZYr3Mk2slpmsXj/EtWvUIoGm2lVw5QO5YOwTfdn5140QRQBmq56y9pAlCv2N0Psboh0EfNtz8VvJDVZ8WkY3A//YhtmeA/g3QgYbpjI3eoK16Ha1xM8ejHu8bbj97wqbvujJwaOQ8vTTlNkf3mRwVaLiOMA6zUMZIKh9LsMjglS3EXKUbnETqwiGZwB/wX5iRePoF78yubqJeenk3Wui1o4VTZiMQAY2ZeXEbbQ0HOUsLG+Q6qhplxylhm9y+Fmn9agFhe+9FeYCXuD87XrX3RCtcpRt5SH/EKjdQrldHbPVIBbwqGgvn/YgqX+AJk6nDTX1mD8C84yNvs4no0zr+G/+Bm+NVlEqVNB3Zw3yX/TKRp3mcGKGOCjN1s0lRJuIIFAXzKqdpCniLsLe1nRd6Pm5Sizl0gtFAlUHazwy2sl3m0Cc2jV1RmaZgboxX8Wa02AdBas0ASNK0FW/cm5hHSSqkye7DsXHe2T50Ki9yv80ikfF5u8yhi9mUpMKtpVdYpCtYLbfaOoN6C4SSHlooU+F2fZlG6eUFeTBoq1gv2rw27yo2cIwxDNEe/2izaK4W9ssJreHyN9QOFQl73lgbk40T2pqtQS7YNQ+l77TrfsZyiHVyAybtW8kcI9filf19IQlqXrCWrGUh65mPiFIdbObyDN1Ml8wmS7eWzVlVYQ8d3NT/BmvqbrJhYoLj8KAd52ix5iVKmSpN9PAP8itemxRlFbfSRA93yDJmstWCupBnQi5VnTdGxXPnBXmQe/VZ5rKBU9WRjIhOsocp7JbpBWuLY+5Q9G2mbfbXjqFyNtVyKxH15+v5RaAPFeip6l8Gf68DvvghNWeA/i3Q/rdZvOu/Uo06oBrTWW3neLQ93QtSkgLAkJJJHdVLU/6ZKwGMKyzEZqFMcpvWWFica6rCBZrAteUDVCO2yWzC+F0AC6PVLOfjOA8DMYtZwfM8lC5W2wbPYCuzKFHlE/o8e6WDoXqWNXILsRrA4uWFdY80igBeLd6ImNh1ri2Sqg1uW+WX5EdMo4tVLPHZb8sXlLv1OV6S+6l6fXUGswiQ2nrf02t5T+aTSf1J2RHz9S36pJ6JcTfvcgOHo3Hegn5aWnmh9EnECW2xTyfa3Kfm2KpPHfeGok3+5wJju9k4G/26xhvA21xI506flNjItfYIvMZYpG3Agjy3TTHz9R1aOMNBxhuQVAOsq0RU9P9l782D/CqufM/Pub+qklRSaUH7rhLaZYlFYrMaZISgwWAwfq/tdttgGh49HfEmYt5MTExMe/dzLzPzJuLFxEzE6zYNeO32eLoHQ2PjxkIgxI5AgPYF7ZRWtFWpJFX9fvfMH5n33sy8eUt+E24k078TodCv7s2befLcvJnfPHmWFubqZrbLfAMKK/rWJ4N5i+DI2pY19bSyWm6ztqlUAF1DHf2n6G4dbmVieFjPEk5yWbDoOv2K5KzegPWGlIl435CmtOl5+mRwRV3FGEho+BpgV74V/Fdp+Lzj4LxsZltY0HzZzHTdzTsspWFenv+OXD7DNgcA5A0t7FhTTeiW4WgAjov+CKvlVj5on8IOmRfvf/DtqybcpKvyS3vodNLcZfUaM4XH+FO26Xz6xMmjHQHgJqYpZHm5ixvl923mzISn5V5zvWY2ezfwEruYHcgmZaa+z7mz7XS1Tx54Tg/kuk3nIZKiYmyl29uuLPF9Mehia/Sa1KSPlD5451nGN/rp00V4moOMFLaNm0oety38mAE3rVLlji+j2MTqlotNzlXaheAYYXdmlxJZxL1dLYCmvCtXFYbMlubqFvbSiYhaI/k0156lKvxCPgsorVLnAR6hWzsYqt38RB6kX2skwPX6Eq9mINDj2wAgdUFYaaL0n6lRZ7k+xwx2s5mFKHCTrOEFVprk5d7ELfRKe6GRChf2qkXWtms0Y0npPQrKRO1iDzM5oaM5GKZ6curJxklDE97k+pLWarvMJwTjbl0myn84DpXpupv9Mr1kL1hLzkF25GXLhgbmChQaicBhwZMfuFq/ZbqWN8VqaELHBLffjgzflzncqcZZQ2OG6xf6O+cvoVEyni/L60yrk0vaAd153TFgHzPKD+oo7gl94mhhYt+k1ehlx/0DfbtzdRN76OS8tEdAWPndZZSQGk1pNteoOWqfrrv5gfw743iEw3sIyAcCnhVzkvlWjV1nF47TSPgsgCZWW0ocEAfPCilbZT5dmADzLfYoV90g1I4cXpbl5GMwAiITGjygj/Am17NBFpM5eZT5jABQey/VGq/ye5SDUBvbRhkSAflV87mlYzKOGg1UjcNJ5+F4bMCPmi62jV6TmvSR0quNBdY78zSH5TQvt9r0OUI+r8T33FSDufBaTAuQXY89G1ucsuer6hWxnnFZnTFASj7512hwQi/z+ULZIfPZIIspwk/4YEitnVcfrezWThbIJs5IB1/Wx/gDfsodPGU0fWEcKhH7fMJ03cUSfR1x7WG0HHBXSPmK/i03soYfy4P8g3wxD3D7gD5iyoYLleJrHsJFx+XHXQhFqJr+RuiHPJ3cy0a5gldq9igxItMQ8PXRaqTnLApKQp6iLmxfpAB53lgR9oqj8XAASh5axF4zwV7x63ZsqSpHsxpbzMwBRjBexH023pxmz2tmf6XRPjRI2CudfFLX+mWii6IPvtv0LDPZQc0Gtk6yMuF7c36bHgXyrwKT9rsYpcdZpmtyW7LQeaD0DUWdd8Jv1L43F1wEAGC8fsBumc15GVKSPZl8Qzs0NQ49D+j3GO/a7QEz9H3e5arA/pa4nEPtaOydBHJTTa3FoB/sOvoNhXOTS578jfdviuQgDzExMGdkoYRiQBSI2XtmIWyu0nVMk338G/lZEEczItPS30U7Zt5Kyn0RQd1THff/Ep/+t6sIn9JV3Lf3Z3DwWFxGHzE1gV6T/lXRJyYPp0aDul7OwSQL3OoUEJhz2ImUHi4mMeDlTn4Vu3txDd+95+2/GEAJF4/SdXexGWjSVcZzkAWBc4CZFhPcPLGlvjpaj+dlJf+RP+dn8kV+IA/Tq+08w91+rLZS2+RhD7zsFsDk7sMF/3aS7JGOPD1Uag2a17KcW2QVd/Fzj/8EEystT8Luytx9Lw616oVzT54Vx0g89n+oabDXt8kCBH9MCCk38FLxjDs23PdWGmvuGMrGiIFmJtaeIWMkHwFHJHievCVth3KVrqOVfhIbK2+vdJK9jwLaiPMvIAtwN3CF1cAA4Ti3bQsp091Ax0C/DGKPNWafoF1Fe7F3aOupoSw5/6Yvf1eugBc/DuGEjOYVuTG3NzNwxvCZ+WYbx4wQAJLLyvs23HHgthuAhaH0FvZrkXqVWuFIYe8t0de5Xx9lD52M4rh376Z0TTkvswdyXKBa9nwufqd4sQDzftUKmzy3fDh2Buiz109Ns1DOeFmE7HsZxXGScJ4N5eS2mzWJsl6u4S/5NqrwFX2EGg0bVspxDFHzfsPg5/6GMPges7lRG9RUGaOHy/0sze8Nr94U4SjjaWnpI5GgLxeJPnZAT0S+KyLvicg7IvKsiEy62Dw16dKh0Tv/0Rrwj/S9brNvXmHC6RMMq/eWH/ZAVgDKQgp2lBp6zVoar1200Y9o3QZODjzewrpj18Odd2n3LnQxlWfkMyxjjQUjTs7I2A4/ogEzhxEGGDao8Qu5xz+qjPFqr52QUd71BGWSduGC3ISU+bqJYXSjdgFTEl6QW9muc1jKm4UGS0wvNvdexTg9VH4X7sLnUKtEYgQGsp0dhEwoLXgE7eQyMtPpXDblbSsJr3BjuaxLVdrC/HoB6BNSehla/VxYp3fdWZAQehjGYtbzKV3FTbravtusTpuCbADtWtFW4vwfePlakHenPskD+oiTeis1ujUx6a26ZEqxEbDPiquVsn9/RR+htW7BZJUmzwWlludMf2nKZlocw/dNuppP6ariOe9bSgvw7nwTRRab+MauRp1P9r1Mi/Wkr6IzMhyhwcj0OLf3P82d+hQ/lIdYLb9fOCJgTBqmJ7tLIUnAB7VReQTfhHHWCrRlATCHwBs1I/dbKH0XIRnJmY1Y3WtHUBuvD7yNATBIe+M82Q1Qg1qe5eRH/DHTZB9f129ws/7aasiLcawI5xhM5vHr9SMmI9vCHN2CipM3PJwTbfkOTvJ5/Xvu4gknVFDCRrmCxybdx5HRFXL8iOljB/SA/6Sqi1X1SuBp4JsXm6EmXTp0+lgR+2y8jmBIag1+nY375onT6WlxHC2iE1nq3w8X8cqF0KfDMonb9Bf8AT/lm3yjSNdVuahGQGXGR/i3CxjEZPU4qJPIjfUBo/1IS9WVwKzbvq1XsUFgwvylgQaplX5u1tW00A/aMGFN9OcM6ziWL4Q1GjzAIxyQaXxfHi6AsZjjlb+Rf893+a4TF9A4QbwxdKkfhNbjvwzGcpDk9sub9FPG6hE/aHRswQzkbYIkm2d6GF6Uk+woLADUITDP/ncBegTU10n8xQdYpi8yRg/5C2R0IfMX922ykHVcx4uygnZ6KWLi4fPhUuWi7grDfEwm9pqxQfyl3A3A1/WbLNHX8TROUPo2JrPfHgcXZe7kSaayjzeHLqUkz6pvL8qb/akNWmgw/Pg59p2dXd74ADN1JzekDh+2b1ezzgLXBp7DhL2/XJ9jfN9Rfk+fZxLOhiayGVNqnExG8WzrHfyt/KnVAvrff4MaP5Uv0SMdLGMN4znIdN0FLjiO9T34FsG1G41t8lKr7QyOb0t1K0O0Nw/l49XnlFdqJDRYoutYxHqGaTfTdTegNhNNDQPHitSP50ONemnMFYB9l8zmO3yXp7nHcuVvPJWE9bI01/h5fYqNb8vzNlkQbHwCPuzvxfoud/MEf6g/4Sv6SL7FUEloSI233AwbF5E+ds4Yqnra+XMosW19k/7VUseYyXAMEjEx0PolADkKu8Y6uW6rQJyaCYpQuwORyTObaAOXfRFQ+KXcwzf06yDwrlxdPBNOnDHtQWRyLe5rMfrt9Vb6aKFO3WqHlrOaIdrLL+Vu3wM2piEI+SKzMXPIk1nKJA4wXzczhX18nW+xWRcyjG5+KA/RoIWEBitYxY2sQRX+XL7re+NZMiFosvpNFoDUtW/LeMvjjkWAFOB55IUyVHM0eIqReB6cEfDqyQMYrUc4JuNRhA9ihuz58/adxMZWdJyFY8k/AhuhH/KaLCuFp8lt69QFVCm4YWNsnQ1tsU467gYgMm3m1zRen9MfwWbNsHJMVfgpX+Kb8i36dFC8v04bh5hYgHrbn73aSS/tRXDsgd5L7LozphQTyGiCHuCp0Z8pxpLzjdaoMzI9xRu1T5Ib7Ntx/w5LuIsnuUOf4mn5bKnND5jCmo6V1mmiArAE4zJVGXDTso2FbGMBWEs6Ceeu2FiKgEBVcZw97C2bTedy3c42MW1E309etzFxOEs7Illawng/+xjMW3IdD+pf8z/LX7Bd5/Bdvovm7y9hjm4y3tux77YKuOf9qfGWXGdPRECDedb1+H1BrFNXSOF8W8KWER40ZRDn8kdM3D6Kb0CV2bt3xnn/iOnjqNFDRP5CRPYDX2IAjZ6I/ImIrBORdUePHv3oGGzSRaNxv/cAdWmlPVkN9DNYg72OBLluvXvhx14FJspamWW6hs/r3zNenYTjdoZISXhJlvNPWqSZcu9HgUBMGxTQPDYX9lz2/vsyh9v4BQvZwP36KDeyhmflTrvQZTtrV/ugTGI/M9WJVB/VFgX82cWpi6mslttyp4p75An20JlnrGjQgirM0u1sZqF/FOxqppz6JTtMC22JsncSW1irdvBOOSElRXhXrvY0DC6JBseG9v9jMoF8PEQ1IIaG4ttkVQL5oM9VPJ+SUUWMQW9MlBd4z1s8K6fGjukaXiuOImNtufVbGedBvSNaD0U4HFjNHGE8qjBddvsy8OzMTH2NPEhysanYKItZLSt9zWP+jgJgFNuguW2KkFJjn8wsvGdJWcR73KVP5BkP1teW2G/Sz4bRoIWn5R4bu0+C92bi95XzDGvBpztGXIBxAVCT1ad5cO/UH0tuP8P+59+JMFX3evV26vvcr48W4VJiYzj2PVkNWOko2OXBXnuT6/MiE9TPKtMvbfabrnhn7jsNx7r9O6Vm7S/BnasSUoZoL0cZzxzNnO8q+hfKP5StNy8Ja+QWHpeH2cEc5usmWp0Tis8c+yXT+yLf00Wg30mNnoisAiZEbn1NVZ9U1a8BXxORPwP+W+BbsXpU9XvA9wCWLl16abyRJv3L0tRref/On/L2U/+Fe1q/znV6Dc8xytmNwqKD+xnb2sf6GaPYIzMLTZcTssIc2SR2x24pskgO09P8gf4d1/e+wdmzw3lpzE3FTWdSeY6VxWIy0E42tttN0ygAU7CpgYpnG5rwS+4hRdgsn2AGu+mjhSw8gXp2XADCESZwO0+zh5mkZjYeQMAEO2MTtqVfW9jCQlDY4/IE7KzP4+1z17Jg2CY/AK/HR0Ht2s0ZGV4GSZ58nIC2MbAcLISZPZhKjUYM4GcARsKxUKFFqqAzRFLrqbH5KgWldusN++hoQ9x6CiCRUAoqOwCP02QfN+hLxqkitrFwF9lcU+K2G/CZaxWLOpZhjkB36hyLFSNAJP+/PMZUaiXehqXd9CTDKcUNjPV3gNy45u+E4XqKZ+VO+mj1y0bqfp/ZlGL3leoM+ylxuYYU08h5ss1kJOXyITgJ+ivaoCa+7dgMdvmx7WKbuarv0tWADfA9LNXXeI6VfF/+hNT5Tms0aNU+PG17KAu3/yF5bSagdWOHrWke/ukXyb3xZ8Ix4cksvOdu/MTOpy2slttYw0q+oo/wVb7NZl3IPN3M2QOdnJ04p8zvRaDfSaCnqit/w6J/B/yCCqDXpH+dNO+alZwZt4Rn1j/PDbXN7D4+kQ1dZ5nT0sLwMw3SM0eZtnYNnzwk7LnysoYAACAASURBVL58CHuHTWZUyzF6k+G09rRwun4Z8/efpf/QedZfPpYjI0cyr7ubD8fV6K51cLIxknNpC586spl/y/tsPj2U9T330DH8KB1jHMsCbyKPa1vya6F2C4xey2aHuOrQBnaOmcaJlssw3m4pR3S8v6DaxSGzPWmo8D5OWjERwqNBRKhrYo+nYloih2K73wzsIfTSzp/Lf7RHeuQT6b7W6fyfrf89v69PF3qZ2IJhr52R4f71sJztZR66JAYm3N/5zh/U2tmVQ5tkbSSI1unU9znDUA5LltUkIpuqttxrduGdo1v5UEZzjPHFIh4FCq58/YVIUO7k5/yKu6hra/BsBDxZXhpa40WWc5DAZCEKhtw6JX4/580HmuM4zE/lS4WTQV5fANLCbyC6CJvfPYmTYioG6PPfKZP0AIdkst2sYGXsP+t65xZtmgDpIZA6ieNg5FLlRiW81kBIyoC56veAgP8CAMmpS1AW6Eb2yYw8q8vSs+tYN2RpvD8VYK9Vz9Evg726B/f30Vbvo6d9aC7nsRzlOn2FvdLJ83JrCRwrwnZZ4LcR9t8Zx/PYjCrUpY35bKRX2znFSN6Vq0k1oYUG9/EY7+hVnJTL2M48v+78d50OuulmpNNGau2OzRyq9v1kvz1zEWf8NlT4vjzMN/Qb3M0T7N+/gCOnxzLiErEc+50EegORiMxW1R32z7uBrReTnyZdmrRk+iiWTP8c8Dnu/21Vuv8NeOx2VBucb8zjWP9fsiUZR1+tC5Juuk+PhZ5WslSZlbt29x6UF44cPJml4+a+Z1kz4Rb688/ZHGOckMuKZ4CRepyTWbqkvB2zAzbaqVjb1g4ru57VF+Mpo+jiI/xC7sYPRF0sIP3aYoLuRgIYe4DGbWOARc515ogulIF8a6TMZyO7dRZDpZvDAegxEm2QqomLt086bWDhTIbqvy9PxgNoQ+zilQefzcnJilGpJTHZGcxCZBLF99LOSI4bhw1vXA0APhHWcAuzZZvHQSt99NMWec4ckl0fagBj5PT5V9zJWYbEZZK1UbWBiGmqMru5sK6IvAXliEy0elsXgGZaR/OcujaNnqxdG72sjQh/JaBix3n0+6hZf/wG0/V9DjDNZORw+xDtu1rNd7aRCeIlVmnAbD0pNZ6VO7lfH+VdruIEl3F08GhuZA0vsoK61jLjCFRr5XrV2C/Ws8wVjqzPtQ3iXNsgK2UT1Hgq+/gr+Tb9tPo2eFaG3qaqKsC37fcyXuScDrYeu8JeZvA1vsW0E2fYIK/SNXIsHdLNS3qjE9DZed1efTUD8pzrNevZvUc6eZEVedzGUfph8U15413zsZNqjbWyHBRe6biZocNrXNZ9aZiEfeyAHvC/iMhczJe5F/jTi8xPk/610J61+XFBny5iS3KYl1u3e0WEikn4N1303OckQVV5o+06+mgrT47iayFOihMw2amrhZQrdF2eP9O5iae1GYhHdwGMLcruIuoJxN/Zx9oZYx0dSoCtUi4xAO2khItofjr0pMkbLFnSes0XcqHBEtaxWNdzon8M+1qnFrIKFuM2PWcyK3j2g84RZiYfh2cvQK0DAsrXygvhULqZyzZ6GFYA5VAe0T7XadM++mQIiDmCUoVEGrmpQj/lhRxNmak7mMFuZrCb11hmNbTij4XIMVyXTKFNz/kLb/jOwvbCey5wimVVqBifE/UDDslk/5sAOyYMiChtdKreRe54IH5ZKx8fqESytHh9S0g1Za9cXpiBxDYGjkZrmb7Ia7KMYvlWv80YBe+/T1t5l6t4S0xqul0ym2W6hvvSR/lh8nCedXu87ue0jCg8yYGZuoPh6WneqS2Jb17stVQT9kgnPdpBnRabeSciCzVpDxMaDOUMpxlR5tnSyywvxo8IdW1lLcu59egWTg8ey7GRY/hHvkBDWoI6nPcbytgBknfoU9wiq3hS7zWBw6WGqpY83bP/x3Ow2BQCO3U2L8itpJcl1EY1uOztNfH38RHTx84ZQ1X/jap+woZY+Yyqa/3epCb9C9KMG2lYVX+bbGB77aC5nk9MMLr1cPzZUFuW/XavxYACcCrQ3OUU0yxFrqckNul5qI0QH7hVLaZhmx4gc/sSALRAO+WBIaeeu3mCB/WvmcQ+U19Vv9zfnjYnZR5bIm0W5KXRyvkpfr3NNfxYHmRkyzHrGR1ZjMGmzyr4FxrcwrMs0zW+fNz3GWrbYgBaU2rUGZNlS7DXuxnJOq5jKwvxAiRb2XfoybJsrJa2zz12A7bJfPu2MhkGoFGN9mmfdPKC3MoP5GHHkQH/3Ydj1/azL8wSkdefBv9XgHrPKzgYh+4/53pCgzvkFyRhkGBP/sGGhqAfpc1FAMJQlvA6c3Vz0H8bnDh0FvF+Ww/yWNDxQJ4CvCa/V3geixAu40la93mOgmZhHzO8+y/Lct6Tq0wuCye+YQ7y1GjyvpT+gHp/m8+jO+7ydyC8yAqG0W1lH8jCAc5LeANBOZ0dd5TmEfAcW4L3cWDYaH407Qs8L7f5zkm2jmX6Ikt4Pf49FBd4Rj7DtnQO83STDf0UCcmC0qJ9LNM1LNQNXg37pLMwjZEaO6dM4VKgjx3Qa1KTLhpNvZZD45YDMLi2lQ7K6W/mHt6LxBacqh2/e62kPah4xl6/jKPF3xEtVvY7pcZWFvj1xMBcuJBGJlyPH3cxdkGfW+9Amhj7TI90cIus4n/T/4EV+mu/fMhLST7KnfokO5lTbtPlNQRbTt9SJ0DrOrk+kowdOvQUXnzCrCvUGKK9vv1b2F+PD0cGzrX2xlkE5UPG4qW3cutz+29lbzKH1MsAHnxerQy8oMXePWUmO/gUz+XyaFj9dCkgsAN88gDXLo/BxqFDT7JE37DHhQOMv3AMV8gq/D+zs1rOagg9x2PjwZWRW19sA2Svt1BnsJ6ztmYOUETA1XiGWjpgNEfK2V08nor6jKe6symKyCNNWnx+K+aXcwwqtXdQJvpezYHX8LL+tYw+3sO5FicfcNiWA+QaJOyhs7CXDbW/VkY9OszGD3S0p7ENnNsfCxJnsJstbdOpS806S5X7/JosY4Se5CZ9PlJH0V6DFl49dSuyYxRfSh9joh4w/fH6J9SljZdlOWcaTrzVCK9J+wAB2j9CagK9JjXpt0hTh5zP14glaRZQuLh//PhUVCt2piUAp76GozSZaBGuJbJgDc7SfYVaLA00DICnKQl48nLSDshvpE/eIhkumJH23PJWgzRfN/GcruR/5escPzOORB25hODGeT6hwYP6N7TTW2hAQgq1e6VF3S2X0Eer1U74E/hieceGJymDsKfls+yS2QO367Yf4VPriT3+ckJZhKA2sthslCtZEGgdQm1H6dmwrBrbpfv0cX5P15CH4CFBSJmYhcrw6jVj/2rW+W2E7wm4TI6zXpaWY6iFwC2qXfNTXpn/nW9GTKzHx+VPGKK9JkVWXnck5VkI9N3xlbcrJXnVSXhZlheOHC5grdrE2Do+ZBzjOUT+jbnyytrzNJmR+SPk0ZNRg1KAd6BHRpDnn7bXJupBvCwS3iZRGN5ykhNj2tnVcrnXf3+OKdpSapyWkYEGMuRX2CoLC7lWbWijYCrh+/IwE4btsRq4IMevA+BWy+/zTHK3L+eAH0E5f3QUO2QuP0oesikGA1k4/XgnWeLUkxbfhhrt5+0fXhoQ6+Noo9ekJl08OlNo8cY0JnNnOo11tZ0cqp0Cha6RY0Cs5qcK5EA+sS7ldbp0op1wnHKedsbRJDkTV19oSC9C7ngROy4EXFu2LHl4D8NMENVwIcknYwviQkCZ1VsFsMIJHfBtnFLG60FW8ftFLtVh7vNB/V5dygT9gBdkBWd0aBB7zWk74M3kPFVjL+XaYdnntskCEw6CBv2OEfnLLCc37Hf7aIQV76vtb0JqtIRVYAtIa7aekHdVoEG7nqVXhpWAiaqyQa60bASgJaapysh5l0LKAzwCwFpZbuO3mTINrTnZStR7dh3XmrEe1BeCgiF6llSS6nESPuPwpYBvDxh4++ZySPil3MMd6ZP8Krmbhoot55S3Yy66IQl5K/UnYlMZ9sGtx3lWNXGCbBunnxHpSY4nY+JAM7YhLGnJ3LZC21RTXiVBbCYMJaFGgytYzwauoq5qPUz9Z9+WJbTTa4+aI+MxaE80tVNZUCbsV9V8MJDc7d+p1nh78BK+qt/iae4xdocV4D3VBEFRtz2nXgVenrWIBf1JkaHEvpcYwD+fDM7bqFmA27D+ufenj7KgNpZLgS4NuNmkJn1caOjo/GeDsUzQEQzKAJfA1UNepo065bRJloJJ/T29ogB5oSaGLChtoC2xNLn+gbFt033GCkjzwCZlTYNYwGiBo9Bgtm7lHVlivdciO/zYwhzspL0+xX6XZOAuZiZTQA7yYnXHFkKrJeiSaexijg2BEpFzwMM03cVC3cAd/BNL9E2/X/mCYII8R71RJfBOjlGgEQCYmtke2nfQ5mpiLZ1viWSTyPtco1ec1G4ezw5YjQGQiJaieEcp83QT39SvM0WN5+Tz3EYYyLiUE9eRVWmJKWmcEl+bU7FAl54H8rymHnANtF1OeynCUOnl6/oNFvGe1VyFjhZlIOb97ZaVCrnGtFah3KPfX9GvE0lgdxuCEu/5CI/OfFDL7OJyPk150QyyC4jJBdxDB1/l23yKVSShphQ4yBQ63KDfIfAKZKiIZTOI9RnKLyZz99vOyzix7ByZHWY8c2Q7l8vOuEbSeb8j9TglyjWBCQ1J2DQoHJPuuFUG6xnyb9ZeG6Uf2m/DSLVHOugdtbvc1kWgJtBrUpN+W7T/DdhvAIKZl1pRhVNyJi9yzci1fFkfg8gk6pG9Hg23kJGzWOb1ORPnFbzNVPbZrA2QWK+y3B4oOkFnk77J91jKuhAFGk4dMUAHZDH/PL5Liz7+IhZrN7bIxmQXgsJwoSzJWvlAprFRFvM09xqv2hhAChdb9/dAALaqDsSmH5N8UZ6Ak5nFAfW+RiYIbB0a8sdk65avOvoGhAZzdRO38Gu+wE+YzXa2yMLCc9LtTxUQCvtcRQONgSjfvuy8PoT1uP1Scyw3jG72M40Pucx8MaETiAjR42CXt1D7NBAwiV0L+fP4T0jdrCBu2XAOCN+BMz6W6Ot0nt/FlPMH7NF9aI8JwzjFlbrORIfTBgkpC2QTs3Q7JuyJA+AdkLhbOym9Va9M0XehwXA9aUBjbMxUgdfSO01Zwuus0GeJZQNZwCbTJ+22c031hqEepgvEePa30I/YHNpFntuUURzDBao1UlbyLCEQPCbjEVISrdNCg3npZs7vvDQgVvPotklN+m3Ru3+Ppv0IcC6dR8ooRGBwFrwW6O9rY8+gTogY9Ed3yFEwo5GFvRzq4/WWG/gnPpuHXlGt0y693J/+Lb/iLo7IBBOGoGpRjYVDCHPJ5vcsT5oyjd3sy8CLLTNaD/shCqp28lXAN7zvtktkgQgnenvf2NBAOaOBFKBWNSrPkoyqAE0MlMaej5RtkJSymYRx0sZyhGOMQ2MLZshfcH2y7ud2fsHzrGCXOFH7HT5UYZssYBsLeUFu4Sv6txxjTO61aqCEf9RsjsOCvsX4GGiMl95vBsKyDUgEKA/wrsP6FRPUNqXm388CIud1V4fh8dqJ8u6MxwttQqrqGlAmFbx4dZp7e9tmkIpwgCnR57oZWWxorBxU4XlZyfOsJAcyjtwVsbmgifNmQU/2u2adJXLuqsB/CNTdsaUNWqnzGZ5Ega26oMgJbHk4LSN4TlfyQ3nIMy0wpipBSB0XxNtrwznNv0//D/757D283n5N3vcaKR162njlW56msI+z0m5MB4IQVlMa+7g2eY0FbGSW7ORE753lvl4EagK9JjXpt0bF5NSniwDhsJymIcX1eqOVUzhBi0PAMBDocReTcMIMJ0rwg/Da+73azs+TP6CfFjSc8GILU2niFWbqdgMSnGtQTMizdAf7ZAau7ZQBec4CGOtb0M92epjGXrYyD8JE5FULb1UZ+/803cMYjvKOLKGhkfhvMVuciGwrgZv7O4yf59wbQi9nGUw5TVkSGQ/+wmiupGgWRy4CBqve5yBMHLsZuptdzDLtl+RUHGc2tIXH5L/BuDQoQ7Wbbjczie1nPpZitluWhuppE8YnTNvmao0cGRndUKSs+7cnmKDNcKxJYoMME9RTEbMwrKMKwDvlbaAUUnWBI+W63GtV/anaPFT1OZdjEtdIR/8vjr4bWmMty3melXiBzb3xm230IjbGEZ4uZzt76DQ2rxeSZVReDRbqe1zLa7zIcl6UFdQpy3Yji9kkiyLBl2vk4NtSt/hBkgEWyEa2sJD+dozW2t5LSdgnnV75vXTyAVNISK2tZ1HPLcmzrGAVIpCqMHp0T1k+F4GaQK9JTfpt0QRj9K4Koqc5LKf5Zdt6GrlmAlpbzzOCIJbThXbxziQoKNPYw15mxp+pWizspPWM3G3CM0TyhpZ4cu879eyS2bSnPfQmw7wF4BP6Hp/jZwC8wMoiZ20GVgbqq7tQWeplKLuYzVg9xtEwKr2zeF9o8XV53yszC8N3l2zZmbqTXTKLUgw59//weqlfKdN0N9fxKi/oLRxNJhTlbdmzWI1ArgmtAJaRRfAY4/FCrGjmGS0W/FWDnV0yi13MBgn64vDugV9zA7XBub1FMudJKL3fiNzOSId1PMn6HGhbgnenIegNQVGM37D9C2nWqkC8cy+hAUiRiSLsn/O8alJs90L+Yt+YV5czpsM+x/oQ61Nef8WYipHlJUHpYko8xI6tI0EZWu+F1tSfQ9y63M0m89km8yHc8IR8xcCvGph/La/xI3nIZv6JbyRMYOPUq7pdzxjb1Vw7nxrNcyAfIeVX3EUqGSh02AsBquXPZA8xlNBghu7iUzzHLbKK7TqHLbqQ+Wxh+r5hXAp0aRwgN6lJHwc69A5g5wWGczA5QUqarw0dw48yZEg37fSaC1XAYQDNRaHriDyTlxhAo5E9PeAuukLjkP8tBuRlz9rF/hpeY46YTCCXaTmGYLSvbs9US/wazWPQvkjRxwuBsPBvERrUbLgHf/prp5sFbLRhUgKgC4zimI0LVwE68naEfTKTtdxsPCdDPm0fFCnbE4V9iwFhEdwQKyZaWZYST+lonC7qCgF07p3teF47/RBS72+vHkcWMfl4lLfnt51ivB6Nt6eUZRk+PxBAyUGmy09kcxL2J/hbPJvVRnBPeUAf4QbW+m25fHrjNgS9xUbI65fLg61vkb5DixvzMAZSKzZFpe8i1ufot0wut1m6la0y33/W22Sm/OHZn3DFqY2+Q5n7rkMesQ454ft06h7JcfJxEPS5Q0/yArcYLZ4XYqbMHwhujNJeNwh81iUo7AUtz4pQp9VkwgCicU5L83HiOV4slTdYgQF5fyXf5h/ki/xV8k3Wjb40dGlNoNekJv3WqJgM2pINTEyHk5AgaiKOjRhxiPeT2Twjd9viwUSd/V+1sFqQZYz38SegfKJ3FhqvDbVHqw3u1Cep0bBR34OFsWphcBczD3CYckKDHulgNSv5rny3bI+X/QYu06M2Qn1qd9nGELzUrtXqHJcxZR7cslVAoXRdSbRODneDxbSXDp6We+3hm/uYub9M1/Iw/8WPxRYsli7/h2RSYfcXAijNYFnAr6q96vKWggs+g7ZH6zELXI0Rf3dtqMd3VGbub3tvnm7ial0Xl+FAMh4IjJTAoqDWn1PdXL4hj648S3Ij4Culg5OM4XABVEt1hoC3AEY36ypW8M+s0H9mSfqWd18RXuZGXuamSLsRqgJTLkisKLNRruB2fZpSfL8YqHP75vRV3LGS1x0ZB8H/grHL9HIHe/wqE/UDZg/ewnWj1/BlfYwOPe33I3yHUZkoBJq3Fu1Dws2V/f+UXMYumW3GSiRGpd/PlE7dhbd5cPtvvcB9Gz5/s1Aj5RPnNzp1BB7LEVBrApmPYQdzWMty+ixorFPjwKwZZXlcBGoCvSY16bdFV3wRFZMzdFCylRnyDtf3z2ZSOoqpjTGcOjWBzbrIHp0GmprSohyZMENgF16Llc8nXqM9uo/HWMKbLGcVV+ub5YUxrNvbnVO+DjmAHKbdfJ+HCzuZgK8a/QgNjstYewRoFnozvSblidT+LjJRKCP0uAVqFSAmBJaObBNSZuguZus2vMUgo7ztWEw0ZYfMYQsLuUOfwltMMfk/R+oJv66cjyBWmweUy8GPP6HvWs2Oyf95F08yly22zyEYcuwfc15r5IFwY+8yHHe2zFZZwETpKmfSqAKKsbHhlnHbKAG0SNDfcPEOAXe4wcjLJvQyjA8ZVxw7VpUN+pRYZ4EH9REe5BFiR9oGAAWgNiI/DxCEgCfKt39fSQoP7IryJW1TUQAwAYpzuYVAJgZS7e8i0HNYJ3kdXTKVv5DvsBrj9JAf40fBt1tNJveG5cV/zydkDF6+Z5c3B5B3cKokj+LvlJoqn+I52ugnD2ju9j/Gm3NdSLlJV3NN26vUrCdyGw2W8WLQDxywqiYYM7fxF/Id1sgtZN9iQsoNMjLW2kdOl4ZesUlN+jjQ1GtJ5t6Obn2avnQee/RKXmt7L7NKgtNj0dN9MLLCkNlZIKbrbvbL9MKoOzAorgQ3bj3BQpRqwm7t5AfykNU0pb7RdRX4dGgMh1nMO5zSkQzp62dO20b2SCco7JVOH8QGi1U7vXQzvAKIib9glBZQAKFbRhhoKjXQBu16hvMyxNGcRWRj60y1ZuzvYtqV2CKsDXKjc4RtLGSbLERoMIGDHGJyXvZT+hzPcTsnS3mHbR1uv0IK2t4gV3i3n+Ezpn+xOkqyMpRog4bUvHKiToDhWP8VnuFuvqKP8FO+bI++Im2WFlktXw+uTdAujslY6upk9hjoebfd2HgMgLTnMR0FQpHvAxNC5MfyIEcYz2YWspvLI7xIWc4R7dPcvq1sb5uLug4uYd9i36a9V6POdHazgSvj37emTKSLLqZGxqvLY1JuL+x71VjM63PqdKihLbzJ9dXfW1iP045kGmx7bQi9XMaHdDGZqJd78A56GUaNetyJyr7fKbqPL/MYj8uf+J7BwYYPHIcZyB3JOmU3P+JBUoQE5UvpY9wiq5gnW3hGP81BmeJstSTnWyWhru432uAmfZ7h23YDX47L5yOkpkavSU36LdIRHQEKvY0VHExOG5DnzJXpMKDKLgny63tlpg0DkU3YgX1KXrZicY1qCYX3uJI6rca4nlpQF3G+nLqOM4YbdQ3/Qf93btnzKpPTA7zEzbwgt/ICtxi7q4oFsRvHZqZqcXDJlpnHZjKZmSk6W8gSxnKM6/Vlv/8xrYAGcqySP0Y79xB/zQr9NYO0tyQfpWZAXn5deVeu4nhk9y6hNsXlKftdeqeZXZOJqealjwqBQ8X/DSlC+uR8iwOoY+9IjM9oj3Twh/zYrzej/O+IrAM5ufK5SZ7na/otVuivbRxHN35dcCR3gW+jPLYigCOmKQw3GACS0EcLT3Mvu5gTd0S4ENC15Se37uOP9XtOKrzANMJ9NqhjLIf5un6TXtqreUYMKHL7XgWOQ5Ac68OAWsZAxnlbKR8yGs+UoOKdhbEzNXhP5xhCF5PzY9kwHVsohwYJo/RYmbfsviS80LiVN7keDUGqM24TUq7SdRTzsHEk+zP9Nt3akacaTBE2n1mCqnCzruL3WGtadjdQrsxdkxAS2jlDz2VHS3K5GNQEek1q0m+RNqYzAKinI5mYjiIh8bDY5ed3+gb44eQbTpwDBcJ1F7n83gDaEeCYjIszHoLEGImQUuNH/DEvH7mNw4fn8MLhe+inxSa5dxwnwr7kAIb4BOyWy3lQ5rKJL+hPnKTvfh17pdNmzkjj7XpyUPwjnaD/VpNxH4+jCmtkJedlSFQO4QL8llxHt4woldMsmHWVZqpKuxK+g3BRd991BYDx+qnG9UPcTYbTZwDRlFbqDNNueqSDSewL6g2AQIU2MaZFyQLaAlyp61ihz/Kg/jUr9FmGpUVA8ShYr5JVFMg5YCHkTdV60PpyiY7LsC/htQgoPS0j2UMn5Np3R/PkyLk8fuAz+gSz2e59zqX2AM+xIeTF7ZdLF9pUhfVV/m9OALpkqt0kBhtJR6Yt9PPH+jes0Gfz+IsEmx5FbO5m7D1hma6hM93pv6dcfklh+1sBhF9qXc4GWQxVG0pJaJCwM9Ps23rn92xjYvcR5rPJiReZ8OawJTyz8z56zwxnPptooZ4HRHbtCkWVyd1HwPm+npG7OTxoPpcCNY9um9Sk3yKNPLkZgFpykvGNEXy672qea32PXukDgXGnTvPJ9rUGnMQWrhIAqcifGj6TPye5u/8RxtMjw4M2giDIkUXZXyCL3LcZ7ZJZPDZhOv/29K+Y3b+dV7mSeh7UNgh3EtMSuBQr54DYnczlLa4pji5j9jaqFKEe7IJSAVg7tMfEgXMBtFPPCp4F4AfycKFJi4G0EJSqlmWbUwSs2zIm0LC14avUGplF1jOUdxfOSuBoyzh/m9hfBNfFtpJyG7/gx/IgfbT4fMfeT9VmpQQ6lP9L/zuOyxgnWHHKBA5yhImkIVCNyThsKyYrTWkh5XLdyg6ZSxosbzN1B/fxOG9xDU/LZwsZxHjP2ncp/D69v1PWs8Qel1dpkyhfs3W8y1X0SAfndbB5HbHv3G2z8nsN+A37dqFNhjeegzZCEwQbIqdDu0lJ6JUO69WaMkn38xT30qp1RhMJjxS+VzE5f1+WGxnD0SAenivzJD4ebNnU/UbCjYgqJuZjjVOMdp5LOTZsJE/1fI5reImbdDWr5TaQBFVh/7CJDGk/zWxOcx+P8YZez3BOFakZASSla9g43Lkn1YQTl/lmGBeLPrYaPRH5H0VERTKXvSY16V+ekg9NeJGhtdVAP+PSDsamw/P7Rw5fziQ+wN35VWovMKl5Kg2wY8+L9dlME3qkI6y0enevWl5MgKH0lq4hCXVqnJgwiClTN9sjmWBxt//PYxNjOezzqYrRvGRHmkYh0wAAIABJREFUXJY3tx27yDeo8bLcWNyr0lzk/FcsiPae0bpFFhA13nM36hq2sLCctD1sM1yAY9dCmUZAxDjtokXrjNJjzGOTzaHplM+fc8OpWGcUt87Iu/PeiWQhj11+/SPTlIS3damJV+Y6pOR8+3KYzm5m6na/TzEwZDUxvpNOwiEm24XZSeEXyi8mC5FI+ZSZ+j4gbJP5Bciz7zmhwf3yOCJGCxxtxylf+u2Vc8e41eyQZVYpO9cUfEbMLyy9LdfwD3yRV9yx7vavBHR9z9WyzAcgETxv0vC5GIiqnKNqdMsIzsjw3KEjpcY+mckxGc/BZLIBeSGP+bcRHyteGe+7jxz1O3XXqCO51j7wXgba9Dzet2PvvSgr+FXH7fyVfJt2evPjd9GUxW3rEIGdMocf8SAbZTEvy00eD0rNaCcdfmrUmbjpmfg7+IjpYwn0RGQqcCtkZw9NatJHQPvf4BPpFsB43db4ABFhuFq7G4Xu02Np3TEsvhBEdujHZJxdXiMLe1ZHAEaUGrtrMwF/MhupJ4tnQ41U2L6lMzjx8mw5kww95VTrMF6Sm/wF3OFPSFms77BI3yn6mC8YmVF+Vj4SI8tqm04yKrhG9d9Vmg0N5BfKEFCEt+QajskYx87KKR56sro8XEgzFPbL/n1YJlOXNk7IGLaykHPZUXGV1gJo03OUbKSqFmfv3SYOsEqZqTuKYzUr6zy1lFuvJ7tC3geZzDmGRGXpeXOHfIQLuG3bk58r5yj4srzkzycMT0/ZDAw17/kOTvKAPsKLupw/5ztsJHK0Vxo7EbvBfGwnCA1m6nYuZ5epq9LBpQzqBmkvHekJ75qS5HHcPBmEvx0evQ1g2FbkW3bvZYFGIJA10EofEMoD/31447siZVwMIAZj1Qur5JaJfGOJNhh/7jCep7r7mKbcof/EzawynuMAQf0md7j/7sdzkJQaqdToo4VfyD1W82wChb815Gp2MIfNLDRxPcXxbLb1ePEnLe+X63Zmt7xX7t9FoI8l0AP+M/A/4W0XmtSkf2Has9boTOw80rA5Jo8nNg2OnRt6zwRG++FE7k2YSX4cUl7Ynd2tLT82iyUWOZpsz7RFMYDoUkwL5bQ5R83x9GtDbuBFWUEpBpZtI0HplXYQfEAR1h9dEN0FyCnv/h8uUiHgiQHYGAhz+vk0n2U1t9mjYv95DRcY1YKHcIGr0gq57cZstkJNWgh6gPPSjpumrFwvRMeU+SMHRkM5wxy2lsoYIEnpfXqATIQ+Wk0e5aDtYZz2/vbqimhhogDcazMgK7vc1tWWP5KMs7acvh3mcn2eH8uDPC+3WUckE36mI9z4eL+DY+vI2N4js3ify40mKwqy4kGSz0s73YmzefG+4cRuKCpk49RnwvlUbCpiGw+HR7NVC4KG2/t5BoqqTVWsjaoNVOy7sGUn6X4+rU+V649sckboCT7NUxwZPK5cn/1bxWT+QXE2NME3G5nbDjPeaPCt/PNsGCKoCK8NvY6/km8zTLuLYMsiQMooPcZSXudOfdJvB9gm89nbtoRLgT52QE9E7gY+UNV3f4OyfyIi60Rk3dGjl4Z3TJN+h2nGjWgyiLr91lvYYS43xpoL9nrXyDHBRKUs0vW2jL94GQP5Bg/oIyzR1y3gM7kdluib1gvMLHxzdROf0SfsZBQYpQNdySSH2WASj4Eub8LNdqzCNllA3TpgpNSY4QYpVQUbALmB8DT3sprbAGhXJ+/jQIuBBXeCCXBs3Dz6nSMZzcvkf3vXqyhmiB/009XOlLQSFVoKt0+xa1UgJmazWAVKK7Q6pbZCDVr4rPP8BrmKrSwolTNA0mknBqwt/8ckyPwBNptJMvB7qQIRsT6FfbOaoNHqz9ldMoXM5cQAwZS79AnapddqYsx7FU2pkXImM22o0p4Bhfese09p5LEfI4DbgoBSnbFNDhA6g2gFAMt/W9mfkNF4gKzq242Ni0ovfsuPN36M5i8HxlXfT3g9BPXBODgkk62XcThmlVbt83g6JaP4pdzth0wpGMzrzoKdh5sAv38hP0HswYj8+mmhm+Fcry85fUy4l3/gP+h/qvCWTniu4zYuBfqddMYQkVXAhMitrwFfBX4j6arq94DvASxdurRipmlSk35DmnotLX/8T7yz9mn2HzzIkkE/p35qOnO6p9DXp2ziA+g+x+TLNtOSzqEukKjyR8f/jltbn+eZ1pt5cchyDspkUGhJ4fePHOaKvpcY25uyqPVFrmjZSffUhPlsZL9O5a3adfnEP5vt/FAeMsdXQG7An1HmsCBS4LyKxXia7mIWO9jEJzgskykmQn8BT0j5FM9xgOn0a40EmK1b2SoLirI2mXyvBBkbSs4CPh8KXK3ruFOfRATWynLe0ysLG568XxJfZMKFVYOwCLHy4b0AYJSvJ+X7MQrvV/Gc/21lM2B/IgtuFR8hWHDAWqmPLh8eQAvL2qTxARjtY4hxMonJpkIGg7S3AJgxKvVNCg/yPJ9sQsMuwIigqvTSzngOe8Bzqu6mm+EGKMVAs8PjEn2Du3iS/5svsVUW+t9OTNb5tQE8zMO/q8ZerIynxXKyRTiPL2I9H+oYcwwf1l31nmNky81kJ/fp42xhIT/ji4Q5buemm2mcbqentZ1DQ8cSdUqKaBhTFT6QKbRQp66tTpvQL20+v5g4oAlKmr1vNd6916av8GpyE6pKK3VukjV8oFPYJgtLfcn5SBskiZO/2N145uVTEhRVIUmVkwem8urUZd79oyfn0V1bz972zgJNOe20J82Ayf+/SVVXxq6LyCKgE3hXjKCnAG+LyLWqeugjZLFJ/1pp6rVc+UfXcmVwedCuU0zYfoLJc0YxYeYIHjp1hhc2b+fK7VuZOfomjvZfxxd76ty8+xUOjBaO1GvcdXQ113Rv4kDvf2ZLyyJebt1GG7Dg3HbGjD3NiyNmYXbDZsJ/m6XUaS0v4lCeeGHACX8sR5nBbuN95pYNFpsGCarwZ3ybLSxkGN38UB7CAyl5e2YBGKHH6ZaRfqqxqObGGKnfxZPsZxprWEkjtjhVASj3nptcPrseAzgXWnAHAiyhPMN2qigGBgYKehu2by5ATJ4D1VGlGayqw/2dJ4gvg0JVk+sktR6OvwlgPu/aJob9iYw917uyXXs5L4NRlSw0eU7vyZXWVSgDnin7ZGa5P6E8bN19DAJgqPSU5XkhGV5o8xBS1TgO2/DeizBJ99El04r7KXQlU8p1hvVGNxhlfvYxA8CGHlHSYM5olX7u3r2KU+NrPDr0fhoq1XV6dZsg5HfxBGu4mW5Gxvmx/9do2PFmNbOkXKev8HrySTtaUr6sjzFbtjOZA2xjIVU0NO3lC/ITfiWfpotpeRvTdJcZH5a/T+vPGaLnaN05lJ2ts4yHuJVhgnJm5HkOMZqzBGGY1DgAfbb1g0oePkr6nQR6VaSqG4A8UJiI7AGWql4ow3qTmvQvSxNmjmDCzCLO2tIRQ1l6w1Vww1UAFEvPH/HW3hP8v4/8OVfXNqPA4Jaj7KkNBqBj+FEun7WO95PLeUmWUwAqoUsmFw2GO9TwWhXIs9ffkut4m2sg1LhlZfNFPeGHycN8Xb/BAtnEP+rnbQLyCi0OcJ5BNrvFADt/24Zqwk/5Ejtlnh/uJNcoOfXEFkRN6eAUo/S4M4EH/agEIFnKJjDAQ8lt40JeQ7qAlqSyjgpAXeJ5oHLB30KKupqLgfiroshzic35opmmNL8n3KFP0U4vvbTzS7mbVJ28trHNhwtsUYw2uhaXVUC9MpSEBpPOd9HbOojjydj83jHGs5qVjh2dDx7bOMtQ7eGEjK3YPCh/Id+hHmYmudD7cXlWpUa/1bTX/HftUj6mA4Dr8hN5z7kDjf17Q3KV//xvBLqI90eEurawluU8yCNczTrWcZ33nGjKzxbdQke9hzv0KRO6RoP+hfJyeHqBlVyhbw8YcmqUHuMq3uJ5uc2be4xHfqbBFRvHEGawuyw3hx8V4fs2e0aNOuP1IJOkCwX2MTNv96y08wX9O/a2XAH9sF7n0E+WrRlWy228wErGUdYjpdTYOPgg98al/pHSx85Gr0lN+l2n13Z9yE/qK/hav0nF05euY3rD7F9GjDhEkjTYIgudHLDY/yu0C+HCc6Ey9m8Np4dw4raTZ4qwFuPRaNJ3OcAroq06J+3xMhVajCOM91Or5XXZPruLg3vflulmJPtkJstYw0y2My8LiurwlFEbZ53rFpxI5h0c5ON1F3yX1IDCIVlWjRCcudciPNiLA4OJgRbncFFzvZsDnmvaxxJ9PR7CJybP/F0lViMbaLZEgJTNLORDGcN4OZx7VkoY0iMcH07dOaAeCDA7daTUODBoMqc8JwfsOI6FijHUxxAD8tx6nXIb5EqrJa8IjRJq9sJ3bH9fqW8jVeMnL5/6XqhV4M697373MbBfAd7CfpbIe1Z4UVawgzksdm2JRQADLPe2dLJx8CJ+KXczga5SmRJ/Tr976OBlWc4wPR3nA7iXf+AmWePnYa6Y81ShW4dbp7TYtwm9tWGkJKjUaJBwWCbxNtewXpZ6xU/qSJ7icxxoH8+sWa+xmLeYqe8zW7fmziwpNQ4xyW/Htvv84JlcCvSx0uiFpKozLjYPTWrSfy1dP3M0LYmwXafy68YSRtc7OJMOgVY4dWoCaVpjnmymJanTp1bLpGo1LM5RWUYVmrXStdjiEKlnma7hHINZL9eQqvFT+4ApwbGx5vN7qV4baJUga0ipbfv/FPZzgjH535Mb+/igNpXQXhAatGm/CaHgakdsnad1BN+Vr/Ik97KV+dFFsEUb9ElMFhWat0r5CmelndxOcgDg69WniuRHVBGNTwUPQsUxqSfXBommpFJM+w1pZbCeK45gL/Dui79TEqybQklWCbtkDruYQ5L1xQaf9V74b6INi/W9CsRYG73c3i8sFwPXsTLZdRF/fMZkEnunXp0pc3Uzi3U9b8lSvHyIQdszdSc3y3P8gIeoawsJKVPZx14645uCqu/V7Ycn64ZxcXIDoMfecWTTl2rCFhZSb7RBS/YNO9+FfSZVJz0g5OC18IKtln2PDM+faaHO7TzNXjq5Rl/jFlmFKtzPozwuD+dj3ZvzgOnpHnoOLmLc4FO0jqnTrxRetBXjWsCG5cnmpQaoOeZ/h6W8nVxLbUIdzWIlmgdL7yGh4WuugSvTDcAfcLGpqdFrUpMuMVoyfRRPzn2W/6ftO9xae4tzaTsnB5ugw93dY9nw3q10HEr5ZPcrhJ9wnpv1QlSlKYmVcyZIQZksB7iLJ5mtWzB6moTt4qf6maubGZOZxUYWnTYaPMTfMJdNdHASb9fvTModepJNsjhvH5RByTlaqCNe+Apz1GfiZOEvQraua3gNVZivm8DVBDplxkrgfV8FPqLXA5AgQimbgGr8eefvXAMXA2yhViRvO2Fa5v0cBop1AFgq4dGz2Aj/gadl2Ebw9yQ9wB36FG3UoeQNXcggxRjQS+YFXpXSL0ZVfa/auNg+lpw6Igv8GD1chPyJ8RKCviqQOEAb2RjcLvP4UfIQ3liI9Pscg9mtnXyFR/m8/h13pE+xn2k+PzENYsa+J+fYOK3ZUE2NuPYsBibt3y00mM8mRn7QRy1NIY2EjglBsuVqQBmV2k+ZdPYgi9O36dV2Pqc/YwWr8iI9dBivajFxOmewK9fcCUpX9+UkQ06SUGeRrme0HrXhnxx+vfGjqOf4VKNIXVejIQkqCY0w53SgIW+hbkPFFBrZhAYTeo/E+/oR08dao9ekJv1O0rrvs3D346iY6eRg30LOD/KLbB4/gxdqy8kBAWY3XTJqrwIm7rWYFqhCS1CzuVCN3VLhKafB4rtT5qIkuf1Ll0wi83pNaPBlfYypso/dzKaP1qIf7oKmSreMDPgRdslsajS4Wt9gvSy1u+gwPZOv7RHSHIvNZjsT6Co0D07Z41lw5t+ESpqgCBCI9Km0kJa0Vfj1hP0K21DjFHFAptvC1r4tUq6kBQ21YnbxM78j7doyXTKFY4zny/oYL8gt7GJ2dOy0UOcrPMpuOnmRFdQ1sFO7EHjL6wucaWL8V2kys99O3R/KGDxtVEzWNlafahKXQ4zyeoqUdaq1st1q5JkumUoXU0locKWu453kGj+lV2Vbhsxzb/GuXF3IOZST1EDrTJb9xlkhBr4i386X9THGnjzB4T3DWHZ+AxunTuf4kFFxvlzeREhdb/fYGHbuCUrXkIl02aPQF7mFr6XfNHmAIc9Fq2psRI3t7QwaKtS0wfUjVvMacwutX96HBgIljZuhsud4JgMBROskpEajp+Uxk9Dgfn2UPcz06ko1YdO5xXH5fMTUBHpNatKlRut/mPscqsJQGUaS9BtzX4VT42t8v/Yg3sKXT1BJdAL1y1QsbAMcb2T3JjS6eCO5wRinxxY9W65h7VcSVeaxmYNMzmNgqQo9dPA4D5uAu7GFLAIyizYSGiocZayTOzXoR8CTasL3eZjJuo/Z7GQBmziUOa+4wJIRlKhqMRsIZLj1xv4O+xQDX1XAMJSL/V3kBy1re0rvt8ro31yI99fbCCT0ayvddDBDd7FLZkf6rNzO06zAHLvNYDePWwP4yk1HFb9V5MmwgZczuGLxzsBXtO+B7KfqHvZLp93IhNogSs+16Vlmyi5O6/DCScLKomSmEGsTs2F7O7kWb/NTATBFU+NNbL+rmexkxskP+MeR9/oyCNrdzvxy/8MxmD8ivMn1cLqD48NH8fLsRTTCbBj2WeP44+Zk9s0nvPojMvDsKYGG1tgiC5nN9nyjlqXya9DC23ItiabMP7iHO0f8DNrh+xnI8/qQWM1dKHPHISyinbyTn9OuvSyQTajC4/w736nLfm8Huzv5sG8qjCmeT1Amn9oQfW8fNTWPbpvUpEuJ9r8BB02s72wuGd7SwYHEOo4LrOlYVtiduAXd36V7rqZmAMBxAY3Fgdp0NkqQQiqyGCc22HELDU4x0rOTEWCLLDC2RyH/rlbI3vNyuzq0TzrLfQ3BkbNQNhCekM/zxvEb6T8ZxPTLeQi0RiE/IVUspANSDExX9SNzGonWMUBbVQt4nnUheP9hP2NasaBORXi7fi21vtQegwZpzxB+yd1s1zmImByzGvPijvXNKTNBPyjfd2Vo+ZvJ+yzR131evbEe8udci8pe2CczMfAjZZGuZ5Qe4zI9CiFosNQnQ9jKQjrZ5cl+nm6mNIZFBhhXEeePyO8iCHSDFhosYBOndVS5T86zqZv9wQP+AU/5c8JGWcyPpn2BjZ3TaEitzJ8IkHK1vlk+Eo/IKcpfOM7st99LO09xL9vSOaxluZdTWCUhFWE0x5jRt9fmqU6ifSBmJ1gIFDSlRj131KpRZ4m+yd08wSzdzhzZzvW8irjvURVRZeKJY1x3/rU8g5GQ8oB+jyUj3y/L4SJQU6PXpCZdSrRnLaTmmEEx80lD93tLeu8gJ2ZTDNjFNHM5jolpOQJNiEuxeu0uuENP0S3DKTtFwKf1SdrpZT6bWMtyr8qreZP39Aoz94aLfkRjktj9e+nYL9R4lBZ2DepL2CiL2TxmIY1Qo/ObgI/8f8fBwq0DzD3X2D0HZAMs6l4dDa+PEzhsPPpiwC12VOy2G9M4uvZ/Xl3E/47Jx3n2/dbZvM9sso2Eia1XOJ+kWmOtLEeANawgqhULx5jXZoNDMgkCgDiBLg4zodAeATN0F+ddG82SRtSRW67RrJCDx1ONVBtslMXeceBAYHijLCIbJ0KDofQYxwENxsBAQO5CWrC8vZRxepg7eZJZupMdR6+nNjK1h5UxXmNjt0IOGTtissf2jgiCjjv1JiifTp9iRHLSxN8Ux9lqgM1kC+ep01ZMeFqMpRThabkXwcTrm6k7AsZSWqnzqfFP0n+8zR7tWjmXxlKkb2qCLt+vj9JDB8cYwwtyqx27CavOf5rRPae5bPQhVGFuuoXWWj/9WrNjQRFJmTptE/uZZkAm5BELhrWfj8rzo6amRq9JTbqUaMhoYx7srB3z2n/EnP4sACpc2/um/W0mrlKu2RDshOQ9F2TPCMoMBH7msJVa1ranCUppp5e7eYI5sp2bZE2+y09ocAXr6ZO2yno9rYIIClyhb9Om/U4bDp8DadUCrYnatG0lbUoMdPiVOr8Do/qcB2fBzOtXapmzgstv2LZtbzr7wAkLcdhNAFS10If1xABI+MxA4HCg9tzwKO7zNq+op2nOigCbWVgYs+fPVYBKT8sUc0xRFugGm19U88V6Brt5hRsH6KOj0XHbjGkxPT4aFsY646bEq9+XU1xGbqNHjbfkWt+zOeQh5IXgXXrvogzSjsgEfiwP8vKRW1nQ+h6fPfVkpFz2uMOzKyPb1hg9bAFV6skkIaWDqhAoyuWNHYgoJoZd+F1E+m3brjMICO7lsjHAUiWhj5rJuOM8O08381W+zdxkK+3tp5nNdh7QR+JzolevaU9U+XzvT1nBKu6RJ7iRNfmzSsKrg25g9YHP8+47t7Nnz5UkO0fw8LFHmX1+l9XsJaQYj+R/lju9un/FnUj7iXi/PmJqAr0mNelSorMferFGVWFkTRjveBLuOxfGZsp2wCmDiHjd5sAuO15TZrLdj68WLvDhNacekxWhwQhOcoc+VUyqjtaol3ZEYDUr+R5/mtvSpdR4mSLIaan+yKIkKOtlqe9RGz1iivQjuG7ynDbyI5YowItpVqoWaadcHgPNA4tCQ1orn/F4BfYyAzcci2a63SrweqHFNGirRoNYHuT82YE0TMAE7UJcftx3FoJk+/8Qehmm3ZTy31Zokdq1h2W6hvF6yPSrpJURnpeV/EruAiBRYwzfIx3F0XAgV49iAD/8bWU6TXdZX9UqIGKut+m5cv0eH0kB9Nz2Qq1dzsNA47gMXlQS+mnh+Ph2Zsx4h+PDh+EBZLe8AyYHubEeLY2RY9zH4yYosPNeG9aD2Cvv8LujNo+/TL7DXunEe28xzaJL0c2G5I4Q5rrVdGd9ss+cluHMUuOo0d5uQOgtsopP6lra9Bwj9QQTtKssx3wOUepDEnYwhyf1Xg7ItCJjjwip1PhgpjHzOHVyApfPWscNo5/jCy0/oIV6bp6yQDZxXv3N6xmGom5cxItIzaPbJjXpUqIZN6LUUG3k89mH/TdzsGZ30gI7RnXa32J3nkbToKqcJ5IvNC9XALvdzPLuVf6OAiejpXhebqOVfj6pa0tR7ffSyXO6ksfkT0vPHyaSqzajkhYjtV67UyqBhKHUOq9EvBQdoDtRu5jIQXoYanJhRrVWFTzFQKClhAbXNl7htdqNcRlWPVuSuS+rGiltnOesmzQ9pulx19OYJk8E0TrL9Tn6+wfxfuvlVqaRI/uYFsn+zh1YQju/qrGjymZdaO0xleixYfAOemUYL7Mcc/QZKSOBJytKj3awgE1+3tQYhUBqQJAqjh1oYLQfyKyT98terKX3HbQRlgnBeyUQj2gl1RydzmeTmTeqtKXe3xRe+g71BYCl4KdWdqRxs9MAdW3hJCPJ31usbyFPMfkDV/e9x+Xnj1BvnGH7iE42yGK8fN0BryKwXefwU/1Snue2j/+vvfOOjus6D/zvmxn0RhSCAEmQYAE7xQZKVKOq1UKJkkssx4nlyGWTbLakbCLFOVk5sdcbZ1NOzu5GcWxnnVixo9iOJFO2lEiUSDUWUOwFIAmSAEgQhUQHCGDmffvHuzN48+YNKepIBATc3zlz5s19993yvW/u+953Wzb4ZtLPpZFm5poZuHBWZvMcnyJKZGzogaeOBQWdrLzu32lrm08o5LbLi6SeJ9p/SP30EEs5TI00MJfTdHrath4pZv+l67k3RcLXHuvRs1gmElXXE175iaR2snm4iArHbawKCjpYluFO1hhrFH2NZTqvjudtOGiP0kADIejhZuLEvQi9FJHo5jFxap0dvERyV0b83M36hhs/0JPh+a1KmBhtUklCIEEeJBEgRAae8TBer1fCCyKckyr2yPXU+9b9S7rOXw4gcLC6z4s2ECrA390VaDAnydf3xp+41kFw2MCbXCI7NU6Kl8afru9Brw4ZxKjmFDszbzLb5aUxcpPSTuMNEl/3ddL1ybuOnJYFyRN4ruB1HMsjHBxv7ALjUYm6D1sa+Jx+x0ze8aTpTTeovOm8TMazNCan9MbTp/UZHtenmalNpKzb5v9f+l+evPqScj+89yCW/jpgg75JDQ006CJQCZ4g4zeo/LNngWUcYgubk3fe8WPK6nZcer3jQqvOZOx/4LsX3nsQ9J/3lG04ojyU9202d52mVndAikcYuqSUE7IIAY7rIr4hT1Ef7971y17d3oGV7I8LESXEW9zGKBk4EjavFt72J+oOPZEYBU42jhOm3lnEC/IIOQMzWXK6hCMsp0EX8YDzAsltsbAlvDFYftcY69GzWCYSzbvg8E+Asbbw1EgZ5REHMqF8xklmSw7J3pHLGRZjDbC/kc/RAYYkL/la77HfoAhonJUQc/UUR2U5UXVL8gs8z5xQU/Leu7jdW/fwcz4jzwCwhYdTnp3ePASH1bqHvbLehHsmjQQYUCP4Jqkk1VeSvRHxCRN+gynIu+WVsTeOb6/eLIaNV9HnkUnxvsXzcMjWIS7F70FS/u4173BL8kzVdEaKeq4PMATv1H+jmlPslg3uuoV+T57/ngd5vi6Tvvfa6XRQQA+NLDK1DCffP3+efgMvSOcCvWBCPv1sZCs1NKDqLqirPl3PYIRRMkgaE+HHL9uA+1ZElxl7l8r35Ve5Q17lm/rb/FA/yxZ5JLku/uPLvVwB8R0lFEEljGiUcm2nTSpIt8PEDrmFRc5Rngk9zohEuOzY23RlUuWILKcx7vH3xIvPRvWuiycos7XZ7a411yeWlfG/xPjxe3R93wdDaziuC3HmdrBbPg0BHmFVYbvexmFdQffgcqL5Ht0OkL0ivMjmgFULhJDGErt4KAoK9/NTFtIAAucHctnT8QV+VnEXDsKP57m9KQpk6Ci/LN9PkMpJAAAgAElEQVRNqeJguCwlbDywhp7FMpHwzro1bd6wFtIW7k5EyaePJO+I/2HhOa6glWUcZCv3+B50wpB/cWX/sZ+gh7sqrRLf51ESSxK4M22Tu1FHJIuX2ES5tvFv8YHLnnQSacc9hhqiSLpNd5y7Ov89+iI/l4fMwqWh4LqnKWdK/VK6oAK8PSnxAow4Y/C+K+sBvWw8vDNwNWT2/Q1IG9DEtmGkudd6ZeMFmOk0cats4xvyFCNESNIdr0w8YRk6wqhkBniAxupxk7OdfbKOQclPyraDGXTEu7A8MnD9JQ6Oxser+crtz8NvIPuNQlV6KWILj1BOG3fJKxT4/xvAKJnJebwXj6IqSWsNAkXaTa8Uod5Fd03cRqmhkRr2yxouaslYOoHppjFsPd7clexnve7g+/I4UVUzWCIKfu+9RwccFepkg1njMhx8j73lCCoTuItfe/8LJs4arQNgj9yQOBfTMGcSC3X70w94KUln7KYp43a5jTflDkb9emvuTwiH7XInMYkQynMIEQWN78McStUd8WwB58mv9vw+5pUfpVHmU5eon/IzNlPLbhZqAx2l+bxYendi+Rb1yHCUCC/zwJjczLl7hw4DmxhvbNetxTKRqL7VbUQYay+Kw02UxtwdItrbFtCnni5CbyPp/RgGyGMj27hZt4/FSzwkfBMi/F6dON7uFjdiUpG7KEmsbRUjwlGWB9dNQkTJ4HXucg0O/wzIeF7xsgDzOMWT+hSf1B/ypD7FOnazkGMEPkQ817kkdyFu4jnu5GXW6c6xCSSJ8z45eAkwhPznFHfgdtLyG4EPWr8nJ+AhF69PkEHgvzfe+En3aOy6cFQ5wooxA8Cbpj8Nw2h8VrS3DD5v2q7QTazWPWPx0hndpp638Sp/qH/EWt1Nkry9BoUXvwEQpJ/mmhfZTIMuoo8CIKAcxLcHjP8/rvxCM43kGZPNUh1cbs9xHTfQKAuSy+2VxZVQd6zdx/VZ7pJX+GX9LhV6lhgR4ykLgekaFhxuZjthYojGyCDKenYkd9n6y+H/7dcxIP1ac1DE2Atnkk6nM8ZJk5c/nl8HzD0SIEoElTCJNSAT+SqreZcYYXebMhE26lZu92yZlpR3wP3KiI6ysWEfmwe38BA/pki6k+I4CEdMe9aYOR8nqOzmuNXXg+Fu5zYxfGnW0LNYJhJtRxKNdLwtGdECzoXdPVj7eqdT2j7odhj4vR6Av7ukjyL+B0+NrS92uQe836CI4zMevQ+CMFFiEnabZHUX0T3AanJlMDgtIENGks8FGavmmp+r6/nbLP8KwNflq+6gd+/su0T5/OOiwszUJubrcR7Xp1mnuynTTjbxvGc8TZoFc711938HPaC8cdIZLoGGTCj5XJDHI91vf3d8GkOiPOM8c/ubzP7A0eD4AZ6dFPl6DS1xdyboE8/4TH9ZEzJzyGSUjWwDoCW+f2uQUeiXQVCaXkPNxG2TCr4hTzFILgnPj+9eunvgKut0J3M5NZaut16Jcim59Cdlr4SMweHThRQDwr+OIimyS6mXkVOIGA/o8xyV5byqd/N9eXysK9T7gmbGl73NLXyev+NT/IA/4CmqaEpOOyFLJ7WeSWmmwXsverLIcYZ84UJC3ibc3f06hqjbCZpU//ix39gMMD438Ry36LbE7NZMYhRoj6fcIVqY7ZnN7Q4jKdNOkv4b8fjefMz3rO5OSgZ66empoIElqDK24LO6Y4SX6mFUheKBnOS6etKp7L6QPGTAlO9s1DfxbJyYGOamxWJxOfo8QHxRDQBCjNCU4Rp6BYUdXFf+b7RoGS/KwyS2ZooTsE5YVMMc15qxaEndHwFeqiDvQ4BBU6ZtXJSysR0uzHXHZDkNLEmb1pDmUMF5sxCuJ06SB8jlnFTxdb7K5/Q77MK39ZrvrTqsztjWTObcOakiQhQUviFPESXiNuSCkXCauifJJMZiPZaYyWcySHYKBcnMb4gHeU981xRx0R0HFuR18afpf3B5y57IT1nFXlbn1/GkPsUbchtbuZuUvXCDvDH+tHx1FByamEPKYts+fVrCEWbRQjNz+Ed53HQfk5rXlY49YbkMMEi+p2whohrmjM5DxHENMr9+i4CGeFeuZzFHksubIm8hQ2NJ6uEuxKtjsgsyjv2y88vYi0/PCullo27lJdnk6qk4xnhIPzNaNcw+XcNv8WcAvMAjZkxk8jVzOc0Z/MsykXrf/DKLGzyqVJ3qZfuS2yCHYJ0QQdRhrdaxT9aZ/WzSvPT45ZTyn3NYp7upoYH/3PcXnMmfwxA5Y2MfDR06AxF1dwhRh3O9C9lQtBXXsE2Xp0OGM8poKJPTZZU0l5Rz84lC3pHPm/YjvvC3gLrjAEWU6IxzbrssgqiyyDlCu5RTru0UXhqhlbIUmTSWTozlVSadR09EnhKRsyKyz3weGO8yWSzvmaWbAX+7N9YYF007zwmp4SXZZELN+m3+WX6moRF1EJQe8Q0iV8XftZl0nM7b4jnXKeVjDxUvIokV4lPSAroodZfG8OM3QM21UTL4f/Ll1K3XfN1vMfEZEEC8u/glfoEoERwJEyPs6cYM8rIl1wXCnDATC8bqksYTEmTwxdNNZ7x5yNMBxrZYCrgX/rTMuXztT47r8bh8T77Id/mSJ0nfwr8p9fVcH2T4oZRpGw7hMb3yG68eBT7GMl7lHr7Ll92xVpebTZsod4DB4fkeJC/luggx1rPDrBWY5gEr7ozzTr3MIHmTZ5hRIoyCOkQY5QGeN6u7eeobZMCk0WNPhLEwjx70UsjP5CGiZrKM4zfG/XkYzlCdSM7dGSKWkm+vFpKQaUBdA/Px3O+cYddD7zgBe0sD8TU64xM2xrYpC1gKJkUeQXkKP5Ff5DiLWJ1fx23dbyS/UBpiEkFxDcwMjbEwGt85I42n3Bjxo6HMxPlYKERTRRkxCZmZt+GEd86REMdkmZHtATI0SshRwhrjRGgRXVJGfWgZdRXXBdZvT051cD2vMZPO0DP8paquNp+fjXdhLJb3TO3nYeUvJuwZEeiKzaEwVgC4i3Zu19sTDwNM50guA2NpGCPoZrbxKf0nquPdVJ4GMlf7qaUuJTypYfQaAt6Hkm/trKR8E/E8yzr4HiCzpIWsePdtory+PHxGnBO0q0HQumRpaJVZhIi5M+tUUxaDTet9MyQWPU7nuQp6gF7RiPJ1GwMRRhPd4OmM0Ao9R7F2JIX1h/Ld9PzGhbhdrFvlHr7GVznA6sA0U357DcGU+yMMk2YoQJBxZrxS8W2hArvLgZXsZSX7eFyfZo6eIoWke5TsuV2ih3lSn2KW05x8Tbp7lGR3+fTH/F4mh/mK/nduHdnGRt3KoOaSsiBz/LqAexsixmI9bIzFmCePAC+aqZPju+fumDi/t8tXL8/hImlglb6bkna3lJL0n/TXPZ3+m/vdn53HC6tvZXpfd7DMTHeyoyH6SZ6ck0S6vL31Mnke4jq+IU9xnEUMDU5jjnM6ML4QY4Xu5w/4I24ofo03uN0VSlC75v02eYVQ1jm7zdAGz31Sdx/bxc5RVKFGGnhCn+Lm1t0sv9AwttOLiNHt1LYu+HXu2mO7bi2Wicb1X0IP/gjBQRWimsmgMYz6+qZz8WIVxB0S4nYtLOUwe7gh0dBs0ud4lGcQYFBzOSk1SY35NLoo9A6sDsLfNQPcrNvIYpjtcgcxDbmTD8zsN7ehhzBKBec4S1XyA1DdJRoe5RnqdD1npSq14U/Ej4c5ZsmDgFmE/q6fIIMvcR426lZyBkfJOF7IQImwdc5NZu9Rs+h0ujSD8kwp72XOxfGlXabtdMqMpLgRMQPOgyaqGDplum+sknvJ0tbTNJeU05+dl2p4SIioZtAp5enL5P2dzrtjzvdJYWo9gzy/vnQq9SxA6rgz83D/ff0aAKdlHk1BXY3e8pjrRR1qLh0n43wuL2fdS2ymr+sywCNWqp10ynTwLrDtSzNXB1ENsSPzZmKE3XFnKOq/1ynyjLKSg3xcn6WGBl7jbv6eL7lmVjq5qiLqpBgGEUZIeuvzXweUaWfSqaQJBfHogfvbxo+TZxene5lxgKGsbJL008SNG8BKiOMsIUwUR0O4+9WGLyOrgP9vosxhoqoc0ZVUtw/QK7NgpibdWzHrQ36cZ1kkDTgiDA4W4Xf4puiC+Q4R4/P6d9xesJUVsT28Edrotm1OBFHlgbq3WDAzj/iykzVaT+bwy9S1beRA6WJ3GRYjo8zYCCPhrKRsC0OjqfUeByarofebIvI5oA74HVUN3HBORL4MfBlgzpw517B4FstlOP0GIdN4OEBF9kHaPQ3xvOYODpYsxgm5jW2EKJv0eVaxl13cSHXbeT42vIOM2GpCpRfILTSzDT0N5H28SJU2sV3uJKphApcqSbyhOszSc9zHi9xwpo92Z5ilhSfpKC2kQPro0wKWyWFw4EBsLSsj79Iic/gOv5bUeK/TnTwoz1NDg5nJ5uAuAxEl04kyEvI0kuYBtFL3Uy5tvMo9wR5E73eKJ8kEm43Pb3XeYKihmt7eGPTAmtJvcjp3DsvkMD/Vze6yEYm8AzwPnuOZ2sQ5meM7FyOMskwPcFBWJ4zVsAJOlFg4uav4OvaRy6BZT1CJEOV2fZUmqR7b3SGgqyumEcppoys+Jgh3/Nji9mYWtzXz3Opb8M6oFjPpRONe0XSGnCeffKeXWbTQLuV0SVmAQRgiaV3Dy90Xz/G9+iJZ7WG+VfF40npsANezwxwJtzjbeT10txvH97IQ1424VzZCjILmEC2tKyktHCJcqcSImUH67tCFOXrGbM2FuX9nEeCYd9xlwuBwiGiU6Rd6eX3kYWIzIzhGbpV6dsxIBSoGYyzujXExPMCRskIUiBDj4/osC/U4SoheCsaMZMeh5FIPF3M8uzWou1fvRt3q6oM8kpBXNWfopJz4cikhYlRxJmm83UxakuyljbKN1/HIzhiRrtE1RmKhYxjrJgaKtZMuKUnkGSeMw/yOc5wrLjEvSIkKjOmVefG8nVcoo5Olephm5vCCPMyw5jBIXsoQC3dbwijlej55txZ1xwZmnMijvzeXmksj7KyAkZBblxudN5gtLSyTw4l1FEMa4Z4m2LHE1yYYOYQ1yv3yUwY1l+hIHndk/ixhIC4/W8yNQ518YuQELwz3Utq8n1ltzVzsyGNGRQQNxVAN0dNdQUXvRTY3vs0LC9yXxQhRZg/20FhQnlS39Xl9TAQ+koaeiLwC3t2+E3wF+BvgT3Cb2T8B/hx4PCgdVf0W8C2A2traieJltUx1qm+FcCbERgiFM3n4d+6k9ydtNF7cAwoVvV384Z4mdlWU0llwkjsyXmbGSDcV/RlUnN9Jf2sVLa05tDDMwupFLLv7KJnhUUY0jGiI2zr3UDPYyrTiC/xB/lc5JksZJJcX5SHUPHzDqvzHtl1cGpnNstGTzMrfQlHHLYy0rmVf5rvkFbazqfgFQhIzvVGCaAYrj69mcMlxt+EFXjJrS93Hi9zJK8TnMCzlMJlmfbywOqxtbGTHwqVJD5YIUR7RHyHqsC10Z/LWVuowf7SVinAjJ50a2jIqPNc6LHGOMYuzVNNIH0Wsbw+z/vQj9PfN4GD4DE3hTrRhOg+ueo4QyoP6U/axnlhiNIu7Ttzq9gZ2Zq2naFobw2RzgkUs7z/CLw0+zxsF1/NGzvUU08Uq9tJPIUudQ9SEGjihi3lD7yCvYzWL99cz0naQnRtXsnvuDcQ0TMQYnouknlpnD3uO382sS3u4rvwQRPN5Ne9OzpRVkuLiAcJE+YzzA+qo5a3QLczQdtaeOElhj9vt9EB9PT9fvBRFCWmMu5rfpiO3jEOlNcQIEVJlIce4QBmZjLBW99Aqlbwr61Hz0PrCkZ0sP3ucV9aV8mzZpz3Gm+v9EY0RdmLcvX8n56tLaSvMY2aohUrOcYZ5FNJDL0WsN8bbLm5kTXcz5Scy6Bwo4tG2f6axYjat2bMgL8Rd4Ze5g1dQJ0xz/U1kZvdxV+RtXqm6ZWxSkgOIoigRdfjEodeIVRaQebGNglY3Vm17FNn7Jp0VuZTntDAYzmVmVyc5uT08XfZlokQIOw7rWjvIm/k6X+OPian7GBSNESbG8s4TLGjuZP6pcqpnzWZnBYyGYkSIcZ/zM74nXyQmISKO8vBrzzOno43SGat4uSJGx4xsVmXsYfmlMjJb76NT+qgqbSM0T1F1CKnDiuYzvLWwECcUIkSM23QrNzvbmdvTCzk9lGe3sZsNrGcHVTRxQNYwqm7n4GPO31ElTXxdvkpMw4RiDrUnjxF32AMs1AYe02/zvdCXUHX3N96oW6nWU/xD6IvENEyYKL/ifIdzvQvJuBTjpYo7TXiMe/u38pOChxk1CZZqJ3P1DLfvbWOgL8qywt3snnEdXZSwjEO8zIOMqrjvMPGXKt2WML5qaOBOXsFxQvzl8BPszV079sLU38+6gV0U9PQDyrM1lUSNAV/V3kjNxXqKe0eoXXYdJZnCLcOwq0uZPnCYhUX/TmT6scR/JP/8akrOPMCii/Np7avj27Xr0FCy5/EGfYtP8wxRhT3dIRaVm7UqJUz+sl9gWl0JM8/t4TdnjvJW51liQGvLEP0vb6Z47kWaR7Po652OIw4r332Hjw2VUlcxQm1rFqP9rfz2hukJz21Z92v8+oq7rtTaXxNEdfLaNyJSDWxR1RVXiltbW6t1dXUfepkslvdE8y538eTqW6HqegDq6uo4evQolRkFVHZmMDR8mu5TO+hZsob5a9Yz0t7KpZnZHD01RNZRh9JpA4SrlcbOV+mbls/5kVpKBhewNn82krmL421vsaqwlQVlSl94Ntv6c9iecStZWkVN3wmWndnGqp4FZJYNsnvhShZV3kD1oMOJgRMcP1nPvHIhL/MgsRPtaFEpWedrkK4ZnJp1nL65u8kJO4S4kcKefkL5R5G+GfQVd+LkDNAUK2BfqITzsSo+cXAHa09c4rnaX+elillouIeZ+Re5K5LB+rMNXGp8iX3TF7J9wY10xirI6s7gE+09bHZGObsqj3/NPsqhaBWtkdUUdXVxe9vbrGwvJms0jJbXU9g9g1hGCRQtJtwIGm3nzfy3ieXms3pBAdnOGbI717Ireh1vzYkRc1pZ3/0Oc091M61oDa/NnEaZPkd50Wn6+ospb6xkwfz76TmZRTj2fWJLOwkNXEdBbx4Dve/QMW0hebOLCdVXcaalguilM1QsDjNr+kVeCJdyOivC8gtZLBweoTz/beYv3cSMivmce2cLzYPTyKxZT78DvTNmsa33IsePdzOaOQTZF8iRIeb1vM4Dx6LMX3AbPdVD9NZnoydaGFk8l5qPbSbSEuaNd5o4UCDMkGE6Wg+Q29xD68x5dC3MZYb2kjuwjzkZ3UzvW8d8J5+hiqO8mBXhlBZTU9/MjLZB3lmeQf68aRRF7uXtgRAzuzvIGOpidlkp/aMxVpw4QHF7PY25hZxbXM4ijlNZcAzVHEoHbqI7dpHOmENEBynpXMxo4c3MfnADAM8dfYvM3r2Un8lkpOkS+UUNzJ/TzurbH2Mo8iDbf/oS57saOTdrPo2VlYS7Blhxppne2fNgdQ2fmjedjD0v0r1tL7GCxZzWAbpLK9g8upfBQ/s4kTWXUFsmvcVzaM7oJDx0kqrRDOpufoDCwRC1Z0/Tu7KB89MGOOKspDijl75QCYvbKlnYGmZ22zEqeg6Re9dn2ZO9gtejp5k/XAdNeXwru4CR2e1svFBPZfswA3Pu5sHbPkH4yA6OHT7OkuU1zJi2iubXjtLU38DJkpN0Zc+kPX8Rcy4OkNd9mtb8hcSKK1kcepeq7APMiG4gb6iKd/p3kTX9EhUlMYq1lUtDR6nTjezPmM3cMxeY15dJ4fwGuorzaRlZx9qdjdy8diU9SwdpOf883ZFCcnLLiQwvpz97Lge6zzFz9Agl4V7y8zex991hjhZcYGnWcUJOhP3hDpZeqmR0KEpjaQnLLgxRdmkVwxXvciAblg61sqzoHGdazjGtrYLpzhyaLo5SsOE8BbMuUtizhvr2uzm5tJL8aUXUNzezfOgoSwp20T/QS97gbPoK55Nf3Edffy7nBqaxlVUcLIiwVhzu4ijFdZeIXTxFzqK5tK5dylvRXu6fMZtluVDXVkftjFpWl69OaSKHz/TSfPL79OS8xUjvYiL/0kdZVhElty2h6Bc/yZu79/LGqRZeLyyhIZJFrQ7ye/wDp7WZaqli/ZIv01MYoatrJ8XFN1BUtDYp/XMNRzny5m6c7mzmcInspUvZ0dHJ8b53cApPsXnN/cxrXcTQu2fIWTuXoiUOz+zcxY9j5ZTn9/Jr64PL/UEiIntUtfaK8SaboScilaraao5/C7hBVR+90nXW0LNYLBaLxfJR4b0aeh/Jrtsr8E0RWY3r0D0N/IfxLY7FYrFYLBbL+DDpDD1V/ZXxLoPFYrFYLBbLRGDSdd2+X0SkAzjzIWdTBnR+yHl81LAyScbKIxUrk1SsTJKx8kjFyiSVySaTuao6/UqRrKF3DRGRuvfSnz6VsDJJxsojFSuTVKxMkrHySMXKJJWpKpPJujOGxWKxWCwWy5THGnoWi8VisVgskxRr6F1bvjXeBZiAWJkkY+WRipVJKlYmyVh5pGJlksqUlIkdo2exWCwWi8UySbEePYvFYrFYLJZJijX0LBaLxWKxWCYp1tC7RojIfSJSLyInROSJ8S7PB4mIVInIayJyVEQOi8h/MeElIvLvInLcfBebcBGRvzayOCAiaz1pPWbiHxeRxzzh60TkoLnmr0VErn1Nrw4RCYvIXhHZYn7PE5Gdpm7/LCKZJjzL/D5hzld70njShNeLyL2e8I+cPonINBH5kYgcM7pyo9UR+S3znzkkIj8Qkeyppici8l0RaReRQ56wD10v0uUx3qSRx5+Z/80BEflXEZnmOXdV9/796Nd4EyQTz7nfFREVkTLze9LryFWjqvbzIX+AMHASmA9kAvuBZeNdrg+wfpXAWnNcADQAy4BvAk+Y8CeAPzXHDwA/BwTYAOw04SVAo/kuNsfF5twu4EZzzc+B+8e73u9BLr8N/BOwxfx+FnjUHD8N/Lo5/g3gaXP8KPDP5niZ0ZUsYJ7RofBHVZ+A7wFfNMeZwLSprCPALOAUkOPRj89PNT0BNgJrgUOesA9dL9LlMd6fNPK4B4iY4z/1yOOq7/3V6tdE+ATJxIRXAS/jbnZQNlV05KrlN94FmAofo0Ave34/CTw53uX6EOv7PPAxoB6oNGGVQL05/lvgM5749eb8Z4C/9YT/rQmrBI55wpPiTcQPMBt4FbgT2GIakE5PY53QCdNQ3WiOIyae+PUkHu+jqE9AIa5RI77wqawjs4Bm8+CJGD25dyrqCVBNsmHzoetFujwmwscvD9+5R4Bngu7ple79+2mHxlsWl5MJ8CNgFe6+9nFDb0royNV8bNfttSHeoMdpMWGTDuPuXwPsBGaoaiuA+S430dLJ43LhLQHhE5m/An4PcMzvUqBbVaPmt7cOiXqb8z0m/tXKaSIzH+gA/l7c7uxvi0geU1hHVPUs8L+AJqAV977vYWrrSZxroRfp8pjoPI7rdYKrl8f7aYcmJCLyEHBWVff7Tlkd8WENvWtD0FihSbeujYjkAz8G/quq9l4uakCYvo/wCYmIbALaVXWPNzggql7h3KSQhyGC2/XyN6q6BhjA7QpJx6SXiRnvsxm3y20mkAfcHxB1KunJlZjSMhCRrwBR4Jl4UEC09yuPj4ysRCQX+ArwR0GnA8KmjI4EYQ29a0ML7liCOLOBc+NUlg8FEcnANfKeUdWfmOA2Eak05yuBdhOeTh6XC58dED5RuRl4SEROAz/E7b79K2CaiERMHG8dEvU254uAi1y9nCYyLUCLqu40v3+Ea/hNVR0BuBs4paodqjoK/AS4iamtJ3GuhV6ky2NCYiYPbAI+q6YvkauXRydXr18TkQW4L0j7TTs7G3hXRCqYwjqSDmvoXRt2AzVmtlMm7kDXF8a5TB8YZobSd4CjqvoXnlMvAI+Z48dwx+7Fwz9nZkdtAHqMW/xl4B4RKTbejntwx4+0An0issHk9TlPWhMOVX1SVWerajXuvd6qqp8FXgM+aaL55RGX0ydNfDXhj5rZcPOAGtxBwx85fVLV80CziCw2QXcBR5iiOmJoAjaISK4pc1wmU1ZPPFwLvUiXx4RDRO4Dfh94SFUHPaeu6t4bfbla/ZpwqOpBVS1X1WrTzrbgTgg8zxTVkcsy3oMEp8oHdyZQA+5MqK+Md3k+4LrdguvqPgDsM58HcMd3vAocN98lJr4A/8fI4iBQ60nrceCE+fyqJ7wWOGSu+d9MoEHCV5DN7YzNup2P2wifAP4FyDLh2eb3CXN+vuf6r5g61+OZRfpR1CdgNVBn9OQ53JlvU1pHgK8Cx0y5/xF39uSU0hPgB7hjFEdxH9hfuBZ6kS6P8f6kkccJ3PFl8fb16fd779+Pfo33J0gmvvOnGZuMMel15Go/dgs0i8VisVgslkmK7bq1WCwWi8VimaRYQ89isVgsFotlkmINPYvFYrFYLJZJijX0LBaLxWKxWCYp1tCzWCwWi8VimaRYQ89isViuEhGZJiK/YY5nisiPxrtMFovFEoRdXsVisViuErOn8xZVXTHORbFYLJbLErlyFIvFYrH4+J/AAhHZh7uY6lJVXSEinwceBsLACuDPgUzgV4Bh4AFVvSgiC3AXdZ0ODAJfUtVj174aFotlsmO7bi0Wi+XqeQI4qaqrgf/mO7cC+CXgeuDrwKCqrgHewd1eCeBbwH9S1XXA7wL/95qU2mKxTDmsR89isVg+WF5T1T7c/TN7gJ+a8IPAdSKSD9wE/Iu7tSbgbn1msVgsHzjW0LNYLJYPlmHPseP57eC2uSGg23gDLRaL5UPFdt1aLBbL1dMHFLyfC1W1FzglIp8CEJdVH2ThLBaLJY419CwWi+UqUdULwFsicgj4s/eRxGeBL4jIfuAwsKxzJekAAABpSURBVPmDLJ/FYrHEscurWCwWi8VisUxSrEfPYrFYLBaLZZJiDT2LxWKxWCyWSYo19CwWi8VisVgmKdbQs1gsFovFYpmkWEPPYrFYLBaLZZJiDT2LxWKxWCyWSYo19CwWi8VisVgmKf8fH9ahCHTdShcAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl0HOd95vvvW92NfSdAEOAGbuAqiqIoUrsUybIl2bG83Ywd27GT3Kt7k8wkuZmTjJ34Js7MZLLM3Ikn187EPrGTzInXyLtkR5a1WpZICRQpkuK+LyCJldi37n7vH90NFopV1Q0SQFPN53MODqqrq976VXcT9fB9q6uMtRYRERERyQ8n3wWIiIiI3MgUxkRERETySGFMREREJI8UxkRERETySGFMREREJI8UxkRERETySGFMREREJI8UxkRERETySGFMREREJI+i+S5gOurr621LS0u+yxCRObRz584ua21DvusQEZktb6sw1tLSQltbW77LEJE5ZIw5le8aRERmk4YpRURERPJIYUxEREQkjxTGRERERPJIYUxEREQkj2Y9jBljvmKM6TDG7HPNqzPGPGOMOZL+XTvbdYiIiIhcj+bi25T/CHwe+F+ueZ8CnrXW/oUx5lPpx/9hJjf61zv+gqd7FjBAPXfFn4PYGG9Et7J58AAVE/P4eUkL7y0Z47ce+thMblZERERkWmY9jFlrXzLGtHhmPwbcn57+J+AFZjCM/fWOv+Avh94JxQaAY8Ufn3xuX9XGyek3AZ75ZwUyERERyZt8nTPWaK09D5D+PT9oQWPM48aYNmNMW2dnZ06N/+3AHYABk/653NgV018dK59+9SIiIiIz5Lo/gd9a+yVr7RZr7ZaGhtwuwj1gKq6c6Q5iLmNO7FrKExEREbkm+QpjF40xTQDp3x0z2XhlfCg1Ye2VT3pC2XiieCY3LSIiIjIt+QpjPwA+kZ7+BPD9mWx8YeJiasKvN8wT0CLJ+ExuWkRERGRa5uLSFl8HXgVWG2POGmN+HfgL4CFjzBHgofTjmdumM5aayAQv77lirsfDJSUzuWkRERGRaZmLb1N+JOCpB2drmxeizamJTOiyNjXt7hVLPzcQqZytMkRERESyuu5P4L8akXhy6oxMKDNXfsPSBpzYLyIiIjIXCjKMjUciV870O5kfiNqJWa5GREREJFhBhrF+xzP0mBmm9BGxiTmoSERERMRfQYax0N2ydkovWXxO7gglIiIi4q9Aw5j/kCRwRQ9ZERqmFBERkfwpyDBmwsKY59yxUUeXthAREZH8KcgxOkNI35inZ8yib1OKiIhI/hRkz5hjk+ELuHrHdAK/iIiI5FNBhjHr7ewKuOArQNIU5EsgIiIibxMFmkSy3CA84JpjIiIiInOtIMNY0nsqXCZ8eS5rARBL6tuUIiIikj8FGcZs0On77lshpUNZbbx7jqoSERERuVJBhrFQmZ6xdCjrjdXnsRgRERG50RVoGMuyW67zx4y+TSkiIiJ5VJBhLPSir57rjNXRM8vViIiIiAQryDBWlhyaOsN7k3DXifxLEqfmqCoRERGRKxVkGKtgcOoMv0tZpAPaSbN8DioSERER8VeQYeySU3P5gbVX9oy5HsedgrwjlIiIiLxNFGQYm6Do8oPM1ffd1xpzKWdgDisTERERmaogw1gy7Obfnl6yS6ZulqsRERERCVaQYWw6t0MatSVzUI+IiIiIv4IMYxGbDF/AFcyK7dgsVyMiIiISrCDDWNgJ+14Nyc5ZLkZEREQkWEGGsXXJfamJgJP23Y8bRy/OUVUiIiIiVyrIMLaEE9kXSgeyCts7y9WIiIiIBCvIMPa0eTQ1EXDSvvu5XVVb56gqERERkSsVZBhLmNjlB5kQ5g5mrunBZMUcVSUiIiJypbyGMWPM/22MecsYs88Y83VjzIxcZyKanHBvZOqT7gvAAs1jF2ZikyIiIiJXJW9hzBizEPhtYIu1dgMQAT48E21XMhT8ZCacpQPZ3ebFmdikiIiIyFXJ9zBlFCg1xkSBMqB9Jhp1mJg6w3vumDGT856NPDATmxQRERG5KnkLY9bac8B/A04D54E+a+1PvMsZYx43xrQZY9o6O3O7Jlif90bh7t+Ze1WmdUcbrm4HRERERGZAPocpa4HHgGVAM1BujPmYdzlr7ZestVustVsaGnILTnGifhuc+o3K9PTajqPTL15ERERkhuRzmPIdwAlrbae1dgL4DnDnjG/F+y3KzDBl2ryzIzO+SREREZFc5TOMnQZuN8aUGWMM8CBwYCYavuI24d6hSlcg27tyxUxsUkREROSq5POcsR3AE8AbwN50LV+aibYdn+FI4PKJ+66esabRjpnYpIiIiMhV8Tm5au5Ya/8E+JOZbrfIjDOa2TW/m4S7Alqdo3tTioiISP7k+9IWs2LCnTE9F3mdlA5pR2uWz1FVIiIiIlcqyDA2Zaf8esZc8+qc3C6XISIiIjIbCjKMLU6eTE1470uZ6SVz9ZbFxuNzX6CIiIhIWkGGsX6nOjXhufXR5DzXSfwHS9bNcXUiIiIilxVkGOulduqMTCjzCWfjNq/fYRAREZEbXEGGscQ0AlbE+JzcLyIiIjJHCjKM+fL7RiUwD53ALyIiIvlTkGEsZieunOkeonR9m7LE6nZIIiIikj8FGcaMd+jR2yvmetxj6uegIhERERF/BRnGKhm4/MAbxDy3Q4rZ8TmqSkRERORKBRnG3pv8fmoi4Dwx93XGRhJlc1SViIiIyJUKMoxhfK4rBldebwzoi1XPYWEiIiIiUxVkGPuheV9qwnsrJO/1xgAT1HsmIiIiMgcKMoz1Uzl1RiZweX8DpWZ0jqoSERERuVJBhrESAi5X4e4ZSweyksTwHFUlIiIicqWCDGOl3jDmHq7MnLyfOWfM8dw6SURERGQOFVwY6+t7gy7vtcPcw5OeS1vMG++dw+pEREREpiq4MNbbu4MknntT+py4nwlon9z1rTmqTERERORKBRfGamu3UcZg+EKTJ/BbemsaZ70mERERkSAFF8aqqzezIbE39cB92QrvNcaMAQxPrdw2p/WJiIiIuBVcGAM4E1mSmnAPS3qvOZbWFZ0/BxWJiIiI+CvIMHbJ1oQv4Oola4yfn+VqRERERIIVZBhLEMu+UDqQLU6em+VqRERERIIVZBizJuBcscxj1+UtDkTWzmFlIiIiIlMVZBiLu3vGXFfb93tcnuyfw8pEREREpirIMBYhMXVG0A3DgXrbOQcViYiIiPgryDBWa7umzvAbqkzrRNcZExERkfzJaxgzxtQYY54wxhw0xhwwxtxxrW329b1BhfHc/DvgshYAQ7GKa92kiIiIyFXLd8/Y/wD+1Vq7BrgZOHCtDZ4+9iLr2Jd6kLkpuJfrvLHb4y9f6yZFRERErlo0+yKzwxhTBdwLfBLAWjsOjF9ruwNdMc5HmjMbSf3OfIPSx/hYybVuUkREROSq5bNnbDnQCfyDMWaXMebvjTHl3oWMMY8bY9qMMW2dndlPtq+sn+A8zZdnZIJYpocs01uWDme7orodkoiIiORPPsNYFNgM/E9r7S3AEPAp70LW2i9Za7dYa7c0NDRkbXR+oomEe7cyPWKZQJa5xlg6nLUM6qKvIiIikj/5DGNngbPW2h3px0+QCmfXJPJGP8NUhi802TOWZEnxwWvdpIiIiMhVy1sYs9ZeAM4YY1anZz0I7L/Wdsu23kZNssf/Sfd5Y9YSJUHjuS7/ZUVERETmQN5O4E/7d8BXjTFFwHHgV6+1wf7q5ZR1B2Q6zzDlzfYNVpy95u8MiIiIiFy1vIYxa+1uYMtMtrnvh3sZ2BAwTOn+diXwptnMo8uOzOTmRURERKYl39cZm3ETHZ0MJ8suz/C7zhiAMcSJsjvWNDeFiYiIiPjI9zDljIvfs5hLEZ9vU2ZCmefblMsjb81xhSIiIiKXFVzP2Im1i1MTfjcHz4SwTBCzR1gTOT7HFYqIiIhcVnBh7M6aCsBzGyT3dCaUpR4QcWJzWZ6IiIjIFAUXxrZUlzM/eTF4AVcwq6WHopHaOahKRERExF/BhTGAqIlPneEdsrQWQ4L38H3Ku5fMXWEiIiIiHgUZxiqTQ/5PuHrFLBF2chvJ4r45qkpERETkSgUZxsoYnDrDc3PwzO+nzPtoq7zi3uQiIiIic6Ygw1iN8dwOyf1NStdvCxybNy8vNYqIiIhAgYaxMjucmvBe8NVzb0owVPSoZ0xERETyZ1oXfTXG/Fvgq9ba3lmqZ0a8YdJ3WPKeuJ/huhDsq02L2Pb096gc7+Md5/aysfgYo8kRBgaa+MTv/sPcFCwiIiI3rOn2jC0AXjfGfMsY87AxQWknf/7fv/lPnHey3OLIdeHXI7FWTsWWsq98I59r/WW+vOQ+XmjZwNCGDv7pc9d833IRERGRUNPqGbPWfsYY8/8A7wR+Ffi8MeZbwJettcdmo8DpOjS/EnCCe8XcJ/J7H1v4ubkPgKiZ4Pfmq2dMREREZte0zxmz1lrgQvonDtQCTxhj/mqGa7sqyzoGMN4r8Lv53SbJO20McWK8VrN+dooUERERSZtWGDPG/LYxZifwV8DPgZustb8B3Ap8cBbqm7amsSgtiaOpB0G3RAri6TU7H6uf4epEREREpprWMCVQD3zAWnvKPdNamzTGvGfmyrp6dc3z6DUNqQdhp7R571eZ+e0KZANG37QUERGR2TXdc8b+OOS5A9dezrWrXbKW6MhweJ9fJohlwldm3pSbiEOiMK/8ISIiIteRgksbZqSTpPHslvekfXfo8v52GTfFs1SliIiISErBhbEj3SfoidRNnem6rtgk77S7hyw9vTpxcBYrFRERESnAMHZ8ye2AuTKAeXvHMryhzNVrFhm/7i6jJiIiIgWm4MLY2rIODMkrbw4OV36j0h2+POeLAfSMLZ6DikVERORGVnBhbPjM97h5YnfqQeYEfb/hSW8vmc+lL8ZLkrNUpYiIiEhKwYWxsupt7IluSj1w94z59X75TbtCWbI4PsvVioiIyI1uutcZu+7tmSgn6TjBoStMJrylA9n8eMcsVCgiIiJyWcH1jBUVXbp8zliG+yR+7zz3tOcyF5eSugK/iIiIzK6CC2MfWHMft8R3T53pdy0x97Ck9yT/dDircbpnsVIRERGRAgxjm+Zv4qGRn4DfzcKDesO8t0ZKh7PO2LzZLVZERERueHkPY8aYiDFmlzHmyZlq82xkEeBznli2k/c9qhL9M1WSiIiIiK+8hzHgd4AZva/lG8621ITf5Sv8zh8LeK5+XMOUIiIiMrvyGsaMMYuAdwN/P1Ntth8+wO12e+qBN3D53ZPSy3UO2f7SdTNVloiIiIivfPeMfQ74AyDw6qrGmMeNMW3GmLbOzs6sDZ55ay/3mWdYYo/nXoXnNkgZ4xTl3oaIiIjIVchbGDPGvAfosNbuDFvOWvsla+0Wa+2WhoaGrO0uXn8T8XgRZYxMpxjf6eLEaO5tiIiIiFyFfPaM3QW81xhzEvgG8IAx5p+vtdHm1rXsHbibg2bN5Zk+tzq64jZJPkZMxbWWIyIiIhIqb2HMWvtpa+0ia20L8GHgOWvtx2ai7V0VG4BI+PlhmWHJkFBWzNhMlCMiIiISKN/njM2K3kj55Qfub0gGXWcs4KbhNyc8F48VERERmWHXxb0prbUvAC/MRFs7T/WSDLrGWCaQuXvFgnrNrGUoqWFKERERmV0F1zO2/Xg386Keb116Q1iG9+r7HucjC2apShEREZGUggtjayM93DW0HTI3C88EsKDrimX4hLJep2Z2ihQRERFJuy6GKWdSefdJYkTwvR2Sm/felD5hbYLimS9QRERExKXgwlhpZSUHk0tTD7L1hkHweWOAkwi/9IWIiIjItSq4MHb0TAflCy8Bnh4v7zT4P+cyEi3m977zx5yvrKR3vImJ0RqqnA5WnzjKfeONPPKp35n9HRIREZGCVnBh7FxJM32JeohaMOlT4rxhyxu8AkLZmFPC12ren3pQmv5hITs2baTrwjPwF/9DgUxERESuScGdwH/nnVsoGh9nsmfMr0csiDewuS8a6/pJEuGpBQ/xXFn2e2WKiIiIhCm4MHbr0lrORhelHvidCxYUyIKuxO93QVhjsERoW7bu2ooVERGRG17BDVOOnepn0FRdnpHlvLCcl/OeZwb0Mu8aqxUREZEbXcH1jI0d76PXmX95hk+IuuI5t6DA5h62TK+3pfPoNVQqIiIiUoBhrHh5Nd2m+vKMsPPFwm4Unu38MmCsPOsiIiIiIqEKL4wtraJkdOzyDL+bg7sDWC5X5/eun15+R/X6a6xWREREbnQFF8YA5o9MXDnTe3Nw730p3UEts7y3d8wT2hoS+jaliIiIXJuCC2Njp/opInblE97LXLjnu4Vdj2xKYLP8m56fXnO9IiIicmMrvDB2vI+68eSVT3iHI909ZJnn3bw9ZT7L9I1UzkDFIiIiciMruDBWvLyaree7MST8hyEzvMHMbxm/x5O9a4aXF22csbpFRETkxlR4YWxpFWUlPdjMrvn1fGU5F2xynvdyFp7etY5Y3QxWLiIiIjeiggtjAN9ZUQGY4EtX+J2cn5kPV/aoBVwIdr5O4BcREZFrVHBX4Ae4EHNdGT+Xy1Zkwpb3ArHeEOZZbsOoLvoqIiIi16Ygw1hj/wQXMnnMe6kK97Cl32Us/L5N6b3ZuDFgk/yg8p2c+dYXORNfyEBVOZWmn4aBCbb1RPmj33zfrO6jiIiIFIaCC2Njp/p57NgEe+clSFqHyeFKCO3lumJIM6h3bHIdw4Cp4qX6rZNPdVHDiVJom5+Ev/2eApmIiIhkVXDnjI0d7+Ni43YMqcAUKOyk/aDl3KHOe1kM108Sh2cac7yqv4iIiNzQCq5nrHh5NR1jMZJEgnu33POCQpmXuyct7MKx6edGKrLf21JERESk4HrGipdWsTa5HydznbGga4d5vzmZ7R6WGX49Z+6f9PIVTt8M7I2IiIgUuoILYwBLx0+zyh5KPfDeh9IbwvzOJ/Pew9JvPTefnrF2Z9EM7ImIiIgUuoIMY0edlRwya6bODDsXzK9XLGyo0svnumW1E73TqFhERERuVHkLY8aYxcaY540xB4wxbxljfmem2j5o1qauwB92y6Oge04GXZfMfc5Y0AVjXc9VDI9ewx6IiIjIjSKfJ/DHgX9vrX3DGFMJ7DTGPGOt3X/NDRenL2kR1JPl5ndhV5g6VBlys/CgS1+cK2+6pn0QERGRG0Pewpi19jxwPj09YIw5ACwErjmMHWBDaiLoPDD3c37Dl2HnkwVdd8xzbtpAtIwtz3yPEVPGiC0hYWJUMsgvDv8UikZ4OvYg45TQMtTP7b2XeKUxysnIIkYpZcLEcEiydPwC1RMDHC1bRFlijAZznu5INZdMPVUTAzTQgbWWDtPI+cgCcBwixFky0kHLYIL7I0+zJPYaI8PlbO99gEMLllJcMoAZjHG+ZD7FpQOcjSykMjnIqolzLEweY2/xGk7RgsFQTxdDyUqGImVsGX2Dgb563qppZcnYCLcntnOktJb+aBk1Tg9LEic5nmilh1pisTG6nXkMmQpax48QjRsmhuvY1n2WebVn+HrtXZyINuOYJOtHDjFuSmgvqceYJEvtKTYOnOSIs4SOkjoGo6U02fM8MPQcq8whfl5yO89EHmGcYsqTY0TGStmaeJ4HzNO8YN/Fz4ruIhlNkCBKsbXEjUPRaILq4QFWxQ5wPrqYs04zQ9EiEkQYixRRneinOd5HddFFTrCEE5GlOCRYFj/JrT3bideV0DpyjguJlbxetZzq0QnaYw1EGGXUlHDJqaIx2cHtfW+xp3QVnSU1zI938O7kk7T0DvOT2N28UraFkrEYtdE+kmXdGJJYC7VOL3fFX2FipILtJdsYiJZywLQy4lQQS05QMTpG/XgXt4weYGC8mfqy84zU9lNpBhhIVjNiSjhg1jNAGROmmDXjRygyo3THG6hMjLJwsJs9DUvoitazYOI8I5FSEkSYsMXMGxni3X1t7K+dz8/LNjI/2cmHxr7LicQKfhJ5iJFoMUXOKCXJESLWssHsYcSU0TXRSGWyn1uHd3LeWcQLtXcyboq5Y/RlNsV3sS9+GzXjSY47yxmbKOHB08M81hmjqDTKcPQSxY0HWfHY+2Hx5Wv0iYjcyIz1G3Kb6yKMaQFeAjZYa/uDltuyZYtta2vL2t6DT36Nt8rWZu/FCuJ33ljYpS2C1s8zQ4Ia28sizvCW2Zi63EdeJUiNjF/NNdgs1baHPjPP99lme5p2s+RaigvdNiRh2q+fpdwOMGSqQpcyJEh9YnJtP3MNvSTXfqZBwrPd6bTpt6xN/1ye71jL+3e9wgO9ZWyLrwSTYF7RH1H6f3wup0BmjNlprd2SY1EiIm87eb/OmDGmAvg28Lt+QcwY8zjwOMCSJbkdbDcmd/MWa7MHqFxulZRZLqgnLXjH/OeHBb2g5XPd5hWrRug19fRSP3WbQa9Ltjr82si27pRbSUWmthG0nu88Lgcxn+Ung1jYa3W1w9bGAev5bOTyBQ/L5SAWsl3r97oEtT1ZjwUTyf4++N3Ka0q7nm1bJ7iWK9r2LJu+M8Xl+lLzk8CBBc00DOwBDNviK+if+Cilb35dvWMiIuT525TGmBipIPZVa+13/Jax1n7JWrvFWruloaEhp3ZfKLo/s4HgIBV06YrLxV057Xfyv7s9v3W9gi40623L776ZQT1uuVxPzf0Fg6A2gy7fEXbfTr/HQa+P375nC3/ZhoyDnvOrJWxbYd+i9a7v8+3ZwC91eC+t4l0+7CLC3tqDzm/0bjPsPc3lm8PZPh/e/XPvR8C6manDkXMAxG2La66IyI0tn9+mNMCXgQPW2v8+k213RevdG5p6cPCGnLBvWXpDTi6BIIjfQdDbbtC8oC8TuJ8PO1D6ndfmDgpBdYa1H8RbZ1BQCvpWqnt77raC6vKbDqstSFB9Qa9PtmDibiOsdu/vsN477/5O5z1xr+feh6BwHNQDGPQ5DmonvUxxfAKAMRPnotOHJQnF1bnVLyJS4PLZM3YX8HHgAWPM7vTPozPRcM2o5+r3YQe3bAfFbAe8bL0tQb1KfgfqbGEh2zBbtoCTbRveOrMtG7Z+Lq9bULh0LxMWHLz8gvV0Q457/VyWDavF7z0Pq9W7nF8Q9U77BcCgoJhr7X41+9UU9JlyfwbS0+dqGsicKnje6cUQh0M/nl49IiIFKp/fpnwZrupM7qw2dx7k6aV3+x8wvGHD70DsDQrTPYhlC01BbQb1vIUFMb9hWO+B069nLJfawoJZWMjxG04L2ods4TKXeoPqDqoxW7vZeiq9bfq9xmHreWsMC41h/zmYbs9g2LLZesGu5d8DkDAGLBgMC5K1GEYgrmvxiYhAgV6Bf6QpkZoIOqi554UNGXoP4GE9T+7l/KZnep2MoOAQFuBy6XHx/vj0duQUxNw1BvUOZds3v94f7+/pDAP7hbbp9hz5fU5y7Q0MCoLZhqL9lg/b11w+q0H/SfGbF9az6G7Lp65o+nFVopTGZDWGBFQvDK9PROQGUZBhLBodnzoj7PyfbENUQb0t7nbd6wUFIb/AEDSE6ZVLT5u39mzr+AUU7z54w0O2A33Y63kNvSqBbXvDlPt9DgpuYe3nUl9QKJ9O8A7qCQsKrd5teN+noO1PpxfU2673+Wy1BfXapZdtvtQJQF9kmItOHwmqoLQuvDYRkRtEQYaxovhYasJ7cMkWVvx6Jrw9aW7ZeqDCtuXXnnt77oN2rj1KYaEuqHfJr71sPU2Z9nLZRlivUbbgNp1hxGw1Bb2GQSE7yHR60fx6irINY4bNz9bbOZ16sm0z22vgXs77nxKfIc3xWIzMSQkXnF4chmBE928VEYECDWMHnPWpCe9BL+iA5T5weA92uQ4PeWU7YGbrAfM7aHvrzIVfT19QEAnaRi6vXdC2stUTJqSnZcp0LsN60xnOC1t3Oq97tqAeFILDQmlYT9h0Q6zffl5ND6bffxg86w/FislcyWJBspbK6BMw3J37NkREClhBhrEiM+7/RFBPjd+QUTbZgoL78XR7HMIOpkEHy6CAGBQKs/Uu5fpaBA1p+QWK6QQxt+n2kPmtm0tvVi49okHvUVAYydablct7FtSDG7ReUIj3q9vbZrbeSu90WGh3LTdQXAZA1DosGJugIvo0lGmYUkQECjSMDVPq/0S2g/F0gljQkFe2Xoxcgtl0eyyy9WZcTQiaTnDxPg7qocl2oHcHl6DXMSzUTHc/g3oIcx0Szjbs7V7W3ZbfMG5muaDAnWuvVdBrn1l/OsOimfnu9XL53PvUOVyc+jcZN0kuFMe4NPEJGBsI3g8RkRtIQYaxi2ZB8JNhPQO5LJcRNOSY7SAdMpST07aCng9bJpeDd67Cgqf7gO/XMxQ0BOw3POrtXcvWU+c3VOa3TlCvjl9b7hqzhI2chL1m3uUy2/Fuy1tH0LpB+5btOb9hUm8YDnovQ2otGxshc87Y3sgpRpN3aphSRCStIMPYtHuI/Hpjgky3B2g6B+yg84CmO9SXy4HWb7lcAmnQkJ3fMJc30FxtYMw8n+vQZ1hYCup1C+LXVtgQYbaw7/caBfV2uoNPtjrCet0y7QT1unn3I+j9ytZDmXnOZxsLBi+frD9sxoiZg3DTL/m3ISJygynIMNY4djE1ERYmgg5a2fj1BoQdFHPZvl/b3vl+B1SvoF6rsPrDDtBhw39BvSfu53MZ7ssWIry//UKGt+Zs70dQ+PEznWXdNXqXDWsn81qFhW33fgW9Vrl8lrOFRm9tYW3kUqe1REjQevEM7hP4MXF46E/DaxARuUEUZBiLZc7fDwoX3nkZQT0QXn4Hw6D2/Np21+IXeLL1PPj1Enm3HXbQDRsW8woa5vMGIr82cw230wnEfmEnqPcwW7u5BOGwdfy2527Lvf2w19YvbLs/F0G9eWGfvbD9yOU/EEGBPuy1D1indeIgC/p7J4cp+80wCVvrX5uIyA2oIMNYpU3fmzJoOMvvAAdXHyDClgtr23tQDTuwu+cFbcNvOb9gMJ1eE796svU45tIb5Xfg91sv2z77Dftl1vOrNSxwuMNPEL/t5RKOggK0tzbv9r09X7kK23/v+5xruPPj17uRf+ygAAAgAElEQVTq2Y8DsfXsX7B0cpU+M0w8WZ/7voiIFLiCDGMnKxalJoKGs/zCVNgQkdt0es7c7WbrbfEe1P3Ci7fnJJdtZ+QSBvy4e2zc83LdD+/zYSHTb71ch9WyBd+g2v3WC+v98goK/H7rBn3ugmrzLhMUeP0+Y9MJWGGB1e+xu62w51y/DzRdDmPVtgxLPTzzJ/7riojcYAoyjI2ZsuwLBfUOhPUKuZdzLxPUw5br8FsuQSfXgOIXhrL1gAQNW+YqKCzk2vOYa49kthpy6TnMJWgEBZigZb0h1Pt82Pvr7RUMaiOXNr1tefn1Dge1n1km1yFTd/s+IS2JIXPOWIQIDhOw51v+dYqI3GAKMoxVuIcpvb0I2Q60fkMuufYEudvxLhO0vt86Qa42NOXai+edHxSqcqnD/bpk20ZQTe7th73G3u2FtZdL0PKbzjVMh9UYND+ohlyHCb2//XpBg4Y/s7XtFza9YSts6DNtpKiEzDlj7U4PMecQ1LVkr0FE5AZQkGHsklOdmvAOseUyrJLrQSuXg2Uuz/u1EzbUGGQ6Q4/eGtzrhw115TpEm2vPUlhvkjsAXEuY9Ks3aFgvKJB798Pbfq68vUze+d5t5Tpc6MevZzaX9YNqy2W9kPcq4ZodtQ6V0e/AO/40e7siIjeAggxj1m+3/A4yfvO9z/tuIOAA5T3YXm1g8zso59JzE7aPudYQFKTcptuj520rrNct23b9wnIuAds7393rk0vw8mt7ur1l3t6rsGWDhgSvJgB6txP2ec8lFLrnZ+sdTk8v6emYHKZclmyY3j6IiBS4ggxjtcme1ETYcJpfr1RYAAhqxzvf2xvhZzoH1KBek6Bpbw+fdwgp1/Djd3D1GxLzBrNchv1yDT3T6UnLLB8WHPyG17w1BG036Lls84OWy3X5XMKxu+1cP6t+PYNBy4XVFvYZcE3XjgxODlMWU8Rw4gF482vBbYuI3EAKMoyNkT6B3++gHzYvqDcirHfIKyyIhQ3z+QWRoADh7dXLZYjROz8XfsN23m3msh2/XrtsPYLe7QbVFvZeuZcJeq9zqSMX2XoQ/ULSdIY6s/XU+tURtA2/4d+gkOgNXEHLeLedWS697HgkOtkz1mOGUhODncH7JCJyAynIMBYx8akz/A40QT0omd/TGV4MC0vZ1gkKaO4agoKOd7jtaoZEc13er9cvqCcrrPcn1yHGzPphvZDe9rzrTWcYMWjYNChEBdXr/h0UAIPq8BuSDOu9yxaIvdsOq3s6n51cP0eu96CrsmayZ6zL6SNpi5lMZyIiN7iCDGMNiY6pM7INQ2XmTfd8HG/7fkNwYQElbOgsqE7vMGC2g2yu83LZ92zDuNl6x7zBI9uQXbawFrSudzthQca7jvf1DRuu9evt83tPM89Nd8gxl/8U5Opq2sr2Wcz2uXE9v7yzfTJ7LU3MZyy5mcl0JiJygyvIMLaYs1Nn+B00w3qiwmTrOfHyHuS9vVp+Ac5vOqz9sN6jXIbHchmKcs8L6kHMJfy528i1BzLsNfcLvNnWz/Z6uQNVWOBw1x/WS5XLZybscxA21Oh9frr/qQjbrrtWv/lBNYQoSkbYFl+JYRQqdCK/iAgUaBjbzcbUhPfA757nFzxyPYi5l88WnsJ6vcKGh7Id3MJ6cLzzc+lh8y4bNuTlN9/7muQy5Odd329572sU9JrlMqQZNC8sqPuFZm+t3ue87Qa9V369itmCl3cb3ufDevK888N6bf3WC3suKJim5+1ZuByAKBEsUBl9Aoqrg9sXEbmBRPNdwGy4FK1LTWQ7gHmnc+2J8pt2H5Cz9XSFBYxsB3A/3qGxbD1OuexDLtsNatPvcbYQFfTahG3HvW624TK/QOV9v3LtpfQLn2Hr+A05Tic8Zus1y+VzGMT7ucn2+md7PrCd1PSIGQcsMecUXJjIXp+IyA2gIHvGsMkr503nAOXXYxDWU3Utw0LumoLCxXR7KLx1+fXaeGvyO+AHDREGzZtuz2K2+v1CpV8ICuuBC+qxyzUsBgn7PIUFf2/w8b5u2d4rv3a82wp6PYJCV1CA9Pt3ENbD7K3D9XxL93n3kwxMfAAWbAzePxGRG0hhhrHpHFTdwnoI/MKJ3wEx20E0qLag3g+/bfod7LMNefq1lUtdfsEw1x6doG1f7fvjXjcstPk9ly2MZwtVuQTNsPDrt+9+PXNBywUFPL+6gj6P2dr0hq5c3uugsOxuByhKpL7hbA10OH1M2GVQUuXftojIDaYgw1iRHc994Vx6Trzzg5YJaj9bL4J7G0HPuWv0DpN5l/HOCxviylXYPuRy0A4bpsw16Ey3Z3K6wdPbE5rL+5vrdoPCkzekBn0Owt63bJ8rv8+L+7PsrSWoZzaXz473/U4vVzIxnhmpZE/kFMaMQ8s9wXWLiNxACjKMlduh4CcD/uc+5bc7cLmX8y7j16bfsJG3lyuoxyWsl8H7fFDPRFD9foJ6ZrL1wnhDSy5hKiyM5BJ0cg18ftvwk20fvO+vX5tBQ4y57E/Y+z5dYb1cQbVNp9ZMe36vQ9BjT/ujsaLJRfrMMEnbA4u35rZtEZECl9cwZox52BhzyBhz1BjzqZlqd8ipmDojaDjRL/xM5+B6NcNuuYSPsOGxbL1Afr0sfj0judTn7WULCq7TCUO5BkW//Qt6XbK9D2E9Te598IZmv+WDPiN+tXrb8ZvnV1+uodzvPxN+bXiDp1+9ubTn/Uz5CXh/26vqJheptmUkWO2/vojIDShvYcwYEwG+ADwCrAM+YoxZNxNtVyX6Lz9wHziCDoLZhmqmO9zllS2c+NWQ+R1Uu7ftbD11fkEjqJfQu26Y6fZCZdqdbs+Md7jNO+1d1u/3dGv0m/a2GxT0sgU7v17OoMAZFPiyfa69y3lfQ7/98duOu7awIOZuz9NmZ1UdWDAYbkosxSEGZ14Lb0dE5AaRz56xrcBRa+1xa+048A3gsZlouKW39/KDsP/Be/+XHxRUculx8Tsg5tpzlmuPkl9b3gO590AfdnD3BgK/ffAe8IOCiTvAZgtHuQh7bcNqziwf1gMUtox32VwDq1+90+059YbvsLb9Xnd3O0HvV1DNYTW5a/P+Gwn6rHnmNfT3AHDnxGoWJKuBMd0oXEQkLZ9hbCFwxvX4bHreNVt/uj/7UJjfUJI7zAT1IrgFHTitBZLB2/ZrxxuicpFLmMg2P5fQ6V02bBgtLLjmOiTpbSfXuoKW96s77PUOGq4Lq8Mv2PoFt2y9WNmWzRZ0g/Y1m6Dw6fc7l6FRz7zmdBgbM6lri0XoAt0OSUQEyG8Y8/tLfMXR2hjzuDGmzRjT1tnZmVPD6+Mj1Iz1uRsJ7ikICmx+Yc49VOP+8Sy/xr7FZ/kMN9ldua93NT/eOv3qnnKQDgiIQfV4l3WfD+Rdjmy1JlM/V7Pv2WoMG3p1B+6s20hiSPi/5371el/DsPcjbF6298O7f2GvTy77GvR5CdqfoNc1xx+HBM2XunAwNCVTNwyvjD4JN3/kyu2KiNyAjPX7QzwXGzbmDuCz1tp3pR9/GsBa++dB62zZssW2tbXl1P5/+v/+gS+su9n1v/UkDpYkBjAst0dYx1u8zu2UM0AvdfSaOi7nU8ut9jVKGOUVcy8WAyQosaPEiREhzgRFlDLC3aOvcjE6n+5kA/ckXuTR0u9M1vENPsqL/AJJIhQnxyhJjjEULaXP1E1uJxUCoDQ5SpM9h2MS9Jh6+qkkYWIUJ0eJmCTFiTGKnXEqzSUWJC6yPHKIPeYWeqnjfp7FWnjRPEAtvRTbUV5x7iWTeQ1JPjrwBJcqYjxp3sflLJwgkkyScGKpWrCU2SHGKWZ+8gLnI4vS+26AJAbL8onjkIzQG62i2IzxsH2SRZziKfMYF0wzCRwuUQtAfbKL1c4B7uFFrIWv2Mc5G2mZfE+q7SViTFDGEMOUAzCPLgC6qafLNE6+TrckdtJk2zkYWUPMximKj3OgaANxnPT7Zqfsl2MhaSLp1xiKk6PEiWKNQ8yOU+n0k8BhhDJW2cMsHTnD/K4BhusddkZuYylHSRan2htNlvImtxA1capsP2cii/H9v4y1NIx001lWPzkrYsdJmhgWcEhSafsYpowi4jTado47q/D+36R2vIe10X286tyDBSIkaZ3YzxmnhbgTYYIoCSJgIpOvpUm/AmCotH0kiFDEBI2kLrg6QBVRJjhtlqW3l6Ah0UmfU8OEKZ5cN/N635n4GYucMwxTxn7Wc9ysmNznqJ0giUOUBHV0MUIpQ7YcMBQxRpQ4RcRpHunm5oP9tPYOs2XMobm4gvKGo1R86P05f5vSGLPTWrslp4VFRN6G8hnGosBh4EHgHPA68MvW2reC1plOGANo6xvia/sO03PuALeNbafBlHIhEuPO+gYW2xG6TjxN/bJ38cL4MMUTr3KId/O63cjI2CD3jyX54NY6BuJfY2fXKG0d62npGOS2FWcZnDAcPr8Ue85hTfsxxmqXEK+9hZr5ZVw4uoOimg6a1idhcJSyxCBN5bdy6XA/u2yUAcqoqerh9HzLW8U3c5tdzuaRdg5s/xGj1lBTVkRTVSvzogtovHMNC+/eyJkzZzh58iQLxsepPXqMwSW30G0aSPIUQyMvQflSzkerqC9bx0THSSY6X8Q53M9rKzZxYtFWIibK+4dKueVcHcf6fsLeph5enf8w9c2r+WTrArZUl9PWN8QrlwZZ1L+Puu6fUFJyM8OnIhw/P8be6joulR3jdFGCpvaLrD3bw4r5a7n/3Y/QXDoAJ3/Grr4GDpwdZHHtMUx0D4PJpRSt/mVifTEaG4coGnmJ2ksTxNpreGnPBV5uWkfTRB0PXRhgpPw0A/M6SV5sZLwMRptewxkexTm0hrMNi3itaSHr7Thb5xczsvMgXV3V1BTX0Vsa4+X6CU5VVVNX1ElZ/Sj1xOnvXcG6kRKKD+/mSEU1+1qXs7DoBA8NJ9i6dBHNnITRfo6efIVDsQjjtpaqro1Uv/kau1o30BctpSZSQVl8iGhxP2bhRSLRDZR2rWHZSBdL1kfZXzrEF8YWcT4+Su1YlIXtlxh3yljeOcDdx19h+6b1vLj5Xu4tj7L11AHOLy1nx/gQCy8eYVX3QUr7BugsGeTs8EJ2lK/DLrqZRc1LOXCxg417nmVBSTeLllZzcXyA3eObWN0zQUX7UWoqKygrr6P7wCHmrV3N2bqF7Cmu5B01DVw4c45XI/0srBhhg3mGeo5SNFpL/MxWhpOHKG68yFDpVs4mazieWMnm2DJaWhbx3P7ddA93EV2RZF7kKMnYCm59a5T63g5GVrxBWVmEyOsNPF/zDt6sL6YqeZxtlWXU9rRTv/Yio/FhDr9VzWhHlOIqS9lYJR0VrZQXN7B5bJwlCy6w0P4rrH0Mtnzyav5WKIyJSEHLWxgDMMY8CnwOiABfsdb+Wdjy0w1jIvL2pzAmIoUurzcKt9b+CPhRPmsQERERyaeCvAK/iIiIyNuFwpiIiIhIHimMiYiIiOSRwpiIiIhIHuX125TTZYzpBE7luHg9pC9YdX25Huu6HmuC67Mu1ZS7maprqbW2YQbaERG5Lr2twth0GGParsevw1+PdV2PNcH1WZdqyt31WpeIyPVGw5QiIiIieaQwJiIiIpJHhRzGvpTvAgJcj3VdjzXB9VmXasrd9VqXiMh1pWDPGRMRERF5OyjknjERERGR615BhjFjzMPGmEPGmKPGmE/NUJtfMcZ0GGP2uebVGWOeMcYcSf+uTc83xpi/SW9/jzFms2udT6SXP2KM+YRr/q3GmL3pdf7GGGPCtpF+brEx5nljzAFjzFvGmN+5TuoqMca8Zox5M13Xn6bnLzPG7Eiv801jTFF6fnH68dH08y2utj6dnn/IGPMu13zf9zhoG67nI8aYXcaYJ6+HmowxJ9Ov725jTNv18P6ln68xxjxhjDmY/nzdcT3UJSJSkKy1BfUDRIBjwHKgCHgTWDcD7d4LbAb2ueb9FfCp9PSngL9MTz8K/BgwwO3AjvT8OuB4+ndtero2/dxrwB3pdX4MPBK2jfTjJmBzeroSOAysuw7qMkBFejoG7Ehv71vAh9Pz/w74jfT0bwJ/l57+MPDN9PS69PtXDCxLv6+RsPc4aBuu2n4P+BrwZNjyc1UTcBKo99SY1/cvPe+fgP89PV0E1FwPdelHP/rRTyH+5L2AGd+h1B/4p12PPw18eobabmFqGDsENKWnm4BD6ekvAh/xLgd8BPiia/4X0/OagIOu+ZPLBW0joL7vAw9dT3UBZcAbwDZSFwCNet8n4GngjvR0NL2c8b53meWC3uP0Or7bSD9eBDwLPAA8Gbb8HNZ0kivDWF7fP6AKOEH6nNLrpS796Ec/+inUn0IcplwInHE9PpueNxsarbXnAdK/52epIWz+2YCag7YxRXoY7RZSvVB5rys9HLgb6ACeIdVrdMlaG/dpa3L76ef7gHlXUe+8kG0AfA74AyCZfhy2/FzVZIGfGGN2GmMeT8/L9/u3HOgE/iE9pPv3xpjy66AuEZGCVIhhzPjMm+uvjAbVMN35uW3MmArg28DvWmv7r4e6rLUJa+0mUr1RW4G1IW3NVF2B9Rpj3gN0WGt3up4L279ZryntLmvtZuAR4LeMMff6LJ8xV+9flNSQ/P+01t4CDJEaMsx3XSIiBakQw9hZYLHr8SKgfZa2ddEY0wSQ/t2RpYaw+YsCag7aBul5MVJB7KvW2u9cL3VlWGsvAS+QOpeoxhgT9Wlrcvvp56uBnquotytkG3cB7zXGnAS+QWqo8nN5rglrbXv6dwfwXVLBNd/v31ngrLV2R/rxE6TCWb7rEhEpSIUYxl4HVqW/wVZE6uTrH8zStn4AZL4h9glS52xl5v9K+ltmtwN96SGXp4F3GmNq098Seyep84fOAwPGmNvT3yr7FU9bftsgveyXgQPW2v9+HdXVYIypSU+XAu8ADgDPAx8KqCvT1oeA56y1Nj3/wyb1zcZlwCpSJ377vsfpdXy3Ya39tLV2kbW2Jb38c9baj+azJmNMuTGmMjOdft335fv9s9ZeAM4YY1anZz0I7M93XSIiBSvfJ63Nxg+pb3cdJnWe0h/NUJtfB84DE6T+Z//rpM4HehY4kv5dl17WAF9Ib38vsMXVzq8BR9M/v+qav4XUgfgY8HkuX5DXdxvp5+4mNbyzB9id/nn0OqhrI7ArXdc+4I/T85eTCi5HgX8BitPzS9KPj6afX+5q64/S2z5E+ht3Ye9x0DY87+X9XP42Zd5qSs9/M/3zVmadfL9/6ec3AW3p9/B7pL4Nmfe69KMf/einEH90BX4RERGRPCrEYUoRERGRtw2FMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERySOFMREREZE8UhgTERERyaNovguYjvr6etvS0pLvMkRkDu3cubPLWtuQ7zqulf5+idx4cv379bYKYy0tLbS1teW7DBGZQ8aYU/muYSbo75fIjSfXv18aphQRERHJI4UxERERkTxSGBMRERHJI4UxERERkTzKaxgzxjxsjDlkjDlqjPlUPmsREZku/Q0TkZmQt29TGmMiwBeAh4CzwOvGmB9Ya/fPRPuf//Sf0bkoxrnF48SLLYciaxmyZQyaKiIJWH5xmH/TfYDFzQc5297Dxd3nqFuWYH5dMRfjmyht3sbK8V76Dx9gxaZN1Ayuo7v9DTrK2vjp2ArW3P8r/PK2JezZcY4L+zpZsKGBjdsWMnaqn7HjfQzEejnbeZB5K6NEKy9SPraB4vYWipdXU7y0CoC+vjfo7d1Bbe02qqs3A9DWN8Qrlwa5s6YCYHJ6S3V5asfOvMbws08w3FFM7JbHMNFGXk6e5NsDr/DO5XeyekEle89+j5XFSdYteh/V1ZsZ3rWLwZf2EalvpeLutZPbbz98gKee/SFnu09yX6KG29/7v3F4oeGHx36IxfLeFe9l0/xNU15X9/6uLOrgyE9eYk/9Chaumk9590kW10do5iS03AOLt05Zt/3wAc68tZfF62+iuXVt4Ht35swZTp48SYUDQ2/upMKe4sTNSzjScB8PLFh9+bXwGDvVz4ldhzk/coiVleeoam1m33AHB3tWsmnFPdy6tPaKGr624zRfP3KBhpZqfvOmRVe07fceZerLXKbg5MmTVAxWUHI6gmkqZ6gowsLWWs5Fkmw/3s3ty+dx69LaK+pt6xviuQuHWDzwGs1DxTR3Jqnd+ULqfW3YRvHyavbWRHjl0iC10Qi98QR31lSwikP09u7gZGwbe+IL2Rg9R+LIExx99RylHXFu/sXHWFW7iuHXXqd/YSOdE2OT+3v48L/S3v48zc2/QGvrwzx94CIvHO2k2ThMLCqnoaF8cju1h89wdPsbVAyMYaPzgAvsW9FIe0sdLfYQtn8+SypXEr3QTlOihmW3tLKPBE8c7+BCZYSGymI2EqOvfTDwNXg7m+2/YS+/votvnuzhoikiMdTB8p5jNNYM4dgydlfP52zpAgZjRazqGWF8JEY5DhsThkc3wvETZ3jKWlYXvUzjyVEODzcwvmgT6+zrlJa/xb7+ezgQeSfR+AA3jbTRMw9WRy8wXNTNi5F7GR6o5o72N7lj9T72mWpe77+NNb2j3FzTwZFLURi9xKK6OKZ/OfXnK+k5NURs5Qix+na6emqoXb2eikQXzY23MD60gue7DmFtJ63LFtMb76WztJO71t1F/Y4ko3u7Gb3lDQarXmfotQlKdqzk3M0P8+byBspLo7zr5oXcurSWnad62X68m7WRHk7s/RkniPLwqiUkohWc3r6LpX3n2PLANsre9csAk3+Lh0oitPeNs7C1lgXLqydf3wvH+zh3uJdO+zP6RrbT2Hwn99/+UV7+yXf52cmz3NOyiLvf+f7J5Xd37KbtYhtbGrdM/l382+37eO58J++w43yo8xTnVtWwIzFGc99KtmxeN+VvgK0p4oX9h9l0+ABLFzVydtgS67dMVBlWNiVYPLKPvsZGTvUfY7C9jIqyDYwMDAT+vdzdsZu2Q99ly+goRyrn8dOBYzzcuIpbqsqn/L3a3bGbPd/9KrH9F5hYt4CN7/8oCwaXce61vSws2stQRQvHjo+ysKKRlfdsmDw+AOzecYCD+46wZsMqNm1L1eA+Ri3qjnPucO8Vr637b+TixYvZ3bGbo9uf4+ZTDcyrWU75vTfRPXYu9Hjg/tt75oTl4tEXqVjYw5p1H+DopWUceuM8N18YJzqepGrrAuqaKxg73kdnxRDto52T23bX0xObx6GRKEuKi+gei3P78nls6DjEyd172Ns4yPjGB+gyTdxZU4G5NM7LP/oqC063seahR7n5gV+66n/LuTDW2lndQOCGjbkD+Ky19l3px58GsNb+edA6W7Zssbl8Nfzzn/4z/um+dZwpagmvgQRVto8JiihPDlLlDHAfz/IL9lmOHtnKxQuruFBVR3t1PStLu7iwYBSw3GNf4tLBIhb2vZu1g410LnyWsvmHiQxtY+nhB9hbFaGt1iHW+S/ctu2HOI7F2BiLd/4BZUOtcFsXO498jdKNuzFOAqxDcfReDvIQ/9G2EgcckhgLcRyMMTxcX8XyiR5ePnGU8T6H+pEx3ts/j/v7KniuZogvLXMYiJawofNlfmXlV3AMRJwiNlT8CX2//01Kb/u3YCK8WRPhx7WXuKUhQv93v0QyPkEkaXHK5rNv9UZaj++i4eJOdrzDUrbE8JHqX6XlSDVlW2/j5PkqBn+2n4tOL/OTNVT//CsMRAxjC9dzsvEItuEUI+1lzEuswokW07R4C8dqmjH9e+jp6mbk+F6MTVK2YJiFDzZy/32/z1O9Dt88eYLGsXLur1nDro7zHO48RtOlThZc6qJheCfmXZb/EvlTEkSJkOCv259n8UgDbYkDjDWVcrjsAh+IJiga3Mfprvm82vMgPY2lPND4A1aag0zYKN9/9bdZdakOc+GbxItLOLtkFXtuWsugdThXuxJrDBGT5A8G/o7oxXUcLt/GwqUjbBr7TRyTABzqKv8jZedW8cTefyWeiKc/xw6VFRepqe5gXdc9LOjdxOtFh5iofY2O/pPE48uZiLWwbtlNbElEOHbgWdpHRzl52/387aJlxC1EifOp5GdZOHyBmp/XsDz5GYjE2FMb5Te3lDCW2hAAMZJ8hj/ldW7hKR4DDDHG+cPkZ1mRPMLhp1tJ9K1i5bmLVHUc5tjaLTSULaFz/Czj6wZYestrHHNWsp8NmEuLeKLqbpKOA8b9L8MSsZZ3nHmF5Se6cXBodiY4tXyALzd/jKRxiBDn44kvc+zirdRdHKG5/xKPTGzmvzYZfra2CeukOt2jScsnnznO4PAg/+cDd7J884Ipf+xzYYzZaa3dMq2V5sB0/4bl+vcL4G++8Dn+cs3dJEzENTdJWXKIYacydN2K5BCDTimpN9Vyl/0ZNcMDLB44T2PjCZ7kMXaa25g6MGJxSJLE4fKHwVJsRxgzxYCDwfJu+30a7EWeNo8Chs200Tm4iEuRJgZLLREmiJJgY89+OF3LhZoG7up2GBo6iCX9MbapLdTPq+fUIoeVzhssr3x+spL9Jz/Jf1v6buLGELPwi9t3UWuL2DVczJKho5Rwhm+955MkIlEca1l94TT1g5cYixVzR/de7mzqYrD9FjZ0r2dPbYSddVES7acoGThEbW2E2mEor2nkYEeE6opelt31JYwTxyYjvLjzfv7X5l9jIhrFwfLBi6/x+60r2L33dXb2nSLacJjR/goeOP0BXixy+Pt7biLpOESSSX7niSepG1rJcHkjpytPcaohSdP5QUqGxhhrneCJTe8mYRu/jPAAACAASURBVByiNsGj3T+mZ6KReRdH6Cmv4nhDE49depm7lnyTpElik4buY/MYGJhHeYlDMrmNhWvezeY74LW9P+TIuQ7iY8eI97TQ1xEn2nWOsQ2b6F+XZJ3ZS6tzjFPz/j3f66ugbs+3ebDvLAPnyxm9UMJAtcNA7SOcaV7OisEhYvF9k6/9XYk1lH/8Ab4/MkzJ9hM451/Cpt45Hi2r5EjjSv7D4kXEjcEBHtl3ljuOxVmVTBAxnVSsqWDe1vn841OvkrDgOA5r5rUTTxyheuQXKOpbwZiZoL7yEi9X7eX54k0kRmL8xvLFPLz+Ll5/5U1Od5xlpe1gYN0XwEmAjVF/8MO8umYn+501rOMAIxfW0uFsYuPYOW5tr6e4byXGwCHnLK/EjmCNJRqNUv/IvbzQ3kHtkXOUll3iX1Y9StxEiNkk79u3m6K+Dv7d8FYgxp5qw2/cVkbCiRBLxPm1Q/+VFW8Oc6B8A8vbexlYsZ6LC+Yzsq6Vj28N7hTwyvXvVz6vM7YQOON6fBbY5l3IGPM48DjAkiVLcmr4X+5qvRzEjAFrJw9mbtZG6DN1AAxHKuhkAcdYBcAvrHqWI2Y1P1x1JwkT4TXX0eol8wB/uOZPGDryPG11QGsvB1jPunk7OB11+MPmR5kwESKrPkIdB8FY9tsNtDYf5/YD8+h66k0mVvZQbhIcMavYz3rWJt7iJXuSCacVjCFhncn6rbX8uLMPiEDtakh3MLxik/zSwbN8Y/VCrJP6o/1c7aO0JE/zoPkpNjnO6bZ/pq6qFUyEvbUxfuu2MiZMBd9PJvhg83JuuTjIhaU38fn77iDuODjb7uNjb77IB9d8ESJx+sb/jrdeqOf89l3Ma7qHV4uOkMRigGWbN7OmZCMNVd2M3/YESTOBTRr27lnLEbOC8zVRPtAxQeLAQUbH2jFAeeMwKx89DZFTfPX1z/CfnT8hyRKcSJKdu16mfeVq7NI1OEtaee+bP6d18QBfdT5KnBgYQ9wavtuU5D+8dYrmNyMcHdrJ1vuiRFr3kiiD4SW1PLX0DuJE2M7N/CGfZWXyKA/XHOfksT7Gi4o5vn4rP9h0D0nHdaAzhoQ1/KRiC3srbyFOjMhYjD9kBa0cxtok54/9IwP7PkQiEk8f5ywVlRco3niK3c5aRpf+hJsPnae29dvgJGhIGvbsbWWsf4w3j+1k4fgtlDh3c6jmDXaOjTJhDdY4xK3loFlPa/lhJt7Zz6W3Xqa2/QF21jhMYMC5/BmesA5fs7/EIbN+su5xG2O/s55V5jD1Wwc5sL+G15vr2HLpfu4vWY0xDgcWf5f48p9zzFnJn5vPEieKrbVYnKn/RqwF45DA8sySO7ip7DAbeo5w+8pv8Kz59VQ4MIa4jfGPkcexzQbTZLn5zFF2R4rY3jwfa5j89xZ3YGxFPb93rAGz/TydbRdpePzmaQey61TWv2FX8/frR3/zXziyrpeEcab+3bLO5SA2Zb7r75u1DDrll5exlp+b+6DcEilPAJDI/Nl3rYNxSFrjmQ9jpmxynrWWJ837pwT3dhaDTzY8Pm8Vpi6BNRFea7HcfWSEdRdOkT6uM7Z0kL9c+ghxokS5lU/bc7Saw1gLexst405qm2M2ydHWEh4683Pe13SBoe4mnq1/iHg0lv43a9nfvBRoASxty1ZRbf8YFrTz/c5V/KhxHgkDzsoVvGf3Bcb7exie10VNzS6caCMdi+K8GPkk1sDdvMiZJUuYiMawjkPCWr69YCvzj32Rk8UrOXnTXWzFYcn8szxfuoAjlf0knfS/YQdevncTH39tmBdazvLsTbdgjSFm47zvzMu8UrmZuONM/g17suGR1F/RZtIBGL5Q+0FGkp086PwUjKW+tYt6ugBIJg9z+OhB4pE2jBOntT71Oh9qirC//jHMYIxXV21IhT0+wMeSX+Gfu25mgiixtX/A1uRnWZE8ypnXFnF0wWa+u+x2ksbws2SSX3zzHAsGesHCt2sv8sMzZ0kYg7OyipvqVrFtfDvVFxO80VvF95YNEjcGjCFpLT9av5DiiZepSXSzoLqXku6NfPXJN2hbvIqmvi5W2UPUrHoWJ5LE2n/k6JHUaMl3V63kR87/lfr7A/xGMsl7XtlBcewiJ5cs5s6RfrY6SY44rey3G6hbYvhK5DP/P3tvHlzHcd3/fs7Mxb4SC7EQC0FiIcFN3CTK4iJSkm3JtmQ5sZ3E8hI5cvL7vT2p956VvEroLLarfu8l9V79fpVUFMu743LiRbIkJzZFitRGiaS4AiQWElxAgCBBECAWksCdOe+Pnjt3Zu5cknbkSoU/dRWJe+f2dJ/uPn36e06fPk2SBBYO1IGLTYJW/njBX3HXgQc5PZXPCXvI58HBwhL+9kohbtEirFXNNDNAUixULOZQupcnePhILTKdgyUWBytycMRGRZi1bX669AlGOmtxsbFdWD54ksONrbgi/PhALz9a237bgOx20r8nGMtER2aqhh+o/j3w92A0y9spuK+gxashIlzCBcf/psrz8jiNnOWNxctxJJEB6JKa4MfyCR5v+yeuXSvl//UWtwRJNtW/wpwIrgiKxR7dzGtsJSkJrAUuj13ay4rRETom1tGjBXyZPyEp5t0W+uIbFBKaaXodLF6tzTdWiECeV2QbU1rCUroonGygrqCBpcD+CptZC1QEVyxOd6zhU3YxbzXleYLCwkX57l1baNFfGOGYgP5t9ZwbrAF6ASgpvURZ2QUuldZy+uphHqgcQyWJWADKeI3Nc/UbccVif7Pyl9e3Iie+i6LULUkiCUUEXtPNuOSAWGYC1NX6bXFV6JnfQEtuA+9IWKm4SjkzNS+xruqPuDo3Rt2CvYaZBI7rMhxsVGySqnTrMlrppaJogtNN2zha18xY7Q3PGhToVy9dkHqSJHDFAmyO6zIE6GYZzUWDTNrnTV0KpSWjJBdP8mV7Ow42tu3wh83/D6tsxxQtyvz5J5mcrMZV5a1EP5VaxES9jVZfx1IXxSWBQ6d0pfAdkzUHKDu/hbVjFjkKN1yNLIANab5Qs7qVMIkCFZVD1NT2kZtzA4rWYI3ZXGr7J+yWl7CB4yzz2meDuvH85vGZqzaHq5bQXdlKK3szp4oH5BTlUFN7mF+9Pk0wR+NcFz12BaftSyxMVnHjxxdZ/L/+Rnzd/7HSLWXYryK/Zkve5pqsNMWHQHKmrDJUBH6P5gkC7CjYSpURGK+Mz3FlBX/LouiiinrA3QVea1tJA2cpHVaamw9wsKmDORKo2MypcpxltGkvfbTT63Sk245wtKqNRyu+y0I5QU/zdfZbjZH2W6E2fl1+jwt2A7O1OaYcEcCFZZdYPr2DsrLLiLjc0CX8jfVnRtED9ljb2Dr3JiKK+nMAflG1xVd+jrEK206iTRYW1Vi4nuIsvF3bxNX7+jhRsRL1gPQsCf6pabMPOkRdLBQXAwqi/f623Ms23RHq7n5pp8tajt0gdFl1lMgkk1rCjBTyM/tR3HoLUXDF9MWcCrvlAaNweXLwuLUMBF69935ekQcMABTBseCN1hVUTo7TcfEcPfMbcawU2LI4XLWULlp5uuZLaP8VKiruApb6NCtwqSaf0pp/5LrlsGvRAP9N/oykZy38/PBJTtqtHJdlLKULbRvnRXmUA3JPiI9cy+L5mkrAoMx9ZXfzYecJfs7DJCWBFIMLqNiox8cpRbbb6iC36lXOXkspqIDCUFkVrmX62UE4RSsgiLooFl2ygp6VDvNvXOEe9zw5pXOo3O3z3XlpTLfTcjjU1GoAtAhzqrwxPnXHgLFBoDHwvQEYypL3l0pZlphwCgqWiEAZo4KvyHZm7Zz4/AhHZSXdsoLm3AFmPUCRVEVREiRJqmJ7lKQWPwX2Ny7iwIJF/NbFcsbObyTZZH5LqnKZynB9KdqiKfCsanKc82WVqJWm/4ws4jStJEjyZPX3yKlchSNC2awxOKeY7VpDkr1yjPsu3c1zi8AlLYBSwlERhsqq6Sqop3LkGm30kr/yNEespXS4x1kwdowJLSBfbdR1URfezttgwIwISQveXrSIuwfqyakep6StDwV6tZ09so200IWE40SGSDiRtyptvQmkvMlmrpedJNlWxX/N+0PGKOB+XmYpXSRIMqfGelfMJAh0LRzkrxdWk5RaLJLYOOnFKdK1ljiggq0uxUzyZbaTlAR2kcPH635G6bBSW9tLa9s+/kb+yFgaPMvavyQeZhX7Ao2AC6XzGCqron58lOKiEf65/YO+hnf39H4eKvgprdLrr+JjI0mqnWvUXJ3kD9+5wA/bFtBblpduu3ODyQSBhdRlUku8LlJa295GRJHmLsaPO1xZ+DOfpZZqFxYOrga3oyJ8FVp0TW8d12VsYje72UZSE+F3o5Y1dQFlHfv4kD5HY049r+eYqX4+dwyO9TG3r4wl6x/M6P//YOnXIsNOFZXxojxmvsQBHcgOouJAUhyIC/4WlTH+OMY8D5aR7Vm0DA+wz7VO0Zx3gsambvqoN/NaFcWmmEm+z6d4UR5DS8J0O2pzQpbSISfosZb6ssWvM0LnWVowe6GW/7uFy6qcA5SXX/KLPsFSkt7cNfUkuJ4o4IGzr7Oz6X24CjYuvZIGH6j68x1VWjhldlNEUIXjle1e3Wkwqdj+9yZngBXWYWNhjJlv63Uvo5cbqKwYRsVhlzzIN3kKRwSKLHzTorj428wiKK6nzCmKcJoWLBwjz3A5qa38SD5h2psCqB59F0vmcbFkHsfrmqmbGMsY86Tm8Lq1mcerf8pCKUHYhqrZVbBUuV5s8Yq1lSkpYdSqIinGWuhY8FblOo7KZ3ARbHFA8Gggk2d9UG2ev+y+nzk7x4BWA19Bk4jXq6ougvIam+iuX8Hi0jOMzdZQefEatRNXqJ8YJaEOSVI7ABaoQzljjFNhFAGEbyy6xr6KE5ySRWm+CfK0p7RqgKcE9f2636307wnG9gFtItICnAd+C/idd6fof9shUZccZiFTKIWEn42jyqmcVvNdFUths/sam6zddLOckrPKgobjvGZvJakmz5mqegC+Oh8+cypBAoekKgkc8mQuTUSGYHOJWwBznSStF8/TV5veAnGwPXAI3fYK3pdjc6PsJBdqbIQVvkZ2JHcV3S2d/N/6Jv+pexl/11mBi5JDkk7pQl2jlT1T9XnmSCB1sO36DfbYnzGWQDvJ01XbqaIXdW1KBzcx2lPMTGdhqD9vFA3R+ME+nDlQcRGBbs+ClWqHinCxbJ7xW1ELS13aL56jYm4Uq9Q1WyjepC1jnLebB3h1YSO7rMdxMYLhJG08yd/xhD7LN+QpHCy+JZ+nibMc12UkxTKCXC3uZwcoTM82cSB3KUlM/w7LAmwctk4eofzwac4vb2Wu3GiYqDLXOk2NDrK47W0QZdzb5k6l824jqFl8erWD53Kf4OiqDlQEy3VZM3UoYJlSGgpPsSg5QF+i3WiP2sWG3GWczh3njZxedFqpH5mkt2yVzxO59myIBwTopMvIaRX6pY3jsoxOOU7egj0g6rNuG70sv9HFoby7br4QYwQOKiTUMVqtwmZ20iOdnKcxc+EPKCsgrNSDtNHLhWRd+rEqAwWFFHfvhP/4YOzXIsNeLH8gc/sY4q1QIpmfg2OaDVBFLW7RelJ5o3XerI5oef7vSSygRK5SU3uSPtrZJxvMgurJou/zBDNSHC7HK9tCff5bSlemIhUBfqk5of53h826k3bp9clNlWUUZ6N02yS5v+Y5zg8u5S7N5QoVzGPM+NcFaDLzwli0t+jLnJJWD9ekAU7smgHMY4xCZhBcX6agBkh9iJ/QJGf417yHqRscRRsn+YZ8IcILKcBiR/paPN8uSO0sLJi9QFHiKr1WBwfkbkIgLLq+AGAxXF4ZyzfjWsahyQ18p+LjgGDhUDd5kQtF89lXuoZ9rEVwscXBxsH1APCR/E4jn8VszwqEQHIGLwaSeMAy1b5lE910ly3BRbBwadUeemQZQ9LIUH4jx/JXGBrqlA8feh2ARVOnmCwuYFjqPQBpMc48QP1yu6qa6aIRHzdkKBriOeYQ4AGHqake8A5JvBvp3w2MqWpSRP5H4F8BG3hWVbv+reXOHDx4+5mzaYxBJgHAOHATnHAZwsxllR4AjMl9iduNdb2M0bEFrCk8iDsqDJUvZLBsvv/e0TKXp67sYU/5fO5mLwo8K3/g1zv/+jSj+YWoKqKuv4AHacyfm+Xcgpp0ezwGE3URdakeUubK+zi//q9plhZyWMKsps33Sc3huRqLJa/sYZ3dQUGxxea6b9Nq9YLAcTr97QRFebngQUDT5m9ZRju9YDkkrlfwGiX01zX4/Wepy/V5PfSRTyu9iFqoKp2eUE0aByNSJu/79RdU6mVy+osonVAaSgd4RJ8PaZLXJZ+/tP80rOV59b3CAzhzhbi5ad+mPbqFTez2LZYJHDbpbtroRU8+xtxkM3+9eohjuYtRsXFUKJcL3CUXOFUCFltx1SGBw1KOUlU9aSxPAlv0ZU5Km0/beH4ZfZ7f4VetP2O2Kt3XrqVY4obo6KSLgUSL78eVkCR/nuzmTE6PEa0CMzk5pnzLaHZ1nDdblV6dH9Kf0Ca94MKhyxv4/6r/J1OWleRL7j/SxABeUQxMb+Ro4Yowf6tiYw4kOJoSCWY8bFye0K+B4NNIcCcuY66k+fAV2cY23YHKONDkv9Y4fI55nZ+MmZD/sdKvS4Zd1rL4H24FhIL54p5nyx/3Pe6dYN44gBZXhzre0gnfkKd4I3cTfdJhFLEAaAkBMb8cFwuXz+kztGG2MF/gMRwCFqIoXZ78a9IBzkkzqoKNcRvo1XbaxZTzmmxBFT41/SOO5SzjSk4uW2UnluXyzeZP4HhblxaO2VYMyF31WvSEPstW3cHrbEr7cAbpiFlLDltraHDPk2MbGWDhsll3sondiMCXZTtzpTlQmgJYctPy8KxDRlakwZ1iM5i7AKIuDXHgPg5wR+o7KOs4V9Hu7wKhLnPk41hBhdomqcISuinSKU6xmCtS4f9uoQguTkqwiWAsXeJVY4XqrExcYIYWv77B0locBLx6hlgQ5hmPBgeHnppGemqbwn7BXt6UVS/c1uDaaiz7BNamdJ8bQKwq7L50jvsX3AFgDEBVXwJeejfLnHl7H7SuAexb5vVT1JyfwawWHXTTw7KAYNIwOEM4ZK3hEGuMw5+d5NNtX+O71pPMkoBCmKdj6XIBq+goz+TfT5IEPXTyaZ7FJonjbWGN5ef7zvINepaz0pIxUc5W1HA9JzfSIO/8iyjzqs5gzUzRKy10W5085L7Ii5Y5hZdKp935vPpBz4FflbrLrbRX9SBitrWCfWFIT2lzylLtQoE+t4PD5WWcLmlI+7C5Lgjs5CFe4UE+q8+w5cZu7Hw3U/Z72mGLDLCVHQwXtXFSNjAxUcO0FoGktcLX2URo4gYWizPSgpObOfZLxq/zxdK/4Li1lCVuF7XTl+kbvoeLl0r50OwYdTeGOZbb6gvby5rHtYZ5fNf+qKeJKU/os7RLL2+5W7jABjq1iyY5a7Rc33/K+K355viUWVtdckjygcLneFh/TLcso1O7aKWX5+Vx31qWVOXNqlnW5x9lYqKWyavVzNoBv0UsanWIJ/k79skG1utetrGDl/VBXpEHGCufzyy5HhC1ODX9EE3lL5lTScCRwhqzpR3S9F0e1p9yjUJelvcT9MFxVZmSkpCvmWjS2yYggx+D/H2axfTqEhovLObe2XbOJC7RMldJXdWVO2GLEvj1yLCWyyNcqG2KXyxvZamKs3ZGv6dkVzB/tjLjfo8CupsAPwEfUKgKJwIHT2LLCVgetuoOH6Q8q0+xWx4IHz6Ia6f3/Iy0kCDJqmQXhxPL2MVDvCpbeUKf5Zvye95WI9hFSVDj43uGxdzF/vQ2JOCqzRLt4oR0puU9oGoxhXEN2Civ0sNSUCsyDxxslFY9QY90mkUci5esR/ns1I+YLrpOpxgZAPC8Ps6cJGJ9yUx5gd0R3wKovE9fNYc0/P5I5bEyxy44XtEyU+/GgG/F5lLJvEC7XEaLS8PleevgCZaFi/R+f0SfYy37eIHHOCjrUIUcHD7NswxoC6/IQ8Z9wgNp562FAXqEK1IZqmdSyjPaI57SPG/eEK61MPu8CfZthuwSBKVdu+mVpWiKJvCtohYujcN5EI789G9K/65g7NeRpppWp/z3bp2iDB8VOAGgdUoXGwYLmqKDSQRHPW3Ps8j8SD5hgJjYgHJFqgL1Oczm5YQW4bfZ4C/qrlrGC0DMKaaz1sLYJowXFKXpCtFj4arF5QXCuf0t/KX1OzgkEMv1afSbWpAgaVv+4vv96s8wovVsZjfnaPKdT9PJfHdIcHZiLTesHP669E9Izjcg0tKU9kPaUVSVb8pT1MxdYln+YbpJbVNafn+6WHybJ2ngLMViBHMfHeyR+/AnpQeOg6l2doainCHmMWac/QNm8ARzbGY3bukQiwY2U13xJqOXmjg8ko6B1m8Pc1JWhnjhjcL3cUav+Jqgo0lelMe4qDX8vOpDJEnwHEk26q4QXwhm+wOFhBjtV1BqdZg6GcISpU1P0qZ9gKIe4E3lTeBwV9VzLKzuwXVtjh55iInijSHa+pNL+e3E92jkLN0s56+vfZF3Cr1DDik3R1VsF+4ZLqOUjVxt3A0CS/QoCX6D2YAmqmrxojzG+3g1g/ctjBXT5HZwVRCEe3UPe2Wj77wc5r3UQmbx/OQf8XuJWfLnriAIiMU8x+XEvh13DCB7t1OVzpDSwIFM0BOXouAkm+UqKLviAE0wX1Z5GFN3NI9vRbIyy4uj03tW4MxQ5EzzaM4PaZKz7NEt7GEbjiTSVqI4WqOfxcJRmyt2IS42rtjMKezSh9KHsjD+aGb+mtOT76S28wL0XpMCz/qUbr+Fy1K66Jd2vs2Tsf0kCJ/Vv6dJzvIX/IXZWhWjuvVfbWJrwXPssbawhy1slt2e4hsDEIAmPcUNChiR2hDIUoVh6tN9GXw3Uo6oi4qQ8p3q0ONcppJRqY0f7xhQhjqs0CPkcsNsfUbrjILswLNuD6QdYp3xIfMU3K3sYCuwUAf4pjyFq2aFcaNlxPFRpJ/W6D5WcZDT+S3h7ew4uoIAzGtbUCb2yxLudV/lDWuTmY7g84G4CZI9efBwJjv+qumOA2NvDF9Hm2/zhMPNJraEB3FO8jPfjQyoP2G9ZMJmaCYDef4Gd8teeuj0F+H1upfjsizsXO0zCuHvXiq7NsVEQVHIgR/MxEvgsNw6yCsdT/qhIcxJlPBEW2Cf4wwLSflYqNrslPfzGltp4Ey4vb4Dqfm+v6yNpVwP+UF1zPRxotD4SQVpdtTiEHezjMN00oWF4gQFt1gk1aab5SwcmQFgqLwq7bAb1IA87T7hwl8dhIaibt5qGOJQ2RpUzTZti3OB+xM/NVt4FuQseoV5uJSXDzN//gCnT69h8mo1vfYwpW41kN4emrVzGSitCfCEzQh1vCCP+74uc6qcJjDpVXng3Ou0NvQjYrYxXmEbp2Qx56WR8zRyyFrDfzn1Jq2Jw4zLNIPuNHN1NhtzdhktW3fTJr2IgIhLWdkFGkfPMVBR6bf/vpxX6NM2vixfYg4bCiOLtkfzR87PsmrcZZCV6ILXQRxatY9Puc/ydesLIV5WtXidLaH3AT7oPk+b9NIv7d72kOAi7JX7aNUTXJYqLjM/LLcDGvqhsnn84b3KI4d7qL16hfO5Y+SVXWTeO9+7E3zGfi2pbLIQ6mIWj9TnVMq2MMUpl6kUB6iyWceCz+IWs1S9wZSxwGUBcVlA4DW7kGt2Ad/gKQDvVHNa3sTRNE9HGZeKtA+WV75icUYWIbjgbVe6cRa+AL3mkQaURDjDoki7zXYbGN/XpHgKt5oIkcEdkykxcT/u0v0clPW4Ktiui0zl8Fd1X/LjyO3mAVrpyfBNQl1sdRmSxsDWrqdQqwJWysM5s12Bfm93u6iWUTPHvff6/e1iYgB7WM4Hlc1mGeBf+HCahmz8EBnjU9LOKdr9+lxNmv5R6KOdKSnhczzDgLYwQTmHZQ2OSggEB8cqrq3D1HNUVvsHpDq0iz5Z4oVtkTDNwfK8PiGw4+WoxV5rk5fJItUriOCIMlh5lXcz3XFg7Pz1EUhNnlulOMEVBVnBZ3FM5z3LdW/gWLZZsAJ585zr3LALIoxp6mrQszzNduNsTRdt9HJaW9iZ2iqKqSeq6aw+148Ap6vqA7+Z7bL1+iY9iSVMVFwCWvzaq2dHuZRb7WsDe2Vj2pIY0CyTmsCayIHy9PMVeoijstr/fre+QaN1NuQHNTeX72lg0f4SkuOFuEUWi6WXz8ozfFOe8rQXy/Nzg97Lq5njErWM0T5xhAPaYXwFvHJskjw1/VOuX1tE5dVy9tblsGDBAVqlm6fdQZ6/8imOVbYzkFPHOZ6kkbNmK0Bc+qWdbl3G0vIuVq76OUcOv5+hovnYJSPAwpv2d7jvkyg2A9KKjcNDEz0Un7rEmrLdiFfPd3jSWNYCGn1Sc/h+TinNC6qYkQa6Wc5pjNU1QZL3ubvNooCiajExUUsFV40AFuOr0iRneZUtzAW2QaMLXo4LHxpKctG6yndybS6O/BFrCl5nXdlrTEtJZhtjed3hrLTQL+38VB/zQxWA8S0L+ckEhXeEb2ctA6pNLCPlVE4Rnxn5KZx7O+OWhvcSjDne9kucJSkqq7I9y2ZJSKVs+YPvxP0WV9/NrBVRGRCUC1GQ5j+PxDyLyuMIDSmncX/hDpTvqu2pDybNSU64nKhVN66NGW0yVrcX5DHKdNzEvUop1LzmAx5FeFE/wg/lkyZmnAolN2ZYMt7HUGNpKI6cmU+dkT5z2aY7uH69iDcL7vXAZpJq5zKX7CrwXAaKmUrTGe0zbx4nJZc3ZFPo99DORATs5+sM1yVg1PB+V+BFHvNBSebYuHxYn2OYes9yFrPl6v21MLsC/dLOX/ElkiTM/ogYIG3GLeWo44UGiVgo+292nwAAIABJREFUozQMi/EjSwHzBQxSrFMclHVpLojjO7+N4c9uDCBFFVegkel43vkV0x0HxtqbW26dKZXiBFfqe7ZFKvrZ+ztr5ZphjDBH9fgEgxX5GULIUZvuaxv5aMGztGmvLxIKZQbiNIHgZ3VZeHmEuwb7aKOXg0XNme1S5Q3ZjKBY4mCTxFUbmyTtk6e4VFntawNOUBNMaUDqYqvDyoFzLK4c5HxjCev1Tbaxg536IPtlA3e7b7GVXajr8n/qlziSXMeSoQQv5K0wAC6DJpcJp5KjR97PgoZjbKvaQaOe5bgso1gn6bmxnL1593KkagnHKtr57Lnv84HGnzDEPHaS8mVyuUsPsDH/+/QVtPKVKhMnKMGf8Mdsp909QUnJZT846Zzixxrr1Xa+Ktv9uG5Ps52J+TY/qDdRmTPGNo4nMA7zp9w2jtudqNi4CguvltE+V8nuvErm3Bsct5Z6GrOVwSsHGpbzlqwkdOpXhDkVTshyOjDBL88PdjB5tYretkZTjphTUi/wGIdkTZhPAmNXr4P8H6cHaKg4z+7SJp7ruBfHsniLVTytFymRSVP3zXjc442jchddrCBBzEnf0AIe+C3GmlI/PurnaZ64jpXvwOlX3wNjMWnNjR7+hcWehZx4LT46bsHfbya3UnmieaPvRVOc4hosK0rL7VjS/M/qncDzwkDEAbVgOZGyRqkBHIp0mmkpDv2uvhO8cdso0atmvY3lYfNskfZxWlrT/R9KLqjx/TrAPYi42DjcrzvYLLvZo1sIui1MS2mgHmUyv4h9tXeZcqJyPgiMvPcvMZ9aa5hUGBCwKb8xzmhhFapJcnAoYxwCMlzUgBjXL9/mlLRltNdYDNXzMLYIyqoQEANs5jzwZuPf2uOFmfBDdwCoxblkMyv1MAdy78kKxAA69QivsoUjehdJSe/cOF5+UfFAX3BbVkNtTYHW4Paiub0miYXLHtmGQyIM0uMUgLjvWfjN0OYyUhyQie9CuuPAWINdCYzdMh+QKYxulicub4jBvLUmUs75ivlhIOblUSyK887SRzvdLPP9cl7i0UDZgYhpnsZofrNom+mnTXtZsfIX/NDakkkzhp5UkLy7p07TXLSXpRxlz7z7w/QHhIKoi02STe4u2o8Vct9oJV28yRMN/4IJhggPyA4elB2oCIdGP0BXfiPri1/l47nfRZsSXO/9GCfqG3A05UNmmSueVKmfGGXyajVTk1VcqSr0wzm00ctUXgkq70PFwrVgssk4Um6W3exhm3cEXTgsa+mzFnNcOv0ArXPeqUkVeDNvQ6ifS2QSFLp0pb+dOqfKj/gkObl5xh8lduKl/OtSQkr5sP6ET+r32DX4Ufqb2/14ZpfsOb65ro45qebn+uf8wcg+cmqUG0QdZDHAL2rR8haOErmakts0NB5nbKyJ6dy80PtDWu+DzZAw8tISuqle+A+M4tLPb+BY9/pbwMd9a5YLwW2dKO9GrAuzKbAaoTl2bsQs7CuTzeS4sDBZTVvJJm5wnryFm3gvZaam/F/wiM7xgnyUDMvNzSxeQWtWME90vOKsWnFAK67eaL44y1eQpmyHBTTgu6qwmgOUMc4gDfSxFFfBVxggfWAkG11qGyCWUY8HGDxZelK8OGDR7cBIW/6U/4s9uoXzNHhO3Gabs0aHGZIGf/6mTl9PUE63LksHZA7Rppl9IzaiDvXXh7nulHG5KBKzSh3A5pispDtvBen56tJXmA6w/H59nvmMEJThlXqRK1KJeOcXQ20LtFe9bTsbE3w6wxoZ6J/U6dLgnBeEdj1uLHqabu+lRDWHWO27c2TIGO/9o7I6fjw9Oi0cXDzXmjgl2XtWopNMStrFZLXuY7H0c1Jbw9a5IE/6z4J8GMiTTaHx6lYEp2Akk/5/Q7rjwNiC9nkwcJtgDDIFS/S3VIoTUsG9+zhELRJ2YFUl5SwqmuSM1cJ35Uk/ev9KPejHZPFBkl+3Gyp7uLGU9ydOYlkOdTLEKdrC9JrMPuO8U9TMw/oPnLOa2E+MNcITkM1Xz/OhGz9l+dgFTp9v4ltLlrB6/qgfu2qpBxqP6zKKdYpvV3+OpFi8zFZz9ZD0kVs54Omj3kROdZ0qhYVXaCg7yimrhe/Ix/1wDk/rdjolFbAVLHW5TCX90k6r9rKZnf72raMW3bqCpXrMHEhQI3R2y4OgpPvQG6NJNdtyzZevkphvAsKqJ+ik0sVyFbU0Q3AtuH6FkZxSkpaNLcpn3WfYxk76++5hUc6AdzLrKRyEn9Q1mu4WIenClal2/ocrr3Oo4wY7rQfTwioCfsPaVpIpSgIsqZSVXUAiC3IJVxmhPuBv59k3vQVjs+4GMSdZO/UoOfpxkmBCc3inY3MlyWzw6HaUh7PEtQMD2E2IYDuzHRH+T30eLa/ld8cqEBEQ5caqr5L3nlUsNvWV1PBiCojFgasoaMpmGbvdPHGALA6YReVb6nMcMEtXjA9+QrwSLvu0LmRcKnCwEZRinWZKSv0yQ3MzSlO0/lA9to8FXWzvQFH81n4qOSTo1mW0yACvsdVrhQmrOiQLMtqiCAfkHg5wd7pd0UU9Y0E3Vq0PjLzC5cIyniv6cAioztMx3w/O9U5luup4lKTLe4d1bJQ9BOOWjUo01BGZ46lKypqUEfw6Zh0LPU+tbWp5W6vh8R2ROoZZ4G0nptZILyhtdL3MoClVr0Pz7GmmrBIuJapQ3486mN+UPZlyu1ATNujDPAcKP5RPhscqTv5GaK/QUcakKh74hfrIYdB+d+HTHQfGaheV4YVVur2UTROM+z1jUG4B4jKY2vgFuWqRMMbY0GnKMcIBREPvRiZ5Htc5ndNErfYzwCJ803iQzsDpEAfhBf0o+1kflYNYuJhYZkLb+AD3LNjNycpF/E3Hp0mS4BXuxhzmtbDEhLRwsM19Y0j46iHtp29uEy426sVjSbXDtSzmWmdYKIc4rIsiVqpP8DH9AV/U7fzr9OMcKFnNKzzEa2zlabZz0a0B20zqHJKUnHO5kNOKW2f5bXfUZlAbsCUdyDFB0geQK6aGebp6Oz+ST3CMlUZ4WdA2dJrxsmKGi6oJCrDPnCzigrWf1+vL6Bw5zuZrV5jNeYRE/iBzc3lMaplxCPZisIGx/tmqTE8eo71sD0/KIQqZ4gUeD09wX6sbZ0aKURUvjllXiHUuzSvmcmFYa56dLeAzs8/zrZLHcBVySPJpnmVSS1iqXay4Atc9Vmqjl6fG9vBGUStr8l7y4yxt1F10OasYSdSG+TbEbxrSeAE6tItVHDIR0+UJZijOXJyD5WH819aOGX5XFBIWeauXZ/L6ewmAX5Q/knlyMLqAxYGJIDDKsMTcpqKZTR7eLgCM/d38l6s3mJW8WDAUBBCqaoBYtLxbLZDRFKcgZ9na979jbjA5wyLPP0kJWZDj+t5/Zt16nLzPZTpBydwM2jBFngVhS7VwVcr94KkJHJ7QZ7k4U8+RwuWclbRP9JDUU6yT5IhRYkMBYrMBzjiAFRyzbP0T269By5fSrKdNfDfPn63ZOUOedY0pKWWIeggZGyL14xjFU80p7lO5rUGiIzQ61OgII1JD6vBEvQ6havGCPIYIoZsSQpbV0LhYfvkrJro5Wha+bSHUZ4Fk41J+8RzvZrrjwNihi4duP/PtCqHo9zimDZYTRd2B5006wEIG2MRuVIXXZKvv+H4/L3OGFi9Ehqe5ROnzyn5H1nO4ai0V7mAYXAUsGwbwmatvLFxOu0tNkYHJmmCOD/ICP+NRHBFebryPPB3ljNXiB3v1twxEQqZsV8Xfn0/gsES7cIfWYI+6WPWKS8QEjFDCBCLQqcd4jrCVqodOnmY7zcW9vM1aH+R9nd/jrJ0SQEKVe4FFzgDPux9LHxTwUp/VyaOjL3LebqC0/CKbeMW/gHiueJpWHeBj/IAeSZ9iXT11hL7iBQxT7Zez6No55gqUby26GxfhdFkr9X3Pce+iH7LQSuK6MJecRnLT99ihLq0j4zw0sp+6src4ZbdwmEWs1X0gsE83kM81zgSEaQmTtGsPUxSTlFzO0UQb5jRlr7bzt/P+s3cIIJ1u5ObwQO53adJ9dOsyOqUr/Q7t/HPiYdrUop0T9OoSnqnYQlKEo3yeQ7qaQ7IWR2zshIPgBLROIgI4U2AL5oqp74gXPy/wuwl9YQfyunRcvML/PlDAqgnXiFNX+e7EOR5iGWt5L8Wlkdza8IM4+RJn/QrmzVDMssioOLkXZ7nIVkY2ABhMIqAwmzqRfjNrza3AZtznOLAQbUe2cqJtCbxnXjHzOizHyHwW91s2+jAn7SdyK/g6v88KDmKjOIEyVYUtupMqLpm7KClhbeFe+lkcodtiHxv8WF275CH8uFjBdmcDF8E2x4237yoTM87RdxTOSZN/oMHC5ZzdlI4NF6XDk5n1OsgS6WaT7gbgVbZwkPWhgLHR/hegVXoZoc57ZjMkZndimAX44C3d4HQ7gn0QoH2wtCbczijNgfbfpQdYe/E472a648DY/pH9wC8RFTeblgCh58HAnlEGL9Fx6jnvHaENIP+MvWrhlLRzjoW0XzhLzcQ4D7W9yH7ZwHrZSyNn/XwZC2GkThWbJMIPrN/hYXmRr/EHgUniskIP8zF+AMCrYmL1jCYKQ2XVMsQyjjKjhZ6Fx1wU/oI8TsoPSdTJYOtgWq37WEw/S+lisZ5k7/RTDJZX8MGRHczUCLvkwZBwOCMtoNAuvfyxbueHAStVKqL/Uu0ix9uutHEYjkSRHrKa2J3YwoLLl0m4kLTSfaOqDM4u43eHDlO++jtBtxMKqgYQMV82ajqUxHBRG1Opy2+9zIunL/M3LSvN6VgRZhV2LlxOtXWQdunFsqDTOsbn9BlzZYl3bdDG6y9xT+dznLRb+Y58nDkS2J4V1BVzsitYz5A0MhS43tBE84dtusMPtErE7yIhc34ftnqHP1Lg7SuyndmyHNCNrJo6StnkDWbrUzHkrNC1KBnbE7exgJ+QZfSyxLPc2KAO83SMh6Ze5nxxrQk+6eeHsukRaq6WAuWIGFvD+66d4ofvDLK2ed5NOOu/31TjXGI4JwDIbgc8pJ7HWTKi70U/B1McQIqWHQcE496Lo8//ngn2/UjyGkNrsJxI3YU6lY7gH63vZtahaJ64OlQp0QmzFRZRNATSykeo/FRZMSAuhq6jnn+V2aEwIRREYf61i1wsqOZHfAJXbBIkKeVKpA3ePcms4GF53lxc7gk9czTLij99GP0c7ZfAmhX/u7frEulLVWEzO6nSUU7Sai4EjwK+VMnqkEOSL8jf0qom8G2/tPMaW5kL+qjFJMXiTTZm+qUFwFWKTit1AjNjPSY09n4c0GyKSyBvmV7l2vTSWNp+1XTHgbGGsalf7oU4gRHDABplvEBqlx7+N/0vfF8/ZZxug1YFoEzHvJhjpvyk5nB5fjGX8it50XocgBd4nH7aQ6bVmwoKr44eWUauO5s2onnP17lvUTs5SmnJJMet5SYGmB8LxwiQC9RzgXoscWL28o2Zebke5bqbR58dYLxAH62YPkfH5R4SCeWtvPt5pn0rScsih1ae1u2cpDUdpwcYpMHvmjbt5Tc0bKUq1kmOyzKe0Gc5N95B3o1ZXqh9MKPu4yUdfGTgTX67Z4hvL1mA56ULCIfqmjiir7DZCnediNIv7XyF7b6fXpMO8M36z3jxjNLlD5TWegA11VaLnpwlfIXtfNHdTrsXC2yb7qB29gJ9iQ465SitjX2IGFCZ9CyLjhIQBgLR06tpAkGVfbKBbbqDpXSTIODb5ffhQvpoNxe5a+pqGFPnbAq8oRwuWUnjbNi5NwrsQuOZoiFOYAe+mwXI9ftlUsoYzyuOADHj5VM3PspR+wo1c56DrboUFBxGUgdV3ksZqW5ukkP5ZMqAbNadOBAUHMtUnuiikk0JDea53ZRtYY+znHlAPUyv60GxKE1KSBuM8KOFQ6d0cYC7vekfaWfwvSBdwbJCtBvH+WD7jXN4GICq2lQyYk5yxslrNaeah2UBquL7z2rwhGYgrwEUnnjwttT+ufCToSvf5lRCGDbdNnNP8osELpdXl1od4oIsCIAV418bq3Rl+xvsu0Af5et1c+IyArQslIU6QJOc5Ud8InMsfXDqsFyPsJ69dHuHilrp9eO2qXdyPtDIMLgFb8fHXBge6pQATy3Sk1TIGAdZ6wWoTiVvnONkXQwvl+kYE5QD5sBD+8UzVNV+gHcz3XFgTC/vgbLNt5k5InDiNL7ob1EGBcp0nD7a+Zl8hAymAHJSYQECg7yUo3y98D+Fng+6TeFbnDLAF7GL5nGWZ9B4xlqIlCmvJB8hz3GRXDxmjoRw8BfXcD1Ga3FYz15eTwW+iwpzdTha1Mj+ojaadYCzspCkSOjkXkKdUJfMkZuhRG7UXajaNMyd41t5n8chgS1JPnHpJfoTrUTvLANYdGkIC6Gvch6+aSjVHoT+3MVsylgbLLowkz3lp/dC8mP+PZbB8ufE3KvpBIgPtqvdCz8B0Jk4RqccQwRvSzccVR8IHE0XY2WNm/Te5/W6F4BW7eGpy1/jNe7nSOUS33FXVfj55Q9wtHA9C2+co3HiKtVNR8yJ3IhAuVxemak9Bscy+jk0vkEtMroKpEGloxZv5HhzLgjUJ49Re/VKOq4ZCuryevFKltVnuX/xvUQvgSuDgikbOIpT3LLlvZlsiz6LW6RuZg2L5o2A+IxyQqDJUzgyFsQYMJkmAAXjBxs9JBB8Jw5sxqQ8ZpglL439ogpMhAYTUiNITjjPkDT49KeDgRvFqV4HzbZaSiaoS/CQgmsFDiJ5bVCEMany5Iekd2s8EKpqTAbqlTkidcYS74EQC891JAsgjAWycUqA2unQF5G+dbD4pjxFq55I33SQuuvRFEBKiWtmgO+kDrBJko9f+z6j+VX+Nicp+2PglpYg3eaQWGRNC42dcEZaOM1i3AyfsxjjShw/e0DvqszDl3koNTWnmJDTvJvpjgNjx7UkU3O4nZQxCLehGXoMsYndvCpbQneapZk7yQyFodeKdJJBaeJ8Tn06L9BgnTX3emVJzdfO0DDl8HpVMwROss2bvMqlssoQzSeljZ18gLC7UZYJFmy/unTQzSo9xIwU8g15ygiFwHvB+7kOyD0AHJNVpARiKvr/EreLYiZDF2nXMcRP3N9k8Ww/l/Kr+AZfwBUhIUlW5b7j3xSQ1ByO5LSz/MR+3mlZQjIgzD46dpQlV4s5Ub2MM8WRmxFUsdXlvoqfG5mvYE3X0DvUwsGqNt6uWO1tA5j71eYkeq+nSVetQlomztFf3kzQvG3h0klXeN4DqL/JApgtxKd1O90s53U2ef4Mpv9KddxYSgNAx8JloZ7ifl7mAdnhl7M89xCFJ3MoG7vBq22rjMFdXfZVvQ8XG6vQYXP5LiomOrDKZjOC8l6zxdx3qpZ3+jFm68QD1qE93ShvpLRUTX83J7zMqcqpoHD2yj5aspyW0nFWjJV6xVjGsXe6na6hidh+fy/BvKsu+Pj1NoBE1PoVu4BmkWfB59F3orIs+jkbAIw+jy7w0XqC5cZZZYIKaOg5aJx1I1hHhqzzFvUorcAN8vEVv2D/ZCihMcAlrh2xhzDMHBuSJlLz/hF9njO0cFRWEnTij+sr1/Mntjx/3GDEfgtYw35zWl4sXLWpZ5DzmFAcBsBBKvracj3MUbkrMKdjxiVbyspjFo5KOiC0JzNd360h3T/vsC5wiAu+V/BpFOOaslr3c1DWEZJJEXDdqKc5Jy0h+Rwd13Rg20iYqCjIj/KZJ+Pm6WWuSGVamfXa9wKP8fvyXeB/vnk//RLpjgNjryfuJWMSZEtxAiZbyiIUK/Wi9ztpEOhPUoPaQ/4MwJSU8nW+kKZTXdbyNh/mOf6cvyTkgOn9tXB48OJrDDTOB2kJ0d4yNsKCicscamr3wJLDGVpi2hgTbyXFmP4zoZ8O2uj1Ii1bGX2zRt9mMf3s524TTDAwEUWT1OkQ1qxwLqeJB2QHI04NL9kfRYHXZQtiu9gFDubAtuWDr7OyMNxPxWWsmypg5uIVnq+p9Mp36clZzAtri0gGyfLo73C7+eDEz+koP5GS1yTGW7nofI6fVKZ9lASXD+gLvM29seN8xS5jvKwUW13MBkpqOzAjK6rQrx0cl6UsoYt27+LfNnqpHr3B28X3QUH6vSKZ5irl6etbPGGxTt5mm+7wh72Pdo6XLGPJquM09M/HYgUOlgmf4W1HumqxUx6CcqMpG/+0dBBEAj4cJUwyoIvYZQX8+PyGxAW4JMB/RiN0PSXAxuVz/ANv6waOycpAW9J86ypcrikgb8z2qjFtbb7axwjvrr/FnZRK5gaBeTcHUJAdZMUBsrjf477HgZlfxjIWfDeVQnlcmjnDIA3h2FU3Ky+jjMjzbO0NLaypPDG0RsFTFNgF++RmfRUFa3F0hGg2Nw0MSz0f0x/QxQrcDMCXCmkUBCUWqhqWzaq4WKiaGwlStxFcoM67nQBSccVSVjSjQN8KvN5m/8cBVTGKeZueMOAsptzUzS2q4h/GclQYpj5sGYyMi6jLoDRn+sNlEhgPbqN0R5MaeTeesohFaD8o6zg++8a76myRRQL/x00y9Utuf9wOEPMLz8w3KvP5imyn2T1NKqJxKl+xTmGOLEdORYpx1xQUS5PkMsdH9Dna6WWt7s+kD1h74Sh2YpY91v34zKHGSlI/PsqGgeNs7j3kOSt6p+MimkR6YqfaYU5DLtEuIC0wHGxekI+ScUzaA4Vl1yY5klxD6fR0iMZULJkhaWQwr4GvW3/ALnmQImvGTAWvH8zhAzsD6M1oALEAKjBbVsGmMy4JdbzDBBbHSzwgFhWKwIDVykRpEc/zOH3ePWhX5h3jtaYbGf3/M3mUSznzA7Q7FOqUn09FWKBnmK8jxhooFg7m7szg3Oyjg6/Yf8o/y2/zVWs7fbSjCq5rcXBmDYP5DYF+cvig+yI5JBFNmqrUwcLlMlU+zX0YZ/wfyG/zF9afs6tlnXd9ipUe34BwTvdr2sckBaI2unv4iPs8S0aqKBhv8/1X0rwRWXgjC4nlaarBcAspjbyaEQMAQ/4dqbZaVOSMUOvOQ0QQ790FFQsozbvj9MB3LZ2v9izpN1sAYyw7GbLsVp/jFt04EBYsP0pH8PnNygvkP0NLGogFy4kDQtnKiQM8qb/B324HZGQop4Eys4G8aF3RPgjIzIzv0YWddQxKU3heAnhywYqji9QORbC9wgG527tvUj1ZbqXvtIxsGYXkbxxPRD/frL2hgo0sMK4uczTIoCc/w3V8kBf5Y7bzm/p9VswdCRXhxw5L0ea9IzhenEP1YsZFeOBWcyHI1yGaM9tRruOEbhcIlOsC53RVZtv/DemOk4hbHeW1lNPn7YCsbFpl9HuUEQMLYVJtpq1ilruHOWqlt4iKp6eZKi7JZFyv/OWzR1mSc8wPTQDwYX7CIVaT1PCiei6/gVGr2jO7BpnT/Ndd18yB5o7wXVo+g7mev0Bgnzy1qKpFPYP06ZKAf1SMcAyknYWeQ30OrJ99k8s5lZyWxX4ssuC7b+sGPsYPSKjrXWcr3mTyIYCfrMiTotkbnMu7Squ1m6fdw3zX+iynpJUMJ/RAv86pzbftJ1HEv/KoraiXtfyEw6kTp16fpPvSoWV2mJacY/RIp4md5aWz1iKPUqOl2qoscbsJNvM4naF4ccdZRqv2cX5wCVcbLZyQALBxr1XwdOF2jrOMGQrpZhlnZBG7eIhXZStfdL/ECTqZ9S4gVlWGg1vaUW0xdHFwWuCJumw79wa5yQL65HN8deFDzImdBlXeSchOuozz/U0UkzoZInixu6sWX+P3vepSPiGRxVSV07KYK2JA+wVrnDq3nBu5NXQNv7uX7N5JafnIRXoXLc4ui4Ip+CzD8pLl3dTnGEtGxmIWfSdYXipF64sDcX7ZVnyeuAU+g89jAE8cDTGA53YW3wzaYtsb4PNsdYVAR8q53E0Hso3UoQq79AH/Vg1Rlw7tpleWePI0EzBpyLk42GdWpH+sjHezrmlBuqIpg0eUXK4zS36mPAZWcJBBbWQ+IxQwk77hBKhwRimdm2QgN32wqylngCPc5eeZJHXgJzgOqXYH2hWgqZirCC6TlHJTO1M2Xo/05XUCN59E2m8DS+292ev4FdIdB8ZWzD8FuiSqBNw8ZZt40Qj74ZewvajnCRxKZJIuWWl+ErNwz+blBr6HJ4CtDvdf3cM9lbvTqESgVXv5LF/jR/qb6aO2wIXyqkDV6YnjIuxd2Bn+PZX8CRhxhAyBOZdN7MY+V8jRyg6swlmGpJ5sgQ5D9+WpcjmnknXsY4DWGEEAd8te2rSXj4/s5B9rHsQV03dEtUBgHpeZohRVE4G//eI5FLhW0YNluZyWRenxiPRDql+N2JNQqIx2etmmOxDgZ/oI01LMRCrAridYBnIXMEA90dATpvx0u1ZcO0xHwYmQLCvWScNvHshMXb9UXHKFTjmK8EmCDvt7c1fwID9ABL7MdubI8QHSnMIJlrGUY6bIWPAV7TvBXyREEFXuunydhWffpubqFSZKa9m1qsoDd8EyLK5IJfu4Nx15OlVuYGF11eZnPMoGfS0N2kKAPbt2fb6wmh77CFesaVwTNpiq2SYeXp7dN/K/9/Sbw1f4act15qJxueKAcjZwlk0RjcqyWwGs1OfoIn0zRTcEXLyFM1vZ0XeyWZmiKQ5AAtETdxlgKRsAjfubet+T54ScyQncAZnlXlsg6C7gxwsMtTGJjWtC/viyTRmVyvhtumyAO8On8yZtCrYr1MY4EBtzh6YhgNmU70VGXXCU1SBwhSp6WGoIEws0ybg9jzG7itO0sMsj2kopdAHfLHOogcD6mP4tbuynfEfLGH69GRiP6xfV+EMK3ueH9XmWTo/zbqY7bpsyL+6+q1ul6CLiD05kkAKahABb9GXu1x1s1F0cZnVo8gjK0sTR9LuBAW+dHeaLp/+FeypeTVfj8c56oBCCAAAgAElEQVROHuQbPGUC3kXfjdFgRJULZZXx7fDotTDXROBti0XpOUcTrzRuYKSomotSY4LFqpNZpwZAlJdyZY5OutKm9IAWc5/uZqvuwHVtRq3lfqgIs3mWMjErhUxh4XBWFoVOHRUWXmFx61uUzzvPCzwWvuZIUgAkWK/Spif8AwaCcpkqerWdPtoZ0BYuSh0TzIuMc0qYek7uuOTqdVN2qD7hYOEaXtYH/Sr7aOfb1ud9DdbF5pt8nj5dwuilJha7J3nEfS40Lu9L7AbMBeYm/EVayzN3aV6lXXoz3ksnZQnhrWWfV9UcI5iyHHpqGrlQNo9TLRXst9aHy/LbZTFLDmNRfotojQ4WPbIk8m4MCIvQOlpYxWhJFS4uKuDisiBxid+5p4n3UnySxXtZxMnAgxhwdbOFJlRYNmUyUlaqjqjFJK78bAt38HfzwSh1oWdZ8maVwYF8wX9B2sMZM56X6AQ1ej78/FaAL9K/VlBJE6PyLdfDrE65lUTnTEzfzEoAvHipSkdZeuN4aMtQsRglJvBvXB/6dd1kfDPKcPDlZrS9kTry9Bq+zA+OVWgcsvCCnyfoViHp7cWADHJTW6mBPrRJ0kE3vpyLG6sQvR5YjssTVSjieCi61t7k7+BsA0P7AwF434V0x1nGatz5t5/5ZlpinOYVEEKKUMgMP5cPeX46mUIhX1ILepBBXDRnisPNc/TJYya6spb41+CYuw4zQy1k0Ov91q4n6LGWxgsvL4+Fy2f0a+yTDRxlVUizUBX2sQFHzPVFrlrczw4mtJyDst6LuG8YWdShTs+bk4FeqtdBWunlc/oMz8oXSB8+gDdkE0WzUxSMz+e6VofJw4tcj3Cdgoz9fxeLubZp6ugDYJj6zL7w7WD4k7dfOnxN1SHBTt7PbtkGkOFPlV1jtjKjhQfy7JYHeABz4vFVtnjO9Gnak5rg4PBv0XThFDMz87i3rIvZRBUD1QvYnP9zHpAd9Go7I24dlu0YUrz2iyaZpBTXFT6p32f2bBWv1G9gLhHUqvHHNeNyX+9v37wimNfCibpmFqYWdp8nlPAJqvQYZ/B6II9/lD/LwlWho0xIWdofyHt3pryZkukzuGosYwum8+Hc2/De3ZSxaaZoiCpG6YHwGMTJqpvJsCDICv4eZxWJvhNX3q3qiX7PNsdirBqxYCOO1pv9HuVZL/+kFKe3vbKA2hyuM0d+ljqMcubH1VLFRvkN+QF7dEssTYVMpa8KC9YbmV+jUsNoXg0WaZ/YrMpNXH+F+icmX6ifU0qqsFwPcUxWoZGdjijguSGFMeUEygZy9Iax4mYDi6H3PVkTC/40vTZ5bjW9LM3MfwvgnI0PMpSNUBlZ7pnOko7kraW/9J2b5vll0x0HxorPHoTWdbeXORtShnjhEGIIlzO0+L5CUauTKgxqgxdrKhhfwuKktJlwD97Wkoi5b3ETu4zfVhwzxQlkVRbIOfroMItyVPB6tDqa4DCrydUbEQ3D1NssA3SxglS4ikKdYbc86J3JM6Zi9a5U+oC+yLfl8zhqY+OwkAGe53HvWp/j6VMzYi6S/Xnuh5D5LglXvLvWzN9V+o6JBu+dKAoBC8wpm06O+c0p5SpD0bED0JSnmdKqffRIAJiqerHBPDYPhahwWKinmJEiLkSBnv++S4GnGV5LmayB6+TTRzsC7JYHCAkLQBQq5TwbCvN44+p8Jq9Wc1dpDx8q+CFV+YO8rA/yTXkK17awSbKWfRxiDUnvWqJrM02cHVnF+EQtRSj1BZc4U10fGv8eOjE2sJQQieFRDKjN1dnQb/fpHvbKRi8I4k0EVOqd6MId1SS9Z2NSGbvNWzLr8sjsGoatK9S65dTklDC4Zy8Nn3oPjMWll61tGQF0Y8FTNrlwq5QNVAW/x4GgbHVF34lTZIPlRD8H0+0shlmAQ1aaghb1KFDxyppL+QdF+ds8DG1ZCS536X4UKJSZWBoctcg4XQ+kY4OF+9TFpkO76JcOHA0uyx6A8dYc805MuIdo36QUrtAzA4QUOCqryWOGGxRm55245zE84G+np9p6M1AWUvrSNAqO2ZXw22VlKprBcrKNZwwvWCS9U+Ax+QJ9k5JdquZwneKC2pn1e+v7haZ317p/x4Exu/xXCCaZjRmjmmVIUIi32BuHSwtwglYwYE5y+BP9M77N70ZCQKT+Wl4Zxr9pXMvJ8LuKYzrvs60O97mv0iwDfN36AkRDYnh5FfHigQUZMMkKPcp69vIt+XzAmmTxkjzqbwm6gWsvHBJckhr+RP+M47KMEib5tn9HoRUpP91OFRvHctk0s5+agn46pYtz0sQB7vHaYvEIP2ZGCzlPA3PkslVepi0QWLWeQU5IwM8oY1JCjyzFUm8cgnQgaUucJ9Tu1x08yTP0aTt/Ln+BZrnW5JoEYsR5vw1LA19hOxt1l3ezQRq8GWGjfG/B/Vi1X6dvZA35yeuUN8xwmSWc5mFekQf9/nXUpkX7qWWIF+RxFPhp0Ub6a6poSFxiZ8P7cMVCXAe10nHCgtd7SCqkoR9PJ8wDRTrNWt5imHrqGOJB/pUH9V/5b/wv6Qua/SZnEaTRBTxWGwWN+LmIupyu7kHPN3CXs9B732Xy/B0net619HrufeZDnMUnToG81WKaTeGMpuA4ZwNcwXzRhTCaPxuIiwMScSA/DmzFlqVePKgKsvqn+c9c5umY8ccN9SnZ6wp9Nq4EB2Q977A+vR8S6Y8bEoktyVXu0TepuzHMm/ZGBhML0tuW3rvjVLCB13mdzaRBS5AuMaBFI2MRpCGUNPQnKpdvkCnb4vssS/m3AkJxfBeRr4JSqRdpltMcYD2+r/KteCckk9JraeZvpLdAg7TEKCSqFut4i0XaTzGT/JBPpG/OAWr0PKNSi6tCDkk6TvTybqY7TiI64xMQ48ueNWUApBitMY4x1DUnJ720QV/jDdkYmih17rBxHp/dx6n8tqxCRtQhgUM546QZK+CQGaUVE09rbX8/16cXsrjsAusLj7Cv9i5iHS4j4E/UxcZlvoxwWltC22yqtrewB7Wp9PcX5KOs1X08qj/meR5nzjvxFyw/3T5DS6p9W2f+f/bePL6O67rz/J56DyB2gCRIAiAJEiQALhAlrpIscZGozVpp2VmcRIplKXI6PdOT9Gd6psdxJpaz/tE905+ZzHyStsaKLdvdjrPIsiXZsSjRXKTQEldJ4AKQBLiBBAkSK0ESeFVn/rhV9W7VqwIp2/o4NnE+H3zeQ72731vn/s65556zl+ZSY0h/QNsQ8Xz/VDmOaxNr2GkCp5Pl68yjwTtJqxzmiBh3DxlyeJrBwaXFPcahjInjGDBUVbijf4Ad0yrzUlYACCO2JMJRaeEFfZb5dIXm7+BRN3CRSyVlXC4uIucUJTLkwBP/6GgNTplXcAtVJcO4Kl/N/A5eQ3AbSqOfflmCspR2vs5nI3UcLF9MR3mLHxvTAQ9mDPdTUX6RLqcJ24GiqgnREThgDUmVjOfxnqwykRFwOMNs3mcFn9fnmCfd+aPHa23cCRLnhBoMa/NaNOVtvl/cwoNjK5jlVSMIc4a2wcnVk0eVCZRx3byz5iSBMImuFxjZZSaBuiTNQxJPjH+Pp7PrmIgnxdufpvEInsU3XB+whJed0takz7Ob3C6mOX3spjYZUKpSrJcNUEoEjYGJh7nlXDB+Kf27RCWnmcO2ko3GWTOuEaIsb/i9UmcCXxfUaQvWCTc+E8cxAZQm5Uva966n/DSAHMxREgArEFoNz+6TWfRRSwik04B+HJSFaTS5PeH/11/uceajwD5ZFQ1wDsyVU7TpB4yPlzCve5BF5yMe1X9q+qUDY4dWroHhFIZ1LZpIKxBnBDGQMiTVNOmxiAZsUGrooJWdU26iAL37zGGV9w5zxk9zsxxgj3cblORBUB2ncdRjyK1hJFsZqa9ChlmafY9TQ8volFb2zF8GKKKgkiApgLn9ox4zcufpK6plC/fhiBvVGtn9BgjCTYTjYOykZgz0U895ZKqtccq/HBlcNugbzKeLESpZygFaph7BBML1KNdhHFFcNTHCPpBbOMAy6yYk7Lq0HqdS+UsxsSQFjwV6hLu8LVQOXUZrxiPOBDN4lJUcQ1geuUqdJF0dZwHHZUH+2EAE1OFszfT83MbHwbefC7z3V14YY6W3j0MVzSZ+nbVOhFg4k/hNIB8Qf9z7LttlA8dkQbQ+EVyDisO2n6+cykUqC25ZZvD4jD7PO9xOu9xiLgR4HnMGzlN9eZQDDfPD8VDJMKbwN/LvjIsRifcztu7D/2O3tZLyJIx1vZ6m8ozLZTzOOv3UaQ2oi0cFdG+fBGMJNGXcheDkJ2mTtOl6wZo9L0ngIa38NIAW/z8NiJmEdoOx13RBX5LaH3lm8d6kvsXf+Zhg2J1popumSPZivcqY5N0YhBqrpPrjYNB+NiEQJO+V3gchNVykn+mFvGGiOQ5ZbIKN00Tg8FrvdzzNREoJW6CMj0lBWbbne8Ojl+tu3x7Zto8LfKNNELYtdbxjANVOnwTg08oHzjOL85IkoJqIASoOTpHH9EtvkVsSM2/5KemXDoztmdkAw6eTGU0SJS1KSJYY0sAaME+7mEkvx8iH/pnPMf5SnmM8MByPhaJxUOrPDVA88yqOjLIX67aaKmfxA2BnrbosBD8+bhhIT3UtrhM4BHWN8jdW17zRy5RfGuXgjGn0FtWF9RhPzvnFGgEnkH9JLAY4SA0v669RfjzDr589zbeXzPGBQ/BSOHgKtfSxkc0coZUD0oYnypzLPZwua+CbztO+RilwWOrg+mNinB261Pf3caDipjCWJOpwVJo57izAqyEW3Ntjg77Ox0q38gbL8i444i9ejFFFVP7mh5SNzfF/dblbNzOfLl5sfIYc2ehNK2A1P0aVMFSUzQAMkHNZr2/SJF183Xnav/Ierbfg6Ntvu7Enyc+Xg8tn9Hnukc3M1RN0sJScmjY9dPlVunLNtDM/xjAdI4EXdD2duYYhTdKMb1Mk0xW6m9HRqTg41HlTUTURIqY478P8zzFJhdRTeg3Vvr2ppIG1NLCQVM61KE2jkNaWifipvc7j+eNpI+0PAjtPsFkntVeEwJ+eCWsTHPXnyZEcxH1KxdsXp2CTjwPhJN4Rf66Gx/Yzjci+MFGfIv3JMZV+xrU477cs3u94nUmANQFElusQl6QqOU9YXmHzIm2I9DuDaI67dTO19LEkCCWnGJthW7hL4i32npQ0rnb70/qXlmaid6RAMJC8aQnCB02NrG0/P8FAfHj6pQNjtXrGfPkwjOZav0308vtAoExG2aibQeFduZ1b2ckwlb7rgli8MZ+qcwN8v+5ePBwy/Ao1ejG9/lg7r1LCmYpaHIGS8THyCznmOtVv77Ipr/Na6aOoBdDyTCmvwQnjJtp9jRm+75NVuNMyODUej+1/i98f/hbfqXg8ohUUlCW0c0Ra+QuMZstxXNaXvckgNQaAxNTHZqvPO6fNZseY1l5L9iaPsfDGn4Pvtz7SD0Epk1GatYMNvMkb3O+X77JAj7KUD3hFNkFBGCAlwgSS1oA1/oFtWbc0hXE0PRUWaTvFMs4a3clGNtNJK/tYFRrjOrg8pN+llFGW0k6rdPCyPk5OshRqMT028jrztIsX5Zm8A+B8o0CMhu4u3cw9YurbzgZuZi9VOsBa3UZr/WE69XOF/bieDdCnUneURqeLTllMUsD2yIZUwMDgdech2mZ+h4f6VjJLqwGPssxm/mlKG785qRVLpOGMtcEmbaoTgZ54moASAc6HoKSN3X5+HcA8sU9J6RMpE02TACTSNR8OgylhbQDGtCT6eqW1N/Lc4htpIChelv99utfHBafWByoeFTpkNOtp72NBGRn6qc23OQ2EpM13GpAHLkllvm/xPiTlSQIx8XoQBqmhSbp4hU3sZbVxc4QUlpEApCJA7Fp8LF5OEqUB5aR1nTKGR2sa2VZ1gSfSa/nQ9EsHxkZPvgS6KY57kul6Fmj8WQoj2K/LOUozADO0FwX6mGHdEizcsPqzU8PnOS3iMoV+aBJRPia+5QsNv82vXXqVKbX9ENOg2Hky5Bh1phiHq1ZfGvQUI1LFEPlLD+VcYoSq6I2esO7g/p6xMfMc4fCsudx15Z+YX3HMaAV9arxygpYpHXzXBxyeZPw4ig9M2DfPt5HyNMNBuYn7j55g4zSPH8zOWmnjk2sM2l/hcc7QwC26l2IZJ6cZsrj8tvwtJ7SRAq/NwCI9yB0XzvJK5TrOTylOYH5WAG0/Tw9zaNBTkWZUMEK1DtBNE5200iod/JH+Mf88ugnXzfJQ5T/SKuZCQietvKyPU8EwWXKMKdgu/xZxkM/q82FopMh4BcDVvwnbJF18RZ9li9xrQD+QlXHWsZUj0pqPUQrpTCqNOalyOVNGJ4ujkR2CspLyR6ZFGNcsA+5aZmkVqoqIMOxVsWXup/jN5Fw3PGXcHF425p/rw4KntE0moOsRVO1y0kBeWrokQGPXey3AltQPG+ynCRPx3/3P0HWOutTqeXNxxU/rScLlnbRxtwBGvG8NnKCHxvRy/LwXHd8UQo0t63DcK388b5qGy64/CSTHx8MuIw3UJJi3mN9yYN92jI+Jld44kJ4ejpO58HCbubAVH8eJhMK0NZMC2iLjMVFZkWdKRDt3PeBeBFQ4PmO8sO6fgn7pwNhQl8Kc60ycJD0GlDZ5iczIilIfIeNpv368hzPFsxPKjKrcL9kqZ98o0VyxFQKj/ozn4jrGUWgOONtSwjpeZzMbKLD78usKjuxMUNYgOK/LOakjR5QRNehZGjjDLllDgeGjH6DWpurqc3SNzQeM9sfzNUenSubQqa0slXZzZTjuz8ZnjPZ5f2CIrprDUWV672XOzJzDPzckeK5OeYl3y228pyu5c/gtLlTUmAgAdPBlfi+az897RBYxMzNAX3FxZBwWazvN0sFbus4YB1vjekwWstDrICvjuJrNawv912kbG/kjvkgLHVQMfIfz5xbi3ezwFedZBqlhv6zEI0OWHPfrq0ZjZ1GFjiACB7XNV43HNYguCzjGEv3A3GaV6DFnTot4nt/jHHUmxErQL5sJx+Zxnh7LewG30wOe79bESxISwjGNHovb87NieATVSsR/5soy/s2Gn63DxF8mmnuxn2MzY04/47wpSXKfiK61OU+Uz86fBsiv1Ya0+q6ljQhIjRhI0lF5GmCK/JYHFH0yA+PYedzYiiXVlQZm4x7+I3kkj9GSAIP/GYn5awvRae/QRHMPEJqmSHr++PufVF7BGBqv+BKCqpR+2eWo+rdaLcCaNK9p4D0RCFptj9drtzct34T9TVpnsU+/jHnaxSlpxFMh67m0HdxX2I6fgn7pwNixcd/T+PUwqOthZNcEYil1+eDFRRkuSpF80l5wf/FncLldd7BT1uKp4qhxpWGn2SZ3U8alvCrXLtevz0FZx1aa6OJv+RwegiMYICZRaWeXsxpHPUR9W7IYI8rgAR6uGjCxtGwvf13+by3Ht6bfnjocpI0l2p5vc4ypiJ8jDzLgQb5Lty5gYd9JGoY8Ds3/mMk/EdONPRsny7bK9YDxxwVwRhKMLcXYYG2feke0fWo0gD/gEXJSFD4Lfh+jhFedx7nzwo+pKhrgXOVUdsua8HdXsxzQNhTYXvxxztY3cyBT6MtsTOEANxFn7tUM0qGt9FGLg4ux6wtsXcxaOcpCjkqzX1ahNBs65g2lWodEWw9/DC8G9isJTEzwaOUQh2hLZ6wTqKKvVB1H/PFXwJmSY9W8qanpb3Rq897jGHXX5k9JvOknBW1Jm35A8bKvBd6SAJdd5ocFcyEQc5LTpoG7CB/0bc4g5Hm20X4kfVI54f/pgCD6zqWAOQsUO4ETHp+v3qJ72C8rY34pE9pWAKycqF1VQd74bVZ7PFP6E3un52o3J2RB8hhNCDZjbU4CUklrLRWQE007kYCQRnFwFylfqdVeozmNefM/LvN4RF+mjFEWHS7C6f7Z2oz9XMIhiciviki7iHgicp0eWq+PNoz4tw6TJr2wIcnP7YlNW0Dx9PZfkNd/UUakIlqu/7maH/O0/g0b9XUcdQvyuzi8LetxcRCFOZd7jNG69ZJ7OLyl65L7ox4OLr9++Zs0ayfDGtzIDAJ6O4WLWBw8yVB+5YqRhXxjegcTHklQHtTvsUz38xm+wohUho5vFXNbxlHXADVp5yBtqUdcM237PkBRXmUT7bKMV2sfpL2+kW1zayNpDLmF423NRcb3u+VJhhwZ3tHbiQANoga8xNuHOYp0A5cfKcy/u2IOU89eZR8rCZmdz2QrZZg/ly/x5ox1HKhryOeLbEwOXbIAiPZFR7L8BX/CFrkPRVg58D7rO/axpKcbUfGZXeA7J5BgiTKZSD0ZHtHvsFH/mQY9GW2LX+dwRCtrlYVhrp0syj9Pk0wTNjBFeFuaOCsD7Mt00Sv9FB/8f40H/l9g+ih52ODUkqCSQmARUBoAizayMG0a2WmTNke73onIbm/8L/4uJWzkSf01azYGbOLvfxw4mX+s3xI08/F2hM+8wncp3n77M+l70phE6g60fIYPP+C9wr/nP/EF/SKzOVmYPxU8YPHzWLusMRRcyhjxx0QIL0PY5cTb6petOJyQpmjd8X0xPg4F+6CVLkZTsBznJrUlbQzifM+mpLbF+WLSOkLok5nY/Dyfz/jgXEI7t5afw6tfXNCXn4Z+XrEpPwA+CWz7WRe8eMowiRqA66E4CIs/S6OkhRBZDGaYp2ofd+pWFmgHi7SdKh3gHLM4z0we9L5H80A309zzVr15556eCCfLGohIOL7H/CqGUpvm4NEy5TADF2eZmywBoylQIUcBykhpGaIey/sOs/bKTpNeDCz7vjxGu9zM13maCjV2T47mKPJv9n18+Ad8Xp+jWTuolGFTU4JkdE7qCSfLX+yKY1xbiMPRGQ24CQywVvsCpXk+vyX13a47KCKHaA4B5tEV/p/BZbEejE6fakH/GzhFhlw6+AAqigd4r2VeFCD7tE9X+Ab+KeFG/H5pgkPCQ+WLyEkGlQweDtVV55lSMszpqTOiWsKwTikcB6seQRkcN5cyxqQ438gYoyl4ZtURhuiyKb4ZxgGCGm3n+PkeXivew67sMb5fvJfekjLY/98Sx/QXiD4yHtadnR99YI9r2sY8EX0Y3pUEONLSpwHE+MaXVk/8MwEkCS6L5UBynoJ2xNojKQCloF/x99t6F5IAgl1O0hhM9JslpHs4qDgowg+cxzgirYjA2cDXWJjfC8sVPCQQRu0+2RquhP1HgTo9Y9LFeX4SmIzxw8hYpq0na1+Kto3kteD/lqOY1E07DZyZgvL7QJwP2fWn/Wb3J7Lu0y+LeDhsZwNDs7czf+pPCjSS6ecCxlT1oKoe/ijKnt429pNnTpOWkhhQ0osdn9jYop1KP4vlICekicPSxpvyAK/I47wvy3k18wk+VvYmy509gEbL8F+2fKBsD7G0OzPEUpdGNkQDng7KUs5Pq+IgbUzjQrSt/gu+arQTJ7ZYPckwhVHaDl8MAZdgvPQHWqcRqeTz+hyf0m/x+5f+C6VniygqugrAEWnlazwTc7gK5vZj4ELDWoJWmxyFBed7cNQDL8oYxnNW6JICJiHslLXcr6/i+CP1Q3mYJ/QFbru0i7W5rdzBdqPpU6PFumvwbWq1N9LGy5TxpPcVNnqvU5kbiLXf5DsqrXwgy0w/LAbkkuVs/Fg0jWn782ST52ZMv9U4eXzT2cjrjesYKq2AJE1YQhnhkKqLox5vFa3jTXkg7+Q1qV1xAcT/njEzXvg++GsxHLuETeqOC+9QN9RvdJUCnsDpuZ/gyrvv/kJrxz5KHjYsldEHE2xkiZvVtTQF8edJZX0YsJe2+aWVZW9waW32vysZrmoJxG9CBoIZZy3BLM6rY4AipY7U4NLxz6RxitcT4dlExyZettUmDzhAGwe0LS/4hOny77YFuxLKNDZeBc998DeN6G39Bj2ZFzhj/WrQQBgNeI0V7m8CniH+CYp55vMNGzwW5FW/vzEzm0j/0/dZBVbpj1nGPuqCYPAFfCy2l8fnJw5g094ffx/eJhvpdBaSmXaKnyX9q7cZE5HPAZ8DaLyOWFANdFPCLK5Qfs20ISVKSz9BngJpJfq8S5o5zgLfq3pM0lXlraK1vjo4gfFYC8UsYVNGLvCYb9dvfSoZTssc/lE+bXmKj9JKfZc/KPk/+LveZ3hr1qq8N2ugfPoFhs+7NA70MFReSl9RbaR9S7SdZu2Ezqm8XXoHbzbegYfwfR7mZvaG7h9Qpe7SOR4s/SeOSxPvyfIoMIhs4srazv3M4QQqywqY5XBRJaKe/27EXi4xFxaO04QiYaipbpp4t2wVnmTYzoYw/JNHhm01t5s5scb6hDTxIs+y8eTbjMytjvw2izO06XtskfuI29wFlNFxwzXTNji7v7F5u3tsC52XlrC7Jgjqbt2sC6VgjcxDgTQuBrQ16VHm08Wbcl8y2JpIyvXLmKVnqGSIDlmC7THcgFLlotTG8uTLr5naQ1XVBUaGZqKqODjUe9MYc5dQcgM4ff2w/Avgtqvv8oPS+wt5SCKQSHmWln7ixkb/t8tIEkInakMS+EsDaWkgx6/rPW5JLVtU8tpi6zcHlxW6i32yCk8zvvAn0fWb1K6UdxJ1yaAs1fc4Iou4bIcSSrUj8ygI7xMRoIK6XIpwWaLtQOyiVVzAkQyqOf9CTb4vRutvgFPw3LNuP67v62Xj1NfYl1kZxhX+nPwN23QDW+R+4yjab2eWcT4nf43nwbsjG8iOCqWzzlPBMPtZYexjLQfYDh7ztItpepE9zhpUHERdbuI9PqnfpvPKEv57yRP+XfxAmMw7z3bVKbRP9sdK8HDUw8OPLhJbhw7KI7xMi3bwAp8zvjl9mqp9PM4/cI5ZvCKPR8oOXA2NUsYgNYxoBTkppo4e30bbaCxRU3+t28e57EwCe+gDuow5s2JC009JH9oldNIAACAASURBVBkYE5HNQF3CT19Q1ZevtxxV/TLwZYDVq1eniHcWzV/Hr+x5iW9U/lq6NGgaGFSQ/D3+Uk60aV2L/LJUHLxAK5QQX6xYxvNSUZLEG5QTefkdLmkFSPDiu2Q91wrl4/I269KNKlEelZfp1Bb+uW4j47HblVeZwjeX3Bs1DvXL8cjQeWUJnJjK/su38UbrneEV8jEVLhI10q4v6qVRTvB1ecaAtPj4+S/fJwe+w016lAMtcwyTiM2PpxlEIjJiZL6y5FjDTmOv5o/zaebgirEB01gA2oIx9+vzyHCsZmFBRIOH9WXmcoIfcS95T/gmB34g9GwgIabNpdWfOJNYVPY+LV47e3VZ1N4uwpTz7SnVUS5LKeEV7bA84bg0cZe+4TO0FDAYp8jal9Aw2cGlVEcYlYowTaU7wmCmKnXT3iW381DVt5jf9yBnnH7qvRpmaQXFmYP8a3f6+rPgYR+afwGbRv+JvSVt9MrsiQGWqSD9t+uhifIkzWkSpfHQNB9+SRo0yW/S8Xojjk3DPIqDx3mZWfDbIm3n03wTgGo1Wu31shVVEz3kNHOMYOEfc0XivFrgopwRzlHH3KsnqPfOMXvoLHfM2MxRZyF/Jn+Sd/8TttejgZMs1oPGR6DzLK4l1LQMX+RIxbSQZ5iwdC7r9Q3WsZUWTKzDL3jPGX9czho8jfYtAG6/5b3AcVnAlSvlTBsc4WpxMbcPXiHT+C8ccBaxlHZ26RrelY9xx5kx/vD9qYxWb6KqYQu7ihponfltFkoHKrCDu8lpBgeP9fom6/22qCeU7p5HW+4hSvuuMjKrg0/31rP54gfsbB5j4azdXHIqWKIHuePgGo7oIt5r88hhAOUn9dumTyemsml0Oz01tVRnLlBT7VExcpaTl2cx9+QoZTNv478unW7gliqeuLjq4KA8dPYNqoauMN58iQoGeZv1HJYlADiqPHl+Kwv6FnG8pIy63BUyLS4uDllc/s2lv2bmeY8ZjVuYJb1skXtg3KFuqJdFF97j1qrTVJVfJDNYxPETC7kts5Zzs3ezseIg+7SRXC/0M4O6y6MgwivLa004c/WYfn4mj/zGf0h+H35C+sjAmKre+1GVPSHNvZX/DLDn27xU8QCXqAh/yvhexFWyhdJdnJklbVbxZ3FGONHG5qcPXLK6xN1WuDToKQ7J4vS25AuNtHuIKvLG+A45J9AkeWQwPvnTGHalDtJMBy/LJ/0YlbYbBZe3xQJyQVus/u4suZ2PN/8Rb/beZRz5Wdqbej3DcVkQMq33ipcwqJ+NxMKMj6MAN1XvormqE6Qfh1/FtcFTkCXB6D745Un9CnM5QeBG1iNDh/8CR5P6UrQqXnC7yCovq8qG8lc5yWcYU8O6H9aXWTO8l4qKflawK+9l35QUflsqH+SjMcTBlFV3fE5UHV6RTYw5U2jT93hfVhQAnPiYRYOZRzc0TzN0s4DK3DCDRTV+nqjPoNLxUS4XlUXLtskqazSoy0/TdLmLfRXLEzZW8/9q3Yn2L2CmV8VMrwrBpbj87yn57H/5V68V+3nxsO6SOfRK/cSJ4vwr/n5/WGCWBvQCmmjdXgvQqUcpo8zUc777lLACxAdVquJHechENT6+PqWgfxr4DnOi75Z6LB7rYHS8mv+r4t+TI0uWHOvUAIxWOvgKz5pb1j7fNUfwXghGlg0c5OjVJb5DbqG/ZDoPe8/RXHyE3vZbuTB1BnPqT3E8Oy8iFGXJ8az3X2mmE/AQha/Js8YVgirL95/mmepi3ikbxhnro7+6gdUlDaya0cmVsVMMDi5lILuKlbNy3He2it2D52mvnEaP10tX6RWar+Zwz5dTnd3H6gUl3NvvcP79AS6QZfH02SycMZ/uPRUsm3maq1XLqc7t47NXi1jYNZvi+pNkpq6gToWss4MLfQuol3kUu8rnSr7BsLuMR5vWUFfSyulT+yl1Psasswu545Of4P1zYwzuvZWi3g10OaPcU9rBLcULOHyyhYbqc9y85D8yu7qY8s07+Z/f7uSDmfXcNqWbeTXK2ODHmT56B0vHzrGk/xyr6m9izcrbcA+9wuiPvk/ZXQ8y7tRw66HT7GioYPbIFSgZpnvqFdaev8jM7AqOFV1hQW6UMwM7mHl+H1eKSjlfXULz+V5uvzKH/tqFDPR1s7K6ljtH4fjc6SzJjDBt8NNcqM1y6nwX9867yP96UzPV1SvZd24fu3qn0DTr91g+c3m41r730veQPfcz+1IHucpDXGqoYqZzldEZpdR485l14iLtZRk2zpvFv/0ZAzGzfn4Zae6t/OcAlMVo07e+zY9ntiQzkCQQBNcHtBJJ/c0xz1zyt14c0BwOoL6ENJ+uSNpUjUrsWT099DAnBqTMb7frDt6VjzGmCnE1LzAsNfy1/juOuIvQrL3Zm009kRFaNE0u4jguK0vfYgersGMmDlHNXbwResN3NWu89Cf1x8+nCgeljWbtQFV8DZilBUsaE3tjUhiRSstHl/hJkjU3ld4wc/vPcmB6S+R5ydhV/vfe15k3+58RXN7R21nDTuboKf5m7A/IDl2lpegge8tWh0eeQX5Xs5zRBhxxI0cFBdq3BPAjeMY5ouS7XLjOYsAxDvjFC/29Obj8SO7BK7I1ntFjz8tFpfn/E8YoOvdRENxd3liYNwC5eMw7d4H5/R9Hgctjl6ke/AZ/VTyTT3gtrGKSkui1zCawBSCb4nNzLYFxIqCUBqjiQC+J0oRF67k5ATCxbS9TxgmZF+uDsbVs4TBFjFOlg7wt66J1qBqB0g4ZpIYnOIpvi5h/LoDbX8YPs48xVmEu0IwrHKSNVjrolFa2sZFAY+fgsdzbTbUMsla3gjq87P4m79UtCoXQcYUdzga2ywYuLK7lg6LleQ/ymkNUaLxwljsv7mJWWRFe5SwyVWe4RzbTqCc4wE3Mfn2E5nMjfOqFr/NUwWB+JXGIm1MH/9H8109Ff5lvO1ZNoAZgI3dMkGIFzcs+GXlyG8AD9pMHAbgnlrN5ze38/oS1WzTvNyl7IO/2+YH7YlVYlBfZPp1aXLwtACxL8v0Jy2cuj4CwgB59/FF4PLWKj5x+LmBMRB4H/gqYAbwqIvtUNW0ufqZ0vGJ69EES04o/uxZjS9tk7R3VAgUC4Xm5kQ3N5nhkfDEUx+qZaANXZU3vfm6asY/dmduijNgHJjtlLU/p8xy/egv9UxzOMyPvL8ZP+5ZsyK8ES7OVH4+8n5oMOaNd1AwOLg/7pzWrq3fwsM6LnM3Pky5W6bv8SO7JB732y2/Qk1QyxDjF1Ifn9EIROeObTDPsuPgA7oxYuKCkjSYCapQKHaabJhzcUKvm+BcGbNsIgGGnIgrEfJp+9SJ97hhvyLNsYyOeZDhIm4mhWWvmaz9trNBd7OZW4gb0HZLgtV4D49ZoTM0F2kkR4wxTZf7soOM2hXMmNOqxvH2hvVZwaPHaQ1cV9fSYGHBpa9lfJ4mkiu1QMoNrjnSttTMQhM6KtM98eir8eObNfLryPDJYTVlxKbkZn6HJe5Odxy78Qvsa+yh5WL83o/BhkjCUpBUrAM+xvHHgNFG5SZT0W4LWCqBJj+aFL9thtNVORThEm9GAxQGd/z4v110A7JHVBOHIwKFN99EuN0c0aQq8UncvWOYWiolp26GtRkiTwCzBnE/sddaQwaWyb4xXax8iVxu1H1WELdxr8gWXkcXYPN2k7/Pw1VdwT9ZxunwmWxoWs1Teo4UzqEIzHSx0OzhyaR4nhks49srLLHgk6uR5kiYJfk5gTFVfAl76edQ9WFISfTARc0lKk8T00rRm8fTmB4y1lbKcPexhjW9L5tBbNCOfJ6kd9hGU57HkTDerjhznX7LroTa5nZ4KXSxgx5Q15MQhS46p2hcx0o/UlQZ0/DY/yPeMM1SMV3YRCITT3xBjp/EqnwDghzwMEHqmt6lKhuhkES5ZjtPEZ/R5RqhkCe2oCl+9+D8w7Fb5RpRJGrBCrRJAuQ7zojyDhwGLq/THVDNAGaN8Xx7DUyUf/1IKtYl+v2uyF/m/523ClSCdhPZnQZrg+FXQ6EYDDFNFAGDzoOsoG/QNXnR+x4pZ6bFU2v0xtZw9htolF1XHaBisGKenZJ4/8E7BGBx2lhKAtF7qCWzZIjSBptWe+9lXzvKEvkBXyQKWSjsv6O8YMB9LVzAffjt3O7fy/7Qe4H95F0QEyDCuN3P7gphQ9AtGHyUPqx87z6mymNPXn0bDFXwPfre/p/G2iepLKs/+9L8bICaFaWwtVwB4Ut5DgL2yhiw5GujhNHPDNB84N/NZ/TLHpYmDuoQeafTfh0JQt5tb2S8r+W39Chn/dp+Ab7aSAYV3K1eRC2xUI++HRLTswXoXYA07uWnKPt64+T6+lXkEBYr4JJ/X52ihgyPSyoFMGzNaT1PWO8T7W16bBGOTlEi/nMeUE1AxV2M3YRIoSbKEZAYVZ3gF3o6JMhkAyeBpjiodQMRslB5EQirlN3gbfAT1eGTUY1HvSVAYpKawrf73DC6CMi4ZE0JJlVJG6U/rexrQ8W/xHNcmE2JHHFzNcIA2mumgEyN1XqYMETWuLzTDW7KusFzghM4LDepdzfIDHuZZ/hoR+Ev5IuMzsr59nQ1CYm1KIBPoNgBPMMYUmqSLr/O0iTyAstzbxW7HCvdkkxq3FX1F0/1+2iA1urEFYZCSox/EveILJ2Q+jXqCPxz7M14repC9sgZF+D6PFd6wRXmE77BK3+UVNkVt03xgKGBAGkrUS01+k3U1E969DEBhfk3Fwq8kHAevmPIOy9jPMvb7et5rbNJWG4Ny/n7aUh6oGeWWwRzgckRG+Jl6Sf0lo+5iP57btQARTAycrqX5iv+WJlgm1ZWkoS6oLwGIJbUPonwzfO7fDpQM4woVOkR4Q1nMzcj3ZAV/oP+JF3jWxIWM9y+syyGnRXTrQp488W2G5zpUyiDfkKfJqZLFpX7KCXqwbPUSNHn2/x7Ci/IMAryY+Z3w8tK4GlOL3bqGV9mEipBZ4vEbh59nRmvMufIkTZJPNxwYa3K72Of4xyNJjGoibVcaY4sxoAw5luvuUCPzqmxC1Ym81EqGq1JiaY2idjzql1VQrypVly+x/OQR6oYCSJXG5IwGqJRRitRl3DeWlVgfDPALiooFxvZ/EDU3BOdJF++znED9P6plvMm9xlAVsXxSQRaXKh2KauH88kYl6nqkR+bylzzHWt1CTrLG4anv1yyudcLXbkWmKA6C1ACUD+QWDrAslIA9dTkvM4gb69vkkaE3a12is+ZYNBe6ixDBt4fLt6uMES5Tlp9va/5czbBdNvB00fMcpoW9rEElg6s5IgBezE2rUS1jOxvoCLzfRzaF4CqIBcQi2gdbE2vPpb1RxTdxS1Pipz8gN/Et/S2OSxPztIvjgd2PPeb2OAXPYxvX7mkOq4c6KXN+yHLJsfPYXb/Qx5QfJY3bwmJcW/RhtVdJmrGJ0iWliWm8wjRJoC4OzOLCqUgBuwJzuep23cG/yFrL3tG858b1gUOnLKGO0xH3BbtZTSetzNcuRDw0YvzvUaUDDFpH6aOXq5h+8ThQSndjE8t0L9UMsI6tnKSRvaz2NeDRo0rBY3oQYDyswAC8Lbox75xazSWtUcqMyYZfhusInSs28MSjSws7P0mTxA0IxtrGDrGvaGWy9iuuto8zm4imw9/M4hobf9PtZxqP8DKt0sFM7eUF+V1C1wN++gO05espAIHpUuVQaQXbm5fRV1lN69mTVFxNiR4vDp4Kr8ljPNGzk/3F02ivbeZ0wMz8Mus5yWUto8y7xCLnED0yx8QhzBeEqPIELzBCJXk3Gspr8hhAqMbPqbDKe5dqBhHxGKSG4ywIS8rqmIn3GLPdMhJlFiTws2OAoxsDqQCOeizsPUVnXZLxeFTbk3cnYjSNJrSHdcxmH5kkzUVE0+hRhMuTfJVWMdrALdxrmLffhlEqCB0fxrSUisM22ch6trJE28N+avyihK/R3Cr3JB7xRtvppLfXBmDq5vsZ89sm6vp31jIF6+0YLaHdz/uyHGyD6SShJQ4AVCnylFUXPca1hSF3PtXZ77D4F/yY8qOkRu1mIADgcYoDsZ8UqAV542XE5zRNi5ZUTlyTZP4pfBYHamIu7kzhCk0c4yjNGBszYb4e45g0E/h3yh+7O36+DN/it+hyWhIwnjIkNWHbMuR4oOxlTtwyj685vxFepsoyznzt4hvytO/uwhgy2Bp5R5XHeIkXeYacZvP9AooZxxbuHtTvcpwmk8Qas1lltThdM8DyxjFJkxTQzysc0s+NThVZcQJt+jBSpsmQzxeXEhGOSQt/Ll+iQ1vZyGbqrpwrKHIWUa/viZqalOMAdTIcqG/ie7fcSda9Gg3pY5cnxt7hVN0o1WMjvluJTKS8Hhrpl1pOZ+axVe5hOn3RPovgicOOK/dRwTAZy6Ox54f1sDf+fc5Ktjl3sUXuY5+s9G00TNtyUkwExFp9dFDmaxdrdQt36WZu0T0x/2hK80A3azvf48isOZG8AVVrf2wMDIBaobu4JpBImIMi96rJ52sVF9BptFXaSgsdfJbnCUNM+WNlji1tcG8BdRwO0EardPB5fY67dDOLOBipW/ygwaGdSmRtaWQ87X5GxtOeP3+LKRAggIbxU9w8vp+IZtYuJ67xiNSZAPxiG3PzQDd/sauPmweMxlXJsqxx/aRWbAJqnNJpvkwEgGLvOHBtIJWkuYynDb4nCaZxPpRURhJYtNsQyRMtZ5ts5BjNBGtUcVgqHxhnpn5+825Ft63D0sZYnK+JuRiVd8ujbNA3EIGvOfkjRfNOZniX28lhNPKhztgWsEUYoZI/4ots1B+GETwEj3JGjDgVCmRl3Co7I2MtuKys/SvOdu5gkiYpiW44MNZDQ+HD6wFBSYzO1kbE04oJi/OKbOKP+Qt6SyzjfF9K+3X9Jo/oS8zSM8zTLqIbOIVMsyBemOCKw3tzW3yb1XRAOSRVrC3d5YO2BMZotflt1kfHwE/XUbqQr8qz3M4OY4vmBwSPgAMfoAXBwz0clusuKnQkX6Zdp9+vDC636w6+Js+yRe5nOxsL+rBK3+GLVf+B0pl90RiNFk3nAsbOzJQtKE/yAstlr8/Uo2NYEgSpjZNf7njGB4/i4JHhECaM1Z/Ll+jEAO3P6pdD5hxotTLYgd/z86lkqGQ4nIIdcjcdLCEMbyVGLq9mALHLCMdNohoAEcCNjm+ChsL4ZcsALpDfIGYMDnNRawvzBmNQALxiIDBlHoL2TusfJTvS7WdRUIfqq+mxVCcJDjp+AOI0rVTamKeBrjTeZee7HoEwqdx4/XHhIKnt8bWDEaI8jF1r8JvgUqajPBUXeJLaFDetiL0DAqxjaz76hpUug8vCi8fzIb8IQF8+v6OwWA/QrB2sl63hW6g4oe1nUOdWuYe5nOBO3UogyGXwwHGZNvPdwvGdpEniBgRj/U5MR5wmfdrMKWmjSQFgUXBmfEYdk9aI49QGPckf6R8jAj+Uhzkvszgtc7ADwkbq8iW7ytxwIeMU8Z2tJgTFtRjfPllJUfVJll/eF+lfLWej/dTAEW3yBuuR4V9Yx1M8z6/y3/kMX4nCAzWbfQYXxw/bsU9WMSIV0XG1aIEe4SmeZ6esxfUZck6yVDMYxkcTPJbLXkRgdvURYzHlS6ZOCAzHWcoHkbFRHPaxgq/xjB/yKL+hZMhRRMIRb0SbFYtbZ4HWA9qGKtytm3lKnw8DwG/QN3iK/48F2gmWxBx8dmkTAAe0LQStwWFlYJs3n64otLbWqWfHclOPLB53yebU8Y1qIDIs0E4W+H7c9tcu5mRxQzSvpVFboJ0s9sO0mGcxDVoSILA2uebxI9awmpVypcf7hY5L+VFTkVprMg30QOEc2O9sHJglaTYDioOziWii8mLlTNXz0bYUCJf5/+/Q7b6AZ4N9oYJh5uiJAu1x4VqNCQmxNqqC5zkFXa9zz/A7Z7/KnVd2sl7fjGi4QiCnytrO9yg9maGTVv5Rfy0SP9KLacJdMmxjAztlLYEgl8PhADdRc/46x3mSbji64WzGrmpR9EEaE0rSEkS+K9P0gonLl8QAVKnRfmO8HiurXnpMLC19ljHffsoYqUelsWi9wnDWvykYqyf8tKXFWJs8dTgobeRKo3UU61hEoVZ1eYShsspI3sKyhC6aeFqf57s87vvtMU5sJQA86nIXmxmSGnZxW3Lb/M+7eINhKiN+uQRlntfl7/2CInyNZ0DgRZ4J7T0E9Y8gTdYfyCMQhTEc1/m+nZrdBhNzcTp9US/3YbuiZVTqAKNSEbqkyJDz3XDA/kur+Ubl04yTRXHoYAk7yPEEL3CSecYWLib3iMBir52s5Bj3NWaBy5Mn1NjmFVynD8m3mfFHwPUvUjzCSxygjW5ZmHc2m6DVOCatEBzGiJDkCgBVihnnSf6WU9JobAiTNv0krYtfxnLdxYPN36Bq4H+CfggvYpzbDl/7Y/jMd//Ve+H/eVDFVSG04S/QAJGuaUpKH5+niYBX0npJqjOe3q4nrAv6JcFfWiSNy1S9yOP8A3fpmxRdcHh5+qME757i8FV51rcdtUIPJfIRHxDZgmQEtHrsurSOZVe6+dEMFw+HDC6/6/wVLbOM/acRInO46h9v+vEof1ufp1GHOVVez/PyDOP4NmORcbLdxwhD1MTMNzJMO9PC1d58RJhJmiSbbjgwVq6XGb6eIOJxRlPAdCQfIDmBAQrKHbqdVwMnqBYz69dpfIvf4kdyL+FLHQdZdrkhk3GSGWU8X5wBq7F3WkK7r4HLpxmlMpJ2qKwCUd+tRoTRRwHANjayjq0slbwhumDCPCEZXJTpeoFBrYnjmgKGup8VVOsAGXFx1RwQ/Lb3PJecKCDJaZYtek/oEgNMiJ7dcqs/fsnM+IK9KUh+vHtkLmd0dvIcBmPkl3Ez+7miJZyhgXp6wssZCuypWMEY+UsJQXDyYa3igd4tvFZ3r5Hb/bksYzSsaq1uoZuFHJOF4N/27B2dw6rSt3Ek77Q2aI+jHvVuD6ezc8K2qmZ4U+4nS45mOgqOYcK+2NrSJLceEVLu11dpoYODtCF4vj8mJQgdEwZeThIMgL2ymiM001b/DvTfYubH8ygtPwbuVbgBAoX/JFTpxY7O42tyIk1+HGylfU8qKwnIpeWxf5uIH8X5SGRdOtwp2xnRSj64soLiaSN5rbxPngY2qbGwR/E2p/jcC9qQxaW+oov3KxYSMCRBOSWNbNcNbJON4WWhej3N4suHqS3tZam00ywdaItwQB4P7cpEPXPpRc2t8WY6jMDit8dwGD8GsS/87btazkNTbrgtd5Kuk264lVE32svZ4tp06TGgiRjTREc0mJf814b/nkcrvs0HLDc3a6zfj8lCE7fQrgf8CPaxOpK0ZJF6A1cUCXnCdMbFxSlpZIjqSJosV6P9U5M6D25sLOWFx62uZtjOBp7W5/k8z3GQtvx1bp/RHmIJ7XLzBG03tEfWhOO2UnfxqLxMs39b0faiDybwdfQZFkiN3dD0+6lJdQdABsePTRnThkU2D9dcufeZ9TnqeERfRhW2yL28iQ2qwfiBUypPKgNVxbFjX+EVeZxObeWotPobgIb5FYexC9XsKd6A1pk5EJSbBg8yND6VobJKTpfmr/bbY5DTovwtWGvuw34lrfkwnQtq31yFV2UTq/Rdlmg7GXHJqZmjRo6TUZd6eiKuCOKbrqcZXmETtfIqPUWHaHEbmEUFbuV64CDMt0LfTFJIC670sqWCwndlIi0+CemDZ2lasqTf03hgXKuW9FucjxYIdIVteIVPIKIUled4Ql8w8Smtd9scAmqBUFL4vZBPGq/+DqIey3UPLzrPmAtM/vvoqsNXeRZPnMg72iNzOVvawF28gSockVa2sYFBahA8RI37oie9r3BJjKPqV9gUFToVTCg3056Meiwc7+RUXy2T4sckJdENZzPWU25pswJKU92nMSFIZGy12ssq/TF/rF/g0Ypv00krp5gbTQ9Ebv345SswW49TrFcguK3o/wmB5GfU7dH2W3ERA4ozRd/4/Ks8yzy6Imn6pTZvaGr3VXxNnH9EGNwyCgzVAzcNnZhbhZvkJcpkFNt4/n1ZET1qI3YBwW+DCVOUwSPDHlnDCW1EBE7SaIKcW/Ph4bCBN1ilP6beOx017LWBmDVPTlC35AGmTctGumm6ao2LKlEbFOvGqBh7sYO0cURa+SrPmjmw1khVbpgnT/wdd835LnNrDvs3s6LzdljayFHkj2vUDutYfR2vzbovtA1THD6oXszx2gb6yyrT16s1TvnvMVvCNA1KCArzZSiO2WQwkNDchsxwnAUckxbekg18jB0s0nazRjW+NuE48zlxvpFDmR5eLd5NrzPMqHsvV9zF6e2/wWkoax3JTaTpilMq0LZ+j/O0a5WdpjG2v9u80X4P/e+CR4OexOYNVgWoZBgnywiV3M3mSFtW6i5maU+0ff5nTXBzOs6bRcB3di1qbEp7qDcRLixbS8NNJX9pwBoXT4y2+c/lS/wpf8Kb8gC75TZcsuFb0igneIyXQGGfrArLyJCjRgYidsLL2cUDC7+JW59yYWiSbni64cCYI4Wb8TUpRQMWfvc3+Xl086i8zEFpMx7pxQpWbTO+RE2X8X81JiWAUKFD1NLLYtrNLR8CxpYg0caNzONt8z89hDJGWaU/9vMZcDOFK+b2X1hGAoP22zjjSl8k70FfE6MKS2mPuL0I84f/x4BBvHwfAHxNnuUNNY5kI0BH8+4v3pcV9Dr1xolteAsKHPHIqAteAPzMmGVxEc0RAVn+RlFefoKuKXlfaIJH8/DFWFvzm0xgL3ZA2wrjTwI1mT7unvsdjjoL/dBM0YsDSf226XS2AU+iY6dJY2eDzyTtrv08abwLBI3CdbRX1kRvoMU2vrdYT4csJYCsIaj3ybtazPDwDBCjVz3jDAAOV702c0w5SQU0WpYzXxI0uRGKkf61/QAAIABJREFUa4HjaZN4TlpZ8XLjea5Vvt0eq87A+c0ZmU3E0XJMmBWgT2qZp10UM4ajOTLk2Cur6ZG5ic3IMpbSfmN7Kb6+2yWbUIb4dya9grbY/+coihjrm+cOOTIclDZEYLtsMDZt/u8r2M06tuZvWAP7ZSVHZSFTbulLbvMk3fB0w4GxFW70NuE1Kb552c+C7z6A2S238Sf8Kf/Ab/Dn8iWOanMeKMQYZ6Eri2jZI1JFH7PoYHFeK4MWaFHCtk3EIAFRzwTh9tq5hb3hb4rDcbcpz3BsLVxCn89NmRnmFZSl0h5W1awdfEaf97UkCUcUkfGicFPw87g4bLv6qXyIoLAdSoseopsmxkPXGUKpXoqUt2z8fcKwPb5W8Bbd40MiBwLgiQEQbzuWKw8f+LhqeUG3NHuNeoxG7ebY+EKW0E4ROfIBwA2dlPkckRYOcJPv1y0/x6U6Gh0fIO4z7IqUU7hxxcBbDEhl9Wp0HOPjGwN9RXolmjaeLwTw0O0fDReAPxHwNadmnAtB5/SB4XBJOQj1Xg2gZJ0Dk8eUKXQy53tpt9d+2jxNBL7jAGwinhef1zhPuR5KELKm63lcX/OdmC5sk/Ij7uMb8jRP6AvczWYfTtk3h6NArk9isXzt7mDZmkH+02qDi1hmAvjvsUfhzUwpXPs47NfldGhrRHYFqGKAFu2I3M70MBeoRp2RhIGbpEm6AcHYlax/mzKNwSRJhXGmlMYYMW4HPDFOE3bLrb6dkb8bWekuUUr0JU/23xTmtzfkOFCKb+5WfoAaLnK3/pD/8dyLNPdU0U0TIeDC42i2JWxLIMlGyrbapVa5Hk7BMN2tm9kwvLXw2CppXCN9sLUqwtGS6fnxydfAIWnjR9yLo+p7js8wKpWRss8VTTcXm/x6FTFfwyOJPKB14+A26Kc7Ft0I/d9PiDmi+3rxM7zCJn7Le4GN+jqhWxIfzD3P79FzcWFsjoXLUuIf+Zm6HAsYTrj5pWk5fGqWI7HfYmsitmZukf1EQHfCGASbzjFacH1NQrge7HTxjd5qf2ddI2dntrHYbeDhsVXM9KpBHc7MXD9pvJ9ClZf8Y8q45jKg+PufBNiuRROBtqS08bIn0p5Zz/rSQo9F1rpnuI51XGk4YkLQ7sh4OIXrGzBH+yBKngd5Mf6qOQwfEAuoOeEd7bCepHfS/35YlvJn8qeU6ShZxkP3Out0KwqsZytFjONojiwuS7SdeeWTkScmKZluOAP+03YgWEgGMfZnGkMECA3dLUlSAxDiv+Sq/qebTwdckJlA/rcFHDPep20Jzk9brYMMyLTEzTjQvIU33RI21wGmsU02MljcTk/5QbZEbnFGXV0oGSRwDBreTgq+58yWHIYiMTZF83InaHP20yqHeVPvZXvlOjTctBM2Entcw08nkiaMMReX0jGAt+bSME4mx8WSqZEyPRx6ghujYX4Toy4rOcYUSGLysTq6p1rB18MxjzL+3XIb78sK7tdXC/rZI3M5M21ObByB2DzV0UMPs6Np0jRbPk3V88ZtgPWsXEd81xY30S0LzPFpgVGzRzmj3M3rzNRedsltE46BvbmhsZBNie9DbG7972dmzGftyTpUFfHn+tKlexLyTxLAsepS82UibVYSz7IpTcMV52exuUqc3zThIOm3OP9RKXwe1OV/muip/k1kHEYpYxsbiazfAgE0VqYvSJqwZyZG7idH/onLmTJ0qJhBbxrTinu5ki1Byq+wN7uaXpkVezeNC6ACQcZur/1dHFwVvi+P8SDf5YDexDS5aIYXaNEO/lCf4wBtLNUDtLhHWTD6mcKxnKRJ4gYEYyNSFX0wkQo+BdzkmVeCHQ/Gm/SQ1KBqb4iOb8MQABlze9JTc7hTrz0mBmACswkdptptCv+1JLg4s7LandMidtfcwh6WmaPONC2LCJ7a+YN0xrnoQu3gsOTjVu6RW9lddCvf0U9x58C/8NbUj1kSrTkIULWOKNIk6bRNIEUiHyivTNmoCsciS451upV1bOX/5D8yLNXR9LhE4jImtStMGx2rMc3yqnwiWq9fhgaapAhQj7Y5q+NkRHELwGnhXNaMjnBzbi9vVd+ZHx//t91yK8WMs0z35kF9LE4nOFyigtd4jHqxjKKvAf4i6ZLmKm3j8j/XnBsGirAD1FdcmjyuSSPHKzxSC2micU/Kcy2h8npB3fVSAf9J4TNBfT4Ay/+f47g0We5ZjFhhioqNQ2QsPOZf7ebklLkYPZTD0Yr5PMLLtJR24HngOHDYW8xfOs+RE18rFh9P05DkNosg6lGhQ4aH+HlddXiVx1DJcAzYw2ru0s2sYyut0gEKh9zVcGAZt4y3w5rrH85JunHohgNjFTp8fQntDSVNcoxvUD4NyrTC8kR8cBaU7XC7bmWnrMVDeFvWheniTCBHcXr78AiBhJVfcGmgh7PU46njg0An34ZIGXZ//fKIlodvG7RWtnOERbiaCZ8hBmZun3oH9uYvCIs4yCGW5iXQsDwNy41LuPk2+W474s9TQIM5dPTw1MHBYzl7qNIB1rEVEfgemxi2jzTDehP8csUpFWw4hRoj/3cHjyl6hcuS92tXpiOMSimBG4kTsoA7/XVgru9Hx2mKjjKdi8zu7UMuFzNUOSN6aSDcdB3GNcNeWU1eAIhtKn5aTzOcJq49TOn7tbQuCfNg/3+Ht5WVl0ZRXetrxRQEZnr/DU42TB5VJtDs8W5OlyxPBr4/qXYr+C1eRpySeFzS70lp4+XH61LXB1a+kBpSfj1ngFvZyWGWklNz8eY+71Vecz5RCMjsPiF0FTeFZakaG979rOQL+kVwYIdsoMtpwg2dVKeMb8p4GbvbcdbITt7kPuxA4raA6/l+/3ZwN0/oC3xDniZXlCV7S455ZzfzYOGoT9Ik3XhgTL1M3htEGsP6SbRlSVqdpPR4IBlEcwxR7V+ttsDUROWnaYIS63O4U7exVNrZ5js1zGmGiJ0FUK0XGZSpoSZlKhfoZ3qeWVn98jRDlzYh9o3UCLONDRXCEVr9o4P4uAr5Y95YWSi3jb/NUaeVvkxtlHEGffRp3eDbjGo5VI9RLQPM845xyTG+f1roQAQ6tJU/ky+Zq+32WCVQg56knh7jN01i3rIjwM8LDdfNOAU3Xv3bnf6hiQ3EAGo5xwmaIv09QisP8l2O08QQVRwnf7NzXIyj2Z46A54yfizQXAAiI/VSeLszSbsI0fnNd5ACcBzrd5oAkqxd85gjpyiqP4X0r0M1sJZTipzjk05fU+jMFF+YS9JuxSnlvZgQZCT9H39+rd+T0hbkCd6L4CjQF1z8G84RcKXm2VM8z0bfvcUWvYepcpHV8i4zvV7+1vldf4km8IwU7aGrWXbIBn7EPf6Nx1iaJCEi4f0RPO7W11mrRrDbIXczrkan18KhvH+/sF0O45rlR2xknCIT4k2Vt2vnTIKxSUqkGw6MXXKsY8okhpMkgSb9HtBEaWIv+jy6OM1cXDVHlPPo4n2WJ29k8fypEmhCW1RRlD5qOaGNAP7x4tKC7tbLGQaZFmpSBphKXrNCpD7BY5Aa/+Zl0mYO+bAgZlPP+Rq0grHyAWNaP3cV3e77GEvot59O1KW+uptyHeZF51lcBCdjblxekFpOaiPd2sRxWZC/1ZgwL8HGkFGXjWNvMFZcTB8zOE5FwRgE/4fhqyzJPEOODfoGAD+S+xLt+E5IXnoPnvVKHa/wOEa+dsmQ821XYkbMvsS/Qd+gVvqoZJh9uoI9fqDiQBcWiZ6QBsoiR5gxG8d4fmtDQsn7T4rPW2xss74LkJHiMc7KAHXk7fDGWEHJ5G3KRKrMXSJJGQ5MzI8m4kMTgZZrCaBJNFGZPt3JNs5ogzG/iAltoU2pxVue8r7M3bKZDlr5mjxjQphh3EJ8gS/yCN8xfu8KNGsUrnP//ww5BrQmErUjAH6qbhhEKWpKEbjFsetQ1rGVupFzVFYO8Hk1jq6X0M5JGjkkbbH3yxy/dkszQRBxB4/15ZPhkCYpmW44MHaZomsngmSJM03jkPYZSoCCg8cMznOKxvA23WUpIxpmJg7KlHKGuURVulSM43utjl+MdXhT7qPgwmyMIc3mFIdZ4rfBncCezNxK3CurQ2PbSJlqjkaNdsYGWTFD/HCMEsBAyJjV1/AkxFcM0qhLETkqZZivyrOhaw5PlcPSxmHaCvh1ovZSlcU93VRevUzJ+Bh/1/IErgQsOkqz9DS9MttvQ6HjXk8dauljqbSzg7sZC7VX9loqKBb7ooerwiJtZ1gq6aExOg/+nInAKGXs0HW+/yQJgVrcsW6FN8xlpxRPjbOPVg7RyaL8LVINIBzROU1Ybyv1XaoZYKvcE8boTHtHivUKT8pXaaGDM7kWXivew0NjK6nzqkE8pjz61KRWLIUe5SUOsKRw7adofwr4Rvz/a2nH0oTAJK3/tbRz1ju6kzujmii7XiWSftHwUWqPZBleMJ2DVW0R4SmnWV5hE++zItSsKhB1V6FEjx49FugRnuRv2c6GgiZP5xw36z7Wj73La/I47xTnQxktGBmi3D3F+9VtlhAEB7SNOi4A0CodtGgHAFu9jf7FzKDv+bbkhSmPxX3vMmPqCeBThWM4STc83XCuLSLHRkmMxX5uawauxbASJUvjDmAxBwBhF7f6qnLH+N5RKCKHozkk5qvKlCeU6mVqtZda7fV9PfkuIKw652h3/lmEMVqAIYGZruQd1rGVInK+Q9QETVWgEfGPU72IK4jodfFGTsQ87qeMi91XGwzkH5IJnbRiSar58pr0KP+b9ycMaZWBgPFNy54Xkfz42M98cLOo9yQNg30cm9HAuBjXJKZVed9aDi4l7pgpxy4vojkiPB59Ql/wRyrqZDY6D7GIBD4dlqX0BJEbIuOnuGR5g/t5hcfpkUaI9z02h6sv7eYL3nP8in6Lp/R5inTc998Wvb1aENkhtrkKHrewl1r6WK678+OQ8o6MSQlf52k6dBHnehfioZx1+kGM1paZhVraSTJUlMkR+sJL0jzFNcVx/pTyvkfKSPu05zKeN0mDlvR++/ldspb/wmj7JSaVVDNAdc1Zzp5tZrEeIEvOEt6EvbKGcT8upNplJfYrFwa5b5UO1stWbMfQAH3MZIfcjRaPUll0KlLMXI5wtaQ43xc19q9LpZ3KygsFQ9Hv1Ua7H0sg6lGkOUb7t7KrpKRwvCZpkrgBwVjZFT8cRRoQg8LNPOn3gGxGlgACPDIcYmnUAaEaFxKlOsqisQPUjvdROTaaz2dpkPpkVvg3R48XMDGIHX3F2xR8Jmj0lrOXZu0w4WxsSdXKW0eP71mdgjICKdXkcRnSysIxirdFfI0XhWMV/CkZ7sht56FL3+ez3t+wSt8x9VhzVjd6gcv75zN2oYoCB6kaTRtIqza4CmjqmPG0/72b7+TU1BmA+Ia6Lp/V51mlP6ZBTyIoJ7Lz/N9dH6ASWQtVDLCdDXRoKyNSmdfuAXHgOpuTFAVgM9JO/LFJeDXjDiztTTNlM75QUUOzdtA8fpRvyNN8IDcTuSQQqTfWlljfXpRn+Hv5DfbKagod1xbO87jvpdzvEXXeVIKQSu9sPV5Y5yQB8PfZX4U4iAkoSUOWRBNpOa+lIYsLmvEyksBfPJ29lm1/g74gs4gDkXRtFbuZP38fzS3v0H+xjlt0D5U6SMBfDLcJ3l0ntD6L1AOAxyrdxZO8wEFpo0NNuLbP6pd9/4lBWxzGKOLrPEWpRPeEheXvcmfRG5FnjXSznQ0ckdZIFztp5YPssvBBhhx3sM0Hf+7/z96bR9lxXGeev5v5qgpbVaGw7ygUUFgJYue+k6IkkiJNy20ttiiKMtma7p7pM91nuluW3aItL9PHc3rx9My4RVGLZcmWl6ZIk6IW7otIggRBEMRWAAoogCgAxFIrlqp6mXf+yOVFRka+KqmNJmi+ywPWy8xYbkRGRnzxRcS9eASs183802P/L4uPHGPjsrupSU1c8qFbphz24plJNcr/F5kVFs7OzPDWTDP+/SPvLrS+Ch62dDwkbQX5mulr5RpAQ9rYS4v2sFU2Rk6dY9r8AIvYzf/Kdlln5JM1h3BGJxJKdt9SwuqY9oHAp0emZutAJJeeCxRm6isuQ8kvIwN1dE1YxDZZXylXzFJ1leZTmjiO8wP1yLTIIXAFdIUsYzd7WE6yF8QnZB1beIPLMkDndP1UXl61gsCLwbIGLNL9zBk+yvlwEtvHb2AYAzxqwCLdRz/NnJSZmdfVyxSekY/yAjdxjz4MYrIY2eXaI8xDxABodvtzSVKXmXuu9la5f5m8iojy9sh6yvWldDk6u3wc0qKncrbLzDT7qGwqVztMwftUfLqZy5rmFxnsn47E708Fftw/SG3HmFsOewsqF0VtwXxug6fRwJfrvg22qokLrCX3bZBmtlkjjyM6N/o+4oND21jHAjnEC1zPc9NuqTDwcTxFmF7u4URpWpwubNDX6GQJPTLFmOh6bJFNbGUjilAnZb6sD3KjPs35vXPYPONS9k9eQGTHUOiUpRxgMcnBKjTgObmZG3gan3K0kgF00UaXtPEst3Kb/pDPH+ymt3k/L4YfI5xeWYpcwh5e58q4zEJIyHZZx7L+YzSdm0RwbmH1uq3Jh1Y+dGBs+nA/g+MmZG+6ZnlFs8Si2aoBNKZxjNNMj/dx2Z1TpUMyHcmmeWlkAT80zVUUxHcBx2btqZjW0MiX4w36DAdZRLvupkNWpB3R89ycS1s0zLguSW1yGYO+ELKB13mTTdZgYB0Xj5cYspKAqmSpMm/kFiTa7zZLKuFFEC0zW4/QLQs40jCXI0vnMmWgN46b3YQ+R9+lQ5anZidC9VLDr2U1TlWqcqLedKvicUAW09mwOJ6L2y6ZPA5Ie5aftNpIWUscTNhKQ9JTpameyZJzHqjbaYthRrcoX7u9LNMdqVuZ+QNH8SYG0etBCQkrABGJgFgOyDvAs/l+cwDd0CWO/7Jcz4SSx2JOs9c/yoywifLINq5fUhuUisQPy5hYJBUX2HGJK4z9Hl1AbCzpmWkU6ZZhx8QRRxiQyZkwW+Ry3mJDZHbCboMx0DlRmmbEUY6Hs+jxp5B+PylTHHP5IoyosotVtEsHTU3HOdA0P92zm+ShGhm6Tg7ldNLOQWlLzfaYZVOFJ/y7WU4X1+0/zMpF7/C8XpUeNupgRRQu7Qt9RhQON85hw5nD7P7ZD9jwW19y13NNPtTyoVum/HTfS2AteTnF7KBcM0D7rxGmh2ncqw/FNDt5ViiVrN9KIeAm/Sk36FPRs9ws06FzqkOIT7li1DbusFaxje/Ib/GMfDRjrBWJ93RIttefRH/FD2HBcsR4PUOT9sbhgqx+RctmJmAjYCbHWahd2bKY+dlLcpocC8h2pKcbJ8eda6XzVjz6ZXLGzIMXn4a6Rx9mIn3ZurOAdgTA/IoxSqsuUpMWtu4GAO3TyZnO3CPk5nNPVZaZ04FKsuUuYDUyeVYDYUZ+n+Z7AOyTdjpmLoyPkyQutuw9Y1R0McvsOnFgt3vXQGyku3fyoiQiaEjje3/HrW88AIc359OuCbM4WrkYhfkEituPK4yLeXX1caa4+h1XGi497d8i+fzi3+kpbTtfG9QRHRJ6119Ips2acYw+521Zy7/hP/HYzI9VGHCrXFP1JFD5zsN4KVTUvefzmTnC4Ib/myunPcVatqR5Kl70Vcf9YnLQ6IaZjzJ+2iAzTmzL12VNasKHkBkr+dZGeVcnV23JqIABMMMGMTMSqGt6SzxYBkzVk5yQmWnHMV7PcYR5DNAUsTK5Qc602UMarzHoY4Kew/fLHJU5RkckbGddRl+1zUmY7kCARgaZQ3d0GrFg6eKcTOI5PoJHwEQd5Izp1cBZZ0HM7CRsn897zCJdpnPVb+466iCPyRxLf8e70yAufqVsH9fHAPiO/FbWH6X17jL3C1iqzP0CQLJdLiWdsQOz9F22j7uEdPDQoDJDN6WovRm/F2hntGRdoKMQcps+yi5ZxWFdwF/IfZGtI8dMv7Bc6f0CZsWOWwQCgFbZl5b0uNdLe8sIBMM1O2MFMv18L3uTc0ZFk7DRwI/rOzSl6LnruyrqH+175rOib6vqJDj7XUXbDXZFNrxyYLPKJNm8hRfHN2/Ge8cM+46nZFom/5KG3Nr7Fj+ZvI4gcnKJaVx7g/cceAFIdPjAlCmcoEn7mM1RjjKbKdKDiDJxQZng/CJqUhOXfOjA2BNTV5H5kItmeEUdTtG1eR94npuzrJM1wLeynxZ6OEFl39FZmRSBIEd6QsDskaN0183DlgG/mQEMFz85NzjZtBLav3KvEu6ozKPb1tkqb+pwWzXHrGVZsCifNt3HkIznCPPT5ypeBDZTlrJg0DHSjOJY+ThZofy9s0zgce6KT7M64o4GtByAZ1G4j06vnTQ7o46GyfoXjE4+JuFiUG3nV6RHch3Hbaafyh4XzbUtUH4sdxDiI6KxYWGHDbFC9rJgQLd1cwI7o+3F16FMQuhnj9/NXv8Y40vX0+zvh5qdMadccXIfP594RaVu7fdhgx5TXGDKlGoAzX7uan+u+K5nRd8O0Ki9lCgznrPRd+Fs58p6fZ3ZdOdteNlAr+jbxWqLZpnEw/yGUpM+cX/1yTP/ndfO3UTYAoiPp2XW6Wv0MIUAnx/WfZQnuZGP8QTX6vMZo9oniQ5cdbIUgE7gLW89v17+EcOnh931XpMPvXzolin3l+bnb7pAgD3jr9YZJffTTlJTExZpGlbHcYM+wyfkUcNcBZWON5dXdLS6u25uNpypWxrPxVBEM8HIDlhgMB7Jv0peueWwKp2+F59cctZX+lvokras+530WWLPK0k7ZNZwt6GjVQ6DqRENKTGSXwomOlowSNa44m5ZSRetlRtxeZbpDlbrVnxGIl00wCdgoR7Ihc28G5SD3uJ8GHMALRg4J+lglJeL9cgxAEbZNDL5cZm8ik++TSXXikeZOkLxI0O4KJ6W8SmTOeKfa5dVGC/X92DrnqZhLL8jvDRxPd1Nk1GBkJAupsLnH6uxYgXSerTEND1euTHWPih5Vo3xSn67QJwrjKs9jlXSOHG7iPunM9JIj0zJTlAceo4bHqJj+JLoohq7Zk8q4muB+ASlZssnxl5esy40pJ4RbuBpuibOY/HMNyMvlxp5u1zLVrokMiJ9UmZyRObzMF/iMAv4in6VS3R7pZxWn1Gmjn117YzU1Yy+1sQt7wsYE5E/EZHdIvK2iDwiIpNHj/UPI+fFYdq6aLZnD3ZQMADZ15WPO5N+PFhdrc9zE0+hSsVshJ1epuOVrGkMI5xnmmvQZFdQpeNLTDAIylX6UkU3EzC4WBGzDuxyxmmv0TdZLruIZqBFs2jN7wUBxodn4jCm3TKPY/VzolmqET+fJkzWU8zlcGQzK1dvHntkZQbUdTOfkzIdl+yRVSg+JcqsHnqH6/VpbuYn+BlbR0a9x4AndJQrDWPGs/7ewFOxHSWHbS8XS2D8btFTqMJafcM6qm+2MfO3xxX6Eq3sZx1b2MDrZAaMOE9BWRruzhRjovZHYYsYMue1MdDF6YficXTydEQjowQzgqXs3D41X28fILmQfdjhwUZmhzE/7eqDkvvmX1uqARZXOLMfcLGm1QBgUXuP21nUe4Vp24y+G8sGosWulhjh5rqfMOv80UqaLj2KJm3xNzp1+DSNQX+qiynLdVel/yTqi2/VJ/gLuY+/lc/wPf8LfE4f5tf0B/y2PsiANFaYdUOX1+UK2ungjqFHLftolbrxNGTJ4S7mz2oprseafKjl/WLGfgZcoqqXAh3Al/9nZezbxlVNKWRjDMktyZAFbsZHWkrZFrMjEF6Tq9gnS9nFquyAXsQuuZYpgDv0EX5Xf5cN+hoJINKYaRIN8Qnj04TRZvSX5VpyrmxcYMPq1FJAZDFUb8kGvsX9YAJFC8QmsCWre8g5b2L1+k3iq2YPFMThe6SFLto4Gzv+TjfapmlIZQN++k7yYHavLGckZpHK+OxouITn5Bb+Qu7jnvAbRt3m698tCTBNfFQmekVAfCGd7GVpZd+aS1yAOM7zpMzkm/IltsgmQqBeh4rTiNN5Ra6hk6W8weVsZQO+BeABbtcf8hn5btRm42/krEyKwppt2G6LOXtPYDPCvoZ89OR4NpTbIiv82oz35o4qdfiBkAvWhx2dH7LdXxtduCaF5rULJJvPR2O0bObLxYaN9tdMK3MvuvaIXJQ580t+p2UJWM02foevIqL8vPlKd7hq4NCQE/XTGfCbUl2idCKw92n5Huv0DUygtq+8jDKltD8YlEbu4hHadT8rw13ZCVqc3mW8CsCq+rf5in6Vm/QnbNDXorDxIYBr9r7NioGAK66uscE1ccv7AsZU9aeqqcXLV8Few7pwMgFrzb4aE5GbsdkdW/XZZpn6ShijsytTx99zFyvYQQnD+r49uLk60vhea7CPT/M9lkpH/CABRH56am6h7o/2T6UdnXWCLgZGkVHTML3XFu7jan0+YthMO0EWUxXNdx3gzpD1+jpf4KHMDDSbXrZclb1sAZ6G/JPBv+Ge4JsZlkuSgwzG+1HHCSmcpwOz7yKMzkyRsEiKZDrixeyrpJMZbNwDlsTLvAkvWWEAIsaoi7aYibOYTjst16CVWf6I9qcMy7hcmey4oVFXAT5LdA/mewTlKHPYJau4Rx+mTffHdeoT4mUNdJqDYQzK0yVdq46EgA36Gg/sfpo7Tk9lTdDKTI0Oe0wvPccHWS5kH9Y7y2EL0bweC5OaXLsmD2MEMrl8bABoT0LNPI34C/UAc3mXnGT6jYjlrSdgk77KTl3FS3J9xS3SaMxcUZiMLsqqczv4df0+v8NXUSW2YViZ+M04MIynimjkP2BluAsJ65i563NcuW8Vf/rOfq453cuMcj9z9DD36Z+ljs2FyE3SfTzEYtlX+cZFGKprYO6GjcxZumJsdV+TD51cDBv47wN+UPRQRB4AHgBYsMCxx+AXlPn9pzjZMiXAKy+mAAAgAElEQVR705552r/tTtAM45q5usIk+cTyJpexhq38pn6T5+QmDrI4MsiKIPFJy5MyA/u0Y5LmQX8Jz+gtzNdDvCmbnPl2ylJsy++2nqt1G5+Uv+EP+D2C2Ifm1eUX+H79PRWr12iqhxdDsFAjn5iKEGhSL9HgbOaxVrZyoz7FS1wbmdYQSXGAs66A1WwFFTbpq9w06Sn2sjTVBEl8MDoGhqScLobTroP02hxYytFVzOid1OlMlDOVvOy4OcYywEPR2FYcRDbHMqC9Crhv1tP4EnCa6WNrS5lyOE7aGoCpApCUvbKc7HuK7Dy9ySZ8CTK+RZXI32ZH/K5zdaEhXcneH6udisJi9jG34QB7/PksD+cAykT/v9PSeop/RFLYh/0y/deQNpBp33abcfVDyW9XOFebGau44rjSTu7b4YAbeBoR4n4jCV+JN1lP86nux9g6fBnN/im+u+CLBPh4xKewiyYniRSxbebfMMTXkDWH9/OxxY/heQGPcXfFfZuGXHJqLyuPdTHlTD/dk6ex/vArLGiZy7wzn2R83xJEhMkEbOgWRIVD817m/Iqnox5SPQgFiE5YrtAdlKTMiIIfKtf7U7ntsx8dU5XX5MMpFwyMichTwCzHo6+o6qNxmK8AZYgNIjlEVb8OfB1g48aNo3Duo8sdZ/vZNjkwLDwHmEeW40zdnVYBoMmI65kjbVX4ttxfMfBqgB5Vn9MyrdJ5FQC/zVzBQRa5lx7T64p16ByAUWW7rGNY61GJLGCJhLxed7lx6pC4QywjCLfpY2yU19mpq1jBDl7kep6RW2OwZtVfbOX/APfTIdaM0AVi4/y2sw5E2SWrEOBZbrYYOMegE6fhETCZHnqYGp8gtE/3udgdjHQja98BJZ7zPkLO7VERuNMIqnycx+jSRVwmr6IK35QHKvWe0zdbltRYr92OqrW3ND2LrSgYtBPW1JW+ik85AbpGeX/OdXmzGCnoFdI2ZugUHbAIWMEORkZa2ON3syKcF9fvJLj6N93luYjkH6IP+2X6r8P10xIFzISybdZ+t1nFi9uLnZ4N+Ir6viI2zpVv/O3P5Bi366OownfkfkIiTxhztaviTQRYzF4uOzCBpqEDPN+2iDKl9PTven2dN2UTqh4+ZW46/Aod05fSNd6YqFp1s6T3IFN6ztLc18QIJeqG36OvpcScwZM09Svbz3yEJZN7uXL+Yh7xo/7BD5VFh6P9mLP6TzGr61l6vb3Ii1dwYkkT85uVUEJCT/lTRmgMYfuxm7hvyVp6Dz7NuWMr8UcmMDT724wM11HXFPCb4ZO866/g9sWL+dS9NSBWk+pywcCYqt5S7bmIfB64A7hZdbSe4x9O/vnnfgu++w2eHBmmNEXZcP4t3vLWs7e5nU1n9vBKUzunPdMie6rw6Im7OsrMszIp8JPIKnyyMV+0nJkFhuoxk26OM7cQ3LVyoGJ3azSdXEuD8bPUGKwIgfoct9z8VDgVjyflE2zQ17mTR9IknuMWAzTGrnY0pETZMPFhgx97+dOuQ4+y1vEwD5BzYG4Do5T1CfkCDzGfQ/wRDzKsPqkp8zRMbN9LXUu2FcvdETjxYhbOyltDNuhmumjNuERS4EfchQrsYSWzeRdMEJkBMUkMa5Czy2YDtzRuEJfBAVBThRwTjJjdrDAUdj3mB2XN6GGIDfJTCWljPzfwNO10cLBuLSe8QY5LHzO1ibMtK5jyAThJ+X71YZvkFXazMj9ZiZQq7mfs/qoaE2aDq9H6t2psmPN7FG4PH0URvu09kIL5QMtM5wSHaUVV8AlYc2gf2472UDo7wLj5c2M/udEy4VrZyjbWU44nEU1NJ/jo6X08POdzsdX7bNm9MODa947zz26/neCdY+x4+W16Wvu55M4b4UADu9/Zy/JL2ll7eTQ5nLLrOM+828PicQ2cXbyRWf4AV69dwamGU7xx/A2Czj6OvPRtuqbNYsOCu2i98np+k4BXO09xV9tUNixs4VjnbRzZvJ259ds5tvR/4w09y8aZG1k7Y231Oq1JTQyR/4k4qJKpyMeA/whcr6onxhpv48aN+sYbb1w4xQ5v5sade9hVZxynLurgqnV81sBUGSjNDk+jkzdEe3pKBNyqT/CE3Fk5TWinb8SFyknMjB83F4uWRhsbmzeLIxzDMKNh2S1bzg4u1bdolAEO6CKeE8uXHCE+Sju7KwYbi8CFSw8XILH1d5RTNOCf6F9yJ4/wDLfwLXkgxxp6BEzRkxGIcrEBrjpyAJH79M+Yp4f4mvc1w0aRWcYgYqtsBi6Tj5Jbhi4oXz3nGaE+9S0ZWUmSCMAn5khc7z3H3kVOmjPvpehv+i7D+NSqy0epoW+cX3Kit0SZfxf+Pue2tTLQP53lwRyuGVnK5Po/Y9ID/2rMpi1EZIuqbhxT4P9J8sv0YWPtvz71d/+F51uuMzPLBrDbUnJvLBPGalKtvxiNOXOktTbYwtv+uty+Up9yauH+U+e+T9NrTUw/+zoD7XP5fxY/wIj4+ITcy9cZoJG/kc/E7T4y7fI7+ru8oDfwrPcRErdiM/p7mTrYy7Ljh2k7u5t/87v/3/9YXdSkJv9AMtb+6/3aM/ZfgQbgZxJ92K+q6kXhsOuQ1xr9GAstn+zTMcPnQIfbbc4kHeRf88cA7GQV44YCjjTMYpIORv4gc0toli7iVdiNGDB5KKEqmWVXV8dd1LHG6UdAzMV4RLKHleyRFTHQiUFVBrT5BBpyXGc6CZsoLMzRwwyGTZyVcZS9hjwDYIoNABzPFY8jzOMxuZuTaiz1GHUQqh/txbPzKaiL3HUMtA7KIm7iKZbp7sgoZS6e5y67WQ2Amk67M+XJ1v8mfY3X5UrK8XWy10U1wCck1BC137sJBOP7V+kLvCZXucucK2dUDkWp1yGGxTBk66qj+LdCvOSpvHTqVpb29wDQ4R+lPZgNI/dT9+KPafjsxc+OVZEL1oe93rgh+mG3d7vezW/bBaKKQJMLZFULP1ax2tN7w7MJx3s5vUP8mHUuc2xwIXOb97D0mg7+3l9BEJdFFfrDRlbKDjyUIE47VGGXrOI6nuNlbqCsJfxQuXr/dmb2nwYNWThvZoGCNanJxSvvCxhT1SXvR76jysEXqde1nKkWJtNhVWFT7LAWiFjDm4jATl3F+PI5vjfu3miflhm+GqtlDJiiIXWMME8Pxpv2ScHRNI5zkpkRCUMACKlLpKIlECBaAksYrOwyYbRslSy3Gvs2MvUh9EhsS0ojMw9qLRl2y1zwXcuFBdcZUJocTDDqWSPH1EKIL5Hx1rJCbk9TRmfN3nNJTgeP57mZPiazR5bnw7hYSQeQVOOIhA326sIRRryGNPpS3UULp3lZrqWHlowuV/A8/drMCHXslpW4fO+BMkuPckzmUDaZvCJW0AKwKRCzQbEN7DX2gBAbylwysh/ivXChKke9XmYGzZzdcZ6Gw5s/sIZfL2QfNt47y1li0y/VGG4XeHIBbFdbdImdrvluTXBfFMdqR6v9rRxjFqFWmLHEJHGoPqpCp7SzZMZ+xA9ZKdHp8rJqdJJRdrBUOvi8PhTtOVOhjjIrdAdL6eC3eZCduooZp/sJ++cyYeAswelDnK/bUFCzNanJxSsXw2nKi0dar+WOt/6W75Y+UzwTzQyakB4ASMJBdtZqSzzYHmV2dIJRfKijspwGOVYklXSfVQx8NLJptV5fZ61s5WH5p1l9ITqZF4OkCAxFcSJWJoxT8/KDalq+/Kw7YuDM5VejbEa4COAErNa3WSgHeJy7LdBiufOxy20NItP0eLS8mAI/q37idFR8QlXWhW/QIy0clOSkqqFbLF5s3KKcsll5cOH6G2iJLXKZs36cvzP3kgHMR+2yxnqkQCy+97fyaQZMu6JGW3mFawjFq6TrBIJk9xc6QNhCOikRMEu7OcpsuqQt9q8q+TowdLNlhh5lJe8AwuDgVJqMMEPx0ryisO0vP7Bg7ELKZeErPOndmX9HRcBsrOCrKA0z3FgmlnY+dpz43khdiXv163xb7idUH0+Vz4dfRzyNthCIx8Fps3lY72FmuB8R5Rp5DlCuk+dZQgeqcLM8xXw9xPZgHav9rSyVDvbq0vQQ0eKWfWxvupVxZ2Zw/twZevb2cqyzj1ltzXmda1KTi1RqYMyU+Zcxb+t/jlmcAhNsucGzYJkyBQrWjDH2S9gp7WQGuUzcGGgYDMcCOhnS8RyXWRUQE5sa2CbrmUxvJY6RTnp0O9U58cUGC/UgN+lP+Lbcn92nVoWVk9SoqYN9ccbzWMgBJuhZRMJ074cr/ATORIxADOJMUw0eAZfyFs/yESMNyQ808W9B2eatJ4yPyLfrbk4xLV6irMQL1aM93MmI1NEpS6L3ab9LJ2CiCpumMSMZH8TLDVjRubIcqHGxa/G9AWnOpxXXQWjvWcu8FyXDHtrlMO6/ywJCPA5KG/fyEPP02zwud7GFy/N1UWVQPyZzOMkMyvhIO1zL26w82gXA9lIXTTqOTZzhQ+iNbUzSNzw96pltADwWIFYNNI0GqGx2ayzLnFXCdcs8vshDoPDCuVuZEgzxxqTLGZG6zAQwwOexnt9g59R2yuJTxwjXhS+SuEtTlHY6aPcjm4p7dRl/JF9lhBIeyj3yEIubj/Fu31QmjJ9EfWklRzp6amCsJh8oqfWGlrw9vDZ/9N9Fxaf3izpDwbVcNCkcRCyglUm3AAQdZlF8ylFy+pQp8a7OIwUvRcsMZn5Alyziabk1Ajc5/d2/1Rz8q+lsPP+R3MUkBqjLGbjNlvEcE4zy5Ztmv0zOuwByMZYoMzkabT0Xn3LsHulkUn8ZoCPs8VbRKe34icV821co0KynYsv1sUV6rHwzdSs060AUxq5DEXJMqv3cSNPXkfiZw0tDUfxM2qOwdkY6ASVUfAJ8vskDiMC/4k9iLwQF+trpxeUvUwcS7Q16qX0Nx5paUlX2+N0MhZfCms9Sk7x4YoHy5K+r/s33aE8MxsJyub7hojDmtfmvIM9+beJpvYXvyP3sm9DK5sYVbJe10eERK3zXhHmMSGTSokwdb/XexvZtH2Xbto/S0zO7ooZCx9A1jBht9c+9+9lZvjTqCyc04Zc85i6tuR2qyQdLamDMkiN1FuCB3ACZ6yCrUPW2zJVDMaAIiJY4cXek1n60rDX3PKCIDHk6wAEgBGzkNVbr1sr9uAypvR8HOHLPgAvCuQBgfB057m7kc3yT2fpuxK7ZgCoto2PwkQgAvsFl8b66JI8wW4fpX+E4s2Or/7E5Eax3ZQ8m4hHgxSnnQeygNLOSt6n4XrQGKwsclRjOOim22S8XiMsxpEogdek9IaBN90ZGcV3vwNWOXO81vW/nV3FbpXg8zl2owifk0dhNkmVzzczblUecVijQPXlaenuiNiDN02tLlAUyye+LfhTVqymjgSbzb7V0XM9HC+8Ka7TjYzKHb8v9sW/a6ls5eifEbs1CxQuVCSdP0tgc+aU81LWGMPQIQ0B91vWeyXgWCfB4YfoVHGtqQYJhll5WrrFiNfnASQ2MWXJ4vGHSwTWAmlJtNupacgI6ZHnFTICLIXEBPisN15JWYlAxsiIfxi5qkoFV6NY5nJVJYLg9cpapaDmjaCnD5ejc0rNEmUYZ4Dt8kW5ZEC8Bxw7NDTYrA4JdA4Fkl4QF2KBvVMpk6KoIi7WDTB0Xva/4mWAAQhOsxIByO4a/QDO+qx6Bej2ff+YAq5lnGVCXBYyztZvP8S2m63sZ3Zz5uxi0nN6Rt4fF7OU+/TOmWRYa9mo7j8ndHGZBvMvQiOsCfw5QKhrihyFzek+CgodwabCQUtNIrr5qEkmHvyz64ahP5/fhYkmd34/j+3K9vyIQVvXbzPcj1dylVbY7kOlr206e4lP7Hudji79H66K3WH3pz5gwoacyd0JYe7KBe4Nv4hPEPmmFdydP5+/XXENX+1qmLlvk1r8mNbmIpbZnzJCeH/yAxikep5jqZjBc4hqEOccw47OdW/w7Y5PKNWO14ySSphFSCsqU/Tqr8/SZRyeHaEUR3pX5hnFPj26Z70hLR++c7XuZulDsvWMLtJMydZQYoUwds+nmDh5lF6sIpGSk6VW236tWTlu66tvlPUCEyEAuZJZn4zIpHseZnS2Hi41KgVjI7TzKj7mDskZslB8PGKH62VOPZlrO9hFWDOm66q8aK2bWvXUvwOMP5GsxmC8AzaaOSfoF9Rc991ionRxkUS65PpnCX/PZ/LtxgfkqA/jV+7Yzq78HQbhyZCkzgwmcbJvAFHeMD71M4TSdWIx1Ii62y/W7SFyTPFeYov6nKG9bDJdgoSo+yhX6Ev00U88Qb8plZE81gx+GtHUe5kR7I895NzIojayQHcxsPhzZrhNQKXNq1qvcuX0lpekv8Mjk9bw3oQm8iDnrbpnOYOhWqSY1uZilBsYMGfjpzzj32U9GFy5Q5BpwHEBlmPHZZ0WALr2njNeznJOJxWmnaUgExEyJn3WxiGSQjvxFOtiX3EnNJIzDaGjR7Du1J+bl6ueQxDrE8h6zWKNbOSnTokHddtsT/53KycgER1KkNKxlyy1Tj8I7rM6WMQW9Qq/pXijzLvKnVW/XR/k032MDr/Mi1wMwgbP8SO40jmIY+jv1ieozA9yqMQ/GdXpoxMVwxPeOyxxSEFYNRGd0suyY5d5tmDfam2kHnrvMRd+HBdQUjxOTmomP73JusIt3D/yQLR//Q5ZSE5eUdCj6UTQxKuqPiljWItBU9Nz1TotAmytOLGF8ettHuZeHuDF2qP203sJWNpJwZNH/lRt7XuO5TZdR9nyUGxFC6rwyv3X8b7hy2t/TQRu7ZRUrpu5AWvbwLfkMw54AEjGwGjKv5wStrddRk5p80KQGxgzpvXIFrSOdHK+fVZ2xsMUFYgoGahOomGGGZJyVlmU6Itmvk9uADjlwVMkgp4dPYFlTTxz4OgZts7zVligyHXG24y5riW/LA6m1eLvciSzUg/TIVAL18QiZT1cMLn13nPh6iAl5vZzgIK57Nd6BAS7PMoHH5G5WsoP79CH2spSvydcM46pJmdRZr1nwUnbkb4UzZKL2M18ORxubc4OaGvo7LOC70s/UR/W9OpGhEimoM0sKAZ8ZxvIFCpyrb4CYxJza8SbD3mGuaJvqjl8TDviLox/VJkTJc1OKno+FQbXv2e93LKxbJp1kouajWuaALmKAu2mUAb4n96FIZtKiCp1TpxOIl/qlVPEZUWFLw1oG3yrzvY2/QYiPT5nrvGcYkSgf0TKX6A4+sWeQK061sr3jIPPnz6+uX01qcpFJDYwZ8sjSeiYMD0YXrhmjPRNM7rk6PWfnZbMaFRAVpvSLAzCY14aUdJjLeYUGzkfshlYzcRCyQV+nPFLPtvp1Gd3adRfvMZMeqWyybtCzDIkD6AATGeAck+IlUMtMQy7faL9V1OFmw0S+OCP3KGuIfNBFmvp02cs0KSCBdO9Y7rmdd+X3Qj1IlyxyskoeIS/ITYT4lCjz2/IgL+r1WZMRBtgqYrcAJLaIX9LznC9iOq13dEaaIl+EuWcBy9nNSZ2W9RqQpGW3UQtoOZ/bedjlseM67tUxxAgNBQAu/z4OTZ3FsaYWbugZz4LV19I4/HtM9vYCtQ38LmkN9nO85JgQjsZy/TIyGsgaDdAVTtqiyZ1oGY+Q5+VmAqKJliKxeZrsemKdDFOizIjGzuw1Yri3LFvO0PC56PCOCGWto4/J1BkGYn9V/4q10+uZ3HcXx149Azf/ctVRk5q8X1IDY4aUzy6iz+/O3izqrIqWaYDUEOwo7ELUMYEmhjXttIv+xmmUpZ6XuZ6NvMYqfZvtss7quGO2SwRRZTH7OFlXAVwJwNkny6KNtkBiLX84YeoccpZGIk4lrMQzGahkUHYxfEYdqLEEuY11lCnhWvqM6irgNn2MJ+UT8RIsbiDmrLOAPm3OqmHEbaWTgywmFJ9hVf4v/TJTOZFPM8nLMShO4zitHEQVtsl6hlwW64uYDBfIA8CPfUg6yuZKJ/ceLN3tQxIZ1hAyzGqVQXqEhmyYItAX5xHicXTydNpPNiFeCWlcBgdfrJ2mLJB5Q328ltgZg2z9jsZy2eAokSI29RdhzVxtwjFBrecsv6KP0DM8haP1cxihFO2hlMidkUeYgrQAL+7/YB/LWBNuof4cjEwgMqos0c6z/vrs6cjJ0suX9UF2cgkr9B2WSgdnpwrnWjqYtPU+d5lqUpOLWGqnKQ35lRVX856xbynX0ZiDpTmI5cJHbpyrLhnEg5SaYMbMx8HgpMDEstX1BpdHQCyTjnFaSaODA40yQCsHSE0YRBFS+1IQxEsHHlkH22GaDpDObDXH3sHVvJBu3EW1sjSZhMsMKD6RSQnDmn2O1VLmcph79SE+I99jie7J5Vl1Zq8KePR6kyvXBqgVAlbqO/HJzojlG5RGuqSNCrB0pUkmjV6m8CabeEs2UsbP2m4rep85ltRRR7k6o7pOsSzQA4777npawAHqGUHs5VVTHO23sCwWiBBg1enzkdV9oM57B1qvdepSE1hVtzn6YU8ybCliNF39luv9jXXZ0cUCu9pgnN4wEzjCPJ6rv4UdcikdicuwWNbp6/waf8XnebjSIiXqh970LmPLhPVcGr5FPSN4sVutG+VpSowgGlJihGv0edrp4E59hPm9vUSTP0WlTP+0d8dWrprU5CKSMYExEXlaRG6z7n39wqj0/smGhS2c9qy9LPYgk+nAijq9+J/NFuTYizicC7SZ11ZHGiYDfcHgV9Gtsl9IUA6wiD+XL5LZEB/HFQ1JHeoYBkYlseNl6xKflooMoUbAb7Vu5ajOSY+zCyHz9WC2forKWXA6UICjzOUv5D6e1ltie2qW2AAuxwZBxs6REV7xI7bNtB2W6lHw7lIJWa47uPLcq6mB2XQ/Xm75JsynldFRY/trDtDvGgCL2mT8zlL7ZHbbcpRjie7lVp5ghr5HGx3kQKgLSNrPbH2NsGsOdVA/eIgn67dyTHp56tQavt89i5q4ZbF20Kg9+QdFAMh133xeDcgXtavR0nMxb8lz4GW5jpHY6K9aYdawlTv1EQZozBvYFo9APAa9Rv7l4H/i8jObuUafRRWu02e4UX/K7/BV2ulIVRg+NQ4NfAg9NPRpbv949TLUpCYXoYx1mXIR8G9FZJOq/l58b+MF0ul9FVWpYKwi8OBiA6wwzdrDoDQTqGGGoGggS9IsYiNcYVSZwADnmBg/9ty6xJ2tIrytaymb5iXStJX1upmtspEMiNSQ2dpNt8xzAAgxbE9Ff1N2Lg7nE1DCYPGqsX4Fs/SIhfMoq/I6V+Q776L6TO8ly3+WeQfjb7IXxbmEU9QGREA9dstKppRORVxgCrCt8hp15CxnsmE5LnEG5MfpTNCB2E6co/yWvorHEeY569MFqoYYxzN8NM52NpAPU8hEGm2lWXuoYyTydBDfW3jyKFcc2AUCoYYc83rZMFziG1uehsu/4NbxQy7h8ETO1Ddmb46FrRxNqqVhPh+Ncba/ITts/MxHUS0jQIii4iEaMEhUtrPp4ZtybKxFURVKBKziHXQibJENjFAX9zUh9ZS5Vp8HIAxB1WP4xDomnv4Veqe+w+TTl7L+M1eNrT5qUpOLSMYKxnqJtkT+qYj8PfCbF06l91dyy2qmJJ1PEbBIwhC57rldH+Uoc3hTNqGJD0vXaTwXs2NfOwDZOSbG2haYfrAG6cgdELnOdpq+Rw9TshvWVfE15LjMJgUxlv6R8+0C9k9D1uibXKpbIz+co824C59rig028Sp7WMlwAj6N8noEhAnwdc70DVBk1XtkssJz19+orBCcNvfh2SDMHrRy8a12VLBnbrqcoIvGYn1sVjSjh2EeBBinZ6LDBXGYrWywdPXIbq52ANVcHQt9MgUI8QhQFXwCbj7zLDApaiYIs8JmGiac5q7JB/L1URMAfhZ8nFAcXXNR3+C6dgEquy3aoMoV1k7DvC7qH+P2cP3AC0ybeJSzMp4fyV2oRkz6StnBs9zC49ydRr1NH2GjvB45/9YdtEsHj8rdlCmlpysRn7IqO7mEcYdKlEojiAiNkwbYNeklevtmcOZcDy1bO1i+8B8lV1CTf8Qy1j1joqplVf1nwN8BLwEzRonzgZOhrn6mcaI4QI7tIB604v1ZRqemePxI7mSbrM/urbJZj8zSn2MJIfnrGMyjfV2O5bdqoMzB8PXI1MhJtiVL2F2xoE0EVJez064UR51EnfFW2cgJmRktZZpljtm4Sp0U6RaQ1FeIz3syk1v1ifRekufqcGu0KTiulVy6qVkIz/kss5RqPk/uVWMeXO8wc20sT9rvMwZKkrrHcoSPdfTVqENgme7gJn7CBn0tdlVUJm2HtooW01WS7Cm2IeqzETIMX7z/0X5uD9xpmb3YslTEnB5cMJ3+2WZYj/Pj7mNF+23UxC1vT1wR/XDVMVhto4q4+hXXxOkXZdxGm1jF8c6X6pl+uo8n5Y74oE+FTd+sV2TCvi5XoAqf0B/S1zeDH/KrTNKB2KVZ8k2ECEoni3lyzo0MzPaZNXsvE1c/w4JFb3LJpT9jQtNxjpx9r7p+NanJRShjZcb+LPmhqt8Wke3AP78wKr1/MtTZR0M5wB6bnINPfH8OhznGvPhcZBYQhZq4A7GWypzLaVU6TpcOQLQR37SAnyzFxXFd+RlMkaAs0C66pJXMab44/ACNeCiBsRQ1R99lnyylrD5OLJ8pv88TcldWh3ivWQTH/DzjkqmbLNB8mWvpk5ZKenF+PSPTKTckJzFjX5SZ8jpm8Mazd2UhEXXjeE9WmdJrm1VwsnFU8raBfJxH9F9YOcjhDC+s5B0OsSi2wxYBsy7auJ6nuUMf5XG5iy1cltU7TidlZeM0RYNMlaT7y4w4ab1pBGQjtsuLN+FbTKwN9mN2LVDhGfkIde1lbj/7CrP6ejjm9TEzbGLoSEjDJmrikIXBQd6pW+FmsaAYJLn6qOR3EQvm+u5c6TYrCCYAACAASURBVNv52+mZ8eJ0Xht/OePGDRJS2RoRqM/f8ess5EDkXiwOe5xZ/LE8yG2nn+SJKbdTFi97WjuW6LDP5VAHP+cafoevskQ74iKFNDcfQ09lJy41qckHQcbEjKnqf7Out6jqP7rzww1tzYz4YyQL406km/kx4PLNhwZj5gBemesAzI3byXP72hG3WXujHyKQdlvZwT4TJ9NxRhtrD8uCrI5Gp3xM5vJxfSz2ARdQR5nr5Hk+z8OVtF3LG0YnnTAkSZob2cw6fSNrbd4un82Wxc9VvdxSKsCRhjlpGQRhtW6lTfcyTY9H9WHp2MZelrMjzSOZtSfpTceYWY82WNkDnJmXPXil7yf6J/E+mtB2ZG7WQ3x9lDlcPvRz2sOdBHjskVXsp51vypfYwibeYmMlDUPvyO5Z1pn6pbLNqmtHOzHLh3KDPsV63YzTmr8pdhriUZYS3c3RUm6DlhBC6t/6t3B4MzXJy1k/3ktVBIpcUrWPIQ+czPsukJakMVb2zG4zIgT49MlkfMqZicU7XMqP5Y7KqWsA8RihxL4prbHh12jHqWYYbc9Kv8ROXZVmryr09c2it3/QXUc1qclFLDU7Y4Y0LGzi2p3PcdBf5J75OTtCqzPLMDG29XMq13F4T+H64Bm6vIXRUqHtlsgFBuK/fYm7H42MUaQdl4aMi422arr/x9HRJt2hizmLma1dcgmf14cYpJFGGWAnqzjFNDJMkmvGnKZlPgtRhbdkAyn4qTZDN+pbUHqlxaj2SjzTDIfisV3WIQQx22S/G2WlvsOP5M4CHZXxeia6ZQKoDFNk1KGLucjUsS0mwAyz5TbLZr57iNiABkvXOI/nuSk6xZljXANu1Kdo5QAvcy2HZQET9SynEuO+ObAY2Y7zNKAs9Zn0JnCWHVxqhXfUgeO5IowbGQZgSEaiiUs4UrM1ViD9YUv+5mismCmutmjHtdudq+2O5Z55P8cSC2+xgc/rNzgoi9itK+mW+aj4lDWeBFhtp5ne2MxMxUZipS3F9+Jrj4AV7EiDvHd8MWf7ZzJx+uzR66gmNbnIpAbGLPG9KhS3PdiNthQA1qBqAjViJkcRL+AGnuZdFjKsPoUW7V1px/fmaReHpC0FDan1dw3ifP287vaAqkq9nmM4MVgK7Kedg9LGx3mM/86vU6YUQzgv3/k6AF1GfyS2J0auEzbDeQTM10MZi/m5U5T2wG9d55yOGwPEE3IXOT+Qhh6Rf02zjuwBSJmjh+mWBW4A4mTE8tdTORH54ywaYHMshcN/KDAgTeTALYD69DGZP5cvUiZaijwrjZwwbell9PMIVQntZUuEx+Vu0tlEbtC1dLZ0FA04Xxet/TdoPSCcDW5k3PiaSySXNA4PktjVzUnB95/ri4rCmlINWFUDc0U6mOHi+4GW6JJFXMfzPCe3VOIgsRu2CtOqwMtyPRJPCoRyfEgoeqpItFwO6bL+i1yPhrBE9zOu+3I+PryOuRtqXk9r8sGTmtFXQ4a6+nnBvzG6cM0YR2PL7E7JBUosCSjxrHyEv5D7+E39JqvZDvbSmisvayAsSZCNFy8vRUDCYujMslj3V8vb8abZiu4BPo/zK9GAni6rka+Los7drJ/EnpcNoNK/yg08xWI6rHhGWk7GyaFPLu3or9pLbbn0LOBn1mlchm5ZkH3m0skBdpPrEiMsTA4OmHrYdWLeMzYyZ+tB3OGBA7I49mxg6g+kS+lWXgmbaNZb+rtKd+GaPEC0TKohc/pOAnDKG6iEOXeqOL0PsSwaib2AVAO7yW/zrytskfwycRKdqn1fDuljMjt1VWWLQRx2lh7hupFnadOO6BBLvNVD43a2prw93k9JyvqHqV/dyFj0M3Irfyy/x5v9V3J8wQCPLffpOH++ehlqUpOLUGpgzJChzr54Y3osRUyPa1ZoD+rOWak401PxGaHEQRbxq/rXlDJ7LCrhm/V0Nn48oJYY4QZ9GjGXvVJGxxiEbXBhho0ZqTW6tVKGDLip0nnboMPQLVeP5nO7TmOdJ+jZODvXMl4VgOti6IoAXAZAhdlTW+kzB8AYDXwWsafGPY+Ay/XnHGV25VkKnh3lESHdfxjdcKTvAlZwminkwG+aRhX2w8zfBpMu8Gm2KSONS0e2cce2nzOrLzJi2uF3c1z68OQ8NSv8bnm7IdoH5axnF8NlPy8CcWaYscR1pTUWgGfFadJeVrLT2jsGx2U2N5Z+xuf4NnWUUw8QopF9QvGHYwBXcdVWohx5IEnbokcgPm9PXsF/mPEpvjF/Jp+njzf6zhTrWZOaXIRSA2OGNLQ1V/zumTKWAaoorN1BFaSleDwvkXfbr+hX2cBrFZME8UC9gde5Qx+hRU+SWMb3CPlo+DiDNLKALrfuNogw87bkx9yed5Btil2mKun6sYX6lLGz41t1kJTzSbmT5/gIPvEhiAxj5LnTMX5HG/cpfJ4pm0TnGW/Qp2hjr1UbNttUBezZMS1TFD4jad4hPi/L9Vl2LQXPdkLJM4dZjkz7KyqrX9G7ClD0KVcY0UKAbeWfiM3oGXEGShNp145URUU56vUwMn5jbb9YgRytN5Zv7e9vNOYqw37GUtRHuSYqo6VfJLnvIAQN8SmzqX8XdLTwseBxzLYYIuySVbRrB/+i/79y44mX+ULw3/g1/Uu+rA/SLL2ZFNvYx2+HD/Klkw9xWf8WSmGIFwM0BMqUCCX60n7eW9vEX5MPltT2jFniZYxdOsQFJFxLRDmgFg+2Rc8l2l/xXb7APfKtiFjKDLjCM3ILgrHMJpHj3Se9u4w8TFEqZi6qLHnE+ofq0y3zs2UrZJQM8OCqB/EINWRY6vAJIvMYGEDK3oge30+cByf7o1r0NI30U6aO4zIbVcmbxUjzjHQbwLJeXgQuDGbsCPNo0R5ELAOwFoOWLvkm9eva1A/UM8RQYmEcaNHTFaO7Lr2KAG6qQ4EHgUKG0NQtZt0Ud3iUe/kGqvAduT/vNcIun7NuHM+BLmmjb8bLeP2RCoIwO2yh7twzcLi9Bsgc0uidwmnGcbTJUZG4Jog2ACtKpyjtKpOhSJKz3cJPRj5KkwzxkncpZrvygEk6wKN8krpjE9l4poO2oWNMrlNGpu0DD16QmwjUxyfgHv0W7bofnbKPq+QZ9uoKtr93FyunPoLnhbwkN1JWqPM8rpo8qXqd1KQmF5nUwJghgy/ton+G8RG7liNNsZ+bQMUGHKps4DV6tIWDsrhiLd7qxDqlna/x+wSJBe7MwOxHcMvSJfUFqWVSa/IQ77ewbW5BxuxFIgXMnU856y6oEJxZotEm+k6WkCFgC5a7hID1+kb2pCU+PTKNHqLTfyVGWKtbAHiH1QxJBeyYkt7PsZh2uaN3pfjskVXu+sjoOsrp2NRshZfRwafMnTzCn/NFguQd2vvWUglIDltE7KcXPzaYQRc7WzSguli3XDx4Vm/mc3yLe3mIb3F/xI6mesXx7TZQZDfPqDNVj11yCavoztS7x2DtNGWBuLlWioFYEcCyw1VLq6pCYwB8BWmH6vPWtOXI1MiMi6nnFfpSdLhESpSWBnw5eJBJsodAS/TuuJrFM0/wlekPsktWsjLcxYYjcxCZS9/c58BT2sPdXNK3iM1HFjF9xj4eqP8Gm4Pl3LZsExubJ45d35rU5CKQGhgz5PTO1xiZuSF7s9oAV7A0kxv4oh/Mpptm6eUgiythHOAmsAd9O29LvHgpr0TAat0anVgUD1WLfTKX2lxldLBhASXrXsh0PcEJmZ4FBmY6GX0tw645ZkqZrL38Kj9gUBrZyiY3YBOhrCW2yCZcQCbya0d+cMrk5QLXjlOVIqTH6HGk6WKzgIwboThsi57k4+d/xMFxi1isHYxQz0reiZyTq49HyDp9gxNMj09xVpi3pGSRZI37lrQcmZ8w9bOlEJiRe1edsoQ/5kGu0WeNiUUCtjznu5uj73JcZhNoKZeHR4gm72YwcVoOqspR7zSXlHZC6/15nWvCcM7qdIHYS8ZjAUz2BNK+b4ctaC+F4N/ZDhNjwUY6WuaYzIkPBQllFV72rsWXkB26ijnzT7ChaS9LJWSp7kO2Xs+Mk59ly7zjPD93KivCd1iqnZR6ljBw7jT9/dGEbZ30c3z/sxyesYj58+ePXh81qclFIjUwZsi5kQbmlLvprI9dA7lm+xnJ+vwD3J1UPOhHvtgMliF5lpvdOjpMB1Ai9vW2RPcwKE3MpptZdOMTEqqiTlDoYDgKgFj6LKOnxwmZEaVjAhZX2V1MWi4PoVda+HO+yD36MCKGVwFnvWTrrkVPcjd/Sxj6fNe/j0AFp9kNk1lKdXDVD+l+rxwLaTNsRpzINyakYCp+1iNT+Kvxv1E5gQocopXP6zcYoJFGBjgoi9jCpmzZIMvEWQAyBWJ2/WbAqeNZgf6IFx1eEeKDIF6lfgq+g6Myh6l6suIYPH7uEXKbPsqTcichws/bVzPlTD+z+nvw8JgdNlehf2py1dDLHJywOP8tjXXJ0H7mCjMac5bcs/sf17NcngEz5RjndBL90mw+IGp3ZUqEnNOGzCfYx2T+iAcjpqylzJf1PZZKB2hIUD/I25N9/veVyxjxllGnAV/s6qRjWolJfUo7HTQ3H6OvbxYDg9M5ePBgDYzV5AMlNTBmSDBpLlPKJ+isJz+YOzueKh2la8lANcsymGGdTE427ZkcYZW+gwgs1AMc1Dae925Kl9iOMJ/kFGI0F1Wq2hcrWoa1wVR6bTElLrc4rs47vvYIuFJf4m3WMCDNmOCjrCV+LLdX3J+4QK2DAZog55ivh2j3OtiiG9ku64w8K8uSkWsVPz+QWO/CI+AGfYojzKssXZrLkBFCI3VhFD9r1910yIoKgEt1MAzrxhJoiUFpZKXu4A/l9yLTEw4DmLl6cLVFVRo4yxDjM0BT8VjODvq1KdoHmAHgjjqNGb0Jejbaq5g+c7iGin+r+nnn88Bt+ijnZEK69y8goHvyNG7oGU97MIeZ4SSGghU0bPvL2jKlQ8KhCWCvwBdN3hKp1k+NdcnSfPY/sqwpPseZC2JN8MRDNGCRdnJIWumWefHz6PTkZPrSTfhlVXaxiiVhBx26jANT/glnWxoYEQhFGMbnz1qXEAqItnJbeJrPeD8mDH12vnMrra2tY9e3JjW5COR9AWMi8jXgLiJq6T3gXlXtrh7rwsuE1lY6/aboYrSZZhRo9A7RAVI8gqzPSjv9grxX6Tvcx0Mpq/CY3E2QnHzMxPcJXRasiwCXrbv9WxWwWLC0Chwg0jVrViUEXpFrY5feks0LoZv5xWmaaRvPjjCf35c/4BK2sZ11mfj1OsSwNFBZstVsndugTCKvA0eYx6zgOHv85SRMl0+ZmXo0GkDEy722Eeqd+/lyLGScViMDfFfuTZdpCt9DymIlB0vybWOI8USn1yQTt1+bWCE7K/Vq6mTmFacb4vO4/Eo2/yJ2rGjQVuUoc9jGehL2zVNlTu9JpoYzmBE2oeEw9d524MpcWT4ociH7sBcar0kycQcoYrnGwl5VA1WjgbaxhHNNPI22XEeZVjrpZDHJFgZB+Hz4MCuPzuPFuWXKGm25WMEOtg5exZ82/kuCuT6+KkKIaITzQokmhoryhP8rzOIYN8pTXDFue40Vq8kHTt4v0xZ/oqqXqupa4HHg379PemSk9foFtPcciC6KQEtyrwqDlRl8rQ6tTfdyrz4UmW0oYpIcg7lHyHXyPCLwrNzCf+B3OCLzwFxuyvy1X61mO2injtXYLcN/og0YXHXhHLz9CgitVqdmPBv12CLR6VIbiAEMy7i0fiJzkY46d7ynPbKKF0o3UJKQDfoaG2MzI90yl0p9Z8swkUFMVy2ZMgAQskx3sJwdTNbTfJN/Sift2fK7fiMIARt0M6v1rQK9o7q1pVvmcZ5xlh44y1ypfyHTpkSI8EbMDCa/M4NstsxHmZOaRxFCLjnVwaz+Hrb5BwGl3PF9fG8/rPlsTucPkFywPux8zgOCJS7wPhaAlogdd7Q8Rgs7xvTbdB9f1gdZJAcwtxIosPfYRpbtXMOfdG7m1/QH/Hb4IIvD/bwxeG3kq9ITAoE1+jqX6Nt8PHwsbpKVcj+rNxOqzyRv1th1rUlNLhJ5X5gxVe03LifCxbGDpGFhE9du/TGbWZU9hegCCom4lgxcohEYuIGnuYmneE9nRiyEwlgAzgw9xgtczxtsilzTZMZrO36yiTwBByETdZAz0uTWPY7boqfoMf0Wuhivap17tfqoxrzZYdK8HKf1igahImYpTmemHmWRdPIy12Vbm61PfK3iEygsln2cYlpsxd7tjggN2S5ri8snAurRRSvnmVh5dwVgxq5PVZ+tsjFmFK14JrjOvSui8ibWzavVlasu498Rp6iVNDJ6Gq6xYjkus1ObZSUCLh9+FZjCeRnhuNfPxFlL2X/7X7H8A7xEeSH7sAkMcBrD1pjNRNrfm/nXFheL5Qrr+mYLJwgFYYok3tvaSicAA9qISHy6UhVRZcrxs+wNDnD13rWsPzGJMy2w/8gSFvoneWWmUvZCfELe9tYT4rPHX8ns8yc5Om56mk0Lp+nct4Hx8z8xuk41qclFJu/bnjER+UPgHqAPuLFKuAeABwAWLFhwwfU6MK41suXlAhVFQMQM62JdABBCPL4j9/MeM/kpt+eSisxSJOxENu1jModjzIk2V0MVYBRm90cB4GWBWAGQyTjirjZ7tvJu0LMMyfgsWHGFHxWgKav1LbbLpUSb1wtYyQJgKBiHFjJhhG6ZHy/XFQBBOx+N9l0d0Xm8JleRYYtycRwDpWOQSv2FugawauBXpNAUipuBNNOMtFPTyfJogNhYVvIIK/vh7LaeMoTJ3jxJdb1Rf8Y0TrJcd3HueCsDQFlCflT/Jnc0BKyfZU0MPoAylj7sl+m/fLudFX1Po0kRW+a6drUruy0Wpe/6Ho2JSpvu45C08px8hJe4kd8Iv0mdjDCiJUThmr1vM6u/h/4zUwknKg29iyn1LuRMz17mDZ3ms+cPcmj2bM60DPDGvGnxnjKYfzLk+Nxoy4dPwO36GPUNE2ldU/PsUJMPnlywZUoReUpE3nH8uwtAVb+iqvOB7wH/oigdVf26qm5U1Y3Tp08vCvYPJqvL4ykZrjlSUDXKwJ1/5hiUxSPA5wnuYjhhWoz4HiETGMynmYA8kSzYAMReektpF83Eyy1bOK7VOgkYlSGgjmFHTVXCDcmEKNfE6rxdN5kB3mKhMiLskEvJ+dI0y1DATEmyfFbEBKRpOSz4u/7Gv38u11Z8OybPXMySazBzDYY5sF6tXZm+KB0DaaZcDuAa/44gk7KarXm9k+Q0MosiKBK72NqgmwHYIysrhoZd9S8+JJOEGMR2yzxWsIPGYwED/fF3KxCi7Jvkwcv/hYtd/iH6sF+m/1pwfCCJ/IspXMR4jjW8KUVArNrkzA6nmhrRDvBj6/gldg+u5kud3+La7je5862XWHX0EEunz+euf30PnYvOsHfcM5xpfJANU56jfuLlLOhr4fqOIS7pGIcfRoa5/UCZ0rmDFb1/xCf1+/y2/nuWSifXXPPF2n6xmnwg5YIxY6p6yxiDfh94AvjqhdLlF5Ev3fHv4fHf553SecYPDbGtvJJ3G+YQ1I+jSXo57LdGAV2DvtFRXRW+yGa5irK910qkwn5ZgCtQj7NMqqRvgxdVBGWp7mRQmpil3QxTH50gNMKlLEqu4wxZoAc5LK2xDolpjgKmRDw8DblUt7JFLrfKqZlyKYJHyJU8z8tcC4kVe7OOYh2i/MgPFhJtoM/oUQTAMmkKai+XucBJNRYIyJl8kMhoaSadovQydR3SoOcjttB+BTmWwTHoxWkt151cLS+yWa+I2EJzqdGZVuQK6rRMi9tAnL54hCoc1DYQY8nS0Pl2eYxP6/fYq0vZJatYyQ7+nrvyrrFckxANKuWIw+xmFX8ov8c9I3+ds5p1xpvG4Du7mHR480V9mvL96sPqRoaiH0WMcvLMlGrMsyu8LY72l9OhWttzPJ+ggwwxnk5ZQvJdKR6bG6/kxKkWJp8RLhkcZv2u97h65XJa2pqZ9b/cDoenw8FGaL2WqSPLONLRw9ylEWu/9JVdvD10kpb6em77wn34429m+7s/ZEnDJlbO+0Oam9dXL2dNanKRyvt1mrJdVRNHgHcCu98PPYrkS3e49+J+8uv/kcNLWt0zT4upGSfnWHZ+D++Om02fTLEGbQebkS754Kb8U5ZD2CMrAals4LfTspfNjCWlQ9JmlMgEPmEuXsSQBJyRSdk8oousfkCoHkd1DlfLi9berApwE03MPzpAkClFTGTR0ovp4D3H3IwymMXhG7WPORzhvIynizYLoBZYm3deRxb4fcpM0+Mcl7n5Mo020KqyR1Zwlb7Ir/LX7GElwwq4GCoj7R6Zyjp9AxHYwsYK2wmxORGscikLtJON8jqPcTcr2MGd+gh7WUqnLHaXM/67kddo0PP8XK7LYs64TGUtcXrqFC7f30SXfzJ9PJ56zoVXMukDbIH/QvZh706fEv0omoy4JiWub2I0AFYUrui6yiTAJYoQiHVqXIQAj32LVgKwta3Mf371Jwz89Ge0fOpTUZj5l6XtYhYwq61iq+zetiusXFpYO2PtqLrUpCYXu7xfe8b+TxFZRkSTdAFfep/0+IXk5JRl0Y9qg3vMGj0vNxOMd1RvDoAVpUG+89MKqInuFewBMtOw0y9YTkgBU3xPCFmvrzPIJHYn9rZcM+1MPkKntGdPCUJFT42siAU5m1oVEJvu+8qZ/Uj2k63Ll80FjkdjCRxxBmQye5gc14VRv5qtmyLW0s470BK+OPb4FbEQZriYlfuO3M//cf4P+Xf1D/KSXB+1K3M/nRU30BJb5LLIAr5p2sTZliIZzzm+xtcIRaijzK08wY+4s2LzzcmCBDRpL8/LLfH7crGEQqN3mhHivXLx7alhIx7HoPVj+TJ8cOSC9WGd4w0H8tX+wujAaCzsWFEaY2XlCu6fS/ZIFn0zQOj7vHLtZSybMZ4LvyO4JjW5eOX9Ok35yfcj3/9RWRD0sYc5+YE81zlJ3v4XWIOVBawy0a2B07VMVMTQjMbamXpk0kkG3jC2oP4YP5XbGaYuG240wOj6rQkXpqzkbbaz1qFDEIeQqF5yG87hFNNIQZKtQxFzViRFSzJQYfSqgmLInCQsCNPNPKucZhsIaf7/2XvvODuO6873e/pOxgwGAwzCYJBJRGaCBCNIGRQpiaIkax1W8ir4yZIcnnffet97u7Jly9R6Za293mc/736eZVmiJK9WctB+JNqUJYpJYLAYwAASAEGEQQ6DMIOJAGbu7fP+6L73VldX9b2gQCL17/OZz3RXOHWqum/Vr05Vn9ITDFU+nEg/s5IGfK35U9yrD7KW9QAc0NghrZdgRsuSqfrZZCnWIXJWGxG3CYWH+AApH3VWHQsoIgaxtq2ccdhjwTpGurYzZziunsJpmSTUaVzIeGv7MMdEyvW7dt2b6ct9Ry34+pdaebMsdbZsDWmgyDX6Eq/I6soRWgWKdHcHPLtwFlfX1jRHjosWuQf+M8CplvHoIsvKERMHKoeFu9GsJ5MHXfuWIXzkyyt33L9XyZbjuG5jjJW6mZPSVv3IwDWgu46CqmEpUpWqPzC73pYjWIltZCZBOZTw85XRJnVYwZw62OTXVUYi3LOsnHh+eMIjAjwk090yjHbplx6+Jr9GgWLspy0W7Pp6NaV7cgk48tbfliDhapVnt1UHg4zQldBvHntZqLsIRAkr721IF8crB7sDHGzp4R+vmcX7Xn2GOUODCEJP2EVL4fuwe/KCXaZ8K7Eo3M2OYFk1wGHN9MJFwlwTFNd747q2y3elcxFEi/hfHz7P++RBgGgCwjQ6OcHt4dM07Xkfc6ZfXrtuOXJcxDhXTl8vSITlL8ZsmAN5BRlLC1AlYr5lhDi8DceXVaYFzLq/m4eT7i/sP5tkWHqN086LchNP8E7SrhCU5bqZdfown9AvI7EvKd/MuFXHofy1p2egT7VXWUR5qbIiz7AkWuWk5SkdOlhN47DS2ddCKRnuW55xWv9CAkos182QJcdlvaxn4Iv/l2hApRB/2VgmWlZZseyAkECLBMZXjgCnaU6W43sWxvs1qcaB5HH6PSzmr+VXjG2B0fNZpZsrPsbKeUpBgYOdEUG7dXIZs8N2GoI9sCh3QeDCWnkiurDJV5YVrFYaG+a7aL+TvrRZcMYrS3Q7n9Av8Vv8FwC+KPfzY7mb1+Q61uqTzNw1k9PHl7J4dr5ImePSRk7GzgCl4XjJzh4ofR1YOa0dZl6bJMnRKY7T4c5jhlV0UPawuLpXyISLwJl1sQhCtF8oPSPfJit4Q1ZxRGandy1ZZZ6UNmoepG4TE5+FqbyEqQbRdC3nSGRhGxHPMpir7VB6OBiRWJ+VydTJuBZKLNEd3MLTsYf+Qpq0pWARQqMcQat19JTptERY14oyXY8lz/osn1Vqv3M2DN0LFLleNyT1jdMUaai+a3GeZ2Rt1f2KUa+Wycg9ynSN3uej3JFbxTzYRfzhhOv37rPSmqjHglbO5yXknvQ+2U5LXMgN8jx3yaOIwBauqJ49SYGtXE3bgdsAODU2WZ8OOXJcpMjJ2BngUNOs6MI1q/R2VB6Llm2hySJ0tYhdLKNAiRt5loJpsXJ12GYHbBMxo5xITrFaBwlQChxgPg/xwarbA5e1yO7oXWQr0Uzqzm/oLJTo1n5DxyziZFkDbetYgowIh5kbH5dkWbYc7WKGKQX65DKe4U5GqLEPqmLhI93+FXkwRR3WUOdgRzpdHKeUD/E2290hw6qbWMvrIQWW6+ss0W1JXbykIEhu6I9J4KnGyLq2vXAQpMDUhhPZbXUJQ0vW7hHXe+B7B+y+yNe32DgTQpaFRPkBK3VzJWrB6EEKGiIaIgT0HFpBb8825szpq7iuyJHjUkVOxs4AM4aORxeuDi7hoNNMU4NkuSxEFZl1EJdKmuj/2yD6IgAAIABJREFUbhZzrb5Ixaplpgcqy4blssxB2SYzgGQN4LY+Pj1daewBxh5kbDKpJQQ4LgYhJgR7qdRHEjzkoxwfls/NRAhi0heUHf+acJJmy0mta3mpQsRiUuS1SEn62Cq7LpV7D9F1WRtdejvJZWxBi/MqwtcKv0qfLLPqQrwEqilZAjGJJ3KPoiFzh44ZsUowobDv+bROOWgVy/GzY+KVaR017+shWfZ7UytdFoz3Y2bpcCJqzvAAt27fRKAQIvz33lX88dIZHL39QVpn7KwtO0eOixj5Bv4zQEM4DObXfJWB0dwk7bB4pIhI2rmod6Zry3ENurFOJRUel3uoOlZNDraiJZbp65GfMrtfdQzkFRcKPpJTuVY69AQj0uXu2BNkBJwHhdttZZCO5bqZ7bKyQpbMmbcQpjb6J8q1ZVcLTH1EUV5yC1UZkJnVsyBNWWZ9bH3tZ1iJLx9RFVmOks/QeHdchEsEtESHDjMu7fU9E+c7Z5FzM10iH1QIe4XM4Uiv1UPfrUG6lTFu1mdYxC5GmErj9namDkVplpbmRG0fvAYXsJ+xtxIvFGJfWj6LcxYpyiJftfoYX1pXvqxyYnlHC3P4IvfzEX2AUToYL3RzuHsxIdFxc0Vt5HG5myflZwg3Ps1v3JE7bM1x6SK3jJ0Brj0yBvZXkraFwkTGvSSsCo6N2HZ+Ozy+btGx6Hs483Bw05mr0aEqsE1WJvUxymhSy/O3i+C4lkwQRmQq0eZ1z2y+YiV0EAU7vdEWBYq0M1od+K22UDPclpdpRRD3RxQxyUuVl/Xft1xkyL0s3E6FRCXyWOTNJlKxPidlCh/Xr9DNkXRdTeLkIlhOC6ndHlXdl+gOEu+503prPEsrfpx21std7JHFrGITqxpeTRTXKJtpbtqdb+D3YFynJANc76+LPNWC06qb7lOcadXxPvjiK+kCJijwDfkUfy8f5qE572Lb9E5UkmmKNPL94cvSMnPkuISQk7EzwFoGWKGvJwN9M0Rr4KvsxYkHsiqJCOnmCG066pfnWoaKr0/JlOombZdOiU46SJIXS8cujiXzOAdh0p22CBEBzCBGWfemrsagMJd9fFy/wiDWfpKspTdTVlacPQi5BiJVKgTTbHszfdbyUCWdsCNYWpVjtqdNlDxkKSRgVDq4Wf85XT+ntdQId1nsXO9TnKZPYl3NOF/7mWUadS7RwGPcwxflfrYUr65wzkPBIDQOwLv/c24V86ArHHRH1EO4zLSud8KMr/f345scmv9dVjRVop2ngsZL+SrRxofpejxRXGdnfp5kjksbORk7A5xc/gq38lR0Yw+ersG8MuCVWM4WQB2dVcAxZjNePnKoEm6V4er8rAE/kceEnbYSX7XIFSgyWj4ux0fCKstmaWsIZQ3sw8JrLZm5LEHx9fVs4JvyCXbJ5amyEnq4yIatd5b1KI6PDmopJeQJwmp9nqkMJcu1r11tYpSrZbJq6mVCBIiOZEoRc1UaKNHBCP8k7/fLsMNt4mi3iQiVdyAphMQ+OOdgHDrC7N9EwCQN7Gi8vMLtmrWRQrEED/1WvmfMg8WTu9KBWdZYH3wkyvP7deb13bvCne+aEqhiWv+FkFv1SRqYRDSkUUN+c9ac2vXJkeMiRk7GzgA69TC7WRzd2B2P3cklBvwCb7Ay6fPJ7ih9BMiFLOtZFuGw05bdVxASUmAMa3kkSz+HntFh4UqXHvWXW/7vmpknyKXygt7MZOxbCxwEqCy/FkGySVmiDaooEHKLPo1JmpWAF+UmhrHOdfSV5yKGLlLrtGwJV/NK1U9cjE4d4He4nxHtiJdPM55JpXyt1sNncVOtLpIaeorpJ8xGXGa3HokH05IRHjJFh5PyVYzN+/Bs43b26GpGi3fDM3/mLuMSx5rTG8BnRfVZp+ohZ6Yc896UZSPLulYOd1lOAbREQ6nEPdsf5e6BH3Pj4VcQjfZO/jC4j2v1JdaFj/Fnm7fTtSX/ujbHpY2cjJ0BRoYLHDCPtynDR8zKcVAx01esHuU4m0zYO+tds1uzDJ/1zEXqXGkloOqOwPE6uCyAvkFBoq8SB6U73S6uwcLXkcfEpF9mowSIllLOS6P/boKRIqRekmxAhCIFnpG14NtQ73sGdpzPCpglIw5/Ru6ofk0ZyxmWTh7iA4xLGwknulY9Gpgw8gkLdbdRZnpQ7dQB3suDiXDB+KAgi9ADd/A4y8vL9qpAwJh0JOo5a/woc4bjZTeJaP+hYJCx0t0wkvzaLkeEhsJk9X234Zvc2HC9Z1moZflyWVx95cRh08IT/NLL32bNZU/R1XWQ9llH4t9ltE9sg6zhx3IX+1nAyyfGs/XLkeMiR/415RlgcGgaI90ZbgfK17a1JP4fELJOHuEhPpgxyIk3fxRdjlMrbXxvp/ORgXIetcMcZdW06NjXQTqtLcdFROP/U3SUMWkHKYCGLGYnJW1gjyy2CIJD79RMX6vpTDhn8/ZXspoehOx2cVkOalkTfTLKdbLKVy2wgZuM+uBs+yKGp3wtsVcWGOWmCdaYdDBL+5nLPg7K/LgscJ5LaeG4zOJx7kFSB6En39/3tHyXjo4CI8MzQakchwR74bqPpeTmgB0ti5MWUBOu32Q53ITr92bDfv9cFmv7t+oqyzPZWFDcy9Spw/znwuco0kAg0TaAUvncVAkoofzRFS3834ONGS2SI8fFj9wydgaY0RnQgOUp2rTCiKQ7N6NzCgmonFtZjnekSw1+9rJTFGjFG9YPW4aLoAHtZeei3jKx4pUVbKZZHbNY0yKVIiY+QmkhLnNMphjphT4ui4iYK30sfzYHwF7aiYS465fI76izOQi5LGtZlgSP5Sr1jvhkuQbHSvkZbkES7V/+SMR6Nw1dijTwDflUfHIARPt6HPJTVsWwYknV8pe7Cf1LCCH38V3WyaN0TjtceV3nl2YwWzvRhuNwwy+72/ASR7vGp6q73iHw9zGuZ2Zfm+my0tjhvnhTXuK/8t7hJ9nYfmPF635IwGw9lKyDCArsm9jhl58jxyWAnIydARqDEkWsGZzZYbqsQcZAGVLgIflZvNYvu3NMdLJlwkV6YK1mchMMz/1o+aMBuxMX30Ag9LGURexKprfbw4wzrDJCiQJFMJ2pOkmjYaESIWGxchLLkKP0pOtg57XbwWU5dMF+VrYe5n97kHQRUJf1wWfhsNvG1KlM0J3PK35f7HfT0r9EQGWzfpTQ3U6GDu065tZPBAi5Sl/lc/q7fEj/JyAMnahuzm6lCXSSYvt2dz1zMF5op/IcakxcUmGutCZc73s9pKycNwtW3oNNvRxnJqIabTVQpadMxgyZhRAuf/65bNk5clzkyMnYGaB5rJMOkhuUvYOwb7C1iVjW4BsTjUQ6u8N1kSbbmuJdSnN83eca9A1dJ2jkJK0kDwB35HXM3pUCXXqMhB80+79tNfLJS6CQ9AtmtovdDlkWQB/h0hAh5DbWx0cmhck8Lt18A5eLuNs61kMUNVr2LliHcqfyuAZo811M+Aqz74nrapA+YLS8L8z+olIVQWnidCXo5Ml2RkZmVsrsOjFCw9GvM/f0D/OvKT0YnphGgkjXS7Jcv3P7vtbEw87jypv1G6rcC3/d8S/YMncRirDg2GGWHdrH9P2nKWgJCUOCUolrt+7io48PsXDGqvr0ypHjIkW+Z+wMMGXXFeBzh2MPoK6ONHNgtOSgLNTdtDDOG3JFujxVAkq0cJJx2v3lu8o9k845pbuwV5aAvdTqq6MVH52XaITbBMK15OHS30dgPOVmWvBcA50qkY+xyON9dEg5qCippTyXbr5wX9v7ZFTiorav5IvTX65vRO9HLUuJTXLt/5Vrx+kNkQAHSUtDKfCi3MRGrudjfJWRtqk0zhGmxgaR52eM0d3xQbqKO2jOPfA7sb05duWSZbHyEXVXH+NK58rvmhzY76Hrd+eSAWicNiRk34w5qAjbw4X82pZBdpzaQTh2mIkpKxFCVr8zd/qa49JGTsbOAAfaO9Ie7Muoh4SZA10tq5XCHlnMbD2YVCJOt0I3cznbeEg+UAkXSghCqLGFI8NC0sw4p3F4oHfNcm0rjirOTfqOJa0zzhdlSuvv0s8cHFzkykV2sixXFkHp0FFGpLNy/4zckdTLR3TM5ytCtCwb7xfMstLZbZGIT5epKkyWN+376mTDsPZF72JYrZO6CJ94dBIwl0itZ1XUaD+aIhSWlnjv2E+YMzJIqCGHghGWcg3NuQd+JxpKIa6teAk4rVEWfH2RGZZF+N5MmZ4+MBRAAkqiaNMUbutv5j/d+T6KgfBsWORfTG5kDrdkl58jx0WMfJnyDPD0fI03LlsDqmt2mCIHyl38iPv0u6SW+OyZqCGzX3pIQlmi25igMSZi1a+ulIDreYEFussoF0fnqMxWj1sBmxQ5rTSkO/dyWGJG7RgMUmlIt4GP8Nh6ZqWxBwUfMfNZsoAp9oHNrjMhzXiPha2AsoTt1TQJfZUGnWAm/X7dXf9VKVBiFZsidxSugTfT+ifWf6NsILEE6dQljI/hKiXLiP/KZ3GGUqAoBQ5O66b8NeXcsIPm2+7MrWIe9I6crt743rUsZE1i6sn/05SdKMu0ngagJQItMWPwEIfmraAYBIRBwKQU+PHpBfXrlSPHRYicjJ0Bpu/aS4WguOAjGkCjTrJQd7GaFyiYPoRSy0Q+S1lZttAny+iTZZhErBy3gTXxMqLLL1dFIPtlYVL3MmExdJiux9J5bWJj19W2vLjg6uRrdfw2schaejFIZyJvItxDpOP0BYq0lb8a9VkMXETJYWkoUaCPZWlZseWpKE0cZXY1zGfFsFCkwD/J+1HbmpXQN7KYtmF59Xc9R6Puy3VL8ggvQwfRkCaKfDz8Muv0kfijjBJQolv7WcFmlrE12oGmJQoaVhy/zioWWdX4X2huO5guOwcAvU2bowvX+5llvapFljzvpzefz0peC+X+o3Q8mihIgBAyf+IASw/vZVPjPpacGKKgIKFSUOjdlr8POS5t5MuUZ4BA5pEgGPYSHqSJS4xJaeIBfo1e9lGi4LfiALM5wCw9ylSGeEbu9HfKzoE7XgaMfXT5rEyhGmGeZbcBmYlQYpoOcopWTiZcThg6pOoS0qLjnJIpXnKa6tR9xMO1BJjKbyynJeLS1qREuE8PDenVvaxiE30s9VsB7WsXYRSpcEJnHe36+f7bcgE0dg2aKS9AVaJ9hWb+DLKrCNtlRZXkJWSHXMlGbtRnGZUO7pD1rNX1PCQf4GVu5JjM5FiZWAIBJd57/IfMGY7O+Bw+Pc7kyZ0cPtnCInK4sKVlaXRRa9nQRj3EzTcBqQXzfXbJsa3QqgwWuiILqQqCsr+xF50rbJuzgI7Dz0LQDRRAAg615GdT5ri0kZOxM8COVfFXTrUsJa7ZY9xBHSh/AeAjI8CVbOIT8lc8qB8kWtvJOAjcvjesF5E/qELaYhdbZNI6l0lFNVy1wKDMwH2GoVFmQo5ERMxVTztfQidHXeoaOIz6uMiwhyA7SV+s/15Zwl4Wu2XHpERU6dRBTgTTqyTYWW78IUDGM88k3JXrEtFyT9palaqT+d9HaM0yjLJDDai854l8IQVCFuouvimfoEgDDRT5CA/wCjdUHZUa8kINGNGp9DAICKVCE6O7m5n3k/th5Y35UqUDu1lcvXG9F1nPr9ZvxjeBcpWXYen33hvvq2p02ivEZ7NKFF4KlJd7psQHiAulIGSgx96OkSPHpYV8mfIMEDQV/ZEuy43LeuJbJorTB5S4XdezTZexk8vB9hXlkp2SHzJT+7l68lUwN1knFXZVgul63CEzOjLJW2+z7nb96unEneTCIn+u9qv8D+IltbIbBqscU5eynl7iZOYVEj7PEsuegkrAiWCGe89WpS0MMmfDp4dNwir3DtcdrjzE7WDXLX6/IvciVh67XSw9o49DlBDhB/J+JmNHnkUKvMDNhE7yFtW9Q6ruYCZamjg8ZRYFnYCN33a3yyWOk9pavcl6P33WZBO+iWFWnGuSlCXPjEu9r5LSs4CyhmdpoEigRRoocntnu19ujhyXAHIydgZY278PzIHXNt1DuqOs1UmmZr3CphM38Id8nhdljTuNTXgSs9nIi/oRmc3GxmuTetoyHMRhQGa405h6O0ikk3jZZMMmXi4y4KqvDcfsvkf38Yv6Lebqfr8OPquB75mlrGhuohn4Bi+N/G5V9va5CKpZpotcuXQxZFQO5k48A4n2JZqHeMfPd5H2sTx8nQTJt9Ik6xxfEkR/UqBEdCB8NJCWWCPP0ljZN2a3q7KbyyqcVBGOLL45bsmMgf0SRkFK6UD7PcnqE8pw/VZt2BM9W4ZPj3rjrPIDVT518GXms5fb9Ql+Rh/l32z9Zw5vXu+XmyPHJYCcjJ0BVg4PslD3VANcHaTV4QUU02nte2OQDiXgxcIaitJA4uibWssVsdWjWU/G8uNZKVY5Zl6nRcoiadXKVvV2kVFXp56ha5poKM2Mx1Ymz2DkssDFMhazi9e5ghY56W4zJ/EgqUfWYOUb7ICSNKTTxulaGUumdxEsUx8P6fJZ8iqHihvyGyjyHv0HMC15MZnsk8t5trA2XVZFZvzOpKwvpm+1gPfoP/AOfYzb9Qnm6V5+h/tZrS/Ezy9MyHttxnIOd3ZR/pqyO3g3o6V74ZpfIkcaN5+KneG6rFKuSY8Zb8JF2HxpfNa1rD6nfG/3FY7fumiJRccOsfzQbvYOT+EP+Y/8WO7mKd7Jyf6r2cgT7jrlyHGJIN8zdgYYPdXICB3VAHOwd1mQgGY9zcnyYO3r8Kyw1tZBAu2hZBMgm1BYJDAk4LS0JdOY8mt11i59bEJTc3Zt7Y8SobrXyfrC0lrOqvg9y9LFuT+sFH3ocKZ1sw5bb9ExTkkbzj16zsHGyG/GGWnHa/lycxC4tJ4uPayyVZnLXlo5zZ36GBu5DswPRSrlGHvOXBY9e5JgvzsioCH9Iwt4ueMaQgl4mp/hozzARrkeJdqs3TU5wEDjDJBo79DBzm7mDA1yZXEBs8JOTs7532nP94s5MbdhrzvCfjbl63KcyyrmetY+eS7iZVuhfdYvV98UvytLdDt3hk/wP2Z8kpIEvNFj+B1Tpdjbwj1dudPXHJc2csvYGUCnNjFMZzXAN3ga4SdNclQhE/gtJMDWxivp1b3VMFWifUChldfeVF+1sHmXH3xWIV8an2XJ8X+JbkPspbzYklLRL0umXa6zfS2XHSKkjnXyWQASA0lIpw4mkkyTE5GO5mzfScSUheziPv1eUpfKoGXq5jj6yZZvw24LZ53stlEOMY+dXMbX5FO8wvVuuWYe+12xSb993JGRtr+1m5IUKvvGfqDvjc5tlWg5c6BxRqUcQSuuLZrj9midafhVy5HAy83x9gLfhMJFqMpwka7yfS159U7W7DS+CZsWaWKSj8nXGQs6KEmASkAoIKoEodKgsOZ4idtGl9QuK0eOixg5GTsD7ByBWWF8rkvKPO9berI7OiveMatUhL3BokTZU3SUhF8xE/agXqtTNUlhpfwSCWe0WcsZtkzVaHkq3iFVkwy5Ztp2uSmyoqxgM4n9V5W6ZFgAXYQnJnBD0lVJU6BIYJKPLBKKcIB5bOHKqM1S5DfjGdnvi2b4gzOfk61DSj9B40O/lQIlMQ60N8u2SZjDOrZQd/EJ/RJz2ZeuR1y7fY3zIyuYlggIOSi9Xh3nHz/MnKGI+M4JuxAtMXH4YafsHDB34kB0Yf8OfZbpLHLmI1q15PgsuVn5LQtblw7ymdIfcHm4jVW6pXImZSEMuXrfDq4ZOMn/+fpJrhmaoPnKnIzluLRxTsmYiPxfIqIi0n0u9agXY9teo3kyHuRSpMQxgPuWBrIsU+ZSnDFAjkkHKUiBhKUN4sHdGuATsiuZrbCAXg666+aSkyBPihLQJ5dTcb1QTueTUZZvWJO6tZ9u7aeTgWQdYhmDahyg7LPU2VYcl5Ww8lyqr//NPFM97cBltbKuizQm61trGcduAwlwugtxEVkTrrJsYu+ygrgsYUBbaSwld79E3tBb9HRaRvylpkoBCJmmA1zONiok2fFONzZMANE3r4KAFDg6enEcffNW9GFTG0YA6zn6nms5znWdVNRPsFy/jyyrmP278vQXQ9LF0PbVgHA5W/lseD937X2B+/Y+z+vzl7BxRiv/dWUrr05vgVn5QeE5Lm2cMzImIvOBuwHPBonzDyPtc2gKTlYD6p0xutKYHZnRiUnsxylRhm/GalphTFJIQMpS57s2LHgnafGUgbujTpRJgtzUtSxilFGgxHHp5pjMZojpJCxgcT37Za47v62ri9C4BiKjLlv0irQzXjttqhxjedRpKYjIlmhsdUzJMz79ty1Xtr61nonPmmla4lLyQ+bqgWRaiXxDfV0+zS65LF338rsV6z8o3WzFOK8VaC6fXBCj1BqCRF7vDgWRhWzm2A7Y93y6zS4gvFV9WNvEKSqTDqhNjmr9Hmqlsycu9fy+bHmOCVJIwFD3oug2gKWylX8jz9GyYC9FCQhFmAzgxWkNnO4b8tcvR45LAOfSMvanwL8ntQ5z/mJFoZlGy1iQsv7Yg7fdwdkdmmWF6dH9FcuE2RkHKHPMgdNH0iodZZAMt9M5yMMAMx1pQwIi7+mJ+piwLVIuuDpuq120TIZclsOYMDrluqw+vnu77sYsPjEA1nqOZpyXBArT9SjTdIAmJtJ6u8pIleMo11Uv2zpm18PhsqJAyImCsQeyEhcNpGpaXg191dyjJ2XyD2hIA5MsZldC5O7mxRzuiJaEm8MCaJEphUdh47e4wPGW9GFDE/EJBrV+UzZ8Fqt6UI/FrRYhNPVVRRRu7G8h0CA22BcQhJW8GvsYK9GoJW4YnKB5Sadfdo4clwDOCRkTkfcDB1R1Yx1pPy0iG0Rkw9GjR98G7fxYefs6Wo4ZAUbnF9kTTLcM5YE6vjeXD13LSXHHJyJVC41hwViqrzMuhmNEk8zEMgKfWwinNcuztJGyaAWE8ZElCWRa66xrm0g4yGRqj1MtuAiwmd9HylKIrJHVA+BdHwhAam+Xi4A64gZkJoPSzUTZ6pjSUdNhWYOw8U4IpSSxtd+JRB3SHzmUKDDiXP426+Mgxrb7k7jdZuthPhp+NclMJNoDeXBatIp3OihWZfqc4V4AqLcPezP918xjc6KLLOuuK9xnsaqVP6lw9m+4HhlxmjXHD7Dm8FzaX7mewy/M5MjD19Fx8BaW6S5+J/yP/EL49/z3rY+wbl0jzQun1hCaI8fFjbeMjInIoyKyyfH3AeCzwOfqkaOqX1bVG1T1hpkzZ9bO8Bbilg98jHtblUJo+lIKKVDiQ+Pf5nPh73GVvgrx4bhQYgk7WEhfLMGwViUsGCFTiJx3HiA+/zKOi0ie8oZcUf2S09NJ36JPsUR3+CvgmzFbM9oUUTTzuqw05fBaS2lmOhd5sHVyhfvKchEZM9yuv2FBVCBAES2SIC1GGXN1P4G5x8sn166/w2LwU1ksYrlXsTE+cD4idB16ArDa2IWE9STtTiQgJNBi/EEG6efgtS4G9MscvimfZGBithUHLZORZbBZm1ApMF66C675cN3NcC5wNvqwN9N/vTq7taxAeqLkeq6+98llwbbjXL8l1+87qyxnOcqi8XFmffo65t38Cxzf2MXh/SO88MazzO/7t9x++Eo+M9DB+95/F8033uzWP0eOSwhvmZ8xVX2nK1xErgIWAxsl+mHPA14SkTWqevit0uds4Td+6ee57PV+Htmyhxmnt9I/5QQz9h2nY/cspup+rr1xgNdmlTexF6KDpl0uHYxBsVMHGSp7vo/9QLXpGCvZxDQ5wWPcYw2CscXCHNxVOUQPH+XrfIHPU9SGZBqbOLjOcvRZsuz4rNmxb5nEDncNAK7Bxrf04ru3By+XDAeRuFnXs0OW0c8c0r64lKkyzGF604TKNRClyDbJtGZ8uazYciqAquUOw66vKntYQrFssVRlRKaB7+iryjsTkvIBV47XyGnw9boBBV6WGyJqZw/OCd0FNGTqyTGGW9tBIhfHgRZTaU81NgGwPzjGytJcip1XnffnUp6rPuy1NseXqZFC7vfPR/KzSL/P+lprouArJ/WbUK7VTTQv/JfMXfhz/AKwb8N65t9wJ3PX/lx2GTlyXIJ4252+quprwKzyvYjsBm5Q1WPeTOcZ3rVyNu9aORuoDiYv7hnk8J/8V4YaC9Gyl5QHPUkP3NZ9UZqT4cC4TGEj1/NufchBZAxlEkt9DaBwB49zkHls5YrUIN6op5mU5myCkzWjdllqbAJix9npbDkuAmXea5lIAGpt7LcJnivcoUuXDjAo00CiPUzPyu0xFRJSzmkRtnJFtHfO5bi2LN9FvFywLWUxAmC6HuOYzM5+PoAQL/e5iKZ3QA38+qKEFHhRbiRAq4d+u2Qm3hNh9tBARMZUUYRC82SifqafsSGJNvc3THMsj14geKv7sImg2R3hIlBvxtoK9f0OXTJd5NAOByBgb0vVXcXctT+Xk7AcOTKQ+xk7S1i9sIvWjiu4qv2J+Jw+a3+Ybf0xOrImNY7wKecRoUhD7MsqYzZqdKB7WMwX5PM8wd1sYwWpL/iASWlKyymXLQKEdOgJOnUAfPvKzDDXEpyHbDgtNi4C5cgzWw9znz4I5j4puy0SeT3kJI6PDsuuWjBLFOIN66TSlvOHrp+L9SzN9Km28Fn/ACTam3dMZqf1drTHMF1g7RufoiNp3Sv6lIlmMs80BirlA/HZk+X9h+m6deoA06keNC6ETLYFlXuINvGbOvSMH2TOcPQVZYnoy8rG/d++4L+mfKvQrRl7y5zvjsdKmzUhMPOZ9zYJqzXBsOON9+XhrjnZ5efIkaOCc07GVHXRhWQVy8KBmZspFCa4Sl+Ov0C0YJGt8v2gzEymqZANYbcswTWIpma28YBbpBGVQrTp3mnd8HTclbCAEZnGkEwnYdWzLSo+K1qiLOve18m76lVGnKdIOFMQAAAgAElEQVRf5vKQvD/xwgqlaOB3eYqPFvyS5Rt69QVLk3nMsmNiIpWPL8o6CYkPGVxWOV8dXO3mW/JxkTbr3VHTLYYqUGK+y0lrVjmAaJhOT4Gbw6fjfWhJDEkXQ0yL3PvG+yVvLjxFQUuV92efLEqUcbCtly1zFgIwIUWgRBi2we6n0vpegDjbfdh77ZMdTLgs02ZclpXZJ9MH3yTDjMuwmh8LHceb5ciRw4lzTsYuFvztq0+xY8Ygfxh8nhflJkJ7BdjsuFwdprNj0/hLRrMTDJNpapGh1HIUzNYDLNFtJDzuA02cduuakBFW9wTVWhpRJUGITFTyJslCghzYFkUK1fYQAQKu0ZeYq/uS9baJpw2blHqWWiqWMp+lz45z1T/RdkqTnnan95E5V7o4XsrPL67NAay9Rr72N2Ssks3J+Ni69VxwOyPlQ8jNOkhAiYYKGVSE5W2vcSePUbaOqWMZt29m5COuK5yCUKI5eBVaZ6TbLAd7g8XRRZbFuAyfxfxM4SP+5r353/fbN8LHG1vcaXLkyJFCTsbOEp55cSPbT11LiYY0sQL3DNaeacZpChTjL/schMH+GMDusCsdqGktSnam/dIbD8JJWRM0J3WxiYatg0P39EBQa8kj2eFrPbP5SnkhG+V6Dsk8q0hP+6YGqhonFdgWKtsaYMfZ+WydCJkQo43tsnyWNltm/N/096UU4k38li4+32woq/U5enV/ZOUyyHABjfbP2WTU0TYhBV6XK1jLehooUrbo2nosORqd7rC6f4jups/SHGyDk8fTuuVAQ8t5suvam9n1GzOQNXkw0/gmjPXqAcyaPLeuiHLkuJCQk7GzhOu4knk7uwjU2tNkWEXqneH+wvjfsFh3JsNtIpCyupSLiZy0ikHAJHZ/YOZ/XN8JiGfAd8yEK/8DwvIg7SInFT0scmjLNZfjEnkNAuSyJhphSlBZlq3EuSxXPlJl+96ydU6kJS0jlcYiZoacyF2Eo51s3UzZLmtWor0y9PaelRqlb2KS98mDtDMSWbJiGZeV3uBa3UCBEgmfdQmCWbWoCiE79XIe4gNM04FEmd3azxLdzn2HH2bVoT0A7JvWEmkWBLBoLTnSWHP6BTCsnl74+hGfJTdLnnPy8CYRW2Q/fPyRNy8jR45LDDkZO0t4z53XsWhoKj//4gssGN9Lg8Ye121Lla9DNAb0I60zcVo0EgOyi+xAeelIjTAtk7HEEpeDOFXiHQN4GVmdvZ3Olo0jnyu/I65BJ5JOTl1kxLR+2aTVp5dtkXLp5FqecQ50LlIUbXr/ef0bbtWnknIyrYAe57O1yrPlOgZjIeQj+gBL2caodETLnbHlrq+wjJflRgBW6wvJNq/U50Tsh6z8BeZNvCg3VT8+iNEsEyyij7mlg5VH9VrbKTZP/gd2r/yT8961xbnCd4MPkvBJaMN+d33vazmNDy6rbtakwPebdeg4Ww9yVWv+gUaOHPUiJ2NnCXOWdNIzsZMTM0vsbVtAMfXVomfJx+r8AkLWy13xIdTlsBIz6a/mjy0SFYJlEQqNj2Sukod4M38kkNtYzxK2V3Wo6GgRO3vpzQ6zN3+bsJfZEjIy8nnIXlGaCFC6yl+aZVnlXMssZzCQpOTZpMdp9YPEz8ko83K20yEjPCe3VmWldLCtl56lKsMitUK3uGW5CLXRXorwfT7AY/pOVupmGikSaJECkWuKUAoUCdjPApaztapXjCGZHi2RmmdzOqyYB5jP4/Iuvjr3Y9FxSBLV8mAwyrbh69K65wCgrzk+E9RF2O2JRjldvQTMBfsdccWb5dvXjklZSAPSUMOylyNHjgpyMnaWsPmpAxydf4rXFiyKAlzLi/aSkYNMNHI63ndWfTQhBY6Wz42MO72yjcOHGXqExFJHpSzhWW5nnPakni6kSJFtibHqWImzBoZUGY58Nqm080t0fM+gdCd1qpAs48tHF/HytbmDRCTk+AYn3/KPI/1LsoYH+DRFGkkdKxW363LdUt2QbxNNB2EUlKtHN8e+zzzLVXZ7VGQJ/dLDA/Jr7GMBv6338/P6N3ys9BUatBi3ZYF+6WErVyT1smWbz6FSTpJYlqQQHYekIAhzww6WTX05rXMOAGYU4w8zfe1dhs+66oNrcuR6rna8WXbWBMjAUZnJrsLi+nXLkeMSR07GzhJeeXYn/YuOc1B60pHmYFXDMnOa1mR8peMzLWtKxW1FauYcWZ2OySwS1pFyWRIdsDRp7/uydXLOhh2dtT3om1aZepZPzE7et1SSkJseDJazmZTFySaStmzfEo8rb9ZyKNCgk1Z6q9oSVDfbm/LLt8A2WRkdlG63jdkOxmAYUmAba2LNHAOmz+Jn6fCCREfRHJqcx+bx6/koX6XL2vsV6e6xBmqYjIsJP8aRXoEqc08cQ4BbJ5cyW6fS89qXcz9jHpxiSnThsyyXYb+Pdlytd6Ass94JWb2ILbtPkS9D58hRL952D/wXK0bmH+KF0o1Qdr1gDtgiVDy323HgDjPDIbZWBAY5UE/acucZ4CUgCPtYFMlw+c0y7111sePtONtiUi7bjDP1caWx07pkxuhglIRPNbNN7GtXG7uuTT3i5yeAltvY0KdFTjKK46BzFylyWCEUIrLtewfMvMb9vtZp1UPlfdZAX7vF1wvZxRfk8xSbGqEJXuS6+CQCozy15MUoUOROfYzT0sIz3FmJK388ohKAhlx1fCtzhgcQAqbrVCDgdHgFzRu/le8bc2AyqLNbroco+ay7WXBZyny/fV84cCpjN0KOHDmSyC1jZwk3r1vOrvauZKBrgDTjnBYhwfYyH1Biie6EykZrSFmpfEsNZZgdp0jV2uEiQ1kkIqsujsHeKc+SFehkOo8LGu2f67QsNyPajmmJ8ZZVy1rgSmMQ2Fv1SX5Rv8VsPZDINsrUeKO7dbi2oWMCCdKp8ZeL1nmOvkO/jfuBhqkOuSGNZV9mrvIrukWuLdp0nKLhjqVEId4PZr2biWcYslqf4+P6Fbo5RgunDPcYypUTr9LIJIEWaWKSm04/G1vzlO2Fg0CBgGFS73AOAGZMxs52fe9qvRYv879Phuv9clnL7H7KNYFM3IdcF7szyZEjR23kZOwsodi8lKPt7dWAVGfoWHoyYXSAiaWnmDh1MUDVMmbJr+TTtNd47/KF5Ty2HGeRtlTn7CJqqTijbFdnbbVNKI3VPK7BwJhthwhTGEsUPypTo/zlfLaFzaVnqj1KzNV9LNA+pjKUrE+c/ieylqHJafTL3JTMGXqUJbqd1HFN5WuvXlHYEu2jQrZNC2eqDcz3woir/A/SR17ZcjT6UOQaXmanXI5JZAPC5FFIdhkiBCidcoJvyif4jnyY9ayjEH8E0MQk7xh+knv0+8zUI9yj36dn1HROH9VrkqVwzYf9el7CGG6KPdfXmljVgu93kJXGY31OWbSzZAEQ0NZ+qraOOXLkAPJlyrOGfz4xCqJUlgezlr8gs8NTTR51o0g0licOILfyAYqyXF/nDVmJc9kuAUmUkdAzy8rlWwYzMIeDHKY324pmXmtGu6XKCzgo8xO6HGQuuJZtXeWkmiEKFwIOSW9yb5c1AIUqPNx0b7XdDByX2RxnFinfZaYsF0QoaQOnaKGBEkU1noud3yRpGjkwUbOsynMM3BZPo74h8HX5dHVJUgQ05B36KCLwGPfg/NhAlQZKCDBJQ3T0lsJNIy8ypX0QUPqmz+P78kEAHuKDtM39W6YfjkQ0akO0vX/5vfkSpQdNapEYx2/MSaJ8eWpZZ7Pis9Lb/YV139e8hBw5ctSHnIydJdw6rZ0mLTKBAgUqe8SylutQClqkJI1WvD14hkzVEzRKkQkFfIRBgyQR85FCk/zYceV4Vx67Hrb82CrWT487r53P1+G74Ojsy/eq1gHfThIX3QtajTLK0/K5k846VQSl5Zd1sPO79LXbwMBBmR+fZ5ph1UvIKDGDYxwj6dsrIqX427KiXyGyjSb0ERaxiwXsZT3rKKqxD64iT/mIPhBdVd6hgFbGeFreQZEGVIw8qjzfdiPvltdA4bWGPSwKu+iY2cF0t4aXPBrEOtfWYyXOjPNNBly/OXuClIWs8qxJT/9YftxVjhz1Il+mPEsY+MljfOEnv8s6fTQ6Zob9UUTCQmN9eYZUiViC3ISJsICQtaznozxAhw4nC07NWDM6atf/cjrfUmJCNu5OPkEutLrnyDcA2PnsgcDWxfapZssol+Gb7Rv383UXU0oj7rrZFkCjTpVnkmXx8i3tuIiV3cYihKZVzSA/KcQEqME8jD4mwuI74smUaxNDo14buY6lbOOz+vus5jkS72L8fu2WxYzSEekmAigHm3op0kAohbK9riJ7T2ERh6d2VV7NQ8EJim/8KK1fDgBmnh7yR2a9f1mTGfvZZ8msNSmyy/XI2zal158mR44cCeRk7CzhxOuPc2BsBuvlnbwoaziAcV5iPFAu1y0kBldzUDYIQWD6aSLaJ/UQH+DrfJIR6UwWnCIDDmJjdsSVsoz4LKJmEwoXAUoQNccr5SIj5n+HpSiZN+AqfQXspUg7XcZSYBl7ZQljhfbsdCnrg6NO9rNzWcEq+nt0TbR9GG3kN+NNcu0YdA8zNxWn5sHyrjZJkE9jchDjED2owlK20aknovKtwXmYaezE2GuGMHfiAA0V57GRJuV2UQLemDU/CgJ6wmm0TjhcwOQA4B39W8HnPy7rPf9pYb/3WajDktYt+dmjOXLUi5yMnSVMW7mOR6/+UOxqIN7zlYCwzd7LZZOfOHwaAyQtQQEvypqUM9g0EbLCfOQqtraZA2ZCpo04/2w9mCwjZcFK5/HKTZAWixQ46rJJrk3r5au/q/yEdc9z1IxvMIoJYeXa92fLdFkTjTq3aPlDBKVAyHv0H6uWrSxrhc9S6atXOZ2lY2pyAEyVEUTgL/jXPC73AMl8BYq8wvW8KGsS5QftE3wmjJzH/jJ/VXUUG+NkU3RA+vJSD7O1nec656d1zAHA6mnruU2fjm5cfYTr91prAmCnd6V1kfh6fsc24jw/V3rYr0eOHDkSyMnYWcI9734/4y3GHglHp6VYg6VnFjqA42xKl3WmLMvuPGuQIyHkFn06ckdgpneShrKeIUfLZw9mzdhtOXa8mb+SNv6zB4OExUfSbZBFgjKXaEMamGS5xs5i7aVKH8FzEV4z3L62y7csiKek7NwzIETYw+LqhvxaA2oWEXYd32Q+mzi8iUlsy9dc3c//p/+aZ+TOalwcP1sP8Q4eI6xMOEydlOVs5/36Pd4RPsr1uiER3TZxGlDaTxzh/6GPV2cu89fvEkfh5FR2EW9+rzXJKKMWQSvDR658v5+sdzGDmLXpKL39uWUsR456kZOxs4TDfUPcsCO+MQdf13KhCXMZMMt641sujNMXdCLeAJ7RqRrLRs/IHekvB+0lEKOjLqDRl3dZxCPRsbvkGBawBEFyzMjtQaJcd6PMAhN0a3/S75irva0BrUuP8zH9KjvFIARZRNJM4ww3rFk+61pCN8sfWRw+QaN1pigOWfZ7krZ4Jd4d21JqtPFCdsU+zsrW0hK9xQM8wx1J2XH6Zk7yuq5CCJGKX7SI2N6h64GAqX130TC8gBZOJXRqKkbE743wJN+jl5+73ljGz5HAi+FlHBRP+9S7jFhOW8uyZYf7rKou+KxnQDdHGCqO16lojhw58q8pzxK2PnuIWW0vAbcRfU3pIRFZFg8zvkK+Qjp1kCGpfnu2QPvYK4sxrWehFKKB3P5K0iffJlYm2Ut14soqfZXNcjWhTTZcS332vU0wU22hpL5k9BKfapoSjRwT62tCbx2qaOI0u1kcnxVZwwpl62lZLKcwTLuO0C+WKw9bj4QMi4BCtK9KrnCUWUMnLX+BaT6TMKVnyvKnynbS1qktY9fDNJztsleqrgpWsJkpOso0OcHacD1LZTsIvLR4P0/Ku/lnWZtoh2Md0wCY7GymEJwBobgE8cKMpaR+n28G9m/6bKfPsALvk4W8fmrFGSqcI8eli5yMnS2MHuG1xQ1gbqCGGstJJAc927KkkXf2yqZ9jfbszOQoe1mckKcUCCgiqtEmbt9SZRZZcYWLgMJrch3T9RgD5YO6s5YuytYul+XMRVjs9rHbw1uew+pTR137pZcuTqTF1VqOcUSP0c6YWJ7wvaSyTDqtc2JchN1LSqvWtOkcjZe0LTn1yAX2sbB6nBIQaoG+pssQJfoi0m4/Q85WVoFAQMgi2cU+FvCErGN34bL4q9Ck1W9J7I19yXgT757s59m+46xeaJ1YkQOA7Syt3mQ8v1QaO95rXXWgXgLmSuu4Vg3YN+XG+uTlyJEjJ2NnCyu6NzNkf+kIfsuLi/gk0sUDJEHCVUQXx3lZbojiLetbK+Pcyz9yQOdFe37MZaoU8TLOynTpbOoT5x+QGel0PmLnGhycVrQQp980J7FyWHxsq5WLkDh03afziA+bdNfd1qUSHoIaFr7EdXZbCCBaRNDoY4yUFdSyplr5bYzo1NgoZljffPW36wSMyxSwlkUH2zoI4nNQq03rWo6K2jpU4avyaRLP0LIGipaYPha5ZDnV0cm/m1jESFtrqj45Ioy5+hHwP0sf6ToTi5ivnHpkeH7n1zS/UbvsHDlyAPmesbOGOTeupuv0aDUgi4DZ9+ZfGfG9WuTjGLPjDdRpIjXKVFaxmV/nv9Fu+iOLLW3Rhv2QAkUWsqsa5/qrR2/nIG3V35Tn7NQdHutdeSvEzSovi0y6yo+vKwNeoh0d9ffVsZaV00QcditPxl8bfoXV+hxLdDu36fp435Zj31kNi0iBYkJ+9bpey6xZRrX8UEi9d2be2Ry0wjMsMCIgAQenRRbVvsIRjhVGaTw4lk6bA4AlJ3dGF1mWMPBbT01i7oLrXfZNDH2TC5+schINWTbjEXf5OXLkSCEnY2cL89fwvuP7owFSXY436+gAbcQkKjB9DtnLctaseIteweO8Mz6v0dQhInYBIb/MV7hJf0Li4HHX7DrV6dbooF06uZYqbdhWITt/JU8hqcOZyKxlLQKaygds+wYxEbw/mawBUAQI6dX9rGQz3+BXeFHWsFuWsEJe53f191jHj6rP2bIspWVF6JBRUs/Q9Tw9dY/OMi0mxatxCoDn3Ziio/F7HukYZDmaVQWFuUPHKmIPBQM8MpKTMR+mtgxGF1nvYdb7bBN5V36fXN91He+jCZUCb4Qr3eXkyJEjhZyMnS3se57Dh6ah5bMFyzDIUM0lQXMwj/MFKMvYWk3rI2VxeDsjPCzvTaYpX0v0JeWIdrCSzRRMX1Aua1fKomW7M/AsZzjqkbpPpAnTcabcBMmxCEdFT4d1wG4zn/xY3oS0pMPtsnz1MuEYyAoo7YzwV/Lr8YcDASEFHuBXEYG1up7rdEN8SLfla8yzDNWqYyQOj09ZEi1Yce/V77GY2AoTf1zRowdow/gKzn7PgHfwOL/H51inD7NOH+b3Sp/npsMbaTs9jjjeGxWh/N1CACzo/19MG34wrV8OAE6E3cmALBLks+Ta6Woh6zdSluOzXnt0+/vmX66v7Bw5cuRk7Kxh47d4aV4XoQRuC0U9qBCH6mAWUmAr8QzTRwaM8h6TezhA8iDtynUsu50RlrKN6Rx36tilR1nC9kgPm4Rk1adSnkEQTQugk/gp3XokKdu3bOIZgFp0jBW87tcrZWGz4uxrl3XK/u+zBHrI7Sp9la/LpziI4exUImvl3/Cv+KLcz0tyY3SYlL3B3zPwndCuVB0CSizRbdX0LtIoAihtjNOkkwmZh2Qe47Sl88foHTmEhsJmvZKF4S46Jk5y+PB9vDzrak42tVFQmDdmnCQQl7ttTlTvxfv6WXjqeT5y7P+Ffc+TI42mwkQywGPJrcTV08f4LFv2+2H/91nufb9VI/3xxo7aeuXIkQPIN/CfNRwenM6qpo08zjWEKunBL2sZK9Xh2WmCNDnwWKX2sDhZpvVfCfhr+RU26nUctb/Ei9HERLT8JCGhxvo4LVqO+qgyh4McJuNcOqPz7tZ+jsmcZDu4iJ+v7sApmcIMjkH5kGwzTS0rXZZVoSyKMHkQuCutzwIXh2+Sa6ofYlh67dUFTEoDKtFXsJWDtjMGT9ESp7A2wYsQKuyXhW6dEgRXaGeEQ5I8lihVT6t+Bzp6+Bq/CigUBCkoQW8YHeQkQklDio3jQEfiOR1u7wKUrsN7KLUXIg/9u5+C+WvSdbzEMdrQmAywf2c+8uX5PTqtu7bl15e/3smkY0Jy9cBuYHV9+XPkuMSRW8bOEg40rmPxqQPcq/9AxTLkIlBZg7nrv53G19lWOlLPjNbQoUhjfJyN42gmItcPfbIs+lDApYOLwBhhlTMTs5b04uvjZULoGhhcBNCMM8IjR6XWgOCb1Vd0qmNJR6Kl3QAl8ull6OpatvFYDNRFqOP/49KRrKctw5RvqKpq/XxViVzhNrvlWfejdDCp1sAPpJZJXUQ4XtZUCSghBCiiJQRFG4dTOo+2tAFCsfdqaL8MDRph0dp02TncXy3Xg6x09Vi4s0he1r0H7yiurytdjhw5cjJ21tC75ipeGruJH8p96cjyIJ4K91i5yv/tZT5XftcSWbwMZaJQXo6qpHGcY+jqrE1HrakyDFhWl8yBwRjcVTxuLWwSYpbrJCli6WiRLQeBbNGT2XUxwq/TF+gqe/o362CUl/jQIuvZOkjp1LLfM5+1ziJoIQVEks84MMmiWQ+rrAoJpI2ZcjQV36XHk2Gu9jbqXkC5Y+QpBCWkEDnAteop8bMYnrWAk92/z+R7HsqtYh5oaC1Y1JxUnEG4K66WdTjLWpaR/onWq/065MiRI4FzQsZE5H4ROSAir8R/954LPc4m5izp5JX25ZXN2SYaxUHGMqwelfhynM+aVkYljbkRPim7JI2WXMeB1FmdrM/CZ+8Ps9ObFiibGJiWPDOfbRlyETsXcUzoHMt2WgSUBdrHFLW+6HO1c3x9rbzMB/lOsmyjHe7T73Fd+TxG19JPDUtEdE6kI68LcfhE0JQIDlyuLmxrrNEWP5D3060GGdPoy8if1e9E74eHWHZzuOKOI9ASvzLwOL0np1etf47n0ToR7YM6VhhBJGD/1pPuul0geCv7sGmlIbuwLEXqI1BmmI9cuZYpy+G+dzFDt+HGZm9cjhw5kjiXe8b+VFX/5ByWf9Yx2pre69HAJO06zKB4vpBKDVwlzOOU2nSUcWn3W4oS1pmMJYhEGdDLfg7TQ0kb0nr4rDkup6uuL0d9hMK1xJll9TPzmUt8PgLpKydVlkRH+4iDbNjXcb136eJYkOGk1ogflzY2cr27XlmDXIwZHOMos9NpbL0SVsNksqKUB79YR2ddqm0Yavo53cuDHGF22nJq6Pp+/R7zdD9PH7+H26b/iOXT3mCHriBgJSW1nk2cr/1URHwXlroRKSH93wF+xl3fCwdvSR/W0XAcWOxP4PsNuN6zepc4XWldfVStawPj2lZ/2TlyXOLIlynPItomk19BLWE7n9Xfp4vBdGLbWiIChKzTR/mEfokr9RU+oV/iQ3wzik/MTo0DwROzXU9nWr6OB0dB+ZT+Bb8bfo65ui+tm01ksmbfvkEhZaXylGGTDN+SoYtYOMsy9Q/TaU097bMyXfWLrUVPyjqekHtIfEwBoGFk1VKqznhtGb66V+qrTGHUE4d3sPPLE5br5ox2ia4DVTo5EW2mF0Eo0abjbJCbk/Lisgta5Ff4Euv0UaYeKnHXyJMsD7YigbJUtvIOfQxwD9KD7Z0IwuV6ihmNn6WjsMlfn0scU0seH2w+C3QZLsv0TwvfxKcekteYn7KQI0e9OJdk7DdF5FUReUBEvIfUicinRWSDiGw4evSoL9l5gbuHhwnCaPmmgUk+ql/jsnAHq/r7ogQ2STDCREs0aonbhnfwriP9fIb/xF3yKHdJRM7m6l7m6j5W63ME5S/eyrCXKc2yHEtu79XvsWp0hJt2X86n+IvqXidbP0vGVfoKDUxS2QNnpClQJNAiDUzSpsZJBJVOW0HDaOCvDNiOmbdvELGWBc0697KP+/S7FYe7Qsh9+l1W6wtpGUDVr1n6v1htKCjX6QZKFKr72zQk0JBr925j7cENfProA9x8oo8GilUnqhWZpWoeSiSctMZ1aKDINIMUmW2eRvXZFChxm66n1fQLpkqA8mH5n0lP+UCjno72bsXtuPzQXm4/NERj/OwaKbHs+EmuPzxutXGEy3UbP1N6FCnCloMjhAdboVRAQ0FD4fbwKZqYjPauWe45Ok6OAcpAw9M0B1t5bdb7PfW7oFCzD3sz/deao28kf5MuC5U9OXEtKWf9rlK/I9JpTNmuMrLkAGsHDtRV3xw5coDo2Zg9uQSLPArMcUR9FngWyr4I+AOgR1U/UUvmDTfcoBs2bDirep5V7HueP/jGI7zcPZ+7imNc07iFEydms/twkY0Lu3hj4Ryu3dfPlKbZfH3Z5SiCoNwbPsjw4XnM7D/JJ44uZOrUY+y98Y8hiAZyVeBUJ5PBKfY0L+SLcj+TFKIDwWN3DpcN9XPb5LN8a+Z7KVIgQLlsfCfb25ZV1OvVfbyb77Mu/DHzXvgPtA5dxoneH/OT3oN8t+HdnJCp3Dm+kbnFQzwzfSGnJpuYLBTY3zyP1cXn+VcN32CHLGULV1Lqm8mexqsZ6Wrh5vFH6QwP8nrhGm48dYDRiev4b0tXJJrmPv0ubYzTHo7y18EnKREgGiIisVPQkJmTgxTkNC0N46xiEz+U+yjSgGlZCzTkXh6s+MJay3qWsg0tBfz4jY/SV1jMdVOe5arOJ3l19Gb+vOdXKVW+GlWCMOSmff10jw8yPjFOU3GCkc4uWicmkMYOult283fz76BIQ3RaQfhXBPta+fqCjxCKEFDijvDH3Ly5kVV7pnGiaQIpdXGk1MjOZa/R391OMNpIazCDrp4nGQ06aA9HOFGcSVfTEb4pn6BI5Nph1fh2OsMR7poSOUD9otwfxw3BaBEAAA1+SURBVGl8JqnEjnmhJAEFSnz49DfpC5cyNtbFFQPbefdl32SnLOULwecp0oCo8r/pl1knj7E9XMHng/tBCqAl3rvpIX606j5KQYGCKl/Y0M/1p0J2rjvB+tJRFvW3clfvffT07+eLJ0L+sbeJE80BoEgY8psv/D3LOzYwOqWba6e1Mev59Tw0toDWnlOMHmqnZ6SdA1fM4fWmlQRNM/jOZSsIgwBR5QMbn2bO8CCrwxd4nhX87Cd/t+6DwkXkRVW94U3+Kt80znYfVm//1bflSX544I/4fvA+3mBl9TSNGA162liSLiNafnejRJNOJp0aV/KU8/nyKnP0IANMZ0Jclq6QW0tPsS1YwTGZBYCg3Hr8Bf64cyGX3fOejJrmyHHxo97+6y0jY/VCRBYBD6nqlbXSnvdkDGDf8xz8yUP0H+9lVvcNdK9ZSvPCqRzuG+LAtkF6l0UD0MM7nmdL2wHWTB3kqpaVvLJzmKOlzdx5qoUFp1bS3/Qc2xr7CE4pXX3LmbOni8H5CzkyayO7ut7g9amXM6NYoLHzVubPupbjj3+Hrm0/YWLlDeyY0cEtBw/R0dnAl6YsYG/rQj44eYz7mv8Hhe4Z9Cz9NQb/bi/DW0dpmznJtK5Jhntnc3TyNB0sRI60Ij1T+HH/8+ye2MzKa5fy8ds+ztDQS+zduZ7h16czY+cRWrv288L8O5nouYHB8Qm62poYHJ9gZWGAp4cH+IcpnSjj3HPyOdZu38/0KZPMPlrksfnv4IdTFrCuZyaXlcZ4qm+M28ZaWLhgNn96bJBgchO3dr3CnuNzOdKwnAU6zpZZsxkYH+OmI3tY0/0awextjBQDGvbPpOHUOAcHFtJ88mZaT47QNmucqz/4HoKGufzwJ6+zk0Ea25Xdpyd5Z083q5ZPYUP/Bpr2tTP4+iBX3biaYNdOdj3yPRobRth630KOd8xh9cl9vK/3ncy+8UNsGBrjke2bWDb8Mnf0XsHM5VW3DN96bi8/2HSItW1Fpo4fZ/nc+cwaDXnp2PcZa9lG8ehSwoEuVtwzzubmI2ycuJG7e2/ivcuWAHDgwLc58OrX2Xagh02917M8OMbpcDlH5t7IvYt62bdhA9/f28/s080sP66Mj+6A5hGOdZ3k8vbtXD3tGPtPXseLuoa1K65geWkTxw88zYyOJexpmc4/d15Hd7iPofWPcnRyOQNLr2ZFcYzbL5/Dlde6/UANPbKB0R+/xqvTSmy+fTXvWLWMGzqnON/1fePTmH/rezi6/zUOPv0Ic2+/m2vW/SJP/+i7PLV7PytmzaR7Ri+nWmawbbSJm5fMqJuIwbkjY/Wi3j7sTPqvvi1Psu3Zb1LYt5e/ueU2niyspbE0wZq+V1inP+G5pnfzk5nXEgZF7hh7hnmDzRxom0N35x62tU3haKGdoFRg6umTvPNoP0s6fsTW1un8U/iLDEoXK/sHaD09jRlD++k6OcGmnpAlpdcYG5vBsz03ETa0Mqe5j5ubH6N39AitjSWeaFrLi42r6SgOc7Spm87wODf2vUTvoVPMnDvGnqZVbOro5LKBcf7lkutyIpYjB+c5GRORHlU9FF//FnCTqn6oVr4LgozlyJHjrOJ8JGNvpg/L+68cOS491Nt/nauvKf9YRK4lspHvBn71HOmRI0eOHG8GeR+WI0eOs4ZzQsZU9aPnotwcOXLkOBvI+7AcOXKcTeSuLXLkyJEjR44cOc4hcjKWI0eOHDly5MhxDpGTsRw5cuTIkSNHjnOIc+7a4kwgIkeBPXUm7ybyA3S+4XzU63zUCc5PvXKd6sfZ0muhqs48C3LOKc6w/4Lz97nWQq7324tc77cXZ6p3Xf3XBUXGzgQisuF8+xwezk+9zked4PzUK9epfpyvel0ouFDbL9f77UWu99uLt0rvfJkyR44cOXLkyJHjHCInYzly5MiRI0eOHOcQFzMZ+/K5VsCD81Gv81EnOD/1ynWqH+erXhcKLtT2y/V+e5Hr/fbiLdH7ot0zliNHjhw5cuTIcSHgYraM5ciRI0eOHDlynPfIyViOHDly5MiRI8c5xEVJxkTk3SLyhojsEJHPnCWZD4jIERHZZIRNF5FHRGR7/L8rDhcR+fO4/FdF5Hojz8fj9NtF5ONG+GoReS3O8+ciIlllxHHzReQJEXldRDaLyP9xnujVIiLPi8jGWK/Px+GLReS5OM/fikhTHN4c3++I4xcZsn47Dn9DRN5lhDufsa8MI74gIi+LyEPng04isjtu31dEZMP58Pzi+Gki8h0R2Rq/X7ecD3pdCvC9R+czxNMXXSiw+4ULBa7f6bnWqR6IyG/F78kmEfm2iLSca51ckDMY939qqOpF9QcUgJ3AEqAJ2AisOgty7wCuBzYZYX8MfCa+/gzwR/H1vcAPAAFuBp6Lw6cDffH/rvi6K457HrglzvMD4D1ZZcT3PcD18XUHsA1YdR7oJUB7fN0IPBeX93fAh+LwLwG/Hl//BvCl+PpDwN/G16vi59cMLI6fayHrGfvKMHT7d8C3gIey0r9dOgG7gW5Lx3P6/OKwbwCfjK+bgGnng14X+1/We3Q+/+Hpi861Xmegf6JfuFD+XL/Tc61THTr3AruA1vj+74BfPtd6eXSte9z/qcs615V9CxrvFuBh4/63gd8+S7IXWQ/lDaAnvu4B3oiv/xL4sJ0O+DDwl0b4X8ZhPcBWI7ySzleGR78HgbvPJ72ANuAl4CYir8UN9nMCHgZuia8b4nRiP7tyOt8zjvM4y4jv5wGPAeuAh7LSv4067SZNxs7p8wOmEnWWcj7pdSn8+d6jc63Xm6jHg8Dd51qPOnVN9AvnWp8z0Nv5Oz3f/4jI2D6iSVpD3Bffc671ytB3EXWM+z/t38W4TFl+0GXsj8PeCsxW1UMA8f9ZNXTICt/v0dlXRgLxMtp1RFaoc65XbPZ/BTgCPEI02z+hqkWHrEr5cfwQMONN6DsjowyAPwP+PRDG91np3y6dFPiRiLwoIp+Ow87181sCHAW+Fi/dfEVEppwHel0KeDv7r7cEVl90IcDuFy4U+H6n5zVU9QDwJ8Be4BAwpKo/OrdanRHekj7qYiRj4gjT80SHMw2vrzCRduB/Af9WVYfPB730/2/vXkLkKOI4jn9/uomJUYwB0cgKSWARRSQJMSxGRIwEFNFLBEHZ+DgqepaA4Atv4kHxol58BZRV9p6NJy8+onkYNSsGXRJdjQQkIMbw91A1yRCnZ3Z1Z6sm+/tAMTPdvV3/md6u+Xd1dU/E6YhYTzrq3Axc12Vd8xVXY7yS7gZmIuLztnnd3l/fY8q2RMRG4E7gMUm3dli+ZaG23xCpa/61iNgAnCR1x5eOazEY6M9mDm1RFRrahUEx1/20CnmM1b2kYR5XAyskPVg2qvLOx2RsGrim7fUwcLRPdf0iaTVAfpzpEUO36cMNMTfVQZ62hNT4vRMR47XE1RIRJ4CPSWOJVkoa6rCuM/Xn+ZcBv/+HeH/rUscW4B5JR4BdpFMSLxeOiYg4mh9ngA9JiWvp7TcNTEdEq2fjA1KjXzquxWAh26951dAW1e5f7YKkt8uGNGtN+2nt7gB+iIhfI+IUMA7cXDimuehLG3U+JmOfAiNKV7AtJQ2+nuhTXRPAjvx8B2mcRGv6WL7KbJTUDXuMNL5om6TL89HBNtL4kGPAH5JG81VlY+esq1Md5GXfAA5FxEsVxXWFpJX5+XLSzncI2ANsb4irta7twGSkE/ITwP1KVzauBUZIA787buP8Nx3riIinImI4Itbk5Scj4oGSMUlaIenS1vP8uR8ovf0i4mfgJ0nX5klbga9Lx7VILGT7NW+6tEVVa2gXBqKXpst+WrsfgVFJF+f/m62k74dB0Z82qvTguH4U0tVd35HGKe2cp3W+Rzq/fYp0RPIoaTzQbuBwflyVlxXwaq5/P7CpbT2PAFO5PNw2fRPpi/h74BXO/jpCxzryvFtIpzD2AV/mclcFcd0I7M1xHQCeztPXkRKXKeB94KI8fVl+PZXnr2tb185c97fkK+66beOmOs7Zlrdx9mrKYjHl6V/lcrD1N6W3X56/Hvgsb8OPSFdDFo9rMZSm/6OaCw1tUem45vgezrQLg1I67aelY5pl3M8A3+Q24C06tNM1FObwvf9/i38OyczMzKyg8/E0pZmZmdnAcDJmZmZmVpCTMTMzM7OCnIyZmZmZFeRkzMzMzKwgJ2NmZmZmBTkZMzMzMyvIyZhVS9JNkvZJWpbvVn9Q0g2l4zIz60XSc5KebHv9gqQnSsZk9fJNX61qkp4n3Q1/Oel32F4sHJKZWU+S1gDjEbFR0gWkO7ZvjojjRQOzKg31XsSsqGdJv9f3J+CjSjMbCBFxRNJxSRuAK4G9TsSsiZMxq90q4BJgCamH7GTZcMzMZu114CHgKuDNsqFYzXya0qomaQLYBawFVkfE44VDMjObFUlLgf2kg8mRiDhdOCSrlHvGrFqSxoC/I+JdSRcCn0i6PSImS8dmZtZLRPwlaQ9wwomYdeOeMTMzsz7IA/e/AO6LiMOl47F6+dYWZmZm80zS9cAUsNuJmPXinjEzMzOzgtwzZmZmZlaQkzEzMzOzgpyMmZmZmRXkZMzMzMysICdjZmZmZgX9A75/IujW+FbcAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "yz_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = yz_axes.plot(y, z, '.')\n",
-    "_ = yz_axes.set_xlabel('y')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/unsteady hydraulic cell.ipynb b/notebooks/unsteady hydraulic cell.ipynb
deleted file mode 100644
index ec008ec..0000000
--- a/notebooks/unsteady hydraulic cell.ipynb	
+++ /dev/null
@@ -1,465 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 00:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055352</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119885</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055076</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120487</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009542</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055350</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119890</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 01:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055108</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120416</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009535</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055320</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119956</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009495</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 02:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055108</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120416</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009535</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055320</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119956</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009495</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                        Depth_m     Q_cms  Vmag_mps  CumlDistance_km  \\\n",
-       "2017-01-01 00:00:00 1  0.055352  0.001416  0.119885             7.62   \n",
-       "                    2  0.055076  0.001416  0.120487            22.86   \n",
-       "                    3  0.055350  0.001416  0.119890            30.48   \n",
-       "2017-01-01 01:00:00 1  0.055322  0.001416  0.119951             7.62   \n",
-       "                    2  0.055108  0.001416  0.120416            22.86   \n",
-       "                    3  0.055320  0.001416  0.119956            30.48   \n",
-       "2017-01-01 02:00:00 1  0.055322  0.001416  0.119951             7.62   \n",
-       "                    2  0.055108  0.001416  0.120416            22.86   \n",
-       "                    3  0.055320  0.001416  0.119956            30.48   \n",
-       "\n",
-       "                       Ustar_mps  Vvert_mps  Vlat_mps  Temp_C  \n",
-       "2017-01-01 00:00:00 1   0.009489        0.0       0.0    22.0  \n",
-       "                    2   0.009542        0.0       0.0    22.0  \n",
-       "                    3   0.009489        0.0       0.0    22.0  \n",
-       "2017-01-01 01:00:00 1   0.009494        0.0       0.0    22.0  \n",
-       "                    2   0.009535        0.0       0.0    22.0  \n",
-       "                    3   0.009495        0.0       0.0    22.0  \n",
-       "2017-01-01 02:00:00 1   0.009494        0.0       0.0    22.0  \n",
-       "                    2   0.009535        0.0       0.0    22.0  \n",
-       "                    3   0.009495        0.0       0.0    22.0  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from fluegg.ras import RASProject\n",
-    "\n",
-    "project_file_path = r'..\\test\\data\\ras\\unsteadyflume\\HEC-RASFlumeCase.prj'\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    data_frame = rp.hydraulic_model_data('Unsteady')\n",
-    "\n",
-    "data_frame.head(9)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>2017-01-01 00:00:00</th>\n",
-       "      <td>0.055352</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119885</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2017-01-01 01:00:00</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2017-01-01 02:00:00</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2017-01-01 03:00:00</th>\n",
-       "      <td>0.081595</td>\n",
-       "      <td>0.002447</td>\n",
-       "      <td>0.140534</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.010691</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2017-01-01 04:00:00</th>\n",
-       "      <td>0.073091</td>\n",
-       "      <td>0.002101</td>\n",
-       "      <td>0.134733</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.010359</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                      Depth_m     Q_cms  Vmag_mps  CumlDistance_km  Ustar_mps  \\\n",
-       "2017-01-01 00:00:00  0.055352  0.001416  0.119885             7.62   0.009489   \n",
-       "2017-01-01 01:00:00  0.055322  0.001416  0.119951             7.62   0.009494   \n",
-       "2017-01-01 02:00:00  0.055322  0.001416  0.119951             7.62   0.009494   \n",
-       "2017-01-01 03:00:00  0.081595  0.002447  0.140534             7.62   0.010691   \n",
-       "2017-01-01 04:00:00  0.073091  0.002101  0.134733             7.62   0.010359   \n",
-       "\n",
-       "                     Vvert_mps  Vlat_mps  Temp_C  \n",
-       "2017-01-01 00:00:00        0.0       0.0    22.0  \n",
-       "2017-01-01 01:00:00        0.0       0.0    22.0  \n",
-       "2017-01-01 02:00:00        0.0       0.0    22.0  \n",
-       "2017-01-01 03:00:00        0.0       0.0    22.0  \n",
-       "2017-01-01 04:00:00        0.0       0.0    22.0  "
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "grouped_by_cell = data_frame.groupby(axis=0, level=1)\n",
-    "cell_1_data = grouped_by_cell.get_group(1)\n",
-    "cell_1_data.index = cell_1_data.index.droplevel(1)\n",
-    "cell_1_data.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cell_length = cell_1_data.loc[cell_1_data.index[0], 'CumlDistance_km']"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "total_ras_time = cell_1_data.index[-1] - cell_1_data.index[0]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simclock import SimulationClock\n",
-    "sim_clock = SimulationClock(2*3600, total_ras_time.total_seconds())"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "class SimpleSim:\n",
-    "    \n",
-    "    def __init__(self, sim_clock):\n",
-    "        self._time_step_function_calls = {}\n",
-    "        self._sim_clock = sim_clock\n",
-    "        \n",
-    "    def add_time_step_function_call(self, fun, args):\n",
-    "        self._time_step_function_calls[fun] = args\n",
-    "    \n",
-    "    def call_time_step_functions(self):\n",
-    "        for fun, args in self._time_step_function_calls.items():\n",
-    "            fun(*args)\n",
-    "    \n",
-    "    def run(self, hydraulic_cell):\n",
-    "        \n",
-    "        discharge = np.zeros(self._sim_clock.number_of_time_steps())\n",
-    "        \n",
-    "        for index in self._sim_clock.iter_time_index():\n",
-    "            self.call_time_step_functions()\n",
-    "            discharge[index] = hydraulic_cell.discharge()\n",
-    "        \n",
-    "        return self._sim_clock.time_array(), discharge\n",
-    "        \n",
-    "simple_sim = SimpleSim(sim_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import UnsteadyHydraulicCell\n",
-    "hydraulic_cell = UnsteadyHydraulicCell(cell_length, cell_1_data, cell_1_data.index[0], sim_clock, simple_sim)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "time_array, cell_discharge = simple_sim.run(hydraulic_cell)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEKCAYAAAA4t9PUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VNX9//HXJwkJa9jCvgVkExAUIiiodRdXaqWKda+t2urXpbVWv37b+rW1v+rX1tZqa61bS1sFQVvcRbFWUYEge1gMe1gSwpawZP/8/piLjjHLQDKZSfJ+Ph7zyJ0z5975zCWZD/ece84xd0dERORIJcQ6ABERadyUSEREpE6USEREpE6USEREpE6USEREpE6USEREpE6USEREpE6USEREpE6USEREpE6SYh1AQ0hLS/P09PRYhyEi0mgsXLgw3927RFK3WSSS9PR0MjMzYx2GiEijYWYbI62rpi0REakTJRIREakTJRIREakTJRIREakTJRIREakTJRIREakTJRIREakTJRIRkUbC3ZmxMIfsvH2xDuVLmsWARBGRpuCDz/K588UlJCUY145P59YzB5HaskWsw9IViYhIY/Hs3PWktU1h8pjePD13Pac//G+mZ26mosJjGpcSiYhII7B2xz7eW72DK0/oy68uGcmsm0+ib6fW3DVjKRf/YS6LNu2OWWxKJCIijcBzczeQnJjAFeP6AXBM7/bM/N54fnvZsWzbW8TFf/iIH05fQl5hUYPHpkQiIhLn9h4oZcbCHC46tidd2qV8Xm5mfP24Xsy581S+d+pRvLJkK6c//D5P/mctJWUVDRafEomISJyblrmJg6XlXDchvcrX26Yk8eOJQ3nrjlMY178Tv3x9FRN/+x/eW53XIPEpkYiIxLGy8gr+8tFGxvXvxPCe7Wus2z+tDU9fezzPXnc8AD96cSkHS8qjHqNu/xURiWOzs3LZsucgP71wWMT7nDakKxOOSmN9/n5aJSdGMboQXZGIiMSxZ+aup0+nVpx5dLfD2i85KYEh3dtFKaovUyIREYlTy3L2smDDbq45MZ3EBIt1ONVSIhERiVPPzl1Pm+RELj2+T6xDqZESiYhIHMorKOKVpVv5ZkafuJgGpSZKJCIicehvn2ykrMK5Znx6rEOplRKJiEicKSot5+/zNnHG0K70T2sT63BqpUQiIhJnZi3Zys79JVw3oX+sQ4mIEomISBxxd575cD1DurVj/FGdYx1ORJRIRETiyMfrdrJqeyHfPikds/i95TecEomISBx5du4GOrZuwaRje8U6lIhpihQRkXrk7izfUsC0zE28k5XHuAGd+MFZg+nXufZO84079/POylxuPnUgLVtEf2qT+hLVKxIzm2hmq80s28zuruL1FDObFrw+z8zSg/LOZvaeme0zs8cq7TPGzJYF+zxqjeXaT0SatN37S3h27nrO/d0HXPjYh7yYmcOwnqm8tWI7Z/z6fe59eRm5BTWvFfLcRxtINOOqE/s1UNT1I2pXJGaWCDwOnAXkAAvMbJa7Z4VVux7Y7e4DzWwK8CBwGVAE/AQYETzC/RG4AfgEeB2YCLwRrc8hIlKdigrnw+x8pmVuZvaKXErKKxjZuz2/+PoILjq2J6ktW5BXUMTv52Tz/PxNzPw0h2vGp/O9rx1Fh9bJXzpWYVEpL2bmcP7IHnRLbRmjT3Rkotm0NRbIdvd1AGb2AjAJCE8kk4D7gu0ZwGNmZu6+H/jQzAaGH9DMegCp7v5x8PyvwNdRIhGRBrR51wFmLMxhxsIctuw5SIfWLfjWuL5cdnwfju6R+qW6XVNb8vOvj+C7Jw/gkXfW8OR/1vGPeZu48ZQBXDehP21SQl/DL2bmsK+4rNHc8hsumomkF7A57HkOMK66Ou5eZmZ7gc5Afg3HzKl0zCp7pMzsBkJXLvTt2/dwYxcRqdLUTzby038tB+CkgWncc95QzhrWjZSkmvs0+nZuzSOXHcuNXxvAw2+t4eG31/DcRxu45bSBTBnbl+c+2sCYfh05tk+HhvgY9SqaiaSqvgs/gjpHVN/dnwSeBMjIyKjpmCIiEamocJ7491qO7dOB319+HL07tj7sYwztnspT12SwcONu/u+tVdz3Sha/e/czdh8o5a6JQ6IQdfRFs7M9BwifsrI3sLW6OmaWBLQHdtVyzN61HFNEJCo+WbeTLXsOcu349CNKIuHG9OvI8989ganXj6Vvp9YM6tqWicO711OkDSuaVyQLgEFm1h/YAkwBvlWpzizgGuBjYDIwx92rvXpw921mVmhmJwDzgKuB30cjeBGRymYszKFdShLn1NMXvplx8qAunDyoC+7eaAYgVha1RBL0edwCvAUkAs+4+wozux/IdPdZwNPAVDPLJnQlMuXQ/ma2AUgFks3s68DZwR1f3wOeA1oR6mRXR7uIRF1hUSmvL9/Gxcf1jsoYj8aaRCDKAxLd/XVCt+iGl/00bLsI+GY1+6ZXU57JV28JFhGJqjeWbaeotILJY3rXXrmZ0RQpIiIRmLEwhwFpbRjdt/HdVRVtSiQiIrXYuHM/8zfs4pIxvRt1E1S0KJGIiNRi5qdbMINvjG48Eyk2JCUSEZEaVFQ4MxfmcNLANHq0bxXrcOKSEomISA0+WR8aO6JO9uopkYiI1ODQ2JGzhzXOwYINQYlERKQa+4rLeGPZdi4Y1YNWyY1nfZCGpkQiIlKN15dt42BpuZq1aqFEIiJSjZkLc+if1obRfTvGOpS4pkQiIlKFTTsPMG/9LiZr7EitlEhERKow89MczODi4zR2pDZKJCIilVRUODM/DY0d6dlBY0dqo0QiIlLJvPW7yNmtsSORUiIREalkxsIc2mrsSMSUSEREwuwvLuON5du4YKTGjkRKiUREJMzry7ZxoERjRw6HEomISJiZn+aQ3rk1Y/pp7EiklEhERAKbdx3gk3UaO3K4lEhERAKfjx0ZrWatw6FEIiLCF2NHJhyVRi+NHTksSiQiIsD8DbvYvEtjR46EEomICF+MHTlnuMaOHC4lEhFp9j5am89rS7dx/jEaO3IkkmIdgIhIrBSXlfPrt9fw5w/W0b9zG75/2lGxDqlRUiIRkWZpTW4htz6/iFXbC7liXF/uPf9oWifrK/FI6KyJSLNSUeH85eMN/L83VtEuJYmnr8ngjKO7xTqsRi2qfSRmNtHMVptZtpndXcXrKWY2LXh9npmlh712T1C+2szOCSu/w8xWmNlyM3vezFpG8zOISNORW1DENc/O539fyeLkgWm8efspSiL1IGpXJGaWCDwOnAXkAAvMbJa7Z4VVux7Y7e4DzWwK8CBwmZkNA6YAw4GewDtmNhjoDtwKDHP3g2Y2Paj3XLQ+h4g0DW8u38bdLy2jqLScBy4ewbfG9tXo9XoScSIxsxbACGCLu+dFsMtYINvd1wX7vwBMAsITySTgvmB7BvCYhf5lJwEvuHsxsN7MsoPjbQpibmVmpUBrYGukn0FEmp99xWXc/8oKpmfmMLJ3ex657FiO6tI21mE1KdU2bZnZE2Y2PNhuDywB/gosMrPLIzh2L2Bz2POcoKzKOu5eBuwFOle3r7tvAR4mlFC2AXvd/e0IYhGRZmjF1r2c97sPmLEwh1tOG8jM741XEomCmvpITnb3FcH2dcAadz8GGAPcFcGxq7pm9AjrVFluZh0JXa30J9Tk1cbMrqzyzc1uMLNMM8vcsWNHBOGKSFOy92ApN/x1ISVlFUy78UTuPGcILRI1dC4aajqrJWHbZwH/BHD37REeOwfoE/a8N19thvq8jpklAe2BXTXseyaw3t13uHsp8BIwvqo3d/cn3T3D3TO6dOkSYcgi0hS4O/e+vIzcgiKeuGoMx6d3inVITVpNiWSPmV1gZscBE4A34fMv/EhmNFsADDKz/maWTKhTfFalOrOAa4LtycAcd/egfEpwV1d/YBAwn1CT1glm1jroSzkDWBnJBxWR5mPmp1t4dek27jhrMMf26RDrcJq8mjrbbwQeJXSn1O1hVyJnAK/VdmB3LzOzW4C3gETgGXdfYWb3A5nuPgt4GpgadKbvIpRsCOpNJ9QxXwbc7O7lwDwzmwF8GpQvAp483A8tIk3Xhvz9/PRfyzlhQCdu+ppGqjcEC10ANG0ZGRmemZkZ6zBEJMpKyiqY/MRHbNx5gDdvP5ke7TUd/JEys4XunhFJ3WqvSMzs0Zp2dPdbDzcwEZFoeuSdNSzN2csTV45WEmlANTVt3QQsB6YT6ujWyB0RiVsfZefzxPtruXxsHyaO6BHrcJqVmhJJD+CbwGWE+iOmATPdfXdDBCYiEqnd+0u4Y/pi+qe14ScXDIt1OM1OtXdtuftOd3/C3U8DrgU6ACvM7KqGCk5EpDbuzo9nLmXX/hIenXKcZvCNgVrPuJmNBi4nNJbkDWBhtIMSEYnUP+Zv4u2sXP7n/KMZ0at9rMNplmrqbP9f4AJC4zReAO4JpjEREYkLn+UW8vNXszh5UBrfntA/1uE0WzVdkfwEWAeMCh6/DGbKNMDdfWT0wxMRqVpRaTm3vrCYNslJ/PrSUSQk6H6gWKkpkSi9i0jceujN1azcVsAz12bQtZ2WJYqlmhJJC6Cbu88NLzSzk9HU7SISQ++tzuOZueu5dnw6pw/VwlSxVtNcW78FCqsoPxi8JiLS4IpKy/nRi0sZ0q0dd587NNbhCDUnknR3X1q50N0zgfSoRSQiUoMPPssnf18x/33+0bRskRjrcISaE0lNjY6ae0BEYmJ21nbapSRx4oDOsQ5FAjUlkgVm9t3KhWZ2PRpLIiIxUF7hvLsyj1OHdiU5SYtUxYuaOttvB142syv4InFkAMnAxdEOTESkskWbdrNzfwlnDVMHezypNpG4ey4w3sxOA0YExa+5+5wGiUxEpJK3s3JpkWicOkSrnsaTWqdIcff3gPcaIBYRkWq5O7OzcjlhQGdSW7aIdTgSRo2MItIorN2xj/X5+9WsFYeUSESkUXg7KxeAM49WIok3SiQi0ijMzsplRK9UenbQ6IN4U2siMbNvmNlnZrbXzArMrNDMChoiOBERgLzCIhZv3sNZR3ePdShShUhWgHkIuNDdV0Y7GBGRqry7Mg93OHu4mrXiUSRNW7lKIiISS7OzcundsRVDu7eLdShShUiuSDLNbBrwT6D4UKG7vxS1qEREAvuLy/gwO58rxvUlWBNJ4kwkiSQVOACcHVbmgBKJiETdB5/toKSsQrf9xrFIBiRe1xCBiIhU5e2sXNq3asHY9E6xDkWqUdOa7Xe5+0Nm9ntCVyBf4u63RjUyEWn2ysormLMqj9OHdiUpUaMV4lVN/zKHOtgzCU3aWPlRKzObaGarzSzbzO6u4vUUM5sWvD7PzNLDXrsnKF9tZueElXcwsxlmtsrMVprZiZHEIiKNT+bG3ew5UKpmrThX06SNrwQ//3IkBzazROBx4Cwgh9C09LPcPSus2vXAbncfaGZTgAeBy8xsGDAFGA70BN4xs8HuXg78DnjT3SebWTLQ+kjiE5H4Nzsrl+TEBE4ZrEka41k0rxXHAtnuvs7dS4AXgEmV6kwCDiWqGcAZFrotYxLwgrsXu/t6IBsYa2apwCnA0wDuXuLue6L4GUQkRg5N0jh+YGfapkRyX5DESjQTSS9gc9jznKCsyjruXgbsBTrXsO8AYAfwrJktMrOnzKxNdMIXkVhak7uPTbsOqFmrEYhmIqnqhu/KnfbV1amuPAkYDfzR3Y8D9gNf6XsBMLMbzCzTzDJ37NgRedQiEhdmZ20HNEljYxDJXFuDzexdM1sePB9pZv8TwbFzgD5hz3sDW6urY2ZJQHtgVw375gA57j4vKJ9BKLF8hbs/6e4Z7p7RpYvaV0Uam9lZuYzq04FuqS1jHYrUIpIrkj8D9wClAO6+lFBHeG0WAIPMrH/QKT4FmFWpzizgmmB7MjDH3T0onxLc1dUfGATMd/ftwGYzGxLscwaQhYg0KbkFRSzJ2cvZatZqFCLpwWrt7vMrTU1QVttO7l5mZrcAbwGJwDPuvsLM7gcy3X0WoU7zqWaWTehKZEqw7wozm04oSZQBNwd3bAH8F/D3IDmtAzRgUqSJmR2sPaL+kcYhkkSSb2ZHEfRvmNlkYFskB3f314HXK5X9NGy7CPhmNfs+ADxQRfliICOS9xeRxml2Vi79OrdmUNe2sQ5FIhBJIrkZeBIYamZbgPXAlVGNSkSarX3FZXy8didXn9hPkzQ2EpHMtbUOODO4zTbB3QujH5aINFfvr95BSbkmaWxMak0kZvaDSs8hNN5jYdDMJCJSb2Znbadj6xaM6dcx1qFIhCK5aysDuInQgMBewA3AqcCfzeyu6IUmIs1NaTBJ4xlHd9MkjY1IJH0knYHR7r4PwMx+Rmj8ximEJm98KHrhiUhzMn/9LgqKytSs1chEkvL7AiVhz0uBfu5+kLAVE0VE6mp2Vi4pSQmcPCgt1qHIYYjkiuQfwCdm9q/g+YXA80HnuwYDiki9ODRJ48mD0midrEkaG5NI7tr6uZm9DpxEaA6sm9w9M3j5imgGJyLNR9a2ArbsOcitZwyMdShymGpMJGaWACx19xFEuJiViMiRmLVkK2Zw+lD1jzQ2NfaRuHsFsMTM+jZQPCLSDH2WW8gzH67nwpE96dIuJdbhyGGKpCGyB7DCzOYTmrYdAHe/KGpRiUizUV7h/HjmUtqkJPHTC4fFOhw5ApEkkv+NehQi0mxN/XgDn27aw28uHUVaW12NNEaRdLa/3xCBiEjzk7P7AA+9tZpTBnfh4uMqL6AqjUUkC1udYGYLzGyfmZWYWbmZFTREcCLSdLk79768HIBfXjxCEzQ2YpEMSHwMuBz4DGgFfCcoExE5Yv9cvIX31+zgR+cMoXfH1rEOR+ogolE/7p5tZonB4lLPmtlHUY5LRJqwnfuKuf+VLI7r24GrT0yPdThSR5EkkgPBaoSLzewhQotatYluWCLSlP3vK1nsKy7jwUtGkpigJq3GLpKmrauCercQuv23D3BJNIMSkaZrzqpcZi3Zys2nDWRwt3axDkfqQSR3bW0MNovQrcAiUgeFRaXc+/JyBndry/dP1VQoTUUkC1tNAO4D+oXXd/cB0QtLRJqih95czfaCIh6/YjzJSVpvpKmIpI/kaeAOQnNtlUc3HBFpqhZs2MXUTzZy3YR0RvfV6odNSSSJZK+7vxH1SESkySoqLefHM5fSq0Mr7jx7SKzDkXpWbSIxs9HB5ntm9n/AS4QtZOXun0Y5NhFpIh6bk826Hfv567fH0iZFa400NTX9i/660vOMsG0HTq//cESkqVm5rYAn3l/LN0b34pTBXWIdjkRBtYnE3U9ryEBEpOmpqHDunrmU9q1a8JPzNbNvUxXJXFu/NLMOYc87mtkvohuWiDQFs5ZsZUnOXn5ywTA6tkmOdTgSJZHcf3euu+859MTddwPnRS8kEWkKSssr+M3sNRzdI5WLRvWMdTgSRZEkkkQz+3yRADNrBUS0aICZTTSz1WaWbWZ3V/F6iplNC16fZ2bpYa/dE5SvNrNzKu2XaGaLzOzVSOIQkYY3PXMzm3Yd4EfnDCZB06A0aZHcPvE34F0ze5ZQJ/u3gb/UtpOZJQKPA2cBOcACM5vl7llh1a4Hdrv7QDObAjwIXGZmw4ApwHCgJ/COmQ0OJo0EuA1YCaRG8iFFpGEVlZbz6LufMaZfR04b0jXW4UiU1XpF4u4PAb8Ajib0xf7zoKw2Y4Fsd1/n7iXAC8CkSnUm8UVSmgGcYaFFCSYBL7h7sbuvB7KD42FmvYHzgaciiEFEYmDqxxvJLSjmR+cM0TojzUAkne1tgLfd/U7gSSDFzFpEcOxewOaw5zlBWZV13L0M2At0rmXf3wJ3ARW1xH2DmWWaWeaOHTsiCFdE6kNhUSl/+Hc2Jw9K44QBnWMdjjSASPpI/gO0NLNewDvAdcBzEexX1X9DPMI6VZab2QVAnrsvrO3N3f1Jd89w94wuXXTvukhDefrD9ew+UMpd5wyNdSjSQCJJJObuB4BvAL9394uBSG4IzyE05fwhvYGt1dUxsySgPbCrhn0nABeZ2QZCTWWnm9nfIohFRBrArv0lPPXBes4d0Z1jerePdTjSQCJKJGZ2InAF8FpQFkkn/QJgkJn1DxbGmgLMqlRnFnBNsD0ZmOPuHpRPCe7q6g8MAua7+z3u3tvd04PjzXH3KyOIRUQawBPvr+VASRk/OGtwrEORBhRJQrgduAd42d1XmNkA4L3adnL3MjO7BXgLSASeCfa/H8h091mEZhaeambZhK5EpgT7rjCz6UAWUAbcHHbHlojEoe17i/jLRxu4+LjeDNKCVc2KhS4AmraMjAzPzMyMdRgiTdp/v7yMFzM3M+eHp9KnU+tYhyN1ZGYL3T2j9po1z/77W3e/3cxe4aud5Lj7RXWIUUSakA35+5m+YDPfGtdXSaQZqqlpa2rw8+GGCEREGq/fvrOGpETjltO0fG5zVNPsvwuDn++bWZdgWwMyRORLVm0v4F9LtnLjKUfRNbVlrMORGKj2ri0Luc/M8oFVwBoz22FmP2248EQk3v367TW0TU7ipq8NiHUoEiM13f57O6FxG8e7e2d37wiMAyaY2R0NEp2IxLVFm3YzOyuXG04ZQIfWmia+uaopkVwNXB7MdQWAu68DrgxeE5Fm7uG3V9O5TTLXndQ/1qFIDNWUSFq4e37lwqCfJJK5tkSkCZubnc/c7J3cfNpA2mod9matpkRScoSviUgT5+489NZqerZvybfG9Y11OBJjNf03YpSZFVRRboBuzRBpxt5ZmceSzXt48JJjaNkiMdbhSIzVdPuvfjtEpEp/+2QjvTq04pLRvWMdisSBSCZtFBH53O79JczNzueCUT1IStRXiCiRiMhhenPFdsoqnAtH9ox1KBInlEhE5LC8smQr/dPaMLxnaqxDkTihRCIiEdtRWMwn63ZywcgeWotdPqdEIiIRe2P5NiocLhylZi35ghKJiETslSVbGdytLYO1cJWEUSIRkYhs23uQBRt2c4E62aUSJRIRichrS7cBcMHIHjGOROKNEomIROSVpdsY3jOVAV3axjoUiTNKJCJSq827DrBk8x41a0mVlEjiUEWF8495m7hrxhKKy8pjHY4Ir6pZS2qguZ/jzNod+7hn5jLmb9gFQFrbFO6aODTGUUlz98qSrRzbpwN9OrWOdSgSh3RFEidKyyt4/L1szv3dB6zaXsBDk0fyzTG9eeL9tSzevCfW4Ukztm7HPrK2FWjsiFRLVyRxYMnmPfx45lJWbS/k/GN68LOLhtG1XUsmjujOh9n5/HD6Yl679WRN1y0x8erSbZjB+ceoWUuqpiuSGDpQUsYvXs3i4j/MZfeBEp68agyPXzGaru1Cy72ktmzBg5eMZO2O/Twye02Mo5Xm6pUlWzm+Xye6t9cyRFI1XZHEyH/W7OC/X15Gzu6DXDGuLz8+dyipLb+6gvEpg7tw+di+PPnBOs4e3o0x/TrFIFpprlZvL+SzvH38fNLwWIcicSyqVyRmNtHMVptZtpndXcXrKWY2LXh9npmlh712T1C+2szOCcr6mNl7ZrbSzFaY2W3RjD8adu8v4YfTl3D1M/NJTkxg+o0n8sDFx1SZRA659/yj6dm+FXe+uJSDJbqLSxrOq0u3kmAwcYSataR6UUskZpYIPA6cCwwDLjezYZWqXQ/sdveBwCPAg8G+w4ApwHBgIvCH4HhlwA/d/WjgBODmKo4Zt7bsOch5j37AvxZv4ZbTBvL6bScztn/tVxhtU5J4aPJI1ufv5+G3VzdApCKhddlfWbKVE4/qTJd2KbEOR+JYNK9IxgLZ7r7O3UuAF4BJlepMAv4SbM8AzrDQ3NSTgBfcvdjd1wPZwFh33+bunwK4eyGwEugVxc9QbwqKSvn2swvYV1TGS98fz53nDDmszvMJA9O46oR+PDN3PfPX74pipCIhK7YWsGHnAS1gJbWKZiLpBWwOe57DV7/0P6/j7mXAXqBzJPsGzWDHAfPqMeaoKC2v4Pt/+5S1O/bxxFVjGNm7wxEd5+5zh9K7Yyt+NGMJB0rK6jlKkS97ZelWkhKMiSO6xzoUiXPRTCRVrXrjEdapcV8zawvMBG5394Iq39zsBjPLNLPMHTt2RBhy/XN3/vulZXyYnc+vLhnJhIFpR3ysNilJ/N/kUWzceYCH3lQTl0SPu/Pqkm2cNCiNDq2TYx2OxLloJpIcoE/Y897A1urqmFkS0B7YVdO+ZtaCUBL5u7u/VN2bu/uT7p7h7hldunSp40c5cr+fk82LC3O47YxBTB7Tu87HO2FAZ64dn85zH23g47U76yFCka9atHkPW/YcVLOWRCSaiWQBMMjM+ptZMqHO81mV6swCrgm2JwNz3N2D8inBXV39gUHA/KD/5Glgpbv/Joqx14uXF+Xwm9lr+MboXtx+5qB6O+5dE4eQ3rk1P5qxhP3FauKS+vfqkm0kJyZw1vBusQ5FGoGoJZKgz+MW4C1CneLT3X2Fmd1vZhcF1Z4GOptZNvAD4O5g3xXAdCALeBO42d3LgQnAVcDpZrY4eJwXrc9QFx+tzeeuGUs5cUBnfvWNkfW6vnXr5CT+75uj2LLnIP/vjZX1dlwRCE0a+tqyrXxtSJcab0sXOSSqAxLd/XXg9UplPw3bLgK+Wc2+DwAPVCr7kKr7T+LKZ7mF3Dh1Iemd2/DEVWNITqr/fH18eieun9Cfpz5cz8ThPThp0JH3vYiEW7BhF7kFxZpbSyKmKVLqWV5hEdc+u4CWLRJ59rrjad8qev+ju/OcIQxIa8OPZy4lr7CIUKugSN28unQbLVskcMbQrrEORRoJTZFSjw6UlPGdv2Sya38J0248gd4dozvldssWiTx86Sgm//Ejxj7wLi1bJNA9tSVdU1vSPbUl3du3pGu7FLq3Dz3vltqSrqkppCRp8kepWll5Ba8v28YZQ7vRJkVfDxIZ/abUk/IK59bnF7F8y16evCrjiMeKHK7RfTvy4k3jWbRpN7kFRWwvKCZ3bxGLN+8hd0URxWUVX9mnQ+sWdG2XQtd2oUTTJfWL7a7tUuia2pJuqSm0TtavR3Pzybpd7NxfwoWjNCWKRE7fFPXA3bn/lRW8szKP+ycN58xhDXuny5iT0rzEAAAQ8ElEQVR+HRnTr2OVce09WMr2giK27y0ir6CY7QVF5BWGtvMKi1mfv5+8wiJKy7/aLHbr6QP5wdlDGuIjSJx4delW2iQncuoQNWtJ5JRIanD8A+9QFMEkiQ7sKy7jOyf15+oT06MeV6TMjA6tk+nQOpmh3VOrrefu7DlQSl5hMbkFReQVFjNnVS6Pzsmmf5c2XHxc3ce/SPzbtvcgbyzfztnDu2vtGzksSiQ1+MboXpSWRdaB3atjK64bnx7dgKLEzOjYJpmObZIZ0r0dAJOO7cnOffP48cxlDEhry6g+DdNUJ7Gxced+vvXneVRUON85uX+sw5FGxprDnT4ZGRmemZkZ6zAanZ37irnosbmUVVTwyi0n0TVVCxs1RWtyC7nyqXmUllcw9fpxjOjVPtYhSRwws4XunhFJXd3+K9Xq3DaFP1+dQcHBMm7820KKSrUWSlOzNGcPl/7pYwCm33iikogcESUSqdGwnqn85tJRLNq0h//553KNVWlC5q/fxbf+PI+2KUnMuGk8g7q1i3VI0kgpkUitzj2mB7edMYgZC3N4Zu6GWIcj9eDfq/O4+pl5dEtNYcZN4+nbObpjnqRpUyKRiNx2xiDOGd6NB17L4oPPYjctv9TdG8u28d2/ZjIgrS3TbjyR7u3V9yV1o0QiEUlIMH5z6bEM7taOW/6xiA35+2MdkhyBmQtzuPkfn3JMr/Y8f8MJpLXVErpSd0okErE2KUn8+eoMEgy+89dMCotKYx2SHIapH2/ghy8u4cSjOjP1+nFRnQdOmhclEjksfTq15vErRrM+fz93TFtMRYU63xuDP/w7m5/8awVnHt2Np685XvNoSb1SIpHDNv6oNH524TDeWZnHr2dryd94lr+vmB9OX8JDb67molE9+eOVozVqXeqd/lsiR+SqE/qxclsBj7+3lqO6tGXSsb1ITIj7pWKajdLyCqZ+vJFH3lnDwZJyvn/qUfzw7CH6N5Ko0Mh2OWIlZRVc8dQnLNiwm5SkBAZ0acugrm0ZGDwGdW1Lv85torKwl1Tvo+x87ntlBWty93HyoDR+duFwBnZtG+uwpJE5nJHtuiKRI5aclMAz1x7PG8u281leIdl5+/h0025mLdn6eZ3EBKNf59YM7BJKLh1bJ5PSIoHkxASSkxJISUokOenQduhncmIC3du31B1Fh2nLnoM88FoWry/bTu+OrfjTVWM4e1i3el3mWaQqSiRSJ+1atuDS4/t8qexASRnrduwnO28f2Xn7Pk8yc1blURZh53xyYgI/vXAYV4zrqy/CWhSVlvPkf9bxh39n4w53nDmYG782QH0h0mCUSKTetU5OYkSv9l+Zt6msvIKDpeUUl1VQEjw+3y4vp7i0guLyCopLK3h+/ib+55/Lydywi19+4xgtslUFd2d2Vi4/fy2LzbsOcu6I7tx7/tFRX5lTpDL9dUqDSUpMoF1iApHM6HT2sG489l42j7yzhhVbC/jjlWPUzh8mr7CIu2Ys5d+rdzCwa1v+/p1xTBiYFuuwpJlSL6jEpYQE49YzBjH12+PYub+Eix778Et9L83ZR9n5nPe7D/lk3U7+5/yjeeO2k5VEJKaUSCSunTQojdduPYmje6Ry6/OL+Nm/llNc1jynsy+vcH77zhqueHoe7Vsl8a+bT+I7Jw+gRaL+jCW21LQlca9H+1a8cMMJPPjGKp76cD2Lc/by+LeOq7e+AHdnw84DZG7YReaG3SzJ2cPRPVK57Pg+jOvfqc6d/fuLy5i3fieDu7U74ph3FBZz+7RFzM3eycXH9eIXXx+h0ekSNzSORBqVN5dv40cvLiUx0XjksmM5bUjXwz5GaXkFK7YWfJ44MjfuIn9fCQAdWrdgRM/2LMnZQ2FRGemdW/PNjD5MHtObboexQmRRaTnvrcrj1aXbeHdVLkWlFSQYnD2sO9dNSGfsYSSoj9bmc9sLiyk4WMr9k4ZzaUYf3ckmUXc440iUSKTRWZ+/n+/9bSGrthfyX6cP5OvH9ar2LrCS4C6w4vIKcvcWkblxF4s376GotAKAvp1ak5HekePTO5HRryNHdWlLQoJxsKScN5ZvY9qCzcxbv4vEBOO0IV24NKMPpw3tWmVzUnFZOf9Zk8+rS7fyTlYu+0vKSWubzLkjenDmsG7MW7eT5+dvYveBUob1SOXaCelcNKpntbfpllc4j7+XzW/fWUN6Whv+cMVohnZPjeq5FTkkbhKJmU0EfgckAk+5+68qvZ4C/BUYA+wELnP3DcFr9wDXA+XAre7+ViTHrIoSSdNTVFrOT/65nBcX5kS8T2KCMbxnKmP6fZE4IlmHfn3+fqZnbmbGwhx2FBaT1jaFS8b04rKMPvTp1Jq52fm8unQbb63YTmFRGR1at+DcEd25YGRPxvXvRFJY0ikqLeefi7bw7NwNrM4tpHObZL41ri9XntDvS1c8+fuKuf2FxXyYnc/Xj+3JAxcfo6YsaVBxkUjMLBFYA5wF5AALgMvdPSuszveBke5+k5lNAS5298vMbBjwPDAW6Am8AwwOdqvxmFVRImm65mbnk7+vmOTEhGDEfOKXRsl/8TORdi2T6jRIr6y8gvdW72Dags28tzqP8gqnbUoS+4rLaJeSxNnDu3PBqB6cNDCt1g5wd+fjtTt5Zu4G3l2VS6IZ5x3Tg+smpFNUWsFtLyxir5qyJIbiZYqUsUC2u68LgnoBmASEf+lPAu4LtmcAj1noL2YS8IK7FwPrzSw7OB4RHFOakYa87TUpMYGzhnXjrGHdyCsoYsanOWzMP8CZw7pxyuA0UpIiT1JmxviBaYwfmMamnQf4y8cbmL5g8+e3OA9Ia8Nfvj2Wo3uoKUviXzQTSS9gc9jzHGBcdXXcvczM9gKdg/JPKu3bK9iu7ZgiUdc1tSXfP3VgvRyrb+fW/OSCYdxx1mBmLsxh5/4SbjhlAG3VlCWNRDR/U6u6Fq/cjlZdnerKq2ovqLJtzsxuAG4A6Nu3b/VRisSJtilJXDM+PdZhiBy2aI5kygHCZ/PrDVQemvx5HTNLAtoDu2rYN5JjAuDuT7p7hrtndOnSpQ4fQ0REahLNRLIAGGRm/c0sGZgCzKpUZxZwTbA9GZjjod7/WcAUM0sxs/7AIGB+hMcUEZEGFLWmraDP4xbgLUK36j7j7ivM7H4g091nAU8DU4PO9F2EEgNBvemEOtHLgJvdvRygqmNG6zOIiEjtNCBRRES+4nBu/9VsbyIiUidKJCIiUidKJCIiUidKJCIiUifNorPdzHYAG49w9zQgvx7DaYp0jmqnc1QznZ/aNfQ56ufuEQ3CaxaJpC7MLDPSOxeaK52j2ukc1Uznp3bxfI7UtCUiInWiRCIiInWiRFK7J2MdQCOgc1Q7naOa6fzULm7PkfpIRESkTnRFIiIidaJEUg0zm2hmq80s28zujnU8DcHMNpjZMjNbbGaZQVknM5ttZp8FPzsG5WZmjwbnZ6mZjQ47zjVB/c/M7Jqw8jHB8bODfeN+/Vgze8bM8sxseVhZ1M9Jde8Rj6o5R/eZ2Zbgd2mxmZ0X9to9weddbWbnhJVX+TcXzPY9LzgX04KZvwlmB58W1J9nZukN84kPj5n1MbP3zGylma0ws9uC8qbze+TuelR6EJpZeC0wAEgGlgDDYh1XA3zuDUBapbKHgLuD7buBB4Pt84A3CC1CdgIwLyjvBKwLfnYMtjsGr80HTgz2eQM4N9afOYJzcgowGljekOekuveIx0c15+g+4M4q6g4L/p5SgP7B31liTX9zwHRgSrD9BPC9YPv7wBPB9hRgWqzPRTXnpwcwOthuB6wJzkOT+T2K+UmOx0fwD/JW2PN7gHtiHVcDfO4NfDWRrAZ6BNs9gNXB9p+AyyvXAy4H/hRW/qegrAewKqz8S/Xi+QGkV/qSjPo5qe494vVRxTm6j6oTyZf+lggtCXFidX9zwRdjPpAUlH9e79C+wXZSUM9ifS4iOFf/As5qSr9HatqqWlXrzfeqpm5T4sDbZrbQQksVA3Rz920Awc+uQXl156im8pwqyhujhjgn1b1HY3JL0DTzTFiTyuGeo87AHncvq1T+pWMFr+8N6setoPntOGAeTej3SImkapGsN98UTXD30cC5wM1mdkoNdas7R4db3pTonHzhj8BRwLHANuDXQXl9nqNGdf7MrC0wE7jd3QtqqlpFWVz/HimRVC3iteGbEnffGvzMA14GxgK5ZtYDIPiZF1Sv7hzVVN67ivLGqCHOSXXv0Si4e667l7t7BfBnQr9LcPjnKB/oYGZJlcq/dKzg9faEVlqNO2bWglAS+bu7vxQUN5nfIyWSqjW7teHNrI2ZtTu0DZwNLCf0uQ/dHXINofZdgvKrgztMTgD2BpfObwFnm1nHoDnjbEJt2tuAQjM7Ibij5OqwYzU2DXFOqnuPRuHQl1fgYkK/SxD6XFOCO676A4MIdRRX+Tfnocb994DJwf6Vz/ehczQZmBPUjyvBv+3TwEp3/03YS03n9yjWHU/x+iB058QaQneS3BvreBrg8w4gdKfMEmDFoc9MqM35XeCz4GenoNyAx4PzswzICDvWt4Hs4HFdWHkGoS+UtcBjNI6O0ecJNc2UEvqf3/UNcU6qe494fFRzjqYG52ApoS+zHmH17w0+72rC7tyr7m8u+N2cH5y7F4GUoLxl8Dw7eH1ArM9FNefnJEJNTUuBxcHjvKb0e6SR7SIiUidq2hIRkTpRIhERkTpRIhERkTpRIhERkTpRIhERkTpRIpEmy8w6h80+u73SbLQfReH9Mszs0fo+bjSZWbqFzdorciR0+680C2Z2H7DP3R+OdSzxJJj76VV3HxHjUKQR0xWJNEtmti/4eaqZvW9m081sjZn9ysyuMLP5wfoORwX1upjZTDNbEDwmVHHMU83s1WD7vmCywn+b2Tozu7WK+olm9pyZLQ/e646g/CgzezOYPPMDMxsalHczs5fNbEnwGB+U/yA4xnIzuz0oS7fQ+hd/ttAaGG+bWavgtTHB/h8DN4fFMzz43IstNNnioHo+7dJEKZGIwCjgNuAY4CpgsLuPBZ4C/iuo8zvgEXc/HrgkeK02Q4FzCM0z9bNgvqVwxwK93H2Eux8DPBuUPwn8l7uPAe4E/hCUPwq87+6jCK3/scLMxgDXAeMIrV3xXTM7Lqg/CHjc3YcDe4K4Cd7nVnc/sVI8NwG/c/djCY2UzkEkAkm1VxFp8hZ4MNW2ma0F3g7KlwGnBdtnAsPsi0UdU82snbsX1nDc19y9GCg2szygG1/+cl4HDDCz3wOvEZrCvy0wHngx7L1Sgp+nE5pHCXcvB/aa2UnAy+6+P4j/JeBkQtOSrHf3xcG+C4F0M2sPdHD394PyqYRmewb4GLjXzHoDL7n7ZzV8NpHPKZGIQHHYdkXY8wq++BtJILSI0sEjPG45lf7e3H23mY0idNVyM3ApcDuh9TeOjfA9alquuPL7twrqV9kx6u7/MLN5wPnAW2b2HXefE2Ec0oypaUskMm8Dtxx6YmaRftFXy8zSgAR3nwn8hNByrAXAejP7ZlDHgmQDoUn3vheUJ5pZKvAf4Otm1tpCszZfDHxQ3Xu6+x6+uJIBuCIsngHAOnd/lNAVzci6fkZpHpRIRCJzK5ARdEJnEepPqKtewL/NbDHwHKGlZSH05X69mR2aiXlSUH4bcJqZLSPUVDXc3T8N9p1PaNW9p9x9US3vex3weNDZHn6FdRmwPIhnKPDXun08aS50+6+IiNSJrkhERKROlEhERKROlEhERKROlEhERKROlEhERKROlEhERKROlEhERKROlEhERKRO/j+7/loanmsN4gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "_ = plt.plot(time_array, cell_discharge)\n",
-    "_ = plt.xlabel('Time in seconds')\n",
-    "_ = plt.ylabel('Discharge in CMS')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAELCAYAAADz6wBxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4lNX58PHvPTNZ2NeAkAAJ+74ZkEUQRBEXQH21QJXS1tbWSm1ttXVprXXpr7ZV69q6g4iCC1YUcGMXgRD2JQQCBBIIJIDshGRm7vePGTAkk8mQZBKS3J/rysXM85zznDOZYe6c5TlHVBVjjDGmtByVXQFjjDFVmwUSY4wxZWKBxBhjTJlYIDHGGFMmFkiMMcaUiQUSY4wxZRLWQCIio0QkVUTSROSBAOejRGSm//xKEYn3H28iIgtF5ISIvFggfW0RmSMiW0Vks4j8PZz1N8YYU7KwBRIRcQIvAdcCXYEJItK1ULI7gO9UtT3wLPCU/3gu8GfgvgCX/peqdgb6AINF5Npw1N8YY0xowtki6Q+kqepOVc0DZgBjC6UZC0z1P/4QGCEioqonVfUbfAHlHFU9paoL/Y/zgDVAXBhfgzHGmBKEM5DEAhkFnmf6jwVMo6pu4CjQJJSLi0hDYDQwv8w1NcYYU2quMF5bAhwrvB5LKGmKXljEBbwHPK+qO4tJcydwJ0CdOnUu7dy5c0mXNcYYU8Dq1asPqmpMSenCGUgygVYFnscB+4pJk+kPDg2AwyFc+1Vgu6r+u7gEqvqqPx2JiYmanJx8AVU3xhgjIrtDSRfOrq1VQAcRSRCRSGA8MLtQmtnAJP/jW4AFWsIqkiLyBL6A89tyrq8xxphSCFuLRFXdIjIZ+AJwAm+q6mYReQxIVtXZwBvANBFJw9cSGX82v4ikA/WBSBG5ERgJHAMeBrYCa0QE4EVVfT1cr8MYY0xw4ezaQlXnAnMLHXukwONc4NZi8sYXc9lA4yrGGGMqSVgDycUsPz+fzMxMcnNzS05sLnrR0dHExcURERFR2VUxpsapsYEkMzOTevXqER8fj7+LzFRRqsqhQ4fIzMwkISGhsqtjTI1TY9fays3NpUmTJhZEqgERoUmTJta6NKaS1NhAAlgQqUbsvTSm8tToQFLZnE4nvXv3PveTnp4e1vKmTJlCTEwMvXv3pnPnzjz77LNF0vTq1YsJEyacd2zFihVcdtll9O7dmy5duvDoo4+GtZ7GmLJL3X+cZ7/aRm6+J+xl1dgxkotBrVq1WLduXbHn3W43Llf5vkXjxo3jxRdf5NChQ3Tq1IlbbrmFVq18942mpKTg9XpZsmQJJ0+epE6dOgBMmjSJ999/n169euHxeEhNTS3XOhljypeq8pfZm9i6/zg/HhRPdIQzrOVZi+QiM2XKFG699VZGjx7NyJEjUVXuv/9+unfvTo8ePZg5cyYAixYt4oorruAHP/gBHTt25IEHHmD69On079+fHj16sGPHjqDlNGnShPbt25OVlXXu2LvvvsvEiRMZOXIks2d/f+9odnY2LVq0AHytqK5dCy/ibIwJi4wkWPq0798LMGdjFit2Hub3IzvRqE5kmCr3PWuRVKLTp0/Tu3dvABISEvj4448BWL58ORs2bKBx48Z89NFHrFu3jvXr13Pw4EH69evH0KFDAVi/fj0pKSk0btyYtm3b8rOf/YykpCSee+45XnjhBf7972JXkGHPnj3k5ubSs2fPc8dmzpzJV199RWpqKi+++OK5Lq57772XTp06MWzYMEaNGsWkSZOIjo4O16/FGAN4d6/EPWU0Ls3H4YqCSbOhVf8S853Kc/PknBS6tqjPD/u3roCaWiAB4K+fbmbLvmPles2uLevzl9HdgqYprmvr6quvpnHjxgB88803TJgwAafTSfPmzbniiitYtWoV9evXp1+/fudaCu3atWPkyJEA9OjRg4ULFwYsc+bMmSxcuJDU1FRee+21cwFh1apVxMTE0KZNG+Li4vjpT3/Kd999R6NGjXjkkUe47bbb+PLLL3n33Xd57733WLRoUWl/NcaYEKSsmEsnbz4O8YInD9KXhhRIXl64g6yjuTw/oQ9OR8VMQrGurYvQ2bEJ8PV1FicqKurcY4fDce65w+HA7XYHzDNu3Dg2b97M0qVL+f3vf8/+/fsBeO+999i6dSvx8fG0a9eOY8eO8dFHH53L165dO+666y7mz5/P+vXrOXToUJleozGmeGfcHp7f0Zx8XLjVgTojIX5Iifl2HzrJq0t2cmPvlvSLb1wBNfWxFgmU2HKoTEOHDuWVV15h0qRJHD58mCVLlvDPf/6TrVu3lum6AwcOZOLEiTz33HM8+eSTfPDBB2zYsIHYWN+WMQsXLuSJJ57gZz/7GXPmzOG6665DRNi+fTtOp5OGDRuWx8szxgQwfcUevjjWhuk9X+Dw5gWMuvYWeobQGnn8sy1EOIUHr+tSAbX8ngWSi9xNN93E8uXL6dWrFyLCP/7xDy655JIyBxKAP/7xj/Tt25dBgwYRGxt7LoiAL4Bt2bKFrKwspk2bxr333kvt2rVxuVxMnz4dpzO8s0CMqamO5+bz4sI0BrdvwribR9J7U30cR9vQs4R8C1Oz+Tolmwev7Uzz+hU7hiklrNpeLQTajyQlJYUuXSo2apvwsvfUVAfPfJnK8wvSmD15MD3jGnLTy8sA+PhXg4vNk5e+nKnvTme9qzvP/O5OIl3lM2ohIqtVNbGkdNYiMcaYi0T28VxeW7qLG3q2oGecr/t4cLumvLwojWO5+dSPDrAoaUYSjrfH8hNPPuKJxJnVN6RB+fJkg+3GGHOReGF+GvkeL/eN7HTu2KD2TfAqrNwZePNY766l4M3HJV6c3nzf7K4KZoHEGGPCZH7KAUa/8A0nzwSeRVlQ+sGTvJe0hwn9WxPf9PuZm31bNyI6wsGytIMB822K7EG+uvDihBBnd5U369oyxpgw8HiVJ+emsDPnJAu2ZjO6V8ug6f/1ZSqRLge/HtH+vOPREU76xTfm2x2BA8mU3c3Ilkd4a9gZHO2GVni3FliLxBhjwuKzDfvYmXMSp0P4fNP+oGl35pzgsw1Z3HF5As3qFZ1xNahdU7YdOEH28fO3Sjiem8/cTVm07jWMiGH3VUoQAQskxhhT7jxe5YUFaXRsXpcfJLZiYWo2p/OKX4X347V7cQhMHNAm4PnB7ZsAsHzH+TcCz9mQRW6+l1svjSu/ypeCBZJKVNHLyAeyb98+brnllnK51qJFi7jhhhuCplm3bh1z584993z27Nn8/e9/L5fyjblYzN2YRVr2Ce4Z0YHre7TgVJ6HxdtyAqb1epVZa/ZyeYcYmhVz/0e3lg2oH+0qMk7ywepM2jerS+9WlXuDsI2RVKLKWEa+sJYtW/Lhhx+GtYyC1q1bR3JyMtdddx0AY8aMYcyYMRVWvjHh5vUqLyzYTodmdbmuews8qjSqHcHnm7IY1f2SIulXpR9m75HT3H9NpwBX83E6hIHtmrAs7RCqioiwI+cEq3d/x4PXdq70jd2sRXKRCecy8osXLz7X+unTpw/Hjx8nPT2d7t27nyv7xhtvZPTo0SQkJPDiiy/yzDPP0KdPHwYMGMDhw77ph8OGDePsDZ4HDx4kPj6+SFlJSUkMGjSIPn36MGjQIFJTU8nLy+ORRx5h5syZ9O7dm5kzZzJlyhQmT54MwO7duxkxYgQ9e/ZkxIgR7NmzB4Af//jH3HPPPQwaNIi2bdtWaOAz5kLN27SfbQdO8OsRHXA4hAing6u7Nmd+SjZn3EW7t2at2UudSCcjuzUPet3B7Zuy98hp9hw+BcCHqzNxOoSb+sQGzVcRLJBciFLuDVCcs8vI9+7dm5tuuunc8eXLlzN16lQWLFjArFmzzi0j//XXX3P//fef20Nk/fr1PPfcc2zcuJFp06axbds2kpKS+NnPfsYLL7xQpLx//etfvPTSS6xbt46lS5dSq1atImk2bdrEu+++S1JSEg8//DC1a9dm7dq1DBw4kLfffjvk19a5c2eWLFnC2rVreeyxx3jooYeIjIzkscceY9y4caxbt45x48adl2fy5Mn86Ec/YsOGDdx2223cc889585lZWXxzTff8Nlnn/HAAw+EXA9jKpLXqzw3fxvtYupwfY8W545f270Fx8+4i3RN5eZ7mLsxi1HdW1A7Mnjvw6B2TQFYlnYIj1eZtSaTKzoW3x1WkaxrK1QZSTB1jG85Z2dkyHsDBFPRy8gPHjyY3/3ud9x2223cfPPNxMUVHaAbPnw49erVo169ejRo0IDRo0efu+aGDRtCfm1Hjx5l0qRJbN++HREhPz+/xDzLly9n1qxZAEycOJE//OEP587deOONOBwOunbtyoEDB0KuhzEV6fPNvtbIc+N7n7eE+6D2TagX7WLexv1c2fn7lsfXKQc4fsbNzX1LblW0i6lD8/pRLNtxkJYNozlw7AyPjq7cQfazrEUSqvSlviCinu/3BgiTcC0j/8ADD/D6669z+vRpBgwYEHDhx1Cu6XK58Hq9AOTm5ha5BsCf//xnhg8fzqZNm/j000+LTRdMwX7fgvWqCevDmarHu3slB+b8jdGNM7ih5/n3jES5nFzVpTlfbjlAvsd77visNXtp0SCaAW2blHh9EWFwu6Ys33GID5IzaVQ7ghFdgneHVRQLJKGKH+JriUjF3j06dOhQZs6cicfjIScnhyVLltC/f+laQjt27KBHjx788Y9/JDExsdQrCMfHx7N69WqAYscrjh49em414SlTppw7Xq9ePY4fPx4wz6BBg5gxYwYA06dP5/LLLy9V/YypcBlJ6NtjmHj6HZ7N/QvOvauKJBnV/RKOns5nxU7fFN6DJ86weFsOY3vHhrwB1aD2TTl8Mo+5m7IY2zu23BZnLKuw1kJERolIqoikiUiRjm0RiRKRmf7zK0Uk3n+8iYgsFJETIvJioTyXishGf57npaKmK7Tq7+vOuvLhcunWCtVNN91Ez5496dWrF1deeeW5ZeRL49///jfdu3enV69e1KpVi2uvvbZU17nvvvv4z3/+w6BBgzh4MPDdtn/4wx948MEHGTx4MB7P9wOMw4cPZ8uWLecG2wt6/vnneeutt+jZsyfTpk3jueeeK1X9jKlw/h4Ll3hxauD1rq7oGEPtSCfz/Dcnzl63D49XQ+rWOuvs/SSqcGvixdGtBWFcRl5EnMA24GogE1gFTFDVLQXS/Aroqaq/FJHxwE2qOk5E6gB9gO5Ad1WdXCBPEvAbYAUwF3heVecFq4stI18z2HtqKsvhrUup9d7NRIkHh6v4MdS7313Dyp2HWPnQVdz40jIU5bNfX1jvxlXPLCbS6WDub8LfKxLqMvLhbJH0B9JUdaeq5gEzgLGF0owFpvoffwiMEBFR1ZOq+g1wXse6iLQA6qvqcvVFwLeBG8P4GowxNV0IszVn5cRyW95DHBlwf9Aei+u6t+DgiTzeTdrDxr1HuanPhbcqXp14Ka9MvPSC84VTOGdtxQIZBZ5nApcVl0ZV3SJyFGgCBO4v8aXPLHTNyp9EbYypnjKS8EwZjcObjwSZrfm/dXtxxPaj8ajg43rDOsUQ5XLwtzkpOB3CmBIWcgykbUzdC84TbuFskQQauyjcjxZKmlKlF5E7RSRZRJJzcgIvTWCMMcEcTVmIuvMQ9aDFzNZMyz7Bpr3HGNu75L9p60S5+EnrbH7incVPWmcTUy+qxDxVQThbJJlAqwLP44B9xaTJFBEX0AAIvHvL9+kLtgUDXRMAVX0VeBV8YyTFpKn0pQVM+bApwSYcPjmSwK24QN2IMwJngNman6zzLbg4umeLAFcoJCOJ+/b/AVx5SM4nkNG10lbsLU/hbJGsAjqISIKIRALjgdmF0swGJvkf3wIs0CDfCKqaBRwXkQH+2Vo/Aj4pTeWio6M5dOiQfQFVA6rKoUOHiI6u/Dt8TfVxKs/N0ykNeT7uad6Kuo37aj2ON7bfeWlUlU/W7WNQu6ah3WGevhSn+nYzdFTSbobhELYWiX/MYzLwBeAE3lTVzSLyGJCsqrOBN4BpIpKGryUy/mx+EUkH6gORInIjMNI/4+suYApQC5jn/7lgcXFxZGZmYt1e1UN0dHTAO/WNKa2P1+7l6Ol8rrz6BjIOX8nH76/n2pQDjOz2/fT7NXuOsOfwKX59ZfsgVyogfohvrMWT5/u3EnYzDIewLpGiqnPxTdEteOyRAo9zgVuLyRtfzPFkfNOCyyQiIoKEhISyXsYYUw2pKlOWpdOtZX0S2zSiT6uGPDd/O88v2M7VXZuf6xL/ZN1eolyOgKv6BnT2frT0pb4gUg26tcDubDfGmCK+STvI9uwT/GRwAiKCy+ng7mHt2bT3GItSfb0Y+R4vn23I4qouzakXHRH6xVv1hyG/rzZBBCyQGGNMEW8tS6dp3UhG9/p+AP2mvrHENqzFc/O3o6p8s/0gh0/mMbb3hU/hrW4skBhjTAG7Dp5kwdZsfnhZG6JcznPHI5wOfjW8HesyjvBN2kH+t24vDWpFMKxTs0qs7cXBAokxxhQw9dt0IpzC7QNaFzl3y6VxtGgQzb++3MaXmw9wXY8WF83CiZXJfgPGGON3PDefD1dnckPPljSrV3Q6b5TLyS+vaMf6jCOczvdwo3VrARZIjDHmnA+SMzlxxs1PBscXm2Zcv1bE1IuiZYNo+sU3rrjKXcRsh0RjjMG3Te7U5elc2qYRPeMaFpsuOsLJG5MS8So4QtxHpLqzQGKMMcCaPd+x+9ApfntVhxLTBgs0NZF1bRljDDB3434inQ6uuki2r61KLJAYY2o8r1eZtymLoR2bXtjNhQawQGKMMazPPELW0Vyu7R7CCr6mCAskxpgab96m/UQ4xbq1SskCiTGmRlP1dWsNbt+UBrWtW6s0LJAYY2q0zfuOkXH4NNeGuoKvKcICiTGmRpu7MQunQ7i6qwWS0rJAYoyp1lSVtOwTxZ6buzGLgW2b0LhOZAXXrPqwQGKMqdamfJvOVc8s5v3kjCLntu4/TvqhU1zbw1ojZWGBxBhTbakqM5J8AeRPH29i7Z7vzjs/b9N+HAIjrVurTCyQGGOqrU17j5F64Dj3jexI8wZR/PKd1WQfyz13ft7GLPonNCamXlQl1rLqs0BijKm2PlidQaTLwcQB8bz2o0SOnXbzi3dWc8btYfuB42zPPsF1PewmxLKyQGKMqZbOuD18sm4f13S7hAa1I+h8SX2e/kEv1u45wiP/28zcjfsRgWu6WbdWWdnqv8aYaunrLdkcPZ3PrZfGnTt2XY8WTB7enhcXpjEwcgdPNNlB86MxUL9/Jda06rNAYoyplj5cnUGLBtEMbt/0vOO/u7ojebtWcG/W40SdcMPUmTBpNrSyYFJa1rVljKl2DhzLZfG2HG7uG4uz0OZTDofw+07ZRIkbB17w5EH60kqqafVggcQYU+3MWrMXr8Itl7YKeD6q/RU4XFEgTnBGQvyQCq5h9WJdW8aYakVV+XB1BoltGpHQtE7gRK36+7qz0pf6goh1a5VJyC0SEYkQkT4i0uwC8owSkVQRSRORBwKcjxKRmf7zK0UkvsC5B/3HU0XkmgLH7xWRzSKySUTeE5HoUOtjjKn+1mYcYUfOSW5NjAuesFV/GPJ7CyLloNhAIiL/FZFu/scNgPXA28BaEZlQ0oVFxAm8BFwLdAUmiEjXQsnuAL5T1fbAs8BT/rxdgfFAN2AU8LKIOEUkFrgHSFTV7oDTn84YYwD4IDmT6AiH3R9SgYK1SIao6mb/458A21S1B3Ap8IcQrt0fSFPVnaqaB8wAxhZKMxaY6n/8ITBCRMR/fIaqnlHVXUCa/3rg646rJSIuoDawL4S6GGNqgDO7ltN8/Uvc1faQbZlbgYKNkeQVeHw18AGAqu73fdeXKBYouEpaJnBZcWlU1S0iR4Em/uMrCuWNVdXlIvIvYA9wGvhSVb8MpTLGmGouIwnntBuZTB6S+TFkdLRuqwoSrEVyRERuEJE+wGDgcwB/S6BWCNcOFG00xDQBj4tII3ytlQSgJVBHRG4PWLjInSKSLCLJOTk5IVTXGFOlpS9FvHm4xIvDm29TeitQsEDyC2Ay8BbwW1Xd7z8+ApgTwrUzgYJz7+Io2g11Lo0/QDUADgfJexWwS1VzVDUfmAUMClS4qr6qqomqmhgTExNCdY0xVdmZuEHkqQsPDsSm9FaoYru2VHUbvoHuwse/AL4I4dqrgA4ikgDsxTco/sNCaWYDk4DlwC3AAlVVEZkNvCsiz+BreXQAkgAvMEBEauPr2hoBJIdQF2NMNbc8rx3P5z3EP/sdp12/UdatVYGKDSQi8nywjKp6Twnn3SIyGV/QcQJvqupmEXkMSFbV2cAbwDQRScPXEhnvz7tZRN4HtgBu4G5V9QArReRDYI3/+Frg1dBeqjGmOpufkk2Kqwuxo6+GCGdlV6dGEdXCwxb+EyJ5wCbgfXzdSueNW6jq1ED5LkaJiYmanGwNF2OqK1Vl8N8X0C22Aa/9KLGyq1NtiMhqVS3xFxps1lYL4FZgHL6//mcCH6nqd0HyGGNMhdu6/zj7jubym6s6VHZVaqRiB9tV9ZCq/ldVhwM/BhoCm0VkYkVVzhhjQjE/5QAAwzuHvPCGKUclrrUlIn2BCfjuJZkHrA53pYwx5kJ8nZJNr7gGNKtnKyZVhmCD7X8FbgBS8N2V/qCquiuqYsYYE4qc42dYn3mEe6/qWNlVqbGCtUj+DOwEevl//ua/o10AVdWe4a+eMcYEt3BrNqowoot1a1WWYIEkocJqYYwxpfR1ygFaNoima4v6lV2VGivYne0RQJyq7i74A7TG9jExxlwEcvM9fJN2kCu7NCPENQBNGAQLJP8Gjgc4ftp/zhhjKtWKnYc4ledhRJfmlV2VGi1YIIlX1Q2FD6pqMhAfthoZY0whx7Yt48zCf0JG0nnH56dkUyvCycC2TSqpZgaCd1EFm0cXyuq/xhhTZrpnJZHv3ogTN/lL/4l34idEJQxEVZmfcoDLOzQl2pZEqVTBWiSrROTnhQ+KyB3YvSTGmAqyb/1XuNSNCy/iyefNd6bxfnIGm/cdY9/RXK6y2VqVLliL5LfAxyJyG98HjkQgErgp3BUzxhiAL050YAIunOJBnBHsqteXpz7cQJ1IXyvE7mavfMGWkT8ADBKR4UB3/+E5qrqgQmpmjKnxvF7l1V1NORD7Lx7schBn/BCeiuvH8E37+ecXqcQ2qmV3s18ESpzGq6oLgYUVUBdjjDnP6j3fsf9YLl2vuwp6xwK+O6Kv7dGCa3u0oLjVy03FCjZGYowxleqz9fuIcjmKnd5r945cHCyQGGMuSh6vMnfTfoZ3akbdKLsH+mJmgcQYc1FK2nWYnONnuKFXi8quiilBiYFERG4Wke0iclREjonIcRE5VhGVM8bUXJ9t2EetCCdX2qysi14o7cV/AKNVNSXclTHGGAC3x8vnm/ZzZZdm1I60bq2LXShdWwcsiBhjKtKKnYc5dDKP0T2tW6sqCCXUJ4vITOB/wJmzB1V1VthqZYyp0eZs3EedSCfDOlm3VlUQSiCpD5wCRhY4poAFEmNMucv3eJm3aT9XdW1ua2hVEaHckPiTiqiIMcYALEs7yJFT+Vzfw7q1qopge7b/QVX/ISIv4GuBnEdV7wlrzYwxNdKcDVnUi3JxRaeYyq6KCVGwFsnZAfbkiqiIMcbke7x8sXk/V3drTpTLurWqimCLNn7q/3dqxVXHGFOTrdn9Hcdy3VxtOx5WKWG9s11ERolIqoikicgDAc5HichM//mVIhJf4NyD/uOpInJNgeMNReRDEdkqIikiMjCcr8EYU3EWb8vB5RAGd2ha2VUxFyBsgUREnMBLwLVAV2CCiHQtlOwO4DtVbQ88Czzlz9sVGA90A0YBL/uvB/Ac8LmqdgZ68X0XnDGmilu8LYe+bRpRPzqisqtiLkA4WyT9gTRV3amqecAMYGyhNGOBs11nHwIjxLec51hghqqeUdVdQBrQX0TqA0OBNwBUNU9Vj4TxNRhjKkj28Vw27zvGFR1tkL2qCWWtrY4iMl9ENvmf9xSRP4Vw7Vggo8DzTP+xgGlU1Q0cBZoEydsWyAHeEpG1IvK6iNQppt53ikiyiCTn5OSEUF1jTGVasu0ggAWSKiiUFslrwINAPoCqbsDX7VSSQBsFFJ5GXFya4o67gL7Af1S1D3ASKDL24q/nq6qaqKqJMTH2wTTmYrd4Ww4x9aLo1rJ+ZVfFXKBQAkltVU0qdMwdQr5MoFWB53HAvuLSiIgLaAAcDpI3E8hU1ZX+4x/iCyzGmCrM41WWbs9haIcY26yqCgolkBwUkXb4WxMicguQFUK+VUAHEUkQkUh8rZjZhdLMBib5H98CLFDf3pmzgfH+WV0JQAcgSVX3Axki0smfZwSwJYS6GGMuYuszj3DkVL7dhFhFhbLW1t3Aq0BnEdkL7AJuLymTqrpFZDLwBeAE3lTVzSLyGJCsqrPxDZpPE5E0fC2R8f68m0XkfXxBwg3craoe/6V/DUz3B6edgC3hYkwVtzg1B4fAkPY27bcqEl8DIISEvkFth6oeD2+Vyl9iYqImJ9sN+sZcrG58aRki8PGvBld2VUwBIrJaVRNLSldii0REflfoOfhmV61W1XWlrqExxgCHT+axPvMIvxnRobKrYkoplDGSROCX+KbfxgJ3AsOA10TkD+GrmjGmJli6PQdVm/ZblYUyRtIE6KuqJwBE5C/4ZksNBVbj24rXGGNKZfG2HBrVjqBnXMPKrooppVBaJK2BvALP84E2qnqaAjsmGmPMhfJ6lSXbDjKkQwxOh037rapCaZG8C6wQkU/8z0cD7/kH323qrTGm1LZkHePgiTPWrVXFhbJD4uMiMhe4HN8d579U1bNToG4LZ+WMMdXb4m2+5YuGWiCp0oIGEhFxABtUtTu+8RBjjCk3+zYu5q+N1xFzJAbq9a/s6phSChpIVNUrIutFpLWq7qmoShljqpeDJ87w3NfbOZXnweP14vYqrU9u4k+HHiBK3DD1A5g0G1pZMKmKQhkjaQFsFpEkfIskAqCqY8JWK2NMtTIjaQ/TVuwmtmEtXE7B6RD65iURKW4ceMGTB+lLLZBUUaEEkr+GvRbGmGpt3qYrAjyDAAAgAElEQVT99G3dkFkF71zPqA1TP/QFEWckxA+pvAqaMgllsH1xRVTEGFM97Tl0is37jvHQdZ3PP9Gqv687K32pL4hYa6TKCmWJlAHAC0AXIBLfAownVdU2DTDGlOiLzfsBuLZ7i6InW/W3AFINhHJD4ovABGA7UAv4mf+YMcaUaN6mLLq1rE+rxrUruyomTELas11V0wCnqnpU9S18a20ZY0xQ+4/msmbPEUZ1u6Syq2LCKJTB9lP+vT/Wicg/8G1qFXCfdGOMKejLLf5urR4WSKqzUFokE/3pJuOb/tsK+H/hrJQxpnqYt3E/7ZvVpX2zepVdFRNGocza2u1/mItNBTbGhOjQiTOs3HWIXw1rX9lVMWEWyqytwcCjQJuC6VW1bfiqZYyp6r5OOYBXYVR369aq7kIZI3kDuBffWlueEtIaYwzguwkxrlEturW0OwWqu1ACyVFVnRf2mhhjqo2jp/NZlnaQHw+KP7s9t6nGig0kItLX/3ChiPwTmEWBjaxUdU2Y62aMqaIWbs0m36OMCnQToql2grVIni70PLHAYwWuLP/qGGOqg3mbsmheP4o+rWz73Jqg2ECiqsMrsiLGmOohd+dyOm2fQmLn4Ths+9waocT7SETkbyLSsMDzRiLyRHirZYypkjKSiJh+I/fI+/x0x28gI6mya2QqQCg3JF6rqkfOPlHV74DrwlclY0yVlb4UPHm4xIvDm+97bqq9UAKJU0Sizj4RkVpAVJD054jIKBFJFZE0EXkgwPkoEZnpP79SROILnHvQfzxVRK4plM8pImtF5LNQ6mGMqRje1peTjwsPDsT2GKkxQgkk7wDzReQOEfkp8BUwtaRMIuIEXgKuBboCE0Ska6FkdwDfqWp74FngKX/ersB4oBswCnjZf72zfgOkhFB3Y0wF2uLqzA/PPMSWzvfY1rk1SImBRFX/ATyBbz+SbsDj/mMl6Q+kqepOVc0DZgBjC6UZy/dB6UNghPgmnY8FZqjqGVXdBaT5r4eIxAHXA6+HUAdjTAVavC2HNdqRS65/yIJIDRLKYHsd4EtVvQ94FYgSkYgQrh0LZBR4nuk/FjCNqrqBo0CTEvL+G/gD4A2hDsaYCrQoNZvusfWJqRdS77epJkLp2loCRItILPA18BNgSgj5As370xDTBDwuIjcA2aq6usTCRe4UkWQRSc7JySm5tsaYMjl6Op81e45wRceYyq6KqWChBBJR1VPAzcALqnoTvjGPkmTiW3L+rDhgX3FpRMQFNAAOB8k7GBgjIun4usquFJF3AhWuqq+qaqKqJsbE2AfbmHD7ZvtBPF5lWKdmlV0VU8FCCiQiMhC4DZjjPxbKGl2rgA4ikuDfGGs8MLtQmtnAJP/jW4AFqqr+4+P9s7oSgA5Akqo+qKpxqhrvv94CVb09hLoYY8Js8bZs6ke77G72GiiUgPBb4EHgY1XdLCJtgYUlZVJVt4hMBr4AnMCb/vyPAcmqOhvfysLTRCQNX0tkvD/vZhF5H9gCuIG7VdVWHjbmIqWqLN6Ww5AOMbicIe3gbaoR8TUAqrfExERNTk6u7GoYU21t2XeM655fyj9u6ckPEluVnMFUCSKyWlUTS0oXbPXff6vqb0XkU4oOkqOqY8pYR2NMNbFoWzaADbTXUMG6tqb5//1XRVTEGFN1LU7NoUuL+jSvH13ZVTGVINjqv6v9/y4WkRj/Y5tHa4w5z/HcfFbv/o6fD7Xdt2uqYkfFxOdRETkIbAW2iUiOiDxScdUzxlzslqUdxO1Vhlm3Vo0VbHrFb/Hdt9FPVZuoaiPgMmCwiNxbIbUzxlz0FqXmUC/KRd82jSq7KqaSBAskPwIm+Ne6AkBVdwK3+88ZY2q4s9N+B7dvSoRN+62xgr3zEap6sPBB/zhJKGttGWOquW0HTpB1NJdhnaxbqyYLFkjySnnOGFMDnDzjZsaqPQBcYYGkRgs2/beXiBwLcFwAm+NnTE2TkcTJbYtY4enCu/suYWnaQfLcXi5v35QWDWpVdu1MJQo2/ddZ3DljTA2TkUT+mzcQ5c1nEC5mRv2V2y8bxshuzUm0QfYaL5S1towxNdypbYuI9ObjEi9O8fDK5aeRoaEsAm5qAptmYYwp0ZK8zuTjQsWJOCORBNuL3XzPWiTGmBK9uSeGOXWe4PkBJyBhiG2ja85jgcQYE1TW0dOsSj/MvVddiQztUNnVMRch69oyxgT12fosVGFMr5aVXRVzkbJAYowJavb6ffSMa0B80zqVXRVzkbJAYowp1q6DJ9m496i1RkxQFkiMMcWavW4fInBDTwskpngWSIwxAakqs9fvpX98Yy5pYItZmOJZIDHGBLQl6xg7ck4ypre1RkxwFkguUifSvsW9+F+QkVTZVTE11Oz1+3A5hOu6t6jsqpiLnAWSMDlxxs27K/eQ5/ZecN789BW43hmLLHwSnTrGgompcF6v8tn6LIZ0aEqjOpGVXR1zkbNAEiZTv03noY838sCsDajqBeVNXTEPl7px4kXdeZC+NEy1NCawNXu+Y++R04ztHVvZVTFVgAWSMFmUmk2ky8GsNXt5cUFayPlUlTcyY3GLCzcO8nByJnZQGGtqTFGz1+8jOsLB1V2bV3ZVTBVgS6SEwdFT+azZc4RfXtGWrCO5PP3VNlo3qR3SX3ff7jjExwdjuWHEm3Q8tY7frKjLwO2NuL9tBVTcGMDt8TJ3YxYjujSnTpR9RZiS2ackDJam5eDxKld2bkb32AZkHjnN/R9soGXDWvSLbxw07+tLd9K0bhSXDx9OlGs08bnreHXJTm7uG0e7mLoV9ApMTZa06zAHT+QxuqcNspvQhLVrS0RGiUiqiKSJyAMBzkeJyEz/+ZUiEl/g3IP+46kico3/WCsRWSgiKSKyWUR+E876l9bCrTk0qBVB71aNiHI5eXXipcQ1qsWdbyezb+NiWPp0wAH0tOzjLEzNYdLANkS5fPuKPXhdF6IjnPzlk80XPNZiTGl8tjGL2pFOhnVqVtlVMVVE2AKJiDiBl4Brga7ABBEpvBPOHcB3qtoeeBZ4yp+3KzAe6AaMAl72X88N/F5VuwADgLsDXLNSeb3K4m05DO0Yg9MhADSsHcmbP+5HT02l8Ue3oAuehACzsd74ZhfREQ5uG9Dm3LGYelHcN7IT36QdZM7GrAp9LabmcXu8fLFpP1d2bkZ0hG2SakITzhZJfyBNVXeqah4wAxhbKM1YYKr/8YfACBER//EZqnpGVXcBaUB/Vc1S1TUAqnocSAEuqmklm/cd4+CJMwzvFHPe8fimdXiyz1Fc6kbUg3rOn4118MQZPlqzl//XN47GhaZb3j6gDd1a1ufxz7Zw4oy7xDqs3HmIO99O5lhufvm8KFNjJO06zKGTeVzfw7q1TOjCGUhigYwCzzMp+qV/Lo2quoGjQJNQ8vq7wfoAK8uxzmW2KDUbgKEdY4qci+szEnFF4lYHZ9TJgcb9zp17Z8Vu8txefnp5QpF8Tofw+I3dOXDsDM9+tS1o+SfPuPnd++v5cssBXrqA2WLGAMzZmEWtCOvWMhcmnIFEAhwr3MlfXJqgeUWkLvAR8FtVPRawcJE7RSRZRJJzcnJCrHLZLUzNpldcA5rWjSp6slV/nD/+lJx+9/FzHmHMJ3mkZR8nN9/DtOW7uapLs2IH1Pu2bsTtA1rzxje7WLyt+Nfzry9T2Xf0NJe2acRby9LZc+hUOb0yU925PV4+37SfK7s0o1akdWuZ0IUzkGQCrQo8jwP2FZdGRFxAA+BwsLwiEoEviExX1VnFFa6qr6pqoqomxsQUbR2Ew3cn81ibcST4X3Ot+tPihod5+JeT8HjhB6+s4KnPt3LoZB53XB58ju+fru9K50vqce/Mdew/mlvk/No93zHl23QmDmjDSz/si9MhPPX51rK+LFNDWLeWKa1wBpJVQAcRSRCRSHyD57MLpZkNTPI/vgVYoL6pSbOB8f5ZXQlAByDJP37yBpCiqs+Ese6lsmR7DqowrFPJgavzJfX54JcDiXY5eGtZOt1j6zOgbfCpwdERTl78YV9y8z3c895a3J7vl1/J93h5cNZGmteL5v5rOnFJg2h+cUVb5mzMIjn9cJlfm6n+znZrDbduLXOBwhZI/GMek4Ev8A2Kv6+qm0XkMREZ40/2BtBERNKA3wEP+PNuBt4HtgCfA3erqgcYDEwErhSRdf6f68L1Gi7UotQcGteJpGdcw5DSJzStwwd3DWJoxxgeGNUFX5wMrn2zujx5U3eS0g/z76+3nzv+6pKdbN1/nMdv7E696AgA7hzalub1o3h8Tgper00dNsXzeJUvNlu3limdsN6QqKpzgbmFjj1S4HEucGsxeZ8Enix07BsCj59UurPTfq8oMO03FLENa/H2T/tfUFk39YljxY7DvLQojX4JjWnVqBbPzd/O9T1anLekRe1IF/df05n7PljPpxv22bpJplgrdx3i4Anr1jKlY2ttlZMNe49y+GReSN1a5eHRMd3o2Kweb82YybIpD9HflcZfxhS9pebmPrF0j63PU/O2cjrPUyF1M1XPnA3WrWVKzwJJOVm4NRsRGNqhYgJJrUgnb4zw8h/PX5lwYhpTHE/Q7MiGIukcDuFP13dl39Fc5sz9X7F31Zua61y3Vmfr1jKlY2ttlZNFqdn0adWwQvduiDu6Gq+4ceBFNd93g2Orot1kA9o24a52B7l+7X2ow4M4I2HS7IBpAV+gSV8K8UOKT2OqjbPdWtdZt5YpJQskwYT4hXpk2zcM3v828ZdeU4GVA+KH4HBFgSfPFxzihxSb9M7WWURkuhH1op48pJig4929Es/U0bi8+YgrKnjAMdXCxhVfcU/kIkbUbQxYMDEXzgJJcTKSyH/rBhzefDwSwasJz7KndvciyVqf2sTPd93L75z5ODZ9AomtKu6Lt1V/3xd9CMGuUdcrca98FrcnD3W4iCgm6Cyb/z8GevIRCR5wTNXm8Sp7Dp8ia9NiJm2/hwiHG+e7n9gfDqZULJAUJ30pDm++b5dCzce5exlLXZcUSfYj9zKcmo9LvKi3+O6lsGnVP7TyWvXH+ePZzP7kfd7Z34qH6UjvQkk+XpvJtO3N6B8dAd58vOIiMkgrx1QtR0/n8+xX21ibcYRt+49zOt/Dr5yf0N/lxileOLv+mwUSc4EskBQnfghOf7eRyxnJXZN+zF2B/oNl1IOps0LqXqps0voyht3Rl388v5TfzFjLnHuGUNe/cVFy+mH++OFG+iYMwDFyNt98/T+e39Gc+/PaMbCS623Kxz8+38qMVRn0j2/M+P6t6NKiPpdKLZzzZvuCyEX++TUXL6kJe1wkJiZqcnLyhWcMddC5ig1Or0o/zLhXlnNj71ieGdebjMOnuPGlZdSLdvG/uwfTsHYkp/M8XPPvJbgcwtzfDLElxau4LfuOccMLS5k0KJ6/jO52/skq9vk1FUdEVqtqYknprEUSzAV0G1Wl/4D94hvz6ys78Nz87fRp3ZBpK3aT7/Hyxo/70bC2b9ZZrUgnT97UnYlvJPHywjR+N7JTJdfalJaq8uinm2lYO5LfXtWxaIIq9vk1Fx+7j6SG+vWV7Uls04g/f7KZHTkn+c/tlxZZeXhIhxhu7hPLfxbvYNuB45VUU1NWn23IImnXYe4b2YkGtSIquzqmGrJAUkO5nA7+Pb43nS+px//d3IPB7ZsGTPfw9V2oG+XiwVkbbb2uKuh0nof/m5tC1xb1GdevVckZjCkFCyQ1WFyj2nz+26H8ILH4L5gmdaP40/VdWb37O6YuT6+wupny8Z/FO9h3NJdHx3S7oDXgjLkQFkhMiW7uG8uwTjE89tkWXl+6M2jahVuzeXT2Zk7llbwlsAmvzO9O8criHdzQswX9E4JvUWBMWdhguymRiPDf2y/l3pnreGJOCnuPnOZP13c97y/c3HwPf5ubwtvLdwOQln2C1ycl2myvypKRxOr/zaSPtOah64ZVdm1MNWctEhOSs5tq/XRwAm8tS+fu6WvIzfetJrx1/zHGvPgNby/fzR2XJ/B/N/fgm7SD/Gr6GvLc3hKubMpdRhKeKaO5/uCbTIt4kpbHN1Z2jUw1Zy0SEzKnQ3hkdFdiG9XiiTlbePTlt7ip0S6e3taMw9HdmPrT/lzR0bf6scer/Ol/m/jNjLW8MKEPLqf9zVJRzqQtxunJ8622oG67W92EnQUSc8HuuDyBru4Uei98kIjDbqZFRJD7g1k06Pj9Evq3D2hDbr6HJ+ak8OLb73JPuwM4EuyGt4rwRkYsP1EXzrMrPdvd6ibMLJCYUhnoTPEtSa9enLiJOrASOl5+XpqfDWlLw0PruH7tvehuN+qKQkpYFFD3rER2f2N3WZfSgq0H+MeWBtTt+zI/arHHfo+mQlggMaUTP8T3124Ja4zd0mTXuT1TPO4z5G9fTHQxX2xrl31Bl69uJwI3jhCCjjnfdyfz+ONHG+l8ST3G3TwKXDbRwVQM67g2pXN2CfsrHw6+9Hj8EMQVhRcneeri96vqFblLPt/j5f/mpfDV3I9w4caJF6/7DPk7llTAC6liMpKK3eXyz59s4sipPJ7+QS+iLIiYCmSBxJReq/4w5PfBWw2t+iOTZuMY8TC7rnuPlfntufGlZczdmAVAxuFT3Prf5byyeCcNug7HWSDoPLapEcdz8yvoxVz8dM9K3G+Nxjv/CbxTRuPeveLcudnr9/HZhix+e1VHurVsUIm1NDWRdW2Z8PMvCtgV+KxzLndNX82vpq/hpj6xfL3lAAi8fFtf31avGe2Q9KUk5XXmvfnCutdWMuUn/WhSN6rEYtweL0dO59M0hLTlzeNVTpxxh20tq9x8D/M/+4BrPHk4xIvbnceLb01ha7sIBrZrwjNfbaNP64b8YmjbsJRvTDAWSEyFuqRBNDPuHMBjn25h+so99GndkOfH96FV49q+BP6gcwXwauwB7npnDbe+spxpd1xGbMNaxV53/1FfgNqYeZQ/jurMHZcn4LjQJUFKuZx6ntvLL99ZzaLUbAa3b8rY3rFc06059XLWlsvy7PuOnOYX01YTsS+WkbUiUHUjzggi2gxlfeYRPt+8n+gIB0/f2sumWZtKYfuRmEqTuv84bWPqEBHky29V+mF+OmUVKNx3TSduH9CmyJpRSbsO86vpaziV56ZP64YsSzvEsE4xPH1rr5BaMgCHty6l7sz/h0t9e9WHOtCf7/Ey+d01fLH5ADf3jSU5/Tv2HD7FZa40pkU8iUvzUWckGaNnEJUwgAa1IqgV4UQktCC3Yuch7p6+hjNuL8+O683V9XafF5xUlbTsEwB0aF4vpGsaE6pQ9yOxQGIueukHT/LnTzaxdPtBusfW58kbe9CrVUNUlanfpvPEnBRaNa7NKxMvpUOzuryzYjePz0mhYa0IXh/hpWf+xqCtgu0HjjP/tQf4Wf67uMSLGwcbO0ym+/i/Bg1yHq/y25nr+HT9Pv46phuTBsWjqqzNOMLhef/HsKzXcOHFrQ6ecd/Ky56xANSNcvHQdV344WWti722qjLl23SenJNC6ya1eXViIu2b1S02vTHhYIGkAAskVZ+q8tmGLB7/bAs5J87wQPdjxB1dzRsZsTTqdDnPjOt93vjEln3HePmdd/nnyT8TJW7EFYlM+rRIMFmx8xB3vp1MojON13kM8eaTpy4mnHmQw417c981nbi+R4siLQivV7n/ww18tCaTB6/tzC+uaHd+hTOS0KljwJOH1xHByiFvsbt2d46ezmfJthy+3XGIH17WmkdHdyPSdX6wyjl+hj9+tIEFW7O5qksznhnXm/rRto+IqXgXRSARkVHAc4ATeF1V/17ofBTwNnApcAgYp6rp/nMPAncAHuAeVf0ilGsGYoGk+jiem8/7H3/ED7f+mgjcqDMC56RPcbS5rEjavEX/xLnobzj9rYL5LX5O67F/okuL+gB8un4fv39/Pa0a12LKT/rT6uQmSF+KtrmcRacS+Pu8raQeOE5MvSj6JzSmf3xj+sU3plN+Cl/P+4hXdrdg6IjrA+86CMWOuXi8yr++TOU/i3ZwaZtG/Oe2vjSrHw3A/JQD/OHDDRw/4+ahazvzo4HxFz7WY0w5qfRAIiJOYBtwNZAJrAImqOqWAml+BfRU1V+KyHjgJlUdJyJdgfeA/kBL4Gvg7P/WoNcMxAJJNbP0aXTBk4h6QJy+e1mG/L5ouowkmDoG9eSRj4uJ+Q+z0t2efvGN6NayAVO+TadffCNe+1HiuS2GC/J4lc827GPh1mySdh1m39Fc+so2pkf+7VwQc/34U6R10SAWijkbsrjvg/XUi3bx+pVe9m/4mv+mt+BU80t5fkIfOtqYh6lkF8Oe7f2BNFXd6a/QDGAsUPBLfyzwqP/xh8CL4utDGAvMUNUzwC4RSfNfjxCuaaq7AnfVE2wtKf9Nk5K+lMj4Ify3cW8+XJ3JOyt3s+rbdK7v0YKnf9Cr2KXunQ5hbO9YxvaOBXz7exz5MonIFN9Nk6pu33IupQwk1/dsQduYOjw/ZTodPn+ErrgZHh2B3vgJkRZETBUSzkASC2QUeJ4JFP4fdy6NqrpF5CjQxH98RaG8sf7HJV3TVHdn76oPZWqtfzoxQCPg50PbcsflCWzLPk7HZvUuqNsorlFt4gZdD9tfKXFpmFB1aVGfZy47TtQS3zIy4IaMbyF+YJmua0xFCmcgCfQ/tHA/WnFpijseaApNwL45EbkTuBOgdeviZ8eYKqpAgLhQDofQ+ZL6pS831CAWolodhsG3z5TcwjLmIhXOQJIJFNwMPA7YV0yaTBFxAQ2AwyXkLemaAKjqq8Cr4BsjKd1LMCaAMgSxYq9XzsHJmIoUzkCyCuggIgnAXmA88MNCaWYDk4DlwC3AAlVVEZkNvCsiz+AbbO8AJOFrqZR0TWOqnvIOTsZUoLAFEv+Yx2TgC3xTdd9U1c0i8hiQrKqzgTeAaf7B9MP4AgP+dO/jG0R3A3erqgcg0DXD9RqMMcaUzG5INMYYE1Co039thTdjjDFlYoHEGGNMmVggMcYYUyYWSIwxxpRJjRhsF5EcYHehw02Bg5VQnZpadk18zVa2lV3Vy26jqjElJaoRgSQQEUkOZTaClV21y7WyrWwrO/ysa8sYY0yZWCAxxhhTJjU5kLxqZdeIcq1sK9vKDrMaO0ZijDGmfNTkFokxxpjyoKoX9Q/wJpANbCp0/J/AVmAD8DHQsJj8j/vTrAO+BFr6j3fGt+rwGeC+YvKOBU4AecAB4O/+45PxTbNTYDMwH980ucL5E4CVwHZgJhDpPz4UWINvQcpbiil7FL5NvPL8ZT1QoOw0f9mvASeKyV/Wso/60+wvcHwysNNf9g7gK6BRBZZ99nWn+X/v/yjnsm8HThV4v39ToOzvCrzfAT9vQcr+Hb4FSDcE+ayE6/0OtexwvN9lLbss73coZYfr/f4lsBHfd843QNdiXndWgfd7UoDX/TmFvvfKo2x/us+BI8BnoVy3pJ9KDxQlVtD3BdC38C8UGAm4/I+fAp4qJn/9Ao/vAf7rf9wM6Ac8SYBAgm914Z34lqmP9H8gVwPXAn3wrVS8G9/c7buAmQGu8T4w3v/4v8Bd/sfxQE/gbQJ8qfnL3uG/fid/2VuBrv6y4/Htw/I+xX+xlLXscfi2Nz599sPoL/u/+P6TNQUeCPR7D2PZ4/3Hzv4x0Kycy04HRvvf743+52d/5xP9z5tSzOctSNnDgdr+x0U+K2F+v0MtOxzvd1nLLsv7HUrZ4Xq/C37njAE+D1D2LmAP0BzYhO+PiEYF3u9s4COKDySlKrvAuRH+1144kAS8bkk/lR4oQqqk7xcb8BfqP38TMD2E6zwI/KfQsUcJHEgGAl8UyrsM+HmBY2c/aH2AZYXyC76/NFyBruc/NoXAX2oD8W01/EWBsj8HHizwQTwNdCPAF0s5lH223Hhg/9ly/cdS/R/6pkALILUCy37ff6xpMe9vuZRd4He+Bbg6wPtd5PMWStn+44E+K2F/v0soO6zvdxnKLvP7HUrZYX6/JwDzApS9HnilQNkrgQn+53WBXGAQAb73ylJ2ofPDKBBIQr1uoJ9wbmxVkX6KrxkWkIg8CfwIXxN6eIjXLLzn/GGgO75mcmF3APMKHWsCHFFVt/95wX3nQyn7RIHyM/F9mZzNPxnfF8uBYvKXteyCrzu/UN7m+JrEqGqWiDSrwLI7AtHAFyJyAt8fAKvCVHYuvt04VwZIG+jzFmrZgT4rFfV+F1d2RbzfpSm7vN7vUMou1/dbRO7G170WCVwZoOxczn+/tUD+x4Fj+N7zQMpSdjCl/v9T5QfbReRhfP2r04tLo6oPq2orf5rJoV66QBku4FfAelXdWSjdLUAivjGbgPkLVuUCyi6cXwEVkZbArfg+aMHyl6Xs0uYNd9kufJ/Za4D7gfdFpGCecilbROri6wZdoqqFf8/3EvjzVmLZInI7xX9Wwvp+l1B20LwlCGfZZX6/Qyk7HO+3qr6kqu2APwJ/CiEv+N7v3kB7fGM3xSlL2cGU+rNQpVskIjIJuAEYoWfbZiJv4WvK7lPV6wpleReYA/wlhMsX3Df+VXx/MRb+qyYaX+S/XFXPiMgX+P6CSwZ+DjQUEZc/whe7v3wxZdcpUH4c4PXn74Pvg9YU3+Bxbf8OkzvKsexWBZ5HFMp7AKgNICItgOxyft3Bys7E97pR1SQR8QLzRaRxeZUtIhH4+qa34BusLKgOvrG5K1RVL+R1i8hVwMP+vGcClB229zuEssP2fpex7DK936GUHa73u4AZwH8ClB3N+e+3+PMPBC7FN4Y7B2gqIovwTQoqj7KDORjidYsKpf+rsn8IMEaCb9bDFiCmhLwdCjz+NfBhofOPEniMxIVvsP0FYBa+Ps1uBc73wdcU7x+k7A84f+DqV4XOTyFwf/3Zsvfga96fHXwtWH46vv9kxQ2+lrXsBKAD/r75Auf/yfmDr4Fm0oSr7F/i62Zp6v+9ZOC/F5ZKvgsAAALHSURBVKocy571/9u7f9AmwjCO47+fi5MOilJwU1AQRAQrqEsRQSk4OYqD6FwXNxdHB0F0cnAXlC66iSDi1i6looNYcIj/KDpUFG1qX4f3KT3SpG36NrkUvh+4IZfLPXd53uS55N67V9L9Nvk+r9zD5lC3+Y62MlNti/3KdxexNz3fmxB7w/nuInYv8l39zrmgPLR4a+yPsT97lU+2NyTtasn3MXU+2b6h2C3rGNHKk+2rfn46rms9C9U5SXqk3E2uGW/21Zj/IRIxFdODDq8fj0RNS3omaV/MH4r1zUVjbajS4yGWuaz8024+tmFK0jXln8F/4rmmpO+SnraJvV/SRGzrE0nbY/5wxPsVr33b5rWjscx8LHMz5o/F/AXlo4Vmh/0ujT0XMf4tve8R+7Py0fKCpE/Vxt+H2I2I3VQ+ejqzybFvRE7/VvI9GrEXWvK9or2tEvuF8pH9Ultt11Z6le/1xu5Fvktjl+R7PbF7le97yt2GpyS9VKVAtez318r6r7TJ9zdJP7rM95qxY7nXkmaVi3dD0rnV1rvWxJXtAIAiW/5kOwCgXhQSAEARCgkAoAiFBABQhEICACiypS9IBAaN7d1avo3OkHKX1tl4/DuldKqWDQN6iO6/QI/YvqV8AeGdurcF6CX+2gL6JG48KNsjtl/Zfmz7ve3bti/ZnrD9xvaBWG6P7XHbkzGdrncPgPYoJEA9jkq6LumI8h0UDqaUTkh6qHwrHylfpXw3pTQs6WI8BwwczpEA9ZhMKX2RJNszyqN3SnmApaWhDs5KOly54e1O2ztSSj/7uqXAGigkQD2qd6NdrDxe1PLncpukkymlTuNSAAOBv7aAwfVclfFzYqwKYOBQSIDBNSbpuO1p2++Ub6sODBy6/wIAivCLBABQhEICAChCIQEAFKGQAACKUEgAAEUoJACAIhQSAEARCgkAoMh/7baEya1qqvAAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "results_datetime = np.datetime64(cell_1_data.index[0]) + time_array*np.timedelta64(1, 's')\n",
-    "\n",
-    "_ = plt.plot(cell_1_data['Q_cms'].index.values, cell_1_data['Q_cms'].values, label='From RAS')\n",
-    "_ = plt.plot(results_datetime, cell_discharge, '.', label='From simulation')\n",
-    "_ = plt.legend()\n",
-    "_ = plt.xlabel('Time')\n",
-    "_ = plt.ylabel('Discharge in CMS')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/unsteady simulation.ipynb b/notebooks/unsteady simulation.ipynb
deleted file mode 100644
index b9bd1a9..0000000
--- a/notebooks/unsteady simulation.ipynb	
+++ /dev/null
@@ -1,599 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 00:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055352</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119885</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055076</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120487</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009542</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055350</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119890</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 01:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055108</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120416</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009535</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055320</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119956</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009495</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th rowspan=\"3\" valign=\"top\">2017-01-01 02:00:00</th>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055322</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119951</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009494</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055108</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120416</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009535</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055320</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119956</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009495</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                        Depth_m     Q_cms  Vmag_mps  CumlDistance_km  \\\n",
-       "2017-01-01 00:00:00 1  0.055352  0.001416  0.119885             7.62   \n",
-       "                    2  0.055076  0.001416  0.120487            22.86   \n",
-       "                    3  0.055350  0.001416  0.119890            30.48   \n",
-       "2017-01-01 01:00:00 1  0.055322  0.001416  0.119951             7.62   \n",
-       "                    2  0.055108  0.001416  0.120416            22.86   \n",
-       "                    3  0.055320  0.001416  0.119956            30.48   \n",
-       "2017-01-01 02:00:00 1  0.055322  0.001416  0.119951             7.62   \n",
-       "                    2  0.055108  0.001416  0.120416            22.86   \n",
-       "                    3  0.055320  0.001416  0.119956            30.48   \n",
-       "\n",
-       "                       Ustar_mps  Vvert_mps  Vlat_mps  Temp_C  \n",
-       "2017-01-01 00:00:00 1   0.009489        0.0       0.0    22.0  \n",
-       "                    2   0.009542        0.0       0.0    22.0  \n",
-       "                    3   0.009489        0.0       0.0    22.0  \n",
-       "2017-01-01 01:00:00 1   0.009494        0.0       0.0    22.0  \n",
-       "                    2   0.009535        0.0       0.0    22.0  \n",
-       "                    3   0.009495        0.0       0.0    22.0  \n",
-       "2017-01-01 02:00:00 1   0.009494        0.0       0.0    22.0  \n",
-       "                    2   0.009535        0.0       0.0    22.0  \n",
-       "                    3   0.009495        0.0       0.0    22.0  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "from fluegg.ras import RASProject\n",
-    "\n",
-    "\n",
-    "project_file_path = r'..\\test\\data\\ras\\unsteadyflume\\HEC-RASFlumeCase.prj'\n",
-    "\n",
-    "with RASProject(project_file_path) as rp:\n",
-    "    data_frame = rp.hydraulic_model_data('Unsteady')\n",
-    "\n",
-    "data_frame.head(9)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>0.055352</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119885</td>\n",
-       "      <td>7.62</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.055076</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.120487</td>\n",
-       "      <td>22.86</td>\n",
-       "      <td>0.009542</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.055350</td>\n",
-       "      <td>0.001416</td>\n",
-       "      <td>0.119890</td>\n",
-       "      <td>30.48</td>\n",
-       "      <td>0.009489</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>0.0</td>\n",
-       "      <td>22.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "    Depth_m     Q_cms  Vmag_mps  CumlDistance_km  Ustar_mps  Vvert_mps  \\\n",
-       "1  0.055352  0.001416  0.119885             7.62   0.009489        0.0   \n",
-       "2  0.055076  0.001416  0.120487            22.86   0.009542        0.0   \n",
-       "3  0.055350  0.001416  0.119890            30.48   0.009489        0.0   \n",
-       "\n",
-       "   Vlat_mps  Temp_C  \n",
-       "1       0.0    22.0  \n",
-       "2       0.0    22.0  \n",
-       "3       0.0    22.0  "
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "grouped_by_time = data_frame.groupby(axis=0, level=0)\n",
-    "hydraulic_data = grouped_by_time.get_group(data_frame.index[0][0])\n",
-    "hydraulic_data.index = hydraulic_data.index.droplevel(0)\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "212400.0"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "total_simulation_time = (data_frame.index.get_level_values(0)[-1] - data_frame.index.get_level_values(0)[0]).total_seconds()\n",
-    "total_simulation_time"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "time_step_size = 10  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([[10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622],\n",
-       "       [10.        ,  0.10668   , -0.02767622]])"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)\n",
-    "carp_eggs.position()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import init_transporter\n",
-    "\n",
-    "transport_model = init_transporter(simulation_clock, carp_eggs, 'parabolic')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import RoughBottomSeriesOfHydraulicCells\n",
-    "\n",
-    "start_time = data_frame.index.get_level_values(0)[0]\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = RoughBottomSeriesOfHydraulicCells.from_data_frame(data_frame,\n",
-    "                                                                    start_time=start_time, \n",
-    "                                                                    simulation_clock=simulation_clock, \n",
-    "                                                                    simulation=fluegg_simulation)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "212400.0"
-      ]
-     },
-     "execution_count": 10,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "simulation_results = fluegg_simulation.run()\n",
-    "\n",
-    "simulation_clock.current_time()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "False"
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "carp_eggs.diameter() == 0"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHjCAYAAACq4oKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcHGWdx/HPU1Vdfff0HD25k8kdwiUwEBAEJCbcgiuXByIguAoKiiCsssCCouzqesCqiBeIxgsEdonIFe4r4b7JnUkmyWTuvruqnv2jK2ESJslMMp3JTH7v16tf0/3U091PpaZ7vnmeep5SWmuEEEIIIcTQZQx2A4QQQgghxM6RQCeEEEIIMcRJoBNCCCGEGOIk0AkhhBBCDHES6IQQQgghhjgJdEIIIYQQQ5wEOiGEEEKIIU4CnRBCCCHEECeBTgghhBBiiLMGuwG7Wl1dnW5oaBjsZgghhBBCbNeiRYs2aK1T26u3xwW6hoYGFi5cONjNEEIIIYTYLqXUir7UkyFXIYQQQoghTgKdEEIIIcQQt8cNuQohhBBCbM/db9/NH+f9kRpqMDFJtUBnIMI/px5Aa6p8Stv0Nxby2HVXDXJLy5TWerDbsEs1NjZqOYdOCCGE2DO98uYr3PrnW8sPWmDjbINl8RQPj5uGk9rG/INgEKzN+8KmP/9YRUOdUmqR1rpxe/Wkh04IIYQQw9K1t1xGy5ttpIjwSt1Ynhk/AeI1MPPUD1aORvv2okq9f19rWveeODCN3UkS6IQQQggxpP1y/i959LkHqW5J4YSreWjiTDKpJKSOg6P8Sn0JbD3D2rb0GN3cK/MKcFa/2zzQJNAJIYQQYkh4dPmj/Oy3t5BqqSeFYv60/VgxagTQADMvKFfaVnDrS2Dr66loOsNs/peTM4W+1a8wCXRCCCGE2K1sSG/gGzd/mdC6ECOLcV4YMYFFY8ZCvA5mfvH9ilsLb9sKbn0JbDpT/pntffNh+jEu5o+0tMzhrIt/vv3X2wUk0AkhhBBi0DzT9Az/fdt/k2pJ0ZQax3NjxkNVDUy6ACb5lXak121bwU1neg1rFgXm6Af4LPdD6wymNl2KccBoxp6+9xY15wA3bGOvdj0JdEIIIYTYZS772ZfJv55m+Yh9WDRhLIRrd364dGvhbYvgFqWLj+v/5aR1VUxXZzLiM/sTqIls8aSTgJ/2ZVd2KxLohBBCCFERl//P5WSXttJtjOXpCTNIpxJQ+4nyRIUBHS7NgKZHeHP5qH6YL7S/iNFxKYd++nDC42v8bZ/ckV3Z7UmgE0IIIcROu/a+a3nr+TcxctN4ceJedKYSUDcX6uh/eOvHcOl0XuLr+i/EmmfTePQlVH1olL/luB3ZjSFLAp0QQggh+uWO5+/gvvvvI9WS4uVpM1gyqh44HPY9fODC2xbBLUE7p+m7md2imDn9ekbNmexvmQNcsYN7MnxULNAppULA40DQf5+/aq2vUUpNBOYBNcCLwNla66JSKgjcDhwEtAJnaq2X+691FXA+4AJf1Vo/4JcfB/wYMIHbtNbfq9T+CCGEEHuiO1+9k3vu+juplnpebpjBkgl1wMhtn/e2E+EtRien6ns4vkWz19RrGX3slB4Vz9jR3Rj2KtlDVwCO0VqnlVIB4Eml1Hzg68B/a63nKaV+Tjmo/cz/2a61nqKUOgv4PnCmUmom5RX79gZGAw8ppab573EL5WjeBLyglLpXa/1mBfdJCCGEGNZ++fQvefCfD9Lt7MerkyfhRqth5oXljf3pfetDeCv3ut3L7LV1HH7atYTGJP1Kp+3UPuyJKhbodPkisWn/YcC/aeAY4NN++e+AaykHulP8+wB/BW5WSim/fJ7WugAsU0otBg7x6y3WWi8FUErN8+tKoBNCCCH66NpffYOmt1bzfMNs1tfXsWmR3oEYOu0R3gyKzNaP8Pm1LtNHXsDYMzcuBSK9bgOhoufQKaVMYBEwhXJv2hKgQ2vt+FWagDH+/THAKgCttaOU6gRq/fJne7xsz+es2qJ81lbacSFwIcD48eN3bqeEEEKIIWrFihX8+jf/zovFybzSMIViMgnxY8vdJDs9dJqBzMb7/izTpZ2o4Nkc8/WP+OUn7vQ+iN5VNNBprV3gQ0qpJHA3sFdv1fyfvf3W6G2UG9t4rS3bcStwK0BjY2Mfr+khhBBCDG2PP/E4f3r4N7xu7MU7E8dCsBZmfnYAhk57hjeYyNtc3PIsqVXns9+XDmTkhCR72izTwbZLZrlqrTuUUguAQ4GkUsrye+nGAmv8ak3AOKBJKWUBVUBbj/KNej5na+VCCCHEHufam69lVUc3T1fPoD1VD0Rg5qd3vvfNy0CufHcUy/lC2wKmNn2SGZ89gvEz6imfzv6VAdoLsSMqOcs1BZT8MBcGPkZ5osOjlM92nAecA9zjP+Ve//Ez/vZHtNZaKXUv8Ael1A8pT4qYCjxPueduqj9rdjXliRMbz80TQgghhrWnX3maW+/+H5rVXrzeMBE3nIT6w2GsDYHAB5+wA71vITIcn32Uf1kznpmnn8OYqXV+nQsGajfEAKlkD90o4Hf+eXQG8Get9f8qpd4E5imlbgBeAn7l1/8VcIc/6aGNckBDa/2GUurPlCc7OMBF/lAuSqmLgQcoL1vya631GxXcHyGEEGLQPPXqU/zirl+wIr4P74wcC4FamHnOzve+9Zi4sB/PclnLU6jVlzH3u3P8CqcOSPtFZSm9rdWYh6HGxka9cOHCwW6GEEIIsU3fvfO7vPPe27wZO4RV4+uB6vKGvga4Xv++a9BZyIJNjmOdhznrrSDBqpM54hsf6aW+GGxKqUVa68bt1ZMrRQghhBC7gat/czWrVyzllcThrB5bD4GDYebBOxfgevS+VdHGGaX/4+g1DUyf8inGfmIv4OMDug9i8EigE0IIIXaxlR0rueLnV9Dp7M1L1ZMhVQfRI2HmkTsX4EoZKJbvztKP89X3VlCTvoDxpzRQe9g44MwB3Q+x+5BAJ4QQQlTY3176G3+650+sCcxi8ajxEEvCpPN3fvkQf/ZpmDQndC/gU2+NoWHKkYz910MpzzwVewoJdEIIIcQAu+mem3j+5Rd5s+5Y2lJjgMTWr77Q5wkMmfJqq1n/klnZBzh2zUwm738yY0+cBnxiYHdCDCkS6IQQQoiddPfbd/PHeX/k3erZrB01GjgA9j4IwuEPVu7P8iEukIcxLOXC/L1MWXMEh5/9Jf+ap3LJLPE+CXRCCCFEPz2x8gl+Ou+nLLMPZVVqCgRivffA9Xf5kCLgwATe5cuZ+xiz5jiOuPhfCVXNAb440LshhhEJdEIIIcR23Pfuffz2H79lrbsPS6IzIFkHDX0cQu21980BXYCsv3iv/j9O63oVd82/Mveacymf/3ZRBfZEDFcS6IQQQogtPLj0QW7+582sy3yI5XE/wI381x2fgar9Sy9koZoWPq3/xofbNuCuuZS5138CWbxX7CwJdEIIIfZ48xfP52cP/Yzm9MGsqplRnoVaczGM29ElRN6fwHCAfopvcAc070U0+R0O/fwc5EqVYqBJoBNCCLHHuempm/jL638hVziLDfUzwLCh5isDEuCm8QqX6N8TXz6d0R/+T/b5yBzg2oHfCSF6kEAnhBBi2Puf5/6H3712B+2Fz9CVmgYcANUH7PxVGFyoLyzlIv0HpmwIUtPwYw44cQ7wjYHeBSG2SQKdEEKIYWfe6/O4ZdEtdDfPYe2YfSE4FZI37NwyIv55cJFsO6fre5ibe5tR47/FzFO+iMxAFYNNAp0QQogh76W1L3Hdo9expG1fWmL7QbgWwv8O++7oMiL+LFQNkVwHp+u/Mzf/OolxX+fgk85B1oATuxsJdEIIIYakqxdczd9f7qIlchgka8G8CBp2dBkR/xw4oCq7nnP0X5mVWc6ohm8y8+SzgNMHuvlCDCgJdEIIIYaEG564gb+/+ApN1icglQKOhKk7uYwIMCb7Nl/XdzCSDupSn2X/k/4d+MyAtl2ISpNAJ4QQYrf002d/yt+evIM11nl0jZ4MzIIpx3ywYp/OgcuB9gCYkXmKq7kD8lEmHvRNJu3zFeArA918IXYpCXRCCCF2C7e/fDt3PPCfNHvnsWHyTGAGTPo+BIObV+xngKvNruRsPY+DC2uZsPfXmHLQtcgyImK4kUAnhBBi0Ny28DZ+/487WFF9HrnUaJj4w75dD3VrkxgoB7gz9TwOZylWZBZHnfEH4PyKtF+I3YUEOiGEELvUD57+AX986WHW8lmc1ATY7wYwzc0r9WUig38eXJL1fDzzV47lVeiaxOFn30koJAFO7Fkk0AkhhKi4ea/P45cP3MKq0OfpSu0HDYdtXqEfExkschyVmc95/BO3FGevo29g3Ni7K9RyIYYGCXRCCCEq4sYnb+Tvzz5Pc/h0iqkUTL4BAoH3K2y3F+79pUT2yjzJt/k9OR1k70P/jYkNP6to24UYaiTQCSGEGDC3LbyNnz/1KE3WiZBqhL2O2rzC9kKc3ws3MfsSV+o7yJHnwAMvYdrU64DrKtdwIYY4CXRCCCF2ym0Lb+PWxx9hZfAkSE2AKRdtXqGPIe6AzAIuYR5G13587Pw/YRhXVLDVQgwvEuiEEEL02+UPXc6zC5tZGj8BNzUepl+8eYU+hTiHWZlH+Cp3QfYwZp/7e+A7lWy2EMOWBDohhBB9ctUjV/HUg2neHXcY1H0M9o1vXqGPPXH7Zh7nCv6AkTye2WfeDPxn5RotxB5CAp0QQohevbb+NW647ypWLJ3F8hlTIPhROCK2eaU+hDhFkSMy/+QM5lOT+gyzT7oeuL6ibRdiT1OxQKeUGgfcDowEPOBWrfWPlVI1wJ+ABmA5cIbWul0ppYAfAycAWeDzWusX/dc6B/i2/9I3aK1/55cfBPwWCAP3A5do3etVl4UQQvTBEyuf4Dc/u563qk9gWcMkiF8CH97OQr+9hLigl+aY3P9yLE9RnzqHY076MeWveCFEJVSyh84BLtNav6iUigOLlFIPAp8HHtZaf08pdSVwJfBN4Hhgqn+bBfwMmOUHwGuARsoT2Bcppe7VWrf7dS4EnqUc6I4D5ldwn4QQYti55rFrePfPL7J02kmsGFUPB1y+/as19BLiAl6Wo3P3c2x+IaPGXcHsj/+qsg0XQmxSsUCntW4Gmv373Uqpt4AxwCnA0X613wELKAe6U4Db/R62Z5VSSaXUKL/ug1rrNgA/FB6nlFoAJLTWz/jltwOnIoFOCCG2aUN6A1c8egWtD1u8PfVoOlONcNQROxTijGyeo/Q/ODb/POPGX8Hsj/+iso0XQvRql5xDp5RqAA4AngNG+GEPrXWzUqrerzYGWNXjaU1+2bbKm3op7+39L6Tck8f48eN3bmeEEGIIuv3l25m34Day7R/l7WnTIXAGzEl8sOI2Q5wLOo+dTTNb/y9Ht7Rywqm3kxp7ckXbLoTYvooHOqVUDPgbcKnWukv1dnkXv2ovZXoHyj9YqPWtwK0AjY2Nco6dEGKPcN3j1/HGgy+ydMTJNNXXw+irYWp/L3xfvlpDIruBs/XfmNBSz+cu/h/gE5VsuhCinyoa6JRSAcph7k6t9V1+8Tql1Ci/d24UsN4vbwLG9Xj6WGCNX370FuUL/PKxvdQXQog90hMrn+DGx27EeqmalZPnsDa1P+z74f4PpZKBPIxz3+AcfSd7pY5n9kn/AXyqks0XQuyESs5yVcCvgLe01j/ssele4Bzge/7Pe3qUX6yUmkd5UkSnH/oeAL6rlKr2680FrtJatymlupVSh1Ieyv0c8NNK7Y8QQuyOfvH8L/jdSzejln2SJTOmQeQSODK0+TVToW9rxGVhKq9yZtdDfPa0H5BMzgEurWj7hRADo5I9dIcDZwOvKaVe9sv+jXKQ+7NS6nxgJXC6v+1+ykuWLKa8bMm5AH5wux54wa/3HxsnSABf4v1lS+YjEyKEEHuAqxdczesLHqY5+C8snzweqn8IY/s7lAo4GSg4fFQ/wodbOvnKxbcCc4DLKtV0IUSFqD1t2bbGxka9cOHCwW6GEEL02TNNz3DjIzfStbiBZSMOpZBKAoEdG0rNQIQOju18gEMmfJRz536mkk0XQuwkpdQirXXj9urJlSKEEGI3dM1j1/DEC4/i5Gbz7rjpELkYZsU+WLGPQ6n78Byfbb2fEQf9J8cfMof3B0eEEMOBBDohhNgNvLT2Ja579DqKywIsq/oE7alZML4Pa8PBVkPcLP04J7Us4YKL/0B5KPXbH3yuEGJYkEAnhBCD5IU1L3D9gutZvaqR1aOmQujLsE8YTHPzin0ZSi1CtNTOGd7dHKBGc8aZP6Ac4oQQewIJdEIIsQvd9+59/NeD/8dijsRN1YL1Fdhnx3vh6ljGea3zmTHp85xw7BnAGRVruxBi97XdQKeUmqm1fnOLsqO11gsq1iohhBhGbnrqJn7/con1NdPBrIKGz32w0nZ74TzQOcgWOVb/k1PefZt/ufoBf9uFlWi2EGII6UsP3Z+VUncANwEh/2cjcFglGyaEEENVyS3xr/dcyQvN+7M+VQscAA073gsXo5VP6buZsjTLOVfdB5xYqaYLIYaovgS6WcD3gaeBOHAn5TXmhBBC+O5++26+/9CLLA/tBYkasD8ODf1c3HdTLxwcoBdwweoFHLLPNxg79yzgrEo2XwgxxPUl0JWAHOXFe0PAMq21V9FWCSHEbu619a9x3f3fYXFmNmtTI4EYTDx+80p97YXLQ9xr5UzvbzS80Mk5l/2WwGiZ0CCE6Lu+BLoXKF+e62CgFviFUuo0rfVpFW2ZEELsZm566ibufLnAutQUoA5iF0AqvHml7fbCFUA7qGyBI/UDfKrlGQ4In8aE868EzpKOOCHEDulLoDtfa73x0gprgVOUUmdXsE1CCLFbmL94Pt/5x6OsiHyIUizJTp0LB9RkmzhX/4nxryjO/O584KSKtFsIseeRS38JIUQPF/zxap7vHMe6mhFA5IML+0IfeuHYNKFhX/0453ffxYe8Ocy48EcVabMQYviSS38JIUQfXPvQtfz9nTBrU5OAJETnQmI7C/vCVmekhujiWH0vp77SxNFn/Tfh/a4Hrq9U84UQApBAJ4TYw9z01E389eUsK1PTKJ8WfPiODaNShEIJHNhLP8kXlz3E4akvMO78c4FPwpmVab8QQvRGAp0QYlh7YuUTfP+un9MU+DBrU2Pp9Tw46NcwajVr+GTb/RzeMonjr76R8iW2rqtA64UQom8k0AkhhpX73r2PHz7xA7rzn6QpNQ6IwsQvgrXF110/hlEDZDgm8yAfecnkCz/5ib/xnEo0XwghdogEOiHEkFZyS1z64KW8tiTFu6lpQApqrgXb3rxin4ZRM1CekMoBpcc46/mljP/4dXx09lTgVDh34NsvhBADQQKdEGJI6cx1ctnDl/Ha4nGsGD0NqANO3cHz4IBMOcGN53W+8N5TlJzzuOiaE4A58JmBbr0QQlSGBDohxG7vB0//gCeffpOFo2ZTCiSBM2HqDp4Hl8+AC1HaOa7lQUa/szff+smllM+D+1oFWi+EEJUngU4Isdu54YkbeO/hPA9NmYlrJ4H9YK/DPlixH+fBAezf9jQnvbSGr/ziF/7GMway2UIIMWgk0AkhBt1NT93EY88v4eURR+FaSWAWHNyHHjjo/dJaGQeAmaUnOf3Fdzjta7eSGpug3AsnhBDDjwQ6IcQud93j13HvMytZPXo2BGuAA2DaER+s2M+JDDU0ccryp5g29suc++kDkfPghBB7Cgl0QoiK++bD3+T159K8MfJw8rEq4MOwTy+9Zf2cyFDHck5e8yjVzhe44hvH+BtlKqoQYs8jgU4IMeAuf+hynn7HYklqX8pXY/gY7L+jQ6hsCnAWGQ5peYFRq2dzy3c3BrgLBqrZQggxZEmgE0LslGwxy2UPX8azSyfTnJoMxIC5fbsaA2wzwAXIMKvlKUa8dzyXXtnI1JEJ4NSBbL4QQgwLEuiEEP3ywpoX+OpDd9CUPZRSTRIIAP8yQAEuzayW5xmx6ij++4a52JaBBDghhNi+igU6pdSvgZOA9VrrffyyGuBPQAOwHDhDa92ulFLAj4ETKC8w8Hmt9Yv+c84Bvu2/7A1a69/55QcBvwXCwP3AJVr39pdCCLEzfvrsT/n9s13+Ir7JcmHtWeWR1C31M8BF6OColgepbT+S//r2Z/2NnxiIZgshxB6lkj10vwVuBm7vUXYl8LDW+ntKqSv9x98Ejgem+rdZwM+AWX4AvAZoBDSwSCl1r9a63a9zIfAs5UB3HDC/gvsjxLDX3NXMt/5+Ce90H8WS1GjKw6cz+raI70bbCHAGORpbnmPc+tncct3Gc+BOH4imCyHEHq1igU5r/bhSqmGL4lOAo/37vwMWUA50pwC3+z1szyqlkkqpUX7dB7XWbQBKqQeB45RSC4CE1voZv/x2yuMyEuiE6IcfPP0Dnn3oTV6tnU1nKg6EIHQB1O7E8GmPZUSitPORlseJtv0Lt1y9McB9fIBaL4QQYqNdfQ7dCK11M4DWulkpVe+XjwFW9ajX5Jdtq7ypl/JeKaUupNybx/jx43dyF4QYmpq7mrny/q+z7J0jeHevOqAG2A8O6uUKDND3ANfjSgzTeJbT3nuMNfrf+N63NwY4uRqDEEJU2u4yKaK3sRu9A+W90lrfCtwK0NjYKOfZiT3C1/75NV56LsHb4/aGSBJQYJwHjQPT+2aR5Wj3H8x6w6Bq3Of53BcPpnwlhqsHbieEEEL0ya4OdOuUUqP83rlRwHq/vAkY16PeWGCNX370FuUL/PKxvdQXYo/zlzf/ws0v3Ix660DenjQLkjWU/89zAhzYS3iDHep9G8FiTmmZT+Ctz3H62YcyY9ZYymdLCCGEGGy7OtDdC5wDfM//eU+P8ouVUvMoT4ro9EPfA8B3lVLVfr25wFVa6zalVLdS6lDgOeBzwE935Y4IMRheWvsS1z16Hfbz43hm2mGUapNAEsLfho/0I7zBdgPcdP00p735HIb1DS66+hjKvW9fGoC9EEIIMdAquWzJHyn3rtUppZooz1b9HvBnpdT5wEren952P+UlSxZT/nNyLoAf3K4HXvDr/cfGCRKU/7L8lvKyJfORCRFiGLrkgUvourebp2d+7P1JC+ZF8LEBCG9kIA+4AA6HlR7hmLcz7DXzIj72qb2RC9kLIcTQofa0pdsaGxv1woULB7sZQmzmtfWvcc2j17DuvX1ZMmE/CCbe3xgdiPDmgC5s6n2rYzmnts5nVPPJnHjm8TTsPXKn2i+EEKIylFKLtNaN26u3u0yKEGKPsKRtCVc+ciWLMgV0+ixyqVrAKG9UX4IDBiK8adDZTeGtivWcov/KhMUpDj7wmxxy/GS/nlwDVQghhgsJdEJUyOUPXc4/Vv+D6jVf5N3JE4CQv+VCqItC3Vae2K/wxmbnvcVo43h9F9NWBjn8Q9dx4JyJfqXP7NhOCCGEGBIk0Amxk2588kb+sOQPjOw6m9fCUyER87fMhfBcWvbrZ68b9Cm8WWT5qHs/h74X5SNHXsJ+R0/wK525I7shhBBiCJNAJ0Qf3f323fzkuZ8QSM/l1dgECNcAJtAI4UZa6rYS3KD/vW7kQHubwlt50sJDHPOuyaTRZ3HiFw/0y2XZECGEEBLohOjVNY9dw5Ovr2d57CNkwlWADcQg/G/l4dKt2dFeNwcolh/WspIz9Tyql0xmr4lf8WecQvmSx0IIIcQHSaATe7SNs0u7N+zLa6kZvH9i2xHQMMDBjUz5eiabet1KHK4f5MTMo+RWXMjJnzqN8TM2Xg3v/H7shRBCiD2dBDqxx7ht4W08+dSfeSNyHKuqJgF+YFNf2np426HgtvkSIQATeJVz3Ttwlx3DR4/+GjM/vPHCKCf0cy+EEEKID5JAJ4ad+Yvn88u//BCdOJhnUvtQ7nVTwASYcjXl89560e/z3NhskgK8v0TIuFV59p/8I478xHR/yxzgsv7uihBCCNEnEujEkPatR79F25sv80jqNDqpp3yumwWTr+j/gryw9fCWyWz2MEo7c4v3Mv01m7mnXNejxw1kiRAhhBC7mgQ6MWRc9chVrH6rg4dTH8Fl4wzTo6HhxK0/qb+9bl4Gcu8/NMjT2PIcB75Wx3Enn8ShJ07pUfmM/u2AEEIIUSES6MRu6ZdP/4JHX1rKI6n9YVN4O2Zgz3XbotetNr2co19dy9lzPsmhJ87sseXkfrRcCCGE2PUk0IlBN3/xfO58YAEPbRbeJkHDvr0/od/nujmQKWxWMqNlEUe/pjjjc5/eYrhUCCGEGHok0Ild6m/3/IZ731vBA+OnAdWUfwUtaNjKArn9DW9b9LrF2cARi5ZwVv0BHHtZz6HZOf1suRBCCLH7kkAnKuaWv/+CO1ZnWZ5qADZeDmss7DW99yfsVHgrse/bS7m8q5u5/3XV5vXkVDchhBDDnAQ6MSAuv+8/eet1i4WTRwCpcqExBRrCvT9hJ8JbgDQHLWzmq7Uex3zz4h1vtBBCCDFMSKAT/XbXqwu459dPsuCASRQ2XRbrQ9DbReh3crJCmA4Oe+MFfjSzhvozr3y/jvS6CSGEEJtIoBPbddPXL+WeyRNYkpoAxMuFc47pvXJvAW5bC/P2CG8hOjli8XP8+4jxTDv/Kz0qnd7vNgshhBB7Egl0YjPn3HAhr1V/iDWpMUCkXHjoib0v0tufYVM3A/n3H4bp5PCmZ/nGuBP40Ok9w+FpO9p0IYQQYo8lgW4P9m//8WUeqp3KytRENl3XdJ/PQCDQ+xP63PtWhExp06NpmWc59dUmjph7BYccP7lHPQlvQgghxECQQLeH+NOV1/DrRC2vTKlj06SFfU6HYPCDlft73luPYdNq1jC75Uk+N+nKHuFNlggRQgghKkkC3TDU9IcnuPjNd3h2vwibLkx/4BE7P2wKQAb8/GaS49ANj3FJ3cEcecZZPeqcs+ONF0IIIUS/SaAbBi675Eb+MnMCxeokECgf1cNm9l65P5MWdAay7z+cWnyec1dv4GOnXMX4GfV+6cd3ouVCCCGEGAgS6IaY31zzI35YX0dLKgH4a7zNPar3yjsxaWFm9kk++3aJmR85r8cF6WXoVAghhNgdSaDbTXU//jg5DWfnAAAgAElEQVTn/d+LPLF/PVgbr28KNDaCYXzwCf0aOi1Axtn0aO/MM3ytyePAz3yV0ZNq/FIJb0IIIcRQIYFuN7Du93dxTvs7vDxiApsmLAAceUjvT+hXeCtBprjpUQ1NnNbyFl855dukxib8UglvQgghxFAmgW4Xu/yb/8Ff924gF6qlfIUFwI7DpAEYNoXNzntLspaPtf6Da079L1KjRu1Uu4UQQgix+xrygU4pdRzwY8pjkrdprb83yE3a5JhbbuTNVAPlmaa+Iz+29SfsRHgzyXK0+w/OHzGeY07qeXH6s/vRYiGEEEIMRUM60CmlTOAWymOGTcALSql7tdZvDlabzvjRt3l89EygFhr62esGWw9vpQxsGjnVHKQf5bxMgU+e98MelU7pf4OFEEIIMeQN6UAHHAIs1lovBVBKzaOcagYl0J3xo2/z+NTjgR6Brd/rvOUg4216FKWd2R33cNHMT7P/ESf2qDd3Z5srhBBCiGFiqAe6McCqHo+bgFlbVlJKXQhcCDB+/PiKNWbt6HGA8vNcjyC3tfDW4woLALWs5Ng1j/HDS2/fouIZA9hKIYQQQgw3Qz3Q9db99YH0pLW+FbgVoLGxcWtdYztt5JpVvDt1H9Bqi2a8f3UFAEWBg1qe4q4vfgfb2nIJkvMr1TwhhBBCDFNDPdA1AeN6PB4LrBmktvDnS2/Y/Bw6DOpZzMmrn+Q7X7tzi9onDUILhRBCCDEcKb3Vc7l2f0opC3gXmA2sBl4APq21fmNrz2lsbNQLFy7cRS0UQgghhNhxSqlFWuvG7dUb0j10WmtHKXUx8ADlZUt+va0wJ4QQQggxHA3pQAegtb4fuH+w2yGEEEIIMViG9JDrjlBKtQArKvw2dcCGCr+HGBxybIc3Ob7Dlxzb4W04H98JWuvU9irtcYFuV1BKLezLeLcYeuTYDm9yfIcvObbDmxxf2HLNDCGEEEIIMcRIoBNCCCGEGOIk0FXGrYPdAFExcmyHNzm+w5cc2+Ftjz++cg6dEEIIIcQQJz10QgghhBBDnAQ6IYQQQoghTgLdAFJKHaeUekcptVgpdeVgt0dsnVJquVLqNaXUy0qphX5ZjVLqQaXUe/7Par9cKaV+4h/XV5VSB/Z4nXP8+u8ppc7pUX6Q//qL/eeqXb+Xew6l1K+VUuuVUq/3KKv48dzae4iBs5Vje61SarX/+X1ZKXVCj21X+cfpHaXUsT3Ke/1+VkpNVEo95x/DPymlbL886D9e7G9v2DV7vGdRSo1TSj2qlHpLKfWGUuoSv1w+v/2ltZbbANwoX3psCTAJsIFXgJmD3S65bfV4LQfqtii7CbjSv38l8H3//gnAfEABhwLP+eU1wFL/Z7V/v9rf9jxwmP+c+cDxg73Pw/kGHAkcCLy+K4/n1t5DbhU/ttcC3+il7kz/uzcITPS/k81tfT8DfwbO8u//HPiSf//LwM/9+2cBfxrsf4vheANGAQf69+OUr88+Uz6//b9JD93AOQRYrLVeqrUuAvOAUwa5TaJ/TgF+59//HXBqj/LbddmzQFIpNQo4FnhQa92mtW4HHgSO87cltNbP6PI3xe09XktUgNb6caBti+JdcTy39h5igGzl2G7NKcA8rXVBa70MWEz5u7nX72e/p+YY4K/+87f8Pdl4bP8KzJae9oGntW7WWr/o3+8G3gLGIJ/ffpNAN3DGAKt6PG7yy8TuSQP/VEotUkpd6JeN0Fo3Q/lLBqj3y7d2bLdV3tRLudi1dsXx3Np7iMq72B9y+3WPobL+HttaoENr7WxRvtlr+ds7/fqiQvxh7QOA55DPb79JoBs4vf3PTdaE2X0drrU+EDgeuEgpdeQ26m7t2Pa3XOwe5HgOfT8DJgMfApqBH/jlA3ls5bjvQkqpGPA34FKtdde2qvZSJp9fJNANpCZgXI/HY4E1g9QWsR1a6zX+z/XA3ZSHZNb53fP4P9f71bd2bLdVPraXcrFr7YrjubX3EBWktV6ntXa11h7wS8qfX+j/sd1AecjO2qJ8s9fyt1fR96Ff0Q9KqQDlMHen1vouv1g+v/0kgW7gvABM9WdM2ZRPor13kNskeqGUiiql4hvvA3OB1ykfr40zo84B7vHv3wt8zp9ddSjQ6XfPPwDMVUpV+0M+c4EH/G3dSqlD/XNuPtfjtcSusyuO59beQ1TQxj/Cvk9Q/vxC+Xic5c9QnQhMpXxCfK/fz/45VY8Cp/nP3/L3ZOOxPQ14xK8vBpD/mfoV8JbW+oc9Nsnnt78Ge1bGcLpRnn3zLuXZVN8a7PbIbavHaRLlWW6vAG9sPFaUz495GHjP/1njlyvgFv+4vgY09nit8yifeL0YOLdHeSPlPzJLgJvxr8oit4od0z9SHnorUf4f+fm74nhu7T3kVvFje4d/7F6l/Ed5VI/63/KP0zv0mF2+te9n//vgef+Y/wUI+uUh//Fif/ukwf63GI434AjKQ6CvAi/7txPk89v/m1z6SwghhBBiiJMhVyGEEEKIIU4CnRBCCCHEECeBTgghhBBiiJNAJ4QQQggxxEmgE0IIIYQY4iTQCSGEEEIMcRLohBBCCCGGOAl0QgghhBBDnLX9KsNLXV2dbmhoGOxmCCGEEEJs16JFizZorVPbq7fHBbqGhgYWLlw42M0QQgghhNgupdSKvtSTIVchhBBCiCFOAp0QQgghxBC3xw25Vlox3U0xm8UMBjFCYZRyMQyNYQQwDHuwmyeEEEKIYUgC3QAqprtpWvQi2XQn7R0tREbUo0NZwtVR4okqLGsM6Tx0dnSict3U14RIjRiFG0iQKznkSznyhU5KTpaIGcT24nTlC5i2RbAqSNi0iOQcnGyeglK4YZNgNEokWIV2AKUpOh7pzhwhbRKtCuDhks27FDAxTIuoqQjbFkbARRsupWwRp1DCNAysQADXDOBZNqaXReU6cB0TO16DZygK+W4KToGS62G4FsoIYkXD2LaN0oBbRJUKuA6UTA0qQMQKEQyaeLjku9twS10EInGCkRq0Z5FL53AKRSzDIGgbKNvCNQxcz0VrB1drUGBiEDAsUAqNwjRNcDVO0cGwPDBLgKZQMCkUPWxcQgGPkuPhaFDKwjBs7JCNbSlKuU6y3e0U0yVUoAqrpppg2MIoOhjKRFkmrltAOQWckgZXU3Ac8o4iGokST0Zx3BztuS5y2iRkBklawfK/hWVQLOTJZtqxAg6hcDWmZ6NLJVAmRWXS7Tq4aBK2RcQuB/1ivkAxX8QO2ZiWges4mJaFaQUAKLklSsUMVrGIoRWeaWAQAKeAB5jhOF7ApOSVCBgBAmYAx3FwXZeSA44LmhJKZwlqQIcpuArTNghHbCyr/HWgi0W8TBq0hxGJ4Xrg5ouYAYVlKzwFJe1QKIBT9NBFBysSIhS0CXguKhBAbdwnz6NQSGO6OUJ2lI6SwZqOTgLaY3TQwnMNcjpAKBLEMjxcx0NrhedpggEIWwaeYeAaBgoDtEKVipRyWVxLoyJxXKUwPE3QALRGGR7KAMMI4GpFR6aNUqlAVbiaaCTe62c3WyySd1xCysDUGsfLUiwUKTkBIrEYsWgQnCI6n2FDd4Z2V5MIBKkLmmjXIe0qcjpAOBQhHILuUpZioUDCCBIOhXANg2wuT3dXJ5aySCbjeMrAUwYhS6HyLRTzWaxgLXasBmUZuE5p0++ARpHPpnFLJYoll2IpTyyeJJ6I4HklHM/E1RaGdsEpoF0PA5t8voSTyRMKGASTETzbwjRNtNLkMl2ovINlm2gjjwmYwSjaNXGLRbQCT4XQjkG+WKIUcImHwoS8Eq7ThUMAZUYIWEGUqXDxME0Ty7LKv6sbfw+1BrcIpo1nQHe2m1xJE7FtIkETwwigPQvX8QAX8Db93hfS3eQ712IpDxVMUsLCVC7hSBRlB/C8El7BJZ8r4ZoGAdvAUgG0YVNyS2S7uykWCkRCIaIxG6UCBOwQBqBdjad1+bPjZqHYjeMaGIEIVjhMybAoueU2KcNFl1xK7Z3ofDcEArgBg3A0ihlJUnCBkoftudimhxkMUVKK7lwXnuMQdEzMbBFMBZEgmIFN/27FYpFcugutHaJVVYSjCUpuie5iBu0UCHolXCdHumCgdZhIwCIaDqM9KOUzBAMedigEdoyMq+nI53AdsDxNxFQEsVCOh2FpCCoc5VDKuxQzJexQgFh1EjBxHQ/TMjAtA+14aFejTEXJgJKnMTwHL5+j4Dq4BtgG2ARQDrg6jWcrMOMYRpiAaWBbBrpYRJdKOIbCsdj0vVRySxScLJbSOF6AomdgGx4hC/IZh86OAgRMamoThIOBzdrjuDlKpQyuV/78GKaFGbAwtIHSChMPr5ih5GowbbTn4RQ1+VwRz3Cpqq7CVAb5bDeBoEk4mkB7Ctdx0MUiTq6IYQdxAwFKxSJBM0A4GiJfzNKd6cS0bRKxJAEzUJEcsTMk0A2gfFeajnVtNLe8RHN3E3arh6sM4jGLTkPTrMaS7TbIFm0mqLUkbcXE+hhezURW5wN0Zjto1euJ5lqxPYtCOoSjR9JhGoTrotSQZUp7HrfDoy2UheokqZHVqPAYlGOgdZr2dVnszio8bVBrOxD3WF0y6LYi2FaYEZ5LzG3HsLNYyQBeLo1dCpNd34U5MkV3wMZMhrC638Zoa8fUmmD1XgTCNh3pxaxLtxG2o+Q6XUqR0cRjo/Hq6gnnO9FdqzGVSbPrElBVREtBYoE4tbEQjrGOTOfrhAJZwlVJ7Np9SK+N0LZyHV6hgKFcotFqXKtApC5OIaRxoxFautYx2rKwNjST0GG6VRAznsDQEDYiaDtIa3Y5VjhDppCmZV2BaKEKle0gWWuB0UUgOoHW9TnCwdHEbIuaWBsbOptYv74FK5cgFxhHsm40XqJEtTIx7DiBaAyclWzobCLYVcIsRFieD+PZJvHESKZPHcPijtd4N53BVQ4xr56RymXUyFGMGF1Ny9Imspl3cFSRZE0V1bkUpXyUzjaDtVURVusMbsgkFQgxORolFolCOo1yC6QzLYQoEsLAtUME68eSdxTL2peh1i3DbF9LqjZCMD6OUMAg0GHhGkXaIhEydSEMFUE5BnEVJ18q4pZydLZmCFgJ2jPriVvryWUUJSdKZzBGxDSpq7WJJEKEdBC62mHDBiwnQDgeQnkKLwCFXDf2hDpydFDKQaHbpavZpc0zsMwitm1TVxsmbGq8WBInGidnmej2t1E6QFUoyFNdMZrbCnilHJMLOSaXCljhFK1ogrYLrkG+2yNVXYvnrMccaeI6QZLJ0eRzLiYKd/VasnRR8mDNyDjRRIy4aZHobCYQdDHI4VgWBcMlX1KsXdVE3s0Rt8PsPXFvYtEkjmdhB6IUPMWqDV2szqSJBiy8ooeZ30Cw0EbGcbHsWop2nFH1MQKd7ZRaO3m9mMdVVRRMxXSlGRnM06ptNmgL1w2TTARZaXUS7u4mVtJEvQCFWIKOzrXY2U5st0SIBIwcj10VIWl1Y7a/SbgrjBepJzL2QEoUKOZbKARjFLQDnkMx24aXydKxZAVWpAptwPT9plE3ciRd+SLd3RHaNrQRcbKEHMjpEF67i9PZQUnnCVZbVE2tI2/kKDodqLY8phmkkG1DVQcJhopEzRq6czmCdgI3GyLv2HidCfK6hBV2CIaLjK/KU3JdNrg5nHwtsVAc0w7hRcMELYNkdYB13SugpAnaMSJdWTKui6VsukutLMnlyActXDQTkxHGx+uxS2PJZLKkW5uIxhWe56K9GLmmpRjOUvJdHaTDtVAYQbA6SaJKE6qOQMlhfUcXBSdKzMgRSo6gKhphXTpOW76btetasN0CZrCTMdEkY8aPxAyNRXsuwWKB7vYsWTND97pllJwMVfksoVETycRSpMN11NZW05ltwUivp2v5W9jrmylmIWAqrEl1FO0qdNUoDLOeoo5QXWohmslg2DnWx8M0bVhHV9ZlTLvFdC8C6TTF+jilaAjL0NhVNZSyLi0tr5ILeQSSI5g8fh+Wdi1nVamVZL6VWjuPkXZZUYridJpUR2qpD2iKpRKUHDxLkxozlohdw9LuAuszBTozG6hVMcYGq0kVDMKFEm4wRz6xHjdmsmHVStx0kEAozshpBxCuGoNHnlKhSCwWpdqKgWnQ7hZoMzQqm6Z5wzJ0fj0tOk7IzpEwgyTbOoiaMdLBDkoRgw3aZlTNNGoT9SS1g7tiGSpk0u0qciNqyHS0EGwrkHHylEJFcqZNOjqCuFVFMd1MfaaL7Np1rHctiq5B/bjxTB09CaNkQKlAmgxtxZUop0g6s5bq+Bhcp0TMS9C9IUc4Xk00XAByZIwArV1pbCdAoS1NLqtRCYtgXYKIaaK8dVgBi9S4GXhOjGLnOvKrluCoOK0Zi5xjkgrb2HaOeG2IdbhkTAPTMxk3up7R9ZMJB2PEQkGCweBgxw8AlNZ6sNuwSzU2NupKzXLtXNfKwrvvZE3xMdqjQbSp6SaGZXg02TV0WwnyXpAoeaYUV1NXcohkXQpujGZVi6sKFGI5EqVmimaEQj5IV3EEy+wxuIkQUeVQm+2mvqWbbNggT5CasEHc6aYz3AGApzWB3GhanRqUGSeouykFwDCKmI4moTqo7c5QiGfoVGMx3SwJHSRjRGgJhmgNBkkaaWo6l1O3vohjunQHUiSiaVojAaxcB1liGEYOM1CLIkirOQpUgSIFdEBTVCaJokGsTRPLKzyjRLCqA9vuosbpIhMaSRdROvJ1hLIZbMsh4mRZHqgnmANiDmE7iJkIkdU5RnY107DiDcxCkvVehEwihGE6hFSQjpRNyWujPRjDcHOQD+KmXQwPklVdBCIGqAheJoyjXZKr24hX51kbqMV0PQwnCrkgSc8jU5UlUsigw2GKoVEQWw9mO4FCAZ02WFccT0Kb5GwbIzKCFYXVZO0Aia4WTCcJAY9gDGpqqjEyiio3S4cJUXcVFCKkm6sJhFKstDWdpkkx6OFaIUa7DlEjQl3QYlSik1LHCtxMB+FsgA7q6QiNYEkCFG2oYpbp7c24FAhXjSUZtahZU6TTW0+bnaU9GabkjaLYHcQLJ0jSRiTWSbJbYxgG2S6DZtOlC4ulyQl4RvlE2oSTp7aUpTsYoyrXhWnGqcunqdEWkWIbZmAdWSfIilgVYaUxnThVWpNxwrSbHh3KI+KuJmB4RIpZmqsmkA1U4YUN9s61kQ6myBBntRNGewqrkCVaKLBfugvb8Gi3PVyVw063Y+RHYYdCdI5ppd0Og1fC7kxhFk0MXSBQBMvMktNVLBvrUWt4hO0W6jasxSy1kDPCtEdHENJ5ct0WmS6TXI0NEY+U1UV1Pk+NTtNRqOPd+DhaqCGrgozoSuMCtcEVhAMFHEuDE6MlUEd1ZxEj71HX2cXK6gS2pWkyUowqKkKhDnKWBwGTbN4gV4oTjBqYRpaa7BqC3XnSKkJdsoO8F6eKTrpK9TgqSN4Kg9PN9A6HhBOkOZ6gaCdJm62YXhfpiIlhGHTFDMYUW7GzBULLs7hdYTwUifoQobrRhKIBujuCZDsNTKVxLI9QCbJujmSpk6xZxAynyes8hLvoMiMEtUVnKEVe2Xh2BKVKhLJpHAUJL08mV0tAGahslIJSjHM6CQSyJGsc1iQm0JzvQmVD1JVaMQNRTBPcYICwsxY7uI6IE6GQtumkmg2hBKZbJGB10hUK4RktrDNGU1fIk4yEGZmPY+YzWM4aTNbjeEHyxSpyro0KdVPIgDINnNZqPMJ01EYhkqY9MYKa3AZss4q6bAcJO4lNG0vs8RTyNquDQerUKmxVZEphLTEVoj0YI0AJ1ZmnEAyQzireDSawMw4lI48bTZAJRogEbUa4FpaTJlJajtId1HvNeHmbbGecbLQOXYqTTtQQcSxW146iyl1PLt1OxF1PvuTRlKgBwsQKISZ3w5icg1dKoxNteLE8BTOI4cZoDRdYa9fjqiKeW03R7sZ1PVKFtYxVXXSQIm1aeFlIOJpQVSd5O8B6o5YOr4pYMUoi7dDQWsTMbaA1lKHKswgF60hlg3hmBxsiaXR1N4FSK6V0DiMGqpjAjtTTradQsDvIZIuM8AzqjNEURtaR8YKs6djASK+JdaqV9licvI4S0y71rXlGOJ3EQnnWJmrYEAzQoQskdZGRhkfdqgJeMI2j43iRGBuMBNnMenJBi0Q6S8aM0mSPJRuPEg6GCbasoSbdQijRQtFWdNu1WBlFNthADRYlJ02ULtpcC5KQ9DpJGWlGt2vMjihNjKKUC5GLG5SC7aSTNq2lEpFCgJBOE817WMEiGRMCriYb0STxyFtVRB3oLHSRdJpp8RpwXYNspoaZ7ipqq1dRsm3aVBUhdxJeoIpSPIoZgpEjJjC5JsmMKVMqGuqUUou01o3bqyc9dAMoELIhbqPTLiVD0Rqs4i1zBkUjREFZVOtWDKuEpzzWEiGnioxzV6LzBTqDYbJuGNcw0dEqDM+js5QgZwfwgi5FHIqmSXsiRmtIE3dyOG75f7mO59EVjJDXJt2BMEEjQC5vUrQtbG3QbQfBDFLybEYXXTydIx+zKDrdpP+fvTeH+WXLsrx+Z47pP3zjvW/MyqpsSsICqdSYjcHQHiYItYQEqKV28RBIOAghPAwMWjhYYOMg1AaYSC0GIVQlqrOyXuZ7993hG/5DjGfGuEmTtIqmC1GVbbCsiDh7SzuciBX7rL2i7HExMTaWS+t4snv2WXDa3XBhpI6KkB3rODIKgTQtn9SRam44lI0iIyc8pWpmpzmIK21KnKVm1pJZZPxR0NnC2h3YBxC5UEIlAM5mZLakFDh1BVkF13aHTYI30wudecXLX3K6q+hnxY+2Q7YrRWQO4sycDGuvOQmBKo5sO85v7lGsfDAHtKhsytBog/ET13tF6d7g6x5tAvfTxrITvOqVQuSL/omUjyAThEqXFJd6w4ehw8cdH2VF5kSIH9mQbNPGaHfcIOiMxvDEdPaM8sCVSBIbEJiEJPcjEsG5O/DdbiBXEBJSWBjizC9XuN9Wvq4rs+2xUvMnPCKz4g93lUG05Grx3cZNGLnJz3zaBh67X3+Rmo2PybLljVU2dHkjionH9Awq4GXPNPT8Mj2C8JyVZFczcytJVcDV8X3raNoDR28Q4oVThH016EYTl5ZNbORqWVTkQiS4QNKBhYFaNWZZedUHfmj2lKpZVI80gSG/MIbKCcOyE9zLmX33I2MSbBqEKBR1ResTr/7AqCpXfUD6gpAJl15x18qQJ+yhYZMS300QYIuW3Ce6UWGr5bvjGxbdY3OLbSLvm7eULhF0Q1f/iI7ERcy8szd86kFsK5d+YDL3dGLFi0ekzKxWcVg9S5Lcp4gUhuAKpltARDrVwNgxNorYCFzYGF3H1AseubJpyShbkBnTrSh3oaCJi2ZjQObIiCSVO74jcDjOnNyGb98hwoKplVgSG45fyVtCStymmbfaY4wj1o6fN5ZFzbTBoil8nTtGLdktluMSqMfE69GwlkRuJHLO6E5yEUdESXzoNVEZtAxc9Z6f5Ingj0jxytgXztZhTGJtDadZMKRMFyM/+MCkO5QyLEpzH2aG8MqH8iUqKly1fJkmpE9spaeqGa8SL13DKBtm+w1j3TMXz9+LLQ+pYqXhWxXplaAPVzATz83XTMMN12PDcfYMURCnxEuvCb3l/c6yGMtSHI57qhP0SpAY2deVH7pvGOWAJmBK4Yvzmbyc2bkVrxRBGl71A5ed5VbAD/prnps9VgWk1rww0VBp7MCjXNjilxQr8bVnqgM3WfJRdninOMWF+y0wq44H0SKYcJ3HsTLu7vhfDw3fLZLjSfJVu/DpOPBJH3l1PX3w1FoYomcykTZXNIGL3tPgeRKWaByv7oZvwgc60yGplKQQNSLWZ67Kcu1m2rBihjNrhFquvNRHfryXvDu2GFtx2TD0md6M7LYWk99TguEqrmRn+DQHxlPhYwr0dcf3jWAhMeuBmha03Bhry7G7our3zBImM/FUvuBFDLzMPdv8ie068XIYKGuDkJ5ar9SimS0YV3jfGD5VBbEybp4vcyEPgdAIVjlwEgPROMYG4nLGW8NOdMiQmEUlVcdWPVE2PIqWxW7MDiatSPuFLZ0J/ZELA9fmkTZf2ZWJvjxzW648t3csJjMGz1Aiozvy1FvkdsN+WygdvBjB0U3IqpFWMC4vrCVx2oA18734gehnvn779h+LLt3/T+j+P4RPnpM+44XkeTjwA19xUrfsfKRYSaiKlkzJhV/ab9mzcGXgm+lMbSR9yYTksXgeykd0DbyTDUZFXs0N0UgcmSAdlxxo80K/XsDNeNNj2XBIgjEIZpQWiLrQlIySgYsZiDrypCyqZmZ15Kw192Ii2MhqGqqIVOF5aW4J0qGVxocdhcAmYasHTvIO4wKyXjmWK8UEJgGr7BA0jKmyY2QeeoRb+NTdYewbRtdizAOH6PmCDRFbqjxTxQVhNrLp2XrN3EhSDnys8NZP0FkKkUvvCDIiZaXNCyEujLsbJrHnqho201GFQeRK6xMnt6PJmck2mAIHF2lvHBWJL5YndeTSzvTiFSsqH+0dv9J7cr2hyxsPZUK2MImWizqyDyPXpiEKRU2CF/1AO464beL+dME/dvimckbyvr3FjS1r43kMliwqZmg4eM8uv2DQNKoStCKKRHJXcqr83O35lXpER8GXy8ZrMkgtWUrBKIuUkat2RClw4QPe75G28DAbnvc3nMUtXjfEuaWtVxYNJ9lg9AWEwWaJajIskSorr43BUMjCcN7d4HtJqBprLsza09YZG99/7g6ogEDw7G+oBlomRntLVJlFGkbuiK3FbQunvmcIE05HxPoeITaWpmMIz+R6wNiZs+6YHuGTvKWTGzYZvlo9H3YdNSo+tR1N47FFMayB3d3Hzy+G5sQhrRi749YMXPURcmFuHEnuWcUNAD+YG27qBZRn6XuuakDUb5DhT/moGyZ2nNweoQ0ZSSs29vXC2e7JCqqoZGXxtuEDitYXnIMppY8AACAASURBVKm49sqWG4Y8ok1LkzeequIX/QNVFmZhUMpClVgpuFk8J7uniHtO9o6+Zi5OI4rkZBp2c+TTXpBSIALv+p5u2DiEM7Nq+ePmp0TlqPuKTYHUAlXwsuv5tNuTdSKFgJOJP7335DxwrhlE4eomrkaj7Mb39g5p7+jaF6baoV3kLHZUrTiGC5lKlpBs4YO8YRN7RiNpS0WbibVtmWphqz2ltMxS0WpYk2JsP3fFhdxIIqIay8tmOIoLo3T8qb4n9opqFmZtOYsjXiimsmE8GDOjdWVXNdqDEZqLbfmkb5lEw6odWk6I1uMEJAVeSYKCl6ZlFB192ZjbDlkt3vYMdiaqSudPaLUSbWKTERc85wxj43jn7vm+fcvrbsdzU4lUQrVEAcFa2vLEUV1YaDmpIy9SsLYdhsRVfcFLK8mdoI8zmMSv9BEJ2OhxUhKE4Kl74KKO5Gro+42Ds2xxZjaOF3fDpB2bNAhRiSlR80qsHlMDg5g5TBvnXmAWwUkXTKiMpqfaxLVYNm/YdIfC8uQK4pvIePgSoQpVCNyWWaUmONhX+MF9getgVyYOYuWL8onZXFmblrgYrgfN5hpGbWjXykZFp4iQgVO/o1Qo7HhQJ37Qdxy2E4st/GDuKGgkcJfhh9sD12OLDhbf7dBhIwqJMIHFDjypB0b2RKtofUBKxaod3vWMrmOUjo/tF2zScTUdx3RCJ4HWiUnvkGSM0Dw1kstNYqEyathFj7can3tOcs/mDFFpjIRUI6NsiQl+GN7i2LiaHTvnaX2mVSPReK69QVwzQsyk1qPrhPWC11KxFa5UzqbBxQLjyF+NgbvfIvf4P/BbJ3RCiL8O/MeAAv6zWut/+A+s/1vAvwkk4An412utv/z12r8G/Lu/Dv33a63/+V9a4X8GXvyVc1Rc7JdMpWWUe0Z2bCjcdWFYMm/tM7/Yf0MWBp8Fm9zIXUSbiRp7WjPTpUISA0I6vsgX3voXMJHv7O8CBiMDt/EZZwOVSCqFGgznpqNG2AWPLAURCpaRi1Oc9C2lGCZ1Q58rA4KWC04JduKMnj2pvaVyQMhIkzfaurL1HeiFfXml05EX/TVdqTQx0cqFL8P3+KSY+y8wERyBu/DCjX/h5/0/QSCTFFxtj0biTccmAkHOfD39z3wVVvrVs9iNb8Ir37/5ii7DQz6h8oqQhaoEa9sQUuWJO4oSCBH5nfVHStbMakcuhos74opnsz0lF0z2UCsFSaES0fhqWeuekx5Y3Y5VwZPusTLzrAeyLPSlkIPizceWcjPSFM+7tqP0hYvrKEF9JkEZmrhgosJUx5v4gS498736mml7JYUj0kc2HHPTIKSCRvEm/EAjjuTcoFXgzfaExjOpAyIZkii8smPShc06Oi8xrNQaQSacjJgcuJiGJm+sRfJHd3dcWs1VGsgCYS1lLpybB65pYGnAZI0UGrFJdmfNX5nec/pyTx8LL33PagSmBiqVvp7YpTNBWf7U3vAqb7mXV+oKwSU8jnfdT3F5YzMNQ54o0VAEiNVitWc1Dp0D3jR0Y6HVK8UGhIx04oqolUUaNgclSy77t7x0DZs4crteGMueWBd0lOzEd9Q+ESQoUVmk4iZ/pKSNrDR1NZzyIw/LBTHc8dRqPrkdRYMoEhMTD/WCQfNkvuWkJV+WdxzqK05EvtgkPjwghGExHZLCohpmCW1Y0Yum5sBSDtwsP9ATOaSRVVqCPUMELWaGNPHz5qc0amNICy5LQndAIBlipIoLOigUhnE7II+FvXvm2lteqFwxjBj6CFUolrojiYaaYM4DF7lnbgPj8MgmLd4IspToYcKsGx/dV+hVEYTmKgp3VXF2mrZaLuJAYxa06PDa8GxvoRQCsGlL4wMpdHQxcGkGhMiomnAucNWOFzfQrY6aE309EeQeIzJDmrnVz+QWslq41p5DyHjd4YcDvxC/y+YSq3a4KLiqPaFKgtLMqsW2mSUb9hr2ZSBR2E0Jb1s+2htOzZ7NtszyxNfdJ96+ntmT6GRE5o1UNbPYMXeWUSlaNK5O3NYTIgs0gVgU5/mGIjfu1ciP+0de246THigCDunEIo/c+zOb6vBaoPBEa4kx4sWOKbYgGpZiabrIJEEqj6yGqxpo0gRZUbPmx/5r7nlC6Stdnam18KTeEqoiNLB4x5WBtTpK0WzFcVNfeYjPKOUJogEUYpSMqafIQDKC0kmeRI/SiS+XiaN8xl9bhA6s1eFbwbm9J+lMdJVZOG7UGV/2LMpxxqNE5JAvzLSc9YGYMovc89o4imyoFB7HQFsWTm1H6Qp/mt/iVcGEhawbjFj45fAVvbggmgcG8QEbocsrr+XIVdwhhKF4T2gGAj07teFK4OZ8ZpQdQsKgZmLV3KSZjpWdvrDFBmk0XYxonWmSJ2hF51eaUbLqPe2rZmocm3pgqIloemTIxM5D8fRu4qt5RPjf4Vf5pygUp/aAyZFDeeJGvvCDeGQVLRnNRVhUXRjNjmNciWpHaSuXrWOaHLO5Z+aG97uBXcg8K5hxPIRMVStrDr9N6vH38VsldEIIBfwnwD8P/AD8XSHEf1Vr/cPfCPufgD+otS5CiL8F/EfAvyyEuAX+PeAPgAr8D7/OPf3l3sX/iRAqawyQLV2EWxHYxIX2YlDlwtfjiZu958dQKTTMWPZxpkke3+yIQ2YwidvyhF8HlISiBZM60KjEbbqCUMSsGETga/8OmTK+aehCpHiBnCq/lz9QBXR1ZC8849LxS77hHI7kXnHrN4oW6NQi00rbBB7Lj9yt7ym14dT0BOE+P4C0BSV5x1uMjpRaQCzkNbOLV856YFY9SVqMSJiSCMIxO0exBaMUyhS64gkYNmlopWHUBzazcVGCRUWkW3lbF151zyYtz6ah3womrcylYysSLx1OjEgJSWikVwgzYFPF1ZVJ7nAUHFeGcmZXZ6JytNkjLw3GLnybf+RUPe8PbwmpEt2eVlypVZGF4Z19RNeA1ZG2/SOM0tTa8Sp61lZxlT1CFUI19DkwbIkDI4emchcK1lc+mcD7/T1ZOYKthK1SxYGDSphcETZxEFdijcRNc7fO6HqhdJX3ww25NozasRqoGW7TxLcvG3f5zOQsSjls9bRqpimKkAZe9YElOyoCUzKH+p6hiZgSadiY8h6TPPd5ZMDh4o7fnSQf2sqmYTQNBkkwCpcSb5YX3oT3vJqBd7c/4RpaCpL76fME36Z7znrPgQuyZHab4ETLj/1bqtFYPXObLjTLiJCKrXW4OhJEy8MS2brMmcPn7RXtmFTLVTk8GlPgYndYH3EVZiN4PdxgSyIpw5v6gRMHpmIIa8M5H6hIJA1Rb9yJJ17UWx7KyMCGSytBDcRaSb7nxfRcjaFITVM8h23BThDyxsl+wRBXJrGjY2UQM6bA7AwzA+9lw26zPIYrX5wTcrchRKYKz1oVs+khF4a0UKtg5+HLzfP30h0n/cCUHb1YqDaAulDUPU/qFltW9vPMNnTYLMhS4bVkqBf2+cSJe5IUVA2+l6wSalaMbc+OZ2ydebV7PrUSTEaUzx8xegPqzJwsUTsUlZMw9GHG64qqiUkPlG3D6ojUHhslXfIEu7EXK/sVZLfjLBqCaOl5ZZATfZwo2YH3rK6jKQudWjmrHR/tW/YZqluRRO7Vyq+koxYLSaGFQpeIZua4jShbaPIVnSQ5tzznge4aCG5AZsGwbNzlC11cuXcXmjIh15khDWyNxdbIJR1Zmy+ISgOCIgRv4iuP8ycm2yKt5Kl54Lrs+d58g00Ll8YhhQD9ebrWBMEX8Zltc6huw+QFbeBxfmLmhjUPhLawkye6bCjVIUThmF5p0oVP7pGoB6qF2+2VZxpyBqs8TV3oikfWwNneICbBsuuQJYLWqJRYlaOtBaVgKj2fjj0yC/oyseobjtuV+7gxWciy4SCe6fTKBzfwo3pDFAYhFU4uzLJQUay6pUTNcV54DC9sjeVFHXh2e6JSvOie2Fhu4wk7C4qubBaEWtH2ibs6EUWDiIamREaj2IylSkuqCVEU/bLhOo8tiWM808uJ881AKQeaYnASouhJCIZJo/uAkxtTc6QRAdGsfHfocfyMxUn2acIXiyGTJeRaOdWWXj3ThMDRr7xrWmbdg/X4Uhj8gsyZs7tB+cIlW3xqMWpDZMEwv/J76R1eC6LQUASj3FGFBDRDXDEKZHFoG9mcgArRa9YE78Qj37uvyG1HKZWoOs4Cel3QNf+2aMf/Bb/tDt1fBX5ea/0FgBDivwT+JeDvE7pa63/7G/H/PfA3fn38LwJ/p9b6+uvcvwP8deC/+Euo+8/EoDpYH7DyFTcXbBM4LDO760bjzggTOVUDSXKbn0lV8lX8yNUNnNojbV154g1OZLQSXMSevThx6m/JulCkwpSEIbBPF6oQbEpziXu2tMfWjWgM780RnSo/yVdKVbip8BP1kb4mPmxHRr1Du8C9OOHMlUDmZG54kg/s6oTNgq+uL6TuSAkTW2xp+gmnIjYnHtInUnXc+Wcubs9jeuWqHqlJI1LDqgRB33y2CEhX7sOErZmraPl02NOwsUlLVYlPrSPYHVFGmrjQTTNvu/+FX+qf0dXANTyyVcsxXxk2z0vXMDvLWnsao+ieBbLtSKrDOMNsOnTYeJGPqPoBTUXXjWQ0OkWe9BtCtLTLTLEtAY0VhaYUYl3p8oyriSgM390+ogwILFlK2uhZq6WJCVLiYblgEDB4zl1lzpY+3tHlhcfliU0b5k1jakGFyKYKH7s9JX/LKPYIlRnmwov+lj68cnfdmPLEZBW5hUNeOdlHpqZQVAPrntH2eAU9G1/mFhlGTm6gyozYEnWQ6LwABbEZxkOHLwVUIgA/N28RaeDmQVDPCjNCugkMMbJIwEt0gS3ecPaFLFsIhhsfKaKhqIDKoHQkKzi7FqrgkDcSClMyKy0sjtncIthzqZlDPvH7+R2bSPTFc86ONiV0EtRW8+Nwi5KFKFr26wu38UwSPTkakrhlyY7RtLQVYur5lL6kUTNIRc2AcLydI/dWIkLkOVx4lY7JdMSq6TbJR3vP3FmSKTRlZa49R3HmvszU7PheH1gd1OppaqCtC0czs6Ydk7ZklUlIAvfo1PN9s7DXJ5q8cNpZts2xFks2LXH2FK1Q5UQE3NVyaiVKrngkulRmucfkzKFcGfQzssnIlNmFK0ZHbssrm2jpoudSoc0rQTQ8yyOrGvB1x1Vb+phYmoG5tGzG8mzu6EOkuEJ1DQcWsiscyzNNiljvuWEm+gGvB7SXOFnYxAAusm0KGS0tVw7ihWPxXMs3eDFw1QodQYVM5zaWrPnY/x6eJ5I7sEsTXZo/T62LlWQlWo0IMVHrHiOv3M6Boh1Vz0ib0K3E5Q2jI85/3l1YjKPaTGNGBI6oLS4HOulJNrKUI8k5CBU1ClQ1WKPoU6LZrizGsamGrbZc7D0qFc5lx7N+wPVXro1mB2gJfVy5yh2P/gq+5XG78qvWcRa3tMYho2QvKk2sHP2FWRU6GVlV5FN7g5gbRLH89HqiHEaChq0MPMkHTJn51v/AFFqcrOyzZ8w3NLUy1AmVNxKfrVNkBpFBisS53uHDQKwduiRMXahqoiOx4Ih81lV/MEecEQgBN+uZtgie7B1Za2JVUAs5K7QvuGAo0xc4fkQMAp003hw5iz1FSuom0UZyXF5gUQxl4tM3R95pRxKCZouYaChGcuufOO1vWdaWahXl1LGPjt1VcWkrJ3kHsqJLphSJFyCUpUmeoiUuJ0yEuIOoLLL2UCuajEjgUiF4y0N+5rvhK6LUXIYjWlTe8MpTtWATd/UjNX3unheluJgDWSg6udHKmU6tzL1gMYWKZZs0S+rYy5lumYlti0iVEDtMiBQluRjNJh2dXzFKMBjPovckI1AiU1SE2tCGwC5XbrcNKf7xsDD5bRO6r4Dvf+P8B+Cf+YfE/xvAf/0Pyf3qz0oSQvxN4G8CfPvtt/9va/1/xLDb85O+4cP3nmOqdPKFfU6IEnHiSpAKpGafLlgt8cHw3Nzh6pmzGtiwhNqAVPzEf+CkH/jUvWHBss9XTH5iH0a6VTLohcUoIoUaC2c7UPMRVwKGjbHfcSmOu/BZHGyy47UduNiGRXbswkISb7llZRM9izNc5Q6XNrpQycqwSxulRDatuYoOnT0ChdJwZGYxPSFYxnJH2QRtXkmisHWOm21kki1P4g4nYZhPvBErgxwxNnERD7yEB5Q3jNYSYsDawE6/8mRbcpWMtuNZPJKyxWXJXv7Im/KRLTWsYkZQCYPD1Yym8jvvI9/dGCbbU2zhbG/YlwtXc4dpIyl89lISTaJ3F6KO3NSZ319/gd0e+VXbcWHHJg0NG0IINhoUUIrgInuKkCQcLlWsCLR6QcoERRFtZtEJFzaubctF7dC5cFzfY6VgVg1JB3KJ9HVikw3TzvChDiTVo2KiVSO3/olSBlZ9Q1WBqhfIAtVEnArscsKkz7rIXm481zsIDt8MDNOFYVQYtfGNvLDbJL4KFgV9DczdkZbI00NlbDRWZHZxphOSIQ30yVLFTPU7sozcTxsfW4moCaLk6+uFUSkuTiFzoSqFE4HJKYKURKnYlEGajMkZXScaBC/Dnl94iZVnHrYzZi7MUjGripELigMuB2SBN9szD2Gimgu/ar/F1Y0oBk5bQERFJIB0bKWyIXiYPtJow841vLaGI5IhnSAbfNiR5UDNO0rqKEpSc6QIhSwaszWE8Y5cAGlQ2nOS9zykj3xbfuA2XnhvvmARn6fWqxYYmSAFPpaGaQDhGkbdIJvAub5llZqP4p6OmbNssGLB6TPKSGxYsbpggyeKllO55RoP7OfKQ/oTdB6QTmD6VwaxklIC9R6zaZ6PN0z0SCNga/mwdwQneee+5KZ+IghDpsMRGZhRZqWoTEwSKxNDGLEUbs+aL6Jicppz0zHvIGlDry505oRtNfs18q7toM1kudHJkZdwj2Fh6iwpPaBUZXcthKahzF9zsVcuYgc648tAFDOP4omfrT/n5Do6NbGaPbItfJ2+46fzLxBp4yk/4tXAHAzv5FfIqtFdZn8pfLG8R0bDKCw/2z6ya0dSG8lGgnCk0LKKit+1LNqwKocZO4S2kAqeHd/LPUNZmPoG2BjrAEVQdOEuXvhm/Y6fq3+SNnzWD976FTd5/jR+BSaBaxApIoplN14YzEJOkb5b6JNnVzd0ccy1o4mFbDd+Nr1Hy42Wkb5upNLyto6Y6LAlEY1g1pYqP3vXVQqqZtJmWDgSREeRO0zUzGbA1oRKEbcmxl5RomFrAiFa3tbvif4WciEJh5YCXcAkSZIJWTM3eeGbOiGs4uwbBlP50O7YhEMq2KcRpzeOPvFWXNj0DcUe0SWRkOjqQYLTCy5mvOq58xdWccRsE1c5UC+FXb2i0OS241ASmzK89oLRGGwNvE2eCFzlwEvfUgRsdBRh2KmJKDNJCMiVLkeO8cS77pYiDIZAkZK78koQB0qZ8Kql1sJbf2LZBqqEtIukesMkCqPoyU5i40YvLmSTcHWBCxRjCWXHqi292Nj2kSAsxhuupcHakZv6Dlc22jVRG9ACpC74kPG2Y62SKBoI6S+MV/x58NsmdOLPuPZn+qgIIf4Gn7dX/9qfN7fW+reBvw2fbUv+/GX+o6GVnt6+Zx1aXlXLLBN5i9zHiUVbRtdRkuL73SNCSGobGZTkECMJy5gb7sIrZbOMsqFXJ2zKvOg9ykaG8so36zMzd7yaDgR85EitliQUbSrMag8UEIZVJk6iIXKlZImIn90ghVIsukXljTY1TMYwyj0rlg/qSx7jmaZs3IQTS5F0ViBKAllprGetHbfpjC+WJmYu0n9WQIqViYGkBO/a32NDoaJmmAJrOfLF9p7iLWJQ7IiI3HLmwLlqDmUkWkk2lUDLrl75XvwULxzeGX7RfcHFK47xRCiK0gje+Cd07zHzRjWBXG+hCH5tccpUeya5ow8zSRimVrKbL7S58DP/x/yJ/Cldisympw2JfQh8PX7gdNjTqJlZt9QKs+xwKdIGwc/8HzJsDQiBmQRH/czT4PhgDzRm4pAibQ3cyY9I9dnwVTSSNj6T8pGl9Pzo9txvZ3Z1Y8FxKIUX7TjZI1uRbFh25cpQL2T7eRsm7DRpUiAlDZrjKlDBolcoraIRiiVrjP5MLJNsuZ4LHw87XveSyfQ0ydOQ0GLjqdtxKAuJwrC8sjceK86c8i2z0iT2jLXwZfmOf2r6I1ajsVfB3N8w1oXkKo28IBGfB1EkBNXRVk+NE2/Cmc5ntsbihWXTknON9LQ8q88GsSU4LrKhV543+plNtvTbyE/nDwgDLhRW+YQrK0sc2GrPFieuqqemhBCepskc7YV7c0GEe679gcuqeBJ3pAJeNLzqO4p0ZFXAeawI1JoZ4gRIvNvxuL3n2RxQMmOIdGVlMXve1S/56L6kZgWi8rh9QEbNaDT1ZkSYiNSBKFoW3bIUTZs3ahUIWVj8jg9O86a8kuSRtQx0sSBF4oPd80ndo2XB+JYmbnRqo8jAj+YG0dxSlETPGaUDGYnylatyWJUQWf66a6exWbAqiQAOeURHj6mJg3ol9AYbN9qY6FXm3szEpsOsG31VvDlHxhvHvjwTq8HVyKd+4H1/ZKodvYx8Of7IKk+c2HE1PYrEmhtUo/Cq48e7wmvTk1VhSCMmVUIpZOFZVcZrgRAF2NjJmcf6nkdeyQu87x3v3YFR7hjVHrlp9mKk72aOLBRtSKVydXve97cos7GKlj7Fz7YvJmFKoSmavmRauWdYNoRyjMVQROUuTaxohMgkm7n1H3ibPqCi4qCu3E5nvHL4IniiZ9lBYKVYi4wRnT0305XmsPLadCRZmUSHwFNlooaErIa9iixSEdXAzVoYomQ1e4iGa3uPSJrgeg75E5O27OKZV3eDSoEmZ7QqbK0jxEQbz/zOB82n4UBsHYs0vB4LgYo3PSELUnJM8j338czviR8Y4xf8/LDyZPZ8sjdQDIuYcfYTnf4jSnb0tSelnv02sg8rk+q5D2ecjNzExHNzz9w1xNQStCdUTUdFUjAShM5Iv9LEhMKTo2LNLauJFHHgfow8qIXgDFFGstZIkVllxzh4unhiY+BqexbjkAiKVbTLwo0+M6wzLZGpRGanaeXMxD0SmJVhLQ1SFR7zEz/WL5E+8+hPxG3hvbHk2dIEw056+pI4+8xSGj4Oj8wlEjt4VArpBJ1ckNXTi8DOr3inaWsk54yOsNU7zrawuR0POTEsF7ZO81Q7ZMqgOrasSFX9RdGKPxd+24TuB+Cb3zj/GvjxHwwSQvxzwL8D/LVaq/+N3H/2H8j97/5CqvxHRFnPRKkY7efpxk0rcq/YFsl1u+OTucNtK4WKqpWgDM/1SNCWL/x7ztzTz5FmTuyXM2O7Jw6GpnjUJLiPI7sXwY7I9fGWpAKpUbRsSLlnyBsx7bi09ygRmXVDnTfkEjAqMu0LSVVk2AjekX3PydwytoakFUvuyDJxkYE8RN5eZ5amI6iGLApGFw5+ZXQ9T9KSRWHtLFf2nHXHphQqVY7xxMIeVSSjPSKbmS5bWn0lOihZswrDnD8LUgOWzShe23s8iU20/Kz8MS56NuEJSiOlwivNVexoy/qZSGhFq67ovaWkQLCZxhfWZsBXg4yJrCUXs8c7RZM36ANHvxGtBCnxpuFDecNT/aw7udufMGrhbnnlWg98774BvXGTF/brylV+yVY/T9p2QrDxu6jxzK1M7Lr3NC5Q+sQmO2o2rGrHMW1IlfFGUWsiRckkBm7TC0F1ZO0Z3YFYwXODNw2hGr6ZPjLaBl8tiMLYDzysM/fLM1/7Zw5hJIUOmRNaOvLdZ22brYrH9QOj2/Ou+YIX6zBs9Kw81BMFg62ZkxkQJvBL/ZbHcObr6QNtjp/JihCsTc+TOBDUHft44twJxqIpYUMVy35bWboGk1ecCghRacSG3Ao36cRteGFUPavYs4Y7EhpVNN63dL7AVpj3nlEIYhW0ceV+uyCCZTWZl26PlJmYG17cPUtpyHbE+wtvlydKrtzZH9iZC0KeEH1DLUcWzefuah4Y1UAKCqUWjA7YEujDgheOmjVT3uH8zDt9TyiWWAVNKix1YKqSV33DWR2xJdKmibfXV676gbX3jG2DFztapVApE6WiiTNawKYsL27PO9djyJyWhjZFhm1ms4pzvOG8P0CWZK157fa0Xc/Notlz4hq+ZFIDps5IC7fllVYFpDaEqFH+itcFJwpORt7Mn1D9jjx97tLsZ0/Pe5xaKUJwt11oyfQ+8YmvONuOk2oJSqMoiFiZmo41N3S7lVg1UhaqTJxiy63fYeLGroNQYawtVUtCn1htJKoCVZK0ZVJ7nPH0vuEH+w1WFIrwbFIya41QkikYTmLAC8PV9ySrmERHUoDS+NywSoesHcoWZgxN2ZiMJTtLqhoVC7pukCuhkWRROWwjd3OPohJVZZEFGza0M8gsUDUz5DP+16OyXV3ZrzM/Ke/4YXfL4BJoGBAI76irIAqLySduzAa6MHhDrz9gxJUiJCo3SHUgtkc+9QaVL5QGtD8RVCaullneMqketMKESlYgdCXqgYKlYMg1IVXl2dwRhWFD8IUZ8dpTmvxZ06UysTpWDVUq+nyl/fXfKYQVKDWR5D2yCCiVY77QlYX78EpyCrk6ohPIdWPwnlAbzC4zy46iVuJB4mVliBe801QPSlqkWEBGnmtPLgdkchxPHmM0mRVjF4YyUptE256JDJgS8GLHzECSibYu7MMLvbjwY/eAViuFBl0rMgl2GTQRReSsDJ24kuvA71+/5yA9eil0q+GtMfzYW/7H7g846R21EUzrR36q/4jfiSee8wPHtaOWjKXBloXXXjI2M4fqOYsGmwq7MnEVtzQlIErFGs9RfWRUb9jcnlZlfoy/S50sJd5ySrd8bAakjJx1RzUOkwVFt0Qtf5vU4+/jt03o/i7wV4QQPwXeAf8K8K/+ZoAQ4p8GJwzanAAAIABJREFU/lPgr9daP/3G0n8D/AdC/NqjAP4F4N/+iy/5/x7vx5nTh/8NZQSX5i1SFbai8WgwEqM8SnlUrXjt8DT/O3tvkjPblqZpPavepRV/ec49tyDCiciCBgyCNiNhDDSSJnOICdCjkYNASLQApWeEX/dbnHvOX1i5y1XSME+EEEoJKUhPpeJtbZlkkmnL9tK7v+8tqPLEqi0lKr71v3Hnr3R5IVQtzly5ho5dPEFxZGO56Du6WZOFImuDRLMbDnjXYNOMUg02SrTK2DTwkTfSxhCjopJXqnCFoog80SyGSTSIJdHomUUakrEsesOkWur0+SacFZakEyJOzKWjXT19XBiUZtYNk6mIWpOyp2eiTisiJ1JYQWvqArZacGLE6EKeNXO6I7tEiZk+eDbywrtwZKFYRUVeHB/Wd7JRXHSNKAmvNEndJhkmJZq88JDfkBgu5QNjLRFZs50HkpJU0XMVLZKIMZkuDlztBocmx4YJReUzQfV4EbjUGmF2LKpCCE11CLR4pIR33bFoQxs9nRhItsI2I5GWMheMj8hNj05HXtwn5tJwlR1BKLyQDFnfMqOyZGl6BgFDrHHXhSf1hiues235yX6LkpaJJ5CGICVeSryoqKJlO89IapKWHHJLkyNd8CSr2Y4n2HiCvsUY6CJ5dy0XbSmioVojd9NCFg4jI5Oueb6+YWMCPUNzxQTBr/afMZkOaOjljJEriMyX+gmfFRdT4YvAhpVdmHBzwbmMlwElAkMubNMbdZmRa8ZXW7Z+IOlEN15p7AHpJbGxSKH4fjxzSjs2y0QphhJq7sJvSGFpy4Wv1TfYshCFwsoB4VYM7zQi4KqVX9QPSPU9YdpQeQglodPAxd0zC8NkHM9+wKaRihOVmtFzJosapTJdtTBg6XwBJQg50S6GY4H5vscXxaIrRCq8lm9Yo0UmuArNNkcSnt1yIBWHTJZgNUIJctEkYZHF8672uBBolSFrgbGRqDVZZWbhKJtI7w1Sw3i549fNRyZpaGTFQ3qhUjNVHlDJUS0dubL0YuR+fqMuI70cEGtGlMhLfqBNM0tjuag9OsMoesSaOdQtP4ofaNWFyp8w2eGFIpSWr/kDWSt6/shsNLKs5EWwpobP6a/RyqPrAxtRuPQ1vjhsGBBUFGEYVEWUljqtGDKyFDKGSORsdhBWgmg50/A/b/5LfgpvNFNiEDsKC1kZdFwIKOpwwTJhXeQhnzi7Da+l5qV6ZMMFlQVJKKK1bJeFas00+UKaelp9YbUzjfBs/JVoa6K17OORs6txKaNz4sP6G1pG5rrBy5Xf+ntuIhaBW2dSJUA4XJxZtOFy9TidQJ8ZTWFOHa66cMFSiqAWE4Pc00m4WIWoHmmmFZMs3hRGo1HA0VaA5awaoGaiwdmA0SsirMDt3ClJYtSZTk+cdUNSmqAqzDoTRYVfdtTAJq1cdMVsOuqYaPKISomTqaFoKBlNRIaVg9txtYbX+hlFZKgsm/TGqe6xXpCUu0lLpOIx/sxJ3ZPTrcFlVA5jCl5UKJfJneavhyu68ZwrDSZwN77SVmd+Vk8EZxmpqNaVhRpK5Cruyc6yKkvHzCobunSlk55YjVxNg4+C0dQY/8pi4P688O28UJ0CV1FxdhWTslxUDyiikrw1HXX1TAhX5LoSfCa/Oioh8bqjy4pQ9rzohEfzUR3QzuMYscUTT5p6qXhQI7VJvFlLNJ41aYLoyKljzHuursLIW/VmEbdpaZdWKvX/tjD8D4+/KKErpUQhxH/LjZwp4O9KKf+bEOJfAf9LKeV/Av4HoAP+RyEEwE+llP+mlHIQQvz33EghwL/6dwaJvxSGy4hYau79O9f6HWxgKg2rcuS4UMlCZWfsfOFgew7Z4ItFpMK52tGnz3ysfmMRG8RqUWVhiYo1VpzTHU2UdFPP2CuicKTgyVEQteRh/Y2h7DDMrM6hisflFbOOSNVgm5nJKsgFsSRcOLGamsUYTu2GJLZQFJUPVKvhIiSHascsa3IpXEWPUZFZKGqfeY8PUBWiNrxUd5SsqLNmk858ml9IauS1PLCIDZ0ZEDJwVTXeaio10qSveAxv7hmEYM4PpKLJXtGomf24UNsBAahpxaMptUSWjLQBExay0Rx5ZJIth/KBOhWqmMhk7pYT0QoMGuUzQhaC1OSiKSqjfEYLy7Le4bWlym/ktOArzaas2JzpY4DmhTE3jPZbhFRctWNMkiI70DW7NRON5S6+kxOkaBjcFh0lx3pLJVfe3SOfgufuUlhqwVAiXliOesvGaZI606uRogL7vGUTFybpaOxMDAWTGqQT2Fw4N4mHOZD1QnKGQUL7ywW5LOAs0WfAYwhcdcsqFC4UgoxMVPzYfeJqGvb+TCoJEQxRVNhw4pI/3LpzsbRiYJKWs7JsJ8vB12TZsg0ncmtIBGbt2MSZTi7YVdz0ULZBiAUfFHOj0GXC5jPfrQrvPEFaJqFYm3t0WRjdAzYp1mSYhKXIxKVXPKmAlReKS/RcUSXjjcXqkW/GLzx0B2SSfHZPRL+jTx6Rep7Lz4iSeJ8Tv9bfsAkzEUubZ1gTz/FAShIuDm0WsrtpYHytmJyinyYWKh7OM0/nK1PVIkzPpCo6e8Z3ApkEOQlIgk0eSEVj54IqCS0KOw58rp8hJaLOlCSYUk3JilAqKjGx4Qt3+ciVDVpk6jIRtWEunq/3n5BeULmEyNwc5/mRiCULS61XkhwpestZ7xE5cHd5p9Nnfm2+ZRffsTrhrwrfOS6+5WTvkUrireBd39Mny6N55dP8R7xuEMuWs9oxkgm5oS9X7soXTvGZs7jnfee4twuNTOzixLfxH/iD/c/IUoBcefBvZPEBHQfaLGlZ6KUgB88kbmvoSs6cxIZV1CyiQRTBnZ4haLZ5Rawv9HHi4h//HDRdONR3iFXTRU/NTFxbgr7d/yJgcoar7RDB8LB8ZbIr51aTigSh+HadqUPhjMAVyWgLbRl5Y8tZ3zPS0CyFr/uai2xxeQUyd+uRLDRf1Y5JdZx15u058c36lVZMqFCDNLzJj8RYY9HU2qPygHQvPImZ1q2YIJnVPaN1ZBQ6eaw4E0Wh48C7e0Azo4jspxf6OHBdd7BWiKWmzm+8mMKkElla9tcTvtQsSbILGW8Ev+RnTnWDTxqpBG5eeDDv9POBF/mBLg4QChe1YXYGkxcqE9nOFy75kZPdMnMjvXUJ3MfDn0m+QcRE/nMw/qqhzgtr1nhVIUzi6/3CXTlzF65kPVKniXd9x9n2LMoxJUu0Du0zu7DQjjNRGfo0M3eCB/+Fb9RXojZUeoYgOemeQfbMckebB67C8cMXwdPmK3Pl+an5BjsrYl0TlCCKgheag9qCzOw4c3ILwnlOW8dx2yE03JcXZASS5G5aWF1iv/7I19Lx2X3P34s9767lB3/CSc9SFEpmtsOVN1kx1WeKzQxSIEri++VXNnHLB7On/4+k1/UvPaGjlPKvgX/9//jsv/u/Xf/X/57v/h3wd////br/b3ApIcs7mzDwNAt+EztkAi0CSSUMHukWsqhBFrwwaDIZj/WBlDTHqkcWxyh75AIxViShuKo916Tx7cqzGGnKzFE3lCK4hC2tDPi6QYqMKIVtOtHld3r1TtYrV1FBkSxSIqWmKYWIQ6lAFlCViPQzKtUsVuLkyoYji068yQ6kIo0tczBsDhPGaYy9MhbFXZxRS0SVTLvO7MoJlY9En7jGDU2KKDUgOs8+nojJ0S5nkobZbf6srzB064woks5PRFWwxXNfDqxGsiSDwBOVu61iYmYOgSgkr+6Jd7dD24wogdrPROnIseIxnmjXgdeyQ7gFClRpol4qdvKVap74h+0jQiliMqRoWVCkIHkKP1IthtgWunShaBhFS64aVNCIypDLRL0mxqJoaCkysBhDIGFkoAsnwLBfR2pm3rjHFpiyxRBQOTGbmn0+slEJEb+QkiTkPWtoWStJ1ALDzF+tv9CzUuuZ99KhisbEyKdyprevPMk3fjMtOSsmqXHpSF126LUihkJSmsVMeFOYdGI7X2jKlXBtmZuW7CQpRoSMFBS6jOzjkd+t77zj+NX+jsnsWUvH8/QnvK6R640YPZ5OTJsOLwyrkbzrnn1ONAnWqrAaMGSuquZkPzHmB3quiKiIWbNZCnNyrI0huchF3fO3p5+JXrEzF4zJNHngo/oHnu3Xm9sz/TU/62+Z5ZYmFh6XI7Ikil9oZWAXL2RfE6Si8QtSBqqlpvFnmnykzD0iz5SN4Zvlymf9Abkq7tYJOzbYYeaH5ZV3v/Li9kQ0J7elnj0ltsxe8Qf7t1R+QWKpwkrpFOfcY9fIPl5JzlGiQpYMoVCLiToNiFrwEN9x0iNCACtIQlKUpfgKJxPBC2JlaKeRsWn5MJxIUpGyJohbvEzLSk4VZ/uAU4fbM+sLkzLEXiGsoIkLXigOdgeqIChUeaLLZ5oyo0rhq3umXRfMorB2YbOOdCpwLWD0zLqRECOVPhPqioWWrZ+xPrK4HSE3bMqCTIoiJbtpohYDF9XQ5MjFamQA9oWAIWjNWWwwTvJtvrBZI60/0xrPc/BcaktTIlPM1Kulj57JVmgUqxQkDb5kIBFlRCTB4gpvsidqkBT65JmNxUSNyoGjaoiLRhSLyQYbLbOCUElidrdgYhpkzORimaPG1xUWCazkVDjKLZOo6dVAk26O0yIymQlvC/36RhGRqTiiVFR1wZ01j/7MWLfMyqBMIGWwCpq40MaJVVmU0Ggl2eaCHTUlFnynqF3kKZ244Nn4lVPpmMyGuVY4vfIi7skyIZPGF8GjeLk5SGWNMStSRaIEGSJtnohFIHXhZLasSiNMps8Xis6kaOjCgM8VbUmsBuZKklNGi8zqa4KyCAm1jpx0RZd77uXEKuCiPvKSe+ZcMageRAGv0CrhvaUXE2rQ6C5Sj4W9+kJfjxAsmJWsBF1WNGLlKvf088K0fsPX/QUagSqFwUiSTOzWgWqdOcuesWp5k5J39cTeHKjbmWu9Y9Y1vnb0+UIPbOaRoipKLZmUxdYzi68payHJyAs918bhiqfOnvv4wtgdOArH4B5IGWrOtCGzWRaqoHkcwOW/KPX4v/AXJ3T/KaHuapzcs14yXYhsn0Z0SXxuN3hRUGW9Ba+uhbnrCdJBiBix4vJMVpk1a7qjppeJ5dLi7JV3tWPRYNZMkIGSI2vpmEqDWjxu1CydvuUBiTNzVkRheM8fkSgQGqEyl1Izyg5NpIiE7xbOtmZWFYWAEZLNZeBeDdgyY11kswy811tEEYy65j5mCJYmLLRyZSg1Y/akBeri+fb6maQTs+woZNoyMCE48RGTBpSO9OrCW3eHY+SsGto0I1dDa09AoSsTQdYE6ZlpmcueFBMXNmRh8Epx6bZcGBAoSjJs04lMZNUCZCFRY5WnXQJNjHyYrzzVf+LFPXIvvlCXikFbDk1PlIEsIloXqjCxCWDXle/kC2bwjOZ3nEvkWhpquRKcQudM8pKNX3k6HqBqGPMPJNuiiuFvhgOqrVBEivJ0emDjIykK9CwRVaJbFsLQkURDVAtyKXy//IK+OM5MvFYbjqbBlkgnznwoPyG15lU+8Pvmd+Sg6HXAit9j3VdSP5MsTKJHxJVNOvIv/cSp3DRsr7sNJ7thVhW6zFTOczY9Y9thN5p9mqjUyrenV4ILdNbzw/qFEmt+cw+EwTC4niIEr+JbliLRRAgdNt/cvaXKmCyYyobHcOBielyaGOI9RnhisZzrLV61rKVmG0ZO6ZE2TbyYPd4Y2jwys7DK324tBoxYkfku/crVaNZQ8XPzLW/qnpAsZdEUX1Ai4eKK4ID3FnOZSF3hKS1sfOTjckBLUGXmsm1ISnEyT9yViYzEiJXaTOjY8kQk65rlcoU6cpUOpTIasHnBxMCgtjgRaMxw+6+PCRkvDFJRpYk4W4pvWZ26Cb+15D5eMevIRh+Zy463pmFwFTlp+nJEekeyFp8LyUl2PjCKjwxZca4/UeUR1MSn8BWrNFX0vIo7XvJHUDue119Q+o1Bf8NmXpllT6Tgs+bqaoTIrNLxwEIjLzT5RIvhlW9wwvM13JOpkN5wMRtG11IVT8KwyRc+jAMpnYlF46rAqPZs08IUt6iw0o1wcZpJFWQA4zNmXVFuQlWSv738xJ/ct0h/IgqFxDKUmsoO/O3ye6JyrEvHlTvmZGmLp5kyKXecbc9Bd8Rk2OXPDK6hY8Rng51mvsgnzq6mUgEhFfv5FT0r4qEmS81yX5GiYJAb5lDxi/7Iq9jyUF6JwbAKx6h3aJ95JdMJz6dw4l3vWYUg6J53sWErz4Qo+VBO7JaFZj0TdUTHisEpRuUoOuJSRJI5dh1n66hKRImJ76Y/sagaKWZsCEx/dmpeRIPnnuQ3VG5FlhWlZrR3fK23HLknuRoRbpKJKCyiQJKZIGF1LXfXAVXfyBtmxCbDq36g1RNtPvF9/pFDfMYPb/xb81+hvWB1Dilgn78S1i1j3lKAa4Rj1VGAoDR1GalTpkyRq74Ru7PsKarhpfQ4v2AyvImKtBhy1LgU6eLItlwoa2I7v/C1/p6LcWzMARE9Lo/IdHO32rCyFzPr2uPdHS/TD0y6o6jI6L5nV77wJjuEEqgp8NEfqYXmS+mZVEfRnri0oDzRSKo8MomKmYomrzz5Ay5ahBtYlgYpC7JIEg2HtsbIiaQiNo80ecCuIwuOVRiCvbmodXE04ZXZdDRsGNpH5uDZ//vpwX8Q/BOh+0eE6Vqa54xA4dVCLQNZSPblzCjvMGROZsPJbHlxd3gqjBgI2XGYnlnTjBYSVU2oOKBKxUVYfqk+sVpNbTK7ZabEhTZXDCxc25ZFnemFBwKD7mnXiJWRFc3Rtsxdz6acGVyPmQNSFybXMUnFkitsidji6cPEp+WF2ApcKtRy5KLFLWst3+pNdY7kWrLkwrbM7BZBvV4I+Y5qCYz2DmkWvIgUs9LmIyIUFgOSyLFusGFBJpCDpFFXooY2jegSiElxNR2MDU/lglKS+zQghCeJnqQzVoIvhj4M6Bg5ygdW7G3cnk9EYclyjxsSKtWUEvB7zZE7tmVAekUyEaEMe/HKpBTLdI8pFzqu9CHwsL7jiidk2A0nclK8bh851RYvWxwzQjmkGeD+HSlmitW3CA5teBBH9CRYc0uvP7M1X9EOZnXPQT4yyJ4oG1pmzJTIRhLomfH0wmPMCjaTpOSb5R0TZ7biikehbI8pHqklQsOp7+h1x7U2nPQOys0UsC8rf73+ilfvnPKJ3brlV33PLC2ujAiRuNQ1h6ZFmhY/nfkYF+7Tnyipw3hYWoHSAaNnVICYa5yc6P1I71asX7lsJH9fVZwqgzAL2+k2qWnOGu80TX8lpyuVnumEIpRnVFoYXUWqItqMPKjP+GCYpKISMwhBEoZ3niE0DGw4yAEdIo0849JK6y8MsmeSCqEXklx4p8Ew89t0jzYRnQaehoG57sibK3WMZLkQ7JYur1ykoxtGBh3RSKz0TLTM7Yh2CeyW5izpQ0JYjymZFAtfui2TrhhVDdmzSxOpVre1j4iUFFjUBlEHbAX3+QtlldzzlZmWo3ngRT4zygqVCw0zW7+ihKabvnBWPdErKIbFVezymVEX+vDCwW5RceW+vKBERuiGs9ji6RC5UKxnCD3b8s6jPyAzRK8JqQMxMVYtTVqJ3vFZf6IsDQfxgdVlRtsj4juTqdiXF4ya2afAfrzyafmJPo/87/znTGwJoWNwNcomtMhkmyCceDIDR7XFiiOv4nu01CTZoi+eHQe+t7+QjcPrHpMlfTlQMyAkGK5I0fCt/8xsbmeTqCWnUlGiIIoGkTKL62j8kaqsCDGhVOSn6p5B9qzlZv646jvaOjI8VLi1pV0E2hyYUsXSaWRyIC0x1tzFK4Qa7MpF1IxtSzsHHtMFuyg8MJiJY3eHSHAWPR/iVz7ymY0fWdjwR/E3/FrvmIuhSRNTSPRyIXaOEz110IylcCkbmvVMlSZ0TiS1x0pBKD1KZ2Q588V2bL3HSkE3K6g7HpdEpmHJjpQziJlcoGTD4+mFpUvs5IWj3iLnwiFXNHHCC8tzOnDxHxnShSU2jHLPta2IWqHlgCmelpmhapC+EHzL1WiSdDzmF0oW5ALVCM2q2TcTRWom2SPFrRUm2kRxitUZ1CrZhws+tKQISg+0amLaOq7GkpBEJCHt+bJsUQrUBXpxJFSOaHtkVmgl2KQRgHHdovRAQSFUYl9OhCxIIpOVxhuNy56r6slSM4qGogOhOIJwCAR/1JHHGVQbGWt3qzacAn8z/ZEX/UhykeIEKgZazjynV77ILee6R4TIJlwwRXFJ39BmR06SVGuiq/6i3OPf4Z8I3T8iuqZGtv8FQ/pKLn/iXn4l2ox0NWsyDKLjpFrwklwqbMp4HC4mgnKEcivilupApWb+zYfv+Vo9M0rHLkyYpEix5apW3nWLFwktA6bxbNcrd8uRo7gniMzYaqbQcdUds+5ucQR5Aq2QQeJyRPuFtWqow8pdfOcuXXAMbEbQaGSpKWJDt1lBj7d1bh249BaTPPs0sS8XhM/8aFuuSoC94zn9CU/Dx/iZQUSizRzVBsuIEg4TE0fbEpxiST1JQVIbdLmChuQUujlzOj+jjjtS20B75WG5EkXmpGq0VCjjkQVqOVCiReFp8si7qZFlxTvB/XKkRiKXiUVroky82g+0ab1FZ6iesRgWo9lNIIg8+6/c2a9YNaPqTIvjnB8IukKpgowRW0bqdeTp+hu+y6CuXJt79NrQT4FqEdShQ1aZua7ZFMGQawZVE9DsLx7ybVTvSkJqj7YHlB55tz1JZh4ubwSjqbKn9v4W+GthaSuyunWBIv1t/SGuvIoHBlWzyRecCTyub7SsUBwaTSkVb7OCIljEllIi61JY25ouX7nWjuewkkJN6qFPCyErZGgoRiLFkTstkGWmaq/EGHnfbplNhxULu+WNIDR61vRE7sLM0Dm+uA/MumbPkb6s5HThyvZm0kgnFqn4Y/Mtfqpx64A0hY1YWKqaQTXYKjMJSZw1s04McsucNVkX6vWdmS1FSoJsmFKHUpE5bIjSMKiO1XbciwukHrcEjq1i0IKz7BEqsQgYwj1jVfNrVdPKQLaROWm+dpYqTXRlwMWVnDSpiuzzG4+z5GhbntZ3PpwHbJi4FsWlM0RtyFKwzwfWXNFzZr/euka9qBhLQ0yWWCyjaujTBR+feAhnqnphk0+o7LjMjygKdz4ydYpDfmDNjhmHEyuzsMyiIiFo8srKjmo9U4TjJd2ho0HkQiiKRdQUKkRKXGWPNpkmZWSRt1By4VAiYOyIDJJmlryJBwZV2PuZc3rm69IymZYpOGbTcWg7vNG00fNN+Zm0i6BmUDViXbH5RKZBFUNpHGpYqTlSTSfGWhKLZlEakwtzUUBLQfAqP5KEohMDjbtSpYE1auqwo5nBm4xKkavriWvFpCuyqG7EUjpMWjHSUwvPWHsEkaAbTnbHIi2zTiRlECSWKLlbLRs1MzUOrSQP4Y1tHggiYeMFEw1pVZy1ZzYdihVvNEvRbKrIF3XHOz0LlqVYdFnJyqGixASFbyoigpPrWbzDmJHH5TOD7SlRcdV3bHxgkIKxbZFkrvlCfVqpQ6YfNgy5Zqwk+zxjBsGxaslY6vWVbln5LkWO6YkvzROxLUS18Dh/4YNQVGFlWCt+jv+cF7Pj4BrGSqFZCMrx4N/xsqH2E5Fb1Ms2H2n8hWzkTW9bBGuv6auvbNTKu34g6S2n1ELJ3KUZ4yO1UmThyRqepgMmr3y//olSKSal2KgLa6yJ2rHIzCosNiZGp5jtJ0QtUeWWQ1f7iZEeJTTVGKmcYysH5qyJBnLK2JL5bnjnF7tjVoZQHC5nPq5HpF25RM9r/4AXjt83v2OQF3SjGLRlx5lDs+Ob14VtWHhvGigJn2vadaUMhuHuDl0iuTgGWeGKY6kNmwgnKfmkDG39T4TuPzkIDNPpQgwrtjVMqeFQNvyYHvi1+YQonln1bMuRjgFVMjpHNtGTRCbWijkpvuoNanT80nyghMJqG9ap0IsLvXnjvBW8NJpZdtgUqURiKJaHtLImx6xv4aspZqQS7PzIqFq25ULvF9p1ZQo9S3Qo45mE5NVtiLlAXNlPUFZJKyum+p48F+Q2UU0jP+5/IJeKXArjYNnkhWAcF33rJV1Lwzn/7pb0rRQPlxNPHGn0eos2KYIEpKxYpGKoemoxQVAMZncjNqWQVM1ZdTyVLX/zdgZ/Qfc/ca4TS5FIX3CXxOI3fNl+QJWVWAp2ifQm01dvXPWGWE+cTIWXhkziXf1ALpJRe1o1MqMpyVKS42r3IBJv8Z1uUWhbqKqZT/ELsor8rO6wUqNSYaZH6MQ/PH1CVAN9HEh6pfjId/En2kVzVN/g5AXEFWNGLrpnGwZO+SNFZlapMTZShSNNXhizZXGORRlWnbmXV57KZ2zytGvgum6Z9pZP0zutHKnnzIql0Z6DuWPJG3LWXNZnPoU/YKaaQe2oS6HKisfpyj+4TPJgdaH1K1NjEQqImSgUr/KR92dBq+fbxJjMth6o7YFHrmzyH1BKs81vDBvLvy3/jNZeeSuP1KXiLl7JVtMFz9FYJt0TksYbR0yK1s9IbnVgEc3JNsxG3d66NYg5otRExZGLrVFlQuVMlR1KFqak8LphzxkjF4zcsRv/nlP7wKAEnzsH6ZHprmfRlqvcQpMYl5YgLryaQJVb+uuMt9DnK37uMAg6MXItmWoKXFaJtCu5uhEmEQNWLZRgELbQ+EREUM0ClwS/1h/p5JFraRmdQ+eM0Su78YBXmn1549Lt8EJCjgzG4X3B+EBXJnomcoA+nOmzp1aBKkR+mSVV8czGs/MwRUMXF0SBd7sjaH2r+iqJppwxzHRiBX/BDgI9KmQzIEuNOL0zS0MWnqm1FOkgLKRSkNEjV4vaTgD4JvH75nvO7LB5opkivzcfWHSNNoqYC5OoyU3Ea4lxC2FZ0dnKnGT8AAAgAElEQVQQpWQUjmieIVlAI4KiSoJgK3YslC4gxUQVRtaQMfmmYbzmnq/9t6zWseGdbxjQa0GXga1acT6i68jsDXkMLI3lh/mdL+0GimYMFbkkdFhYVMPsOnoufLws/L11FK1ReWXDyLveg8xcc8UQR7blhX2KCLmhllcqfUFETZVGDuszUdW4kkhRYYgMU082UPLNnW9loIuZOVckr0ml4mh6RH17TtvsMUlgEQTZ4EvLYLZs8hUhYRPOjLYhAJA5Nj2f4zPt+huvm4qTblmyRUZPXV55mo5s/YRdMjuX6ePKl6rgQ81FWggzq9qySROt95zDE4swrMVRhEaWRF0Kosx8v/xCqjSLMBi1oNNCJQrNaMl2QeqMUBkhFTt54HEZqGyiKp4x1Xhh6ZeZQ9VRpwEbF0bZ3xowtiv9MKK6RCgPdGKgywvprGj0wFB3ZJG4VDtUDqhoGEWLypFdesVLi00j1Cd8/ecGknVLzYmuLES3ko3iuUyssSJdNpw3FktBTmCdJAqHLIW5MiwqIUzDgmBJFTYEsou0Y8GaSC6ZOglkqAmVYJQNd2HG80Jd3VOLI7/qZ+6mASs6PsgZvY7cvJt/WfwToftHxDKslLlmWlfOouOyT4ym5Wj2kDO19Mgy8Che6f3MZpyIpiByxUW31GHgbphRLmG4HdqrbCmyULpENQy8NA+82RqPJRMZjKUvBi0FJWhUMzGrDWd3Sw7PsqaZEzuV+LBMyBlkl9iGAWkz9+uKxeJ7g0gw1VtUWklG83NVMQgJOWOXSC09AmjLlaH0fGk+ksOBg+qo8KAzKWemZNGD50v1SKcH7rKmD1deyyPjsmeQilhqPsx/YjQ9smTG6hZ03JeZoAxHsQcHy85R+SeMALQiLplNesPnhjv/mXYZmbqBo+hvQ/wMSQpm2SBkxgtFzIYp1VTiwoql0jOTrOnSFZtn1tzxXtdobVmjwImFe3+ga65IaZHScycO7PKF17JH5QWzCtqciXXhzT6yaIMVIx1vVGnm6O456xVnE750zGHLtdzT+kiTZpSM5AwtM1ltuDhDFIWD3KJ1JAjFIWoKCukC5w5+ED/jXUudr/RhoZszhhO7svKT+oDsNJ/MZ97VA7pEvpQ9gY7v/FdEqXjVj1zNhlk7rJh4Wt/IS2aaehaluJieSd2RKmjWgElQvOKze7yJuIvnPv2IDYpDteEqK3ysaf2Ik54mzoRQ3SZcUrP2hkRFUYHRNAi9pyLe3rznhd/EIxMShUdFy6wzxShEgcHVrNlQtESGiWwC55RYlWXSt+q3B//GgOHa9ayxIYkKryxX0VOa5c9dSpFFWP7YPxG8xKyRx+NCqSS1vfIpHBmd5Ji/AxvwShPCgTxKUiNuJiJdyHSc1I5tuTJrx3fTrxSrEbowpT1ZK+pBo21k6wOgMGTqrGmWm3Fh0RuS1UgiD/mNxc94WnzSFKFQwfBr/R2PvLLPb9ylN1qz5Z173sUTSUSCEjhmUrIgFELc+iZLUFRpQOWES4F+PrKeHelu5VpVxGKZssRjKOE2KRFa8aYk359/pQ2ZXT4wBUHPlTfTInJgG2em0vAiv0XVVywjIiju1zNGKV7YEKVlyg1f3DO7fOEqfmAQNaiZu3VgkbBf3rFB0MSB982Gs21oZOJOnnFTwOXIUGW0iEyVIEgY5CMlJk7ynp0+YVOh54hOMxutuThHFC1TqWkIfFp+5Y/tt5RUOMsN9TjQyytCLPyv999wVj12lHiX6OeRjTmjCZzlnq+bHUto2MgTz+uP1HFmyXAwW0QfEfbK03ri+8Xzap44iJ7P+omNtIho0SWzSkktLmxImJg45w11XBFK4pjxXmDrgSKvIKtbH3WSqFEgassse1TKFJOZdYXOgd6eWZRHmYGNjBjRsDVHGnXBupUULbm1BN8yxy2maHI2ZAwbRrbe87BckCli5B/4KvZc6o90XpKXmWwFoigO6hN305G+zHScWejp4spu1bzbyIt4ZNGCK3tkXqB1+KxIUeGmho2/goeH/kK0hYPZkRNcHhRJWL6KZ/7F8n9Q5cDH8hulSC75mYOq8clwFR2JlnfzAKrQMtKvB7blyhpqlCnMbQ1hpVZHotryo/srtnpmG0b+xfpv2PtP/JFPBJ3YLQs/iD8gDVzyAVbPgkPZBgnkJPDaMsiKJAR5J6kXA8KxX698nCZkEsRsONV3CASrsdiQ2NiB38Q9cxWxa6C/3oKl/2PAPxG6f0SotGKk4Lq1eFFzyhoZFBmBFYksM5t05t6fqNIRlQqIlSg6WilQCB7MgatvEdc9e5FY9MJuGtgnj0wNMkpm4UhCIEuhW1ce45GcFbNxTLHmUH0gZMGmXBCXQDSSuyFzbh9pOOKt4a/Cz1Rxg28+kk1zIyRkgpc4cSJZwSA0Is4EKiZb4+L15tZLEplBzpb9Ehl2hbZckWRG7jjpDV+3DXrx3IkzMilOdc9Rdwy6xsqAR/K22eHyRLVm9vlMHT3XpqXkQBAVSVh+axzrRlGHjl4HmrSQxEdSdrilxV4iO3dmqppb0TQfmKeKa9Vwnw9EZanyBa09WSe0nGnSBRE8jZh5MTsu1Kgc0TLxf7L3JruSZVea3rfb01tzW/fomCSVlSoUNNBA7z/SQFMJhVIqM0hG0D38ut9r17rT7LNbDYyQXiCBBAiuZzDYWXutf30fQjNyz2v6Z/KyoxKORryRvKJVM1VpEEEgvMA3migbipAEpdHZULLgz+JHvm3uGcsjP8g/sc0LG3XmXLZc7B2ChFghS4EUDt9o2jwzqx1LslA27ONXRrFjrg1WppvwXiVUyWzyzELDYM+McaDNgk2KnFPFcX5mEQNfomQbTqxiQDEjhWJJK03x4Aql9mQlQBdUWOh8QWKRRXG2mjFvufNXYuxYVc1GHDAqs8YNr23PJ/0BLVeMutKKM50L7L3jT/aJb1XFQgsp/c3dIng4XXmSn1FBIUpDFgO2KIKXzKbGywphEk505HRrGB7TQlaKJAQprrzXd6yxIiaJJlALh/GFXXnnWyW4mAEhK0SGTb5y0A/MskaQKVlQRU+RmioLXvXNtPKvVYvVhTwFpJPcpQO7yzv6ksk6o9qA6DyjHPiT/iMCzSRrns2BLDWzrIi2pkjJILfUnKjilYvZo8TCagRSKWZ5RxYVyhU2ccUycp4DoblyzQOu6knZ4oTGY7hUlhexx+GJ8crU7AmqoWTDsCbWPJDXyFIsogkoGZhNwxgNcoUn5TCd55GvRP8df94OLMWyZMVTOGBXy8dx5K2vaI24qQmzJChJEoFF1HitGI1B5psNQ4uCkZDzwr38wl064/IfILeY2+0qtQt8kw9YD6GzvKsdG05EW+hi4qgbTkLipEHIhWs2tG3G0zCZjgs9q7lx3SKSmDVH3VCypGXG9wlrGqzLSJX43fqFrCXaCaZkcFwRLnOsdzTRU+eAExtcnUklQircXWc+qBc+my2nZqCgqePtsMUJhRCGo97Qp4mMJgcFKuB05G24I4XMUA6sbsuiW/61+0AvJorObM4Lb9UTZ9sz6j3Bj2gCj/6de3mkcgs78xUTAtopPscfCLlGzm+o0GJkQvgLVjp26UjuBFW60JsTx/KIl4JkC9v5ilGRqfFcyiPb7ZU8Z5pY2OR7UtyAEYzWstWRIiIxBtplYeOuxGhu4F2luF88aTDYHLg2FlsUihXlIye5ZfSaRda4AlEo3uMjczQMbsQYhZ3PGHdhaRWCGmEEVgScNlxNj0lwtj2X+YluXWjkinOGrRw5mQ1dWXG24qP7RhULudQM1ZFuWTiLii/NPS9VRa+/8iAXRtWiSVhZ0HolJU2doYtvHPMzV3EzPsymEEXF0gism+jkzIfxC5PpcVrQ+wUpFe/iA996yzMXhnADJFdjINkFaTImR7xoiUngLSgtacuF+/RKzUcu7YYk/2GK+LurYbel3g6IKVNzYNUtOmY6PTNMM7FRDO6EzrDjjUO1Z2l63uJH9uYrZjZUIlGIHNN3bMeRva3xMjL3FkFGuIJyFmU9WkT26zuyGPJqCOuA3obbqgCLJaGjIDczdJ7ZDDzPM8ewY9aGXk78zn/jLk+cYwdiQXlN1BWjUbx0d8yiJYWaR/dOoxL/Mv8PGuVZ3ne82o8swnB/vvJYH1ibguO2bhhXzdpavqwPHO09fbxClNBIhBRUaUVHy6N/RTjJICYIkkFN7PzCX+sfWfJAqVectAiR8HJDKpomCTajxXjNWk/INTHqe3xVSNayKolKghQrZPLEbOnzmRIDfTnS5sSUWu6qI+0auRMTZz5ytBUDV3b6wrJRvKues/yOjfrAPG457Q27ZSSKhY/nM5MYGGVLzoYhT3R+ZlhmfpV3vNV7Jjom/sB/mf7KkDoQDYQejcSpCkokiooqj5zkwF/Nd8zCkqUkB4X2M1TqRsUXASMjdk0IFalWR79O2LGhDx2bYDgukJ8z3frGtamZ1I5RtOySZSMXpKlRYsZIic0LRUactEQhebiOmM5xaht0lHTZ40RHlwPnMrCOFaA56A/8oh751H7E+MA2HenXgBaGX6sdxVmyUgQjSLqinh1SeHpzRRHYm3fu3MjP6g+I8EyXFO0pU/SIPQru+q+QM1s70nrP27BjzD1KJ0wUVGIl+Io6eZpcOArFn9ofONo7SjYIIkYkGlHTpAtNGW9NYk63Q5H5QB0Ddz7xEF756/570px42e1RJbNdCrW/IlZFHhQyrcxuS9GZrjh6VnLMCAGiBHp1ZNYbdEyY/szD8huLkyjT4IwlULGWQFSKIQXOckNNoISCUtClF5ysQa5c7IaiJBfRclWFk7Ik0UE0XOsK/bcYg8wLrkhIiaI1Zl3JGA7qDmUKMhWKOWFqS62uoFamukMshrXSjKZBasUhb9HF0cqFziy8qS0h3ZOU5n4ZMfnEF5uZ9JZarJQsEBl2+QprRuvAbhoxynEXrky2ZrOsnPqC62qSVFgd+MP6lVRqXK44G4O3DSdRMauKkCRyPrDTFVszgpA85TfWUONky24KnErLolvebY+S9+zWK0pmfvJfGHxhNLdc685fOMsdY3VTTdVxppkWrl1HTDWLqujUiFYOx81BXc2eqzCMYkcjAqlAyQqTI/Oy42X/QFGeaED2mavZko2kDyNJWeRsuJqWyidKjhzrO2wp9H5EeQMq4WvJVTVsliPP/is7ceCkN5zrDSUZZAFPQzS3fOVTdGyWCw+842XmA9/ohOMln/nmv6P3E1/qB7RJeKl5V8/kLLhrHc/fLjyab8x1zWIFf9E/ItbAqBvqErA6sisTZpkRdstYPXEwEotEpXs+y4Zf9I/8GP/Cxr6CvNILzVkaMjXVxfBafaCqIras2DTiSsOlf6RUkWAVyIzJmrNs8NJwKFtSkXw8d4y8s3Fv2PaAt5FcLJt55iJ3jGXAmZogWqJK1NXKaGpIhZQk53z7HZq1IevIpG4KOtSK94bgG0oubPJMNrdvxpfhCSdrirE8z1+5Ww9cxDNGLpz1HQMjVbqy6nuOVYerLP98+ZlczdyXA7MYCHRcqFmlpSoOlaHCo2xGhYWr6ZkV3P9nNyD8o6H7D61iOzrdIJYD19CR29uF4BATa1HcXQ/k1fDaPeCN5mh2KBF5rR5wQlG3ijIZlJC0laIRCpED3zpFHxdWecejWCAsdPkbLks26cgS91AUJ6WQ3vE4zWQ/Y7NjVRVe3TItJmtO9keKS2RjacIbc32P04o1tzRF0MZMUhW1vLKNI51YcGMHVeEst1TJ8bvx/+ZiM/U60kjNdhpZhWHONe9acJaWoiWND9SzoCcgykDSls0ysZcTwRg64TE+sbSKKVagC5qVd9VixUTKkQ2ORd9RyTM6K+oQMKLlzVQEM7KKlqB73vQDlpFVVYicufPvrKVhE8+06cRWvdGZlVwUaW5pfaBBkpREGrBhwRTFUBYgc7JbnLCc5Y7GfcOKjIoNKiYmUXDrzHb+hqVlbfeQFft15mEqfH6QONFi8Kw0SDJBG0gCa2dy6akuCWsm5krxuf2RgOaiDU0J2OQxYaXXy20VpXrqHNj7C11YGfKFi9zga8vGrdy5yKFqcP2Az39Da6wjDQLxNwjyRV7YO0cKJ6bcMdeFk73jIrZgEnWfeU5HnvJX/CyxJvLebWnUCRtGNmHm0Rdetx1/qv/AUbdkqflOKnal8HANKMlNfL9usTrjVcD0V0bZoJJhnL6j5c9c4iMpWersudgtbZnIOVFUzTg98bGc2V+gVhktDvxadZgYCEKj/AJhjxUBKwpuc1NQFQFNWbEuofNNRj5pzS4uHLE8ry/c5TPP5y9IAX/ZP/PVfiBlybu+49XesQkTBc29PCP2gp/77zhse6RQ1OJC4wslKaKqOfpn1jqjy4RVKx/WNzoZqEbJoEc+p4FD9YySC3mQbNMVnwtMPfa4p3P3MHxFl0TqDsxqJCtDF0EWyVkNXKstRdw4llWI7NfAVRbsCr4SEGpskrQ+4ipBiJIk4T080pabhk2cGrYmYesb1V4LQZ8qNtMrplm4W1+5t1cW33PpKvwqOJV7NuuKVTOLrhiVJdJj5Y2bqITirf3AqesRUeOKoZQLNgdCK6nLGxsnCRWMauAi7+jkTN1d2JSE4wPe7KnjQimZVAmuUpOlIIYGnQRP7kT2I9obls6RK4+UmiIjNw+F5q/VD+RyZk2GdlWYN8/ezPCjoFknGuvZv10ZreasFQOJJq/s7TfqVMiVJHpJUAqVFmxMxFLfpnT6ymh7dBTcT1d+bXeEqkbnhBCJOkWEy2gUSgaCBQlUWbIpI7Nt6MKMjpl2eccbw1Ip3tIdv6hHgmoItSVnQ01BkzA+IZPCuJpiC4vcEyxc8jNT6bAy0aVA7zNv8h5CC/2VTky0ecKmFZix0pNkpNcjJ93yJnY0wWOSIcaea92jNpG6HdlP/0ZlPefc8619YtEVyMxJDRzbMxWBc67plpnZtwST6ZOj9yuKwk4sNP2Vo63INvEq91RK4Bw0QdKN73jRUC8ZsxZUHcn1BDZxERte6h3ke+wSeQxfWLtEliecNFyM4ot5wJkOYk83K2R55S6dKSUiU41ZVkSC9Wo55g3nQd5ycUshiIGyaDb1yCUPzKYhiXtOG81jWGnSTLceCWXHYiN9WmmYaHJiKwX1PBBtQxdGnNGcSofTNUlUTFIjc6EzlmwzxvxD/fV3Vz4UXJR014nr0FOi4SoKQ/hMqBKrqlnMhoqMEYlFGVYGQrb4smUfr6zS8q7u8XtL42Y2uSDLTCo7SmkYZSLpxKlpMOtCUzJrLYhkFqWBhkXvEEbRzA5CZrd+46juGcqZfjVYv4JqebdbKjfyvVgJ9DQqk9WFc1Uxtztey8PtBdRLBj/xmA6gHIdux6Q6zKRY18Kn5pnRNESj+XH+jV5eWdYNThl0krhqT/EKnTVVmoilIyWFmTRVKSTluaqG0TQoCftw5IfyK8EbWv/Gk9pRdGZmSyr37KaVFUsWAasDk9GIegSViNJhRGGiR0ZJPRZaFRhUoAtXwnVDMQvXqsfmTBUj+3Jl1Zo74dB6YRk0q8i4rEhyZdICnRJZez7fbTjqgdf2A4/rO/dpJIaabXCcwjNuUvy+PvBJ/MRUQ9GGczUQssDJgVqsDMvKrvnKe24ZmzucrMhoqrySRIUQKzs5UsUZu7bs4m/04YpKEQk4rQm6IeSatr1wjJb//fEnfqsf0WJhx8QmrGgZEToBkY0akdKzCYFqlSxqwFtFWwJCFFI/UNIFbR0xaM51g5eFl3rL6FtSDfnd8y47olDokomiIIXGlsxFw0iLSCtqurBdruRNgSZwLQ3RVJyGPXV21OHm11UngSDzHF95U3tMFJRVo5zl3Pd8tVtiEfgkKUaxW47UMhDXLdKsHKuOUdwufkfZE3TgyZz44F/YckHFPdonfvQnHsJEm2ZyPfP1+Z4sF4Kq2boLb3aHpCABozKy0cwYpk3DolokGXLPh3CgYcSUjl2+cBQWtWZmqzhWPT6u0Eeu609kZwm9gloSpfkbj7Ag6yufu4/USvKkGpr1jq1eec/3CKEJWtF6T1CaQoEESQnu/FcqWVjoSHUgVDV1CCTVIGdHWxYEiigTs7V4b3mVNTvv6GbPs7lN0Gz2dGLkre35KK7MqeYpf4KSsfmKER4lB5psWcuGwQdycThpyFJT5cChecSbzFt9x8ZdGOWGfZnY+hNeWVKpeatupoAmOd7Lno0/UckVR4uR7nY1nANJadS8EKodIWVemx0lSU6x5nE80k4L2kZ0mXnve17lnoPa0kWPixVftcYUSQkdT9KhzSdcTrRlZhWWXFY264FJ1wzqG0pFhE2cly0qFxAbugxdSWQZ2McrgsSqNKZkSpmZdEtTAgsSJ2pMARscd+JIXQI7DyG03IkT+9WxLROT0NTuyFd+5FPzCKqQEaSkmMOOEA2LtlzNlvv6zFVt2GZHpTxRFIqvUaFD9gdO5olr7rHrwsne4+qFsRoYxhmfNQ/rhXaRIDVfy/e4rFGqYEthGyfq4BExc013TGqgTiNOFrqcmE19y7CmiKgicMv2XdXAe77nX8Zf+Uv/I7k1hMlSiyuDOrE2LdpdUFPmonsOTcWsLVe944M/UhrP0+WVKVtiUeig+XKf+D4vWPPGLG/Tye8vB6ZlzyAmer3QVzM5a7LIWO2xBDIOVyy9uxA34Oio0si9O2KCIKfqlmdNK3/M/4OJJx7iRJzgLUDOPVneprZJS7zQnE3HNlz4X5f/i6vb8fNmwYsWqT1zfMCWM5vVIP2WulYsuifKFpMSSVeYnLGuRfqMD1+o8j8ydH93NU+Or395Ze4EsoZn+8Y3VXNqB6ycSEnRuhmRBKuoyEpRECQp8MFwyQ1WGNaimWxFaRwinlAkjnKPihbXPnJqWlpWjInYJPi1ucMUh1PwOL+jXKSaJTJVxG4myxVlF4ZlYrHfIdo3urBSmxvK4ZIGvukdxiSWdmCIF6o48RgOJCkJUVOywCXLTHdrbmqJprBozanp2YqJt6qncpmfxpVLnDinDtFlVAwoKalCw/9ptxiVESEiONLHd9bScmz2nE2PLRlZElVeGfSIIKLqwCsfuZqGLC2UhXTJ/La7wxmBF4Z9OONjRag7Wn8iJcVz+cbUSaSosNcOKyJL7jh1PW/6A511zKXFi9tLEBnRqbt5YoXnbAee4jce4ysbBNdrxu0Ub0Ux1xWXnGmyZ801S4ap6nlpoVhDw8xZDHg0R7njm93T5pUgBEpGuvTKQX6kyR6XFA54yCNVOWPUQl0SFz1gy838UamJzo7EYnHUSDlhCoxS8nk38GvfMipw3LMkQyiZf4ovbOUFVTxLrpjCPVEofNeykzMl9RQh0EnwQ3bsgCsdVTmTiyeVHX9VH5m7Fq8rsr6gxoyMgiQltVjRqUBeabInBYFWNw3YB3dinz8xFsXP+z9ywhKk5YflgEgFkS3NCpDxaIJVNGnl3FmOteNFPnNttkyi43E5sGYFdYuQgSIMD8vKpSksugYS98uJTXR8XA80ZcZXFu2vrLXkcTmhjWfTvPPz8BOfzI6oLFo5fNogJHRuufk4w0LvI+e+g3LLADrZoAVcVMO5GI5qx6/NM1J4tIaeMxdV06ZXZl2RGouPlrq9+ZGbspCFoMsTjYMvEkIf6H2iNQl1kXzXnZm1ZxaWKHo2eear2VGxomPgfj6zSoOot6RS8JXiQ3ih9xPDPHKtWxq9IufIOddM5Q6RJV+sossjymm6XFGywAhwqsUhuQx3lPQjjSiUtWLSe0rUIDN7+Q3P3c1LKyQqJhbVkVEosSKzZFEdIDB24UU/ktCkUKFLwjjBx+mdWCpktDQhgo34MFKRmUTLJq48+QurWPlNfsda1TyEiamqCEpQl4jAMfYaZRJ9GfGhxWfLUlUsvuU+Re5i4mQzpR54z5mzaam8Z1ud6cwB2T/hiqYumt6diLpnF96Z4z3WTLTZQRB0i8Klikom7jhyyR1TvsGEdUjUOaCTpJUrdU5QRX7vfuEodnwvvxJCTbSFhhtEvZe/UdvbsY6nYUmJisIiNBTJJo7s5zPCKp70AZMjo9lhw8Ksn+lFzVv5QBCCJht6rrRiQftMo0baJfB79yti3fISt9Spx6aFqrwgmoDmTLV6ktS85GdCbYhlg00zd+7ASRuSVuSo+GH8hVz/wGIrrLxtF36pvqOgqGKhyMyed+7FgSU2tKxczBanoY4XommxQtKYE/Va8SG/skw7XmxGtpG5Bh8dn+ofyNlyosdcIY0QV2juzwyyIhlHHWpcsRQjqdKKzAu75o1GzXw3vVOHTMqS5AVBL8QakimsqqWeJnJJRCP4J/8L0bWoObI+woRkzzcqIoN+I9uCsQs/Lp842kc+xhc2tmbnVoa8ZVXmZrzQirqsZGHBtSiZyUWh8WxiIc7Lf2br8f/VPxq6/8CKq0d0lmryeOMZLQgkuQhElpyrHqsyPgxUyxW7BmgURnl24o2+XJHA0uxJQkCeuZoa4ycuWNq0cuwGosykkgBD52BbvSNVYJYPHOwdPnbotqJ3jnv3jhGBJDNf2OJRVE3HA5mr3FNLwcFWWD1hfGQthagE5/J4m8IRCbXBiK9cY0OVVqgzsRiEOTKExKgtVkWGdMUmx5JbFgFrVfEg3vlaP1PkSjYOKWs6rlzY8i03XNUTV1WziJo+r9iSsCRqHI/xhS/1I1O+5V8oFhsCa1I86U+odY+KC5/sR1ZdMcstSd0+Mr4zDOOCDImfps/krPmqnxG7zGt/R9SRz/KBslpUDGQlibLGq8Bs7xnyRJKSh/jOporc+YISnsk0LLpDJJAyUcl7otccRUsdEiJYXvNHrqVjocMLy6IcIntmP2BsJNeexl14zIacBSkUepH4sJwYdMaqic/mI9kYXC7IvLCGjnMWfG2fwBtMinRhYfBnoiqYNaJtRJTEbjlRTCb4ipWMD5laF7wAoQvORlCJJ0c3yE4AACAASURBVP+Jxgt6ATpZwiZj18RdvvLfy4+MpeaqOiKGd/2IEBJTFPenkbip+SH8hTZCU05YUWgah/KCpW/xDtbLI4lMbxPaBK5akgBjRvpisS10caZ1nm+t4edtg6ss7xFKsZhFsdgNRlqoZ6TKNHi+DBtS3VFx5WF95bf6O1qxUqkZK0b26Quf0/f4aLlWOz7Yv5LWzDHvOJYdR3vHKDv2+ZWn64kP5oWEQRTNx3gkykLHkb2UVNHhVcvvT78QjOFSb7gXB85ssMnzbvakrDHCcxQDfXtr4IQsdMJRUs+wLtgSUU7xIh8YG40phb+Ie36cMs/XGZtq3rY1R1kTrWUX3piFpguBS9VxFZ73rsUDq9lSiiRIiWbluq/wsaMzB2wWWOF4q/cMS+Jr37HpAoaItFdaIej1ga3IuNIQSsUc7+nLAS0kmzATEcxVT9Q1Js5sgMZXLKalLxcew5mUM9YJ1lzQSvKkz+gkWaXgW/4BnCIly4lnmnAFKoZ4IStBDWyXM2e5snWB9fTM9a4m2Y6czY1ZmVfqyhF3sC2JzbjyUlkmY4jS4pRiFRYdrowIXroGaRVCSmx6x68ts9vx/2w+UtorQWdaOUMQXHQPJdKHyD4c2C0XVF7RKuDCll/kd9gl4LSilYkNBw6bCqMlD36kFEuVRzbqnaQcRSo2zjHmFjffIYqj6wIJw3u95ZJ2XESHNSs2Lzy7N4R6YJtf+VJ95NQOrFYxRoMVkc7d3MWrDlBGchzo45VX9YwpELVhG96pOdEvCWTkTbZ86/fMtmfImd8vRyr3yrUTFCO5yAETj9wvhSl39F4gYoXYSXbiyFvzwLCe+F/kV17FM6kM5GngrAdCMrzJAWlXmlTxx/hKI1rmssXGxK96w9f+n4lZUyToBFoIZLPiheW17WmkAykY4waBZ1gDTgWaa4NVDj1MfDYf0MnTyQs7/xsv8jvm8MqYN1TpjM0zV9Hy2q1sfeF5PPAmHijNiVlXPIUjMwOH9oGzgGPq+YP4GR0ljVy5OMG17mhxtGXiq/6A63cgM/+SfuaknhjTnhRbmnLhHAeiGtC+oTOJd93RxhUVDRTJV9NRsuCFyBLFf2Ln8f/XPxq6/8AqKdO6E7Z3iF6TEQQEZ9nyondImfihfGXWDdpmpFfU2fGYD7R6ptIJnTx3OSOLoCiweeWn8olr3nDqHjnpiiwrfNZsSTjVUK8zxWQ24Y1V3vg9NhUe5zPVkHGqx8mGVEDXNzH0og1BbugqgU+Ks+6IpWJVke/dZ6o1cdY1r22HISHLSkkLlZnZyjMiSp7CK8Ib1qoma6hK5r3e8lo/ECfDKgdSZVmVYMOV7fKGEZlvmx5PRgiDCx1ZBrwCYuHOOx6Xhcd44VIaXtMdl7zlpO5JQvFT+Y2ddDTGczWai9hSJUM7RagEQWmi3FCkpygQyfBV/oiWik6eMGrEi5vKxQsFSnM0A7O0KBG4D99IqmYjzsw0qBKpfeZ+gjUp7t2VU9ej0q35GS4LdYl82myxOC6bFV9LVtVRl4DMBR0DNQuL1MSoSMLwpTyTVKGdzrR6okojVVJ0S894LxkrSZKREA13YeVrc8f/sfnfkELRKMd37jP74Ei5ZVATH/0XOlouckOjz1zNwNR73s2Ozs+MCV7NA+hCMpYiW7zWtKw8XX5mGyvqmDgKy1XveUt3f8ODNJiSiEKTAKdbhjTRxIRcFMI65CTwWtAKT5ANTfToFla21AVMqJlqqMVCWw78YfwzVVEc+p7XZst7arhgiWh0ysyqgaKYWk0xgSAvQGLRPZMo6LKyvb7jlSKKio0fISlsjoxiBzlzFFvGzYagG/773vI/f/vEfQo4v8fOiV7E24pLO6JUlCxRKTBnS7CZViS+v76xySNXvWUn3jjTU1LmqgY03HyPySNLwsmKOq23x1vIXLsNfTmzMjA6RZM7pFuY6g2zrMhNgzTvPBUIx46P+RUtC48h8aKf2JjrDXwsLWqVWAEmFKR2jGpgGw/kJBBx5kHOrMpRi5U2aHbryLm7x0Z46xVWZq6qphErzZpvecO8crY1VVmYqoZv8Xtc6XDpnhmBV4FeF5yuyFGSk0Tlmfv4zg/pxBf7wHfuyORhs7ti65naCogtJkTypKmEIFpNYzSTe+SAYq7FDSfTRn5Y3smiZpQdzB29Nvy31zcOfWGuBeeu4toFflhGQm84C0VOGorAKI8QEZNn5CJIOVJy5CK3N7BtqCkqEeuEEBGLR8byN19zxam7J6SaXbnwu/mMdUfyXcc3+wOY2yO8E2fqFJh6xaRahIKLsQzTylxJUtWjc8WSW4SES7Vj8CMCi5AVuTckocgCTnJLF1eCbHkSBzZy5E6cucY7vM20aSIVixKJnTww5g0P+TeacObnzcCUd8yl4afpjcsGUir01ZHZPvJX+QPn5RGbPMKtWCJBBcZ24KprOnHEZ8O1q1EhYk+OP7y/YIeRU/3Av9s/sqoKHRN9vlCvkm9yoNganTObfCGkgBKZmBSnvOfH9czXcMesLOf+jiA0SM3Ov9OniWvdchUDUVdYdWHQJ3xWaOFZ5pZf1ZYTO/ougklUpeXz5okP8TOVkgwuIQP8KD7zKQvGpuM9bnmVH/C+5RuJ16a+WUpoiVikCji75So6Qqq5SMOn5hkzK+7VlSVYmnwmVwpWybppqdLEa7nnLwFKtmQm/nWz49+5Qzctf1yu+CqjdKBD8UP8xuLvEckyhMJTSWijWf+xcv37q0oUqkGjTyOqzWxl4M92Q0oahGRVmkO1JwaLFQsPcSSGQtArRXoe3YleXBivW4accDoTlOHCloUdSG6r1rBwly58GFe89fR5JiU46UecvNHSBzXeGpzYQpCYVbGqAVVGbIpEHZgYkHnlS/0RJ0DlgPaJE09Y6bEh3fIgquYg9pzklnOxPMaWh/LKQX1k6m8ryzbfXmCLUnxROxASp1s2WdLkwJgbWmH4KH5BhjtK0LzLlpPZgrQYX2ii4w/Lz2zXCalXrkWx1HtUkQzrhSw1dXBIqdj5gPaRLZ6p3LAjXgh8U4hSEUvNZ/GRoiV2/0RvjiR9z6N/56q3COlROaLyTRI9mHfWTmGloy7T7c+HxCXv2DHxojWlBLZ5YZsXJJE2ejALwsEjgZ/CFd95fMlYFiSCPt2gwzklXFFoaiQL57TnIloCNR+rT4yxx8iJEgMyJKgUHVcOYo/LG5Zw0+MYAklJvKxIWDCCjOd7f2AfD4ympwuRzq3c2XfWIOnMwif9TyxGgdWs0qJy5HGdSVYx7TJNfqV1E0MxfK7+iXe1u62IGKjXd3K9olPibC02gkkF4hanK1ZdU4sRJRacTBz2PV+HPQTLwyWznRy1XLHyArJirgaEiCQsSWqkWpHFYSL43Ny8ocuMN5GNv3Cf37noAfKITgXNxEP5SgkZhOCY7vi39r8iRSCGip+uF/JGEozio/uKDy0HueOrrDhIzaRb7v2JbhH87nXkvamYepgrw1lXONNR/AWEoJaBOqw4IajThb3xVMXxu/k3uiz5JqabaUL1PATHKFtO6gcWJLLsECURqQjZ4DA0DkLruaIRpSCiY20ULZFV3xPljC2JMls2xlH5TFIdSxwIdUWfj6y+48mfsKw3o0UxlBKpwsx+iaS14SnOuKphL89s9TtXXXHnLn/jpdXEkjmzZeckG3NhWC+EuiWUzFRplIpI5aizx8kOKoHVK/v5BSMkvz+/IpTiraupypn9PCJCJKyRJv6Vl/Q9QUra6JEKlIzEynNuBrrmHaciz/mFX/ifOJiBWXVkC11caOWVRI2RgbOqeUv3tFfF3D6wma+ctKexM75YghaMFkZhaUzC14Gny5WrKsxVTYgGaQOyRCZtGazHh55NnJB+4q3p+Dd1x3YX6ZQil0KX4fBgaKSjno9oK/BBkmNhjRUfx1fU6tgNR07rA4d+g9WBjEEKhfIGMVfUccGVnmIkepY0PpIqSFHgU00wDc+88yU/8+/t71lLRZevxPWv3KULmMSLeuDdbOhOnrlp+WYe2a1f0Uly5p6D+J4hOaZe0UbHEF6Qi0EkgYkJpOFNPFAn2K6e+/VELWB4/o1DXeG1Z9HdbZ1oYVE9XVxwpiWvNcauiMURuhZXKlxUbKePPH/6wH09op4PbNOGoBquNDgGzjGzmBuSSYgbY1CUQFMcT9OR6WI573tkZVh7wdkMwD1vZoMg8pBeMNXI3gb+xB8JZE5yg8yJk2ypq5U+OIxuMWHlYJ/YxBPK9uhoONsdJz3QzhNVzNiU0DhKtjyqd0xJBKWpQsDnilwMp+6eS9mwNh9YVM+QPZJCIyVP4xtOZ7zOoCMqHvBxy2wq6qJobKCr/jGh+7sr0xkCDrV/Z67umNiwiBZhA0ne1FRJgA0zJi9UXrHKPSaOrKlBTQtabbk/NrR2IZorh3qHE4KNPjOLmsiALhm7ZGQyCCloxYRPmQ/+wGotBzEQlMaKCV1P+NJxV67MsbnxzkRPzjtUsuScyBlSqfG2UKxgE16JWpBERZYaXyQ6V1ASZ/VE0j2UiodlpRAQWSMXT9aWFGtkW7A5YtYJm+XNBJAMhzhQFMi5ImrFD+mNuiTexc1NSon8Wu0ZtKTJ25v+iMCqambd0UV3WxPHiUvZMeeB1l1Z7YoxF2Rj6bTgYh5wuWHa7CFHjPQ8x4yVKzHWtP7Ce3XPKiqkygTTsrWRKq98L75QEbnygIiBF/MBtV75pBJ36oxJ/na9liLXesMjLxSr2TDiasOqGlTR/GE+cImKTr/yU/yVL/kj3ajQsuekKg5qj8yRuWo4lQ0mw4f1nX9v/wvnHt7NwBAzPrd8Kw1eKZIUJDRDvLL3F66tRhbLQW7p8jtCB8aqJqaAjBl8RgrLLBVaBGqdWRMoYXGy4Uv9PXf+SKdWiikEZo7LE29s8doyS4suEcvCWhq8NkSTWDuHyBoVEztXiHHDoSrkugfruMiGjTlx0N/fmsilQpTILLZooenCPZdqxtWSo6lpokeWQh09KihqNE/TmUtreRRvnLsN49+mIDInurxQQseH/Jm/6A8sqsLiuHMXvlUfeB8+UIeJSQhG01KlQLaCURdCZdByodIjm/KVqCyu33Cqek6mx1NTZEEU+H55oZeC4AyH/RMlJMbQITFYIg/LmV59wRXBm27JSd3yVUH/v+y9uY5ta7qm9fz96GYXESsi1m4y8+TJLEoUKmGBh4eEBS4mF8FFlAkGHheAgYG4DfCQjkFlt9u1VnSzG93fY0SqdITK4EgJG+O83tCYc+o3xpTe8TXvw1s78GQ0QQkO0xWEeSdC5JlzFlgkQTQ86ztKWVl7g6wrOmmamiiqYszMRTbIuJB0weZEL2dU0JTS8BIPZOtpise4gpUBox3u0rNRiXFbmF3LbO/p9ZlZGnK0PKmH9+devFMdSAYVBasTzB0UkZBURBaQFEZGej1ztLdc2TFlwa6u/NTekiTEvuWRJ3RNKBRCRjb5yhe1YcXgo0XLlSe5463tEHKlFPgsFFkLtLqgEkgUSxGICbxWLKrnLLcE0/CgToQq0Fnxu/WN2niongt7olCMnQI10QvxHmisTrRF8WIPsBaEgxz1+xbj6Jm7lp+7nlO7wSnPrC0fxyPn3nASjtEZXNgg28it+Mw+Kv6w+S2qZp6ae76dvqBUC8ogJ8O1NKANLmtKdqjlxGv7yLN+QAVLkzNiCVQBf2x+z1ZeUfWWb8RnXhF0PuBExKWZkZbBHfGqQasJqSK697TrhBkjh7IwdRtKKRRrSHZiky88rm9YJkhbiok8DwO+SlQGGwLnxvLcV2SJVCn4wj1VvG/a5qCJSSLJzIAsllozLl3ojGe7/omLeo8WmeqO724FXbTIeGGXAro8sePEJl+Y3A6hBdfas6+vqFR47j5gUuTP28BDvSBUIRn5PhdaMo2Y6YpmpmctAzYkhIhoK+jEiteCHBpcDkRZWExhHyc6Aq9xx+G6wlYwaocrHjgQ4sCU9vT2e6RecEpxkTfEaWBXJ/719ANLOmCbF2J1YAqvuiNIxbPZ06oVX155aH/Clo5fzSNNKWS/cGwf2GWBrT2/NwN3Nw+/tP0A/tnQ/U1lOkW5a5l+2rzjZTZXDnXLqB1SWpJQ5GhIueNhvlJcRvRnGh8YSkJUTRkT66Uh7FYm3RNCz45Xjm3AB/nOGl1fuFkjGzyZHi0MtgQa40lpQqXAvXrmg56YheFT/IbiDAhNO/csStGHQOhnZIkc6hHnPae2I1WJKppdPDOIBVkqP8pHau2ZRPOOclkFohimLCiNxQdFrJrurBiy4DZ7VunQJiPECkKjZGF2W/op4NuCVZneR1x4RQSYhUbpzJvbcbUdUfXcxCeSUezriVok3y7PxDxQquWz7qk609qVnTzhi8MLzawaotAUqd75e6ISleFN7HksX1ClEmQPmfc/p0gYeeFQX4hSARJfWlKxxOxYqsPVAKVQaqYIRYkgiqCrM7t45ly+hm1gMoZNnPAMHLyn4ugpXMo9pig6tXBp7vBq4cVskFTKqrlLmn145iwGXtsOCO9vw+qRPkUO9RUfNH83/RlvHd+OP+EmxT/c/T1RvW8XPywRVaG9SoY6YcuMVYX78oljOfCYPjPmlqveE0SmFw06LkSp+dF8oEuJr7kytpbSl/c3WuFwZaZoQSeuHHglIPiQj5iqWE3HKd4xVMcsGoLxRNGwao1NhrlxiFOmyVCDIdfKZDR/ri22Br49/8xQPUZ6PtZn/NIxnK/k2LLs39mQ3m5gkUhhCNESkdwvM1MeWORAzj2buPDaV7xqeFhfKbPBtZH79Q9cu55dmXjqbphUw+QMOzEThObL9gMiBK6y5UTD2eyQVJpYWMTAKHfs84lQOspsqQRmOeBEZSyWn9D8+vqJFHeEe421K0VGkk7okNnXlSig9SPWWz7UF2ZRsN2vcGnFVM/VKbqPAS8OHOqFsOwIwtKXC1KupHiiUQ0Bx0ndM3Alk5HZ0+TKVAxeN1izcK0b/KHSJYsfEoN5o5UVXwu79Uosmo0+44VjEh0iaWqV+Kro6htODnRFUJXjm/gDG3Vlcxn5snsEnbmqHm1XjvWGlA3RKB7DCz/lA9Vb9vKCzy259FRXcVzRqdCqFXJE2YjzCy/tQBWwKkUtiuoKoSZsTBRvWKXmLDdczB4XChdhMckhq2GKin/58me6fmayDcIVLrKnrRUj4GF5oRVHpCyMzSOqSchS2dQrSTVMqWF/SPy9/45aHlDhfWxl1I47MRGFwtUJmWF2DY1ynMqWlRYpVh78xOR6QqrIuWOXBR/Ej7y2AzK8oI4dY9yR7Nc0KtAMga0fEXWlYWQpA5EWKTUUhSDSlwv9uuOLu8MrQw2SY72lqoaNPDLkCS0Cf8+FnXe02aFLJUXByb4jI7+OP/Br8SPP4gHvNG+6x8YFvRqKkkzLDmUiwiSSVBi9YMWCKjMlGHbLyMc8YVTip/oBbxpG0bDiuA9vWASnziJRdPLIxRpcuVBI/KvpH/ih/YY5N5zMI7KCzQlKwYVMSZaaDFEYntwDtIqIRiYPMnOTryTjmNeATplWerJUtGYh28oaHNJrrCjUunArPrPjyk5eyWmHawOXTfs+85kVP5p7clAIVXmRW3qhITVswom3YUcvMlH2PM5vyEnwUis/NI9kLYk0aBK5VvqyoLzCKwMpETYd1ReqKmQUfU0kWRAbi3LtL+w+3vXPhu5vqCgERaj3WYMEV99RRUG1iT1HXvSBKCU2FYK0ODHjAC96Mgv7khGiQ9w0CFvRRjM1G0rONCGyrZXYNwShQY/cv35ChIG6enrjkf0bP3U3fChHvOz5yd6grCepGZcsq5h43Si+mAMfi+caNH2UWD0xOo1WAollNB2H9RnftYTcYxI0xxNi0xKNoiHQrJXtOeD6E2NxLG7LGg1B7LkLF469YjueeTMWmywxD1wHQy8yqxX8OvwAjWeTA/vwwqfmHi8Vr+zxskFIQayamgVaBAyJFcukDpgIrbrwKL6jigZRTgS3Q+oZKQXbJAjMjGogyorMCkvC1MTH5ZmLc3hxTzSQpMWoxJvck4ShjYE38YgKFZ96gpA82z1beWVdJTIasjGsWbxX6fKANoXBj7zxyJoKmxzQJ8HNbuQmn/m+u6EtKydr8aWSRIeO78imLgRktOQiqEgWK5j09h1TUwNBOMam4Ta+MOgZW2BlRzTqfUZQBGpUpHmDMiNKe6gCFR0xdHgpmNqGzqzcxjO/ef2ep+5rVtMzWssiHU/ikR0jWn/NuAyU8I60smS2wdOzEqviKg7YmjE1cCgzKXrWqXC1gbehpWbo7ZUP+ZUhz0z5gFCWt1bTrYUhT++kBrFQsyZqhxSefTgxUjmJW6pN7OILNlhuzonPtw3PzddcbItHczMv5Noz0jOJzKo3KJ24W97QItPXwKruWGuPDgGlW3S9klrBNp5IbGjkSG0UuWauXeXcOyY7kAXkpNmUCS0DpSbOqWNoE71LvNAwacsXDmzjQpJngt3wZXfHbDSP8hPWzzz4E778jq5EkhVs/ZFOJIb6wtLf0+iZc92ShGaToTVfOOWWLHtCo0lZ8oP9O6wcmV2DqBJkpaqMzolcYNYt0DDRgBBUKcnW0YjIx/0rwnm861hyi64LsViKrTyrG1b5Xg10LBQlOYkNf+6/pkbQckZI8x7LUFYEkZtlwreSx/rErDvOao9sj7xww0LLIgRVFy6pYdArRQhmpbAsxGyZiqKdKgsOVkONliQKb/JAdoUtzygFFcXS7jhEwe16JeqeVix41VG84n4+c6YjbwsuBQ7xyrNqGDf3TFqRVKErEy5YnBhpuVJy5aXeUrTjwzqz9ZJtCNhJsVcLV9swih4d4bP5wFw1AlgxmBVE0PxgfoM3ijd1x2XzHm+ho2Gyga38gi7Q+Tf8esOr3OEGi9cBozK5ai62QWSJKgZDwqvCq95wEQ2b6chqJdv5FZ8rN+sFIzKr7jC1MKuOPo+IaujqwoO40I0S1A3n3pBUg1gXjnbLNu74yTyglOPJ9DgjWXRD7wtSg8mSUBxZV17EAesLbV24vRy5X3/gtlgYFr7v7hH1fa7v1s/sUgJhsDZTSuJNDcx2gBgYxMptUGxLxFIZRUAlRbDwEL9g68KX8C1L6tA6YdPCz/2BUVtMjrgEH8ILS9pShcbT49nwvfstg5/eOeF5zzZFHqY38hDY5Ve+kp+pJTIOhd8sZ97KPX0KDD7xxwFmFOvWMQpBrL/mm/wDhIVJdfjsCPmGzWq5sa/ccETnC9o/cG4cUTTIWmhKYh9WpBTkpcObHjMGlIFOJVoCqrbo7zLT24nt/Ydf2IH8s6H720pZRqGJnzdURsqDZtteKGXHtp7JAorvOOsdX/QNCcE2XflQPnMTn/mx+Ze87gdUNgwxIUSCDCnuGWtLtIkmBZqUaOtEby705QgOkhP8n93vuSpFtjCUKyl1qGA5uT1BtmSt6aeEzQntJ9S2oaln2nwEXZF1T0CQlWXSW3LQ1KoQWSGk4qvpE6twbFjQ2eBS4EXuqE2gloC1C3Nt6cUIqke2C1FtiRmOfUPSLZ93ij5eYXUgVp7VHrmJJJVRtry3T9SAS4Gr2aGjJwrLfjnTzQJpr+hYmFxDEJaWBaGvHM1HdAlM9Y4hXRhS5uvrM+d9SzaS2zQyxBlTWz74FfyVqZV4qbmpJ4KtRK0gd9hsIUfastDKRJaSczdwsTukWpA6s50mbi8n7j9/wn248HlzzyaAzplv3lbspecn2/CT+jVvtacTmZfBkWTkZHs6f6VSURSMPLGiaYrhbnnhMnyL5B18fROuHNKF3VvmeLiFaCk14OpETIaoFCVVRE2U+A7cDuOAsxOxgauztHWiWwpd9thZ8pCvnFrIMpE0eGU41wFR7xiHlk/NI0UYBJViK6IIbsLEEEeUDAgqQz3xpQ6cbwxHN1BcwMWA8poWkL5lr07v8Rki8brrOZUGKaALIy5HvOowoeDTAZ0y9/6JNRlKn1iHHXXrSVoxpCtDDlxLwz5Xqr8l1kRZRvzQk0WmjSu9GFnDDUokLm7P3CuqKhitWbSlL5k+zxgiAxeCtMQu86IHZtFja2QXRj6OI7lfCM7x527L3brSRE9jEnfilcVJovSM0nONd6gU8cXyrLf0emVrn9lcJj6sET9EXqVDas8Xu+dktlzVwMiepkzciSOTsCRXaYXHRYUWCltaTPAkvSHqBkNEysqSHBs1M2lLRHEXnslWomtmchJbKj+3j9zzxFCPfEg/koPC546hG7kOGz7yChnOJXLWPUU7XtQtQgsew9M7O5pESpZLGbhZJmJuueeNuXcI+/be4o5vmEmxDYngDFe9oeWNTbqympWQDQIJNnEVFdfM9Ct0SvKD+BabVtq40piIEoGueFa7w2vLYiRFC5Iw6AW67BGyYtRCSQvVPDE1lgI0FUiZrkaaEhmOFQbNNNwxmoZGRG7DkVYWZIFXc4NT37MLK7VeuM23vHQHTk2Hzis2XPgQFvZ+5c3sedncI3Rmlg3WRDbLhVTg0ike1gmjE2uGmBOl3bIJHp01t/6J3j/zY/tACo7JWJKztHmhCrDS86W9YyyWk7mnCDg2hofzMxbHTfuFIx1ds+LShHSZloWBhmbyPElL2Uquec+ZnpQHSja0xfPa7VG5pWjLbjpzR4sQT4QScenIXAxrdpzdhlZl9O6OdjmTRcOYWpINrNYxFviStqAcq5K8yD1v/YZSJJ/qI7+evmNQC0mCiZphyezySE2Rm/lKygv7ybOrey6bnqo8L26PLYWoG7pwZVENs+gIqcVLx86/cFUdr8OBkgVKCYxXZGvZ5Bd25Yy1I0VaSgYhBKauIAujs2yEx9RAVS0IOLGnqwtGrczRkWPDYjTL7S0bJNHd0YqVWQz0OVFYKdVg44pYK6d2w9wNPJkbqlsYyoWvpgt96LgPLY+7nnTycP8L+w/+2dD9TTW/m2qgmgAAIABJREFUXmj+lDDxjnV7y8+HlrHtiFpAeKJNGRvOKA8uRbZmpc2VHWcW3fBz3xGFQYmCqBuk1IRlx2QMuVQqC+SI0JnteGQxjhhglbc8DY5T15ARkGDw4R10bCRJwH4ZmY3gthwpaka0Zzrv0XVicRuseYeZB6HpPAhhmdSADpB9+x7WaQX7dEU1gnXZc20lLi50deFJWV43LaMoXNSGIATbkFC5okvltdUMa8DkSl88JQd8aXktW1oXWdAc6oV9veLFli6tFFXZ11eSdNh6Bt/ipeY2BmrVdLnlIf/El63CFM+NmnlWB5wq2BrYcWE7nnje3KBKpNErJhWyaoiNJmtwrBRTMDVTsuHV7DG8z3dt15HFGmLsqAI6NWJ1AFHpzESvZn79+CO13eCbiqnPxKBR3ZWp3iONwosdbboS6SjV8HB5IQ0VuyhQnuIEOgPCkIKmL+BKpVTJqPY4BVu/8tOw5Xm3ReXMNo98dXrFmplS3wNfgxEoW5lVh7CZUgpbf4b2fSvQ94I57rH9StA9d/WVXAeWtaM2Bl8MWa600SOcRBUQGDZh4mb1pLjhqR/wqmDkSjtOtFFg5Atn2ZDFe+7TwY/crDOj2eDFlmQdTUjIutCYldv4wjfqiBctEUOboI0rR3XANJXRbt/ZsOOJGxVJOnMdNJ/tBlKHWhNd8SxG8mf3gI4SSuST2dPWPVZEBuPRwmPFRMBwLQMhW2yJFJPo6sJGHPF+x1gatEoY4dFAu1bu/RvHXhKSQxfoYyI1nrHXLKIjqoajvnt/mbCS2/WMWTVNMjTmTKVSdhOXfeTF7vFKI+ZI0h2z7CAp7uOFTV7o04gzCyyCubN8b7/C1MhVbZHJQta0eUVGxV3+hK6BTnkkDavLeGvY5QmfdmTbsogKPQzLyqwEak6kIEk0TCGgU0LKlZo7dmFmlQ2iJpoykcR7e25XFpJpIGV+cL/nOcJzs2GXR1RZsIvnYh21KGwXWWjRamYQFzKJl2aPDSuLbGnVSELhTQeysJiGX+UfWOYDui4kAUlKoja8yg2rVNxPI65KdmHkkC7g9xxC5LK0bNUJGsGnzUeEyrykgSKvCCsQJaK0R/SeUe7prhkvI41IiGqRYsIiKSWRfENNK5v9CI2iUYVGD/TyghSS+/GC8zDWgCiFiEFVSRWK4uBnfUsnJn4UX7ETr5gMXvXULBFIDAkxa0ysmFjeI4zajt00shjNrrxxFS2LbTmrgevQMywT62yIs2ErT4xdh6meqfSYOmLFldJf+aIcx6tm+SAIXaYgkdKxKlCiEn3Lrb8SiuBie6Z6w4068hCfWep7+sK17bi6nlE5/ny45b6ceVIrfbm+b5fjiclxNA2j/paqFEp6MoKaYGChVI2pEFLLSkeJPUU6bnxElzckM1muvIqP3PkVJzLGHvGdxggYa0OShmf7QFotMsDqNG/9lk5BEhJfByZajEnsUiSIFpkkZ7lDCMFk36uF8lKwPoAobNUrVkiW+BF0QqvM2QwE9WuucSC7liZHSlJc2xuuxvFV/swXtqicqDITpaWIRNiv7OOJqqEL73xj7QXbyeD8DTZm6t7Q9M0vbT+A/x8YOiHEfwH894AC/sda67/5v93/z4D/DvjXwH9da/2f/9G9DPwff738vtb6X/5/c+p/v8rbFRMKsXXQZJQ2qCIhFxpf0EvGJYii8NI+EOno5IWgM8/mwOd2D6ESTM+NmNiIRLPOtKFSoiSkyFZeuNNv3KSJqFuehx0/6V8RpEKnSMXT1oVtLaSYaXzmO9cRG7AhIsfIr5vvGerIS3tA6cwqWrbryKh3BJV4sTdchEUsFZM9SRSSrHzR33LICy4GgjngzYpUC/38ht4mctWUCrEIvIInuyVW6OIZwQ5bV1QWPHxauKfwUgrdIaDFyqp6luyQUdGLlVZ41qrZ1ZGLr7ThgslvHHPLd+4WVzwjHUndshSBlYGz3NCWxNYHRjlQROUu/YWDf+EsDvTpxJ/M79A18XPzAcuIFAGzRnYy0JSZH9qeYiDpihaBrRyxojCXjiwMIgW6NLMVR/b6Airio2RoXxFSs4kdThYmnejNE4NZ8Fpwqg4XPUUJfuWf0N5gtOcv/QNHdcMhnOguG3I1bETBqoXULNyuZ1x5nz2TAWrRGLHQkEnCkZLmYjagoNGKUHoe4xNNDSyq4aaMbP2FMTnmsmGQM8fG0iwB/ERRr6g58rO+J4rC2B6IUrMqR4qCZCrOv9G7C9I7fnQPXMzAuN++b1rWRHSVpkSyBFUTn9qvmPIOkQrCBkIjqdWSU0cQG1T9wmO5klVL9juOy8N7Ant35G275dk22DbRzn+gWE27Xonunp43JtdzGiourGQdmBvFpBpEsZAUbbxic6UXI12CSa/YsnIuA1VXdKqIKdPKES8bvG2pVWAydOvKIXrwLY1PUByl13wpA3bpsebCrByDmAnKYPJKFBZTVj7UE4/jM683LVJWDu4LSmdihIvsOZs9OWkaCp4BVRJimSlCQvV82X5FrZVkMof1yt185OS2nKUgCKhSM0TNsM44FbiaDapERDU0YSIbTZcrLYGlNszJ8KN64GQGqtKoaNkWCVdDaRtsyNyubxyugR/3O2IDUVvmtKXLF65qSzR3RLFB5IKUFUriqlpuw0QvAjYHduLKMd0RjSabzNEM2Owp0tFOKwgY+w2zclg5v+cuVvg2fMcmeF7znvPGkci0MfDcOp7EADLwjf9Mlws6ZG7PkSw7zl1LaHuqFNwuR1y7IovH1IW+LNzGV6Ju0T6+t41rRqvAtj7xpfnIFYWvA6kI9u6MKhce1R+pPFLSI23NCAFuPTA1mhv1xG1+5lQP2OIRBTbTiUkbvik/EGQDM+TgiKWhFSN1fa+Y53FAmYhLBmsn9mGm1TNGGmopFG3w0lAKWLFiayALy6FeeJxG3nrHTXzhJW7Zqle2NfCqtoyu52S2LCrSz4mxa8lFE+IHdv6F2/lMtYKjvWXjA0YEcjdhUyXXmVkIfG55szfkAqPs2JWJH80dRd+/JyCohiZfUaWi0Nh6pVbe5/5Mz0VusCWDr8hg6OKVahZW9RVBZSbR0E+aSW/x3cCyKkQsCNWwDzNFQgJWsWMOlotpaJVgwxudnPit/xM/q0dWoxBlpUiDyQWq4loOXGqPdBklCiYUZE48dbcMOoDK3IWRzZj50nZsOPEqD3i1ZVLD+wKQaihqBlE5ihtsDiyqY7+csaHQ6DN9nchuogwTq1ihzngcPzvLd5sb5NhxWxS5T/y+c7+k9fh3+kUNnRBCAf8D8J8DPwL/mxDif621/sM/+tj3wH8D/Lf/np9Yaq3/8f/rB/1/qGbTo6Rh11x4soYgNd5KAo7v1Tfcx0gsgasdiLpwqVtETiRZcWZkoGNWA0FYioyoqlAkRB+xMxzwbNQRK1Zqm/ij/Iqf3UeWdYfXmn15464E/tXlL6jlI+lmQSfHx5j4WH/g5CtqyHTiyNrd4WImozFhxbKyCzNuUuR+y516AeXpy8I1brCx4Ww7vkpvJAFHM9CUmSgEWRzAK7xoWfuWCpiaqFURqJiq6JaVnb9yOAW+Op1RdkJtOrxsiXFgs16Rc8LXlmI7Bo64JqBU4jaeMSlwEQcm0VOMRIjCJRgWfYf0kYGJukRKM6FippUTh/ZnztsWRaDETFwVa4IdZ0TZc7YdWTRMRSD8M6IqvHUEpXByYuxa2pJJ0SGL5uNy5IN4RemZLiQWf8unvWCWHZVCt8IuvrAYeJUH+tZzo75D1EqsiuGqOasbdteF60Yx1YF9uVAxzLrFOsXDfCVfAl/2lpojvZvReobsKNpRhERTSLaQG0+SDVmC9pGOK1YFkhPUtXDgTOMXVNB0peBtwbcSaQJeSpJvMbNFpJZBa35jr/wgDbWciGph8J5NuPDo3wi28tL+BqkLh3gFBIfwRis0czjRVc9RdZgVGhHR9cqsWrSoNLKyC2dkUlSTWZse4zt268qFTBuvlGz4JFsCgrtwYcmWU9xxNBu+tPdcVc+ielQGmROdFAijadSKFpr9UqFAlwrfvl5I6gknJX9WH0myw86a4hJFQ+obxvGWmFpi21Fkg2Hitr7RxURHIY0SITP75IlV0sj39rdTijFpZr1j0TuUqIzyjgOvnNWOIUxs7QkpVl7FDWvb4MMeGzJevAcVPyyerYc9iudhR9SCWQ6E+t52TW2lmshNfmEXJVEYjuqAlCvKRu7TZ5Zg0ESuYkMpmoWWOb/PAuoSGNsWk1aaUHlR91AzzahQWlBWaOQrJSikKNwfX7j2A3uOzGxZ7QD1vbK74QjVcZEtq2qpJdHGSG0qo9uiRUFaz516plK55gONLxzrAZUKUjhuY0IXiVOFRVTmvMEIyVgVVQf6ZeXE/j1qYxXIa48j87iC15aqE38+7HjTA8UJduJ9Niy375Wwv7v8RFaVqXXk2jClW1bZcWxaVq85hDOLPvAeMZBx+cxiNUOVXMUjr3KDrAUlIykqbEqstuGcN9yoI//R9Y/8JTzw1N2Ti0G2hR1f0HIlR4V3BpkFa5tp0ifmdiCLxEF5ZNZsGokKmSkFQudQOlB0weUzv5pmfrYfCTkgS2U3PrGvZ1atScEh6bgLnkPzBVEVqqmMbDgrgxAFleEuvdJQaTHEjaWXChUyJIWNF5JqMXImMXNxljW3lKqpQRMayLLwJnt87Whq4T5MzNK+o7JKy2oc5Mp+fuUrcea3/g/4vqObF74Jr+jF8nLTsdIwu8LxAijNXDKzNoAgqYGlbpHiREkjjbqyyyM/a0NVK2PtEDkhXEGUQu9WHk+fUY3nEGbO/QcQMzW1hNKypIFJOhZtcSbQm4kgNDacSSiEF7is/hqcf8uLu2WWHUFY7tMLvVpovSdWi6FyqvdUXyjLEdEFRJW8mAOrANSOsR5YhOGQrix6y1H1SBR1XfnUChYS21/Ufbzrl67Q/SfAH2qtfwIQQvxPwH8F/DtDV2v9y1/vlV/igP8UtV8d2P2HLaefXzCx58Z7bO5o44yn5+M68WYb2s2JXmVezY41Cs55wJaV3i/U6NDyQhcrF9mTN7AVniQ1h/WVCvzJ/R3CJp7jB2K2CANZ/DWaYrryQ3dPti1ZFT7IZ+5iZBSaYDWteEM3hclExqblmm+QMzBKwrSj6J46SJ7qB4xc2azf83W5MsmKC4ltHilRE+WCqhWpPJsw88fdb5hoiFh0yFQUOgU6mejiBEojFGibWa2l7RNCRe7jGQEMa8afBXIMyBtP6wq39UyrF7LUnMQDk2opnURLz2gNUq5sfeZF/oY+zGzCzK9OJ1Ry9Nuf2Q0/8sKGJno+xa85+3ue2wNzsMRaWYTECc/FbXgqgbQ2qDUh+4LNEVcCH6Y3vtQ9RVtG8cAwNhziK7194ri1jHxkjX9tjRE5u56Fhlwcq1n5F+InLvqAKJUUFVp5tsmjo2aKjmgTohiUWHkIEXjhUUbkuuFV7mj1lU5e+ft8oR9vQVW+Ls8UJNYX1uBx1oARBNPS1hWXCvNyy8M8sdGV6OBat6glY/rAx/kzpRFM1RJwjK5HmjOfzBaD51fxwqf6NWYptHoityu5UWyXI6FoZNUEGrJyyDmyIyFyIbeGn83X5NLSThVrT9z9FWq/ao0XA0vpOMlAUDNvg0WVzDhI+reVZBqyhZPoUFli4kjVA6gKtZDQ9Ezs6wu+sazGQjbYvNKWgg6ah+XIw+YnUjwTrOXhtMWTUbLyIgWrtNSi+U7/B+i6MkuHjIVORETVnIaBaBZybiA6rjQ4Rt76hs2y44HCx/qGtp7Pdk8nA6U6sojMynK7fKYvK9iKK4K7embOH9ithTdnUTlh6oLDkZTkxXU0NWLiQtAb2nhiKyZ+t/5bQrU81a85BUNnK6pKVjVwWh9Z16+J7UizrLShcBsvhH1PqpmsDf0yAzC6gVwFNiuuQ89mWtjMgrhVXLnF6kgyA2vZMraPxKQRs2avnkjqFlsnTCmo6QsiFS7dni+bR4ROtKzcXa+MqkGTKS0oGTA14ULgsCzUZqBLnzDcEmumKxNRWrwTFLkj2ReUjZRaKFGwu3pKlRgh8Vqj3ULViaoiVr8vaQTRsV2vfJgK11ZiXSbllWt8xHvLUXcE03B0G4qRMDfYHOnCim8cu+JpbeZVbNBhZsGyXSecSFzFhkn0vDiNWh1P/jd83fyFffKEdUQWENawk6/YnGjFkVQl1Qpqk/nCHrEopBQ064aaDEV0SDGzl2cu2dC6wJo7ZrXl5Ay6Jn43f49IiqEecXrkNDzyoUww37JPR9y0Z1KwloGSLKb1dOsroz4w5EjV7/FYMhtG0fHjdqBmxWuxPL5FLs6xHg4ssiFIyxpavrq8cqyGIb0RnIVU0UpxFpY9J/a8ILOAAttroU9X3twW32xppoipElc9qbUY5VGTo8o35q1Fi0QZFFdzQ4w7FrPQxsqybllbSREVma9E4chFIGug6oiXhj5J2jWzLxfi6nhSOw7jyFer5+468pey4/tvDuQoUSJy71/Z+8jFTighMTlS1fuc6108M9oPZAymBJLSOB3Zhwt9EixVcQiBz3pHJ0aWw5YuzZg100wB24w8b+7Z1iuJPSk5vJZUWfBOcsmFy49/IV/OcDj8gu7jXb+0ofsa+OEfXf8I/Kf/hO83Qoj/nffq7b+ptf4vf8vD/VNVSUy7v/D5cmahIqVAYHHNhI2F0FT6CCV6rmWDEYXfTt9j5kRj3ng1kgF4U3fvm4utZNEW1B3BVnZlpUmZk71B45lUT0UgZGCTF1oxcSl71rDSi4QIklgqZzacdMPZtjTmnlv9zKQ3qFpYZEdbV/5gf4+WPU0N3C7P2CbQhxNDM/JxfOPIR2xOLNbQ5AUpe0gCUSOTaFERBukpyTD4K9F0eDqaeGHNHYtokRkqK0+bhmfzkZITs9iSrGZMFRpIomfII21Z2S8L/qCY/A2nbg/KEnVH6yekSdgaCaZHL5LoNXm1XMqGXVh4OmxY6oAulVoSITsW3bILR1qu3F8Sz+yRMvG5+YASgeftB3QGWwpNWtnnEy/mA9FVdv6NvRK0quIWS3Q9TVJMouXatOTSovyVS20Yux338QtedlziB0oWNMpz7BqUvvJsFkxZeJwvnOeea/ma7CpfGsFhnXH6lb2+MsvMRlyZ5TtZZJ8mPIZaYRBvfLUWNvmGJ1Vpmyuj2nCtjtbC0CS+Uw+0fs/P5iuy1gQh2JufyUXQysBUOxblmGTDsK50PiEMKKVo0syHcmIpije3RYrKrXrjZlrwqn3nyuLo2wk1KiZh6UNEGcWcHIeyoEOFPrIIgSSjV4toIQm4SMvaGHYh8OwGlu1KQrAbj1gT2KaZXp7oxQDmAw0rAtiXE9s0Y/KVEDPSQO9X7q+w+3KL2468tg2pOo6qxXeKEUeT3rgthVPdENOWYDpE0MgQ2agrWmRykVhzxbuZmguEhWt7R19nDgS260wTLIXIby9vlJsGj2FpHFO2TI0nSPhOfs2QVtZkyLll1hasRtiFYRrZ5IXVPzJuEr3PJC2wBWpaGMSK0p6EQ9XCTboAjphPODORsbzuN4SiUEKhTCYZzaXseBMDSSuqgNJ+5FfXn5G5cnED6EDKEpkvuLMn2pFGCoLQPNsHRr0ni4Komr1fibbDpIlkCj47KJqv1h9Jdsv/xd6b7ErbpelZ12rfPtq999f8TWZWuqpsbA+QihHHwBxxAB5xDEgw5AzwgFNA8sASE+SRJ0YCCWyMi6ys/PPr997Rvf1qGUQilWyQKpGLlFA9k2ikpXcpIhS632fdz3V7s6DWTCk8fXhgTplFdtghAmDniqMLJGeJQnNpKsp4n6S/iB0LLQc1sp89J3tkMCVX1VGbhTbM7NPI97crfdmiVGJUEl8ueO5DLiwS6w0/yRaZMtHDL5ZfM6mAdlumncXpAiVKdAgYH1Cz4VCcuGiHMQNSSsLyhnKBGA1ea1y2IAJpcfR1x/dj5mIPvK6Gr0huRiNkZp/OHMQLFRMb2fO/mX/IWLY4ZxnUlo0aSFnx2WaauOKoWQpBlTv2y1fmUrMUUIgekxI5gqsELlToNPHZP5CVYV+uFMUJ7U8o7bjJI7OVDEHQrQNZa/bxxvd8YPFbKrnwoX7Hp2LHT+WBH88zg1EEPxLUBnykKkc68cpvbYuQBk1CiIGbeSJGzaGfadVAqz6zVReiNVT+xix2/Nq+Q9lAUrDz9+bDh+bnTHXB0FgKE5ApIVZQcuG12RFVRKeJlQ0Jzed9SaEyWzHz6L6ycRPRG/5C/RJfZTZxoJGOPr3jJ7vhk3vk1mxpVgjqRIoXOrmymybUGDh3BYOs6cyVN/mVx/GGV4re1fy2fUOpPa253ZNCAJ0HDumFB/1CTCVTsaUbFqYyc0wvBGl4v5wokuAWdgSpOa+P9GplpaYJL2yYEUFSLYl3w4Xv+4H15Qw/+/kfTnz8rv7Qgu7/Dq+cf4/1P+acPwkh/gj4H4QQ/0vO+Vf/zkWE+EfAPwL48ccf/9/t9K9RcTqxXnqiE0Qr+FK8QawJReDn02d8PsAtk9vEnk8knznGAXzDT+6X9OyxVtPqAaUNwmtemh2TiEgio5GEGLFrxomWRMlxvBLqmb7u+Ka3BFug53hHdaiFd9Ez5Io1F6y5RfmECpFSzSAzkzLkQtObPdvpztzZuETtZ0pWUoJR11ylYhEVSga62qPMjb7qaHTPDUWjb9S9InZQZ08fLWOUrAqoIhvRM6v9PT/VZlzR0cYRbxRV9EQL+IVUWvbzK0p6bLry6/Qzfl3/jLlo6MYrOkX27pXj+hWRHuiVpPOKKBZstEgnOW33TAWcioaH9TM380tErDiVR4wLJKHZrifeu2dmpRhMg9YRSaCNI+J3d369bLnpu/l21pl1q3BhZQgNf8oVkxbIliZM3LLlQoW0Dq8LLqJjkxXLvONT+55ZFPcOzvLKc/EeGeDWPKFFJM8KVoVIkUVqvpqfk5TlZPfIHDExE6vMw/oVJ0p2l1fadAVfUNuFSykRKByaXu04Y6k3C0fnWR+3jHR3/4uTRB55LQ/8zH9i0BtG2TIpy80W/BA+87i8MpgDUTacUcxGo+TEi9qxlz1b0/PAlYf0wkf+hF4a6rUkBk+5uxvccxE5ThOtfWaYr3hZcZu3zFIj8o1gBcXS49QTg8gs0tDYK4VKjPKIFaBZIBc0YmLLjcdwI8fAd9MnflhfebV7LssRpyUxHOhD4PpdxTE2TIVACs9V1VzCAbkaVLHww7efkI8Frz5RG0czJgZf0MaR1+ZI1J6sBW/TB7QIGO2olUH7nqwE51KRc4taC6IaKOKFR7XwUb3BdZrkFSd5RKrIhRnhQbgaL2EsYE9PJS/Uw5kTBy61JaoFS6SZJqZQ8q14D0LwKn5go77xtr9y1COriKjK81W/50tlWXJH6yVRaZp5xImSKBWTLDnkV0q5cGy+Uk6BWSnE4ih9QyVu8DAxKXBNxUSNl4k6XiEbhriFvBLWgtkWLCaxyRe0XnjWj0y55qwbpBTs1zM/TIHukvn4UKP9zKXZ0AyBoSmJVcaSCAQ0K1/0E1pkco5oecX6G5V4IKfMImsSisneYwLXLpFCoPUjk9Hs8gm/lEx2A6HhNR7pzXu+z89crcL1XynShd5XbGboQiRWDVH5e85OGEFlpFroZccjL2QRGERDFTxvV8cXqbltWigFyIAubii9JctEFQXb290c34av9I97XuN7tuJCmhSmSEQRkTEi0spNP5CKgTUlsoMia7JrUMqQkmWIOwaxwxQrtQxs/cC6GnSKRGXwVc03XVEvUMczThp+W76jtDOTqPjh8pE5KqTNeC1IaWaIDX3smI1lzZYbjqAlfduAFFTphUE1mGTYDiPvbolrkHwxG576mTkbTBHQURPVjmAntuIVdOK57VhETZcGglb0bGj9xJfyPZNULEpgrKBzPXEbEAiSzQQBTbgwzZL9ZcG3Hfv4GWEWXG6RMnOpW/Z+ZAgaVouoPRMFr1XFqa2R/n40/9nWrNv7kEkdVmxwFHHmjfnKTg3kwqODZF1LojVYteCT4NGfmdcTySaaMLPLPafykbGqCUBTDDyKD5TJY4zjrfxC5Que5AunZHgWNUu0GOlhMRw4YYxj4yNPw5Vq0ijb/I3pit+n/tCC7gPww195/T3w6a+7OOf86XePfyGE+GfAfwj8O4Iu5/yPgX8M8Gd/9me/j2D8vcq5xDBGUhasMXBLDZ2Y+Vw8oZtMcjXL4xPGSSpx5jCfyF5jp4UsOlJR05cS3c58738N6ki31gipGbCE0FHhOYyRRc0ko9E58lx3SO0pSAjl7gZ1odHOc6PgRe+52e2dD+Qrar/QlhcO6YVRtZQOhnykCoFE5vv8Ezu3IuyZaCdeywNXbbiwQ0rBnM8U0hE0yAze3c3oJhnezTdSbOmNZ2g6slBkIdnOV7RcMPkOFf5qO54LhVEBlWc8lse4EtKZaFZckMxqxwfxxGIKnNBcqyN7f2GwNdvc8WbtUaJEhS8k4Why5qfuR8bW4qSkjBNBtMQk2MpXktlj40DrJiwZc0kIC3tO3Mo9o6ro6wadA2XcUsgZIxy1mKiTR3qBtJIvTxvM/IajP3N19ynGTOS5aamjx8oJq3vq+MqXdsspH3C54CoVn7ePSAKCTD2vHN2AjxXnsmGfXxiKR5p4os4Btyh69hzijdG0HMno6CmBWmh2aeW1MiSZOak9Ix06RZJLoDLP9Tu0XMFnEpIsDKV3XIuatN59MdpGtm4kSoG8VZzCL/j40HGtWoKWBJXY5ftUqsg9c95wUYloM8QZkSWDzOj9jaMZeJWPlF7SdzcKBgQKkqIWniU6HvwLrJFjfmZJNZOucUKwNAV1nqjp713KLFG55A0nhrjHLoGbPIBUvNYt+IF3fWBRFbN9pIsr37LkoneMsiXniF8ig+xQJuHUltv+T3mME9K2bMikFnQK1GGldwkTHWOE1pKPAAAgAElEQVStiUUkSUkje/5O+IIpI2EpOakfcGLH1+2OMr+wVgqz/sSrPmJy4Fo0ZJExyRNVzW6+exC1CURZczNbShKTULhlIMaOnGem0iBtAVYxqZbSLayp4tm8YX3s0GRKl9ggyXpk4x0xF+BXyJGQOlzZUM6R1UZmaip546w7XNEAicVWaHFlZz4TgyLaR9ScGcuGTTrjTEkdFqr4yiF8Y+KBWR+JqWLUFa11SOURzExqT+cdqyzxVqArQXYVJkRELpmrkWujydKDkqBq0AYvCjKJLCLtskAypCA564azaCj1TFU7FhSvsWCVJS/iHaNVdKpCWjiLI3KRXOo9QWg+uA1NgLOqCY1CNAPKCH7sPW+iZ8wzKrzcU1R0w5QNEw1JKWTObMLEJCyrFhgWtnHAywojFKa6sUuBRGI0B8pbiRkCsutwQaJC4Kt6z2Qtr/oNMYNxUIUZrRdqv3AzDcFmdsJxZYctb2wYuWiPj5F6cRTJ4aMk2ZVpNsymRSuPM5KtfOaGpsp3sVHmiVf/hmd1pFALsY4Eb/hYvyfGios+sl+v7NMNmVfakBGp5NxZBv4IGUeEiJRF5EOjMT5iRM2gakJUTErRxYmbMYgwYwmMqiFFTdCWm2nZ+CtFnBB6YUUhzIrXDVaPHNM3XvSRMbfs8xW/zhRZYfJKy0L2C0rOCHufei3jzEt9QIsBoRrq6DBp4ZYrltiyKkPUBmcEwngms1JPAxunMEuJLk6sVvKTeqJSV4rS8028YSw1i7Uc/JmJIz8OX+hVSRsnetMxUxBVRooIIfMn/l8ziAN7nikKy4O/cCo3/Hnz97iajgsbiuRZNiUu3AeXbIpE33J89zMO3737m5IVv1f9oQXdvwD+WAjxC+Aj8J8C/9lfZ6EQYg9MOedVCPEA/MfAf/03ttO/RiUq2mjZTYmBRBtWtMlIpYhLxa3oWLWkC4kkDV21oIsrReqx4Qco752FKjhusmGXToSkORdHZikRwpNjIpuelDRJljw3GyYBUhSsOSJFoFCOm9lQxIWrLtkOr8igEC6BVRQxoHOkiIGdulLrTF4HNozodeKPxb+hDCtRDSxK8cwjN7XlIveYvGLESutnrEjMomK0G47jV/Ka+S6f6aXiuZgQqkYSycLzof7+DoXtIjk7SuFwBAwBh7mzotIN7EKdryypZgklUQggQ4qIkNFuJgjNp/zEIXzgKQ9UckHHG6EVLGi+lb/gJjou5QOVvzFZzbV4xOeE0BE5JJIUJKVwZQ1YYqowOTOKApszSUSCsHceUczUc89ZHBhk5qQsFR2TecS4hWswJBNYsdRmIKmFgoXj/MpX80SvSmZTMciSnAWWgCQwWokTDYs0CB1ociZREPSRnAqIEf07tMqJA6+FI2Kw68waajAF2dd0OTGUBpsDIFHZUeee2s1MVUHyM+Wy0ITAai2CSK9rdE4IMqOt0XbiIkoWUfFSbynihAV0lsSksSJgMuS15CAWprWmUQtbN3DrZkzRI4Li2Tyi9MRfyC1nVt76gdVbbsWBs6qZpGCXvvGGzJvlzKQGtlRI6zGsWBnROrD6jkF0bOaGcm44iwqB5mPzlizAtAuNSVSD41S0fBE1S60QsaZiQjhNzcC1aBhNjY57mnJhM/wGgNKcCApWCvpoGI0k67uYV04hdGSkJdCwDT3ncs+SNFKuROORU2KhZjYVRgeelq8M8ef4AlKCIkaUF4hUEdeGnRsxzcwuX4lK05Y9Z11xKQ94VfAqMgfX45Nh1YYsBa04s8iJUT6gjOK43rgqQ68aghTkLOkWKBOUAYJayG4CDY/ughSSq97zZj3x2b+l8AOTqKlEIFhJXzS4YOkWx3Z6YZvOlGkgFgV/mXeMhSRLhTAKJTIyKQqxopKkxOMp+Kr2lOWMKRxrFmA9YzL01lCnFafuUOxQBQwtVV6wYeEXy29wqaWbHONGoaJnFQVGeARgo0ZIA0myhsDV7xEiknwmFwLFQh0D0ivUquhjwRhqfqE/4pTH15ZtiFx0SVEsXGnoZUMMFuMFTlUIKXjeG5Yk8eMjkBl9hykcD+GF9+HCEhf+vNqT9YxTM28un8GXjG7LWddc/Zs7vDYVGDXRpoFoNCYJetWwCoMlIrPiaJ8RItw5b2tBTAVBrLxLPUUItLzywhNvxDeir7nmw33oKS74UVKUC8pm3soPBF3g54qz6ijTjZtuOLqJQs+4sqBzIxs/o+LCqvYEoZBZkIKmkJE2XsmdobtGWhdYYoEBokj8tmlRKpLnN4gkcdbgQkv2hlyDyYla3niIJ/q4IQCFG6nFTFYRUiBFyWpKGrfS5hWxvOJlQzfdGLXkag70pkWWcNFbstQMuqFxn1mVotc1o8y04UblP1NrT0qKb2VHYSWbtacpPmCvcJM7+qriqiWvxSMyRmZdIYVAyIDD0raebO4oqF5V3NSGLBxP6zM6Q/AbChnJNLyGJ65NJkoYRUWZe7x+oI0TWiYWZZl1g5aZp23EH3Zk9YeWUvf6g+4i5xyEEP858N9zx5b8tznnfymE+K+A/zHn/E+EEP8R8N8Be+A/EUL8lznnvw/8PeC/+d2whOTuoftX/w+X+v+krIgUzQZxGTmsC10xcSs6YpJ83jyhceScIZ04VS167lhEy98v/if2xRduRkLS/MKdUGLgkM9sV8//LPcUYuHZviPlF97KZ4KSeNuR44KgRqTIPn/jwJVMyWpK3oUvvMgNwVbY/ysXTw38oL4QTE8Ud0p7aQQ2/a8U0pMdrDEgqkiFQEbohEeKBFFgFDysPd/FE5LEiQdMWpARMJY7Ce/M352f0fGXDHaLSA6B5Jf5N7yKDU1IRAE3LFkldACDw+dEO89MvuOqGqbcUM4LKinqYsR48FpzVhalFX+pJ94NA9+v3yi7E1EqsvsREx2P6UxwK0/yIyYsjKrhOF2QIiIKQ1Yrl7pB5xUhLGezYdYajyZmhcqJh+UbRQxsnaMaFUuR+Vjs6cuWn1TC4HhaHKtWDKYmK7jpGiEMm/jCuJXk5Ml4EDXCK0zyzFYhEezzyNaN1KFGyBVbe7bhzMF9Y1x+oJEjn+QDRiu6EHjwKx/Liik8MekVL+BTuefV7hBE3odvFKtDrZKt7ElKo90L2jma4HjVT3zgkdp7Fn83Y5NXsjVELfnSHJHBsypJVjVtXMmsNMkjksCERA6eZ/lImSKTMFTFjMsFSXqu5sAka9Qa7/6nGGmEZrtCSpaaE06sdHml1ivJVnyp3nGTG2p1Y8Od56UQRFmghwNjarnY+69Kp8CreEQq6PKVUSb2m4GYF6ayJMaM1xa31pRpZpsib6cTX7YClTMrDX3ac65KbnZDFJqKK2uZ0OLCZpnxqaZPD9TpHosUTaBYHHqNCAtRz7gygEiImNGDp46Ci3ggmZLNOrAISykGDmbkKbzQhg0hVAiRmWRHMIJNfmGTB0KSSD/wYp94sTsWJWj9CAJMjHhdkogknfmgNtgs2McbMjmGWBGyQIuVd+Ej3xqDSZoh1lx8yywK5qLkVe0po+OH/BXfepKPvKodq6/wsmBQLbWakVkRfEMSln14YZA1L3JDLSZMTiBgzCUyRE6mpg0zJ6kpi4JDGnku3iHFgGsspbhR5ytZVOiqp8wJHb/SrBMEyXB9YNyUnKoD2Wh27sYiS6qwIL3hojaILOnFllF4fFlQ+olmmdBiQUtB4ydMDjw5R6tHXGu5UmJ9pshXpEwsxVtMIZhDTYg1o+8gRvbxQsHCZBR9vaM3gsJ5HtJXmuywIpGSJ+Dx2tIKj1ZQGMGDP/N8q5mbHT2aqbMEIZlUx97MHPKZLky8yg0Prkc4weC3zKZhEwYqdaWeRsY044pMmRcimlUabuWRVGi8zJyqkk3ccROGIwqxCOZUcXA9t1SzRsOyFhipcUnzXDUUOfE2fONdvCBC5KvqOFUFTgmECHipmZVmMYq9u3GrI2U/0uQBExMXY4h2oAkjVTUg5kTXS6ZQgnWU/kJnL3cguCnZLT2UC226omVkyjtW35HXSIoCFxtGEk7vyZ1A6AbKmZBhLFpECujkmKQCEbjZLa2+YvrM3NWEJHBaI+iJymIZacXAImq+NBKR4WIans0DZ3sgZMVOTbThQpsWtm4EsbILA+eiYFYlVqy8T79GSHhUnyldZDcNnMsdP+kfWO0Wryy7eWKoapQwCAJJ3bFcKq0cxTMSDVpiw6/or/+Abvs3Z+f669YfXFbmnP8p8E//rff+i7/y/F9wP4r9t9f9c+Af/o1v8PcoqzWt1lglGEXBU/pKpRwzirN8ovMjo8wolSj8RGEXIpleG77kDbW48DL/jH564q3MFPKE1RNazXQuMpuAEid6WXIzFS5YpmJDHUeMmPkunOjSFRNLhtxwUwdqv9KtZ9bqbiBOVjDVCoVFigWw3FRLVY/IOXATW/6l+CPexOd7vmyUWC+ovGTHzKIKnHtELVArzauteW5qzrKlWzJJOt7zkTfllU248GV5S7wpnrfvOZsNWWn+g9u/winL57jlY3dgii3KFExypBY9wiUMmSwEP9cf2KwjJw5Mw4bnakfWmSqMOC1I+kruJiKJrANdeIH0IypqrkXFN/EDK5KQDC4ZvNXs1UqvNDIqEJYiB7ZuxgTFaiyP/VeOsecH/40YMk68ZYodOSlKdw8q71jINiHzROcdIWeUWMlC0OSeIiyoBGVI7JsLYfZ4+0Q7ZYrseAxfmHRNMgmUp0kjeo00qyCJA2/cgCpn1nmiUCNVaXjNDXMqWOwMKM56h/WJDTPNtNKliTJN/Hy5Uq8Vsugp1YzwHd9sy2csvgIySJNIGbKuQWuK7Oj1XRDZNbOLF76bLnxrdnhT46LGxwprEk1xpXKv6DSi9ciOgFzvyJm9H7nkklFVBKWY3I4f1USRM2e9RfcR4xPeOIbmCVUpNnLE5jtbrwkOExwnucW3Izc6+lhRB8FqIspFdOGQ0tHXLU6U5KQp00ThEikaZq3JruYsItdW4IygkoH9eKXtMzKvFO0X1sogzYKOgUJZgmlIwBA2uNzQm5qNG/givyfYhLEOIwLfLX/JZllp5htVljBf+LB9QEjPjMIJjRA1r1awkT0/ho+0auBzfs+vmh/xUnEOG94PPxGz4Sy3JAxSRYSEaARvw1e6MDHHglwk+rwhaoNc7133VW0QSpKqhdtqaMTMIA0x3CeCP5Q/QxLpvKPwnqN4wZmK61IzVDtWWSGUoHQrGx/p4p1/uVVn1iQwpaf2iW28oQmorFF5RFQtRz5zlkd26ZW68FzGEqUFc7kiheYmag5ppYieNoy0oWeqKso0M6cCuZa8qAeEi2yiwMmVW1kDEpUkxllsymwuN17bjNUC7zNS3qOidBd4N/9ELSNHMRC7AikFb91PPKoLxikmseOqLLma6KWmt5o8RfxiSYvmZDRVc+ZWFJScEcqCNfi4wfgBFRzOW3KsMKXD6YKFwE3UdAoCksZnnHzmEh4wIhKyxkSBkpomLIymBl/jgCImKtlDjDgkOUt8FZEiccobqhiZs713yZaano5aXTmkkVUk/qL9nsU0jKbhabxQZY84FWgvsCT+dPnfcXWBRSClJOWAETP7JVAQueaaQWuykbThxliWaOG5VBtEMNgAN10QbCSrhJeKg7hSycBYHBjGlcUUBNWwmkfepi+E4DkwIm6JpBqSMOjhnhN7KXdox30/MfBcdmy4MamSrDSDrHG2YCcuCBwpaUyARVbYNOPt/cY6KcWNmpglRmakMFjpafSIjCuX4ogrC26qY5YFSMEl3P2Y++H/4K37RGNGQiV551bmtONmarRNdNMzrZl4M5+5qbc860c+qh8QXoPUbFd5H5BQV97Ir3ilKYPHxwYnC3bTxPa0MocZN12AvxV0//8qUxLrlueiYVKeV/mOxTcsxhKkZdVbtB7ZzDf64g2n9RFJpFU31jJTZIEDBtfyrCZuVcuzOOK1I8tMJ6/3PwCjcBK24UKgADJl9BgcUidInl28seYSk2ZaVkSsqP0MBEKtiKFgku39uNJ5Kj0wcOBz8cSaCxZR8255Zi8dVXKUeUaHgFt2tKtkTjWTTUQdsP5OU3eV4CxaJvFz/rT/FdqOvAkfmMMROf+Wo+mZRU1UgvIS+GWYuNbt/Vg2ZaqxJIgty7rlnDokjkVaktwSBbiiQWbJlGqEgSJUXNWWh3RGrBWKlbx2dKFCFh4RRg5h5DfVI2e1IxYGm2da4Zl1yc/GZzZ55lXX9KqlTCsOyd/1/5p2XYnJkpRhyJapaYgykwvYBUduFlp3wehIihVdHCjyTEDShgmyRCaJ9Q7pMoPc0uSJR7HQL5KiDFT5hVo6SpeZVAHCo4mYnFFRYbKkNAPeSg7rV7RKPIaMs4YcMzfXUdtXgjpwXJ7ZuxuLNlzLhml35e9M3+jKnnT7nn9TPLCoDQSN+t3dZpESImj61GBWSQkEKaido/GRblEIOTP6wOdqz6ko0UXAZUeqGp5i4DUcuXDEi5KQDHLVCARWC4qc0TJQpZ5fzK98VgZdBrSU/Kr+jg/FE1O0BOXpkkbKwCIbtAp4Z1iNpBcWLVfE6rF4frz0TG1GVo5tuqGk4CI2OKHJKbKoggT46s4wM3Jkl848zD3bMWB8wboYhuJIJ18x4cpa1AyiYzU1xkcKVkIGbVben7/yrdxRrIFyXSiEo1Er2WeE1rzGLZM2+EWjCwhoWuHYp5msPV91RzdfkLm+58VGC/IOiPa64/ga2dorpJJbc8d/CDJV8GxSz6M/cXYNfbMhZwjZ0PqeIi/YHJhlw1gUjFozKo1PGpEzKgqiECSTESmRkQyy5LfdO8ZY4cU9s3SfZ5Q3XNMbjOqZaKnmhJIDk5V46QgigdMI23DND1R6oeKKMp7an9F1C2tilQUiWHQV0VMgC0lOgt5sqH3Pm/CFj/5HTEpcSk2yhuw1i1DMoaIJC5d8ZENmspp8CCjhUIUmeosqEma7sGGkb7fY5crFtDg8pcm0QWOnu6949jWxjTRMXPyWW7nnah5hNdQq4YInhhpUZLINOyZ28cLBn5FJUnPlud6zLBLtHGUf6fIzmwg/1Uc+lE+EbIl5QMsJRab1iTrNRBl5LTbMSmJi5qIOVDmQRM2LbdiJE0oKosrU0jHkjh/7V87pDVEpXFQU2XIRFV+qHSJNXNkw5B1BKEQh2bsbRzVzWCaEDRztN9ZcUYvEELao4NiOPWH+Adsk9mKmiRlJIArLhCXFghgKlljR1xtWa1Bm4ZGvGD2jiLTLxEKLFQ4vBMfxhZst6f2GD9WfUKUeoyXfr7+lRnIyBd7WbIVDKIGaIJcKaxyrVFzZosVMNIIuDbR5pfGOp6UnYBl0Q5sci1MgCpJNrMYQ6JAyU8SAQ5EKjU6BkAqKPBDkfcIyJRBIHpceK+EhjZjR85xLUhao5Nn2J0zZ49uCSXb8arvlRb/FpZKJklgrlJB8amt+uP05bf2KV4KbPJLWgoN/ZhN6vlteqGzGj1sk/g+nO/5K/a2g+/dY0igufYUkUyfH0Zy5eUOWipwWRIxsuaESVEw0csGnQKluNMpyY0sRRt7IE1ep+FT/EbMsmSVMYkcbr4z2kYRgEFvKIuCx1DFws5t7mLjqQGuucsM+9AzULKrF5ZalPLNWGiUXntUjImY2YeGNf+Ht+I2+TCxZMcuWQRzISSHdGW8qnMxMVSZ6j5wMn+Qjt5i5GY+TioRCKnhazixlQEiHUQFcSaPP3ELNRe7RUTIuNU/cCHrCJAfRsViDKxWdE5g4sJaW1WgmI1mlJajMqdih+sAuTtS7V/byjK1GbqLhKkuKZFj8gbKaKV0k55kgGtbcUqwKlSeisOQkyG7FR09vNdon9Jo52FeUyxzilUYEfq1/4Fv1xLN+QCbJj8uZ4xogTZT1V3bpAiny7foGYkNbnzFhQsmAny1CaF6qd8zchcVjnNA6sQuSaozUTEQDV91wlQdWpelN4JfTBxaTeZV7LlKiXWJMFd/z0x0q7Ws2ogf3xCoE3fXEj+4TOMPr9kCrnpmF4paPCDmz2pEkZip3Qu9gww3t72iQm+p4u/Z0vcD4zFjDcUmM3lLKkdEoZnUkS4cNjmALlmDYSEkXb1zlAzGWTHnPyZSEyuGSxYaITJYmefIiCIWjyIK1zjhf0ecNuIydA3mb2foTZbkw+w5rAp3sUVkip/v072w1ZYxQBYxKHPpXrk2DJqBDQI2RcnX8poKrLVnrLZMy7H0iK0jWs7QgL5GH9BG3TGz9C0tR4tigQiKakpkCWXh2+Qwicd1bjFso1MRQdTBbmj5SuUShHZ+Klte6RYiEiQvVlGmyZ2j2CLtgU89qM0ImRhW5iPuxD5WgSI62SPz47RteSPrq/T3wm5Wn20e67IjXHfaQefA9g4CgoPUjm/XCt+rIJCVRRGZpuTsiMzFLpIokBKREmVa0gjqtWLegtCesBongT27PICSlOnF0z8x6wxqPnORbRrujWBwFDhkLcpQ8xgtjrbAqU8UVqRQ/rp8gZtZsWeRd3MVU4EzJUDXIlAne8jQmGiv5VjxwtQ3GORwQhKYOgbGuiFKhzEz20MTIg7ixDxFF4iVags0gHEEVbMJnRrNFp4gwjueqZLF7lJfIZ4PyM54WLw3dPBOGyIqh9Y4gHCJKunUCJkx2HJcTjQ+85h1nbXnVew6cIdQ8vo60auTa7jgXJUiPdQsxCR7cZ5a8ZdAdJ6GpQ8YZOOs9WoFm5eiupGKhTJof4lde8wYhIlWO5CQpdOJhdCyzYTGeMsw8jj0xTtxMixSJxRgysCrNq2zRNvFdeMG6M3sx82XtmGpDMQZ0mMFnOhaEL1Eu4opExHNRlmJ1DGyJSLzuUKlgN3tGIZhVx8GfqPVMlAoZFXVY8eKO+ejVlqgcS6rZ6CsyZs6qxZ57CiE5bhymnLnpio3x6KFEsPLpsKEmsPNXrrmlVJFsJBUTXQz8xvwpYxY4+YCVN3KO4CVelWQpkUSsSAyqJaB5Si/YsGJTYhsn5pyISCQaG+HGgRf9QCFPONuw9C1eW1hXrsVbbrFll+6+1UU05KgJWiBF5LvpFcXKj+ovcVGQlMdNFQlFGTJqFUxrBR4MG+Ic/sDq415/K+j+PdZ8C7jnExFPyjUyarazwKcKxYJVK+/iM6UNNLzgVcGsNRezY/Yd2SZKVoLQOJ3oxYYFzavcAfdgaicLtPDU7t4NSiKTtGGWgg/5jzApsslnBlkRtSKn+5f86G68VBVZJGySJKGxMSGC4kU/EuI/ABG5yT3ZZLxSjMuGyxQx24GHMDJHzcB3KJ2ZqpZdGPAZnDtSywtXveNZNKg10Pc7WC0+S67WMrgHVFpJQvPamN9R9U/UacZJjQqKVWWezR5x8Iwq8Kye0CHirMI4R50nopIceEF6jxWZRe9p04Y5GYZ1z/dLZGpnJlXSxheKFCirkl4/MqWGzdJTxysilox0XFNG64ASNwyeRVVcig2fc8c5v2NkczfKC4e3E93qeVRfaecvfMrvWMl4Z+kYeRq/YBaPiCVD1Lxs3mJWQ2sU3syUcqLXW2y88rXa8N5NmCVjbGKrHMSVoDKjV3wr3rFKxWdz4G34LQUj37nIXl5p1BnnSh7TF9wiqK6GojoxdEf6OnDiiFQjfnfjk3pHYR0xjjS1o4z3z+Cl2aO0Z8mGN+OZS3rg2L3wJBZ2raOaKt70M+/mT/Sq5Nf5LV/TW7xreD9+pSxmXOiQRtAJyUe7IZSOhEC5TLs4dDB8N7/Q6W94M9PHBpcUpUkgHNInFB4bA94UvKqGjEaHzBA2aDmA8JR6QgfYuwGdCqRwSCU5xBvlGjn2n/g0N7zKN6xGs3YbnJY4aYmhoHZnqsXdEzmeHMFkjHd89W+45LcsseHFbKm8owk9iEglF0yc6eSVt+tIFxzjuKUeBCOWviyYxJbnZgtkVB7Zx55fuCvab/gqFjyeRSduquYrj4RcEqOgCyeU1OzEmVAV3DYlNs9s5jNBWwZT8qvmj2niQqcnRluCisgc+Nl4pk1navnMTZZIuSUqzywaVMxYESjzjMz3Aat9vCJEZlE1pyTRSVJNA262GJ35i/KRmEt2SuKmjAo1UTSceGQVBUEHRlUjx8SoOtrpShETUiakslxFQ9E4rF3o7JXoC6LU5AyD3hC94CG/so09Rq9oFlTyWBZO5ZZJa0ZV0ISJTGY/TCgCqy7RNhGUp1wEroqIwpMKDcmxXS+kqWJoa6ayxck7+uSgFwKK4snxJBxiMmSlmYaHe9pLf6JMDiECN6lx24Y6j2gSUgimLNFpwoSEpGKqS2ZqzkcYVcv/yd57LduWHMp1o/x0y23bp083cAFIBBn8///Qm0ReEY12x22z3HTl+bAQUugdEZehQP7CfKismpk5XC58VVsmvSEhcDkhZkERLU26YkXCV0W0gnYdyaqhqkyugjYEcqi8qwdyEBg8Qmg28oySV37b7vnJPHJJPbVqvpdvOHMbY/8Y30nBsgpHz5WeRNtcEW+KGC3n9oHZbsm6oRErje841kK2gigrT/WFKAVqzvhe8yK3nMweoRK9P3PVAoGiT4G+XNGp4vOGp8s3RFhQc+QpFk5PlfduyyRbLrZjUy19GqnnTDgFPhTP59YQaeiS4v40k0pHEYXrKFmMJ8ktQ/HsyhnnPUZqYm6w8syzPfO7vue1u8NXhyCxKyOuTiyiZxYOXRMCWIVmqAmXFx5y5Nwd0FGQRUuzZK6uEoE09ERhsDaTQ0VYTZcX3vQDr1JTq6ZfPbNqMakiyHg0jVxZxB0lJ451w1E9060RXxvCtjLZnv060b9Jyv8afu5fhu6fqfHthfJ25cPmQpKFbTnxjYarcAgZcOLIUCa2+czJ/JHP5hmAbFZsUf9gCBbsevudI4phVi2hahyJpW4gCFxZGVWLyAJd8z9u4RkKyFqJStDnmV4sFAopb5D5lk8RemVVElkjqVqOYg9CcW139JzJZBD6hrgGNocAACAASURBVNZqt2wknMQzlIVTP7BJK3/bCmQdacREJ6EWeIhHlJJ8l99IWaFTj2wnmmbmKDYU7bnWLasZyBiEvHCpO6peGHVDrZJPZnNrwdnMux6YtcWkylQbjCgYVpy8FUc2+Uonrrw1lm+ix2FJ0vF5V1jVBQhY6ZElstUnatFYpfhhfuVj/czX/JGM450N15zZiImiAq0qKGAuLTErfFNZGoNNGRNnlPQsouGT+CtBFERe8K1B2MAaNY2dkRGW8MiaehKWTgSqUEhTGLE4eWCJHXGa2F1nGqv5unNM0rCvX5mMIpqZXCwxV05pz9YPfJIeFQ1Cv/KT+zNRdITq+Ni9sdotQXQc6jvv5UCIDa+ypZqVoDU1NozKEFGsSiNLwapITIlkFBsR+bC8kEXDeWioDn5TDc8l03Yr2zoyNhdSqhhT2K+JbQh8abcUJWjKFVESo3SgBPf+yubascmasnMcsyCVhXJUTFXjauJ7NTO3lhQ1IiV83VCRXIQm03A3TygROCxfmLaPhK4lzY4pHphZ2OWZbXxhlHecmw984Ym+BiIrd3HFS0sXVnZ6RWqYrMUuM9loHsuVL3KLqLAPE4tqcLEQZUezjMzbFn9LAGGanib/TiqS4z6z1EwSK32YOYjMED1XZ2njwp2/MIeBxhVGoVm14MKACJUmTzjlGcqMNLCqhpoyWo0okTB6IGnNohtGN3ANA44vdCGzLycuEvqSOeQrhsCmTlDeWatCUHC1EIqlysqeIwmLEAak4Xn6TKiK3fQ7VUb25cyx3vHvzYa6CH5rn8mAFfDCd7x1e9ricaWwXT2dt2TpMaWSJsXr7sA5F1q58F34ncZ47uMbX7MiBsmreua1bKkG5rQyXANX4Ti7A6tsOIoNc7WotEJugYKtCctCyZYhjrSrJ+4ltl6JRmFypKSWUFv+FF54ZMKGwCgunHXPm3HoUsjFYFOgLzMuSFrxSnNpOVlFkYmaMk8+IY3k2lmysFg3QQ0cXc8x3TFZRa6Wtia6sqAFZOvQ+cpdeqEdZybV0KbCNo9Y90IqBqsjfm64ri0X17AWw10+8Ri+sTQdrZyoWvHRf0YGIAXGbc+reOBrt2UuFl0zPkly6Zn9hpPuOHHPqh2qrCTl8FmStaB2npPeMbkWqyNDXOn1lcZ3rEUggWNumez37JgYZCAlC1QGzkgheHRv7OI7XQ2gM4rE2hjk2HA2PZt4xuiW0imugwEDfX1nE17Z+YmlkfhmYPrg6L6u/OF4ZZYGY19BWsZFsChLXgsFQdSC5/TOud3yrhOj2vNj+ExsJ0wKKAVWFKSPXDuNqBKFRsXILkxchgFJRaXCD9PvVCMxNPTLQr/Cuj7wkM84BZ0e8WuDI3C2DbFqVtugakDlwqZcWdlhYkUky/PomXaCgqQJkUJLVRfOestcB5LzqFQxUiCt4sSeO5Oo6j/Kdfx/9S9D909U5ooswHzg2CQykuAmaifokyc1hRA1n8wHftU/sErFPl2Ycser3lO9wjlw6yvZRP60fEOoJ7S51bdrm3maj7Q+cs2BZCKLUUxiT9SQlcNLsMHhpGdT3jFipdYFIeFDjtxfPnHtBuZxy5k9L+1HUrmFiO2a0f2MqAEKVKVYh9uaeLcsnN3AJBzHfktbZ8ZqeD6/somRnBqarHHeYoRi07xz0QOldlgvaE1gKRmJJwnLkYG03bKVXxjtBlU9Y+nxVdLWSAY0gUn0nHVHX1aO9sDHPKELHHniJ/MXpM8IodnnC820kLqAYCE7xVUPRCV4Z4OXA0J4LtpxX3pUznzaPHMJA5dO4ca/U8uWbblwTnfoKqi2UIy88UNlJakWbyUmLnjh8Ahe7Q+EzoHMfM5/5K/5/2JfV9pYOZzAW8+287AWXp1m2mwZrUcHSc0OEQrDaljVimwCRni+mQM/dT+QlURlgc1wb9/ZlStVa47cEYolCncbWG0GDurMpbdgEmUtvLo939wzlgmJ4E4ciULii+Gies5qi2WhVSN38wVbBQhB0oEsAo0vrG3LMe5BJWSCRmW8iIxsOeSFtkoOvtLpC0oUAjNLEry6D9ja4htF6zOvveVaWopyuBUoim1auRe/cqodr+qZVfXkqtnPI0UVJOutya0Fp+aeVkz0YWIUj7jQIq2BYDjmPVfu8GHA9y0mC2yNuOp5TBf0LNiLE6l21CayyQteat71gdd8R44bctJsa2YzBdam0teFz+Z26C2m4avpETriJk2ksCbDPCisW9EEUix0YuUgTiy9ItWIu2jujSdwQ9yd3EDKhX3+RqoNfbpgZKXNEzE6im44+CtBNhQUk+oJnaYNM65beZgjbZiotRKkZBx2TKrnrDo2aWKIEZENJgmUnqimJSiL0oGNf2dpJLp4rJ65rhtGWYmX24iubytBWBYcU7VcTEuWFeMr+yUiBJyGliAk4R/FFZEzk2tJMvOT+pE/pV8oUuKYmeITuSqGdOUufsOtkUd5Ys6PrL7j1T4xJcnkHFpKJIkuLJSqKdKggqRrjjh9xAsoojKLnqttEBWaFMh+QK4CjWYxe0rWiAy+FJRYsPpMrFBlxiUw20jQleIlsTU8TG+8998RHKx1SydgdZbZaEqWWFFoeaMKh1KJq+loS+IsW971gbBrmXPPXf5EExOtiSjv6ZInxyuv4oC3BqEra+1ItofQc69OXJLGVBC+YUk7lgC7NJL0EzMSacB6zzCOGC1orjO/dd8jkiRLhxeWwRyZ1cBJOr7Zligk1kTq2mB1oW0FY27RySPNSgF8ltTkkBV87pirAq3ozJFsFI2olOLoPGASSRV+t080sbITiT4VhA8Ul1iKYC8WHq9XfpdbJvHAairlMPPX6RdsgMvQ8y73XHc902RYKNQ4413Hq3jgb/ojsdEkAajKD+vf+Vi+wBj5ff+RVlZMhsO4UoRkkgVXAzkp2ryQssHXhjs/I8wMpaGrkR/Df2M7jQzJYg8TVs3MubvhIX1LNTNdPPLJPWFsYsgerSU19VwOO4Ks2Cj4GC9oXamLo4iOKG+tcSsXWtHhskeXCHlC1Pwf6Dz+X/3L0P0TtT18oN5b1vmVbCWLE8xRokQAdQucv9g7ZIQ1HpiKZbYDkRu9QCmFN5VVVc7csWXkPoxsw5GiMs165Y/hBXeqzIvk9V5QRKbwjbPY4UJkbAb+7H9hcYKmTOSi6eaFq5b46viiPlKyJYQ9D3ViMYEhjvyqNWfVYUuiFElTPEpE/LaSjSQue1a2txtulegaCMIgDOArxkuMqExlj9fw0je38VkVaWSijwu9mjEpcVUNpIyrBucKRVS0zMgcScqy5kRVlUomGoUWiWgESHkL/bNl4xcGVoQv/LZpmO0GvQPlPG1qcHLmbr0w2i2JhqVqlICxaTmLga5WHtaVLnW3X7pCs10XHpdvfDL/idDdlveFiih5G4t+bbaY9EpwjqPZY8LExW5xdcWICiZSFdSaeDc7NIU0K9JYGbsDn9uGLq8IFWmusBMXHoYTx2ZPWyXXruGsLL6RWBHIVbLxnk1YaEVl8Tuiloi08KW5x9OhpCLnlp144UG8McpbqFfUDl8tVEUWgl30N8yPDDzmV/blxJ0c2aRIaBUqXXmNB+SlcKyGVbcoVWhCQymVUbXMwlKdwwp4lS1CCKpdmTC09StNDKw8IXJF6QWlrrw3HRddIUjaKBhipZeRt7uOSe5ItWUTF2yqKKm5N69oEkHAte64y2eKhMZDzAcu7o4SWlYB3y2B7LeM7Y616VCqoQ+J57d3WjMh6DGLIOmeigKl8H6grSMXPbCKDpkymsLz9M6Tn/kiHG/NHq8bolAkrdimmX/nT3zkjUClbTyP9RtkyV/WnzjKZ+Y4cFaPRF+470+s2XCpDWtpaNTKwR8Zo6MTnigjBcupav5v9wfqRrMVgZ3/gnKRbQrUkmjEzHZdmVzDb/merVj5Mz9TjORsNjzFI32sfH86c2ZkFAeSdKhy4SIGDIkLG967Dll6mrLymp4RVTDXhc5c2YVXkrlDB0mQA7UBJVaMCEyN4CBO3C8joRS6S8vVafqgubRADTh5JddCn2bM3NLnCTV75HDhsnEEt2FVkiXvqavlVT8ytg63Zqw40nEh6RujNkqLSJKP8gKyMDIQVeW9dVgfOJk9FEcf4WeekOZ3Fq8xaWXDyJ2YWduMrYFZd/ykHtEomlVBqTT2hLArRTn8EIhGYYtnEYqmTHTpglGaNx4gFbKwbFg45CvXUvl+PXFyhk5WRE3MSmHzTKcu/DH8TKxb4tTyi3zmRd9zVVtsXlApsyhBEYWveo9MIM2Fw5T5Ujpiibx0Az/wO9/5N9bas7l4uhyZ64afmz9zosVrQxGJViykIrioe5YuU0olJKgpctWVbalMQjDIGSUCclRMdcO3Zku3Ztq08m/5M0tjEC4idWSzXNEy8Sa2/Gru8FkxdwZNZC889TqSsyCble/LrwRhaAh8uR/4Yh45igcGcWZOC7+rA2bUeKFo+xHnPEGvTPUeqTWrgmhv5BwJVAGTbImy461+hw2W/XtmPy8ke8tBf3MDK4mpWmI09D7g5YbX+kjizCAv3KU3BnPhzk4It5DDjrgmvrkfiNJQ0GjnCbGlzAfu4hmz8UTVEY1lk66cbIOiMDeFr1Xyl3ymFyuvacOsGiSaLgREVTQp4kYFsr09bf8voH8Zun+iut0Tux/+C6f/9o11NozaoGpCeBh1Dynzu3gmI1i95LAuLB305UroDalKsuq5dpCLR5QzP1w+U6rB6JmunWliRXUZcbzAtNxuEMKTO83VDkyq4ffNEw/zOy50NOqNrlm56B9IouXKHV3yBH2jBmzSwiBPfJckl07g6kRcb2xJoSxJN/w5/R0vDSYUvqg9o5WstWcoJy6qoW4dq0icrYHaMTaSbDP38Y1ZDuzrFeMVT+WCD5LmcKRSMRLWCl29ss9XhBA0BDoWUoJqBGQoGCYGBkYexDcey5khZH7XD3y535GlpskXZBS3UkkY8a1EpY5GwGG6cOzuyVkTaiGVI4tQeOO5yNuM4TU+oFfBcdqg7iXbHKnK8KruiVLRxpkmXdmmN750T8SUUUrTlSsCyUxLLopP6SNn4zFVUe0tJ+W9osjAUg6orGnxHOTIffOVWTlmV1iEoqrbq5SsAa0ibQl00tPlI30+MpNZigZ7j8gKmQSH08jVHVg2FmkUd7wRYsO7uUdxmx+QCUwWbP2J2EOzeqxObOcjwmpi2fPWfODUCLRd6MMba3MPKiEGicqebfXoUviiDozOcrJ70nRmU0+8qSd2cUOX34ncXpZ+3hqMLtxN7wgp2dhIipa8a7nWHdVMtD4y6g0/dz+AUOzSxFP5ymacWTeCz0owyi2jNhzqREQxK01xktUK/KqxJTCst9xUXyKhZgiOJECXipsDOUiabeJ+CoS+8ErDr80HXsw9qXP0a0btJjr/irJX5NrwHM/M0vGmDigiR3XHU5xQJWLyytJs0TIx256cG4gDSTgqV1YBtWbu48w3pSEYUIquLIgYOfUHLm5/M+S50qiCXRKrGvCyRdVAKXBIJxaxYVaW0khElbxHjVI3RBxiQ1NGHsRn0tBBiSy1R54lInUMJhCMpNMzUd6KTSMd27UivCTHhv15YrmvPJRvvMt78DPXpmcVlkHO9OWCyR4X36mlpb1qjHaEUPi0PdwwVtrxVT7QrYbP8omgd1QihkQbzsyNIyXLKiU1RmQV+FajhcLOEi0jLe+U4PCyZzUKYQy998QkmXRD0YpIR7sUJunISqDLjqVagm3oxQvVJg68IEjINlB1IWCJtmfjv6CbSNQG8khVV7b1M2t1FLFjLAfmZsvd8sa9ONOukdAoVuf4RRwQUuBEQZsrWt+a2m26DSdv/EoTEz1nfrYDk3ZIFbH1esNFqUROmWG9MMjA/t3TuIGUE6aN9HVljgZVFA/xG9VJ7hixduWT+J5BbFhF5ai26Fpo88JoBtoYqLWwhIFqBPYUEL0i0vP+ULg7rWzdmcXdo9KVdm3YnTKLtYSgyVLQpARGkZH4peVF/Mjcy1uxJs0c8ng7Y6yCNbFMPS9qT5WRwaw0BXqZ8ARE0qxuy6oik3UsqmC0RlRPNhWrAlBRuWVUw42wIx2q/OOlq8JsBtoFDsnzfK20aeEoEvNTQzSJtbuNUK/6NrdybB9ur426ZZ//xmwNctgxlWcudsMv5nvA4FvFnT9xUZpWTnyrj+jrO9+37/wQvnFJz/x7PHBsdqQsyLYACQL8kH8BtTINllQdSQjuxzfm0KPyiePDAPv7/1jz8Q/9y9D9ExWSIKzP1DyALvi1ZxUtpUhis0fomTZm1HqhWSO69EgqpimkMt6wQfGNPidKDciqiPkBK05s5si1sVykY3RbzK7n213P1r4TqyCFGyScWnkXewY1Y82KropzemBUz4zJ8s18xz5OKF0IOvJY/weL7bHlSBYPHOsGpyPdOKGbgpALr7rlYQo8xisbHziOBuFmkoYqHVlJTvueV7khyB2WC1UIRnXbCDvIE37bcK4WvRo+5E+swpFtANnQlXwb+yyvbHNgrg2mJu78EURDHy/MrqHNE3uufF/P7NXCMD/T6AeCMlza2/ZQTZI1NTTzyG5ciNuWEHoe1JEuzry6B76Ze+7DzP3yhi2aHy6S4B39alAGfOu5uoEqPR/9J6LWyBpxOfCqnjiVHWe3oyn+1vybvtLlPRt9RTjJtXZs5ErYJea8IefCKhqaOnKXI4TMY33HyokvG4evHk/LrhwpzpKkpI/LbSphnWlTJgqHUp6LeiaIFoJjSPPt28krXhgoA1Z7rJcQJXUAWSXbsLJPKzZs2JZXZBTcMZN0hwyJY9sSU0BFuNae2Q4UNBezY1YRlQN/ff13OmX5pgVL6yhF8Ld7TUtHKYbsM5Pf864fKMyc2o6hKt43W2bRofzINnsexJFztFyanv9h/o23YU9CUo0mk7ElsRGREgesV6ybDTVUUtIs0XJudoxtg5MLv9w98dG/4CbNQ77QhcAv2x3prDg2e/Z55stjQ3tdYB/JE2S3Ik1BkilCIGTFGs+QLohYcCqiReGb+w5TZpACWRKqBqoQbNyMqSvUQK6GNT/i1YZQFF/aAxFN0JF+nXElokJCJsEod0SVSdoxGUNGEdTtUJ12EmUWdih2a0SyUILix/OV113h1D2RW0EbBaKutCSy9yzCYVVEdi/sbY8PPXec8GpLtw50cUW4FdMH5tiSVMs178AU5lq4yxMP4cIhnjBEWjHRyisZg8PgSmZRhqfmC8/lV976Levcs3T3bF1hFJk9J+RaEbPmqA8s1kFQfKgXZgoJx0V16LlSTcbEdzajI+qW5/QNozNLtIzlQC2VXYp8574yR8tqDe95YJQdppwoRdLqC5HMRh15zR2ynRm4MnBmFYqpdkxKUrPiqg6sYkvVmotQOHHBsKCN5yrvYNX0MUO54krm4hQXs+fH9Te0qFA6lCwEoRnyDBh82TDEhVEN9N6Tc+U39UCsoOeeZCrFCYIDkxO7cKZIyVR3+Cay+ogTCREMqJE3NhxlwKaFdp1Z9IZtOnNpWjCSl7phNS1CJloR2JSR+/rGnAdKVVzFluQk9z6ilYaiWXyi6UaO/cDP7Xck78CubNbEtTGstuPV9Zw7gzaex+XEn9OvcB1o9gtzHkiyoLJCFEixRZQzog9YIpUtQmqKFEgmLI7n+Yi2hTYdEVJzFgNBFNr8lWShEZ7H/Eq1ijcjUKmiU6AIwRADP/rfaUViWnZ8lRt0aOnTG2/9AVtWXI00s0KnTBdGsjAIRlZZ2S8X4lYQa08RguyuuLTgeSDIhh0LURpGN0CNnPsnNAUtnnAetvkn5mw5bQZyzremdc4EaXg3GxTPyKPkSXxm5QYKQEpqlAgFatPQtLv/aPsB/MvQ/VMV1pVeF/ryn7CX/869XvltqFz0HVO2rNHydFlxIbG7vmFTxDtBvFuZZeVD/kTUDUfxEa8tQ5rxKtFnmPTAu2uQRfJZf0+jLV/Yo5LnvWnQecUnBwJWtWGJPW2GTSh4kxjlnhgdl2bHpiwkUcjLQqMD5/jARd/hZUtJ4Pw73bwya0cnCkOeeVwDL6XyrdnRLZ7rvKGxF5ahoqVnlZa2eLzwFCquBJ74hMqSc9vwziNtiVgzEWTDPUd0VtgRTo1DpcodF7bxyqEKcpBoEn8JP3HnvpG1IDkIwpJD5axaBrXQyoqVI8nD4/kdfbGIdM9iPvC3VpPKSlUCmwqf3TNe9gSh2MdEl99Yc6aphUFobBbMg+Rrf3crHwhBXy6kYhnqEXlNvA0fUEIjssHOnmIrqiiCsiy55dl/5tS31FKwNfLJfGBxhqveslkWbDzRh8RJN/ym/yuRhCoLs3KM+pEaYV+ufJjPyKUl+8C8sXi2ZBe56I7VdYSmxU+WfgZrR9ZO0taOnAwh7tG55TEuCJcQInO1HU/FE2XL3G24ToHZtvxxPhLygXe3gVLRKiBEYdUdXhse4om+jIjWk5JB60yNBpIguoxBkI0i1owo8kYHKIW5LAzZY2vCyZU/8pWz7PnS3pGEoojMudFMWjOaAVMr0u6YLhZtKr+Xj3zRz3ijSFbxFYFPGnIlmlsGKbYCxwWbFhYl+aT3XJ0lqoKo4LwiG4FtF7LNbMKFWivXvMGUjBQRKSNGj0i7sJGfmcSOGBzCw8BKUwMqK+7qiEqZu3Ih6pVZtcxiwBJYKIzCoNPCXTzR4LGLRFZJ6yMiKbIx1M4gqifUWyEgysIuTZhS2YQFqRdem3uavHA/rexPE8k43lxEDJmsKl/tR7bxyiwanPXUKvnZ/pEP9RekXclJ8a7u6dKMTIKP/is5eIqVzIPhQ/2NPQuv+iPJar7Je4b8jVQM0RjG8sScWpKsRCHJVvK9KUz/yLJpHH/fPpBtwVfHUgLbMDGmJ8a+o0mVuXGc6wEX39jnFWkXEJJraglmT6iatoJZNcdhRz97KJJuWeituOWl1IbGn2hq4MKGk7qjkQt79Yr1MGvJRT1R2p6pLlySZZQNSTWYkhnygimeF+uwOTObHb2IeHEgoNjKhcdy5sGv6HxgNHu0XPCN5GL2bOSRNMNaBkbZUyVs8xuimfiYXrhqg5xbRr3jKu+Z2DM0J2jg6jRCJ6RSNHNAVsGL3lByw5wjc9sz1Ilrt+Gb2REM2FT4Ll15DiNuzYwNeGsIpaWJEangD/EFSmaQI0Oaedd33K1X3u3u/ynD3a9vtwjIuvKr/OF26baFSexZ7IiaIVhDLoXVSLQwRDaM9ZldmQlW4JVF5MQfp7/zgz/iVMKZiV/s91xET8LRl4liJI/pE1kecUXRXR01Z45dz3vrKVXwkp8xwYMBYQLtCg/KM/uWpdN0xXMfX9iWK3pRnIeMzwLIZJV4tR1tbFiINCISQ6Epgl6cibJyKQphbn8zoqyoEhiVJpaeo9kx64aaGkwK9HHk2mkudSANt03M6iX7ecW4eBv2pnJVPZLCXDekYihFsnVvBAWlTkhjkXXEbxvMXPhLt2Mry3+0/QD+Zej+qWqVR0xHko/k2nNsDe99z8V0bL2nZsWGI119RwjN8X7DSXVchj1785VX88CmLIhYMRX6JZFVz8V4Quu4SkUVmqX0uK4gmkKsGlqJmzNCJhbVUkXitb3j/nrEofmq76lYXNwxhETSldlY/qb/xFZeqKvlbDqWYHE5ge8Y6mfaqqixpSGQp4DuwdYR3SwMecM+R05k2nQFnfDF0tWFJCX3+cRDGHkcX/nl8TuO8p6LHjDV0swF5z5xrnt+H34kFsGdOvLD8sYmJKZgESaTi+OhvOPUwlg7puz4pp6RVrL3hadyRs57SjNSaodJJ6IcqAtQFJfGIYNEqgUTJcUaDn5iVIZJtLybDiePbEzC5A1vjw3vzpGU5A/hJ5bU8eP8ymIqSgYuDFzjwBx6YtvgykjNBVdui+bv7gCp0scj/TqCW/HmA0UqdC5Yu9ClE3InSWvi9/Z7rJjIDDysF7q8MpY9o9ozJ8chjEzijqAj1VWkEhTd0q2FNgUOZ4EUmpPdUet8wxCpP9DKBhkTslyIOZBciyTztTd0ywYlJ/bNiavR/LQdONMyF80gM8hKRTAsE1U0aLHShJmrHMi0mJDZihNBGCqR5/jCS71jVg1OnKlSM1wWUCuDSEShycnw7/U/8961mDmgXAXlGfvbRllG0NeFrR8ptWcVjpMdeLED3hi6fEGlQhEKBKgcsdKDkPze3dBotkbI0JcR6SRDfUWKyCALu+adV7ll7jNy1LRlZKgTf6mBHA0bdea7cKWLjqm0uGIYomTdbkAGNunK/z69En2H6VZCI8iiIgtc9JZUJUZfKWrl2lVcyXzQ7/jZso4NP+8fwBpCI2lTxpTAQCBXcCKzrRe0rCy2gyKwsuDEmfcfbweHrjua5Yy1GVU835VXfq5/pGSBJTOqPe+hULNFeIURia18Q1fNffnKmhOrBl1bFrMlSejLO3/w77yIgSGPLGHHoVyROvNFbqBIcrE8y19oVWDsGkJ2lEajCzQxYWPC1ErjBSYGqhSsDjZc+fHyiblx4AWP8o0xb7naA0MBR2Xw7yjjCRwQzlOSx6SZL/aecvietk6M4g6zeLJSFKFo84hOhSf/lVe15Yf6C6/yQBdGgrW0SRBKZZcDi5Ps44LKEYIlWYuvLY1YWOoDU3FkueFpeuV+LqxPhVfVkFXmRR9YAdsldL7yGDy6JoLOjHXPV/efKVmSXctaJE5UjnLHp/0TjbgymYEhXNgwseqWIXkMibQaZtsx9zve8sDVKWoFUTxtSvRppsjK2iqsOjPnDSd1jzz3NFvPx/WFSRtUKHipkVVSykqfNc/hSKqKw3nB9wt+0BidOcp7opQUKoM9U3W+mZycmUWDKZFTG1GNY21m7vOJQzgiteeZC4/pysm3/LZ55LX2fB0eQTYUYfhD/BkdWp7CC/N8R0iaJC54Z9HLwtLeEawkbMOcAAAAIABJREFU5x3IyEN4oVsCWxH4sg58yGeGdGRqOnxtOZvuRqhYrlw3HVcS0nku2nCxG7bLBYiIJhKyYMfEv52vjKbSuhcW3fBcvjKGhk6u+GT54D/j1YHn6Qt/33xA4eiYqCQ2IbFNC8aOFDSGxGN8x4WE85XsLA/pghCAue0NHvUd++Wd4RrZlUQfLJvxii7/KkX8/069KTyoV/7P9BW3vxLuLRvr+dncsfQCQeJsQSw7fDdwlg0rkK3nIF6Z9cAl3DHqOxbbEeSGh/JCE+GqLUVUJjUw55bYFWRZybXyEF/o6syqHZuw0hTBYhynZsv/0fWMuWcUjmwjRmREKTS1YHNgrj2P8cpbyeTOMAlL1HB/euPRv9MpjxNw0fccWw1IJr2jJsVaJZmGnGAxG4pW6OJpReZD/o1ezEideSsPXNWGhGbDQq+uhNjxLf5AVgodFRqBDw2HsmCVwkZYzK1UocRKsA2f5Qdmf8CJwlknvHYIEXi6jozNhtVvCGFH6i1pU1mcudXmzSM6J5asUTGwIlkwFCVwcmVsJFLO+HaliD1rvue/q7/QrIkuTWSZqNnxWT4z6i1ROto1cn+csC5zlgNOVRo/sxqLK5pSLWtsCWrLuekRVXCXX7FpZdaWL+aPfFN3bKPFiAUt3hBAmzPn4ji7O85mQImVbQ3MssFWaMRIcA4tVt73G1gEQThc8ayyJdGwXW8YKFQAe0PNNTHS1JW7fOGsFa92x4xFqozzK5PqCBZuuIMEHezCmZ078Sy+8Hv7HbImVtWjQsaIjMIjyOzqGyZJNvOIEW/8oX7DXq/86v5KyI5ra5F14i5EcuwoItCvE8kJmuyJwtL5SqmGSRtCrEQn2ad33s2WbECISq0CEQoHf6TVC9kUrIi4AqomopQYEn3M/HX9TM2O1i4IUckYXvQj0jbcxyO7PGGWmc/uR4yojM0GkwqbMaJFQPSWIA0Py8ziWkrwVBU5lpYzHVfXchYHTEn4ash6R0Qj4lc2a+Enc8+xu+fz8MBp6LE1UqXiuymivEUzo2pESvhu/szv+n9jxRHEjZAy9QdUfudpfeW7qSPLDudOHO2ed1loy8JUO97jI6FI+nPkdfOBVSlGcyDS8FBfgMzfhx/51jyAqDzUE38Y33kvd7zYlpN0rNwzNzvIhh0ru+IZk2aShs/6nqPasq9HJrUj+j1HsUXmhK6J++nExJ567/GmIEvBxAy+oa8zySYWOVCFpuBocqakDqkzVXo63kAKitsyK83kGkrVuBJpeUHJ7maGskaKQhSOazWMZcOL/o6JBisyNUJZHavdgToj5MpVG6IwBCcxZaVkRdWaUgxNGdEe2hAxofKcL5zrHbep9pVNnlCLIFfLknuimyEBIpMRDPVWPLDSUVRmlgYo7OaZdZBczYaQLVUL/m39lYf8yip3vJoBy8h77ompockL0QiKjphmYutX2jiSdMSsBTEU+rzAxaDmPceDY3INi7LcXUacXlD5yl69ceTAtUsoV9ARtvWIzAljC69uYNQdSVlyEQgh2MUrNi9oUemCRxbB6nt26h2jPEIJXu426CUzyg3FVtCFtoxocRvHv6qWk/oDX3dPBN2gSsClCSEilolZHbAhUVBQFde2Jc0Noige5pFj37EoTTYwoZiVY7WODSceyjunKnhv/wtUwWg7nCo4eeZd3OEzRLvwWN/Y1lfm5plv6g7lPWIqTLrH2YKWVzb5jW0dED7R5UrmhkRr3Upb3yml5z6+IthR/jGTdY2C/8nem+tK16ZpWtc7rzGmvfc3/ENmDalqhAFngIk4BDyEzyE0HgYmSJiAhIGDOAGOAQkJqdVV1aqsyn/6hj3FsOZ3xNjZrQYJB/1SAspbCiO0IpZWOCvu9QzXHTQYCZNuYEu0KtCXG3mnWdYOWxKfo+c8rtT3f0Lz8Uf92dD9iipoFmV43gsufcW5rnBsVHZ7G2LPhaQlU93xpT+Q6WjmEasEa6ypYkawos3KLgfkVrDVFcnMWD1ALCQkp3VkNYpd2qjVxANfeaq+oU4bizqgWMBuLKUlaCAJDuUrLkfcdeOTffc2DKwUAsXNOWReUdJRx4DLmb6AjhWrEbyUls31jEURyxsM9oEndMo09hGhKnbJoKQm/+sN2LxnjApyzWGUbM0KW8HFwLttZaHFVoIiPN4YrF/pzERCc9U1To6kVDiEzLq25Nca3+0hO77KPZWN1Ex4o0mjpS4bmzXcWoXyhTbMnLIgGTAK6i2QtCWbgHCOkmeeTMMtamgFc9WxiRpXEnv/iMyOPm1c9HuKXHjnX9najs2Zt6fqIqgEfJw32tbx86p46RtAcIuC002iqsj3/oUmLCQUjZzJUnMxe26lpRSF542RdLdstNEzrj3rTtHLGScHRmNICbLK5Cz4sL2SRWKIe/5QfSBWmrU4ahTH7UI2klQNNFLSra8M4p6n3vJiLPW4oLeVqjiUWXFyYTKWQVREpYk6U6eJVmwYP/HBP9LKK6uumHXPtd+xCMsuzFgVaKcLsWrZ30YuzZ5BaXbVlfvbjOxXrvaJRRqes+Os9kQcQkuOaaQREyZpZlVh04JE0K6RojQiSUJSvFR3FBGp8kodCzqBKYK7+ZHkClqsrNKRRIsbBbtlo7YXjBGMuuam9tQxcG73CAmmZFYrOauKiRazNgQcU95xlke+yvd89DPFCmTwyCyJRhCF5KUXrFS4pPlUvaMLM0VV6Dxy0zVZJIoSjKnhpdpznCMoxVIZvBZspkKlTDHQ+43VwFZaduHCpA7cr48sXcuTrNA5YcRKdPCFO1gz7dVz6M7suCBMYj+PfOYjc2wo65EvdUcVN4yQ7MNE5xdaOzK7htF2XPWBmY6l7LjLgXfjC8+HCl1moqhw24ItF+rqxmd7ZLWGJTs29qSy0JSNtTSo+Mbwq5aAj5apekCTmZSnInHkCSkzWS+YkiE4tnjixDMXq6iCoCs3qnzjbBS0GZ0Lv/Vf8GlPQEFZQUWUshAUh7IRZaHeMqflSjxr9k7RNQOvLCzGMMYGJUC7gVqOBCFYZYvLHpugjTNBZg7jhcE+QLFIHYnNiG8Lg3PYvFIFTymSHBwg8V7QyI2YE1+r9/iS2URLXQpGJ76fL5xloS6aQWqemyO5gF4Tc9Xjjeb3WvIX64/8bviJMrXMtWOfA2XK3K+/IOuVO/+Zu7ISRMfoetaqolY3KvXKou9pbORVWq79Hu8Li+vorEAYyX6amDEMzVslftq11CJhokdHOFwzzg5c68xQdYSoGPQOoQVe7zjmhWvqyWS+Lz/h3A1v4bH7njlb5maHnAODkqylpmagCpHoG57YsVjHc3WiYaHykqzgmG44Npo4YYRErAElCoLArWspzlJ8hV4iTT3xbHpG0dLFGa81bfDcLyul6t4YrNaSmogvhWca5gzNPDFVlhJr5vr92yyu7ziVAW9q3qUviAgIwVmd8EKj8Vifeb99xbLSmTOuu/GT/A3H+SvX7cD38UxwkTpXKDOgWfDK8FI/0LJwmEfqAGHTlLjnMRrGefnTmo8/6s+G7leUz5Kfl8Tf90fGU+BmHU0KVH6j8rApQzKKNQpMkqiUsULwzfwj36afiEbzIt7xRVsqtWKqQCFy1i0mX3nRH8mhIVQOJVfskqB0jC/vmLod+3mjUZkuSbRaGHOFwlOiQJRCm55oVCYJj14OPO3uIGqMFtwtL5RUqGUkC0lWNWKIxEZS5QhyYRs7kq4hOp6NYnUtNl/YqLn4e7RZKRLutxszLYqCVIZGXzmUhDLw3fKZb8crP7ueYCGnRKMnvpk/o6pEDorXcmBp3yFFYpAtOzmyStB5ZR/PiHohZgsmQSg0/cR+eeLH6iOtHJl1yzW3f8y3hZw2QpFUYeEkXrn6HaKSzLb549P2RELgtUCVgiPTpSvCKUrKjKUHXZGMQhfP5hxJZL7sWr4fXvlmW7l29yw5ooSBDDE3tOGMV4k2BnLMaFt45kSaBVhBPXlqFXgIM/c3T1YCE2+MQbNUikk6pAyoVOjXASlWmjBh1cq12rNpzSQbZjSxCLLJ3PknjvKV++nGVXU86QbrE31J/M36I1fZ8FV+ZCef0EHw4M8oW9EtK1fdcVBndCoYNaNtAClo9I2qLDyKj0gp8NIRpKINFa5s2GTZbYFujjzIK8oKMJ5VGS6qYpcv7NYzMlrE/B6vVoR5m1EryVCpASkFUnvGeAdh459dX7CNwOkrN2XBSHYpYUWgEhGREy95j1kEh23gu+dXbHSo/ZlrOCL0ymT2LO6eUdeUJDhrQ6wku5BJQiB8R3QVF2kRAmp/5npquWmBDoKlOHQJNDkhSmIxEpkiI5ZVWa6qpRGaKEFRUDkThWMrFbNL+JyQLpBNxWo0D9zAFfZz4HQtvNaCOlqUdFxdg/FXVBXoFo+da76VP3ArLUmtrKean+0d9/oVnQOBxCo2YtLslhH0RCsWfnEPZA0zAqNqmqjZRANFoFRCb5krB+QgGGtNaBWbMez0yD4uOHXhD/aeUVR4aWnjgjWex/IOKQqHeiSJBSEUboUv9kSbPJMBUy7MyiGFpLjEo+3YrTNJO67lRDNlTPKchgtzvSKaPXKFRRy4214waeaQJDac0fXCyf/Co/kL+m3Da82hnFEuce4P9KVh0T0lWqoAyQZUvSFEZB8nRg2P4jckWrwUyBBxZkbbQnJAiii5kruFWVnObs+SG96tN8SscT7gouKL/si1NgzqbaNaSE2/zHy7BGQ143ONzjVdDrSXCRMHKjty5YG/a34HJTPpmos8MtYXPsw/chV75GYxG3yIP5N3Aek2zr7lFu+4KxdewomUTwzxwK060ckV5WAyAqcTuSTWWuBSwO8jOTdkLRD1xmYPNMsrRMOsHFVlmHPDfv7EmFoG97bF3JcJg+e79StzMcitEGVFypIxtTzZA3UqjLqhbkeq4nHxib0dqONIIz2tyAzuPVEoXlWP0TX77UKbBk7TwIE3VJUqGd9Yntw7FtFwPxRs8dRlQCwTWSQmO1BrT5hG+mFkKYo6e468kmSHSzecuZBSxeYmfjp+QKoZUd7z7fSJd/rML9UD57JnLA2N8CRVUYmRPTdizCzxjpwMx8lT1S80+sykHF5WSAt7MaA9XOuOQzij8sZZHBFxBRxNmPBqz52/EoTFFIjesCb7J3Yfb/qzofsVNc0DQ++ZKs0q3zpeVViQpdAE6LaNj+UzT+U7stH0ZUKplQ9rYpXvCcmjTKKPL2zR0S0vKO3R3YoXe6TcMCbR5gsiRnbbzKZbXsT3POYjIax8twn+2foDz+bM39kTOg1YNn7rf6EmEjAs+husqlAioUQgb4qULb8dP1HribH0bKrmuelZhEKniqgkPltYM0KCTQnRXBBFsAro08T3w1dezD2Te2C2NRcylZn4tvyAE4l+uxFk4Rd9j9QLnbjxyRzw2vC1eyDKCmE3Ppk7nPdUqTCoHm8dfRoQQlJthT0jj+4Da34D7w6iJWnF3DsogXMx5Oy4295yPh/KZ35u7lEuc6FDlshodsgwMJh7ptSxFkcqmiZmbLzRp405HNnLyP26YYPAmWf+0AoUgSqPCAT/4v0Dx2lkaAJIyc1o+iWyNxPfnG8c7cwPhxNTbsmqokqF4DR19LhceDdcqYPkq7pj7AR35ZV9+oSd96QEqQ6M9R0v5Q5ZBVz+kVNZGOlZlGYWlqQkwl/xSvPBP7K3A72/MmdHSo4qeoSWXMqRv7v/ltnveDENf7V94S4ulDKig4K6YRcLLJZKvSIRKBKP6gM3sWetKlxZUN3Cw+2ZfX1hMifa5W0xQivHko/83jZ0wCgVk2wxJSGk4r25ol3gydYgINieqszYAkFYKjdyvCam8pFFO5JymBLoZYQoqFNkVjvEILDWoK1mJxfuzA1bTUgf8Fky0ZJyTcgNQRQSmllWtPlKKAZTIotxlC7RxDNFS3IpiMpTlEdYRwBshN2yomTk2h7YimKUD7jg6XKgCRNETd0NvLgTJgeqFPjmdqYJCe09B3nhOd7xVZw4bhs7Bj6IgVnWfPU7YmxpZeaBF0wV6Ldf6MvMYlrG6chmN3xVY9igqqlvG1YlhnJH2fZ4XaGPM9YG0rZyCp944MKTvEeIDSMXvll/QeSN2dXs40yWA+e9JblIJ0e+iz9xHwcqYLDqj/Fh/g3mW45vs3JEfuN/QXhNRUR7yzn2ZP2ONWfGUlF0z4rjZC9MMXAxmqv/gAmKnAStWlhlZDyueN+waU1wDSlnXuSO3VlQF40oLatxXHXiIlveqxeamAlK8aLveamOhK2wyZqAQpdMURsiJaIt3LJhYE9aBSJmNquZW0OVIylJKrkgvSZq+FIfMdHzzj9z5R1ZHGlEpAjBc90wm5pUFD7WSDNSp4A1kcuqIe+ZjCMlcFmCKGymY7cMGB1o/cxqFBkopSBiIKuMzwK/09jrRmkOJAWIjYvbI02NUJbEzNXsKTnz2O8J0ZBsTxCKZyV4K35qpiKpZct+GWjSyNl2pKIotjAkRZaJXXoiuxoxQbVNqLpBy0RUYHPk3FjcrLlLV0qWTJ2mTjMlvyeVQkXkfTgzS4NixvkZhGYWiYvdE7AoGZEFCoo6eWbZ0YtPPPgr3rbIAK+p4mGa/0hqaBEzdKOiKxNOvL51CpKjShJUR9GSz5XDY5itxZeewTTswpVdWZlKYLMtN7FjqSqG8SvJa0yKZKdAvi1XyJJYU00UFidXvIrYfuIWa0b5l2QUg+zQAsyWGU3FpfQUtaMtV2yeedEHJn3Ap4ZOevZRkLBIk+g3QY7hT2k9/o3+bOh+TcnMsjyitCHoPTe5pygBEbQM2AFEdhzjC8cNBJpWruzVmafSIbeKWdVM0hB0xe/b39GJK9ItmBxxbGylRkWo80YrJ3JSfOXIjMa3LR/nn6CcwU/UFRzDC01Y6eWA84WsKnxpWbN7I9QnASHyrjzyrjxz1gfGsufW7Im1pVEDfxWeyViKkhxy4CoMqcBN7pizYrUWlyOfqyNlc0RTQ6kJIiDzSBYFJ0dCFVhkx+wdRteETbN0J3QS/N41NKun0Ve26Jj0Hl0E9zLRJo+Tjp288F4/I5jYguMH9w1Jatb8Hd+kz6Rs2G83FjMRS8DamaVylBBACQ7LhU/6A/fxGZJCovGyELKjZMtmG65KMcqO1v/MWGu6MKLsCKpGi8K302denMbITG8XgjwyW8vN1YRk8LKiEPiHfsfQTVgWTvknhL5j1Hu2otnhOU0vdPmGLYHRtfzL7gPRGZ62A4aN4zaifSQVjY8ZaQJsiin1YAx18TykM21aeal2aAqigMnwWh3xVcONHU0c6dhQ2TMpC7kgS+AsOj7Jb6k3aJdAkZFDufFRPPFkDnjrEF6ylcwlHxlF95ZvGCJNvlH5BSsTxa8ciifljJY9cmoJxfJov+eLuCcUTSMW9vKKyQs2aYxwtHEkz2+zZME67OIxKqKo6OPIx3jFLFeqcuEWYFE7On1lzHu2fcsQ37ELK7KM3HQDuw2bAz9071nkGwxZvU5vWZhzRtcVH9Yv/EP/W15FT0mO3XqhFI1gRohMo65kV1hNT8wNXY40eSLljn4L9NPCcys5pgsbPUaMRGswIfOQXjilG7E4QtiR8kioHFkrHJ7vts8kYTFlpqpeaVNmN33h2Z04pEC2CyiPMBtX2eONYQkHtqYQKkNQGiNX/lD9locw4reKdst09ZknU1OMIJeGVnrEVtPbDWuvrGvNfXni/vzErWtJwZC14Ho4sLY1N31Ap8Lv8o+c/QO+OIiWLkWKGNFR06UNrxVSROrdW3zhV/dbnlIHeKIVSJneXiURROZTc4fPitfuhEwJbRUNC12YsVdFhSG37dvsoojMU4Z2RqyFnSgUJAVLsJZFNhzSK1pGTmLhplrmZPEoSpGsRSKipssFvVwRsdCtiV+6HbMCryve+S9s2nEXrrzfvnDLBwwzOM/gKspmqW+OZss8lI0f7IGv6sCqBakqkGE1BjsJdumJUexZQoXJM9fmQJRv4HKjJvo8YHTm4/LEbenBBLp54Zx7lMnMxjJbw2lO5ODQZmATEFUhrTCn9yRzJSfFWR3wwnBVHbYE2nAB26IyZCmp/Y27eENgkRKEEHycvhKlIHuIjeZvu99QpRt3LLQl8uAHYpYodeVj/hlZBGva85M7IbfMFFruPJzGjdY8E4TCyonWJ251C8UyGUO1rRwYcBmEE2jgpjtmfURugs4X3vkNbGGoOi5mT1k67OBo/Mzd62fmpkHfBDWJu/CFTUIue3JqMMKiRQ9S45JnlgZZ4CL2uOLZ7FtlzZKxIZGTIeC4ZMFCRaM8jrdWqF4irbuSqbmaO/5O/gW7uKKmA30449qMTKD1jajgd/EnhnzAlMydvyB9R2WvTHlPSJZFWIpKb0ijVKjZ/qTW41/rz4buV5SqKk7NK38VV36M3yB1ofUbg+6YjSOqlS+hQyZJQdEnzyEvaJGockCUib8VDwzi8FYbUYaSDRMWJaALrwQl6NUM2nNcHvFS8tw3rLqCIvmD3JF44PenfxehN34Rv+Xfn/536vwZKxWbNnRywauaFY8LG0UXZMlsseGxvCe6ho2G/ZRoCqTYYFb5NohOhUkrrQjcJk3sHKlIXFzRMpHVW5l7y4nFSbQ6AAu7NHAxH1EITu3E3ey5qROLsmgEi25p2Dgkw26LBDvSlQXrN4JW3ETLqjxrpXl237EVTS4KLTxn9rRmYguCWioSkZvtGKyhCYEUYHWGsbpnli3lMpOTA114lwZSsHgmmqmw6JpVWKb0nkUlBCNCQp0mHmPL2Jg3PlmQZAI+Bzq90EXYKIiSKTLyS/PAq6yQorDfLnRlpk0TPlWEyiB7zyYzlVjJqWJqGqKEqTri4sJsNU3lqeSKkrC4ChkkX+w9x3yjUTM7NG28odPIIV7JWkNJ1D7QjjNP/YGbMUQdeRc2DmLmp2K4VBWbstwU/O3xe76bHlElY1Pkq3mgyMCGZXQ1JXeQLId5ZDAdyRRmOvrdhPABLyRnU7OElruyci0d69Ix6YbNWQbVQr6RSs1xXckFhPeQHLtlwtpIiBanVs5lj7cGL2vqpxlVX7m4lrPbE4pgEBblI7vsOaPIWXOtd9TqyuJ29OvIz+5bZDaUInjwL7xPZ1q78snuedTvSV5z5EbImZqBZluYhX3jRVrBMX7F6RkfLSl1SCPZT5GhKizSkZKiWlaEEZz4ii810XXYsDGbHaOvSZWmWyWz6bmLX9mcpU9nDBMn+UwRE0VnlJa8KxP3MsGcGaoWZ98yT5sQuak9i6kwaeZmd3xYPxN8A35m0R1CL6AyY3OkyJklOPa3R+ryjC6WkhMxBUy9IWtFzo6FnrPumHWLN4JGrNzSia/+W0qukdNKU0/kYmlEot4iKIuOEU2mZyaFiiYl7vKE2a5cnXqr0MiM1xWn+FYt03lh8SdcSkzOsJVMMZmPOpG7SJUHijiRysxre8ToBnpNsziKjKiqQYkZWSIqLcxix6g6UrEkkzkrkBtIqdmnQp0T+yngTaHEQJy/8NW8J5uZUizt9jZbiCxsVY1SHiHgNL9wi3ccyxOt0jTSI0yPM4Vr3bNIgRKF+3Sm2IzeNnbphaF+QIpIu50513foKBirI/8kezp9ph+e0aVgw8ouvlLnhcUqDjyico8WmqgFelmxlaYWK8lGBqGBDEoh1UyHpvaQhUGEniQtqow4NdGbV3ZcGNMdMTQEX1GypHjJMQzcj0/8Y/0dWWo+23tm3bCPnk7OdPaJe//Cz/X3sCWCTLy7vWVpK29RKVD5iNaJzVnwianuqfJCjApBQxegrIFWeE7pSmiAVNP4FbRiVDXXuuFFnFAR2pyx68qkMs+1JSvNe18Rzu8Q9yve7CA4buZEIwQmWbIVLDi24ohR0+aJox/5bf6Bz+VbslRYsbIrt7eHIdXQbyv7EjiGC1tbOMmB17JnKoB7g5zPRlEV3hZxkOziM5d85CJrijYINF0IDFIRTaRoDb6wGwaoN1TZqMsTJVuE+XPL9f93UiniroJWLzSVx+eB2faIktAx4qXgXLd0eaaRLxyHgSMr1p35fnvmlhUP13toNJNqWW3F2bQgBd+En6mEpwpP3MWJVTmi7nGSNw6PCPjsuBrN1r9j0pa+rHhpWF1NXjTRKNKypzIVu6B57QvWRq56xzUkFlthZOSwTvimptYFk0ZkGQiNJEdJUZk6LlydY64MUQqO4opoM3UM3IcnznHP76t7zu4BkwWf1HfM4hlZBK1YSVkxssOlGrMZEJmioUue2TpO6UxPpFjBUnpm0fPO31it5LO8YzUFTyah2bJhlRXzuscLA2HlmEd6OZEXiRQabxV9vpF9QllFyQ0FQ20udOVMsRXRJ15Kh940lQ5Et7K4llUvzEGj5UySLSHXKClZhEUDOoJbLN/kGa8mzr5mwoEqFAlZgZCBOTu6bWKpOnbrQsvGHAWjcpx1z6Y0Hk0hU3RhVwaU8Rg8LiXOucP4jDIZXd5AnfWyUPLb9m4UDbvtQrVEivf4qtDmC4fwjEwgN8WX5kSzXDBVQ52/kuuWNcNzPtL6kVpLslxYnGEVjjoviNliVCFazWk7s1dn9FbozUZhR1NmqjUwpJpzLRAichJXdDBU88Yqmze+UxTcREfMDfHaoJ9n5m+PeCRFJIRw+KwwNcwxYE41f/XyiK/es8uFzILXEqVWgoOd/wXpE3NwtNHzU/OBR50ZVI8SmY4NozIfLgN2t7IZDUazxppRHai2lSavvOPK07BDd5lduBFMj/IZHSLd+ooVEms8zBq84u4FfHVHNBDigQ/+F64xIEViKxWHcOMfd3/DszzijWG3vZCioAjBTVSk0rHXK9+uP4OW5Gh5be4xauNiDCUYIoY1Gp7tG6zU6IRIIL1iSgf+RbejZMPOv/BNWKgHcJVmii3K39GlJ0IqPB72FJMY4wO7MOL1nuAcSguESqTU0eUb53K5AKWiAAAgAElEQVTH31ORo2MrBbUlurjRVgu5NOQYafONbAobhlV1DPQM7Oj9iBWBm5e8xI+oNjDGnj6sRC+pg2cxb7FIp/UtwjD4ilvXcTYdgTeMSbPN7MLCiz7gtUIlxZx3yFwx2SPPYo+VhYqVY7hhto1NWqIV2BwpEq6pIusDfTlT+YjHU+IzteiRMrGfFqpZM+Sa3f0FkSLFwqDvkJvGpkDlPX2AXR246hmzOqxcyE5RpYDyibPv+GZ75FtRwGVWBAmFyC2+SJwYOaYXxqrGMKBLQKiMkxMiWEat2PIbOLgPNz6kV5yf+MK3fK0eqNJKNJoqnZFyz34J1LHC+Iwe4XM8oO2NXr3yN9vvGZo9Z9ORSsuyGc7hA/26stUbl2hJ0TCVFqULRQgO6xUXNvq0ktkRtppWeGQAaRdq0lvUYhA8tieK8ixWo6RkFB0hNlTriI4JVKRTM72fadbA/XzhUfw1Tl6JQkIxlCxIFl7NkZBnPrSvtLmw6sKiGn7yO46lkOM9Cw2HMrNkgVEbPRd+MH9JlpKVine3kSZ74nYk7RN34wVRGQ7rFSELxyXiZaYhcZ9Hdn5kQhDnHU4qhrpCL5rR96wm8yFtlKzQm2eoWs5qj4sbX+WRk4+0JVJc4S4947YDKjqcXqjUmX2eSS6jpcZ0uz+d8fi39KsZOiHEfwb8j6WU8691zv+v6dM//YF/vGXoFbrKHGaPKTd2eaGIyIt5+yNIGGIsbKw8uogwD4DFbAmVDC7AJCruxoFoJWfZ8qwfuNuuvOMZZCGLitnUXE2HiZlR1cioWDjirWeUmqVUtGXkeXnPvwqCg1xJqmEz8HxITCoz0L5dvPBov+LChmDPd9Mj1eIo4u1mOViBc+DHwqA7VuXo0ltSgVILTd5wFHxdEMLTl5k1T4BgKYa6bFREspZ4Y+i3EZevfH+DzSmuyrDz8FnWqKiRbGBhN125mROv8j0vQiLtibv8FRsTVkz0JASw4yu3dI/aMlO7R5qZIsClhSpOtPHKXHrICp012rQc/MZze8934SfG5Gj9M7USqBi4r15olplQS4gOb65YRoTueDT3DKrjtPVUauXD9shfP48ou/HJaL6qI7FqeXI7ZEk0aaIJni1a1lwRimVRK6uK1HZCpsBdvLBgQQiQmaw0lfAIPJ0ceZ8kWRkqH1jUjhfzjklYiikoMloEdmElCcmOgdMyUsuNT9V7NlMxNxaRDfs48G36kWe9I2hBLpKrKsRGkcrGWRzYpGKRPV0csFbTlRGrFj6KlSQEWUpEiVSr5GYdn9w9L+oAqvBQRmzJdGLGxMydeWXMNZey41Xc0ZeVTdd8ep8x2lP2cBdGEoE590RqTAlMfuZV1diUeQl3jLbQxme0XEnREHWgMgGlarZiMNH/m1iuIAymLJzcE7ULXHXPRbxjzZZndWAzbzdlsQiU91yPDZOzPMoD+zDybhjYskGwcuv2xFixhZpuu3DuNV47ihZc9YFabXwYFpo081Pb8q/6D4ymwqWIFpHP9R0neeXgX1izQcVIkoofzF+xDxde3LcUYbBERr9HhZYXc8dgW0QSuOixRVGF9S2FoB6IrcWllddmh3sCAdglIeNA5W/cdM2z2fMsawyeRMXibnjR8uKOqJRJRVJtmau8Z+QeHzcsAWWecHplawwflme80YhNkEJmMYZ6q5jzjjBX2FlRKkkTIku/w9jEfhmYVctheiUHRSX/kS1pLqpjd71BWmGF1/03XMWOlBXcLDWa1XVEI5hrjS4FLwVG1tjseRX3tCmh0sSoBZVZUQhUWVBSUJdAl0dqkTkOV/o0YqaN1HzDwX/B9xWHNHKTO7yp8W6llSs2zcRJsm41n0zDBzVh9Ui7e+JkHMkEdq8bW24Az2wcRRq+qA/UauG9P5M3SRNXQjxhxQek2d4+R+K0PdGJlYt64FbtkEmScLRlohWRqz7yh/nfobePOJ8RVpDIGDa+Nb/Qbn/gXJ0QGEZ5oF4X7G0hdCPOjnyuv2OWLTMds+7ZpGZRhYYZ4xakyfTxhaGqUSWgiyAYgUuZxhcWKnYEWh/QbuAjz+QiKGNF2Gr+Zfc9RmlutkKJzJxbQgmoKuHCxlE/UdbMtXQ0amGXN47ixhwbVNYkJfk5nxjFjiRBqIStEmlzRFERTMOYK/QsiAa80rzUHXHp2MmfGUxDE1fu1Ss/8j0P0aOSZZASWwZWZf/YdnWMjrds4BwoSL6EB5ZceEwHpHbEAm72RFWTnUTIiCoRkzMNK1/SkU98h9OJWXa0+cJGpiSH0BtNmkihZQVWaWjiRi8HrJk57Lo/le34P+nXrNB9AP5XIcT/Bvz3wP9SSim/4vn/X6+vX56J4456M6SqZROO+zixf0mo5pHFHshVImrLh+VHPm6vvOh3LMIwmR3GRUro2RWFLytKCJaiOC0XHvQXjPUc1lde9AluinNzYCkN/2z5A1PsucojRUXWztHGBalBb4kXd8eTuOP78kysBF4bBt0z5R6vDW258lodqctKzY1KbrzfLryW78lseBMJpsHmmbY5Y8pCVie0CEjhkCKgxMa+3HjwI7MtGPGeW6oJwnFKA+/yMzEbdIpceM9jc8dsDpymgXf+hYOOLG1DUBVnOmQUnOILVfHk4shyY7cavMvIIrHrxHv1ypgPKCX45N7jvKLUFd+lK/vhiQuKr81HZhzeKA7lSi/PZOfQeqUTzwzqSMeFS/yWJnv20yd8JXgoP/GP7q95lg8UXVFCwIhAkQACpGJxlpQEZxr+3jZ0+sbZWtatxXrBblt5n1/IYsGmiNcWJ1bMqjlcZl4OCuszUWY+hk9c3Z5SIDiLzTNCFRoxYol8yD+zhDu6ULgZgYyez/UdY25wSRCk4uJ7enGjVolSJKp6C1kXUeBTw6oqHjuHY+UdZ2JakClThKDOI2RN1C0dCy7DLCuSc6zSkqvCd+lHfDLYWNjCngRsQfDqGrzRBA16r5l8g8uZJTVsydH4wDG88Np0OAq9HN5mCc0Xnrgj60jZBIdyZhAZpRYu+x120WymY58GLCv3/MBsFb2aGeQdx2nALh4ZKmq78HPX4kp+Q95kyVJV/G1zRMcMU02sDbeuw+XAqmtkHijiDpUEjRdca0WUhiwFUWqkidT5zKU64sWe4kDKQh09IhXkKtDJYC8L3fsLH8XEK4LLdiAJRVOuHLlwLGdG1aOjR4oVJ1em2LOZmufmHrIgOI3e3jZ5XQisImMKjJ2nkVdahjcsSLryT+I3rMpAyqQG2nyj+EQuFT/2PfOuo2IiWMkYd4i5RUrB3m4sacHmhbJUuGXiS3/EyoHZ1Uwp02vHcX0myUSSGac2dvHGz9UHJnEkqp5fxG+wFFLtOOmJlCqiFZANazpQkFRuwRtF0OBWz325cOJM4z1/sH+JjxCMwvgIFh62H3kRd5xy5lncYUQkSkVOGpU8U2qJOnIzLS0TUgh6MdDmK028vm1nUnFxOxSSOHQ8xQqhAmsr6dMrSHg8tozW0siEDJF2CcxTZNm/JaqodWSII727smfjWyHYaRCT5h/2f8EXHvCp4YWOKq/IYrgXT/x2/YVhufJR/YKNgUe1Y5aOoe5YylvWaIskVQ4bVlIx/IO9ZxYH7ornMd/zIYzINb11RuSMQFNviUb+RIodi+jZesMoDSo55vyOuBWWymLYMBQSR0iG5+qOY5EcljPCJt6Nn5h1CybzKjuCtPQzHJgom2A2HYWNXb4RU4XvJFtuOfkNRCB5RSVGCoooawiZUexxeeWp+cC57FAq8f480aUvLGvm6GYElj5P5JAgFxof6dJKYebH/nfMouVaGUQuDNrS5ImvVUtVBV7M7+jilc/1A3t/IadCm15xq8F3LZtWb2MQ0lDKgvESsymcULjqRpGRH+7fUTZFO20gW57ciS1r1qI5TIlZ3zFg2OeVtBbCXYNgxRfDJfYk4Jv4C1PZMYcdsdS4vJBKYpQ77v2AXn7EX5/h9KfPc/3VDF0p5Z8LIf5z4D8E/lPgvxFC/E/Af1dK+f3/3feEEP8R8F8DCvhvSyn/5f/l+H8A/FfAvwf8x6WU//nfOvafAP/8j2//i1LK//Br/Z7/J6r7nkhkqDKreMtpfBUNB+XR44nO1UwkKrXReDAF8Iop9wy6x5SAOk4oEdmLmjMHgjTMogaZOZQzXjxx1S2hllzFPU3MtFLQrROtyFzqDhESJ0bqcOWzeI8MnjG+45YyvbgyU3NxNVGpt+B5H6lZOdoXqrIwlwNPpWZ1ibg4NmMxJRKF5mRfqcNCLP8Hd2/us9u2nXn9Zr+6t/u63Zx9zrm3jEHChAZSEpoAhESESCCqkAiQSApRSPwHJCVUKQRISBWUVHJCXhDaFvjKPj7N3t/eX/M2q58twXuwjHGVrtEtbokRvWvNOVYjrXfNscYYz/NoenHVE4y54Ul05GLYqhN1Kfze9Me86Y9MsuMmH2nczBd1zyMPJByxCvji8c1MtbyisyaVyE1q2HBhKhWNXzmogdt14OT2BNGxDRG7FpqQWBIsztKKnrVYvhlfoV2JAuZc82L2rFi8zQSt6EWFLoKsJCZ5UinEZPiJbzmJPcJuOLvEbX7iUX0goGG69ukJESipsFMnkpCoEpGASZ4o4Fh1xCD5oltIhqwsMlrkukF6j1SJyXZUYWIKNZVLRKsQ2lOXC7f5SDVnztyTZsdOnrAuoZ3A+JX7/MxPoiPGzRXUIvasWlEQbPyZOXfoteXV3hOMYqhqfmg/EJYtQYP1iV0eqIbAW3EkG4UvIHJhI14pasWlhY/5K3p7x2g2rLnCOHCpXDWC5S1SZtSyIpaGx1IjBJy2G4TyRC2vovEsVEugGM1FbsBGbqYLTo5IDdIONLJg8kSdHaYM9PoW4wONn1ExItPES7NnqByzWujywsf8BhCcdEImTZaWN+vMw/pIFCspf8BFz1m0BG0YpUFIC8uOqBWPbksRGW8dXiiezQNvjgXkCdUktvGCW1emyuLyyqWyfK9+yaxqkmmx6ZUmDlgCP9kPIAs+H7jUjjsLJ3VAl8xmvVK23MkTe0as8AxY3BSRCga14+TectaCk3zgfh0RbkHJRLKRuCq8Uiwicm635Cg4Vhu+nj7xlpHf8b/iog5MGJ67A2WNTJXEDZFMzSQEN2plEJrZdDjX4Nnh7Qs2z7g8cskdc1czyobVaHLKtGVGxsiiOnKBkQ05WF6bW7wSjHJPUCuCyDYOTEaj88LJbojaUM0rrerZlxf29oV+2XM0LUEVknDcycxsJFkKmjRzFlu09ZRU2ObApSS2+ZkgI02aGUqHDRKbPJ2xdPPMUO9p4gJe0cqZtBhibul1RXIdUdRE5Tk6hW4ib+dn5nqHkyOxg714pbd3JOAo7hDeoPcJqRbu0itT2tHWmRdTU6S7Zm/kI8k03PsjL/rAxW7w3rGLF57VDVrOBHNt1ZicwIiFjpG7dCQsHYMy5OJRvmHCskqHD4qpbkhFMRlNRqPdjHSJRVjeLc/U1YzTr5yqDZNVFNHz4Xjmx6DpbU3QoOYEBayIaJnxJlN0ZtUKFWZktZJLe+1rRBBFi1kdhoo8Z1SO5HtPETCYij/Sv8t+nXgIA6VIDtPMRSacTRQF5CtlymQ1PVtECnhqmqh4ch2VlbxoixMzpqzkVbIvRyIdSmYOwDf5I6us+TM74rynT3vuxJmLNEymY7Q1svSM0tGUimYccWFhK2cyhqw0TRopylCsI4nCsTKwaPZ5JovMWXWEkhl0c0XQm4xdFbv5QqorsjIcbUt3imzwJBqEVJi+sNYVqzGEaiL5jMuZRSjeriPHqCBlirEIXYiXLcJbLp+/580v/6XfYvRxtd9oD10ppQghHoFHrrzaB+B/EkL8QSnlv/ir84UQCvjvgH8T+JFrhu8flFL+6C9N+x74T4D/7K/43gD/FfD7QAH+t599f2sl34e7dxxmzWIlKle0ZWHQDhsLNZKdeL1qtIYBrRZ0jleouWiJMWNkoZEDqxMkadFx5S5FZi+oqgAy8aW5oxeahhFTLA/9M2/KmUjNVCJ+ChySwogBL6GpJ1RWCJkIZEoJzNYRUkcKkp0aOZQXsoFz3POd+yU3vPBqG6o8kaoGYsOb9QsBy4ETR3VgMhVr0fRyR4yOqqxsx55Jdkwi47stXZyRURCj5mj3NMFjU8a54fqVnC8YOSDCggKqbHHCE3TmJvXcryMdE0lEttMztbkjZoGwhWgsSqcrSWkZeRJ3+NYzuBazDoik0UHjmysiqySPSBsqkdionmYtdOLCWzKT3nM/95SxY5UJo1deTYXXmiEbGjOCL5icOMxHGhfxsmBi4Enc8LypmcWW3blhweCdQogMeC7Kchu3qHLGSMGqWqwfceWFkh5YpEOXiNDQioH79cJP6QMiwVK3tGJEGdBBU60KWxKfW+iVZFN6yqB4m54Zg0IIzygNr2LH0ewY2RK0ZtINTfFX/qXyzFHscXllNy582/8AVeSl7pBCsg9Hgtqxa49MpcNLjUcRE8yyQcXMWR3QtjBLwyFOtLKn0he8UjRlplUrr+4NIRoOU4/LF4yX3MlP3MWVOYMOBbk90/QLeZvp/Q1FRmxOiJR4rr7ivNlgpUcVw73v0TIy54ajf8DkgsiaMWWWylN3F77JP4HIPK97Fu34M/tL2qbwdh5541/IcUKmhl5sUavjZpnQzvB+dPRE+mXFVxYpZ5owo5OkySMP8cip3GJM4s6/oOSKH2ockgmFMIZaLPRqxaVImyPvxpmb7ROVvLAkw+gVsVSIdsG5yF4+8bS8RWR4cS1vlhGdDPu1p4snqhiYGglBYcSKFRELbHLgrh+YRGRC8MP2KsWWZQdZ8WJ36BxYlKReRpySkB0qXxcmUwKr1pjSc3Q7sowswtGsgVlVRClZZY1JK3XO3MSRXlTMaUPWDcUrGpFJa4VyM0aMfBDPuBXO8z2lgps80VcbSk4c2VLnhclY3GZgEjtKcKAChsi2nJhMx7FUTMIgRcuNP3LjXxirPb7USF04rJ/xsYJcsf2ZA+wmP+NtZptXzv4XSAHnpsHmRN302DJRXGZvjrwr3/GpHHi2DkQmF4EvlrPecViPSJnINqDkmWPsCIshNGBkIpgNN7nnUjpu/QtdXDmlBqwkF0nOkjF0CDUi8aRc4+LCwgaPJaGI0TIVQ1tmdA6UKjMLxZozxkS2uWcnT6wb6Ms9P7p3xH6DKDVqmMjaIIXkR3XDyWma0PPRfYVZIzqv3KdPbPJA2jSsxWGXwtf+xL0/8bmyHOuaRVQkdiRd4Y3G5olh6+itReXISeyZ8oazTuym7wmyuyqhpAO5FF5p6JhoyytHseOlcAUQ5IaqRNZQs7IyLhuasnKsBPfuE/fykcP6PZWpyPGevuw5qZaQC8EWMpnIik0TXjaU0pAMnNSWjCKisWLh7FoasZKyRdsFK0earK/UR8lgi8T0GiMia8pcbioQkqD0tQQvVpZNJOKofCSgWbNANomkEosStEsmFIWWHii8Njd8TAUvJYf0hYN/pHJnminRuhl5aVHyqkjyz4P9Jnvo/lPgPwaegf8e+M9LKUEIIYE/Af4fAR3wrwG/KqX86c/H+B+Bfx/4i4CulPLdz2N/Vf323wb+oJTy+vP4HwD/DvA//Kbu6W9q0SiW+wMynklJ8GocUWo+tVtu1wtBJ4rKFCK9bOniyJA6RDHchgldL9TlxFm9QceZRe4xIqCUxmTPPp5o1JleN0QhcXn5WTZqQitPlo5xaHG95G4R2OrCZjvxIvbsyieMCJzbG3x02CCQLnCYTlfBcSO4qB3RSUQELwxtLKSykqgpvoJcczQfONUtH80DL/nAJBxBVEh/xueKodkgVODJ3HEfXwjWYuQFhKZNM13y/HL5FU9uT5MuCCWvCDa35XY9sc2GB/4cuxQ+1jdMpaKUwi/jD/wifqJXNYN0mDASXKEuEyklDsUySMliFJeiOFcb4rni1bVEWWO5YMpItSaaFeyo0VpyV/WccDy19xihEVlxKVuO3ZUqQanCgz+RqElmIS+FX0xfuOkv9C4RWsvCjmwz533FwzAxRUvY52s2qCqcSo1KisbPOCa0HPi0e8tsKkhXdOkoGl70W7bZU8XIbT8zWYEbJMEdWC4dL/UN/b7hk91xlY/IJGk4+ZVjd0cRESM8Y9nxxW6ZxOb6D48SsmYShtVIZnru0yuNfGKIltndcbGGCs9J3zBjeKLCNw0FgQ2BNs90aWKxliQK7bpQz4pNO7AmfZUOalZUWngojzz4Rx7zB47xhou5QUg4Y7nEAc0CTSJww5gbyhqwq8fphawts6rRpUCW1GVGqUITFl7UHZ/lO3p5oEjF3fLK3HRM2lKpC3ouaCKNjogsEEnwYX3E1oUoPRf9Bi0SRYKqFj7jGKzkX8xPbOeRS+1IMTPrPVYoyuCp68jkLImRQo82R3p1Q/GZ0dxgekGlBpbUYqTk4EeiGHjLhC0F1cN3XcuSK0qVqJRAe8XFdGQst9ORozugkiNVmZYRkQR3k+dLtSGUDYsxtGXBx4qn/IDiDQGLo2e3eIq3tCahTol+v1CNV+mwVl7AOiiFpqwkIKiCyAVlZ7y5IxTw0lCJCZFqmjGRXY2WkiXAMRWO5pacCxRPOwfeyke8DuQciSisgcPsma3naLcEdctkHF/5z7A2TNGy2ExfbUnKcts/c+4+4FhQKESBQeyJybLmHdhIzBv0XFBiwYnCXvRcqkTOhqPcsS0jq5YspkOIM1O26NkSpGDVmTYFdvrEXf5Mk8Bpj1EeLyom0dAXxz73nMuOnZ3QItMuATefKPUbRt9yNnvKqohloo3fURXPIjfs1hVhZsRU6M2Ws9kinEInj1sSr7JD0JFXR8DSpIDyDarS2DKRU4PWJ5oysk0T29RzH45kp/ic9qgMr/qWsnEUH6lVT5KKvIKMAVUKLIbiEr4yeKn4KH/Jfh7JqaWVZ5y+SlrZMrArClcqiHvmZqVZPTZbavOFSWlIhYveUnJhM018ae744+obtFt5P70gasWstqzGMJY7tuKMFoLWL3wSb9BeIcrCV5eZNiWCq6lKZCrg8sKLuaExkYurkLlidYogMsoukAtt/ExQChci0hhMWTGpcBPP7MXAmCv2aoJScDZwURobIq4kcpkIWqJsxKYRqzW+3COIlHANfGNlMB6awWAY8E1LyT1tNEQK2UbaMBCMI7FBFEmbF5LWmBy4ESdCMmRd2OkX3uVnxLRHp0AOO4p5R33z9rcVdvzf7DeZobsD/oNSyp//5Z2llCyE+Hf/CT5fAT/8pe0fgX/91zzfX+f71V83UQjxt4G/DfDNN9/8mof/m5vZHcjVDv1php3lWHdIEfnxpqJ7nVhES+0nhCzMpePJZp7TPWTBIhvu+Y4XfeBZ3qCVoATN/fKMTgtaBSwZ4x3fqD/HqMISDNsk2MUjZ3vDXBReSEByLJY3z5mDnxkOHXPjGLVmqgxSZLxTrMaSQsOruGNWllwEMzXPbChK8IN6wKZMnQQndrQyseYNeVUMdvczx1Zgv/ZUJYOSfBY31GnlxTywmo6gBGez5RBHon3BjhPb+MpmObIUhZIZmwI5a2TUbNXCu3zhY9ug3AkxW6oEl9cPSDVz7Byrk2BW3uufkBfB2imefeFz2bHGhiHX1HngjV+YvKUuLwyuQpNIUUGWbMYJUzmGuqBlolNHtMxM1Ai/0K6SDQtSD+zUQMoVVVyRl4pDdWFbFtaiCViyEWg8EUkvNVoFXBkRQpKKAWoW64hSsM0DSghUAqvglQeSmCnlhJIRIWeEqNl4yW68cDaWEiEKS8OKCitBTnwy7znJA9YX2vCEW87XAE4UnBop0RPKiSCvWpReX5uinZixaSQzcdm2vNYPTPKOJA0mL0SZuElPoPek3KOiwjLjuWZkX+UeS2J0mp04UUwEqXm1N7TphZYVq2fyRvN++J5e7DFhJVjLsz4w5B0yZW7DK7lEvNUULdAs3PHEMt0ydLcUJbElcrOOdLyy9zNSvTA2N5h04Rz2nF3HZBp8ETS6ITeSMBfasUfLllJBXfdspoXQFA7qEYSkXSKjrimpkBT86c0Nh3nDWdQc+s+sa+KsOm4vz+z9M+fugDGZSW656JEQrzQS0SceFs+//NyTdplT+wgkUnhECYHxI8FBlRNZXUtDL1rzED+jy4pHcmoqRuO49QETPRLPjXhGyleq+Z7N8xee2x2VXpmo8MYgFsNuEmxD4I39iWezwa4X1lyhLz2L6Mhxy30ZaMREyQpSw0s8cNoYgoVKnFE5IItD5J+f07XgsyDqq7LMRq30oiGSeWoeMGqloLlfV571jqA0SSu+Dl+YcocLEaUEOVdEanKwSKFR9kq6TdQUJ1hDg1KK22GgrzpczFQ+8kXvCDlAaQnlhLQBh2dRkOaaLo18nc6UjWCTTsQ6IXJClcy+nEjNll2G4CTMC6X2jBJKybzKG145MJWOQ7wwij2HMNL7BrE6GveEKwlRKkJouZQ7vpS31Hpi0jVSz8gU2aiBXb5Qakev9gy6Qq+w01+o1oR3hrHUmGWlHROiWyglkdqFNq8cOOJrxSQqujKz8xN1nslJ0EvHjGEV1264nDVP8g1vV4lWI1kWOt2zKsO6sXitCM4yiYrIRF9LklHYWPMw9cxxw7FojrIBmViloGVgkwoxW8at42wdyMI+PHNa7nhyN5xKTXKeTfY0UuDMZy7ugSxARsn76cg5d1xcw6QabsrI3EjaeKK1I8lf10MpLD/a95yqilt9YiMDt/XKJW4Yg2VUjrk0yCpwtJlkNVt/oRMTbRqwKvMQT/S6413+MwRvOasWJy/cqhfkDEjJRkT2DFRp4ijfs8TARTh8qlBmYedfOXBCofhh/x4vNKswfPN6pPGRXXrm4vZUonBYZ1wMhO2Kd44mLzzLDVkmUieY84EySe5Nwc2Ww7RB3VU4+/8zUEQp5e/8U8b++J8wJP666b/mKTne5sAAACAASURBVH9t31LK3wP+HsDv//7v/zMDalS7PdM3X/PDemGQiqZcEEFxch1/snlHlzJaXb/OUxZIu7DmRD0GsPr6zpMVOhfG0rCqhrE4btMr/8LlR8q0J0wOPniUzLzalsp7XnnAzh6MYqkcQimmUjj2LXrZsdGZhguFwHfLB4zyZCM45DMfeGTQGpUKbtEIMXOXRt4MX/jT8guqc8VcSVQKbMVMmA9kBK3IuGbmIh2+UuzDCaUWkpFMySLLSltG4s9ku4ieZ7vlzXLkc/4F0nsezQHJTGoKd2li1hIbFv7MfmCQguQWRnFAl5V9Z+m8x6mACxNeZcwU+OT+Fj0dr/odJ6WRKpNUol0zo1lZhOZo7zFqxcWGO3EErxlihUqRpRRsiWR5wMqFi5a0YaCRAiEKTRq5VC2LqLDBcgvMU0u0kh/DN9i5IJvMYZ2RfqTklm5KKDMDCa8qfqwakoLNUogp04pAsj8DUlbPe//CT/ItCzWf1Vv2BVIzcP+lYu0yyhnIE8veEnIhFUM9Rw6zJ0qHl3tGUWOSp5iEFpFGFFyaaH3PFFqO+sClrpHSg/aIEimlUEQhiUTJGWkmkqjpbUcJK04vPLl3SBy7dWBTBooXVDkTJRzEERsjAwk7gckK16wssuZZvEG0kbUy9DRkZYjFoERiqRW5SgAYPPfjjDKZfRr4sbvjte6uChezgLVB6oEXc4eSCVcyXoNbJ2bV4MLCk7zDhsLd8pkVaPWRzXRhvyju9UdUNswpM7Ll5NqrrFk2nOuKi2ppxMzoFppF0g8HlOix40LQDslCzQmnEiduOIt7vO8o64GqBGYMX4KB7DhZh69mcsi0fqZfbsluRUaHqCRaFFgKMjpyqqn1wiZd+KwVq3akINmaJ+7TxLyTxJCJubrKYxXDJAxDVaEqQc2Fuqx8lt8wCYcSDa14xdnAa72DZuFFtqxBUpcIwSFSJiuBIBCw7MqJPu0R4oLNKzYG7v2ANZ5ZKhq/suSO2FgmVaFNwaWeF9lRhYVdLHxhzyXucV7ywoaLtxjraYtn7zNOfiaqgR/LgaVu2eUzVizs/VUPtiqSbgwoPXLSB9ZKMKiaQ+pRMdGKhZKu0mrHcEtIPX6FodyDH2nEQgoGkzTGFqpwYWwMXVjAwjrXbNQrj/Yr/kT9gld9jyTS+ZXaL2ie6doTqszcLU88xTdsxYh1kS6dcGrBFc9GnAnGMpqKsoPKew7pzI+bdygZmLqG0v8EaFyAng2y66lyRGaHEp5ZOi7zHS5P/Fh/jSDyuIG7eKQrC5/1G+qlR6pMw0yUEiMCXgtu/cooNIM8EEtDdIo2z6xaEIRllIasd9iceTH3hFbjvWMfLsRVo2UBuec29pzbHe36jM6eySsW3eATvB0vDNahq5HsBDqtbMLENp94Xj8w65reCyajufePLF7hlUVYz6XecCmZF9siPeDNteUldAzVhqBbLqy0y/cc24YoJUIX7tMX1uywOTJrBSKSg8EEyS6deJt7vs0narlyqRa8uWoqN+uFtexQMeMbx5JWqizZqxNeSkL1nsM4EjeFQ75gZMG3huIb3nLhWUqULNyqgc28sg+PTBJ+NBIrCyIFQlBs0sqx7Dnwws6e+CLvmfRbxrni7SVRZ0HbbdjU9T+rsOJvZL9tHrofga//0vYH4OPfwPff+Cu+/8tv5Kr+X1oic2MKcX1ldZlTUnhj2eYTd/So0OFzTZdmvPU8mjccxZaNntiHkbv1mUEbTLGo8vMiuiQojnN6R51aqphxy5m58VT5ifNmy5PYU8WAXDWyXik68LnqeDW3lMZRbVZ09nT6yNZPkDR67Bk2hj7f4fIFrVayDjRx5X18RK8NGwk2BySKTgeiydTrwJvPheGmZUKgjOIgTmzyykXdEEqDEz3WT5CvX7xGe2alycXRmEAWMKQ3PLobpJkxYqGVK2XJ/KH9WzgCq4Mtn+jdhtuQ+djc8G4tXJRDmp4sAyImZmVRAdrooSq4S08jIrbvWZqOnT+B2HFInyFbsopELTjfN5hceKm33OdXjmpDI440YWQ3JN6PP1D2mUXASewZvGBye8LGw/AL7uMjpsl8M/SoNWNVwOaFl/KWetCUNNJIz6VbuK0Fi1K42lOviW6ZWcPEbblA1myZmOSFMSx8cu9JduIoJC0rVU4MTl0F4FnZh5FmrHhRLfsc8GrkXj7zLBuMVxytoZkWDmVCyoGSND5vuM2vdFrQpp7SgskLY+6IWNagsUhEKmzEwE6/YvJEE84oISjK4GLi7fqCmVpm1fFQXpHG04uan+wbRDRsoqKaP1OsYZIVsWjqZWJbPbFkxyB2SBRZNmzjGV0SDSs7MyKqgJoFtZ6pQ6FOiR5Bo1fu+guXpqZWA//K+h0/iQMf9Q1FX6V9tmlCTRWyCJzIvF+f2MaZSgokM3YzXVHkcqA+OzZlRISZj7sNj1pQdCZqx03s2akTYjlzcR1DvUGmCqEyZyousmGjArXwDFWmUxfWlFn1E4tuudCSdGAuDYXISVpi2aPUiWTAzZLncodaG4y/4NpIagyhOF6NQrHyf5RvIX7moRx5czxhtePTFkS1ZaLQa4dIkl4sCHfBugWnIy+0nOUd2o7IVvAufCRYS84dc7H07HBRsWQPLlJRuPUvWBGYyo6OmSwdulnoXU2RMOdCGWqW4FDSE4TBW8MyW+7CiikRgcN7zYu4Z1KCRXreTAs35UQ7FdT+iVEaqiQwYSCJisVJ4qIQrHzb/xF1XZiM5b10zGS+179gFoZqAQr0akeQha4sqOI5sLDSkIYOcdFcultsHDjZmhue0Hlgq68Ar1QcJ324Anq4UvoID78zfs/704qvEhv9yqQVXtc0saDXiK4TJhSETWzDBa1XLuxo5oWAxpSVYg2tmMDCk95z2exBJZppxc4rzdJTKVDqhMbyhRu8gRd14FxalBGIHBhtxMZA1IqUBFs9UIuRgR2H5YwSGlsEhpFRCjqOjEWRiuRSMshASZFn8wYpPBlJF3uSN5zTnjIKdL1n6q7gD13OfOv/lBd1oHbgqRlR+KalUi8IW2GKYJMubLLHzhm3Fag04VVNvY40ecHTEDeFszqANJxty2IUd/lEkQkVBaPqsDHQpZlWnhjrijpPLHJL8g6VV0rOBJPIWrKJJ7xssMuMLy03y5mt6nnRb3kS3xKVJxjo1QYzFoJyOAa8lrThQtSJ7dxRr5GKlVXDTrxgVvB+pa3u+FR3jKqhITD6wtfhCzvxiVVBZVaiLzxNH5g3hZQVbZjRLvCo3vFF3dKxsu08YoqUsBK7luLkbzP0+Av7bQd0/xj4XSHEL4GfgP8Q+I9+Td9/BPy3QojDz9v/FvBf/uYv8dc3GTxTmPhyuEepiW+HR+Za40VDUjXK9thQk4sjioWj3DIrRxEKXQTP5Ra5eO7KZw7+zMAtU7G81g881RvcTU09JHamZVUDj92ONTsuesPD+ExqGlSEtZMQM1FqqiVhoqeYzIu+QSNIQfPGn7nrIxsz8VX5gWGpKUqxzDV7MxFL5C4LoqowUmClRsqMlgmK5TY+0SyaDYWkFUIFkoG78kjDxKhatmnB50DwEikCWM8oLKPaofwWazwOTzGRKTiKDCxRsoSOUbZkJQkaxrjybBqoZ6oyM4oNQSVm23I098Rck2XD7fRCrXs6sTBZz8f6W2bVgtLIVCAVRA687PaM6poiX0TDYfCkVMhzQabMqirq4jGLJVUeckY3niwlt80TJTvSRTEDs6g5q3velC+ksMNUgXUvOO5veRM+kXTkkB55EXus8uzjkbf+y5VTLq3Mec/qtwT2HMuGVVhmHclZ8+PDW9opMO7gJn2mUgtFelqfmf1MUQVjL0jxyqVpsEnjheOBgTXuWHPDWDXIlFisu1Kh1JkqLCAlZ+4gQURwI17w2iKSp0SNSI5IQ3ANtZpJyrH3M930ytkWpMoc9Y5AImfYzCubckJiOF3uqM3CF/VAaCxGDryZP/KL5Tsu6oFz2nIjTrgSuZ0iRQZ0ODP43fVFT4PHUKrEc96wmnckESkJPuktQ7qqeWzSmUU6bsQT2ShiNlQqIJK9thSIwsXecCee+RS/YekUPmlydJjgsHnFqMBSFK546vyM6np6ap5dh8xgdWCfe27GJ2jeUaUCVrJIxWSvBM/V+JEg9ixWUbQglMIxt5Sk2ZZnlirR5iNJSEKBuTKsqqFKGTMN9PXMnBSLavnBvCfvNL6PbBT4qmZrB3zcsVEXemp2DODgIhp67ajshVE6auHJGUyJvKi32Ow5mz1CWtQCW3nmq2nhUgqnesd3aktSoHNBs/BW/shb8cizuWU7ziRvKOELP7g3yPWWV3WPKhFdNF/lF+oouCu/4jm8Y3IjUiiWpuFP2fHkD3y0PQ/mC0txTNJRicxJ7mjFeJUhdJpDvuC5qr5kZoSVbPKJ2/CCyJloCpMxBJ2QyVKdPflsmdwOuRqy0OglE/WeS25pSibNE3265yIzd3xiLRUyebJQmOAxPrH3L9hQU9rIq91xljWtGImpw+WVbTlxlz8i1sy3w2eSyEzVLSkJhur2WrK0Db5YgjEYkehUjxDXzL5lRDpFEIJBVYggsV6AjOCvwelYN+zSxEN5RuTALh9xaqFIwVt/5JErCEpEQ+cDJkUusuHUGBapuY0vtONEUA5BJqoOmSNeWWbtyBJaP/P9/VcUo0hVQaaeloEsVnJKkBWlJFzxGAu7fGJfMtW0sImJmyf4qf0AtSIVwy4HDmFh0C3P4o4uTsRyJUv+wT5QxLW6ruzKbeq5zxPnsMEukX6zpS+GoDZU2fM+n7mNr6wp4FUkr5lO9Tyld5ztliB2fMwCE1pe4pbH9j2jVteWkSDZuZ65khjKlUbKdNi18CAfKX3kpG+IY+Jx+x7HSsfC7w5/yP8ufoeNHtkGhZYOPd6QzZG8CpQSLFZh1IAJgh/0N7RmQIrEXf4IOrLKlheneL9/RJojolP0wxPb3eGfHiD8f2C/1YCulBJ/JiT+R1xpS/5+KeUPhRB/F/hfSyn/QAjxrwL/M1fE7L8nhPivSym/V0p5FUL8N1yDQoC/+38BJH5b5srCh+WZP5KaynoGeaBJr2zzQK9hH2du4ie+0x94LR1DuSWXa19DlQqT2PAaOlZtEEkRRUeoE2e3pwpXVGeqMr/wkuBaolAc3S2TrDhvb7n3L9xVz9RlZK8CL+otZ3tgUY6lMpi4EoQjSktpFjZhwkfPxTR8qW7p8hlhA8O6w0dFWR0P+SMizUzhlrYUPrc7PjvJyVmWeIOUGZEzX4tHTsnQi4ZJ7tjFhW/SK6s3DKpmLJISE8O6oW8ca2dReYEi2KczQVREKbi4BpQiR0W3Ljy5LUd5y1hZjnlDHSrOqUaYSOMmNuuAVCOD2qLlTBtnmsVzOdSgCtJmzNxDbrhZL+SqIimNSYVJO0opfHY3qLzwQ3OHWTMdA6NpaPPMT+oDMa5EKzABjm7DIY5kRm7DxA/2lyg9E6NgNQpbLlBrMDf00lK0oso97/JPvJ8fMQqEFJRSeOWByexwRdCEzCFc0CEjFezyQuMDtiimFFl0zaQVtYZpt0fOiRIEXRkQOSLJYDx4i/IZ60ZW2zLYBh0F0i84ESlWsZSGGBxuEdRrJmwKrkhkXCnAmQPOzMjUkYojFLAlczL3XOpvGJwA4ZlRIFZEMQg3MuQdeozoWHD9Qn0ImDUhjMLrLRt5oU6BUDyqFuCh1iPEQiqSU7OlnjIHBs5txSZOWCJtOaPLhK80vRH4rPHREbXAlMRD+cKxuqHKCbUKPjcPWLFwIwYmVYNIaJ8p0bH4hgXHtiiW+Q1v55WXSvFN/DOSg1lq1snQ2z3WF1YZCXPFIG8IBRZrEHXBhMC78oWLqBjEhsrPFJOYQwclMeU9MivyzmDFjLOByW6p84WH/pUv3R6xRDZy4V4+cuSGc1G4WNAhM+cNUVY8mls6LshoqEWA7DimmmQz78Vngk6squVUbhh1Yg2G+/UzNStVGHlp7wF1LSHOYKLE+omiJmblmEVLLT2rbLApkqShxtO6kSnsCUiUAKsjVRpJCs6m4leHb/m98SPJaHb+BUrL2BxAalBXsMQP9paXUmNKRihJuy4ImznKPXqXyCnzpDfkSqCLp5ETD/7EoLb0umVVjqwSXtcYAlW9ELLiqDue2LCzEzKurOLAq9twMQaXV6I2yBgYVYXxI9EIhBZIrmo6m7zypf1AjBVb8Uy7zDgxUzKkMNLpZ+R0JmdNGyVm0Xyp33OZvmasCmaNFGm5iI6mnDikF46h46I7UtHs1JHoHGOM3JUzm3UmWs2sG6J0RK35sP5ECBXv54/sxTPBF/qm47W8od/U/LlqmHLNSVWIrLnULe9fT7Qik/WF1mSkSjRp4pLeQE7s/YBhYStGvkofcRSylfzg3mD1Sk9Dzcjd/MSiKmo5YXygINAmMKuOLB0xGe7yRJ2gULHmDjkbjE5U+kwhM+iWnDQXWXFRDToITCg0+sxNfmHCgsxsxcDD8IkSHL8qX1GoSauiyondMbPqOz5bS6wmbuUn7M89kdFURCH40jW0fianldrOTKJldY6sHO3yhS71qCgZuoqxMjyqHffmTDolduaIkoXjeiAWmL1g7BqSSZxtw8j1OflEzZYbjtpSysJne0/KklE3xFXhCghvqUvPXp8hj1QC7paRsDjyEqhi+G2GHn9hv+0MHaWUfwj8w7+y7+/8pd//mGs59a/z/ftcSYz/uTAVI4PVjLWj5InJWOZSEFIw6JYgJK+uZZAVMl8XhQKIWLB5JiJZ6oqUC3Nr6OYZ31oWLRkaw41fUCIyZ03MliQMRFAachKgBS7MVAx8Lb5nz4Un9Q7jLT/Kd5zsllE2SJ9xIdJXHcI6BhRCLGxWQ5VXTuKAsTOTFtwET10GqApLOBCdx1Oh7UJiYr96os3MUiNL4W35iZAbbuaeuPG82Kv+ImfFRe2hFOaypVsTjoW38SdacYS5Yfo/2XtvZVm2LLtybO4s2GGXvZesqiDASuj//4lWIABV3Zn5+L2HBfFwsjmESIMGLa0T1pbrC0IJ9+lrzTmmNXy6HAmD5KJ2/Gie8NIhayFWR9KFU9Scm4HoBElCp65sy0IsPUUWZu24rxNBSoa1UlSkXaGPlaz3vEjLqDsaseBi5eP5RB2gjYF3uSVXS+MCUexYHFAapFfs5DN/CD+y9jcMzWqhqWcwzxi9Y9FADhQEUiWU9EyqgyxYk+FOvvNc7xBWcu9WumFCRhiVY1q3UA0L0HgYKgxRkPsdSSSCSIxKU1WiSQNSGIZimZ2m6APZCLrksYukXS0P8VbVM2P5JGZ82fHS3lOEweaVj8v/y1XvmDSMwlKRHEVLVNBVzzaPDCxcjOMhHCE7ZmF4bgb8cEWVyrvecE0tvj1g4y29/el8RJeMwpO8xnjP1N6TMUwMRLFhp65omdmUC0PIiFJBCNLlM2M/4NcdjkgvbmIvaourtw0zCLbp5g3r58S2ruhmQgePaOLtlN7cIXIFscGmSIk9x+WBtXWUCONw67qMJlHCzJOfuMg7FvHEmwWpZrS4iZdFbMmyIZuGMke2eUQoyb68cRYDf+k/s1jDqh12yRQ0S2mx1ZNlZXAjR6WZ7O8Y6s3z5p3hL+ILQShsObLEll2Z2KwLr80eVyNpNqyxcu0a3m1HsBVEwtbKLgquWuCxvMsPrGSgkIVBRsihIYcdr80BmsLFGrZxpNSIKSe6UfNbeCJ5w2XbMRlD4coqJBOSXoJZQcyWUTyyDIaT2jGsE7jKRfdkqfhmdtzlM4/rmVwKmzhyyi0JSRT6tgltKrNoKELSx0hUli0XfGooWjLUK1NvyNKg4t9Efb6nESs1SVwKhB50lgigKslEy8ht67v20JaEWb9RlMF4xZs60K9XJhy/tQ9El2nFyiYt2FwoVSFokWLGmoUaDDZpZmWJ5opWM4N5YxcSUVs4HfDynqVs2MUJKz3nvmM0LSIKzmYg5EQqCkPCVs+X/BU/t1SXWY2jyTP72bOKhWPfccgLOhr+Pfx3mqXyrh+4Kk+YHUZH4mJZ8z0BxX2cmLXmN/dAOTie1jMb3impcpZ3dGpmWAy1Vu6vK7EJfJ+/4uLMRTwwFcNiWnQ9E4UiFphdQ7e+s6gncnHspgT2b5tym3AB+llzWu/51Ul+HD7wtdlhTOH78BNSStqSCaJyypVcb3Z2r1tUmQlFcF+eKc79rRFCMagToRookaIl3fSOaj3nvMMUQc2Fk7nHxELR6lbsWCIuz6COVDq24pWaVkbamy1HNXyoPxPrlq/5jpD3XJoWlRO+tQgMr82GtfSs1tKFBSEja7U0caEJnvt0RKiISoJQW2qTEDLxGEZEKtR1w0lt2XeJ/5K/sp3vKKFjiJVdKAhf4df3G0ng/4D5hwu6/z/NJVn+I3acZOFZfmaXXmiEQiuJ1ZFNPbLmni6f0bRsQ8LGM1K0tAH+3H7hYjS5KgyBi0tEZdmXM0uOiDXRiCuSBV1bPo+/EDcNNWpck1DlljL7GL8yqCtTeMK0FRMbhqyJKUGaUbmyZEeRBaEEY/2ep/SNIRacltRkSEUzi8oiHGreIovBzi29iVw6fUs4SU0IWz7nZxbdIrNnVluGDIOM7MIrJVmcDpSyYzlJtC5cqKyyUkPPtfas442YXxDofaGrEwd5xAuDIBOkIXSKqTQMJLoUScIQXKAISRaKaCNj7ZEUdPH81H1HW0comcf8G0u75Z2BUDWHS6RmTbNUDkiOGObSoOTK0knenUan9ZZUDRukj9S45Vpu/LZtHPll98Bb2d82QDFjY8blSBs9l67laf2J1+4RkxUqWbokeO+/IInEJiKy51V8x6gbrFYc0iu2CmqBZA9kkdnkr8z6no0PJByyJmY26CwQSExI7GNh0S3eWoxJtPVMm79xFwyTlaip5xwln0Kk2Zx5V4U0SMw1cReeeeeJQ8isvSIh8UR+6H7HEFdkyTTVM1XH0vWYtDLZHpM8ySgOTKw18GmaySZSW3huDrTSs7mc+OBf8acPROU42R1nCid5omWmEReigd/Fn5FiIFH4OAX+u9ig1URqPd16ROXE/Xqm1Ve+Hh5pw5WYJLnsaHwhyUTDyu/Tj/zSfMKnDW2NHOsHXrSnj5kDEyYWKpIoHWsZEElz7gTH4qgmUWJEpZZSNFUpmlKxMXGJPdpDROKFR+mIjJGn9M5f8z3WK57VI9UKdmni2TzgUsS7htcaWZxB1cAqBVs5gkxEW+nTidE2dGqkrzOHKrk/K9w6MVaFtzc+nRSJb/qerb7gpWQhYYpEZ8VRDGgSpShSNqSypRMzVgt2daYmCDmzWg2pcqLjYUp8EmeG1HDcuNv2R24YmPhP8e8s669ozK0JooLUmWAVozzQLStSFCqVlC3f+IAZHaqcmenp6wyx0otb+8gsNKVYjM508maI2yyeoQrObYMrmV5ecUQWsUGImVf9PRL4rXtAllsDTZtvAZ+tujL1imjVDZKroTnPpEbTiiuP/sg8WYrIrFvHwJmn8kqUGi8d1icu2vFmWy5SY/ULpnY8TSBVJBmJtpKreuIQjrioWEtPFpaUetYBqnI8jGdOmwElRxbbMtGBlGgCKmtW1WD7iq0jE1tW25DFwqk+UUTiLq4srWLyW2aTeRV3vGvNqi1SL7yZB2QyBKOY9UhQC42sGDORy4yumVIDlMpZ9FwbR1SKIR7BCNp4RmSFXi1tK9muV5y+8vvwylN6pWb42fwbuki0SiineHF3XMQdJgd2ccbXT6w7yaX0LEIjRWaoV6qWqLiitWNNDX3xiHRGk6gr/L78hJOwyFvoSyOJNaNzT+8zg7hAaNjqK6omZjPghWEoCVMmPstXXjLILBnFQA0FIzz34sS1ZJoy4eo9n8tvCCEwi+EsdpgAk3OEqpl0w3JoaJeVk9zRronQdWxDReiEE4G2ZtpYUTFRzZVRKp7THdloRjcgpUQHzW6pZAHfl1cOSvBp+CvXeiCXnlcOHAqYec/pdOEf3xPxT0H3d53ZdMi6YzM+8/N2hyNQcuW+nJnEjqvsWMQGk2dkLnyXf+aRF47iI21dkdJz70+c1YaH+IrRiW/qIw2Fbb0ikuBkBhJfMCnyVE58uL4QNg0p3b4OHy/PHA97rrHjefOAWAUFxS7/hao3XFyDHRNVVbyyqOBJuoNJwvUTTb3y3HUcreJqBLoW2tajhUSonkpE5oJO8HF9481q0mLIsfKQTizG0M03ZGCRGbu+E5rfsaYNok84faXXkZwbVIlEMXARLe91i6yOp/hGNNCod4LcEGpDqYL9MuNywaTE7BxBCUqRxGKYQmTsttz5K9u6UrWlmwt/5J0xt7iqscvMsfnMIgApsHqirRO6Vv7l8gM/dR9pkyfh+Cy+oqKl48wYbvyvdd5S6x1XZrSQNL6S//aAS1HTsrARCwiL8plFbXFLZRVbBIlT/EwOgeBaZgM9I10+cl8WZtlzMO9c1R10iZOR9Nef6GygxJmaOr7ZB2TowWfMdcLU23XrahpUKJgCmzIhpWCyLfWt5+5cKWju1Fd+vhtY8CxyyxwbvnZf2KcVkqGvsGAItBTRICioWvlyOjHHgdkZfN8gVWLgzB/SX3iT95iimMsdx0azrVdMTDQmoLJgdR8w8comrxxTxy4sFAu0FV0iX9IPaKEYzDd0HImqUNSWzv2KCB5Px7N6YoNHyoH3JOleT4jc8XRSjPeGXCRd8XQl0JYZqsCohlG1VBvYr54oBe9mQ7SarCW9vNCHhWf9mbv4xjZNNGvmysPfyPQJl2d2yzulvpOqIEqNzoGT2/CUTnwzX/hYf2HWLRfZE6RCi0yKmhIlRSi6srLKBlEErlTIEisyTfB80wdi7bjLM5/TM5PomKshV0fwFoKneZxJjQKdkaUikqURK854hFR8mSPVRkrMqJD5mF+QoaPnhattWOzAUTve9IYgGzb6SjhIcv8NBVG4DAAAIABJREFUlyNH69hwocQDJ9cyi5ap2eILGKHYxUrZBBCFa+tQqbArK8N8ZRI9pSrWKlhSZai3xKIhsg+RjT+RRMekBGd2IBT9ulJKg0yFmAd+X17YyhONuFKKYDUVkQyzbtExYWaJk5k+XGliQZvCyd1zlQ4tJpoc8QXehgEtCgWQ8sigNTIl3uWBmg0XuWF3fUOHyJtxZJXYlwsyedIsCKnwXh0v7gOz8zR5YpUOIQV+M/CqHwi6w72fafNKFyb25cwPywdeuwNNTpxkR8Kia2VQE0vZI/LCu/s9qVqylrzqijo3XEWDOo9okxFvjxzvA7/pB0bLrR+1RDQeVyOybHjw78yNoykBJxObesLXnmN+YNb7G+TbXJhFiy0TF7FBaAE1EYpijgOySzcQN5opD2gdcDqwyo4pb5mbDZXEIV7w0VGToyaLiCuuFq5tIXWWWhMpZ970FhMKqIldODOL75AStJhxaqETiXaR/GD/lSpgbARP8lceg2EQC723XDeJs3CMziBqYlSWx3jBF8uzfSIKRSkSV0aikSz2HpUElsD9+s7R3GFEQtSGs75j9RuSCvR6oZcjCcGoBi6q59Rb3FoQSfJwiVS50NVMHxTfLQtGJy525kn/RMyV4bQii2A/JX4WktrNvPR3fDe9sFkKl/A9r2pgHRxnfeS7taBt94+UHv9r/ino/o4zSEkWjpPeIHNGpYDUESMjn/2vtBJ0bqnVov1CZya2zJyN523+iA8b+tljNrfz0lE/8pS/4ss9j/Mrqz/w0rQ3c7VYCOkGNf3MD4yyx+bAL/0nvDDMugNV6INhmGEzLKiUSXZgIxNdvfCuW341HxE5s8gDch0RpSNsGpZWk03mdfnMXT6xvbq/GU89T/6vVB2pxeHKhS6/U5NkM0lKo6gx8Ga25DVh6sK/vb8S5o6wEZxcZXSG2RWkCNSYWDWUovFSc2wt363v2LpQo+LAnznWAyYVlKjcixd23pG9ZpIt7/YOYTIxepTydOtMm1e21hJrhxEBpa68N3cksdAIqCrjyoS2C6uuJAaalBBBoJ3EhIrOK1v5RidfSWbD6+YTMhouescgJiSSd/mRd7lHaKC+kURP9YVLvmMtlZYzv9O/YIogV8uv8cBoGmRMPPqFo9ujMyiZ+ZifeXMRgUDjkfuJd+sYq+KtDqyh0kSPTRXRZC5WgRh4ywPaZoRYeBu2bNLCfs4MU08Ue6QISCf4w/g/8M3MsAxE7aAqYmlwsyJYSbeunDcNV93SpsQJR1slx2bL1VkmoZF1YUgrd2GiWRVeSFZjyFgykshtQxqlQfQrycMfT6/M5k+svSRrz8BNeL3IzzyWr1zcgMKQ1EyuAjUYruwxLCiRCYtiroK1DDSLQ6yWti2cZCS3ialp4apwOqB1YsdviNyz0HNWHd6CMI6qK9e0YRMm+jUg5Dc6dcV3Pa4u5PXEXRAonbjKgc55Jlq6eaFOlsZEfmTLsbNEZWhji0oFoyI2+JsRPBn6GqFWUtuQiiYVgVk99+qZvpxY7I0duI0RWRKSRBKCrAVh1ChRKVaRtADhCCKjZGFuFVEYvix/JYoOkzbEaFB1odVXBnHElYSyJz62tyDS/+3+nQsNQRgKklX3zKXHxAmbEm0RTLLgFNhZo9TK1O6pUiLVQl9m5qZDl0yi5bUe2PqJ6HpcSXQlYEQmJ9jbbyxITJNRK4xZkFdJnycaqdnNsDaOzZyZasPDknC9oQmCsXSkrWG2LaM2iOLocrxV42WH0At3y8hGTiyNICqJkuBmz7vesddn9uKdIjUUTxKO/XJClUpDwEaDtwYvDVEb1mpBajbDM2IW/MgBkS29n8hd4qh7ovjIUrZUZ1BZ0PYzm+6IrIUqJNs4c6ktQTkQEl0jfVx48COtyBjrWc2OqTgSA1YEvjcj3bTwOC1IeeX1vmMyjlocTUlUWajVsEkLnRBchMTYykZf6ecrfZ2YmpZv7kCOiiAVqy70MpLR+Ibbxk0VFuPQauIiH0hGIlMh28qzOtCWxDAHDIKsoaszX+0950bhhEfJCHEmmgabPE984+Arh/jOpXkgJMepdPjSISR8LBe+m/6CkoGOM0UNvLV7oIISzKLlv7X/lU/jiKZyn1Zy0Iwt5KbSx5GL3nO3GtY6cBfO1CqJ8xadBbkxmCBodGKcG1bb82y3eNHxXXxhUj0OT7cudGIkmo7S2NvHgVcUDDatPMaRL/GKEgFnK1QD0hNMxrqIbBMv+onVdojYkWOmcYGtf+cqFK9by1w2zMJTU0HXgeAUtn/i8PjhH6w+bvNPQfd3HBtXvgTPf5RCjpVV7NmvJ5qYWF1DkYYkGoKqHPSIVZ4+Br4Pv3DMku5l4bk2uHrhzr5SlONzWVn9xCFUXnyLyhptClU5hJUEpXhp7yFDqA2eRJtvtTP365EaOxp5/lsKVbPNIyhFk2fu55nTsKUIyWxb/vz9Bn+9cmkLUq00EpRJ4BWT6vnWG5QVXOojj+E3Qt1w5xO5CHbzmbPecVk7flTfsfFH1rhnX688TAauktP9O3/d3HNuenzomFVLmRaElNhY0M3EEK88hTOxZIoCq2a2ydKGkSokMQtW65BEJmlBwJk7XAFlFoRu+OP6A95XZgyzk9jV0srId+VCyYkfdwcuuuesN/zr+Gc2EY5Fo7TCUhnFBkic7B8QWWNdIaWKFw1TbMmlQS4RRIcVmmBuVW9unThry2wsQYGwDddcGYLnJFtkvq34hYTRDGQFQzrRqoU2J/b6nZAsfXlnI79xLo8UBF/FByrwtbtnUAtZbgiNxQiPTgVXC102HN1AlpbKwnjfYCeFqJGlj5QePoYT1Xa8yAMmVkxV7MYz6V7xo90ShWKRloGAzQElZ5KzVAltXbAi8V35lcGM9LHyS/18K2YXhqQFGz9yV0/MDAhROMc7/p9tZdGRD+KZb/ZAqhpN5Sf1HTonVCgICsHePJh/rH/hL/UPfKufyEZRs6FPE6u8J9fAwb4xqEAqDUezQwfBn93v+I7KmzkQtWUSPdQrV3okkWf7hBCFXG8VVxlPcZLRtqiSOZR3om3QeJpcqGT28Y3E7fR2SQ+33ycEpVpyUay2ow+CURnsWqki4US6naWkI9WVblK8S8VDObIJI6lpibGjrXBYrjz0f6WX77j8yi/1Xxh7j0LApMEWtnzjV/uZ1ntUvdkMrl1DGwq9+AVxHihzYHd34tF8w5oLQSVqEryoO5KSWMJtE47ECMHVNAQpb0DVqVBMwGTB0kpMWChSI5NgNAYVe2zwKOG5GEGQhdU4rqZFiZFrMMh9g0mGqgp/Or9Dc+Xsd3xrD6y5ZbsGhOjwXt0aEuIRM0Tq8EZhZMYSUsc39YmqApGClAqRJCJmOq4YeeZkNhQtQa7cpReUvNkPZtOTURgZeRjPiOr5TQ2M7OhzZMyGRntWV5BNYhAnjFzQvpIN3OUjqlhyVKytoEjDLo60EYISfDVbgm6Z1MIXVbjPV66i5Vvzmff6iSkb2jrz0T+TUWivOLsNLneM6x1KJUwQRLHhRKVrLwzrj+jtwsV94VAjKfb4oAnBsBNHLkbc/texZTY9MgcoClMM66Uj7ySXcgM7T6rDcMXUiM6Vs+pRMrDWFidHrJgoOM52g6kL2zIiEDRqps0KNxdWZ9jkM0IJhjQhckcrLtS4kqxHK48wFaFhN3vK2vDT5p6iuZ0v05EmVqzx1GzRIlG8JW8q3mi0DKSi+bb5SJomQl3pfzuiPwRWY5GiQ6eKzhWRC9Jkrkqh2hn9kijacqEjZcFcN7yoO6KWRCW4ph2NT5hSMNUgjMQKz6fJc1L3mFiRdcLoSG0C2S1YWTikTJKai91wJfPb5jtUmbjUJ/p1IWWLaH7jahti61BJMnhBCg9UmbmKPbExKDqG7hNGq3+0/AD+Kej+rpPiSJ5e+DAXDsozGUWnr4iksVGwLYG5eSeILY9ywlfDT+33LFVzUo+sUjHRkruOUB0yKXzscYvm6VrZpzeKURSdOOvE5/yVUfSstAw18FU8MIstuSq8ccx5B3aDD7ekp9SJIiVzO3ClRYjMrDtStegoUFSqX9m6Ee8EzmeaCMOpY5WStZNs8so394hLE8UZtuHEvB8Iq+C3piPFljc6zp3lrl4Y8wEnApuiIC08joFRjDwLi66JTfPOYb2whC1L0XTKM+SJsUpMXjgPWzKag/CkKPCtJlAZzSMpOb6/PvOf/R8QKtEWT6qOk72nXA7MXeXVOTYCBnnE6jNjGdhwq8uZheNo99zNr+zjjTX2cfVc2w1BBpIoNC6SELyoe0RUYAJTbZGr49RsIDcEBbp8w8oLfTWc5Y5eLlgT2adX7vSJkioXs0M6R0kOocCSKVqT0VybDpMXTnJgiBciG5JweGVZhSZRSaoyC0sGkApbFUmDKBaBpWSBTA6fe6hw3HZIvYBqcbWlpC/spgtLN3GYEgsd61PDLB3edrRlRtWAFAkrr8y7ymo1s3R06cKOE1/Kz+gqWUQlL5XrQ4NHEbnj98f/wXflmRdrGE3GD5lZDVxFS1cXXAnMtkGlyinfc7ksTAdLQN54VEKRayGohm090oeFZd1RhWVXviGtwahXTrHjbWt4YSD1O97yjr/yBW0iH/nKu9wxxBWbZ9q6cpWOi9xSg+KkO4JsGIhQErpEirQ8xHc2diSlDZ6eN7NH5UQvXxG5kqcBDFRTEbkitccWz11RfPHPnMUHqir0oXLgyHNpINtbfdoq+GnzJ7o40q6ZSQnEsmGydyhZ+Ln9gM89b8ue+9cZrRJzGWhkQueEkYGr6VlFi8lQUmBi4HCZkLrhcS1IseNqBEcJZ/PAm9sSRENTPU/hxP56RSpDyoap6Tmc31nFgBGZj+vMb9KibpdhvDWoqLm7VkiGsVnpzQlhLXPbEoVlzQ1VV57dDoEhWsGof+X7/Feqb3lQIyeR8ZuBu/VKGypGjAj3wpM8o/IR1USuywOmemxaeWkOJHkLwTzYEzZCMolVN3hpb8XspiFw684c3YEsCtvrhUfzDTVrXpoHvL998ByS53XbEbPk2G65q2/kbPCqcBdPIDVWbunDhZdFcRUDLnqemw2rOxJnQVdnHtcrrQqYMvPmemLSHNVAHzyyenALfV1RecGvO4TNFFFQsmAmyWIcMoJ3PS4mfhl+x878ylIbZAJqoLs6TJWIzkDVdOnM3Ggu1rL1mZO6g2g4NVtCzQTRsskXbI7sy5msBfflRF57HvUzSzZcdUsjJlZhKEJQMBzNPZtlIfuFbVwwMTFpScOFxWWMFaxJEm3B+EhWkd6PVLGjSnUjJCiJJtOUGakKrvgbsiY5Lmbgrp5o7cIX/5Wv8pGRgUXuUI1BZ8V+VLz2W37dKKKTLEKwC1eS6nmvlTbObOdMKzIbVdDSQ1241g6lNLHPCCFo6orMgY6CTODmymAza26pSXInRnpZaUpCiYkvceTcdawmI3yliJk5drxZyyI7WjJCOGKVPA9bCoVvese+vKGr4Gt8v3ViLw06aY79PU258t8y/F9R8H8CWvifgu7vOEVH1u2CiAonMp/mE8iRNowc7SdKLDzWMyKN0Mx8c98xyoE2RXKG7Co9F6SaCNqw8SOjHOjSlv/Y9zxcPXfrii6e1lyZmw8UndDVEaJDxpbHuDAfLNsyQ9XslxlFZRAK60eO5gNZKqoQ9H5lkyfeXAfdSgqZtbmQRM/2MlN0i4hw6SxFzozuI+/t92Rp2OYLXfXEXNBqoWNltQ5fG2ZnkBna7HDrwG8mUNWFXi5sa+EQE6/mjiZVqmxIMiBFIFuLDhGP4lexZ+ocXjc8qHeqWNFxz5hagmnRPnHVd7y7ylA9KnuMLgQjIWdeesNLuwcCi9PspyO/z78xsuHn5pGz3CCDoC6KvFgShqoyr8YiXWAVAxfZQoaH9UxG09VINgJZI6bJvPQ9yitkqoTFcUl3vPZ7ElBdw1Bn3swHsuUGAiXSFMk7BySFIXlW0eOy4orBRMOlHRCy8sY9wznwL+ZnLuqON3XPrlYImlFtsTVjUgINri5U2bD3F7oVUvJcdMMqVxpT2cyFdbhnFYkmPEDxjL3h1ewRWaOKpMRKchqdPb/Pf2EXTnyzH3lYFLKL3MdX9mJEFIWohUkNHDePVAmbfGUTZpTN2Al28czP5ftb+rPMbHWiyHp7odYDq7m9oN/bHTotLKrHVklSmuh7ZFTMskUkjaoVV2eSdLyaLbM9cO4PjLplFD0IidIFVxeCcKTSEqqDHCH29PlCNoqoV4JwjGJPEoVVRvbijb6c8bqhL5JWrWxz4L6MXPMWGSb2PjP4K6O0lPQNIRObMnFO9+TUMsSKC4ohK7LJyM1KzDMHzpzcHiXNrY85B2bV8pP7RMtKZxb6sCBtJknBJk9E1ZGbnlZ+ZVMrpVZUEdiUuSOyqoAsmle9Z8getgpjNE7d8bLtkGLl17alZhjRHMsDTV3ZRM8ueaoMKCGQWJadYTKZRVh280xVFhEEwwreSExRXKUmGU23TjgWaq14JYFElhZTV7zpcaxkoTnqAaU/oJDM2rJJM0KvfGjfSHcNOggUF642s4hPOBNIqaH1ATUltvrEzsFMQ9EVu07YOqH8wmv7Jxbd3zbORbDIhrPcE5Rm3fbYEHiqkXZxBNVyFh3fuls/6Z1PRLnwKN95NVskmattMBFaIsH1vA8fCc6z2DsGeaRPC1p5lnSPc4JUe8a8sIQNomZG1yGFRFL4cDmyiYFz1zI7y0U7mgJkw2Yp1CAIruUqM6GrSH1ilxKtPnFsD5xTRye3bOcrWRqkUJzdjqn2lKyo+couLmy+RnLnyW2h9BkjJENZ2XPr2T1kj88jwSsIBduDVwKlJKL4Wx+pNLzZHq82THnmX08nBDPetpzZIlroxxWnPDve+aHueJMPIARdXrFrQIbEn+qPvPc7lI43m4CKnOOen+0Tv8onkqz0esaIK73MmBiZyh1HZWldoU8emRT/tnxlxfIQjrRLz7fmnvfuns18JUVBLydsgJMzHPMWQ+K+viCLZpuvsOyIcsObUXSbBcdCEj2+q0xq4P56IQfNk/wL4/CAd4V2zczCgNRM/gZ5Jg/8bJ84qR5URNeZysTVPpDrHcEaNnnhS3zGLw2lr7j+yEMZEdsN72XmE3f/WAHCPwXd33WiaZhNQKWFtdNUf8buZ6SvKDXCUSPlSmuP/GY+85t5YhYbllZwX8481lcm3fG1eaQqwSp6mpTYNq8kNfDeOEzMyHzhe/Ejnoa7mJGhw8gLNsOkFY7C4xj46+4Dp32DzWDeV570nzlUSxI3iHGVkq4suOkrWk6cxSOv2wOT7NjnBikrBzEzyDOzqWzqRFoEWUbS2tCbkb6uxFKoovIYXpjKhlcGkjK8mx17TrhrYBkE/dQzlDO9zTzWI1pX7uIVmzy/DAeCanhpdhy5JxQDacZQKVFjhcbFkd/aPa/6A9HdBOk+vyOTJGD/1ivqkSERSmEVDU2FimSYYNCSWQvW2nMWB7C3Mvc+VpQVmPXK3q1clQFhscGjq2S97LjsDqw1IczMl/kXrk1DFYVOrcyp49XeY5rEtKnsyzs2ZYSEiQ6V7lmrImXHqd1SdUUU2IZXrA7swsR/tv+GKJ53veEYHxClclaF76Lgc3pHN/AeC6Hu+G6Zsbkw1AurLmAEJUkeVsH+uPLD/YaXfn/jsklPsRNtjbi8EFtFdQInAo27sJYt73JgomOXrjR14cv1FVkyv6rbCZYsab3gTq8cfMQWQcySj+aVYPZM0qAkzKbhhQ3funti1SQFusAmnth7yV05ojrBlG9exEvfgrRs05VtvXJc7/B5IOkbGHuWLZ/jM5P9SFcTJ+VxOSFEJIlKQ+RveQNcgd5fEEXzuaz8l+MFFQTSJBZ55Kch8Kv7BEXR5QtFCnzUHOtHYqg08kjrPV5scaVluzSklLHTPUrMiP4bh3qhBsGLueNF3SGkQhaBF7dNy4Jk/7LiTMbsV6o6cZWwaI2MkYJiUCPN5Amz5aQ/gdKo6AixRQfNvnoO+ZXfyoHFNjif0CGjUyWbHhksG1FQRfN1c0+znTHJ8tY0qMsd3/oOVWbOYofHoQEXEx0SwcS+vKDFwDfzhb04sVZLVBqSZpIWUQSbEHgoI0YHSjJoUZFW4+SFVnr6fPNJPuRfeZeaKBSVjBYRVQpKQDGCXAVdnejWkYuIHLsDfvnI2Q5s5xlkRQsQ5cjOn4ndB7SZyVg+hmdk0dg1sMieVQ1c8wZrJmpumOWGXHqMHOmY2YgrZkgs6Z5nWhoZEWSGMtL7hpgyQlr0RuNS5M083MIcQvLmAqELeKkJUtJXyVgeqBoojrVKcm1QdcsiW+7zC0/zN9Y4oBAYJK0aaUqhNSNS7pEZXC44pekQFAQewyI3ePtHltKwmS8U17BLkcUt+HhhX860UvBrefrb+bPSsqCyQTYgfIJY2MQLY9tzlz1DEfT2xCgbZPGc0p7teqV2jm1c0LJylgMpDdhQOLuWlB2rMvh94b4KVm25i2e0SNhYGGPPue/Z5Qm1zsRJM+kdTb3VQH7xr/TrTG4jo7jnP+QfeOt3BG2oFto68SBOHJYLJ7Hnl77DlRNWK1o90gBJbBnZMPgFKwKXpiVKz7XuQVamZOndwtVsKG6lVIFXPZZMF0Ye/BvXZYMQgnazMLYK7Jaab5acb+IOaQpWRHY1UOuZU+35of9IGwS6dnwoJ0IwOI4s7pFtmTkbiMLwLO/JVREwBKF4cVsMJ963G9yamZuOzVvLtl9R+ZX/DV3t/9P5p6D7O47PkamuTDaRpUS0nj5fUN5xZ0aK63mVHzG55zk/kaOhjSvRdWwvgoMqOHshSg1NZJQbknE8O4nOltJ7tunCUCda/YKW25sfIlwIqiLjjWeni8LZhX24JYiQmjpc0UuDWxPKBe6DwEVP0YakFEokLEdc8vzg9izF0lnPKiNtnngKJ2xZeNb3hOQ4pMRjOBGFYw0NR9FhVuh8ZOc8Xbzw3D+y1pHXJvNYRk5LZNzeMVFxdcXUSlM9rhSkt7gOTqrBykz1gmI6BCtdGdnPZ97sdwS1Ye8jXgk+pHeq0JxMRwG24kITPMFW7ssbKhTmsoNrQgTDs/iek3XorPkQ30lCcldGOjJZJGQXQK/ca4+u95RyYLhIrspRKhSloTZkILmK0p5FCVpO6JxBQtGGnLnBR70k2J5JwGwVmzRBFtyHM032JNUQYsdP3b+QQs9D+JlGBGblGHzi4vecSuJqe2qu2KTp1jNt0CiV0LLgjSMIRQc8zAsWia6BUg2JhAuS/7r8SsCwJgOKG8RUVeauJ+eKrpF73nhMZ7b1hBGRZ/fAkltC7mmnyCF49iWja09LQZnAdSMRIhB1j1jfeG0G5C7w2m7wfkOs0JbI3nvcbNBKsjueedl+DzXTpglbRvoa6MpMzRalYBYNvrREHCfhUAGW0nNqDCfXkZVm50faImlq5X+y9ya7kiVXluWS/nbaPH2NPXNzpzuDkZlRhcpB/f9X1CAyEE2S4U53s9drexvpa6BMJFBjAgQK3B+gOlGFbJFz9trGXfjs35BFkMsGGXrG+Qa5tNg2c+oKNmQ+1TMHIXl3W1SCyd3QkK9jSLFmE2bWTKjzHb8/3iJYSPqNP652iHak1h3CFg66Y5aWPgR8r3gXmrv8DRHXLDeCYAqh7zBVsppHMobVeGIetoh65tJvOFeDry1+KfzEyxUrku/RsaGsOh6YOSXP8peAwMNJEFPhsFrx0WwYW8EQRzQL39KGJ90x3fYsyuGkxi0LQwoEpVjyinX4lSGdWEWFFJ5LV5BCso0Rw8xZdddXwtpwE/11XzALLr2m0QOhNPzT/oAezgzxg/1Kk2Vhy56U4SjXZFl4Fo+YUmkuF9paWXOgdAGvevbiermcsyOILQlJLz13YkTmM78/faDGzEdbaIoh5pbmeEtXjhzLgnAz3iYKMKQ3gq5QM0ImzqyJKpFkxdbIkE5Iv+IfL3vcuGZ3ihwfInVYOGuLypl2Tvyx7ZmGgpQnGhQuGgZx4F18T8tILS1Ba27CCVMmFgWLEKzE5YqjWiRGOYSxZAmpUXTMXNwatWgQmmIkUVe8q9hyXQUgVVxVqCJBQcgLjVxYyz17u6FKzVw2mDJSJDizMN5qer+nBAt5YVgCPywHxhvJJDpexQ2xZl7tjtQoBhGoWtEuhVAEQkZG3ZDNFVciZCILQe/PpKw5655Ki9c9U+uwMpJz5R+Wr7hU+DX/hJ0gzZL2MkGjeBeO3FnIlaBadJlQtSIkXErP0lgWGiiVDs9DfCOvHackGfwT3XyixMpBK57bgd5OFDROz0QHp2qJxfFleaWYT0gpcGVhUi3P+hPP/WeEUEyDBRLZDHw0n0hC8iE37NsV6/OFm+WZTuUra64YHqcnXvQ9cw/fy5/RMnCShYu+Jzr3l8t8YhP3FO0QUuK1vF7kUmYlR7qwsJUHvl8Utvx9h+7/dwphz+gXZhpErQShEWicuPCb+YFX9UiRgrW4sm5G1TC5ht4vFDXxXHaUEhnZoeMZsPw4Hei8Z8c7X1crhJo5KctBrlmHDAo+Lz/z4W6YxYFWVpgabss7scm8NTu0CHgZONeWIc28sEEkxxRvcKPHuhGjE8VGDvoGWQJaVkqNLKLF64VaNP/X/oWPNHHcCrxseJHfEbMCIke7w+aECZn25Ll0G1SKGJm5yQe+17+y326JuaErHqkLd+HM47jnqNZ0eeGDnpIrq1BZUocMI11eMNLyx/6fOMx3vNuWVo9YAW05UouiUYWx9PzqvrDTF3TNDH5hHfaUanAI9usdQS00qcFKQRAWXeq189ONCBb6suemPDOlFcpHTnmNDZnYZaQqIBRtSNguslEz/1T/B2/ccV8vXOyaD7vlCnm1mHjiWO8ovqEsCmECNWqKsYQcyW1FRM+HuycnxWIcVT6gykKUDXMozLrDB82zHcAW9OLxytBKgZaB2C3/hi/OAAAgAElEQVTQJFxV2LKgpCc0lrF1SHmFVm/miRue0Esg0NPPlm+mY1p13IcXKhCkxtcNo7Io0TFnx9JcDUtMIzpncp6Zq+RiMy4KbCi0S6LkhB8CZ7vGEJjrNf2WjUYmrsYcSRSWN3WLyJ44K6bBUe2WdYHfnf6VcXpkvUh6kXnfdISVY9Qdo16jZMRlRXWFB39iqSPfXV4I+Rm9PHDTPfFu17y0W8rU0pRMSQlhNLr8yKl4MpGuHDF1YVsCXTjzzzf/RJKRkg19vmDCmbNYY63iTWWack1Rv9uem/Qbh6ZhqBeKbzkPG06m8Ci+0tiZeRdZlr+0GihBqQlVJy76njxKnJhoyhWjEnPD2To8iqB2+MkTTGFKA3aoKGkAwS/dd8SiWdvMo/8ZFx0fg8MLwd46dO5p5JnUKWqpZKHYLSNFjQhhsWnCTA3/+PaOZaS4gomFVsP3l4Vjpxj4oIlnnlb3NBVUhPvLB7f1jblfMQdDX4+8OUceIl4bZJ5RMnNky4UVmkSsHdJ7YlJ82JYw3PM1BL6j4ffzH5EycrIbkmzwtWObAht3Ya0O5L6wqQKbAqGJSOV4Fx1RtYyNo2jLLAaCtZylI8mWzhxZ54nteMI1ByKSc7PhXezQMVBK4vvp37gLE+fRcVoPjJvInd8zi46SoEuJqS9cdIsikLLg4fLO3nzPR7NFiDXWVYRInMwj937PTXxhU2b6Gf7d7th3HUVImnrk0/JELwI1Of7Takg9qUJVnn/wv/CbuuXcdHy4FZemJ497dv5McYk7vtHIC6Yeoe34ffwPShg41h4pJad2xZgNodfcHc7cpW+s58CT3nIQgqQke92ia/1LI4xhNZ/QWeLGAz0aL1q89agmkhX0HLA1MHegU2VTzugY+aPboCo4Gbhg+dY9cjeeECUi1MDaCnLT0X0EnsXAPAhm26IJBBxt9azigRs/stdrkrJo5Tkrh2pX3I0Z4TVbv+CDQauJdrzQ63e+8JWNPKBr5S1vmNWKg3WM+ve0OeOIXMqKg96Qq+DkHP2YkQvURqAoVAEJiS6ZKiSh1TznLzzmA5/jM6NueDUNviZU+87kJDv1xk227Itm8RtkEdznCVf2SC0ZlaI6eb3MNxYpZtKyxh4zaX5EytXf0Hn8b/3d0P0V5SeJuTTU0pJEZQwDchyYRUOQPX174SJ7xrxmOyW29Ymvw45tPbAftkgSzTTgFtDRsmlGdumIs551fuJAJDSCIDWv3LCpf0YFh00KKEzGonNEUwhJ8Xl+oXSJu/pOFo5zvsWUxIf4TFdmZtnzNmxZ2w9cnfjd+BWbM050GOsJDWzrTJ88SzaMi+ROv+Njy+R6Fq/Zu1tETYSksSXgVWWVX6n5ho2/0vvPTjPFnr1bMecblFy4iR/8uBwQ0fBaWvpxBuFZqQlTDH4x6LZgRCHpFl8l8+bajnFRW346/QlhA95eK1/MOIKwNGWi6kInj9ismNKAUZqztBizZ3aFT/E/+K/zBKLyvX9B1UgQ1ySn60ZS1LzJHTE2vNqWIS5UURldoYsVpTVHBrIS9NmzKxeCbJBEGu+RFJ77z4x5ha0gy8J93dOISDvOvOgH9Eny1Oy41JYqFbUIcl3x/TJj9DWJJdAsPWzdCye1xq97zAVcjuSVZ+quGAa7VFCB6j54sj8wtgXFyCAu9PoXnmxPLyTNIulPmps08AsN5AbRzKzzzKf5jb3pWXNGF4FO19cPJxObOSKiYtItF9kx2cqx6TjqFS/NDQLPpfRsEsyuYVuO7NUjQ1lIomEsa5CGIjzeDhy7HUJKQu1x057l/IlL/sSb62nNiCgZVaH1kSAhac2sLLMxqJSwamLfDxx0j4wtv4j/go6CnBecPXLsLJehsBBxWVOyxeJppomNPJGkJWaDDBInDaEaVLZ8dfcc3ZaduvCtyXRZIpPh1ApqHchF8ZEbFtXg4oTBI8XCsZFk7bD2hFGVbCozHfv4iewVVfX4dsDYgpITKnvIAoJhEZJv7YqiE4tVjDR8ERODurB1J/o4c2bHb8MN7iiYhoKLJwbZIdCYc8HYQJg1YheQdcaZSH+4oLSkv8x06owsDZrAu15xmVfU3HOfFjo5c3KOKg0XKqWphHohE0CPtAqqvI6tpKrUpBjpcctMrpql6fE0HGVPaDuML2gBdspICam0vKnPTEaSlCEZy+ADXZnJSZJCi5SBIewZ5QNRvrJUwc/tF052RVwNPE4HVrlSYovNM0VXJrkCVWnKhTnfETGMuqUWAdJTvcCUyCE7fv0E6FfeV5+oqaBy5j4+YVIDsZJyYBHXwejP9icmtwIlECRUXpBKkKLmXd/Q5BFjKjIGNvOR5Cz7duDf3feMs2RTD7z3G571J2q8QqqrKsxCYfVCWyUqRUpSGBEYxIwukfv4G0/1hj+tfsSbDqTGmExIhloU3+yOJBxSROSQ2UXo1De8neh0z1xXdLKQrOEu7ZFJUWwlqIIWku00kmvLWRruSkXWhR/kv5JSTyMniJaULWOrSVoQhSRWzSAnQsmcTUvOgo3bs9GRw9pw6QcmtSELQ9aGH+afeenu6OaR0Hd8BMNBrXAkLnRMtaHWBqUncIXaGIZyomhFUxxDnVABnIUaJdUJcio0S0DbjA2JaAQiNrCxTLohqIaVO6HmTNWZXFs0mSgkRUsqAikgScMhrdD52sajVcLIC72InJqBkBsEHZsQSeXAWHt8NKiu4TE8k9odJl5wKoKvGB1x+cLSGJRxOG3/1vYD+Luh+6vK1B6VJV2zkGzhoixvckWYG4oA/rLrZUzEm8rgE5s00seJvdkRdOZlfUM/TwxF0o+VV3HHYN9QskE2Hi86ijDsueNf6oYf0zswcyw7UrTsdc9dPXIWgu/qB/fh2pEoQkOWDbNfsViLV4YltiRd2C2FfbNl6CLNJCkisIvv7GfD6FouaaCbPOWkmUQg93DRkkOzYRpbbImIJrE3A8jKdtmjWUj6L2nFfOAsHbOyiMWjBXwOV4PzpAr/2t1w3twixcImerzSdOaCpLDBQ65M6hZRC5/CB5OwFAe/NF/QJTFjuXVHNllitWekwVfDXFfs3ZpGFS4OQh0oVdPIiZAFXV2Ii0UVg7UjFMth+sQv/Deehh+vPDN7rYpqRWJ39ny+jOw+eYYyc+7hnNZ8NBsoGZkqx7qmaOjwIAqptoy6cDc9s64njNSc84omZWbVg5FEJQkKOukpXcElz5aJu2VPNYFj6nCikGRlQ0C6ihYTQ7ru+3k1cOMvTKpjdII2Lox64KwH/uf6Bz5qz2N8R50MDSOhPTPoihITdRHciXduwswuHvHVMDUtfdyjskeVE8EN4BzvBlRrEUkhZObx/cjZ3VGK4LJpmCl0VdGWdywZJxIOz+2SWexIEIIXe8vkHJqMKYnQtHysDepoGW3Dh3QUl1jHM+hArZlSHW0MaO2vnxffsbGw0CLwKDHTqYlJaciRWCSXrqNoOFbDNp7gLPllteU2FIYpsjsf+CGcqaZncpJNkIxNIZoLVS28dnfoKnCloNOZVXlnGxN7afkwd39J7V44acvU9ehaqWbBhIXqLRqYk0KgORfodYvKZ7xZcyhbpKm4dGYnPhjynmQMVWaOTc+8GH41fyCl6zpElo7P7Qs/uT/RyY7Les2cKkkYcu0IVpGR2BywS2KdjhTrGK1FNQuXLkAZqW3gI0j2TtOPnrWMfHf5AOVYhwtzHqgWYla0YiaLa7tFSoq+VKI01ENHSYav7T17uyIvDVpWBrNgSyIVAyZROkVbM908UVA0OdDVhORCEY5FgUszu3hiKJVv+oE0FPK6IYnCwAexGmJ2RAw6H1hnw7PvrnVadcQxUbOmSIENiXfX4qVmXQtrcaQYz2+7R/bWIJymrSM73lh0j5aZ3gTUonhrBhZnISmELsgqMMFTXCYqwWLWaFmZhCOpH7idD6zVAasg6Mx+1WCTYnY/8pg0wVhkCSh7wVbJjX+l85X7VHlZ3fKze8Aby5ttaeWB23ChAKNZ4WnplzO+tVALVIGcQcmKFIJkLGO74l3fkZTDiZlSNbNsEGRMrqxKRmSJVi1iTByaDSsTCFnSxsSAJ4uFk9jhU8tNachKoAsYX/kc3hByoVIYljNCdtSiWbuIqwf+uX/gZ/2Z5a7FhsKX8RtFDLzu7vHS4qMjFU1PQVSPzZ6VKmzqkYZMqA4nJQ/xgLYzKs+s6rWX97XeE/OGUB9xKVFLQzNdSE4QAN8YOnFGi5ZGRGpYkFVTa8HGwHre0zSBgGZQkegsNSu8tAxpZtQNaag8TJWDGPjFfSJYzZMaeK0/0eiZMTRswx5RDPO84q0PdOJIMhotR2rWiFrZqJGyEpQ2gTR/U+/xv/R3Q/dX1LqxrJLjoiMpNCxO8udOISu4MtOlMzsd6fKEp6G1nlU4UIshqldOSRFNw0pcaEqg44n9sGXRgif9Iz+lPxHUBlSlzxNFtTzVWy4l8u7v2MSR82aDtTOhVyzesV0WbtsXMo5Ftuz1llwzs25x4toScXADpVxLz5t0IXcdZ6F55JlYQRqDVA7debTNaLWg60IQkttyphTNJr0hleetHZiGnoEjlBOf5TMhOmYkoSiksDQeLuMtJ/mZ8zBxlFtsnpBtAJEQ1aHUhDCVZpxpZMKkr8yb78mqQC7kpKjB0umFTTxxV58wZ8HoOoToOegdeXDIk6Uqy0VrsmlZ13ds9DzJz6zCxLdB8l18welIEi0+Ww5iBUUhdKWtms/vgM50QtBXw+nS8txt8VJQQyVZCAiOdkMqhskZxpqvheLLdUR5MTf0YeQmvHFON5gmk+RE4+HcOGIStOW6WP6wvNDJjBGCEhRZG3Q5IKqmn3uSKaxiJdSONgu6c2VqH5nsiWyutUtKe/p0QelIqQovFTjLy0phornyDLkQlaRKKBrquSGXljMt3q45uxXrxeOtpY8XSuv4rXvEpID2mlYI+jCR24WSyvVgXRLKFdbiA6pklRZ+GCfeY+XVDHRlZrCOqTYgBdtzoKSWRQpmqZArQdaWU4Yfpq847zn2loPbILKkkAlZsyjJ3tygKkiV+XR64ftlj6gz/7L+r7yqBiUishgEC8ZkompYqRPJbuh9y2OamFYRXRVGn5m6htlJvG2oCEStpAIP8wf3+glpJEnf05czZ6eQCgoaTUJVhamFu/xCUAOXNCCNxE+gukKtlVd7g00ZpRI36cg6en5KP5Nd4U30iEah8pFvwx0XVrR1YigjLu1RMuApfJleWMqBfVoTyupaMVbWFGG5K3usCAwloJKnSM2hHUAmTmXFSrzjV4qgCjfyiIqS1AjqqNDumsw3PtLJTLYV4zxDeWcSPWLaUFVHkwrvRXOOW1oZ2Uwe14ycU0/RkpIEVYDxR5QUuOyRwlCEpRTHIiWzaVmJjA7wVG6Ylg5vI15n5lSpJiCqJOuMkzNKT9Q583g4sj4aPvoVoQmINrHLJz7khpR72ktiXWYckZI1IVmsOLOtib3oCKLhmO/xecD5C5MRpEZwF04s0jHPFmEFRU0kp9AiIUvive5QWSCEYOVnDuzQLjOkIyZHRCrkUBmt4U/uM42OxGq5qW/oWGhkYM0MXvBhb+hIOD7Y8cJNfeYn/2cOdcPFrVhEz8FtWcc9Lma8lHg70C6e3Bpkztwse271C7rJPKYnSi5MosPEgksFXSsha7zfMm1mjBzZiDe+zop9e0eOAqqFMlKK4S03uLFyEwvFLsi+IqtEiIxRhmQMNs3c84xX8Kv7xIUNJ93iVKDVKzblgPIt1jS8iAcW4cBFVinycHmjRsVzu+OoNnRipBcjSs1kpXAVdv7M87Qia0dsWg7WsJk8u0thEw5M08hBrK7IoJDQTrBLF6as2fozlyYwKcVLt+PT/IpXHTI4KIkoBJjC+7CmUYFiK1FplBekeYfLE+/tmqgFK5+vzSbyhO8co93ym/wO5e5ZL3veu1se4wsn22PFB7cpoWQgiflvbT+Avxu6v6oaa/nx7Kj5xHt/RqeGUgRWSpS3lNwQG8PFSEJtOMsVTSzIc6WsIaiWvnh6D91UGVdbJtliVEPShbf0SBGKWCS1tNykBTMbxrLio9zxPNxRRSQKg4uRrnpcSpDhvd5RhUBW6OLEvhuYjaUITUqSh3rAGo/YSDb5g1pAzxETFU26AkCX1dUwjdrw6F84DzvaIWFL4MvlnSez4UPckoQkSo0TE3vRX0cIVXDUNwhVibrgpKZaQdVcb1FNJcsGlz5o/YWxb9j6PY2ZsPuGy1pzs7zy3PSYUEjBkqrDZ4MqPQpLsA6lKi5DXRQyCoacWLSiJdIwctAD2VYIlbJIZgZKeWNRA0e1o8kFrSV3HNBaU+MbthpC0pyHQpUtIX1HOlbcMTLZlpMrHJ1jlIYkDIrKKu0ZxEzyHUlo5qJ5TRtkOvNZ/kbWBlUy/3P9OyZjqAhu5yOP0zduzAi58GEe6RbDu/5EFpp3uWGxiqGc+BQLQ7mAqJyV4013CGExU2BVZnQbiVw5drkkfFnRVsHXtuOue0Xbie/967W3NGcW7+jUB1kOCG2hNnjZEnTFiwEtDZMQsETaOqNSZSNOfC//jW/qB2RZ8+ZuOeXEKO7RNSOzYs1C754wamYx37F2GpM9e7HFhEIs7tqbWuEsKhelkNIjVCJHxWpf+B3/zP9j/g+ibABFQ6IkxZe65/txZu4Sn8obfXlnni1aFKTNBNmwFu/cpw+WpUU3jlwadDa4anjon4nNib1Z47VgnRKbHLiYhrWYuLAhCU2xLQfdEHXLm72j9wEhC6tygVL5Tf+AY2aXF9wMs9Ec6w2VQLGaIR9ZLQ4nDDV1KJkwi6FWgZACkwKl3NH4wOzWTLVB5Urwjpg1liPgGZi5zR98Fd8hUs8obwk141VH1Ipv+ZHH+cROPbHoBGq6pk7HESk00Wp09OjaMluJLJlf+oGJFu1OdMtMMTDMM0M94/PAC5/52j6AGDDSs/ULxIWkMtu6oELlS/iNc9mStOVSe6LN3JUnUi3chgmM423VYfOCKiBlYKOPjKpFKM0lJ6bW8dp2PMgXjIj8If47k1hTvGIpa6gLf3z4PylVczGa2xSoRG7KyEU4YlNBtciQOcuepqxoQiBryau7AxlZp5l1mTn6hv9Yf8GKQGkjN7Xi9J4qeh6mA/Npzdx3BJNZaotSmVIstYpr7209kXPhqduRChQpiI3F1pkg2+tLZa30/sIf4jeKVnTngCySWy6cVctLe8OeB8ypsqsTX5tHFt1TY6XKjIsRITMP+cC43NDFhnSZCE4xmD3KFEoVvJoNf3S/50PcM9IyuIn7cGY2DhMNtQhk1fyb6jms14gUEEJDkpR4w3oveOrv8Y0n2oqoHh8yazKCC6UN9GpiyAumSPaqYaqaRUiS0LREdM7oWji5LUEJqPBwWa5cSRpK0TxOkSa94u2JLe+oKulyIFwEr+aGA//AaBqiHjimLUo5fu1aFgL7DKr9AJ0oRjCJhiQkOjasFtA+kZ3ChspsYagLN8UT5Eha7jhqh4knlub6fxPRMlnDNnm+NTdk17Eogy6ZYKBbZmbZ8io/Xass5UyQhk57LgJMhr6c6ORELwuyXijx/Le2H8DfDd1fVX7R+O0Kpt9IscMxslcPCB3xSnETErUoXswdWgYIkouxxE+FqGGdPXKBH+Yz/XLg0CmogbNYoyh81Z8wMrDNR2SorJc9J/HA1AsWlxjNwCpXTsOWO//Ok/yEnSuX4fMVnVIzU4mMdkWwCpSioPhQd5jJ4dHc1CN7t0aPianTfFpOaFXJ2TJ1jlmZaz2PNqhQ0BJuOPFJXPhNbXE6obXA5uthFqY1l7TiPh5BTUSlAM2z/cxlrREyEIxB1AxIznpDk/YIAbfzGS0Ky9jwsbK8m46L2oCW6Cq4nyOdinyKr+T2Os6TFCYz0MnAispmOpJz4FV2qDpDumFTJi7K8a29oVbJ62WHypGsNMJ6NvnA43RijUDGkZO44z+bW1QHQVxo5sDp0vOx7ljaQrIKWwOmVs7qusMx6TV345FBHtmLOwKJ2dywZ0XtNEpDlRYtE7t0okp4KEcaKgRHDg3UhrQfyPYKfS1tQaSJqSl8iy27MtNVeBs2xGpoxAXaSpeOVJnIaG4ve7qa8dZR0w2/dbegZqqQrMoe7RKZguw9swcpZhq1UKSiVE2RBjdGHueZaedYnOFN3LOuZxal+VxnbtM7osm4cKFIWMqAiYrVudK1nqyh1SNDGa+waNGziXt0VYylZRsCqwxN2PNHsSamiNCCUbR8uxEUsWWVL4h85ll+Ya6W7/IHQQDNQpUNH+aGD9lTcsFIyw+XZw7dmjafeTOf8RtDX0cygk/pK6uHI78MO3KjqbNnYCQpCEqhtIEkcSWyXTwywv+4/b/RMXBQW/7Az9gscUHS8sEoN3RxomrJf7S/Y24GTnnLJh346f0r/q6h0Zld9CyHG0a75uy2BBv45/rfuVMvnHTHA19ZTXvGZiAtAo3j1n9llTxJS5Zpx6nR+P0d9/mdTkxMxqJWhYtsCaqndSde9TUIlYVCZMmv7keaUujrmZvyhisJXROpVPamwyqBkJlWzTR1j5MJUyailYS64sncY6tjNpLVqmDKgXPbUhJIkdmHBhkWjKp8OUfO7dVwS1k5xB5aRSgWLQzBG7SFmiQDGd0EDv2WXICgibVFCoXILd+ZJ2bTMoeR1/YBIT2beEHVzE/hN86dJCnLbRrZ5K/8UUCTI6+loXt3jPZHQg2gBKoWxrLGeot5X8jbiJIjtVWUCHdppp0mlnBDFJmCxCvJhKLPM3acEVGwKROtnFiaLbkt7OKZ76YnRmnYqCNv+o42JAQFnwb+3D4iqLSPv3B7Dgj9iTprXE08lGdiY/lqfseJNUMZGRvHKgYeDiOn1iHPLb7dUhqBjpnv/QuD/8aoFGPT8if53/io96SqKICvljG2vK97TMq4Gvns3xnkSBNHfpWfmYrGFIk+C96cwfpEXzxOSkKfAcXZFoakGdWWJo1MKmOSYXOZ6E0mAUZNfPJv7NJM0Y67cKZj4VICUlRUDZxwCGf58/mRrBO36QXvBn6IH6xC4F/4R56bHTMtyMSncOTQQhs/WMwaWy+8Dw02bxnyAZ1nRC3cze9cyhdyhaXRnK2h1oiqGc3ETR3RSeHHgmwGxtXEYm9IqqX1M5ErUL9qMBQKBR0it28T52z4tvvMYg2nZoAgEDWxCEMTI0ZObPOZ3+efMamlmT261L+h8/jf+ruh+yvK4wl95KJuCTkz1g4VKtVmZtMyNYZFQpIKgcULQ2kamjQhq0DKwNouMHrGTuHDii6eceLMwAe/6scr8DJHrJd0Z0WbPvh5uEW4SKNmioiEYPB+w0t7z2XTEFTBdpGmzlzMmhwE1IKuEYBtnHnkGVEKTVgo1mIUjOGW9/PAmGcOQ8fT7QOlVNrF08WJz+WZxniqrTytHEkLmnrmpDac65oueGrI1NBBXoi2vd771JZsMuiFVRa4DFJKhnzmoFsmHDkXDmqNSIXRrngVWz5Ez1wsbQ4gFOv6Qi8/KDqSa8M6WmQZ6Wrlrj5zUt8jhm80OvAH/8RlyFRx3XU7mQ2BhmE5UatjV/YYX5m0YV0CW/uMUzPz5HhTD3jtCXlNcZWswWwWegRBK0oSRNsgZWJdJrrsacuZjbzwu/QzTnuCdCRbiUqR1IpBX/DVEWSHLgkhMtul0s0D77JHUZm4vR7E6UJwBekM0UVIBREnjDryYTfkLiLSBB7aFOjdhE0FNNyWkVotOUkurlJM5CgHlKj8vPnCzTJTPJw6Q14BClqfGfLE9/GdwS88ye/YG0fMgua0MFmDVpncV/aiY+Xf+SgrhHZ4ronRkR1vQ4vlyDMdWyUpJVJk5dgOVzRADKxrIIbKh+yJRrKZPMdG4NLl+sqrFK/qM1lJNuGDIRx4KG/s7B5VP7Ax8caOV7elasViLKJce10lhQ/zgJctMkOqlkn25ObMU/6O3+wN1pywKTGkMykoJrVlWGaMLIwiEXXDlAaomk354EwPSbCRR1QqnMUOuSii6xBu5CxW2LzQphP4gkyWx5cPZNqw04G8BN78xEtuKVLw0j9yzDecheJXvqMVgeG00GlPm6BJC00J+FiZ7IqujBy7gSlLinSUS8ECu7gQpcDrnlk1rKrnrNaUKpndQH+ZmPs1m3NGtRCq4oLmaBt2q4nqFlbzge/SE7OxqCZAmTBSc8oDvm9ZlGZtJ75Llbv4BrXhguWr+x1SC7SM3KTMdvlPQFJz4dV9R2wkshZmUxEh0Jcza/2GBP7U/p6ldhQk/Tyjo0XVK5+uExNFKV7dJ4Kw1JLIZYLaMqqWVBTr/Cvv5pZJN/TlxMZnvLrjsNoxG4XKZ9blwMH03NTx+j2pofMLvtfI5KnKE3IlB0c+9Xh7j02ClT5yFBJnL0Sn6eTC3XK8dpZGdQWG5wHXLKyXPTZN1ARGCO6qpwhJtYounTi1lmauNOKMET9SS89T/cIuHbk/f7DcXNcRTPTYuPC82qLyQm4btCnYHGjcwrb+GadnTuULp3LLgVsuqmVRDjNHpIhUvaCrpSjJLHrGskJ6SUSzJE0VkiV3rHQCIRhyQKiR1FaSEQxT5aQbSk1EbXDzhbNYU1JPzh3fXQKfw0TQF5y50MSFmBUHdwdoqhAYJooNWBUxfmISA0vtmWWLKpHiJUUUhI0MIpFL4dxZUpWYVNgtF0bZclQGqSaUWhAispSOxmeOTYcpC33zxLn0qFLxrHFHz3t7i86KTc2gJ278jBhgfYJsLiQR+GOzpvSek2oxQtGrM1jJrZvA3/Br0YzqOmED+OxfuE8T9/Urd+WVIXqsTWQVoDpKzn8b0/H/0d8N3V9RTa/4aDUvqWE2nqPt0RW82zKkiSoLEdBkdArX/aWaOHcrdM4M3vMpvVIUHAcw84miE72fKUVjm8gptqzJtFOippZRBSQzWmZCzaTqMLnjRfcrNIcAACAASURBVAferWNRDUJ6KrDzR0SpPMZXghFIISlCoHOmpkxKijduOJUde2W4Tye8tAjZEq0h60qojqQ0KWpsjggVYdQIveCNpFFnbssHRizIOBBSy+P4wR9OntOq8FU6zusZry2TXnMWAlELpbRc5IpYC22p2DLRzIJm1PxiVjg504WEb++o3kITid2FRUkez88stce5iK8GqTTn4jiIji2FIhJ9PHD0j1TnOGtohGcTJ0T1GBFxIbAmorKjIPhmthg50HeBZpJ04QofbepE1QOmzpzzDlELqxjxpaK0QYuCSQ1WTqTUchD3POZnXtWW6CxL7VDmwlIEQxi5nV6xJbBYTamK92WLmtyVC6gvrIY/80UKnvWWVXKQMvtmS+ga3uQ9K458WTwntaUdK1kKvrafKb1ku5wIqcVlwSzXYBYexDciGpszBc27vCdsC2fVUKugFXsWXelk5HJpeepvcb7h3Gi0mlmXBU1FoshK8Vv5ia1640JPl05U09PakXO7JgdPKhAvirQYZgaS62hTxIjI2az44s+U1vHpuFBly95EdD1hxciRHRc9/OX3sFCz41Oar8axDAx6j3CBX90feDIPIKCbZ7Z+vIYLREMWmorgqDtyLmRhsMrj2wYvO3KseBERsrCIgVf3iScpGfLELr5TqUgWVFyRcsPtcuR+eSKtFOPQMtaBYZ7wOBKKGcdRbEAUPs2vdEvgs5xo6oSvMBrN2Qre24KVkaoMSMkuXpPi3++feWs3yBQYcsLpRHWBph44m56fxR17aZG0KBX5sb5hL4nkDFUvlL+M2N7cPXNs2MQLwVVyI1iM42waznpApUQko4tnvWSGcGLjA+d4S3GJlCaWdsPR7BBKUrJAUIkontUnenXmxp+QcsM5d0xNg9aFDxlZNb/jNhywNaMOElEjFyzvZiCtJFrueCgORSaogdtlz1m3bMLMajIYnzjZH2mVAyO4z4G2e6cnImTk5CX73iLq/8vem/Pet6V3Xp817+mMv+E/3KHKrrJpC9FCsoFXgETWYZMjtXgRBIQQIkHSIiIiIEC8BRIkQJ0gut1ylW/53v/wm864xzUSnCuwTLsT6C6E/ERnay+dvaK9vvt5voNhThU5Z5ZK05UzDYrH+MxX85HWz5ydxqZIOwXe+1fiXLGaDX9vOfNqLRwnntYbTvGBbB1+vUIC0wo6Cqty5UH0VGmmKxMpdwzGkDVswisf8mc2xyNKRYZ6zS5eOfPIUlYc6oZFwz5bBmFJ7YlX85HYWx7ShXo5YmRmkt/zbux5FJ/xMZDMwv9W/j5OVlxcy6rMOJFYR0m9rJlNzZgfeBEPMDdsg2eqMvvLBdyBjcyILPC+RaqZb6YntlNikYHR1Kgy8eK+YR1OSClp5cg6HHkYTvxw13Ct7gi2EL1DLpmzrDEh0qiJRTtWwXE/HvnaaDblK0k5quhppw2pSlyUZzYRqQNaZUZpSSqgl4m/tI9U1jPplrvlyDwbgpRIEdkvM2v/hq8lOi98O/4lVgRYFFNuqUQgJot3Fmymji+YciXS3QzoRYSV4UvzHa/5nlUceRhe2QwLE1uE1Qy6ukXjqTVaFUwKVEXQpYGY1rcUmFJBzjeRSIjoXHDJs+oTwlRMeY0UJ07WYWPFLDdMi/g9o49b/R2g+3+xqqZmK0ayDBxcxyA7VvOAEIFGDAgCi3e3wF9TEYUmJQkz3M9X9suMEZlZFLKArOCkVmh1ZigtekrI2JDyhmYeEIthFhvW8xsufOJLdUeKLd2kuFaWlC1eVZhUKCRG2ZKlpKelDSeqELnPB7Zp5EP8Su5XPLV3bM5X/qL5Na96w2Ev0Elw3giC0GQp2YlXtssrQnqaqSeWDp8sH/vPhFaxmmZKDdLPIBTfHiWP054fuguxiizOE1Lmc/yAQuClufFSREZgmLWlxMxbVXNwkhezIpmZKAw2RNbMiNnz5e49K39B7t/zq5cfuQtXTv0jU6MZtWDo4J+r73HpRCVeoQRaP3HIe7SNSLkQKmjUkQf/Ey4LpvKOk+04mW+QSfBenWidZzes8VPEycxgIr6tCGQMkSrAJo10feK3rSEoicu3wOiQNCVqPuozLo18YY1WIxRD0Q2baeBN3iNmy2/ce1LdENqGbTnjXM+ZjC6JWs44BryuqULAnTXWAq3CEFktZz7mA2/pnrFs6EtHb2pEXOGawCQDQ9vyML8wlZoYaz6Zb8lG0dhXetERDbho6eSZGBx9VzNHR0cgiYFdnFmHK7swc1I7ZBvwsmIQjje1515IdCpUIXMvzgRh8bli8TVibNh0gc85M4mWrCLiZ2BZvMTECfLAbGoUYHNkJXpOyuHLGg1U4sTdOPJk3nMtlp/UO+CmJrdqJufMXGmE9uzKTBVHnvR7orKI5MlZsajMm7kjKE3MjqPd8+i/8iw6Zm0ZZE2mMClDyQsfwhuPcmB99jTiwCpd2LgvPNkHgnCEIqgXkEVwSmuirhhEgzGBbBUCzxQE2nqyUpT6gCNjraMxPXUUTGKNXAwqCaz2PPZvlCrSlpE1I2ORnOuaQTYMuWVSDRR54zsKTc6GbX+mNjMpGZw442PNXRyZtUD6gI6ZLiX23jPnxJINRRq2cuSB4y2cPQee5Q5XFn7b/pqA5IWPtMNC37ZEeRtOVf7EfXilWzK51HgtGeuCx2BspniLuzqkjKgiGVLLaAsxSjKKUhJXucKmhVBudiCbcKUTPTQ3f7g7H1lFjbYXXqstnpuwIjpFtpm8FLIU/KB/QXASWyZcFExC4KJFKIOOZ7oMO9Nzn86IbKjDhLGJviSsuiKEoChLmGtmaTivNa0P5CozC8lduDCZlnpYOFVrRueo0wQq03BGZE0skqN75CpWGKUp0eCE5rvxxGe9Y1B7ZtHQq3sO5ZGlXeNCpC5b9uGVY6XYy4FqGVhkx1VaznpDLnCVG7w/YNSByh9Q9QVEzUqduEsOJwQpQG4E/i5TCcfqfOLh9Fve9Hc3d4FS805+oSkn7twGESMqP9HIQlEaQUCrAWl6HrPHLYVY3lGcoPaZIgUTliBq9vlIVoJeZ5RKGHfBCFizMJUHjmWLHzvm+spGBNbVC6lUJFUYrCLrhMkTuSy86pp9GdlPAe0lGcFrvSMmeFMdm9LTlCPvhwtv4R2xLnwxa7JUiCRYZEQmTbKRUGp8UciSsB6MKKgEo7PMVcsh71gHyDEwGofKEa8cIoILV+7jQMoGpOPBj/xq+Q0n+4CXsJkX7umZ0ooXPhAlbNUL63DgD/0VYQ34v+vQ/f+ujDa0u5p6eqUqBi88fV1Rpwmdl9vXQE6waOpy5Ww3XFRFMorzsmMrZr7YDRv7mUXvKBaE1DzMV3p1xyHeo5LhEiVLvfAmA71SbGaDYKFOFbUPHGpLkomNnwCJipomeVoxspqvvIaKsKk5uoqzeOBXwye2C7Spx+ZMKJa7fEUAS9kwKcekJHWamZSlxII3jpkan1uqa8LYwHtxpgsDFSPneUs/b6jljNQCXy84daCNkm/8iS/mIy4FujxxtBusGBhkQy6CYgW6RM5txaAMpWSicTxce6IrRGXJRmKLx5XAIFf00vBBvSD3FUtVGOID6/mZc15T5ZpX/pDfpm/xjWBQHe+nZ07siaYQKscUNX98+Awl8yq2/K7+jnaZkGXNvzF8QSRL4xWxKsQKLrnjYhse4iu2aAwzn+R7fmx2KCKj2DNnUHJDr9asOdO5mydSr7asysA51swYRlvjcfQYcmeZsqGKYGTkaLbUomd3eeGp2oACpODLas89ifv8A/fugo4ZqRp+4zo+uY/kXLHQk8wrNim2okcmTx1u5Pplvsf6J0ZT8VorFDObfKVaErkUBnVHzA4pLCpmnJx5z+/oi0JSCFpy4ZGj61B6w9FsSKNiJ3vqEolNQEZJc7E8+omhW3EsH7ClUKcZIxZGKZiN5P5y5X04oIrHpw4pe86lZed7cqkoRrPJIw2FzJrT8g6RHU+usBIHAoIFWPQKXRae5D2P/YXaRKoQ8Kkg5UgRhlaOIDRCFnbLhYEaJ2cuqmHUjhl9i64i82QecaEglaDOPV2Y8anl6lec8paDubvZ4OQLbkz09T0X2d3eBSncxDAry6uvmZRhMYpZdcxG8qA/0ZUTTY6cywPTsiMoQwmSUW1xaaZPa5ryFWF6ZC0x6WduVtAYKVj1Zy51gwwdKwoyj9BcaJfAICMxVCxdQzaZOQjUtdANA22jULpjyRY3KGokM3dcXEVfCWI505cVJ7nnrdwzOsPGXyk5MdiGnCRP6j1SvKFF5DG90FwlV70mCEhKkpVFCIVK+WZjoROTcBRhoUxMxdCbFZJMEJZf+p/4o/wXPNsVlSvkqTBdNyz3Gy4Kflyt6NKFa15TkuKi9hAFKhSCFgTVYWzkwzzhbcTbmdBEdv2VFQfWIfImHNNKcVi3XNlR2wsShRSFU93ijWIRjuA0lVowZI5mzypNFJN5VXt8sJzVhgf9CVMCJ7dFInkza2bZoEVm8lu604ZT/cDiDYqRSOKqt8yloSTFTfcfmU2LmuHVdAz1H7NPr0xjja0Do6nIRjKohtdQqPuILQ0zltEKHqaeu/zKYBtUbkhW0vgZZzJ3Q2CcF9b5iO5mmrIwVY4mDXjp+JCfWcnIk3lH1IXf8Qe8jTt0yCy64Zr2ZDKDXLDC8T58opd3PNk1ctFM28Kb2SDcHZt05k/SV5IWiBRxeKpLQFcRzxaZC1latAxYNXESO2Yx0fgF7QqTaAgWqvnEQT1w1WvKGta549uYaYfMQzrxT+OvObt7elexKy80CZp05W4UtKHwtlIIU5ilIQvNmoxOnoPZcakaTtRMAnrjGEWHTR6TIkEojnJDh+dcKlTq2coJN2We12uUMBzzO4ySxKwILjM5gZIVr9azXSQ2x98j8vi/6vcO6IQQ/wHwX3A7qv7rUsp/9jfuO+C/Af4UeAP+YSnlByHEL4F/Cvz5z0v/p1LKf/yva9//onIEPrTPrPUro8gkgEXShYGNO1HQtOmMHi2La5FZotqMKiPZWI664uwUV/EOHSK7ZWYsHUe26CFALSkKtFLUJTMrQd8o3LWhXjy7/spGzAyriFELUWpcdNSTo/MTcyVQdkRZjUSw6hNzpVmS5af2npVxrIYe6z+TxcBT9Ye8mAYE+GRRMlOH6eaHlAVOZLTPrKSnOmUwW6aXBwbrOWwqjA4c7CODypRVhXffkkykUV+5SwfO+o6j21Ck4CxbXPF0ZcGmCEnQ24petuyGEcmCFgoZA43tuUrFQe54ce9pc49deeopoFXk0b8wsOPras+QNoRJchUNQbf4lPBS0cuaQdds1QlbIoNa0Zd7Fg1H88CSKxQVo+/4WhUO7YrojhSlqdWZXfGYvGDdiCqODa98co+sisZLzYhGVC3fnb8yF8s2tphyZd2+8ufpj8hF8kl/oKonotWEYHlRD9RRIoMmYDiaNbvkQXcYWXgoV4ZZoavMUFdoP/Pm3hOUwzjFxAY/d9iQGHXgqlqsPCPL7VCdXEOQNTYVdFGokjHqjEkWp8QtRaFcIUveygqFpp1mHucT+/EHzvcVXmoOcnsLULeFUVfcyQtKFi51R8kCGx/55nLkWlnehytRbBmLJ2PoxZokHEUYvp2+0MYrkoreXhGiYcBRSuFrtWPNzIUK+fMYvuozZIUrmV5p8lgoZs3oC05OFGY2eUJIj9UD75dnTqLDq8jsBEUUGj2y9QMxObKoboa5QbNbIrvymbQxDNoguUUMVQy4Yeal2/Ks9xzchm98g/eSLWfcoijB8Kn+jrkYAhabIjJkiimUmPjiPtCpieOqYzONvMg99mdRybvqiYf+d0zlzDHe4yuFd2CSYTsPLLojBUHxgmPeky188E9gJNYKXCpE4NU2hCTYyGfmRoIK9LpBqISJha04sOLKKl34dj4w8A2plgyi5dndcRYVDc9gBZfQ8qQfb9mpi6DoSCUyIk0wCpqSGFRNbzsew5lkBKYs7MobQ2lZD5nVpeZVrTlWgp+6ezQDioxbZjZMdOnE0DTIIlmUxStDEIJ3fKU1ExMdv3v/kcNqw5teccKxEZZJNnz0X1jPAzFWvKgHIhUpC0SUHIVk6SBnQy0M0Qqe1T1PxlBE4uA2RGFYpIHe03n4w+kVqVdEo1jymdlJlA5omdF4nB85qo7XtMcSKGZhkYZDvqcXe+oS8NREqRjKhkYtbMsbcnJ4A74OHIRFM9POmaveMSWokERd8KvCfRmYSk0vOt7EA0Gs6NOGECVdmVHhlrbyz6o1Si6MjWbVzHRLYD9/5cD3PKsHrq4l5ZmSHzlbQ11mgqkI0x1RNkBmMB1KnBDXgdlCCI4kJY0u/FQ9IihcpePj/MSoND5ZhnSPjB5rItoXftN9z0XXGAJCFn50CykqQjQYM+CWmTStmEPAVB5tZoyBSIMriW05k6PmreqY8oqz3tJUH4lRoXUmCRAyMWlLXzccpeZT9whC3OgpASYsImdkJbjamiwK3WWiMx7hAl0e+KvuWwa6Wzc9SS6qoU0DkZnNvBC1ZfIVn6t7/mj6DaULlJDZ6jOdGpgM5KrDZ8egJVUZkVIysKHyilAyMi9c0+8dSgG/Z0AnhFDAfwX8+8BPwP8shPgfSin/+19b9h8Bx1LKr4UQ/yHwnwP/8Od7vyml/Nv/Wjf9L6mSJrZF86gnnkSipIhKUJIgBY0UjoOoyEJTe6jyhFSapr8y2Y7ZCioVuWLpVCaTWPcjVYYmLMj8zOjq2+hTe4KsKE6wLDX308xefkEow44DMs74SnIUe0y1EE1EycysDTpFAoqoLAHHMa9RKWMWwyD2aA2fxHfUoWBExhQYyHhrWZUD6+VCmzyDqdF1RugenRdO+R2pXnNpHJELmoWQKtZ2Yawz3nT4ZqI372njhY/lRywfqMfA12pLl0dCNMikkCTq6USoBdlEmjjzi/kzxgiuWbOWDQ/hynNzj8iZq1nxI9/xPj2hi8DoiXU8Y1GI1DCaNTEJvFRM2tGXhgsNszRIJDv/hsGxUicWI2+ZnWJN1p5heUeoBVZ4GhHQAoYiOdoOGRuUATMP5GgY7JqgCi57EpKj25KLpjiJSBVjekedEloWkhIEpUlFs09nij9xP1TMoaJEhcoFV3k2+cRjPrPKZ16rwLV5h0OxOIckU8KVkA1vcnsjqscdi85U2bMxgXfnA7OpmMcOs0h2fsGoGcuRMUaexN8jCc+c7/mjy2dqUdBuzZgjjZ75xv2AVAunUqFy4WQ2nOo1XekpGIQQaCZa4dmnHlRgbgs5FObGo2JEtIk+bZmzRQXJohRHvUNFScqGF7sw2QoPSCqa5LnnhUk4Oj8jgkAOLWJO7MQZv7+yFYpqSRzsA00/cl5vAEW7jOQ0UcKaqk5M0pOk5l3/hbWa6JYJEWY+yx1VOTNrx3Z54WI2POYnXtjewC4JWRJBKig3nmnf3LrafdHsr1dMPzHimIxBOotCsMoX7sQr79NXYu04dncsMXK1mnfziXWYadNIZ07U9JzljtFVPIk9KhaUkMzakLcLd3lgCg3EiY24kEKiIv/c5Ylkt8bqjCg7VnlgLjWxCILLzFozmA1jqbFh5IET78KVlsIPrUDIQpKOuLQ8V/ekekdXjkjruVueQBpk0azCzC8vT1yrzHO3xeuGJAuTdgRvWPsLbhkQcuFLqlEqcpUwVYHkwIgRUSRZOPbLmW9yT8sLb1XDya5Y554uXqi5YNTIcdNxHVdcokAzg6jJpeGSdlAEo98j1IQuC3K1YGWhiAqRC6Y9I6Xg3KyYs+FHd89DeqGeNC2BoiWlaEbd4G3DySTu/Ro3K1o54DXkPBO9wvmFRVWUqWZod1h1i5QyQlGNmVQbqjwy6JoHnriy5klUTAhO7sKSO0YpkaXQpQVXZgqObox4W1iLiTJnNIJOHXip3jOUjpN5ZDcuxDpyEDWD6FhUzXFdU+uMFJkmDoS8cMprntZbvCrs8yuP8UKOjrlqyfXIT/YRVQIxt3hZY5IkqUCWa8wq0uQekSWXeMeldIx+y3288rYWDKUCsbCJF3ReWKkJrx3HdcdYGpKXSBM5lQ2bMJJzRVCK4GoQGw5qS5OuuHikk1eqMLO4hk24chV72mFg2VQEa6mypy5Q0kyQjiULZmk5mRXbcuWpvmfQilAkiEzC4GVDr7fsypUkCxe2HJs71mWgEQGEQQSJi1BUQseJcVUhi6AmsV48KWbW6sQkDakOhLywXh/w3vFk3/ES33Nq7lmPHqkCbbiAL5QmInXki9wR4oa//3fGwgD8u8BflFJ+CyCE+G+BfwD8dUD3D4D/9Off/x3wXwoh/r/BQPwbNc2Sp5cz/ZhJraTK+fYVsWgG1nS557n+AJ2BqHkcf8RpAyKymi/8sH5g1JZUCs5/4sWvODQfGcOBtBa4HDAxsvVngk28mXsqMlTweArcj/C5qelRIAyzUjdXeitwIeLCTLIJYRNVHHm8fqK7eH5Q77nUlkt5QBtP5TVf2we2S6aXBiUcLo6s8syH/AxSMJiOgAI/sp2ONGrmmu8YbU9vMzZNjE5i9czXbwW5gI+OSkSquBCVpmfFVBpmWVhKRRNu0vB3YUZmyUXvcEvPfZy5e3nizk6oyUGncXbmz+sPXERLMoLV8kbKlhAswgvqOlAVWMqCyzWbi+C8npEETJh4HA9Ifc92OZGF4d38zKRXtEZR7ILKGodl1pofthuWSuGs5V155lfTX/Gm/i20F8yywWtJqr/l8XygPmSeVx37cuZia1RIZKlZNPTS8T6+0fkrz+4btIatvHClYREOUzIlaFZzQI8Dvp5RTaYLC4/6hTk4SIafmkd0ShzUll0UPPH+5tk1r2ljoUkjqggkmRfu8dbxtf2ILw5jA7+6vpKqxJ0a+Vo9MlEjiyFieHUfeAgHmnmiIRC04BDubweXajj9zOOaRUfKGhMnHucXttGzWEcMiqQahuSxRHqZiRtLl09s85XrssWZjFuuLKIgQ2LWhi/VB5wGJ2Zs6qmLIRWLcQtTrhFF8aVpuI89G3/GLa8kXVjqDVfheEgT82BxEvQCpViaMNH9rPg9+xbBLQpu0WusnKlzz+NlYEoKXQaE03xHpNIDizDIWLB+5uIsX+0DQ9URtCZIgTMLXT7TbWfiuCdWgquQuHxlF3saBt7EA6mVZJ1o4xsXe8+5XiOyxGdLX3b0ogIsXt74qblK7MILTmRWcWbvJ0zWjMkh9IzOJ3p7z6XaULCE0LLOA/fXnrFRXOWKpbYYOVGljItXtuHMh3jgj8Q/p9llXvV7jJ5QItIVw2AKyvY4FpZkidpQSUXrL2wuka0+40XHIhraNOG0oIsjsViQC2Y5YULhi17xumuRJVHXiZV/YzEbjPS4sKBzxUOekDqzLSPvw1/xo3gko2hF5sU+4LXkYLfYEpiSRg2aohxmuPFrt+XMXbiQdQGtMCLcfOBUy0YeKfAz0X1Cz5Hn6gGZITUVj/ORJDRnUxOzwaaCL5px0Ugb+H55xpUTdRy4zGtyNHxyexo988rNvsMLxzpOSGk5i4a7/sgmDxRR+LJa0estg675shI0S49UhbW4cGde0NEzyQ17eeCQNxgluCjLys+oktmEM14brIzMVYvJkrsxsZ9eCSLjUezcG1/aR7KsIUS+tI/0coURAV0CVSmE2qCsRChPUyZsiMxJI2eNFJrKXnFyADyrMOMGR6ZGEjnawhIrRIGSCkjQ2WNtwgjD6Ftm6dhcJ97WFSZO7P2FTX+gN3dErSjFsAjNYkBaiQqWu+UFrxp8bDgWRRSCfX2gloE5O5oU2IZIlgIVrvyk1nT5ylhZzk5h88C2ZJ74Bkpi1B0hG4wrt/eEzzwuB/pU81C+MG5bRiGJwtLGQB0z7dTjRLmJHKKnmVZ8bSxns2eTDnyrfkQnySpd+Sn/AhC0cWISM83ise7CQ34jlIo+1ehkUDlQkald9/sFHz/X7xvQfQP8+NeufwL+vb9tTSklCiHOwN3P9/5ACPFPgAvwn5RS/sd/xfv9l1ZIki99x5QcwTfIAlBxl145UnHuWs56xcZPTNLx1ryjypnZbZDcRnh3/shkLcopPtQHprzHJkXOiVX0LGGi8xf6rGhtgw0RikXrN35gz8lUlCDI0XOta3rbEIXFqYlOCaQIkG+cOotCXmusjuz8BaESk+0IxSIsjEUxWct2nFAicedPbKeeWRmudk8ugsk1fK4+sF8uPOcNS52hRGwa6GzBxsKgN6zihbkEJlETSyZLQ4kF5xeSkIglMaT1zwdcwcWJqXF0aqIXjsfKsz59QpQWOXzkkDuM8jzar7zplqtx9GpDcIbL/A5je7K37P2V754GXvYdpUh205VBZYSBFVfaMrLkmiw0qRF4BC0DPjtSnEmixqSEmTzd3LNmoC93N/WVKvSyZTWO2EnQhMjjcqUm0NRnmmWgFhee4wNBWK52iw6JX4VnunnhIwd8JckFTCx8s3wGNaLnQuh6lsai1Uyc4FWtmdSaUazQQbL3R37UD3hRoUgoPPv8BE6AvSOqDilnkkpcXUVUgn14IxUoJt4I5LolJ4tUgp4di6h4qiJNlqx5402tiNrSVJE5FcRVE62jrSRuCpR0M/lNacMuB4YJZllTp4nFOprlAjaDXUAp+rri2+GJF3+PWRx+PUJO4BJ1Urybz4xN4UFd2Q2nm61PTBzFPVt5ZdlUiKqHEniYzkxYlhRp4o4xKoSUt052MqRacxWKWgxYPKtx5AuPFASzzljZk+3MRQfGZeEdB7K1fLEdi5LEqJC2EGJDouH78YW3MlMcWBlo0pXvpldm67AlUPnl5s0mFF5JsoK+bkg+UbKjV2vulwtbf2bDiVRgUTVvcsXFrPGzujEE44QUERNHLnJDsJYlCLSaKTZSpCUvMM81wbQgLL3NnNaGwQqi0NjUo9VClRayLuyWKzZkQl7xvOz57eojBUPSkYfzhUVoTqLBC8NrtRkrsQAAIABJREFU3VJExinHzrzyjf8tuxQ56AdsmPnaVCxZIkispxODqdB6TVOfb+KdNONFzWIjnZj5dfqCDr9ExQotZkQ1Yv3EyTTE+gOz0iQsq/mVsbSIkPFaM8uOOkysLmD9lSsVX9uOOTgmXYGdkSqTnETmjBOeusxYOVHlBT15XvUeWUAlTRYFmeBdPyKqwiAlWmfGUoNdyCpQhStd83T7n2bkcrqjUjvqUmhDRKWJoiesHDFuYFKPHM0KHQJdGJhCi0mBUtqbMEprZJ7JXmFEJkmH8rBYxVJqZlNYisEtMy9mixYO4Ss+5BkP9FowJEOoBPvhwFwX8gqcmOjSmVjWVCmRS0SWCFpQ0SO1oZKeRRjG4DjpFl+v+C6/0aoLJWUupmEQFSE7VjKQlOVxibybemwvWceepvrKjEBgKUXj0ozUGl0cD+XCw/zGffodIAizoqia7TDwbB/IWuKNpliDLpqjeI/0CXWReNESa8lT/cg2TzzMX6jninbxFFWI9sJTY8lSk4rlKjoq6XF5phMj2ykwpjVRtSxJsAiPCSd8UeyXgfXulQ/pt5zMB/Klpk4d27MH5XlczoxWMegGJUZ0bmmXwloLsmqIQfHVrgmlRUXQEpoxYcVIzYQsitpPyByJTqDdjSa06uTvE3r8n/X7BnT/ok7b33To+9vWfAG+L6W8CSH+FPjvhRD/Zinl8n97iBD/CPhHAN9///3/wy3/7RUFxH4mUJGy4WI70JmzVtyXN3wRTLlidposAxdlWSY4rRtsilxMg88Vq3IkoDi4BhUnYs4IkyAtXJodQ+lYpKYTiaqM+GA4GMXFZf6y3hGNAi8w88iqzPSmsAsnPvZPHJv3FJFpU8BeM2e7RZnMyWz5GC+Y3jNbwSqMjHSolGizp8yC3bKwngR/9fCBz9U3eGlol5ln8R2lSthmZl3O7OKB9RQRuTDWNVbPSJFYMlRpIotCGRxXtSOmDu2hlQJHj9AZky1F10gEQmlkCeAiSmiqGDinjiU5WjkxFnjnXwCBCgmsYNGSLnnKkm7eVkKxmSIrqcluYpcmspnY5BOXpqXL4WauyciKgEkDWgheRQGpkDIiY6SSA6t8QISBS/sH+GKIWmCDx8kTyYyoc2RjPda+IZMiSElxhUU71pwZ85o3PB7D+jrymtbUOuFtxxdZ0cYrrR0IOLbmyvv5hR+aX/Lj8gtiatmpN0KUfJK7m1+Y8jyrO2o/U6uJpoyMtrtlKmpLuyzYHMBGDqlhG3pcOnNq33MxexYpiTnSqxpVMkex4XEZaeSEioaU4Tm3BHeHGRXrPjBLSLlQtGO1aERZgVxoSuBcWSiJOdSEsmXdPzFsLXHpGa1gxQkXPJduzVW1PDeP3C0DVb7C6o3OJlbjE5/Ur5hyTVoC2SiSlOQs6fUGL2Y+t3/CLh3RKfGL+SdkLKy4chVbvGnxpZAryXvxiZN4h0iJzjTEUNNvFSEX6nwEMpXNpFhzn95I4UrSha/yI4dyT9GFkAy1uaIkyLKAzAi58M/237ANnif1SCwWOwU6NVCLK1VaGEVASUlRgVQiVZjwTnCWmmosRF2o8Sy58FztyUYQ8oWcDINqSTiqvOAxOO0w8oKWC1kLEIKpNNylic10EwFEDLFaM4odOgkcF7rhwlm3WJH4TXrHW/2Rq21o4wIqYZUlSkfQgYtZcVArkjRIdVNof66uyPCC1a+8lW/JUrIfBrypmMOWsfZc7Y42G/TCjUIgM0IXTrrjQsWMYsPAKk0YEltx4SQ6Fi8I1nIQd1zcHSoJkiwsWSIRPJZn7rXnojMujxgc+3BAqkAJiau5pWqss6dbXlB6RIaMEzPLtEEoe4vhMpp26cl65CphUFtGpckK7OQ5u9sY9c/dd9xpwz5eWeWed9Uzo5V4AdoYVmNPMS0mzfjiWC8TLkcO8Rues+ZU7hhxBC0gCaKwyBzYxittnClN4NU+ctA7Rq1QaGJO/MZ8jw1wl0aMyDz6J4S5somS7/yFEgrfpyeCeeMLj3xYXqhF4JlAnzqytJRQsxoWKh1ZrIMkUUrQhsQ6XZnywnbpcQ7wktkGnM8MoiaHlpOpSUoiZWJjFs6z5lg9kHTmoZyIynDxK5ayRQ6SaAUrcUUJwVIsJjtWo6cMgb16QrTvmAggEp2aaOcZucCMZWgbivIo0ZBUzfflTLMsrK/P/LTZcJQ1vawR1lJEweblxtUTgq5cuMgNdsq3RJkgiNJyzWvWaWbtznRi4CGdaWXCc09JG95WmdZ44gSbMFP3lsXC2NZE41iUQ6c/4V36iuSE1QsqzJz1mtUystaBD8MbdUlcdIOUmYupWAXPRS9E/i4pAm4due/+2vW3wOe/Zc1PQggNbIBDKaUAC0Ap5X8VQvwG+GPgf/mbDyml/GPgHwP82Z/92b8yS2cdC98Egxg8KYykdcWdHxlVJoqCJvIufAWlcT5xaLeEyt7AWZ54nL+AlDzkI5XxdPrC3Xjk/gB1eyUpg1Yzk+0Y9SNj0Vh1pape0OqAToKioPFnxCJouRCkJquWTTwSbMO744XZrNj5Cnv5DuMWPiyfOVZbHsJEahbOxbJKNVoHiip4U7BJ0Y3wvL1DaMWdHznbhqQszBmqQlYaET1VHthNZ4ayZTA7CpkoenbpismCn+yeo9xzcRsIklWauUsTNgdGVSBmilK4OROsos4ZJSKjTVTuxH3/l8TVDkb4umlJMTPpmovYYkTL6GpMbBBG0ETPtYnkdcDNF8ScMW+C86NFGsnJ7HgsB2ZnWaczTYqoklmsIOBIwlMtB5oZGn3Bbxomd0+Sgof5wmYZ2IknnJ0QJZB2LeSOICSTqJmcRS+ZgIEEF9WycRcY4SG9Ec+JU7Nm0hNB1ZA8UgS0Fmi9cIl7XsUeWSoOzYbntIXkGSpN0pJRGSbRomxiMAmzFHSEfRl4FQ0NPTt9pBsuTBjW/spX+wtycFAs38gnxmDx7cRRr3izmh9293TzkSgSB93gbY3TE1cnWIXAL5afWI2SF/GRYr7SqMA1aY7te66mJghFJScGGZl5JA4QhaPJE0+rB95cy5veoQkUA4iEGgWRBu0X/kn7p0y6BZn4pf8t6/kJMwp803FtVhgbwVecVcuRPTUze39FRc212fJWr9jIQoyOfye+selnmrnAdOLqJqrR8437gVd9z6A3nOIaV3V8SF/Y5zOv8T3RKJqQWHtFvbxSM+BkYDaGOkQ8HRfdUfmeSKESM8EoVqGnrc5UZiKpiC+O++OCt4Yht/S6pRaSc6VvUUbeoUThMb9i54VSFWQR5FxR8oqjNMRq4GM8czErJtFgCHw/fSLpF4ywTKYhKodUioYFky7YGBBTxbPcg1rIcsHnLU9pjwoRX0dWZGgnhqVmKDuW7KgK5DQhARsjRniESggVWfkrp9Dhpgl5jZQ646VlrBqG1LLmikojUXZQwJaZuiRIt+lFLw0aizWJY1oxq4ZTtqTgUEugmjOL1NzzE9JY1CJIWd/2Wy0I3VEseGqKcYSiGVVH9omugERi8bzpR5zMyKDZz1fSKvIhPDM7SNibcCcHpMxs5JEgWvb9mamxiCgREhYaGr3wqF4peFwI6KMl7RY25cwn+Y5ZGkKxTMXRVP8He++tM12XZ/f9tj37mLKPec3npnt6RqQuQlchAYISpQp0DQp4H1KimAkDAkqUKpASBcJwpsd0f+Y1jytz/LYKqkEKpBIBI34AMSsqFKqAKpTZ6+z9X7818p3/zFA74ixJWaMziFVSVwGdIIeEzplKrWQp6YulLum2gyEkgzaYDHdK89vrLzzpPR0LmyDZm5kXYwmyYmxrbPLcL5/Z95ESv/JL/oBU8No9EkNi1Q1300Rcj8glEA+Fs4hs7cS7yyeG/MgQt2R5a0UpUbBUhmQTRRecD4isEaHQhBEtFrocmJxHdnecm5a8bBlsg1wSbbPyy6YjP2y4lprjeKVNmUk4Jixv+o6H9IbZRKTx9K6j9pG79MaH8ncka/n52HKJBq8UH/uviDryZO5QRYMNtHGizgkbA3eL5yruqCbFrnllVYnTZkcUHVlmHpYTpIb96gmp5/VuZM0L1ILST/h6z5AaRq0RIZCS4HP5QJ87KnvhL8NfI11mTYZTeMdBPFHJgTYOpLIjqYbgAplEkT3L/B/sI/0q+rUN3f8O/IUQ4jfAL8B/Dfw3/95j/hXw3wL/G/BfAv9rKaUIIR64GbskhPgt8BfA3//He+n/ocTbQPNJY/QOoyVyUYxVZq0sdyFj+pXv1ieGzQ5Pw1kFXFipU0PIhS5mHuYzH8yVwUa0AGkzL3XHO3pEnojVgUkb3DqSU8XZHemQaLNQlSs7/YadA6uvaXSg4kobRh6WF/x6h1j3ZFouq+U+jYgkEN2eznpqMfNjfmDWkiwlRga66Up2t9mLsxKExWGApc50aSEkSXKZpDOYjHQFpQt7ccGvHW3KlBLRutCoDEViRUKJTFECZEGWzPvLme1Z8LB545wbXs0RBbi8stEveFXxmfeceGQvj4R866XdhIUQJCZdGastdVrQUfBh/oQpK0RHXVbyoGl8oMmBSW8xueKoZi6yZ2ev9HTcLT36XJOdJvmG5/sdrR4Jmy1304+4vFKMQi09Q/UDb6bBFo8NNeR86++sK8pS8+hnjEpcbUMpNTbCLDom7XiTtzmydJFMZsM5PHASDW0a+Mm8p5ae+3xBpkAskkF3rLYjKgFKYYrlGBeuRuHLLdgSU8uYW2y+YmJA5QWrDBt5QeURJ89o3ZHE7ciuK4lBJF7kDqlvydAtF7o5cuCVXjhe3Y6rtCyyYps0J73lPp0p9oWxUyzyhTU1NOsrLmhCNlQ5cW5q2rQio+K5uqcWEfIeFz+TtGQTB77qD8y0LNKx6D2Hpuc/KxOlwKgNpqxcKseUGn6wz8hPHeuXmr//3SNSeCbRcs8nkpIEHH/sDlBWhPJUOeBKZFYtv4Q/4zv/ytbPTJXC6omztPhUgdakReOakS57NnGkCMX9PCN4I83gcmSbnpkE9O5bTmoPxXDvzxSq2yIrLH8+/QNvZUNtRyat+aIeuMgDRcDzwbP3A+u6IZHJKlKX23dxFjVNGglyQ5GWipE6e57VHbMymCihWE6ioVILd+UFUWlclHTriVJ2vKmEjWd2Md26M4VATI5ne6AX9hbAKQVhEpIrNmVsnHiMr4gCL82BGG5hqSbeEoaZhPCai9lxSBc2PkGyLGrHmzzQmU/UxRO9481t2YSZiGefzzTrF6KzBGEQSKSvKKEGfRtvWHMghRq7aIyu8ZXhVBuqNBGlJZYtjRjZigt79cqPu28YKkcQginW1CmwFstCi/AgEogscHnCycQVhcoSYyes7okartuGNToerm+4bSZxw8qMqkVkxSw61lTzWRjOZcUmCfbfsNpEk6+YWKi7K71yDKXCR0MQlmneIBEEY/BG0YqBb/ILl7glpg0xKNbS8rm0mObEYBVeKHT2IDtWafDFMqqaYI7cLROmmtmkT3i1MhfPEg1GZUodOSxXnBuY5z11jlxt4IktL2pDFoK1trdTG6k5rLe0tpUBIxP35QuLqPFVw8f5Dbm+kKcNvH5Dt5X4hzNBRZa6IquAHTMiJULWWDEjcwE50DcPRJV4cQfaecbEwmQlUUFSiqAyq7lVkTXF835auI8XrFipTE8yLYIMEtzieVU7Pm/fMypLM5kbLNhK1LLw4F94J74y5JaT3aNLwcwQcJRUuDpDtQBKs1YWIxNTdHwqH3HnDWh3G2+QLbFY7nhDlQq1FBpW9sOFqkpEElrNPAw/EbWkYsL7Gm8q1qbiFN7RvEkaIoPT+FyzhJbP8UiWnuL9r2k9/q1+VUP3p5m4/x74X7hhS/6nUsr/JYT4F8D/UUr5V8D/CPzPQoi/Bd64mT6A/wL4F0KICCTgvyulvP3Hfxf/Trmf2MaGu0Hgqg5jBc+bO6qciKnGXDVisdRyIrlEt0wMuuEvr39NWSvu/QmtG4SsMD5js2dSjk/Ne57KI7EJbP0bOUnsNDPVDRUTRUq0LLRr5p+t/4Zn+Y62iSgn+bgu/FVzzzkZwnJHO44Uk+niC36jOA6vVOOKk28Eo9HNhLCKVO14VTWD2d1+eEmwuCMHM3K/vrFZrzBZujIwFcWp67B5ZutOdLGnCIMuFT5balnoYuHb9Im8tLyaPemgqVgoAqq8ELMgdYG5tHwxG85Y0qbiPidy3jJLx5uqGVxFe1/ASOS8MijIshBqzZJueI9VaKbYUhVJDltCN3IMJ9TqeRX3/GH/gWIkmkwVeiSJPRfq2LMsW+ZUIbaRbBRZSKLUQCCoTFAZ0Ta3hWt6ZpWGJDTJaGbZUc2BOTVcS8ciK2QsVCFQ6hmZM7EsxKyQGk7VR5R3bJmJQdCunlEVenWglYmBDZ1ccOPCsjFUKdHFgUkeiL5mmybmRiGUZ6FGpkyQLXeXN8Q2IJaV4CqGtKE1IylIbBFkK4jLDaDZ6Z/ZyC/8mN7zE9+j0BQsUc1kVejSxKQ7JixFgYs9Y9WggmSnT3h1x1Qs1/zAyD2ehMgZksLqmY2J7MtMzJKyKnwRnOwRGT1KKXTSVH9CHwzzA9pfbgX1CrJI7JmpLSx3ijGXP5lcxdUYoj6y6oYtF1RKkA1FaCZjEfGACxN+Mghxpew8xRaS2eBFYhDfI2fBYLYoDzlcuZY7WjL1umFTwI4rocwEF/hi3vFa39Fc5Q36PTbUKrFaQavfyEJwCFeEvB1b97IGXXhYT8x5S7VKXuSW7AOTlpTS48qIyJl2VLSmx6oLOp3oy5HHKHnSDa4EiJ52GdB6wasaKRcezTP7NPAWAqRCX/bcqS/c+T9yKD1/WP5zSilo2xFMhrAwtjVZ3HAPh+mFDTMpBY7piciOiEQHxYfpwrkpJB/wtWYKG1KJvPAN7aJJdSAWqITgIb/dPtui0AhMTmQJiEzte7SGKCxDXVhyw6XZMcYb2NqVhFsC23Cm1y21WhB4vhleaEvgbi2cNh2iCOoQQL+hDMgo8KEjCkMXE/W6YkTGpxqrArUt7PNMLwqbOHMSO7yQrFR4O3FYLgy0jJUgGcVjPCOlYXdJNCnRVxuSdbzxgSUX8Jp29ex4RYodX9Q7etEQUTgzkYG79SuLqKhZUEj2amUeGz7TMsiOYVexuO9vFxv0fJzPKHkixiMizCwlMh46WjFyVRU/V+9wufDFfsSphZd1w0P+kbO4J5dIzjX1EpjMyOzAV55JWIo0qGRRXtCnLRqFImNKwNqFWWvOqqNaFTHUmPmAUhZhTsQqsxpJSYmowOhMzJavWErl0BWsxjDnijoknk2NFgIhZnbxlSC3vNkNUQL5wp7PdEVgXSINlhy3aASWG7WgW0aaccV3klouhGIQWrOUI244UWTmo/yFxizMOKoS2McJIWu8dtyHlVBGbImoNDDo7xAxU6pbSv7b9hXKhE6KBx940i0lZpK3LLWBVJB1oFouoApbcaEoCUlhSuQP3QODbFEBdmHkrnqhjhPv9BvewhoEKgY2UhK797+m9fi3+rV36Cil/GvgX/979/0P/4/bC/Bf/b88718C//L/9xf4/0HaVKRSeCLxx8YxKI9H0vqZV7Hl0M2UMnKtHUFLmjxTRsV+DfSiZlYtz/U3ODPTljeMVwTh0EtLCYlJJx7yMzJOtJwYB1A6cBZbXE7Ua8CIiZh6pBr5e/GBp+63lFyQpcKWhLBg05WSJadOMOctTTehnKL1gUThKjac2BBKgyrgmEEKFgSGwDZaDIE3KSEJdFLcjRdim1iz42TviWpP02/B7EnxSgDcYpCT4d6dmEbHW24oStHmnlJWXsQtQXlt9yQpkK5wv7wiBcylRWVJWjVjskRvSS4h/chGn9iGFY/j2RypsueLfcehnNnkGcRKlyZe2nf8nfsN165hkwI7ceYhPrNPbzRxosx7LtWBs9tzljVdCji14GUhtebGFksRsXiaeiFly6odpSjUHG/GenBshOF3oeVKIoeJrC7kJWIo/OJqzAwptozzHUncam70VbLKCpsWpL1Q9ZK3rsKvLdemIcmIAHbhSrtC02dqFXjxmaOeeEmPxEqSomduFR2e2iyULJAlU7IgB4FioQ09yTZMWiBKh9GWQ7wQ1CeC7CDfBq1FSKylol0GjvnCZ3PPST5gmJEWFBOrKsg1ImOFE4mlgu3o+fPXC7W8cLKSU3NPcAGpFfvpQr542nWltw3X2rJIB6WQx8jdkhg3L5ztFpsnZtPxlitkq3iRhnO1YVWSUTqU8CShWUpNnVeSsBzihEoeFTSzcHw171BqRoXfc+1aTvmBUSmqVaCXzF0a+MBXpMzkIiliy6A3GK7clWdeVOZJt0ylYVQ1xUVsyjS6x/jbMeIuv7HVXzAlMMgtS/lIyC1LrHkRmoaVuCpmW7ENgqgjJkQW0fKmHhmd4LBc2Cwzc9cQVEHEDCgEmYRFaEstLzR6pKZnlwbSsOck39NTk5ylmWYMHhEju/ALU2UxYebN1gyVYxK3Wqu63Ga66uhJUdPKmdkW9kFw4Mxj6onlka/tjqIl/9B+z2+Gn1FhQ6MTz5WliQqvwWTBrvd8Ut9QMbKWiaQ3LMrw1tyx9QsiS5wQyNBilSAmS5U9x3VkrTJKreyEx9oeisF1b7gwIBxAQsuKxR5hhZgEfXtrHkgyUV9HGn3mzt8wSWrueK9XqqvEHzvethvOf6o6S8uGn6WjSiPJJbRe8dpRosDGK1YF3twDSxVQKjJrmFTNcbVccoNVPV4pSr3ii6MXWzZ5po4DetJkB7WPjKalXVfu1C+cReLNPeCNRMnETp6QPsMs6WLhagtSFXRJmDUg0wqVQIrE2dW8mj2VDjjTkUOhjplvhwtvBlYHCk9faVYlWAWYnMkKqnWmr+pbO0pt0WoiFYkJKy5GdNgQo2MtEdv0uOaKCR6jrwhWLtURnzvO7JhSxWpuiKQqTBSZKDJzTCfepxN59RzKBXFaSY0l1AEbEtFW2GElmIZmNTzXjnbpeUdg0RKrCsJ6fDbIImlzh4kJWBm6mqu1XMU936yfeDZHbCl8End8Iz/R1j2vzR3IgWUWnNRHTspRZKEuhRN7HtUXvE8INROGDXYfaWbJnhOncs9KxsaeVBe08pzSgWac2aSeKA0iKCoVONmWy7Iwx5brqIk24dYaIbZs1siw/x1u++2v6Dz+nX51Q/efkvR+w+d3B/5mhjdrWY0lSMXZKJRwiC7xo9uzt8+YZSFbTxUDdYx4ETB1prILbvV8qb9Hlk+AugUKbKYgOekDOilqMdHFgJp6FBYdLL2pEbrmbzffMynHT/V7NsVjYibrwH73Qm8KVR55rRqy0FhREUPEV4FtWNjpiVAUb25DEYIiHYJ0WwhywivN63blcT1RyzeWdYPLkTxaeil5UwdMvPKc7vghB/zaUeqE0Jqn9AOxlpyLRYmFj+uVZhnJq0NRg/Xs3IxyLUlAVJYp77j3r9R55Sobmmom1x7rHUuu2S2CedOyiBahMnVZaPOAkAYdBFpJXGoRZuQz77nUjskoJiHQU0TnHXmxDGTK0nGuN5RFsNY1KWRGXdPQE9E34HCwOO3Zj2cECxUrWSq81tQ5YSrPmSNXA6KK/HD5I4NzvLUdWXuKOLDEzCSOGGchJWy23Ic3StWzk5/xssZ3G3apRhbFuXIcypWoJbnLHPuv1NvI+7nHVntiuaU2+9iRkudcPzLkHahI5VcUhnmZqWLm4zqRoiFsRnptKcmykYbN2PP76i8JWPq6weWJLAVtHDkuM3fhQi6ZUByH8Yp3BWUSVgycqZg0CDmzC9AwM1l4/6JQx5VRDJQCv7h7nDHEbPjg37imHa4EhPAcyhlrC6+0zKlFeYnMFX3ac5Ua2w4MVlDnFygtr1XHi7zHlZU6n9FlYiOvOJVJugIq1qRRJXFtHT/6R7SCHBVetZgyUUh0waL9nmwSn3lHVSyrLTzOC5/DIxcSJ1PjEagcKaKwjTNtWRGLZNoEhJwZ5QaZC5e8x1D4Zn66JUujJEfJV/fIUimSrNilCa8c5+qe4BumplDkzCR3DOoOISt85RBRcl8ulOypzIoPG0bVsisVVioG84gcFFuR0ExUJvHZfuBvVcNQbzmIkeIyszxyUZtbaliCL3te7IJZCx/imb/IP/JZPSJSYREVn+WBeXEMqqJhxMuGXcm0y0RyM2UV7PLAqzQsRfHsDly0Yxc8T/odm9JTh0A2hlVmhLIYnUgiEa3kKnZUYkZcC98tP1NLz1Iki6uop4WsIFLdLg7Fb6nmHlc8H4dXetHyM46jHJhFhRIQjeYX+8gdL+zCGVsgb1p2vsZdrixVRW87FmWRpmIrJ2bV8pB7ctQM+YiRcFKai2jRZSIrhUuOkiXzcMdoOtbKMClDXxwmBA7qxEZcqNTKVDsmXfOViuQEJ1fjtjPLqtiIM1EmZhpWNO/iK40OTNKxqMJxvFKpF1QpxK4QVcHYRJE3dE8oCakqWATztGEcwbqB4iTFCeqyUEIhm47dcuKYJnJq8XnLKjI6SXZ+wa6aQMVbvKMVkaGF2CVyVOiuQgrBbD/gQsAUUFJgjSfGhlXd5gJzCnwoT9R4dnFmVgp7eGV37XnZ/ZYSE6PsUHkgUzGoBUVgEJqLNEx6TyVWDmlmsy6060ocjzR6IKKwBP6qec/Pmw7LFaUyUsxUufDoz6xK8j4+cbWWQuCt3qFM5K0ciFIRcbjsKTZRZOF+eGPVLZ/uHEJ5ng4N7fkFa2dWLfCuJVCzKT1JGsDSzS+stcZj6UuNF+nWfa0K093IqWrJYiJUI6vONNXK1uZf13z8Sf9k6P4RFTtHf1dxGVp8Yxm0Qq8LVSrYAkqCyaAotDlQomcf/0BOB/ym4toIvtaW6BwZwyFpDunMo/jKIhR+cFzrikacGbcdVIlNLjy8/ELSidnek2m56h0XucVTs6CJrISNYk1bvLB0a0OsLCJrLrvE+3TBBcGAZLlEDuL6AAAgAElEQVQcyI0k+wqnMht54bvl78kGvHesesccLX9jf4tjwjEjq4nowesakQq2rPi68CVnXqrA3leYUPMqJdksrFKjzZVdeKUWgRkFRhKNoS4zdVoxWRLJbNYrmyVR0oJpe47LV17UdyyyY0qRx+oLL0ZRxzde1CPkW0DCihWfNV4L6jgxashJMFcVCo/Sib2fIFiaPLGkCgxIHZAmIPKWal5ZbGYyFT/r77iKDlvAZs/GT8jaM9gNG2a8NmwvE8Eq2jhRSkAnz9RoTqLhWjbIEHHB4paB2o5UWqBkYDskfDVQm1e27kI1v3Cq9ryEbxg4UIfEfVgZK8GmrOzSyCQNp86wyVdWqahKTzGPXLr6lrKUhVIKNmpUjMRoEVlS6NB24aftnkXBmiVu6Ohte6tYs4IsMzoFbCq8W77yWg68mEfWZFFKkLVkx5kZTRMjJ3nHXfzMVbfkqeOwTtixMCyKF9MQdWE0jqDBScFcKmIxND5jmMBFvLB8riyD3TPZTJaZ/XxmM3mW7UqlFw7BsxiNiStzqZlShxCFkjU6FbyS9GyRa6aL4BU8dXs+xIWxgO4jVSk38HQK7OyZ9+WJvnxHkjUy1+hlpNcbXlSN31vIC9e4Q+hENc68Fz27sLCVF5I25JSZzAYlC0nDcb7iLpKVBpfOhGx42h6AQp0mVtUgVsWU70iyIBH4DEFKtsqTdctS1aicqdVMnhRN0NgimWRN0JEeBbEiygNP7lu0T3g5E9JHzmLPqe7Q2RHTgFMDzRI5t+CzQRRBs16pU6QNoHONpL8hbXQkKstLfWTJniwjlIjOE3PlOYY/sFMXDtEwSI1FYfCsASpmSpEIKZEUfpYfGNKO6CM/XL7yjVz4ye2oTEUyNbkkJhOYAI8hZk2ONd/HT8hqZBAda9QMrLTRo5eOWTiESNyVV0bZkFREqoyTMz+ZbyFEztWeh2GlshFWzWQ3CKPRcqEyAhUctfAgJY5EIaFSQd4GB/GtpkiQ1vN4+ZFTdcegHnjLjzxESYkjITckFCoHmA13/pk1ZJyaOJkdjQwQM2tleHaPCLVixcIP/u9u2I24suQ7yrpi9yuCgEPwzeUr3gSMXnij4SQf2KSeoCU5Fl7tgc3iOCuJ3EWeux94VnvW3CL+BCJ3pSCio1kEay1YVE1E837+BRklh9lTuwtdybR6JRD51O7IZFTW6EVQRWjVlZ/q7whJQom0U0SiUSXT5YFOelIVeFEfqLLi2h2wYcSJhT5tSdJic8SoQiAzt4FWPFOrW9H9Nl1Z5RZrM7s081N9D0vHaSuo8wWBAQlLcgxyQz0mZNBIWzixYZAtbV7pc6SkW7JXk0gEMoJZVbxy4Pvur7guR4I8spqOk5DY3Up9dsxottOZ1+6eHCU6KeRgmc+CuD+Q6pqgappwq267ZEu0O36//x1JSnTKfPP614hiOZ1feLfZ/NoW5J8M3T+qNLxuCq+xIONKrSWNmIhKIELBl4alzHw7jSQMOhlGc0eUGmNGYr3hrrzwLA/s8pUv9Y5VJCCh1Ei9zEzqjmvakUPGtx3n6Hj9PnDvn3na1+gpMUhLDrdO1FFaNjLerphMps0XFlth5sjdZSG5wIO/sOPKqzgCmlBadsvCxr2xTVd+EH/Hp/KeP6p7XuWBVnkEAVUWjlyQJdBbxcf8xidzTwqGY37hvXjBsGCsIocjBIeXMNmMFQYbFcpMNOKVmO7RMiF94aP/mYs40l8dn/mOS/SUStGqF3p7q9ZSMnGKFqUrFiVos+CYTrRhIGF5yK8M4p7j2t+uLH3DMY9czRstA1268thP+G0hFtCyp3tRyFjoK4Xlik81OUlEkXihiMKigmCqFL/s7pmamiAcx3Sl4UxxklUK1qCYssQFRUmJq6m4aEcWNQpDaCRBOiKFSg+snSYrzaKPdPmVioCMBRkEWiTuFk8T4CG/sCsnFgV9tacXDm8l29hjouR34W/54u+5pANTtaHxHrEqntQdfV2jydTrwIP/Sh02iGLo9YZKZ/bLxF0ZuKqIsIlOXlnoeNZ7erXlXTkjFdxPZyo5s/M9Ue0RMSEcFDHyMbxxSQf0FOnNhvWx5mIVpZfk3W0IOsqKKAznfYtfWhpmuuTpvOfk3jHVkqjBlpXJ1HyuQZaCl4pduaBzREVBoxaCckggR0mvOqoUebUHtIxcjWR3GZlcoRsX6gQiWIp0vI9fkG2kXRNRtlRJIpGsouZ121BiJmtJFgpZZbKFQ3hFlh3beaEqoIXF1YWM5Sw2VHkiCMtFVmzzlft0YudfiVqyApdmy5UWEiQvUDKTsiZlzWP6wpFn5mJvi5iw2CIwaWAfLtzHK4uAcdkQsDzVDxgRaBrF2GjMpMlLYZMsMjeUQ00CxuyISwApsEvPg1rZpSuD6ZhomOzIt5efKVnSpz2vh0cGUWGSJ6aKdh3QUnKMZ4ye0c2ISCOqaNokuC4Vk1aAIk0SjOCj/8q78sZGery/8OZaRD0xlTORhsLMIgsqQ9SCZejYhCs6ZcJaGNIdWmr+aL7htf3IWbQcywubMLLnFbMY2vTCmzuyoHly3zDkDb1sqeWAQoEckVkyqposEsFkBAJtMyYtHOdC7T/xUCK/V3/OWmm+mh1VumLWhAuFqBIXfUBFCDozF8On+C2XLqPTTFOutGUGXbiqDS4pDmGC6BE58NJsmYRFCU/jFybluKoHSDOqrGgJfXNrPsihQmnL02aDVBGdHV46qpCQZaFIRZc8yi34XPhlV4P65raeCI0siipPtCliCwQMDyXDNPEgesZqZTaa3j6wtIJ9GinZkzSYEm7dzsXQl4pumUFGnus9izRAQapIkxeO80i1eD5WP6GC5OW4IRaLMZ7ZKExWWFbe+RcKCudXuuQ5iK+MseWr/chVtAhRUGLhsJ74EGZeVMuoa7INnFDsGSAfKCLxkL/yw/oTh+XKWB8Ys0MkwzLuOdmaea1p5IVHf6IKC8/ye4RTKGUZwzu+yJ4mceOMFkNdErvVUuWRYZV8KAObHJl1gw0XjL3QqokQtzyGNyQJLSI72XMvnvl9/T2rrDAsYCN5E2nWZ95Or/Ddb35F83HTPxm6f0SFNEO50HECc2SfM+/XEyMFQqQVI7v1jDIrL+KOqCuis1gfWLXkIlo8iiAappzJRtGWK36jWZc9AkU1rSzKMTYVfbXnEM702qDshpShMZ530xMX8UjzEvC14T59Yqwcg3T4LGjTgtKZvF+oB0G9JtZac9ZbVql41kcO65miKqpSMak7hnLkYRkxsiYnx2wMS0lcsuKufMWpiJWZj+GJx/lMbHqMg0VKhnREixfwO5yJtyRqPmP1mff+Z86847lojAexROpl4JN74K1+YDEtlctUIfBQVoSGF/eAEnBixwBsy5UxbPg4fGETRhaj0ZW/7dYViWUm6YIVF96Vhf3qIXl0lqQsWNKOUk1s3ZWdfyKIB45y5qvd4taMkRMX07JLPVUsJBnQSiCASqwkMhGL1gOaChl6skxIOfGT/MhzeyBqzSgd78cBPVe01cpBfeLVbRlFoso1dVxY445TavnFfMPX7gMyW9wQEYPgLntCsyPuViiFSMuncseoz8hoiFrhSuJD/Bsu5cDg90xmgykjVhe8tvzoHvALODtiSyGyxWvDa3tg68+0pedxfgYXuaZIFoIn3fIW4Cp2BNuwMz16rvBijyqCZo3szRkdCk5vEI0iusw2DRQhEQbcEqlyw2tzxJWF6BSP6Rfu+j81h6yWZ63pK0OUiiYXjtOJogwqr1zSjrUYZlWhrafBE9OMSIUsNAFYVUUQlmM+c9V7cpMxamFoKz4MLxyC58U8cFICVRSHPBOK4VwcJVd0c0/ZJJwYiE1mzpqmeGY/sVlXdLmwUVcshpOqGMsOHa6c04YjK1t/Zc+IliuuFAa1w3GlCI0qkS0LImaCEXTiwreXE3SCg38hqAYrgNWDmLAhkJWipAGtrzRzpsiP9Ot7kAltrhTtEczoSjMmxyI2yCKQq8QYQZVWvG6pxohuC2084VVFWQ3tlDHTPcZPPPXw13/2EVlWTnbDLk2sxdGOkTYvvJMju3zFt5a/qd5hYkKIeOOy5YY/e70wxYldFfmh/iPCGNZY8+lPO97Pak9fLDEXxmRp85UqeLblimgC53JABEG3SLoQkSRiDcgFUSpyNoziwCQPuAq2fOXePmHXjCqJP4qPNGmCrJE+8OQemMSGXjsMNaPUHPKJj8tX9svA/avAxTempuHyaJhryZwM380L+/XMsNc0YiZYTTMWPJptnEEW3qipROAkD8xFo4NBVXC0kY/Xr7wfZ6LM1O9euaiGy+GeEy06e5ocqLxg8XvUqkgYunpisg0+WubSoK4RYzoWuQVTs1p9m1lTklU2zLIjkkkGrrLDEWhjpMkTOWlysMTYovoVGk1dPeNFBp0Y/tQPvcQarTI2eWz05KxRPhDljvo5sN0lhPSo+sJJtQiZSdoyukwVJc21IkXBWX/ktf1IKStdPvOXp9/jukQJA5UWvI8/IlTEd4WkC72tGEtFVhVQWNOCqHv6CCdqRguzEmySxeSIyytT2nFednysPoNQFCV4zkeYNzSD4CFNVKpn1A3GLWTxgpSCohLJwikfbmy9acFagZaZEAOVHLDRknzDcVlYrMQ1L6TW4/IEcssLG655jxUzj+ICRRG1IEnIdBzDC7u3zLYf2Ml/Agv/J6cUJ7byK9+Gn1j8C0c1oYPi2ewQxVDHwkUciAbO3FHLHukDySTG2DCEHVfbkrKiSEGTJ9a8AXHDATyp78hiIeYK00eESfRYhFHUDFRipsojd2pBx8JsW0Q0nOsOqaEpPds488+nvycOG2Ir0dHyVH1AqQsvbk/JkovpSL6wLTNfhedn9+dcUwe1ZddfCU6hs6BVPSqCXCVz0yFKoS4rnResCFalyIfEKBxmKSx2oC0TsRyYS8HGzG65UDMTK8lZHFBa0QwvbNzMLCe00ESlGKXBiB0bPDndkCpOrEShEaEixY7gP9KvmikNvImCFplVONo04VVNoaIVM7YIRtfw0+GRvguQDVFvOacjf55+wXhN5wTBz1ytRBJu3Z4lY5LnGK6sleGc97gy0YbEh/KFJnhWeU+sDBDwSbFUNV5ptuuM0BlMQCFYk+AiJUsoVOaCz1uWaFHTt4zS004e100oOWEROLkQsibmglsyqYagAoZE5Q1X0dGXI0Pu+CI+cMgjLZEf5j/wf1bfcaVFigwlEYXETJnOjCAEaE033+ZwrPRsk2fQDlMEbb7yqgZUCdSlx4oVnQMyBw7+AtcG5VZ82+LETCt6xtQxKstL/T07P9DFGT3XbLuZpZ75Jv7Ci3lEy8gqG9ohE0ND3GhcXglCAIGltmivOMwLZ9VRpGVeDbX1VDO4qlDnC2s26DXgdIDG0WVPyiN1Gah8wAZB9o7XyvHTZs+La7FE1rRj5wM6JL5sNJiZa1ujKTSy5114okoRm29l7MJbTrxjbB2V7hkLuNCyD1eSqLgTP9FkTyiCkR0v5gGtH8HfsBMXq1Cm8MCVfXgl7ySNuHJWHUuucXMiiS3CO6Y648aey77j4/KEajJ31yfOfs+8Ogq3/wcjI6FsuO8T9xNkM/LN4HnatxQki66o5PMtQKAmSonk3KBjpt9lJrFSNQKKo5kT69qwHyIP6wXlE1u9sO8ka33Hj+o9U4QH+YoShZ0+oeKKLxY5tyTpeNtu0DLzsPwD51IzGktfb5mKxU2B9/Nn9n5gsi06RpoYcH4hBahMpA0D/bxhbu8ZbM0kDPdxZTcnjngWW3EVB+ZiOcqv7OSJu7Vjs87MZcNujvSuI4lM3whsjGRRyMYyiA0beUWVHu8in9qGq7JECVVcSQI268QmLBzWiR+377lqyyotOUBGEouGrCgI6ujJyiJUoW8VF1cQL4a9H6n1QFtdmJNmWRyDsESrSCkz2I6UNOdNwza+oMRMEwaGukEqeDcNKMCKSNi0wMocDW2cWOTEYI6IAGA4xhNWTPwm/MRIg1db3oqmP8406RWtzmxD5rXasQpBUpq5OEJp6dYRYddbN6mWTL7h0i3cxytWNVzKrQ93tC1tTBix0JpP6Goh55a7MPJ+eeLsGoqS+G1NG1+Qek91afip+h3KLaxJEorlxD2LrshCkhA0+sRFRVKx8H+z9167kmTZlt3Y2qSLoyIiI7Myq+p2X4AAQfCN/w++84UN9NVZmSGPcGlySz747eYPFFBAo+YnmMHd5l57zTnUghESlTT16CiVZcKy6Jqv9gce0xur3BKL5NI0yBl8bSiLIeUrNVfUWrCVolkzn+p7dHnl1T/xuH5mt1oeSkLVF5gT3+5a5FS41j3qWPNSWZ7MiWwSnT3TLgUvIQmFL5qTuePeT7zzF2QqvHY9d+WZ3HlMfmBfbf6W1uN/6u+G7q8okzN5yMisuRMDT+HEd/nImBum0jN3O4xIPOEpS0CbSJUTVRhv1ztXx1zdkWXibHe4HAnZsMtnQmwJwjGrjiAlSQbwCa8ausPAAyOiCYhgiVqyKwtGKCQjpbSk7IFClDeCxUN3xmWFLi1veY9aNV21ci0OJz1z1QMVB/VATJG7+Ui9Bj4OIyFe+WbumZViFg0P+sgmex7Sgbhs+G/2F0I94I0G4yF4LrYm9YaYAm+moi8z390TTg98mN94lBO17ygicW1qNqXwKjIiCeoc2K8e5WbuyhUrIl5IFAkhMy4u5FLxopsbsLxKrAKQgnrKHMQdrvZ8XI8sRZKlIZeayez4Qgsi4fKEqhZOtEzUnM0GoROdHujLgUou2JQRAXbrERcm9tUbXRmphcf4yKf6B4bsUEqz+IJPDdavtHlBmZXH9YxcHS6BVDM/yV/5D/1EUoIh3d32ilaLbBeqOrHzA2jJ7AyjhLxq5laydHckEq3P9OWEygVvFbOsOaktUm7RfiCKmVZNtHge/IHVaBZRs2hLv67chZGdGzjILY7IvG44W00smovcEErhq9syiwaZR+qSqHJiVQ6fdtiYKOp2Wl1FYS2Rc9Xzou/47u4J0uKLwa1w7WsaV0hZIyW8nw/8uDzzTf7MtWqZdY3KILJBi4TLig+nC6lWNOrIu7RyTFuufY9HY82Z7XJBlZVQNlAnmnTlZz/zVF4wQ2GoDb6Cxk3EsvKb/UfOumJVhu08EAuIMdFWb7RK4IvCykxEMqYtH9IV6RMuBF7bHYveIXUgA3frzLN+JITIJk3UYqRnZJfPfDP3nErFqg1hrlk2ljZ6yAe0CNzFE8VEJtHic8+v9S+ULJirnqfDlX2c8cpzxwWtVpK8TbqOW8WYAodyxzZ4nqYTf1p/Zy47zGAhS5INIGsql9HBEkwgApNpkXllkS3EyKFv2BTBb/UP3MVfcfbCWAxNGmnWCxsRaHXgx/XKstzz3/pHDmwZKsU1drTlQqfOtObA/u6ZSt1zyg80fEfnjBIT2QeW1pGjxNNTZGRjMw/XV45aUIXMqd4i5UpvT8h1JVcn/qN6z7G2RGCzTOyWyLs8I2LHm9ggrSHESGeObOYzn2xk9RYbC3eXK8dqS7CeqA1ZzLhF0C3zrT5HZcYfFobc8KnaI8rCKjoqVuZNxUU6mmrhgmMtmmYVlAV08MRaYxEMtqENJ3Z+ZjaGuFhydZvc+J1nmDS/xIGQG6I4kXTFN9li/UqOklYNvKpH4GakNvqNjRjp5yOZlv0s2YvCXJ05li0iQCg1d/EzM5qhtLQZFiTv/SsP+ZmHZeSoMqNVhOI41ZJ2bDnrGqNXrqLGl5qyCEQSJFUYjUMHQTDydq2qL2SduQz31Ncz2+ZKx8In56jlAjqiag9jRgZFjpJRa4qQSJ1YS8VF/umWqG86ZuPo4xWjLkQp2JQL5AavayByqhrkIiilwokJmyBYTWdPtMUy5A1dWkjzlgMPqKhoTKRLAuwVKUEIg5mu0Cp82iFEQOWZTXDcc+Zo9nzd7LHzypAqLDDWDWdd0yNJQhO1xkhPtJkqTCACahL42PG8fSBJw6wCvTyi5RmMQ+NZ/Z4vpuZaEoes+OFv5jz+f/3d0P0VFYsCO7D0NUFF5uWRpVgCcHQVIRu6EjiXLft04f3yHbcIoiycVSKJQraFpBVJKJgLuVie3iqigblamFRBe4V3kgBoGaGTmDkSFQzKcchbGlPIRlCtkbt04k1JZrHlcX3l4p9oV8P3fM+uPkMJmOqMNY5KZqb/xPhYGZFxJW4MY1Whxch0vfBWP/Csa5xU+K7hU7knhT39PJKnljW1tNWJoleeuedkHplKA0oy+SuD6YmxYIiMYcNzkRSxY2DDVWxo8ivvwoJYvjCFiUUYTMzU+UKlBT8On9jEM4OoOOgdi9jfUCy14io1SljqZWbBEkrLs32kEZGD/olf8r+wyQOD2aJzxoTCS73FWo2zgSIDe/EVSBQ9EqShsBJUS5VGer3wbjnQrCN/rP6NQ3pP0SsvvCcHCZXgQoOQB7b5wBAbzDrT+pGf19/4vfwDixE4XehK5hf/Qg6Z5uyY6gbcLZ31NH/iXVEsoebf1TsakQhbyaA2DKYiAe/DgffhG7UZETzypneoECAqVATrZ76rHwjR0RrPnX+5mduQWIPmtX5gHy7s1YntdOEriYmPvHCPmBYadWGh5k4cycKgcib4mkf1iQ95JaWFa7hDxQSNJ9qE9gElIzErSpaswnIuG+rg6aRnTo4uzlSh4H3Ds9hT1RNvtSbKBeMF0SpUKMzW8hCfuZ9PPMXf+Vw+YvOKlNWtRie31DJynw94KXApo2LArYXdcuYdF45lh8Tzm/vAqCVJSq6yQ2t4DOIWZpAGrMZLxXP9SF+uhKT4cf6dUhRvXce52RCLYZsmuhKQaD4sB/KaOG7uCcny2X/kumzJOROkIotENBrvKxYFzgTaknCx0K2BXMFRbRmp6OKCUgnTDmz9V2alWWxCSsvBWRA1CxXaLvTrlf5cWMsGK37lB/2V5X1HiJAWx7W6o0uG1Tzykz8QIjTrxKQUq27o9USioPPIt41h0I9s5leSqKnnifTUUJaF5ZyQ2uCV4Go6kkq3LjfRUqeBQTY4PdJoj7j3hMFy1nd04UISULnEu/FEaCt8MLyfBz7kA240VErwe/0LqShmdUVzwpnMv5g/8+/uTyzGkJLgLn2hzQM2RIoqTNKQlnuUmUm5IjPxLrzwiKLMW9pqoV6f6FJE6itaeVJtmXLDu3GALDnaLYe85626p7kGyrhi00qyhoN5z6AtT8srSSpOVceiKnbBI2LgaZy5KLgLkXfLjEoLRQYuRdDqK119JqO4ekfHgKkKY/5IFnDSW3yURF8x6BaVV1DQLh5BYdEN9QRzhA/l38hqTyoCmRzCrdS8ga1o9IxcLF1a2S2aUrWs1YoqM0nVaHHiYj4wtYljdU+zrqwS9uNIcQu7aUCYwqRbjJ0p5obXcnFEm4xrjtzzxiQdUUoqJkwcAVBhZm5XtD7gCjyhUKXcWMBWY8vEt/iO4+YRFTOz0HxYB2odeR9fkfUdIp3RKbENiYcQmcSFQdxxdjuySiQZ+Wn+yrPOEDUpGZbTA26/UJYB247kcKCo96xKI5snyCNaJVwOTMKwSM2YtojQ4iNsxSurVpR5RymFxW4pCgbZEVwm58ySHU5IzuaOrVnZ6k/UYkvOFUkYvrg9wjRMqiYKwVgXmksEO/I2fwH+vkP3v5RkZfDikbwuGHMkCkkuEoQEmZGAXDNL6UhzAtnz5gRfNg8IL4g+8nR94dRt8dryWj9hV8Ghm24Mw7QhWMMiWqRYGOqOLo5IHVmi4Vo2XOqO0W+w08BP82+0cuVEyzXtWZ3B05NUwzdrWYRlsjMbf8Yajw4TfX1lzoKiMzZAqjy1H+jTyL0/sOw6LJlkNMErJuobb88cuZbMzvxO497jnSHJmsoHWnmh5MIiWpKwt4mkFKAzxUg6M1L5z7zzM1+X/4JOjlVt6PLIL8OZtQq8RcfgLKtQXHKPdgsX7fhu7plyy6Q7VFlp08hTfqGf3xjVhufwM8oZ7i8jQmc+5hfelwNtSfyWJa+5pyvzLR+lDWd7jxZfacOB5FZ2c6SIFadGlJBs05WWgBWZIm88yJO+42t+x0ndEQvYFFGp4CYFMVF0JOAYlCWKSKoDs5C8qA4RA0IulDoh03ir9R1XFl0zKc338o7n6h1ZFnADynekIrlqi60S78I3+niiYcuiBqJWNNGzzSupJL7qd0hRuIg9++ywJLRInM09ipUqjLiieU3vuLg7LmrDki07sZJLYhsvFOEYg0YJ0GUhyAqnJiDQms+U0iKiR+R02xUyCqGebs/GNugQOUnHc2vQKnENe/T6lZRrzPZIVgKKp6B5zGcWb3FREJRiVYqURj6s/0rMCVrBpBqsN1THRN5kar2wiB2zg2ZdeY09Yd5i7QEzXPl+d8+cGowQSBY+ht/ZxitB97w1lo1ouVufcVbxvO4oQRAx/Hv4GZNW3mzPNTuE0uxT4uP6mbswEaTkXCrwiZ/yMyMVp65nX97oxESXV155YlNGYmNZgE2ebsSD1DAtLT0zrfCswpELRF3QOaNVBJWx14RKDqynaAkqc2wcq5SkdWRMiVXcMeo7ZIqoesWqZ96rlSldbtd2WjGIJ/owsKaaj/6Nt/qBQTuEyKy+plcjqyqc6RnTlkkObIvnPwbHrAsvouegDV5oHuNXfKr5Jj+QhaLmKyYV3oULYS14WXNqtryp/jY1u35jKY/YsRBMz3Z9ZSmZVUpaLnxz9xBXNvrCxG3KqEphUhVRC/J14qvd0ZEI0lF7cCajUs1oW67syMWyDRMPm2+3Sot6ZrAf0MJTWBGrJGa4i1dGXQOeKs0o4B1vNBKezR2DalFqRysiskhKWrhPF+65MJuOLCuK7vFsOJmBP8RPmOz5wR9YpUIA3/U7lvk9QfbkeeTVPpJVoF0ifrVUAxi9UKszslvIxlDPK1NpmMIO33sOdcUsNWsjqX2kEw5ikWUAACAASURBVEca47GszOmNxW/YlsKWC5ds4NIiS82+DtxXX7iwITmFUYliJUFqjhUUdaXqLLW8oNTMQ3hmTer2HxIntJSYLPnafOB7euTN7WEp1FqwTROfmj/i5kgbA1mteGExIrFdDvTlyq/NH7mYliQU78cLumS2BUZryFXGktiEMyIo6hLZxRPJOfqiWJVFhcTZ7fj58gXNCz7WlFmh+gnEROpnHpYjbRh5GTS/dT+wippFOZ44Uq0BqTX7YWRRBptHvvWaY3xkLh3v5cxJFvZzwOXEyIZFKa5Vh5GQpOMc9lxDxjQBdGTWCiEEYinoUgjZIr1kpiJPA9oE7sX6t7Qe/1N/N3R/ReWoOMuOV2dYZcfH4RsP8oVarlRl4BDfYdJIIwd2eUJIwb+0P/HWPNAyoUVGB02yCkFCCHEza1UiNFfup8Bjgi/5F8iFN1GTlKCJI6Vormr3n4uxmlI8Vb5S5ZlYO1yBKQdilAgKo9HU5ozOK8IVqjAyuQ8MxrHkGhsKfXlls5zROoIOSJdRRQKOIAxeZ1Zr+BSf6PKKzjNVH/jf8r+w+sAoLb/697y1jyyy5aS3ZHXFBYtNF7QKvIo7Nv6CX1u8qEhZMFeaoCKhcqy+olEXsnAsSrEpA0OjiWLHQe4Y1IaSNRfRsJGJs2p5RPNxvJDFiYP5A6Ke+dpUfIzP1PNAJQN/yP9E6wVv4pFTdY+XFk+g9SvaQD2feFMtY24Y5J534yeENaTKcpWOofyRKr7yW/XIId1xtHeIdWU1FUpMrLImTJqlqsmt56IqRFo4qi0ugVKFY+65t6/MoaVZrlhvuDYC/bgyBslbu6WMBcuKI1GtM8EbXmWD0YE+n3BmZlICLWf+tB55/c/eQQj8m/uJs77t60QtuPOeIgGfcLOkEok38URTRpQVJO0QSlEFT8tEnxYsI3HusesGIQWtCgyu5bcqs9Wex7czmyqwoJnaHrKg1iPvy2cG2bOkQKpv3XMqCkSY+F2+59i17OLKwe5JQiGIVOlMt2Y6E9Gz4K1tiVlykO/4SX5hKzxiPvLZaersObc9Jipy1lAqJmcYSse2nskKJnF/w1qVhaIKP4YvSBVJKC7mgavsOcqCCVsqM9PIM6u7PSuzRLSM+FRTVolwkmIEq5BcbM1dPvCQF1qjQEIqErwmh8yUHKpyPJQLKd8CT8JHShG4kikansY3pL5Vw/SHge/NAxUSqRfuw8Cz7GjixFhqwryhSSeqbmET4JBH2nIjR3yt3jHqDpSiGz33cuQse5zRpFCwPnGutlxLxeIaNvmIqVb+GH5nXfasxnOsLVNRN/4qgUVF5lJRq8L3WjIWTTuf0KJQisKUwJw3xJBYZM261qyqY7m+Q6yB4hLkyLBrWZ3G1Jn+cKWTE/t5xoiFLhwxfOCkK7y+XSMmISkp43Ig44mioHTm5W5PHTQ/pRdOYk/bXWjzwn7JnKkxWeEbT/XwDRiomRgjdGbFF80oKu79hbtlgdIypo5Z1cRosHnFEunHibPeknMiJkNAUy8DaJCi0OQr/RLRQtO+rQx1RapqrrqmyQK1WHq/cFaaaVsTpOGTfE9VjZRSCMqxlAqtocqZ3fGFWDvKqgm9wfuKYHvmqsJUmblqmNHosjLlmg/LipaJbA1dOFOtEpEk/6/5BWNuwYqmvCHlylw6jPc0MjLmPSIlKrOSLGTdMOuAXm+HX2NXnIk88o2LuiMTeKv2jNT81v/IUhxRKR6WK/uUueiGTk68mo6NfkblmSZENrxRsVCFmR/4zrcKbHNhs3qEELfpWVh4U08so2CNW57G35DG8RjO/KV/j7eWlDUiz5SxsKsmRl/o9BsDkifOyFhIpSJfNHPXM8qW1GwYpUbHjBSFSszsThOXpiMphfCCXZzp1MxHcWKLpQ2Og+zQJvA4T+RscFkzlAeKjHT7icHteShnVC7kqLmEB5S+UpRmN7/R+Zk/DF/44VHy7uHvpIj/5bT6zPu44eXyjV/7hqlU/FBG7DXTm5Gj7RmloyjHrCXJKa7yjlAM39tHtv7Kx2EgBci25aR6vpsHjJ6pskWujhIEXha+1DsymiVqhhDpZijSUnIimshYG/6p/xPETMRQksMmhygRoQTeSFbbcTdkSjxzjE84EYnFsKiMt4Y3c8eaFfvyhgiZTMupajnoDaIEomhpphFtChQQqmVwkrx4TBRURSNlTb8uVM1CpT1/yn/hIHuuekOOLbM2KJ3YloUiNB+HzxzEhjoESj0i68RgDZfUcGhb3kJLz5EPfiTaCi8ME1tSaRgk6LQw5g2D2uPyyF7N7MbfOJn3/OBXsrzxN/dRgBxo8ki9VKiiSFry7/IjD97hqitVurWq/3PzZ5ZKkbThw/qGjBVv7DHZsSbJGhrW2uFdhygJH+EuHaC9sUCXqcJqEA6sGahVvCHFfMHNkevSIYgYN9CXltaPpFIhyi1Ja5LHiYHdtJJl5PvcUPrIKmve0iPddeJif4DsqcwCVWRCUGShC8986v+ApPAqH3lYj0Cm1meiTqAKqwCvLCVXKAr308TWeN7FA46VcpZcwyeO9xu8yXihGIslscXYgNeZq9tx1HtCrnFyRMuCFStCFS71FucTCTjTsl0FmZmsVnp5ZSoVs7JsQsAQeBi/UaQh8CNCBLRJ+OyYTI1Ink4P3KWRXl2p3wqf+48UC1UsLKbcakvUllImxJpwi2CpQQpo04LXhrOICLlyaTt0FoxZoOPMD8MzszTYWOjymaN+R/Z7dBE4f2XcbPjvuuHX/j3/MP07P4bvbOM32uxRyfFZf2RUW06uRacJ4QNNSeQAyQZSkshYOJqKtSqkWKDKNN5Te8OlNnyXt2Tk2e8RER79Zww1blJkFK2J3DExq4av5gMrLQNbNni0CHwI32nUkTnuuZYNg+gwIpMNqFAYY4cpnmpRCDR1EVgrkGGGLGnGmau855We86bFyuFm1Jcz/eCxbuVSaYIyfA1/oJie3WVGWEf9Bt92PZ93DRfZYqXHA1NvqOrMFGc4v9AHwZ+Wf+E3+wNRSBZT0y6Zn6dPbMcTdIm/uI9YsbJKiRKZs6lo/Mgf+B2fDInIZd4wNRWmDERZ8au+5yAeOJiO2s9sy0DrE+2bYpg6lo0jjBGnV97ZZ7q8YK2nbS/8vK4s6weOYoeSG9xS2LuvGDnwaL4yuHt6QNSa50aTtOBUv2O3zCz9T7xfn7mYmik3SKWILjPIip4Zl2Z2cuY+Xhndhq46clAPNAwkoxEaVFl4bR7RBoKITLJGJUW2jnCp+Sf7f+CnAkWxWUeGXcfYaOp8S3WaZeGtvsMLzVm16Fx4Wg9cTU0zj0xVS0iaLAqL6bhfPrEVZ5xfcEEy9RtO7BlVz5oMQ6pJWFZZcdKGNjpklFTpQHLxZlJ1TbUcOMYPdPIKSrFLZ+yU2JYrF/PEr/UjCUObBgZaZFJQOupRs7yPKAVbdWGIPUdaSq75VK9UJuHaK1707PgGyZOVI42WSkW61YMrFBXIQhOFwsbAaBRtfeSBiRgSg/uJN2FxQiIHQV8lunKhCoXTXHGio0R/IzcJiZUrKWhM5UlS4Sj015FQVppw4qv5iCgZGwJNKDxsH1B19Tf1Hv9Dfzd0f0XVVvNl9fz3+o5kAwdZEXzhKb5xyBtcupLrCpyl6IEmHOn0luDv8NZR1oqzHvAuYXJmp86YciviPbClLwGlIyaeCdUdusygFe04Ub9augVSFWnEBaE8F7acXU8sjmwV3ewZ2p5dudCuE12e+Wk+koTheL2/FcoumaoXlOhxNuDERFGRKBWLqfG55cgTLq4MKHStUD5RhCUsO8bScTWe+3Cli5nveuX33iHNQrCOaa3RSSDlrT+sZMOVno2aORtDekgkJgQSrKIoRxGGi9oi84otgU2cyHPLbs5UPjK4C0nPHFpNk1a2YqCYRMfAZr1wsRuadGYWieO0ZWwcz8Iy2p7iB3LVsy0DRQR2nPkhf2W0tzTYt+aeVBRVjgwYFmP5rfQ853s2seKtWKSIaG4Lz9IGrFzReqbJgc2aOMZ3jMpykveQE4Yv3MsTFYJUw1I093EmS0vNyIt9ICRJVJpKjGziKzs/o9Idi/PclROX5FjpGMTEUx5xx0C1ZrSb+Ne7ByZZOJmOWk5syoUfwjcGueFuHXicZs6l54vskWakK56lcqy5kHNgdpJQes7dn9iFI/W9wg4eZyeCN5zMlqtpmdUHrtFwrXtOeXsrxI2wERfuyzeEcCQ0AYMlI2NmlRVdmplti5eWGDVTqZAygzrTmxM/LS8ELJPf4uwRF0FiCcKSVeRqq9venrI0/ZFOHKlTxgjJc27QccWYBRsmBiVu9RCcaPJ4mzZnhRQZkyesUmzEGbSg5EigoU9XSpVp8ozm5cZcLpZQK171FktkFoav5gM9L+TsEEmy0cuN9MF7FrPjmB9pmol3yzPtec/cBWYc78o3XsXDLTFZFAe9ZdEbfsinW0efqvGygFW060wOHSEbHhdPLoFxm6hEwegrY24QMpL1zC6d2eQRKeEQn1h54lg1HFXP2TqatJCMwBRBnQzC71DpSL8JqBKRZDbTwGtskWphMA1GXdnPM2LJPKXviFSzWLjQIURG6cIYMkK0RCFJ9w8cXc1QCkUIRjoWbWkY6c0LZrhQugtqbHgfDizrhj7C1Tm2caJWgT+XF86y8M/mv3K1O5bS8A/pN5p0olPPPLeG07Jjox3hajmYLUm3vOhH6nXCW8PFP0A+0lwV26kwLw+8NobDg8HoQCkTJoMMiqFsMYDJnn3+C6soyFUxNYUnfabnTHQZ0srWPyNzopMRF1ee84Y5ZU5iB9mSU2ASNVJxu9LNgUaPaJ9p0owuhkN3T9CSCUPlZ7YxU3JNr24dkUlmZqnwOHRO6BliUKy6w6UrInsu+p6gJKJAEJZZS5bWcpA9o+qIvoageTp+Qfa3/dZsIuSW+/WN5Bs2x0RTF6I1zKJhoWNRN3Zu8IagWzIaiWR7GVmcxCXPVTlIkSG3XMQdV9eyUQvVdeVBXKhi5km88tps+WSf8CphQ8TEmU3MtNngqxeWjy9oO1PHK1l+pFsKiy6015GL3SDlG3fmSI6F9/Izi7ijRMls9xyGGqU1H5cLoxasSXHSPaWC7FaihR/iC30e+MVn/JoQoSeYxM/jZ2yuCIvmX+vCqXGUJDitH/mwfsIJSbcuzEqTKezEypO/cmwkq5UkN+OzZkySBU9JBZfS39p+AH83dH9Vta1lVyfEHOnsmWA1k9W8DTsm3zCJltlVWKEYdE07J9wqKcLgcqEoS5s176evXIzjTW2RJLxUDLnjc32PSDcGoSorwtjbR8hkVqVoh5VVjmTr+b1+z0lvEWicT1RioiuFtehb/LtyuAiNeOFLuWPe3MIYD/nA43Hhm71nVpZo9mznE6sTzPQsomG2FcVLjCm0fsLljE2JS9Py4VI4yobKt5xK5Hv9RIyGVFvUOnPWHe/iN3yCSgY8LUEZxtIyq5atfkFFgVeWKAxROKSMTDLjZEKnyFv5EWEseMWPl4lejuA8Jlo6rqgq4bMlFs1deiUdanrjeRMPfDbvsevAk85MGJLw7NMbxRTu0jNJG6aiqaoLzXJB6UBaDUlbdBZs1hPXYrjnG0Z5nvUP2CRRJdOqAV1WajOwK995ip57v7BfCqw1YnshEihWYOfCxA5CpIQGmT2fxD1j3d1a86Umx4S0Ei1nDm5FIFmL41Ju5puq4PmAFI5fpoGnMeOTpH134sU+ooyHObHJV5QJ3KUD/zj/K+fhz5z7HUNdk5zlmre0+cRj+c6Se87VHq86pAhcZM279RWzyYQqEl1GiYggEEvLm73nLBqyrlmzJqoWSkGKwD6/8K68sq6f+b36w+09ioaNH1h8RSg1xniiMnTrGUrBBwdekLeZogODaZFr4FJ6xlJzrTRVXghtIi6JaB7oQmJAsSCRJXNwG5qwcO9feUjfeK6fMNkzigaEZDdNNMrTiJHKLQhVqJbAU37BzpogDa+l4a08Imxhx4Wtgv36hf+7+b+4iA0RxUl5/h/xf+Kt4+Ny4CGd6HzEqxYBXJ0FNXNBk+qVjMRrw1ceWHXNhY7arMzGgfEchYGYOdWO1Tpk8SxO4YyjmRru44nnWtMIjwTu/RtftCW5lSYntBlYFkOdJUtqmJzl6DZUIbOIFZUDF9ERdM3oV1wruFskU2rYh4HenvG9YRKKadzzuWqhCWQHf5z+wv7tlUk/sGoHJRClwU23dYKpatAmEdKNH9vIyFpaikjc5W8Mcss3c89ChZpHHtaVlCpAsJgKLyxH65Be8qO40ouFe16ZSofIEi08MUMoFZ/yB4oRiJzJlWHQDqkkL6qndgtXuaFIgcEy9oHaTSynQiUzVUhUcSA0iU2+VTANac9z6THS8ySeyWUhsEWnzKz3PIQXJlVTCljgYZnw3Tci8I2OT+6J2bQc5W0tQa6ZDROPfGVjTyxCsVNXLvmBg7aMCrYpEYXis3ti56940zILyavZorjhsu6uB2a9J6J4UxsShgFDK0e6NDF7w9HeoYQgyx0mL1x1z0Vt0RGy1oy9wBiPzoV7PzKGRJMyKSQGuSe+Okw7EKVjkh2j2dKUibtJsR2fiUpy7Q1NsyJL4v46s+DYcmVoDRpPyoJz2eOMZ7ee2KcVrzxv9FxURRCCRix8DIFOJjAbnsQXfoifWdvMc73lTfa8yQ2jcMSNRKaVk+xQ6oENA04nrr5DYzmXO77tKkwpnFRBx4o6RkpUoCJBFrKRXKqWbpqQ3kDqkWsNUfPGipsNh94xotkOicHUBJ8Ifsd+PWCahe/qR9ZS43JCBs/7fODX9R1xYzmkHdNmz24MLMc7cur+pt7jf+jvhu6vKB8l1+iJFq5qi4meF94Tmg6bMu/lzHcj6FnQwhOawvvljYvbs3hBcBVf5Q7CyH/ln/mc73Bh5rP9CZEMQgnquJLJN9agGHgQRx7Ukdg7DuOPNJ1COsEuXzDTLe6+yFvz+KxmrJiQJd1qD66eJey51AqvCiUJ8pqpl4k9klauzEKTbOB9OZBiz5rveFgiiYApR+7KyKIsLo1cBaxmQRrN5D0XrSkqY5rEIBuUCqQoOek7+rjQ54G7+Yh3N8ZkVRaaMnOQdyzS0cSIFRm5gK0zD8uByZjbSS1UjKahDoWf4jM2n7jzI5NoSG3mu7vnO/egK7La3frXVksqhTlo3kTLIBuMSlRppNMXftH/ShSCipkuXrmWJ9SsYOyw1Yl99YYSiVquXMuG7/b9LaUmB6ay564c2cYTO//Gz+Z3eh2QqkONkd44jrJBbAZEyrRqwWeoU41RjqHaU4zCpkieGl6qHY27UMmVVTu8cITiUGshKhAm0eeFnV+xsVDFwnmtODWRdcksZUebPVVOPF7+g3f2mU28UuUW6TNfReBuieQ036DcZkaq2zTN5HgzLdIx32q3uEsnrmpDVIGT3OALJGXB7Bll9Z8HD3u7OsZzvz7TiIlFNSzF0YiZPQe+yQ8gIu/FV17MB4xfGEuLiyu68lg5cew6VE7URLIIJNUzZ0W7QHKCuAp+3fyRSgOV5X9f/hkrRuZU0zMxskOUBWEmTONRomNQt328OmauqqEuKyJP1MNErAx1ELhsWVLDxVZctEOYG0T+T/l3Wnels0f+MfwT39QHzqWnzisTPUjBKjULCWMEqgSsDzjneZ+fITneui0qBRajeeUPCKEY842yIHKiFbcJthCeWfcobiGqKk08LUfi+AQqE6xBmDOTUqjY8TBeuGSNQGLcipCea5Fc0ZQQSbawqkQdV+bUI6IhyoZJZDATLhxQxbCLF7Scec5/YNWGtSpY5fnj9AWvFE+8stu+sZaarDT75YJfNrioaUQilogUM2hPaSPFwX155ix2gGDQFXW5MFnDIe+ZWgmpYxaGOky4NRGluplp9YF6PSOdYJA9FDi6LS4ETs2Gs25IwnHWE49ciU6gg0YHsFOmrkeizgi5sgLIK0vbE+mxebn1FeZIwvIi9rzYJ4wKWF3Io0YWyVQs7TwRVcEjOKcHcqxZc8cfxAFJxEuDWTK9mzGhUJCYJaKypJERrSQ/rm8cl559WBhpyLpiNg3/Tf6Cx9CtE1dakAqVMkFq5Fqx6IpNGujiCeFfCarCrhPeWFgLpA65wKYUfgq/c9A7tBXUeWK2NSBvfXky0fsjQ7VFJVAkTAp0YyYUQ61Xsgsk3SKKZTdmZIrslzPn7QZpB4xM3KdXBtWz9JbooTm84XlEusRiLaOsuFTvcWrHX0KglSNzvKP1GS8D9/6EXWBrFopI/Hn5N+r+lTVXkHuashA4k5OGIkiqIqcREzMf4u+opElS4UuDFxVBgFKJg93QiQXtV6RPxKTIrmZUjiDF7TchFCfZ0KyOPq4cUPgnS1GFa6XIvpBV4R1nikpE46CyvLo7albexBP1ItnqiWQcSUoKmTZcUVnh1541a/724K+/G7q/qnxM3GvHn8+f+G4bbPEc9SOX1lFVC++mF5ooQQhCcRgxUpuBzh1I6w/kVJAaBIpdmAmXCaFnYnyG7IiVRlpFFWdsCHQMKAFFwn06cHY7SrS8unu6dUAlaNeBVDxVeGFxhkpm3uotQoz8tuu584HvoidIjc2BaDbUQjBVFm1hOx9BBsqL5Gd7INp3PFRnVjVQmwtuTbzYHdt8Bg2untlNiRhbZu0IJnPWLSuWLCtkFqxM9Pk37uMrTlXUq8Ovdyg7okrFt+07FqsA+/+x9+a+tqx5mtbzzTGuYQ9nn3PukDezMotSIeG0xH+AhNdmt98+Ph4mmEjgYWG1gYWHhI+BMIGmyMqhbp57pr3XHMM3Y+xbqKHdUqeTr7W0YikURizFG7/heXlzO7PLiV19YVATMhg+GcXcWjyCUwWFwoqeriYKhSZ7sIKcemqpdOnIsd2RRWYSW2rtXtuA9YqNCWU0VhTSMmLUjTt/xGkIJpAnz25Z2ItnBnni3A6YNIOqHGSPFiPHbkDnQoennyL37ZFx9cz+jtvlB65Di4hHpFjR5RWk+Zl3nMQbLqnj89iwiUcupqEoTZIadMYkyWRf37x1FUxloArBvfiEKgltA6vpiKbhDxvB1/s97dzjzfr6QEMTGPi+fGA7L0zigbNvqeOV1kQu5j2LGTG3mW45UaVkq2ZupcW1hUZWjF6xS0SbCNkjneCt/5GruSMsgqvrXx9uaFx+jTSKQnOSd9SqiF6RZUtcJWPuEE2iFSueSk2Bfgl8L/8BVCVGAMVJjK+cJ6GwvlBXQykGiSd5x2wEsVq6FMnZcA5v8N2El5JT+57kBcpVlmoY1ZmqYMVQ546n65lAw0UNfN18i6qBLkXa5fhqKNqFYDWLfGRlQymZfXPmr5KnoKlNw95f8HVEFokTiSIdN3+PNx33JTHOM78oE8sqsC3UrEEUPA0v8o6juaOpgVoLbrrQtJoaFCD4bv2Rj90DIkMUlTZlvrQt6ICfPR/NW0SvWIThftWM9oJ3DmQlaMkns0eGikqZKDpcOLG2LS4FMoKYHZSElJlZO170Hu0j78NC7BLJFpZiiIt9RbpQeW4Het4z6479+cJGajZFEPIrzy1YQWCgFZ59PNHzhRdxh2smPubMVTkcgVQNsQrw7hWMrCdyHVkxzFEzS4sIO651oHVbHo4zlz7T1htVQtYtR71jUQ1UgdaJXk74YClZ0OJp9A2KYi0KqwNar9xEg4qBO/8ZOXvu1MSnbUtwGlNHbC2oArOwHNoNT+FAmy6YpWNdvuHqAl/6R7JqueUdwWzwPmDNhNQFaqVIRRWZXApLfj2n9Aa0p0GTxSv/zfpCrzzVaWQugOaT/ZbqBC56kpLsxcQSNdJHbpsWpxPHbs97/wkbK8pFijSsbkQUw8f6G0qM7NMzvdCEtLJWhzEzVgSu7UBJ8JwfMDHx0e4w94mSJLmukPd8ah5Zc0cfK05BNDOWSCiSTbkwtz0FQb3NrxxOEflu+gNi/Qax2xI1qJrxjSVQGajoNbAVmVAMd2Hlvhy5rzeifM3H/l3+W1TxfMxveW4eCbUHLEZ5ZEngJOJWaLRATh2yGVnnHUpVsvUcjcY3AoyjiYI34ZnH65/4st7jXc9iWg56Txcrwxo57BqGUol6xIhKNye+jV+RZyjdiG8FS9PzbEcexYEsFFfVMSVLTpop3NMzs08z5+oQ0qJigt1CZv1zWo//V38xdP+EMrVQ1kwsA6sfyXolCcMTN4LUeOU4NHc4GdHZ88vrT5iS+S7+SFcKP9Zv6eaZOfX8wX5LlwptSHxTT9TiuJcfSTjWZLjIEcfKyQ2UbmTZ76g4bI5gA0+3r4h1Q0kNPw4952ZHKy7s8omxRJJomUTDbtbUztL6md6uSCAMlkYuzFLz2b6hbXpWURijx6kvRANP9SN9SERazqJQlGAMgb6uMI0gwciJRnp64RjKhSsbkAoXI0vt+FK+4W4RjEUhpo4xVi5bTZcDZEnAgBfcz4GcXliswYnIPV/BFpQ0XJtEkwyiLkhREEUQlGRNDakYcm6RqdAeK2trSc5S20yTC9EU5JpwaeHt9QOteM3wnNQT02Wg2IwLkjCcCY3gxeyRNdPmicvPLQrx8/DyUzygWFicgpvgGB/4rfhbpodHJtNwP/+IbzKNKnTixpzuGZbKsxtYtWSUApsiG39kMY673NLFQL01tOJCioo2Zy5NhxigJWLrjSYFokhMrmE2EXeNHMMOkwSjyWh/ZFGW/139FVk09INHpAZT4Wk+8NxtIDhu03evcVxxoUVxdwicNgHRRa5uQ5SKnCUmR3QsNGTWokiyxZUbQ15oimcfLkgBOkcSPZeyoZERIQMxWsZlwtwqL80jWiRuraENM0MqHNuWmxiZlaFPZ4iGPgd26gNaSr7oPSkaZr2B1DM3geG2osVMImKFoNQOBLTZ43VHMAOiJu7zGUpAtwFZNG1YybNE3RJftm9Y0xOXnWRwXwjVoORrEa872gAAIABJREFUdFbWkqtxxKVQq0KFRJsl23qBKMiy8rgcWGzDJ/mW0Gi+mMgvlo+IOXLod3QVSmxJZWChfeX5FYuqnm7NDOmFo37DQAAsj5cTSVqkWCmpQxZoxAkGTc8BYiHILQc3sgiHx7GrZ6iZg9yzN2cEcF8ONHXhukR8UJQ2cdGObBwRiayRW7UYbTjPO85xhPQKif2e/5t4Gfm6fyQi+Gy+xUvDPOzYxo+YPLCyUu40MmU6MUG2xCxfW6DltRpva+ZRnRnMypIdLia2cabqhmQL8+wwwrNZE6WOzEUjReWmO0ypGJ+4YyVZUEWgC1SpkBmCMLzYB8iFXbqyTyfOckDJiiyOKQ/kajhrR+4U2V7YXgvjLfMsBMvG4hsNtVCMQNUMQrCKEU1BNolj7aj6OzQgWKntwk9qw61p2KQXrvWOR3/gIS8EVSlZcbQN23Sl9wXhB3afM9k0PIwrHxuDFInRw00Yqs0I+YoSmrVBVMkXd0ebZ0Z5BSrb1ZN0Q0MmZsfLcIe0ktVo3l0WbrYlFHiu72nCjb0qXMmszpGCQmTBWQ0EN9CqiEkrPa/4HGyiXRdSc4fIK1dnkWuhJsdFjcyqsq2BMV+4qDeEvuMwtITwgW2e+Pb6B07pb6hiy6Hb06jAF+lIMaGtYPARkxSawnO3J1bBl80WGxM31fDL5w9shKbUA0P8xIf2B3xuuJktGDh1O27FkVpLwdOJE0M6cjORo9B0amCpW7LSSKGYzA5F5tluaerCWntcPUHjaHMgmgVpI/PQE7pI9olGGmJa8K3ku/W3BAsil9elG7XDZ8c/2PdsS4uVR95OJ96rL+xS4MFc2G1GtBN/Vu/xj/qLofsnlBACKxqa6nmcA1VXfLPiWFE64Z1G18xYZkTKjO4jTfZ4/57hdsNsJlxZWFTlwAbjEzc6tp8D6W5hk1/42G9QKbL6BhUkEsXB3VMbi8xwP3/lTp9oakCUwD+MA1PzGu2TSkWIxGQe6RZJVIJZtxRvqDRcUkU3mSA1fTG05caiBmSUfM7vuIoVq+CgRpLO1DAhUeigUNlQdOQYd6zmDVv1FZUyRs+0ucFbw70/E4QhZcPadLwYS6/PnFfHw63SzHDUMD02XGxLwjC2C7dF0EbLx+4tY1pIxdDXKzVIrv0OkfYc1Ahroc+eTTrTJc9V3uPWGRU0QTiOYqTISraCqOGxHHE60c2JZXnit7s7VmXIpkV1haGeaF1Cc2OUgY/6DW0NyPSGGkE4wT2X16HhfIUquKQt/6f6Z9wxcRYPzOx5aUeupkdy4GE94l1El8xNaP44DtxUy4syaFF4bzIZy7v5SLQNfZwZP1gKLUUWbt+vfG0HYhV0qVJr4GXYU13mphwRwU1vuFsSs16IZsMHNXDgjlIFg0j89eGPKJuJjURkwbVv2fsLrr+hw4wpE7vPko3RfO064EpMjrfhE0oVunzlLFaEgloitVZGcaGdE0a9th9FySzaMjUOFRc6f+PuciGUjq/de7xUPPoDF9tguxnjI5mRsxqppXBzDSIrzvmBv5J/4OEyoZqIVhWRJU7N3JcD+5hZjeaT3XJuLEW+bl+KZUXlhbv8gmPBkFmlI2TBIjdk4ZiM4fy4RVdQslAUaFkRgKjgtUZQianj+rMZu6qWVXX43LH1AbW2NPjXah4WRCRk8DJStwJXHEeluTIiUYiqeVxPVJ0Y45FGJxa/I5WGH9Y/YmRBZc/n5h1u7piNpdUXzmqHLhEjPUe3J/D6kLQxUJWmZ2VFYUpFZM1iHF1csCqwUZ6DusOKyuMyk3xgtYpb3/KBbzAl0YcJXQQP9RmJZJePnFX5eT7W8Em9oeQtF1WIcsY1labecLqSqyFJELFyH5/5E/cs8p6ncmQTFcIJ2uy5mMq7243ituzmlcyK9V9xsXLLjzyshvP2QrIH5qxwdaVPA9e2A7FidGYfXnDFIzK8mB3XuIdSGLNnLBdsKlyUZpxmfre/JwrLuY4UY6iyYxki79PEY3ukizNrI7hfr1zajuwtW3OlKZmj23GRO5KQbMURw8Ik9pRsmFWPqImreqBbI3aydO2F7Ay9PpPjwEU03MyG7BN37oAYZz5Zw6Wr5CrY1Jl3y5UQND9Jy62RrFYgRcaWBaUWdBvJtnIaHZ28MJQTx04iTUvLQlaG3K50XvFw8FQUWxMprNyLwAHLKE58lW9Y5ICKBuk10cGqIos2GCY+i1+QUSQJNkak9ZzMG0ou+NAx58xqO0ytGOO52Zaz3fPMA528Yykdb65nkm54XI9c24YmJ3x2r6NCQpGrxiWBlOV1Ns4VjuzRHWyeNXd1RTeVd+mZXB1fwj3UMwbP1Q0sq2KbE8llbPC8i8+0xjCFGz86w6paVl2Zuy2lBCYGqlC4UmiLoY8Xltzx091bdPXY2PDX8xfwkoPUuPmFU9xyKS325jGW12pzDUzzwNLe0d8UiBbSzGDPjKFjbD1NOOBK+HPbD+Avhu6fVBGFagfEaSHjsASe1t9xpz9xZMTklh9lx60IGq6c08hB7jm5R8Sk+WaZyTkSNpqP7j23EjEi81fdZwwTTmZCtAzS08RKKS1SW3RteChXpqJYWskmHyl1JW0zXu2oWpBQRDGwPycyho2/sEue7eQ5DJajbamd4U1+YRRXEgY1wdq3TGrHtRu51R6tCpNusXFLFgObutBXQb7suDaVS35LcT0vWrNPF0KaiEaTi2O3nGlaODRvkFTOcofwLwxlpoiG56eFc1/Y1a+UNFJLw35eccxc5BZZJHZxuG3AiECyHblMuBQpKeNKRujKEnc8+QPFRUZ1pfaKL/GJq7OcWk3VGVE1PhhcXbjYjn9Q7zi1I7I6BCBrglW+zpC5DlJmEj1tDFQM/Xpit84gKlZ/RZbMtY586N4zppnnOtIEyUlqvICkNG1uCXnFXhNuktw2BiXXV9K+KGixgs7IkohdQebKWGdS32JvR0wjaMOWs7/DqwkweCuotVJQPIQvmJLRMuE6SDriUiEJQy2VrDST1fxh/w3vz2fmAhhJsYH44HmXDuzshK6Sh97SZ8WyGm6d4yx2pL7y68vveTKfmcvA2ioKrxiTfS60wtDfCt71VBSz1K8zO8rTtZ6eL1QekKrFFYdvDTpKhuLJpadfFC5HzoPkaAaq0UhdWfkl34s/0qTEXBxXHEJUfG7J6kIwgiHNTBju4ieOaofVM7McmeOeg3riLp5pdMYkwZw0Ki+8u86oIZNVRTiBkB2+jBix8DBdXo2LDGSTOMl7mrwioqBl5cI9kzAsXYPOe17shmuj8EJwZ14oPjLrlqUkOh9og0d6hTaGXX4GXRjljZO8Yxk6EoI/iV9wvz5zyj9wKh2NqzRyxpUTQiuGcGItA8MyYeXMJ/cW37UoAo+XzJv1iHKSEiWh7XEiUIxD+gkTI425kJ0l07LYDlkTsgpEVbzwLTIVHuqRu/mMsIWiIotqgUgvrtz5F/7YfUvKd3ix4Tv/gdIIjJl5XI5c/Dc8mweeNw8IVfmSdzylM998XIi6cLMTm5I4doamRFL0eCTROjI3aFd2ekWWCy+i49T1XM3rFqaripgFD8sNE1p8V3C1kIUgipal9tz6jiFc2VTFVAdsUlAaVtPRp4DWgWAkx9Fysk+syrGYhn0+0jKDqRzNHo9FpIoqlWQKP4knHvmJJt2oqTCb5nXUBcEbH9nGntnBRn5m1pYsZnwdaFMmzYY5OURK1G5BGcE+Fnxs2C6FrXw1xT/pgaoSWVtGZqiRziz80p848g67JubmjoYIuSJlYhOOPKwLU/4ZypsqxkuafAM3IdcdRRii7anVYaKiT5Jv/E9o8cLBNmz1J4pSbGrh780PZF0xi6S7TkQTEcLzNP9EE1Zmdq+btNaRVWbWHZPVrHWE5sI2HrmPz1zqey5uQzQGJRb2XNjFAxfXckotc97SMWN5nWPs7cTURJS+UpRAxQVFw2uArnrtGhWLyAu6JA7NBq0LwQj26YBQgU/1V8Sl40UOr6ic6giyYS9uqGWiw7Oolqgk7STxvea6OmpRTEZRTEcvzzzpn7hXJ1KxnMWeWQ2sfc9myYx4jqLjojInPeL1jGwXfqVGmpj+rN7jH/UXQ/dPKKHgJ3/DY4lFsJ8qT+7Ak/6MdAvVtrzBMuYVw8TNbNA3h1YSHSZc5yk6Y5Tmc3QkKym0PDePOGVhnRE9LGmgXTN2urKWOyYhONYBWxd6cWLQLyxqS5ISGQwtkPOKEIWxeqLv0GXDwJFkKr06o1fLohMXvaEpC6oaZPTcLzeusrwCRxmZGdFaodOArl/RWaNXj5w1y2TwdxIpA1E0XIQkJkeqgj6fsNojw8Kn7pEkGkKWTLXlaXlBjEeeuw25lUQU9+uRpdzRy0ztJX3JPEvFS+8wnHiIBxbj8LqhOIdAcPQLg5rIBaxLnExHVZmbGYlrfa1UykJD4E34QpdmunTh5HrafMULyVkbhChk4NLeMaYJVxcObkMshtXvkKnhXTjQn5+5akvrrqRoWGVPxiKqICdNm4/E4lHBIouisqWUmWGdeZP/RCyVO284mBEXZ5yKSKXYxDOP8plb2TPb10gg02b8qLkMHUnK12rBciR1G7IQnO3Id+tHOjMRhUYlWMTrm/KULbPrEErQ5QmMR4sZ4yp+MHw3PWNV4n36QGo6VHKc2p59/cLOFS75DVUJZm35/fYHLkUxpY634StLcCyiYx8XbOlRWAyKkRNFdzwsn1C20sszoTHctKJbVyYEisBOHZEIcjBsQ+YDHSVkfNsRtXtlJoYR3zU83M40qvDGn9mGG75sSSi+mh29PtIx4VTgQX5mz4U5bahZ8eK+wSwtz8ahhaEvoItlUAtWviYIyFz5zfQPrHogWehvijjMOB/BZ0Z/oxjB2YyYWnE50SjBpXZEL1Em83ZdEUXypF6QWfBYjgQqdtX4+lpJtzGzrx4RAk7PfG0eWZSjTYFYKp+HPXGxZKl5MR2bAkJvoVRuZqDGRKWwmhHFyqZO9PEKQaOVYJxWPnZvcCWz6JaH6RNeG5QV7L1noy7IvNLlwqV5Nd0iCmRSiFI4qLfsxQsHMdKJC4/iI5WKm4CaQAaSdHhpudWBmF+ryHMufJP+wCd+wz4FZmkJoqOQ2XKjFk+QmpvquIqetWgWVlzxWCWIRBqxsImBz7rj2owsVSNUJWqJrhJfLSZ/5klMlDXR9iuxOhbh+NZ/RMrMwTyRcmbljs0V2hLwJqBM4ab3GJv4kh8JstCIC13xRC0hS7y09MlTs8bHljUptAo0XHlTn0nZ0oWEFAIrYVINVcOfNo5rn3H2DVlkGnl6reAry7W5Y3ub2NifOaSqoc+Z2RmudWFKjrfl31DzE/uk+Tvxa25yQAnPRe5JRaIrJNXwonfUmlhVj4iZe278Kv4dt/rEl3xHCj1Lq5HJsnMHig8cnOXGQA6aSWqerp5b2aPHFXThVjck2RByJeiWMZy41g3DsKBkRItKCY5Gex7mE7Fu6ecPPO9HrkKTpcPUiJCVuzyhdaavM15p9uXE4FaaNXByHbPRmCowIZOkoCqoOvOnfsPaFAbzysh7Vz/SPc807sKzeOTcPJC8hdASTeWmNkg2JCG41o4gLT5InF3YxcSl7KmlkGjxwuEbzZR34C3edRxVi6AyhsIcDVt7xBuPDgdC7BDuhFcWV2favDKFyptQaKrDVs/J9UTpSGph4yf8FbD9n9d8/Ky/GLp/QpUa+aVWzPMzoR/pQiCJDWSNroGP3TvS2vPZjtzlitQF28BStnT7icFcaNMNXUY+OIuXBlUq3lV0VOSl52/C3/PV7blayZIcIWx4+7xSLew5UWRlGRpiEhQtWJVC5ISbYVUtf9IS4yOiBkZx5mOj+DruyVJQpOJN+kwXEvXWkKSk6kpwEkzgpirCr5io6eOCbhwqZaq1vLvAVqyExxM33ZKFoZ8LxzgimkwwibM19EWyqSdSdtwvBzbXryjjOTaWq+q4r59YZAtC4KLAhoZsM1VpLCspKaSMzKLDyErjK3fFE0xC6YLIlVU1+GxpxULHhewlojQMecUWiFLg84hYJL7b4I1FWcF2PeFypStHLq7nuX0gaoUsDakErAhs5RVVMvfK49RHLslSG/ij+w9wVExWVFZ24sROPuPilZ94z6R2mBLozZn78pnWXvlOBu7TF35c95hSsXrBVMk23ChZc7ZbSEAr+MZ85lFILsuOdl2Y9AZRW1bZUbJkESPP+ecNS7XiykQjJt5dPtPIPcNx5faweeW3mcrNGVq/UprCSs+mvuBy5ciIFoa1U7TV0yuAb1lpELmy0PIit1z7DQoFXtPeCmYxYCRCLgxm5qodXY0UbTHFY3Pki37LIjqC6TEEep94+GTJg2FY4S4vHJsWWzNyeuakNxzcDikUDVAbgxNfmcQduRQUgfeXE9Up2suEWG9s0omlcagMkxMcZQupgiiUXHDSY3JBlR25OKSXbOqCJmO9oZ8rpyHR2hteavq44uQFoQoAT/7EmBa8HDHBcmslHoWXitasdNXTlEBuMjUFdJXkdSQ2mp2/MZdCUpq8KhbT4XVLEYaJBtMsmBi5NSNr6yhakuSWpRSMV3TzjZoEzTrR3s30qqGqBp0q09BgU4ubKhtOLLXl5EZybtinM1YorsMOjUDliX0tUAasf416cosgOs2t3LE6Ta6Fz/oekz3v1Cd24pnn4Y7X9NQtIqvXe1pHxnRGqPra+jUHTtISTUNfbwhz5aewpW1mSs1EBUvVnNyWq3lLzh5pIylXrK78R9ffcrHvWOlIbUXq15QUSmUxI1/HN+z8zH75ypiOzOUOaxboFV/adyThEGRiI4h1JSZNM1eEvSHEa77wH7o32Doz6kxbL9zXC/e3Kz/231KiZhWa/jbxR3tPlYloJM+poZk8Y7xRbSSWHXuORNGj68yK42Idriy4OhGLo6szjYls28885Im4vjDkmVVohL7R2GemZmSpAmpFUHhaXmji6y3baM9PzXdkLGf2dHEBc8XlK2/iM1UM/L7+QEo9oYXQaEiO3MOL/AFpBEsLW3FkaRyh3iEaTygZvOOxfGLC8W3zgcUYzmpPvwQWOVDVTKoGrSN1EJAs/apIy8BVB4bxhDM9J7XBkXnkzPv6R2xKbJuP/B1/jdGeXEG3C7PYQin80fyCpAy+SjbrjZPekRoDNtGVCVUSPkv65swQBLUsrEim5PisHzl3DdFBFIK79YKpnmVVWLMy+MQ+RUyVZC2IMiKSJAdNwHDrWvpyo3ldyeI4eD73T3TRMuvCO/NCbBVrsMRi+OIeCKqD2vHXt9/zmxD53aL539pvyaUwqT0P15U/KcGvl8jjn9F7/KP+7IZOCPGfAv81oID/rtb6X/7/jjvgvwf+GfAC/Ita6x9+PvafA/8KyMB/Vmv9n/49Xvq/owFFI2dSc8Fog3ILcxy5pF+wlJlZNWw48sf2O0y6I+eG98snbCjclRN5rDg8psKv5t8z2Xu+1j3edrw9JjaiYdNs8aYSZWIe4SArY35dRX9uFY3UZAb2/oSvI49yoV0jh0bg6oVoFKLCDcUlRqauZzvd6M0VVSJ3ceFg9yxlx6Xb8jZ9YiNuqDXS2syQPSIJ3t4KHs0uZl7CE196aNvP3POZ706Cq254OA/8SSvEYFltpck3tJ6xZcUHwy5cMcuCI/Jt85VFbxBV0/lIlzxlaaGOhNpTBNyd6+t2qRlJxbG5eoLJ3JUXrrplCAutmrHVo23i2W+4dRaVBFsZeVoPOL0wy5b7+cJZ3qPTiUG+sLMHlDKo2xcOZksRJ0woXPWGRfdkriAUjT3zUF4Y9YWIZJVbltzxQf7AyJl7v9DEha09Y2LgMdyY+g67aLItFJe5Ss1WVhoCQ1zRxZODo42Bu3Xi1uz40DX4aujrC7JIklDUGnmqL/yuecdiOhINi7DoUujjTBAWIRVFSGJZ0bUSXI9Ilm/ilQ+rAQT780caUdk0nj4cKdHxcPaY8sRZfI+1C8FoQlSsSvNN/MCtNmShmYGb2pCTovWCTZnZlBvCrOA0soF9WXk2hu+vHynZEBFUKdFNZRtvfCkbdmtCro5L12FWwRoNikRfoCkHFvHAG39FTY6BzDIUSlVsxZUheoZ8I4oBT4+TF4LTbJAc3fcEnRFasp8uuFy5OJilpnOBu3zlfD/QXy/IpJF5QKwtuWaiEVRhCWrmwkqQlkpiFRv6OFGVojWKIjY4Evv8mTJ7EpaXZcu3y2cmucHpiqsn1qqZRUPTQFUNG3l+Ha6PjiYHDstI2G/YLDfOzYY+XulLQJfInB5oU+ZsO9oisanwGCI2ep579fMcUEHXC1PdMuc7jjR0zZGzuyOJBmpE5Qk9tSzNCLHyTbhylSNGTPTqhlgjPtxzNhuqafhiGpRWjOvEI58pRZKr4VS+ZRuuNOkzf+rvaFZo68qzveMgntjEK9u5gXtJXwPUC4/LlXO656XvCTnQu2fe2g8c2g6fA82156o2TDJi9EJ0lf+LXyCLJFbDJB2P4SOjPHEVW1oiY00UqbjYDSc74LKg1g69GIwUFJfJRtEw8xC+olPDiZmbcPiiSCpTBfTihkfTo7Ar2GJ4PFVqjlzkyq3uUDrgxMSz2TGpBjVGxsNHujUQjCBLxTU2LBKS0JRQKAJSbbEknM7YBIc3r0kjVUp+M3/ip3VLsz+ChKosSSiMn+gWgVp65NzxfN+zVIWLDfe3QGihWRO3TYuUkef+iYfliDLQlJlM4KOzqM2VVAPeOTblRhKKTGExewqFr53AecXoRw4104WJxkXm1LFJN2q13MfPmCbyrB5ZtUOmE43SfN0pxFxfAeN1RGZBQ2WzFHYJOt9huNLHiV+nP7B1L3wuPyCq5Vb2JMlrG7YGpLAUUSm1sI/PyJLRNdOkBeaGS+ko9UrpEspVRIo0eWHODXIBoSQyKJZkWNqRklcW0fKb+m/Yc+SSe8iaWjUpVWrVDMKTW4VWEzlZhCyInEk/s14/6G8ZYyBa8/p/FwZRKwBZOGRcsAjaVREw2Ap27fD5zPmy/sXQCSEU8N8C/wnwJ+B/FUL8j7XW/+Pf+tm/Ao611l8LIf4l8F8B/0II8bfAvwT+Q+A98D8LIf661vpnQzZvGsN3jeZ34co23yiqwUQwlwc0M6fvvycZ8MnRps9MpsEFxxR7kuowsbBLN9I6cHYazYxOEhsEfYJWtujVotsVkwq10TTJ0+VALprh3PEoDqzO8FQ9t6CoJBYEqhRS1aiQXgPZg6REzTh5TJORItPLmffxK8rD8zoQnWFOG3S64UoiiYSsmnu18k4o/jTvueUBEXu6/MzoFddcaPULOgpk+RW/mAIyL0zN8TVgvgae/Gc6f0VeFHZRTPc7au749XlFxYmzUoTiOChB8pl3p8jZGUqRpM1AH1cqhhgMb9bAXRC8n87s+ImoI8e6I6PY55l8VuwPV4a+4fv5iN5HphxQa2UdC9qCyJZmdfRB4q4GnQxsA6Fb0bIl2pWncmZViv01c88RpSJLfm2N6ejQVtPmjiYJvns+0O1mhJkoStNmj84BSqZTmSFc6IznnPccmx6vC9YbXM0MyZKWLV2tWDWy6Eybv7I9f6Ft4V1qmNIe2wcmDXFN1FSRNXNLGxwFKcDW15m6t+HMS7KYDO8OHp3OCJ/oRWAAuuYenQ3j50oaJRtTqEngCEidiVdLJ+AX841M4thkvg4bmqZidWZcL2xuEVtnmhL43G1RFYaasCjMbBiXF05FMQ1QxYa9NjxcHCkUunJjP3Vk1TM4j2pnVPGIy4W+HFjWMzXvmNMzjSoYvZBMoSWw4UJF8W498CVvGGLi0uyxt4TVCqaOX+lnag5cdCHKjMlQpWAsgaC2PJSVqg36EqizwOgZgceJlsEuUDpEanDLAn2hjYkmZIyLOL+iysJcC8YqdnZ6BcYqj5IeKzPJtLTSsK+Jb8SJUgRl9UxBM8WEVpGxRvqwYnSk9YmOM3axzLqBPrILC2aVDAdJaTe4a2LDgaGe6HLhY+5oxZUgC7pqvp+/4ruenBoUW74rkbguHHPCUVDigGRhNoYoFU9y5ZIqJzSKhMwZu4JwkiEFBm7YtbC2La2X/CJcGC+GZvzKNnn25SttVNhNiw0XmkVSygURLaUGdJGIJEmpI+uOzZKgKayNoPeCL0KQlOauntjkBZkrOQTGovkmHjF1xYmGyVlKbdE1MERFLCNdzVxsh5ZnxiAZxZUgoBdfMXhWuaeRgbFMHOcBbKZURdawtTe+9z+xD4bxvOXNLJii5t5c+NTAVQ+sTqNq5W45E4Ng8SMGiysCWwrfLi8cyw3HQCiSlcpeHhiKYlE9u1IQfcLGwkWMzDkxxhPfzh9Y5YZbPrOKkUvekyZLf/C4EtiIiTuT+ftti6qavc9sYqKLMw/xM4fugYfJo4IgVk0VijfpGae+4sWGWhRNKdha2IsJLTQptVTRMoaJ725fmY1hNwlUrUQ387D8HTFvCAiOdkvWK0sp7Hyl9S3jlOlS4GIFXdBshceJDrcKusXwbYhId6H4BVsUUgjW2NPIK6fkIGZuWwlSY2RmH69IFHe3hd4svL98JDmNvjYc2g1GKqyfadLKWaycyj1zNUit2CwXxlvi5sprPrpdWYvEeMuYBW9vE5orIgmE6NnUQM2FfViR5oW5avRqabOkVMddniEH3vgLk7V4UWmWRJKFhQ2XYjmKLZtl5ldl4SfbsT97ulmQh/e07ebPZTv+P/pzV+j+Y+C3tdbfAQgh/jXwz4F/29D9c+C/+Pnz/wD8N0II8fP3/7rW6oHfCyF++/P5/pd/T9f+70i4hm7ncGbGZQ9Lz/YGXr7HdC3vMpjg+UKPXh5ohIMlMDjo/R11LpziHWMJ/E2InKX/GRUh6aNiWxp0eUK7lQenQATuOVJrInpL7nacxIZRNrwrhU5ZTukL1+SJMfJs7rk0hlwrY0xsfIPovkP1hnw9sJ1/S7M8cHYWCUA7AAAgAElEQVSP9HWDy/4VXnmKPJxP2G+PjM2W3dBj777H/NghZYMshct2z1GtiPVEEyvjuaVrFUbCNRi2L4LNS4t4WikNTEsirpY2t9w1PbUxmFRQYsRLjdWKzJGlyVTz+pa1CZVTkSz7H1gHjZlujMtMur4wxJXN8oqYeCc/8dXdc1ssN9mijGLTCL4jkaXixwy51zzmyuZSaYeJLi8I8wPx7pHvfMd38gsyrVQz8TF0LOWBXr3wpq40qgU5YFSPqW9I6dds6ggpM5pA1060OWOWK9WN/FW5MckNYmz45dsnOCXgDps6Nsqg8ow3HTpMNPIF279j2Fl+SBvy/8Pem8Xckp3nec+3hhr3+E9n6m52SyQlUbATK4Qkw4kvEkDTDRNABuQgtpA4EJBIgXORCxkGAkGALxwgDhDYiSFDAmxlkGQ5QYhAgiJEBgIkmpqJJqpNstnsZp8+0z/sf081riEXe5/mYeucZrd4hu5mPUBhV321qtaq+tZa9dYadjmHr+7R6ITYJ1iVMZkaquggGXFUXfLtsUbqlq+EnlVR0IQ1J+GUaew5mBxz3I8JxrPsE3w+YsRtDsOaTCyYE2JlEZvifM/MGSqdEl1F6lOmIaJ0ynOxQypDqVP8ejfmCVUy7SwvcoazQjQapRXTpCT4DRM/w6oI6hjTdyTtPWrdoENAK8XBTFGtenrdotPIJEw5Sk9Ipue47i7LZeQ0gp9kHDTC1JZUvaHozmhEk+qGPivQOjDPpxRtZJoesdWOLnpOEL5ncsB8MmKxuOSL4SYbt8aoFTNV0E1mTFYtm+gZpVu25XOUaUKlVvi2o2wTfF1g6bGjGbMc3KJjW1eEyjPRb3IjRJa6wrUWgsKsAirvqFJLLD2WgtTmfIdVvFCW9FrzpdOETVKQVooDpclEyGzHc82bBFswXlaMmyOcTum9J20mjLYtrc5ZmC0phqq6Rtc3nCwtB9lz9Mbh9YaTbYs5nNPolGAOEOVYHn2M0tV87727NJ0hoyXMp6xDSt1tSaqUYiRkuaXLhKKpKfWKG9u7LJo52QjGMuNAneAkkGwuGaURlx9x5ep1cvMi5ramqmp8v+VQlkzqCu0dZ8UJy2tTVqHhWPUcJ56PhbfoZEnbWXJ/wGrzJq/Op4yoKEcZerHmXpJiG8fIvEh61nGQNnR9DbQkpmRTvEhdTEgQZpVjWq05brZM7Bo9PSWM1uRS0wXP1iqcZKy7C3xwCIqFyUi6Cqo52TrlWjfDlpZ20+BCD51Ddbe4rIQLXdPHguB7DkYTtM2Y9SVZ65lXc9accSXWdNOEZYw4P0K5gq0tmbY1225CLYZRmjFSBf1FIPorjEuPyaZ0/YiwaBivYXRZwbTA5FAWM6ZdQJqcdXcPbyKnfUTIUK5m7hxlazHVmuzYcz02LMySm9FzIWNGacZhH3De4bzFi+Gg3XLVBkK2y5dHrqILY1wAI8KUjjmn3A2ehYXGvERvoNhekqqIMxMKaXjeryixJMFwqDUvUlOqA9pGY1YZma5QOA5T6PgYtp5SdI7DpGGbr+mk5moMTOsl037JOKwpo2fVP09XjGlmV1Byl9Tf5bC55KRz9JuE76NjOZ2g05SmnLGIwmns8Uu/mzCyPSHNW14Y78bhti5j1HpudAlzveZc1/iuoQ1jYpihqKjdhnJxSndSUBydkGwCenWPa37NMh1xVMDzmWdcHNGbgmttj94GjtqO2eiYT/6Flzi6evCsZMfX8awF3Q3gzQe2bwLf96gwMUYnIkvgcG//nXcce+NhkYjITwA/AfDCCy88loQ/FJPw/Hd9P7PX/pT67BVMc5ertmQ+u0Hyqe/gi6akun3KS04zaQrCKCW9OuHo8JDn1IzVzTXL1pOnltk1y/goB7MbPxcdeF8Biu+2GhknJKljcXZB1aekSU6TglYJc9cxT3Oy6Zzl+VtUF2egMsgzutTS9BG/qRknJfNr11FpilQr4nbBclXxHdFwzyRIAB8qjqozpiZlOp2QTDKUKbHJlNXK0y5qyokmZJa7ywVtWKE9ZL2my8dQpCwWC8aripNRyuRkRK0bLu/dJnSByeyY2XiOk46mr8kkx9qSoCOpRILzVEGQ2mE7T5ePaUZTbJGSa3BNg+u2uHaDtKB8i5MFvRc2fkLVgjWOkyyhzHIq1/DxbUUTIrlossUlSrUEeuL8BUxxSJEbRAUiPUnXslUpy7ple+c1MlpSMyE9PiToQAwZQU3oxVKHCH6J1J/Abteogwk6LVFVD/mEZDonkw7vK3qvcX3Drc7R+kCzPeOF0DEdpcj4edqQ4aLHKkPbbbnY3CM6GPkxMS84a2qshRuTktlqARhWXrEYZdS+IjU9o3TM2IwYaU297TmvaiSPzFSL6Tq0KVEqod0K9XY/lqlUrLsE1TmU3+DDilw0s2JCnY256C23ui21rjFB8d064zAG1s2CzlryoyMMgeDB2hzdNnSrirpztMZRq0iSzZhnJSp2tE1HWwWkF7LRnOnhlDTp6Lb3WK4Dm5iTjRJy7eg2GwiGyt+m7y8Rk5KNXiJRGqPBS4ZrHKfbFh8DN8qMk4M5SWrxLvBtd97iYnkLVCTPxpSjA5TKadaXmHxMOjnC+Yj4Gu9a3Npj2hoxgWQ2Yz4f0yzucvbmHZRJGc1HaOXxROq2Z9t2pP1uJq2MNM04p+ssSdAcTS1FOaLvGj62WPHWvRXBe3ReoCclhQkY/5eJsUe7lDwUkOek0wnGBcJyTesb7qSKl1ZLzraOj00Lnrea5jJyriIYh/WeSELIM8pM4azGZTnXxnOKzYI7r34RY3MkUdjZHNcFqtUGbxRydEBQQrU5J6k25E6xcTV9orhx5XkORidUXU1XnZM6TX4wQ41HNCESNzVxUVHryHZ1l/7ilInyFCfHbJOCqpyR+R7bbwl+g1YJqRzvPkMif4W1X7FyDbMiR5mUi/WScLYklxHZd6XIvMCFLWVeYmxJHQNrFekx2MZhLl6Hek1VdbjDOT5tuZoqpsUUb4+4dIG+qmjWLdpAMhO66PHLjtJZxuMrjMYl7XJBu1rxHbGjTVqKYsZZ1XFvdY+DSc6N4+eITpOo3R8k+1VNmgVGY8W2dXTB0NmMFgvOIX2L0NNKhy1TjsdXWd+9xfLiJmWaMxuPaDrYqsB2vSW0MJ+V5FeOMGLpNz0OS0wNoa5Zbmtq7em7Gts7cmMoU81snDErcy6aFaf1GmdGpGhmWrBJwd26o8Xx3OiQtG24pMfYAtM6NqsFy6bC9zVXckVWWLb0UB6hixus1yvWl3cxJBQ2JfQblO6JxQG5mnKQWrT6NHWzoltt6CqHTy3joxGpFaoq4a2tJbQd3yU1mdri03OKmJL3HhM0SsMoKWk3gUosIbeMD+f45ox+vcKolEnQFErRpxmtyal0uv8T7BW+WxLrCg+ktiDNc/RkgleC2jbkXihTTcWGulqReksxu8GFUdx6819h7rxOOZ2SX7/KuLzO+Zu3uF1v2eSHUI7I9V/i6nzCFUnZtFua5RLdw2Qy5cpzR6R59uR0xftA4r6P+JlELvLXgB+MMf7H++2/AXxvjPE/eyDM5/dhbu63v8yuJe5ngd+OMf4Pe/vPA78WY/wX7xbnpz/96fjyyy8/keu5z72LM+7ceQVTrzgojpgevkg2m7MJsDhfYNuK6WSMNwYfInlRkBhLX/W0nSMkmrxISIx6oul8N7oQ6EPEKiFRf750PI5zPGli1xH7HrEWSZJ3Detdj3cObQza2McS//17pHEYHEpZlHp0OrwLeBfQRqH3+eP9XMPjTPOz8msIHSH03/BefZBxzuG9R2uNMe/9vfqbvfdPIg8/EteB70AnYN6/n95Xvt7H1WF2Ik+rZ1p/vheiC0QfES3IBzyt3yxdCHS9xwRIrSYq99Ay/FTz54M8Iq92LrDtHSihtPqZPcdE5HMxxk9/o3DPuoXuJvD8A9vPAbceEeamiBhgCly8x2OfCScHR5wc/Ft/xj4GxjeuPPK4ZJKSkD7BlL13EqVIvsm8+zjO8aSRJHnPIkgb+9grma/dIw3vwfcPCrn7vJ9reBw8a78qlXxohdx9jDHvS8jd55u9908iDz8S8+cTcvd5X/l6H1cCfFhyhhiFPOsn8FMiUYok/VrGFR5ehp9q/nyQR+TVxCiSbyIPP22e9eP294FPiMhLIpKwm+Tw2XeE+Szw4/v1HwV+K+6aFT8L/JiIpCLyEvAJ4PeeUroHBgYGBgYGBj4wPNP3g/2YuJ8CfoNdE8UvxBg/LyI/C7wcY/ws8PPAL+4nPVywE33sw/0KuwkUDvjJZznDdWBgYGBgYGDgWfFMx9A9C0TkFHjjCUdzBJw94TgGng2Dbz/aDP796DL49qPNR9m/H4sxfsO/uvuWE3RPAxF5+b0MYBz48DH49qPN4N+PLoNvP9oM/n32Y+gGBgYGBgYGBga+SQZBNzAwMDAwMDDwIWcQdE+Gn3vWCRh4Ygy+/Wgz+Pejy+Dbjzbf8v4dxtANDAwMDAwMDHzIGVroBgYGBgYGBgY+5AyCbmBgYGBgYGDgQ84g6B4jIvJDIvIFEXlVRH76Wadn4NGIyOsi8sci8gci8vLediAivykiX9r/zvd2EZH/du/XPxKR73ngPD++D/8lEfnxB+z/xv78r+6Plad/ld86iMgviMg9EfmTB2xP3J+PimPg8fEI3/6MiLy1L79/ICI/8sC+v7P30xdE5AcfsD+0ft5/qeh39z785f1Xi9h/heiX9+F/V0RefDpX/K2FiDwvIv9SRF4Rkc+LyN/e24fy+36JMQ7LY1jYfeniy8C3sfuc4B8Cn3rW6RqWR/rrdeDoHbb/Cvjp/fpPA39/v/4jwK8DAnw/8Lt7+wHw2v53vl+f7/f9HvCX98f8OvDDz/qaP8oL8FeB7wH+5Gn681FxDMsT9+3PAP/FQ8J+al/3psBL+zpZv1v9DPwK8GP79X8M/Cf79f8U+Mf79R8DfvlZ34uP4gJcA75nvz4Gvrj341B+3+cytNA9Pr4XeDXG+FqMsQN+CfjMM07TwPvjM8A/3a//U+DffcD+z+KO3wFmInIN+EHgN2OMFzHGBfCbwA/t901ijL8ddzXFP3vgXANPgBjj/8Xu04AP8jT8+ag4Bh4Tj/Dto/gM8EsxxjbG+BXgVXZ180Pr531Lzb8N/Or++Hfmk/u+/VXg3xla2h8/McbbMcb/d7++Bl4BbjCU3/fNIOgeHzeANx/Yvrm3DXwwicD/ISKfE5Gf2NuuxBhvw66SAU729kf59t3sNx9iH3i6PA1/PiqOgSfPT+273H7hga6y9+vbQ+AyxujeYf+6c+33L/fhB54Q+27tvwT8LkP5fd8Mgu7x8bA3t+E/YT64/JUY4/cAPwz8pIj81XcJ+yjfvl/7wAeDwZ8ffv574NuBfx24DfzXe/vj9O3g96eIiIyAfwH85zHG1bsFfYhtKL8Mgu5xchN4/oHt54BbzygtA9+AGOOt/e894H9l1yVzd988z/733j74o3z7bvbnHmIfeLo8DX8+Ko6BJ0iM8W6M0ccYA/BP2JVfeP++PWPXZWfeYf+6c+33T3nvXb8D7wMRsezE3P8YY/xf9uah/L5PBkH3+Ph94BP7GVMJu0G0n33GaRp4CCJSisj4/jrwA8CfsPPX/ZlRPw78b/v1zwJ/cz+76vuB5b55/jeAHxCR+b7L5weA39jvW4vI9+/H3PzNB8418PR4Gv58VBwDT5D7D+E9/x678gs7f/zYfobqS8An2A2If2j9vB9T9S+BH90f/858ct+3Pwr81j78wGNkX6Z+HnglxvgPHtg1lN/3y7OelfFRWtjNvvkiu9lUf/dZp2dYHumnb2M3y+0Pgc/f9xW78TH/J/Cl/e/B3i7AP9r79Y+BTz9wrv+I3cDrV4H/8AH7p9k9ZL4M/EP2X2UZlifm0/+ZXddbz+6N/G89DX8+Ko5heeK+/cW97/6I3UP52gPh/+7eT1/ggdnlj6qf9/XB7+19/s+BdG/P9tuv7vd/27O+Fx/FBfg32XWB/hHwB/vlR4by+/6X4dNfAwMDAwMDAwMfcoYu14GBgYGBgYGBDzmDoBsYGBgYGBgY+JAzCLqBgYGBgYGBgQ85g6AbGBgYGBgYGPiQMwi6gYGBgYGBgYEPOYOgGxgYGBgYGBj4kDMIuoGBgYGBgYGBDzmDoBsYGBgYGBgY+JAzCLqBgYGBgYGBgQ855hsH+WhxdHQUX3zxxWedjIGBgYGBgYGBb8jnPve5sxjj8TcK9y0n6F588UVefvnlZ52MgYGBgYGBgYFviIi88V7CPfMuVxH5IRH5goi8KiI//ZD9qYj88n7/74rIiw/s+zt7+xdE5AefZroHBgYGBgYGBj4oPFNBJyIa+EfADwOfAv66iHzqHcH+FrCIMX4c+G+Av78/9lPAjwHfDfwQ8N/tzzcwMDAwMDAw8C3Fs+5y/V7g1RjjawAi8kvAZ4A/fSDMZ4Cf2a//KvAPRUT29l+KMbbAV0Tk1f35fvsppf2h3Ds/54t/+jLL22/i+zWVgbYrSDYaKTUqy8l14Gg+5trxCzgDnbJM1AESPZeswESm2YSDLMW6lmAMZjRDJxnOOXzXoPF0YmmikBmNUYbeB6xWJOYROt114DvQCZjk63bFriP2PWItkiQPP/4ddCHQh4hVQqLU7hxNhaiIZOWfiePPy7umbX9NDk0bAr3vsKLJ0hwV4rteU+cCXdNigiPN0j8T5j3fE9cR24aIRdKUANSdI2ghs5pE7fwRQkcIPTFoYjAE8fShRQXI0hxt7COjeOe9BoguEH1EtCAP+PzBsDbw0DAfJP48ee+RvEseHxgY+OBwvz5UyqLUu5fV9xP2vdYn3gW8C2ij0O+oG9+572FhN85R+UChFSPzrKXUjmedihvAmw9s3wS+71FhYoxORJbA4d7+O+849sbDIhGRnwB+AuCFF154LAl/GPfOz/nff/2f8Gp1h2g7rKlZ1nMu1ZxTPaPxJWl/QbFp+OSd/wf7fydMmhG5iTjGfPWKYqkCnkDiFCdVy0nqSPD0NtI7yypqttphbAA9o6gKEg0nSUGbGi6l4cjnTLWmjtB0nmy75oCKg7linY65PF+jfMLKWs6SgO89Rz4wiZFWIMktQRSteIqsAG3YhEsMkXKb4trAZhTp8pQyCqsN2PU5edgwSQRvRpw7jbcHoDXGLWn6JT2WJvZsSJm5LVekI5oD2nyMM5GgNTeqnlwH6lFGkBrlN6wuN3RNw7jr4cqMSw6x5w3l9pKlBCqTkMeMFANhw1b7nbh10BnLKk2QPDKXQKIP6WyO7c448AviNueWT7jUNTpVSKixVrhDQfAT8j6SRyFXW0bdFu8cXzaG7SihCIHrKw8xoSsgTe9yrkZcximanFlsiFKh+0sqY/EmJXhNqYRpuCTT5/TeQLhBqabMJEFFw1fdmo3pKHFcEzCSc6oPqEcZiU04cFv65ZrcC2OTUXvNaXMLZE0uCpcfoFzKmS4oBLJQkeEQnZBHRaI906yl69ascWTMSYsTkAkK0HFDkEgtmsY5jIm43nFnDW2meeko50jlrFcVG9Vj0USrcaMDxkXOTEd8VJimwsuWlYnYPpDFDGPH6LSkD5qgDRNtWH75Fe5uzshTj7l+DV/OOZAEWa/x3ZKxGZGnI2qnuHRbatnQiaaUyARhJAbslFVnCPVXSbM7HKoCffVfo5IU6SEJjjbp8KOC2CRUyxbbr8lDi1Kw1CmndQ8EJpOc0XRKe7ElLE9J6oCyGaqYkIw1PjT0Jic1U5yJbEyDigHZekztGMWOMksp5jN6pWmiJjUpqrrENzUqK9DTgjQVVA99V7FoG3pJOZrOKZOCxb27tPU5o+kh+fQG0Xl8vcUjOGUJTYPuakJu0VZI6QlpilcFfdOzrVZkUTMfTbGJZlufsuq2GJmQMsK3HfQdMi7IpxOstnjX450jEukAsZZRnqKams16Ra8DxhRkJkOsoms3hNWK1GqS6QF3qo47i7uMnDArJrRicFrRe4/rluRSM7YjMp2jJbK8vGS5WOKVorwxZzo6wjqPCx06yYne4+qKRHmiJLTR0m07VFWTlZFtIZz1HiWKIxMoJNLVGyQGUHOaTtMYsKkhVpHGaww1iXSYLKegJ1QXeG1oybjY1HQ6Z5rnmP6cvguUoylZrqDrEK+xaU4bA+vLSxofKSYTyjxHB0FaR6Cmio6zZcdisyLQMppcpdATqGokseRZpHcNlCnryrHYRpQSpnWF+DdIxwbMdbxPaVkRCkFLwAcP4xPGySFp39GtN3TNJetWwIzJshyDZ3vxFnV9QdkHEpngxiWZAdVbutDSrSqs8uRXDlBFgd14qvWGKnWocca27tn2kdEo5epxSpmMkF6xvnePptqgYoqvhVVd0eNwpmHTtrRtTWkdo7YlkFGrgvQgJxaCIkX5HKVz0tjg2ku26wVOOWSSMzJH5Ocbtqu7nMmWbSzRrsNpRx9TEt0gMRK8JXMVaWypA3hVUlFyvq1IomcqkZHN8GkNCnSYoWJkwSmXRFo54Cgaqn7FLYReRZw3RDx9EllRkHU9x10DWrHOFF1iyKJDOaDVFH1PreB0ekjRKv7i8Q3+9o9+5gMh6p51CuQhtvgew7yXY3fGGH8O+DmAT3/60w8N8zh45Y1/xefclj89+hTOaExsMNFjYsvN+TEdOUZ5mqD4SrzC6MaGI7/BVIFVUnCeTKmNpVMpxgdMjEx9Q1SOSbygkowFUzpbQBQO3JKjxQqrYVrd5bX8OaJL2WQ54yoQosdq4dA4rpkVeb2gXpe0ZKzSgrfmR6xsgUMz32yY1Vsm3YbKe1yagYkEv8D2gqYnmISJ/irrYkQgEnrDjXgKMZJOOrZJyWkyJzSwoiR1DT6BJLYs7VWcFpZqQhFrCtdxtbpLHnrqeMad7IRJV5GkjsN2hesjrQh1YkgONLicIgbWRois8Vc1uj3A5QnRJaQxcm15l5vFEXUKnVV4UWxkRKUzBE3Zb1BKSPqG62XP89sF96YZX+mucTYbkYYabKSLsDIn9EQUmrHbkNJx6N7iUh1zN5kRKNC0pKFhFFpM7Fna76Qlx5GjaRj7lmlY02hNp1IqLIGSlCUp8En+kIYpxndUbkwWOtZ+wkV2jFcZ47Ag6wJH9YrTdETStnjbUoQVk/kaQ6CsHXeyE9BjGj1h5i7pg2YVCs7zIyRGjEw5iGeMu4obzW0O4gVX/R3Wo4QuJKyZ09T3aEPBkVtzLAveyF5goXPO/RzamhrL8miOiQHajivbN1mbKWnoOIgXxMYg61fpoyILHaO2IUZhmReUrMAbstizYUZfFXTdmFloaUrFRaKwtiPEmtFXb6OArpnwknuLvFO8YG+x2V7hwuS8JTlfOX6BnBWBhE8uXiXzEN2Ut0ZHqNGSY3+XT/hXuHztD2jbAwQh65bEWUfVB+jA9wcUURAbqAO8NR6x1mNcUIzjmrT1HPgFVy4rVtZQN8c0o4SJb1nnlnEjbKYZE9Vy2wqh7ojdFQ5XLcFajtyC0WjNavoCKitwTeDj569j71aoA0PyoiK5Pibpz3hlYfiyHKJ0wZXRmJPllsXNe1hXYa3i+vF3sqoVFBld7/DZFH/nDB0a/OoUOU5JrSIzLXV2jarZoCuP6Squjq5Sqg2vJTfZbitsuEHZXmHqxoQ0kBYjmoOca8cHVBcNtfK8ud2S3jihzBNmiWb05pe4FzZsqi1Mj7mmjyEDdf4Gsn6NSTqjv3qNX1tsaC8vsduWQ66ytgUXozF1vWZU3uR4fc7H0zX55hqnfcMbp5FkFZlll6RzTX58wiTPcX1DyIT0cow2t9lsNAtt2MYJ+sJRxACTUxZFzVuTDL9s+ViRc3K5RKVbdJuwbQo2YcKy6SjpuUyeJxOLml5y7CtsdLAx6NGCGIQuLHi9eh6fZGgTKLstSI1JNdNRgqhA3miszHDOU8slZ0ypE0Max5xcniJNoC2X1Am8YcdcqBlbM+HAfZH5ZcqotZBWbDLB9JfU257b4yO2yRTVR67LOX/R/japaWlF88bmu7jMNVqtGCcrqlDQc8jCTyC/TrK8C1uQVogomiSh1A11ERn7DXjLyVIwqkHJjFIvuW2u08SatdYUb7xMnlrKlSNGQcpLXh/P6US4SA45unXG8Vc2lFFgaznvc8bVJVo0061mXSgCBevcw6pnfZKSuwU2cRy0Fa4r+cLZFYINSNTkoePobENVGFzUaNuSNI7NIkWr12lCzkn6Fd7S17ibWWo9hygksWYUFNsuYWyWTGPLxF6yZc6pz7hkSqWvIxFEPOP+FMlHFL4mRk/bpGzzT3Cp50iEGAKtsdTK4sjZjTyLQLL/DUAHOKDcP93V3u73doUAI2m4u7jHC7/0z/kb/8Fff1LS4j3zrAXdTeD5B7afA249IsxNETHAFLh4j8c+Vc4vz7ilZtyzR/TKEMWRxJ4oilUcE8UQiQRtqCmxHLCMC7o0IyIsJSeS7aSqCSTR0ZpdJtvGhFo0G+aIKIJEgoV4GFBOWJWaldbk2lGJ0I8ER4kWTzsJ3JIJE3eKMoEVJXfsNbaqBAHBUc01d6dzRt2GqIQiNHQqwZuIiiAEdIA3RkfUYvdZO+eWu0aZL7geb7GVnNv2GG81tcowHlLdsAlzep3gUVRktJJSJRXrJGXmz2ml5MLOqPKM3sPaG+ZcstAT7uojvAiOdK/iFblsdhVQEBIJ9MEQg+OVySfxWDpt8CIELCFGHAZEcZ6MSGLAZh3bmPBmckStcu7pOY4RSA9R7V8VDLurhqWdIHju2RLiCPZDNT0Jlc6otAMixBxE9vtSLo1jRYkGNI4WA1h6pmyi5hX5CyQxMDMrlmZMHS0bxgQxCEKnhcQEsI5zk2PTjNYKrpgzY9fiOc/O6JWlUwUL5nQp9GS7wbGya7mx9HTxiJWuqBNhEma8LteprWYWVlzKHMkivVjeiC+g4w3W+hCJgYaUzLIwZtwAACAASURBVAsLmVHZhAkVDZbz9NtxkpD6nvMwZu5XZLJlyxgIzOMZIoEFM9roWcgJaexZMSZMLK7JuO7e4O74Or0BHQViYCoXHMdzLtOMRZNzUWjW9phqNOOemnOWjLm0Y6Yu0GvFLXdAby29N9wZTZiJ55YfcRoTYpuyLuYUcUuIx1yRO0xcjU4C2ySw0mPuJRm9KDY6B6VoY0olikmywYUxWzL6AkzYUmlLsm6JyqPF41hyplJ6P6U2M3Q/47VxBN9TqQ34nK52zDdnLF3O8bLj+jbQ9+d48Sz9V2mKSz7vP85C1eim4+YikG1qVJUy7xQn64rV7S9ylo3oi5Sgc459hV5f0LiEti+ZrjWIodAWX9yhLzoOBe5UkW59l01/waqscMFh6zMyVVPzEolOMHfvcnF3w83XNL42LIqcUxtRbcNJlpCtL8jWK3yyRHWBzfkFa3WbUmsO6y2jzNFstny5e5OvNJB1PZ7AUt9BbzJeU0eY/hzMBWO/4nZ1wWVd8nvZMdVzE0ax5rtWDZ+8rKnjK5wVwqm5QlJV6IsrxERx0ba8dQJZfxc9Sih9RHTLbXtA9A2kU6gDt+JzHK4uqdtAn9bAGX3W4yrLVp3ia4OSjtBGqqnnrJzQFmPyOnCMJbRg9B2W6YzzdELHlI2BTTJnGteoUWDSOzIKtO+5rQsqG9l2wo1RRKwhTS2LOKMrNDHArWRC6zoux4F5cps6TTk1M3Q2ZuwvOVfQWsdIO06zyDJ6TlgScjhPK9Z6irQz1ibFdinb3vCF8nkqGZGMC17qLih8RWI3NHlkUSQsswlWHRG8kB53PN/cIXghuEMaX1CbjEp75ow4lAvOjxNchMv0ObaZIbJ7Ga4TeMuVeDK6JNImE8ZZTmlWvDUTmkTYJCVeCeYw4gOoNEPLli+PriBOcyZHJNJSxoZGIk1a0OqELhRECTRTS6NHpLFlLQU3GXEmR3R2N/zExh4Rw0WccpqfkFKj8MxYkFNzh6t0JPSkONEQBbJrJES0WRNJCammE41gEFoCyb5+13ytXUj4WjuR5s9KI2En6gw74bcLvSbh5ijyyv/3x49PSHwTPGtB9/vAJ0TkJeAtdpMc/v13hPks8OPsxsb9KPBbMcYoIp8F/icR+QfAdeATwO89tZQ/BBMzbss1VmpMLxYI5NIDHSIBR4RoQCBgaEk4FUVAQO5nlPt9+YFONJEABLYc4gQgfTu+CofWY0Q0ayxLNSZS0lJyP4Oa6HDR41XgZvpJQOhI8AjI/TFbCb2koOEyKzE4BI8QMRLQRHTsmeoVNYaajF5SAgplW5p4yJYRaxLWHBPMTgoleLRYNjoFuf/2Y9mi2EqKMj3n5pBIT5CUhgSUUEjNRgq2KmXJBC8WhyKhwyMsuYKWHqM9MSqCTlCmo48GAYJYwO7ugdwvpB6iohNHR8pWCpRtCFiQbH/f5W1B9vXzhZJ9028Kct9+P9z9uB4w8bVzBCwBRU/6tu9h93vJIZqOBkNDThBNwABq98ZNRsKaVqc0krC1nlYKiAkbGQNwZif4mAMBJOV+peQJQKRCozDUkrG2Y870nMI3WNXTqJxDc4smjkljjVKBOo7pSAAhiz01mkomXOgRLSWXzIBdnggitDrSa0hUQxsVRhwjlpzHORs9ppOMOxyhQ6CMW2pJIWgqq/m8+iS9SvEKVAwkUtHEIyQ4LsyMNo00MmYSlyTes4wlvbJsrWVtDkAMo2KJNY7oA2tTQIwEJYTo0Dpybo8oQ46ThM5HZjrloFtyQcZWSs6SMZqOtR2hcQiOIIrCBLTbcjqb0if5/to8ykaStmGReO6OriF0VCHH1ookQqNyEt/ROUHpAhcDVRA659i2C+pJoDYNSlr6aslbTDmzcy7kkD5JyZsOIxnWCE0UJjEiWce6GNHqwIUUfLlImPge0QW6rvB+jO23u+KcbFhZRRUdbcjobMm5FWwYoWLHyDZUheFWuMA0B8yqiovcEKKw0Su8OmelJlx0kZtdxrWqZ+xaLnPP1PZoU3OtXiKJYt0b+u0G7S55fVVye3pCoQydGnPstnQ65zL0ZBq01wRdsvaRr5QzliZBfCAoxWqUsIg11ji+nJ9w3s/o0jlxXCIWzME9ljZB2YpTfZXcdZS54zwdo1XKmkPq2HPkVyTKYGRJzDyxdfRWcW88Ym1HGK+wdWRkGs6yGRdqzHqccpQs2fbXOGkD66xkoUo6K4QYWYxT+izhTFLyrmMsNVfiliZT3LMGUYHzfEToW1ybUaa7l7zOGorQ0OsWUWu6YFgUQmUNsWtpPdybXqO1M6oiZxxrJjFyqsfM4i3OOeZL2cfplaZOC47kHuOk4s14g7UZkYeeHs12GijzFS5taZOcqNd4W9IjTNWWxidcjApiCJwzo3YFjTJE5dnowCZaoo+s9JhVNsYrIURF7h0NGqMdeejpErMbuqADgqctEtZ6TKVKAkKMkUqXGAKpVMSgCaLpSVmoKVlssLEniQ3BaCSAk4StZNSSo5SnJ2MrKWccICgCkFOhgFrleOy+nayljdcwEqmxKCIOvauzRQBLR9w/Kz2IByxxX6++XV9/faX9Luvv5MF9mo3JOVMfjPmYz1TQ7cfE/RTwG+xk8S/EGD8vIj8LvBxj/Czw88Av7ic9XLATfezD/Qq7CRQO+MkYo38mF7LH+UjSeuLbat8S2NKS7Vt+wk5gRNm38sTd24I4vj6TsTs+QkTvBJW0WAI1aie4omfCFhUDIQYEQePZPcw7AhZDv3vTEk1HiSd5IC/G/eL2GsDstkUICBKFiNk94KgwCMa1JCalw1OzS1sdcxLpCGjaOCdK3AnUqGhEEIloFJ7711jvfqMQJKPHYRBU7IgSAcVGZxRdBQpak7ITV4ouqr1A24ngNgLS7yaI7AVqfPu6Al/rgd+1tu0Wu98XCHI/+++2iXHno7eb1zXE8ICIe+ekgm/Qex/V/th9C568s7hZvASqmODvpz3KPg0dWdySUdMoS8KaNUd7X91Pn90L8/tpi3ytSGuIDi0Nmg7BomNHFyxOp3QScZJzwRyNY6RWSGQn1ikw0jKNS8bhkgUHeFKUdPt7H/AYiJZWHKlPmLgzDJFgwIuwUWM2UtJRsCVhpBrqXS6iCDVKFFEMRlpaEmxUpGFXcoKLOGVYywGVSgheMNLRMEI8KHFEZRF61tmEA3+XIIYk9jhvaEWhwglBwUYyLJ5WWRZ+TKIbrLQsJWdlCjZSkohh3G8x0TGJ50xig0sirs9olUWHntPkOtOw4VRrMh0pk0ucF45Yk3SaJh7Ro4lK04imUiVHdYWho5Ceq+0Fo+kZt+XbWOsJrXVk4Zy28iTjyLjraDvN/LLjzWxGUioaH7llNZnbcpFMiKHiPC9xNuEsFcrgSUuLa3Pm/Qa0Z3uU4qRkHi8ZNwV3simVzsj6S7QLtEnDIptj7Yq0y9HSEbwjDTVt2hOUoH3CGMcqOeCtGJnqwCT0TPwaqXrqYDnvxyRK8OqYsl+ybjKUzcF0NIVlm+Ssk4ixNTZUNMayRLEh566e0qqETT5i4xy9eGxm0G5E5aBSkfN4jDMZMRG6tKS1Ft9F1gjlNhK10CUG63d1n4sWbRpq3WBtza30Gi5RnI9mTN0WFQyqaui3Oedpz5qC03HOWk+wAsEbCnNOVDAJl9w2V7gca1bZhE4JQRQT05D1HatuTNA1XguNzmiMQVUdl+Ux53aEpd91E8qKTgzOQmNyZk1L9J51WRCcxVGSbxy9D6R+NzznXvscYgJn9gpeaUx0BITgDG3I0SIkoaMXEO8YyRnWVrgykMYl95ITondszYw8bIkmsHKWe/aERkZEBamDJGxRNpK5LZUaY5Qjc45ONK0yFGGFi5YoCdDQUKASTyOaVh+ho6dWOR3p/hlh0fQ05CxjjhKFVgETHMb3qAC9GLwe06JBgQoBZ8ChiKKR6Agx7l5qBUAwsSJIwa4LdDeOEhES6enxaBSWlhgjnvmu6nu7ftz/RrOvU9t9/Rp5+4X/sWBZHfSP6VzfHM+6hY4Y468Bv/YO23/5wHoD/LVHHPv3gL/3RBP4PvA0dFmC3BcUMeIkhaj3bw77h654vr65V+8f/l+v/JGI4FGxQ8dIL2bXGBzbfTfeTiAGUnoPohRGWgIRv8/oloANHbUaPdAiFyA6IFBQIRJoKNmpYUWMAEIQaElRWDRbWkkZtWd4e4hVHTUJUSxtzKgJdBJ2ojHuBFSUnhjtritzL46UQIh+L2g1ESHgsLS4aPGScClHbJIt/YOtX+zFVgz7buKGKDlEixe1v39xH098+/69fb1f11oHu6x/X0A5dq2oPTGWD3S53k/n/crhQR4Uc8JDxd3b7kwe2P9g2J1Q9ZISUTupJC0F3b6VNOJE0cZdl7y/n2ciuxbPeL9l9/7YjvtiVoAOJJDEhpoUSGklAe1QxL2YNbujROgxeBQt6e5+kmJCJPE9Y9WypCeQ7y99l7+Fniy2u9Zf8xLP+Tc4igsu4hwnlkaXeAkEEtroCCRM3RbtHSM6NmaMU4oQDblfM4kbglJs9JitynERGjXatQIEIXcdo1ATEXpt0GJYhTEvxNeYyJpRV3MeT6hNsWvtFIXxPSbUEGDDGBUDN9MX8MHiVEqMHiUaGz036nschLtkaslSHePqlPPRATEKPZaii1yqOc60FP2arZ2igyP0Y47XFbXO+M7Tmjt5R971lAJd6Mn1gsP8dToT6dQa14BIimsPaRXkcUJZJzjlSELLod6Q9xGbeILOOLMF216xtIdsdULqO7pSoIeUFuoLtKt2L39ujcQer2A5y9gkDk1NE4QrlaeIli+mc/I80JeQh3N6n4AoJqGg97eoTcCFMYl3tGnCQo/wUXNcL5hKRyobNtbRS6S5vAKbSOYvKMsxQTlSlaKdpZ9aetNgxVCGikZKoodohQN3htIw7zeU0aFiwHhQfUboNEna0o0zWrPL4jZ2OEko/n/23mTHtmxL0/rGLFa1K6uOn+N+/XpEQqCMDCEBQoIGrVSIHk1El3egzSvQ4wl4IDpIKEWgSG64X/dTWLWrVcxq0Fhrm5l7eqYiwUng6k7p6Jxjts323mvPNeY//vH/Y5wduTSUcKJ97rGNpztlJiuM1cAVJ3bVI9E4RtPwEDe0JfLQbOlrwWXLgOVcOlL2GJM4Vp5S4NuhcNIVwQh7u8Vqj8nKioAFNuHIVXlC2jXFFtQ4SIJxhX17jdOBWpXRNIy2w+WJ63RPsh6re6L1DFqh2WFHJdYOrSxRPb1vUJt5nm6IqcLEwsaPPNk1WINEw7PfsYknruKJve/YlJ6mGhGZaM2IaGBSz23Zc59uuT0dKE3h3t5grbIpB062w5sBS0QkYwXq4ci+/T2DrUhiUVWO3GKJVHbgSp8Yy3GmDIrw5K4wogx0ZC2IeBodGaUhY5loMcyyBE9mY45EY0lZqEl4G0jqEDsncC1njM7cWUIwMtcXoOIoOxQ/x/PlvBMtJCkU1ohGPMoHuecn9Ut15hITlVr3ZDEYtTgiUQzx5Tz+7Zbx/W/6+/6vrv/XAd2f0rIYvtXveVh0UlzYKsnMG6z+BcMC8wF9ecxlk70CvkhDpMIxoThqRlqZgFljt80HYjoxmhWSTgTfsctHJnPEqsUaoZjl+XVaAEqkkzMdI6UUonQIA1YbDD2RdrmJZgBacGSxfLQfaMwtRWaGRlGiGpLUmIVNnEGQvoC6F0CkDpEJYcIt2rYigiHQ6kQtA8/aIigRIckaVV1uvAWQsTBeKhSa5fJdSqsXhkoWALmwYpfXdAFwFzaOiCVgpVARiFqheMIL2Gb5W988/78uCLwFa2//D6+3mP7K9xIgy3Wb98SsnlOCVgvQbgg0OIblZ8qCCS9gM4NGRGYY/7PnUChiMGpw0mMpBDFkvXy2dvmNhqNegwTQenllgiGSjGOyFQ1ziQedS9OCUjO7QjMNI5lP9hskF57tHZOpiTSoFiwZV5RoHL5kLIVVOnGWA5OtCcaDiYzZ0aUjisXbRDZzCbkqkVg8RSzBCKsyouqoZcSTaDSwPfeoazE8c0qZh+aGKH4WQKc167Cnb7c823ccbTuzecVjEO7GB3CGhkw5rvkiV+R+hWHClkIdYCuBWFaU5JnU8L37S4wJGFWu+YHfA3+IK55biDfPnJ3lU+VZnwXN8NncMp0Lp+YO7Aa1FTI5Wj3g95ZNHoje0GZB6zNZK4w8cfJfc6oUDT0xeqJNpEqoNPPV+ERXEl2KdOWItZ7ebklqcGXP9vgj8WqFDInRdWyfA95aKtNTrDB6z4/dig9jxKXCdjjyXF3xwe343nv2NYjNBOPx0x7Dhg+nJQlI1zzZjCXiV0f8mPgufWQcHYcq8th8TShKMYZcCj1rBlbkxqFl1pgWDMd6zaSBVRi5Phre78+EWthKz6fRcWxaihFMLqxD5MPwzLkIP7TfIX7g7Du2cubq+UzagJWBoTL00fFH8x0nu+azNNQx0OSeqVpxZIWdU12sKC4FshjuV4axzwS7ZjI1K4kUY3Ao23DmXZz4ZnjiY73ibDc8VVdM6tjGJ67SCVFl8sKIh1L4O/fXiCREFE+icwESfBXu+VzdMdgajOA08FX6kVIck3GQ1/hs2KYDuSs0qceKoRpgm5XRgvORK/sR9Yaj1vRyTaDmxJaTbLFEPjfXnF3DwIaE0GqipqcqI5XpsSUvcpdrNrFHNBMah+jcHaBJPaVAXzbcpS/81LznpBtGWWN1IGJAajKCFcgYynJuKQajGSMZr5G9vQZTiFrR0uMlUpay6siKlhNdOjNKQ7G6yGB0Ttp/FosTKmY5n5RKRqLWPOoNRS4GhwxERCMFS6IGcQQaLqDw9Yz91/kr//HLMHGTD/+3fsdvtf4M6H7DtSvTSzY5gw/QC4iDBROcFwp4YXxUl/00A7qGA0UhyIoLg4OUeVMi9Ni5sKYBJ4WiQscea2BXRk5lzU36wqO/Y6BikA1oP2dM9CStcSRUas6aSdIu5U+LomQaZnbrcuDPYGyUDhAmcTiJJNWZjaMivYCoC719Kf1dQFUBKTNw0Q6lRxA8E0UVLxGnBUMi45aQkECUpH4BiHl5TX6hz5df/au9sf1ynyozVX8pv17ezwwU50OlEKhn4KiX9/ym/K0XXd3lxv81tu7lwf+G3fFrQcO8vM6Zf5v3TZxh7ptYY4h0C+i/lMbda3IggtG51PnC1i37aqJZEguPLgypkchcILgENHAUsuZFY1IQlLPZ0OYzdR7pnaeiWrJdxeVAy2ygidKRLTxyixpLwNLkESMPWJRoLFKUswpOC0UbUhyIlZ81dDLDQ0zAIGQUYwpNOZHEMJiKbCq0jNTG0OkDvmRcDoxUPHLDU3vLtj9TSeIm33NsPIHdnAYYgzFmAbcwmBWZSKs9rmS60uOCch3ueeju+MQdT/kGfKHLR7blnm/6iI0VjesQN3Jvr3ifHolUWPE0eeK7/Ad6F8m1wYrlob5l1I5T+IbKrrGcOdcrtn0AU9j4jE7CJj2y6hNxXdMWQULAhwNin3gsirOeR39DW47cno+cqpZr1/Pd+QFfKm4PUJ0z6bow5cyqyvgKnMtUeeS5rWhTQr0jjjWBa6aiVDbwXDtWBNJhhWDIo+NOavDKTfE8i/CcLO+HK9ZDBXkAX7hpB6YIWgxPmzt8PrKuj3yoHvlj+Scc/FfUY0uwCSOGJ7/m5DZ0cWLHkWhaRt9SUmQURzBPpKrmIIap7jBWwSUcA2darqeRVkGd5cvmjmOz4ipBmwYqH2nWJ1QMY+mIRXC5UJmRuz4yVltcFka3ZRLD6La0ISOq1CQ2pWcqa865pjiDFk+LxU8trjJs+kI2Dncq/Nje8L+vfsez24FmgnEMpibLnm/HH9hOgVJXeAYeywY1lpgbBnHsph+wTtjbFb1rUIXoawKRH6qvaXSg1sJNfubq+YBtI90QiL4jZ0GoUH8iVBWxEj7K16z1iUFWZBHOZoeUzCQVmzywd1tOdsdkGoyMjCrc6ResSYympTcbftA1XoV1OnBlI2etqcuJj+ZrRtMhoqiOjNRUaWQtmVwgqwNTII8gismJbD3OJCKGSDPLKcTzrDcULBUjq/JMJRnMXBVKVHjOHLliMmsmc4mtymvSmXmVwbx1ohYmWhBDwjOfN3NlRSg40qwNfzFBXM6B9CYe/9uAuV8HfxsOfDX+maH7k1tVEL45/8T33RVP/hZdBO6vgG1xyQjMm8r+DCx4HakZlsM8wgKioOF1M2UGOpw0JCzJWbbqiLZlbQJFLI/uji/mhkBLVIeTFUZHhIo1R4pUWCK91CStF4B00fK9Ff0vf+SVoYo4ikK5ACSBF2CgBc/EzAcqhkxBMKoUiaCzZkrIRLUYzkS2HFEyW5wEHBHR+VqlC4DSEcEujN2rKWQGkXF+zS9AUl5f/qWk+qIzu3wvL0owWeDMheV7Wwbn5bE/L5P+ll1vzMu1VZSiBSMOg8fJuBgqWIDs5c+F2S1vvr6UnVkcWgpIWl61xRKodaKVExMronqyRMobKUDCIAsIFwqVRqoy0cuOXhoinkpHIi2zLNqRtaIuA9HO2XlNotYzuWwZ7AqyUpfIu/QDPWsqElktVUngHKKGnA3ZObKJnFkxacVWTnTlgOLZpJ842TWDtDQMdHrmn5Z/QbQNfV7zLDe0OfDRfkOwG66OIys9c+OOnFa3RDFUmng3PTFWHdFAU07s8kgUhxGht5Z3cU8ymRHD5/aWk1kRree7fiRN11yNB1oz8VgVRpfwMjLWDZUeuZk+sTHPVNOK83pDNBvGqp5NCDnShMBP1XvUD4y5Yl2+QK4Ipud+s2GzieyHFaa6RvuKoInr6Qfq446r5sj2rNgi/NC+57DaEYxlfb6ntZZv+p4rX4gfRvq8I3UnXMkkB0+u4Qu3HLPnq/NASh3RN3ydBx5jIQfLJB37qcaMkY+lxlYtwxq2mpHxkUN9xZXtyKVwMCO1GKr1d+x85iet+fRV4ewtN13PlT9z8ltC2VKZjJEzp8Ew+BXBrCjGkZpAikJBsTmh4jBlYhCPuIEvq4bBe1rzTKgaooNKR1b5xLtwBOd4f245ScV+VSEmYtXMpfBSaFPiioCPmeANz9UNQWvERCQI7RTnu6qadVhVP98y67DnahrZ2x1F5tS2qNDFguaK57Yhd8Jgv8YPI65pGYygJtLSzyxaLvx+eqAUIbZwzx2DaYjGoiL0bU2TJm7zE0Uth3qNSsKIEPBYM+FKZt+sSFshuppi4Nle0YWIS3CqHE1KeN8TsiMby2BakhiCtHgmznZFNA17WaMIrigOS10ylWb2esVgKkQMVSkUX+ilptVHujJiNFARcJoI2kJwPMrd3ANRLF0eMTog+Zaj3cz3kW+otQcMV7rnLLApI1O2s5nPWA6mI1rLu/QRKXn23ztL5JaEo5iwJJTyGuNetMEXIHaJ/wJEUIuRWcP3GvsUuejU1fIqNXojn3k5Kn5NCvN2/bLq8kupTeDb8D2dXv9jAv7/4+vPgO43XNk2TGlNVRJOw+J0fcMM/WwzvN24s3ogC2RW2Bk2kV429OXP5edrEpHEhkBL8CtaOTLS4stAVk+hnhkfmWltIzVKJtOQ1M5tT14YmrcZDMvXIj/bxJqAWXVVUbC5Z7QtUdevQEqEqA6reS4Lq2IkksUx6txaYaJidosu7KXI0lbE4whYApXMTFFQh+GZSZrFEOG5MJkzC1Uw0lO0WoDRL51GFzB6AaTLZ6BmAYMX6/pb6v0NoFPeAO7CL77xrz7Xzz7ffxOT93ZdbkFDpiJTFvYsIapYUbLqco0vWeslOYCXvfEi9i0zMFc7Y1kMGc95CXbzK890Gjghc4lV5s/ao9QcCVpTEVALx9wRqEhYzKxeo1CDsYzakIzBEHEa52afsiWIw2SlioHohFxqrFX+ovw9n8w3BGp6t8EYZc2Jg27JagimofYTR+Dr8gfIhkjFRPWSiVekmbUtnhU9z/qen/jARIMUR7yySD9PxbgKR0ZXQ5hlAVUKeE2YxrCKJwbf8U38SK4Ma/8JZ3tqeWCo/xmZQpGC+kIKeW5OarfsmwqRxLUeqCf4NjxylQLWJnIRmCI38ZEgdzRqEBpa61hF2K+u6NXz975hfTpS2luyb5nEg/es00QTj5gVrGSkLo7qkPG+YPxnhq3n5CqiVeJkOJrCQwPv+x2Tv2aiMJSJJoKYNdk32JKofKb3zO1hBmEXB4pN+KlF8sjJb4kbSExUGSqZOGRPLA0mOL4dIjYVtiGxymfCeGZUj9i/pGsKueqI8g0hTagp2OaJdZrLqYwbBmc4e78ctIl1OPHsLUkNo1bs0sgoHZ9WwskZ1FT80P6OyTQMUs3RcdVwfWqR6kgwjtvTHjNmVv4zqbpGSIzBUIaa1DQMY0Pxll46kjNkI+TGkbwiIbE7KG5zZrAOlypUC5JHemr22x1GBJOUlZ4Zm4SwpogjSEWiopomKlswVULUcrY19/U1UkNxkavpmUEMJ3PF2axwEml0ZGUGrs0je2loGAmyprcVToSBlspkujIwNC1nv2KlA4NUeFXEJO7dLY2ZqPSEi5aj2fLcrckYBvVU0mCkIAY2eiYWTyoOp4VN7qko7OIztbHs3R3P1ZZdOBBsyyDfEo3jSI2TTO1mU91BOnppqMqISGZVTkziUBy+RCyKMREjeXbmi8EQOJkGNYaoNYmCwTBgONgrVIWrciQVh8gJKzUZi2WkI9DrjlcZzaVE+lZSMquvnWQMkWmJuUZmCcncMeCSsF70xTBXbC7xewS9mOQidpHhBDa8atwVn0c25UzRMoNaaxnsFquGq/DE7//wwD//21+V+f87X38GdL/hGqaR3jdYTWw5cmBx8FyyCuUX2cLli8toKCrOBJR6gQuvrNzPnJcIUIFClsKRhoGaEz3eJMQogYLDojqhtGSJKDVJFSMV6DRvcSn8vPfahNPASs70uiKLRXTWPckCxRb0TgAAIABJREFUDrVEWhLrvOfZ6gIQLYpDZEC0pqOnCBjNnKSAXPMKbuf3VV76tr3S6KqWBCRhsQa0vJZZ5xsPrZabvaEw/eLavF3CnNG9BXQsACYvrN7l+v4yK7x86Y1x5e1n8q9gul9md78G5n4tC7yAxUvwuQB/nUXLHMnsFtWaIhxR2gXAXYLR8p50fs45YzUzQ6qORiayOFQFFUNRQcXj1JAELI5KnkArGh1xMmKAWAwHu8HPSlAoAYzgSUSZTTOKxejMkooKQ3EYCpPpSLVBxdDLwGRbpASe2YAoZ9kCjoYDG05UGtjrlkZPnM2We/MN1+YzU3SM0uBSxpnCOp94NncMuqaj5136kQd3h9VE7GqieL53NxQMg+3YhhNWM+uw52RanEtsjvc0JpJkIDtLQdmwx5lAU53o3BPWtqCWKh6RTebkKx79FVUMSDFcjQ+0JnCVB8zUYeORPitRLf25ImmHLTDhMNPEt3qgZoMtgadqy8OmRR1oVZCQYeUJk9JdC6s4zQ2YmfjaBVZ2oG8hdh9I2TBUFVVt2eaBwXn21RM5X2FG5bjZcZDIaFaEuOJTW7PKR+oqU+czftOSxsRtEdz+mX3nCSaRzhHJA89Vy8lbhIS6gPGRfio0+UjPI8V+YZMdWvZ0VcMzNzAZvBdUEvdmx8l5TIis+MyogTMtSdYYmVsh3TcrsrO0Q0+sKm7DiavxTCVnpHa05Z5e73B5pFRbXLaYXHBm5N50PJcao8o2nThWGw5ux3qKlOjpxaFqeWy3BDM7qgffYFWRaIimJlQVTzaxnSxDV6M58mV7Rd8ajARaDtzmM2fWtMMRLYZpewO1oShcDXtq7dnIIx/d10xUFOuIxfG9+wpjMqrzffVt+CM/+a8hz8nwyNymo8mJb/rPmMpwrMGaQDGene6ZpOJctSTjofT4kmnsQDEwyo6tPOKTcDM8ItU1faq4d7eLzj/R5glrEg0D63SgTzti6ticEhuJ3Ngfea7WfC9zkneWFdGAqGHNmdrMfU4HVlTaY8uZXLX0tiVSI8EySsWkjuAqLDo3zUdxTFgyK3rOrEgYsmZmE1cCMfRmNU9W0ae5R6YYRszL6dAQEQYiQtA1IhNKtbBtFz24oMKi6/Uv51d5OU8vVZtZT/daQco4EhNCmwPr8TP/9OP/xrsUWMUzSsfBOUYvtAbWatgMfh7hKAmvRwZreTRX9K7jd43nb//5f8V/+h//Z78S7//drz8Dut9wPX76genKMvgtJ9ZEKmQ+GplZqbcU8lvGrsDS1kNIqLoFbF1ailw2aVo26dueO7O4M6kDGoRIxlHLRFGhlcREouiaIhEVx1oP1DJw0i29XsDSjFAaJlrOoBmL4glUnHAIUf1sgBAlWsFkWHNgwDPqDiMRM3tvCbilL5wS6HgFXW/AlVzYJlnE7WcyhiwtozYUCjVnImsKBXAYhSKBuXRdeC1hv2U8f7neXu+CQRZW78LQvYKoXwdcl8/oTUn2LRP/j5Zh/Bql/0tDxQUIWgqZwBVeAo6RRIOoJWB+Xgq+mGqWEkJZDClCBPysZFRFUJJeuurNbjJPIi3B2DKy02eCtjyaDYPZURAChY5Ap2eiVkxiyTTMubHQimP2WgeKVqiVF71aqxPODEziMJIxoghCthbRSC8t12VPLQOpWLJxVNJjKAStyK7GSiZ7ixZh0C1VeaLNgb29wSXDVR4YnPLRf0OkonaJNg1kPJWMpFp4ditCMQzSoLVhlT7xLn0mmEwRSKZwqht6bbkqXzhyQ6uBtTuRaXkyLaZE1IILht14y7+X/ld2ZSLnuW3PUF2BCnt5x6NsiW1DNUFdG34XPmHKmo0ZyX7LZJQcLIPLiMm0nPkqf2aVA+s4kv0HjA3sy44+Op6NsJEjrRnRlHHFI1IxpDV7eWKTNhyrimcq6hI42JZVhjZk2qK4OjDJitZuic8fuau+cC7KRlZUXx740ayoCsRwwhVLcSeOckcV7wk5chWesXqPrY40qwqi4X36HpefeNr9FXE0PMg3dOHATr4gU8tnu+LQvaP3NT5b2jywzhNJhSSGJig2zbrAFRNRCj5NfGk6gjFMumbUDWtO1DZyWBU+1zumXFMSEM90Q6DhzNX0zNGtOVBj9JrRbJBkMRj8kGndRHQgOK77kTaeWOkwl1dbYXI1Q6lJFgyOL/WaOFpWOlBJxdXwRCcTR79iXR9YpZ7bdGAMLSU03Lsd48aSnUVtxZdwjU2GD+dP/I3/OxIwecu9/cDo27kcazcMrsXrRJ0iycwMlCsZb0YOCGqVK/1Clgql4DRiUyLYmmCE3jpGKrzOIC7QkTGMdNyUgXv3DTfmEWcjwRjqYaSRgV2a+Gjv8DItDGGiZz3HkpxRIzgdQISTu2bEYRb99klqMNAxEaiwzIDLkOaZ2jTYpRNcxmDsPFrLaJlbKOkM2pJ6fIncpoFs/azhtJ4za+aWTHmJhEKCNwlvAQlL9Fts0C8M3pvOZS86dWaGVM6o+qUmFbnNj7x/PvJf/81/wX/zt//lPzaI/396/RnQ/YYr6JFg1y+9vgBeGhlexP0vJTN4NQ0sDk4Mc186pWJcDm7Ha0uTsjBq1S9ARMJJZHZ/zto1UEZpGV+EpYaKI0E9I34xRxyppWPS+g1AKZxYA4UoLRUBIy2tnpnwZJ0dpRMr1E5LK41XOBrUY0SYqGZgSc/svvSvZUFluQkNs3h/dluBwy2ZmjDh8WQ85fL+NdFIP/9uvTT5fctg/oIVeymZvgpiBV10aZcHvF7DFw3az9ZFb/GvKZ/+Wxuk3gLHV1PCZZzM69fhUg6OmLnkqQYrEz8vDSvIONvypZBR8sIsZtYghaQGj9DQ46i55QtHNpx1bk5s5Lg4XwtP5g4XE1YNYsFLwjNwlU/symeezXsSHU4SBUXVMlEwVEy2IYvlRh/J6hiNncGSeJwqrZxAlV46CjVG5nKtN4lExS4+cCxXbBlxfmRiRS0TuVSMZN7lBxqdUGdxBVrt+V36A5/rr/hc/wUTDdNiwCh2jWghemWtZ8QG2tTzUN9SRDiVls7fE03FWg/s81e05pF/af6as61wUljHAysC7dTzpS64ONAEx+0AN/3IRgyr0DK4wrlKpFLhnaW0Bm8Tg1gaHdB6ZKdfWKUjD8WzPgV+2FwRtGaTer6ZPlMT+aCfSNrgk5DMASOBh1WF0UJixfb8zHN1Sx1gDO+YfEHMiOXIh2BJfsMXt8WYyFDbOQkyluBrxIKLI580kLxHApxlx1k3dONH1nHAJguNQ7qWaDOtfKLTjC2Rw8bxO4lMsSZyxtqKle2oGks0kZ9KxVErTrLmQ3qiLT3vmTiEkShgTYtIS4yZykQ0Z4xT3vc917rHGuGdfcTJnif/H3Ft9uyDwU+Whp4mWUKpCaaGMnHeNfhQIclQxwORgDN7HppveZAtJld8GH5Cq5bfn5/Z5ZGDW/GlqQjWEXNNdj3tNPKgK2ID56rFKvyT0/fc8Zkz63lvDFuebzuepeHsV1yHLzzVHWGvfO++w2Vhsp5VeqY2kUzkZG7oZODH1XfsTgee/Ia96TAiZKP0rClJ5tF8KG0e2aVHKIWD3S2tPDKVntkwYhjmuFWesQWMKke/pa/Xi6bVkLOjoocCxXoCKybjCQJn3xF8x+BbnqzltnzkVj7j8sjRrLGqXJdnfpf+gbvxmb9b/RWHckVvWtp8pjHT3IpFM0UqMGXpDJfZceDEejE5eLJkstbkpVOC10Ajx/nfJRFNS1VGjrpi9kBUJKmYjMVQyC8EwBx3089i+/xuLWUxzF3i6hIzX/qGvjH1LSa6ni1FCoKl1gkjmZ1/5u6tmub/5+vPgO43XF37Dpv2HFYXwMFCE1821RunpAKSsSSUsog6X4FJ0PoNE3cBJC2Qlk2cmN08syoNjQhzZ+2eFZN2zEaHSz81s9i2LUUKQeeCl6hgF4dqpXFpH7JmnmE351mqhpqesDQaDuqxMs8LGFjhGJkzqrktiicQmcuZo16aKkeMlKUHXbVcsQQiWBIWi0pmwtFrCziylBnezXQliKfXxe0pE68Ng1/1DnMpddbzvc3QLtdfFycpL9c3MRsBpgV8v202fOkb+EvUNr1hSt98rD/THr4dH/MWrF1e51vzCUBY9soF7P283YmqWzSWS/fzl8fOppnZrbuwn1otDB7LZ+9RzfTS0ejAREOjkZV8JlAx4gms6eQMlLlhqnEkDHY5cG70J27Knu1w5HPzOx7MDUdpl3F2di7jYmm1hzyrQNsScX4i68zzPvI1XZ7AsDi5K2oirR4ZZc1Gngl2hSsTOx4pKZOk46wrxGWSUQw97/IjbRA++yumqmGQmlpHakYeuWGbH6iKcDM98ehuaPJItBWhamawayw/1V8xiuBQ1nLgQXZMfOAgO3ppWXOmqCdmYT1N/F7vuTmc+NJ8QzfdMI0rwrTnuPk/oD6grSOvv+Yx7uhty6pPDO249DacuPcbvpYn/sP4xHiY+IvhM/d2xdYdaJrAdfxCYwfisKWPnrPfcnJCFGEX4Ul2mCBcd4ntOfHkBuxgEEkcRs+zzQxrYV3D0Hs+7E/svcOIxZlANRSGNHKfe0y15o/rv8LHzK15RrbC+/MDn1mjEnDdmTIWnAqp3dGUR6KB3DhqI6gPxOI46Z56fKLKivg7dl8CtWRup5FqhMfmhkYSqwocge04YvwTrWZSgphqVpIYzRqTLerKbJiRmZ8++xVRLWezYy1Ky561PaCLKeWr/InOnLmWnkLFgQ27cCC6ETBMzoJmhgomt6YLT+zGCu8tZSVEZ6jSmSuZGGKNMxZbJoq1PHLHOa/5vvmKbXVg457YSqJ3x9lklM982X6gWCU55fr5nm/4QiHy4HeMRG7YE4zwx83XnGjYux3Xcc/kPUaV7BxNznxVPlOVgU72tDkwaEvwDbUZGXXNvlR0BOoysk0n6ufMH3cfeGiu6Kk4uA0YxWrmJjzjUXK5pqglGsOQKyZqrEnsfcdof8eYLZNt6fKRTnoSFrWGY96ydYE2J06iGC30psUxtxlJGMSUuc2ONTQMnGRH0Xk+Q0PPSXdz7JB5MkSmomg3Rxl55gstz2ZHMA0tZ2od6eITpbql/Ay8XeL6EvNetHCFrGVJ8t/q5DKvmudL3J3j+OyCdcsZUDCiOBvZNo9w+oE/lfVnQPcbrs3VV/jDE20JnOxF2/Tm4H6ZAqAvWUTWZgEnl95gi3tnFi1xmRv3yhTZ1/8zT4t4aU2hs9PHEvHY1wP+BSzWIJlIh5WJSWsqChuOxLkQyUAHNG/0WYZIYS+3c1l3wR9RIZNIOBJbLv3mvAY8PYUdhQGVllpHymInLy/Zl315D3nJy9ANAY/I3LTWaya9CGMvLVwuzYbfgGN485jXa/vy5Ys+UJdrwMVksABorZl7waUFCOmb6/1Lk8T8D8MTlTpGCjBnrgAtewY8SXa/2B2XgPTWfn8JPomOA4Os33CGiwv6ZxqRBcgx8Vq6voy3eWU7X/WGswHEiCASiMyfd5BCQUmsSNrO+08yZ537OG1lzzse6csBYzzXeo+TwN6sGc2aWJTaDGSF/rK/xZCLYqWgmim2ojcdaI0zibX2JGlwknFSWJURK5lWR5o80lUDa5kw+gPX5UBTBn403/DMDWfX0TIQbMWJFS4Xzs08keULXxGNgWIYpMOS2cieVjJdmPjJ1nyxH5iW+bglGbKf3cSjeFRq/r78+2g2nO0KNXMvrVQcqXRUwz1+itycj8S2Qgkc6j1myNxXPb6rYOt40K8ZxTAYQ2WOjCvHTXrC94a/Mn+AJqNpZDKOuvmJ66kmnO9wjcfagboYqn5DtpFDd01eWYqxxOT4e/c1Mlk2xlA9DTxtKnpa1vaedozcyhPKDS6duHsKnPSAC57ebNkZj5rMTb5nEyGPGZuEQRpWeU/jDIkbYpvZVp6Yjzx0GygTjBVjbjiaFTuvdHWHNQPFfMVzuKYxZ2RTcfVw5nOzR+TAtgrc5gMxrXl3inzePnAjR46ypa7PuDySrWGShtF39LbmKj1SZ6UOHck03KVPjOIptpCsEu2aShOP8QN1esLLmVtz4I5nQmlQEdTNEgNb9Zh6wuZCEU8zFkzdU6zhY7eDYJmK5yoeCLrm2b5DfWCVAqGqaPLEKFvONTQxIlVhN+wZTM1Z16w5s+bEaB0ThjonJtPQNSPX4xGZCs46vjQtZ7MluZFgLaZkEo5JK6IavgoPRNNRF8O7eKLSEyfv+CK3TH6NSxPRNIhxBG0YTeFOvlCM8NPVBx6rDff+mkTNZBw7ObDRI42ZSLnClsRgHC0j2EJYGpH3smErz6gxNDqyziONHHlw80zUU7UiUmMSeKNs88Ded6hxGIQgYKXmLAlFuNOPPPCBre6ZpKbKkaPNS5JXE4BOhrmpLx17bihUVPQEsQSdP7/W92x5JOHZy3YupV6au8/FWIyOM/CkBZnJDZHz8lh4rVy8Vm4MifJSEbok/4WCw2hhlx7Zm0f+VNafAd1vuMrKwbHMB9kLSzMryl4nFyws0MW5KHMLV/2ZVkt+Ad7g5dB+AQGRle5nQCWXXnCGMwW7OFLnm2HkFURcwOVlZFQgUxio53YSJKJewBJcAEFNXDR6hZfRWZIp2uAZiLSz5k4iK9mjKjNAkxZVZscYae7QTWIGM5cS59K2Q2uiTFhlZhvFohJxOvOQcyYGPy+LZtCMk3Gm37mUtS/X6PIzy/uR+Obn34C+F0MIC2V/aSlzeb+8edzM4/0n0//Mdz+d0fMG73t621A5gzuM/C9/+TX/YvPXy+d10emxMJVvnVozy1rriZZp1rDIAux1EfNKYG7VsgS4pc2JIcwA/kWXKSBzuDM6BzknE1EcRQ1JKlSFo2yxeJK2WDIimRZlUlmMFDDJUuw2AIHRtIy6ojc1CUfE08zKSWq1BDwZZZCOIJ6uHgEhXcrA2gCCVbA5MdoaU2ZX7SYNrPVMpz33fMVkKh7EcpMcZEe3tEpROwsJHt07Bl0RWLFlzySr+T2kI8k5PqSPJGsZMYRtPWt8kpmZYuZQPopFjefZbNjEE5Ga9+UzkxFcOOHN3KK1MgeKN/TZ8uC+xYrybHakzqI28g9Vh8u/I3SFWCqsZnp3xeopsl+tueuPPDcNn04f2LgnvrTv2ciAdfCN/sRV/sxz+T1eDT/qHV81P5BLTQgtbhAsli/t1/RuR5VHjuqZxBNc4Wr6kdIk6kOPDBvOKROykI4HzFVhUsOkNT5kqmj55nzC4zmnTNTEKo2ogft1AzUcpi2lUa5izyoX6tDOY6RSgarQ+ZExrln3yrHbcmg7ulDIU+HMii6NUK2p3COSNgRbcxhuudYzUyns2xUnsbwfzjz6HQ/VlqIt9QRMO84hsX7ONH7HtfvEH6sPpLUnip3L6P2JwdbUKoj1tBOYYnk/nfikNySdR8StzRmK5blegQpn33JTnXAmknyhKz3BbBipGMUiIWJUqMuIKUqXE0RDX28YTYeXE71uCGoQ8VTpSB0DRgtaNVgJtAXeh4/YWDi0NcE1iEYaetpy4osYDuYKWzJnX+MppMpwGz7yYdiT85aN2VPCHWdbYYwlu4qk8/7vypFRK26nA9YHfNNzZ88MtEjpebJrVA2T1HwIf6QdDWOz58lvcCWwt3dkHCYItTmDwEP5hslbVubAYFsS82guVUuwLck4UrYMrsFoJmGYzDIPtSTaAmISj/KOgjDIioaBVg98nRNP9ppZAKSMWpFkgyq0ArXuGVmTtaIQZk02lwGRy6Silyk/F4B2adCkxDfnqKp9E5vfJsyA5tkaKHGRCl10x3MMzViG2nIOfzo11z8Dut9wHZ7vaU1krWcGaWY93KxuoOiFOVoMECJL2S6gL27LizuHBVQU4MhL+e6FISqs2VOXgWIMAQ/LyKqJDiHR8UTgjpcxWFxAnizABsCg80/TyMCkZvEzznNA5zIpeB2ZWPM2AxJGlJq0jNtyeiapo9CSFh1fAlQcgzZUErESMZoIL0zfBbjOuodCzdy0o8Xp3CDqHV9QLF/YEbVdwM2rngIqDOEN4/bWKXrRqF0CgH/zHt4CygvAm0GuLNqwX9fHZVY6cMvIfw78t//df4+4V33d//Q//I/8w9GwWx/Yyw2vZYMEC/OoamagBgiKEJah978AmS+f3WXNLl+3APZCWPbQhcUVsgo10/w8WOxScp33n10kxe3L9U94hgXcmcVN3OuKK45s5Z4HPjBpwyhzZ3/FLc5tS6sHZnWbJVORpJBYMzEnNPNAuHnMtmpLnQa8ObMtwpPb0euaYGpysKzSZ4oRUlH28i2TPPEoN0y6olidS/7ScmJHtpaeNVmFUdZsdU9lLRv2bMvAg9zS6hNOwdjM4OYB4es8EXPGaKQpJ0ZpsCiJipQ8DT2DaXFlpGhFLp4/VjsaiUgsnLhmrITiHE3d8+gr7uInJlp6s0ZSQUPNLc/4ssWYBpcdR39LL55BdrR8T3bCWW4ok5Jz5lR3jF0hmy3dqSdLYtIVSe+Y4ppHt2JYr8EG/vr+e/qqcFc9Y6uM2In+eEU1VOzsIz9tLNkKP5oVdSzk2rOVTO3n+cwf0iNThu00EtkzrQ1ZHDk7dIQtlueqJW6FrBW3/RM/dVckG/H+zN/Yij9M1zy2V3w0t9ylgTt67CR8XN+w9w2fnZDMhiJrfmqFaAdsCDgZGbUmS8IlGK2Q1XMTDsgU0C7PpcHR0zFyVR6JWnNUZS3PrMaajR6INZTkqEvBceLH6/+AghD7ju/4l9zwkS/+n1GFzOTBhYmysjgzUVUj7bnhKvU82RWP7h1FModmxdV04uRaOkkUMbSmZ51PGFVS2tLGFadqQ5P/gNiRD6cfGJsVTR9IbcNBQW3mSh/Z229RP3cA+KAfaUqPZkusLDUjxSmazNzDsXdkXTFuasZujjsuBWoZESOoWnblSC0nMBmlMMgajNLokXc6cBMOrMqeXZq49++JzCVJUTCauI7TPEZLBS2FQS11OrMxA7mA2hvQWfpTimJKpA2FoZ7PE6eBWucqTpKaJI5aI1ktxsos42BADKzkNI8QxJCX3pazUa8gWlhpZFM+cy9bktnSa0WQzI0+ULALJLuUUYG5SEoWeTPl5hLyLkH6EmcvYyYvk3TmkYbz+WlegKJoopcV+/MVrmv5U1l/BnS/4RoefqJdj8vB9+qeLKpzK4mXdhuOedbmPMdukouLE141c0tZUt+UFeWSgWSSCphqmad3ASqXUpvHyTzYuZOegZaVHrFEIg1nWjLVfNBiyZoRUUa65SaYN71RxcpcVG0Y5oOPiFXHRnoMPbUOPHBNRaTHcaSlLHb416kGZhkPD0nyDBbVzM910Qlebja5sJeWqC2f5T1OIxVKvGjkfqYxE/SlLD3//xUQA8uEjZfvvaDi/DNt3SsrabD/J3tv9mvblt93fX6jme1aa6+992nvuU01bkp2xS6cshPFIBUE0kiRIA9EKFGUB6II+AcSBBISIOQ/IE9BCoQHEJF4cCSQjI0wnUITK0rnGLscV9Wte8+55+xmdbMfY/x4mHPvs2/VtUVQNVjKuOfqnLX2WnPPNdecY37H7/dtCBSy50S9PGfv3+MInMkN29Dhi3c+BeYAnr/3Lo8++S2etXukiHPkDQbF4IjUnBDibCxKjZLRy2PeBkjf7Z+8BXUycscNnF3lRqxODFLx6UhoAzJzHCPFkqM7fzYvI9OdPc2yuHhrPaxYhAaPJc1h5ShG7aw+lpEeRyBfJlpPh6HDz7VWWfh/98BYlz939GVPkIR4SJNnSPmcR5w8o3G8LJ6i9mIOuUsjXVpRpEBHPfNCY4caKDjNvmIYvPRUsQdnMClhoiOTjr2e43VEROiMRUXxqcNIII8twXsKGeabnczHspecg1vRSYUIFHFAxRDNAQM0knMoLjiamlE8mQxsHJik3PoLwljMkW3dhISAualYV4qkgsuywdg5b/NkJq7tiiiCrFt0KtETHDWjniZ6PaM1T4gxJx7h0XDF4TynkBZfJAiB0ig6KEWmrPqJWjoq2XAqPIc855R6UvCgE2XbkhpHYY+8ciXGr0lmR0h7rB3QswaAk39ELC15vuc4bSnF4caSg3iO1RNO3vK8vYYUOLgtXZZTjxkn6xmHwFC+SzvOSuN1arhxW1KqyaLShIx6PAEtu7Mzugp2/pyTrKniRE3PO/br2LFjt6rI9p4kBWVKPKp3HGLNY3vFFw6vOMkF18VjJCmaBo5FyXVZoClyOR75Fhve8JxjWBPGjDP2AFxyZIjCWdgRtMBYg0/zeVxOE9EPjLEk02FeBE0jvhjZDtdkzBW8nTunVU8yLauYc3JbmrymTBOV6bAxYUc4FjkpQZI5lmokZ5X2WNaQQety2smyNoC/5tas6b2H6HCu5wPzTfa6Ysgc+diTjcI6Tsg4MGR+5iFnlkJHXqQP2eieODmeTns0KjIKsVR22ZokI1kaMCliW6H1FZmJJBGyxdAYSWz0iKZX9FJxI1sm6+drN/N4iTiNlBxoFxA0iWKNhaQkyUFHglQcKWlNwZqGPI5ICjijdLYiaUEuJxKWY8qIdk2kIjJTMBKOvVyiOuFkmAWBD2k0OBI5IiP6qXn8Iefu7vXDssh9YBF2b5qfQD2DlHQoO/+I6qFZ/e/z8c8A3fdw1OnAdjqySg23spljtfBL9ek7g95nfkC3iA8yOsZ7bzG4tym5J3neRZvMJ3GQikRgiXRnTkBNCILIQKsZAcNJa4zYOf9O59/Ta0YkkmS28FAJpPtK0F3m6Zy16rEMUpBpwBJwCJmcyHXEAT2GhOe0xIDdgyVR0HFunS4X2nTn5i0s5fgHFbI7MYDO5fDArOS1CIKlZkeHXUAxvAW5lulTLdkZtMyX7mJvcv/ZHoKvO05Fx+w2DgmHZyTXyCO9nsUdktFTICjn7Mh04kvj16kb5ekXfuS7zoGv/PzP8g/+5m+RvXzJ5XbNVTVfUiH0AAAgAElEQVTQW8ckUKWRkhbFcYg1h3rN25SKh/t3d44sx0UDRuZUwkzGpcJXEO+B6MPJrSTI3fdw95wuK/Zl8zKDWbcAyCJ1aLKIyVAzg7jEnNlpJXCjm8V6JuFEEY1kjLTk88SrdyvcZUWtgpOI1YhfvmenkTxMVHSYNPLGvyCRMxlLGXvM8vlTnO1UDlozGosTwM580I4VGROKsIpHXJowcUITJKP4EDnFkqRronqMg0paRpfPCSzOkKeOMw5gRrpU4mU2Cy3oaMyaJIZkDT5FtM/Y2IY3dktry/lMNBFRIYjjIr1hq3uKXrhKTxjGAjXQlxbfd7Bag3Ps7FPwc5LBPnkKlEYm/LbnqdxyLN6h6wp2fkNWjKx7QZ8EqqsDj0PDnnfJg2Kj4kLg6XTLe8U/wWliZ885+YzeFVyZDSXK4SRU0wk1Hau8I8sDkxEsHeO64ibLSMHQm4reneHMDvWBfpyJ42OE0lnObGSIs13F9WrL43CAqQcS+26iLSoeTwOZ7HG2IE+Opn1EVw4EVQ5rIfQZ45hRVgeK1FCZEwddY0hYTYQkHAi4jWWsEq0Vtsead/uPucxf8jubd6niiSEvmGzCi+KlY2VHVmnPpBNHUzFag0rChhMf1s9JBk5UrGPDdbhkUk/dnhCX8bR/zRArSp9B0c+BUSngplnclZzFa09r1xTpNcFmFOOBQTbkcSCmkrPUYJIiYnmdvUOZDlApZToSxDKZxD6tGSjI48hOLklikRSxS5WolTXbdMtWBs7Mnp1uKKWhoMUw0rPmdf6UPszc2NL1BLOi1Q02ToiJHGVNxUDja0YsZdYSvMMx8Nj03NoLsmniWG4o40AwhigeR4+PHe/Yb1GnG/6h+YMcuMARSGKp0y3X9h3q1JPLwOP0MQc5Z3LzfSWIIRmLSw2jrHBpIhmPZZp9B61nJQ0DgteJtVwzJE8vGb2tiVhEJpw60tJxCEtikWjCSz/PWffzt6I4hMTbOMa7KMe7dipLYWC5z3yKR224d1mQmV4yqqeVGqcP3Q5+f48fGqATkQvgvwY+B3wD+DOqevsZr/sLwL+/PPyPVfVvLM//KvAc7lPL/5iqvv7+7vXvPc6Mkg3tct+8Wy3cVXcenogsz3nuTHVHVhiGhcB59960AJW7cnHGHQAKCxxChVwiQTsMcz7qfPMt8XKAJdjdLC04xSMy4tSAOoJYelZvBQCLLcld6VoX/zPPCScdVjO2nFAsT+VbvNT3ONESOOetGOGtx57eV5hyHhr5KnHhq90djxnIzf+1JJ3FE6MoimfgMele7fu2mnYvMFhWYHYhwuYMWHoOM6vswfdwt+JL9yX5+bfPP5u0YBOv+KnTryODI/qMw7Sm8VvWQ0P08P544mn2nJ/88s9/1znw+MUL/vyf+bP847//9/jmNz7kcLqls4rThowRb2r2h4b/bv1jUDqwD/u6DxVawn0erhicTiBzmsSAn9WhBJp7kH/3/12l7OGYTYcz6Rk1uwfPhTYIikuBHs92PNFnJcaApMioBYVpKaTCs8cnwxQizoBJgSnzJBJBMgwNRj1psUapuMWQsY2fcJDzuYVt4lIddhAShTQkLeh9jkcp6KlTRyfKwa0YbM6EEIGSeXWfh4FtPLBOV3zsf5Sekqi6WDRsOfqCi/EwO9czkLxwYE2WAkYmMhkRnUkBk1S45bqZ45Jmj6oTG56NNySbY4YGV48k5nRIR+JpfM1GbyjjkQsanqVr9uWaQ1lDdDQmUaQBT0BkYrBrcol4IqNYkIETFXmAQ/mcLCUG1ph4onElcTOCiRyrDeotj8cdyRgeyZ6xWhOnLYf2A9CRLk28aVfkWc5tZohywqTIo/YNGROZV9SMkBUcI+xswSdZzZENmim9y3k0ZextxZYdwVu24wF7LAnOkjLH4+GG83jimf4ml76kSefIuCW4gujgVCYeXd2yKRx9bjDeoNGxl4Lt8Ip32hsK/wmdfEArFSMVooFGPW2e8xv6HgbleX8DqcINR27Oam7zc0apqBl4XVxyyDb4UHB0K97pJ3bFJZU5chFe0nFBnRpeF8+Y1JOlCTVCCp5sNIyhoC8TU1Bu/HOe9zdcyIFpFI6hYDXdUPYdwQtXxQXv+Gt6Crb2mn3Y4qSlsY5H3RucSSSJnPwKwRBCRjatyUKLUvCtasu12SAkCiZWoaMtKqwGRmrOOCEROlOwyixn6YSLHWIKaj1gpzTH8qWSVWoQO3Frzwi24EYumLRgFItjZK23PEoHNEDIhZNWDHbmjJ50DRhK6anpOXmhlxoksNIj63ggRUdkw2roqN2J0tm5CufW1PHEJras5MC7+jHfUs9LJ4wIkRKRRElLHnu8TBwpGcmXWdnQy7zYing2ekOQCyIlUdxyh8wwHCnpiXgGCgIzaK85stPN3KC6A2R33RgJzLz0gnsh25LPPXe3Hlb2WF6vfDpNSMAomQ2M02dya35fjh9mhe6vAP+Dqv6CiPyV5fFffviCBfT9B8BXmb+dXxORv/UA+P05Vf07P8id/j3H2ft8PAm95EuV5E7EAJ+upCxu1/c3YAUVvERG7ipay2uFBQjd/ZIZ0BgSBQcyDLl2KEJJT0tJywoVA5zP57FElIEJjyMQqRcRhXDnXDdvv2POjwWYKxGZKEl7KumIKozkRLE0uqbg0eySTsE9P1BnocdMuJ+Imi0cwfCglTwDR8u0+Ni9FYQI/dKQnpZtzhPX7EWUPzgGdwKHuTonMqIqOBlZ657zsOMiXPGh+4DBeI6yYRTmz6cLWBJlVvROoHOLJJOJi3jFxYeGn/nc+zy6fETz5oCmivT487gicnHxs3z+gx/h+eNnn3kaPH7xgscvXvyup8n/+r//Mn/vf/odfv358vXfA7mHQPXhOeIYF/8+JwYvI6hQSAfMVjAdZ7w1Sn445u3ktFidGGXmYgoBQclpEAtBCjoxswFxhKQZvaspOdGLJeqK1gRKP7INr0g2Q9MtjakRFYzMliK5BAadw7tXHFhpQyNneJ3bqUc3B5YHm6FxXoxomiO5ztKOKrVYM9GYFRmRIIqqUMWBTHoUSy+ek/mALlmiyeZ6psyBeAFDsI4QhMY+Q8LI0ZcUdqJIiZQcUd2cLaqOhg1lmGuNZ+ljrrnESMZ6GIh5zpV/wkFrbEx4admEPe9PHzEZQ7QZ/Wi5KgzrqSW6HTtzzr7KWYcrxmjBGqKNdNGwTVDGgq32HIxDc2gl0Y4ZSeE8jnQhoT7wyOzpyy27/IzNQbn1hqQ99dhgVTnGDbltGYLS+YJhLFhpi/U9G93h4oHxbIMUI760PO0zPqyE1uXzfW8o8OPAiKOjJjlBNDCaiVEiX3C/xaA/ymBrWnfDanpDSIGX+4lrP3KUHBiw9Q0mvWYqj5zZAlOu6KsVUZVKDV3IOQ1bCnPNNnRchQpjYLCOzq7JTOCVPiE3A5ZApcqugH5VzakYqeZk1owxY9SMoVh8JF1CBkMlgV4qVqklC2+Yck8QSxDL9thTBMEPliGv2Y0OCsGagYNUXHZX5OOKZ/E1Kp7y4Nh55XapYnkTcSEy1p6GGpcMPVsup484H3aEfE1whqPmDBR44E3luCk3IIJHcVNCdbatEjtSqCeLDa1Z4TTRxhWPphMnU7LTc6qhZVde8ni84ehrYowEl3M0KzLpSCaxGfdMKWM1HZEicGW2aDZHtk1UuDRSpMBoFAxMYjjoir2sSUYQgav4mIY1mTxirTfs7PksiAsGMRNJ59zu3uaUammX98al9akCQXMsR9QkTEhYAy51RKt0bGnkMcYpGz2Qkl9M4XUpTsxzXCYRmxJGAlFHEgWGREuF4DHM8WP39l/cWU492I4uvLmHxYTFdWCu1t11cPr7+dGQyOOITzC68Xedq3+/jR8moPtXga8t//4bwK/yHYAO+OPAL6vqDYCI/DLwJ4D/6gezi/90YyguuB5ueBvy/rDFN6/M76t16Nyquisdi11i7e9u5nc3+Ym3DtkzuV7oKUk4TfQ4EjVlanAmQoqocfcnu8jAXBGbczBFlIKRXiBovQC/uwtgrgBmMpBUqSTida7GocIgMxC85RGVtBjgjFtaSqbFd8/KQKk9oxRYPEggkiNMc7v0js8gD0Qa3F2wE4mMEbiTmSccSeDTrVN9UMiaQPxSeQy8O36DL918zJe7W1Z7uM1ueDWtaM7gHz36gNf1mpMUJF3zFlAPmAXMIOCM4Wb7hJ/+mT/Jj//oF76XpwgAyQ1s5JaL7sSNW3ID7yuVd8cl8TaS7W4/DRFFFzA2aQE4cgl0ele5nOAzOIXuTmkNIA5FEdX7becMTLYkIQQ1TLrBMGKWympOAxhymRA7pzmcxQE1FmUiIiQR5nSGSMGA6GylYzQRjKV1W3osOZHEiE8K6nB2BtSNXdGbgt56GjxJMhSD0tPYioYSYyybac9EjqohiWBMj2PCyoCTgiDCya5praOxa06uplclk4JL9pRTQ7TFElZi8DKw9dcMqZ4zPzXwjYsnuNSzSg0TGZM4ztORC/2EZCIjFW4An1q8bXC+xkhOaQ54hVJPFJoYxZGR6L0lyoGL40QpBgkrdHTIyaLTmspWGHvDyu7ANLSsOOqaN/qCPoejb1k1gaME8tEiB8OQryCueD4dOdqMIZtwdHjTYdctfShxVwZ7nqGmn42cR0W8Yk2Dc8KFdsRiII+KNYmLsOfR0EIcYTqR6wRWqfUWyZRUDxhbsrEjuwlCmhiOcDG8YrLPsOWakpGDXOD6gUo9UjSMzlGfRvbThq1rMIVgvMeiRGvxbcJ1E4Mx3NiCIZU4BmJrEaM84oqP8sdYFR7pGwrXE2yijRVJPUGUkomzceLR6TW7Ys2j/gYdDOf2mt4ETqunnLSkji3XtmAoKyIlT3vPo34kWYN6T90GyHtwI3025xXnpseFAyl3mCFxnt1wVMtL8x6TRPIZ4dDIhkkyRuMQbdnQUhctMb3Gy8gm7JiSZSSjChNdVjB48JqIqrzRZ0xTwSAnjpITvCEai5KIapAEnRRgoHE1TnosYfaENA6jkZUeMRNkvsfHSFJIcqKnIBiLi3M04CA5B1lxJZc4Ag6lTUIyGSINa5nYpAPP40tas8IT2cYDja1BEyPZnIyhSp/lOOZjmKXImRwI4hi1ZHF+Y623ROCWxKQFXmbKEKJUDAy42ZhYFZU5AcLe3S/vVa93lbY7H7ql66UPzOV1uYfeJxHNPqtuWfDd8aQv9ZoX/Rv85Tvf4xn+hzd+mIDuqaq+BFDVlyLy5DNe8wL48MHjby/P3Y3/TEQi8N8wt2M/sxkuIn8J+EsA77///vdi3z9z3BwnjtkjjD6MIXnb4suYiBgyjYxiiLJEgt0Pu1S44NNAZ7gvOzud8JJICo1sZ7BFixXLiYqduZjftwAEVcOEpZCOTHqSgsNSCrTSAjnCiIpDdECloqQhkfNMv8WBc5TIiTWikEtPr3ctMKXjDM+AlY6k+awpkoDRwHCn9FVB5S6Hb44qg2yRkt99Sd+hSr3nRczmtlHuwMoDkQiyrNbmxxU9F3LgS4dr/u1/4y8TErQRJF/xd/+XX6I7/BZX9U8tFcWMt5wvTyIgMqujxCpFdoDygWXJ93A8f/Ie78vf5ievd/yTFDgVc8IDuUMxiBjqtGdHzUg1H7vFRmU+OhlGRpSRgYpGiweT153noGU2K4aNHBCdZvvm+2NpSGJotV4mT0PSiF2sUSYjiBaMZMtiIC6KWeVgKyY9Q9w8UYeFe2gRevUU9HMMWDL0mtPaCqez8XGiYCQSWbPlDT1pJpTLDFWj8VTacysTqg4jkEmcifCSmHA0vmRSTwzCJIlcIGPASct5jNQ60DjByEBPQZ4iRRjmPdXA4HIyGqIIPk5YTUgK9OJncCkWHyZMUkaTk8cJTGIbXnNbXnKIG6IUnKWGlBy7WGBSpPUFk+SU7Pi4eM7z/jUTK87CjsusYU3DNusp04p6n/hmmTGOBasxsR2uefVejZfEaDbYmNhw4iYF8lhhjgeejA27NJCmLZ2cgSiSwWOJZOk1o+7ZmGsGW0AcEdfyxm2oCxgGQ9KRiCWfDEXT8VRec5bDXhxn445rX3A2fkg2KtXNgE4XXJ+v0PXA61hTx45SPKVmJKlZO6GeJtZxNxMfpGdIEy5FVnrgk/wpbZcxPB4pJo8Jyqo74aoJMSNqItkY8X1gm1p6lzFZjyvhIGf40aACuTRgDeU0IHlirXvOhp52zOnTmtK0XE49EzXvdw1DChR9T9WP1IeBspwYq4xiOHKsakIsSB6ex2viAJoyDpVwKkquVxUxGLJcMBQMVjiYNVf+CaP3FNOEySyP21f8SP4tatfxcd4Tm5zXxXMkOSodqGPLeXjDF/uvUxYjanX2DtSBrvNkpTBITjSBD9MzentGZA6XDxR8ZB4xak6tB/JxJGaOKJ7O5FRxYtOf8DLRSEZyGVg7g6xU0KaB4EvEbLESaFI5N3/VIDHdJ85EZq9CXZKGBIhujpEs1GIZCdHxbf+Ezq4QJpAZGBmZUBxGdZHize3QiGHLNZ0WHGWzLPRynmjDk3TNpAW9zckkoUs/tWLEpIg3JZCWIsMMTWbLKl3aqncL3DuqzEPu8YP7ggzMVmB3NJTZTcLoPM8YhtmqRveUqee83n5f5vkfxvi+AjoR+RXgs/pS/97/2018xnN3oO3PqepHIrJmBnR/HvgvPmsjqvrXgL8G8NWvfvX7xoDMcuHx4ZpQJTqx7OQMxHPnZlboiGjiSXjNldtyKw95Z4rTgZyA15aOMzLpMKI8jh+j4ojRk9nIMZR0dkXQRBC38BKyWbnEiFmUhehERo+TRMAvIVwzy2zWNVoM01zvUYtIvlycSsZAkoxJ59ZBJDCwQlSAnFsqPCtqjlj84ok2V3wCBVbiDJIwqExL2/jO4+7OXHm52O4vVLiPBrurUCpLyV3mahwWIS4gZ84qNQQyIhtObNMtTJbi2QzcV8tmLy8u2H4SOe/3pCJwuOMjqpDJxJyeG8hlIgWLzWqye9n893Z87sVP8M//0a9R/29/mxcv18S+R+JE8nv2T7YczTkfuUek8wy9F2+8bcPP+aqWibN5ChNd1p2zEGXDLQ1bhBMTZ3RkIDnoQJTFqJg5kiujwTLQaIYjx9LPKswlCszKTF7P6PASEJ3tVwYpERRDT1QDmhGwCImJjHYqySQy2HJZGQuzlGKOhrMqTMayHa8wBiYpOJmKnoJBKgLF8olk8TWcZTs9GSMFZexAHMYYjJlTKoIa1BiCTkzuDBMH1AY8czUnaUYvGa084ixeITqrt8VNBJvNwgEzoqmes4pJoBGfjpQ2sbIH9qwJJqOXipQZjLslmpJ1aMhloHNrWlnRa81M6e2YzMhBSt7kF6xNz9no+cAnfCxwYQ6jO63XDGLYZ2vafIDoeTI0dDiUGZi68BgJRzanQJ5NVNGSlTuq6ZbLzUtu5YLoPDFWpCZRuB5jPOtxZJB3qbtbnjYNdhDGlOGd4FLAF5GcjudtQ9GMJC2ZkudUVXw7q0m+RjC8yxVPpoFzv+eNr0it5zQJ1+GSV33FR5fvsg6BdvS81x5JpsRpR2JkKzcUbuQZkbF1hASH/IwwluxjzVg6unzDdX6xGF871uGWQltGZ4lTyXqMFOGEUcvmdKCQktvB0Rc1N6lkNeTkavmkrgh+pDZ7JG/5ZlXxuj7jyDkEQz4lsjRw6y9x+cgUYG8fU6aR3B1mxb93dLHkyl7ipcdqxBiLGvioepdzPbCTT3hln3KSM5qzCjMNiFhSshQpUvcDB3fB0QVG6+jIGA1s7Z6i/5CBmqPztL6kMSWjOrKUYIm1y/VAY1Z4bknRY2Ik5jm9NWgB703f5OgfsbdbWgqMJoxNdC5nHXac5Bwvgets9oSbkmOrB4pwSxLDzq6JNmKxWO1n6CMTSIGNyjq9ITjhKOdMqSQTCGrxpmPCY0gYEpkoe624k75pMuSxYWUtzkQO5owr+x6BAkmR8/GEWsMklkzH2aTc2GVpGAhLt8fRLBGVSuAuqzo+oCA9NAuef2YJGJ3dELwEBgYUR0lHXPZfBLyM1Axs4kjefdqp4Pfz+L4COlX9l3+3n4nIJyLyfKnOPQc+S9Dwbd62ZQHeZW7NoqofLX8fReS/BH6O3wXQ/aDG595/h/X/+U3Y79kWJ5rM0Zo11kSKsWOTGtppS2kaSjew9R17U9FLTRYClSa2zY6yPPDaTIhPuBT4YviQVTjxofkirc2pYs6YtURXLeDHECXS4ICSO9PitZzodLY2mVFsgVn82hKWnISjY1zaj8psAHvkAseAY2SkoiUjiFDogNeeXpTAGS2BhjWGdqalYRcPsjmEGRz3Wbb3ytQ7Dt1dxe6uRThyr+S9F2UY5lt1JKfh0XhDFOhcRcd2NphUIaejoOOL4f/mneaai+q7i73bZx/wxV//Fb4x7AjWE32DpSPh2caGvakQDGs9cjnu+IoXLlffmfbwvRneen7up7/GT3z+p9m/OdANAWcDqfC4YsOvvXzNX/213yBfJ6Ysci+O0AA4vEQSBqcjhfSozkrgy3SFIbCJB5p0i6TAddbPIeBAkPoBeA4kDQRKApEgJUZHjEwkncO0nViSzmrXNT2l9kQcFjgtopmRAsXhl1SQTI+M1BRmZBDhTFpKlBM5lgzPRFJLJi29tVCes467RUU6N2eCVgiCyhzaU2jH0/SGoCXGKB1zooNJIylkqBM6ClbmhjI1bHVPHY4UaSABY6yJYogIlZzozAo0o0wd5dBynt1yqxu6bM0UPZiAi4mJkiSeaEqe9b+DOEvQjGAysjSw0hNjbmlTxc6ek3cDeZ+wVnBOONgV5mRYja+52v4ok6uIriCFSF0ceTQcyKpbXoUn4CJwxmtZkccWjY6jh6fNFblJ3NgMkzVo1dNJQqsRYsY77obSHMiqA3Uw9DHRmBWn8hlTmbEaHbfrljQFNoNQNmtuxGFSpNQWf3viHTsLikJs2bmnTH3BWHiSdRhKhpjwJ4fiiG0JVYlNBbWZOKYzsDWu6nA+Y9UFhkzYmZxoDM6MFG7ETRErwm18hq8OTKuJ9XSkSR4qw7HYcKIkyKx+rE2Pr1tM7MgJuMnwZnpKwwoTR8qsxalgLBQnw+XQ09UZiYYMj7FzxbQzjiu/QU1iEDgLA1VUqqElq/YkE+ncmt5BbzMKHHXsmIyjDC1G12ziLa0pUJ9j0qym/Si9z8erSxpfU6QRxjQbcFvHaEqs9gRfEn1DpSNT9ARbkBw0K+VyuqVqA4fwmMGtaMgZZEVtTjiduDXnc6tUBWPm2bvPakDxTFjT8zp/zJhyqnSilxycxZth4UQWDNGhEVSFTOJCp7AMZoMxPV5mqU+MgVIH1nrNwTymNA25HDnaNb2saWw9Jz2o0MiaiGWUglpPgFBoiyK0eAYq3ricNQcmV9JhiJKBNtzYcwyW2p3IQsealkwCQYWkgpMV2RKT6DRQ0tNhsRLQpZNldGRCMGofuBgkzKKqX9FwGa9Qaxg1o2X2LS0YERLt4uOZM1IkxQzun6lcv0fjbwF/AfiF5e9f/IzX/BLwn4jI+fL4jwH/rog4YKuqVyLigT8F/MoPYJ9/z/HlL3+ZP/D1/5mvfzzN1qoC5+t/hEjABcV9ZDk1huAiZVGRX5zR1Wsas8EVW7TrWbUd67SjqU+Eas3IgYuUcebe4432HIzn5vAh/8ejF1Ae6KxlkArLrD6CRCUdgqGiJ8pcmZtBVLbw0eZq1GxWkmGZA7jehtg7gjg+UY+TQK6BpMVc/sYxUcxec2SMOoFseCv4mGtF8R443BFZ51aWoHg63FL5mUhMqQajcz1M4G3UFZilKmfUUKaeJ/EVMeXcyGMaXbHpjzyO1zx3H3J+GvDHiT/wR/6F7/punr//eX7qx/4k6Tf/R367e8Oty3AeYnA48ezTORkjj1PHTwBf+9qfZrM9/67tfK+Gt57z8yecn383+PzHbz4BPxK8WY6FIkxkhCVPd65dbeXAme7YtHsKRp7HVxTSc950xFePMYXlVz/3Ab9ta1SqBcw9UFmLJdOOQQpAUckY1KESsUsbOpHIiUwUOJRcBlqy2fAXg5FEzkBOT68FgXzmnOEYDEQuMPQMUqLkGOlR1bnNuVj31Hqkp+ZEQUe9OA3O9IOMyNPpimdccStnTMmTTIYmxes0S4iiomIYzJqgI5OAJEdHhVXDisOsNmXLyazoNcNojZeOojxyIR+xNxVrPdDENUlzJjzRGmxiFtWYDSSPCRbjEjZO7NzZEjtlWE87KlXyITCUlov2Yx7rR0wp51Re0GtGSp5bzbkuCkKMvFzD4+lEPMHOrrApkaynGCpGMxIn5SSGaEaECTEw2ZKNdmju2Jxacj9g+pGdfUYrNb3NGU5rerdC7US56lnFgUddIMYMOwqFCn7cM2wCpUz4qJyaDe1g6Mpz/GBJK8excEx2JJDzVAtWw5pGLyEqn+SGHJhGS+UCYfLkNrL3jltb0YslxY5tbHh/9yFKziv5HDfugkP+Lj6daPOSOg6c/IaRjGlpt9ti4HH3EqOJa7/FhkBpejopGW3OVCkFDS/6V6zTDZNVbvItYsc5gL3qCAVkOiDSMNpLPAFL4uLY4CePdw3nuuMkjs5VS1XbMorHEtlzQamvZjWqFlykG1ahJfYrep8zFQrGkbC0kjO5gpnX5cnSnJv8SfaIgopnfIsDGwatKOgoUs9ZPPDKPCcZT2tyDEqd9mQpUtIg8URLzcluuPFb1tMJnwJYw2gzstQwiczcthTINeJSh9cOtcJl/IgUX+D6jmElc1KMWAYKUnJsUJxGkvZMtsTESM7AhV4RkxLV0pkL7EKqEFX0zjFA5u6OiCGowaURZ2axgk8TUXJ6qajTicE4osaFT5fjbaClwpk5WSVhiTgq3VHLiY4VK1pQwzbsOfMnWi2oaAjkbENDDI6TLclSS2cyjMkwacJq5Jm+4VKv2V4fuCUb38EAACAASURBVEw3TOp46Z+yz8/pTM65NogYtunE+/sDXzgp7/7YT37f5vkf9PhhArpfAP6miPybwLeAfx1ARL4K/Fuq+hdV9UZE/iPg/1re8x8uz9XALy1gzjKDuf/0B/8RPj22m2f82X/t3+E3f/vXeX11pOqFIg+UtaWsn5LbLS5cE3ykfPo5Ls7fJXOGMSSmmPDWkLnfvfx797r/9r//Rf5uc4MaUBxWRyBbcjQ9hcw2sJnOrCWWi3Aed5WvMMe8MAdhWxLjfeC7Z05fEFBHlITTiZW2ZGnC25aDPlok5B7RaanQ3fnlzUrXtzYlSh17tvGICqzNiSydkChIl2EHZTob+Th/h6NdM4pimEAtpbQIQqU967Hjndc7aq2QOmMcDY9OHU9oKLMMzi744A9/ma/+7L/4XceuqnP+0B/5eX7sJ7/EoXvFbt8w7E6gDUkcWSyofMHqcsvlk2dcPv1sBesPYmxi4smw4xQMB5eYLV4MOS3+3pfQcK7XXEzX/PSHX+crz/4w0/YFx6uX5P2Kaopcvfk6z59d8w3/RaJZzoEHoC6pEjBM6hZLGO4BtSznkl3MlJOYhTowUuBYy5GeAoMunnOJmhZZlMu9nRNMJhKeAic96IBP/dzC1UhuJxoqbt1TBnIe2nFHEkVqqeiXW4rl2fSSzAZuUiIZIZOGIo34aeTaPmdyjoNdU4QzyhjJU4MgRFPAYqR9oTcEssXaJjJKwY4n5DFgjGXSnGgNLgUmk5PFkZNUOPMOagUVIdMjZeqxkuhTxq15xHk6oM5SjA3TVOM6QzRbYpqrJLlAHyLBWrJxoHTtnNWqMOWBphgJWrKKr+jNis4kdvU5dWgZY+BSbmcAYZWpdAw2R4yQS0efV+xZYaeBZqqZUkbIHefmREaLjxadakKISLhFXElX50wbYRIHbkdqAqGtOQ0VPk9Yt+dCT7wfI8PuOU/inrzt6eqKU2/p8nP6ELDTgc1wi4+eR80bvlFdkFlPk5cUsaEfKw7dBR9nL/jEvseVW5OqiZoCLwOVDZSpJ6fDS8W6OyFieRpvaKQgpis88LJ+xsGWJOOYDAzBc7Ves+WaNVdMk1BqyY3NMTHih57rcstgH3MrWyQkTAqIaZncimQqUniESy2VPdGXliIWdD4jjwGxQlLDmd1hg+KnCE1irVfcporBej4xT5ZFR8CGkcEUc2SWGiYVOl8gGvkmX8RrzxWX5DIQjPCe/QaFGbgMe9KonOwaL7NvZ60NrcyCNTGBPE0EB16FUk/s0wqVc0rpqMMRpyNWoEodvQRybRlSjZdAXbSgwhgLBlNhdV6AOenIUsLqiszNFi87HpGlll7Wi5eexSWhTg3rsCe6xCTvMWmJQcnoMUROuuGGmlbOEKvoLKVizokYWGkPE7QuYRQmaxhtjkkbGsnYpGaG2+rwMvE0viYN8Hn9CBsDL81jVtOJLpxRqCMNhqRHym4iimJ1QGzChsiT+Ao5ej4fHJ/78a9QXpxzuja8uu3ILIjxnFJPmZQvbr/Aj37t53j+4z/1g5/kv0/jhwboVPUa+KOf8fzfAf7ig8d/Hfjr3/GaBviD3+99/P8ytptn/Nw/908HBjL3ewO573zdOq/wNw22FKyFlR7pTYnVsOSyzrw3T0tFjhWlYf2WQKozIBCZyDRh0syqW5kTQSMtG9zCVau1RQkkClbSEMRh1KMSZl4WCRHFqaIy34hn2cVAEEOms2r23dOJP/TRb/POasIVBSsCrn7KJ21P/+rvc5s5+iynoyKRSGqopKPQDkfiglsym8jNwL/ypZ/hC1/906yygtwavDU4E0hpwhiPMdlnHr+qzqnqd3jB/79VTS9qw5emHVPXc1PO5PFJHYUduFZLqS2VNrw/fsxld8P7puSP/0t/ivzZB/fb+PAffJ1f/M//KtZGrHQgK+6SJAAsE0Fyer2rsp2AgpwTDWfkoae3OYlEJzkGIeqcdpER8BKIjAiWDUccLTkDIwUDIx0liieKLtKgOYXCSmKbXs8cz5goY89FesnenLHLztEF1ImOiLGEyXElTzBx4sqfg0AUYZIMl+abo4tKTI4QDJPPcUbprXCejhib0GSQKbGXM0pVOhJJQJ3l4M44pBU2Choi63SgdBYTezxz9ueec0ZbMKIYIxTJICLs5ZwQcpL32GTmm4rr6IuKksCbtCbYDJsFch+4iHv60bAPl3w9f59VbEhu5gRNxjBGT2ZbLnhNFws+yR2TtRzihrPQ87wfeZNZbrOa1hS83lR8LO/AOJBCRdE3qFjO2luij4ToSNGxCjv6KZJPNVXpST7wG+Wa5ITX1XOepki5bdCD47EaWB3IueFUOiaF0hi2Vxnr9YrXm5xv24KTyZlioLDKmDrqsEMVss7SnK25cWvU16wksDcFn2QfYCZPVxiMLM36kFi5I5NWbE9Hvl14jFiMU4xPDMeC1+snDEXOydR0buZ+JhxDyriVc4wEarvH+CNtUnpqdtkFyfUYacn6gMktGj02OPwgnCjYxANrIr3PGUrH3uRIjHRpzUjJFEvGVBPFzya6rsdXykZfM7pLcjUYnag4YRV6W3E7PWYMJSEJTV6QIjSmml1DNWMiI0sTUSxrPRLNS679ljpNEI+cc0JRnsSXfMu9Q2SOTdykE9nUotYw2A3JejpyVARnA++ml4hY1tMtH/v3mdRzyxZMYkw5wViinRXyRgOVuaUMJ/b+gjF5Ah6RnoGaig4fByx+rsppRh56KnOiiysKGRjFYhbZQakDR6lIS6qOYvBMCBMTCcXRq8zCqTGCt2iaOMk5rVkz4WZ1booYE+nJ2aULnnZ7fvzacFZndHKg0hXh5oYpCMbX/MRXvsKLH/sCNQP9YeA0DPw/7L1Jr23beZ73fKOY5ap2capbk5ekWFiiooKREAGOZccWHAMRHMBuBQgC5Bfk7wRIN0krgBsxkjTjhqBYjiVbjsVIJC957z3FPnuvapaj+NKY69JhyKiCaPnK522eYs+9Ns6cZ8wxvvd5ai+UrsQ7x/b6lvXNDdb9dIpt/67mjSnic5g8HrnpTxw3Dq8BjNLhmC9HpcKE1cwsC2sr6lLTNpfSQstrRtaoejKGZ/MdN+meZKExZ5RECoaD3BKs46HcERGCeLJALzWfVSVAqXVggUrMBHWc2CxKMwZqIn423Iae6xH+3t/9+3z4jZ//4Wf513/0bf67/+lTPjENSUrAkkh4MbScARYrgWkQ4zi6Latn7/HebvP/+akU/78Luc9b3nr6Lr/+5Janf/j7vKz+Fak2HKsNuYa92fH4fMekjtt8R3FOfPXZz2PbH533m6+3nN+t6HVFTheY8Gd1f12KFYv+q8DqZ+WHwEaWXa1CJ6xOIMpJr3EyY6TDxIzRiWRLnAiGGS8zPStmPJEax4zh37RpIf9wB2+b7om2xJKIWAZTk9L7vLLXCJmZRQtW6bK3bK2SsuWueoQjs5IDJobLImgBXvfGXAwoLZqEORVYnfHJchNegRGyMQRXYUOkcBHLRC8NB26YpKGWHiOwlj0uKcbATu+pcwApyHjOboPkSGcLfDZYRlQs7433bOeM2o6+LIlimJ0jzp7RNpQ50OaeloFc11x1d3y/+AJ2hHPeocFh64HKZer8gDOQpORQrTAoVR459hbTWubgyamkHBydW3yZr9clFYH9dcmjfU/ZdkRbISYzR0s/XPE6rii9xTUOb55Te6UpJj5ya+K0Yqwt4zsrXLfhrlnRlp5YDcy55iqd+bSCSmYsjp0xHP2Jzlu8HckDdNGjsxJaz82wp7Qz32+v6L3H2S1RLVhhKjwtM4mCa/0u3ibqMJNqWA9HUukIseK5fcwsFUUQkiiFH9AsuEmIkujchkJm7iXh25FnfEqe7thbw4krdFqQULNbM9BQ5RmT4FisOFQVKd7QjYHsDZ+0G86+ggKupz2ShJtw5kpGDjHw0jxF7YrsHBM1g3jK2GEnaMKEcdBX7aKnSyfW5xkzRl6utgxSoVY4uGJpV8eZUWpGK2zNgbfz95imHScatMj0zvAd8zYH94hJPAFlVsNV7KnMyCfaUDOiCDmDlZ7JOgqZeckzTtIwsOJoNywKwxGnCUUoNLLO+6XIZhaUkbMLBqlkwU1V+UyQNYJcRi3gaG44yDXG5AtQy1PLQFBPxZmjaZlx/wYjQiAtT34SCWEkUoJMBPPZM74gX14uO2qMNRTM1HniNu1563TiF3/21/jbf+s/+eEzrZsm+jDR+JK2/Kuj6/qLzJsF3ecwroCTiwSFaGTZ5scwX8T1yw5ECQq38oqTVszURDJKtTwMKCm1J2fPuht5ckrYNFDaTE7Ktusxw0f83lefYqxy52540BUqnhm/oC4UnERWMvB+/iNcSDzwCHELVHak5tF8D7nm7cOeVbEm/dCPuiQUDcfK0hvPwayIOAxmGbylISMkWWTdpT1BUTDp6if/YP6KpN7e8Kt/5x/w5R/8Ea/v7nl5/4JPXt8R7s+0OVHJNSMzVfVl3v/5b/DNX/x13PpHq/fODPjCUjGh7jN0jlIyofIZzmYRXaeLNLuWgaSWNUccmSieGYeVSMAy6y2DTRQkFjnbxIYOo/FSXgmXY1iDZV76zOpx9LQ64kSxdjm2raXjpBsQi5H5h9CDpAMqHiQsX0U8aszSqZPIQXdUdmDOFS4PBPGoLbE5YiVTxKWtV6QeJ3tolub3a54yqjD6a6JdXLBGIyFZDImoHjUKbkeZR0rN3KZXTKam4bg0JC/f56AlwTzmcXxJsrrMpZqeIo+MuvC2Btcgamnimc6vaHMimYJqCnzsn5ExnE3NI/eap/qcPCvlpDxvHhFcZKgatnogakERZ/ayI7mJztdosBTZEeIya3h2HqMTSGBTPOellAxmjbUFgzvh80xTdficMKag8ieQhhda8bzakiyE5prSlmydMhc76qgcOTCnCm9m8tQQXElzF7m/UvJ0YG2U2h4Ru+AlXpZPOIpnTGuKaaIuA5vQM/lFCVW7gVlhmx6QrNybR+z0xOQa/Hjmk/wMJ0thSmeLBk82DnUQpcRowrmE1QGrMGM5yDOMTRRp5lHaM5cFvSvQ5IjasAo9O45khY05UpuBJpwoh5771TUvqyccfINkpdLAOoyLRUfgY/eIiFLnAaPL7nZhRrIGRmlQEaL33HJPGwbK/DGFJho7L4DeseN19YyQDZoEN+1xTHgXuHe3CI4XvMPkNoxSUecHzlJzYMtZalSWHunRbUm+Ypdfgc0EEZJZcFSRHbOuafQBb2ZObkPPipgFn5SkBhUlq4A4CpmIWnKSkrPsiGrY6AGfAy6DVeEpL7jmnj+wX+MoW2bTgEa8zKgqQQo8HRMVnWwvpbUB1QVibBUcE5V0dNoyG89sSiZdlISeiJX5gotSDIlNOBDFYnQ56g6pYls2P/JMa8s3C7k/KW8WdJ/DzL7GiiBWCc4sb0c/ZPEsuyKOgSiOST2tTjQamE1BANrU463lNuyZY8P7H73iP/3qh3z9S19jiJFkHNt1wz/5X/4RvytwtNsLT8gzq71wggxIwhOo00ARYTeN+LTHFiWGTCMd746vaaeaKnvq63fY3lz/yGdxRqnVUJwnXKO07kyURRdf6IgVxZERFabUEOZHPG5/ErLwr1bq7Q3vbm9498/593eSWFcWpeA2nGlNx2RrdvE1yTiGVLK3W4KUKIaIJxLICAWZ5BzxsoMHLEwnERKWAYe74GZ6AomKQMlMScTiMfjLLA95AVZHtRTMtPpqeSP5zJ+rcFZPkHJhWYm9uCwNwohcdvdUDEkdcqmHSIocXUshi65rm+7ppMFKxqgQ8IxmxVV+hTO67BPYmpO0OIlMxjFRQhZCLinNsJgpsqWIQnCOaAxX3OOpGMSCqZfqUEoIwuQKlEg0mWASgy9JlKzMnkkrShJFzMwhs9FAcII3Ga0VL4He1fSxoplHqnlkqmpqnXDZYXOmFKHUgXbsCLnCRGEoKpoUcdFhKYkyE41hZrnrjempdSb6ZhkcJ2N2z4mmZuwbTK5Q23ITnjOUj1iNI6O0nJzFFS0pzMRc8aq9pc8lhT0jsaRuhSJBnc8UZ6GsAut0oGoyj9LEq6bhu80zRisczIpaO9ZjwKpw4/asT59ybDacKOkvu0ejlhzkZmlfFm9BgHJc2vTrYaaLHi+Wypxo4kBVHclScZQVoiy4E1Mx5Ir/q/gas/0OIzUBy+hLUhYamdjGB0Zf83R+zlB5+tzwvH7G4DYcbMtoDKJKEwdcnJnTFusSSQUTE7aYOZsrYi55ZbZYTYgRrtIDORfc8ZjanpiLkpBmWh64mjpMbqgm6MqWV8YuRRvxpGQ55GuidTyww4mjjAExnpAbZmcujVR/wYlPYJTJtJR0ZCIxVwzmGgjEnPGXEYciBVQ7Jq0u9+JEqwO9rQgUPOcdqjSgIvTakvHMaaaWyBfn73CyC5XBoKz1nkFbDiIkKS+w+YFZKvKFYLDMvmZWHEniSFgmSgRdECcEHIGEI4hhcRzViKYLr7Kj44rJFhSqPI6f8NZ44Iv5gTl/5S/iUfrvVd4s6D6H6frEuPFkKyBKUn9puF7gklhKHC09RZ55kp4z0TLmAiuwiw+8jo9o+sjVYeYXGfmPf/mX2Lz/5R+5zm/91pZN/ynSLFDNhXm2HKEJgUb7ZZ4qJtx9wbv3A/ttpgx3zN7xTndHG2Ejmdv33udv/NKv8uTpzY9c48lmw9efvgd/8FuMZcG+vSbaglLPtDqSL0dr5Ri52Sf+5pMv8f6zv7zCwuclTXnFN9Y1z/ff4yA7goVM4qvz73OsdryMT6kc7E3L5C1ZCpJ6Asts2tk0TJfG6dJY/swRu5RrIgNOlqZpTSYSOCOUy+Qci50EJlOTUomYRNZI0BUuBbI1SE6UjBQ5Uc3PiVboWGNtwuUJL5kyDxQS0LjsRLepp2OHmuXdvswj92ZLZ99jEgPGL23g7CjTtLhafeRebuhzzWBqijRjcqBKiY2eOaeGYAuyKKM0GJuoCQzScJP3ePHUzNykex7MFaUGqjizNh2WjJjEKAuDz2jAJwi5xMm0jAgMgdRZ7qtbSu4Jdk0zzVg38t74Kc/8c2ZbY50icsVZHG0M+CCMIhRn8E2i84orBgiGs1HamLDquJ4mtv5IRLAmc5jXHE2DUU9VB1679qIV9HRxw1BYrN1hTeJkKs7lijqduYmvCVVFHT4mFyVNmAk2YmZHO7wkbx3faTa8tBXDVLAiUg4DdjCMRc20VrrCcl82lKXh8bHj8XxgNd/xonrGZDy3+SWjlriQeWGfAga1GUUp6sAUPRvu2EyvoIp4DeQcaVym8wWal3nOMvRkDFjL2W5JqWBIr8ja4GRpIheqzLFicgWlzKjJHGW7sA2NwecJ70rqGBBNfGP/+1i19OVIX3lKUUzOmNnwVJ4T8oqzq7ke99xXG8Q6stbYWbHmjJsTOz3yUDwmlR2vymtmWzKYEjGBlZyWSVNX8q/4Orv8miiO0RTkwlCFxJ6G0axIkmjznkITgQZDJJGXFx+z3KtN7HDZYDRickIdjK4gqyAxoeKJxjPlEpuVq/iK0VYEVzBIxSgNRYpkSqY881zeYtaC2+mOF+4pe7NjsBWDaWjTmTrPNBywNtFri9ATKfEy43Ui6MU3IRajEwZhJSeOuiKLktWgQElYCkvGI5eNiIJEnUYas+i5pqphf/j0L+fh+TnOmwXd5zBNGCnDREAYWWTLhVpUJ2ABi1gSu3xgHXqenc+kceSQdyCelVE+7P+AohPeNi2//q1v0Tz68aLAnVq+s/uAs2voafAXcOPC8YkLx4rETd7TiPC1D77Jr/zar/I69xBnipwoJqjaNTe3z2jq5seucbXa8Pf/zj/kq1eP+OT3f4cXh0+YfcmKmW3hKK6uuE8lyRd8/Ze+wrd+9hsU1Ztt9z8pbr3hKz/3n3H+7f+W67vf5cUMV9mzs5Hke+6nT9kP93z77TX/+uo9JldRM1LFM2rMomTC4OlBapJ+pqD7bBfYMqvnBW9RMmAlUeqI00wWsyAJxHDWgmTMwnO7zPG8PX8PNYFEQW0mTFrUZ4WJJLcgk0XzojDSxNnuMERmU1GkmYIRH08c3QfUMuKJFDpQUnBig8uRJgw4EiWBLpYMtiIbwemMyTOGTJSae67wdsJoosxKzhMFgcfzA6YOTFpzr484mZYgjnU6cCuvKE1EcdzlR2AzU1nyKLxgK0ec7FH7hBlHLy0lZ16tV7hpZjUVvGse6MqCSZV9fMyZMy4ZVux5V15yCBtKtbxM10x4XKkU6YEbDqRkOMy3PK/f5mSgq0qqnDH5CZv0QCxWGHFMZUk1GwbT4LOj1szYOHSfydn+0DSxPh/xKeOnhISZxvdcjUderluawZHrkm0cyU1BFQdqq1zbV9wXNWVXYSUyxS2NS2zzmaPd4lnu/c41nKcdWTKzlkxW2Mkeb3qCrCmiYn1m1kwshavpQGosN+EF1erMA2vSOfCqvWGb98zZsQ49q3zE5AljZzQFjr5BbeIVTwhUbM8nHjZPkBjIAuthQivh/y6+TEZYhTMNI6fLLnObZ6p8omwCkYyzglc4m4rSdByKFUKJJ2PzjLjE2+EjbLZ0doX3jqNdlHVH05DFk6s77v2OKOXFa3smZ0/nb5ZWrAQ0l4idUG+p9EwlgZ2e0HgmRU9p77Eox8sOYhS/wK9RqtBTTJZqGqjtGWsnjn5NzAcOsiM7SxKLZfEsq0JXNEymXAC72IXRaBwxWoK2HDEkY4jGcDJrOkqCOARlbTsUZdAdLs+LZYVAT4HNENWRjCPLUkIwZEqdcCj5Av1GLFmVJCW1OTETSGrxEonWgSpTqlHpOfiSweY/5gn3Jj8pbxZ0n8doz22+5xCXajximQk4FoyJl5FKJzbpgdvQ8dfOjl/+pb/FrC3d/YBLJ25uWzbrFVfrW9a3t7im/bHLDGZprFZponMbHBOGzDbvKVLEmAV5kqTEMrB7/IT3nr3Ln1WudrXa8B/9+m/Cr//mX8RP500AcYbbD7/Kf3j93/D1wydkNdiyxVU13jXYAP/b//qP2Hd/RJc+5sFescoHIDHRcKa67M6tsEx4IGi6YG0Up7CmI4rFkchqKHOkSSeC8QS7zMtYIsvYNYvey2c+Mc9wqszilwd5AhNBs1DlZeclXfAsYhOiib1ZM1PSFSVX8cRWeprYsUp7So2MpiK7TGNOuCQktcTkeO6eMFuHmmWO0EugNR2jrPCx597uSLkkFjVVnFinA3XoMcXIqBtS8PRuRc6GYD1t7gGlThPX+QfLJKEW+BywYgjZsS+vmY0nOcHmmdI4ZttQ2kiQCh9ntFoxlJaxnBjTl3g7vmD27eI8mT3rfiL6E956cJGcMqWaBSBrMxQz9ThS5gceDQ8446lzZjZrunK9zKbHARMjA5ZASUqO1ArBOrZhj0kZ4opd95qrMXM9HAm157msCJSM3mCngptTwydVgy1+wNBMTMZyb66I2THkJ5wah9HAW4fv0XDHR81bdLKlUmiKA6eiYSwsRgJRDUksKpG5ylzNJ8Q2bPMRY4Tb+ILC5MVJ7ZX9ekWqIYaSpPAd/zaVjBg7oQaa2HGmxeq0tD7TTKmR7VDTngZyWZGkpghnihgRo5yLNY4Ro8pNvkNiIhWJV2YLOKows7UHRqnI2jDLiiZNOEnU84Fdf+a9+JKsj9jXLzjKhm5e0bqJs1mhQMeGqMvOWhRDTBVqEyJKvJA/1UTqSwkpS8bmnlJlgbl7IXLDJA4rmcFsECYQR50mhMwXuj+kzhNrDnzS3DKkEmRNNI7AUngrLjvl23xHNJ4idXRuR1LwTJALRlvjFWDCpsQoDWfT0JuWfCk23XOFsQHU0+Yzzip16pilQHWZQy3zfJl3dbR5xOeISKSxwwVHlLEyMGpDUEOUAiuBhuPC6NOBoAVVPmNyg/8JgPg3+ePzZkH3OUyxWXFzf2QqCw5upqJjpGITHphpWHOgNBNfyt/l5tzxs1/9Tb71rb/+Z77OOwg+DYhfYXWmZsZr4DYe2eQjkhTBU8xwlQJPb9Y/hU/7Jn/eiDPsHr3N7tHbP/H3Q7VjfLlltY4Ed4Y8Mdkt92bHPbd8xi/0KrThhNfILC0uTyRTUqWJY7XB5IjXmTLOJFsx2oq9rBAgIjiZKQg0dFgSoy0JWcnGIJrxRrEGJmNJai9MrkAg4HS6/CdYI7Jo6yY7ErNjowcKq7w9fweicmJFH2teu6dIzgyywiQFp/i0MOAgcbYtSQuSLwnZkbxHNJMxNHlCk+W5+WAhOFo4m5pCAyWR0vQ8mEdMDHwvv3c5wvO4FIj6wMoLZdFTxCNFznTacC7BmhkZZ0LtqMzAUK3QbEnWsy9v2Wqkw7JUF0GqEW9HitwvMGBzZicPfJTe41DvOLk1D1fK0/AKTUqvnjA5xtbS5Nec5REws0sdb53ueLV+RjEYkoxc5UARArgjbXegao6U2aKuYB+uOK9W6GgxnaNxHWMleCkp9w3ilWxLnvh7nDekfM3sQSdlGzNf777P4/kV3/NfZCc9Q1HgnKUNEP1Eowei7IhGKVKmzDMYYSNHZlNwtCWjltzXLcNcc6ACa7jXNUGU0RQELTBmotaO6Gq24TWFhVFaohW8G3mmP0ALwUThUTfTbYXgKtSNVHpgJwd6rnFz4lVxu7iKTeZIQVe0lKlhzpZ2DjivoJlkDV1RYVOiq95iZM3KnJbCQTnR2xV9qrid7kh54R6ORYHkjM8zrU64/Cm9aantmZ3usTlRaFoa1Hie5pcUuedT8x6js5zMuwvbUQ0+lohNzOpREV5tNgy2xpJREy/FholSJjDLHJ5kubx8zbwyK87SEC5zsZs4UOY9QSqMwl42FCYyXHiLojPlBLMz9LZdkEIiWI3krCStLgU2szTBNeNU2cx7antixZ5RajSDaGa0a4TleD1IxSSeAoPRmVp71ulIZ655Xu64HaDufpL5803+DR4PDAAAIABJREFUuLxZ0H0O8+UP/wN+99v/B+XpNUezxZtAlsQHw3dwHYhRUiHcTh12fsI77339z3Wdrz265Zf+xT/je48KXrcbvCqFRHZDh9HEbB1Epe7hKzLwbvvmBvw8ZVu1FGlFKfcYLTjbW16bayb5UfyLYPDZ8qt3/wIbblmHgdb0TCnz7crx3auvEIvMvV2Rbbk0Yikxujh79TI+DVwKPEo2jkkW60VCad2AKLhLg9aSGNURucHTExdT7QWXo8y2YhsOCLoUZrJHk+EkN4BSETn75agnG0CUiokmHzhzxVkMPQtANWOxkok2c6JmNounMlpHHQdKM1DlmVkcY64odKZKM53Zsc4DYqbL4k9ICHu9WriIacTpxCqO7Itrhjpi9cwqH9gExw+aZ0RTURLojSFmS5oXc8BDVfF++pjS3fE4vOBobuipGfwKwXMlBwZ1rHTPbj7C/IBSU3WKqSKb8SVXZuJJuMNKxMRMlpnJbKiwrKo7chBaRpyd6MtbZuu4D9doyPSuglpZJ2FTvkQcxFpRXXGDMIaZu1Ax6JqHpqBwhqO+TaVnWjlRFSMdBQe7I7uZbbyjTQcq6biXa06yYjKGzhQLnDolqjgQiowZK/b2mrNWXNkTVTrT64qTLzFS0F+4iI/zx/gUaSSgg2Pf7rjOD5gq8WH4I8Ra1kyM/pp7eUYRe3IVsTkhNqE687rcEkVoc2akZNQVq/nM0e8IYsH22HlGjeWcVqgqQ1mzzh1YpdJEzGCtIBpIxtDIxElLXI7Y4IhesDGRfEErI1v2bNORUiOzeM7Z0uSR63ii0kCTRh7KwJRKKp1BlSyRpCDJ4NOMscrBr3nln+JTojYdbbjHmcwmdrxyNWXOtGmmSplk3LJPaxKlDkR1mJSppWPUehmi0IBPR47V9XJfCcRUIjHjcmKwjmA86pfSS68lGGVWh1PB5rA4WDUjuszSDlqh6mm1o9aBFSf2ckO2DtXP/NSZJJYX5VtUOvI4fp/HLpHGNxsEf9a8WdB9DvPhF7/Cf/4b/zX/52//Ezb3HQ++xuTA0/EaHfZ4A3Uz0m5/hi988xd49733/+Qv+hPyhW98k1/+7X+K/+6R2+s9XVHzVB64mUZqDvTHBZvwdmn45fc/pN0++Qv+pG/y08zPvPsBX/qXv8dH/UTvVkxeqc1IvNhGkjoMQjMO3B5f8E2z5je+9Qucu4StK9qbhn/8z/8p/+Mx0BnH7CqSFCTRywSeYRFmLws1r5EZyyirC8PQcyN3TOoxMZBF6FxJpCCq0BJZcaSXlkp7UPBktvlAEkdUZXI7jn7DqWxp4wiSKZhRqzT0OJmZtFx6vFnRbDEmUaSEt4rJE5ojBigkLHBZ8TgEMZFsDNf5jjYP2Dgz6qInO9j1AliVRbpemZmrccDXA0Wc2bDnnluGouBQbvBmRqIuBuV5h00Dj/uPMUawVihyoO56XskjtAwYC6v+wGm7W3YygbfTp+Q+82J7w9HtlnZyqthXFudmTLaMZUGwmZflNSZ8SmEmns4foVF44TdILhiiUJ4so/M8VJmyqTjIwrQc/JlX5hHWjrhhYpWe44s7bmdhNlDEzCE2pLgi2hKf7rBmxfVxwBhPajw5FUhMFDJSOyFmx5wLbtPMzhx4bF6QtEDEUkjAh4lz0dLEick7shRMriLlhpANq6Fn4070Wi6jAxIo8+IffTbe8c70CR+HZ9yXN3gyd35FYx6x9UdkOhJSZJSCrq2xMpKsgXRmrT1mEBr/nDHViI9sYkfnGobcEgUyBmsEM2cK23Eqdoy2IiZPaw5YM3Nmw8HtmCgZ1NFXgs5Kmw6MrqSTGqob3pl/wE16yU5fcqhu2csVCY8Ey+xbQlCwwvvTdxlpqMxAGydC4dEkBFcjMRKdgxRJtkGcLuMJYkjGUzBRkqjiiKhBsCQBMys72fOH6yd0tECg9BHNhlEKdvOJo2no62smqRCxVKFnkw9MWvDSXZFMsRgkcSiycOk0oWYhLThb4nPPwTVsJHAnj3GXA+Z7e7No8tSS1HDOfvGck8lMNJwYxDOz4gf+GbW8oN7ZP+bp9SY/KW8WdJ/TfPjFr/DhF7/CeRjZDwMpKoUqtc+UpRBDRATKeo0vfnw+7k+T7dvv87f/y/+KD3/vd7g773G3LY93j9jlxH48cx8z29Lw/vaK5vGXKa7/3TYwvMmP5tkX3uEX3/8qV3f/M1fpzD/fvA+z4JyyyfcEbSnHSHs+8UH/nF/7jX/IB9/4UUHLO9/5Ltevv0+QEiMtwoRoQcGE1YARg1EliyfkyGDXBJQsBbUGRISJmuwdE5ZFHRcRCjRNdHbNqMXikLx4gDu7ZsoNg6yIKWGdJRnHgy3ZhSNGlXU+kAWcnbG5QsTTpI5jusJoyVisScbjJLGeHshGEWcYypKZgjoFbuMBz0hBYJSKSpWSjMs91+mBXtcc2DB7S3SGH7SPucqvaeOZvV8z2hqViSxm8RfrRJEjO/Oc181jegp63dFMI2XcU0zKVmfMHHmpa75d/gyzEarivIDBe2hn+Nr+Iz72AXWZhKOTkl0ccWZmFQdiqoi2Z6UzKTYEaXi7+wFaNmBfcvINp1UinD3WJUwfSHVCLVzb51TSUTLhS0fTPlC6O0zO2LFCPr2llDPnecv5ZuRYl8RKOd4YHuc71E18d/tsYUpmg4lCEyZSYRhMy2g8IytULSIZlyFZj4kZSZlNf+JYbihxVP7IKvRE8Vgn1AwMUmNkKS0c8or35Pvs8y0h1jAv81693fDKRO54TFvuWRcDV+kVs7EEFrbbNow82A1lgkgFocSPmXIeOW5a1GZmW6LZkYvEuugY8RgGdrHD60BLf/FS14QkDNIQKTiaHWt3IpgVwRkKVRKeiZJTsSEYx4v8lF42RC0Xtt7l5aFIM6f5htt8JNCwldc82DXRGiYiJINNZ0ozwwQ+RTpZ4c1MIyOldNyZt9nkE2dZMYtHmIneUiV4Mn3KS/OI5O3FQ1swScXZRgKeIOYyE7u83DX2jKbrRSN5scqILjtqgzoCBTmBGCHrAiXJVvBp5iQbJCsZQxCPIfFKbljnjjInHAcqJkYx9LLCALWcWbHnUXrOzvzKv/2H4uc8bxZ0n/Os6opVXf3Uvv727ff5hbd/fIfvnZ/aFd/k31aaTcuv/N2/wTvffcLL7/0zfm6AT3RmOvUUs1LVFik9203FN7701/lr3/hx294HVcFb+SUvzDtLmQG7kKZ0uJDtDJM0BBwn25LwWFGSZhzCpAVCotBILy0zHoPg6PGiSFSMCK30jKYiUpKxeBMo8szoVgQEI4mIcHLtwqHPR4IpcWIXH3ESrJbLgsCA0UihUOeR1vVMOB5YE2mxjHjTU8aeYEoe9Iqj3VHqzE14oJoDNs1szYmhLHGSCLIsKhMFa+240xvUwOhaXIwktRztmq0581zeIlCwzR3RWlb2jMsDFMqcFJs9u0OA1UwsC4KtCdNEdyjRk4Fdppk7gil5YbaYYka946rrmbnigS1dsnTsaO0B31q+YF6xdq/pneLHLYJlMGuyrTnJkWv5FEFBLUUxspp6jBY8Gz7GWoOVxGk27JuJOMHxyvFidcNhXdG457TmwNvjJ0sP3liuwokHdsu/IzMzqCfElmBaet1xlc5ghXUYUM10bDmkZ9g0U3LE2UxoFGSiyYplIgSDsyOj3dLbgk/dLS/N26xS5AvTx7gZxqJZFlChpreewXkGHbF2MZpUKXKQK17la7IxPJ5fc3BPWN2P7J/U7PxrbnigmwfIN/R+aa1KPi33jBmpzUzKUE+BU3HNR+5D9m5FypZKRuowcq2vYd7z4Lf0tkbULP82ZWlxn82aAyuCqajMyG3e06aBORV8u/yA1gwggtOR9+N3eZ1vuKtbqC1fDB8Rp4ImWJqT56OiYNx6er9hSBUlA6t0pitXxKQYsZzNMiOplx01k5dj2FkKhMwgNZt8ZG92xAtjtMmvWcuRSnuCvsNRlEkdjgAqJCmYxOFRnI6Ly1kznVnxffcWSkkrD8ypRlCyWCKe2XqStQsmSYRAzYLCWupXvS7zpVzGNN7kT583C7o3eZN/j9NsWr7yc7/MV77+TUgz2GIB//4ps3m65em/nLjVAwM1Z8oLRLRGmcg4PAnHspu0eF0Tjcw0+USTRgaz42g8MwXCTL7Q7AZVGukxmhikYqZgpmBp4haLx1X7RXyvDkOBNzMRx4O5RbGsOOO1x8jCbKzsQFSLcwYrE6Wd6HNFLwWdrAFPIZByZNQ1g5aMUgFKEsPsnlIxsg2e1Rzws2A3iVyBNYtardcKC6zS3aVheCYnz2BrVuHE62LDbB13eUPHimQrOs3c1nc8O9zRpWs2MvAyGXpdkbBkUY6ngVbv8adI4WCVD5xWkKNwkJqh9qzPykomnhwSo3c8cXtaEabU0pqOKk+Ia3DWk6tbavPAlHc03Q9YcULtCtEZhgLPgcGVjCzmhT/QL9CXDS+bxzQ5ERqDsRFrhTlWjLbl3m3Z5w0nd4VmpUCp45EpNMyuYSVHCgkUGjEqnKkZfEvEU0ukmQZyZajiiRM3PMvP6WzDbBpmKWnTyCRb0MS+qNhbw8NKSBie5pdoVJ6MMwff4GJiaztu4gHjRg7pijRZnlcVr4stJ7vm/npNMXreuf2UWFTLrGf0FNZRh0ySSLALlNozY+ghGeZY8tKU3LtbHi4vKkUeCM6TEU5mi7GLGq/KPe08UjEw25Ln+hZnUwOKtQEI5JA5i+XT5l0OvqWQmav5NdfhgYN/xEf+Q4yMTLnBFZHH6cQ4Z16ttxzKkn2xxcmIlcxWT/TsSNESsfS+ZdKCLK+QlGjkSNKKcp7pbMt6PtO5CqcBmwLWzIuqyxXcc01pemYRTIrspMNKYpSKAyWZkhnFSWAdj1hRAgWjbJbyiuxQibiUETMjsthpCiaa2NPZEpW8WMM0UpFp8kQhhuTCX/jz7q963izo3uRN3mRZxP0ZFnKfxdeP2HnDdTrzEMaLznFiNJ7CRpJEJMFAgTHLkalRR0nHjj1NPpIUxlyixuFNIGlmG48gmY3sGXTFPTdUOTAbgy4VBAwzIo5S91TGokkZTctMSSOJLfegBtGLScUEajkw4TApUJgzvdkwm4JEeTnwnSjnkTaNrKYOCs/oMtlYoloG5wgISQwyd9R55snpgWymy+7gzEhJSIbBPiOEksEqq+nMsVrxwj7Fa891vKfTNe6icbqvVqjJcHXPF6bf5yaOlHbF6/A19lyR1TK+5RmTJZvElEduwgtc5YkO6pSpQliUYD4zWY/4mTt7w6RH2mKP4HiI1xxlxaQlIa1Yh5FkDGl+xFQUzKtmgRDbBlLBq1OFaQbCoJzMmlk9r+uKwQojBe18xGdDqxkXBWegCpFjkzBB0crTna6wKGYa0Dqxml8zFltMUJ5XT5aFkmTatMe4lilEXpe3DKbmO4XS5BNt6mltzzbsKbLyffMWJoFkxUhmdhabAwHLprzHyoFN3jObpcHpesPsGlJhKCWyyQce5JqJltnCp3aLMZnJOgSHT1DPCckznauJlWPGMkvBZCacj+QciNlQaWDwAs5QMhLyYkH1KbAbH2j8hNPMOg4YnTixpSuUJIlJLUYUiYnObkjqERInWtSByUsTPGWLd+AvDuRaz7zc3vDSVextvZRYpMCT8Gkg25KkDlImZYNI5pXcYl0mI8zUF89rJhlLmQOTlIttJM0kV5Dw9LQgmZIRZ6C+2F9G4y/MOaGQTKUzOw6YnOh0S6Aj4YgUlFYp04CQ8HQUGmnnkToMFK7l6AyztdiceZpe8l53TymOqnkzwvNnzV/agk5EroH/AfgA+C7wD1T14Sf8uX8M/Arwv6vq3/t//foXgP8euAZ+B/gvVHX+6X/nb/Imb/JZ1vWKr5Rf4O7wh2jxCaMBlcipuYYYAOHqtOfgV3yv+iLGRoydeGv+HpUZOdsrnEDFDJywKS/QUtODXeCn0QpGZ4RMYA3IcuxjFozJkNds9AERqHRc2F5p4dehGRMtrTkuTC1RIIL7zHqxgE8DBsGwng44VepzYrRryj7wpBgZSk+whsFWlDIRrcVXHa32pCjMOWJyIBjhpbxNsB6LcGUfCFLQFTUiC2zXUqLJcJ33iDpG1yyIl8KQQ+au2hHOM322ZGuRlKmZUWsWtASRh2rLXrdMTmm0o8w9LmfEDaxN4tr3bKaR58VbaHa8qJ5AnMFZnpz3JOuIBIK15H7NcfoSZzlxrxUfhB8wyPJ9RdmRONGVBUdfcNYVeBgxZBPRIVMMgojjEN8ni2DTmlgVBOtZ5TPBRebYUsSAjRD8CmLk5GqCs5QpY+aIRdmYlxht2OeWNncESu5dyTEGoim5cXs+7D7i1vT8QRO5d2uMzpRmIqXM1DjOueJkS4xkttOZcoBxXBM2LbAcj9/7DcF7ijQx+5JSa67znlfmMW3MXI2ZvVkRXYAqsdIzQWqiQlK7gH5NDWpYsRyz1tL9P+y9y69ta3re9Xu/y7jNMS/rstdae59bXeyyjcFGcSVEkRMchw500gEadCLkyPAfJBIdkGgYoYgmyIgGohMhOtBAioTDXQiBlICMQjn28ak65+zb2mvN67h+l5fG3I0yrjIunPKpROvXWWuMOcbUNzXnGPOZ3/e+z3NOVDAz9TQgXqkKy+X8iioOuNHxWG5ItqCIE+oTaKTWgYgjJkPnK/a2AYEFPcvY8ZjXiMCDfUZB4EjLF+U1oylIRsCcm4/K95nKiQprEj6eu68jNYPWDBSAgpzHXxLxMZIELsIRiBQZRBJRAqMUJAODLil0JgjYnEEtdYJoegZrzz/SkmWVe+o5EfWBRWw52olsKvz7rnAvI4UJmABX25FNN/B6aWm8YoLhuXnLtR5psFzq13n+4U//wHvOEz+cr3KG7m8Cv6WqvyEif/P99t/4Acf9+0AD/Bv/r/3/HvAfqOrfFpH/CPg14D/8cQ74iSee+IM06w1/7pd+gev/4cgXr36HfdfzhR05XG+INqOibKaON9XH3JcfMoglZY+1llYHsJ6UHUMuianACRRmpqBnpuagawYpET37ltV5R/aZ+b156po9GEeVB4RMkRMfy+d8l49BBc0lYSzpvAU3kwQmWXFggZOJqB5PoCLSxtdcpANlnlBTs22WmAy16XjGa7wGvuBrlHRYzTR2B2Ko7MzebNAML+1HzFoSpKTUxGwGlnlLY08UuWaRZkQigzTYqSB7z0DBiAWtKH2LkYHXF7fkaIjBYcvz7ONDeYnmd4y2QHNiNA5jLBIFK4mbfosGi5eJLAVv7CVHW+KAd3mDiqOyPdvlghv9nMkl3uk1s6sxccXCLxibwGjvaOKJ0VScCsvIMxbHidW0J7YOnxODX/LB8ArNlhuz43I6km1LigPvynOzQ3QNYylkf0noW0K14hv9ZxzLAnGGWT11GknRosbQhfPSq7NKqxNkZYoVfeEJpmKwFUYD99WaF2PHX7r/Pf5B8QFzOWAEvIAJJ8aiYDIlR85ejKXJxKLC2gg+ccEbijig2THmmmoOYBwne8GYhSafOGhN9OBcYBRhMgVBDEYDs7Us0yMLJugzmIxUM8lYvDkLnpV54OQ2WGYa6VhUHWpLhDUuTVzGkUe/AjUcWSLO0DBj00gboDEdXjOYxDoPXI4dr801a7ZYc+Kdu2a2FQWBTdrhcj7bsRARI1gTmFzBOp7wKb7PUBWiNYT3liopW5Z5YHAl0TisQqM9kzkvPW/NDQV7ertmk08oQpEHbroHkk482sijTzTmwFU48nOnl8T+hm/YTxm7FY/Vir4Uusazmd9wtBUpl9Ss+PMs+bmrNW+GgX0aWLOhDC1TqLj48AV/5pf/Atd3T8bCPypfpaD7q8CvvP//PwX+O36AoFPV3xKRX/n+fSIiwK8C/9r3nf9v8yTonnjiTxdX0P70L/JP337Et3b3TDrShZntODGZhIrhH/7uZ3x+/8V7X7rzF0dHzeTuOLGkM+/d7aWgYgQpSOb6XLEkNRMt3owkZtba4XKm1ECSgSyeo5wNVuvcsZEH+lydLRKMYytr0sLgtKTWiawwc+6aXaSBKDOOGSfKSg40ZkCN0ElJ1PNykphz9d+dvsJp5J1csfAzs+Fs05CX9LJG44RJZ9e92XokRbIKZZ5YmyNHMr0xTCwxBLJNzMAsDhHICpPLbMMliMNNlo3rkdMBdYaYodXA3iyZfIUmzrV/2nA1n3iTVlzzjlAYnuW3vKVBEb5bPmNcODKGn5q3+NyzHDvmyjAFJZTCadFwlJar7p7OLVjLiYvcMUjgaJWm7tgXK9Z5wExH3hQNkysJuabXLeouqaoROyi9qRi1xeeBOZcs45Er9nzPPudVdcteLrAyEmzB3eklJ1myiIm9XVNVicKPXB3eUsmERsun5gUP7oKTViDCa6OI3/P1uMW7mT6VnMolOSXGvGTIC5JappSY44LVPDOXQq8Nbo7MtiDmltoExBQ0U6IyM9lETAFqAselgN1RSOBG92QdOXGNSmZrWjQ/o9eRqpgQn+jt2ZPtA75gnd+iPtNby6N9xjv7jE3eche3LM2WvVmREKrUoebsd5jez4bVOlFqZBEmbJ54nl9BqhhlQTkeibXhaCsw507UMs7cxS3zvCWzONc8Vpk2bNn5SxayZ7QtNvC+tKHG2pE6j9RpQATaPOA0c8kjC+3ZscLnBW+txwZP9ucowNv8kkWeuIyBPFXcppdMsaHNPUWuWbob2lxwmQeKxYpYXqEXJddXnsAtb7DUl9/gW3cf8VHbsCAj3iMG0jSeG6bKEuvMV31X+8eWr1LQ3arqKwBVfSUiP4ocvwJ2qhrfb38B/GA7fEBEfh34dYCPP/5Rg6meeOKJPxJXYC7vqC7vqIA18P3VLzN/n//+/g11GpiyYRZDp0s8I3L2n8eSkJww1uBSxMfALA1iHM4mvEIVocqZoxaonI1PO1Mz2YKBmmwMbXxgS8vJLTnScmSJsWBQOiYskTKfhV3A08oWRTixIsjZj+2OL0nW8OhuOdkNCYPmwCq2VGlgdA2WxGSWhFSxt8/otQG/QJKiDsqUaFKkCB3i4Z1cYSRyofdMuUeN5Y27YF+ssPncz1dgmKRldhajGeczL/SBygQmU7FNS/Z+Q5kfWedHrBp28QIGx+ZU866wZISE5cSClRxZpkzhFpjBMVQVb+yaKwKuOGGkYlx54qwkAinmcydptJR2JmFxaaCN4FyiyY5qgk/ra0xSjApXacszPZGswepAMJnG7FiOBa4cGG1JV1Uc0hIy5/opswOT8ToyVA0mOAapiLXBh8RFPjKWLReDMI8lz+cjxTKj9RXeRBA4uprfLzMud1yJOdfvkTm6KyKWzpYsGJms52Dy+X8RihQpVUnGUKaemEqKsmdOQm0mSpOwdqaQDmd6JtaUcaKnJlrDrCVOoGZESajoeZaMs99hocpBLtmZlnv7HJfPQimJ4eBr5lwxpoJYFkiaAaXQicE4ZvEs5w5NkSTCUgYGafk4fMnJr/hQt/Sz5zvmY17a5/TS4iQiWbnKPfuyoNRMzIao1Xn51TqMZlbmgef6XR54RogFHljFBx78LdE4DqbFpvFs4iw1wZQohmQUo5GYPGNa8cnxU35+aPnGB98gyQwWzFCQY0VRfoury4av/8w3ae9+6NfxD8S6gifXuT85P1ZBJyL/DXD3Ax76t/6kT/0D9ukPO1hVfxP4TYBvf/vbP/S4J5544h89oXvkJr3kMShvy28wmQo1yhKDl5GgQqRmaXvW4cjN6YAbhVfmmnd1wVgrnoDPiUkKZuvIziM6MUpDxhDFctQGdZ9gNbyPN1IcGRCMgNMZy/mL32tHG3e02rMzV1iX6KWktoEhFxQaWeUdByxGI0d7zVYScxZO2rKTa4xEFu7IkBsmt8BIYKN7JEOWnppMNo45OOaiZWm29FIjBmY8YjPmbOIF6qniwPPwilO1IKhnITPrbs/EksGcXc8KMrfzkQvZw1TgRdnbC/bVin21xPSOZCeeuQlTTJRmpJE9Ew3RQkvPIvTUQ+JF3DE2r+i5ZJSe1Twwy5KNbFknKNiSJLFlRacbJuvoyxZjKsppYioto7lilJY6b7FFJBaJztfkqOc6QlWIM7VmKn3NOs/cmwUn3bCKPRL1nNsaHWYSxFj2pmSUgmUayblkfYiU7IgqTNXZJ/DoC7KbmXNBEyeimelNQxZLkWZ6W1KbAcmRuayJQehtSRYHkjAxgpRUObKWR7qiYZ13kOHozx6Hy3zkNj5wOx94FT7C2cTL+oaEZW8uzgkOuSezg2ywkjmNHmmUSRYE4xlzyWU4sJzP78Fsl2A9y+mA+EBKgp9h4XusiYAlaI3tFS0rdnJN6RN12JOyIRaBUZakbLFGqdJEtOW5ns2Bl0TJyCAlEcOBDY7AKCUbPfEBn5/j80xNtoaAJagjkMkW9uYCIwOr1KMp0cvZjsWqoQpKu/f8/C/8c/yFX/0X/8A1nmImxYx15mmG7SvkxyroVPVf+GGPicgbEXn+fnbuOfD2R3jqd8BGRNz7WboPgZd/wuE+8cQTPwbq8Z5P0mumzvCuviLTna1DdKRljzczLmc24cgnu7dcfmYw3YKfLQa68p54uaEn8VlRsX3mSa48Ww8bBQ0IDlVBsWQSo1kQ1RHEYDVTEVHNFHlkMjVqSkQC0TzjbbpltDVOM1kMszMEHClVOE0gnLsAmYHEMd0i1uBNZJm29DQE4wjisSiDP4uEmC0+jVzPrykks6PE6Nnn7UpfcTRXSM5kU+KHgJvgih04ORuCS8bZnn25xuFpNPNZc0XFge81n9DE32Ztt3zNb3k9fJPHQiDXvK6X2GS4wmKCpbTKN8Nn3LsbSttwlw8IEbKlDIHb9EgfJ8ayZpECRxl5pq/40t8w6CWTWFI0rAish8SomSlZeimZLNx0R6yDtpxQiYgMxKlEfUBlxkrk4DaYKZOKinI+chuPOIWlfqEaAAAgAElEQVTsPHNZYfO5AeA6HNGszI3hy8W3uL+5wIfEN788cMeeq/lEE1/xZfEBsbIYI1S559Z8QRpbtrIhtCXJKqWcY94mW2EZwSSszEymJJiCK7nnLrxmsgVOEpOUILCzayYVJioGloxhz/UwUanwQh6xkyCSuK8uqAk0Zs9yPhJdwc3xnlwm3sUr1Fk2846YGu4O73hu7znSsM+JY1mSnKPVE23uAeGdbpi1JboSnRN9XROloM2PFGbBl8tneDvTuQpNitVz5JZSMErJWM54ZsqcWOeXvCtuKJLyaC9weWa0C+ANjkDDhNXMVjZEMYxiGd2Kd9nzPH1OEaHLFc7CZXjg4G9Yh5l6qPCH51Tl5g9d409C7ieDr3LJ9b8C/hrwG+///pd/3BNVVUXkvwX+Zc6drj/S+U888cSfHs+urmnE8SzuWKWBra7xJvEz8++yMVu27oImBMqQ+em451f+6r9OsfkpQoZ2vWG9afm7f+e3+M8+/YwhRdAWK5n8Phr87F8Hlhn73pXfSMKoo2ZkmY/4NFNy5K35gEZ6Bq0YsSTj6alROQcahfcZr94mqjhRxpmlvGNlRyZjMQR8tGyLKwZTIDkRtCS9d9krmShTj5gWKxO+Ub7WfcbrGBm04GRb9vYKExMfnF7yLligxBaZi+mEZ8QPI9tyxVgsznV6weHHgpg9xkT25Yq37gYNjqtwYFe2nKoGVQEUf/JMNJQ2UdojD3JDO82IF8yUWaaecnAcG4/NhmPZUKaBXVnjzZ7fa265t9cwQ5gcy7SFwmIHwcvhvQhJaCzocXRuSc4zUkSCqZikwGgiYZmNoFm4mg+sw46LYWRflczTRFwJV/NbjFMIiUJHRlOjRnF5RsViBI53ia8f9qysRYaOJuwJWlG6ntr2JOMJpUFGx/PDO1xIqO/oNwuqNNHJghg96s37pXphNiV7d56NPMoKJfOGSzquISujWBZpxkfPPLfUcyDFmbu0p7Ajh3JDzgVHt2GTj+faSdvg8pG1ntiz4lGe0eRIDM/Z9I8cqgXeRr4Rv8cibumLlrfFNZLBJ8NNusdqz3fMt94HZgmjXfDdxQJvJprcMZgSl87Rdcvwjqt5z2QttY7U5dm8V0xiVs9kKjoWGJs5saTKAxf5kWXqGF2LTUohM+oshj3GZIbccLQlURxRDMbXeBngvSFyhWLTV3o7eeKP4KsUdL8B/Oci8mvA94B/BUBEvg38m6r6199v/4/AzwKtiHwB/Jqq/h3ODRR/W0T+XeDvAf/JV/Aannjiif8PPvjmL/Hz979N8w++Q7x/zcEmSh15cRBKveL1yuEXFVVt+OW/+C/xtZ/7SxjzBz3xLlcFmynykNy5o88GDloRcSTOTQURj+RMIQNRKxzQ5IFN3HKlj2AT93zIQdeIRs4JqYKRjKpBCEQKMnqu6UtKIR2zbXiwDVmVgyzpZE2vHqeWSkey1XNmZnIMUqPiqdLEKg5cmrdclkckfMHvys/SykATIzYm3CgstMfZA72v2UlNdEsqe8DYQKUjiGfW8lzHZxJbd8mEY5E+5OCueW0HMpnRJkweMeK4iCeqeY14xduRuc6YMqE6MWdFe6HThogyyIqX9R3WBIxmrqd73ukzTmnBVFhiaegWBZ/kTzlZz4tpz5f2WwziCXaizUdML1RewSSwhiYcGL1jLzWz1Ph4tqJpgiWlgrfTHTnN5NGBsazjnsmUZAyj8fRGERMY8agx9Nbx0l3Qu4rUlNA5imlimQfmGo5pSaZiT0NJQT09YMuSxdAhTs7SaDY8zkrfrNGccCaQjMHrRKGRMs88+DtcCuxtTTAVFmEqO7oMvphxZaIcB8oI3zq+pAgjrxbnGDqy4a2vaayHKfMs3zOz5KPxgeQXvLYV6+IVfXWDDSeG0mPoMFwiInTeUakQZUURZkw8R2WlIiMZOrdgoMRpIqBYAwlPNsrCHoij57Ha4DRxsmcz7HNUmUHVYCQyS0FC+dI850FvEGuodU+ZDINrSRScRNDsKZjxZGo61vpIaSJ3+Q3rlBmGn/8qbiNP/DH4ygSdqj4Af+UH7P/fgb/+fdt/8Yec/ynw535sA3ziiSf+keCbDT/75/8a3/z5B/7ssWPKQrO4oEqGMM9MTujtxGrRcL25+UNiDqD1NS4n0BaTONcvuQowIOeS2oyhNxVnaZZRhIhDraGMPTtdo3o+0uWZNs0kZ0AX72f5MlHBEYlkOlMy2luczHgiN/E1s4yMLFhqZpaCKAUugrGRVTpQ55FimjDOkRSSceyoeeluGbInmoYTC1r27NsLAg7F8FBdksUSxHGh95T0jKY9527YSBU6Sm3pxSPOcswr2tBTxYizAdEjK+nR7EhFQ6eeo2vZW+W+vDgHKyl8dHjDwRqa9YFuXXFQ6HxJiCs659nR0Mh8LvjHsYoHCknc5Xv69IwhO4LLVGlCBY5mTXYVR3tJv0jU6chCTizlwN0wsKtWrKY9Zfa4GOnnlr1cQ+64Gra84DMqmRjdis4U1DKzHzfk7DHFeXnT2p4v1zfkDDIrSz/SmgPLeORAixTKLtd0xQLpZwpKmkNProTeNSQMvWtpZEbCjjIFpJzp3IrP+DozNZv8iNEZmwYGf4XPZ3+2ej4iBoaqIpiG0keu5rd06ZxeEfOCfdnQ0JG0xEwTQ1mSXCZmS28syQiPZkNjE0N0PLoPGcUTjWWSkmw8IoqNM0UeIAsqEaxlmfYc3AJVR507shGiqVmmgZigSSOXZsfvVR8zSoMxGZuVYBwOA5rpZIFBeXDKUZaUMZ+PVaU0jiofWWahICIpMuiSpAYjijWBYDw5W/raM7dbVA9/mrePJ34EnpIinnjiiR87vtngmw3N7f+/83dhZGgsWQwlM71aPDOOTFCHoNQyUZCYsBgKFHDM3I2vqCRwYk3KlmArVDzB7FjGLcEbEEUBS6Km58CaYDzJWGp6PDNbcxZdqJIUynTEW3BMnGjpTckonqJquZtfUxAwQXmbPuFlc0fEgcnUeaKvGsSc67faacujXZHVc5IFnpFZHBseqJh5qG8ZjEGKSE3C5MBIyZZbMEfaeaLlQGt2yOSZWGGOS4blyOgTl/ruvNQrF7xaXXF9HGjtkTA5Jl0CmWgLJMI8r6njgYtyR8yeNe/o7YbTvGFnL5llZtIFZTpiTUIqxWjm89VzJluwFkdCaKaB+2bFkBdQZj6YX+PqiZflC0LnCFVDYQJf2I+p58BUeMawZGsKOlPjJePTgCOQqInWEY3HVCOmsZAaUrYctWahPYOxuPpE0IJQRYoDXA079sYxALF1PNMt+6IBq7yzN7g8IyZT6EAtA1fzPb1pMKSzyLQloy/piRT2vJzuJVKkkbv0hpeLC1oDO1uRo6UzDVN5R7JgU6RMgZw9SuK71R2uXNPTUDHgMFgNzBT4lBETiWo5uWtGs6SMM23/wFAWZDL6/vOs2YLLDPb8WYopcsgt0RoEZTQ1jpE2d5AKrERGW1DaARVDNJbgSzrqs8mzFFzlh3NjToqMLLEoi3zC0mNRMFCgzLbiobpAf4zZ4U/8yXgSdE888cRPPjbiiwPryZEKx0UeObAiGM+Ct4iAJxMxnMz6LOYkYYh8Xn10zmGNDcYIVvUct6TKyWxAoCBQkDA5ktSeDY8tZDw9LU0+Iln5kE95lGcEbdBsSGoxJtHEntl7ipQIzmCZkSExuJZsLG0+MmmDSKQwAwdzSVFmci7ICkbPYzXnJEyqPFDYyECD1cAyD0QiHRsslmAs0TncNFHnjlonmBskFuRc873lFaJ7miFyKhYc7ZqUPEUKSPbcu+cED4PNDNowJ0OaLL4PuAKqrEwmYo3SzgfKGGl1xqqwym+5Lr6HmEwva96kFxR5xmhk1oLpffaqiY6r9MCm2PJ1/ZSsBWXcciGOl+WGyQgPXHBlDpxKR8HEWKwY5gU2ZWKZcDIzWQsKsy3OcXHmxCp2jKbkZC6YxDPlmlZPTOJYhRPPh4E6l6yk4++tn7FbXbKTS0rT8Xy6B8lEY8/1lhh6VmQXqfXIIg8EPIMteCivCOq4ng/cpS3X8YEmJ14tDcfSchTHaP058i6Hs02NGLJJXOqIF+VlueGxuqRgICeDNZFZPCKGghmLctIFQRbYFCE5RCN2OWEsiPHknNmbNVFqFqnH5MRi7ujLNbt4jumqUmCioMgBI1CkCWeUWmaCU0b1FCQ0ZkazwKoQzXmGW4MlY2njlsoEFnMkVMqgFVOqMDkgwZOHjJaXX/Xd4IkfwpOge+KJJ37i+frXP+Br//B/JQ07sDWLNHA97xnchkUYSD6jLnE0jmSU4JZkIlkNHS2DKRnKJYUONOzRZJlsScQhGBwBl0c8M0HL87lUgFKmxFV8pLVHCiLGKU080pkVmmG0JUWemKQhS0SN4dHcsKz3tGMPOBYmsZZ7CkZOUnMQQ5E7fM44CSx04KSZyzzwcfySk63PdhO6QK2yLVu8Ttykt2ztBskRq4nJGh6KJdW4xGrDmj3LZGingYIDlU54nYgrx2gv2PkXqGZSgKnOBBNI0fHh8SU7vWUVE4sikZxlKgp8KvFkBt9SThGTDVZPLMuJKS/Qwp5zamWFTZZJaxZhYC8X1HnAYgjBcTRLlvPIC9lzagLRBozr2ZlrtlPDiYZKICG0qcfqhD+MFGHmuLhEFZrVA895heMsmlO2SFRaMxKYUANl2dEXBW9kQkwBydHVLRfhyMmVqFhemzv29gKfRrK1NKnjYCv2dsNF3J9rznKiIpCMo9Oaj9znbPQtU1HxevGM1/aKYAp8HrnOb7BBmHPDGJcYP4LWHMURTcNkPTMelyaMwFV+y8kuEU10XOBTjzVCGTqscRRyQk0k6bl+To1gbCaqpY0nCk2IZrQ0OOazgXOaeVdeEcQzm5omDazHPWWCUEHMI51ZU3LikG/J+YBNcJQFB2lpw4gxmUDF3l7hq8QlO5o0MWpFly4YTiXDOFA/yYafWJ7emSeeeOInntsPvsm/+pd/ld/5nb/P47t7bLymeztzKi1WNpTXge7td/i/lgv27Q19OiIZGnbcly/IeAqdWKWOu/glnTT0dk0njqh6tnyIA84Eijyy1JqJjJAp80x2ngnPPre4POMJ9Lal0gNRLxCBCWG2K2yeWSShjgMzJWIMV6cTqU7ESaiayA2vWMkJo0rPEpKSbMm1+RLnZjZ6Ys8lkxTsWZPE43Lgo/FLXOOYRFARNv2Bcp452QuOriAW11xGZeNmdumKg02cnGOmJIjj+jRT5wX7LMw6scw7Tq6FqmC1C6zigNoTg5Znvz2zpK5PbEJHTaCOkVXuMRoYbYlLgaXt+Onj54hLvNWPKdSxMyW7esFDqInVx+znS67dxD+1f0No3rLRe3a2opxn3skto9R0tUVN4Hbas5qP7OMVbxbPGb2hkpmv919S1YEq9uxlA8EQjeekLRFHMSWehQc6t2R0DQCNP6B+YLQ1SR1t2qHiaPIJg5BzYDYVR1nRmZaMJSdBUCKOIy3qWn6XwEv3glJnJikZU0VhZwyJIk6E3FKmCSzcja9wqWUuEm+dkJ3DMzJJyVW+R4CdXCJGOKWK1noWcaTQgOSIFIGojmw9517uSDs/0NtLVAwnHN7kczqFWmyZz69HIIqlyzVqoPIj26pBbOaGL1jnL4hS4dNrrLtBNBKzYI2SjbKTawozM2iFyMCDWeNMJIvFYNi6FZcmMvRPDmE/qTwJuieeeOInHmMKPvraL/HBx79AzoKqJR86psOArhrqi4b/4j/+W6ib2PCAyAofJow9O+nPRihUadJIgcHHjmxqLBGjmSIPOA10bo3kzIYTU5qZjTDbmikZEmsmbalzh9HAQI0zJZqVS33Ez0pnHVYFp8JeLkg6YiUQFhXedahJrPKRhGUKLRUHXsktR9MymIY6L0muRiWylWeQICWPl4SI5egvWA57PtYdYy28ML/Pm9UHbAePs5F1N9K7hphhLByrfqaUnh1rMIZDbehkgChEUcjCJ9OXVL0iY4JqxyQWr5HLactOF9iS90tymeqUqGh4KzVv17cYG1maA5epp0iJU5ohF6wlMFaGrijpzZJaYJYDK294nmZqmThODS4lYmVZTAeGomE177kee1bpxJgusVEos5KdoY8LSgacgzIaqnAklJ5ducEQGQtLn0ogQp44Niscjov5QLaPZCnIwfGyWtGzIIuhNj1lGBmdw+XEJBVRHLfxLYPJqEKkIOSSt25NpYEkltlY7vJL6hQIeEbxYDw5ex7cNc4ZjB1AIpB4lh4JFKzziZf+Ax65xplEVssgwm14IJaGKdc0JFQsF2nPiQLUUGuPUUfOjmwWRDU4m7B5wjAzUzKpkMRhJZCzwWlEiVQpcrJrcizO5QBqWMUtyXqOZkGUks44sgg2GVQt5RQp7ZHJVedOY+8xFzNvtKI7PjVF/KTyJOieeOKJfywwpviDHbDPSupn3/e43ZDyjkiFqmFfXjDmgohQ5kChExUdCz3SmnNawiwlpRxxNnC0LTEV+ARqIqJLgtQkkfdJDQ2NzlSpYpOEpWxZyYlOFng9ku0GrMHFSJMOqBr6ouRgbkjWscx7jAQUwyru2LprOrmiywtshkIC0TqyRrKWkM+RaJMYFGUZTmzCCeMCB99yMA0n2+BCwuSJRRqZfU0vmakw7GzNsFCKwrHII8+nl2znDV3VnmO4cuSqf6CdJ97qhwzLBlNVeNszuAVmHoi+RtVRlRPlMHPdfs6cGtAVJkUyBR0rgptQZwj9jKlHEolsDZPUZDFsiwU2BfLs4LSgLwyTNLSyo/ULRtNAgDoNrHhkrQdeyydkr8ymoAmJzqxJxnLMlzTzQPAF2TZYUUqdWeiJG/PIPDXMxuHHxML2JLG8KS5xORGswyTDRo9kFynzyHO954v4gi1wMueax0PVUqSAlUSQkkd3nh0zscdLBrEMaUMisBhHmhF2q5JSEuBwOjBSIDKfO0W1oGZEUgQ8gjBIS61HlrHDhxFJBRjIheEkDeRbXMws40RdBDInUAGxzFIwZwM5cbBrkvXkbPA50MaOjRy4y/e8NndISpy0JjjAGGZ//iHTaM9KTwQmJFtCctS5J0imjjNVnmnMyN429NpS5xHvEn7z/E/3wn/ij82ToHviiSf+iaDMa2zsKTXSqVCnGVFw1lDYBJKo8kwfrmjmxNemexrpWc8P3PsVX9QvcPW5oWGgJKrB5opoS2bOReOTlOASR7PEqxDyAqsTTjOegQHPaEpq55m0JVhLR/2+aaOklMijXLFjSafrc4emNBR2ZhkOaDonXgTjWc6H8yySDjSaWMWBIk/M2dD5FtXEvniGyzMpe1w60kyPTPU1yShVmlnxwPVhj3rwVc9QGAKJbf0MqPnuoqDwkSnVjLZAXMGVJgoyq6mnHTNeAlJOyGjwXhkaSHUmWMHphI+J3rT0ZkFdK6OPOJlQIyRvqNOI15kXu3s6ge+aKz4tnxNSxviOxbjlyr3Gj5Yxrun1BaO7xYfIzxy/w6v6lsKOSBm5jvfMpUOCI+aSYpoRO9LZBcvgGOaGvTwjGiH4giCWkvHcSRo8x2J1FstELtKORjpaOfDxCKO7ZBZBTaCUyG18i/GRKZVghDAbMguSGJbuyI2+QueKfb6kbyy9q1CdkGRxIZCiZazOmagRT60PIEpUKGJPUkuTB2o6mtyztRWPsqacEmIz1RSRIrF3S2bxpMlQ5RETMo074RN0tiVpgYlCtBaXMtkYPBNFccC5Fb1ZcJSWpTpyMiTj8Hki6pL1fCRjsCmTo6elZ/3wBkkzoUzMK8NFteetgw+nR64Xd3zyrV/8qi/1J34IT4LuiSee+CeCVVFx93JJujkxVBknEYtFzYyPHRUTH8tL6inz4eNLrt5c8uwiUJU3fK4Ty11kMPccFoaXC8t2sWAwJQnBcLbHT4Bwjl6q05GTaTGm5LX9CMP03kv/HLkUtCJZR7AWm2d6CrIKiXP92SieoCWbuKUJA2WeGKQlJ4+482xLQ0+rJ4ocmLVl0A1dWjBoQc7nWcXbec8y9lykBzbFgbf+kkO9JOYCP9eoPbDKD5y05uRadvaaUQou05GF9Bx9yaEpCVGIdoHViIohVyN1VKxOBClZy/fYlx7myE1+QwyeUZZMUwlSoGUmmUQ2wjPeMQOzeoqsuDQzVhbsxLt2iUkTq5NlXzqWdU8VZxo78l1/RVdAZ1r63LDOkYvwwDI/sjWXBC1wYSJqSRUjR19zdXzgzj9yEw78bvEBb+wNXjN1CIhEytTzpmkJpmCi4UXY05vIM9ni48BsmvP7kA+YbAk+48zETXqDGDjqikjGY/D2LSdtiFowaU2ZEz6fXQwHKZmlYBJhCJYqTETnUOeoTcfOrvAyEMQTTEmVTlznt7RjT7aWE0uQhKpQTJGb6chYJva+JQOneY0E2NgTkmZOdkn2E6MskQxYxzLtwMB13OKMYT0daCWQXEGdI6fUYiMsZqWSiavxHR88HpB8YpYVi9tLXJ1wxtOkNVt7QRr3/FRpuFo+56e++We4u7r+Cq/yJ/4o/liCTkR+C/hbqvpff9++31TVX/+xjeyJJ5544kfgm7/wTX7///4Mlybq5gETD8S0YmO2NMtHpqKgSDPNcMUnq3+GX/zlf56bu4/xbckvxsj+dOT/+Lv/E//b4Xewy5mKI5sAUpzjxWYcFouoMNqSTismt6TmyEQgs6Cnwhsw9FgCQkJywUU8ULIn5ZJgCyRDJYGCSGVnipyYTUVMlq5sWcgJTYZ27kCFx/yMWWpSLlmkAokGZ8ATiR6iGnK2nKo1G9tRpxN+gMp3TJVjLxuiZpwdWegjRlY4mYhZGFnQmwpvIwUTVR5ZpyONP7Lue2rt6boVW78mFo7gHN5HsvFkzdQy4ENi8C3RKDEVPNqWkQor+b3nmqOfC+oUsMaQC8u2rjmaNc/zS7Z5g/o3ZJs5Fp5Hu0ZmpTGZSgZqe8TLgWlRoyiD3ZBOFWYUfHQU7cxWbzima9wc6UwD4mj1gVO5oIiRdjZYGzHMrKbI6Bs6t8CEGe/PhtLeDtRzpB56Ciyx9LSuIxgHJlHnkc/dBzgmFKXOPbMUbKuWzjUsUo+Lmc6vgJ4AVLFnQcfRVhTqcFap6clSYAR617A1K974a0C58jsyM6NLnHRF0IreNHT1kqEquZjeseBcV2gR1lOPSzNpslynE4emws16jqKzkUykCsJt6PhaCoSshLnBFAVXWvLhxR1lOXDz4qe4vb2jWX5AaSqWywtM3dJ1HcN4xFUNm9WapvjDxt9P/GTwx52h+zrwN0Tkz6rqv/N+37d/TGN64oknnviR+ca3/1n+cs789v/yP/P8+BZt1lz4FS4sMKc100rRdcPlz7xgc7nh7lu/SFMvASiBi2fw6Yef4f/P38OlyLbYMMg5gmnNgRBrjIm0dHS54WRbUAXjQQPLPGINDDg6qVilIxWJqBOTCEmWdGZBFotFWOmWD8J3WboDpZk5+ZZd3rC3LTGA2gJjOl77G97KDSE0pFSymXskBMpipqAn+4yXiIqjKzJ1mpipyWXg/2HvTmKs69bDrv+f1e3mdHVO1du/X3Ov7722g7GdyAkOyGBQxAgEEzICEZEoRDAFYYTEACmSJWZMgEwIAySMmBAkCBKWkGLRhCQKiiUb5/ra92verrrT7bOb1TwM6jNxzDVy8928tr/zm9TZzdl7lWrtqqfWOut5BuOwTNRyYmTBnX+MKWBL4Ul3Q5tP5EbQAkVAitLYPXPZoybT14FYDF3TIuVEW47UOSCdMNMjaj0zs6VUHjusiKGiP3ryXLjKW2Jbk4Y5ZgKl4r71UCqeD/dogbFK7FjwbvmEbQocdI2RQhTFhEKaoLYDrT8Qp4p37VPK1JJUkGIIGbabBdE12FzI+YS1Besdto+UYNm5QDIBzR4XFbVQyYROFTuZYRSWec+H8m0GO6N2J2yusQRK1yA2c7NwxOAoCCLCMnXcmUtwFuMGalHUJExRJqnxOuFdweWRZdmzYMvJXXEvS/ZujiNTS89MdkzJ8mr+DaINqCnYmNj0t7wYP+fo9hQX+VXzNbLKwyhr+yEX+R4RaPOBZTnycv8aWBBcoCuF1T1U4vF2R+06fmzd8o2PNnz80Y/i0pJ3qSA+8cFsxbKpUU1UTqjqGT7M/qHnqm0q4Jx77g+D32lAt+WhTNd/IiL/PfCvfv+adHZ2dvZ7880/9Sf42p/4UaZpAsBnJY8jqRKqdk6cBobpRB3a/zeY+81WtZB9YvI1MzkwE6HTGfaLkbQolhItGfBM2KJkjdSaqOzAkUAxNUgmOsfL6dt0ec1g54xSYSThNOJILM0t3meicUQDna2YtDAJjH4NUojhY0LJiEnYPBLyhLjChd7w1m+wDEy2YVFeo8ZRpczVqWNpO7y949AuuDaXnNShk+dS3vJYd9znDY0qOc2I4wJxkE3FnC2GREgTxmcW7sjEDDueOLqWQ5njzEhlIoYTSeZkgaPOKa7iU/sB43xGXe2ZjSfmXc9pXOFU6d2MEAU3RCatqMzEoVlxm3+YLIUm9RzbFpuVOg+ENOIEwiAczZq9bjjpDPEOVxI1R/pqRaezh+DadiQc82nPMt9jGmXrHCfXYomkGj6M15ijMM4gUlFlS9hPVM1IchWnMufOrTEzz8U0kn0i+8DRNjT5RF9apMCeFaNrWJiOKAUxghQhaE9FpMmGJJYVHU/iW3rbstwXsi/UEjEKwUZGHLvZJaOp8Hmgl5rONFyEwN20oQxzLnRi3k6c7EMlEyOZIA8jfM5mLtMtG9nyQb7gH/vjP8ll02JcoIt7KkkslgsaP2OxeEw9WwEPxdHP/uj5nQZ0oqoJ+LdE5M8BvwCsv2+tOjs7O/s9cs7h3D/41eYX/2DEwTf+ewZyv2E2q7iyn3JtH3PHBRmLJ1KVHinQyERvLnG2IEQ0Rx5S0M7JOWJU8CbRSkdSTyeXRBcYJLC3c2RG9jsAACAASURBVEQElzNaErk03GfByomKgR0zBjMji6Ng8SYTqVA7kTFoUKyLiEbuaMEWqjzi9WHBx71bsTn1nAbHhX5OXBhyMYxqOLhnqIdJAk0+YWRiMAZoWJdInXs6GQllYjBzTL5H1HL0F/S0zKeei7FjEMvCdtgCl6HjsnyHyRiuo5BOI7+6/JAswODZcUnMkVPdsuaGfT1nrpFSWsRNIBNP9C0HZuzNnH09R4vBlZFqyNRm4FG+4Spe86uLj9npBVtdsO53yOQIU2RbN2zrloOpCBSqPJG8oUkjmgviA6ZkWhnweQQ34W3mLq/oqxmjetJywWK0GK9cpddUxtLUkVw5JmuwZCop+JQY8+zh85Q24Mi0nCiu8Ejfca8bMp4wCpt9ZFpEau2p/RHJiWNYMLkFVVGcjFiNZJ0TZMCZiZEGUoFsuI7P2FbPmdvMzN7wrHzGjblk0gpRiDQ4ehRozZHoPRbDy8cf8/GHL75/D9fZH2i/04DuP/uNF6r6V0Xk7wH/9u/nxiKyAX4O+Bj4deDPqur99zjvrwM/CfyCqv4Lv2n/XwX+GWD3xa4/p6p/9/fTprOzs684VZpkeDHekL0wSMOdXBJK5E4ePSRyNZlQlP6L9CiL3NHbhr3MEJNQLCdtUAyqib19xGAdINTaYyVjDRx1QRLFSaBiQrJSHnL/E02LSEYk81jfMMu/yiEuyXYOKNfmiqacSNQ0eUvMFVWcmPKaUQ8cZcZqPLLyO96ER5TsMAU8yqArnnT3JK2JUvEk9Wy7ivuLml21wKGIZr6eP2M+dWTjKLaiPY7s3IpeZizckUvJmGKopoSWmiMzzNGirXBfr3GMrNKEMREbHZKEQ1Xhq8w0OpZsORZLYwcuyluOsmDiCUlakjMs+hHxjpv2EUThg+Eto1ZURUne8dY3jAaqIaNuYPQGirC3G4rpEFd4mT+hs3OqkjBR6INQc2IKF7TTHh8rTrWntol9adnaK1yORCKVHdjILbkIe5Y4ycxSj8sRzQ+LZqowUuXE4B2KoWdJw5Z9cEwucG/mvDFLLnVLI3ueGNiXS5Ip2DIyY0dvN7QxghGqIkxS04eaRe65yEemNIcAz9INkxMWac+deYQrJ6KpqaYeKYGxVNRV876foLP36HcU0Knqf/5btv828G/8Pu/9M8DPq+rPisjPfLH9732P8/5joAX+ze9x7N9V1f/299mOs7OzMwBWq8c0uuFq/zlGXjP4mimtSLmmEsNiOvD6omZbXyGSmEQ5MieKRzHMOOBLhxHwmtibK3rTAgWnCYpC8fgygiiDLPCqTCXh6SmmIpAIuqWIQxN8bj7msb5CrOD1RCM9e5mzyjtGWh4fOgbmOGre2oZpLsQ4kmxGO2U2RLatJ1pYsqPRHXezGT1zmoPlKh0xZsdtviSbBZM6tuaKz5PhabplkTp6rTmMC0bbkGxhcBVJhTRVdHWFboWDC1zmT5nHOb22OBvZ+QuycRwoiFVKMmQcYic2+ZoNPcdywdXwmtvwCGyDLY4xLnjeRTbNPaMaTk3Frp4jX0xLkywnO6eYxBRg3t/hXEPTZ45V4Pm4Zetm1GqpU8dg5rTpwMF7jJkQO1FqiGEk+oaueLIYvB55whvm5cB9/4RttSEahSxc61NyrNCqILYwMGfSLWu9p8qOQOG2nyEObtdzRBTDSDFzaj2BcVR5ZF1uHhICS2YsljkDFfcs1dDpilEcKhMnG3jVzKiLJVhYpj1FDZMuMFpQUz30sbDi6ZD4kR/8FvPKv+9H6Ow9ep9pS/4l4Ke/eP1fAv8L3yOgU9WfF5Gf/q37z87Ozr5sjz74On/8x/5FfvmX/g7167eMQVnUQl8chzQynwzJF45uIBmDMx5lIGIQHEdZ4E2h4QTZUDCIZiwQSg8iBBLJgU0CxuDpqTjxLF9jRXmXL+ipKMXztLzjtT5mkBWSM4JSJsfS7vFkFnEH0tCZGtEG0UzQA1NQjI24rPyp6Rf59vWem8WGYqALG+5YU5sJ1wyQb8g2IAx09imGzJAtsRje+A1LCZy0Iq8DvW/JUqjtQJUdt/M5d+4SHgklwUI7OjdHjJKTsBx2vDhe81l4SjUm7uolowvszZx7vcD5mqSWrd/Q5SUns4ASaLKSYsuxXWH8yMvxFdv5hk134NXsMXtzyd62rPIef5yoS+L53Vs6lhjXMRRD19TcpCXiLSk+TLt3OEKMNE2kmiK1FJ4M16g3fNd+zFt9yVaveMknbMMVJVvGYrgYDkxNQNqCKZFlTsz3CdsW9naJjZZRWyKeLDO8QlTP3jY4HehpWZY9V7plb1b0zEjqiWpZxTt28pjad2DgQiZGKiatyXgqGZnU8cpfscw9je5xMrCnRqm49Y9x7cC7KUM4B3RfZe8zoHuiqq8BVPW1iDz+PVzjL4vIfwj8PPAzqjp+qS08Ozv7SnFNww/+k/80H/zIj5NSxBhQHxhsII+Jm+7E+At/g12548YuKfIwlZq1AlEEgxIpWNSMFOOpGFA8l+mOpHM25Z6d9RSpyGo5mTlN7h7qsxqliKMuJ7K2HIc5x/aCLkOxhkqPXPp7ZqajFE8nK7QWXIx0RpiycLCeJ3nHfJzI3jHqkqaNOCncN3MGMezsnEkjU2hYN9ekYJjZnkXqsKWwMyvu7IYFHa4P3C9qrFXGUhHqE66MHMIKG5UuLQn5oZZoBGpzZBXfktUxWE+3Vhq2jDR4mZiPPVf2NVo5cnHUJXLHFSUHVvkeomPVQS6Rw9RgtKW2ESmZ2FhaObCMRwb9AXxRgh1xvhBSx+jgeTpx0z4mlJ4xrplxZCiGWnv8WFjkI6ErTBooXrhzG3Zmw71ZUpXIIJ7Z9ISTbVnHiV2z4lW9ZrKZYBSXhZ2zDGbOyT1hmfdcljs2+56uKbhOGBcQ6NAUUDL37hF7WZPSklxahMyEMvhAlSaqNNKWE84LvQt4jRRj6HRG9JY27xgIXMQdR78kJWEIFV4mqpKRopyme4qU9/0Inb1H39eATkT+Z+Dp9zj0H3wJl//3gTdAAP4KD6N7/9Fv046/CPxFgA8//PBLuPXZ2dkfVa5pWDbf+7NIbdfjZ8J86BnF4X2mocNSEBUinpYBiRDI+LSjkRNKoWEkG+EkAacFlQGRwKSOzswYbUDFogiWGhIMlUW10JhIEcvoGnYF9rrmw/QpvYFohc6tMDlSROiyo5/m7N2CVk5sfc1eZg/nyYyDNEzUVCSM6Zk3d/S6YEgNxmY0K65MSIHeteR5T185pDzUfzXF0vQD1hZWukdC5lDPkJzpzGMmGq6rZ1Qp8Ug/p9EB704UXSCmoekLKhWb0w2nmWXPBffmCtMkVIWN7ijTjMFWhOrIofJ8Vn9Moyc2es2aEVXP4+EdiGcKEWsTPk80zrOQA+94hIiwrRs0DhgdGEuFTyNHVpzKjDd+jZPIaDyjBDQ7OmkQMlvJiCg75zAlE8qJJAskKoiwHg70BrQ2VKMhyYxd1SAm0ehAHGZUJXPUyPVsjUmRYhyDthxkQTKGnCzz047kGpI1HMOMtd4xioBakIa29JzUkTVwNHNS3eBy5Io7qr7jtn1CQ0L8CA5Mjv+In5azP0i+rwGdqv6Z3+6YiLwVkWdfjM49A979Lq/9+ouXo4j8F8C/8/9z7l/hIejjJ37iJ/R3c5+zs7Oz3yA50ijsZU1nKhKGppx4pm9p84HJNmx4x4k1WhKjzAgPE2gM1DRxz52/xEhiNDMGAlYSgoABLY7JWrQYbEh4mQBLopCzoxjF8DAiQ1EmL8zZszWOybaICENY47Ljzqz4KH5GV1vGXLENc3YyJxkPwsMCEDmyKHsmndNJyzLfMdgWQyGQcSdl4XqaqTCWGScPPimdLJhpZps9B62p+p4xLAhJHio55MhSDqzLFvXCya/xRViOO56OE8uu4+Wwo29Hfm32kuNyJGjPlCtm44lu2RLVsjOXDKaQRHBlZJKGx8M1MVVI+pTBLRgzDMFzbAOlFJREEk8YwblM6IUmH/i6fIfOVWzNJTZGjD78fLIIiQrhob7tLO+Yxz3zfGCUFZdxYHYqfG4KRmBUw+hbOlNRRJkENrrng/SWTi+4lseEVGiGin3dMNoapcXLxNEYvBYW48jghEtuERHEOG7kkp2scaWnmh6qTLR5h7LA2JHKBFwuSDHkVONzZnZKfKu/wcfEs2ZDbc5Trl9l73PK9a8B/zrws198/e9+N2/+TcGgAP8y8ItffhPPzs7OfhPnqc2KZrvH+ImpZGba8by84Yf0V5iy48ZcMXJikppp2vOmfkGXl7ytHkMFTjOLaY/TCWsdgZHJBEIpDFoRiyFoZNCKIoJnQih4M5FkwaANc458OH7CjQx4yUjKHGXOGCty5bjSPTvTsnczjBlxpscSqHQEMipC4MSsDKyHDt+/4bp5TAnQG4OxieIdyIDJE94kks1ciHAxnpiMxRwr+tBSTKKyW06mBjUczAWmFPa5pR0Fl4+oKlUeuK6e8m5WGNKchRaOY+Rt+xF32uLNyJI7rttLTAxgHE3ac28vOJgl1/KUp+maZ31HdI4kAW0LzicaG7ElseUR45S5GHuqqULbnpZMNIFP7UuuqzU7f0FST4gjpgg2ZWo9IKNgs8U0R7K3zBiYHw1zu2M2KXfpGTvXgoOqdGAKT05HMMK63GPrgcA9q15wk3BXPeFYOyb19K6iUqGWEVHwrsMJPJ9ec2OeMFFzJVuSKUwmkI0wEjAygywk25CzQyhc9fesdoK3E2nV0pWKhVrYGlTN+35Czt6j9xnQ/Szw34jInwc+Af4VABH5CeAvqepf+GL7b/CQB3EuIp8Bf15V/yfgvxKRRzz8r/l3gb/0Hr6Hs7Ozr5BZXfHHvvkN/te/9Uv82mgwYWTWbVmURNTAvI1U5S17t+SNPGEISwpCcY6gPaM2DKYiVwtmDCzKLYHCrlwQxeMlEiVAUJIYEoFQIMQMYrGiOBIzDlgTWfVbejvnmbzl3g6UIkhJJDPQNWtOesHerx7SgrgVXiMqgUU6cql3uFy4j4+5Tc/pxwWHWeDkKlo9EmRLqWoKIwdZ8yx/ytZsuJktsZo5WEdbepDMwVYYfVi52TrDUrfYqWF96Bkbx6254PNwQRbHVTkRovKuWRLLiLXCsiucXMCkwMl4vKtBCzNXWGhPNSZ625Bzw+fhI0aXeF5eMw2Rd+aCaAydWRJIFAyXeo2K5SCPcKWjzQnEElRY6x33XPIyvkUjHOyKEg2K4dH4ljZ3/PriCddhjV5YQneHDZk6Hxm8YxRhcoFQJrILLLlj185o8pZOZ6Ro6N2cySvqCy1HbM5UOrHqJtYc2HCL1AMftZ9izMTn9jnF1mjxVGkiZEXLhJfC0u5BC1oCdU68yFvWcSCONU00XPUTrhTyo0RMA576fT8mZ+/JewvoVPWWh+oTv3X/3wL+wm/a/qnf5v3/3PevdWdnZ2f/X8EYfvpHvsnT4Pk/f/GX+LXdNe50JJSa5fB1nswK72aFcfuK3aMFPTUJTyqGyQYmDUQcoj2pCAXLqA6vkc4scSWTpMZLwWuhLR0uTzQaSc4iZYEI7M2C/2v+46ynPTkLF/2J4htsmfio/5zJB14rZFvTOccie6QoKkIjE1hlSDNEA+/MC46yppZA1IyPHVmUvbkiimMwgSgV9+xx0mOCoWRP7wIxN9SmY9QZVe55619gC0ym4XGcMO2EixVVzA9/bUzhs2VLHEc208CsmxitEjOYbEhDjWmVWEYCE/N4x6E8o8zBaaSyI5fTO+7Kks/r50RvMDJiKDhV6jLQVxVphJvLDSk67uunfHB4jRQhqqNj9nC+yVyNHSEGplYYcExVYDH1NDmyGPcUnzAhcYw1Q/BkU+jMEnTgiW4pJbCrlhxkQedbQlIaX6ikJwELSezMYwbjKdlxqDOPTh3iDFWaOMRLhnaOoXBigZeHla5VGnFmRqsnqpIxMjEbTzwb7mnfLVkcI900Uq2Aqcf5itWzJWLPI3RfZe9zhO7s7OzsD51gDD/6Q1/nH//Gxxy7A/e7d+hpYt2saDYrPvmb/yP/w//+16AtdOslg2moU8/j6Zq9LLk1l0RZ0NuBJo00qaNkj5OEaMHpiCURpWGQmrlmVvktQTJ7OTIyA1uYcuDaXqGivFk8ozYTUpR27Ll3M+79mogwPUwEog7qNDGPI1XseZJvqVBOfs7JzHG5ZsQzjz1bLzgmenFcyxXeJIx5Sl2OeCkcdYlamLGl1Z6YWyZaRhuY65HJeDblFUvZ85n/Gru6RhpYp1uIwsf7z7F2IItQUHzOiBSMmbBTYh4ONKbjkT+ymX6FvveY3vN6ecH9vOLaz/FFydkxL0owJ+Zuj06Fo5tRguFoWi5lhymRq7ilnXpqM9FJTWN3rMyRmZt4bS4ZvKXuBVXLlgWalaN4TDTUYyLYCauJohYQDnZO5CNKLTRyJOGJIliBbeVxGsEaLsot+3LBwlzTTIormahzblmw4hNqGfAlY7SmkYk6FUq0LDvhqbwiVCdMGGmHe9zY0PYNiDCrPW4wTLuI1sIPfeuP8Y0f/WFCfU4s/FV2DujOzs7Ofg/EGRarFYvV6h/ab5NBMJxmKwYCGGWhWyZpsYWHpLAYijpOOscJiCsUA47CUg/YsVDbiWU6Mc/3vLSfYVOhtXP6MuOWNXfyDDUWLx29zJl04ORqFnbHvdmgJCZpUVWieOb5QBHHINXDalp/TZeX9NJyUy0xWCZJPEt7jCSitexNQ9Qakycm6xllQ2AELPPpiM+K4vFTQUUw1mAUrE40esRWA2qPzLVwSjVhOrHRPYt8zTQGXi+eENPE1Bgomd2iptIepWHBkXfDE5bsUQd2NhLcQDMN1GZOiIWDWyEK7RBZ5y13ZoMpAycRsgbu7ApbFCJkbbAnx8IcoYZYQGzPMrwiN48Zg+GuXLKethiNWJeYNPDt+Q9wsb8llsBIQ2daigqTqfD0CC2ShZANy/FIVGWddyTrWaaRvdvjxNHT4iy0TKCZNlaEfs5yGNhXE7ZumMaKJ92OZ6d7NumOqm0xdaRdfMiHX/8RGja0FyvapuHQjWSjbDZXXF1dEOoG686LIr7KzgHd2dnZ2Zdo7xtkXrGyOwYT6KhJUlHI1GakLUcmqRHJ4BJVPrIq9+zKGjXCk3LNUZZMBIq17PWCO+mpOXE0c1blSB1HWnNikhV9UrbVFb5MROMpkxIkE82EocaRqBhREWodWNt7YmzwFCwDKoKUh5QnAzWv6g1eO6wO1GR8vqeXFjWOZTmwSjsYawwJi2IGpWBp88i67LnStzgKXjPXZs1QaioZ2cgNH5hXfGv8JVwDfz99nXftI+7MY5KFJke8drT0jIPy2L/FmRkLBnbHFb4kWh0wpmeywp2skMlgO8+FmejxeE6s+sh1s+LlzTXqFekKW1mxmk6c1nNaTnQlcJQNXVgxusCL/Vvuw4w7u0IrpbMNUVu29hGRhvvZJR+nX2cuWzQJd25BsQWKx+ZIyCNNOnIwDb1fcJ8WrMrIRdzzYrjGZlBaLocdnX1JV1tybqm7NU/Klqd1ojYnttGyqZ7i/IKr5Zoyg2rzkh/+gX+e50+fv++uffYH3DmgOzs7O/sSuYtH1CGx5p5YFCtz1vHAW/+YUgwVERGDNYmmRJI6XrsPOWhLtJ6SLCpKLBUNIyvpmIqj+BbBkozjo+E7aPgmd1rRuzU1R1qzJ2ORIDgdkWKoOVHlzEJ6nDmAcXTyUJ5KB0MsDW/CmjvfomoRo/gY8WVi5m452RanjrFEwhipdMIMgdnBgnHsW8NoKiIWZwsH50Eti3LPfTWwd3Ou7RxbhE16hyciWnGsK456SV/PcGlCrOFyekcvNUezwFTK0K1ZCpTO41yDTJFT1fAmPOKkM4pVLnXLqW74Ff+1h5FDLzzfveWye0MYr3g3W6Ot5SSGhpHQjzB3TEPNWHvadEcOyn27YJ8rTHYUFawok/FEExCF7CxTDlScyHpgSJYmTyiwSgc24w3OKDne8V2+jjMZmwvVZPjB3XeYbMVmaqhGIe1foXPFzLasn25oF9/gGz/+UyxmBuPnGN9icqbokRKEpt1Q+dn77tZnfwicA7qzs7OzL1GYKmZlgRaHGsvAgtd+yV5mBFEaeRgNE4WMI2eDFHA2MVJzwyNmcsSJsLftwxRkARWYpKEzDdKO1BypcwvGYaSwZ43TiEsTo8ywxmJLxhO5HA48D9/mKEtemydYTXwWHpPFkVBWusWqMuBRk+jCgkXZUusJnwuIMEhgpxti6Enzwt4vOdkay4RKxhTBKMy2FvUz7m1AIizGgb1Z4UpBKyUFGL1lUocoqDgWY0c9Wq72R0pqWHPLymee+k9ZzgZO/Zpf1o/pphX39QprBpKp6X2FT8qkll21prIn3sw3LG8O3NgLejvDNAecKqOBMhj8BFV2bN2CfXKEY8c8XdNMNZtQGOoaOw1sRdkaQ7TKTDvW9pr1uGXGge/qNwlp5J5LNqeeWDfUZUdfedCCqDJ4TzKedvGD/Jk//U9AcEzbgkuOZRMIm4DMWmaLS+arzffoSd9r39nZb+8c0J2dnZ19iXbXb3h3WDFeGiqTcDERpcYo9BK4yB0LCkezRMtELAs6a+nNAjBkVU6y4IJbNDuWuseKcmSGihCl4jq/xEpitBXqBF8mJtPg88AQWo6lASyWTMpzUt9xY14yeSUbR8SyNxc4UxhwWCzLtOUynXg03LKtl1zGHb21nGTOEc9o24dpXI3UdMzsFqsNqQgH05JsIBmLn8N6GjD2xN6uSDhOwfGmPOGoLXoI9E3NvVlRyx5VZSOvCUGpXU/s4Wg8zsw5+RWLk+W6uqQ3DdnWROfZhxk+ZUY7sh62RNtwlJoQI4PO2NuWvoHG33MbLpjlI1U5UZVIVgNEVvGIeng8vuHC3HMzuyT4iXbyxNpxDI6P0q8x5cAHh1vm4UQYCzfNB9yZR/hmQEtmpnfcNXPqdCROM2bSEQz4bPi4/y61/BgXy2/y/Fsv33PPPPuj7hzQnZ2dnX2J3k6JV2nDTWo4OsPeLFBjQAUViBLwacBJT5tOJO9Zy4SqJWNozUAullICiPC6vMCbSKs7xuI5mRkLPXDFgZ6GkAdKsRjtcVkZSk2xlkEqoqlwovQXH1LrJUFHfBo5+YrJeDo8BWFWegqGR9M7gh+xVLwLlyxzR8wteE+xlqgeyUp2CaXgS8JpIaOEsuUoF6zSgeWY2eQdo6/RxlIx4bXQMePT+de5nN5SZUPxiQFDb2fkEHnZv8aFjrf2OTHVfNt9yLZ5x7atOUzKGMCWkTrBXA/UAnWquOx7BGFQR2crXrkXdM2S3oxfLEZITKnC1YbltGdqLUghiaHThlwypyqwCAd8PWKLY1UMTemJscHmCdNBZ6/I0wWbaqAuHb0K3idGnbEtGz41LzDicL4j5EJuHNO+J079++6WZ18B54Du7Ozs7Et03AQOZsIUj8aW2kUUoRhhoSNOe4KLRPHcVRuMQGuOzEtHSYItSkWHFEdbOibbcHIzrrmiyhNVnjjR8opntHpkkTOdLlFgoGGwDs/ImAPejBh1HJ0laUvAYMRjJSIImYfasU4TTjNBeu79kqPWnOwF83GPWljq7iEVR1GW3DGTDlcib91LXBrptaG3gaSe3ljWdQ9SeGzf8Jl7RDQL7kxNlSZu7Ixbt6ApPTZHLoY7mmpPECU6Qx6FokqvS+IU+LwEdAKTC4/KNc/KxGvzAV4zPjq8P+K1wRwmfu3iKcZMpLnFcSLkjFEwwE5XtHrLWq65p0JD5jKfeNM8pnPPMSaiCh+X1xirNFMiaU1zNEz7kfbUcrOuyLOWw9wwmMKj6S0X5pYxVcTK4MkYCrPS0YqhSp61CNVi8b675dlXwDmgOzs7O/sSVZLoLy1DeJgatJpwGYpAVogsGcn0ZkYygqihZKEqPSJCFo8aSxZHxJGMZZLAhCUGi2ZFJTOo50V5S58bKtnhe+XTdk2WhxHBLKAKmIQxlpIFwbBKPUUgimLJWAxzHfFE3vorbswlIpajbTlKg9NEYGCR71mXPRfTkUMzp2ZgkIaZjUiZiBJY9AdQZTPcsLB3dIsNQSMv0q+z5RFFhJqMyyOPTrcMUjGNljHU2P7I3i+RVrg1KyatWdxZjrMasT25ynzYfU5F5vF0RzaOYgNd64keDs5S/IQ3I5ojLQNDnhGlwsceqQoyjnx3uWFQYWcvOJkZW3NBYGSgYadLVC1P8itSOnE/viS4xLvZgq50dPWKkHuWIyy55ll+yxO9QTRwmzZc2Xs6uyCKJ8mRbd8wXz/Gz87VG86+/84B3dnZ2dmXaGEdVxyQceAYFiQr9CZgiLgCS/2ck1+wtw2R+uEzXZLJYsEKqXh8UWqdQApZhNEEBAUixiYwMEjLd9LH1LljQY/UkUP1MFL3MI06IjlTJLAad6iYh9Wz4mjjEbUzah3AQODESnYk66jNyJ45uVgEg7UjgqGUQCKgaknZckhzkgh3rBlNoNhA7XYERjblLVd6j4yRiYajmSFSEOMoCojDZsssdeS0xndCb55Q646dC3RSYYxyf2FwJbPIW0brSS7gYmIxRObu9qHwY618Xi7p7ZyaIwlHMBPrsueYla1pmOmAsYl5GjkVR0jCZdmizlLY0rFBKbRlJBShm54wUBMJhKonRGG2zFT6OUf3mIE1QR2HcokK+GJppoYfYE9vdxgVRDPKkl6UUxq5fL/d8uwr4BzQnZ2dnX2JPnj5Na7+/v9BSQMX04FRDLY4lrmjjongLLPpjmO7ZnQRZxSbEqM4vBoGaiYteE0kY1GFrIKIAkIBClDTIZJozBEphb3xKBCIHGgweaJCMQx4iQQGNAnqLF4iko7UZeRpeYv3I8YqkzYMpiFJDZyI4gELFC7kBpGKnV9QmYElR6o08In7GpUUTsVgSVzlG2Z5RI1lGlbMxoTagncPZblGccymHc3U0dcVxVp8suTQeZTBRAAAIABJREFUcucqduFhccXT/i1veEZXzbizX2eVjix1YusWUCpOzrO09xztnBt7gVVDWw40pUeM0mtg9DWb8ga1hsFXvJltIFti12LrQjWOLNsTbUlAYt6P9LKijh03zYpX7QuMiyRf8aL7jNtqhfMde7th3kdumhVVrqlJ5HHGk7ygCncoUNmRQxBiekc63gFP3leXPPuKOAd0Z2dnZ1+ijz74Ov/UD/+zfPZ//3Uu3n6Hz+uG12LwbmLeJy7zZ9QuUZeJX5l/g9E95HC7kw1FJ3IGG4W9ndPkjjkTSRKtOWGJeI0czYKIRcXSmxYsJPUkHJbEOu1Y5h3ZVAQdyaKIgHWRI2tu/IKQEr1vkFG5Mu94kT5lYEUphkVOHHzFrVsjJEpx3OsjLIXgBkR7XrkrlrnDaWbOkVon1uWe5+MbLIlP7DeIyZL8gqafmJo5VUnMSqHez0guw8kwr08MssGqstxPXNgjN36GiCU0I4vSsbNLZmlPUYedYJm2iJkwWrHsKt7MW5rTiKs9j4d3JCfs/JKxMhy4pC4Tj/trqgyaC4P31NMemYSn+ZabsObdfMnebthywZNuSx+VoD3ZOYoYrpeX9D6gBKQUShBaOqbKc2fmlFDxdNczK4VDnGMls4zCM47M0vC+u+XZV8A5oDs7Ozv7EgVn+JN/8k/zQ9/4AX7su7/C5598h6MGijasXmQ+Xv4Uf/N/+3vsfeGyescr95JRLUYmtFQYClMlIJZBL6jKiNVCiY5KTiTr8bnQm4DiOMoSx4gphqpkEHgxvebp+Ir7Zs2N2bC3K4rIw3WSRY1FTaIYw9AaPpWnnLLl+XhLM2WiNQSFi3wkSSGLkqiwZeDoFtzqmtG1PErX9ASqIbIoBx5Nd9TmyM1sw+lU8zz2WDlSyR0Xg+dY1gxlhUuWIIlMzWwYkRRZ+Xu2zRJTCpu7HbUbyQlyq8zKSNtnPrwd2JYV00aQqaLy90QPQSeWUQlTxXrv+HTxjOEiczQbDqZBXOGoFzzp77gse7IVXAcYpcQW75VWTxjJOCKdqZFypHczOlqcFqayIqsliaM2R1SVkCKdrRiqAMmwbRpC3rOUGzZpixsdL6tnLJfr990tz74C3ltAJyIb4OeAj4FfB/6sqt7/lnN+HPhPgSWQgb+sqj/3xbGvAf81D9kX/w7wr6nq9I+q/WdnZ2e/neAMl4+ecvnoKT/04z8JeQIbAJhOPZ/sHrP65V/ga3ZPMbccnKdmjuiRWAInqQk6IRkqel70rxmNxbiJO56wN+Ehj5xmrBZ8UazAPCcCCUmRLizwacSHEVWw5SGRsZGMl4mMJathMi07u2Jrr7iXO17wjjCdKM2SVJRBG+alQygUDAdqCgHUEvMMNY66jJAcSWuiD3TZ8W6x4hjnjK7iW/Etm9jj0xHkE97wiM5aDiFgWRNQRiwdLZ21rOuO/6e9O43VLUsL+/5/1trzO535TnWruqq7oQuaqSm1sXHAAhvb5ENjCRAiCt1xY4TtRMkHLBrBBxQFqR0rsRR5QB1hpwErTA6BBDkYY1BEmNIkTXc10PRAdU13PNM77mmtJx/OW8rl5p7qrs6999S59/lJW+9+11p773X2c/Y+z9ljlgUm/gDp4WJ/i8m1lO39lmtPXeCoAB8FiQ3pEraaOTcmIwY9aHqRvcUB0ua8lGaEPCMRZdkLnttsuX3qSpF8RR8z5q2ncHOI28y9J3Hgy5atMGN8cMC14ZOkNSxGFZNuyn4+ZqM/ZMIxu/0hvb6NIvZISNmJU7IeklnOSvfYDAuGg22ysV1BZx68szxC9wHg11X1gyLygfX3H7yrzRL4HlX9lIhcBv5ARH5VVY+Afwj8Y1X9GRH5ceD9nCR/xhjz5pFkJ8OarxI2tncYFRULVUarnhLHNCyRQWA4u8GN0SU653EKwUGdJdRJyV4740YsyGIg8ZEyLqh9iRcoY00QwfcdB/kOB8BYjlj4MS0lgpL2HSlKGpeoRFBoT+47JaUnqnA726EQSHql6hp8qohEoiqNGxJJ6VwKosydkPuGOnP4JHKj32QeHVXf4rpIGwtQWLBNxT7bWlP4Q0LScTi8Qq+OWRhSZxVptT6NGpTpxBPTnDJt2e322XO32ayUF+TL2c9zOgL4hKLN2WFKk2SoGzLpFtxwF+id0IUG9UorGZ1GdtY3flRtZDubcagjEh/oXcnT+jnSoxUvbj2BdAkSUlwn5LFg6/iIwbznqNsg5I6ha3B1iYRj0jBnYxpoiwirknGtFDMhsE9MgcGQjbd/GYg7s18/8/g4y4TuPcBfWY9/GPhN7kroVPVP7xh/VURuArsicgx8E/Ddd0z/o1hCZ4x5k/OJ40ve8TSz/a/iUzc+xmS2ImWf2RSG/pC0diyKY/6oeoZ5ldCMa1LXsnID5smQhAYkI9EALlLqlHGsSaVmJhNc2rOUIc4H2piQh5ptPSCNkbJfMPTH9EnCMSNiSJA+MERZScUxW6iuaF1g4Kf0LmfYL6i7gi4v6cXjYmAoSzREctfjQ+R2sslWP2ccj7nldkkqpQsDthY1bch5lUsEL/j8Rbyr6F1EotL6jFZT2jTS+ZLWZXReqMIC1YySmjELspCwSoW59DS5cHuwSdm3+H6MBgh4lq7gIG+Yesd44Vh1W7zl5itUg5ZZljPWY5SUrFiROU8rKYu0oJOCQbdHyBwbyxrNIQmBqg8Mb58k1X2Xs5nMkNWYi+5lnHf4pCZ1Ay5LT3COIgtc6QYs0jF9cYFMat569SpbF59C0vSsf+3MY+AsE7oLqnoNQFWvicje6zUWkXcDGfAZYBs4UtV+Xf0ycOV1pv0+4PsAnnzyyfvQdWOM+eJVo4p3f+Nf4h1Hz3JYH9NqT3K8pJsuabOeo1WDfuJPmIVDPucGHPgNVr5iJQWhT/HaM+iXRKeoeDo8IjmJdLQkFLIikZZEIjlLfNcTO0+hHZthRdSeabKNcx1NOmSnu8GR3yTXyGZYMU8yeoGeBJySZpFh09EkyrIc0LuecVjipSEmKY5AHyKijs1FIE8Dfazx5ZJac3zsuBZ32dcJablkHKaM3DEzhpQsmWlF3i8JDpaxZKef0/uUPO2IOHofwCVMyiVP1S9BfpnJrGHuU6b5hLHMkSYw74aU2lI1kVXumLQ55fwmt4djRumKabpFXc8oFxVjdazKnizsU3U90gtzN6RtU/JOmVwPjOodyn7JMq+oZEWT5Uzbt5CWjkt7Ge96y5cwzC8Q05TNbJMsFHRdpG1qfJYwHA7IhxWSZZ//l8KY/58eaEInIv8OuHiPqh9+g/O5BPwU8F5VjSIi92imp02vqh8CPgTw3HPPndrOGGMelrws2C0vscul/0/dwcENPnF8m+PDBZN2haSg8YhV2Ga4uMUyraikYVZU0AdCImivlNTkLLjAAXlY0cUM33oWbJzcdZlN6UOPJh29CzgHysn1dxOZoeTUZIzjim25zdId0knBkZYsqgIlst3vU/glVb9iyoiOhKFvSXolZ8k8nVAnObkuuBRepYwLqrDg5ewSbZ4ycsLNdo+d/iajpiZNVow4ZFqViHr6ZALTjMFwzoWjG9Rxwkt+B3UJqSzZ6q5B7Th0O7R5QpuWNAFWaUGnEZcpB27MWOdUGtiKc7qYMI4zFmHMMskpujGbQfBNTxqn5G2DthmTVaQtFuz0jo29PS4//Re4sreHE8UPcrzrWdY1vki4uLvNZLyFc5asmTeHB5rQqepfPa1ORG6IyKX10blLwM1T2o2BXwF+RFV/d118G9gQkWR9lO4J4NX73H1jjDkTk2rANz+xQzH7I9rZS7ycbXKQbnIYHZPldbaaATfKKydvR3COWh2FeEqdk0pgEg7JqDl228yTCYcM6Sno6QjJBYbhkEBBGqaMkxmlLulCxbCd43rPbrzOwo/R0tGqZyBzsq5hmRXkIRAdFBJJu32mESSBPET2s10Gq4CnZS/cYsvfYJAcMXUVnYOFG3PkR6ikpK5nqz6kDC0Xwm1oYNZuEIqMrkzoXM714gKt5hyyRd5HttuWC3HO8OAWsSrZXs24XVYcjR0hETaZ0qkHEiZhiSYb7DaHLLqWlc/xsiK0Iy6HkphH8jAlxBYWGbPFGCFF24yNySUu7z3Jk88+y9NP7JAldg2cefM7y1Ouvwy8F/jg+vOX7m4gIhnwi8BPqurPv1auqioivwF8Oyd3ut5zemOMOY98MeQdX/GNbFx8hhvXXmA5r5lJRxg6XPpOSnV84vlX+J+XS45GBZ0vyGVB0tekIbBgg9BFjrIxreZ0ScLMp0z9k4z6JWO9xWa4xjIdMwxLyhDYW91ioB37fpPSN8CcovG86IfMsgqnHZk0DPwxW7GhWWQcphskBKLr6VOh9kNWfQJpy4iUw9UmF/pDpoMNJv6QRlJ8FyhXS6SD48GALJmeDNrTOyHxDQtfIElkGgsSAlNXUklD7ga8nG5y3OxyWCQkXcWqEKKPdC7lINsi71piWtNLSifKUhKe6W7wUj9h6gpujhIua8uX7n4FT+7usFEleDKO9o+YtR3FcJPNcky1OWI4GVoyZ86Ns0zoPgj8nIi8H3gR+A4AEXkO+H5V/V7gO4FvALZF5H3r6d6nqh/l5AaKnxGR/wr4v4GfeMj9N8aYB8YXQ65cfZYrV5+9Z31/+CsMX/ocx66kcks6PD0pElaIi4zTGwR6DnWLOuaMtaOWgsalXI8XiV5pYoWoI1PhSpxy6Hfoved22GLhc8gihIAPNbN0g0RbcLC9eoVZukPnS8YcswwFiTaEmNKnkdYVEBz75UWkSWiSlEwCMRH6tiJrelg5MteSh2MUJdc5A3WkbUfjC1yiLKQihBy8A+dZupSj7GmiL8hiQ3bcUQTPphyxkR/T+ISdbor0GfM+Y6+dMW5KQhJpS8ciSallyMcl4bKOuHr1HYxHOQAX3/IQg2vMA3BmCZ2q7gPffI/yjwDfux7/aeCnT5n+s8C7H2QfjTHmzUrmUy7qDY7IIHbUWrEdbpP6htolvOouk4WesRxzUy+y8AXqYCPeZCArVppyy2/QxiGH9Gx0M3y+ZBCVV6oNAo4okVvpFfrgaXzGk90rZNox6Q5RX3DNpczT6uShyOpIw4phWBG6KZk2LJuKMJ+wTEdE7Rlpy2BxSN5kDLNjQq4cVtv0mlHUNatuhCaeUlakXc9m25ImM3y4xoohfXT0TUrwkWXM6YY5NSkHFGy1txj3KzZ0ha97FoWn1oRP5gWBCdcKx0FRsRsWSGhJXnmB+BXPAvlZh9KY+8LeFGGMMedQPirZeLnmQnXELIVUaupYMcsmVHqIkFADEY/vlIJI0EguHTMdspIRMXpC39P6ik9O3oZLW2oKEqnJpUaiAkrJijoO6OTkBoDcdYzDnNqn3IrbDHXJsGuYyoCyXZDkAZ81DIMwcj3pvKFxSh4qfEyR0DFyU3wTaJywH/ZYFQNmfhucMK6XlL0ybHL6PCOgjMOSpG15MR8To5LKgkQCQw0crBIu6Q2ci5BmtFlgHG5S9JHgLuMiXG72abInGDGlCgnFbB+Ovxq2R2caR2PuF0vojDHmHEr3niL/o3/PE4tbXCsquiKh9jmtCHN3hVxqtuIRbTtCdUwWIvPMMfUXURco+hV1zGkpSGiok4RMa2YuY0entJKTSg0CKzdEIqxiBVG4nl5m0LaUUkP03EovUTMj6+dMkzFX5c8QFcZhDqFkeATjbsDxpU1IetLJFFfDYZhQa0HtU1ZU+ADjbsmgFSZ6zMQpvvbcjttsLmu0m1OUDmLKYtTyyfHbaT3UecJn6yskTpmsOkZMyUKg6APH7pA2K3Hac3F5xJPuGsV8k40QyMPh51/RxpwTltAZY8w55OvATC5SpzVV1tGFhqNkREvJ1I1wYcCUTYZ0ZLHFqYPYE6VHFWSVMYwd3i+AnuNywNRtsGCTRkqGYcHV7oCuHdAknmF/zKJIUYGX3GWGLEmAUuY0/QazfkLqMtokJyoM/IotPkOSeKom4UYyYtjChqyI2ZwqD0jf8mJ9kcOi5EhGlFnD1dmrbPU3uRA/y7Ta5lAuEfuGus3I1NFvdIjUxMKzqTdpNWMRc0Q9iXb0aUKrOaV/CfE9zyw+Sbg1IFXHMp8gXpFVBnlCtmGv5DKPDkvojDHmHJKmZnA0p1HPLC3pMkfvHMGlpPSoCEEhJj1lXNIypuwjU0nQpIOBY9JdZyALxCt93KXQiugXeI04DYhGNsKCuQyYJjlLLRBdcSDb4BTfe2pfMAxzEkA1MOxbRDpCdMzmGwyD0vmIdwtySWkSIRGhyI4oi0Nelh1EJgwaJQs93WKE6oIbyS7zcsA0ZrRpST/rWSRXKOopqVOCFJB4lm5IG1oSHNNkwFhXDEKkjgWtpKxKuKTXSOYFrkl4pX2G1Ge8UGzzrnQbf9aBNOY+sYTOGGPOIcUjyEli0wtdmqIqzKnoNT1JyJwyzTParCOLkUFYUPhAoi0pHWkaaEgZySGDZMARBS0ZKQEnK6ayTZW2DGRK1gc02SCmjmWXsd07njp8hVvDDXLtGfQ1MS3QLmU/z5gmBTLJGDZLnpnfIOsD/qCmjDWb2Uv0k5a2L3FJT+c72jyhCQVCysasYZkomc4YtC2zZEKnLSod4juW6wQzaILrhdEycvnwZcJWwuVwxLzIuJVu0ycJST/At55hPeNwuMmNcUHaDhgmE24ez3lyY/OsQ2nMfWEJnTHGnEP5sKALCXGeAwldWuB7R5F1SOxxRFpJCeJRIGGBT5eIlNQy4NCV+NgDkYbX3iahVLqgDCsKGpxrWLmMigWN5GgMpCGS9gHtE16qrhKIBNdQSuCp+hWSuMKlO5T9hNK1lK7BD2qSoxltPaY+3OBoeIms+BxDt+Ct4VOUdcON5DKx96QqNKsCWY7RvqRFWFUVC7egzseM9Yik71jVBUFLqkTootCXGcNQkyw8o9Azyy+gvaPzDY3OoRIOXIEmkZj0RJnRxu6Mo2jM/WMJnTHGnEO7l3a49MQYfXWJHKdEhDZPELcCnxJJyNMOJx2a9aR6cu3cWKfMtaRzORId03RMJGFOSaY9GT1CQiuQu5ZeFReX4FNKWjKpSQQqmXNcjlkmY1KJ9G1KUS+4spoxCDN6X1JLQhoDt5Id1G0w29oiSkoRMwZtT64vkuaRYb9gkcyYJ0MCA7pK2TsItIucdlSREViMhmR9y1y2uHqwRPOGayNwfc9Of0RZBCZxSpZAuUxpQsc8G1JLIE63kHSK+EgRlsThFhtlxUZlr+0yjw5L6Iwx5hzanuzxH/yFr+eTf/w8R8s5gz5wIMLNsCKGhkwTbi2UVWiQbJ9xeJWmHBBchuY7dK5H1eMQMqcMafHaUcaTt02oS0i151B2AKVhTKI1jQxpHPSFcJROWDAk1YD4yKEbMtKKRANX6xeos4SGDW6mE/qtiuN8QKEd+bIgE48PDh8zhiFjtQpstwuavqbOHFLVLHFkq5amchz7AduhpwNQuHo0Z3d5jYNxx7KMdGFIMx+R9RH6ba6UKT7PaHshbPR04SKtD4wKz8625+t3LrA52TjjKBpz/1hCZ4wx51CW5Xz5276GZy4/TexbJMmIvaPpOzqJDJ3j9uGK3/2jj3N0u2bVZagWdKuE3VXkOFtRx8C1BMbpPvOkYNTMSTVQRGElKWlIcO4Al/XcqhSnUMUpA12wkgwVoXWOXpRjCi65ABoYtUuK1nHot5nLFtNsQpNXzJMhXWhADpnoLVI5oEt6Bh1MtaSNKcu8ANcgWtLkY2IJvY9kviMJLWHhiNOWUjLSUYb0LbJUCub02ZCiHPC2tz/HM1cuMcggH09oE+HWwTWC9pRVznY+ZjLaxhfDsw6jMfeNJXTGGHNOZVlOll04tX5rF564fIHV8uvptaGVFU2bwaqndy2LruH3f/u3WDTHdPoSW3VDO0/J610OyxEdSroRud5XJKkS1XPsN2klo1mfnK20oRNProEpE675jklSM05mNFlKaBIEB0lkpDOS2FDKit3FFBdg328Tkg3UNWzFI4rlNjFN6aVi0jXsHnfsZx636gm9p0gdo6+6yJde+XIajRytGoZtz3ZeEPqcd155OxcuXmFjb4C/4z2se9unrydjHgWW0BljzCOsGg6phqcfiXrr3lVe+bPPMl9M8blQaMQ3Hkl3iKOc337+t/jf+pZxWNI4T9Uu2UoPuK3bpK45SfLSEQPmtC6n0YoZGVlQZumYuVYc+QFFuyT6ks2u43JXU+Hpc0+fKIGGabqB7zpC0bFT96SlJzabpMMWrwsGoWeZ5ozescnb3v5WvvLiu9E+0GnA+QzEk4oncwk+cX8umTPmcWAJnTHGPMY2trbZ2Dr9AbsvHNyi/cyfMHcpjUvoM2i0JElqKllQxhVJ33Gxv8ZB3CVITlMErrsJaT9nWAdmZcGknXMwHDBkRV5nuHob9RnOD3FpRu0naN7j1bFVB8q0Y/urLrG78SQSWpxLSbcqhlsDtqotqqx6iGvJmDc/S+iMMcacqo+eleSsXM4iyajCMcE7RmFBR8FmcxuXK2UX2JAjXO8YtlNW6QTJUnweSX3AJzVpbMj7KTFmtHFIibC9gmP1aOZo6m0UwVc3meQ5VZHzzLNPM64mZ70ajHnTO7OETkS2gJ8F3gK8AHynqh7e1eargX8OjIEA/Jiq/uy67n8AvhE4Xjd/n6p+9GH03RhjHgehj9AENldTehnTuQQfE1pylmzQkHOQLekkJXOHhOBYuZLrySaVOi7PbxJbT5a3ZElHGhxb+avgRmhoSZMVVZ2hkrMrgVEX6fJDkuwG6lc4rpA4OevVYMy5cJZH6D4A/LqqflBEPrD+/oN3tVkC36OqnxKRy8AfiMivqurRuv4fqOovPMQ+G2PMY6Ove4ZHx2w3C5YUzIqSLAZ6CQRVehy33Q6IcDNrCV3F7vErzNyQUdfSlBVF2fC2/gWiCC68QqoebR25RloyXimvsEhTXs4LdvIbbPkjJD8kH3iSvEbVHv5rzBfiLBO69wB/ZT3+YeA3uSuhU9U/vWP8VRG5CewCRxhjjHmgpO9wtw556uCAfkfo2wiqzPOSo2ST3iVkmjDqV4iAhIKRU7rWU6cDomtwPmOSfJbYpZRxjrQ5fVySDQIHmedgsKDuB0zLMaM2RZIe6XqQOSo9TdcyKM96TRjz5neWtwFdUNVrAOvPvddrLCLvBjLgM3cU/5iIfExE/rGI5K8z7feJyEdE5CO3bt26H303xphHnneRPC9YyBbSpyStkNOR6opJnLERZ2QSKFzNVr3kwlHLxrzj8nTJxa7m7e0+VRiwYhNpB6R1gb91kXD7CtJdwsVtok9YRU/adWRNTyA5eZUXAecyiFNibM96VRjzpvdAj9CJyL8DLt6j6off4HwuAT8FvFdV47r4h4DrnCR5H+Lk6N5/ea/pVfVD6zY899xz+kaWbYwxjytX5FQXJ2x8ztMtHdNBTxlqHA3LdEgnkZ16zl6zz3bTsLM64qlxQkvHy4kjy69wIS3Yq3Mmi4yDVUFXX8YXjnKyZOeqQhr59G1PvmgYHXv2orLRTWA8ZmvzS8nTjBi7k+TOGHOqB5rQqepfPa1ORG6IyCVVvbZO2G6e0m4M/ArwI6r6u3fM+9p6tBGRfwn8wH3sujHGPPYky7j67q/k6u3rDPevwXzGOGsIrZLLjFskbMYjhAVXyk2emmxQPfkOYpbwtnKTIt8jDx118yyr67cZaEtV7THevcRkO2cw9nylOF68veJTz78K138PGsCVtIOC/dWcrRApXXrWq8KYN72zvIbul4H3Ah9cf/7S3Q1EJAN+EfhJVf35u+peSwYF+Dbg+QffZWOMebxsXdzjr73nP2R66zrCgrYPhCAUWUXQyFJaqsqxnYwoBtv0aUJ0UGQlqU/RPtK2Lc2X1XhxFHmJT/7fBG0IZL7F38xYvnydl3WFy1cU6R5pmiB+x47OGfMFOMuE7oPAz4nI+4EXge8AEJHngO9X1e8FvhP4BmBbRN63nu61x5P8KxHZBQT4KPD9D7n/xhjzWNjc3mRze/MLanv3xcySOPKkIKc4dZoiT4i58pmmJeqIxvfsHnjkMmT2xgdjviBnltCp6j7wzfco/wjwvevxnwZ++pTpv+mBdtAYY8xDkSWOMle0qqg0ZTXZp+c63XyF6DuB0Vl30Zg3PfvXxxhjzJkKfUffrTjQGdf9TWq3ILqW2eomi9U9L682xtzFEjpjjDFnatV2HLiM8tJVumrAKFlSTXqStKXtz7p3xpwP9i5XY4wxZyp6B86xWQwosqsQjnBVQTW8zLDaOevuGXMuWEJnjDHmTBVpxs7li6x8QdXvse2vcnGSMSw2GJRbZ909Y84FS+iMMcacqcw53jYZcqkqISqlf5LEBZxL7ZElxnyBLKEzxhhz5jLnyHK7rNuYL5ZtPcYYY4wx55wldMYYY4wx55yoPl7vqheRW8DnHvBidoDbD3gZ5mxYbB9tFt9Hl8X20fYox/cpVd39fI0eu4TuYRCRj6jqc2fdD3P/WWwfbRbfR5fF9tFm8bVTrsYYY4wx554ldMYYY4wx55wldA/Gh866A+aBsdg+2iy+jy6L7aPtsY+vXUNnjDHGGHPO2RE6Y4wxxphzzhI6Y4wxxphzzhK6+0hE/oaIfFJEPi0iHzjr/pjTicgLIvJxEfmoiHxkXbYlIr8mIp9af26uy0VE/rt1XD8mIu+6Yz7vXbf/lIi8947yr13P/9PraeXh/5SPDxH5FyJyU0Sev6PsgcfztGWY++eU2P6oiLyy3n4/KiLfekfdD63j9EkR+et3lN9z/ywiT4vI761j+LMikq3L8/X3T6/r3/JwfuLHi4hcFZHfEJE/FpFPiMh/vi637feNUlUb7sMAeOAzwDNABvwh8GVn3S8bTo3XC8DOXWX/NfCB9fgHgH+4Hv9W4N8AAnwd8Hvr8i3gs+vPzfX45rru94G/uJ7m3wB/86yuS0CNAAAFA0lEQVR/5kd5AL4BeBfw/MOM52nLsOGBx/ZHgR+4R9svW+97c+Dp9T7Zv97+Gfg54LvW4z8O/N31+N8Dfnw9/l3Az571ungUB+AS8K71+Aj403Ucbft9g4Mdobt/3g18WlU/q6ot8DPAe864T+aNeQ/w4fX4h4Fvu6P8J/XE7wIbInIJ+OvAr6nqgaoeAr8G/I113VhVf0dP9hQ/ece8zAOgqv87cHBX8cOI52nLMPfJKbE9zXuAn1HVRlX/DPg0J/vme+6f10dqvgn4hfX0d/+evBbbXwC+2Y6033+qek1V/6/1+Az4Y+AKtv2+YZbQ3T9XgJfu+P7yusy8OSnwb0XkD0Tk+9ZlF1T1GpzsZIC9dflpsX298pfvUW4erocRz9OWYR68/3R9yu1f3HGq7I3Gdhs4UtX+rvI/N691/fG6vXlA1qe1vwb4PWz7fcMsobt/7vWfmz0T5s3r61X1XcDfBP6+iHzD67Q9LbZvtNy8OVg8z79/DrwV+GrgGvDfrMvvZ2wt7g+RiAyBfw38F6o6fb2m9yiz7RdL6O6nl4Grd3x/Anj1jPpiPg9VfXX9eRP4RU5OydxYH55n/Xlz3fy02L5e+RP3KDcP18OI52nLMA+Qqt5Q1aCqEfjvOdl+4Y3H9jYnp+ySu8r/3LzW9RO+8FO/5g0QkZSTZO5fqer/tC627fcNsoTu/vk/gbev75jKOLmI9pfPuE/mHkRkICKj18aBbwGe5yRer90Z9V7gl9bjvwx8z/ruqq8DjteH538V+BYR2Vyf8vkW4FfXdTMR+br1NTffc8e8zMPzMOJ52jLMA/TaH+G1v8XJ9gsn8fiu9R2qTwNv5+SC+Hvun9fXVP0G8O3r6e/+PXkttt8O/Pt1e3MfrbepnwD+WFX/2zuqbPt9o876roxHaeDk7ps/5eRuqh8+6/7YcGqcnuHkLrc/BD7xWqw4uT7m14FPrT+31uUC/NN1XD8OPHfHvP42Jxdefxr4T+4of46TPzKfAf4J67ey2PDAYvo/cnLqrePkP/L3P4x4nrYMGx54bH9qHbuPcfJH+dId7X94HadPcsfd5aftn9f7g99fx/zngXxdXqy/f3pd/8xZr4tHcQD+MienQD8GfHQ9fKttv298sFd/GWOMMcacc3bK1RhjjDHmnLOEzhhjjDHmnLOEzhhjjDHmnLOEzhhjjDHmnLOEzhhjjDHmnLOEzhhjTiEiGyLy99bjl0XkFz7fNMYYcxbssSXGGHOK9bsl/1dVfecZd8UYY15X8vmbGGPMY+uDwFtF5KOcPHz0WVV9p4i8D/g2wAPv5ORdohnwHwMN8K2qeiAib+XkIai7wBL4O6r6Jw//xzDGPOrslKsxxpzuA8BnVPWrgX9wV907ge/m5D2iPwYsVfVrgN/h5PVCAB8C/jNV/VrgB4B/9lB6bYx57NgROmOM+eL8hqrOOHlP5DHwv6zLPw58pYgMgb8E/PzJKyQByB9+N40xjwNL6Iwx5ovT3DEe7/geOdm3OuBofXTPGGMeKDvlaowxp5sBoy9mQlWdAn8mIt8BICe+6n52zhhjXmMJnTHGnEJV94H/Q0SeB/7RFzGL/wh4v4j8IfAJ4D33s3/GGPMae2yJMcYYY8w5Z0fojDHGGGPOOUvojDHGGGPOOUvojDHGGGPOOUvojDHGGGPOOUvojDHGGGPOOUvojDHGGGPOOUvojDHGGGPOuf8H0wyrQLJAWRcAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.', alpha=0.1)\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.', alpha=0.1)\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.', alpha=0.1)\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHjCAYAAABIPpnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3UnMNVme3/Xv/0wx3uGZ3iHzzaysKiy73W1orBJIbIyQgV6BWIGQJSRAlpBYsUMgkAxCCFYsWGChlhALkNgZZIS8AIkFCHfTEqgHu7orK+f3eZ/pDjGficWb7k5XlbuALndWuuOzeu69cW787xM3Qr97Is4JyTmzWq1Wq9VqtfpmUl93AavVarVarVar///WMLdarVar1Wr1DbaGudVqtVqtVqtvsDXMrVar1Wq1Wn2DrWFutVqtVqvV6htsDXOr1Wq1Wq1W32BrmFutVqvVarX6BlvD3Gq1Wq1Wq9U32BrmVqvVarVarb7BzNddwB+n6+vr/MEHH3zdZaxWqz8mv/7rv36fc775uutYrVarv5/+RIW5Dz74gF/7tV/7ustYrVZ/TETko6+7htVqtfr7bT3NulqtVqvVavUNtoa51Wq1Wq1Wq2+wNcytVqvVarVafYOtYW61Wq1Wq9XqG2wNc6vVarVarVbfYH+iRrP+vxWnifF8wscF2xRoU2JthTHrv2u1Wq1Wq9XPlzWd/Ig4Tbz57d/hd7//G/T+I3rjKJsrts0zbl48YyktRrXUs6VRmu2zG0zdsMyeHCPWGIwziPmDTs+8LORpYI4TYwiobKibmqACMWYK1+Jc8QfLeo/XhmAMVglO/cF79ccnuvM9hW0pmoZx8UhR0FhLHk8sIeGqLUVdEUIgThMqJZIrfuz9/s66xFrEud9fRwiBGCNa679ngP2JbcMCcaHzkcPk0Vi2VUVZGLT56Z3APnp88lhlsdr+5Fq+XAfagXGMU2BeIoXTVOXbWpfZs8weV1hcYcnTRF5mxBVIWf7YelNamP1MSJrCllggzJHkF5QkTPXltvny8yZliCGhjUIBOWZEy9+1zf8wOaSf3iYsJN8TYyAFBaZAlyUsgTgt6NJh6h//LL+/ji+/c6IyyVRE3m6Dr26HGDxhWlCiMYVDjCKlhZQ8SlmUcsTgGfuO6AMSNWRNsSmRwuJjwmqF+8p7+qWn73uSOMqiQit+7Hvko6dfZsia2hVv23+5XRcM0zCglxFbNlC0P1b3arVarf5ua5j7EX4Yef3xp3x2+78y6gc+MheMTxuStzQ/7BjsjuiF8n7P+x6e7yz61QtC3mHOFYUBYw1um6mYibbE9w/Y+VPG8ZFDzozFBswGv7liZzSOgssmM0VDeNCUSdPXUDYV2sxcGkc3T5zPb+g+/4jgZ1KOsFhO9opsS6pdifQzrVFUzY7NxtH5J6rZM+ktnb7CtnvYWD64gAuzIX30CU9PH9L3Z+zlS6TeMwdDmBQmTHTHW8zFFa/e/y5VONGf7jHKYcuGh4d7bh8WFAU37++JeiSNTwxB84PPDixSMhnN1u34YLvjO8+umJzi5CMynJmCJ7aG/Ua4Li3jMPC3PvodVB5or2749v4XkWD5rYd7Duc7ijTiLMjUcV011O2eXm+5/eKAKjRIxW4Lj9MTx9sD1TRSWMv1e9/lRUpU4YA3AfXeB0SzoYuB8TyRj2dSuGU0luryOYl3cd3C8fUDPNxR7B3tbmJYnsjGYtUlsdwghSV7hx3AVDXNtqS+SLismDvPcewIVij3F1xXG2Je6Pp7GDvmIXMwlpwNrhRKEjl6hq4n9ROqz+hhIbovmMcnhuIaWz7Hux3+cSbGE0XyXH73Azb7l4xD5P78MdNyR9te86zdMv7f/xtP95/Q1DdU7/0Sy9UrhnmirjVxDixvHpBlpBTFPAdMXTFdWJZ8y+wDWSyNfZe0DISHR9xomTuhLTeYncZfjIS5Rxc3fOf9f4i6rDn5hU8++T95M02ouKB1y8tNYtte07SXPHRPLP2ZWSdeR83cB7ZjTV0LhFsqAsenkdMpkKSinhNyU+HHmTLPXNy0PPtT3+H5yz/DZnP1dR8qVqvV6ueG5Jy/7hr+2Hzve9/LP23S4PHY82v//X/N9+//Bx72Bf/X7heJWMbUsIuP1H7iaBrGYcd2CLyUzxEljFwzDS8ZXcGzfI9RI8/PRzrbMtOBOoLrOKkdD+17jKmEuONifmRjnshWExHmYYPSljZq9nxBOQRkemTYOybRxGKgiIo9R3zcEU41ZnZ80WrqJlLGwCntMDLhyp4yK85ccj9+gDeWqj5RWXhn+Bz/FNh2T2ymQKcD09DgNy11qVFx4NPqgoeipMoF78nAtx7PKH2gXwKv65ec9JasAlMRUduBEzvOao+cDFvvUXJk6z1OzRT6gqG8YfYw+Zlhl8nFmY0b+dPjbxO6wNIfyIWmJHJhrvgBf57ve0WuAzfxM6QQ4lDQqQv25wXaiiwzjhGVMqJ6munIRj2gbYbsGPMLNssN3o1c54GjzEw3lxzmwDxG9rdPtOcTtn2JurnkSb1inC0+nbiaBrb5kTOfMBQLj+6SShcc3CVloRlPDUXasB8UV/uJd5sOGRSPs6KbPPebzN4qdrs9RfcGv5y4tyOd2fLx5gLnNW7KfBBvKYcThbkl3G+YY8Hc3zBceaIxDK2m7Cre1FcIAalmXo23XA+BGF7ye27DI5FbndmHO76l3/Bs+IjSTEzDM47Nn+GxuSGbCfonilPGxh2t7XjHvqaXiaOv+KytWeqSubigij0+OspTQELDu08DF8dAYRdkf2DZ3oEkwlBg+CXy1bc5SuaL8pElL1zHjyk50saFhole3TCNiqgT99lyKK4wc0JNmmUn1GoipJJ0n3jc3FClEVX0tLrH6YnJN2wfjijR/Llf/gX+qe/9C1xdvfyp+7yI/HrO+Xs/q2PIarVa/Txae+Z+hC4Mg5857wo+3b7kzl2z4YQOPVkFBlPwif6AxVpud5k7X7HzHeA4GMdQKM5YEMXvXG6IFFTLHhWu2Og7HvSGs2pYXM2iHff5CpNbqrCwTwPDpmVWliDCpd9xnY9cAk9VyZvyklNdUi8z78XPYWlQLhG0pzQHVI58al/wMO4RA6HIGA8uB15bRW8K9rmgGjO/Wz2jVoniZs8vPt0TGehF07Xg1MyTqvnQvMNsHVkyn3rHnYNnc2KIgWOumXYjks8c6xormfvcknJGbRXeO8pkeXX3yHTV8VFhsGnET5dMKqBzoA33LEQ+TQ7B8ObFLxBJFAxchgPf1yNdbpiaFu9brFE4JfTBsmyFrBKjbjFUPBUbWn+mNSdeaQjakWPJFPbse8ud2dEQCOaJOSeS1qSyYXILryx0akM+aAY0mxDYuMCsOkbOiBs5qWfMW82jajhLhV0SMgvJjvQ5c3g6cjh2DNaxlIpcJhq+QE2BU6wwfaBXNQ9Oc9KJeRyQkHmkBVHc2MxN7hnsjtf1hq6ynJsGJ4bOWS6tYZEMDqK2vLaX7IsfYPgYMTfoXNBV7zBky1NzyZ/rhMt04KTe4SAlpxyRueNU76Gpab2msolymXgsHT907/GZu8ZKRnLkBR0HXRC3LXG03JuGX/afclmdGK4nUmmYYs2iYRlGzt0t1gqHwhNsZDZbtKlohxPKZXbjgnKGz+0F36/ew8rAuCswKrDoiovUUXjFczXiUk9UI4d9xUKg15cQFHfljvKLgfjhgevtb/FP/PlLiqL4ug8Zq9Vq9bVbw9yPSfhG0fdbHuWKGcvACy7lC6wsxGSY0czGMumaaIRoYWDDuSiZTckxG0o8TkZ62aDKRBMH5m7hqdgz6g1n1WJTpo0Bbx0n1/AgO4olUsSEEghKSHjCfuYLt+ON3eNVwW1RcJ/2VEXkVfwEp2fOUqJjZFSKSTIoRat7MIFbueEpa0ZdcM5baAWjtrjWYxhR7Qnja2JKLNmQxXLUht5ZQDjpBmUSWkoOPlOFjlM5cbQNCcsgFVWeOCpNnWaSh72eKfMTj9cTT23LaWnAKKrqQO0VixWedINhoLeWpbF83rxgxwmA07JwrzY8uSu81ozOUOcB0YZmnrEnSLUQlGawgmZip46casXBlhQBjPf0WWO3kcdSYe0jPmUe1ZZFG7TK2OqKp+MlMwUqZBbrCVqzrQNeG85ZcSxvOOiKUCl+aF6RkyIXmlYCLkU+KyzKbrmbEqf6il04goGXIhxyjU2JbfmISQuVUtzZknuzIwTHKA3iZ8Yi0SQ4Os+9qVgGw6NrsdZzUjUPF5qhKBCJWJWZ9cyFZF4sT9ii4D6/4KGtiK7CKU9pJ15NBTlXDKngUZfkeo+UkWAiyg+clUOHSw7Fjse0IaFJeA52zyAWn2oaNXClzphGGC+O+M0bhrKgv6zocomKkf39HV/oPT0bRmN5ySegAyITi3H0bHgsHTUHHkxL70oKEie1w6pA0BqfHbX0bLjjYJ5xVHsGW6C4JErBXg5Iq9jvhNcebh+OdF23hrnVarViDXM/ZoqRhxh4rd/hM/2KnD0TGhcCIdRYP6KbzKRrPJpBO0xq0dljTCQzYsQzIyy6ZlYOl2ZiNjzo52TxKDwbdSIjHK1lsjuqOCJp4WI5c0otuUmkZNnZTEwKoxaiOHpKer15W2tOLLyHkUwtZ3rXoCI82SsSQr8UaB2JGZyJ2PjIoAoijpihMwWVJD6VZ+zUiGFBJU8iYwIoEiMKJBIVfF7tyDpxNQ1ombnwnt4KnRgGNDb3OD+iEeZyZkobQkiImnlmP6KXLZdx4RfDF/Rd5s7t8THxSfMuQTJ38pwpNxgm3rURpRJGLdggaElsUo/2cLkcMaaEuadIOw664GG753NzSWlG7Kx4sJcUwCAbTNkRdCLkyOg0i4aYDUIiLRtO9UJ3WeNFcekH3r0T2hB4bCJ324LHomZA08iJQiZ2+YRfSoKusQSyjpThzKNccZKWwo3gZzyOU6lxyRDnPS4q5tTgfUUOFokRpxe8KjkmxafTd5Co8amAYkaVI14ZJmM4qy0BQyZxFTqUnjhIw8vNGy5iJDbPCU4TlELE8pCviVJSkzm7HafGUaqINSOzijxVV+iYeO1+mYKeydSYEGjiwlX/wPvmNU+q4WR3DCjqcqa78Ez7htfFO9zbK2o/E43lfrtwUiUmjCiVOFvLtTrwsfoWs3F0csN+eGIunzHPjkkci3b4L390hKyxOdLKmcEWmLggugRRdLLFkFnEgFjEnfBuy7h4Yoxf78FitVqtfk6sYe5HjHGGnSLeKmIo8KpiomRWW06F5dq84Xn8BI9jUAVFCqgUueaR+6Q5mD06BYIYdvGOLieyCCOG1Bi2wYMyFGlAQiTnDcmMVCpgQuBqvsc3GcVCbw1TEj7nJZ2qMHlAU1KwoLJgk+DFMOgCj+LEHpGMAsrUMxUlTmZitmTJoBJCxOSZiEKnyCV3mDwzi2ahJiTYhxP75YzyjpM4nto9Go+oRMMtIhmy5kjDQXZEBJMHCpkpix7JkV5aRlsxSKJXL9nQY3Liuf2IVDzSLJqJzLG/YTF7QjGiiWzCmSiQUsU+PuGbipQswRTcpxtK7SnMzHf958ymYDcP5HaPzQeCKdmmjknvaGSgjJpJB5KaqWykcwoTPYPWpOVtj857xRFXHDE2gko82g1vrjwjgTdFzed1hZfI4iJCpI4daom0eSTlRG0mbtlzsDuGpSIK3Kste+no4o6dX8hLRgUDIyRzTWevCXnDQkTiSKcdN+nEIDuC1ozKEErL8/gamwOD+dOMuaQzNUjiQXZ8q/8QScLvmed8WH2be3eDkYUkJTDjteKgGp4uHXrWmDhjcyCYyFmu8WKxJtJRcZ09AcP7+UPe8a9JseGYGnyueHF6ZEgXzLuF/2PzD4MRTFxQCDt1hJyp7IkQDSkXeGVANAmFYyEr8Bmy1kxLQRTHbjoyFgVOJSYxzNFRp5mLaaZzBVoFRtNwpsbnkkbOLBTUcSGKYQwjucrYwn6tx4rVarX6ebGGuR8RlpnHpxOTKQgYxqxZVMXZb3FuwESwBLyGiMYrS50FguGdcEeVIy4vnGzLte9pzcBZNdRqos87ajPSxAmvNUkJOkNOml6EPTM36Q2TyWgWTrzkjXpOxjBjCdmSlVDmiYIZSZmoHH3eELEoiSQFSy4g1yiEOkU6cbgQeJk+51Y9AxRROVSaeX9+zWw0o2rxYphcy6gCk9KosaDVMOaAk4VEojc1noRfHGe9Aa9JKtC5PU0cAIMRYaCgl4qHqgKEMVrqNPP9zbeJUdirjke9Z9xv6HWNI6OyYVINOWeGYqAKM++Gj+m65yQ0d9UVRiZO5goJD9xwYhbLZbwnc8lZGTSKTVjYzJ5P7DW90UxSU8mJXtXYuPCgX9LqDq9LormjM4axyAgzj+YKHYW5bGnHniCeHDJDXdPOMxszsxtONClwMFs2Rc8htZQ+YJKgOo/bLXwQf0BX7nnSe1AF/rww7it+WL3ic1eTfaKQM1sZaJaRpIWn+YaxVPSlI9kExZ5fWH6TF6nh0VwSlaJKC2WcKeKMzjMfNt/mMV8xWEsShc0TkjLaB4roGQtFQLFIxeIdOS8EFAFLiJmoDBITtZqo1YyxwhwmdK3YesFWETfM9LrmYK4ISiMqUSZPzgblNSYpjr5lKEuSgUEpeuVYcoUmIFlzdjXKZ0gRLZpKBrwYmjTjs2Wm4cPiHQwLl+kNxIwyniwFEcMgJbulY1oKNvOEq8AU6+FrtVqt4GsOcyLyK8B/Bmjgv8w5/8c/8vq/BfzrQADugH815/zRl6/9K8C/++Wi/2HO+b/6mRSVDTe2RC8TLgWiElKeWayhUBmxE7uU2KcjOY/01LRpYt95tv5IVWWyFFTpid3ScS4MyWkG1aByxJHZDScG3WLzwF0laBbAsFEn7i5qOilIuiZnReUDEOjVhmgSBQsFI21+4qRvONuGg7IoStp4xJIxeWIrB2a2POqWlDVWe3woWGxFzEBW3MwBvSiKEPm0uiaJEDG8WA5U3jP5hmJSnNqETTODKRlyyyCGRRqIwiyWZCM6ekoCMZWkHCnTwKQh0BLF0Ou3IdGrjn16YLIFQ9ijYkUqIKiSMi5kbdksBxZdo0dFy4FyeuC2eE5KgoqBg9nw2r5AtLDzb+htQykByR16SczJoBC0HNnpxGfqFYfcICRqTujsKeOIMRlXvmF0NSA8yYbBGm53JYsomAcWEbwr8coRlOYLc0VX7WjpIAvoSBRBksKbkiyKjT+wqIYmjigV3w5cKYSnfEGpPGXMLMYTjbDQMAXLJBlnLI+uJBhNmQbmtGGa93xr/oioCn7r6h/B5RlByLHgbC55THu8McTkqJl4N34OMTHlmqkoIGc26UA1eM5SMSphMTt8Urhsueg6tA200nPSDWfTMtQtpeqpTGJWjsd6Q6dqvHI4ZmxMtPNIRnOWFqUilZopE8QoDLRMUlGkAdC8M32Izo7dNPDgLinUhJp7bssbBt4GeZM8XiokK4a0Y7+ccFhuTcmCJknNF+4dSuPBf8L52KHyOvfcarVawdcY5kREA/858E8DnwJ/U0T+Ws75t76y2G8A38s5DyLybwD/CfAvisgl8O8D3wMy8Otftn36o9blxLE8VFxw5pKertQ06cSluqdOHXXusURcyiQz0GRFG3uyC+zTkefhjs/lBVYsmoWdGdB5ZpCCQs+U4chTUzPnhig1ioRLE7NpWaTgPu/Z5CNFmFHqkoWWlBw2RmxKBCtkMYDDUxNQJGoyiZO+oKanjQs+Oap0IhRbEkJOjqO+QUJmcFsyCsRwEd+wFMJGHZhSSyDRS4nOnnqZmWVLM0QoNGWcKPHcySWxMEhIjMpSLcKgaiRVXNDxneUT3rQtR0q8rklkSFDEAR0j57xH+TPiDSYJWntKSfBlL81RbUEFjJm57I+8mVssA65omKRChUw37xjMiEsK151weqTME+SC96cTxxLOaovPFU3uiFmhAuRU0gwDU2pRWvis/BZFHnme3uCzoZeF3tdgI1FHxAtX4czonjNyyZQbClmY2VKmnqYP1OUMIpQyo/WZZ/4WrRSCYtaZLJGcMxOCThmVPVYWyjTSqoEiRkbR1MvMYmeO5QYlC6UfyT4h2fDMvOEYPoUkSA6U0TNVwmQ2jNpQxIW9PyE+cy42FMFTxYlyOmIoqbzHuJmkGy7lERJI1FgfmW3FmCO38hwrnoCjVRbLgU0eSbGnihOzUpjsKZkhaU5mw0TFJAUfyEdULExGg2hy0uQEMWdsGAjUKNtzwT3BwYf2AxKROTkaOkZTg46UqX/bkx1mulyjSUQET8PJQmgmtqGisBUppD/q7r5arVb/QPg6e+b+MeB3c84/ABCR/xb454HfD3M55//5K8v/78Bf+vLvfxb4Gznnxy/b/g3gV4D/5o9alMpQmYbd4wOvUuScSmYUw0bRqQ1LNmw58VJ9hMkRZscUWrIERqe59m/YFhaWPYXqeBMvOektOiW8KjjJBYuyvPCfc2ZHGQYKH/hwXxPRjKrE+plRWnI2+Oy48B11GuiNpTMbYlL00iI5QLBElzCSiGhCrrBqICVFNJZN7PnU7BBRzGKQnDB5IefMwbT87fq7CMJVuMVkz366Y5syZnAEBVf+DjcKPYqDrVA+U9qZSYTZWU62IYaFmYomPRKjorMVZUjoIlGlATLoBZyHwk7oRTHGHcVYkmzi3flzlPF8VLykzzWzMbg0U+qFN7xLKjQvzSc0/sRRbdDZ8tDW4C8pVM+decGj3lDPCaUCv4shWnk7cW1aaFOkp+Um3OHiQuXP/K3yz+Imz5viOWVaOOQdPmlCECaj0DpyqCsaejSJ6+XEJgzMGOZsmY3B5p6zKcg5MqodPhqilPjYUpDYDU+YdqQwHZWdeeUjzezYTi3W3XF2e5KbqaeS3XSkCELVRy7zAzlqGo704ZqzV/TWEYMwOYfOhg8372KYUXlEpxYVFb3ZEUVjU8DhES90dkOIjksbuExvuOjvuZNnzNlylj2q9CitaOLImBpsyjgfKYnoLJiY8U6zzyf6ZCnzwjv9LZ/pK+6LPR5hzhUn1dLkkZAFkQWbA0XK5NGg8ts7QUxiOeoNgzbM4rB64iwblqTQObOJR0bVkLXGZP92UEQY6HSJY0ayosoLSRUU2uC+cteS1Wq1+pPs6wxz7wKffOXxp8A//ocs/68B/+Mf0vbdn9RIRP4y8JcB3n///Z9alFiLEc3ze81+vGWUib/dvM9DfsFERcOZOZdc5hMDLVEbOttw4Rc+1s85UjKbDUPcEc2IUxM6eS5Vx4kdO/XA6/wOn/Iund5QyUTFwGY6UahEpwqCWHxsKLQHMdRx4nV6j946BhRBHFp5dExcpXtCskyqBBQpK2I2lDHiraJjSxT19pSxgIgnaYuKESWZbewZdU0RIxlomTF1ZHGJMRumcQshI3Gipme7jJSx47a+JqoaJZlFQOVInQZKGXCqo5g0kq6o8BASO3+mDR0uZVzSSK65ngMvpjPR3PNgDJ8nh8uKB92yiYpIT19ZcJkYa8p0IttAJzsiBadB+JBL8lzhjYYZfMoYJxTLmVRkFr+h8JlCR57Nj1yVd/is+DSOHPxzRtlQcSS6kWjBRIWKERFPRYdxI3pMXA0zS7bsZMCoQBsDz/2BRTskzWzTFxz0hikblliiY2Z0C5swsdUn7By4jh1v5D2GUmNcw356ZBcOqOMV0bwNfZ0ueTceSLEgaMttumJqKo7WQXS4mKiXkVEVzKZk0A2zWErJaO/waJyPzKXDpYEyJ8RPMLWEesuFPKDnOxQLS9ry6Coe8wVaFmxcKKKnXhTX4W1vp4kZpTxPdoNXBTE7PqsUJGjiTKcEnTxKeSZr8FqhWcgJiAkq6KIw2QI77TnZFhUnZqXpYks2CqcCAQs5k3MmS+LOXqN1xMcMEoGIkUCOM1fpxIvmfbTWP3V/Xq1Wqz8Jvs4wJz/huZ94OwoR+Uu8PaX6F/6/ts05/1Xgr8LbO0D8tKLatuLZi3e4/+2BRTJP0wuW1hFFGFVJyAaTG2yK9LJhQXPiitfFDRZILlPngKoS5IZX/jMuizM2DEiKeG3ZxANP+RkuBlJw9Nqxy08QBKUdGsWTLb+8MLzki+o5S/ZEHBMtizZs0om9HLnmlsaf+Nx+wKwKYtJAQkvAECAnmpjxyjLqijpOxJgxEtF5YdYlKmlS2mJVj7ORJ9vgTYFKEcMDi5Tsx4VdmHi+dAg9b+prcjbklFECQqIzlnrJxCj0MaOBJp6YbEEbjsS65G7ZorXhhoFxNyLhidJXmKEkbkqCMqisWHCMUlLITOtPHKod+yXjjSJGRZsPbOozoyoY2syRLU9W0foBQ0+eNqQioX1kM48UUdgycK3vOc57NrrjSS5xaeJ1u8XiSAoK8YhOJKVIIli1oGKi9Qtn23AhPW2YicVMQCEyI6HhkSt6bwipJOeCuUyk7Hnd7Cmlp1WBi/HMnb1ABGZj2ekD23zm3JY8mgsmfUXOUKSZbU4kiTSbngfZcCgumFKDUguTbihVTx0XqvCGzhYQK2I2zMmhBC5noR0yJ1OSdGQpFBIT22UCp4mxIkjJi3ik1gOdLdiHATdnbs4ZUy68ri6wIVOnmV4iMe9ZtEJiZCsDu3BgKa9ow8yiKlJWb6/nI6NVoI6PLKpiMgVHW2FwLKpgO4+0agQZedKKhbfftTY9cpYXLCIIgs+aWRcYWcgp0sSeUgeUB8mOZVn+nvcOXq1Wqz9Jvs4j4afAe195/Ar4/EcXEpG/CPw7wF/IOc9faftP/kjb/+VnUZT1I9fzF/T1e3y+E+7KhlvreNIXIOBSwgVPSpZJGTp1xZLfDnC4WM4EXTEljZGeoByv9XO28YkXcuJK7rlP71KMQi4NZ92SNFQhsD0OTNUGI56z2TDKBtKZMh9plzPROp70JR5BUiBJBhVYoiVIjcmJOVjKNGPTgpOJWVUoCW9Hv8YRRcAnx2Tc2xuh+w5i5NXxQFYFoTa81tdU+YQRj1YG0ZFNGFlMQx1nanug81vaZSbaiS2afezJGRajebI7Dn7Lc27ZzScu1YGnVFFLokOomOilxuRH5jpxmgMxVnyc3sOHgtE6mmWkjmds9oRsCUrTS8nJvgKBUhZ2PKJ0oA1Mlo4OAAAgAElEQVQz2SbUkghFyU16xKqAkUDoDR+X3+azKqMTXNyPGFm4LV5QBk8TIvvwMb9Xv89GBgYsFs+L9EOWWHIldzybHym1YlJ7RrYciz0DI1d8wjE9Y1KaWSyN70A39LqEHEm64GguuS02tHSMy8ysLJ0t0Mqz5C3MJQ9qyxf6int3gWXG6Mh9uMSoh7cjiCWzyJ4iChISdsq4PHPBE1NjEDwv8y3zectdueMgLcEqttMTqvaUeeaULnEaglzxUWyp8x2X3YRU6m1PmtZMuqZIAZdgrjXH5oJeLI0d2HAg6IrBWgapmUxBM860eWYIIzrmt6f1rSXlTMGISYFBb/HicGqgyZFKeh7lmrNrKFnYTyc0wmQqMhqVSq7DEyfVsLiCGcNEScPbQSbROtIIvWt4CsPPYndfrVarfyB8nWHubwJ/SkS+DXwG/EvAv/zVBUTkHwX+C+BXcs5vvvLS/wT8RyJy8eXjfwb4t38WRcXhwFEfuH81cy4db4qKo9sRkqZICxfpDc/TIyZlMplIRUUgJov1FpGII6DCBM4ymgLUhs3QYIvIRM2pacgJdPZkDJOU/LD+LhvfkfXEsdiRBW7tcyo/05ktL8InbOSRKFcEiegcsbljpqbMZ1xqySgMCZsi1kR0HliUZqFBEVgomMSSVMUSA5Ua2YUDWgWeTEGg4KG4RHNFFsVleORKHbmMB6Cnzp5eSg5NSZ1mZir2caSOC702EDVF8uiQKZdANpqQNRdFj/KaR3EoL7jFU0mPjR5h5JAu+KjcEENkqSeqOCFlYN/36BzRAbb+xBv7Ck2mF8d+vkPVmUOx46x36ARWJYz3EDT14gkhYSVhoiJoxd3mmt/cv08GBtOw6QcOcgVkzmzIOdKEQLkIF+nERp0w2SGLYrAbgouUqePSP2Gtpwg9VjSq2zFySUpCpTwND7w2LxgLYRTHqC5Z3IBOA+3yRK0C5MhN+oIfxHe539Tcmz2axMV8z0karAkkrYgYmuWekksOS4lRmQvVIxYsC5fhkX3sCPbMrBKSIloiT2VBqxae+3sKpVA+06aeU1MypYbPth/Q2RpMoC8yvalIVlEbTxk9WjyDs9gwoWPGxUQRPdp0FES0mslLReHBW0URF9QCkyoQr6mSUMSFMj8xm8ykrplVQSclkjRt7siF5iY9UIeejpomz7TBY5IGOdHkRLBvr1GMWM6xwJkjnYm8SY8os45mXa1WK/gaw1zOOYjIv8nbYKaBX805/6aI/BXg13LOfw34T4EW+O9EBODjnPM/l3N+FJH/gLeBEOCv/J3BEH9UizHcL0+cG8WT2/FgLklKsZMzOi1sY4fzAXTmRl7jaTjnDe080YTEhX9AS+KoM5/xLiKWnBU/LD+gkZ7ONwR5Owt+EoPKgvGBgOZYtCyuImKo0kgShUsLoiJiFPt8ZE41szIIcC+v0ErwSqFDYpM7xAsXY89NfceD3TOyh5SZqdHBo43Fh0AmM6aSo77A5icKZha/YaprLkLH0RbMytDphlstbJYRrw2daTmbkkk5FhNRBIiJIszUi2e2jhQsySiqNNLIQHHyHNwFh7wl1BZrAvOsacMDIUNKnllB0IYsiSJNNGEiC8xKY0JJXhYWJ6ioCclyX9xwyQMBRREHHIE5tXxmnlNnz13zDOkTD21NzgZUZBdbEgYxnl4VSJWIi6CS4BhQMfGt/jMKfWY3nrkoTqRYUemBEFrCmHlj9/xAt7TmgYkalwLeNOyHRzb1mZOrObhLRoRJO4q8IDli00KjO5RSECN5tiyxxlOAT5TSEa3BF9Drt6dNn8wNehZirrk4ZF6GM1pnTKkxJAp1QJmFSVke7I4kiSCKbT5Q+ZlGFkZxpOyZK0fHMwIZPQV8kfEuMGNZlMJnzS522LzgtUMrRRZNJSe08iRdokiYCG06s1lOPOiSEBPJOc5SYlxC5wDKkUOHiR6PJ+WCNj0ChqANixQc5JKcoR492RhOdg/6hLPwZw/f5zfML5G0YpfPLLngJIZFLL12b38sKU+SdTTrarVawdc8z1zO+a8Df/1Hnvv3vvL3X/xD2v4q8Ks/65qWbPB0tPpIkEiXhTue8SQXb6e4SJbFlLi4cLKXNMsIytAuHQaFkyMNCxN7tnHkbBpGSkQiKp0x1gOCwaLywpktqpiJQBtHtAiTZAatiSjOqsGpQJl6bNQE9y6zKsjqbc9HFWaygYTGxjNH85KNzhy44mK846nactAXxCygIGYha8WSDA5FZGByJZtloOFEZs9ZNczZoRbHpX+iF0VXX7NoR0DjmBl0jWUhkdmkM318e8cG4zPbMKLzGRkUppp4chfMRUWFx8iIyQuUitHv6GJJ0BmjRrq6xeuKyU3ccEupIIompgJBqOeRHA3B1pzNBYtqSURSfDuP3okdShuehRMqavb5SJs7vDZv72BRdxzMC5TVLFmhZSGZClEJSdCkmTpa0rDhs+IFt+FMoTV7TsSiZvTCLAqvE2/UDa0e2I5nqmWgdid0PjPFHcY7lCvpdYtOmcv8xEZman2iyxu+KC4Z65a7paGeOnKVKfNARPMs3r69ZpIrDnpLoyKVWojaY4oZNyeOpqaSRC8bSgXWjpwpsSzoMLLpH9nmyE6/4U37Do3vOKTnuN6zWOG13jErR2dLghg0C0oiGcVMS1JCnY+0y8KsGk7Z0I4D3+ITvNXsw8AUNTqPxKJFxyPJtOSc6HRNikJQETWP6AqEQKduSEExGIcTzyIWnWcKNaASROXw2vAD/Q5qP6DChBGNySUDiiQORJjFQQQX9DrP3Gq1Wn1pvXr4R/RP95xvB+wOlAk4FSjSjMuKS+6/PG0HOdREXaNjxitBV5GQhEfXwJRJWiimib6pKRjJWnPIl8yqwPmZbNT/w9597ciSZWl+/6+tTLoIeU7Kquqa5gDkAE3y/R9i2ENwpjHdpTLziFDu4W5yS1548iab99UX/nuDAAw7lput/X3YHGhk5Ta8sOqGioGJjjot9Ckj+UTWDh0DMz0ZRZUCqVhmqVilBpUpRYHOfJEf0BmOpmEpt/yt+ZFJGQZVo7IiSyRLRc+ZSbXYlIjZoVeHmQKtTXTr8mszhSKI5aQbKBGbI6HUhKqiCzNbfWQbBl7lnlzUJS+vGvnd8hOp1oziWNmwqAqyJ0viVLUIsHVHlMxksaxSE4OjTQWbBmJc2JQzt/NESVu+uh0ihpAbCMLUtsSiMTlR5ZW2nEnZkJRm1Bt80Xxyt7RpZKh6FmMp6hKMnCSzCQN9mdjnMxqFSpFCwpqRnT9TtyNvfGARRwu8WMebe+R2LURJ1GEhVjW+1ATlmXSNrxweg3c31PqVsa6JWdPkiELjsiWmilW2/M38wKxqvFhO1YYHDjRpoltfWauKzniOZkOTR26iwhTDamo2zZm3qmFpFjKZRz9iZWU2XAKZqTmrDdkYXvtH7PIZ7Tp0mYmq5lW15LYmp8Qklx21Ng0UKSidCL5Gh8iWI1XOzE6x0OClYVENXld0+cQmXJ6Pxd4zVhu8thi5DPkFiy+KpFpOSshKuJMvWLn0A5uccWmlYUGbhiSGY72HVTGw4SSXzDzjPLVOiFKUIqAECOiisCXRBU2X+kvO3DWd5Orq6uo6zP3WvM5I1NyvT+zsgVAEbxSjLrzLlobI/fILU9iz2hqjMmPuUcayz2dGVTGoxJu6YZUGFQQRQWSloDEE3s0GI5kqRW7yGxsmWhlpeeeUbslaQQGXf/3HScWr6hGtWMSSpNAxs0nvSEoEaVAm8ip7sjI8VR23QVgEdMlYCl7BjjMzGVdWUnGYMlPZiY/pKy4pggUXFe9Vg6DxvgKENs68bW+pwgglUocVKQWdFN/6JyQpWpNIleZfqx/RUbHgUKNC65nKjXRq4b/k/xsdV4wJGIkczA43GerkaWVhLBZT4KN/4ZvpiJBBGea0Z9aFtUokNWJw1H7GFNjNK0qdeXVbnIo4f2bOLU1a0KZQLwdCfenwPJhbcqmZpMWozMMwMMgNmHegodKfucsjVjkO9oa/qN8x1DVaAm/1xIflFzbBk+IOh6eP70yqxdSGxQpiIh/XlX1+w6eOXAKSDRsyKY9s44ld84pXH0k0ZFHMumYzTyS7YRuPdMXTrE/UsjKoD6RkmDDcpDfO5nsyYFIixpYKsHHmqX7gIA+UomjTmXPeUioQk1noiMpAKvQMtHJpNpmtYRHHaiukCBt1AhEm3eFCgFRwOdEsntdqSyMeo1dc5ZlVQ5tOHNSGUiAriynh8kxgSSqgpOCyZ6G93DPPBsmBXR7p5cg7W7I2TOIQq6jLO2du6MvCohwn6SlSWJQjU0homjzRpzO79Q3y49/vkLi6urr6D+Y6zP1G199i1opS1xxyS9ANAxti0tRE9uuBh/yV42J5l1uKKhSjQCsKwja+I6XBlJlT16MInGxNooGisT5QlEGVgNc1Nh0ZTQelMOgGVQSVFgywn8982n5gpefFbDFSCBSqFFAEcnHc8gtvfAdJiMYChaiFuRSyMhgKlncoPRRByJSsuMuv3OQDH5cXPsqBQ/2BpWtIJhNsgRyJbSafNPfriAywywOgaRnw0WFsYKIjOOHdbFGy4nXFpHukCKCoYuD7+DeiCNs0Xcrqy0RzjqxNQMWCmgudGtmvE9kq/rj8mfZUyF3F9/6Fc1k5FlCh4U3fsOIBgZQZzZaeN358/StbPfKaHzCVYJsFrEJKZpveyKHlbBvqMDPaDvm1X9fKgE2Ru/TGYrY8i2bsIaqFNkVGXRFxnES4r4RdeqX2M3GsMLJQKsvkKnLWKJV5do+IUvzof+Jv6XfkkjBjhd8UlrJnEydU+SvB/CMla1JpqecJpxeS3XCgR5RQ8RNu8USdCPT8Un3LSIPNJ3LONLIQpDDYG7zvcSYy0HCQe5z1nKRnyxmXPbs0oEJAHChmasCsBqFlmw6IGLIWnEpQEkY0VVh5Nve8uTuyyXRl4Mnec88Tk1SoLJdeBjmTi6FERSmGbfDMdUJLpioLvT8iYkliidphSqDKng/6K2upyRiWsuFjeCbmlqAUR3PHpky/7oYWDELDzI068fv8V27TgLNcQ4Ovrq6ufnUd5n6jUZq+Ujy9jaz9FiWRVRqCMuQsvMk9s7T0NnCoKrx1rNpyk0ZKybSrx2dFUQ1RKaoiSMl0ORMl4UWjk+WWN4RMk1dyKkymIaJRRLSuMCwkoxESmoEseyp1wommzp4+n2jDwmy32AISI9s8MpmWCo9FaOKZG145ly2xjGRl2OaJSVq2cmJRjkO3w+uKevU0yvMh/cQk3+NVgxfhvXNMxVCXyC5MjGnPwd0wm44+HXjVH9Bm5lXdsEkj76pj1HscCZ0z3gWO4ZamTFRmZOMXzq7hX5o/sJaOguZ3+WfOqibYlpgth/UWZ06cdaEw08mZu+nEL9VHfIkUdcuaKwZd06U3vjQf+TFGlK+4HWaqbFkrqNLKVg7kDDEZVunIKiIUqhIZbIPLKyZnjrJD9MhGXvmQT4xxi4+aQ7Un/9rpKlGTqdEBfKqwZiE4cGokasUP62c+yoG3+Z6Ya7YhovVIWyZu5oEH/4QJE1OqcLsOHeFd77mJC5YJLxWNfmdMltltwMKL6YlRMDGgTSH6llQqFq/RecIyg3IYSXRroThPm995dfektBAwdMtAU5+oZWDNFTGtvLhbnBpZdEefTvjcsVlnlE6cTcuiKvrwzuQqohhyglF21MxQMjZktpx4U3dkLkHVlohTnmaNeNOgsuacvmExBq8dKiVciRidUUF+vcDgmRHOqmeSDiSySMUuv2OyMElFFkFEkbJjVA3fhWc+NJtrxtzV1dXVr66n4W94hN5atlYxSM+kKqLSKApFNCoWSqqJyKX0Pq7UzLRxYtUVaobUghFPVyZWbcgKZlWxCSN1styNb7Qq4rNHSuS17jiYPVIilXhu4pFkDJ/qBw7qhlnXrBhEdWzySC9v7JaZgmUtLfs4cpSWOicGsSQRtNF8Hw/clwM7BsbQ8rn6jpIF7xxrNgxqRyyGpTGoJvNd/omezG1yTGqLKgWvNIO1fL9+piqeN7PnpTzwygNO33Kueu7T10tOGTNtCpAnTNT4ZEFnhvLAaBLNlOiaT8RQczQtzD3e1HzpRmT1SIx0pbDsLZ9lx2wsOkT2caHxhsdf4OeHDmMMQRS+U5wqR8kaOyfGqqBbwVbpMvzYQBTDye6IuqFf3kmlplHvZGUYTMXevxNVhpjpc2BUt5z1LVnDrBwUKFkRlGOTB3Ktedbf4OcWtURKI+xkoBTh5hSorGVRe95kx6obbIbRJ5rlRJQaQ6YNhTt/JvmO3E5s6je2y8I8f0PohWhqVrG8dzVD6S+DUE6sqkdswM3w0hiwjrHaYOLCqFqKg9lVqNiSBapyeTb/GP8GQ+TYtbyYB3SJrLrlu/SJNwLbeWUuhdk2VD5hSsG7imPbY3MkaYXXFlcWZjrqvHDUHVoCQSyFhIiBIpxtR1tmKMLKBm8rbFrZ+hNrMJyaG9bS8IEvLKXFi+NdbjClMEvFTfYMOI7llr6MtMyczI61GJLdktP36G3FYV2IMV4Huqurqyuuw9y/Y+tLC4HOLXu/MLia5MylWzU7jI+EVDEpx+gqGjWTsjCbllASf7r5EZ0DXjrqNLHLgXodGZqe2keSWP6wfMVlw3uVePk1jsSVia5MQGTUd5AziNCnM6LhphwJommYKWKIFUj0ODMheJpc2MYFu3oG01KJxybFO7eEbDjqFikFi2eTEoaIJpJRl5gRabgvzxgij/mJr0p4sY8UbfC0jKbnj4efea4/EHKHBGExPSTNnG9pveeb9EbUjkEHJBiKBRc9TkWO6lIH9Sf7IyVoRt0QO00VR3yBDoihoY4jjQiVgqiFZC7L8cpkTIAmFEYdUS7Q58TH9IlF1XzafGCsWlSXcRL5bn5lCB3v9Z6SLvd2T/aWzZLxdaaKC1lVzJVhFQUidP7MKA2V9zyubyT3PY/xmWQ1Gc1oNphpwUWDIePrijYV9rNHk6heZo7VA7p6xJtb6uKp8AStGfKOL/qP3OdnGr1Qp5XJGZxJrFXi1A58eP+vhGhZ4+85VxVP8ojJnoJwshtKqii1IxePw7GLb7xWd9TyThCDk0SdAxmDUQuTc2gWnsQylTv+an9kkh5lhCzQxxWRyFA2LHTUrIy1Y1Y1UiwZRZ8mTA44vWDKwrvco1bDwdwSlCaKIogi4VDq0m28ZphUS9YarzV16OiyQusJV2aKMkw0zGUDJJI4qngmGcWJDnLGpnBp4LCJfTnwKo+oCCnVjO6yl5pSug5zV1dXV1yHuX/H6ET7eEtb/iu31cK/2TuCsqy/Fph7XdjKkTd7T1SGdg0UY8mpEG3Fm7plUyY8iqxaGs6IKFQSJnqKipwbTTUL3lTc5iNvsiHoniH1tPlElUf2ceDN3iF6AS75axRo0ogjIUBtFkzOCIWb6RVfaVa55NTpkslaWJXGY0jFoUtGCWzSiC6ZnrdLaLFq8KomGIOKhZswMOQdz8ZSqxnHSl0WOruwSyeSc5Q2oFTkYzgipdCycB/fSKGiciu5sgzS4IujkhN7WenKxDFXPMgzKq781fyAyZmz3XC3/IyPhUf1CWM9Q9OwlpqUhKYEyjby2hvETfTrzPu2p00zubTs1jMnZanLiBhFn84onVm54Vy2jLqjxMQOT51OrOmWJbQEKxz0DTafESk8ccugdjiVWdWMOimWneCxbNYDRRfebMex3aBKoEpbHtcXxryhO2W+5g2DVSjl2ZgveKshTWiTyWfL2HWwKh7nmXo5sGkCTp8JKrPoLb0JZCf4FCA7mrCgxLMWweKoWJjE8cATKVcczY6TaliKZaYiaI0QUAImRZQIizQs0hJyjc8tXiqMZFye8UpxNxw51Xd4NJO5oZkWUl1Rz5E2J0wS+jJSKU8xmUV7XFopki+ND3Ip8GrKSikKlYUqXTICo1XYojAqEDO4DJ1ZGbXmnQYvhj6tGO0xOrLLR5QIkhoQwYsmS4Uio1gpv/6dUWu2dX/tZr26urr61XWY+w1jFVoX1myJ1hDEYEpgxSJSeKvvWZmxPrFIw4u5I+uMJRCLoIvHoylZ0aSFLswImc1yZqw9xWiOW81je2QtewY6ujLSpScO/EBQNUe1ZWThPr7wv+b/xhoj/1z/E+9yx1fzPU0cqIjseGcoPTfpgFZH9nohXhLVaAlkAg7PWR5IogBBSsDIwm4akRgxKpGLMOYWh8dkASxdntmkiZQKBUWOBkPgXl7owkQTOsa6Y1tO9FOgj2eysrzXPce+p4hizi37+IJVM5bEuAFfhC/yQCmwSROPy8jX6p6ZLUvfEPwLsbS06wGVM0e95dXsmVzLmmuUXTk3PerSjMq76UkFchLOZkdBqGTEuwYThCYv5KIwsmJiJhhNFQIEx5I8YlairpGSWbVGlOLDeWBNDrOCGhpWC9HcEZkwKVOllTs5kyVhEbwyvFQbjJ55r2q8uWXeT9zHN5RMSFK87jfMKDoMb6bi+6lg3g3ZQTCKpoz4yrJIjWSFmg1tivhKyLSsypElU4qwC2e8VrxKSxMiSQof/BtKKTbjzMlagstgLzlsx7JjMC1BK1YxSArMpeWzqniuH7BqJlYVuUBj4fZ9IsWafspsPdzoyKHdMnZCCQKDRm7+v33Oy4+cfT4xyfbSy2pWhIoMLDQ4ChsZ2aiROzkR8uUt5yRbUmm58wce/SuvVc+LecSIZ1AtSkdA6MoZmzQpa2xM3K6Rvrq9vpW7urq6+tX1NPyNqt5Q7XbEz5YcNNolCokkhqhX3qodqWiKtaxSUZkVlMIwovSeB/9ELi3VKdOaM6ty7OLAqep4so8ogYGOWnnaOINkPqyf+Ml9T9AVoQhFJ4rOkIT79YVSFQ7hMzcy8JXvQOLl81aGs2y4USfe3AO1GXkvPauuISc2JLaMBCpSnlmzxUgiKsepUfTzzC5cOk6teFwJ2FSY1ztGdUdlPFEr+jhidGB0hm/kXzhww3v3I7fljJLMh+Erh+qBT+YbznVFEoWRwEG3uKI5m2/YhSN1idwPAwd7R8mJ5CyHtIVQeC9blmL4yj2tWelTIYYNZ9XgYqHYiHYLm3Qmm0IIlnO5wa6JqQbHmX2ZafxCJ4F5rpCUmJueXCwNA7fzG73UNOnMmm6wxaLMiVfXUrmFiMOUjGios2DJ3C2e+hiYGqFJgYO6J5mMFY9VE2/6A1ksi9py61953W9IOrDYlp16RmuhXwbO5gbnV5Ssl3xBfSC7lt1xIuA47Sr+1n9AUWjywPecOY53FBVYveMl3qFMxZvq+dz+SAmggrD1C3Nf+GZ6wgj40FJm4d1ayk7YaM/GL4hVVOdndCf4aDk2Gxwrc73FRU9BU5WIlpqSI3X2NCmxiStns+dAT5VmPAZbJ1QJII4k0MlAzRnHwkZGdE4McuLWn/gf5h+RnNE6kkkEMlEM73pz2c1TCjGJYAQARcIl4V1ZEEsWQxRNFosjY8pKyoZfvr4xTRNt2/6dT4yrq6urv7/rMPcbPkSOB8s8PvDzruZd7VEIu3SkTQOj7knRclYtdZ7JNqEKCEKVPTsWwprYMfK13aCU8DXfEbMiYRG1MkjDX8sf6FnRBB7nF1wBaQuL6vHK0KbMSW/4b/5/5z/5/0m2lkF3KL0iCQKav8kPzGaDCoXanLgrgXd7x0FtUXmHS/9GkxZMPDCJQ5sWdARlGEtPXXlu/SuzvuyN5WIIGJRkSnQULJqIITDYjj+7H8hSqNJCzUSfZ17yR07Vlp/sd8xiLzcfo6CJeNvwpH5HlkKv3vEKDn3NymVoLFkx1JYEnPZbbM78P9V/5kN4oZPCR3/CxQqVIYsnZ5itJYpmmyZ86WlCJFSB1VV0ZLKuuF1O/OTumLPFpBWJmWAMa93z+/NnaikcfUUvHR4htRWeQlA1P5x/4duzR5JithvOfYVKmlYvkCM36Zn9MJDrzKocnzff0+iZSRybKRNEKLoiGMuX8g01Izlr2jwh6YaoDblOjLYmmYolN5RV8VxaPrtHehloXMc/pX9mMQ2+aIrTdGUmpMJGIu0aWKgYlSHWUKsR7IpmobTQpXdCusWukVqEVGlqZqZ2i5oEpRWmRCKKgsOWhUlXWCK+LvxcN2xSJOWa3fIL3t/hO4WgLx3F6kyVK8ZUX9628YpVkSSXN8ElK5TOzLGiSxN1GVFV4iae+KB+gSIc9C05K1CgwyV8WS3CXg+sWThVPVAYEXy5dA4rCVAXzMlTRc88z9dh7urq6orrMPfvnE8nlvOMVAlJBVsit/nAqmrqOKGTsGpH1DBJR8QiORG1oqKwkuj1QKdOCBtM8Ly4j2gVmaWmTsJMTZSaoGZ63pm1Y7ItLid2DCzFUEUoUnG097yuZ75f/sY2nnjve35Sv78k71OwJILSuOIwOeHySKValBQW6XnR9wRdsxaHF8VottgSaNRMJ++82z2sma6akGx4lx2TtEwbi+RLnttB9liJpABHs2OnM0VgMBU6e3QVUDkwVTukFDKGKni66DGMZK1JWqNToi9HanH8ZH4gRkFJZjA177anYyBkhfEjOffEUrMfNPiFTfnCZBzPbofH0skTYgKJlr7MxGL54N9osr9kkqUndt7R5js+uw/sToJqHSlYol0ZtaPYmalyuOJ5iF+ZVMvv+Qu3JILt2KuJHAVWzckYTrInqBpVnanUinWZpkw4H1i1JkqhLROD7HFxJRWFSgqdDJPZUnnPh+XAp67nz/X3WFlxdmK3nNFOiBRCEQZu+Uv7PU2E7TrybXlBhch/b/433k3LJ7fDypmH+RcyitZPDK5lkIpERSORnMCWhRM39FLzYXxCxDCzZbYGIxGVIyZGdCmYHECpX5s5NLfqlbdyT0DoloUl1iTj2eqRfZ4IaeKJB6YivPLAH/gzVV4ZZANGaJcFuyY+8pmv23usFIIdUEsiF4c2GUFIBU66w+uGpnN8GbEAACAASURBVPHc+DfuykROsMSK6O4oXMqbbZm4i0e+G39C0j1N0/ydT4urq6ur/xiuw9xv6JCJ5RNBf+G1+T+ZzBaF56Y88w0vvMR7juqeD9GzaAO6UJWZQIXKkbeyJzno84nFWA76jlVXfPTPhGSI2VKphMqRg94zlJZDe0OXJrwSTInc+IFCi0TFaDf8XL7lW+1plsiZRFUmZqkRChmFZEGT2aTAi4KSC0UFZuOQFbR4JNdYA308EaRlKh1f9Dco9YWeIy88MMgNkgNFVfRx4t00mDBQdI8Onnd7S+MjlfUEanKx+FRzxFDlyy7XTTgRQ0eWTFYzoY20+cROXrGycjAP9OlMXSaq5PnsPvDudixK4+kxovnaP/DDfETzhKsDaoFE5DBvmZsdZ9ny3+uOXTrSaMUQG7ayoBd36YWthdoETsaRzokinmiE4CxLI3ype34xPXNlkBTJkjGyIYpjiFuS0XQE3tWGL92Gob40JWzLSFaakA1Bb5GUcXm97EcWzy6MqDxijcelyKgdvlhO+hYbC6qs5FhwKYJElImopFiMxbsaL5pF3SA5cbYdjbyymkA7gSkJLRN3c+GL/sDSOF6rR6LOePMdi3LYkrElcC+ZJq6YXGjnAdkUvupH3s2Wo6rIRrHhwGP6xN08cMh3TJ1htpZKn4hoFqWp4sCd/oXQ3dD6HrVGNuqF2md0ZbgfEsadSVUmFsdSNkyhRxToqHhMn/GVw+rIpowU4AvfsTpHJyO+tKxiGHXHrbzxWJ5o7MijPLErn/mf6h85siFx6Sm2ZG7SG9YUqq67XoC4urq6+tV1mPuNvqvRXc+nsqEPEyE8EbJlUyZ+GL5yl8/8bAMnt2PSN6iQidIQimFFs8rl9ui/un/E5hVdzmguvaZ9OCGpoLRjUYr46yeuUXUUpXAl0pQTH88HvrTfM2VLVgWrKl7iPe9qx1R+7UqNHimeUCpULsRUEUbLfffKohpcGjnYB165wasGVS4VWwFFESH9+l7vJSfsBKFxmLWAU5yNpSsr2ltcjtR+pvOZyUT6SXPY3bHUjn05U8XAz/o70ImgGrp8xmtDyoaQK8iFJguT2SDsGfOWMe+oQmbJFSVqGlnJxhK1YhPP1AzMLvCzfbzswKWFOi3QXPpCdUmX+42q52P+G8ndsB8PzI3ma77BOs/DEWar+VY/0+SZ5+4j3hbe2oYX07FgmHKHNitVnJhzh0qJP7W/5zYPdCJ8qvacpcYXTY4GrzT1olBWo8SzVQea6cSzucVLg9eGfRn5Lh0Z1BafK3TJJKOp9UDnT2izsD3XvFc7lrrFMfCgnnEpwKJ4ru4QHRh1z8/KcZNPiBnw1Z45tZzzjqUy7NOIFU+TMiEXdmph1g5yoCkrOiQoitUKJ9nhm46cLEE5tEQqZj7mF/5B/sz/mP+JbZU5m5p9euVDeeMxf2HMO0a1RxtNKBEbYO0Ujczs9Qs+3DJXNS4N9NETkvCmGs56Q6o1Si30cSCWiufSY2Tlh/KZ2zRw5I6oHa5ERjRf5SOpKJwJIJYTDSIRQ2KVFo9mJnM0N3xtFbMk5nmmqqq/95FxdXV19Xd3HeZ+w9UO0xrmwx1SCVPuKCrzxj3/uoXtHPjj8SsHoHeeoarxteJ7dWAuNSfZs4kjiyge0jM5GV5Mg1jFY/mCQmFn+IUPDH2LZ8MqBoNHpBCU463vgZmlunx+WsQxp56pdnitaTlzn5+RotmVhVQ0q2n4t90fqRgoctmxeifjtGcpLY/xiVPoeLUPrGLJxrCmwEyHmgZ6FGPWvOcNQSsWE9iUE21ZCElYnAaB2WjObo8pkX+1/3DJvMsNTT7TrgNWAtv0lTFuMB50DtzqA0PjWHVLtwon1eDmM0+uYVIbQtbYuNLFRBUTJTa04Uw0mUPd8It+4HF1PKyvfDBbzjTkolmV5sk9khBeyx1VOeNKYWBDdsKSIgvCRINOK1lXfFE7ZmkgZlRKEA0+1wymQdeZQ1GsYeDDdMS4SyzM1LfUPtKqM7s04ZWhlMRz/pZYZYa6pWRNlgYze36ML/Rmxolnig2f3OMlhNlmsovEbDibijpEpBj2wTBLhVQNRVUEpTDpkhc3loJZHXr2dNNCcg6vQZRwdhskFDBCVpqIsOiGJbb4HlzJBDRJDFksYKkXT6oDtR5ZnTDoCgkJ8TW3auTBfCWJQkfFk9lxki3UgpiF0noOasvRbtjP72j1iuSKbOAge0bTMdKTQ0VVFsLQsDjFLIYoFV2aCcpgQ2Yvx8s2pjHUBUpZsURIhc985F21DOryST2Uy73ZZCwv5R7lVr5MbxQpf9/D4urq6uo/iOsw9//j0XzD7jRS9IBTQm3PnPSeF9kzGmHZtEh2eNNQJ0+kpvcz2QiVLMSk2ZcTXfK81C3BGKI2fM7fcutf+T7/G1UZWYPlqzHYUl32lTLoELA5YCicc6DlTMIylYqkNZaAVoqP8wGlEwd9w0H2dPlMkIpdHAmqRnIkF81StqxlwxAmntsHznZLlozNhS6P3KUD39tfGPOWz6ZiaTxmKXhtKUERTE2bZm71GRMSRme8ashFkXOhWgPaClPV4K2mW0du4jtz5UCvrLnCp5Z+mqhrj82FzA1ZAqO7QadC0IpmKmxioJkj9/mFup55crcMoSf6mlPZYXRhE47YFECEpYKQGx7yE7NrWStBx8ggDb8EjU6FhsDUaEyJlLxB8kRlJ0a1p/EBHywKwDhCKjRloTYT1i7YHFhTjfVvfEwvfLO+clNOfE3f4YviUCsKhUltfq38ijjxjMrCanDFI1rY+xeStQSjWcXSvUU21YSKhrWu+Ev1EZcK21i4e37n00Y4uYbgINCTzMhjeqdxE06N5PGW2FlWpenLiMmBRTlUyIy2I+CYdEfMhdnUuLLQ5IjJiofhcsnnpjrytfqOZ/nIe/fIdk10ccCEAuHS/PHUPTDplqasWFk4655ZXz57nmRLs64sxjHohkF6tvmFm/DMbDaUZMgbzVFaQuipVMAthtv5iA6QG+jKxL/s/hdsWpEMyheOcoc3DVWamdXlB4SmkAmUlFElX/qLXcZU1+Pr6urqCq7D3L9TslA/rZghEu8vUQgvbs9R3VFEsysrBmHnT+AcKWS0rDyVHUpnfvCfmHXD796e+bq7u+wSSU8SIevAobrlNRw4c0ufFqKc2U0zpeWyhK5h0DtUmCkm4sXi0STRKDQmRXbxlT+sf+JGv/HP5v9gqHpG1bDQokrApZkNCzfxjZaVkiqm+oaIQ0tCk2ll5gOf+S/Tv3Fbv2FSxbkkQvYYVRii59jc4PLE3Bm+DW+82Y8klfgq37IaQ9CWvnhM8bg80cqZ2VU851t01uyWkSYfeAzPbOyBUSt8brkNT/yp/5HZaiIVFGEfX3jwJ3bnxMf2xBzgLWXmuqdo+EV/4EX2iAhVnNkysZMDTgVuphE9O3xOVG6gMTW2ukSbtCkhcaIZNL7LPG/uyAjeWH7//pWD65izpp1GTrbClhWSRp0dP7qfcHXCI4y2YRLPRgaGXBinjl/CR5IrhGRJArpE/uJ+T50GqjrQ5QklmaAqSoFEulxS6c4UpYm24j68YkwhxI6xTRSTULags8FOBQkV7RL5vvoJXwqawFxVFBEkaBZleHc7oihWbSii8ErwqqYqM8KKIGgSW3njP5cvnOeKIMJbc0eisOotPmXwlloVxJ0hJ1TSWBHanLlNz/xV/Y6QNV5XdMzgwCSPqAZlZobS8W1+ok4LNgkbd+RZ3TJKSw5gimc1FVSJz/aRoWqYxGEpSBYa6bgLrxzUPSbPiNrRlzOdWniXjogQsqZfB7p4iyrq731cXF1dXf2HcB3mfqNkeImagkFHRa8njrlB0IiCGcNBtZhqYbWK1bSYsnKsHlAUouoxJfG1s/is2ecTf64fETS2vOOL4Wz3LKrmbn6hSiuf7I+UrFm0xQlUTGCEj+kLjkgsiqPcE0XwYlG+8JRvscpj1UKbFxax5JKZzQZNYo17dBGCckDBi5CcIGQAHvwzD+GNXAl/kR/5U/M7JtmQKGzDis/CWlpaNRFFMxgHJVyGylRoycTs2fl3tvGdomGoO1YRTu6Gj/6V2GrMrJhUh7fQyQGnJtZOI7lgJEHx2JzpGanDxE33hbI9E21HS8PWT+iy8Cz3eOMoGEbdUK+BlAx1WRmkY1EW3wqL2ZPQ1AycpaZOhW5daMiclpbnfosuEW8MT5sGUkCKohoLnffcDDN3EtjPM/Vpz41x/PmhJrvELC2nUFPHiEqFSsEojpKErDUlVRg8WRyL1ISqZr8cSKpBB89NOHEfDpQCKEOoDENlQQuv7pZcMrYKfMMTO6l5z1t83pMb4aXckxSYMhCN5racSbkhmgaVhJ4JIxUqZpR4hrTSZc9Ga27Lge/5wtZ7/iDP/F/V7/ha35CyIuAoAskY/GgIcUNshJGOJIm79UyfRzY+8jCdaWvhxWjqoqhzIGqw+ZJTF7NlcB03/kQVEosY3tXleWzKwHfpZ7q0EI0CJSRlseLp4oTNnj+Ev7D3Z37JEz939zRqRESQkMEoLEKgIeWaR9uSY/67nhVXV1dX/1Fch7nfEGs5kljjiKdldg2gQTKTdCiVyQgqBXzWeOUIdJRyCZU965Y9Z5yf+WI+Muj9pe4onVE5oqUQtfBuOmz0mLPmziyoYnnbCLOtWI0j20xXoE9nFiomqSkRrFrZyYFzt+Hn1fA3+YHP8h1JaYoC8sokFV/1HVUZ0CSsObDoWxQFE0Zqgbv0you6w+TCkLe8yOVNh8orD+sT3Rz55Cxvtw6VErOpoAS8sgzaoUQoSsgm8zC/csotX6pvSMVyMjtK7qA4pDzz1d1S6ZmeIyrnX4veG7o8kdHo7DHujCsnjLwzq5pFhFe9IaeMEkvDyJO+BzKBmhMdR9nwGJ+ws+Kj+0xIiaQNKp1ZXIvkjK8U+3XmWPe8Vy2TdrgsbMqISGSjA3Yd2ebIYdmTlOGoe5Sq2Z5fUK3QxkDygdHWiN2h7cLUBGp9hNiSXI0piaQdKw6vNLt0xgJP5hvwBikanycGvWNTztykBVneWZzFRY9tblA5EQ005UjiDs3lBu572hGyY8ML3y6f0LOh15GmvHKzwp/rf2BUDRRFEya29kRfZvo0cj880bqIMwt6teR0wJmeTVEc6MloFJ4mz8yd4zVUzBvH3XxAoamXjEkthQldKbbhnRKhDxOmGuhDQBNYXQMIJgdOqmfTn4kYNurMJg68q46prpmLIxdNVUZMNmAcs2lwyRPEgS18Y35GZCEiPMsHVuH/Ze/OdWzfsj2vf8fs/t3qotl7nybz5j03CxBIFHh4eEhY2Jg8BA+BCQYej4CFyyNgoSouKq6qbmaeZnfRrO7fzW5gxFGplIlZUl6J9fFCKxTrH2HMGGvOOX6Ds9whVaniiKXh8/QV4247czc3NzdwK+b+wlINpSrtRrBdpjMzffWstYCbsL9GrX7yD0xmiwiYktnojKtHwGCZWILiWHDW0RRHY69UE9jokaO5o8sLLkFD5OILH7sDYhKLKN2vCfxGlFU7knEM9chZ9iy244/+7xj0yL058+TuiGKo1iBSuZqWnBtqNSiZq/eMv3az7uoV0bfduS/yPW2Z2ejMFx4501BNoAeuEjj4V367POPmlqG88vNuy6t7hAqiSihvI7zu0oXNMnFxPXVjUWOwFPb5/BaA3E88de8ZtOEX94jPiY1MnKSnZE9XzjiptHXB2Er2MNlAtgWJhW+mjxgd2Puf+T/Nf4aSOZo9tVoubsA6xfcZqTMiSpCIFSWWhpp6RmupWIpVNnJioy1FPN3ydtRZiuViB9r6QudnnJa3cWwY/vjwgA0Lx96ByXT1hNDgs6Wxwn0680SHrW8j0YypPMRXxtAwmAtkx1Hu8WrIGmjKC9skRL1ntTtWYJuODCXR2kIRxdRIomF0DYs6JtORKpgsCBue4yPWGbq0stfCUzhwvzxxpw39OnP2PZMbmG3A2cQqG363/CtkjNhSuG48n/tvuMqOJB3bciWUzFAWinEMJvORPcUpO/vEB7tQrSGslbB85dx1+Lii2lJWS2otd+PINSlfmy1Hc4e1labOIMqFHVSYQocDnK7sz1d+V/5Is/uAlUxXI9/pM51ZGczEUzm8dStLQysLg1n5XCHR0K6V7bIwvPsb5NepETc3Nzf/f3cr5v7MdV7I6wvd3Secf6QzBqGjlZHIlmQdFZjYYlQQrXQlEjQSpNDmifvwwqQ92VUaEzlZg2hPqxFVqKay0StLaLFl5aBf+eQGltpyNQ2mXsli8Fbo5cLFHghxZfUtu3wEBCOWz/07znZPtC2Gwr6cqSrMeBZaVnE0mrAUrCTaMqJ1wOuCNZViDVPylKp0rERVkEr2lS/djpoy1SgX19PqhNMZFfNW0JBpZCI3hZdhYCoHduuV7C3WFvp6pVkzqaksWIwGpAhOIhHB6ApRqOqZGseSNyTbk5PhRXa8uC2zG+ibhZIMBzU8Li84vbL0Pcl6irPE4rCsGDKdZtq4UpeOWQwpZCaj2PVtJuvX9kCylvt0pKmFqTiaOtOVKx/0CzkHTnXP0hVyK2iAB7myAX5x33CVhqvd8535wqE8cWbHIT6R2eFlZQkDQ7nSrtD5K2veMNSvxHVgYYtbhc0UaKzS+zNfzQa/BDrr2ZfEuR0IsuDzjs4Xfg53jNZjENwcOSyG5Aairzy7Hfu6oKL4AN3lQo73DJK4eAVXeLEPFBsYw8DfvPyJ62bLivBRvsPLWxd0S0ZdZnaWipBN8xYALS3Cltco+Ea5dB5pZ3IpRNvyUg8Yn9nJV07djrF0FGMxmml1wdmVI3tyVU50WAqqguYWz4U7e+S6bFm9Z5Q9zwx8VyLXumXyA+/qj5z1wIkDMw6kUjIs1lINfBge8Mb/lVeLm5ubm38absXcnzGuMtlEqJWM4Uf7LRd6gi78tvwDRzlwkQcuVnmbdaC4unKXX9iUFxY2jNJzlQ1RHKYYnIFaHcZEZukJktjMJz6HjsnecWaLilBtxYpiVRnSBYDV9EQNZLFk9Yzc4WXFl4XkGrJ5y4xzZFBwxdKlwiqFOTRgIeM5lDNteZsLGp0jSSVpYGZADGzThdW2FBVWF7iyZ+sX9vUVkytH4yimY6YhE5A6k8SxWy6U2pPEUC0MeuX3l3/k7+I/8g/+n/GP3XcUA0fb4HnLPgsiOElEb9lOJ+a8g7NQOk+sA8lvsdFjLW+dpiWxOs+deUJs4vfpHziaPT/bb5m1IejKdl2xwCW/Y5gjU98z2w0ThlYL3yw/MtSJz+GRUDIfw3comT/Iju/jVz7LgcdyhJjAC7E6TtstRkaSa9iYEz5HTHV81g88iWNeB5ysxBQ45DPvTmcasyB+YUgnJi18co8UhKEcqUZYdyurExpVvp2uaLRIM1D7QFAhmZaFyEW3lGTYmCthBW8yyTteNo8ELZx9yydjadbCVhdyo+zHBnWWLq1k8awGWpnBZCY/cDaOjZmAgih0XGn0RLQdWi1BM64oVE9fZ7Z6ZGtHRAxlDYzOMUuLpdKx4PNECPGtw9q27PVEFUuXFkbteTUfWI1nbTxeKzMz9zwzGs8v3TvOZkejM6UE1Diew5bFfIvVxIsJXM2Wgudo7qlFcEC1wuf7byEL3t6KuZubmxu4FXN/wcWVu7Twb/r3/Gi/5cXck9WgxrKwsqkzgU8ArKVhWxe26UyzJl7CB1Rh1YGMI6rDidLlC9F0RPUcuPCgX8itshJYbE9SRwIiHgQm03BwCSmwaMdOr2QafJ6IGkCVqoKrhbZkolW6uhDqimciuT0mWWyJtGVicp6gC1Yq7+yPfJFvqAS+uDsmtjiN9DphZGFhz0f3PYs07PQKsfD7+CewHc9xYrWBoAlRIWiiqUJ0DU1uaeeED5Fv23+Na07EoKTS4FIleSHogrczA2eGPPEsD0TTsWTDT4ff0K+ZL8Hiy4SziWAWshZ6v9LrSF9mJBUmPxGoTGVDpyNaDee6RbXlZA8c+4SSuK9XivfUzpOdo7dnBtcxlh05W1qdKN2G1TS8BM935ydcCnQK0UcaqVizsqrj5LZvx5vrTEuiFuE4dEjxpGL5sDq+SV/pdWZqG3LNHOoL+tLyaixra7nqjkd7wjtlQbkOPaUaTAnMHl4bYfEbLtbyvnxmrIHFtTTZYRRCMr9muRVsXd7uH1JwWonSof2CdjOP8sphMfzYfMuqDRfZId6wDJ4xbyjG86IHeiZGtyPIQhDIWKwmSI7ZDfi6YppCpCe2nqWxOBJaA2Yub39btVQjLNIgxaII7xfD1G6ILrAYj4rhLr/S1yMkx3N4IPr3WI2Mcs/it/hSaGWiq5FQZ57te1ZatvpCwaDytiPXTzM+rvxpjPwXOePcbQm7ubm5ua2EfyafJsLawZqJu0CStwiOXXnhUJ5ppPIj31GrwZFxuhJNA6GBKmx1YtYWa8BkpRTH1e7JHpwsSCnc6xNVYJKekQ2UggO2MpLUEmpB1dDVC14qU2xx1hGL5eJbUhUW09LrglXY5TOdjDiJFAYgY1zhIBOzdDh9i35YCVzMBlsL+d/GWDRYLTRl5ZCPvIgy2h0qwmo8UWBwz/xU/yNW+zYFQdQw2QGXC5P1rMYxmQ02jLzPRz75D/xL/jmvbstoW5bUUi1UAV9WmpLYr89YV3ly79jkiYtpOMwXXnyD+kI3joTeggaO9m2qwN+Yf823vPB9/Nd8CI/Y1VKNkmPAlpWj2zLoxJoPLJ2SquJ14Tu9sl9nfI509isnibzudkymJxDZlTOTbLn4Ab8sbLMj4rBqcB3sOROjwVJBPEWVq3tgCoauKrt8JBWl+oVk4L3+wif3HomRczcwpZZoPb298jo47vyR+/yEXRLP/gNXt/DcHpicZ8cFqZWZDlsEvyYCM3PY8Uk2+Euk9SPJdOTiKbrQ1WfmvlDCkcYnDvkTOOVx/sykB06yY5CVTTyTakujP3LWBzZmxJTIqRt4ZSBKxwMnqnFgV9oYOZs71hAo1bOfrnSaqNrSpRO5Fq6dg2oIUvEpkcTiipAIBC1MdFQDMRgOOdLoyJN94IVHgo3EYinGkq1ltY45F4p4JBWsFH7233PiAdEVxONLpI8RezwyzzPb7favvWTc3Nzc/NXdirk/44YB8ZnWnxh0z51m1trymM/sFtilE7HtOHGPGJhkC0bY6gzioUSsGmqFYntWEWbncVJwxXBxe34sPxCkMNee1QQQoWGhzStCQ69XUnWMekByxVnhw/jMT80HJEcmP2Al4jTT6YVBJhzKzryyVAh1ZpIHBp0RMUSNJNcQNRDFgxqSWrSat7t0v4bCBrOiVsnOoyosGli04ysPfLKPjG7LxJbAQsiZJrasxWKZMVQm0xNrx5kDi2v4UL8y1gOSZlqdufgNs7Ts04U6Njx3D5z9DmMge8PHd1sSnrvxmd4n7DpSjQdriQpXvSeWI2f7gT4v/L78kc/mjpf0gSe/5WQ+kBpDv8xYFh7TmRIUryuj73hwE0ktZmr44fKFq7RcvMUtwvv1K4/xwmY8sUyR178VtiwkDNe1Y2k6DuVCsspWrxizEtlRaHFmpXhDnkE75aVtmJ2wTZ7GjqgKV93w4F+w7oUXtyGa95z6e3SsdP7MbknE/h1eJ7769yzq0OppdcKqpZlGYvAEUwi58lB/4f6ycjkY5tBTbOUlDDyWn7i4HTUpc93Sl5nGruRsqKbB5srCniVvUA87U4ixI7kNUeHU9JhJyDZAW6nBskkT1QYkAtZgZSaHzMn2nF3PNe9ZXIu1lWgMXzcFBB7TVxq50tQLd/XM+/SRf/T/jFf7jsk0ZBG8ZGbTU4shmISayFl72jKzyy+82C3WVKoP+DSxmRd+8/M/EN7/J5RS/trLxc3Nzc0/Cbdi7s9sHu5xv/uOu5//d74zEdVvQC1QSSXwo/s9cRZ6Isk7VrG0kjBGsWXC17fj0avdglai91SBkx8414G2rjRVceXIwEyoSgwWi4AxtLpgNJONI1pPVUfFsTUjSSrnbqASgEDGsOPtTlxTV0xOTOwJ0pEkIOKwRIaqXItHq3B1WyKeIOvbP0w5sslXrHs79g0lstUnqnnEu4QNmbG2qBiaMoPvWVxPtBWjFwaZKW1LxLCq4avd8e18JQ6Bz/V7vGaaCpCgGgzCkUdy0yAWtvbKHFraa0Qbh6kFZ3l7z9ozmj0nO3CQI2NeuOqGr+57+pTY1sjvxiPolkvT07EwmQ1+EaQzbNPIWgU0UaNl1QM+BY6dJ/lCMpUP85GcHfjKF7PlKplp2JF95NpvOaRPZN/gUibi6XOkrSvP3R2HciKayD1PXMIdn3d3bOXI0Rw4uQP/avuOWjzdqZAMNOWCFEOyUFTJkpl9x3PzDSKJPo1IFqw4or7DV8OoHtvPRG+pQB+v7E+J2HWU3jB6yMGSTeWL/Y5n2dPlmQc5wioYveKvsHY9x3WPzyt6afiN/ULxGWNW5mEg5InsGhZtaNuMjZbVbQh1xojlPj+xryOL9Eg7czZbKEpTlVgLRSEwU+nxUjAqdGamIiiWz+49szSMpmdXj4huULGgQlcninpsyWQJICspeL6rL3yWb5mkUGjw1mDczNJuONmCb2535m5ubm7gVsz9BUtmv5uYXrZ4XbG24lJijRvcmNFaYWtxLFRtechXHs0RLYKzCacQzfDWVep3byO4bCQD0bRkCRx1S8iV7XrhbAWDoc1XihPu5xeyN4z0ZGOxVIoIz/6ek99QqyKm/tvmi04nknhGc8fVDrgMQScchSwNbV3Y88KKZ5QdV92ANUTTcsgn7vRIx0IphqCVjSwc8hXrgGzf4iX8loXAiz2QTcM2X/FaUAFsBLVksSgNR7vHGMOH6WfEFfox8TX+DfNW6CQjEshOWe2Ec4WFlo1cEO+YrWWVwFPj2aYzmzhxH79SQsGnzFf7nrlumPzAh/LMUgyb2bBpV6iByBjeywAAIABJREFUbU4Umfi+/MJx7TjXgbE1FGvYxpUTB1JtuThDFEGqgRVewh6hsjYND/6VRS1DKCTgtbl7m+DgLbkIDV/p8iv74ujzzGomOs0YcyJI4lUecRk6KaypoEthGQ6YEvnZPnIoz8Tq+WgeaLrEu/KRXBVdGl79ltnucdUhVdmuZ/ImUzXRlwnVQttcSfeGpMJkDdn2TOp5MndEPIZERVncd9wtC9bDQ1zo8xWTO15Mh24LLwwsbcOH8hFxilaHIASN9HXE1RYS3MmJloXWXFHxZBe4mJ5Xt8H4yiaPb/cto/m1gacifuUujWyniXHYcJE9R7Ml1YFROu71lY29YMkUhFQ6FJjswCgBrw1NqfRyZSNHrhqogCPi2sS8abDbt7F0Nzc3Nze3Yu4vlci0ZE5ly2g3XOQecZlVB9rNK/t8YpQAZGJe6ePKb5fP5G1hl174o/07og5kW2nzhUe58MoOr55gZrqccLryYfnKIU18txz5E+9wolAXmpL40n/HYgLJODZlpi0jXhJieqwZKAiI4HJitj2JFlXFFUFSZHZb9ulM56+8Syde7BZXPUEKzimqBQGasnA2d0ylMIWBIV64r6/4NWMGwRNRMXQy8T5+pBrhpDuqt0h9i6Co1gCZ1bZodthquNqOxm3xSSlmBpsYYiArJN+wn1/ofOZd+cSzfMPj+okn/zvaMnI0K1EaOh15GbaUNrDahiqFoUYOcWEZ73muf0dbT+y3nwj5yl3+CHmgjYbH+hn0kdOuJYbAmA0mCG1UfDgxhQ9kAVsrl67hJDuCi0yhx7sFkmVxOxop5OpR5+jLQpdXvGYW15Bty1PZsElXtnLBNQ2rNWSjmFy41hYtFSWQtfIurlzCwNkIzTyRQkOfFs7mgMuRGAInu+NpeEfWjkYLXc18u3xmDMLYBBoZSeJJzjHJwE6foTZYC6rQagRjKK7ipbBZn1FrMNG/HZF6S2krrs5c+p7kKgst++XprcEmCIMd6SVzmD/hpg2d+4RuZhbx5F44igOB7/NHsjj6MbNZXvhT+A8Zu4IxK6ZUcJFr1xCtI2tgNhs2ZgRRtrwg2dHpyCf/iDWJWh3bfMRTaGXGakXrlkM88hoe8HrCF2GjE6lvOS5HSr4ds97c3NzArZj7C0upfBrhS/qG57xldZZ9vdKYla09E2ri6APnsMNQCSXRmsRBf+LqWqxbqRViFYKNBJ3I8hbNkOtbc0ObEiFmXpodYt86BzGRnXlLiAsS2eXXtxmVuuIwZPV0RQnlmZPdvd2FkkTVgjAzyYZZDOIrG73Qyoxq4Kt84MVsqcYChaaeKdJSs7BKS6mBvi74ZWWTruzNEQ2Gb/hEKY6T3fIkD5zCnmh69nXE5pXHdESN4+T3bMoLFMtc7llrB8VgBaRW+nnk1R7w9DQpoTi2KaPRUH3DN/WV4AyP6xPR9kzNliiJsRlI1qEiWElUZzGxMDWB1UBSZcXwf21+ICQhOeH7fORDPHLvnpElQ79jlveIy28hugV+5gPPsqORC8bydizuVlyd8YtnYxLf5Y8sa4NNC3PXUvLAp2FHLQUTHKsIm/xCKY6uVAZzZq0HPrkfiNpRjeWb1ye28plNVD6HB6QxWGnoL4lzv2M1gZfNDluVJveQOpLraUql+bVodDoy2YGTb9+y+crMfXkhh55atkwyMJQVY4RNvVKk0tUrd+XEk3vkj5vvaHPirvuJdy8GK79gkue1OeBipWdi1oD6yiaOmKIYCn0s/G55xl6e+fpgWWPHl807SnYsZiBEAZexkvigX2iq8AdXCAhUT1bBaqHGhp5CKFdGGmoxGKnU3LORI8kFfBW29pUijmg8qQxcZYOXxB/MO0azpRBAIFehLZVuXtmbd1hn/9rLxc3Nzc0/Cbdi7s8sWmF7oPmXf89m8Byd4WwO7OTCxrwyuT0Xc+DierZlxjULNUZybfgkHzjpjklasniMRmZzh6uVXZ0wKdNNC85l1MMoA9H0nN0GMYlaPYO+Qo1c/IEZT0grLk7ksGWTz5zdwL6MbJgxmrFECoZQMxTBC9hckepxqxKN5ep2LMZSteAlEiTha8QruFyZfIfLBTHCHLa8i0+MumWuPbU2UMF6sFUBR8+MrY7ZOowWZrOjrQtNemG0e6xmDuZEtpa+vdLOiepnxDeggVE/8O68sNiG2ETy2nA5VBp3pLUXvDXE2nIxLbZYXI2YWjnIFZzS2xOlKTzJe0xw3JsrFqizZ5YtV3/ivAlka0CUXToTEPoIV9ezLAvOJVw1/EZ/Qd17YhNodGbJjpN0dMvCgxl5moS58xzqE6fuQJMjn+wHtvKKWENTJ2y19DmzNSvb+ciP5jesTU8KnnNquI9fmUpL55WxD4yuYUiRlZ5NvoII+3zmGgILDWqVSmRrj/hq0bJhl69cmw1WDLU29GviIY/UCp1NTNozNx5TC1/cB052T1HPPWfmznHdFtbs2a0LP7m3bt2LbkmuJTBy8g84HXFWWJoJ039426E0jmzq2weC0GIrdPnCt+MvXNoG51fG8R2FwLoGrj7w6n7Pj3xPMJVvy0d6rfww/SPRW5I0zM7yxN/h80r0DaUo95w4pBOjDMxuT5b4ljknFSGj6mm0UNYNh9OJ397f0fr2r71c3Nzc3PyTcCvm/ow1lpKeaNqEz8pd/kS2LZ1M/Bh+y6QbSrY0OWM1Ykrh8+aen+wHXthw1T2LbinGEMrIYgdWeZtHeW+ObN3C1W1YjVL8ykjH5C1tzRSBaxsQo2QVgmaqBK6+I1ZhsCc2CgblLp1ZTE9rL0TxZAmM3lMxdBhicdzFMz81d4gkghSSgmAoClk6xK5YzYRSafOECFxkoHcTvVxIuUH8xC/+e6oIEY+rhk2OzFZZTKCtIxfdUNiw9D22Fgzl7X6ZZpIM2E1k9YHZDbQpEr3h3FhcaVFrWRvDZOHMe5o0UayyL8e3poq6AzEYUSbTMnnP1QeMZkKZ8WnlKHvaVLiGzOKgmA0v9vDWuKLKiQPfrFdOdcPVdCQcq+7otPBz+1uqCC5CYCXRc2mUguV+fOV5/8AcHA0RQ+bqeqJxOAWTC12NHPMHiiS0OkYGcvJEGhwVGxJVMy6soAnjhAZhl0eOTSHbQvaGOXRsypluyQzpSpXMXfrI2dyxhHti3VKk4uPEGDpMbbh/qUzDmZMHGxwP68gld3zZfkPEU4LBpcwv7QMyTxjZ0erp7eg8zoybA5bEbHYktfjq+e3rV+7cSJ62jM6z2rddtlQCIoFgF2JoOJqe1/rA2W0pQ4Mtr1zbb8lJiI3HqjCaQr9Efjd/JPsLf2//YyZ6qnhMSSTbgsAiDTYu9OVKsJmOkWwNZ1ocQsUiKN9ORzbzyrtp4vd2cwsNvrm5ufnVrZj7M0Yr+0lwds9z+8CzvQNTeUhfOYY7pFhO7oAhY6XgRN+6SedKbVpQy1aPqFSCSYhAp5FJOi52AKdvd4JKIQbH6CwFZdVAlYQx31CNImKhKqYoTRkxzrC4HlczVSutrOzlldVYFtljzITInqGMWJPo85U7feJZWlrtmIwlqLDQ0pfECmiprOIwKpya3Vu2ma5MtmOXjkxuYMgXquftfcWQjGO0A0hHqJmzDdQsVBsoBKxdGNLCHTNGFWM9j3EmcuUXb1HrSL5j7ZU6GxbpULtQxHAOG0L1wNtszyyBvsyQDffTgg7gmoXVHMgqVHF8KCce5pHvli9c7cClG/jZ/YZXO9BWZVcvmOq4X7/wxS9U55EKThzb5cS6sTiNnNuBWgMiiokrWTf82HwPcWWwM7MzZNNzqXuKCaTqQTrOGH4Kf8sjX/Bj4bv8E7+RP/JT9zc4LZzMhhf3DrWZU9hyyCeCVh6nI9/xJyQHXpuBPzQ/0OaIusTD/EJuPUlaenfmbnliowtHt2H1La2ujI3j39wL3+vIIc/MtmEpDTUMWAqdJC66RxSidvTlzJIMJYL1ytp7jFZWaTmzpTERWwvX1qPaQetIJZCyZbAzhzFy3g6AQQBq4Wm4Y9UPTO3AZr1yDA0rDattsXVE1HNxAx+DskvK9/UXvC4c7YFcW86mxRqlFfil+S0H9wK8faiZaVEcwkonMws7Lu3Al43h70ik6+mvuUzc3Nzc/JNyK+b+TD4txE8KG5AALZGkUBGkKm2dGO3APp15lCd8yTyFd+QQGM0GVyKNXbirLzQsvNYPTASohrZkauqgXTAh09dIWzNeL9Ri8Sbja+S1uaPRSKORbRzpJLLmt+MzZxJZLDUKo9lwpeFi7ljFskqHt4WtPPNef8EOkW/KVzZ64hPvyCWQ3VvobXQdVd6CcAedUa3s9YlSHWoFV8CaFS8re30BEUQPBE0MOjHaBmGmpzDSIUDHilLBGPIyAKDZ8Tp0VBK75crsembxRBWuhwFJkRzu2KQjjSpbvVBroTGZhpVGIRtPdRYpFZuEoIVGMoVAyS1GZpauZWksJkWktvg1UWyDRlgN/Ozv+eofqNlSPazWc+gUCRWfMm1ZibEhGJjtlia+kgtU0xIjaHV8W34iNluupXKRRzZ55Ev9LaPs2bBQmshgO3xVejmDZt6vR2x1tGtkCh3Feto60+jK3eXI0R24hPckDZy8QfCYECEUhnxm8Q4tymx72jQzy0BgwoiQwkTViUEn7s1XqrW05YyRiUveYVX52/nfYGpLHnt2q2H7miH8xOdmw0N95lICOfxAMxfUWj6kLzzYJ4Iqs+n5Ut8hVujyjM2enXlhNcJaWoo6bIbYGEbXUY0jlBW00JaFoV74ED+z2D1XGTjbAV8zO52ZdeFiWiqQxVCKoxLY6kQuJ3yBc/CM7FnZYmSm+oT6K8em4ZNM/Lak2+7czc3NDbdi7i8VQxcDa91wZkcWy0hgdZ5oW45W8FXZpQvVWb42jzitoIVtGbmPL9RG+WH+A3mAT/WJIu/JdBhV8IYuJk5mz9x2XMwWr5lDmmnthY1eKRLY6JUhT7zLn6naE1ul1IBQWGn4FB45hntMTcymYdCJnoW78sw39Ss/pD9QfKUUz5rv8NbQ1ESuiQXLUBcKhcW0hBoJmjFVaDQS8gjWMMiIzYV9PPMUvqHRkcUMpKzM4oi25y6/4KyjW1cClft65rv1xKHM/N/8B3zsOpZVSb1SXUMSzxpaBheZXcd7SbRp5n18pi+JyTioFjHKXjNaYZsjP1xeeQktOQvjsOEUtjSlYMTg2on3/BHsPYvZYFcY6bEpkYzizZljOzCGBskOXxdMKvT5zLz2ZCwbnYhGeZ+OvNY921lZ1x1cPA/9M62MxGDxtQCKNSszj8zaM/YNT8uB1Gf65Uog4ZsrV7tjiCNP+sghJkodCCsQlbgcGI1BiiPGDdtTQrvKkBOtqZQYePUH8JF39gs1NkhWNnWEVhGUppv5wiMbfaZWQ58i91RCTpz1wlh3hGIIacZLRuoV1Sc+vAiL7xCuOHdHrV+Y2GBi5rG8cNBnvpoPfAn3fDaPdDKzkQubekV+nWyi8hafkpwhi6MaQ0QYTGWXn3mMLww6ocWy5Jb3+SODvzD7lp9lw9G/B1HUQMEy2oFFOnyOCMqkDYmOirCQUXZk13Pa7hkeR37Kkf80Lbdi7ubm5oZbMfcXwhBwpuGbS2E/LRy7htntMVawJmPVMOSZ1p3p5MKT/DMUZZWBh3Linbmw1kzUnmPesJiOrRzf7k+twtK0vPKeZIUuXbA+M9HRyMSQRu7LlSSBfX1m0h0nu2XRA7YUvtUnTvR4v1AVpCq5Oiazo2Kwavg2/cygEzUoKoqUCDazXRdW59npK2J2ZBRVS9LEhgtKZWee+d38C1135kf5W9ycOdpH7vOFOWz5TfyFj+4DFz9wz5EzO6rxGFXu6leybAjMTP2AK0K/vjJoBNcyytv4rFw9RipCwohjMUKKLaEIm1zJvaClcAoPbNNMNZ536xGODd22MlThffp/+Bfb37FKx2xbTux4kge8wnY98rVsCRpoNXFud5xlhzEZWyOeCZctXT2hfuVDfWawV575gOIYaw/ZwcXRzYmxbbisO5wK+/nMpEBzxLUBR8/Bj/TLjOeKTRMHOfGT/xZnW9oKW/OZGh27s0HrZ5RAtA2r3bKYFj/3iHZEt2VbT+zKwrHtuPoNKShhmTiUkZPZIR5cSTTpQi9n7nnls3zLbLdM7HhplFAiqoajvWdbLyzec798JXqlbRPp3rPpv/BNSGhIFOl5qAG/GkK5MJhnOlt4V165pDu2fnybDCLCLhZcuhA08WJ6Piy/8FP3G+7SCVFLqjDkiQ/1Iz/kP+DIvMg7jm7HL+472jIB4G2mszNtBauRrswocDEHKh5JSjYGimJMBrEUVUQqlszsPB+X11s0yc3Nzc2v/qrFnIj818D/BFjgf1HV/+HPXv8vgf8R+OfAf6uq/+u/81oB/sWvX/5JVf+bfx/PZCzwzjBcM4/pxNrscCYx2kBky2CubFxi0gGtlrXuyJIQLTxOX9nVC2ML52ZLKh1Wy9tYLWfxFpoZisDFW0Z7TxVhWyb25YW7cuIuL5RoGPxIVseX5o5aNyz0NHXLzr9wsXtG3ZAwuFrp6siuzGR567z9af49q9nQ1ROxG7CSceuVWe7omPA54teRsd8Q6kA2Di+JnAOaDYd5xJbPqCgjd285b78Om+/iiHUVMcKogtfMmhwv4ZHV9Bxtz7t5Ykr6ltnXH1icQUolO8jWYLQSrWO3nnm/XtmPr7xrjqzmyuweKCbz5B9warEmM9U9BzmzmA2za8B0fHe98qntIRY2dqX3E+/kSFgtdfoBsY5lo3gKjbkwmY5OVrb5zL1eKaVjyYFGG7o0s21ntmbij+0PmGg4bQbEZqIPNFpgPlMtxNQwu46UFVym4wWfrtzpz1zCwMV19PbKTo+spmdOW0J27DlRjMPowhh3BK1cm56FjjaDzBnnK7PvOLmOSkufXshmQ79cqTqjovzcf0MMj1hgpWUtPbUe6C4r57Ahl4iYzLwZsLZgpPDqd7gWZI64S2AZKk/tjskNzLZjuyQ+yBdkqVS3Y7w4SpMx4vCuoNVQjOWQP1MaRVbDcbshKUx0IG9zig/5xG/TT/T+ROsWjuk9sQZEhWUZeD4c3p7H7HCScEQO5RWS8Ny+Z3YtoBiByfVEDOBBE+CJarkaQ/QdvjG30OCbm5ubX/3VijkRscD/DPxXwE/A/yEi/5uq/v2/821/Av474L////gRs6r+5/++nys76JpC2l4ZXCSYQK8rtkQm7XhXvjLLnhda1uAAyyQe7wqnvsXJmUFeOflvmaqj1kqMgft1pghUWxhlYKcJ0ki2nm25soaBT2Ug1itXuSdpx4vdc5Ge1bV0acVIZaMLXc0M5oKUSqmepJaCUNVRNPDaPrArJz6abwgyIyjVeQJXdlw4ux3WFTomNvnC1/CO1bQsfsNP7m/Y1QvXPDC5hsW0IMJv0h/p7BEj8Freca7vOSwLq30kVsfSVPb5wmo9x8ZzbHbs0pVsLEOZWY3HVcXy9nv0zNzpicNl5b2O7PPM59az4pitJ0rH1Rnu8ys1ZE6DcGlaNnkmt4Z+TXRpZa5bru0D1/HKJnuO8bekMmClUrRikyPSI1V4Zz7zUE90ZuST/C39WqnSYLShXRJ/2n7H7Bve8cqqb3fuhmuldpURj/MGnwasd6gzbMePmG2mzAtsDbn8v+zdyW7tWZbf9+/a3b87HbvbRERGZKarJBcMCzBQ7qBnMDw1/AAa+RkM2CNDb2ANPPbMhgcCPDE8MDyRZrKqVKXKVEVGxL2Xl83p/u1uPTiBQiFThlSArEgb5zMhD8n/IUGQm4v7v9dvtRQLjY/ok+F99cxqGNnESDGZbh5RKvKr5iuW1aXTM1QjcbpD60SuoQqeloUXU6FLg/WRqs/szY6D7XjUd9Rlpkiiixu+GD7xVL7ixd6RoiaYikom6jJcst40l6LcrXl1LcYFWuvoyhltJ6qU8ZXGUdh0A+vYk3TLLvf4eKZtzgSrgcKgNC9mRcaQJTLLGhcCjpHBrKnzhJOZMlec5IbRXBogXu2WYh0+a1Z5wqhAx4Ev4mc28cA875hlgy6ZgMMXqEpEF2FSFkfCs1Alz8qP3J0PdPkdWl9z5q6urq7gp92Z+4+Avyil/BpARP5H4D8H/qqYK6X85Y/v+7f2L7irWtJDRTzteWNnZjOjckEv6TKyKghLl8lKeDF3uBSBzKbsKcnynf0ZK7PmSW6ZzC3H3GFM4d+ZH9nGV1zInFXHh+oBKYWUwcyJKhQMAZMTK7/H2MjazRjxvHKHiYVYHCd96SjMZG7znpNs8ekSrtsysFMnTmXDR/2OILBjRgkYFdGxXDocJdGWhVe9Bu2py8Sg1+zZ8NLcMUwNXXcG4K3/yGJXzNbi9Q1WQVUWdkuPjInv7YbbNPO5s0gMkIVmGohOXTp6tWcdB4qKrMrASAsI9/lAXQpOWd7HPSbOSHriNBk+2HtqNZHEcHQbpDvxsurwYtmXhjYMmBDZycBYVVR54pxvLmfy8hZjPU1c6OaImTLn3cKrqencjJqFVZhYl4nFbPjBfcnh/J5iPCosRKf44N7S+JlKZ/q1JpYGcxqxZ/hh95YXa6hLYjGWrj/TRs+4GI5qzXYeGFWHUolmSaSwYZ4z3eqRYGcOqqXEhMmBKlpU9nzcGfTiKTZg9Q885Ew79hg0c9hydO+4KQO7MPGYL6PHrA04WZjsBjsUGp24GU7s25aEw8jIun1Fl0ssjachZIcuDXtV4UXhcbR6YJuO1HFhsY6D2jBbwzwbINHkwP048OvVe/7Z9m8xKYei8I3/C5RETPSsw8DODnzpH1m6y21kzz29bDilDSwaAYaqIooQReiCZWDF0T5QeYdPLavlTJEjU9Gc7I6oBKQgJQEVogQjhSya84ePqKL+bS0LV1dXV7/Xfspi7kvgu7/2+HvgP/4bXF+LyD8GIvDflVL+53/ZB4nI3wP+HsDXX3/9r3xSKUKP51ftA7mGJIWf5z9nTA9MpWOfO/rSMSsHBdZlIKfL7cOP+oZZN9wow6RaJgyORMiOk6pJ7pYbOaHxTLomZk1GOIrCVImpslQEWu95E1452wqHZyMHKvHYUIhjoTIRSmav14xNi1WZKILEgis9HYmCJpWWs9rhmPmyfCZlzSIZL8JZt6x5RhAqJoa05SwrFl0xrxzr5UzSiiE/UbSDIlAiSWmMLLREtOrJ4tEx0I6Ke39Efpx68W37BY+8JSrDYhRvyjOUnlFOUDS34YweGhrJ/KbeEN2O0Rb8YrFB2IVE0TO2BCqzMKmatowsueFNOGFVQMKJrlLUMvN5teW53JFsh8Xx/nRml55JKzBZczN6Fr8iFljlI5WNTFKgHclJGJWhk5kkmqAyO32iFk+KLU0ZqOKIr2CpI5bMVBpKXHGyK+pqYKwNSgvVaPFhhSyFz6Nj3jasTI9v36E587m7YYodRgfWMvBUvSVkgzjFV+ET2+pAE2esb1GywYujb2t6NHdx5Av/Ae8U6/hCt3hMhjUjh7jm8faeKa8wQVHh6XzEMBJKQxaLVxpVTVhZqNRME0c2+UBfdixVg5WFECwpGfqmUJVIShVHWxhVyyyOXTwyuJZe3VGlkU2c6FRibV6545EP+j2ncMvBtVQxUtsTno4oFU2Z2eWeWRXEJl65Y1BbbpdE7QM7BpwbUBKQpXA2G44m4lhYCKzCzGY5082ePGaGeWDdrP8GS8bV1dXV/z/9lMWc/EveVv4G139dSvkgIr8E/jcR+SellF/9zhOW8g+AfwDwx3/8x//K5w9h4uWwJ3EJ4P1cbjlzQ9JrKJdzSUUXUAWTM6pA0IoUFaO5QaVMKjVIYrItSmkQkOSRfOa5bkgIRRLFChnLvuqoSsKWhaA02vQs2jMZh5TLrM9V7Aml41w/8KIrKiZC0pAVugQGs2KbP5GS5U184ST3ZDsjOaEl84m3RGto/YgqI0kctzwTVMM8r1gay1E3zNJwlpa92VGlBYrQjQFLYuzWRJ2oMHRxz0PaE6hAKd5RMCoTRDjqNbZkKjXR5UCtL0WSKwv35cz99Bmh4dF8zffVPZO5p0ihSGSsV9RLopsNOcPzzRbMyGJrXOpJCCkUgmhKC6bqeZUdQ+mIyjK3hrt4JrQT4ic288hkVpzTDZ/NA6IjWQlfhleSK5xVxak2JISTGAbVUTEwuYZuPCOhkJqJ6VZRosGUA3aqeDEFZQdcI6zYo9hQTzDriu0x4HLNXK1YcsM2t/RaGFzLrDTJgVnyJbw5WHRO7KsVlbqjTiO2eF6qW6b5nr7d8hAGlFlo8pn/dPwnHAvMdWHf3HKIN5RsWaVXHtJCn27p5Q3Bb5nlxFKtqEqiG3tqPIuz2JBYq56eDY/1G+aw5XZ+ZTBbZomodma7eGKbsWNCE7hJZz5sM73eUqeRh+WJXZg4jO8wDbTGc1YbzqYhy8LgHkgsIIVqGdmoI4Nd0cVXkA5VCjMrohieO8M6L7TzQGXOnFljdKZoR8vAQkXNiJFETgYbBaUUKV0bIK6urq7gpy3mvgd+9tcefwV8+Ne9uJTy4ceXvxaR/x34D4DfKeb+plTyyGTopztmm3g1t5gS0bnGmIGoHW1ecKWQ04zJE6JqtMqMCgKaQTVYZh7iK7swE0S4zZ+ZTcVZNz/umpw5mB2JgreWSVXY4nAsKLXjWNaMqibgQMklKNatyQom3VFKxuZEt5w5uY4Fw7N7yzF5XuWWNgYCQpSWQQpeV8xUtM1MpSZWHAipostHns0tCU0WixRBl4KOAZ0UZWnxobAgnAvovNCVnhIEnT135QUvlpIFpRZ2+syju2PRW87SUWePY8Hk/GO34pkj3/DL8w9M2SFamFaOfdVSlzMqRXyluRs9x1WF+Ey2QhMH3sgjdfxM1C0f1HvmytKUiaNuyDnj0kjG0Q09k7I8NXd84h2Ls+Sg6GOHrgIfyheUOqOmzE08sDcPNFPkWF9mgk7SYEtgcY4tfHUmAAAgAElEQVS16lEmc3IddQ5MDm7lA5u5w5uWKBWv9gZdInNdE3NF2SqaH4QdnmPX8FivmUrixXT0qqGoQsPC1/k3JK04ueYS2SKGf+5+jjc1+gSgWcRgjLBSmYSmVTU59qTzmqG+55C3FF1oqleKvnQJr8YDLJHF1MRZGFTNsVlRqZEqeXwjTOUtZ71DlwRieXUFG2HLiRfuCbGhsgv39sCT3fHBvOd2esGrLQ/xmSgN35p7jqsbbDNzgydox1gMioSTAWtmtA5opfgy/iWHdMuKE7WMBAw9O2wSqhy5CUcywqva8KTec8bSS8dODkzlEkZs5JJj2IYF295j1TWW5Orq6gp+2mLuHwF/KCK/AH4A/gvgv/zXuVBEboCxlLKIyD3wd4G//2/ii9JFYyVh+onn7utLMacSKz2zTYktr/RqBdlQyIhODFqz6AafG2zymLhwu+yp6ogVjWFmtJakISrDOh/YccQGz0f7DtGZAhQyloxhZJENs9TsdUOXZpIYujyAUmTxRNEk0cy2Y1I1l5tRgkjhpCxjnahS4KRqvFQE5ZCSKUkTs6KREz1bmjSQtCEUQxYwEi/zYItQ5QWlEsZNzKYDDaNeU7IiujPVHMFYduqVKdQ0jOzZMUvHbXnEqpGgOwyJMFfoYGgpSBTGYghZM1SGLgRymhlVxdnWGJU4bntyytRkejRGJ0zMlOL46O456g2jc+xlQ50WhtyxHnu0Foq5FMBHs4VSWJRidi2jXWMI2FJwccbohjRlKp1ZDQuLvkyfEKfYcWKVZwRBh4JtoEShSoGdOvJV/I7vzTfYkHg0b0nZcDA7Nmkk4rGrhduXmW574IduTSsj5/KG2zSwzSeYFW+mV3Y+8O3mHTpGdAX7UCNJiAihqYhFcVRrJlvzfhj5F7Gj8s88bzec1IalNJgYGGRLx4IzE7b0SLLEqDi5llG1pKzJRRhLjSZxGTCiqWTBlsBO78nx0mwgKfMmP9Grms/2ln+x+pKeDVEst3Hks33LgkK8oiTFFHcEpUASDWeKKGyOVLJQRLHiDAhfnT+CjZxV4VC2ODVe4nPEE6rEPBTOsubIGo/CU/HKDbNYwCBWo+qBfFvxxde/RJtrA8TV1dUV/ITFXCklish/BfyvXKJJ/odSyj8Vkf8W+MellP9FRP5D4H8CboD/TET+m1LKvwf8EfDf/9gYobicmfuT/4dP9TeilKXeB3bjgdtpy6QrrAlUsvBl+sS2P/PrzdcMUnjWa4qqyKXgpcalgIggJIa24b58y0oW3ocnvtVf84F7SBpyRUyOJieUzZcwYaUpOuHCQqMjEs+oywgCVkwEVVGXE+sy8lpu0XgWqQliiGJIgMehyTRlwpaFoqFi+av3oxQ5w4JhLDe8FAvFkLOlwxNSxdb33MYnuqknm5agDL4yKAaMaqF4OiZu5YCrJj7oNww6ca7v2aQ9SRQUqGNhw0dEIJWGsXQc5YYX6ZBW2Luabu+J2dOdNZ078rR9z9lWGF2o6VEpsQRDUZpVeUF0Ys0LnXlgyBGfLUkpmjySlKbTCzIKrirc5Ge+27xlb1cEaUgZ8AFcYVLC0W5ZTYmsAik4lHjqGDH5yLZktC8MsmOTB2rVwzyxb7e0YaY1E3eSeBLLyb4llDUuT3gqjsagtOfd/Ey4ObORj/TlLdnN3CTDUHZMquF+ObPOEx+rG5QsDNLQlpn1NJO0oZfLUPtWBqyOSFGc6oazWNRS0fiBjQws9ZoZeHQP3OSe27LnU/ee1vX4ZcNuOHFoGpRoZpeZTUVNQJdAKYoCZJup45HoWuo50oSaoFqKt7zKA6OsyAhBHCedaRlQTJTKkRFKKQx5B2RkEjb1Ezv5DcUYXvOOqnjm3BHUilNVsbdbQnGoXLjxz4gqWDWhmwxEREW8WVEzkUvCSsKzJVDhdSBqz/ZuTVd3/yZ+5a+urq7+P+8nzZkrpfxD4B/+1tv+67/2+j/icvv1t6/7P4F///+tr+u2q2ijZ24dVAldImt/oLbzZUfMGlT2oKAguFyQ2KPLJex0tGuceWGMLVs5UE8DzkyMpkPryCmueODELWdeZItTiRlHKdByRpfENk+cpbAqjk06c8Mlw+5Q1tzzTMiWoB29WZFRCInb5YkswtlsQNXYHJAfp1PYnHDa05WBpkw4WchGM5Wak2qxJXGfXrgJZ37hv2VSLYMkoqmY7R1ZhCDCKs00TBRlWGyDFs9J3dDHNRnNbT/QqhOdeSVo4VW/gaQ5yFvUrOnXl3mh3zlLJyem3LIrE+NqBRpW4ulLzd7u2HAEHdAhEfSaH3TLZI8kNNSZh3BgpCHkFrGKsWr4YrpMkmhy4e30hG/gZCyTbqHJuDwjSvBR81K1CB31oFDF8JX/hLiZMSj2vEFFQXLPJvSM5g3B10hRhFjT2D2/yI+8LIJYy+eqQ3Im50RbZoKt+UzH0b3lqGvQjlUZeO9fmXPDvX9lnQde7Mxb7zmNW+7TmWrJnOqKF7UGRvrVClSkI+LdQlMGXEyc3ApdIm05kl3NSMezrtlNPb6tuNN7euvIqUEnfYlro6Irno0/oVRkHU+s6Vm0o1DTmxXJJR7CZ76YT3ys70g6kURREHbpRCGRMHilqdJMLQW1eLQpLNGgNbgAdcxs3Ee8rrAefkg/o5bIXGCKDaI0vVhmV1Mx0IrhB7Vmr28REgHLppwIohlLg0chotA5sY2JtXUYdc08v7q6uoLrBIjfUXRBrRJvT2fexleIgZNsmDvLITZsykRMlslUaMkghWQEVQqrMiLJoyVTF09UhkG1+FXhLn5knb6i7Qe+c+9ZikO04SYcGMVSlZaoDLt8RpH5Zf8rHvV7vncgRiglM4slilAEjPKsOOGjpShLysKqBGYqzghFHI2e/qqQQyk25USbJ27kFdDMpUHEUeeMymc25ZWKQqHhg/2Sx+aGQWmCNDyEE7oUvjx9oNOeXX4ld4WSFafqPascCVKzUFOHzHPVMotwKitu4xlPi3eWSS7nAmfpGKqaINWPzSYCSWE8lwkE+RmrBk5qw6hrUjLs5p6cHTv9QpVG7ueez+mO527LbXjmqHfs9In3y4lb/cSYInN0iBFsCQRlMCohaIpJ5OIvu1RVZhBBwoqmTwxdgyTQzjMpzbNdMyeDkURBWHRHpMb7jsMWgp2oVWbdDzy2Nwyy5jurqZuOxq/xVnHHI73uUALuDE4SZ9dyqHb0tLhJI6fC0g2c7ZbcCSp5/iD8BSR4kw6EVmG0J1Yas3iaOONX9wy6YpeO+GzIOpJKYjAVhYWUE9JOiNZUJfB22dNmTx40KzOwqIqihY88QFEUekqzgmQYUsONDOz6P+elu+FuOnDWHU05MbcNN+qIRDAGFmdZkiKwosk9jQ40IXK/9Bzzluhrjm1hMYredhhZyMWxFMNBr2niyEnfkNBoAl0Z2MkLU24u0yBwODxN8UgfmPYHUkoYc13Crq6urq4r4W8pRnDv3hE+/CmDdYy6o6dlEUumpa+OtPpEW2a+5+eIwCYP6BLIYtASKVJIuVCAJp95jffE6MBYnusVJs58NXzL+nbPLj3xQ/mKQ35DXzpMzixLw6u8YdQNjQmX26RaoUyhIvCaLaokTJmpdaCOEzp78IlYdTTMTLRQCkaENUdMzrwtT2w48bP0gXqBf1b9ATEZsDV3+ZlGe25DRFmPNZE6FyiRs8nMWpOy5YP9mi6PaCK1n1H58kNk0kKzFP7wsCfnwHerHabMeBr2BlQeoGwwgcsODYaaSEkarwzWBNb+hWYR9KRgO7J3KwogWTNKzcHc89EM3MQD79IjfbIc1I5D2XEwG0wJRJtQfmHJhY/lZ5A0jkxhoZOBTXmhcDk7NrFlSBu8i5g88uIq9jd/yCiGSM1Xyw8478mLJrdCEM1dOGK9sFctB+cwceY+z5xqy3Fzh2GiniNV9KSsWOKGWcGYF1Qq6GAYS8WBW9rc83584nvzDTl3fH7jqKiZ6oo1rxzaLXYKbNPIF+HX7MoRXyyP3PEb+xVFOhadUbKAJBCDicJX6ZEujxy1p+gVkjNWAaqgNWyWgRVnbvjEP7d/wBw7evOAiwmvG54M1FtPiDVdOGOV56v+IxTNrGvO9YaBDUPpaCrPm/SZu/zIY/3AHsdL/oY7eab4zFqfma1hY5951TvKj808szhSMmib0SnR6xULGsGS0ahyps2XWBWlC64EujRdRtVlz5/86T/lb/+d/4Sqqn7aBePq6urq98C1mPstJUPOmZO5IXvIVqFVImsFNmDDjJpgaTpEFYwqBBRBKu7CKylW3PJC0JpW7flW/gBtE0pbboYJrWpO0vEXm79Ny4G7eMeXfEtTMr/Wv6CXLS0DB71jpOZJ36NVYkoOGz7SmBmlClkpStrQpZ4uT7i4YFmYVIMUQwFWZSKgySiUZKZcUeWaIXRoPfHzw6/5uP6KuBhmC1+mV9Yp86vq5wzpnklvIS2IWCQldFHE4vjQrBmKYZtObOKRIa45OcGqxLv5SEbxnX6DIhKT5ia+QKqYXeQuvtL5E0PVEEXRqwqtoPUDqzyyyzOdJLrpe/6yes9ZtvQYUtDkXEhS40vDOa5xYUJJoXKe0VRsyolshed6zffNHxFLSyFyMz2yGEdxEZM16/hCSe9p1DOYQqTiud5CzvTS0JQJZEa7QC0nelMhIYNoNtNIhcJkwQsEZYkCZ9sBC9sSKUqjYmbqNqQ2IirTpZ4C1MvC5/hzTDzzZAqxzvSxwa80WqAvO0IVWAvcxQMP+hOSOhbjUASWac2frf+IT8s9S9fgykyVBlaMvPNP7NKZoCxVDoxSE1iIrkGywhXPi9owN5a6bDkVS10GnHhyf4uvEnvtmHNLoCGI8OCfcXZhIwO92vJ2fOW52hGKJ5iKk9e8tH+Lb8qvedLv0LGQxTCUDd+5lk6d8MmRtcalBU/FNp3pkuJV7ZipKbrCl0SkQqTQFM8385/zhf1AMpaRhojnPj/xfn7E+IVDeOa5f+Zue/cTrxhXV1dXP71rMfdbSlYcfcdZWSoiEUPEYGJiyh038kxoFJNSNGVgLjUzHaUUImey0uzZUZeZHGsW3XEf95ddCevRyqO95VxviEro2xUh16xiT86GTZ7IRZGrjCRNwlGFM6s80C2BmYYXd4+iIAq+mj9wH16hCMUlHtIjB3XD1/5bNnngqLaokhml/jHHzvFt9Qs25UBzN7DOT+zCnpd8R/YNJ9VgfeFn8gH8jC2CHntSSZwbx7mrERWJUViyZW9vOTvHpoxoCfRrOKp7Sk7kAjd8plYjR9Oic8bmma05si17YrHE6PA4nptbzmVDnj+T00QpN7R+Rilh1C3BRuoyEUSRF82YOqrseFntKCpCzBQFT7zl3BT2aoOb4cnteJsSqzKyC2fGaFGLIRrL0W5Z1IrbtOezrYlKOOgNp9LQloD3ihf1wFg2xMrQzJFZN7Q58BS/4FjfkvLMXDtSFqwqJEncyYEaz+cgaAUqB1QClRPHdMc6Lqy9MGnFWVYYW5iMogkjHZ4SJu79HlUlPlVvmKuOLtWEojm7Hee4YmHNUVfUKJrSo0pgw0gyBbMEJCSeb3eoAktas44nonOcTcNZWxwLvgxsZMIFMDrTlIGhwKJW+FwjRjg2LTu14IaIdgFjMzvfk2l4VFuOZkVC+FYLJia6MjJJTQG6cqYUxSrPPNmGJnp6VVjSpaN2G2YSliCZolsUAVU0joWzu+VjFh7lC2Y0ikyJsB2OqFAYMpe2qaurq6urazH327QxeB9ojKKNhTVHXA4kVShieFE3zHrFrC2+VKQMKyasRJJEUm44u5ZZVZfZmMkiBcagKaFGGXhxW2blkLxQi8fHihJ6ci2YMjPbGskRrxwqJxIWSQIqcefPbF3PIhVnaj5VtxjbE7Kh1zuS0ohAl2d0KmzkyFQaojgmaVEqowmsMtgyUklCVKQqgRv9iWe5ZbLgpaYtPat5YDtZCBN9MnzSW1ILXrX0bsWSHb3ZEJNjLT1DtujsqbJnoUaUUGZN52b0nAhNhfMLWWnIkW3sWZRhKRW6lMv3te6ph2cOvGOkpQ4ja32gip7ZdpTS4kpGaY+TkTpNTKVjo84YlWmXnh82O3ptiDqjnuFAx5QNVc50S+IuLTTxxOf2Lap4xEQEyyodAYMrM7VEyGD0RMorchbmaU0XXzi3l9FSvb/FB4NtB1b6wGJa7sYzpbas7YgiMxfFWRpWZUF1C3X6xIvZMSXDUFsewhNH65iSwZWFrZzAeJa6MOYV79RHfGo5hDeIB1sajGRa57E6kaipY2Z9PvKpvkfpwlh3kDIlW0hCyBVDZTmriqRb6uxZ5TPrvPCN/4Ele3w29PIznlxhVpp1XljHM7fxBZMSPxsfqX3i3LZYCqdqzSIBlwPFGCpm2nlkpWdcgKXa8Fw63qVnBEMphYdlQOfAIB2D0oymIaFIgEIBCSWJUBwv8sBASygWi+fMjsf8FRv5c7rKsHXbn3i1uLq6uvr9cC3mfodmFx27ufDt5u7H/DcNJIoUjnYHRTFJg8cSlSFIS11GRITanJnLmrFUpB9z4yKKojSiPUULYhKKBS+W2zxjfEKZjE6BdTjRqJG92RC1oS4eU/xlV6O+xacZRKjSRJHMXXimYWZvviDL5ZD+Kve0ebj8aUw1k15jyoJXNTELz/YBiiZp+Lvj/4Epim+DsDcb5qxAJ850eDRdFUjLwF0+8e/On/iL9iue84rX6S3aZaK+42HpMQS+PrxSVQuv1iIponLg3LSc6h1SIqYqNMtELRk7jySpsPMjv2p/wUSDlnzpss2Z39TfMI8rDt2ORh0Zqg3v5Fe4/ISdLCGv+Mv2HY14rARW6ZmmTHhj2dc73HQmmi3bcsZrxaKFQMfZFkyaEZ0wq8w79QGlIiIjj3yNU5oUDHUp3M49o+nIueAnRSKx1IbP0y2pnIlJk0WhVM364GmNoa1mXLE8qu3lLGMCJS2f6i3a9pc4Dj4zlIZsClFnhlTjysiN6unygNNnjs0arWfOeY0qgcltuSmvOAz35yfwDr0s7G9a2jyAshzqDZ6aJJYpWU765scg4cQqnbBe0LrDU2Oyp2NARSFky7wkXto1k4NteiVrwZaZoBzrELjhgPMZrxpshuwUP5+/5U+7P6DLJyyRv3P8E/bpG9q6JyJoP1KK4sGfWfuFp3V3yTsUKCS8/BiNgiBczphWJaBzYUg3ZJeYMQRxRAxrMzHWHYNp+Xl3gzXX0OCrq6sruBZzv2MaPf7VsjsnvqqfuFuO/Ka+ZdQdOiWe81uGUjOp5nI4H4VH0aDIKCbVcdQVs7RYZhZV8YH3NGrBcabXLZOqqNWASYkv/beUUPHKG0bd8rG2uDxyKNtLB6ZYkoLQgJVE1LBJT/RqR5UXRtkiKjHJmkpmYrFQIjplFipsELKyxKxIWO7iEwnDaprwquXl8BVv8hHnBvquYtaaRWvW+eUys1MbTKUx5TNtOvPl8BmXJt7myAtbTqtbpCRUypgM9CtqteAbRbaFqAxkqFOgmz1V9Pi6YpUibvR4apraQyhEp3F5IdWaJWlm1bDomlQEkxZKMlQy46rMIBrvDFoKY2rYqhOtLGyXgb27BDQH27CLrygjrFlIyvLabplqzY0/cBv3NKXn190vsWQowib3xDLTpREVhK/6HygOzktLX694WJ5BOgyFQe0ICtqhZxPPND7xobpjqht6a3nne7b6wHN4Q0PHIpq2zMy14PLE3rwhozipLdu0Z5MOJAenqmMRRyeB2/ICKLx3fFv9ks4nNm7iZ58fQRca1XPa1oylYZF7QDM7hwKaONDnNY4FSuFtfMKFFVE74lJhE6xYOEfH/3X7R4yiWFxFW850eeBh2WNj5Il3xNThpeKt/YwzBw7uS/p6iyJQx4W3pxe0EuoyEpPjxXTopeE+7GkHxUolmvzM0FoOrmbfaYoUKiYUDYYBheLN9ELUFVWa2Jc1joxihqIxJFIFkjOYjLPuJ10rrq6urn5fXIu537L0I+PzJ/QA1TZTNj2bH8cJFTSuzCgKJcOg1khJuBTR4ikIIpq7uOdFQRIHqjDpBpXhpA1ZMlXpqXJgnQcQmFXLZCoG1XCQDR0Nr3Z3icLImjZGFlrInmQFR6BWZyQJIx1HuQd16TxdlVfu8ytdHDhVN+icSSKUopnpOAaF15q9u8Eqz2/u3pFj5FG/QcvEmTX7csmV86x4Vz5TVOLUdDyxYZ6FxVSUUbgfjyQNi26ZaBiVQ6EJvmBVYdGGiTWj2eDUyFf5M42MvKgbVBSmpmOmweuabAylXHYuydCiqP3AYDcQa7xoPukH9vmWOznSS4PFY1PELA1fz3v6lQedwWhuwis5VFTR0/jArBVP1Q5fDGZOnOQGMfBZ39OXDZVM1MzUceTMDmUznze30Gu2ywmlFVZF9m7Hogy10rw4g2jDQotdPLt5pFeC6IqaiXWMBNmSpUb7RNEF6yM9b9kva07djk4GimgWteJgE9qM7OJnVrIQxGG9pyqBk0tEHMkulBBJWhFsJDYaJZkazwd3j6RIMI7tdAIRlBGSUdg5UM2RVl0K4cG2LKXhKJnZvONot4hcwok9NTUjmpmoNUutiVEzGeFjuiXJjqPZkJShxrOJe4LVHHzHsbL0WhFsQMrCTf7MW7Xw6jYc3D2nyrJUmvv0SjArpmQIWlOFjC2eNSNSeu7KgZy/xOVAtoaBS+EWcGhTKPuZOcysm/VPvGJcXV1d/fSuxdxvyzPRveKaE1t9JMnMIB0lFxZqcnJksazLQpU967gQ0RiJbOMr0RlsjsRScVJC+XHsVtIKFRasHog06JIhC4/6C47tlpPZENHM1ESpGHWDzhmlCm2aOKstOR2pWZh1hVeOqXS44jElo7LnJDfEYoja8exu8dTcSE+OGoWizj0VCyk5kjE0ZbyMK9OJF7lhUF9y0msombfxESkVKRn2dsdqmnhU9/Rdh8kwdBVv/Z610iAF7ReSbZhsIhX4efyB76pvGMjczEesTKTZoIqQMES/4dSuKLHGV45CoVaeKo1kJ7gxUULFXTyDMjzHGiWGVBx1/UhIPb3RtPOEyQuDF07SQR3wpYEKbqcnnDLcy0f2ueOFDi+Wz+6GTRxxI/jWXjqDF4sWQ5MypT7TZU8vHZMz7FKC2TLXDcd6w2wtrgSCXAptReJsN5yNIdmMKx50YsbSJnBJkVyFGgsqKJpeM1eFrk7YqDFk1sFzo/cYmVnUisGsWE2RdfB4myGC1gEJMyk2fL9uiDcJ3IKRyEE1LEaoi7CmRzTU9CQjmJIwzhOzJSZHpycywracSJUi+kwGjrICYFWEUa85Nfe06UgrgbNvcSbwtn9m1g02RjozsFcbPrsHNuZIlg5nzyTV4rVBNZoXWdNMmk/6jiSWvlQkCiIWKyM3xWNjoSbQMPFN+TW1jyza0JQtJ91yyiuKskxkqirgVcVpGDicDjxsHn7a9eLq6urq98C1mPstdlPhusIST3hjOeuWJ33PWa9ZYsOagXf5E1EspvjLUHfbXua0WqHNJ1SOJNGQDVN2mLSgJHLUNcq0mBRY5Z6vlh/wlaFXl47AjCJLYRJHlRZImdmsOHBD5QvrMtEunsNqh2NgtPdYEqfSsugGpTK+3HBmg1GFm3jGxB5lFUFZknJ4G0jaYGWhqMtor1A0QmIsLSrCohwv6oFGAjZmXFhw3jNWHa9uQxWF2bS0wdMcIk+rloAhtAUXZpRWzGlFOw2sUk0QSxMW1vqEwZO1oneGg3S0TjApsclHunJEe01HQMcAU2bJiawNZzE0buSTeUOQLwjiqNJMVIWH+JnGLviww+mJJBpbBm7iRC8bllLjaXAqkcvMJGumpHhxEXSiKxOLbvmyf2XrT/xZ9QXPekUSzSr3pFAw3UStBVmEz+qGuaxYnCHohi0jehEWBZOKBBSr5UTnFzbjin2rMR5MLISlhWSZTYNOmWgKiomsJg5mh5EBnQspWuoQURQ2fsLYb5mXmpVZKLHjN5u3OLPwam9o2QOebfZMek1OhTUDAUd0Azk66jxQp8D37RcslbsUS3nm3fwdlSwsfYv7cczWVLUkJSTxGFpsHhANVTnw2T3QziNGJbb5SGVHVCg0TBxky2RXaCJoR/CKF33L4WbDyWx5SjuemluMDtg0ch9P1ASO2hBEsDmxqJZ3+S855i13Yc+jeU+rRmbW1GnGLBlFZlQRKfJTLxdXV1dXvxeuxdxvcVWD1y2v6obvmi0fWRGLI8eMlHI5rB0yv/Q/8Av/ZwRxPPIWUYnZKFzs6eWB5f9m776ZLUuyND2/y9lmh10SLDOLTPeMTcMAgzJmEPH/ZQiDBhrdU12VGRnkksM2c7ZGuCVVQ88SzqOHcixsxRe+3b8l8Gk+8r3fYE0hA1dzj0URC2vpeNYf+VbuWKxhkY5WF6zzmBq5+gEtBqqQQoupM39uP/KtbliNZY8HVajCpoxg3k5gXsw9gtLLzCier7InYbApghiidyzGURRcTmxq5NU8MJrAZHuCZpLxbMuVO31FnTBry5M7sKAkbcBW2nylKkxuIBRDl1e++w2NjKgRxChqPX9If+HqG+7jC/jAhQ1DmlkYaFallcidrmzyhaUx1Fx5tVtcFuziiLahtSNGEi9uh9GKqUqokX9c/sJrtyd7efsNjeFz+wMlG8TvWePMl/b924lYF8kGnAqGyn45Y7aFTk5s69snu/2SyaHlU3xiDoaJgU2JpLrBTSPy1/taQSNGLS5lzLpwP46U2mPtBSOZxs5k9bzWDWH19M2VMTiOuw17UUKc6YJhyE9cjUEpNO0VsmF0AV0ds7/j3CX2peOf5gu/W7/wr/U/c7UNU9sz7yxIw4vZ4tLEog2dHXEkNnphy8Jr3qHqcLXSLuBswyYn9nKl80feySu/1/+PIo62vWJW5V/q/8K/u9+x2p5Cj9oL99MLwSSaFaAQZsFZpbhA9J4ldHyWd5Adj/nhtCoAACAASURBVPELd3aiauLcPCKLEJsBPxfW3iNGsFpQ68nV0taZLkd6Jnqd2KVXdvmVtWlp3Io3mYASKSiGNk34ZWZ0GdrfeFjc3Nzc/J24hbm/oUkRvyeLR3Il0nCmY3J7fF3QatmkC+/TV97xRDSGX7p3vNoDIx1bAou+3T8yJmA1Y01hkgGRRDWOUXtaE7nkDKby4/SNZ7cjhQZXK4bCWjPFNviaWERYGke2UO2AJbHW7u1+k3aIKEUtEx1KwVHwsrLQseVKUzKdnLHSUERxUqjFQoauZHp3ZqNCdp5kGoJWWhasLsxyIBBZJODmmcCRMRwQMzC1BpeVTkcurceqUMTTJEMztqSu0tpEpxfaYSInw/8IP9HGSC6Bx/MJ7TvaBF43+GelkHl+t2fuPLTCLo7MpiGbwos8MrCQy4ZQZ2azZaHD2IanpsGnQj8nHtYTY9sTV8fietR6XFwxdcSYSrUG12Z8XqnWE1FW56hNIc6B1e9BVgaXGVj51r6nrTtg4cF8Z88z3/mEUGlV2OsV5kQdIl+XltQKV9PT22/MhzNdO+G8YK1l8g2noaXYSvEbqiSKhreXncbQMWIQdClMbkObMp/DD0iOLKEht4YlWIJdaOLKOexpysLqAj/oF4Y0UxZP1J6n7hFLothMXxfWOSCbymw75tLwECe+ux/YpJGNOdO6lQ/1M9/NHUYzkUDIlWN6TxsWnAihrizSoTGQTEJXj4rh1L5nq2dWt0PLypU7JumJWlFroE84H1FJLLYh1IqJlVn2dCUzNx1GCj+Hn0jOQRWcrtyVJ6IIuSrv5y+0rxnNQo4Lp3T6rcfFzc3Nzd+FW5j7Dwyb0JEnz2XzyLk+4DE0urAtEwbFCiyNZVlbnF1ouRLYcMHwKu/JdLia2eqFrUQW04BAL4k2XVi1ockLo91wDm+PK5p65dP6lQs9J7ejMZGEAVvpyghi8ChFAk1JKG8nckNZGfOG1mYciaogFQIrokJnRs46IBqwUijiEX17eSpGmG1LsspWz29L6EWwCpt8panKKoW1Op43j4Qu0+lItI7ur8veO7NydR3BrnR5RihIVs7hjmNvKKJ05kgtlbHZvXXe2Y7sHH5bGVbB5BZdYUgj89ZgmpUYWmYrXOqGTZnYlDPHesciHeD543LhvkRK3ZHqhpGe+3rmpW4wKkSUY7/l2G6p1dIWy77MbOYIMmHMW5HykCd6PWKsR31gr994Khu2ceQqDa/1jpL3TEWhO+NJ3OVXfm491SpZKocy8Z/+/J2YO9btlpIqLzbQrIljM7DPBROU1q7MvWdVxyZOzNVTHQxroXSGaixdShzZsbiBsjYgllwqF+0wfuFqHogSKHgMb52BR3lEq3CUe8acca2Q10B24GtF1aIlMA49mgRxmc0yEXSh+ID1L2xlJdjEe37mYN7z2fxIRWmIaAtNWZBQWRfPNhXMNXM83PPaDVyGhiQe9TtqEbYyU73gTOI6HLgvX/GSMBqZpSGqp68RR+FaDzQ5MTcdLZGTuePZP7CpI5N0pFp59vesZse/7Tfcmxd25wufzIzT2/i6ubm5gVuY+w9C23C/3WJ1QtOCKZaQlRQsFctGL3QspOJ4LTtSc+DZvOdqei5siLon1ETUSnGWSQcu0jIQ8THTyZVr3XLxPVNoMGpo6krPlQ0TPs8YWXjIwiQdKPxUfuXF35Nr4SzvaetEV2ekNkhRZoSmRppaeLFbgmYqnl7PXHVHVWGokSAnFgmcOAAWK4YmzTT2wqYe6e3ACztMNeR8wCyvxG7DZAMFw31+2zTx4h5YQuVqWt7pd6rLRAzOF2p0EODcNUSr3K2AN4zmke/pgdX1rMZhbaL6hW0cSd7w7AOzv9KZCzbcs5o7JtezSVemMCCaEWCXXrFZmNqOP/n3XMueuQysagiyMoxHDvmZOYIO8JpGzn7LrJ6htDh3pYSWJ7ejqwsvemBjTlRbmaziNWJKos9XTmZgqZ5vZkvTZN7VM0UMJz+gRBoigyz4ZsEcZuZuR2KLZIOfHJeyJTf6dipqC36JxLyQXc9iO9o1UtZAWyNzDdy5K4d5JbUzfU28hD0n33KV37GIo1bLqD1BClmV4Bd2y8SrPxBKhup4tvc0NjN3PaYa+jwTykgoFzqXcTbypd5zaff8ebWEsbLaPT4fae2Vo9tjLGy4MKOoqUQJnNOWYzcQamU6rLTHysVsIWeSeNr6tkpuV09UgciATUonmU/plW/NDjVvQc+UEVdhiIUxKIu1JOeZCSQjoJCNYWRgdIELd4gIYMnOo0EIzR0fNx9/22Fxc3Nz83fiFub+RsmVy7XCFOi9gZ3gFN7Pz3ysv3KnTxhbOXHH/2j/M9nCkQM+RYJLaMls5ZWZgdV7Wj1TsvJBv+NWy8Pywr8Mwsl3rK7FopiSiMVQiRy40uhMW2aswl5f+aF8Zaw9x/zIxJ940ndc+i2YlY1M/Dh/5t/DT1zUon/tmTuaLY6M0YI3M0ULJ3OPYulqxGVYXYsRQywdl9ix2D2FlqoWx4XVb7mLFwIe+spLewAKEUeOhXO3IzmLNRB0YRLlwRxZxDAbz2Idf2o/8bsZduuCd57oDdJkUuO4Gse/2g94rlRTmXzHtgjbPNO6TK0LvSxslgsHecF5xTvAZuw6YXPBzUpvJ/pSMWtBxfNsDkwbz9R2qFUOesZqoa0JyUofJkShMRNJPdUk3plvLLrBe+VufCG4lXZZ8XYlyxOuBvZ1wmmlqmA6YZEOK5Cr8HJvuPjE5Az7mtjWSlUHR+F1/4BZCj0rRZX3J6XWPU0yZKfc2SPRNmzqK9fBQcigSq+vtMxoMRifEAtBIgaIdPxZfqD4FisF9ZWXuqeqB7GIJO7TFauFpmYuoeOl31EFznbD/XJmcgG/zlxzg2v2LKbn7HeIZrxZiBowAkPOlFbIEmjMzCV4lsNbxx8h0yRlIxPBJu7iibkLBF3YykSqPaPdEEtD1YBYxVZlt555rEfGNBCdp1ufsTKDVTAw2S1XBkY6KgYQCgaTMiYW/uv+kb7pf9thcXNzc/N34hbm/kaaFkqOJN/zMuzZzwuTNNy7E61GVtdBVY5mz0kOpBreTsYkcZgvLAXOw45VOibb0ZQZQfFrxGfDN3vP0T+SJeDIQOFiW7IVVlo+6FfepSceeaLJkcGNJC+0cqZPG0q0/Gn3X1nE4iXTx18wdub98p0QAqO7YzLbtx6ybMAarmw4y4GeM52uVPEUEUyq2GK4cICayDXgqhJdZcEzNQNtPFMt+Fxp3EzNicVuGJuWVmc63taG9aw4KdzFmW92Q7SeirCK4UJLDDtMarBqqEAWwdlItRUlczR73pcJJ4U2Lvy0/MqlG3A6Y9VgRXgXj+zyTLaJ0ex4tZ7jzrLNsFsmthJppsoahNF0NCWCFzbxwlxafC44zexJUAuvrmfLK1EaxtKz6BY7T2z1xHa9cg4bXvstQSeKJnJWcm5Qa/FzwYeFxl0pQbmke47dnqtrKNWwMStWhXXYkZ0QZOV9+sLR/pHoOzQZiguEUli6htatHNKRF/cRI5nVACrE2vIcHphsiysVg+K0kMW8PTQBNnolEajWYDWRijCUQkiRtXjW3BPC23q1UBIiMNHx2j3wq1ZqC4d65q6eSFnxThhKotYVVwOyWoJbQCrHbktSUGNoakWcw6bIXT2itvBgvnO0e97pK1SDn46cwo7aOLQaQi1s85XDciWUyIf4xLftHrGRHWe2cuZYd6CwGmGxb/uJUZAYeTyfeBi/Y22PUfPbDoubm5ubvxO3MPc3PBNtvOKvQugzRjOXXcPoLLX2eBPZxwtxa1nEkjHk6mDOFAKDnYhVWFxLlYpIASxJB66deSuyrYWSCwMjUjI4pTcjk9wx1gt/rCM+F5pmRlH+b/O/s5SO1e0Y7cBcGzCGaBy/tu9ZS8NH85lZPEEjMw2uZubq0eBpdGW2DTnvWcl0dQUD2TacrWP2b/tUqxj6JdJIprhKJ6+IBZMyjRMO8cx3eaTJF4KdycUhpkJS7uTESuDsd7BmvF1xBhyZ1/ZAIyuxKMkrooqRwtUGnDX4uGJtIVbPXHoexm90feTBfGGpLW6pXNOGy2HLkBP39pmf5u8kMn/iH2mwqFPex4nlsuN5t2fC0NuVro70esbWxD7P6Cq0dgXJbHvYsLDUDVWuZHGU1qBqWOeeD/qNtl6YdAti+DEf+conQjrR2YkxWNQ4vFSehnsKQqcJnxOuVFoCOWVaLTSseDq21eLlxBxWUgGXEvZ64fjYM/lHfunuSKYFBGNWfli/sBLQohQaVCyTcTit2Fpo64rXgrMZyIgWtnnhQ/nGte45+3t+3T4S6oHiDb9f/kLQldFtiWqYNgesLICwn4/0ecGtQgrQ54zTgTpnXHvmIiB2h+bIS/tAqsKmZt6lZ/5x+jNOE/M9XGnpdGXQkas9cDJbinpMtdzNR7wufO0fMHJPydCVCb9GTCh8qH9htv+AykCyHsHiiDSa6TWRnYXwVlxtrf1th8XNzc3N34lbmPsboXX88JAJplK3ysk0REmo6Xi291Sr3NsjpVq8H2ko9FZo7YJZV06y52QOXE1HVkusnk4iSAErbMwZ3IytHbUanEaO+lbwO2uH13v+vf4X/lD+zJQ3fJWP/Gw/ocZRZMtaLau2zHh8fat0OPoNQx0wC3yoXxFvqW3F54XR9aTimfyWgRGrSq0WxaFiic789YVig0jk2A88lm8sxpHpWYPHOsWthVYDnZl4qCdeOCBVaVh4XE9ssuHf2p84ho7VG7IK1TiaGonGspfvXOQTjV7J8tbmH70n1JHkAx+Xz7wrr+zimXfhhW+8p6oFERbfYqPBzAGbK00UWvzbztzg8HGmJo/MwuQCpiihrKTyVuZcjUWd4TK0HNs979KFwRx5mBbUWSbXcCmPnDkQ18g7faX6jG0WPtlX5toylXtO64HFeUzZoMZgiSiQxdLUiXU60FpHVy50LlGblcHMhPT294RakV6ZjSepJ5Qrr/2W5LdIXfEmEHNg8hs25QLesMQd0TaIESYbaGrBlYrXwmo9oRaKmelkZDE9WTzvOTKFll/lI2c7sEhDNIZFepbQMYwrvjokBBb/VoAtJFxN3OWMvXZ88T05eNYKuzKyn77gvWMVOLd7DIpQydVQWxjp6FPiZ/mBBc/JPPAP4/+LaiIFxUlCi2c0PdYEFteyjSdGv6EYx71MiKuU2mFVuddXkIaNTrzaAyIGbyPJC4uxbLYPVKm/7bC4ubm5+TtxC3N/K2z487Tw5z84XneWS9dxlA2YRCiCpfJk33HgOyoOWxeCVhBl9FsudQNaeSjPqFZW0yEKZ3fPQb/Ty5W1bqiyQbAUKWQVyAYRxzAXJN5zyP8P1SaaMLEtKyc2mFRBenbjiGwb9vnM1hwpeF7shuQaRAWrClnYx2fWpqGqIGR8TUxmwApUL3R1JZuWhYYkDdZA0YYqFlsTgQmho6qlcTPddKUER009IcFQrryfn7mrE1e7pRrz1iEmhr6sbPJ3bIWncM9iA6qK+etr24ZIa0c+6TemsuX3y6+0zBQCX+WBc9Pja3r71Lg0TGFDNI4vm/doVg7jyJ+2H/lud9RBuBuvfNm/49QeWBpDMAvWFD7kXxFRbAZjEgcD79MLVxuIOGwsiDRM2rFhZG09E4FRG5Z2h7EWo5GH6cRi9m8vhmkpxpIl810eaU1HkIbGCFO11DZgysql67i7rFhVHr7/wtS/I5gGIxnTXzHtSHEPeLuwmIaskU5nVu1A3jaTzc7RMXM/fcV3H/EaWXSLrxOten5aP7O4Fkwh50g2PSd/TzUZqmIwLASS62lKJBlPbiMGYTOOpGC50yfu7Vf+oH+h0HORnvNujy0z2IrRM3PjiaXhx/JnKv8J/9feNzWGbRqZ7RalMvmBocx8NQP/HP43BOVqG7a6Yu2FXkdOZmC1hrV9QBVMWXg1B7b1ibl6tuZM0nuGcsK6BmHlogc8M8Yqo7nj+TijWcH/1gPj5ubm5rd3C3P/P/48XqhOsVYpTmjrTDUGI9CXiVoDWjqqU7woyRpW7VDriNWBwlI7NvWFxW0Y0itVHJvljPVK62asKyRxzHqHz5XH9YVvTYOKIfnIVFra0SAmQAmocwx6pRoltp5eCz5cQRJVMlftme2OooF+XZlNy7H5gKohSKUpGaNKl2e26UQOLdUqm3JGVTiaB3wtFFZQh1BZy55oLZPpGKwjdIWNnJmxjGXgIltyOzDbb8TqGYPhtbRvu0JzZrUtmxS50xN9PaLGo1XxKH05USUwpS13caTVle/DA7NvsLUSJ8/R3JFyS9JA0y44eTvly1n4vw7/hVe/pVTLLI7UtEQbuLotVQytcTyu32mKMkpHaVqKWJJ2XIPHSuIufWMKLcN84pLuOA87arbcmZnVVC5uIGhh1i2dZPq6Mg09yMr38MhqGibbkqolOIuqYZOWt9VpqTD7QhMmXMyo3WOsYspEMIqdZxqbmNIJaeHU9IgRjFEe0gVfMv28EoIyV+Xc39HriGI4TCesCs9uw2Rbsgg2W6wIWTwmTUQfiDRUDPf1zFhaFnWoNRhTaLTyzp756fiNe/uZP4R/JvuBX0PHV9lztD2NFZJA2lg29UK0jmsNqIA3iaUGvCYaNxF9Q7OuvMh7voslInhXMMJf/5xHLWAii+3o64zVyioB5yKj9myxVOMYZIRqUY6kJPwafqBIR3WO1i6EkjlfT4zzyNANv/W4uLm5ufnN3cLc3yoRY4WTb/nu77mYgDGWgx6RUvmx/oVUWo71Ho0dWRqitTgbidbT6cx9emLNAQmViynMbsfIQMXS2Ehbrqgx+JrwkvGaCCZzKEc+pM8QlNBfMbFSa2a1gpgr56ahKxeu9j3Gvu3TfLE7qrRM0lLFkOhZ/Ns/uKF6bBWq8nZxPoIxFW9gy3dGDYzmjpGeicB9XdiWGSvQ5UJfLrzIhmg8vUx0/syK4ck/cKkHQo10srKpnqXp+EP9C7u4vpXx1sD37sBkPV4ytXZYKts4IuGVVhYeljN6bjjkii0dsetZS0sUx+Ra5K+dftiMmZTrfqAY5bj9A2vuqQZe3QEj9e23zCCawTck9WTpyUvADcImTRzylasW2pQRmbgzF0oO5E5ZjCcbR19nkhRWF95+F/WMtGxqYTAzixhauxKYSdXREKkKxWWysyzrBmdnktsRJRDjTPRbhi6yBNBoaOyEWy7YJjE0B8rc8gMX3se/8PPwkcN0QU1Dmyqz33B2jtm0QCXVDhmEvk74OnO1G3brMyY7urKQ7J7Vb5jxtLLS1pWmAPMzX9t7FvFE36C1MHvD78dnPuoTsxt4Me+5yobOPyHuwCgBq5B05dVtocCweobieB06rranY+JiO1YzcLFbqim0dWS2e2a3wVhweWFfnljslj1Hogbu9IzRlc/2d2jxBJfp80IyDZEWxdObE5/5gZE7VCxJGy72QNxckXUlm/zbzoqbm5ubvxO3MPc3cqqYMnAxiU5nUhQaXXjkiUGv7NKVF2NQo6zWI2VAqrDnyqoCWslSOIUdiMVqBZPwavEkJgbm0uF0fvtEVWbepTOihmqf6eyVKiARfuF3vLJn9i2urIzeU2zLaCxIoLJjcpZDPXKUDdYYTM0EXUjiqCaQVTGaaZdCTQ19PSG+Uopj9T1n17KalmoDy+p4L088zmeO7Y6ltJgqdKwghlVaXK0MupBJOFaMzRzCN9QdMKr09YUiHZelJftAIzPVZrq8cLUbFt+xXyJ9VpgHWLZQFr51njN7TrLB2sjavN0TK95BVaQ6pChdXQh65tV1XGqLofIuv2A1Mywzvs/EdabPykO6UiSwaODVD1xNwy4ubOqVc+f55nbUUgll5qF+pcyGdddwtlvaPOPr+rbiLFWyehq+8rFcMAYOxVJCS8LRmRVfhHtz5cpHaszgK6txPA0/YDG03UwzZfwiPMgzY1uRacfdNTKcV14+OtZmIBSltyvtGrlbI0/GcuoEqT2r6UnG06fMbAcGveCKMJk7TBJqVbqlokOmNg2+VjZ1xidDVuUxvzISiC6wqSNtmWncE5/9D6zikZh5aXbEtkGY6TWiq8f7idW2iCqLBGp2TDJQRajW8ZofCFowFYoNJC0YVTZ6ZdYOqQZbhbauhKwc3JG2rIhTdvpKS+SzfuQv7vc0ZqTRlYRjKz0TWyBTVejKxF0+052vuB97huZ2Kndzc3MDtzD3H+RUOHc9Ma7YahADiuGSt7z499y7b1xtj68LO61UDbhs6FEe5QuDfeaYHsjNkdHcQTb0cmFYE6u0FPMWjpK0RG1Z3J4qgXfphY/yM4vxvMqB/979E7M2BF2IxpJcQ1SLEhCFLJVFDRnPydxhKHSMrGZDNkIRwzZ9Q5NQ1JFNZQkdu3zFloXSWHyOTH5LMQ6DEqTgc8QVYTaBQWYshp/mr8x9y0GPXM0WaxaEmX2+8JiPPNoTpoIhMpVEKRPfd48Uo6ym4a5MaHa85zvRerZuxODpzEJpzpQ4M24ONOWItIH78pVoe5I6irNIEXK2uATJVqJ4qJkDZ1YdGGqkX2d+n37BXiKf298j4lnUoM6hVbBRcdGxloYne8eQnxCB+3LmKb6j1RWphc1yJuFpfKEkg80TuziTTaYn8qP+mVd7x1U2vFsmxHjey6+kPNBWGOTML25PahznsOGuvlDSlrPu+JQWZhv5tWwYmwd8TRTpWZuMk8wJR7uMbOeZVLb8W/eJabC8hA4hItWhWAzCIgbxDY0msgQ+Li8czT3CgmaDDYWigalU7mNiHxec7zgeOhZtyNIwNgmRwqs+MNSJIvBqeoK5cjUdqh25bzmgGDIf7BOX5o6r7zi5FkHI6nAloXYlmQbHSrATIgkrb481PsWf2a8LIxsuZs8mv7ArMyYvHEPPV/fA6FpKMVzpGPRKlgb0yIELqRpycezign1q8aXhn/7x/8C724W5m5ubG7iFuf9ATYX5C2L2RDVQLMM4sxHlxXom0zPZDWIV99c602EccUBvIh+6F67ugPL2wtHUwgeeWbTlzB12dUSzYVXL0d3hTGLxButmKh+xmjmXO1Jt3i7uI3ySX/A18ov5kdkMiCimQgwdm/xKMg2P+QRYjDF4SbxIYLYBA4RSsIwUqzT1wtltubotRpUgM1FaRB2rcbyEO169YbQDg/uVIS0ELTTzyN6feXbvCDrTc+WP4594pyfWriPiKCbg/Axe2MsrB55o1spORo5my1O4x1ZhmxOGigmJ6iPrMbD4ntF1JGM5lx1NTThVGlnYpDPf2h8o2bI2nvtlJPmVXR6JkrjLF/64fqZ3F1bv+Vi+Ykrgef3E6gdQpZPEYT3S1JHrpiE1wpzveVwvb3cJzRWtCcnCsd3hmXlXrtxJR1GLDQuBK6s1iCjeJNpS+bl+ZLI77vTINkcuZXgLzhZma/jaNogx6BU+7yvJWDYpcGx2UBNYyyt7HtIL06BgNqROiWXDs3uPGoOJkXf6laVMvJr3VGdpNCEIQx65ug3VCVWV6CyTC0QJdPHEqT6QUuYvLbRxwaXCvbySLPic8RpRU7iajtH1nEwLsuVq9zipDHmk50quDdF6xCiH+kIWS8Lia2WoK0NZeA2efbm+3W0kM7OhqOMiDwgrQ1wp0tFjiGEDvQOU2fQstIx2B1TEQFcX5vp2arxqz8ltWWtE+pnfA05avLmFuZubmxu4hbn/yMG2c7hporMFW6EPE0EKG05EHFoLh/rM+3rkmN7RmgXxkXv5zKP9wotsmUsgLZaiA8f6HhrwybNj5qs2GCsYSQRdEYWJwIv9A03JfPfvMVpwKJ/qz9zJEzMdnU70dUHsgaKeKQeKehKByWxoasSSSGLBZFZtsFrYMOFypVbhyo5VDI6E2voWmOoZS2VXT9gMXVWSNpzZs5sL7/hCayd+aQ6MNDQYBCEFz+fyiUvteao7WnPFSeFHfuGhHrG5YEvDXZo5mJGDP7HUhmg84hLf9YDvzhTeuu40Vz7Wr0TT0MkFjY7GzYxdj+dClw1dgvc8I6VSnWFfj9zJiZPZc5IdUYWL7+ndTCMvPMSZSKUJhbZNjOLJOKDlKlv+tfkd4JG8cj3suR+/M8jIsF7oykKIieKFUx/QFiYb8GWlRMvn8nuKtCylZfEO2y/EeuHC7xitwxRFMvT5BMbzZQOTGzjURFJlcju2ZSarxVbDbC3bfEaDIZlKy/pWKE1LqZ4hrrj8zMt+S1Mj2YN3I70aIp5gDKUoUxswC7yYPVE71m5m7Tzv3ZHy1922LmcW0/AkD4hWtFaURDR3VClvn/pLIdnAkgcO+sSuTrxqy2odXZ3pVZFSqEaZ0oahFHac6exIxPPZthgSyQXOrUGdcoo73udvtGVhWS3aeooXKgEjBa/x7RWuZAY5MZsNQkJQMMIyCOPG8fO//HfKf/s/8fYW6G5ubm5uYe5vvPWGvdBvLVf/kRVDK5X7ZaRJhl+6R8QI392PpNiyhp6zGQhuotMHPBNGwRRhCnuu0pNth6OCh/v5V/rgMMWC3aGSSeqYabhwoCcRJXBfLjQyc7++cum2zKVjcltCfSXZgAhE07LWHsVQ8IBjX59Y6kAIibPtESt08cq2rFRpGcOGq/GIgpW316kZDxiusqdxlQuWhZ5Ftjh34Uv9EWuvPJeG0Q9Ezajx/Go/YWNLKsK17Ym0DHmmync+jp+5hA80pfLi92QK02q5+h2dS3T2iraF1Vgmu0NLxVdwa6FU6KtytYGdfmGvR1ZpuZo7Ju74ziekXGlzZsiZxXpG6bnPR6rvEVGcrqi3fODf6FziTic+20dO9iPPzQZTW8DTLQUJkQsPTLTs7cR++c6dvjLohWnZ8+pavnU/YU0mEvj9+sLvphOX8Hu8mcmt4Wo6HBG6wnY9MucHBp7JpqVYeO09xYOxlaQtbZmJNG8hqmRcNviauXYNezsRimXOmbU2iBqu8cDOvlKbEm2NoQAAIABJREFUzOIcLiVMjW8nnfWMF2FMmcuwYbEO30dIBszMDCzOc5EDNie6MuFyJtotwaxkY4nWgXEUUWy1+AR7HenSiYdyZLNeeekeqAm8KWz1V7woi7ac7HvaMrGPE9FbXuojq/VvZcwAalikoWPGm4WaA8Ee0QQ00OVIdCsuRwKFvsx0dmKjE3PdsJiOjMMYATezOseX6zdexhd+CD/8dsPi5ubm5u/ELcz9LRHCYNDZUrAUCzEIgTN+ifyiD+TSMLLF2cokHY1Eih2wNVMRRD1YmE3HVfaIWLq6sl9PHFIh6fJWPrt+ZwmexShZOpI6XsSTsax4nCZ+6R65ugMSYKotXnreVo4X2jwR6SlYEIshc6jPrDJR8yPZOSqO7/YD2jxxshscwmoC+/VCoyvGRFbp2XAkaOE+nvhSP3Jxis2euXFcsqNzhp/yV7Qqo2yRmjClMpSFr+6eRIPVhCcRx4Gv6z1Feq7OQSqMIVNdpVpLifDFfQS3cnQHmvC2BeAfxl+owNe+5ZUDMy3vgFQH9uUbPgqfXi9c3IaO77xu9hQLL3pHrC2/hk8ESVi/crc+sSnf2MsTd3UiucAcAro0zHFPNh6Dso8V4xcW14DCq7lnV14ZmpnLuuVb/xNT2/DZ/siGiVU7fBnw4vFLwJrCKSgH85ViO1LpCGmlX2f6NFNs4ePyhVfzyFN5BFeJOHwSfEhUFYopuHBkp5VXs8UrNCXSTN9JbUOpLZPbIhW8Ru7ihb6MGDtRzABu5cIBVcfsB1btEMkEm9jFE7NsURxgsGJo88yujGDhoRw5l442CLP2NFJpykKoif81/TPWTUTbkGzLWHt6MlNpmXXgLr3gTGGII0kbXjWQ7cogMxs94XXiIndE01DN27q6h/EZjW//kfjAhWe/J+MxVVAMTmY+8JVZAyfZESQhmgh1ZpdX7s/PdOPC5aNnZf1tZ8XNzc3N34lbmPsbRhxmFLZy5pUdC55oAs+mx7QDRR2jGzCmIEVxKF4LVzY8mQ/4Cj4XfDZIcPRkLDNdnXkXv1Nz4WWz4Ww2JLFM4lmsB6NkdZhicJpYnWGrC6NsWGgoYogEGkYEJYknAK6OrLVjryeKWJ7tD7R1RKrFVsWQqNZRqxJ9Q0SowOgDBcXjWWiw2jOpI9j1bWOChYsVQNhGT8hwNHtybQi8ddZNviUjuDLybrwgBjCJJ3mgt56rDJyanr1eWaRwf3lm0yfObgAq9+PIceOoUllcYHItfY08rs+c8z0P8iu9Vi4Wot2x0FFs4aiPlNSyXC19OBF9S5WObAPv5yNOR0JZ2KWXt26+Fi5l4DTvOJUHNFhcLViNfN3esSmFRXd8mJ+Blm4VvtY/8mTf8Xx3IBrLxIGSO7ZpJacDbThxpz9TquDWwGHMnAgMMfGgv7AdT6wby5IKF3ngYRzxc0uQK60pXNlS1RCjBQcn+0DyFqmZWBrO2uN85SI9jX37zFhtJWNIeI6uZZcsbY70foGY2Vwz4t469KpVNunEh/zE1Sw8T0LyASMXYv8/2XuXmNu27L7rN+ZjzfXYr+91nvfeuq5y2SFISAgDHYToENIAIdGK6AQ6aSFagIQUgggI0QQJOlGwRAOBUCSkNCJZ7tCigcGNoNgidpXrcc859zvne+zXes7HoPGVRaliiMGXXCf6fq291txjrbUba2rsOcf4/x3N+YA1LZMTWulpOKFq8NFQ9QnnRoJCyZ6hWZG0YvrZFr0tCWMiiqOYiB0jU10hFCIVsSQiO17MH6mtYcJyrDaMBL5a3/CZ+UjyO6p8JDqDGkuTBrCCSwUngSYmig9QEtl7dpywonTlgOTE1fqS1rbf5lTxzDPPPPOnhudk7heQbNkcPuNl/j/Il3cM9YZWerJ3tOnIq/hjRv0uFKhkIOjAZFcoQtLAQOCV+Yj14LQjW0MXj9Rxgbzwo/Ylxkw05smj9K76koQjCXRxZqUDlUSyGvwCSwNYKAjZCAMNl/qRVVE25cCsLdmCl8hZOpIEHIUmPWJlzckEFgInt8Ywk2mwJDBClyeiOoLrucx7TJ65Tg/UeSY3mUFeULMwdkqbDEFHXuSP1H4AlFt5Q5UKUQLYgiSlpyMp7MOOxpwJOdPOj1htEFPhdCBEQZJy63ecaVjrSBMLq2nmbBpybSiawCqTBFyKOEnYqKyqmWW5B2OppeBV8FnpKyEG+Bi2XC9PvrFJPHfTBSd9w55rPtiXxLzihR6INjC7zFBqUmmoUkUzG9oYKaZjagvJFZI4Imva5ck9A22R5kCdC0mFLi2slp7jtEbDljxmtGp48Thxj6fViVl2NItyebxj2lSIGWh8pB0bhhK4Dyt0cex1xSiWH/u3rMrAVbmnMQOGhWZW3vYfmaqWak4cyorr9hODd8w4qnKm/MyqK9aJXMO1vaOOkevhlqvBc3dZEcKeYjPzKrDmQDfPWBufVhHbRwwQwwqbF7ItnELNKB51ATOPlBDIKMU4Wj2zOI/UI9k6VsvA75vPGLVmw4HP8o8ZZMUH+xopBqcPnMyOzvaMyXHfbunlqflhdDUrnajsCS2Gi2lisRUfqycdRHGGDSfm2nMx3vGZ/z4rv/qWZ4tnnnnmmT8dfCPJnIj8W8B/q6qP38T1vk10WXg4fKJyme18YO2PVMz0pgUc2SlOM6FMBLPw3eUH/KR8D1dFFlOxaEcsjmQjG/NAFEeygcFWGL/mwW9wslCMhZJpy5OAcF9qrD55fcby5Ck6uhbJislCJxNX+khgYscD27Lna/MZZ9lRMVLrCas1j27NUXcEnVmXexZTIWVgko6uDEQz0+YRxVKM0NMRTUA1sNYTWzOwDxcsEsjWIgnu/QUzLY3p6fLItnj8sjDUDX1wzBpYj0e2ZeQU16RQM1mHWEeVElosVYZujmSTkUrAZjqZkeUT3gk2F465487f0JsW9cor/Qo1nsX5p47LVcP9ckHfdPgceZnueJseWOfI366/i9fCYi3IQrGZ2/yKr7evkFzTuzVjaTmHLasMriRa7hlrz4EOu3heTYa6euAQV9xKxye5IVnFSsAvC6QVWUf64FnFwkoPvInvOISWueowuedD+AwThPW1cGou6LOnU6UvhU19hx8n8jQx7zZIJdTZ0y2RuQgH2ZJVyOZppZb6kk16oJWRlgU1C5skdO6EqWYmrZipyKeai2pP9okv8o/5x04zX8835MowzBegIyv/ngd5SVRLFiEay2RaxrShkZ4iyibvaXTiaLaMseU2veAYGsbccfIt1j0Z3l/EA6s0smFBOHNl7vhB+T6jqwlEnIxEPB/rl3xWbrmZ/g5/1/9ZehsYTcu+WjG6mmIXigR2+pHBfIFbMrMEqknJoxBrT9IAOM5as+OBq/RAqZVUwFr7Lc8WzzzzzDN/OvimVuZeAb8lIr8N/DrwG6qq39C1/4HyBz/6Abc5UnnPVLZUswMD6io0Fe78S5IRGh1JOH7P/hkGv2YSB6oUqfhh/SXJVngWmnxmW04Yo8zIkzm4JIId2PGAYhlyg2K5me/Y5EKjC8ZNPPhLurLnzt4wUjES2MhPWaUBgITBycyM58H+MoJylA4nBUdCUwW2sCpPyWOYFkzwtAwoT/VSFzwylDWiSjAz59wQk6fYCicRy0yxLVEzg7wksadkx8ofUQqYhCDMZsVh2jJXNcUUdu7AC95RmYSt4VSuOduWNSNX5Y4SLaNUpLAm5ImMZ/SB6J9q25DIXja8SPeoZC77SMfClDcUjUS7YhAl+Z4X80+oeYlSE5MjWs8gNZUketuy5BV7rjG5QnQmucRKPjK3lrqcMQKXS89iofeZVDesdCTPPYM4ilYkfXI7GAIMZoOYhRAHPrUXaBGOU8uDv2FqHYmGx1AzTg1t1bMte5bGgj6iY825bdjXW45Vi7cza+nZaOIjaxZtKGIwqoCytgOrNFBrYg4NOQtIjTUjWWsqN9Ova7JmiheEidAeSMtrDq5jbFq6dI+1R74/f+DWv+KDvOUkK2x0LHhUr/H1G7bugYaJ9TyRjONrd0MSz2AqFhOeGlRsQUS5mB/YpIk4GNCWt/mB+7BmXy7I1lE08pV/ix8KNZ6KAjLi7MJYWnqp6e0bzq4l5Iomj0yV58FeQxB2qzOTWkZpCRwZZctSKh7rC94sH0h5JpZITf2tzhfPPPPMM38a+EaSOVX9yyLyHwB/Dvg3gf9SRP4H4L9W1R98E/f4B8Xd3R0xF/o6MAZP0IWQZmYaEgGrhVQcR3a0ZcTMjrUZ8FXDXhpmG7B2waKcaUnWYopS60xY4GV4x8luqVKk05l/qv9fONc77uUKax0ns+JgL+nymRlHnQJilVYnpOhTrZ31WHqOcoErE1kdPidqObOvNhiX6KXFl8xSPCMdZKHRgcvUcymPVCQ8A73uGNIFxU240jPaGjWKk0QrBSsL23jAamRygSSOR3fNOa6I4jAlM7nAhT2yNIbL+YGqGsFMLMZjJHG0a+Sc8V3PYjK+mllNE9dm4ANvOLonyZNZKs40nEyLaiaJR9QgskA4ULLh0TfkEmjzQs2ZrAsP1Svq2JMCeDJXPNCWMzkHKsmIPG1fH11N9pDEoDZzsZxR19PTsG83FJ85+GuytqjCGFdYcXx/uuNQCV/7K9QJq7zwgjvECHNqaFiY2zUnWaHGMpWaVEHDgJgZlyYkFM4uMDtDPlhKSWAzSw2RitYsrHVgT4UvkaokQi5MZkUpNU5PuN6RKk9yM/t1y8DTym2eDUtwiI2o8uTSYGDSmjt/SbAzpijbsIBRbCpPDQ3SMLkVKIhVttMeHzJVONMtwnoZkWkgu0uyGbCA10SJlqPeIKZnI3eQLC+mR/w8c2pXfFy3iBiiNdy1l/gps0jHZj8gFw6JQvQ1RYWQI23uSeo420uevOcKR9egWZiLhbIGB6k0TKkhauD+3d/lNJxY1+tve8p45plnnvnW+cZq5lRVReRr4GsgARfA3xCR31TVf++bus//31xdvSLWnnddw4NtmGzDZjmxTT3RKY9mQ6vHp45BU5gaQ583NGWhMxNjNgyyxpsFz8zr9I7X5RPkgoqnz4G9dSSUvdlwEz5Ql56fhs+ItqYUaMvA6/yeT+6CC7cHTfR5TbKGmRa1FSotUjKRFb5MjNIRzRZPocsDsz4p6nvNWFfY8sDGHmnKQGUzPkI2LZIFq5nB1Hxwl5yNQ9Rysxz4XvkRW7mjT2u+bl6ypBWCAy0IgqogEqk1U/uRxSq13fM2/5CRGtGCKYZharFuRn2kSyfaaWIVE45CnzOnRmnmzFQCYhIVE0UFyeDzwloO1P7Ax+o11TIyGIuUQtTA322/i9HMVFXUORLiwmfDHWJmDqyZS0cxgZ0OtFoYh8Kniwu+Nq+pZeZN/kDIkSErveuY3Zq6LKhAbQujC3xtKrwpXA97Tq4iT8K76i0rGSFk/JKY8ppsA97MtLkni1CZgc6ceZHfc6gaSq6eBHHrMwfbcahrbEh0aUBt4s8Mv8sh7JhoGV2DWxzOCC+HPaZYznXLVLU4O9LkmVkEMQs2JLbxE14VA2iCFB2zrykWZuPYbzu2+h5jDNs4YIowlC2LzSQfaHSmdyte8hWbcqLJcK+ZnA2reYBVRcFiTEGpGF3Nsryk4MjW8Ogneu9IxkN2qDpsTHwyr1mXA75KsBvZ2Dsqa9mLJ2pN0JGYK8REIBO9sNBhKViZcSWziMdpARGiBiQH4uHMMR15w7M0yTPPPPPMN1Uz928DfxG4A/468O+qahQRA/we8EcmcyLy54H/ArDAX1fV/+wXxv954D8H/gngL6jq3/i5sb8I/OWfHf4nqvrffBO/5bO3L1nFiToLrybl2Pa8KLdYs9A7/+RtaSoWgVQsb9JXlNGwSgt39SU7N3NfCp0eSdagxjCYGs/CpT5yzy/TlAlblFFWnPIlg28xLBgxYIWiMFSerT6wKo+ImZidIdFQtOJsKlC4KreUmKjjDFiknrjmI4N0Tz6oTYeo0ulArQsr09PqiZGGvdtANvgsJGq0KLOxTyKtBfZe+eUxcd0PvAh75mHD2r7jp+EVqkrKlmDOeDsyS8eDuWCbTxSniD7JX4xmxTGv6V2DVoVkLWNVsU0Tupy4cZ+44JY7WvriSanCitCYDKZiEydM5aEormSC7/HBEFPFbBzbamHWHV6e/GhXKeHtzFA1HOwLZg2c2dDXDTY9eYP2XSAZQ6uFKoObam7cLUYMyRjmssYwsdCyjmcu+jPWRGq3x9nMlC5w6mGuWOceKcIn9xr+0G2jjFzJJ1L2XC5PHcYnveTebHBVBpPYju/5UkaqODFI99RkIRVTpRgLJhmsRroUIQmb3nLv15g6UmvPhXx80m8DDDP3yxWHcEPMFbVELvoj3RJZ1zOmgFXBusIqC9kf6FMmOsO63FLqLdlG6nLmig80y8JgdnwIL2jSAbKyYyLGFrsoH+0lR/uanDNzB4N5TVMmTq5lUUPRwCqN7P0VZ4VsPV0lODPQlkfeLInZ1Bi9BDEcuKC1ZxZnafJEyDObPFCReHQX2DIzugpb5GnrvEx044lxZfA8CwY/88wzz8A3tzJ3Dfxrqvrjnz+pqkVE/uU/KkBELPBfAf8i8BVPNXd/U1V/5+e+9hPg3wD+nV+IvQT+Q+DXeNL5/d9+FvsnbsBYxjMrL2ynnn0HoSSCDpQCa0Z2cs+te0XNmd6u6KlpvHJ9/gjZ09gD2la4kshmQUrh1l7hjLDwZMw+0T15n5YexDJLRSiZVo4IynW6wxV4MdxzbjuMGTC851Eu6WVizoZUnuqrol1xNIZGRupcuOSeW2O5Sg+c5ALRjJWf2TaJMpSOxTdUaaGXhn24IWXPvQv0ZkOyDp8XluI5Tpd8jJaQjnxav8ZpYZCa7XKirxpwDrENr9M7TrLhUo/MtsXMMDQth3xBjsLsa1QrJM882huOqjyGyCSWt9MHXJUp1uNMoVuOFAwnduymyGp5xNQLJhdGuyKliRUHrLFUZaC1FarKYiv8mLEmkX1hcZ5FLDaBpyAlsMkDeRbEnBhcR8GSUotkj8+FK3vEx8w6HRkqQZxBJIMqe7ngXFecdYuxmRgaHtOayzFxPUWCO/BY1ez4xI1+os4L1ip35oalNOi5gThQGs/t9VtsFvbVDmcyZ7vizXBCqkjrRl7F9zyaS5qUUAc0kbFraG1PNpatPPA2vud33Pe4Na/obYto5sg1TU7cdW95nT9yER8R3WKJzLblTq8xJbKOZ2Qq9NtfYqNHREG10JsVPw0dTZp4LBsyLWqEjTziVBDfY3wmcCZYQxJDNEKSwGi3JHlaTR39FT4WvAhhGQga6cxEsg2jhKc/N6YnGMhimHEUYzEou3Kily1ZoWjGSyQZhyUimrmJD8xbx9uL73DRXfxJX/dnnnnmmX8k+KZq5v7K/8PY7/7fDP0zwO+r6g8BROS/B/5V4Hd+LvZHPxsrvxD7LwG/qaoPPxv/TeDPA//d/8ef8H89b70i5YowD9T+yYWhzQPiJgZtGcqKnJ9q6VodudJPBE2s3Z4YPUYzIfVk6+jlgiBnjFhsWTjpmlg8vblATeTONlgtBB255CNg8WXkIvcc0g19s2KgplsO3PtL9nbFSIehUOuBC074ec9P6s+ZpKI3N08rbLImmopoDc2yUKeJU16RvKGYiqCJ3TJjwkDSCWdmPBZfZmJxRHkSn/20uiIFSxs9B19xrhpGaSm1xTOy1gMug1ElqedD/pxUPJPraOKRxVtwyuyfkgKMYSoNXheSKYj5nMfVjoWGLs4UWVgax2AaxsrwdQysyxsuH+7Ytj2/ev49puCZy4poKlIJfD7fEWQkpIl2Vm7DmnPdYsgMbs2SA5ItIWVchEuz5+xbTPF8Pn3k9dBz4fa8jrfoUvHj8+eczIobOyHVQrFCWu+RxZFpOJs1U93g8pM0zJvxkd43jEYgHNiUO5bK4saCTQ2cV8zmEqcWkYLXA14zuQZXDJvjmXO3fnpWu6POM9bu6XMD7YKxkUdqDqahJ+DNiW2+I8RIlQp99VSnd9ArRrMCHRFn6OuGVTpyWW5hqRjmmpNcYauFkj1zqzTmhJXAttxz0B2FiruyAjF084AwMfiGfdnhq8jajNzETywc+Kr6DkUFg0NYqOaE8QoIZwLOKksMFCcMS89Y3tJwwpqEKQvZGRDIkvHuaWs9YalKotEnP14XIvd2jSfjRfFknGRc9vjinr1Zn3nmmWd+xrepM/cW+OnPHX8F/LN/gti3f9QXReQvAX8J4Isvvvj7Xtiud+yvvuTDeOTW1cx1otNHcrakIkymoctHduwRDF+WH/HT8qt8xCPZo+PCYXdJ72qOtqHTGimZde6pYyIZTzaWoDOjDRyrjpAcr+IHfiX9Dp+qG8RayLBZzqhAcJlNPjGL59a2DNJhrXAonk0Y6eSIFqFYz6qMFO9pdU9MgsEw2sBjtaPRCZ8jr/MtlZwYTMOShUe/xRSoTaLkM9E01Hng6GvO1TUuX6BGCWbE24gmwUkm0uD0zCwWvyjJOjR69uaSkgpBBw5uQ7cMgGCJWFeIztNLTc6XpAyjbXG10uhC5UZsUbQoBcu9CzSVo6RLruQOmxLFWDbzSLfMfCYPtDlyig0pVVzkRLYFYwXPA1MvGDKbOHKzLOzJdNIzlIkRz+/JF1z3HVf5jsv7hcYpc52YKkMTBpJaTEmU0HBwVww2MJiWNkd6bcl6QN2CNzNzcfyk+oJVnNibS16nA33XcGcDQwxsOWObFXd5xcGtoQT29Q2MkOqJMI8YY9lzQTFC5fZMNCxrwZaZyQayBr5ON+yrG35gvsdBL5il4mI+YDUzho5kKnR1SRlGXkyPfO2vmILjbGsu5gOHboO1C6FMtNORtizcu5ZD2KFGaMqJypzpZc1oGxbr2ciZ6zlCHckYPD1GlIJhKhXOTqi1FAm0ZUZVaFIkjBOv0gP7ZoWK5ba6ZsGS1WJ1Zut7XCm81lvmVONy4iOvmVyL5IXWzliEXAp1nAmHSBUdr+yWXPIfc7p45plnnvlHm28zmZM/4twfV87kjx2rqn8N+GsAv/Zrv/b3vb71BhMsHyTwELYUyUjK9NKyOIuRgsuZt+NHXi3vMcHRSM+azPt0g9SRmALZGYwIs/E0EUq2aIxYBeMWThJQfaovy6Zi77bMONbpiDUwdg1TcUxzzUpPkIX7cEFPTRaL04Gt3nMpPZYVD+YGn2ayMZgc0Z95yi4ioIrVTNCFIpZ4DhzsFWW2iDGEXACl0pFGoSfhzUxPwGHwNuOJGMCXiCjsygPb6UTnj2ArHq3l4LYcqoCg9HrNm+UWI4WOGURoObItD5zSljt5xWQb9uUafx54U26xtiBG+WgqetMwNx6i5bHuWJsZoyvuwjVShPvieXUqfGeqYXWgLhN2Udow8Cm9YqLCDJGTc+Qm0GOppvdcLXv6ccuDMzxWr2hz4VC9xH2q8fHE7CO0I76r6MzMWNX0dkV0libPuEnZh0K7TISc+Kp7wbEOVG7B60idI5t05JhX3JdCnJW12dMFR1MStpyoZcLNhVeHiZ9UL3GzQWkYmpa1nqnmHirlEFaoGAqWYgwNEScD76ovMTFzJ29xKaEmcT0/UpWJ9+Y1yQXURqQ0HG3iWHkcGeoCOXNdHp4aJIJ7SsaSRSWTi7AYzxWRHUeCXTjIlsnX5LJG6hd8Z36PFM+FO/DRv6ChR01ArZLEoiYTlp6z3VJcZjCBP/CvoTEUlIhh1ppoLBWWF/HHXOc9V3xiyms+ljeEOLDvLml0IeqCZmVRR1UWvnLf5/X4t2kqS+2fZUmeeeaZZ+DbTea+Aj7/uePPgPf/L2L/hV+I/Z++iYey1rJcbzi/4ymhEOgrz6r0zNZjVDF2wTpoSyFlR8kt8wiujVyYBw6lfVL9zxNBIlVZaMpEJYBX1vMtp0pIahn8mgXPx/KK/9n9c/iiXMiRiolrPlFCoc49e/MrFDxRLIowlDVr7dFl4SL31GEBoIs9D3bLh+otCeFgN4gtQMZlR71EwOGZiMUxV4Gkhh2PBI3UeuC+XIMmTu6SpowsrqIpJ67yJzrtOaUbRAwfqs9ZuQOzeFQKqjNqNpiyMNmWBcGZTLIegyDFkEqHdxGjmSpDnSdqP3KzfA2pJsSFRSoezJpon8SFj75DxkywEyqCGyNnrlmqkd9evWbnHJVMrNUxoczTFakWzr4iVoV1PmNNojJHnN9TRU/DwiJnxDruqob8asWyHHlsOtZypq8sq95TfEXBoCi5VlacSChbHeiOlmFlseJZJODjSDtnTsMX9EYxZWGs05M2m0lgBk6ugVKIyZMFQgUXHMlJ6BfozMjkPZvlgGpk5U/Y5HlXXzOXwJoRk4Wv6xccpCb4iTfjO17599g58eg2JDJeRlozMVQ13mSSt6zTES8DTV5gzCS7o7GJu7AhVp6GAScVN/IeYxInXxPFkaVioaB6wybNWHHsxgfOeaKhpw8dHQNJHWSh4kmKx7mJKBULnkbPRFqKMQCs8sxihFk6FjtRsiEw4WSk6YRBBioz45gYTE2tFWt74nF1wamxXIqlrp6TuWeeeeYZ+HaTud8Cvi8ivwS8A/4C8K//MWN/A/hPReQPK6D/HPDvfxMPJQgvKk9nTyQFq5bKTGAXrIWEJ5SJh3LD9XgGHLM0nFuHdSMP1YZX8R113zObllxFtHiakrHFQJlYa4+UiiwLJUGRiiSBW3mLkcytfcGNfs1ZGi7LPUfWRIELDuQSKKLUZeIgW+6aNzT5zGv3jjadWLkjd/GSjgnF07mJXXwkuuqpiNwrc2PZS0s3z7yMD+jk2ISPGApTZXjNLcEs3OUjSVoOecs6nxllQ583nN0ln823eLew0QdmCUxYFMMoE9ZAVXqCzfgSMVJxljUNHetpppoeOddbilqCRq7Pd1zJHeprEoZOZ76bf8wP7S89bcdJZB0PnNqGGcscKsIyspI9w8pSdGCpCl/Xhck6zHQDbxMrAAAgAElEQVSiMgVZNjQSuWtWBBt5kR1Xw5E+Bj6Yz8jG0zeBWntW+Z6lUZwdWS8fsWKZnWfMLVPIzN5jSPhc+OLwkTpEnHOM+Zo4B3J0FGnpxpGreCJkz51c09k7LjnwxfkDqY38jv5ZTAKVRy645dVUeHTXfOouiNTEybLYChsTefbYpuJoLlgtM5WPvMk/4dHcEDWw0jOLsTQlIgaK1FzonskFXE74sGCMY8c9H+QaMTNtPhLywjxvuVu9YqwdD+6CIAs+FVbpxHHekQJMpmaynkyheMecWm7dl1Q5stiOyQtnKnoT8DlgTcRlxZqZxW4YXaCo4HLiJC1qhaaMUBI2j2zKwmU84lV557+HaObgt1SyAJ7JFGoGOjnyKK842jXOJpIqX08Dv5oSzj07Ej7zzDPPfGszoaqmn9mA/QZP0iS/rqp/R0T+KvC/qurfFJF/GvgfedKs+1dE5D9S1X9cVR9E5D/mKSEE+Kt/2AzxJ8WUhNk/8Or8AVNlnPMUC1ktDQM2GV6kW4IpaKv0xlOXA2cuiFWHqkPqju8ff8DgtnTLPYNucKKEoeG+DdzX10Sj9K6iygOTWJI6Tq7Dl8RiaqoykkrgJt4SYw3OMuKfatd0JhlhMCtsMWSp2ZeOW/Oa4M+MdsXNMCD2ycBeTUGlcDEf6aWhGEubTnR2xuoClWW0FapCjgVjCzOGC3o0jVRS2JiRr6oLXi2fODrLPVtG1/DADVGElfQ0eeKST2iuaHXi2j5gk2GSQi/XSAwUM3Pvr8AoRpXV1HNtP7H1jwiOe7mElHl0N/iiVCXRTj3GwboMdDFTjGF2Kz7VDSvzyOhGZrumZGFJgaO9IJSeikh3OvJot3gZ+al+hy/TI3bM1HZgnT+hoaMyI95+4lBt6M2KVL9mSlt2feTBtIjvWeuBlYx4A5fdiSV5DBVf3v2QsLvm2G7p3IjPick1/CS8ZL927LKj05EyG4o6SjYcq5Ypd5zrM125I4Qzm5wxsubsHWdajHvBLBuW8WvcCrbpxMl7NDW8zF9zu36NLpapsXzOD8E5humaF+ETJSuLq3Fy4pO55NG8YJSWRTvO9TWbeKSqM1MlRFdhXEEouLKw4USrCzOO3fzAobkgEkgmo1hmD94WVCcam0jFEYjsloEbfc8pv+IUHAcTaXTmIDtEBJOEdeqpyoz4yA13oBBT4IfNl2RraVxPyUInZ67jBw6ywUmmp6ZiIgu0OpIl8c6cOE9ndqvdN/HaP/PMM8/8Q823+rdWVf8W8Ld+4dxf+bnPv8XTFuofFfvrPFmHfaPYUniZznwx/4B1uuX3619mVMtid3Tao+I5lTWTQpIGTZHUwr5siN5zPT5wNhtu8xdszZE2VWzkA33bUZqI4ZKwRCoyySiBiGfPIC0r/ZnXZBYEw54rfrv+Jwm+QFZCjqzKCWsnjtKRrWBNISewFDbm8clmTCpac2C2F7zlHSkqrQ7EuWVpLrA5c6o6Xi0/5drcMY9rHrhkiZ7fX30PrwMIfHf+IXt3RZ2e9Mrwntm0rPORdZy5iXecnafzCe9nBlnzRj+wzT27vKfTmb6seGe/YNv3nNlgzZOqf9BMIUJKWPEc5ZrBV+zlCq/Kbuh5nY84Sbh5Qs1CxDI4Q9CF7TJS6sQX048ZqoYP7Zaz6VjLQF1OFOPQueVkHTY7pmbNVAV+N32XL+9/ymCeHCeaPGDMgqBc6T2v568ZjOcex3nVQElMOGa54kym8ZEslqAJU82E7YKrFbyQvSXUyqoceFkMOW3o68B7rphsoDZnPpkrjmzYpTMHaVmVmrIYRheYjcH7iE2ZRWqqqVAlS4/jwX0OZkaqwm4SXk/vmNIaiMjUUUYhWce0rLGiWEYG+7SFH01gXQaieGYbONodubYUUyEKVjN1mVjnmXZeaE+J2VfEYlmXI75kzrQs6jn7Glsivbtkp5+odKbViZd6x4U5EXXLoWywqoy5xRqlLQNFA1Eq1Aiv8i1tLJyrhlg1ZDyLerJYKoksscYyk0tNY+651xuCzDS6sHUHZOOJ3jPr/E2//s8888wz/1DyvEfxC1jnCAaC23CobnBJOdoXLGoZy2d0qecknhI8xRqyQqsn6mVmoeHHzRcIiruAVXrgMVWsTMVmPuD0kWQNUS0HFyjAYhxdGQjpkS37Jw9W2aLqyOopZY3TMwJEMo/uBaGc6H1LlwesFEJM1FPmbnPNnqdu0Y/1wsHuuDIfGfyWNo5MdkOeVmg9s5eKH/nvcmCHNo5e1pxsSy7CxTKwD5f80H2f3m5Yc6AzRy7ye67sAaaGJVY8NjsmI9hS2JWPvJCv8TLyttyzljPdPPOVBERhqg2TRMCSEaIJ7PIRF4Q7dw0JHuqWU94yy5a4eNYS2eQ7ilduw0uKU5Lx1MvMtFuz1hMf0wXr0rPpj0Rn0ZLBKiEV7KI8hprFVEy6YpUHBtty3F3R6cgPqs9QD9ZnrCqiBV8KCY/EwrlaYUrBlQo0M/gaI5EhCK0c2cmZIe2oGGlwOKuY0LOODxhqDs0rBut5NGtuzcDWDOzGM+fWItnQV2tMvOVVes/JOEYr5BIwrpAqyFE5aI1lpPcdoSQ+uisG27ErJ3bLmdacGfyGPnji2dKx0MaZ3nse9JqahLWRqTQkMXQSafWE5MJLZuY+QEg4LTRzouApbcXF8MhkK97IJz55WMUTx7JmNCOVjRRANVPp+JTY2sw0ralsZswbJBmWqiboQiQQdKIdAK0ozY6TmYjqoThwFlUQlBfpPe0UOduOya74qG+YtMYqLFgCjzif0MazDs9WXs8888wz8JzM/T2IUbS2/MHuNZP3nFhBhpAzowSOsmW2DcU6HCPZQDQVi52o0kjRQJcXel/zTl7S2YGpwJwavJtIFkI8c5FHvpP37N2Wbf7Ij+2vIGUGdbzglslUzFTMUnO2gdaMrEtGKBSpWUxNV2YiHhHLfXXDwpOWmdGCGDi5FU5PTNQkKhYbmG3HYho6u+doO0b1OIQLfWAonlo9D/UNizjWMtHqgNOFB3NNrQNnLmllJvvAUFocC9YM3HNNSUeO4QsO9Ymr5chF2XNnLzi5hqN1WJkZpUExJLWMZn6qq2Pmg3yOXwbW88xD3RJ9zegzU8kk1zGnFoxjyp7FL9SmJ6SJjOfRXPNYXdE3Fdu8p7V7hrLioW7wZeb18shjs+FiHmmYOFUd0a4I2eDJNPnMwbxkUUudJ5p05vP5PbWpEBX25S1HPAepyMZTlYkmLlQ6MZB5qLfMwWLU4uw7tmPPZ/wBD5Pntrrm4Dc8uh2jrCi+piknjMl4Fia35pjB5gJBuK1fEEXYlRN1mCipwp8qQlRO6zVKYqhr3LIwhR3XpUUcVGVCVTjmlgf3Gh8X7ppXrOREXc6s9J7tdKAsDu8X9m6HEbiOJ747/AEf0hs+rl7wQV5hHVxrIbmadToT3Igridr3vDNf0FNRE1nriU4L63gmas1calIKTF1HKUqkemqqIBMkYa3FLAvNNNDIxKd2y96tmcURWEgIkwucw47FGYqJHOyGJJZae5wWruZP1HNkZ9Z4+6wz98wzzzwDz8nc30MpkWwNOnWcmpqT2zDYliaOzDbQ6IAxE4vtSKUBo6zKI61OWFnIkohigczsA1t9JGWH0RHLGaOe3AYOrmHFgZU8MpuOGY/kimQso2T25ZrBVriUwVsGaZmlJtqKLo24ErElIwWSVBzdjpojQSeMZCoZ6MoRzQ5rMw92R8JiY6QqlqKGQbZ0euRsOnKs8Kp8vrzntt4hOTPZ6klE2Hdg4FIfOeYL9mFLDI6DWVGnxNWYwCkjWzQ7qiyU2PHeX3CiJarS5QHvBoImRDJOI04i6mBWi5thKRXZw+yh5Eg2nsSO0VSUyjxtCYrSpIViGk5uRlF2/YmtHLDNCqPCIoab5QM2LNRzxhrLxbFn/ZCo/MTR7HDZU1kl2Yq9XpGs0kzKmBoW6aCuWUfPVTzQDgMhdJjtQufuWTGwjT1tTuxtoC4nzrxg0Zr/vfk+ca6plx4TLSEseEl4Em2JiMysObBzZ8TOkBySK5aqI9GwLkeyGnBwXG/IYeK2bFmMIdtCNIIVWIzFZ1jNC0VrKhvZuQekZOZsiK56WklMBU3Q6QNtGRBxuJg5OEOdCmo8JVUUKlQ9tUwUY9hzgdFMi6PO0KUJNYmjfGRvrgl5ImvHMhmOpcNE5aN7iQ8To1VElFwMo+lYx49gMpOvSdZzsm9wTERxrPIJZyc2PHCQHej/yd59LMmSZVea/g9XZszZvTciMhNIFGvpev8X6ZYqQQMoJIvL3N3ciPJDdg08ehLoeaRI2/cCNlE5skz17LU1k/P0ZoMCKmYyFhFFlybupwt+FC4vf+U4HPmw/fBbHxk3Nzc3v7lbmPuVUhRDSowVzAaMiezSFU9ERPBmZrYHtuWETpmiDNZkRGd2csRk4ZWPCBlD4lju8Dmz54VsWybV8Wr2LNLwTUHNhZw9o+1YVCBrzTYL0WqS9qzK4fJK0PG9wytfqWNGi6PkmsVoKllJXjGrCifCtnzhvhwpWSNojBIm6VgRTDToSXPeahDDZFpMShzUic00YLQmiUNri6awj0fa0vNd/8RR3fNi7lmMA2PxcUKbwlS79+K/2TG0G0K2YGc2vBLmma92x/34TNcdKdnwV/c7dNZYHVFKU/BgCzpqQln5MFy52g2Dcu99eXmlJE2JFdYmnFa004UhdMRc87n5ES8rWRRjaHHMvFQf2OaeTg0EFfnd8hf82PKsN8y25to26KVwSGcmq0kZcuqYVY0yFWPTMC89fp7Z9COT7fkue1LW9DS88MRatiglJDpyVu9bClbhWB6J1ZYwDRzUyF1/5HnzgCkCAlVKiBEmX2PsFTVPNEvNkCoG51iUw6n3FWaiNMqt7OKEkYmL3qJQFAxSFLpo2nLiw/oXwrpA1PxsHjjGJ2qn8WrhWm35rh95dQ8cxiufxhMuGPyqGZXhs/6Bv9Q/8N080QeHL4VNHNnoC0k8JhcSnoSmLoog30gE6jxjtCWtDXlqmJoGFlg7y6oDXs14VrQGqxIm9qCFTMGZzMm1iEmsqiJm9/78K8NVbxCBVVc4Aw0LG67sck+1Gvyl59q/0C89H7iFuZubm5tbmPuVa1T8j+UB4kBR7/tTkzO4tNLoAirSMOPzQpZAE698VM94M+BLpE6aatac7YZgI04nnpZvPOYzA56x9oy6YqFCs2L1iBKhVmesbBiTJ5qKYjVBT4yiWMQRi6UgWLOw+oRWUOcZXd6b9DvJ1Ezs05FHXtnmCyjFSs1n9YmLuqPjhFSRUjRGtTRxYBWDnyGLJa577t9mnj6NLEGxaMNEIJqAzisFzSGdSMHzovdYXajKFS8rzRqZbYctC7V65Q/rZ4qq+Gx+wkVBzTWfxgs+CHduRC+R42bDqg2v5gdSMWQL3Xyicho/99TXLblVUByLDZj5grVCRY9xQo6G1XkupqPOE0kMUTyqrBQc1mReueOwKM7Xe4osnEzAN6/QBRrpscmA37CNBUkjTgylXYlFuHrLX6qWfZhxasWrlVlX9GWPyR3K1DzFL+icYdUUEnNseUktxc48NK84G+l8T80bZe1wUtilgbvqb1xzS5Ujc7rnaO+YoyMXw0N5pnUDP9ufGK2FknBMoFZ0SXSlJ0mgTYlRebKy1P6OUC1U18xP6c9cg2WjJ777A5OpKAoqmelDw2nI9KklZ4+XxPOyIzeKB/WVqlQ8cOQhX1mModdbZm2xizCwAZPIVY2VSFKeVODod5zClsUFgrYoMm0ZsOr9LmIWi5cZCYLJKzjQkqiZeEgnnvQzm3ykVQNDanj191QS2eQTVT7ilPCBb9zpgawMc71lDQGjzW99XNzc3Nz8XbiFuV/pRTjjiLZmJeAlYtKK/PI+JOkKhRCNx+VMyhVrduzdykxgtZpLVTOZCjcLebLMEf5ns2N2DpUy25Lo/ULFSlMScwlYLSSTCWXFqEhfarQS9mkgZ4VoiEaRMTRqIaVA0paQRw72K6U4ogok1XAsmV7vGXVDLIredDhZKMZQcaUuCSkWH8379K585TGfyNnRJtjNKz+HO1YFs+9YVEuwC3qK6FqwsrDNFzblQlI1nYq8+UdGZd+3BpgtV/1X/mH4K4MEuqz4Ej7xP8x/ZzdeqWRB54wdLY0eOdcJ0R6lI33YIVLQWnGXL0xrRV2OzLkhOkfMlqxbXJ55qR9YjCcBgsaphUnXrMoiWlMvGS0GlitFwfFOM/vM0m1YkkVrR68bMpY6rXh/YTsf+Vnf00vD2XbsG2H6aKmnijHVvPmOxVWMbc0mLox8ALPwMF65mC1tHhGB4hKxGObsiNqhsqY3dxyWgT52PPKNShe25g3BsdMWrR7JJbGqPS4KlRlRSjOpmmIKD/mNw9CjDIylA+WZlEerzHXZsYaJq2hcWGnVhSBXVBnpZcPAFqsKJi8s7ftzk+j4YfnKv9194Htzh1GJkGesipzrlqnUzK4iWvXLAIJikxZkXXlwz6wS+Fv4Izk6BMMdbyQUXmaqNJK0pWKhkRFjhDZPVEtCmYFVBebsqNTIiXvaeaE4S9IVYY0kLNWSsLWl0Wdm3TCQ8fXCcl9zv/kBpf6/FsHc3Nzc/P/PLcz9SuUMoes4Xioi72uWOploSuYkhknXzEUTaTjQMwTHEBv+Vf2RJq+4NBLs+L73siwMdsPXsKP4OwwzTZlBa6oyUefERq7sypmKmX8L/8ib39PlASTTpoG6RNZSMStLLZBUQSkhmvfdpUpqRrVntxyp3Uw1ZJ7dB15NjS2RIgYxHk9PBrxZaLgylkAXHeHcs+4sb3HP1veE3TeMf6LozFo6lNIk41m1Rwfhfj7jfOZj/AutOvM380cqmd5XjsWGUPUYvRDMGVU/w/rAN/8TZxWIuQCKYxHa5oLxK818olEtRM/kLSuOisxWBqSeOVc/UXi/n3g/feYtPHExgcE+Ihl8ThgleCKVnlEIlRoJa6YzV0JSlAY+06H9lZwDk7EUpTEloouwyQPZFzwr/03+le34mf9r9w8sWHSApB3JJa6lZlINNhau1YaNPiFhBW2ZWgtToJ0vdOqVOGuSU8hsUUoTJDGpjI8ekubN/pGn81dM3VDNhnnXci4bFg1KRYpAlQpr0HQMNDJyKXv2eWZUjiquxOzJxnE1DZ+7RyoZyDvHU/yGo6DVihaDZM1kKlRJZLfnrC1KFHbW/Kn5yOgDVV4ZvONQRlzO+GUiK81b3THZmsU4lBRWMWgSR/aMuqPXAeMLCUVB2K8XjJlp1xknmTovnMOWCw0ZT0ivJGl45olVLIMUcnK8orBqxZgZrQqSNYsOfLpeMNvMG/cMdkOwX0iVEFxNTf1bHxc3Nzc3fxduYe5XDs7xo3eYoqlSZLWWVTUonUnZI9qgi0GcJSvNogK2ZN7CjlkXit0TciRrxaq3jNphEKxS2FzhU89umXjMP3Px2/ceMbXhWu+p1YSRhKHgxLBfVhSFejlTmgOWFcmKT+kzF9PiTOJs7rGshPx+Of7kdpxd+0t3l6GSBacWDDMbBv6z/N8M6olRdxzbR6Q9kK2GWvhhfGayNcpCU1YikVm1OInMOEYXqHTgLp9p0sK1OlCU4pv5wHYZ8WpmVRVOzbyqew72hHJXrFyosiUujkHVKG05lFeW6PB+4ZP+M+f6nkE/YkxkKZpBG3LZsyqPmIk5G97CjhwjmvdPxY1dUKmQggPRLKUDVdjKBSMQJLKNA9sycFqeiLVlEs3IliZNgOJhudKmK07N6Hogd2c6M1DLE5aZSSq2ZeEP4zdiaigSwM5EU6FU4Wpb6gXQK9bPLBqsc4Q4c7++8LJ+4Nk/ccoHkm7Q48pSrYxpx6COuFLz5/ojTZwwLBzmCeUyohSP6W9c9IFFVeRiiFTMSkja0lcBsQazOLZLRrsLrb7wjQOjr3lIJ1zR/DCeSHXF4keyDqwqUnQgKc2PvKJ+Wa/ldMFkRb1oxrznxXiu1CxUlCw4mxDJzOr9T4LJgkXo5oXBb/lweWMbvqN8QauE0o79fAGdCXrC5cgknrd2w6u5IytDwoIMrMryvfkDRiI5ewZXs5MJbOFS7xicf/9kWzKvqqUben6wG7qq+03Pipubm5u/F7cw9yu6FH5MZw5LT5obSp3RNuMk0klGF9jJmWMRmrQwVxWv7YFJtdTziVQcdTpTHDhJRP3IoGpaWTEMtOpEbXq+6k8s1lPiCirR2w2zeBKewkJTFiquDL5hMAdGU9OK4sP4lcfYszYVvWlRulASnOodIc14P+L1hhQTsw1IVoQ0smHmk/orxdTMJXBRG17sjtm2VLz32JVK05X3S/sRzWYccSVzaneY4shOI6qwmApZC+tSsZcTF7/nv0z/xqtr6ccNwY8kWxPF4E3kU/kZrRXkQJU0i2zI1pCV5kTLV/sTV3EM6p6fli+IVByWVzCeaBreaCEKMXqKUlxDS7IGvWaaceUpv7GTgWNzRzMcsSKokqndBUfiIX/mYh+YlopYPKoXRtdQrKF2L7SqZ3M5s7Gv3JkjNreUyhNkZtCONr+ymJpmKUg+syqDi6+0JXEm0OSRS+nw64yTFRMilRZaZchlIqYVlhNHY7hIxudIpQYWCydzoDeBKqv3GhGZ8O7KuTzQuZmn+V95sY8MuiPOLSezY7UaS6bVZzQOF1YGu2fVoEnk6Hg2H/jj9MarqZm4AwUpB5INHPKJpFoUhSYu2DAxqIrRtMSyp7gJm0cew8BJb8gqsqiKqzqQteG9FM6giiZah1CwPjG7GqMLAxWpClx9x138zndzTwAkKVxMJOUwLlGAUoTZbJgxaOuxObEaz5JXnE4c1mcm8yNRKgZRtGNP1185GI0xtztzNzc3N3ALc/9BXhPN68qnNJNk5o0aL4kg6X3f6arZpivBC42acWXG5/T+5oCVgKFTC+fs35v2BSpW9st3vMtksYy15zK/Lwl/cxtcWVCS2OSZRWl+yD+zmgobEjVXZmOwWqNL4dxu6dKVrAxFMkhClGFUmt7dkRTMqqKzI0p7cIIRGExNkoBXE1FZRt0yqsCsNRMbHBqchmzZDSPYxE5OJLtDm4qCIeuMSpFVDMk5Bmmok6GLPQuaqap4MzsMW0pKjNaz50TCsmSP6I7GDIQ8s5SKNWf+0vzEoGqyqYhF81zdoTNU/kDSDpevGAJNnKFYYtZs/IxEi5WFg56BRKJFskaLY5lbli6ylwuTbnnO90xFkaJHaQjNTCsXMI5dPtMtFxr/hSf7BV00U9OhRWhyYi4K4obharmn5z9dv/LnzYEVy1Q8tk+o84y4HZeuYzCWxtT8fv3ORTZc2FAQsLCNK3+YP7OakYM7Iiy0snIyLV/9HUuqeCiv7NTCR/03gj0TYmIbr/gkNER+do+sriZqyxsP7M2Vqpz5r8NfeasOkArKerIKvPrCt7Clx7IqRV16pHQsZcNuvfCQv1Gsx2ZhkgP38Uj0DSYX1hDYcaQXj2CxecHoRGBitBuMRHwUggiPc88c7HslTsx8rnZUJZEAVSWyslwlsOLfg6CGvRxp08ghv/LP+v9AyZ433aCl8NCfcKXQujeO4ZEFjyjFx+XELmYk1BynRM75Nz0rbm5ubv5e3MLcr+iUyCkhU8DWE3vXE9SZz/ZHornHlshTyfxx/GeK2lCFhS/hniAzgmWzXNFKcDazkGlLBCxFe3IeOPmObDbExpKp8C6h8CgsqkAricfpympHUhC+2Z+4mC0KgTwwlA1f7A+8qQ0bGdCSGaQlmIWL3aIkI9kiTFiTQIRJAgnHF/mBuhwIZWHWDtAYKSgBz4iTDBSyKxzSG6NyHJsdk6lBQVaWYjVFNGdVs+KZdcX9/MK3+o5v7omVGqXAl8RFNETL6hxWF4ZNoFITo254Uw0SCmfTYnREK4FiuIrCa0FHwRB5ki8YMl4Lp9QRJCDFc7Y1kg0RQ5sGvO/ZLAMLhRQUo9ry+ZeKmJd2zxQ2jKvhEy9UOfNm7rAl8eyfaCbHmoQlCqew4U/8xCXfseCwJRGLRofEUBwqP5BxuFUQ5dn3A0mvzLXC6EjygUVbIp6mTPyu/Iz1iWcqWBakunLIz3zI3zBq5qXasilvvOgDzkWuErjoH+jKHSuWruqhKNJkcUk4uw2TNIh6LwruuLKI46t9JBXPd/3EYVkJopjcHa4Y/kv8K9/9DrMapjSzasfkPaeypV4nlMpkJqwTEjPWzXRx4lgdsBS0WvgxHflfzrGWGqsSdVn4WF6ZfYdRiUgHohmUw0viU/rM1TQMtFQslJRIxmNHhxhDyQ5LJjrFbCsoQlcGduNCa66IVnTLhT/ZP/BmtqzKM4UNOvwZ10ba3d0tzN3c3Nz84hbmfsWaQnaW3tV4MyJaiCVQ5L3hPynNd3tPlYUP6UpIgZ3M1OvAa3gimIUv/gEjkZEKW4SQZiTBsX4kK0NVJgILq9bMusaX6X0ZuRKsTCxiiEbTs0Gpwi4d6TmQ8EzWvF+Mtx7SSKUWRqlYSg1JsZWJNTtEFWyc8HphtR1ROV7kHs/Kh/KNQzkjVMzZoZWilhkRTcmao7nj2Xxg0ZpkLBlLxcC2XPhRPnOSllf7BMWiVCHaQDYOo4SCJolHq5UF4bv+QBLHx/WF2TuezT1vYc/Z1ygRtI38lL6RlEcj+LLwaj7y1d5T28g+nmn0yg/yzAcc17gljYq38AHJ/pc7eI6NWrmalje7Zck1S7KsZkWrhSZFuvGZ5+YeXxacWWlswM+FtDbUo2HYfOBLsHwPO9bkqGViUR6TBCXCXMn7ovlU8+J2kAJiItIKlYnUtkdbw7VURGNJznFWO7I2HMqJx/Kdje6pXc9entF6pvSGuzRybC907vI+dZo6rCrMWnNRDd/MDxgSwSf2akIwBLWgSwRx2GRYcsUlBLwToqpJktikKylDMnu+2wNhuTDOe5I3JHmfAB7sllN7eC+QThukJLRWlGxQOAEqU14AACAASURBVOa5RtnMZDxOVg75lbFscHZmVB4xmTaf0NpAihzGC0tp+N5NdP78PvCzDnzzDb2tGXD0Dx+py8y5HPAyo7Ph9+pvrKVC8R5Cveo52QcGvePInoGGrCxiLS+bHc35fYjIe/9bHxc3Nzc3fxduYe5XVKjo6XlUr/RxpY8rUcBJpveaWVkm71jUhr+kzP1wwfuF3u6YTcBJT8FgmVFGoSUTdQ02Mkv93mivLF6fgMKbfsAXh88R72aasnLs7hhSjVaFWCqsRFxZsWQMMOuWRiZ8Gd974EqFQVBKsRbHZAL7tWcJASdnNC0FISmDksBFb3Al87B+Z9Q7XMo0JTJ5ocmZ7CJLgVVvsSUhqtCVK2HNBDfxUQYGHUh0LOLIFrC87xXVK21ZyUYxSGDLiAK0inxIX+j1jsno97cxaDwDLml+Kn9hzR1Xt6HKK/UqfBqP7E3P1beM9kAsik/TwKCEaBrSUjHbCoMlpj0lFO7jkWvZcraPpEnjqsKoK5pN4X44saXnmHdoZ9Fnw+z2fOscUwN7PP/un+jFMavAY3+mkoU788oaa85mSyweHcGWFV9mstZsUsSQcHICWzjJjmgMXhaUWSlGyCljwoheEs/mQIwfQVke+u/86L5y0QeMF1wSlGhe7BO9t4ymo2KGvJKKoGPD4t5/f5ev+KTINjI2B2YRFg274YWtTMRoqNbIq94gbkG6zCqGsTQ4bzijMGWki4r99czPjzuqNLEqT7gIqjUEs7x/kh2P9FXNpbrjkt+HMpKr6Oj5Ub5B0vRmh1HCD9M3LrGmNQuTqtDqfeJ4U04sbNmkmcUG1rTlWFaMyqjVoD0oFnrToFbFECombVl0ACVYa8BFkoagZkIIv+lZcXNzc/P34hbmfmWRiG4GnHqlciM+z/yp+cP758siaASxmslo0JE6XQnlwvf4EacS57BDS2ErZ2Lx+Lww6j0pW7JytOUVIaESDNWeWbXMJmP1SBLNyT5R5P1t1115YVEBVRQGQYrFKAi5IHqhqPfeuWAim/nKWe/wcWYMNS/+I9HCLA1GRZRSZBwqZ3wuNPMbbdKM88qiG7ar8Jd9xaAbZpVxprAqy6JrqjyxHy78t/7fKK2izYnP7QdOxlPFTODMvryxUjFSQXaMaK7qwCGfUTmzXa74ZYDG0KaV6GZcFh75zo/TmX+QNz4rR84VG/UNTebqO2xakFxxNyxcFkuxkcEFvvoDs6mQ5GmuJ4wfaUpksDXDWuHqxP38XpPxh/GFSg/IYvlcP2C1ZZlrdLrSqTesvrCGPX3x+Ak2amT1FcYIm2VhKxe+uoZohGupCINmrQwTLYEVbQ0P5jt7ufDj9JW/Nk+86ANZDMVYtmuPi5n9+sxLfuK5emR2NUElilVsTc+n/IYsjioWxryhqy8oFbBiqGREtGIKnu16xU2JfT9TuSNXc2D4ZSCiYiIp4dx1zKlGRc9+vdL6gWygy680JGa1EqaF17phVh3KJJaNox4SuzTRl4qY3ouCxVnqGJndPVIKKbesOGbX8h3HkTtMLtyVkXa94q6epp74unvgpX5kJKBVopIFrAUpREAQdIwMVcvH9JWz3+Gl8D3csTiNszBIh5fMQkQEDBF8YquO/Pvrn7hOVzb15rc+Mm5ubm5+c7cw9ytv85kveuHlYJAmcNE7RtUQyorXE6iahCUa2ORIxZUmr7Ss9DESVEbLzCf1BV1nrnaHVpGQR4ysfChfiMZTisYW4cf8yqQs7bLSqpFzvUMbWPD0pf1lW0NkIdDYEc/CTq4c84HFBqKyzFaxGMeCw+MYjSFbhwWSpPfJTq7MaksjKyVbRjZU68r92nOsDZcugNN8iM+cxNCpC44tF3XPQb8x2y1v/hGXhB/133D5T2ziwGWteW4eOSlLXWbu52f+Ev4zRs24MpIXWCXwYp5o6kIuCluEu3TBk/kwntnPDdV8D5Vl7SyTrknGcpeeGdQGNTu+rj8ShpncDpzqA1YvJLNDskNweHMEmalEkZQQcs2kOrpFqBl54MKLecDrld99v3KVDa0dufgJukzOic++oiewqA0+F8bg2EvCSGSbz3R54m9ikFKxH2Z2OYJVGK3ZmoF7e2FoDA/2hX06IYsipYDRFlGai9lzVA2XuGVhh6SBb9aySk9YE/iW/Zwp3YLNC94HDCt3qaeNA3N6wpaCl4g1M4NzfA53hNSjimBzYpNXSrEgiSl5FvMBW3qihyBXOnVCr8Jz9cSgLNoUfn96xeqZZd1g/QllPRt6SuzozldGu2XUhkUZSBq0RQkoZfB5ZCwbirPEzhBc4jI88ZY/khbNUjvEaZQUmtzzYf5M0wt9qKiJrOKRpJld4Gg3RAksYqlIJKWpzcCEJlNRyYgToVoXhjjwNr7dwtzNzc0NtzD3H8zrynn6RkgLOWYmf8diPCsByZpKr2Qmoqp4kM+E5kiKijVGxtZzV464shAW4Wn9zmw3tKWntRP7+I379cjga+bc8EVpslnQoqh0j1+F1q54IlYr2jTwNbR4eR8Q2OczGtivI2/hgGBQWthxREvB4rjae1AajRDSQlEaXxK7MoEKqJI5qT3J1xQ18a3a4bNClCDRszrLPvU8uK/4MpGVRxOZveel3JNKS6Jjb//KRba8Ne8rnUQSV9WQ0czF06UFXxxdf+WlOrBWLas2NKVnR8+nyzeCKszlgVN2fHUfUfNMZ86stZBt4tk9MNiJ388XtEs0RvPm77mme/qmIWphk68MTzPPqkPKhm28MLcVu/HM9+4RvXb8i/k/+WLe2KueJTSY+xk/vGIijGXLSKJkYTJbZDVk7bkfe8Ra9nFC6S3Jdpx0S6KhTSNRLDAz1pZKZ0YC4nue8sjJVowqgLHM04Y5NNyXb7zpA7NtiAUGZxAbyMXTrRkRgaXDLTPLnUURWY1lUy5UZSE7xSyZJmvc20zwM1EJtT8hQUNRlGTRqXCtd0xUdDZRp4WP+UheZmwpRGkZlSZqoUs9k/UMweKMofInstXs1iuVW7mawJGG0TiO9Q4EMoaHfORsZpQYdnKmiiPRtVyKwtWZ3/38la2e+fzQoVH4lBGtEDGc3IFTV8jGcNQGpTPRbBmL56I6RtsRlSLkzLaMtDKR0PQ4rBZO+o6r3BPXEatvx9fNzc0N3MLcf+Ak4oHB1mQNRRmaeeDk7rClsGjHTr6z0yc+qr+xSmDVLffhhSMdOi+IznzjiSQGLZlar7RLzyMv7NKFYgylVBzWVzI1h3wl2oA3E03sKd4gCnq7oWCZVE3UioH3W2YuTGiTsVJweeYf5V94lY/05hPowrZcWQFNQGUhZc+b3VEQrmZPUg1FHFkrCMImjmAVOQEi7NaR/zT+C2/bHY0aWcXzph8RB806UsrCiZq+eK7S8sIP1GqC1fLQn3jb3jHnBiUOLZaz7OmtZTaOvRgel1ee1UfEaUpqaCSyYthkw9Hec9WZq95CybyoB7K5sqkiXhrWdmTRCV1majKH8syx6VApcfJbMIVZPNo8MKsNNZEXa1htpLVvVHOPXmr2a+HZbElUvKotozGMUrPPA5MD0SNuFqo543Xgn9yf+NfmJ5IRvCpkH3CqJ6iKTbnQxy2f1Y9s3JF/V/9ELpZBdtR5ZVSW3lW4MmAolOLRWniKZ8y6oV4yXZ5I+srcNrgUeK4OvOkNnbpiSuRi3/eVPpuAJ5OomGtIyrBmS5UTY65ZQsusPI6Vf+q/8tJ95Hv8CG7gMJ1RWjNWBjGZk+uwJTJXmUM6sVNXnv0dn/0PaMm4nDFpYXSBRVnqHNnlVw5p5F48q9M8LUcupuZVt+SgWYuhPGZ+nP7E9mz5/PAjUlZmXVMzosXhy0qVZyZdofTMVR+YTWDUNWdTYzAUnenWAS8Tm5RItqJOMzZnzHRl7zsa1/y2h8XNzc3N34lbmPsVYxydBD4eR46bTOsrnt1HVHQUNJ4Fj6ZlJuOI+v2z4JICohTJOqqYiXSM0UPM1Coyqi0/S8M3n0k504cdLq3MQePUhcl6OjmyXU9cpzu0h1ezwcnKqD1ZNJO6A9FoA5/Sz2zzipUzf+TP/ExidYFr1RG1R4nDlAUlHpsjZ72laEMRi1ELVmWWYLBkVm9QZSa5me1wROvMSf0e/VbY1xM6nEnaE03NojKNKK5lx2u4Z8bgJPKwXHhTW8bWYXVGKYWPK0qE2ChqRlY6dFkwkllchcT3dVUn48gYrCy4qPmYj0QCpmSUBqffBw2GZFjyHlmvGL/wZP+KMsJOLfi0gFakaLjPJ47+ntF6lDZEE6mi4bnc8dbtebCJF7tnKJbVFNYYUEDymhzgcTnyx8vfcCfNbhB8XUHziX9cV0xz4YU7dAEjA9a8B6pGBuxUeC4f6V3HVbVc6i3WZrblTMkWIwYbFQ/rmaOxKCX4cOSOC3fnif9Z/8g3XfPVHjCyIli+6h94sQ8kHdjbnpQ0i1bc5ytdHNjpyDf7R7IUvod/wJOo1IAFVq84xCObdaQ3mqk0DKFmMuG991eERnqKjzyHjue0Y5EOpTM2C20e6F14f15cYMMbTlYmGxCn6PTIzp7QKfLGnkG3JNEswdP6CWxNl66cbY3OhVf1SFCR2ilMSu9Tv2rHJB1v+kDUBtAoCloEsYpSFN5ENCsZxaG8cG9OKLknlvgbnxY3Nzc3fx9uYe5XjDtQ1h2zLazqvXcsqUh2iUggi2ZXVjouCHBfXmnXxGIC/zCPTGbLiS2n/IBzC2Iy1iWaPOFSZBi3GBXRJtHFkWf/xLPdU3Dk/ELOmskaDDNWB66mwelExBMl0MjIJIEOjY8DT+kVXRRjtwepyMlQmQmnJt7sI2tpMAQ0hYRhNhUOQ51nQkkYs7Bow2DuMWj+n+6PfFqeSTHwsbzR04LMbGMicqaIwabIN35Pnj292mBNYqFCq0LRwuw8kw5or6nmjF0jUimULmQUr7ZCFQONJamM1QuayPOuoks9XVyo40DMNTHUvKqK4jU2wqocOoClwqkz0QaMnji3e+wqrKbiu/+BrEAnoZmunDvHaAOj32OzUPsj13WLkxnLgqaizkI3vrG3LzQpojcRpR3LdqG9/Pw+TTlm7nxFtoXF1egqsy+vhKkwx5op3TMmWL1mDNUvAzMJkzVL3NINV9TacW4PSBFGtWe/fkHyyueN8O/dhjfzxNF2OBJhnWntgikrqwiLNjRl4lq1zBKofUO9zPgl8q15YFXvfywmHI1ELqbFx8LX+pG1suTKIMqhSkLbBW8yq3JQFBUD0XgGNuhcsfrAKnCQ7zzOwln1HNKVLg8sxlGy4yotgZkhVBhWotrQ6pXRd6wqcKWmV5Yre5LSlOJRuuchz2xloh5XRr9l1Aolgi0ZrQRdClZmvEwkAk1+Y2t7PuQv/N78jFIKa26TrDc3Nzf/r1uY+xVDxbn6PX+qLWMQel2BFoJayFii8rzyQNGRvbpw5I5P04l6SBTXYKLBVYI1keTe+9s8PQlLby2Xbc0mRgYT6OtAMUKvd+zVG4MLhKXQ6w3RWPbxxGBbjAiDBBIGciYr/36nyiva5cKYDsxT/b4D02kskUhAS+YhP1OKRQq8hRrzy9TjH/L/IukaJFHEEs0DjUz0Zkt2C2O29KpCRUtSFfvpzEu9Z7YVSTck7QkrqOBZnOXNFjqObJaRiMOVxKIqVmURqxFJHPKVNo2MqqNmZjUFwSE6k/As1mKjg1jz0+mZrDpedMtaKxYVyEHTpoFteiN7WI1jNYG7dGXJjnpNDKFlKgFfEtkIS5t5kBfu9BsjNc/2J/7Ztqy15dP4jDYrfq6Z65qgCyIOrVbedEvTFGIxXPeOu2WA6Y68tCilGEvHJr/ykHp2eeCcd6R5oXcPtPPMZCLeLoy+JZmZoleaMpFMwqc9P55fGOoN1XLmy2HDlCqe/T1ramiXSMlQLwJ2ZfWGRnqyd1QyIQjiCiKK4jSjr0nKU0tkKYWkApTMSXVUemYIDUVnLmZPrWbcYvBlIkhk0A1X6QisKECwDLqlkhnRQlsm7sobu2zxAqYIf6s/UcnCIo60OoLKPNoTYgKNWTibimIdgzpw0Q2jqrBKMDaTVMDnyOoMo+lYacjKYAVcylSxZ5N7rIkom7nolqM5AIrGjFzWmc6/UPmKTXUbfri5ubmBW5j7D0QXVL7S2RPFBtAzu3ziVT5iTX5/M8XEoLfcyRvf1RNiA6VRbNYJGyY2EpGoOPotSmm8ymzkjfvywvPyO3BwURuSMVT05FLR5Jlh2XCSGsp7Qa0Sxba8MekNWz1iZMayUtETbc23tSG1jhwt/17/4X2BfBnoyguYhYtVJKNxkqjpmXOgtYIqiaIdWhUW2eLlhDYwUTPamrG0YCIqP/MpvhGVgLL4uUA94SVTSUcVhY2dMHmklQWlVq5+x6Raeqvxa+HSOGxcEGXwcUYwOCZCmd9rN5YjX+qPZCXMWLyteJNCIFIJKIRF11xVR6hG2jygZSYpx0XXZFtR5AGlhVwKeapY2vduMlsW/DxiTeKb+ZFFC4sIrUQaZqyd8Wrgo7P82f/IoFqiGAoKrzKvwdJKIpaKaN/3dJRkmPDMHl7Njnbu8bFGnWt6OpStaefE7BYoEW8zH5fvWEkkZ6ncSF82fJs7VNz/b/bupMXeLNvv+3ft5mlPGxH/+HeZWZVV10hIYAvrYr8Cg2caynOD8IvwwEN7aLAnwiOPPPDA+C14YjBIYLDk21TdysrMfxfN6Z9md8uDyMGlSgYNrsgSnM8ogmcT8cTg7Pixm7X41N9R2Zm7/IGtbngqDU0sFAs35UBA0TkQKsekLckrFUIwFZJrVtMzr8uBU32LrUFViMby5G45LJdsxyO1DGRrCL7mJj1hXKJLE6PU3OuRnF+2N2fb0OeB5Bo8M9ZbxrDik1tTpUK0NclZztpwzhV1HvigX9PIQJszW7ejyjO/bX5NoOZMQ1sGRCoynrqMiEns7AJRQ5eESpWN7BGbSOqIxmBNJhpP4GWFN9KAZC5mSTKPnE3Lzat7mqr5uaeLq6urqz8J1zD3B6wtNLJDsmUoa3KacAK/2P2Ov9n+gkEW7P0SrEH5Fs1Q8cjZr7D+gM2RHW/YVT2zrRAt1GEGFSoTmPqaUTtAqEpkdjVCosoDU1oyO0twjjZNrMPEJp148BbxFwbb4gg8mddQBGcTk63J4mhCQlKkdUqsamYDNioHs+aNPLIsZ3KuaRkYtGGZTzRqmTWRiuWr8gNHu2ShAzd6pC2Jpdux0IGohr25oZaZuakYSseb8IHKQBtP7OsljpE2j6zDwC/yJ77zX1FNmc/NHVJ5jI7cxU/0IXO2nmN1R1Uys/TUaUJsT7KFLA7nRoZ5ReufEG9wotRiWOqRSma8nbjRj4z215hypM6wno5o7DlqSxUCaEPPwK09srUP7Jj5PN4ytR2j9tyYZ07S8KqcKcaQ1VCbGSmZ8FIbhlg7tFRYm0kFijHUs8cEz3vdkZvCOgRKrHEUoqtIzrNiwEyF2VfMtmVfrVEp3CRBi7BIe6a6Yn3+xF4WtEU59u+4SXu244A7bRm98lV84qNvqPOZB17TzydibfFhhtpQsiNpR7Gw5ECWnpI7lJfyOH25UMmMiYpzMy6PzNQsy8z7+Xd86d5jNTC4BTfzjidzy5xXoMLsepbpGW8So/RUU2a2HRd56YISjWViw3oYyXRgBr5yv+UkK9QKbb7wLAtq9SzKhUoTC/Ys08B9eGZixZDXPLcL6nxgyYnZVQStSEbIwCyOWToEyDiOLAizgyw0i9ufeaa4urq6+tNxDXN/oMPxNq74ns+QZw6uwo6KtfB6/sKFkWzuqcuZoC//aD7YdzgDs+yx4hhKw+A7VAwRj7GZmok6RVou+JwYTM0oLXUc6Dhio7Dyz2i9JpmelAqPfsV9+oLYQAIiLYUKLYJJwtn1WCLFVFSaYVQShtnWPNsVwbQ/3arsWcVnajdiFEwuDHnDg11SUWjyyCKNHJYGo8qRFZU+cyxbSrY89lsupafMNZImuunMXfWJWFesxzObLyduzZk+Hvi0fMeP+oqL6Tj4hkOzZKUDPYmoDXvnwRRqHfn2+JHJG76kNVoPHOlopkCXJ1b1zLvwIz7fMCXHZ6csuKCiXExLk2eiVjgpXKxgvdCnGWtHtiXT5YeX28C5IqnnoVrzpX3HrB6XCus48Gbe827e8ZftBl8rs6nZ5IF7fcBLYByXDNYyac2oSsFBnQjS03gFIuoLn02PNY7TeUGVC84YtmnAxz034YKxI6m0dObI6CsUQ9SaIifUOSyZUVr6fGFTPdHlM3/Zv+L7ZsNzX7OYhX3V46cKP0a8Cot8xqeX7fRD60nOsMxHijomcUzSI9rSlBEjmVheasctdOT1tKcLlt6PBByXeskDFtLMKhx4PZ44rixddeKoNY/Vlu98T60DMTdIgaQOUyDUPbFSfHWmlyOzWi6ywLiAqqWOEXFCGyPOOVbpwkVWjHPNZ/8ep2curqVhxJcAWjiaFcVZLJkCJCyCATHs2zV3coHhTMwRb/3PO2FcXV1d/Qm4hrk/UCZgWJJOt+zXFUdnOTYr2jQw25ZNeqLjjAr0OtCOiUYCzk9UDOTscBIJpqIUi7GBKVc0jHzRV6g1rDmSsuGB1zQa2VX3JHNmzZGLbTAI1hdmW/HFveIYOyoXuBt3RGmIHpJkDIZGXy47vMsfCaZnr2um0jNLRRCLEWUQx+fuNQtzIKulJSDZMceeyWUuVUUfn1nmibv0yN5usMBTdYO4iZIdtZs5NAuMFKa68GRvOcU1t/7AQ33PPC147eFd/A2n3pNmxzHcYurIQgaMGRCnOBlets2McKpWdPnMjV744l7RaKCKhnsdaNyFXid6f2EdweQKycq5sjyZVyBKk0buzRcuaU0Wy8U3VDpQKSz0zGaKLPWArQvb6cLJXehwGC28nQ7cHANpfo+Zhc16pGiiNWeaoESpKcFRFcOmPbDNOx66V2TJ3OiObdhzU54JzvLQrvBieeo8i2mmLTPv50AgkcOa6CIdS27nji99zewGRlfzua+YS8Vo1hgG5ioweWHoYVTHvGjIwFAt8GNh4IYuHZj9SF0M+96yr1cYEYoKVRK6MsBUKDpREFblyETNiTWGgsUT8oVzWnJMW2YvjHT07oKaClGLL0e+ySd8uvC9f4doZBZPMEuMmai1UM+JnDswSpcjdQk88pZiXsqJxFRT20BjEgVHpYW7eOaX+om/1m94am6ZnSIIg6woySFGqPLIQs6U8tK2rtczF+kRFZZ6YsHAtjzhxolYrmHu6urqCq5h7o+cxonDPBMcXCrLZD2T69j7DShE51ikPRfXEng53D+wopgbOjYszQOP9p4TDeo8EPngvkISGKcs4olnt+YkLcEIF9kiCEez4WCWnNyCrkx4rTCx8Ow3JGcQIwwm0ulMXSZqO4IUgqmo8kCVIsYOWPUc6nuKAUWwvLT92tslR7fBauamHGlMwJiEuEC2hYv1GBlpzIGorzhULWozHT0mBzR7bPC4S0ZrS3EOJxNz7dGsdP5MssLZLqlyBA8mRRZzoU4JW0dMzBRbUznlXfods/dUJrLXOxqUT+4VfTOxM2f+IX+Bz540FkZWLMzAR/eGJ7PiQgMqvBu/4MRzqnrObkWwjjfhibs0sohnft/fcs5fUZzSjgdELVFrXqdH7i6RTi/sO4/RBqxQFMa64we7RDQjYUlX7Ui+JZUTk/iXRvS2ZTV9Apl4qr5mX22hOJ67JcY8ApZFyGzSM1/nkXBO9PbEqVuSmhZouLEDFQMuwaArlECwNQXDaVnjTOJihKUMROeo9YyfBFcKZ79knCuiVVwRFmVgpKIZC0EqgltQpZnUWfaypQg0Or7cYM4zTXWh1yMDXxOSYTAtsTRs5hO34w4rgWXe8ewWHMyGg9xw0falLVcBNFGh9POAs5nRVQxS0ai+/N35zEUMzhacyVhNbMserRq+5Pf84H/FhOXgO07F02ugjTN5rlhVI1U889RtGEzPKBWRCiNwYM2fyV/SyonPn3/AqPl5J4urq6urPxHXMPcHZilMTonZMtY9o3MMUmHEsIknZutYl0TtIpu041BtSapkEkfnuMg9o62oS4JQWGgAHM/5hif7is6OiCts2LFmxxfe4gpQhESDBMvsGopGvFwIeASwJdOaM2/CI2dvycZQE0jJ88v4Hety5pJXOOlxJdHIjDUZr4UVJybTUekIRdhMAyftKG1GjFJM4VnucBo56gZfLuA8gkDKvC8/YEfhQYRzafhY3dDpCa0L5+iIpuL75hWvySQN5Krgh0BvzlhmTosNhhq1hmV8oJVEPSrP/YpJEw/1lmKFYGFhZg625a/1z6jrmX1aM+cllYtEY1AjNCTUODqd8W6gVBavGVcyfoTlAJtk+OyFNi7ZG0fSluUAmQCV54fmBmccReHJW7KLzL5jVo8VJeBITcPKGRZckCbT6sDGPXNwW2pGfq9vOaWekjKpcVhm6snxYfOek028mda81ifqNOGWiUO9ATeSgYUdmItlV2+45DWbsOe9/577/Jnfup6SRubKsU57JDnsIHyq1gy5JpmCkUyXJibfgxZWQ2JzipTiudy8lL7ZxgNbPTDYhlIMRjPGZbAvHRjUK1jPkglHxmlmbDxVUqbSkeeOLIazXxCtBWNxJaFAHSNnu2BpH1nLmeoyY4pnnt+zaQtddaAwU4plloZ9u2WZZwINbb6Q7RqbI4hSl5FDtQTjgcLKRG51R1eOnMzfJ0v6aVVxZl2eaaaE/emC0NXV1dXVNcz9EeuVsJ6IFwUTmG3PLA7F42xipQcoBSmFVZnJds9ZtmSt+WLeUiowFBozImqwcSYVz5EbslRkIpXMJDwJS0WgiZln2ZBMRRHBZMHEhE1CVyLJCbVMWA2MdYsxA0lrVF4uDHzmHav0l6QmUGtgUU4ks0GItDLTmCN1Gci6oEmJbhZcdULiic/tDQ7o5EJdAlLgLl64pBWPLToSggAAIABJREFUzZJ99UvG3LPoJ7pxxlYLrBSakmjjkclWVGnHyS5on098Wr3jzJKLX7+EArfBamJwKzIDS/F8HX9D44SnsmA2DWMxhKqnqOOjfUWnF8503M57ZluzKhOK4nPAuITLgabMTOZli9JKImBowszmNLN5LsS6ZlhtONbKqXM0k+JNwseR4mBQi9YLfCxkX7MxO2zY86m955lXaHFkC6PtGbRFSkZSoEszq3Rh7Y7MtmFSz+watBSyN3zeVkRreLYth+YNP463dM2BrjpzqHs6PSNRcZzJtiF5QwyGfFlQtGdOC7xJbNIz/XliU860ORFySzsFPi5f86g1qV5w/3wg+UgXIvO85mGxonGBtX2kKiNYpc9nXsePrM4Hnqotw7oBgb1ZUqVAoxmJytIe8JrZuzWdBE7SEIwj24qeiVig8HI20ySwk0PqRGtneh1pzYVBtizaHbYIGhLn4og+oKbgRFnkPTYXGg3MBG5IOCYomcmtEJs50nLkHQs5MrmOSVoCNTWZQsVpuuFcXbi5f4u19ueeLq6urq7+JFzD3B/ovPLaGf6FOi7SM5kaQ8KX4aftpRmKQ4uhFHinnzmVid/Zr9AsiC0oL/XQ3o0fuAsnjmbD75v3YAoXup/qd+14xRnSM0O6YW/AmJdzcrN4goXGeBbjQKMTb9OPNN3ERbcULBRPNBX304HgLINryZWnTgGrBVMEARoJfFv+hl/rb4lhyXj+BeXU87v7jsGsMEDBMJQFg1iyP2LLhSCOkoWT2VATGc1A6woki1flXPeM6riYimwqknjCoqFNBxZmYLIdqh3FesQlohG8UbJYTuM93fSRqRL2vqMUh08DPUdicSxSYG+3OKPMOHCGJJ5t2tEPJ0ZpmBrP0XWohc00sTAz/T7y9odMbxJfZMnrhyd+uN3iJkvJDcUesTZgJeLNwGduKJUlWYtqYa2JV+cDIW5Iaji1lpINwdR8rt5gy0ztCnflkdEsCKXncfGGCYe1jnY+UWyNDYlnu8K6iUtXscjCNlZUYSI6y77dMhbHXm7R0pBzxWxhjgtyVfNV+EQKygfza3ay4ug6JAhn0yEaeH8OjJXhVb3nPFV8v3nPrrpBS+Gd+cw2HXhrPnKcWpb+TD9fCF3DR/8NZ1oWnGnNhY27oNFTSWaVHknq+OBeY2clmoa+zLQhotWF7AC9sJoHdrqlLF4K/LY6I1p4aNYksSxSoNfI6ynwwbRoHjjYhkf7hpPxbPTC+/13vHeWfbvk6BZcbEWnFw5mSfALDJkznokFRRyoUulEl2YCHUO54av3fx/nrtPX1dXVFVzD3B/x3uM0ICVQSaBOI8H91MpLCmRDO8HquGdwSyoUKRVptUCzJetLW6qawJ17ZPZb/C6R+pqmJLKDu/KBO3nirX7mwbym0HOTnjm7lrPZoJIotmYoBbFKbeFitsTxxOAXRHUUK1ShUOpEFrA2MejmpV8r0JaCkrE2g1SoceAKT3VNdBArRQjclTMmZ7IBGzz3eaRKkdBVBG6YTMtn3mJNoP6p/leTAqt0oJ8DU9dQrPI2/4ixBRHHKDXR1byZD1RS0cfPfGrfsuJEkJpRa3brBZeqw5CxNlHHmawVg2xhmphcg7GWKDXJtAy2IlLz1fFHFv6Zi/csy8wHc0Mohik1HLobwt878+55T+0eCPWFukoIa5oY6MwT317+NcVVzFIxl5qj3eJHUGo2YUfwK27lRNBIPUFr4MHzUwCfcCGBrzBTj5Uabyy1LzzXDUuTWMwXSphZ1DUDFZEGozOlGLJaHv1rgjYMbAgi1EkI0tG5CeZCF5SYlzy0LR9lw+wajmWN3SaaE+AC79InJFluwmf2i19xrhcYSczOsZeeYhNdrgi+Zlse+Li+ZywrsgVvMkEte77iVUjsbcu7/D0kw7GuGV1FRNjogfvpAV9fYDKM6lGnKBUtA3fxyMHesGJP8BWVUZLYl7Ok4lmWE6NtuNg7RjFIGVHxFGt42tzxH+7+X7blxAe3Ja5eoWJwphBKodeBo3kpubPQMyfWSMn4kvGlILEwhfHnniqurq6u/mRcw9wfso6YVgxWMFpwJqI5Y4qjLRM+RQ6+5dK+ZhhXjPOBhgkz25ebgt5SqZJSw6QbLrbmdLNlcBYDNHZiFc54k6lj5pfle8byxA/tV/yV/RbrZiZWoJFKC6USTnaF1URxS26HA42ZiWKwLqD55XwcKoDFSWRZLlzsCoqFIszi+a38mqNdk1vPSE81BUwLc2pwJbI2e5Jr+LFu8bnFpkRdX1hnJYlhlopWEk1WlnGm0Zf+rot44mI32OLp40Sbj0w2ocXxNhyYVWntmZAXtHbiUjYc3JaTafliXrPlC4ihC5Fj1QKFqakQU5CSyMZxsitKgSfvWNQDd+Ez3kAh0etASRW/6+8xHibb0ocjN35gaGu8D5j8yDrCan/mtj0jRfld9yuiOk7aIUHJvfA3HvoYuJ8/MkvDURfUZqYda576BcU0zN2SOE3kYnm29+zsW3YsmNXgtLDNB7YckShUviOWnkWceXVMZFE++47RtogITQ68Ou9w8syb4UBNAttRyYULPcYWghqGqqI2jroudOeJlHuW8UyoOtp5xjWRs++ZpKNmZMbye/MtVYpEZxEy2VgKLefSoUaYjOe5qymlptNEsjWjndhODwTXUs2ReV5Q58zDesUi74mm5tXhI1Pj6O1AZw4sp4mDWeJSzeh6Og7cpGemylITWaVHdtpwckt2pmNnas5h5l+2/wAjhWQMJXtu4one7XnwX1GM4jRgpGPSBq8jN2nHulyYXENu4HL44WeeKK6urq7+dFzD3B/wxhMrgwwZl4VMQysZVBilpZjCbdnTzIEkgR+bW/o0ER2IifTMLMqZoer4Pr1DskApeJcpAlNpuMQ1rZuJybEpF27nC70dCY3hJnf83v6SqBUVASuCkgDBmkzVzNiU+Ox+yeQMxgpVujDpAh0rju6Gs7OcnSWpB31FshavI8k2HMyKSM3GHHmtP9C7gbU+U5vEHBou+hXRZaxmOjkw2BZfJqJWoJYoFtEJcmTnNjgT+SZ9z6/TB5gLf1N/SzANaoVUR1Zhok8jC0n0RUmpZ3AVJwezbTjohoqZXFmCrXEoisGiuDwz+gUX22CNMuWKg+v4R+Mnwjgzuh5/yXxn/wGzWWDMTDaGS9uwLbD1j3w9feRZNuSyxswLnupf4fyROVfcz0+cfUcSS7ItKoZdtaBPFy61Aol9btk8Bb6eP9I0A2PjOfuO3/hvOMiau9Mzx03LanyGGsQWmnzhq8Fi4pEYV9xOkX6c+L9Xr5FkAaFzL2cgTXehCxf68BmmhmlpeVzfsWvWaMmoCj5HpAjPTYPNZ9rR4vXCF3fDoe4RhSZkcj1jirA396CFe/+RJ7ZseUYk82o6UOiIpmK0Hck6KqBQePIdk+k5dSsUEKBLe7RtGOjxqhgNNDpT2ZGilp1bcsj3HOwKNJCTJwbL0a3AQtCa2dTk5KkkUGkgUnP2PSfZMFeeLs1YueBLJJmG+/gjz+4VLieiG8lSY0thcEv6NKLGIGPkfNj9nNPE1dXV1Z+Ua5j7A9567rcFMx9Rt8ZbhQQRsOIwVcNTdctUFmi0mAR1TrgUsQ5IhaQ1lIJFqLgw2wpUiFhcyaTSEnYbfrBbznlEXeI+fsfG7ZjE0+tAkhE1FVktyRjO2rLlifW047nZcDINajwZZbQNt3EG81I1P4kw2xaDoqoUhILhLC2aDRWJIpajbHGaObkVZ1UeuzcMuqApE0ZHbspnotSs2POBb7kZ9/houSkfeO46jk2PyxERz7eXiXPdcZEFR7+kDyeyRD7aDa1pOc8NN3JgU44MyfOpvkPSxE5e8aZ8YualLEcygBYqEtYKmzRQiiE6jycQrfKduyd6jyT41L/lqAucZlQVPwdW45mjuaHiQGocIx7jIuebnof6nspuOduG0hjaY6EAWTOaHKUyZG85+RZSTbGZbB29qZkqz6WzbNIjdYqc7JZjX5PJjHXFKp45ugVdCfRN5H44IQOk7PiL7YqnVQUpsTEj63AgNjUuFUxV6PtntosLf1H/R/yue82x9FgTWZ1PhGoBKpgm4ZoL595wLm8ZbI3JLyVgKm04V4aTWby0SgNOsqCSwmo6MZYbxtgiBpJVsiQEg5LZuZZVDJTsKeLxJZPVsWsWFKcYAg++x9LRVUdGt8CVzEf7mo0fidGwq9/g85ld+zU2z4h5ubDQEvAx4VKgcWdEMlqU6P3L58IUBvOWswwk43lTPnE2LcVaiqnJCBh5KW5sF3RpwmbDQ56ZwnRt6XV1dXXFNcz9kVICrT+y4sxelnjNeCJFHdYEEOE2PfNYLJia6CyzNXRm5G38BDYyh5ogPbkoSkd3Hhi6iHoBhCgVF7PFFIuYA1/qNd+XLbNvmdWiWFwBNRnF8qZ8JNIgVvmr1a+ZUs/ebhBjcDpgjfCgdwx1Q6sjAUtQhxGlyE9BUAYqDYzS0mYoRVAKYhOf7BtyNpQszLQkPNE1tOWEE7BZuClPfD0/UrwheMfH9h0Ht6RUnks+8i/Wv2QdjhztgsE68C2SEilaglsSjeFL2OCjQchUUnDtzFzXBGqirRHJ9CS2Zcd22pNKQ/IO52446YZeR4Jp+K57h4rFZ+E4bwj1gvoSKZK4Hfc8VyscETtbujKRXE2uGkbb4jVRm5EQI9FbttWOKk2s0ooshomWSgZ21XukEhZppl18potKokeD51P9iruwZytPHGTBN+PEoXYEaqw1BNNRmkS/y5Qmco4VX8yCCzV4uNELr+MXJt8SnCUYQ2hakjnzvb3jqVozF0+tsEqCWBA/UzNSrOCJeHthX31FKRUHaVmGxP28IzlHRsEqokKlE8d6jZkVb0809Uu5msne82Y8YipDl0eKeo7aIghOhcF21GkmOseohiI1MRY++a/R/LLFP9KSjWHnb8EYvLEohdGumNVRjOM+P5O8Y2t2iFtR65EvzT25OEbXoDGj1oIWRtPwKFtm25IlM2JRPEpDZmZVBDFQXKYgXKbLNcxdXV1dcQ1zfySlga6t2NgLO454LVhNLMKJY7shSM0X8+ply4fCMs8seeSWzzRh4tw1dO7MowijW9LNI7t6yygNWRxWA646Ep0llIYP+h4jcMeRZ3NHx44g9UstsjKCRIJ0NGWmnkd+8Pdk4WWtLUd8CiwlgirZQiiWIkpdXooFL3Sm1xM4yy3PaPa0JXIXn5kbhWzJOFKu2Nk7VJW+zHx9/sBKZ6ZFYIoNZ7dhX0fGpqYtJ5J4XMmoKVgKFzziW2yaWKczUTtyNgx9y7muKWJYhQGOntXxwh2OB9vhXSaUBnGJ+/iIOMeb857azQzZQhnxaWaXJtRkns2W2VRE0yJiUQGfJqTOmJToZGZX37IuR8RUvEqPfDKrlxZoZqIQOVeO2lwQqdgvlqymjlWasNHyOenLLVkUkzN1GdhyxLueYD2Bnpwzh1KxTAOqLdl6XuUv/NC8JmjNJ1lwlz/RErgUwbjIWFeoGNQUslgG35LEUJLjNZ9o8sTcVNR5xuRMKCuyWHZL6GTPZCwqFRfb0tozY7pFirKcI8V4XDRUkl5apcWAtIlsGrJ6Zm2xyZKbwmQEoxU9I8Zb+jCw0RMTnmWqsSUSpUKtQA29HinSYZg41rc8li1VmajJeJnwJrNKB3wOL+3TBAqZIjWT1Dz4W5DCmRZEuYtfWNkLy3LiUW6IpvCyhq04zdhS8KqIgdooak8kupeC3baiKhH1lnOY8eba/eHq6uoKfuYwJyL/OfDfAxb4n1T1v/2D5zXwPwP/GHgC/qmq/k5Efgn8a+Avfhr6f6rqf/V381aKUDOPN1BaRAuRlkYnfImswxMX01CSEttC8cI2ZFZpz++XX3OyPTHXSMokZ9jrhqPd4Cg0eqFiYqUDOVhW1YFiEhcWnExDtMLZrNAErih9nHk3/0jWwsfNLQM9glJnpZWXPpaVZCIWrBLNy23aYBqqfCHJ8qVQrAhkh8+FG92xnhJfh498dGuSOnwpZC14In2aKCo8m5dgh8LCBQIjr8yOB1YYfVnx85rIxXEbH7ixZ6rxwgO/IGdLkoo610i+UPuRbC3WZRo/8Y0+8Wp+4F/ZXzEFx3N9yyIc6VKgKxeaHMl4PMqj37DkTO/PSA7sy4rRrYhiWFc72iHx3N4TncFYy1kaki+UmDm7FY28JkXlliOj6Shq6aYRbGZKDbWLZDEcqo57PWEay8m0NGQamWgJOInkAmLBSWKZLxyanmPesDorXBK+KqyJdOnAWZfcpBMpK3MDNs7cxh37coM2BmegT5n19AlnEtv6M7H3/D5/TS4NZa5Zc+JOvzAZh/WJJLcUUSTGl5pzJTDgOZUa1HCXvqNxATsFdnLLUFoKjp4ntvLMc3uHEDAqNBLweEazZLSeZvAcqxUzHYPtMCVTM7O3C7bMjKZhZINIwkoCmzEKr8pnVuPEj9XXeD3T5jPv42/4f+r/mFGg1kBbEkEMghKNYbKO2TRkNSR11DIBI8E6+nhAxOBIrMuZc4lMpmJixiKEUrNzN7xyO6yv6Zru7+Yjf3V1dfXvuZ8tzImIBf5H4D8DfgD+LxH531X1X/2tYf8lsFPVPxOR/wL474B/+tOz36jqP/q7fq9Cy988wkE7TnnBU7ulzZEYDuzNkme/Yqx6bsweJxNv5h/p88hH+QUf9A0jLcEJa3OEbMjGMXqPiCAqdFhGqTg2G7Y849NE6wydTNTlOw7ljionbBGcQm3CS+/MdKGRkbUeSMXj9DUJi7EKRbloTTaFaBoiDlN6eNlIxaiiRdmzwelLMWTvBm5U8XlkNL9itjXFGo6mZtaO0Y88mw4xwq0+M+cF07ikyhZUeROeaexElQK3+siKZ072hlfuB6a4IWrCJcNcG16FBw7NClVDxhJ6WOhHVnnJqf4KkyNtzPhkCKnnyd0wqWclTyQ8tc7YOPNBbsAoWYR1PnCbjyzcjNGGY6mJYhh8y1JOVDZyZ55ZxIlia2YjTKXhrX5glSdSflnNTLPni7ynErDTiksTKCq0eabXwDqOGOuxNvPVuOOv25aTXbBrOm6PA1Mt3J0HpC10ZuJiW/rDSHWJzH2GJpBbw419oE4XDtywDk/gA0v7xNf6hbN4Ptp3nPSO9qis3IxvAs4qlQkkK1gmek0kcZxdT58OJHGMXYUphofmLe8OH7nVPaNf08wXhsqjUvOYbnmq78hacZSahUw0jDgEK8LRrzj7mq4MjOJRKyzSwFFbHtx7MopSWLPHamGpI4swYK0yVQ2rsENQlnKgmBXrcsQ4pU0OCsS6Q1SwORNLzyYcCK5lloKKhQKoxanQ6ogvF9SA6kyf9zzYN4golkSXBwrKqt9c68xdXV1d/eTnnA3/E+CvVfW3ACLyvwD/BPjbYe6fAP/NT1//r8D/ICL/Tnv4ZHU8D46j7cmVJwp4C4duRXRCVwKC4iUSnUeL52AqcnQczA0X8QRT46NiCjQMdPlM8TUmZ6oM7UOD6U6szJnlCrKc2dMx65qoDZGGNmWSiYzWcbQGFeXRrrktz3xTfsdtOPLRvObsespPh82dKnMWGon0eSCJozITqo6mnLjVPSZ4GgJJW/wIg99isNzIjlU48dG9o5BQsRgbEQo+J0SPzICZLnyovmHnbrAm0ecj76cvtHXiZDJJWo71GpsCzg60QRFT8X7/iLOGky4IXYWdtmgxpOxo4kzCkUqgzmf2tTDWhqPZQDY82IbB9EympUsXotT0dsBZYcoGUyai9hgdqfTlYL8vwio/M9qe0XcE4xAVdmVLxYlquLC2J77Lf49sKwYc00bRZqJmolilGSMNgadqS2TD7GCRnuhj5FC9RuwFSdDFHfiJb6YTn9ySNhhKB5+7G6yH5BWfErd6pA8Z2pFWL8w4fkivMbz0xi0ox7XHD4lfnn4Lq5mztnzW1xSpmbE0eaDGMosli6PTES8jjQ5s3BPb6USaG8ZVSzSKmEJOHo3CTEWuG6IU2nJGBC6uYRUH0twRCzgNeB+pdHxZ6WSFLwnjMpv4jAB9TlAcQ/GkVJG1JlUOyZkH94pWJtbxzN14YjGd+avVL5hM9bL6Z1taSagKThLRWC40VAgXNURreTXv6dNIdmuyCh1nrBZ6nbEasPNEQ/53OQ1cXV1d/Xvl5wxz74Hv/9b3PwD/6f/fGFVNInIAbn969q2I/EvgCPzXqvp//Jt+iYj8M+CfAXzzzTf/Fq+V0XSgLiPH3BPblkuGIAav5eVwP4LJZ7oyszrNZKk40uA0siwzWQbu8iNSysutzvaXBKApmRwcH9u3VDpyG4648UQwNbG6Y5aKyTRcpOPSCFELtW64uIqA5cndMqeOQ33P7fhMa844nTlqT68J1Qgodcm0OuPyHrxQtGYyLY+lwteBDo+bE8++Z/QVF1tTTMtkezAKJROp0JxQI3yS1zRSOJJZRCWxYKWRLJZoe763/wHPZfsSVsPErX5mMAsywn26UETIqSJbJXlhyJZj+xqJnk4idZpJztLJhYd2RWgcdRmoUuKryycOq5YzK2Zp8JJpzxNLM7IYBj7V77jQIRSSbTDzgcE0vJp2qAqDrTAZBrNmU45YVcgTY9fgdUBLxhZh72pKBa/SEeOEdZx4OxwJGIo4erMnlwUnaZl8zd5vONuOu2bHt+EDO/eenBqyE9JNwmpm9g1UBSRxdj1ZB6wFn5WdecVnuwUa7sOPjGlDjhXbcCKUjufFDclELtIScoeTjEuJdRiZfcNka4TIJIZkPNs0cOO+Z8lEL3seywrNb8jJwmB5Mi1Dv6SQyfBSPkYncnF8qbZYlDwH3s1PrOwRXKbYzMnckNRjVDmVWxbmTJnhs3+LT4nZtixPM0WUySxIpnlpuxYTXZmR2aPiyGJIAnUuADid8GqRVDCuxeWIQVnNe7blmSYl9mbF2ax56cQ6s8kPvI8fWF32THIm5oi313NzV1dXVz9nmPs3rbDpv+WYj8A3qvokIv8Y+N9E5B+q6vGPBqv+c+CfA/z5n//5H/78PzLFiUoFYzLWDWzUYHXmk3+NJaEU3k2/p58zTpTneoEvhX56oqPFlwsjKwoVjWZWqTCnPeH/Y+/OeWRd0zWv/+9neseYclgr19p713S6qguBkGgJl08BEsLBxeAzYPT3AAe7nTZawsHFoNvrbnRO1alh195rr5VjDG+8wzNixG6pVQXC4KBCED8rMhUpvVIqMy49w3UXR8qWkj1BV0zK8ImveZf/RCUjjQyMaUMumrokshYqHViMoy0jVRIGtaKSwJRr8Iq1Pl9qKOwtJwqnsqGVhXv/iNYJUyKvcoNhJhWFKgtaFbzA42rLKIZXdYuSjEgEInUeaVJGodCxcDQ36AKUzL5pOeuKOQniNFkcG55xac/e1LSLZ2HNoeowpaCqwFszQsnszidiaJlVxaFaM4cV63RgPZ9x9UytFt6Hz9g0MYw93sFSOxZVCEbjKLRlwktN5yIxW36z+Tl4QenAu/DCng5nElkci9Q0s2dtJ/b0vLgdJ+lozYQ3BV0iqxjBelRZuF0CgzREVTEXiw2J7/UtT+aOJAoria2fmBz8UN8y4bDG8qoK328+8JP5E+I1zbliX26ozUKXThAyJRmK1XhVEUtDoyFnTZtOPC09B/klIgmnBK1HTkphtSYqx2gaqhSw0VCiEGNFpQPkSFQaFxJiPYrCa33PyYAO44/bqoa3fIOrE/Uy02aHDWd6OdLoCVMSX0rH0a5p0pnYaH4dn1DVGWUyP5dXlrwmFU2X95fRb+I4uQqlI2u/5+AE7WZW4omlx6VMypouLNQxs08fmf2GpAFjCBLJ2bJdvmOsHii6oMpCU0YKDkuiJMtSBIqioHB4IrConoPcMb1vUE1HyNcwd3V1dQV/3TD3HfDNv/f118Cn/5P3fCciBtgAr6WUAiwApZR/JSJ/D/wK+Jf/dx8qRdDa8s2wp64Hfs9POakG4TK/s4ihFsEpaLOnmAIygxXelc9kEj/1T6xGMKGHULNvCu08cRDFpFsGV3N2G86x4RQt6zLgk6GQWZczPjsW6djkE1UM3JRHvuOeRdc85ncYgZBeSF6oJKEU7MpETSSZzNa8oSSgS+ZLfsCry2HztszU+UCiZsRwlh2Tqlikps5ngm65yW9kJXwz/5FXvsIWOOkenT2r8sqdvHKj9qS0JpSeUGv+UP2SYgK76Xsms2KwayQXdv6FV7cDnRnXDdZHiAt3HPjiNCmDni8teIvTfC5fU4eFXt54lDtUCUxmRZ1mDkaoM5SsqfJAFxeeEJR4Ql0xF8ONvKKDgaw4tw4aiwuFWGDtD5egpld8W3VUcqZfVlQEmnikcYKJE0LhbDqGvMKQYNA4kzhXFk1AfEKcIpuaIJ5GPBWQqTnSc9CO13bDqBxMhVaNeNNQlKGeRoiWalScbcfJb1jM6jJD14zUaqBfEqGKDNJy1C2LWPhxDBpGWLRGbOE+POFLRY6KxVUcVY+ViTt1BBRNiNyWb9Em42lRFkyeUDpzG14wKXFSLQfXElShBUqCVAnFKLzSFBG+nr5ggvCDvudQNZQU0CJUJRCkRXyiWxaQQGP3aHViUj2D1nyxP+HYrghGY0omFk1VCrYsOFG4FKnkTBFFWxZUXrgLb7Qx0oSFl7Rjbm6R5MgapjIy2p6xbYjJXG+zXl1dXf3orxnm/lfglyLyc+B74L8E/qs/e88/B/5r4H8B/nPgfy6lFBG55xLqkoj8Avgl8Lt/iIfqbc3dXONKTQoVK97Idk1KhoLCqMBWnhiaDadskShU2bDYQuPPPNkHumXPqaxoUmFaDZdtUuNYqBnl8uGZtCKmQrAVNr2QlKBVpgt79FJIpaYynp3e89P4B6IDPITsqJeFtR/5obtnLg1LsKgcofbs9Q0eRcgV2kRmauo80aRMITLoHTVHztxyFkfWBlUSVYEQM64spCK8lntRPbQPAAAgAElEQVTOVU0ETBlpSBz1mrnu6NJAkybeH88cdMtRJaI2PG6/xukzlRrYmxtO5QMrGVlzZs4tN/4NFTMntyIqTaf3PG7egy5sy4jB8zA98Wgr6uDxynBWDasS+Hj+go0Ngxw5mYonsyVrg06FO//INh7o7Gee5Ge4XC43M03PJIlFWdQkBFtREBwRFTPYSFtGdsvCrGucVBzUig/hle/lG44WjrWhTQmnAoMYou7oZyCdEBPZpgP14pl8xcm+I6SJNhwxtnBwKxZdscoz3XxGUWjSC1jNu2PmVd5BvKw85uiIdY0zz2zSG54OnRxKObIIQVusRGKy9GWPCYGqOvOi7lmKpRSNptDEzFYmJAjHcENjIpYR3ytsBB0iIRlsOxFVy6aceCk1p9Ky5YSLkbosNHbkTa9I4rGpIcuGnCK6WHpmvpm+I3rhUK8Ym4qX7pa+THgtCImX9R0DFR6HQqjDDFpBSRxVBWqHzokp99RlpsoDIa7wWrFYx7GrKCmQJF/Kr4FFO6KFugRkf/iH+HO/urq6+v+Ev1qY+/EM3H8L/E9cqkn+h1LKvxGRfwr8y1LKPwf+e+B/FJHfAq9cAh/Afwb8U7nsDSbgvymlvP5DPJdJ8PG8ph00w03PIhZBsQkn0JlGZmqZsSVC0kyqQUwgiuVQbvFSk8Vgx8zdfOLYjJxDxQ9NiytnVCn4DFJgpU8UJZxVxyQ1W94wJEzOuHEkNQlnznzha0TBYjpS1igxyNuMzgvv0wvfm3vemh2YyGwqmnLAlxpXJlxKFCVkEWKucGHhyB0qJWpXCGSCVKiccDqiysxJvUPZGZcTpmQq5anLyJO9JeBZdI8qiiIDb+GBVDSkjNUDkoVg9OUGZrxMohgEHB4rmWoaMTkxWcXB3rLPO8Rl0lihlzfGoFjJyGPZ0KojdSnclx+QeQdpQEtPmDsm07M1R5JV9Bx5btf8vf4bYjRE5VilE6OqcDkgKdPkzP35mUG1FCpizaXmhZlZaU6mZZUv0xaUZIqc2c0TLhp68ZicGeoWjdAF4afzkX564UH9EVk0f6v/A0ZjOdoaLYlUNNbMXK5qCjoVzKIxIXE2PU5FYuVpSiLZCiOJ2/TMrvqeOTjG/J5XfUuVRxJCFnB5QUyhKjOqzryLr+RYcao79JywrnB3PnPn3lj5bxnili9qx5hadmHGLgr0pfcuJU9WmoRjFoNB44vn1e/YrWdEWwqa38sHDusbBmmQHy8dtMvEojp6n5mqjJJMl0ZuwyuL1rzpLWflmEsFaJIIvcnUaqbLRzw7EoounrmJEyoLr2bLwW4oZBpmyJakBCOAZCo8dV7o8sAqDHSlv26zXl1dXf3or3q3v5TyL4B/8Wff++/+vdcz8F/8H/zcPwP+2f8TzzQdj5z3R/LUUZaazKVb7JZXbuNnqjyjiHxSP2FKHdYlbvwBZyumqFEB9mVLqTz3Zk+lJ6gqDuYBkxxtnnk3v4Ek1pyw0fN1/sRvyz/iu+YrsJrRVqybiSAaHxVdnogFluToOSFZcdwaSqU40GMIrNQLIzWeFSfZ4VVNTJosglCh8sJe31CUwWMI1rALA0YlbJ6pCNjk6WWm8EKlgKSoZUYyDKpjLg6jNCOCBu54Y7GBuFjOrWEDWCK5gCkZQWO90InnJ+ETbTgx9hvmAJ+6r1GpECpNwqJqTTN/T9+dqTkSU+E1rDGzsO8euJMTpVLkZWaxD0xlw6IU63Ri0iuW3IEICqGIZrUMnHSDyord8obVifvpgGvf4aOjSU8UG+k4MOoNJk6s7J4cE91hJvUVTs8E29LzTCg1fSp08ZUzOxpeaM2I9xVjvGWSHpMnstTs4hMBh8szki+hJUeDp2G0iseqYV8Kp87R+Yi1b9SLv/xuY8Wbe6CSDIvDqYlZLFW9UDEzlppBdZxlzSKGQoNKsKg1qQTemi23+QtGZz65W76r3zGzY+dfsCkzieOLes+omktxTYq0JGzOBK353N9Rpz2hGLJWiAlQFqLucTFQq8hWvdDaE/f6mUXe88W8pyiNR6jyTJaMK5mTEpTKNHgq3iDdEKRFSaHWM1CRc8bkGVsyJiUW1V5CnzqycEOfzkSl2PDCtpz4avgeeYL6P/1PrtusV1dXVz+6FjX9mTDOnMaBT7XiranxSjBqYfY1s+445htmHFOpOdsdrRqYykjNRHCFkApLqNhObwydJUjiRfV4VeHRGBK7dMD5CTGGkjJ9go0sHPMJsuakWva6I0nFoFcoAgWI2hCK4oY3klJ8HD4jTUKHkX+7+o8J1JetvDxQlUSJiqQyLirqsjCmliKarsyMyqJUokoZiRVGRc6uYpIGIwryQqsDP4t/YMgrrNqyxIrBVNTqUlD8+/obKI5WzaxU5nYe0OIZF8vYFEQyJnucnRiamkPVMvuac90ya4MVoWbElsQ2veKbheeg8fVPSIulDTP3ybOPLUGvWEzhRd+zmArvBXRk7R/JORKk581sIGlU0oxmQzd4nIyU3FDnEwdtUXlA6wohs0kHviqf2Y+KR11xyi2dGnjIP1AmOKxrUCteZUdbRvS8IBKp9Ei3eE5VR86Fg3KY6kw0GotQB83ae6giW/U9N3Lg6La8hY98bz+wr27QNtLnN1ZqwhuF8/ZS2Ctngko02aNI6Ay35chmODA7S60SszEs3mFMQYeFmsAbjtF2/GDesajAr9XCvlrjS4ePhkV3tGZEQmapak5mQxBNjpqMJksC5XixO3T5mn4Z6NWJQTqCcXgRrAaKZzAVK3/gN91PafWEdRP38TPfmZ+S0BzZUoWFVdG0bsSp5TKlJD5hw8h31dcUFEGXyzxh44gJssp4qTimW+rwTMfE1j7yZB9YlT2lVOzHd1Sd5+H+19dVuaurq6sfXcPcn7HOMlsh1kIfJ0ar0GWiDSN/0H+D5MKiK96FF8ScuEl7dtUzNoEZW4LZYYrmuV0TVppgEo/6IwnBqYQNiVf1wC6+ouaIK5bD8g2V0ViteZMNs2rROgKX8loVFMkKlIVR9YhVLGZGB89an7idJz6G70hK8yd5oCTBxBmFZpcuQ+dLFrbziaVqiebHZ4kzVjxVETKC5Aormd6/IjqxkYmD3PKpvmPJNTbMbH7s2StGCLR4hKgtRTKLdQiaOVvaGLBJ0ZSFnpmmijzpFS/NFq8sWl0OwusS6dOZ0dYEs2Hf9FQp0jhNHgRxR+axBe3Z+APFFEqKVPpMXc707hVXZprBUznFULbspoVKe27jgdFpSrn09CkXCKpBpYSWiZXaE5MmWMd9fOJF7WiWEU9LsyTOZGaxZGnxueMhPNHmgb4ceLNrTrrmRW8oFVjxZO240U9M2nIsFT2RfbXjPK3Z2x0n2ZKV4uv5SCCAXUAHGhPYKU8VElV0uF7xIjcoO6NDZLEOMyvuw4lFZv6oHjiYFX16Y7QdcSkkU0AKUYS92vJb/Y/5Tj3gU8/ZdEgS2jHxsupZVE1BYXOkItCe3ohtRJUMkhjoyMbiYkS7SJsOpKLYhhNreWHDGWsj+1jh8GSJvNhbPumvyEkxqYZNPrMyI3fhM8lUpGSYdEewa5oyIgme6luEHQ0Lm/QDc3EUKRQKrTqw5Jpn88BEiy73dHGkMRMAh3jtmbu6urr6d65h7s802xXm/Q3p6XtMCCxNS5UrjnbFpDpulj2Trgg5s8ozu+HIfTlykB2f2ntiNugYiDahQ8HJjLWeiZoRjTE1t+qVJdYsuoWsKNWJogIP82eC5tIdJoZFt5iSWJxhUi1BhEaOaElE0ezlhsm3TMuKQ7Xi1a0oReHKRCUzJilu4wFtFVNqWPszWr6QUuYoLaPd0udIrSYOZkVSms/qPRtVcRuPZDPx9/YbFIVJWoyL3M2PYDR6DnypKjKZPmWqPLDLT3R55lg2PMktRmVKybzZLacc+eJucdET0ZAzXZl5l58wEvmiH7DecrIrXDqQS6YqCr0obpaFY3VZHRrahlE3qBS4W574evnEq2s4Vz+jn/NlLuik+by94dU0GOBePfNaOo7qnsV2OOe5Q7ib95xzg54S+tzTrBVVBBrDejnzfbxlci1zqXCS6CSwlZmoDFVJpHTmtaqpU+adP3GSwh3f8hgfOLkWFQsv+Y7cZPb6nkCLS5kaT5MT23Dk1r9gsmeUnkadcdawwTMhJHODLSMHs6LOZ1J0nPOOdoi8bhPZGkbjMCZCimQu00CKURQRGmY+zs8caGjTQl4ltNJY7VCiicpg4sC9+cyEYdBrjmwwSbif9yit6dJIVoZjURzsDTk6ziyM/hWfHXO1JoliKpYgCq9rioZGRu6Xz9i4MDSGg7kjo1hUw9fhj3js5cyi8nglzKkCXVDZM6qWF1lTkrr07GnDq9qQsuWlmWjawNPzJ2KM1ykQV1dXV1zD3F9QdcXm/gPLcORJt0xKsGrByJmGgamxmFLodODr4U80OTHmmt/WP+OTuxzsdiXwYXxFkjDnCpcCW3klS0WfT7TMl8JdBVonfqc/0MeRhzjwcfkEutCbE0uo+Hn8I0O4Y7AVv6l/gpLEomrqPJO0wfrIbGsKgVk1qBKxItgMvRw5mB6Fok6Zwa5wGpycyMphJdKYhTUHjrrBkXjLHRWJl+jI6jIPE+Eyi5WAKxHjAzYISxqoVWE7FUJJvG1ueUIIoiAXJGgSNcsMlVto44KTiQXNqGpO9AiKrw6P2K7ggufV3DKmTMGzi6+X1ZuSiSJUQcjZUYWFSk901QBGc6ruCbNg00S3CMemRWdPKoW3bs2QHLNo2rIgP86ijWnFlNeUYMjzGoUihMCzuWVWLcvW8cylCDlicDmgqszd8Mih3hKK402tyCmQcPh5xT1HKhPxyvBqN7yyo5SMzEKyFb1fWGfLNgzMJtINE6MxaBQpak66ZyhbJq0oOWHLgiiP0TO5iuQMIWiSgLhE1BalBB0zOi3UMgKGUgouKBqgzoGeI0NdE5wlYLmTL9zlgsmBQEdsNEVZfhF/x2f5QJ46bElUIVBnx2vbUIunioHbfIKSyWJAR4qFbTkyyY4+TsyqUOWJj+b3tPbEJ/+RNx440NMzg0SKyZTsQRSjaDIRo9acpUFpqNPMrCzB1ryqDYJCJLEqZ2o50CRFnEdSStcwd3V1dcU1zP2FOWc+d4W5MUStqdJMKyMrOVNL4KTWKAoSE29yy6Q9k6mJVl+2qFyHCRV1teFvXr+lOQ/YbWCse866xhE52A2unPFGQITFFJRWPDb36DTRlIlYDNt0ZB0OeNlQnKXVA1kpJEcomrlUeHlPpSeSjSTRl1UObtDpjUUsqVgUjqlp6dOZm/LCbDVdOZOLJwE5abSGs7YUFDkp9m1PykJCYfAoBCFyqLdIyrQsrNOeVTwRfYteRWpd2KuesXTUZMakOHYtLnsWbXgvf+KsWpQILl06+yZV8dSv0DExljXd4nmIe1yaqarAcalAKnyMHJsOTyFXl9XPlAxf0kfOZUPtBWVm9vWKRVUMpkNiQXKmjmd81V1WkGxFDGDVxDx2PPEeLS1NnNiVP7IUGGTFQffs1YZQClYSt+GFNpzxrWU2Qiiek3R080AVPB8PLzzMz7y2GVcf6GeNzy0rP+FDz8G0LLpjshOzvue1UbyYNc2858afWS0DvnK0PpFTjzcLdfGcu5ZZOX7b/oSVHwnKMGWDCxGdFaIXCpqzacgKJBrenwfGssGlEZ8tNSPbeCIbOKmeRVkohlQCRWk26UAQzZvukGK4SV+odKGOI0PjiFKhU2GSNc+5otEn3qUnSpNYRPHKGi/dZaRYeuVj+o5OXvnCR6aqQ+WEFU8dzjRqJsea0fVoAiorhIDTgYhikhWakVhqTE4YIlkKSWqOdssfur/hV/w9S5oo8n/ZAX51dXX1/wvXMPdnAplDPPHctByqDmxNE0ccgUYGJt3ii2Z2hkjDMbW8mZZH+5FJ90RgJRMn2/Nd9w1fT59YxQUdFLkobIoolej0mdlUjGVDKQqlCnVcsGZiHQ4McceLuuG5v8P5iFJHPuY/okQYZE0QS1USfZpJpfCtfMVZt2TAloXJ1Ei2JGru/B4tGYVnMZouLezkxETLoBsavafHEaLlqGBRlqgUoHBEPqRPrJl41BtO+g4tMz+Ye/p4oBTNRh3QSTPFjtk1l23UEgmNRqlEnc4sYunika16o1EDL+odizQUrzmpFbfLRFUyq/mZvn4jS42RiUoH9ukdowmcTcIy4NLCx+kHmjrzSd9zkhWNHVnbhXf5iaFMxPIe5YWSHUZlKr2gSdgUuJ0n7pcXXuVrvtQ7rIbqXHMgMTaWvbslY1EpYfLlkP4ctugyshqPzKYhOaEzB5pm4MaOrPmCyhN+/pql6gj0bGRkF4/ocuDjyyNH88DYw4ttGJVmcj2dONzzI6Nt8L7B1wZvFSs18mv/G/64fMQ2DYP0PLo19+UVqxpMWqiWlqYciYvly8qy1iOT7glLy7K0xHKHMyOzrWkZWcdnGjszpppJKmzRuJypisfkwCwrFrG8rH/CHV/4u/ITRGVC6unKSO/33M+vnE2DJaP8wuC2JGO5LW/o4qlyps4nfl//mr307PUtXTxzJ5/5qB7ZjQc+8VOwhSAZUwI5CqootAjWBEyZ8LqnTkfaslByIpvInXpmo/fU8UQuI1nyX/m/xdXV1dX/O1zD3J8xOTDlhaIL7+OelApfjV9Y6ZnP6x2TaLysaMO3HO1lVSyYlq5M2JQZ8opUoEqe2/IZ42acm0AXntUtoIixQWtoZMHJEzYK0dSUojmHHh3hB3fPkRtSNji74FTDurzSMfMufcbnhigVjZuo/YnP4QZjI5PSeDZgFCZGXCw86pvLOKo4k5NjCQZHRLKlUYHQrAlU3OQnDIk5rxh1RdSXfrMx9PT+jJWIVRNGMkEC9zyzBIdeILkKk/aY4rDJQ6hogwcLx2ZDJvHJfLic3VoEpRPux1XNREt2HV0MbMIRlQoqz2AVMcFSLwRlEOPROrHJRzoJmFmw1rA9TpSS+dnwid+vvuaxu2UoKyqVuA0D78sbqMs2NLqwiSN9OBNTz40beKta3qqexlc4Bjb+zBwaUjEolVipSBMilRekGIxMlLRCUkRrmK1iXyteTY83ia0PaDegdKShMDqLyhCrI3NuCPoy11YXjcoZlzzKGCiJwdTMVjCqphDBKJbckEVTCrzaHTk27OaBd+dCd3C87C6lwgdZgRgWbRmqmqFyGKnZpIp6/5m1h7x75V93v+LotigFdQh0fgSp8VWLthFvLAdWvKg1IBgMNkW6WSElkU3hSMuqBO7OB2J74Hfmpyy2xcWFU2kI2fIuvxJp+JA/seLATX5mrNaUmDiVilPasM4HOk7szgde6neM1GguF3LaORHUjNIDe26ZpMURafKROJ+v1SRXV1dXP7qGuT+jSZTlRC2FIkLOmdn1/KArvuQ7AkJBsbcfcWkmGkssl8oQCqxkjy2B2/xMjScDs1b47NC6YDAkJeRieLc8MlYVdcg0/pndfGQ0iRAyv3G/4kmvmaoGRaIvPVUa+Zj+xPv0RM3CEG8wB2GuapqlYMyCNT2ip8tQW5VRZByBIprJdVAKo6z5am5ZcsbXhigCpbDJL2zCxMm2fM4fLlMa8kQS4a3akSOcTX8JOSUx0aKyxuTI6gRpmxlSIGtFrSbaVJiqO7xAKhXPvMMqzUqdoIAdE1MrKCmgQeeRJh15P/6AVIU81hzje+6WR8aV4EvB50KbzhRtec4doiNdnliZV9Zh4Bv/Jx7Ve1Y+sncbbsMbXQns/A+cU42Xhs0hokaN7GYWV1Hw9ATayXJqe0z0uJJZlS8kNNFqNlOA2PK3yz9hiQNLtKzUyFf6idwIY+N4KXeMZkdBcXceUO3MV2nPd+WOb91HFps5S48NI11euDudiFKRraGWCW8yo1lRbCYqKAK/Gv+Ov+XXHN2as7WMumK2huwcrnhG4/nS3GDiQHHCw/iFlcxUaSbILWfTQjHUjeYrf6IdZ3SvMDHT5YCOE4aCSZFRr1DiicVyYkcuFh0LJivuBqjxDI1jMpqzXjFONdt5ZGO+p1ELTZlYZMUYtgw04C2bNPIz+S2v9p6/rX7Nvtwx2Y4mnqmzp5UzqzLQ12fC/Mbc37HOZ0QyfZ5wxgOBgnCfn9mVAyoI7/r7azXJ1dXV1Y+uYe7PLAVulx/4J89nDn3DuZvJ4giSOVOTMCgSWYRSNIpEW87UKTOXNRUzu3zgLr/xMXzHb+wvOfKBk66h1Khy6Sh74DOb/MJahGhaJtXxnBuaPGCMhlBoyMQYMCZhJXNSO/y8wcRXMArRiWOzY8gb7o8nXupbopoQ7TAsKAXBKFwBUmGQjhgNg7qhksjSwK48M9OjS+BZvWdb3njTt5QijLS4XGhKxJSEzxV1HJhkzdpP1N5Qh4TRI7NtiGJYyUgGtNUoyZgSaUtgUIaQG7JS1MZfJhroBZSmkCk2s0onXDdSTpbX1KHmhpg8aeUxAlt/JIlBouHVf+CpbRAJbEykK4WD3nHyK1ydGFeJqAJRjRxnw1S+YqGjkSOlOyJKs5nBnSaG0uIbh+QONXU0seBrTyMHclZMquNoK9YE9tUGvTQspcZNZ45OWNWvzALOnWnnkUFu0GPCxxVTsrT1gX7VYBRELazyAUtmcSvaybOWEbtMzOsCWUPJbOORdZiwJrLKI7O0nHPEaEWV9WWb3X6POM+52aELzKpClGIoO0iCKgUliWzg6CyPa8tP/Asfp098Lj8laUVSjjF3vOobzBQxzrNShUG3rOJCKUKfz9TsMW7g4GqGqmMsPVpHBhaWFAnBkYziLDUP6o31fMSVyP3xmY1L/G/qKx71jkW1FCW4UjGJRfSaMXWgCiKaWCxnNjRhQiehSRN725CzJeSaOE7kSbgcaLi6urq6gmuY+0thYaMU6/iZiR05JX6wG2YtiGQymlQEQZAwkbRj459JVrPoxMFs0ZJxy4QxD+zlA8l7zs2apiy80fOL+D1IA7FizJZgKl7VGhrN7eDY+UfqauQsNUrsjzdUZ3LRfGu/4dW9IyTDSAWNIYYaqSJNHuizh7gwqTWWwKR7iAXDTBU8bZhY6pZiFhzCbhxZVg17dU/SwozD54qNnNAkKhXIuXDMW7zRLNIQiuMoFm00XnnEaNLgSFLQeNZlQcXCUe9IYvDpciPWlUAF2CLotNClgS5NdPmEN5YbeeTNrflh+4F1mTmFNW11JDmFNYWbYcH6M5/1B740HXNrWMUzuMTsaz6rNc/ullzASuADn8hVwoswnXtUEbomsG/WSF8oB8vduOdO7Vlizfj2wF1XOLueTMVjf08m0XMiNZab9JloGxblUMXwVfTchMiKgb/r7vAqszjNJn1hi+eYL5GjWRS9wPPuhlkqxAoflxdqRkQZjESsSrTi+TDvmbTjJp/RKjMnRc2JXxwm/s32HzFmRxSDlomDrbkNE7fhhWAMJINRhSU5ZlfR+0gCSon0aSG1QiTyof7E7nDmxT5wiD1T01FlT5UTB99RqUwR6EPB2CPvwiek9XjlSGoFJVFyZpAG39ZI8LQyUOUZqyJVnjEmkovi2dzwrTwwSMMiNTErQDOoilgcE4WZzGJ+TlUlRmlBEo0cQQWOtuJgNjRyJiRBE9Fp4TRdZ7NeXV1d/TvXMPdnalFUwxEnB0K64cXd4RFKUWzjkTFHJlVfqiq0pYoj2UJRil4GgjhKyQx6w6pAyo5RN8RUsZueQCdaGSgm8X11z5vacqJB0HR54fvekcfCKgZqf2CX9xSraBlIVORYczaKWnkW3WAipAJtCazzCx5FU44scmZKPWBp88iNP9LGMyTLOgVGrTCyoCpPJ0fOUqNTzSIVWTS+GFwqbMYDlcqYGHmqbomqoslnvHYEEXJs2Lsdeg3On+kYKGWhZ2KID+iS6MzIrT+SVIWTGa9aTJlJGozMrDlQqYlOn/jX9j9kzj1LmIkbyLQ45ykB9puOzR7qtFwuCmjHkTv6+CdKskRtKEnT6YFOIq6MPLNjr+942dxjS+RGVXwTvrDKRzw1L8s32BT5sB95Z/e82cy567mfCraaOWgNWnGsWl7Dju38iF4yY+zZhjNVMEzrNUpNl5ua2tKZA7Nb43ygYsE3miIj1dRS64lkFMUoWk7U1UIdZ5ow8D3/EVEE5wMqFr7s3jEry1H3dCFxOxy40QeezHtu5Qu1TLh8RsoWiQGRxF6vsaeWxVS0+YBRC1U9scnPoD2phU3ec2zeM2M49YZRGu7CK25ecMrhQmJfr9nUe27Y85A+MRbHKzt0ihRp0EmoTcSUgqiC5IKnZl0OzLal5OpyceTHyzRFDFIKRQlNnmkIzKUgISMUbMkkZakoNHFioqfoilQCsRhmDHURSlYc11sOShHSdTbr1dXVFVzD3F8Q1RKzQ6zlsbnlQItTmXo6MTRrkjIIQinCJA5RkV16xJXCo31HVproO0w6sisDgR/4Q/mAlsRTc4PLgbYszKomaujSxFFVvKkdo5kworjhhFaaoIWH8EY7Dgwrx2fVM7qeiKHLEzkqJoHFacDTAHd8Zp2f+FP8JbE4Zio6P3HvX1DKQ2VwIdAXRUlCwiLpUv2QtMKXnvfhEyjFhicqnXBzJkeNNYHajnTqjI4eAyxSM8jPEDHEdsM34Q+MZUezeHx2LHbLAmgpiE9YB9Z7rJrZxAO78sZaXmnCwgu3FA0qKx7tDTt5oYsTj3qLzuCy4zfNPZUbQMHD/IhXjrvxRJ1mPrd3pATHao2dzsx1RYgVk2lxPqMJGALODfgsnBrLydzAAtm+8o+H3/FVHAnekOqFOg5UxvCkNwiasWrZsOfBP6MBaxSC41N64KiESTJr90YfjgytMLctM4G3ssZnzTnfoJKiXx4pBhoixng+jk+8qJ4/uQcwhlIUd2GPnk6ooLEGzAJtBeSZVzfRLSODrjlbx4wGK+ziGyNb6rAwtR2JFl0CXZho8nJZ6SsVRW55Mx0vZm/98FcAACAASURBVINloqFwE59ZnzO0jqAK1izUy4jJC8YO9KL5Vh44y5p81jRlopKFsWkoqmCyZ6krVmmgFKDAbFpOakUBTEys1Bld9hTlKBSUulwMESBicXm5zIzVPYqE+DMntWFSwsKG1k3Uq5HSFqxrCfka5q6urq7gGub+QpJCUTWfNzeEJrE3G5q0UBtBxUKbA4toqpzIRrASmXRLlw+89680KdIx4jKXsl4zsUsn+rQwiRDF8FzfEqOBklF55NXdELQmmw6XAt/1H2h9oZoEU2pa9YbzgcgBb06cpWVXXi7Nb8UxOMdX/AmD5xflNzzJPUFZ6uTJ6UwbR0ZncKWwUXtiUZzcilO5x9kJzcjH/D0mLHynf0olmhmIsaGJAwfds7iKs3TEpJlY8RCf6P2RN7OlDQF84lQblDKYeOa5vSVIoFQjqyXTuIlGBiR5TtwySsep7jEL9H7mlk+cG4eRjC8BEwq7+UDRgkmBpdSQBZoFRURnTxBD6xdO0rPSZ27yG63PvKielCuU9ziVKG2BakFJRDI4OTNyy2hbvGg6M6CaN3T/iI6GnVqYlUYF8LrmRd1h1YgzrzypFk1DoGJ7nqgFDr2waMOSM0E0T/o9uTLYKTJbh0n+f2fvvnYmy5I0Pb+21FaufxERKaqqq5rDITkAD3j/10CCBMhBdfeUyMzIiF+62HJJHngeZV9A5oE/F+CAbwfMDWvbso9IhZ0SWoRNELYms7In+qrms3vgRW84NzVt8Ixi+CnuMKkDV6AUPth/8lJletuhbWCgQiIkZ5lLy0Wv+ZDfSalg9cTdIKhmZpVPGDtTy8DudGFZw1ceeLMbzqVBVEOTB5LVWNuz1UeChoEVzg285R2b5ZFy0bw+PDIrR2gsXemhRLb5yH14pU0nntxHpmlFi8fmRKM973qHLoGgHVXxZDQzFZaISYnt8kqrZmZWNAR0MQgzMddMqWPIjpIC0ShCsRzNHZv6wtt0htuauZubmxvg1sz9J6YqlN2a8bJnKWsmGpJUhGzBFkbdISSCCG2ZWLRjyXcoJaxTZj0uaKPYTu9ErRCzYPTM0VSQhUUZdAmIKqzLK1k7WjzkmYWaTek5yImNr1lPhTpf6LvEIo5LrQnFsuCoY+Et7+nrGq8UX9RH/pj+HSUCCdal5y2vsEQkR6a6pk8di66pckTlwtmsQNWIrNjmE1Y0GYMPNWfTUfKZJs681A/klJn0GpMDUYPOiUM+su9fudByKXv63DIWRyczbXphJWcmU1FFMAE2xyOuirR1IGVFr1uKTYSieR8+cU6P7NwJqQrbMFLZgcnU3A8nvjjLe1ijtKXGs00n7vzIYXnnWW9QzOTcEhrNUlX41KJCxDLR5R5bPFs1sJYjpghV6kGvGaTgTcXDWTirFrENRzE4MoOsiRju5nf+2X7DZ/MdqiQG2+HSwinBXToy54ZLbjhqx0TFLGsOvLIpbwyuZY7XU9jD4HHzROcGpCT+n91/I2hDaITD+YmSYbYVKiaaamEbZrb5R17MI75VjK1mUgZXZiZjWc89l3pPBiZjuJSW0dW0mwFJM0oyvdxzH/6Oi0IVNOViyG7FJkxU+plJDI2aoAj/dN+SDNy5N2o5U8kFNSvybHnZbYjGMeiWuVgymS69sYoDtpnwpcKoGSqFTRNVyMx5SylQ54lEoSJTcSQVhZIE0nKut3RhxsUFxUIRGF1HXzoyiSSaWVek0lHLkaU02BLZKns90ru5ubm5uTVzv2ZtxWrvYFBUZWGbe2zMLFazKIfXii5GbMoghllZ0IWQa95UJhnHymf+uflEVy4UE/mYfyaWQFYKpVbEXKFV5BDORIEhrzmZNaoUtuWJh3TCyh2hKrxUjmP3Le/sSRqqOGGJRKWJWHQubMoZmyfW+UzRwlkOzFQoAlkJY7VhEUtdEu+zY65qonZM4qhLZJUntETa1IMO/FTdEXHMYgmhIYhhr97xpYGiUR7OsuVb+wOHfOQhvTBUG3bLmbmtuYSR3t1RqUAlF7QubMOJre3ZxiNP4RvOriPlhmne87e44YULr/WBe3nClEgQSyOOng1DJZi0IGZFlSeKTnwKP+FMYckw1ZrzWEPSLMaivCU5QeVIN3u25Yx3CpMWfNXxXhTROdr+wp3TSA742vBOS7vArDOzCCYPDOWRTZ54nF6p3UKSwpveQG44VzUntUGXgFUD9ZLY5QuVh0LLZbFkk6ilcBEBVSh2ZqPOzCtFURESvNoDYwd34YXBrlDKUSdD1hsUhgfzlYN6IpeFv/OvUIQUFVKE9TRgc2SRFrBI0VgRpGTu8wmk5p4X1mHkzex4qj7xRstsGzbHEbGaXHb8vDlQGmEyikUJOitKEbahsOgOqwLbcmbJhqIjTVoo4uj0V3b5hZ/SH3hXOxZbs5U1m3zhE3/jM/d4DF6v0emNohydD3hj0WUgiWO1DDx1B+LSEbOlShOVZAYxzMqhS2RShjZdOPgTm9cL9k8PqKJ+63Jxc3Nz87twa+Z+JY+R7otmdZrpxODzCa8Mi97i0cymw6iMz8KH5YTNirPaMJYOlSIOWOWRV9mwyy/MxXHJNRt1pmFizB2fyydcimQRVjLyKf/A4P8n7ssLd3niw/TKSde8Nlt+cI9MyjCoFlGBSdV06sJ7bpmyZTEVOddYNnzkiVN54It8YpSOSE1CMCaTdcdKTnRqQBFY5wkDhKxYyQVtErHUxOJIGJoYqXIgF4MLmYmWNnhW6dqcdXZioMFsBrIkKnVhpmVULY2ekRwIVrj3zwxqh8sJqYWBLWqBqVoRimKoLOdqz9fwyGQ65uTYlxd8VXHEEYDaLMRksSPUScgdjE3Fvnym9pH18grjBq886B5dF1ZBsWSoi2cMNdthINkVzivWeSLnC1NpUaqnSYGLbjibHb03VHKBBF/sI73qCLSsYo+LicUUZLKYxdNmofOBQsY3mY5Csi3JLnTHwnrILE3gqd5z0mv8fk27WB78Z1p5oZgDr3aNzYmSFJYLmwyTXfO+rvkwDxgKK/0GKvOJZ0ow9GXH4jvUNdOCLsEqLOioWDqFyIKqLCwJGxcW05GU5XP9iS/xW5ZOoX3AFsOfXs4MdcV/rB3eVGSuMWSH8oLPhiQaIytMPPLAM5e6RieDJVBz4sBPLNryb81fOMqaSMPH8kysDCoF6jhT6fm68DfNxLJiXQaOOEoqFBsprjBLjZEMOoJSOEZSqREiWRS6FOq88KH/zGby5GhIKf3G1eLm5ubm9+HWzP3KOE48YZiXim0c2EzvlCbx3/X/ymgqRq43MrXyZJtRMdOUEVQhWeFd1bT6glEeL5pXNmRj0SXSyohNC0YVmrwQjMH7lhf3QDGGY34kSM1oVwRXkZImKM2CxgOFCmMKq3JhzZlWFo7hjhgrolL8aP6FgYagHXOpUUbh0WzymVQULkXWamIQS841jZy5nwJ3/o2wghc5YEokac1oDJ7MWgfqaWCvz3zbHxF35GgPVObMpap4UX/hmT1P6gPFQEJzNh0u/7IHTGukZJR4BtcQsqZVns57tE8EU13TL1SmSpGgK1QQGjJPds9kV8xhwqTrgNTFdYgzvPCBXCyH/IY219lBLZZdXygMDMqy4sykWuayIaXD9XVv8rwphapGVuM7X7ffM0R4dwfsnDBGeCg/0sXExWxpzEJKDU4vbP1ICI62/MCcOuKSmRtFM2U+9a9sSs/nzYGc4aXrcFOkBGGoNySt8TFSq4VT4/jeDPwf5/+L/3PzvxNDg5WFJDMBMNnilWXlF1SJTGXD6ByoROMTOSSqJZC1gc2Ec5r7eaQpkdVFo1WmCjNvrsFog7FbjM70psbXiaA0jckUHRldRVM8IRyYlMELzKnmPe0JylI1gbZE7n2hKgsflx95tt9fs4VlRS87nuWBGUvMNUE53vSeVbkQjaaSkSAKiuLZPrINnq6v6K2iOIXExEV1xFIRjEEHTxc9W3WmSol3MRzZsOiKLo80KmJs5JjzLc7r5ubm5he3Zu5XSlXxHiPPq5Zoa95XKz6UJ4pAm0de2TBKzUY8izicAkkCuVBp0Ax4FP8y/Y19OqIr6NkRjGIoK7I+XBejmh0P+UwdX5EabA5cZMuYLcpcl6W+mT1ZMuu0ULIiKstKBmwJNHm+XmxQK7yyoOAoW7x21z/WX5rOUgRD4qG88DH8k9omDvmNiGZgTSueU33HYf7CsqqIRqGZUCIcwok9PUvdcedfWdsZxcxbgqVYfuT762UQCVR5wWNo0jUMXpNwJSA58BCfqPWAU4mJBlcKRV9n1RTQqJHFWCq/YAmY4jk7x0VvQAQxFbv8hBTNJa9JFC6sQQqVjdSDcF+OfKWjJbKZR+6sRzPy1+YvlJLIamEKlv3Y4+sKfa5R6o7utNDXLbEofnbf8jG+MPg9UgJLrlmKxsuWtRiKrjksb9Q6YEPirBsyislaYu9ACUFXlAJ9WZFTzxhbMookmakzNLlQlsQqnnCusE9H3nONKppVHPi66ch5BGVBntHVwGg6Jqk45gdS3qN9odZvzCvhtdpQR0UVCy4nvg9HSnemiZmzdTzxBxZd8WrvWTEQlWBYoBoR9c7LVuN9Q6kmoqyJUnEuFopl0QqvPTORZ3PAFI/XFRnBFo9hIkkDKGKpSFRUMWBzpJGJbZqoCbzpHft8oWdNzIHPXcXZtdfoN5mQkjjEI+9yh0bR5YnH5Z0uQ41DV7BY4ZDP6JIJtibrgdrWv3W5uLm5uflduDVzv+Iay1e38NVvyKXQ65rvk8fIwqIsLQsVC6loUJpVPnFSW+qSmfT1ksBrucOrjj7s0D4QnGNUhowwUxHFMLPCkTiYM6ZkklYIC1ZFzrLCS6Hmwid/YSpbHvzI4BzGjZgyUMuECZG9/cLdL+kHr2pPFqGRhQlhU86YkriLb+z8kbtyZneaeV2vURreSoNVikkaFrXGpUCnB3blnaU4VnrCyYkRy5O0/GQ+UCRy1DsG3dCriiIGJzONzLiyYAhI9EjRoECR6cqZB//OIb3zUu8xJWPLwrjscaUw5hVZMtF6Qq1YmZ5JGRrdU+eZmY7aT2xYeMw/8Vf5nwlAT0NQkFvLD92GhGKcrhm5KWu8brnolqVUHE1NrCreN8DieCgj1dCgXEYvlp0eKSQaZkLueG0cYIilQUXPaigsonh2a0xOjFtHCQXBILFwdh3jUvMP9RFlIRfNyYy8moYpG3yuWOWej3zhIC9UIoS45qGc+G6ZGCvDqnzlLW0IxqFyINnCsez4B3+hNzVD7tgrz665cFQrRqMYU81oLN/xysVYtAosrsapJxbzwJAqKIZZdRz8iY/2iQ/zZ16bNSd9YFGWouV6UQbQOeOlYdaJqMBQiAizsrismcRRZU/JBjMlclNRlGNfegodVfLU2tPHPT8YwyafOMv+emKrGpxcMBKpJBFYMdFwyXvWvqcuE76qOJk1i3XspoHP9oGkJnq1wopHK9gMZ3a5u60lubm5ufnFrZn7lRwWdH7CVmuCJCZ9xz/iH/G5xZYRrfM1BYEEtJgsmAyP5xd+2n/DXBxZWXISnsuWx/zGXXzFWMur/sAijpINXb5w4IJkRZVn9rzjpCWp6w4vykKQjtk6YjC0ydOe3yhtQopnySveTIPJC9oGDvIzSRKXskUoJBSmJKx4aj2SKstzfOQomhgjugSOds3X+oBNBpvG63Z9PBnFIR1pfc9b+wAx8VU/YoohmILmmvl6/e4jGUUlA60s9GpFmxbS7JAqUTFTnMaaSMyKtvQsUpFsYjKO6D2VPXF/+cJr2zKoPRMtuShcXghSX2PPqgub0DM7R0dPXXq+qg+8tAdsihSp2U89L+sVdozs5oWxSTRpguKYXMMqv6F0ZKr2+LDGNif+t+Gf/LDteJ1ajtWamGGx1XXFjAnIAj/X98AGyTP/1f/fbMvC53LgKW05Nx3rcqGRETGZ7TyhJkf2niXsUMmDgsVajEp81TuSjnxanmmIIMLgNNn16Lonm+tr6ZAbXtQebSDmQh1Ger1iqgUvG0J0JDODKoSieDVbquLZ8kYJge/ST3yzPJGU41k9orC8mTs6f+GiDoRU4Y2jZaSXNbksWJmp4sJYClVINOKpmZi0ZtY1UTxeVXzwn1mXwKN/g6GQNh1OaR7STHCRx/hKbytScVz8nlBZsliMRFaqZ116PvPILAVDpKYnOEefNyQntPlCxkNMxGRpmLiIxoVINQVUETar+9+6VNzc3Nz8btyauV/JCjZMdCZwdAfa0tOqHo9DsJgUyBKxOFJJ9NryYToiyWHjgnGahYpnuWOtPLX6zGg13y6vpKrCSKQv15mykOAnt2XCEYygsseQoRQu9oGYFYOs2XpPCYFNOXFXvvLuGi5lw4u+o9EDH+UnUInvyz94kkcueU3WsJM3TIq4HPGhIxjDUK946R6ZxAGFunj2fiRZg0oLh/TGkDd0/cRcd4w4vOm4qBZDZFE1LSMBxVk5lK6vi3hp2aU3NgW6cuai70ilovKevtrxsiw4O9HGgR/0H6nVTLVMjGpNUT1/X33HLAqzwGgcm3ziL+Wv/KT/wCpNqOKIomjUQC1nFlUTi2LBsPU9vVsRtKWgSCshOs+l3rMEyyANOUX6ukYElI7UpsfrxJIyVRk5pBOb5ZmH9MrFPPBUf+DkOpZcEYqQbcQysxhLij1jU+GDIknCyUQ3zJxdS5HMpWtYmUKykeCEEQ0ZJt0ympa5rdEovivPyCx86XYc1MQ/5I8EuS6lXrTiyT2QvOLr+iN1XtAE6rEnWEulZoIWpuJQEpisMEjL3+UbtumdP+e/UV3ge/PEP7o/U1ThXd9hy8JZ7VjNZ+ZgGPSWAnRxYZU9ozRkEUxQdNHTmQFTNSzM1EyQLvxB/UwOmk563nkgFEsyCmeO1DlSfORo71hlQzCGwjW1QxQ85ie0WnBsCMXgxSA8UozBJ8MijqAFL47oBs6mI5hEbze88AnfnFipM/X68BtXipubm5vfj1sz9yu1a2h2hmVuyOIoVjPFjllV2JJYl56IYtYBkRkSmHpkQBFVgyqWTRq486/XQf/kWXJFVoa2jDThgpUD9/kdJ56XfE+wK3wWqpJ4zD9TsCTfUJRlRPNWrUi7zJFvGXXmXd1zji2zNFgmYnHcp59Zc8HpiR/lj+zKiaW0dHmilQUxliNr3uyBoTREZYCELQUsCInkHVUJ6DCinCZS0YbEgkFbRV0yUmba8saoDtQlktC0ZcThOcsdWgpKb1kvPeJHBlMT3ZqzBCYKu3zhMx/QgHGBtR846J+5mJrFHujyGT2vMB6ezfcEt+JrPGBMobgDO/2KQuHKQpaad1Xz7j7yIb2g1cieN362D7yK5bN6IFvFYhzr6UgumTotBO1o1cBFbRBX865W3Pufea/u0XMm6pqNP2F9pjcDF90x62tM2Dq/MTlLRJN05jD1HMzAXX1kG8/sjjNfRVjZ8ZqkUI9obRi15p/qzwCc2fBvtuU9fcBkyxGLiomLrQCFySBJMZgVWVmKQD3P6NoTXEUUOPgzKgYuquO12THrBl0iataM6cCP4V/pVMAlQ1UCScL1s7SCLFzsjhQNQ9pQp5mjdtQMmDTzOF/IaY2hoJXG6ECrJsDT5QmdZ8gNTRn5qTFUzLSLoap6lAjWDmj9gF0mjm5PVSKjaWjTBSFRgkYryNpiiBSd0TGgtCEKuJzQaSYYTaMujFJRJNMbB90a3zT4y0iMEWNuJezm5ubmVgl/JYfMaXkgEknKEDAs0tJmT50iyQpNORHVA0jG4bnXXzhW31FJpEoLXe75WJ54NVue9B6fErvxiU53VMojqmddJk52jTeWRLnmrIZMDB0fpnfG9o7FRLIYRlXjrQEyLk+QFd602DmD0ehSqPTCVt4ZpEXpwkyDQfg4faXOGYUj5ZG3ek8WRRBDUBW2ACzo5HkzH9A64lzhm+lv171taSIWS7MshKoCMpNsiaJwZeZsd8ypw5TMNn1mzUgqFcFYDukN0QsmRyyZFx4J1IyypU0zUjJVnnlTa5IW6rxgSsF5TVQtJi+s84leb0hRUZnANgwYnZilZl1G7pcLvqz5l+EFcYlaR7QpeBFeqgMuTdeIKBdAC9v0AzYm3DTzdfWA12ue1CNKRSiCaE0TB6IW3qsD57LhYlrqtNDQkFWiNhN16hG9ZdhaBmCYFNWsMKlQ2Z5kAzYHdv6JVmveZcMrFzw1GY2jR6lIzIY4O87pgRITH9M7S6pYWsMkHaLBMZOqa/NTMbBaIqtlZGuPuBx4knu8WJJqmFOL9YbRL7ysLKvyRm4CSETIZNFY1dOWiSA1J1XzuV5TlKVKG8w8oTtDEzJF4G4ZKcvA2lyYtb4+pyTomHgy12zhhpnYFBoVEUkcwgvvy5rB7kAZSs50MfBH/5m9PfJVvuWs90BClYLOnkWtkJIoKhC43lauas+6nEiqQlEQUVQyY5pA7t9JKd2auZubmxtuzdx/Mo0jbVpRL69cOktdAk6dcTljcKQS+cQr38d/8m7uyFl41Q9McQVFo/PMoFr+h/qOIDV1NWLVxCQrbJy49y+Ig8peCMXQypl/U/8L5ESWTI7CoBsep3fe3QpjPFYrgir4UvEuB1ye0anggC4tfBN/5r+Yv5J1JmnHKx84YnB54Zjvcc7jqcj6OkfXZk8dPGISu/BONJYf+DOZQhtHmmWgNSMbf2aeKxgCyUZeLDgWer1GletlDp0TGz+QtWKIW2a94TF+5i49cZdPnPKGyTckqXkMR5SHY1cwXpGtw+eKadFUKw9ZmKS9XhCRDToZgp9p9EivHcEYptixje9s85ml7Kl8ZtTC6KDzjn2ZWNLCD24PSUjFoVPBsnA39OzUhJ4vaAFTJibVIAS8smzjmWgKX/UnJPlfTsCe0BwwKSOm8ObvaaJnsCuM98xuhfWa5+Yb/ux/xo4LRfekMCHWs7dfqcRiUmQqHTOOFAx7P1LlSEwJpgxLxVbPGNeydBWRjkE7PC07/8I2nGmmgVBX1ySS1LD37yy6RSWNi4HZWIJ3GEkcTcspdgQT2UwXanN9Bo/5le/CTyy64e/ujmiEogy5KILS5KZCi5BzwpTClBWmVFTjSGuuN5//3WxInWWVzlxMh4oJlQObeOTiVvS5Zc2ZWBp0ycRfFlg3TLzyiWf9QMg1WmfaONDJkZaFLDDzESmwK2ekFKwsbPNA1D0mCvv8wjY809YGrfVvXS5ubm5ufhduzdyvaCUcPHwcJs61J2RN1tddb0o8OlS88R1b/8q+PRGLo4iDMKIRvIWkEloSoRgWbUEyL+ZAUy24piblwCQtS2xpSs+9f0G7HaqAV2t6bVgthawKlkgmEaViVc60+ci6zJyTBmWgKCq9oLOQDPS55lw6htLyLN+w7i50jMy5IWuoQqDJXwm5haypgVEEpwdGWXFhha0zp2nDV/lEbxp8t2U/jVRLJBqFJYAktNKscqAoQZFp1EgsjiW09Ghmu6ZhQMXCOl7QUaNT4bkMWEmcSsPZrOmdQQrU2QMgbKiisATN+6ZlpS2jbfgm/YNZFIcQCX7Np/SVUXWs1ZmzuWcOATd/hLxHxNC4jGIGOXOf36iIsGRsWCjBohT0ZUeVR5JoYqoYZMOkLbtwYVE1r/LAm90TXUVLz/DL5QidA1XJ6JwY1IYzNfsyU1mPqRaEyEVt+Dl9y2g7zDJiHeynZ6oS+X54QsWKZ33PP8snjq5mbrbUukFcpBLFKkUWZu6WC52MYCOD2tLMI4PqCNLgJNBKz+BWdPlC1VzQi6JvFEfT8mL+jC6Rgz8hWkE2XGTHH6a/86L2bGkYXUOSTJbraplVnnjTe0KBZduy6nuyW1HpAS+WuswEpdlyZNQNShZO8om5NGSBTXZUeUFQqKgoKtOmM5O1BG24L2+oZHiWLUoKCx1RGYI4vDLoUuhZsZnf8JXDK01C48rAx/ELesnsPny6ncrd3Nzc/OJWDX+lXXXUWpC5YFLitd2wkYjxibpMqOKJUmjMiZAEj2PRDY0eGdUGkwOBmiKF+MtMW82EGMHgeVEPVBIwApvlxItb07PGF02hQhg4uwc+G0fWke3ywrq8oNSGhgFRii5eOMkGdEGVwM/hA29mi6gZrxxJHJZA0gpy4ciBqPM1Y9Y62jJzlwY2y8DzqqaohBfLXCwlFd7ymlH/maQ3EA0LLZsyEVWFVQOUCSmOjkjJEAsoFO9yR53G66vG5HlrDoTsuJgdKZywZSE1kLRwLqvr8HuJeFbkXFDqjMkJp6HkwqlZkfCcZMugHa16QEpC68y+XFAYQim82x0+ttgmUccFY2caah76E7MIm3xhM0eoM0oM5/rAqTmQTcLKQBHNKC3BOGZd4XGcqw2P01d2ckSFzHt1oBQY1ZouvLFZhCCW0bUsrAnW0DdP2O6FL/Y7Eomn/MifJs2c1uz8hZ1dOOSeXBSrEkhzi60stU5s6xNL17DLFyKWCw0qCzZnLtUaifk6v6gUg/tAUYondWIlE7v4TjEQQsuP7Xd0drlmnwbBpxq7JN5xrBaPxIpFHG/qE+1i2IbMRXmSykTAloiWkTUWEzJBtbgIWRU0AUxNikKxhktpKGSWYskCKV1Xl5RO44vB5AwRiobBNJzkOjNoSZgESVtiiSCG+/yGL45AhUszFMMmj7/s63NEAYrli/yJqv4Hi3O/ZZm4ubm5+V25NXO/4rPwd/uAuBc2aaCPKzbqwqxq5mKZzQqtAp/5BisTz+YTkjOjumZlKlFM1NxNb3w3vlDpI8kZemfwqmJW1TVHMwjaGoiRnfqC1WsWGozLdCExZksqMNsVSYSL7Qg4NqWnSQMbzmRl8Vnx/7b/lYJGbOZD+JELLbG0+GJ40o+4lAio6x+sgnU4kkvk5/pAVomohTr2iO6YVcORPWIU3bzw4E80XGhcj0Jh0sjF1kCmxjOyRhDaMFGXkSbOZGUJ0hBKw6lyXGLH1GnW/p1oLU0+Ew1oLWgi9Us+RwAAIABJREFUnbxRZkOrIkkbVurIsWrpUcyuI2uFzoEjewwDXn3ia/uImhp83pLQZBUwMhNMZHb2Gn9VfsaFM2ShMoGj7CA6TJ3YlROewkVavLLUMaFIZLHcxXcG3fHN8JWjeuBiHdotJKlIWTHrmoN+QYfCftb4qkZU4cd1x0VvYQ4cwpFz3uOXDadmjWRHjImmmpHF8aVour5Dz1uqbwPeWVALfRGSEtbLKy53zCXhzIgyCV9qTDJEsdgSiDhMPnFX3jjaDceqwYrwyAlK4l3uCFIjNtJNZ1Zp5N1tsBaOaU+rFwLgYqCvawpAiTxOr7TlZ171R05obD2jVWIXj3xRln06Y+MX1vYEknjRj3ipEKNYVI2WQsgar4WqBESEi1oTtKPJMzYFVnFA5ZEoloBB5cCgdgyqoy8dUoTrGrmE0oWsHOieSdfMoSX+cop7c3Nzc3Nr5v6TOSQaqzklx9kYEtDnFVVc0EukKI1oj7cOUzw6J77LP3MuHaFU1GVBiuYwe+yieVvfYWVkyB292pNQ2Jx5XJ7J2ZONMLeWAjTMSFTMIiRTKEWRRKEkoNMvw+Il4mOHIeCBo+wZZIsjMmPYyiubdOKkDFV2+OyockQJeCNko3jR98RyxusGx/WU70MZqPPIIB2a61C6rxSVvHOXj/yl/Ds/8q+81yvEBIKsSKUQMnwaf6LUCqN7iq7p/IWhrFnFiaNrCMYyKUtRkWqJDLahp0HrBVUJBbmuj9WeKJZDfuFivmcvLww0xGTp8oVoKiyQs8XmiGPAophLRSgJZzzFJryu6PSZ2WRSZZniCu9rprKjS5ElJ6xO2DjRqYBNPSe9QUVYxQvaRlZygarwcfwbzTLz35s/MRmNLZHH+cgfpn9AExi7f6XXFhM9Iw21qTiv9qgQaN5OyCVTiWMXBgZjsUpjiuDZol3DQ3jnm+VHohfGcOb/s/+NrxwIZYsOGapC0IasrukKasmklcJLxVpbSvZ401KXhXXxFNGc2NLKkXUasSTqMHOXLxjJSIpYyUx1R68VjfcEFmLmejtZR5JuGIzhLj3xOD5TDUKywlBVVCkRQktWjuYE+l5jS8ZKoM4BmzLnWjO7hoi+/q7RkxB0jqhcSEaxVApNZJtOiA7c88RcajbpyMAKATwONwcqO4DzVHnGqBm3PMP7z79pnbi5ubn5Pbk1c79SW42ZF7pUkf0ZJzPKeIrULM2KRapf5ucyVRopxTKllqAMixLe1CdUcsza87SvCVVEUeNLRaCBKJio0ecTx/WOwQoeSxBYy4TRkYfwFYpDy0Qftzw3B9o8E1HYPHI2FS/6E4t2XKRBRJhx5KzwxbHPPa9SEYvhovbocmFU5pfopIwlYfPCoNeYaMha4ZVj1g0xCwsO0bAqA+s88pCPfFInSn4hkmmjcDYtpigWMTy3n3DZU6marbzxXfwf/MP9F+ylMCdLKS9c6j2zWxED7JaJtfGMrtCWiURBqYU5OZbU8JkHbMgUnVAyYkvi4/zEaFqiTtf0CVZEGmJnMGlB60izvLN2b8SoWKg4mQqxCdGOVAxxcqzyF5oktPl0jQdzlhe3IcWa2k98DE9YPYNVRCOc63tc9DRe0/qB2VpCaRnLFh1nHocXTBVRcs0YrVMkhRGdIx/T31nut4ziWLaeaoy0dmIxDU1ZkMMZld7YyJGUNV/shme75dUdyK7CuojBUxehCzP344UXGmRKXDqNLolX80AumUGtqcNEUhqthC5EWFasWLDulaqaMCVglz3eCcl5hITIQp0Tddng9XUnXLaJXja4AJYZEcWmj+Ss2frEHDvKasA0gUG66+Lf5Nn5I/f+yH/YjwySyAJZhJU+UqKiKI3nerqZSqHOgTbMKDw5WQazYswrRtWggYpIsQWnZ6LWhFJTOFObGbm8/dal4ubm5uZ349bM/YrRBW0nSp5QKpCoqOk5sqeQ6FIgAhIL+3PmkL+ydBGpCnUKFBq2y+WXGTVwaebNHHAqUKeFrBT3y4WtTPT9nlHXRFMYVU0VA0UptJ1xfmHRNQ/hjIuJOCfeuzWSNUezZ1HVtTGTSJUCvWlZ5YWaRBs8h/zOKQuznmnT+EtKwYBPDiuFpszEqaHVI7OqCaoBr/gmfCaaiimsaO2EahZiSAzZ0rxdmNs/csYxyI4uT1Qxg/bcq2cajoyy5tk90s4L3VQxTYnPhw+c6TBG2LQDZY78y+uJ/7Atyi1EFIsRerVDvKIvHX/uX8mSoAo8xp9Y2YniM89qj9LXV7xRL1xCh9c1bTlRlKMf73g1DwgKsscx4LFErYkVDNYSXMOoLdU8o21AqYwxI8k5Xsue3CgMC2Pd0pREWy0YIBVNWTT17Fl0RbLCa7OlTSPWz6RScXR7XtwH0qx4a7/nQ3gms2LICzuZ2Mwjr7blVfZEnThjuYs1Kgd+zH9gKBsmWlayUKmJA0d0yqgipLjCoKiLZyqWiRYvHQ/lKwVoc08pisN4otORz3YNCsZqx0W36LwgamAbFuo8ITYwSk0jI6th4NzWjLHlaA9cZE1fbfgmPdFJZpMyPq2JCqJoQuk46448K/b6mQw0eeJYrZHr3msMIOI5lDdm1eEBSmYqLb1ZY33gGLYEa5hszYUNQqRNI4s0eKORYgiyJglkKQQceQzo7f43rBI3Nzc3vy+3Zu5XQg7otWClsPYDR1dTCnTyQpAGJKNEaPBcmg4t0OKZEc62pZeOKJGOI4sWLnZNiIXH+IKPFqxmE3qqMoG1+FIzKkMSQdAkEb7yLZUJOBX4NvxAEc/f2u+ZVcOsV1SMBDQZTRFFl9/RKWGVx4uhthN1mZnVjMsRRWCXJ/4Q/0oSR4g1I3ekPBAlElEkVgSxaJ1RMSM2kgVOcYuJhso3PK8+4YOCquBSxFOx9QtLI0xs6EtDR08oFqs8GYuThE0JZct1obAUgvG87xQVkWbxfFQvxLni780GN1gWNphe8f+zd+exlmT3Yd+/v3NO7Xd7W79eZoYzpLiIWiKTDMXAgWzYjkQJAZgACswEiIREgYBEyvJHgEgwECgCAkQBYiOBlQhOpFiSY1OKbEP8I4IsW04CwxJFUpFEDtdZODM9Pd1vvWutZ8kf747Umo0zVPe8bvF8gMKrW3Wqzu+eqlv396pO3VpPhLTfcJQrenfEfvYij/RL9iVjPlzhmeQdBAVOFINkOG85T8eEJkOFjDazOJPQ6oJNmqMQFvpxct0x6hvIS6bmlN1wzlkyZVAppQiBQOEtjQdvEuamxDeKynWAoRtm3KpKJvYO6dAzCSty12KHHcRa8tQxXQmb1DOkCq8cqXMYq1lxhdoZXiwn1DqhRVH4wO5mTmfgmrmDE5gMC/JB2LWntKbkXKYsJhMaX+GUxRJI+8CQFfS+ovQDubf0Q8LcTOjdhiS0lMPAUZHilKFTY8rMMulqSrchpA0Yx5qSpZkSQsBLzlyNCR4QYdHu0lcWPSxYpYqh6GmSnsK3pDSMxeB1BhjypCY44dpwGy/XEPFk1IBnkYwYXIINCQiAwuuE86Ri8CkLGVOFDU5lJNIziKXwGxqT0yvDwIgqbEj8QB3GrPPJZR4moiiKHigxmXsF4zWFE4INhCHFesWgDIVuOHBnnISrBJ9hjCO3DSUrNnpELxUSNGO7xEoJAa74l7ADNJKB9vQmZ+JPORpPGHdr9oYjCltx2xX0BFJ6Et9e/IaazFgx5vdHB/jQU5sCURaHQlnHjjvGSUZlV2RsOEoyBpWwVCOm3SlX+znP6G+hGyokD2R9zQ41Y/sSz7j3YVRg7FvqVOglo1HltgN8YNfOmQ3nJEpRMCBBMKbBqZouG7NWJXgY+SUjabjSb6h8TZfAepixTndxTjN2F4+dmvUOLx1DJiR05EmDCT037IbSNiSmpvOOaqjZjCYou+FUFGlbUaeGuS7pjGPuU67nL4LWlH7Nvl1ydViwYoqRNaN6g5OEM0ZUTjNqW3LdszAgGqZuwTP5dTyGLsvY6+4gAfbtEdpZQl8wDXNOkz2MV2hXkEmHEUeaLqi6AWyP1gOn2ZQ+CCM5YVCaeXrIIELtSlDCWbhIsKq2wxpPuh5YMsZ1BmegNQcstaEdgbUb1HhEkl7chVqFJXlwjFRLnxlwnnHS0PiEzHWc+QkOzaastj+4axif94gINldIGBgSzbX2Dq0rqP0eVgU6yajkGKc9Nrm4O9snjsGOGCTDdwU9JZnAII4ER58bTHCclwV9afFKcEYx9Am1r9BYbBLoxfB89ji66xnYpfcVE06Z6CUoj5GWczWjk4KEgemwpnQbrORYrwhJoA8JCR1Z6OlFsVElVgKDZPRoCgzGWbwZsThaxCdARFEUbcUj4SsYDKO+RKWBs7CH1RcPI6/dhJlbMVY1ZlgzpJqR39AXwloyMj8QXMpgPINYegJ9GCGi6MUQEPLQsetrTsMMqzUEzdSdQlcwUyc0Giq3ZK32WEkK3uNMggoK8ZAGSx42TJoVPghDAof6HO9g41fkWHqV4BJYMGIRSoY8YcSKTV5x4qfMwx6n7FP4npvVlCapsJJcPIHBdmhlcVrRUqC942p7wrFc50Tt0uuUrFsyzwvAI8oy5J5cLQiDIvUOrwUTPIkXpnJKrhpkMzAOObqpydOeK3JMLWNOkxnHehevDhn1A3urOdVkINWB9biiU+CagtAGOjNik5bk/uInN66oOxz6O/hg2LFrVDGnyGtuq0cY2VNSN2O8PuEk32edGpZSMiSKylpmXWCeKnaHgXHXUSYDXRdAQatLpp2w7y15v0KrAXTgTj4icx0+VNyeVgzaowEJYENK4gITv8IxYtbdJu17CmXZ0ysSm9OEKY4Zy3SDNUIyWBJ9caMLWtNh6MQwEUunK4y3WDfhTE0IGfSJkDiHpoPQU/qOjc4orCfDceDOaXPDIrtCQHA+oe0se8OcG3XFXAzzSl1c3vSQJ0umtkYFR0bLlXZO26VIMpDQc5anaD9QmA3Tbkk7yukzw1qmeDTeaK7XDVZpLAlKHCaAEUevLn7/zktGOkCme1bBMSQZla9R4plwxjW5SRYsSk9pfILm4vFwhEDpB8CxSKb0pDhSumBZhykhCLrv4xMgoiiKti71SCgiHwX+R0AD/1sI4b97xfwM+CXgg8Ap8NdDCF/bzvtJ4EcAB/xnIYTfvCcxaUG3A7PBY5VwvDHMy/3tTzDsoX1CbjuK0JLoHhcKMqu41t+hNkuWFFhpMENHqnrS3nNajXEo1nrGxo9JLIhP2elatBoYLRuytGfm7qBVy9L3qLRkLmPmegdEKE3PfjhiJGsybcFqjsMVzmUXgidzFz8DMaJmcBUbxlhfIDoQ8BAEKyXeeBbJBNWeY8JAbltmSrit9xAveIRZt2a3XVG0mpkaKJMzZskRp8M+SyWceHAJF53ZVcU1ewpBeOTsDqgRy6TC+ZLUDewPLY/YlwhDTTAta5szjDVD6Ml7wQZNGzI6GUilo1ANuYeagiqcs1YJ036FI6VyG0woCS5jx56QNDkmv0WuN6T9gvNul0wdkRLYuOvcygPL1KOk54nV0+y5hjoZk/YFZVtRbSo8KRvVMQ8VB6FjNd4hZIEhHGJCxkF3xGw4JetXzIaBNLQ8PXoH2kGX5CS140Z7yu3iOqkXxmbJgZ9T+oFeEnZCjeGMhfZMuppicorTKdYp+jbhhaGgDxlK97SqoHIddQh4n9BJReIVu/6MRlmuDicUcsbCXqcVxYv+KkZbMj+QuoxRu+QkcxwnU3Ld4tzFo+GknuOzHQp/zFAaKt8w+PTiMWxOcbVbsurHlE7Iw4Y01AgKg6VOCjrJmLg106HnhaRAXI/Uhr1uiU8UTatozBSjhKXs0KiUkatRSnOtP6XMNzibcWxqtPcoH8g7TxE0FY4NsOcWlDQEe3EXq9UttaqobI2XhF57JCiyvkcE8tEsPgEiiqJo69KSORHRwM8C/wZwE/i0iHwyhPCFu4r9CHAeQvgWEfk48DPAXxeR9wMfB74NuA78UxF5TwjB/ZnjMgpdrtl1z7NkD81jrNodKr9G3A5X6zOMVUy1x2WOsu5ZFJ5lm3HAkmtyxCYt6IYCNhpSTWUTRnKO9mfsHzfsdksWeYmiprOKw/OAPewompZ8es7Y9xzKGc/xHZyTkzCQ6lOuqC8ypAaP4Ti9wsytyMOKWd3RSMKQWMq0BqsIDsa2w+olI71glrQkOpAE2G0bZsMKJwNzvYdSLYd+4JHNLVySMFtYDlhxZRXYtXCepKh8RpFC1jbcMg0kgTSrMUXP1K7QLmG0cby7/xrLMqe1e+yvQBvFKAloP2U+T5mMe0LXMtUOyaqL36TTU9KhZ9q07MvznOcFu1aT94pJrxj7gaYp0cZQDQeUeJJ6nzSxjKyjRDHkBTPtsSpDB0MZciahw3crjkzF2LY8sloxOQ6kWUIWao4qxyYI52aKlgxvA4kxVMOAV2PKEBitSvYcHFqHSXpColjYNRpL3STsrwZCPeGKrdkNipk6oTXXsMOGdVKQbXI8lqL3LCtLVuRUTlEOtxhcwpWznpPZNdLW81w/RUzKjmuZ2RrfGVZFhU0nJHLOrl1wzZ/grGWlYWYbOpMybgamyyuMilNqdRtbeWbNkqwtyReG9w5L8mLgnIplDyZzzNYriiBoG5jON5zJCuOFkAaWowxrO8qhpe/mVP0ZO8mcjR6zsvuU3YDdFOjOoArLoTuiN2OC5Ex8QpfUpN5S9o7HVglku7jSQnietSoY21Om7ZpCOdKhIU9OWG12WGeCHRImtkWygamsmI8mFEFYpzm7i47xasN0t+TRb/2OeFYuiqJo6zKPhh8GngohPAMgIp8APgbcncx9DPip7fivAX9bRGQ7/RMhhA54VkSe2q7vd+5FYKb07KxeRNaGdjjm2Aw4nSMmZdauGQ8De4NjubfLIEI+9Bx2KQehwLqBJlnS94qxDzRuxMpfXGKadDBVE2bZGDe6wSln3G4V9WjDaJ6Sr49Jmz2qUcFuNeU7PJxOBux0D20OSY9OuW0stWso+zmanHVdMM6uMnOa0eYOVixLs8+Z7JKrjke6Iw4md9itPK6YYJc9VbIi8ymymrCfJUzUQONa8tbQupJ3ScYsXCHPWrQoMmrqoUIJZGVBUml8NUbPBzKEA3tAqjPK7ICmyqgmhrlNGe+U7OoRu/XzhCQwHdUMu48h7S2MCBOTcVTsY23JLHc8Nn0PZfntzJsnua0EVeWclk/wuHdwNGenm7OnEg7KGcdZwjr0SDtCQkoIHTLZ5Vp1QJV3DOcbfndwEGBSON5hFU+YRzFhF8mmBBQucxRuSeIG9uoFelwyd55AwjIRZld3eay9zqOLA7AN7SiQhJwh0QQdKI3mvSNDr1KmV/eptCKfH+FVytkLT4PWuLFGm4yRqqgTgy/vAD2m2aWxB9ywgfrqPvM25UadoNY9vnNURnFQrglhw4tHDS49JUtW7IwU2gSsMXxHB7eCEJoppXJc7Uoe6z0z29DKjCwbM5pV3LA137ajWIbAaUhYlgaXFWgZ6JcJyUhhOSPVFj0r2JXHyTcnrJyjoueRxvNYqen7hEfLDskr2l7YTfawZmAWCr47qXhe7/FSW7DCQt/wLpfzruGdMJwzDoobaslJmlI1ljWP4tsFqsi4EoT35RnrWph2DVLXtNpjnacOt7ldlKzTikZSrlUpf+kv/5u847H33YuPehRF0Z8Ll5nM3QBeuOv1TeC7X69MCMGKyALY207/3Vcse+O1KhGRHwV+FOCxxx57U4Ht3ngPYRQYNy9w0KdMyysk4wnvUh1PTD/A1UcOuHHjUVqjWHdLRlnF7niffj1nfnIbcR5dJKgkR0uKLws6leO6NWndkJmKYlyiMs2isZwuWmxzSmn/EkUWSKoRhS7IMPhySp8XqCCw+VdYbW5j84JEKdxqg01nJOWUCkuuDO1gafuWDYpmsCAtVSVMqwKtM+quYb1a0XYVSTojrQylgKvXrMWTpTkjKyQWSFOcD6yXCwbrMIVhVCaYPMWnGbZ3hL5FhYHEg0kK+sTQB4cjoMVQSYZbL2g2c6q9fbLZPqv5KXRLTD5h4zRtt2FajsiyCusDiXwPjV2w8poy3yUNlmF+QtZ5iipHZwWPOGGwFjsM+LZDEkO2MybNChg6bDPnHY3jpOvJc8tuUZHqgtBp2tYSUsV35gV1t4ZmSZFX6DRnsd5wUi+hLNmb7rOnDWnXgRFCbljVLR/sAjpPmORQKoPoBC+eRCW4rqZrVvBtfxk71KAgzUcYZXDeUXcLfOgRVZKSk6QGnxW0AXzbYawDrVDOkdGTpQntcsX5+ZwuF6qRpiTg9AgxCW0rLJcrEiz7RUmeJXwPhnNnkBCYFSOmhUb3G4YghBDoXKA1IDgyn7Bxhn5YYUxPlk0QXdDXluP1Bi2Oq1WC8ZZeBlReQEgutr0OFHlBZQxiLVYyzp1l3axIJDDSBWln6etj3hccZBUqN+iQgBuoQ4cEqPKKcjQhDIJvOjLtCf3AYtNTN0vq869wqgJJdcA73vE+ru0fklw8HiKKoigCJIRwORWL/DvA94UQ/qPt638f+HAI4T+9q8yT2zI3t6+f5uIM3E8DvxNC+Hvb6T8P/F8hhH/4RnV+6EMfCp/5zGe+bmy99fz+536X5cmz6OQ61554P0UCV4qMsiqR+FzIKHr72B5cDzoF89Y+eyLy2RDCh+5TZFEURQ+EyzwzdxN49K7XjwC3XqfMTRExwBQ4e5PLfsNSo/jAd3yEwX2YRCtSo+7VqqMoeqvMW0/ioiiKvplcZpbyaeDdIvKEiKRc3NDwyVeU+STww9vxHwR+O1ycSvwk8HERyUTkCeDdwO/dy+BSo6gyExO5KIqiKIoeaJd2Zm7bB+7Hgd/k4qdJfiGE8KSI/DTwmRDCJ4GfB355e4PDGRcJH9tyv8rFzRIW+LF7cSdrFEVRFEXRw+bS+sxdhjfbZy6Koj8fYp+5KIq+GcRriFEURVEURQ+xmMxFURRFURQ9xGIyF0VRFEVR9BD7puozJyLHwHNvsvg+cHIfw3krHpRYYhyv9qDEEuN4tX2gCiEcXHYgURRF99M3VTL3VojIZx6UjtMPSiwxjld7UGKJcbzagxRLFEXR/RQvs0ZRFEVRFD3EYjIXRVEURVH0EIvJ3Ov7O5cdwF0elFhiHK/2oMQS43i1BymWKIqi+yb2mYuiKIqiKHqIxTNzURRFURRFD7GYzL0GEfmoiHxZRJ4SkZ+4T3V8TUQ+JyJ/ICKf2U7bFZHfEpGvbv/ubKeLiPxP23j+SEQ+cNd6fnhb/qsi8sNvot5fEJEjEfn8XdPuWb0i8sHt+3pqu6y8xVh+SkRe3LbLH4jID9w17ye36/2yiHzfXdNfc3uJyBMi8qltjL8iIunrxPGoiPxzEfmiiDwpIv/5ZbTLG8RxGW2Si8jvicgfbmP5b95oeRHJtq+f2s5//BuN8U3G8XdF5Nm72uS77ue2iaIoeqCFEOJw1wBo4GngnUAK/CHw/vtQz9eA/VdM+++Bn9iO/wTwM9vxHwB+AxDgI8CnttN3gWe2f3e24ztfp97vAT4AfP5+1Av8HvCvbZf5DeD732IsPwX8l69R9v3bbZEBT2y3kX6j7QX8KvDx7fjPAf/x68RxDfjAdnwMfGVb39vaLm8Qx2W0iQCj7XgCfGr7Xl9zeeA/AX5uO/5x4Fe+0RjfZBx/F/jB1yh/X/fZOMQhDnF4EId4Zu7VPgw8FUJ4JoTQA58APvY21f0x4Be3478I/Ft3Tf+lcOF3gZmIXAO+D/itEMJZCOEc+C3go29UQQjh/wXO7ke923mTEMLvhBAC8Et3revNxvJ6PgZ8IoTQhRCeBZ7iYlu95vbanl35K8Cvvcb7emUcL4UQfn87vgK+CNx4u9vlDeK4jDYJIYT19mWyHcIbLH93W/0a8Fe39b2lGN9CHG/UJvdtn42iKHoQxWTu1W4AL9z1+iZv/IX6jQrAPxGRz4rIj26nHYYQXoKLL3bgyteJ6V7Feq/qvbEd/7PG8+PbS2S/8PKlzW8glj1gHkKwbyWW7eXBv8DFGaBLa5dXxAGX0CYiokXkD4AjLpKfp99g+T+uczt/sa3vz7zvvjKOEMLLbfLfbtvkb4lI9g22yb3aZ6Moii5NTOZe7bX6y9yPW37/YgjhA8D3Az8mIt/zDcR0v2N9q/Xei3j+F+BdwHcBLwH/w9sVi4iMgH8I/BchhOUbFb2fsbxGHJfSJiEEF0L4LuARLs6kfesbLH/fYnllHCLy7cBPAu8D/lUuLp3+V/c7jiiKogdVTOZe7Sbw6F2vHwFu3etKQgi3tn+PgH/MxZflne1lH7Z/j75OTPcq1ntV783t+DccTwjhzvbL2wP/Kxft8o3EcsLFJTbzZmIRkYSLBOr/CCH8o+3kt71dXiuOy2qTl4UQ5sD/zUUftNdb/o/r3M6fcnEJ/Z7tu3fF8dHtJekQQuiA/51vvE3+zPtsFEXRZYvJ3Kt9Gnj39q69lIvO3J+8lxWISCUi45fHge8FPr+t5+W77H4Y+PXt+CeBH9reqfcRYLG97PebwPeKyM720tv3bqe9Vfek3u28lYh8ZNtf6ofuWteb8nLytPVvc9EuL8fy8e1dk08A7+ai4/prbq9t/6d/Dvzga7yvV9YpwM8DXwwh/M3LapfXi+OS2uRARGbb8QL4a1z04Xu95e9uqx8Efntb31uK8U3G8aW7kmzhoo/b3W3ytu6zURRFl+7r3SHxzThwcUfcV7joI/Q37sP638nF3Xt/CDz5ch1c9DH6Z8BXt393t9MF+NltPJ8DPnTXuv5DLjqVPwX8B2+i7n/AxaW6gYuzEj9yL+sFPsTFF+vTwN9m+8PUbyGWX97W9UdcfDFfu6v839iu98vcdcfh622vbTv/3jbG/xPIXieOf52LS2t/BPzBdviBt7td3iCOy2iT7wT+v22dnwf+6zdaHsi3r5/azn/nNxrjm4zjt7dt8nn7iq4BAAAgAElEQVTg7/End7ze1302DnGIQxwexCE+ASKKoiiKoughFi+zRlEURVEUPcRiMhdFURRFUfQQi8lcFEVRFEXRQywmc1EURVEURQ+xmMxFURRFURQ9xGIyF0VRFEVR9BCLyVwURVEURdFDLCZzURRFURRFD7GYzEVRFEVRFD3EYjIXRVEURVH0EIvJXBRFURRF0UMsJnNRFEVRFEUPsZjMRVEURVEUPcRiMhdFURRFUfQQi8lcFEVRFEXRQywmc1EURVEURQ+xmMxFURRFURQ9xGIyF0VRFEVR9BCLyVwURVEURdFDLCZzURRFURRFD7GYzEVRFEVRFD3EYjIXRVEURVH0EIvJXBRFURRF0UPMXHYAb6f9/f3w+OOPX3YYURS9TT772c+ehBAOLjuOeyEev6Lom8+bPYZ9UyVzjz/+OJ/5zGcuO4woit4mIvLcZcdwr8TjVxR983mzx7B4mTWKoiiKoughFpO5KIqiKIqih1hM5qIoiqIoih5il5rMichHReTLIvKUiPzEa8zPRORXtvM/JSKP3zXvJ7fTvywi3/d2xh1FUQTxGBZF0YPh0pI5EdHAzwLfD7wf+HdF5P2vKPYjwHkI4VuAvwX8zHbZ9wMfB74N+CjwP2/XF0VR9LaIx7Aoih4Ul3lm7sPAUyGEZ0IIPfAJ4GOvKPMx4Be3478G/FURke30T4QQuhDCs8BT2/XdE731nL10kxc+9U955lP/hDsvPkdv/b1afRRFfz48sMewVxrcQD3UDG64X1W8PttDt774+4AKfY/fbAj95cbYNS2r8yVd075xwa/Tpt73WLvB+zf/fu5uA2stXddhrX0r4X9dznr61uLewvdpbz3LTcN6vcG1mwd+X7osl/nTJDeAF+56fRP47tcrE0KwIrIA9rbTf/cVy964F0H11vPFL3ye3/nNn+OOssxdjg6/QRlKZtWUYiS84+oe76keoTcat3PAdHYVv9jQtw3pZMze/pTCBNzgUaIxeY5TPf36lKEGshloGDYL+sEjWiB4JE0pRlOC0iCOEoUeHKHvOV+uOestaa4pMnBGo0LA1muCZOxM90i6mqZfs9Epfe/RXc/Qb+iGnszMGO/vUo41udYEUzIog/GBJAhucDSDxytQIRD6FWkykFVTbMjoNh2JMaz6Dct6w7jK2Z1WQAAEpRKUSv9UW4a+p1vX2CCkuSE1AXQK5k/K+X6NtzXKlKh0dPEhdT0hGIIk+BDwgDYKjaWvV/TWk1Zj0iy/F5v89W1jeWXML7+3MAxIkiBp+joruPfear3WWpxzaK0x5k9/3HvvGXwgUUKq/vT/dc4OOGvRxtB4obaO0mgKpXDWX2wP83X+F3x5W3ohePACtR3oXU+qNLkOoD2b3tI0gcpUFElBCBbxFu8Vx3eWvPTlr3B2do4aFey9/xrXH7vB/nhGopO33H732AN5DLtb6Hv6tuGF+dM0XYNkJU8cvp/MBbrzBUPXYYqUvMpohsD5piEIzCZjijxluVwwny/AFBSFYZK02K5jYxVlViLGcFoHdEjZG+VU2cU+2Q5z2mFOqnLS1Sl91xEyRXr4XtApm/Ud6BoUGXUAk4zIQ8bQbDCFIplMmK8tw7ohzw3FKEH5AW83BKeRpEKMYAaHsi1gaEPGehjAb/DWssGQFwX7VYLtLbV1jLKMUikGD14Z7NCzPj7H37nDeGdMOalIrlwFnbBsB5aLNWqoqUY5iU7ZrDesfYNJA3kyJhHQocOkJUkxwnphPj+jPj2iKFImh4/i0xTXdPjlir5eY5KEdDwiK3Mab2icMMo0uXhufv5puvU56+Uxk3c+zt6Nd+KtwrYDo0xIE8+qWdMujqmylFlVoCd7uHpB5yx9PqF3iq67idYeozTj/J3k+YjB9Qx9iyLgnMMjaAOrdk17dkR2umBS7RJUSl1VYAwqSZjt7zMMDevzU+hb8kTjzYhgCsQNDMFj8wqTalTbwGCxAbyxlFlFluT4dk2/WbI48zTDAEpzeGOXVCt0GghZxaZesT67QxgSqskeGMWm6Tg9OsHNT0GnXM0bdg9GeCXMs302tiOzS8pM4/Ue3ucYUWRJQug3JM6RZRWbrudOu2RIhN1cs19NMGZC7wQk0NcN6+UKnRbs7O+gJXB8eou6WzDO9xhXU3qxdOsG1a4REXoEyTKKJGewnuA9WjuC8TgvpPkEk5Q0bY+1jlFuSBP1msfie+Eykzl5jWnhTZZ5M8terEDkR4EfBXjssce+blDz9Zp/9i/+AZ97fJenkxscJYfgoXQtI7cmEct4fZuDO19iofYwjSatc3JRdJSMhsChPWYcliwyRWMTRqpDj84geMyQMO+v04mwLnPS9UAvgbbo8B60LpjZhp2hZsdv6EzGsBCKhdCGjOcnBSfXE7xvGRWBw8UJixTucI2QjPDS0RQlXa9BFDq0ONVzEBbMGovUFV47BkkokoRd1zFranSiuZ0VrChxSc+73Itc7c5xrqKx19kbpcyV54tesSEwC2vepwaSsSMpD8nHE6zOcTYQ3BRcgTt+ntOuI0jKRHV8S2UYFxV3RJj3NXkPWXZEkQlFXpJk7wFZU7uO9LQHU/LCkLGeluSJZ3/+IuGsxpUF3WhCsXudbDIhbTZkizMO93YZ3XiC1WqOamvK2QhrNIkLJPkEZ3Lq1YZ1u8ZryyyfosgYnCXVDqUbatE4W5D5Fj3cIQxCu27pzIhMl0x3r5BXGetbL9IhqCQhm+3Q1jWJNpR5im02LPuajQjSG9zgWMiAp2c/M+xlJVhH6DuyJMcWCWs6/CqQ9EKZJQQcTajRRUEwmro7xZ/O4eY5awN1njCd3mCWKJpuQdN3KOVRrkXSklG1A6HnZDPgfUo+eFRuubVeMJ+P0GlKXwjjasx52zDqjzkY79Aay2k7p7cDRjTDIvBSn2AXZyS951Em5HlOE+ZMRwlZkeFHgVZn6DKjaB3p1455abHiRB/hhxNCbdiYfYZKUyYdqg90oadVPXOtWJuEqhlYdSMy5Zn6JanTPFfO+NJkyovZPs0MJgr2PvtZHvn1X+eHfuDDfPS7/tplJ3T3/Rj2Vo9fd7P1hltPPsmTz36Br955mjkK5Rp2a+j7grWkJKGjHRvqyR47DLh+oPMas1gzMnPaHtZuSpOnjCY1K63oxTNxKQWOzBu8tay9kAZBdEU+eII6og1C2QtZZwjjNWlm6FVJ15+h+g1VXuG1opMxK1+i24odtcaZjufynL7TZF2gPB2QxJNMjilHHf2QIVZj9B4b05F0HemRYj15B+tpwLGkTXI6N0Ybz36/YNKe0rqCIVh2fM5IptiwIRlOkE3D4BVdXtClsBqP6JOUaRfArriTjMEmFEmFyT0iC4Y0YdasyaSn8BvqLqHhCt7sIvYmp5lgh4ZNeh2tMsS37C/n7PTCwWJJMS6waG5mY/pkhFaa97pbuNWSc2pO9C7dl/6AdZhR2J7KNYwKy6JMeN5cIXc1eQL7izWpDazGHYMCweC9cEPdJA0tfrRHOlyDPrDeLBiyKUEsmoFEWc5VzlLVzDbnZHOhVddROkUpSzqC1ihIUnK3pgpzxLfIkJAoz6bb52vZVZZ5Qa8s03CEbzxtN8IycI01Pg+YROiGQN5Bv/boUqO0ovCaqqpJJecomXBqenprKSyU6xxnKlLOKNsTdjYNoa9QV1sW2YRnVclpMaW0a2zwTJYNO5mhanN6U+HsgPYKV3QcNi9yO015YfQoSMrIwXV7xKRpCNbRURLKQGgTdFCYwdKZhHp0gh4GUmMR9SiLJEWv7xC8phjOMapCJ3t0+T6u7kjdGpOfMUueZ0XJeZjR+DFmqChCgpQjPvK+9/AXvv07mc1m9zyhu8xk7ibw6F2vHwFuvU6ZmyJigClw9iaXBSCE8HeAvwPwoQ996DUTvrudrRY8px1PpY/zorlOLWPQirm2gCDBEySgSotBSKUhDBpB4yShtC27VqP1lHOziw0KEwaMchS+xwVQQeM1ODEMwFJKrM5ROFTwjFzPjrtNIgNBBYaQY4aODXscZ1NqXaAI6NASDgKDKoAR4AEFsv2uePkrI8CX8YDbDoImUIYFhW3ZD7cJynDLXGWgAuBz7PHe/ivst6cE9RJPhil30glfSt6Hdg2KwJf757kq56zrFlMvcJIgXuiHCWs/pSlT+lFBolqutgPPLp/FzRXPT64wGMUyHbHXw6jvGZ+fUG2eZ5Mr9v05ySAMKuWr1eMcLWYUruHRxR12hhXLxRXW1QJ7eguNZjofyFeWK25DONhBO08wHY/r58l3NGtlOAtPYNoxJ71GL27i8oIqG6H0Dmbw2O42xahnFTpy2aHZrLgx1pz1FrMCs6zIJxOq0Qh2djnPhXqUkRNov/hF0kVLJnDQb1D2Dje7BUfZDlZ2OA45vd6wLluu24bHW8febYsPFskzzM4GZ3La+YJivk9wGj1e0eqGJms5K1P6zjDMGyYvzlnfyDDpFFMN7C8D1DdZqIygPHpkSUJBXg6YMOOO1tTzikYluEnDPN2nCWP8fIofBvL2nPZqSmKWeNVR6JZVyNiQce4PyBuwKqXMHDbP2LEbpK1Jkjn+fODK8nnmJwXduKCmYL+bM6mFRWXwowGrKlpVMO+nrPSEaliSTiy1Ee5kh7RUeCxKHG0ocGgUNQMZngnwJ8naUmCZX2M+OeQf/6P/h+ujK3zwvR/8eh/p++m+H8Pe6vHrZc4OPPuVL/H3P/0v+KpOeO7gWxlSRcGCwrWs1A6EwEanWJViVYIPniv9OTooysOSxI1x2tFJwaBSNiZlo0Z4NDIEdu2KkbQchudYmxGn7LJRE3qnqeQKme3RAcrQgLpKo2BqlyRcZ9ad0mUFA4rnknfSSooXzcjPGbNmoWfgAzUVk2sryDw2vYGhYeRqGhnhcZynVxj5DbzTYV2OKMUiuUExtIj3GAbSsANqSkeJChc59E7dcm044z39TXzp+EL2Hu6YK5zoA1bJGBWEPLRUYcFaZnTB4Ekpw4DXNyjtkv2ZYezPGeSQOVM2dhfRgYxrtGbERjIWeoJCsAQyHIfdCbtuzePz2wxac2JGWEnxmecpNyZRmlbt8IJ6lFanrGRC4WrysMCowEl6iEWhgclwRrmfs2CHVuUMKkHjOfR3OAyGg3Cbk3DI2pfs9+fUO9doSDhNZ0zskkaVbJISL4HU16RdoAlTujQlpSbRLRtdYYKjCA2P98+R6Z4NJX0wvKAeZcUYrwy5NOwNHSfJDbwTUIbD4TbeDLR6SqNSnNMUvkGHASOBihphH+cCC7NHHhqcKLLB0s5GFEPPgV6xlyjOe4fSc76avJuF3uVFdRWCxQWFaIU5GMiC49AeI1ZYmylrXaDUwEQqShacqF1syAhWOHCOneGYIcvoJWHDiLWvSK1lY8YUsqY37yR3azpJSMQjBIrDjOBgbb4VsYaGksK1aHq+vXmOUbHkeb3Dc/IEt/Qj5LZhwoq91QZvE5759O+TppqPfPAjf66SuU8D7xaRJ4AXuegM/O+9oswngR8Gfgf4QeC3QwhBRD4J/H0R+ZvAdeDdwO/di6Bs2zN4zbmZXiRyvHwp66KptscCvEBPoCcH40hwOAxOF5xnCk8BItvlehSCpsFSkDAgeLLQUDPGSgJowIMEBtWxSh7FBk+QAo/CJQoQEAOYi7RMKv70P/iaiwxue/nr5VnCdpraxiM4PCvZY5VaztknYUPNFBCEwII9vpY+ylm6S+5rjsMVFjJjrTKCzrAhZZ7s8BVpmRZLcukxtmHjp0y6DZ0KrLISpTyolI0yPKv3gMBRMcaiOTN7zClJrKcKS3bTDUop6pAysYZFotkkilS1oAfmVYnrLYPW2CSADTSS0BcFrnCctgXOw2PLBj/pqOQ2I+Z83ryLk+GYehjIFoaiVRS2Zb7RNMFyddXT2JrCWTANgztGJxNObnasM08Rdsn6Aa2E59ennCw7jnNNkismyQrfe65bz7pxKHuHsvB0bLhjr2DTlhcRiqQDvWDpe07COUfuOmfljBTHlc1L7HMLJxteqAYaUaxLT5o1CJY7+oDdzjGYAjuGBEF3AzI+5yw1LEdXmHczrPIwDhSDpSs1085yK9nDXXHcSffQyhIkI+9bjg8hDCmi9zjUL1HIOfN0hA6BUz/lljyKDRlZDplvWSXCWpe8FHrCRLPjPIae2/oJNnqEVp6WnJfSXaQKONFMkiWd03Q6R1JhQcZZfg3BIgJL2aXBEZhs9+2XP2uzu/bpV5/AOs8ruskB//Jz//Kyk7kH8hgG4KzlCy9+lduypplNaHNFa4RV2Mei8cpQhg3nTFACAwmOhI0ZkYaWPNRYNCIaoWOQgiEkdHLRtUGUsM4ryrDmRAqMH1hLxUqm9MGAwCQsIBhUsCg8KM+akh13zqbc41xdoZOEEw5RMtCHkgUZRdjFoljLDAec5LsEFBfHNk+RdIQAiMdSsNEjOpUyJB4t0JNjMksICZnU2yV7LBUOAMNJXvOs2+dZNyXohCN1jVbltMGAGDJaBlVSoxjCiCAeFzKUDHgMNh2zCiWKGyigIcdmKU7Ahyuk0hPQtOQIjoChB3xuOAktXyv28WLoQ04VWgKewB7IgJGBI66iJNCRsk5Shpef5iQajUUFCKmjJWMRpgRJ8WgCnpSWVSh4gasgwsaPOEqneElQ2rOmovGalZrQSoHBEcIMkzq0Cwwqx0qGFkcfMnKpmYcxrd7uM+qARlLqMAJREBydCFY9wkZGpMZC8ByrCUEJXi6SHmtSakqSMJBTE0TTB0WdlgxBI5LjglAYS5+lZC5lrR7lmXAVckFJy5m6gsPQyIiXT1iI9ExCTU9OSAO5XXMqEzZ6ghbHSdijlCWOEotQmIY6aI7l3fShoJEci9CFkotOPQYtOxAUkuzhgqGQmgSLCTPQgV5Sggr0pGRiGIKhy76LiRzRS8G5HLBhQq43rEPF8W5gt10gquL3v/SH/MUP3vvusZeWzG37j/w48JtcZCG/EEJ4UkR+GvhMCOGTwM8DvywiT3Hx3+zHt8s+KSK/CnwBsMCPhRDcvYgr61cs/YwmZK99IeRPESC5SMACIIqeAGQX03n55rQcj8ejAU2/XXGH2SZnyXZdF+V7oCe9+KC8fGZCLK/eXPIa468X9PYU3R/Pfzm5CwxoBrI/Xn8A5jiQA5ZhhtcwD7v0aJCMi6TTbJPZBKMsm1CQmZwFY87SGQHBEwhiyEKHSno2OiEEw2myRwgWJLChIiRQ+4T1qCKl40V2OfCnnMmIjexgUSgD1+U5TqprpH1HJzlOZaxlig055dCzLwvaVDF0gT2dkuFZ+Ipjf4XaVzxfHrLXdhSDYdSvGduaRToiSaasyym7uiGhg3qDWM+JW+P6gNUdaxcYb5ascDQm0IeBs/yQhdeY3pHUC8Q1FH1D0mua0YLToiMJLYt0jNWCpiB3jg2Kr16d0ZSQkJD2A3ljOc32eKkcc5yN6XOP0g6CZh2m3NFQDA3rwpIlltwO5FJxXNygraAfJlhZ05WGLhQo01OlljUjHMKAodA956aiNzv4IOyEBZ1WHKU7tCFgFYz8irUp6EnwPqFXiuBbnBEGHQgBghNWUiD8/+y9ya4sSZKm94kONvhwhjtFZFRHZqIa6C4CveOGAPkAXDfALQHuueKWAHf9Sv0YBBfcVbEqq6JjvMMZfLBBB+FC1dz9nLj3ZnZ2FLqQHQpcnHOPm5nboCbyyy+/iHqSrBhsgxiDqiKmw6EcaXgrr8FFZu0AwUhCJRJYM+NB2zL/nyQdl18+R0I1JIT3d+8/s80///iXasMAQkr84Q9/x/1Nyw9+w0/uBbNYFIuVQMYSxDHrYqcsYIjMRFlxEAf09WgGNIMURweCSmbGE7klYlFjOGqLsqqmJvMgLxBJoGCkBKM7veFgewwQcKhYjtoCq2pTLAMziCXigUSipQSZCa1hMZIYta02cgmchUT5ngggEOmY1YBs67WUgPdBFOyKg/vvECIzHUkXe6wEcaCZVhomfMmaAJP6CsxMCcIVsrj6aTlfMMw4DAJV+1tsbeRAh0iDssKLQaUAwaBgBDKuTgdPeQdK9gZZju1IZJCZSRsCjiCetDxDNfwkb2hlJmgm04JYcIqXGUtEMRyMZWZNeZcUZGYmgF3mgyeSQDzDQg6YzI41R92W65XFN0HQlnvxIG3xhWQO1mC0AUz1fZlESxBHwrPXSJaWSW0FhWWujTJhDSgDe3tF1o65zp/ybyElUsVzjgc29DLwyIq9W7GjB2kreDeMNBgSkBFafuSvEFUQig/ClPtUjVGir3NLQYQjHrTcJ7RmwOo7M2sCsXxrPW/1ZbGddT4MNHQcWcnExu1wq0S8/wH98Hfw+t/+TIv9XzL+q67Nqqr/EfiPz/72f138PgL/yyf2/Q/Af/ilzynOEw/GMUnLGYxdjgUUnc6EExDTCpCEp/uq1ImxpDpt+SmO8wR9djg11UAt42NATi9+/9z4mERnOY+PaY7KZw96yyABR8aK0jIyUQ2T1pdZM56RiGOkxWAQJibWNU5MJEk8mCswDpMyNg1EaTBEojR4TSQjPHDNLXfMqSNHg7GWWz6gJpGTpWVmZMWtf0eeDxz1JX1ouDcNbQKH8Hp64Gt5oN/tmLuZXXrFO3PLY3PDQ9qwMRazhUDDFDMfzBXzMTOtLdlNfDFl7jtDOza8j1/yorvn3jZIsjwGi2Zh2ghTVsz0AZsPtDJxdzNxO45Mr8A+WCS+xB9g9rCeZ27MI00/spp3hGzZNS3eDuzoedA10bV8v77ie/eGO7ehz4/M0hJNj4/Kvmv5jY6kreF9vGGdEnv/msms2fs1e/MSdMAQmMXTpz2TnQsjkgMHs2EGrvJ7bA4cuSI1imRLzMpsDEYDY25QW+aemswm7vg6/xOH5DnICx7pAMOkMJmewa9QEbIKK/Y0BKIYZhoiDaCogKOIohMdSXyZdx+NP5a5+rk5LQTzL6OLx79EG5Zi5u7dgWE38mL7ge9kiyVgUSKCoqiaAlIkkrWIwFGPSgOaqqNeMgtc2KRMsXUOxJJJ7NnS6UgjiYm5fC7FPjVEJmlJ9Xkm8ezZEtVhyBWEcHKUjowlgSpRLKgHKS5ZKxOTpBRDnZytnr+vONnqbFVBElaUpItdrjaznv+4OGXNVZ6S6zaxuGqNODEYjVimKlKJOIGRHpXFhurZZtd7icQahCsnm68FCCM957riEqhnMicSQG3dN5d/lSwo31PSxyMtToSkEbAIR8ChQCKTpbt4FsXmBRyGSGZVn2XiHNjXeydSvh9TP1eQTKBh0HU9D1f92nK/TA3008Wr25EFPCOqvjxfdThmvAQG6VESIlLBVAnsMk0lP3qS2gqyXP2e5R8XzzoiCIEWVYORsd4zqc+Den8FVEmSiVJ4zEk9KnJ+7rrYpef2ZzmOoZA1oT7nVO+vJdMxSvt0DpKZpUWAR3fNV+N3bHXHPO/xaf7LAXP/EsfRtGQaGiYiK2CJCJbxMcZgAV5L5PpsCJz1aqlus7ws8pFtbTVgnxJ3fwxQnnb+xPbP9jsZZvPz7bR8v4plwjIz4dHKsFDOTUpkJBIwmrEUFkhpsAKqJRKFhqSOzB7PxGC3GBw+R67DDkeJ8JNxBAOtGchY7t2WWTuMJK71Aw2ZwXYcpCPGN2ybB9p8jwi44wo/JTbHA1fNnnXzgVYTR/OG/cNfsQoNk1mzwqFq2Hdrbo8T0VsijruNw/rId6uOucm8RLC25eiuOUjPIPCbsCf2ievDHa9S5sHccL/O7FhxHQNfSqJnyxjh+5RIoSW0Lfd9wwffM8dXbOaJh3yN14mhMQXY6kwOwnf5Je/0hvt0zWBbfJrQaOgIbOPMXScEUd51W+Lccz39RAhb3m1ekCwMRK6YCAh732FSJGTPVXxgaFpUAsk4MoATfDww5GIsU75iZAsuc5QdKXds2JFxeJvo5Mij+5JG7xG+xOeJRIPkTKex8DnS4FPgaNZkFYJ4FCmpOhyOfTX5uTqtOs+fD6U61edz9+mYfPur9frESDFjMtiYebd6yUNzgxUtYAhDrkBaERQHlSdDLEKikcB0kmzAKViVBCewtsg+yudJXM1OLDZEMaJ0HMiqBGnrsxWObIvtUcVpppWJmbY+9sw23/NgXrCAiAXMWImsZCCorwFBPT8JoN0Z7JyCgcyMqw53+ftil4QTUCHV8yl646JwUxKWIB1oJgskVhVcCJZScf/z5IicjucJldXLFUhcAs6FhH0miXlyLE73DAmn/XoJFBgt5SjSIqroAqa0LYGUmPPxOYOufMoELedQIOopQIcKoCKGREMgYQh0F9cYK5jRen7Ly2jPx6tzKGhHy4iqoihZDAMNMxX4qJzn0mleBZJdfGpzQYik+vsyN8tPrWBeJaL4CtYX/7bcd6WVkYaJkQ0tj8wUGYFqU5/b8nyeEy3L3PIX28QLgHe+3vMczPXOWyyK1cjrdMcmBoyzpUvCLzh+NYfPxijQDXBkQ3k4H3vLlok0c0bhzUe2fbafZgxKloUV4xP7LBPhY6lVeMq0fYwl/Nz2cAaVly/7s68/vfCKYpl1qh8WgLYMrwGjFAEuFsXgNeEZSvSnuURfCAEPacSKIxnDY3PFi/mOgRUqEIxj0B6JgYxwxQNBPVs58vX0B/7Q/jXoyL3cksSXwol5x3a44cW9QNdzM3yP9DD3hp/cV7yVLwmxYxsCyR7pJEMwjH7FXd8yOksw8CoeeGH20ChHPDu7phkSvZ0wfs2VT6x9SVEYn2hkYMVIaFfsxXFE+X4z44NnHV4ghwO223Nz7JhuBbWGI4aJLa8PDTYpSRuieL7Nv2dKFqbEcdMQ8ezyFV/sP7CaJthabsOENBNNNuzdim+3LxmcQ82MyQZLwtgJwdFxLEyMGfB25CgeMYboYZc3GJN4o28Z8oad2aJiUMk0YWY2PZPpsZq4SXcYESyJWQRYM0tLUphN0RUliYzaAZjKHK4AACAASURBVIloir5mZFMZoBaqY5y1qU5NSR+Nfisr8if2zVWJ9E3/xzf8b3BYZxDfMa47RuOJ0pKIiLZncERlR08MQrn/Fi1pN5UTI3ayeZpoJDIr9TkZYAJ1JKkpysqGIUJGOOqqSDgWZ6wLALSUNGgsrlMDIhkQDuaKcLKncnEKhU1UgXCyzZ5ik5RijxcGhwpMtPw8MSgVyC1Mni5ZEsHKQMJVBtCBFCazkchMBl1VACMkLubwiaGKT4DjXJnELCXJ6GQCfHkfKmt99jFLkL0wW/XeS6r3FNBMIxOiiSieeMoIKa1MRByekUGW+7IcJ9XD2zPoWhhDzZwYS1nA7pkB63TAMzOyZmG4TmCqSmWeApkKik9AvwCeiaL1LmHDQnosz2fxdcs51/PQmlqWcAZ5LEBu8XupgtASmBdmL5zvoZo6jxXR8s0HVkQ8s2zRmlY/Fw0u96Ey0GRO4PXki+V0jcJcnqmEem/yeW6Ra1ADoopj5GZ6QLnB3f7NL8rKwa9g7mdDp7lEeWGEZv2Jrc5Ivzy8cDGxV5ydVMnRn6hzcWRVYIKarvr08T/XQ+1jQO5z43n4uDCJz4HfxxgRAVy9tiXiWpiVjBA5SsODbqs2JCOqrPJINIphJmlD0kTOFoyyN+tSqauw0h3JNGg0HLQna0N2lp223KvwMr2nyYkNR1Yp8F63zHaLVSHbCXUOxdDYCC7SrHZYPzLjWM8zbr5nb9Z09wf2a0+2kX275o4XjHaFN7sS37oRNwVudeB1CvzoQFuLSSPbwTObzOvpDvnwgJGZ7faW++YGXSnGNzSjZxsVOY7Mccc27lnHK+7pCI2BLIzGk9Xj/YRnZB2KjtKKsDaZFCOrmAlxAm1g6rjWR1w+0A6R769uaMfMC/OeyTpiNNz1V6z1iJjIKu8IvKC3E9fpyMG1BGnZmSsG5zFYruU9JOUdX3Bvb8gYNNqSbsNCFDomRA3ZNIjJvOdVgfY64WzCE2jEcRPesgqP/Gh/w2Q6RuvJNBy1O0XKxSBGEq60Q5CEEMnM5Fpwc34PLoFc4qPM3fKp8f8svZr+EoZ1hvWtR9uGJhf+JumqJg6XFOTiFBfGpjIc5JqqWlJ/Y5mLKFYCaHFe57RUpKmAbDwxdosOMhRG7sRGceH8YQkyA5QgCUNDZJA1Z2da9i1p1VpkVoHBiVU72SV3cdwFbF4GCRUgnSQsC5C5YHvU4CQTL9K28+l6uDju4uQXLWE6bWO0FMhpZXEcBkNx9lmVVmayJrL4wthVsOCZqlbPc2LVqj7LMNFKotUjCMzagLQFfFA0a4Vru2C5yg2vj/aSzaKCjFQBbLFLTwATgFqyCAdd17mzALiFlcpYzaTK4nFiJZf7X5/TCcCb6jns0++pNqIA2SVzpT+/htP5L2CvMqqn7ZZuDhdzQRJLGraRhChkiTRoZQafBZQnP3dJtizzd5kEEUSqejGTTyThOS3uKnPaSEJq6jphufevkPeQcJ/Mu/2541dr+Gx0rcW0AeO7mg56DrgWBA+IIBJpGFnlkdF4hlN+H86GchkN52h3iSKfP4JPALSTMZGL/yzR5eVnf2wsG3+MxTvn+cu4vPbK1Gm4MMhKI4rRXFM4y/UKwTYoEOlJIggN0TpEYyGrdcaRMKIE7xhTx6gtMRvWOuEIROmI2fM4X/FP+d8Qk6exAw0Ne9ngbYs5em6zMmx69ivBT29YjSMbEmN4SUieK7PjFYl5nvhw5cEeGQg0U0I65ToOfB3f8TrdMbuOb1Fs+IntrOACD23iaDLfOMtXx8D1e8ObNJFeJf4/c81VOvCYrlm9ncA94poRN3/grw933Oc7mk3H6HoOzjLPHZNuyRLZGYvDkX3id9OP3Ox2PG569nbLTMZ5z72/RvuWtd1jzMh+1RNDV9g2ikx5lJaknu/tb+g0ERAUoUkBl4UuBTo9kJxB0sjevcLnAqxCNgRnuY0Ddg50MpJNS88AduK3+e+4l1dMseFet/RypNeBYHpW7Bm1Y7AbVBTB4fWIkaXYR86RsZhS9ECLpQjwy1RZ5tjzufh5hs7l9MlX5dcBMc347S2HODGpY5YlnbromjIQzsxUfaW9RqIsgMlgSIWrk0iiIUlNeZ3AVM+8pF51aYu0ONjKrpwKJxY2aGFjypdqFe9nhbGye04ycdGLIQhC1PbC2cOZzVp0YYsGjPodpjJs8CRNdwIF1Z1WsJEohTrxZAeXOVn1XMtYtGxqSiCPYmvA0nGoqdkCKgQhkzEqeBlI0uJIWLr6TYXN8TJintzDxLnopOzvOJavJ5BkjUOxMgFKT2DLOx61NLwd2HICubJkYRbwsqRbC2mQVUEqmKTnDNaFUZfikjOwXHhRo6kAOZV6TxafZC6uY0lFLp9dpmDz032Wz/WcUqYSBOVeRvQixeol0jIwakOkK89I7MXxzt+rRBTBiGJw9QqWObQUN8CZgTMXn18CugX4C5G+zK8n22VWBLxOHKUl4ch4GvZ0ZqRhD21LiN/T5K9/1mj/v2T8CuaejZuuwfo9jrEg95Nw9nIsD95RkgkOZxNWqS/gMmED5+jyGdN1cnSXx81nI3QacjHRLv62nMflf//oeMa8/SxI/hgzt4wSATsmonblGlU4YnFc45nJ6msFV0akpU17jnZV4y5LrHo6Q2nCvM13vAlvycC9+YIujezsmkdWTLbjKuxLl3bxPLBlSg09E5nIhj2rONCTuZaBsW/Y2B3jyjKPDn905DnjjNKlzE/uFVf+BzZM/JB77tYtMWd8gjeHB97sDtzmkR/bnnV3YG6Ul3HPXm5oxwYV+OHFLWNveNUExuSZuSKFFc0YMCLcru4xc1lmZ9IGmWau5wN3tx2HlWd0LUYznonODDyaK5p0YBVm/vq4I/oDv5v/E+/zKx7chv2mIcuG3DSMGN6E94jskXHgsf+aGBuSM3hVLBOT2SBZEY1swg+887c8ND0zLRuOoJ7B3KK5OE5VIQkkUY6+4UXa0aUJSSOpjxz9lh/4DapKn/Y4WbHOO7KxNGmHaGLvb7AmMNHj9UgWg9OZKFtODIHa+muuPMmiB/0UM/3H5/HV8YDN/9VXgPgXOfZz5P+9m5BeCcEz0RVN0KlaD1CDEVuLkEwFdeB0DyR8BXQBg4qBCnSACpIWkA5FdpFA5vKT9vTMz2ndy7TewmQ1nFizRd9U04FRK7tTMwhPAZbjslDhaWpeT/ZSNKGnbRYNVP0OqQHrwu6UCzsf/3SeDWc2LtTzrgykZBpm5osCjLDo6uq5KIAKpSQo1DzNzEiDr0dEJlRtAVciFSxXEKwFBEeUo6wxaopcpQIL1eKFojge9U0VzywZoeV6q37sdN0lm2QpOkoruRSILNW4p+rby8KSjIhida6BeCm6iChBeuJyT06axHOAsLC0BTRJeRYXQPXkIyVjmFAp2uZyXmfGsMzcWLIyIogqMw4rEJUzu3r60vTkfII6hAgyYrQhnXTpi89e2Dcuzstw9r9LMciF3ZF43k/KHjOGREtSh60a0pmOPdc8dNdgIyllcg6/grl/zrFtHJv8rmo2/njon1G8TkSxROkv9ilR688d1sX/n+Cl+gKeRJsXer2PgrUlNXIJEj/Gtl2OZZv6uzz76BQ5LcdeIsVypWipaC3VRgrSkCml5Ss54PIDncAqPvCheUEwvjJ2dX8SXgKrvOc6vWWtA6qWVhNrPTBJR5dHGpQ7sTQyY/NcAJ5cYyXxV/F7Xk8fmEwLNFwPyu/MH/jRbPlgN3xrXzDR8T5NxI3lOgbmtCPmAf8oaCtcmQe+jjPz7Ahhxcv7Iy+PhnbTs9IjTUo8ptfstYdjx9FtGLcQTGDTb5ivhZvYsnVrxtxj8bx43PO748T96pZ/co9MaaLRATsaDmmNzo6d3JTzVsN1HBlsaVswuA1/b4Sj27HLDY92TSsDs/fVkQq9HrGMPHBD5goZhF4CooEgHRlDqxEjGTWJb5oveGCNIBgyI1dcpTs6d+Qoq+IKonJwLwnS8JYe62YsGecmZtvSyJF72XKQLVYjO3PDLI7ROIx1tOlItA3rPDAZBRVEMmuOjNRKOqgOagEFBtUlin4+dz82Xz8+ZucJF/WAv47zOMbEpDMp75iaF1X+sLzTlxWMmSRFx9TJwKgdQRucKI5D0RXpqrbMWGQllYWRC7BwSt0uACydHPDZES6B5+JySqrKkwhLxeIpTTmD1KIB4AT8hTPTthxySevW4xsCFsEzoWILGFVPWqpwn4CVhQlSloKuAigyKlJ72cWLbZd5ep6rqYSvgGIloZRed4nlXEs7lUYyGcdBNxhSgaIaaBmZJVdmSc73j8r+nZgmS1IhncT3gCqC0MnIRItIJOKJurTVqCBVnr9HZf+scnonjSQcM5EiW3nqHxYGVaGCqI3syVh2XGHJxCdZI4NI6W8AtgYLrtY5XB5bn56TRlrJpGrTUtVVntkyAbEkVQy56nj7es+WgOGiCleVUtizsL0zhomgm4sApl4ThWlsZMeg24uABZb0OyeW8/K2XOKEIgMwGJCxZieUXOfja/meV/lbYnPFNE1cXf+yweivYO7ZaNsVPrpTGf/PmTM5vxxaQFeWzF43VR+yRCf5+aHr+AjgUupLu+g6lqqxBHxMt3epHXj+tz8G6D43FqB5WeW1GC/FyshBtxeRsNSCjhINN2RWeSBLh2aLiqHTAZcDCuztDa0GvEngIYSeb8zvkaTMqUOdZbYtagKNBGzOdAwk6ZEYGU1PjA2TyczeEI3hdfyJ9fif2Pd/w86UCss+TOzaBmMmDnZCh5f0nmJ47u5pVh+IuefBb8itsF/N3HUP/C4rL80KJZJjYjS3mIPHdC3iDXPXcmcC6zW8djfsRdkcwIfIC+fJLxrk+pq74QYz/MTgHXH7kn274T0bUrQYUcRYdr4le4/NQnLKh+aKR7NiEmFoemJydPbAjBCNQY8OHddMbouNHnpHy56bNCAh8+CuGF1PoMFoZMYSfEMUgwE2+R4nEzuu2OtVSVNGIXmHmEyWhrtmw2xXbPWOWTrWes8784qJFcnDkTWuJIAxpLLsD5nW7GqJi/LADUrEaqiVdjWdIqXiuTAAcC6i+RSg+9wcjkSBv3rziy9l+hcxVs6Sw8gUDLMpbEhJW1bWCigFCgUEqRqOUlJw3iQ6HZjoSpPUU3Wnx2pARAgVpACV2SppKS9TdflFISbVbpRvvGTUKpOhispleqvMlbwwfacU6aKDWhZ9X7RJi+TFnM7HUoIJlyN72dZWOVJ7yNXzUOWUhVgAVGWKDEpWh5FYWoicqv7rtVbnv1yDwWBlItKST3O7biNF4RdFCdqylj038p5SHlaCGpGEan9h/+EEuE9M05IGXILtJQUJUR07NpQGUd1FZqeye5ds5glwFUbMkog1/ZyxDAv5cPJxBfw7RlQFESXSkGWFUVixw0nRuq0EjrpGJFNUgplEQ1ZPKwNGApGGwPnelce3yI3KdyY1eEkYPRKlJ+pU50DxRQbFSCwFKKdrUxxKXNo0yjJPlFNbE5Ea+tWWN1Dnba5/zfSU1SkyEzO2zM2l88QJfC7nnc627UkVq1LCgbpuuWa8zHgCh7RFhy1ugNa9+kVZOfgVzP1szKFlfW9Kw8Sf3Z5nLJsAeA7c8KTQAT6DqZ5wz2W/J2nVi9LuTx7jWZr1k3/7c0c1FqfUQpn0ifbiJS+GJanFyUxD5jrd49PEO/8VTmYe5YYGg7UTjQZu8h3elu7ghsQkK0a7oo2BbA2d7Nim0m445IjTIlgd8cS2IdBwr9e8jgNY2MYHDs7xKCv6+ci6acjBELNl8EIbRqYm452wmgPHrmMjni1C1AeCtegErgnY6Ek5sjYfGOl4137BgQ34SMbwkh1pcKz2R4K95WHa4VctX2bH9TEgCO9c5G/bR965ls3WsDLCTX5PP8986BpC15Cc4OOMyUo7G3Jao80eVjtCb3n0G0Rnoli2MXIdE/e+I9ATzcwqzMxiMCnQpompc9gmczVOfDn9wI/9K4K2HGSLsRFsWbg+5pZ13mN1RKwy2Z7QWDCZmZ4IBNsSNBC1RXKk11Dclc1ksagqiYZS7+jJKJYHTEhseGBwW7wOBDxOElkMejLe1PTT4swvG6N+CtDpRdwiJyDy4njPX4Xv+J/+3b//Beb6X97YNI7//svX/H275sv9A4/9hge9ZumB1hGZKDrXprJRVufS70sNe9mWghWZETUkAdVMFkFr+s4y0RAI2BL0qiWLpdcDESXLmkaL++z0yETHUVac7dtESdMtDEhNuaoFCRiELBMnEHKqGB0Lg3RqdrxkDsrcySr0HGjyxM5uQQTVTCdHJgynpsZcZkBSWdlBDVksSG36WsFGYQ8zDUo8FS0oVkvDDl2axFYdoFGtoni3dKsjSuRRbyht5S1ZHE4i9rKQAkfRMcJJhK+V5Tz5gQWoLPfEXRQVLAwjPE0XPn/HIo0mVrJjZEOojYMdobY0ebq/UUNGyzerYiQTSxkUqhEjHUnLsbWyXYkK+CUTtMFTir6UGlRUonNZHvNkI2rlcaKtjeWX1C+gpVdcXgLBi4yRZaaXPYFVCSbUVT0inIsayjobS/Xr6SSI9BxwRDxKkomsHSIH5oWlQ8r9pgYOuvQQvNRWLsz3Mq9KS5uslkkcd7xkmv9ALxmX/lyJyafHr2Du2RhDpF0/csWRR674mRD7Z+BKKIUNgfKinfPn53H54C6LIhbQtEyqZSwl/p+iYT/Hvv25rNzHjrNEHImGsWo1tL6wBpjwJFqNSFbu5RYxyogj167kg3SsiUQSBo9TxamiGfayAhxNAJJFbU9yDdv4npU6erOnt0eiCil39DFwNQ3supvSoqAV+nxH1sRMy2qaCHNm1A2rZDm0G67ye6a+48G2XDeJ1XHAhiv6KfCCyDuz5tBaNEzs7A4DPNoWSRMbMu/8FRIFSUemac27boO6BpN/RKRD1XEvjqtw5Da9ZXPs+f0apjbwQu4YaXlvXiPNWOJSzfSpVKNdDQF0R9MdWPEAOfKN+6rAnwRf779nzUzC4lR5NFuwkckoyZVVM7ZhT6TlMb7im/VvaHVPTA2+z2wYmHPkZXxLH2bayobcW4MgNDazCTtG7xBtOcqa5CNzFLqsNEFpTYY8c/RXdd2FTBtGjMk4Ike74q031alvQCg6FqU6fs9Sru8YyWIxhGLQTyz2p+Y4ICPEDOM9tzrz+2//gf8xHflf/7f/nd9++dtfaK7/5Y1X2xv+3eYV//fbv2OY/kBqfl96NNIzslRBloo7K5EgPUZnREwVxCvhVLykLDo3pQPJJO0ZsQhaAeEeVY8jgHiU0hPO6EBZC2EmaEOQRGk5sRR/CU9Sb5oLkHsiQC+sjNVIxxGnZRmrSRYZy7m6XsWX/pQ20tdlExMW1YSeuvrXQJmljYQln3Rui46qAF9HCSpbjVgJzLRELbZtKx+wWtiYvdyQtMGS8TrQ5AOT3aKiDLqlJTKJZ82epKUEoiz0uKTpKmu6pCKf6EyXTAkVQGa8BJJ4pictsS5t/xI4LfvaizhpxjIWeRANjsh06rRgOK82VPZVSbQMRN0AhoiQxRK1pxFhqvb+KagRygovAUPRwt3qngfZMlAYr0RgzcREroUCgiFgxJA10snEQT3nFPwCepfnVJjTFXs6RlCDMtV6Z8+BdfGhGjCEUmGsC1hNUPljKvM44Yi0jDTPGlZXO3bKUu2w0tDpngPXLJIDQ23AzcL8ZpwWuUCZSZFDd820m9Bw/GOv8H/2+BXMPRvGzuy7RWz5rD3CEwx1OXEXdB4rYhfOFVbLfku1zyXzsIiCLwW6cK4E+hxg+xwD96eAvT9l/7qNSlnK66TjWyIjR2BAksXmgdmt6dhhjTBnaMyRqC2z9Bjx3Obv6dPEdbrHaUBTX0pIkiFJg86GnokVI+pKasiZmc4+MqsyOcdP7hWrOGM1YObEq+OOK2bupgOatxy1QbLw6m7HP7664r79DTQW3xi6w3uOxtD5Ozare96tviK3BjNSUsVxhZ0zshbwM/Nkuc4/sA0PrIzy2iRIG2Y98Ogcud2ymb5jdLds4zd0MrDKMxpbrszAF/qWnV3zPl3xehaS3DCuHG565OBf8mAtIobfxbe8664Zm1K6/yLvYfCY+2uCJMb1iq2JjG2m8QcmtyJHeNQNmjzeZVI3MdgOiT2jb7Ap8DK+5eh7vtIfeZSrUpnb3CImYXUg5YYkHQ6LVAPudcQYQ5v3jLYnGodmxZG4jY8EaVjNE+oSycDObonc1GpHi9cJxJJOQK0CAW2JsgZV8tI9fWHnTq0Lfj53LfAy3fM//O3/w//89Uv+/f/xf35m3v46lqHzTHd/xzbes+dviOKqlqowByKlOCCpRU4FDJZZLVa0pJuq/VIcpea0pNe1AiQniayQ1OOl1AtGLEHL4uV7PIYVLQNJBDSxJjNLwqKllcmTylRDSfkt4CbXtG3JDDgJxSmqI0tZJuok9K/pxUxmkDVeA0gkaEvEIOKLXV1sa21afMo+1P5xTwvWCsPUSCrr12qPIeGkrI3aAr0cIYNX5V6umDBYMeztDQZXdWNawyBDpKmtTkytZQ2sZWTQLVlmSp+/BRyUxcsMA1EtnonmlAoWSnlGYD61BlnepeXdol6jgkxn1k4dMyvGGlJZGVlXgLZfGK2TPxMCHSoeS6CVI+DRGqCVvpEN59Tz8u4WXaVDQQKqHbOUgkAvuSyxRgcyYEkFxqkn0yIyl04GdJxTmQsJYi+uKeE5nkrzPKnO3cRIX5nmGRC26S0He0M6tcopbJ7VXLV0JQNUeiwshTnnNO65bQq0OLxOvJR7rMJIWWjAokxwBp1aFvSapOGoK7I1TOLYcyD7P62f5n/O+BXMPRuHu+8ItqEjsmPiskHuU3y0vPCXacelpHoRZNpn+y0TcjEil7qNi4OfIofPPZ7PAbo/h527ZAwXKnpxxpFOpxrLWJ6IQDEEA2p6nCQG2xWu0Uh9Sad6l5TB9Bg1fDANzszMzoNO3PkbDIZGAxIDKXas7J7b/BOd29GaWyw/MaQ1M1d4syUprDF8MSZ6AZk6vr3+gjT33NsrjteOQ9MxtoZGZnIwhDBxFb9n072Fbk/rb1iJpZENs9wQpiOjwvvG4+eBFYY3jx/opiNZbhivEz/6DXiP5HssgX1reT1G+hxpmj1fuAc0NhyD46f1inHasPeeH/MVe9lwSC1j0zP6nps0ELyDubQv2M4DrUkMdMzq+ccemqRMDYiLZFfA00G3ZAeza5ncDCZjNRKt42ihmSesUw7tNWjkQM/ObHjnbzFktumePu8ZWXPIPUE8B9thKY4CiSQrJBFGU/QminCUhk088NfHf8B1M3/b/WsMcJSmOhjDILXq8RSM1IpAocznk3B++fl8ul7+p8SzXRxpRsVdb/6Mef3f5tAQ+GmM/MPV73i0txik9oOLRNraGa4Am7g0cT4BgYFSKZmw4qslUnrdE6RjUl8cuXoyuaz1qnXJNnFESno9oiTxRWOHlhSWZrJ4AloD3sUeLhqxRaeWaCozFTSQ8WQckzacOvCrYGRCELJEVEtj20Bpi4RCxF0sH7ekwaqtOznrwvwYyTgm5ot1uVVNWQeaRBJTdYcWK7DXHstMIzOzeoqCriXJjKD03INaNjxSev0ZBumZpcVTQEbLI6KutAJCmLWrfdsMMGPrShqGGS912SrtiGhpN6NnFu8UOC3slSqNTBfr7xbAJRIxmomyYkmcl5a7M4ZNYc61dGrQUzWxgLQYnQkYGgm1bUk6fzfAqSipPKNIAm1xDKgYrE5E3RQ9Ig17fQEIDXs2aU+kI7mlhZXDyUjGlUb7utiLWtygliArUCHJRKOxrDYhO8Zl9SYRrB4J7qaAw5MMKtUAJXHUbb2GpZfe5VwpkgArlKwHK3o5ksVypy8p+Q5TubuMEVdZ5QI2jVYNqBiCtuxWntgbcrusFfzLjV/B3LPx/v233NjHOj/tM0fzfFyyCIay4PNls8rLsUSRStFFLOmFC53dk+MuejXlCaD87PgcI/d8LGBwyfGbi91r1+3TsTIjG4ozvoxWSqRUOrIblsWFLdDLPSlbHEqWtlLzphpZYZv37LIhWXA2ouKwIXBoW64082g3vMl/T7LFBe15QWgN0TkeUk87W17NB9LoGPyavd/y3t+wCuAlcSt79NjxT33HbCwv5QPX4T27tCaHjHEGbMDYgWDW0DRcP/T87bbhMQtTp1zFe2y74qUEbBPZemGYf0J1y3SYWMvAsVmD7nDtI2l9TyMtKQk7/5oPGA5Nj4SZJD3qO0QtmjtscngpiwaZlDk6y715TUiWTkesz8ya2TWOlSZSBEOPEy1xo1p8yHQceOx6BttjdSytQWwiaIMZDRhLlI6paRlMh0hmFXds88Awb7nv35Cy4KzShTtaHwgYjE1oNuQsZNvj5IGj3dAz8O3NF3y9/4bb/JaQhWC+ojQ/nsja4mtlmSWTicx6exG5LwU+GZblfD45Mm0e6WJJvdwd3v2Jc/vXId7z42R4322YxDNJiyrYPDFLSwE3lX05ZemKljGpx5NpJCOMDBRGNeGwesTJhpl4Ah2+piBH2po8BLSAH9RTVKcBy0AUS6sDWQxWDsy0GHLROMnSXL0cwhGwGvFiOagtK0mc7E8BohmL0dI7LJFomErVp1pElnQXFBsaT1mSUneh5EVvJ0omlyULKzhpSETJJHWoVPumCmIxVVPcMBPFM7E66ekm2hrAZiItvRxI6lnLwETLTFclK1JXzRF69mRtiVhanUCUVjN71lWPJ4wa6ZhxMmHUca7svejZ9qTqcuklZ0EDVgJJm+qBGoRUlZOOpIlODhRetKyv3clA1MKALoDVScLpwEve8R1fFVB+eq8jN9yBKkEaDrVnnUi52qgWS8KScAjhVOlsmLVHbIPXI0kbehk46oqo0MuIY+AoDYmquzy1kylaxagOJzMwc+SKXK5wmQAAIABJREFUs0/LqDQcVWtj9AIxy3lAXAAxy32EZcWIk9yJjsxAh+L4AFXpuGNNliJVyGop64QsgLq8BwfZVhyREYHJNEjf4pvPLQrw541fwdyzMXw48KF5Wapufra00MfYsEv92+KwLrddhN4LU5dpOJLwpGV5mCfjsqO5PAOUnwNqn0ubPt/m8jgXzOISYZ2W8jk3+lwC9/M409CLJNVzxEpg0A0Hrkhi6BlxOmHEcdQtYsvyODcpk1zmyDXBwKQt2EBWYW4aFIemlm46kB00ZuJOX/FFvOORzKsw82WcaFzgJ/+CwRT9iOlKp/qUI17v+O1wx1274nb/gXaYyUSSeeRDuiGOnuw2xMOKLhzYe4eNHtkadrZn9j1WN6SrG16MHxizp/txIGvEaaS7HVhh6fieORhSTEQRgggxwdE03PmGzkz0SRnV42iIjSI50kTPy+knXnLHKs38wA2xabEhc5CO0AvBGKaUOIrDJaEZYTtFVvmeH/oVQycYM2OLSA2bMq/itxzaDZPZMmtTvteNdEYxMROz8I4vOLQtM4arPDDpxI084HLAR3B25E5fEjLMCEYENUq2hvf2BXZ9ZPJronRcySMH7TGaCbSUBJ4laimWOLNxNV2BlLklz83Ps/mtltF09PlIkwf24ZdPTfylDjEw+C2HvicZRYk4mUvKjEypIqwO6+SQAcqSfFq3XRaoL+tpCo4rIhlBsNU2JDEoHlFDIwM9gSiOkRWxFgUIhokVopGOiaP2tBLxemQjOwZaHtkSqP0J1dYitNKSQ08Bcjo5xyUQzRfKkVk9ZaGrXKonVXGSiLUC1kriBT+Rscz4co606EkvVpjClkTWhJVMliX1uGjsMhEpSkDtq62zF8vUKQ1D4UGlgNAFRIRTdawFtUVzRWlbYqU0BilMmGOmrNJwWktVigJw0oZwWuVgeW5LhasijBSoWthMqevuLu9gJ4eSelaPIWHEkGqlastA6VQnNDoAmYk1o3pEDB0H7nnNe31BxJNOgZnS6sSGOwTDo25B1tW1OFSPNdgvbJ/RmQKwzenaJnWI8WRVnEbeyPfMWvr2jVzVoorzdZzAa2Vqg7an9jDls/IiFC1g1WFq8cKeUGfUUtFaM2tPetWFk+3ywFqPHOkI2uIkIhJKocbCcOMRlZqCXmRVyw85FSR3SfD2z8mefX78CuZ+Njo0Gw5sebIW2yk9+rFRe9ycXmbK/6kP9FQunhBGkrZFQwL8nJmwF8ZqmViLdu9zgO1PmRyfuo5n4O40B4uqRTWXUvA60UVT7U9UtBWq4GSH1RItJRTVBiupRs7CihEjI2sGfI40ORTNjRMylkYnbtM7HuxLjA2oZmZruZff8I5XzNpjTOZKJtow0wye6+mRTfvIXq7prLJyj6g3/KvhG74cEv/QfIFY5VUc+J18w5ert7wdbnlnX3F8vAIvGIn07LlJ7zD+GlYOR4czYMQSfYP6kd2+I8WJftzTzIZghdRZjq5DOiGuPCs1bLsGSQ3oSEvkhc7E0NBJ4ibPPObI7XzkzfgDt4PyRv6R9Ytv+JEv+M7dMtATfSIYzzqOCDPXusfnRNKGnBscM1f5Ld1BGGNi13m+Wf0epxlPJPgVMXuyiVwd91y7e+bUcMh9SbHZlgcagngGt2LWlo4BybkC9lxaiSGs7MBomwLosDxIiXoHWxzYRh9RlImvCLm0OQHBISBFYH3WnwqNhLK25xPT84l5KRBwDK3DGOgjv44/ZcSZ+f0faHrDF4/f0nUr7uSGJHAQj9a0YkmElmawemphW97xiRVloxJUFqDiSjNfKY6uMC0ZJeAoc6cAeCGSCuux2D+UtT7wKC8YRMl4hD2NJDo94AjsdMMpSBQ9gUOBWkntSdpyToctuuTLdh2FJXkwL4qej7KMHFjKiqqRrJ5XfE/PzA/6FfdyzSj1ehdOTQNNgVNArCsjnCtDi/Kt2P0ZwTMTxaE1kMm4yv0II6X/aKdH1swEDQyyKTrdU9qvvF9RHSIBp6GmrDsuly4zZGZslTUsOi7h3Bi4cHFGIEpZaspJAZKlQXCiIWNwwEiUlqCCE8dOy/NymrB1PdbShzDhNWJUa+FGqSh2HCnr1Y4VKmX2coPXEggs52E0csUjAyuStPUYiZnxXJCw+JaqjRR1DLrFScDgMacqXrn4V6+/sqVLpb1FyRrJ1ee2RHrZM7DBSqAhkHClDYpGnDwy6qroDxEaTSQMUfq6zFlJ1z9wjZdAy0xSg2U+s8mUSl4rqVT2as2oVW2mlZGX3PHb+SdWV1/+su97Hb+CuWfDv7jmp/GmVhl9ggn4WTZTOK3ReooWlm2XiphC+5aYbxGHX2ro5MnhztGyfPz7TifyyZP6xLiIak4/nxV6AGBwKC0zQSDVxdSdJq70jg/cgvQsy+es84HOTLXSFcb6wpVq17EYezJZDC/5lg0HPshLegayrtjGAxs9EOIKdYaI4R/97+njgZ1csQkH1makPyS6uOe3jxuku0dlQNsVa7Pn3+4njs7xKn+gmw3/JnzHnb/mNh1oFbroeH300M3Y4chuc0uTe8RF/hDfcL2aeKUf0PA123wguETKlncqpKuWNrW8PhzJByEI3L/0GBMRb1gHIeUNsmtZy4pXUZFZwd6xy2tM2nE0ESctWCW2hqN9ZJcM6nqIZSklm2CUFY2MbMOAtwe6NLOJI/fuhmPumGRg8pF/Fb/jzq6J5pp1GhACMbcIA94LJgd2fYfXllu9QwXuzIqM4a39ApNnJMM6HVmbA5BI2WPkQMoGFeFgr0oPLQxX3DGwwejE6HqyGo7SV8BfU+7VqGXJnNcprq1IFo2UWND22Xz8+FAMo2sJFvyvPYL/tJFmQki80YHX5idyvmV2hnf6qhYOlObOV/rATM9Ei17aGxJ6YpCq45SSqmtkQLVBKytnJZK1JcmEEDEiOB2ZWHOSbtRts1gcmVZnVAINkayZA1cc5Qo5pbsiFkFkYVMcpibtS3BbJ8Kp/9uSdi2sWUnkLaL8wh05jVgpacqMZZAN6BEo1bOXWqqSEjNEPP8/e+/SK92S5nf9nrisW1723u/1XKqqq9ttt9oSLYPKAuQJIzAD5BkTy2KC/BWwBBITBgjxCTxBZoIYMGEEMkiWGDBwYwuEaGi3y+7qqjrnve1bZq5rRDwMIlbu/V7qVNmcplulE2dw9ps7M/fKtVZGPPF//pekq99YftekUDHRSDbYnST78SmWWHh3OZmz5j3lpZhciErWE2d/gLb8XojiSUxUTPncI0VVnDgnCRVOoV0/1eNAd5lZOV6GnC/eSI+gVJpQlJEWIzOzOioGGgkcdC1aAlBTccKK0oWR2XUkHEGzgXtSodeWJJ4hdQTbsKjHkoiacJKti7Ihbz4nmYAT6NI9venKWczitoaFXDbma2cIjNpRs1DLDZPWiGbkd9YazsjcI+6jBoxkvm7m9gI6k617EzWBxMKiFQGLSiLgECyV9FQEah3Lsw1GPI4Br47AHb1cAlowyFR6bDln1ZeZcSrXMBeUawdu5qHrlu+IbTjR9QOxilj7nQDiT320u5dMwx/wUBh9okB6r+1ZkLOzgvWxweBK+H58mtfQ+jIBPUbh1lHg4U//vU+Mj+q4X7Q4Pl44Hz/nUzeWZVEB2eQ9nQhX3LFoVg3lfXxR40pkpGGmwUmGqjuOJHXs5cgL+SkxLtybz5hpuDVP8RrzESSwomziwDxv2NhjjpiyFUfZM/oNd/KEUHe48IZL/oTny8SWO+b6SAweE2CgJlpDpT2NLuAM3buE+sRub7CponVH/OYttzyj8hWtduxDoNU7FgnEsWHvAmJ+wmvr0cMEbsPVPHJta8Qm7l90PDmN+Hkm8gQzZZsQa0Z2egnLgfumIh3veDJkc9BdrGl21/y82nApgXc85UhDkMCxrvlMFg6yJ0WDBLBtRASG1vA0DDRxQUQZbUOykWNdsehT7ucNsckO56KBmY4kilqwZmHLkTf2dwhhwzu+5Pn8GlcFrs0FkYDB0qWJJi3YNNKbJwRnOHHBfr5hqQwDHUlKQqdaKj2BCEErjEQW9UBApUEl4xjp3KJ//P9cRMyrcvKTG5JPjax0Tibgvl2PzV/boeqI9wtd/4bfmn/Mq/RXQXP2qJ4LDJjY4pjQNa/1EUJay5ClS9qe5zNDFicYmbPIQTNC1Mip8KRaDIGJmuURAZ2ico44WrmmIXLQC0Y089p0JuDZc+AGh9NYzGiz2rOVIyM191zy2M7GMpLUlGJrRWse8cfOJySnEARs5ufJhpmuCAEicS0OdKXFGBYcOQsh5qgoyZhPLRNSMkqDGHq6Uv5WuaDjoSA9G/DiQBZmcdSalbGd3jCutiKSBVAeg2Ug0hSz78fihoSRiVZHTkhJUdHz51vRSS9jPjeaDZyzPWOkkpFBGzKgEM9t3Cgeo4oW4+eZFjTh7QiqSDE+jios1GgRTRhr8EREZipmTuTEhky6eeju5ISMhq/Nl2Q7koTX3LFKOKKYfJxEPNlcF3EMtMxU+HRAUsC7E7NseEBh12tek3RmdY5QbOlqKk6FVk5cplfcm6d4WejpmBEchqA5oaiw3khii+feBSA0nFiVw5M4co5tT+YzHkkmmzmb0oHKh7Re7wLCICA5hWRmy9PT13j5TZz79kuv74q5D8b28gIrD/Ewj6H3Ty88K3cB3ufYrZPJqs5aH3/8nHWnuYoQHr/0U0jbr8KLI++gecvMFchjouUve/1jtM6A1CVNMGvfeu3yxI2Q434MqnkSGGlIWBpmLBP7eGBjbtgQ6OTEP7O/wz1bRMDZyDtRNvGOQbds4pGX/Vt+Yn6IJsfgHV28ZzINR3E4Frbxhm24ZaN3LOq52y9gZ0Yx3FpDP9Uc5ktqP/JyPBFUuXCeLhwwp8h2qFjqHQdf8ZofkLYzzTwg9Uw87HDLgWDuOIaa1L7DThs2szItnnp+htsHOnOkxuMFrtsOlQqpD2wX5bPlDuuvuK2UMbWEiwPb+4GtNkwEKnvCecdbv0MNHEdP0j2naAnJMibPyVUsTrn3NW0UDBX1GPCysJlPDKZmdA0n06E2cnBdNmnVhllaBluxpedkNtQpoKI4ElfccscFs7W4FHES2S8Dk9ZsY8/L6RVDUzOI0EtNoObU1aSomVtDxCm5NSaZ0xkAUSlqQceksexu4WFaKZ5iq/pQVgNqfYRW/7IhLDiitbTVt2+0+es45gQ3lWOpPbUqTiNacli10CVEMuKRtMaqEs5u9+t8NVNpzXw2Rs2FlWXOLh54ajkS1ZelcDXTlYJfrPy2fEwbOZFU2HFi0hYvM0LkRE0ljqCGW66ABZGE18zpW2hyC3FFYs5txcSGExFbjqq4CLBSU/Tc3s0jd0Gigkp2bhvZZEPg9T4UxWhBmYW8cRVyTB73LNR4XcjWsguhGNSCUjHTykTU3IA8W01JEU3gWNRSyYiolmtQar2CJEYVRmpqWQqqlb8n6yrgSl7pC97wTp8xsMuf+YwACQstOX0hocXQ3Upk0B0LjgWPIat2EyC6YCWVJuaq+k1Etew44HUo0XwQxJKwufRVl/mQCrYUfI5svOxKGz0VtFdlIVLhyCY3RrIrZSqNalWLSmDSikoChoU7LkAMk2mxZsgziq6cxXWdMo/uB83pEyoEWhwBkZ6UlBRroqmz8ToVObwr5HxXLEFrjmxKfNuK0OVrluuxvB5mX79sbRKlyob5LDgmIpaRBscabfZgdAxKJTOiiTfuN7gelWmcqJu1O/HtjO+KuQ+GrTp+9/bH/J9f/vAh3uQbi6CV0/apXxWY/JOA2rqYPYL4P/n7D/7Up95LPnyC8pvDj/lx+6+UjNlvWgR/UZG6+srl9lnSmVSIurfSFCL1ghFwmkNaPBGT7XzJrZyKmiNHvSzTyEy2x90xU9HajlkqvFn4ky3ccsHFcuLe7glqkEXZmGPeHRnPPc/5525CO8tVuuam/ZyZ3AqMg+fZcMMonnGjtPPCvBvQdzVV2DDt7nnnn/AT84Kfb55xFQ68qRu25oATQ3vv+I27I0/8HYMXDr7Di8AiPB0D2yoQDJgKdvWBEDf8xukdd9bxYuqQZcNd6xhraNzIyRtwn1HrAaOW4Ec+N3e8tr8Ly8J19znHKU8aYQ5s9A1UDZVMbKJQs7DnHq0UM89cceBGt4QqZuTFCCEJN+5zks2cDsXnODMb+TL+MSpwl+6KijFyEU9cmHeIfMnBtkS94ml4zVU60hx6Dvs9ziQq6WnSyMl1511roycanbkxl4x0eOkxGrLRpnZl8QkIimpAxCEq5Y45EbjgITextI7e45j+ovt7odaB6jSz3T7/hvv4u7GOIIGogp0t2BpFOIUWYxM5gcBjUKxmX3/HRNBdWRhLm1FXjq9HNXcevExEGozOGEls9J6RFs9CL9tc2GtDzaEsemtxlRjwVGTV6lFyYTGTc4oXibRywuvEXk4MuqFhZpGMFM0YRNce+5r6kBjUsdeh+JFR5tvAGs3VcZ9nZ2mJVEWDqCXjNP9tkQnU4iRhyRYo2Z8uZxq3HPJjWvSr4kq6QEv2NhuIJZnAYvAEWr1lYFeQJB4KEIFIyywZGTMieeVYfRYFRBXPlPWWWp/tSIIaKo65W8KGuRRYD9m3q8gus+pWoUCWYqwbqFzGJDGECGLzHK9abGMIILl9OLMl0WPFIJoY2Gb0idXTTqnomaVlVqgk0JHburMaTvKENdUikk3SYcaVSK5JczqGlxw9mEUrFl2LxCJTyIhoxOqU1ahaWpgYcmoIUCLAFjWF/5kTIBbZIZJ47TYEVSapgAWjLvPeyIpnk6G8IvdbtyQLVie2MjOSYxIThlmrgkhm27JFBaOOSk4g7lHKTUZckRGoiQqDq5liyxxbhn78rpj70x6xH3i+eUPNxLBGqfzCsRZBBU4/O2eXIY+4aJ9shSr5xrR8fClWa5JHKRDf2G599Ackk9sDE7D/huN//BnWnx+ZMz76w7ZEM93rhgdFkSUpzJLhZsdI0hZlIcolM46aAz01p6LoSpo5E3eyZ0gdtQx05shQbTlqzWgqenEkNkRj2UbPRbrmOe+o4kJvaq7tM34uT7mprqjSnOF/LyympZtOnKhIxjDVntNnNfswoq4mLAaXEqNseWO29G5mM5yo5hOJloYNXVh4lbYk3TA3jqej40X1hr4PvGos95VnkudMPtE1PYtruG2UGF/y0uwZ5Y7YGG7NiVAH7s0FuwFGrngrYJLFGo8VpYpZ45c04GKCEFmaTKi9l5Z6Ub7GsjEnrrs9J7PjZfopvdRYEtvlxNdqkaTMpuHeWsbUsplO3IenDH6PCdDKkYtwTetmetfiZGEyz3Bp4Wv/GXEwDO0lqpEmzGy5IVQVE5ZaFtpwwpmRe65YqPKuWh2qBiMOSySQQKW0a0BVsJI5LeHcxlsX2kJmlg8R6Q82Fpq/B/UyZ78s9+3L+X8dR1XV6EYYtGfcWvbcsti/lI2/xdPoHaPuiwo0i4+EyBqwnrWMDhFTGCEBq2QjV3WIWLzOnNhmorzUHLXDSmlL4jknF5RkgEm3LAyM8pSFJiO4Z7Noy6BboGNgixPBcc2g2ZNtxXzDIwECmjX0hjsaDEF7RHyJlXI5JoqKRFZZTiJULJhyT85k7mYmvWeeacSRNNGQrVRyA86TxODjBKZhUYMRi5CRQ4OwYLA6oMbh5wVMg1qHZ2RZMzoL023GYktRZDRxjr1Cz+cjahZU1DIDcNItUiK0Zu1I0uesWWxZn1Y/tLW9vLb8tGCxE16USIuWc7eYllkl45oSCGvofOGoOQKjdAQqZnFZCACgC+hMjjxrcar4ggzO2tDJCaMGoyGniQAtQ0bEJNBrhxOoGYliMrdSDIu2OYkEishFzq3TnCSRxV2GmZmKXBIuiELNRJMG7uQJugIJhfeZxHNPBVSsdmCWSCUDPkVmKqJ4ckZDof6o4ot40Wos/nFD1nlLKEzAKh+HZE5mg8XpTFs2OmPpcOTCNfM1W71jvIhc3xrurkd2+x3WfXvdhu+KuQ9GGK95V18iWDKp9FORWg/ckjxW+Ne9V1M9PC88KgrX15WJSeE9X5vCwMiPz+U1Hx7Dh5XhBy1hjaTUkm/bx8fxDW+BPiy079mh5IkoFlYDj9sxrGqyjD46eqQ02mZjGbhk1JaGiZhy5p51WeM1UlGZ/OU5cEFDDlSexRNMRUoRsUKtA15mTFp4554wq2U0GybrmUwN9oI6zGzSkd14oJ4i77rPWDaW7TAxKai9JZqWqe6IU8c018QQSFYZ2ojbBvYnxQwDr6oXXJsrqqUGUV5sZ2ozMCahdgFbR4bJkhrh3jQc5DmjKkdfE4xwmJVn/inT8prKTdynip82T3DzNT/b1HTxmgMdixhiU1GnyNXNPU/NVzRmQ9SGydbcmAu+F9+SSPSNJUnNSapHZHUhRMueE5NxvKmeYFJgEydscLz2X1ARqauBdhlo3Fw6PwavE5UsiDWcaBEnVMsE1lHpwGfyNXU48VP5PqPZ4dPCPh6wKTL6zI0ZbUMntxzkCRHhQehDvt9xWIRKehLCXG6oJGug+mNbhQ9vSn34+iAstmJwe0z8Ts76qwxvPS8uvyDWE2/9Ba/tc5DMaApaI+Ly94qZmZqRDUZmlNySrUskEmqKx5xBJJX2U84ijVJx0Gw0XRd+ltGElWwrEQtOf2boyaorzIrPc5j7uaDLyFGkI5K40SfkKKgZpaKSnkCO/8vvl8vPO3kOGjFS0XGTOWBpRsQVvaljEYPoKvFYSGtGbFFQWgY8kVl9Rn8SGJtySg05r3a2rgh78rG2qmzkSFQFWibZ5Lahz/50loBRw3LmU+fP55SC8/T0MnKnV2jB9ZTEhiP2bGe1+iRkNDLPv2SETB64g6zPPLchV8P3fA0zlmXLLK506UgwNSfZZLW55sKzYWKgptU+q1DJYqZzMD0RS6KRITugKgU5hIhnkZk7nhTubASNWSVfRAcT7fk7XRNpdGaWHUqxKdFsup9Yc08f2vWWobhA1FlwooKnLxIEyyQNFT2oEqTBE5mk4cg2n4vzOmtQgVF3GLmn44SqJRZEz6BYFowojgmrhkruSAWZ9RKJ6jhSFUeKPI/d0rEhc/cSFZ6QW+eUdroaJtmy+IrLbuR+6JmnhdZ9e+jcd8XcB+Pu6z8ioUw0vFdEvVf8rIXRUgqfx+jCis7p+0XRmdbwyKGbBc6qWXl43iqi0Ozetn4BHr3JB2/K+49L4On4lvvmgmu7trc+eN57zuuFsLlGp5ztUNb8u3XCXdHC8ryzaWX+/CM1NSM5hNkVn6WaoUjdKzeQMHk3isHogtfIk/SGRT1OniApEE1ETHYrG7TCJ0/PhmDhqBdMYphMhw8LENkOR7pRSMNnJDuhy4SXEywti3GcGKkiEA3hVLNNPRujHJLw0rzDS+DL9h18tiUMQj1OSPKEdE3QN3B1IjkPxnJnNrzbXdKlCgmRsQakod1e8U6UQzBIL/T1BffeYFLglGr2/Y40NYi9JTUONXlnzpKw/RaRZyRj2bqBrTlldolbuOUZixja6cRQb3ijLzDA8+lrTLKowh92P2RwLTblhTxSIUY5GSXIhtlZKl1wEvAlkWNOVd7DpwUxgbGq8GZEVLiK74je8cJeY/U1NiUGs6E1PUvsOIWOqprwLhJ1YCEycoljLgtPXqgnKowqDQu1jAzn1tuj6LqPxoe7jCo7rccOjodf8JrvxuOxxIXr5Yal9vSx4ra+YmSTr40YRm2wzATdZM7W6lqvgpWeSk+MXBCoyNcqF2uooWJhoCZJtidaCRZOB2pyIXfJLQMtAw0ndgSVEs5e6GNn3lN8NK2tC2PmMwU8aIUUxaqqw8vEsi5Zmr2/koCKISr0ssutY6kyOiirHCHhZcToQkpCNIqXiC1JCBWJqqT3GBaMWVMsciswiCfSsKolLQtKzmvtpQGFJLk4nGlR0Ud+cuQPKHnmazhwwVtmWgYu8RKZcRhVnCzF3snSSs+JXfEsWwu3zBUM73mtFcsfclJCLtcewIZGBto4MMgGIwfAkYzN90JB7+Kq+1RBxBKkBrX5tdwxsc+fr7zrSXbksLGcFQuKyMJMk9uMBakzBUowGjGFNwdCxJVz0ZfwxmxGH9kQNeZrrgXJl9xe71LPSbJtl5GcnIFmQ3ohZkscCYhW5zZ7raesWmZhbckaVbZywJDYxh5jFk6yI2jmOS5qMQK9OlRyjN2OEzs9MGm29Rmlyi1yzd+dfFY8iYDTmaPsUa1ZxJM0n4cgOeFoMTmvnJB44Dp+O+O7Yu7D0d/SzQueAXgUufHh2qOcb5D3h+NsUyIBVph9dVtfW6vl5nloWX7i78hjRO7DduhjIujjxyNXesuLRWlufsw/ftrQn4my1QevL5PBe+atH6CA5Qv/ENi8PiZ81CbThklANNPms1VFZJQKsb7wa3LIc0ug0YE2TjxL17xJL2lsoNWRWg3bdMfJ7Yki3LgXDOEik/0R1OZIn0s5Iinx2XHAzML3+iNUM/2u4m5smFygu4PgLnEJqjhi44mdBaeOnQSepneEWCP2xNvuOUkbbrTC9weeLHfcLhN919DsJ4Ioe25hitT2GdfmJUt0xMpRne5IAj4Jg7VUIRJsQxVnfm5qRpMwy4FjVRVX+8DGzNh6oG6PVKeZl6nn875HtpEX49cMVx6JCzdckIxjo0faNCJqsMliZsOh3lKlyC4dSNZhmWk4sJcDX+kzGh15Fq7xKRGcMjtPq8NZUG1UoQlc8lWeyJeaf2p/B8uSo3JiYGMPWI3s7MxO32D8FUZDyZM8FmPZkYqRIy05yC1lJEAypgueijmr5dZW0C8cjws6JRnQynDs77/hNd+NdSxpYT7cM99ecahgbFucDAR2QCJJ9ipUVRLFAV8yyj7phoQlSFWKAgHNma21zLi4sIt3JCfcSyapL1TURCp62tRTa8/WHosJsAFqgioVyiQPiBiCF45NAAAgAElEQVSFlyZxIeFQu6aCPASc59ZaZMuBXjfEcmflrNaBwIakKasudaSTBc9IjI4ghkE2RFa/tgVrEjULSR21jNTFDiQiOHUs4lESAUvFiOLwTMUPTQrfzmajZNWSdwuratuW9rKIO+eXZhqO0jDwBT9ly4Gfyw6j2Zy5Brxkjhb5k3HP/mHZUC3nK+E5kqjXMgk0rymNDOeM0NwqBESZtGayNdlbsKGmWBCRs1MrFpJYap0ZTIXRrHd1MrKmxzq1zGXzn87CgNxZsrqceWpxTTUq9IiM0KWMqGlB7SUjdk5mglZETayiC8jCHKuhBN2vYpyQPerwVDKR1HHBLQnHrO1549gSqOWAUcGkwEhDLT2KZ9Y5c68lMWqHY+TaXiAIM77c74BYUsnlqHVilIZ73RHJSvwkhklazgpoHgz+B2qM7AlUuZtEQAR88V/VaNAJ3o4nJpkw37Jx8HfF3IfDDDgcczEi/IVDHv//kZ8QeVdwhrzPO1HIp3vhQWVVPXqjX2F8Eh1cf85/c8OR3z39U55fL/y17gf85a//Eb9/ueMff/lXPv57KiCP/b4+fN9im1ImE9GIkUCUqbTV1nDnojITZadHRloyW1BLSzAWrZviZWATJyQNCJYxdfyMH0By7OUeiOz1jqfpFa+W73Gv2Y4gSjYMnV2NoNgUMDHy8vgWH1ucTrzbW3ahJlQz+zhzsp4mTqSTg1Ax7wO1mXhib+gOnrH3mNrTB8dRf4N5vuQqCLu+5yK8pXN33D1pOZqOr+NTbquOTTUyxJb9EqhT4kk8kmpY+hPeKWFpmFzDF2PPqbujT4423RFdBD3QdxWqgcEavJ95Mky4+p5xqnHmROoSk/X88dUXKBa1npfha97qCwbdcBOfEI3QjAPeOIyOGNlS6cIchTrdMqeGFCx1Dds4cdBnBAN1GrhLGybjGU2Dl0BlJ+oU2DEwJYfnxK1eMqaWlBaCqWiSIXnPJIFJO05kgrpnoNE7buQZAIEKQ8IzMbAhqiDSMTMVm5v1PntMK/hlN7xm+wgbSfLtEoZ/XYeMgcMf/BNubie+fv6bDLIl8rjVlEv+B4rE+5uyhbyQ+hV5K/OYaG6RPwuvuTaXGKtF4BLYygCA0ZmEYxtfc7BbDI5WZgbdYBnouGdhUxC2nN5Q20QOkVqYNWZFYNE+znhqZjapJ9o1hCk346xmwnqSLFAYxBEZ6FSpzAw4HBEjkUBWnC5aF1Xvgk35d6KQaLCa+ctr2oNlZlGHEInSwHlNEGb2hbuWxRlKokk9yeRUiPP5PCcKTFTcUzNz4hnZHDcXJmvSQ+aj5nl01lw4eJ3O64dIpNUJ1ZmZTea0MmFJWJ2pJKOJ6fw3E1rABZGcvDDTIQieBdH5zI9MRalqmJi0JcmYN3qSiiQAzutXuQJeF7amJ+A5FYsWPXd28rGMdHh6KoVRFgxKJUeC5utrBZbHNFmlXOO1q5VVyr3UoG25b4RKToy6IYljKOuakiPDFMEr1BLxOjORkxoQxRVUcBMOBNsQxTNLZkmua2BueEdm8WQLYsPRbDAxi4aMpBLHRv7+nLtzjlNB6oxmzXMiYsr1q/XIs3iH5wj1t1vIrVfnu/FoiKuYxRQi93sVG59saz5Kd8ijqF/F8pFaDzh7b8nDzfON43EB9xEXb30ggQ58Pr/mX7v+f/j+ceav/Xt/i3/z+3+JtnL8h//lfwFffurDwspver+F+3FBVxEJxAxj52DDh89TJnuTdUdU9Fjy9GXJjuXZgy4i6qnklkVqDmbHLA1TckidybgGMKnnT8xfYGDLvWypUsCkgJ9OXDSJYCwqwjYcWWzFYdPhhxZbzQSbCKZmGwNGAr039M86dkPPuN3z/eEVwSg7/47GWJaxJdYN6bTnyEsUQ9u8oh0CURqSGsax467b0eOQCK95ymIXWrGwLDy/P1D5O9zkiIeWWCu7oebet9ykCya/sItvaKp7ElfYMDKamnaZMTHyzlyy8xO19dx3zxlSxSvznB0Di1R4eupp4VY9g69RoPcNrTvxbL6nPpwYbYXfHujMxI/db9JLTTuN1NFwZIfRhdum4UTLte8wKDOe2cJBdnymP8Npy4JlFM+NuSKK5CJRBmwK/JH5i4BhEUNS2JBTKawkWiaEAdgylTYNEtC8bGaU+RySvn4PPhAMffIGFaa6IwTD1eaXiXm+GwAyL+zbp/RXA5UPhbfYsGBLofRYcGV5UESuEUQZOV10QUQQzQiNSqQyE7OzBFvhZcmohjp6aRFdaKWCNPLOvOTAjjX0XgRqHRh1Q8Dx4MGZF89GDqhaKnEksvGvMJVmHhxMhynh6EmyB+aCx6IsCk4y+2/RvPgeSjeilb6oT7PAI7dkHQ0HokBPgxpHUkdnevIsljJxnZZc7nqsxpItvYow4lnXKbnSxcmCKz5yszR5K3I2NK456jNeYWjlSE9HUo9hoUuJK/OWa54wS0bRjCgRLdYlD/y4XHAtGImgDYtkmyijK2q42mA92izJaiGV58RYuISK0MQD6pYiGDGFm5jFA1GERXNBk5eF0goXBQ3seIvTVDJTi7myWh444Pk9ZzpamdjIhBJxCVQcKvka5vfL57BNI5ICi8u84gcFfEH9yvr6ii+JNExrbrnE3CFA8n9GspgCQy/7fFxk4+skysFeokYyS06leMXl9w+qWCwmRZxZCGIYtQUbsZqLas+UOYXEoixez7snByAm9lwzULOwQ0gYAy4mKpOo7fitGwd/V8x9MPb736b/2f9dbpIPi60PC531KRMPGXGPsg4/QvYKLCueT5/6D/lCq63Jp4jij/8vtBL57duf8K/uPuPf/et/g+9//gWVya+rC9Pj08OALjy0dB9/vgU00zjzRJC9kCwjUXNMTEJwzHRypEs9s9aczI6lcDeK3zdI8STDMaaOk24JyaM2+1IZnag1q6qO8pSollYnoslkXmsEsVU2EE0bKjPwXN9ytBeImVk2MPoa38+M6YLZLmB6xOUYnSpGerVMDq7dJTN77qual+M9pyX7tJ1CpAozT8YDWltc0xPdBWPrOLLlbbXjrVPquLA73TDFGt0YBhZ26Z5u7JmXF9w2DbfMRGaecGLyG+7aPTEpLig9G6bYEIPnZCw3zY7v68/xzZbe1AR1nOSKqDWV9vgwc7ItB7spyjLL2/YJV+IRrXiy3PNkfMNt03LUC5xJmBg52I57l20ZVBvunM2RS7SZw8jCF+EV23gipobNEnhdX2XjTgRJGVN9Z19SMRLJfJJUuEGeRDQm2yyQhTMiAYMnCgipcKTKvXdu16+JEO7jr9h7D2RkzsUR3MLzq5e/4B7+bjwerm2wVUM938OuJamgYvAyUOmMkYqAkLQuGzMBnRHJpVMjkaCJNk0gB2ZzwaKCakdiZDQ7FuriM5nDqwYqHBWvTM3ObMrar3QcGHRHLSdqIo4TThInNud2aRSDV8NG7hGERWtGOmLh8gWtMRj26ZbOHLAkkgiTtjiZGPV5mX8zfT1IjRYHsIzTRF7yFXdcZnNtqUlqSeU+zYIOoVJLSpFg2mIbUlHpQBTBl7l7oi6tw1y8VDIAimokGpuNaCWbEwddi49clARJzDi6mMsQjLDjwI254prnDFQIkYRgNGIxDxYkha6QP5fNnMLVakQrFrIdkME8JEecuYjrOpKLZFQIkhmBs61JWhXG4olNGEEmRrMpdBmL4YQjcZAt2XUy+7MpHmTAaCrRWatgYe1U5Ta6kew/JxpwJJqySQ1qEQyVTERxiC4EqRHr8JKpIPPqUXlev/ImMaktIXJSCjVlEZsV9gjKwFKa9Ou9uHI0k1YEyepTkSWrtlkQPJ6BShQXe2ozcKP7UnAKjmzkg0JFjut0AkZ6Rt0XACcj3RtOtPHItX0BJBY6Rq2ZGs+L5ZbPtt23bhz8Z1LMicgT4L8Ffgj8c+DfV9WbTzzvPwD+k/LP/0xV/155/B8AnwND+d2/raqvv41ju3zxA67/4Dk1MPIrZKKWi5cXrPV0Pr751rEiESvxdEXzys4N8s/nVgh8shWlM6zqnzMHTnAkbFXx9NlL/sKX33vvJa1fW1sfHjtkbt8IevGoDbZy44of2HJi9ntE1y+DwzFnRpzWiAijbolSoybblSiuJAQ0ZJVQ9t12jCQDc/JFeQZ1GFALvTh6v8eFhWhqYjjhUfbpwDaeONkLrE50oeeZ+ZpWJkYzoaZl0g5V4VQJfhHaZeKL9DXH1BCsEiphm3raFNkssAVujWWxyug3uEXY6EirJ6r9O05aUzUXvF2+x1gJLgoXacanE0d7wfWmxpojz5ef4Nt7/LuZt3LFu82e3m14fvEVxgonL5z8Je28YKqeXd/jHdzMFxyrPSlZjFEqP9FUFSko1/6SpLBoTaDiNs6MUlFNgcYqIUW8WzJ/rxKmRXh6MLxobrh2G3rbMRuLjxOtBI72EklKjkVK7OIdSsSKZdGWI/CMdwSrRBZG0xRzYM8m3nAyHVYTziZG9SRyuNIcPYsIQWp8nBCTStZjC6KoepycigqxbFTOoiD5xGYHPv6uJYwobRiI6c9Pntef5znMdRsuf+svIv/rP+T59BU327x4eRQrEHUhrXxgdSBZ/WmKM39Qm/EPlcz9QnGrpYc4gq2IuFIHBoxm/zSVLIBZNDv7j7rFyYgiGJ2AnM86U+dNATnPUwiogNds5aGai6RBixJRMoo8mhqrIRc4JXuz1z2OgJcZx0SW+FREckLFLFCLMmhW0q5KXS8LkcCRPZAI1PS0YFabEAhiEDxWEw1HjCiVnjCijDR5ltfAXIx6rQpW5ozsyMxG5mzZUpJcnS7EJJA8npnebLnjsigoj1Rsiz3GQk1PFWbeumdMsgHNbdCThIxwl3m6ymcGU7hqlRxxOHxaqJi4MTtSSYuwKKITqxuBiLJom70uMYgKR7vBp0hKkTYFPLeIsYymZaDKJs4YrIwsWqEMGImPWqMRUZOvu1bn/FlhwpOPKUlNR18iuk54QjmfCZEJk2CjB4Q7bvSSXloyRWgGha0cCZgCuKyGz5lzF4ogYiQLIWoZyjGvo3jfSUDUsmhx55NsXWIEVBOikYGOWWpWZDCQN58OpaHPV0A9KpFJ5sKRtKCGURpqu8t2QMUWZZEGMwsVLdNhIIYF6z7llvEv+b3/1t7pX2z8HeB/VtX/XET+Tvn3f/T4CWWy/E+BH5Fn+P9NRP77RxPm31TV3/+2D2zxNXfiGc/Ku180StEjsRR0j9qmukZ2rWMNAy6PSXh47qoMPd+U5bEPQbr8xnhGfufN7/N/Pf8rJJ6cf5MAlwZEhg9fRJWgivfMbvPxRwCg5iMxA0XAoQ2z91CmHE9uvXgWRrInWibTauZ/aJfXaYU2DZh0YLBXZxSmZ0OtMxd6YIkWwdKFmV4rpmrPgsXLlDlxBLzARE3vaoJWtAiNHQha4eSeq3QC4/DxPmeJSoczM9FYTtNFDgO/H7HtxG8P/4Rkdny9e8Gr9oJZhCr0fHk748zCUA/Uks11+3mDY6Hb9Qy+Yekiszg+m255FideDH9CdHsq02LmI8d6x61c0JsKYeJUK8/l51i/5863tMeKUSvmWRi3llPXcfAVLiaaGDgaj0s1L/ufc7raYtMRZyZGbXPeo/HsphmCsB1uMe3Ivd3TuJ7ZX1E9g2001G4gGqE1RxYM1Txz0g4jga1kO5YonjYdCbQEY1hkz4/ltzA2cTQ7PAt1SIwEFmnxKaBGcLrQxZnetPSy42QFxdDFO0a7wTMjK82gbIQSzaPvxRq7o/me+/C79Ml7PnARb6jmidf9m4/u7T/D8ed2DgNw1rHH4aNhG47cVlcEhEFbahnwGugYGLDYaMAkWk6YONHbrAoVYzGaQ98TOZoraGSSFmEiaZUVouQFL5IV2iqGWmcCM15nIgLiCarM2uClx6sg0hBVidISmDhwRQJm2eQ2qyyZ84VgFAY6MFlBWWukSgPqpLDcAi2BWQIT3ZmrFtVzoOUkW5xO1LLQ6EidJmbj6NmwlNsvicWSE0dqetAalYTTGRBEI0pT7nIt7eocaVazFCQwFouPDR1jiccacHQ4BjapZzCexdZYFiJKoCGwx6C0DKCaU0+wJCoq7QniSbq2pyUXwGqxuuAlUacRYxSnCZcOKJmjesHIKBlRzMh6g9Wc6hHK+5e7lSDZAa82Cy5M2DTirAVZOMhVUarmNnwocfWjbgtKqFCUrZaZTgeUhV6bnDeLwcaAs7EYQCs+juCyf16eO5RITbSJWWteyE/ptWbUHFOYFcwTHX1JswgEAFlFPIol0KYBxFDpyERFxy0qnlEtWrhzeib1QPbMI79elTotaIlqO5dIuvIWU0FNs6FMLffMdEUssbaDLSfdMhVED3Ib12jk2GyoxoUkEEP4tSjm/gbwb5Wf/x7wD/hgIgT+HeDvq+o1gIj8feCvA//Nn+aBXU8z95uczfbN4xHH7CyCeLxLSI+eu/rmrN5aAozld8V+5MPxyT+fJ+CX3R1/yMJ8flzZckNbT7juYwTue5uaH4y3/NFmD6sr+fkP+EdIYflcWh6XNVsRKKToHDQTgJaIz8RabI53WT+7GuwaF2M7VpK1FJ3QYjwGqCTvpFMQrt1V0RBVzBLZc+Dz9BW9eg7mKSNdaTkkkihv9SW1Rto4YhkxThhxOJ3ZmhNz1RADdP2CTZYL9wpnJq79HlVhMo7tMeAng50mahuRJtFN75i6wHw8YqXFdUodhb2/pdaBVC/s4owNlt18YCvvoJ44uj31MnOsO6owcKWvuIq3uNByt4zcuQ4b7mm5offP2MaB2kaWZGnCQDfk3ebb5ood91QpsYiwmUd2YcRqxdXxwE5PtNMtP6su+Lq65LX/jDYFZlPz/eUrFl8RjOMq3WNjZB+OSLC8ar8gitDIgVZv2cZb7u0zKkbuzJ5Rsr9UtjioCCY7/EdTYewa/ZSTF4PkBIGKngN7RntJ1kXmRYayG1+jcfI9P+dJl8cmp/bhnlt3AB+MikCTAtpZjmn86Pd/huPP7RwGUDUVT33NfljowozziUmygMCVa6EqNCScyeHzQqS1C1W64WQu8ZywEoF7Ei2qgZldUS9vyNdxw1lIgVLLiGggy7smak3MJoe053Jr/e4HYMZLytwxySkDFSNeRqJu2TIQNDf9teA6BiEKBFPhyccdsQR1WKaS9ZnFZ4ZYorE0L72iBBUqErUeWbjM9AFtz9xOq7mMamVEELwuVCkQRIp3WWTQbS6W1GLlhNWYW3YstPQ0MoIaOhlZOLBIhdUTXoupslQEPTuasUhDIlBpYMEU3Ntx67aFb1qVQgkofEbRnKHxnNfZG0AMqomA8IX8HEv+rKNuuJUn9BqJYrEai1ApENQwCawOdBSl7izk4lgPzKkGWxF18wA0kM5fWcPC6s+WJNtYiSSSOqws1KXRPWtHtDVLOT+OyOJcMZNvcCzUumD1wGwzuPCa75FwZcWcUHFsOIHmCDFLJOJQDdQy0jES1eLjieAaAjlF3JEQDbQS6anPx+9lxKHFMkmAgBUlWEtSXyxgVopIvr8VIeCxBc2Nagu6vHrD5qxqxJA0F6lJWxqGPJf1PaRIZQ3216HNCrxU1a8AVPUrEXnxied8CfzJo3//lPdp/P+V5F7Qf0duX3yyFyoifxv42wA/+MEPfumB3bz9ivq9TD/54Gd4H0UoTtxnub1ydrg/I10m7xwwIBNQF6h8NXf8VV2gPSMb4ujQzSPUUJVZOjbxgJymj171b/zl3+Prf/Q/UP/wLX9Y/x4LHQ8cOcNHheOZQCs85MrqubCLajHSwxourYat3BK1Yipt1yaNuDCTvGeQ7Felhbtxxw5nhH26IRmH90cm9wXgclB8CtSMnHzHG3tFoEaSRTSyWI9q9i66XTa0y8Lz5Y6Ewdc19yJYZnYasEtNk4TTNvCqesKA4527Ykg1KXiqEDgtW6qkRB3pxiPdkrgfW2w/EkfL5+krzHZL4y11eouxic/0lqhCd7pgcs9JcSZUT9nLRDtPVP0dmzhgd8J1V+FTz8wFex+wKBfTgbmxTEtHWGo280yIO8apIjYVl8tb9u4du3AipRrB8cY1bMw9TpVjs2GqWjyOoBUX4Q3vumf8M/clixdO0vLKvuCSWzb2xLPwhhuzQ21DNA0+Hmlk4V5nBulyWgYNt+kCVUubDngUSUKwFU6z79eBHU7GEm2TGLkkT7Mxx2zHCWfr0u4qkybZlsGJEDTkkkEo7dbHFIPHsNz7AhyxgrkN7KpvlzD8/3H8/zKH/YvOX+uo24Yvv99i/vCEpSOqZl6TCPd6Sc1IKxM+ZX+wKgxEb5moaDiiJBShlgm0QjSH3SOUDVu5frpGL2XOZBKDILRpQGWiSz23clW86QyVNYhONGRlY1YvClYTC9mkOGGxErAEmnRiMB2TgCmG2VmNOZDwjOqpJDdKIxZRpZb150xUTyVlRwFXkMNRNvTs2GjPIg1Ojkzakl3Xcgi7lQmja9amMEhLT4tSnRd3i1LpzE5vUByVTLg0sYhnUstCzag1KpaAkpwUkEeImkpSj0epWGRg0I5aAgsVQau84dWCHGGyPEPhSt9lnq9csIhhKVy+RSveymd4DbR6n+1KVLESmdQX4URGl/K65QoBZ7VRUYJaJlNz454XYUMkkVvKCY+TGUcu0EfJmaaNjIRipKtIFqDo+u2OiEBAibplUUdrhrz9U4+XpXAlDdF0LNoySIdTza17XUUQSk/FTIPRTL+oGfO9ooolZkRVYMIySwuSiuGvzcrs4v9XM+J0LgkU61qXM3szG3RmwhALApd7EOBZSCKE5HLSA1sCkGQ10s/XKSeUKA7FykSjE8+Wr3jJPRebls2VQ8w30Lf+JcafWjEnIv8T8NknfvUf/6pv8YnH1k//N1X1ZyKyI0+Efwv4rz/1Jqr6d4G/C/CjH/3ol549nQO7MFBxYqb71Bvmi/+eQ7WQzQ3XgmddxFZRxEpADZyDx38Z8PfJkTAE5pTzEJcV3RDDoB0TUPcfu+T/3o/+de7++Kd88Q//d/6P7/8v/I8/+KuM8oRPp1usn1NyC1mGjxdekRxTUwrYSkZS8Ywq+2QMhWN15v3l8yRlsoSUVWQI0Vr29ESNDGwR4xmlpYkHtjpyFM9sHHUa6JaZZHJz950+J7SeLo28rV5QpYHF1FzbwPPQs68qmmHgRrYEcSzGc80zqtHTU2Fj4itjeCknpAuM1QBNZFqE6sUEc8W9s0gvqNbQBWwMxGmDO0Xat46wb+BiwoRIExe+9/+y9yY/tmXZed9v7eZ0t4vmdZkvqxGLRZGmSFMSZYE2BNkQRRigIEAg7IEnHliw/S94agOWZh4bBjTwwAPPbMGACHhswC1gChQll1VkVVZm1muiu/eedjfLg33iZVYxi1BVZYk0lBsIBOLGje7GadZe6/t+39wyJccwbvmuv2SyV6UD0g04XTA28Xy84eXdx9xV1+Sl4ajXnOKGZA0YISbPjX1Knlr2MnA4RbR6oIo9/abmHFuO5oBNCe8yx3rLSIvIzK1cF8K5VFSaedU8Yx/OBGmI0ZONkHNi1IZL7TnaRK8dijCbmi6cmaQl5YjKAcvMSTaUZF3DYK5QoMkP1GYhkhnkKYsqye5WLcmjm62MW43YAvmkY8NEBHrZwufmBv/gKZpRuv6Icy2NPfyY58tPt/4sXMN+3OvXuxUX6m1e/98VRouwvtbz2v8Oq6uz6JAiRUoxUZGMfzcNL4mlNfoIgQYaHZkw77RurKDVTLm5ihRw7CE9cKF33NsDso4TjZbA8VZvsLJBRUgamWkxTMUao56GEUPRxSXqd/orr4X9VpIiFMQRyBipyToXfR8DFcpeTjwL32XQsumY3JYkwpkDyXqiepKUAsnrQseMYKgZmKUlK+vHI56ZW56UTNdHfRgBWbtCvWxRVQINjfQc9I4lVxzdvrzaWpzhVvKqCSwjwKjNGnRvaEsQIahZO16ORR8RMrFcb9UUxZuUpNlZyoYuUtHIgCNS54Eq9yyy4UEvwRhUDbJiSrxEKp0LloXV5aqK05kCfYHaJFSkQG+1OHA9mYUes46ZE46NDkxU5HU6s0j1ThfrELweCXRlarPGcj0CjLKu7mAtA1+Aec3tBYii2JUzVzScihHByQJkotY4oNKA5IgaA8Zyttv1DsS73FwnJRrTSOnmOok4jbCmf8xasZUHtvFMaxfObAqGhAUnAdVIoF3j3xxRKhYBUY8jMug6yeLTfOOKGaepvDo5kdixmT9kzgeCWHIOGPN5rNqfbP3MijlV/c0f9TkReSUi76072veAzxP+fo9PxxgAH1BGGajqR+v7k4j8d8C/wY8o5n7ctb+4YPtPJr52+ZrvNr5EkJTBAKVYg+JehUeeDu9y8j7b0Qt8qqN7LGbyDz32wzq1z1uffU6mYWYbJmpNDO+ikQq00U2eq69e/LHvUG+3/LXf+R1+/lu/wbf/p39I+0FkMkXg/sd/llLaxI/8OLBSLrKB9jPPe3QiFhbUQkPDA0E8SQVjEnUqgFsjirKgmqhZWCgt8CN7tnqPmMx7+UNOskHwtNKjArNsWKSm5YjVDU+Xj3mit7yuXpC14s62SN6hGHptUTHYPOA0FdJ7vXDTNbQz3Mslt9sLTrLDNdAMEcmQRZD9G8x24Hp5oOZEkzpCI4guDO4Fy3DB/pgI1vCkfkONskmZh+j4zubAqXqfjTW4wSK5Jdia82bDq9YjtCzdjLULxESsoAsDh3ymdSO3POOj6gmvdUe2EWs31HEkB0PIiTeyYTAZqsTJ78lV5qPdU456gRjD8+kj5qamk57ZOUbnsaoEU3PUHXPyzP6GOp/YqOIZyEY5mwMSYRbLIg0lzlvW5qtFJbKIxaSWhGE2NWWw43ACZ3NY4QblAtatupjyUQkQKgOjhaQbohQvo65i64IpyT90/H1OraKG0e/IIZKmP951/lmu/79ewwBIC3pqIXgAACAASURBVMF09I0niKPTSNAiiXAsWC1mFZ8jIc6M9qLc/KR0vRt6vGScRlTKNUbW8d5j1m6lCSGQKfDZiYYcPVihyoFkPd+Tr67dj3LVaKRfU2KKiSJRYWRENaM077ReRkvfK1EitIwmWo0cwj2ja5hlg6xjQ7dua6OWIjRrQ8Rwh2VxFU/CHVjLlhP3coXTgjwpgfaOTZjIZLLPjHQ8cMBqpJGebZ5KfFXyYB+v3eubJgzKLt/zxjxnpyeMQJsGrMJiOoyurE4Kn87niWA8BadbCmLL6rCkBhYcJRv0PfkON/o+M03pAUqhByiRXi8wxSOJUpAkI21R9JnIYC6556rwHlH8yt4ryQsTkFdo9MIkDZ6BTiaaPHCW/fpz/Bpp7/CaisbNNmu/irVzVbR9VhOdjMzrWBUcUQ3CBkNao97K/8qsWwSD0pGxaWEWR5CG5d29zgOBtGJhSldyLoIN7bAS8BLIallMjTfKQstEKfg8qXRZtfyfkxrknWSoOKStCk4iaI+RRBUzdi1qxXRsmUohmBd8npEVkG5MB2KYdYeVkuHbaFijz0rcl5eEWXV2VZx4kV7zNBy5tieaec9wHrg4fHF6OfjTG7P+j8B/CPz99f3/8DnP+V3gvxSRy/Xj3wL+MxFxwIWqvhURD/wt4H/+on6xqxc12yHylbtbrq6+z2v7kpPteGCHUlPlmX064nThTfW0xH5J5F2BU/YKfLopf3SS/rDh4bF7IZ/53GfX43j3MTVC2TDyy+Ef87XlFX803NFvWhYxeBIHjjyfTnzl67/yuX9Xvd1SP3uPQcqY9NP16N5KWJlXkevq4JHSOUnqUZmKE3U9KdK7330tdEWY2MLq7lmw1KbC5xHR3aq9iWzoaZg5s8fgEVNcbz+n/w+L+YCGft3tK10+YRRmW4MkBjnwGotGg5OZzntcTgxssZowORN1Cyz0Jb8LX2W2R6H3DVENT0JixrKNI5s4oO2ZjpEn3HChPbMdsfWGpero2z1LrLhN12zSAy4mwitHuh7Jacv9BxtmL6QIbr7nNOz451bJUvGqOzC4mYM945aFC3NPEy1xmbgMRzITUsGcPdJMdMsdrfT4WWm0Z6ZGoiHYmqwL++XE1AQG3TBJ+btFE8F5kjVoXoi2Y5N7kCLsnk3FYDtC9iypwhFozYLatWNjLHV6QFNEjEeJuKwYmajNQlLPLMJsWjJCFopAmIVZPJWeqZkZ2SOSOKkny5O1+5zJqmRJ69ijgxVa6hiYH01An2t6KGrQisBejmymAWrH1vxw8fenuv7MXsMAsBWtzuzuI/Fqj8+Z57wiGsHmTLC+bGbUUpFIMqJZyKJs9chOzmzkxD2XNDoQpKLWkVoHIg2tCJUkojqyBIwKVR7pUrmGqHWMlBxMs2qbjELFwsgWx0KSCtFElG51Cuo6zjIsUpfunGaqWEa+LQNeEkcpgzDIq6HhgZ7LUuxIuY2XotUy6I6TiwiZKgut9DSUFABByatpI1nPwGOgPTQ6M2mDqDBhyFIRS5vq3bSliTNqPYPZo3g6XQhq8Tmz1REhEaxd9W62YGG0RMQbVbq1qBp1ByTiaqDYSJGN2OxopXQi36Gy1KAYohTl26QbFKh0ZGFHRY/FEEnMUtAcWYU2n2l1BJPYSL+OdpVMhWqmkpmN9lzzlhd8wh/JN7jVAwuOWgo2Khu3tg0SozQk9fRiUc0sNKX0VkNNT5WXohUkouXVLwVcVjo9sTEjS3bFUZoN0e+LG1Qfpz8rHmmdaimJSoWt9lgWRlqCVoVdirJoS8aWLqpEgno2lOd6EotYZm1Wjp+sv2vC5kg0Hp/LKHTHCX18jdXhJYDALvfs9cSNuaDWhZmmFME6A5bL5S33fo9RYZGaWhe8jIBjdhVveIKPjof7a5ruKRv/3hfalYM/vWLu7wP/vYj8R8B3gX8PQER+HfhPVfXvquqtiPwXwP++fs1/vj62AX53vQhaykXwv/mifrFnly/4pQ8c7bcyZrwlmzeozqR+y6BXbKqWF+3M9/TI//L+wkf+Axa2sApiP398+og3KfbpP9kl+7g+7VLU2vOMW16GT/i1/tt0bx2/Pjywfx642xyoU+Qv9B/zF7/xV3n65Od/5Hd8fXdPpwMZz6eg0Iyj5xl3PJ++w+/Xv8rCZw8yBxLINEUDIANWM0l0bZunH3puRpiIWnMCjIWkGaGiXu3q+9wTTVVa2HkBEicOpJVdloEqBXb5gVC1JDpGOrLzjNphsrLnAdTQ5oGYDS+XMxexJwQ4+g3Bb5hTxexmrJ94Zt4wyvssXjiJB024+kwXR3bmFVfuI5xz3Ov7hPSSmGoOi6UaBD/OXMc7luaeizoxVzXfk5fMrSHSYkhMydEkgMQcAq5JXI8zbBZsnNiaI1UoANZzdwGMJRPVw2A8x7Yi5sSTfMOL4yvedldk02DNgs8TvbSMVYMxE8n6kopgDORUbpbGYjVyofdlJykBVced2TNIRzKljzY7xxqgwyE/MNMRbImnWXCcqYnWs6XHSMbJo+S3otIjMxuS6jp26/ASafS07sU3LCrv9ETl+HrUznkgrSMUj9NEFMenzu7HcyJQ6YlLLTmSm3lm+zDzMr7hz/3C3/4XOG/+pa0/s9cwAFxF7i746mg4jq/4pNqyoKVDmyb+UL5GJUuRSdiFo71kpMWxcMkDz8Nreluz0Z7oaiQXkbdgCQKKK5mbwIGHorXTmSANJRCpdCdm9bSMbKXnMUsgiiXSEtTQMdNpz1F2TBxY1GApnlFHwQb7HICFVkZm8WWkJ4LTzAU3XKY3vBVDMo6TWgKlQzdrtSqtDDFXJQtUGlRhpqHJA4u0JGNKLqoUDbDB4HLACHShZ3J7DAkrq6xG17xQJnwuKa6VHRFd+GB5RUOm5cQsL3H6CJXNqKnY55FZKmZtaJiociKZSBIh45i15oYrLvQMMSIm4+yyagUTQYpfNhf1Fo0stDogahjEU2tiyRWT60ja4KU0DrbpTCcLo1gSDieRXZ4QAUdm1oJmeZ+ZRX2JPzTF7pa1QtKMl5lKyhSk4GUSEU+9woANGWTGryaSjd6zSFv+H7pQ51Cc8mZBE0TxTLIlOcssDa0eqZkAJWg5jozmFRaxdvM0sU/3iDNMUFJmSNRkrASMFg1jRzFjLFQ4KZFiBsFpCebyucSK1SmyzVM5JrNwY5/RcaRmJOLweaTKS8Fg5Q2ejEsLIsLBHdmlB0ZTs5ETR9kTqEAMQR1ojVDkR1EcWx5wOJrdM3YXl59/3v40p/wX/h3/BZaq3gB/43Me/z+Av/uZj/8B8A9+6Dk98Jd/Vr/bxf4F//7f+Y/53/7X/5M333vDYSd88xsf8Owrv8Tm4gWVKzuH/+q//a+Z847wblb+GGPyo8Rwj/iFtD7v81qsjyy6x85epubMV+ZP+LX7f8JXenj6Cg5/5df561/5q3z84fc59fdsOs/P/cJv8s1f+hWa+nN0fuvSPINLODMBLY/FZaPK1+d/xss3d/zRy59jkd0PfeUjbqL4aaOUUOrHYvCdAJpHy7zDSWG/LwAiiGacRBRL8RAVQGkUS8ieXh9FrQnF0pqiWzEEmjxxa65JtsbnoSgVc/n6loWE43oeaYeJWs+Mo0GuMvdccnaZj9qWSzfj00SjMyoVz85HrvMrlu0ezIaTvo8bHb17yl19TXQ9fjY8twsdEeMWGiO0i2UJgrGJdlFGIzyZlBdvO6yreGhr6votSKCVG25sy73fcM6XNDnhRyA5spxxS0+mYpcHRG6QlHGa+Xj7AUNrcEvEKvSNZ3QtwWQOKXCtb3AzGDdzcEdiNtzLJT4HMkoTF66HW4auY3SWwW4Kc4sKiRlr0yoGhmRrlIyKI2pNqIqYOuYRn5TaTDhbU7CXgSYdiVKRTNHXPLrjnAQ2PLDwCHAtXWXRIn4u/Y4iCEANtUy4dUST0JI3q5lDPPHN+3/K+3dHwtyynxK/cmn4a3/zt7j+5l/5kcf2v+z1Z/kaBrDkzNvqQHwv0Ziep2HkSEXvPLN4GiJ1GtY4o5ZNPuPtXJAkqZzVhzzwXfOEUTdkEVo94wjs0pkkwrW85kauQEuCAkkwGR7qHYtUBYESC9q1ywM7uQcCYl7y2rRUslDnCXIGV1FIXkKTz1hjMCnRaBnbW1nQCIsrZgLB4hmxGSY5MJuGJILNkVp6Ko2c2NAyYlFMSnjNqC0dK68gRsqGRmsCBqsApXCyee1BSUVUwWGpNHHQE8YEJBsqXWjjxGRb9vrApR55T7/PnDpmVxNygTXXZkElY3NBpbR5JuHpwpmjv8LnhcFcFC0qCZsCtfbUOhOpaGPgaDblWmgMI4XjZ7VcV20S1Cii0LNlMh1NOlOZuYwoRfA2YlLEJcVpYrYOjTWhKikKgYqGiTMbZmmYpRRYab1OqAnF1DIJsYJgylQmaYVBCaJELWd0kwL7eE/NxNntObsdEzWj1OR85sie1vR0OuHjRKw6kgqjbDEsXKQHkjHYKMxaE7E4F+jMxJ43JRJNEztO2FggJaMprmoFTMq0LKCJTnpqO3I2F1zkwIMcEBU2ccKmYnA52kvOtmNyDdZEelo2esKvQ+OM55y2NGbkvXSDZ+Bj+YAchaQOm2ExbdF/YrBaxuQuL2ApGkObOUtHiAPmssE1X3w04ZcJEJ+zLvYv+K2/+dt/4nPqxvAyf8iEcMtz/njH7YcdsJ99/HM6cxppeACUiXYdcRbgoGC5fL3jN/61v8izv/6clz//F9h1e/7yX/rx/q5tbfGXtzgT13DkMgKuZeR5uGNvRzYauGPisZPyg6Ng+5m3R5ZYBp0LC02bNTrI0mpgoCatOAqVzKIbNuGBJs3UdkG8QDYELD3XuDCSxSI2s5gKEysW9SziqZixaWZhi5FQYJcxs6QNi/FEbmj9RL3cUTVPiVNk6DraMHLaKlVSJpkZTI1iuNnXZD2QckfFDpOU5Cpe2ZbBZZ7JPQeF/Rjwb29ptoqxZwb19A8dw6ZmMS1GDFehoq0swdWoXegWx2U8kg8TQ4K+dviUmGTPsfEcqw03/qt0NlCnmYxFxFLpjLMLx2nPjduTnMHHmUvObK0yGstg66LbkIhoQ7u8ZnI1+MKEG9gTZMPGn7mUW570N3zSvUeYa95udigVJvUgnpBrZmvwZCYtmh5VyqhJLeo8TQ5s0oRnwsvIWS5Ja6dtxpOlZEsmLXR4Kz1GaoSJRctrzapNyetYPogjqmfHPeBo4kw9JGQMfOPtd/lVX/FrX/vXef+bv8JXXr6ktWDrFtts/tgx/eX6/BWyorVHu57ceIZqyyQNQ9oRdcGnhbO5QGyk14aAJyWDNbBh4kEuyMlw56/I6y1Nk2ExjkoTT+UV7/EJXgMx18hgmcyOwRSp7aIlym+bj+zzLddyS81Ab/bYGDGVsA1nEMMmjCAnRqlJYugYsDFjU2S0O452g2rDwZwxuSRTzJJpCezCiNXArYPoKoRAQ2Cbe5LxtHFBKeaDCx74JL9ETZFpuFzwHMYUAMZVessh3nOvzwhSYWQh2YI7qllo81KC4V2FyYGjuSTkwOw6NtrzcXqJsTMn+4RsEm/tM46swes5YHUi4VbHr+LMQiULuzSRtC48O00kU3E011hTxoNX6ZZNslznV7yxz1B3JtDgKAXqhd4RYmGaWU04iYympWGg05kqTgQ1DH7LSTaYHBEVagZSAisZx4ST0tXbcKLRkcW2aDZUduQiP9DkmZBrnJYhtteFTb6jyjP37oqEISL0ZktnRmqd2aQzIhnMjp4dD+YaRUnGIckw+SLlsaulxpLIRtkwsM0ner0iUrEkh9FAw8KsjibP663VsuGOSMWQO6LzVJJZtGOjdwVXgmVJNVsdqM3MY0ZEomE2FfOq57VauKZCJGqFkQKoNibhbCZo4HvuPSqdGWRfaA3G43Vhx4lR1wzk1aLTsJRmD0odFy6ngScBfNf8iefuT7q+LOZ+0jXfkpuWOmWwjw5SWZ1Hj8VO5NMQ3kdg8GczXB9XZBMf+Dff/mP6Q+Cfdb/IHZcoFVtOiArN4cBv/PbfwtufXDTZbg27AFfpntl1nPC0BFxWYmrIoS9y3HedlceCdDV68MjP+wwjTIu5I68dykhpZ1ecCcoqq1dgokmZq3iL1o6zbJmoSaZMmqo8cpCFbToya4vxMJlLXO7Z0CNSMhlt6mlkJhoBa+lzw2g2fKv7BjfziUt3xeJqRrPB50yk5Xaz43a4ILiKaB27ZWIyW5qjw1eON7Hmbc5UqthpIG0bJINNBZiKe0KqB3qz5WggjQvPN39Ib3c8cUecfA2qmp06vtvuGcKRLXChM6O95JV8QKqEaiiRY2dXc9tcktKRQTxXOnA93TBLy5Qb7ncNvWzIBlp1zH5mm86oWL4nXymvRdOyW4482KcIgZBbFEcrI8YkoqsJpsH7UpAvrsImZbKZyR1wJJbsaNJCJ0e87Fj0yChFv2PUojlRpUiySpfu6aurNda74pBveTAXBT8gNY6BOkfEJCIj50e36ooqMBxxSiGzr2kpkYpn5zu++c//gBea+Op7z/iV3/5N/tIv/Dob/8XvXP9VWt4IKU4kNVRT4L6+4IEtakoHrRQ4E4t6gpTwedRS64Qh8CBXVLIQqKnzxGhqJtOQTXHpX+ePeJo/5tLe8M/zLyLGsuSaJFtyMqWI0Ilr8wm37j2yWDRWfCP+PgnPFLdEWyM5EaRjF3t2cmI0FdfpE5I47njGvSldNwX6HGjiTKszjZ3YxJmrOfKRvyKow2TFScJkqHShYQQLLiUu4y1elK15YNQWtVDHhSSWbApEImlNTi37OBNs5sF3TMZjYmS2HY1M5FxTMTKYDjUJYy11HnA6MXPBiUvuzBXBGHqKUN5qokkjT+I9TsGaiSiG6/wWmw2djEy5TFSSdUSNpXiSibdygcmZSgKj2dFK4DK8ZWJLQqhXWUprBqwmFldzZEtDRDRzGW/W9sHCOV8SjF31Zq7IbbJZAcYLMTckNZzcJTkbtnJaFYwlWN4zMduKKC0ViSt9QHOBqVsNZDGYnFCTqFjIpuJyfoWKIUpV0oBEint3HYeXtp/SMJOp2KaJLQNX+TWOQDaGpB1VNmvhDbPbcsi3BK3JJjGw42T3aBJyMmTJ7DjiJXBItyWVJo+0mum1JEMkFayObGRCVdGsBFcxq6NaMTaVJpbHNBtbIzQEqdmnB45cYFy5tzkC2zjygk94ZkcGrhjY4TRRx54gG7wuPDQXnK8WrP/iR6zwZTH3E6/Y12jl8UlxdgGBqJ9Gf7x7k8Aj26bEkXR8CugtZPGWgZfpjm9+/45/Wm9YWkOWT1Mgdnlgmwwhh5+qmNsfLvhac8GvDr+H2QXe8oJOJp4tbzj0J0QrCII0Zd/yqXnj0VH7KFjPoJmdnIrTSgKBS0BIdIgMJdcxw8mWm3+kY7Q999UlzqSV4m0IWpWLgPOE6Gk5FxZ4LHwf1LPYhjaPzNoRJbGYFpsXnCYwgiHiTWSqhO91z/AxsyRHFTJRPSYnWk046ZlyS/SKBos2wjhB33WMwYHdcBWOXIYjkiu6YUGWC9R7Ji98r+vw2jM1nl3zQOUMix3J+Y5FW/6odnxiatpqS+JAE0/szYln/S1DWzNLS2xANFHrhDXFHt8NM4vp0Fjgp0mEyZrC4NMZkwL1ckTiFd5HcjYMWiNclDSH0BNsTW+Ktgeb2HFmzz0bP9PGE9+XTOCauDLiLIHFV1ylO94PHzPIhtk6+nTgLNsCmbGOo9lykW6I0nDMDYPZFmaUOVAxEWSDaEbweFOwIwUj4NbjvGxsFjbAAI+ATrHk3DDJhs5N/M5v/bv88i//23jjf6pj/MtVVmUMX0+O31sScj3i6ZnNE4KWaKmLdMLbQK8dThJeMrMp3kRB6WXP7JbiWpSKOo00ORCNJxnDDS94k9/SrMLxBUtvW3ZyYq9HvrJ8Qh0GTs2G3o6IUwaxfMf8ebph4iA9t1pTSyjHeRipJdCaex7sc3rTkZOHVELns0CtiSf5ASvKJo04SRzMA/2c+L67ZjSOCketgZgNRnLR4GpmIwNeZ57lwJ3sGENLk0YmU3PPc2ZX41PmaIQdQ5EDSCTj8F6LCSKDsTNbblAVWo4k4/HqibYEHN7rJYUmWcZzFUVachFOvD99yG3zggdzAM08N5+wN7c4zTzNHxfhSTQ8mAtm54mUfGrRhKjSmInZ1JicaXRk9C1zcszmwGW8LekKqedglEO64zvVz/HaPqXVgVqFJEIUh0jCaMWEp9YZHycaempdOLtdAf6qsklnmjgRssPnhBFlcI4mj2hWtvEBHwOv6ycs0jBLVSYoCHf2gi0jRuHp8paUKpoYuasuERK93+LzBK6liQOzCDYJmzxhbWYwWyaz4Y25JFFj0oyh4I3RjNcCWbZ24a22ODXUOoEq0dmCfDWWOe9IxrJhZJ/u+a75ajFiiaF+jJpU8JLY5++z0PAkf8TJvMBopDaJRR0qwkTDQsvimoJyiTObnPBm5jLf8UH8NmThI3nJR/Z9QhEzFEOFCrPZcpsnbP2zKbu+LOZ+wrXQcWLLYoTISkN/J+b+FEWy4cyl3q2jxI7zo+ZZDUigRtnqiSYGjqNHVXHiqAkkmTjoDX8+/R6+ff655IYfZ+22B/6tf+c/4PyP/h7fyP+I71Xv0+uW6pXHv01snjs2ckL16Wc6jKsFXwKOkSweJSBUsHpaw7vIpvI3C5mjdIy2IVDo6iWfr+LkLBt6NtpjUGoNpJRpmfEpszEzXl9zY96jGNIrfBrYmBNJCnE7Y7BSWtmb2GNsImbAGURLRmFrMrIMzKZmvzwgrlzMrKnKzjEpMmUGc8E9nrGp8FkQ2fHkfIJlQx8EUc95E7nZv6CvLDaN2Lqnbe9xmnAaae0DjEpdN4htSB7O+cDT+Akfm2teNZe88u/hq8TSWFQC2IjEpezAtYewoTEnXvtrWp05hJHZOTCJrRzZcYeeHEO35011jaojZmWWmrftFU4WVOEyvWGpKhbjeCXPuMo3uOzY2JFpmbFeuaMuFyTJzLali8WC/9p8g8WWKLuMx8pjFNPE0T4rN3ha2rUQR7aIZhoZyw0UYeTAQhF0l2P8s3zCLZ+moCjRGOp5Blq83dL5H633/HL9+Oti+xIf3uPjVPGq+oDJtpAUqxVNmnnCx1gZeWXeK50tEm08Y3NgI6fSkUkNQQwbXchiWahpZGLRjlf6Hi0DU2658xcMbFCdcFGYlkuMUWbrGW3FJFusWBoWps6z5UivDVPe0BDYzyd2fuBD94Kz2TGbhkomzBoIr5QYv108sk9l8xOMcGs2vO0u1yD1YjAyEvFMZAwOZbAdOQeGvKEKkUU35Fxztp4dD3TmjNcSWWdz4CC36Jwx9kDmfdRANo4784SMZaLBF9AOW848ia+412sG3XHvL6nyQpVHWnqimrJpk1LAjOrJqdwjjvmSe3fAGAMmlQgsB1t6SInJVLzIr1Asb7kCBZ9mKi3JpCM7vM0QE7OxRGpaM2ASjPGiJCbknuAsSWq8zvi8kLVGNZOMYZQaJ0pmwmRKB00akhVGWqwUp2ubI0YXVC1N7rEaaTkympZAQ51nTFZazhiT2NozLiyc/CUvwhueyB1X6Za7sOWNf04TelQNJg/s80PZIGpFk2e2+URyhrPbk6Vh0BbrGuo8MKaWHQVgbbRojJMRLnlFoOUQjujK0jtLy2I8HWdu3RMG85RoHJVOIC0CbMKZIJ5GRi54YNEzdQafXmMUsn1gzDX35orRtytP0WLyXMwhJHzKLGHPXf0ckxd635HFEkzLTAFUB1pGIq+Nkobzz+R8/7KY+wnXvllowpm+3gOBUqA9subKKNVrpFki29gz1huOFt695JLfhT4XzYBi6ivuLSzqmMUDDQN77us9E7eELyBo/M994xf523/n7/EH/9c/5Kuv/5AUazYffBX9escffed3ye9Aro/dwwQS2HFfLoIiJArIcmC73rT9WsgWyphoGTer1mshV7p6oxT7etDVHh5L5A5Z6DjxHt8HMpXJTHrLaPcc6UA7bIpYXTBOkZwZ6KjyCdRxPd8XIXJn8UnBCSkbhk3LkGvUea7SPS/lhqgdqPJK3yNUni70nP2BSSyxjugUuK9aqpTJXaI3HXMdGVxNnW648wcazdyF93lwe2ar7GxibxeMZFojVDrQcMJKzcU4Y+wnvKpfoHUmSMWekZ0WXt3P999hGPac26f02fDGXGEIRAyaI8bC4Fr61vNhfM5buWbQDU+ne5xb2Jp7XrsDKg0TFaO0HPQWtYUJV2vk4G54KkdyMuhokPqS0Sxc2nsSwllaXtnn3MkekVw4STpTE7Ci3NsXq9tYV/6UwUhFx0NhkGmCrATTkiQRWc+Jd0koK6PxcXNQTgBiKuDWOszsu09zhr9cX8wanOXBv6SS71NpLEHvqYQPPdgNi/k6F/ktL+JrDImzbotDXROVZiYxiM1UJKqU2S63dLllMcXFHPKWZD0ns+fOHBAyD+zBKO0SuK8cRymSgSSG1kR2HLkIJ17LUxpduLdXmJi4q59ST6+wPuM1MRlB1XIRT2yWeyZX83X9Ns5EbswzTuwxpozobv0lGCnXUKP4vNCsfZRRN+U4TsJBHri3+5IzLCNnt2UbYVGPSRExDiPK5B03/gXRFMZdE2cwC86UDaQhsrd3JFou8i1RWm7tM5KUFAafiruyiyfu3QGXEg/2koGOXjrUFNi66FPObgNiCWq4CrdUJmEkcRFv1uJSGaxjE3tGdqRcdItKSxDLRIuVwKg13hQdYSMjVcpUTrnx16hR9npHWjFTOdvSO5SMEfBa2HaikcUc1ug+JSfFCKTsOGvNk9xTpSODrVlczYfm54jJkvE0eUFXgH3KUq7PyWLEsLhilhtdVaYqMTE0OyQrIobJBEquh8UGQfsBZwWlIlYFSC2qZSIrJULsxj5biQbQ6MRFuqPngLcjo92yULNdI+beOwAAIABJREFUJu7tBdYFGmaey3eZU8NJdogUQ553AWLCy4IKLKYm5JoDJ1omuqXnlgOTLxrhhVjcvaI0eQF1mJRJTvnEviCLoadskA98xFtzvRpULHs9s3GRqX/4mZzvXxZzP+HqqkDDyOAvVw3QZ3VmEaPCdXzDxTDy8jTy6mnijX0E+hb3Z6QpcSQ6sw0DViJLbpje8eoMo2x45Z7z8u2HDGHg0Pz0FPz333+f99//T37gsf/3//49vvW938WbM46lcJ9WjARabOTCTNRmNWcIiQQaYXUqopkLOePXzNXw2KWURzt/aZMbiTQxskhVHKwa2eQRa2aOckEwcG+ui5s1ldf0bC8KSNQo5BmRDXVamEQ45ImtPxHSnkO8h1ixxJZQt3S+x0rmcj7jbeat3yKqHOstMlmWrqVZArZVqnxmF45ku0D1htEbXH3Dc9fzLftNHnxLnGuOvmGSjns5YFIqHDcz8GJ5Q+PvOIwjshhwkbFpmOoOnwN1nhloiGo55itctnzLWJbdhnqaWTYbqhTwcSFaD3XhJp3MDjXvcbY71Bg8gdkLrR1BE9kYhITVGcPCmFusUciGkx6YXcdVvOegR4KpccvMm/oJmg0LFR+ar/HGPmGUzUpLz2tnQ7BEJvz6//ZYig7FmLRKzWsqZnyeOYshiUPVlHPiMUXk3fEhnyn6A/t45ulwSz0I8zT+1Mf1l+sH1ziMyJLJuUFygfEGqTBm4cQFLhc+2xw9DT3JVhgRRjbUORBpkJyoiASU63DHC97wiblmI5GgNSYaLtOJWFUEhAfZ0ejCWBeNnTGR1s40nJnZENWuQfOCpPUmOxwxojRhJOc9k2/IGjEa2emZJ/aGWSwHc8+DlgSSNo8s2ZOMYhAgICjbfOYZn6Di121DSZO4s5dIuifgsSqgQqWZwW1ZrMWvvuqWAZdKtmy3GFwVsClhbeZkDvRiqAi0HFGE0W5YqEnZs4iQjCPZCUmJvdwza8UgNZOpQSoW11DrQpvHwuDMWyZbkcWSbM1F+oSejqiGVmfafOTBbTGS6G2L1YUgO4xmutQTzYTJRXoiKkStaZYTT+MRta855o5BhGgdo9tgNWDJ7NKRs9+ghmJUife8TB/ybfl5FldzZovYYnzZ6MKWW7zM3OqOxdSIgVE8yTvIiktFTFPLQsAwmA3RW3qzYUqePfeo1oymLqgWVayCS4FgK4I4RAwYQ18duAxvsDrjdEFXo8cmjWxDz7U509s9UTtUS87tDTUP7kCrA5aAZofVIhkY8gZrIg9yVbptRt+BpidqGlmQnHEkXFI0V/TmwDYPzNoxm5ZFtzRhQr0lMZCloiVgUmS/BNTX3OeOaEvhao1CzMzSEI0lmhqjR2KtjD+A8/ri1pfF3E+4fNXQLLc0BH4wpaEYA4wo1ghmEXbpyO/7X2JgT3nJCwl7q2cu05FNjGwmIXghVA0NCz1FAJ5w3OpTUjr/aOrJF7AknQliWcyBSsJ6+111c5IZqNcujOdTp6t993nU4GVGNTKwpeTxKaoLTgUrA2hVIJiq5WcJJKlRVxMzDFrRcqS3TxlomGkRo4XUnQMHvcXkhhNbrCwlXsgEjs0WjZk5NJjFEa1Bq4Wzr9BkmNVw8iPIjjHvECI2LfRNzRIb1CX26YSJPd70qFpCVbNNgcpkclb280S/j1iXeMjXyLwnVlsCEWegiyP1eOZpnjnoTM6GV7yg15pZHc+mO7wJ2FjG0W/9BXWKnM1LfFB2boE40fiAlZnWCJN2aBB6syeo5W11QTYOI4Fness3wx9wtgd28cSJHdk4xFhMiiUBI3uSWKoYiQZqn/FpIMqOJp255wKniSBlTF5Qoy3mnTtZGbRhYEsmldErwmIch9zTxjOz3fGefsxROs6yJSgEWbE3Iuux8hjMPa8FndBoYJ8euF5uERbGpf/ZHdz/ii4zvKHpv82TRjjKjsqdOckFnsRZ9oyy5Z4D2VQ4HVETqTWyuIoxR5zOJNcQM7RxJhmHG4RpsyGrIi5QqfI8vsLEyNFu8aKo8UwIyUacDczaYHLHNp1QLA/5gt51VCZSyYhKQqLi6qL1HPSOW7lmqlskCbt8yyEdOcoVSdZwdQyT6ciaaDlicsaZyEv9EMnKpA2bdGYwpat/NDt63XOudrRpwGnA5MAkLdnVCCOWQJvPnGVPNBWLrcmSqG2JgYpZqFkwLPR5j5dErwe89uz8LXBgRPF5pmNEc+lsRluMXi7EMkbUgY5TSUNY0aNdPNPKgMuRS7kvbM488JH/ChMVp+qSgcdiTNmknoqZy3jHwI5FDSM1beq5jrcFCWyUTubiIc8TPmecLgy5o00jNSPbeCQagycySkeyjioFnI20DGQMXmeu81v6fFUQRlRMWnTdWRMiDisTTZ7I2TDjmGz9TmZ9by0jHcc843VikA6bDbOxZLEYE0liQTMZJYrw4A+MpmObzizisVk55DvECKOUxKWkFVkbUp6xJjFKzSQNrc5UUhh6Y6qpTaEm3OWn9NohWjh7FqXLR3YycNIrlpxJVLgMk214K1dEV3G0e6KpEVnYc0eVIr3ZgVqSg9kkJjru7QXJmnLnSieiOowKolDpRJsnrIJK+yeetz/p+rKY+wnXVFe8cZcc2VCiiXS9YT0G1QTqFGjnmQOBVk/AmsW9JjBs5pFn0y2bceHFFHh2OHDV3xGahk9sCbXe6gNP+3sOV084VD+7bErfJWovPJtuaNt7/lC+tpobShdOH+Gvj6GN5Q9Z35eCzpHX/ItT+Ro1TDQUuliFZ6bWAbIhGkirw8kSsRIZpWWUljsuSXgMkSgOHxeMySzSYSRiDaRsmJ2jyTDjGM011hg+kud008xuOZOamtad+f/Ye5cfS9fsTutZ7+W77WtcM/Nk5qmq47LbZbq629ht9cgYaCEhJAa0YNYSjJkw4f9BQvwDCIkJA5oBLSwhdSNa2O1y1alTJ09mRmZE7Ot3ey+LwRunGrdpBFVlV1F91jgUitD+9t7rXe9vPU8ORRKtrmElmaPzmLFsvzXzyFDXzA687/A68MlhTzQeoxPbMGDsSGfestPnTNnizUhDRkzkMn4kqufK9UgjTEDoHf3C8qcXzwmtMuP5Vv8FbZhZjQNnWXDuNuTJc/INtckknVkSeD19ybFrcDJS5cid2zLYBVYsUUrIN4onO9jPW760r8gi2DSw4cxLfQuS0SiczA0jntFWuNSxjocn+0Ogt9dMUjOJweaRgEW1ENe9zBR6U0fNBKLYbBEpOjYoardWBqKp+KDPEUJ5bU1D4sRMy79YoEn8VGMngmFCUMIThNXEiWz+ak6r/zqXtT359Mjp5iWNHHCSsNkQjUFS2SdObGkZ8ClxUkUcOAlkC1XInLPHxRmnEwe7wPiGB/8MyFzmR1b9TAwtCxkZfUuoFGuOdLknS0nXnumYsxDzJZVEopUCj84nnoUv2cZAyAsOfstgyhWWGnCSn5K4lov8yDvzinvznCCes6tYpj17c4kls8l7XqY31DryVl4zS8dRNySxNPLISk4gQsyWhZ4IqWGRzwxVhcmJYDxVnMpBI828mN7wpn3FKA2TtVgpailNM3t/QZcGVumIIxHsikk9a72nMzU1CcmZTTzQmBGMckgrkvE0MmHMiMaESlWuOok4Em0+sx13rJsdZ1mRonAwjpkFk2tL8ycJybCdjoy2xWKYTc0mHxkIvEjv8GSG2tHkkcF6tnHgJn/kc8r1rgE26YFsLJd8LNJ4lCFsqGVmyZ7RVnytHKt1JKlnVsfJlvFFwmHzRDBdyVY+LbBNpkWtoCoEEqKRVhJZYZaWKhfm4Ha+40N1iZBRW75dbDKsxj1WBK0T2QouFRaCf4rjmGS5zgfqOjLR4YLyVfWcmUTMDW3qUVVaBpoYsQ7S3JbNezKz9ZzMAsdMy4DIJZGWjGcTd0j2BdKcHZ3peZAKIdGmM8kYKhNAKhodeJE+QLJEUxG9oZWeSSpSNpxZcWl2bDjwYK+wGohWkXhm2fy/kQb8f69vmrmfsYbTCWkrKpnpv2auCayewJpVDFz0R17fv2GxPeGYcJKIBJDM9fyBb737wO+MR373b/9Nvv+d38ZVDZ//t/81F4c/Y9PcU5uJxQlWg/BHf/Qf0FV/dQHxy+ff5bP1mj/t75koXLZ9teTL+iVRyjXbv9CVyU8nLHwNEFYtypnUYU3G5UhlE5ay6GAwWBmZdUGnPWcqTqwoDlghiqdmpKbHPO2C8ZSkyD4z0tHksbwJ44liEZjp5ESlkQMbIHFIl8R55Fit0Se1TvawigMfzIo6J9aT4KcdZxr6ZAnqWemZzhxJ1LzbXBFp2MmS3WNHj+HUtpzqlqALNtMD4kea+RFvDa/mI1fzPZ/Hl+x8RWprQpOJviblyAd7i5fAi3RHIweCgyYfC+jSKKEWmpS5SHtu5SNXp5ofta9QnTHOUeVAFI+RsqVVshrC581vcDYtomVhpssTVUrM1uEkYxhxKuWK1yjrOND7isHWjLYmP32kVXEk434aNEchaZnEKlJgqk8WkOlr6brJHFizCicqGenkIzv3m/S6LA2bhqLywv+lRYisC1QGoneENeT3E1l//jzoN/UXKzYtd/WCfJ6ploYqRFa8IQVbrtidxeXEsVoze0OXj2QiN+nIo1yQxOJyYLY1Y+yItqaOJUOXkNJwVJ6xqdmEPV4zKSfaNDFi6X2HiqW3HSYZgi3WUZsjjY54CdQ2cKxX9HlF5UayVXw6UpsFZIM1Jed3TGXpJxtHy8CcPE4yjRkRTSVnmh2TXBGke0Jk1HQcytSHQLAdo6mZxZXMVCpu2GU4ISpcxj1kSMZR+4EVj1g6RmmRpDQ6scgzk01Ukji6LSGfuOKOqKuyGZqhSzOeiU5OTOaiQHxzIJJ4Fb5i7xZMUrOXDb1dYFJkMpYhO+7bS6IKZ5ZUOlJppjVHJury/oygyXHkCjsHuvNIv5zxPhQfs12yo0atoZ4CxgYqGbEu8mp4y1zVfBVW7KpbZiyDdDTpyGQXRNuS1NFoz4vwlgd/UXAcNExzJMqS2baIZOo8lwaeRMASTIO1xb6QskdFsUxYY4ptIQtVmtj0Z0Zdo6alTsrCnHiQroB2VelyYBvu2bFFrGA0s8yBi/ORsWuZvXBgSaWRWTK2mtjm99Qp4vNElTKiM9HXRDuU6WLw+NoQxNPlgd601DnQ5ZlWD/SyJtLwxne8mN+xsgcmuWBnV5x1QW87FIvXRJPPPI9fouq5nHeM1vNgLgtRQTMhCtkIzkQe9RKnmaglq9jrhsdmoO5+zk3Gf0V908z9jKWHA82iRfWWnxodNCJR+fb+Hd9++MBnOvA3fuO3+Z/v/qxcvmoEcUUzbzONge9fvuQf/Lv/0U9/73/xH/5D/sn/8t+jH37EsVthXvwOf+uz3+Xv/Ma/WtP1i6jl9gX/9t//L1n+8f/An/zgx3x2fMf/8arhWG8YqTjzNejw66vVsuxQGrWxgCCpibbGckZs2XWdaPCaKXJlsASyFaDCoyTKllyXTyzlTBBHrcVpR1bQiSz+afIXi4NQWtCISUIrI55Abxe0Gjh6ZZtHqj7S1Bmthaoa+HR4x6KZGPMlXfDEdGaplgee0eqeg+lKboeR0bS0aphMw7Ce+UqumMThZWAZd9zIR2qZaPyIxeOXEzKOTH4mTR2n1FGnMy6PTM6WLFvKvK+uWVqL4NkMPU0bsDrz2G5w48gpbejDggsG2jxSoxx44GguyLlmFc6oRDCWs2xQ1adNXodziWW6x9gBaDASgBZMYB33zNbzpn1Obz1BSw7RklBJGFtjMSx1opeM0aLXNhiIhqU5YAwcJKNag85MLBDjCJVFgzJIxciCLMX7YQR48kL+dCqHASYQgyKc7ZJRK4KH8+nhr/T5/texxlyzuBipVhZcuTl4Nf+YvdsQ65oYMuu8Zzg2TH7J8/lzfnDxOyQxBCpMhlojvXPlpkEGUtPg80yl0Nsaax33csO+WhMpP/coFQ9uW3w2UmOSIlK07U3u8SYjEUxWZGyYa8toLGRDEmGSDe0TdHqjO1w23Mklm2EkSs3KHGjciSkXB3FHz9Fe4zMsGYjZErTCkrgKB2ZbsYgHTlKu1Y5+XdhnroZoWecRksNMlsvQs9a3nFcNTmbu5BmTVtQ64VKmtQMdHm8DOScwmaNckhCqHNCcngSJS5Z5YB0OfMJP2KQj9/6CC/lYOH52RZ/XxRgAiCkKq/e2YYw1S444K1wNj4ytp82BKI5unhmnpkDVn0gKXSie6dgJoyzo3aLM+hroTE/EEkP5HD7OLYemI4mUSEY+k/OKA5vyWsnMrEuu41uyMcxMxFyTUosHWjszOyFSc8YgmrhMO7J1jFKxt1sSHomhZJl1z9IOxNjiQqaeDdb0SFJqL2zznj57rBlpTGTpH6k08nx4ALGs0oF7f4OzmSE7uhjYNRc4GanNwKAOZwIxe4wWDJLXxFL3VAQsE73dcpV7HmWL00CnAyvpSdkysybiyeXrjKNb4ugJ2XByK6JxaBaWnGjCRDQNfdjwKrylTiMpW27NRx7zljYPHGSBiudi2jOZGrEj0TnC11D4MHLsZ3SekerXw836//tq/UyblGi/DrIlGpl4lh75u19+4D/5w3+H7/zt7/Pm7Z5/9D99ztlcYOTr5YiJVTyxUCXO41/4vZ+9+ozPXv3nf+3/Dzw1dP/eP+T3fm/gv/tv/ivu4z/jOj7j4BYELLP8y/wvR9YnJx8l9J5VgQqjJ6wK1gys9MyEo9WRTkZizgSBbAxZaryWRm/CI1rE3KSITTCaBarKRnuMFpTLjf45INzl54y0GE000jO5GpmV2VnaEGjNgFODjROtz7yY7nlnHb1fcvId6/hIjhm0otHISvc0eearxbcxyeAl4uLAQiZQGPOCTiM2JMLcURlLPWUkOg6jhesI1jAoXMYzvzV85G26Lqyo2RE3EePK5Kxqd+S44lZ70ExXncjW8kP7KcQKzEzt9izZEXKhfy1mpbcV4iLZGJxmqjxgtKeSnkTFznhmlkQt8ufaZ7IoR7NhEENwDUYDAYNhxqsn2XKKzqJkDCIWxbPOBxbpERTem09IdGSZSdoBhiwlD3WUDclaIo5MJFE9wYTj/+Va/mlJCAeaaeSMT4qNQpwTyX4zmftFVxWPNGZATIvTmTMLvrCvmVzLWh55U7+mcmeG5pKLcE+/XLOYd8y+pSjVFZcMjU04yfR2wzo8YoGX0x0/6W5RKwysGdQDhe12ci1RLD7NZANNmp4StmVJoU4nqlzYXqemo7cLUJjSAu8GVnJCc+aA4rLSmyJ1X/jEOp6oZKIyDoPFm/npuq/l0Vyz10ydE6+GLwm1p0kTQWv84Dkv1qx5wKiBmJl9jajyKBds45lJGybbM9iGle6pOeN0ptJbJqmp7cgqTbTpzKlZ0+nAZDpsmjHWM+oKCVIYabbhY3fLintUKqYcWc0DaiGJL7w3lHXYYTWDJAI1mFx4ffnEZj6yMR/odVnczHScZMWx2xLwZLVUVWbJA05HFrniXq7IYujSCeci2/TITMtoa1w489hellfWlhxyFF8uVoJnrh2NTRxkxeV8xyINWIFZhEUauLcLNnHPmYpaExlBJLPWM1fzA+/8LaJKxqHZ0jHRkNmmA4v4njx5QlwwtY6Ui91owhKeMpCnasFKDmzNR/xQsxgDd+mWtSozivGZqSoZ6l5qRAWRWKDWLKg0MZmK2RQQc1LDMXYc/CWVjljJrPKeKbWsQk8WwzY88L57zk4WIMU6ImJY2jMTHU0aSW7NMa7o3ZrlfGaeK3IqGeZ7f8uFfmSpZ7oxs64OvJdnGBcxqeZgbgipKcinGDnkLfHYoyF808z9ypQzhZcmM2cmoC7bM5K5+NDznU9/k8XqgouHj5xjy4NZPfHYypbnaDtSMyDhV1FRpAx5jaaKZ/kdMy9ZyIBhZNT66Qv66UtawDGhasvsTSAUtTJJSopuMhMK3MuWHTOVVV7PP6E3Db1esWAHKRFcxeBWBPGM0hJdeaP7rLhpR/QdgyR27jfZpHeIU1Koua8rVIsSazUcmfwCdCBUNQt6JvV8Od+U0Xw2SD0TTU3fNMQc8enE9pQwLUzzlo0ZqPPEOp94OX/klFecUoNJmVfnB7ZyQtWyr1se+xfMix3tdqDlETPVzFlY2cx2fizomdox+hUZZTALUjZ0eWY5DdTVyCKdSanB5RPv3AvOTU00DY0KyRjaPBE0kUSoZC5wEJmppLCaKh0wZNRYdu6SmC1kaF1iPT9Qh0BTB9655wwp4mJmdhbrhGJinRENRAVnEkmKx7U2jlt6bB75yDWCx2KBkVkWFBiEJ9sjE23BzapHJGD5uun7ejKXgYDhXK7aUvli9vvMpJnN9uUv8Xn/9awmBZxN4IUv/Lc4sMGaicb2jDnTm5YqzQWTUSk9Nb1ZcdQiDDcm08qBF/GeY7VkNhSH5zzi6sBNeuTObOmNEKSm0sxkLZIj2RqiGCRn6tiDZC7sI7OpicaiClWc8MBZoM3FiqBZ2dtt4bTJjJUJ83RoHLRiKWUKNZsGa8/k7J4YecWHCYLVnthYJBoYG1qntDFjk6EZlRfdW3ycudcb4jlw7DpG71nmQNAKkwWDZ9IFDQOv9Uf8c/s7jHQMZkmXTmUBQQfupWamw8aCzzAqBdGjjsEV24DLGSuZrT5Qq/AqveFaHXfynJQNIVWoUwa7pJLCcjNZmE1ZvNjkDyRzwxRbVCydHgjiOcgF4ouSbPKOvdkw48nRlkwfZ5wKD37JiY5du2UWWzh1ObFJj1ylAw/phsrO7K1H8aipsQ5e5LdkrVD11OrAeDZhzwezZjQNZzrqnNBUcTmNrOyf8c/M73Aya0wOXEwfeOV+TCORpR75yn5G8sqb7hnOzBiNRAw1PVaFKQeSFnzJhTuXxnFl6FkQWXKR3nF25XC/1YhlYpRCFghqSKJ4ncFkcoaUS/5xtgPWzMUYkVsWOmA0c5E+kl3ZhC6UG2XSDtKRNk14E0k4RKHLA5Lganqk8lMBT/uW2VQ86HOuxh2npmEwDYLFpYSZegZfY0zJCtpoef3+QF6tyMb8BQfUL6K+aeZ+xpJYkXPCaWYpkVnhRt/x6fQFUnlSVzZW2jBxpT2FhZ+IGJb0VGkip4p68aunLeqPE31vOHZrNnnPHVegmSjrp83VrycupQL1k3czYZhAPQktK+IYTmzwcuRIQbOIChfmzDZ/4FrPzNS8k2ecXYXiEU2oyUy0OCzKRBCLM5lsHIPx5HxdgrHOcJSWdToymxpdeNxsiZPwKCt29RLE8mV9TRvHctr0gat5R5492MxjtaS3iRvZQZ3Z5jNhtlzmBz4bfowVSzheEmbIY82ue4F2gZO5ge3EGDeIHTGTR5vETjvOdcOVg+v0huQ9OT7y6CqiKn/uP+VeL6kEbsM7nvfvOcqGWCln0xCNsHNrulwxWaElFYK4d1xPD9isnKWmksyQG5KZOeglnT4y5gqbFZ+Vc2x5dop4N5FiySSOpmIwxQ9pNFAZi9PEUs/EbHk0vsBfSdgcCTSMYpmoiVpWe2pJJVkANIyI+rKVxonEqnytisHpRCtj2XClI4sBagyJbAp2xfmZhWbq1c1f+3P+614hOvzcsZgSuRKsUUQ8vS4RyUym4862QAK9IFOTY2KwdYHF6sxzvuJ5fsvb/IzeLDjaNbOZuT6fmapFQVPgELE4e6LJJ0RDYW+pKWgTUY62Y9BArRHNcLQXDG5Jk3tElVk8kYpvpx9w1IE2HhGXkVkY2pbJVgy+YTMcOflbHu2W2Tq6dGbJmZQMQRp8Ls3fgzyjcRPX9ktOtubedlTzgcaeWZxPXIUPaOh4223wOXBwHbXZMwYlzXCQJX2q2buOpRzLND3OzKZjEx7RYBldyyoMRC0opphbTE5ILlukk9ZM2jFYeZpURiZqPB1eZ67yPScWJJOpYs8exccC3PY6ManhxAWalHfmGUezZTANY65J0hKyZ/Addp4wGhGNrMIZSYZn6cCz6S20Sj87et/RS0M2FvLEJgReD+/p5MzglwxRSE2xM0y2Yh823MQHKtszzEvmquE2fODWvUfNcx5Y82i2nJxHI/xQPuU2vOMF95zNEZ9HluZMI4n1uWdiy+RqRleet6v8gZE1isHmsiHf6b44g2XFqbrhIj3ypXvJyTZMLLAyc5U+MuO51Hf0uuFkDQOLYpiQiS7vuEo91THy2K1Lw2VrvFFsnjn5jjpPhMqwnA84Jr6UT56YggtcPGJj4sbtqePM3ra42JK1YbANySiYxFh17MyG6/RIwtPlgJkEbSxOzgTjCF1LEkc05bNQK2F3vcUtVyRjfuHN1zfN3M9Yl/6WV8c/5n31jM6cGGXB6+kj7WRor7RwZgAjsDrMbPRYhOoIjsA6DVwPj6w3v3rU+xyhSg4/ZYIKEWHPkkxNySRktvOu4EV8xYxBxYHakpkSeVJ1OSwTKo4zG1CHl5kolkdZ03KmCgMHW0CjlkwgMFDI2UrFjIKpeKxXZFc2akWUlRV6WdKGM9HWOO5RNVzNO8y85W55zegKuV1UGP2a2TlkjlzpiZozR7tCW0OrPck5mtOJnVzj08gNE6/Hn2BjxaSWBSMXyx0P3QZxlr1sGLyiDVQoq5gYndBLxxga/DgxdAtCKmFbteVKaHOOfFwM5JAwajjZDUeN7GmwYcS5iNiRYK6ZcmTW4kTcaAmYb9ORLgzsTUd0cDZdAYEihNyxyGcskZRrsjq+rGsqK9iQ+WS+4/r8gYf1BWdaBttQayH9N/nM3lxiNGGJRVxtGt5Wz55eBUPDwFk6otZlM1IzVgNJDGV37WvDQwFhZ2BSWxKXcmakYtYOJ2UT7d4+o11nbt47doePv8xH/tezcoMLC17OB/65Js5auIHreGIlJxpN9NKyyDtajRzNko/2BSMLDJkunxGr2BBxKFfxHQNbgnb8oP0us3FEicXfa2CcX9Q7AAAgAElEQVRSD9pRmRlvMjZAeOINOsmkXJ6TYDa0aWSV9wXU+pSmjS5z0A1JDQd7iZeZxp+4jXfsFc50pAZsFi7mAw/VlnU+sDUPRFp2MZc8rY1UOqPZ8lBtSBhGVxFmyw/rz+iGyE+age3jDig4jNE23LsbVnrgcjxxzBeoK894Sp6lnJjykskYdv6SLvUYmVjEEx/8c0gwuhZvJ5xOrPURyUNZ/gAgMpgGL4423aOOsuRlLD5E7u0LYi4H1204sBwsB7/gwYCfM+/ci6K1InORDkTtcdHRmhPHquKduyboAlNbbuf3zFJziBvC6Dm2NwiW2RSYbaJme35gsCtMLoD1hRtodabRgVk8IdVUITBONR+aK5KxGBGuUsTmSGcGLvWeo66wJrHzK0b1hW+QIyQwpqfLA++7ZzBbRm2YjWE2hrfykkbPbDhT03NmyRTX9JMwhA7fwL6qOZklmVz8t4y8jG8JpuImvOeDBn7cfMooLeoNi+mIDwVO/3Z9STNHLHCZH1AT6OTMUS4QDKOxxZMtlwTjwSguJ1oyq0lJ2VOpYjoY2GBIdGNgFc5Ubsbrgd7U2CmwkhOX4wfe2k851BfUckSNcsE92WQCDmMDrVqMF2bvsfYXv9H6TTP3M9Z3v/d3+cn/+E+J7kc8NB2zVFzuB14MD/z+9/8Q58pbWHPiuXF8+/AVz9o7Ripup3tefTiyev/Aiz/4N3/J/8lfrvV1S+thZQ1/are8l0/INIDDEOnmkd//8y9496Li8+0tg1xQ4MCZhKUui+JPTlaLUpE5A5mEPIFOZjo5kiUxmo5JHJPWOCkr446akZmEYiIYhJozMx6nGaeKI1PbQsSr84DVBJUhz5FUZT49vucnm1ecZIWWAxViJy7Tl7zMD3yhv8VX1tCEkb2tGMyC63SHc5kmRL5yL7lzQt91bMMDN2Zg6D2Tc+ykJluhtVPxkc4zs+1IqeLUNpySZ6s9nSSGnJiqyEdzy6Z9YDQ1k/PMZkEdR5zpSOJY60DrDyz1yJDWiEZ8rlnkIxv2XMmOi7Cnmgekec6onkfZkjXjiUxSYdQStCVahxr40GxYmJ42TTzkJWluGKSmYcdV2nGTHvjgbljkMxNrVEei9TgTC55EWs6MBUXChNeA4Ol0hqSIBpJzJKaSleNJKIxiCCQcA4unjdiISC5XeBiczPg4gGmR0+Mv6Wn/Na7acq0n1vOJ755+gnaWpMVrqpUhmJpF6lnqxPW4J9QVlkDNSLKOWcrV3Y08YrJijKXmzKFaY0MkYTGhIZkIRljrEfvE9/KamKUCiYzFL4AkuB4euEwPvF19ymhraj2XjJU1WMkcTEcdIsHUXJ4/Uvue0bb0tkEk4GUuh5WmoI4GOqocMAg3+sAb+ynpKeKxzD1eAss5kN0FB1NQJSt3T29qTLVm1y7p3RN8OGeyWB6XS7yMGErwPSfHyk74mLEmUTOw5kxQxSYheF+uV8VSk9nqka3s+Cx9zlf6kpBrJhFW8YS3gWWeGLJjLxvOssZYsClzuz/S2Ij6iKCQHXVSJmOLaSBnJqm4DBOrdGTSDcdmzegFKwYfT4S4QHPmwW0xFAB5xx6jI3NyPJ/vmEPNRdijduBZ+orglY/mAm9GcrYQBQIMcU22FjWW0TaM1mKql+RkOJolmpRaB2brMGLKGa53dG4EY5il4avxUw6ygVRzt1yVv8lEVmlkzQPP9Qs+pteo7Znsgmw9s1pyMhgTGNWxd4WhWeeZNkZMpdjR8qPlCw62sDfRSI6esy0Z4L1d8yx8JNctCz2yTQ+s0o43VgnaYnFEKQ5YZxKokDTSxR1WjvSsmdSiAaqcqN3Epe5YSE8Kgk/KNu/ZsqNJkWO3wU8TV6ePXFfvOdRrrCgdAz7eM1nHeoZlHll2TXl9f8H1TTP3M9b3fv/vEOJ/xup//cfs3z+SiVx0nr/xm/8Wn373D3Bdmbj57Q3fXXS8vtvzsG6xacfr3TsuH3f8G9/7Nt/93t/7Jf8nf7naZcXVd25Zf/wnhLxm1O6naAlBaccjJp/pplA4QV+bIoiguWyeKnhORCoCGYsnc6DWhGemlhMfzC1T3ZQrPSPUDFRMTNQkAoa5ZLAMJClTzZYjVc5UOTJLxyKMNJXSMnEWx1lqajeCVJz8mvV8YhNnTmaJdT1SZaIRfli9Znt6oE2vERxdGKh1wtiRySxxnZKninFqiP2KPsGhiVAllvM9hGtWzYnr+chCj9STJdeKHCAsPjDiWc473q0/QcLAqb5Bsyc7x2fzn9KHNe+aazoi2StxtnyUawapEaCWE8kayMKr/CWzrZiM435xye30liMLoijCiBNDInMw13SpZ8bT6oCKJXs40XGUFSRYVROesZyy8wOd9rRphFzhiVykR5JUGI082o5IjRWP6ozEzDaPZFEERSVhpTCnClfua5WdATXFWSzxKVoZ8RgyA4kWR6a3LXPn8fnE82r5S3zif03LJhZuwVkbOsl8b/4z3sgNkg32EGm693gTqc1ELSOt9jifMSSqlLhIOy7METFCkycuxj3BVsxVw2xWnLVl5U6s4iM72bBNJx7tlibvwDhaGSBR4N46cZMPXOqRMSxZTCf6asGc1kyuwWgs1+/iqWTk0V7y+eI7XKU7NMyohYrAQs5cyAdOXFFroJmLfeTB35Ktx6phOz/Q25Zn/Tu27p538pxTbImzYaLlQS5p84m5SwWFIpFRFz+V0CeBF+MjJ7dgGw8c4yX11DOaKzp3wlQZKFGTaKSw3LMStEy0kvZ0MtGGmavqnkEcTezBGUwUDn7F2SwKTJmAT5EoG3Z+S2smrsOOaGZqPdHNE0O3RYMQvEU10OiZm/TAD+strfb0usUkT29bFmkAk1nOJxod6Gmx0aCxYlPvWOUDTsLTNq7j3t4Soi+WHLvnyII2K9twJqmlmXqG7hmntKIyI7M2WKNchQ+cp0va+Su+uvyUiOdsG5YyU58N+Im5akim4mgXrOyJCk+TJ8601DoSUsODec7RtRzNujSSJJwXunHgTMUiD0RpwAyQhXaeadJAFCFboTY9kRoQsjge3AJVy4Pb0G86Fml6+oxWbjiw8g98kOfsueDEEpMKE9airFNp4L1NZC2xoI9ck3H0NDQhUkUgj9x11wxUnHzHgglNyrle0WvDzjUs5MRNOnLBjmqIBO9pj8rrqeXT9QUpRqz7lxcKf776ppn7Oepv/b3f47d/928yjj2aEtYYrHNUTfvTF6q6+YQ/+I//Uxb/9B/zo7svMQlufvs7vP72p9x+6/s061+9rFCKmdvbNc19Rzdn2qaE7mdVLscHXvQf2JjMF37FIKsnNMuT1kuEDE8bkcKsrnDksLQS8JSQ8M5cUKdIFkPDiH/CjiigapAsCDNRFTEZI5Ft2PFt/pxVDgy5YWcuixw6ZsiRs1tx9h2T77jIB1zzyDoe6XLG5kwm0viJs1zSq2dhEi/P7zmwoTWBJkPwS+6Wt5gYMbblcpxQ8Uy54hg2eDOz8xtqPREDEDNNnVmYyDkvObRLhIizjrrJjM5D5TjZjk4Gem1ZScLUGcGRFDQI1TjxsHxGlUdmV2FyRgSMBOanDdDJNDxWDf2F4+gbgrSMuqTVnlU6cLRrJlMV3p8GKlFaHRikxTHjVTmZFhWhFcdD3nA0a47cIBQeXTcEVmZkmR+Yq0+YbfFfWizOJKyZmU1LxBBoCSSUBgskmZ8MIV9DgqEcAEoAPDORtcMgRCmzOycDbpmoNutfzsP+a1ymqfmiWfGVCHfWM6hlloYLPTN7hwSDiBJSx9BZjBFexR9zZ25IWoN1TCw45wmmTHYtWYRrvaOZP3Bv17yQO5KB2XwHnwMrPfFp/AmDdMzSUM2RSRqSwO20I6mQm4CrMsEIVgWJilYWlwJGIE6GbMoBpTcdWRes5j1DtcKqYyETN/oDvtLXfOU/YTALgi5o9ITVmd51RGPIlRQ+Xl4QdUEyCy4PJ5wvsYXdsiZaYcHIoBVN3rOSA95kYiN0nHh+eiCkNefqiiQVzpSFIWOERJlwV7GAk70KyziyyJEujaAOKxmpLK3JRJQuzox01ObA6EZ2uQWb2aQPWAsuGYwbuG/WiCQ+uhqpI40cERqMwK6+ZrRbRu2oJKJiac0Olz2v+nc82CtCMpxYIyaxzDuMHVnNR8grcGNpXAN81dwwVg0RcJpZMdIkpTJCZWY+md8xnh1fecAojR85yoLBX5QMs/VchEdmWzEmzyrtWaTAx8UlwTmqPFHNiewNR7NioGHWiirN9HbJQZec2JKSKeZTa1GnTNGxyT2r2NNXC7IakmQel0u6JAQqfA5c6D2DLunyxCeHO368eclQLbFEFAWbWceeWmaiCmNc4cXwbP5I375m767oqahy4tn8kcpEklru6lsGqTlXDavQM0nLrl5gZGZ0G6ItSs6dXPNeKoI3OE2owkZnXI5IqFjGETev+M7DATkHPjGeeg5Y94tvvb5p5n7Oquqaqv5/XmKobj7hd//+P+B3/5r+pp+3rDM8f/GMb/3JC3YfP+fRvOXol6Tk+O7jPVf5zDZf0X7NmdNypWpRRAo5SUgYjXi+Vjh5glZF0fU0YrZ2LgBShVYnPAMHvQYsk62YxZOpKO2hRVRxUvBz0RZn7Ad/UyZU5hmzcQgJRfFpApc4pw2znTDzxOW441QJb/wnOCL3IlSjcOxWHFrHwY+ICThNrELE6T11HVmcFZ0Nl8MO2/ZMbaJZTKgoreu5Oh6owprx7kRfnWiMJV4Ix8ozuyUY4ZzXPJ/uiRVcTI/cuysWeSKLJQbPYgp8bBuqYHgwHc6cAIePgXFcQGWYvWWyNUMDR3sLlO0/1DBoTcSh6nA6Y1RZ2CN1GvASGFmQECIRMRWD9Rzzd1jFM8F0eCI+R7p54pX7gi4GUOhtx4PbEG3Gi+JTJkjEiTJIhz5BgUUCXgPhaw5hae+AMpVLahBpyFiczAg1RiK5boh5xf78DZrkF13qF9yZ5+zljtY8spQz/bzmbLcc5Zou7iAJrQba+cDHZsvkPDWB5fxI5w90nPGSEcn4yTD6Fc+mHXWueZ4fqRd7PvgNV/ktIS9ppwETarRqMFaIpmXZz2xygXtPLvPn1SvOdOzlgtZMpOxY5Uc24YGEYXAdxhgqsdjkSF45csFAQZg0aSYNB2bfoNZCFm54i1I4Yyk7MsrZdHxoniGTZxECo89UOZcohxkJ0eBtJCos7Jm1OeFypMkDmkGz50v5Hu+aa+7dhuTLtrcQWOuZmSXJXCMaWYY9q7RnO++YupY3+RNO3ZJF2OMkMFlhL1s+bzecZI2osuWRSgtWY6gWNMyYmLivrvGSmE1hwVUa6VkgCgs9cjRrkpupwkwTA1M0vHDveeQGb+F5fmDVD8yt0KcFB3/JoB5jDTf1PdEq07ym92uCcVQ5FSaaRi7TAyGsyzt3qrmfX7O2ZxbT53zR3DKLR6WitWe+Nb3nXjeE0NLGnkFuqVW4b2/xscdKQAFjYcgNEgrdMs81U1rhrQHv8apYjXhNpLDkOr6nk5lqnmiCY3bvGX3FUh4w0aJquGs21DJwk98RTc06jgzNJVfjji+qJeoEFaEXx12sONprmtSxmEeohIaebDzdNNI3LQHD2+olN+MbVhbUGBot9pvJ1VQpEUzNu+Z5OSiIIRuPIeFTwGqZaJ9lRdSakQVt3PHJeeCDWfLRdrRNQEKiXXW/8KkcfNPMfVP/N2Wd4ZPvPuePun+f7/zvf8xvvPmchzxRVys++c1P+Oz1H/In/+h/48fDD+l0KA48Mh0nzromSpF6DUXSwtPeNyL56cpN8ExMdCgDSEWdR2btCFoxSI26ilYnJslUBByJ5Dw/0N+i1gGfI1FqBm8LkDhnllJE8jAwxbJhu3F7dm6Bz7D338LPRx7sJdvwwB23vHT3VCnhJ0ewHSYGVDJ7iVzmE1fDjk1SBj+R5xlbj1T1AHZkpTMLc0KqCT3XwCOjwHC5Yd0O1LpniplF3mFSS6OB49jRs+GQb3ApcmKBzwlpBtbuHcs0cpRrvEbeyS0VE71fchXecfJXzMbhaalyT9KWnC0aHCY5NvnAvlmj4kkGqnTPMp+ozIjiUKM4DH05s5KM4dFuEYGVCbTxQL/w+Bi5a55Rj4HW7GnqI71f8NE9Y3IU/AGWrK70bVII/AUFPDE/ceYQiqpIAkFrysTOEmlKKF4D9RjR2KD9N83cL7pULfvK8sF0jLZhObRgEufaYuKZ5/KG83lBXLUc0wpJhpWeWOiJ7AtSJotn1My+3mLVYp1ydXxHa4808wj2xGQhRcsbrnGT4Z1tqKcR8cqSnivteX36kt5t+KJecXQbMIVzdpUe6PIJJ4HZeFyG6/OJRhUqqHXicj7zUW/xIWJNgztvSZMhrJeIMfRVh8mRVRhxEciZx9U10bblKjMZ1EH0Bh8HhtzyRfcpaKTRyCQWay1ntkwyM+aaWWfOsqJrIkPynKqWbMFLZlLL/8nem/zatmX5Wd+Y1ap2dYp7zrv3vvfiRTgcKRuQkBxCIIFkig4SkoWEQAIhGkjmT8ASHZpGNGiC3KNnekCLBhY0aCFEjWRnEZkvXnGLU+xyVbOksU5kpiDTOMh8jgznG51z9tpnbS1przXPmGP8xu8LolFFuM0PDLnDSgRTWOsDxow821suusabgiszSmb63C3EBWaMFHblmW068M7eM+aMjtCrmkl1eMnMWZOBq7ynYmLLAYmFXq9QPqOHgNM9r/UFZzPb8kxbLmzNnrJVuCqT4g2VyTDV2CkxqBVK54WYLELKNbMNC3MnGyZZUUsgG4MKnqfNhpO9x2fD1+0bOhlQBWoZyTrwqjxgp8Ap31Arobtk3t80iFVMpqYJnvvhPbPaoHSkRItNkZqZYgQjIzmB0pEmLJzzYITe1xgUsxY+nfd8NFdsOPO+uicirDmhJNCUxJyhFEeoanb+IyrBQ9iREbwojB45q4qz2jCVget4ofQTjQ7MOi2GzAgwc9ZbdvmEksxgLa5EkjIIM5N0jNKQgTr3uBhwMVJUIlpD9UINlgiIhlB41DUfzIq5KKwYrnNPar/HeX0f/xBDG8Wrz1/z6s2/zE+TB+3ALCaH4xT5mftfwCVsylxMxFKYaMiYFx1dxpJZ9issrv9FqKTHlw75fZG8Iopjr18xc2YqNSPtAg1TI6pARnNh8fCxZQHC36WPZAqzVGQ0SnvqdKGOE2tmEgaVDRHDpGu6ODJnWCnPpD06w5AreqXoa8FnTSoalRy7cyBuZro48O52xzehofNHXo0fqfUjn8YPDLbDRMEGiwkD+MTYr+lfXbPfrhh0y3WY8crS+9dMpmM7DlhX0NEClo0f0HnGuBlZKbb6kUF3rDji0syXyuJ1S9RQtFDnE9ZohMhMTRMupKFC1YFUVRRl0CXTcMEkjyqeQuRZ3vCkr9E5sc17otJEKgKCUoLN+YUOafAvwvhiPDccOacVPq2ZbEehsCkTQ85QCrUMnPUywarJWCaSvNBbX5xrFmQY8JLg/8JAWCQu3nQ5Y8dA+g52qn/eo641m7TnWY9oHSlrT5UTViK9q3kwO278mevLhYNr+NA6ntSGjjO7dKArJ7IIe3Z80Pe4ZqnIDpUFFaFYBv8ZqUqYtKC2vKmYjCHoBqNH7oeZ+/SAyovP5G/zY3rWuDwzqkUmMOuKq/xEJ4vOM1hNqy7k4jBMSDZEo4kJ5tjxTGQliYtqMSRqRm7yM9t0Zu/uGH1NLoYSM1aPrJInizDPhkvteHA3FCkkEdpwQUyhJKHOgbpcmHLHWCxROSpGLAemVIPMzGaBvIeyYpV6Sm7Zhp6uHAgKKJqP5p6TWhMx6DJRciaKcNAbomo5i2GXnjCx8EG95kN5TcSw0hNdiqhpRruRKlsSGZXM4os2XLjoDa1K1HGg1zs28ZlY1XTlyCszcKvf05YT77hnb14zYCAIJliaIdLISNs9c6k7tjJi0xqfLV4MUYReWlb5Axe54mN5zbPe0vgjU1st/pNFE8VRZcdBdmz7gaO9Qg2asa752r7Gi+I6H2ij5iqcqcYaVS+s1FPucLNnU44008RV+8wohq/sF2SXeFY3vJlnpGSS83xrXyNaYUKgN9f45DjqLVlAlLAuZwY6tHIUBS73YBOV9AzSYnPhWW0AR5sjc+kYYqRhkQA0xVPj6W2NFc/gHO/MDZN0nHVLHQNSIjoU+rpGVCa9aIJLWf7L3c/PIDNVCjzZiVoK6zShXOB97Pj5uuNxqGnSzOYp8vHpkevP//Sf9++Tue/j7x/mD5K4X0RTG8y2UB8uVDKSuWaGl3/YLK03MoHES+nm5UxFxKGYaFiYnr40ZBRRNIoGIXNVTrjsGUUziCFIjS8KcKzK9NKadGzSE7OtUBpmDBs5QVLUZWBmQ9LLjsuUyI39yODvaCOcfKEkg8mKpq+YVE+vVzRl5KzXKJuxolCyZVeeSd6w9oVe3wEzdZ64OX3EaoObeyTV7L3w4bZj2FlW+pmkK2pm6l7xXG6BiNeGc92wLzv2ZoU/aj7Wd2zlmeICDReyLkTRhNCiM3iJeNVwKS1N7qnCSKCmZmTSLbnVRNNiSwHJNDnQm4osFSUIQ2kWzqbWTMohZeHmduXw++7vq3JkUCt6V9OrhqwVooXQGk55y6wNl9Iuk6kSXqxgJjSFFTMZv+zUEU6lXnalv5jWevne/kBD5/kFEs5LQ0qO0oLY/N3dw39Oo20MujWkaIgCo2o4ilCVyG15z3oaqCfBm8ShbrB4bBKiMszFsCYTleGorplosDKg8kTfOGRMPKzumFNDiEBQZKOYirCvNqyiR+uKixr5srlBaeGj3fGxXRBWg2ppysB9fCKKoi5LpX2IHVXM1ObMSj4wGkNsHE0a6bNGF+FYGfbtLdlG1l64U490caK2CYVn42YUkWjBlYnUaiLC6cVU1yvHq/iBZ7lhtDWOTECxlx1rL8xphZEjhkI39GidmLMmWkuRlh2PhGLZpJ5Px0eiKjxWVzzp7YK1Ko6qLKa4s6oRk/i5+QvEYhcyQ1Z8lr7mmmcUYMd3RFMhOaGyIePw84qb8MzUWIKylKIx2bEpnk4+MmIJMtFdDOdKONs1zidKFi5uzZP5hIt0eKXIClLliXPiOW6YjOf37A85645UObowLtpcqTirLX3XshpPbHTEmZFUWmYMuRSe7dViOZTfcDBX7MwJ0NzlM/f8jMpPvPKFqVtRPKzTTC4ZZwpSDLVccHmmyZFUVfTccqwMReCkN3gqRtOg0sQTV/SmISpD1Aq4wkhCirBjj0RZbKpioKTEk1uzNxvu4ju28sBFrTixYtAbVBSKeErUnMuGqanoqVFJuJ0eGNwbJllqa14ZvBKKzviiGGlpZESZyCqOzErRELmNJ+ayoYtCSBrUuJjEK0VAONgVTi1m1qIUalwq2Mf98J08798nc9/H/69Yh4ivayYqEA+4F23cwv1syvGF2lpDWbzHlpRu0TJMZU3HkcXVzL6QQg0Wz0qOCJ5BbogsnEElEVXS4hJfEkNdc90L63SmKz1nvWITLjylV4xqRcGykv2CnckTg7as9Uc2c8+DtBQVSKoQJXEVLwSjIRWOZssl19yGI15GTLKIyvhwS28Mre85GqG6OKopU0Jhnjb8zs2OL9fX7N2OtT7TxcAUd5zDa57WDbNUjLKiVg9cDXu2RfNR3WH0SD1kvNVkqdilCw8YsliqfOFUvSaJ0EvH2/kbtrknFI/HMJprLkZjTSTFBVTtQqIHRGkurLHilkobELGkrNAoervC5fnFrHVLbzaMaaZojy3QMPGsd5yNo5cds9ZQEkG2aMn4F9pDVXoQy7nsSKIpkli0co6F/lBY6A+/SO4KSEK/mEqLAURo1XfTevhzHdpxX/Yc855DabHeUWzBl4o1Pa/CmXert+Aij2aDlMCDul6IIC843RnHoBpSWVBxuxh5kGu+XjV4adjOEz5DnSeG4oi1IYhCVGAqFd/aG9aSmM2KyvvFdBrPJBrJhffmE1of+XR/5l3VUsTiOBOUoUjGS8WkWvQccRKYjWZoHE0KGD3TyZEqDQxVi2IiCVQy8rqc0CVg08TX5jWDvCKKoMkkBU/6loyQcUxKocriM6Ynwyt/wDaRlTzQ2jOdH2j1SDUFflP/gCSGooUVZ6TpqaMnpzWTapAIg+mo84xR6cWeZ1kn6zLSyxpN5PfU5+zDFqcKyVZsYg8R1hy5iT192iHF4auGJDVJJ75qPqVNZ+o4M9mK0Vh+6/VrKJpaNfTKkpPHzgMf7CsOecde31BPE65AqE6klaFv7piVBZGXoZWBkCyiPTY+EcQRadjra17Nj0jUYCoQeFQ3iHiCrjkVRyqGG//EWLFoppXQy5ounNhy4fXc0xTHb1crmhyYjGMMK2LyL/ZGlioWBrVsdiGztzuCnFHCsp6IwQRPX9Yk8Uy6puaMZIspnjxYctaYUiiiSbnixrxnlJper5ep46pQxTO6ctA7BtvQ01KbmWQ71v1I5S6kqImdYNWSwJdSqHJgnQYq7enySFUG7BiZ7YapGB7dFZMuZHXLRE1XFlThKS8MWeUjU3Hs5oCdFab5bib3v0/mvo9fOlLMdEnz9nnPz149cdEbApEsBssIZRlBT6rFMTGLQooQccSi0RiyLB5RFQFdQInHFs9VOdCwp5ftiwKhIAVMhDZ7tCwO9V4qTtWWXfnILh0QHRikIStFwWDTzFHdkSUTjEU03FZnrP2KWdW0eC66XsT8oWAIZK24Gx6pkmV9vvBW7Xk1zvhUk85rlGsR+wmsRlADQ71j0okvm4YP6wZFwPiAmwuf+IFORprua0bzFpNmchZaPNEZhtoyiKWvK4qyNNMJp+FYNwSp+DS+J6qGXu2oxKO1p1UDPw5/l99WP+GDveGiFINeUTESjWIbenpxDKxRkklO0aWF30pRLyYyii57Zp+4L+95Zz8hIxQ0pQiXvKNSmSpnTkazl81ykSkAACAASURBVGugeqm6BqYXeHVhRWGhggjhRR+XCfyiXZpYkjh5SfKXYx0XKJoqJ3bhzJvLMzvTUHXXv6K7+R/dmIczp6SIF4evHWNpaNKEHoVtVIz+Ne/XP6DSTzzoe7blI3UprOKZTo+0xXM2W3QpVGogB8WsOz6gUWWmKYmg4bnaYF3HybbkZR6dk2pANKOKuLLBB4O3i/3NNvf0yvCiqCSHzGAgas1sHUOsMBIw4iEXNJ6x6aj8iagzUSzBCLsYuSl71vORr+xbnMzUauI6HSmSIXue9R1R1csIVRGqMtLOE3Xqycaxrzac9ArJebEOKpZOHVjHnit/RlUXmhw5uZZzuCIH4aw7jrphMg3fylvW7kBMjlyg0p678siKE2rOXGzLoFegFSYvlibr+cCBG3Qy/CB8i1YeZyZcCoy55ZKuibJCivDJsfDzleJg1qRKsU4N9zzSsWe0jl5XVCmy19c8yCt+Xn7IxvQMaWmLnlljXeEiilV6plMDY64Y9JpJVZRcKEq4n/cYZUhZkUwFBQ5uRVGZnT9RFU9MirUaeTZLIt/mgSyW6/LINUdWw8ST2TLpju0lU5WKad8R6h5HIMSGQRp625BY8aEx3M1nVCy8ys/0rqJIRSiO23DAELjYjpmGOkwYX9HIQLQXfjR+CcZw5z8wpRse3Cue4gYlUPvEZ2XPtN7y7AIJRVSaOiZSSQQHOiukSuQAURmCXfR9m3DBmhOjazDKE3JNPRW0grfT77JOI1u/57e7fwyKoFRcEIWloSZh5xFNZg4V6+ypbMGjqNLEJJl4Zbh684Pv5Hn/Ppn7Pn7pSDGzWd9w/97xxfkZoyPnsuPg1jRloik9WcETBhFFXQKOGRAGVsxUaBKhVCgpOBK6eBpmbtJHRtVSy4RjJuIQP/JJOFPlkUO9ZlKaoAzPXFHlHpFEScIH9YaamYkGj2PCvjAmwRA5l4b39gpUIuWMNzWpyzzImqQKuVjWac82Rq7GwFjXfCtbKqDJGjdOzBRyWTG0FZdUoVXgQd3ysawIdSKZNd08kscasZl9YxjKiqCEuszs+gsJRy0DKW8gXjDAhpFZw6BXTOJ4V7/C5iMbdqiSIMNEw+/qLxhUA1mxUiO+ONb5TF/WtDkQg2ZSI6UAybGNZyq5ELUjYylFaMqFLhu0isRS4XNhoCaolwpqDExiScpiSER5qayJAIaEBhRIJpSCQnAlUgQqJiQFZrXByjIpuCC/Fgrsbp5pUuAq7Pl0eOLVxzOvvvgB3fX9r+6G/kc0+v077PgtRrVEL0x1uwwENJnjUHFpOuaimfQVRSlcSkiYqEpEyDSqZ4ulJEVMljrMzLpmMCuibMnpgAsTOubF1qYayQImDiQsaswYEbISrvORzp9o4xmjPMiOJ32PyopSgQ0Db+czH80rTEpUYeJGnijaMolAAV9Z7uYPKJOxMdDOkVf5iVwtE7kKTZsnqrJYls+p5pLXxNKiRHMdj6zKwHqacDLyUd8wJkMSULmwzheu1QM/jn8PnZfqzEE5vqzvudQN++YGKZ5Hd81oKnrZchc+0CaDnQKfxm9o8oQtQlX1nNItJQeyirxJH0AUZ4RHc49XFSrBRXXcTQdsKJgAg63xTiipYH2N2D3BmMWL0xR0jiSTmeqGqAUjkbNquUi3VLslowVMiZQiFGVIyRFE4VODbTJBHC6PSIlM6WVKNhau5m8IseNjN3NhjUt5+e5Li8+OWVlenU40XY+PFzoGolg+uZwwZiC5Be1WK8/F1AxiqOoTtop0IXIsDcZrXIHtPNJHWMcJm2ZMdeKNt5yqHWdXKCoya0UrB1TpuQkntnPA6MBebdAKYtHkfcfGLVo5ZxRWIi6duagbVlNiJ0cm7XgyN/ye/QwbE+0An/n3JLPCmxqyxuXE7WlkEwNXac9XtYLmwOA3vJqfaVLmk/BAVzJTuKajUNHTryuCg73ZYApQZTbzgFbTQkHxcNMcaMPEsVvxcyKzTN/J8/4rSeZE5Br4L4AvgN8D/vVSyv/LAl5E/hvgnwb+h1LKv/KHjv8Q+NvANfA/A/92KcV/91f+fcAyHHH9+V/mL/+f/wf9Vz1qPBJWR75tbxAVGUyNQrFiwpelVL3hTBFLoRARUlEoSdgSWUtP7U+spEcVmJQjUuNZUTHT5YkfnX+HoW6JZQGCywvsq8lnDuaWQuFoNsQ4UoqQRGELJCnkpNAm0XLmKh3QXvBOsUpHRmPZmw2rMrDKB5pq4LbsaYPmf9/+BkUsdQ58xje4B8W06iBFem2YqkysDbYfucoTx7yimU7cjwemqmMjS7v0Tt7js2X2O75sv8DqxaUtZUXjF8vdsbYImVU6s3efk0rFhgs/Ov4W87qhlMzFtHyTPl2waCVThQOjblFZk7VmpMHXBisToLCMiEps0wGKYy0nLlRsy4QMhZ+tPkfFhJaaau4xSi9DE9qRSkKVhJNAXMZRFkPoxZFqaZ8WjcXTph5RkYTDEjAS0ChsiNRpYsOFVGpGVXF9ONKdhH/y/SN39cznf+nHfPHP/bPsut2v9qb+JePXYg0LgSKGoemgUgtWKCuigi/NhpxrZmPRcZlEL8WiI6yZWIUT23TitN6xDjO1FNQceVoJNRknI9ty4E4+8kCgdyuu4jMBjY2RojQ2F2Yq2jByfT6QO+HNfCS7jI2aubtCokbHhS0aqsVcONDQhhnPmugsH9w9qQhaPJt0QSaDygLF8VBeQRK6PKOD4HzGOUOdT4t5eZeoSqZJE/fnA+t8IU8rlDqz83ve1A1P1TXeV9io6ObEsX6L44wzI03qSVaQnNEmcjQrgnJUyROzIeDIwXGdnzA+cOs+cJMfOKkr6snhpisKhspOpBXcTx/4mf0BKV2oJLNOPZu8J8c1x3RHTQWh5bFdcdUckXLidoqExvCkO6xxVGGiDQOIolKKNvd4rUiqYRZHCAtWy5TClgPr5FFx5ov8LWacObPBVoaTViCBIpp9vYXo+Svj/4UNr/mWisEqJutwwTMpTR1Hagl8ev6GXCt6a7ElsuueyVScjGGcW+ZcEQ1chZmTbfm6eg1zYWhrbi8DJ7didAce3C3iD6Az61w4mltMzGANEh1eW1QpNAUqqenSwLPpUHPEm4ab/kTkDi8aZTI32VPnPXu14qAUQQybMWGriE5PBN0iJ+HgGr5y19iY2UbPWWsOruXr1ZbP54Efz08gMx/kmkN2FCOs0gXbV1w6QyxCUX6x68mBtT/jqbjtjxzqG3b5gpeFfCNJ8LngqxpbZjr3zDfnd/wlfvKn+qjDr64y9zeAv1NK+Zsi8jdeXv/7f8Tf/cdAC/x7/4/j/xHwn5RS/raI/GfAvwv8p9/lBX8ffxDaKG5+4wf8dP1v8ZMv/y6/tf+G/+13fs5184G/d3WHmEyUiqqMBFYI8CR3i+cc8JZvuciGjEbL4lNndaJkteBZRLMYYIys6ZlNw9Nuh8meTh35NF0WvYvUKJM56C1DqZmp6crMJj1RdEVTei5yReuPNGHmOhzRM7RxpkSDdp6sNZITo9SLQHke8bPhXNX02iG55thV2Ls9XXdhDFfMG01ltxQR6DMHt6YojysKXY3slabOPdX8REk3PLZb9vma6aam8pEtJ17Nz4SyiGwfmy1ZaaIyZCClxWh3oKU0Qpd7knLE3DCVioKgVeIqJz7rv0X7mtR0WBFmp1lxZi8rKkkYmVirgVHSglQSRVv2+LZjVS6c1Y5BKZQoMkKVIylrbuSJKdYUBga5MBtLwjJSL+q3srRQq9ijSyRIRUHh0dz4Mz+c3hO1ZXeeFjxUgNkqVsrxk8/f8q/+i/8Gr9/eIE2FdR1W/9pNs/6ZX8NcdUU3yzLQkgvZZmoGBnaMrqbOCRcju3IkUlA6gio4n5iomGloxolVhuIXbVysMyfZEIsQkiOYhi9O71F2ZpzXnKvNMlQwjnjf4ivBjiM/2/6IXXmkiTPVPLByMy4GutLTholXw7eE1lLHFbNa8cn+hFnP6PiOD2azjE3JUmGyMXEot+TK4uKATsJWTox+he01wTdkVRATuZpOnK0jmcKpc3ipaWPCc8Pr/DVX4ZnfOP0O5/kNs1sxaMtIS1SRvnTcjZq+2TCpmiQWq2aa3GNUxITMF9OXS7WZjPEZk4RH95ZhWjPIPV0OZAzRbwjjjB6Em+ZAzpooll084Z0jFY1RHusTyUBjYJu/oTInVtLxyns2vuOVPxDrvFRSxXOTe6rYo0ph0DVT7tiNZ6wozKxZucB2vlAY6Ncdg7pahjPSTC5rrI1IKlyHPbfjM8l31FL4of4Z79yOU9ySqsKkNZs0otPEzWHk7vDEfmO5GMOh2lL7wp4dj+2WSZY2bT0+IRR6V/N6vKCiwqYt3WQwpqILGaOEXmnU/ApMhSojSiJ9pTGSmEqDVy24E5erNV5rnPZ8HK9A1ayiw0VHbc406kzhPXvzCad6jZfFnmodjpztaw5s6dsKLZlqHKlIzMpSpIAqqCYyW4XfC1MxfNm8RYpQcs2r6chGR2aEyWY+P3/Dx82O+/nn9O6KWTverz9B50hRM7M4YqpZpxmbM8UWap8o+YYy/OmjvOBXl8z9NeCvvvz+nwP/PX/EQlhK+Tsi8lf/8DEREeBfAP7NP3T+f8j3ydw/1NBG0X3+Gd3nn/EauPqf/le+/B//S2ZnycpQUEiaQBdGqTnLFk3ClRlLoi4RkfEF41M4yTWzuAVsLTBS4WkIVGgjPJYrcMJanhBJbDlDutCkgCuBIDWUwKQct8y4MlGnRJETkhSjafhat8i6oLLCMFOyxvkzsVoqgZ2/MHAFaaAUYdaaqTYUlXhnb2g2G6bxhiEr7jO0nGnxVGGiMpGV3zPnxErNZKUILhBw+NiiJVGpBUr+1Gw4uYa1P+LmEVsqAgabI0SPEc3ZrUBFahmo80AvilgEJQWdEmu1ZzdfOLgNT2xABC0DSdUkBUk5cvYc9Q3f5EAjEzZ7ikTeqbdkSRzlGkqikkCdJoJ2bNlzUmsCjmAM6zDRpTO6FCZVsdcbRlrIioiwKRekBCbVvNBYaw52SxcC2yHwZj/j5B0//vwtP/kn/nmubj/l9fqGXd39qm/hP2n8mV/DJLc0ac1NvKCS4cQVLiasFJxKRAGxiZwTSQkuRI76mj7fYBkJRqGN8PZ8pA9XRJPYxh5tZiiKtvQ8yDWmfuZNOnCRew7+LRM13nk2+pnZOvaseWhXpBBRKrK9GH40n9lVF3Z5wARhkjUf6utlotBWuBFy/4qpzVzCLZWZqfqedT9zVC2+tUhOnHTLjdnjwoV9dYX4DVWJrNUDr9TvcpYVH+PAUa1wqTDWFW39zDm9xeMYzJZQG6qS+Mg1AxUn33KrYa4dhyqzTRO7ceLdaoO18Gb+LUQim/7Cuh6xpaBK4GBv+Kj/IqOu+XT+QKBQnCFGzV040EyP9NKzygfObKjUTKdPzFKjysQsa657wa0ybw9fMtaRJ7vFhsgkHVUJ7JuGJ3vF2/KBFFvadGCbRy7lGeUzY1lRzwpVVlxUTbYzyvQ0akSpAGww5QJeLQZHvufUrnBpgrqw14GhzWxDj7Ud13PPQewyzCYrGu1ppVDTUqcDtUz8ZvmLfKwaDuWeubSEpMgknnJH74SULO/cjm1KuDKwqiOSZy4OmDNWg8uWnCyjztRpRopZWvZ4IHGxFX02zNJglaVv1rTjA0/Xa5rG09qZNcLn8YSpV2xy4IkbilKQQavAtX8iuB02vwzvecN1HwkdaJlpykRfWb7c3XNWHX1ZUeMZVcVX7VtmRm6rR3xWZFWTsgFqxDuu/ECpIkEMk1SU5HDjTK/XtNPMD9JXKPGszRU35buh3fyqkrn7Uso7gFLKOxG5+yXOvQEOpZT48vpr4O2f9gV+H//g4WPm50PESEaTibmiVw6rND2r3zcPTgheBJ9GigRiaSjIoo9XQq9WFAyaSCMTFUdKAVsUSmBQNWuEZ+6I1NR65FLWSIGkwORMJZ43+QOjahdhazEcqltEIGuoysSmjMwqLw4ZeQ1J0UaNnVacUscDSytDD47SCthCEcFmz0E5ptqSo2Uoa6ocuPI9cxaicpgwYlWg6EyfLFfxI1PQUDtO3KDLhMoNLi/WImfXLexB0Wx9j/KaQUO2lgnL3twwpjVGelLWrDgRxKJEeFK3zFhqOVCpM7MtVHogJSETGVVLAXJ1T8dAT83Ijqr0hNJQlTOVErwYUIUqXrgqe+7jt5xljVErKjUy5ZogQq/XCELNjEgkSMesHBqFArwsbdbr+MgnHx94m3bcvb7nx//4T/nJpz/iB1c//HWswP1x8Wd+DVNK6OKaakzYKvPaP2FjplbL9zV0irXfU0ngzFL1rfsRPRdKB+sMKnhOtCQFe71GJ0HCIir/qHcUgVx17A4TNZY6CybPXHJhHSdO1ZZQNThZEsCEQVtHLJabMvJ62vOz6o7fbX/I2Ciuyp6NvKO9Thzne+K0ph4LlZuoYmakI/UtUmdcPBOcZq/WHOw1c3Z8okce3ZqSrlmHI93c09kLF1khqqCyR6fEyh4YqHi2N4zuwsadmeeB2vf0IbJXLUTBzPesfMTEwN4Iomb25prN9MhU1wTXMDu7WP7EzN50hFLzZf6crs8MjedxDVNyNOUKNSpmXROC4zpO5GxRSqPdzKQz5+sjU1xTsscXoSSQlKjqie10IaXCc9ktTGRXaPuRV/qR1dDTWY8MDe/lRzymNe+2jl05o0QopZBEMWhLz1tuykAuIFm48x/Q4glFLbQIXUGEVTmRtGcIG97qL3FF4ULg6fIZp3ZPv7LMRvjILZ6akmouqmPQjiZd6G2NZuJm/oAuis/mkVWeeMi3fGNv0Dmj80LrGZ1GmxmvC1FZyKBiYu9uiMqRgEqPRImoolhx4X4OfNVA0Wd25SOiet6pN5xzy0mtwYPTmWPa8uRuUBS8sfhc4/B0MREEol34sYnMSp3IdaQtFwwzA0uFb0qJo635bP6Gr1Z/gUlZHvWKbpg5uRWFGTGaVMKyEZLMcbVm1XtMcUx+zap42lBztfpu0q7vLJkTkf8W+OSPeOs/+JN+9B9x7I+tW4rIXwf+OsDnn38HTn3fB4fB8+U3H3mKLT4aZqdJogi0CBGhQkrCSIaSICcuqmFWHVkiqlgSM1lqKAmRmlLAoGjKUr0rBBItY2oYdcdGzhx4EW6HgaRfYctAIfOeT6hzz6RaHtU1F92hiEhUQGTCsE1HXBRGZ6iKYEsmakN2hffVGp0bUBO16IU6qwwX0zCJoLMnZbiaD9yrJ7TTfJ3umbwjqjV6bbkr7xZxrQ5YFfgkXfjseEbHyLt4RcTQG4uTzOvLA0d3hY6OKp/JVeE+e2ZpKFGjiJSimV1FeDFClpwRB0IhmxotA0YKb+JXPKhbbEmUBEkbPI5V6ZlkTS5QxKBTIKoak2YapWnTGUqiTgOfl9/lwd3zu+ULHvQtnopKPAlhx5GBhiYPBB3QJCYcipFSagRIGLb5I//Ub3zKX/ln/hpd4+iM+7VL5P4srGF/kvVre32NbTfk4UK5GE7tFetscHPgE/mawXhm6fBY2nmmJMEpwVSZqDQ34ZlsIiezw8SEsol1vLA8Q5aLW9OmGas8ZEWXj1Rli/FhkVXmzN38yBQbStUtwvsUmFhzCjNzXfjSrdjXNXXI9Koml7I42ug9fWMWW5TgUOeGXBqeTcNlvSalQiorbucPqBooMw/2DfFaKEWx8wOPaYOaWoayIh0dnXtCjKNKA6s5cdxtccpzNDVBCwe9prM9w+yYZUMtkcdVx6enI2/mD1z5ibEY5qqwKgFvas5SkRVUKZAshNSyiRMaz2WreLKvCKLR2rCdLjTmgjcNSgpnXbHOzxiz53fUj/nN6g3T6odIgDbM3I8nvBau8wPKBA71lkr1SIaHskPOgZ/nT3E5YnTmWgJzXpMrz9X5kd9rW86VRfSKtzyx4oIrF96ZT6nNQNRbhlhTYubcdNRqxqqeu/KRrTsw0rFPKxSa6qJpfCCyYpCGWo80lwv92qFzBr3oahWFNs2k7JhYEU1HkIaNPzOknkFrjq4jSYONPb013KiRSo9MVYWiImi9cG2LQaXEipGLNDRxYqcj1+HAUd/zvuvwUqiI7FVFtDWzaZlFMSjLLu2hZEqpaaeRyTqCMmgC1Yu2etKWu/HAOpxIlWel9/RmRciWNT374qjjorm04rnohqgTITfE2BKzpTl5WM+s84FeG+7TI4f4CjUFXoUB0SNv8gdupsQaRdv8miVzpZR/6Y97T0Q+iMjrlx3ta+DjL/HRj8BORMzLzvZT4Nu/z3X8LeBvAfz0pz/9bprVf84jpIyIZdtPrOOFc2qY9JqExUpkFc/oorBp5GJ2zNJyUStAARWJBHRQNIhBykxXLrSpp5EBXQJndYvFE2gxzFxKx5EtRRVq7aFMdGXAF81RLZDqMdes04gmMsqKtvTcxI/cjhdsGcnKYZJQhQtVnBjKhlgcWk0kozmrmpIs9+GJbh6ITrAUTuxIUqjszN30kWf9A9JKM7NBD5GeHacy0qaJ+/xIKB1VGhmqNVOrSRbOqkXFiPbCNiWsv6DE0YaJj14gGc7NFq1gkpaEMOcaVTJeLApACpbASs5oCWidoWS6ckFNcKquiUlI2pFQmOyJxXJRmyVpzlAVz4ylsCMqTWKNiolA4Um9YqRGtGCyZ6TBSqQuI6/VNzyWT15aRJkue3bqW0woXPfPNA97zI/OdFbYVb+eLdU/C2vYn2T9ctsN5+sv8P2ADp4mebohke2FKl+YisIbzUl1ZBxRLWbOd/MDSOGcW9Tk+aheo2wkILTTHlll6qR5tjfMpUZ7zTC/4Sa951P1Jde8hz7yUF0zzC1jWmOz51LWPLsd3mao7rgJjwwkunjgyVxDylzFJz7NP6fSGWsSQxnZjB31oJkqxzfVFUe74cofUFmYc0UfFu1XCpreWIpp+Jn6AZILTQkcqvVicWI2NHrkUjV088gQGpRL+OS4DgdWfkCCwkniojKRGpMFOwruVFHbpS1tYqQqGdNnzl2FxhNTxU1+QDJoUbhQc1SLGW6lR4rMxCoyS2ECNvrEhMNHxyQVWQsowauKWVUEM9AxsgpHctSs8siM4i6cKOeaXCU+Sd8ymZaV9FjvGKqOYCvOuuZwvaYXg5YaLWohNDQr6rBMWZrZca0GVkNk1Bmvr6inmb5pCdFiM2guDCFwL08krbF64Fwq9toSzTUrk5jCsj6NYqhLjyuFWFaM2mEoXM3POAo2Zh7sHWdXcZCWUTeM2lFJZBM8c9GkEqlKz5xWFFGIzlzMClsilMhtfKJRnlrP3J3O9PmalRSOtgWvkTnhrWXQa1AZG04Un1FyodRXeK2xFCrlSdbStO+RuabkEZcabJ644swgFXWZaKWn8Z6JDiOBdngiKIvMFpsajPWYNFBrj0oDbe7pKg+SqfSZvr7mQEcThSG/4m4+UIcr1KWlxIwY9f/1CP9S8atqs/7XwL8D/M2Xn//VP+iJpZQiIv8d8K+xTIP9Uud/H3/6sW0cW+tIXeBcNwRtQQINha5c2MxHfvjNN6S642fXgX1dcaF7sbqAF7IXIgEQaplxRIJ29LJCk0hortMzJSukKLypcYz83+y9ua5tXZqm9Yx2tqvfe58u/siIjMyilCklICEkDISBg4PJFVQZWFwFBjeBX+IOMMrCwQAhlBJSZmV0f3v22c3qZj+aD2OdQFVSYSAi4q+sOK+3pvZaWkt7jDG/Ocb7vU/HFqxGYVAx0qSJUo3M2hJsic6JNt6aDooUwRomU+HVLXvN60gbJzah51MqeWk8S1lSILyL33PmQGknJEMbe7QYstG8X545pDPROVL0qKyYrCa3BlUo1LKizx6TNc/1htncE3FUBD7Mn6jTRDv3nPWeXjuKHKk6RWontnpipYWghGAaRlWQ0ZR6YNA1GUWfGrwErCQylpArTB7pc01JJhNoYk+joJw6VvaFSInRiXM6oLAoBSYvOBURpVAorGTOdsOMR0tClGahIOlIwnHlhikKyrAKjwT1gVaPPJoHRKqbL3ISUnKYoqF05Y85NP+Q+nd+DXt8fuL7148kDcsGjGSkFbJYpnlDyhNtWphFE5YWsRNz4fmufEuwGpsisxSomNmFC40EjEnUZmSUhl+MvyFPq1v8kA8wWkx5voWIO1hzJmlL+drRbQpymUkGHJGja7DuxJhbJgNaR+rcU0+RHAuM6whFiWTNylzw2nHxW6IXxGb6VIMWtlPPlRobzygniFHMBqxSBO3JjUXbSMnEqDSrfKZEGBpLSAan8i0SMSmczPRhzXrImLLjtK8pcmZZ95y0xiHolKlHDaamVBeSheQMna7IVtPICDqgVYnPKwq6mwUDjeHKYFt26shsPVYWPlY7iMJ35g1naT/jCTUKxeIdZRbeho/4AR75KRe1ISqNicKzvYeUWYxQMDJFzwXPsmiCudlIvFtufrDqiiGw0VeGWGNzzTpb6jkTyhKbAoiwmXsO+oiLgRd7YKIiGHXjRxeWGJab121oaSSwT6809sIPW4UxmbMxTFpolhljIhaLS1fKV6GmYyi3+FohMZHMjeAwao1NCSuBs94R0KhouOtODGvHKvUsGTbTC4ta491McoriOjLqhlwU2HhlsjXB3Hb2mnxlKTzJFARl0UvC+YyWDk2mDAuHeCKFNWWceXvsGcuArATZClF7zqaiNDM/G3/JEHfEbBiMZz3MHF3mzfSI04nD+MzJNYi9Rd8388BdPHOMkY57lFv4Xt5gbcH7zVtKVyJJfgdM+r3pxyrm/gfgf1JK/TPga+C/AVBK/SfAfysi//zz6/8F+KdAq5T6FvhnIvI/czMa/wul1H8P/B/A//gj/IYv+qy2tHxVH/k79wmr37FRVwJ3tHLiPj7zi/Ff8de0fPPs+Yd7SzYWr2ZEZsAQiChVoSXj1cxaLizK3goKlfEEOmn5aN5j3esbGAAAIABJREFUDKziiZQMXoRkFbfyZsHp5ZZzphWezCH8GpsM+Vyx8mcG3RABNQmnaoMjI6LY+Ude1I4pe9QkqFqxSy94t3A/DWyHgUksTe7Y6gs1G+7UmRNbRmV4cnfkYNDKYO1IuUzs4omTbVnMjhSFZARN4qxWqGKhCCOvxQFRBqtHbLjysdnxUn6gVCOF7snZoXTCS+CQnwm5olMtogxXWuo8oQmovGBVYlANvVpR5Yk6TeznI6d2Q3S3mJc2jChbkWUi6IIy94iJtARS0pydZxZHyCWJgiwOLYkyT6zzwOQnnAhrdeaUdoxuxYk9RkW0QBEvlCnjUqbf7PnpV/+U0v97W8z9O7+G9c9PiLlSN5/IJpOo6Z2jzBNGzgzFgT7tGUyFF0VSFTonsrntpMymZJQCKTTOJtplwrlP1Hniog4MvqRQM0iBma88rrck7zibCq8W3p+PDC4xlRHtE/Uy0dlAEgjK0oYTUe+pwww5MrHiqA/oLORkKRjZMHApNtTzhUpbmuA/x5YU5GRBLBpzQ/PlxLIIvpgp0kLLwIxlUGsUMwuOi9pA0VGoAbRhUCUZxdlteDNecSjWSYFceUobDqEDo0mNp48rkjNYpahiZs5COXaYIKzdK0155mgOqKy4SE3IGz7MX/Op3FOqK4upOds17+R7ZrWizAsXveU+nLkPZ1y2jKVhMBXbeOLdcuT+cqJUM8m3rLhwpqLtHIuvmWtLIz29biinSC8F16IkuIArJnS5ELRDp0QGxrxhyHsucc3u2KIXCL7j7ePAm3Jm8kIdEqtVxiwlqqpIuSWrTB1fkWJirg74eIU5ITEy5oZCeu7kBT8HRqsIuqJSI36OfHU94k1HSjWiKurlSBkKOtuyrB0+Tgzeks2ABEEZqOJMshWp0mgTUHpBBc9cNAyqYrccOcuaqpwQ73Fq5FO5JivDOh5Z6yfu5wtX3/Jo3rIox1yWOBl4mBeMG9jPF3yeeLVbhtjyq3XFNn0i5RqZoNcVTXHGp0w9J87ZMgdNdBXt2bPTPSt1xFUXjBkYw8JETXCGyRbUKlBPHd/zM862wmvBqMAPpwtzCrTm3+a0+P+nH6WYE5EX4L/8t1z/34B//q+9/s//X97/K+A//YN9wS/6/6zGBWqJrFJPqQfQmZ/F33A/HnnPiZ/9x/8ZX/+vVzwdBYpOCgDk81GrYcKpyDp3JKUYpGRStwaJSarP4J2Ak4TVEVHmlrhOQHMDxVsCPgW+ir8h6JazrCEY2phZyYh1mV57urbhZA5kpQmSmZWnyYnerxjSGpMHUjxTF2ecfWW9BOK0ZaMmXI7s1ZmgDT/odzy5NVMseT9fsEHAdJxXnlPZELOmzROJmhfWOH27oemgsbHCGseKC5qB5IWjL+m1Y0maDRMkIWuoQ8fiG9byitXTzRtofs5kK8iKmHbUcuGsdlR5pkiJUgVWxZFGrszKU6se4zMZhV5uXqm36hs+6R1NPjNxIEVPUB6t17/bLKWOMxUzykWuNIzUBFFoLTdGo/KIlDhmlDIoHdkU041t66ofcUT+YfWPYQ1rmhJthCieyRiyigyuYZpKcI52CjRmJIRAExK/0Q1H0xCsQsQyaodF8DJxJ0+8TS8oA3H2bOwzZS8EdSBpzWg1Ro8kZTjmB8QmsvW0uSOELavQURgohk9MfktIV872gFKJaDSjXePNgssjY1VynbaUuucw9+RcsHFnrtXAya2QKVMOiZwU11XNqAqS2bCZzxgZ0Z8tBFaFm+0gdwyuBK0xolmlCwULg1kz6pJCLVxUy9LWqNkTwoxqwaqRS6FYjxfmZsUknpPd0ZwV2s5sXc/W9ARlGKznWa3pdIMhU4UJWV4p1oEmDwym4SXWXP2aXToTVMVdeLqhymJmy8Sqf6QTTzKR0gecZMQqlt6S4i0fkNKANXRFTUmPFY8ePWMynG2LjImlKVmlKz+TGbsItTrzIE98rf6MztZc1I65KPhKP1HokXUzUHY7zp1mz0wvB6gEi+NNfOGoPVEnsjKUcSJXA5PWrOcjdjBsugtnKTiuapKU7OdXiJZN7Fn7F0qZsaqjlZEnu0K7xCk+kKcSpwZ+WW3pTEvSiiAFb1VPXhSiM0oiIxXBe679hl6teUyRUW3x8wtjscKExOwrtJsYskYbx5RaMobZWTQTOmtKFVn3E6v+lcNp4Lk6YJyh0BO/3myJ0hKV40P4lglH0yWqMWKTYfaWa7FhpmJqJ1qZWUqHMTv2KfKD+Qkvfk82lhWvEL5ntp7e3zzLqzwxpcRLeOYUXrmzX/3e5/sXAsQX/V7001/8NR/+r3/JL16f6QrLg4z8+fxEPVv+5q//Q7L/S8z8v+PSAiiMEhIVjomM5ndkgYvSOGYWKkS4HfMpjZJbzplVmVIN+NgRcsFKncFA1rctdiuKVeiZssZG4ZgOHI1Dyg2NPlJYjTDynEHbiBjLVVqiunnCZlNzmCZmUxCnhnUITBiqpkNH4exrvD7ztf3Ab80GyQ6ZHau0UPWG3fWCpoRa0AidbajyzPvp1jXoJsNFbfFxYrK3xaoyHUvgZiHUirNaUYaFf9L9A8EpAiWXpeaDfaW3nllbXhkZTInVmVF7Ut6QRbNoR5Nn9suJNhz5YfOOzq8RFFUeUKKwGlw68Vb/ll7XRNVw1hs0QlCGyZYc5o69XPH5AkYIyVFZD+qKkRkF9KxQgFEDRVpocqAg8CY+IlEYri8/5pD8k1fdPvCheEfqv+M6e7J3uDndsh2JXP2KIi6QPUfj6EuDlYkmjlRTR1AVjR6YWLNfJoKpMXnk5A+08ZWP9Z8j4mhkZt+/0pWZj+pnROVoxpE+RwoCw85jFsjzGlW1lFNBw0QqAq0cmXJDaRe8XrialtFqSh1vaDnRRA/fuRXP5g6/JNoR2usLySte0gathMEWOJM4zD3N8MwYal5Xe8alplALg2oxOmOiY+TANn5P5QInLCFbgoFgDWIchoVLc6CaOwZb8M4rJGoWZ/F5Yq49j0XFRb2n5ch6ufm8TrJhQ8+ZFW+ur9R+hBDZ8wqsscFRxlfqtCC2oxqEn+evWclAERJT2HEaKorySsgFT2ZPksA3q58yNyVBFQw0rJjILrDpRq6rNU/xjsoNfKfeo40jlwurYaTMM3NumPKa6/SBU7uhXgI7zhzrN7xIiZk31OPfk3PksHll0p5UDZzS6tbpWWse9RY3FRi1cK9OdFi8eWZvHgl6S+MHyqMmTzN3dye0TlxNzXZ65lyUjMsad79AmGnVK629cDedCMpwto534cJAgV0ik264WwZibDmWjiIviGjqvDCPdyxS8EkbMhZT9jyXG1o3MqkKJRqCRpOZLHzoPnJqNmhZ2IWed+EZnRxOd4z1Cmcz2kaGEsQnzLIQVYmbPQ8hQXJ4IxzLDSoYvA2EWbEUiUl7rIZigEJBpYTGLhh6jNKc9Jqx2JKUxthAUjOr8BGWiXG5/kHm+5di7ot+L7r7+V/xX/3X/x3/5F/9n7yeBnIwFIf/gPbnG+5/+md8+02i7ixNuPKYP5t9MWTlyKKAGxEiKwsyE7ldQwyCApVoGCjSQK89o74jWIsm4ySgRDNR0nJl1iXDtGFRFUkcvoqUaSEUlqgsPkeUgYGSQdXM4hE7cLe8MBCppplcaFK+sqQFpQuqECmU4TvdcirecEx7gnUUy8xQWM6sidGxlA8oPXEIr0za0aqRJj3znfkLkjiYN5icqMyEDhfu5ZX19DW/XP0UbYSSiVU88376xEo6ptGRdCIYz7O5YxKHiQHjbzdlSyKQCNp+DrhMNPrInTwy2RW78YrLQqlGRuVu/WaSWSh5Uu8QhAc+8cqOQbX/j5n5h6KgzAM1hpKBoDQDFYID5SlkppCRjLpxd3VBJuFkppIL68sZ0pd+ox9TohzHYs/H81u+L7aY5cJQNdwNF4xJTEpxrlpsVPgwo2JFcBUmZXb5kd3yDVW5oGdFGQPP+o7sI4MveHEP9GFLnQKTMSgsd/LEHC3P9g1Ja1IBxbCgfUCrzKAtarYcK4fRhoaJip7oFJZMqXuC0WQsIgYVAkpF2jwSvEVJZLGeszfclT2ba2C0LYsXYl6YU4WfzhSxJHhHkyYKrVFh5kVtuOg9SUdiLGgWGHKB0rc8MxcjZtYcXck37RtGU5DsAy5ndICV6lAmklDkLJS5o0w9XbHCKs0oDdf0liq8oFCsVA85MuaCkFdYDGpW5KLirN6jYkTylUYWtLI8co9H38K5rUVlS8mMqIKzectF346VE5mCCRsiV7dmSgkbSq7mwOwMOivWoUelzJE7JBUELSRzy0ObMDTmSpWeWaVnvq/e8cvmgSlsaFWFnmsuq0QMBq0TX8Vv2WfhnjPfxPcka3BJKNKVzjiO7Hh096S2JrlImS6onFhLx1ueuOYt1vcs2vLL+iuSDuzziV/It6xk4iX/OXUQRgpMyNypM3f5wiIXmsnwmO6ZlYVYU/aG9dIxIIyVv/nYJk/NCdGW3hYMRUk59xyXmj4VuKmn4co2DVSADQFtM2l0bNuJNg2MISI6cXUtbl7oU8l6mInVgpVA7ywuCRMCXjMUG2YLvTO8CyemqaWaM12qSKUnq0QZLwSXKVSkjRc0C4XtmNaK5Q/U1P+lmPui35vufv5X3P38r/6NayEFQg6UDzN/W2oOw8yvWhi1B+WIooBIwYiRTMTgJVGrgQlPVrfjWIMgMjPpgpmSSVf8rgAUNA0jkg1Ew0V2zL4mR6FwHYUETqqmMzuUSniVMbln0SV8hsxHZTnpHZvU09iFOpyIVcvfmS3lsrCn49Vbfl3+hLMuEGuBzOxatCQWMosCIzUMOzq/puAKGl5MRV84mlHjxdHGAXETh3DmYXnk5LdUIfGgP/LIe6o4cTYNzk4kZfnEe67SYkyEEChzIKuKmg7DAlpY8LcmElFMqebZvKNLG+ppYlEVvWvotGWyDQUBlxaSaAbVkLPQ5AlNJliPzz0TLW2e0CRG1bCIYqRCiSCqJQMP+QWjQVBcWdP56nNhHjDZEJX54w7AL/o3lGSgu/6ApIibhHWE1RAwGmgmKtvREHnlgTQXBF0hmltHZVlSJGEdRyQW9Nowe83R7rnKjlnDp/KOh+7MKidW88BiCyrdsZ0t2yWBX4jO3jywqSSYzJJgUo5G9Vx1iUrvuNDi0ohhz26+UDJwtTUXvealzmzmjI2J0Vj0mPBxBjUg9xPb+YmL0Yz2jsEVFGHFX/avOAXFDKOPdHKPDg4tlsMw08yKTdZQCG0eMbqnN55B1UQLWSlECUkp0IZTvUenzFfXT/xQ7MnaM6mSLSeUeKap4JO6Z6RiUgWNvlD4V0L0rMOVRaDNJ57Y00lF51es9JVnc6DqMy1HTDsRYskklnKpeT99ZCoKXs2GUMHsHLOrkBhZq56YIVnNWHpemzXkAMlQxsw5bXm0D/SyRpVCNkLA8BCO3PdHdjrwjfuK78uf8OxXIDO4kqtonEm82i0qQCw9IWm0QBOu1HHA0+GdJlthFMPO/5ZX9ZaTtHgtKNOg1MSoaxbtWVTNWo2czJoOT8srzxy4H1952X3gLAdImcPrBUmR4/2OCxumUrMNF3TQfNX1rD4lQnScVjNdW5PThIkXqiUzVBUijt24kKyFWeGCcLQrDmFitpa748A6KeK44XovxCrzYmtqNRF0yWGYmIuK3Xzipd7hTc/sSxIKYyOFOxOoOS4tl7qhYaCzK+7rR74vV7TzyIf0CX283V9eViWIUDJTp5EqDezyhWT3BMl/kPn+pZj7oj+onHE44zjnyOwDfbmmyPI5kSh97mi9ddgVXCgEinwL3c1o4ufAYORKogKEoDw3krwiC2ix+BAp9UxhRl7VgZBKlM28774jOcN3zT1iFZ2s2csJSRrwkIVF1/w8/Ib1MvJ+/MRZtsy15pvqp5CFTmeacSTYAj0mQt2SRLFLzxSxo1BCr7YsquFuvmBkhqAJpUO5iYtt2MUzOa2J5oqdZzoasu4xTUuOlpwtvamZtePoNohoOirWsUOnBaKGySFOEHXDMvk0oPXCCRjxBFvgFTxXB+pxQpvIUDiCAkEwClacb344vfDRvGGUgt7U1LnHxoxVkUUgOM0oFZM4vAkIkURGKAFNVHs+GY3CcsgnrIoYMqVMnJsN+3rm48tHQgr/6PLl/n3R0n0C9RFffkQcxAjltWCNIAaCDviiR2XDKmV+eP2KU+OIjeGqD/zabSjMleQTk7J8WH6JKSrW+cxIwbOKLLZgWXo+rjfUukNl4e38LU2G13ggYkgCr8WKuYRJC4sJPIwnznZF1B7RiU5v0Fbx7N/xfvyIDokiwlhUJDyN7vDdQBETRiKvHOjTwsIdlghKaOXMqW1u/OF8oYoXxEdGtULUGpMUF+t5CN/zJj6hl5qLtFQ6UCjN4hPrfOJqW5RyQMYz4wS0UTzZA9kZNsOJ17xljC06ZAYsF9dQzZlTucV3iUf9lo/FWxp386zeyytWZVo1cTYGkkHEoJNhzDWXtONs95wLR5kWkvfsu4j3lsIvtCmgMIiUoCoG6yhkJidYNFQ5YyTRykKYITQ1iKY3jiKPFCGRYuK74oEuZ55MccOAWcPVrXEiDHFFMWWgYHYGSRElkU04smle+Ivnv+O1OfAr+UswiZQMa/vK1TvGAKOvIUOdNSbCAvgceBc+EV3ioh8YaLEEXsstKnrsEnl1a1o10ZYzY9FR65GTWnGQV87aorSgtGLXvfK4eYuVyFg0rHOPykIzBLKPPJctOjpmX7PSZ0ZX8JTf4NLA90Gw8RmloHjWvKlOxKaktR1PrJA48tGu+WTvOFUbtJlQWLLPMJcslTAvFqktWmCxhkXVPNcbllCy1z0tiVWvSDkSqWlkpMoLFT1oxSf3ntUsVPYPsx5+Kea+6I+ihIBUuHBEceOEInwu5goSNy/dJnZMxmEQDBMajXwuIiK3Y0UtgpYZkyeKNKO1psoTWRQ6gbILlep5dQc+7e44pzUXs6aQQFIazIxJGkNkkweueUUzTKzMwFU2dHZPbxQLnoIrsylvrEfgXK/IYkBl7qZXcq2RYFExYOeJc3D01R6URarMNj0Rs3C1DSvTUejM6PaMJCb3jhMHqEp6l3lmRZSCiMWZhV4aklVEXXHxNSZkStHcyzM/0b/lSW941nds5UJQlk4sq3xl0BWxukW5kDWjOnCxW3pVsI4nCt0zmYrObZmxZAyv7gFnFnSKuCSUpqcgECXgBJIC+/k/JzeSJwmHAQIKKyNKGSyZYBzJKbo4MYSBjdn8qGPvT1ZhQOXr51ifI140Dk+aFW4wPLhHLAun2SJKMWw0fbHiWhf0qaVmplIVa/XMpax54yo2cmRKK65pxZqJu3QhWEU/N7RhwBfCfewJUtIVFUe947XcQs6s9IRBU0rAu5ki324/vVqxuJIqLCgj5KxJJvNabDEyY2WknGeKzjN6CzYhSpFdibNXLsU9V99yVg3VsiBKOPkVsymZaViUJ2jHbp5Z5YE/vwy8ySfK8pm5LzgXO5YqIsoy6z02RVbpwjqfmV1JrTLv5iOLWM5UVJ+jinK2WDPx3LxnMCWSoEwTjQhBNoymvu1uG089CV4Fep7pixu+L4glJ02ca8xqIbqMs5EqCAJo03MwFwq/o9PNrWidFlxSBJ9x6spD+cJVb7A5IalABbhUBxbrWbKniAuH8IqTjqf6jmkpOQKnsqYVj9IRQ8JkRRZLlROH84VPdY3zM2ItrZ3ZhCuVmygY6UxFqUY6X1BSsJJnihiY1AYJnrPfMNNS6okmTVQhcZBPaLsQC00dBh7ixG/tmm/X70haM5knCmYmt+MiFWhhVJ7RK/w00x0SySa061mlzDlVtGEkVhEvMxZNiOCD41u75VO5BRLWRNZM9HXJ36efYGd3OwL2v0L0itEqYoI5NMyNw0ShkZ5SLajk2E1XhrRnEs2YWqxRVDHcGhu04km/IaNow8Ss4Gq3zCbRl55Wa/RsqdKCDzAud7x3V/b3uz/IdP9SzH3RH0W+URTtC89+jSiFYUFUJnNL+9ZK0UuLGCHqFvW5YKjomCjoqQEHKlNJx0/HrwluheTbEaMyEaMSk9FE5Xi1O2apmaVgoWbSnkGVeBJJNJW/UqiWgKFNPUpZ6mHkkn9CToJNESMTg27Rongu9qzigASDj4ANaAren34LS8UjD9ghMda3gnGxlotpiHrHfn5h7Y+8TWfepSf+Qf6Grtxy8SVtnGinCYcl25KoDKMrb99BG+7SIywzoClCokgLe3NBRY1yN/TNJCVZLAHDxa4I2dGEC4d84mpaFqvIZCKOq1kTcLdOVCwzLQlFkW7+t2A9SguIRucOqytcXvAKdrzSm5ZBSm6RMhVK3czHm/ARcTWreMUm0MpQ7dsfdcz9qSubEuJCcBahoG8MOwms1Ex+qTm4R5zpqL3ibN9QqcA0z0yFR0KJCZmj2RNNJKEZY8VKz+znnmu1MJiJS1Wym56YnONFdrgcGfLAY/GBb6t3HPUbrA4UekarI4268mH5HjfDt+UDyWrexpmrXtO7GsfA5GFyLRIyvWwpZ8Woa8rDjDGQF81qGZiXLaac8XqmlSOves9i4WN9x918gRQY6oIid3S6RvmAThP9quc3FBAMwoFhgOfdlqFwlOpKOY0EU9JK4G4cqRW0YWFsJoo8MpgCFRRBPJ+KDRGNI3KuG8bF8UsHs3/L4CvO85qDfmHPM15bck7shpHZaXQwPKkd53LPooS4CLP1aLNgzYi1F7LKbPJADD1JIioIi3Lczy+s6kfuwzd0esMkDbOqGNkQkqHMI7iAjxETCj75DxS6J6wtxMCkDM1i0AlWXPCppgoXrNUYHXhvOyQsLMZjp8RQ7hBrGFzFlGtS8nwqd4y6xahMy0AzLrTdTLdt8THiTGYVexZfIkvFQ3dBLwutmrHWUuaBqAx16DkXO+7nJ/4m/S2P8oASwQEfTUlZLZxWnj0njlVNyAWDL3lRG0qXcGqm4UowMOs190tPFwucXNAqsx1Hsi0YkkethOw9sfqKOgDFgvSBV3mPWhyLdpTTgMJgGTjbNXG2t3BtWxBsg+4jVWmp5UrCYpeROTcEDa9+iylHRAsbBpIv6VKBmRyrYsTeryjaP8zD7Zdi7ov+KGrKwPq+590iuDAxG0vSjoVMzw34HrFkfUNCWRWIYj8fxwq3oZqBm8k3F54sCXGWwZQkWjb5RJUKDumFyV54Vm/pTUtKlioNGIS9esLJzIqOQn7L9+pnJBzfVH/GQIsLjkl75pQp4m1Sb+Ir53LPSMPFbGiWQIlQqYlru8eMjpAM++p7vIGLqxntDhWF0Vac/ZZGTbzqgnf+Iz7Pt/DjJbMYw4vdMlCixbBfXqjkis+JYD0JT19sSWKJXtFOJwKRi625mpoiXbion5DEoeJto9OR6EzDEM8MqqRnTa9ufrZKMhlHZzwZQxMvBCCoFmz4vPuZ6VXJoCt8ukW/6AROwUZ3lGomCkxqjY4QDcxui5VMLyt+cnlhEwLvD++pXf1jDrs/aWVbkl2JEGk+B/26JTKaQNdk1soyygM2z8R5jXIW4zLrZcLGiAmwCwuViZTmiNeRi9qhUGymmSo+0bNmm0fi5OnSjlUY+a3/OZOtqdPAxQ5YpanSwm65slEdZdacXcN+7JidJbqMjwljInV65dG9IdgVCyusTjcTuQS0HrjnwtfFzxAjtGPk/fDMYDwvZkfC4qKiS3t2S+BU7+ikwPmBt+MjrRuxC7yUBZ2s0S5i2sAlF5yVIflEUpa5rch9yWQci3WUcUTmmjv9Dft85ttizSgtDQMn43EqYZYJ8Gz7VygzS1lTqIlYWfRgWdKGZVEEH4nO8Kp2KKs5NjsWcShtIAvNPLKmR5tMwFGNgbbs0Qqe846H85Vrqvhp/XdY2yEmY3SmzANP3GH9jC4GIBEpqWK4fbYqyCKM1CwmUi0dZR652g2jrCkN9LZklU/UaqZdAkYLTJGNnXCzMJstcrHYtWJ2nvS5ge2k1yQ/oOeeWBquucIrx1ndbCHeTgS3cCfCh+FILBSDdbz6zY3x7AwOTU/DhGekRs+GMN2CdWevMWQwJffjFXoQ23Nde6r5fLMQOPhq/o7vnKNMkaLbszdn7mQg5sDfrt7zsl0TnfDQP5GjYfQDLjQMDk6upRkDk1V8SC80NuHDwLO0JBc4J8+wKrFLolrP2Nwz64qBzDYtBG1J2X1+gMpoHXAR7sYz17Slp7otzmYD+R8ZzuuLvuhflzOGDx/uKf/hE3XK3C1natPRScX33qARrqomCkRVsMiNSNBwoy78rpCD2+LVU7PgiGiE22SfVIEohUsRpTN3+oU+jYy5AiySYdIlkylYVMGcb8G4hWQGarQ+cJCB9nplb49oMs/6QG92XGRPqQMpQVaWIsBsLVkM2XrGynOVCpt63k+/JhQardZkAgZFrUZsOaEmuHMvJBwnXRBCwRg0u+EVUkXpFdZ0aBuxOFT0lDLSSoeVGwLmyb4jKeHRPkCCzrS0sScpgyhHLQM9Nb2vEKVoOSOiEBSz0kyqBAIJRdKKJo1UqafghW/NL4iqwpKxSajSglKaoCwbdULngFIbekqi0ojSuJwI4jFEsgSWpcLGTBF+1CH3Jy9fVOxjzes8kY3C1MLKf0LpBXfu0PmC0neMeYuWkp+/XPh1G5j9gvYZZwPrpSeYRDdt+GXxHhOFUFl285mtfiG4ltOypzBCowJKboSVTmrSDKuUaPKVw3Tknf2Ik4AVTVYeJ5nBLEzZ4kJkIfHi3zKqFY4IJMo5sOeFyp8YK8OJmpwFHRSiMp0qeDs+84O5ozYDhY54PbObB5IxBL9i0ppQF2zkkbncErKAjFylRBu4mgZlICvHLl0o85WrekdIFbUIQ665Vo6qjhyXDU56KjuSjOYwd2zChY6WiYFYJo7lhkGXOAlUceIhPLPRL/SmZipukPedOtGGmSwF37oCtXiMgoeu4G9GAAAgAElEQVQhUtQLRi84s1DSs+KVxlyo45U/Mx85XR4wemBub9D4wW2RWeG04MyA0pHeNAQtXJsaPU+gMnVYmNCsl2dG5YnJoZSh1TP7cEX0TLVMzFXJtV5RTBMPU8/VbvnoGwwDnV8RZk8RRrR4Up4pnLBeei52CzoiPlP0HclUqBzxOjCYhiEonpJBxTOjtxz1Bom3+Kk34zNbfeQ6vsGZzMd8QHnDrBQpKPb5xMWXyFBjbYP4BTGKoErEakzK4CKb+IRPwu70iEsOU5V8WjmCtxzkiU43NDZgFsOjuiPlBq96tIls9MSazP01MbeKrDOxFqYc6aodkzQ4L9Rq4qvliUF7HuVA0IZePF4yOk4UasJVC02euNRr5KKxs+YwCXqlyeH3i/H6nb4Uc1/0R5G1Nf/R3/wXzJd/yd9/+8xlgTKf+O3OwVYx2ZKLWZFVQZBMy4Rg6WmRHGk5M+gtloAAgqEgMVORuLXxV3nhYXjlL/SvGWbL18XPsRIRFIUsxGwAQyk9o6nxcSLLjEqg9QIzXExDqx1xNsQ0cN4cCNnf/j4NaJVZzSNrvXC1Da9uTW0nbAzUuWNyFRUjzRJwKmCC4WoLptyyThcMidK8UHvDnPY0cWLwntGtUCqi84xLgaAqsoKdfCJJyYvbMyiNlgSiUZJJKEQrAoaj2ZJJKHGs5UjvKz7lLeBZxNLKkVWcebQ7Jl2glaaUhVpGROvPT9meHSeuNAypIaHJKCblbhEJekeTeqrcg1IosagsWBlAObIIOTqWzqKWwDIPhPylAeLHkjO3GJu3+RuO3nM/RbJssXMg2q/4Og3MRc2bLjHJLRx1HS63EO5siN4jVlGpmdEUdK6iVAuSAFmI0ZDRdF6zqJvdIV1bskk89C9sxpldc2Q0npxnrmPLxkRUnvFSUqsztVqYYuYHW1EEQ2EyvTHE7EhiaZcryQgrdeI+Djfm8rLnB/eeIDv2vHCXPvEmP2HGTMJydz2zfur4+qsDU9KYGKnlQgJmGxh0gyihVIF9fCJbRT1PvJo967FnKGpCskQKpiwYs9DmgTfDwCKe/bywcp94sRavIx+uA5OpuaqGy2pmt3zi0b9hlJpViuzTBRGPGNAp8VHfQXCkPOEDtBLReeFiSq5V5Kk9cDcdOec99SAEu2YsHFkbYuW4uxzxuue6WJ78A3OoCcpRqJ5gSrqyYcoVtRqp54lySey7xKlY4ZEbykstoANtCFztlhgqGjMQjaGKPfV4xCwGPwr9riTlzCoHxkmzyoFDnqjDK4WeGESxmIqp9lR2IOmKrBNqUcy+JHihloV2fOa52TAWNZeqIomgc8bNEyoo+rrhVZesYk+7nLEKVEwciw2SDZI823nhZP9v9t5c57YtTdN6Rj+71f3tbs4+EXFOZJGVCYVICkollRCNwMBC2BhIJWFwA9hcAA4mN8AFIOEhIYQEQggEpAqKrIg47W7+ZrWzHS3Gf1QqAyMRGZykYj/mWsYaxhhzfXN87/e+maBgMyQ+bDfYZSYKwaBrduXEjGCuKqqoEaYllplYNMnUVEHSTQEtXzJXj2uHypbaF75aHhDCoG1hQpGU5UzHpW65mA5VXmywunThVfjAXtxxiZFnu0WGiImZe38kKoWdMzquITiqAVzREDva72fy4Qw313/l5/1zMfeZ/0+Q0rLd/Q3+1X/zNX/nNHHee/6H//q/4XH+LU0ujEVQkdiVPUc2qJ8arJFCEQpJpGLEFU/FhMH/pPxKDLFDFIHNAQWQNPepJ5qHl3F39bdfbvKkw4ojl/KWFCXbfOLX42+QtnBc1ghtmNOOTcnooXBZW1aLpy0JbV88jlJOXPuFnTzQq8AkamYhkVScwxYVJLZktt4ymYjrI3VzxtiFpCU/yF9ynw+8y99QrODH8oqndocaBaJMHPQGxIsQ+sZ/QkpJCQmdE0Z4ihD0skMnj8iFLHgJMxMWw0IRhVEaEhIhr6lyZO1PbMeXQY5aL4x5ZtQdBUgSVIIrnojR4OQMaKqf8nCrPHNUHaZcCEITBRgCTkwgBUlIqugx5cyJW7IeOa83PF0kvzv9hj8tf+9n3Xd/yPiQCPVrxv5ENhKbjny/alChZhIOvbxk+k5ZIqqF565hrx2lGCp15l15zyQkRUEVMrG646QNK0ZeiW/BaIoODGrFQoMgosyEkSCixGmJy4mPZsPZzgTW+GVgJWZulgtBvLyktblQnERkAbKh1hGSZQw1r/mGZADj8aXB+YmULBe5BmUYtORqSVyHC9d9ZHAVW34g7Sbu5V/Qi6+ZTYXCIkJHEpZRNrTLGWcn1vnISdzQqw1xtMzzhnzJXMlIoz9iY2aXZw7WcVYKciKIkSYecLFgskXPW+6qiTadQSmmqqGJM52dSbnj2/Ur+mlLJc60fkaKxFU6srfXNEvA+EI9Fy5NYsURmSpuUk89a57EL0klIcSMU4VjWVH0NTf9Ry7JsbQrrvOFECpK5/lO3NDGBaQlSYWSC1/m7/nypHgQ7zheBx478yLjmB2jaOjSQB0Dr/pHUgcn1bFxJ0oQzO4GYmSWK54nsD5yGwesy3wV3rNSBxZa3pfrF9/LNJFFxZ0/MAeFlAIpZq7mHp0lwVZs0hPPZQVZIKLACEFQFciOqiRyTKh44cH+6uWlViduL2dmpfl+vcaWyFwJ7uePvC0Skz1ZZhahCAg+da8ouqE9FyoyVd7zpf/fGVXL1mfehsS+ctjFEuqKdumxgDAa4Q2zTDzoFmsjl6pGy0hVAjpKmly4TRfeLkcWLCLdEYWhirBZFq7iI6Nc8cQN/2dzhUmJlRt4fRl40w/c1Ct0/9k0+DP/P0dKS91cUzfQ7SLqf+xwE9xNJ06yQUtPEYp1OaF/Um9dZI0R5cX2gh4QNLkHKV58mXRF1I6cCwMtz3rHKt6w17fM0TDTkpNmrY6cRIMWhUUIRIY5Ww71ljflB2phCVHSRQjKcbyumJqJvd1gSJgy0OQTXRm4HidOreWg18xaEr1lM/XYXlGM4tJtgESnFlLVUHTiSW750b3htfjAJXV8vYzU0ww648oEViECzH6FlTMX0dKWiS6cUSVg08xoG7axpxUj23jhIzd81PdI9ZKhkTBICiMdBYVEIcSCKUfQgqgFqrxEoVVlYJD1SzyXdkw06BSp5YSKUJcBIQRRaaIy5KyYs0PliBUtqkSSeFEzztLihcXjWETkuJUsj5rBPzGGkcZ+1s39HGSgP8+keWHsGj7INR7HfR85d4bRGXIF7x3MboWPa462QfczSRjOUTDbGpkST/UNle+pS8KFnlHe4CfJfrMCXvzJbFiYrCIE95KZOc0E1RGEw6WJMSl+NPe0aeS3u4br/kCtOt6p3/E6/MjGPfMx3rOkDo/hvbjFN4JRNoysWZ9GcOVlctTAqOBKTNhlxvqRB/2as+h4aP8WVXNBixEpQXqByIpZrFlSxSwr1vnEOhzYLhNqec8n9Qsm7fhmc09UBS9b2jyxHQO74c/5OvyW79xb5qL4YFbc95l3/XuqKRB0IlQzoa1oREtdImdRobznobrioHYcbWS1PPCmPyFK5JAsp6ZGpcil6sAUijIswrBXV+ASXqzYlAsyp5cUhegxUlM2hiF8yb6sMTFilGetJkxeqHLkLCRtObIKJ74c9mzKwl7dE5moBk8Ud4yNYVo7lIc3R4/xBp2u2ZZPqDiyqI7TpmMMO7wp1OlCXcNX+Tu6U03dHUlFc7BrtmPhJA2D8Uid+OX8PVdTzwepSVJDnll7j0ordHCE2lBlyOFlyE1FxWg6ZOio04QpEzb2ZDPg5hMn5VDZI9VMURUpS5bsOOk1jh7VJHKCLh1YcoeNE0VC2kSSX1B+pB0VRMvrcCZN9xS3x1QzCOj1mjELvreeSKRTmvfmjk4aetXQFE8be7pR8vY8ctUMqFC4zRNPcibPI00J3HKiXcCIxFQmUJl2icy7TFIzwp6Zp8Ao3e/lvH8u5j7zs6C0xI1nisocTEsRgm04kFF04kInRi6iAhkwFEbsTwHdNc/yDk3ESI8iAQUjI1NuOLHmL+xXNGpgxUDlR+rYM2nNoNcvbcmkAYU2C5OsICdmKSkz2ByRdsTJwJUcUWLiLDe040hOEhEF8cqjVKATidWc+CTfIaRmNB0VZwQFK3ruljPv0zXHas1eb+jNlhgdU77QLSOTdpxYQwSZA5tlAKXxI5RWEYqkoHm0t4QkyUlSRMKycNEryk/FW50CVUkMokGSyFKjRKIAY1Y8ySsO9pqXHwpsxIWYM4Pc8JLRUMhojJoQCBBwKSsWbcjixboklwJSknTFSKFJHlEKisRFVFQ/tW2yFCSb8OsN1jSE/Fk493NRlcKqavhmvCMGTy81UQa+v8kIfQQtydHQuw2FwpwUR9NQrzNaFM5YPND7a+TCiwyAwKgtJzS5arFIdBipxELxhllkdPEMJvMP6jtu1DMPqiLFGw7VK1QuTKImZ4EgkZUjSU8lZj5tthRpEEFx7T+x1pqJipQFR25An7i+RKTRNAzM1mDLiEkzXZo4pYKoNEVrrIqYnFjKhCqCQTWUJaMXiQiSFGpibvFiZi93nKXDI0lK4IXGF6iQRJv4Ru2wpzM6enSx9FXFpXZ81De0ZiLHHalMPOYVi1DIlHDmwoJmUgUtCkk1BHNPsjVSDcjak4RA1QMbceSLsqdJay5ujciRXtWIeuFSBNdxpAmJXm4ZVE0wGuUlQWlWvaAuPYuwhHTL3cVj04FcAkaNrOTI9bznx27HIDVea4oqLx2OMOK14alrqMeC6Hfo1NPZM0fzikG0HGyD14IqWJg8n7RCtZlt+kAskll2TCZTy5E/HifMsPAEOB9YuQe6lPAps5sGPsk7yBGE4Yv8CScij9wSjCUKgaJwyi25LKSw4eSuwSRYIrlY1ulCrRbOboURhaEYMo679B4bF5YAz2iM2nJwHaIEYpZIuSGViDQzKcz0amEa1nS+8EX5kSxefD3rWbE3LfuVg6w4ix3bpecuHxEhUcoOrQuD3LLkZ9ah5xf6N9h8IaNZ+56NkNipZWpHJqk5dA6TZ1CBnsJcwSQ/a+Y+808RSkuM1eifNvqoNYNoScIgSuE2PXCTPnEQWy40DOoV6SfnuUyLIKFkZM2JjKSUhFSRWVWc3Jo2jJzEmXv9iVFVZCRt7pElMIgNs2hZ5YE5W35b/ogkoIszRUhIgqmxDMUxSkcRhbnRuGXi4BoOsUXKSBQFq0aQmZ18xilJsZpq2fNY3dHFQK0O6LLCCc+Sl5f2Z9RUMXCYd9ja06hHurLwVf/E/yEL79c77PyIqSOVGJEiciVmygK1nmm48BfmNZNyRCle/Kdyps6gyKQESEOdA3UMVGFBqUIxgURizTOPXFOIgCEjSUAqgiwqtvlIlhU6B/ZqRUailKWKE1osJBwhR7xwyJjxun4xeMaRMbRqQhqo2rds3GePuZ+LRguq8kRsDUUsPKsdVTjx1O7Yxh5vQGpBK06MpUaJkXaqWeUjoTE8c4sgMNOy8hN1gugEt+mRWe2I0iIPiqd6xzodqebAxj7T0zF2NUIkXOy59zOf4hs2MXJsKuYsyVLxqa6INrPKZ76vGz7qGzp6FmeJKRGL4yBvqcuREhUhOmbZom3PRV8hY0KLQtQWkXtMUXyqN1xkw7GT/In/37gC3o877OgYbIPJhd1l4vU8swJsHbFVYpMPXHKFkgGVQclCRJKQLFnzoLdkkXl2K7y0yJI4ssM5j68Ev1iOKCSn6g1kyUluqAdP62YIEoV+8bmreqbO0+gDORi0G4i5cNgoYplp1ZnMjr1dsypnAppZQJMjOhZEM/MgXlMVgc2erBxmctynE73TTKplex4pEmILB3YoaViio0ojQhqUiVykoyPR5QtC1bQEgt2Q9reobeGpfcW+tjzZFTp7pC0MJXIQlpQS0e7YzifmpeMpvAMV0GhwjiIjmB7RDsTpp/zrWjNXid3yyKQMq4vANANR1wQP38iv6PzMkjVVmZhqjUsR7TMXu2IqZ4SMXI9HFtEwKouOhkE1XPKBTjwjSmQ1JzbDidVqwCnPkGuW0iKWAZ0T57RhqiEuCXRmJSZKUVy0pdSBTswUnzFZc1AtxvToMrORZ5Kf6bLnvGz4Tn2B0SM6DGy5YIjY1LCOE537h6yjZBcMj+mKZDLJZow7sVwMlRK/l/P+uZj7zM+GNx2P6RW+VAyyw1OByEx0XMqO+/nItfmWB3XLzJZeORa2SBRWLOiS2fpHlM2sQ08UmiQqcgkIXZhTw+/U18RicCIisifIllwUNi9oXkxMMyByJirJanlmqDYgM4LE1h+46BWLqHg0jnU/UMnAQ3WNkhN1sdRhYKpq2nQgGngwdxzVhn23oc1HSkkIEdnGEy6/RCTt1R0+Gaq8ILzGJIsaa3brPSPQS0tG88HcMOmWRTgmW3MVH9nLG0TJaJmxaUaUIyUKDvqWQiHJGpsWQjE0xTOrhl5XUDJGJUp5omSLC4GExOC5S49cs2fC0ZSFB+6Q0iAQGOLLbWNZQBZUXl7sYLIhCM31fEbLBPrMKk90fqTprvnjmz/93GL9GQmV4XT9hvl5eJnilgqbNTZPGLkwl4a96HiVn2j9wFt/5pgyfRNxZUSITOUjH/IVCUlqLXXMCF1hJklTjRiRmcs9mzAza0m1zEzsWM0Dxa4IOKzIrMTImRYUFKEgZ6xM2PTyUnChY6ImSIdImcdyz65MrOYRx8x35i1qkzGpIKKkZMUmjuzjDbkYktTIKLhdjvxqeWSWI00saGZOKdD0AWkD1ykw60QlMpUa8U2klhe+FL9jO535Md5y1Dv80lFcYD14pEoc04p6nqjHmUYu+EbybLe87h94EluKicgoGKWlSzMmB67EkevTmShaUrE09BycY5YSi4MiOYktg66wdkR7jyVw7fcEJXmXvmOk5W7Ys/iW582amoCWkSv/hMiKJnm+GL+nt45DuaPkQFoaklK0YeCoW47CEU1krDpEtLQFVsOempE38UeO9i1UmtFYqmVm3StWYmJUBScVdfQYseC15lFsWeSJcH7N3O84qwpvZg51hxcVxWiqNDO7L9ioJ7pqQbEQnGDCslQSY2YkJ7TyhNnw49WWUgInZ+mTYQi3zLZidYlsZU8UL3q1aBTOeV7lT+zVNXJSdC7wehkwofCs1gTWFFWx8oU+Op5X1ySbmWrL6/wdk6wYpGJKWxYVcbJwv3zEJoeIjjUzZ7MCdebX4cC1f48KklrNPFeGBUkpnnCoSW7F2HQvWcai51w5KJFQS6o8cDErbFwok2bzOLM69lQF8jyRYkbpv9obus/F3Gd+NubYoMeWzk2onDByIaPQeaGbB77+/gdCvaHa7Pl+vaCkQwkQLFAyihGvOgSFKAVjqUlSE+KL+/kqnbi4FQpJKQursLCLz0ipqdOCKQlbJkZZcdIbkp8xdmQRsFkiSXhEHommEMlMesVzu0VECRlckowCbvy3rOWeu/DIY7tjzHeMpiFkQ+9arsIHajIrH6gTfLn8yLfunklrFll4E/ZUwvHjfcelFmjRY0RHFUcWVaPSARsTj9JgguJka0yZWQrMwqIwjMoghEQpjyo9O3FiLh11fploE+oaZRdSkRzMPVZEdInUKZCKYhErjj6hLZhloDEjY3aYJkARFJmwJIQoZKlIouE+PDOIit3lkSRrZAdNLlwVxZ+8fcW7u1/83FvsD5ohK6qu5e7jI79THVUqJGmJQTOVhFgsQhsWWgyZG/8Bl07k1JF9IleRVQhcj9+RLg2i2xNVQTNxm4+8Ovb8IF/xRObMluQVv7r8yEZ9z6IkLh2o5IUydfRcI53kepnYzoEf1h0mZuZiCVGBDMiUmYrjanjmyk/UIhFM4GLW9HLFVlyYpOM+njBJMEhHEGsohrN8xboaOakrUIHkPBcjWWeJmDRCdlgyU+2p/ciuv7AzI7q+cKYBY9kFwSE7Yg7U88L28pESFMcC6ELNiHSW4i0uZE4mcWFLyg1JrajEM715h0ozqlS4dKaOiV5DG094Cb/kG2YdOJgtWSnOeUssFUloGjFyIz+gvWIz9OSkGSvHnh1SNOymnvWiwE20MaN72MSFya95WreMWr1k46aRS94QxctQiQgZYTQtA9kUXJhwfUI2C9USaVXPvlzRxSOFE4REEgmRoMsT69CzymdmtcKnlqNdkV1hurUMteah2jHiaHyiWzKHakcREZtrgqi4TQeqMvGprkhZU+ee1Twj9cIq9bjYsM0DT2pNQ2EVC9FlShUYo8RaT54VWnvUBE0aaZkQxtIsM22cOLuKYiV2yZQC22mg5JbX8sQkBL1smOqGO57wonBJLVXqkSXxqb6C6NiUkS6eWEyhCEP2mqAL58ryvX6LV4o2FURMoBqW3KD8Qh0jj7RIk1lxYBIdJ+soRbHNZ6ohYGmR7i2DvmE8Xz4Xc5/5p4sbmdk9K2ahuDUXkg4EHL9Ov+GrwyfK6iv+6FLxEB/4VH7gH27f0huHp0IiURQWYZloOeotC5YqR1QuZOGZZU3JClUCJmWu+p42ZWatcYAsmXO35SJakpLcVHs28ZnvTIuXLaJYrtOZqDSDWBOFpRKe0UJFIqfMIiuOtiOrAJtAVTyuREoWZClJUrA3V6TiQA8cXQNknk3HJj8zyw1eCsRQeHYNZ1njlcLlhSw0MnlcUohZQKXp5RaKwKQFFz1OLMSiqZKiiP5FUFwSQi2IUtOrlrmq8UkjhEakDFLhOHISryliJImKUhbG9p516nE2sLr0SKFYy56TXVOKZTEGS6QtPT5bdE7c9Ae+fvoL3qyu+Zu//LuY1nG/WvPH775i3a1/7i32B02jDJINqqy46iNXx0eO24kSE2O9wuBppMWkRKUCvoKnYvlUrWgTuLDwZf9AShWDdpyRUCTtyaDjyFELLrUk20T2gs7P1BR25ogaF5okCcOaT7binf2eQuFcO3yt0HheTR9YssX6C2etWeWFugR2pVDNAqELi9EkYJI1smSSFKyqQk4JKQvNlJDZELXiVG9RKeGx2GPDd9U/i5aeoCtcibx6PjCvI6pIknQM5Z67MPBaXjimmmexZpKS0Tp8KjRLwxePz0QLfWs4qC2tWpjk+mVAKEuiiqznEx921wz2C6JyKDXwenzk7XHBqICsNO0U+E52HPQVUsz0dUebRs5uRY6ZodS04kw9BKokufFH+rym7h+YpSReNGYTKVpzK0Yq4dlx4MG95tJsWZyiywt7vQM106gBM2uSUnzv3qDqjFATb9KPjLrDty8a2FAq7qdvMbpHJGhNws2KL84PqGVLuiS205nNtOfD23tG49mrDpTHl8JAh44TjYEsJCdTEXOiEZlettQlcApXBOUJyeGSZygNuVKMqkbXC05O7MSexMKPzWu+7TYUadlOe3QJ6JxwZuJmfKLyltkItmpPk8BXlqO/45QVg7LMtsZR+GK5vJij54pJCtrSI3PmU3nNpTiiSmipCKLBRlBRogX05grEwq/jdzxV16S54OLCwVRkpemFJVeaepaYPGHP6cXY2Cla0fPsGj6ZO9CghOQqzC//Vl6/SAV0RdSrv/JCDj4Xc5/5Gbm9W/GL//4Dq8mzmfaE6wuzcrxZjrhxxx/92b/Iu/mK5//pPycKwUWsCVQEDI4TIzUneUVBoEWgFIUXGqsXyDVzVtTZ04UBNRWiaBmriW1+YjuOfO/eUILEu4pVOrBYS1KaXb4Qs8TKgdG0QCFLgMLFOpKQ5JJYlyPb+cjN8ETuMge7YcVClw9s5oaoL5ALWWY8GaHhgkPbHWNxlCpR+xFhEhe54clcEZRAsPBFeuSRV7RhQsbM1XkhdYVLZUgZhFSsU2SSjkiNROGWkTaf+Dr/OWf3ijk/MHLFJDSzu2amfclQJTKpjllaHJIZw87PIBIexUd1S96If2zJ3OUJnTzSZVJRyFD4cvqBX/ZPXKfI3/j6mn/5b/7b/NE/88+jfk8h0p/5f862kny9fOR0+QYXFWxG1NqwKReiCuhesxiHyhU5G45CM5YbdICUNXOR/GjuuLiaOkoWEo2eSGh8cvioaYthIzxmirgl8Wn1Dmd6lpx5vXxgaVvOyjLWa1o/oKeeqyVTmy21vGB9wMWZnCqOvsLLQpULd/qRoATJzOAlS3HcxJ71PKGbC3PeMirNJDcE41mUohRHJRPIQqYiCkE2mtDCQSXO1TU3w3eQI4WBWFpOD1+x2+65iHumHSSTWIsTpkh29UfUauLLZeEyrRkJdJPjk1FctltSI5hEgw4TIw2qGEzJFNFikqfOgkZ8xwMVh02hJ5NDBV6DhiZOXMkHNvNE8orrtMcRecq3bOPMpCwxtygCG5mp+z0nZbjRI0/+NUNdsW8cq1h4UDdoJlAg5RkbwI0RVhJNIItMMuAxrPuBQsCIiXOlSaMjTx6BxdcJ6Szf7HYMdFRyYjUdSSFxmW54smtiFswycJefyGrP2dzgygUfam7LI7PTqPzi23cTDwTpuF0eOIpfEmJHUpCCwp4Sm/qMXUa69kSjj+SiMEUwxo5gK1xK7MYjToGSkVwyIwYzBpCKvmo5+5kfqzcMFbjsmYrnt6XBDhWIxLzcoPQMS6EJM6VETroBIjlqTClc1BoTJwRgfOLMLV6sECqxt7cUKoYMbkk4ItjEUEn8eqadZ+7imSp7PsZritZczZbJeuqYueE9P+y+wpYv0asvWX1x//MVc0KI/wr4T0op/+U/8dl/Vkr5D/7KV/SZPxhu/+TXXP93/yvy+SPdkJk+GdzqAlnT3Vu+fPuO8J3gKbwl1JkoDIJAEhWnsgUUUsxk3IuZrshYEjpHbPbs2GNKZJNGilbEopm0Q/uWXCtOeoVWM1Z66tijeAnDFrLnIhvO4ppFCSTQ5oUxSxZlMWIhFYOSgbXYI2Rmb7YomXnkDWs50E4nZBE0/sxZ1Xx07xilI5QWw4GWjIgvD59oFNF5TFwQGSozMrX3CNUAACAASURBVCmHlTMmjSTZIoxCJYGOLzeLE5Y2JYICkwfaBERLERWf9FcYP/Mk37Jkw7O85SX/IYOsqEtPSAojA5aJgR1nU6OEBBFJOASZKDSrPCLLS9ySILEb91zPF157z7/1Z3+X+/u3vN69Yd1dfS7k/poRwkR//IDw0AoYWoENkIuiiIqFjnoOtH4iS8uxdZxkgaIYc4tTkU+6IwqFYGZxmoO4ojhB91R46z9xdoalRLRdIA9MrXrRfFZrptHSLZJ1HPG5YqX2fLR3zGXixvzIbXqkmMTRtDTl+SWPORW6AlIJ7PSS8TsWTScHmnygyTOhZCQLNgWEkLgQkCIxaEglMyqFjpaLssicUSUjOTEKybFsqbqJ6RxY156VGllsxJs9zgiqohEqsRYR0QS4jixBYT8VJgQ+ahYrGaygkTNGZHAzUnRQ1izFsQ4KPUg+qpq3sWUdI0NR1NWFnBwpZnKVWIkLVVjI0lG85Fldc1lqMjW700y+Egg9onOmERdKrKlHRVoHqHqE1ojs2I0DPnlCqmCYeXA3VGVC2UQyHbJYAuDyHiSIeiIshmQarAykVGHlTBPO7Nc3/Pn6K35o7sEnVnNmkJpNK7j3nhhnXBrI0rAdzqx8g1YTS63QpbASF9qwEIQiikIXjgy6xeozr/UnRHJwEWzVhVjXPJgrFiEYqQipMIgVFZ46P6FzpMnLi544ZIZ8T1VOPHNNKpLQamSOnLUmLzNWZ+oyshcdi7xFd5ZUHK73eFuhfWFWKw5knuprTMkkq4iXkVpY1sGTtEPLAREtMiuy6FA5cjv/QBKKOdaENjJpTVUCFQvbckZXE3ux4cG+ZpZbtDdc+R+5808gIpX8yEZbdLejWdvfy3n/y97M/Qr4j4QQ/1Ip5T/+6bO//XtZ0Wf+YLj/5Wv+zt//d3n+9j2lCHKIjMszbqu5+/prtus3/C/f/M8sNjKVGi8Mnpd2S6YAAo0klsh12SNT5io+kiQEOgqZJATeRnqxYlAr6jyxmI6qd4y5gVRhpsJsV3TyyJGORsykUr20QYXhKHboElnlA4KMJTBIiRKJjplVOZFiwfmF91XLfTgitCRPgtYukAyIj+iceZKvqLJGeoG0A7UKTLni1K45iwonZ5pyRqEIGD7Ub1ARkj3wSReCMpQiseXFYkXlROc9k7asvAdfMTa3CDkjSAihQUWS0OTiMCngyoyXLQnDgEawUKXAKl/womKvLF5WFATGB764fMft0wWnK7ZyZO00/87f+9f44z/5V0D/fh5Mn/l/z+k88PxxfoltEyNJVkgUyTrcHEiqp5QXmw2VK/KlYVsSIgtsmHBG8t12C3bhQRSkUqQgsCVQKo8ZTlz1R94QCY3kk+h4Nnc82mu26RmcJAvJkFfIpHlUV/ilooiEiBPf6C8pTcRHzbV/5hfhz3nsbqAoinW8HQ7s5sxv5Tu8kVzUFq1OuEuPkDVSZKSMiBJQQuMpGO+p1YU6RFRcY4XnrBuiqFBa8nBzzZvwxL7b8e78G4TMBF8zrhpQLzfbv5q/pUqOOWpCqTistlSzZZUDm/5MnZ+I5S1BCpQpvOY9bY5MQXEKO65PFp0mfH0hmx/pTGKTBKN4zbO4YrLQjgeC3lGXmVlq2tMj1Hes5plLXejvNV4n7uIDz3nHt+srPJrquLCTNTE77JKxShBtYRuOxKliqRI6KXbjSAottRJ4m19Mx1NEJkvlCyE1PLc3mJRp9MBd/IZLU/HRvuYsDYvUJGcpMtMvt2AWRtXSixZDwooZYSqu/Z5FakYsqBXeW67yI7QgFJxXFbt+z+2hZ9MGzmzJ1Gif8MrwtLxlMDVqGfmi/CPu4gOLdBS1xpSMTDVy2FLJE6K7EEPNYjuIkVAU66kn+/hi/2Ezwbzoex+7G2RpWITh1o8kHUlY3ORJ1Kx8RGnPnCRGXyhl5lwJun7BZsPgdkyyQQho4oyeG27KkVX/xHnUPN0YhBQUWWjkTDdNLOaa27CQ7ANBSnbxE71WDOKKnh2NNrzbralIv5fz/pct5o7AvwH8p0KI/wL4934vq/nMHxz3v3zN/S9f/99+949FotVE7TJ38iMfeUtBAJGFFs2MQdKUniAqLCN9umWWDYNqWHPC6YH79IEHCk05c5Q3HFc3hFCD8WzymdlWlLRizitu4z8iqZ6VfGQWjlnUVMWTsMh4JghJnSObcKToTOg0KoNRmY3ck61HZIVEcmCD9zWzrri+FLbVi0WBtJmr8Rs+ra94YocqhawVbR5BCgoFlwemZJl1wwdzzwx0+cQkVizSUHIkC4FyB5KUXFpJKRKNJCM5iGuKLCgBNo0swmLI5OLoYo/LIyfZsehrZv1SPG7jnjrVGBEJwqJFwIrAr0j863/2t6hX17y5u+P+9t3nQu6vOX5JTM5w8IbYdjzrNZvpgSBqbpdAqAeOOiNjoBUHevuKXQjoGOlYSDZiS6bzAwfRUpmRZ3lFkhqnMrK2NJxREqIp4KBJR3TqEAFCWVP5HkeiCmeeuo6m3nOSKx7lKxYKberJIjM1cEwNN/FInTQ+rci55aIzxSa8dUgiz3bD/SnT2kRuFx5dy1Bp3NzjjCXhObsVqRRctry+RK7sBy7cUOzMpdqw8Y/QBbwNiKB40jUyBGJxNEA8v6PxE6dVzcf2nj5KrJIE9Z7QXXBiZlVW9KxfJhnzwsZ/4Fnu2MWBkmu0Gblb/YArA3u9JS8OpRaq9okpbclI9mrN7QyzWKMu04sVUe05bRwRyYBhkZ4nVXMqW6I3XPOBapII6zB94c00cxPO2CHwuDGciubVEGirAc+GlfUstNzOI2M1sy49WRtiqriaR1o1IcTCRk/8zt6z5IrFOVyeWVLF1XJBFkBaNsORRWZMmpCN4KO55yS2mDKjBsONfkJNFU1WYASb+Qd+rG5p5IFTXdjJR1zoaXSgiIr3qiNayUG2yFLB5Uuufc9aDZy3ikqPjGrHIBzq0rIuC4oR3U7IWRKkxugFSsHFPZUH6QvSdSy2ISWHlQHhTiRdmHUkk3FzhRkNY2vIReLtyDoMrOQeU2lOZcc5rZEszCZzUz6yqT+yPQqCr9mKAXUqzMKhjOIunZkvG4TV+FVGqcgmn1ilH/hkdyRdMdMxxZpuWHDi99PB+MsWc6KUEoH/UAjx7wP/LbD7vazoM5/5CaUlr67hvvqWD7zijXhPQuGLpWTDnAKyFKJQ7NVrVF74Xn2NyuCVISvJhAOuqVNPlJlB1wQ0Jg4UCotQPNs1SVmylNRxxuYFUyaESJDgVnwi0XApjlpOdCUya8toOzZhhGTpfrLt+Lr8A6S0iKA4jq/47eoXUCVCVgiV2Y4jxUaSHfheviYT6E1NEIZerlmVgZQFm9TDYlAWglAIMrNxhKKIUtOEhJANMge86KhCosjCIhU5ZCo505UDUbRkXoYxVnlClcJV2jOhCXqFVIL8k0FLSoYmn9FZcVYVWiQMnqwVJ5Gx7T3/3J/+C2j9WWr7150YI0voWbkevQykWPEQXzG5VxTds3PfsbhMIVCbiBULO/mEmTM0nnTRTO7FjkbpBakrmjgw6A49WV6FyHWy1NIyBrgyZ/aba1CCt3lC54LPhr3q8EKytDumYinGk8pLvvFQr+inBu1mOn9kTI5iG6KHrA111aNUhW8kk64gF6o0gqrIMoEIiCLQcsEUycbPnNUKSwAjuM4PXJkJnQ88oDlSgXJ8b76ky088p8y+3rIoQ3IT12lPLUaiMIzxmh/G15xTRdaZRYzEdg3BM1RbUhYvutqgONgbXscfiElADETZcGMfWItn3jdvWYSgbxzNxdMYeB9/xVltEUVw3RdqqanijvYwU1zHphZs9JGiCj5bXIi0omcwK2bXMklJnSdmu2N7almVI8jAzfKEUhWVGIm6vOh9/QVftRx1w5Jv8fLMdlpYl8BB3GCEYuUFampZCUFd9sisCctIQXI/7QnSMhdBlzK78wj2zKU0OKHRwH2cQF0YlCK5wPNyjdIeoRxBtJzyW76zG9oyceUD2+YDVYF945ikREqPPQWyqFEyInSPTZkoBSfVsk0eLFTJ83+x9y4v1217ftdn3OdtXZ/be9l7n1uRihJE4QTsiEFtCoqoXYMJMWDXkBLBhiAU+A9oOsaGDcWOthQsEFSQqFCWCYlV1rnss/d+3/e5rdu8jquNZwuHcIJJ1dnZu8z76ax5GWuusVhr/hjzN8bv+23NO1I5MZkK6y2KjEgBWRu2ZWIsLXaOPFcZVUZuxTNtfWaRhRQsc7OiTSMhKmQsWPnMrXhHTeA6Dji/cCCiXebRVEQNuSRU1eNXDSHUjMsd1fh/wbXCJ8l7tWFZrUglINNAM020nCgy4lVFWbY0ZUMX1lTzGlm+XdHg//j/3Sil/HUhxP8J/NvfSI8+8pFfogwPNOVALVoey2+SMTgRsOLASihOXJMEDNLRqMRcLDotzKp5sbQSgS73DHJDBgINPmui1mRRXrTXRMAWT+0n2qVHT7BpDzzoHQHJyJZuPuMIJKkYRYNmwUvDUW7oxMQqe5asEaliCh0xGw5qw6AaRI4kVRNc4rFRWEZu5Ih3FaJUjLLBhELNQJ0nZA7YAXoaojQMuiFoiUTQpiOlGJrs8aLGzQuD03hR0coLrXjkYq8xOZNFjSsDUnhEFugc8WXNbpmIakU2iqJAkQhodAqYAD8Kf4sDLUEZ6jyzE2fGrHm6fDOegh/59ZNSQvoBqz6wNFvOTtK7QucD06Kx8ojOmqbxHPKeSMWn4xc8irecVcvTquHYtkRvyXrA5iMoR50KqxxoU6RXiqd6j5AzfVvTliOIin28IOOa5AMf9BorRwa1okk9vTQEYSlxRofCZunRQuDZsY3PWJl5qF4TsXxQK6KAmBStOiEXWPsebSQhdwQlmUXFKnkIAitGSl7hZELFhk0ZsfECekZyJlvF6/PnbJjYykdUJbDVCTM7QsqoAj5IjnLDRUmkSLwVZyY6rIUwrriYwBmHDoUnu+ZJVnTDmjI2TLpwaRtKFMiy4LJnyY6DXXFiRWgcTZkoYuH15UReDHqSrFJEIOm1IVnDnAoH+wlzkeymQJESLQUrH7heLmzLSOcth/E1g4yU9Uwg0YURWRIXV1Enh3cKXSJOPHJor6jmE0fZ0sjA98dH2pCxMtAMHodFHG/xnaeWibfTM6lYLD0jHUIv5LZw2yfUIXJ2O466BZHZlp7rdCInxSQNpepwl4QxF6JUxFhRtECriNwM/Fy/pTOFWWqu0oE6enpbofCcO0MtW7Ty7Jb3BCFRQnLWLdfqgQ0P5NgwjStWuUJNhVE4Tq6ln3cY4GqMqHLP0dRs2vcEJMVofJaUUJCi56dXn1LpGW/esunPONWz7ntqFi7yhkWnl2l0OSFz5KG6o4tn1P7McNQUcU2pJSIbPlR7sq8ps2ZoNDfLAwd9R1wc5IygR+CZQ2BQO3LJ38g9//c1mCul/Cd/1/7/Dvyb30iPPvKRX+L8vNDHhpwUnb4wiZaRhrNYkVRhEWtknogYSnlRbRfyxXSeLKizB6EYUsdgWjwtQnl25RGXFqK0hNIgY0AkxWYICCxjkTxxgxKwJJD5inUaOeuGs9lCTqzEgSaNpFwxZkUvGq7iEylLxmGFnFtqk5iFJNQgNMwq45WGuAb5Mp1lS0LIwtYvmBSZZMWDXTGJBps9MkmCdqiSyEJjcqBbek5K4Y3jLCuSlCxKY8SajKLkiMkjCknKGZ9bTJ6o0oDKC5V0uJIYaKg4EXJNkpb39hOyeZk+02Kil1tcXHCV5ZROLGH5mJn7E4BSiriMRJ/YLQkTRzZNjzALrZs5B8u9ecVBb5jpcClCp9GXCV0SY1khF8XOz5hY08oDlRhZizMOAzYj9YWQr7Cl4HPF2/SATo8YDxfe8LP6M2b9UhU9Sk3SGygZGSK1HzG6YMXEpswEIaAIfDFMWhNwXGjJIpC0JsuC15l9mtnogJX3nH1HKYlzWdPba4RY6GtH7c8UkZhjQWSLEOBGhQgtF7mmmhdGoVjLkcFYoisEnfGp5qvqR0hdkVpDHQKv1IHXw8R1/54/aH9IDpZoQc/3YCMlZUYcJ7Xl1HT0tSCJmhgN+fILTtLwoPcYEdFyZH8+spQGkxO16Hmrv8CZike3YmbN5FsqMVKSpEsLz+5T9tMzMl+4Oh0w0TPtDO+4RTtJjA4TtwzrA0/tLSFZJtGxnxNn5RBF0qQTj96x6EAIFl8a7s01vtHEEHhQr7gbjzAnRCqsppGOCD7RVGfaOdKuv2CwNe06EWjoBsE6CwbX8aT2PLeOWWYUhSAFUGEnyTpkTrqmrQvJr1lkJs8V6hLwt5JAQZaApEFUMBhLneBtf8YdVvhGMeHp6nv24QNOB3bLwKy22FPHiRW3cmJ3nqkG+Jnd8eW6cCHi7ESTZh7sFW4ZiUGyiY94uUZJz86PPKiOTIsOnoP8IVE/Y4Jipw5Uw8T91nGSOzwTZ7Wl1hl9LRFpxdkajmXLYhS2CLKEk1zhi4OYuR1f3CHW5QOVhMq+YjaWWY60/Pplmz5G5Y98p8mlZrnsUF4RtGNUFQFLRoFIJCSuFDQjpsxosRDFi2fpIFtOvGTSDMuL/ygTNTO2eKxIGBIyLVRpYokrHtUti6tZh3uKk/S5JQpNnZ9YeJFjyEISi6ZnixwfqeVMyYI6zkxyxVU6sfUVP50K6/YZ7QwqGUgVSSp0XGhzIOeA0oF1uCBTYbf0ZAWpiuALQ6x4tluCkrg0v3xudlQhYkqiSzNHo0EKajy5FEwZ2ZWBodSILLkuD1jp+YX4DCc8Z9NxkZpBWVbigZITfaq5qBaAIBwTNUJEWjJkkEXTeE/tLFl8M0+VH/n1orWmbm5R8x1N0RASd9NIlRPIE5UZuOHDS4V1NGyXQhUrxAVmkRDOUHkLSbGRgkomrBOctGSsMr2IJOX5kAU5rVn8mpU8c5cHooZBFors2eYe6eH78zsW1ZEXQbSO66RR8QRMrNUFHw234cJiFH9HbZipGeMGE3tkCGh5oWRYxBYvR7q00CyCEcnBWVycSVXC+oTJitVlwouKN+ORh9IyLoY6e44GogRRapw/8aqfeWgKX3Q/IlBxL6+4zUeyFazGE7qc+N480uiF5z4zlITqE42auMwji4XJWGyaiDR40YIUHPSGo/KIYcbJQl0uTMbylG9Ya09eZW4u9+R9xE09urQUF2n6jFeSxdYo+VJBfqPONCqyaWfCww3uaJhMxokTP6lvOVaSuG1BRdZz4HO946IzTUr4JNmqC1pNmFwoYuYqHtDdB6SVrO2Zk48M0ZLbEaEtOnq8C1TnCpk0wcAUGha1QoiB4+oVYm6QOEQqTKZCxIyzRyQzdZyRi2byW+ol0JWZG/EVqkCRNb+IW56ahugjbfTocmYxjgToMtGVnqZ4KlEjFolzmjafSWnF4B0xbHku30dPimAdc29ZnU4kp3C3J2zOVG5hoCaEDYNeU8+OIVdsTw/Y5RnVfMpB14iScGFiKi2zaLkXhk9ifJmlmQvHwXKOLcWcqcOCFWd8qUihIhg42xqTIglNVWY2lxFfBEUrjp1jpb+iCyeyDAxB8GwrFuZv5p7/Rq76kY/8mti9eUX3P9+yOva88Y+YKnFULc/u+sVTVAgGtcaIkYhB5oiX7msbqkSXerTMtKlnLo4iICswcWZVeta5cEjXxAQTjrmuSEqQRKKdL8y2QpXCY3vDOvRMylHlQJCKQMWH9o5r/4zyml18T+UmXJ6Yqx4tT8ziFhkkuzwgZE9Mkt5prOqBzL480qc97/SnDLqjUOjKhUU1JOVAFFTJeOEQJNZlYhN7NupInQaO0jLrDYIX9fFtPiIwmBRp84kVR0CzLiMuDbyrr3jQeybV0ERBm09cVIuQkSheJAwoO0Iy9Oy5je9Js8A6w35lqEz17f4hPvL3jbR7nLxl9/wlQsB1e0bIRMmZ1FeItUUtAqsVUlhW4SUL7EXi1fLMOpzRRXJL4HkbWM9nfL1Gi5lSS3QpbPOEihmeRpyVGFtYGomQAz7fIIolCEEVFubsECViYmHVL8R2JopMNgkTHJUJXOSarR95EhW1T9hx5rQzqKzZxDOfyRkpAKWpywBqz2ZMPDeKRSpMDjiZacOCaiJTbbkLAycMP3UNuZt5LywslvrSUc1nWr1QiqIuA1JvmCtNFgptIzlK5pIxQaPEM1ZZ1vIZEwaGcCKLC496TyMuGLlG50AQBpEkaVJIrticTqA12zJSrOQmjbw3NW07kuLCIBPqeaChZY6Kp+0OVRIHsaUOB7xS2FGg8pGge1JZM68CRRpmO3PWDTJFFrNF14/oFBBIiolQMlfHCzZm2kPhXq1oxJG23HPJHWcF2fXMc8XkKoReQEt2ORFtwzu1IWdPYcKKE4JEXgr1dEFJQSTi48wiLNbA1fRMzpIP9jVT3mDyBlUEl/mOp/oKmwpTrhiS4Lp/YugqRBixwfOsGlohkMKxvqz4vLnl/25vuWjBNR/4Qey48ifO/pY5KtbNSG8lsbV8uf4UKTN9NSLbSM1EJY8swmApmCSZ5A63HZlVxV34Au0NmzzQlMCXTYeIKy6uw84DYn7ElMh+mSHsKXNFtg7Vz5iNpDiYqw1NfFkes42B6/mB5/GaR+soQhN0zeBvuS8WaS8E7zCHgbjEb+R+/1YGc0KIPfBfAN8Hfgb866WUw69o998C/zTwP5VS/sVfOv7XgX8WOH196M+XUn73m+31R74N7n70Q/7Mb/xjuK/+Jm61cKUeObUnfne3YtQVVo4IoXAl49HUeEwJxKIpUrCohsJClhrHzKJqFip6eUVJlhIjVZlJ3tKrhHHLyxSQ8FS+cMeRrOAottz6I4O7cNA7iqwxKeFTh748s2B5V93QqZH33S1uSUQl6cSFqOCsrrieBpyXsJmRbUIAV+lASFu2eUQli3eRlZiJBLoy8Ch3OGZirpH5JUiPcoWVw0vFnph5E79EyshdesfKDxzTHW0MjPbFpqwtE1J4zrYmKsUzVxQhcGLmJh4QSfJev2YWgaAMKr9UsBagaKCWXPnEq/YKoz5qycGfjBgmak3dbonvjgQb2DwseNmzyB1W7lmbB9owUWXJkl6xOmdmv8M1A1GEF/P1lCi2EOYWUT8jYyYoxVIsudREUdPLFdYkcnnmTfE8yFuezBX9ssUNkUk7rM9IM9LkmUWtWZxCqUwXjmzjkeQDs3CEpeMuH1Ayc/IWEyxyCWi/cK16wrihtTP4DCYzWU2TZ8awZVsGHDMye7IKaFWYVcWn8cC+RJ7UmkVY7k1HnxSXyqB9ptI9dekZZUcXR1alp1pG1pyo04TQM3nZoLWlFAi20BbBKxk4lRVmHLGl8KP+9/G+ZpSOaFfsyszAmuYoGHcNTZScXUNMe0qeGPWK5/QabT1i1eEeHN4YqpRRcubsDCklTq7QlgW1gJctwbxYZ9Es3O9vmWRLnRuauSf7BqUUQnhC0SQRuYgtUUmU73kljqzySOeOFDNxKQ0384VT9T1maWhzYDsJBnnNu+4Vi+pZB49B0k93ZBcZW81GnWl8YPN0RLgjp02NZeTt9ICXhiVuqHpB6K4gLtR5oSBxWbBIgxKFRVcIn0nLmk08k1Ok1j1GFnwdGJrEWh7Q0mAXwxS2DJcdiynI+ozXF6gLk1ekGlyIrJqBk6zQGLr5TOt69mnkQ7PG5R6TA8/2ilVMOD+yziea3HN0r6iSYKHCjh8wSnF2HTFp+rpGEbnOF6SJ3PQDxSQW01LCESECt+GBH07vmJeZ/9W84RfV9/A6UEqNSRPbfCbXF4ZpQ4rfzLDr28rM/RbwO6WU3xZC/NbX+3/1V7T7j4AG+Ld+xbm/Ukr5r77BPn7kO4Dbbvmn/tV/hR/87J/g1J/4kE78L3/nb/C3xcyjWjF8vfZgJLwYwosWSaBCIpJHFrjO94BA5IIXiqI0XjbUcSanxJvhge2S+KnxnIvBiJlO9byZH/lgb+iD4axbBm2o5chq/AW/3/0GKStORvP56jW2h15e8yp+ztBWrNSJsTWMvkMoQfAtXTwyaDAqEhEc9TUqRA7lLYPeUhw0eeD7w3tmbfm5vuZkrpH5xdLmNp4wamKSlotqqfSMEQsgGan4ik9RNhOTJllLQaFkQGeo8oIqif3yyNFdo4mMcsUHeY2kcFXeMcqWc2lB1hzFml16pkkjLieGZs3TofDJsuCc+1b/E98RvvMxbLNbEa4V91++Z9KOc7GE9IZTu0LPniqIFzHaAt0lUz1bUpPoSw25osgjbekRYeDNYjBpYKdbkonEEujlhllKJtPRrI4QYEBjpsDdcmaZNb50nGpDzoqlDjAHqhgwy4IYM5O8xi8rVFyj1ImlagnJU02KUAZ+erVny4FkDXU/YVKFTomjXdErzVHvmNtMLBWvxoUoJ1x/ZlgLJlfhjeYP/Vtu1AnhRrQSdOJCpS8M0vGpz1Qh8Gf93+Kpvn7RODMakQJOLLghouSFg6q47yJmkTzvOsrFU+xCfdEYJ7hYxSQ2vJlm7oiEpZDmN5zcmribWKpMM/W4/sI+aEycyM7hs0WFgvQZawR1HkhOc69bqGbqQdGca4JQfJn3/PzmNTE7RlcYVoVeVSzaMcVCiYbdMNFROK8LZ6EoJtDX4NJE6iTtU6Da3nPJa46yRU6Cx7znZDuKlgymYymJo3jFxTQEo4jzjEwagUZVApUUss68mb/E1zU1CyXUFK85upYWT2U9MtUgDthLwGuIrnDWDZfGYnmklMyn/gk9wbHOTCiMWjhKgTBwzolDXSPJbNSMngqP3Z5gE6YYXFpomTmpNYuuMWYBAbs80yyWWe8pTEQh0DmRraZPOwa9Yh0fOWvDjpm+rEFYonxRSXinOmoXeXQrTBgRYuR6eeIqLmSZyUFjg+NWnVFpRi6JT5cJN92QRU1HxuqXwrKD6ViJFSEa2vJELSdq9+1Kk/y6+ZeAP/f19n8G/A/8tDnAGwAAIABJREFUikBYSvkdIcSf+7uPf+QfLdx2y90/+WPugDfnR/7G5/8HoTg0BcSLeHAulogEUaiiQumFbbgwCEekQskJITOCiIiJTOFsNkhR+MPyhn168Si9Ds9ot9AsE1HVdP0Rr67YcCbqFyHdjgs2ekZR0cuW0FjaMtK3Nbm8YhGOrKEUidEzW3/mkjL3VUUomqxAYIhFk1KF8fB2fqZmRsqFqj7hUmGlDUNQ2JhQObLmyFlsWIyjiAbPRC0GliwZ2KABLyts9pxVjckLqtQoWRBJosvCngNLrBBZ04uWpbQoNfIqfclQOgbzpxDFk0RBlML7+jV7eSANGwap8d5/HMy98J2PYUkKHm4afvrpFX001POESbCaZvRSeF5fMakVE4KVjNB6ooZGC6SHobXkpUHUA7I84mNFcRe2DJyWG5LsELqmE5JOGLIqHMI1gj29WVGbhE8VbZgpJrLPPTc800nBiogcJQ8YdCroNiLFntfpPSehiHpmiQZU4VCtQa4QSnIzT7QlsSTH2Rk6+YSnQaUjZRmYVGZ0HUOj+GDf8ln8gsk3zKPgT6cv+cP6FbVYUHNB+YWLachyj4875FJIVYMYIzhBihGUZ7GFtIApIIQlzI5BBYQ9kXaKJCNP6YZa91xMy4/GA/q4I48n5C7RO89gKn7KDathpPJHplwResd5s+EiM42OuNQTVmCEoJawXx7o1Zpz1VCCoJZrikuMEp7FiqxmHJ6cJVVZqJdILzq8qViyRS2SQQremzUb+cyy67m2F96bT6gyPOeGVo68t3csypFsRcmAiXivKGomKLjinqty4KmqSCWhxUQ0ibPWWBRxtXCpEtYm7t0n7C8jlp51nriezqiiiJc7tqcPLOtrLtJSi0cu5Y5qkRQFIVRk0/L5ZsdmOXPsDNf9ez4tR5pF8r3wJQx3/O39DeSKbBQpHeipuYgVTnj24R1CC85pxU/qO8QoqOUDTX7iKj/wqNcoIutwpj1NHNWOyW6YVcd2mBCzoZUBqx0Kz2IijolaDkwu8wvbIcOat2HBqonPThdGXxEPllRHLkLzcG04mTUX42i8RBVBO3m0ljQ+8EnV0onwjdzv39Zg7q6U8g6glPJOCHH7R7jGfyiE+PeB3wF+q5Sy/KpGQoi/BPwlgM8+++yP2t+PfEeomprviR1d6nmkAwQAQmQkIDEodUHniEwL2VaM2aCEZhse+Uz8hGf2DLIjZMeCA5eYzDVXvifTsQ0L1+WJJ7nmnX3Fz+xnHNyaOnmU2nOyaxYMTRwhJ7CQatAENvnAQk0jJmwKjLqiKQNaJaQv7P2R92WHCiDFHpJBGs9yNmjnKd3C0WgO6YoYFE56MBmtZ2y6cJCfkiS4MpMzpCR54DUns0ZSSAg2IoLIZGkIRZCFwwaHEz31OKOcptctnopRtXQicq/fYtKIEJGcJQVNRqBLQZZCkj1L9lj7USj4a/6hxLA/Tvw6js+czn9I8hcoN2hpab1jMHCpCr6e0GomLY6vmop53ZCDJOvMn1m+gGQx7XvCauISKlJacU5vCb4nNAqVEmcpkLlHlJFrZro4IcwHkJ6dfOTnZoZxQ19L9LiiW57Yi8CuF/z+Zs9ZrxH5wtv4iOYlq9wIw1EKUKBVYpQVrRgo0vC+WyHTQr2MGDHiSqCYCyZIllVD9IHZ6K+n9cDHK1JYiDPk1HLnJzrRE5LlEq4Zc4XKe2bRUExB6wLJ0y5n1see86bmQe6IlUWJmWVR+J3m2Uq82rEae85uQ5onyJpwcFyExDrwJjA0IxHBWj2wSiNN5Tkqy7O+5mAcctRs/RNmmmjTmS4UwgyLK5QMOQtKkjyxA73i86qlJEeJitUycJEZlKReBjYpcj0kvlrXZGHphWQqCl0CWSSiEJxdy2XdsF0mgnR8Xu5Ycs2xrVCy0KUJ8sRUbUgiY0gYG/CipUkjX1SvyKlmk86MUrHSI+fGMZkakARtmdsFpw0hFuYPChsteYLVVaZvBg5O8yTWbOZHGvEl5CuabcIR6OWKW97zZNcc3ZpGJ2SciVJS10eapeeJHTFvKaWH0XBdJlzJGFFR5QtOjORlpPEwLI6LfgXWkqNiF3uEPFCFhS5bmhCZW0VzSdjRM6rIuVkxqhXPUhFMYafvuZmfkCj68xXhokiVolfXeJHpKwe5JnZnHp0lu4wSM1rNLKLl9za/yS72eNb86HwkHE9w/UeIFv8ffGODOSHEfw+8+hWn/r1fw+X/XeA9YIG/xssT8X/wqxqWUv7a12348Y9/XH4Nn/2RbxGRFa9qyZ+9/B7JBD6YmZE1EY2kYIisy4TkRe5DyQRGENA8mlfkLBlFR1HghWWmRucVKz8TXI31C4PQaDKLM5zNCsh46UBCJyI35RHhE2PcoEyBUkBCkyZUlOzTI4urGWnJSXDMkiZf8NpyoUN6zUr02HIPWlCXEVlnYlBUYcSqmVqNuDhThxljPUOxnE2NB0pRqOBQ2XNUe06uIwhDISMQzNKRi0IXjy0Zk89krSkh4W2NEolVXhhlS0+Hzh5vVkixZ6JGCb5eyF2h48ycLKvlyK7L/0hl5b4LMeyPE7+mwwPL/edYazlpyzg52n5Flw/kKjLNkaWRaOlZqopFJO7UOx7VNYdtpnAhNwKv1zzpG6qsGHyDGTpuTiPrUTF0hpWY6YRnV84McY2xZ6TsWZSkMg9cy8DdMeOWhSaNVKrwUH+PXlt8EngL0cB++UBSC4f4Kb1q6M2azTThWDDyJSt2vTyR3MxkKxAF4WEj3iOFYhI7bpPgJ7srelm44p67wfDpg6OZDfPK0SRPo6H3BiUGKie5X19xrDpKiDSc6RiAzKR3LAHqPPHsKtZzJJiRzSHxvFV4Z0hNYuWfueQdz2JDcoVJS4ow1L7nYjK9ssjcEUNLwy+waqDhwJK25NjyZG7oYuYLAit9JiZLNwXqMZPKSGVnpEgIAtcPE8XUnHVFLBqtBFfqgs6ZKg9MVSAXhx4rlq5iypZuPtGLlpILQglSMWQxkYzEECgebM7UKbNPPdsQaMIHYnFU8kinAiIqGgYqOWHjTCsDwRT+4GrHc7VnUh2mvBTDxNSy94/gB7KRCGBZDVjpiUlT+yd8KegwYvFQegZ9y5w6Rrni3twQhGZxLT0z0QxUQ+CpUtwTeRCFLntuo2ZSFZHMIgon4TmYNUkqngtMThCjZjP13MgzS2VZqgrrF2ozMlUN780bBuW4ST2jmCDMSCLJb7gVAzf6A5U90LVnprwhbwRzjEQh0aHCyAlRNZxKpujAs11xsRVKJ46uxoRAKA0ziokt792GccnfiOPCNzaYK6X8C3+vc0KID0KI118/0b4G7v8Br/3u681FCPGfAv/OH6OrH/kThCiGcS7oeOY2P5CKhvyBTI3LI7NYs84nYrFs8zNDWjHJhiwgKomXbyhIiihIErJkTMkvHo5ihZOWHBw/qR1XywcO9ZpnuSFLSQZkjlxkTRsGSqhBSZbkMGRulgfaErAlvohFukKMhWe3oxA4yx15eib4FW/CE9flieQy780nBDRf1bc4NzLoH7AvT9RqZqsf2MkHvhCf8WX5BF0EmplazLRl4AEHKFJ5capt44V1mikKYpEkYV6yFCIiReYgVhz0hpQNlEhVBmKxLEWjCi9OE7LF5szMFpOeUFnQpSPE87f98/9D5U96DJPDwm/MhgcfuVYnVK8ZleMnqy2jjox1pF0OSDmzpMRDu+GSFK7U1Pw+WsEcBCJnSq3xXlJkhyiWPu6ZaknQE1U+EMtCMQMuSFLK6LQw1DU6eqScWPeCWATncsW7dcNiVoxCcm4kNxJKBj05GCrmGgIaFz0n03F3OiC1py0nFqsYkyNnSatnitNMsqUUy6okoqvZhyO7CMJkXgvFtS483Al63/C42SN9Ida8FAbVM0MdsNxztBU6T6ziiE8BqQtGwUkYfEzUw8xDZxlKRUbT5hGTI33ZouaFECWrYeR+tSJVmnWlqUJiNY1s1MyOibty5D5dcXYNi2gIVYemZ7WMjJtMiAqhNWUWKASNWBil4Z14xaYseGqC1y+Z92zoUkbWHp0913HiRpyY5oa+EthgiNmQXY30E9080pAwVpCpMEmyZMdZX0HKNMszV/7C1eHCuLnmXjXopWIQt0yNfplyzjUtF5JQLLQc5RUizhAVoSi6+cRxW1NhSLrBpplHXkFzwbjEQUYu2jIaQxon1krg5oHr+BXv9fe5HQ5kobkbvuIkNyQsXihOYosuA2LRCB2YteJYFbr8zD5fkL1mqBwBSWg9iyq0csZNjmoSfDBvSbPC2Qv7aUIuNXf5mbkOoK7IOuNzYZMWRE6oEklTRWwtJmdqkSAGeiFQ1YxKPVItfJA3DNkiRODKR9QcyNZy4488uQ6hMgOOY3K8Dieczdj9N5CW49ubZv1vgH8D+O2vX//rf5A3/1IQFcC/DPzNX38XP/JdJPmFh0Ph9/Y/5ll0HMWKK/nAXf4SmwOT6KFk3qm3HPQP6OWKXCRVGtBCUBQkDBLPTMc2XYBMlc+c9YakIxfn6K0iGoGMnq2YEPlIKyeuwgNWBaTJHOsNLntMbpBZMHCFL4HG9pSi8TSMS4tMkaAtg92wSgtzXFMNFZ2+cNSKWViyUSih2PiRZ3VNWSp63dIsMw/6e2g8tcgIJoIWNGpkxZmvzBsUCZczkoL+2inGlUC3eC6me7GjSYl16kl2i8qZIDJGJDbxSFIOFTUXvcKkBVFmrsOFg1RslgU7ChZfo3T3rf723zG+8zGs665YuQ0+3ZPFwmN3zcG33Ls1g5iJOiNSQklBt0yY8R1OBmxSdGPk0X6Pn69aJmNZkkFnRStfqjnXg8QLcLrnfdNxlRaqvOfcNJA3HNOet8sXBAzGjugbwRINT80tJ2qEEISlUJWZfTiStSYoQQqC89LQdxJTCnf5mTfhmTknopBkEit9QSfFSEMucLI3hA6mObGZIzfmTKcUdRh5GwJBrxGmUPIVfdNg1YVLZWjkQFALtdbk8OIKk5bARWgMBe09SUq0gDpJBlkRysgb8Y6TumE1ebLUFLEQEjRmYbxqGUwD3pGF5JoeLWeaouh8oomWVyky+CN3Q8Wpk8h6YGw6ege5CIqo8bklnQOvpy8QTvJJuKcthmG0DFpQjT/jabNhQRNFhc4LVZjY+oE/Vb7g5+YWnwJCBVRe2PNMMTVTckgfMNqTUqGdM1FGfjB8QKrAJ+ILbF1T0gfKUDGaiifToSZF4kLjPCrCVb4QhWI0ikFuqL3HBI8SDkJmtSzUpUdX4L1nQyBGy06ekH3E7Q2dnV50QSUc0iccSoeUHo1iFjtSXZGEQFBICobwmrnSUASiZHKyGJlQFbzKj/xBc8u5dAxixVIMZZkRWTHriiIX6hTIoSMVhQ2BUdWMynJpFWoUWJ2wIiJD5s4/E+kw3SPGe/pqxRw7vqhfs14+MGnH98dImxV7debsBJkOM9TshYE2cjsdECVT0pGQ12znCe22KPX/r2rW3wb+SyHEXwA+B/41ACHEj4G/XEr5i1/v/4/AnwY6IcQXwF8opfx3wH8uhLjhZcHU7wJ/+Vv4Dh/5FsghEswWHxKpVWgKVkQ2+YwlYHPhZ+pTznJFkQpKZMNIRNOlMzE5Rlmo48KkC7fzkWgCKz8j0iMDNZd6jSJzFg2IhSReJE6aONGWM0JIBrFiVB1BKkyBOi64kDEIznJNIWPDhIuOCYXIiiYOrJcZEyV9eoWJDel8Zt42LNmxWMuQK+bieFQ7dM7caU9UNXNeMU0bFqu5yfc0ZebCBrJinQeEKCShacrCNg3s5wOTsjRlImtB8eJlEOsNY9tQpMALKF6g9YJkYSkSmQtFagbVYGJGL4kQOsTSkKZMjPGjA8QL3/kYdvPqDddvf5PjT06s5oovqoDQJ3qzYrAVOWdM3uOyJAmJC4Lq/KLTdgqfMMkN1WAIokWrAanBlMTZrSlrRdET0Uq0TZAih9Ry9lve9M/0q8SZHUjFehzJVPS2JejCaAyahUYPdOHMpBw6SB6zRMWaTSyE9TMmJbIoTEoxJ02bMjkqxrzCpILTlkPtuAjLLjxRaDBecOUzbgmsYiaJhZgjKSxMWJLKBO2Zmz3nWSFyTaawFEUVJ354+kOiXXOUeyZnSSvP3eVLpFxxLtcYJxjkll1+os0FkVeMYoUomY06Y/SRe7OnlBrRC37z6QkXnqk2Fl0sxUoqoPFgguAkA1UZOaqa4goX85rkC91UMPZM3mt0mVnrM6eHTxARrJrJtWUzJvbTPf64YW0/sPYDdR2Jcsenl0Twnto+ky2sTU8W0Moz4VwT6gqkBK/IsuUctmgzEoLGZ03G4cyIkQNBSpK64hIbbqcznT/RycJ759jHgVrAVfjAqVT8vHlFaAKVvuXTxVOdDUVKFnHFHDomm0ghYpeZqdRMWdGkmiAE5/WKxYBNmU/mnrUfESKxSxNkyywNuMQ6TIQSGFWhlp5ZOSZ1yxwdiyksxYGAr6pPWGePSs90fkKWjHus2BfBUjRaaFRvaWwhlxbnF0SSzNLxoTOUAJ/MCyOWMxsO+fplGUEzAyNHNRMXR9AFoaEuF94Kw+wTZwMuj5RQXlR0gmclMs18YTk9we3rX/ft/u0M5kopT8A//yuO/2/AX/yl/X/m7/H+f+6b691HvsuoyvKP79+werjnoTNo4bElYsuMEoVfqFe813d4KpIA0OzKCU2gYiAz4sWeIjReWQZraMvMigErM7J0yJhZ6RMP4havWygFIwQSSLFipOHJ7DDMNGnCJYkLCZs7AiAoGAKYzFY/cpUiJkhuygeKFix15FQVvgzfQ4kTcsnY/4e99+aVNNvS9J6tPxnqiMysrOqrWkwLdJPE0CAJggCtGZq0aPIfEvRpkMYA49OYnp7bfVVVZh4VJ8Qnt6Rx2qTBIbpwUUA+vyCAFWvHG2vv9b7VgpKSq90Q0JSgOFUVx3yDEYkZRxMWAjVKF0bVcLI7mgAegWXE6MiunJGlYOXAS33LVVbYUvhQvsde9whTsE1B5YXFaIrVaHFlLhvaHFiKpU9XbMl0ceQ2zrhlpF0j4bqQUvoq5viJnGHSUvTPkOY/UcQTRkZEqOnEgBoV0WWaErm7rjAJag/NmnElILNgjSvTZsNSVzT5wmIrRAnInGinZz7ZPdFpoogUXWjExKQcr77DLDP3rw/Eg8DEjlgXnF7YFc+jqkAEmnzC6ERKiuIdJ19hysi2/y132qOUwAtN0C3BNkQvIVfUVtPPkhVFCheiaskoqlzY5IUl95R5RXqYyw0kTz1HdnokNmeucg8ykGxhpGU/DNzPI6O2uNoy5RpZBCk0mDXwWH5B1XiUkNznZ65FI1zkxX7Alx3XtMeqK0Iu1OXMtoxUa0Bnxa0rGJP50s+UuUbohtvo2dkXih35UGpsnlhrS0oztijG1CJQvLiWIjw2KjY5YLSknydMM9GGJzbZ8k/VgZwbjvyMzj8Q9RndZFTybGJNHV7ZiAeCyQzc8GDuSVkRqeiWBTcmPuZXkB4fJZ/thgMjUSjydSHUjjYGQj6R/AafDWd7Sw6CWVmcO9KKCx/KD0zqlyidMaGQaJjEhnpTMFGTTOHVVKQgGefIfp7RwiOFxocDZ7uligERoaBIVOgykLThuTgGtcc7gyojdQIVPKOpGURFkyNGTNR+4ZJvkUpjyZgE+6QpxkFI1PmBXk14Wv7RfSC4yFxJ3vPIXhVkHfmy3BCKJePJTvLa3nKVMAvLpVSokCg0bJZMm2ZIZ9pyYsyCpCqu9cpT3YLXnMwdjV9ozZFv9PcoLXmKLWuaf5R2/3oqf+UnhW4q/ua/+S/4X//3/4P/7csT3l3o9BM36sKl2iLNP4/lESSgYiVT8NRkIxhLDRJWIVAiI1VEhkiVF749f2GWNc/yjpe+I0nBoFoyEktkpuZcbvFesJoanw3P5oZeD7R2ZRPO5GjRJdHFiVPbcd1Y9uECA8hJ81xtGJXlNsBSaex6YCqCSUyQBJKELhGtA0ZKIgaRBbNqKE2hyyMiZLoIV63IZFbRcLe+QFxQKeC1wgvJTXiic4qL2LJUjhUo64ilIRRJFWdu1hOdOfKIJYrIJO8QUlKHmb040Q6Zm+uFSb55Iyml/qj1/8r/d07nkcfhe2bxxJS+oP0HfNLcLs/MsSWJRO8jh2HmqN8TreHVLbTrzG6a0NPMO/nEUma8y+hp5YbIVXxgtDWmzGzXKwOC1bSkEJHCoFKNy2eyaunOR455/5a72ktmKpo0YllJWqBLoPKJF/kRmzU6QlpbFt3TuCuL6uimiIsJ7QOieU/xiZxafJog99QFjKx5fw3sr3sedcfVP/L99iPd9UplJT+ff2AfRzblE895QnjPGLb42vLKDVpeuI8DrZyZimHQhuBaBJobceUmvPAS/5xJdyxKEGfBzA1JaUZj0MIwyppGeTZpeJsYiTuuMpHtgSDONO5IbDzHjUaUgl8jZsrkEtGiRlKxD55v4onLsOfcaZCZqTJUy8QQzmzdEaTFmsJQLDMKRskkE2X7jKgWzuqGf6r2DLJlSZa7omiWhTa9ctQ1alJYlRlM/SbUqivJZLCZhYpH2YPPNJuJjXilLyP6VPGy3jM2El8sqVvYyZEgIjv5SFMfsfoeGVYyNWuqCDkhwsxsNIuLhGpGrLzFjL0K2lgY2j3sNVIVvIGUw1uWtq9ZQsvNfKVbBy4bT640UfZM2tD5CZUUcVQEIZgHeKlvmBtJUhErC+0aaSbPpnqg5UJjPjHrHoSnyDvu1pnnuqYqGscAeWXta67Jspiaj/ERM46EzRbrLdJobsOEySsf1PfoMoPoCEGz6J4sMyUXVMpYNeBF4iBnksws0dHkhDMT/kdSXV/F3Fd+cjTf3vM//i//lj/7+3/kH7/8E36ueTn+A//x0NGpmdt05FlmEpa+XInFUoTkIhpGcYMUK0Ym6rIwiYaoDJ9dYSxbPpQv7MKV35c7ooSKmRVHSJILG5qQmWXHmgVBghAJJ2ZMWlmVpgkzJ9cRjECXCBFKFEQ6JqOYpWCsNb+2e6ol0IuZOTeoEhFSkErGElAlcJMnbvMzEy2H8kywDSFmjMmYEGl9RxYCMrxfLlyrRGwKKgV+Z96TMDRcqf/ZdHhykllLujxxlQ1tnkBZRlGxlLdN2S7Nb67oKXC3nthGyGScFRxubr9O5X5CLPGIjr/GeM9EixUjqcD7NXFNA806Yccbiu7IITCZBakyo0pEo4kZxOHMO3niXLWMRQKCd/kHXIx423I2HSoutOlEG8DbjNHgiiTpBj9MVFUgFk8RQKzZjAGlPJUd2fiRXCyBzM18BqnQomLDQB0ip9BTSkEnQ4OgTXDNK5OsmNXb91pmRT8LtqOgXgeCXPnc7vlUN3yQC6+6wew78C29WDmWPSIXjIM6v1AFRS2hCytCdxQl0DKxGU605ZleZaQw7OSFL+KWV2l4dHskFdu0oLIgSU1cLTlUbOoLFRdUu5DoCMaQxY6QIkmcWWSHLhOxUXTpGV8bbpdMlIp6OCFCRfSepBRL7MnawOkVtQfvDzgFozXEqeWH9h1GKgojOWYexJZFBtbKs4kDSlY0wlOWhkHXjOUDZlOwExzWSBNndDzzKDt8LCyyovEaYTNfVI8Sgr+cPsMCIlXkLKhjxseGUGoq9YmC5kF8RAdBtyyMlaOWy5tPIUe0jVgyc9lw1De07QKx53XMwMpWfOH2qklFgtfE1tOz8tq3pKMh9hZnA6SBJGtUEFQ5M1mB0lfcemSze8XExBwaHktN5TRdPqNrw36WqGzJVcUgK17UlrHApPY0Z0/fjxzCAzLv+I0yaJtwgNUjGkWRhcFYYinUKbI9z0Sn8KWjjRBjoX0SvNw7BiWQecGVEYpDYjiUEy1nZJQEe481/Y/S719P5q/8JLE3e3713/1rfsW/5jf/7v/k3//f/xe+c9gmIGJAmkIQkovoyaKQcRQEEk9XrpgMXX4lCvfmDq4yp6pHhsSjveUqdwyqJ2Co0sI2DlQpM1eWPl6hOIQUeNnwyoGrDOicaeXIiT26ZKKQJKdoped+XSEXlmIpySNE5C480y0JISSLT8xNpm3O3OQLSq/IUZJcxaIqBrkhkzibA00cadTCbjnSqpnP8p7XSuOtJeeEVIkkNXOpKFlxFZJOXllER8S+rdWLwibOiLKwiB4hPFk0tPHEz/337OeJ28cT4WmPryo+frtjd/gxFuq/8mPRmogQF2KRlARyUYS5o2YgVhqhIj8cenxRPNU9RSZ24pW7/MDmMuAS/G7zHQMKXOFfnX9DvNzSiETILbWYecrvaKaFJ3vHi4g8i57GCOrYchsutHZkagPB1jzqHVe9Y5GwnUY+xB+o5lee+/dkrpw+ZHJypNjhw467+EoUPSV6fDqwrp7sanQSmBLYpIFjuiUpz5WKq12IsePUVAThWF3DZ5Npo6L3kR+qW36oN0QUW/lEkwKqRKxJ1LPH6CtT7HgfnpjzHpUFlSoc1hFSZghPJP0t1dLRlDf/s14MhDxwag+MVcPYvePn80KdNU/1DuV3JKv50/ELiEy7zsy2JynJOtbMr2BLpFosgy2Uq6OqFtp9ISh4tTsogn/45q84pBNjHaiXhbhWhDUjq4BME1qdSW1C2wtbcabJO2ZTECXjfKEJEXA477keBKFeCMIxBdCtJClJ0YoQDTasnERH1JaoJy5O8k6O7M4WcbMymBa0RC4V9RW+3/0S5IQrmUbNbL3kJmYmDSLP3CyPkDW1W1lNRbvMXPMdbRkx2mO1RnMhi5UuzbyyQRjHzmQ2NycWLCKpt6ctCWRxDKKwZM1ad9Ri5EF/wIyS1QpC02DDkRez4ePpicl4bs3vySrS68wxb2nWK6VUVMbwIj5wdRYdHUoqGulp48RBjqTsIChCFKikyQF+fXPHriiKlPzd8/foJbMWMENhUwPTwp39ghUrngrzWlGvB3x1y7sP37E9e7LSAAAgAElEQVTZ3fwo/f5VzH3lJ4/zM2L9hjRt2VQzD9UBVQoZzYp7+5ftT0idCcKyizM2rtzmLzy7D2QpeOKWqgRaeeVL9Q4vBaYkNDN1LigV2KYzq2zQUtKsmiQDTbmQjaNmYJIb1mxZSk2XFyxv+atdntnKE7kprHZHFVYO+UK9HDlWd0wpgl45yAutOGGCRFiPlz2X0lHHiFdvWamWQFdWZBI0cuB+faEIxbXs2S4Dz1VLkBCwnMwBVQSFgl4lRQoW4ViRFGF5VLe0pSUnSEohKJAk/ei5nS7c939HOdTcfPuOm2/ecdjf/bFL/ZX/DDrb8bH7FbP5gR/iA2f1LdNG8SBu2EwLRyvwOjML98+xbyt38Qs38hXnItdU0zCw9yNn2zConqa9MgnBs+7IThCKx6mAuVoOa6AuZzZ5JiHZesG+CuzFmauqGOeO3UUyOkO3eu7QoA98jjuycxwrWGNN7QeGcMd22aKFhjURXEM3JwqRoEY+jAtLvdL6iasvTKkFPCl5mnXHYjQHHznEFQkMqsdLR0qStcBn95Gf58/s1xW3JPSrwemKpRUEVVFaRV5WFr0DTqyNJvjMqCo8hqB7NlzYzp7beOY/NIVefeFqavb+9yxiQ5VHbF5Zljvcc0PUDU4Ztr3hoe/QMRBdRiyKoBLIiKsC19phiqBCcpcu9Dnwe9Nxf/7MVf+cedGcuIfqwtRY7tSJSWoerwf6nOhl5Dv9iOVCEwXN1FMLyWe75XkD0UhWKTBqods9EatClwN1Cjykj4gSibnDzIHZCV51g7rzfAyP5LPhsj1Ql5FXpbDzHeLaUUVJEC2KlVplribRyGfeT/+RFslUbnhiQ14aLmvLaePIdWarCu+HkVv3heBvKMIhJWzzkTa2jOwJWWGk5z6d6cfMb7XmqC1VHomyIEQkGYXRlsXe4IJhuxiOZIZqzylrorbkJfLSCv5e/wxTNFV4izuDhjpasgq0y8q8CUQpSFISguXmGaSDEBJNMFwrTz8HnivHU95zJ1Z26sjgKkrdkpJiiAeKKAhlSaoiy0Jv3tPt/oKm2vwo/f5VzH3lJ89md8DqwLFzfGpuWKXDo0lFgCgkClEL9nmizg/8ovzAIjWdvBKz4yI25CKYqfm9/ZYrhigsOWmsKrTpEaMyRr5lFG5zQsYZbxoupmOmJhTF242npi0zVfacdU8REKSki1eatFCnlUUJ5BxBSmSemNot0bakAo18RbqBRdYQEoNtUeXN4JgUWJXji2jo1IWtEDy7lhAzY8nMecuQJaW4t+tdLYmiIMrbhHKbRjZlwSuByBMSwYYTJQkGGjZ+5nB95RBf+fO//h/4L//mf6Jve2KOOFtRueaPXeqv/GeQ5QZr/oKydZjZsFZbnoVkcDVTvdJevtAUw1RVWDVRzVdcXujjiVs/8GU88Gzfc1QVUzK4BEeTeRTvsFITteR+9LRlorgHLBMqtVSDJRpYKpjqClmBSQUjFUehkSXQhlecWrnODarN7MuJJSkGUShK82hbRIIht+zSRBQwbldErbBVZMDR5BWzSnKUDE3Dqx/fNriVoGdCFUG3XNmGwC6cmFvB42aHt4ImL+yXZ+a8YZAB9olBSGyaCauhkYb9OXPedDzqGR1m8jTzQX1miGeW/mfM0vKH6iMlFFblUAKiUgRZUYJgGTdoEwmy8P3OkUtNsx7YLxc2wlC/nBH9gloCokrIaAFD6FayKSiViGXD/KrRubBQUdJKM0W8TNR2JKaEEAuz23LKd6zy7bN20SPVAVdeyGNGGs03Q0W4fWHUK1+M5aIrBicx2TPKnlFsWGtHs5yxYqBUGasXunzGigmBwLYrshmZZEFMnjBO1LNCaolQgW4eMU1LcFf25QWRPZI7Tvpbkn9PUg2DE+j0lpDTqSOqHXDe0y0nHCudlFRVjQ4LDzazUvFQepbc08lXbnhmCTVZJc5qx7PKXMSG2yIQU8HohauEtWRqlViQDFoQLAhRqP0VqMlJIawnGsmiF1YcH0vgEK9YBnr/yGf9gSf7ESENi6uwVeLaVqzuBhUCoVuJeuWxrsjCMFrY+CujVYzC0JwhaMOd8CAG1scrflyofgTz9a9i7is/eWalmW9HWnfC0RKLwpAIOeOY8EqRZMVCRIjCXCrG0nCfP9OUgVe5p48Dn/Q9CkuR+u2KVCciPUcnOMQHluIYRc9JtQg7AwFbytthIXq2DIioufUXNvOJW/fMRr9QpKJSK0HW9NOF0TR8c3kkIPlyf89cWaKyqBB54p5DOZKTItWOVCTb+YJTMypIGvmI14ZdfKG3M0UmVqkhJ2ZpWXVHEG+bfjrPLKJHF08UYOKKDYLKBapcQEq2q6dMifd+5ls9UFUrf/3Lv+ObP/lbdrsbKlv9scv7lf+fhJT5p1z4LATOPlOsYlDvsF5yVhW1bXi3fk9XSxo/QYD6y0xlPNlqupL55suFsdLkukZoz6gtr7VGSkdbIl9ayZr2uLzSSc938ZG1dPwQ3vNSd/z65obartyGie14ZXfJ5CWyFRFT1zhZsZ8KVwlV9kjr+cKeEB1kQTQtU2/RaaBeEyavHNZXxNKyESPFW2yjYZw5xpqiLYLI5nQhuwlvPcEucDqxe0nsSmFqG4zKxFDj0ahR8NTW/JYtldX0IlJkTai3HG3DWa2MTrIzz+h1S1lrTLK08ojXNWuW7MYZ3Z4xMTPgaOXKzpxwRaGniigyCcfUwFpbLAvXW+hVpJaZqpoRa+CqNhzFDV4Y7v0jPys/YMOObz99ZrpMJJM4N3ccTaZtEr04vU3Vi0Clwku554YHnLowqpohNSC3zGaiqv6JTjhOeYf00KULRizsyshtuMLqeIqeWAqtP7PLZ76YPYNpibqmdoowgjAdgxG8i1e0v2LMBbsYGgIlrYx2plUnTrZnVX/GRdwzxy2LOXA1kIm0XLk0FlSFv2yx0wBJMduOadmglkK7kdytirN+898M6UibzjyYDU8q8mpv2V5GbtNACJoYalZZ0cSZu+QxaSbXhixARc+j3bDkhsfuPc0w0lcDvzz/mpPueW16ZKl4LJqfT2eqakIIwT4PuPI9cn7Hsy0YBGGU/KHfUUn4vbllUwrRrmzyE1f9kQf1DbM3mLxSpYEgI8+01NIic+I6TWwO23/xfv8q5r7yk+dleWbdzqAFRi5EuWGXz9i84nFUEmox0XHF0xDK27uxSznQTQM3zQs5CqJxRASlgCkZLSSZgGJlpaMIR5COUAzRKFT2zLqh9jOz7OjD+hYnFka6GFnK21p8NIqyZEZb4dxMrUb66ol/1H/JQMsoOyiFSlYsuWUSK7tloeQLvvwJR6WRKrGPr8jcoxdLtI6Qaq7WvS1m6AuX3PNqt1AyoRi6NFAY2aYJmzOjqtF+5k+mT/zJ8AVhHeXaQpD8zYdv+Mv/6r+nP3S4ZkfTfhVyP3WWshDDgJiPrGZGpiey27EGyaQbNFdkPfLny++Z2DF7y/fNRw7rhuoq2fJAsxu52gPSBS6NZhEGazxD6slzw4EjdlnYyWcGXfEydgy2Y15bojGEXMBbUokIDfs2wAKV8UyHjFQLQsPtsNDIzJMrnPUetOSz1WiuqDyyCsnSFSrzxCgyIkTqsyCvGa9nTvXKg62oo+AiNaIuzFKgguVh5xBq4RwrIpY+zLh8xaaJJFY+Hd7xqrYwKapxwpSCHTJBZzquXLoNL9nw6+0vOFwGfF3RpMCx3FGJwj5dqEPN2dQsMrCICPZIFDUmBWLMFGZmJelKIKdMP79ykYHRVQzWYPQt7XnlsW6ohwvTvsXnSFMglbepGKWhPq4YubzljhrJfX5BVGcGwLQBe9kSkuOTuwdr8dZQUo/yPYmeD/OVW3+hlD1DUWRbs8knkq6Yk6bOE21ckCGyVAU7zfQqoH3FqnrmdESkmaxbzrLHVB03aqKsAvILRWUinthlMCuNuaLDHrO29PXCnyQIZcbnRNEzdXhhrB1DbN7SHZYNOzlTt2cWIXgXThj7DWmwXGxiJ89oN6E50CTLOWtCbvF6S21WZqWoFlBhZKcHNv7KSb1Hy4WNkPThzIvccLe+YkWmWs40LjEG2PrAZHpe519yX/6Bfj2xUYlPKTOKG4qOpFJRREW/rjRTYN4YXiqNFRMmVaRVsmNkuyZWA0ZMNKKgTcElUFYj3Y9zrn4Vc1/5yTOpgrTgyLzLDyw05FwISjHjSMKwlBsWWVGHiadyQJfIVezYqhN38Qtf1EeaMmJL5CR6QtIkFFIqgjAYmRExsghN1IWmLPTimcItTVrRBewssSaiVsVqNColKHCYX7mPZ6Tw+Mqx5YVlV2FCoNWJFCaiLMgE2fdofWXOgiIsMntWlZnlltUV9FRoy0qKFZ91xVIUOhdEykgSudJIElEpbpcnUnGgCjlbgtREBaPf4j6d+TCAEFdu/vov+G//zf9M/+5f3sjyK388jDSU+ZFq/U9kceI78coyK8ayw6oOsSk8sUeFlY1cuLoNn9V7xnbiJpzoPUhxgbDjW/2Fs2iphKf1CZ8nstyj4sLi9hwXaOSEkwsjW15tzZPpiCawkTM+LoTY0dhMuhPk4sgmUIrmQVqcyWziRBoNVT3RrwtJJ7RumJu33lPzjJ0WLv17hEhcK8M2/J6126K4UFeO7nVBjxm7RupWICVcBIzZMitFjA3beaXtT+yCx1SBeT1g8wsn9ozWMesNHZk6B14ryWADxngUkba8GRX96WlAqYFN9ZldHJhihUwbtmni5Cyv7Cl+j/VHVIDWvFLUjHQLs215bgyzcsjs8I3DLo61OWOTopkrLrbDZkGWheQrRI4EO+LshSRnFlVBLJS1pdEjh7yS7MKN+Q98CJ5ldtRzxUt1x9XcIEti0Jar6KjHhbJuubteyXcXGl0o+cKkLTUrwdUkDOWyJ0nLayfI0rC3ETfdkNaWD+cJ0ydEf+RWDZzbHem1Qasn7tQzIUfGpWcVGsGRb1PBDe/fzJfliqkGjAiY4kEZtrUEu0VEyynsuJr3GO+RfsUtCyff45fIo+kpQGUcUimMhCF7NuUTQtfcpIVNCjzVO6xzlNlwF79g4sqz+nMGtgg0VTY4DdZKbk/PnMeKbO4oco89rQzultsSaJVhX3tCN+OKxwZwYSXKe2ILdVGI3GDlylAlNvqMzzucDOzi9zRuosqaV7lhzh2UmtraH6Xfv4q5r/zkOdR7tFb0ZUTkQpNHfqd/TpAGT0VdRnIOQMYUj//nR7axwFh3VHnkIF655pZFO7bhQpEGHSeS0egUsCRWaalYiEUzywpLj02BrThyE17Yh4nFt5zMHSenmURDk2dqk3jy3zM2jp18JgnBGDuW4phFg4yGJo98iIlGnOiWkVForlJz7nqC1BQhcLPEpUxdFoT2hLIjl5oUM1dxi5QaFwNZZaoMWVr6csHFmbPYs4otq3Q8mBu+7F75i1/c8zd/+1/zzV/9Fa7/cR7lfuWPh/QLefjEORdkLUiisCkTRMNUKoRMNGSkFzzLA38o96x1zUh5W4bxP2c+KK5yyyg79usrfya+54v8QAmFUCbaU+TcQTVFKl1YhvcUXdEwcztK5BjoU6BzBi0dipFP+wMax6kpbNcVF1c6Bq7KM0rLZBZK0tynZ0xWqGrFY6nlSBZHimzZlIXHUpP3DVDo5AsxW1wdOSTPYfM9z+U9R2vw+Y6zUiAE9+sAyiC95FI6nimcs8OuV3bTI2NzQ24TWSr24ZWYNMHENxNdU3jZOEoM0DzzUbzQMdC4jJXPGLdwTFuqkJBxwoVIlII+H7ld/8A+G656Qz1rrnLDxVSEfOAiFXcl0OcVqxTSOHZzy11MnLrCQ68IsUYPNa2zbLPj2kqsh9+5e2qredUdJkmcLqA0ODithpPYcDLt2yR2PaPzmS4KggKtDGY1WAq4lVqsoAJf2CHXwp29IGjIWWDGiC4FLRrCvBBFoGdlW0mKvGEVDVxhVoJeRfpwYqufCAKYJmYlSGWDEZmkNWexIZoVXxTv5BFZFHN9w3kUzEODWyP79JmT25Kz56I6el9IeuWD+D2hq4npCzHfEPyVP6iKY9riZeK11MTUsPMnwuoww4LyO0QQdG4lr4k+StoYWdMtA/BhOhHimU8bzed7ScwHkrd8TGd+W3/Ds3XMuaUVDV1Y+OV54LI9YspKjcRFzew3vE+/Zakyjk/08oViNHHZsZES23V81zhUTj9Kv38Vc1/5yWOFoR56TvodP+gND9ywZgsFvHKUIhAKPIlFNdykE68cGETLQR+Zyx1N8aw0XGVLJTIJw24908RXZt0QpGAWGyoW+nJmKhUtM14orrJnlR3P9VtEj68UV1UThEVHSbueGKuOhGAsW0RWdOnK++HM4va4eQS38m15QiiPyJlr1XKu35zqAxZVCl7X6GbGl8hQ9QylJQmJyJlsCo1fcGolFcF9OfIx/UC/LpiQoFbMpsGmN0G73m/403/7b/jFuz/7Y5fvKz8SIZwpyUJoseqFlQ2tT+zECy5FpA1UUZCXjqf6V5zbnqM5oJcXohZMB0UqkKjJS0UaNajIfqnZK8OTNfx2v+PiPJX1fBcWjL+yXTO/PxyYFURh2XwKrPme2G04t4FH61lSz5ILc3DchmdOpSYphZeaQ4ycZcveFoQJ2PzClBzby4BZCkNuOLWKS2+wecciDU2G98sRtyY6l6GN1FNiEj3KFxagC2d01kTlKMHz3LT4quDCRM5gWXhtQRbPi+mwQiOBOybO3PKn8wMy9RSulP1ISC9U+REzO1q/UA9H6uLwuuZx/oZjuqHETEkD2iqMDhy1ZhA7bBQgNZ0ITGi8cJzbhvfzkZIEWVT8wR5Y4kxkopYjqu4xosFOClkM1QgntlyfGsouMoqatdswhUSXA3nWTLT0ekCIAeWuHIUhZ41NgeY8sJ0mQrCoyjPlntkZQnJIa1hKYhHN201BK9BekC4ZqRRedxyFAnlhjQWdEmCZe4ekJgC344DQK69yx+d6w+xrXIYlCrRb2YRXiiy8Xy7s6z0XMRBFg1CFMFYc0z0lNNgwcuk0wSkqsQFvUGFmlRH8ke/FHTF79vkBESQxdQxrRTGGUTX8wRhGveFiJG4eEW5Fe8NWWGbzDVNXGL1me05szAkJ+ByYVc+kE143TFXFEhRSCHalcNu9UrhQyj3BVOgksSKTJkl7esHpH9BSI1qFjRoTDXYd2FQSW32dzH3lK/+vxMtMlBmrB2oUcEuSGjLUaSSmwuwOKDETiqNWHovHsHJfvvAP/CsCNTFbVM4IldBJMsodfbzi8kqxDicHrrolRQlFEvJKLoKj3JGUQ4uMkRKvDIu0FCEYJEjRU4cFzcKl2pO9Imf7z+/ddvQ5U8Ujtb5AUqwqc3YdV7YYEl0eIQtU8kymoYmRal3pyiNj6TFpedvYdYZGDBQB78MDLsBQGoRSdOtKlxeaJXKzHLk5VGzb2z926b7yI6LdBoyihA1rtUGKxNykNzf6deW76RkXFcfyHY9py/0CFx2olMABsgi8rAjaIv3C7llwM99iy4rY7BhrQ6sMmk9clWOmxauKOloO84ofXnm8u2FwhnPj+FUuLLYQNaxtREZNXzLv85XiLmQ58Fv9S6JoSAaWcGDjXxH2PXcqsWx7muuJX738lqstmLynVJknpZmk4iozWp/53AqqShGMoviCSZLVVKiyYGXEyZFKVjx7y5hrOkacL8iuYag3aFUweeLb9BsG3ZFIiHVkaTeEoDDOU6UT0SWGRUGcUaNGzAKiRklDsziSTez8RLCKKd2QybC+R9sDPljktLJaTUOhDzMjNX+Q9zjleWwOFJNJa0O/SPp8JpJ57Q1fmorHZFmCZI0jyRi8kCQN25hxSlC0IVeK1XhWF+jSiV5fOeeatvGUVVHMK09RIUyFiRVbsdB5iS5XhuSQSlOZjJkzc3Ycwpl2e+RT/pagBacAIii00ijRMDc1Ol/pfGYqlofpnkqPjLbC5MTSXHl1LUXNXM2eFFtKEYwpME6WixlYLi0o+OA9997x2jqOtWBjZu7WK5nERfbkWJiFoy1nOnll8i1hlahYsSkzRTaU2FPHhCg7tIA+J5Q0zDkR28Bv7IaoN4gVpkmQxIXVKoyZyXZl0hVn9jzYLcF7DCAZ8W5hUTCUDpEHUkmseuZ9SqwWdk8R3URE1aGHHuvfodsbul98x+0v3qHMjyO7voq5r/zkkUojhj1Tu+NB33PWW6q8MhfHrgwMomIlYop/i8cqmS69IITkS74nKc0kDVEqAoaxCMiCWlaU/I5oHbNWrFJTsDTiyCa/0pWVEBUP7p4kYVWWRq1s0gilh/yWU1inkVUqVrcny0QwDWtIFK1Q4cTQ1DRh5LWq6MPKJNxbbJdMxFKhvKdOmUbOHHXFKByxdLybvtDLF7r6xKBblCgc4gsxG5yPXPUOo2ce7D0344nKe5pSeL9O/Ey9xwn5xy7dV35EzOaA+uZviY9/zzpKdv6RfYlouZJyoYk1IhhEcsxOcpEOGaHEhBYLt/IVH2qmcofMK893mtvLBPGWz/sNMYycRX5bChIap4a3JaIqoKRk3b/H64agI68W+ulM5QWbkAhFccEyqcQcDVlsKLZFSotXDuyOB/ENo3niu/WJpCNrUNBp+uFMvs6oreEzjkdzoB3PPNktNIlVdTCfmYUmiYhyE6ZYrPJkVWBdudgdzerpfcIZAM1K5t0yc7WRKiQYr2yiYO4aRBZUU0aGmaEThErzEjuyLIxL5n6ciSWhrCTKQhug6jyNqbnYluh+ziIlA4klSaLOmKgQ6yt+v2UWGa8MevGkemJyhW0eGUVFSpoSIhtR6EXNc0zshx+QVrBRE3W3MhTDnGrW3HGSDb0XSAT9esKVmV0+0+SR6KC2M7PSnN7BMjp+sB/ZBnDtwjufiUS0KlgyFkVTMpVsMFVhlTUxRJ7tjqk2XKjp48j9PBFR7MwDReS3/OtLh8+SyQx45UiVwJkXtvnEXhrqGIn+hsnfMJuClwud/IHqWrObF17u3vOpjgShaOLAqBXRTkh54DA/vCWMqJqg3uNSAdtRlxNVXFCDol4CT5sN17ZldYI2P2Nz4Oy2nKRg0YZtnDA5MFWJrApNc8Lklb5cOIdErhbufQIRkH6mqSR9ecW2B/bnLYkvRBaeOsnvvMa6jjJZti+31OEGhyG3CfIndGhR0ZOWBd11/+L9/lXMfeWnj9myigoTZz7Ez5xkRyOntx8IMhux4JkoyLd/4WnBl45KDGSp2ecjQ96ixErEMoqGV33DpARX27ApR7yUJDQgCBiS0DS8sBpLw8IoWxwzfZl4Hz+j+JYiNQmJqT0CT1aOJnlmWVF0IZnCWDUoEpelxSiPzInHeoePilg0OgtksmgmpApEFKOqyGjGTYVloSVjWFilpRiJXaEIg7Dp/2HvTXYl27I1rW/WcxVWbdu+t7uf4p6IuHkzkwYJEi2QeARoINHjcXgGngCJlOgj8QSIxpUSkQjI4EbEieN+3HdpxSpnScOjA0g0UASR98i/rlljScPWsn+NOcb/04oZIRNCZqLqGEXhU7Ph31kFJpe/duW+8hck1koxG4rrmVMmuY6sXvCpso6aQd8wh4IwnuPymcXefzkuq1cWFyhxRFb4/vrKvl6ZRM+1Tyz6hdEoXB14dxqp4oFLuyOKhp/ckbf1EypPqLCjF5Jr35NkYCkr3XJiJzTSWGbbsdGJ4Xjgfv49e/OZDSOf5fc06ZlYzhQqT95Qas99nrk0N/zo37D4gvCOE5KySoKbMWliI09c9A0f3B0ldOznRyiCPo/4kglGUa2nqZlugsOroZqWoDIvNwlrF5LpKOnMy2bHb84/cY/gY33DJDck1bBbVvo4MHrLsm4ZpUZuBN4+oarAckJi6eNbRDD8frPlog3RaB6NgJRxItEvFzodqWLCSoEOC8VEoGKoLMqwqp5dDUTzBiEin/TIICXzvkNGSZGaql6I0uJF5p+WHwnLDYc685z2XLVHCk9WAVcKhyIZcbR6QOoATrKIwm1IWFs4lEdqHnmRb1mU5ZwNOWxJtvDotggFkYGNuNJPkpOzBKO4yITViT6ecWdPqzNDHbhst1hdaOszt7GCGQheYotjVxOn1HJxJ6pOOBGwQnMzZIbdnj/0ntgHNnHhEK5AZTO98pg2XELPrnpaG9Ey8tJqgs3kVrCZMzfhxKQc92TK+MSz0ficmcwehMWYibNbCelKFoX9OJCiwqwaQSJ1ilwVn12LCJWtHDmWCzd5ZZM9c9JkrViqJYjAoC1agsLTGsGde09JWxYtGMWK44X1539FbzM3QP3h14g/8yLEVzH3lX/0RNvzebjn0giynBFakXBs5YThQhQt+wRQacLCqh2LkOhoMaJgxIJnQpZMrZIqJVUJihTMaFT1rFgUGVkrc27ZlQEZCogvb7pVarya+Cb9jqM8kYMhVse53SPTSqMmQlHMWlOKpkiDFJGeV4wQ4DIP5S3SVibZsxdPdHIkZ8diOq5iy0n2DMKjKfRloWFkkD0X1THJHdv4hAiC714eeVV3fO42TLKlUhik5cG9oVsX1kbzaVyo6S8ziPuVfztIa+KUM0u3QT4vBPEGvSRWaXm8FcylY9wo7JxoJPhlpPMtQTeoHFHLilgq0nlWWWn0hEwQqdQ0chETnonjWDGLQrSV2Lwg7IIuGjtldkGyisCb6YFtesbngb0FO77hJGZiLGASLAupKHY1YP0rf+gkUiokmk2eOQvHCUExEGPPLCyDtExUtjyiCDTMlC7jwkpLJI8FU1a2jMyiIQiLrAmB4Pa0MtOyioKKr0x7x2I1yUjcJPg2PpGUZ8w75qDJpkGkQjaJPl5JZUMoEpMNL8ax3hqc0xzSidv8GVcGWp4YhcbnLYNqeHYdo55pyoVKoWhDVRVfI0JHjuvK7vSEbhf6TeAsHec48f04UY4dwlUSipotSs44Rn7uDmTA1UStglO6QSZLEQuGM3RwhIoAACAASURBVLui6ddIWA2TuaPOis5MqGbmXBuemzsWseFpSXx7WnDhRBENeiNYcib1cDWOS27p5IhLM2NfENmStKZJ4cvvaXP7pdbhngOJQe2xG0VjC4cgiUUiKsQa6Vi5rS9k0RFtx3M9smpFt4wICtkoxH5EuoUqHYsU6BSoqRKkoVPPbMqEOhmaxrP0ntF6JucxpfDsE2MbUXZl0TNWXjHVsBcvFCRddoxJ0sjA2zAyLYLj+MDJvofcsOieNk6oqNiYCbeuGFlRc8Nju+dz2lBfj4QUMcCNekFYz6s8EkXH2RyYzROXrLluGp76DU24chsXlk+/4/7bv8XH+FXMfeUr/w86Q3VXkvaMraVIgZErQkQm0RFlBwJUTQTticKyCs2Lu8WlyKFe2YYzQRmqEszSftnnK5UsBRFNqhpRNUIUssxc2PO/+P5LbJioGFZEqjzI94zywLW5Ia8an2caJg7ygS6dONUDS2hBamxcKNqgy8AxXFEpgHCgBUoJ+nohpC0KqCRmHPsamVTDKr9EFLX5wiwcl7xhJ1/YsKK0o02Fb+Izi9Zs/zTbdxUj2kRKFMyuklL8a1fuK39BpCjcqxcezQuj+wk59eziwI+H9wxGMiyeS6s5lAtJJWYnSLIyipZUEp/VgRtx5fb0hMgtt+1HFp+JzRYfn1EoXNKQHdl4pkYSdOQldzRxQpfPWLlwl1u8jDhtULGSVMFkiRKFxSikinzDiJBg0sSL0Hw3XxhkSy0dyUjers8wFWJwDGbHuYGcF4I3jMnhaPnh+lusyqxUPsoj0bb4tKFfI4c1EcUZy4XX/Yan7YEUHWpq2NZXlE8U1dDmick2XEtLpWW2C8l3qHoiui/isgsLZ/kGXa/MwuFUIVoFjeQpHxDRYLaOT9VirldmseUVR6ySWjWrtrRx5O/iP4BSiGogLuzzyE0PMv4dZklMIfFHO2O8YvRnPirNqjKltazsceuX0Ht0w9k4znnL6kZCX7nGSl41u8kh3cImVOS4INMOmTrWXcu1m5n0kb4sOFd5P/4RIUaycES98Mm+5UPbgkgMwuGqwKfKgWfexTOf5Tck4dmHK0kH7rRCr+/5Q2OJFapX7PKVLD1hqcg6YazAsdCmzDUYhtxBhpd+x0n2zATq7TPJwWw0UmTe1s/csPIUvmNRmhoL6MwqV8JZ45cr3jiW4wp2YaKSOs9uWRidoRTJwp6XORNVy3EKvN3NXMMjVXuUFKy5Yf8YMaalKo3c3WNlYDPPXHVL0RWlJD55Ziy7p8JVRU79r/DJotdEKxompYl65afuSI2WQXgCC1IJiIV5mLguM2+M+bPf71/F3Ff+0SOGz2z9MzTvmVSPoLIKhy6Vq94h/zQDJ6pFyMSgt4j6xX7BELBioBdnXu0tTV3wYoEsqEUSlMfXhBUZXROGjJaFmCVZeFoWqlS05cymTJzouaodc3UsvuE4P7GvV76PP3ExW1yO/M79CpkSaoUunLhVF9pYSbFjxeBUYtWOm/LKpn7mc7njo9/zqg5frkFkvgsf2JcnTmXPq7llFS0PvKOfPnLMj+hqmFIhCoGviawzt+mZGcNmzfRKEFX9a5fuK39BtCp477kV65+WFO643BuiTUiluDaWFBW5SIS29HLERYHSAnuOZGPY51eOmxV9vcU7w492j6RhVpZfx08Ym1A28aI0i/YcxzPkwvYUEJeB2AeCbXkUHmUhbHZsxIlZL+yGF2pqoCb+9fKGwxjw9sJiWu7VE8H0UEaGeGB/zbiLwueFY/3IsTgedMMZyf10oRNXcnlHEiNJgU8RNUeuvufZgSgRny/k2CNfAmI60xJITkJzRngN8lv62nAYC+3oaaXjIO75KezIs6ARAzEolr7D+sI318RVRV6U4wHNXlZMgewCobaMOPTgeXt+ZNkGWG5obWQ3zLwfXrjpB17zDdZVruqGqN/yusLdeUXqVwyCTlREVKyxEIQlmIJsHH64ociVN+qFmmCsAlUCMRXOYo/PC6GzdOUzsgS+j5qLKJxKy0dnCS5x1p5zYyhCs3qoi0YqUCXg1SNGbvBx+ycj4JnD/BkvJvbqDHJLVwam4knKIrRhSCuTn3mxB3Yp87Sx6GtBxJZmeEW4maYsrLayVkmsiasoFKnwKSEJ7PUZ40aycbznlSlq3CB4un7PLA84fcKWM8obhI6kl4QXgvv5Qpg2TMkTRMNZwdgXhtqxkxPn6vF1zyFqvD4h54WDXbjMmlYkUszUtqCkQtTIzSdHvYG+XBHSI1Vl9EfasrBXA9MePiVHLZpp2VLdwmt/YFYF0StyWVg2hqQVajXEOHO5SjZyRjn4S4wrfxVzX/lHz/r0wOgyWmZWZShVMWWHB1bhKUhm5WlqpBEDisgqDBLJ2fRE5BcLBmEpOBbVUnNFUejzFSUqsmQaMdOXM0HAydxxElsuYkubThhh2KcLL+INs/JfsmEFrNqzFodPK0+lRQiFkzO36yskSRsnGjnzUN+SfEfKjqs27OKZ1VoO+f/AN2cOupDRfzoK1gRlWXXDVDwBz4YLokisnknNhAgPqPgOkcCqgFcTb+YrF9Fy87ph+u6eIax/7dJ95S+IEgrrMif1yKWVfPIeqwWr3NKFmcYE2jVg2ohVgXvxyoN7yyJ2CBKxGqroiSIh7MIsdiAMrbgymANBSDySaAIfmw1/MD259txeXziWgdYFPriW577jVDpqVihREYPl+eaWJRoWb9lOMOJYXeRvdCXnnkexMq6O3XliUyo1J7bhSp8rUQ5sxpmj0vwDd6jokNWjJpjNhkuzIfUrU6M5tTv86ujWSPfyM7PQBDVy3Rg8hc5ELCvflBPVGNbxBvuskLJnsZqfXKKJP6PqhVkaBu2p9YCZF2r0TERCKrTmismV7bRSZc81vMExUtorCwtg0IsjV4FPBakFF+eI6suz6Wd3QxBfIsaO6iPf5YmTrVQzInaV2XYgB57le0wVvDN/5DY9cTM/cFYbPiH5pO+IeAbf0QQH0rJVJ3q7EvWCWis6a6b+jsUKHs2eqzNsciToLxu0+/CKMRAnTdw3CAKLNpSSmV2HmsHElWAMctZslkq+GYiqskjHajoerYYqGFXLxSmupXKzERT5Smt7KhoXK7kYYuy5uo5nfcRyAV35TTyjUJToiWy5BGhMwKoToYm4UGhXT2obJveRab2iZGQzKXJWODmwqB1XtWPVFld6kvMotTAtkjdpRS4tPlbWvQMh0G8c7ZLQoyaJhFAJPzyxu3tlFoqn5o7FFrSK/NPlZ+6qpsYbRtVxcR6XW3bTStw0zEaT+oVjvJB1g60zSs18myV3h7dYLSAH0F+PWb/ylf8LYn9gEyTHaeJ/az1BGLJQRBS5GqgBJEiRCHgUkYaKIlJRtHXGykxf/sgn8T2OhalukCIjS6ErI/16Zu+f2TLwR76lqxMhe6KRFO2YypZP6p52HvF2ZRA7kkzYEqizZF07ws4yaY+XmT4v7KeBJ7njw+ZbVu0pReLqlYVbGisoyjJLDyJ/mZVBMskGlwNZKIbSIlHIXAnVI9eAdCtjciQcTZlJ1bCIhhI1uzzTzZCr5OeS+e3DT3x7fPc1tusXSkHy4fHEcK2EuIO2cpcv4CymLnxfzwxC0cqBKFq0rBzrK7t1QFwL+U2D3EEQN7R5QJYLITX8g39Dqo7WTvj8wiQtq7BoIrVkQu2QJiLMwoSkkpAxsiRHlpnStAQM718nPtwktFjomoln6/hgD9ia6HNDSpqfmy2lOuKrQauO2zGRmmfi0tGrzP0syCJixJU/bvd82u+IpiIxVJFQaWSQI8+yQ9eOUgf6duTaKZIIhDSRxAC5otdIDJKfNw17vdLKJxozczsNxCwYpadbYVePjPGFU7vjQc2sWrHnI9v1yps0olbNOPXUdkZmzaQbShG08QUpNighGbeWWWxxeuAkO1K2dGXhIhJFKHQxtPmM0ZIpeS5ixyIcNffYZUHmQIqOblH09UpXHDq98Lnz1FpRSJo6IqTACMtYMiG2XHTgbAUJiWMgJ4MOAm9XhKwUWmpdGPYtUTpuLwItBlS6oG1lFR0Dv2YXXinZ0YiVsCh8iZy1wlRDS2YwCVEiRUxMOrKxF4bkmdOBUBsWs2KrQKHo6kqKZ34t/wFM4p38QF6+4WG5J6t3xPglY3djztgsOJRHSmj4rCXJ9Jzp6PVAF14Y6i1jbAjVIZPGZMXgbqlScDEenROPXcOxnhFJsFsj0mXOGNZmJq/PvLi3jNYg9cqbNLBjpuQrffsjkzO49jPNCFvTMJgv5txrMDz292RZkTXj0kqQkjb/hEDg1cKLbDmS8b4B9ef3mvsq5r7yj577X/0tbfMDh+kT9/MZZxJJQZKChCVJh0DgSqQIgc0BZAapyIAQgoilFI2XIzFbBipNWpCpEI3mqm9ISA68ssvPGJkYRUeuDbKALYkm5C++cNMnHnziojqylHgVIW5Y5y01GBq70OSVpiYUHhFaXsWOU9OjCKyiI2aNywtj6ZBmwZXErj7xs/wbZIpMwqOiYM+VXgeyrBzTC60f+YP+ltVrprKjroZRdnwbXnjNbynFsstXdo1HacUSl69i7hfKGFbGMcIlkZUi25Z1/YHbMiDXgYMeOesNOo/UWngfRlLJLEtHkJp5AdusxNKydhGxSPRsyLJyskC9Z/QbtvHMNQueTUcfZwwzIm94bRpemo6r2UOC2wVuTg/YbeS3QjEeBAc5swkT3q9I0RPkgVEoxiQ5TAMn2bMpJ1SEF9HzgZFtreyF5CIbKIrejlybSm0LZj2zqyuLsFi/IMNMkp6qCtcby1X29PaWVAxv85WyWNbg0Tcjsmb27sx5POCYiTVhxIQwnwi7jmU98rr9hme55dE3OHXlqsCXFxbZMa+JOEbCxzuqm4lekpXFuQkzbFmERkWHn1eMqcy6pVSDKZI+BsYsqOtEKiNLKFzbBmJE1sQ+PPFg336xOTKWnCVOzqTcYhZLUzbopmI6g1aGUlpcHDEyMzrLI4YX/RZ5itRacDGii8aHwNS21GB4snv+5vxCNWe0cjTiivA9u2hwIjOz4dlv0U1DWE5sr6/4EIlkfpTfcLaW6A1388DsJLlkopvoGdmtD6hYSKUjuwZRDZ91y9JoainomknVsVkr/SxQ5TPzWVFNQc6aaWu5COjXwkPaM5WOp/AGYwNSRc7W4MfKIU20UyZvLbJqpAioHLF5YVKZY3rBLYF2Loi153WzYXGFWiR5XWlLw0UeOJkrqJb9ucWoC6XzXBGoVCgrTLmjIXNYAnV+5sPmPf200jMjTcXqjKkDUglknehqQWw3vPmbf0Fz/8/+7F05+CrmvvILYLfZ8R/9x/8J6r/+bzlz4ffbymgl1Y4UlSlK8cKBOX9pqUMlS4NiQVDRzKATl9QRhYFUkRqETkSr2cWJqDSptnyS73E5cJNOzHLDVGcSDiky+ESXL8QiSIIvqQ3Vo0dDmHu8gtl/iYWZ0y3HPHK1O2RaKJ1imwaKEFQRqRWiNDzXd2zimZB7pCpIldElkaSnyydUEbRpomQIRvO7+BvOdoOSlVIdVlVUNqy6owDGB8YK3fSM5zd481XI/VJZYuTy8ox4nomu5bvriW275/36mWsdCHLmZj6To2AUlrU0iOI5DpFZT0TVcla3VK2YQuHa3PCMZQmG4AyqXkBUSu759jJBC2ZJeBVIdkOeM8f5Ca8UKSkOQ4GtZPJbrBSEbaGNn2n6M1JWvGoBCdEzVsVGFFoRWbGMbYPMGd9KyIqNmqkZ0o1lyIJBL/j1ieJueTB7urzQ5SsyRBZ3JbUDo+t4VjtGoTBhZSgbdteEnUfEaUuWdwgtUAr6LBEu8526skpHGyvNvLD0CVgp1mHXQFINMhekSVQEL/WIrIVnt6NqRXIdfbU0a0ToE6pY5M4xuAbFBRs978cTk1m4NoK9vPJJt8T4DZ9UR9IRkVdMvWJLT1wzVVu61wbJAZJDxkojBd+YAQzItBBMy2re8KO0TOLAlYUHu+eontimgV1cKGpHSBKFoJ9nOimYbWVbMzZ15K3Aaomrgb8dT4QE3iVO+sDoeqw48WYeqVPLKia+nRZ+bI7o7AmycpjP5Abuw8RtWHg2NzyXjlDefun21UhrBq7V8EY+8v36E2/lgrOBdZZsyoWgJNOmI0tHlxJVNPwoexa/odiWFcH3wytdeqEvV6z8ssDBqjh1ElMLkQajz4hqcWpgDnc0/plkJM20ootCUijLBC7ysH9LETdEdaCbEz9MC2+GB3KulN5wVu/5UfyGLi9cVGXXPtLKGcsrcimkdYtIV8YkkUmyDZIgJDuRideRcS00f4H7/auY+8ovgh/++d+i/7P/lM1//9/xw+UDYXxhuFn5+/vf8LP8Finqlz+e6qjVIGplw8oiNJe8oyiF1AlNpakr7+tPbPPIg7pj0B2z8PRxpi2Wb9ZP7PJKT+C3m18RaiAqw4Al6S1kTRQNb+crk2gpSnBxG6a1hyzZLIlSBFEIRNVsB8mdujKawlN7Q5EaETxCRN6PmYxjkRZRzuzkwKIgC8FmGTnbjtk3RAyr0qzV0ckzF9mzyC2NDHT5hSAKsgreD4FNzNyXhn9y+/WI9ZdMKYWw2bFu7tCl53YI1LVwrjecbwpSfDFK7a4Z99qzWscsHWUtDPcnrPxEn15YteWaPLEa1txwlh15qizthv0Ci51IMpF0ZTENgoY/aI8/jTzrQFAClwsPQtJqw2oLjRhxuSJDy8nssNeRJDrYjDTMeGbq2GBaDSGSG48PE9xbllq5XxL2tWMeZ1K6oDqDjJHjeKFdJ3ZlYtz3jH1PIfFo3mHLSgEOKXGTMnp26NHx0Vg2ymCkYhdXNq+vSLHSyYHuTYtcbxDbM52beFRnSgjEfKSSuCsLh/zCFG+Q4cDUCezdKw/7LVI5DILjONKKK8f6gJE9iplhOuLbzzyvN6wlIYuhVRWTV16qQHd7ZNZk4TltWm7ijFlf6KmoxVK0I9VATAJkwHQnlC7sc2FUR3RN7FTGCcHgCzoKhFTEneCK5c35jMgL1Vlisyc6xWktbF82CHvCjyNvvebN3GDLikt73OrR7UoZHznWwJZP1G5hyN8xGlhjj1vP7MrMGPY0KaBj5G698mJvuaob1nXEqU/cLZHFKX4WXxYQvBTMHHkohVQWNumEEDMNgtpIqmh4ch1mNNSsKEkjSkWJDr9EtsvMQT5S9MjqI4SOm7UiqiUV8LIS2aL4MgbTxytj3FBF4tpoIHPoruxSYWfuqYvmSfRc/ZbH9CvuzSOtnBhEh8xHRO24uQTUNqCSYSMGag0oWRHLCyuOq7nHkdhVwc0ouSXjguDzZWR72GL1n3cL4quY+8ovhm///X/O4fs7Xj78nh//1d/z20//A3+4v/BURqo6ULRirYaYM6ZK5upISlAVTGzQfNlWdbVixIxWkYaRNl/RosfIRFaGgQaxKCbTEatCi0ipcNJHkpQYWfClsqiVTXphsw5sRGGjFp5zT8mK2e5o5YAWzxzMM26SxLWibiIU+8UsuIkEvfJsduTQELVlLZqh6Qi54X+8+Rcc0zMNgaQkrbwSiuVUj8TisExosRCVYKcnVBFI+UyMnrLMKPU1AeKXjDKGfHBw1HwQnqlV9DXx7mJ5Fn8SYkHQBMG4LWQUF60pCZ7qEacSEcUhXSlEXvCoouhy4of1gtSVt3ViKg3nJpJ1pMiCnSFqxUEo1Lpw3iS0c8ybhmbQXGulxMTqNN6s6JyQeLZ1xZ8v9DEgRaC4lpkGqSQvZYNuNXsiPluStSy7CS0bStwymh1r3nPpR2o1LOYNjA0yJq4OHro9phZ0qfisyPpC71fCm4VYGsrSc8wbQizY7QL+jAoJqNj6xHqN2BeJvFuoomG/jBzGxMF+pIjC6jRGBWYfiXqH6DrWvKXmkY0bed/8r1g1kGi/jG5ozSoNTRhoJvDbmZPYUlqLmwUqJ0oTCEqyyYE35QS5Y3Yt+/nKanrWJBj7masKNLpgCfiy8nfxxKu+Z1UNQnW080TOFicCxWqUWPj5uGeQWy7qlpot2/IKqYJ+w6nu2CWBL4qzzbRhxrczH7vIazGccBhzxSTY+kotme/WM2chmKOE2rO7GHzq2E1PCCV5ansm43jZd9yUwqOeeL8MvKSATwPRSq5JY4pirBuKaggbR3CaVTW03mCrRCRBTILfW0vRBZMSSUNRhaQWSolEE6j+gEmZx7KjURdEmVD2M0164LW9ZSo7tJ3ZlwkVYS8z3j9TaqUXP/Mi7rGhcr9anNyi5ZWtrgTZM5gR5AvP71amfENRAumutOuMuWhS6LiaFiMSN/HL1KiLiRbYbS3aO2IuX8XcV77y/0Z3PNIdjxQ8//r8W3bzxLftEy/yhkHsvszMaYnOgd165dncEIQmaYfIoGWlLSM3PJCzJQvNLFpWBUlpBhoKlbv6zDZFtIBZNAyqgVwZ5B4lClUM2DywTRfkJvG57NjXK++nD/iQOF/eIeyA8IVNHbitAydxS10Kg9qzFycOlxElNVU0tPLEyQsWdQdC0bEQ0LRxobVXrqInZ02bV448ErRlkT2qFmbR05UHSvXUxdAvL0zW8+H6R/aHbzHqz+959JW/Pt5b7u5+4A+TIpxmMq98kg2hMZziHQMN9+JE5z2TUIiLYuwNwTYYOXE/X8le0E3QEfggJ3YJrG1xpWW7thzKj6xdBhZclTzbPZ+Tw62VtL7QNJGl15i6kqVF25nm2bPqhFpWtJZ0MbLWHb154VZe6Hwks5BWiRKWLD3fpMzR3aC14HSo/GEYyW5ClJaqA4NuWPqGx/aG2/GVIg3HOfHSNCSp0EnQjStYyWF8ZrecOVvH1DUUWpTWpLRFpRHtFVq09PnK314SZjxBE9BdZbsE0jwwd4mUM9dmSxVb1qzIasc2nknqS9JMDeCWgX15JhlFKBvEaqjXlbNPDH2HcaCtx06GJrc8NJprbvCq8k3+mawCc9kgRItMMzIbdPGsBFLMwIlZ9sTkeCMXMondWLHyI1FYNl3GyYXfinuMcJykY69fGVVLrhUvLkTVYpTkGh1BLaS9ZZ8K3+XIqVjs644kI0PnqWXD/TDRNYrN6pF6JSKZcRg3IpVF5BnWM90y0EXIew1rg1IZITz9+oTUESsEx5NnwhJk5bNyvGZBLIJfj5Bdy7GdeGotwYOfJOeS0UnwTn2myESlw9kFWQXWGqaomXRlwJNqIjaJbgrMxWHzyKD3TNJRtCW5hBE7Jp2Za+FOOqzRfD//RA4tdxmMrtwUx01x9E6R0zObnHlfnxmN5qRnfqfesUrN2d/wzfozx+mZEjSDF7ARfNAHvMycE/xmEfymSMxf4EX6q5j7yi+OGgJ1POOrxqya6gS9XMliQSuBSzNaCDblhZe6Aww6R0weMVkiUmJkz6IMqlYWrUlSU5kZOVCUYrA7flX+gBAJVyJTdUShqBV0CmQlCdZx0j1v5hO2LlRT6JoVYxLt+SdGND+7PS/pnpl3yD7Q1plDfeXu8sxkNjzalmcv+aN6j2NFJkMyllkrqoAITNHzLn4giAZRK1PcYvKCMQOdGPhZWRbrmNlzKwPPzvAmaWotxBK/irlfKHmpvD6MDKumaEEvYMqVzIrIG3IyyLJhnzJLL0jHxHaYmHRCZsGj2tFFQ6wLNTve6gFnR06bI+0EGk3JheN4ZjQT2xoxy0o3ZNS8x6XM1EK0hqgKuyGxF4VVWUYJXp5QQRItkFeEyJhiEM2ZWgQpFZr0yJWW9ipIMfHcdfyuFi7ScWscubS0OjDKBjNPQCYr0MLjE/zz1zMft4VBOnz16GVkXm+5CMvJ73hTr0TjmYxkWDQ67/m+DCwestP8Tk8czM+ospApLPqG2RmysZSwcMkS0ezYxZmzuiMXwWurSLoifWUXXzhZy+TfokThoCvNa0EGT/u6ENwtv3N3nJpETYJz6nHGsJozbbXcXF6R4sI6w1BvmO3C1TZ4+QnZKj6qDbFKWCyCM34S6EUx7jxuNoyrhuhpTeI3/pn/Wf4dKbdEsUEkkLLg4wV9fqUNliwriEhNDVOJpHxCqJWrufBk3nLuKiJuuBcCgyHU71BjJAuNj2dybfDmmUY3bO0f8POXCLVjFaixpQDbVWE7Q1kL31yeeDUrbXTY9kA/Q8iJ3keuKrKoCqlAXDmVnsde0boRpQMuFoJdYM2o1SFyzxoNk23QFLLw3CyJb04PxF6gw4Vht0OJicEfudQOHMilIpA8j28x8RWfZ/r1ynv5mVh3vOsSN2ugzJWpNAg3U9xEIxK/t54PbsNSDnTlSiM2dHJhMxTa8gFZBSH3pDURfct5OLMVf/6uHHwVc1/5BVJjxLZb+s2v+P7pf0KnR270zL8xP/DQ32BEoFS42i1SJKQqaCYwDp2uDG5DKAuLbFG1orJAlIATlUUlBLAIzyd1i04aJ2Z6MbHWhli/bJ+pJKgh88m+QypFN0e8XqkpE4QgW8/HesMnt0WawMfmjqIV23qlTxN34cRH847ZQBCGEgS38onP+sA2STQZIwOtWHAuIDK4PNPFmZItb9IDISmUCojccJMic17Z5Veihv3uDu+PGPlVyP1SuUwr+ZJwGfK18rMw2DKz5JZAQ9UDg5I8uVds6ZhThJjYtytdkvzkLCopXmxHF6+stmetHUV6eh6QbYOPHj21BLElOcOcvtgwCKcZO4tn4tvnkeQjzEe86TjIL7NV0Sh0fQUinhFlNkTdUW1mbhx5WAnXA80lYdaJtXacuwZbK0HPfPIdJoyoMRBKx2IiFImtC+9eLtwXRdrM7JTjyAeaZNkPCyYrFuG4SkNVFg/UIjBlZcTxnHvMNXFTKilHpqajVM9js6HOijmtX/zctEHFDboWitiRXcaXTBcyojpSLTy6twQhSRRueSYvG5wJyKHl3Ec+dN9SVEOcQJfAFB1BV0azoeoLITcc1oky9+St41hfGdeZ26woaD6KxCIRzgAAIABJREFUno0eSHXFrAuH/oHYWYTb4F57pOvJciUYmKTnGJ45rBeU/cyApAqJGj2bU+KKw7hEnyZ6MeJVi7pUkqmUtedQLG/zzLDRZLNhSJXL5ci7+QVXNMKA3K9MKrOZHtnYnxG6pdQ9mzxhZstxPpGsIfuGuJ0ZNq9o5enXB4bSgBnYrhInV7bqDDjuiTznymcruE0RnQsXm1mdx8qEkI59mWmaN9gx0wiDnb4k4/R1JEiDKivlVdK1giffsmRF0oYX2YCSfL+8sIxHcjkyloEkCsEkTBlQauAaesbs+an+mudsKP7EVl0R1bANZ/zSYcXIoT7x/sZj8u/5N2pPzA1rq5j6idwaip6p/GWSd/4qYk4IcQP8S+AH4PfAf15rff2/feffA/4rYAtk4L+stf7LP332K+C/AW6Avwf+i1pr+P/r+r/ybzfCGLZ9x998+8+Iryfy+Wf23TOHcebxuuW025OJPLV7+hJYVY+WlUImGcnKliZbVM4swqBqRFfQOWHtipAFsoSiqEGha6LajDCCN+mZUB2mriy01KCZxx05SoJpUUpxoz6h2gkpPBd1z8XdE7TAyoVZeJTI/M58z4M4UExhsBbp4GM88qpusCVi5Ionogi0nJnpeNG39DlRleC4/O98ku+ocYE0shkX2qTZqD2b4zf8B//uf8gPt//ka1fu/yP/GJ5hsmbEKBhLi6sBXw3beKW7rHyWmZdNhyie2Ikvnotl4ao2fFtHJqnxNdGmhaXs6fG8SQ5hR15N4NxLbP4jh2Vlsj2Jd+xSYmkETY7c8oqvLTUqHpdKSTvapWGHJvQeUx9JQ6KtD/zRfs91/z2zbHlSM3ueqOvKzfSJMDsW0zC3ilYElBzRtqETK3lS3OYTRW9pWam5ktaVLFqil6xF8+PmyEoCmdjVM9+uhdNuT8wdh6hwVRKBLAWzzrThiffDIzlZentg9lcubUt0MydtOYSE9IKNuHIQKzFVhv+TvTf5tW3J87s+0a5+N2efc8+57758TWZluUzZYKxSDZBpZJAYegIMGGBLtiz/B1iCAQMGxYgpssQA8MCCAQKJAZKRkZgwsEWBUNnl7PPlu83pdrP6aBncBypKWRam8jkzK+9nsrqIpVBsxW9/VzTfMCWjTESdkVMLOFYBTmWcbDD5QEgwy8wuCloz8NGa6NeGTiay9AzakG2NlZ7FFIRcEeaRL+OG5ylgipUnW3DtBFYKKumI4oLqWpzX+BxoYyQFwzmV+NDRig1xMpyTRq+RWXdIVXAJW27GM7fxHRSwak9qEwUDbT5i+wpRP5HcjkCmXyQUM7ksKKoaCsm7zZa5nzmVkWJYaJ2hFZEsCrQsUfX7IcwcE1ZpxlShc0krJRdTE9s9WzNwXGv84rgSPdXpgUomtspR2QpDJgwlTsHYlARjmRpJVwTq9N5e5eQ1+JbXc+CTy8S6Opb2JdF9hJWSyl8jsqUO75jrkVpPXOuO70ZYtWTjJvwqQTqC0NxOI5N06NjT6YnCaGQxsN6M/FD+Jj/JW9xkKS+GrRlAe+pqwQVDmVdeoLg1FSdVsBMzYrmwFJZJveCzqw23+z3F5utZdPbz6pn7m8D/lHP+HSHE3/zq+t//Q2km4N/LOX9HCPER8A+EEP9jzvkE/CfAf5pz/jtCiP8M+Ku8D5of+ADCWppvvOI3b665+/Vv8eb73+N4/jHDw5l/9P0nvmtXHrYdCU2WgkxEkFAAOaHFSp0mpIDDeqFVz6yyQMuZIl4x5A1ONPhcYNJCxOJ1x1F3lHImZMXOz0QNpl/pU0OqCj6aZxZRYURkCjtiram5cG+uyDJxkju2ceA2PbEUklUpvFYQJDqPDGqDDZFWrGg8t/qJiygY1IZBbKnSSHcJ5Kw45WtyVFy5FV8qzGHLX3z5Z/j45tfY3H1Mu9+h9YeO+T8Gv/Ax7MoWvGgCX84zuzBgBISlZcHhqxWhYKsmjkKhfMVtmliUQYeCzRLxRclDXVAj6SV0saavLYvskXmkiV8yzR1F16LiBqyjUxdyqXBaIlzDnx0E+3f3JGYuncYXNZ2b0ItknmHdtNgIMvWspWGhZtRbzDzTW8FDtUVkgdEtnyC5kwpky014Yo4TQo6cgkIUmmBKCLD3F2oPyb4gyJonFZlyZNQDfTtwjUfkLa2bEGvPFBds1SGUpUiBxp+4DpJkJPeq5d68IooLl9lQxZHKXyj1iJIrUn2EXgJWa4bqhMmSetKM6QVRpfe2LMZSrxcOueeqHDDa4m5KlrUi58xo7Xtj2ei5bhX9zqKDIo4dJ1Xgi4EiZVxa0YukKBZIgFXsxQVSZphmmtVgUbSuJYnIXhsuQjKmjsUECgHWOdxQYHNPWXuMKciixvhEUoLQBmQwjPUt1/OGqn6LF6BUBPUTsjtQ2YQeVlScuRkcL4YTNy5DW+Jvvkmx3CPnH9G4jkcsX3T/Ais3OJ14uXwXlR1P88APPIzNAZ0Cs1LYRbHoCspIKDbcXd5QDzVrltSF4tB+yRsBO+Hws+Cp+ojH2LFRNYkzV7NgKiVr35PVC0IpWdqSKGr27padF2xzyU0O6GVkcpY6ZLyUHJZMOczY2tEnRSEF77obWntmKAqmbPkuhpNfyYBeEmEouapHPnYLWyW5Hizd7lNkU3EcZya5I5lAuv6MeldSbRuubz+lbdqfZTP/f/h5RfO/BPxrX53/F8D/zB8KhDnnf/wHzl8LIe6BGyHEGfiLwL/7B/L/R3wQcx/4AwhrKa3l1abj1ScvAfg//pf/nb//7u/hq5lJK4o8ooJmn2C1hoDCighkVmMpVk+RPVkaVlmxy2cuOVHnFYPAFwqnJIGaNvRA5FQ0SJFZRUVSmqKKNGbBZcmJLSSJ4oarPFDmwC4LrsMztTxzFBtu85F29czrhit1oZcFk6wxXrIkSZdHhEkEKnQQrKalW07s8oR3BT4VtOPErUv0+4Js/jl+7fNv8Be+/Rv8uZd/9kNP3M+OX/gYZmzm2zGxXC68DitzsZCZuF3vSallyAWvd3swCSscl1WRVoGaE7no2CyJKAMf+QnfXbMRmRADbTgRlaPICmUFYRq4K7+Hy4qb8UxatrRhYTrd8+BGBmXeW22oAaVnCv+ApGcmEIcrqrJlKgWKgPWZmAT7STJOLUrU5LrF6JahrtDr4/s2Eo584QNYT50zNzHxLC29rvFrRMsRtKZMgaATu7AiUslRWUoz0K5v8FLgTMQaTSsGNheBkQ5bnclZUdJRiC1tjPTJIHWG5siheub6dGQxHWl9zan+FNfV5Oa931pEs1/OULRIoyhjSeEfcGPBs0hEt2MpNBuZ6HzPD4qS9pJx14ZDsdLKkpAtdVEg/Eywjhg0S67wdsTGgDELNisGF1jSSGEiJkWkVBS0jGgGWZAHyZUQPCG42A6hE1k2yPXAvBqGscBXW4ydKHPCrBnWmb6sGPQG6x4hGsboedTXZF8iBk0zRrK+5lxJViuZtpZWnFnSzFpd4Yua+e2GKcHz5YbP6pkn5bBqIvaanVl4Vgc2LhK9QCxbotREWSFyohwd87FErII4OmRdc99cMdZQ6ZF9umDPkXtrqZLApYZ+iszaY93I22oiy0hneq640OQSPbYs/iMub+4paPnEzkyrYrILh7XHViuzFdSLpsyZ1xwgJiaucMYiBZRlxIaJzfQFd+pERlBZiVaJT65rbPcZX16+Q5SWxp9Y6hd8vL+lFgV4iV0k8mvaEvvnJeZuc85vAHLOb4QQL/5JiYUQvw1Y4HvAATjlnMNXj38CvPon5P3rwF8H+OSTT34GRf/ALyurzcgX72jKldXeIUKBkxqQCCALSZfPmJzYxBGVBDpAJUeGomaRhlVUqBwoGVlERSdGBtEw0bFIBTESVIWTAi0yXRzohGSUM5N579d1X/0p7i5HmtFxFU/0zUi2mVYGDvOMlpGON5zjNeIIrq3Jq0UVmmbRNPrCWjQ4rVlzxSGdmENBO3jseGYjHR9/+m0+v/s2+nDN3aefcr3ZfxByP1v+mcSwP078EmQm+8gL8UBaTninGKLHZUlbj3zmZrKvqYMirzPx0bIbJ2p9xUpgIx6YUse5sKTZ0PEWk1e8iLickc8dSIcrKsp0ojs1HOzEfdRMER43llkkXt+WWOnwsuFjN2HmHVfzhDQWFRV7l7jyr3kxCbJMZNfQnTqEidj6yLta4qVjO26YVzi5AZMdyZdsXSTJTPIwWM+LwlMWI6ZcWWpHreB2CmznE8/akmLge9WWV4Vgpz3GO9QSeWw8JkIRFxpXkYsdZIlZO6xsGNuA0CPedxwrRTscqcsRWTRYawn7hlgHUlhZF0sZM9UqUGmgECPf0SXGwhvZcJ0VpqjodCZIzQs/cBtGvqtf8ZqWxq2YvqdSkZcuc29LQtKUKqOTReT8flcL6RHTmaYY2DqHFDXjUpFiw1wKnKkYS8FhKaiZqJPEqoFRQhSSp2pL7joIe7YBPj46jt1Mb2eGRdE4jXe/xtJIJjPwtNmxc2f8YtidL1Bu8KVA72/IRiGePebtiU4JnnAsk+VFmfiJlFzQmOyo5JmsIMYWuWxIayAliR1PFEjKWhOKE2L0aPnAuBYE31Oumn5aeGkjyidylmzFE1drg7wsUGWGtsCZwFBJTHzGuoArDvS2piTg2pZU7ziGa/binjpOtPMbbFyRtmJOE2lWLLrElQpfes5as2gBItPmI6wCnRs6Fi62Zq0r2loypg29bKnWCTV5sDVOBZTKnF8/0a+BTdPyw9P3eHl4wfbq7p+qLf9/4WsTc0KIvwv8tBL/B/+U73kJ/FfAX845JyGE+CnJ/kitm3P+W8DfAvit3/qtr0kTf+CXgXobuLaCMcJVeKTLM/3Scq/vqJIHkwm5oFAXZt57vTXVTBlH9umRipUtIyUDay4p5cwuH4nZIFymKAM6Bo5iT50CJvj3K5vyiFUFFktjF5LaUBcTZhXcxQvX/SOP3YajuEKLhEfR5YGYB3JWPDnNYhVSRVyRaIVjKmoULdWauD56xPpI289oMaA/+YQ/96/+m3x2/QlKa5T+IOL+//CLEMP+WPErJ65SRuieYI9cyKRUkXxkc0oMpuJCQc6ZLhtM1iASgz/SW01jBfWwIkqNROJnw0fRMaeebBQXXeKuWtakoF4o+55lMJhR4aWkkEdWlQi7AikyLlsSE8ZMZBXZhpZKlQy2orUTIox09kiRFvyVxkVDpR1mnjm2mt4WyChowkStz5ScGacNSwg0jeRWTdysz5zKjmw3iDjxPE7Uo6NVZxbZsdWeY1S8YkDLlwxGUaYTRbxQrglvJiKWslrRWXDIA9XcIM3EVM3025IpS8L2jhsjyeuBQEPykZ/4mSf1hJKBmAMh30FomApLlAmTNW/rhiUHatXyTS58ZARQs9Qd9Rq5WVYKAjoO2PKIy57SbRgW2FOzUY5Ns8OvmucpsMYnqKCJPUZ5CmlZZaAQNYXXSLNQRU3HkctmJSuNaiJvFsNqNEJlrlOP9CUZQdsv+E3GSk9ZBGaZqHVGUaC/2mfXliN7uRDSgCgyS6UofGJXGQY6ntdnogpE4GlVfOSOXLOg/USpOkJoOcuG22hZoqU7Rr4ZFx7KiNQ1rUjcBcnFrEz1idVY9oXB9hpnVkRYqANsHxMvFDBrhOrQ4kw79tgs8AzY5NEywujBtiyyZZ+e6XWHjB4lLLaUdFZyiS2rFdSpphQXLilQqROjbmjJyNHi04YmSiodOZSCoy4ROXEVPDF7grmgmi15HAhJk6Ll82qPGFd877kaNOqS6X/z+Msl5nLO/8Yf9UwI8U4I8fKrL9qXwP0fkW4D/A/Af5hz/l+/uv0I7IQQ+qsv24+B1z/j4n/gTyB3Nx/zG1eW+viamYoxtIhFU5Uza2nIUZKy5Da+RaApcuSZG77Ut1zYseWRLCJVmtnmkTr05GyYfceWIysGnWdS0OgIWmS0mLhJ74hzwVJEhqLDiy2nosVs4G4R6Lli70ZSUdKrgme5R5CQgFaOnXrmi/ZAlSPeCErvuV5PVNnT+Ec+jSfMm46gG/xuyzc/+/O8OnyMLb+OTWN+dfhlj2FGSOyLLUlLvNB4v1BuDLU+EL1GusB2dqhCUuuSZyXxUqIU3NqRsulZveLEgXI1mFzgWbHZ4nMNQM4NxmVCWXBWhosBKRSRnlhogrVUhYC4YsWZMc3o4Gn0O4psmEyJajdst9f4OWOUQy43SGvo8kJWJ66KZ9b0ESoYsvS05SP1cuGgA6MwZF9Rpwe8KRGlAqWYpeWca8p1otQRLQMv00hpE8otpJS4zAsmO0Ss6aYfUM0Vb+2Wi2yYmoZrt6NXNcYL6vaaWCz0cqBJA9fFP0/tBNl+CXpmiEeIK9oGlD/xuLmhjpk4BBoT6LJHVY6ct8QMIU8IYK88+6VkSZofPyX6ynBOjps8sjlu8PaZvTLE0mMay7HYQimRvmV0r9kJgcuQd4ZoNvSv9/go8VMmypm0LMjJExtBt0pe1weCPROzpMyRk7jhyU7s2p4pTlj9xLWuCWYmTBVSC6TKFKZhl0GKK7Zp5C6tvHGJqyoQ5MxePLGugd1pIuSFKGqSMayyRorMwxgwbsI0LYe4QU4Nn6wFQ4YiHol6IZiSNhaULMjiGZE1ud2TvSPFwM4tzF8KbHtP7SKGgrt8wQlFcIG5XGCnuFmOmH4inVuyMzijKEzkrAruOSFKwSWtyDVSTgPDkFnMkaAqxmDIqWIuG5q4EgpJlR1zVoRk0S4xRsfsNIVM0MNz7kjGg7pwqiZSc0dfNISl5Gxabl1P6Y+sxRmdE6X/emTXz2uY9b8H/jLwO18d/7s/nEAIYYH/Fvgvc87/zf99P+echRB/D/i3eL8a7Kfm/8AH/jCHwx2/9S/9DX7t7T/mTz9feMwVP377wD94PPKTXWRpNKVa6FNLlQK92PIgrxAiI7NHZME+HVnDhkN4oImCTXpgaEue5Q0zlmsin7sfssgdh+HCF90Lvh8+odIz3wjfRYyZm0qwihYVPb6aMThMF+nXj/iyuOY5HXBFgfGJu9zT6CMlNVVaUbzvPWzEQLM6yjgxv7zht3/zX0ZpQ/3RC159/DFN1fy8q/tPOr/wMcyWLY0oKcaeG2kobCK4V/RNRxgl0dyzjwElPEP9EpFOhE2gnBdME1HOUmvH7CXmrmS7tujnR3LcE9sthR6YNjVxCegwM06apzTQVxsOl8RGaLZa8enseAo1Jj2RlOA6CdRVZpSZk0joTclj8YpqARlLgi74sdlR52fiUhPEI6Kuubo2LM4T08rlpBhXR6ETVdFQ68A+OY5BsPMTZdnxxdoyjBv6usJkz3VXsVW/x8HdMykQy5m4eEbxEUX6BGkzQkGzGxBVDVtNdWn4uLhlm79kCj9A6xqfNW/WSDf/BKHeQHzJWcAaJSoqDA7FRPSRlK/Z5RoZFGdb0MVE1AWZiVlsieEt1TxSmJLPBs3iMsF5TPtEzJ4ROPsVrQNifE3OhlNpkHmPq1tsNshUMm0CYm2IraQcA16WrDZhk6UuoDIfURQPOLni5545H9A8cm1P3MW3HIoFe/DUWYC+5rMiosOJmRkWwX3c49WWLBVBCF7qii6t4Hp0eKbeSmJUMM7IfkbYSMof8SxLnA88zpqXQ+IYWmrZovM1q1IctWcnwas9RhhqXVB9/hew6xcUjz9iDgVIzXG4QTTP5CkQfUV1HBHljtnuGGrBsq+58hM+RDZxplKSeKXJxvMYLElkruKFjX4gpQeeyw0mBebtN2gU7FSiMSs4z5Azc5KUybGukbroUJMlBEOKnlos3PaadrwwzQ1DFoRWIK4WnguBUhXTkuh8xpwdTmaUKqnKiptNSdV+PbH55yXmfgf4r4UQfxX4MfBvAwghfgv4Gznnvwb8O8C/AhyEEH/lq3x/Jef8u7yfaPx3hBD/MfC/Af/5P+Pyf+CXlMPhjsPhjm99df1//u7v8737v8uPTElQBTM1SbwAziy5ZKJGkLDSckoC8gWUofIjU2MxQeFEQcWAxbKLJ6IruNQNx7JjyZranyjNhDM1x3DNvbhh0SXb9pGDMBRpovIDp6Ili0xQAJ6oIZmJwbRk8d4nyiDY+2dS9hAST1Jy3hfs/vy3+Nb+059fxf7q8Qsfw4JRDJVhTi3H7FF+QeaVPHRUPnApFacMG1tRVZZObRmWhVIa2sIyx0DK9+zUW6Y1IHYtub6mr7csqeJUdFSdwZwfyOcjwgZcLJikpdqUbFKCzoN9YqME9pwwcoMuH/m+esFbt2MuNvzpdSH4irSULKkg2wvrnKnTM0hJFVZu0pk8XtgkzygkprnmSSY2rmSOgZ0cqfIF5pXe7FnPcJMmDnFgnhT7rkPXBXLewmAQ+h098FTuaWLBtWuoRaK5upCbht62xGSZ9ZatbZC9wMjA1jnIHjGMPOZMpuFeC57rjjBIaiGx8YSVDUYJcrDIMHNWcKEkioYmLHwjnlDhzNsMTXqiTg1RrgQlCebEJDPoks5rYhu4as68KUqcbHlcMq/cG6rLSpkdu2pllXvKYLgUkiQSvcmIeKZXFZs0Us2GFBuEFcRcsCsuTMmwzxVSQNwkxFyTMhSiJ6QepwwunZBY3gjL5VJTRxiLzJfW0slImxNKrZRqQ9ALJ7lA9qgwI7RmEgpCz6IbLuolkyh47SOKBzYINnJB255Zj9Bc8dZsqMU10/UtTXGF/+ING3XkwsrFtBQyMylPYy1n2fHQSdayp9+N3Pl32IeEjQWFXclqRtmKzXpN73tiSEwWnnVDLyOlLgmqxdszs/FsZcCqgnJSpKWmVxXoCuMiDkEQARFXXsQLr8KI94LFva+vzi2oOSOy40ymj+CjQJUOvZNQwEFrNu0WWXY/66YO/JzEXM75CfjXf8r9vw/8ta/O/zbwt/+I/N8HfvvrLOMHfjXQleYgTyBryrySsKg00OWBkQ1ZZlKyOFYUmkN8ZhQtD/IaQqCXFU5piuxZReKSG87mmpATi2nIUvHj5lvc+J6wPjCrCjlJRC0galZVAB4nJIXuUWriyIFYasKiCEkScsXBX7iILWBJUvIsb1mMJsvMFs3Ffz1GlB/46fwyxLA1TDgbOJsrjvwQJSTd9CPmYmUs99gwsxcjyt9xzAtt6am0pw3XjOs9KVx4jCuRDPKeZZl5+eJfBGNwfuaSF8Lcs8srOWjWCDLAHoOYJkabqVWmaGtwC140ZC+47F8y0lBEzVRU/KPY8kIZtLji7uTI88ggZ2ysSEJhY2SjAiJ5moPnS68oLgfqaYN1BskbfLrgwgAzNPXK4ge2pscXllOuWc4FRcpYMq5wKJ9p/JFoBdexA3UDVWRnelZTItPItbgm2Robz+ThiRQCvfIgLO+EpRIV0RgecoeeLbYHnQfsahFk0n5DI0vCsqIbxdZHVJqZVMWRz7kXnkZ6Yu251SuHfE8relqOrP6KJW7QiyKkiuNcEkKmWV7zaDe4JFljB3HluegY5pZSa+p84UVZ45KlcpmiXpCuh2xIY0UxCTCeKk+0csN11izqiljfsgrJMVZEb/HTd1j9yC5MRBEII6A1j9YyFi2rP2MEfBYc1zjScE9YMs+mpH5RY7OgMw1X1YHjg+BmiDQqYGxgUwmGsiGlJ0gaV5focGK3HplyS/XlG97Zmpd47JJJqaWIFWr1eFZiqCnpUKlFCYmQJTELLhzYiLfYPHJKmUndUEsHeqJYM9IbXBKY2lHbkpUtVjTsQ0RR0Jl7tHXopmK5eGSwNGnFZUN2kY9UJofIy2VHkTtigCgce+VwOXHtMosRrPNMcC2JE4OquZkb2nqLvT5g2m+QsF9Le/9gNPWBX2lsOHPIj2zZvA+0NHR5IiFpORGSwFHghMGlknt5g8garS4ssmNVmZzez7Wr80yXjvRmT0yGXu+4mk9Y4bl2j1TKM+XMue5QrHibOcz3pFwQLiVRFThRsMlHXvkv+UL+Gr3suKgakxJJSpQT/LDYsIoCKTMpQyk3dHb/867KD/yCoUVmzoJ73eC8ZRQ1ggceqxUdn5CxQnmP7S0pAe0VRbwg44iMF4KZeUKirebSbFAhUL17YiklwRiUGBh7iBk+TZbaJBap6Z3EiQKrax7VM3NoaNYRHS04zaW/oy+2PJsGGTSFVNhYc5EzD2biEGa2i6fcKE5S0Ks9XmU69Y60HknxFRch0HXB1ZpI0nN2mkSJyAu1dzQikEXGyI5PE4RqpW3gNFb0zuD6O2ormKNkUDXJJKwWnGLFbQjMquRSXuPiPcXyJa54JpstbbIIqRn8BGvJ4iaWrKnyCYeFdUA5xVSXVGvm2V7RxYjIjjFVTKakWQNaGDwLa5TMObPD4buCc1pR6ky+ZGTWxHjLNgpUegZtUH7m47xQj4an4iXnzS3vrEYFz6o1fkp8VERqGyitwweHlolnMWKrERc9tvQocYVQNaM6M6lM5SZU3LKGkkufyHllLCIpVwihgMA+nohjjZGZXXgmlQcu+QqXb9iZEcRI8CtTKHgSC67U6HHik6tX1G3g7fqOPij+oZqxYUJIuFnfkdMzUp8wacekSi6nimkqWYrE4XIhFjUEx1FXDEoQQ2ZOG0QWyBQQOvJZema7nlA58/qqw2M4C8PtRaN9SU49nntSnOjna6p8oIqGznuUrJFo/OZzLikT04LVJ+LpkaQtyRmubI0SgaErcUXJu+NAXQgmJupuB01DpTOEC3GsKbVlv1zIVxV9+/63uXGa2tSYQn097f1reesHPvBLghkdGzlgxAq5QUvHq/x9drnHScWb/Blv5R0qB2bZco5bujRSxRWXMqvc4VMimg0vwj2j2lHSE6nRYgHp3wu7sMUnRbecuJLvqMNAsvBj/U02bqLUiTItFHlloOVZXNGLlmqeUVGyy2eEXdjPnklFhroi5BIlFZ+aA4d68/Ouyg/8gqEwSBcRSqFSiRAj3ixoH7jhyNHeMoVM0a+MSlCmTDCefplRKuDz3YSjAAAgAElEQVSVoqwMxVwyL3s2KSLLxKGfqdKRurwnxRKZr2l8SdYrv2EMb7JnHS2lKOhcIGiohiNh6ZjmRNQ9n4eFrvwW1yny7rCnLxXFZYOwCzKWdDpAgKJ9QdVseZvOjLJEx3dcjSuNXyiXR6QqOO0KHhbDznWoKKlXg29bghrQ3oMQaCXok+V1eYeKDofj1RS5220ZDztwNaWEy6KQ6pF9CLj4uww+c04nnJgZomYRBr0IikLS+5U1Cyo/sVsv2FTyyezQaUNbXrH4zJfbmdss6bLnm+4nuNjQxEDf7MmqYloNQw64IFDBUYkTKjdIuWEbHZOxbOYa53qEO8N44dW2wlUf88PmmlNZ8lYr2nVhezkiQ2ASmhfiRJEcPl9IRcEaFlzSuELgm5YmSCoFQWQqs+EkM6flmoWV79tIFt+ANCDXkc5u6IRHGMtdXHkw32BEEpUl5ExrE33cIOfAUjmEUMTY0Plb3Owp0jv0bsPeRNIsmfOJbg2koiDHiJUaZAV6pvbfI66C7LZc8paUN9g5o3FUaeK8jQxlyXdLx95eE0rNnGbMExTughy2POwtS75jyDtWJTi4FRtek0RAixIloKoU23zLXfCUOeCjYggeIc5MaiQmyWb1tKshOw+vEnMcmdsdRbGhlx2/rp/ZpoxvE2V14O3wJXqeuc4Dvd4w1QXXquVa/YDtbkOnJm5uP8eWf7IWQHzgA78QqK7DoDjER4Rc6ak42hsIgieuGUILZFTyRCVxsqTPisk/89Tt8dnidckqDFZmStnzwh1RGqr4BQZP52ZuloG+PFCZHq07hCgo00zDxAv9jmf9gphqmtFTFpldv3BUjknWFCJw5+8JyZKkxouSggWVMzJIynDAyJ/mdvGBX2Wcj6RcstOCh0ug1BM2TKAHpizhslCsAW8dsi+Zc8DZmsIubPSEzT02b4hVg5Ua50rcRePTayp7ZhtAMhCNRzWCo4JorzBaYniFSi3RvUDylrRm1iWRYsJkKObMlR+oui3b9cwYFTfTylOWTBqy3HOIJ4RqWWzkMSqufWBdWyofcMuKyoa4qxmuPudpVKR+pbGaHYKiWPHaI6uVFFr63Y4ljJyz47PV8VAlTstM6WbGNMKacFNGkUgx0mvolxOPg+MkPZscSGPiZXFkFFc0KXM7eU6rwLkBUyZqHbnWlnmU3PSBx6qmWha2XAgYbhdHtoKyTrRdzzo+kF3LNAdehhpz6gjFQq8m4mrRqaNjg2/eT9koVeQqlhRB8qObO1K3JxeGzTJipGL36HgpSuw8oFvBrCsmUxNywdkX3JkfgXk/5nAVFD4IpumBTpdMVxvM+EACqhwpXGAsNNPmc/QaMcpgQsNejpQyYvVKEXrmosGoliGttPX7VbuzLlmDYXQT1Vfm7TeHO344TSzzE+sI0Um6NECYEXJAmhVtNWK1uFJihWdoLCmWBCF5Ec+MfmbVBlLFyawkO3AXE0YOqFizJgkm8qX9mNXsKLzFrxekWjBCIaVkXS0xvDeDftgmhP6CLXAVBN7sWXNLTBfOAWYKvCjZcaRxEb9qmijx00jvW34/vIadYLeR7OSRez3jrGLYNGyloy033L5UpOCQzjGqH7JMvwfhBeif/VDrBzH3gV9pzLYgphcUc8abgpKVc9zyKK94lK9QJAqxUuQJmz06JZxU/KS9QxOQJGQKKDQqR7q88sn4BU/VFcRIttDoCVto9OwpvOLjdP9+5ZRcSVLypG84c4XLFi8rlBPkUrCVz2ixEoV5P7fOW5R27NKAyZmzatmPwNvv0J//DO3hZ+9d9IFfXnyO+GmgPf+YH5cTZMEkt3x7uGCFQYoLroqsYcDpDc/ylpQ9DVuq+X3Pjqp2SJUo3cSTtezbjvNlw5ZAFc4kC6toEG1AOk/VrAjf0swGLRuSsbwxCacqRh6pg2MzZ0rt2auRx9DzoneMjaJaG6LSNDgWLFKViMbg8dTNNeasGLJnHgTXvSdvFnpm1vFM0/wGLk/slokyZAoC30+RsK5sikAhGw55x0/8yNt1RrsHzOXI0W4JXyzYwy2bTlOVjl5G+nXlSMTE5f2cO++QZkObE7XfgHpCJsFqCpxp0eYGJTPCSW6qjI0X8jLyZDSXEqTyZBHYuAvt1cqmMawohhXUkijTBbFodBOIqeFctaxhi65WcjOzzgshQyNKKr0h2WteWMtiC276I9Vy4ZvnE0ZXpCwxRclDLBizYU010UaGsKXrV3ywLGjUuGJyyaUs0H3B7l3iUWnGm5K5jqwq04UBhWepGlyMXFxNszquzEJdXXiQJ7S8Q46BrX0iiJq2nYl8jhkMtbJ4nli4cGM6VPiC0vcsWqDTgmo79lVLHwIhzxS1ZFOPbIobvixahreBJZ1YU6DSBaUaQSjWJCm9JZQTs1qoTU8eIazX1INluylJqkBtz8giMuuGu75mXzpK00CzQHQ0IZKMIcgjRT+xbwVWXWBTIo8ND6IEu0H6Z2QOmHyFk5o2H6nyG5hgPA38eOoQYuUqXNDqimiO/MP2wHMULGLLp/4nFDJwMx+5dSPmg5j7wAd+tji94andYFKP8ZB0YGWDo0BGjcyZnDMi9xRp4ckcEDIyS0PDiMdisiOnhMRRhJUxdvRyz4WaSl9YYsVOrtRrz13ytKtCeU2SC5U888PuG1Te0ThHES1X02umbc9VfuR+f8WjqPkBL9n3M5skUGpl30/UNnB9GSkOHW54Bx/E3Af+AEoIiqpH7hNO15RZ8pgqtmmiHgIpK5QvqXOEusctklBIlrwlLiVBNWQ/U/iBY9jj4si+qskY8rFDTpryWiKqzJpmvK4pckGeSppcUFcRa64ZuKcsHvhxahmaDo9ikILCes5SMssN7bCgnn8I5TVDKdhUJcWsmE8nDleOt26kp0ASWU1AXN0z55IZy8Vb1OWeg+956R0XVpz3PKqMFgWDTxQPjzShpUkOQ8SqzGnbMBiDuZx4LltydUURS0zcYM5viXJHHwNBFLy4XFCmxNpAo89EEkGWVEIg5YZb2/EDbflCzaj+SDeN6H7hKmWO2VKFhS9kw6FytG2Hajbk6PGNhLnmQfRsbE+pemKC1UExDYzWUkbFvtyxTIGkLPNS4b1kM/Tc+J5P4wDjW6695IuyJaJB1kQxgywJEjbhHW3j2G9W7Dph12/RzStf2hI3wOwto0pMPrJ7mNmoyGUjMXXBxRSIoNk/n3lotszLG97phXZdqNIFLQNtUFStQ9WRpsxUZeDLsuYkSlKzpbWZ4rygmYhdRHtN2AiyuhCEwgSN8CV1Ckhj+XadaW5v+E7ZopYOPSjuUs98vvBm9LRp5LP4lkbX5FhBlgzVR2R1xVBmKkYGs7J3Jw7OsiTP1ay4dp5zkXjwC0JVDDoj/IXCTQxaI+aRMC1cUubh0OFz5D6+tyW5WitezLBMJ+K8kvYLai6YzRMXNugxEKIhZ8mPXhx4jhYzw6I+ojQFn4oVpRq8EHwdNu4fxNwHfqWJumUKrxDq9ygZ+FLfkJJmzDXeGdAKIzJRXGPTjCCjs6eXW2KCKq8UaSZgWalwQvL7h1+HJDirmtt1QoiIl+6rP7oCpzVaCjSZJ9NyDjckqaizZh8ibdBUzvNUCGYKXLY4YThWBSyZl2ngT/nvE5cND4NltAOF/rC5yQf+31gtuNm+wp/OVMUDtVAgNpRDzxR7bHKshQNTEUzDk70hVlD2HiFXjPQgPSMTqYzEWPBDd+TuumN2FVVVM+eKdj5TBEW7TMSHiPYCHSPpOLJYhdq9ghpal1jXhIiOvt1AXmnWN3hV0vZnSnumrRxn4egcaPGS12allS0kj5ELZTGybjImRjo/oZYTN8nixIxN9zzPFULNjLnj/2LvvnZ1S7Pzvv/fNPP88go71K7Y7CabgkhJJGDI9k37AnTiM9uQLcoUQ1d3hR1X+sLMb/RBwQcCDJgWWOg2e/3uYA5gAA8wxxjvsWlAwhxrvh4G5pRYu5myhGUDYnLMZJybmosUtPOR2RrWRUn0Ozblhp12+MOaX/xpwXjnaN1b8vCBIU9ICTsruE+BJ06M2Y5SWT6KhSQXFgXH9Y5EJOhIv16BVtylSHUa+eg3TKWkqhLWtQSRkUTBTt/jHLxX1+SZAeGQnFBJ0/YZRfLc2h8Zcax95Lp5zeW0Im4sXgaqS8+gNE/tmjlfOBrNZurJppyVy5FmTb3ZgJ/IApRTx3EaOfuZ0gUuzRq73tLmgV1SzNIyu8gkEkqfaKYHBvMCF3I+xZbysqBdya0M7E0ii4Iu5PzQ5bikqJYNj/K3lMMDQVvqrEBMGf16i7WSH63BZgG/eF4vJ0ymON0/YaYfQBrK6QPSFMwT5HpH1jpK0ZGWmQ09wlgusWBe33BwN3wlIrIbGPuewThmJorZkHUr+nLhvtQEFnZ2oZGC8eGeZRd58DkqeWLU1G5mdAuN0nzKW45VxBcZMmjWleLp7PE1xNkwKzjhaUXJ2By4vTi2fUdPxZNqKFxBljYIA/nqNSb7l3Vn7tmzPwhxnJChx+UJrTw2leRxJsezdffIqNE+4KTAJYXRM2OWY5EEVeNCjpMZGYlZKR5FxShaTEwMouKd/gKdHCc98JkbyFeWp6akFpbJlhzLik5IRpXzVTzxOX9L5vZY6+l0gYwQUSAlWRzZMlI8DRSLJPWWHZDakoXnmbln/zVjSur1Nb7+kb19T7CGXA5Efc+sF2YfsW5L1q+ZDzsIAjWBHC2ekcVMtClxiQvt0JPpDY8msSTLJy0QLoeTYs5WrMcVO/ctUc6ci+9hmonxljlbUWc1Wt6wcye+U4nHZYVVkX5eOPhrTAyUYyK0x582CfPIqrXo7MLq4lgNF2RWMMkcYzyjC8zKUjNjsjU6GIQItPPMaC7cly0DgU9VRR4kU9S48oLzj0g9Yyk5hhy7alncwqOsqf3Ik1mzOp8xp3vGHsQBVk1JsTfsr3do+w8cL09shpnkJ5RsELliFz6R7JaHADEtzHmHFTPRJdZqYQAmVf4UbNLEPJbMwpPbgPeS6A/EMBNN4IPac5oNsy1pkyCbFvaupMpfcC0DzbpiHP+G2jpIPbPW/EhilgvCBMLkKfKAbzM2qucoL7S0hDpjF2fK1Y57ObF0P5A1iWA1c5FwpycIFXO5oswT10ZwXeck2dBd7jgsnyA8cfEeJwpSSMSL5L1+SSYyYqsYw0fi44U0n7gsv+GS/RrSmZBGKvUWZSQegV1aLvoKengQC9ovKCsIQ8HHULEfE3eN4LfrnG9VYjDX3EjBOmzogwY1UYwzptZYAdX2Ndkp8UZVNGHg3sLSP9A4RRAF0gr08cjke3pVYWdNazJUnpG6DjKHqAy5zzBh4mwkZYjUeiaV14xlg0xr5kphQuTlkhjCyEm/ZioFtrQInaNiwBkgQe4M+UWSL4HbfObrfc4vr9e8LA4/2xvZz2Hu2R81P13Yp3dc/MAIoBKzKlliTq0sWXCMrJm0pIxHrv0Dn/QtKAlJo5MlBM2C58lc06uaQMZaDLTuQhYCWzeQiGRmwYuBPB/wSnAqN5znNUsS5PKEWN1xST1DUaKSoadmNS30zAgVaWKPMxbWivtuTXVWJLHAkuOs/H2X8tkfGCkzotyx+MS1G+nmSOYvhGViFgMuFEgKRrnD6xVKBxYJBQuDtxyVQa9gjA32dOTj5jWjKlFGcdM4HmxBaQLTPBE/RoSZWUyNSAaHRVaKj+dHdH9i2Sj+upHkOfz2GMD1fDfPYD25HwhNh84tXSMRuuY76XDzHbM6cFkkewVJBOaxJiXLEcOSNawI6E2NlJrTWXGRJ4ZoSC5nVUbW0nMiMpJQbiATkbOomKRhwuDUQjKKlzN4EVhPHc5opDyDyVFXAW0C7z79Z/7OtnghWbcNX4UOMc1Y2xBEhzMJU1xwPkdJjyoKHnXGMhnyPNG6niq3qMJSeg9hZnn46TSLKQKiXujRVMki5gxZTWQusOiWD2rHi5j4zfgdN8sTxIBUE6J54nH9FceiYXNTs+kd6u5EayWb4T1/vzpwbA7I2TP4ilGUhGlHN7/FP16Ysws5BauYEZl4W0fOOqJWgpgJXtz8kr3acxwHLqpiDCOFnxilItiKnkCUgkkEUGusvWUKDZ+EQriALc4wa/Awh4G8KkmhpeQlxdUV9JKndsbFM/exo2g7ZOowQ6BfGqbLiTaL9HHDY4KHQhMXxcnUbP1LorjQRkMyBbnsGf0j751lcAvLbLjke8zsKKVm2TgeIpxEQkUPsYDQs/Ejl6gwsyUVHlPvKLuKJjkKWSFv/g2LGeiGDhM9xk50taEfIhSv0H7Et4HM9bjVRJkENr+mXmZehIU35w79smLv7indLW5SeL9B6+afvd+fw9yzP2opevRoaEXHPWu0d8yqIvOWMSsYUyJLR3IpWKd7WnlmlobIAUeJipBHj5IBHyxl+ulKeOsHXs33eFOgtGWYS5K2FGZCyoDUOZV/TykEP3CF8p6Lqvgb9WuWVtP6GRcrjEjcjE+o3INITJR0KRCEZlNZpBdU+YG2Pvy+S/nsD5A2GWmuUI81tfmADB5v4k8bgakm6DVHmVOkE5dsg1p6SuFIuWCZW3RyeL1GlHtMJtklmELNlBY2acYuiojGBthktwTlCJlgiBOh/46JDZ084KbAP8qMNyqwKgomEVgbqM+BUniCDCj30zyqT4kxSGYWXpcf+TC1ZIOlSBLtBEpEViIQdCDKhSRGqhIGYcieFNkcWfKFbebZWsU6c+QhsPgHgnhJ1xXo4IgqozIG8kiRFYQg8NWGKYuETFCMT+i7H2gvhneFZzK/Qs8DF0rOy47GGmJR8OgFi8pxsyOXC3U8I2UNKrAWF8SysJufmKsSV47kqeR6+IR/1/OxekNjJ4ZSkqzCccGpyCoo1sKjRIOanlBGMuRHzpVGjE+4ZJmj4EG2yLpmUSsaPfFGdFRqBXMgEbmfLDpZtN3TTSuYHD49MWAofAQZ0cVMWhmY4SVPdEVJEAe+7QVmC6s8MA4DIp/QdsekJdFPZGXPTub0WQ5hw1O9Ro+R1WzYIWn0hI+K1dyTlowf1zf4KKlkwasxx+mSBlDa0qt3vJTf0Y6OKpsYloLJKj4ag68axAX6VCKUoAoj9dyTDRNWSeKk0HJmlWYqWdIsFz76iDYjefBM7QZdbQCHOnXUuUYGj+TMIAxP2YF6jmSqYCsNt28yLmdFWX5F39UsQWFDxIXIS/07jDnRHEb6+g2/O63J5UfW4sTeRiazZdhUMBgKaxBJopQnngJ63RCfjvjNGd08h7lnz/5Z6aCxU8aTPHBODSJGLroBGUhJYRIUWqGjAxGwaF6kD4gYsGFF5j1GRUiBORlGanJnuZ4+8qvpLWMqmYvAUa4ps46QHK/jb8lmxagrzBJ5lIYkA73aoINHoHjwK/K0YOIjttoQyVhnj2gEttLERXKqV4Qlstve4LP8913KZ3+AjIscLobHrsKXmk/6CiEG7rMSO58pl5kqzGzqQLO9BfuRgoGZnFGtGREoH7hZG86hQOqIDIKdsGQ6x2cCrzK8kNzbnFEKoulJi2c3WZR5YBaJfHL8kB/okuJQByrT8VUIBDEzPiSkiqAGlqHmhGKpJmxMfBgEl7kiT5FIIhSPnHVNn3bs40QpHHb5xIfkcEtOjJLaG4okeDVZVuUVQ24ZA5yGHBEtuvBIq1m5jg1PbMsHrjefMQ+Sk1qTz/f0RU4VFsqmZQwt47ljNJDCDRU92kfSNHGeHVPjmcuCT3GNoEGGEpfOTCrQiIheLLWWkDKK6KmvPmcrWkI2kDKNjBei8WwIHELHbHdsXWLMHbvFcidX6HpGyoQUgfEYEWNJ8AW6kOy2htVmxyt/5qa6YlYPjMbRiYFi2TOmll41FGVJJw278xs897jZIlYbptstQg6Mi6UM77Fi4e9KqKXkh+7MX45vEd4SdEuIt1zijAkji5G0NpGXiTJFnph4WSWWzY6m2LOKBUkIxOYFy3nLx+2ebXfhY5Hx2dhxU6/IrODeOFplENWaBwTr5YEinvjzuWcVtxyF5BI3+OXMU67w7kwpJhwOFzL8pSNfPHb+gFYti7cU64FKzKiqAaMofeJ87vCDYjyPmDxH7S2+/OlViXlosX3BaYD9/gq1KZE+I9pHXmBRJ8dRTVQcibNFy4STj3ixoyIQQ8AqRx8sV1mPTw3JTzxmliAUZ1Vh+5E/FRW7RcM/f5Z7DnPP/riZLCcNEm9yeremK7b4oFhkBVKRC4tInlxciEkRpaAk0ODoxcCKkSo5zn6NMJJymTDKsg2f8G1kc/nISZXAhrPZMs2w7o4U2lGIhJKKw7xwyteMznA2FTosXNsnGn3Bp5JJFOggObFniGsy2WOahWQipZjpS829HXnF7vddzmd/QOyy8P53vyPNI07NfChKHrIKnTWUfo+LM2ZYaIRCYmE+YpLD5BnFMrGWJ07pilwJNlLyJmgu80hajpA6ln3NeHQcxYFqMswqYAZL5s8EccSaDjWWxKbC6hLTweDO6GakuBo4ZBkcJgI5i71iPEeiLjk2msl1aNuzDsB4QeYdQyVROrALlkEGatezHmqG0wPHQ4WeO6IQrLICIQJSGKQJVIuFUBKzF4hworQOMsuq8gizUNcbwqB5qmo6c4ObCiQL0xD4YclY5Iaz3lNcArs5USKJ+sCnqWdoA1OssLYmqIzaei56zw5J7Rzr2JP3iTYTfFxnzGrFky1Yc4UwjiDOeNOTyQOlj+heshUJlWlcviHjivX0LXp2XKURnWbEsWPpN2QXKFbgngZm+zuGp0fuZE9ddoj8CpYz6/6eQQ6ocCZnxJV7smKk6iOpH7BBsCweUzv2pqM+nWmWA3YLtyvH47TwXgaujaAn8ijhrspxdU0RH7j1gd3QUx07KBxznkhlQV0q3mQNMgu8y18wjSs6LFVYmNqCSUbU/I5zP3G/UbzXn3ORmrI6caevOCwluRm54YHtBX4rCyq5sDKewr3jUu/pJ8l2aOH+E4ufCUaSTxX7wxXWPsAg0PJIniZWouWpUGTphk6BUBGXZkIE0pF5LqiFY9QWfffIRazJioJ+Vgy9xc8LsviIqC+E6o5J5DAVaOsY0sISM455yyVecy8VX+oL6/xCb1aEucYoxTyUpOIzVPbzHHh/DnPP/qhVhzX1mzXiMpEfId4YipCIJqHTTJlGRAzMsuJjyvFkaBxBZAgZmE3LOj5imGnSmTYuTKLgbfYFpzhQVx17e8EUgagUIRU82jd0fsLnApKgYGFKOXrKuYoTqfLUNmFMJFsSS7EQo0F4wyYOHMRH7sWKc9EwkXCpY7HT77uUz/7AdGPH4/QB5098YuEYDwwYJn3Nl67ilg9s3SO1+0CaD2gs9y6j9pFefclTkwhawMqQ/CPZpxM7MXMOmlhDpqBXgdxZtB9xesIKwewHQgoU2UiKnqtM4HSFspFx05ByhRYFuA/kXvPe5pzcxKwWtmri4DX9mDEFQeokxig6VUOcCTLSFTWT84jhwKIjs3Ocxi1XU4cxCa0VJnl6/QKv1lxUJJdPGLlQiQK1vEKnE3nZ4TNFVQu6ZDnPGcJbLrVGjwupesGDKrmeJSIGFD3tMhBaxb3POVYZxnhk1qPsEVPsMNQYCbnzTN4yCE9VJTJfsx0STm7p+4V3dz1LVCxiIGsTv9gVLGYkqYpJOC4mQ5iFj+6BfOkoHJRmwzhdkO6AzA2Fd7y8fESnjqIMSOEYyoBPFywLp6CYLGxCwGrJtAk0heDNqiaer3DecT5FzkA0L9jrDZtcIPOWu2B5fHiLU4I8LFihueQrYr5B1+AF4Awml6jHER0GWgKNTOy05KXWdD7nnO7J4plSJsp2zUjGXi3c0HG/9HQxZ1g0ZBkP4TVfuhJVDsj1Ql62VPKa9dSQiEzTiYfZccrXCFmhwoKaBNMUUB10ZmFDoHI15eaJtVmwgO16HkSOzjwVE2dZI4uWxpwZkTQx4cRAmBynVDPXgmQLnJG8zyOn3KA11EFzH26pveDJ1nTsUKEi95AxcycbDvHCRayoJ4ueT+QIHlRithX6MeNcLAQRfpZ+fw5zz/6oNU3Jm7/6d3z/v/0H3HDkPK4RTvLQBjK5kIuBKEEFT582WCUYKRBINBHNmZkKLyxBGO7Kn24edVnNtX9ksgktPSGBiwX1RXHOVyiuSdIRJBibkbQBofhUVGzFCa8TYCiUxSwatShSV+JNwOsanSQ3+gmZIpJIYZ4XIJ7915JIWKF53N5yco90MicbOk5a8Am4urnhIM+sbcaUfpoVLVVF4Y8sKWBEy8EowmRQy0DhTgw5lPpIJp/ofUatb5BIvLmwaEHJiBeWw3ChCR6Rt7w4tMzb13T3kUdhkWnhB19ziddMMTAVij4TxMrgk6RiAanIZkNxfKDIDWQLpRfYZYdurlBCEHKBCxKjNUk2jM2WG3VHG2eSWdEVJW/tE3e5pi5fUVnLV8WCKjPKsEK6AP2OYBVCSi6TwuvE2a9oVOBFZimyjD45tF/Y2A6tPVJsCGIhr3fIOGFkxRfuPcPljPU9Zv+SSb/GtpZlemBWE6Lv0XpP8pp2CqhJEJBkuUbKR5axxEfPWZU4IbjMglt95EF7yiJjcjnZRRDdjnVRoWeHMJbAjBgeUZVmDpJsMRDeQL2lthLlZ/z8gZxHdBb4Yr3mxed7Hj9ILr+9w597tlETxwe26x35sEGEif9OvCNsb7H+RFltuUwFjoJBzURTsK0NpaxQl5mr25LTJRHDwoOYKIGnvKecZ6x9Rxp7JrHmK3tCxsQ6lwijUAl0dEwuY7UoJqNQTpA1OXrl+E35mn5ukdsdr7uJr+qR7+aPVM4TRY6IFUJIGpUQuWOJiqptMcVInwRPumF0K4S58Lru8bpgvKqp44FUNkjrUWOHf2qg0SQGZKEQcmIJM5elYE4VOkRyGzhVmlCULPI1JSM6eXK/UOVrgohM/kAbF/IgORSOJfWsrco8TgAAACAASURBVCAukZuXN2yaa6rWELz9Wfr9Ocw9+6OWaclf/vmfI9cNxx++5evThThEvv/xLTH7hMgH3rd7HsUt3hiilyQtiUngkRQpI6SAkmDiiBdrStcx5xVWGEolKe2F1k2cXOKpec1QbEiN48rfk1vA5ayWHpk8oTIIGXjSFUbl7MIDV5PjTjboJcc7R1FUbOKF6C1WlNxcb3nZ7H/fpXz2B6apWqrdFU/TPWu14+wkyxSokTRpZCstPoegS0S24RMNzm0Y3AGxWGa9oUoDJwNeGu7jFav4O3QAnReEpUaEniz2iDLQTiUrPfKYDGa1o7265uv1N8jUEos1/HLP98nxg23IwsjuTnHGcI+F5NHyiW2q0MagbIadPTkTNA5lFEXuefXiJe/rL3n7lEHeMwXPdVbypQgIO7P3GdqMnKaCUQROooJCYdIFVwk6+4J0XiAItpllvVpYJk26HLmeb7jPnyhLgS88D3bhm+mBvc3QSXJBIa7gLjPoyVHXJYSMulCo4R1xOBPWBz4vE//gJJP1CO1xoWKVRV5NOcdUEOfAKCW1lOhmZFzdol+84vjo+bhM5PrCSeZoJNZGVvQEp5jTmqLQzFphyp7txVLLgI8j1BVLVpGpQOhr5LRDZluq7IS1OV+WiVxPfP7V16xefM5u39Ca39GvfkRpDXc/UJUHdLng5IBenkjykbATiPaG9x8Ec2/x9oKfDXUWQfRsswFnMlJqSbFCNCtieYsbO6K/wxI55ANLqmmY2a4aXq+h6SW7QvNfTuefQqGbuL0P5KFjSp6728/odIteBHRHTk8L7Si4LV/SyEi82mLlA437R2x2B1KAW/FAYisgqi+oGEAIRrEmrbe8juBevGLja7olUu1vKNWK797mLDk8HO9QZY92C6/o+F9Z8RQtXZNxbXuCyCiqr/DdyDr1jK6klTk7s6J0GcmX1EKRzwXr9swkV7Q7BYuhSoLMOcoyJyuKn6Xfn8Pcsz96Tab5qy+/wn3+Jf+Dd/h+4P3f/B3/y9//Jx7Gb3ExspLvMFVg1jlzKkkp4IWmDI4kFSk5cmWJcmDKSwKaThTkUbEIjZdbpkYyTwmtR2IKpKCpg+PWX5hzwyIEdeqxc06fl1xfnvCioOx76uKBTdcx7K741S9/xV9c32DtCOsNX774hqt68/su47M/MEYqDrLkB+dJwnFIUKaRWS5MpmHZfMZGNHh/w7e956yvmaKDdGLvJoR9ZAo3mFXOyhsevGSTJ6LMUWqhqGpWoWAZFN4cCSYi04orteYb6TDxiJw6ZLZjsglTgrIXdOrQNvFYGdZzyZ9tCjq1oos75Owx88AVgrsUubp+iQ2PxEyybyvaRvHjMFIOiVbnNMrQVJJaClJMFM2OIlfYdxO/mCWYjBOGoG4xSqJMIFx6Cr3Fe1APJcWUUduZz9yZORnQM9daYIzkRkvWeLRMBBOwZkDpmkpEXrcSFQtcmPh+c8VDK1jymkZr9lXONBrUPJF8RLUrsmlFlb+gzAfQGzIuhK/29J2mTSOXbIUyDeGYaJ2l0RGrB0JWE8hZC41pr4jUbP2enXhLuXjcyiLkjlO+I9rIEPf4mEMmaF5vuDwpsqZmU2fk9Z+B26OD4LAPlM7h+jP5qqTdVcQgaL75V5zPgrlZqNfXXPIbvh0+0NqFSSW24Q6xlNxkipc33/D98Y7HessQwCTJJASPNqdVNd7PnI8f2FcTVWn4LPPo7ojKryjefEa/v+HKTzx8fKK9PJDpFqRFiYXUd4y2RHWBUTo+ZJpNXnB1OpPnE756IjSGCw1WavL6S85TxbSZsP5MKte05UteZiVv2jNyOvJ/xsRT1EgtaRdBMIF827ARBW1haLcZuhtxi+VwHNj2H3gvJK/8BVFpyqHF5Huu9DVptKxLw13+gqyXfHZaeJVrRLmm+SwQp4mgPS/sDV/f/CVt3rL9/EBWVD9Lvz+HuWfPgExKMgloBUXB7t//Fa/+9Bue+p6H0ycezx/4x7//B96XE/2suS8bFlshYoYWJ85lgwiecpmwRmNEwAuFFJoQChadkYLkZFaMlaaRHYd4z5pPpLHldRj4wAtKLpypELODyTJoiQqOKl6RHfbUtwf+7LMv+fXXv/7Zjk8++5fBzhPu8chh6hAyUnsBesdGlZjyllf7Ay1rHj5+TxFHYj+xyEQSI7FsEOM9QfZ02Yp/LK8QZiaqa+QoyEaFnWs6GZnrHJ+9Qs2KGx9ZryXbvMJVXxJ1QzIHFjfhpgvCLdzUinUWyMuWP9m85rgEjlnGt2NB5RceVcXYCArvKIoNj7JkvhaMOdTzgudIayJerahC4s9qKIs9c/ye0U/o45F6LlGl4gvfMrWKw/YLZLzg375HdYk1DrFpKXTOXGT0Y+DSBYztsUJiwxEpDaKoCdmBpDzoB7ogMOlMs7mm3rfcVmt+eDoTzzO1sxA1c75iLQNrORNiRRM8K1kjy4z6dsVnLz4HO9H4yLL+kbeNZykC+eENr9tPfEKxGQfMdKSMD6hgKBpPGh0nOSN0IvviF7QfwFwMxeGK0Ow5TR2+LHFSYTPLkFdsdi+Z9he6Zk22vvnpVzqCMDkaUVHcfsU4/AYfGy7phN4q6rpkt/kfsU3HknryALfXFedxRPSCrS5pNi/R9ol+OWG04leHA11KhM7x+Tpjs66Y8hvC4/dcDld88/KXBP89Wkemx4I5v+I0ZoR5pBCWIi8w2wIjDUFkrJtXFNPIpZxoHwd0ntA+4ywL2LV8sdkjVM84/BZlZrTOoM7JsgPN9TWLuvDFm5fsd59RKcnw+J5P339H3wsKG0A7JDPC9Vxv98hOsF0VrI2lrw2fLk+MsyavV9woyy/MnpdffYbvc+TkflqcKCSivMYPgWL1mrCcGRoHHsq556a+wpQV1+rXHF69JpKjzM93deA5zD179v9AZBm72xt23PANX+PszHW+4T/+7f/MMk98+WQ5d3C8CoyFIS0TRRoRemCUBb3c4ITmPlOspkg2B3LtURKkSuR+IIsz7dyjQ04+CII4cSk0KQhKGfBLpKozzGHNf5//gmb3iqYu+NWrb56D3LN/GgGl0tw2OeKqpSpvqKs3tNNEnC9452jyHY1NxMs9L6rILn7AK8ugDH1xzcZZKAu+fnRciy3We4b1C7IypzcFW2+JXrGsNAUF1XKirhtMbpitZRovjKdHNrefEe/ukLljJU/cvnzD6lqRTS9oM8n4MaNlIvY/sFGR7aYhe/Oa0F1RVSPn+QFtjhQIdjKR2ci/Xbe0mwtzqgiHLwl9RywkjW54KSa+KgtOL26RhxU8jaTtK2YsJgjkJjIHx4c4MYQdx8Yz9RnBOD7qDV9UM++o+GK7oZgfue1/JM0FgQcK3SLJEEGxMxVkVwxmoRcZnzcrboVE9Sdipshw7Hdb0nrFsV7TXe7Y1JK6kbSHP2UjHZek0fd3GA+hUJjhQqZmZJmj1ZpG14ypoqm2aDFyP14w7Z61ymlelRRVwX488hAK4mWkXdWcho5Pl/+EXTRP+sx7Z7mzOddZwe05kU+B6I/YduFh1TDoArmvWbKaL6+v0NMDp6d/QOUr3lSG7NWa3w0jDJ5GNhxMxU4GJqVxbiRXGzJZcOvXTG4gThNWbfBh5K2TvDQvKcvIYh6py4Czmpf1LU4daQrPC7kiL7d8mEeq1QGe3tMEy7Ld8UOrCcuGTBpq+8iUdRyyKzIBl7Jg0oas/hOigqUw5NtrXr/8kkoqxm7ATgtuHpEqR4kLtt6gcoF4sjy+/R1iLODzGyrVkAKsdzdsLx+YVmva+EApLXnQrKst5U3F6XGgG3soc5JfoGrJiBT5wmZaCK6mf5Tc3Na4OLIsFpPnCPXzvdTzHOaePfsnMFnBX/z1v2ezveHx00ey0xP3wxN/M1/4NlXMKCI5SxJEDFI4ksoRISCMpV48cVhR5YqwBIxQjKrlUuTkZmB0MJ4NYamoUkQLj67gy1+9ojgY/tX1X7EzW7IiIyueb8o9+3+XFSWr3YE4z7i0wa+21NdvUONCHd5j6oL+NHPKV1z7DaGZeKEncvVLej6gphypEiUdVbWifn1NeQ7EKOn6iWy+x+crHuoKO00Ek1GMls1mRWyvWW8SmZ0wKFyyNKuccdqgKs14dyQ+eR4uv0G1oKsrmqJAGsXW3PB106KCI9utqKYNx/ORfsw4iJqbskXvPN9kt1zffMU0nqnmHDY1a/0D5XTGLp6svSL/8pfYreFpmvg0v+VgNau2oCiu8GvL/aXHTQvoB0az5d1qhSkS3vXINFIIUKUlGonxgpVSTF1gPlomfWZ6c8X25Zq/KHKGZeY9iq+DJ2pH+XLDLjW46cLq5jOWq5fsQ2A8P5ClAT8tcPeAHiua4CgImGbHm1oxV5EsZMjiiVxsaWXN8VNHl0YmfSGJBX3ImHlBe7ilbEuyAFvv+PvjD5zyBi2+Ry8zhVrh+5FjGyAvuI8TH4aZL1KBTIFaa0IM5Mah84LoIt1vvqU/fuTc/SOxKbifJlT1Bd+sX7G6yjAhQ4dAFRfmMpHmM3muSVJyny0swTNmLTfbHTd3dwRnuJKKTCbu4yceXYZaaf5idYPnChEXYiOwJNbTI5/LiP2mBZtB+4LW5ywfJ4bpA1kfiTqibr9gOzuqvKF7UVDfviDTJcNwpDaS6eGe6ewJ0fPphx+xywNNVpDJjL2sKWXCZmuaTQt3HQ8Pd/wf0ZLqkmYlubnS7GtHSLd8tt9QC83m5SvmfmCxAjJNoGS3wLYxbPIVUR3xaeCTWtOQSMbwalMx50fy9Rqhf75Ftecw9+zZP5HJCn7x6z/nF7/+c/CW7vJA/x/+Jz70jyxB8qHc4mWOk4YyLogk2KQzJjpC5jhmNb1UJAmrcWBjnggy4EPOIhWNXWgSVJUhq2raz7ccXl5RFiWH9YEq+3lmLZ79yyRjYi015eGW2Ue63QvqpqKbR1wKZEkRTIbf7NiZHGpFPr1FhoJwPpJFz15YimZD4sTx8cyQPNvqlu2qJpQvMZOgVw8kbclSIncGVSS8dyAr9rsKFyOVCHRGoaRFDSPDODHl7yj8wgbJVRj5d198iV1qHq2kXEuWywe224Y/WWXc5S/xcs2VfIdzFzaqwYbAtz+csUEgVMntSmFEzpg+p+MDQ5mxyJmpf+Lt20i3GHrT8vXNnrrdczf+Rx7Ht3y7rFBljc8kzbkjWxQXBU6U1ASa2SK2JdpdY56eKNOaqdqxzTO6+yfoIr1dUFjqdo1sMnzeE58+cer/lnV5y2odeFCSwUYoA1nl0T4nsCBKTRFzvpyfkH4iCcO5XGHmAcGKdX3DOFkSkVUaWW8lLBNRCmx4QLS/wJRbvFsoKsnVaYCw0FLSm4gWM5OVtD6g/ZnT8QhDIB8cbZHjixaZN6TZIpdIfvrPeHLGy4QLDT8en3BFR5UilXbU2Z9Q1wcuxyMf7j9xd/+eq8yh1D3GZ/S3t1QhYArN0J9J3Yl6XXF//4my3NE1Z7bNDSZzXDUVWb7CGsGjfaJRhs4+MruBvG64qWrUegtqz8Pjd9yNkqRL1GrE+w5XFnzMb3nIRrJ04sqfeOUnWlXSH3uIa1RTY6oMqR+4Go5oVbLGMLZXWH/hHAV5vaXrOk5FTVw8H0LBbn3NpYhcxZJ9fsCNHfNjR361Yisb1sA4OlRWIzPN3gYOmy1n9Z78eEGKC3bJEGqFyhRJ/jwnSf5vz2Hu2bP/FjqjWt1SNF8yDgOPWclFFbwI78i8RccZQsbr5T1ONNhCEcVEPoGwsPULrfOM5Y535RpPxtXc8/kc+df/+q+5/cWfsT7sWNJCpavnIPfs/7PkHBJJ1q6x3ZlxGbnvz2R+YlUVyExxtxS87WbcYpnOv+XKRNT9GRFvedXWrDcj21dXnFTOe9nivOVxgS8EpELwgxDcsSIWnrUf0KWjyxVLOFPkJdX1DY1QiMOe9+/+d8YVzE8di9pRXi6gakTbsLh3VJ2hKRuybMdlOCMSJJHxdZ24FjmXkNNdPIKFPJQc8cQUqJsS5wPRGVYmMeUeXh+gzHlnNSc3cZcSu7ZB5DmsS0yhEZ8Cu3zNcZrJvUDLEr9b4YuCm9MdLy+BVSmp5oypTJw2b0jnHisSavwv2LwjXL2kKq+5rQsEips2Z72tieORsi3po2a9XZEIVGmmCxpZ3nBcPrLflEjbkY6eGdBXX/CL7YpwcQzzNZenT1TXe/pzh/v4DxTHC9J3rMqcMc/4zhmUN1x++MCv1pEwLmxfHSj2G3zoUM2e4hHemBWVfMmdrPhuHJiEIXtzRX//AVYlOpPUueIm25OvGjIcdjHIxw4TFwqlqNo9c7YCJYki43RyjIOiMzVB5ciqYQqOt87Rx4WQPL/evuRlppmsoyhyHrv3iNGhhaApBOnpiHNPaN+h2oakJ1wF++qa/P6B/OEdy/TEan/G1q8w+5KdbjndPyGmn541JDNc4j2ZqmizhmAv2OSxaFSuGXrL48eBfjyhrCcuknwTOU5HVL/lar2nIuDqjGOIaBVIi8Unw1b15PWazUUwPN7zqfueqmrxp8D1+hVZscXnAmMj411HuVicy1jpjGG3h/Y1ZvlImyeQMAdPLtzPNiLzHOaePftvNPWWrmvxPkfHCWfWPMkdax74LL4lzDVOFnSyYZKaSTZkJpF7QWklOhUU+YxOAuUFg1mTloEXX/4prz77HICW9vf8lc/+f0so7LHncbjDKs37/Uw2jpiixgnFXSh5lIaym1FdRzZOlO0NruhwwdBVLdm25fbqBWG6kLQkj4rRB/T1DqkNt68OKHvh7jxgl0SYBCK+JyTF48MZ9zTyf7V35zGyJPlh378RmZF3nd3V53tv3szOLrm7vDUkbNOmJVkAKcoyBVgSBEMQadMgrAOWLcjQEjQEmTZhWoJhwrAhgjZ4yZZ4WYIXMASbWlK2AZrHLrlL7nK5u7NzvLtfH3XmnRnhP6pmpufNO7rf1d1v4wMUOuvIyl9EZGf9KiKycnfrZVJSWtdla7TF/tFd1GxCU9fgNuR3buN2XVRZ4JgUzZQbe1+ldVsOZte4Ovo4w80Pczc9oNWKvb0Sz8kw2YwiHJPmMUIoNvofx+mFeHc9ZmlJWlTo5haXHc28dvDEOpGr2HQ2aK/fZPxWyWShWIiAOlzH7XS5OhQEUYhwW9Y6fWrhUJSHHB3tUaYzYg/q3gDVztEqJAkEiJTpfEopCkSQ4EyhM7lOU85xhOJgMaFY+GSBoC4CRoHHtBkSyh6jlz6C2NVcm6TUgDces9XW3L7zOdLMoSn2WPPX8ZWLHnZpphKTbyGVgHlAEkXszw2p0ujDjHH6JjLRhIOSjeFl9khwnCFSh3zELNjuerw53kOIglnfR/nQzivGzRzJAdvOFo6vCJM+3TSj7ayTzm7AQBIpRTcYcJQ1NGLBLWNIopBFJ2YyH2OMwQsDNtw587LALQWjaINF3yMralJnSNl2yFpBXnpEpoepYPaHf0AwWCP2Pcw3fD29ZJ0ic5CTa5TaYXKQIpuCvGwo70wxZYPjNIgwgXad0JmzkBFZU7OlfEZdB4WgEAF/1EimeUnVBgyNQAqNKDQLJ0c6ktqJ6aeHjLTBTAxe0KVoY/ZEj5vlAmfa0BZz+tWU8WKOW4y5u3dA7fwRJurjbodEm5dJixSHhKrwCN2anqhp5xWDzhphssNePQE9RjBhJ9l5JgmdTeYs6zEZbQi0Iq0jDjsdJC2l9NBGMRPr+BqCOsORLXgJuYkonYCoatEiQtYSVeQ0ekDtKtxAM9Yd9g4O2H356lkXz7rojAG/AqkRtaQ+mhLqgnmliVQNcYMvDIu9LxHNu2inoRZjlO+wNtgm63WJ45Lp4U02m5oj0aEIIhQ5a5tbFFlGpWKmxmMe+ESOR+fWNfJ0itsGMIRWzGjlPnPf57Buqfa/QjI5Ikxz+pvbLMY1ahYTbK/R6oxFfoj2u6An9MxHyZqcauoxj0tc12HQ7fKVvYQ3FxXdMqVjbuHWV3B7Etw5IowJdz7EYLpPTIAe38B1AnadKQElnvAQiwwX6FSD5eXMfJ9gtI4ZKHYvBax1uuRrXczBEXWZsj8HxDpFYTiqBL7wSOKEYZCyPRrhOR6zboRQCUq56HKB7F0izPcJhSJrE2SwBU1NUyzIZJ/9wEdJj7pVRBKu39knLDPy7AjZcZgWOX5vk0MzZr0Tkkx7FAeHUHcJ422IQ0zTcL3rURxmXM8qwjhE+C2BXsD0gKKt8NQufXdAkeVUi1sMei7hSz3E8CqtgZtvXqdqFkymN8kDxZGneemlb2QYJwwGCuH2cPd61H5A7fjk0oXa4DYpsVuy4adEGxEs7hD6MTcAbST9wQDPCai0obv9EuVezXCwwWx2l3U1hKMcUy+YHU6p8iOS3SvslRX+pKSODdXRHeLJAaJsGYqCeOsKhdullDFBsEk+nxJSEzsHbHUUIvBokh6+F+BLRVNVXLuxx3w8p51MyQqI1at0ZE4tQtz1Ha7EEdl0nyidMqsMUduyUxoIE+Is46g4ohoMuFNdI/UEY5VyZ9GS1IbN0OfITBFpzt0bEeUc2lbhzA8Zrdesr0laYYh8Q9sKMA6RisjqjFo/m945m8xZ1mNyPQdPtxgTk7oSYxowmlZ4jFUPt6tJMjCtwqNmt97DyWMax2esYkzj8aFZDdJQxBqZpygvJO6sn3XRrBeAoEZ5PrrpMB3PaJQDKkJNJySBYVZkhImLtyZIBiF++800dUocVrTqNlrnhLohrWLqqc9W61IOuoyrlvl0RuQrrnZjdF5z1GoO52PKpiXpRDjjCjerCZRaXf9SciXY4EZ9C0yXbHaTLCuR0RZDGVPf6SCHKWQuItKYLGcRHYHs0lYCU1ZMZ1PuFjnjVOHnNakzwOtrPFngBDGOm1DnObNbb9PUNSaHbXOXuq1pbt9hMnMo5S5vezED5VPnNY4oaWtFeXAdkpyjRYc7ucdG/PX4/RE9f4M330y5O7nBWEqczjqO6lJHXVQ3Ie5uIiZvsKhvc5BPaYMRPb1GXU1RMmAtCbhVReSzI5jMuKTWkfmEfjyk77oUTYMoG6hqRJPBokDmBRKoiorSgF6Pib5uxNrVlvHeFO0EyLxm3QRUTcXWMAYXIqeLV4/Zm8/pJAnRQhLECUVjEKGDH67hdRKEWODUhzh1SCsNt5oFbtMSk6D9iLcbQ+GGBM2CtWqG4yhUd4u3s5ZFk3LQ7rM1+TJrnkfc1NTODmHgAYZXTct4keLqmqzWHC0cNjohfifCLw1Oowi7LpW5Rh0ahBTMHMP4+k0OSFhPZtzdv0YiDun0M3z9EqbtUEU7uG2I19/DczSqE7L28hUSP0VFfdoq5e3yiHEbcr3R1E3CopVMlcIJAgKjaIIhuVBMt/qovOGLN49IioZmljOZVwzCPiwqelJTrA2ZuCmeW9AIH9267HQEWhvKA5jcnKI7hs2ddRampe3FxM2QOh+T1xkHewVqtEk3FQinQrQtGSnCkShph1kt61xp6hLtTenrKaNcMA4ici/klthCmZZBPcGTKYM2RWsPx22pPUHkTvEKQdJKxCTisik4aEtStcDtjEi69tJc1pMTfoDq+ISLlsSHV9wQ4RgS36CSNdT8q7R5zqC3Rtj4eHVAEMQYNyOVRzi1x9G0YT4b000FdeRStgq1sY3uuQy7AVq2kM1ItKY0DmthQlTGSL3AqA6eIyjzBZnbcLQ4Ik1ronJBvL1OUUfIsIPrunh+h650qL0JSgkuXflmcC8RqT6iqfHdgq1wRqsl1VoXWfRpJgvGc0UdBbj6EpdMgtcAdcBCCOpsD93cpefFFIuaomzww4pMZPjhGgw8ho1HC+hhQbues2jWyPIF4fhNvGgEjeLKlW+kE8dcmx+x6G6gkxihEpJ8QjkeU8wXDLySdcdlXOUIYmLpksuAvJPgpC1xK6lnOYOddSLgIA6YVCWiNSRINnRDm7d0wz7rCbTDEQd7DUG+YDFuKNWMNS+m8QOqu0dkTYMfgWx8hi9tYdyWgJB2bjDpLbqtw2JiGHUCRNMSBw7Scam9lrvzPZyqwXEHDOMYMdxB+5LMLCirnMRx6QYhqbPFeHqERpPeHFN5ikDOSbhF4B3woc4mJp3R97pkruBwURFGEWtBlzsqQXU63GwEcV5ijCJIfLRXcav8Ko6cEIoWWeY0A0FdGhatx507+zSM6ScaJWA9qlgbbeKPhsQqQnkfp61yIi+kv5ngLG5QFQWHVcnb0ifA5Y2jCT0Hkipj2wE/SojXXQ6lhlJQFjXt3QN0XWOUy/rmJar6Gql3iFxUuMWC3s2Kq6MuWgla0ZBGAThDJkWJ3ylJk4C4Y2gGfZx5gPI38BaGIPLojHZRk1sY01JhcMKYXhOhPIkXBi/WnDkhxBD4ReAq8BbwF40x43te8y3APwS6QAv8mDHmF1fP/SzwbwLT1ct/wBjz2ecRu2W9o6kr0BCakH65j5YNnbYlC2Ia6VGLkII+XnuduGhw3YqgXqCNxPMUqumj11LqNiXuHdJtBL7cJ8/fBq6cdfGsh7gQxzDXQ/cv4xRjQqWRWUvgC0LfJb9zxHRhWIQt+W7Mq7sbRP42zG7RHFUoKrZ8zTRcY25K8lYydjwSX3B5d0BGw53qEFEVFOMDesEartMyuLqGmVWopMNod5tsMiXtOKRRyI0bNbqrKauKSjkEDIiSTWQyRElBk2ocv09bl+T1Op3Ny+TpDH34JbJFSW1y+vHXUaNp/S5RokjWN+i2iiYYoOZ3kGFLsziiNg1+adBtSzE9IBZQti3M5+i8JVgbMk5fJ/cF0gtZ332JmxQ0+REBPnXpYPoBvlPj1jnGBDhOQuK2jCJJt/Jp5JBCalp/gihuILyIjnZpSpdZ7NGUc6LMw1QuWVpSTFtutTO2k4CROCSvXHxP4HZ2+PBHL1PfuIZyJF4r2IzWqMJDCm1QWlNkOXfrIzqeTy728fobDPsJVTMnFhmR4xGkE2dKPwAAIABJREFUKVmWsnY0I0h80gqMnpM1CkFI4HZwmxxjNC45eX5I2/kQg3oN14/ZK+5Q7qwz8XKOihzRCmIvwhlo8voIYoes0IThgKi+hT/9Cp7bQQce7jf8MZybtzFlzuFszsRU1HtHECXsm5Lhzi6N01L2G8rcIVIebl3jFArHVBi9x0i2SLaInRLpaRzWlwloVeDWt/Hil+nvDmkbjeNKHFdSiUvc3D/gbiu5NZuz2RFI06LcBXUCPQUf6Vxmlt/i+t5dFnXFuOoTtzUbqsWfTsm9Ee3aVfTsFoiWtq0waUEn6NDtRWi9gahaxt0BIrjDoudxSMXEPaJJIZIxSZ3RiQZEIkXXLkW4Tp7E3HV6eFlFa1pe6fee6e+DnlXP3CeATxljflwI8YnV/b9zz2sy4K8YY74ihNgBPiOE+D+NMZPV8/+ZMeZXnmPMlvU+RriYecnlo9sE6gB3O+JGNEJLgaQhblNMGTAzA1JH03emREYSakPUTBE13E0iFuEW0lOspxO61Yy6as66aNajXYxjmOuSlg3VPCNfaOKtPq3TZSLGfFm46LmDvp0SRS6bcY6n+uieT9z5GFHow6Tk9q096sZBNwWiLpmXFbnbElYlSQ1u2+LrjEbfRvkD3B2fQdVFCc00hNRopuMjdLbHQRgSbV/FkzFX/S6JO6LWLagD5ofXcY/mOGGArwYkTkk2/SNk/gau5zEtZtDEjIIhO2EPfzPmKAio9saIIiXLFxD0CdY28Ks5rTRk+Rpl60PdstELaXRA6dWUQZdoMGNj9wrTfB+/12OUb0Lh45qQkJINp0KbW5giZ1a1dMJNbuiKJGtoiiMyJ8SrXRq5y8B8GZoG08K6gSY7IE+nSK/BP/CpKkVP9iiagEmuaL6aQSApqxRn6HDpG68Qf/QjNEVB67gcjSumrWF+54BWtXRCgdONcKsAU7YUiwmTFgaXNlmLtlikFel4TH3tADMX1IsM3885eP13KaNNSrlNr92n23UQekzmKVJpcHzNcGuNAI2cONROg2inzPcNl/1t0smMmbkFVYWYuaSqg+e03AzX2dEl0eijdDRU/Q5xZ8D0i58niAzNJGPhBbiBRJY5odRkVHi1wyjYIl0opJ/RG8YUWYZoW7pOC3WD8V8FOUE1c2hTFkdTKMY4OsLv7yKlxpQlRiuKqiEtDqgqjShS5q3LIIrYlAVOlDDyKyq9YG+WoktJmVUMJ4eI4og4qOlGDqPNLRQj9Bv75JM7lLMaoeYwbnBkh+EoAd0SV3OqSLA/bsC0eI1LWPXxtGZ/cUS91SNsFP24wxu1oTaKWZGxo+Zoz+V6nvOqt/ti9cwB3wf88dXyzwH/knsOhMaYLx9bviWEuAuMgAmWdQ7UpUAWEWqmEf0EHEPqdmmExGiJR0vHLPhwfYv9YIDjC7TwEVVFYAwpHtc7PQrp0IQOXlMzbEDU9keBL4ALcQwzaMKOIjAJ0i/BNRwtUuYiZTK/Tej7LIqaw8ND/KZla2MLPYe6UggkXici6LsUXs7GPKU797l7c4Ec9Dm8u8eOownnM1QzZs0vSJSGbgcv2sbkoLUicRVyfJdmuIMip1NPCRtJNxih6oZG3CEt52hvStv4JIMuWTqmuP6HqOIu2hwwrwMOZzN8WZHqirWuu7xKxHzG/o0xju8yT/fxQ/DCmN3tl7nxpU/TZJA3Nb3BDnpS0TEdQqdCNwmRErjVAT1/QRAFdGWIH21Ta4fEFzjhgqN5TpVXBG2Jms8YJj5RUWCmFVlZIvwOqQtt+xLhYISpMtrZgv7RAV6W4+iSda0w3gZF5lKWJeGohxmnpM0Bqpii5zmzaw2iO0SoiLKA1oXRwODtz3FlSzw7onR3mBcTJnVFTIepcemvD0mly5Ex9JuG66XBjxOaPKejCkohyPUdFl85pFbQDjv0tgJmwnAgekyKjBv5W+yYAW9nNZO6JIo8OpVGmZrWCNy6JexXHFQz4sRHqT5V6XGbisAJWaRTqCrapgU/pG00sZ6TyIZuvo9yfKrJTRw1xMVBS+iFG7zc28LJ7zDObhF1pzRxj28M+7jrl8gRzPbexs3fZjF7g8UcooVi7ZKL3xYICUYDyqed55is4oq4S+DAuomJQx9ExsHdmyzqPn80PiLXFYusZquSXPJcelqxsaFIeg5vHjY0Xh/Ry9AHb1PN91HNHF30cNodDtfWwHGI+iO0rgiEYD6/SW5KWtHiSEVftqSF4K2jloM8xZcuE7cl1A6bO+u4on5mJz/A2SVzm8aY2wDGmNtCiI2HvVgI8R2AB3z12MM/JoT4u8CngE8YY8oHrPtDwA8BXLlih66sp8gYRG5whY8OKnLhoqXEp6WQ0C1SwkrQuBItDcZIJnIdJe/gaVh09ml0n6kakmuJJ0MuVfuEfnzWJbMe7bkcw570+OU4DspzqWSN1oZrZUXrSqpLl3Bnh+i8wk1T3PkYHUXk8xShNXMmiEJQaY0TgrOAttEcyIzrRYvYW6Bajw3l0W+mmPyASmoOpgWOiEmNZD0MwM1wlGTTCwm9iJkTo3TClhiwOdhAz+5AoyirATlH6KZEODDwXfrdGL+/QXVwB9N4iMTjwNvgaNFAllGsDyGHKvap2oqyFpR3cgaXNug7HkIl+PEud9MjqAM6uovnJTihQEQS4V/C80FJRScekOoGsopAxAhXsD8ryA4KzKTBuA7SjUmMQqcTPE8xLSsKcuJ0QZ7PaXTFKKhxjSKvC/Ba8qpBNXfZSHLMMGIm1pGeC50+blPjSUmRNCzSt1BOSTBIcBghjCRvGoSoEYuSpijwWwdBRC8ISXoxh/6EujqkrwuE6JJ11nDDnG2/S6r3qZOKdlGQZQZVuaxvDxHzCm9jEyUrnPlNekHLUTtjrmAwCnBzQVYZ8qJmVszpJAFedsj+0TUaFZCGAaHapde9jEtFIV0Ih3hKUQqBPxhC2CH0+9CJGTJnfbRO02Q4RrARb1C1NaOtdZJ+RD3rEKoh4+oNmlZxpKasxVeYaZ9Zsk4+24OypU52EKZmPh3zcuAR9ru00zmObBl2MppyH62nRN5VYuXSDdY4mF+nqDRVdURVShxKci9h6msGjmQUugRhi+MIRhsDcrfiqPkS5mgP3WpEI9D+OhMglQXdsKWUiu1gk1jU5GXMhlKoMmWhSqq8olYjgihClTm1MYyUw6YjGegST7rP7OQHeIbJnBDiXwBb93nqR075PtvAPwK+3xijVw//MHCH5cHxp1h+I/7R+61vjPmp1Wt47bXXzGm2bVkPk3QDomFIcyAwSlKaHjSCxigcBK32CcoJSZHiJB5RA4Uw9IsKqgA/bIjRLEzBWp2ypkvCMKLfG5x10SzOxzHsSY9fruvSXxvQdjr4paatSkQ2Y1w6XB2t4eU3yIqGiAmO2SRZ69FmLUU9JXADcjUnWldsDvocXVuQyRxfJpSuwWk8xKIgLwqijqSdS0Q3pNPZpRQKHIcw6XFtsUDXmrWoz0echnDzwwSzOZ4uKVy1vJyWMEi1RjOKWHhdnMRhqxvjiQjj1PSCHvH+AeMC+q6iv9GjkC5+t4M/nrA4mBMnAwYbfaJOF7cxuL5C7Izoy4Dd9Us0Rw2udHEFpJ6Dlj6F65KIHNMWJMMO7nAASK7PbnLn8BBTajqOz1XVI9m4ilFwc9LgeT5uUdBoTUe4FIMe2q2BHKV8krJGhSGV6hKMFE3nCq3O6HRCOv0h0jXsjUuKW19ElcsEVpa7VEWF72leWu9TdF9hUl6juHMH1dlAqAg3jBmngmk9xwsdoqhLjWaj6zLo91DKoSlb5KBPm71FcXCA5zgEhaEUiiCMCAcfQR9cw53eZpqVyEjSD0IOkHT8LokSvLIVYQ4LEt/F6e7QuA0dRzH3HFpP0lEab3iZwIlZ3LlBNdtHCPB2P0S3NoyUy6xp6ed3mGUZVdMyF4JLG0OCpsIPPZrDu+hGUy0qmngHL/TY9/bIigPmtUtfSPLuJlV2C8+JUcbQ+j61FPhZCo5EKpfYWWdnrcfh5HW8ekaZR1RaMK1c5rkiTQ8ZxiMWxsV3BgRRTmX6hF1Fd9PHrH2EIJU0UuOmV+gf3GI+vYOzkISxi9laRwQKE42IipJhFFBlBeGm4u5iRjcM0d6ANR925AZHpUPrB9StYasTsT3oI7oKz/Mv5pw5Y8yfetBzQog9IcT26hvtNnD3Aa/rAv8H8J8bY37z2HvfXi2WQoifAf72Uwzdsk4kiBXDr1unc9flUp6STSExcyZmSNA0RIeSoAKjI3aHW1Rxl8Ekw3cniPiIYU/wxx3Dp4XALBw8b0gcJGjx7C7GbJ3ci3IMc10X13URgWZaSJrQZVDV7DoOxe2KytF0Bg5BP8GPIogl01lK4TQo4YGBNtBEr+ygypqhdpjlNRuqR7cuaVSL8eeIPMUkuxQmQQoIfBfWQzqiIsSnDEKSpqQfhIhOF1PX0A4ZjAOEC3lZUPiSOOxQmgodrSOlS7D2Cp4UfGO/JpzljAuDdjxCR6JUgHn5EpEn6XoKxw/wvIAwcenLDlma4wVDouEWhC1BIKmB0oFg3pCWBWEyIupcwvFjpPTI6oxy3i5PHKi3EdphO9lhOOhiHIGIrtKYhrWBwLSacv8mSI+u18WIisjv0dQhevAKKgzxnDfRjkDrLvHWJbxweTUXN7jE3K+RM0Hj3sWhRYYRnUGC8lw8t4d69Ts5EF9EIcHxWPvwh9nQgrwsUP4U14cGSSdMCFyffjiiqFtE3TC+3rKfS5wgwJ1WDAc7dLZGqFAReQFfP/BJszmeB92hpGsCnGBElRUoKWA9IgxDgnRAXpRoU9OLL7PRvQpi2aOpmhK336N1Qpw2R3sOjlLUBiKlUP5lUrEg9D1m4zl5UxIqF0eCNgbVSejrhspvqAKBrH2GQZdpMWehDb3RDoXMSV2FCDtE/RFJ6KPaBqEUGk2bZsi4pqteJvK3aHFpRIBSHjs76xzsNQy6a8xNRtco+q5HKwZ0Rx1UJwHXY9fTZJWD1+zA3asomaDzGG80QsqAMAkwqmW9dehHXaY4mNjl7Tqn5xky3eKHIYP1IVHrMLrURWIIXBfXc5/pNVnf/T9/5lu4v08C3w/8+Orv/37vC4QQHvDPgJ83xvzyPc+9cxAVwJ8DPv/sQ7as93NcyeUPb3Lt2i5674j12tA5SBk7If00o+v6XN0a8fGP/QnWt14lb1vu3rpGw6tUZsyrl1/B93vIL3yaW/tTonKGrASlfnbf3qyn5sIdwzwpuRR41FqhEoHoRsySlPRoH8dTqKiL47o4rmJneGk5v2c1LFTrGpUsl3eailYLPCS+hOndiKbOSAaCzmgHnHB5VqYrQYIf+eQLgSxzlHIQSiE8D+F5uE2Nm8ZgDIHn0QYNtaNxUCgvBkchAQn0XfimsEtat6ANsVp+fNVthNzuQ9MAEi/waeqKrHDQ2kcol3AY4DsC0TQo5TLNNYW3i1vXdDa6qDB4t56UVEhXYuIWGSqEHOC8tI7qRAhHMCKkbVscx1luf9SjKm7guBK5gMDpYzohbf9lHN9H6E10kyHdCOkl77WHGy171uoSabbw1Qh/MMDxAtpGMz8sMMQku99AGIGfRLhhSAAMAK3X0LpGSoWUHgCh5xJ6Lk3jUA56JIczaDWd7RGDVy+hkhB0g3EkoT8g9jdg1MFPtuiqHlJ6NMF75XNdF6JX2a22qYVAefH7e5eMwXUcXCpwHFA+l6RLrc0yIdQwyQ2FgU6nx6DrE3gujtZUQqCzFN/zuLJxiVzUeLkC07AbKjxcAkAOr+IM+jjKJ3I9PCmB5bxiB4jcy9R1TtX2QKrlY0GEKnbQbs3G5UtsdSOEa0jyksY4eK5HNwlAylVbSDw3JNr6MOmrLebOPkgH1jaIXnoJGQfUukbONMIIWkdQCYNUilnYQRlNsLaJCAICIOD5H8OFMc9/5FEIsQb8EsvfX7gG/AVjzJEQ4jXgPzLG/IdCiL8M/AzwhWOr/oAx5rNCiF9jOZFYAJ9drbN41HZfe+018+lPf/ppF8f6GjebzDi89TZVOaN0fNA+vgNh7NHrDkn6fSQOpjWUTU6lK3wvIPAj5vMFn/md32D/S7+DozQ9Z5dv/u4/y/rO6KyL9UIQQnzGGPPaM3jf534MexbHL60r6jrDtBLlhTju6T+E2qambZp3E8F7VVpTlRVu0+D7yyTuQetrwbtJ5IOGpLSuPpDE3Gs+nrH3xnXifod0Mmfj8hZ+Nl9eFUMI2Nyike57Sec90rLky3cOOJhWKDdgZxhzdT2572vfF5M2SAM4Hrj3j+3e9dq6RGgXR/nv9uBURUM6LfF8l6psiHs+XnC6vpemaagWGdQtXhziRu8lrG2xIF9cA+UglUcQ7D6wLh+9oQra6oFlrhpN3eoP1LWpKkxdv5vcA9Rt/W77S8P79qtHtXvTNO9LQu+33UrrdxNNT96/LU1VobMMABlF79tfTaMxrVn2CKKptKE2hsB1iLzHrL9HOOkx7EySubNikznrvJmlFV/49OdI3/pVKsdlGLl8/Dv/Ip3NS2cd2gvhWSVzZ+FpHL8e9MH6IO98eAlHPJehokfRuqIobr6bkz0oCSnzghtffANjDEIIdl7aQs6myChGZylqYwMZP/xEo3FacWuS04sUVaPZ7AbE/vMZzHqvZ84gEHTWApynXP8nSYrPi5O2+4vopMcwewUIyzpDwkCloXZjTOkRX3JRsZ0zZz19VaO5Oc4wLLsDdwfRez0W90nyTKNpxsW767uD4MwTOq1rjAHXjWiabJWMfPBD3Q8DLn30Faqiwgs8PEdSzWfoLAUhEOrRPZCx7xJ5DlWjEYBy3l/2+/UsPS2OK+msBe/7gdyTOmkCLqX3vro7Sa/Vo9z3y8Ijeu5O4qTt/rXMJnOWdYbquqUwDYdmjvFq2qMuu7kgSB69rmWdRt1qDMskJS0b6lbjufKBSZ5pl6M20nfQZbtMEM74E0NKhRDQNBlCLO8/iB8G+Mfmwnk7O6dKvjxXsjuIHjhEWN269e6wrbezc+KE7lE9Ysef94LTJSz3JuCyJzGyfWTvW6U1N4rq3Z6vS8Fybtppeu/uux/RwOTaey/qX3mshO54u9NqqCUGfeZfLs4Tm8xZ1hnSokbnb4MzJ3Qrai2ZTw4ZjnbOOjTrBaMciQDSsnlfT9ODkjzhLHuIddkCvHv/cTyt4Vopl/O7Hmd48J2TLk5jOTH+g/GaugZj3h22NXV9ovd+1HDhkw4nHk/Am7ygTA8Qnnzke9XaYAzErkPatNTaLH9H7hSx3Hc/olo+6cVQpcseusdK5pbt3tYleqExpaGheGRv8WmnFVxkNpmzrDMUh4KkYzictORlgJItQtrLeVlP34N6mh6U5AlXInuStqlwXO+xk7B7e4tEx0GjH3jCxKPcOzx4FoRSsDob86TDtvDg4cKq0RRlA20KRuMHyWMNJx5PwI2pQZ5saNKhoW0z5trFcTyUFKce2rz/frR6fZWuNnT6djveO+gQgSxP1Fv8sGkFLyKbzFnWGZLGEDo5/fBtWiMIRB/hBY9e0bIew/16mh6U5GldUTa3MWb5qx+B+3iTzo/3FtVZSbp3hFAChKA3Gj1WQnc/957N+CwJzzv1sC3cf5i4ajTX9xekkwpMxSAo6K2Bq+RDh5HvG5crcQcBpjVIIdHN/JFD0lpX6OoWI2FogI63uxxi5eRD2vCg/chbDq0+5py5e3sqfXd7+fgJeosf1OP8orLJnGWdId0ahFqn1K8ihEtmPAwv7gHHOp/ul+Qd75mpqil1PUWtfovsNI73FummBQleEFAVxeqnJ548mWuahsnkvUve9vv955LQnXbY9n7DxHXd0LaG0HOoCZDOJspV+EH4WMmzcOWqt8ohcB89JP1OO0deTNNkuDSA/1hD2u/sR5XWpE27PJnCPV0Sd3xoVPL+3kEjW9xBeKIh+wf1OL+obDJnWWdIC8W08bnrKoSQxJ0E14/OOizLercXqaqmVNUeYGjbxanncR3vLRLGoRjnVEUBQuA8pYSrbZc9NZ7nUVUVbds+82Tucd07TKwcieMI0qpFYPCCEM+PkI95RunDtnX/1zy4B+5xhrQfdDLFida9Z2h0u+d+IDYh5YlOxHnYCSwvovO5t1vW1wrHo7f9ETZVg2k0cRITJPZUVuvsvdMzU9dTwOB5/cf+WYh3eoskDr3R6KE/Mvw43rkaQ1VV77t/EXiu5PIooeg2OCwvg/a0f1PuYZ7kpJL7ud/JFN4Ji3Pv0GhrXMIniO1BJ7C8iGwyZ1lnSDmSJOyR9HfR2rDRjYg82zNnnQ9SeijVo20XJ5479SiOq55aEvcO13Xp9/vPbc7c07ZMOs7upI6neVKJkgIhIG1ahFjeP/G69xkaldI98xNeLoKLtcdb1gvGcyUvr/dZ7/gY0ZB4AYHrn3VYlvWup91z86y4rnvhkrgX0XvXAD79DxB/rQ2NPk12z7esM+a5kjX34ZcWsqyzdB5+DsS6ODwpTzy0+oF1v4aGRp8mW2OWZVmWZVkXmE3mLMuyLMuyLjCbzFmWZVmWZV1gNpmzLMuyLMu6wGwyZ1mWZVmWdYEJY8xZx/DcCCH2gbdP+PJ14OAZhnMa5yUWG8cHnZdYbBwftA7ExpjRWQfyNFzg49fT9KKWC17csr2o5YLnU7aXTnIM+5pK5k5DCPFpY8xrZx0HnJ9YbBwfdF5isXF80HmK5Xl7Ucv+opYLXtyyvajlgvNVNjvMalmWZVmWdYHZZM6yLMuyLOsCs8ncg/3UWQdwzHmJxcbxQeclFhvHB52nWJ63F7XsL2q54MUt24taLjhHZbNz5izLsizLsi4w2zNnWZZlWZZ1gdlkzrIsy7Is6wKzydx9CCG+RwjxJSHE60KITzyjbbwlhPgDIcRnhRCfXj02FEL8qhDiK6u/g9XjQgjx36/i+X0hxLcde5/vX73+K0KI7z/Bdn9aCHFXCPH5Y489te0KIf7Yqlyvr9YVp4zl7wkhbq7q5bNCiO899twPr973S0KI7z72+H3bSwjxshDit1Yx/qIQwntAHJeFEL8uhPiiEOILQoi/eRb18pA4zqJOAiHEbwshPreK5b942PpCCH91//XV81cfN8YTxvGzQog3j9XJtzzLtjkvHlVnj9MO58Xjlk0IcVUIkR/bF37yecf+MCco13cJIX5XCNEIIf78Pc+d6vj+vD1h2dpjbfbJ5xf1o52gXH9LCPGHq2PMp4QQLx177mzazBhjb8dugAN8FXgF8IDPAR97Btt5C1i/57G/D3xitfwJ4L9ZLX8v8M8BAfwrwG+tHh8Cb6z+DlbLg0ds97uAbwM+/yy2C/w28K+u1vnnwJ8+ZSx/D/jb93ntx1Zt4QMvr9rIeVh7Ab8E/KXV8k8Cf/UBcWwD37Za7gBfXm3vudbLQ+I4izoRQLJaVsBvrcp63/WBvwb85Gr5LwG/+LgxnjCOnwX+/H1e/0z32bO8naTOTtsOZ12mp1S2qxw7hpyn2wnLdRX4JuDnj+/TD9tnz8PtScq2em5x1mV4gnL9CSBaLf/VY/vimbWZ7Zn7oO8AXjfGvGGMqYBfAL7vOW37+4CfWy3/HPDnjj3+82bpN4G+EGIb+G7gV40xR8aYMfCrwPc8bAPGmP8HOHoW21091zXG/H9muWf//LH3OmksD/J9wC8YY0pjzJvA6yzb6r7ttepd+ZPAr9ynXPfGcdsY87ur5TnwRWD3edfLQ+I4izoxxpjF6q5a3cxD1j9eV78C/Fur7Z0qxlPE8bA6eWb77Bk7SZ2dth3Oiycp23n2yHIZY94yxvw+oO9Z99TH9+fsScp2np2kXL9ujMlWd38TuLRaPrM2s8ncB+0C14/dv8HDP1AflwH+LyHEZ4QQP7R6bNMYcxuWH+zAxiNielqxPq3t7q6WnzSev7Hqvv5psRrafIxY1oCJMaY5TSyroZtvZdkDdGb1ck8ccAZ1IoRwhBCfBe6yPCh99SHrv7vN1fPT1faeeN+9Nw5jzDt18mOrOvnvhBD+Y9bJ09pnn4eT1Nlp2+G8eJKyAbwshPg9IcT/LYT4N551sKfwJPX+IrTZwwRCiE8LIX5TCHGevkCdtlw/yLJH/3HWfWpsMvdB9/um9yx+v+U7jTHfBvxp4K8LIb7rMWJ61rGedrtPI55/CHwI+BbgNvDfPq9YhBAJ8L8B/4kxZvawlz7LWO4Tx5nUiTGmNcZ8C8tvnd8BfPQh6z+zWO6NQwjxDcAPA18PfDvLIY2/86zjOAdOEutFLeeTlO02cMUY863A3wL+sRCi+5Tje1xPUu8vQps9zBWzvBTWvwf8hBDiQ08nrCd24nIJIf4y8BrwD0677tNmk7kPugFcPnb/EnDraW/EGHNr9fcu8M9YfljurYZ9WP29+4iYnlasT2u7N3ivu/mx4jHG7K0+vDXwP/HeUNBpYzlgOcTmniQWIYRimUD9r8aYf7p6+LnXy/3iOKs6eYcxZgL8S5Zz0B60/rvbXD3fYzmE/tT23WNxfM9qSNoYY0rgZ3j8OnniffY5OkmdnbYdzovHLttq6PgQwBjzGZY9yB955hGfzJPU+4vQZg907DPwDZb/19/6NIN7AicqlxDiTwE/Avw7q+PQidd9Jsw5mHB4nm6Ay3LS4su8N/nx4095GzHQObb8GyzH1f8B759w//dXy3+G90/q/m3z3mTLN1lOtByslocn2P5V3n/SwVPbLvA7q9e+M5n8e08Zy/ax5f+U5TwfgI/z/gncb7CcqPrA9gJ+mfdP1v9rD4hBsJwr9RP3PP5c6+UhcZxFnYyA/mo5BP5f4N9+0PrAX+f9k9N/6XFjPGEc28fq7CeAH39e++xZ3U5SZ6dth7Mu01Mq2+idsrCctH6TExwHz0u5jr32Z/ngCRCnPr5fkLINAH+1vA58hWdwouEz3Be/leWXhg/f8/iZtdmZV9x5vLE8I+7Lq8b6kWfw/q+sdpDPAV94Zxtha56MAAACsUlEQVQs5398arVjf+rYh40A/sdVPH8AvHbsvf4DlpOZXwf+/RNs+5+wHJaoWX6L+MGnuV2WXc6fX63zP7C6ysgpYvlHq239PvBJ3p/I/Mjqfb/EsTMOH9Req3r+7VWMv/zOweM+cfzrLLvCfx/47Or2vc+7Xh4Sx1nUyTcBv7fa5ueBv/uw9YFgdf/11fOvPG6MJ4zj11Z18nngf+G9M16f6T571rf71Rnwoyx7Bx6rHc7L7XHLBvy7LI+jnwN+F/izZ12WU5br21ke/1LgEPjCo/bZ83J73LIB/9rq//Nzq78/eNZlOWW5/gWwx3vH6U+edZvZy3lZlmVZlmVdYHbOnGVZlmVZ1gVmkznLsizLsqwLzCZzlmVZlmVZF5hN5izLsizLsi4wm8xZlmVZlmVdYDaZsyzLsizLusBsMmdZlmVZlnWB2WTOemEJIb59dSH2QAgRCyG+sLqup2VZ1rkmhPgvhRB/89j9HxNC/MdnGZN1ftkfDbZeaEKI/4rlL8eHwA1jzH99xiFZlmU9khDiKvBPjTHfJoSQLK9E8x1mdR1ayzrOffRLLOtC+1GW194sAPut1rKsC8EY85YQ4lAI8a3AJvB7NpGzHsQmc9aLbggkgGLZQ5eebTiWZVkn9j8DPwBsAT99tqFY55kdZrVeaEKITwK/ALzM8gL1f+OMQ7IsyzoRIYTH8kL0CviwMaY945Csc8r2zFkvLCHEXwEaY8w/FkI4wG8IIf6kMebXzjo2y7KsRzHGVEKIXwcmNpGzHsb2zFmWZVnWObQ68eF3gb9gjPnKWcdjnV/2p0ksy7Is65wRQnwMeB34lE3krEexPXOWZVmWZVkXmO2ZsyzLsizLusBsMmdZlmVZlnWB2WTOsizLsizrArPJnGVZlmVZ1gVmkznLsizLsqwL7P8HQfET7G1unqIAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.', alpha=0.1)\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.', alpha=0.1)\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "yz_axes = fig.add_subplot(224, sharey=xz_axes)\n",
-    "_ = yz_axes.plot(y, z, '.', alpha=0.1)\n",
-    "_ = yz_axes.set_xlabel('y')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([[ 3.33175985e+04,  4.36499587e-02, -1.09440256e-02],\n",
-       "       [ 3.34805171e+04,  1.01941873e-01, -9.53601654e-03],\n",
-       "       [ 3.35582698e+04,  2.99759824e-02, -7.85268329e-03],\n",
-       "       [ 3.34803588e+04,  2.01669276e-02, -1.65330493e-02],\n",
-       "       [ 3.33652227e+04,  1.51568465e-01, -1.58727924e-02],\n",
-       "       [ 3.34439659e+04,  1.37990083e-01, -8.42117631e-03],\n",
-       "       [ 3.32467122e+04,  1.58005628e-01, -7.74457162e-03],\n",
-       "       [ 3.35431499e+04,  5.43510481e-02, -1.01035844e-02],\n",
-       "       [ 3.33190099e+04,  6.23305926e-02, -1.68905342e-02],\n",
-       "       [ 3.33803179e+04,  2.95667412e-02, -6.43673916e-03]])"
-      ]
-     },
-     "execution_count": 14,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "positions[-1, :, :]"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/vertical transporter - Copy.ipynb b/notebooks/vertical transporter - Copy.ipynb
deleted file mode 100644
index 95df8cf..0000000
--- a/notebooks/vertical transporter - Copy.ipynb	
+++ /dev/null
@@ -1,326 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import ParabolicConstantVerticalTransporter\n",
-    "\n",
-    "transport_model = ParabolicConstantVerticalTransporter(simulation_clock, carp_eggs)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8nGWd///X555J0qaHND2f0qaF0lIOPTAcBEGUg6j8xHXB825FpOvpu+iuB/T3VVf96lddd9VdXFlEpPpTBJGTJwQBBRcoJC09QOmBNm3aJm3apuk5mZn78/tj7qRpmrZJSXPPXd7Px6OPzNxzzcxn5sp9z3uu67pTc3dEREREpLgFcRcgIiIiIsem0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmQjruAvjZy5Eivrq6OuwwRERGRY6qtrd3m7qN60vakC23V1dXU1NTEXYaIiIjIMZnZ+p621fSoiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkwAkPbWZ2h5ltNbPlnbYNN7NHzWx19LPyKPcfamabzOyWE12riIiISLHqj5G2O4Grumy7GXjM3acBj0XXj+RrwF9OTGkiIiIiyXDCQ5u7Pwns6LL5GmBBdHkB8I7u7mtm5wBjgEdOWIEiIiIiCRDXmrYx7t4AEP0c3bWBmQXAvwGfOdaDmdl8M6sxs5qmpqY+L1ZEREQkbsV8IsLHgN+7e/2xGrr7be6ecffMqFGj+qE0ERERkf6Vjul5t5jZOHdvMLNxwNZu2rwOuNjMPgYMBkrNbI+7H239m4iIiMhJKa7Q9hAwD/hm9PPBrg3c/f3tl83sg0BGgU1EREReq/rjT37cBTwDTDezjWZ2A4WwdoWZrQauiK5jZhkzu/1E1yQiIiKSNObucdfQpzKZjNfU1MRdhoiIiMgxmVmtu2d60raYT0QQERERkYhCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCnPDQZmZ3mNlWM1veadtwM3vUzFZHPyu7ud9sM3vGzF40s6Vm9u4TXauIiIhIseqPkbY7gau6bLsZeMzdpwGPRde72gf8vbufEd3/e2Y27EQWKiIiIlKsTnhoc/cngR1dNl8DLIguLwDe0c39Vrn76ujyZmArMOoElioiIiJStOJa0zbG3RsAop+jj9bYzM4DSoFX+qE2ERERkaJT9CcimNk44GfA9e4eHqHNfDOrMbOapqam/i1QREREpB/EFdq2RGGsPZRt7a6RmQ0Ffgf8b3d/9kgP5u63uXvG3TOjRmkGVURERE4+cYW2h4B50eV5wINdG5hZKXA/8FN3/1U/1iYiIiJSdPrjT37cBTwDTDezjWZ2A/BN4AozWw1cEV3HzDJmdnt013cBlwAfNLMXon+zT3S9IiIiIsXI3D3uGvpUJpPxmpqauMsQEREROSYzq3X3TE/aFv2JCCIiIiKi0CYiIiKSCAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIglwwkObmd1hZlvNbHmnbcPN7FEzWx39rDzCfedFbVab2bwTXauIiIhIsUr3w3PcCdwC/LTTtpuBx9z9m2Z2c3T9c53vZGbDgS8DGcCBWjN7yN2b+6Hmo7ppwbd5cvxM9lp5j+9TQo6Bvp/9NpBsv7ztqiWJdagW1aJaTq5aiqUO1XJ8tQxiP5dsepHvz/tsTNUdqsfvlJnNdPeXumy71N3/fLT7ufuTZlbdZfM1wKXR5QXAn+kS2oA3A4+6+47ouR4FrgLu6mnNJ8JNC77N3VVXxFmCiIiI9INdVHJ31XhY8O2iCG69ibf3mNnPgG8DA6KfGeB1x/G8Y9y9AcDdG8xsdDdtJgD1na5vjLYdxszmA/MBJk2adBzl9NyysVXtT3pCn0dERESKgPvBz/6Y9Sa0nQ98C3gaGAL8HLjoRBQV6S4VeXcN3f024DaATCbTbZu+clZjPS9VzQA/oU8jIiIiReKsxvpjN+oHvQltWWA/MJDCSNs6dw+P83m3mNm4aJRtHLC1mzYbOTiFCjCRwjRqrL4/77OgNW0nXS3FUodqUS2q5eSqpVjqUC3HV0ti17QBzwMPAucCI4D/NrNr3f3a43jeh4B5wDejnw920+aPwDc6nVl6JfD543iuPlcsnSciIiIn2tviLqBDb/7kxw3u/iV3z7p7o7tfQ/dh6xBmdhfwDDDdzDaa2Q0UwtoVZrYauCK6jpllzOx2gOgEhK9RCIvPA19tPylBRERE5LXG/CRbm5XJZLympibuMkRERESOycxq3T3Tk7b6HxFEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZnaTmS03sxfN7JPd3F5hZr8xsyVRm+vjqFNEREQkbrGFNjM7E7gROA+YBVxtZtO6NPs48JK7zwIuBf7NzEr7tVARERGRIhDnSNvpwLPuvs/dc8BfgL/p0saBIWZmwGBgB5Dr3zJFRERE4hdnaFsOXGJmI8ysHHgrUNWlzS0Uwt1mYBlwk7uHXR/IzOabWY2Z1TQ1NZ3oukVERET6XWyhzd1XAN8CHgUeBpZw+Cjam4EXgPHAbOAWMxvazWPd5u4Zd8+MGjXqxBYuIiIiEoNYT0Rw9x+7+1x3v4TC1OfqLk2uB+7zgjXAOmBGf9cpIiIiEre4zx4dHf2cBLwTuKtLkw3AZVGbMcB0YG1/1igiIiJSDNIxP/+vzWwEkAU+7u7NZvYRAHe/FfgacKeZLQMM+Jy7b4uvXBEREZF4xBra3P3ibrbd2unyZuDKfi1KREREpAjpf0QQERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEiDW0mdlNZrbczF40s08eoc2lZvZC1OYv/V2jiIiISDFIx/XEZnYmcCNwHtAGPGxmv3P31Z3aDAP+C7jK3TeY2eh4qhURERGJV5wjbacDz7r7PnfPAX8B/qZLm/cB97n7BgB339rPNYqIiIgUhThD23LgEjMbYWblwFuBqi5tTgMqzezPZlZrZn/f3QOZ2XwzqzGzmqamphNctoiIiEj/i2161N1XmNm3gEeBPcASINelWRo4B7gMGAg8Y2bPuvuqLo91G3AbQCaT8RNdu4iIiEh/i/VEBHf/sbvPdfdLgB3A6i5NNgIPu/ted98GPAnM6u86RUREROIW99mjo6Ofk4B3And1afIgcLGZpaMp1POBFf1bpYiIiEj8YpsejfzazEYAWeDj7t5sZh8BcPdboynUh4GlQAjc7u7LY6xXREREJBaxhjZ3v7ibbbd2uf6vwL/2W1EiIiIiRUj/I4KIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAuXvcNfQpM2sC1vfDU40EtvXD80jPqU+Kk/ql+KhPipP6pfj0R59MdvdRPWl40oW2/mJmNe6eibsOOUh9UpzUL8VHfVKc1C/Fp9j6RNOjIiIiIgmg0CYiIiKSAAptx++2uAuQw6hPipP6pfioT4qT+qX4FFWfaE2biIiISAJopE1EREQkARTaRERERBJAoa2XzOwqM1tpZmvM7Oa463ktMbMqM3vCzFaY2YtmdlO0fbiZPWpmq6OfldF2M7P/iPpqqZnNjfcVnLzMLGVmi83st9H1KWa2MOqTu82sNNpeFl1fE91eHWfdJyszG2Zm95rZy9H+8jrtJ/Ezs09Fx67lZnaXmQ3QvtL/zOwOM9tqZss7bev1/mFm86L2q81sXn/UrtDWC2aWAn4AvAWYCbzXzGbGW9VrSg74Z3c/HbgA+Hj0/t8MPObu04DHoutQ6Kdp0b/5wA/7v+TXjJuAFZ2ufwv4btQnzcAN0fYbgGZ3PxX4btRO+t73gYfdfQYwi0LfaD+JkZlNAP4RyLj7mUAKeA/aV+JwJ3BVl2292j/MbDjwZeB84Dzgy+1B70RSaOud84A17r7W3duAXwLXxFzTa4a7N7j7oujybgofRBMo9MGCqNkC4B3R5WuAn3rBs8AwMxvXz2Wf9MxsIvA24PbougFvAu6NmnTtk/a+uhe4LGovfcTMhgKXAD8GcPc2d9+J9pNikAYGmlkaKAca0L7S79z9SWBHl8293T/eDDzq7jvcvRl4lMODYJ9TaOudCUB9p+sbo23Sz6KpgjnAQmCMuzdAIdgBo6Nm6q/+8T3gs0AYXR8B7HT3XHS98/ve0SfR7S1Re+k7U4Em4CfRlPXtZjYI7SexcvdNwHeADRTCWgtQi/aVYtHb/SOW/UahrXe6+5ajv5nSz8xsMPBr4JPuvutoTbvZpv7qQ2Z2NbDV3Ws7b+6mqffgNukbaWAu8EN3nwPs5eBUT3fUJ/0gmjq7BpgCjAcGUZh660r7SnE5Uj/E0j8Kbb2zEajqdH0isDmmWl6TzKyEQmD7ubvfF23e0j6dE/3cGm1Xf514FwFvN7M6CssF3kRh5G1YNAUEh77vHX0S3V7B4dMU8upsBDa6+8Lo+r0UQpz2k3hdDqxz9yZ3zwL3AReifaVY9Hb/iGW/UWjrneeBadHZPqUUFpE+FHNNrxnReo4fAyvc/d873fQQ0H7mzjzgwU7b/z46++cCoKV9+Fv6hrt/3t0nuns1hf3hcXd/P/AEcG3UrGuftPfVtVF7jR70IXdvBOrNbHq06TLgJbSfxG0DcIGZlUfHsvZ+0b5SHHq7f/wRuNLMKqNR1CujbSeU/keEXjKzt1IYSUgBd7j712Mu6TXDzF4PPAUs4+D6qS9QWNd2DzCJwoHxOnffER0Yb6GwOHQfcL271/R74a8RZnYp8Gl3v9rMplIYeRsOLAY+4O6tZjYA+BmF9Yg7gPe4+9q4aj5ZmdlsCieGlAJrgespfEnXfhIjM/sK8G4KZ8IvBj5MYR2U9pV+ZGZ3AZcCI4EtFM4CfYBe7h9m9iEKn0EAX3f3n5zw2hXaRERERIqfpkdFREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQB0sdukiwjR4706urquMsQEREROaba2tpt7j6qJ21PutBWXV1NTY3+BxYREREpfma2vqdtNT0qIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgDpOJ/czOqA3UAeyLl7psvt7wc+F13dA3zU3Zf0a5EiIiIiRSDW0BZ5o7tvO8Jt64A3uHuzmb0FuA04v/9KExERESkOxRDajsjdn+509VlgYly1iIiIiMQp7jVtDjxiZrVmNv8YbW8A/tDdDWY238xqzKymqampz4sUERERiVvcI20XuftmMxsNPGpmL7v7k10bmdkbKYS213f3IO5+G4WpUzKZjJ/IgkVERETiEOtIm7tvjn5uBe4HzuvaxszOBm4HrnH37f1boYiIiEhxiC20mdkgMxvSfhm4Eljepc0k4D7g79x9Vf9XKSIiIlIc4pweHQPcb2btdfzC3R82s48AuPutwJeAEcB/Re0O+7MgIiIiIq8FsYU2d18LzOpm+62dLn8Y+HB/1iUiIiJSjOI+e1REREREekChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZlZnZsvM7AUzq+nm9hlm9oyZtZrZp+OoUURERKQYpOMuAHiju287wm07gH8E3tGP9YiIiIgUnaKeHnX3re7+PJCNuxYRERGROMUd2hx4xMxqzWz+8T6Imc03sxozq2lqaurD8kRERESKQ9yh7SJ3nwu8Bfi4mV1yPA/i7re5e8bdM6NGjerbCkVERESKQKyhzd03Rz+3AvcD58VZj4iIiEixii20mdkgMxvSfhm4ElgeVz0iIiIixSzOs0fHAPebWXsdv3D3h83sIwDufquZjQVqgKFAaGafBGa6+664ihYRERGJQ2yhzd3XArO62X5rp8uNwMT+rEtERESkGMV9IoKIiIiI9IBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCxBrazKzOzJaZ2QtmVtPN7WZm/2Fma8xsqZnNjaNOERERkbil4y4AeKO7bzvCbW8BpkX/zgd+GP2M1U0Lvs2T42ey18p7fJ8Scgz0/ey3gWRjfttVS/HWoVpUi2o5uWopljpUy/HVMoj9XLLpRb4/77MxVXeoPnmnzOwTwM/dvbkvHq+Ta4CfursDz5rZMDMb5+4Nffw8PXbTgm9zd9UVcT29iIiI9JNdVHJ31XhY8O2iCG59FW/HAs+b2SLgDuCPUdA6FgceMTMH/tvdb+ty+wSgvtP1jdG2Q0Kbmc0H5gNMmjTp+F5BDy0bW9X+pCf0eURERKQIuB/87I9Zn4Q2d//fZvZF4ErgeuAWM7sH+LG7v3KUu17k7pvNbDTwqJm97O5Pdrq9u2R0WBiMwt5tAJlMpidh8bid1VjPS1UzoEeZVERERJLurMb6YzfqB302kezubmaNQCOQAyqBe83sUXfvdkzR3TdHP7ea2f3AeUDn0LYR6BxvJwKb+6rm4/H9eZ8FrWk76WopljpUi2pRLSdXLcVSh2o5vlpO1jVt/wjMA7YBtwOfcfesmQXAauCwV2tmg4DA3XdHl68Evtql2UPAJ8zslxROQGiJcz1bu2LpPBERETnR3hZ3AR36Kt6OBN7p7us7b3T30MyuPsJ9xgD3W2FtWBr4hbs/bGYfie57K/B74K3AGmAfhalXERERkdcc69n5AsmRyWS8puawP/kmIiIiUnTMrNbdMz1pq/8RQURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEiD20GZmKTNbbGa/7ea2yWb2mJktNbM/m9nEOGoUERERiVvsoQ24CVhxhNu+A/zU3c8Gvgr8336rSkRERKSIxBraopGztwG3H6HJTOCx6PITwDX9UZeIiIhIsYl7pO17wGeB8Ai3LwH+Nrr8N8AQMxvRH4WJiIiIFJPYQpuZXQ1sdffaozT7NPAGM1sMvAHYBOS6eaz5ZlZjZjVNTU0npmARERGRGJm7x/PEZv8X+DsKIWwAMBS4z90/cIT2g4GX3f2oJyNkMhmvqanp63JFRERE+pyZ1bp7pidtYxtpc/fPu/tEd68G3gM83jWwmdlIM2uv8fPAHf1cpoiIiEhRiHtN22HM7Ktm9vbo6qXASjNbBYwBvh5bYSIiIiIxim169ETR9KiIiIgkRSKmR0VERESk5xTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAWIPbWaWMrPFZvbbbm6bZGZPRLcvNbO3xlGjiIiISNxiD23ATcCKI9z2v4F73H0O8B7gv/qtKhEREZEiEmtoM7OJwNuA24/QxIGh0eUKYHN/1CUiIiJSbNIxP//3gM8CQ45w+78Aj5jZ/wIGAZd318jM5gPzASZNmtT3VYqIiIjELLaRNjO7Gtjq7rVHafZe4E53nwi8FfiZmR1Ws7vf5u4Zd8+MGjXqBFUsIiIiEp84p0cvAt5uZnXAL4E3mdn/16XNDcA9AO7+DDAAGNmfRYqIiIgUg9hCm7t/3t0nuns1hZMMHnf3D3RptgG4DMDMTqcQ2pr6tVARERGRIlAMZ48ewsy+amZvj67+M3CjmS0B7gI+6O4eX3UiIiIi8Yj7RAQA3P3PwJ+jy1/qtP0lCtOoIiIiIq9pRTfSJiIiIiKHU2gTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEsJPt/183syZgfT881UhgWz88j/Sc+qQ4qV+Kj/qkOKlfik9/9Mlkdx/Vk4YnXWjrL2ZW4+6ZuOuQg9QnxUn9UnzUJ8VJ/VJ8iq1PND0qIiIikgAKbSIiIiIJoNB2/G6LuwA5jPqkOKlfio/6pDipX4pPUfWJ1rSJiIiIJIBG2kREREQSQKFNREREJAEU2nrJzK4ys5VmtsbMbo67ntcSM6sysyfMbIWZvWhmN0Xbh5vZo2a2OvpZGW03M/uPqK+WmtnceF/BycvMUma22Mx+G12fYmYLoz6528xKo+1l0fU10e3VcdZ9sjKzYWZ2r5m9HO0vr9N+Ej8z+1R07FpuZneZ2QDtK/3PzO4ws61mtrzTtl7vH2Y2L2q/2szm9UftCm29YGYp4AfAW4CZwHvNbGa8Vb2m5IB/dvfTgQuAj0fv/83AY+4+DXgsug6FfpoW/ZsP/LD/S37NuAlY0en6t4DvRn3SDNwQbb8BaHb3U4HvRu2k730feNjdZwCzKPSN9pMYmdkE4B+BjLufCaSA96B9JQ53Ald12dar/cPMhgNfBs4HzgO+3B70TiSFtt45D1jj7mvdvQ34JXBNzDW9Zrh7g7svii7vpvBBNIFCHyyImi0A3hFdvgb4qRc8Cwwzs3H9XPZJz8wmAm8Dbo+uG/Am4N6oSdc+ae+re4HLovbSR8xsKHAJ8GMAd29z951oPykGaWCgmaWBcqAB7Sv9zt2fBHZ02dzb/ePNwKPuvsPdm4FHOTwI9jmFtt6ZANR3ur4x2ib9LJoqmAMsBMa4ewMUgh0wOmqm/uof3wM+C4TR9RHATnfPRdc7v+8dfRLd3hK1l74zFWgCfhJNWd9uZoPQfhIrd98EfAfYQCGstQC1aF8pFr3dP2LZbxTaeqe7bzn6myn9zMwGA78GPunuu47WtJtt6q8+ZGZXA1vdvbbz5m6aeg9uk76RBuYCP3T3OcBeDk71dEd90g+iqbNrgCnAeGAQham3rrSvFJcj9UMs/aPQ1jsbgapO1ycCm2Oq5TXJzEooBLafu/t90eYt7dM50c+t0Xb114l3EfB2M6ujsFzgTRRG3oZFU0Bw6Pve0SfR7RUcPk0hr85GYKO7L4yu30shxGk/idflwDp3b3L3LHAfcCHaV4pFb/ePWPYbhbbeeR6YFp3tU0phEelDMdf0mhGt5/gxsMLd/73TTQ8B7WfuzAMe7LT976Ozfy4AWtqHv6VvuPvn3X2iu1dT2B8ed/f3A08A10bNuvZJe19dG7XX6EEfcvdGoN7MpkebLgNeQvtJ3DYAF5hZeXQsa+8X7SvFobf7xx+BK82sMhpFvTLadkLpf0ToJTN7K4WRhBRwh7t/PeaSXjPM7PXAU8AyDq6f+gKFdW33AJMoHBivc/cd0YHxFgqLQ/cB17t7Tb8X/hphZpcCn3b3q81sKoWRt+HAYuAD7t5qZgOAn1FYj7gDeI+7r42r5pOVmc2mcGJIKbAWuJ7Cl3TtJzEys68A76ZwJvxi4MMU1kFpX+lHZnYXcCkwEthC4SzQB+jl/mFmH6LwGQTwdXf/yQmvXaFNREREpPhpelREREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAdLHbpIsI0eO9Orq6rjLEBERETmm2trabe4+qidtT7rQVl1dTU2N/ts8ERERKX5mtr6nbWOdHjWzq8xspZmtMbObu7m9zMzujm5faGbV/V+liIiISPxiC21mlgJ+ALwFmAm818xmdml2A9Ds7qcC3wW+1b9VioiIiBSHOKdHzwPWuPtaADP7JXAN8FKnNtcA/xJdvhe4xczM3b0/Cy1W9fX11NXVUV1dTVVV1Ql9rtb1u2hd20LZ1ArKJg89oc91JPsWL2bfc8+zadownh+1i8yYDAA1W2rIjMkwe/TsQ9q/sPUFnluyjPEtp5KZO5OxUyviKFuOoD9/f49HX9fX/vtbft65lM+Z0+P7xbnvvbD1BWq21DDEp7Nt+zgumDqCcyZXnrDnq2nZy9M793DhsMFkKgb16D4tLYtobl5IZeX5VFTMPe7n/sOyF3m8fjNvqhrPW846o+O1d3ds6au6Fv/PU6xYtozTzzqLORddfNy1H4++et+6erXv27Ecaz863v0sKeIMbROA+k7XNwLnH6mNu+fMrAUYAWzrlwpfhdr1zTy7dvshB7nO2ybkAzatambCaZVHDBONa1uO2Ka+vp4FCxaQz+dJWcB733Idp5w7o+P23h7oj7ajta7fxbbbl+G5EEsHjPzwWf324dH+HozwJg58fj5hWxsehDz83jQ/nFQKwPCWCTwR85CGAAAgAElEQVS9eyUfvCLLJZlzO17PF+79Gm9efiPrwj3U/7mWS949nQN7s0d9z9tfb28/JDevWkH9i8uoOuMsxp92+qt/4TG4e+lTPLL2aa6ceiHvPvsoHyD1z0HdU1B9MVSdd9Q2+/aNY1/dHsqrB1Ne3gDVF9MyNE1d3SM88cRmWlpGkEqlmDdv3qsKRjUte3m6bgUXbvojmXAbzHrvkWvrgc77VxAEzJkzh1mzZlFVVUXr+l3s+esK8ttWserCM1k0evwxQ8a+xYvZcP2H8LY2rLSUST+5o0cfKN3te/kdr9DywIN4OJSyGRcx+PWn99n+2B5UsxVZ/mfv//DAmgfIhjnC0Mi2ZPjP5ybw3teN5JoZF/f5B3JNy16ufWEN2dApCYx7Z596zODW0rKIRYv/jjBsIwhKmTvnZ4cFkGOFiJqWvfzk5Vd4YHcbYdlw7mrcx5d3P8xta79IW76N0lQpP7ryR716vZ3rCilh6IQfcv70N3TcvnnVCp555I8s27oDzFi1uZEVf/0zl/7Ntf1y/OjJ+9ahJ/t75IWtL3DjIzfSmm8lZSm+cP4XuG76dX1W97H2o9WPPcayW/+bUQ0NjPzP/2TY+z+OBaMYOHcyFVdk+qyOOMUZ2qybbV1H0HrSBjObD8wHmDRp0quv7FWqXd/M+29/lrZcSGk64OcfvoDdG/fyo/teoi7I86vUGt69pwzPO6l0wDWfmsOmVHhIyGtc28ID/76IfM5JpY13/NPcQ4JGXV0d+XwedycX5nn8N48AcMq5M7o90K8YuPaoI1I3PnJjxwHqU6//EdtsHBcOG8xZO/Ns+v1ySrJ5DCPMhfzP039i+MCpJ+RbVGeNa1t48LuLyedCAs8zu2w8lDo7hk3j7A1rWDlxA2N2V/O2lz5GKkyx7M4WThvewtipFdRsqWHUzskEYYqAFGHOefKuVbgffM/HTq04LBgfT0Bd+qc/8NgdtxKGIemSEq774tdPyIH31Yy4HO0LABQC29dq/xdYnoW1dwH/eWhwaz9wDxwBD98M+TZIlcK8hw4/kNc/Bwvezr4tzobHK3EPMAuZ9KZmsqf8G4tmVRB6lplnBCxbegV79oymrq7uuENbTcte3rl4FW1hQKrszXxz9Xf5u8VXwwd/e9zBrfP+lc/nqamp4YXaGv5m/LlUrBuK5/IsrZjEx5pzZPdspjQIOkJGd+/1vueex9vaIAzxbLYwEtAltHUX/Pct2oJnQwA8F7LnryvY+q35BIMmUn7RP7FvyX72v7SEUfNndfxO9HQEpb1dE8NZsns3U30qf33wafL5HKHlWTJ8CVPCKTQNaGJ72Q5Khi0E4N51xm83/PSYQabrF9fuvsi2q2nZy3fWNdIWOiFA6Dy9c89RQ1tNy15+t66etvBidjOYmeEKpjQvPOQ1dz22da25PSi25kM8SIEZeeDxjY205dsICcmGWZ6tfYTWA6t6/KWsuXkh+bANI8TDLD9/8n7SA87mnMmVbF61gl997f9l75ARMGo8WOFjrm79eu75yhd415e/0avjx/GMmDU3LyQM24CQMMzS3OV961D/HNx5dWF/D9Iw9++O+oWoZksNrflWHCfnOb6x8BtMq5zWZ58VR9uP6uvr+eVTT5GfeTrBjOlc9vxKBm+fBkGK7CMtQM1JEdziDG0bgc5H6YnA5iO02WhmaaAC2NH1gdz9NuA2gEwmE9/UafTB1rIhzw2+hmc4nSW50/jN4+sY/txO3ji8joGjVrGs+VTCnacBkMuF3HH/y9zZvINcPmRWkOYbmSm0bGslnyu8lHzOefnZhkM+bKurq0lZQC7MA7DJdvDz393NNX99PRNGjCXMhZhDmAupW7aCG3d+4ojffmq21HQcoPamJ/G5dXlCGigx4wfP7eHMHVkgIE9Ijhz/vfOnrH1kU7cH7aMdmHujcW0Lz/12LblcCA75EBpGn0vj2AsIgxTDgjxjdv+A8btOJRUFM/KwaVUzY6dWkBmT4b5hfyDcmIcQUkGK0L3wWPmQTauaATpCYXuQK1+/C4+e03NhISQdJSBtXrWiENjyhX7IZ7PUv7isz0Nbb8Nk5+DQ3evsGtx+vepBsDxm4OT59aoHD4a2KISRbyt8wHhY+JdvKwS5rgfwuqcg38a+LQPxPIDjBvu2pNkz2wk9CziBhQwbtoX9+8fxav5Mzz2NO2hzwALyGDdP+xSn71tHprvaeqi6uppUKkUul+vYlg9hXd12ZodDsCBF7Yg02VSKECMbhYyJ23Pdvtfl552LlZbi2SxWUkL5eece8nwdwT+fJ0iluOxDH2H6tIvYW7PlYKOUkd+2CrJZSqougFQaswDy3vF7umnTXaxc9S+4h4eMoLSPNs0aMoRR7KCkZBirVv8fwrCNtjDkoaaBDGw6g+n50wkAc2P29sK+HVrIk2OeonngDgoLU5xsmKVmS80RP4y7fnH90tVn8NXfvnjIF9n240N7cGoPbFZ4qVw4bPAR+6cjbIWTcPsHzENKLMeMkhKqO7V7bskyZm64mE1DV7NtaP1hNT+9cw9toeNm4A4ekgpDzqgMePlAAA5jd5az/5Fn+GvuKYIg4LIPfYSzL3/LUX9/trTOJJtPkTLIeYqXtp/Ks2u3c87kSupfXEYumyW9bxdtPhYIwB3L58jnc706fvRqxKyTysrzCYJSwjBLEJRQWdl1kiuy5C7ItxYuh1mo+Qm8cFfHl7XW9btoXbycsmAZZXPmkBmTIWUpcl7Yb0IPj/p70ltH24+WLFlCHsCMMAiom3oKk4IUFqTwEPYvWq/Q9io9D0wzsynAJuA9wPu6tHkImAc8A1wLPF6069naP9hyrbyRkDekjLZUCR9o+wIvL0lz+fD1TH7Dv7MmmMoeUmxdVMHotWPIufPsxmbmeMC0dJoPp8tILdzCIIO1KaM53/3LHR1WcMm4c3h843OFDQahOyu2r2X4llLyRCGCPI9b7VG//WTGZEgHabJhltyAmeRJdXzbra1IMWtHSI48Lwxayc9H/o6Xy9eRClOH7Iy165v59aKN3Fu7kVz+8ANzb7SPsOWyIYX05JiH7Kw4lTAoATPMYfyuU2kY+goehOAB6XSqI6TMHj2bb1z7RZ6bVljTNmXMJP56z2ry+ZBUKmDCaZVsWtVMPhfiXgjPLz/bwOsuGk90pIWUUXaMdXD1Ly4jDMNDtg0cMqTXr/lYWte29DhMdh6hTKUDpr9ubMfrbA+sXUPb2KFlvLTn0OsdohCG58GtENwsKIy0VXczjVp9MaRKKR+Tw1KFfGcBlI/JUbI7RWAlhJ7DAuOUU2Zx5ZXHOTXaMfr3BiBV2GZGSMDTlRky3dXWje6+aFRVVTFv3jyWLFnC4toawtAJSDEuHA6Ae8g529somZomFxglQcCFwwaz6Zmmbt/r8jlzmPSTO7pda7P0T3/gT7f/F+2HtjCf57E7bmX4lSOg0/5ffs4YrG0TwYhTKJl0EWC4Oxb9nra0LIoCW/SBGbbR3LyQda0BNz5yI+NS+5kwaj+7gvYJjMJjpwxOKcuxqKyRaXYauOE4hhEQgBujDoxmx4CD35dTlupYU9qdZ9dupy0XEjpkcyF3P7+B1myIU7jeHmDgYHBq34sKVXU3yXLQ0zv3kA0LVRa+FKTIE7A0N55LozaNa1vIPziBTG4sc4Mr+eOZPzqs5pHegIdtGCmCMOTMlYu5rCLkV/Zj8p5nzM6BXL3lTFqzmw/pm5GTqo8arGo2T+C+mk8wffhqVu6YRt2uKWTGb6Ku7lG2+X5wJ7V/L2Vb6mkdOwnMaB1TRUkuS9UZZx31tXfW0HA/YdgK+BFHzLobwa2omMvcOT/rwQhd188fLxwLlvyC1sWLaXpmOoWOO4VRiz/N7A99hy+c/wW+sfAbhB5Smio96u9Jbx1tP+oqPNAC5fnCK/A8A+dO7rM64hRbaIvWqH0C+COFI+4d7v6imX0VqHH3h4AfAz8zszUURtjeE1e9x9T+wUYYfVN0SjzH+cEKHkjPYOCoVTwRvIEFwY2EGOlznA+07GPs9iyX7S9hZMp4fVmaADhQsYZ9w19mZOM0mhumkkoZMy4Y1/FU7aMur/jawjt32PHNCTB+P+yvrBuwkddtu4CZ+0/hxYFrgKN/+yltXUlJlFnSoXPOjjyOE1rYEdgCAkqCko6dsf1bdftBGQ4/MPdE++jQ7h0HyOeiQ3gYMmTPBnYPrmLfoPb3wHELaRj6Co1D1vGbmT+gavd0PnjFuw4JI7NHz2b2FbM7Hvf175p22Jq2IDDy+cII3MtPNzB9ytCDx6nQWflsA6PzfsQ1cFVnnEW6pIRcW1tUGTyx4EfHPKj3VtnUih6Hya5hdN+uNlLp4JDA2lnt+mYqwteRDv5A3nOUBGk+NLvTOpTqiwtTI/l84RU6EKTgqm92P5JVdR7Me4jyJb9gkt3DvsaA8rF5yq98H8x6L6cFr3SMBjm/ZOjQt3HooPuRdUwRD95E2R/fAfk23jXst/zi7H8nF9VW4s6ske+jNZxB2TEer7ulDJ2DGwB7tpB7+Rkmtb6V0T4YcCxoYs6BDfy88o0sGj2euSufpvqb36F+8jsxG4bjh73X5XPmdDsl+tgdt9L1u+jwkrGEK/cXQhNAykgNbqHhM9+kZNIbIQiwaFqt/NyxlE0eSkPdQrwwtAmAWUBl5fn8aUNhJP2U8hwpA/Dog6zQLgTWtAbsGLCDJ8c8yagDo2gNWpndPAu8cERryI0CXi7kdYx3nPqOo46eXDB1BKXpgLZoanf55paO3SqVCrhg6oiOtpXpFGGX+2fduadxxxGnRy8cNpiSwPDQCTEC6AjO7TataibMQUCKIAz42OhPH1bzvt01nLPoLwzIn8mkzXVM2FIPgTH0fHBKuHzhCFrDQmDbNKaK+vFTqGqoO+Zo2AVTR/D9P03llZYpAFw68Wl2b/oVuz0kPThg4JiJ7N9SjqfS0fSogaU4/ep39mqUbXPDvXQOViUlww5p0z4Vm8/lSKXThyzdqKiYe+xRuVnvg0U/g/DgiDMW0LLml2wqmUV6yHWU75qOh7CnZSZldU9x3cX/zLTKaSzb+ACnloVMKevauz3X3clA3e1HALNmzWLx4sXROm9jauN2snuehiBg6JWnU3HFZb1+/hN9UsXxiPWP67r774Hfd9n2pU6XDwB9t4rxRIpGF8i1AiEhAVnSPBuezuZ0yM/sbJYGMwkprJvI4dSNTjN+exYDRqUDDDhQ8Qr1mW/jlsWnpln97Cd5x5uuPiQ0tK5toTHfzIaSTudjeCG7TcuPwyh8Ux6eH8pVje8m1ZhiTupTfK7qu6wYuPawbz81W2rIhTkcJ926inlDVzC45RzOrGni7JaQEGdt2UYAAgIuGH8BH531UWa3tsFT/8a67VNozZZ1HDoMKEkfemA+lkPWrwUWrQVxAs8zZHc9u4dM7lj7ATBy+kCmTh/H1s3raRyyjqahG7iwbDqXcO4RH7fr1ODYqRXMuGgcLz4ZfYsOnZ1LtzEkbB/xcBqfaeCZvzZ0O6UIMP6007nui1/niZ/+lMbVy8GdfK53UxzH0rp+F3sXbYH2D/ZjjDVPOK2S8pFrKRvxMvuaprNhuXHxu0/r9iSMXyzcwJceXA5lGyitnMvlM8bwodnXdXOA8kMvu8P+7Ucuouq8whcZzwPRlGrFRKg6j2xdLe4h3a2nOdoZm4dMEVuekekplAUvkdm5hAf2/557djr5cAiX18/ilJaAbc8tO+Y0ctcRoc5fNOrr61lw508KYTeo4rQJLbBxZCFg5SvZ88zPmfvONzL35cfY8E9fZc2gKSyeNZAwFRIEAa9/17RjnrHc3UgtZowprybwTn+RKXRaX1qBt7WRa1pJ6fQ8EGAlKQbNHQO0f2Af7KdJVR+iomIumTEBpalS1raFuGcLg6UQjc7DS/sC6toKI5XNA3dgBqMOjGLp8KUMbxtObs/p+J7pMOJZAsuTDtI4zgtbXzjiB9k5kyv50tVn8KUHl5MPveNX14Brz5l4yJe55lyeAA4Jbg78smEH7xo7vNvglqkYxL2zT+XpnXuoTKdozuUPOxlkwKCSzm8qU8YU1jt3PrswMyHDgsonGLCt/VkLP8Y3DyQfhgRh4ZizaUwV91x9PflUilQYcsXY8m5fNxwcub10+mgefWkLUyvW8b4ZdxdmDAxSQZ4h4/axf8tASvftIu9jCYM0qVSaszM9n85vbl7YMapakGfV6v/D4MHTD+5PLy4jn8vhYdjj41LnNXIMTdN83uuofPFZKnZnAaOlejqLxjUQ2hrMv8PE5z/DwB1TyG9fA9UfAmBKWUjzrl+xL2xjUdOvezxt29khJ9t1Plmpy4kR9fX1LFmyBIAL585h80vLGfvMCibNnA9BCksZA844jb88sZbayhSXTBnZozOTj7UeMi4n3f+IEJtodKF9sXZDw0Y+tXAwi3waAMuGTe0IbHjhIDZ+x04ODN6KhSXUpXMMD4ZTMvxl3LIQOEGYY8ikp3mx7fKOIX8ojLo0pncWDjHtOcZgko3uaGOpgAv2nI1RCIOp0PjKxJt5avKyQ741vLD1BRr2NJAO0uQ9T0lQwjsnns6+QcN4bORO8CxntcC0A5P55oab+PKUH/Kx1GVMuPPX7Nt0BwOH7+PtlPAL+zyLvLBO74qZY/iHN5zSq1G2zqNDoTunzRjAnieeoDU1iLayiiiweEdwGz96NB+d9VEWbVlENsweMvJ3pMftbmpwxgXjWPlMY8co1LCzRxJu3E2YDQmBbVkn787W5xspX7+r25MAgvR4WradBawA8gSpdK+mOI6mI6hkO32khX7U6dGBI16h6tJ/xT2Hhyk2/OUzHNg7hXOuqj6kXe36Zr744HK8rI7ySbeD5XiysYQPcd2hU4YbnoIw3+meduSp0U72bTxQOBEhD5aCSVePo5zCehqzNO6FtZLLH61k74xNDK0Ouz9It78XnaeIPaDVz6LMXoZUaeGM0cbneHzIB/BoqrQnaxLbR4SyufCwLxp1S54in8/hBOTDPGsb04yzFhpSOxmbH0plxVSeXrqC51u3M23SNAblpxIGhaFvD0PW//YBmpdlmXr5mwnS47s9EaRjpDabJQgCznnbOygrH8TEUTPw3+8qpKpIauRpWGkp4a717H/+FkbcePMhZ45mszsLfVMYCiWdLmyfPXo235n2RZYt/iulE1Pk237VMbJnwMzykOo9eeraUgw/MJyLGy8m8MJIXmABoe/nFGvjtMnX05p+kt80rOLXq37Nb175zVE/yJr3tRG6HxL3U4Fx5vhDg+yFwwZTGhTWBQK0/6blo9G2I/0JkPbrR7r9wN7swbfDCtfbzz4M29oI0wErvvd1Npz6GdZMDXkmn+fMlYs4c/VSWkuWsH3wAcJgKEFo1I+fQj6VwoMUoQWsHjqS7la11a5v5lP/+QCj92xkS/kESsrHceH45wjM2w/9AOxpKIS+WWVrmGHLqBv/dqqv+kSvlgkcXJfWSnvg7PolqOqMs0il0x0jbcc6LnVeI1dYRg5emiU4eyhzl7ZQsTtH8/ixhNYQfRfLs3/4SgY2T6Hs4rd3jLz3+ESHbrSPpq/Zs7IQOIF8LkddXR0jXnqKfT/5AuWj9lM+5l+pv2oBd/7hOfLRmmLCkPINKxk54sxCYAsK6zOefHwtHz23nOx2+I+dO7l3zrHPTO681vtYazj7k0JbX6o6r+OXdgLwubObufUvr9Dwyk7WpdN0HZfYM/QV9lph6x6gweu4cOcIAk/hnsPMef2EZxk2fhNwasf9yiYPZcb/k2HxH9YVTkRwCDA2+FY2lm7jb6ddzrhBo9i7sPHgk5lRfdbpTJ98cMFp59Ozc6XTmDDmLVw/NUOubBrva1xD9pRSSqaU8l/P7+XsnWCU8MXgevKf+gJb2toIU0MIrwg5Y+gBLghWsCh/GoHBrKphvV7LNuG0SlLpgFwuxDDKq8ayevxFhO0fWmG+MFqDEVghbI0dXcGPrvzRUc+KrU0tw1ITCicjpAIGDCrhz794GYgeY2pF4ezdTh+oLXs2s/HHj7CsMkNzaIwoTTN8aRO7Qu/2JIBNq5rBxlI65FrC/EbOPf98Bm8aTGvZrlf9pxg6gkonlg6OOj3a0HA/WC6adckzdPLTDBj01sPa3bdoI/nQKS1fG7V33HM8+PJT3PVoQ8eU4bcur6BpWAWZ/fuZnc3DnA90nEHW7d/Vqn8OlvyCfQ/ch+fLKay9ssKf/uhSQ5gL2VK3m/W1K6mYvYt8rjAdn8/nDzujtGxqBZYOCiNt3kaZLS0slrvqm9Tky7l2wLvJWgnBlIC3b2rl6sYsbzrGSNc5kyv5+Ycv6PbkmWo2kopWh6YcysI0vy9dXBhHTwdMnDyMr0w6nTaHkk+ex1duv4MgzOMBhG0bWbn294TroOavf6Zk8LUQjCNFyFXXDKP0lMEd64yu++LXu/1zMXtKGtj54CuFEZp0wODXn87AmUdez1P4EC87bHH55lUreOGWO8nnciz9nzSzPvqPrNt1C1UlhRNPUsBpA6CurTDCFngQrWUrjD6bweDBjYwOf4Zl8/zDSPjB1jLqs3bUD7LK8tLDVm7kQi+M7ALvO78w8tV11OyLazaRDZ0AuGvTdvIGpd38CZBj/YmQCadVku6yLGDfo48QtrVhYQjZkF8uW0j27Em4BeRTxpKZ5/HiaXP429/9mG2Da3jk/CbG7RjAzgFLML8UIyAdGBsPtFHTsvewD/6nn67hrRsfJOV58jtT7Lvsw5xddeiU5c66wezbMhBrX1O4bzcXN/4E+FugqsdTcu3r0hoa7mfT5nuAPGapQ04qaJ8JePEvj3dsO9rJYp3XyBW+VAE4ocHayeVMXX+AyrZBBCVGaAHmacqbT8eCAMseHNns8YkOXXQeTa9I7SOVypM3I0Wesav/zIbv3o1nB2CpMia9aSd1K2oPBjYozGKVD2HL7g2c4f8/e28eH8dVpvt/T1V1t9RaWvtqWbJkSZa82/KCsRNnX52EAIEwQAI3zL3DBe4AGbY7cJkZhh3mxzBsSSAJQwgQZ3c2sniLHS+yJS+yrH1pba2t1VpavVTVuX9Ud6tbkh0n8IP53E/ef6yWW9XVVafOec/zPs/zWlxnENRnqYQFmIogLOOUyRexM6nLr8Ou2i8KCvw14p2k7c8dcYOg6bQLUT9OTZqDhrwIu0ZG0SLJYEYWhVNzqZxEctg/y87xGvTcMwBowsAlXwEsj5/oLmRJeRF3fexuWl47xWjbIC1qP1JYfLXekX6KsgoSTit1e5Fl+3FmbjI40/cU251TNJrVNGd+gXE0vtwNHwiOEzYlBiCFpD5bY7UvhFQk4wPHSQuFUCVIQ/DETCZPLAtwzJsNs6Cpb60sGo2Cchfb76jkwKOtmFJy6hU3VtUoMu0LhaKB10kK++jclc59nsPcknqLxVtbJFl7tuNZnmp/Ct3UKa5dzifz7mVZ/lIO/q7V4rBhcdgWKxuGO0+inH6EstTXcWVWU7V9J/izFogAogRfZ0Y5qqaAKCLPtoSlbo3Jnu4/i6ddfKKCIkipy8e5If/NjynjLh3CQh0WeQuA7i/HLjUQBnbVju5fFisZGloX/6fnl8iMNOyZLu4vu4N1whrLiy6ak00RQU4AZ66GUJMtIYKqxpReg4NPRhYEiVAkztwWAmMVjDaBzIoQy6UgzZ6TeC1K08m5ZzXB1/bg6PoxDqUZpApDjRwekYRLKzCEiiElT5Q4eG6pg90ZKm93qi1Zu5O7Gj5Bt5FPkbBzXq3ExIw9Z8fXbCWMwBSg22wMbnRyp/tf6J1ey/BgDz0ZWBYSho4I9qIlF2GYcPInv8LtGsQwzRjPaMt77ljw+albCrEVpCTavJQuzueBC5PL55fIkj0FrFr/L0x0fg0w0E1Ja8A6xrBjjBXCjNAtlNg4yc/vQETUxZqETU6dgcnkCy5kJ3q8/POeJhbTUUUTt+qCtFjSUOdKiSVANanJvNQ5ystNHs4X2QBB0JA82jZEXV1F7DhRMYIBi1qELLYh82/ehKkpELLuY7qvCbideCGLrmr0F5ZTNH6Os8unGM4MABOUdv6AzJz3cjazikcGxvjD0PjCRDEwQIc0UJAgDdZpY1y18W5OnPgjpgwjDcHI6WyISCjOTBRyzpfP+0ub4I09HNv/Bj8f/z2Drhnsqp3vrPkONp/tggbP7RPLaBzYRJl47KK0iXMHXqU3q5D7vQHOO5bjTc7AUd/N7+/YGLsHCzlyKkIoSBkCAeOZNiZcNjaEBdUNGxlxleIcryXZVwHCwOF5BNwboWTzWxA6JEZ0kzqb3o6a1cwuXx+T/mHK6CP5WB4jhjWxSRP8I8mU1WxE7Y5D2qREm53BZ84SEn04KEUIhY3jBjZpjT2bGuE+xqviF7EvWpe37qKgwF8r3kna/pwRNwgGwrVMjH6d1agcztMwFWKlUaTEbkpKJua5l0RIwnrG4ijVfNuHvHtWk7fzMs62HaCNQUxpoqCQO5LM9MhAwnE95gif+OOnYvX5n26/lyLf7yhwhQlTSbPQQKgEpclIKIwmwDANTKlz1P4IWm4yp5JbkN4uvqICBugqnClVaEtPQaa9hNpbwvvW7HjbVh+BmbBVtomUSK2IEN+lCULQntPGfak90ApPtz/NL6/7ZcLDFI8eRgszA6kdDFU3UdhfGEvYwLJSOfBoq6UMVASX3VnFyh3FMVm5a6aXjNAgOVv/hukDwdh1d5S7FhB8K279e3o8aaxIcUCL95JUnpcSsUTlLfizFRa+h4GB3ZgyhDQ1Zvq3kVRj48SL3QnJ6Xs3LGF3vZvwbCnhvk/woct1bl2xA2O2lMcOHbFKhmldmNLiO4alpL7hftZN+EC1c3jXHsKmFlk0TQ43vkDd4JOgB4hO/K6yWVBUXJ/6Gs716xcsDFIq+EeqCdsmCSQNYQ9YY0eRdkZ6pxbYbTtK03FcvRwe7gJDtRRZomAAACAASURBVCZbBNu89dhK7sQUIIWCFIIwvKnX18WECG4KOVX5GaZHB/DlFJOTtQz1jW4M00BBYduYwvORHMKmqlxz+4coa5XkdU9w6HGLliClRFEUVKUQTANFGpihXnTdyqjfjGfkKE1fcM+DPZP0HmpixD9Cel0xq9ZtjP3fYuTy+SWy7OUaGh6Kqr/O4b6X+XXnUbpDVoI2njTGaynjrJouppAwQlgM3fkh4aJihCdO9hEMX5iAbkp5QaFSnSuFF0f6aCmMIDeREutjE5O8t2WYbdUWDSQqRiCyaVjMIqSg3JVQjnauX4/5mbsRP3gAxYR7f99C7/YQLSI5Nj8LYOlANzkr1zI0foy8MRsBu8GWc1PUr+0mvGk5UlEWTRS3vnszPa8+janraJrG1ndvxuWqIWn6v9HR9DjTg078niQKkqbxBNKQCAwpaPIVcO6Z0+i6zhUig8MbnbhEEQeeOoCQYlG6QHTsXrXkVUoqdFRFIqWxoBTpbjpDb1Yhv7/pLnRVtdBpIGxKdncOx+5BIkdOUFx0B2lptZxv+RoI616aqsCbV0zh8dfxG1cxk3UOMCic+SMOcY7G849TP3E6kuRcgtBhXjjKXQSyOnCvs3jdipRsOD2Ba0rHf/lHEEd2W8a6qsD5sW+SU3cdd+fXxjhtxZkuRs9ZHE85aMC0iZSSNWNh/v3ZRlp2beXK9VXWPTsdp4q/gH3RYqDAXzveSdr+nHHqUdBnARgIVFl+RwhKh3VUEwwkqgm3DIS5eSBM3mQZx7Ezxgy6fRIARdMoWfYB+vqPIGUYIWxki2uZ3OvGmAgssH1Iv6KEVZ+4jKSDWTS5WzBn9EiSI5EKMUuA18QbsUQmbIbpG/gD6TKMImClbOIJTEypgBC8OjbFu9RG6r2t2ALNuOngd9kWElg9DgdWKZhIDqxWaFsSLYDo2FO6EOzgRI/3bSVu8SXSuV2jJGOyE19aKQOF25DKFvKnfoInrXtRnkGUhxBN2ASCoukKMo+uwKNPoqhz9CyhECu/mqaVwGUXp1KwiKw8qSrR2Nb95Isx9EIPhXnluUc5mlFHg6OEr8qkyIINM0kqf+mmXy7XBjZufITejv34R6oounqdZXcyT4yxsTSTR//2XZFSyTY2lmbSONxIw+Tj/NP7qznVkYFX38qxwF4MqaNJ2Oj3xya5bb4GVLEZU5qoZphtDf8Gk1bpyz9qo3dvDtIUCJuGK89KSuYvDObsZUxP5TKRdYr5UMEbzcOscBcuRBjm8UcZaqRu+jy7T3+OPxTcwO+KbsaQXHAhj48LCRHcbjcPPfTQ3A5+tBfoZUl+MepgkGTTQdV0mN8WFVGfJNkW7KWu9RFo+C2TgXJaK/47SrAVIQTbr6oj/IuH8KYuI3OijcmkCRQlJ2L0fGGeURRVl7qHcOdJnJs3oWZVMHzfKZIMSYnMQG/3cZYTCYnb/IiWyNxNZ8heruEe+yrmiOXrVVb2NfpaGoA5QvuYdNJkVLLE3opp6JiYDHnKImiblcKdDjj5asWuRT/vRI+Xx+rdiwI/UbcR+yJCpWip3RfW+alt1uJ/RTe6QmAIyesDE7GkLb6s+lbaXuW6p/BGhFs2A25oqqdl1Y4Y4azu1EGKh/uwFZdyTWMOiimQQjKYt5TJVBeKaSKFmENs4mLQUYB2099RHBggo6KGJ/ttZHp7GXHnE260kGOBZCQpBxEKg5SoqgbVN2Aca7Dm9qRU1k5Vx/i7F6ILRMfu+fFKbi7XUDBQI6XI+BJoycrV9LW7MVTVUn1Hqz0CzMw5ffX8kmZh4Xvweo8S/1wKoZJZ9j4Cd9bidv8LJgaKCXlnfDTqTj4x9DKhgRffNnHfUZoO13iR4zogMSV4l5bhWvZpnHV3s3TFjQvoASUlJZSUlOB2uzldf4zzR98gJ5xKZf4dWMQ7Sb13P/tuqsOhDYLHBNemOfFgFGmbx9F9Oy3V/hLxTtL25wr3MTj569jLYvtZQGJgwfdLe2ZJlwo7ekOscarUZ6mUCTvDsx6ilpJJswVs3LSedK2alND3cea2UpBSR+g3CkG925rxVAGGZFibpG26heVuKFEGSc94ndbOAIZq0qYOcoOxgSfyXsQZTuZcaifNY52xREYVKrnJeQQDc6cv4xQNYSk5OdqOc/JZVviXcZXvAyhC0Bo8yof/0IrNFBgq9Lx7KZ1iAFOaCDRCs+U8eqyXx0/2vS2Ptmg549ieTtznLPNbTIkww0hFA+b82Txp3Qk8gygPxGV3xXgIqlC5MfAh8k+vZYgQMAoCCpe7yCpKIbckLYa0WR8lE3y14stQ8xGPkpWrURQFw7S85Ir9bm6dHaQt6zYOiVJyNMGYKanyhZgza3nr8fZNdStYvcHa5Z54sfuCYoyNpZmx+xSvltIUG/7eewjrJvbMdWwszcJ3VmNF6H50BIoQ4HDBbEQgEhWKRMLXFTXWxXIuf/kJnOvXR0QINkwjhCkVmjuTKdpq4G1duMSbpsGpU6cWJ2dHd8SRUixI6iabqJtp54666znsWHpJk+2FhAjRjgjzo8/TDwqgQLvq4S7nGuyzQxw+9BvwHqfOCHJucjmBqaexKPUq7e4tbPnqVyk98hwjs7Uc7W/HNAyEEJStte7RfC+teAGKNEL4Dz/D6M9+Ru4//ByMiMmFAE2qTBw8AxdJ2uLDHzyTQBDPZTzBV0tTbbxn9U4uyy6nv8tPz2QPh83DGNJgsH0lS1JmCMoy/uf6Oy+4IB/pHEOPF1Ao1sJpi5jsev2hBXyq+Qa7xCdsgCIlmoTtRYn8sPiy6tuN1Dfu4zPX7ODYuELGq8+w5txxVJuNPGcubrMLBUFfXgmP3fxxDNXyc3tPisrHVlQkfHY8aqspudAxRlgfodzVxZXJ+8nM9zPrcSKAOlsH6gc/j2ImUbJyNaO93Zw93ghCINMyUYSacI6qqi4woI6O3e7JZfx746f5x2uCrFq2k/aJZQvQ47uvv57Dw0FL7BHZUdoUwQ2543R3vxArYS5W0rR4kiFrAzx0FbZOwXDmFKaw5j5TFXSur+WsspJQ9yFMTEJGiJ+d+hn3VF5JLuOXXCIN9kzi6C1HODUkIRQpyewfhK21+Bsa8D319KJ/F1Wa6roOReUsGbOhCKu8eyodPnPdrYQVASb8zh3mCY5TVxW3+ZvHaYsfjyoG31mm8qGy/xqI2ztJ258ruhMVdoX2Fq5at4/vBm7kxVXJSCFQTCjyGvx8vRNDAUXmcvMpFwVTXmvHZTpIUbMiFhXJqNp6du0sQOpD1iRmSpybCxgWPp4/sx9n2xBdIx62TzbjmSjCYCtSWCjY8eWdPCcOYmIR+6PradRjaXX5TZw4uQ8pwzSLNUhh4YLWe0y0wDlW+Jfx7Z6/xx4ZJtfzLvzp30eOdyJN2Px8Nz3bFdqKFAKemwnPWMTit+PRFo2Cchebby5noPk4hmFZfuQNn8SXWYkpNExhMJDejoLC9uLtwEJp9hc2fQFfyIdzNJvRP6TEvhcAEoY6fFRvKWDljmKAGI9O0xZ6mF085o6rAEgDYfbh00qZCC/uifZW408x1Y0ialEE82I+bUc6xxhVDyaopaSznqSMkyB0GscVwil1/L2xi/8wngJpcPjcIYyySktdKVQOu9ZTN9mEf8zBRFd0MbOI7M48y1Xd5dqAqvwDXZ3PMTGRz/R0NoV5gIzK/BIuK9PT01wwIsh2ffpKDrvWsc3XCAgOD/awbV0tda6UhNZf0esZX2ZeTIgQ7JkkdywZVVExzIWJWzR0Q+ehw8d4ILcMvfSj2EruZPfpz9GiaxwpfjclA50Ue9wMthzlJc+13PrZzzJ76iWMP7RaSLiUtB8/QldDPSAwTSPGcUvtT50ToAgVLauS0EQ34YEeIH/O1800yPIvaBKTEPGl/NTCIMt3aUhpxAji73dtoDKzkqfPH0T3L6PcAYde+AOmaWIKE6VIoTKjEue5XHwR7tfrva9TmVm5aEI9PxG+UKIWH1F+WqygGoWqASGh1FSoSk/GXvCnIx6u225l/IndyLCBrsL+VYLrwvU8te0eBnLsuJuqY+jn7482YuhheouXoWsqCBUpBIWaWJAsJqC2hrWJKXd18fm6/0ATOqIWOvaUEBxOosw5zhL1JNz6/zHQ2szeh++PJfKr1q7n1NDoon1v4yNx7G6LXdsjJ9sXoMf/84qVfHhvC79pG0IGTYRD4ePLZ5Ftn6djXjeF+OQqmsgNNz2J/ztPIdv202t/g8z7vxgxyQ4BknE5QJE5zPIkB+0BBROTwdFDjIpXmFSUS+rWEOyZZOS+0wgjixLXP+DPOoc2dYzT00kUPPcE+k9fgIgfpu/xx1j6g/+N8zrLjz9hkyUEQ6oXUxoIKTmRZUMXxJDLMBqHT79AXbJMEA/Gx+GJaYKmjC67/FPjE9Q6+S9RKn0naftzRdkOUG1ghGJ4Q/XwfSy56kZkQIAiMJGcX2JDV0AqFplyICOX/EkvAgU16KLxld4YaGEYJqO6SXZUMacppGzIZ6R3CGfKEKtW/xFFMXCbgpLT3ShTmzFQUFSF6g2rsJ+eQ5yAmKXHropduFzr2LjhEbzeo9xu28Iz7SohU6II+GSBwuN9PazxX4ENlTMulRNZGuvHw1Qv3UpwvBMFWN0lqXEbPPAJA1fxIY7IPDp8yxaYZ77VKCh3ceV6Hx2PHyTT24prsovUmUHar72BhwtexpPWDcBr7r283n+I5c6dBI0QMpJs+EI+7ll9Dz9/aDdCiphvXTQlldJK1MDi0V125+IeZhcLd9OZBUiMIgS3XlnDproNnHv9BKbei6nnY3Vfe3uRoJh8E9XofHuTnrbXCSi9ZGZvWUDIjsaJHi8f/s3vMe3tKKSSlK8hpY4qNIv6ElWVYqBlHOWoS+H0oI2NoQDbvMexlX4EhIZNVdlWuQ7WbsL/+KvACSJ1elKKwviHHdDQgHP9esrLr+bgwf6YtUeWrYRMr8qsYwhTDRNyzIlzWlvbcLvdC5MD9zFo+A316St535ofElY0VNOwymimDdvJ8/w27KZ0XwZSqhZKLQBjoQI4Hm2MIlypuslN2gZ6a4MM+YYZGhpisaifCRLKFdamR0gezLqZZ1Zfja6oqMbl3LHnQYo9TYQCtfS3lsX4ZXo4HEtKDMOY+znCcVu34fo5AYo00L3tqLmV6N7CaA8AkCaBc49R9o2/TTineJ+trqDCgScfiJk/Tw3aSZr6OEVrUhPQD2O2lEdfHkTXuljr2sdKc0VMQZrpzyRFS0FBsTaAgGmYF+wXezFF7oUi0Sw3EtHyoIAuRdLl97O3oZ0nLsGu4WLhXL8e/Udf46nH/pWzJZLupY4YYl9UVZPAL9zw6Y9xat8fqUkzOColhjRQTAPfIw8xkPZ3Ce+NT1ZVxeocsiKrDU1YfDMTQc3yQZYnTVOUPIV54tcMGSU8f2yImbQsNP8U6uwM7a+9wE3/816mTS4oQIjGxtJMlmd04fW+jM9n3c+t5dloauQ8InNxvW8GM9OBwxdGjgexaQrXbm4mMH5pthyhvj7QdTAt5FwcDlMS+gIjpU/iz26yOG/S4N5Vt/DQgIcjA0eocAQjZs6XZvsR7PTFOoAk+yqZnMzhWbsTQ4A6JLg8PZ2cUcubdMSVQffTj7IyO5uSuutibeeMSBu4iooixp77ORnJJawaCKEtv4uwtMaTTeps630Ozv948d7JWIbPMsqnRsE0Jt6x/Ph/Lko2w93PMf30vThHTqEIMAydbRMNPJyyg7CUaEJQ0xemN9cW4bdJbGM6E6F8igNpGHYfdl1QmjWKP6uFidFq8jZtJHNrYQJCUKaU0dY+jKIYEVsHyZTLBVNzp1OZWZmgfAEWqGCiu6oyYHfqXP0eYHLDLwn0NnDqlMKn6pyEBdiknR9zOUr4KGVNHahAaKnJLTU6itrNzoIf8cSJ9/Dq1M4/6VL6Gxowf/oNygJz9VvXZBfrml6kfdTN6RJJa7FACEnQCHGqdwItQ0VVSCiZ1q4qpeHYGJgQsk1i2qewhTKwhdNjHLb5DeQvNZwZ5RE5uaVmEhH+YOezj1Ca5eTMy/dj6DpNe5/6kxrIvxUhQjyilpLbyYz9h3R0hmO73I3XL5wwn2o+hFp0H6rQQWr4B3aBOgOBCgxToqafRGIpT4WweJknnclsDAWom2xi9+nPc/iKH7CtrIa6yTB0H8S58wbEC2etxs4CZjw2ph96AvHbPSx98FeUrF/PXXfdFTPRtYXT6TzgxzaTjkDgS20lkGz5QJnmBZKDCLJ92LWOsKJhCA0z0l5LRlxjX+8ZZKkZKafFCVAuhljGI5t5ejrLC8o4taQ7IWlbsWIF4XCYzs5OCidGUM0qTAU0adAxnYWuWH5eBuAuWkaxpw+p90US5rKYBUPTvlcwDH2uFAgoisLk6AhjwX5y7lnN9OvNBM8fJ/2qjdirbmD2TChyL6zvmvWhuxPK+PE+WwiNR9pTqD6ZhxpNtpCE86spK7sl4XtHUSItvZORpGEkK5ARQsWEc4Kbq26mvad9jmKxSLkuPuIT4UuJeH6aL6zzc/cIi2GcCXYNlxiLWWisvfIOWosFA72vcMfSqxddjB9reYz7jnyfqxuyccku7mjpw124jJKBTgpH+hcVkNy+YQki8i9AY0cYhZeRhJFCw+1bgsM/ELOPe/TJI0wvXQG5xYSkibO3FRHwExoeZMciiuL5sVjvUVgW2wQgJc2BIP/Y2EvIlIi6HK7HzifLC1mekc/JiV9e1JYjdvycEOLTJtk/tuHoU1Fzqkg6EyRHvw13ZoslGlBUapfcxtVaB8cGjzFjzlFuLsX2I9r1ZTa1DX/Webomk9FnLNGEAQwXFJAzOspodhb7rrgCU1Wof/4N7sqvjbWd6+7uxt7vxn+qgdTbLsM17WGdLcgHn3uQMxUWevq/JndTF2oCBOz7Fuz88oLEzasb1mZfANJAUTPesfz4fzJKNvN00ocoHfNR6vSSkzzLTLiIX1ca7B9xs44cBntC5PkMOgp0skJN5M2MIe0Cv30YkGjpoyhrXiFVGKQpNpKzN+BwbUjkU5WUsP3dH8fde8oqyUkNz9gtmJFpLrrQ7dixI2EyWmxiiu7KKzO3UFe6gXrfDO9taCMkJfbk9QSuTiM8OYkpBLopaciyUbCqhtLWLqRuEK4yURWL2CqEwedyHmFkspAjnVVvW0XqP3bcWvDnhdrWy/vPG9ymCP75TpXWJRKkRvboNkoHriandpQdW/Op99QDcFndJuA4jfXNzAx3W9w12UuGdw0O3bWggfxbSdpCwRzsae/DCJ7DNIaRhgewuiG0Hj2cYLHQtP+1RX24LjUWUxAuFlFOYE/b68i0vcwEwrzZLldzdsWhaTqoMwTHrogtKv7ee7Bn7UdLO4+UEodqZ1PpFTDxJCCp852hbnI/TJox5bRTtbP0i5/Gf/o8YZ/OxN5TVjkwHLZIxOvXx8jD0YgigUkpNl593Ecg2QPSRNUSk4O5NlbvxqHa2eY7jc3UQVFQFctX3zCtFnLbfQeAqrgvq8WQNke5K6F0Gr2+iyGbZUoZmqbFylWOQIDk4REEUDjp5dbTh8iuWk5F/a84PZ7L2aoNFpvNMCgZ6AIENYUpsfE1nBGkZ6uDypwbOf/7Z7HgC+sUTVNy5rWXOHfgVXZ94C5C3/u6pZaz2yn83s0xTuusqx1/znmK6m6Ofb3+/kfp6XkgzmcrxBZNY4o5tLkvd5Ys53DEQGguoihR5kwJy8wp0iYrQJjY9HS+evMu1laq1KtnON9lkqKt4aqtV729frEXiSg/7d97PBd8j8RCQeIjHlmcP8Yv5GrfONzId49/l5AR4qTnZEIv5ujfffPoN6lzp6FG0PrioV6WDFudYeYLSKJ8tszpAZaGBvFlX8uVl21mY+kt+HxLONu1j5eOC1Kb9jIsyzgqTGpdHkJOl6WIEgJQ0J1pOIxL7z+6mIntka509EhpzzAlzw2ME2IOwXxJhPi7DPsl2XLEH19qEm37LEuHplBzOpk1c0nyLmPJ0c8xpv2CpKoyWr1tfPf491liC/GejJAFcAuVqsp/XBxli7PIcpRuxvFRSWvf95CESTcFaaevYWoqF0VVqbnpRpLCfnyZGqaqWN56JrFNXUlJCeFTJ3n68d9gCkFjexO35rTRYaZTMFFAwUAPApOs3EHIiYymzn3Q88YCxG1bRioORVicNgH/Z93t/yVQNngnafvzhfsYp/f8Ds+BdgbNEo6IEpqXbOJva7Lxt32E7ZGdUPrOb2C86iIr0MtM6liklYyMbbbTXYNIoSMUy9zwQottVdX1pLZ8hZGBszjHa5mczERNOm0heG+yCwZrohscfJKBwd1Iqcd2abv7FIKmZWEfNA282hR2RSFsmJZ60GdQ9p4PUn7bh/C//ATZSwY4Jw5gmgaKhCxfiG3aebaW3/22L+X00vX0lF1PxngLrukekmpq0PLymN67F0VKVAOqT2/kXFIWeRMruX1sKSqgnMjjwdmf0J/SHpugL6vbhJgN8JqnC5AIBQrWKqyuqlrQQP6thN0xihluxgg1EfVwF0KgahpVW7bR19yEIXWEUGja90oCX+lPaW+1WKIRH8nZHfh7v4AZiLqkKxfd5d66YgfP9DxM2AxbXTFIxZG9FwIVyGAZJqCltiGEiSpUvrT5i6xzlkLTC4mqq/im8noQZ9sPcTpM/IqKT8mxHFu0Oa+2+RG1Zhjq9GEPu8gYX4Pu8HH1+zfHkoMFooxbnqIucIjd+SqHHcVsy0gl1HyWA2da2ez1sGbSYMK6M6AqZOyqwPTrsRLzYgKPBcimcp6S7oPcdf0mTg2FaTh5klOdnXP2EFJyw6t/ZPmvH8L++bvxtr7CHXsetHpUDnRR7OlHta/HpwQ5/coLdA61xny41nZmsFamJVwHGeHQGbpO54vPUxwMxhLecOdJcv/2gwyf2os75XtIEWZ8cA8bCv6T6ekWzrf8Y8KxBLBsiZ/2/FlmPZatcSjJMg2NJjqeYC31A8VsLc/mx7eUcuiFepgtxJ/WQ8b4GuxGOkF3C8d93wB0agrsbNzwYVyuPy1hu5jB66Kl0kgoWChINBZDmqLz5VCnjyMH2smYLmQorStBbf5MxzMJavrFVOiGNBL4lQDlGzZTuLxqwQbsSOcYmVMD3Dr0LKo0qP9ZPfAVrrxsM+0Ty/jYY0OsHjvBVikjNh8WImz3+wjJQuubSUl17Srede11lzxHLGZiu1UkcgpvKsri4OBQrLmGKeescOI5bIslv/FdFxQpWWKfxpklYfgPpAVHGe3eSCDpFLMfm8BvP43ZeZZC1UaFw0AVUWqijHTrmBeL+KTNOM5aHYEwEULgyhhiaiqX1UuWoPzo3wmEQriys1CWmJgKKKZJQShEx/HzdJ1rJ3z+TARxF5hA01gWHSJrbvwIKHH6Iq8ESHNRu4+3q0z+S8Q7SdufIQYOPk7TI9/hjDcHGd3VSkFZZhb67ImEnVBefivVzq30GBnMYJXXVFWJ+JNJJn2FCNkEpoWgGX0VULb452YXVCMPFSNRSQbuqK3DU5CWwINYbJGfm+gWtj+xBzNAllsfIHWSZ97go+nZ6MFqrgtksPUDFThK02kcbqSl3EbtOQe1s6uZFcfImAiSMiO4cdf7WfE2UbahTh8vPT+DUXoTSukNXH+Li6TqKrr3NSFO9ZHubUfVNHK33YQ56qRwWrESNgTSkOROlOJOaSVgBPju8e/yhU1fSOA7qKrKu69dT0lJMdnFqYvyvACmjw4ye3aU5FU5pG5J1H8OtDbz2q++iR4Kx64fCFKLl7FsRTXaVBa12R/D4+9lPDSAHjwD8tJ7/10oLkVJOrczthK2rMx3U17+GVyuDXHK0rnvuy5vHb+87oGY8vbbx74TcQDfxxfW/ht/7JziuM+IfUtfyAfVF1BdReTz/lEbfo8NZ14AZ06YpVeM4h924NxUfUFj2Og4be7uZSqpB1soA6e/BMObPPee+aKM6aU4rvg8dUBd5Bgjz4b5sFEGlDIhNmEtG5ZqzPTrpC8fhO4/MDn2rgsKPGLIZtyiUqLa6V73Q0zDBMVaYFEUME2CdgfPbNzGHkcl8qpcNp06yNaG11HtKxHJVeiz++lp0+lp2wfAlUomL24JMpA1y1rFBbHeoxExkJCoioLz+Mk5Mn7EnNhRms74RDNyzLrHphlkcPBJZmfdi15XRRGkFVtJm1BV7nzv37PMYcYSnZCh8uSJT/Hj1yr4VI0eJ6YyCTsmUA1Br/dpStMtzzbDCHHm7OOkVipv23Q0ikoFwxb3659vXcWHtixNsFjYvW453+8a4oB3Kpa4CazOCPE2G/EO/qYZ5sBgE10TxVT7ofunzRh6FjeLT/Lcyp/hdQ1Ql19H43AjT7c/naCmn1/6qsuvo8iXipCWebIqAVUh87I1qCuuYvfENNviOiJkOu0UBQZQI8a6pmnws0dfYshRgNcfImxI+pOKMIQK0kAKhZPpdQxphVQlO0h2aKzbspX83BzcTZax+qXME+0Ty+g0v8WKrHZWLdtp2f24WMAplKkaX27rw5QLryFcOPmNoXHdu8nc+xCuaWk95zW34ur5Ejazla5iJ9KmAiYKUJ0MrQEbhgyjiotsGuM3epHEKXPNFZEkMYSUgklfIaqqEh4ZYSQtlZyRUXJGRti5dy/DefnkjYwwLdLZo1iqVcWukJdexvRkN0JKQkkaRmhOZLdyzXKKcgOgJUFfPZj6BVvy/TmUyf9/xDtJ258YA63NPPbzh9H13MhvotwRwfOjTg6/HODeOhtIqzG8cjbMCodCtchhdOsuplOnY6jYoT82kNosKQluYDa7haSxakLZBbB94ee63W66z79GvtaKU78LEKQ0OCl6Ty7d3d0A5JmuRRf5xIXdOufog3W7U+Gp9m/hty0nKdTGkVAHuqljV+3cce39OPLKaRxu5JFv38VHXwyhmDCsSczrBGVXWO2NVixCBT50dgAAIABJREFU7LzUSOhBqih0e9NoiTaSX/sZdlb0UXrFahwTaeh/bMGtWTiXRGIiGUzviB3rzOgZPvbSx3jwugcTOFTRhHa+8WY0po8OMvFkOwDBtglmm7sxPANouQLCo3Qafgxdj10/CRgoePt7sI+GqMyvYUWSi6qk1Rzy5eIJNSGRKIr6J/UkvRQlafzOG6nhcnw8lrAtpiwFK3EzZkv5acN9lmoUE0PqTIkWPr3tOj7xx92EjBCgkiarrQ8q2WypNiem2dZ6nDrPQbj+2/jPnqP38ReQoTBCTWXpFaM4c8I4c8Iwsw/qH4K6uxO/VyQZHTK8vG47iZFqAgrZk2sTENA3E2XEE5mtXbQlAIq2gXKk9sPDt4ERwsEqhPqvVl9UTUFxakzudSeqTKcacMTQwwAFbftRzHz6M7IZyMihyDtC8cQop5ZWcN+tloqNnEI6Sqv44DO/otSXjjRGmPNAs/iPignL+9M4sWaK2fdVU9SYzGSPjmqvRdUUqjbrFI0OIBr+EwAlq4LUK96LmlWB2+1m794BalcKFEUikAwM7mZpyd2Mew/GroUuo7oLScmOO6mqKoihQ93dP4ttJFUBVZlttE8s4z+b/FyjCRQkmqqybkstYbuP5vY8SkpUhDCRUuHoUR8vnLuXYfswNsW2wOD6zeJI5xjBsIlkrjuCmWHnH4c8Cd017l1WwJGJacKGiSLhlkGdv9lcGltI5xs1t4kVfHtoFWE5iCrhb1wKS0ZNNOzcnvIRtl67nHV563jgzAPoph4ZJWJRk+C8CQfXHcvH1MOgKLQtmaataIqHex7BN7sUPeIDGO2I4PWHGIhLygyh4nYU8dC+Z/nktkmqMtNp8ZbxVMEuSoIDyLR0apMnSEcyHNa5+ZprGHD38NqDv0DMTF4SKj9nMaJi12p45J5lbIw8EvM5hR8pziFn3MNr7gGuLClierqFr7adY519hKtLL79or1BbpyD1WBm2mu+DcxBffj5e+xSZd3wfl8fDkvx8hge+FUP77lj3VU5NTRGQE0zPnqMs/7rFS6OL+KTFl2xDoWWEgjoNDQ2c8/s5f/nl7Ny3l5zxUXLGx8gZs1TTLcMTmAX2WKeS5LIqxgdCqP4peoMaxOG1+ctroPUP1mcqKlTfAKl5C88tEv8VvdreSdr+xLBUhNZkHFXLIRT2Z29HqEW4+hUGq++hKO0XSGngqXwEu6+Y5Mnl5PtTMUUmtnA6BeUudl6Rzuu9jzGT1YpzbAVJvuXYr8hZ+JkRTxrD0FHVUm4wJsmXWQzh44UXHsOQJqqq8r5V15O6yCIfv7ALoVJU+D4KC9+Dy7WBdcCvd36Zek89A9MOHm9tiVlAtJ89S7nIZuzYU9z1QgglavljCJ6aSkM67Kz7ExI2YIE9BRDXSB5mai/Dub6MrT1e7JrCoDT5Q2qIEl1hMKWfiYiyNBq6qfNMxzN87V1fu2QOzuzZ0YTXgeYQyGzCIwb+w79CNUdQKwojyaLgbIqVyKycaibPsQRFqJaPmZTk2JIYinlWLWY3eulxKUpSl2sDpXk/o/7VZ5keqqJ90uTWz/oWKEv7W730q5YdwIzo4KGTr6CHkrHnzwk6XHYX9Z56PljxKX75xln0UDL/NPoMABWlG3hfQ6u1yJoGu08/SZ2/Hb/9ExGrCgttHkkuRJaMkDkRxjWlQ8OvFyRt5/afpd/sZFoJWO77kc4gFTudCUn1BUUZEV6MI/XdMc4XAJpIKIk6eu8HIwjSxCHOkLP5HMG0G1GcGr49nbFWYTGVqVpLjlaDA8tz0dXQRlnNrdy3tgBdCESpyT3P/o4DayJjPiImMBUVd1E5pVMaRuBI3L2P6pcFFdoSZtt72Zu5j8lq+MGtP0U/N4Wp91G7fRP215vxVd6AGZwkafUHkIad0QfOcL7cjW8iC4+ngsLCNis3NXSYtrOi+hsMD79ESziF33bsp8Kh0xmysWulk3u2zZHa459/Qwo6jEmU5B48s6W8ZK6gSJ3kivWruOa2zdTX13O8MY8zp6/B5RrC5yvAN5VNhpqBx+4hZIZ4puOZt5S0bS3PRlVEzMvNMCWPdngIJye2pPpMaT4PyzQOdIywcUxnzaRJ+pIgRPYNUaPmNqo4xyoCzq2E/cI6hoDefBsl4zqqqnDrZddQkGeNpfiekjUDCuu7pnjgla+TmZnBu669juGMIK+/9ltMPSISMU2mHCGGMwPM2pYTipQ44zsibC3P5kcphTxVsIviwAD9SUWk5M/y2Q3/gS1k8A91KidG72XSvoUUTzOBwXPEXChMg+effx7TNKGoHGdvCwRn3xSVv5Ax9GIx0NpM63e/SqGuc6g2n1+/+x50atCo5CtjX2dX1Z2L9gr1NzTQ+7GPx3iVmfd/kXMD/xJBNxUqHHdT5vGwoejLeO1TjJDFqakpXHYX3zz+C4tL2HaG+53VC8dIyeKIfTTB83qPkpaWhGlYSL+pacysyWKj2k7LSCmdoSXkeYaxeQegwBJfCATd+gRmbhFIE2dvG+psxDZICGb7m+PQPQmtL1poduOjC3htb9bb9q8V7yRtf2KUrFyNarNhhMMoimDlpg2oG2/i2efHuWPChgpo3YPIVZYRoRQ6/qzzJE9XcvBAP2OhOeTDHzhF5mXfYxyDcalSlvRjHPkpC9oPtTe2RBprgyEEQ+oE+UYWQ9oEhrTadhiGwaA6QZWWvGCRn09AbaOahyem2YYF90dbd7x2+jXO+c7hSfJQTDZbXitlUu+mytiBP+M4prfTSlMFnC0VFCclEf9YXoy3cqGY3y8QoOWNoQXcs6itwOMn+9h9og+PoePIbkZdJDGK2hS43e4FaNtikbwqh2BblIMRKU8p1pG17EpcHV1cs3YrU5XlzGSXcf/LY2RND1Az3UrAnAUkprT4OMOzbqydnsQ0zbdcHp1f3s65ZzUzJz3zqTYJ4e1dyui5Gyzjc8VK0DKX9pJT+wLTnirCvkqm0jT+xwNH0LUukpY+gJKlY5caIc/N7FiRwvU15TGithAaeugm7Pl7QOh8q/E1Nsx8j6CZEWkZpfH90o9yb8+vqc0KIux2ZChEaJnJ4DWzSMWJshQ2nPbhGmiEPZ+NNZxveKGBZzteQWrxRTCLl7l6w4oF322BKCOuhOlQ7eTe9hQzfdkIWNijdSTb4rCAlbgVOXDUlTC51x1DMBNUpgYEiz+Mw/Nl65xyqujKzEQXwrLskQoP3PyBueNHSpmqlFxVtpkiRyttR+JZWdGxpKD1TLLGSGOVksrLW0c5N7KX4MtHMHSd/v2H2Zn/fuzVN2PxMC3ivT+lFcfIU6Q7Cxn2lJOf34kiTBSp4RyvoWjd9RQX34kYbmSw9Ri903ONrufzlTas/0/2N/+e+ztfoN95AufSU/h772F0tpQpkc7X1q/A7Xbz4osvIqXEN5WLbyoXJJjCZCRpJPatxEVG4/w5IPr6nu3LuP9gJ0bEVaH57Ajq5lyipq/VfssUusqVxHK3vuhGJTNzC+2ilm/Kr6ALDc2voEY2SzZF8NGry8mpnI3NnXP0gGXcf+39tBx4htS9Bzm+xQFS0jc8Rsd3/pnX1vYQNsNcK/LQhIKiaozlWpxOZ7idsBAxpC1aZox2F3n8ZB8NPV6Ghqa4MeuPqBGRj2lKcmdeYtN4B4fP+1AycmNJvjV0oh6FAiMl/ZLECBcyhl5MLRvff7a/tBgdDVOo6FJyTlZzfXhiUVFCVBSmuMrQ8lYw0vYaZkGEViMNOmYfJKXRRW6gj67bfsi3m75FqS2I3xTscEraggJ3WFzYLmOeT1qwZ5KxjsO0iM9hyjBCqqQ7dzI5nYdimlRceRtjSTt47uQsum4gai26ghSWpVOmK5Mx33hM2GGmpmMPB2Oc4pK6y2F/BGkTEU7bBXhtb9bb9q8Vf5WkTQiRBfwei63VDdwhpfTOe8864GdAOlYF7F+llL//y57ppUXtZVcBkL+snNmpKUoK0vjc2jTc+wcB8A9XgbSB0FFUDQq3cWDGjnc8FFMvnj8yyLj/IdKX6REbDx2f/RVe+Td7QkkrUxW4jgVRIr5vqqax4qYtpE+nsCI1l4aXLJNBoQrOpbWQ+96tLPXmLSCuR/kKv+1u5Itd5zFQsQm4K72Z25fUkB3M5vDTh1lhrCDTtQ1nxXrOjCusmTAts8+cKoLeTkwBD16rWF5H1e+JHf9iPR3fLOaXLbffUUlHwzAV6/MSfh9/PAGsqbiF75/el9B31K7Y2VWxK6Etkaqq3H333QmJWwLfK8Jhmz07Cuo0gSY/Ulj9r0KjbZiqRvk118X4WY+UWgvRlv4a8s7qRESpNPoNJnBhNaO2jDOT0xKJ5xeLxThsALMnh5G6if/k8KK8tvloZebSXnqG/47slSGya20sK/w5L3gCMYuHePWoZp/lk+s/S8Pk4zGjXUXq2NLPxt4XtJXy0my6hTZIiSlUDmRu5IhrDbuXqlQEchj69wcJLjeQQloehabEm2HDNTUL9Q9C46MEr3uK/kNtSNWM89aVIAUpvnJs4UtoADaPF3Nm9gyHN9yyeDljdgyLN2aVX63XcQjm/F6ZqsBRtx5eSmI6cDl60ibqJizejhFpBSQVCw22mnSaZJlBvlxbyUeuymGgNZfO+ucwdIv7WJzsI9sRwJ+5mvauUZQI1255fwoF2Q46I4tqrqMYITSGlSkGxRiFMot01yjujd9BEma12cTpM9dw5vQ1ZLqGqR2/jOwPbIud9vxG1/EctihfqX1iGV86No6SbpkfS3Q0ZydGsIyPX6XQMPk46X3p6IZVRvSkZ9CUp+EY0wk7nsabZJWmNKGx6yLtrOLngK/dvJJ/3tMUe31VTT4vn/NYGKQ3yN/IJArLM2J8tI7IvHfLh6pICRgL5rA2j8HL/HfCwoZEwQD+pjCLJUn2uftfYz3b+357nvOHBzH0uT7DV40V8EReXqJ605FC9ojC6eUBXt46wm2Ondx+5ce4IiMYu56DHluszBg/xqIlyZ/sbafF00LLeCVmuYowDaRUmPDmMDjUipD5cVdJUlqQRf+wFwNQFJUlS9awbuu7MJJTOXjw4EU3mfEWI9E2dIupZceXr+TohstZ0tdJcU8/2hIdXUo0DGpFC5mZdy7at9a5eRNqXhXJmz4FQsV0d0DeXsvxOIKIj7kyyZ3p5Ez3Y9yTPYUqIGqGdI2EB8bsl2SXEZ3vRpfsxawIg2IikayfOMJYczl5o6NklizldEYphtlsJWvR5y/yeWO+OaNpRVG47s6PxHiCMfFIWclcC7wXv3TBNlbbMlJRLUAVVfCmLfH+UvHXQtq+BLwqpfy2EOJLkddfnPceP/BRKWWbEKIIOCGEeElKuYgM5a8T8U7jiqLQtG/O1fzKj3+FQZu1cIZ9lSwr/DmKswlPsJYP/MZPdmCM90s7NiFQVQW/L4QZr2SXMOUbwrV8DzPD1QS9FfS3enE6VPL0dG5kA4OKl6LSINL2AkPFNXg8KVx//fV0jnRyf9/9DPcM81DfQ5EHd+FD3zjcyD81PkE4/VYQEDQNfttzlhfO/ZAv2j+PoesMuTLZs3obpqKyuw5+cnyateMGodFWpKpw9uPFrKyc4E5KWBecs+m4ZOg+TvId3eXEJ1BArG/mYJvP6g0aSdziCc02Zy+9ShfbiraRnZxNTVYNvpAvttvcs2dPzAzXMBLbIy3K99pSiGIfwn/sDL7iNM43+WgJTTFTXM37/9sXEgj1G0szWYXKyMtDWERyy8+sLdmg0Z7HbZs+QN/+32GaJnsfvp+cpWWXhLYtxmEDLqlDQvW7CgDILUljsO9hTM3iqyB0FGcTW8tXY9cUDH85SA0hDFRF48tX38LG0kzU4bq4dmAaK7MuoynYA+iYyausJNYyUrP+ESohVeFHg+f4wsGfo5l2HK2CqahJuSlI7iHaOgKMEMGznRSamSiqghFFwCy5GRlqmKYn2uD2ygW8wwT0MY4XU5+xlveZdYQ7BxcvZ5TtAM2xYJKOIpgTz3YQ7pvrwOCsFjgCh5he8k9MnK/BI3yYU518emQ5/5GXZD3r0TGFgilUJrQk/rGtD/PEYdY7bUg5hyAOBVzUZvp4pXecud64UNmXRvm1VfRo+9FDIYZnexnK8vKS/TQmJqrSw3VrgkglomYUkvQMD319a5iazOFEehNJyZ2sI9HeJ4psxHPYonylB453oaQdt8aTBKSK7i9HdXTz295fInt08kJ5bBPbGErLZM+a7RiKQCk0WdXZTVagAW+Sl9srL2yFMH8OeOHsYMLrnDQHDtscUvS+8jwLjXuxm464Uv6AL8TG68sSjl3fepz39RqElHxL/CUkQghWpybzkeIcTvR4+cnJQVzhfnzPhEGfW9yjHo037FpP8fBjDCwrtwamNNGCMzFUzZct2X7thyjKq6Eock0HWpvZ/93/TaGu06pprF2Ed1ajjrNpsgF3oJDn227msvxjjA6X4J/KolY9ytCkQjgjG1BQhOTqkV+BGeaMuYG2yfcyGUznNU8fk9kvWmPsIs3iowlw1Bcu2ns5Smmp99QzONnN/xgtJlx3BdrGK/hFroOrs4K8OhjltH39gqa34XKJ/vc1BJp7AIGv4DBJExUEMjoAiTA10vonQbOzPDePqWkrwZHWXg2bENy76pZLKp9H5zvn+ApEuYZERxEamU0G+e2tCJsNNcOF/ee/QHn3NgxFscRAEE/PBqCiooKdO3da18x9jIFsH7tnZyzxSDy6l1+7aBuruYjuJi9W2/jLxl8rabsV2Bn5+WFgH/OSNilla9zPA0KIYSAX+C+TtLmbzsSczQ1zbpdu6Dr+iU5u/ex1nD9ioW3OpEIKyi7jub3thPQW+lXYnRbizrI8tq8p4ODvWrFlvAvXskOg6AihYajHyVkZJrtGY+DQvRRXbcShCoSmkB92kZ46grvkB3hHwxhS4eyZa/D7C8ncnsmwfTj24B45vp/xyU7yakoTGkvXe+pRZs9C2k3WL6QOxiTelGvpHZtGQWHQlYOhKEghCCuSB0o6KA8/TuqaHrwr4cbaDrIETJqj+B67Cddl34O6uy8I3SdewIWS76FwdSyBUhRBdklqrIH8fD+1KKFZJPdgL7mPBq+BmLDQtVuuu7SJAhZ2Euhv9TL4RjPnnz1JyYybQptB7U03k046BatyWbOlOOHvhzp9eF/uIc2cEyaYwD5F57xqsHl6IqYOfisK0gtx2C7Ga2s62B9ry6UqgvNiELsrl5LLVRRtTnBS5rLKy081G/iUGwGJy3wXZQ6T7u6fsSxzC/dfez9Pnz/I7w7aODJdgiP1E3xwR5jKpTv4So8gbFoefRKBLk2kDFM/tJtv1iTx1QYTe5cg50cawSqJo1Uw3pOFfaOPzIoZUFQcq8op6DTYGq7ikO080YunIFijZJEz4mf/jxq4/H/NiSYWVdBGeDGH0y8nPC4uXM64AIcmGuHBmbkXCtjbfspki5NZYwse4eN5e4OFPJ7v4h/StzLmSOGywR6SCpP5DzWdAzILE0HIMHiuuYXxU69jxrpmCAwJZ8z1mIaXuS4dAmmazE5NceXHv8LpPU/jcTdweGY/hsMV2wD4U5ajGJrFQzUVprx5YJqYisnZ1Gae7Xh20fE+0NrMwPlpSLWwDxM4MZbEvp4jqDlmrL2nMbkRESjFlrsPU+pITDx2D/vzDzCbtgtDEVYLJylwKHVsHkjlaNHRC6JssLB8d8OqQo53j8dev3fDEt67YckCCsXF2q5FieF9Ax7CSiGmUBGmjhAqpoSvtvcjpnW+8X/Ze+/wuMoz7//znHNmRhpJM+q9V3dLslwwNgbTTO+QhCSwCyTZbNhdQnbfkA1Z0khCIMmym7YJSUggJKb3FjBgjJuaq4rVex+N+syc8zy/P85oJNmGhH3fTfZ3Xbmvi8vC0shnzpzznPv53t/ySB2m0c4ZehsbzAvtvQJhCFwIpFLU9AaoWV5KbF8zs54oCrMLuPDjX+GCRajayed08Zhx8b08P/Zdro9x5GffZkPI5Oz0OUqXdQMmCfFDbA8cJs0aRM8fpW+wCzOUxtpVpeQ0dQMWh4Jb0OZiAUFA99nGy/CBYfEnb4oX8/UcmoOVDh+PdTUS4qNIoWEJxSujsxS+dpCsqip6U87nBLHM42CLx+iAjdB6glAVxs608PUsdbw9ZxFzJIXJ155n5v7v0WcEcKs3mVeRKiUQwiBBV/j9tX80e3R+vYueKCan9v9gru4muehsYu6JjWSOzh1vIGlwkLN3vUV7YQGdRUURE2YNYZul6zorE7KZePYwvbm1dLY8ycfW3E5oVODwNfPjJCdD7a10ZxWwo3glVVtPz8N+b3wKM2zHZf03TJ3/p+ov1bSlKaX6AZRS/UKI95dvAEKIDYATaH2f738K+BRAbm7u/+NDff+KjouL8FgANN1AKbnEeLFp7wCWKWnaO8AVd1QsWchGomDTpYX0HThh2xxMpND11hco2NBPZlmI3r7fITSFEBaVV0xGHlzeSwuZeKOLmcRG29NGUwgp8XhtTxsxJtCEHUGzYraI899dhaF0zMPjHKUm0rhVpVURe+iniOH7MKNWYIlophJvBgTf91jcO5JB7OgMdXkQ1Cw0AW3Ol+nI70bkOzgndhZdhHdWGvi8Ot6X7oS0FazL2/DHo2xOI/nunU5d1EAphjrCMQ8CdF1jMs7gh7ta2FSYFCE0695aEFaEIrLYd2me31GYW4het2D7sXbt2shhnPyQCMyY1O2eJiFxGdl5q9BRuE7ACjGJap/it31+yiozWJeXwLs736H25fdIchWyxZuOJuyx9e8IcgyLnOAQKWKWIU1Hcqop5wfV+xHv34/XNtDmtxu2eYK3ZQsCZkeL6Hr7TpZtG2bVxh0RNWl/bSM1Q7+kJ6YFKXUyfILN+hNM6hZ6eIyWbF1EYKoJqSA4lUOyVcbH8ospTbAfnsmqn2/v/ybTjmIccw0YoVYasjWOXD7DWcc05vTlzL3WPg/nMFAdh8sbxJ0mcKVrTJ/poqtuDAIL76PUzCRdxSNRJAiWNOqnVdCeY++cN/uncYy3QJg4fNpxxvtkDS5VnkIDPXSo9eTLVJarDPr1biT2GNdC4jvwHk6hk1l0LkVlq/hCvM6++haClkSTFtm9bXbDtmh9EAIGBuw95zzSJlEIXScUSufdxyeR6hxc8WUkRR1nUrO9pnRdJ9PMZe6XOcgz1xDtW0aMNkV93ovsNiYZYzry+xbX/CTAlThB0aUWQlNYWDzc/D1w5zMf6aYLB3efcxMjoxkkJ3m479AugjKElDDiGsUUu0GdiUCgK0mWfxRDGdyWfdsHboxOF2dVFN9OW+9uCrO2RtaEk9eGk3mt85/9YmI4ZNnnTlno4WZUAqF5M9nw6L8vqhnZez5CaYhwwzb/mfTtayNpshewMKan6TszjW8Ov0Frg0HpUD8la1LhpPeXs3I1mqZhKUV/ei6v5y7nRNMA33ikjqApWT9Rx4aQCUoSlz4JKmSPElH0pufRkxJECYmrdJxi/Qb62qE3tJGZqCJOeGcQExZI0EKxYdBeoGkavb29vPDCC5EM0k2FSZQldlDoaaZtopRNhfZ4/OTRuOr9ASsYxMAeh2pIeObXdCjJ46urkG19ODWNXxVbpE8u9e3MSL86gtCi25vOyKKjWTjmkojVLmAm7jCt+9/l6/n7yTaclBNPSfe5uBO6iS94j96+39E/8NQfzR5dzNmlRsDuIgJ7IKTtYuLZp1GmCYaBMAySx8dJOXKUM26+mZ4ZhfdAAGUpBoxx0kvSSXxHoYlYQl2SN4o+Q3A+MUVK/n33exwtXos1HuRntU08WVl22mbMOdKEZrlRQkMoRVFg+jRH/eev/7GmTQjxByD9NN/61w/5ezKA3wA3qYVZw5JSSv0X8F8AVVVV/3cSvQ9Rs5OTIATu1GliM2dJz9yOJ25tZHZe80rHQgMSMumsfZqo0n38ZEcfPYHzWF70CVK1KV5qfA0r1gQ09Im1rFh9PTNzh0A9CSIEOIiJshutQOcE48+1gqVwi2WIQgdKhlBKY2I8FSEUT48+TYmZy9rZMtY6V2AoHR0dpWCooRPK1+H31xI/s58fbfkChyYnccdV8YV2mIeCQwh+uDrIjuldnDn0Cgei04gKNPOdrI/j6pEEsjVeqf8yxIZsk0MFCeMhm9QZJnT+0SibkyTfA8ZmBjsmFhDp+RKQszwBz7oUPvPKkSU8uU9doPPrdjsBIUwzipCvF/M7sqaL+WTerXi8Bqsrl+EIeZYIPK64oyKCivY2+wBBssP2gBPC9tET2ErWhv29fK22k/vXxtD05PcAi4GZfRzWb2JtnK32vQ4njYFBVg8+x0Cf7aS/evuFrNy2/UMJEU6XhhAamGbm4CAotYTX1tvsizRstgWKXJIXaTjt+fv8ONg0LS4Ut/H8ih8yENvBisxd6JqJCHte+Xz72VT4kdMipvMeRj8/8jxirhH3XGNYvQUOoVN27g1k/P01zIw46PzEJ+3cQiCYL2nPiibbNcvI7v38rmkMOT8qFKDrBsWhjIiQYySkyIpxLJyPk9HH2F6q33mF97wVbM5ffqohZvcBOPRb+yIKix9OV5p7YSls0HrZ42iyrwVtHEKCHDVGPbZ5x4AngT5vMlnjI7Q1tOJplKy+bQ1PlBfzSksb/kceIn2oB00IVvQM449yEnTGMZK8GitoqwYlgq7UaXwJJudkfpLDu8yF/k7PpOTcLZy5Uo8IZ6JfepmJ0Fk4OrYyF9/GzLqfUKyFKLTg3S4X53vMCJoxv1FJPjSNZZrEpE+Fx4f2fVrkCtHm7rD/LaVxQcanuGGNPSqu6UxiputWUuQIWdPpDGW+yKCnFe/g/WzK+Byxx46QOjmObhicseqMP3r9Ll4D/P5aZvo/SypBZvofYz8/ihj7/il81yXE8DANAQTnObt4y8wnFBYHXJKeSJ3RiTVTyGDymzSlHmDlwBmEs+ZASdLVbt4BAAAgAElEQVSCnfTKIazoKIKeRBBQ1z7Be/HrIdbgaLSF+O1DAGzbePlJRyLoTc1m58U3IScstIkB9BgDMR6k25nBBk1HKJgZ8iDUGEqaSAnDw6MkJ9ubS4lk//4nCB1bxdlp/4wwNfKExX1FO5kNuOnztHBW0XoqrUpqa2tpbLSR6Lq6Om6++WaK44f5QtUPUSqEEK9THH8GcOo5TE29kBLfl7lL3UMDKwk0CjQl2Vt1DqZuUxxCUvJ08+NcrnZGXielHV0375kWsc2Y10tIAz0Ux1jRyxgTKRxPGEAqk86QRkLPRtK6z8LpegUhbI39n5I9CuDSGgmMt4CVY2/MQhazjT0LCTmWhffaa3FkZuLesB53RQW5nRNMm/YmdlVlGi3P70YTsTZwAVSOKRzKtpcxACUVlm5HzYWkxXsdDVStXcq5qx+q5609P+IScxP93hQy/SN4XJVQWviBx//nqP+xpk0pdd77fU8IMSiEyAijbBnA0Pv8nAd4EfiyUmrf6X7mL1k5K1cTlxmkYEcXQlPAE0w5lvN0r4NNLh9Z3n50AljoxCSdYMr7PaaGAQHpHGPfni4GRlaHg66BsM0BwOs/lhieO3CnNDEzXBaxbnB3TiwK1S0mp/pfmM56DFNrZ53WwNHKVBK7Y/hm1+04lG4jAyLcOAqL1OV59PY+RlPzPSgl0TQn11X8hofHM5D0s3h23xGdxy+ib+Kf5T1MDe/FPV7CisNedGXAUSh8t5jZmAaCZYo8zyReTYLuOq1R4elP4MK4asDYzDOPzGFZs/b3hG0MasPdGvGbTR7ueRTTiEOG8iIjgcTkbrTOBZxhdfJq/mX9v0T8mIJWkJTJXC48fhujyoHf0MlL1Hh351IOGyygonYpAvMNkFr40xRQi0XIlLQerGHeJQ4sHGoKVFJEwbbDtOiTJircgHiSU/6v0hAg3LQ/28q8vfliXltWaQKxaW04ExqZGi6mUc6S71tNdFIbudseYMqyqK37Ne7AfVhmNCiBpnQyJ0qISmwlMXo4HO1lj8LeaMuivGjBqLNo+mHq3v42ev6FlJ/1Jar907RoVaioZeizDehKccXUDJevvY3ys74EgDsH0u/+MgNf/wbBvBCjt1sow2BIxTHROWo/CsJNerL0sOOSi5luEzTu7WckpPBJxdx0KPL+l6CPsb0cee8url35rcjo44mKUv4hL81u1nb/FmofgfADiLpHCex4jsBU1imkdjljRr7u0Ici1yDK/v+qjGxu2rCcp4YEP3cmYWmCWqk4s3oUxhWBNj9V5+SQGWewc6jXFipoGnGBELljEzSVnofPVYgVbLKvGSFoKJ5G6OlMH8qzzVvDJQTEHH+HpLTVJMXGMvPSy+BIxpFbDAhmEhrs1JQwyr0tL8DM4GPUDj9JbP5X+Oy795Ohz1Kh6aSnpTDV70ZJgRQKqUC1xpHqkAwn2OFGLx5r4SPLfKzLS7DvqfE8rp4sseUz43/PU1n76JOJbMjIonRzCvXHmylfUfqhY6xO9gJ79J2neaHt/FOESu/nKThPDF8ARO0PqDfo5y5xD/7Mf2N7uo2aaJeu5OWjiawuKCI+ewjzKYWyLASK0hO/J2V5Ft1WJjNppREVZzChBIUB4dzY3oxCjtS9u6Rp6z52BCktujMLbNpI+O+NZBe6P8hYbCYVV92F1XQQc2QEx48HmCpTdEwmg4CkUr/9zymNyZ4olsWsQheGPSZXkIuH32e9ikNzcPm6y5lsmrStQMK1MCo9iu39KUGZkYbodEKEfv6R4OirjA86OTK2huFLizB1LYI66kKyXB065fOKi1tBRsZVtLU9yNjYbsK7DRy9USROXMfQskft67AICpNvxXWsm6AVZDC+A61fY3akDCUNhCb/pOzRebqMK1iAUF9H4QBlYQ43RW4M4XDgvfKKCKd4an+/vR7Ok+gAb14GZtc4hFX8a/0WPz44Q02izrpsJ7taD3GstByLcHi8/zCwtGmrHqxm0DVIsW+EtImxPyll6M9Vf6nx6HPATcC3w38+e/IPCCGcwNPAr5VSj/95D+9Pq8zS5Wz62GaG/K1h9bBJz94f8chggN2xU/w053Xy82N507OVSve+MIk4/GIFqc599I/GYiHQNYHXO4pD20VDzRSW6cUcLWJutAhYsG5YtTxxSaiubsbhy+5GotCyBtlQsIKJEwEcYXRNKslwWZDJqBlSl+eRUyCoqb0HpeyHlJRBfL79bE74JE4BwSWETo2Q0nlWXE+G+ylW9BajzYcAWxLDW4iruQkhYOSGMzBz4+kzEjh8YoBy6Tvt7vmUqJTwuKrxt41YVt/CDypYfmYGcYlRNGid/MPxzyCVSVSuTqDrVnSzgOSkfpqn+nFoBpaycGiOSMMGC35MWROlaNLeVVqWpLVu6BQOGyz4waEskkeOEJ+UDe40G2mTFiH3HP8cEjRKC4ehUbR2HU0db2M3bjqj0mWbe8zzIEJRoGxT0g8zFv2gCrT5Iw2b/TmJCK8tOqmV7G33o1SIJAVNg5nIPctxpzYhNBOEveN1pzSjGxVYlsTQdIpKp/hofCCilHpvNJ+9nVdxwqfj3LWPR2/dRNH0w9w9/BRBIXC2PspVMpsfsQZLgZ76RbZN/JKyrhe5fHqG8ncehILzIqhWwg034Cotpf3EgyiHvfhLNBwpI9C94EOYJONImYohZr2Hve/2YymFYZwaMRZBH3fv5L24FeHAeB2UtHknE8dsrqQ5x2LINhAqYOTpOZTqOCVRosOt4dFAl5CvUukVY5GX5qs03JdcQILWiJjuQlopKGE3Qe0JXs6eDOKafAm6K+g+1oEMpwpIy2LU7SJhepropACakWnn1Ya66UnzMRTfQXlvEUItGnQLKDuxE3Goh/7dR7BGT2CNnMBZdjHOkksQQjDry0YpHTEfNq/BfCPUMfgqGfosf5cyiyGAi6c58UIuzS/m4toUxdy+ObIGosnQFK9sGGQ4IYTUfDzTsId1eZeyqTCJPVbrQsoIkDG6nl63xeRsiNvf7CRoOnC2dPJoasaHyhde7A8nMTg+WnxaodLpOKbzI9KVsW7qJmfCv9HmqG1gL8WqgSLXfvK9ldR0+iIq1YMdGl+9Lp+HV/+ATcdzyR2cIrD9HLxVZaQ9+jP8IiPStGX6R9GUREk7Nzarv43V59h832r/NE/0nECP9pGs6+T2d6JLidJ0HJrgG1tL8RdNsakwiYzAAI//7A3MYBBNy2LFWyPMZUUhhaD9lQI23bgFd9cAff4Q+Wmrw+9EIYWkcsOZpMWX4XV6eb71eax+a8nkYb558HhiEMIII216pCFaLESY1LO5Zf9erkm6hF8fKSFkSqyiOCzDiKidxUSIyrF3oUDxLFexgmOU0AxYNDd9jcLu68lcsYNxsR9pBcEC71Maxu0hlLBAKBQaKQneyFi2NLAWmRAHZJKbXYbmPva+2aZLKkyXcWnHSXbezZT3bxh9/mXkRCc4ncRfdVWkYZupq2PqnaMEB/IXbnFLMb1/AISEkiCTAQuvZkCXizV+wRp/CE+apPzq7ax64zt0p+exY/YgVVtvOeVQvE4vI1Ej7E7fTcpcCpdVXfb/PGv3v1t/qabt28BOIcQtQBdwHYAQogr4jFLqVuB64CwgSQhxc/h1Nyul6v8Cx3tK1XT6aKrtZ6Vejoj5LUqZKCmY7oviXP/b3OLYTdNUBp9e92WCwsHv1EbuUmOUqMbINTYynIsGNFtJrM+aZVXBYwhhYrqewp3yBaaHCyPClXlCrivPsyRUVwgR5rMopLJw+tspySpncMRPquXFFBb/Hvo5X7jky6xKLaej48cotZDdJ4QWJqbH8FRFCTsHxhgOhnhj1E9IWSh0jmlraIpbxWWO/0CEmz2EwppoJ1gEo7cHUc7DDEiFDAgy5Yt86Xe3U1V6VkSKDu8flTLQ5qdxT/+S86sbgmWbMujVJfc++QJaYgghFJoGZ62d5ILCWO47dEdY3ahzdcnVXF60VHwwz+84cOgIVp9uL8a6RlFFKv0n/KcQnXVDwwpZCGmR1/0HEvo12HwHSrNdzmMThvnylZcu4ejkJbk5+vZ+xvrjGRfJvO0fwG3MMWdGMUEyTs+1ZJVMs+nKs5YQlj+Mdx0sKCY1t4FwhO0pNEH8FUWRxqO//2kgFEFgdmT0Y3xylGj/OUzrL4W5Kg5yi7aRckdRhDPUPvsWkwP2awDi3WWc8OVHHqhP1vYg2l8hmCiQQjDtLOY/rRXIsHDLVLBPejgaF8PzsW7ub5sj6olHyLkkLoIsuisqyC68naG6AxEDz+Lll1JTfwB37CDx3kEKfcm4Cr148jzkf3Y5b/b42J59asRYpPK3srn2BTswXoBD16maE7xd00tN+mc4a+I1qiaOEZDLCMjVWKShlH6K8ram08c3njvKudI2Rd5y2VYu1Ys5VnuEophs1m/ZiGv4KXjpTjbHLsO55gFCuguHEJwZL0kZ+FdcdUfhsJOBkm+xv3wr2b1tZPd3kjQ1Cwjy5vbQ6jobYaQjHCk05P0Uh+ZgwNuG1Cw0qaNpgsqsQeIP9+A+4w7bsb3IYmbP9zAHG3AW7WBA8/P63Dgxh88j3tNH4dFO5EV+lFNDCAPdt5y1xmF0MWuHQWiKuIwZBuqTaHl3jsyR6IjVSPpoFMPxFkb8AV4arueaoWzW5ZVTujoFa78vPGKHbkNiScVPj/Rg5rgRo0HERPADzVxPV4v9IQcDK+iZnkEXpwqVTidEmOezBRcZVWsoLhHPs13tokUspyawke3+afafRNJ/re09QjLEQFICXmsH030GPS9Ns2rTFloGmpG6TRvImBzjzInn6ZNxrBwZ4eqPXcK2jZfzm94RvtjcYyucHeWUnP0Od0aVcl66mxOe5IVRfNj0d//Tr4cTU0AKQdBhUDYeZHjLGaw57wLWVG2FtANEHXgkTNYXSCTW6mgu2rqdNw+/yU9f/SkzYoa1Y2vRlIYmNJaVLePMM89kSMbyWk0d+afhMValVaEJjYCjkPHULzIuDB6c8fEPF5US19nGpL+ZH1rlWLpuW9bEOZibc3Ev92BiYGDyJe6hhGakDNLX8VsSvutgxT0XMJHpwXlCI+rvo/HpexBoKLVY3FRO+lQBz/5XHZY5iW5oLNtUQXr+WX/S9RGIOpOAdT0uDuFytuO6vpzo7euZOXAwMgqFBcNfR+45OJflRHwM50tZCuvlNym4+6Po3QcY7iwKf8fEpTXh2fppboqehJfutOk8r3zRVpEuok40jDVEvhYIpkJT/G+pv0jTppQaBc49zd9XA7eGv34EeOTPfGh/UtV0+vj6fx3gfisa0ztqI6vh8SZA/NwYz3UtY7JwGUHhQGo6Iano7fks5a5fMRs1QsNAJgMDJUgErVYKO9yHEOGgeLDIXdeH13UeUTEO5qZDSwi5i0N1FVqYc2UrdXbt6mN8fI6jTtCcAY7EH+NEVFeEmD9MIhIdDQshdMpK7wFsW4CShI3cV2bvhqr903yjsY79M24UOlJodOmJlO/5HnpCGZa/lZQLU+nLWY5yHgkfC2hCoQuLovhmfrs/nydreyKjj1OiUjqewDuxi97ejREuFkBqfhxbry8lvdDLk7taCE4WEJVgRJrUHcsLOT5YT8AKIoQiJBUqlHBaUnR5ajnl55dT72mg8egJlq0qYeXG0+eOXnFHhZ1x+ov/wDPdhdR1Zg/8B3pCEZa/jaSPfYWMwACbuxtJHcklQAmrz6li9TlVDLT5Of5uDfWvPsaIaZLkyqbYexHjrmw2X2uPd/673nUnKya9lxYuuPyfxu5joRSuuCY2bvoafn/GEoTT6yXyvqP9V1I99DhKhdA1B2eUXs9PDsxEeGy500cRM9E4E2YIAcGo5Qv+SGGBgWOuASkEXp+LmhN5KNWGUX0X1/3btyKN28mmzl5vJTd8FLq7/wmwmC48zmhrMR1zldw2OEDQUDwy0M+3PTqfyDo1GYScDVRd/R2eaD/Ee94KqqKy8D/Xymcq8gmJfB5UF/Pbww+SO3wLKN0en4Tna4uVt021/XzXisbAbkAP9Pn52FVVVFWFRybdB+wFXppUTRzlicN38t66O9hcfhFVh38CjUdBWbwbWsY/xK8gtM5Ar9jG1356PwmzcyAUoalOPJUvMetcydjUUbakF1G26qP4g35KNyYRM5JCVmkCc03NjDRfils37PsaMFKXEWz/A7MH/oOeZcuxMpxMTKYwOZlCZlw2FVoWA0mwa1cffv8Mid5NkPiaHXguBZP9bqSm6EibJn3MZeewaor+WA+ISYRQWMqMrBGXbS/gjoZBMoIa3Yakz5BIr5PguiQboSlUOOvGTq8If59a2KwUsC6/knzg0VtPv4FZLESIinHQ2+zj1TRBKBwgr6E4y1fDFzp+RYnWxjtb7uRbU9sJ9Ql+NNDCNzLTlvAwz3FvYvT4WjRphPmdAtOUDDQFOLv2LTry80FAS3wnjZPjaGjUxTr5bMFHqfZPc9eJHiyUzYnDoD8pn5HiGG5dvZKLTvNec1auRjcMLNNE1zS8Oy7lnZCJpRTdu94mOTefIVnCHj2Vqy07Dk/DIjepj+7ubHY/u5syqyyiLtawRWVZWVkMyVhu/Pk+zs1+g5wi01ZvKysyHi1PLSc3toSjFIMwQOigWRwe6eeMl37MSGI6KfFpDKRm25+lUDTGrCGIA4SGqeA4qylRzSBgZpPEvd9E3/kEqZ//O/pXdtE6/geUtAGtrITzSFDbCf2umpkNgt7BBCxT4kpsJSa1ic4T06QXXvJHr49A5wQjz1ko80aE+AjJl0XhytmAO4dT8ornDX/N4SacZRYwP+qVKKlAWphDDXazlx/HzPwzy9eEtf3j9i+ZHY3wG0821p3Ppk2cS2Rb/zY0BGPvjNJd1P2/Am37ayLCf6Oequ1hlaVhANOJTbZyUQOEIC7TDme2lEZOXxtGsSQkNTQJ7vY4vJl3IyvT2RfbTc9kE5M+nTFiiUrYgJJPARZK6uSXnE3hinwCnRO2UvDQEIEwFOJsK0ATDmQYOSkt+TKh0DidnVGMj3faB6nACjgZ0SfRhU7fVB+PNz3Otw/cR6ZhUBZlcEPFV4iNLTkt+lUy+DQXTf+OWu7GFAY6Go1JW1FrJJsOHSR5bATrUC3ZMZKhHC9SmQgklhJYSqdprATF0tHH4vGIJnQSdv0K/HNkmSvR9a9ihZGw+YYNbNsA480CgoOX4kx/FpDcd/A+NnhuBmV7+aA0jg93Uj9Uv6Rxm/d70xNmeeH1J7EsixN9h+gZrmDt2rWneD+lF3pJ0Fcx5boLa6SZ2LNWAYR3eh9nPCaKA/c/RmXCdiymGK4/RMqn1uLKs2PIOg+NgLRIcmVwdvp16JqB0DUSwp/bh4mdWYyszR4dWaKYlDMmnnNOXTwyMq6it28nYJPaTeA7R57m+qEKygIVSE8aHR2/JzNziNLSHZHXeb2VVFU+Gmmm2gMaHz3/MOZMATcmOSh95Z+o06F/yo1PxVGSmsr9QhCQEqUkcb5f4wi2oCFY3RGNkjZJ3AyFaPvDq2SWLmemri4i20+98grc+fZC7HS2g7CYb+SHW3fxaG8iwWwnYA+ev9jcw/LY6NPL7XM2UJWzgSpgYlc3/+7VCAmQmiCkHOzOuY0bh8K8BAlRyxJw5niWNLwVGDgAPTyHqjh5WezYvSjUHaqmGqkqzAVvzBIxze6odYR0A6nrKCGovuojrE/NoLsNPIMnyPn9W+wvakZTAscRxUO9e7hr4xdx9bWTsTIWSODVl6bJ8paBNsGANk6GkUDO9nJiz7IfNoF393DUN2ZH1akQzui3ef64H8/Arfj9SSilmPCn0DZxJc3qeYZHnFjeAAOFfoa8JuNxg6SPRTGYNEdO7sVMTg9jKTMi3gFbPHD3dXm8XXOMZC2euPFmzHwXx7Tk8FgNzjojZ8m129fcsNTAdFG932Zl/r9q/zQPdg4uMUSev//nuW2zqQ6MczygFA4kX+j4FVUTRwCN9h4IesO5I1IxFiWWqFZp8LNPtS39TBUMBPLxOMuoqnmPkA7PfMymUCz2OJvxZITZCGHVqVKsaOuhJPNUftbic3Dd3d+MfN06OIL15puRpJpDhw6xr2eWGNHPmPseRrS1pKp6jN2SPS0mylJoaHakm31noGka+fn5PNdiryGNYyVcWmiEN9+GzT8VNs2juXUFRtYhmJ+KSMWa/kY6E9LYecnNYQECCGmPgufccRHQwdA0tiVmwHySnwbBUoXlMTky9SvkfHahECih0LsG8H3tO5GYq6Rv/RcxqW1knvkAQjOZ1l/C7884dTR6kj/nElU4us075TR0GmzDX+F0Iic6mT34nyTd9kVkVZDR7tewnhrAODyEmurBvcFG6ayxTqyRdnyx0fS+VUdZQQWZi0Vwmg69tZGklurxw5jSZMVkKZrS7KXDkrTUN/21afv/aw1PBujFwgRcY2W2ghMLTdOZHfIghEDH4vy5GtJrHuDXUZ8ldxgS/ZKuj6Tx6YF+goaOtm4ZyTXdKB/cs8/Fdzf/G3JiL5mZZ+OOWsvh3zeReGgoItyZPjBgowUyhpzEf4HzfaQUbItczLrezdtv/dImrgoQSnCJuJDHeJwnm59EILCw6AhqdATB299MCmOnBgVPmPj23EVxroMviXt4R53NbnEeL6YV8PLVeVyZn89Hn3+CvNQR3H6LSu1GfHmFOBzxdAz3s7srh+7p2FNGH0uQls42vP6HQFmkG8e4YnsTve6LliBfsGAb8KO6wxz029yPkAyRGi+xjnwK5a7GiK+hYep1bnvt7YgD+GIy82xsN1aMhcJeNKurq6mvrz/FsHIpolWInrgwepw5cJATI4qK+O0INHssbSkan24h7fIi0gu9kR12anQemtDtXb1UC5mvbqedSYp6f++6xcdxskO/4H0zR+fPb9W6x3jz2Dc5MnyUgzM6s6P5DL8TzVTKM+Rv+RGaZtHR+TTw4JLGDWBuro8jbT/j+817aZlTOHUn1+jbOewQfCYtiaAQOITG3+SmsemNz/Ne7AqSZ4/TmpvJSOJ2kqKTOKdjguq+4zYiohSJU3PM1NXRedPNEFaA+Z9+mtyHf8VocjKdnVEIYSughTJwjy2DKCK0ALA9kl5tG6Gq4oM9klyFXqqqeyJKMYcG69trWEwyPp20vLAynaGaIaSp0A2Nwkpb9D7f9GdaZxAjb8BFPS7jBFz8wMIoJWcDvuTPM/naa6zbnIIuLWTY1/C5jDziE68gU1po0iKp40E0JcLXBZx10KBm389B2VYwRRs/RZx0keqZ4uWwJ5yu69x09c2khq/T1RUVxFe/Ssd7TxFUu3k526Ip4GZ24jW2aueBFOi6TmnRDh46vItQVAi9dI4riq/gxNAU9eIVRhKDaGh8rCSPO9N+TvVgNXGqjD3HYrFmfaRqU+x/9SkclsXajBauqtpPsyrmBKsJKgcoSFvQhiwxGT9d0PkHbVY+KN9xMbctczjENwMxjC2LY3Ogi6o9LcynWyT3PI+K2wLCQCmLZNXPuvzyyL9xrGsmYsUT9m62S2i8tuUqBuPWkTR8iPGYasC+RnWhU5VWhemKxakJglIhhGL7uy9SfnyM+vpfMeMuioxHMwe7TjkHG6+y816t6G50XceyTDQUdbW16FIyYyTzPXc+nbFHSJnOYsP4BYgWAR4NhEQKyaHEQ7iVm0+f/Wnb6kPamcsdEwU8WH87f7fhBDVdPvb0dvHdXfu4pjKbwNh6NEsSF/gFoajlJHe6cB1+he41Z9pjUU0HKXENTxIK6Fg5C9Y45yZ5OC93G7VjP0daAYSU5HommM0TETqEfSMpNAnO/kxmgq0gJSoUIrarjsorphnyhflui0QSkTqNP6ercNkSVbgyB2l87Fv0pf0BhVoCKLgrKsj95S8iY9NQoaK27m+RWhDtWoPCjdeTsuZrjMdE0WbNoHticcRk4y8sZ6ivh8Nf/1eu+9SNTGVchn+4h8rAAfTGF+xjq3uUqqt+gIpeRn/aFjQxQerEKBoaGVb8By0/f7b6a9P2Iaum08dbTUMEUfwjM1zkz2Pb6NeJXtZNSsE2lmVFc+zJB1nue4FM9ySZsy8D8Obqm8lfU0GTG4JhmF8B2UnTDPp0NAuaG/bg9fbT2vUmWqeGIzGJ0TwHVWMWa/xLsxGjxorw+PLxlC80HTk5OWwvPoM3mt+zVZdoFOtZmNJEIjk5I1ChlqJf8wqfw7tI8M2hZTsoEU00aKswlUAJDSmgOymVvjO9bIkKoRTU9KTgzf8I67ISyMqCM8shN62Ll4/2c9GqpWTlSFSKfgB2/yZy46avX0d6Tn7k52bq6iI35bqKCm6PvpBbXn084tBfNLeGT0RF0eae44B2kNTJXLImSjlw6Ajl55cvWfCNgBcRZ4sJ5suyLI7UNjJ0zIo0iqfzALPGWiOByc4Nf4dIszko82KDYyf87P1eLVd+vpLM0uVcd/c3GdzXCA22gadCse/wr5HTfn7TkIcl89E1wVcuXfn+KNv8cZxUruJ4Oxc1nIxwutGo11tJQfHdfK3lbzCVScVEMZrUiUo7iqbZdgNCSPr6dkWaNr+/lpraG1EqiAJuS4YfDrnszMCoKIiOJihsPpuJorrtVW711VPlq6Xe5eT7o0MEfTpO3cUVW/+ZTS/vZsRlkBwwyf/ShcwcOAihhae8CoVofXcPz/rHsSwLr/c8Nue7SWgoI9pfzCWEeCbbsWCaqST+Z48z4I1/f35buDYWJ/PLGYv63Giqmg9S5vMQwmKezR1o9hFoGFsiRHDleUi9bc0SP7z5pt+jFMkxOpa4EaGFxzZVmyL/nu8n9zHwg18CkHP8Ya786iqeSMlCCYGlBG0pTjJHg0gBupGDohsAQypy+xU9ifYGKxQM0lpTx3LPJgY134InnJRLjVW7D5Dzyk14oi0OrI3jfCHYruBHjEBMC9vzPxWJPfpZ+oJflzWbx+ef/03O27YAACAASURBVAmrtHgGkmYYS1TEqTKs2TzaWnSeqOnBtJpwGhr3bLD9DGNjhygo3AtKUSaa+KL6Kk+OXk1nZz7XXl8QOQfvZzg7jzwtT8qPjCtLEzsoT2jC7z8br7fyA/MdT+a2nVeSQnqeF0jDf/39+A59n45RNy/HVRA79huk4cEVaGIm9SIIp0MMtPl5d+cJpLTjq9ael0P9610opWjN8vP7zblILRNNbuDqV90c4x1GEkJcWXxlBLV/oryYnQNjDLW3kjQ6BErRlZjBA8MBrBE7feNzvc2IeaP18DmISZuNoEQ37VhPx0s/wC+jqVGr5oee5E0VkT2Vj4bOVGwPoBE7WQS5E6Ssd5PvyV9i8rvY+64qM5aJ3h9yZkaQjen7+X7N51Bk2+c6kE4UL+AK7KVkKh5lecjpa0e3LEyE/SzpCOL0OJhd9Fj4w+gkJ3LLFjbXA6NEZfURsLIQ8jf2ZMMC914Nd60Lz43nMOvcjwqFEA4H7g3ryS1UjNT9/JTw+Qi65u85xZ/TtXUD3ksLmT06gu6doeM//4aRz81ENm9SBiJ0GvK34q7YgJ5YRKDNz8DhxxaAByzUtnTGg1GRJnp660Wo4gupHLPY5gvy9uDv6dz5ddYndoYH0FZkg4gVxBybxp96F/ulwpGhuLO2na2TURRUlH7g2vPnqr82bR+y9rWNYob5VwK4RHPiOJSGOJZB1K3FtLgsHppZxsPRO1EKqr0r+fSafyKku/j90AD/lpiEIWV4P6eIDgXI1E0K4jtZvfo1NM1CyiO8oRfx2xV5WBo4FPz44IzduIXr/RCX9Vs24m4M0qfGyBSJDJaEWH6skFXTxRyPbaPB3YYlbaXl5UWX4/WWU1nxmzCJPVz5W2nf+30G+y1SMnWWcwwHIULKgaYkaf4hhpOG8GsGo14He4ff4dEnh/m38y7nhjVbT1JvjVGWHndqg/IB7vTzRNN5yD33l7/ASsxnputWpLOFeP8KRvaYxDHFKrGK6YIz2dRxOZrUsfp0Bor8Sxb8KBXPtguvpWe4ldraWqSUCKHR+tYMHXNtC7muizzAlBCMDfahPfIz2yNISlx9h5Fpq23uBFDvb2PUdKAZmRGFW2bpchoHJml953ny3MX0R+8hetmbGLriH9cafLfmdjomCvDNBHm/OiULM4ywRa9Kxv9C29I0gNM0buWp5Xxp45e4d/+99HtakZrF3OAqVOnb2LCtIMa5MeJTN6ftR6lQ5JrWgZIoxYDlsPNkE8pw1t5HUCkQBineraC9AFJSHRXFlKuEYPQKnHONPBfdxJ0//skp5GEcjgjSJhwOhlNTcIca8Xj7mfBnMK2fR+a0DbGtmVZ8Zc7P73xjCAGlA92kTHpp3Nf/vk3bYpS0zNCoNDKYqk0jhO3bHaXtRdcmmLZ2nCJEgFP98Mbe6qbKaacYRATfSifQK3HNPQD5W6meFbzUM8yKgmJWtrcAcGHtPp6/4EpCCgxLUjAYACnRlEXmaDepm1YwNjFJ9MEeRhM2gmgBWz+O0LMYMaFYJtjjMSXRjQWrgUDnBIE3W3AFCzie02X7roUPrjhK8uzUUbZ4Q3R0dNjXQc5ClNV/PPY61069QUrJNErAM71buLt5EoQ9tpyvkCkZsOLRdZ34+MGIv5tSUKKauSHaybrr1y25n5dwuMIq6ZPRtx/d9kXazQHyxQ+ZGwtRO/4QlRW/YXN8GQ5NLDFEXhxjdzqTXb+/ltreb9KUmMe9SV/FxEApk4Sh77Bca2Ol1oXfX0vUeDG+1zvxKMUY9iZVGx+irGUnR0vPpyUzEEZF7c1oT04pmSPVTCbPnZL0sHNgjKArHu3Sm7nhhV/Rk12IKbTISPZX/hg+jo6OhaEbJBUbS2gnOdPncqbcRy9p1LMcUwnbwgLCXorhm09JQlYrtTMH6WgfiEwOFtf8WLmj43WmsM3VkRbLk1q4pvJGrqnM5tt7a2iYs7OCB5JmUG3xZAz2cM0LD1NfuIHthYUkbyygI26E30wuwNohpdg5MMZ9ZfbmOiAmGH7uEMKUZI9kMJvYSPRoCerVZ5D+DqxxPxnf/RmjTe8wlDvAHl835eNbI03fMIk83lVLlWik/JnPL4wjNcNeisJxcoHOicjaNuttxn+1tIHUsHJWoRh78xnyJwZAdxK48BmbAxeSaN4URJWBCmd7JyRspPFNeyPRk5LF4xdchqVpOBT88KAibSKH7OiXMYTEVAKJhkCGPwON94JuTF2ihIalCwLrV7OyMP2P8If/fPXXpu1D1uJEg/XCwLB52JGHwD4CHDCL+bR5L1utEY6XZhHSXVjhUVnP/j4+FZjiR8vikUJjb/EaPpplckagdgkSMpThxNRAaYKQUlQnGqzxB0EXxFSl4a5MYy6+hf6O/Tgc8YRGjpAwHsJbeB0rb92Ku66Zo8EWXjn0It/o/RwOpcOYxuR1MezT606JaOkfeAopg/QPPEWs9xN8Ni2JrbEBdogQJTTxJb7KK1MbcXYpDM8e1saOUJPsRQmoVA3sHWrnW/VvUpb+EPvaYv807tYid/rFC7URJprOQ+4zBw6yrzSOwFQOUuWQMWdELAlQsH7qSgxl81GUtMcq63bkn7LgJ3XHUldXB9i2HNJSaIttBXbko11cwLHHTzAclIy/MUXF0X68UoKm4R46CBW3MNA2xfHGJxgN9AA6Lu+1TI5lcmx3L3PTIXr3HWVr4jloQscoOMKorhAa6FgsSzxB70zRB5K4F3uRaW4jIjo4bRrAaRaS7u5u0ofSeaD8AdpEG6WbknCNljCl2eMkITSOvzrG9JDdsJ7/dyvtEaWymypNc1CRdwOfzA6jDanlfEHm8NU/PEdwsoD/cyKLtVu/Rv7eu3EbBYyn3YUSBtMek993PcBl51xG+ac/FTked0UFeQ//KsJp8155BeOBBlYlLmxSsvIuJWXNAtp1seZn8Be7w/YZGo5g3pL3OB9nNM+DOvnczFa3ANHMr/oKF27tTWbk+ShsUYI1Pkegc+KUczi1vx9Ps484w+bCzVOahCZx1f0f0Bqoji/n2tXfJXjOR3BsNXngB99gZXsL61PieeDBe6nLL6G85TjZIyY+bykJ4yeIn+slsPVmOtt66Zu4CqkZOM1+pNkLjkyEkYEvZHJidIp1SmCuzaLiih3k5OQsakpzUOrr7LTu5QLViYFNg4ibTcEz52D3s7ttA/uT8iq9cy+TcWk7Iiy0+1v5EvdVl9DqL1jy3nVdY2vFMlLXZdPWlkXIPBo2WhW0tmxk5cqCJfdy/VA91YFqyj93M1F9cxFO2/6ndy5B32JGOzi3YpTWNltANU/FqMqvXGKInD1qnuLRdjL31Ofbj1QhjotVmBhIoaMh2Jh3DR8PfMP2rBt6gpzqfyFurIjNMTrvzVhMIIgfbyE0dwyle8n0Z6LJUqSw0dzc3hZSNmziC1tvJHXcxf49OxkrXsnDVlRkOiIMB9qFV3JzTib7x0xC0h65TvodPJN+GTlzfZy1bRNGXAtyeJ52EuSV1lYumYknJ3qQj4nn+L71EeJ1u6kCzfaklDYxXs11UHEimhitmD3H95zStM2LOqoyV0SmJEIz2Fa5lrqJJ6lKq+Jft1/KLa8+Q0iGmEiGDf94K717WtAOvkPu0JMYNQZZd9zCy/4+hKpEifnZp+B3/WNcn55IlTfGTieQCqFpRPuLcU+UoJQilLOJwEQnwZ4pfONH6K78GUqEyLKe48s7b+cb13+MtkAr9+6/F6kkTiH4mQHlpp34wLpPgjdngdO2q9u+bz0tdK+7HyUWbWrDjVt9bBlxnRol8T0E3tuNCm0ERMSvdCaxkZSSc/B6K8lZGY1uGPRkFWJqAqUJTKmoTdS4xTtL6sgcpqURwuCroU/w2ex2coffBiXZfPiHONZ8D4SBQ9fZXpGF639BfNV8/bVp+5C1GJ7e6o5Ge6EDZUrmEluZS6imKrqSXKVTPlnMDMW4mhwYWVqYQAvrRkK8najb7AohkLpG0GHiaSxEem1PL6U0zhpy82aizc3RJDh6AzQGFSuvKyHhjEx7t1n7caQK5/8ohVBQ9vJjyMqHeOLoQUzTJJtCfEyRQSJSKnJ9qZgrq6getFMEylPLeaf/GK/Li1nBUUpkCx0NP6VwZhU5M8koz25b+C8VzqlMso0+duR1EtCNBTsSoCTKonvSVqBtKrzmj+eOLqqTzTQvvLgC4XQugdw3JdrNciAkmRUq8igWgFs3QBdIqZZYeKQXepcgMx0dHYuMKhWmy4/D9Cx5TZ8/SPOsZfNehI7PW0yCIYiuOA//lkreSEsiY7aR0cO9hOfVWKEejr2Taf9aAUW6Gy1GRxMa7rFljEodhYUQDipLzuVvd/xx1ejpkhCAD8wdBbthe/jhh7EsC6ELkrYk4VnhID65i6k2Gb5UJK7ERqYGCzFNSVd9OusueTSCtmZkXHUKcXhkNIO54bNtc1YhedFxIX+/roWRwcCCSg2YdRZHcjCXkIgrKiOoW3f1qxw//iS5efYmRdMUfX27iC5aSU5YYJGDh8s2XMr+dw4wK6E3ycVwlk6s346SubaumZBSOITgiYpSVi9OSlABogMvMsU1keOP1vbicraTfFkUEw1xBBrHmD4wsCRRYr5mj9osbNtOBzSvE5cnRPTAj3GJY6Cw/eHQkJqGaSiOr1vGuVdsxRIeVpxoYkVTg23JcvHZ5MUkABsY2raCuxp/z5rO7WTrhs2NdGSiO+xrpz7zDS50FNBz+AUGlUTVe9GzEgFwv9vHgDlGvzZOcpyP1c4Yjo0lUZE4DkJyduoIsmUtKkyfME0zMlatH6rHn3CITC1iSYamSVYktdAxWYgVnhwUedu5fu0wxfFp9oMv529obs7g3T2/YNyXysxM+hKD0fqhem559ZZIzuVDFz5EZqrNZTsd+haTMHsqFYOFdA2Amr0d7+vRNl8djo08xzXEKR+GsOOZnJrG1YkS+kzmm8JpTwNRo0XomqB8VRIJ5+cx2W7x1tg2LF0nfcLHZYf20OdNJnW4g/GEXo6PjVKxp5Rdj79Ad0oWO2MLMI0FFNoQEJ0+QkZaCk/klvDe+BSJc4pvTPczHJ3OeFwmX9xchTkxiZKazeuyFFrLHI8PrUZkJRJbcSGvN8WTZw6w0ehCEypMXVEoIQim5QCCvFkYfnuY6tjqiJJ5sagjOzTEnRUfpaDMIpC8jC+9e/8SU92HLvz5kgzV/X07GThoi4e6EjP47ngaJuF1S8mwOnZpzmaoZziSNLOkNPv5NXuoh5mL+yNxirq0KPQ080zDHl4YuhczLIYIKkF1dDTlgTCPbe3HlkxX5qcL/sw9KC24gLCF+YdKaYz702kNBCihG9foEwyJIvq0STJkEmkTxbhnSknaYfvezVNV4htPsF8DU1o4lOS86Z8yufWT3PlcKpXyGPvVctZv2UFu3Evw5tuAomriGE8c/jwvec8iMzaXtIlkW3T0v6T+2rT9N2pdXgIq3slb41NUfbyEnKa9dMXchxoLgXBwdd5daONZCCB7xIwQaEt75kie7GHK0Y6uzsCSGppSBI5Xs3dqlk21t2ImnMAYXs25E0WkTc5QnahTOWYxMWrRrBQJ/iAZwHD727bZYTjHl7BfW1OhE731JSzLXuwV0Kv7SDG96LpOV8IQt732mcjNfceWn/GlgVUExQoMZfKv8qusHxrl3sF/Yowp+ieL6M86xr3pdxBKNzDSyomijyniWCGOUUwzloJpKbjAa7E2Lu60mYMfVEvMNE1J14EOVt/1Raxx///H3nnGx3Fe9/p5Z2Z3sQssFn3RGwEQADsJFrGokRLVqF4sW5bcY/k6znUkx3ZiRTeWchNHduwojpVYktUbKYnqEiWLokixiiBBkCBAAETHomML6u7OzHs/zGIBqNnx7/5if/D5wrYAhrsz73vec87/+cdbbKuAf7ghiedPv4/9WDlyKiMG/5TofSaKqlC9MZfKdTmf2kIrLi6ODQRb/qObr1+D4XfOa73E26q6iZAGXqZwrf8uqDacdfAWrSgTQ1zryCXTkcfQVA8hJTf2XktktI/+if1Uum4AJAmhcszG20heMknVquvY8rsAk58Rn+ZFOjc6OjrQY9BVQzfYc2IPr5/eza0J55NWMDOPJwiN5hO7aJoO9FG5biWVlfd86s+eW2EWaQ66UjWO5n2e9Wf/BrsZJawAUsc23chLrV1cklPBeMePP6ZKpvsIHW/8gkBiMfkFM4cU6Omrp67uPq677nsUFBTQ/NZxzuw/yqC9n77kFF5dloWhj/Pk8VZu0gaJmGmYQsU0dH7a2MSdVZUs+doSwrtfw9H+7ziU02iin6mUW3AuTicpcQ0U3wFmJeGd9bOuPB+pWHZ3d3OU04S1EOVGDl7pgfEo4aDJUc83acxcyLmhd1gfrEeLzTZqQnDZrTfimNDYu3sv+y+5mmXNDSzu6cTzha/Hk9VX33mCrSe/gRqrCs/IIkRMsWjYItgKJpH1Ej3BxWRuKR/W1XO8/hQrmro4VlFEYvIA9qXvUKAYFEgL2YAAKXSW2zVOMpMAQO1oLf1n+vmXD/+FbHWSiiTizguGVDl38VbOXQzvn3qbsYiLzy18EbtqUHtsB6ryPUpLt1BRcQlO56K4ndZc4c6rZ18lYloVkYgZiSfrtZ1+DvXaWPL1H5A40jFPUbpyxRPUNz/LwNg0Tf1jrP3Io5pXkYqqWr7DqiI+BlY+GpzgS60qEXETGlG+yG8Yw815aXksMldxVlet3MNUcYwstJJuTaH0kmIcRcm09NoxNS1+7xcMS8p8JkF3GEEFhb2ShgPvohoG3TnF6PMYYBI1+DpP+6d4qfUlHj//h3ynyKqCVc1Z73LC/Wz/58dxpOeRlDPJeJ+LqQEnAsnR6TL+ZtMlPLUJdu95n4mOLpDMHiaF1TC1fmvdX6+/8Tper5eCggIOtY1QOtDGipFTeLReWnskHW/ZcHzeGYfqRowIRweO8rUlX0N3lLM3MI4enJiXSPfkl1pA6njzX1gWT1hWYEu1Xlo/+AVyfAEJVMxxhbFcXm25eUS7i9CHzuAcuQqxwIY0dQyp0haqIMvVbiFnYlHikCxadzHB6WTa01dwNFBPjcNuJXEd+3AUb8J+i0mw94M5b7eC2uKmNzGTwcFSJgLpLHDsA2BQCfKG/TgGCqro4Nqyi1iwafG8NTG3oorbKqpQeod5/expLh96H/uGK/iH8VwOJkoOBcpQBVzotM2qwPUwYOIN+VFCKr1ikMdaHvuYaO2PGX9O2v6AmAt6tEn458AZslwRizhvRPBRSw65aAgUIdhSngkGvPxsI60JI2SGRrii3jrh5QaGyR7zYwLhUA6LR9dxctJAumBJwBIgmFLSZBOMGbOLmGu0ClCsYc6Z9T+WuCWlCVShYGAlM6HlUcKak+IlVewKbZ/3cD/YeoiIug4TFQNJsH8BZcO5NDPOW/YTmBMmx6cvRxcaUihEgcf4OhKBhs5PtTcpbqzlxtJGhBJhrO0uem0mq4pu/r3Bm/MSJT2C/Y1HGdjpo/CR38Q3vLrBOh7Z833ShxSiqUcxxr4F0vLVFCiYpqTBP4FbNT/R8BYsocZtt93GiROWZUt6bhIFa+c/iKmqYNv5efT3D+LsbsGdcRlS2hGATUo26pOkh85ynvdGFKEiUwwOjJuMGKZVOY32MBLuYU//s2Q5i9CqIWeTi8IFl+KJ0dr/ELjuTHxaBW4mop4oBoaVCAgT3VTZeuqrdDv76fVfhCeln2AgG3M8BVfsa+wprZxtPYgz/ZJ5FbYZD8sabw2ripbz1NfW8XzbIE+JaZ70B3guaOf5dbfzwoHvcU/2GprlWbToWQyh0jGwi7RPUCWz558oNjt4P7SaU/UXkZXVhjenleycZrK8Z2lrW0Gk/xyeO/gqhmptZL0pGRiKQArLJ3HI14SZsRGkRAqVPZPwQW0LD+fksHVLGTzWDoZKUsL7JN10R+xEbxlqh9/rnu8owazvaHd3N48++iiGYYAGzZqPK9I2kemzcdKjcvtqN1FxFfcbl/Hz7ne4on4/Pe408sdG8cgq3rz/Af76W98jukzDdtk1POVRqZzDmErrLKFfhhGxw4bdoxAJmZjSxFB0epNb6E/PQtU0wq7kGEdLYBgGXckaLnc/BUX18TGKuHmbBITENZVhuSsIayR7f8d+WoOtmNKkw1B4IWBnTYKKfyKPt9u38bk1UUqVH3JNWSQmU7LkUYYRob3tdfbu7WVd5cUsWbWQTZs+bk33UZN6ifwEvMdF5M65z5v6xxgPvEKy0BntepsdIz/nhvWztLNs2xmuSr2b3ukK8hKaybb9DJityMwIF0wUdFTGcHMVO8mzf56hzjGOD1xDi7OA3PYUFvbmkGkzWDwHQJ0diVj2XICiaSwurMEXbGcsZK0kUproziTUyXESpieJD/TFEqhJ9yWAYEIaPPvG22Std5BbUTXPY/XwzncwDIPJARdjoUx0lxvNOUZi1hQ3ntONO3yYiopLSKmu5OmOk7HkJpY8xZLwGaWrwGqbzlRN10/72LD/v+hKT6IlOxUQGLqO1jOOaZ9FhHjsnk9U5s6gSKrKFrF/OIoev4cEl4pXKM/dxpokkE030yl1RI2NgqPfJ8Ffij5QjwyHsBWcA1oJrvXfZfLgL+CdNykr/1t8OT5ao05+dFEYe0oer3U5iBgRShwm3/ZGmZzYzVGh8auGdyx1uqLyYN8gy6cmQbUzse0rsU8GMAW6bwXpHTdTcuIZnImDVJ1XSHnCMOgKHeTjSh4mOWWQUCCb9uY2Fmxa/DH0zNHgBHe1dBM1EznguRjGBboSRtaks/S9A0yFE1lXuh4KymZnrJ3pdDT6MNoisYqvMV8M9EeOPydtf0AcCIzHZxyiUnLaXIRXWicNYQpG+tPJib02RQVjXw8TgTDJUjIw7QGXQnYoQAUtJHv6CeJlPOSlQ3ezw5hiWoVyQ+GrmgMFy+9SXZzGVRcWxStC6QvWk/XarQwufJz4jS5BwYbn2GIunc6mXwtQeVkNC1ZXxq+9ZtCydppJ3PqH3kZmrUQRGjZT58LBWhyKyQAb4wq2nOAImpToMTWkIZQYiFFw8uUoxXoTojR24pcGTU1389aZRJYv2PR7JSYzMM3mJ97G/sajeIJtDGVk0PbSyyzJyLBOmLVvc8HBFBRTIBWd9qxaVJeTokAVilQwEOzoGOTfHxr8ndDauro6DMP4GPZjZm7IjJpkmDqwMDbrMav2dfjryXHkoQir/WkC6TYYNkxqnQZbShYxcOwQI+E+plLaKavqYmDUYDDwX9iTr+T/vlfEmdHi/xZc978TbaKN+rR6ciZyMDNaOEdzkpjaiQx5CYS8jIUyAYWUiCVfT0g/S8G5P2NaMzh2/Kl4ReyTPAxXFS1nPxGMtr5Ztd+0wndCDfzDdBM/MTKp6BY0l9goPncr4x2HZ1thETdsvxL0MAWY3CyP0DR6E3a3iRDNsaF6k5SUAdrrWi1GVewwkhsYRjUlhpBoUsc1OWZRrIQa31B1Kfn3/e0su7CK7E8RuECsDWObI/KQWN6FwMn+Jithi4WJZK+vhWtkFUfT1Bj/TWEaG/+mlHO+v5FM/zBCCM7W1XG8pDzOadOl5FhWLhvn/OwMVwYDWFZtAkF0TIIUSGFwsHgnfo+PdasuJmvBNo48+ij1piWIUUyTIr0FbVkPijL7rM8MCFgUGYHHRgybbSKRTCvTmNJEEQrFdpNrUiKoQpDn6GR3l6AyrZXpUSuxVrDeSkmsFRXwYug6dYdO07Z3Mu7/OTeuXHAlL7e+HG+PLky8gF/8tvkz51nbeveRLiwoLKbB+6d2UZo35zno2Ee21kB2Yj0Ilf4Pa+ltyIpXw9enJMWECyaqMKiWpxHCjttdzR77r/ll/t+io6Gmwi3BCfJHddKCEQYG6ziz9xWW3PMC5yUnM5SdQ/4NX+Po7i6mZDfCq1jtPVXFEZkGYDrBZbUNldh9ZtXtrDaihLP9gh33/N08xImvuZHQ8BCKohC1JzBZWAFCwZE8TPnSd1CUBjo63yM6+hNSXs/iUn0FPmWUofFkxkwDPfUg7sWpHOvowjvpRWJdUzAYpLu7m4KuJgalQcb4JGdlClIIVE1Dz09CDFqHAQWFYCT4icrc71RUxa/182e6edw3HLsbDZxyghsdh4l2+ugydVBBmgaTqY04g8U4Mgfxh7oYWxDA5a/GGSjFs+1LJF9cimvFCvrOvI+393amR6NEAnZ+tfHvOTE2xiKli8mBZ6wnSkYpskHztEbUlBy1KyyftFSkqYGo1T43IhhS0DCUyUTCSbYtyOHS/DO4rtkMbIaOfaR2dbA4a1dsJlbFc6yS4SMtPP/KP87Drrw1plt7tVAxBUgRYzYKk+BCLxuOv09OeB0wZx32VlPs3Yza+Vi8K/On4jsKf07a/qBYn5KEJq2ETTUla3xu8nx3MJnWxOmWbhKDCopmVW3WOVXMxlGcQJl7nBE9SPJEGVXnjWFPfBZpRpFSpX3/7TxmOujVdBZpVkn+50yzND2JNecWsXlt3rxrOIXBvb7VrA9l4k4/zOXswlBN7CMbMf1lJKDijXpIHp/fi5+xdnrgxAMc8h2ijCYKpn6MkbiRm9t2URM6DTYblVUmb3Sm0pOSTn5wgH8/8SAHkm6i0+zkg7LFGApo0qA6eAJHr8KYNOMzbtI0ONb6Lj95V+OGmoJ5VlafFtmlHpKvLKPzhR6G09PZc/55GNLk2COPcNuXv4zaAYop4hY8JQEgvJi9WQ1Uu8vYPajQq5ooOp8Jre3o6ECPWczMnfuBWdSGtQeqMYakhe4Y0iVNEwMY40cZcuRgpqzHSuYEw7pAURQuX5hJOBjB7r4eM9qDp7gNobRbLhcySjj0It9ZrvHTo9+mI1Ty37IBmoHt/i4XhFJZytLRpXiShlla1I2imMjcVtr3f5PwlBe7x47Zn4IadaNjkLy4GUWbhdvODeNoggAAIABJREFUMJXmehjOgEaXZy0nbVoy08CxKYL1OUWg2qnwSe7abYIp8B+HsFJPYs0XmTKOk5m2Fc/AgKUcizHtF5Q7ya+sYmQshyb2INFRVBvFxRfTMZXAMT1ETmCI7JCfnJCf20+doX66m3xfO4qQ2PINwrFK1EyYkpigJJaodVitlHmzM7EWc+i3nYRbAvEvDLzUykB4EtyxF8a+rZTQFTHJHYwiFthAWoNhTUUVZE2Ps2iwB1VVWbB8ORN7H8Bm6EQBDcnKQR8UeeM/u3JdDk37+zDM+bwwFY0Lsi7ihxffTvZ4Cb1tfqqL15D+5P0MZqSTOTCIee44ujBiCRoz+07M6xZUqZE+uoQaPYEj9lYUqbBsdBnTCdN849xvQOBN7BP7ABNFNfjRRWEWl5zPscDDmGZ4TvtLcLa1hrExK7m3RVI+dbZsedZyHt76cJzzdveOccJRM47YE0KQ6rLPvz/zNjHa9aRFrZcqTaNlvFt/gP0dU6zPKaJmDvS0X1/Ey7sXYhizCu+aUk9cuLBU66U4uo3U1LX4/Yc5LSviwgQUg97iEIV+F9O1L/DLuqcob4+wKGKQMTRMxqif9toWpvzvAAausJusFRez+drNqFPjHHn5BXw9nWiGxeNUFYErtIuxpM0gNVTDoMDXRldaDj9v7eEmb+E8VpsiBAlqApOxe9ST0j9PaNbn24NHv55s6SFLT2ZIMzkdibAzpZtFjQnkyBxQILsom6GuIWpra6mrq+Omc85BsdtJDUdZ1z2CcevNlG7ZymBKmIff3hFPoGcYc3FlrpCUTL1NMLgoXk2/MTuN7X3DRKSBhs4icYbU1M8ReP9lWnIqOS2rqZZnKBxdiGuRnajqYyBtP1IDIV8l/8M78K5cgZq2gMadzbwz9BJrSiOgSAwzjHv6FF9bcg+9vc9wZlCJna80OqMOVAE2oVATMa15WNWOp/QGKpSVNDU8TdtZN6GxTMCkIz3E8shhi+122yuw6Q7E9i+jxJ4HRZjoqS0MTuXPE780vL+bYGMjyiW3IlUVJdaCNhQJQqEjbwE92UUsOPwh33KOwWNXUqfB0WO/pGbzP3Lbbbd94ljAHzv+nLT9AVHjSeRHNg/vHvNR0F3PyOBxziYUMtgUxB8eI+JVQBdk2ERctTwggrxlP47hMFFVjdxCjeGRmG2VNClaM8bIQVgSVfk5LstSB5g8t4ilH0nYwEpMTpg6x4P5/K+JWvK0SRRMwmYXw+jWGXyOmXh3d3f8BlxesJzbl93O8Ohhvp4eRhONCLMRs0TSeTKJTHT8xft4bdk3iSoadWY5X65/gbu6RjljfJ71xmFaF3ZRyUmyrj8D/6bieU4heJMl0zZNlabRciKG5OnDXfOsrD4rXCtWkLRpE6d9PgxFAcVCduyva+TVU4Jz53DmhOJEQ+G2qosZL03kiZ0nAWvj/uhGMTecTuen/tlR6kEKgTTNGBgDhLSqbGemTUamLKzDSKSPPf3P4k1cg19ZgN+05m+GTo5iGCZCy0HRcpgclNYwMpZjhsCy+Pp9FKRz46M2Vp+G+gCwBW2oqKSkDM5uEpqBWrSf6a7FaK5hxpaOEZoQdE4MU9g7yBVea7Zl3nC416rIzt0Eajv9PPRIHWsT7Pgz7XxuaR41FSVw2ysE7/0nhNGE3+XgSFE2CT0HKVvWhVChd/AECa6/pXSGQK7a4fwf4o8upG/ET3Hhf8VNpVtYyF9NtxIuqUIxK9hWv5+coJ/ioX4SWvcSaxjxubeOcHLhSupKnJhCopqwojtC3ubUT4R3fjRxS95SxNDZYLxVKiXkmR5GQuWMJ7cAoAiFjUouXrtC4bjk6WiU0w5HvGXW6U7h6rE2Nt38TQoKCsjTB0h84W72u5ax7MxpMnxdTD76qNXi7z5Cdu8+rr5lPb3BHBISbXywvSXOILvq3ItgfNYBQOiJrAgnUdV0hoG0dJrzKynlaDzTExKkoaC9noRTneC3hblIexN9qSGyxnMRCDSpcf3UZlZEVHRPHr4JFSkliqKxuMTipFUn3kVD3T3I0ul4J9BmD1NcsIDgSTea7kaofGy2DOa3z/c3JBHRzyCBnOl+8qZ99Dpz+fFrIo78CQaP4XWc5qTxDY53dtI0Wo5dS+RXznSihg1bV5TnC1VqYpXS3t61GO/PtKhmE8eaUAM1XbFKavHt8eupFm+iSUuYoGGwrvg/cZy9HOWV3Xx/YopHtijoqpXsjmRl0ucOYTgTUKfGUafGyHcrFBQU4GtupLP+GLnRKJ974zFs227iupWr0MIKL/Y0EprMIfDePk4vXMHJhSuRqsaOulb+IdgZTxpMwDs4SDCnAEOBYMCLac4KzXJzz0doCkbUOiRmaQppNjvHp/MQUol/xolKIgPmQNxNwad1kfurK7C3KBQtvTo+PpILccP2uWSAR8sM3u07Td7Ydly+Ro71z86X1ngSeX5FBbv7z1Almzk35248npWcrBb8U+ByokLDJiSF6hSF5y6hr0cgpyzPY2lGCQYfhnuycW26gyRDcr1nEV0lr8e8rSW9vudwu6tpbrkXKS3bxMKCL3Fn1gStYYUl+VfHZ9oo3kQwWaP5+L2gRSgtE0xMpjI2lsFJkccifx6pvgCud5/H9aU1hNMLkdK6YU2pcGTc5PxFGfPEL4wPktPbzo2vPUJ3bjEFvg4ADtRcSEfeAmt/QaXRmQwd+6jT4OsxiLj92L/w4CXVnzgW8MeOPydtf2A4mxvwtLZzsiQfM6qR138ABTg/uw3pKWDJ1i9i7DmLGbI2/j51dNaWxDQIBPIQwoZpRJGmiu9QDp8r9bJ4wsDRM23xsgRkTX4csgrzB8NrxSJQXwYjgkNpIsP+I8Isx7HtSziKkuOKQl3XURSFyy67jJqaGu5cfCUTA0/NcqiEYEBxMvVbhT0VSeh5Kqaw2kJvpJxPzdh/stjWz3j6Sqp4DUWRGJqgYWM+G/1uMl+rY2ypCQlQIbo4SwmS323ZNDe0jAyy6upQYwufIhT6DTd2Y3rOqwSY1iaTLAXdXWPxsT4FPpOBNjU1FR/wFUIwNTUV/zdHUTLatlIadrQwGLYaohmawrAu8RsSxV6ImDqIBEbCg4zZE1A0k4LqNJIznDTs9aEgMJD0yV4yOg/T+loB6QtDZFSNIbES9t9XQToTvy/qAyyxhaZq1tyaqVptKKERDHhJcg+yZPE7CMXAkND6aiFT/Rk097rZ8IVNFJVvi5/CZyqyczeB/9jRwDUBGyoS+sNEG9rpz0sjOWgjsN9KaHtT3ZhCkJQziYihTkCnY6SDoaK/wWXbRWHxJqaiCz+Cdvg8UyPwQkM7EZeJVASmUOjzZJAXDDIVSgNsiJj/bH4gmcLaaZZ1RBlemMRqp5Mrv1RqVYP27SMcKSFsLsJhNOCYqbjNaZk6ipJJuWoBgZfPUp8sOJqmofWG8Qzm4CCJBee7KJWpJB2eimXvcHNCGnfJiXjiVNPRybmml8Sj04TNEC5XHzWBUxTt7QAEUsDk9n/FZWy2TKmNCNmqnezbXuGDfhs966ZYQCqXnFNledO+NauclDHlsnusg5Pri6msOIQQEikhGMxkaiqFwf4SJpPTOW/Pe+iRKA0VHRiqSfZ0PtKQSMNA7/6A9v6HUBSJacJoUwrB1lSKJ7rxXLES9ViI0IkCXMVt8YQiGMimoNrB9vATVOlu3FmtdCt/STY3xWcyM9L7+Gn9X8fb53cu/VfsmkLauI8r+19FlQZGQOWVnG0cahuhLKU9zi3LU1WeGf02nWOlXL92lHrFZg3FC8mB9hPUbP0qFKwhry2Iuv/4POP4T0vIPZ6VLE7J4wej/4cmsYhqGihTmhnyLiTgKcMdasMzJfjxzSqL+9IgYyOKHobCClxdLdj1MNUbVwOzsGCkJHegmw2h/pi61eLeHQ1OcG00JcYtjPHNTMnxtGQKFGt9UhWV4sEB8t97j/aSYjpLSzhZv5mUlEEWLbqOReuuIZwToufVs9h6xlAQqFLhnJFzOek+Bpio0qAq20lnpxqDUI8QNZ6l09ARhTZSSq+a9+wvz1rOUKedd95sZqjaji13mp3NO6iSJyjnDMC8ajrMKHdXArOzrMeycomM+5AIooqkaWsBlxUlk9qRijAVqyCgC+z1flTPOWCYCBRUwDXlYDpxMjZzaeDz7YiBby13hK6uh5BAvmKnxHElZM1in/wdD8QhuYqi4EnpZ2wsE1MqnOwup6qhEXFmF6mLVuIX263JUAmjozmYUjJuMs8+jLpnOC1M8gY6yRvoYqZ8vrF2Dz05xRhIVNPksoXlkJLL0WO/jEPEo1LGuwt/avHnpO0PiMnjx0l45RF2fetviKoap5Z8hR/v+79snT6KN2ka56U3UJnto3/6R7w//iMKvd2keOtJHjcJhTJQVZXS0i34TmfR3vQeE4MLmRwpoSk0RJ1LskpJRJOW6unTLIvmKzTXoyjnxIcoHVMjOObM88xtCZqmyRtvvIHX66U6/2pqB55FznjUGQJlXBDaYlISaUSTBiaWwnUglEP3qh9Qn1nDS4FxlsqzLDSb0KXKb9RrKVnio3rkAG1FbkwFrvXupPloIe2hkjj245N85D4anquvInPnTs7f8z6D2V5GL7yexJw8Blx5GAENTRqAimLLRyiC0/t8KKqgKEmlWxi/EzEyV0EqhILbPt+IPOecXIQ3MW5Wffb4IP5Gy9NPseXizdjC8Pg4iq0QRc1BKII1V5QC0HigD123ks0h0UWGNJkccDI1lEh+wY3kLk0iNXUtm39PBelc/9HfhfqYiYKCArasOZ9d+9/lZP1FpHoGKS9cRkpqPXbbGIpixltsydlThPsTmex3MtVdBeXQ1HSX9T7kXMPyrJXzFq0CXaET4upEYkw8rfNDMAza87JprShFnRxjvG8KacQwBqZCf7NJ5rJfM6boDI21ktiTj6EXIiUkIxl45SxN7SEosqEsc4GUaBLWDTnICixlOpqM3X09eam1lJu1HJjIxMCgOAh/tbFsXusunLCB3c5VHE1zUDMa5sLJPhyPXWklcrTg2GbiWL2OpLU51Keo3N7rIywlotTGqoMB7rxwFedvyKfvoA9dtCGwDOZvLc0moXcPL/QMsaanm1vHNoGwMXG4n4naATKv2oAr518RDSBNK2F1jb8Nb7xhzUbFzKk/2LeHL6SfR9Sbhc3QKRtpI7t0xceUy6mhswibjckCExGrmgKkpAyRnDzK4MACTEWhs6QYNaOERX4VhMBV7sI9rBM8foL0lX1WNV/ER7EY63PQ8LOfkp1XiGvNajKefZYPiy/EnTZEMJjN5GQ2Q84htNQzbMmcQhUQaPt7Doezue3JSSK6SULmHrT0CDImaDpQ/zB35FYzMahj9FmVFqTOmsBRqtQl9PW9immGAYkqYGFaCx2hEtKUVGxmFITEJnXWNjxGU1oRlau3zDOOn5lpC76/A3+OQmpA4Bmfb/T9XrSSARJZJC1VuzQ1pgcWkBJ8HcVuR1lVzVnHaZSkLKr9cfYJqZVL2KAopExYB8NPwpXMje39oxYcPfaBzKBAdvseIHN1H3l+F1+97A4qf/sK/U9+QMbICKWd7UTWJVN+3ncpqNkKWIfE5mWdLOzxoEkVE4hMJ5MeWUa553mWaHUUJKThjbXppsVuzOkoqiIxjCin2vewYfnsWvLOh6d5//XtKEi2j3Sya8UGdHk9Glfzt/L/UC5a5jsUfEqkajEkFWAKQWamNWKT4LqOgv1lTKa14hwuRwZeRqcZ09NCMPcAodz9SKHHv48ApnAQMU3U2JqjCsMSbJmRj9lbzfemVhgPZSOE5QmcOTBMpEQSXjjNVPcOSNHjz0NGRg9paX14vdvIrdg0a6HmvIIbjj/FgYFsOidiFlRSsraxgU1bh/kAjQsLcrl0ySIAajb/I1rtT4hioipa3Iv3Ty3+nLT9ATF55ENOlFTEh44V06Ru03eo9r3NePWFVK7eAvt+RrbWwOrCH9C+chKEwVKpET5+K3lVxRjGa2QWLKLutSvQdRMDSZdm4jNN/pIJLhc2Ni7yM+U/QmaK5S86d65pOqWVdHmYW1auxeMpA2ZPLPFWKN0UFBRQXFyMoihxWbmUlhpp06ZNrMr/e7r3/R1jPTZsXYLgDQaokKK0cQu/4bA8h5yeEFnBUV5U1nPfmAfDlsKb8m4u6n2Nbl8GPRMLcC200dbrsvzphIUiqExrITdrNf97S8W8k/Y8BMRHwrViBYWPPUr47b38tNPOyW439r4G/v6mLRw8lMpEQwNCy8dmz2JJODY5bUr+elkRhxL0OQ3U2ZjbxllesJwrLrqOd58/ghb2cPjJAbIzc+dt+nP5bul5SfS1WKd9RUDZifcojUbp8xqYi91s/NoF8dde89crOXLYR7dm8nnvxZx88Fh84Z9OOY/X29NYJ9JZ9dlOTMDHW6KeK0rjkN3fReYe7wsAkrGxTAQQVp6kqMiC1AqhIaV1kp0YTAJFoGk20su0uJUVgK/veVatfMpSfMYqVGvWLqTngz5mlPyqZqmZXd7V7F+1hqe3bgMhqOjvpPTUIVpfh7SKMZLSK7F7OhGKNQ4gTXDpz6Cq3yctvY2ynGac/ioSsyt4conLUvZJuKMxTGZPOn7dSjqyEvNZt24tRAZZ1xJgb5bJ8Ww7xolmrqUi/jkcGs/im6uDRAXYZAKPD/pZFylhOHIPEg2xc5qMLAuq+/LUJGFkrOUDJ7wqDZFpKtuCvPJ0M8lSkmlXWHSlpUD8YtGVfPHoo4R67ISEjfjwmy4ZbxbIvK/gvfo0xkA3roR2XOkRMAVt/Wl0jqZQlD7GvtLc+NoRBfa195BUJDg6cZTqTWnIRoPsHIW0mitxrVnNBa4QoZ7a+GczMxflSelnaiyDpGXFGOPWUi6lJNQc4pD7Q9ZH7HzSA6FISUpwnJa391L8zU2kf3chK589TqdSTpYyzrrb1nMszU6Z30qwVAFg0ta7j4i+whIZjJVgz7CcCNL9GrmHBwmYQ6iqhqpaCY+CpGCqh9aX7kJe0cEM4sREocVfjk1T2Lx0HRc2PMD+vh42BOtYHmzk/ld3MJFluS7MPIvhzhBv7n6Xt1CpKl7KQrOZlafG8TitA9rR4AQPTZ5HWBi8hM4NoZ8hOl04I0HcS7eRtLmaqy9M5vW3v86IcwTpt66lPzmV48npiN27UJ5+DvVnP6Xfbufcb36XyGDfPFzJzM85OTY17/1c7nax3nwTv1ZPi1dQnxalxTXIIlsOM2Tm9OFRMiedZHjng4kfa3iMS10XUOJfQndEEjBAM5LxTidQkDwIxZsoKCigoKCAh3f7yZXPgGlgSIWGg35KXI3x6ztxZjtFBfWEAjkc95QTlZbbgy4lp1lERns/qWV3zFt3P0nN7teNmKtrrHOhWw98eDwP51gUZ6gaaRpEMioYN99ipOY+pBJL1mZJNghhp1NdyL5AHdenRmLVN6vzpAjFEift+1m8+h33pu54HufOx8lsP8hQdjYFq68j2DfC8PV67PBxKraORQHLsUNVJdOhwxzeGSI/sxLnkBNBKunXPsX69jfoefE4hmmiSEnyxBQ88xg3Xngh3QM+njq8j/O9w1BSGnNqmGOs+ycYf5SkTQiRBjwHFAMdwI1SSv+nvDYZaAR2Sim//T91jZ8VrjWrWbnvJE+goJsSTQoaj5t8wb8Be2uUp7L8rIoN1CoZA6A4rZvZNPBmtzOa+CTDbVEUYeOi2/+TUye8/OuJTvpi7VMJnJvcyUD6fchhnW7/gyzO/S8iTypxkG93zb9gyujHEqC5cNW5VPTLLruMN954w/IkVVWinigPnXyIGm8N+SO3oj7zPGNbrYQNFVpkBU+Ir6CjcabAJHl0LwOhfoysDMveQ4KStYVrCrKpye1ltO9+zFRbbMYAdKnRFqrg3hsrYpYrz37cmP5TKk6uFSv4IODmZOBMXIXmn4xQuXQJP+u3Y0rINwyWRG0IaQF1kwvd7NzzGqa9lRdPl/HkLTexqiiVusE6vvfy90iZTOE513Pcd9V9GP4UnOMF1qyM8slD1jMx97TvPnEYtbsUfegMKWe3k7LCRHtnkGDpSoTmJbXUw5U3zy7wldlWqX4ivZhvvTNCRB/6vVWjH22J9g51sa/oJDXOGpbz2SX7kuoyDrYdw5QmKZ5BhGIJDUCQZbsA4QuTUbKVqtuXxVsJEfse5NAcf1AZoa/lP/G89cqsP+xtr7D4y24aDvaS6cxg44VL6E9q51eBJh7+8l9aqmKgKaeI60OjbCsrQ8l/EWkexJ6uIKWFqBFAWuAEFxX9kPYVIUaJ4pc2Dvf+FENxIRVrdR9bnsHGchsJiTYM3zhp9UOYH/YjpWR/WpSflHkxFIU3TEnnkwf47i3rrTZjqkp0BMwYBb22KJ8VTcuQaICKNCXhtiCnMKh9uw11ZSqGsEiejmCUdaXp9DZa7MBRCX7TiPMRAaj5Eg55CF6cZoBx+hQ/OaTifvBhjMFmhDAovGAYV4b1frb1pfDyaCWmENQNZ5M5PhwXLNgMnZJwP19/+8cUdU5T84yO3VQw7XZcMeTNWiCY/RStjb9hdOwtC9hqCnIzN7D14hsAOPnII5Y9WwwnIrQk3lzTxaIplUtlzOnIVHAdUqk524c7bNCYpzB6/IuYidNwKyz7Nz/2LhuTi1Zy93gFhanXcNHS7ShCogiNfHeIhWkdNI8Wo+olfLH8O+zu246nNRgXCUnTYNHmiwkO9tN5sg5X1gSZy4Zn0UQIEj1XcfXaS2YTBWULy45egTCiRNE4oFfimDNOEe4MsXt7A99c6SEqbkAT1/C34m5Kkk/geesH4K3mgFlENAbE1iW8bJaxytbEP9nXY0sTiOMmnnSdBy9+kA/2fciwr5f+5FReXboBUygc+9JC7n703+nftw9DiPjamTtnAH0u6sn6n4BNwPdzxjGa/xPDE+EiCQ+N2Knx1uC6aBWBF95i2KGRPjlFSmcrAw9fy9Q1t5JafD2tp05zb6flVmM4JF3R2Cyt0MmzN8A53543i7l8wSZ+tP0vWeY6Rv6ZLsKDJ9hxoIEb7vpHEr1TLM15BoGONE/RfTaDOhZiSBMNgyrZwORgAttrO0gp9rOqKPUT8CzWurQ+JQm7YuF1bKYZF9TE7fV0E6SB7m9lcqtEqrPVNasOr+EUl6JGtlBkZlGvPgfELNckpAV0SvO+gmf7nfPa3P3RhfQ2p5HekoR/RxKaMUmu2kbysgN036TPCt0wycu5kXBkiJHh3bH5bY1DTx/AMdKH15uJVKzUZqJWkPn1O7nS9R4dv36OjJRljC5NoGP8FKfefBkpBDZhYBY28GGbip7itggJ0vhze/Qj8QPgXSnlPwshfhD78/c/5bX3AO//j13Z7xHRUknl9W5+0djMKXsxK0Z1Gv0m/6FAZGZ+6wLLWzO1bQeK+RqmNBCKhr04GTMSBcXENKKYkVquvPm75K3P5oVjPTxf28MqXSWS1hSnTJsyykjvfpL0DSBhIrkRU863g4mDS/f8FsPQ43yZXe1dTJp21pdX8eUve+no6CDqifL9+u/H51Eeqvketsd2Ym824/SQ08qsRQxAclE/NUO7eSWjGkOAKiXXluZyeUUpBxsexzDDCCxVjt25hq6pm7j3xlnkxyca039GzJ3Zsyd1M6y2UZmyPP53wwmw6Opy3GM6eRWp/EfzPtTcX6MKHeRuXmrMZ1XRFew/vZ+1vrUoUsEMmOw/vZ/rKm6ZZ0T9SUPWMNueTC31kFqVxtC+XGTlldgXGkwe+DmBHTtQUktwrV+AUKcQNgXlshJ8wQh5FankxuT1//FeKxF96HfaetV2+jlzrI8VaBTkumd9UFW4x3cfJ0da4viNz1pMFqyu5PPcSPvpVnIWLmNw+rT1vqNi3Lcfe4vJiO04b335LkaKqrjWkU1Zytp5VlYAvtAeclwGnpAlya9reoEHat+hvD3C3hI7XaO38MQHTzDmvgzDszDeLjJRcNRspHxpG2fPxsQ2sRvL2rclZ8pc5Pb3gHDGkhCdaqUBG3no0lKmXrI0l1UxEnnovW5Csc1yQAmyK2PSAp8KgaGYtGRF48n3uSUZ3B8IWI4JqsK5i6txjJ+HeC8m0MHAkdTLmWPJfNtwsKs3gkSg65LbY76a/YYy7x4ZLnJyf+eAZZsVasCx62rCtuW8KdZamzyClVoIIyOZ9IkpMgYd8aSt05+GGVMRmsDg4ef5SVIip461s7y5gcruNopugqouE80AIWft21wrVtDd3U3LgRa0tlzaB0pwZo8zNZDEFbdfGk8qLl53IbsOvospTUxhMuIcIck9gXDovBCw45wup6H7YtIdAapLW2lJreD2xVEL+SEADSbXmjh6VeozFhAJmDQPnsO/Hs3mG2uaSecdIqGd3Fljo0P+M0kZyfy0/u8JG2Ecdpc1ZiolmmZn0XkXMtzVwcjQIUov64q3Zy27Jjtez4Usne4jS3FQ2wkvHHOSnH0ftu4DHDQqOaVW8sM5Iw4jRwf4MFkhKtTYvBHs43xuDnwIhoSOfaxfusiqDpkSgWRdNMCK8fXYpEAVVhV1+IHtuC5Zy/QZDZLA58mIe48aUvLe2g2U+/sgNvT/UTbXLCPOqkCdm+rmzpJsMvyPc1bqqAIUIbhz8ZUsz1qOL9DIkbI8a5bYNDF0g+i6SeTwcyj+l6mY/gE2qaJiOaYM5R7itBHAsAeo1ifJTphfUV9VlMq9N36eD55XCA8OgTTj5vRe+wiqiM1MKwaT3ka2+B1EPAobeZ8yo4WmvhK67Tnx9edQ28gn4llqPIk86TLZ9ewLLGs6SUZvF5OxA8QM3FvqA5iLVzJV0DznCjWCbRvwt5/D9MgCEKBpE1x+5VeJyl8BoJhQmvcNPFFn3DS+W0/j5Ot7OXumD3XajcJqlifuwxPqQJqSYd2PnGPqLoSC211NX8u9ln5fqNgmLmO8r4V8dz5K3JIL0K0DWt6SC7AdXy6OAAAgAElEQVQvTkMaklSgxL2U9/qeZiTShy4Fvkk3NZMj2FM91mEqJr76U4w/VtJ2FXB+7PePAXv4hKRNCLEK8AJvAX8S72AweIyjtZ8HdxRP5U5u/PB7OIJljE4o5DoVfJo5q14sWIOnYA0rgzfj9x8mMbyYiQ/7GfK+YTHdpBaD5M6aAF+3Mp8zx/pIbKnGL19FmhYKIT13A5HYJp4YqmJU2DClPpsAdR+BRy+n2MhA5VoMYaMxt5gHjUTMtj5sAu5SJthaUsyuwK55OIcPM0N4v3ohxQ+9Q+r9GuGFkqJF9WglN1jDmhgUpZwkLbmZf2u9m322DZS50rl8y1/wYcdz7G7bwSqXRAFUoeBNLWV5dT4ez/zEJCf7WuvXmE3SjN9ouhzCceh1wJppc61YwaqiVH50ywqe6zpD++huXmw/g121c9+y/4X4sI+89RtYsSE//r21nnYQlpefREdztQOQOZXJgBxAwRroyZzKBGDhORaC99McFD7anqQsxSoWKCrSBC2tnMjIWbS0cmYsnKRu0rCjheYpA1VTWH9tEpOBNqrSi8mPDuId72EgKd+COX4kajv93PvrI9xnOLEBQ8oAUxtzyXfaeVu+z8nulo/hNz4rFqyujPP58oNF+P2HEe/3M9nyPJgmRjhC/979bK9IYEdtD898fR2rVj5Fc/O9hMYs+LBE4k9NwDNmgGrnTO84t7+czbi7nC31LdxvPIKeD9r0aUi+CrABVvVo3cMP0vzDW3hNXEeVeYIyabHYZqotEsmUzWNVBpAIxcbqzGp+dXSSY6kqNUGTJSUGxD4axaXFVZv9ih9HdIZXZh2/NUZQBn2EO9OoKUrm+RVl87xJcfnIsN9viROUBhzT12NXL+OvVrtibVT42WRCPJmeW2EdLnLyF4P9s5BScYIaI4JP0THiaaDkRHkx9pF+FCnJTg1gTUsKitLHqBvOtjZ7KWnOnWJF+xG+sOuA5a+rKCzp0ThVJNBVE8VUUGL2bd3d3Tz2yCPouo6QEqc/lbE+B0JR6G44SW5FFeHOEAX7BFcYq+hT/YyummZVaQoJgw+gCiuvmUy9hjI1n8ipX4Gms2rqKF71FjpNERdaTJ5jkuXeSEHlcs45fZpxaZI0VEG6Oo40LHsopM7m0l5+OzZIxIiQ4bex9nQaQlrYm81fsjxn33vsQdIWjSOUGTGKQlrqBhITP8f27UetmVJF5a1wOT49CchAU6/iptUF/HAOIqi/Lci+vb2szLahmnZMRSKFwj5xIS3iNWrUVpgOUfPKLfxb9kYeHbezNWkXFelNmGkaUx+mkBgosxAj/adpezGKVrYJkhRyA8MopompCBQk7jlipxk21+Tx41byvGY160sr5pnb31mSTY0nkSCzB1JVsVGdfzUQEzTERlJMIRivEthjJgSmGcWVO4yiFWPqEkOY1CWeoiBQhjKVyz6uJjWYSWTndlwppUTCGeRVpLKqNJWcbeezo+6dT7EIC9MiFvKW504MFGxSZ1v3bnytJTylfI4hV0585nddaTqaah2CVXX+LHDley/S33iSE0vXYytYR/KL78Xfh+QLVgAF+Ds+RLbNCOUEdv0S+muviqNsiKl+3cb1lJVm4/e9QWrBZXicFXDiaVA0uo1sHuMa9P5xSD5Bir4Uu55MIL0Kz3gnwmZHWVAM4RPxayss+ApjY6fjM5JSSjzZyaiaxlC4J84mBEATcd9mTAtDY92NClnOQoYjfQgEdtVgmS55sPhGjgbOUFO6laqpUkZ3tiAA10rv7xxL+Z+KP1bS5pVS9gFIKfuEEFkffYEQQgF+BnwR2PxZ30wI8Q3gGwCFhYX//692TpyufQiMqAUeFFH6PI24hksptitsNDSe1yIfUy96PCtJCJQx/ORJtGg2iT3fIpD7AS7hoGG5m+dnTvCexHjyFu7MJ+lsNpNpjWSWnEdCoIyJlQMIIHPlMjJTluLveN4yiQ/p1kNgRCjAx228wK7Sr/Dr/GUzhTPCpsmrbZ30732P9Veu/xjOQRSNcmQLOHMlhxIUvjhYz2/9p1m0ZpIy/TXKRQumgFW2Wq7t+gAdlbd3hZHaL1ntMjAlNEyrLHZJen3P0tf/YrxtGwwemzfPlpNzDf1tQXY9tgNHWhP1faVU7T6CJ9ROcOdOCh97lNOlFfyof4CwlozMuIOUwX+mrK2F4ud+iqZLxK7tTGbPOiZcVbmJVzofI2pGsas2rqq0pNrnLD6HxqONmIaJqqpUpC2Zp1qsXJfDJ8VH25Md9cPkazGDGSkRzjSU1FL04Wbs0kCiIBEMhi31n5p4kBNHXmPc52R6OImrAd2WgGHrQekpg6L5UvIXj/Ww2FBiDTyLgr7jg3au+ItVlDkXY/fN/7w+LeaiXeJm4Z6VeDwrmfQfp8v+CkYkgo5VUYE5p+wLVlJR8aPYZxWriG64G8oGoHgT+Y/vo37xNkxFRTENVnU9j0u48SW3YtqfIsdxFcl9bVw8+gb+PLhjooCIKETlWr5afz8blhyck7ip+NMMCw8gVbz279DxmpslNp1lfutUPaOSDXeGCL7WZuE5FEHughLCshtilV1Mk2mbnTPNDfha26jcVkPN6sq4nyUAxZtw2O/DYZyx2jHFm+hyu4iOTMfbqF2Frnnv5cw81f2dA/MhpWkrqFHtFOs+VAwMYTlzqFMTVjVNwJAtiVJlDFbeSumym0l85QkGj9TSkhfm2MII16sehCosFKrdztU3/JC8zBBiXTJZLYG4fVvtvn3Wxq8oFn/K5Uabnpw3ID9zr3qlB6/0MI6T/tEdGLF+lCoUqtKnyU/ws980kFIiDZ2RVh1v5mYGwm9bn4kKoSUpND7Twjm6tTUIoHt3BgXn25BSRwiV6Wkfy9yLsat2ckcTUMy4NIWpsTEO7T+CHo0y7nMiTYEQluH4tHMR7504HbdZk4ZBugzhIwmwrKtyU5zxhM3X3Mihl/YyOJFIek8eG70ae4odSMBQbLy+4gbK9TN49v+CoFsjLfsE/zvZ8osVAoRpEMo/ju1gA/pwM6a/jVRDYg9fQsrIEhLHg3xhfIixRSqyq5HskDWhI4TgkksuIX14mK4vfwUZiSDsdqof+Q3PL6/gQGCc8tAwkfd/xbNeB4dcGyH9CTbbGjg3Z5aDFhc0RKMI0ySpSRI9F6SqoCg2a13/ehnv/7aNX3bW4ZAGilRQYmvJrjf3YRvuA1Ts7huwO/O56rsr4r6ac8n/tZ1+es2/IJtf0kQVOpbyX0rBb9xfZW3yUYaMbO65ajGrilLZvfcIH+w7TOZkIj67N66IPhqc4EBHI4laLz/+q78jqtl4XMKvDocoe/w+hh94IO5UM697gkpOdwE+m2A4KuOtTEUIxkanmarYRvH5t8xX/yoqHXlXYvhssTk4k6jdj9NIpPKL55A0VomxMpmG8bv/H3vvHR1Xeef/v557p0ijMurV6tWyJUu2sIwBY4OpoYQESCAFUiBskk2+m+ymLUnY7IaQukn2CySQUEIChBLAoRgwxh0XWbJly7J6H3VpZqSRNDP3Ps/vjzsaWUD2u/v9nf1lz+/s5xwf26PR3Jl7n3nup7zLOd9KgWHM4Rl5jiXwnBA6BWXXctO3b2aw9RT29NQIpm052Zp9axfKTLIwa8CYNkNHzAwyFIe+EGAyaxvaZQ3U7vwGtWaIYHMvE6G8yIBAEWgcJf3Odf8tErf/sqRNCLEL3tdR6B//gy/xeeBVpdTgUnb8l0Ip9RDwEEB9fb36d5/8/zJ8JyexR2BLnaqC4bitbEq3U+M1uQsnnbp8X/bi0sY6JnwcsrezJruZ17RtPD7pRE560IXgB2Wr+ESuVZ87CxLxJF3EIW8d9aOCgt+fslTcNcGQ6zhT6m1yzh7E7fPA/iegdDmvzWOE+YxUlk+EQlOQ7Z3ANE3sPvsKOYfy5jN0PvIbCv/WwrRdj2Ro8WvcU15MwHMXSoSs+yOQ5A1HeAaSsYGXySyOMIOAGE1geQSsHNvOzBx5D55trHOEnAt+gtAM1Gobg4EPwRFwz/Yxf/QYh1JyCMuIJbywEY5ZTdVABz67nZmkWFLnQ6QdPYbfXRxhlxW9xyAZYMo5xYGsAyTNJ+F1edkwePm/a0g9duxpJntfJyn5MoStABVhg/YHxuiaf5vC+NUUxVdjL9qCreAC5g7+jOfVq8QVQcdkKatmyolL7abg4kcRmomqFXS9UsCsP435/DIQGjt2vUVa/nJSdbx/hmcbBylD47bI9TKA49IgrWeKL2x7r/zG+8VfwjMuhauujvxHH+Gd59/kx+NxhIsUH8h4hp6QTlrqp4BS3O71xBd+h76x1yl0lFuiuLGp0LcfPaEUqekQURePFx/hvAEYSNNoX5NMpwJbSTVXFz3PyfVrI/R5DSV0+tNLKTo8wNrLa4ixxbFwZgpfzh4rC5aKwOgIE6EKFtIdNKfobPBKti8RC3om2ZdnY8OUQY1fMluUC9NhNKUsUoWS5Hgn6dC9KBRNr/ZQN7aedVl28hZOR4HOvMspYUtiYOUYtSjtXSf0qDV6y9yCXXNEOyybC1fDbTvQd/2Wes8EZn4dKpxA+5njLM0aXeVXQbEB627hhNPBgwkHMC6xsD8CwejU81yydR5fXxxUXIw7uYx11RHLq0uW30JhYSG6plnAfimp7R0i4bqrKN5+RRSA7ix2M27z41HTxAgHh0914ooLsLZaQ9MkmmYjObkBx5rY97AiVZzJWPsbUb2c0YUwhiGjvr4gCEwUMxj+BV0pY+TOPoPyPI2mWYr3x1P7Weh5B2Wa6DYbgdRCfn6wlavRmRuLw3M4h1UXjqKUiXfoVzTNZ1LEpUwkpjGSlE5JUztbug7xVn49GzJ6+Hjng5BwI57EBp7953/ECBugNKbEjZT0F3CoOAZDSXRCZKo3aBLtrE+wMZNkj5CgIjVBRHDY5c9ges1rOE7O4PDquAMD1LX8kpGsBtQFG7ipOo2BH32Nty+8EKVZwslKKZqbm+mdmSErIZ60icnouLq+ro6csQFefvQr9F6lc2/gHox5awP8k6jhT9ml0ZHQucmV5vUy19FJllyFq9jBBCk8O9BEfaZG6vYCMh88xtaxTDqdCrAA81rAF3klEzN4BtORE92vcspXM+LM4oWeKZJnBvjey61sLzzOdYUmVaIVGwZhBVJotCSX07q+hP+lgtzakM/ufUc59sC9xCqTa4XOi1nXMhGbxQM9I7wuQphKR6z7gqVZKSK40FQHlSllhLx90bH9EnFg4tSzsL8QhU7lmlcw4tYQU3A5/a1T9LVM0t26n/GpDuovvZbiqWPRsSgSCrNT0MdCmKZBYsIoa7MPUeKbQO8I0lZ5J4mO6Yju21JYHbSo4gGCnOwbI4UpK0gjSzHf3MzEz76LlpCPPW8TEy54o9DEdCRAUgUJnh7WfPhLMPZq9L0FjQowlwbhAkxJsPk0zoL3Tkn+v47/sqRNKbX9L/1MCDEmhMiOdNmygfH3edr5wEVCiM8D8YBDCDGnlPrGf9Fb/g9F9robCf3sJK9dso1fr7sDma/xu1Xw4LF5qn2Se+uLWP0+eKWljbWJHhLcI+zRtvGouNMCZ0dseL7RMUAeA2zNXb/SNw54wAU1PhhObMav/xIhJP1rNTiZRvncJMSng+7khE3RGBtLWkwQB4KQtAykL+o8SbZvBg2NnJh0SjIqozf/yT0/JViqoiQEpKKuOhY4Q/fSl0MpskZDxPslfeTQQz7N02vZXjgAwkAJjdriz7I4+th7cGvnVmRLlbo9uRfhX8Y7GSUhmoJfZsPp+ynYeN45djUWO8ixeJaB1BiOFWcihUBTCmdMGo0rtL7q+Gz1yoSmcayRccc4o45RdKHjcXeh2/LeF882duxpTk/djUpRjBr7qdzyPWbn6vnpkT6qFrpJQRJncyOEhhAaShO0X76Z8gt+h00YrCq2MTj/FVzpHQhNRsZCivjsBWYMt9UVEgKpJO+cfieaUB3umcKQilZMfsEi27CzlzC6LrjEKwn2+6ktqI1erxPjJ+g9/RrZfj92s4HcOovB2tfXh2lanRTDMGl5uZGRuicZC79JWvoVrFvYju/Fl5BjfnLSYrmp/jl0zcBU8Ju2JiqyHgPgrv0/JixDOORRfjM6QW1wEYRGobGWE7Z7kKYCXQNlWeYMpjswVGSDVzpt2hqq5GleUiYGApswaMg9Sl7eBKv0Cxl5I8S4PoQz+wBIE6FspOZcwI5UG4/XuzA1C9P2fJIOvgC3iVlCJQ7sxQ6+2h7kZ2KWUEoKmCarR/soHxuiwWtjQFMoAaaSNDY2coIwt/ECebYfLwvsngPstsRF3zVGxUqie5vf5kOn/gZNhqnXf8xzN/+ZZ9RyDerpG+TZ1wcwlYbWMojUHCzx7WyuLQTaO2DmGTjxFI0Xf26FeXb2bCGB+XX8uExnbe9xql7Zg2/XOyu8dpdiXMYTX3MZ7uFTxAe8lP7D1/DVb+I57xybO45RP7aP8di1lnm2aVoahFLh96dxqmU7qbZOQv0albmx79uh6evbYx0oUnjZXS/iTC1lcaqEJWSQJ93OE45UwrNp2NQ/8i3uoUx2k840d131NTwly36P97caDNoyeDHrWvIWPdywzgvsYEnqY1PaBDudPZxIvx6J4ERuCT/5+ff56cEHKNo2hssWBs9+BtP+JqKVZknU5JYFuOnGGrY7u3mh44+sVi2U0YHUBDNJdssCSYLUraQ5btzqQo5XPImqNGArpP1vHW9NA7unj9CaN0B/zp/5UdMm0kdH2XC8ieP1GyI2RzA8PMww0LZ1K9v27CF9dg7XxmUdN1eGn6PaBZjYoicvrCyrqHM7vEtJxLP/9E0Mw8A20EnRJ27myY4XGHOO8eu4X/PTygdY7yvApwpJjB0mMf4YjlkPEwuh5QsjWLFfnUsi0CKuLZ1BjXZVTgdruEU9wt75bfTFV0S6vxr7B/r46GA+p44dJyFjloTsALMjcaxa9DCZW8BOQpgRtquKjBe1iPTOhqkQxkwXIjK2PzeMsWmMeCfjlX9EiTCCP5OcWkJ/i4kzuZv8i3+K0Ax6R14hNe9buM8R2c5bt5XbsmboaX4Es7ARpUGPFJxq2Y7/7DTu0Wmqa+woaeFOe3sayEjPtvZfRXRy836x5EOa0NmDiNjTqYVphh1zSHKXaNhUfuAG6zrFzoLu4IQNuvQ+CmdmGBV+smUymcqFUzvLkofxXzP+WuPRHcBtwH2Rv1969xOUUh9b+rcQ4nag/q+dsAGsu+RmnpmN59fxWZiRix7WFI0pOmv9JsXrs6JYrcmCWNpdlu1VpubjVUczhmngN2p4WnwAhca5vjSmgofadxE7N8uRmMrlkQxwPNVGjS+EN+cAuohobSEZykykKOClO/MaFi/O4I7uP1iKzj0PcG9tNpMpm1nXEyB+II0RoZOtkkl/l7WVa+tVOH95hNnIwYSmYbcnER9fgYaGlCaagtzxIEcyb2XXeJrVAXNr/G7ub3CHRvh07VU0VFxMV7iE4aHniE9Jib7+UkXW1/8QU5O7GfY8BVJDCB0lJUrqzE9UoDQbs9fdgWtuN/X+MM/VruGQd475yS52tXhI9SVhahFjZ02jo3cEI2zp7/wlq513K/tvXFdNVknRCu2npRhofwuVFdGzsgk8o29zNHcju0WY2KRCPuRsQBM6AmuTlCgyMo8yLww0TSGkSXx6BwsTFShpQwgTlEbQdy0xpBFSwxYzSZNMxE5Ej7tEuigPC75MDE4E64UNTYE4MsZE4zjpd9bgLEi0ZAJ2fpNrs3sJxBsI9SLjv/8qdR+/KSLtoludFARJ5lFmA88QCwSGf0XrH39L/D5BLnDHlYo5YaBFOhP1uGgca2R4ZoFsfYGyOJOeRUFjjIPa4CKNCas5lFRDRb2HNOdFHPMeIbzPDVInbyKIjssComOyWrZSanbyqeZGhvJjqM94hjKtAyXh4Nu/5vTiFpQQJLZs57wEnay8yyi58HJi4/oxZ2aQwnID2d00jLBrlnegJghLxfMpBiEprcRd1ymKTeHWikKmh0bpH51gycTcclPU6SOHPHN0hZ7XivXhjqPaaxJsmqbF5eVPzW1M9A2QTxfSGUITkkZXKc94xngaB6ZSPDM6zdeaTtCfUcBgTjF5nm5yx4Yjr6jAXCDQFuakw8mxAjtu/wirAmWkewsI2gIUzX6UH29JspLTiqv52c//hTUDPdEOxhIB5rR/mF+8sQtfbAr1cZPYhOTtljO8rKVgAnbT5LmWF1iY24UpG1BYkh9Wp0kx60slNDYPup2Wo0eixJikwCLzb+9nPrBIcnFDRD4h0gUUiv78NroDBYRscPuGfLyVLgzvDBKBIWycUdVUaAPRomzpda2OsSU+PRqThTtnkbycWcJzutURBSpiJO0xuTQJDSk0wjqcLK9ibW8n3dMujpQo6hcXyZNtK7qCmz64haxiN4t9R7hOPc+5o7HkNV+E/n1kx7ghvRLfZA5zaT8HYUTxeugQLDHgzUb8F+URpyeQOzrNO4FhLoh3Utjbg2vOx/HrthOYW14fUtMYz8igsGZd9LG8NdWc3J9IpTyDrhsYS1hOobE5KX75lxsfg7aX6OnJxgiHQQjm49w0HW6nggrKKcfuCtIz0oZS2YTsAfyJA/hJQySmEOttR18IoOk2arZvp+rCZf/Xc0kEKIWmCToXt/F9UQnChiYMrjV+x5AqwVR6tBt98uRJ1tYnYFb3o2mKTDnJ/GgSMiuTQ8qIkomW8KPVYS/fCsVSuzGOcNq10bE9sAx7SQ5Z2FOhLFIRkpGhA0i5CVd6e1TqB8LMOGZxn9vxBqZ2f4bxXBspmm6xQwUkJE3gm83C501lYuITBOaa8HotS7jRsV9E3F50ysvufl8VAk9HW9RSTNc0LsxbS8a6z4HQydd9tGotSGVBZhyrLLLYpuIy9A/+jDuafoSmcslImSPXO8Mqfze3iOM4677znuP8NeKvlbTdBzwjhPgMMADcBCCEqAfuUkp99q/0vv6PEez30z6RhowX0YWtKcUF3gMk2V5g58FvMvpOPH1ujSf0eKQOdiG5W3RjSisr6rKXWhbN7zP2VUry5v7HSVn7lRWg14vXZkHfIC6cBM95/rhy89HFT9K6I8wd1aeXFZ1RzA++yJfqbiCIn0k9mUzD/b7irK4rbqVsuhfnyefx1PtRAto7vkdO9o2Up99OuPEBkmcWSQho/MGbR7pYZDZb8Fz5FRjYsGFwS7wdT0cbux/9NUVXdjMzqzje9Jal9RX5Uk1NvU00DVUmzoM6/e4LWJzYbLGNUNB/iMmmJ3Bl/4z6v3+BjtEsHnxhL9f0p6FFPMSFEGg2O9OepKVuOZomolXoUtIcE2fHDCTxnczv0+k9TW1FLYazjGcW5th8fjpZ7pXJa0hciJL7ARMldRZ81Wy6yEqokmPTEMoWqWpNxhb6afUeZm3cMAtlAlMKTKUzO5rC4ugUg3tvp/pCA++xLFyzJYjkLtLTJzihTXBMn+ILKfdEj7sklDy1qx9n1yxCgU1FBFqFQBqSqcYxcgoSaRxrpFqzWyKWmsW6zM7oYPzYKDUfqaCsYAPzrWPUaKmEM34DRJcpizUGi61ZjGdkkKL6EMIHyjqFV05cht2s47WFQ3whY9ECsCdC6pRBY+Iabqz5GSFhR0dwmzzOujqNR6cfJt1bwIS7mx8l306Lo4ixvT8hJuDh+PxGMkYrKBP7yMrsiIKTxxKykQErU/T50zgxUoT9VDxawT5qYvtx+NYSUta6jzkzRemcxH6eC0OAJg3y23fTm3YVpiaw6zo3V62m7YE2DMNJgn0NHdl7yAimoFtcWQrxgO5gbqSQhZ/8mdi1qcRfuVwtLxFOpCGZx4twNJPulCwQQ3N4EzLNz0dqfkJQOaMJIVKxw5HP6WuuxdR1dHMrN7/8KLljg4CGZs+jo2QDhwOjPJPUT27fBB8483ksApxi/2o7pgZKExi6jROVa1g7Mohr43kE+/1MPNSCMiU50uCK2UE8aoBQXA4AZzNyCUVBWzYOuWu4amA/iTkFJKaM45/OILFpkrHkJIQ0CGbmgdA41jvImsHBFTgtbDaSbriBoqs+Q+/CbyP6fQ6u2/pBGstzo5IcOb4AD5/woqTVWS1Oa2B9wUdxu9dHuxl5a6o5dHyImqnjDMXkEJe5wFc33E9o1tLSWlqHAlgjW9mBJCwVujQZS07ldGk5f6rq5EyyhkMl8nBJAzddeYPV1UoqZqQnFs3mIzm1AU1zImUIITQqyu+B+AqaFp9ChnthpJW20QoqM4zlelgCJgQHnBxdXY47vgL3ggZKYvN0cKQkh8X4MdpK57nj8i0cfOkgpmlae7uUZIyOMXemjcDBg+Q/+gg5dXVcc9fP6Tv7Mj/JPMxh14U4HOncnJWy3GVrfAxe/jIAKWcy0FQZ4dg4glkF1rlAIJSg1ldFjcznHT3IoGOaCFoehYbhSsQWXODST99Fzfblmfnw8FOsjXmZrXmF7B3cjN2m8Z1r1vD7eT9NhAGBVHaG3Gv5pryHPWPXkzq+EMXslRTM0t0TwTtqgtKiOX55YBTOS7UukLZ8X1o3uY+Lex+0OtWX3Umw34//7UGcxW5m1DLsBc36PAphdb9WXcgJW4jARBlp0mYpIQiBb3QPZxdeIzv3Ztx5Gznx5te5I91NRTieT8hpNKEirhyZgETHpDSlmp2dEsMwWJV3ChER8FVKEg5b/sGNvsCKjvmSq4WSEhOwNVwBIRtCaGRIN5WTGq5tVThWreZvd/RHZU9uuWyKOXsxvowvMCB0mqTkupaDeMpvpeR9ir6/RvxVkjal1BTvQy5QSjUC70nYlFKPAY/9l7+x/0AEe3xsmAzjKLQTlgqhFPc0/4JLF15kKsmBEXgGe+JFnMwrxtABoRFSklOyiSL3PH5fGnlzMzQLjRUSfkpiw+BCuY8FXyFjr7/A/bd8jG5nXHQhBnOT0bpvpd2EHLwAACAASURBVI0jKGWilMaLAzdxXBaiK4mmNeBQLYRR2BW48j4YlSmojlC131ecdfAo4bH7WSixRbSsBEqGGPY8haY5WX/BD3CPjfEjbyVvjTjYOnuWUFYgKgliKNg7MUhsbxBXhj/KGFPvwrVFsQmRe1/S8Ga0njhaYvMBEw2ThOZmJrzxiFaILf0D98xUssG2E00mRHA2UFBdS0reNs6+EyUPUrnZYoGO9vh46V+bMcIWqyns8ONNbkEIxfOeM7y8LiUqKfFcbemKUUbJ+R9k5yNBnKntLI6VUHXgDVZvvog/fHYTR58+iJq2I5U13mz1HmQ6OMzieIgdzR/mkk1uJsdSCAzuRJkGtpF8Mvd9hEwJGRV7mKj6PUqYXK4EU13bmZxaSYDYUJBMcLvOZJ+FXVziZCllpQqThiQHq3P4uHyeQmVDRUaLsdOVJKRb2as/e5K4wzmkJcTgH93AfOrpaMJkdLs5sG0rpqaRn6co4JRVHStYzDhB5vT5bM4ME5gS6MIaq8eUXcSehNsJBZ3IyOitsy2Dps6f86n1DfiOPMh53SFy959Ev/ID3BvXQWOcJHsuwPUTElvMHCCiFkx2R3DFGtASPaRm76F35B1cwuTj4nIeU5/FFPDT1TE8eGyeB4/N05iiMTfTQW9MLB9v/hNxyQ4KbDU4PbGYhgQlcISSWFAO9mXvIyuYxefWXU6e9hnmRgrxNlms4eAeAzgUTdyWsKZCwYQ+gyJSGSjJ8+bVdCXYCenOqEK8AHQlLS9IXUdpOiYwmFNE7tggmq0Azb4KKU2mksuRYoCi8fVgWtgYhUHReIj9Mg4ThV0IttZWk//Jm3HV1eF5vhMZGXlpQiMrJo/x+dOEyGE0MZmzmflLCwMdSYlvmJ74dKrX7QJdIVaB/R0X/sk8FtJyoiN50zT5w6v7uMo7iSMUAikhFML7zDOIl5xk/PSrTOrd5ORso7z8YhoqrE5KX9/TlCU38M+l+XyzcwhTCX4yXUJq6iouHVvuZmiahWZtMEzqhY6/Ig1dLCds517zctXDz89283ZhCS/G6ryy5VJeu2gb8WPfxx7uYhHBSyTw3fLVaLacCHHIH4VArK97YoWzSt859kdKhsm3+Vd8t+z9gsTndAYD8YSzEqPnBDQMVwLO4Dwp9Zfy9Q/dSm1GLWXJZRzftYs3hybpyswlpnKaaw/uXiHDstRd3Ax8lPfGiTNP0+hOpH5xkfKMGTYd8XCqcg3z0VVkJW45MpXTiXY6CgdInepnfjGC41US2/wsSlnkjqUYHn6Ks+13g4KPVRzmkspMVpd8gg0FybzZ2AX+cHSi2izO42rtJS4P7mTYX4Ou66xbt47ExJwV8kuvdWSj+UI4jk1hFMYhM2MRAuwyxM1jr1ujzL79BGXlCkZ93MfXrnidmKzbGfK1UZh5BcWFW6i+/RiPvdnFgaE8ytKH2BRnMBk4hgKGB05TDzTGxBAfTKVmvooxWy8CwcRYEfOzKdRzinW0R10h9ux8iYmIPZ8Qy1jNFVCiyL6+wtVC0zCOvI5aV4jSdKSSzPsGyaeMxjnHCtmTxHGJGbMaKTQQGlKAJzmdwnX/fTxI/8cR4T8ZzmI363bDj/sPcjRjgaTOcfo9WbyWs56Ymn7c2iHGCmdoFt/F6vUqFDrxykua7KC85ovU1G/kU4kpPDM6DUB1fCwtI13Mt+1gYbyQudl0lDKZbe/iS9devnzsgkRMbQ2hE19hZuA0C54aNk0VM5QQYjIGtpz3SVaNBNnV/xYlqz7Et/zFhL0jywnKtrz3/Uy+nmdpWhNjAXmxNI0sQK+yiAOOWTpr7uL+4x2EShSvqvP5hPoNGqaFKxAmF6fnkeeK5eT+RJScABSa/m5cm9OiaUtFxpmP407aRrxQFIoH8BjxxHt6OJ2cyImGD1Lb2UpaF7Cqm9GEeWR3vFWEahpV9jhc6Ql02gJRbNoSC3S4wxJFXYqw3QtIFDCUkEJIWZuiku/FnyT6eqgd7WHkmEnyzMskBgaYP3oM3+owgaaH2ePMIiMmn/HFQSaDHhCCh+03cGD6PCqMCur1Jg5Kq0JPs+cgFCwmdTNZ9XsQZmQUqbi1dBeziQ1A6cq1VZCI+5piZl7qgoge1EBI4jEVW8+z8FS1GbVw5Q8Ye+dNskYniZ2uxBUoI7XeGh1sXFfNAwf/ieyWWtJ7NNw92UxcKUh2bGQ6McE6E0Lg9eeQTxtCWpv8fGor7eIrlKd/m7MzDpSyNuKC87/BZiqwHe+08JEKXIuKGKMQ33grt3bNM7A7iQlTUN26h6qPOWnLEWjmBKmVLaSnVSA0B0qGkVLg80ZwYQISEiYoq9llVc6RG41fuZBCodAIC8VDJU7u7A6SGJT8qn4tUggOSUldX4i5boO5mRE0XVj6XALmYkdJX0xnPHacnhTFJdVfZeEnfyZ6UBTeExM87uxiU3EqdpeGW1jisxkyGYGGUhY27aTKZHEyFa1YoDQL7nlrTirbQn5297TQWl6LCeimSZ7HkpiRRj/SGMbmzOFswQDZc8WUjy9V6FaidU3wJdj7YXrTbZRMm6y97QO4It3vSUPixtI8k0oyvjiAPbxAReVaTi6EomB5AVxjD9M8V0d20SkK9H4LQ2mDmMo4znvDQ39Q0pW5KjI2hYCni/tmkvi23Y4IhawHlWIiIYG9+z2YwoWuN3LbbWtITJxYwfgeyX4CU2kowFDw9Y4h7gqMEr/UzVAy2rXVkJyf6mJFwrYUSiPj7K0sLuQxmhqPsbhoUZeUIBSzBluom0x/CUlHUhmdfJDhUDWmIUnSBGk6kY7y+ve1P2qXhbRSTcZ4NpuSHgDNAFMj/nkNvV8jJWYBe8BPSGUDkU7bwhw2m50PXfIpzGA8+/fvJzY2lqbiSp4viAHgZOlq0ATXHTv4HjzXkqPAan0as/0YAI6aPP6eMRLJoHEyjq1ygY0bpgmGOhgRRRZjWGhsNisYdSfz+XoXQa0aStdyXvso559+Edu8D30hgG6z40oq5vjOPnLLkxkZejbKzERBpW0PGwq+xPH+Gfbu7oUNadYPhEAqwX4uxmbfwfo1F3LTppsiONq8aOI7FqzirTeW58EyPQaEQEfx/d4HqZ89G2VbB7tWMuqdnkLWr7deZ4IUPn/gJ5b2Z+cpHnZVsKX+PBLz7TSOVbBGG2B+9A/RtSuBMwPPUl/zT7ScPUZt9W40zURKHftYHBdoB8hTw9Fj5zHC1tGHedy8htMtl5KUNEnDmlsBeKXteUJyrTW9kop9vZN8diaeGz93D0MTZy1M22NPMB7+NyZKNzAeHMSrJslbU81bkwKjKAExHeS8wBm+3HYvndl1vJB4feQ0S6oKjRWErr92/E/S9p8MZ0Ei4Zs6SJ34V0op597aezDW2XiMD/NNvkuF6OBV/RoU+vL4UynmcGPzZJJWZFq2JLBSkiA3jbvPLuL170WzJAMZNRNWHHtwcJDHHnss0rpPI8mfjl0IbinMYNM1xeix/fyo61lCZpA94wOEkjYisUZN705Qzo2ZJDtyEuv9SgjOZuFMGEcpRZdYzfFgA6OnOwhLidKtztoedYmV/FhiB8THV5CTGxcdG8TnzK8wII9alMwcQTsajzZSAJpAA8LFN1Ef+xQHNt3MVxPqCes27OYN/EAZ6MdPMZG2m50bx1nbG8ONhxbg5BMsOv7IFT94iCmRvgKbtuTfaEQ2F3s4Ccu+SRFrhqMdE4nlsRc9B3/8I6P//C+I/DCplRItIJhz64iCOE69chAwmQoOMxX0oDvWkhxbwGRqBYn2eD6GRv6CWlHdTRkehC6YTzkLmNERpYgkbocHf0pJXh2rF4qjHdDTmEydHqNSEmXvndVMwpuzVmDvajNq4fraFbZmzoJERnt8DDUtUFR3MWdKerh4IgV77ZcYHWpjYlc3QYcPkZ0Nus7cQiavTbi5Mn0yMnK2RJzDYS/xOQ/S0v8nZp0uUoMa9RlxfD01le9PTiIFvFmXQPFQmL8rvoL5ib0Rj1GBMOFbjus4mO6i68Qgf8o0Keg5xec+9S/YEsZof8VLeDQZXGOgFG73OEIYnKuFWcVp7EoRFpajwdF0G03pNkysRAYhMIWgsSSWE4Xwib2zXFGVQUJKDB69gzWHSq0xjVdRrCxP2Ni1qZEOm5VE7PX3M//WK/zwrSpCajU/lZY2XiZJjCxWEav8xBoaN9t6SSGHLyqrG6kJERmB5ZFb5kC+/FsGcorJ8/RFRqPWecwtnyftkkQmw7U4T+Vii2CeACpLfYQSP0xuk0HupJWsnj08Er2+GedlsffQCEnSz4jvVWu92ezU2RNY8C/SpEAKsAvFes9JhiV4vVnk5Vt2epqykZR4B9NXT7J2WxHueReNjY0RxrdiPtHFzk99m+rWg+Qe3oWQkomsLEysru6yqOzpFYzvAl8zwlyPitjUSeChuCxuyS4ka6QXQ1nEGyHBZtMpKE5lItLwUlgN3aVE41Sik2+sjiUcSdiWskqzr5yUwM1c72nApuCl7mQuTLqfzIxLKc7uwDVdSVyLjeCm7BXTArd7PaLsCe7tUITQsJVDuDmd1c7jjI+fRLhHuERJUuaDnH+mk7dj5ugqTsBvn+HSnForYYuN5/HHH496NL9afT4kx0Qxx4evu5Evfv4zK4giS2SA5DkPH/TsINOZSUZMPsMHT5FfEsvG1iR0JRgmgRdFOm9sHCXo2kdmMJM7t/0NaQsVfPtkH0FB9F5xrDKbNN911LS+SVyawaqqavY88RZouThiV7FhQx7knYzmw/HDVhH0p6Yh5HQI2xkvRlXS0llnr7iU2tA4tbW1KxKPJRmgV97uQqqImXyKIzoalUrRs7Ca+VRwXf95yNuIU/rf44HsdOfhdq9n16nfRLU/k305HH61i6wtRdQWWwQqn6+JI6NPokXa/iZwWMXzdxm1XF+ajZLtUXu2VeuyyKv4OsHmZoKyGqesxDnwMHlykFtkI2enP0rWZBrO6Sma5j9GpipAE99DoVvyNm968E8bCJtG7WevxCzsZuDJPxI33kV4YYS4O7eSVJPL67MnuX+hFLM0AWQ8180otDNhGqZGCfsPMOrOINs3wWXbl/GM/x3if5K2/4uYCuwC4IxYY40INR2loFWtQSlo0jYsP1lZCl4Xn1nPBu1K7Ppyq/vdBuo3XLSOL7WPk6Z8TAo3v6yrjD73eP8Mb+7cZyVs1guzGDtG7EIS119VSlaBm9+cep6QGUSi0Bda0ROvQ2gO7Nq7ALLviuTCG9GmX7BcFjQdR/wkIOlQlfxQ/y6GR0OXJrqUURp4jyjFascJJIpX+4ZZ8I9RWFjI5uv+4T3HOPezkiyZFQFAoNs00q64ErRCmnoGCJv2CEBZY0dyGv94Ywl/OpBIq9HExtFpUucOW+lMOEz8QDOFn7szeozBwUEOtraxUB9DsSOTklWJLAbC6MkVzIYmEYmZ7Juef4+nnu/NRqafPEa4Kp3JT/dbLRUNwMRr/jNx4jZ86IBJqjOXYvcF5LkSrBEWlnxYeN8Ik6klK9h5qc5ctO4AE2oHUoWizzUUnF2Ad945TnpjIOJ6IPgXFcAwFf+KCxtgCHgtxuDujTn/xzU52uPjtceewZlyltTJEv6UPUTmBy7ioX0PsXmwAVFUBICQkiqXi/GNcXin/ZbSg4goPgiNsWAVtz/Xhp6zD4TBE/2v8+iVj2AmZcO0taGbQrF546epXVPL/KdA/P29KFMhHA5kbRV9A308feUnMHWdQ9Jkbe8ot133NxR+AabvfZn+GQCBHExEFJ0GlsdoZaqT+4be4o9xl3A01YY896dLmW/k36amGMi0U7kpGzUWoH3/OJrSIkQRyf5T+0nJSqH2ys3AIRZODDOnTnLj4oPoSMLYeCz4S3Ry0SJd8St9YYZUPkIoVjlXcThFxxSghMCEaPGzELuKnLG3yBkbZukGKYRAt9tIvTibL/b8hHl7KTn2E9yiF6Kkxf5Lb7iQ/U+foyKvoO2Ah6zRo+RvqyY5pYSLtuRyvLmVqfEhAJJsGbiO2rlcxJA5NceJ9SZXtX+PzJkxHlcfZs6fxpmW7dTH62ROryfGW0KuVkZGSS0pmo+m5hMYhoFEMEEib7ePMzYF8zUf5LM1qVTXr+XMO+9EpWIKCwtJTIxbwfjO8bVwXUcKL1UWWti+SOLm/tgdhA7czy7ViEKRM+3iwvOvJTU7jwm/JZ+x7DkJQtloY62VlEe+ZlkGJByf4SJfNqFgNrqyMF0mirmEMMkNP2EagxllJ+/41wj2FLwH4tFi5BJmBAQYmqIxLp8LzXKqb7qV1q5X0M48z4zdxkxCLP2ZU5zM8WDX7Fx4+a3kZKxm//795+ytUDzhYSg5I7reVssFptJKOFfJb4kMkLPgId2Zydasj6IJHalMpiaCSDXOkoKdUpA6E0tL6gwzsT56RA9t8/k0hUIgXMsVnVI0lyWx9kQ/s5Mmbfv6I0fTiU3bxHxCLHFv2QnnmMSespN/1x0c75/h1NFhPo6D5uEgPWmjzGRmRYpwncWYC/nl8VEWYnr4QHnxivN2rvOM5gshlYUVsxthyk/uozWhg/y2SjLzNuIsSIw6IrwbZlOfWU9uoJSisVoqxjdiKBsvNDZxw1fWMxrfS+NYE0NiM2L2MAI4Nm9jY1oyJ04/iadrN9mFloyQUhqNrTrZ7kRijq1FGSbi+CnSrrsAp+4gPZyPV6YwonlZdDdb96woNtxqUChzuRsY7PGRuM2SOpo/eoyU9Yn8cm4/R/2VOJTXYgsLq9X+dnwNVbEuXnOUUO71kuv3gwC7z85/p/ifpO3/IgYXrmA32SSoWWzCwFCWbMWZmU46XeuQsRFtF2Vh3r5+ZpEGTy5SmLTtOcwJn4eyhiKGPV9dYaC+oWA9v/zsZe8x8F2q6OrUDOVLDTwBmYUJXHXlMqOoPrMeh9AIS4OYYCd3t32DyeovsLn2qr/YZQNw+w3Wa9cwk2Rn0akz7HkagLOqCsssC9A0PnBoL8MFOTStKkMJPTJekdiEYGzPG+z2Tr2vPtgKcV1sJP+bjZjJAmyZq0n//EcsKvXj11EZuxpb3X2ElCUMuWfGzyHvHPdeeAlnfp/M6aQeDL0RTZlRxfjoNRkc5JFHrS6kRPCsXM0vN1+2wi4q1hfgEe8y9mFzUjxzR0aYfWseR+W1zBUCeiRpA0AhNBNXRi++Xkh15rA162Z0bUl41Lop6UtK/acnqPlM7QqtoJyCK3mr6TBNfX9EzOlkBHVOS+h16Iy3uZERPJUyFGvReIIQX2GeT65KJZQbx93rs9/X8urdjg2jtROsutCi1qdLGx9+YyNHd/2eJCMJtMh6BJSmkVpQQFlVBbvffhipQhHssQXqfrEjFxX3BJa7BBgqzI7uHVxd9dWIH6GlaXbjKmu067riVhbkKob3HESdl833PD8m6LhqJd4rtyiCj3qDUZeHxWAKoBH0r6Mo+9eEtDfxjDxnibdKG/WedNwiyIlUG2GWL8cKhJSytAcvznKjxgKEXuyiXHPT7dAxhIkUkn1z+3j5jZct2681NuIb/5Y0Y9G6rgJQBrH6aQwzF6EUQhosaOkI08I7TRiKxJCMCirbIVr85G2+CtuufRhhAyE0Ki+4mNRV+eStqeZXcycYT/0KCBsdiQZt6a1UTSayem0Bi5NhpFw5NpSmSe/rTWg7XsB1wVdAQrW5minnScY1H0ZKLpP6HFkqmXU+k+LGNtaYJwnKMq4O1+HRZsmeqCVjLBmEZpFXpKR1zxECxTFcfdWVdI1MM2omcFOfh60vPIjdNDB0Gy2X3MsnLr2UjwDdJ05QEu3I5FFedjd9vU+xGDxLUHuFD5fthLP3saOyEAQ4NEFxqslPU44RkpaguC8Vvry6gI7O70WJG1JZrgxaeCNFLVewSbl5PNdiCNs1wSelk2t9NuxKIB0wiGQoZOA3TVwZXcxpJmCRbhZS2wnmlNLX93K02CVyXWwQwRlL8uPthEeCuJ9TmBtuZPwrZZzY+RRSKdb02si84ErMvAYMZxlAhHmtRRO3lHk/hZMjSAnFUx7sYwM8fvIYt33qU9G9bVNxKjZNMByTQ4bU0IQeUeJXrC/ayvGJZy0yEVYHdio1hI6GXbe8Sc3EVPRuj4VtPqcgGU92MZhfTN7AcnLvypyl4JJHCdskxnaNmK4yjq4v4I+THpIH7fxMWYVewN3F22kv8CPuxlA2BIr27AKUEDQOznBL+xE+WlMe3VM2FCTznWvWsHNvH6GRBTremaJea2Rb9358N0ue0K+nSu3nw+0X4PQU4ix2k/g+MBv/QJirW++Cpa47AsOQvLa3mQfs/0DIDGETAikdFvNZKSpbXuQOzz5C9jgu7l1Fje7C581mbi6F3jNdVBru5eTrdD/OK+9jomOWV9tPIpEkzprUKJ0zao3VOBEahpJRpYVzSXeuujpcdXX8y/5/47dLPEcBOobF0leS89N7ONVwHb19AeYSy8j1TpEzO01h7Px7Pu9fM/4naftPRqMvwBfVGgyxFhsGt/FbZlUCcr6NA3P9BEM2hEOBZnXYrn9nP9f7q5FCY1R4ORhvR3WNMhbeTUHhew3UlxwRzo0/NQ0RDEu6RDql+qTVCNI0tl97EVl5K8dmD6//Gn/e822UklQtdFJbnA//TsLW2HGMPW88SW37aapTz7J4zdWADhKqVDt2BWFNoSnJ+WVpjDtHOEEppjLRUDTMemgY9xP0TlnjFcOg7+R+8vJutRTNDx5lMaWFzITIZ1VhgkUmzo5uFqe76d9poyYmjfkxxViai2rZzHFtY6Q0F4SU4mHPBP98FRiLM4Q+9L9Y1W+soJ4DHDzRhmmaEVNiRarycbhnigxtLuoQUJ+Xx3O1y7pc1V6TiZe6ARBCI3amEiE11BJNFQ0ldeZG4gBJRkx+VPLDIghY4L8lgVdXYDJCHbcSbp+viZGRFygSkxweyyT7dAkEZqkOztOdfz7HRTy3adaXUOiC00qiS+iwKcrPyyFtaJ7Jw+OMmtp7pEze7dhgjzl1DrXeJN/Vi+NwIWZZLPEJ4yQnTeDzZqFpAjP3LMdPx3Jr6ZfRfT9Aw0QIG/HxFWwqTuX+UyvXiEBQ747j1xlZ7OmaYIu0Ue21LKaO98/wsUMBQloNMQN7sKWGSI05yRQfQCrL2GqtGKCp+WtIGWTNGo1TLZcxO5tByVYXxVVbgC1kZ9/ARO9eeDOZGH8J62zwZE4OhxcWWP2mB2VKHip1ciTFhhJYWoJ9Ia67pJiZN/uJA7JUEleF6tjvaOfF7D8zHTONLnXL9svrAzNkdWkFFsvN5mDTNds4OpTGhpMtjJ7sYDrjfAuorhSnkmz8vtKFiUIzJV94/gmqkm+HCBB92+2f4/Unf0c4Jp62kye4bPUaBltP4U/PBmFjyd5s39w0Xs9pXgw8ybcavrlifA8KTZokz3SgZ1Va2Q2CSX2WQGYu87FZzAuTEU5wVaiWNJlAUk0utDgIhmvIUClkmOmAZGamFXdKFUoJ2rQhDvd2onqtveLqq6/mo/X1nPzhL9BNAx3LFaFmspv55mbMr/49BaEQpsPB2MNfZyahFY/nOWtEKpZw+wbXJ7/GutHLmaqs4MrSYk4MPIUhl4VOL8i8inSm8UurGDCBzkWdN2edfKzuQwSzi4lp6+fHgRi6gybKncahwWlK3Q5qfRKhFIUOjVUOBwtFvQTqP4qcedSSONXsJDZUcHrkrhXFbm9Q45Wz+4lpk8RnuJhN2sCOVQ5ey3Xwv48FaDsyzEuz3WxUYMa4GMor4wV7PeaY4qmJTh7KzCat36SipIozHaeWjeQ1DV1K1g91gKZhSrnCj3RDQTI31efx5BHFMyKGKiS6UhjC5GHXDiYaRikccqEruMU1zCVrbqQxq4xNZh35rak4i3XurMrlwXk/YaGWqPEopRjIKyVv4CyRB4nPnkdoEa0xZdJSorhP3E4YG1pciLhcOx8eNgilnKVStPEt7uGMWkvfbDnHEjdE/FUlbePdfOk3/fzys5dFTeNf2f0yV8f2sOAqZ9NQCSNSYeTDvfZ7ouoA7iN7uagNhE0j7bPVK7psJ8ZP8Nibz1BnXh5xc7DkkCTQOTBMUmo2owm9mErw4dk5Vs8Xkz1fRYt9lviFXqQQzMymMzRXBEqgaVBUVQodE5bArQzj7P03GO7FU/szpDaNUuCfSyd4+ALqjTZe3GwQ1kEzTejaiai/hrSNZUwFhxl8YWfUPWTXTLKl+hpJkgtUD+s5zlrRSoG/g06xmsG8f6QfG01K8p3WH5C38yHI3PG+kkF/jfgPJW1CiLeAnyqlXj3nsYeUUnf+O7/2/8u47/WXMdLKsQRx7fRRxKd5GLvfYItd0DOwgOfIo4xkF1A43s+1wXfYO7ue9Jh8OmKmUc5EEIKZmQwKCm10UkybqOEGewOF73O8JbV8BegLc6SHj5OYt0hgKJYXX6knY3Mfs6J9WSk/o4odbjchGebPSXYedjr4Sy6Vjb4ANw4KQpWfwF5u8E11D2W+tzCljhypo85zEV8TA7yeFiDHN8kR4NV1WyKiHdaXsyluFTfG++jVeqzxCiaFzT+kZd7Hrhd2YkqTmMwgKddq2HWBVBpal8UC1QB2vsIux9Uszqzn7mu/Q0izs3yXAJSinTCNgT9zuf4mgRgH9o8+gcu9UoR01Eyw8HvKwgOOq0TK40M8/vjTKxwC6vPyLEr44CD795wkWUEmbpRSxHpLid17KfGFh0hhmnDDJ+n1byGYsogY7mM8OIRUppXPmRbN3fqPAKGROwQ/9HTxb/ZOHrnJw8LkD1kySv9gmUbLfBWzvhxiBjo5zz9OYfoLhDbfTIqzHGexm7sxOdwzxUWuWFJ29GJEQOl7D41w8ZfrViRuzmL3CnxJdulWxgeeQJkmSMWZ+DX4ijPJjZukuuZNNE0CpyxG1KJBjnqKw2ca2JKrIqfZZGbmCBsK1/Pdrbdxb/NxFCZ2zc61EfqH6gAAIABJREFUJdcy2uPD+6s27orREMDE0UnS76xZoReVMpbEeTKGK3JPs5dHOKbOp/BkJ351kPjaIEIoNCFJShpjYSGb6vXL4/8YbykZM+loW2zIeQNnsZvcgkTWvj2If9qyPbqjM0hzg46BZQL+txcUklXsRtWkEerxIpUiXbmJL3Mzp+bQlb5s+5VkiXkqM8TQfCIdrgtYvfVDVJ63ncrzYL4wyMCBtxHpRBikgr4MO4ZmdSeVUvhiXVH2IIBndIzAqrJocfH6k79DXwhgzy7Ece3thLHkgC47XUf+5DpMzeTAqgN8+u8+HZWkmXnnOLbnfoXb34uhC5xCMSb8vGY/ielYYgRZ495RzUt8wjgnQm1Mbv8nKsdBHNUtT1wVJt7xAntGmnEm5tOWYrDUXZVS8uqrr5KZmUnZ5Vvoe/JRZDiMbrdTcvkW5o8esyRApCSYu0jrzLdRsxZJIZK/Wn9MQf+RXhbGf0fCThs53/4+tsx6snwuUiZ0RpPD7OzPZdOinfQYFcG4CY564ul1mNx39D4AigZC3P2UgSgo5++/9C1CxUkcKYL7j82zzmsJBGtK0SYKua/1IbJ1OxWxcHPtt4Fp5ORysXtm6EW+1PwaQTNIoVFI8uBd7E+OyKlIRWOK4KTZwkQwm/WuOBZWldJXUImBBfMImSaPv3GCC9rsGA4dPU1faSQvYCQpjWz/NLrNRmHh8i7t6Whjg7eJ/YbkYEwG/5D0DnW2GU662jkb0wsxMJocBKXInYOvynXk7DYJjc/jM/uQQjKVeJhSexH5/w977xke13Wea99r7z0DYFBmgEHvANFBgADYm0RJFFWsaktyky03xXFJsZ0iOclxS2x/n48d23HcZEuyZNmypNiWRMkSRVKkWEWCJACS6L0P+mCAAWZm77XOjz0ckpJzrpzvOkmc68v6RfACyU3M3mu/632f534yc9if50Iqga4k9wQPkeGZ5Lw/G6UESxMuuxEXnaK2q1oiGCihY6H4Rk08ZUtByueqmStzUE4vFWKAeV8lZ5MasARoSpK3MI2uXLFw+Ja+I3xww3fRhYmSBoOHP8vgchMjRelX0QE6ZA07rxg5XiraRkZGOHjyIIn6KuXxGrMRxawl6TMUpaZOzkQ2t/k+yd6a7zOTMsSGYClZC5/mJecFZCSdnZOF0XeBhn0as43Nb54+TtH5A2SThTXXidXQg79UkGK8iNudgd/vRQeSf9dNyewsn+3+Dsfq1lEwMUji9BijW6oRIddlVpthUHPNDXitVaiojXU1K5c6uCv5N0TnSbSrShCO6NtJEU7Mhvnwv8p5/M9Y/9ZOWwnw10KIjUqpL0V/7w8iwP0/eil9+eqvFUgLwhkOvJrEndFDyt4QRecGAQilwo3Zv+OiPwszUAYe21wQDGbjz/geX5vxEFEaz/dofIUZ5k3rKjr7JVo+wM6EVqp3dSB0haoS9L32Kj8ODzPt7idOd/JXG/+K/cP7CUvL1gIp+b8NFz++sERYaEhNIxLdCMpFN0JIRsMWp1fmSZIrNAXtTMWzBeVEogUKyg5uNoXCV13KA8mnGWzeTzHD6EtBDvzm5SjXCVZ9cew9tIftN2SxxsxlbO5XlDNsPxZWhKzfvsjTe24nohk2ifvS7hTttqHg5/pHKGGActkX60rCZa3cOm8JPw+uZdWYp09L5k/v2Er86lAsIeCywLrgqrgnzSm4JbSOTOXmrDnPnNiCuLCb66xv48hx8YlTCu9qHPe43slCqIM35ppJzyylfKiL+MLtUTK3QggNDcE6dFYTu1ie+S4alzUyQkjcHh+BxQxUYjLV2fvYasxR0fx8lNZfwHrs0/vi6yP4LRUjnacKOPXmOHdcWbS9RV/SkdDPi6/F857eVXyhEvwZmaAJ3J7JKIgSiJ5/dU2BNME5iqV0dCFiCRZnhuaZmc3h843fveowcObsIKnRGlUTAmUpju47hMtIoVDpZLnepDatmyHvHt5giqfERzAx6FpXQ0q3g2z5i6hN30FZ2TvYs2d3rGPx1lHvlSf5uFK3LVWRktp5k4+9uh9x3zu5uaw0VnwPmoMk7UomfljHU5/Og1uvYePURpp9zZQHMwkd62a8to7Fm37Oj/cdYCajmPWzEUZ/up+NJ3oovvEmmg+00165m3DcKI5QCk6ZSvG0iS5BKguHZdLY34Prg/fFPgMrMZlLVHWASHwS2nKAnIlBvhIYpWNNIR0HXqNwZgNatHvt8LlJ2NWHt+pNEqZTSe7az3LA3iukfxBn9jDznlTkgF2wJSdP4Xb7CPhzyIh4ObR+H+1aFeWBvUxlfhhjc4icsSFyOh4nMt3PjrQ+TubdAyEXycnTuD2T+BeyWVrKtO//nTspfvyxWPj3pQJUOJ2oUIjgxojdaSbWCKRbVnBmZgNZXeN4J32AxIyYPPviIUoLMrnxeDpKKaQGvy2c47UXF9mUUEhSTpClCRdeS+AtX2Am1YYcVQ9LDNN2ZUZ0A6XZyS0HUjTqFiyEUphCMZU9THghzIAlGI7oVAYC3Fu4+SrMRG9II2StooCcwBqy5gc5XpuOhYEmFSP+X9OTOkDpdAWLnjgMoZHrn0FTEilt52/eyABQgRFOIWWmjm25k5yVdoi7rhTvMEOU1dZSvm1bbP9oaz5F50u/gaVF7tB0Atd9lJrNO/mfbZ8lIiPo6JSOmNQOKy4WCnRPPf1/+TXii28krqoAoeloSvAn/k38ZeF3Wei9kz9eKaQ9VbFdX6VyzsNyTiL7Kn3U9HnI8SUwejSb/B2TIKBGXERDYalL+kLFG16TwLDJROsNpLgnWQzkcn7KYLP/p4S9O8j1z5ARWOCCuBwaX5XWS3DmcofeldHNhFnIH229nWOjo0SUhcOy2DyWDCiEocdGjpf2UdM0yVQZpCcEqYpzc2JplQltAQ0vGgIhHeQtljOVPESLYwN12hISiRJEO3PEtH+XzCrdvmH66kvY9foh0udmmBYJ9Nc5kPpp6uo1dO0DJP1qgsTZWQA2dbaDuYjUtVhE21WsNtOkJz6ZN7M3gZL29MDXyo7Vi8hEeSnghRrRgVMIO9pOmmzzt8UcrH8o699atC1gc9W+K4R4Ebj/3++S/rDXlulJ3kyN2C87LBpHO5hd9JBe7QdNoAtIyVthxZcAwL64Dby5JpHGlUGqvbsIrgpc6RnUb9jEs7OSiJxDaoKQlDzUPWyPbYDtLidFnhRS0p3INcl4fWHqkpYQuorFIyXnzJAbKGHK3cuqtcqTZ7/EmjiTQqfGcNiBQ3Pgdrr5yfmf/N7Mym2eJJzR06ZDmtSodtsRqjT8/mwsJH4tGH2QFLkLMxiWhakUStPQlJ07WumyKFi3i4KWb4EV5s2Vwphuxy6/NFpXGvloqIyEh/+MpJDN6pIiCmNUisbudn5umUQEGJpGDiGGlNO+0Kh9vZ2rSezTXUc4P/ZxFBGkqbPN+TlWF8p48H3l7Nqcz8iIQNf1WKctNz6DxddH6F3qihVzUijGAm1MB12cL1xGItHiNdp6dxNuNVk73YxbK0BTOma4nemwxWTgOIfc1/NJ7LGxiDo9IwLasKj29kYzWInVnjYwMhuB4ExRPz2ZOo+qdB7xzdDwllPccryOjJLtJeCLSH7aOkTetuyrRudxRSmx4uaFEy/wejLMerOpmcmMITT8Ua6RpksEOiCwlImFom9hlsCoh9s3baKp/kP0LpTEonFuSzvCx+r6KYqLh8wG8ipS6f3dIArbWWYJyUSriyXT5AOZI4S2nubr+t9hYutoJAIlbINOr7Oc82034vb48GTv5mx4A2JugXfKJJtP95ZR75UneSBK+be39cLJCaqGO9iwvu73Zq2aWBw5coTi4mJ2kcabh/4fFsfiOPZMEhM3fpBfbboHpWkcVvC9U/VMHP4+4ue/ZKJ8N/O1btv+mKSRvlDGTTVN7MpP5fzCOA3dfax/370ET9lYB1djI/UbNnH2Qnt0LK+RbiWwpNkvjRuryukcO81cqoeB7FVKJuORmsWm9AXOnH4vSliIiMI7buCMRtkJp5Oka9aSHo5HDJ0jOXGStfX70YSFUOe5EFzhq/rf2iMr3eRDfb9E701FF5AzXcRAzjYa+9rZuLuSqdFWampfi2EU2i/eHOsSXdL3gJ3LGDx1mtT738/k6z8luFVekuOiLGgeXs8/F/0FVqaBnq64b+4x8nxDmGgc7A9w7anfoWEfzpCKWnM/5YtJBBddBH22bD8HRfZsFs1rF+krWmHZJWNoELD1RBqS8dVmfu60SExYJq42m61b1/PovstpJhuyNuB2N1zFaZuZ7EPxL6AU4yk9NA3Uc9/eJxjJLSJvop/W4lOUDWzi2skLWAkuVpIk2f45bm85wgyC4tFeipa3xoSTRjiRG7tOU7e0jwPVH+eGknLesfujsXuxubmZl19+GSkl5JbiGu5CrATpbGnhjj2f4pE9j9B74QKFrcu4fvcCzPZj6nCkvofZFA+zSYsUigWyVBpC2Hd1/coafpFykY6RLDJ6YXMgnpPi3bBkYaV/j5byMbLmspjrTCU866QqfpL18318eMtzPLbmPhQCQyoseZil4lakP5uRkbWAYs3CGM6+CSKuF+iqFIyUFvHday9rfdeW7KJ5/icoGUFh4MzYyI+KSimNd1GcovPq0//Cuq4LlC8JEh58iKQd1bFnc3Bw0I4aAyR2JzhTuvEaBtliAQsvoBC6YiylB4nkbEIn16mtdtKOsqcVFhZCaVEzUPQHLcDSNKayMslY9BO+rhGpt0ffKBaWfBJv058SbhlCzveTGgxxy66bWcjJjEW0AVelakxlFtj8NU0HKVmSbl5x3si1aoUK2YlCkCT28FxjBa/2z1DUP0Z+8fth4/o/mC4b/NuLNqHsnJNPRiOljgJvV0f//2D95R9/Hn74Vbo9CeQPjKG1zDJbkE1aZQANiW44ycq5Dh+tjGUV8OxtH8HSDTQpub3tGHnBRe67thjL2ktFXwEOdx6RqJHBUpeyKRWHl8MQtE8RYk0KvhJFS08x2eoIQkqQsDg0heG2nS3FTotPZIRskr2CI6qOxsJ7+ErrcwQdZbg6XuOJXQ+/rXC7Lzcdc2aGW3v7SDDezby/mZ4VRWAxGp59afyHIntxjjtajhC3EMDM0jmRv4GS6QnOHhul/kMfoiAaT1JAMcaPn8IMR5AIDnt34HPloLWdQ4XDCKVQQrBQUsJoqk71uT5qBnr41DNPcGT9FrZVZXD2/KMUxt3MsfIG2w2rFDfm1dGUY5PYQ0OLTLzxEqokDFGYryuji9D8GpID9kZSUFDAAw88wODgIDKySsfrMzzl9lPql+hCw5IWGhr5qY2MZkwgVQAbxi8JegQTF5rZrGA8a5LjxZvIG80lzzeMhonlUEhNZ0b4Gdfm0dJzKNxWw03BFaq0DWC+gh2jI1ger8fXsxOCqXjLLtIT54umVthwyZKsLOYHfxATVo/7w3QvW3h1wbQpOaybjAgrNtJ462qZauH53udJXU2lWO5kNVVD13UqyytZ1Yt5aqINb9IMA5E4QrPbqcg6yIrPS9XFSozlJc40D5H+R5KT2KPOm9yHubvhOaY1mB1qpgnIrrifa/+skanTk/gme/H1xLFgCjQErrQuWrXq2DhFKFtbqJSFriS58zP2lA9oOxPk0OIo44bk2TOj/PLBLax9y6j3ysSOUL/fLteEfRrPchXF9ClXZq1alsWBEwcY6hpCWYqlbAiXrVC9PoWyhh56XypkcHoAWbQmNjo753XwzvgCVKQN07kAIhkEJKf4SMkeZqgryE1b7uWmrY0E44klCQink8LHHqWgsZF3NO5g9PgQuSqNdHcSo2uHKL1pC+eI40mrFitP0J8j2XbxAO9xp+A69hMWbzZBg269gr531LH5pU5qh/rIevghFt2lvPmP53CLOtIyhtCFZSPFlEVrUurVIytVQ60aZyw5lR996M+wNA2HZfHj3imaahMIRzusQkg2bEx+G2sqeO7c5XQETSN0gxXLxxZR/cL51QYszUBptptzouR2ijJ6eG4ugdyVcYQtSoiZDrwBI9o7ubzsl7Fgy8U0PnXjxwgOvMjxxlUevf2+WI7whwaeYF/6YbrSwaE7eWTrI7ZGd88jNPuarzp0uhdN3CNB0E38UxfIDhRTL9NwZXShNz5KaKKetPk3aCsZxxeXx7q5FQCMlSAJw11YrhRKhzopX1lmzYYtlG/ZxRu/7EZKG3Ce5zjPen8v73Bth4qbYv+PkZGRywUbgBBEXClkqTTWJ9TQdXaCdzWVknEwQNDVRfD91YjXV3BcmCDsTOWNXddiaRoX1VluNpvIVB4iwuKCq49CdTc9s5L8iGHXj0oABvmBCppzBzi+PkzVdDZVLSEyR3WEI57Pf/rd3FVawfGFJZzt+yld8/NYkX6+bTcaEm9SF8uGA/9iIklBg67QWfSEISA1mmbRS1GZjeRJDK0lfFhDmT5mzk5Teb8k610CZ886MurvelsubnFxse2plwpN6GRLDwqYtyJsubmU5pVsCkwNT/kSj3WMgYRO1wDfLHiMtQs1BFSY/NpCxKpJpCdIvBWPTwXRUFFEjCBuNUSoRKFn5kK447IbWVmMqx6Kdv0VLeI0F7eu44ZrtrH5LbmvV7r520+c47FsVzQzQtGdU0QnxRxXTewcewXX8gof3WaSNnaG9Ecli6bkeaOaOxsqyeYPZ/1bi7YfXvqFUupxIcR54FP/Ppf0h7/+8o8/z/5Hn6C15QBWQiLTrgpWzxeTmjrFjh0fJSm3iPbXOpgrtDc8GcVkjLm9lNPNyOhnABNXisG3O77I3jyNVzzFxI64cIWN2YbBSqEYScqOTWPsQF+JN8pC2ugyMcTlBJLbcyr53bIZc7EtKZNfj3bENr63BtLfCuSl1TB6qgh38gX8+kysW3Pl9WQuLZDon+c7138QU7P1H2nLi7Q1n6Lg7ndBwSZygXuzanj2xUM8N+pkIi4b3ZK0pa9ho9OJDIcxhaCm5Cyb01fx+T2csOr45/s+SFg3OKsgPXMNt3f1kxZcZMztJT87xO1Vl8MyQv1+EmYrEcUOlDRB6azMVKIJgW9wkUO/6KRqSw4FpQX4Z6fYf3iEf2yqJiLAoTL4hzOb8QR85FipZOHGka3TNj2BVBINjfjpfpRQTGQV8OxtD9hxRQ3V3Pfio+T5RrkuwWJW+HnFeQ4Lib44xLrcKrYNT/C7506S6G4iLWWCrTf+CUnFNzCWPo+eukJL1xyNU40MJQ2xFDdLScG1nB75e8BE05ysb/o5eRVraBaDzIUlEaXodFms9Q+z41QvQc81uBob7bFg1GDRPPgbTBkmYzUDTWm2PkRCXl4eXZ4uTl3IICx24pSdoCZYms5kl+8azHQN6RV4JmZ4/cn91H/0fpyGxlZviw1aFvZ9Nz/+Mu6K+8kudZNd6mbvc3PMdyzFRMcrM5XUqBdiTmpdWXyQRwmQTI12kSRHgMxqH5omKSw4T/7hz/F4qIAJpF2IXlf2r6IENJdx2VmnCVLWbUEzbARKcXFxrJMqdMGh0UMUWYX4Ury8VL4NS2gYvJOH+SJJOfMUjPXj2KCwpB0T1jQTxjHeTgiNgvE++spySfTM2RpAIVFlR+k74cB4LURkfDym+7qSjB83GKTBKkETGlJYpIpMpjwhfnaqHctVgopS1d3VTVw7MMBr/jJOUEGyFeBJ/SOY1QbPlJt887tfxRzr4NiKjmWmYagUwqObUGWHbZFPdCRmYGIqEEoxI9KZTFlhwp2OpWtITccUGqeMdNa3uDEabHK8UhqWeTXIGbhKy4ZSxPUZBJQFCnpEBe1iLQW5cegSLBS6hMryAsbzK5l+rRcxDtaCAcqMYUDS/U677hN2NqyUEnWpyFGK+PFVNt7+Sf7ccQhLaKBpKClZEdk8Mj5BsyuRDTf8Q2yfashsuPqg2fw4vPw5UJKW+ASmRQ33Lr6Tkmu+i9BMyNSJW7eBV4brCQcPYTjaGS2do+C8nVFsrAQxVi67ARM9qdTuzANgoPUVMhxPkLA8QLO+juMp17LNvxyTqgwODl4u2AChaQTiqlhbsJmhXD9iaS9TrZWsJs4ysuGbdnh6qSDtewaz2dk4NS1maPh1/EskJnkYT1ukbWYdq7NeFDDqkFir9j5uGBrlNXkMTHqpW96ClqDRvK2MwrR01uzYjquxkQ3YvM/WhRGmZ2SsSF+bdRojcw6lgaoXtLVVkB7IJHW8hGPtx9DaJjjw6A/tQtXh4N6/+wfixpMImYOgYDmxm46R/xehmWhFTjyld77t/ikoKODdO3dy/oc/IiuokZCkM1ubz7V3VZC9dSubr/jeHYs7ODhyEIApzU8kbOBSTgKti9wY5yEhY4qEuXw6ljXOGQNRXInELDKZuXMFQvtBaChlHxGk1PHPZ9HmNvj05t1EgB+09L4t5eZScgWAZ3mVb37hK7SUVDCUk8f+jdttvaqlSHTX8r7Cv2F1LsKAcuBI+Qzm7Jp/NdP6P3P9m4o2pdSP3vL1GeAj/y5X9F9kaUY+YBCfr0grbMfvz2ZkeC1jXQbVtbnU3fhp0pdDHFSKiLTHaLn+GdweH7bZXaKESanzLHmBa1CeaLSKujxWu7QEFgYm9c5mxKWweCFJyllhSM1T7LTYlGhdmmKiCYOa/Lt4flQDYUVdbAJ/pCimATsY2kxE2qorZUkOnTtP/qFvsPlrP+ZwlwcWZmL//oKMJ1mE0FDomobvumsxhR57IY27vejLUf7cyCkYPEJu8U523PMefvCTk+imxGFo1OzeQmHToxx8+hUmFlvJKz3AqCeOeLVKa6CGsG6gdB1LKXxZ9zA18QY5i/MoFHFr7biSSw9kXKkb18EKCs78FSveLhKrr8eoKaT96DgDLfa1dx6f4M73V5K8dwl/YUkM2GpKxYDHzYf9NrVdGBrZ1gzXn77IdF4JXqsNR10fU3OFjGSVxvAVUsFKSja7hw5T6Zphv/VxZDT2SCrJ6ZePcX6iE5XiJay8zC+UwbFpFiunqfCGOfnKv2BZFsWsoXipmAbjCEMyQKEnghBgWWEGB/exbt1D3PmZRsa65wkkGyS2HiXu5Anazkv8r/yWvg/vYmTY1pXpmmCb8SLObIm07M8ZiPG2RqxkFjLrUcIgmGKSNH+CtdqrFBa221qnxQxyMzYQmHORHDB56mNbGG67GU1+DylsrEZq7q2xbL+0VYVfpaDpK2DZ2aiN1XVMvvwDHrrli3RqtVSpi1TSHdOnrBY40DQZHetbJGV0UzBYxEw8pLqclx23b0EJhIYW8e/tt5kRAi6sKo6M6gzvvcAH1xvctH0zDzzwAL0tXfinJ+gPdIKUTLjTY/enqaCDOqonmsnzjfMNTdI2NMmmM4PU+OYJAfuKNrJy/3tZ1YOkJpxDEzKm8ZEXfsT0834wDIRhoCwLcQVuxtNQQGR4BrATDAKl8Cf7HkSzatHiP42MCsALExbobNrIQ8XriGiXRsgaSrND089V1vLM6m+YXzrLbeKTGDhZXSintWsn9VWHEUCZ6uYh9WWen3s/572VdGYX051VyI6uFgxpYQq7GF0/Z5G5WMeRtj2kuCcILOXxrnftftsepnvcdsGGvXFk7/oocbP9HMoc4qv8DyLCQPMINneEiDMVrpDi0Q0Ccy6E3uhhu3eB7Gv+nJf3HSFRTlCzYOtUEYKSrXl4mpz0dfjxH7STX3SHg4LaOlwV1dwyt8jLSmJJOxbsBv8JGkIhGsImzE/8/k135JRdsEmTljgnH81MpXa8jpvT+2LO6S5ZytdWazGzdHTZSP7A/6SnoIui+A3ULsSTnZVO5/E3UFIiNI2sklIm+/2c3vcyeTu/SUAz+aXYzNf1LxOZ03AsXC4EiouLMQwDMxrbdeuttzI4nsifulaIaAkYpPN59VU25mXYWZuaQqFI/NNr2HMuhyOLps2mk5JKGeGfMg8SkSZ6uo4IZiJWiiitSqOhKo/kgEleRSqTSR7ann4zdhhTwELDut/T9drD7NwTKBVB13QKhI8xzUDYdnrcnikCS9kYEpIvBDlw/IdIy8Ibl0tmQiG+k514r70BYWhIUxJI7UARIZaKc4WO+MpVfsMN5KWl0bPvDc6mr6GgqgHlN6HfHyt0WqZaODp2NPZnslazMJRdergSfSzVP8WysFClOq6zH8ZYEbZjW0o8qVPY25ottPH5KgitulhcyOYafz0vFetE009BSl579SA15flv+/mALQu49Ut/x/bfPs+p3nbeaNxERDfQpYVwBuhRJZTTCSKCkXeE1ZlpEmQxeRXr3/Z3/Weu/0Z+/H9Y490dBGZaSM5LoeSakwjdbklfbNtDypurHN5/jtkwpGrLfDDQQps3jlz/DNmL8zjSa9HERaQVQSgD11wVW/DwWJ5AarYkU0dRZ63gXG5nbfJplkQy1aqD5IiM5a4hITDhwpUZJD9O2kZGYb/fCnLvw+1uYqevn5/LOUwhESgWOs5wZvn7KEzcogaH+AJYEsOyaOi6iAqHSRo+x9ZbC7GOPs/8fCaBpSyOmyUoBbn6ItdtWEuhNo1umVjo6FKypvsc9R/7mL2p/uwOxgNORlaepODev+Opj11/NXeuKJWctGI6nvksrfUpKAGiEHa2vcljvAvzkr5HCSbdmWhovFS/HRXUeT56ksqfNRnrnif31hKyVguJK30XAEvNvXiEYD5a8VqmYqFthiSpsXFO8qgCU9qFyKRLo/+2AhpC9jjO6hzC++NWSPSx8rExwoZijRhl5GSEE9LeRAzLYnfLGcpLZojXxqnmV7RoW20GlRKERwIonSu6pLBvaIVjQ12sc0ywTrOuuIsE/nAt8wuKfHkx1hHpGfVwdC5axNxczMG2g4z52qGkBICBkhLM872QWIKGRoLLh+bR+c5sCUujDzKiAiw4F7nhnk1kSjcdHVMQZ0TNIwY319Vxe/gHaERi92zuzHq0pBRy3E5yilJZX/QW4lf/AAAgAElEQVRZ/N2ZzI+/TGrurfRk3c09Lb2EpUJakuSlFe7y6BTPWui6IMHXjUtfpUJ0Uym6Y3mwl9bCQDKZa+exT8gC/0wS1esyuLMmnS/vvRgLa37qY1uuGv8uHe1ARSxsrAoMuHWe3J6EpcGRFZNfd5+mLq4S7VQC0iymjo/yo/ifsP0inCuqxtQUDqXIOe0hNL8FZ3INZaF0xqwFWmsbMXIk9UXbOBs3y9H8LCyl0CniIXmOCtUBSkfrjQc5D5aF+557cOTmXiXgz9tRzxhtLLSM4Gko4IL7FOHpMJIz5I7+E5pzHTLcyq+1VoKFDxMxypCaDirq7lQKqWm8UbPEgkMCA+yt+T57nHexsXYPr7THx8zUUoKnfwHXqh/lFShNs5tkbouH1RfpUDXUqC7WqLsIkEnO/DqYr6c+qyA2Gp3s9zN26jx5zvMYQ+NXdDE19OQUSrZ9nV++cZRInsMG3ArFyap43v/Km4zll2CSgBQaUmi0BWf5QGEidQ99muPHmzFf+gHKMknKCZFSdwgzHKGwWNCbWcjqdBLXPfBgrOtx9w3X4uzu58BADzcsneUdy28SkjWMhO6m+3kP5pFvULxpLSuBAAW1dSRmrTDf921SEzXcAXgxKZGwEIy7e1mauJUMaQAWHdTZBXuUEahra7FkL88vV/CSKOFv9zQyXbOJyIu/ImdymIOPP0JWwQJxWZ2xwq9dVRNWIloIXE6TuVJuUVxcjL6yxHMjE0Q0T3RkrWgXFRTlt+O0uTJouoPMpo+Tly4wPvs5fGmpZM3NM/apXZjL56JOZYXD1Y8wS7hlbQ4Xg6tsqfaSXeQmmwb+aNcfceT5IyipMHTbwXplfFbi7CAFtXXk532L8fHXyc29jmnrAEr8OuY2tUJOkBJdSpyvHULGiyh30gYCa10aXAvpH6vj8P5+npsq5q5SA0NaiGjG57+2OtKK+fLQSerPnGX+dDy60DCiObHZpW6afc0xLIxAsLZiLZwB0zRJ8UzYjQVNoaTFiPcMu1PvJZKZQ3Y4jHNUp19/BomFpjnYtPFP8fkSSfSbTL10EsKraCW3gW5gmGHyR56ntTWTxZMd1Ny2822SgEvPbfEXPsBXTgxzOOVa9q29jpcT6thHJZ9XX8ay4FDKDrzlQcraX0SOxUH0HfOHsP67aPs/XOPdHTzzpYfx6JkUNa4iNIteUUG7tpaGdDcZ0ynMCsmMgqlgL5lDkzQtR2NFBCTHVWNNfoKExV4y5xpI8JdRj+SOMZNfFzhsQjOCbZnppLzeRk3t6zHXXUrJP9B24hgOdZrlYYNVXxx3ijF+viKwohMlSxr4hX2qTvGNsa23lyPl61BCY3/BVrao31EhuihT7Xw79Cy9PcuUvNpPzWAvwjCwmlIYG/8cRcVhCgt1ViJf4OnjKURMSUCk8D8aq3D0LPCevT9jKLuI/Dkf26qrsRKSYPBlxgNOnhmsxUJD/8Hj3PfFGj51XfVVP8P1Wg8OzzmmhEBoCik1spNn+Frvt3m4/DNIBA4lKQjMMerJsO332GDXV/tnSH90AMuUsQDpOGDmJ+dJi0i2JekcX7KYt2ydm6c+HTkaoG5R8s9nl3l+fTyv6ga/zXfwUmSB55qi7fThCeJ3pTNa3oBXHyVKvKU2cY4PHFpiKFPjuqHX2F18Ct0rUUJnjbOFB27+DF0XIyRPDmB6LjCxZOEPRPWAmkaXyEFKcMwuQTqxYkYAyVYDQ4vjUZH+JP6FHGZb+mhJsPinrFK+dG8Sr776KwrIRkQLQalpzCWBB0lK0jR19QewNIvVwgBF4WEq/GWcCHrQBjVm9p4nPXkSvakIS9gdjarlN9EdFgjQhGRjkkbWtAdhgHx5gFBuEnFFKbgr7sedUAGDRzi+0kFEGlHIsiBQ5OKX+fCBQwHyZ03OD7pIWS5FszoBRa+oYcLzAbSlbgZ6FWlD46yZGCauKg6/P5uABnfVJHAsGL4qrPlKzV7w3DlmH/k6Pbv/nDPpDprmJWcSBZZm4xwsqXF8YoAKmR0LfHcKJzdX3EvQNcDftR6kO7+OOLlEwvAmdJdt6zi3OMp3StJtd5iyMRPZVZVYSmFhk1yeHPkIn144yup0JWFPAY2e7+FZHcN9152/9wSft6OevB31AGyYkjh1J6tWiBXOQvhsNEJK4Oz+Kc6SLxOOwn0tJAgdgcW4NwlXVOowmTzA09o/U5hcjifrOpQ6iMJEScHChTiS0ny29SXKB6xWFynXuqgQXSCgLzmZM6Eq21SDxkqPl4zfnSa+soLnv3UGy7TQKeYmx9MIp8Omzke7h6F+Pw3+AFpeJpayq0WFZNAboNL/HG/wIFI5QAguVDXxysWj/NXuW4ANHOcT5K2OU1Y3yNRin61r1BTJOUGCU65Y8PmhsbO8OtJLzkKQ68106jfdT6jwOqZ+vYoTjRrN5FDnm/S0HgYgvWae/J1TgEKrT6apLYCKVrK+5EFapqfRD38GV0YPueEyjEYwsQuUwrhETvd/DHOlCNNj8ND4JFIko73jAe578THyfCP4RttIFpUoadDDGmZFBkZUG3wJwn1pFRTYBfB4dwfPfuVviKTloN/+IdAUBhYV8gJCdNsFo9CoqPgfdoeqEZq+9U2Cp04zrgcYP3eaqiRBV56OrhncXbeL6tRavrz3IqlL47wRnuDj795DWpWTftHPzjt34vA7WI338oPmBZ47cwHv8jh3TbyIgYSkFIJFlUjpIiVlL/kFLaSmXh7eVI52kt4ZJnNqCj20wmR5HpkJhZeBwJJoekAB3t1FvPGTCQbOfJpqby/vv+bu39tlu7Ta9x/ji4d/wETe9Qyk2gdm05Qxx/uGrA049cuGkjvW38GxhGMcaj1EnzFOIQJN2mateX8Gw8YM188s2IejG76Ex3/nVclBFRXw5m+eoX3hBIlzknfvnSayPpfknBFON6SyKFsJtfk5/VgfD3z4Q28r3KbbfsvMJ1fI0ztJpBpL15EITJy8ErmHZqMOK1dDy5a8a2GGkWe/Qm5xwR+MGeG/i7b/wzVy8TweI4tdWe8mtDLA62qFr/K3mMLg+TzwTiyzOBYGYeCIKyQYuoAeUCiHA305QOtFhdA0NOXl1nAGuHsJeju51buLl7Rc+2WiCW4tzoMdH+TIEUlKyiSLizlEfNMYi1Wo2T7AxBAWW+JmKBqK8NRiLSFnAV3TG3mv7mdKPclpVzEj3uxYVIeFzhG5izLVjaZ01rZVcMvKY1glXQSTEnB9+KucsJpRls3UAljuOcsPb/4zLoZX2VLqJSc0ybM/e4ScSISsxTlWi6tpHx6j62c/44GbN9LpzyYuKxSz+188fJCJuOyru22DR1iZKkMVXQAslNRZnqrk/sheqoMDHHc3sM3fQtbyMq9WfJEWzR5zOTSBt2uI1cBJezwtchnrnscVp9svbmwddbohmJeKa99bSc7WXPxL46ycHWJnYxH9ZQW83D8RGwu/0tvPhvV1ULyTxcRZUhdKQL6CigJnQ3NVFMyb5M8rFpPD/Jn+ZdIWk7hlzSg33nkdBQWbiE8+wvnh76NEhHplsOz/I7T4CuKySnn6hSFqZ/r5/LFHGSku4Mz69baOB40LxjhbI5XMzucyOBOk+vSLlIeD7Am+zjeaPsy+ExFqRnazlNoew6BIIWnLGgaGuSnFsoGbApSwWPV2keAvo8Cp4Z0KokzJjvk4ultPMOpJI29uGsdSAnK7jtAUShlk69suxSsiIxYzp3rIK1of65pihdnm2YtR/y2ksvl6lyKkBjN08mcijEmNi/kbSb5QSCDbyWN5DxDxC6QqhyKFkW9y9xsv4B2JxnkI6LzQw5bdO2MROg5Di2EIwNZbtbkkn9nkImIYGBJuOhu0ERxIHMpi3WI+WqbBlLHIuJojV6Sxfdtu4opSaJlq4cf7HiRkhWlKL+Jdp9aQNt/NS4kNRG67JzYmb/YaZGQkIswlu05XCvdQCnMTt9gCeh36Nt+LuKWMfWm5V2mcft+6JJ5/vvMIT5/pRk99A6UUcULjXR0XWffC33Pi7mriihd5UnwEU9kv+xLZie+KvyciTb60/wVWp3dRmfYn/O2NIeJn4mgpmONwwx6b26gkO3rPk7JsIbN1dGV34EdnHNGCECxlMa2NMnxK4pyI2FBfdEwUk1YlRZunIWcd7rvuJFKqGO3+J9ILT/AhVcPj4kGkEhiYFIz3U5V7gWvUQQ6KPTbvT9OYX7s+lthid0wz+dm2YkTgaSwZBikITLiwhOQ1eZqjZ/x8x1+PyRoMp8k9g69w7tw5biu6gXSpodkUXzLjC5kNjZOTn0jmtk77/hcgdY359TdyR/ptPH/um0RkhP7MFmrbP0XCQjnvSzKob17ljFdnY1UCmdd8hPd3n0QJSYI7wmzUBKU0nZHcEvJ8I1jhdoK+as4de5Dv7dyJKQwMBO/P9UazZt/+eY9cPE9c2iIN2ePEHw2yWFiON3EEaUyhe6LRcEoSmTkPee8F7C7PyaFWZp48RpZviocXQhz96xvZcdNHaMhs4J9f7yV1aZy7J55HU5JzPzzFa1tmmHAv49Sd/EX9t/jCs0OEIhIF5K6Moyk7LSIcl4BlWWRldVNWfiq2f9uhNRqpLStkDXTYU4y4OO54/0fxz0m7wyZ5mwHonU35ZAey2bNST9orQwSD5646sIyMjNDa2gpAnq8Lh2WSttDNkLwZqYGF4FutQ6QUJpMc8PDNqu/THdd6laHk8dHHicgIvxjPYnskg8WFbBYDaTT99hdMzcxiZFTi/fjDJO2oprj46qIxlvMciVCp2pE5/XxV/9JlZ3XWU+i91lUw5EsrXC5hGdChxrqIQ0giaCgZoTMYxHJrl6U/ngxcwaT/kpy2/6tLCJEG/AooBgaB+5RS87/n+wqBnwAF2CqvW5VSg/9hF/p7VkFtHXOv9qIJncTFCsbGPk6k0IYchjXJr6qPsStxEq9xPVVNjby4rw/LMkEq9NVg9OQKUlPMVPbgL3gEJSK4tL08Xv4kbWZe7GT3i2WLFVVB1ki0cxM3AemCpHAtRlhxXcYxslzLpIYMBodv56yqoCJ1kIj4KZ8a/zymMCA96Sp93OxcPsOL68iZXU/8QhmhzV8nxXsCV/FODs4vcXb/EuvqNHsEqzQWx1OZnfwX7v7QHnKLUnnzN68R0uMwk9NQjjisqCbGMk16+hagcQNlxftslpwlWBgc4k9iG3p0BFa8k8JXznDx+GdYTutmylfBSNjHBtdB9FAvrsURjNAqsw4dzN/yteLPMCNyKF+coeuRb2NF7HCjePc95FWsJ04XMS1GBDigRRhL9uNoPcloHyy/9CsyJifI+OUSTY88asepWBaatPA/9RjjyZ/AG1dFmnELnhXFfOf7GM9opqj6LmofeFdMW/bFFyPcFXCgA72dudTdaruKluMuoPRLgeQW9RsSKC6+jV+8OUxlVjLv7W3HaUXwJ16ZXGhT00IiwlZZxUrfcyxkl5DhKmQoOEzj7AUG+nYRF/ZgzK1jJX6SqeQhzmSeZFqmoLuGOSlM1mO78wQaqwv5tDmGyDFSUWN2CnsWKXx4Kp/hMy9hhjyM526n7fxu3O4JGweyoqjF1uRJZXHolUe5YZ2LXN8RsMKgLPKnVvjAQT/nCuNpKYnDsqsbvPPjxHvnSCo4iRV0EQhkctZTTljGOJm28BqdCU8G3sW5S79J1dpyGqIROr+7MMEta6+O63Jt2sirvgARwzYimJpiwr3Kh45YxDcusb7HzZp5SbdxlpcdZ7GkpEUfIkOrp4AUmn3NhK0wCkn+VB8lwz3oChq7DH7xjncSRkOTksnhFl4o2YAydDTA2b3I0lIICyeagIhSfCszjzEjAa1/Aqcm3iZ2futqyGzAWiniqVdPEF6sxpk4wN9trCTvd3+Ps7eXsud6mPmsSYE2TLuopYYOHBkuXpkqoT5YQZurm27XMOFACVJB91wxZzucyJd/QHPtFptnqOkoabHqcBIIZHCh7UYqrR4KmiOklNyFL/48UkmSk6fI8LST6t3K1JMHoPReIg4/Eaef8T4dd3cXIm4QbXs8F+cfRWFBElyvxilgmHZVS87AME5fkGUtiR3yDY7q12EqHU0qrsnyXgVYjpiS5vE87m96iudav8bhvh5Md4jJUj/TSyPk+DTM+KbYOHE6I5mUyUWOn+/hHVoJmrK1gVOrw3jjcimvM1nUVEwfKTSd1Ma/oNjdxE8za2j2NVMRWkd7e4B0w8bCrPPbut+zgzNsD0X4TdMazs4Oc679BZ4uux9L0zGAgvGBy0+iNcrUqoaJjhQallTkxzvJWpzjSNtZiouLr3r5e8sM1iQOIjRFtpyl4MxWEvzbWHI3MbnhGyAkQmkkjhhMJvsZ67aNSEfP9SNr19JVLbnm0CHWDKyQvVRC2+tdpFlh8koTmLRyyfONgmXhndYYc9sh7K2vDeBdzWAkzYknd5kUc5WE1lVCUwk4QyvEu2diBdulqff8fA6JryXgHJ4Ap47n7ruv6hiHhhavMgCdGZrnGz95gj3Sx3XmHtrdOs+klbL2m49y8+c+EjNBPf7447HIL13TuDYni6yQxjX+U6xkrpCRfJgW8wEu/iIOIRW6oXHjJyrQgifw+yXVK2V82/gKbavdhBPC+CanGNfmKRvpZjVhPat5QTIa3sPK+VVWO89fxW70+88SXnmOd9ydxez5KRKyBviJdu8VzmpFJ2upE5Osnu1k0jDI3ro19tll1t7N6JnnkCpChd7Pt7xH2LuUycmhfyHiyAO1FaEUulSsmcklbNT8l+S0/d9eDwEHlFJfF0I8FP36r3/P9z0B/INS6jUhRBKXsMX/iSu3ohp1f4TI3hmUUmyYSOanBRYKcGByTeIRyqr6yT/XwNjUWNRtJKLyleiTJGx+WHZjiJlZO91TyghrIm+yq/gTMWdnWMah1W/ntrajZC/OR0drkrBzChGYZqb0k0wW9vC5U8m0qDIMTfDH62Y5JCswhYFEt80DwtZnaEpSOjrDuH8dDZF6+3TVuBaKtgFw5uA3WFrMssd17kmb1TZ5gaQUHwd/+wxbbvkcE4abYGF5TAvjS0ljPCWN/LkpnD/4Ia6H1jJ3BUtOeQcJD149AltbWoXJH1OxqrDGqngiFOGAo5A5/72URt5gJVvyjyKX1YV8fBOD+Bc+zOc3f560XoU0owmUyiRr+BkS+qoIGVm4byvl+AUf/9QzielYZHNCJ+PTkvFpoKYavbKCXYffoPrsaT6aV8jLcwHK+y+SMzHIyMXzJHns4jbk6WO2+pc4NRPfQh95JQ2sv9k+5X12OMDIYVskrSzJ2MEDpF6YRl9JQKQZKGEilIE1qvHbka/x06PJOAYE1ecOMe+KYyI++uZRKgqWFIQwaRMDONIS2ZFypx047bEYnTvOoEphIwI9kkSiVYqjyc/06LWsyf01ZQlhVqSGIXRAojQ47ujCb6SjK41bZRNZyo2RZZDy/BNUT/ewmFrGcHEtS4vpBALpoBRhM2xHcinFudn9TC8PM3LxPLkbdtpQSSvMWKSe3EWL9IVJ0pYFB9YWoITghR3F1PAERaKDHGXHU+X6UzGQmMpm8AmpMIDd+Y3UJCUx7hulam052Rm5vPDLDn7cOsSwsDg9OEdldnKscHM1NuIaX7jq2ZORPt69LhWHKKF3sQMfqUyoeSwpUSgseflkfeVIZjK7lMHCUlLnuykfHOCrw71caGulsfMCrRU1IDbEzjX3bSumsNqk1hnPxRYfzw5O4Ut3cSkgPXKFxunK1TLVchWa4hIUW64UEVop4rnedCru+BvExe/gHFK4n9OpeHcf5fSiaU7cCX/LruFMDKWjUJxbN8/DZgJK2F3IvNVxBk2T/PEBdMvCwha05/tnEQqWF7PIWtlNEhdIVancGm5i0tNCXP0BhC6ZVm1E8jcTcfhZ8F4AJBfqM8mYSSN9fo6Zsz9CbRQxPabCNj6ssXrobSskSCJJrjoWX2zlwfJv0yHWkt09SvvsJI0ff/htHVO3u4z1VX/DD4cfJFQWiCFBUmanMfLMWIcxYzoAShBZdXNcWngN8KsJ4jLKqEybZz7v18QuSAlKIrfGRnXVK6WUzngZ7B9EWhYzGCig1a3xyQ0uwiKB7yP469FZ7ppwYM6GMfc9zcXKRtypaeiGAyE0hKazMWWE3LZRnr3+OiKAA8ma0DI/e+YXV3EALxVuRrIPbdp+ngWSUFoP/dRyIjeXPCooFx2gBG+MaPQdfZq4YBYR5wLSZVv8JTCVlUl21S0c/s45ErMdPLTRRSSrmjeryrn3xcfI843jEmVc07+GyqlNSMcK6zMCDGxcw7SWxgFy2FxynqalnfhLbuWlyRPEi75YYkKVascVXk/fLZkcviGOLbnLXF937VVpMleyHgEGzr3OY9rfE5J3cdyj88mNSbbjvvQBUto62N3YGEPtXFqWlIQ++HESu7JACTzCJNU4SH04iLLsz93h7mFg4h9BRNCEg8TmT3JwaS42wr85vJ00kjkZZ9JfItCdGhm6AWhXsRv9/rOcOfM+lAqjJUNTkh+WoVZe4Le67aw2FGxfSkSbraJnIpX+zgXu5ESscHO7m6hJ/gLjI88y77mIZ+b73C8MRp01nPfcb0tHpOK6i2Pkr+jkvefDfzBdNvjPK9ruBHZFf/0z4BBvKdqEEDWAoZR6DUAptfQfeH3/25W3o54Lked44cwJziV2k+LTKfJUcVdc2/9i7z3D67jOc+17zeyGDWAXtI3eOwgSIMEiUqSo3ijJkiNZcpObfBzHOTl2Ejt2chyXE8dxHDsnjrslxb1JtiVRjZLFJhaxggDRQfTedgOwsfeeWev8mE1QlPVd35dzfYn9I+sPL5IzwMyaVd71vO/zPNRofSipEfP2UmA2r0sSaJqGc3kJR2QRmenl1gffSXl5OkvBH66re/v9FkPyy8MzVtE3WGbf1c3oF45ZE0UphJkknp1LSAtTdNffcG/ZUczuw5QsbyB8vJD63U9h0w0MwCE0PprtZnQpSKtbp3xrK4WuXHKX039HXiE3LZdllolGc4lGc1FKkVU8R83uUYSuGJ37FFPLH0IKDU3AtCeLZ5t3Ymoa50rr8M9MccOpScQ1rBej+73n2JHezGsrmylKzlEwssDCwgaUaWl8gWKH0ok5dBLZpbhby9mk97NVBelY3ExopoHh8pc52f235AY+hCYEppRoSlGedBJ9ZQUYQdg0HLU+GlZ0hGsZUukhUno/UtOYz89HbN7KoyuCRFoeEwVl5EeWyLU7Wes4BFo5q1m9KGGAkL/Dmtq2vZDJY1OWyTsGhZd+ysLgf0Ngp8T7cVazetETGYzUf5UMzeAv2mycG9+BDclSRhra2grusX7iWQHMTD8K6LSNAqAFnNQnLFNwUNi8jczaFU9kJik1NWqbc3nbzg+SP/IlGpIr6JffLdXPSplkeKcIR3KQSKb1IPnCj/++DXj2fprVU6cp27aV0IUhTgynFH8RuJTDEq4VAqfutuy8MjMJe2wE73of/lCSIsd9GD+dJuS7SDizyvLu1ASG0OlVddSJboSUeL3T1EUEm9Rv6aGOdLnC5Mgd3FJaz3W7LEX+6vxCpiYnOPKTPvS4h3ux8/MMxSyS9ktHyVaT67Ur77p2G0+c6cVUAl1K7phMMDf8a0546zF1iaZrXCPrrDkmTXRNJ3cxjfhohJYyK0156kIniZOFDJfDcLnkpBrnkfbjtL54AKsHsASjhYZNE9REJrlOruG/eAlvZT1fmwFbMIGhFBoCuyaoiSzw2q8Pr4t4ts+188iBR/CFCjge7eM9NyfJyV7DlXuIRLQCI1bGscEF7rUV89MvfYOsud9iq5EUlDWSTIbw+7cjzuUSViPrmmdtnbn84p5KTq+cpTbzMMnYNGn5qxRNjfPA/scZL6ygZGqYHaoQt7eKAtNPnsggatexS5M8MtC8IRY1q9BdIUnPH8RYC67PDSlgLi+PnNASObE1Zs00lJ4aVlInNNTCQleQ1VkXoFPavJuTTw/hmo2ymRMp8WdB5+mzfHrfnQRXE1dKILiSKn7m0jM8OfAk3piXxuliSleeZz7XQ+58lOLFTLSlCuxJD0EkUiiuySzApooI5jybYr8DUuDurSPy/LMMiFV8pe8k8SMLXfdikGWTLBlJTi4n6K6Ik8BlkRGU4kuNLqqWJWmeYtYCGXSXNyA1jdfuei83xsO8rSiXTVMXcP/LZ/j8ic/RI5q485prULNrb+qoAuD3b0cTdqRMgoK+ZCt/udWdYpH+Tz7FZ6gS/axmnmTVuYNV5wyZkSo0BUpKNCnJrS3F7dmMX4xwMktfZ7eDjcnSvVSsrtG6UISZmMKW+xz2qkmmXbegNJFiRiu6qccXcPLx+TiGbQu/UVZtpRQ6GpI8/SlmPNtQ2PhpwuCvz32WBzf/7f9jjdo1ejd2DDS9g7NZ2vozJZWgvbaBm4C0tDSEsDxSwWKql/irgVQmSSkM1UzItowPhQ648/pBXAEolrwdyOXCdV3MWS1CwPSTYxdc9OucDdi4d0WxKWSi6VdStx0DP0OqJEIIpBBMZu6mamKaBztOE6n9AYfEFm7pO8b2Szrn5P0orDEw2X5pPWhbPX+e4CP/QHLvKupOwxJWViabSu7l4ooDhUAJSTgzSihriBVb478vQPgPbr+voC2glJoGUEpNCyHy3uSaWiAkhPgVlo3Wy8BfKaXMN14ohPgg8EGA0tLS/7inTrXx8XGCtgA7tjZiLo7QnFnA7TWtLA8/jTQ1hLKRHmmg5LZaHt4SYGRkhJXRS3T3nEFJiS2+SmJuGq/3gXV17/T4BtrP+XhYDJJQKoWMKewS7u51kVZ8AwvaOEOvvUwsUApC0LUwi6/jFb504ePEzTiumSWW5+7Efehu/rj8IEvl19DqsjH4q6fxKsWozcbe150W39h2ZZcwYg6ti70JFD7f7BUXBmVSUxJmuteamFPeHEzNYvGnBLQAACAASURBVLEZQEdTK7bRNLaN9uCoiKakSRTvaBhj+0wZ5qu/YXhcEnWdYHf+gykcEM56dH60JxOp3YZN3GQteHIAn28OgHcVLaAJRXLt69zylnsZ+uZRspZj+EtvAmWlAWVSkjgzT1lSJ0kWIffEFfkULAjf9447+LacJKmKLeadsJN+670kPvExFhMJjM1FqB3lCN2GUuZ6IH25zWQM80zDv5AbqmQ+s58bFotJj9uYFVGml3UKIrtZLn8JpVkSHjZhQL1B8qBO1nIMTSlYXUZzZ2B4/BZwmgq6pJKc04fYbFaQLT2cdKXzubsbuDgV5omzE5zsn+ZnQ7N86U6JboCeYgqrFEtNKQiG89YlSIxKyLkxlVIou6KAn5ychJFU7lJBXBipxVcxtzYGwOylZ1i0Hb5iyt34EOUb4yyNm6+zABLoStGgeqyTqRJU5FQw1qA4v1ZHo7hItRhkfsVNUbKQ73//OQzDWO9LfBq+pY3Ykpk0JXS8gSHKxde5NJRcNwIPRHJ5S+cJxjP9FIUWaRA5xFy3YMgRq89Q6NuyebhlJ4PtfXhPxcl4LUbX2aOEdkyQXRxkk2zmjBIW+xKNggwXW5NPcCEjl0V3Gp5lg3ceijJQYpAd62MiusTPDIO9hw+TG13mO+/8C8bHDWJLaaxuryFvoJPev//aVfpWZ+Jn8IUKuLP7w+hSp+PxEM81fQtb9iC2LJ3VUasQPmlIzjlDVBb/DLlqoPXa2Nz2U0ssujJiiehKy/3BlAp95Hkqcr9EPGppp1XeCYdP5FB0UVI0OwYIYi7Jjow9IBWmkpzSh6k/f4qMrC0M2mvwVVqsSiV1cq/7E3Z0rPDKqkBKia4kRa4qch+5Cffw35H9v20Ed2WwmN1MaGQn8cUKTDnDTMkq40XlpAs3GRt2EOU4VcWjhIYymOvL5WcTDoL7u/jxB3ZQEJ/htV+/tB7QXtZZq8+qZ//+/QgEnhnwzESY9fjpFjYy8xKUzYawm15ieb3YVjego1s6jJU2lDQRSmdiSZH1pyaIlxmfPEpx+l/iDlWjEMwVnKYyOkabvYeiyo/xPXXF4slEsb9Ap34myJS/Yt1XNIniRaePg4sGnxO5lHxMo0j1UiIGaW57kEgk9ypHldf7jrpC1aSf+TBLvg68i/V8uTRCQktZ+ykb3aqJatFPfv4l5marLPs63WDbmX5W0uLkJ1zUP/RnJLwOBhVsXjKxX2a3S6gMBbA5TIzEFDb3D6i6fgRNl+yVMU6oVkyLisGqdPO14QCJXKyASdhTB2ZLG3Qhsw6JDVJpwy5Vt34QfWNqFKCo5RZk+9cQZj97It/kO/KjKAR2TWNvYy3j4+O88MILKZFbQV1dHbt27cLTO0vETFryUkqiwj1Ue5f4RkYbpYbGzSU7CGjPIWUSIXX8S81oBNd1MfOkByUUZz06P9yTianBSxL+6vgyu+tzKU6hbPHwU+vrplA69sW7GUszOF/8LF9LfzcGNjpbm/js8DfRpGGtEcKkqKVq/dtd1idMThQi1RRCmigp2O2o4ImYRsKU6xJdUpr0PH2a4rzCqwCO32f7DwvahBAvw5sKCf/1/8cfYQN2A63AGFYN3HuAR994oVLqO8B3ANra2tQb////z/ZG65z3PPzP60FQ2F/D/PBh3EsNZD+wE2eZhxI8FtsokEPfi0+vW2pcVnX3ejfjClXzytNdfLt8iXi2jhKWldW2RZMPDsbZEDLpnZQsmAEqt99E13AvAKZpcu7UCRL2BELAlHcAcypJbLGSrEgN+6rTefYX30Vm5VuLl/nmhZmXm3lhkrLwJpyeRTSg0shjYLkP1TyFxQqsZ9q+m+X48+RGQlQk45wvr0shX9YgR2gEp4vJK+1N0bgF+d4W+p98EiWteHshNs75S4+T5tlKxFlLZ507xQpM0eZlE5XqEqFQAI9vGl2oVBxp4F79MY31dkaDWWg31CImLPhcKVgwrE+f6ZmntCKEtJWTldMK4Sm00R6+2fPPdMQqUXmfQNOcOHSNa8enUYkEiTKDhXdeAvsQAjtFhW+joMBiTT3f2cUr41M4tCEmM4YZzxhCV4rOWIzKxBLPOS6mYP4RGsJ+PPKKqGncuYGRv3knVSd/SPVUB2aWndVsk36KrnR8asRO6UFmtBA7ei/x6Q8+Quv2Ur5+cBDDvJJenl/dRbn2tGU7owRLS4UYSRfuhRgvubvw6QuE3GHu23cfzjzPVQvznBbm/PnzVh9lzuHzzpGz4EculXBu8QCL8UkA5oJnyZdxSGk0HZnu4kxFJYtL0+SHlrir/QRBRyMNK5PUbu61Tqq6YMA7wBfif23pe6F4t3qUigmTIdFxVTrFapKkI4Q96SGn3o+nNZ+BmKWTdBnhHB/fQG5ogdzQAig4bg+yM1mLpjSrv2061S11lJSUsHJ2lnZ1ngv6MCFfL02OA8wvSLDZcOV+lLX5GjRN4+FNc4S7dE5XFWAoDSF0csJDOBzWGM/0zOP1TrO46MZ+LpOuvmykpqO9tMy20V9x4vwLyNS7mMkk412dtO1q43i0D13qaOgoKckJlTGe3o8mwJE5jForw27TaI4+SdRtne6laTB36tt4b/62RZ6o97ChO2x5SiKxR/8VlZPyjRVwiVrObtnIZtsAee1rKAQhY5ZfZpyn3Z9H6fgAvvgUQ+UxNqZL5hZriBz+c9y5fazO1zG7ZztLb8ukebAX/u3HZBTtYaHCxL6QTUneR3EceIzApRguzzxuXzf25CkOXvMQP70+G1ODV6XBI1Nd7NrUBYCneJnzvlamZ/PRDcnx42eQz31zfY27/3/+3brEx/1197NyYYWR7hEAZjx+9jfvwkzZ4d3VfoKGUUXb9q1wOIY0TZyhSpZf3o0zP8zihMDMGUVdVq/BYCWrB0eoAkOYHM86Q7LGzZrjo1TU7eVz0yN8elVhpkDlZ4ptRCezWXa50ZQV4FqEIEiYkiMLEzyUZ2ARKRXB4Gvo+j5aWqyi+U2bNl21bg6f7+fF5SXkciEezxA19gI6lIWS2pSkka5UBYnC65shEs3BWzFP2YFubAXbcW16O7HOBKJ3mD0P1jI/FuVbK4qesjSanC5yrvXjSrfzyuOnyShYtnQOBdSKPvYtvcQzObdhKsF+7R7ItYJTIS1bQU3TMZVER1KcPM2os9Z6LkwaRTd2e+vv+P1qd1QwFU5Q6C3GWf4rRHSagko/77RlIP1O7q/Ipc2bztGOc1fN5aKiIkpKSuj85aM4jp3Gll2LsdhHWtEI92f18iv7bs446vjLzTdQ7atg+uwB9DMB0sLV3C7CTGuLHPef5bXM/TTmZtO7eC2mlmkh+SiOZ9l469Z8GD9F8NI/I7iCvHqmdgOC8bav8Kq276qatu76XJpf/Q0l23fQsKP+qpo297atCIeDmdU65vbbyChYZnk6g6rySZ54/508dbyXpe4T5EWCaGgUGP7fsdb7fbb/sKBNKfW7ao6pJoSYFUIUpFC2AmDuTS6bAM4rpYZS9/wG2MGbBG3/me2N1jkjF44ycKqT9lUHLZuu44aWj77pfW+01Li8mAGcHFrgQ60uEiK1f6dg563zUZrDNkysgGTEp3E6o4I03wK5wXmrNupkN4FmFzPeGHOeEZ5p+DrF0Vref8uDrI4PoUXD4M8DNIQQ66fF9rl2nrn0DArF3VV305LXQshXTZFYoz6Zu25WvrCyiUvPLbJYm893Gj9GckWg3Xg/DzzzOAWhBfZdeJUpX66lQxdeAhS2/JvxLpQQd0UoqHkri4PGFSXx1LvNFYyTUdhHTmc6Oy/cwLGGWzDtOjYkW5cXOTBwDwPhWlpyF6h8nebXSlTj5WAdhtLoOPQUf/Qn2/Ak/cxMLZNzahZ71iV8u/8JzWaiaQ4a0/8nwb/6B8z4Gp/U4XMP9dPNFykqepgtgS243A0Ih4N4XQomFwqlTFyuwvWA7ZGZVUxnFrr0UZFsJmq/iF0TVF9zE/OnujCXU2QMJJq3nu6u28jMnCIaLeSRt76DReci7zO7SEhF3lo6u2e2AAINyTXiHB1rFUSd2Vw2fh7JkGwe6+XsaDPdA8M069NMy0wiuoeWqp1kxr/K+fYvkpU1QU7OBFLqlM/CPwaDnHGN0FZ4Dy15Lb+zMA9ui2GakszMeZpTnpbLpR0ce7GV6eWVVA8LolNu8uUSaBqDooG/n95AQoCt9To++uppbh40yUiOEyn6MXGddRS2mzqSWKQcUym+r32ABxOPUtj5MqKk5gofRik0dLKSXgZzbPyk0UFyrRKb+DSfUp+jThshbd6Pr/1CSjBaraddYiQomPcQdGq07txBnvTS+5sz/PLCc5i69R2KvdNoKQsnqZLMVv4boUg9e+u2UzCzSO9CDiZaCo1QGPZZQBEpECxWu2kUMTJLBgnFdlmaakJHChh49STSZW1YFpghKGlqxoxnsLdiM4szEexxL6YwmPIMAGDTbHzqprtZWLRMunO+/09EL5fHmOA4dQluTq0R15Xysb5TNJsaVbZD7AjHMKWGpkkGqOWL4jMkXDZ6tyb5lvgsmdomzvfO8dXt11rBT20t9xshSsb6mYidJc/XSM5yDQuhaoaydX7kXMEYWsau0vlMVhUXnUOpw8Yo9wa2YXM6UYkE3sgw3sgQQlc48kuQ2t0pGyuNqQorcLksRVhbPIw+B1ttg9SP9NKZTJKWt0JmYYyR3v0U1jasCzNXtexhvHcc0zQtFwdNW9eam/JnUTUdwRZMslQfZPpYN6GMDsycUaLDblZn03An3eQpgaZA12yo1lZ+uvICF9J6GUif4MLAB4gvO3GcPcmPP7CDt8yM8+SKaR1YhcYr228FzSrtuM7t4ETMWEe2iiecqBwbQphoup1EooJf/OLK4XzTpk1XrefTegiJJMMzj2PjCL/R34XE0oD878NTVJcNWU44SiMUymMoc4i9IR9aZgmujQ+lJg0oQ5K+ZlLwtjo2Ardf/gWp7UEaN3L8qd+i5DygEMJGXuVuZFhcpbGHNCmdHOaeWIjGrQUcDB2lQXVQ7R6g89kZRssrqW+4QI0+QF//51hUp0hL30haqBplSLp+OcB8QpKTrmMIEOThnhDc9bCfM64rOMjrXUguo4/tc+38eOLXvDuUIBkcQtMU7s1xdCQ79R7+6K63plLmflxV1cy/3AEo8pWXgOnFFwiTKPomKIMdmV28oj6DKTV0CfdsKiDf3gffv5tEmg82CovkpHTM6Y2s+ntQwnidW4gVnLYOLPAjTxubWnbSWei7ivXdk1VO959+Hkf7YawyeQVIIgd+xLXX19DcWMPFY9NMKx8F0k9A913FrP19t99XevRp4GHgi6k/n3qTa04DfiFErlJqHrgBOPOf94hv3srLy9E1gWlaJ5nF9u9x1tyJUIqDQwcBuGHjDW967+stNV7fXjODJIWG0sR6UCOBb9R5cGgRAp2Kiz6dn+z1YOoCu28nbzn0K4rHB9DWVrhd38H3xSEUijnPCAueMfqdDWzLLEKPLeMe68dwZ7Lj1jpMcz+nR7L40NEvkbGaQe5aLkc6D/Hlt3yFtbpS5s/2UQuW6Cfga7mG7EA1L5U2YERMpCBFl68k0N9OQTRkkSRS9wigd3KJAS2fe/xNFFZU4G5yYbPbMRIJUAp3/hrV+8YQuoK2Je6eSlDnneTZ2Gs0qA6KfSPU3v0NLk6GKaP9qr6ac6QRd2VipHswVyIMd7zC1jvfR/orYzSk6SwWD7Com1i1EwmGB5/Dm0igKbCZ0DSm6K6EPqOYnqkFfi4EP/7uY5R0/4aV14k4Xk6L/nxyHsPhAWG5RzR5bqPNZaOt8lZqJ2Hi0I/JvL6MvLwhS4cvILnWrxON+sjJqcc099M5MUtCSaomoXkxF5mppwIGnWm9HnNmAkr9pEwm8cXWGC+t50+/e4Ab9F6ydUWzrlFxzR1sKfNz6NBpsrLG1y3NNM1EeQppmZyldlKxeuI3rNp2Yjh2o5JWIHPBDS/GMohnZlHs7VgPapQyMXNGYSLFUEYRn3NRZv9jbGVpvDpbRmJFIYVGUtPY39xITlqMvcE0nK4HmDT/wVr2lKBedKNpV9JSSgnGC8vJ7z1noVPCOpXUmwVUm4XkuTI55psioTyolE7SbNYHuTcZI/jIP2BLJGhorKe7qclKhyAYCbeTXBxER6fItp2F73UyqIasgC0VSITD+esi1CbgOe/CMTNH3+TT+Iam0YSGViUwEaB07MkAw541nq3Zjil0nsLgU7bPUF/biTZsplwNTALBeeYKrDouJRSnmkK0rE1z/BfHMUwD0y9Z0tdYcQZJ2iNkr2Wzzb6b6SEbu1utWq/VrGJCXxsjXq1wDgpyby9eH9tbyvz8zQe3cfR8L5mxagb6N9LXkUNeYJgXvfeQSLeD0DB0wcDtn+ftJ8/xaG0q+ElJFIyW1FIyNoDfXsC13jyE0lAChm7OJ2msWHWyQnC43EdZaHo9NT8fsLH98cdYPXUa3efFPPId3OICdxoHeEzdQULa0U1JwdAYvM5VakvdffyDPc59nV9gJuRkOK+Sin0TCE2xpj/Gockbec+gbtnlaYK/z9uIGJ9hLrSYSrNbBKnC4BI5RgEFC9OoljpOt3+LilsvWexMUzDwbCmGw8XsbBUCweJCLW9967VU32FjZCzIjtjNtIfKKE5qTNot1M99+hnst78LqdkAgdSslKEAynweynywGkng2z9FYD6fqZW/YPM9URYD1/GtwSQxt4dAZAnTNLlw4QIjIyMkvUmGxBCVZZXo53V83pl1310ldBSSmJlPxpkP0517hGAoj8hyNhMFvcyV1VB6Ns1CxS5HvUKsBwRvlq7MLashq+ERRrufprJqnMKCWoq96ajIlb0CpdAV1Ax1cd6VhjpxkLtrT4JusbhzcsfIXR6lgIXU5QnmeQax5QVKzn4cV7ia+bhBtk3HAnWtZ7uQKfiTiUmSmlXL+URLNW0pgeHLch8AfUee5h0HEqQEB7i0K0lDrsQQdvbte4D6rVdKlpxlHlb3pNP/6kXyTR8B5cMTm2RBGqBJakQP75v+Pu2JHdSN+6naYUlEnTFqeC5yPekdi+skudhakFumo1ABNfTzKfU5Xos9iH0lQNS2jYuV1XQSQw7F1p9fP36WJx99ivasSnylHt67bdSSPzIXGDU28r8HJrj51lqaH9lDxblZBODeHPiDQdng9xe0fRH4hRDi/Vipz/sBhBBtwIeUUh9QSplCiL8AfiusEX4W+O7v6XnXWwnTPKx+wQm9iHnXAicowrWiI7CQgLEj/cS9bf+uj7x5sg97fjUJm21dUw3AROM13zKxjBhLhQUYKTNnQwimM3yUxJYxNMVBeYb3NL2HH3b/EKkscc+2QBuxwX6LqRpbIdMzj3Qf4dKQZZ+zJV5M/vQuAGRIcuzQY8x4bqG35FnUxFvJ1XUWpOLGW7aQX+lFD6/wvfZBlFQoJQhF0/i15wayV5LsjHdymdib9OUCAsMw6T94EPujj1L6+GPrKKMWCtE389h6nZySJuEmjdqcafShJ7CCLZ2AsxsZmCY6Y6K/bn0yq0z05SxWowGMnGK0eReRl0fXddrioWKU0lOMSMHJGQ9tgQBZs7MYmqS7VOC0b8VKQgkSpuQVRwafvuFOfEOrBH12/OV/hNe7mTPhFX7r9Fgrn7JsVe4Z+jG3x09B+34WLrowSposr0rtcv3cAOGUSOrc/EHm5jUKhY29UTvv/alJ2DfHkb0SadPQNJ3YWJwNjmYGF+dZyvGCEPRv3MRU3E62iqCRSg0ryejkeX54bj8F5o+veNAqEEpDzL+XjuA8sTMH8QmN8DfPknFrOQAdXo0/3uomKUDz7yS3v4uy1DspKViezrQGFjrVBS62Xr+Nwus+Rjh8jsDQZ7HxKZLKhhIaXVmZfLItnS+eWeS6YC0rB69nrnqRcLgAUOwrfp5ncu5AItBNk5KpEQx3JrxuXGeQRj5+FCZvnR3gRaMaU9ORSjFiNNHZfYqilCdmc08faa2tnEsaKGApOwP3ihvQ6B7ooMIsoED50XQLpQRYWQmwsPxuYukX6Ooco2DGjYZAClhMd1E9F2LbwASXSlsI5dyEJgsJOsAQttcVeDexKTFA28BXWHA04g/144kM41x18sSudLoq1ljwJ2nva08RhEBHkGO6yF4toHg1gEAw58mhWw3zg5/P89237WbLPR8mujDKUecmdvsv4L7nw+vrQHw0Qvr5S0Q7XqZDmmhiAyxLjlHPqfw2LkelGhrTS+mMl9ZTe/4nHGjbjRSWbtuOBZMcVxEBdzlCWduvUIqWoSW0QgdKAyEFLrnG5YJKTbfSzO6SkitaXDsr4LHbaIt08Xcnf81zmXdSMj2Lf3YDoqyarKoRYvpuzi9ex1v0n6HJJHM+ibdu0prbqQPB4flxErLMCuyloj8yzxbpJBCZ5q6OY0x5c9i4MMSNS6vUpDUiJx2I2Sj1t9YT1wdTQ0aRVRMmu24coVvrw/xcNadfOMpT6lfMJhLULZTyYNSOMqaRyXE8gzYKpkf4y1deo7d+K0sOjWO5NkxNoQnBz6aXMFOamN9+sBbviUv4Qg4WzL28Z1AjITW0jbu4q+NVCiNLnD97GlMJJCYsHOa3xct8pPYLhMd0kmUnLOKXApuSNMWHKVpsxjx8jGn3LJ1FXaTl5ZLOzegPaIgLa1bXawLfPVU4yzy/g4rnfKCZoKn49VfOYhg+nDnXkNhwgsnwGF3RLOBtV+BOpdg1Z3Jw152YmsZxeT1Z6tPUmP2p+e0GBflywXI0tG5C6Sbmxj5sx14inHwXGZoD0NYJBmf9ttdZRF3Nmm5vt8Z9e3s7zbpksLaBwOwc/qVFyotvRVxfhb18N/VvYF2Oj4/zbO+jZFZMMxAqYM/CbWQu1iMqbEiZRCkN75zJ5kg/GavlFNXuZHxpA8+qEAphkeQiuSlBBkXU2QtXMHxecTeSTNc4cJsP//Q8s1JZNdpScai7n9s+/qe8PZnkfs3GU4+0IjRrHxpUNXzhvk+Q1B18/Vw/f+Js5zp9gfL6ffj/gAI2+D0FbUqpReDGN/n3M8AHXvf3l4CN/4mP9v/eRo6yaJ/j39LLyInuQYgEFcqSXbChs2GymLlvXUC/tojCOyuvuvWNsgCXW3Ojxudf+F8cTr+WF5pvwNStmaUpSfbkELmuEE+qTCDDQsAkDNtWsNWGmc2Oseg18Dg9PH7b41f9/Kkmp4VwJZNkFKxaTCysRXwbXsYt3iAoyO0fILLFTU/+MYIZExSEa6ivbyS/0kINRSjBQ9JFZ2yNjguLDJgV4ILi0DlcwTFAYbrcJH05XBaCTQsvrZtrF/63D1oo4/gpQt+Ko8wUT05CcL6X7IJaNM1xFZP26NLThFQt/TTRSBe1oh8lJHmBEQa0Bqa9OXgXXZQOWNIQs1qYA6tB3BduTDkM5BON5rDw7nfhDY5yLHeJTdU5tEyU8y0p130hHR3HYPSTeM0EXt0BD78FIqd45VI3htrIZQ+ht0y+xO1rJ7Eq/8GdF8fnmbVswq6sn29oEpTJbr2GwVobgdk5rjt8mNk7biQru4Kq6C40oROy9bKEZStkKkW+HmVReJBMWd9cwEn5c9JH5inwyvWADSVIjl7DXHY7dnMjw60fY2eGDSE0kqOWVdLZLNvrmGmCUG1mSlEfJo4HiAfbsLm8aPZCiu2HKez8RyjKJrh8gBq6+RSf4Qn1NrrERpTQMIXgeLbJNjmAV40zGCwnumwhdQU9JndlvsoZTxVVkyHyKEDTHCTUyvrYyzO9KGWCNKk+doKvdp/hs/d8iMXKfF6ILnOwpJ4vV9bSdKkPhCCRnoEKpeQ/hEbCk43hy6FrdZIe+zR3JDezT7Yx1hjHlunAXermEx2fIBFJkG9Po9Cmg2ExjrOXYwCkB2KU1fVi2q5hZREqZ3SONyhMzbRqf8wu3K9p2GfGcYtJhLIOBTnLcapnExzarOPQHLTUtXC893iKZCFSTFzrUWc92ezfuAupaVCm+OaFcT50XRPv3PsVkkrxbSH4vFZCcHSWtjVB2Y8GUqihVbdjSonIEiwXWMQZUiiRmFjh592THEvOcXtVLU0DnWgON2+f83B9YiOqsJnJxEnUemG4ScZTh3lX/bWMBJzkRybwGsH1Tb91c+vv1rmWbIM7vwLP/Tk3xV5hZXIPhvKjpW0nP1DLWpab933vJAmjj6O2TD6R7uKDAT8FTskfqwQOoaFpdipdVooadJQyaTyyn7m8Cs7vbKMgtMC2iUEevnMH3s5FIv0Oa2olTeLjORjlVsUC0mI2a1rY2qyFxOeZpfRSJv9LfYT2mMF4HDCmSUafBEwWujR0XSeUnOeZIoeV8lOS+ukxhBD0FJSvByOdoSn2/cufoBIJXpy8l8S+tyIRIDRERi01i6P02ay5qUlBZaiU+w6dZeovemkM7abydID08qc5k2fQQCe+hmFi0Y+RFVnBNzXG2h3vI799E2OdMSZtGne/vZb0NfMqRC0+FEYZ0nr/lMTFZNxEmlYpQUbOJXRhIdgN5gVs2h9hWL2DTSpm9BCmnptKBQuOX7yJxvExemN5rM67LWJU5EHymzWmpp+wiFZCpyB6DnuknW3DaWS3vvvyioUAtgQldgVJwCbAPTrIuJa4qkTIMAwumAK5YQM9jZLrjh2j7a5H4E2cQwCGhl6mqekAmmYiZSfT5/LJCe+m5PwnmPWe4/SyJBrORiiFt3ye/Eovz15YRnHZmzv1g5TFWs25roWFtTEQ0K0arHVOCJJoBESQOVUACmyaRkt/N5ppWGufNCifmUVsAEzopomEZgesWrp/XWvGm/ZpLn7zAPuuuYbCa/b9wch+/Jcjwr+3le/m1KvPcePgezDty2RmBMnMGYJoPvXRTeQrrzWYj0wwBWS47TgrvfSkDfHIgUdImAkcuoPv3vJdWvJaCIfP0b38OYquSfAOo5umwwM8U3cbQhPUzo6THw0ygAaqcwAAIABJREFU7fETqs9bT/8ALDq9rFWFyQs5aBrMwFUYp6W5hQqnZOzSQV47P4nTV0n1fe9g8WI7y9PHUaZlbK2kIBwKpAI2hS4U1xgj1No28oTuYC5zjKB3mn0191oq3W4Hn3mmi6QhKUzMsj02ybizkBlXPrPpxUijD8ORhr4awT3Wh+H2YFuJYBpxhN2OudnDyMg3LSmHkaM0JRfZ/2wl3poIWXURDOdp+gc6qK35m3UJBK93M3qWxt+Hbkdhw47BJ9VnqBH9RAt09hfuwhQa58ug5nSMjWHJfG4MGVHrkiWXW8fEOF/PP8acnMNxycH/iD3IXaNzTPlzKQwtkIguMU4WJUxagrIXfsLAxacJb7kZpW/isrbejkQv6A7abXDG5aTNuUZDbIaLMuOKmOwbmxIYUmN4pYSVDdn0NEp2HTnEr8TT/JXri2hCZ9rfQSznMJnhANFoLkJoZK/5+MLtjbw0HEAtz2MrGse9PEOLxwo6VIo5OjneSGHpSdY0k7XKA2Qd+3NErBaRqpnp8GrMuAS6whK5VCaN4qJVUiMhLXuN8CWJZi/EYculyN4JRhye+3P8GRpacyY12gD3yl/Sq23AVBais21thomtX0YJg41qiO7jbSyZ1cx4spjy5eJcWKFODbHml0Ac94LEUDPYVqN0q1l03UdGTycyOMyGIDRODXG0Kh8FxKWivaqOpsFeFnw+uhYWQLcBKRPpWJyFLKuIXArFYmmS626/kc2pDfCrr36Ea91R2mUdlzwbaKst5fahGPr3f4ywFTK6Iwf7g8dBn6dU+yrpr21i54RG1Qt1jG4roDXySxoPXkINOy9/REwsT2AB3HBRoN95/bqSvaPT5Lf9x9e1yADmvNmcLa3H1C67QCimbRZakVRWalYp+OTABEqBHfiGGwoifnRdw1QSoSTO8/3kDM2g3/k+TF23ZHImVsmLzdCizvP1Te/G1G3YFeTMxxBIlJQEown6V39Gs8ckmjvAXEmA/HA9xQt+4rYwkctOa29Sr3UlTXcfzjsgv+cprmWZIydcSKV45VdnWKtJsjEyQH5olGRGBqey7SSEYDhp41vzOu+s3MYt9R/h4KU+LrsZoATHNrTy6+tvs4y6UXyrNIuS2kriuREYvGB5RwE1g7v4sn4Yu3eChQUnd8pCYBaURCidxoXd5CsfCsVml4NVw2Q+NgGW1wmTeUUk99zCWGY2SV2k5ozGit2RSv9dkXBp6e9GJRKEM8rIW0rDbkoMTcOmYN+ihzyzgH592vq+QjBSUUHZyAglSyEi91Ry4IlF6l37uTuvM0W+0ljJ6Wd4az2rzTfhWd1L2AyCAtOUTIUTbLmt/Ko+d1Z6LUTItJAhZ6WXIlORbdfwC0UwWIOUAg2FVIJN42eIkUtA9+Od76Q/UAJcWfOyqjbT5MykpCjAfDJOrt2JZ3IWd2wrBZvvJTjyBMbzP6d3YorMOS9elyflX23VMgsskeKvn17l32p1gvEZzs6MMXPkILfddhu6rmMYxvr1aBqm0Jh+x3vf1OrtcvP5ZplfMFPAu2S+8AzRW2+nxn8f/EDRdvx55lxT5MzPkXWfVRavr0S5rCElEGwwSnFio7q1gYINGkvnDyBlnCZ5kae1ZMqizsBYcrNpLY6OoHUiSfWOGtYcDmQiQbJKUHLTUGp2Q83UAlqRsvy/hUAi6NUa2Zb3KuNHf01h/3fg4af/IAK3/wra/r2tZBse//uZWush0zNL1caX0IQEaSPjTCEq7F3XsDGPTtDjv0BwsJPuTI2EmUAiScokZ2bP0JLXwvzwYaSZtCa7TWOLrY+VvgCmzfo0UsGUL4d1R3gATSG9XnIXHNx6KoAmBdOXXuRb9nx61GnqzQ6qxbfpePUmlqO5aLqDtJUAg88qMgpWiS5kseLOBiHRUNwhDlJiC1JS/1Ye3fQQZ2bPkKnq+NtfLpMw+hBYa0n+2gx3zTyDTZls121Er38/17Zs5+QLE1ZhqlaCe6wX29IMQug4d9zMXN0aU8ufRUUNJHby3H/GpowV9jHIJZVOQrPOdVLGWVg8jNdzZQNZEAUgpqx6JwU9NFEr+umlEVNoKdRHcTbbxqZVg5prmznzYp91CpSpDVSANCW757fS6b/IgHuEqHeK0u4E+VELbVAITtgreNG9TFs8QVr/GGfIJaplWpug0NGUSXD7f+eXsQ18oe9HVhpaefjG8hJFESchXwlhmYaud2NtHBpZI7cjkmmMhTwsryYRGphCcG7vbpSvhx7HIK1+J9Et/0qZZlAidTo7bmYlVETHiQEykqu8/YEahmedXJzt4nojEy03tm4ePjNdg2Har9SniSSq7hlWh+4mPVpLh1dfT4vqCu4Zi7Pn3LfJ3ddvBZkCshvCBAdOE5vvYW9xhHznYIqeJ/FGDDZ3RhlpvAnbqM770n9ADxuonpJUe7uJCwNLeErRtCeDI1MxngnswhQ6WplkrmOGgohlFF+xbQNTL3djGgZBPclUxKAhpw4QmMEhSm3qsvcPStOwJVYZzPMRzs+3kCphTYbykREqJyY5VFKGaUo0BDmTjvUxc+aVf6TJeB6nt5YnxadIYuMHwL3vqCenYhcvPB3GU/ML8i6zEJVBVuYxzMPp7DLPc+2LNvz/9E6m9jkhMoLzEkjdxvH8Kgri0+Qsx/CuJXlwdQM5KbQ8LlKCz1YsgFFSzf6yBgztdfCrUjxUFaDYNolNKJSyah0usxtRijN+eG8wg+2JKs6ZnajwDI7YCsWxlXVttuiaSe/aRorWppgqL8PUdUtyRynO5thpDq0hlSRuxsgrcbG09wXQJT41y8SFAK4Luawl2nGvukh4sikpDsBsN1xmwL90xtI+VBrCBjn2x3BykbWVXJR6kKQtQsjTAXOSRq9JWjiIvjBBoTMDh1eRBCYSOj2ynJq4RsLZYCH8qZrdn9+8D7BkggSKS04r3eYs85BeNMvKWC6WGZ1GYKmFX2izVGSaZOWet+aV0sjufQh/aCMKSx5FoahzCZRZxczaa0wGCvnFXe9F2uxX+j+1do5mF3CZjqsDn68uYqdH0uGr4nzTh9E0nXf8NoR9o8a2IY3msGJWSHKSEeYcHmtDF4L21lZKs8opm+/n+iw7Ue1GTHogJU/iXKrjVGCUsvZNhI3g+lqk6xpFtVecP65qwjpknc22cd1kkO1FfnZm2EFKVLyW069s4KWWLVb5QZnAZppsOH2IrPgKCOgtKEOiYVOS+/N8BF1VXGpvpzQri/hX/46uJhfRxR9S0vhOcsaquTD4AHbNTa9rjIK1GeqliUoJ/4pUvxnASb8TgzJ6AiXcc+EYsViMsptv44mufgpC8+RHgqkMg6Dn1RHOFx2h9fY9b1qjV15+C4tLP6BPltOtNbNt60421G9hZijMYlEdtsivqR8dJOKvZsV3CzNDYQrzA7hffh6Hp4id7j0UkIVm18lprcXp9ViyWRe/Qdupp9miPsYx32ZG07fxiw3NlgeshI2jCRZFLg2PP8bAgSOMVg3h0Z5dn7MNxUd5WLr5vno/Cksov0H2YFsooSTthHWY/wOxsvqvoO3/onkKcmG6H69v5gpLjSRdeYfZFq5GKWnpmPk7iGz+V2yayQaps2Eqi4vEsGt2dpitRA6O44xWItJsKGkglE7OdCXX9x0j8ccfwlNVxXD/LCXBRS5Ik0RqE7Arg/szYXYwA01aIrUTOUX80ixFinJs2r18ks9QWXmKoaGtLC/n4c0vJTIYIRrJxUjLRBorTOWXcntDAW3ZPijfDSXbaIF1H7yE0cfl2CdXLNOiT4DLhYgtI5TJHTmrJNYW15mhppQEKnYjRiULySSdI4fI889SUJpIxQFJHu3s4eGKj7LU+0twJdDWISrFwsJLLCy8DNhw+q9nMVSNZu5NSaAoGlQvCI0mrZ+nEZZyuSbYU5OL47pJks6DPPBAG+eOJpjsihLNvATK8oW4Lbqdd0Rv5G9LvsqO2Z+jbvwCz5wdQioQmuC7uTHmHB4cSvHJC0NEZRb1Zjd2m8VIciDJkZN8of+nGKkTd4FTEirLJEISIcZZmC0nkG9efh20ZBrZw/tIiBA4zqNSKfTrkjt46/BNHAj9hrMtk+RpxvrJ0+ubYYBapsqhenKJ5E96MJNT2KPtuAJuqEj5f6KzPLyHtfRJpOy0WG8C9LxuJrJ6qRj4EF0td5NMLqfSQJLs/iNseuU0M8XpmG0rqUAP0ssMVucVqxvuhqq7IC0bXvgrMBN4V3UyM26nsvILVAmDa9ULdM7eTJcMUc3ldIVO0jzMUv7dyPXaNZ1Zfx6F0RC6rrPjhl3o12xivKuTvFg6tvMuK3UnTaLH/5mLdZYEjiVdYNJdWkTm4iWkS6ApC8PSbTaKKquIVFaxK7OelYU4uZkhdP8Rpo+u4u+vwHz+UfTboVc0rReHG9LkR52nuSEUIL52jPDIELlN1q/rU3U8Y9tC0Z4gOzrO4/Et0qU9jgpI1J/pjL28lznnBrTeAyyrLC4pxdaxBc7ZCmkcDbIBHX+PQtM0pJIITTAeyMLUrPQaUlIWj/OnVRXclT/FufPv4pOynE65gROjbUyVVaHpGnYlaTr0IyZJ52RtOtLhBFcpejyOWFumYHaMwPwoL2ydJy3/CMnBcqqnNU6m3BHsuk5di86vZp+neBi2ZN9MqOwFFlK1o0JKPL4ZFrPysc1YlmuGL4vhFYN/23+U1sFJ6nLL0L75Io7qOxAaXEgXXMx5iBuiP6Q40YGuPUDSGWLdmEZomO5M9NgKqyE/35kZZH9mOr/xeHiy/0mOn2unPvNtaCU1Vr1h6oCkW1Eqdk27yozdvbWY1bFlTGwYwiSsL/O+1TaK3RfRWEvp2MEh/3EmzRk+MvM2BBqa0Miz6+RlFTBefCc/q/QjbfbUuDdT+7JApHxHLwdwEggaJu7WVtZ23oOMWkzhokWT5v4lNu2s4OyxY7zKElKl6pqkBCEIZmUTHBmhc3iUOxKbqQptZC3+CWItU8y+FqB9rpJSWbm+fiKgpMHPtn2V5L8JEzE+FKYjXawfsr63usRXT0TYIiU6Aqk0OtJv4OmcXShhpQoNDSbcbrLiy6CgbnoUAdxz6ACqr4ufXXcdpqZxOhhky9ZsbA9O4NJMZuU/EVv9CJuzb0ehLPs6fsZa7AgrRjVmIoo9bRZHcQv7d9VjmGup/tLozy8lEijiryfDJMvr0WQtd3UcIz9sIYn+9AZin/8yYZub5SNxq0ZPh5zGgzg9QbybHkKr/RFfHFAklcYzsxp5apaRb/RgGhKt5X/QWjjHhak85Ok1Lpw/T1V1F3psGTPWT48zynL5TnLuvIWiVCDojRh4D+4HI0mb1kfbng/yCdsezKUgKqXTNxawU1Trp0f38o7lGYoHdT6+2YamGZCy/bpRvERan59x+3Z2p79GQyIfT/YOstcmQB/mD8XK6r+Ctv+LVpDjAiUJhwJIqaNhghLUL1z7f9h77+i6rjLv/7PPOfdKupJuU+9dVrHkJpfYTnOqSZxASOiQhBkYhikMLwMzMEMdZmBo887AwECAEEoCJAQSh4TYiR3XuMtFlqxi9S5d3Sbdes7evz/OtRx+Za3fzHrXu+Zdi/2Xl718r87WOWd/n+f5FhS2RUF/+BRW4wAO7XoruN3hIK9oHX9R9EGy919ixN2HK9RKlfgbYp5echYbURefoyCygDm/wKKrgIY+KDbrqIis8D3vBHErRufgOf4y+2UO1LyHhf4LSKUYK2/AFLb/gqkUfaKdJvev6Vy3j8sX78K3f4BgkZdYdQuzHj8vrLPtDH6nJE5nMff83yqIbfUFq9E0Jfoyb/YdweeZwUw7yV2JkpjOxllcxkIwvNoF0dFpWa6g0OfhSKCHeSyWp3NQ0h4PSSXIuhrlQtYZqm5Zzlgy2HU1XCuIFUqlSSzt4wa1n+hQlCFHE+XhRWoqNtBQ4qar/E1sKmnmeGiZ7d48mujnXPeHVs1gt9zwHfafd2MEc3G7InRqfkqUhwseKJQP8bRT0Lp4gOzxJGZWHkKZlDuLSPkswlkB5vxxUr1ZZL0Q50+a/yepvFL2LJ3ivD6N9YZDpimbjD2wrVRVSq6qFu1s2lYQUCrcFHpmqIjkUp26kVLlZ1ZbYq6kgOWYpFD2rPq69aY72bvO5kGdq1G8+2CU8slpwCI2l8PQb2twVxUykdfJnlvfx+vPnCJtluFqegXpGUcIBZqFtTHIre1l/Pv5oVXl3s0tlXidD9I/dgLXxuHV70xE62l1N5Pv2QE3ZsyES9oIDz9N0Otgav4sQpg2aVdKikuuUlIyjBISIQQxWshWPbSLHp7DxFQCp67zgR1bGSrIZ1Bq9IQi7O5op7y5ldl//hVpkYvQdBSw/4Y3c6ng2kGm0KWkcnrE5hAlVqi+dA63I5fC23ZxaHISS9PRQ1e4M9/HyqZvsyzSBNTzVJ7+GDlT5SyrMVrVZQxhA25dSQLnnueHY+XU548wUX4nE6/3kVOQ4LutH8VqNtCaJG+uq+Oh8E9QIgrY6ukzdVnMdQfZlgEdUgh+3rGe/Uuvof3yDP+W20lLuog3iY1Ma0t05/USmjyM3vgglgBdKT7TWMI9zaWMjv4aKVM0cYUG+lFmghfPeGnbWkZLtoL4AlPGPJK1q90g5d9GuGGe4dlDzBXEWfCmKA3Os2NKMFdUw9rBC1S0tPGnG9Zz/uJX+GHFXh5W97A5qpMbbCWgDKQ0UUojHC5DSB8CgeXKs0GlsEe1Z66Mc/7KONuzkjQCFz2CD2/OxdS28G25gWcuf5L7783l0mQbJ65M2nnKSqLHogD0OO6greJByuqCmMO/oShazd29H0SXOnfWR3l5Ux4g0C2T206+jO/WG3G7ZoidGuDsUJKK9Q2U3nADhZxg9PxFnohd4NH4Rubav2F3kAUoKVBSZ3KpjH2+Y0QtxQem30GJkVFjKli7427et9HP8+eHSGXyhd/LD1nR8siVy/xY+2NbNSzAId4AGrdAwdSLrMy3kFqsoXpLLYM+OCJCtoG1AKQkb3mZ5fz8VaqKRDHvvYTDGyZnaQ0Ds/fyrGeFmqRJZSCFptnqXV3X/j8BG9jj0bOD17mnplQcNZNsUHZMllSSq3nZ9oA+Q2gVKNaUJFlYdq6+MzQpSTmczBfaqmI0DQlEOgwKV88ii4WGX8NVqAxtABTF2dXMOmbpOvgMDstE6FB122O87noOotdhQmFhIfuCs6TJuR6q7inMOAgoUlnLhPPqiB+/iDKbMhw9k2TvOFnG0yTPnObU1m+QznYgEaSk4sBkkJqM16ZUcLxkDafz4tTMm1QFTbS4QXF2GQVZNQSSY5xdOcQPXijlZ6UulNfJ8eFxmvQO/LPTVOVGic2dwxE5g1H8MKbS0aWwrUPqPfzq4BCmMcK4Psqhw3uY76yl0NfDipZHi7pCa7yObfNzGDueJSLSRCuOkz//MOU37fpv0WWDP4C2/9JKzc/YcUSuPA7Gb2W0phlXfiNvUYWs8Q6w4uvFGksyP5qkrO660Wq/CfdW387cpUOI9XZQPEqn0LwTX3QLiaeeRUbGCBQXczC4hBU4ise7yJY8HX+wgXsHgywt9aLHlznmL2LxkG2HoRAEVvJBgqbLjIniZa7Vk+XOIYaLvGgFdpLCtPeaTYAdT/JYzxSd+stUdd21eo2banx8+44CLp0+S1FFmMICmzx6bYmNTg6dfppwuAClJEUrGlsd6ylVPiSS4pwq5qM6tk2wTXrXlEVr1hWqds5eOy/sctdWBNjXcm2qKWxA1Oq4SCzkY8ZTwCtnRlgvjhLJvUB8zSING+/jeAgmF7rJl7bOSco0musy93/0XVw620865YA+xYU8+PDmPFKiA91qZc/pp7lXdzORnmWurIy6uKAmsYbXSw9yg+MKxdUrjMW8GGMBSsVRpmNumnwaWT6dpJIIBE1lu9Fie5FWCiEVK2Ev89QjhMbmzX9JVeN2zr/6Cv+WeJwe1wi7vMW8LwUrSy1MLxtIYfPvrmW9RsKlDHkbVx3bTSEZLdEpDvpJ5pZhxCJEI25C01vQG6tIrKTxlLhosMqYyp9e3T9Nd1Dc/haaPLn8e1k+r84scFtZEbff+i5i3d0U/o/DnK7dRb5/gUi4jJ3JOyj1+RCnEiQrT5C1eRtht8FZ+QIqkAZdQ1l2V0xlEiiudZhBkUsvaXTq5RAfV19k3Pd3vL2pg4XxUb6aU4KlafxmNsZjXGaXuwpyyoCUbbasLF6oLVs9BAWCN0UWqZwdt7siQNChaB65yvhgNVZebkasIQn6L+EQqUwHJk3c309ebB3JX07S/PYBPik+R69aS+6xBU55e/AXbOWXXQ9j6TqvW7fQ3t+NJYxVr7BJfzE9aj2DqoAW1UuNGqZ/qYmV7BxURh2uNI3LbRdw+GO0xutoHLsZlKJYuZEozKSTdbNQHDtMqrmF24uKGRoa4sMjE9S7ipmQ99NKD2vUACKUhaELLmNyPiV49iN/xz8PX0SbHsO0JKBx2FFGharAyEoi9H5glLKlbGaLqnn63kcxdZ1LQnDLcpyuRAKnUgxmB5FRQXaogarTn2Cs4CSXlh1EI4XgW8Jj3sMa40UuU2b71XFNrQ7LdRu4mG/wWEMWKQ2U0JG64Jc7vspXurooBVomyhgdHcVcmGEwniQeqKBU6+D4aY3Wtlyc+ouUR5pWzYY3DadQsWdYyfZSPT1K+fwEF81XuFzkoaD3wxjSi3Hxej7kms3bePuP95HOfsWOlNPsd8TKXCuBy7tpqQ5xQFwkkcylP2FRmKejKYXQ7LijLk8u3/EbPP36WeqS+7mh9ZRdIArICZg85dzIjqJtvDeVT0fI4vjYD0j6v0yBX+KXL+IMfQJ9bTsvPv74qpLymp1Ry5V+zm7quhbEgtu9gLPzVRaFyWB9G1/S15OqzEGX8MhrAd5pfo/Ehj9npTGLF1aepmv+90Vos8N2mHxFs4+b15by/dgSplQYCooGYxwJXKJQCxHKv0SLoXFIbcCUtnKyfPpJ3n7Xe/lyXv/qO0MKmCmpY1vPGXTZbifrSEn+JRPZriOE/dzm+MeJeL/F5Nk/p3RpLfOJcRq1OA7LAgTKUsRnBW+LdfNzsZm0sj9HDQ9yMc+NKKtBCYEhBJURu8uGEmjRSYzEADnFpSxPr0GlLQQWWdolkrKFxdTnKLuwhN5VjNSkHb8XGcXKFujJfKaLHPykQZCSmT08usxbOrbQHFqLUgZwA/8ihkmbkmeG53lKS5CSDWib/pG3z/yQNfEr1Ge9xC3Fkgqu0staPBdbaGi3dY+5sTM8nDfCgBbjpzc+TNJwgNiOQKEJxS2tK2yN/Zx2LQ3CFizE2rP+2wA2+ANo+y+tqvYOsn71JHOGj59vfT+Wbm/jy1skfy+fpUn04ajX6TA+S17lu7ky+jwLDh/3Nnv4ysl/5IEsF1tEOsMHMlnMeomlnAO0ffXTyBeucBF71Jifv0B7537iQiKVRvji7cTymsma6OeEnkdlhtOhodg4ep535sPSjjr8qW/RpAbsKkdpTCTridUW4E3YaqPy8CLaG9STZaEAg0f7oKSN0dFR24suvsylx76MZZpYIopWdM3X69p0wSQ/f5pQyA8IUqkQ0pB068OE3CX07qxnfd7fUx7/ISljDDKGDL766HX3B2UzS3LnO1gpOb/K1cJmkiGVwIjfw2/XbbC5YLVraBibIB0qpH8a9hYGkXoEh7WBT6pWmkQfQhjkJteScEU42b+PKZebmbpCctIJUiI3YxJqUFL4ZjoiJpY+ypwYsfkmSnBXfBPh2CzzYTcSjddVB/7ADJbS0BclH9mwia8v/xapJD8YOsh3l3dhXnkFLapofNsZlAGa5qSkpJiekMULCy/RajTjy4mzu2qUJTHOktQJHtwEqgEQLIcKKL3qpnX4KnrNcbprW7BQoCQJcZBwsYVQZSQoy5CoQ4j5MAevJlgrS4muPwaaucrPcLt34xgWXDr6LbqDS3iUolvX6Xz4Yao2bCD/0x+i4sghopE7qZkupdTwoQkBSrL4qyeZvHwco2UYpVKZO97C47iRrIES4kuVJLQwsnTINk3JALe0tZ2ZeBExbQvvaF7DJk8uH5+Yxsry2xmQwKGhOTrOBMFSmS6bpL/I5OE7N/L3s3OrHcEP3n4TCwOn6D1/GrBx/VhFKf35eav8MBDoqbzVa0Yops0kbnOOKnUT1d7b0RLHCV26wiveGTSjDD3nHizdyNwDYLisjCGngaYkOckEX1n/p5hCx5Am797/MxwhgZcEW65OE3E58SaSvN6RZFEItge3oCt9lYzdp5au6Ucpi4TIC/RwYsjFb9Zus7seaTdodTiUyY+H/pr3lBr4ysr5oUxm8h1hqusW3KPTvHq6h1npxmHlc0ePE53dWFN3sLftW6RyFBO5DZi6YRPAsQUNv6l5kMfOPsGVaAkRS+LTNVyRJpIrBlHD9hHsLatiYF0zNbEiPrjwI1TEwTk6MrF5EHaX8vdduSTfIKxRSvDzqMHbMgalVVVVq2pTd6qck68lUAosU5K7WMT3yz9Oz8WjBISFVCA1i0RWH7uGK3DklWJ5DKZ8J6iIbCTXN0Zu0SDxhUauHIswFS7DmbXIxUPPsblh/fUYKwuy9vto7d1LfnyCsi8+yoSmERg6wzFZT0lOCe1vrierxs30QB8DX/472k2T6BYvz/EW2tRlmsQAN/gPcZO2mabfxVHmChP+w8Q2/jN6RgEuhYlm7GX0Qs51Q3B7E9h05iwNw8PoVi7d63eSyl6iqOQqaGl7b1lDWthRVhJJTs1h2qd/x/mCGj525cCqCO3bO/+aIpaQsXb2f0dimRLd0Lj/oxt4Kp3Dq72zlPWEcS1aBPCir/kJJesWKRbgl5/jtdn7KZhdob5nErdvjIJsHZFR7DsU7HJupHPDM+QNvMRwuobi+Xl8gQDnc3zk3J7Gkx9enf7M+A8QGj5OS7oHzlUxWn0nvtAAnsgOI85pAAAgAElEQVQIeo5GV906nnU38eT5Hib7eznW2IHUNISUtMyOckP5Ch9+8H5OvLCX0ZOHIR6lt0zQvraZwMZals9cZOP8F8kSV4iYDzErVhiNX+CeCx6mvYWUhuexImFCfoNtLXcSbCzBDAVRmsAScPnuIgYSTuqZRAiBhYaLOnTdRPqySAfjtm+irjNeXs8GzjNII33Cdhy4Xz3LjOtWKpofpOf8WW48WoSh7uHxOgevGg7bmFjZvzNLU7yanceR7If5lBqhSQ2gaQZFdTf/rwMP/wvWH0Dbf2GV50R5qOoSX6hst+05Mh0BE0GvtgaESa/WwR3lFnua76a5+W6YOMX3n307KU8ux2WIjYBhnz2AQsoUkYknsX4zRrKjExrqf48zJ6TE450jGilivjSLWPr3Y4G2zvTSceYwy883Yf7pW1H5gsVQgKsLnUSjxSAUZnoZLSef0nCQ+y4cY9pTQFkoQFk4SKB/huORx7GUQtd1umorsUwTJSXLozqq08hUaQq79DUIh+2UMl3Tqa5q5cVoN7MeP3vXtaP0NE9pDj5f9S6KZw/YcnUJoWE3uaWxjEuaRknfe3FGy4gVXUbpFhLFT8MbWchp4K5YBVFHO5awjTFRGv21ddwrn+fY3CY79xTbt2566kPckDiEa6mF1GsaQ1v6mXK5eb5zuz02sCSatD/fkNC1JNGERrnycYGx1Qw8tZzDicEmDGUPPnNZII1tOmliEJpPIXPkqqBksLCEda+5iNwSg1V/KjuGqb87m/cH342OIJCnsSRGMx1FSWl5mOqRAxjuHApXsnAbO5jf3EXH2hr+MRzm5YksqudNfMkqVvLGrlt8iOsk4eX8IRbEHI6KI2T+CqU0jh5Jk3j+Y8z5fJhr25n1FjDjLaJ0ZJyurAAfmP4q3oIy7u3dQ47IQuWBUhKByYHZGAsjr1K5PEvBG3KSs6UP/8i9XHRrdHs0xNI4NxS8CoC0BAM9uYQjuZxaXuB7rx/nH97cwa6qcp6ci9uRQUpxOtfLs6VJHpiyM0gFGls2tjGYncU7ZfbvxeVMv/VtDPRewEqnQWgcreuiQEkbXGaWKLdW0b9SMJU9xZlNrby1oYHqze+ghHcw7znC3NmPsGG6CYeRZ4NeqdCV4p7q33Kv2kufXEvtoTCTsgJzzQakpmMq0JMuvnL8e0xuvpWilTglyysoTaNzQmew0k4pkZmNl0Aq7kZlKxQKJRTFrmKOmo6MkELLVDwaaRy85L6Tf2i6neCBED/ZlLPaXVk/HsezoYVvnQpiKsVWU0MHNARCGWwI7aJyppXzVSZvrKIsBb+LZnPXwv1s128BPZPJqxQllgdNV/SU1XK42e7yzPrqOVf+Wb576hi7IzXMahFKLDcvlXlICVZFIdc+Py0tfjc0TNemDpg4BReehOUFKnqG0fkMbt1BoQP6L/yUjp/9nA2mYqoiydX1u3FXFPBo5Yc4nThlJzDkF1FntGCWXKKm6iWEZqKkweiRjxF7bhgzeYp0bIxzgUUKhuuIW8vM9xq0hrvRb0iSGhR07/05eYlKpGlhynFqut6Lv9wedU799ihNuZs4XxXkhxvejolhGybzORrUIMMjr5BvVTDn9nGkRlBDI02iH6XscXbn6DEWJscw3PdjKjKKxSpS3mkWC8LUzfQze+selhz9lJRcXX322uixiwAUDiTesJenXZ9hn1XDsj6IYQ1SbiQIDX+GCBKUA4f7o5iBBixLMjUQZFOrn8pTYZAKmafTXTtE/nrbFFcIWKNdISuZzWR0LWZOPvv2HuG5h96FxE6K+Ou+JJ1hhXC3soYXyXkthUynSRmCE00R9uSlV39eEGRF47Q45uhefisz67ejhIYmLTZc+DeK2jdB1Ra6gL5sncNF5W9QQ0N+Ik5VcJkfTf4IIzWFM7EM2OkTJ4aW+dTwRVKmZIvxNr7Z1snSXDszC2EkktJokJLo0rUnGSktnMWXSaeuolSLzX8UcDKR4GGR5Js+nY6ghQmcx+LBTZXcqK/wlJL2SSIl1dPDXPG38GPtTzExMDD5W/UFqhydlNZ76H1qjAblR0enIzWOoRpJ2aTmVa6iTS/S6aWdjnCKZucOPJ6N/3+hwf+W9QfQ9l9Ys6fPck7dRm9WAJSJLdi3rRBy5TL/pH8OUxg8N61RIObZvqYYRo/QFY/jdLuYSGp8b87BR7UVUkV25a9ZFs6D3cSSudSNjDBaW7PKmbs2Xg2HSgAY8c8Q15dpmczLmKsKKpciRPNr6G79EMkTMUL+TdgDDyDTtZHBKcpS2zFc+dzYcxajboHTVh1GupKximpMOQHYmaZWbj5CN7BkmvB8Hj88/m7+/L48aovKWFwc48DBKSJhPyjFlmQ9wdQK6PboVWo2JEtLxe8W/Syc/XOafYME5vxsdxdTnZ1PYvwsDRPt5IYbUdJiDZ8hXR/mSKKc1/RKLHSuuAQfm0/YXkFKYmDHlWhC0qZ6eF1uRGrCji2JRCmYute+WiEps7zM+IpWxwZKE9w8OUgw1M+2iSRrtV1IoVEo87k71cm89zL5vhmOBUcxMuIIgT2itTWKCsNw0LFhJ87Bg6RlGofmYM1N91H9+B7GrzxGVHs5s98Sh8NLV1Ri2MctuYFWgvUvrApOnHOdnFsawihtYLr8TtYupRmNn0T29SGsXjYHO3GYPhJaGnLtLqVG5hzF5vDk58+TW3kEdU09KmF2toFwqJA5n4/iuTkWtu1gb8Yr7JwF2y48S8pKURZpQJc6QRTHl03W5/aQSOxnIWG/BJcG3PjXhDJjbAdlFQ9wrGqGj6ypJy00DP6IAjVBsxzi6lAX0WgRGoqd8fOErCw+/Zzg8w9vRNNnsZRC6QaXdbjcng0keGDK5KJf54gjwdO/7EcuJXEaGm/7Yw94cldj304cO8XXL1mksnK5iz4yVlXouk712t1MTb+CZSWRUrOTEDSN8aUlruHNnukwZmgj/e4yplvyMx0lxf2jv6C59gpCg2Y1SG77ds6GCjGkfTA4LJP1A704lMWGai/Bcw5kOk0oP5f1TXdRWpyPu7qJ479OUyA0Fk1FwsrHs9TBwpoLbGvrwlgxqJwc4ayUWILr6m8BCw13k1wuoTM4ysf6EhwocbBrLk3z3ApF68r5wv1r+dFre6lzD5I12UZ6qRFLpImZy+hSJ+ly2x3GjDhJB8I//S4LK5WU+Aw0IVBKspCWDCZy8YhOptbkZr7f/j9pdM74t/JoKEWZKkAqi66gRIPVVItrwE2XFlVTI1Achx/dA1aK2KKDhWgV+aUvIRztKJlPXqSSUEUbjsAyg7UPoKIGwStpkrNzyCyJEnYCw5vEjVhrT6Atj2aI4BbZhf2sLDSgtHJyiuMU3XkFoStyLYFjroTknhgpzX6tmSfAupKm0FnOzcUPog+mWRy9hGpxUjLbTImvmcNrhn8/j1LZmcbBUDFH/Um+sd5FWuvEEC18Sn2BJtVP89AKzmGFdTDO7Z3LLNZ1kEUWJxwDWE0V6PWl7CxzE8oP40nNrWaCIqFJ9PMpPkevaqd4MUqP1sbedTuRQoPiT+KZ/xLN2QPYLDMJwiSvdIBEsGFVVZocDmfucXvv/VXnMDP3zLVJbThUAkpRrYo5fsP9tko50+294tZAg4TpIe+er1G98TyxF59kqsLi5kInhjBsRb2EuZlG2oMl/DbxDkz/DJo1j+aoQAoIFbTguuMBAM6EV/jUik7al7EUUXbWdEUkwLNyL3PROYqUk7tECYbQ0Q0HU9nlxHPB8jk5vtTGfyRqee+sm1KxjEZGtCMEaAIlFW7PIr3WWX648ndIJEiByPDx0kpxfEcx514c44w0uaJJbgxP0vul7/FgURkTZfXUBnxUhyuZabHe8DuH18ce4YF2O3WkuLUG82KIuHsIX8vX+CR19Kq1xC84mMyu43LrJiyVoRdxmWT+JOnE9aD5/y7rD6DtP7lmh8M8d2ANabOR+y6GOJJ8nqh/HcIyaJ4b52rJJsxyBxJbEPDqkVE2ZWeTVXsj61/7Ml+7GuNSwk9H9hI7jTDhGSfBumZ8IwM4lGJMy6UwEOCWg68xW1LKseRuqoonCYdLiUYK8VqLrHUL0lk7ae3sxTs9y6S+Dn//JGNFa5CaTtoZYdZtt5/Lg4usGR1ACyfw59xKidHMRCrI7M6tLHlLOBvOoXZB0hgVxNWUXQkrQUtlOydvfj+Xz3YzlV2OdzLB2OMBKu5upG86l3AoscpDSmk2DwJ+f/QqpODW7By+sdLASLgOh6HxiQe3UWFp/OpJwUL8KMXZsyympri95i+prW3l+bE5JDOZh9UiVB/j46+do7siyabGfTSJfoQSbDwxSKXxdXrurSBPW+a1Ni9ogs2TZUz6zjOSvMKunC2clWAJe2zwYFEtzw3/O7kTeTxRKZivaqN4opdmOUjxpvMkRZoNCoamakjOuQDQDAPH9geocikK2nwMuub5xOZPEE6FV02MY1PdWHqc67M6jXQ6RGF+FiuZfckJN1Jx+uMk/FfIWWph1MpiqKOU5zMEYkMq7r3goSRqjwbSzjB6bAVWfosrlo3lysdYjlAdTdLfsY5cdyY/VLuuVgXBStSPpqA06UBqgrAjxx7NCY20sji3bOJCYiSG0C07oilkWeR0KDyL8+jzfiwlSMxlM7y3Gld5nAm1k0Pr4gy1jJOmAZmpRvtFO2vUID7/FIVF4ywuVBIegwo5zWx2KT/vG8HyZF8HKwBC8NqaXKpK4/xlgQMztQzrfWw9dJJQVT77rv6MRu/21ep2fGyKQqfBfFEO05M5ZOuKLXV+NlkpKldKoPzrHD3yfYKhYqKRQjSlaMiEfJ+fP88L85/F8KVZdJdi6nZVraRiWdgFj90q0zkx5yUcXmRP4gT5yUU2H+mmbWQQdIPB/Cae3f5JvIEzuEQ/+ukLGOcNbvn0HrS/KufVX11g6WoKDQ1nysv6/B30HDuLZVmUaRqPzI1yKsfPZZ8/o7sU7IsZ/KpQUFpg8PXWbNICuv06DcsxbhwOc8/GRUpi/45SacSafUzM/hE/Wzpk21ssbKZ6PoUhc2wlM7Bn8Cql06PMZ6WQykJkun/TaUmhw4C0j5YJg6tlrJ7+mlIUhma5YEQolXakUGfI4m96E3ylLRuJQpewY3iMqisH2PCm3Zx85qdURbPxxhTnLjRz4OZdSF1n1p1g2ptHeShMxeZWmnuiKE1ffS/IuActS1vtaJcmBXMrTaC9DspEKZ2c5Wq8BixoxQQ3rtida82+ub11EfvPmWgmqymG1S8pyq5CE5lEmrSFvBizB9RCsGU2hycLM0kFWNTEJrk62UUsVoq5aw3plIkErEx82jtdURx7/4bFHhfKAt9oHxUVu7mQNWkDCSGwNI1DU5Mopw+ZbxfVurD3WwFN9NPIAKpA43vpzDRACITSMbPb2F6/HW3p8VUT8a7b9hBsqqai2UdpvYflhZj9OGc4dP75LuaLLq8CtonxNqKRYipCSW5y38mrWgq4bnljiTQLZ7+Na6KHwN6XyVtfT0FJmnXeFLULirPFTpRQCKXTNP0mcJaRWP4JdoGv48x7K5peTO6jO3Ft2MDZsSBfvzSBmUMm41RSEZqnYuEgAW+AOc2ODV/wpXh56zwPZO/igV2PckD5SBZNrwL/6Z55BB5KlZfdqQ3M6EGKbqpn/4mDWFh43LOcV2swhWGrym17YzRsh4C3dpQz4MjiJ8/1YElF39HXWGulqZgdp2J2AiN7B3rOVtqCr+GU6YzNkWTz0knSgRHgBtau38SXB79KcfIwVVqaZjFAkxrEKN9G8bibpTzBiysXqLZ+SZMYQAmNqHfuP4EO/vesP4C2/+SaGghiWmA6Vlj29bF+QYeFHnakWkgKH+ezKjlebo9CDKVodLxG4OoS5bvuZrryrZx/eQxLaZwXxTRV91BupPFUfQB6Pg6FJt76BKGrORQFAhQGg7xcu5lzJVupYIFSFWSKG/hlw8OYms4vKtP87MIn6LjpUaofKUA7eImRQcF8XjF713UgNYFeI3EuzbIxYnKjt5FFPcpJ5yWmlYe9Va1Y1XYw76eOC3YnNjCrhSiVXnLGdazCGs56BS1Lo3zp6HeJ51fxUmwLqRwJPru8nMv3cTi/is5gAi0+TWk4yJ4Lxwk6O6if09m008fP/ngbJ4YDbKu38xcPPv1rvI17iUws0Dc3AQj2XxkknOXHZ9ih8VJJDGlSfeJbBIaStA2C1hfnyvqN9DlvZX3wBOuKTmIR4p/E5zAx+E2b4mMFl2kp+CZFmkWB3M8/9H+KCUcrXWHJ9vUOirXN/KYszi/u2oOl6+htDbx58mk0rYo2emgUg7Q/tBbzyhoiyTTZFVV0dm0hkBX4fzVHjnV3M/7o+zErEoi/UCinhqY58fm2kr2xhNiZWZQpsRCYgXL84UbmtQivO88y9QbRgSWUPcKMBAENZ9JNbnA/KYeJEV/BiK+AUuQGlrjlwAEG3sn1Kh9sEjCKxsazrA9txWh/Oy9mdZOnUugZEA0WjkQfGhrb4ybtF79JyNOILzxEXvQyhS1hHqrOZSLmIZLO4tJcGTOOnfxw9wOkNYXGTRmltB3K3CJ7UVJQWDgJgM83w9hsOeVzuylNJUhfPUP3uhtWVYrXftiuasnfXvktae7P/BucvHUbCMUwJv5zn+e2wod54cs/ZrygjLP3Poql60y11/O1b36JzpdHUKbJ5K9eZeStDzEeWLv6fGYly8iv6wLguStH8Icr6JxsIKEvsneXhQR0FFurTq42kpbGbiUc8qNQFIeX2MUJ1vouMiu8hPOqudxfQJ1cwHTEVl3rLdPk1Kl9LK7LpfnWdUTGTKSlMHQdt4dVx3hLSnr7Q1xN52C0rZCqdAG2DcGnA4u8/dZi0pEIUtiKwbM+yB47ypJrP36VxnbNMlmzLkyoe4a0TPPy2se4yfwATcfmsLySLbNOahYTpDAIJKY5NP0UG5MFdJc2c7Or0RY+ZmswnkLPucTrtZXkJhOsnxhkIRZk3rDHr3U52xj1edm4ZPLdUzHO+nU8aclMhZv19fdx8IlvY6XT6KylS07SW1uL1DSbEtF5Xb2458Ixips0vCsQsifhpE0391qjHPesZcyznqWAg479KX5Ue446QxEKlRBLhbgzf5lDBS8y7YywEdtfUCiB/4zCtNkYSKERTpVT0biO+UgUqSlbqyBtf8RrPpnty8t8Mf4sfYX11MReoNHVB80Gt932PiIldTyxqqzWuLmoiuHLv2I+ejue2AIeRpDBq8RPfI2qjU10e7yr3VLl8CGUHanUc/EOqgoDJGrW0ru8RE1OL01iEJCsc57hdbkJKZT97CX76FlZT637IRqzJG2Vb7aLkzfQECamo7hQ6Jlr8E3fCgKWSk5yJeBldrYJHY2NeWuZlxFcC+PoFdux0HBIaL58kkOeZdqX86heirJ8doAVzUf1bUE893yZDlNn5uJFcgItuKIN9AUf5/pExiIsD3B4Y5Cs1j24xoK8+/snqDOy0Lf7sLAzTmsnz9PveZF04CYcfo1rSTtK6mQp27V5KdvulCkBQioG8x2YcxKUoFDlk3tLCbPxSCaTGELBYlqr+lbjwJCKD5cU4nZnsd2bR5cnl6MzF2nTpkgl07RG++3vxKZZaI5KhK5R4nHzdXWMM+EFzAUnwRUXT5yL8/C6CeZlHk8M5LOhYon3KdvfTxcGvqcuIAa78f/sKe7+i4cwa0ZRQkMog/zMdOu/0/oDaPtPropmH+iSlDOIXQ3YB9FlK4Izp43vrcnDUgoNxXvUDyiu2Ec/DnLDxUyIZiw1gUJgKY0Jo5Xyu98FJW1cq0g99SnCEx6UadFT38yLu28HXXBeNfKe1x9n1MgjLdqQwlZ//rzmI9x/aZppQyNRfwOB7Nc5VZEZUQqbzDla386O8Aia0JnVQkgkU57C1SpQChhud3PPaUWx9KCARVPywLZKLu47ytuu7COWV8VgzTZ0z0sUlcfJCbcxU1nOC/UNmAgM6eaRQzqdTY0UnM9BTyo0YZJ/4SQFgVpKa3I4eeAY3fkJar3/QskGk+J1gqEXqhkSLfybuxpzeMaOS1n6EQ6RiyvRy5p0nJDnJubiY1zIyuWX1e+x1Yjv38pn936dXipW2+FpZdGdPUPbG6TtuaX7+Ij/NlIjp5n+6GcplBKx50Gk4cjsj8av695le6gpk0+Jf+KdnY8QqS3i8R89gVy8xLmLl/BvUqvmyHmxPPa9tI9u2U18eprqinIarg5T8E0nxn2lVN76R/bL2AO0dbN4PsaUs5xSzYdbwoy2hELRmB6iWzVhomMoeHChEI9pIpIexkwXngSEjOs++5pS+FfieBIJCl23I+U+hMj0bgSrflw5/mkmol6kJiiNBFczHhPyFHPOYZy6k827HyVr/5fwTo4SdDnp0fw0x0zKXSuUNzUzbTTT++os81XtmWgYDZTOLWo/BQQomFvBGcsh4Sslxzu9CoAKmnLYtlhF0jHBeCTAnovH6C+uIujKR+oGf1RfQW76MFq8B/LvyTQmtUyjUCOt4LJqpm3iFSzTZKK8LmMgq2PqcLGhhY6hfjRfPTmb/5yC6Ri6U8OGYxpZiVJGX7uMsb8Hb9TF/Vc/bKsYpcXm7/6A7uY6SitmaW4eyKRCCLwTvWiW/czM+wo56N3MyhTUqHFOt23nWKuifPQkFctjXNtsoev8x9IvmD63giYM/vq+b9Aqa6ho9pF2RDh36aQN3BBkyyR5HpO0I4KpspGZSB6pFHq+EyMkMYXAsBStB3/KYd8xurMkf1okcWp2HFRb5Zt5rOiB1Zi6pSspxLf/A13ZWQ3kP4iR/wAB/VVi1nn8b/4zVs5WoUl71CaUotqhccepU1QGhm0gkSFgI2A638tj6wqxhIZDOfn308tsXFL82eZc0loOT6J4yF9G+ewYJjonRQ2mZvu9TXsKf0+9OOstYuNiHYV5Bs+KIWoaWti5q4NJM5+vTuikEPyiXvHpqdfwLRYzsZpeIpnTglSJPI6ndL69kE1LjmB7/SP8vOJnbD5skWpSuJ2d/FX/n+BQBjLLojvwKlvW1qFNvYapHgEUcc9VJrq+QrlmUbGiY6ue7Naq0zlCl+dunlnfyPHQMp3GFHLgPQS0FNo7DPoO/CWtB16gxDFAyYZzuIq7cbX8I4cH5phIpa7RkEHBSqSERHoPf1NZgHRp6Cge4TFu5RXWLc/z8f55LnjcFMwnuFSm+E36N5jStAu/oge4riO113DyPGV1Z3AttdjUEcA3dSveyVvI1cLMakFKTTeuAouroSDFkQB7LhxlxlPI2ql5Cmb6KfbdwGzWOFbOEHG3j+L5OQrnlqGnFzGfRc3MaSyXgRBDZGfsbWw9KowXjhD0xOgq6eLY5QApU0JykQdOLDLrLaRmTtFdeoy0s4lEcRe5k200BY4Qdwi2j6wQ4QhPHz9B8yf+AadQmNLCoUz+auE5Ti2/nwJdsiThlvo1iIuDaGjk5s/h9czTdCyLL/IFesVaNp4d5N7PfxpXjZ2uMDExQeTSq6zXTTvNMScHEV9mqqSK3pbb0B2VpOZiqOVcPsa3uM1rIt0al1buIBotYPTCES7mbqHdiHKLVcrwYA0OZxIpOjlYl0CrtZgpLqE6Ostd0zegKfBMbyV34XFY3/oH9ej/yau03kP97jz6XnazSjQQEM6epc/fiKmB0gRKSqKaC4RtQ7Ewcoiq7bvR9x/CMk10IamyrtgmpuvfCdJ+AboKElR/9C5iyUbO1XWi9GteShrLW/NoOtbLCXUzSio0y8Jx+BUuzE0ABrGdXTzWfgdpjIygzuYelIcDhAuvEigLUxiqRotrVIQWOScVUigcQPWy4PW4hV8TBBXcvLkU99IwXz72XULZ5XS3P4Se/ySNd4wgdEWRPMS07wnksu21ZQmFeetNVEdmyd00ydxAiM6T4+S43kZsKY51YYXQ7HG8HaOIDbaTvkBQUlPEqeUa0lIhMweZQ8sjJ7KXtlgtZdYnqPQ5afOmOdnYl7Eq0TA12L/udvZMXuA3NbYfl4FFfWoYKbXVLpTPd4543jGWvvGPrBQ1IEvbWDcT5BklSQsdoV1zpddJAwdn9tAwkM2hsyfQTTOjaJUUnj+Ds0YnL+5n5/ROYsQYwz7E57vszk7j6FWqey7jWvhrJu4uYjTuYnzMYtiVQjKMhsbu1HpKpQ+Pe5GihhFuJAsU3KSOskU+QI7ZiNQhoptIp0aRlouVilHinmNN9iJukcZVkiZolHP64h24vbOkU1k0NJ5GE6ApnZxAE6WWG01XSN0GbqXRIK48F+Oee7lxw92s67yR4CcVfV/7CidrS5Cm4MJYCXv8Q7hdO/De8QAP7cjmtXMj7FWKtFRoSHaqwzSLfmSRTs/FO2mNN5HwPs01ZClntrMjz2BR8zPFGErBQGk1UtPQpSR7fJrWWDlrQyaX1JfI0t7CXNFa0HTIFDttso+yqvcjtB9RNT2CnjGQ1aVF/fggQ8U+6orbQejXxy1akLllN8l0PnL/Z7lcOUXMcTsXmsqpC2RRuZDEvayoHzhEdiRhC3cRKGmQd1mnzBjjdzfczMm1tlL5B+X38Wfyx3zrbXeSNgz0jvfxJ1f+hcLBObLcWzhXqzPtGEYhMWWaL158gc/c+BdsqvcAHnZ0vYkrly4yHxvH7TMJrKvA0jT0jMmGUuAQijcPHubmnhrOenU2LaaomZrg4HaTTS6TkeV8SkQbG5o+ZBcB8+dX30O5gVEMZUc2gYWVHkfP6SLgc1KwFOfk1CXuq1kHo8uAncsbyBmjrvI26tI602KJvlQv8dwcwOaimhnuZ1pKzvkdCMRqlqOpYLKynor5CYQQpJ05mK489OUIZaHrlAhDKd66UECZciGVoj1RR7DvlwwtvcRTazeRzK7LWA1JLlZGuLd8P5cu3kE0UoRAUKTcTFgj3Du4lhZvF8Ubt/Ct7lcZL7PoLTdAKd4+W4WBjoeRSx8AACAASURBVCZsO6Eskc2kO8TWyD4moyB5P3F/P0KTGSKohdAMBlQzfaKTtzi2Ugt0eXLp8uQyOvosV2Uaodl7mV1ylaC3iZrOWlz3N0DtjTRVbSF7YoInnngC0zTxuBepd69QGtjIyz4vEtsj01KKH/EBKuQkWUO70ZecbJpKgoCi6nv5mfzX/0cqzrW10H+EnILPEixME6p3EDnzP9gUabGtZpD4l5PkWRrxyZe52lpNw5Yuui+NURYJUrESoXhqnltK32EX5/4gv6s7hxSgyzYK5l9C+5eXEblVOKpvw1mzHYRObf5tDK/8goXENJqAdaqR96T9rE+m6HU5KWCZTTlX0EyFP6Ax4htHz2ogUvIuFAbzJRY3v3CZ4sUglr8YLRZFJOP4hy7zq4Iwx0bOUzZjEJzeTcSCpbQ98p4aCFLdGuemxDnShT0IAelK6PxXnc0jw1gCrh58jo5MJNbo6ChKWtconMg8D1NuP7/Y8/7VrG69zsn2qTgvantoFz00iEE83lmi0UJylsco9vv4443fx9BMpNT53dV38YvGN2HVZIRCKJykKZSfp0ldJX4qgXVoFse6Z3A98gfQ9n/0KtZLGU7HyI6VknDNADDr9hJzLmFYbiylYaBoyzj4C2XgWmqlvCDKQ9U9DM/l4V+O4V2JgUsCCnSnHZWhO3Hd9iCuqi08GF7hyXNXVgFJm+ghPyvIn53Zz1kcVE0PUzFniwdcJRFGW8OrLvAoi4rkLJv7hmiWfdRtP0pAVyA11o3WsTF4E9vPBLjkd6LNLyDnHCxZbvTOAhYLdKZ0iXHqNKTTzFZUkU6dxlMWRazyTExa5Ckc2s0gFYYmMJ9/hqPTw4yXVLBQ10xB506KNTu8XANKs6tgKQuhxmwZv9JxLRThWxlGs9JgGBgosuO91DpM7s5TJD2juMJr0DQntzkKeU7Zo0YQHK/t4P6pST5pfYFerZVW1YsIeJlLNVBWNpiZxqW5Ov8tnDs6KPZ+EBAUK4vPTQ/xanMurZ5KvjMtMZXdyfLNxvj2leNMpfN5k1PaxTmSsGuBzxQXMhVbz+y0/vs3hBDMtZaxq+4kroI0E2Y5T7z4OpayQX2GboZUklktyHqrEndhCZ/X37uqcrpJO0TcfwVXpAmhFM7sCJfWFwNFaEhu034NykVfWQW1+jy1rZs4eDVJJBMiGYt58XjmKDZ2UVDTgXdxgHeuvZkXkxYXIjE8Z4+Q19tPpdD4zpQdvn5bKEzAlbWaYuDNqiIi7yc1lkfqC4/T+JlH2bVlBx98eR+nnCk25x+iuaB/1S6gOT9O9dW3ESaXaPFpktMbyZ28GS2bVTD1T27rDb5z8Fw8m4ohB1+KfIRv5/xPNp/6FX/7Fy2kdFv08aFLP+AtO99DSccD3P5HObzyg+/wthceZ7KslhvPdxM24gRLfSw5g+wSoFCUKi9FpoeXHWnqSg4Qv3+YAaOZ72jvJq0MjkrB+w6kKR6ZQApBbN6VMSkuIrF0KyF/gn99cAdpXVt1zE/pBr+4417Shh0TJYXGQlsF29ac5pljG3l1qprsat3u3iiD1Eodn3muhzWl+ThmY1S9tkxU15gzJDMZcQ5CQ6G4Rb1KkVjiLYOnSIe2c85XT9eSpCMKk4/czn2138QQAFGUPMvhpwY4V6Pxw9S/MJU7hFN38vn8T2LLD2wukq5XoimNtYtvpfPiFLlH9/GjXR18zN3InAzxkrMbC8kFAjRb5TRaxfhUNQeYQymN8tAiurKQ0gbXGwIphBA4lJOUlBgCHrn7bkpL6olFFK/MX7Cj0JSifDnMfRePM+Mr4tHWdWwI24BNAoHYInOhEV7M28grzhr7WVAKLfM+E0Li8cwSjRTTntvCT7Sfs/WSn9tK3om2qJPeJ9GzaqHOoCRaQXmkkYns/4u9945uK7vvfT/7HBQSLCDABoC9U6RIqlC9jKY3aapnPK7jFqcXxy/2xEnscRK3OC/OimM7tm88Gc9kHDvTq0ZT1ahKiZTEIjaxd5AAAYIEcM7e948DUTOJ71v33fcSZ61791oSJfIQPDw4Z+/v/v2+JYqBiVCWOjbD7qa4ei/cuJvsNwdYuqyRsbiOhZSxsKbbiZd8g2+Ml5BUGi8MaDydadmXAMzEG5DYENJASZ3VmSo80YO4P/JVyEta8UVASclWHn74YYYu/jOG4w3AZLn8BI09X0ZTdVYGp7DSC86N/AYPLmcxp0su5dgY9dm5vqUZR78DTzhA8VIttQ3vz3wNThy3vDu1VKC5dwARrk/NHwK7q8CaH+sfIF6+yLr7b+YTW+s5cekEc+lzbGorRQtbYHZGD1uK+5TyfrTsTiq6zuHa8TnQbNaEhACh2JuTzum5JDOuD0G0mJ5TBrVDn8ex+XP4tCU0VAosSSqXS1jMqQZh5cCZKMZKa3EvBVOVckXW5BAljU0E0iM4X3mbI+HPXJ0oU38LtPTLXJz8A1RBwppjBSgdErUK+xW4UFXDG6VNbPuXI1THhsmtq0DXdSsuUde5/UMf5bHp6DU1K1bhoK34epQQvIDBI3wVkXAilOLCci4dXa+zv+Ka2f1sflaK76uvKbsNpdOjNVAt++jfFIcLueTNOnH9v8QI/5Hj/4C2/4VRVOvBZtOwm5msAtPZHovTIaw8uD3njtMwPcu+vLtY9daTHq4n96GdMPxjcqJR8k7ZUKbOqJ5L6U1RXC0fhpYPW5NDKk4KrJ3gT2sFz/X9K+tkJ1Wyj4GpcubEBPgr3ndO8zWFBEWuxYFRVnbftMNHwHOCxsWONbDVJ6rpqWqkwWyj4pydSMTFhN9LKH2a+uES3uo1OJSexHFhlJ/trCeWncFI1gTKgOiUC2WmLBZMQelMnB9U2Hh7bJKK4BSrU8OMF5Tw7P5PYWo2jq+H75+J0RQyLMCyOoqYgB1nPk/c249zoYaTE6ep8QzyJR6lVzbSQDedtgHu8hrYRA9jvgHi5z6GL7qB/dffwavj7/JKvBiEhlQarwTSyKOBBi5Z5NEajeD4jSg1BJgMiFqOpF2HeEDj/u4Ztk4GANAudnFBvoB7pIE7M7YzmZOHPzxPYSTEOaOQWZXJ5LJGRWyMTNcU5bsWEfoCNe5RVnJuJhzKfd/1L82coj1zA+ms0EMtprQABSnLAGuh0qhYfZdQTh9HtY/+G2XbevYt1KwtdpP6Qsrew1Lidtb9IQPT58nKmqI9Usd1cReu0cuseP2YGdlEIgVElgpoT++l9FO72FDwMUbDy3znXB9xp0S/+YM8+PJj+GdG8RudfKPjJPU1XyQvbjKgFB5ngHWBOxjXl/BJN4WZH2DgmYscm+/BsfoS161301T6DnBNxdYfScepTxCfLsM3uYEi6abNO0NHYoWA9JAn3XgWx1IKa6sScd7r5Le3wPfOSPaNtrCycphH/+GvGCytoaWvC1mwwJE7buABoPmm28krLefZtx9jYfQXOFedJJweEIL5xCSjg89RWnkvStNICnjBlmSLa5zdNujRUjFWmo6BZDyrn/3BScZzAhZwm8liOP0DjPkKCVfoJHUdtWZzIVGaxkR+AVdzWNcMqzXFzvQ2Lix6WAhtAgHJ8CbkShkKxcmhIDVDUWqBIunl9ewwEWc6WqoibxcaB7KyCQxOEI1m8dub7iIh7NgV/ODsMpXlcyxraxof0AxmKts5GCqmMfhbJHx/y3z2GKOLEkfWB5DJcTQ9gGYPWM+E0Fly15AdHiZt4gJHb9iKu/cs5qpMbRwUvfoE/foUt7OBOtNGrz6FL7LIgc7jkF3LHXMZ2EbeAOXg08EkXYVuPnHbbdyQXcJ8f4jzagj0lPeMENTV1XJDURHl5eWUlJQwpSa59Is+5hImwdV+IsUtvLXnbuv6pswY98q3qRZ9KGlHRAPU5M+z6QY/tnM7cfRHiOdcYTW3D2ewlpalUhYGfocDC0VoSkNqJt+p/Dm/ab+N7Ok8qrJakK+FOep3kVu5DffQNOlL1RSd+yPi20cp23A3j4eKMFRK4CQVbaEore4M2kcWefjJGMUZv802zyA7tUY2lc/guquFRdtBZt/8Pp7FVdyHvw23fZOS6Q7M2acZLHNYgEgaEP8nbjy2k7d2H7DU7Kbg7jkv9Wkm8Rw7/7w1A0OD46uCr7v+nrqOFSbjiu7HokzHhmmPr3JDsYdNRbuYHH08pTC3kb5Qtza/aFiA/2p1MRwO0jHbAU74dvDbJMwE2mQFd6b/Lkro+FU2us1K8NB1G1Xbd6C1r4KmW1wzpRAqdU/MFFAQz2UuqxjQydIFi/H72b48zk80q6MklUJPeZq9V2ymS0nhauwabxVB6Z795Cyv0vncCQ6F78Wq5V4TI416ddonp2gtrKCGy9f0WwocfYJTTXv5s1//LKamccg0+WDbSUrffp47f/NzRCVkajDffYHypELPzscUeuoaWd0alZpTe0UD+6tfZDnmoS2+k+GlBLeXp8C50sibW0JzW2Isq7hiYsNkneoCBIthH6OlHjanVLT/Vcb/AW3/C8NX6WbbRws53tZHJMz7OB2mEOS7s9kyFKFn6AppYx48B3wcXfoFrR4/jlkvl3x5CKAoFCGv6EFcV/vl/6Zv3jHbwfkrj7FfHUzZzQrGvKX8fOfDmLoNXV7Ph147iGmM8/P6T6Vu3tSKKiwK81xpHK1oHiGhj1q+oVmkfZvNYH/Vu7zo2bFGIE6PDeEPZvJh5eBC0qQtLUDVfQ+hzr0DKGIzVoUi0x8jOpXJ+h3V9P3Vn+E3DBKahqbpjAUqMTRrATSkot2rUTA1TFeojWWbSXJ5lpO9ZylIKyNoRlhITpNXahDQLlMnLiOlID3Dhs1SgyNFkmDRUdqHJPlaMx8rL+aNviSG0tGQHBHXI9GxpXyYqukjasyRnK4k6hd8ja9iCDsIONIo+YflVZpCJsbMFHflFVIWSBAOX8Y3tohCIQJphEayAIUzuohjcZr8dTNoVz3YMLjh+iLGxtYzNzdHeCWMkb7IiZGNFlfp6g4WQEp0Kakdm2OpqIxqZzrVWf08RpDyzgl0vwLNRFcmWUfnCaf5OJTTxmzSoDe7l/VL1VbKhRBMzFygodFKpVCqk+ERAxGLEswVDJXUEAgH8S0tkL+aw/Hu42wo2EBbKEpCkQIu0Lb5ena2v03cEUQpgzP5S3z4B/+A+43XmU0W8nrigqUeRuP2xEbSTA+J5RPoiQj5TKClDEivgjaJos3eB1iAdHuyln76MG2SDjR8S40MmBdxzz5D0nUfscwGK9xcKNo9OmXdM1xoaGQ8UMFtp09TNzLAo7t1+k/+OQAP1D1AoHYdu3M+zOOH3kERZ0O/WrPtEEOHiU0NMrv9A3zT7sNcGKRgNopq0KinG00zkcpaTN7ZsonGoV3M5Hrxp6+QbY/wnW3lmEKz8nsVmNJayAoW5pnJy7datlKRG5vgt9J/YKkCTcHyZBrl2QeJeMKgbOTN7aR41cakXbK9Mhe7Kx2jf4nJbA8vtQRIapZz/IcCuVwnkpz/xTx9pofuqnUkNB0prJbkW/GzJJ5rJ/2eNZs1+qnle2WfIFlqQ5eCzT07CWvP0tBQRk/7MobNjzANUJbwQVMm2aEBTN1Gj6+GBzb5WRhUsJoK7gSm3R4m3XkkFoLsXXSj69NIBYGlMHfMm+RLRTxQQEZpF15Ry2d23k6gdh1L74yhDIkfD9meebLcU4TCPvr6BLsyRynBCZTg3xFAFGYw/G4Xpc+P89bOj1/L/EypIstOSWaz7sJczaJ04y8QusHI7Nusb/kLzl58moktT6KEgai0MX329yieqUJTloGOJgW35d2Jz+5jZSpuXShTUTa+jDEeRVX2k13QQP7GB7gaVL6TZezC2kTZBWvxVSeHLN7WQKiCK+EKKm82GRcv0bVaS8PKWWpKHWjFDjZdWML96udBmniydLQSB1IolBTMjBlsmDlL/uIMIy07EKKcQX2WgJbGeW8+hmANLA7MwR5do8AFg2nwufgipgZPjq/wlbRizrb/Lq2eQUJztVRGqlOzPkhh8aelskRaz2iHOH/ox9ydvo/ay06mciWDBYpkz0mEUmRPt/PQn/0O0w7HGpi+2DdJz9gwPumhEI9lHaR07GV7qJQmyyuSLLugzOFAFxuY7Ymyw3Heei6EoMLXwMhsL76lEAc6TxBMqyV35TL5ybg15ykAjcxYNqOf/BS2eIL1/t0M1jyIEgqvrrGYb+PJXZkYWguHWMeXeJQa+gBwvaWxGqzimXs/nqqACUxdp6u2haKjYxw5eYmmLZs5/P2vYxqWwuWDvV101W4ABdXpfbxU+eB7OlNdDIhqThW30JxZypE2yXPnHmJL7kWWwj5yIoLfzB3g0vAUeflz6CWWpVSV6mN6qoZIuACPPZvZngHKU23a/wrjVwLahBBe4OdAOTAMPKiUWvwlx/0VcCcWM+EN4PfVWq7Ir26MjY3x8hvPYKRunKJw0OKH6QqUyU2LFTTmlGNi8td5P+JU8BmMOQN/OINbtGpUrjV5jnuz8TW0Yg+fY3HxFB7PtjWrg47ZDj79+qfZm7HMendKJagppirLrrm6C0Xs5h0MXhm0Uhnes6KKNV+zS1a5XUFPKkTbIu3D25nb1srLUkA8P5+PL1tGsiYwPBhjJaMBOIKrMEKmf4WVhd0s9HoxM3LpGhoibnOiJxJIoOmGW3G6CjmlFGbKLHRjMElXuI1gfAZdrUMxSzA+QTA+QYpwQkJlWfl+KJQS+J1JUp0XhACfb5DZmUounD1Nc+tWHll8gmNunREqGBJVazurbtVIlRqwTH/DMOxzYQrbWvncQKPdo5EYOMSqe5A9G8cZ1KpoV+UEF4ppXOjnQPU85e6LdIxEWSgtYXE2THNdL1w9HyBPU7Ts38+Z4Z9z6OJfkbWaDVmbiEberzTKjEYpHh+nr64OqSWYlgbZxhepjJ7jNm0PTd0DnPGtkH35IjeX76CzVeMfz30XiUQXOnsDjcSOXEGLhklbP/W+6KiswreYq9/N0zsfwtQtR/8DF47jCwXJOtkHVaepWcrApiRJCUrTGC6uZtxfTkvnd3HovVSqStqjUco/9BFmOi4jz46s+WhNa4t4swJ4Z3PIS99OaOoiqmXCqhymziEnZfZ8tfU7pM/gypzBnTNNKOTjqMxiVpaTYbyJv/91OpprMbGhSQV9r3LBY1vjpLS13sCHXv5L+ouHAHhz9E0eqHuA9pFFTg5l8kDxX3LGdoYzCwtsnJqgdWKArFiCZHKMMyVZqMHjfOvYM9ilYtjIx7knjZbcLtpzWqy2h67xdx/6FFIIHEJQPTm0xo+USNZFr9CbWYEUgpm8Aq6+4QLJb6R/n1rRh5Iw1lZIZC6N6YowQigKIsUcWChGVxokbBSZGr5tRVwADo3PYehXWWeWMjASHcc0TTIz59hbeIYTbLQWGWmymi7pyN1KZmc5vvqj+NJX155ZK1VCklVdw49bLeXy8NRlXnt7GLE8Qe3SBJt37KGpNodw9S1cyKviyzftYt3CMK/pGfTmradgaZpE2iIvpQyn28skC50nuG7SgyvNg196KZDZgKQg+C8ku0Zo8itcN+4mPrKEEbJC27Mzp2lqPgSaFWt2ofNmjrc58PR8l8u3/D55bhux5bO07m+lxPlJwqNJHAoSUlkZokLw5Pbb+PA7YTbkv4LQDIRQSJnEljVDwx01zBmnQSiUMvmA60WSsojhlQqkvQSHvYD1jgTBH32T9C2/k2rVCTQh0JGMTJ9j1+yfwuYXAWsjHI1eZpd6C5RkD8ep4VFgEzdmDhO3v0ibUc8lvR6RPcXXlr5kbWyFtRGsEf0MlOVRPTqPe8lgJVjFytly+jyjZE/pZPktm478ci/PlNaT0GycKHHR33mCbYt2dLMAYRPYJWxeMNbUrZ3lTkwdC5wIxUtjkzScHuDZvCqaMyoZxUQgCBsmBRmXmHVcIhwv5nDeRU4UXqYwmE7a6ctsMNzckLaO6/0PYS+zI4Qi99O34b6xlZr3rFkvzAxi2BQ6w9ye3IRPeSBlco5QNLssTqM1W+pMsriWCqGkYqYvSo5swr/JRk57nIQ+SSxzIbXugC2eRtZqPRXueVQigaYkxZNH6fcV482vZ1d6IY/77Zgp3reBnW7VmAJtArGqsZBTm4Kp7x8Swb+MO2gbOsRW45qxfNHMmEURUgqXb4XG0h56davzAoJval8hmW/nhBlnf6OPcxfXURCz+hearvOJ7XvQW6KMnztIRP4QKSz7mdmZSpwzIyzb9nHwiJt7tof/h7mx/9njV1VpewR4Syn1TSHEI6n/f/G9BwghdgK7gObUp44B1wHv/iee5y8dw8PDmOa1G2dnvoc9rjReHpll3dg8G0MF6FgeRS1GM8dkDwpF3ryOkmurHlLA8KUXGHGdQGKgaQ42bXwC95LB2ZNfJyETzM87UZkGSlMoCVtygrylKRLKRCmDo5Ef0rz+dyAlrb8K3DzLEe5Oe8pqQaR+ZIPowoZBUikUOiGndRMKZfmY7V90YLvqj6MU5qUFxhIO3BXbKLvhMYRmotRzTF64jytLCZaSEkpqcI314zTipLubSBxb4P78QYKeXPb39uDveYflhkYc9j0AmIkerCXMsgxxFcYobRnDCooXLCwEyMsbf19kllIW7yU2P8fjjz/OuCuLIy27MIXVOkRa5yzDLi5cucUCEsDSmAdRKtcmAZuEjQtJgkaQrMAKg6Kar4lHrUpcHnTlVVMjH0V4e3g+78skhR1b3R6K1Ay1og+Uop8aXpwJclvoL7Aln2CbywTXPMrzJhc6byGypoSDaGYml+vqUJq2BmwmWaTUqCdRMIxn3be5WSRhh42XtVuYiHnIz6yiSXQznNQoTbjoiy5huLKITketQol2dY5UXNrow9B1KxRawlR2LkULc2zsOcrk91+mb6yJB3KLOL55H8NFVaBpGNhY9G7n4+M+jl85jpSS2ZxcMlp3sOz2kh9eQEMQWdZZCunszdtm2SmonZw5GSVney9CEyB1Sue3MsmqZZSJRiQjSnPzG1aFS+r4FjbzB9vvRU/fzsn2Q9S9+jijvjJKJq+QOT1K25671jYbhi44tG0PJCyH+ZuyqmhPWQ7s6z/OrsmL5AaaOFR+Iyc90J57nobIAHv330rRxgI2dT+PTSpCLieXV3JIHrOxdfcxLuY0YCg9Va0QqBTvRirLRV1qYBdJfJn99Iry9/BbLMVl/eop6tP60ASYGswWRznkWWUuJwEKAuEadCUsw1Bp8rODp9l7ZyvPTC6wYtewCYWhFNKUtJ2dYHQ5xC12DXfONOVa75oZ6zq6iGnlRLRCItFCuLyX/OY3WCe6sGkGSQk2JfmD/u+xoelbtI8s8ucnBslTUxRpk7zuD5DfXMyB66vh9i20ALHz53nt0a/xh7/1RyR1GzbloXW6O6U8t5SeYzlemA3RYpRbYAKFmTxHV1uUoKuE3KEVanOfY3XlNot2IUyC/tdgbQMhqaxqp51f45+aNyGDoM3Gaeh+hR/m/pCf+r5Hy0XF98/E+FGVg9N5tpRqWzJWoNM6X4Om7KmWoEZ4IIuM8+mIDXar0mYqMt6d4KxNR2oziNVTFFQIXjuXS07WKjVnv4unoBW9fBcgMITJ3+aPMRmz8cDwUSjZygsnu/ntmMTgRmwY7FHv0tf3l9S678N//AvcW6b4WPgFzjf8iHaa/p0hb43oI+RJcC47i7Lzbt6Y/irGgo308EmKb3gcTVMUSsFfhnaQ0PT3Xdt1PdN89N10VrZ62Z2xQnPYXKtUT9nfD068I5f4WPdBPppbQ8bu9dhShi8TiTgbxFM0aUPc6v8ik+XrcMQVgYV5hGkJuvxpZdixp9qQAmF7/wZyeHjYMvbQBKZUDIhJCs1sq1UqLRsfNA2LfWyNgPDSoY9gmIb1mtKOtprJ4lQCMjWCcgGnsHw9URJWRmG9TmnrTYz+1IFKJrHpGp/I/QER18OY8nZaF8yUWTo4hKDB7Fvjfb+a9WFkjmL9cILOinRMzTJ1vnMiSabThyceZMzpZ6umgTRTy50FgBGC5WkXGS/H+HTDv5LhjPN3pR9NcbytiCqRaWfJls0byXrqRJQbcysYPLpMThUsxWsInX+IsPciobCPaCQft3MJuTqJtBcx0bf4vz1ouxvYl/r341hA7Iv/5hgFpGE5Bwqs2IH/Ek535eXl7yNFBuJ59P50ml1Ajp4LmQIlFBqCm8M7OOw5R3f6IPN5JmJAR6UAnyYVevAkhpkAHaRMsjj8NO4Xf0yrDXRfAeZYNu9MbmK2rpjNee3UZbzKI2qIn0SbiS73oiWvUB6fRROZSO1aEXLBlc0T8tO4eiIE5sco3jVDtejjj3mUZ/ggl0QzV+M7mpdNfr87QXM4tatK/ZlPKqSEDF8QoZkpgY2kqOVZgp23shTJQ+g6+c3bybfX0X5sgZ6yMSZzvAQWu0kEgySXx3HkrMcMd6M7GrC5rkMmBhB6Pma8g8zAyprSUylIJtNTKRDvzzr1JSXLtnQMw2DSbVkTqBTfyIJ/ghcz9vOI9zJ12V4Ox0K8E6hBKYGmJM0hSdWyIpE5QemmGCqxnhfwYHKtEmcqGz1aA0oJ4sKOEpYytpv11Ko++qnl6+KrGMLG80mDP6aNGtGXuuKSHM8M/aKWqZx8/KE5fEuLKClTuYDWwl5oZpPjcBPyvrZGOr4sK/lvKhdzWcfh+SL3y0e5TfWRlCvESmtBCOaUn7RTK5RtH7PauJqduHHZcvySYDNNdrefZseldqpaRrkY9WMaBoHpEXaefZsxfzlmqkU1UrqVvitT5OqG5bHVuB0ZF+hNO7j38AuUjA8xb6ukLkNY7SghWHH3k52ewfgxHwFPEeWxW8lYqsUrwkxpC6yuZJOdfxxdWDwZXSjq3AOcX3qG1vRWfuP2L/BU798QOPn22j1qNwzeO/z2BJviK+ywJdkbn+PJoSDX9x/ndzueYT43F1e8G9s0nPNU0LrajtAMCu7tDgAAIABJREFUOg7+DO9qHT1lsJBTwXBBHlIE0VdjFFyY55Gyr9KrN5AhIzzBpzE1HQ3FHt5l44CXubxsdnreQAg4xvVrGxoNhUODB9JeWav6asCQJ868A5A6RriVcXuSzZoJEkzN5PngWb73oySGqZBuB6rYRW1+Jlc6gmwLh6jXlnFlFhIO+VBKUE0fNaKPy6KWzvJqXCM2fJFFIpEChs4eYNGTQbPzCkYin/TVk9hi3fDuN3gr5zO4/YLt/ecpWhzBDOms05vedz1jbzzLz/bdQtxu8a+SUhISmehKYkord7gktEClVgaSFPg2iY2/yamKIqQQaEqRfcHEXZkSICmNpHj/+5aVNc9SSz+m2Jxqg9ooDu9kyb3Ik9EwaRXZbF4w+Oxggg6vDUNI7CrJw6vfpzS+Hf3sH7HivYxzoYZ+c4UNy/WUnP0CMW8P9q5VuqMDSK8g1xkgPauEHmcSnIKZjcWMD19md99LtG2ZISacXHD10Zt+hTeFiwfK9zB4ppcfjHZg5K2zNgfKzlGuoybyY9ojl2B9muUlpmCy/4fUJP4au2uFpCaxK8HG0ArkWAdIIRjNrMFQNtLyhvGuP75GmxDApmQvV0wTQ7PmnEBoASNeQnHUoHAuxLcin+ODzk3cOXs9hwr8XCy0knRQCptpcuDIK+go7LlV2IVY44HFMiI8pbXwRvpn6WvaiNAFq/Ie8sJnMefOYFucZT4+jlImCB3NpuN8L8AYO015+ARaCrAhoM82jc+RT7FdIE4dI6pW8NR/AHQbQtfJaC2kcVMLcq6QV195Fakk0exBhJGGGsrBhoMSNrCY+wpEVjFz8jBy8glNLhPMy6P0sZ8QO30Gl3MA18h/Yzhi4tZhfcjke2diHK2ws3VyksbVe4jnrsO5UIc0SniqKkGpXOXAyCRziRU+EaqhRTYhfQ0w/XOOG0Gyb/ggyxPDDFZUMFRcQX7bGzRdOo0UgmW3h2xbnCWXjSwiCFSKqya5pybAZ1qKOXl6Eu+RWXKjgsHBXsYuX4Cr4HO52eIOouE3vczaA+h23bL6+i8yflWgrVApNQWglJoSQhT82wOUUieEEO8AU1jPxN8rpXp+2YsJIT4LfBagtLT0P+6sU6OkpISHH36Y4eFhnFMrnH2TNVKuQLDiHiCe24trYR1p4SoeTLuLCzUj3FV1FwW3Oek6/Dar3d3kHj1BRtRk/kZAE2i6HU8oCWaSDabi/xpJ8Lyzip9u+y1MXed1DvAw/0hEZbGebjqSI9g1O9vDAcyOCJ1lDqY9OpNem7WjEjZ6bTdwakFnpX2Zm3ynidpysUvQi0AKy/H8c4kZmpY9lhpME2i1HtrOzbEoLRAYm6tDqRRAutoa884SieajaTrR0XJiKw6Gi5Z4qSXFkSuTeJPnmacQs68dBYzkhBkPVFAyqSia6cDm2seKnMRQL6BLq9UyO1PF7EwVpWWdeDxTV6MlSa/poq+zCMgnEJ5HVzIVQa8sDzFh+XiNOgd4ab6AS+71JG1WoDamyUWPjU4vvFBSxZ/KILXqCpsWb+XZXANDWZOnQJIhIxSrcez6NRsR52o3l5TOYPr69+3Cj6h9dGNVSarVALp3I6+W78EQAs2sY/+FY1blq3eMZEEl0Rwbseg4IsODa3GdJZdSBr0p371r6qVGhAlnlm3Y3bn4Ipbh7sxkJYPHKolv3caBls387qtP8NrwcSZy8ilZnGUrE2zcOIwrV1KyGkMs2FCGSdHMGOsvn6OzYYtFVtc0pnLyyF0KWgA41SI3dJjKycO+tMBEqZNIWKM2AaHAO8w1PImOSbEUzB0qpk6rtPI1VTZ5MpvjcZPwTB25dfY1IvVTs+fpGDnBm/E3ubXpo3x/uYiSjfsomxyiZH6CspkjtMstKM2GLg0+OHKSshaF0mycM1+ktWg/npkzzOfmcvj6fZiaRr5SbF/oI5GTiy0WgVgUz8/auK64jI4Nv4NKzkL0WVAGsZl0XC+vsMV/jOiUiwd5jMmmWvaUv0mdvxcpdQYHWqlyDyKEyR+LR+kRjWSpCA7vHdTFR8iL9KbU0hZwy9QEOwLbuaHwo1yaDPPSzJ/xrn2Wkmg5YxmjjEd345URMr0mvZvqUULQLxQbtThNjh4kkpWwQOg+Bga2UV19ij5q+ab2FQyvDS1Hsb/zOL6lMAOrN/LzqiJMDXQJZSPjnJUOjLkZvufPJ9Fg4+m6j/Pgy49RNDuOefkMp4LDa8q9F2wTHGu5b+3kBVA7O0bt7BjTjnSaF+PcFSvDpzwooYilR8naaDA5LpFJ657wOAMktTxLBa0Us1qYs/MlNAa6EUJaqkIBDeoSDkySUkNTkkO79mEIjX9EQ2SDQzr4wZkY3z8dpcPVw63yn2hd7SGeMcl05M9xhCsxhMn5rOdpUjWkh6tJD1ejnEmcOQfJdYbY53uIi/ZxYChFG9VIZmYTv+NmSg+08OcpLiQIbtrwGSjZypVj38WbvwKsW5u/1dpHuTZvKxRFNZexTX6Dby6up0c1sm0qh2q1mYnWN1HCABPsh4O4Kvspvu7vENq1HE+lNPYej7Lryl/QtmEL3pU4GeZG7ElLELBQdoX4ZJzHK9tocxzH4fhtpLY9JcxQ3Hj2LI1X+q3XS1qpDilRJZ1aNmfi95KRr6eqoQITwYAtk+yCYsr9xQQvnOHtyacoTCul/vpNa1w+xk7D43dRYibYyI2cpXGN73xmaYne1VKqooNcyk3imf4XfBkVNH10P57dVmN1+uI0MiVYUEpiOpYgmZM6P4U9UYaSXWsbQhAMdx5lJnuZtu2b2Jm+kdbxn1LgPMLh8I14bE6ikyb3vfJt3NIgY9fnSA9XW4kgxCiv9uDyZ1BemMW6gy/TslSdEl9AZWYji8FDLLx1mZ9u+wTBkjLrZ+7eT3r+Opjp4b6dP2VIc9GvanlCfMrKZEVxW/AwzrSHqA5MkHS+TI6/GFe4mlXbEmOpnBIpFPVGEZnKSaGZzerIaxTW+ym/MeO/TJUN/gNBmxDiTcD3S770J/+T31+N9aQVpz71hhBir1LqyL89Vin1I+BHAK2trf8pnLeSkhJKSko48tV/RYmctbZkXuURJlqeAiER0k7g7Of5WexlhgYnuKvqLgK168hZXiU8Pkc4YaJG7eT9wIHri/dQ0Hgv7iUDjvwTkxEnc6PVRHbvutZCUnYe47MgwJYp+Xj6KNvDAYrigtKZGMWzcSZyNZ64yY2JFd2yp/oZLi0186K8iV5tA6Y/AyEkujS5YaSLj88f5NZAnPhnHic+FMZZ6cZZls11e8Kceuogw30DRJYTjB8rpHj3lPXwSp2muoeoqc5nddpJ/9tRFNAT8K0BAFPAfImb3A6TRE4+4yW1vLDtZsurytzLgy//ExXROLXX/R7faitjd+YJ0mJZRJbyEAjE3C0I75OAmeK4KkIFOh05NQTC8/z+5Pc5H6jlsLgRrqozNZPywlNcnz/Eo71/whXVhFAWifaqm7mh7BzV9lIj+6k3JvhT+VVeEgc4L7ag0HhSfIbPLvyYP861FvB1qouatD6SCmLRceyZSZKAkIoj2k3WdVYmDwy8SiRhx2i0QKTQdVybt+M/+zTrqz6OEDqGknT7Z1jRB4j4T+BYKSCRMUmWiFjKp5R6KcuM8HX9UZI5drQWy2HeFw4ym5HN0zsfQuo2nu7XuHs0g0ItRGEkDFJibrkeW9MfsXRpiKi/kOfeHKUy1MO66GUa+zrpqt1opUCYJqWjvbgiIXKz8qECrqbRr6Rn8ov9n8TUbRyXoJ8/w+Z1T1j3cwqwy/wx3u36GeWZ65lzBognvIRMhZirhKOfp7x+hFUzn8XFk+wKVaIpjZPnBxnfvocxUctJeT0fCy/xa3s95J57nqXxKPaLEey+WaQQ1jqGiTTe4uyGKZzD1RYxWdOsVnmuk4QoIqEkGcOXyV2awDbbylCGjjN/grQ6CM9mszq6xPK0i+hMJhqKIsbYUNrFspbBi+Je6kU3DkecixduptjXQY2vjxrVhxBQn7+PkfY4y2m8V1fCitL5SM4S6fHvoLx+unrqWb9UiwC8S7VsTWSx6rjM+dwqqzQnrMU3rTqbs4tV+MPz+MOLrC+sIRHYxg/bN7BY4SGZZ7cycoXJlNtL5biHy+Xea/wfYTKVX8WA/R76bHkkRYrXiiX+KZqd5FB3LyO+GGVHj/G57Tk8XXWTdeJX56ZoCH94EYGgcuQUBTKLfN96lFBITE4NvUSof5qd6RNoiRI8zgD7/B9Cf0/LbEoLsbSUx8ULt1BYMIjPP4RQilo1xHe6B2lz25ko6uewuGmt1ayEwBCKs16dTw6ssnv6cdzebsjy4ywqIVI4z1tt5wiHxki7sMCw9wKZ7gqmtRB+zUNhSRl6NBtN6KSpVGTTVTGM08VK2xnuPHA/bP8yb46+yYFYLds7s4g5z+PIG2ePuMAR9mEqHR3JXtEGSkcIHYWBSuVgakhU4BgF4jgFykZm2j4S88VkT+4CpVg5Nsu04STg+BlCS67ljIdCfkaH17Ol8xL5wVHWXxlAAs/u68S1/RPcs/dmpjM96FM6hrKqlDt6ghzbgJUyIGHL4CIIQVdlDb3338vGGY2WsMRAUWRqVEU0pmZ1epTElKlKXngeUITiCikgmJgiGJ/EbI9xxUhHGuM0ZA4QMBOgTFrookOtw0j5a9iTHqSE8M49yP53CSamWEhO4zkzzcLMHs5cnGCU8LVFTyiQ+hpgAziX342pj9IUsVT5uiZYGniaj63/AsmgwK7p/OnWF5ibXWFDmpPcTD+R4bO8pK9jw+UuGo59h0sN+3k8v5xur85KWRoIydnFdO6v2Iu8oKw5HEFFVjPD0UvMxSex5b/HdklBR1Yhv5c4idAU/aKOZ3jQ8isVOkqZrIbrGLx4EJn4G1RGktgWGyVnv0BgKY+OVBaqjka16SNfurkUS5K3MEVaz18zpwTpeV+mcMtD/19hw/8v4z8MtCmlbvoffU0IMSOE8KeqbH5g9pccdi9wUikVTX3Pa8B24N+Btl/lKN1aTtezQaSAtLwraM3/DKkWkdKSvFP6r3Qbk+hS5+zMWcSlPrQ/+HO0pImw2fB84AO477kb11V1ihu4/ducfu5JDKX9u58nEamKjOBKb4BA9wrjSGoGniZpz2DzhUEaSrM5XRugQXRRI/qwNxTxQoYXU2igsIj7CIIrq+QvrvC6bT8lRy9RWlNBfMh6SKUxydClf7Z2WcBCbw6ri46UGGE7m2/cxJ7bypkeCtP/bjshr87F0izrJFM9zfXCRmlzM/OFfZxLy7Oc7YWGCYwXVfHJrdfRtKuYSdsBXvhZJ/uWNfwFATQhKB/1k2YIZhqeACSXZR0/CXw8pfaTfHHgUkowoaf4RyZ71dvUiH6UBjdlv8WT7QGu31VKMDTCKdc1rplSApRGR94K3WIdOYStml3Kkf912+18WX4BNOihESGgij72hY7TPLTKj90PsORMp8dfbvmPIRjUq2gevIhoUGjSxK5rfNivkRWNIYSOjo6QGgUyxtjWbzGgVdEttpGllngCa0coFDx0+gjLHh/JGlvKHwwm3bmUjPQy4S9PpQNoJEzJhDsX79IC09l5TLpz8a+Y1L1ooowSHP3gtvl5N6+Avqw6HtC6efDlxxgLVFAyOYR/ZozG8nKGYytrfBakJOjxpYQuAhNJT2CGze9pXysEkYk0YvFJgvFJDDQu5t3LVkrRBchwNf6uepRU3Ktlc94+zHS2h/ay+jXLB4kG1RUYV06TNzlH1eg4wWmDiHJRKK1WlFCCk5cXeaMF0OZwK2mdplKpZ0CAEvhXFRmFKxhNJ3G7JYWtryF0i2MU+nkpzv5V4pnNTBTWYsbepTdazZPi1y2iuWbwQPJ1spdM4kqHQosxYLXpQ5TX7+flHxwiu3IBgOVgGvfsniYROU0SyKeTO8TtjCurPyaAfNsCE0iKwvOckxKlWe3lNk82MqcBmzS5u/MELZs2cDBqo30xiSkdaF7LQkFTCt/SArHsEIEFL7oswkgFjMcz9/JEloYuTWzKJCkFuhSUz2cxXbyXn92yxxJ1SBP79AAXvLXXnkfgwTHJBqOC2WgWy7YqdMIWUORqtUhiGgYyHe7Wu1lS69E13SKqpxZpv8xBQyO6lI+GoEwVkK7sZE/sonYpgCvtp1wR4xxn31qrWUiFJsGVWOWfK7q5aRValxREJqF3Em/nCeRoExmGxXXtTV5mzhFaUzLfUlXH3JGLTItFrugphowAlMDI9nB6y1YyDr7GrvvvJf9EJ46XnmJueRXhcBD6wv1U5Q/yJfEoPaynMdnCh3Y+uib8ikYv0937FVAmmsLqNghAGEQL3iR6ddpQGgOtW5iaqsGdOUOzOWnVZ6Sd2Z5bYa4eu5pAEaSrooZz9Q10Vg3y9Tuq8RW48bGBL237El8/9XXWjyZp7WrjY2/vZLjQScV8klu21nJhuo7P/+4jJG129FLB/okkt04mmZ9VaLl2Rgod7O0aJpq5SiA8jy+8CAgaZC1TjinmE5MIJVhYTEM7doLZ1VEumTM8WOohkLZIiTbHBzNnON6ZQThjFzYjE80mqLtxHxMjbZjJBDoGiYEOjp0cJZ6bD/mBNfqIQBDLHsZhZKEns+gMvEVPYRtKCaaSMQpjtfxZ3RTHVvwkNRumsDjcj+oOTL8DDfi0PcFP66pIVFdgv/0evvF33+KHBS60rfnUGVE6Ut0eJDyfzGK1UuO+oKIlLNGURr17K/Ozz9M80M4bgeK1e7u6/x0iqx5CjQ18gz+xNjVoCCXRJRQPu3EVHEbJJAiJEgYxTw/5of34Q+txpkdoEF58KgeJFW0201SK674ehCbpCn2ZtHDtmlDwVzl+Ve3RF4GHgW+mPr7wS44ZBX5NCPENrMfoOuBv/9PO8H9ylN++hds5w/BbF0jqT18DbClH1Z6YnTyVR9QVxb28wJEffYcbEpY5hGkYzLvBfxWwjZ2Gzqfg/FNMp3mRWiUNfee5VLcJU9OtdgRWmwIJoTTBmNdGYGaUMa+NupGjjBWWcHG2lIbKTqr1PqSEjnRPKl0u1WtMgaqL9a38YzxJwdIEp5emuL1rE4XKjdAFU3k9lnLoPVzZ2IyL2Ewm6Z4taz3+hc5eGrU53i0uQ6YqCwAoxTk9jf5tkgYRY598gRNqE6ayWj1VS5Xkl1kl+MVYgunCWTwTm+i3zWAiuaxPsXOqjvLoHzOY28a7ri2YgWsE6i5vLYfFdVy92DZM9r5HoyIEiFCC2OsH+fWM1zi7+S8wNR1dmmzq66c7+ya+XfRxDGxWnuZ7rstATjk/Cf06bTl71sxvH1GPslXvJ1MG2TjaR9inMeAvwlA6NkyaJs7z0zs+mNJ7wYcHT9MwPIhunmOWe1OBZ4K0/MucF1VrealCKCTW76WU4lLebpqHY+hVlomwpiQlC7M0xkZIS1/llLyepAKBwhUNsZBM8lIqdP6cVLgiQa4PpaMDrZqNbmWykBmg5eYm+IevrZkxIzRkoAIR16xWs7QClkuX5hgr8Fsmq6ZBwWQQWWhxDEEw3F5DbEbHTM/AcGWhxyKsc4/TfOfNZEUM/MtJ5NlphIIimcehrAgvN+/A0KwNiJYSvSSPvsX99esxyj+JrdTkwfBPqFL9qffBSqFIO9xDYZmTt5sWyV89zL0LWWhRgzltayohQVJVCcF9Bkqfx8erpPY0gGK1egV3n4fc4CiT/m1ojkb63OtIYk8BdMFkZhWFIy+wnG1DNVnPhwEcXQ2wmO7FtuljTLz8CwCKdk+t2ZNZ9zjkFQ4ysVgAqSD0crOQaS2ML7zIPZ0niOVv5FBRxprRqanprJTX0DMzgM+Rza25Z6hwX8Y9YOdV+y0p65ZFlFA4jIt85N0MLpSnMe3Rmfba1mKnPrJykYS5hfTTCxRHazlal7imKgfe1UuQQl9rv+2bNfjEuI5gmWOGjxWbm0JnMRqCSzk6LwecLFTfQVHXmxzO2MR4oYPbY8PkL2tYVCmBjV4KkrXckdjETE4nzuY3SQiDZAq0KaXICTZRVXGYR8RX6WE9jqHNhOKlNAN/s85NUuzmH9jB052/R+tSlzXtRVzI9ygCF+xxTMwUwJdMHn6b/MkBDpYVWDSC1LW/+qArTaNtfJhzjz6CaRho5YVsG5zEzMiks8/ANXUzbvc0leEYW0M5pDVUU15uLb5u9ybGowEuHPlrbjXOMFDjWnvptTdaWK3UyprTRGMelpYKmRu+B7WiiM3VQ7AaJ5LgRz5LeHWIP2zZRVLTsAsNw1mz9ns9UPcAhZFyBmcuclouMlzooHw2SUlIIr3LdFTXk9RtSE1DKsVzJXaeK7ZTPhRivDwv1Sav4EDHYQqjIUDQZJSxzijCv5JDV7iXeFEje/P2oAkdqUzenfkFY3V7CeSNwvmnyJrvZCXtK9hMO0ITbNvpwt93jub6jazOJEhznGduyU+uM4d0UUyvSr7neggrNaJqiRdtjzOdNZh6L3Sm4+XMJP0MpXvZOfs2dmmkNjIaRqp1airFj5LL1sZI10kIwdfu/jWClYUITWAz0rGbJqZSSAVmUQavCnizEn5wJkZTyCTgqiHPWcSGnrMA9Fc2UjPUxYaedpbTd9CpPoKh2VFYm9BAaI7rLpgUL6SRsNWDegWURd9IW6hnNCHJMHLYqfLQldXRUcCCBFm7iku3yKzKNJnteg73zv99Qds3gV8IIT6NBc4eABBCtAK/oZT6DPA0cANwEesRPaiUeulXdL7/j6P89i1kjp7n0BknJ9W9NJhdVIk+xibq8E60sk8X7NlbTPdL32TvRdtV6ISpQW+pRtXrTxE7+C+4zLO4vDFAsd0Z5Bv1biomkmy8+BztLfej0FDKxBsdYCGjmnOVTjrLHTz40kmKIhM8u30bvzjwCQzdhq7u47M936GGPhrWXeI5UqolRWriF0ihMZ7jJT8STNk8LOAz3UhDkjahW1UNcQ21CSGo2fEgWw7cia/SzcSxC7hOLFPh8hFdsHaq5lVplJIcKvCheBA79/GI+Cp3zr/GRbWHdaN2Shbca4qc7ZW5/P3ZDXTkTpNGQQqHKdrsl/EubSZ/6W70snnLfB6JXYDyulLRMVaVbZvZS4/eDAiq1CC9w1VIBZtVF7etnuT/Pv4ob7q20XKum+0zq/zoI7ev8dNQkBmPEnFmr7WSOtJb38dfOyb20etvpKGwi+wLMwTsszyiTtIrGqlXXQzlN5HQbaDrKKV4vHQzG797kNmmObS8b3HjwodIN6txLa6jG/Geny1ZQ/kCOisc1I9c4UDHJSY8uRQtznHj8FEyHhyiRevjIyqdx8WnkWi8s/NO6kcuv8cjUPJObpy9oTQ0XeO+9Q42nz9DWeMuykw/vvt+i9ef/T5KSvLTixAqh4LY+Fo+qBDgjS1xoPMYs84CyvuO4ImvcFG/Cbd7hnC4kMRQjOySOZz1ScJhB5FwLTPB/87ee0fHlV1nvr9zb2VUQiygkDMIkGBuhmYHdlY3O6hldVuWJVnRcWRb9tiz7OdRy2+N7bH9bI/n2YpWtmQFt1qdkzqRTTYzCZIgcs5AoXJA1b3nvD9uocCemfXWe/aMNX/orMUFEKjCDXXPPvt8+9vfl8HXUMbe5nJSpxeJnbeuJ6QCeH39ln6gEGhScVPE5BPjWV5we8hrRfcOAYFtHroyWeSmowzgrU3RNdXP+8RPqDCj/EVdkIKmc+fl4xyaqqLaMUfhlijKXryFxT2GpY8rMHIaiXvTOC7EyKf/GaEgFHeiyd4iqiWpHBpEy6bJZD2MPtdEbluU74ePMLPYCCxib+zn/fVnCc1PvGvObzbIZBcOsD21E4crTrgomSFRnNOXeSRSzTtee5ExA2CVehzTw5xLRPH5Vnl0l9VtK6Tg6EUP8XSo9NqaRBcrPo0rLS6M4j3RlOXl+FjXdhpsjfz41TVMDXzShyYsEVQbGtvmNGaqLS09XUFlXjEQcNAf7+Nmn8Fc4Ry5moMMKJ1f3eehoAE0o7V9DKEkUhM8KSVfdjo4MJ0ieeEnzK47CdcKqqWfS7WSy9oxesU1kIJ/7PHhTDo5OlRPw/nfoLXiCrvXG7DX7cCdWOeffTbLEksT5JXG3zUe5NHcHLEMFLI2WN26t3omgVBhNpt3GuvuY8Z4zrqPm8ETy+ReKmklzOmE1dFf5GtFvG7y1SFMIJmsJpmopsesp9r0WzSQZj8b0wk2JuLs8jrZv3SGuMcsQm03HKf4dZMaEAgskU6FWMreh33I0mVUWHaAfy++Tu2df0ShKF5VUPD1kSX27W8HYGkizvVvpJnyd/Ctx3wlruKH3kwSCSnatatovLeoLbh1EjNttSihilUKybWqJAeiU2w3HyGkykGaOBYG8dgN/M56NLFl8dUXPEyZNwQBBdLgnLmjuFHVyNminH/tFVYjc3R1fQzNrSPVUTTv8+wJ3s+ansI0F5jdmCDrcRWTNp1/zg8SDU6U5lohtheZbcZh02jdfZQ6Mcnvnvw8x1sOYTorOVll6c1tEpStJcLanMWcPivxFgJDt7Fz6DK9k+Oca9rBSF9XSe/zXIVOf9xC22vcTaznF9g1cpFd1y9iqeDpXGkaoUvfxasmKGFZOO6fHsLvtuHqbybpMXhhspMPyC7K1rfhineAkPg9Sa7YrPlbLX0s5tNowQTR6WmqtxcfSqnhGNXg8P9LIvBvNH4qSZtSKgLc+T/4+TngE8XvTeCX/41P7V88jnd08/utuzE0DU0oPqy+zNHw60TXmkkmqxkaucbaqh1dFsUSgaQHes9OM/3Md6wfaD6a78gD4FgJckBUotBw54PWQYSGRJGwb5RQLRPFbLiZ+uUpputbKeg2lK6DCVdSu6lcXIZuYe0WiiiQTVlJkSYVDbF1hLIUt2tledHnDtKLKQ7OrDAfqGHDUY0zv0ptYIHQ/mHclb3AHmKXZvEJL1eDNr7ZYi/FO6ujU5RKuQUFJ7idE5V3UhDLKDDmAAAgAElEQVQaM5UQSuR5tIjW7W0u5+8O3M+Zr/81Gw01FEFKlFIsalE0fxunusIoBDqKD4dgciltIWTK8sQ8rfdhsB2b+jk+dOKL7B26yFxdA2v6TSxkHRSWcvTmTuN3hgnt+yS3ruZ5oVWhMNGUpGvkGud3HCrB7VpeIRwW5fddIr66wa82/AnjiTzH1CgdjDAqephq3/Wu9nMlBBfbutHXRniqa4nj3mf4s9nP4Ip3cHS4jCe3Kcv25kYoUwhMITjR52XP/Cp75sYQUmK2S0vLSlOkVVmxhGPxmTDzJXVyTUlciUmWRQuJcicNf/YfqK1oISBvIq5PErB7eeznP8bKa1+j2vlzLC+n0RwLCGC0tglTaAyHmnjw8ilaFyWzda0U0gkqEzrJZA0oRUXVIJ23jaDpEimvcmXgLvJRByeefYbtxx4h9vQ4qviMK03St57B1ubDUAq7EnxiPMv2aIHza4Pove1IwK4M2oxLDIkQneYqYDluJBc9XHS34V8NMFv1FhtiA1B40mu055aIfsrALOqgCQna5ppbRNoabl5GaIrCQUHl8Shr0w1US5Njl99mMVhFOL5Gw9woZaEs3roMyUUPP9S7mPJ+pPS5bEjJ6gM30/D2JOujASq7Y8W5BC3Nn6Kv5VdYObtE+eVVUIpFLcYp+yggeUdL0BKrwKGqyWPxII+MXqY2Ya3qgeBSSXtvRHQyU9tOxdU0zQujOMsqWRMBpmosXSs0q5PzVi3G7zb42de1H4DDj3p5aXCYF3t6MRVoCu65kGHP5AaVcYORVgfnW1z8qMHO0/V2Hpov8MBCHsfSXq6PznCuO0NB7C9lylLDuoFFGsPrV0bYPlONcNxGfa2VoLxZnuWzDfchhYaGaZXSgzYIwlMNrbzvQi0PXutn0lR07/JQHTvP3rUm7O1ODGkJAO8LDuPS7NQoeMcEz5TVbQ+w6o3SYRRooIc6VYkSJtny6mKSsKkDBO5kikIuip5OInJphJSoYsdrZSZP8NgDXJmdQ5kmNjQ6zBCmkkx5NKpPvsLK1VdxR3pwJ1qotrcQD05vPT8WXwKf2EdSnLfioqnh1XVUeRIpXsBe2UM+0o4UJidaf8iCdxz76DJU1pQSlKvDEf6Tzca9bVWIkSimIZmqcZS4iiaKheYEubo/pamuwG3qNX7CPdZJFK9VYsm9SAW6MvmV1KvcMzZOZHaVfFU3xtoIZnSCSo+TsewMMmhVDgQaIVcz8ozJ/JEO6nUHC4ExZMKkoCdIVFwjUe5kob6DikKqpNuWd7Twjm2MEX3R6lTXPXjW5kgduJ0LsoLa+SyOxAjL/nFQNgoJC326vauauo0lvvvUWcb6DnIivA+paQi52Q5Q0nBCKEX38AxTqTJU2IUUOkoILnf3U7M8SdPUdSZ6O63OeAV7100LBVOSDTOD0DRSB27mcvI4LasVTIciDNdf4KbpY3xgapnhxijh2CqhRBQJzOSsuOIS/XyvLM49G3a6NHA7U7zhuIyJ5BJT3JffzcSGm9XIOMaGi7HnmvDWZfGOeKj+9CP//5KC/0XjZ44I/xPG7OwsX5+Zp9Dcw6Zp8DfFJ2kUs/iDi0RT5fxQXaSiWfDISQWGFRcqkiB+fLL4V6w6fuS6l/SSi/HKclStVYvpzF3ntLit1M1Yt3GaGUcvqqjw7cplAUHTwiQ2KTEBTZo0LE6SXfZycey9mN2Wnpcq7nQemt2g9srzbN8owxloo1aWI4FLtinqZDnh8HZsbR+gfmGQ9KlT5JsN1j5uMJP9LnMXn2TP7m8R3NXIhUSMX9u/uVOn1EGkSrwjhQZ4Yp0Y5VqJKzVQs8q8LkudKmWRKerMALWFTt5xjKGUJbxQK4M82VqgIMpQWJy+f1iRIO5Ex+SoehVW7bxWc9TilykbI94dHOI1Pt2+yDZHgkxkN7eoVt5Y+ieqXY0ITedo3MufnlnlZX+U+uibbLMNkFkyuV5r6T2t+4KgFNX5NZrsE1wU+0uixCd997LimWMw7qLJoXjN+0cUHMVrBlAKXUq2jw3yw0PWz666xzlz5zT3JNq4X4tyXCb4jghaXLLiezaD9GxNAwvVYY5dOkF9bA3f1QJqhw0w6FbX0YXCFCY20+RQ8iwVy4o1KuhaniWUiLKiBdgW2WBJUyTa91j+rwjMgsHGdIJ2bzUJw0ZIVXB/fjdfLZdIrDKTlDBX0cjAjnoMfRs2aYn21iSjVvmrfLkk0bLpG2kk7RhvfZ/hQg1Bw1NCfK5XrzERH+D+gQrmgxV401dg0sfruRnKNhZ47NlVcvt7OBJY5i99UXrG8vBcE75iAjWd0/C0PMUuucj1oIO7/XZGN2wMNtp4wG1a1ps6CBMcwwLbmiBzc9EkHCxuXBEOaDyyRNIMkxEadckodckovloX9uoU7XfPommSWqXRJX6ZCc3SWNxszviJaOPgzYrg9Tizb9eiu02ab/0FOjo+DVgOKQMtXkbPDzO8PgWFTcsoiS7X+G7jLr43OcrG4LlSwoaCeKzW6mAVHfyp9lmMBgf2MPz1P3yBPY7LvKQeoWXFQJeWr6JdE/zu7oMl+6WTJ89hPPd5Tm8/hEEPaBaHKOO0nrkJu8mSP4aphZDCKrk92Wjn2Xo7v33cRMTmqZydQd+1x+r+w5IhspA2hU0qbovXARKtuCHRhMbJSmXxlYRW4jmWtCeBf97jwRuLsythUrc8j7N3G3V/8UV+P/+LnKu00ek6TnfbUEkq43BXktnlGDaXSXrFy4M//2nUiWco91whG2vklVwc0+FASBOh6VYioRRqfYawGaDJtp2y1YsUYhNEvW4qUllaH3yEuo9+lJvPDvLG0y/ykNFKSAUAg1NvfJPOPd9EtRUQrXYaz/0OmeQdOCJjiOaLxcTQ+pBSXASsZiahC6qaLlDFeev56H6eycFP8CPHKRa849w+dAg3Ls7dAaZm8fhGa+2MRKN8+VKMz264ALY+02ITwh0dc6CsTtRbxJsc5yh5VXy4lQI07lrI0Z6Bfesb3JHdwKzZYPXqOPnoZAkQLM9sUDt+mTeBXZV3UuEMlxC32GiGqrZf47Z1H/+142m0dIBy04EQAqlgQaxTI/0siRinnGtb6LBFHSV14Hb+IdxnoYONisdPfJyLueeZlVXIbDMAVT4np775VXRvHfPl1aUKAELSsJJmrqZYei4mtNVVKxwevsBqtp1nbrnTWp80jVdue5gP/PgrfOLFp6DzPexbl/RFCyghEEKwu+JO4vk14rEZhpunGGmcQimwCZ3evmbE+TT16xskvQUMu0WRU0XIQlc6h2N76TKaWREJLtomMItdxKaSnC6sIWQzmq0RNk6TWfKQXXTTMfM/ot3/dIb+xBNP/LTP4X/q+NKXvvTEpz71qX/TY55/8UVmVlYYDjVBKYApalhmIz3Ocdc0UVeU6qQV+MrT4M6/C2Nh83+aP8CqaWfd4yLptvSVWhpmOBA+TY1Y4WH1A7KFBOPO29n0e5tu7GKv9BFabKI14iEQm+bguadL/CVhtnC1o7GI0FhoW9fkEDfPrrAveBu1MkhK5HjRcYlFbZ1xfZmwLMfV3MNiy27Wp2MkDtoRrWtForbE7W4iFLiV76VjnC3TrZlR2kWxxW0DHlBPEXJe5ZLYUySTC+5ZdGEbitGcU6AJ7BVu0ueX6HX00SAr8SkX/kIdiyuvMhsd53prb7G7DiuKFAnUe9U52i+tcrbBMl/WlOTA0AUaXTNkDy3xckUVqbq3aVyvIZ/WieTnafZY7f8tGY3Okf+b+vecx9+QJloWZpAdViJVPP+MXsaKqC0WQaxyyIKtkbhzGxH3rVR59zFbcKC0YjeTsERZ33PpFI0zLzPUIFj3Cxyag/eV3U7yzSexL76EJ3KB5+qOlsrPuoTehMmaywpcoKhbW+HOt9+kdWCSef8esgGT7FwNgTmJP5umZ+giP97zKBP+BqJlfrqXZvFv5NlrNOIRl5leWmTV66TZu73IqBOolJeo6zyuwg5A4LN5qO2v4Olil5+uJP5cjGV/RfE8BHtTfrYXomQnLiNyOSo6E8XKjcbSxRA5M2jdn7wkrFsBfFmLc0lOklE5fBs5auMRSE9jzI+RM61u45h3mV0P7CW7tExmaIWcw6R62kdm0UMhbcezYaNt0cOpboP3tBXockn2lRlUdHyQpUw35VVWMwomlH/LRjbipLDXKJVKN6eVECA0waIyyCTb8PtW2Wgu8GrAS2Wlg1b/SIkHp9Y0zpTtLcrJvHsu76m+hL8pS0XHx7n98Kc5Px3lhQuvMDP3JJ9/+xpGdBwpM6XnXkfjYK6FvuZa6l+dIO06Q3XNOEpp1GVa6Mz0YESbOefrY8DVUuJr1TW42HNzkra6NdyeCgYTT5KxRdHzM+z0+8nHnXzwK++QHTxDOD2Lpkyud+5ECdBNk1uuzJP0+nj+tgDrnjJLO60UZqzvtxegYU1jUZ9BoPCn4hxODPPBwREOTFwnHF3n07MV7IyrLQTZukOYyuD1sBtQ6Jg3zA1KMWBXbpYjGwaj64sY05J8IMhCzEd4TRLYyBJoOXVDUg3+phT++gyVXUnC85JE+5tkyq+RrzvHeqyGfMELQtAoK+mUdewyWrFnc7TX3k404MZfdxPl86MEI4u4Cyblj70f9/bttNdX0z08gjdWi5XlKzx1x8lXjFuwJAp7rhp79B5U9gC2vJ9U9bXSJ2gFs81/spRobn6tT+S475b301C7m+ZzvTjiTlpXDMpTJg5TsRqwECSpwBxO0LRq4M9KWhtTJF0Fet02DuhLOIy3AagkQp+4wgwtRKkoIaATPht3LRnctmIS0cHjasTXmEeFuiksrJRWkFWfh0ywhp7goZJUhkLizjxJevkBbIl6Dmd72ajPkkjl2CxrGGkXRjrGJXmObHHdYfPdCk419LJU5gFNoAQY9nXa15ZZCr+EmWnHrsr5ePUy4ydeod7dQcwNw6GGkn1Zxm1j78AJlkKNxTtr0OYZZEfnAM0XMrzec2DrxiLQpMm2K29QtzCOLxUlbcQod9aWriltJEnHu/GajbgzKRpWBR/u+wgP3vIIbp+d+YE0BT2FaU+9q9QsgID0kKXA644rJES2NDU0pXAkGtBMJ5hxZOE6WKQk6tdT+Gvr8Ozby/+K8bnPfW7xiSee+NL/l9f+DGn7V47MxYs4vvBFwjcf5pbRAU507kShsGNY+l11s+z8JzsT0s4D50EYgNAQNzBdrGGJV+YP9PHO6Jr1sCtFrUgh14J0qnE61SgFpfgq7y8lbGCVNGL7biUws0DDuiK8YpBLzhf/rkbTuocPD2T41s4yqzNGwqG4nb1V91pLuRAsaVa31iZCsGRLMD4YYG1DQvtjODfeodkcAhRKKoyZSlZfGmC/V/CVKvsWlw3Ynl3lqqcKJXSEMskID9/SP1K6YiXgO/1lHDmbIfHyFCu2BPGbnNQ8cBBOQo0MUKkCjDTNc2kpQrm7i2MDJznd1cNiWTWbLX4CsI96qB9e4BHXW8xV1FAfXeWOXJTcnd38nvZBq5FAN/CHX6dpI8Ouu+6m7OoZUhM+pgujvHF0lv3FnLNXXUXHxCzxWqyvptJplktMa7WlY4OORPHOhhe7NCgoUJqGZpro0kSkc7iNdv74O6O88Ut19O/6Na4/VY5pvh+MQ2yM/ZDH5v+Ba9178Dg6+VjEjgB+fb+HgpCWqKmR49KePdirovhvPovQJYHACpmBcmpnq7hcUUtBt7ToTAnxGj9Vfje55FNcG3UTdTuJbCwwlRyg3b/bkjVQGouNR2lznmQjXs1qewsqt8EvzOR5K+Sifm2aikyCoVATFD05b4vYaZ9XLOYy4LeeVYq8lHxFDXl7iLySmJV1nBoz8ToTXHRdxjStMvmm0DRuzRKAliA1xUhHjvdlarjw1I/ZZQZRQjHcHGf3ukY24bfeI2G/x8RW/DiEAtvqWyTPehidaMJfm6ZxNslGl0FC6CRHLD2l9dEAZW3lNOwYsNBeYeeWu36bE0PHcdhm+FvtP5LHxlAQDLnBndqrIGBn9Sv8drqK8x4vb4k7kEqzTKS5VkQXFS1hO+eno3zlW//Ee2/6Lwhp8NFdOlcH7iKZrMbnWyXsj9EWOUhtPMDVk4NEfJfZ0f8qCAOhrtF0fh/xuJcVoMv7EjZuoqBsKOBCdYb63BxdZa+Rin+bVftusmUfBGHj9yYkH5qaoDIHc64w+4VOeHn2hs7gKcKJJs7sDW9pZ8lN5AjrXijYt24yXVfH9w9/DFMDhzL464HfYp+8DjaILH6AjN5nIVvFuS2VyWRygPDwDB/I3Um0/zp7A68yJ5p4gftZpAGUlfjnhIP/syNDXSxGODHNfY37MCZi5J0pColqli/8ArV7vr1FIdt0+jBNVjIvW8fUQZgmwcBiyWlkXo+yK99GlfIRD/bwkrPol2vTuKVjO6GzE9Z8iBWlKmbPUB2YZpV6NslwhWgQoWwoaSKUTiBqsgnb+ufugGszJELHMf2K/E5RisXFMF0KYkLZ8K+3sfzsCi01FdhaIXYVGtYKoBRvbXeXYogmFS0rltzHStsS3wp2YGBnLA+n1F7+UHXRqY2U8sMZrcUKlKUSqeLPe120JQv0Ju8krnQ0r0b+g9Us3nOZ8sHruH/0IyozeWyuJjShselwoVctkk46cW3Y0NExpUl4sJc1bZGUfwxQrPqXSAgB6XVQZVjlWYktHkGLRzB6+oGqUowXKAxnDE0zeaBJsm9pmakXXgIgm5zjI6v9rC3GebO+gs1mkUrTwWMvfJvpI22c9R/gDXE3J2xH+czOL9Ixu8xo85ZC2KakyPrGAleCOumWJh7asNEfMxFojIR2cboqQOOil/ah80CA5bFXeTa+A7ngQyqFKxci51lik0dn80eoCy6yEFtjJFFdouGgICg9dORdlJ/9GvFgJ0nGWe/JWD7bCx7WIx48N+3nf4fxs6TtXzkyZ85SubxM6+QUUtepyCRIN5scDr5iWR8BTV5J70vGDciaxOE3yCdsbEbTsto8VTs3eFm4LGkEq/WGeWcNRsZP4iUNf9U6368LEymv3iKwA3Yl2RmNEy9OUqFrbO0PFWZhnh3jjXx+Q3CxQmf3usnOXF0pYVNKUScDVslBCDRNp6yljZkzG6UzTi9qRbP4NOklL+HOMpymYldc8fB8gScb7VDkk7QmBMOeLXHauAqSF/ZSwrOp23S+wkZtYpXntQuY562y1oGd22ha9RLc1UgfAZYmppkUWRCw4qlks2ylYfLg6gsEFwxap6ZonZpktWUbYSrZVnONL8Z2YLg3GwngJxknH29aJT/2W5Rlc9QHdFYf+SsGxqdYotPSY5NjPD7+HK+FbmYpWFUK1DomPfZxZs1K5I1li6IG157YeXrfniKYTDHa2MKLh2/juSN38NKh2/jkiz+gZ3aajcgbmPJRFBpGYRGpBPUrs9SvzGFz3Uyi7Caq7IIHL0kutecJL01Tm4qhNI2VPR4aiiXJMdHO1fZGnGMuvImoxRQxTYSSvB7eyetC8A21j8dmvsrywdsYbetjbGae308aCDRMzUSW23Fe/XtWjHK+u/woc/4anum3OlAng36a1pctJLO43v+4JcMt4hwdyRXidQKx2SygIFC+SjJVC0Jndk7HVVBkPFsbABTUmxXsNlqoyN3GiZ4zXM9fJtJp8ov1D3DxqaeQppXUKQW9UwHqvetMClVUIlFknFudhQDZ9RymYSe77AEg/8gaBR2cIolTgTIFa6MVOPVjlP/NMEZ7AeekjcQH7cjsDEMN2yhgA2El3t/QP0mTmrH8RRU02f6ZfvLcypsli6lONVIqBS4PN3Hu+hi3esfRilxDIU0CgSUAdvS/giYk6ZYLLFz6dV6Or1PfcJlmrWAlJtJgsvoMp7N1tNafpEMb5UN8la/xSaTQOS9u4jK7+T/4j3SGR/BneogK63xNqZhK5nh/0sHrnnoc3vfBxiD1y4PULc8hhE77kYfoubON48tL5E1pSVlgcaiEVBxeXKcuk+PiPV3IQsqaj1LjZGAX+xKDoOl477mF7BsCJa04I4SF1GbMBBG5yt3ZGa5NTiL7Nb6lfwwDGzom+9IX8EXyfL/b8jfVZBcPXX6bseg88apFrEL8NK4kxb+7tdlTykrKC42qVJ1WQsdY25KdkEqxoK1TKf1MsPau0tbFWgd79j9M7eQgejBQEpZ1mnkC9utEC78MaDTE3oPz4jUS5Xkq4xG8mbeJcD8KMKXCiEyReVhaeZwJLiNIzhm3Tk4KylZ24U604Yx2cX6mjKXo9wAT3W5ne+e9rAwaDFdrqKLvqQDu0900RKzS+MlOLwb20jUZQuO66qPTHAEJM65HkPIGL+nNxE1JXgvm6E+4EAiWZJwXXngDU0l0u43H//qv6BobJ+mrh6vW3BOahvA2cTXayS5hEfklilUDDE+a0gkCGz4J3kacy7Mo3YYtk0TPplEoOi+/yEjNL1sqBsrCoa/XFmhIdeCcNHmmcpVGXzn1mRRhdwd1qpxj8zlO1ilMAbpSmG4XE9v2oelJJHqpyeuKr56W4dOMNT5olUCVxBc7idQUV7r385MjD6KExovK6iKVwF/tq6WgCfTeVh57Jkz98gzSNBh55m2c7gPWumj48ac7SXpHCfhXrHlZtNi7MnB3ye4QIK5lWM0tUC4XMXNRguENKo4lEJpCSYH34Ae3ZLl+yuNnSdu/YszOzjIaDOAIhWiZmeGdnXtY9FfSuTRKh2+MTZm1jCrDS660SYt5XGQbNTzTkmAmj7A7qPqlh4iVh5j4zk/YnEWmu4xMUzcIjZzPRqSskgv1/84SsFUm9YsX2T0W58jVMeLBR5C6AyEg5LrONJuWVIr5xmVqal8gu9bDoZUO2jqDiHiyROxVKNbXh+mx2bjmdvCKu5VbuprRL4xhGBIUaPYGMss+sitl6HYbor4KNZ9HScV7Fgo8E7ZjaJZJ/O3jUQ6vz/NabRRHPs8LobvY4giBUApdKfatGyxqUeb9ARaCVYRja5w7+SYXCwUqrri5v/L99Nl7meICC4GqomuA1S16u/wJRwZPU3UqjZ5Lka3tZn/9LyA0naS6mx2n/hH7wyYF3ZKGCK0MkDtynHFhR2uw0zWe4aXJi5zw/RESgR2DRxe/RC5bzqq/aKSsFHvUOR4QT9FhjrEQ7We67GESju2lsgXAZHk7j++ZJ/LCmxQ0H6amI3WdghCc3b4Lc8aDhqTcEUfPB9Ht9cjMpt6YjmarJyoVA16Np3Z6MTWY8gWoyCSpja+RnnWgtglGRSd/pj2B4bchdlnlOxML1rdKxxayYgAXdh5lsLkNgKnGTjj5Jh2FDMftTh6/cBKlZbnMIQxs1r0t8k+UJpiqsoQyLYkKxdO11bxY+1v8wZ4n6L5qw1TrVuKs2Ukl64sLuoaes1AutRFAc1mClRoae4xWS3UfxdHsIW4W+/nL1S8y/9JzaHLTrAc2v5tIVaHrgr79exivT/GcOUW/Kq6hCk5nnPRrirLqLLV7VxH6FgAqrIoudfft4sJ3B0lW3Uoh6ydEgvjlFdq67XjUdTShLHRYCJTSuE4fncraZF3YkNxuE3SIEdoZYeVyBaPTzZR3JtAd7czOLEDETaayCyUtrqFCYBZcBAJbzQUKg9SOSeQ7PmLxWhqlJdujlMbVmGUAvxkTkvisEmMJ3bUxKKzWtZ5gL3NmkVMmLU6UHcE9mhts9WCrp+DsRSvMsVDXxQUVYN/Vy/z6+lkGKw6hTTp5ebcHE4WmJBWrV3nelmCHvRW7qVGQEhuKw/HLWCiqwly8SObU97GF9mJvOlyUoZCs5BZIVt8FQhFPVHFtuZ9CuNgFrKDJM4Zyazd0NMO5lh6azAgyXZRDkgp//TUrYbuxcqsgH/XjqEiUStxvzh/kdHIfh+3TxWcEXMrOiogS13PF87V2B3GPzlttdt4T/iji89/Eme0kYlQwRZgqVUEZRVs2oCxRR13mB+TMHgpyBwH9Syj8GOlhluqWS3xJFOS0BELqKCERykbF1P0Y621M6jFMYxaKkkGmYZDamMBZGKN9qRpd7gNN4NB13l9Tjrkrz8v2PFeCRUukzU2hMLjT00nt/K1Utd6LHu7i28MFDPRS6Xkzoc2WBbkSKNAflyzqUUwlUUphmiZLDgedv/wpfNMJ0u5lZDJPbiiKOSnZy34u5fJMhk4y5JihJ30PBXvy3QuaEEghSNRUYc8WKMts/b5zaoHHn/4Hrmzbz2BnP0PhVjTx77Clc3y722W1PSjF/QMXuW01xDIJprIXOXY5wEKwGmdhg9d6dliJvJKlJjIbJmLR4PXDD6KERW85euJpMtoIp/u6OHnwwaJ3s6CgFOcqLGmkQqmRQ2M23Ebd8gwKHd3eUDrnmmYfZdtMzlwceVfTj8XFXbaSNrW5NCmWjDTRtgYUilD/KrWaKtEmZqLP0Tzy84S7tvHTHj9L2v6FY3Z2lm984xuW/+jR22krC/DMjsMUdJ3zqgfHbIqjjT9GaIr8g2lWVoJUX0oS9zg53R5GagKtQ3FndR3VFY2w82Fm3/hasepuTdWCxw9Cw+dfY0f/azyrPVSUSNARCu49O84vvvhjppvuYcy/gswvoNnCiOlVtDITQ9PwhLLcc8cLaJoCHLTWfYH6sjbWvnIFWTBRSjGdukZXYB+a0DkAFCLzpJ7+FvfefxcRUY2rzE4u3YbD2UMmNoEn2MbxJ1P4pKLRIQiuSH737SQLLU72L46x46Xv4T70W7iWCnypp6ok+YCUNEcWCCXjhONr+Lp7GFkM8mz3NkzNEs19UClqk1GWlWC5ECt1lIVja+jSkiKwYbJz6hzpaIZIpYtCfRfllb0E9BQBf4RM+SDBNcWfzr3GkNhOZTLIfH+YEdFBpxhFCnimfTd/qz9eEuctKIjqzUQDlUhtE0oyaWOUbjGCRPDHPX08vQLflJaG2uZY1qr5vYb38p9/JUzTyNPYeYSCBJQi5cmAMiIAACAASURBVHKzFKigNrFO+01ZQpV7GD0xSf3FRaJlTkxnByMVCWStjSvhFgwdK1lSGrm6NNWL50mvBVla7uTZ8MPkKfJNtGKxWWioYtdcqfFDQdZbUfy99bPTbXUMLf8FkaBBx+ISs/k6LtLHkr+CpNNtoaxKFmuQN+zwi8cwlM6g3sfNgUmabvonotHTRBbaaHTY8TqHiY4NIcwpcPazUfCD02B3up06WU5IBYsIiyXhYFM6e6OdxOQlS7Zhq+ZUuqumqTifnmGxys/CvJvPr+ns8xQsBffKea7cbudDrSlsRVB6SzlFIISd9FI19pY081oZANmuFP07/gqhm/iAD8sv8w3tUygFdgy65SDpTBDDs4+LM1eoH3MSqMuSXPSQXfbgCWWp7E4itPMEWy8z8+bvkI20s3zxcWr3fheESWvnGcyZQwhlwZCaZqe+7W5sZ8+RSlRzdeAe/IFF4vHakvPHynI7odA4PeIamrZVmtcx8KoEfyI+R8G0us4PLRXoGtqgPlL0/kyZxbsGmi3MfKiJ797ux9TghLLxg5nn+fTC3/D57f/Iq3oZJqr0elOa6M+d51f1FgbKddoiBhFfG3/btIvDyUFaVpyYKyOYS0MUZk9i23WQqK0au+d2KvUaOkWKSaYQKTtCCUBiw6BXXEMBNvV+DGWVFufKa/j7PVUcu7xGKLGOQKM1fisZdQXUlo+pVBpT69torziHkJKCsnFq4SY8wrCusYjcRrQUp+wjW7zDzY7SIrVj0ZbAVdXJ+ESGH2vvxURH1xX3mVFqVDkbgRHiDSfZcNQhc70EFg7iibdQ5fhDyiqGWUjsI6AmSws6KPzzt2DPVeKOdOOKd6B06KMcWVnOG/lBIhtzSHcZVxxuzO2WVdQDV06yVF7NYz07mfr765iG5OytPrYyVUU5a/ym+hva52to7fw0nt27iQ79EX/AOQbpo1ddAwHPyIe5oN3Ej4qNJF84m8GpHFAoTlFd0OLOsPGdP2bt6i3WZqJ4a7TifHajsRwvJ1J3jWTVVeTWtCsNIQQOrQzKIOsJ4J4ZQsulLcR8eZbZcCuy2B1vojHu8ZTijFSK53fuwXHpBH0xAxNJKBkllIjyVmd/yS1HAgfS59DyG2zEbMw6WjF1vdhIY7LhKuPwpUpeOXK4lLChLH3SwPR5YhvL6G0PWp+rEjgddoaqtuMxt9FBuHRRq7NJOo82gNCIFZt+rE2Tjpw9Qk2ymhXfaCnW6emE1dwHJJe8hORakWcHFV0xzv/ka4S7/vy/ywX+rcfPkrZ/4ZiamsI0raTHVIo3NiRGsfvFlLBYXo0oEm2FkEzcbCd4Fda87iL5XGAqmL46jH35HaZeeoHYPYfQhcJQlg/a9do52s06AoFFNM2kV1zDhoEhLbPt3cODJPytxNx28qknsXZ8Or5knv0rSyzu3kFn33Eim6K3Ks/c0F+Rb/wNGo71EX1qFAQ0eXstvlMRrnhvKoH3jW+Te+n7bPvaV2+AhVuAfZx/cQrTSIAmaHRoXA3qxCt0bl006I/UsuoKcSFtMudvZLi2aCurFLqS7Jodpy4ZRSK5unaBNccdpXZvKWChvNoqC2KVQbRiAlubjPLg5bfRamrZUfctOlquoxoFI690EfN0kxaSpP9l+vtfBVGATghxgoTs5U+1/0hBPIqNh/gD9QSdjDGobb9BWd8im4bHJqk0kpxv7kEKC8fqUtesuypsRKerSYwk6KqaYbkiyLqrvISMFJRgYHqYP1s4zUPJz/DXte/j9dDtDNa1MlTbzC1jA2jb93Nk7DI9F/+S+J1+bCudHHc4qH68g2p3JZcT+ta9wuBgzXE67hll+J2f42XzIOfFgdLvN2VVUBJNmlYXmNARwGcGM0xlB5isvLWUePWNDLJ9uIaXb1rmgttBb76BBX9VqSyKlFvkY2V1EDZHlpitDKGwEuVeOUjNzg8TCOxheihE4Olx9ilQqpuLahanPUVEjuPZt41oIsfORDM6OkZRcthacxVSSK47xqgTVrlLaor5qixNKx5uRGT1q8tc8Q4gKyS3N9xGX/5lUCY3eeG6r4C+2eQpITlfRmbNiadqg9hEgPVoBspFaX2M12g8oz9kuYQwwp28SnUmwpS7hV5xjQ4xwuJgNQsDsxzsbiG3kmBj2Ur4hB4i0KIjtGlLXBQTT2iE45lmDniihIRZ7FCT6E3vABKUTqP6DapDNTz4kI2JkSCXL7eTSEwisCxzDhY6mYqVc2UA4iEd6izSnqYkTfFvcM5VTt5lA0tYA/uaQf3qu83aAYKtPp5cXcde49qyvZI6r/ruZG9ikMH8LKaoAQRSCRYDVdTH49Qa5TiSJr6lAnNVNj659zMYRf7h59xw83eeRRUKCJsNp/8IIWxUu2FmwyQkA2jVt3CiM4gUAl2Z/CJfpQMLrfzc1Js87bud01V6kQ4hmA9U0rRg0KXaqN+oYOPcfyAefpuUY424liZLHq9vnfGxvfjJ8fXEnYzHW+nUVgALabShAUXf4dK+qUgyV9amwCltnAumCOTXMF2VFgoqJEn796j1SmZ3n0NpmxnZWyTCJ2k89+9Jp+5AcRe7eu4iOf8V1hpOFZF9O4GFw7jjnSilSKgsfuFGCA0hTVrdu9FSEdZ81RZ6W+wIr01GqUvFcEbtCFXFZJWNoNwsd1qHf1T+kM7CEMY3Jhi1nUP/9zeznH+dTowS8vuaeRfn9f3WG4SgoCl+WC9pGx9GoVACxl3TRH7yBbyJj6CkVgoTUJxjQMQQNMZ7qJJlpD0TbHGDRSlvE0rccF9ho6ae5fgidmc58+FWXLkMumlaVlibG7zNgxW5d9dDDcwFs4RjOrWJdZb9FQzVNm3FFiRV7gVeLnuAfNBWOgchJbpp0rhoJczixhMBfKkEU+lBwkvT/Nxzayy2PEjLmpvweg/Qg4atGM6tv2eaJnOzMbp6DrE89RKxtWacjg0is7vQYy3s9th4ocQuV1ht59bzpRDkVz04azPWJWqKnJj67+beT2P8LGn7F46WlhZ0XbeQNqW46coFXtp7mAKgIdlXdhzYnDiC6Jrkm3frNC3moTiJBIryRIqoy87pxkrk8BhCaBQcCWaq85RHdPYOnsDsdCAaoUMf4Q/MJ5g+1c/es0M0RCUXd36aicAEU1UhGhcmqF+aZdGTxa95iJLFFwsSkUkQkjHVQTTTyK1vfY504peolpYZ75K2zqIWp06WU6X8RJLnMVx2NEc9K0+P0RVoQxoLzF67QmPfDlxlfoQQVNksNXWLPA92BX9/RlLZeJh1U+OCP2BZZxXJ0IdmM4QTm5ZRiv68j3jKwN7qsPSbpKIutlbkXQgWVs9RYa9GVAEKwok4t1edIy+ul3bA3qYCqxHrGL7AIkpYnoCjqotB0UdEq6ZQTGgMpRhkO7tWvfRWDWHXDQrFbtf3LfwjTevTjOJi+9B5QONIRzXBmgPo+T6uvJNnSMpSkqMpiVAmik0PPEFUpUFo7EtcJ1tZKJVzJRpvde7krfU0Xw7U8Ye/1UKHGMUuz9Dzxm/S6a3gUnUjKrOAFaokt6rXLWKyEJRXpLnu7S4eZhNZsMoEmpIce+0pylIRIk272Ltu4JsfQM/P8pu267wUupXG0WF2XT+PRBBe93CT16SKBRYDlaXdr9X8t5nESnoWp+lensWd38DhyHFw4x3aCrsJ3WP57y1dXaVbgV68vr1V92AlBZIzwQUuF4Z5XNx74/pkBVIkx12nCQ0l2fQMsrXUE5cJBMkb0D3L1qs24qIsFKNDDaEhS2vEdo8szS8lBbEJHw2HlxG6wluXYX1gFZJW+WPJX86z4WNIIbBh8Ac8QQcj9Lsu0s9Fq8ImBalFD5oUzKfm6RBebELDZrNTv/29xCOLKPkWYHFi3kq0cUtvDVTdhhCvoCgghBXwEYBUxLUzzFz4Lyhl4iu3kfN9gPPxJnYJxR7lJCcKNJvVnE7EuBRsLz4vGhJYEQHW49fBaSBU0a5qpejcccNipmmCu97fxTZd8tVXxkpSEpoUpKdvY16+yu6qel4Vgrwp0ZXiYERwT34PIQKsCBOhwUzITkFYsjUS+GwO/unLX6Xn9ScRyxGySis2spj4k9MM1LTz+W3lSEHxGReklM/6fCRs169jn9jBuYpKy3qu6JWpskPkZAMyoHDF2oknqrhY9RJ9/S9RVkSPVa3GwKW7CC9uEHOnOGCfRRMKITTK4zbcRgpRzlZHqxL0LmTwhLbjUnbecYxh1lejiwo0Yekh6ph0aBfJVdgt2soNHbVKM4iHT+G+/mFAwz4J5epTbEzqUGdSHrsDd7wTa8uh8AlH8bjW5sk2/SpT+7qQ+uamqziVEGhS0BJxs1jv4IvFOKlLReNGhAeNCe5+/Q2cwzZAsvarGdh4hVGs2LVNXcM+r/H1+k/CDaVzgIzIl3ijQkHv4mFGAnmqTIuKopQqynko0m7JqGEnahrWfMsFwKOBVNaWeLMVVhVPvoTAKVwrSzj85fzg2EdLvsVHTz7PSlUdV7r3bl1z8fVCSobrmi0PYaW47/wJCroHNqstynKAeUF7yKpWaEV/WkBIydGTz+OPT4HQ6Ru5xNXuvRYKByS8AX5w7BP80vhxOrN2OoYdCGurVIovUpkoAfMVNqZCLubtk9TMnGL7nhfRis+XJ7DIVVMyHu23Gh4E1qod6AcGcDUYdNw6XHq9khZPdu5/B2Vdfpa0/YtHY2MjH/nIR5iamqI2n8d48kf8X3/zn7jU1UuoZYbu/qHNiiDGgJ/3fC9mrVF6jqhzgbkKH0MNAlODdbe7JP2gpKJtQeHKVSCFYDyoOPDOAq4pG9dvVdx0corbxmdB15mqu4OZaiffPXoQU1Po5m089uzXUMyyGgSSOd6IvpfA5ARTrhD/NfxejLDO50O/yMdfeIYP21pZ0WK8UBQXBChfi2PYFxDtDTi870NbquTqnz9HPvVDTMNACB2n/+dA1LEuYaRyS+nckFZzwcF0lGzATsxXBqKltLO8JWWnp9DJZbWMQ84z4EiyLxHh785KzpfrqNEXcEZGSbTtwxtbIhOfJMMkoXwz/tAO7P4F8uHTN6xZOuX1dzO5ngaliMdDKKkxRid/on3WUv4WlnguqCJaNETF5MPcvDzLZ4N/xrDZTkvTIF11w4wc6+b74qOW3ZVp8gu5JT605wmeffZZYrFzjHQ2lpIchaRVTTBBR3HHKim42qDvUbj6Q9wp9a7nZbPsXdDsPKMe5jPiL4AC/pYz/PBFH6ljdmxFjT+7gNuM1xkVnVxnOwftleyZn2OuomYrqUFYukbSZN3vp2v8EvXLsxSA9SKS23l1gAemX+P15XYMNBZrG1BdbXy3IsRjYoGjdg/vAJt6ZNzwvdPYssfSpKTjwhJ1bkfperxVOdSwYVlwKUrdakIIdrqa+c/eOb4Q+gG/sfQ4lnb9JjtHcM2tuHTzQwgEfSOXqJ+YpQ+NBVuY7vgUKbfDQuQ0hdaQ4tdrctgLlh7VJlBRUpiREBkOYHOZCH2LgxIILpFMWUnbir8GU2hFHT/FoOqjXY2WkHApYXW8ktSyG6kpxhtSTDZmecR5O4/e8VFGzgmW3/Iw8+bv4KkeJr3aRU+kndzcOpqtnPmHP0RXOIcym0kt/wW6MEFpxIy3byhjF+ioHMCZEahCC4P2cbTi1s0wHXRtXOWC6sLAWrzc2UEMwJU6Tnk2xL1XmmiIGPy3CdutH+iiti3A0NtzeC7H+OCkg5kaOy0rBuEI/DD8u/zOvffRMjLBl98+TV10FTMXB203SNjh1rFVzeCsb+cNBWbxz0sFF2rCHDkUZO3rx1HlZhGEMHEN/oAzDceQHHwXUt3LtVLCkqg/QcVyG8cue0t81drEOkoTrKXHOW6s0ugwmfZk8QUWS9p/xaMTCK7QkqhhQ64V7xMoJRG6YKdtN/X5FCPaAkv5HI1LaQ7W3g+GzmXbdLE5QSCVxt5aQWD5HVrUNDUywFj2XlDfhf+mez8RPkFg4QjueEfxDgti8Y+yFpHc7LWjiuhLxFCUVU6SrRzGHenCdmmBiUqHlbzcgDoFg+U0uWtpnvYSkgGer9iKk5qS3OR6iQPyR+SbBM5hnY0ui7Q5Krr4E54oeePuqL+0tbEqzn2bgmPzBlNFo3PQcOaC1JoPgKsIP2OVE6UyOD3xfZKOI2i2Ouv9BT+eeDsF1xrhuevMtoasY8DW55lN41qZQ8+mmOvZXfQ81jGAjKuMu44/S9/IANe6+km7vUw0dyM1i1wqiwicQvHiniM0ryzeEFuwXqOkdZabpW0shDjn8uDLWucSXp7l8Wf+H/beOzyO6z7Ufs/MFmBRFr33DpIgQYKdokhRXbKK1dztyJad+Etif46dYvvLjVMcx/FNHCef4+vIRW6S4khWl6xeKNIsIAkSAAGiEL1jd7ELYIEtM+f+MbMLgKQlMZFIypr3efiAOxjsnDltfvOrP2T/xivpL6wExfDh7UyvZ+euddxn66VkPESB13ATUKREUzR+vXofJ2pvQVcU9lPDl1b911nzK8U9hu5bixLvQ0jSgnhKqsgoOYmi6vG9wTeWx/M915HTeFY9gIuCJbT9DyguLqa42Mg7E/zJfaQ9+hg7gFZ3ObreHHc6DnVnIRg0Uv5EdRQHjKWlkBwUHKxMZjHBQ8Ki4YukSiPjUWzix0qylPaHeHiHSlml4JPuetypOaQ3dzGQY0dTRLzm4FBBOQXjQwjAlTNHyZ6fIRSdAW4notjRTWfz1uwUXul4kGhWIZrD2OSklPiyUnDNJ6MuzBMOvY5dtaNHh9EiEWIbQXRxCFtiPp6IJH/O0LBFdSMIIWfyBL4KOz3ZHlpKTadNcyNocWsEprvR0AniYmzOxTOVAbYPDFLScRyBIDthNVO9PSy4u0huDDI/5mIuMMmkOkJB5knSFHOx6zA+Xklv74L5oBB0U8vJqTqiaQlEE417RRc0dBwiL3GCtYktNByeITK/l6nb91GmSMrkCWOPU6BTrDKThqpowNHUAvYMDXHk2BHGUtM5tUzFr6CzmxcZoAzNrKP0Qs51NLd8nr6kRDzRA9ijVxJVbSB1o0qFyTGxiRflVcyJFJLK53mkop6IV0MVgltdNja2/gC7S+cruX9LBBuPlGt87r+e5hrfMCfqNjCRlW/khTPCGVl0JnBg/eUUj/ZRND5ELPP4wHw6I0E3u3N7aXHX8y+Xf4qIYgfgF7KBTYE2o7yNWGYeFUaEoSclLe5MrgtwBhaovPqK+D0EZjs5tNhKOQU0JhgZ0SUSoQgKs0v4Vsm36H65lWkxawYhGN183K3wi6ZrDQ0s0Fa7gQ888SMKJobIj44RSHIAkvGMOY7WzHN5li2+SQlgIqKwGBaUuDTDhBKFvFfCNG/XyDOcmpC6Db8/39CypaQz7zaijXVpaMFzRyd4IXQDwbIE6mUbVbKH3tlVLFR68EQDAEynh8ndsomCmnoUm5/2vaMseCpY9FSiGwXUALC7u5kc2c/BwABbU9aT4llNUTgNgcBf+HJsuiClwO/PQ0EnX51hNB5dq5ORPkRD9QtU0kK73kBqV5Q1+gx/Xv9NosLGdLJGtus5hGcrEomqKtTtKKBuaz55FW7GT/tpv7+bEk1BeKIUe6IMZ9rYW5/AlRuMYJTUiRHWD3YZ7hwIXneHCLgdrPdGUPqHmDnxK65pvIdnNxcazvOKYOOiwNNRg6fDBfKfsJnZ93XfaZJH2lDZStQ0d10vH6dadMU13KvESdakTVA4qi0lFAYimXks6vN4FxKY9LyKFnSizmSj68qSZkMq+P15IASZYt584ZGg62QFoyjJKnkynZxoGp2hCE6xj+P2QZw4mRL++BqVCJT5CDs/+bdw/H5Gp1KYKPolhvmaJflXgFQ0ghmdJMxUmnMZpiMSny54fS5Klk0Q1iUl1a8ztOrnIHREhQ17TwWnC5vMLyH+hTMzM8wGZilTN4CEJl8Uu3QQkUu+f0KB0DpJaE0UddLYw07qq4kqNjORt+SYEssLJo2KGFNRPtYXYe1MIhNKI2PKDJOzKSxGUxlGUOo0vER1qdM/10r/XBue0Cg2MYxiy8Xv9JCgO5h39wE6AxX51I3OMp9XzpDqMQMeJPZAmGhGAxFtlELPOKqmoQFCapyWLkjfjEgyUnTMJaXGrQrxLogF+SgK/XmFy/ZN4q4ym3teY3/VFWY+SCPHYPFoX9wsKpEUTgyxvfklhvPL0VAMv+bQNL8/OU54jQt1VSJr+5uZn+ylWA8x5u6hr6DBrPWroEmdXnslqzmxlLVFKvj9+cj5THLSZskPZ1KgZzCa6sUj+vD7l/zfotLG94c/xJBWyQMbloIcLiaW0PY24Vq/Pu77dfKvvsZx75Wkpk0w682h6UTbinM9pl+bwDABDWU5gTnc83BTcwBVg+GMFKOylZRkzC0wkwTFU5KPv6ChaK3MKSrD5VWMpM4gRZKxEDSd4pE+w0NBQkpeEKHoCEWySm/jMXk7mlSwaRqlI6fxLI6gTc9Ach0SQ0uCxCgEvjCP1CYIzz6E3XmZka9JN3zmlGUROuGuef4gECLQmEh0dD83Btfza/sxRtOyVjjHAzxb6OKyYDGrxgdozytjX/U6dCFoLtVoKM/ho+MprJ1JYt7dxdDGFxGKDrogfAwOLxjOpMV6K4qio0uFiYkKMyWB8XB+snE7ejwHnrHJqbrGttDr7Kj9DULAwnWgHBhDqrqhrtGI7+HVshNF6EZ+KylwyWT6+/uRmmTsjOjVy3mJPbzA0WgFLbarMcp1SX6UuInsox5cpT3Udfw9CbKe8sJ8Hs66PB6tqEv4ifi00edqLIpUQZMaM81PUVT1a56w3UpUGFF5YeDh3Xu4vHWS0JCPiezCeL9KReFwo+G7pkidm154mMb+ZoLSAQg0KVjU7HhKGomKpTQDGgoH3GuNQZSGmcQIRlBwSLhlzM733RJNSGxSctstN8Tn99DQEIf7htDSk2mRs7iiY9TrxssLOpx64gj7nS1ousYzjhZuCG8gR7rRkRzKZCl/GKCpKkMF5RROGMKmMEdvNEtjKj1Mum2lxjLXroPdvJQOjsecpCyEWdsQjae18o5/CK2nAk+JxhONDWhmkuDYU3UknMOjZR9EKio2GeUz3h/icwyT2ydJ15OoGHJxcJWXx3v/jZwbnOzacjPqrinCr2YgpFHEXBUqCRk9lOz6NqVqBKNn9iFyICBVcjo+iihwGGZTCV5PEUkuH+nuSYo9m5gIGuONAHfaBIqiUSO6qJJdqDU1NE82opvjr0uJPW+U2+a/QufibihoIugq5uFneljdmEvKbBR0Q4upITmRrfDM5SlIFQ5qM2zwz69w55h0Z/LDNeWEhUDgYGdiHlt+o9HY2UbefCr6rhxuKcmg9OfdLETcuLZ/keC+fybc/Wtjf2vczXfvuptoXPIRPCduJJcJfiY+GdcS/UvoNNeHXLzkaCcowvE5G3bNkzvnobru91BCJ+k81karuJqcnNMgYHKigtmAkRMsUwmiCEhVnITGTjHmzGBc+IwXASmZ9TzObyrdSNG3bJbI+LWaAzYaOo+iyCx6kruRIhJzWzKITQup4PLWxVMgDYQ1fJphIZjRBF5Npyavj+lVPwdhjJsUEXyrQshZdfn0iguDmq7h3+ykKrmMy102vvdqHwdyZygo/C7VomtJaFRByzfava67g0cro0TVWLlD80VKSj468TRfaGtlNPQHYFMRZkLjNJtgPAQ+DfbNa2SKWcb8T+MJDRt96CwiP7Uej9R5teBFmia3EjPjSwQdhakoeM3RFOTOq4znZICIANmkSZ07nn+Qkcw8ikb78QWTGShqomtHDdoy6+hy14aVgUxL2uG60T6y/SEKT+2lcGIQ1/gcrXVNJM8H2Hz8dQomhpbFRRh7Qc7kEE1Hf8BC0nrmE5M4nZRKSDc0n1JI2pQc1HCE6ZL/IG++mNVDyRxONTRlNgxfcGE2b34+lZ7u7YjgWh6pvp8dixVcP9GEIlR8Yg6BYDaQRevxPeQnteAqW8WHt5TQWLmVptJ0LgUsoe1tZv8jj/C61JGBbGb9WTQdOUqWx7N0giooTZvhtEgjarrZ1w4lA0Z6hQd3hqkZUagbniaqqmTMLZAeXEQiuOdZI+eSANpLKvj857+Kpi4N4Y19p7nixHEckShhm0ra4XlCTYafSpXeyydbOrGl9bB7+GXmjy3SXpAT3zhEbFZLiRqcXXoTlVEKxl+hcMcemgcioBai2gqWrHRA6niUbcEUcmaaAJ0yLZc1SjMtVBGWhiN1TGtoJB+G16vXxoU6XVE5XlpNe7HGPzR7aUjrMqJdFeNtKyHVixpWmZvNof3ENaxJ0WifVc2N3digR9Oy4qV1MKP3hJRcNXCSHWsPLCXvBMKbk4FZQ2DTwP2QQs+qPDo95eQlnGYyNw+nP8Idd5WTo7gQqsAZCZnCsIadKJfzKkLAzbbXaBdXEZFGCHvRkRA3vy5xyiv4yfVb0LVDfGjyMIOF2zmwaDM3MqOGrBQKQmpm0nUjncN8hosetToedBKWgFDoz09mODeJ3a8/iarVEcUW14yZCc3QpeDxq+8kuNdJY8dhQKIIKHTlUDe1B1sZRM7cWM2fpZ4xGof6CDrXcNesg7zAPGOhdobTMijyTpO7YU18vGNBOAgjO/p+ezcZ4VRypZsJ4eeoOE1UMxzmNQEvJ/kYmHOQ4erjgP0EyE8AdhBgR1A81m8anwwX4MS8IBV1M5S6ItQnmxGSEuOlArn0DFBgIi+RmWwNlzKLIkAXIItsDCphBrNdS5HAph+gLlVez9kYP66hMpmZwvvSO+k9XWrkftPhqikXyflB2h/4DgDpqwr4j8l/pmZ6PXVTWxBSkJTTBWrECEKQy59NGnNZrRT4P40v9XkW1NNkZg2RkWVUKFFK27j6yGcZme/hpJpKJOxYdo/QJeB4fqEhDkkdVWps97cAcCp4BdEeB7JnEAm0tM5Q9TCrDQAAIABJREFUc10JNptCNKojhCBYYywBXShEtCj7+zv43LqNcXeOl1NziXiD5jUlr63dwFSCSu5CHsmaSnlWIpHROWTUDMlVVGzZtYRnB0n7yB9yMmMdEdXMSC2laXZWOSS3ERWx3IgKbc5yUkSvIbBBXKhxL+jszrsTNWRDqDs5njnNbCAlXt82JXWKouJWI8p21ghkCughyC0hJATPyGOsDtRim+qirTJ1pU9WXAiTcetB376H2CGb0fIS6M5IWnaeSizsOLfjwyTMVJpeazATjW+KhqkeCBfvw2YKbDFBL3q6GLJMKXDZ9cfd6XTnljJqT8dZ4ORUOMwTjclcE07jupw76J3+e5bKdiz93ZrcOf75O9+geWMtSal+7m24m6gCdqlx1/ivGQ1XMxrWkY45nnEcQ0NHpCi4Iw3YIyn4ogozIhnNcRmqPEmZq4gNaWuMrxcR9qsCGRqGpJXXjQd2SMlwyiI2mbDMEi/ImQ9QPNiFBAqB+YQcOpRq4qmPztxXzGPLZVlF6tSNDVLZFYLAMCO5xby8/QY0VWU6I5fNx1+PN0kHTrvKmHTmMpGmkKacor12/dLzTmL2eZQE58/QnKvIHLuOm4b3oOoqq6eDDO84yXbb41TRFW+DyzUHCIpqivn7K/6SnrY2eF4wjpcD9h5j9KXE4Z0ku2EaYXsNt3KQqrSfAZbQ9jtFs3+eX7Z1Mts3SG7Mpq/reDPSqRx2kLxzJ7asLNzba3Ad/hOGfArtE/k4F2xETX8IRYeKkUyiQGuxZNv8BNkz82gxR8tlvkctNauWfB3AMD+6nOx0OXGEVQp9s8icLBaGExCpYWZO7yS7L48tyS+zIekEe2vKkfOCaFLqijch28w0tuCc+Z3Gj9RFH+tuvoJydwWdB8bo2DeKXJbvVFGhc/8YcwqsS1Sp1wsh+ccUy3b2il28wlVGUlrTz6Evu+AsLRxCoAmF/Zk6m6fqQFeRRJGaoLsjnRu2VjF6UiN/uoncKTcZwk+3OsYpdQQpJWFFNR77y/wmJJLnKhrYoldTbSZORUDEYeQfEkgK9kdQFCeDh9Ipk/1U2IaZLb0RUbeAmphFcU4ji5eVs1+vxxC3JB/Rf0SV+aZcSze321/hwfAuJILv3/FxJjNyePDam83eaeBPMzT0RQWzvhdIzUiKKw2Xp2uOzuMtmaI5p5iDuZdxlK18WX6NP9f/hgdmP0pvWo1hslU0tEwbV+x/mhcuu+mMTO0ybp548bKbAFhMSGSrr4VUewENM/D9w0H+drWTvuTlr8cG+ZM+6k/nM54m+GFZGPIFuR6d9UPdIKHncDvVVxo+HWVlZSiKgq7H/LVgMn0efPC042jcPxJAl4JD8wnUIDimzNHvHMOxcBzNXsDmzEK+Wl3Nk8MbGGw+QflEBFeuRvn7fNQoy0qIGlZPgpF0XLYZIzWJSSRZYXrATbU+Zwp+NmQwD5miUOCfQtFrDD8tU0OqorHeN82LiZVoCtiIslq0owhIyQ8SnEgkKXeB6hsH6VGr6ZBrOHDsAUrLPkLOwnrW5o5h1wYQCJzpfRiFsM+sbgLB7KMEaQGx1EdxBZASISF9mD2zi2xSn+OYIy9+n12yhm/wNeNlRyimIsvQZo1EGojiiH9ZLLK6byTA7V9Yz6GDo5yYmiVxbBFZYHSaIiUbh7oIeHPJqXBTvHMn6qlJvidjiVWNOdRRs44O081AmfFxrxB8L8NGgzeKsKukXLme5L/+GNGZLJoODGKXENElugBF07BLyZ7pEF3ZgrAwBJ1Ouxfp6F5x/+rsDFWRbBShGn6OGhS6axlnFKQkN6+bqupDCCHR9TZaT1wVF9xiUZkS6LXNkJjmRxeppoXgDDWXuSYUoVPGMKqQhGzZQNBsi8A9shP7YhYuby2J/ko0U9MrgAaXyuxcFJ9m6Hsyyl8nsXQv8QYAruP1hHuCOJLdRO3z6DZDOB13p/PEup1oQtAOPDk0gq4ANthv03CKq7mtaR2dLV9mLtqzQkvnXlxNzcd2seqvvsb8Do3shgEz9UcH1cppuqLraEhUaVV88UAEKXUiDj/2cCoIiZQCxVZAprOQ9cnms0MIwM7dYx/mlNQZ8w8zm9ZnmixNc6SU6ELicwbICjlBmoZKKbEFY3umQfFoL6q+K16z9tzaNUndaH/872rGB0nqGYWZkyBgKL887iunAePFdRR5xpCajobCMfd61CRBqQzhL7zprOddgVfjypY5juaGmMh7jJKRPWbeR4Gu6fSNOVhIs5GbYCPVHo1Hlrrd48yP+6hoX0N95c1QCfvvvRcNLf79Kbmzho+sAF2P4PMdxO3ecNY6vxhYQtvbQLN/ntuPdRPWBcraHdx0Yh95fi8IQX9lFdvuvpviK5ecGF+VU7T9+FlUhJGXC4y3ktj8xzChHV+byu36JDO9SfHjMRq7TqLq2tKiAYbyizhaVUfhxCDeejuVNw+TqBrSVW7aMKFAAY7wLP3uLdyXvp3ahRaU4NyKB78aMmsnLlscytoGw/wLjHT54i+I6aqgIMUGeUmcPDXDQBQQGqtyEknx11Cd8TTVsosy+rhPfAZdGmHdQZv54FmurpM6qtTZ5hHY/ZWMP9uInjXA3JiLhYlE+sZtnCyuRPFGyfXr5Eo3udFUEgJdvJjq5ERx9Vntjr1pnxQNVOlL5ohlXYazJErb/DpUvwQkMhqlu/untEo/Tw7+lHuvuZegqwp9PlYgO8qcSEGa+bSkEExJs1KDohJW4cXNO5YuJOVSnjqkcZ9IrtefQE6WkdNWzmr3yxzKnucQHzIywEsjynXDcCe3JD/Cv/FFI8oVSE/0MunMiT/Mha5Td7qTjoq6+DV1IXj+8ptBwkF9N1tb/oXSaZ2GGY0PDUT4xio17vdmmFUlm07pjLuz+Olut2nySEMU51M/NkDNxBCuhPx4nxUXF3PDDTfw1FNPGVFqiiCvoYbh11vjGepjD6FtkWp+T+aiAC22jXw293KkMHJIHZkTTA32Uz7QwxX758meW2TuWg0zWf5yRSAA+Tm3Mz30G+xJbfHjOWu9BAZS6H6yhJSCBeZGXQQmn2Q6/zrqA35uOr6PQBGUZp5kXqQYpeUKeijovJIBirmsZh9VShe6LpgdcyEQpOQH6VGr+YZiOISL6igfDh7gk+vvRyhRZPWLGBZtbWm6cS5rkL40zZffiwS7t45TKW3YFjM5PVPHGmlo4V4XuwhjVg8xVTdRxc7+pi9wl6MQfr6IpunxxAQ6sLYxlxFV50ttfVQ4Emjdnh4vDyVR8J8sI+DrR9gU3O+roPTJ03y01MbPKhwrO1kRsVYTkZKOqwvY3D6ONt1F8uVrcGVFCA09zdpALf9+aI6n8m1MzveSFxnm2qRS1vbW462OGN+L4KWyfKLhUlaND8Q7x+kdZ1JfQJdGJKwQCuvCdSQoSbSn7Y0LbEKAomhLSVBNE6HhcwWhxHEWklLPsY/IpbWG4XowSSY5mhumP4Uo+zZSRBFSJXl0O8n+SjBrCgtT22tEyUqybAKfBgmZfeRtuN+4cGxsJYRnfRzevAtd9bK0ucCoO2uFC4CurNRCfX16Gn1esLu5irk1PcQcJJNespG7bhd9Bx5k8YNRFnboVCtdhilVFXRU34r3ZCG5TkGBnkEL/WhmIII9nLZs4hnzJssm4vcTi7TNsSlkJivsmytE8SQRccySoaWRpsIxdzOKFGSGspY1V2KfmUZdMIV8BCO5RQwVlLNn31P0FVfTW1Zn9KGUnJkvsnZiyPBpNLV4YVsYab6LFI/1xX3lVE2jXCo0/v5XmOnt4L7mSepDXaydr8OmVnFk2AG5csVYT6TZUKVCgb+aiZR+xtw9aCMaw+k2frE7jajaSI9cw7T37/ly2kkUIU1/tlxqfFFmnu1D2ATpN1VRkFnEKZ+RYxCpMziRS+6qQVRdR6CiB1dzqXBRhDYhxJ3A14B6YLOUsvm3nHcd8B2Maf0DKeU/XLBGngf7Z+aImGYC3Vy0MaFNAkPT01QvO7+1f8SMpxPLNgFjMsai7ADstgIWiofhdOz3S9LG6r5uvvPPf8v/vueP6U/PMq4lBEOF5RRODpFUGFzxUEGJ4so+RXg0g6MVH+bVKScdecUULo6S5Q+Rn2bYD0O5xaiLwfgiVaSk4rob4tctrElHtSmkSMn2JNXIxj82x7hd4IlIAlLHuzDNVN8mHIsqgbzDFE3NcvPC65zKKaYzvxRvSprxZcueyELCH3QG2OVL4LXwBKc8NtKGMwEYzyviO+uqiCCwSwffOxxkrV9nXMww4kxiOC8/Hrixwk4lJTYirJKtS943sVOQCB0We53oM9MIMtExfIISFwRZPhvT6SGe6H2CjPFa1NQKdIwI1Dq9g9N9WxhOP0VLdIEO+xHIWEfMx8yTmrZiTFeOr+EI/oxyE+/zDVLk1UlZfYR6NCMHnzSukUKAYyW1BHGRKr1Mizw0AY+Xf5DbOv4Lm6ahSbBrUT769MO8sraBF3YuZQ83Bk8QEXaOZKSzZuZ7vJ78R/xTfcIynxGD6uEQ7nABrTl2tGXpECQKJwvKOZVXwvrQHLuW/Y0aWkCaJlI9GmWsewARciNs5gPCfG5GRQS7Oa+Pp9vN5NDG94el5Duv7eeqtla85fls6R0lqWuBWZ14NZHl1FRcQ/vEJIV621IGBIFRH3DMFZeIVBkla3aaKbGa+rQjjGd6aBZb2SwOUGOaStwpraz79SCia5GRgiwOOaOUTCRgA+bGXJyUa4himPoAFhzpCLNklSGMLTPTLhviM5THsNQVcaam6vm2v4APFY1wenEP+qyCx1OEL8vFq+xhhcSKkRx1e+P14ImS09DPi50TjAkdF4Lr95Sxe0cR3325h4gm6S1xGkL3Mt/F5jQbDd4wMqqz0DaNjOpcMRWlNU3heIbN8AuNqTMVw1PKrgg2R7xMfesPkOEw3h/ZKNk9DXqU4NEmoqsv48mN1xBRV+HQa6l76TCzc7k0p9hXrO2W4ioy5gPk+6dxjA2iLszjYZ5Xxh9kddoOchPLUIRCnVbEfNZgXGAzhlLg9+fG70WdCpC64CGUmMh8lnFcACIUQjqcnDUghj6bp9lDkvSQ4q+luPnPCGZ04vLWcMSfBnjYRiYKCkIVaKZ2Ugemo8Z8cmV3IYS+cmyjAu+kCz1bXXldCQUzHmwS0+fP0KbrCvE/npOSrwbh81OxQleABhnqRgbv/zt8nw0aT2axNBUURWWoM535xX50uZVsPZlrQ+s4GPURXXRjj6TEZ5mujaFHhgmptUAmulxKWr1cIB1YfIaQbTVzzgWOuLuJ2mcpCBbElQNGDjgdWyDm72bjxJpbeH7bWiN9jhblrid/zObj++jdeRuHMtLjDRZScntrB+t9KoNmZQkhBUmzS65ChRND3PXkfYZP62g/L6kbePh5D/9+dT1XvPgYWiSMzimONt7Ds01ZK5SohmVGMpBjJyWaRd5cGQWBKvaX/YrRnC1E1UYw166mbMY3kEQkwcfkRAXzgVzytXQUBNGohvfRbiooYIEox7Q29MAkjydcQfvBbdyc3MfCVA1dMxq3f9FPXoWbi83F0rS1AbcB3/9tJwghVOC7wNXAMHBYCPG4lPLkhWniW2d7WjJ2Icw6fzoFvinDlCkliq7j+D/fJ1hTE3fkTqssZf7ltqWFhOEbtFxgA5jtnOExtZ4brlfRn+4867qr+7r50g/+jS9+8X8RFiIefQMwN+paXp4UqdsITVVTtCsVseYKHEcOMJ5gmGU2hA8QIVbfTyEhOx9X50kSIhEqZ+bJKyyJXzOvws0tX1jPwAOdKIEQijByAZUW2XhOe5xVWiq9EWkUcZ7KQJ/diVcPkRf2MepeFpwAKx5MEtDtLgRhEgMtuEN+s2d0bNVpRIVEF4qZVkQlJ+DlKcdRpEOSG1pElTqabvgtGZsGbJsb5pqkf6da6Ypvtpo0zW5SIHV4bbac+TlX/P4EgtqhZKpHknh2ywQvnXiJy8bC3Jg6hjcnkXraCE2WE6ms4vGZNiPlRYK5YQoFoetLgtOyiMzY/cZKFWlS8nhdORmjfjKG11GT9yBfkX/FSbGGZDnLz8UnCWP6Ay5rXUTYGM8p5G++9016S6pY19WBLehlbWeIyex8jq/axHI/E4nAHQngsL3MTzPfT0TUxX2RkBK7rrO9KwxCpWwqauT5WlYP0tDcKUwUFbCcjtbWFfemTQZYp5bhiNSw334KpJHoI19PN8dXkhKJly2IP9RbaxpZdeooheODeJITScKoM2tW0V02RQQ+30FW123h8LFnqE4JG4pLTRBZVKm6cRChSqQm6HmqlNpgKSKYRk+Bm/9U7gSglUakhCvkSwyFU+ncMsFVvgxWZVYTqatEjo0TGBghOOEiZd806mVGziebIrg6txI5aQM0pC7MVB7LtOMCpBQEApmkpE7HlFaxYYspGpBS8IP+axlUddIdZhAKgpHh1fRnJRlxqctNTQJ+vyiHIk+Ux759DC2qs06107Arh62bC+LO0VsrMtGLXcyWuFasLbsQbPSb+bxsColrsmj2zvHZ9QlEhGHaLB/sQigZpEbT2FaaTmptGtvTkil78BdMhcOg68hIhOCYIDLvQPOc5sWc9xFRVaQiCCM44i5io1dSNDZFR3ZxXEAJJCbz+LodfPzZp0j2e+L7kSc0SvvMPrITipFIRjKO4SrpiTddSujp3mRq2YwOVoOjRIJzSD0JsnJA11FVFdt8gJAjy1QwLe94Q9SQCJqFjSuIkuivJNFfCUQIKi/ysH45W80KMwjBsVQbrolFPFHwasZ8DU7VInU7EEWXkNAqSHleQZ0NwpVipUQOVI9k8uWrsnh00kvmdJiP94f5aZmDV3JtK/aCVxs3s1l51ljiEkKli4Rmw4aKIqZo1c09qeZrPPfUEN7QcV4Zf5CchBI85IBSgc3UKiIlujZOeO5hMp25NCRtXtGu5Rq3hL7nuLl7H5PZnbyyZzfZkWREJCUusOlSw6d6KJ2+ArutGs01yKEqP69taTD9QQUaNoYKytl6bC+zkxpkivi+VzfWT9HICYZciUujISQBJY1MEUCVRlBb0Ww1CR6Nl9UNjDnzUKM6rYePIDWjVvdIbgHPbiowUzoue26YayMhJBHjtdy0uAFFN4S0V+zH6SmOmksvygdT95PlPoXUbQT6dpA2s4asBDea0A3BVEomRIBDjl404URLLEELJ8N0Ed7hurgbwkiX75IQ2s7xPvvOI6XskFKeepPTNgM9UsrTUsow8CBwyzvfuvNnozuJh9dX87EEyS0n9pEX8CJ0nYre0+x++RUyJycJHjocP38xz8lz2yYYT18EIBY1F/sJmAEHAj2qMTYxiOmtfta1V/d1893nH+UP0xx89tgLFE4YZpbgpIueJ0qZayskOrYD24FdXMd95B37E5qUbv7X+1ajAIWLo6jBAEYGQcN8F5qewO9yMJXqQmr6iraDIbiV7Ck29hRpiJlDFWMcKXiO3oRBo6aiMPKW+2WYkontgKBgZjouzMYxP9t0yUYz306i6lpmhRDUTXZi1yOo0kgr0uTV6FHHjN4QIl4tYVvbITYdfRXVXNBHkgohVrdPGGafqaBZb86MV0gqXCD+SmucbdQn1AV5ngQyFzMRCPIDPlb1jKD0ZDA7m02BowCH6kBBwb7YgapFUDQNmxbFpkVRNA3ByvsUZ5puBeyt1Nnpf5G0mTDVdHELjzBHSrygOeY9Ln8YzbiczNgWuGHvs1RrCxzZdieKEORMjxEXipYJxE+ol/GR8FfweoM4pI6qS+w63D4U4XvtsxRNGQmfizwaH385wPbuccqnx4wEwrqOXQhuKCtcMQfqGxri11EwzDWKEGTIFKOyhtnfxmPTCEIZz7MtqTvN+9IVhcGCMnQhSZ9fYLHGlKqFME8zrqFKgd2exlz/31DrjoJQ8JxKp+epEuzLcrQJVZJSmIBiK0BBcDxpWVJi4IB+GcePX0WbHmQyPcxDVV7ct3yJe3b+NVuuuTV+fxkdk9zxxI/ImXiMu92nuKVxB1nO7zDVfguDr/4pE0c+eoY6UEEIG7OOm1HEGT6DMfOoVBid+Qxb63bx4Ge2sXbDFmxm+PL8bCbrhwbiNRljbRaA225jpMuHFtXNJSrZmpK0IppNpjmIrkpfmivm3369pog9d60m9Zoysu5pIHlLPh1XFxBRjJxhmiI4XVpLT0kux8ucbCpO43OluWx0J+HavAnhcICqIux2XPlL2v48fxKqDkKXqDpUjAcRepSm3iiXd7XgWuZmoSsqR+s3glipI/CERnl5/AFekS9yuOjXZ+TSEgSDSxVHMpKSsS3MG8LbYhDXwCnSRgZoUBOJZucTizSKrTGBRixVsKqolO/cTYbjL3Gpz+BSniHN/pc8KbPZgBpP3yJ1Se/MPB0hnWnNKFWnAQueCgZf/RMm2m7F+/RVZP2HjYQ+hZzpaa6IuEgI5uFYzCQhmE+atxH72jV8a8bLSZvkN9nGPX+8P4xqlraLje+ulsNm9LpAUR3krLsTZ58jHiBl3ghCsTFxSuIdej3ebx3+A3hD02YOfzPYRijo0WFAIyehGEWoKOLMugIwEpkms/sxVAnerByEVAxNY2y7khK7z0PJySHswQVstiLszi3MuEtXWDSElHElQcnQBDYdo6qB1KmdGGIh0Uk8ea3ZCNWZxCN5N9Pm3srJzPfzeG49a+64C19yAaoAu02hYVMTqs3YKwYLy+IJnM/2mYNggqEVVXQbCkZE7RWn1tPY+SRJ/oe5avbvqFE6EYpEKBoZKTMshFLYG1zkV6l7+W7efxIRUUZVr+EjiCHm5ykBhmy6ORQSoQoKa6xAhDejEBha9nkY2HKuE4UQnwE+A1BSUnKuU95xNrqTWNCDvBTwIRUFCbiCQbJ8PoTDgWvzpqVzczfy/UzJ81snqBxMZtvJTMM3iFgBDcMfIJbywz25aMprxit7YtNGFpqXLMo7NjTwvqYGRlNs/PLEIbSo8ZaxOJXM2ms/RYW7B3q/DnYNNBX69+KL3gICRhIK2OI7TOJgF5orBVtwFsXcHHXAm+pa0fYY+dsKGANmTkyTtjaLmspUHM856EztIXsuHxUFRVWYlzacoTRU7zrcC+Pc1tbNI2tqjfs0SyUlhcPcPZxEw0wCEsnk4mD8OqqQXB06xur2L/Paxn+kfl+YBn+EfbYlkQApyQt4qRjo5HDtBkNYEIKogIHJD1Od8zWklER1G8/27+HDtQ9jl1GEBvMjS2+CmunboqChK5LxzEW0hCl0oZtmLtNMo6psW7ONe5330jzRTCAU4Nl932R9fw0bOk8iFXj9hkaqVA/fqvo9okJFVeCaLDfPTAdW9OOg3cnc+/+OqoHv0KyfRAqok+0o6lJB8+VCrqJrrO4+ji4E3tQkGr/5j/zd+vW89otUDgxNxWwpxslSYlMEG1ZfTYcyzf9KfIrA0XZedd9Fk1djrV/DljmJHDrKYMnVpuAW5c6BU+jF5ezL6Gc0LYsbqovZ6E5a0e71O3YChsatrqie3IMOpNSZsM8Y9fskICQjio9szU0USHMkkaBohHVzowXsqsr2ihxc63aT4iwjcvIokocQZh1UAaTORqlxXIYvMoOuhwEdRajUb7mJCUcWp9sfRWrTgKFpW/RdFm9n7YCks554HxaPzjBXnItvYZ8x5lKjeaKZxpxG1l51PQAHnnuUk4u9tFUcxaFLbiu6zbjnXdfiHymlvWOURU8l4dlCai+fomx1OZHIDOnpW7jKvYGRkQpOdX3NCJjQFZKm12KLuCms+gBXXnX1UieWXssnep6nv/M4ZQxRPDDJicIbeVBtiGuMVWFo8gtrElBtCpqmo6rKWQ+Q/TNz8S0ihgB8UQ1naSrO0tT48cvLs/hX/wwRXZpClSHeSAVOueBa8zzX+vWU/PhHBA8dxrV5E66sCLz4EDP/9Ayb2/Yym1JGf66Nsoko2068SEp4CvnJP6N+cYppzwQnC8qX5q1MwZFyG4U1C2QVOmh+8hGkruPTJnFdUc2anDvQfd9kSXspcacZ/myKEOzctpmXjryG1DWElKgL81SPDNG75jL0wKhxv0LQ1NSE2+2mbLEd+vfSn7KJsh23G/k064sYfu5eDvV5+FX0To7KGm5ozEVpn0VGdTQBryhRvMmS4qjCkE1ndVhlXVhl0VPForeK1Ul9CF6N92+NPUjW9R/h1ftPISWoqsCzLo3IjM+Qu1TBkUwbd58Oc+/hID+tcOArSuIuNcQt5evQMneykO0jPX0LbvcGUr5WS9qJR5nIOcCswwhSkOiMDT/PyoTAwky9tFwlJ1DsxbCoMrk4ZPoNrvRrk8CvXc/yfhXQIMs7jaIoS1uM+eLuDHhMzd0gui0fTdFAdmDTNxPFeC5d+fqTppLARrpP5U+9Hl6YnaTAP03erG+l1tMU8npseYwl5DGRkMeO6iz+6aoamkrTqc1L4cBpD1srMmkqTacu7+scOvQcjy4eAnaBtEOsxNYyoXHQ9SD29HzWBretUH5cPl5DbX0z6aSjSwUpjReeg45RrrrKRSBznJ8OPYwudcZd03w29R7U7kGiuoYuBZMyFY9D52iFnV3pqdx4ZfkloWUDEHLZA+Ft/WIhXgDyzvGrr0opHzPPeQX40rl82ky/t2ullPeYnz+G4f/2x2903Y0bN8rm5nO6yL3jxIvIR6OowG2lpeSEI8aGF6/fadAy2ULzqUdwB8bwzKdg8ycRcug4wwoLC+M0/uIIMwlOshYj1NVNMNFsmDuFw0nJffcR6upi9rnnSbnmatI/8IH49452ddD+6ksArN61h4Kaehg6BD+5GbQwqA74xOMc0av5yA8OEInqrJnrYNf0XpA6ilnQUdeiKEJw80c+RcX73pqCs2WyheaJZipkBXa/nbKyMvomxmn9oQ80owTO6rZ/5e8+6KC3ZBWZgRGaphx8wnMjBdJ4qz7mfYEe/zGEEFQ2bWYtP8EpAAANKklEQVTTlnoK6IeynVC8mdBAgNCxNqaCR7i/x4umGxqsxPEBbN5JRrML+eVNnyJqU7FJwfcdKtvXafh8Bzk8WsbPj6awMH+c7Y5DOLsVyusvJzMhyNRciP8zkk5U0ynRO/BU7GUibQG7YudzFZ/DM+qhIquCTFsmZWVl8aTKy+9937M/Irtzgtorb2dddRn85GaaXVXsT29i+46PQu4qbjvWbaTxwNhu/7Egj4/WGsukp/VXHHz6WwRGEjm+qoknaj4QL0xfrkyyzuEi5aGHyR/tO+fYPPjCC3yRtHiUlQr8Q00RHyvMMieoMQ/mFnexIC8jcWcTSm4ig3d/kuGMjUzlrKdycwFl6izhyTLjOWBTyLqnYcVD/1yEBgKETvuZSp7ngWcfQtM0hKJyKlRHZdRNq6rz/31mMzLNwf6ZOdJtKr6oxva05LMEwpGRB+g89ZcgdYQOTe1B3Lc/jj/VxtFjH0PXIyiKnQ3rf4bbvcGY8wd+DonDZGZeS2/XasZaps2XIJj6kI1jSpgN0SCfqdqAx+nh0899mogewa7Yufeae2nMaTznXN6Yu3HF78ZP+w0zpSk83fKF9efczP3+o/h8B0kKrcE5Woazwn3uPjxjbTbf9QR3jNoImxrMb9QUx8dv/LSfkS4fhTXpZ12z2T/PHS09hHQZ9990KoKHGqvO6t/Y+bFx+MueESK6xP4G5y8neOwYwUOHGUpey5DHSXFmiOK5Eyv2uUcefZA/Tq4iqqiouuTjL/sp80tu+ZMm8ircjHZ1xMviFdQYSbhbW/+dyal/Aamj6Qqtx69kzp/F1Rs2sP3972e0q4PnHniQvlM9EHLSkruJP7p7Fwef/ZVRTlBV+cQnPnHW2jyT+w8O8kzbGNevyefDW0ric7ffpXDXkycIRfS4jrwgqnDXnAO7ENhsCtfekMTCn98DkQjY7ZT+5D5c69evGJvhTBt3tPTE+/T+vHzqTvoRgGtD7puuJTDmz/K57ta/ysvf/yUYIhOrMu0M6vegYUNRoMTezGBoPRoqUpugZNUiTZs2Q6+K3umNv99Or7fxmfDnKBsMsWZIcOudXyWjehsnmg/R/vwzRBHYggHUxSCogvq7fg89ks+ou4fN6xoYm7Dz9Klu6hcCFDuTOH1qjLyMSnZdv52IPcB9991npAMChPlTCoEQCmvLa/lybxqRqI7dpvCLe94891nLZAu/Gu4g7KxnttfDo650s2qHTpL3pyTOvU5k+NN8o2gnYwcnid3o7o/UsnpnYbwvTw4/Sk9IoaHo1vh6PnONDw0N0d/fz2JCJl1zjrgAeSEQQhyRUm58S+e+U0LbW7r4Gwtt24CvSSmvNT9/GUBK+Y03+s6LKbQB8YE/14P9fIhtjLE33OCLDxGcdOK6+razBMC31rBD0L83LvwAHBnwxd9u8kPj8U0UOGtD/Z8wftpP/5OvkDb0KqGteRyuyWBj7ka6fd28MPgCtyZcz45oE84KN57QyFu+9vK+VhfmGGpvJdvu5LRnnpaaenavqjnnA2j5fS9flMuPq4kD53xonxfn6PNm/zy/HPcCcFdexlntiwnd8zM+RosTGSrO59qyOnYXboj//o36582+/1xtWjHXzLkVe5D9VmHjjW572bhM6snn7Os3w+8/iq//IdJnIrgr7oy3NSYMxTQTv41X9g3T3jLB6sZcdu84O5P5bxPK3gpvJDz9tzhjTGIC1bkE2jdiuSD22wTiN/q7873eW/re/g5q+zvIWiincHPDm/ZXbHznelWGW2apbGyMp5qJceb6fbv23OXfne5y0DZqCFpX56STMhuNj/e51ss57/1/2KdnzvXWl5vpPnyE6k1NNFTpjB8+wki4wehX+6mVn5f185lr+bfN/djekpiSwsLs7H9r/x8aGuL48eMA1CYmsniyg6mcbKq3b6e4uPi37r1vlfv7W3hmYpgGl2TB1080WM6t9TtoKk2nfe8IvccmqVyfExfY3i38rghtNqALuBIYAQ4DH5ZStr/Rd15soc3CwsLCwsLC4q1yPkLbRQlEEEK8XwgxDGwDnhJCPGseLxBCPA0gpYwCfwQ8C3QAv3wzgc3CwsLCwsLC4neVixKIIKV8BHjkHMdHgRuWfX4aePoCNs3CwsLCwsLC4pLkoppH3wmEEFPAwAW4VBYwfQGuY/HWscbk0sQal0sPa0wuTaxxufS4EGNSKqXMfisn/s4JbRcKIUTzW7VBW1wYrDG5NLHG5dLDGpNLE2tcLj0utTG5KD5tFhYWFhYWFhYW54cltFlYWFhYWFhYvAuwhLb/Pv9xsRtgcRbWmFyaWONy6WGNyaWJNS6XHpfUmFg+bRYWFhYWFhYW7wIsTZuFhYWFhYWFxbsAS2izsLCwsLCwsHgXYAlt54kQ4johxCkhRI8Q4i8udnveSwghioUQLwshOoQQ7UKIz5vHM4QQzwshus2f6eZxIYT4V3OsTgghfnuxSov/EUIIVQhxTAjxpPm5XAhx0ByT/xRCOMzjTvNzj/n7sovZ7t9VhBBpQoiHhBCd5nrZZq2Ti48Q4gvm3tUmhHhACJFgrZULjxDiR0KISSFE27Jj570+hBCfMM/vFkJ84kK03RLazgMhhAp8F7geWAV8SAix6uK26j1FFPiilLIe2Ar8odn/fwG8KKWsBl40P4MxTtXmv88A37vwTX7P8HmMcnMxvgl82xwTH/Ap8/inAJ+Usgr4tnmexdvPd4BfSynrgHUYY2Otk4uIEKIQ+BywUUq5BlCBD2KtlYvBfcB1Zxw7r/UhhMgA/grYAmwG/iom6L2TWELb+bEZ6JFSnpZShoEHgVsucpveM0gpx6SUR83/z2I8iAoxxuAn5mk/AW41/38L8FNpcABIE0LkX+Bm/84jhCgCbgR+YH4WwB7gIfOUM8ckNlYPAVea51u8TQghUoHLgR8CSCnDUsoZrHVyKWADEoUQNsAFjGGtlQuOlPI1wHvG4fNdH9cCz0spvVJKH/A8ZwuCbzuW0HZ+FAJDyz4Pm8csLjCmqWA9cBDIlVKOgSHYATnmadZ4XRj+BfgzQDc/ZwIzUsqo+Xl5v8fHxPy93zzf4u2jApgCfmyarH8ghEjCWicXFSnlCPC/gUEMYc0PHMFaK5cK57s+Lsq6sYS28+NcbzlWzpQLjBAiGXgY+H+llIE3OvUcx6zxehsRQrwPmJRSHll++BynyrfwO4u3BxuwAfielHI9MM+SqedcWGNyATBNZ7cA5UABkIRhejsTa61cWvy2cbgo42MJbefHMFC87HMRMHqR2vKeRAhhxxDYfiGl/JV5eCJmzjF/TprHrfF659kB3CyE6MdwF9iDoXlLM01AsLLf42Ni/t7N2WYKi/8Zw8CwlPKg+fkhDCHOWicXl6uAPinllJQyAvwK2I61Vi4Vznd9XJR1Ywlt58dhoNqM9nFgOJE+fpHb9J7B9Of4IdAhpfznZb96HIhF7nwCeGzZ8Y+b0T9bAX9M/W3x9iCl/LKUskhKWYaxHl6SUn4EeBm4wzztzDGJjdUd5vmW9uBtREo5DgwJIWrNQ1cCJ7HWycVmENgqhHCZe1lsXKy1cmlwvuvjWeAaIUS6qUW9xjz2jmJVRDhPhBA3YGgSVOBHUsqvX+QmvWcQQlwG7AVaWfKf+gqGX9svgRKMjfFOKaXX3Bj/fwzn0CBwt5Sy+YI3/D2CEGI38CUp5fuEEBUYmrcM4BjwUSllSAiRAPwMwx/RC3xQSnn6YrX5dxUhRCNGYIgDOA3cjfGSbq2Ti4gQ4q+BD2BEwh8D7sHwg7LWygVECPEAsBvIAiYwokAf5TzXhxDikxjPIICvSyl//I633RLaLCwsLCwsLCwufSzzqIWFhYWFhYXFuwBLaLOwsLCwsLCweBdgCW0WFhYWFhYWFu8CLKHNwsLCwsLCwuJdgCW0WVhYWFhYWFi8C7CENgsLi/csQog0IcT/Y/6/QAjx0Jv9jYWFhcXFwkr5YWFh8Z7FrGH7pJRyzUVuioWFhcWbYnvzUywsLCx+Z/kHoFII0QJ0A/VSyjVCiN8DbsVIor0G+CeMRLUfA0LADWbizUrgu0A2RuLNT0spOy/8bVhYWLwXsMyjFhYW72X+AuiVUjYCf3rG79YAHwY2A18HgmYB9t8AHzfP+Q/gj6WUTcCXgH+/IK22sLB4T2Jp2iwsLCzOzctSyllgVgjhB54wj7cCa4UQyRgFv//LqHQDgPPCN9PCwuK9giW0WVhYWJyb0LL/68s+6xh7pwLMmFo6CwsLi3ccyzxqYWHxXmYWSPnv/KGUMgD0CSHuBBAG697OxllYWFgsxxLaLCws3rNIKT3APiFEG/Ct/8ZXfAT4lBDiONAO3PJ2ts/CwsJiOVbKDwsLCwsLCwuLdwGWps3CwsLCwsLC4l2AJbRZWFhYWFhYWLwLsIQ2CwsLCwsLC4t3AZbQZmFhYWFhYWHxLsAS2iwsLCwsLCws3gVYQpuFhYWFhYWFxbsAS2izsPi/GwWjYBSMglEwCoYAAADi7cOTjVt65gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUpXV95/v3p7tpQLk1cmtFbSfBxMuoiRXUOF4R422JesbRaEY0Go5HPWPWOhrN0hVPTM5E43iOJ8s42gddoImXJCMjjkZpUUNmDSYUIwhCtJEotiBdCF4QEbrre/7YT5Pq3XXr7qr91O/p92utvfbze57ffva3qvb+7U89t52qQpIkSWvbur4LkCRJ0tIMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAzb0XcBKO+GEE2rLli19lyFpgi6//PJbqurEvutYCY5h0qFlf8avwYW2LVu2MD093XcZkiYoyXf6rmGlOIZJh5b9Gb/cPSpJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgM29PnkSb4N/ATYDeyqqqmx5S8F3tQ1bwf+t6q6cqJFStICHMMkTVKvoa3zlKq6ZYFl/ww8qapuS/JMYCvwmMmVJklLcgyTNBFrIbQtqKr+x5zmV4BT+6pFkvaXY5ikldT3MW0FXJTk8iTnLNH3lcDfzrcgyTlJppNMz8zMrHiRkrQAxzBJE9P3lrbHV9WNSU4CtiX5p6q6ZLxTkqcwGvD+zXwrqaqtjHY7MDU1VatZsCTN4RgmaWJ63dJWVTd29zuBC4DTx/skeQRwLnBWVf1gshVK0sIcwyRNUm+hLcm9kxy9Zxp4OnD1WJ8HAJ8E/n1VfXPyVUrS/BzDJE1an7tHTwYuSLKnjo9W1eeSvBqgqt4P/AFwH+B9Xb99TqmXpJ44hkmaqN5CW1VdDzxynvnvnzP9KuBVk6xLkpbDMUzSpPV99qgkSZKWwdAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSA3oNbUm+neSqJFckmZ5n+S8nuTTJz5O8oY8aJWkhjmGSJmlD3wUAT6mqWxZYdivwH4DnTbAeSdofjmGSJmJN7x6tqp1VdRlwd9+1SNL+cgyTtJL6Dm0FXJTk8iTnHOhKkpyTZDrJ9MzMzAqWJ0mLcgyTNDF9h7bHV9WvAs8EXpvkiQeykqraWlVTVTV14oknrmyFkrQwxzBJE9NraKuqG7v7ncAFwOl91iNJ+8MxTNIk9Rbaktw7ydF7poGnA1f3VY8k7Q/HMEmT1ufZoycDFyTZU8dHq+pzSV4NUFXvT3IKMA0cA8wm+V3goVX1476KlqSOY5ikieottFXV9cAj55n//jnT3wdOnWRdkrQcjmGSJq3vExEkSZK0DIY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGtBraEvy7SRXJbkiyfQ8y5Pkz5Jcl+RrSX61jzolaT6OYZImacNKrCTJ64C/rKrbDuDhT6mqWxZY9kzgtO72GOA/d/fSXk7ZNg3r1sHsLN8/c6rvcnRo6WUMe9s738cHHn06ZLX+9y4gB7Bsuevecz9//evYxSzr5iyvsf7ztefWtOc5wmH8nHXM8nMOH3u+Wdazm1nWU/c8NsBs169Yxyzp+sE67mY9xToCbOAujuIn/IjjmGUDMEuAMMss6++pbz272H1PO6xjliPqZ9ydw1nP3cyynrvYOKeuEGbZwC7Ws4s7OXKvny3Mdj9hCEWo7nf1L7+P9dzNBnZxBHdyTP2QH+c4ZlnPltnr+em6o5jhBO7gaDZwF7s4jHXM8qC6jsO5i+15MEfWHWzKDzll9ka+v+6+3MYmbmPTPb+XMMuR3MmjZv8nN/BAdq47mcO5Ewi7ax135XBOmv0+d+UIfpRjRn+HGj3XXdlIKE7iZh5WVzNTJ3LNuocxy3rWsZsj6uccmx+xZfZbXLnuV7mDe7F+djfH8iO25HoOr59z1bpHMVuhgN3ZwOF1Jw/a9R2effdFbDjih/z3dU9ix+z9+UmOZUPdzY9zLHdwL2YJh+dujpn9ITdnMxU4bvY2Hn73tdy24Vj+af0vs7v7HQY4nDs5ip9y5Owd7M4GNud7nDJ7E9fmX3PMrtu5K+u4bsODSc1yr90/58i6k43rf8bjf3oZv3TrLs757XfN+/o+UKmqpXsttZLkj4EXA/8T+BDw+VrGipN8G5haaMBL8gHgy1X1sa79DeDJVXXTQuucmpqq6el9/uHVgJ2ybRrWr/+XGbt3G9wOMUkur6qJ/9H7GsPe9s738YFfe9wB1y0N1Tp2E4rdK7NN6qC8YvYDPOiGo5cMbvszfq3Iv2hV9VZG/0l+EHg5sD3Jf0zyC0s9FLgoyeVJzpln+f2A785p7+jm7SXJOUmmk0zPzMwc0M+ghq3rXsbJ3m1p9fUyhl27adOeB3rztn+3pV4348v3t//+PHapfvs7P2GWdaPAdiDPeSD1LlLjdB7DcXXjku/n/bFiUbSqKsn3ge8Du4BNwN8k2VZVv7fAwx5fVTcmOQnYluSfquqSOcsz31PN89xbga0w+i/1oH4QtWd2drSlbc/G3dnZfuvRoaSXMewht93GJaMHHljVOrQt9boZX76//ffnsUv128/5o93Zxe5aRryZbx0HUu8Cj5mqf+CHue/y1rdMK3VM238AzgZuAc4F3lhVdydZB2wH5g1tVaMIWlU7k1wAnA7MHfB2APef0z4VWNnYquZ9/8wpj2lTL/oaw/7wTa8Bj2mbpz23Jo9p85i2fo9pe9CtS+8a3V8rtaXtBOAFVfWduTOrajbJc+Z7QJJ7A+uq6ifd9NOBt491uxB4XZKPMzp490eLHQuiQ5dBTZPW9xj2h296DX+4EivSIebJiyx77AGs7wkHWMcezz7Ix497BQCv2e/HPW2F63jBCq9vZEVCW1X9wSLLrl1g0cnABRnt+90AfLSqPpfk1d3j3g98FngWcB1wB3v+GpLUP8cwSRPV2+kVVXU98Mh55r9/znQBr51kXZK0HI5hkibN0+wkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqQO+hLcn6JF9N8t/mWfbAJBcn+VqSLyc5tY8aJWk+jl+SJqn30Aa8Hrh2gWX/CfhwVT0CeDvwJxOrSpKW5vglaWJ6DW3df57PBs5doMtDgYu76S8BZ02iLklaiuOXpEnre0vbe4DfA2YXWH4l8L90088Hjk5yn0kUJklLcPySNFG9hbYkzwF2VtXli3R7A/CkJF8FngR8D9g1z7rOSTKdZHpmZmZ1CpakzkqOX936HMMkLSlV1c8TJ38C/HtGg9gRwDHAJ6vqtxbofxTwT1W16MG8U1NTNT09vdLlSlrDklxeVVMTfL5VGb/AMUw61OzP+NXblraq+v2qOrWqtgAvBr44PuAlOSHJnhp/H/jQhMuUpH04fknqQ9/HtO0jyduTPLdrPhn4RpJvAicD/1dvhUnSEhy/JK2m3naPrhZ3LUiHnknvHl1NjmHSoaWJ3aOSJElaPkObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDeg9tCVZn+SrSf7bPMsekORL3fKvJXlWHzVK0kIcwyRNSu+hDXg9cO0Cy94K/FVV/QrwYuB9E6tKkpbHMUzSRPQa2pKcCjwbOHeBLgUc000fC9w4ibokaTkcwyRN0oaen/89wO8BRy+w/P8ELkryvwP3Bp42obokaTkcwyRNTG9b2pI8B9hZVZcv0u03gfOq6lTgWcBHkuxTc5JzkkwnmZ6ZmVmliiXpXziGSZq0PnePPh54bpJvAx8HnprkL8b6vBL4K4CquhQ4AjhhfEVVtbWqpqpq6sQTT1zdqiVpxDFM0kT1Ftqq6ver6tSq2sLoAN0vVtVvjXW7ATgDIMlDGA14/hsqqXeOYZImbS2cPbqXJG9P8tyu+X8Av5PkSuBjwMurqvqrTpIW5xgmabX0fSICAFX1ZeDL3fQfzJl/DaNdEJK0ZjmGSZqENbelTZIkSfsytEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNSBV1XcNKyrJDPCdvuvonADc0ncRB8C6J8u6D94Dq+rEvotYCfs5hq2lv8H+aLVuaLd2656s/al72ePX4ELbWpJkuqqm+q5jf1n3ZFm3DlSrf4NW64Z2a7fuyVqtut09KkmS1ABDmyRJUgMMbatra98FHCDrnizr1oFq9W/Qat3Qbu3WPVmrUrfHtEmSJDXALW2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVR8aEjywu51MZtkwTPTkjwjyTeSXJfkzZOscYF6lvt+/dPu57s2yZ8lyaRrnaem5db+gCQXdbVfk2TLZCvdp54m36+tjJFzaln0vZbk8CSf6Jb/w8G+LgxtBynJw4HfAU4HHgk8J8lpY32OA94HPLeqHga8cOKFjllO3cBrgWuq6pHAk4F3J9k40UJHzgOeMTbvzcDFVXUacHHX3kuS44G3AY9h9HO+bbGBaxWcxwHUDdwBvKx7rTwDeE/3Gpqk8ziw2vf4I2BN/HMyMFcDLwAuWahDkvXAnwPPBB4K/GaSh06mvAUt5/3668DjgUcADwd+DXjSJItcwHJf9x8G3lVVD2E03uycUH0LafX92soYudz32iuB26rqF4H/B3jnwTynoe3gPQT4SlXdUVW7GL3wnz/W5yXAJ6vqBoCq6vvNDMuru4Cju/92jwJuBXZNtkyoqku6557rLOD8bvp84HnzPPQ3gG1VdWtV3QZsY98gsmoOtO6q+mZVbe+mb2Q0+E/0wrEH8TsnyaOBk4GLVq3AQ1RVXVtV31ii2+nAdVV1fVXdBXyc0d+uT8t57RRwBLAROBw4DLh5ItUtbsnauw/qDVW1DaCqbq+qOyZX4rxafb82MUZ2lvNem/vz/A1wxsFsQTa0HbyrgScmuU+SewHPAu4/1ufBwKYkX05yeZKXTbzKfS2n7vcyCnc3AlcBr6+q2cmWuaCTq+omgO7+pHn63A/47pz2jm5en5ZT9z2SnM7oQ+xbE6htKUvWnmQd8G7gjROuTf+iydd9VV0KfAm4qbt9vqqunWiV81vOe/bBwA+TfDLJV5O8q9sK06dW368tjZHLea/d06fbQPIj4D4H+oQbDvSBGqmqa5O8k9FWnNuBK9l3a9QG4NHAGcCRwKVJvlJV35xosXMss+7fAK4Angr8ArAtyd9X1Y8nWuyBm++/mWZOl06yGfgIcPYaCstLeQ3w2ar67ho4HKlJSb4AnDLPordU1aeWs4p55q36636xupf5+F9k9E/iqd2sbUme2G31XVUHWzujMf4JwK8ANwCfAF4OfHAl6lvICtTdy/t1Beres56+x8jlvNdW9P1oaFsBVfVBujdnkv/IKG3PtQO4pap+Cvw0ySWMjiPrLbTBsup+BfCOGl0X5rok/wz8MvCPEy10fjcn2VxVN3Vv3Pl2Oe9gdCzeHqcCX55AbYtZTt0kOQb4DPDWqvrKRCtc2HJqfxzwhCSvYbRLfWOS26uq94PhW1FVTzvIVexg763mpzLaWr6qFqs7yXJeO89ndMjG7d1j/hZ4LIscv7dSVqD2HcBXq+r67jH/lVHtqxraVqDuXt6vK1D3Whkjl/Ne29NnR5INwLHse+jJsrl7dAUkOam7fwCjg4Q/NtblU4zeGBu6XZGPAXrf7L+Mum9gtHWQJCcDvwRcP8kaF3EhsOds0LMZ/Y7HfR54epJN3QkIT+/m9WnJuruTPS4APlxVfz3B2payZO1V9dKqekBVbQHewOhnMLBN1mXAaUke1L2WXszob9en5bxfbwCe1I2ThzE6CaH3cZLl1X4Zo0Ng9hxX9VTgmgnUtphW368tjZHLea/N/Xn+LfDFOpgL5FaVt4O8AX/P6A16JXBGN+/VwKvn9Hlj1+dq4Hf7rnk5dQP3ZXRw6lVd3b/VU50fY3SMy92M/mt5JaNjAi4Gtnf3x3d9p4Bz5zz2t4HrutsrWqgb+K3uMVfMuT2qhdrH1vFy4L19v86HdGO0NWoH8HNGB+l/vpt/X0a7ufb0exajLfnfYrRbte+6l/O6Xw98gFFQuwb4v/uue7m1d+0zga914+V5wMYW6p7Tf028X1sZI+fUu897DXg7o6tFwOjkmr/uPoP+EfhXB/N8fiOCJElSA9w9KkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJktSTJK9OckV3++ckX+q7Jq1dXlxXkqSedV/d9UXgT6vq033Xo7XJLW2SJPXv/2X0vZQGNi1oQ98FSJJ0KEvycuCBwOt6LkVrnLtHJUnqSZJHA+cDT6iq2/quR2ubu0clSerP64DjgS91JyOc23dBWrvc0iZJktQAt7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDVgcF8Yf8IJJ9SWLVv6LkPSBF1++eW3VNWJfdchSatpcKFty5YtTE9P912GpAlK8p2+a5Ck1ebuUUmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBvYa2JM9I8o0k1yV58zzLD0/yiW75PyTZMvkqJUmS+tfb2aNJ1gN/DpwJ7AAuS3JhVV0zp9srgduq6heTvBh4J/CiyVerte6tf/lOvn/EkZxy58/445e+qe9yJElacX1uaTsduK6qrq+qu4CPA2eN9TkLOL+b/hvgjCSZYI1qwFv/8p2ct/kpfGbTv+G8zU/hrX/5zr5LkiRpxfUZ2u4HfHdOe0c3b94+VbUL+BFwn/EVJTknyXSS6ZmZmVUqV2vVN449il0cRmUduziMbxx7VN8lSZK04voMbfNtMasD6ENVba2qqaqaOvFEL4p+qPnJxiMWbUuSNAR9hrYdwP3ntE8FblyoT5INwLHArROpTs3Ykfsv2pYkaQj6DG2XAacleVCSjcCLgQvH+lwInN1N/1vgi1W1z5Y2HdpuXXf8om1Jkoagt7NHq2pXktcBnwfWAx+qqq8neTswXVUXAh8EPpLkOkZb2F7cV71ay8ZzvLlekjQ8vX5hfFV9Fvjs2Lw/mDN9J/DCSdeltpxQM+zM5r3akiQNjd+IoOadWjsWbUuSNASGNjXvp7nXom1JkobA0Kbm/SAnLNqWJGkIDG2SJEkNMLSpeetrdtG2JElDYGhT83bmxEXbkiQNgaFNzSvWL9qWJGkIDG0aAC+uK0kaPkObmpcl2pIkDYGhTc3bNHvLaKL7Wtp72pIkDYihTc27m42jiWTvtiRJA2JoU/N+su7oRduSJA2BoU0D4FFtkqThM7Speetmdy/aliRpCAxtat+6LN6WJGkADG1qXsauyzbeliRpCAxtat4R/GzRtiRJQ2BoU/M2sHvRtiRJQ2BoU/MO465F25IkDYGhTc17IN9etC1J0hAY2tS8Z9engN3d11jt7tqSJA2LoU3Nu2z2scD6rrW+a0uSNCyGNjXv79Y/dTTRfffoPW1JkgbE0Kbm3cnhi7YlSRoCQ5uaV2Mv4/G2JElD4Kebmrdx7BIf421JkobA0KbmPXj2G6OJqr3bkiQNSC+hLcnxSbYl2d7db5qnz6OSXJrk60m+luRFfdSqte+mdZtHE92JCPe0JUkakL62tL0ZuLiqTgMu7trj7gBeVlUPA54BvCfJcROsUY24jeMXbUuSNAR9hbazgPO76fOB5413qKpvVtX2bvpGYCdw4sQqVDNm77lG2/xtSZKGoK/QdnJV3QTQ3Z+0WOckpwMbgW8tsPycJNNJpmdmZla8WK1th/HzRduSJA3BhtVacZIvAKfMs+gt+7mezcBHgLOrana+PlW1FdgKMDU1VftZqhp3JD/jLo7cqy1J0tCsWmirqqcttCzJzUk2V9VNXSjbuUC/Y4DPAG+tqq+sUqlq3K6xl/F4W5KkIehr9+iFwNnd9NnAPt/wnWQjcAHw4ar66wnWpsbcwb0WbUuSNAR9hbZ3AGcm2Q6c2bVJMpXk3K7PvwOeCLw8yRXd7VH9lKu1rMZOPBhvS5I0BL3sR6qqHwBnzDN/GnhVN/0XwF9MuDQ1aCN37nVM20bu7LEaSZJWh9+IoOZtqlsXbUuSNASGNjXvh2NfqDHeliRpCAxtat5dHL5oW5KkITC0qXk19jIeb0uSNAR+uql569i1aFuSpCEwtGkAxl/GvqwlScPjp5uaF2YXbUuSNASGNjXvqNkfjyaq9m5LkjQghjY17yfrjhtNJHu3JUkaEEObmufuUUnSocDQpuatHztbdLwtSdIQGNrUPL8wXpJ0KDC0qXlH1E8XbUuSNASGNjXvrhy+aFuSpCEwtKl5Px/7rtHxtiRJQ2Bo0wD4jQiSpOHz002SJKkBhjY1zy+MlyQdCgxtat69uWPRtiRJQ2BoU/OOqx8s2pYkaQgMbWre7Tlm0bYkSUNgaFPzfsIxi7YlSRoCQ5uad1zdOpqo2rstSdKAGNrUvJ/s2R2a7N2WJGlADG1q3t1sXLQtSdIQGNo0ALVEW5Kk9hna1LxZ1i/aliRpCHoJbUmOT7ItyfbuftMifY9J8r0k751kjWrHkfxs0bYkSUPQ15a2NwMXV9VpwMVdeyF/BPzdRKpSkzbX90YT3dmj97QlSRqQvkLbWcD53fT5wPPm65Tk0cDJwEUTqksN2pEHjCa6s0fvaUuSNCB9hbaTq+omgO7+pPEOSdYB7wbeuNTKkpyTZDrJ9MzMzIoXq7XtyLHvGh1vS5I0BBtWa8VJvgCcMs+ityxzFa8BPltV3023BWUhVbUV2AowNTXlqYOHmHvX7fwox9+ze/TedXvPFUmStPJWLbRV1dMWWpbk5iSbq+qmJJuBnfN0exzwhCSvAY4CNia5vaoWO/5Nh6Cbcr/RRAJV/9KWJGlAVi20LeFC4GzgHd39p8Y7VNVL90wneTkwZWDTfGpsL/94W5KkIejr0+0dwJlJtgNndm2STCU5t6eaJEmS1qxetrRV1Q+AM+aZPw28ap755wHnrXphkiRJa5T7kSRJkhpgaNMAzC7RliSpfYY2DcD4JWEWv0SMJEktMrRpAAxtkqThM7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0qXlh96JtSZKGwNCm5vndo5KkQ4GfbhoAL/khSRq+ZYW2JBcnedbYvK2rU5IkSZLGLXdL24OANyV525x5U6tQj3QA/BorSdLwLTe0/RA4Azg5yaeTHLuKNUn7afxl7F5/SdLwLPfTLVW1q6peA/wX4L8DJ61eWdLyrWPXom1JkoZgwzL7vX/PRFWdl+Qq4LWrU5K0fzx7VJJ0KFhWaKuqD4y1Lwd+e1UqkvZTjZ0tOt6WJGkI3CShAfCSH5Kk4TO0aQBqibYkSe0ztEmSJDXA0KYBcPeoJGn4DG0aAC+uK0kaPkObBsAtbZKk4TO0aQAMbZKk4TO0aQA8e1SSNHyGNg2AW9okScNnaFPz/O5RSdKhoJfQluT4JNuSbO/uNy3Q7wFJLkpybZJrkmyZbKVqgd89Kkk6FPT16fZm4OKqOg24uGvP58PAu6rqIcDpwM4J1aeGGNokSYeCvj7dzgLO76bPB5433iHJQ4ENVbUNoKpur6o7Jlei2uF12iRJw9dXaDu5qm4C6O5PmqfPg4EfJvlkkq8meVeS9fOtLMk5SaaTTM/MzKxi2VqbPBFBkjR8G1ZrxUm+AJwyz6K3LHMVG4AnAL8C3AB8Ang58MHxjlW1FdgKMDU15fUeDjGh9rrIR7zkhyRpgFYttFXV0xZaluTmJJur6qYkm5n/WLUdwFer6vruMf8VeCzzhDZJkqSh62v36IXA2d302cCn5ulzGbApyYld+6nANROoTY2psd2h421Jkoagr9D2DuDMJNuBM7s2SaaSnAtQVbuBNwAXJ7mK0YFK/19P9WpN85g2SdLwrdru0cVU1Q+AM+aZPw28ak57G/CICZYmSZK0JnlBK0mSpAYY2iRJkhpgaNMAjF/iw0t+SJJBCVoTAAAI30lEQVSGx9CmATC0SZKGz9CmARh/GfuyliQNj59ukiRJDTC0SZIkNcDQJkmS1ABDmwZgdom2JEntM7RpADwRQZI0fH66SZIkNcDQpgHwOm2SpOEztGkAskRbkqT2GdokSZIaYGiTJElqgKFNkiSpAYY2DYDXaZMkDZ+hTQPgiQiSpOEztGkADG2SpOEztEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRpAPzuUUnS8BnaNACePSpJGj5DmyRJUgMMbZIkSQ3oJbQlOT7JtiTbu/tNC/T70yRfT3Jtkj9L4n4vSZJ0SOprS9ubgYur6jTg4q69lyS/DjweeATwcODXgCdNskhJkqS1oq/QdhZwfjd9PvC8efoUcASwETgcOAy4eSLVSZIkrTF9hbaTq+omgO7+pPEOVXUp8CXgpu72+aq6dr6VJTknyXSS6ZmZmVUsW2uTl/yQJA3fhtVacZIvAKfMs+gty3z8LwIPAU7tZm1L8sSqumS8b1VtBbYCTE1N+Yl9yPGSH5Kk4Vu10FZVT1toWZKbk2yuqpuSbAZ2ztPt+cBXqur27jF/CzwW2Ce0SZIkDV1fu0cvBM7ups8GPjVPnxuAJyXZkOQwRichzLt7VJIkaej6Cm3vAM5Msh04s2uTZCrJuV2fvwG+BVwFXAlcWVWf7qNYSZKkvq3a7tHFVNUPgDPmmT8NvKqb3g38rxMuTZIkaU3yGxEkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAb2EtiQvTPL1JLNJphbp94wk30hyXZI3T7JGSZKktaSvLW1XAy8ALlmoQ5L1wJ8DzwQeCvxmkodOpjxJkqS1ZUMfT1pV1wIkWazb6cB1VXV91/fjwFnANateoCRJ0hqzlo9pux/w3TntHd28fSQ5J8l0kumZmZmJFKe1pJZoS5LUvlULbUm+kOTqeW5nLXcV88yb99O4qrZW1VRVTZ144okHXrSa9K9vvm40UbV3W5KkAVm13aNV9bSDXMUO4P5z2qcCNx7kOjVA217yIs786Cf41omn8gszO9j2khf1XZIkSSuul2Paluky4LQkDwK+B7wYeEm/JWmtMqhJkoaur0t+PD/JDuBxwGeSfL6bf98knwWoql3A64DPA9cCf1VVX++jXkmSpL71dfboBcAF88y/EXjWnPZngc9OsDRJkqQ1aS2fPSpJkqSOoU2SJKkBhjZJkqQGpGpYFyJNMgN8p+86OicAt/RdxAGw7smy7oP3wKryIo2SBm1woW0tSTJdVVN917G/rHuyrFuStBzuHpUkSWqAoU2SJKkBhrbVtbXvAg6QdU+WdUuSluQxbZIkSQ1wS5skSVIDDG2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVQsScNnaDtISR4O/A5wOvBI4DlJThvrcxzwPuC5VfUw4IUTL3TMcuoGXgtcU1WPBJ4MvDvJxokWOnIe8IyxeW8GLq6q04CLu/ZekhwPvA14DKOf822LBY1VcB4HUDdwB/Cy7rXyDOA93Wtoks7jwGrf44+ANfHPiSQNhaHt4D0E+EpV3VFVuxh9UD1/rM9LgE9W1Q0AVbVzwjXOZzl1F3B0kgBHAbcCuyZbJlTVJd1zz3UWcH43fT7wvHke+hvAtqq6tapuA7axbxBZNQdad1V9s6q2d9M3AjuBiV7t/yB+5yR5NHAycNGqFShJhyBD28G7GnhikvskuRfwLOD+Y30eDGxK8uUklyd52cSr3Ndy6n4vo3B3I3AV8Pqqmp1smQs6uapuAujuT5qnz/2A785p7+jm9Wk5dd8jyenARuBbE6htKUvWnmQd8G7gjROuTZIGb0PfBbSuqq5N8k5GW3FuB65k361RG4BHA2cARwKXJvlKVX1zosXOscy6fwO4Angq8AvAtiR/X1U/nmixBy7zzGvmGjdJNgMfAc5eQ2F5Ka8BPltV3x1toJUkrRS3tK2AqvpgVf1qVT2R0S6l7WNddgCfq6qfVtUtwCWMjiPr1TLqfgWj3bpVVdcB/wz88qTrXMDNXajZE27m2+W8g723Hp7KaKthn5ZTN0mOAT4DvLWqvjLB+haznNofB7wuybeB/wS8LMk7JleiJA2XoW0FJDmpu38A8ALgY2NdPgU8IcmGblfkY4BrJ1vlvpZR9w2Mtg6S5GTgl4DrJ1njIi4E9pwNejaj3/G4zwNPT7KpOwHh6d28Pi1Zd3eyxwXAh6vqrydY21KWrL2qXlpVD6iqLcAbGP0Mi52wIElaJkPbyvgvSa4BPg28tqpuS/LqJK+G0a5I4HPA14B/BM6tqqsXXt3ELFo3ozMAfz3JVYzOFnxTt6VwopJ8DLgU+KUkO5K8EngHcGaS7cCZXZskU0nOBaiqW7uf4bLu9vZu3pquG/h3wBOBl3eXibkiyaMmVfdB1i5JWiV+jZUkSVID3NImSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtKl5SX4tydeSHJHk3km+nuThfdclSdJK8uK6GoQkfwwcARwJ7KiqP+m5JEmSVpShTYPQfV/nZcCdwK9X1e6eS5IkaUW5e1RDcTxwFHA0oy1ukiQNilvaNAhJLgQ+DjwI2FxVr+u5JEmSVtSGvguQDlaSlwG7quqjSdYD/yPJU6vqi33XJknSSnFLmyRJUgM8pk2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGvD/A3uTyIcf3vYHAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
-    "_ = zy_axes.plot(z, y, '.')\n",
-    "_ = zy_axes.set_xlabel('z')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/notebooks/vertical transporter.ipynb b/notebooks/vertical transporter.ipynb
deleted file mode 100644
index 95df8cf..0000000
--- a/notebooks/vertical transporter.ipynb	
+++ /dev/null
@@ -1,326 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>CumlDistance_km</th>\n",
-       "      <th>Depth_m</th>\n",
-       "      <th>Q_cms</th>\n",
-       "      <th>Vmag_mps</th>\n",
-       "      <th>Vvert_mps</th>\n",
-       "      <th>Vlat_mps</th>\n",
-       "      <th>Ustar_mps</th>\n",
-       "      <th>Temp_C</th>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>CellNumber</th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "      <th></th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>20</td>\n",
-       "      <td>1</td>\n",
-       "      <td>10</td>\n",
-       "      <td>1</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>19</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>40</td>\n",
-       "      <td>2</td>\n",
-       "      <td>20</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>20</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>60</td>\n",
-       "      <td>3</td>\n",
-       "      <td>30</td>\n",
-       "      <td>3</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>21</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>80</td>\n",
-       "      <td>4</td>\n",
-       "      <td>40</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>22</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>100</td>\n",
-       "      <td>5</td>\n",
-       "      <td>50</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0</td>\n",
-       "      <td>0.08</td>\n",
-       "      <td>23</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            CumlDistance_km  Depth_m  Q_cms  Vmag_mps  Vvert_mps  Vlat_mps  \\\n",
-       "CellNumber                                                                   \n",
-       "1                        20        1     10         1          0         0   \n",
-       "2                        40        2     20         2          0         0   \n",
-       "3                        60        3     30         3          0         0   \n",
-       "4                        80        4     40         4          0         0   \n",
-       "5                       100        5     50         5          0         0   \n",
-       "\n",
-       "            Ustar_mps  Temp_C  \n",
-       "CellNumber                     \n",
-       "1                0.08      19  \n",
-       "2                0.08      20  \n",
-       "3                0.08      21  \n",
-       "4                0.08      22  \n",
-       "5                0.08      23  "
-      ]
-     },
-     "execution_count": 1,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import os\n",
-    "\n",
-    "import pandas as pd\n",
-    "\n",
-    "\n",
-    "# show the hydraulic data contained in the CSV file\n",
-    "hydraulic_csv_path = os.path.join('..', 'test', 'data', 'multi-cell input.csv')\n",
-    "hydraulic_data = pd.read_csv(hydraulic_csv_path, index_col='CellNumber')\n",
-    "hydraulic_data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.hydraulics import from_csv\n",
-    "\n",
-    "# initialize a hydraulic model as a series of hydraulic cells from the CSV\n",
-    "hydraulic_model = from_csv(hydraulic_csv_path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.asiancarpeggs import BigheadCarpEggs\n",
-    "from fluegg.simclock import SimulationClock\n",
-    "\n",
-    "# total_simulation_time = BigheadCarpEggs.hatching_time(hydraulic_data['Temp_C'].mean())\n",
-    "total_simulation_time = 1000  # seconds\n",
-    "time_step_size = 1  # seconds\n",
-    "\n",
-    "simulation_clock = SimulationClock(time_step_size, total_simulation_time)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "\n",
-    "\n",
-    "first_cell_x_midpoint = 1000*hydraulic_data.loc[1, 'CumlDistance_km']/2\n",
-    "\n",
-    "depth = hydraulic_data.loc[1, 'Depth_m']\n",
-    "first_cell_z_midpoint = -depth/2\n",
-    "\n",
-    "area = hydraulic_data.loc[1, 'Q_cms']/hydraulic_data.loc[1, 'Vmag_mps']\n",
-    "width = area/depth\n",
-    "first_cell_y_midpoint = width/2\n",
-    "\n",
-    "initial_position = np.array([10, first_cell_y_midpoint, first_cell_z_midpoint])\n",
-    "\n",
-    "number_of_eggs = 10\n",
-    "initial_position = np.tile(initial_position, (number_of_eggs, 1))\n",
-    "\n",
-    "carp_eggs = BigheadCarpEggs(initial_position, simulation_clock)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.transporter import ParabolicConstantVerticalTransporter\n",
-    "\n",
-    "transport_model = ParabolicConstantVerticalTransporter(simulation_clock, carp_eggs)\n",
-    "transport_model.set_hydraulic_model(hydraulic_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from fluegg.simulation import Simulation\n",
-    "\n",
-    "fluegg_simulation = Simulation(carp_eggs, transport_model, simulation_clock)\n",
-    "fluegg_simulation.set_hydraulic_model(hydraulic_model)\n",
-    "\n",
-    "simulation_results = fluegg_simulation.run()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8nGWd///X555J0qaHND2f0qaF0lIOPTAcBEGUg6j8xHXB825FpOvpu+iuB/T3VVf96lddd9VdXFlEpPpTBJGTJwQBBRcoJC09QOmBNm3aJm3apuk5mZn78/tj7qRpmrZJSXPPXd7Px6OPzNxzzcxn5sp9z3uu67pTc3dEREREpLgFcRcgIiIiIsem0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmQjruAvjZy5Eivrq6OuwwRERGRY6qtrd3m7qN60vakC23V1dXU1NTEXYaIiIjIMZnZ+p621fSoiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkgEKbiIiISAIotImIiIgkwAkPbWZ2h5ltNbPlnbYNN7NHzWx19LPyKPcfamabzOyWE12riIiISLHqj5G2O4Grumy7GXjM3acBj0XXj+RrwF9OTGkiIiIiyXDCQ5u7Pwns6LL5GmBBdHkB8I7u7mtm5wBjgEdOWIEiIiIiCRDXmrYx7t4AEP0c3bWBmQXAvwGfOdaDmdl8M6sxs5qmpqY+L1ZEREQkbsV8IsLHgN+7e/2xGrr7be6ecffMqFGj+qE0ERERkf6Vjul5t5jZOHdvMLNxwNZu2rwOuNjMPgYMBkrNbI+7H239m4iIiMhJKa7Q9hAwD/hm9PPBrg3c/f3tl83sg0BGgU1EREReq/rjT37cBTwDTDezjWZ2A4WwdoWZrQauiK5jZhkzu/1E1yQiIiKSNObucdfQpzKZjNfU1MRdhoiIiMgxmVmtu2d60raYT0QQERERkYhCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCnPDQZmZ3mNlWM1veadtwM3vUzFZHPyu7ud9sM3vGzF40s6Vm9u4TXauIiIhIseqPkbY7gau6bLsZeMzdpwGPRde72gf8vbufEd3/e2Y27EQWKiIiIlKsTnhoc/cngR1dNl8DLIguLwDe0c39Vrn76ujyZmArMOoElioiIiJStOJa0zbG3RsAop+jj9bYzM4DSoFX+qE2ERERkaJT9CcimNk44GfA9e4eHqHNfDOrMbOapqam/i1QREREpB/EFdq2RGGsPZRt7a6RmQ0Ffgf8b3d/9kgP5u63uXvG3TOjRmkGVURERE4+cYW2h4B50eV5wINdG5hZKXA/8FN3/1U/1iYiIiJSdPrjT37cBTwDTDezjWZ2A/BN4AozWw1cEV3HzDJmdnt013cBlwAfNLMXon+zT3S9IiIiIsXI3D3uGvpUJpPxmpqauMsQEREROSYzq3X3TE/aFv2JCCIiIiKi0CYiIiKSCAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIgmg0CYiIiKSAAptIiIiIglwwkObmd1hZlvNbHmnbcPN7FEzWx39rDzCfedFbVab2bwTXauIiIhIsUr3w3PcCdwC/LTTtpuBx9z9m2Z2c3T9c53vZGbDgS8DGcCBWjN7yN2b+6Hmo7ppwbd5cvxM9lp5j+9TQo6Bvp/9NpBsv7ztqiWJdagW1aJaTq5aiqUO1XJ8tQxiP5dsepHvz/tsTNUdqsfvlJnNdPeXumy71N3/fLT7ufuTZlbdZfM1wKXR5QXAn+kS2oA3A4+6+47ouR4FrgLu6mnNJ8JNC77N3VVXxFmCiIiI9INdVHJ31XhY8O2iCG69ibf3mNnPgG8DA6KfGeB1x/G8Y9y9AcDdG8xsdDdtJgD1na5vjLYdxszmA/MBJk2adBzl9NyysVXtT3pCn0dERESKgPvBz/6Y9Sa0nQ98C3gaGAL8HLjoRBQV6S4VeXcN3f024DaATCbTbZu+clZjPS9VzQA/oU8jIiIiReKsxvpjN+oHvQltWWA/MJDCSNs6dw+P83m3mNm4aJRtHLC1mzYbOTiFCjCRwjRqrL4/77OgNW0nXS3FUodqUS2q5eSqpVjqUC3HV0ti17QBzwMPAucCI4D/NrNr3f3a43jeh4B5wDejnw920+aPwDc6nVl6JfD543iuPlcsnSciIiIn2tviLqBDb/7kxw3u/iV3z7p7o7tfQ/dh6xBmdhfwDDDdzDaa2Q0UwtoVZrYauCK6jpllzOx2gOgEhK9RCIvPA19tPylBRERE5LXG/CRbm5XJZLympibuMkRERESOycxq3T3Tk7b6HxFEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZnaTmS03sxfN7JPd3F5hZr8xsyVRm+vjqFNEREQkbrGFNjM7E7gROA+YBVxtZtO6NPs48JK7zwIuBf7NzEr7tVARERGRIhDnSNvpwLPuvs/dc8BfgL/p0saBIWZmwGBgB5Dr3zJFRERE4hdnaFsOXGJmI8ysHHgrUNWlzS0Uwt1mYBlwk7uHXR/IzOabWY2Z1TQ1NZ3oukVERET6XWyhzd1XAN8CHgUeBpZw+Cjam4EXgPHAbOAWMxvazWPd5u4Zd8+MGjXqxBYuIiIiEoNYT0Rw9x+7+1x3v4TC1OfqLk2uB+7zgjXAOmBGf9cpIiIiEre4zx4dHf2cBLwTuKtLkw3AZVGbMcB0YG1/1igiIiJSDNIxP/+vzWwEkAU+7u7NZvYRAHe/FfgacKeZLQMM+Jy7b4uvXBEREZF4xBra3P3ibrbd2unyZuDKfi1KREREpAjpf0QQERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEiDW0mdlNZrbczF40s08eoc2lZvZC1OYv/V2jiIiISDFIx/XEZnYmcCNwHtAGPGxmv3P31Z3aDAP+C7jK3TeY2eh4qhURERGJV5wjbacDz7r7PnfPAX8B/qZLm/cB97n7BgB339rPNYqIiIgUhThD23LgEjMbYWblwFuBqi5tTgMqzezPZlZrZn/f3QOZ2XwzqzGzmqamphNctoiIiEj/i2161N1XmNm3gEeBPcASINelWRo4B7gMGAg8Y2bPuvuqLo91G3AbQCaT8RNdu4iIiEh/i/VEBHf/sbvPdfdLgB3A6i5NNgIPu/ted98GPAnM6u86RUREROIW99mjo6Ofk4B3And1afIgcLGZpaMp1POBFf1bpYiIiEj8YpsejfzazEYAWeDj7t5sZh8BcPdboynUh4GlQAjc7u7LY6xXREREJBaxhjZ3v7ibbbd2uf6vwL/2W1EiIiIiRUj/I4KIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAQpuIiIhIAii0iYiIiCSAuXvcNfQpM2sC1vfDU40EtvXD80jPqU+Kk/ql+KhPipP6pfj0R59MdvdRPWl40oW2/mJmNe6eibsOOUh9UpzUL8VHfVKc1C/Fp9j6RNOjIiIiIgmg0CYiIiKSAAptx++2uAuQw6hPipP6pfioT4qT+qX4FFWfaE2biIiISAJopE1EREQkARTaRERERBJAoa2XzOwqM1tpZmvM7Oa463ktMbMqM3vCzFaY2YtmdlO0fbiZPWpmq6OfldF2M7P/iPpqqZnNjfcVnLzMLGVmi83st9H1KWa2MOqTu82sNNpeFl1fE91eHWfdJyszG2Zm95rZy9H+8jrtJ/Ezs09Fx67lZnaXmQ3QvtL/zOwOM9tqZss7bev1/mFm86L2q81sXn/UrtDWC2aWAn4AvAWYCbzXzGbGW9VrSg74Z3c/HbgA+Hj0/t8MPObu04DHoutQ6Kdp0b/5wA/7v+TXjJuAFZ2ufwv4btQnzcAN0fYbgGZ3PxX4btRO+t73gYfdfQYwi0LfaD+JkZlNAP4RyLj7mUAKeA/aV+JwJ3BVl2292j/MbDjwZeB84Dzgy+1B70RSaOud84A17r7W3duAXwLXxFzTa4a7N7j7oujybgofRBMo9MGCqNkC4B3R5WuAn3rBs8AwMxvXz2Wf9MxsIvA24PbougFvAu6NmnTtk/a+uhe4LGovfcTMhgKXAD8GcPc2d9+J9pNikAYGmlkaKAca0L7S79z9SWBHl8293T/eDDzq7jvcvRl4lMODYJ9TaOudCUB9p+sbo23Sz6KpgjnAQmCMuzdAIdgBo6Nm6q/+8T3gs0AYXR8B7HT3XHS98/ve0SfR7S1Re+k7U4Em4CfRlPXtZjYI7SexcvdNwHeADRTCWgtQi/aVYtHb/SOW/UahrXe6+5ajv5nSz8xsMPBr4JPuvutoTbvZpv7qQ2Z2NbDV3Ws7b+6mqffgNukbaWAu8EN3nwPs5eBUT3fUJ/0gmjq7BpgCjAcGUZh660r7SnE5Uj/E0j8Kbb2zEajqdH0isDmmWl6TzKyEQmD7ubvfF23e0j6dE/3cGm1Xf514FwFvN7M6CssF3kRh5G1YNAUEh77vHX0S3V7B4dMU8upsBDa6+8Lo+r0UQpz2k3hdDqxz9yZ3zwL3AReifaVY9Hb/iGW/UWjrneeBadHZPqUUFpE+FHNNrxnReo4fAyvc/d873fQQ0H7mzjzgwU7b/z46++cCoKV9+Fv6hrt/3t0nuns1hf3hcXd/P/AEcG3UrGuftPfVtVF7jR70IXdvBOrNbHq06TLgJbSfxG0DcIGZlUfHsvZ+0b5SHHq7f/wRuNLMKqNR1CujbSeU/keEXjKzt1IYSUgBd7j712Mu6TXDzF4PPAUs4+D6qS9QWNd2DzCJwoHxOnffER0Yb6GwOHQfcL271/R74a8RZnYp8Gl3v9rMplIYeRsOLAY+4O6tZjYA+BmF9Yg7gPe4+9q4aj5ZmdlsCieGlAJrgespfEnXfhIjM/sK8G4KZ8IvBj5MYR2U9pV+ZGZ3AZcCI4EtFM4CfYBe7h9m9iEKn0EAX3f3n5zw2hXaRERERIqfpkdFREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQB0sdukiwjR4706urquMsQEREROaba2tpt7j6qJ21PutBWXV1NTY3+BxYREREpfma2vqdtNT0qIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgAKbSIiIiIJoNAmIiIikgDpOJ/czOqA3UAeyLl7psvt7wc+F13dA3zU3Zf0a5EiIiIiRSDW0BZ5o7tvO8Jt64A3uHuzmb0FuA04v/9KExERESkOxRDajsjdn+509VlgYly1iIiIiMQp7jVtDjxiZrVmNv8YbW8A/tDdDWY238xqzKymqampz4sUERERiVvcI20XuftmMxsNPGpmL7v7k10bmdkbKYS213f3IO5+G4WpUzKZjJ/IgkVERETiEOtIm7tvjn5uBe4HzuvaxszOBm4HrnH37f1boYiIiEhxiC20mdkgMxvSfhm4Eljepc0k4D7g79x9Vf9XKSIiIlIc4pweHQPcb2btdfzC3R82s48AuPutwJeAEcB/Re0O+7MgIiIiIq8FsYU2d18LzOpm+62dLn8Y+HB/1iUiIiJSjOI+e1REREREekChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBYg1tZlZnZsvM7AUzq+nm9hlm9oyZtZrZp+OoUURERKQYpOMuAHiju287wm07gH8E3tGP9YiIiIgUnaKeHnX3re7+PJCNuxYRERGROMUd2hx4xMxqzWz+8T6Imc03sxozq2lqaurD8kRERESKQ9yh7SJ3nwu8Bfi4mV1yPA/i7re5e8bdM6NGjerbCkVERESKQKyhzd03Rz+3AvcD58VZj4iIiEixii20mdkgMxvSfhm4ElgeVz0iIiIixSzOs0fHAPebWXsdv3D3h83sIwDufquZjQVqgKFAaGafBGa6+664ihYRERGJQ2yhzd3XArO62X5rp8uNwMT+rEtERESkGMV9IoKIiIiI9IBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCKLSJiIiIJIBCm4iIiEgCxBrazKzOzJaZ2QtmVtPN7WZm/2Fma8xsqZnNjaNOERERkbil4y4AeKO7bzvCbW8BpkX/zgd+GP2M1U0Lvs2T42ey18p7fJ8Scgz0/ey3gWRjfttVS/HWoVpUi2o5uWopljpUy/HVMoj9XLLpRb4/77MxVXeoPnmnzOwTwM/dvbkvHq+Ta4CfursDz5rZMDMb5+4Nffw8PXbTgm9zd9UVcT29iIiI9JNdVHJ31XhY8O2iCG59FW/HAs+b2SLgDuCPUdA6FgceMTMH/tvdb+ty+wSgvtP1jdG2Q0Kbmc0H5gNMmjTp+F5BDy0bW9X+pCf0eURERKQIuB/87I9Zn4Q2d//fZvZF4ErgeuAWM7sH+LG7v3KUu17k7pvNbDTwqJm97O5Pdrq9u2R0WBiMwt5tAJlMpidh8bid1VjPS1UzoEeZVERERJLurMb6YzfqB302kezubmaNQCOQAyqBe83sUXfvdkzR3TdHP7ea2f3AeUDn0LYR6BxvJwKb+6rm4/H9eZ8FrWk76WopljpUi2pRLSdXLcVSh2o5vlpO1jVt/wjMA7YBtwOfcfesmQXAauCwV2tmg4DA3XdHl68Evtql2UPAJ8zslxROQGiJcz1bu2LpPBERETnR3hZ3AR36Kt6OBN7p7us7b3T30MyuPsJ9xgD3W2FtWBr4hbs/bGYfie57K/B74K3AGmAfhalXERERkdcc69n5AsmRyWS8puawP/kmIiIiUnTMrNbdMz1pq/8RQURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEkChTURERCQBFNpEREREEiD20GZmKTNbbGa/7ea2yWb2mJktNbM/m9nEOGoUERERiVvsoQ24CVhxhNu+A/zU3c8Gvgr8336rSkRERKSIxBraopGztwG3H6HJTOCx6PITwDX9UZeIiIhIsYl7pO17wGeB8Ai3LwH+Nrr8N8AQMxvRH4WJiIiIFJPYQpuZXQ1sdffaozT7NPAGM1sMvAHYBOS6eaz5ZlZjZjVNTU0npmARERGRGJm7x/PEZv8X+DsKIWwAMBS4z90/cIT2g4GX3f2oJyNkMhmvqanp63JFRERE+pyZ1bp7pidtYxtpc/fPu/tEd68G3gM83jWwmdlIM2uv8fPAHf1cpoiIiEhRiHtN22HM7Ktm9vbo6qXASjNbBYwBvh5bYSIiIiIxim169ETR9KiIiIgkRSKmR0VERESk5xTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAWIPbWaWMrPFZvbbbm6bZGZPRLcvNbO3xlGjiIiISNxiD23ATcCKI9z2v4F73H0O8B7gv/qtKhEREZEiEmtoM7OJwNuA24/QxIGh0eUKYHN/1CUiIiJSbNIxP//3gM8CQ45w+78Aj5jZ/wIGAZd318jM5gPzASZNmtT3VYqIiIjELLaRNjO7Gtjq7rVHafZe4E53nwi8FfiZmR1Ws7vf5u4Zd8+MGjXqBFUsIiIiEp84p0cvAt5uZnXAL4E3mdn/16XNDcA9AO7+DDAAGNmfRYqIiIgUg9hCm7t/3t0nuns1hZMMHnf3D3RptgG4DMDMTqcQ2pr6tVARERGRIlAMZ48ewsy+amZvj67+M3CjmS0B7gI+6O4eX3UiIiIi8Yj7RAQA3P3PwJ+jy1/qtP0lCtOoIiIiIq9pRTfSJiIiIiKHU2gTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEUGgTERERSQCFNhEREZEEsJPt/183syZgfT881UhgWz88j/Sc+qQ4qV+Kj/qkOKlfik9/9Mlkdx/Vk4YnXWjrL2ZW4+6ZuOuQg9QnxUn9UnzUJ8VJ/VJ8iq1PND0qIiIikgAKbSIiIiIJoNB2/G6LuwA5jPqkOKlfio/6pDipX4pPUfWJ1rSJiIiIJIBG2kREREQSQKFNREREJAEU2nrJzK4ys5VmtsbMbo67ntcSM6sysyfMbIWZvWhmN0Xbh5vZo2a2OvpZGW03M/uPqK+WmtnceF/BycvMUma22Mx+G12fYmYLoz6528xKo+1l0fU10e3VcdZ9sjKzYWZ2r5m9HO0vr9N+Ej8z+1R07FpuZneZ2QDtK/3PzO4ws61mtrzTtl7vH2Y2L2q/2szm9UftCm29YGYp4AfAW4CZwHvNbGa8Vb2m5IB/dvfTgQuAj0fv/83AY+4+DXgsug6FfpoW/ZsP/LD/S37NuAlY0en6t4DvRn3SDNwQbb8BaHb3U4HvRu2k730feNjdZwCzKPSN9pMYmdkE4B+BjLufCaSA96B9JQ53Ald12dar/cPMhgNfBs4HzgO+3B70TiSFtt45D1jj7mvdvQ34JXBNzDW9Zrh7g7svii7vpvBBNIFCHyyImi0A3hFdvgb4qRc8Cwwzs3H9XPZJz8wmAm8Dbo+uG/Am4N6oSdc+ae+re4HLovbSR8xsKHAJ8GMAd29z951oPykGaWCgmaWBcqAB7Sv9zt2fBHZ02dzb/ePNwKPuvsPdm4FHOTwI9jmFtt6ZANR3ur4x2ib9LJoqmAMsBMa4ewMUgh0wOmqm/uof3wM+C4TR9RHATnfPRdc7v+8dfRLd3hK1l74zFWgCfhJNWd9uZoPQfhIrd98EfAfYQCGstQC1aF8pFr3dP2LZbxTaeqe7bzn6myn9zMwGA78GPunuu47WtJtt6q8+ZGZXA1vdvbbz5m6aeg9uk76RBuYCP3T3OcBeDk71dEd90g+iqbNrgCnAeGAQham3rrSvFJcj9UMs/aPQ1jsbgapO1ycCm2Oq5TXJzEooBLafu/t90eYt7dM50c+t0Xb114l3EfB2M6ujsFzgTRRG3oZFU0Bw6Pve0SfR7RUcPk0hr85GYKO7L4yu30shxGk/idflwDp3b3L3LHAfcCHaV4pFb/ePWPYbhbbeeR6YFp3tU0phEelDMdf0mhGt5/gxsMLd/73TTQ8B7WfuzAMe7LT976Ozfy4AWtqHv6VvuPvn3X2iu1dT2B8ed/f3A08A10bNuvZJe19dG7XX6EEfcvdGoN7MpkebLgNeQvtJ3DYAF5hZeXQsa+8X7SvFobf7xx+BK82sMhpFvTLadkLpf0ToJTN7K4WRhBRwh7t/PeaSXjPM7PXAU8AyDq6f+gKFdW33AJMoHBivc/cd0YHxFgqLQ/cB17t7Tb8X/hphZpcCn3b3q81sKoWRt+HAYuAD7t5qZgOAn1FYj7gDeI+7r42r5pOVmc2mcGJIKbAWuJ7Cl3TtJzEys68A76ZwJvxi4MMU1kFpX+lHZnYXcCkwEthC4SzQB+jl/mFmH6LwGQTwdXf/yQmvXaFNREREpPhpelREREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkARTaRERERBJAoU1EREQkAdLHbpIsI0eO9Orq6rjLEBERETmm2trabe4+qidtT7rQVl1dTU2N/ts8ERERKX5mtr6nbWOdHjWzq8xspZmtMbObu7m9zMzujm5faGbV/V+liIiISPxiC21mlgJ+ALwFmAm818xmdml2A9Ds7qcC3wW+1b9VioiIiBSHOKdHzwPWuPtaADP7JXAN8FKnNtcA/xJdvhe4xczM3b0/Cy1W9fX11NXVUV1dTVVV1Ql9rtb1u2hd20LZ1ArKJg89oc91JPsWL2bfc8+zadownh+1i8yYDAA1W2rIjMkwe/TsQ9q/sPUFnluyjPEtp5KZO5OxUyviKFuOoD9/f49HX9fX/vtbft65lM+Z0+P7xbnvvbD1BWq21DDEp7Nt+zgumDqCcyZXnrDnq2nZy9M793DhsMFkKgb16D4tLYtobl5IZeX5VFTMPe7n/sOyF3m8fjNvqhrPW846o+O1d3ds6au6Fv/PU6xYtozTzzqLORddfNy1H4++et+6erXv27Ecaz863v0sKeIMbROA+k7XNwLnH6mNu+fMrAUYAWzrlwpfhdr1zTy7dvshB7nO2ybkAzatambCaZVHDBONa1uO2Ka+vp4FCxaQz+dJWcB733Idp5w7o+P23h7oj7ajta7fxbbbl+G5EEsHjPzwWf324dH+HozwJg58fj5hWxsehDz83jQ/nFQKwPCWCTwR85CGAAAgAElEQVS9eyUfvCLLJZlzO17PF+79Gm9efiPrwj3U/7mWS949nQN7s0d9z9tfb28/JDevWkH9i8uoOuMsxp92+qt/4TG4e+lTPLL2aa6ceiHvPvsoHyD1z0HdU1B9MVSdd9Q2+/aNY1/dHsqrB1Ne3gDVF9MyNE1d3SM88cRmWlpGkEqlmDdv3qsKRjUte3m6bgUXbvojmXAbzHrvkWvrgc77VxAEzJkzh1mzZlFVVUXr+l3s+esK8ttWserCM1k0evwxQ8a+xYvZcP2H8LY2rLSUST+5o0cfKN3te/kdr9DywIN4OJSyGRcx+PWn99n+2B5UsxVZ/mfv//DAmgfIhjnC0Mi2ZPjP5ybw3teN5JoZF/f5B3JNy16ufWEN2dApCYx7Z596zODW0rKIRYv/jjBsIwhKmTvnZ4cFkGOFiJqWvfzk5Vd4YHcbYdlw7mrcx5d3P8xta79IW76N0lQpP7ryR716vZ3rCilh6IQfcv70N3TcvnnVCp555I8s27oDzFi1uZEVf/0zl/7Ntf1y/OjJ+9ahJ/t75IWtL3DjIzfSmm8lZSm+cP4XuG76dX1W97H2o9WPPcayW/+bUQ0NjPzP/2TY+z+OBaMYOHcyFVdk+qyOOMUZ2qybbV1H0HrSBjObD8wHmDRp0quv7FWqXd/M+29/lrZcSGk64OcfvoDdG/fyo/teoi7I86vUGt69pwzPO6l0wDWfmsOmVHhIyGtc28ID/76IfM5JpY13/NPcQ4JGXV0d+XwedycX5nn8N48AcMq5M7o90K8YuPaoI1I3PnJjxwHqU6//EdtsHBcOG8xZO/Ns+v1ySrJ5DCPMhfzP039i+MCpJ+RbVGeNa1t48LuLyedCAs8zu2w8lDo7hk3j7A1rWDlxA2N2V/O2lz5GKkyx7M4WThvewtipFdRsqWHUzskEYYqAFGHOefKuVbgffM/HTq04LBgfT0Bd+qc/8NgdtxKGIemSEq774tdPyIH31Yy4HO0LABQC29dq/xdYnoW1dwH/eWhwaz9wDxwBD98M+TZIlcK8hw4/kNc/Bwvezr4tzobHK3EPMAuZ9KZmsqf8G4tmVRB6lplnBCxbegV79oymrq7uuENbTcte3rl4FW1hQKrszXxz9Xf5u8VXwwd/e9zBrfP+lc/nqamp4YXaGv5m/LlUrBuK5/IsrZjEx5pzZPdspjQIOkJGd+/1vueex9vaIAzxbLYwEtAltHUX/Pct2oJnQwA8F7LnryvY+q35BIMmUn7RP7FvyX72v7SEUfNndfxO9HQEpb1dE8NZsns3U30qf33wafL5HKHlWTJ8CVPCKTQNaGJ72Q5Khi0E4N51xm83/PSYQabrF9fuvsi2q2nZy3fWNdIWOiFA6Dy9c89RQ1tNy15+t66etvBidjOYmeEKpjQvPOQ1dz22da25PSi25kM8SIEZeeDxjY205dsICcmGWZ6tfYTWA6t6/KWsuXkh+bANI8TDLD9/8n7SA87mnMmVbF61gl997f9l75ARMGo8WOFjrm79eu75yhd415e/0avjx/GMmDU3LyQM24CQMMzS3OV961D/HNx5dWF/D9Iw9++O+oWoZksNrflWHCfnOb6x8BtMq5zWZ58VR9uP6uvr+eVTT5GfeTrBjOlc9vxKBm+fBkGK7CMtQM1JEdziDG0bgc5H6YnA5iO02WhmaaAC2NH1gdz9NuA2gEwmE9/UafTB1rIhzw2+hmc4nSW50/jN4+sY/txO3ji8joGjVrGs+VTCnacBkMuF3HH/y9zZvINcPmRWkOYbmSm0bGslnyu8lHzOefnZhkM+bKurq0lZQC7MA7DJdvDz393NNX99PRNGjCXMhZhDmAupW7aCG3d+4ojffmq21HQcoPamJ/G5dXlCGigx4wfP7eHMHVkgIE9Ijhz/vfOnrH1kU7cH7aMdmHujcW0Lz/12LblcCA75EBpGn0vj2AsIgxTDgjxjdv+A8btOJRUFM/KwaVUzY6dWkBmT4b5hfyDcmIcQUkGK0L3wWPmQTauaATpCYXuQK1+/C4+e03NhISQdJSBtXrWiENjyhX7IZ7PUv7isz0Nbb8Nk5+DQ3evsGtx+vepBsDxm4OT59aoHD4a2KISRbyt8wHhY+JdvKwS5rgfwuqcg38a+LQPxPIDjBvu2pNkz2wk9CziBhQwbtoX9+8fxav5Mzz2NO2hzwALyGDdP+xSn71tHprvaeqi6uppUKkUul+vYlg9hXd12ZodDsCBF7Yg02VSKECMbhYyJ23Pdvtfl552LlZbi2SxWUkL5eece8nwdwT+fJ0iluOxDH2H6tIvYW7PlYKOUkd+2CrJZSqougFQaswDy3vF7umnTXaxc9S+4h4eMoLSPNs0aMoRR7KCkZBirVv8fwrCNtjDkoaaBDGw6g+n50wkAc2P29sK+HVrIk2OeonngDgoLU5xsmKVmS80RP4y7fnH90tVn8NXfvnjIF9n240N7cGoPbFZ4qVw4bPAR+6cjbIWTcPsHzENKLMeMkhKqO7V7bskyZm64mE1DV7NtaP1hNT+9cw9toeNm4A4ekgpDzqgMePlAAA5jd5az/5Fn+GvuKYIg4LIPfYSzL3/LUX9/trTOJJtPkTLIeYqXtp/Ks2u3c87kSupfXEYumyW9bxdtPhYIwB3L58jnc706fvRqxKyTysrzCYJSwjBLEJRQWdl1kiuy5C7ItxYuh1mo+Qm8cFfHl7XW9btoXbycsmAZZXPmkBmTIWUpcl7Yb0IPj/p70ltH24+WLFlCHsCMMAiom3oKk4IUFqTwEPYvWq/Q9io9D0wzsynAJuA9wPu6tHkImAc8A1wLPF6069naP9hyrbyRkDekjLZUCR9o+wIvL0lz+fD1TH7Dv7MmmMoeUmxdVMHotWPIufPsxmbmeMC0dJoPp8tILdzCIIO1KaM53/3LHR1WcMm4c3h843OFDQahOyu2r2X4llLyRCGCPI9b7VG//WTGZEgHabJhltyAmeRJdXzbra1IMWtHSI48Lwxayc9H/o6Xy9eRClOH7Iy165v59aKN3Fu7kVz+8ANzb7SPsOWyIYX05JiH7Kw4lTAoATPMYfyuU2kY+goehOAB6XSqI6TMHj2bb1z7RZ6bVljTNmXMJP56z2ry+ZBUKmDCaZVsWtVMPhfiXgjPLz/bwOsuGk90pIWUUXaMdXD1Ly4jDMNDtg0cMqTXr/lYWte29DhMdh6hTKUDpr9ubMfrbA+sXUPb2KFlvLTn0OsdohCG58GtENwsKIy0VXczjVp9MaRKKR+Tw1KFfGcBlI/JUbI7RWAlhJ7DAuOUU2Zx5ZXHOTXaMfr3BiBV2GZGSMDTlRky3dXWje6+aFRVVTFv3jyWLFnC4toawtAJSDEuHA6Ae8g529somZomFxglQcCFwwaz6Zmmbt/r8jlzmPSTO7pda7P0T3/gT7f/F+2HtjCf57E7bmX4lSOg0/5ffs4YrG0TwYhTKJl0EWC4Oxb9nra0LIoCW/SBGbbR3LyQda0BNz5yI+NS+5kwaj+7gvYJjMJjpwxOKcuxqKyRaXYauOE4hhEQgBujDoxmx4CD35dTlupYU9qdZ9dupy0XEjpkcyF3P7+B1myIU7jeHmDgYHBq34sKVXU3yXLQ0zv3kA0LVRa+FKTIE7A0N55LozaNa1vIPziBTG4sc4Mr+eOZPzqs5pHegIdtGCmCMOTMlYu5rCLkV/Zj8p5nzM6BXL3lTFqzmw/pm5GTqo8arGo2T+C+mk8wffhqVu6YRt2uKWTGb6Ku7lG2+X5wJ7V/L2Vb6mkdOwnMaB1TRUkuS9UZZx31tXfW0HA/YdgK+BFHzLobwa2omMvcOT/rwQhd188fLxwLlvyC1sWLaXpmOoWOO4VRiz/N7A99hy+c/wW+sfAbhB5Smio96u9Jbx1tP+oqPNAC5fnCK/A8A+dO7rM64hRbaIvWqH0C+COFI+4d7v6imX0VqHH3h4AfAz8zszUURtjeE1e9x9T+wUYYfVN0SjzH+cEKHkjPYOCoVTwRvIEFwY2EGOlznA+07GPs9iyX7S9hZMp4fVmaADhQsYZ9w19mZOM0mhumkkoZMy4Y1/FU7aMur/jawjt32PHNCTB+P+yvrBuwkddtu4CZ+0/hxYFrgKN/+yltXUlJlFnSoXPOjjyOE1rYEdgCAkqCko6dsf1bdftBGQ4/MPdE++jQ7h0HyOeiQ3gYMmTPBnYPrmLfoPb3wHELaRj6Co1D1vGbmT+gavd0PnjFuw4JI7NHz2b2FbM7Hvf175p22Jq2IDDy+cII3MtPNzB9ytCDx6nQWflsA6PzfsQ1cFVnnEW6pIRcW1tUGTyx4EfHPKj3VtnUih6Hya5hdN+uNlLp4JDA2lnt+mYqwteRDv5A3nOUBGk+NLvTOpTqiwtTI/l84RU6EKTgqm92P5JVdR7Me4jyJb9gkt3DvsaA8rF5yq98H8x6L6cFr3SMBjm/ZOjQt3HooPuRdUwRD95E2R/fAfk23jXst/zi7H8nF9VW4s6ske+jNZxB2TEer7ulDJ2DGwB7tpB7+Rkmtb6V0T4YcCxoYs6BDfy88o0sGj2euSufpvqb36F+8jsxG4bjh73X5XPmdDsl+tgdt9L1u+jwkrGEK/cXQhNAykgNbqHhM9+kZNIbIQiwaFqt/NyxlE0eSkPdQrwwtAmAWUBl5fn8aUNhJP2U8hwpA/Dog6zQLgTWtAbsGLCDJ8c8yagDo2gNWpndPAu8cERryI0CXi7kdYx3nPqOo46eXDB1BKXpgLZoanf55paO3SqVCrhg6oiOtpXpFGGX+2fduadxxxGnRy8cNpiSwPDQCTEC6AjO7TataibMQUCKIAz42OhPH1bzvt01nLPoLwzIn8mkzXVM2FIPgTH0fHBKuHzhCFrDQmDbNKaK+vFTqGqoO+Zo2AVTR/D9P03llZYpAFw68Wl2b/oVuz0kPThg4JiJ7N9SjqfS0fSogaU4/ep39mqUbXPDvXQOViUlww5p0z4Vm8/lSKXThyzdqKiYe+xRuVnvg0U/g/DgiDMW0LLml2wqmUV6yHWU75qOh7CnZSZldU9x3cX/zLTKaSzb+ACnloVMKevauz3X3clA3e1HALNmzWLx4sXROm9jauN2snuehiBg6JWnU3HFZb1+/hN9UsXxiPWP67r774Hfd9n2pU6XDwB9t4rxRIpGF8i1AiEhAVnSPBuezuZ0yM/sbJYGMwkprJvI4dSNTjN+exYDRqUDDDhQ8Qr1mW/jlsWnpln97Cd5x5uuPiQ0tK5toTHfzIaSTudjeCG7TcuPwyh8Ux6eH8pVje8m1ZhiTupTfK7qu6wYuPawbz81W2rIhTkcJ926inlDVzC45RzOrGni7JaQEGdt2UYAAgIuGH8BH531UWa3tsFT/8a67VNozZZ1HDoMKEkfemA+lkPWrwUWrQVxAs8zZHc9u4dM7lj7ATBy+kCmTh/H1s3raRyyjqahG7iwbDqXcO4RH7fr1ODYqRXMuGgcLz4ZfYsOnZ1LtzEkbB/xcBqfaeCZvzZ0O6UIMP6007nui1/niZ/+lMbVy8GdfK53UxzH0rp+F3sXbYH2D/ZjjDVPOK2S8pFrKRvxMvuaprNhuXHxu0/r9iSMXyzcwJceXA5lGyitnMvlM8bwodnXdXOA8kMvu8P+7Ucuouq8whcZzwPRlGrFRKg6j2xdLe4h3a2nOdoZm4dMEVuekekplAUvkdm5hAf2/557djr5cAiX18/ilJaAbc8tO+Y0ctcRoc5fNOrr61lw508KYTeo4rQJLbBxZCFg5SvZ88zPmfvONzL35cfY8E9fZc2gKSyeNZAwFRIEAa9/17RjnrHc3UgtZowprybwTn+RKXRaX1qBt7WRa1pJ6fQ8EGAlKQbNHQO0f2Af7KdJVR+iomIumTEBpalS1raFuGcLg6UQjc7DS/sC6toKI5XNA3dgBqMOjGLp8KUMbxtObs/p+J7pMOJZAsuTDtI4zgtbXzjiB9k5kyv50tVn8KUHl5MPveNX14Brz5l4yJe55lyeAA4Jbg78smEH7xo7vNvglqkYxL2zT+XpnXuoTKdozuUPOxlkwKCSzm8qU8YU1jt3PrswMyHDgsonGLCt/VkLP8Y3DyQfhgRh4ZizaUwV91x9PflUilQYcsXY8m5fNxwcub10+mgefWkLUyvW8b4ZdxdmDAxSQZ4h4/axf8tASvftIu9jCYM0qVSaszM9n85vbl7YMapakGfV6v/D4MHTD+5PLy4jn8vhYdjj41LnNXIMTdN83uuofPFZKnZnAaOlejqLxjUQ2hrMv8PE5z/DwB1TyG9fA9UfAmBKWUjzrl+xL2xjUdOvezxt29khJ9t1Plmpy4kR9fX1LFmyBIAL585h80vLGfvMCibNnA9BCksZA844jb88sZbayhSXTBnZozOTj7UeMi4n3f+IEJtodKF9sXZDw0Y+tXAwi3waAMuGTe0IbHjhIDZ+x04ODN6KhSXUpXMMD4ZTMvxl3LIQOEGYY8ikp3mx7fKOIX8ojLo0pncWDjHtOcZgko3uaGOpgAv2nI1RCIOp0PjKxJt5avKyQ741vLD1BRr2NJAO0uQ9T0lQwjsnns6+QcN4bORO8CxntcC0A5P55oab+PKUH/Kx1GVMuPPX7Nt0BwOH7+PtlPAL+zyLvLBO74qZY/iHN5zSq1G2zqNDoTunzRjAnieeoDU1iLayiiiweEdwGz96NB+d9VEWbVlENsweMvJ3pMftbmpwxgXjWPlMY8co1LCzRxJu3E2YDQmBbVkn787W5xspX7+r25MAgvR4WradBawA8gSpdK+mOI6mI6hkO32khX7U6dGBI16h6tJ/xT2Hhyk2/OUzHNg7hXOuqj6kXe36Zr744HK8rI7ySbeD5XiysYQPcd2hU4YbnoIw3+meduSp0U72bTxQOBEhD5aCSVePo5zCehqzNO6FtZLLH61k74xNDK0Ouz9It78XnaeIPaDVz6LMXoZUaeGM0cbneHzIB/BoqrQnaxLbR4SyufCwLxp1S54in8/hBOTDPGsb04yzFhpSOxmbH0plxVSeXrqC51u3M23SNAblpxIGhaFvD0PW//YBmpdlmXr5mwnS47s9EaRjpDabJQgCznnbOygrH8TEUTPw3+8qpKpIauRpWGkp4a717H/+FkbcePMhZ45mszsLfVMYCiWdLmyfPXo235n2RZYt/iulE1Pk237VMbJnwMzykOo9eeraUgw/MJyLGy8m8MJIXmABoe/nFGvjtMnX05p+kt80rOLXq37Nb175zVE/yJr3tRG6HxL3U4Fx5vhDg+yFwwZTGhTWBQK0/6blo9G2I/0JkPbrR7r9wN7swbfDCtfbzz4M29oI0wErvvd1Npz6GdZMDXkmn+fMlYs4c/VSWkuWsH3wAcJgKEFo1I+fQj6VwoMUoQWsHjqS7la11a5v5lP/+QCj92xkS/kESsrHceH45wjM2w/9AOxpKIS+WWVrmGHLqBv/dqqv+kSvlgkcXJfWSnvg7PolqOqMs0il0x0jbcc6LnVeI1dYRg5emiU4eyhzl7ZQsTtH8/ixhNYQfRfLs3/4SgY2T6Hs4rd3jLz3+ESHbrSPpq/Zs7IQOIF8LkddXR0jXnqKfT/5AuWj9lM+5l+pv2oBd/7hOfLRmmLCkPINKxk54sxCYAsK6zOefHwtHz23nOx2+I+dO7l3zrHPTO681vtYazj7k0JbX6o6r+OXdgLwubObufUvr9Dwyk7WpdN0HZfYM/QV9lph6x6gweu4cOcIAk/hnsPMef2EZxk2fhNwasf9yiYPZcb/k2HxH9YVTkRwCDA2+FY2lm7jb6ddzrhBo9i7sPHgk5lRfdbpTJ98cMFp59Ozc6XTmDDmLVw/NUOubBrva1xD9pRSSqaU8l/P7+XsnWCU8MXgevKf+gJb2toIU0MIrwg5Y+gBLghWsCh/GoHBrKphvV7LNuG0SlLpgFwuxDDKq8ayevxFhO0fWmG+MFqDEVghbI0dXcGPrvzRUc+KrU0tw1ITCicjpAIGDCrhz794GYgeY2pF4ezdTh+oLXs2s/HHj7CsMkNzaIwoTTN8aRO7Qu/2JIBNq5rBxlI65FrC/EbOPf98Bm8aTGvZrlf9pxg6gkonlg6OOj3a0HA/WC6adckzdPLTDBj01sPa3bdoI/nQKS1fG7V33HM8+PJT3PVoQ8eU4bcur6BpWAWZ/fuZnc3DnA90nEHW7d/Vqn8OlvyCfQ/ch+fLKay9ssKf/uhSQ5gL2VK3m/W1K6mYvYt8rjAdn8/nDzujtGxqBZYOCiNt3kaZLS0slrvqm9Tky7l2wLvJWgnBlIC3b2rl6sYsbzrGSNc5kyv5+Ycv6PbkmWo2kopWh6YcysI0vy9dXBhHTwdMnDyMr0w6nTaHkk+ex1duv4MgzOMBhG0bWbn294TroOavf6Zk8LUQjCNFyFXXDKP0lMEd64yu++LXu/1zMXtKGtj54CuFEZp0wODXn87AmUdez1P4EC87bHH55lUreOGWO8nnciz9nzSzPvqPrNt1C1UlhRNPUsBpA6CurTDCFngQrWUrjD6bweDBjYwOf4Zl8/zDSPjB1jLqs3bUD7LK8tLDVm7kQi+M7ALvO78w8tV11OyLazaRDZ0AuGvTdvIGpd38CZBj/YmQCadVku6yLGDfo48QtrVhYQjZkF8uW0j27Em4BeRTxpKZ5/HiaXP429/9mG2Da3jk/CbG7RjAzgFLML8UIyAdGBsPtFHTsvewD/6nn67hrRsfJOV58jtT7Lvsw5xddeiU5c66wezbMhBrX1O4bzcXN/4E+FugqsdTcu3r0hoa7mfT5nuAPGapQ04qaJ8JePEvj3dsO9rJYp3XyBW+VAE4ocHayeVMXX+AyrZBBCVGaAHmacqbT8eCAMseHNns8YkOXXQeTa9I7SOVypM3I0Wesav/zIbv3o1nB2CpMia9aSd1K2oPBjYozGKVD2HL7g2c4f8/e28eH8dVpvt/T1V1t9RaWvtqWbJkSZa82/KCsRNnX52EAIEwQAI3zL3DBe4AGbY7cJkZhh3mxzBsSSAJQwgQZ3c2sniLHS+yJS+yrH1pba2t1VpavVTVuX9Ud6tbkh0n8IP53E/ef6yWW9XVVafOec/zPs/zWlxnENRnqYQFmIogLOOUyRexM6nLr8Ou2i8KCvw14p2k7c8dcYOg6bQLUT9OTZqDhrwIu0ZG0SLJYEYWhVNzqZxEctg/y87xGvTcMwBowsAlXwEsj5/oLmRJeRF3fexuWl47xWjbIC1qP1JYfLXekX6KsgoSTit1e5Fl+3FmbjI40/cU251TNJrVNGd+gXE0vtwNHwiOEzYlBiCFpD5bY7UvhFQk4wPHSQuFUCVIQ/DETCZPLAtwzJsNs6Cpb60sGo2Cchfb76jkwKOtmFJy6hU3VtUoMu0LhaKB10kK++jclc59nsPcknqLxVtbJFl7tuNZnmp/Ct3UKa5dzifz7mVZ/lIO/q7V4rBhcdgWKxuGO0+inH6EstTXcWVWU7V9J/izFogAogRfZ0Y5qqaAKCLPtoSlbo3Jnu4/i6ddfKKCIkipy8e5If/NjynjLh3CQh0WeQuA7i/HLjUQBnbVju5fFisZGloX/6fnl8iMNOyZLu4vu4N1whrLiy6ak00RQU4AZ66GUJMtIYKqxpReg4NPRhYEiVAkztwWAmMVjDaBzIoQy6UgzZ6TeC1K08m5ZzXB1/bg6PoxDqUZpApDjRwekYRLKzCEiiElT5Q4eG6pg90ZKm93qi1Zu5O7Gj5Bt5FPkbBzXq3ExIw9Z8fXbCWMwBSg22wMbnRyp/tf6J1ey/BgDz0ZWBYSho4I9qIlF2GYcPInv8LtGsQwzRjPaMt77ljw+albCrEVpCTavJQuzueBC5PL55fIkj0FrFr/L0x0fg0w0E1Ja8A6xrBjjBXCjNAtlNg4yc/vQETUxZqETU6dgcnkCy5kJ3q8/POeJhbTUUUTt+qCtFjSUOdKiSVANanJvNQ5ystNHs4X2QBB0JA82jZEXV1F7DhRMYIBi1qELLYh82/ehKkpELLuY7qvCbideCGLrmr0F5ZTNH6Os8unGM4MABOUdv6AzJz3cjazikcGxvjD0PjCRDEwQIc0UJAgDdZpY1y18W5OnPgjpgwjDcHI6WyISCjOTBRyzpfP+0ub4I09HNv/Bj8f/z2Drhnsqp3vrPkONp/tggbP7RPLaBzYRJl47KK0iXMHXqU3q5D7vQHOO5bjTc7AUd/N7+/YGLsHCzlyKkIoSBkCAeOZNiZcNjaEBdUNGxlxleIcryXZVwHCwOF5BNwboWTzWxA6JEZ0kzqb3o6a1cwuXx+T/mHK6CP5WB4jhjWxSRP8I8mU1WxE7Y5D2qREm53BZ84SEn04KEUIhY3jBjZpjT2bGuE+xqviF7EvWpe37qKgwF8r3kna/pwRNwgGwrVMjH6d1agcztMwFWKlUaTEbkpKJua5l0RIwnrG4ijVfNuHvHtWk7fzMs62HaCNQUxpoqCQO5LM9MhAwnE95gif+OOnYvX5n26/lyLf7yhwhQlTSbPQQKgEpclIKIwmwDANTKlz1P4IWm4yp5JbkN4uvqICBugqnClVaEtPQaa9hNpbwvvW7HjbVh+BmbBVtomUSK2IEN+lCULQntPGfak90ApPtz/NL6/7ZcLDFI8eRgszA6kdDFU3UdhfGEvYwLJSOfBoq6UMVASX3VnFyh3FMVm5a6aXjNAgOVv/hukDwdh1d5S7FhB8K279e3o8aaxIcUCL95JUnpcSsUTlLfizFRa+h4GB3ZgyhDQ1Zvq3kVRj48SL3QnJ6Xs3LGF3vZvwbCnhvk/woct1bl2xA2O2lMcOHbFKhmldmNLiO4alpL7hftZN+EC1c3jXHsKmFlk0TQ43vkDd4JOgB4hO/K6yWVBUXJ/6Gs716xcsDFIq+EeqCdsmCSQNYQ9YY0eRdkZ6pxbYbTtK03FcvRwe7gJDtRRZomAAACAASURBVCZbBNu89dhK7sQUIIWCFIIwvKnX18WECG4KOVX5GaZHB/DlFJOTtQz1jW4M00BBYduYwvORHMKmqlxz+4coa5XkdU9w6HGLliClRFEUVKUQTANFGpihXnTdyqjfjGfkKE1fcM+DPZP0HmpixD9Cel0xq9ZtjP3fYuTy+SWy7OUaGh6Kqr/O4b6X+XXnUbpDVoI2njTGaynjrJouppAwQlgM3fkh4aJihCdO9hEMX5iAbkp5QaFSnSuFF0f6aCmMIDeREutjE5O8t2WYbdUWDSQqRiCyaVjMIqSg3JVQjnauX4/5mbsRP3gAxYR7f99C7/YQLSI5Nj8LYOlANzkr1zI0foy8MRsBu8GWc1PUr+0mvGk5UlEWTRS3vnszPa8+janraJrG1ndvxuWqIWn6v9HR9DjTg078niQKkqbxBNKQCAwpaPIVcO6Z0+i6zhUig8MbnbhEEQeeOoCQYlG6QHTsXrXkVUoqdFRFIqWxoBTpbjpDb1Yhv7/pLnRVtdBpIGxKdncOx+5BIkdOUFx0B2lptZxv+RoI616aqsCbV0zh8dfxG1cxk3UOMCic+SMOcY7G849TP3E6kuRcgtBhXjjKXQSyOnCvs3jdipRsOD2Ba0rHf/lHEEd2W8a6qsD5sW+SU3cdd+fXxjhtxZkuRs9ZHE85aMC0iZSSNWNh/v3ZRlp2beXK9VXWPTsdp4q/gH3RYqDAXzveSdr+nHHqUdBnARgIVFl+RwhKh3VUEwwkqgm3DIS5eSBM3mQZx7Ezxgy6fRIARdMoWfYB+vqPIGUYIWxki2uZ3OvGmAgssH1Iv6KEVZ+4jKSDWTS5WzBn9EiSI5EKMUuA18QbsUQmbIbpG/gD6TKMImClbOIJTEypgBC8OjbFu9RG6r2t2ALNuOngd9kWElg9DgdWKZhIDqxWaFsSLYDo2FO6EOzgRI/3bSVu8SXSuV2jJGOyE19aKQOF25DKFvKnfoInrXtRnkGUhxBN2ASCoukKMo+uwKNPoqhz9CyhECu/mqaVwGUXp1KwiKw8qSrR2Nb95Isx9EIPhXnluUc5mlFHg6OEr8qkyIINM0kqf+mmXy7XBjZufITejv34R6oounqdZXcyT4yxsTSTR//2XZFSyTY2lmbSONxIw+Tj/NP7qznVkYFX38qxwF4MqaNJ2Oj3xya5bb4GVLEZU5qoZphtDf8Gk1bpyz9qo3dvDtIUCJuGK89KSuYvDObsZUxP5TKRdYr5UMEbzcOscBcuRBjm8UcZaqRu+jy7T3+OPxTcwO+KbsaQXHAhj48LCRHcbjcPPfTQ3A5+tBfoZUl+MepgkGTTQdV0mN8WFVGfJNkW7KWu9RFo+C2TgXJaK/47SrAVIQTbr6oj/IuH8KYuI3OijcmkCRQlJ2L0fGGeURRVl7qHcOdJnJs3oWZVMHzfKZIMSYnMQG/3cZYTCYnb/IiWyNxNZ8heruEe+yrmiOXrVVb2NfpaGoA5QvuYdNJkVLLE3opp6JiYDHnKImiblcKdDjj5asWuRT/vRI+Xx+rdiwI/UbcR+yJCpWip3RfW+alt1uJ/RTe6QmAIyesDE7GkLb6s+lbaXuW6p/BGhFs2A25oqqdl1Y4Y4azu1EGKh/uwFZdyTWMOiimQQjKYt5TJVBeKaSKFmENs4mLQUYB2099RHBggo6KGJ/ttZHp7GXHnE260kGOBZCQpBxEKg5SoqgbVN2Aca7Dm9qRU1k5Vx/i7F6ILRMfu+fFKbi7XUDBQI6XI+BJoycrV9LW7MVTVUn1Hqz0CzMw5ffX8kmZh4Xvweo8S/1wKoZJZ9j4Cd9bidv8LJgaKCXlnfDTqTj4x9DKhgRffNnHfUZoO13iR4zogMSV4l5bhWvZpnHV3s3TFjQvoASUlJZSUlOB2uzldf4zzR98gJ5xKZf4dWMQ7Sb13P/tuqsOhDYLHBNemOfFgFGmbx9F9Oy3V/hLxTtL25wr3MTj569jLYvtZQGJgwfdLe2ZJlwo7ekOscarUZ6mUCTvDsx6ilpJJswVs3LSedK2alND3cea2UpBSR+g3CkG925rxVAGGZFibpG26heVuKFEGSc94ndbOAIZq0qYOcoOxgSfyXsQZTuZcaifNY52xREYVKrnJeQQDc6cv4xQNYSk5OdqOc/JZVviXcZXvAyhC0Bo8yof/0IrNFBgq9Lx7KZ1iAFOaCDRCs+U8eqyXx0/2vS2Ptmg549ieTtznLPNbTIkww0hFA+b82Txp3Qk8gygPxGV3xXgIqlC5MfAh8k+vZYgQMAoCCpe7yCpKIbckLYa0WR8lE3y14stQ8xGPkpWrURQFw7S85Ir9bm6dHaQt6zYOiVJyNMGYKanyhZgza3nr8fZNdStYvcHa5Z54sfuCYoyNpZmx+xSvltIUG/7eewjrJvbMdWwszcJ3VmNF6H50BIoQ4HDBbEQgEhWKRMLXFTXWxXIuf/kJnOvXR0QINkwjhCkVmjuTKdpq4G1duMSbpsGpU6cWJ2dHd8SRUixI6iabqJtp54666znsWHpJk+2FhAjRjgjzo8/TDwqgQLvq4S7nGuyzQxw+9BvwHqfOCHJucjmBqaexKPUq7e4tbPnqVyk98hwjs7Uc7W/HNAyEEJStte7RfC+teAGKNEL4Dz/D6M9+Ru4//ByMiMmFAE2qTBw8AxdJ2uLDHzyTQBDPZTzBV0tTbbxn9U4uyy6nv8tPz2QPh83DGNJgsH0lS1JmCMoy/uf6Oy+4IB/pHEOPF1Ao1sJpi5jsev2hBXyq+Qa7xCdsgCIlmoTtRYn8sPiy6tuN1Dfu4zPX7ODYuELGq8+w5txxVJuNPGcubrMLBUFfXgmP3fxxDNXyc3tPisrHVlQkfHY8aqspudAxRlgfodzVxZXJ+8nM9zPrcSKAOlsH6gc/j2ImUbJyNaO93Zw93ghCINMyUYSacI6qqi4woI6O3e7JZfx746f5x2uCrFq2k/aJZQvQ47uvv57Dw0FL7BHZUdoUwQ2543R3vxArYS5W0rR4kiFrAzx0FbZOwXDmFKaw5j5TFXSur+WsspJQ9yFMTEJGiJ+d+hn3VF5JLuOXXCIN9kzi6C1HODUkIRQpyewfhK21+Bsa8D319KJ/F1Wa6roOReUsGbOhCKu8eyodPnPdrYQVASb8zh3mCY5TVxW3+ZvHaYsfjyoG31mm8qGy/xqI2ztJ258ruhMVdoX2Fq5at4/vBm7kxVXJSCFQTCjyGvx8vRNDAUXmcvMpFwVTXmvHZTpIUbMiFhXJqNp6du0sQOpD1iRmSpybCxgWPp4/sx9n2xBdIx62TzbjmSjCYCtSWCjY8eWdPCcOYmIR+6PradRjaXX5TZw4uQ8pwzSLNUhh4YLWe0y0wDlW+Jfx7Z6/xx4ZJtfzLvzp30eOdyJN2Px8Nz3bFdqKFAKemwnPWMTit+PRFo2Cchebby5noPk4hmFZfuQNn8SXWYkpNExhMJDejoLC9uLtwEJp9hc2fQFfyIdzNJvRP6TEvhcAEoY6fFRvKWDljmKAGI9O0xZ6mF085o6rAEgDYfbh00qZCC/uifZW408x1Y0ialEE82I+bUc6xxhVDyaopaSznqSMkyB0GscVwil1/L2xi/8wngJpcPjcIYyySktdKVQOu9ZTN9mEf8zBRFd0MbOI7M48y1Xd5dqAqvwDXZ3PMTGRz/R0NoV5gIzK/BIuK9PT01wwIsh2ffpKDrvWsc3XCAgOD/awbV0tda6UhNZf0esZX2ZeTIgQ7JkkdywZVVExzIWJWzR0Q+ehw8d4ILcMvfSj2EruZPfpz9GiaxwpfjclA50Ue9wMthzlJc+13PrZzzJ76iWMP7RaSLiUtB8/QldDPSAwTSPGcUvtT50ToAgVLauS0EQ34YEeIH/O1800yPIvaBKTEPGl/NTCIMt3aUhpxAji73dtoDKzkqfPH0T3L6PcAYde+AOmaWIKE6VIoTKjEue5XHwR7tfrva9TmVm5aEI9PxG+UKIWH1F+WqygGoWqASGh1FSoSk/GXvCnIx6u225l/IndyLCBrsL+VYLrwvU8te0eBnLsuJuqY+jn7482YuhheouXoWsqCBUpBIWaWJAsJqC2hrWJKXd18fm6/0ATOqIWOvaUEBxOosw5zhL1JNz6/zHQ2szeh++PJfKr1q7n1NDoon1v4yNx7G6LXdsjJ9sXoMf/84qVfHhvC79pG0IGTYRD4ePLZ5Ftn6djXjeF+OQqmsgNNz2J/ztPIdv202t/g8z7vxgxyQ4BknE5QJE5zPIkB+0BBROTwdFDjIpXmFSUS+rWEOyZZOS+0wgjixLXP+DPOoc2dYzT00kUPPcE+k9fgIgfpu/xx1j6g/+N8zrLjz9hkyUEQ6oXUxoIKTmRZUMXxJDLMBqHT79AXbJMEA/Gx+GJaYKmjC67/FPjE9Q6+S9RKn0naftzRdkOUG1ghGJ4Q/XwfSy56kZkQIAiMJGcX2JDV0AqFplyICOX/EkvAgU16KLxld4YaGEYJqO6SXZUMacppGzIZ6R3CGfKEKtW/xFFMXCbgpLT3ShTmzFQUFSF6g2rsJ+eQ5yAmKXHropduFzr2LjhEbzeo9xu28Iz7SohU6II+GSBwuN9PazxX4ENlTMulRNZGuvHw1Qv3UpwvBMFWN0lqXEbPPAJA1fxIY7IPDp8yxaYZ77VKCh3ceV6Hx2PHyTT24prsovUmUHar72BhwtexpPWDcBr7r283n+I5c6dBI0QMpJs+EI+7ll9Dz9/aDdCiphvXTQlldJK1MDi0V125+IeZhcLd9OZBUiMIgS3XlnDproNnHv9BKbei6nnY3Vfe3uRoJh8E9XofHuTnrbXCSi9ZGZvWUDIjsaJHi8f/s3vMe3tKKSSlK8hpY4qNIv6ElWVYqBlHOWoS+H0oI2NoQDbvMexlX4EhIZNVdlWuQ7WbsL/+KvACSJ1elKKwviHHdDQgHP9esrLr+bgwf6YtUeWrYRMr8qsYwhTDRNyzIlzWlvbcLvdC5MD9zFo+A316St535ofElY0VNOwymimDdvJ8/w27KZ0XwZSqhZKLQBjoQI4Hm2MIlypuslN2gZ6a4MM+YYZGhpisaifCRLKFdamR0gezLqZZ1Zfja6oqMbl3LHnQYo9TYQCtfS3lsX4ZXo4HEtKDMOY+znCcVu34fo5AYo00L3tqLmV6N7CaA8AkCaBc49R9o2/TTineJ+trqDCgScfiJk/Tw3aSZr6OEVrUhPQD2O2lEdfHkTXuljr2sdKc0VMQZrpzyRFS0FBsTaAgGmYF+wXezFF7oUi0Sw3EtHyoIAuRdLl97O3oZ0nLsGu4WLhXL8e/Udf46nH/pWzJZLupY4YYl9UVZPAL9zw6Y9xat8fqUkzOColhjRQTAPfIw8xkPZ3Ce+NT1ZVxeocsiKrDU1YfDMTQc3yQZYnTVOUPIV54tcMGSU8f2yImbQsNP8U6uwM7a+9wE3/816mTS4oQIjGxtJMlmd04fW+jM9n3c+t5dloauQ8InNxvW8GM9OBwxdGjgexaQrXbm4mMH5pthyhvj7QdTAt5FwcDlMS+gIjpU/iz26yOG/S4N5Vt/DQgIcjA0eocAQjZs6XZvsR7PTFOoAk+yqZnMzhWbsTQ4A6JLg8PZ2cUcubdMSVQffTj7IyO5uSuutibeeMSBu4iooixp77ORnJJawaCKEtv4uwtMaTTeps630Ozv948d7JWIbPMsqnRsE0Jt6x/Ph/Lko2w93PMf30vThHTqEIMAydbRMNPJyyg7CUaEJQ0xemN9cW4bdJbGM6E6F8igNpGHYfdl1QmjWKP6uFidFq8jZtJHNrYQJCUKaU0dY+jKIYEVsHyZTLBVNzp1OZWZmgfAEWqGCiu6oyYHfqXP0eYHLDLwn0NnDqlMKn6pyEBdiknR9zOUr4KGVNHahAaKnJLTU6itrNzoIf8cSJ9/Dq1M4/6VL6Gxowf/oNygJz9VvXZBfrml6kfdTN6RJJa7FACEnQCHGqdwItQ0VVSCiZ1q4qpeHYGJgQsk1i2qewhTKwhdNjHLb5DeQvNZwZ5RE5uaVmEhH+YOezj1Ca5eTMy/dj6DpNe5/6kxrIvxUhQjyilpLbyYz9h3R0hmO73I3XL5wwn2o+hFp0H6rQQWr4B3aBOgOBCgxToqafRGIpT4WweJknnclsDAWom2xi9+nPc/iKH7CtrIa6yTB0H8S58wbEC2etxs4CZjw2ph96AvHbPSx98FeUrF/PXXfdFTPRtYXT6TzgxzaTjkDgS20lkGz5QJnmBZKDCLJ92LWOsKJhCA0z0l5LRlxjX+8ZZKkZKafFCVAuhljGI5t5ejrLC8o4taQ7IWlbsWIF4XCYzs5OCidGUM0qTAU0adAxnYWuWH5eBuAuWkaxpw+p90US5rKYBUPTvlcwDH2uFAgoisLk6AhjwX5y7lnN9OvNBM8fJ/2qjdirbmD2TChyL6zvmvWhuxPK+PE+WwiNR9pTqD6ZhxpNtpCE86spK7sl4XtHUSItvZORpGEkK5ARQsWEc4Kbq26mvad9jmKxSLkuPuIT4UuJeH6aL6zzc/cIi2GcCXYNlxiLWWisvfIOWosFA72vcMfSqxddjB9reYz7jnyfqxuyccku7mjpw124jJKBTgpH+hcVkNy+YQki8i9AY0cYhZeRhJFCw+1bgsM/ELOPe/TJI0wvXQG5xYSkibO3FRHwExoeZMciiuL5sVjvUVgW2wQgJc2BIP/Y2EvIlIi6HK7HzifLC1mekc/JiV9e1JYjdvycEOLTJtk/tuHoU1Fzqkg6EyRHvw13ZoslGlBUapfcxtVaB8cGjzFjzlFuLsX2I9r1ZTa1DX/Webomk9FnLNGEAQwXFJAzOspodhb7rrgCU1Wof/4N7sqvjbWd6+7uxt7vxn+qgdTbLsM17WGdLcgHn3uQMxUWevq/JndTF2oCBOz7Fuz88oLEzasb1mZfANJAUTPesfz4fzJKNvN00ocoHfNR6vSSkzzLTLiIX1ca7B9xs44cBntC5PkMOgp0skJN5M2MIe0Cv30YkGjpoyhrXiFVGKQpNpKzN+BwbUjkU5WUsP3dH8fde8oqyUkNz9gtmJFpLrrQ7dixI2EyWmxiiu7KKzO3UFe6gXrfDO9taCMkJfbk9QSuTiM8OYkpBLopaciyUbCqhtLWLqRuEK4yURWL2CqEwedyHmFkspAjnVVvW0XqP3bcWvDnhdrWy/vPG9ymCP75TpXWJRKkRvboNkoHriandpQdW/Op99QDcFndJuA4jfXNzAx3W9w12UuGdw0O3bWggfxbSdpCwRzsae/DCJ7DNIaRhgewuiG0Hj2cYLHQtP+1RX24LjUWUxAuFlFOYE/b68i0vcwEwrzZLldzdsWhaTqoMwTHrogtKv7ee7Bn7UdLO4+UEodqZ1PpFTDxJCCp852hbnI/TJox5bRTtbP0i5/Gf/o8YZ/OxN5TVjkwHLZIxOvXx8jD0YgigUkpNl593Ecg2QPSRNUSk4O5NlbvxqHa2eY7jc3UQVFQFctX3zCtFnLbfQeAqrgvq8WQNke5K6F0Gr2+iyGbZUoZmqbFylWOQIDk4REEUDjp5dbTh8iuWk5F/a84PZ7L2aoNFpvNMCgZ6AIENYUpsfE1nBGkZ6uDypwbOf/7Z7HgC+sUTVNy5rWXOHfgVXZ94C5C3/u6pZaz2yn83s0xTuusqx1/znmK6m6Ofb3+/kfp6XkgzmcrxBZNY4o5tLkvd5Ys53DEQGguoihR5kwJy8wp0iYrQJjY9HS+evMu1laq1KtnON9lkqKt4aqtV729frEXiSg/7d97PBd8j8RCQeIjHlmcP8Yv5GrfONzId49/l5AR4qTnZEIv5ujfffPoN6lzp6FG0PrioV6WDFudYeYLSKJ8tszpAZaGBvFlX8uVl21mY+kt+HxLONu1j5eOC1Kb9jIsyzgqTGpdHkJOl6WIEgJQ0J1pOIxL7z+6mIntka509EhpzzAlzw2ME2IOwXxJhPi7DPsl2XLEH19qEm37LEuHplBzOpk1c0nyLmPJ0c8xpv2CpKoyWr1tfPf491liC/GejJAFcAuVqsp/XBxli7PIcpRuxvFRSWvf95CESTcFaaevYWoqF0VVqbnpRpLCfnyZGqaqWN56JrFNXUlJCeFTJ3n68d9gCkFjexO35rTRYaZTMFFAwUAPApOs3EHIiYymzn3Q88YCxG1bRioORVicNgH/Z93t/yVQNngnafvzhfsYp/f8Ds+BdgbNEo6IEpqXbOJva7Lxt32E7ZGdUPrOb2C86iIr0MtM6liklYyMbbbTXYNIoSMUy9zwQottVdX1pLZ8hZGBszjHa5mczERNOm0heG+yCwZrohscfJKBwd1Iqcd2abv7FIKmZWEfNA282hR2RSFsmJZ60GdQ9p4PUn7bh/C//ATZSwY4Jw5gmgaKhCxfiG3aebaW3/22L+X00vX0lF1PxngLrukekmpq0PLymN67F0VKVAOqT2/kXFIWeRMruX1sKSqgnMjjwdmf0J/SHpugL6vbhJgN8JqnC5AIBQrWKqyuqlrQQP6thN0xihluxgg1EfVwF0KgahpVW7bR19yEIXWEUGja90oCX+lPaW+1WKIRH8nZHfh7v4AZiLqkKxfd5d66YgfP9DxM2AxbXTFIxZG9FwIVyGAZJqCltiGEiSpUvrT5i6xzlkLTC4mqq/im8noQZ9sPcTpM/IqKT8mxHFu0Oa+2+RG1Zhjq9GEPu8gYX4Pu8HH1+zfHkoMFooxbnqIucIjd+SqHHcVsy0gl1HyWA2da2ez1sGbSYMK6M6AqZOyqwPTrsRLzYgKPBcimcp6S7oPcdf0mTg2FaTh5klOdnXP2EFJyw6t/ZPmvH8L++bvxtr7CHXsetHpUDnRR7OlHta/HpwQ5/coLdA61xny41nZmsFamJVwHGeHQGbpO54vPUxwMxhLecOdJcv/2gwyf2os75XtIEWZ8cA8bCv6T6ekWzrf8Y8KxBLBsiZ/2/FlmPZatcSjJMg2NJjqeYC31A8VsLc/mx7eUcuiFepgtxJ/WQ8b4GuxGOkF3C8d93wB0agrsbNzwYVyuPy1hu5jB66Kl0kgoWChINBZDmqLz5VCnjyMH2smYLmQorStBbf5MxzMJavrFVOiGNBL4lQDlGzZTuLxqwQbsSOcYmVMD3Dr0LKo0qP9ZPfAVrrxsM+0Ty/jYY0OsHjvBVikjNh8WImz3+wjJQuubSUl17Srede11lzxHLGZiu1UkcgpvKsri4OBQrLmGKeescOI5bIslv/FdFxQpWWKfxpklYfgPpAVHGe3eSCDpFLMfm8BvP43ZeZZC1UaFw0AVUWqijHTrmBeL+KTNOM5aHYEwEULgyhhiaiqX1UuWoPzo3wmEQriys1CWmJgKKKZJQShEx/HzdJ1rJ3z+TARxF5hA01gWHSJrbvwIKHH6Iq8ESHNRu4+3q0z+S8Q7SdufIQYOPk7TI9/hjDcHGd3VSkFZZhb67ImEnVBefivVzq30GBnMYJXXVFWJ+JNJJn2FCNkEpoWgGX0VULb452YXVCMPFSNRSQbuqK3DU5CWwINYbJGfm+gWtj+xBzNAllsfIHWSZ97go+nZ6MFqrgtksPUDFThK02kcbqSl3EbtOQe1s6uZFcfImAiSMiO4cdf7WfE2UbahTh8vPT+DUXoTSukNXH+Li6TqKrr3NSFO9ZHubUfVNHK33YQ56qRwWrESNgTSkOROlOJOaSVgBPju8e/yhU1fSOA7qKrKu69dT0lJMdnFqYvyvACmjw4ye3aU5FU5pG5J1H8OtDbz2q++iR4Kx64fCFKLl7FsRTXaVBa12R/D4+9lPDSAHjwD8tJ7/10oLkVJOrczthK2rMx3U17+GVyuDXHK0rnvuy5vHb+87oGY8vbbx74TcQDfxxfW/ht/7JziuM+IfUtfyAfVF1BdReTz/lEbfo8NZ14AZ06YpVeM4h924NxUfUFj2Og4be7uZSqpB1soA6e/BMObPPee+aKM6aU4rvg8dUBd5Bgjz4b5sFEGlDIhNmEtG5ZqzPTrpC8fhO4/MDn2rgsKPGLIZtyiUqLa6V73Q0zDBMVaYFEUME2CdgfPbNzGHkcl8qpcNp06yNaG11HtKxHJVeiz++lp0+lp2wfAlUomL24JMpA1y1rFBbHeoxExkJCoioLz+Mk5Mn7EnNhRms74RDNyzLrHphlkcPBJZmfdi15XRRGkFVtJm1BV7nzv37PMYcYSnZCh8uSJT/Hj1yr4VI0eJ6YyCTsmUA1Br/dpStMtzzbDCHHm7OOkVipv23Q0ikoFwxb3659vXcWHtixNsFjYvW453+8a4oB3Kpa4CazOCPE2G/EO/qYZ5sBgE10TxVT7ofunzRh6FjeLT/Lcyp/hdQ1Ql19H43AjT7c/naCmn1/6qsuvo8iXipCWebIqAVUh87I1qCuuYvfENNviOiJkOu0UBQZQI8a6pmnws0dfYshRgNcfImxI+pOKMIQK0kAKhZPpdQxphVQlO0h2aKzbspX83BzcTZax+qXME+0Ty+g0v8WKrHZWLdtp2f24WMAplKkaX27rw5QLryFcOPmNoXHdu8nc+xCuaWk95zW34ur5Ejazla5iJ9KmAiYKUJ0MrQEbhgyjiotsGuM3epHEKXPNFZEkMYSUgklfIaqqEh4ZYSQtlZyRUXJGRti5dy/DefnkjYwwLdLZo1iqVcWukJdexvRkN0JKQkkaRmhOZLdyzXKKcgOgJUFfPZj6BVvy/TmUyf9/xDtJ258YA63NPPbzh9H13MhvotwRwfOjTg6/HODeOhtIqzG8cjbMCodCtchhdOsuplOnY6jYoT82kNosKQluYDa7haSxakLZBbB94ee63W66z79GvtaKU78LEKQ0OCl6Ty7d3d0A5JmuRRf5xIXdOufog3W7U+Gp9m/hty0nKdTGkVAHuqljV+3cce39OPLKaRxu5JFv38VHXwyhmDCsSczrBGVXWO2NVixCBT50dgAAIABJREFU7LzUSOhBqih0e9NoiTaSX/sZdlb0UXrFahwTaeh/bMGtWTiXRGIiGUzviB3rzOgZPvbSx3jwugcTOFTRhHa+8WY0po8OMvFkOwDBtglmm7sxPANouQLCo3Qafgxdj10/CRgoePt7sI+GqMyvYUWSi6qk1Rzy5eIJNSGRKIr6J/UkvRQlafzOG6nhcnw8lrAtpiwFK3EzZkv5acN9lmoUE0PqTIkWPr3tOj7xx92EjBCgkiarrQ8q2WypNiem2dZ6nDrPQbj+2/jPnqP38ReQoTBCTWXpFaM4c8I4c8Iwsw/qH4K6uxO/VyQZHTK8vG47iZFqAgrZk2sTENA3E2XEE5mtXbQlAIq2gXKk9sPDt4ERwsEqhPqvVl9UTUFxakzudSeqTKcacMTQwwAFbftRzHz6M7IZyMihyDtC8cQop5ZWcN+tloqNnEI6Sqv44DO/otSXjjRGmPNAs/iPignL+9M4sWaK2fdVU9SYzGSPjmqvRdUUqjbrFI0OIBr+EwAlq4LUK96LmlWB2+1m794BalcKFEUikAwM7mZpyd2Mew/GroUuo7oLScmOO6mqKoihQ93dP4ttJFUBVZlttE8s4z+b/FyjCRQkmqqybkstYbuP5vY8SkpUhDCRUuHoUR8vnLuXYfswNsW2wOD6zeJI5xjBsIlkrjuCmWHnH4c8Cd017l1WwJGJacKGiSLhlkGdv9lcGltI5xs1t4kVfHtoFWE5iCrhb1wKS0ZNNOzcnvIRtl67nHV563jgzAPoph4ZJWJRk+C8CQfXHcvH1MOgKLQtmaataIqHex7BN7sUPeIDGO2I4PWHGIhLygyh4nYU8dC+Z/nktkmqMtNp8ZbxVMEuSoIDyLR0apMnSEcyHNa5+ZprGHD38NqDv0DMTF4SKj9nMaJi12p45J5lbIw8EvM5hR8pziFn3MNr7gGuLClierqFr7adY519hKtLL79or1BbpyD1WBm2mu+DcxBffj5e+xSZd3wfl8fDkvx8hge+FUP77lj3VU5NTRGQE0zPnqMs/7rFS6OL+KTFl2xDoWWEgjoNDQ2c8/s5f/nl7Ny3l5zxUXLGx8gZs1TTLcMTmAX2WKeS5LIqxgdCqP4peoMaxOG1+ctroPUP1mcqKlTfAKl5C88tEv8VvdreSdr+xLBUhNZkHFXLIRT2Z29HqEW4+hUGq++hKO0XSGngqXwEu6+Y5Mnl5PtTMUUmtnA6BeUudl6Rzuu9jzGT1YpzbAVJvuXYr8hZ+JkRTxrD0FHVUm4wJsmXWQzh44UXHsOQJqqq8r5V15O6yCIfv7ALoVJU+D4KC9+Dy7WBdcCvd36Zek89A9MOHm9tiVlAtJ89S7nIZuzYU9z1QgglavljCJ6aSkM67Kz7ExI2YIE9BRDXSB5mai/Dub6MrT1e7JrCoDT5Q2qIEl1hMKWfiYiyNBq6qfNMxzN87V1fu2QOzuzZ0YTXgeYQyGzCIwb+w79CNUdQKwojyaLgbIqVyKycaibPsQRFqJaPmZTk2JIYinlWLWY3eulxKUpSl2sDpXk/o/7VZ5keqqJ90uTWz/oWKEv7W730q5YdwIzo4KGTr6CHkrHnzwk6XHYX9Z56PljxKX75xln0UDL/NPoMABWlG3hfQ6u1yJoGu08/SZ2/Hb/9ExGrCgttHkkuRJaMkDkRxjWlQ8OvFyRt5/afpd/sZFoJWO77kc4gFTudCUn1BUUZEV6MI/XdMc4XAJpIKIk6eu8HIwjSxCHOkLP5HMG0G1GcGr49nbFWYTGVqVpLjlaDA8tz0dXQRlnNrdy3tgBdCESpyT3P/o4DayJjPiImMBUVd1E5pVMaRuBI3L2P6pcFFdoSZtt72Zu5j8lq+MGtP0U/N4Wp91G7fRP215vxVd6AGZwkafUHkIad0QfOcL7cjW8iC4+ngsLCNis3NXSYtrOi+hsMD79ESziF33bsp8Kh0xmysWulk3u2zZHa459/Qwo6jEmU5B48s6W8ZK6gSJ3kivWruOa2zdTX13O8MY8zp6/B5RrC5yvAN5VNhpqBx+4hZIZ4puOZt5S0bS3PRlVEzMvNMCWPdngIJye2pPpMaT4PyzQOdIywcUxnzaRJ+pIgRPYNUaPmNqo4xyoCzq2E/cI6hoDefBsl4zqqqnDrZddQkGeNpfiekjUDCuu7pnjgla+TmZnBu669juGMIK+/9ltMPSISMU2mHCGGMwPM2pYTipQ44zsibC3P5kcphTxVsIviwAD9SUWk5M/y2Q3/gS1k8A91KidG72XSvoUUTzOBwXPEXChMg+effx7TNKGoHGdvCwRn3xSVv5Ax9GIx0NpM63e/SqGuc6g2n1+/+x50atCo5CtjX2dX1Z2L9gr1NzTQ+7GPx3iVmfd/kXMD/xJBNxUqHHdT5vGwoejLeO1TjJDFqakpXHYX3zz+C4tL2HaG+53VC8dIyeKIfTTB83qPkpaWhGlYSL+pacysyWKj2k7LSCmdoSXkeYaxeQegwBJfCATd+gRmbhFIE2dvG+psxDZICGb7m+PQPQmtL1poduOjC3htb9bb9q8V7yRtf2KUrFyNarNhhMMoimDlpg2oG2/i2efHuWPChgpo3YPIVZYRoRQ6/qzzJE9XcvBAP2OhOeTDHzhF5mXfYxyDcalSlvRjHPkpC9oPtTe2RBprgyEEQ+oE+UYWQ9oEhrTadhiGwaA6QZWWvGCRn09AbaOahyem2YYF90dbd7x2+jXO+c7hSfJQTDZbXitlUu+mytiBP+M4prfTSlMFnC0VFCclEf9YXoy3cqGY3y8QoOWNoQXcs6itwOMn+9h9og+PoePIbkZdJDGK2hS43e4FaNtikbwqh2BblIMRKU8p1pG17EpcHV1cs3YrU5XlzGSXcf/LY2RND1Az3UrAnAUkprT4OMOzbqydnsQ0zbdcHp1f3s65ZzUzJz3zqTYJ4e1dyui5Gyzjc8VK0DKX9pJT+wLTnirCvkqm0jT+xwNH0LUukpY+gJKlY5caIc/N7FiRwvU15TGithAaeugm7Pl7QOh8q/E1Nsx8j6CZEWkZpfH90o9yb8+vqc0KIux2ZChEaJnJ4DWzSMWJshQ2nPbhGmiEPZ+NNZxveKGBZzteQWrxRTCLl7l6w4oF322BKCOuhOlQ7eTe9hQzfdkIWNijdSTb4rCAlbgVOXDUlTC51x1DMBNUpgYEiz+Mw/Nl65xyqujKzEQXwrLskQoP3PyBueNHSpmqlFxVtpkiRyttR+JZWdGxpKD1TLLGSGOVksrLW0c5N7KX4MtHMHSd/v2H2Zn/fuzVN2PxMC3ivT+lFcfIU6Q7Cxn2lJOf34kiTBSp4RyvoWjd9RQX34kYbmSw9Ri903ONrufzlTas/0/2N/+e+ztfoN95AufSU/h772F0tpQpkc7X1q/A7Xbz4osvIqXEN5WLbyoXJJjCZCRpJPatxEVG4/w5IPr6nu3LuP9gJ0bEVaH57Ajq5lyipq/VfssUusqVxHK3vuhGJTNzC+2ilm/Kr6ALDc2voEY2SzZF8NGry8mpnI3NnXP0gGXcf+39tBx4htS9Bzm+xQFS0jc8Rsd3/pnX1vYQNsNcK/LQhIKiaozlWpxOZ7idsBAxpC1aZox2F3n8ZB8NPV6Ghqa4MeuPqBGRj2lKcmdeYtN4B4fP+1AycmNJvjV0oh6FAiMl/ZLECBcyhl5MLRvff7a/tBgdDVOo6FJyTlZzfXhiUVFCVBSmuMrQ8lYw0vYaZkGEViMNOmYfJKXRRW6gj67bfsi3m75FqS2I3xTscEraggJ3WFzYLmOeT1qwZ5KxjsO0iM9hyjBCqqQ7dzI5nYdimlRceRtjSTt47uQsum4gai26ghSWpVOmK5Mx33hM2GGmpmMPB2Oc4pK6y2F/BGkTEU7bBXhtb9bb9q8Vf5WkTQiRBfwei63VDdwhpfTOe8864GdAOlYF7F+llL//y57ppUXtZVcBkL+snNmpKUoK0vjc2jTc+wcB8A9XgbSB0FFUDQq3cWDGjnc8FFMvnj8yyLj/IdKX6REbDx2f/RVe+Td7QkkrUxW4jgVRIr5vqqax4qYtpE+nsCI1l4aXLJNBoQrOpbWQ+96tLPXmLSCuR/kKv+1u5Itd5zFQsQm4K72Z25fUkB3M5vDTh1lhrCDTtQ1nxXrOjCusmTAts8+cKoLeTkwBD16rWF5H1e+JHf9iPR3fLOaXLbffUUlHwzAV6/MSfh9/PAGsqbiF75/el9B31K7Y2VWxK6Etkaqq3H333QmJWwLfK8Jhmz07Cuo0gSY/Ulj9r0KjbZiqRvk118X4WY+UWgvRlv4a8s7qRESpNPoNJnBhNaO2jDOT0xKJ5xeLxThsALMnh5G6if/k8KK8tvloZebSXnqG/47slSGya20sK/w5L3gCMYuHePWoZp/lk+s/S8Pk4zGjXUXq2NLPxt4XtJXy0my6hTZIiSlUDmRu5IhrDbuXqlQEchj69wcJLjeQQloehabEm2HDNTUL9Q9C46MEr3uK/kNtSNWM89aVIAUpvnJs4UtoADaPF3Nm9gyHN9yyeDljdgyLN2aVX63XcQjm/F6ZqsBRtx5eSmI6cDl60ibqJizejhFpBSQVCw22mnSaZJlBvlxbyUeuymGgNZfO+ucwdIv7WJzsI9sRwJ+5mvauUZQI1255fwoF2Q46I4tqrqMYITSGlSkGxRiFMot01yjujd9BEma12cTpM9dw5vQ1ZLqGqR2/jOwPbIud9vxG1/EctihfqX1iGV86No6SbpkfS3Q0ZydGsIyPX6XQMPk46X3p6IZVRvSkZ9CUp+EY0wk7nsabZJWmNKGx6yLtrOLngK/dvJJ/3tMUe31VTT4vn/NYGKQ3yN/IJArLM2J8tI7IvHfLh6pICRgL5rA2j8HL/HfCwoZEwQD+pjCLJUn2uftfYz3b+357nvOHBzH0uT7DV40V8EReXqJ605FC9ojC6eUBXt46wm2Ondx+5ce4IiMYu56DHluszBg/xqIlyZ/sbafF00LLeCVmuYowDaRUmPDmMDjUipD5cVdJUlqQRf+wFwNQFJUlS9awbuu7MJJTOXjw4EU3mfEWI9E2dIupZceXr+TohstZ0tdJcU8/2hIdXUo0DGpFC5mZdy7at9a5eRNqXhXJmz4FQsV0d0DeXsvxOIKIj7kyyZ3p5Ez3Y9yTPYUqIGqGdI2EB8bsl2SXEZ3vRpfsxawIg2IikayfOMJYczl5o6NklizldEYphtlsJWvR5y/yeWO+OaNpRVG47s6PxHiCMfFIWclcC7wXv3TBNlbbMlJRLUAVVfCmLfH+UvHXQtq+BLwqpfy2EOJLkddfnPceP/BRKWWbEKIIOCGEeElKuYgM5a8T8U7jiqLQtG/O1fzKj3+FQZu1cIZ9lSwr/DmKswlPsJYP/MZPdmCM90s7NiFQVQW/L4QZr2SXMOUbwrV8DzPD1QS9FfS3enE6VPL0dG5kA4OKl6LSINL2AkPFNXg8KVx//fV0jnRyf9/9DPcM81DfQ5EHd+FD3zjcyD81PkE4/VYQEDQNfttzlhfO/ZAv2j+PoesMuTLZs3obpqKyuw5+cnyateMGodFWpKpw9uPFrKyc4E5KWBecs+m4ZOg+TvId3eXEJ1BArG/mYJvP6g0aSdziCc02Zy+9ShfbiraRnZxNTVYNvpAvttvcs2dPzAzXMBLbIy3K99pSiGIfwn/sDL7iNM43+WgJTTFTXM37/9sXEgj1G0szWYXKyMtDWERyy8+sLdmg0Z7HbZs+QN/+32GaJnsfvp+cpWWXhLYtxmEDLqlDQvW7CgDILUljsO9hTM3iqyB0FGcTW8tXY9cUDH85SA0hDFRF48tX38LG0kzU4bq4dmAaK7MuoynYA+iYyausJNYyUrP+ESohVeFHg+f4wsGfo5l2HK2CqahJuSlI7iHaOgKMEMGznRSamSiqghFFwCy5GRlqmKYn2uD2ygW8wwT0MY4XU5+xlveZdYQ7BxcvZ5TtAM2xYJKOIpgTz3YQ7pvrwOCsFjgCh5he8k9MnK/BI3yYU518emQ5/5GXZD3r0TGFgilUJrQk/rGtD/PEYdY7bUg5hyAOBVzUZvp4pXecud64UNmXRvm1VfRo+9FDIYZnexnK8vKS/TQmJqrSw3VrgkglomYUkvQMD319a5iazOFEehNJyZ2sI9HeJ4psxHPYonylB453oaQdt8aTBKSK7i9HdXTz295fInt08kJ5bBPbGErLZM+a7RiKQCk0WdXZTVagAW+Sl9srL2yFMH8OeOHsYMLrnDQHDtscUvS+8jwLjXuxm464Uv6AL8TG68sSjl3fepz39RqElHxL/CUkQghWpybzkeIcTvR4+cnJQVzhfnzPhEGfW9yjHo037FpP8fBjDCwrtwamNNGCMzFUzZct2X7thyjKq6Eock0HWpvZ/93/TaGu06pprF2Ed1ajjrNpsgF3oJDn227msvxjjA6X4J/KolY9ytCkQjgjG1BQhOTqkV+BGeaMuYG2yfcyGUznNU8fk9kvWmPsIs3iowlw1Bcu2ns5Smmp99QzONnN/xgtJlx3BdrGK/hFroOrs4K8OhjltH39gqa34XKJ/vc1BJp7AIGv4DBJExUEMjoAiTA10vonQbOzPDePqWkrwZHWXg2bENy76pZLKp9H5zvn+ApEuYZERxEamU0G+e2tCJsNNcOF/ee/QHn3NgxFscRAEE/PBqCiooKdO3da18x9jIFsH7tnZyzxSDy6l1+7aBuruYjuJi9W2/jLxl8rabsV2Bn5+WFgH/OSNilla9zPA0KIYSAX+C+TtLmbzsSczQ1zbpdu6Dr+iU5u/ex1nD9ioW3OpEIKyi7jub3thPQW+lXYnRbizrI8tq8p4ODvWrFlvAvXskOg6AihYajHyVkZJrtGY+DQvRRXbcShCoSmkB92kZ46grvkB3hHwxhS4eyZa/D7C8ncnsmwfTj24B45vp/xyU7yakoTGkvXe+pRZs9C2k3WL6QOxiTelGvpHZtGQWHQlYOhKEghCCuSB0o6KA8/TuqaHrwr4cbaDrIETJqj+B67Cddl34O6uy8I3SdewIWS76FwdSyBUhRBdklqrIH8fD+1KKFZJPdgL7mPBq+BmLDQtVuuu7SJAhZ2Euhv9TL4RjPnnz1JyYybQptB7U03k046BatyWbOlOOHvhzp9eF/uIc2cEyaYwD5F57xqsHl6IqYOfisK0gtx2C7Ga2s62B9ry6UqgvNiELsrl5LLVRRtTnBS5rLKy081G/iUGwGJy3wXZQ6T7u6fsSxzC/dfez9Pnz/I7w7aODJdgiP1E3xwR5jKpTv4So8gbFoefRKBLk2kDFM/tJtv1iTx1QYTe5cg50cawSqJo1Uw3pOFfaOPzIoZUFQcq8op6DTYGq7ikO080YunIFijZJEz4mf/jxq4/H/NiSYWVdBGeDGH0y8nPC4uXM64AIcmGuHBmbkXCtjbfspki5NZYwse4eN5e4OFPJ7v4h/StzLmSOGywR6SCpP5DzWdAzILE0HIMHiuuYXxU69jxrpmCAwJZ8z1mIaXuS4dAmmazE5NceXHv8LpPU/jcTdweGY/hsMV2wD4U5ajGJrFQzUVprx5YJqYisnZ1Gae7Xh20fE+0NrMwPlpSLWwDxM4MZbEvp4jqDlmrL2nMbkRESjFlrsPU+pITDx2D/vzDzCbtgtDEVYLJylwKHVsHkjlaNHRC6JssLB8d8OqQo53j8dev3fDEt67YckCCsXF2q5FieF9Ax7CSiGmUBGmjhAqpoSvtvcjpnW+8X/Ze+/wuMoz7//znHNmRhpJM+q9V3dLslwwNgbTTO+QhCSwCyTZbNhdQnbfkA1Z0khCIMmym7YJSUggJKb3FjBgjJuaq4rVex+N+syc8zy/P85oJNmGhH3fTfZ3Xbmvi8vC0shnzpzznPv53t/ySB2m0c4ZehsbzAvtvQJhCFwIpFLU9AaoWV5KbF8zs54oCrMLuPDjX+GCRajayed08Zhx8b08P/Zdro9x5GffZkPI5Oz0OUqXdQMmCfFDbA8cJs0aRM8fpW+wCzOUxtpVpeQ0dQMWh4Jb0OZiAUFA99nGy/CBYfEnb4oX8/UcmoOVDh+PdTUS4qNIoWEJxSujsxS+dpCsqip6U87nBLHM42CLx+iAjdB6glAVxs608PUsdbw9ZxFzJIXJ155n5v7v0WcEcKs3mVeRKiUQwiBBV/j9tX80e3R+vYueKCan9v9gru4muehsYu6JjWSOzh1vIGlwkLN3vUV7YQGdRUURE2YNYZul6zorE7KZePYwvbm1dLY8ycfW3E5oVODwNfPjJCdD7a10ZxWwo3glVVtPz8N+b3wKM2zHZf03TJ3/p+ov1bSlKaX6AZRS/UKI95dvAEKIDYATaH2f738K+BRAbm7u/+NDff+KjouL8FgANN1AKbnEeLFp7wCWKWnaO8AVd1QsWchGomDTpYX0HThh2xxMpND11hco2NBPZlmI3r7fITSFEBaVV0xGHlzeSwuZeKOLmcRG29NGUwgp8XhtTxsxJtCEHUGzYraI899dhaF0zMPjHKUm0rhVpVURe+iniOH7MKNWYIlophJvBgTf91jcO5JB7OgMdXkQ1Cw0AW3Ol+nI70bkOzgndhZdhHdWGvi8Ot6X7oS0FazL2/DHo2xOI/nunU5d1EAphjrCMQ8CdF1jMs7gh7ta2FSYFCE0695aEFaEIrLYd2me31GYW4het2D7sXbt2shhnPyQCMyY1O2eJiFxGdl5q9BRuE7ACjGJap/it31+yiozWJeXwLs736H25fdIchWyxZuOJuyx9e8IcgyLnOAQKWKWIU1Hcqop5wfV+xHv34/XNtDmtxu2eYK3ZQsCZkeL6Hr7TpZtG2bVxh0RNWl/bSM1Q7+kJ6YFKXUyfILN+hNM6hZ6eIyWbF1EYKoJqSA4lUOyVcbH8ospTbAfnsmqn2/v/ybTjmIccw0YoVYasjWOXD7DWcc05vTlzL3WPg/nMFAdh8sbxJ0mcKVrTJ/poqtuDAIL76PUzCRdxSNRJAiWNOqnVdCeY++cN/uncYy3QJg4fNpxxvtkDS5VnkIDPXSo9eTLVJarDPr1biT2GNdC4jvwHk6hk1l0LkVlq/hCvM6++haClkSTFtm9bXbDtmh9EAIGBuw95zzSJlEIXScUSufdxyeR6hxc8WUkRR1nUrO9pnRdJ9PMZe6XOcgz1xDtW0aMNkV93ovsNiYZYzry+xbX/CTAlThB0aUWQlNYWDzc/D1w5zMf6aYLB3efcxMjoxkkJ3m479AugjKElDDiGsUUu0GdiUCgK0mWfxRDGdyWfdsHboxOF2dVFN9OW+9uCrO2RtaEk9eGk3mt85/9YmI4ZNnnTlno4WZUAqF5M9nw6L8vqhnZez5CaYhwwzb/mfTtayNpshewMKan6TszjW8Ov0Frg0HpUD8la1LhpPeXs3I1mqZhKUV/ei6v5y7nRNMA33ikjqApWT9Rx4aQCUoSlz4JKmSPElH0pufRkxJECYmrdJxi/Qb62qE3tJGZqCJOeGcQExZI0EKxYdBeoGkavb29vPDCC5EM0k2FSZQldlDoaaZtopRNhfZ4/OTRuOr9ASsYxMAeh2pIeObXdCjJ46urkG19ODWNXxVbpE8u9e3MSL86gtCi25vOyKKjWTjmkojVLmAm7jCt+9/l6/n7yTaclBNPSfe5uBO6iS94j96+39E/8NQfzR5dzNmlRsDuIgJ7IKTtYuLZp1GmCYaBMAySx8dJOXKUM26+mZ4ZhfdAAGUpBoxx0kvSSXxHoYlYQl2SN4o+Q3A+MUVK/n33exwtXos1HuRntU08WVl22mbMOdKEZrlRQkMoRVFg+jRH/eev/7GmTQjxByD9NN/61w/5ezKA3wA3qYVZw5JSSv0X8F8AVVVV/3cSvQ9Rs5OTIATu1GliM2dJz9yOJ25tZHZe80rHQgMSMumsfZqo0n38ZEcfPYHzWF70CVK1KV5qfA0r1gQ09Im1rFh9PTNzh0A9CSIEOIiJshutQOcE48+1gqVwi2WIQgdKhlBKY2I8FSEUT48+TYmZy9rZMtY6V2AoHR0dpWCooRPK1+H31xI/s58fbfkChyYnccdV8YV2mIeCQwh+uDrIjuldnDn0Cgei04gKNPOdrI/j6pEEsjVeqf8yxIZsk0MFCeMhm9QZJnT+0SibkyTfA8ZmBjsmFhDp+RKQszwBz7oUPvPKkSU8uU9doPPrdjsBIUwzipCvF/M7sqaL+WTerXi8Bqsrl+EIeZYIPK64oyKCivY2+wBBssP2gBPC9tET2ErWhv29fK22k/vXxtD05PcAi4GZfRzWb2JtnK32vQ4njYFBVg8+x0Cf7aS/evuFrNy2/UMJEU6XhhAamGbm4CAotYTX1tvsizRstgWKXJIXaTjt+fv8ONg0LS4Ut/H8ih8yENvBisxd6JqJCHte+Xz72VT4kdMipvMeRj8/8jxirhH3XGNYvQUOoVN27g1k/P01zIw46PzEJ+3cQiCYL2nPiibbNcvI7v38rmkMOT8qFKDrBsWhjIiQYySkyIpxLJyPk9HH2F6q33mF97wVbM5ffqohZvcBOPRb+yIKix9OV5p7YSls0HrZ42iyrwVtHEKCHDVGPbZ5x4AngT5vMlnjI7Q1tOJplKy+bQ1PlBfzSksb/kceIn2oB00IVvQM449yEnTGMZK8GitoqwYlgq7UaXwJJudkfpLDu8yF/k7PpOTcLZy5Uo8IZ6JfepmJ0Fk4OrYyF9/GzLqfUKyFKLTg3S4X53vMCJoxv1FJPjSNZZrEpE+Fx4f2fVrkCtHm7rD/LaVxQcanuGGNPSqu6UxiputWUuQIWdPpDGW+yKCnFe/g/WzK+Byxx46QOjmObhicseqMP3r9Ll4D/P5aZvo/SypBZvofYz8/ihj7/il81yXE8DANAQTnObt4y8wnFBYHXJKeSJ3RiTVTyGDymzSlHmDlwBmEs+ZASdLVbt4BAAAgAElEQVSCnfTKIazoKIKeRBBQ1z7Be/HrIdbgaLSF+O1DAGzbePlJRyLoTc1m58U3IScstIkB9BgDMR6k25nBBk1HKJgZ8iDUGEqaSAnDw6MkJ9ubS4lk//4nCB1bxdlp/4wwNfKExX1FO5kNuOnztHBW0XoqrUpqa2tpbLSR6Lq6Om6++WaK44f5QtUPUSqEEK9THH8GcOo5TE29kBLfl7lL3UMDKwk0CjQl2Vt1DqZuUxxCUvJ08+NcrnZGXielHV0375kWsc2Y10tIAz0Ux1jRyxgTKRxPGEAqk86QRkLPRtK6z8LpegUhbI39n5I9CuDSGgmMt4CVY2/MQhazjT0LCTmWhffaa3FkZuLesB53RQW5nRNMm/YmdlVlGi3P70YTsTZwAVSOKRzKtpcxACUVlm5HzYWkxXsdDVStXcq5qx+q5609P+IScxP93hQy/SN4XJVQWviBx//nqP+xpk0pdd77fU8IMSiEyAijbBnA0Pv8nAd4EfiyUmrf6X7mL1k5K1cTlxmkYEcXQlPAE0w5lvN0r4NNLh9Z3n50AljoxCSdYMr7PaaGAQHpHGPfni4GRlaHg66BsM0BwOs/lhieO3CnNDEzXBaxbnB3TiwK1S0mp/pfmM56DFNrZ53WwNHKVBK7Y/hm1+04lG4jAyLcOAqL1OV59PY+RlPzPSgl0TQn11X8hofHM5D0s3h23xGdxy+ib+Kf5T1MDe/FPV7CisNedGXAUSh8t5jZmAaCZYo8zyReTYLuOq1R4elP4MK4asDYzDOPzGFZs/b3hG0MasPdGvGbTR7ueRTTiEOG8iIjgcTkbrTOBZxhdfJq/mX9v0T8mIJWkJTJXC48fhujyoHf0MlL1Hh351IOGyygonYpAvMNkFr40xRQi0XIlLQerGHeJQ4sHGoKVFJEwbbDtOiTJircgHiSU/6v0hAg3LQ/28q8vfliXltWaQKxaW04ExqZGi6mUc6S71tNdFIbudseYMqyqK37Ne7AfVhmNCiBpnQyJ0qISmwlMXo4HO1lj8LeaMuivGjBqLNo+mHq3v42ev6FlJ/1Jar907RoVaioZeizDehKccXUDJevvY3ys74EgDsH0u/+MgNf/wbBvBCjt1sow2BIxTHROWo/CsJNerL0sOOSi5luEzTu7WckpPBJxdx0KPL+l6CPsb0cee8url35rcjo44mKUv4hL81u1nb/FmofgfADiLpHCex4jsBU1imkdjljRr7u0Ici1yDK/v+qjGxu2rCcp4YEP3cmYWmCWqk4s3oUxhWBNj9V5+SQGWewc6jXFipoGnGBELljEzSVnofPVYgVbLKvGSFoKJ5G6OlMH8qzzVvDJQTEHH+HpLTVJMXGMvPSy+BIxpFbDAhmEhrs1JQwyr0tL8DM4GPUDj9JbP5X+Oy795Ohz1Kh6aSnpTDV70ZJgRQKqUC1xpHqkAwn2OFGLx5r4SPLfKzLS7DvqfE8rp4sseUz43/PU1n76JOJbMjIonRzCvXHmylfUfqhY6xO9gJ79J2neaHt/FOESu/nKThPDF8ARO0PqDfo5y5xD/7Mf2N7uo2aaJeu5OWjiawuKCI+ewjzKYWyLASK0hO/J2V5Ft1WJjNppREVZzChBIUB4dzY3oxCjtS9u6Rp6z52BCktujMLbNpI+O+NZBe6P8hYbCYVV92F1XQQc2QEx48HmCpTdEwmg4CkUr/9zymNyZ4olsWsQheGPSZXkIuH32e9ikNzcPm6y5lsmrStQMK1MCo9iu39KUGZkYbodEKEfv6R4OirjA86OTK2huFLizB1LYI66kKyXB065fOKi1tBRsZVtLU9yNjYbsK7DRy9USROXMfQskft67AICpNvxXWsm6AVZDC+A61fY3akDCUNhCb/pOzRebqMK1iAUF9H4QBlYQ43RW4M4XDgvfKKCKd4an+/vR7Ok+gAb14GZtc4hFX8a/0WPz44Q02izrpsJ7taD3GstByLcHi8/zCwtGmrHqxm0DVIsW+EtImxPyll6M9Vf6nx6HPATcC3w38+e/IPCCGcwNPAr5VSj/95D+9Pq8zS5Wz62GaG/K1h9bBJz94f8chggN2xU/w053Xy82N507OVSve+MIk4/GIFqc599I/GYiHQNYHXO4pD20VDzRSW6cUcLWJutAhYsG5YtTxxSaiubsbhy+5GotCyBtlQsIKJEwEcYXRNKslwWZDJqBlSl+eRUyCoqb0HpeyHlJRBfL79bE74JE4BwSWETo2Q0nlWXE+G+ylW9BajzYcAWxLDW4iruQkhYOSGMzBz4+kzEjh8YoBy6Tvt7vmUqJTwuKrxt41YVt/CDypYfmYGcYlRNGid/MPxzyCVSVSuTqDrVnSzgOSkfpqn+nFoBpaycGiOSMMGC35MWROlaNLeVVqWpLVu6BQOGyz4waEskkeOEJ+UDe40G2mTFiH3HP8cEjRKC4ehUbR2HU0db2M3bjqj0mWbe8zzIEJRoGxT0g8zFv2gCrT5Iw2b/TmJCK8tOqmV7G33o1SIJAVNg5nIPctxpzYhNBOEveN1pzSjGxVYlsTQdIpKp/hofCCilHpvNJ+9nVdxwqfj3LWPR2/dRNH0w9w9/BRBIXC2PspVMpsfsQZLgZ76RbZN/JKyrhe5fHqG8ncehILzIqhWwg034Cotpf3EgyiHvfhLNBwpI9C94EOYJONImYohZr2Hve/2YymFYZwaMRZBH3fv5L24FeHAeB2UtHknE8dsrqQ5x2LINhAqYOTpOZTqOCVRosOt4dFAl5CvUukVY5GX5qs03JdcQILWiJjuQlopKGE3Qe0JXs6eDOKafAm6K+g+1oEMpwpIy2LU7SJhepropACakWnn1Ya66UnzMRTfQXlvEUItGnQLKDuxE3Goh/7dR7BGT2CNnMBZdjHOkksQQjDry0YpHTEfNq/BfCPUMfgqGfosf5cyiyGAi6c58UIuzS/m4toUxdy+ObIGosnQFK9sGGQ4IYTUfDzTsId1eZeyqTCJPVbrQsoIkDG6nl63xeRsiNvf7CRoOnC2dPJoasaHyhde7A8nMTg+WnxaodLpOKbzI9KVsW7qJmfCv9HmqG1gL8WqgSLXfvK9ldR0+iIq1YMdGl+9Lp+HV/+ATcdzyR2cIrD9HLxVZaQ9+jP8IiPStGX6R9GUREk7Nzarv43V59h832r/NE/0nECP9pGs6+T2d6JLidJ0HJrgG1tL8RdNsakwiYzAAI//7A3MYBBNy2LFWyPMZUUhhaD9lQI23bgFd9cAff4Q+Wmrw+9EIYWkcsOZpMWX4XV6eb71eax+a8nkYb558HhiEMIII216pCFaLESY1LO5Zf9erkm6hF8fKSFkSqyiOCzDiKidxUSIyrF3oUDxLFexgmOU0AxYNDd9jcLu68lcsYNxsR9pBcEC71Maxu0hlLBAKBQaKQneyFi2NLAWmRAHZJKbXYbmPva+2aZLKkyXcWnHSXbezZT3bxh9/mXkRCc4ncRfdVWkYZupq2PqnaMEB/IXbnFLMb1/AISEkiCTAQuvZkCXizV+wRp/CE+apPzq7ax64zt0p+exY/YgVVtvOeVQvE4vI1Ej7E7fTcpcCpdVXfb/PGv3v1t/qabt28BOIcQtQBdwHYAQogr4jFLqVuB64CwgSQhxc/h1Nyul6v8Cx3tK1XT6aKrtZ6Vejoj5LUqZKCmY7oviXP/b3OLYTdNUBp9e92WCwsHv1EbuUmOUqMbINTYynIsGNFtJrM+aZVXBYwhhYrqewp3yBaaHCyPClXlCrivPsyRUVwgR5rMopLJw+tspySpncMRPquXFFBb/Hvo5X7jky6xKLaej48cotZDdJ4QWJqbH8FRFCTsHxhgOhnhj1E9IWSh0jmlraIpbxWWO/0CEmz2EwppoJ1gEo7cHUc7DDEiFDAgy5Yt86Xe3U1V6VkSKDu8flTLQ5qdxT/+S86sbgmWbMujVJfc++QJaYgghFJoGZ62d5ILCWO47dEdY3ahzdcnVXF60VHwwz+84cOgIVp9uL8a6RlFFKv0n/KcQnXVDwwpZCGmR1/0HEvo12HwHSrNdzmMThvnylZcu4ejkJbk5+vZ+xvrjGRfJvO0fwG3MMWdGMUEyTs+1ZJVMs+nKs5YQlj+Mdx0sKCY1t4FwhO0pNEH8FUWRxqO//2kgFEFgdmT0Y3xylGj/OUzrL4W5Kg5yi7aRckdRhDPUPvsWkwP2awDi3WWc8OVHHqhP1vYg2l8hmCiQQjDtLOY/rRXIsHDLVLBPejgaF8PzsW7ub5sj6olHyLkkLoIsuisqyC68naG6AxEDz+Lll1JTfwB37CDx3kEKfcm4Cr148jzkf3Y5b/b42J59asRYpPK3srn2BTswXoBD16maE7xd00tN+mc4a+I1qiaOEZDLCMjVWKShlH6K8ram08c3njvKudI2Rd5y2VYu1Ys5VnuEophs1m/ZiGv4KXjpTjbHLsO55gFCuguHEJwZL0kZ+FdcdUfhsJOBkm+xv3wr2b1tZPd3kjQ1Cwjy5vbQ6jobYaQjHCk05P0Uh+ZgwNuG1Cw0qaNpgsqsQeIP9+A+4w7bsb3IYmbP9zAHG3AW7WBA8/P63Dgxh88j3tNH4dFO5EV+lFNDCAPdt5y1xmF0MWuHQWiKuIwZBuqTaHl3jsyR6IjVSPpoFMPxFkb8AV4arueaoWzW5ZVTujoFa78vPGKHbkNiScVPj/Rg5rgRo0HERPADzVxPV4v9IQcDK+iZnkEXpwqVTidEmOezBRcZVWsoLhHPs13tokUspyawke3+afafRNJ/re09QjLEQFICXmsH030GPS9Ns2rTFloGmpG6TRvImBzjzInn6ZNxrBwZ4eqPXcK2jZfzm94RvtjcYyucHeWUnP0Od0aVcl66mxOe5IVRfNj0d//Tr4cTU0AKQdBhUDYeZHjLGaw57wLWVG2FtANEHXgkTNYXSCTW6mgu2rqdNw+/yU9f/SkzYoa1Y2vRlIYmNJaVLePMM89kSMbyWk0d+afhMValVaEJjYCjkPHULzIuDB6c8fEPF5US19nGpL+ZH1rlWLpuW9bEOZibc3Ev92BiYGDyJe6hhGakDNLX8VsSvutgxT0XMJHpwXlCI+rvo/HpexBoKLVY3FRO+lQBz/5XHZY5iW5oLNtUQXr+WX/S9RGIOpOAdT0uDuFytuO6vpzo7euZOXAwMgqFBcNfR+45OJflRHwM50tZCuvlNym4+6Po3QcY7iwKf8fEpTXh2fppboqehJfutOk8r3zRVpEuok40jDVEvhYIpkJT/G+pv0jTppQaBc49zd9XA7eGv34EeOTPfGh/UtV0+vj6fx3gfisa0ztqI6vh8SZA/NwYz3UtY7JwGUHhQGo6Iano7fks5a5fMRs1QsNAJgMDJUgErVYKO9yHEOGgeLDIXdeH13UeUTEO5qZDSwi5i0N1FVqYc2UrdXbt6mN8fI6jTtCcAY7EH+NEVFeEmD9MIhIdDQshdMpK7wFsW4CShI3cV2bvhqr903yjsY79M24UOlJodOmJlO/5HnpCGZa/lZQLU+nLWY5yHgkfC2hCoQuLovhmfrs/nydreyKjj1OiUjqewDuxi97ejREuFkBqfhxbry8lvdDLk7taCE4WEJVgRJrUHcsLOT5YT8AKIoQiJBUqlHBaUnR5ajnl55dT72mg8egJlq0qYeXG0+eOXnFHhZ1x+ov/wDPdhdR1Zg/8B3pCEZa/jaSPfYWMwACbuxtJHcklQAmrz6li9TlVDLT5Of5uDfWvPsaIaZLkyqbYexHjrmw2X2uPd/673nUnKya9lxYuuPyfxu5joRSuuCY2bvoafn/GEoTT6yXyvqP9V1I99DhKhdA1B2eUXs9PDsxEeGy500cRM9E4E2YIAcGo5Qv+SGGBgWOuASkEXp+LmhN5KNWGUX0X1/3btyKN28mmzl5vJTd8FLq7/wmwmC48zmhrMR1zldw2OEDQUDwy0M+3PTqfyDo1GYScDVRd/R2eaD/Ee94KqqKy8D/Xymcq8gmJfB5UF/Pbww+SO3wLKN0en4Tna4uVt021/XzXisbAbkAP9Pn52FVVVFWFRybdB+wFXppUTRzlicN38t66O9hcfhFVh38CjUdBWbwbWsY/xK8gtM5Ar9jG1356PwmzcyAUoalOPJUvMetcydjUUbakF1G26qP4g35KNyYRM5JCVmkCc03NjDRfils37PsaMFKXEWz/A7MH/oOeZcuxMpxMTKYwOZlCZlw2FVoWA0mwa1cffv8Mid5NkPiaHXguBZP9bqSm6EibJn3MZeewaor+WA+ISYRQWMqMrBGXbS/gjoZBMoIa3Yakz5BIr5PguiQboSlUOOvGTq8If59a2KwUsC6/knzg0VtPv4FZLESIinHQ2+zj1TRBKBwgr6E4y1fDFzp+RYnWxjtb7uRbU9sJ9Ql+NNDCNzLTlvAwz3FvYvT4WjRphPmdAtOUDDQFOLv2LTry80FAS3wnjZPjaGjUxTr5bMFHqfZPc9eJHiyUzYnDoD8pn5HiGG5dvZKLTvNec1auRjcMLNNE1zS8Oy7lnZCJpRTdu94mOTefIVnCHj2Vqy07Dk/DIjepj+7ubHY/u5syqyyiLtawRWVZWVkMyVhu/Pk+zs1+g5wi01ZvKysyHi1PLSc3toSjFIMwQOigWRwe6eeMl37MSGI6KfFpDKRm25+lUDTGrCGIA4SGqeA4qylRzSBgZpPEvd9E3/kEqZ//O/pXdtE6/geUtAGtrITzSFDbCf2umpkNgt7BBCxT4kpsJSa1ic4T06QXXvJHr49A5wQjz1ko80aE+AjJl0XhytmAO4dT8ornDX/N4SacZRYwP+qVKKlAWphDDXazlx/HzPwzy9eEtf3j9i+ZHY3wG0821p3Ppk2cS2Rb/zY0BGPvjNJd1P2/Am37ayLCf6Oequ1hlaVhANOJTbZyUQOEIC7TDme2lEZOXxtGsSQkNTQJ7vY4vJl3IyvT2RfbTc9kE5M+nTFiiUrYgJJPARZK6uSXnE3hinwCnRO2UvDQEIEwFOJsK0ATDmQYOSkt+TKh0DidnVGMj3faB6nACjgZ0SfRhU7fVB+PNz3Otw/cR6ZhUBZlcEPFV4iNLTkt+lUy+DQXTf+OWu7GFAY6Go1JW1FrJJsOHSR5bATrUC3ZMZKhHC9SmQgklhJYSqdprATF0tHH4vGIJnQSdv0K/HNkmSvR9a9ihZGw+YYNbNsA480CgoOX4kx/FpDcd/A+NnhuBmV7+aA0jg93Uj9Uv6Rxm/d70xNmeeH1J7EsixN9h+gZrmDt2rWneD+lF3pJ0Fcx5boLa6SZ2LNWAYR3eh9nPCaKA/c/RmXCdiymGK4/RMqn1uLKs2PIOg+NgLRIcmVwdvp16JqB0DUSwp/bh4mdWYyszR4dWaKYlDMmnnNOXTwyMq6it28nYJPaTeA7R57m+qEKygIVSE8aHR2/JzNziNLSHZHXeb2VVFU+Gmmm2gMaHz3/MOZMATcmOSh95Z+o06F/yo1PxVGSmsr9QhCQEqUkcb5f4wi2oCFY3RGNkjZJ3AyFaPvDq2SWLmemri4i20+98grc+fZC7HS2g7CYb+SHW3fxaG8iwWwnYA+ev9jcw/LY6NPL7XM2UJWzgSpgYlc3/+7VCAmQmiCkHOzOuY0bh8K8BAlRyxJw5niWNLwVGDgAPTyHqjh5WezYvSjUHaqmGqkqzAVvzBIxze6odYR0A6nrKCGovuojrE/NoLsNPIMnyPn9W+wvakZTAscRxUO9e7hr4xdx9bWTsTIWSODVl6bJ8paBNsGANk6GkUDO9nJiz7IfNoF393DUN2ZH1akQzui3ef64H8/Arfj9SSilmPCn0DZxJc3qeYZHnFjeAAOFfoa8JuNxg6SPRTGYNEdO7sVMTg9jKTMi3gFbPHD3dXm8XXOMZC2euPFmzHwXx7Tk8FgNzjojZ8m129fcsNTAdFG932Zl/r9q/zQPdg4uMUSev//nuW2zqQ6MczygFA4kX+j4FVUTRwCN9h4IesO5I1IxFiWWqFZp8LNPtS39TBUMBPLxOMuoqnmPkA7PfMymUCz2OJvxZITZCGHVqVKsaOuhJPNUftbic3Dd3d+MfN06OIL15puRpJpDhw6xr2eWGNHPmPseRrS1pKp6jN2SPS0mylJoaHakm31noGka+fn5PNdiryGNYyVcWmiEN9+GzT8VNs2juXUFRtYhmJ+KSMWa/kY6E9LYecnNYQECCGmPgufccRHQwdA0tiVmwHySnwbBUoXlMTky9SvkfHahECih0LsG8H3tO5GYq6Rv/RcxqW1knvkAQjOZ1l/C7884dTR6kj/nElU4us075TR0GmzDX+F0Iic6mT34nyTd9kVkVZDR7tewnhrAODyEmurBvcFG6ayxTqyRdnyx0fS+VUdZQQWZi0Vwmg69tZGklurxw5jSZMVkKZrS7KXDkrTUN/21afv/aw1PBujFwgRcY2W2ghMLTdOZHfIghEDH4vy5GtJrHuDXUZ8ldxgS/ZKuj6Tx6YF+goaOtm4ZyTXdKB/cs8/Fdzf/G3JiL5mZZ+OOWsvh3zeReGgoItyZPjBgowUyhpzEf4HzfaQUbItczLrezdtv/dImrgoQSnCJuJDHeJwnm59EILCw6AhqdATB299MCmOnBgVPmPj23EVxroMviXt4R53NbnEeL6YV8PLVeVyZn89Hn3+CvNQR3H6LSu1GfHmFOBzxdAz3s7srh+7p2FNGH0uQls42vP6HQFmkG8e4YnsTve6LliBfsGAb8KO6wxz029yPkAyRGi+xjnwK5a7GiK+hYep1bnvt7YgD+GIy82xsN1aMhcJeNKurq6mvrz/FsHIpolWInrgwepw5cJATI4qK+O0INHssbSkan24h7fIi0gu9kR12anQemtDtXb1UC5mvbqedSYp6f++6xcdxskO/4H0zR+fPb9W6x3jz2Dc5MnyUgzM6s6P5DL8TzVTKM+Rv+RGaZtHR+TTw4JLGDWBuro8jbT/j+817aZlTOHUn1+jbOewQfCYtiaAQOITG3+SmsemNz/Ne7AqSZ4/TmpvJSOJ2kqKTOKdjguq+4zYiohSJU3PM1NXRedPNEFaA+Z9+mtyHf8VocjKdnVEIYSughTJwjy2DKCK0ALA9kl5tG6Gq4oM9klyFXqqqeyJKMYcG69trWEwyPp20vLAynaGaIaSp0A2Nwkpb9D7f9GdaZxAjb8BFPS7jBFz8wMIoJWcDvuTPM/naa6zbnIIuLWTY1/C5jDziE68gU1po0iKp40E0JcLXBZx10KBm389B2VYwRRs/RZx0keqZ4uWwJ5yu69x09c2khq/T1RUVxFe/Ssd7TxFUu3k526Ip4GZ24jW2aueBFOi6TmnRDh46vItQVAi9dI4riq/gxNAU9eIVRhKDaGh8rCSPO9N+TvVgNXGqjD3HYrFmfaRqU+x/9SkclsXajBauqtpPsyrmBKsJKgcoSFvQhiwxGT9d0PkHbVY+KN9xMbctczjENwMxjC2LY3Ogi6o9LcynWyT3PI+K2wLCQCmLZNXPuvzyyL9xrGsmYsUT9m62S2i8tuUqBuPWkTR8iPGYasC+RnWhU5VWhemKxakJglIhhGL7uy9SfnyM+vpfMeMuioxHMwe7TjkHG6+y816t6G50XceyTDQUdbW16FIyYyTzPXc+nbFHSJnOYsP4BYgWAR4NhEQKyaHEQ7iVm0+f/Wnb6kPamcsdEwU8WH87f7fhBDVdPvb0dvHdXfu4pjKbwNh6NEsSF/gFoajlJHe6cB1+he41Z9pjUU0HKXENTxIK6Fg5C9Y45yZ5OC93G7VjP0daAYSU5HommM0TETqEfSMpNAnO/kxmgq0gJSoUIrarjsorphnyhflui0QSkTqNP6ercNkSVbgyB2l87Fv0pf0BhVoCKLgrKsj95S8iY9NQoaK27m+RWhDtWoPCjdeTsuZrjMdE0WbNoHticcRk4y8sZ6ivh8Nf/1eu+9SNTGVchn+4h8rAAfTGF+xjq3uUqqt+gIpeRn/aFjQxQerEKBoaGVb8By0/f7b6a9P2Iaum08dbTUMEUfwjM1zkz2Pb6NeJXtZNSsE2lmVFc+zJB1nue4FM9ySZsy8D8Obqm8lfU0GTG4JhmF8B2UnTDPp0NAuaG/bg9fbT2vUmWqeGIzGJ0TwHVWMWa/xLsxGjxorw+PLxlC80HTk5OWwvPoM3mt+zVZdoFOtZmNJEIjk5I1ChlqJf8wqfw7tI8M2hZTsoEU00aKswlUAJDSmgOymVvjO9bIkKoRTU9KTgzf8I67ISyMqCM8shN62Ll4/2c9GqpWTlSFSKfgB2/yZy46avX0d6Tn7k52bq6iI35bqKCm6PvpBbXn084tBfNLeGT0RF0eae44B2kNTJXLImSjlw6Ajl55cvWfCNgBcRZ4sJ5suyLI7UNjJ0zIo0iqfzALPGWiOByc4Nf4dIszko82KDYyf87P1eLVd+vpLM0uVcd/c3GdzXCA22gadCse/wr5HTfn7TkIcl89E1wVcuXfn+KNv8cZxUruJ4Oxc1nIxwutGo11tJQfHdfK3lbzCVScVEMZrUiUo7iqbZdgNCSPr6dkWaNr+/lpraG1EqiAJuS4YfDrnszMCoKIiOJihsPpuJorrtVW711VPlq6Xe5eT7o0MEfTpO3cUVW/+ZTS/vZsRlkBwwyf/ShcwcOAihhae8CoVofXcPz/rHsSwLr/c8Nue7SWgoI9pfzCWEeCbbsWCaqST+Z48z4I1/f35buDYWJ/PLGYv63Giqmg9S5vMQwmKezR1o9hFoGFsiRHDleUi9bc0SP7z5pt+jFMkxOpa4EaGFxzZVmyL/nu8n9zHwg18CkHP8Ya786iqeSMlCCYGlBG0pTjJHg0gBupGDohsAQypy+xU9ifYGKxQM0lpTx3LPJgY134InnJRLjVW7D5Dzyk14oi0OrI3jfCHYruBHjEBMC9vzPxWJPfpZ+oJflzWbx+ef/03O27YAACAASURBVAmrtHgGkmYYS1TEqTKs2TzaWnSeqOnBtJpwGhr3bLD9DGNjhygo3AtKUSaa+KL6Kk+OXk1nZz7XXl8QOQfvZzg7jzwtT8qPjCtLEzsoT2jC7z8br7fyA/MdT+a2nVeSQnqeF0jDf/39+A59n45RNy/HVRA79huk4cEVaGIm9SIIp0MMtPl5d+cJpLTjq9ael0P9610opWjN8vP7zblILRNNbuDqV90c4x1GEkJcWXxlBLV/oryYnQNjDLW3kjQ6BErRlZjBA8MBrBE7feNzvc2IeaP18DmISZuNoEQ37VhPx0s/wC+jqVGr5oee5E0VkT2Vj4bOVGwPoBE7WQS5E6Ssd5PvyV9i8rvY+64qM5aJ3h9yZkaQjen7+X7N51Bk2+c6kE4UL+AK7KVkKh5lecjpa0e3LEyE/SzpCOL0OJhd9Fj4w+gkJ3LLFjbXA6NEZfURsLIQ8jf2ZMMC914Nd60Lz43nMOvcjwqFEA4H7g3ryS1UjNT9/JTw+Qi65u85xZ/TtXUD3ksLmT06gu6doeM//4aRz81ENm9SBiJ0GvK34q7YgJ5YRKDNz8DhxxaAByzUtnTGg1GRJnp660Wo4gupHLPY5gvy9uDv6dz5ddYndoYH0FZkg4gVxBybxp96F/ulwpGhuLO2na2TURRUlH7g2vPnqr82bR+y9rWNYob5VwK4RHPiOJSGOJZB1K3FtLgsHppZxsPRO1EKqr0r+fSafyKku/j90AD/lpiEIWV4P6eIDgXI1E0K4jtZvfo1NM1CyiO8oRfx2xV5WBo4FPz44IzduIXr/RCX9Vs24m4M0qfGyBSJDJaEWH6skFXTxRyPbaPB3YYlbaXl5UWX4/WWU1nxmzCJPVz5W2nf+30G+y1SMnWWcwwHIULKgaYkaf4hhpOG8GsGo14He4ff4dEnh/m38y7nhjVbT1JvjVGWHndqg/IB7vTzRNN5yD33l7/ASsxnputWpLOFeP8KRvaYxDHFKrGK6YIz2dRxOZrUsfp0Bor8Sxb8KBXPtguvpWe4ldraWqSUCKHR+tYMHXNtC7muizzAlBCMDfahPfIz2yNISlx9h5Fpq23uBFDvb2PUdKAZmRGFW2bpchoHJml953ny3MX0R+8hetmbGLriH9cafLfmdjomCvDNBHm/OiULM4ywRa9Kxv9C29I0gNM0buWp5Xxp45e4d/+99HtakZrF3OAqVOnb2LCtIMa5MeJTN6ftR6lQ5JrWgZIoxYDlsPNkE8pw1t5HUCkQBineraC9AFJSHRXFlKuEYPQKnHONPBfdxJ0//skp5GEcjgjSJhwOhlNTcIca8Xj7mfBnMK2fR+a0DbGtmVZ8Zc7P73xjCAGlA92kTHpp3Nf/vk3bYpS0zNCoNDKYqk0jhO3bHaXtRdcmmLZ2nCJEgFP98Mbe6qbKaacYRATfSifQK3HNPQD5W6meFbzUM8yKgmJWtrcAcGHtPp6/4EpCCgxLUjAYACnRlEXmaDepm1YwNjFJ9MEeRhM2gmgBWz+O0LMYMaFYJtjjMSXRjQWrgUDnBIE3W3AFCzie02X7roUPrjhK8uzUUbZ4Q3R0dNjXQc5ClNV/PPY61069QUrJNErAM71buLt5EoQ9tpyvkCkZsOLRdZ34+MGIv5tSUKKauSHaybrr1y25n5dwuMIq6ZPRtx/d9kXazQHyxQ+ZGwtRO/4QlRW/YXN8GQ5NLDFEXhxjdzqTXb+/ltreb9KUmMe9SV/FxEApk4Sh77Bca2Ol1oXfX0vUeDG+1zvxKMUY9iZVGx+irGUnR0vPpyUzEEZF7c1oT04pmSPVTCbPnZL0sHNgjKArHu3Sm7nhhV/Rk12IKbTISPZX/hg+jo6OhaEbJBUbS2gnOdPncqbcRy9p1LMcUwnbwgLCXorhm09JQlYrtTMH6WgfiEwOFtf8WLmj43WmsM3VkRbLk1q4pvJGrqnM5tt7a2iYs7OCB5JmUG3xZAz2cM0LD1NfuIHthYUkbyygI26E30wuwNohpdg5MMZ9ZfbmOiAmGH7uEMKUZI9kMJvYSPRoCerVZ5D+DqxxPxnf/RmjTe8wlDvAHl835eNbI03fMIk83lVLlWik/JnPL4wjNcNeisJxcoHOicjaNuttxn+1tIHUsHJWoRh78xnyJwZAdxK48BmbAxeSaN4URJWBCmd7JyRspPFNeyPRk5LF4xdchqVpOBT88KAibSKH7OiXMYTEVAKJhkCGPwON94JuTF2ihIalCwLrV7OyMP2P8If/fPXXpu1D1uJEg/XCwLB52JGHwD4CHDCL+bR5L1utEY6XZhHSXVjhUVnP/j4+FZjiR8vikUJjb/EaPpplckagdgkSMpThxNRAaYKQUlQnGqzxB0EXxFSl4a5MYy6+hf6O/Tgc8YRGjpAwHsJbeB0rb92Ku66Zo8EWXjn0It/o/RwOpcOYxuR1MezT606JaOkfeAopg/QPPEWs9xN8Ni2JrbEBdogQJTTxJb7KK1MbcXYpDM8e1saOUJPsRQmoVA3sHWrnW/VvUpb+EPvaYv807tYid/rFC7URJprOQ+4zBw6yrzSOwFQOUuWQMWdELAlQsH7qSgxl81GUtMcq63bkn7LgJ3XHUldXB9i2HNJSaIttBXbko11cwLHHTzAclIy/MUXF0X68UoKm4R46CBW3MNA2xfHGJxgN9AA6Lu+1TI5lcmx3L3PTIXr3HWVr4jloQscoOMKorhAa6FgsSzxB70zRB5K4F3uRaW4jIjo4bRrAaRaS7u5u0ofSeaD8AdpEG6WbknCNljCl2eMkITSOvzrG9JDdsJ7/dyvtEaWymypNc1CRdwOfzA6jDanlfEHm8NU/PEdwsoD/cyKLtVu/Rv7eu3EbBYyn3YUSBtMek993PcBl51xG+ac/FTked0UFeQ//KsJp8155BeOBBlYlLmxSsvIuJWXNAtp1seZn8Be7w/YZGo5g3pL3OB9nNM+DOvnczFa3ANHMr/oKF27tTWbk+ShsUYI1Pkegc+KUczi1vx9Ps484w+bCzVOahCZx1f0f0Bqoji/n2tXfJXjOR3BsNXngB99gZXsL61PieeDBe6nLL6G85TjZIyY+bykJ4yeIn+slsPVmOtt66Zu4CqkZOM1+pNkLjkyEkYEvZHJidIp1SmCuzaLiih3k5OQsakpzUOrr7LTu5QLViYFNg4ibTcEz52D3s7ttA/uT8iq9cy+TcWk7Iiy0+1v5EvdVl9DqL1jy3nVdY2vFMlLXZdPWlkXIPBo2WhW0tmxk5cqCJfdy/VA91YFqyj93M1F9cxFO2/6ndy5B32JGOzi3YpTWNltANU/FqMqvXGKInD1qnuLRdjL31Ofbj1QhjotVmBhIoaMh2Jh3DR8PfMP2rBt6gpzqfyFurIjNMTrvzVhMIIgfbyE0dwyle8n0Z6LJUqSw0dzc3hZSNmziC1tvJHXcxf49OxkrXsnDVlRkOiIMB9qFV3JzTib7x0xC0h65TvodPJN+GTlzfZy1bRNGXAtyeJ52EuSV1lYumYknJ3qQj4nn+L71EeJ1u6kCzfaklDYxXs11UHEimhitmD3H95zStM2LOqoyV0SmJEIz2Fa5lrqJJ6lKq+Jft1/KLa8+Q0iGmEiGDf94K717WtAOvkPu0JMYNQZZd9zCy/4+hKpEifnZp+B3/WNcn55IlTfGTieQCqFpRPuLcU+UoJQilLOJwEQnwZ4pfONH6K78GUqEyLKe48s7b+cb13+MtkAr9+6/F6kkTiH4mQHlpp34wLpPgjdngdO2q9u+bz0tdK+7HyUWbWrDjVt9bBlxnRol8T0E3tuNCm0ERMSvdCaxkZSSc/B6K8lZGY1uGPRkFWJqAqUJTKmoTdS4xTtL6sgcpqURwuCroU/w2ex2coffBiXZfPiHONZ8D4SBQ9fZXpGF639BfNV8/bVp+5C1GJ7e6o5Ge6EDZUrmEluZS6imKrqSXKVTPlnMDMW4mhwYWVqYQAvrRkK8najb7AohkLpG0GHiaSxEem1PL6U0zhpy82aizc3RJDh6AzQGFSuvKyHhjEx7t1n7caQK5/8ohVBQ9vJjyMqHeOLoQUzTJJtCfEyRQSJSKnJ9qZgrq6getFMEylPLeaf/GK/Li1nBUUpkCx0NP6VwZhU5M8koz25b+C8VzqlMso0+duR1EtCNBTsSoCTKonvSVqBtKrzmj+eOLqqTzTQvvLgC4XQugdw3JdrNciAkmRUq8igWgFs3QBdIqZZYeKQXepcgMx0dHYuMKhWmy4/D9Cx5TZ8/SPOsZfNehI7PW0yCIYiuOA//lkreSEsiY7aR0cO9hOfVWKEejr2Taf9aAUW6Gy1GRxMa7rFljEodhYUQDipLzuVvd/xx1ejpkhCAD8wdBbthe/jhh7EsC6ELkrYk4VnhID65i6k2Gb5UJK7ERqYGCzFNSVd9OusueTSCtmZkXHUKcXhkNIO54bNtc1YhedFxIX+/roWRwcCCSg2YdRZHcjCXkIgrKiOoW3f1qxw//iS5efYmRdMUfX27iC5aSU5YYJGDh8s2XMr+dw4wK6E3ycVwlk6s346SubaumZBSOITgiYpSVi9OSlABogMvMsU1keOP1vbicraTfFkUEw1xBBrHmD4wsCRRYr5mj9osbNtOBzSvE5cnRPTAj3GJY6Cw/eHQkJqGaSiOr1vGuVdsxRIeVpxoYkVTg23JcvHZ5MUkABsY2raCuxp/z5rO7WTrhs2NdGSiO+xrpz7zDS50FNBz+AUGlUTVe9GzEgFwv9vHgDlGvzZOcpyP1c4Yjo0lUZE4DkJyduoIsmUtKkyfME0zMlatH6rHn3CITC1iSYamSVYktdAxWYgVnhwUedu5fu0wxfFp9oMv529obs7g3T2/YNyXysxM+hKD0fqhem559ZZIzuVDFz5EZqrNZTsd+haTMHsqFYOFdA2Amr0d7+vRNl8djo08xzXEKR+GsOOZnJrG1YkS+kzmm8JpTwNRo0XomqB8VRIJ5+cx2W7x1tg2LF0nfcLHZYf20OdNJnW4g/GEXo6PjVKxp5Rdj79Ad0oWO2MLMI0FFNoQEJ0+QkZaCk/klvDe+BSJc4pvTPczHJ3OeFwmX9xchTkxiZKazeuyFFrLHI8PrUZkJRJbcSGvN8WTZw6w0ehCEypMXVEoIQim5QCCvFkYfnuY6tjqiJJ5sagjOzTEnRUfpaDMIpC8jC+9e/8SU92HLvz5kgzV/X07GThoi4e6EjP47ngaJuF1S8mwOnZpzmaoZziSNLOkNPv5NXuoh5mL+yNxirq0KPQ080zDHl4YuhczLIYIKkF1dDTlgTCPbe3HlkxX5qcL/sw9KC24gLCF+YdKaYz702kNBCihG9foEwyJIvq0STJkEmkTxbhnSknaYfvezVNV4htPsF8DU1o4lOS86Z8yufWT3PlcKpXyGPvVctZv2UFu3Evw5tuAomriGE8c/jwvec8iMzaXtIlkW3T0v6T+2rT9N2pdXgIq3slb41NUfbyEnKa9dMXchxoLgXBwdd5daONZCCB7xIwQaEt75kie7GHK0Y6uzsCSGppSBI5Xs3dqlk21t2ImnMAYXs25E0WkTc5QnahTOWYxMWrRrBQJ/iAZwHD727bZYTjHl7BfW1OhE731JSzLXuwV0Kv7SDG96LpOV8IQt732mcjNfceWn/GlgVUExQoMZfKv8qusHxrl3sF/Yowp+ieL6M86xr3pdxBKNzDSyomijyniWCGOUUwzloJpKbjAa7E2Lu60mYMfVEvMNE1J14EOVt/1Raxx///H3nnGx3Fe9/p5Z2Z3sQssFn3RGwEQADsJFrGokRLVqF4sW5bcY/k6znUkx3ZiRTeWchNHduwojpVYktUbKYnqEiWLokixiiBBkCBAAETHomML6u7OzHs/zGIBqNnx7/5if/D5wrYAhrsz73vec87/+cdbbKuAf7ghiedPv4/9WDlyKiMG/5TofSaKqlC9MZfKdTmf2kIrLi6ODQRb/qObr1+D4XfOa73E26q6iZAGXqZwrf8uqDacdfAWrSgTQ1zryCXTkcfQVA8hJTf2XktktI/+if1Uum4AJAmhcszG20heMknVquvY8rsAk58Rn+ZFOjc6OjrQY9BVQzfYc2IPr5/eza0J55NWMDOPJwiN5hO7aJoO9FG5biWVlfd86s+eW2EWaQ66UjWO5n2e9Wf/BrsZJawAUsc23chLrV1cklPBeMePP6ZKpvsIHW/8gkBiMfkFM4cU6Omrp67uPq677nsUFBTQ/NZxzuw/yqC9n77kFF5dloWhj/Pk8VZu0gaJmGmYQsU0dH7a2MSdVZUs+doSwrtfw9H+7ziU02iin6mUW3AuTicpcQ0U3wFmJeGd9bOuPB+pWHZ3d3OU04S1EOVGDl7pgfEo4aDJUc83acxcyLmhd1gfrEeLzTZqQnDZrTfimNDYu3sv+y+5mmXNDSzu6cTzha/Hk9VX33mCrSe/gRqrCs/IIkRMsWjYItgKJpH1Ej3BxWRuKR/W1XO8/hQrmro4VlFEYvIA9qXvUKAYFEgL2YAAKXSW2zVOMpMAQO1oLf1n+vmXD/+FbHWSiiTizguGVDl38VbOXQzvn3qbsYiLzy18EbtqUHtsB6ryPUpLt1BRcQlO56K4ndZc4c6rZ18lYloVkYgZiSfrtZ1+DvXaWPL1H5A40jFPUbpyxRPUNz/LwNg0Tf1jrP3Io5pXkYqqWr7DqiI+BlY+GpzgS60qEXETGlG+yG8Yw815aXksMldxVlet3MNUcYwstJJuTaH0kmIcRcm09NoxNS1+7xcMS8p8JkF3GEEFhb2ShgPvohoG3TnF6PMYYBI1+DpP+6d4qfUlHj//h3ynyKqCVc1Z73LC/Wz/58dxpOeRlDPJeJ+LqQEnAsnR6TL+ZtMlPLUJdu95n4mOLpDMHiaF1TC1fmvdX6+/8Tper5eCggIOtY1QOtDGipFTeLReWnskHW/ZcHzeGYfqRowIRweO8rUlX0N3lLM3MI4enJiXSPfkl1pA6njzX1gWT1hWYEu1Xlo/+AVyfAEJVMxxhbFcXm25eUS7i9CHzuAcuQqxwIY0dQyp0haqIMvVbiFnYlHikCxadzHB6WTa01dwNFBPjcNuJXEd+3AUb8J+i0mw94M5b7eC2uKmNzGTwcFSJgLpLHDsA2BQCfKG/TgGCqro4Nqyi1iwafG8NTG3oorbKqpQeod5/expLh96H/uGK/iH8VwOJkoOBcpQBVzotM2qwPUwYOIN+VFCKr1ikMdaHvuYaO2PGX9O2v6AmAt6tEn458AZslwRizhvRPBRSw65aAgUIdhSngkGvPxsI60JI2SGRrii3jrh5QaGyR7zYwLhUA6LR9dxctJAumBJwBIgmFLSZBOMGbOLmGu0ClCsYc6Z9T+WuCWlCVShYGAlM6HlUcKak+IlVewKbZ/3cD/YeoiIug4TFQNJsH8BZcO5NDPOW/YTmBMmx6cvRxcaUihEgcf4OhKBhs5PtTcpbqzlxtJGhBJhrO0uem0mq4pu/r3Bm/MSJT2C/Y1HGdjpo/CR38Q3vLrBOh7Z833ShxSiqUcxxr4F0vLVFCiYpqTBP4FbNT/R8BYsocZtt93GiROWZUt6bhIFa+c/iKmqYNv5efT3D+LsbsGdcRlS2hGATUo26pOkh85ynvdGFKEiUwwOjJuMGKZVOY32MBLuYU//s2Q5i9CqIWeTi8IFl+KJ0dr/ELjuTHxaBW4mop4oBoaVCAgT3VTZeuqrdDv76fVfhCeln2AgG3M8BVfsa+wprZxtPYgz/ZJ5FbYZD8sabw2ripbz1NfW8XzbIE+JaZ70B3guaOf5dbfzwoHvcU/2GprlWbToWQyh0jGwi7RPUCWz558oNjt4P7SaU/UXkZXVhjenleycZrK8Z2lrW0Gk/xyeO/gqhmptZL0pGRiKQArLJ3HI14SZsRGkRAqVPZPwQW0LD+fksHVLGTzWDoZKUsL7JN10R+xEbxlqh9/rnu8owazvaHd3N48++iiGYYAGzZqPK9I2kemzcdKjcvtqN1FxFfcbl/Hz7ne4on4/Pe408sdG8cgq3rz/Af76W98jukzDdtk1POVRqZzDmErrLKFfhhGxw4bdoxAJmZjSxFB0epNb6E/PQtU0wq7kGEdLYBgGXckaLnc/BUX18TGKuHmbBITENZVhuSsIayR7f8d+WoOtmNKkw1B4IWBnTYKKfyKPt9u38bk1UUqVH3JNWSQmU7LkUYYRob3tdfbu7WVd5cUsWbWQTZs+bk33UZN6ifwEvMdF5M65z5v6xxgPvEKy0BntepsdIz/nhvWztLNs2xmuSr2b3ukK8hKaybb9DJityMwIF0wUdFTGcHMVO8mzf56hzjGOD1xDi7OA3PYUFvbmkGkzWDwHQJ0diVj2XICiaSwurMEXbGcsZK0kUproziTUyXESpieJD/TFEqhJ9yWAYEIaPPvG22Std5BbUTXPY/XwzncwDIPJARdjoUx0lxvNOUZi1hQ3ntONO3yYiopLSKmu5OmOk7HkJpY8xZLwGaWrwGqbzlRN10/72LD/v+hKT6IlOxUQGLqO1jOOaZ9FhHjsnk9U5s6gSKrKFrF/OIoev4cEl4pXKM/dxpokkE030yl1RI2NgqPfJ8Ffij5QjwyHsBWcA1oJrvXfZfLgL+CdNykr/1t8OT5ao05+dFEYe0oer3U5iBgRShwm3/ZGmZzYzVGh8auGdyx1uqLyYN8gy6cmQbUzse0rsU8GMAW6bwXpHTdTcuIZnImDVJ1XSHnCMOgKHeTjSh4mOWWQUCCb9uY2Fmxa/DH0zNHgBHe1dBM1EznguRjGBboSRtaks/S9A0yFE1lXuh4KymZnrJ3pdDT6MNoisYqvMV8M9EeOPydtf0AcCIzHZxyiUnLaXIRXWicNYQpG+tPJib02RQVjXw8TgTDJUjIw7QGXQnYoQAUtJHv6CeJlPOSlQ3ezw5hiWoVyQ+GrmgMFy+9SXZzGVRcWxStC6QvWk/XarQwufJz4jS5BwYbn2GIunc6mXwtQeVkNC1ZXxq+9ZtCydppJ3PqH3kZmrUQRGjZT58LBWhyKyQAb4wq2nOAImpToMTWkIZQYiFFw8uUoxXoTojR24pcGTU1389aZRJYv2PR7JSYzMM3mJ97G/sajeIJtDGVk0PbSyyzJyLBOmLVvc8HBFBRTIBWd9qxaVJeTokAVilQwEOzoGOTfHxr8ndDauro6DMP4GPZjZm7IjJpkmDqwMDbrMav2dfjryXHkoQir/WkC6TYYNkxqnQZbShYxcOwQI+E+plLaKavqYmDUYDDwX9iTr+T/vlfEmdHi/xZc978TbaKN+rR6ciZyMDNaOEdzkpjaiQx5CYS8jIUyAYWUiCVfT0g/S8G5P2NaMzh2/Kl4ReyTPAxXFS1nPxGMtr5Ztd+0wndCDfzDdBM/MTKp6BY0l9goPncr4x2HZ1thETdsvxL0MAWY3CyP0DR6E3a3iRDNsaF6k5SUAdrrWi1GVewwkhsYRjUlhpBoUsc1OWZRrIQa31B1Kfn3/e0su7CK7E8RuECsDWObI/KQWN6FwMn+Jithi4WJZK+vhWtkFUfT1Bj/TWEaG/+mlHO+v5FM/zBCCM7W1XG8pDzOadOl5FhWLhvn/OwMVwYDWFZtAkF0TIIUSGFwsHgnfo+PdasuJmvBNo48+ij1piWIUUyTIr0FbVkPijL7rM8MCFgUGYHHRgybbSKRTCvTmNJEEQrFdpNrUiKoQpDn6GR3l6AyrZXpUSuxVrDeSkmsFRXwYug6dYdO07Z3Mu7/OTeuXHAlL7e+HG+PLky8gF/8tvkz51nbeveRLiwoLKbB+6d2UZo35zno2Ee21kB2Yj0Ilf4Pa+ltyIpXw9enJMWECyaqMKiWpxHCjttdzR77r/ll/t+io6Gmwi3BCfJHddKCEQYG6ziz9xWW3PMC5yUnM5SdQ/4NX+Po7i6mZDfCq1jtPVXFEZkGYDrBZbUNldh9ZtXtrDaihLP9gh33/N08xImvuZHQ8BCKohC1JzBZWAFCwZE8TPnSd1CUBjo63yM6+hNSXs/iUn0FPmWUofFkxkwDPfUg7sWpHOvowjvpRWJdUzAYpLu7m4KuJgalQcb4JGdlClIIVE1Dz09CDFqHAQWFYCT4icrc71RUxa/182e6edw3HLsbDZxyghsdh4l2+ugydVBBmgaTqY04g8U4Mgfxh7oYWxDA5a/GGSjFs+1LJF9cimvFCvrOvI+393amR6NEAnZ+tfHvOTE2xiKli8mBZ6wnSkYpskHztEbUlBy1KyyftFSkqYGo1T43IhhS0DCUyUTCSbYtyOHS/DO4rtkMbIaOfaR2dbA4a1dsJlbFc6yS4SMtPP/KP87Drrw1plt7tVAxBUgRYzYKk+BCLxuOv09OeB0wZx32VlPs3Yza+Vi8K/On4jsKf07a/qBYn5KEJq2ETTUla3xu8nx3MJnWxOmWbhKDCopmVW3WOVXMxlGcQJl7nBE9SPJEGVXnjWFPfBZpRpFSpX3/7TxmOujVdBZpVkn+50yzND2JNecWsXlt3rxrOIXBvb7VrA9l4k4/zOXswlBN7CMbMf1lJKDijXpIHp/fi5+xdnrgxAMc8h2ijCYKpn6MkbiRm9t2URM6DTYblVUmb3Sm0pOSTn5wgH8/8SAHkm6i0+zkg7LFGApo0qA6eAJHr8KYNOMzbtI0ONb6Lj95V+OGmoJ5VlafFtmlHpKvLKPzhR6G09PZc/55GNLk2COPcNuXv4zaAYop4hY8JQEgvJi9WQ1Uu8vYPajQq5ooOp8Jre3o6ECPWczMnfuBWdSGtQeqMYakhe4Y0iVNEwMY40cZcuRgpqzHSuYEw7pAURQuX5hJOBjB7r4eM9qDp7gNobRbLhcySjj0It9ZrvHTo9+mI1Ty37IBmoHt/i4XhFJZytLRpXiShlla1I2imMjcVtr3f5PwlBe7x47Zn4IadaNjkLy4GUWbhdvODeNoggAAIABJREFUMJXmehjOgEaXZy0nbVoy08CxKYL1OUWg2qnwSe7abYIp8B+HsFJPYs0XmTKOk5m2Fc/AgKUcizHtF5Q7ya+sYmQshyb2INFRVBvFxRfTMZXAMT1ETmCI7JCfnJCf20+doX66m3xfO4qQ2PINwrFK1EyYkpigJJaodVitlHmzM7EWc+i3nYRbAvEvDLzUykB4EtyxF8a+rZTQFTHJHYwiFthAWoNhTUUVZE2Ps2iwB1VVWbB8ORN7H8Bm6EQBDcnKQR8UeeM/u3JdDk37+zDM+bwwFY0Lsi7ihxffTvZ4Cb1tfqqL15D+5P0MZqSTOTCIee44ujBiCRoz+07M6xZUqZE+uoQaPYEj9lYUqbBsdBnTCdN849xvQOBN7BP7ABNFNfjRRWEWl5zPscDDmGZ4TvtLcLa1hrExK7m3RVI+dbZsedZyHt76cJzzdveOccJRM47YE0KQ6rLPvz/zNjHa9aRFrZcqTaNlvFt/gP0dU6zPKaJmDvS0X1/Ey7sXYhizCu+aUk9cuLBU66U4uo3U1LX4/Yc5LSviwgQUg97iEIV+F9O1L/DLuqcob4+wKGKQMTRMxqif9toWpvzvAAausJusFRez+drNqFPjHHn5BXw9nWiGxeNUFYErtIuxpM0gNVTDoMDXRldaDj9v7eEmb+E8VpsiBAlqApOxe9ST0j9PaNbn24NHv55s6SFLT2ZIMzkdibAzpZtFjQnkyBxQILsom6GuIWpra6mrq+Omc85BsdtJDUdZ1z2CcevNlG7ZymBKmIff3hFPoGcYc3FlrpCUTL1NMLgoXk2/MTuN7X3DRKSBhs4icYbU1M8ReP9lWnIqOS2rqZZnKBxdiGuRnajqYyBtP1IDIV8l/8M78K5cgZq2gMadzbwz9BJrSiOgSAwzjHv6FF9bcg+9vc9wZlCJna80OqMOVAE2oVATMa15WNWOp/QGKpSVNDU8TdtZN6GxTMCkIz3E8shhi+122yuw6Q7E9i+jxJ4HRZjoqS0MTuXPE780vL+bYGMjyiW3IlUVJdaCNhQJQqEjbwE92UUsOPwh33KOwWNXUqfB0WO/pGbzP3Lbbbd94ljAHzv+nLT9AVHjSeRHNg/vHvNR0F3PyOBxziYUMtgUxB8eI+JVQBdk2ERctTwggrxlP47hMFFVjdxCjeGRmG2VNClaM8bIQVgSVfk5LstSB5g8t4ilH0nYwEpMTpg6x4P5/K+JWvK0SRRMwmYXw+jWGXyOmXh3d3f8BlxesJzbl93O8Ohhvp4eRhONCLMRs0TSeTKJTHT8xft4bdk3iSoadWY5X65/gbu6RjljfJ71xmFaF3ZRyUmyrj8D/6bieU4heJMl0zZNlabRciKG5OnDXfOsrD4rXCtWkLRpE6d9PgxFAcVCduyva+TVU4Jz53DmhOJEQ+G2qosZL03kiZ0nAWvj/uhGMTecTuen/tlR6kEKgTTNGBgDhLSqbGemTUamLKzDSKSPPf3P4k1cg19ZgN+05m+GTo5iGCZCy0HRcpgclNYwMpZjhsCy+Pp9FKRz46M2Vp+G+gCwBW2oqKSkDM5uEpqBWrSf6a7FaK5hxpaOEZoQdE4MU9g7yBVea7Zl3nC416rIzt0Eajv9PPRIHWsT7Pgz7XxuaR41FSVw2ysE7/0nhNGE3+XgSFE2CT0HKVvWhVChd/AECa6/pXSGQK7a4fwf4o8upG/ET3Hhf8VNpVtYyF9NtxIuqUIxK9hWv5+coJ/ioX4SWvcSaxjxubeOcHLhSupKnJhCopqwojtC3ubUT4R3fjRxS95SxNDZYLxVKiXkmR5GQuWMJ7cAoAiFjUouXrtC4bjk6WiU0w5HvGXW6U7h6rE2Nt38TQoKCsjTB0h84W72u5ax7MxpMnxdTD76qNXi7z5Cdu8+rr5lPb3BHBISbXywvSXOILvq3ItgfNYBQOiJrAgnUdV0hoG0dJrzKynlaDzTExKkoaC9noRTneC3hblIexN9qSGyxnMRCDSpcf3UZlZEVHRPHr4JFSkliqKxuMTipFUn3kVD3T3I0ul4J9BmD1NcsIDgSTea7kaofGy2DOa3z/c3JBHRzyCBnOl+8qZ99Dpz+fFrIo78CQaP4XWc5qTxDY53dtI0Wo5dS+RXznSihg1bV5TnC1VqYpXS3t61GO/PtKhmE8eaUAM1XbFKavHt8eupFm+iSUuYoGGwrvg/cZy9HOWV3Xx/YopHtijoqpXsjmRl0ucOYTgTUKfGUafGyHcrFBQU4GtupLP+GLnRKJ974zFs227iupWr0MIKL/Y0EprMIfDePk4vXMHJhSuRqsaOulb+IdgZTxpMwDs4SDCnAEOBYMCLac4KzXJzz0doCkbUOiRmaQppNjvHp/MQUol/xolKIgPmQNxNwad1kfurK7C3KBQtvTo+PpILccP2uWSAR8sM3u07Td7Ydly+Ro71z86X1ngSeX5FBbv7z1Almzk35248npWcrBb8U+ByokLDJiSF6hSF5y6hr0cgpyzPY2lGCQYfhnuycW26gyRDcr1nEV0lr8e8rSW9vudwu6tpbrkXKS3bxMKCL3Fn1gStYYUl+VfHZ9oo3kQwWaP5+L2gRSgtE0xMpjI2lsFJkccifx6pvgCud5/H9aU1hNMLkdK6YU2pcGTc5PxFGfPEL4wPktPbzo2vPUJ3bjEFvg4ADtRcSEfeAmt/QaXRmQwd+6jT4OsxiLj92L/w4CXVnzgW8MeOPydtf2A4mxvwtLZzsiQfM6qR138ABTg/uw3pKWDJ1i9i7DmLGbI2/j51dNaWxDQIBPIQwoZpRJGmiu9QDp8r9bJ4wsDRM23xsgRkTX4csgrzB8NrxSJQXwYjgkNpIsP+I8Isx7HtSziKkuOKQl3XURSFyy67jJqaGu5cfCUTA0/NcqiEYEBxMvVbhT0VSeh5Kqaw2kJvpJxPzdh/stjWz3j6Sqp4DUWRGJqgYWM+G/1uMl+rY2ypCQlQIbo4SwmS323ZNDe0jAyy6upQYwufIhT6DTd2Y3rOqwSY1iaTLAXdXWPxsT4FPpOBNjU1FR/wFUIwNTUV/zdHUTLatlIadrQwGLYaohmawrAu8RsSxV6ImDqIBEbCg4zZE1A0k4LqNJIznDTs9aEgMJD0yV4yOg/T+loB6QtDZFSNIbES9t9XQToTvy/qAyyxhaZq1tyaqVptKKERDHhJcg+yZPE7CMXAkND6aiFT/Rk097rZ8IVNFJVvi5/CZyqyczeB/9jRwDUBGyoS+sNEG9rpz0sjOWgjsN9KaHtT3ZhCkJQziYihTkCnY6SDoaK/wWXbRWHxJqaiCz+Cdvg8UyPwQkM7EZeJVASmUOjzZJAXDDIVSgNsiJj/bH4gmcLaaZZ1RBlemMRqp5Mrv1RqVYP27SMcKSFsLsJhNOCYqbjNaZk6ipJJuWoBgZfPUp8sOJqmofWG8Qzm4CCJBee7KJWpJB2eimXvcHNCGnfJiXjiVNPRybmml8Sj04TNEC5XHzWBUxTt7QAEUsDk9n/FZWy2TKmNCNmqnezbXuGDfhs966ZYQCqXnFNledO+NauclDHlsnusg5Pri6msOIQQEikhGMxkaiqFwf4SJpPTOW/Pe+iRKA0VHRiqSfZ0PtKQSMNA7/6A9v6HUBSJacJoUwrB1lSKJ7rxXLES9ViI0IkCXMVt8YQiGMimoNrB9vATVOlu3FmtdCt/STY3xWcyM9L7+Gn9X8fb53cu/VfsmkLauI8r+19FlQZGQOWVnG0cahuhLKU9zi3LU1WeGf02nWOlXL92lHrFZg3FC8mB9hPUbP0qFKwhry2Iuv/4POP4T0vIPZ6VLE7J4wej/4cmsYhqGihTmhnyLiTgKcMdasMzJfjxzSqL+9IgYyOKHobCClxdLdj1MNUbVwOzsGCkJHegmw2h/pi61eLeHQ1OcG00JcYtjPHNTMnxtGQKFGt9UhWV4sEB8t97j/aSYjpLSzhZv5mUlEEWLbqOReuuIZwToufVs9h6xlAQqFLhnJFzOek+Bpio0qAq20lnpxqDUI8QNZ6l09ARhTZSSq+a9+wvz1rOUKedd95sZqjaji13mp3NO6iSJyjnDMC8ajrMKHdXArOzrMeycomM+5AIooqkaWsBlxUlk9qRijAVqyCgC+z1flTPOWCYCBRUwDXlYDpxMjZzaeDz7YiBby13hK6uh5BAvmKnxHElZM1in/wdD8QhuYqi4EnpZ2wsE1MqnOwup6qhEXFmF6mLVuIX263JUAmjozmYUjJuMs8+jLpnOC1M8gY6yRvoYqZ8vrF2Dz05xRhIVNPksoXlkJLL0WO/jEPEo1LGuwt/avHnpO0PiMnjx0l45RF2fetviKoap5Z8hR/v+79snT6KN2ka56U3UJnto3/6R7w//iMKvd2keOtJHjcJhTJQVZXS0i34TmfR3vQeE4MLmRwpoSk0RJ1LskpJRJOW6unTLIvmKzTXoyjnxIcoHVMjOObM88xtCZqmyRtvvIHX66U6/2pqB55FznjUGQJlXBDaYlISaUSTBiaWwnUglEP3qh9Qn1nDS4FxlsqzLDSb0KXKb9RrKVnio3rkAG1FbkwFrvXupPloIe2hkjj245N85D4anquvInPnTs7f8z6D2V5GL7yexJw8Blx5GAENTRqAimLLRyiC0/t8KKqgKEmlWxi/EzEyV0EqhILbPt+IPOecXIQ3MW5Wffb4IP5Gy9NPseXizdjC8Pg4iq0QRc1BKII1V5QC0HigD123ks0h0UWGNJkccDI1lEh+wY3kLk0iNXUtm39PBelc/9HfhfqYiYKCArasOZ9d+9/lZP1FpHoGKS9cRkpqPXbbGIpixltsydlThPsTmex3MtVdBeXQ1HSX9T7kXMPyrJXzFq0CXaET4upEYkw8rfNDMAza87JprShFnRxjvG8KacQwBqZCf7NJ5rJfM6boDI21ktiTj6EXIiUkIxl45SxN7SEosqEsc4GUaBLWDTnICixlOpqM3X09eam1lJu1HJjIxMCgOAh/tbFsXusunLCB3c5VHE1zUDMa5sLJPhyPXWklcrTg2GbiWL2OpLU51Keo3N7rIywlotTGqoMB7rxwFedvyKfvoA9dtCGwDOZvLc0moXcPL/QMsaanm1vHNoGwMXG4n4naATKv2oAr518RDSBNK2F1jb8Nb7xhzUbFzKk/2LeHL6SfR9Sbhc3QKRtpI7t0xceUy6mhswibjckCExGrmgKkpAyRnDzK4MACTEWhs6QYNaOERX4VhMBV7sI9rBM8foL0lX1WNV/ER7EY63PQ8LOfkp1XiGvNajKefZYPiy/EnTZEMJjN5GQ2Q84htNQzbMmcQhUQaPt7Doezue3JSSK6SULmHrT0CDImaDpQ/zB35FYzMahj9FmVFqTOmsBRqtQl9PW9immGAYkqYGFaCx2hEtKUVGxmFITEJnXWNjxGU1oRlau3zDOOn5lpC76/A3+OQmpA4Bmfb/T9XrSSARJZJC1VuzQ1pgcWkBJ8HcVuR1lVzVnHaZSkLKr9cfYJqZVL2KAopExYB8NPwpXMje39oxYcPfaBzKBAdvseIHN1H3l+F1+97A4qf/sK/U9+QMbICKWd7UTWJVN+3ncpqNkKWIfE5mWdLOzxoEkVE4hMJ5MeWUa553mWaHUUJKThjbXppsVuzOkoqiIxjCin2vewYfnsWvLOh6d5//XtKEi2j3Sya8UGdHk9Glfzt/L/UC5a5jsUfEqkajEkFWAKQWamNWKT4LqOgv1lTKa14hwuRwZeRqcZ09NCMPcAodz9SKHHv48ApnAQMU3U2JqjCsMSbJmRj9lbzfemVhgPZSOE5QmcOTBMpEQSXjjNVPcOSNHjz0NGRg9paX14vdvIrdg0a6HmvIIbjj/FgYFsOidiFlRSsraxgU1bh/kAjQsLcrl0ySIAajb/I1rtT4hioipa3Iv3Ty3+nLT9ATF55ENOlFTEh44V06Ru03eo9r3NePWFVK7eAvt+RrbWwOrCH9C+chKEwVKpET5+K3lVxRjGa2QWLKLutSvQdRMDSZdm4jNN/pIJLhc2Ni7yM+U/QmaK5S86d65pOqWVdHmYW1auxeMpA2ZPLPFWKN0UFBRQXFyMoihxWbmUlhpp06ZNrMr/e7r3/R1jPTZsXYLgDQaokKK0cQu/4bA8h5yeEFnBUV5U1nPfmAfDlsKb8m4u6n2Nbl8GPRMLcC200dbrsvzphIUiqExrITdrNf97S8W8k/Y8BMRHwrViBYWPPUr47b38tNPOyW439r4G/v6mLRw8lMpEQwNCy8dmz2JJODY5bUr+elkRhxL0OQ3U2ZjbxllesJwrLrqOd58/ghb2cPjJAbIzc+dt+nP5bul5SfS1WKd9RUDZifcojUbp8xqYi91s/NoF8dde89crOXLYR7dm8nnvxZx88Fh84Z9OOY/X29NYJ9JZ9dlOTMDHW6KeK0rjkN3fReYe7wsAkrGxTAQQVp6kqMiC1AqhIaV1kp0YTAJFoGk20su0uJUVgK/veVatfMpSfMYqVGvWLqTngz5mlPyqZqmZXd7V7F+1hqe3bgMhqOjvpPTUIVpfh7SKMZLSK7F7OhGKNQ4gTXDpz6Cq3yctvY2ynGac/ioSsyt4conLUvZJuKMxTGZPOn7dSjqyEvNZt24tRAZZ1xJgb5bJ8Ww7xolmrqUi/jkcGs/im6uDRAXYZAKPD/pZFylhOHIPEg2xc5qMLAuq+/LUJGFkrOUDJ7wqDZFpKtuCvPJ0M8lSkmlXWHSlpUD8YtGVfPHoo4R67ISEjfjwmy4ZbxbIvK/gvfo0xkA3roR2XOkRMAVt/Wl0jqZQlD7GvtLc+NoRBfa195BUJDg6cZTqTWnIRoPsHIW0mitxrVnNBa4QoZ7a+GczMxflSelnaiyDpGXFGOPWUi6lJNQc4pD7Q9ZH7HzSA6FISUpwnJa391L8zU2kf3chK589TqdSTpYyzrrb1nMszU6Z30qwVAFg0ta7j4i+whIZjJVgz7CcCNL9GrmHBwmYQ6iqhqpaCY+CpGCqh9aX7kJe0cEM4sREocVfjk1T2Lx0HRc2PMD+vh42BOtYHmzk/ld3MJFluS7MPIvhzhBv7n6Xt1CpKl7KQrOZlafG8TitA9rR4AQPTZ5HWBi8hM4NoZ8hOl04I0HcS7eRtLmaqy9M5vW3v86IcwTpt66lPzmV48npiN27UJ5+DvVnP6Xfbufcb36XyGDfPFzJzM85OTY17/1c7nax3nwTv1ZPi1dQnxalxTXIIlsOM2Tm9OFRMiedZHjng4kfa3iMS10XUOJfQndEEjBAM5LxTidQkDwIxZsoKCigoKCAh3f7yZXPgGlgSIWGg35KXI3x6ztxZjtFBfWEAjkc95QTlZbbgy4lp1lERns/qWV3zFt3P0nN7teNmKtrrHOhWw98eDwP51gUZ6gaaRpEMioYN99ipOY+pBJL1mZJNghhp1NdyL5AHdenRmLVN6vzpAjFEift+1m8+h33pu54HufOx8lsP8hQdjYFq68j2DfC8PV67PBxKraORQHLsUNVJdOhwxzeGSI/sxLnkBNBKunXPsX69jfoefE4hmmiSEnyxBQ88xg3Xngh3QM+njq8j/O9w1BSGnNqmGOs+ycYf5SkTQiRBjwHFAMdwI1SSv+nvDYZaAR2Sim//T91jZ8VrjWrWbnvJE+goJsSTQoaj5t8wb8Be2uUp7L8rIoN1CoZA6A4rZvZNPBmtzOa+CTDbVEUYeOi2/+TUye8/OuJTvpi7VMJnJvcyUD6fchhnW7/gyzO/S8iTypxkG93zb9gyujHEqC5cNW5VPTLLruMN954w/IkVVWinigPnXyIGm8N+SO3oj7zPGNbrYQNFVpkBU+Ir6CjcabAJHl0LwOhfoysDMveQ4KStYVrCrKpye1ltO9+zFRbbMYAdKnRFqrg3hsrYpYrz37cmP5TKk6uFSv4IODmZOBMXIXmn4xQuXQJP+u3Y0rINwyWRG0IaQF1kwvd7NzzGqa9lRdPl/HkLTexqiiVusE6vvfy90iZTOE513Pcd9V9GP4UnOMF1qyM8slD1jMx97TvPnEYtbsUfegMKWe3k7LCRHtnkGDpSoTmJbXUw5U3zy7wldlWqX4ivZhvvTNCRB/6vVWjH22J9g51sa/oJDXOGpbz2SX7kuoyDrYdw5QmKZ5BhGIJDUCQZbsA4QuTUbKVqtuXxVsJEfse5NAcf1AZoa/lP/G89cqsP+xtr7D4y24aDvaS6cxg44VL6E9q51eBJh7+8l9aqmKgKaeI60OjbCsrQ8l/EWkexJ6uIKWFqBFAWuAEFxX9kPYVIUaJ4pc2Dvf+FENxIRVrdR9bnsHGchsJiTYM3zhp9UOYH/YjpWR/WpSflHkxFIU3TEnnkwf47i3rrTZjqkp0BMwYBb22KJ8VTcuQaICKNCXhtiCnMKh9uw11ZSqGsEiejmCUdaXp9DZa7MBRCX7TiPMRAaj5Eg55CF6cZoBx+hQ/OaTifvBhjMFmhDAovGAYV4b1frb1pfDyaCWmENQNZ5M5PhwXLNgMnZJwP19/+8cUdU5T84yO3VQw7XZcMeTNWiCY/RStjb9hdOwtC9hqCnIzN7D14hsAOPnII5Y9WwwnIrQk3lzTxaIplUtlzOnIVHAdUqk524c7bNCYpzB6/IuYidNwKyz7Nz/2LhuTi1Zy93gFhanXcNHS7ShCogiNfHeIhWkdNI8Wo+olfLH8O+zu246nNRgXCUnTYNHmiwkO9tN5sg5X1gSZy4Zn0UQIEj1XcfXaS2YTBWULy45egTCiRNE4oFfimDNOEe4MsXt7A99c6SEqbkAT1/C34m5Kkk/geesH4K3mgFlENAbE1iW8bJaxytbEP9nXY0sTiOMmnnSdBy9+kA/2fciwr5f+5FReXboBUygc+9JC7n703+nftw9DiPjamTtnAH0u6sn6n4BNwPdzxjGa/xPDE+EiCQ+N2Knx1uC6aBWBF95i2KGRPjlFSmcrAw9fy9Q1t5JafD2tp05zb6flVmM4JF3R2Cyt0MmzN8A53543i7l8wSZ+tP0vWeY6Rv6ZLsKDJ9hxoIEb7vpHEr1TLM15BoGONE/RfTaDOhZiSBMNgyrZwORgAttrO0gp9rOqKPUT8CzWurQ+JQm7YuF1bKYZF9TE7fV0E6SB7m9lcqtEqrPVNasOr+EUl6JGtlBkZlGvPgfELNckpAV0SvO+gmf7nfPa3P3RhfQ2p5HekoR/RxKaMUmu2kbysgN036TPCt0wycu5kXBkiJHh3bH5bY1DTx/AMdKH15uJVKzUZqJWkPn1O7nS9R4dv36OjJRljC5NoGP8FKfefBkpBDZhYBY28GGbip7itggJ0vhze/Qj8QPgXSnlPwshfhD78/c/5bX3AO//j13Z7xHRUknl9W5+0djMKXsxK0Z1Gv0m/6FAZGZ+6wLLWzO1bQeK+RqmNBCKhr04GTMSBcXENKKYkVquvPm75K3P5oVjPTxf28MqXSWS1hSnTJsyykjvfpL0DSBhIrkRU863g4mDS/f8FsPQ43yZXe1dTJp21pdX8eUve+no6CDqifL9+u/H51Eeqvketsd2Ym824/SQ08qsRQxAclE/NUO7eSWjGkOAKiXXluZyeUUpBxsexzDDCCxVjt25hq6pm7j3xlnkxyca039GzJ3Zsyd1M6y2UZmyPP53wwmw6Opy3GM6eRWp/EfzPtTcX6MKHeRuXmrMZ1XRFew/vZ+1vrUoUsEMmOw/vZ/rKm6ZZ0T9SUPWMNueTC31kFqVxtC+XGTlldgXGkwe+DmBHTtQUktwrV+AUKcQNgXlshJ8wQh5FankxuT1//FeKxF96HfaetV2+jlzrI8VaBTkumd9UFW4x3cfJ0da4viNz1pMFqyu5PPcSPvpVnIWLmNw+rT1vqNi3Lcfe4vJiO04b335LkaKqrjWkU1Zytp5VlYAvtAeclwGnpAlya9reoEHat+hvD3C3hI7XaO38MQHTzDmvgzDszDeLjJRcNRspHxpG2fPxsQ2sRvL2rclZ8pc5Pb3gHDGkhCdaqUBG3no0lKmXrI0l1UxEnnovW5Csc1yQAmyK2PSAp8KgaGYtGRF48n3uSUZ3B8IWI4JqsK5i6txjJ+HeC8m0MHAkdTLmWPJfNtwsKs3gkSg65LbY76a/YYy7x4ZLnJyf+eAZZsVasCx62rCtuW8KdZamzyClVoIIyOZ9IkpMgYd8aSt05+GGVMRmsDg4ef5SVIip461s7y5gcruNopugqouE80AIWft21wrVtDd3U3LgRa0tlzaB0pwZo8zNZDEFbdfGk8qLl53IbsOvospTUxhMuIcIck9gXDovBCw45wup6H7YtIdAapLW2lJreD2xVEL+SEADSbXmjh6VeozFhAJmDQPnsO/Hs3mG2uaSecdIqGd3Fljo0P+M0kZyfy0/u8JG2Ecdpc1ZiolmmZn0XkXMtzVwcjQIUov64q3Zy27Jjtez4Usne4jS3FQ2wkvHHOSnH0ftu4DHDQqOaVW8sM5Iw4jRwf4MFkhKtTYvBHs43xuDnwIhoSOfaxfusiqDpkSgWRdNMCK8fXYpEAVVhV1+IHtuC5Zy/QZDZLA58mIe48aUvLe2g2U+/sgNvT/UTbXLCPOqkCdm+rmzpJsMvyPc1bqqAIUIbhz8ZUsz1qOL9DIkbI8a5bYNDF0g+i6SeTwcyj+l6mY/gE2qaJiOaYM5R7itBHAsAeo1ifJTphfUV9VlMq9N36eD55XCA8OgTTj5vRe+wiqiM1MKwaT3ka2+B1EPAobeZ8yo4WmvhK67Tnx9edQ28gn4llqPIk86TLZ9ewLLGs6SUZvF5OxA8QM3FvqA5iLVzJV0DznCjWCbRvwt5/D9MgCEKBpE1x+5VeJyl8BoJhQmvcNPFFn3DS+W0/j5Ot7OXumD3XajcJqlifuwxPqQJqSYd2PnGPqLoSC211NX8u9ln5fqNgmLmO8r4V8dz5K3JIL0K0DWt6SC7AdXy6OAAAgAElEQVQvTkMaklSgxL2U9/qeZiTShy4Fvkk3NZMj2FM91mEqJr76U4w/VtJ2FXB+7PePAXv4hKRNCLEK8AJvAX8S72AweIyjtZ8HdxRP5U5u/PB7OIJljE4o5DoVfJo5q14sWIOnYA0rgzfj9x8mMbyYiQ/7GfK+YTHdpBaD5M6aAF+3Mp8zx/pIbKnGL19FmhYKIT13A5HYJp4YqmJU2DClPpsAdR+BRy+n2MhA5VoMYaMxt5gHjUTMtj5sAu5SJthaUsyuwK55OIcPM0N4v3ohxQ+9Q+r9GuGFkqJF9WglN1jDmhgUpZwkLbmZf2u9m322DZS50rl8y1/wYcdz7G7bwSqXRAFUoeBNLWV5dT4ez/zEJCf7WuvXmE3SjN9ouhzCceh1wJppc61YwaqiVH50ywqe6zpD++huXmw/g121c9+y/4X4sI+89RtYsSE//r21nnYQlpefREdztQOQOZXJgBxAwRroyZzKBGDhORaC99McFD7anqQsxSoWKCrSBC2tnMjIWbS0cmYsnKRu0rCjheYpA1VTWH9tEpOBNqrSi8mPDuId72EgKd+COX4kajv93PvrI9xnOLEBQ8oAUxtzyXfaeVu+z8nulo/hNz4rFqyujPP58oNF+P2HEe/3M9nyPJgmRjhC/979bK9IYEdtD898fR2rVj5Fc/O9hMYs+LBE4k9NwDNmgGrnTO84t7+czbi7nC31LdxvPIKeD9r0aUi+CrABVvVo3cMP0vzDW3hNXEeVeYIyabHYZqotEsmUzWNVBpAIxcbqzGp+dXSSY6kqNUGTJSUGxD4axaXFVZv9ih9HdIZXZh2/NUZQBn2EO9OoKUrm+RVl87xJcfnIsN9viROUBhzT12NXL+OvVrtibVT42WRCPJmeW2EdLnLyF4P9s5BScYIaI4JP0THiaaDkRHkx9pF+FCnJTg1gTUsKitLHqBvOtjZ7KWnOnWJF+xG+sOuA5a+rKCzp0ThVJNBVE8VUUGL2bd3d3Tz2yCPouo6QEqc/lbE+B0JR6G44SW5FFeHOEAX7BFcYq+hT/YyummZVaQoJgw+gCiuvmUy9hjI1n8ipX4Gms2rqKF71FjpNERdaTJ5jkuXeSEHlcs45fZpxaZI0VEG6Oo40LHsopM7m0l5+OzZIxIiQ4bex9nQaQlrYm81fsjxn33vsQdIWjSOUGTGKQlrqBhITP8f27UetmVJF5a1wOT49CchAU6/iptUF/HAOIqi/Lci+vb2szLahmnZMRSKFwj5xIS3iNWrUVpgOUfPKLfxb9kYeHbezNWkXFelNmGkaUx+mkBgosxAj/adpezGKVrYJkhRyA8MopompCBQk7jlipxk21+Tx41byvGY160sr5pnb31mSTY0nkSCzB1JVsVGdfzUQEzTERlJMIRivEthjJgSmGcWVO4yiFWPqEkOY1CWeoiBQhjKVyz6uJjWYSWTndlwppUTCGeRVpLKqNJWcbeezo+6dT7EIC9MiFvKW504MFGxSZ1v3bnytJTylfI4hV0585nddaTqaah2CVXX+LHDley/S33iSE0vXYytYR/KL78Xfh+QLVgAF+Ds+RLbNCOUEdv0S+muviqNsiKl+3cb1lJVm4/e9QWrBZXicFXDiaVA0uo1sHuMa9P5xSD5Bir4Uu55MIL0Kz3gnwmZHWVAM4RPxayss+ApjY6fjM5JSSjzZyaiaxlC4J84mBEATcd9mTAtDY92NClnOQoYjfQgEdtVgmS55sPhGjgbOUFO6laqpUkZ3tiAA10rv7xxL+Z+KP1bS5pVS9gFIKfuEEFkffYEQQgF+BnwR2PxZ30wI8Q3gGwCFhYX//692TpyufQiMqAUeFFH6PI24hksptitsNDSe1yIfUy96PCtJCJQx/ORJtGg2iT3fIpD7AS7hoGG5m+dnTvCexHjyFu7MJ+lsNpNpjWSWnEdCoIyJlQMIIHPlMjJTluLveN4yiQ/p1kNgRCjAx228wK7Sr/Dr/GUzhTPCpsmrbZ30732P9Veu/xjOQRSNcmQLOHMlhxIUvjhYz2/9p1m0ZpIy/TXKRQumgFW2Wq7t+gAdlbd3hZHaL1ntMjAlNEyrLHZJen3P0tf/YrxtGwwemzfPlpNzDf1tQXY9tgNHWhP1faVU7T6CJ9ROcOdOCh97lNOlFfyof4CwlozMuIOUwX+mrK2F4ud+iqZLxK7tTGbPOiZcVbmJVzofI2pGsas2rqq0pNrnLD6HxqONmIaJqqpUpC2Zp1qsXJfDJ8VH25Md9cPkazGDGSkRzjSU1FL04Wbs0kCiIBEMhi31n5p4kBNHXmPc52R6OImrAd2WgGHrQekpg6L5UvIXj/Ww2FBiDTyLgr7jg3au+ItVlDkXY/fN/7w+LeaiXeJm4Z6VeDwrmfQfp8v+CkYkgo5VUYE5p+wLVlJR8aPYZxWriG64G8oGoHgT+Y/vo37xNkxFRTENVnU9j0u48SW3YtqfIsdxFcl9bVw8+gb+PLhjooCIKETlWr5afz8blhyck7ip+NMMCw8gVbz279DxmpslNp1lfutUPaOSDXeGCL7WZuE5FEHughLCshtilV1Mk2mbnTPNDfha26jcVkPN6sq4nyUAxZtw2O/DYZyx2jHFm+hyu4iOTMfbqF2Frnnv5cw81f2dA/MhpWkrqFHtFOs+VAwMYTlzqFMTVjVNwJAtiVJlDFbeSumym0l85QkGj9TSkhfm2MII16sehCosFKrdztU3/JC8zBBiXTJZLYG4fVvtvn3Wxq8oFn/K5Uabnpw3ID9zr3qlB6/0MI6T/tEdGLF+lCoUqtKnyU/ws980kFIiDZ2RVh1v5mYGwm9bn4kKoSUpND7Twjm6tTUIoHt3BgXn25BSRwiV6Wkfy9yLsat2ckcTUMy4NIWpsTEO7T+CHo0y7nMiTYEQluH4tHMR7504HbdZk4ZBugzhIwmwrKtyU5zxhM3X3Mihl/YyOJFIek8eG70ae4odSMBQbLy+4gbK9TN49v+CoFsjLfsE/zvZ8osVAoRpEMo/ju1gA/pwM6a/jVRDYg9fQsrIEhLHg3xhfIixRSqyq5HskDWhI4TgkksuIX14mK4vfwUZiSDsdqof+Q3PL6/gQGCc8tAwkfd/xbNeB4dcGyH9CTbbGjg3Z5aDFhc0RKMI0ySpSRI9F6SqoCg2a13/ehnv/7aNX3bW4ZAGilRQYmvJrjf3YRvuA1Ts7huwO/O56rsr4r6ac8n/tZ1+es2/IJtf0kQVOpbyX0rBb9xfZW3yUYaMbO65ajGrilLZvfcIH+w7TOZkIj67N66IPhqc4EBHI4laLz/+q78jqtl4XMKvDocoe/w+hh94IO5UM697gkpOdwE+m2A4KuOtTEUIxkanmarYRvH5t8xX/yoqHXlXYvhssTk4k6jdj9NIpPKL55A0VomxMpmG8bv/H3vvHR1Xeef/v557p0ijMurV6tWyJUu2sIwBY4OpoYQESCAFUiBskk2+m+ymLUnY7IaQukn2CySQUEIChBLAoRgwxh0XWbJly7J6H3VpZqSRNDP3Ps/vjzsaWUD2u/v9nf1lz+/s5xwf26PR3Jl7n3nup7zLOd9KgWHM4Rl5jiXwnBA6BWXXctO3b2aw9RT29NQIpm052Zp9axfKTLIwa8CYNkNHzAwyFIe+EGAyaxvaZQ3U7vwGtWaIYHMvE6G8yIBAEWgcJf3Odf8tErf/sqRNCLEL3tdR6B//gy/xeeBVpdTgUnb8l0Ip9RDwEEB9fb36d5/8/zJ8JyexR2BLnaqC4bitbEq3U+M1uQsnnbp8X/bi0sY6JnwcsrezJruZ17RtPD7pRE560IXgB2Wr+ESuVZ87CxLxJF3EIW8d9aOCgt+fslTcNcGQ6zhT6m1yzh7E7fPA/iegdDmvzWOE+YxUlk+EQlOQ7Z3ANE3sPvsKOYfy5jN0PvIbCv/WwrRdj2Ro8WvcU15MwHMXSoSs+yOQ5A1HeAaSsYGXySyOMIOAGE1geQSsHNvOzBx5D55trHOEnAt+gtAM1Gobg4EPwRFwz/Yxf/QYh1JyCMuIJbywEY5ZTdVABz67nZmkWFLnQ6QdPYbfXRxhlxW9xyAZYMo5xYGsAyTNJ+F1edkwePm/a0g9duxpJntfJyn5MoStABVhg/YHxuiaf5vC+NUUxVdjL9qCreAC5g7+jOfVq8QVQcdkKatmyolL7abg4kcRmomqFXS9UsCsP435/DIQGjt2vUVa/nJSdbx/hmcbBylD47bI9TKA49IgrWeKL2x7r/zG+8VfwjMuhauujvxHH+Gd59/kx+NxhIsUH8h4hp6QTlrqp4BS3O71xBd+h76x1yl0lFuiuLGp0LcfPaEUqekQURePFx/hvAEYSNNoX5NMpwJbSTVXFz3PyfVrI/R5DSV0+tNLKTo8wNrLa4ixxbFwZgpfzh4rC5aKwOgIE6EKFtIdNKfobPBKti8RC3om2ZdnY8OUQY1fMluUC9NhNKUsUoWS5Hgn6dC9KBRNr/ZQN7aedVl28hZOR4HOvMspYUtiYOUYtSjtXSf0qDV6y9yCXXNEOyybC1fDbTvQd/2Wes8EZn4dKpxA+5njLM0aXeVXQbEB627hhNPBgwkHMC6xsD8CwejU81yydR5fXxxUXIw7uYx11RHLq0uW30JhYSG6plnAfimp7R0i4bqrKN5+RRSA7ix2M27z41HTxAgHh0914ooLsLZaQ9MkmmYjObkBx5rY97AiVZzJWPsbUb2c0YUwhiGjvr4gCEwUMxj+BV0pY+TOPoPyPI2mWYr3x1P7Weh5B2Wa6DYbgdRCfn6wlavRmRuLw3M4h1UXjqKUiXfoVzTNZ1LEpUwkpjGSlE5JUztbug7xVn49GzJ6+Hjng5BwI57EBp7953/ECBugNKbEjZT0F3CoOAZDSXRCZKo3aBLtrE+wMZNkj5CgIjVBRHDY5c9ges1rOE7O4PDquAMD1LX8kpGsBtQFG7ipOo2BH32Nty+8EKVZwslKKZqbm+mdmSErIZ60icnouLq+ro6csQFefvQr9F6lc2/gHox5awP8k6jhT9ml0ZHQucmV5vUy19FJllyFq9jBBCk8O9BEfaZG6vYCMh88xtaxTDqdCrAA81rAF3klEzN4BtORE92vcspXM+LM4oWeKZJnBvjey61sLzzOdYUmVaIVGwZhBVJotCSX07q+hP+lgtzakM/ufUc59sC9xCqTa4XOi1nXMhGbxQM9I7wuQphKR6z7gqVZKSK40FQHlSllhLx90bH9EnFg4tSzsL8QhU7lmlcw4tYQU3A5/a1T9LVM0t26n/GpDuovvZbiqWPRsSgSCrNT0MdCmKZBYsIoa7MPUeKbQO8I0lZ5J4mO6Yju21JYHbSo4gGCnOwbI4UpK0gjSzHf3MzEz76LlpCPPW8TEy54o9DEdCRAUgUJnh7WfPhLMPZq9L0FjQowlwbhAkxJsPk0zoL3Tkn+v47/sqRNKbX9L/1MCDEmhMiOdNmygfH3edr5wEVCiM8D8YBDCDGnlPrGf9Fb/g9F9robCf3sJK9dso1fr7sDma/xu1Xw4LF5qn2Se+uLWP0+eKWljbWJHhLcI+zRtvGouNMCZ0dseL7RMUAeA2zNXb/SNw54wAU1PhhObMav/xIhJP1rNTiZRvncJMSng+7khE3RGBtLWkwQB4KQtAykL+o8SbZvBg2NnJh0SjIqozf/yT0/JViqoiQEpKKuOhY4Q/fSl0MpskZDxPslfeTQQz7N02vZXjgAwkAJjdriz7I4+th7cGvnVmRLlbo9uRfhX8Y7GSUhmoJfZsPp+ynYeN45djUWO8ixeJaB1BiOFWcihUBTCmdMGo0rtL7q+Gz1yoSmcayRccc4o45RdKHjcXeh2/LeF882duxpTk/djUpRjBr7qdzyPWbn6vnpkT6qFrpJQRJncyOEhhAaShO0X76Z8gt+h00YrCq2MTj/FVzpHQhNRsZCivjsBWYMt9UVEgKpJO+cfieaUB3umcKQilZMfsEi27CzlzC6LrjEKwn2+6ktqI1erxPjJ+g9/RrZfj92s4HcOovB2tfXh2lanRTDMGl5uZGRuicZC79JWvoVrFvYju/Fl5BjfnLSYrmp/jl0zcBU8Ju2JiqyHgPgrv0/JixDOORRfjM6QW1wEYRGobGWE7Z7kKYCXQNlWeYMpjswVGSDVzpt2hqq5GleUiYGApswaMg9Sl7eBKv0Cxl5I8S4PoQz+wBIE6FspOZcwI5UG4/XuzA1C9P2fJIOvgC3iVlCJQ7sxQ6+2h7kZ2KWUEoKmCarR/soHxuiwWtjQFMoAaaSNDY2coIwt/ECebYfLwvsngPstsRF3zVGxUqie5vf5kOn/gZNhqnXf8xzN/+ZZ9RyDerpG+TZ1wcwlYbWMojUHCzx7WyuLQTaO2DmGTjxFI0Xf26FeXb2bCGB+XX8uExnbe9xql7Zg2/XOyu8dpdiXMYTX3MZ7uFTxAe8lP7D1/DVb+I57xybO45RP7aP8di1lnm2aVoahFLh96dxqmU7qbZOQv0albmx79uh6evbYx0oUnjZXS/iTC1lcaqEJWSQJ93OE45UwrNp2NQ/8i3uoUx2k840d131NTwly36P97caDNoyeDHrWvIWPdywzgvsYEnqY1PaBDudPZxIvx6J4ERuCT/5+ff56cEHKNo2hssWBs9+BtP+JqKVZknU5JYFuOnGGrY7u3mh44+sVi2U0YHUBDNJdssCSYLUraQ5btzqQo5XPImqNGArpP1vHW9NA7unj9CaN0B/zp/5UdMm0kdH2XC8ieP1GyI2RzA8PMww0LZ1K9v27CF9dg7XxmUdN1eGn6PaBZjYoicvrCyrqHM7vEtJxLP/9E0Mw8A20EnRJ27myY4XGHOO8eu4X/PTygdY7yvApwpJjB0mMf4YjlkPEwuh5QsjWLFfnUsi0CKuLZ1BjXZVTgdruEU9wt75bfTFV0S6vxr7B/r46GA+p44dJyFjloTsALMjcaxa9DCZW8BOQpgRtquKjBe1iPTOhqkQxkwXIjK2PzeMsWmMeCfjlX9EiTCCP5OcWkJ/i4kzuZv8i3+K0Ax6R14hNe9buM8R2c5bt5XbsmboaX4Es7ARpUGPFJxq2Y7/7DTu0Wmqa+woaeFOe3sayEjPtvZfRXRy836x5EOa0NmDiNjTqYVphh1zSHKXaNhUfuAG6zrFzoLu4IQNuvQ+CmdmGBV+smUymcqFUzvLkofxXzP+WuPRHcBtwH2Rv1969xOUUh9b+rcQ4nag/q+dsAGsu+RmnpmN59fxWZiRix7WFI0pOmv9JsXrs6JYrcmCWNpdlu1VpubjVUczhmngN2p4WnwAhca5vjSmgofadxE7N8uRmMrlkQxwPNVGjS+EN+cAuohobSEZykykKOClO/MaFi/O4I7uP1iKzj0PcG9tNpMpm1nXEyB+II0RoZOtkkl/l7WVa+tVOH95hNnIwYSmYbcnER9fgYaGlCaagtzxIEcyb2XXeJrVAXNr/G7ub3CHRvh07VU0VFxMV7iE4aHniE9Jib7+UkXW1/8QU5O7GfY8BVJDCB0lJUrqzE9UoDQbs9fdgWtuN/X+MM/VruGQd475yS52tXhI9SVhahFjZ02jo3cEI2zp7/wlq513K/tvXFdNVknRCu2npRhofwuVFdGzsgk8o29zNHcju0WY2KRCPuRsQBM6AmuTlCgyMo8yLww0TSGkSXx6BwsTFShpQwgTlEbQdy0xpBFSwxYzSZNMxE5Ej7tEuigPC75MDE4E64UNTYE4MsZE4zjpd9bgLEi0ZAJ2fpNrs3sJxBsI9SLjv/8qdR+/KSLtoludFARJ5lFmA88QCwSGf0XrH39L/D5BLnDHlYo5YaBFOhP1uGgca2R4ZoFsfYGyOJOeRUFjjIPa4CKNCas5lFRDRb2HNOdFHPMeIbzPDVInbyKIjssComOyWrZSanbyqeZGhvJjqM94hjKtAyXh4Nu/5vTiFpQQJLZs57wEnay8yyi58HJi4/oxZ2aQwnID2d00jLBrlnegJghLxfMpBiEprcRd1ymKTeHWikKmh0bpH51gycTcclPU6SOHPHN0hZ7XivXhjqPaaxJsmqbF5eVPzW1M9A2QTxfSGUITkkZXKc94xngaB6ZSPDM6zdeaTtCfUcBgTjF5nm5yx4Yjr6jAXCDQFuakw8mxAjtu/wirAmWkewsI2gIUzX6UH29JspLTiqv52c//hTUDPdEOxhIB5rR/mF+8sQtfbAr1cZPYhOTtljO8rKVgAnbT5LmWF1iY24UpG1BYkh9Wp0kx60slNDYPup2Wo0eixJikwCLzb+9nPrBIcnFDRD4h0gUUiv78NroDBYRscPuGfLyVLgzvDBKBIWycUdVUaAPRomzpda2OsSU+PRqThTtnkbycWcJzutURBSpiJO0xuTQJDSk0wjqcLK9ibW8n3dMujpQo6hcXyZNtK7qCmz64haxiN4t9R7hOPc+5o7HkNV+E/n1kx7ghvRLfZA5zaT8HYUTxeugQLDHgzUb8F+URpyeQOzrNO4FhLoh3Utjbg2vOx/HrthOYW14fUtMYz8igsGZd9LG8NdWc3J9IpTyDrhsYS1hOobE5KX75lxsfg7aX6OnJxgiHQQjm49w0HW6nggrKKcfuCtIz0oZS2YTsAfyJA/hJQySmEOttR18IoOk2arZvp+rCZf/Xc0kEKIWmCToXt/F9UQnChiYMrjV+x5AqwVR6tBt98uRJ1tYnYFb3o2mKTDnJ/GgSMiuTQ8qIkomW8KPVYS/fCsVSuzGOcNq10bE9sAx7SQ5Z2FOhLFIRkpGhA0i5CVd6e1TqB8LMOGZxn9vxBqZ2f4bxXBspmm6xQwUkJE3gm83C501lYuITBOaa8HotS7jRsV9E3F50ysvufl8VAk9HW9RSTNc0LsxbS8a6z4HQydd9tGotSGVBZhyrLLLYpuIy9A/+jDuafoSmcslImSPXO8Mqfze3iOM4677znuP8NeKvlbTdBzwjhPgMMADcBCCEqAfuUkp99q/0vv6PEez30z6RhowX0YWtKcUF3gMk2V5g58FvMvpOPH1ujSf0eKQOdiG5W3RjSisr6rKXWhbN7zP2VUry5v7HSVn7lRWg14vXZkHfIC6cBM95/rhy89HFT9K6I8wd1aeXFZ1RzA++yJfqbiCIn0k9mUzD/b7irK4rbqVsuhfnyefx1PtRAto7vkdO9o2Up99OuPEBkmcWSQho/MGbR7pYZDZb8Fz5FRjYsGFwS7wdT0cbux/9NUVXdjMzqzje9Jal9RX5Uk1NvU00DVUmzoM6/e4LWJzYbLGNUNB/iMmmJ3Bl/4z6v3+BjtEsHnxhL9f0p6FFPMSFEGg2O9OepKVuOZomolXoUtIcE2fHDCTxnczv0+k9TW1FLYazjGcW5th8fjpZ7pXJa0hciJL7ARMldRZ81Wy6yEqokmPTEMoWqWpNxhb6afUeZm3cMAtlAlMKTKUzO5rC4ugUg3tvp/pCA++xLFyzJYjkLtLTJzihTXBMn+ILKfdEj7sklDy1qx9n1yxCgU1FBFqFQBqSqcYxcgoSaRxrpFqzWyKWmsW6zM7oYPzYKDUfqaCsYAPzrWPUaKmEM34DRJcpizUGi61ZjGdkkKL6EMIHyjqFV05cht2s47WFQ3whY9ECsCdC6pRBY+Iabqz5GSFhR0dwmzzOujqNR6cfJt1bwIS7mx8l306Lo4ixvT8hJuDh+PxGMkYrKBP7yMrsiIKTxxKykQErU/T50zgxUoT9VDxawT5qYvtx+NYSUta6jzkzRemcxH6eC0OAJg3y23fTm3YVpiaw6zo3V62m7YE2DMNJgn0NHdl7yAimoFtcWQrxgO5gbqSQhZ/8mdi1qcRfuVwtLxFOpCGZx4twNJPulCwQQ3N4EzLNz0dqfkJQOaMJIVKxw5HP6WuuxdR1dHMrN7/8KLljg4CGZs+jo2QDhwOjPJPUT27fBB8483ksApxi/2o7pgZKExi6jROVa1g7Mohr43kE+/1MPNSCMiU50uCK2UE8aoBQXA4AZzNyCUVBWzYOuWu4amA/iTkFJKaM45/OILFpkrHkJIQ0CGbmgdA41jvImsHBFTgtbDaSbriBoqs+Q+/CbyP6fQ6u2/pBGstzo5IcOb4AD5/woqTVWS1Oa2B9wUdxu9dHuxl5a6o5dHyImqnjDMXkEJe5wFc33E9o1tLSWlqHAlgjW9mBJCwVujQZS07ldGk5f6rq5EyyhkMl8nBJAzddeYPV1UoqZqQnFs3mIzm1AU1zImUIITQqyu+B+AqaFp9ChnthpJW20QoqM4zlelgCJgQHnBxdXY47vgL3ggZKYvN0cKQkh8X4MdpK57nj8i0cfOkgpmlae7uUZIyOMXemjcDBg+Q/+gg5dXVcc9fP6Tv7Mj/JPMxh14U4HOncnJWy3GVrfAxe/jIAKWcy0FQZ4dg4glkF1rlAIJSg1ldFjcznHT3IoGOaCFoehYbhSsQWXODST99Fzfblmfnw8FOsjXmZrXmF7B3cjN2m8Z1r1vD7eT9NhAGBVHaG3Gv5pryHPWPXkzq+EMXslRTM0t0TwTtqgtKiOX55YBTOS7UukLZ8X1o3uY+Lex+0OtWX3Umw34//7UGcxW5m1DLsBc36PAphdb9WXcgJW4jARBlp0mYpIQiBb3QPZxdeIzv3Ztx5Gznx5te5I91NRTieT8hpNKEirhyZgETHpDSlmp2dEsMwWJV3ChER8FVKEg5b/sGNvsCKjvmSq4WSEhOwNVwBIRtCaGRIN5WTGq5tVThWreZvd/RHZU9uuWyKOXsxvowvMCB0mqTkupaDeMpvpeR9ir6/RvxVkjal1BTvQy5QSjUC70nYlFKPAY/9l7+x/0AEe3xsmAzjKLQTlgqhFPc0/4JLF15kKsmBEXgGe+JFnMwrxtABoRFSklOyiSL3PH5fGnlzMzQLjRUSfkpiw+BCuY8FXyFjr7/A/bd8jG5nXHQhBnOT0bpvpd2EHLwAACAASURBVI0jKGWilMaLAzdxXBaiK4mmNeBQLYRR2BW48j4YlSmojlC131ecdfAo4bH7WSixRbSsBEqGGPY8haY5WX/BD3CPjfEjbyVvjTjYOnuWUFYgKgliKNg7MUhsbxBXhj/KGFPvwrVFsQmRe1/S8Ga0njhaYvMBEw2ThOZmJrzxiFaILf0D98xUssG2E00mRHA2UFBdS0reNs6+EyUPUrnZYoGO9vh46V+bMcIWqyns8ONNbkEIxfOeM7y8LiUqKfFcbemKUUbJ+R9k5yNBnKntLI6VUHXgDVZvvog/fHYTR58+iJq2I5U13mz1HmQ6OMzieIgdzR/mkk1uJsdSCAzuRJkGtpF8Mvd9hEwJGRV7mKj6PUqYXK4EU13bmZxaSYDYUJBMcLvOZJ+FXVziZCllpQqThiQHq3P4uHyeQmVDRUaLsdOVJKRb2as/e5K4wzmkJcTgH93AfOrpaMJkdLs5sG0rpqaRn6co4JRVHStYzDhB5vT5bM4ME5gS6MIaq8eUXcSehNsJBZ3IyOitsy2Dps6f86n1DfiOPMh53SFy959Ev/ID3BvXQWOcJHsuwPUTElvMHCCiFkx2R3DFGtASPaRm76F35B1cwuTj4nIeU5/FFPDT1TE8eGyeB4/N05iiMTfTQW9MLB9v/hNxyQ4KbDU4PbGYhgQlcISSWFAO9mXvIyuYxefWXU6e9hnmRgrxNlms4eAeAzgUTdyWsKZCwYQ+gyJSGSjJ8+bVdCXYCenOqEK8AHQlLS9IXUdpOiYwmFNE7tggmq0Azb4KKU2mksuRYoCi8fVgWtgYhUHReIj9Mg4ThV0IttZWk//Jm3HV1eF5vhMZGXlpQiMrJo/x+dOEyGE0MZmzmflLCwMdSYlvmJ74dKrX7QJdIVaB/R0X/sk8FtJyoiN50zT5w6v7uMo7iSMUAikhFML7zDOIl5xk/PSrTOrd5ORso7z8YhoqrE5KX9/TlCU38M+l+XyzcwhTCX4yXUJq6iouHVvuZmiahWZtMEzqhY6/Ig1dLCds517zctXDz89283ZhCS/G6ryy5VJeu2gb8WPfxx7uYhHBSyTw3fLVaLacCHHIH4VArK97YoWzSt859kdKhsm3+Vd8t+z9gsTndAYD8YSzEqPnBDQMVwLO4Dwp9Zfy9Q/dSm1GLWXJZRzftYs3hybpyswlpnKaaw/uXiHDstRd3Ax8lPfGiTNP0+hOpH5xkfKMGTYd8XCqcg3z0VVkJW45MpXTiXY6CgdInepnfjGC41US2/wsSlnkjqUYHn6Ks+13g4KPVRzmkspMVpd8gg0FybzZ2AX+cHSi2izO42rtJS4P7mTYX4Ou66xbt47ExJwV8kuvdWSj+UI4jk1hFMYhM2MRAuwyxM1jr1ujzL79BGXlCkZ93MfXrnidmKzbGfK1UZh5BcWFW6i+/RiPvdnFgaE8ytKH2BRnMBk4hgKGB05TDzTGxBAfTKVmvooxWy8CwcRYEfOzKdRzinW0R10h9ux8iYmIPZ8Qy1jNFVCiyL6+wtVC0zCOvI5aV4jSdKSSzPsGyaeMxjnHCtmTxHGJGbMaKTQQGlKAJzmdwnX/fTxI/8cR4T8ZzmI363bDj/sPcjRjgaTOcfo9WbyWs56Ymn7c2iHGCmdoFt/F6vUqFDrxykua7KC85ovU1G/kU4kpPDM6DUB1fCwtI13Mt+1gYbyQudl0lDKZbe/iS9devnzsgkRMbQ2hE19hZuA0C54aNk0VM5QQYjIGtpz3SVaNBNnV/xYlqz7Et/zFhL0jywnKtrz3/Uy+nmdpWhNjAXmxNI0sQK+yiAOOWTpr7uL+4x2EShSvqvP5hPoNGqaFKxAmF6fnkeeK5eT+RJScABSa/m5cm9OiaUtFxpmP407aRrxQFIoH8BjxxHt6OJ2cyImGD1Lb2UpaF7Cqm9GEeWR3vFWEahpV9jhc6Ql02gJRbNoSC3S4wxJFXYqw3QtIFDCUkEJIWZuiku/FnyT6eqgd7WHkmEnyzMskBgaYP3oM3+owgaaH2ePMIiMmn/HFQSaDHhCCh+03cGD6PCqMCur1Jg5Kq0JPs+cgFCwmdTNZ9XsQZmQUqbi1dBeziQ1A6cq1VZCI+5piZl7qgoge1EBI4jEVW8+z8FS1GbVw5Q8Ye+dNskYniZ2uxBUoI7XeGh1sXFfNAwf/ieyWWtJ7NNw92UxcKUh2bGQ6McE6E0Lg9eeQTxtCWpv8fGor7eIrlKd/m7MzDpSyNuKC87/BZiqwHe+08JEKXIuKGKMQ33grt3bNM7A7iQlTUN26h6qPOWnLEWjmBKmVLaSnVSA0B0qGkVLg80ZwYQISEiYoq9llVc6RG41fuZBCodAIC8VDJU7u7A6SGJT8qn4tUggOSUldX4i5boO5mRE0XVj6XALmYkdJX0xnPHacnhTFJdVfZeEnfyZ6UBTeExM87uxiU3EqdpeGW1jisxkyGYGGUhY27aTKZHEyFa1YoDQL7nlrTirbQn5297TQWl6LCeimSZ7HkpiRRj/SGMbmzOFswQDZc8WUjy9V6FaidU3wJdj7YXrTbZRMm6y97QO4It3vSUPixtI8k0oyvjiAPbxAReVaTi6EomB5AVxjD9M8V0d20SkK9H4LQ2mDmMo4znvDQ39Q0pW5KjI2hYCni/tmkvi23Y4IhawHlWIiIYG9+z2YwoWuN3LbbWtITJxYwfgeyX4CU2kowFDw9Y4h7gqMEr/UzVAy2rXVkJyf6mJFwrYUSiPj7K0sLuQxmhqPsbhoUZeUIBSzBluom0x/CUlHUhmdfJDhUDWmIUnSBGk6kY7y+ve1P2qXhbRSTcZ4NpuSHgDNAFMj/nkNvV8jJWYBe8BPSGUDkU7bwhw2m50PXfIpzGA8+/fvJzY2lqbiSp4viAHgZOlq0ATXHTv4HjzXkqPAan0as/0YAI6aPP6eMRLJoHEyjq1ygY0bpgmGOhgRRRZjWGhsNisYdSfz+XoXQa0aStdyXvso559+Edu8D30hgG6z40oq5vjOPnLLkxkZejbKzERBpW0PGwq+xPH+Gfbu7oUNadYPhEAqwX4uxmbfwfo1F3LTppsiONq8aOI7FqzirTeW58EyPQaEQEfx/d4HqZ89G2VbB7tWMuqdnkLWr7deZ4IUPn/gJ5b2Z+cpHnZVsKX+PBLz7TSOVbBGG2B+9A/RtSuBMwPPUl/zT7ScPUZt9W40zURKHftYHBdoB8hTw9Fj5zHC1tGHedy8htMtl5KUNEnDmlsBeKXteUJyrTW9kop9vZN8diaeGz93D0MTZy1M22NPMB7+NyZKNzAeHMSrJslbU81bkwKjKAExHeS8wBm+3HYvndl1vJB4feQ0S6oKjRWErr92/E/S9p8MZ0Ei4Zs6SJ34V0op597aezDW2XiMD/NNvkuF6OBV/RoU+vL4UynmcGPzZJJWZFq2JLBSkiA3jbvPLuL170WzJAMZNRNWHHtwcJDHHnss0rpPI8mfjl0IbinMYNM1xeix/fyo61lCZpA94wOEkjYisUZN705Qzo2ZJDtyEuv9SgjOZuFMGEcpRZdYzfFgA6OnOwhLidKtztoedYmV/FhiB8THV5CTGxcdG8TnzK8wII9alMwcQTsajzZSAJpAA8LFN1Ef+xQHNt3MVxPqCes27OYN/EAZ6MdPMZG2m50bx1nbG8ONhxbg5BMsOv7IFT94iCmRvgKbtuTfaEQ2F3s4Ccu+SRFrhqMdE4nlsRc9B3/8I6P//C+I/DCplRItIJhz64iCOE69chAwmQoOMxX0oDvWkhxbwGRqBYn2eD6GRv6CWlHdTRkehC6YTzkLmNERpYgkbocHf0pJXh2rF4qjHdDTmEydHqNSEmXvndVMwpuzVmDvajNq4fraFbZmzoJERnt8DDUtUFR3MWdKerh4IgV77ZcYHWpjYlc3QYcPkZ0Nus7cQiavTbi5Mn0yMnK2RJzDYS/xOQ/S0v8nZp0uUoMa9RlxfD01le9PTiIFvFmXQPFQmL8rvoL5ib0Rj1GBMOFbjus4mO6i68Qgf8o0Keg5xec+9S/YEsZof8VLeDQZXGOgFG73OEIYnKuFWcVp7EoRFpajwdF0G03pNkysRAYhMIWgsSSWE4Xwib2zXFGVQUJKDB69gzWHSq0xjVdRrCxP2Ni1qZEOm5VE7PX3M//WK/zwrSpCajU/lZY2XiZJjCxWEav8xBoaN9t6SSGHLyqrG6kJERmB5ZFb5kC+/FsGcorJ8/RFRqPWecwtnyftkkQmw7U4T+Vii2CeACpLfYQSP0xuk0HupJWsnj08Er2+GedlsffQCEnSz4jvVWu92ezU2RNY8C/SpEAKsAvFes9JhiV4vVnk5Vt2epqykZR4B9NXT7J2WxHueReNjY0RxrdiPtHFzk99m+rWg+Qe3oWQkomsLEysru6yqOzpFYzvAl8zwlyPitjUSeChuCxuyS4ka6QXQ1nEGyHBZtMpKE5lItLwUlgN3aVE41Sik2+sjiUcSdiWskqzr5yUwM1c72nApuCl7mQuTLqfzIxLKc7uwDVdSVyLjeCm7BXTArd7PaLsCe7tUITQsJVDuDmd1c7jjI+fRLhHuERJUuaDnH+mk7dj5ugqTsBvn+HSnForYYuN5/HHH496NL9afT4kx0Qxx4evu5Evfv4zK4giS2SA5DkPH/TsINOZSUZMPsMHT5FfEsvG1iR0JRgmgRdFOm9sHCXo2kdmMJM7t/0NaQsVfPtkH0FB9F5xrDKbNN911LS+SVyawaqqavY88RZouThiV7FhQx7knYzmw/HDVhH0p6Yh5HQI2xkvRlXS0llnr7iU2tA4tbW1KxKPJRmgV97uQqqImXyKIzoalUrRs7Ca+VRwXf95yNuIU/rf44HsdOfhdq9n16nfRLU/k305HH61i6wtRdQWWwQqn6+JI6NPokXa/iZwWMXzdxm1XF+ajZLtUXu2VeuyyKv4OsHmZoKyGqesxDnwMHlykFtkI2enP0rWZBrO6Sma5j9GpipAE99DoVvyNm968E8bCJtG7WevxCzsZuDJPxI33kV4YYS4O7eSVJPL67MnuX+hFLM0AWQ8180otDNhGqZGCfsPMOrOINs3wWXbl/GM/x3if5K2/4uYCuwC4IxYY40INR2loFWtQSlo0jYsP1lZCl4Xn1nPBu1K7Ppyq/vdBuo3XLSOL7WPk6Z8TAo3v6yrjD73eP8Mb+7cZyVs1guzGDtG7EIS119VSlaBm9+cep6QGUSi0Bda0ROvQ2gO7Nq7ALLviuTCG9GmX7BcFjQdR/wkIOlQlfxQ/y6GR0OXJrqUURp4jyjFascJJIpX+4ZZ8I9RWFjI5uv+4T3HOPezkiyZFQFAoNs00q64ErRCmnoGCJv2CEBZY0dyGv94Ywl/OpBIq9HExtFpUucOW+lMOEz8QDOFn7szeozBwUEOtraxUB9DsSOTklWJLAbC6MkVzIYmEYmZ7Juef4+nnu/NRqafPEa4Kp3JT/dbLRUNwMRr/jNx4jZ86IBJqjOXYvcF5LkSrBEWlnxYeN8Ik6klK9h5qc5ctO4AE2oHUoWizzUUnF2Ad945TnpjIOJ6IPgXFcAwFf+KCxtgCHgtxuDujTn/xzU52uPjtceewZlyltTJEv6UPUTmBy7ioX0PsXmwAVFUBICQkiqXi/GNcXin/ZbSg4goPgiNsWAVtz/Xhp6zD4TBE/2v8+iVj2AmZcO0taGbQrF546epXVPL/KdA/P29KFMhHA5kbRV9A308feUnMHWdQ9Jkbe8ot133NxR+AabvfZn+GQCBHExEFJ0GlsdoZaqT+4be4o9xl3A01YY896dLmW/k36amGMi0U7kpGzUWoH3/OJrSIkQRyf5T+0nJSqH2ys3AIRZODDOnTnLj4oPoSMLYeCz4S3Ry0SJd8St9YYZUPkIoVjlXcThFxxSghMCEaPGzELuKnLG3yBkbZukGKYRAt9tIvTibL/b8hHl7KTn2E9yiF6Kkxf5Lb7iQ/U+foyKvoO2Ah6zRo+RvqyY5pYSLtuRyvLmVqfEhAJJsGbiO2rlcxJA5NceJ9SZXtX+PzJkxHlcfZs6fxpmW7dTH62ROryfGW0KuVkZGSS0pmo+m5hMYhoFEMEEib7ePMzYF8zUf5LM1qVTXr+XMO+9EpWIKCwtJTIxbwfjO8bVwXUcKL1UWWti+SOLm/tgdhA7czy7ViEKRM+3iwvOvJTU7jwm/JZ+x7DkJQtloY62VlEe+ZlkGJByf4SJfNqFgNrqyMF0mirmEMMkNP2EagxllJ+/41wj2FLwH4tFi5BJmBAQYmqIxLp8LzXKqb7qV1q5X0M48z4zdxkxCLP2ZU5zM8WDX7Fx4+a3kZKxm//795+ytUDzhYSg5I7reVssFptJKOFfJb4kMkLPgId2Zydasj6IJHalMpiaCSDXOkoKdUpA6E0tL6gwzsT56RA9t8/k0hUIgXMsVnVI0lyWx9kQ/s5Mmbfv6I0fTiU3bxHxCLHFv2QnnmMSespN/1x0c75/h1NFhPo6D5uEgPWmjzGRmRYpwncWYC/nl8VEWYnr4QHnxivN2rvOM5gshlYUVsxthyk/uozWhg/y2SjLzNuIsSIw6IrwbZlOfWU9uoJSisVoqxjdiKBsvNDZxw1fWMxrfS+NYE0NiM2L2MAI4Nm9jY1oyJ04/iadrN9mFloyQUhqNrTrZ7kRijq1FGSbi+CnSrrsAp+4gPZyPV6YwonlZdDdb96woNtxqUChzuRsY7PGRuM2SOpo/eoyU9Yn8cm4/R/2VOJTXYgsLq9X+dnwNVbEuXnOUUO71kuv3gwC7z85/p/ifpO3/IgYXrmA32SSoWWzCwFCWbMWZmU46XeuQsRFtF2Vh3r5+ZpEGTy5SmLTtOcwJn4eyhiKGPV9dYaC+oWA9v/zsZe8x8F2q6OrUDOVLDTwBmYUJXHXlMqOoPrMeh9AIS4OYYCd3t32DyeovsLn2qr/YZQNw+w3Wa9cwk2Rn0akz7HkagLOqCsssC9A0PnBoL8MFOTStKkMJPTJekdiEYGzPG+z2Tr2vPtgKcV1sJP+bjZjJAmyZq0n//EcsKvXj11EZuxpb3X2ElCUMuWfGzyHvHPdeeAlnfp/M6aQeDL0RTZlRxfjoNRkc5JFHrS6kRPCsXM0vN1+2wi4q1hfgEe8y9mFzUjxzR0aYfWseR+W1zBUCeiRpA0AhNBNXRi++Xkh15rA162Z0bUl41Lop6UtK/acnqPlM7QqtoJyCK3mr6TBNfX9EzOlkBHVOS+h16Iy3uZERPJUyFGvReIIQX2GeT65KJZQbx93rs9/X8urdjg2jtROsutCi1qdLGx9+YyNHd/2eJCMJtMh6BJSmkVpQQFlVBbvffhipQhHssQXqfrEjFxX3BJa7BBgqzI7uHVxd9dWIH6GlaXbjKmu067riVhbkKob3HESdl833PD8m6LhqJd4rtyiCj3qDUZeHxWAKoBH0r6Mo+9eEtDfxjDxnibdKG/WedNwiyIlUG2GWL8cKhJSytAcvznKjxgKEXuyiXHPT7dAxhIkUkn1z+3j5jZct2681NuIb/5Y0Y9G6rgJQBrH6aQwzF6EUQhosaOkI08I7TRiKxJCMCirbIVr85G2+CtuufRhhAyE0Ki+4mNRV+eStqeZXcycYT/0KCBsdiQZt6a1UTSayem0Bi5NhpFw5NpSmSe/rTWg7XsB1wVdAQrW5minnScY1H0ZKLpP6HFkqmXU+k+LGNtaYJwnKMq4O1+HRZsmeqCVjLBmEZpFXpKR1zxECxTFcfdWVdI1MM2omcFOfh60vPIjdNDB0Gy2X3MsnLr2UjwDdJ05QEu3I5FFedjd9vU+xGDxLUHuFD5fthLP3saOyEAQ4NEFxqslPU44RkpaguC8Vvry6gI7O70WJG1JZrgxaeCNFLVewSbl5PNdiCNs1wSelk2t9NuxKIB0wiGQoZOA3TVwZXcxpJmCRbhZS2wnmlNLX93K02CVyXWwQwRlL8uPthEeCuJ9TmBtuZPwrZZzY+RRSKdb02si84ErMvAYMZxlAhHmtRRO3lHk/hZMjSAnFUx7sYwM8fvIYt33qU9G9bVNxKjZNMByTQ4bU0IQeUeJXrC/ayvGJZy0yEVYHdio1hI6GXbe8Sc3EVPRuj4VtPqcgGU92MZhfTN7AcnLvypyl4JJHCdskxnaNmK4yjq4v4I+THpIH7fxMWYVewN3F22kv8CPuxlA2BIr27AKUEDQOznBL+xE+WlMe3VM2FCTznWvWsHNvH6GRBTremaJea2Rb9358N0ue0K+nSu3nw+0X4PQU4ix2k/g+MBv/QJirW++Cpa47AsOQvLa3mQfs/0DIDGETAikdFvNZKSpbXuQOzz5C9jgu7l1Fje7C581mbi6F3jNdVBru5eTrdD/OK+9jomOWV9tPIpEkzprUKJ0zao3VOBEahpJRpYVzSXeuujpcdXX8y/5/47dLPEcBOobF0leS89N7ONVwHb19AeYSy8j1TpEzO01h7Px7Pu9fM/4naftPRqMvwBfVGgyxFhsGt/FbZlUCcr6NA3P9BEM2hEOBZnXYrn9nP9f7q5FCY1R4ORhvR3WNMhbeTUHhew3UlxwRzo0/NQ0RDEu6RDql+qTVCNI0tl97EVl5K8dmD6//Gn/e822UklQtdFJbnA//TsLW2HGMPW88SW37aapTz7J4zdWADhKqVDt2BWFNoSnJ+WVpjDtHOEEppjLRUDTMemgY9xP0TlnjFcOg7+R+8vJutRTNDx5lMaWFzITIZ1VhgkUmzo5uFqe76d9poyYmjfkxxViai2rZzHFtY6Q0F4SU4mHPBP98FRiLM4Q+9L9Y1W+soJ4DHDzRhmmaEVNiRarycbhnigxtLuoQUJ+Xx3O1y7pc1V6TiZe6ARBCI3amEiE11BJNFQ0ldeZG4gBJRkx+VPLDIghY4L8lgVdXYDJCHbcSbp+viZGRFygSkxweyyT7dAkEZqkOztOdfz7HRTy3adaXUOiC00qiS+iwKcrPyyFtaJ7Jw+OMmtp7pEze7dhgjzl1DrXeJN/Vi+NwIWZZLPEJ4yQnTeDzZqFpAjP3LMdPx3Jr6ZfRfT9Aw0QIG/HxFWwqTuX+UyvXiEBQ747j1xlZ7OmaYIu0Ue21LKaO98/wsUMBQloNMQN7sKWGSI05yRQfQCrL2GqtGKCp+WtIGWTNGo1TLZcxO5tByVYXxVVbgC1kZ9/ARO9eeDOZGH8J62zwZE4OhxcWWP2mB2VKHip1ciTFhhJYWoJ9Ia67pJiZN/uJA7JUEleF6tjvaOfF7D8zHTONLnXL9svrAzNkdWkFFsvN5mDTNds4OpTGhpMtjJ7sYDrjfAuorhSnkmz8vtKFiUIzJV94/gmqkm+HCBB92+2f4/Unf0c4Jp62kye4bPUaBltP4U/PBmFjyd5s39w0Xs9pXgw8ybcavrlifA8KTZokz3SgZ1Va2Q2CSX2WQGYu87FZzAuTEU5wVaiWNJlAUk0utDgIhmvIUClkmOmAZGamFXdKFUoJ2rQhDvd2onqtveLqq6/mo/X1nPzhL9BNAx3LFaFmspv55mbMr/49BaEQpsPB2MNfZyahFY/nOWtEKpZw+wbXJ7/GutHLmaqs4MrSYk4MPIUhl4VOL8i8inSm8UurGDCBzkWdN2edfKzuQwSzi4lp6+fHgRi6gybKncahwWlK3Q5qfRKhFIUOjVUOBwtFvQTqP4qcedSSONXsJDZUcHrkrhXFbm9Q45Wz+4lpk8RnuJhN2sCOVQ5ey3Xwv48FaDsyzEuz3WxUYMa4GMor4wV7PeaY4qmJTh7KzCat36SipIozHaeWjeQ1DV1K1g91gKZhSrnCj3RDQTI31efx5BHFMyKGKiS6UhjC5GHXDiYaRikccqEruMU1zCVrbqQxq4xNZh35rak4i3XurMrlwXk/YaGWqPEopRjIKyVv4CyRB4nPnkdoEa0xZdJSorhP3E4YG1pciLhcOx8eNgilnKVStPEt7uGMWkvfbDnHEjdE/FUlbePdfOk3/fzys5dFTeNf2f0yV8f2sOAqZ9NQCSNSYeTDvfZ7ouoA7iN7uagNhE0j7bPVK7psJ8ZP8Nibz1BnXh5xc7DkkCTQOTBMUmo2owm9mErw4dk5Vs8Xkz1fRYt9lviFXqQQzMymMzRXBEqgaVBUVQodE5bArQzj7P03GO7FU/szpDaNUuCfSyd4+ALqjTZe3GwQ1kEzTejaiai/hrSNZUwFhxl8YWfUPWTXTLKl+hpJkgtUD+s5zlrRSoG/g06xmsG8f6QfG01K8p3WH5C38yHI3PG+kkF/jfgPJW1CiLeAnyqlXj3nsYeUUnf+O7/2/8u47/WXMdLKsQRx7fRRxKd5GLvfYItd0DOwgOfIo4xkF1A43s+1wXfYO7ue9Jh8OmKmUc5EEIKZmQwKCm10UkybqOEGewOF73O8JbV8BegLc6SHj5OYt0hgKJYXX6knY3Mfs6J9WSk/o4odbjchGebPSXYedjr4Sy6Vjb4ANw4KQpWfwF5u8E11D2W+tzCljhypo85zEV8TA7yeFiDHN8kR4NV1WyKiHdaXsyluFTfG++jVeqzxCiaFzT+kZd7Hrhd2YkqTmMwgKddq2HWBVBpal8UC1QB2vsIux9Uszqzn7mu/Q0izs3yXAJSinTCNgT9zuf4mgRgH9o8+gcu9UoR01Eyw8HvKwgOOq0TK40M8/vjTKxwC6vPyLEr44CD795wkWUEmbpRSxHpLid17KfGFh0hhmnDDJ+n1byGYsogY7mM8OIRUppXPmRbN3fqPAKGROwQ/9HTxb/ZOHrnJw8LkD1kySv9gmUbLfBWzvhxiBjo5zz9OYfoLhDbfTIqzHGexm7sxOdwzxUWuWFJ29GJEQOl7D41w8ZfrViRuzmL3CnxJdulWxgeeQJkmSMWZ+DX4ijPJjZukuuZNNE0CpyxG1KJBjnqKw2ca2JKrIqfZZGbmCBsK1/Pdrbdxb/NxFCZ2zc61EfqH6gAAIABJREFUJdcy2uPD+6s27orREMDE0UnS76xZoReVMpbEeTKGK3JPs5dHOKbOp/BkJ351kPjaIEIoNCFJShpjYSGb6vXL4/8YbykZM+loW2zIeQNnsZvcgkTWvj2If9qyPbqjM0hzg46BZQL+txcUklXsRtWkEerxIpUiXbmJL3Mzp+bQlb5s+5VkiXkqM8TQfCIdrgtYvfVDVJ63ncrzYL4wyMCBtxHpRBikgr4MO4ZmdSeVUvhiXVH2IIBndIzAqrJocfH6k79DXwhgzy7Ece3thLHkgC47XUf+5DpMzeTAqgN8+u8+HZWkmXnnOLbnfoXb34uhC5xCMSb8vGY/ielYYgRZ495RzUt8wjgnQm1Mbv8nKsdBHNUtT1wVJt7xAntGmnEm5tOWYrDUXZVS8uqrr5KZmUnZ5Vvoe/JRZDiMbrdTcvkW5o8esyRApCSYu0jrzLdRsxZJIZK/Wn9MQf+RXhbGf0fCThs53/4+tsx6snwuUiZ0RpPD7OzPZdOinfQYFcG4CY564ul1mNx39D4AigZC3P2UgSgo5++/9C1CxUkcKYL7j82zzmsJBGtK0SYKua/1IbJ1OxWxcHPtt4Fp5ORysXtm6EW+1PwaQTNIoVFI8uBd7E+OyKlIRWOK4KTZwkQwm/WuOBZWldJXUImBBfMImSaPv3GCC9rsGA4dPU1faSQvYCQpjWz/NLrNRmHh8i7t6Whjg7eJ/YbkYEwG/5D0DnW2GU662jkb0wsxMJocBKXInYOvynXk7DYJjc/jM/uQQjKVeJhSexH5/w977xke13Wea99r7z0DYFBmgEHvANFBgADYm0RJFFWsaktyky03xXFJsZ0iOclxS2x/n48d23HcZEuyZNmypNiWRMkSRVKkWEWCJACS6L0P+mCAAWZm77XOjz0ckpJzrpzvOkmc68v6RfACyU3M3mu/632f534yc9if50Iqga4k9wQPkeGZ5Lw/G6UESxMuuxEXnaK2q1oiGCihY6H4Rk08ZUtByueqmStzUE4vFWKAeV8lZ5MasARoSpK3MI2uXLFw+Ja+I3xww3fRhYmSBoOHP8vgchMjRelX0QE6ZA07rxg5XiraRkZGOHjyIIn6KuXxGrMRxawl6TMUpaZOzkQ2t/k+yd6a7zOTMsSGYClZC5/mJecFZCSdnZOF0XeBhn0as43Nb54+TtH5A2SThTXXidXQg79UkGK8iNudgd/vRQeSf9dNyewsn+3+Dsfq1lEwMUji9BijW6oRIddlVpthUHPNDXitVaiojXU1K5c6uCv5N0TnSbSrShCO6NtJEU7Mhvnwv8p5/M9Y/9ZOWwnw10KIjUqpL0V/7w8iwP0/eil9+eqvFUgLwhkOvJrEndFDyt4QRecGAQilwo3Zv+OiPwszUAYe21wQDGbjz/geX5vxEFEaz/dofIUZ5k3rKjr7JVo+wM6EVqp3dSB0haoS9L32Kj8ODzPt7idOd/JXG/+K/cP7CUvL1gIp+b8NFz++sERYaEhNIxLdCMpFN0JIRsMWp1fmSZIrNAXtTMWzBeVEogUKyg5uNoXCV13KA8mnGWzeTzHD6EtBDvzm5SjXCVZ9cew9tIftN2SxxsxlbO5XlDNsPxZWhKzfvsjTe24nohk2ifvS7hTttqHg5/pHKGGActkX60rCZa3cOm8JPw+uZdWYp09L5k/v2Er86lAsIeCywLrgqrgnzSm4JbSOTOXmrDnPnNiCuLCb66xv48hx8YlTCu9qHPe43slCqIM35ppJzyylfKiL+MLtUTK3QggNDcE6dFYTu1ie+S4alzUyQkjcHh+BxQxUYjLV2fvYasxR0fx8lNZfwHrs0/vi6yP4LRUjnacKOPXmOHdcWbS9RV/SkdDPi6/F857eVXyhEvwZmaAJ3J7JKIgSiJ5/dU2BNME5iqV0dCFiCRZnhuaZmc3h843fveowcObsIKnRGlUTAmUpju47hMtIoVDpZLnepDatmyHvHt5giqfERzAx6FpXQ0q3g2z5i6hN30FZ2TvYs2d3rGPx1lHvlSf5uFK3LVWRktp5k4+9uh9x3zu5uaw0VnwPmoMk7UomfljHU5/Og1uvYePURpp9zZQHMwkd62a8to7Fm37Oj/cdYCajmPWzEUZ/up+NJ3oovvEmmg+00165m3DcKI5QCk6ZSvG0iS5BKguHZdLY34Prg/fFPgMrMZlLVHWASHwS2nKAnIlBvhIYpWNNIR0HXqNwZgNatHvt8LlJ2NWHt+pNEqZTSe7az3LA3iukfxBn9jDznlTkgF2wJSdP4Xb7CPhzyIh4ObR+H+1aFeWBvUxlfhhjc4icsSFyOh4nMt3PjrQ+TubdAyEXycnTuD2T+BeyWVrKtO//nTspfvyxWPj3pQJUOJ2oUIjgxojdaSbWCKRbVnBmZgNZXeN4J32AxIyYPPviIUoLMrnxeDpKKaQGvy2c47UXF9mUUEhSTpClCRdeS+AtX2Am1YYcVQ9LDNN2ZUZ0A6XZyS0HUjTqFiyEUphCMZU9THghzIAlGI7oVAYC3Fu4+SrMRG9II2StooCcwBqy5gc5XpuOhYEmFSP+X9OTOkDpdAWLnjgMoZHrn0FTEilt52/eyABQgRFOIWWmjm25k5yVdoi7rhTvMEOU1dZSvm1bbP9oaz5F50u/gaVF7tB0Atd9lJrNO/mfbZ8lIiPo6JSOmNQOKy4WCnRPPf1/+TXii28krqoAoeloSvAn/k38ZeF3Wei9kz9eKaQ9VbFdX6VyzsNyTiL7Kn3U9HnI8SUwejSb/B2TIKBGXERDYalL+kLFG16TwLDJROsNpLgnWQzkcn7KYLP/p4S9O8j1z5ARWOCCuBwaX5XWS3DmcofeldHNhFnIH229nWOjo0SUhcOy2DyWDCiEocdGjpf2UdM0yVQZpCcEqYpzc2JplQltAQ0vGgIhHeQtljOVPESLYwN12hISiRJEO3PEtH+XzCrdvmH66kvY9foh0udmmBYJ9Nc5kPpp6uo1dO0DJP1qgsTZWQA2dbaDuYjUtVhE21WsNtOkJz6ZN7M3gZL29MDXyo7Vi8hEeSnghRrRgVMIO9pOmmzzt8UcrH8o699atC1gc9W+K4R4Ebj/3++S/rDXlulJ3kyN2C87LBpHO5hd9JBe7QdNoAtIyVthxZcAwL64Dby5JpHGlUGqvbsIrgpc6RnUb9jEs7OSiJxDaoKQlDzUPWyPbYDtLidFnhRS0p3INcl4fWHqkpYQuorFIyXnzJAbKGHK3cuqtcqTZ7/EmjiTQqfGcNiBQ3Pgdrr5yfmf/N7Mym2eJJzR06ZDmtSodtsRqjT8/mwsJH4tGH2QFLkLMxiWhakUStPQlJ07WumyKFi3i4KWb4EV5s2Vwphuxy6/NFpXGvloqIyEh/+MpJDN6pIiCmNUisbudn5umUQEGJpGDiGGlNO+0Kh9vZ2rSezTXUc4P/ZxFBGkqbPN+TlWF8p48H3l7Nqcz8iIQNf1WKctNz6DxddH6F3qihVzUijGAm1MB12cL1xGItHiNdp6dxNuNVk73YxbK0BTOma4nemwxWTgOIfc1/NJ7LGxiDo9IwLasKj29kYzWInVnjYwMhuB4ExRPz2ZOo+qdB7xzdDwllPccryOjJLtJeCLSH7aOkTetuyrRudxRSmx4uaFEy/wejLMerOpmcmMITT8Ua6RpksEOiCwlImFom9hlsCoh9s3baKp/kP0LpTEonFuSzvCx+r6KYqLh8wG8ipS6f3dIArbWWYJyUSriyXT5AOZI4S2nubr+t9hYutoJAIlbINOr7Oc82034vb48GTv5mx4A2JugXfKJJtP95ZR75UneSBK+be39cLJCaqGO9iwvu73Zq2aWBw5coTi4mJ2kcabh/4fFsfiOPZMEhM3fpBfbboHpWkcVvC9U/VMHP4+4ue/ZKJ8N/O1btv+mKSRvlDGTTVN7MpP5fzCOA3dfax/370ET9lYB1djI/UbNnH2Qnt0LK+RbiWwpNkvjRuryukcO81cqoeB7FVKJuORmsWm9AXOnH4vSliIiMI7buCMRtkJp5Oka9aSHo5HDJ0jOXGStfX70YSFUOe5EFzhq/rf2iMr3eRDfb9E701FF5AzXcRAzjYa+9rZuLuSqdFWampfi2EU2i/eHOsSXdL3gJ3LGDx1mtT738/k6z8luFVekuOiLGgeXs8/F/0FVqaBnq64b+4x8nxDmGgc7A9w7anfoWEfzpCKWnM/5YtJBBddBH22bD8HRfZsFs1rF+krWmHZJWNoELD1RBqS8dVmfu60SExYJq42m61b1/PovstpJhuyNuB2N1zFaZuZ7EPxL6AU4yk9NA3Uc9/eJxjJLSJvop/W4lOUDWzi2skLWAkuVpIk2f45bm85wgyC4tFeipa3xoSTRjiRG7tOU7e0jwPVH+eGknLesfujsXuxubmZl19+GSkl5JbiGu5CrATpbGnhjj2f4pE9j9B74QKFrcu4fvcCzPZj6nCkvofZFA+zSYsUigWyVBpC2Hd1/coafpFykY6RLDJ6YXMgnpPi3bBkYaV/j5byMbLmspjrTCU866QqfpL18318eMtzPLbmPhQCQyoseZil4lakP5uRkbWAYs3CGM6+CSKuF+iqFIyUFvHday9rfdeW7KJ5/icoGUFh4MzYyI+KSimNd1GcovPq0//Cuq4LlC8JEh58iKQd1bFnc3Bw0I4aAyR2JzhTuvEaBtliAQsvoBC6YiylB4nkbEIn16mtdtKOsqcVFhZCaVEzUPQHLcDSNKayMslY9BO+rhGpt0ffKBaWfBJv058SbhlCzveTGgxxy66bWcjJjEW0AVelakxlFtj8NU0HKVmSbl5x3si1aoUK2YlCkCT28FxjBa/2z1DUP0Z+8fth4/o/mC4b/NuLNqHsnJNPRiOljgJvV0f//2D95R9/Hn74Vbo9CeQPjKG1zDJbkE1aZQANiW44ycq5Dh+tjGUV8OxtH8HSDTQpub3tGHnBRe67thjL2ktFXwEOdx6RqJHBUpeyKRWHl8MQtE8RYk0KvhJFS08x2eoIQkqQsDg0heG2nS3FTotPZIRskr2CI6qOxsJ7+ErrcwQdZbg6XuOJXQ+/rXC7Lzcdc2aGW3v7SDDezby/mZ4VRWAxGp59afyHIntxjjtajhC3EMDM0jmRv4GS6QnOHhul/kMfoiAaT1JAMcaPn8IMR5AIDnt34HPloLWdQ4XDCKVQQrBQUsJoqk71uT5qBnr41DNPcGT9FrZVZXD2/KMUxt3MsfIG2w2rFDfm1dGUY5PYQ0OLTLzxEqokDFGYryuji9D8GpID9kZSUFDAAw88wODgIDKySsfrMzzl9lPql+hCw5IWGhr5qY2MZkwgVQAbxi8JegQTF5rZrGA8a5LjxZvIG80lzzeMhonlUEhNZ0b4Gdfm0dJzKNxWw03BFaq0DWC+gh2jI1ger8fXsxOCqXjLLtIT54umVthwyZKsLOYHfxATVo/7w3QvW3h1wbQpOaybjAgrNtJ462qZauH53udJXU2lWO5kNVVD13UqyytZ1Yt5aqINb9IMA5E4QrPbqcg6yIrPS9XFSozlJc40D5H+R5KT2KPOm9yHubvhOaY1mB1qpgnIrrifa/+skanTk/gme/H1xLFgCjQErrQuWrXq2DhFKFtbqJSFriS58zP2lA9oOxPk0OIo44bk2TOj/PLBLax9y6j3ysSOUL/fLteEfRrPchXF9ClXZq1alsWBEwcY6hpCWYqlbAiXrVC9PoWyhh56XypkcHoAWbQmNjo753XwzvgCVKQN07kAIhkEJKf4SMkeZqgryE1b7uWmrY0E44klCQink8LHHqWgsZF3NO5g9PgQuSqNdHcSo2uHKL1pC+eI40mrFitP0J8j2XbxAO9xp+A69hMWbzZBg269gr531LH5pU5qh/rIevghFt2lvPmP53CLOtIyhtCFZSPFlEVrUurVIytVQ60aZyw5lR996M+wNA2HZfHj3imaahMIRzusQkg2bEx+G2sqeO7c5XQETSN0gxXLxxZR/cL51QYszUBptptzouR2ijJ6eG4ugdyVcYQtSoiZDrwBI9o7ubzsl7Fgy8U0PnXjxwgOvMjxxlUevf2+WI7whwaeYF/6YbrSwaE7eWTrI7ZGd88jNPuarzp0uhdN3CNB0E38UxfIDhRTL9NwZXShNz5KaKKetPk3aCsZxxeXx7q5FQCMlSAJw11YrhRKhzopX1lmzYYtlG/ZxRu/7EZKG3Ce5zjPen8v73Bth4qbYv+PkZGRywUbgBBEXClkqTTWJ9TQdXaCdzWVknEwQNDVRfD91YjXV3BcmCDsTOWNXddiaRoX1VluNpvIVB4iwuKCq49CdTc9s5L8iGHXj0oABvmBCppzBzi+PkzVdDZVLSEyR3WEI57Pf/rd3FVawfGFJZzt+yld8/NYkX6+bTcaEm9SF8uGA/9iIklBg67QWfSEISA1mmbRS1GZjeRJDK0lfFhDmT5mzk5Teb8k610CZ886MurvelsubnFxse2plwpN6GRLDwqYtyJsubmU5pVsCkwNT/kSj3WMgYRO1wDfLHiMtQs1BFSY/NpCxKpJpCdIvBWPTwXRUFFEjCBuNUSoRKFn5kK447IbWVmMqx6Kdv0VLeI0F7eu44ZrtrH5LbmvV7r520+c47FsVzQzQtGdU0QnxRxXTewcewXX8gof3WaSNnaG9Ecli6bkeaOaOxsqyeYPZ/1bi7YfXvqFUupxIcR54FP/Ppf0h7/+8o8/z/5Hn6C15QBWQiLTrgpWzxeTmjrFjh0fJSm3iPbXOpgrtDc8GcVkjLm9lNPNyOhnABNXisG3O77I3jyNVzzFxI64cIWN2YbBSqEYScqOTWPsQF+JN8pC2ugyMcTlBJLbcyr53bIZc7EtKZNfj3bENr63BtLfCuSl1TB6qgh38gX8+kysW3Pl9WQuLZDon+c7138QU7P1H2nLi7Q1n6Lg7ndBwSZygXuzanj2xUM8N+pkIi4b3ZK0pa9ho9OJDIcxhaCm5Cyb01fx+T2csOr45/s+SFg3OKsgPXMNt3f1kxZcZMztJT87xO1Vl8MyQv1+EmYrEcUOlDRB6azMVKIJgW9wkUO/6KRqSw4FpQX4Z6fYf3iEf2yqJiLAoTL4hzOb8QR85FipZOHGka3TNj2BVBINjfjpfpRQTGQV8OxtD9hxRQ3V3Pfio+T5RrkuwWJW+HnFeQ4Lib44xLrcKrYNT/C7506S6G4iLWWCrTf+CUnFNzCWPo+eukJL1xyNU40MJQ2xFDdLScG1nB75e8BE05ysb/o5eRVraBaDzIUlEaXodFms9Q+z41QvQc81uBob7bFg1GDRPPgbTBkmYzUDTWm2PkRCXl4eXZ4uTl3IICx24pSdoCZYms5kl+8azHQN6RV4JmZ4/cn91H/0fpyGxlZviw1aFvZ9Nz/+Mu6K+8kudZNd6mbvc3PMdyzFRMcrM5XUqBdiTmpdWXyQRwmQTI12kSRHgMxqH5omKSw4T/7hz/F4qIAJpF2IXlf2r6IENJdx2VmnCVLWbUEzbARKcXFxrJMqdMGh0UMUWYX4Ury8VL4NS2gYvJOH+SJJOfMUjPXj2KCwpB0T1jQTxjHeTgiNgvE++spySfTM2RpAIVFlR+k74cB4LURkfDym+7qSjB83GKTBKkETGlJYpIpMpjwhfnaqHctVgopS1d3VTVw7MMBr/jJOUEGyFeBJ/SOY1QbPlJt887tfxRzr4NiKjmWmYagUwqObUGWHbZFPdCRmYGIqEEoxI9KZTFlhwp2OpWtITccUGqeMdNa3uDEabHK8UhqWeTXIGbhKy4ZSxPUZBJQFCnpEBe1iLQW5cegSLBS6hMryAsbzK5l+rRcxDtaCAcqMYUDS/U677hN2NqyUEnWpyFGK+PFVNt7+Sf7ccQhLaKBpKClZEdk8Mj5BsyuRDTf8Q2yfashsuPqg2fw4vPw5UJKW+ASmRQ33Lr6Tkmu+i9BMyNSJW7eBV4brCQcPYTjaGS2do+C8nVFsrAQxVi67ARM9qdTuzANgoPUVMhxPkLA8QLO+juMp17LNvxyTqgwODl4u2AChaQTiqlhbsJmhXD9iaS9TrZWsJs4ysuGbdnh6qSDtewaz2dk4NS1maPh1/EskJnkYT1ukbWYdq7NeFDDqkFir9j5uGBrlNXkMTHqpW96ClqDRvK2MwrR01uzYjquxkQ3YvM/WhRGmZ2SsSF+bdRojcw6lgaoXtLVVkB7IJHW8hGPtx9DaJjjw6A/tQtXh4N6/+wfixpMImYOgYDmxm46R/xehmWhFTjyld77t/ikoKODdO3dy/oc/IiuokZCkM1ubz7V3VZC9dSubr/jeHYs7ODhyEIApzU8kbOBSTgKti9wY5yEhY4qEuXw6ljXOGQNRXInELDKZuXMFQvtBaChlHxGk1PHPZ9HmNvj05t1EgB+09L4t5eZScgWAZ3mVb37hK7SUVDCUk8f+jdttvaqlSHTX8r7Cv2F1LsKAcuBI+Qzm7Jp/NdP6P3P9m4o2pdSP3vL1GeAj/y5X9F9kaUY+YBCfr0grbMfvz2ZkeC1jXQbVtbnU3fhp0pdDHFSKiLTHaLn+GdweH7bZXaKESanzLHmBa1CeaLSKujxWu7QEFgYm9c5mxKWweCFJyllhSM1T7LTYlGhdmmKiCYOa/Lt4flQDYUVdbAJ/pCimATsY2kxE2qorZUkOnTtP/qFvsPlrP+ZwlwcWZmL//oKMJ1mE0FDomobvumsxhR57IY27vejLUf7cyCkYPEJu8U523PMefvCTk+imxGFo1OzeQmHToxx8+hUmFlvJKz3AqCeOeLVKa6CGsG6gdB1LKXxZ9zA18QY5i/MoFHFr7biSSw9kXKkb18EKCs78FSveLhKrr8eoKaT96DgDLfa1dx6f4M73V5K8dwl/YUkM2GpKxYDHzYf9NrVdGBrZ1gzXn77IdF4JXqsNR10fU3OFjGSVxvAVUsFKSja7hw5T6Zphv/VxZDT2SCrJ6ZePcX6iE5XiJay8zC+UwbFpFiunqfCGOfnKv2BZFsWsoXipmAbjCEMyQKEnghBgWWEGB/exbt1D3PmZRsa65wkkGyS2HiXu5Anazkv8r/yWvg/vYmTY1pXpmmCb8SLObIm07M8ZiPG2RqxkFjLrUcIgmGKSNH+CtdqrFBa221qnxQxyMzYQmHORHDB56mNbGG67GU1+DylsrEZq7q2xbL+0VYVfpaDpK2DZ2aiN1XVMvvwDHrrli3RqtVSpi1TSHdOnrBY40DQZHetbJGV0UzBYxEw8pLqclx23b0EJhIYW8e/tt5kRAi6sKo6M6gzvvcAH1xvctH0zDzzwAL0tXfinJ+gPdIKUTLjTY/enqaCDOqonmsnzjfMNTdI2NMmmM4PU+OYJAfuKNrJy/3tZ1YOkJpxDEzKm8ZEXfsT0834wDIRhoCwLcQVuxtNQQGR4BrATDAKl8Cf7HkSzatHiP42MCsALExbobNrIQ8XriGiXRsgaSrND089V1vLM6m+YXzrLbeKTGDhZXSintWsn9VWHEUCZ6uYh9WWen3s/572VdGYX051VyI6uFgxpYQq7GF0/Z5G5WMeRtj2kuCcILOXxrnftftsepnvcdsGGvXFk7/oocbP9HMoc4qv8DyLCQPMINneEiDMVrpDi0Q0Ccy6E3uhhu3eB7Gv+nJf3HSFRTlCzYOtUEYKSrXl4mpz0dfjxH7STX3SHg4LaOlwV1dwyt8jLSmJJOxbsBv8JGkIhGsImzE/8/k135JRdsEmTljgnH81MpXa8jpvT+2LO6S5ZytdWazGzdHTZSP7A/6SnoIui+A3ULsSTnZVO5/E3UFIiNI2sklIm+/2c3vcyeTu/SUAz+aXYzNf1LxOZ03AsXC4EiouLMQwDMxrbdeuttzI4nsifulaIaAkYpPN59VU25mXYWZuaQqFI/NNr2HMuhyOLps2mk5JKGeGfMg8SkSZ6uo4IZiJWiiitSqOhKo/kgEleRSqTSR7ann4zdhhTwELDut/T9drD7NwTKBVB13QKhI8xzUDYdnrcnikCS9kYEpIvBDlw/IdIy8Ibl0tmQiG+k514r70BYWhIUxJI7UARIZaKc4WO+MpVfsMN5KWl0bPvDc6mr6GgqgHlN6HfHyt0WqZaODp2NPZnslazMJRdergSfSzVP8WysFClOq6zH8ZYEbZjW0o8qVPY25ottPH5KgitulhcyOYafz0vFetE009BSl579SA15flv+/mALQu49Ut/x/bfPs+p3nbeaNxERDfQpYVwBuhRJZTTCSKCkXeE1ZlpEmQxeRXr3/Z3/Weu/0Z+/H9Y490dBGZaSM5LoeSakwjdbklfbNtDypurHN5/jtkwpGrLfDDQQps3jlz/DNmL8zjSa9HERaQVQSgD11wVW/DwWJ5AarYkU0dRZ63gXG5nbfJplkQy1aqD5IiM5a4hITDhwpUZJD9O2kZGYb/fCnLvw+1uYqevn5/LOUwhESgWOs5wZvn7KEzcogaH+AJYEsOyaOi6iAqHSRo+x9ZbC7GOPs/8fCaBpSyOmyUoBbn6ItdtWEuhNo1umVjo6FKypvsc9R/7mL2p/uwOxgNORlaepODev+Opj11/NXeuKJWctGI6nvksrfUpKAGiEHa2vcljvAvzkr5HCSbdmWhovFS/HRXUeT56ksqfNRnrnif31hKyVguJK30XAEvNvXiEYD5a8VqmYqFthiSpsXFO8qgCU9qFyKRLo/+2AhpC9jjO6hzC++NWSPSx8rExwoZijRhl5GSEE9LeRAzLYnfLGcpLZojXxqnmV7RoW20GlRKERwIonSu6pLBvaIVjQ12sc0ywTrOuuIsE/nAt8wuKfHkx1hHpGfVwdC5axNxczMG2g4z52qGkBICBkhLM872QWIKGRoLLh+bR+c5sCUujDzKiAiw4F7nhnk1kSjcdHVMQZ0TNIwY319Vxe/gHaERi92zuzHq0pBRy3E5yilJZX/QW4lf/AAAgAElEQVRZ/N2ZzI+/TGrurfRk3c09Lb2EpUJakuSlFe7y6BTPWui6IMHXjUtfpUJ0Uym6Y3mwl9bCQDKZa+exT8gC/0wS1esyuLMmnS/vvRgLa37qY1uuGv8uHe1ARSxsrAoMuHWe3J6EpcGRFZNfd5+mLq4S7VQC0iymjo/yo/ifsP0inCuqxtQUDqXIOe0hNL8FZ3INZaF0xqwFWmsbMXIk9UXbOBs3y9H8LCyl0CniIXmOCtUBSkfrjQc5D5aF+557cOTmXiXgz9tRzxhtLLSM4Gko4IL7FOHpMJIz5I7+E5pzHTLcyq+1VoKFDxMxypCaDirq7lQKqWm8UbPEgkMCA+yt+T57nHexsXYPr7THx8zUUoKnfwHXqh/lFShNs5tkbouH1RfpUDXUqC7WqLsIkEnO/DqYr6c+qyA2Gp3s9zN26jx5zvMYQ+NXdDE19OQUSrZ9nV++cZRInsMG3ArFyap43v/Km4zll2CSgBQaUmi0BWf5QGEidQ99muPHmzFf+gHKMknKCZFSdwgzHKGwWNCbWcjqdBLXPfBgrOtx9w3X4uzu58BADzcsneUdy28SkjWMhO6m+3kP5pFvULxpLSuBAAW1dSRmrTDf921SEzXcAXgxKZGwEIy7e1mauJUMaQAWHdTZBXuUEahra7FkL88vV/CSKOFv9zQyXbOJyIu/ImdymIOPP0JWwQJxWZ2xwq9dVRNWIloIXE6TuVJuUVxcjL6yxHMjE0Q0T3RkrWgXFRTlt+O0uTJouoPMpo+Tly4wPvs5fGmpZM3NM/apXZjL56JOZYXD1Y8wS7hlbQ4Xg6tsqfaSXeQmmwb+aNcfceT5IyipMHTbwXplfFbi7CAFtXXk532L8fHXyc29jmnrAEr8OuY2tUJOkBJdSpyvHULGiyh30gYCa10aXAvpH6vj8P5+npsq5q5SA0NaiGjG57+2OtKK+fLQSerPnGX+dDy60DCiObHZpW6afc0xLIxAsLZiLZwB0zRJ8UzYjQVNoaTFiPcMu1PvJZKZQ3Y4jHNUp19/BomFpjnYtPFP8fkSSfSbTL10EsKraCW3gW5gmGHyR56ntTWTxZMd1Ny2822SgEvPbfEXPsBXTgxzOOVa9q29jpcT6thHJZ9XX8ay4FDKDrzlQcraX0SOxUH0HfOHsP67aPs/XOPdHTzzpYfx6JkUNa4iNIteUUG7tpaGdDcZ0ynMCsmMgqlgL5lDkzQtR2NFBCTHVWNNfoKExV4y5xpI8JdRj+SOMZNfFzhsQjOCbZnppLzeRk3t6zHXXUrJP9B24hgOdZrlYYNVXxx3ijF+viKwohMlSxr4hX2qTvGNsa23lyPl61BCY3/BVrao31EhuihT7Xw79Cy9PcuUvNpPzWAvwjCwmlIYG/8cRcVhCgt1ViJf4OnjKURMSUCk8D8aq3D0LPCevT9jKLuI/Dkf26qrsRKSYPBlxgNOnhmsxUJD/8Hj3PfFGj51XfVVP8P1Wg8OzzmmhEBoCik1spNn+Frvt3m4/DNIBA4lKQjMMerJsO332GDXV/tnSH90AMuUsQDpOGDmJ+dJi0i2JekcX7KYt2ydm6c+HTkaoG5R8s9nl3l+fTyv6ga/zXfwUmSB55qi7fThCeJ3pTNa3oBXHyVKvKU2cY4PHFpiKFPjuqHX2F18Ct0rUUJnjbOFB27+DF0XIyRPDmB6LjCxZOEPRPWAmkaXyEFKcMwuQTqxYkYAyVYDQ4vjUZH+JP6FHGZb+mhJsPinrFK+dG8Sr776KwrIRkQLQalpzCWBB0lK0jR19QewNIvVwgBF4WEq/GWcCHrQBjVm9p4nPXkSvakIS9gdjarlN9EdFgjQhGRjkkbWtAdhgHx5gFBuEnFFKbgr7sedUAGDRzi+0kFEGlHIsiBQ5OKX+fCBQwHyZ03OD7pIWS5FszoBRa+oYcLzAbSlbgZ6FWlD46yZGCauKg6/P5uABnfVJHAsGL4qrPlKzV7w3DlmH/k6Pbv/nDPpDprmJWcSBZZm4xwsqXF8YoAKmR0LfHcKJzdX3EvQNcDftR6kO7+OOLlEwvAmdJdt6zi3OMp3StJtd5iyMRPZVZVYSmFhk1yeHPkIn144yup0JWFPAY2e7+FZHcN9152/9wSft6OevB31AGyYkjh1J6tWiBXOQvhsNEJK4Oz+Kc6SLxOOwn0tJAgdgcW4NwlXVOowmTzA09o/U5hcjifrOpQ6iMJEScHChTiS0ny29SXKB6xWFynXuqgQXSCgLzmZM6Eq21SDxkqPl4zfnSa+soLnv3UGy7TQKeYmx9MIp8Omzke7h6F+Pw3+AFpeJpayq0WFZNAboNL/HG/wIFI5QAguVDXxysWj/NXuW4ANHOcT5K2OU1Y3yNRin61r1BTJOUGCU65Y8PmhsbO8OtJLzkKQ68106jfdT6jwOqZ+vYoTjRrN5FDnm/S0HgYgvWae/J1TgEKrT6apLYCKVrK+5EFapqfRD38GV0YPueEyjEYwsQuUwrhETvd/DHOlCNNj8ND4JFIko73jAe578THyfCP4RttIFpUoadDDGmZFBkZUG3wJwn1pFRTYBfB4dwfPfuVviKTloN/+IdAUBhYV8gJCdNsFo9CoqPgfdoeqEZq+9U2Cp04zrgcYP3eaqiRBV56OrhncXbeL6tRavrz3IqlL47wRnuDj795DWpWTftHPzjt34vA7WI338oPmBZ47cwHv8jh3TbyIgYSkFIJFlUjpIiVlL/kFLaSmXh7eVI52kt4ZJnNqCj20wmR5HpkJhZeBwJJoekAB3t1FvPGTCQbOfJpqby/vv+bu39tlu7Ta9x/ji4d/wETe9Qyk2gdm05Qxx/uGrA049cuGkjvW38GxhGMcaj1EnzFOIQJN2mateX8Gw8YM188s2IejG76Ex3/nVclBFRXw5m+eoX3hBIlzknfvnSayPpfknBFON6SyKFsJtfk5/VgfD3z4Q28r3KbbfsvMJ1fI0ztJpBpL15EITJy8ErmHZqMOK1dDy5a8a2GGkWe/Qm5xwR+MGeG/i7b/wzVy8TweI4tdWe8mtDLA62qFr/K3mMLg+TzwTiyzOBYGYeCIKyQYuoAeUCiHA305QOtFhdA0NOXl1nAGuHsJeju51buLl7Rc+2WiCW4tzoMdH+TIEUlKyiSLizlEfNMYi1Wo2T7AxBAWW+JmKBqK8NRiLSFnAV3TG3mv7mdKPclpVzEj3uxYVIeFzhG5izLVjaZ01rZVcMvKY1glXQSTEnB9+KucsJpRls3UAljuOcsPb/4zLoZX2VLqJSc0ybM/e4ScSISsxTlWi6tpHx6j62c/44GbN9LpzyYuKxSz+188fJCJuOyru22DR1iZKkMVXQAslNRZnqrk/sheqoMDHHc3sM3fQtbyMq9WfJEWzR5zOTSBt2uI1cBJezwtchnrnscVp9svbmwddbohmJeKa99bSc7WXPxL46ycHWJnYxH9ZQW83D8RGwu/0tvPhvV1ULyTxcRZUhdKQL6CigJnQ3NVFMyb5M8rFpPD/Jn+ZdIWk7hlzSg33nkdBQWbiE8+wvnh76NEhHplsOz/I7T4CuKySnn6hSFqZ/r5/LFHGSku4Mz69baOB40LxjhbI5XMzucyOBOk+vSLlIeD7Am+zjeaPsy+ExFqRnazlNoew6BIIWnLGgaGuSnFsoGbApSwWPV2keAvo8Cp4Z0KokzJjvk4ultPMOpJI29uGsdSAnK7jtAUShlk69suxSsiIxYzp3rIK1of65pihdnm2YtR/y2ksvl6lyKkBjN08mcijEmNi/kbSb5QSCDbyWN5DxDxC6QqhyKFkW9y9xsv4B2JxnkI6LzQw5bdO2MROg5Di2EIwNZbtbkkn9nkImIYGBJuOhu0ERxIHMpi3WI+WqbBlLHIuJojV6Sxfdtu4opSaJlq4cf7HiRkhWlKL+Jdp9aQNt/NS4kNRG67JzYmb/YaZGQkIswlu05XCvdQCnMTt9gCeh36Nt+LuKWMfWm5V2mcft+6JJ5/vvMIT5/pRk99A6UUcULjXR0XWffC33Pi7mriihd5UnwEU9kv+xLZie+KvyciTb60/wVWp3dRmfYn/O2NIeJn4mgpmONwwx6b26gkO3rPk7JsIbN1dGV34EdnHNGCECxlMa2NMnxK4pyI2FBfdEwUk1YlRZunIWcd7rvuJFKqGO3+J9ILT/AhVcPj4kGkEhiYFIz3U5V7gWvUQQ6KPTbvT9OYX7s+lthid0wz+dm2YkTgaSwZBikITLiwhOQ1eZqjZ/x8x1+PyRoMp8k9g69w7tw5biu6gXSpodkUXzLjC5kNjZOTn0jmtk77/hcgdY359TdyR/ptPH/um0RkhP7MFmrbP0XCQjnvSzKob17ljFdnY1UCmdd8hPd3n0QJSYI7wmzUBKU0nZHcEvJ8I1jhdoK+as4de5Dv7dyJKQwMBO/P9UazZt/+eY9cPE9c2iIN2ePEHw2yWFiON3EEaUyhe6LRcEoSmTkPee8F7C7PyaFWZp48RpZviocXQhz96xvZcdNHaMhs4J9f7yV1aZy7J55HU5JzPzzFa1tmmHAv49Sd/EX9t/jCs0OEIhIF5K6Moyk7LSIcl4BlWWRldVNWfiq2f9uhNRqpLStkDXTYU4y4OO54/0fxz0m7wyZ5mwHonU35ZAey2bNST9orQwSD5646sIyMjNDa2gpAnq8Lh2WSttDNkLwZqYGF4FutQ6QUJpMc8PDNqu/THdd6laHk8dHHicgIvxjPYnskg8WFbBYDaTT99hdMzcxiZFTi/fjDJO2oprj46qIxlvMciVCp2pE5/XxV/9JlZ3XWU+i91lUw5EsrXC5hGdChxrqIQ0giaCgZoTMYxHJrl6U/ngxcwaT/kpy2/6tLCJEG/AooBgaB+5RS87/n+wqBnwAF2CqvW5VSg/9hF/p7VkFtHXOv9qIJncTFCsbGPk6k0IYchjXJr6qPsStxEq9xPVVNjby4rw/LMkEq9NVg9OQKUlPMVPbgL3gEJSK4tL08Xv4kbWZe7GT3i2WLFVVB1ki0cxM3AemCpHAtRlhxXcYxslzLpIYMBodv56yqoCJ1kIj4KZ8a/zymMCA96Sp93OxcPsOL68iZXU/8QhmhzV8nxXsCV/FODs4vcXb/EuvqNHsEqzQWx1OZnfwX7v7QHnKLUnnzN68R0uMwk9NQjjisqCbGMk16+hagcQNlxftslpwlWBgc4k9iG3p0BFa8k8JXznDx+GdYTutmylfBSNjHBtdB9FAvrsURjNAqsw4dzN/yteLPMCNyKF+coeuRb2NF7HCjePc95FWsJ04XMS1GBDigRRhL9uNoPcloHyy/9CsyJifI+OUSTY88asepWBaatPA/9RjjyZ/AG1dFmnELnhXFfOf7GM9opqj6LmofeFdMW/bFFyPcFXCgA72dudTdaruKluMuoPRLgeQW9RsSKC6+jV+8OUxlVjLv7W3HaUXwJ16ZXGhT00IiwlZZxUrfcyxkl5DhKmQoOEzj7AUG+nYRF/ZgzK1jJX6SqeQhzmSeZFqmoLuGOSlM1mO78wQaqwv5tDmGyDFSUWN2CnsWKXx4Kp/hMy9hhjyM526n7fxu3O4JGweyoqjF1uRJZXHolUe5YZ2LXN8RsMKgLPKnVvjAQT/nCuNpKYnDsqsbvPPjxHvnSCo4iRV0EQhkctZTTljGOJm28BqdCU8G3sW5S79J1dpyGqIROr+7MMEta6+O63Jt2sirvgARwzYimJpiwr3Kh45YxDcusb7HzZp5SbdxlpcdZ7GkpEUfIkOrp4AUmn3NhK0wCkn+VB8lwz3oChq7DH7xjncSRkOTksnhFl4o2YAydDTA2b3I0lIICyeagIhSfCszjzEjAa1/Aqcm3iZ2futqyGzAWiniqVdPEF6sxpk4wN9trCTvd3+Ps7eXsud6mPmsSYE2TLuopYYOHBkuXpkqoT5YQZurm27XMOFACVJB91wxZzucyJd/QHPtFptnqOkoabHqcBIIZHCh7UYqrR4KmiOklNyFL/48UkmSk6fI8LST6t3K1JMHoPReIg4/Eaef8T4dd3cXIm4QbXs8F+cfRWFBElyvxilgmHZVS87AME5fkGUtiR3yDY7q12EqHU0qrsnyXgVYjpiS5vE87m96iudav8bhvh5Md4jJUj/TSyPk+DTM+KbYOHE6I5mUyUWOn+/hHVoJmrK1gVOrw3jjcimvM1nUVEwfKTSd1Ma/oNjdxE8za2j2NVMRWkd7e4B0w8bCrPPbut+zgzNsD0X4TdMazs4Oc679BZ4uux9L0zGAgvGBy0+iNcrUqoaJjhQallTkxzvJWpzjSNtZiouLr3r5e8sM1iQOIjRFtpyl4MxWEvzbWHI3MbnhGyAkQmkkjhhMJvsZ67aNSEfP9SNr19JVLbnm0CHWDKyQvVRC2+tdpFlh8koTmLRyyfONgmXhndYYc9sh7K2vDeBdzWAkzYknd5kUc5WE1lVCUwk4QyvEu2diBdulqff8fA6JryXgHJ4Ap47n7ruv6hiHhhavMgCdGZrnGz95gj3Sx3XmHtrdOs+klbL2m49y8+c+EjNBPf7447HIL13TuDYni6yQxjX+U6xkrpCRfJgW8wEu/iIOIRW6oXHjJyrQgifw+yXVK2V82/gKbavdhBPC+CanGNfmKRvpZjVhPat5QTIa3sPK+VVWO89fxW70+88SXnmOd9ydxez5KRKyBviJdu8VzmpFJ2upE5Osnu1k0jDI3ro19tll1t7N6JnnkCpChd7Pt7xH2LuUycmhfyHiyAO1FaEUulSsmcklbNT8l+S0/d9eDwEHlFJfF0I8FP36r3/P9z0B/INS6jUhRBKXsMX/iSu3ohp1f4TI3hmUUmyYSOanBRYKcGByTeIRyqr6yT/XwNjUWNRtJKLyleiTJGx+WHZjiJlZO91TyghrIm+yq/gTMWdnWMah1W/ntrajZC/OR0drkrBzChGYZqb0k0wW9vC5U8m0qDIMTfDH62Y5JCswhYFEt80DwtZnaEpSOjrDuH8dDZF6+3TVuBaKtgFw5uA3WFrMssd17kmb1TZ5gaQUHwd/+wxbbvkcE4abYGF5TAvjS0ljPCWN/LkpnD/4Ia6H1jJ3BUtOeQcJD149AltbWoXJH1OxqrDGqngiFOGAo5A5/72URt5gJVvyjyKX1YV8fBOD+Bc+zOc3f560XoU0owmUyiRr+BkS+qoIGVm4byvl+AUf/9QzielYZHNCJ+PTkvFpoKYavbKCXYffoPrsaT6aV8jLcwHK+y+SMzHIyMXzJHns4jbk6WO2+pc4NRPfQh95JQ2sv9k+5X12OMDIYVskrSzJ2MEDpF6YRl9JQKQZKGEilIE1qvHbka/x06PJOAYE1ecOMe+KYyI++uZRKgqWFIQwaRMDONIS2ZFypx047bEYnTvOoEphIwI9kkSiVYqjyc/06LWsyf01ZQlhVqSGIXRAojQ47ujCb6SjK41bZRNZyo2RZZDy/BNUT/ewmFrGcHEtS4vpBALpoBRhM2xHcinFudn9TC8PM3LxPLkbdtpQSSvMWKSe3EWL9IVJ0pYFB9YWoITghR3F1PAERaKDHGXHU+X6UzGQmMpm8AmpMIDd+Y3UJCUx7hulam052Rm5vPDLDn7cOsSwsDg9OEdldnKscHM1NuIaX7jq2ZORPt69LhWHKKF3sQMfqUyoeSwpUSgseflkfeVIZjK7lMHCUlLnuykfHOCrw71caGulsfMCrRU1IDbEzjX3bSumsNqk1hnPxRYfzw5O4Ut3cSkgPXKFxunK1TLVchWa4hIUW64UEVop4rnedCru+BvExe/gHFK4n9OpeHcf5fSiaU7cCX/LruFMDKWjUJxbN8/DZgJK2F3IvNVxBk2T/PEBdMvCwha05/tnEQqWF7PIWtlNEhdIVancGm5i0tNCXP0BhC6ZVm1E8jcTcfhZ8F4AJBfqM8mYSSN9fo6Zsz9CbRQxPabCNj6ssXrobSskSCJJrjoWX2zlwfJv0yHWkt09SvvsJI0ff/htHVO3u4z1VX/DD4cfJFQWiCFBUmanMfLMWIcxYzoAShBZdXNcWngN8KsJ4jLKqEybZz7v18QuSAlKIrfGRnXVK6WUzngZ7B9EWhYzGCig1a3xyQ0uwiKB7yP469FZ7ppwYM6GMfc9zcXKRtypaeiGAyE0hKazMWWE3LZRnr3+OiKAA8ma0DI/e+YXV3EALxVuRrIPbdp+ngWSUFoP/dRyIjeXPCooFx2gBG+MaPQdfZq4YBYR5wLSZVv8JTCVlUl21S0c/s45ErMdPLTRRSSrmjeryrn3xcfI843jEmVc07+GyqlNSMcK6zMCDGxcw7SWxgFy2FxynqalnfhLbuWlyRPEi75YYkKVascVXk/fLZkcviGOLbnLXF937VVpMleyHgEGzr3OY9rfE5J3cdyj88mNSbbjvvQBUto62N3YGEPtXFqWlIQ++HESu7JACTzCJNU4SH04iLLsz93h7mFg4h9BRNCEg8TmT3JwaS42wr85vJ00kjkZZ9JfItCdGhm6AWhXsRv9/rOcOfM+lAqjJUNTkh+WoVZe4Le67aw2FGxfSkSbraJnIpX+zgXu5ESscHO7m6hJ/gLjI88y77mIZ+b73C8MRp01nPfcb0tHpOK6i2Pkr+jkvefDfzBdNvjPK9ruBHZFf/0z4BBvKdqEEDWAoZR6DUAptfQfeH3/25W3o54Lked44cwJziV2k+LTKfJUcVdc2/9i7z3D67jOc+17zeyGDWAXtI3eOwgSIMEiUqSo3ijJkiNZcpObfBzHOTl2Ejt2chyXE8dxHDsnjrslxb1JtiVRjZLFJhaxggDRQfTedgOwsfeeWev8mE1QlPVd35dzfYn9I+sPL5IzwMyaVd71vO/zPNRofSipEfP2UmA2r0sSaJqGc3kJR2QRmenl1gffSXl5OkvBH66re/v9FkPyy8MzVtE3WGbf1c3oF45ZE0UphJkknp1LSAtTdNffcG/ZUczuw5QsbyB8vJD63U9h0w0MwCE0PprtZnQpSKtbp3xrK4WuXHKX039HXiE3LZdllolGc4lGc1FKkVU8R83uUYSuGJ37FFPLH0IKDU3AtCeLZ5t3Ymoa50rr8M9MccOpScQ1rBej+73n2JHezGsrmylKzlEwssDCwgaUaWl8gWKH0ok5dBLZpbhby9mk97NVBelY3ExopoHh8pc52f235AY+hCYEppRoSlGedBJ9ZQUYQdg0HLU+GlZ0hGsZUukhUno/UtOYz89HbN7KoyuCRFoeEwVl5EeWyLU7Wes4BFo5q1m9KGGAkL/Dmtq2vZDJY1OWyTsGhZd+ysLgf0Ngp8T7cVazetETGYzUf5UMzeAv2mycG9+BDclSRhra2grusX7iWQHMTD8K6LSNAqAFnNQnLFNwUNi8jczaFU9kJik1NWqbc3nbzg+SP/IlGpIr6JffLdXPSplkeKcIR3KQSKb1IPnCj/++DXj2fprVU6cp27aV0IUhTgynFH8RuJTDEq4VAqfutuy8MjMJe2wE73of/lCSIsd9GD+dJuS7SDizyvLu1ASG0OlVddSJboSUeL3T1EUEm9Rv6aGOdLnC5Mgd3FJaz3W7LEX+6vxCpiYnOPKTPvS4h3ux8/MMxSyS9ktHyVaT67Ur77p2G0+c6cVUAl1K7phMMDf8a0546zF1iaZrXCPrrDkmTXRNJ3cxjfhohJYyK0156kIniZOFDJfDcLnkpBrnkfbjtL54AKsHsASjhYZNE9REJrlOruG/eAlvZT1fmwFbMIGhFBoCuyaoiSzw2q8Pr4t4ts+188iBR/CFCjge7eM9NyfJyV7DlXuIRLQCI1bGscEF7rUV89MvfYOsud9iq5EUlDWSTIbw+7cjzuUSViPrmmdtnbn84p5KTq+cpTbzMMnYNGn5qxRNjfPA/scZL6ygZGqYHaoQt7eKAtNPnsggatexS5M8MtC8IRY1q9BdIUnPH8RYC67PDSlgLi+PnNASObE1Zs00lJ4aVlInNNTCQleQ1VkXoFPavJuTTw/hmo2ymRMp8WdB5+mzfHrfnQRXE1dKILiSKn7m0jM8OfAk3piXxuliSleeZz7XQ+58lOLFTLSlCuxJD0EkUiiuySzApooI5jybYr8DUuDurSPy/LMMiFV8pe8k8SMLXfdikGWTLBlJTi4n6K6Ik8BlkRGU4kuNLqqWJWmeYtYCGXSXNyA1jdfuei83xsO8rSiXTVMXcP/LZ/j8ic/RI5q485prULNrb+qoAuD3b0cTdqRMgoK+ZCt/udWdYpH+Tz7FZ6gS/axmnmTVuYNV5wyZkSo0BUpKNCnJrS3F7dmMX4xwMktfZ7eDjcnSvVSsrtG6UISZmMKW+xz2qkmmXbegNJFiRiu6qccXcPLx+TiGbQu/UVZtpRQ6GpI8/SlmPNtQ2PhpwuCvz32WBzf/7f9jjdo1ejd2DDS9g7NZ2vozJZWgvbaBm4C0tDSEsDxSwWKql/irgVQmSSkM1UzItowPhQ648/pBXAEolrwdyOXCdV3MWS1CwPSTYxdc9OucDdi4d0WxKWSi6VdStx0DP0OqJEIIpBBMZu6mamKaBztOE6n9AYfEFm7pO8b2Szrn5P0orDEw2X5pPWhbPX+e4CP/QHLvKupOwxJWViabSu7l4ooDhUAJSTgzSihriBVb478vQPgPbr+voC2glJoGUEpNCyHy3uSaWiAkhPgVlo3Wy8BfKaXMN14ohPgg8EGA0tLS/7inTrXx8XGCtgA7tjZiLo7QnFnA7TWtLA8/jTQ1hLKRHmmg5LZaHt4SYGRkhJXRS3T3nEFJiS2+SmJuGq/3gXV17/T4BtrP+XhYDJJQKoWMKewS7u51kVZ8AwvaOEOvvUwsUApC0LUwi6/jFb504ePEzTiumSWW5+7Efehu/rj8IEvl19DqsjH4q6fxKsWozcbe150W39h2ZZcwYg6ti70JFD7f7BUXBmVSUxJmuteamFPeHEzNYvGnBLQAACAASURBVLEZQEdTK7bRNLaN9uCoiKakSRTvaBhj+0wZ5qu/YXhcEnWdYHf+gykcEM56dH60JxOp3YZN3GQteHIAn28OgHcVLaAJRXLt69zylnsZ+uZRspZj+EtvAmWlAWVSkjgzT1lSJ0kWIffEFfkULAjf9447+LacJKmKLeadsJN+670kPvExFhMJjM1FqB3lCN2GUuZ6IH25zWQM80zDv5AbqmQ+s58bFotJj9uYFVGml3UKIrtZLn8JpVkSHjZhQL1B8qBO1nIMTSlYXUZzZ2B4/BZwmgq6pJKc04fYbFaQLT2cdKXzubsbuDgV5omzE5zsn+ZnQ7N86U6JboCeYgqrFEtNKQiG89YlSIxKyLkxlVIou6KAn5ychJFU7lJBXBipxVcxtzYGwOylZ1i0Hb5iyt34EOUb4yyNm6+zABLoStGgeqyTqRJU5FQw1qA4v1ZHo7hItRhkfsVNUbKQ73//OQzDWO9LfBq+pY3Ykpk0JXS8gSHKxde5NJRcNwIPRHJ5S+cJxjP9FIUWaRA5xFy3YMgRq89Q6NuyebhlJ4PtfXhPxcl4LUbX2aOEdkyQXRxkk2zmjBIW+xKNggwXW5NPcCEjl0V3Gp5lg3ceijJQYpAd62MiusTPDIO9hw+TG13mO+/8C8bHDWJLaaxuryFvoJPev//aVfpWZ+Jn8IUKuLP7w+hSp+PxEM81fQtb9iC2LJ3VUasQPmlIzjlDVBb/DLlqoPXa2Nz2U0ssujJiiehKy/3BlAp95Hkqcr9EPGppp1XeCYdP5FB0UVI0OwYIYi7Jjow9IBWmkpzSh6k/f4qMrC0M2mvwVVqsSiV1cq/7E3Z0rPDKqkBKia4kRa4qch+5Cffw35H9v20Ed2WwmN1MaGQn8cUKTDnDTMkq40XlpAs3GRt2EOU4VcWjhIYymOvL5WcTDoL7u/jxB3ZQEJ/htV+/tB7QXtZZq8+qZ//+/QgEnhnwzESY9fjpFjYy8xKUzYawm15ieb3YVjego1s6jJU2lDQRSmdiSZH1pyaIlxmfPEpx+l/iDlWjEMwVnKYyOkabvYeiyo/xPXXF4slEsb9Ap34myJS/Yt1XNIniRaePg4sGnxO5lHxMo0j1UiIGaW57kEgk9ypHldf7jrpC1aSf+TBLvg68i/V8uTRCQktZ+ykb3aqJatFPfv4l5marLPs63WDbmX5W0uLkJ1zUP/RnJLwOBhVsXjKxX2a3S6gMBbA5TIzEFDb3D6i6fgRNl+yVMU6oVkyLisGqdPO14QCJXKyASdhTB2ZLG3Qhsw6JDVJpwy5Vt34QfWNqFKCo5RZk+9cQZj97It/kO/KjKAR2TWNvYy3j4+O88MILKZFbQV1dHbt27cLTO0vETFryUkqiwj1Ue5f4RkYbpYbGzSU7CGjPIWUSIXX8S81oBNd1MfOkByUUZz06P9yTianBSxL+6vgyu+tzKU6hbPHwU+vrplA69sW7GUszOF/8LF9LfzcGNjpbm/js8DfRpGGtEcKkqKVq/dtd1idMThQi1RRCmigp2O2o4ImYRsKU6xJdUpr0PH2a4rzCqwCO32f7DwvahBAvw5sKCf/1/8cfYQN2A63AGFYN3HuAR994oVLqO8B3ANra2tQb////z/ZG65z3PPzP60FQ2F/D/PBh3EsNZD+wE2eZhxI8FtsokEPfi0+vW2pcVnX3ejfjClXzytNdfLt8iXi2jhKWldW2RZMPDsbZEDLpnZQsmAEqt99E13AvAKZpcu7UCRL2BELAlHcAcypJbLGSrEgN+6rTefYX30Vm5VuLl/nmhZmXm3lhkrLwJpyeRTSg0shjYLkP1TyFxQqsZ9q+m+X48+RGQlQk45wvr0shX9YgR2gEp4vJK+1N0bgF+d4W+p98EiWteHshNs75S4+T5tlKxFlLZ507xQpM0eZlE5XqEqFQAI9vGl2oVBxp4F79MY31dkaDWWg31CImLPhcKVgwrE+f6ZmntCKEtJWTldMK4Sm00R6+2fPPdMQqUXmfQNOcOHSNa8enUYkEiTKDhXdeAvsQAjtFhW+joMBiTT3f2cUr41M4tCEmM4YZzxhCV4rOWIzKxBLPOS6mYP4RGsJ+PPKKqGncuYGRv3knVSd/SPVUB2aWndVsk36KrnR8asRO6UFmtBA7ei/x6Q8+Quv2Ur5+cBDDvJJenl/dRbn2tGU7owRLS4UYSRfuhRgvubvw6QuE3GHu23cfzjzPVQvznBbm/PnzVh9lzuHzzpGz4EculXBu8QCL8UkA5oJnyZdxSGk0HZnu4kxFJYtL0+SHlrir/QRBRyMNK5PUbu61Tqq6YMA7wBfif23pe6F4t3qUigmTIdFxVTrFapKkI4Q96SGn3o+nNZ+BmKWTdBnhHB/fQG5ogdzQAig4bg+yM1mLpjSrv2061S11lJSUsHJ2lnZ1ngv6MCFfL02OA8wvSLDZcOV+lLX5GjRN4+FNc4S7dE5XFWAoDSF0csJDOBzWGM/0zOP1TrO46MZ+LpOuvmykpqO9tMy20V9x4vwLyNS7mMkk412dtO1q43i0D13qaOgoKckJlTGe3o8mwJE5jForw27TaI4+SdRtne6laTB36tt4b/62RZ6o97ChO2x5SiKxR/8VlZPyjRVwiVrObtnIZtsAee1rKAQhY5ZfZpyn3Z9H6fgAvvgUQ+UxNqZL5hZriBz+c9y5fazO1zG7ZztLb8ukebAX/u3HZBTtYaHCxL6QTUneR3EceIzApRguzzxuXzf25CkOXvMQP70+G1ODV6XBI1Nd7NrUBYCneJnzvlamZ/PRDcnx42eQz31zfY27/3/+3brEx/1197NyYYWR7hEAZjx+9jfvwkzZ4d3VfoKGUUXb9q1wOIY0TZyhSpZf3o0zP8zihMDMGUVdVq/BYCWrB0eoAkOYHM86Q7LGzZrjo1TU7eVz0yN8elVhpkDlZ4ptRCezWXa50ZQV4FqEIEiYkiMLEzyUZ2ARKRXB4Gvo+j5aWqyi+U2bNl21bg6f7+fF5SXkciEezxA19gI6lIWS2pSkka5UBYnC65shEs3BWzFP2YFubAXbcW16O7HOBKJ3mD0P1jI/FuVbK4qesjSanC5yrvXjSrfzyuOnyShYtnQOBdSKPvYtvcQzObdhKsF+7R7ItYJTIS1bQU3TMZVER1KcPM2os9Z6LkwaRTd2e+vv+P1qd1QwFU5Q6C3GWf4rRHSagko/77RlIP1O7q/Ipc2bztGOc1fN5aKiIkpKSuj85aM4jp3Gll2LsdhHWtEI92f18iv7bs446vjLzTdQ7atg+uwB9DMB0sLV3C7CTGuLHPef5bXM/TTmZtO7eC2mlmkh+SiOZ9l469Z8GD9F8NI/I7iCvHqmdgOC8bav8Kq276qatu76XJpf/Q0l23fQsKP+qpo297atCIeDmdU65vbbyChYZnk6g6rySZ54/508dbyXpe4T5EWCaGgUGP7fsdb7fbb/sKBNKfW7ao6pJoSYFUIUpFC2AmDuTS6bAM4rpYZS9/wG2MGbBG3/me2N1jkjF44ycKqT9lUHLZuu44aWj77pfW+01Li8mAGcHFrgQ60uEiK1f6dg563zUZrDNkysgGTEp3E6o4I03wK5wXmrNupkN4FmFzPeGHOeEZ5p+DrF0Vref8uDrI4PoUXD4M8DNIQQ66fF9rl2nrn0DArF3VV305LXQshXTZFYoz6Zu25WvrCyiUvPLbJYm893Gj9GckWg3Xg/DzzzOAWhBfZdeJUpX66lQxdeAhS2/JvxLpQQd0UoqHkri4PGFSXx1LvNFYyTUdhHTmc6Oy/cwLGGWzDtOjYkW5cXOTBwDwPhWlpyF6h8nebXSlTj5WAdhtLoOPQUf/Qn2/Ak/cxMLZNzahZ71iV8u/8JzWaiaQ4a0/8nwb/6B8z4Gp/U4XMP9dPNFykqepgtgS243A0Ih4N4XQomFwqlTFyuwvWA7ZGZVUxnFrr0UZFsJmq/iF0TVF9zE/OnujCXU2QMJJq3nu6u28jMnCIaLeSRt76DReci7zO7SEhF3lo6u2e2AAINyTXiHB1rFUSd2Vw2fh7JkGwe6+XsaDPdA8M069NMy0wiuoeWqp1kxr/K+fYvkpU1QU7OBFLqlM/CPwaDnHGN0FZ4Dy15Lb+zMA9ui2GakszMeZpTnpbLpR0ce7GV6eWVVA8LolNu8uUSaBqDooG/n95AQoCt9To++uppbh40yUiOEyn6MXGddRS2mzqSWKQcUym+r32ABxOPUtj5MqKk5gofRik0dLKSXgZzbPyk0UFyrRKb+DSfUp+jThshbd6Pr/1CSjBaraddYiQomPcQdGq07txBnvTS+5sz/PLCc5i69R2KvdNoKQsnqZLMVv4boUg9e+u2UzCzSO9CDiZaCo1QGPZZQBEpECxWu2kUMTJLBgnFdlmaakJHChh49STSZW1YFpghKGlqxoxnsLdiM4szEexxL6YwmPIMAGDTbHzqprtZWLRMunO+/09EL5fHmOA4dQluTq0R15Xysb5TNJsaVbZD7AjHMKWGpkkGqOWL4jMkXDZ6tyb5lvgsmdomzvfO8dXt11rBT20t9xshSsb6mYidJc/XSM5yDQuhaoaydX7kXMEYWsau0vlMVhUXnUOpw8Yo9wa2YXM6UYkE3sgw3sgQQlc48kuQ2t0pGyuNqQorcLksRVhbPIw+B1ttg9SP9NKZTJKWt0JmYYyR3v0U1jasCzNXtexhvHcc0zQtFwdNW9eam/JnUTUdwRZMslQfZPpYN6GMDsycUaLDblZn03An3eQpgaZA12yo1lZ+uvICF9J6GUif4MLAB4gvO3GcPcmPP7CDt8yM8+SKaR1YhcYr228FzSrtuM7t4ETMWEe2iiecqBwbQphoup1EooJf/OLK4XzTpk1XrefTegiJJMMzj2PjCL/R34XE0oD878NTVJcNWU44SiMUymMoc4i9IR9aZgmujQ+lJg0oQ5K+ZlLwtjo2Ardf/gWp7UEaN3L8qd+i5DygEMJGXuVuZFhcpbGHNCmdHOaeWIjGrQUcDB2lQXVQ7R6g89kZRssrqW+4QI0+QF//51hUp0hL30haqBplSLp+OcB8QpKTrmMIEOThnhDc9bCfM64rOMjrXUguo4/tc+38eOLXvDuUIBkcQtMU7s1xdCQ79R7+6K63plLmflxV1cy/3AEo8pWXgOnFFwiTKPomKIMdmV28oj6DKTV0CfdsKiDf3gffv5tEmg82CovkpHTM6Y2s+ntQwnidW4gVnLYOLPAjTxubWnbSWei7ivXdk1VO959+Hkf7YawyeQVIIgd+xLXX19DcWMPFY9NMKx8F0k9A913FrP19t99XevRp4GHgi6k/n3qTa04DfiFErlJqHrgBOPOf94hv3srLy9E1gWlaJ5nF9u9x1tyJUIqDQwcBuGHjDW967+stNV7fXjODJIWG0sR6UCOBb9R5cGgRAp2Kiz6dn+z1YOoCu28nbzn0K4rHB9DWVrhd38H3xSEUijnPCAueMfqdDWzLLEKPLeMe68dwZ7Lj1jpMcz+nR7L40NEvkbGaQe5aLkc6D/Hlt3yFtbpS5s/2UQuW6Cfga7mG7EA1L5U2YERMpCBFl68k0N9OQTRkkSRS9wigd3KJAS2fe/xNFFZU4G5yYbPbMRIJUAp3/hrV+8YQuoK2Je6eSlDnneTZ2Gs0qA6KfSPU3v0NLk6GKaP9qr6ac6QRd2VipHswVyIMd7zC1jvfR/orYzSk6SwWD7Com1i1EwmGB5/Dm0igKbCZ0DSm6K6EPqOYnqkFfi4EP/7uY5R0/4aV14k4Xk6L/nxyHsPhAWG5RzR5bqPNZaOt8lZqJ2Hi0I/JvL6MvLwhS4cvILnWrxON+sjJqcc099M5MUtCSaomoXkxF5mppwIGnWm9HnNmAkr9pEwm8cXWGC+t50+/e4Ab9F6ydUWzrlFxzR1sKfNz6NBpsrLG1y3NNM1EeQppmZyldlKxeuI3rNp2Yjh2o5JWIHPBDS/GMohnZlHs7VgPapQyMXNGYSLFUEYRn3NRZv9jbGVpvDpbRmJFIYVGUtPY39xITlqMvcE0nK4HmDT/wVr2lKBedKNpV9JSSgnGC8vJ7z1noVPCOpXUmwVUm4XkuTI55psioTyolE7SbNYHuTcZI/jIP2BLJGhorKe7qclKhyAYCbeTXBxER6fItp2F73UyqIasgC0VSITD+esi1CbgOe/CMTNH3+TT+Iam0YSGViUwEaB07MkAw541nq3Zjil0nsLgU7bPUF/biTZsplwNTALBeeYKrDouJRSnmkK0rE1z/BfHMUwD0y9Z0tdYcQZJ2iNkr2Wzzb6b6SEbu1utWq/VrGJCXxsjXq1wDgpyby9eH9tbyvz8zQe3cfR8L5mxagb6N9LXkUNeYJgXvfeQSLeD0DB0wcDtn+ftJ8/xaG0q+ElJFIyW1FIyNoDfXsC13jyE0lAChm7OJ2msWHWyQnC43EdZaHo9NT8fsLH98cdYPXUa3efFPPId3OICdxoHeEzdQULa0U1JwdAYvM5VakvdffyDPc59nV9gJuRkOK+Sin0TCE2xpj/Gockbec+gbtnlaYK/z9uIGJ9hLrSYSrNbBKnC4BI5RgEFC9OoljpOt3+LilsvWexMUzDwbCmGw8XsbBUCweJCLW9967VU32FjZCzIjtjNtIfKKE5qTNot1M99+hnst78LqdkAgdSslKEAynweynywGkng2z9FYD6fqZW/YPM9URYD1/GtwSQxt4dAZAnTNLlw4QIjIyMkvUmGxBCVZZXo53V83pl1310ldBSSmJlPxpkP0517hGAoj8hyNhMFvcyV1VB6Ns1CxS5HvUKsBwRvlq7MLashq+ERRrufprJqnMKCWoq96ajIlb0CpdAV1Ax1cd6VhjpxkLtrT4JusbhzcsfIXR6lgIXU5QnmeQax5QVKzn4cV7ia+bhBtk3HAnWtZ7uQKfiTiUmSmlXL+URLNW0pgeHLch8AfUee5h0HEqQEB7i0K0lDrsQQdvbte4D6rVdKlpxlHlb3pNP/6kXyTR8B5cMTm2RBGqBJakQP75v+Pu2JHdSN+6naYUlEnTFqeC5yPekdi+skudhakFumo1ABNfTzKfU5Xos9iH0lQNS2jYuV1XQSQw7F1p9fP36WJx99ivasSnylHt67bdSSPzIXGDU28r8HJrj51lqaH9lDxblZBODeHPiDQdng9xe0fRH4hRDi/Vipz/sBhBBtwIeUUh9QSplCiL8AfiusEX4W+O7v6XnXWwnTPKx+wQm9iHnXAicowrWiI7CQgLEj/cS9bf+uj7x5sg97fjUJm21dUw3AROM13zKxjBhLhQUYKTNnQwimM3yUxJYxNMVBeYb3NL2HH3b/EKkscc+2QBuxwX6LqRpbIdMzj3Qf4dKQZZ+zJV5M/vQuAGRIcuzQY8x4bqG35FnUxFvJ1XUWpOLGW7aQX+lFD6/wvfZBlFQoJQhF0/i15wayV5LsjHdymdib9OUCAsMw6T94EPujj1L6+GPrKKMWCtE389h6nZySJuEmjdqcafShJ7CCLZ2AsxsZmCY6Y6K/bn0yq0z05SxWowGMnGK0eReRl0fXddrioWKU0lOMSMHJGQ9tgQBZs7MYmqS7VOC0b8VKQgkSpuQVRwafvuFOfEOrBH12/OV/hNe7mTPhFX7r9Fgrn7JsVe4Z+jG3x09B+34WLrowSposr0rtcv3cAOGUSOrc/EHm5jUKhY29UTvv/alJ2DfHkb0SadPQNJ3YWJwNjmYGF+dZyvGCEPRv3MRU3E62iqCRSg0ryejkeX54bj8F5o+veNAqEEpDzL+XjuA8sTMH8QmN8DfPknFrOQAdXo0/3uomKUDz7yS3v4uy1DspKViezrQGFjrVBS62Xr+Nwus+Rjh8jsDQZ7HxKZLKhhIaXVmZfLItnS+eWeS6YC0rB69nrnqRcLgAUOwrfp5ncu5AItBNk5KpEQx3JrxuXGeQRj5+FCZvnR3gRaMaU9ORSjFiNNHZfYqilCdmc08faa2tnEsaKGApOwP3ihvQ6B7ooMIsoED50XQLpQRYWQmwsPxuYukX6Ooco2DGjYZAClhMd1E9F2LbwASXSlsI5dyEJgsJOsAQttcVeDexKTFA28BXWHA04g/144kM41x18sSudLoq1ljwJ2nva08RhEBHkGO6yF4toHg1gEAw58mhWw3zg5/P89237WbLPR8mujDKUecmdvsv4L7nw+vrQHw0Qvr5S0Q7XqZDmmhiAyxLjlHPqfw2LkelGhrTS+mMl9ZTe/4nHGjbjRSWbtuOBZMcVxEBdzlCWduvUIqWoSW0QgdKAyEFLrnG5YJKTbfSzO6SkitaXDsr4LHbaIt08Xcnf81zmXdSMj2Lf3YDoqyarKoRYvpuzi9ex1v0n6HJJHM+ibdu0prbqQPB4flxErLMCuyloj8yzxbpJBCZ5q6OY0x5c9i4MMSNS6vUpDUiJx2I2Sj1t9YT1wdTQ0aRVRMmu24coVvrw/xcNadfOMpT6lfMJhLULZTyYNSOMqaRyXE8gzYKpkf4y1deo7d+K0sOjWO5NkxNoQnBz6aXMFOamN9+sBbviUv4Qg4WzL28Z1AjITW0jbu4q+NVCiNLnD97GlMJJCYsHOa3xct8pPYLhMd0kmUnLOKXApuSNMWHKVpsxjx8jGn3LJ1FXaTl5ZLOzegPaIgLa1bXawLfPVU4yzy/g4rnfKCZoKn49VfOYhg+nDnXkNhwgsnwGF3RLOBtV+BOpdg1Z3Jw152YmsZxeT1Z6tPUmP2p+e0GBflywXI0tG5C6Sbmxj5sx14inHwXGZoD0NYJBmf9ttdZRF3Nmm5vt8Z9e3s7zbpksLaBwOwc/qVFyotvRVxfhb18N/VvYF2Oj4/zbO+jZFZMMxAqYM/CbWQu1iMqbEiZRCkN75zJ5kg/GavlFNXuZHxpA8+qEAphkeQiuSlBBkXU2QtXMHxecTeSTNc4cJsP//Q8s1JZNdpScai7n9s+/qe8PZnkfs3GU4+0IjRrHxpUNXzhvk+Q1B18/Vw/f+Js5zp9gfL6ffj/gAI2+D0FbUqpReDGN/n3M8AHXvf3l4CN/4mP9v/eRo6yaJ/j39LLyInuQYgEFcqSXbChs2GymLlvXUC/tojCOyuvuvWNsgCXW3Ojxudf+F8cTr+WF5pvwNStmaUpSfbkELmuEE+qTCDDQsAkDNtWsNWGmc2Oseg18Dg9PH7b41f9/Kkmp4VwJZNkFKxaTCysRXwbXsYt3iAoyO0fILLFTU/+MYIZExSEa6ivbyS/0kINRSjBQ9JFZ2yNjguLDJgV4ILi0DlcwTFAYbrcJH05XBaCTQsvrZtrF/63D1oo4/gpQt+Ko8wUT05CcL6X7IJaNM1xFZP26NLThFQt/TTRSBe1oh8lJHmBEQa0Bqa9OXgXXZQOWNIQs1qYA6tB3BduTDkM5BON5rDw7nfhDY5yLHeJTdU5tEyU8y0p130hHR3HYPSTeM0EXt0BD78FIqd45VI3htrIZQ+ht0y+xO1rJ7Eq/8GdF8fnmbVswq6sn29oEpTJbr2GwVobgdk5rjt8mNk7biQru4Kq6C40oROy9bKEZStkKkW+HmVReJBMWd9cwEn5c9JH5inwyvWADSVIjl7DXHY7dnMjw60fY2eGDSE0kqOWVdLZLNvrmGmCUG1mSlEfJo4HiAfbsLm8aPZCiu2HKez8RyjKJrh8gBq6+RSf4Qn1NrrERpTQMIXgeLbJNjmAV40zGCwnumwhdQU9JndlvsoZTxVVkyHyKEDTHCTUyvrYyzO9KGWCNKk+doKvdp/hs/d8iMXKfF6ILnOwpJ4vV9bSdKkPhCCRnoEKpeQ/hEbCk43hy6FrdZIe+zR3JDezT7Yx1hjHlunAXermEx2fIBFJkG9Po9Cmg2ExjrOXYwCkB2KU1fVi2q5hZREqZ3SONyhMzbRqf8wu3K9p2GfGcYtJhLIOBTnLcapnExzarOPQHLTUtXC893iKZCFSTFzrUWc92ezfuAupaVCm+OaFcT50XRPv3PsVkkrxbSH4vFZCcHSWtjVB2Y8GUqihVbdjSonIEiwXWMQZUiiRmFjh592THEvOcXtVLU0DnWgON2+f83B9YiOqsJnJxEnUemG4ScZTh3lX/bWMBJzkRybwGsH1Tb91c+vv1rmWbIM7vwLP/Tk3xV5hZXIPhvKjpW0nP1DLWpab933vJAmjj6O2TD6R7uKDAT8FTskfqwQOoaFpdipdVooadJQyaTyyn7m8Cs7vbKMgtMC2iUEevnMH3s5FIv0Oa2olTeLjORjlVsUC0mI2a1rY2qyFxOeZpfRSJv9LfYT2mMF4HDCmSUafBEwWujR0XSeUnOeZIoeV8lOS+ukxhBD0FJSvByOdoSn2/cufoBIJXpy8l8S+tyIRIDRERi01i6P02ay5qUlBZaiU+w6dZeovemkM7abydID08qc5k2fQQCe+hmFi0Y+RFVnBNzXG2h3vI799E2OdMSZtGne/vZb0NfMqRC0+FEYZ0nr/lMTFZNxEmlYpQUbOJXRhIdgN5gVs2h9hWL2DTSpm9BCmnptKBQuOX7yJxvExemN5rM67LWJU5EHymzWmpp+wiFZCpyB6DnuknW3DaWS3vvvyioUAtgQldgVJwCbAPTrIuJa4qkTIMAwumAK5YQM9jZLrjh2j7a5H4E2cQwCGhl6mqekAmmYiZSfT5/LJCe+m5PwnmPWe4/SyJBrORiiFt3ye/Eovz15YRnHZmzv1g5TFWs25roWFtTEQ0K0arHVOCJJoBESQOVUACmyaRkt/N5ppWGufNCifmUVsAEzopomEZgesWrp/XWvGm/ZpLn7zAPuuuYbCa/b9wch+/Jcjwr+3le/m1KvPcePgezDty2RmBMnMGYJoPvXRTeQrrzWYj0wwBWS47TgrvfSkDfHIgUdImAkcuoPv3vJdWvJaCIfP0b38OYquSfAOo5umwwM8U3cbQhPUzo6THw0ygAaqcwAAIABJREFU7fETqs9bT/8ALDq9rFWFyQs5aBrMwFUYp6W5hQqnZOzSQV47P4nTV0n1fe9g8WI7y9PHUaZlbK2kIBwKpAI2hS4U1xgj1No28oTuYC5zjKB3mn0191oq3W4Hn3mmi6QhKUzMsj02ybizkBlXPrPpxUijD8ORhr4awT3Wh+H2YFuJYBpxhN2OudnDyMg3LSmHkaM0JRfZ/2wl3poIWXURDOdp+gc6qK35m3UJBK93M3qWxt+Hbkdhw47BJ9VnqBH9RAt09hfuwhQa58ug5nSMjWHJfG4MGVHrkiWXW8fEOF/PP8acnMNxycH/iD3IXaNzTPlzKQwtkIguMU4WJUxagrIXfsLAxacJb7kZpW/isrbejkQv6A7abXDG5aTNuUZDbIaLMuOKmOwbmxIYUmN4pYSVDdn0NEp2HTnEr8TT/JXri2hCZ9rfQSznMJnhANFoLkJoZK/5+MLtjbw0HEAtz2MrGse9PEOLxwo6VIo5OjneSGHpSdY0k7XKA2Qd+3NErBaRqpnp8GrMuAS6whK5VCaN4qJVUiMhLXuN8CWJZi/EYculyN4JRhye+3P8GRpacyY12gD3yl/Sq23AVBais21thomtX0YJg41qiO7jbSyZ1cx4spjy5eJcWKFODbHml0Ac94LEUDPYVqN0q1l03UdGTycyOMyGIDRODXG0Kh8FxKWivaqOpsFeFnw+uhYWQLcBKRPpWJyFLKuIXArFYmmS626/kc2pDfCrr36Ea91R2mUdlzwbaKst5fahGPr3f4ywFTK6Iwf7g8dBn6dU+yrpr21i54RG1Qt1jG4roDXySxoPXkINOy9/REwsT2AB3HBRoN95/bqSvaPT5Lf9x9e1yADmvNmcLa3H1C67QCimbRZakVRWalYp+OTABEqBHfiGGwoifnRdw1QSoSTO8/3kDM2g3/k+TF23ZHImVsmLzdCizvP1Te/G1G3YFeTMxxBIlJQEown6V39Gs8ckmjvAXEmA/HA9xQt+4rYwkctOa29Sr3UlTXcfzjsgv+cprmWZIydcSKV45VdnWKtJsjEyQH5olGRGBqey7SSEYDhp41vzOu+s3MYt9R/h4KU+LrsZoATHNrTy6+tvs4y6UXyrNIuS2kriuREYvGB5RwE1g7v4sn4Yu3eChQUnd8pCYBaURCidxoXd5CsfCsVml4NVw2Q+NgGW1wmTeUUk99zCWGY2SV2k5ozGit2RSv9dkXBp6e9GJRKEM8rIW0rDbkoMTcOmYN+ihzyzgH592vq+QjBSUUHZyAglSyEi91Ry4IlF6l37uTuvM0W+0ljJ6Wd4az2rzTfhWd1L2AyCAtOUTIUTbLmt/Ko+d1Z6LUTItJAhZ6WXIlORbdfwC0UwWIOUAg2FVIJN42eIkUtA9+Od76Q/UAJcWfOyqjbT5MykpCjAfDJOrt2JZ3IWd2wrBZvvJTjyBMbzP6d3YorMOS9elyflX23VMgsskeKvn17l32p1gvEZzs6MMXPkILfddhu6rmMYxvr1aBqm0Jh+x3vf1OrtcvP5ZplfMFPAu2S+8AzRW2+nxn8f/EDRdvx55lxT5MzPkXWfVRavr0S5rCElEGwwSnFio7q1gYINGkvnDyBlnCZ5kae1ZMqizsBYcrNpLY6OoHUiSfWOGtYcDmQiQbJKUHLTUGp2Q83UAlqRsvy/hUAi6NUa2Zb3KuNHf01h/3fg4af/IAK3/wra/r2tZBse//uZWush0zNL1caX0IQEaSPjTCEq7F3XsDGPTtDjv0BwsJPuTI2EmUAiScokZ2bP0JLXwvzwYaSZtCa7TWOLrY+VvgCmzfo0UsGUL4d1R3gATSG9XnIXHNx6KoAmBdOXXuRb9nx61GnqzQ6qxbfpePUmlqO5aLqDtJUAg88qMgpWiS5kseLOBiHRUNwhDlJiC1JS/1Ye3fQQZ2bPkKnq+NtfLpMw+hBYa0n+2gx3zTyDTZls121Er38/17Zs5+QLE1ZhqlaCe6wX29IMQug4d9zMXN0aU8ufRUUNJHby3H/GpowV9jHIJZVOQrPOdVLGWVg8jNdzZQNZEAUgpqx6JwU9NFEr+umlEVNoKdRHcTbbxqZVg5prmznzYp91CpSpDVSANCW757fS6b/IgHuEqHeK0u4E+VELbVAITtgreNG9TFs8QVr/GGfIJaplWpug0NGUSXD7f+eXsQ18oe9HVhpaefjG8hJFESchXwlhmYaud2NtHBpZI7cjkmmMhTwsryYRGphCcG7vbpSvhx7HIK1+J9Et/0qZZlAidTo7bmYlVETHiQEykqu8/YEahmedXJzt4nojEy03tm4ePjNdg2Har9SniSSq7hlWh+4mPVpLh1dfT4vqCu4Zi7Pn3LfJ3ddvBZkCshvCBAdOE5vvYW9xhHznYIqeJ/FGDDZ3RhlpvAnbqM770n9ADxuonpJUe7uJCwNLeErRtCeDI1MxngnswhQ6WplkrmOGgohlFF+xbQNTL3djGgZBPclUxKAhpw4QmMEhSm3qsvcPStOwJVYZzPMRzs+3kCphTYbykREqJyY5VFKGaUo0BDmTjvUxc+aVf6TJeB6nt5YnxadIYuMHwL3vqCenYhcvPB3GU/ML8i6zEJVBVuYxzMPp7DLPc+2LNvz/9E6m9jkhMoLzEkjdxvH8Kgri0+Qsx/CuJXlwdQM5KbQ8LlKCz1YsgFFSzf6yBgztdfCrUjxUFaDYNolNKJSyah0usxtRijN+eG8wg+2JKs6ZnajwDI7YCsWxlXVttuiaSe/aRorWppgqL8PUdUtyRynO5thpDq0hlSRuxsgrcbG09wXQJT41y8SFAK4Luawl2nGvukh4sikpDsBsN1xmwL90xtI+VBrCBjn2x3BykbWVXJR6kKQtQsjTAXOSRq9JWjiIvjBBoTMDh1eRBCYSOj2ynJq4RsLZYCH8qZrdn9+8D7BkggSKS04r3eYs85BeNMvKWC6WGZ1GYKmFX2izVGSaZOWet+aV0sjufQh/aCMKSx5FoahzCZRZxczaa0wGCvnFXe9F2uxX+j+1do5mF3CZjqsDn68uYqdH0uGr4nzTh9E0nXf8NoR9o8a2IY3msGJWSHKSEeYcHmtDF4L21lZKs8opm+/n+iw7Ue1GTHogJU/iXKrjVGCUsvZNhI3g+lqk6xpFtVecP65qwjpknc22cd1kkO1FfnZm2EFKVLyW069s4KWWLVb5QZnAZppsOH2IrPgKCOgtKEOiYVOS+/N8BF1VXGpvpzQri/hX/46uJhfRxR9S0vhOcsaquTD4AHbNTa9rjIK1GeqliUoJ/4pUvxnASb8TgzJ6AiXcc+EYsViMsptv44mufgpC8+RHgqkMg6Dn1RHOFx2h9fY9b1qjV15+C4tLP6BPltOtNbNt60421G9hZijMYlEdtsivqR8dJOKvZsV3CzNDYQrzA7hffh6Hp4id7j0UkIVm18lprcXp9ViyWRe/Qdupp9miPsYx32ZG07fxiw3NlgeshI2jCRZFLg2PP8bAgSOMVg3h0Z5dn7MNxUd5WLr5vno/Cksov0H2YFsooSTthHWY/wOxsvqvoO3/onkKcmG6H69v5gpLjSRdeYfZFq5GKWnpmPk7iGz+V2yayQaps2Eqi4vEsGt2dpitRA6O44xWItJsKGkglE7OdCXX9x0j8ccfwlNVxXD/LCXBRS5Ik0RqE7Arg/szYXYwA01aIrUTOUX80ixFinJs2r18ks9QWXmKoaGtLC/n4c0vJTIYIRrJxUjLRBorTOWXcntDAW3ZPijfDSXbaIF1H7yE0cfl2CdXLNOiT4DLhYgtI5TJHTmrJNYW15mhppQEKnYjRiULySSdI4fI889SUJpIxQFJHu3s4eGKj7LU+0twJdDWISrFwsJLLCy8DNhw+q9nMVSNZu5NSaAoGlQvCI0mrZ+nEZZyuSbYU5OL47pJks6DPPBAG+eOJpjsihLNvATK8oW4Lbqdd0Rv5G9LvsqO2Z+jbvwCz5wdQioQmuC7uTHmHB4cSvHJC0NEZRb1Zjd2m8VIciDJkZN8of+nGKkTd4FTEirLJEISIcZZmC0nkG9efh20ZBrZw/tIiBA4zqNSKfTrkjt46/BNHAj9hrMtk+RpxvrJ0+ubYYBapsqhenKJ5E96MJNT2KPtuAJuqEj5f6KzPLyHtfRJpOy0WG8C9LxuJrJ6qRj4EF0td5NMLqfSQJLs/iNseuU0M8XpmG0rqUAP0ssMVucVqxvuhqq7IC0bXvgrMBN4V3UyM26nsvILVAmDa9ULdM7eTJcMUc3ldIVO0jzMUv7dyPXaNZ1Zfx6F0RC6rrPjhl3o12xivKuTvFg6tvMuK3UnTaLH/5mLdZYEjiVdYNJdWkTm4iWkS6ApC8PSbTaKKquIVFaxK7OelYU4uZkhdP8Rpo+u4u+vwHz+UfTboVc0rReHG9LkR52nuSEUIL52jPDIELlN1q/rU3U8Y9tC0Z4gOzrO4/Et0qU9jgpI1J/pjL28lznnBrTeAyyrLC4pxdaxBc7ZCmkcDbIBHX+PQtM0pJIITTAeyMLUrPQaUlIWj/OnVRXclT/FufPv4pOynE65gROjbUyVVaHpGnYlaTr0IyZJ52RtOtLhBFcpejyOWFumYHaMwPwoL2ydJy3/CMnBcqqnNU6m3BHsuk5di86vZp+neBi2ZN9MqOwFFlK1o0JKPL4ZFrPysc1YlmuGL4vhFYN/23+U1sFJ6nLL0L75Io7qOxAaXEgXXMx5iBuiP6Q40YGuPUDSGWLdmEZomO5M9NgKqyE/35kZZH9mOr/xeHiy/0mOn2unPvNtaCU1Vr1h6oCkW1Eqdk27yozdvbWY1bFlTGwYwiSsL/O+1TaK3RfRWEvp2MEh/3EmzRk+MvM2BBqa0Miz6+RlFTBefCc/q/QjbfbUuDdT+7JApHxHLwdwEggaJu7WVtZ23oOMWkzhokWT5v4lNu2s4OyxY7zKElKl6pqkBCEIZmUTHBmhc3iUOxKbqQptZC3+CWItU8y+FqB9rpJSWbm+fiKgpMHPtn2V5L8JEzE+FKYjXawfsr63usRXT0TYIiU6Aqk0OtJv4OmcXShhpQoNDSbcbrLiy6CgbnoUAdxz6ACqr4ufXXcdpqZxOhhky9ZsbA9O4NJMZuU/EVv9CJuzb0ehLPs6fsZa7AgrRjVmIoo9bRZHcQv7d9VjmGup/tLozy8lEijiryfDJMvr0WQtd3UcIz9sIYn+9AZin/8yYZub5SNxq0ZPh5zGgzg9QbybHkKr/RFfHFAklcYzsxp5apaRb/RgGhKt5X/QWjjHhak85Ok1Lpw/T1V1F3psGTPWT48zynL5TnLuvIWiVCDojRh4D+4HI0mb1kfbng/yCdsezKUgKqXTNxawU1Trp0f38o7lGYoHdT6+2YamGZCy/bpRvERan59x+3Z2p79GQyIfT/YOstcmQB/mD8XK6r+Ctv+LVpDjAiUJhwJIqaNhghLUL1z7f9h77+i6rjLv/7PPOfdKupJuU+9dVrHkJpfYTnOqSZxASOiQhBkYhikMLwMzMEMdZmBo887AwECAEEoCJAQSh4TYiR3XuMtFlqxi9S5d3Sbdes7evz/OtRx+Za3fzHrXu+Zdi/2Xl718r87WOWd/n+f5FhS2RUF/+BRW4wAO7XoruN3hIK9oHX9R9EGy919ixN2HK9RKlfgbYp5echYbURefoyCygDm/wKKrgIY+KDbrqIis8D3vBHErRufgOf4y+2UO1LyHhf4LSKUYK2/AFLb/gqkUfaKdJvev6Vy3j8sX78K3f4BgkZdYdQuzHj8vrLPtDH6nJE5nMff83yqIbfUFq9E0Jfoyb/YdweeZwUw7yV2JkpjOxllcxkIwvNoF0dFpWa6g0OfhSKCHeSyWp3NQ0h4PSSXIuhrlQtYZqm5Zzlgy2HU1XCuIFUqlSSzt4wa1n+hQlCFHE+XhRWoqNtBQ4qar/E1sKmnmeGiZ7d48mujnXPeHVs1gt9zwHfafd2MEc3G7InRqfkqUhwseKJQP8bRT0Lp4gOzxJGZWHkKZlDuLSPkswlkB5vxxUr1ZZL0Q50+a/yepvFL2LJ3ivD6N9YZDpimbjD2wrVRVSq6qFu1s2lYQUCrcFHpmqIjkUp26kVLlZ1ZbYq6kgOWYpFD2rPq69aY72bvO5kGdq1G8+2CU8slpwCI2l8PQb2twVxUykdfJnlvfx+vPnCJtluFqegXpGUcIBZqFtTHIre1l/Pv5oVXl3s0tlXidD9I/dgLXxuHV70xE62l1N5Pv2QE3ZsyES9oIDz9N0Otgav4sQpg2aVdKikuuUlIyjBISIQQxWshWPbSLHp7DxFQCp67zgR1bGSrIZ1Bq9IQi7O5op7y5ldl//hVpkYvQdBSw/4Y3c6ng2kGm0KWkcnrE5hAlVqi+dA63I5fC23ZxaHISS9PRQ1e4M9/HyqZvsyzSBNTzVJ7+GDlT5SyrMVrVZQxhA25dSQLnnueHY+XU548wUX4nE6/3kVOQ4LutH8VqNtCaJG+uq+Oh8E9QIgrY6ukzdVnMdQfZlgEdUgh+3rGe/Uuvof3yDP+W20lLuog3iY1Ma0t05/USmjyM3vgglgBdKT7TWMI9zaWMjv4aKVM0cYUG+lFmghfPeGnbWkZLtoL4AlPGPJK1q90g5d9GuGGe4dlDzBXEWfCmKA3Os2NKMFdUw9rBC1S0tPGnG9Zz/uJX+GHFXh5W97A5qpMbbCWgDKQ0UUojHC5DSB8CgeXKs0GlsEe1Z66Mc/7KONuzkjQCFz2CD2/OxdS28G25gWcuf5L7783l0mQbJ65M2nnKSqLHogD0OO6greJByuqCmMO/oShazd29H0SXOnfWR3l5Ux4g0C2T206+jO/WG3G7ZoidGuDsUJKK9Q2U3nADhZxg9PxFnohd4NH4Rubav2F3kAUoKVBSZ3KpjH2+Y0QtxQem30GJkVFjKli7427et9HP8+eHSGXyhd/LD1nR8siVy/xY+2NbNSzAId4AGrdAwdSLrMy3kFqsoXpLLYM+OCJCtoG1AKQkb3mZ5fz8VaqKRDHvvYTDGyZnaQ0Ds/fyrGeFmqRJZSCFptnqXV3X/j8BG9jj0bOD17mnplQcNZNsUHZMllSSq3nZ9oA+Q2gVKNaUJFlYdq6+MzQpSTmczBfaqmI0DQlEOgwKV88ii4WGX8NVqAxtABTF2dXMOmbpOvgMDstE6FB122O87noOotdhQmFhIfuCs6TJuR6q7inMOAgoUlnLhPPqiB+/iDKbMhw9k2TvOFnG0yTPnObU1m+QznYgEaSk4sBkkJqM16ZUcLxkDafz4tTMm1QFTbS4QXF2GQVZNQSSY5xdOcQPXijlZ6UulNfJ8eFxmvQO/LPTVOVGic2dwxE5g1H8MKbS0aWwrUPqPfzq4BCmMcK4Psqhw3uY76yl0NfDipZHi7pCa7yObfNzGDueJSLSRCuOkz//MOU37fpv0WWDP4C2/9JKzc/YcUSuPA7Gb2W0phlXfiNvUYWs8Q6w4uvFGksyP5qkrO660Wq/CfdW387cpUOI9XZQPEqn0LwTX3QLiaeeRUbGCBQXczC4hBU4ise7yJY8HX+wgXsHgywt9aLHlznmL2LxkG2HoRAEVvJBgqbLjIniZa7Vk+XOIYaLvGgFdpLCtPeaTYAdT/JYzxSd+stUdd21eo2banx8+44CLp0+S1FFmMICmzx6bYmNTg6dfppwuAClJEUrGlsd6ylVPiSS4pwq5qM6tk2wTXrXlEVr1hWqds5eOy/sctdWBNjXcm2qKWxA1Oq4SCzkY8ZTwCtnRlgvjhLJvUB8zSING+/jeAgmF7rJl7bOSco0musy93/0XVw620865YA+xYU8+PDmPFKiA91qZc/pp7lXdzORnmWurIy6uKAmsYbXSw9yg+MKxdUrjMW8GGMBSsVRpmNumnwaWT6dpJIIBE1lu9Fie5FWCiEVK2Ev89QjhMbmzX9JVeN2zr/6Cv+WeJwe1wi7vMW8LwUrSy1MLxtIYfPvrmW9RsKlDHkbVx3bTSEZLdEpDvpJ5pZhxCJEI25C01vQG6tIrKTxlLhosMqYyp9e3T9Nd1Dc/haaPLn8e1k+r84scFtZEbff+i5i3d0U/o/DnK7dRb5/gUi4jJ3JOyj1+RCnEiQrT5C1eRtht8FZ+QIqkAZdQ1l2V0xlEiiudZhBkUsvaXTq5RAfV19k3Pd3vL2pg4XxUb6aU4KlafxmNsZjXGaXuwpyyoCUbbasLF6oLVs9BAWCN0UWqZwdt7siQNChaB65yvhgNVZebkasIQn6L+EQqUwHJk3c309ebB3JX07S/PYBPik+R69aS+6xBU55e/AXbOWXXQ9j6TqvW7fQ3t+NJYxVr7BJfzE9aj2DqoAW1UuNGqZ/qYmV7BxURh2uNI3LbRdw+GO0xutoHLsZlKJYuZEozKSTdbNQHDtMqrmF24uKGRoa4sMjE9S7ipmQ99NKD2vUACKUhaELLmNyPiV49iN/xz8PX0SbHsO0JKBx2FFGharAyEoi9H5glLKlbGaLqnn63kcxdZ1LQnDLcpyuRAKnUgxmB5FRQXaogarTn2Cs4CSXlh1EI4XgW8Jj3sMa40UuU2b71XFNrQ7LdRu4mG/wWEMWKQ2U0JG64Jc7vspXurooBVomyhgdHcVcmGEwniQeqKBU6+D4aY3Wtlyc+ouUR5pWzYY3DadQsWdYyfZSPT1K+fwEF81XuFzkoaD3wxjSi3Hxej7kms3bePuP95HOfsWOlNPsd8TKXCuBy7tpqQ5xQFwkkcylP2FRmKejKYXQ7LijLk8u3/EbPP36WeqS+7mh9ZRdIArICZg85dzIjqJtvDeVT0fI4vjYD0j6v0yBX+KXL+IMfQJ9bTsvPv74qpLymp1Ry5V+zm7quhbEgtu9gLPzVRaFyWB9G1/S15OqzEGX8MhrAd5pfo/Ehj9npTGLF1aepmv+90Vos8N2mHxFs4+b15by/dgSplQYCooGYxwJXKJQCxHKv0SLoXFIbcCUtnKyfPpJ3n7Xe/lyXv/qO0MKmCmpY1vPGXTZbifrSEn+JRPZriOE/dzm+MeJeL/F5Nk/p3RpLfOJcRq1OA7LAgTKUsRnBW+LdfNzsZm0sj9HDQ9yMc+NKKtBCYEhBJURu8uGEmjRSYzEADnFpSxPr0GlLQQWWdolkrKFxdTnKLuwhN5VjNSkHb8XGcXKFujJfKaLHPykQZCSmT08usxbOrbQHFqLUgZwA/8ihkmbkmeG53lKS5CSDWib/pG3z/yQNfEr1Ge9xC3Fkgqu0staPBdbaGi3dY+5sTM8nDfCgBbjpzc+TNJwgNiOQKEJxS2tK2yN/Zx2LQ3CFizE2rP+2wA2+ANo+y+tqvYOsn71JHOGj59vfT+Wbm/jy1skfy+fpUn04ajX6TA+S17lu7ky+jwLDh/3Nnv4ysl/5IEsF1tEOsMHMlnMeomlnAO0ffXTyBeucBF71Jifv0B7537iQiKVRvji7cTymsma6OeEnkdlhtOhodg4ep535sPSjjr8qW/RpAbsKkdpTCTridUW4E3YaqPy8CLaG9STZaEAg0f7oKSN0dFR24suvsylx76MZZpYIopWdM3X69p0wSQ/f5pQyA8IUqkQ0pB068OE3CX07qxnfd7fUx7/ISljDDKGDL766HX3B2UzS3LnO1gpOb/K1cJmkiGVwIjfw2/XbbC5YLVraBibIB0qpH8a9hYGkXoEh7WBT6pWmkQfQhjkJteScEU42b+PKZebmbpCctIJUiI3YxJqUFL4ZjoiJpY+ypwYsfkmSnBXfBPh2CzzYTcSjddVB/7ADJbS0BclH9mwia8v/xapJD8YOsh3l3dhXnkFLapofNsZlAGa5qSkpJiekMULCy/RajTjy4mzu2qUJTHOktQJHtwEqgEQLIcKKL3qpnX4KnrNcbprW7BQoCQJcZBwsYVQZSQoy5CoQ4j5MAevJlgrS4muPwaaucrPcLt34xgWXDr6LbqDS3iUolvX6Xz4Yao2bCD/0x+i4sghopE7qZkupdTwoQkBSrL4qyeZvHwco2UYpVKZO97C47iRrIES4kuVJLQwsnTINk3JALe0tZ2ZeBExbQvvaF7DJk8uH5+Yxsry2xmQwKGhOTrOBMFSmS6bpL/I5OE7N/L3s3OrHcEP3n4TCwOn6D1/GrBx/VhFKf35eav8MBDoqbzVa0Yops0kbnOOKnUT1d7b0RLHCV26wiveGTSjDD3nHizdyNwDYLisjCGngaYkOckEX1n/p5hCx5Am797/MxwhgZcEW65OE3E58SaSvN6RZFEItge3oCt9lYzdp5au6Ucpi4TIC/RwYsjFb9Zus7seaTdodTiUyY+H/pr3lBr4ysr5oUxm8h1hqusW3KPTvHq6h1npxmHlc0ePE53dWFN3sLftW6RyFBO5DZi6YRPAsQUNv6l5kMfOPsGVaAkRS+LTNVyRJpIrBlHD9hHsLatiYF0zNbEiPrjwI1TEwTk6MrF5EHaX8vdduSTfIKxRSvDzqMHbMgalVVVVq2pTd6qck68lUAosU5K7WMT3yz9Oz8WjBISFVCA1i0RWH7uGK3DklWJ5DKZ8J6iIbCTXN0Zu0SDxhUauHIswFS7DmbXIxUPPsblh/fUYKwuy9vto7d1LfnyCsi8+yoSmERg6wzFZT0lOCe1vrierxs30QB8DX/472k2T6BYvz/EW2tRlmsQAN/gPcZO2mabfxVHmChP+w8Q2/jN6RgEuhYlm7GX0Qs51Q3B7E9h05iwNw8PoVi7d63eSyl6iqOQqaGl7b1lDWthRVhJJTs1h2qd/x/mCGj525cCqCO3bO/+aIpaQsXb2f0dimRLd0Lj/oxt4Kp3Dq72zlPWEcS1aBPCir/kJJesWKRbgl5/jtdn7KZhdob5nErdvjIJsHZFR7DsU7HJupHPDM+QNvMRwuobi+Xl8gQDnc3zk3J7Gkx9enf7M+A8QGj5OS7oHzlUxWn0nvtAAnsgOI85pAAAgAElEQVQIeo5GV906nnU38eT5Hib7eznW2IHUNISUtMyOckP5Ch9+8H5OvLCX0ZOHIR6lt0zQvraZwMZals9cZOP8F8kSV4iYDzErVhiNX+CeCx6mvYWUhuexImFCfoNtLXcSbCzBDAVRmsAScPnuIgYSTuqZRAiBhYaLOnTdRPqySAfjtm+irjNeXs8GzjNII33Cdhy4Xz3LjOtWKpofpOf8WW48WoSh7uHxOgevGg7bmFjZvzNLU7yanceR7If5lBqhSQ2gaQZFdTf/rwMP/wvWH0Dbf2GV50R5qOoSX6hst+05Mh0BE0GvtgaESa/WwR3lFnua76a5+W6YOMX3n307KU8ux2WIjYBhnz2AQsoUkYknsX4zRrKjExrqf48zJ6TE450jGilivjSLWPr3Y4G2zvTSceYwy883Yf7pW1H5gsVQgKsLnUSjxSAUZnoZLSef0nCQ+y4cY9pTQFkoQFk4SKB/huORx7GUQtd1umorsUwTJSXLozqq08hUaQq79DUIh+2UMl3Tqa5q5cVoN7MeP3vXtaP0NE9pDj5f9S6KZw/YcnUJoWE3uaWxjEuaRknfe3FGy4gVXUbpFhLFT8MbWchp4K5YBVFHO5awjTFRGv21ddwrn+fY3CY79xTbt2566kPckDiEa6mF1GsaQ1v6mXK5eb5zuz02sCSatD/fkNC1JNGERrnycYGx1Qw8tZzDicEmDGUPPnNZII1tOmliEJpPIXPkqqBksLCEda+5iNwSg1V/KjuGqb87m/cH342OIJCnsSRGMx1FSWl5mOqRAxjuHApXsnAbO5jf3EXH2hr+MRzm5YksqudNfMkqVvLGrlt8iOsk4eX8IRbEHI6KI2T+CqU0jh5Jk3j+Y8z5fJhr25n1FjDjLaJ0ZJyurAAfmP4q3oIy7u3dQ47IQuWBUhKByYHZGAsjr1K5PEvBG3KSs6UP/8i9XHRrdHs0xNI4NxS8CoC0BAM9uYQjuZxaXuB7rx/nH97cwa6qcp6ci9uRQUpxOtfLs6VJHpiyM0gFGls2tjGYncU7ZfbvxeVMv/VtDPRewEqnQWgcreuiQEkbXGaWKLdW0b9SMJU9xZlNrby1oYHqze+ghHcw7znC3NmPsGG6CYeRZ4NeqdCV4p7q33Kv2kufXEvtoTCTsgJzzQakpmMq0JMuvnL8e0xuvpWilTglyysoTaNzQmew0k4pkZmNl0Aq7kZlKxQKJRTFrmKOmo6MkELLVDwaaRy85L6Tf2i6neCBED/ZlLPaXVk/HsezoYVvnQpiKsVWU0MHNARCGWwI7aJyppXzVSZvrKIsBb+LZnPXwv1s128BPZPJqxQllgdNV/SU1XK42e7yzPrqOVf+Wb576hi7IzXMahFKLDcvlXlICVZFIdc+Py0tfjc0TNemDpg4BReehOUFKnqG0fkMbt1BoQP6L/yUjp/9nA2mYqoiydX1u3FXFPBo5Yc4nThlJzDkF1FntGCWXKKm6iWEZqKkweiRjxF7bhgzeYp0bIxzgUUKhuuIW8vM9xq0hrvRb0iSGhR07/05eYlKpGlhynFqut6Lv9wedU799ihNuZs4XxXkhxvejolhGybzORrUIMMjr5BvVTDn9nGkRlBDI02iH6XscXbn6DEWJscw3PdjKjKKxSpS3mkWC8LUzfQze+selhz9lJRcXX322uixiwAUDiTesJenXZ9hn1XDsj6IYQ1SbiQIDX+GCBKUA4f7o5iBBixLMjUQZFOrn8pTYZAKmafTXTtE/nrbFFcIWKNdISuZzWR0LWZOPvv2HuG5h96FxE6K+Ou+JJ1hhXC3soYXyXkthUynSRmCE00R9uSlV39eEGRF47Q45uhefisz67ejhIYmLTZc+DeK2jdB1Ra6gL5sncNF5W9QQ0N+Ik5VcJkfTf4IIzWFM7EM2OkTJ4aW+dTwRVKmZIvxNr7Z1snSXDszC2EkktJokJLo0rUnGSktnMWXSaeuolSLzX8UcDKR4GGR5Js+nY6ghQmcx+LBTZXcqK/wlJL2SSIl1dPDXPG38GPtTzExMDD5W/UFqhydlNZ76H1qjAblR0enIzWOoRpJ2aTmVa6iTS/S6aWdjnCKZucOPJ6N/3+hwf+W9QfQ9l9Ys6fPck7dRm9WAJSJLdi3rRBy5TL/pH8OUxg8N61RIObZvqYYRo/QFY/jdLuYSGp8b87BR7UVUkV25a9ZFs6D3cSSudSNjDBaW7PKmbs2Xg2HSgAY8c8Q15dpmczLmKsKKpciRPNr6G79EMkTMUL+TdgDDyDTtZHBKcpS2zFc+dzYcxajboHTVh1GupKximpMOQHYmaZWbj5CN7BkmvB8Hj88/m7+/L48aovKWFwc48DBKSJhPyjFlmQ9wdQK6PboVWo2JEtLxe8W/Syc/XOafYME5vxsdxdTnZ1PYvwsDRPt5IYbUdJiDZ8hXR/mSKKc1/RKLHSuuAQfm0/YXkFKYmDHlWhC0qZ6eF1uRGrCji2JRCmYute+WiEps7zM+IpWxwZKE9w8OUgw1M+2iSRrtV1IoVEo87k71cm89zL5vhmOBUcxMuIIgT2itTWKCsNw0LFhJ87Bg6RlGofmYM1N91H9+B7GrzxGVHs5s98Sh8NLV1Ri2MctuYFWgvUvrApOnHOdnFsawihtYLr8TtYupRmNn0T29SGsXjYHO3GYPhJaGnLtLqVG5hzF5vDk58+TW3kEdU09KmF2toFwqJA5n4/iuTkWtu1gb8Yr7JwF2y48S8pKURZpQJc6QRTHl03W5/aQSOxnIWG/BJcG3PjXhDJjbAdlFQ9wrGqGj6ypJy00DP6IAjVBsxzi6lAX0WgRGoqd8fOErCw+/Zzg8w9vRNNnsZRC6QaXdbjcng0keGDK5KJf54gjwdO/7EcuJXEaGm/7Yw94cldj304cO8XXL1mksnK5iz4yVlXouk712t1MTb+CZSWRUrOTEDSN8aUlruHNnukwZmgj/e4yplvyMx0lxf2jv6C59gpCg2Y1SG77ds6GCjGkfTA4LJP1A704lMWGai/Bcw5kOk0oP5f1TXdRWpyPu7qJ479OUyA0Fk1FwsrHs9TBwpoLbGvrwlgxqJwc4ayUWILr6m8BCw13k1wuoTM4ysf6EhwocbBrLk3z3ApF68r5wv1r+dFre6lzD5I12UZ6qRFLpImZy+hSJ+ly2x3GjDhJB8I//S4LK5WU+Aw0IVBKspCWDCZy8YhOptbkZr7f/j9pdM74t/JoKEWZKkAqi66gRIPVVItrwE2XFlVTI1Achx/dA1aK2KKDhWgV+aUvIRztKJlPXqSSUEUbjsAyg7UPoKIGwStpkrNzyCyJEnYCw5vEjVhrT6Atj2aI4BbZhf2sLDSgtHJyiuMU3XkFoStyLYFjroTknhgpzX6tmSfAupKm0FnOzcUPog+mWRy9hGpxUjLbTImvmcNrhn8/j1LZmcbBUDFH/Um+sd5FWuvEEC18Sn2BJtVP89AKzmGFdTDO7Z3LLNZ1kEUWJxwDWE0V6PWl7CxzE8oP40nNrWaCIqFJ9PMpPkevaqd4MUqP1sbedTuRQoPiT+KZ/xLN2QPYLDMJwiSvdIBEsGFVVZocDmfucXvv/VXnMDP3zLVJbThUAkpRrYo5fsP9tko50+294tZAg4TpIe+er1G98TyxF59kqsLi5kInhjBsRb2EuZlG2oMl/DbxDkz/DJo1j+aoQAoIFbTguuMBAM6EV/jUik7al7EUUXbWdEUkwLNyL3PROYqUk7tECYbQ0Q0HU9nlxHPB8jk5vtTGfyRqee+sm1KxjEZGtCMEaAIlFW7PIr3WWX648ndIJEiByPDx0kpxfEcx514c44w0uaJJbgxP0vul7/FgURkTZfXUBnxUhyuZabHe8DuH18ce4YF2O3WkuLUG82KIuHsIX8vX+CR19Kq1xC84mMyu43LrJiyVoRdxmWT+JOnE9aD5/y7rD6DtP7lmh8M8d2ANabOR+y6GOJJ8nqh/HcIyaJ4b52rJJsxyBxJbEPDqkVE2ZWeTVXsj61/7Ml+7GuNSwk9H9hI7jTDhGSfBumZ8IwM4lGJMy6UwEOCWg68xW1LKseRuqoonCYdLiUYK8VqLrHUL0lk7ae3sxTs9y6S+Dn//JGNFa5CaTtoZYdZtt5/Lg4usGR1ACyfw59xKidHMRCrI7M6tLHlLOBvOoXZB0hgVxNWUXQkrQUtlOydvfj+Xz3YzlV2OdzLB2OMBKu5upG86l3AoscpDSmk2DwJ+f/QqpODW7By+sdLASLgOh6HxiQe3UWFp/OpJwUL8KMXZsyympri95i+prW3l+bE5JDOZh9UiVB/j46+do7siyabGfTSJfoQSbDwxSKXxdXrurSBPW+a1Ni9ogs2TZUz6zjOSvMKunC2clWAJe2zwYFEtzw3/O7kTeTxRKZivaqN4opdmOUjxpvMkRZoNCoamakjOuQDQDAPH9geocikK2nwMuub5xOZPEE6FV02MY1PdWHqc67M6jXQ6RGF+FiuZfckJN1Jx+uMk/FfIWWph1MpiqKOU5zMEYkMq7r3goSRqjwbSzjB6bAVWfosrlo3lysdYjlAdTdLfsY5cdyY/VLuuVgXBStSPpqA06UBqgrAjxx7NCY20sji3bOJCYiSG0C07oilkWeR0KDyL8+jzfiwlSMxlM7y3Gld5nAm1k0Pr4gy1jJOmAZmpRvtFO2vUID7/FIVF4ywuVBIegwo5zWx2KT/vG8HyZF8HKwBC8NqaXKpK4/xlgQMztQzrfWw9dJJQVT77rv6MRu/21ep2fGyKQqfBfFEO05M5ZOuKLXV+NlkpKldKoPzrHD3yfYKhYqKRQjSlaMiEfJ+fP88L85/F8KVZdJdi6nZVraRiWdgFj90q0zkx5yUcXmRP4gT5yUU2H+mmbWQQdIPB/Cae3f5JvIEzuEQ/+ukLGOcNbvn0HrS/KufVX11g6WoKDQ1nysv6/B30HDuLZVmUaRqPzI1yKsfPZZ8/o7sU7IsZ/KpQUFpg8PXWbNICuv06DcsxbhwOc8/GRUpi/45SacSafUzM/hE/Wzpk21ssbKZ6PoUhc2wlM7Bn8Cql06PMZ6WQykJkun/TaUmhw4C0j5YJg6tlrJ7+mlIUhma5YEQolXakUGfI4m96E3ylLRuJQpewY3iMqisH2PCm3Zx85qdURbPxxhTnLjRz4OZdSF1n1p1g2ptHeShMxeZWmnuiKE1ffS/IuActS1vtaJcmBXMrTaC9DspEKZ2c5Wq8BixoxQQ3rtida82+ub11EfvPmWgmqymG1S8pyq5CE5lEmrSFvBizB9RCsGU2hycLM0kFWNTEJrk62UUsVoq5aw3plIkErEx82jtdURx7/4bFHhfKAt9oHxUVu7mQNWkDCSGwNI1DU5Mopw+ZbxfVurD3WwFN9NPIAKpA43vpzDRACITSMbPb2F6/HW3p8VUT8a7b9hBsqqai2UdpvYflhZj9OGc4dP75LuaLLq8CtonxNqKRYipCSW5y38mrWgq4bnljiTQLZ7+Na6KHwN6XyVtfT0FJmnXeFLULirPFTpRQCKXTNP0mcJaRWP4JdoGv48x7K5peTO6jO3Ft2MDZsSBfvzSBmUMm41RSEZqnYuEgAW+AOc2ODV/wpXh56zwPZO/igV2PckD5SBZNrwL/6Z55BB5KlZfdqQ3M6EGKbqpn/4mDWFh43LOcV2swhWGrym17YzRsh4C3dpQz4MjiJ8/1YElF39HXWGulqZgdp2J2AiN7B3rOVtqCr+GU6YzNkWTz0knSgRHgBtau38SXB79KcfIwVVqaZjFAkxrEKN9G8bibpTzBiysXqLZ+SZMYQAmNqHfuP4EO/vesP4C2/+SaGghiWmA6Vlj29bF+QYeFHnakWkgKH+ezKjlebo9CDKVodLxG4OoS5bvuZrryrZx/eQxLaZwXxTRV91BupPFUfQB6Pg6FJt76BKGrORQFAhQGg7xcu5lzJVupYIFSFWSKG/hlw8OYms4vKtP87MIn6LjpUaofKUA7eImRQcF8XjF713UgNYFeI3EuzbIxYnKjt5FFPcpJ5yWmlYe9Va1Y1XYw76eOC3YnNjCrhSiVXnLGdazCGs56BS1Lo3zp6HeJ51fxUmwLqRwJPru8nMv3cTi/is5gAi0+TWk4yJ4Lxwk6O6if09m008fP/ngbJ4YDbKu38xcPPv1rvI17iUws0Dc3AQj2XxkknOXHZ9ih8VJJDGlSfeJbBIaStA2C1hfnyvqN9DlvZX3wBOuKTmIR4p/E5zAx+E2b4mMFl2kp+CZFmkWB3M8/9H+KCUcrXWHJ9vUOirXN/KYszi/u2oOl6+htDbx58mk0rYo2emgUg7Q/tBbzyhoiyTTZFVV0dm0hkBX4fzVHjnV3M/7o+zErEoi/UCinhqY58fm2kr2xhNiZWZQpsRCYgXL84UbmtQivO88y9QbRgSWUPcKMBAENZ9JNbnA/KYeJEV/BiK+AUuQGlrjlwAEG3sn1Kh9sEjCKxsazrA9txWh/Oy9mdZOnUugZEA0WjkQfGhrb4ybtF79JyNOILzxEXvQyhS1hHqrOZSLmIZLO4tJcGTOOnfxw9wOkNYXGTRmltB3K3CJ7UVJQWDgJgM83w9hsOeVzuylNJUhfPUP3uhtWVYrXftiuasnfXvktae7P/BucvHUbCMUwJv5zn+e2wod54cs/ZrygjLP3Poql60y11/O1b36JzpdHUKbJ5K9eZeStDzEeWLv6fGYly8iv6wLguStH8Icr6JxsIKEvsneXhQR0FFurTq42kpbGbiUc8qNQFIeX2MUJ1vouMiu8hPOqudxfQJ1cwHTEVl3rLdPk1Kl9LK7LpfnWdUTGTKSlMHQdt4dVx3hLSnr7Q1xN52C0rZCqdAG2DcGnA4u8/dZi0pEIUtiKwbM+yB47ypJrP36VxnbNMlmzLkyoe4a0TPPy2se4yfwATcfmsLySLbNOahYTpDAIJKY5NP0UG5MFdJc2c7Or0RY+ZmswnkLPucTrtZXkJhOsnxhkIRZk3rDHr3U52xj1edm4ZPLdUzHO+nU8aclMhZv19fdx8IlvY6XT6KylS07SW1uL1DSbEtF5Xb2458Ixips0vCsQsifhpE0391qjHPesZcyznqWAg479KX5Ue446QxEKlRBLhbgzf5lDBS8y7YywEdtfUCiB/4zCtNkYSKERTpVT0biO+UgUqSlbqyBtf8RrPpnty8t8Mf4sfYX11MReoNHVB80Gt932PiIldTyxqqzWuLmoiuHLv2I+ejue2AIeRpDBq8RPfI2qjU10e7yr3VLl8CGUHanUc/EOqgoDJGrW0ru8RE1OL01iEJCsc57hdbkJKZT97CX76FlZT637IRqzJG2Vb7aLkzfQECamo7hQ6Jlr8E3fCgKWSk5yJeBldrYJHY2NeWuZlxFcC+PoFdux0HBIaL58kkOeZdqX86heirJ8doAVzUf1bUE893yZDlNn5uJFcgItuKIN9AUf5/pExiIsD3B4Y5Cs1j24xoK8+/snqDOy0Lf7sLAzTmsnz9PveZF04CYcfo1rSTtK6mQp27V5KdvulCkBQioG8x2YcxKUoFDlk3tLCbPxSCaTGELBYlqr+lbjwJCKD5cU4nZnsd2bR5cnl6MzF2nTpkgl07RG++3vxKZZaI5KhK5R4nHzdXWMM+EFzAUnwRUXT5yL8/C6CeZlHk8M5LOhYon3KdvfTxcGvqcuIAa78f/sKe7+i4cwa0ZRQkMog/zMdOu/0/oDaPtPropmH+iSlDOIXQ3YB9FlK4Izp43vrcnDUgoNxXvUDyiu2Ec/DnLDxUyIZiw1gUJgKY0Jo5Xyu98FJW1cq0g99SnCEx6UadFT38yLu28HXXBeNfKe1x9n1MgjLdqQwlZ//rzmI9x/aZppQyNRfwOB7Nc5VZEZUQqbzDla386O8Aia0JnVQkgkU57C1SpQChhud3PPaUWx9KCARVPywLZKLu47ytuu7COWV8VgzTZ0z0sUlcfJCbcxU1nOC/UNmAgM6eaRQzqdTY0UnM9BTyo0YZJ/4SQFgVpKa3I4eeAY3fkJar3/QskGk+J1gqEXqhkSLfybuxpzeMaOS1n6EQ6RiyvRy5p0nJDnJubiY1zIyuWX1e+x1Yjv38pn936dXipW2+FpZdGdPUPbG6TtuaX7+Ij/NlIjp5n+6GcplBKx50Gk4cjsj8av695le6gpk0+Jf+KdnY8QqS3i8R89gVy8xLmLl/BvUqvmyHmxPPa9tI9u2U18eprqinIarg5T8E0nxn2lVN76R/bL2AO0dbN4PsaUs5xSzYdbwoy2hELRmB6iWzVhomMoeHChEI9pIpIexkwXngSEjOs++5pS+FfieBIJCl23I+U+hMj0bgSrflw5/mkmol6kJiiNBFczHhPyFHPOYZy6k827HyVr/5fwTo4SdDnp0fw0x0zKXSuUNzUzbTTT++os81XtmWgYDZTOLWo/BQQomFvBGcsh4Sslxzu9CoAKmnLYtlhF0jHBeCTAnovH6C+uIujKR+oGf1RfQW76MFq8B/LvyTQmtUyjUCOt4LJqpm3iFSzTZKK8LmMgq2PqcLGhhY6hfjRfPTmb/5yC6Ri6U8OGYxpZiVJGX7uMsb8Hb9TF/Vc/bKsYpcXm7/6A7uY6SitmaW4eyKRCCLwTvWiW/czM+wo56N3MyhTUqHFOt23nWKuifPQkFctjXNtsoev8x9IvmD63giYM/vq+b9Aqa6ho9pF2RDh36aQN3BBkyyR5HpO0I4KpspGZSB6pFHq+EyMkMYXAsBStB3/KYd8xurMkf1okcWp2HFRb5Zt5rOiB1Zi6pSspxLf/A13ZWQ3kP4iR/wAB/VVi1nn8b/4zVs5WoUl71CaUotqhccepU1QGhm0gkSFgI2A638tj6wqxhIZDOfn308tsXFL82eZc0loOT6J4yF9G+ewYJjonRQ2mZvu9TXsKf0+9OOstYuNiHYV5Bs+KIWoaWti5q4NJM5+vTuikEPyiXvHpqdfwLRYzsZpeIpnTglSJPI6ndL69kE1LjmB7/SP8vOJnbD5skWpSuJ2d/FX/n+BQBjLLojvwKlvW1qFNvYapHgEUcc9VJrq+QrlmUbGiY6ue7Naq0zlCl+dunlnfyPHQMp3GFHLgPQS0FNo7DPoO/CWtB16gxDFAyYZzuIq7cbX8I4cH5phIpa7RkEHBSqSERHoPf1NZgHRp6Cge4TFu5RXWLc/z8f55LnjcFMwnuFSm+E36N5jStAu/oge4riO113DyPGV1Z3AttdjUEcA3dSveyVvI1cLMakFKTTeuAouroSDFkQB7LhxlxlPI2ql5Cmb6KfbdwGzWOFbOEHG3j+L5OQrnlqGnFzGfRc3MaSyXgRBDZGfsbWw9KowXjhD0xOgq6eLY5QApU0JykQdOLDLrLaRmTtFdeoy0s4lEcRe5k200BY4Qdwi2j6wQ4QhPHz9B8yf+AadQmNLCoUz+auE5Ti2/nwJdsiThlvo1iIuDaGjk5s/h9czTdCyLL/IFesVaNp4d5N7PfxpXjZ2uMDExQeTSq6zXTTvNMScHEV9mqqSK3pbb0B2VpOZiqOVcPsa3uM1rIt0al1buIBotYPTCES7mbqHdiHKLVcrwYA0OZxIpOjlYl0CrtZgpLqE6Ostd0zegKfBMbyV34XFY3/oH9ej/yau03kP97jz6XnazSjQQEM6epc/fiKmB0gRKSqKaC4RtQ7Ewcoiq7bvR9x/CMk10IamyrtgmpuvfCdJ+AboKElR/9C5iyUbO1XWi9GteShrLW/NoOtbLCXUzSio0y8Jx+BUuzE0ABrGdXTzWfgdpjIygzuYelIcDhAuvEigLUxiqRotrVIQWOScVUigcQPWy4PW4hV8TBBXcvLkU99IwXz72XULZ5XS3P4Se/ySNd4wgdEWRPMS07wnksu21ZQmFeetNVEdmyd00ydxAiM6T4+S43kZsKY51YYXQ7HG8HaOIDbaTvkBQUlPEqeUa0lIhMweZQ8sjJ7KXtlgtZdYnqPQ5afOmOdnYl7Eq0TA12L/udvZMXuA3NbYfl4FFfWoYKbXVLpTPd4543jGWvvGPrBQ1IEvbWDcT5BklSQsdoV1zpddJAwdn9tAwkM2hsyfQTTOjaJUUnj+Ds0YnL+5n5/ROYsQYwz7E57vszk7j6FWqey7jWvhrJu4uYjTuYnzMYtiVQjKMhsbu1HpKpQ+Pe5GihhFuJAsU3KSOskU+QI7ZiNQhoptIp0aRlouVilHinmNN9iJukcZVkiZolHP64h24vbOkU1k0NJ5GE6ApnZxAE6WWG01XSN0GbqXRIK48F+Oee7lxw92s67yR4CcVfV/7CidrS5Cm4MJYCXv8Q7hdO/De8QAP7cjmtXMj7FWKtFRoSHaqwzSLfmSRTs/FO2mNN5HwPs01ZClntrMjz2BR8zPFGErBQGk1UtPQpSR7fJrWWDlrQyaX1JfI0t7CXNFa0HTIFDttso+yqvcjtB9RNT2CnjGQ1aVF/fggQ8U+6orbQejXxy1akLllN8l0PnL/Z7lcOUXMcTsXmsqpC2RRuZDEvayoHzhEdiRhC3cRKGmQd1mnzBjjdzfczMm1tlL5B+X38Wfyx3zrbXeSNgz0jvfxJ1f+hcLBObLcWzhXqzPtGEYhMWWaL158gc/c+BdsqvcAHnZ0vYkrly4yHxvH7TMJrKvA0jT0jMmGUuAQijcPHubmnhrOenU2LaaomZrg4HaTTS6TkeV8SkQbG5o+ZBcB8+dX30O5gVEMZUc2gYWVHkfP6SLgc1KwFOfk1CXuq1kHo8uAncsbyBmjrvI26tI602KJvlQv8dwcwOaimhnuZ1pKzvkdCMRqlqOpYLKynor5CYQQpJ05mK489OUIZaHrlAhDKd66UECZciGVoj1RR7DvlwwtvcRTazeRzK7LWA1JLlZGuLd8P5cu3kE0UoRAUKTcTFgj3Du4lhZvF8Ubt/Ct7lcZL7PoLTdAKd4+W4WBjoeRSx8AACAASURBVCZsO6Eskc2kO8TWyD4moyB5P3F/P0KTGSKohdAMBlQzfaKTtzi2Ugt0eXLp8uQyOvosV2Uaodl7mV1ylaC3iZrOWlz3N0DtjTRVbSF7YoInnngC0zTxuBepd69QGtjIyz4vEtsj01KKH/EBKuQkWUO70ZecbJpKgoCi6nv5mfzX/0cqzrW10H+EnILPEixME6p3EDnzP9gUabGtZpD4l5PkWRrxyZe52lpNw5Yuui+NURYJUrESoXhqnltK32EX5/4gv6s7hxSgyzYK5l9C+5eXEblVOKpvw1mzHYRObf5tDK/8goXENJqAdaqR96T9rE+m6HU5KWCZTTlX0EyFP6Ax4htHz2ogUvIuFAbzJRY3v3CZ4sUglr8YLRZFJOP4hy7zq4Iwx0bOUzZjEJzeTcSCpbQ98p4aCFLdGuemxDnShT0IAelK6PxXnc0jw1gCrh58jo5MJNbo6ChKWtconMg8D1NuP7/Y8/7VrG69zsn2qTgvantoFz00iEE83lmi0UJylsco9vv4443fx9BMpNT53dV38YvGN2HVZIRCKJykKZSfp0ldJX4qgXVoFse6Z3A98gfQ9n/0KtZLGU7HyI6VknDNADDr9hJzLmFYbiylYaBoyzj4C2XgWmqlvCDKQ9U9DM/l4V+O4V2JgUsCCnSnHZWhO3Hd9iCuqi08GF7hyXNXVgFJm+ghPyvIn53Zz1kcVE0PUzFniwdcJRFGW8OrLvAoi4rkLJv7hmiWfdRtP0pAVyA11o3WsTF4E9vPBLjkd6LNLyDnHCxZbvTOAhYLdKZ0iXHqNKTTzFZUkU6dxlMWRazyTExa5Ckc2s0gFYYmMJ9/hqPTw4yXVLBQ10xB506KNTu8XANKs6tgKQuhxmwZv9JxLRThWxlGs9JgGBgosuO91DpM7s5TJD2juMJr0DQntzkKeU7Zo0YQHK/t4P6pST5pfYFerZVW1YsIeJlLNVBWNpiZxqW5Ov8tnDs6KPZ+EBAUK4vPTQ/xanMurZ5KvjMtMZXdyfLNxvj2leNMpfN5k1PaxTmSsGuBzxQXMhVbz+y0/vs3hBDMtZaxq+4kroI0E2Y5T7z4OpayQX2GboZUklktyHqrEndhCZ/X37uqcrpJO0TcfwVXpAmhFM7sCJfWFwNFaEhu034NykVfWQW1+jy1rZs4eDVJJBMiGYt58XjmKDZ2UVDTgXdxgHeuvZkXkxYXIjE8Z4+Q19tPpdD4zpQdvn5bKEzAlbWaYuDNqiIi7yc1lkfqC4/T+JlH2bVlBx98eR+nnCk25x+iuaB/1S6gOT9O9dW3ESaXaPFpktMbyZ28GS2bVTD1T27rDb5z8Fw8m4ohB1+KfIRv5/xPNp/6FX/7Fy2kdFv08aFLP+AtO99DSccD3P5HObzyg+/wthceZ7KslhvPdxM24gRLfSw5g+wSoFCUKi9FpoeXHWnqSg4Qv3+YAaOZ72jvJq0MjkrB+w6kKR6ZQApBbN6VMSkuIrF0KyF/gn99cAdpXVt1zE/pBr+4417Shh0TJYXGQlsF29ac5pljG3l1qprsat3u3iiD1Eodn3muhzWl+ThmY1S9tkxU15gzJDMZcQ5CQ6G4Rb1KkVjiLYOnSIe2c85XT9eSpCMKk4/czn2138QQAFGUPMvhpwY4V6Pxw9S/MJU7hFN38vn8T2LLD2wukq5XoimNtYtvpfPiFLlH9/GjXR18zN3InAzxkrMbC8kFAjRb5TRaxfhUNQeYQymN8tAiurKQ0gbXGwIphBA4lJOUlBgCHrn7bkpL6olFFK/MX7Cj0JSifDnMfRePM+Mr4tHWdWwI24BNAoHYInOhEV7M28grzhr7WVAKLfM+E0Li8cwSjRTTntvCT7Sfs/WSn9tK3om2qJPeJ9GzaqHOoCRaQXmkkYns/4u9945uK7vvfT/7HBQSLCDABoC9U6RIqlC9jKY3aapnPK7jFqcXxy/2xEnscRK3OC/OimM7tm88Gc9kHDvTq0ZT1ahKiZTEIjaxd5AAAYIEcM7e948DUTOJ71v33fcSZ61791oSJfIQPDw4Z+/v/v2+JYqBiVCWOjbD7qa4ei/cuJvsNwdYuqyRsbiOhZSxsKbbiZd8g2+Ml5BUGi8MaDydadmXAMzEG5DYENJASZ3VmSo80YO4P/JVyEta8UVASclWHn74YYYu/jOG4w3AZLn8BI09X0ZTdVYGp7DSC86N/AYPLmcxp0su5dgY9dm5vqUZR78DTzhA8VIttQ3vz3wNThy3vDu1VKC5dwARrk/NHwK7q8CaH+sfIF6+yLr7b+YTW+s5cekEc+lzbGorRQtbYHZGD1uK+5TyfrTsTiq6zuHa8TnQbNaEhACh2JuTzum5JDOuD0G0mJ5TBrVDn8ex+XP4tCU0VAosSSqXS1jMqQZh5cCZKMZKa3EvBVOVckXW5BAljU0E0iM4X3mbI+HPXJ0oU38LtPTLXJz8A1RBwppjBSgdErUK+xW4UFXDG6VNbPuXI1THhsmtq0DXdSsuUde5/UMf5bHp6DU1K1bhoK34epQQvIDBI3wVkXAilOLCci4dXa+zv+Ka2f1sflaK76uvKbsNpdOjNVAt++jfFIcLueTNOnH9v8QI/5Hj/4C2/4VRVOvBZtOwm5msAtPZHovTIaw8uD3njtMwPcu+vLtY9daTHq4n96GdMPxjcqJR8k7ZUKbOqJ5L6U1RXC0fhpYPW5NDKk4KrJ3gT2sFz/X9K+tkJ1Wyj4GpcubEBPgr3ndO8zWFBEWuxYFRVnbftMNHwHOCxsWONbDVJ6rpqWqkwWyj4pydSMTFhN9LKH2a+uES3uo1OJSexHFhlJ/trCeWncFI1gTKgOiUC2WmLBZMQelMnB9U2Hh7bJKK4BSrU8OMF5Tw7P5PYWo2jq+H75+J0RQyLMCyOoqYgB1nPk/c249zoYaTE6ep8QzyJR6lVzbSQDedtgHu8hrYRA9jvgHi5z6GL7qB/dffwavj7/JKvBiEhlQarwTSyKOBBi5Z5NEajeD4jSg1BJgMiFqOpF2HeEDj/u4Ztk4GANAudnFBvoB7pIE7M7YzmZOHPzxPYSTEOaOQWZXJ5LJGRWyMTNcU5bsWEfoCNe5RVnJuJhzKfd/1L82coj1zA+ms0EMtprQABSnLAGuh0qhYfZdQTh9HtY/+G2XbevYt1KwtdpP6Qsrew1Lidtb9IQPT58nKmqI9Usd1cReu0cuseP2YGdlEIgVElgpoT++l9FO72FDwMUbDy3znXB9xp0S/+YM8+PJj+GdG8RudfKPjJPU1XyQvbjKgFB5ngHWBOxjXl/BJN4WZH2DgmYscm+/BsfoS161301T6DnBNxdYfScepTxCfLsM3uYEi6abNO0NHYoWA9JAn3XgWx1IKa6sScd7r5Le3wPfOSPaNtrCycphH/+GvGCytoaWvC1mwwJE7buABoPmm28krLefZtx9jYfQXOFedJJweEIL5xCSjg89RWnkvStNICnjBlmSLa5zdNujRUjFWmo6BZDyrn/3BScZzAhZwm8liOP0DjPkKCVfoJHUdtWZzIVGaxkR+AVdzWNcMqzXFzvQ2Lix6WAhtAgHJ8CbkShkKxcmhIDVDUWqBIunl9ewwEWc6WqoibxcaB7KyCQxOEI1m8dub7iIh7NgV/ODsMpXlcyxraxof0AxmKts5GCqmMfhbJHx/y3z2GKOLEkfWB5DJcTQ9gGYPWM+E0Fly15AdHiZt4gJHb9iKu/cs5qpMbRwUvfoE/foUt7OBOtNGrz6FL7LIgc7jkF3LHXMZ2EbeAOXg08EkXYVuPnHbbdyQXcJ8f4jzagj0lPeMENTV1XJDURHl5eWUlJQwpSa59Is+5hImwdV+IsUtvLXnbuv6pswY98q3qRZ9KGlHRAPU5M+z6QY/tnM7cfRHiOdcYTW3D2ewlpalUhYGfocDC0VoSkNqJt+p/Dm/ab+N7Ok8qrJakK+FOep3kVu5DffQNOlL1RSd+yPi20cp23A3j4eKMFRK4CQVbaEore4M2kcWefjJGMUZv802zyA7tUY2lc/guquFRdtBZt/8Pp7FVdyHvw23fZOS6Q7M2acZLHNYgEgaEP8nbjy2k7d2H7DU7Kbg7jkv9Wkm8Rw7/7w1A0OD46uCr7v+nrqOFSbjiu7HokzHhmmPr3JDsYdNRbuYHH08pTC3kb5Qtza/aFiA/2p1MRwO0jHbAU74dvDbJMwE2mQFd6b/Lkro+FU2us1K8NB1G1Xbd6C1r4KmW1wzpRAqdU/MFFAQz2UuqxjQydIFi/H72b48zk80q6MklUJPeZq9V2ymS0nhauwabxVB6Z795Cyv0vncCQ6F78Wq5V4TI416ddonp2gtrKCGy9f0WwocfYJTTXv5s1//LKamccg0+WDbSUrffp47f/NzRCVkajDffYHypELPzscUeuoaWd0alZpTe0UD+6tfZDnmoS2+k+GlBLeXp8C50sibW0JzW2Isq7hiYsNkneoCBIthH6OlHjanVLT/Vcb/AW3/C8NX6WbbRws53tZHJMz7OB2mEOS7s9kyFKFn6AppYx48B3wcXfoFrR4/jlkvl3x5CKAoFCGv6EFcV/vl/6Zv3jHbwfkrj7FfHUzZzQrGvKX8fOfDmLoNXV7Ph147iGmM8/P6T6Vu3tSKKiwK81xpHK1oHiGhj1q+oVmkfZvNYH/Vu7zo2bFGIE6PDeEPZvJh5eBC0qQtLUDVfQ+hzr0DKGIzVoUi0x8jOpXJ+h3V9P3Vn+E3DBKahqbpjAUqMTRrATSkot2rUTA1TFeojWWbSXJ5lpO9ZylIKyNoRlhITpNXahDQLlMnLiOlID3Dhs1SgyNFkmDRUdqHJPlaMx8rL+aNviSG0tGQHBHXI9GxpXyYqukjasyRnK4k6hd8ja9iCDsIONIo+YflVZpCJsbMFHflFVIWSBAOX8Y3tohCIQJphEayAIUzuohjcZr8dTNoVz3YMLjh+iLGxtYzNzdHeCWMkb7IiZGNFlfp6g4WQEp0Kakdm2OpqIxqZzrVWf08RpDyzgl0vwLNRFcmWUfnCaf5OJTTxmzSoDe7l/VL1VbKhRBMzFygodFKpVCqk+ERAxGLEswVDJXUEAgH8S0tkL+aw/Hu42wo2EBbKEpCkQIu0Lb5ena2v03cEUQpgzP5S3z4B/+A+43XmU0W8nrigqUeRuP2xEbSTA+J5RPoiQj5TKClDEivgjaJos3eB1iAdHuyln76MG2SDjR8S40MmBdxzz5D0nUfscwGK9xcKNo9OmXdM1xoaGQ8UMFtp09TNzLAo7t1+k/+OQAP1D1AoHYdu3M+zOOH3kERZ0O/WrPtEEOHiU0NMrv9A3zT7sNcGKRgNopq0KinG00zkcpaTN7ZsonGoV3M5Hrxp6+QbY/wnW3lmEKz8nsVmNJayAoW5pnJy7datlKRG5vgt9J/YKkCTcHyZBrl2QeJeMKgbOTN7aR41cakXbK9Mhe7Kx2jf4nJbA8vtQRIapZz/IcCuVwnkpz/xTx9pofuqnUkNB0prJbkW/GzJJ5rJ/2eNZs1+qnle2WfIFlqQ5eCzT07CWvP0tBQRk/7MobNjzANUJbwQVMm2aEBTN1Gj6+GBzb5WRhUsJoK7gSm3R4m3XkkFoLsXXSj69NIBYGlMHfMm+RLRTxQQEZpF15Ry2d23k6gdh1L74yhDIkfD9meebLcU4TCPvr6BLsyRynBCZTg3xFAFGYw/G4Xpc+P89bOj1/L/EypIstOSWaz7sJczaJ04y8QusHI7Nusb/kLzl58moktT6KEgai0MX329yieqUJTloGOJgW35d2Jz+5jZSpuXShTUTa+jDEeRVX2k13QQP7GB7gaVL6TZezC2kTZBWvxVSeHLN7WQKiCK+EKKm82GRcv0bVaS8PKWWpKHWjFDjZdWML96udBmniydLQSB1IolBTMjBlsmDlL/uIMIy07EKKcQX2WgJbGeW8+hmANLA7MwR5do8AFg2nwufgipgZPjq/wlbRizrb/Lq2eQUJztVRGqlOzPkhh8aelskRaz2iHOH/ox9ydvo/ay06mciWDBYpkz0mEUmRPt/PQn/0O0w7HGpi+2DdJz9gwPumhEI9lHaR07GV7qJQmyyuSLLugzOFAFxuY7Ymyw3Heei6EoMLXwMhsL76lEAc6TxBMqyV35TL5ybg15ykAjcxYNqOf/BS2eIL1/t0M1jyIEgqvrrGYb+PJXZkYWguHWMeXeJQa+gBwvaWxGqzimXs/nqqACUxdp6u2haKjYxw5eYmmLZs5/P2vYxqWwuWDvV101W4ABdXpfbxU+eB7OlNdDIhqThW30JxZypE2yXPnHmJL7kWWwj5yIoLfzB3g0vAUeflz6CWWpVSV6mN6qoZIuACPPZvZngHKU23a/wrjVwLahBBe4OdAOTAMPKiUWvwlx/0VcCcWM+EN4PfVWq7Ir26MjY3x8hvPYKRunKJw0OKH6QqUyU2LFTTmlGNi8td5P+JU8BmMOQN/OINbtGpUrjV5jnuz8TW0Yg+fY3HxFB7PtjWrg47ZDj79+qfZm7HMendKJagppirLrrm6C0Xs5h0MXhm0Uhnes6KKNV+zS1a5XUFPKkTbIu3D25nb1srLUkA8P5+PL1tGsiYwPBhjJaMBOIKrMEKmf4WVhd0s9HoxM3LpGhoibnOiJxJIoOmGW3G6CjmlFGbKLHRjMElXuI1gfAZdrUMxSzA+QTA+QYpwQkJlWfl+KJQS+J1JUp0XhACfb5DZmUounD1Nc+tWHll8gmNunREqGBJVazurbtVIlRqwTH/DMOxzYQrbWvncQKPdo5EYOMSqe5A9G8cZ1KpoV+UEF4ppXOjnQPU85e6LdIxEWSgtYXE2THNdL1w9HyBPU7Ts38+Z4Z9z6OJfkbWaDVmbiEberzTKjEYpHh+nr64OqSWYlgbZxhepjJ7jNm0PTd0DnPGtkH35IjeX76CzVeMfz30XiUQXOnsDjcSOXEGLhklbP/W+6KiswreYq9/N0zsfwtQtR/8DF47jCwXJOtkHVaepWcrApiRJCUrTGC6uZtxfTkvnd3HovVSqStqjUco/9BFmOi4jz46s+WhNa4t4swJ4Z3PIS99OaOoiqmXCqhymziEnZfZ8tfU7pM/gypzBnTNNKOTjqMxiVpaTYbyJv/91OpprMbGhSQV9r3LBY1vjpLS13sCHXv5L+ouHAHhz9E0eqHuA9pFFTg5l8kDxX3LGdoYzCwtsnJqgdWKArFiCZHKMMyVZqMHjfOvYM9ilYtjIx7knjZbcLtpzWqy2h67xdx/6FFIIHEJQPTm0xo+USNZFr9CbWYEUgpm8Aq6+4QLJb6R/n1rRh5Iw1lZIZC6N6YowQigKIsUcWChGVxokbBSZGr5tRVwADo3PYehXWWeWMjASHcc0TTIz59hbeIYTbLQWGWmymi7pyN1KZmc5vvqj+NJX155ZK1VCklVdw49bLeXy8NRlXnt7GLE8Qe3SBJt37KGpNodw9S1cyKviyzftYt3CMK/pGfTmradgaZpE2iIvpQyn28skC50nuG7SgyvNg196KZDZgKQg+C8ku0Zo8itcN+4mPrKEEbJC27Mzp2lqPgSaFWt2ofNmjrc58PR8l8u3/D55bhux5bO07m+lxPlJwqNJHAoSUlkZokLw5Pbb+PA7YTbkv4LQDIRQSJnEljVDwx01zBmnQSiUMvmA60WSsojhlQqkvQSHvYD1jgTBH32T9C2/k2rVCTQh0JGMTJ9j1+yfwuYXAWsjHI1eZpd6C5RkD8ep4VFgEzdmDhO3v0ibUc8lvR6RPcXXlr5kbWyFtRGsEf0MlOVRPTqPe8lgJVjFytly+jyjZE/pZPktm478ci/PlNaT0GycKHHR33mCbYt2dLMAYRPYJWxeMNbUrZ3lTkwdC5wIxUtjkzScHuDZvCqaMyoZxUQgCBsmBRmXmHVcIhwv5nDeRU4UXqYwmE7a6ctsMNzckLaO6/0PYS+zI4Qi99O34b6xlZr3rFkvzAxi2BQ6w9ye3IRPeSBlco5QNLssTqM1W+pMsriWCqGkYqYvSo5swr/JRk57nIQ+SSxzIbXugC2eRtZqPRXueVQigaYkxZNH6fcV482vZ1d6IY/77Zgp3reBnW7VmAJtArGqsZBTm4Kp7x8Swb+MO2gbOsRW45qxfNHMmEURUgqXb4XG0h56davzAoJval8hmW/nhBlnf6OPcxfXURCz+hearvOJ7XvQW6KMnztIRP4QKSz7mdmZSpwzIyzb9nHwiJt7tof/h7mx/9njV1VpewR4Syn1TSHEI6n/f/G9BwghdgK7gObUp44B1wHv/iee5y8dw8PDmOa1G2dnvoc9rjReHpll3dg8G0MF6FgeRS1GM8dkDwpF3ryOkmurHlLA8KUXGHGdQGKgaQ42bXwC95LB2ZNfJyETzM87UZkGSlMoCVtygrylKRLKRCmDo5Ef0rz+dyAlrb8K3DzLEe5Oe8pqQaR+ZIPowoZBUikUOiGndRMKZfmY7V90YLvqj6MU5qUFxhIO3BXbKLvhMYRmotRzTF64jytLCZaSEkpqcI314zTipLubSBxb4P78QYKeXPb39uDveYflhkYc9j0AmIkerCXMsgxxFcYobRnDCooXLCwEyMsbf19kllIW7yU2P8fjjz/OuCuLIy27MIXVOkRa5yzDLi5cucUCEsDSmAdRKtcmAZuEjQtJgkaQrMAKg6Kar4lHrUpcHnTlVVMjH0V4e3g+78skhR1b3R6K1Ay1og+Uop8aXpwJclvoL7Aln2CbywTXPMrzJhc6byGypoSDaGYml+vqUJq2BmwmWaTUqCdRMIxn3be5WSRhh42XtVuYiHnIz6yiSXQznNQoTbjoiy5huLKITketQol2dY5UXNrow9B1KxRawlR2LkULc2zsOcrk91+mb6yJB3KLOL55H8NFVaBpGNhY9G7n4+M+jl85jpSS2ZxcMlp3sOz2kh9eQEMQWdZZCunszdtm2SmonZw5GSVney9CEyB1Sue3MsmqZZSJRiQjSnPzG1aFS+r4FjbzB9vvRU/fzsn2Q9S9+jijvjJKJq+QOT1K25671jYbhi44tG0PJCyH+ZuyqmhPWQ7s6z/OrsmL5AaaOFR+Iyc90J57nobIAHv330rRxgI2dT+PTSpCLieXV3JIHrOxdfcxLuY0YCg9Va0QqBTvRirLRV1qYBdJfJn99Iry9/BbLMVl/eop6tP60ASYGswWRznkWWUuJwEKAuEadCUsw1Bp8rODp9l7ZyvPTC6wYtewCYWhFNKUtJ2dYHQ5xC12DXfONOVa75oZ6zq6iGnlRLRCItFCuLyX/OY3WCe6sGkGSQk2JfmD/u+xoelbtI8s8ucnBslTUxRpk7zuD5DfXMyB66vh9i20ALHz53nt0a/xh7/1RyR1GzbloXW6O6U8t5SeYzlemA3RYpRbYAKFmTxHV1uUoKuE3KEVanOfY3XlNot2IUyC/tdgbQMhqaxqp51f45+aNyGDoM3Gaeh+hR/m/pCf+r5Hy0XF98/E+FGVg9N5tpRqWzJWoNM6X4Om7KmWoEZ4IIuM8+mIDXar0mYqMt6d4KxNR2oziNVTFFQIXjuXS07WKjVnv4unoBW9fBcgMITJ3+aPMRmz8cDwUSjZygsnu/ntmMTgRmwY7FHv0tf3l9S678N//AvcW6b4WPgFzjf8iHaa/p0hb43oI+RJcC47i7Lzbt6Y/irGgo308EmKb3gcTVMUSsFfhnaQ0PT3Xdt1PdN89N10VrZ62Z2xQnPYXKtUT9nfD068I5f4WPdBPppbQ8bu9dhShi8TiTgbxFM0aUPc6v8ik+XrcMQVgYV5hGkJuvxpZdixp9qQAmF7/wZyeHjYMvbQBKZUDIhJCs1sq1UqLRsfNA2LfWyNgPDSoY9gmIb1mtKOtprJ4lQCMjWCcgGnsHw9URJWRmG9TmnrTYz+1IFKJrHpGp/I/QER18OY8nZaF8yUWTo4hKDB7Fvjfb+a9WFkjmL9cILOinRMzTJ1vnMiSabThyceZMzpZ6umgTRTy50FgBGC5WkXGS/H+HTDv5LhjPN3pR9NcbytiCqRaWfJls0byXrqRJQbcysYPLpMThUsxWsInX+IsPciobCPaCQft3MJuTqJtBcx0bf4vz1ouxvYl/r341hA7Iv/5hgFpGE5Bwqs2IH/Ek535eXl7yNFBuJ59P50ml1Ajp4LmQIlFBqCm8M7OOw5R3f6IPN5JmJAR6UAnyYVevAkhpkAHaRMsjj8NO4Xf0yrDXRfAeZYNu9MbmK2rpjNee3UZbzKI2qIn0SbiS73oiWvUB6fRROZSO1aEXLBlc0T8tO4eiIE5sco3jVDtejjj3mUZ/ggl0QzV+M7mpdNfr87QXM4tatK/ZlPKqSEDF8QoZkpgY2kqOVZgp23shTJQ+g6+c3bybfX0X5sgZ6yMSZzvAQWu0kEgySXx3HkrMcMd6M7GrC5rkMmBhB6Pma8g8zAyprSUylIJtNTKRDvzzr1JSXLtnQMw2DSbVkTqBTfyIJ/ghcz9vOI9zJ12V4Ox0K8E6hBKYGmJM0hSdWyIpE5QemmGCqxnhfwYHKtEmcqGz1aA0oJ4sKOEpYytpv11Ko++qnl6+KrGMLG80mDP6aNGtGXuuKSHM8M/aKWqZx8/KE5fEuLKClTuYDWwl5oZpPjcBPyvrZGOr4sK/lvKhdzWcfh+SL3y0e5TfWRlCvESmtBCOaUn7RTK5RtH7PauJqduHHZcvySYDNNdrefZseldqpaRrkY9WMaBoHpEXaefZsxfzlmqkU1UrqVvitT5OqG5bHVuB0ZF+hNO7j38AuUjA8xb6ukLkNY7SghWHH3k52ewfgxHwFPEeWxW8lYqsUrwkxpC6yuZJOdfxxdWDwZXSjq3AOcX3qG1vRWfuP2L/BU798QOPn22j1qNwzeO/z2BJviK+ywJdkbn+PJoSDX9x/ndzueYT43F1e8G9s0nPNU0LrajtAMCu7tDgAAIABJREFUOg7+DO9qHT1lsJBTwXBBHlIE0VdjFFyY55Gyr9KrN5AhIzzBpzE1HQ3FHt5l44CXubxsdnreQAg4xvVrGxoNhUODB9JeWav6asCQJ868A5A6RriVcXuSzZoJEkzN5PngWb73oySGqZBuB6rYRW1+Jlc6gmwLh6jXlnFlFhIO+VBKUE0fNaKPy6KWzvJqXCM2fJFFIpEChs4eYNGTQbPzCkYin/TVk9hi3fDuN3gr5zO4/YLt/ecpWhzBDOms05vedz1jbzzLz/bdQtxu8a+SUhISmehKYkord7gktEClVgaSFPg2iY2/yamKIqQQaEqRfcHEXZkSICmNpHj/+5aVNc9SSz+m2Jxqg9ooDu9kyb3Ik9EwaRXZbF4w+Oxggg6vDUNI7CrJw6vfpzS+Hf3sH7HivYxzoYZ+c4UNy/WUnP0CMW8P9q5VuqMDSK8g1xkgPauEHmcSnIKZjcWMD19md99LtG2ZISacXHD10Zt+hTeFiwfK9zB4ppcfjHZg5K2zNgfKzlGuoybyY9ojl2B9muUlpmCy/4fUJP4au2uFpCaxK8HG0ArkWAdIIRjNrMFQNtLyhvGuP75GmxDApmQvV0wTQ7PmnEBoASNeQnHUoHAuxLcin+ODzk3cOXs9hwr8XCy0knRQCptpcuDIK+go7LlV2IVY44HFMiI8pbXwRvpn6WvaiNAFq/Ie8sJnMefOYFucZT4+jlImCB3NpuN8L8AYO015+ARaCrAhoM82jc+RT7FdIE4dI6pW8NR/AHQbQtfJaC2kcVMLcq6QV195Fakk0exBhJGGGsrBhoMSNrCY+wpEVjFz8jBy8glNLhPMy6P0sZ8QO30Gl3MA18h/Yzhi4tZhfcjke2diHK2ws3VyksbVe4jnrsO5UIc0SniqKkGpXOXAyCRziRU+EaqhRTYhfQ0w/XOOG0Gyb/ggyxPDDFZUMFRcQX7bGzRdOo0UgmW3h2xbnCWXjSwiCFSKqya5pybAZ1qKOXl6Eu+RWXKjgsHBXsYuX4Cr4HO52eIOouE3vczaA+h23bL6+i8yflWgrVApNQWglJoSQhT82wOUUieEEO8AU1jPxN8rpXp+2YsJIT4LfBagtLT0P+6sU6OkpISHH36Y4eFhnFMrnH2TNVKuQLDiHiCe24trYR1p4SoeTLuLCzUj3FV1FwW3Oek6/Dar3d3kHj1BRtRk/kZAE2i6HU8oCWaSDabi/xpJ8Lyzip9u+y1MXed1DvAw/0hEZbGebjqSI9g1O9vDAcyOCJ1lDqY9OpNem7WjEjZ6bTdwakFnpX2Zm3ynidpysUvQi0AKy/H8c4kZmpY9lhpME2i1HtrOzbEoLRAYm6tDqRRAutoa884SieajaTrR0XJiKw6Gi5Z4qSXFkSuTeJPnmacQs68dBYzkhBkPVFAyqSia6cDm2seKnMRQL6BLq9UyO1PF7EwVpWWdeDxTV6MlSa/poq+zCMgnEJ5HVzIVQa8sDzFh+XiNOgd4ab6AS+71JG1WoDamyUWPjU4vvFBSxZ/KILXqCpsWb+XZXANDWZOnQJIhIxSrcez6NRsR52o3l5TOYPr69+3Cj6h9dGNVSarVALp3I6+W78EQAs2sY/+FY1blq3eMZEEl0Rwbseg4IsODa3GdJZdSBr0p371r6qVGhAlnlm3Y3bn4Ipbh7sxkJYPHKolv3caBls387qtP8NrwcSZy8ilZnGUrE2zcOIwrV1KyGkMs2FCGSdHMGOsvn6OzYYtFVtc0pnLyyF0KWgA41SI3dJjKycO+tMBEqZNIWKM2AaHAO8w1PImOSbEUzB0qpk6rtPI1VTZ5MpvjcZPwTB25dfY1IvVTs+fpGDnBm/E3ubXpo3x/uYiSjfsomxyiZH6CspkjtMstKM2GLg0+OHKSshaF0mycM1+ktWg/npkzzOfmcvj6fZiaRr5SbF/oI5GTiy0WgVgUz8/auK64jI4Nv4NKzkL0WVAGsZl0XC+vsMV/jOiUiwd5jMmmWvaUv0mdvxcpdQYHWqlyDyKEyR+LR+kRjWSpCA7vHdTFR8iL9KbU0hZwy9QEOwLbuaHwo1yaDPPSzJ/xrn2Wkmg5YxmjjEd345URMr0mvZvqUULQLxQbtThNjh4kkpWwQOg+Bga2UV19ij5q+ab2FQyvDS1Hsb/zOL6lMAOrN/LzqiJMDXQJZSPjnJUOjLkZvufPJ9Fg4+m6j/Pgy49RNDuOefkMp4LDa8q9F2wTHGu5b+3kBVA7O0bt7BjTjnSaF+PcFSvDpzwooYilR8naaDA5LpFJ657wOAMktTxLBa0Us1qYs/MlNAa6EUJaqkIBDeoSDkySUkNTkkO79mEIjX9EQ2SDQzr4wZkY3z8dpcPVw63yn2hd7SGeMcl05M9xhCsxhMn5rOdpUjWkh6tJD1ejnEmcOQfJdYbY53uIi/ZxYChFG9VIZmYTv+NmSg+08OcpLiQIbtrwGSjZypVj38WbvwKsW5u/1dpHuTZvKxRFNZexTX6Dby6up0c1sm0qh2q1mYnWN1HCABPsh4O4Kvspvu7vENq1HE+lNPYej7Lryl/QtmEL3pU4GeZG7ElLELBQdoX4ZJzHK9tocxzH4fhtpLY9JcxQ3Hj2LI1X+q3XS1qpDilRJZ1aNmfi95KRr6eqoQITwYAtk+yCYsr9xQQvnOHtyacoTCul/vpNa1w+xk7D43dRYibYyI2cpXGN73xmaYne1VKqooNcyk3imf4XfBkVNH10P57dVmN1+uI0MiVYUEpiOpYgmZM6P4U9UYaSXWsbQhAMdx5lJnuZtu2b2Jm+kdbxn1LgPMLh8I14bE6ikyb3vfJt3NIgY9fnSA9XW4kgxCiv9uDyZ1BemMW6gy/TslSdEl9AZWYji8FDLLx1mZ9u+wTBkjLrZ+7eT3r+Opjp4b6dP2VIc9GvanlCfMrKZEVxW/AwzrSHqA5MkHS+TI6/GFe4mlXbEmOpnBIpFPVGEZnKSaGZzerIaxTW+ym/MeO/TJUN/gNBmxDiTcD3S770J/+T31+N9aQVpz71hhBir1LqyL89Vin1I+BHAK2trf8pnLeSkhJKSko48tV/RYmctbZkXuURJlqeAiER0k7g7Of5WexlhgYnuKvqLgK168hZXiU8Pkc4YaJG7eT9wIHri/dQ0Hgv7iUDjvwTkxEnc6PVRHbvutZCUnYe47MgwJYp+Xj6KNvDAYrigtKZGMWzcSZyNZ64yY2JFd2yp/oZLi0186K8iV5tA6Y/AyEkujS5YaSLj88f5NZAnPhnHic+FMZZ6cZZls11e8Kceuogw30DRJYTjB8rpHj3lPXwSp2muoeoqc5nddpJ/9tRFNAT8K0BAFPAfImb3A6TRE4+4yW1vLDtZsurytzLgy//ExXROLXX/R7faitjd+YJ0mJZRJbyEAjE3C0I75OAmeK4KkIFOh05NQTC8/z+5Pc5H6jlsLgRrqozNZPywlNcnz/Eo71/whXVhFAWifaqm7mh7BzV9lIj+6k3JvhT+VVeEgc4L7ag0HhSfIbPLvyYP861FvB1qouatD6SCmLRceyZSZKAkIoj2k3WdVYmDwy8SiRhx2i0QKTQdVybt+M/+zTrqz6OEDqGknT7Z1jRB4j4T+BYKSCRMUmWiFjKp5R6KcuM8HX9UZI5drQWy2HeFw4ym5HN0zsfQuo2nu7XuHs0g0ItRGEkDFJibrkeW9MfsXRpiKi/kOfeHKUy1MO66GUa+zrpqt1opUCYJqWjvbgiIXKz8qECrqbRr6Rn8ov9n8TUbRyXoJ8/w+Z1T1j3cwqwy/wx3u36GeWZ65lzBognvIRMhZirhKOfp7x+hFUzn8XFk+wKVaIpjZPnBxnfvocxUctJeT0fCy/xa3s95J57nqXxKPaLEey+WaQQ1jqGiTTe4uyGKZzD1RYxWdOsVnmuk4QoIqEkGcOXyV2awDbbylCGjjN/grQ6CM9mszq6xPK0i+hMJhqKIsbYUNrFspbBi+Je6kU3DkecixduptjXQY2vjxrVhxBQn7+PkfY4y2m8V1fCitL5SM4S6fHvoLx+unrqWb9UiwC8S7VsTWSx6rjM+dwqqzQnrMU3rTqbs4tV+MPz+MOLrC+sIRHYxg/bN7BY4SGZZ7cycoXJlNtL5biHy+Xea/wfYTKVX8WA/R76bHkkRYrXiiX+KZqd5FB3LyO+GGVHj/G57Tk8XXWTdeJX56ZoCH94EYGgcuQUBTKLfN96lFBITE4NvUSof5qd6RNoiRI8zgD7/B9Cf0/LbEoLsbSUx8ULt1BYMIjPP4RQilo1xHe6B2lz25ko6uewuGmt1ayEwBCKs16dTw6ssnv6cdzebsjy4ywqIVI4z1tt5wiHxki7sMCw9wKZ7gqmtRB+zUNhSRl6NBtN6KSpVGTTVTGM08VK2xnuPHA/bP8yb46+yYFYLds7s4g5z+PIG2ePuMAR9mEqHR3JXtEGSkcIHYWBSuVgakhU4BgF4jgFykZm2j4S88VkT+4CpVg5Nsu04STg+BlCS67ljIdCfkaH17Ol8xL5wVHWXxlAAs/u68S1/RPcs/dmpjM96FM6hrKqlDt6ghzbgJUyIGHL4CIIQVdlDb3338vGGY2WsMRAUWRqVEU0pmZ1epTElKlKXngeUITiCikgmJgiGJ/EbI9xxUhHGuM0ZA4QMBOgTFrookOtw0j5a9iTHqSE8M49yP53CSamWEhO4zkzzcLMHs5cnGCU8LVFTyiQ+hpgAziX342pj9IUsVT5uiZYGniaj63/AsmgwK7p/OnWF5ibXWFDmpPcTD+R4bO8pK9jw+UuGo59h0sN+3k8v5xur85KWRoIydnFdO6v2Iu8oKw5HEFFVjPD0UvMxSex5b/HdklBR1Yhv5c4idAU/aKOZ3jQ8isVOkqZrIbrGLx4EJn4G1RGktgWGyVnv0BgKY+OVBaqjka16SNfurkUS5K3MEVaz18zpwTpeV+mcMtD/19hw/8v4z8MtCmlbvoffU0IMSOE8KeqbH5g9pccdi9wUikVTX3Pa8B24N+Btl/lKN1aTtezQaSAtLwraM3/DKkWkdKSvFP6r3Qbk+hS5+zMWcSlPrQ/+HO0pImw2fB84AO477kb11V1ihu4/ducfu5JDKX9u58nEamKjOBKb4BA9wrjSGoGniZpz2DzhUEaSrM5XRugQXRRI/qwNxTxQoYXU2igsIj7CIIrq+QvrvC6bT8lRy9RWlNBfMh6SKUxydClf7Z2WcBCbw6ri46UGGE7m2/cxJ7bypkeCtP/bjshr87F0izrJFM9zfXCRmlzM/OFfZxLy7Oc7YWGCYwXVfHJrdfRtKuYSdsBXvhZJ/uWNfwFATQhKB/1k2YIZhqeACSXZR0/CXw8pfaTfHHgUkowoaf4RyZ71dvUiH6UBjdlv8WT7QGu31VKMDTCKdc1rplSApRGR94K3WIdOYStml3Kkf912+18WX4BNOihESGgij72hY7TPLTKj90PsORMp8dfbvmPIRjUq2gevIhoUGjSxK5rfNivkRWNIYSOjo6QGgUyxtjWbzGgVdEttpGllngCa0coFDx0+gjLHh/JGlvKHwwm3bmUjPQy4S9PpQNoJEzJhDsX79IC09l5TLpz8a+Y1L1ooowSHP3gtvl5N6+Avqw6HtC6efDlxxgLVFAyOYR/ZozG8nKGYytrfBakJOjxpYQuAhNJT2CGze9pXysEkYk0YvFJgvFJDDQu5t3LVkrRBchwNf6uepRU3Ktlc94+zHS2h/ay+jXLB4kG1RUYV06TNzlH1eg4wWmDiHJRKK1WlFCCk5cXeaMF0OZwK2mdplKpZ0CAEvhXFRmFKxhNJ3G7JYWtryF0i2MU+nkpzv5V4pnNTBTWYsbepTdazZPi1y2iuWbwQPJ1spdM4kqHQosxYLXpQ5TX7+flHxwiu3IBgOVgGvfsniYROU0SyKeTO8TtjCurPyaAfNsCE0iKwvOckxKlWe3lNk82MqcBmzS5u/MELZs2cDBqo30xiSkdaF7LQkFTCt/SArHsEIEFL7oswkgFjMcz9/JEloYuTWzKJCkFuhSUz2cxXbyXn92yxxJ1SBP79AAXvLXXnkfgwTHJBqOC2WgWy7YqdMIWUORqtUhiGgYyHe7Wu1lS69E13SKqpxZpv8xBQyO6lI+GoEwVkK7sZE/sonYpgCvtp1wR4xxn31qrWUiFJsGVWOWfK7q5aRValxREJqF3Em/nCeRoExmGxXXtTV5mzhFaUzLfUlXH3JGLTItFrugphowAlMDI9nB6y1YyDr7GrvvvJf9EJ46XnmJueRXhcBD6wv1U5Q/yJfEoPaynMdnCh3Y+uib8ikYv0937FVAmmsLqNghAGEQL3iR6ddpQGgOtW5iaqsGdOUOzOWnVZ6Sd2Z5bYa4eu5pAEaSrooZz9Q10Vg3y9Tuq8RW48bGBL237El8/9XXWjyZp7WrjY2/vZLjQScV8klu21nJhuo7P/+4jJG129FLB/okkt04mmZ9VaLl2Rgod7O0aJpq5SiA8jy+8CAgaZC1TjinmE5MIJVhYTEM7doLZ1VEumTM8WOohkLZIiTbHBzNnON6ZQThjFzYjE80mqLtxHxMjbZjJBDoGiYEOjp0cJZ6bD/mBNfqIQBDLHsZhZKEns+gMvEVPYRtKCaaSMQpjtfxZ3RTHVvwkNRumsDjcj+oOTL8DDfi0PcFP66pIVFdgv/0evvF33+KHBS60rfnUGVE6Ut0eJDyfzGK1UuO+oKIlLNGURr17K/Ozz9M80M4bgeK1e7u6/x0iqx5CjQ18gz+xNjVoCCXRJRQPu3EVHEbJJAiJEgYxTw/5of34Q+txpkdoEF58KgeJFW0201SK674ehCbpCn2ZtHDtmlDwVzl+Ve3RF4GHgW+mPr7wS44ZBX5NCPENrMfoOuBv/9PO8H9ylN++hds5w/BbF0jqT18DbClH1Z6YnTyVR9QVxb28wJEffYcbEpY5hGkYzLvBfxWwjZ2Gzqfg/FNMp3mRWiUNfee5VLcJU9OtdgRWmwIJoTTBmNdGYGaUMa+NupGjjBWWcHG2lIbKTqr1PqSEjnRPKl0u1WtMgaqL9a38YzxJwdIEp5emuL1rE4XKjdAFU3k9lnLoPVzZ2IyL2Ewm6Z4taz3+hc5eGrU53i0uQ6YqCwAoxTk9jf5tkgYRY598gRNqE6ayWj1VS5Xkl1kl+MVYgunCWTwTm+i3zWAiuaxPsXOqjvLoHzOY28a7ri2YgWsE6i5vLYfFdVy92DZM9r5HoyIEiFCC2OsH+fWM1zi7+S8wNR1dmmzq66c7+ya+XfRxDGxWnuZ7rstATjk/Cf06bTl71sxvH1GPslXvJ1MG2TjaR9inMeAvwlA6NkyaJs7z0zs+mNJ7wYcHT9MwPIhunmOWe1OBZ4K0/MucF1VrealCKCTW76WU4lLebpqHY+hVlomwpiQlC7M0xkZIS1/llLyepAKBwhUNsZBM8lIqdP6cVLgiQa4PpaMDrZqNbmWykBmg5eYm+IevrZkxIzRkoAIR16xWs7QClkuX5hgr8Fsmq6ZBwWQQWWhxDEEw3F5DbEbHTM/AcGWhxyKsc4/TfOfNZEUM/MtJ5NlphIIimcehrAgvN+/A0KwNiJYSvSSPvsX99esxyj+JrdTkwfBPqFL9qffBSqFIO9xDYZmTt5sWyV89zL0LWWhRgzltayohQVJVCcF9Bkqfx8erpPY0gGK1egV3n4fc4CiT/m1ojkb63OtIYk8BdMFkZhWFIy+wnG1DNVnPhwEcXQ2wmO7FtuljTLz8CwCKdk+t2ZNZ9zjkFQ4ysVgAqSD0crOQaS2ML7zIPZ0niOVv5FBRxprRqanprJTX0DMzgM+Rza25Z6hwX8Y9YOdV+y0p65ZFlFA4jIt85N0MLpSnMe3Rmfba1mKnPrJykYS5hfTTCxRHazlal7imKgfe1UuQQl9rv+2bNfjEuI5gmWOGjxWbm0JnMRqCSzk6LwecLFTfQVHXmxzO2MR4oYPbY8PkL2tYVCmBjV4KkrXckdjETE4nzuY3SQiDZAq0KaXICTZRVXGYR8RX6WE9jqHNhOKlNAN/s85NUuzmH9jB052/R+tSlzXtRVzI9ygCF+xxTMwUwJdMHn6b/MkBDpYVWDSC1LW/+qArTaNtfJhzjz6CaRho5YVsG5zEzMiks8/ANXUzbvc0leEYW0M5pDVUU15uLb5u9ybGowEuHPlrbjXOMFDjWnvptTdaWK3UyprTRGMelpYKmRu+B7WiiM3VQ7AaJ5LgRz5LeHWIP2zZRVLTsAsNw1mz9ns9UPcAhZFyBmcuclouMlzooHw2SUlIIr3LdFTXk9RtSE1DKsVzJXaeK7ZTPhRivDwv1Sav4EDHYQqjIUDQZJSxzijCv5JDV7iXeFEje/P2oAkdqUzenfkFY3V7CeSNwvmnyJrvZCXtK9hMO0ITbNvpwt93jub6jazOJEhznGduyU+uM4d0UUyvSr7neggrNaJqiRdtjzOdNZh6L3Sm4+XMJP0MpXvZOfs2dmmkNjIaRqp1airFj5LL1sZI10kIwdfu/jWClYUITWAz0rGbJqZSSAVmUQavCnizEn5wJkZTyCTgqiHPWcSGnrMA9Fc2UjPUxYaedpbTd9CpPoKh2VFYm9BAaI7rLpgUL6SRsNWDegWURd9IW6hnNCHJMHLYqfLQldXRUcCCBFm7iku3yKzKNJnteg73zv99Qds3gV8IIT6NBc4eABBCtAK/oZT6DPA0cANwEesRPaiUeulXdL7/j6P89i1kjp7n0BknJ9W9NJhdVIk+xibq8E60sk8X7NlbTPdL32TvRdtV6ISpQW+pRtXrTxE7+C+4zLO4vDFAsd0Z5Bv1biomkmy8+BztLfej0FDKxBsdYCGjmnOVTjrLHTz40kmKIhM8u30bvzjwCQzdhq7u47M936GGPhrWXeI5UqolRWriF0ihMZ7jJT8STNk8LOAz3UhDkjahW1UNcQ21CSGo2fEgWw7cia/SzcSxC7hOLFPh8hFdsHaq5lVplJIcKvCheBA79/GI+Cp3zr/GRbWHdaN2Shbca4qc7ZW5/P3ZDXTkTpNGQQqHKdrsl/EubSZ/6W70snnLfB6JXYDyulLRMVaVbZvZS4/eDAiq1CC9w1VIBZtVF7etnuT/Pv4ob7q20XKum+0zq/zoI7ev8dNQkBmPEnFmr7WSOtJb38dfOyb20etvpKGwi+wLMwTsszyiTtIrGqlXXQzlN5HQbaDrKKV4vHQzG797kNmmObS8b3HjwodIN6txLa6jG/Geny1ZQ/kCOisc1I9c4UDHJSY8uRQtznHj8FEyHhyiRevjIyqdx8WnkWi8s/NO6kcuv8cjUPJObpy9oTQ0XeO+9Q42nz9DWeMuykw/vvt+i9ef/T5KSvLTixAqh4LY+Fo+qBDgjS1xoPMYs84CyvuO4ImvcFG/Cbd7hnC4kMRQjOySOZz1ScJhB5FwLTPB/87ee0fHlV1nvr9zb2VUQiygkDMIkGBuhmYHdlY3O6hldVuWJVnRcWRb9tiz7OdRy2+N7bH9bI/n2YpWtmQFt1qdkzqRTTYzCZIgcs5AoXJA1b3nvD9uocCemfXWe/aMNX/orMUFEKjCDXXPPvt8+9vfl8HXUMbe5nJSpxeJnbeuJ6QCeH39ln6gEGhScVPE5BPjWV5we8hrRfcOAYFtHroyWeSmowzgrU3RNdXP+8RPqDCj/EVdkIKmc+fl4xyaqqLaMUfhlijKXryFxT2GpY8rMHIaiXvTOC7EyKf/GaEgFHeiyd4iqiWpHBpEy6bJZD2MPtdEbluU74ePMLPYCCxib+zn/fVnCc1PvGvObzbIZBcOsD21E4crTrgomSFRnNOXeSRSzTtee5ExA2CVehzTw5xLRPH5Vnl0l9VtK6Tg6EUP8XSo9NqaRBcrPo0rLS6M4j3RlOXl+FjXdhpsjfz41TVMDXzShyYsEVQbGtvmNGaqLS09XUFlXjEQcNAf7+Nmn8Fc4Ry5moMMKJ1f3eehoAE0o7V9DKEkUhM8KSVfdjo4MJ0ieeEnzK47CdcKqqWfS7WSy9oxesU1kIJ/7PHhTDo5OlRPw/nfoLXiCrvXG7DX7cCdWOeffTbLEksT5JXG3zUe5NHcHLEMFLI2WN26t3omgVBhNpt3GuvuY8Z4zrqPm8ETy+ReKmklzOmE1dFf5GtFvG7y1SFMIJmsJpmopsesp9r0WzSQZj8b0wk2JuLs8jrZv3SGuMcsQm03HKf4dZMaEAgskU6FWMreh33I0mVUWHaAfy++Tu2df0ShKF5VUPD1kSX27W8HYGkizvVvpJnyd/Ctx3wlruKH3kwSCSnatatovLeoLbh1EjNttSihilUKybWqJAeiU2w3HyGkykGaOBYG8dgN/M56NLFl8dUXPEyZNwQBBdLgnLmjuFHVyNminH/tFVYjc3R1fQzNrSPVUTTv8+wJ3s+ansI0F5jdmCDrcRWTNp1/zg8SDU6U5lohtheZbcZh02jdfZQ6Mcnvnvw8x1sOYTorOVll6c1tEpStJcLanMWcPivxFgJDt7Fz6DK9k+Oca9rBSF9XSe/zXIVOf9xC22vcTaznF9g1cpFd1y9iqeDpXGkaoUvfxasmKGFZOO6fHsLvtuHqbybpMXhhspMPyC7K1rfhineAkPg9Sa7YrPlbLX0s5tNowQTR6WmqtxcfSqnhGNXg8P9LIvBvNH4qSZtSKgLc+T/4+TngE8XvTeCX/41P7V88jnd08/utuzE0DU0oPqy+zNHw60TXmkkmqxkaucbaqh1dFsUSgaQHes9OM/3Md6wfaD6a78gD4FgJckBUotBw54PWQYSGRJGwb5RQLRPFbLiZ+uUpputbKeg2lK6DCVdSu6lcXIZuYe0WiiiQTVlJkSYVDbF1hLIUt2tledHnDtKLKQ7OrDAfqGHDUY0zv0ptYIHQ/mHclb3AHmKXZvEJL1eDNr7ZYi/FO6ujU5RKuQUFJ7idE5V3UhDLKDDmAAAgAElEQVQaM5UQSuR5tIjW7W0u5+8O3M+Zr/81Gw01FEFKlFIsalE0fxunusIoBDqKD4dgciltIWTK8sQ8rfdhsB2b+jk+dOKL7B26yFxdA2v6TSxkHRSWcvTmTuN3hgnt+yS3ruZ5oVWhMNGUpGvkGud3HCrB7VpeIRwW5fddIr66wa82/AnjiTzH1CgdjDAqephq3/Wu9nMlBBfbutHXRniqa4nj3mf4s9nP4Ip3cHS4jCe3Kcv25kYoUwhMITjR52XP/Cp75sYQUmK2S0vLSlOkVVmxhGPxmTDzJXVyTUlciUmWRQuJcicNf/YfqK1oISBvIq5PErB7eeznP8bKa1+j2vlzLC+n0RwLCGC0tglTaAyHmnjw8ilaFyWzda0U0gkqEzrJZA0oRUXVIJ23jaDpEimvcmXgLvJRByeefYbtxx4h9vQ4qviMK03St57B1ubDUAq7EnxiPMv2aIHza4Pove1IwK4M2oxLDIkQneYqYDluJBc9XHS34V8NMFv1FhtiA1B40mu055aIfsrALOqgCQna5ppbRNoabl5GaIrCQUHl8Shr0w1US5Njl99mMVhFOL5Gw9woZaEs3roMyUUPP9S7mPJ+pPS5bEjJ6gM30/D2JOujASq7Y8W5BC3Nn6Kv5VdYObtE+eVVUIpFLcYp+yggeUdL0BKrwKGqyWPxII+MXqY2Ya3qgeBSSXtvRHQyU9tOxdU0zQujOMsqWRMBpmosXSs0q5PzVi3G7zb42de1H4DDj3p5aXCYF3t6MRVoCu65kGHP5AaVcYORVgfnW1z8qMHO0/V2Hpov8MBCHsfSXq6PznCuO0NB7C9lylLDuoFFGsPrV0bYPlONcNxGfa2VoLxZnuWzDfchhYaGaZXSgzYIwlMNrbzvQi0PXutn0lR07/JQHTvP3rUm7O1ODGkJAO8LDuPS7NQoeMcEz5TVbQ+w6o3SYRRooIc6VYkSJtny6mKSsKkDBO5kikIuip5OInJphJSoYsdrZSZP8NgDXJmdQ5kmNjQ6zBCmkkx5NKpPvsLK1VdxR3pwJ1qotrcQD05vPT8WXwKf2EdSnLfioqnh1XVUeRIpXsBe2UM+0o4UJidaf8iCdxz76DJU1pQSlKvDEf6Tzca9bVWIkSimIZmqcZS4iiaKheYEubo/pamuwG3qNX7CPdZJFK9VYsm9SAW6MvmV1KvcMzZOZHaVfFU3xtoIZnSCSo+TsewMMmhVDgQaIVcz8ozJ/JEO6nUHC4ExZMKkoCdIVFwjUe5kob6DikKqpNuWd7Twjm2MEX3R6lTXPXjW5kgduJ0LsoLa+SyOxAjL/nFQNgoJC326vauauo0lvvvUWcb6DnIivA+paQi52Q5Q0nBCKEX38AxTqTJU2IUUOkoILnf3U7M8SdPUdSZ6O63OeAV7100LBVOSDTOD0DRSB27mcvI4LasVTIciDNdf4KbpY3xgapnhxijh2CqhRBQJzOSsuOIS/XyvLM49G3a6NHA7U7zhuIyJ5BJT3JffzcSGm9XIOMaGi7HnmvDWZfGOeKj+9CP//5KC/0XjZ44I/xPG7OwsX5+Zp9Dcw6Zp8DfFJ2kUs/iDi0RT5fxQXaSiWfDISQWGFRcqkiB+fLL4V6w6fuS6l/SSi/HKclStVYvpzF3ntLit1M1Yt3GaGUcvqqjw7cplAUHTwiQ2KTEBTZo0LE6SXfZycey9mN2Wnpcq7nQemt2g9srzbN8owxloo1aWI4FLtinqZDnh8HZsbR+gfmGQ9KlT5JsN1j5uMJP9LnMXn2TP7m8R3NXIhUSMX9u/uVOn1EGkSrwjhQZ4Yp0Y5VqJKzVQs8q8LkudKmWRKerMALWFTt5xjKGUJbxQK4M82VqgIMpQWJy+f1iRIO5Ex+SoehVW7bxWc9TilykbI94dHOI1Pt2+yDZHgkxkN7eoVt5Y+ieqXY0ITedo3MufnlnlZX+U+uibbLMNkFkyuV5r6T2t+4KgFNX5NZrsE1wU+0uixCd997LimWMw7qLJoXjN+0cUHMVrBlAKXUq2jw3yw0PWz666xzlz5zT3JNq4X4tyXCb4jghaXLLiezaD9GxNAwvVYY5dOkF9bA3f1QJqhw0w6FbX0YXCFCY20+RQ8iwVy4o1KuhaniWUiLKiBdgW2WBJUyTa91j+rwjMgsHGdIJ2bzUJw0ZIVXB/fjdfLZdIrDKTlDBX0cjAjnoMfRs2aYn21iSjVvmrfLkk0bLpG2kk7RhvfZ/hQg1Bw1NCfK5XrzERH+D+gQrmgxV401dg0sfruRnKNhZ47NlVcvt7OBJY5i99UXrG8vBcE75iAjWd0/C0PMUuucj1oIO7/XZGN2wMNtp4wG1a1ps6CBMcwwLbmiBzc9EkHCxuXBEOaDyyRNIMkxEadckodckovloX9uoU7XfPommSWqXRJX6ZCc3SWNxszviJaOPgzYrg9Tizb9eiu02ab/0FOjo+DVgOKQMtXkbPDzO8PgWFTcsoiS7X+G7jLr43OcrG4LlSwoaCeKzW6mAVHfyp9lmMBgf2MPz1P3yBPY7LvKQeoWXFQJeWr6JdE/zu7oMl+6WTJ89hPPd5Tm8/hEEPaBaHKOO0nrkJu8mSP4aphZDCKrk92Wjn2Xo7v33cRMTmqZydQd+1x+r+w5IhspA2hU0qbovXARKtuCHRhMbJSmXxlYRW4jmWtCeBf97jwRuLsythUrc8j7N3G3V/8UV+P/+LnKu00ek6TnfbUEkq43BXktnlGDaXSXrFy4M//2nUiWco91whG2vklVwc0+FASBOh6VYioRRqfYawGaDJtp2y1YsUYhNEvW4qUllaH3yEuo9+lJvPDvLG0y/ykNFKSAUAg1NvfJPOPd9EtRUQrXYaz/0OmeQdOCJjiOaLxcTQ+pBSXASsZiahC6qaLlDFeev56H6eycFP8CPHKRa849w+dAg3Ls7dAaZm8fhGa+2MRKN8+VKMz264ALY+02ITwh0dc6CsTtRbxJsc5yh5VXy4lQI07lrI0Z6Bfesb3JHdwKzZYPXqOPnoZAkQLM9sUDt+mTeBXZV3UuEMlxC32GiGqrZf47Z1H/+142m0dIBy04EQAqlgQaxTI/0siRinnGtb6LBFHSV14Hb+IdxnoYONisdPfJyLueeZlVXIbDMAVT4np775VXRvHfPl1aUKAELSsJJmrqZYei4mtNVVKxwevsBqtp1nbrnTWp80jVdue5gP/PgrfOLFp6DzPexbl/RFCyghEEKwu+JO4vk14rEZhpunGGmcQimwCZ3evmbE+TT16xskvQUMu0WRU0XIQlc6h2N76TKaWREJLtomMItdxKaSnC6sIWQzmq0RNk6TWfKQXXTTMfM/ot3/dIb+xBNP/LTP4X/q+NKXvvTEpz71qX/TY55/8UVmVlYYDjVBKYApalhmIz3Ocdc0UVeU6qQV+MrT4M6/C2Nh83+aP8CqaWfd4yLptvSVWhpmOBA+TY1Y4WH1A7KFBOPO29n0e5tu7GKv9BFabKI14iEQm+bguadL/CVhtnC1o7GI0FhoW9fkEDfPrrAveBu1MkhK5HjRcYlFbZ1xfZmwLMfV3MNiy27Wp2MkDtoRrWtForbE7W4iFLiV76VjnC3TrZlR2kWxxW0DHlBPEXJe5ZLYUySTC+5ZdGEbitGcU6AJ7BVu0ueX6HX00SAr8SkX/kIdiyuvMhsd53prb7G7DiuKFAnUe9U52i+tcrbBMl/WlOTA0AUaXTNkDy3xckUVqbq3aVyvIZ/WieTnafZY7f8tGY3Okf+b+vecx9+QJloWZpAdViJVPP+MXsaKqC0WQaxyyIKtkbhzGxH3rVR59zFbcKC0YjeTsERZ33PpFI0zLzPUIFj3Cxyag/eV3U7yzSexL76EJ3KB5+qOlsrPuoTehMmaywpcoKhbW+HOt9+kdWCSef8esgGT7FwNgTmJP5umZ+giP97zKBP+BqJlfrqXZvFv5NlrNOIRl5leWmTV66TZu73IqBOolJeo6zyuwg5A4LN5qO2v4Olil5+uJP5cjGV/RfE8BHtTfrYXomQnLiNyOSo6E8XKjcbSxRA5M2jdn7wkrFsBfFmLc0lOklE5fBs5auMRSE9jzI+RM61u45h3mV0P7CW7tExmaIWcw6R62kdm0UMhbcezYaNt0cOpboP3tBXockn2lRlUdHyQpUw35VVWMwomlH/LRjbipLDXKJVKN6eVECA0waIyyCTb8PtW2Wgu8GrAS2Wlg1b/SIkHp9Y0zpTtLcrJvHsu76m+hL8pS0XHx7n98Kc5Px3lhQuvMDP3JJ9/+xpGdBwpM6XnXkfjYK6FvuZa6l+dIO06Q3XNOEpp1GVa6Mz0YESbOefrY8DVUuJr1TW42HNzkra6NdyeCgYTT5KxRdHzM+z0+8nHnXzwK++QHTxDOD2Lpkyud+5ECdBNk1uuzJP0+nj+tgDrnjJLO60UZqzvtxegYU1jUZ9BoPCn4hxODPPBwREOTFwnHF3n07MV7IyrLQTZukOYyuD1sBtQ6Jg3zA1KMWBXbpYjGwaj64sY05J8IMhCzEd4TRLYyBJoOXVDUg3+phT++gyVXUnC85JE+5tkyq+RrzvHeqyGfMELQtAoK+mUdewyWrFnc7TX3k404MZfdxPl86MEI4u4Cyblj70f9/bttNdX0z08gjdWi5XlKzx1x8lXjFuwJAp7rhp79B5U9gC2vJ9U9bXSJ2gFs81/spRobn6tT+S475b301C7m+ZzvTjiTlpXDMpTJg5TsRqwECSpwBxO0LRq4M9KWhtTJF0Fet02DuhLOIy3AagkQp+4wgwtRKkoIaATPht3LRnctmIS0cHjasTXmEeFuiksrJRWkFWfh0ywhp7goZJUhkLizjxJevkBbIl6Dmd72ajPkkjl2CxrGGkXRjrGJXmObHHdYfPdCk419LJU5gFNoAQY9nXa15ZZCr+EmWnHrsr5ePUy4ydeod7dQcwNw6GGkn1Zxm1j78AJlkKNxTtr0OYZZEfnAM0XMrzec2DrxiLQpMm2K29QtzCOLxUlbcQod9aWriltJEnHu/GajbgzKRpWBR/u+wgP3vIIbp+d+YE0BT2FaU+9q9QsgID0kKXA644rJES2NDU0pXAkGtBMJ5hxZOE6WKQk6tdT+Gvr8Ozby/+K8bnPfW7xiSee+NL/l9f+DGn7V47MxYs4vvBFwjcf5pbRAU507kShsGNY+l11s+z8JzsT0s4D50EYgNAQNzBdrGGJV+YP9PHO6Jr1sCtFrUgh14J0qnE61SgFpfgq7y8lbGCVNGL7biUws0DDuiK8YpBLzhf/rkbTuocPD2T41s4yqzNGwqG4nb1V91pLuRAsaVa31iZCsGRLMD4YYG1DQvtjODfeodkcAhRKKoyZSlZfGmC/V/CVKvsWlw3Ynl3lqqcKJXSEMskID9/SP1K6YiXgO/1lHDmbIfHyFCu2BPGbnNQ8cBBOQo0MUKkCjDTNc2kpQrm7i2MDJznd1cNiWTWbLX4CsI96qB9e4BHXW8xV1FAfXeWOXJTcnd38nvZBq5FAN/CHX6dpI8Ouu+6m7OoZUhM+pgujvHF0lv3FnLNXXUXHxCzxWqyvptJplktMa7WlY4OORPHOhhe7NCgoUJqGZpro0kSkc7iNdv74O6O88Ut19O/6Na4/VY5pvh+MQ2yM/ZDH5v+Ba9178Dg6+VjEjgB+fb+HgpCWqKmR49KePdirovhvPovQJYHACpmBcmpnq7hcUUtBt7ToTAnxGj9Vfje55FNcG3UTdTuJbCwwlRyg3b/bkjVQGouNR2lznmQjXs1qewsqt8EvzOR5K+Sifm2aikyCoVATFD05b4vYaZ9XLOYy4LeeVYq8lHxFDXl7iLySmJV1nBoz8ToTXHRdxjStMvmm0DRuzRKAliA1xUhHjvdlarjw1I/ZZQZRQjHcHGf3ukY24bfeI2G/x8RW/DiEAtvqWyTPehidaMJfm6ZxNslGl0FC6CRHLD2l9dEAZW3lNOwYsNBeYeeWu36bE0PHcdhm+FvtP5LHxlAQDLnBndqrIGBn9Sv8drqK8x4vb4k7kEqzTKS5VkQXFS1hO+eno3zlW//Ee2/6Lwhp8NFdOlcH7iKZrMbnWyXsj9EWOUhtPMDVk4NEfJfZ0f8qCAOhrtF0fh/xuJcVoMv7EjZuoqBsKOBCdYb63BxdZa+Rin+bVftusmUfBGHj9yYkH5qaoDIHc64w+4VOeHn2hs7gKcKJJs7sDW9pZ8lN5AjrXijYt24yXVfH9w9/DFMDhzL464HfYp+8DjaILH6AjN5nIVvFuS2VyWRygPDwDB/I3Um0/zp7A68yJ5p4gftZpAGUlfjnhIP/syNDXSxGODHNfY37MCZi5J0pColqli/8ArV7vr1FIdt0+jBNVjIvW8fUQZgmwcBiyWlkXo+yK99GlfIRD/bwkrPol2vTuKVjO6GzE9Z8iBWlKmbPUB2YZpV6NslwhWgQoWwoaSKUTiBqsgnb+ufugGszJELHMf2K/E5RisXFMF0KYkLZ8K+3sfzsCi01FdhaIXYVGtYKoBRvbXeXYogmFS0rltzHStsS3wp2YGBnLA+n1F7+UHXRqY2U8sMZrcUKlKUSqeLPe120JQv0Ju8krnQ0r0b+g9Us3nOZ8sHruH/0IyozeWyuJjShselwoVctkk46cW3Y0NExpUl4sJc1bZGUfwxQrPqXSAgB6XVQZVjlWYktHkGLRzB6+oGqUowXKAxnDE0zeaBJsm9pmakXXgIgm5zjI6v9rC3GebO+gs1mkUrTwWMvfJvpI22c9R/gDXE3J2xH+czOL9Ixu8xo85ZC2KakyPrGAleCOumWJh7asNEfMxFojIR2cboqQOOil/ah80CA5bFXeTa+A7ngQyqFKxci51lik0dn80eoCy6yEFtjJFFdouGgICg9dORdlJ/9GvFgJ0nGWe/JWD7bCx7WIx48N+3nf4fxs6TtXzkyZ85SubxM6+QUUtepyCRIN5scDr5iWR8BTV5J70vGDciaxOE3yCdsbEbTsto8VTs3eFm4LGkEq/WGeWcNRsZP4iUNf9U6368LEymv3iKwA3Yl2RmNEy9OUqFrbO0PFWZhnh3jjXx+Q3CxQmf3usnOXF0pYVNKUScDVslBCDRNp6yljZkzG6UzTi9qRbP4NOklL+HOMpymYldc8fB8gScb7VDkk7QmBMOeLXHauAqSF/ZSwrOp23S+wkZtYpXntQuY562y1oGd22ha9RLc1UgfAZYmppkUWRCw4qlks2ylYfLg6gsEFwxap6ZonZpktWUbYSrZVnONL8Z2YLg3GwngJxknH29aJT/2W5Rlc9QHdFYf+SsGxqdYotPSY5NjPD7+HK+FbmYpWFUK1DomPfZxZs1K5I1li6IG157YeXrfniKYTDHa2MKLh2/juSN38NKh2/jkiz+gZ3aajcgbmPJRFBpGYRGpBPUrs9SvzGFz3Uyi7Caq7IIHL0kutecJL01Tm4qhNI2VPR4aiiXJMdHO1fZGnGMuvImoxRQxTYSSvB7eyetC8A21j8dmvsrywdsYbetjbGae308aCDRMzUSW23Fe/XtWjHK+u/woc/4anum3OlAng36a1pctJLO43v+4JcMt4hwdyRXidQKx2SygIFC+SjJVC0Jndk7HVVBkPFsbABTUmxXsNlqoyN3GiZ4zXM9fJtJp8ov1D3DxqaeQppXUKQW9UwHqvetMClVUIlFknFudhQDZ9RymYSe77AEg/8gaBR2cIolTgTIFa6MVOPVjlP/NMEZ7AeekjcQH7cjsDEMN2yhgA2El3t/QP0mTmrH8RRU02f6ZfvLcypsli6lONVIqBS4PN3Hu+hi3esfRilxDIU0CgSUAdvS/giYk6ZYLLFz6dV6Or1PfcJlmrWAlJtJgsvoMp7N1tNafpEMb5UN8la/xSaTQOS9u4jK7+T/4j3SGR/BneogK63xNqZhK5nh/0sHrnnoc3vfBxiD1y4PULc8hhE77kYfoubON48tL5E1pSVlgcaiEVBxeXKcuk+PiPV3IQsqaj1LjZGAX+xKDoOl477mF7BsCJa04I4SF1GbMBBG5yt3ZGa5NTiL7Nb6lfwwDGzom+9IX8EXyfL/b8jfVZBcPXX6bseg88apFrEL8NK4kxb+7tdlTykrKC42qVJ1WQsdY25KdkEqxoK1TKf1MsPau0tbFWgd79j9M7eQgejBQEpZ1mnkC9utEC78MaDTE3oPz4jUS5Xkq4xG8mbeJcD8KMKXCiEyReVhaeZwJLiNIzhm3Tk4KylZ24U604Yx2cX6mjKXo9wAT3W5ne+e9rAwaDFdrqKLvqQDu0900RKzS+MlOLwb20jUZQuO66qPTHAEJM65HkPIGL+nNxE1JXgvm6E+4EAiWZJwXXngDU0l0u43H//qv6BobJ+mrh6vW3BOahvA2cTXayS5hEfklilUDDE+a0gkCGz4J3kacy7Mo3YYtk0TPplEoOi+/yEjNL1sqBsrCoa/XFmhIdeCcNHmmcpVGXzn1mRRhdwd1qpxj8zlO1ilMAbpSmG4XE9v2oelJJHqpyeuKr56W4dOMNT5olUCVxBc7idQUV7r385MjD6KExovK6iKVwF/tq6WgCfTeVh57Jkz98gzSNBh55m2c7gPWumj48ac7SXpHCfhXrHlZtNi7MnB3ye4QIK5lWM0tUC4XMXNRguENKo4lEJpCSYH34Ae3ZLl+yuNnSdu/YszOzjIaDOAIhWiZmeGdnXtY9FfSuTRKh2+MTZm1jCrDS660SYt5XGQbNTzTkmAmj7A7qPqlh4iVh5j4zk/YnEWmu4xMUzcIjZzPRqSskgv1/84SsFUm9YsX2T0W58jVMeLBR5C6AyEg5LrONJuWVIr5xmVqal8gu9bDoZUO2jqDiHiyROxVKNbXh+mx2bjmdvCKu5VbuprRL4xhGBIUaPYGMss+sitl6HYbor4KNZ9HScV7Fgo8E7ZjaJZJ/O3jUQ6vz/NabRRHPs8LobvY4giBUApdKfatGyxqUeb9ARaCVYRja5w7+SYXCwUqrri5v/L99Nl7meICC4GqomuA1S16u/wJRwZPU3UqjZ5Lka3tZn/9LyA0naS6mx2n/hH7wyYF3ZKGCK0MkDtynHFhR2uw0zWe4aXJi5zw/RESgR2DRxe/RC5bzqq/aKSsFHvUOR4QT9FhjrEQ7We67GESju2lsgXAZHk7j++ZJ/LCmxQ0H6amI3WdghCc3b4Lc8aDhqTcEUfPB9Ht9cjMpt6YjmarJyoVA16Np3Z6MTWY8gWoyCSpja+RnnWgtglGRSd/pj2B4bchdlnlOxML1rdKxxayYgAXdh5lsLkNgKnGTjj5Jh2FDMftTh6/cBKlZbnMIQxs1r0t8k+UJpiqsoQyLYkKxdO11bxY+1v8wZ4n6L5qw1TrVuKs2Ukl64sLuoaes1AutRFAc1mClRoae4xWS3UfxdHsIW4W+/nL1S8y/9JzaHLTrAc2v5tIVaHrgr79exivT/GcOUW/Kq6hCk5nnPRrirLqLLV7VxH6FgAqrIoudfft4sJ3B0lW3Uoh6ydEgvjlFdq67XjUdTShLHRYCJTSuE4fncraZF3YkNxuE3SIEdoZYeVyBaPTzZR3JtAd7czOLEDETaayCyUtrqFCYBZcBAJbzQUKg9SOSeQ7PmLxWhqlJdujlMbVmGUAvxkTkvisEmMJ3bUxKKzWtZ5gL3NmkVMmLU6UHcE9mhts9WCrp+DsRSvMsVDXxQUVYN/Vy/z6+lkGKw6hTTp5ebcHE4WmJBWrV3nelmCHvRW7qVGQEhuKw/HLWCiqwly8SObU97GF9mJvOlyUoZCs5BZIVt8FQhFPVHFtuZ9CuNgFrKDJM4Zyazd0NMO5lh6azAgyXZRDkgp//TUrYbuxcqsgH/XjqEiUStxvzh/kdHIfh+3TxWcEXMrOiogS13PF87V2B3GPzlttdt4T/iji89/Eme0kYlQwRZgqVUEZRVs2oCxRR13mB+TMHgpyBwH9Syj8GOlhluqWS3xJFOS0BELqKCERykbF1P0Y621M6jFMYxaKkkGmYZDamMBZGKN9qRpd7gNN4NB13l9Tjrkrz8v2PFeCRUukzU2hMLjT00nt/K1Utd6LHu7i28MFDPRS6Xkzoc2WBbkSKNAflyzqUUwlUUphmiZLDgedv/wpfNMJ0u5lZDJPbiiKOSnZy34u5fJMhk4y5JihJ30PBXvy3QuaEEghSNRUYc8WKMts/b5zaoHHn/4Hrmzbz2BnP0PhVjTx77Clc3y722W1PSjF/QMXuW01xDIJprIXOXY5wEKwGmdhg9d6dliJvJKlJjIbJmLR4PXDD6KERW85euJpMtoIp/u6OHnwwaJ3s6CgFOcqLGmkQqmRQ2M23Ebd8gwKHd3eUDrnmmYfZdtMzlwceVfTj8XFXbaSNrW5NCmWjDTRtgYUilD/KrWaKtEmZqLP0Tzy84S7tvHTHj9L2v6FY3Z2lm984xuW/+jR22krC/DMjsMUdJ3zqgfHbIqjjT9GaIr8g2lWVoJUX0oS9zg53R5GagKtQ3FndR3VFY2w82Fm3/hasepuTdWCxw9Cw+dfY0f/azyrPVSUSNARCu49O84vvvhjppvuYcy/gswvoNnCiOlVtDITQ9PwhLLcc8cLaJoCHLTWfYH6sjbWvnIFWTBRSjGdukZXYB+a0DkAFCLzpJ7+FvfefxcRUY2rzE4u3YbD2UMmNoEn2MbxJ1P4pKLRIQiuSH737SQLLU72L46x46Xv4T70W7iWCnypp6ok+YCUNEcWCCXjhONr+Lp7GFkM8mz3NkzNEs19UClqk1GWlWC5ECt1lIVja+jSkiKwYbJz6hzpaIZIpYtCfRfllb0E9BQBf4RM+SDBNcWfzr3GkNhOZTLIfH+YEdFBpxhFCnimfTd/qz9eEuctKIjqzUQDlUhtE0oyaWOUbjGCRPDHPX08vQLflJaG2uZY1qr5vYb38p9/JUzTyNPYeYSCBJQi5cmAMiIAACAASURBVHKzFKigNrFO+01ZQpV7GD0xSf3FRaJlTkxnByMVCWStjSvhFgwdK1lSGrm6NNWL50mvBVla7uTZ8MPkKfJNtGKxWWioYtdcqfFDQdZbUfy99bPTbXUMLf8FkaBBx+ISs/k6LtLHkr+CpNNtoaxKFmuQN+zwi8cwlM6g3sfNgUmabvonotHTRBbaaHTY8TqHiY4NIcwpcPazUfCD02B3up06WU5IBYsIiyXhYFM6e6OdxOQlS7Zhq+ZUuqumqTifnmGxys/CvJvPr+ns8xQsBffKea7cbudDrSlsRVB6SzlFIISd9FI19pY081oZANmuFP07/gqhm/iAD8sv8w3tUygFdgy65SDpTBDDs4+LM1eoH3MSqMuSXPSQXfbgCWWp7E4itPMEWy8z8+bvkI20s3zxcWr3fheESWvnGcyZQwhlwZCaZqe+7W5sZ8+RSlRzdeAe/IFF4vHakvPHynI7odA4PeIamrZVmtcx8KoEfyI+R8G0us4PLRXoGtqgPlL0/kyZxbsGmi3MfKiJ797ux9TghLLxg5nn+fTC3/D57f/Iq3oZJqr0elOa6M+d51f1FgbKddoiBhFfG3/btIvDyUFaVpyYKyOYS0MUZk9i23WQqK0au+d2KvUaOkWKSaYQKTtCCUBiw6BXXEMBNvV+DGWVFufKa/j7PVUcu7xGKLGOQKM1fisZdQXUlo+pVBpT69torziHkJKCsnFq4SY8wrCusYjcRrQUp+wjW7zDzY7SIrVj0ZbAVdXJ+ESGH2vvxURH1xX3mVFqVDkbgRHiDSfZcNQhc70EFg7iibdQ5fhDyiqGWUjsI6AmSws6KPzzt2DPVeKOdOOKd6B06KMcWVnOG/lBIhtzSHcZVxxuzO2WVdQDV06yVF7NYz07mfr765iG5OytPrYyVUU5a/ym+hva52to7fw0nt27iQ79EX/AOQbpo1ddAwHPyIe5oN3Ej4qNJF84m8GpHFAoTlFd0OLOsPGdP2bt6i3WZqJ4a7TifHajsRwvJ1J3jWTVVeTWtCsNIQQOrQzKIOsJ4J4ZQsulLcR8eZbZcCuy2B1vojHu8ZTijFSK53fuwXHpBH0xAxNJKBkllIjyVmd/yS1HAgfS59DyG2zEbMw6WjF1vdhIY7LhKuPwpUpeOXK4lLChLH3SwPR5YhvL6G0PWp+rEjgddoaqtuMxt9FBuHRRq7NJOo82gNCIFZt+rE2Tjpw9Qk2ymhXfaCnW6emE1dwHJJe8hORakWcHFV0xzv/ka4S7/vy/ywX+rcfPkrZ/4ZiamsI0raTHVIo3NiRGsfvFlLBYXo0oEm2FkEzcbCd4Fda87iL5XGAqmL46jH35HaZeeoHYPYfQhcJQlg/a9do52s06AoFFNM2kV1zDhoEhLbPt3cODJPytxNx28qknsXZ8Or5knv0rSyzu3kFn33Eim6K3Ks/c0F+Rb/wNGo71EX1qFAQ0eXstvlMRrnhvKoH3jW+Te+n7bPvaV2+AhVuAfZx/cQrTSIAmaHRoXA3qxCt0bl006I/UsuoKcSFtMudvZLi2aCurFLqS7Jodpy4ZRSK5unaBNccdpXZvKWChvNoqC2KVQbRiAlubjPLg5bfRamrZUfctOlquoxoFI690EfN0kxaSpP9l+vtfBVGATghxgoTs5U+1/0hBPIqNh/gD9QSdjDGobb9BWd8im4bHJqk0kpxv7kEKC8fqUtesuypsRKerSYwk6KqaYbkiyLqrvISMFJRgYHqYP1s4zUPJz/DXte/j9dDtDNa1MlTbzC1jA2jb93Nk7DI9F/+S+J1+bCudHHc4qH68g2p3JZcT+ta9wuBgzXE67hll+J2f42XzIOfFgdLvN2VVUBJNmlYXmNARwGcGM0xlB5isvLWUePWNDLJ9uIaXb1rmgttBb76BBX9VqSyKlFvkY2V1EDZHlpitDKGwEuVeOUjNzg8TCOxheihE4Olx9ilQqpuLahanPUVEjuPZt41oIsfORDM6OkZRcthacxVSSK47xqgTVrlLaor5qixNKx5uRGT1q8tc8Q4gKyS3N9xGX/5lUCY3eeG6r4C+2eQpITlfRmbNiadqg9hEgPVoBspFaX2M12g8oz9kuYQwwp28SnUmwpS7hV5xjQ4xwuJgNQsDsxzsbiG3kmBj2Ur4hB4i0KIjtGlLXBQTT2iE45lmDniihIRZ7FCT6E3vABKUTqP6DapDNTz4kI2JkSCXL7eTSEwisCxzDhY6mYqVc2UA4iEd6izSnqYkTfFvcM5VTt5lA0tYA/uaQf3qu83aAYKtPp5cXcde49qyvZI6r/ruZG9ikMH8LKaoAQRSCRYDVdTH49Qa5TiSJr6lAnNVNj659zMYRf7h59xw83eeRRUKCJsNp/8IIWxUu2FmwyQkA2jVt3CiM4gUAl2Z/CJfpQMLrfzc1Js87bud01V6kQ4hmA9U0rRg0KXaqN+oYOPcfyAefpuUY424liZLHq9vnfGxvfjJ8fXEnYzHW+nUVgALabShAUXf4dK+qUgyV9amwCltnAumCOTXMF2VFgoqJEn796j1SmZ3n0NpmxnZWyTCJ2k89+9Jp+5AcRe7eu4iOf8V1hpOFZF9O4GFw7jjnSilSKgsfuFGCA0hTVrdu9FSEdZ81RZ6W+wIr01GqUvFcEbtCFXFZJWNoNwsd1qHf1T+kM7CEMY3Jhi1nUP/9zeznH+dTowS8vuaeRfn9f3WG4SgoCl+WC9pGx9GoVACxl3TRH7yBbyJj6CkVgoTUJxjQMQQNMZ7qJJlpD0TbHGDRSlvE0rccF9ho6ae5fgidmc58+FWXLkMumlaVlibG7zNgxW5d9dDDcwFs4RjOrWJdZb9FQzVNm3FFiRV7gVeLnuAfNBWOgchJbpp0rhoJczixhMBfKkEU+lBwkvT/Nxzayy2PEjLmpvweg/Qg4atGM6tv2eaJnOzMbp6DrE89RKxtWacjg0is7vQYy3s9th4ocQuV1ht59bzpRDkVz04azPWJWqKnJj67+beT2P8LGn7F46WlhZ0XbeQNqW46coFXtp7mAKgIdlXdhzYnDiC6Jrkm3frNC3moTiJBIryRIqoy87pxkrk8BhCaBQcCWaq85RHdPYOnsDsdCAaoUMf4Q/MJ5g+1c/es0M0RCUXd36aicAEU1UhGhcmqF+aZdGTxa95iJLFFwsSkUkQkjHVQTTTyK1vfY504peolpYZ75K2zqIWp06WU6X8RJLnMVx2NEc9K0+P0RVoQxoLzF67QmPfDlxlfoQQVNksNXWLPA92BX9/RlLZeJh1U+OCP2BZZxXJ0IdmM4QTm5ZRiv68j3jKwN7qsPSbpKIutlbkXQgWVs9RYa9GVAEKwok4t1edIy+ul3bA3qYCqxHrGL7AIkpYnoCjqotB0UdEq6ZQTGgMpRhkO7tWvfRWDWHXDQrFbtf3LfwjTevTjOJi+9B5QONIRzXBmgPo+T6uvJNnSMpSkqMpiVAmik0PPEFUpUFo7EtcJ1tZKJVzJRpvde7krfU0Xw7U8Ye/1UKHGMUuz9Dzxm/S6a3gUnUjKrOAFaokt6rXLWKyEJRXpLnu7S4eZhNZsMoEmpIce+0pylIRIk272Ltu4JsfQM/P8pu267wUupXG0WF2XT+PRBBe93CT16SKBRYDlaXdr9X8t5nESnoWp+lensWd38DhyHFw4x3aCrsJ3WP57y1dXaVbgV68vr1V92AlBZIzwQUuF4Z5XNx74/pkBVIkx12nCQ0l2fQMsrXUE5cJBMkb0D3L1qs24qIsFKNDDaEhS2vEdo8szS8lBbEJHw2HlxG6wluXYX1gFZJW+WPJX86z4WNIIbBh8Ac8QQcj9Lsu0s9Fq8ImBalFD5oUzKfm6RBebELDZrNTv/29xCOLKPkWYHFi3kq0cUtvDVTdhhCvoCgghBXwEYBUxLUzzFz4Lyhl4iu3kfN9gPPxJnYJxR7lJCcKNJvVnE7EuBRsLz4vGhJYEQHW49fBaSBU0a5qpejcccNipmmCu97fxTZd8tVXxkpSEpoUpKdvY16+yu6qel4Vgrwp0ZXiYERwT34PIQKsCBOhwUzITkFYsjUS+GwO/unLX6Xn9ScRyxGySis2spj4k9MM1LTz+W3lSEHxGReklM/6fCRs169jn9jBuYpKy3qu6JWpskPkZAMyoHDF2oknqrhY9RJ9/S9RVkSPVa3GwKW7CC9uEHOnOGCfRRMKITTK4zbcRgpRzlZHqxL0LmTwhLbjUnbecYxh1lejiwo0Yekh6ph0aBfJVdgt2soNHbVKM4iHT+G+/mFAwz4J5epTbEzqUGdSHrsDd7wTa8uh8AlH8bjW5sk2/SpT+7qQ+uamqziVEGhS0BJxs1jv4IvFOKlLReNGhAeNCe5+/Q2cwzZAsvarGdh4hVGs2LVNXcM+r/H1+k/CDaVzgIzIl3ijQkHv4mFGAnmqTIuKopQqynko0m7JqGEnahrWfMsFwKOBVNaWeLMVVhVPvoTAKVwrSzj85fzg2EdLvsVHTz7PSlUdV7r3bl1z8fVCSobrmi0PYaW47/wJCroHNqstynKAeUF7yKpWaEV/WkBIydGTz+OPT4HQ6Ru5xNXuvRYKByS8AX5w7BP80vhxOrN2OoYdCGurVIovUpkoAfMVNqZCLubtk9TMnGL7nhfRis+XJ7DIVVMyHu23Gh4E1qod6AcGcDUYdNw6XHq9khZPdu5/B2Vdfpa0/YtHY2MjH/nIR5iamqI2n8d48kf8X3/zn7jU1UuoZYbu/qHNiiDGgJ/3fC9mrVF6jqhzgbkKH0MNAlODdbe7JP2gpKJtQeHKVSCFYDyoOPDOAq4pG9dvVdx0corbxmdB15mqu4OZaiffPXoQU1Po5m089uzXUMyyGgSSOd6IvpfA5ARTrhD/NfxejLDO50O/yMdfeIYP21pZ0WK8UBQXBChfi2PYFxDtDTi870NbquTqnz9HPvVDTMNACB2n/+dA1LEuYaRyS+nckFZzwcF0lGzATsxXBqKltLO8JWWnp9DJZbWMQ84z4EiyLxHh785KzpfrqNEXcEZGSbTtwxtbIhOfJMMkoXwz/tAO7P4F8uHTN6xZOuX1dzO5ngaliMdDKKkxRid/on3WUv4WlnguqCJaNETF5MPcvDzLZ4N/xrDZTkvTIF11w4wc6+b74qOW3ZVp8gu5JT605wmeffZZYrFzjHQ2lpIchaRVTTBBR3HHKim42qDvUbj6Q9wp9a7nZbPsXdDsPKMe5jPiL4AC/pYz/PBFH6ljdmxFjT+7gNuM1xkVnVxnOwftleyZn2OuomYrqUFYukbSZN3vp2v8EvXLsxSA9SKS23l1gAemX+P15XYMNBZrG1BdbXy3IsRjYoGjdg/vAJt6ZNzwvdPYssfSpKTjwhJ1bkfperxVOdSwYVlwKUrdakIIdrqa+c/eOb4Q+gG/sfQ4lnb9JjtHcM2tuHTzQwgEfSOXqJ+YpQ+NBVuY7vgUKbfDQuQ0hdaQ4tdrctgLlh7VJlBRUpiREBkOYHOZCH2LgxIILpFMWUnbir8GU2hFHT/FoOqjXY2WkHApYXW8ktSyG6kpxhtSTDZmecR5O4/e8VFGzgmW3/Iw8+bv4KkeJr3aRU+kndzcOpqtnPmHP0RXOIcym0kt/wW6MEFpxIy3byhjF+ioHMCZEahCC4P2cbTi1s0wHXRtXOWC6sLAWrzc2UEMwJU6Tnk2xL1XmmiIGPy3CdutH+iiti3A0NtzeC7H+OCkg5kaOy0rBuEI/DD8u/zOvffRMjLBl98+TV10FTMXB203SNjh1rFVzeCsb+cNBWbxz0sFF2rCHDkUZO3rx1HlZhGEMHEN/oAzDceQHHwXUt3LtVLCkqg/QcVyG8cue0t81drEOkoTrKXHOW6s0ugwmfZk8QUWS9p/xaMTCK7QkqhhQ64V7xMoJRG6YKdtN/X5FCPaAkv5HI1LaQ7W3g+GzmXbdLE5QSCVxt5aQWD5HVrUNDUywFj2XlDfhf+mez8RPkFg4QjueEfxDgti8Y+yFpHc7LWjiuhLxFCUVU6SrRzGHenCdmmBiUqHlbzcgDoFg+U0uWtpnvYSkgGer9iKk5qS3OR6iQPyR+SbBM5hnY0ui7Q5Krr4E54oeePuqL+0tbEqzn2bgmPzBlNFo3PQcOaC1JoPgKsIP2OVE6UyOD3xfZKOI2i2Ouv9BT+eeDsF1xrhuevMtoasY8DW55lN41qZQ8+mmOvZXfQ81jGAjKuMu44/S9/IANe6+km7vUw0dyM1i1wqiwicQvHiniM0ryzeEFuwXqOkdZabpW0shDjn8uDLWucSXp7l8Wf+H/beOzyO6z7Ufs/MFmBRFr33DpIgQYKdokhRXbKK1dztyJad+Etif46dYvvLjVMcx/FNHCef4+vIRW6S4khWl6xeKNIsIAkSAAGiEL1jd7ELYIEtM+f+MbMLgKQlMZFIypr3efiAOxjsnDltfvOrP2T/xivpL6wExfDh7UyvZ+euddxn66VkPESB13ATUKREUzR+vXofJ2pvQVcU9lPDl1b911nzK8U9hu5bixLvQ0jSgnhKqsgoOYmi6vG9wTeWx/M915HTeFY9gIuCJbT9DyguLqa42Mg7E/zJfaQ9+hg7gFZ3ObreHHc6DnVnIRg0Uv5EdRQHjKWlkBwUHKxMZjHBQ8Ki4YukSiPjUWzix0qylPaHeHiHSlml4JPuetypOaQ3dzGQY0dTRLzm4FBBOQXjQwjAlTNHyZ6fIRSdAW4notjRTWfz1uwUXul4kGhWIZrD2OSklPiyUnDNJ6MuzBMOvY5dtaNHh9EiEWIbQXRxCFtiPp6IJH/O0LBFdSMIIWfyBL4KOz3ZHlpKTadNcyNocWsEprvR0AniYmzOxTOVAbYPDFLScRyBIDthNVO9PSy4u0huDDI/5mIuMMmkOkJB5knSFHOx6zA+Xklv74L5oBB0U8vJqTqiaQlEE417RRc0dBwiL3GCtYktNByeITK/l6nb91GmSMrkCWOPU6BTrDKThqpowNHUAvYMDXHk2BHGUtM5tUzFr6CzmxcZoAzNrKP0Qs51NLd8nr6kRDzRA9ijVxJVbSB1o0qFyTGxiRflVcyJFJLK53mkop6IV0MVgltdNja2/gC7S+cruX9LBBuPlGt87r+e5hrfMCfqNjCRlW/khTPCGVl0JnBg/eUUj/ZRND5ELPP4wHw6I0E3u3N7aXHX8y+Xf4qIYgfgF7KBTYE2o7yNWGYeFUaEoSclLe5MrgtwBhaovPqK+D0EZjs5tNhKOQU0JhgZ0SUSoQgKs0v4Vsm36H65lWkxawYhGN183K3wi6ZrDQ0s0Fa7gQ888SMKJobIj44RSHIAkvGMOY7WzHN5li2+SQlgIqKwGBaUuDTDhBKFvFfCNG/XyDOcmpC6Db8/39CypaQz7zaijXVpaMFzRyd4IXQDwbIE6mUbVbKH3tlVLFR68EQDAEynh8ndsomCmnoUm5/2vaMseCpY9FSiGwXUALC7u5kc2c/BwABbU9aT4llNUTgNgcBf+HJsuiClwO/PQ0EnX51hNB5dq5ORPkRD9QtU0kK73kBqV5Q1+gx/Xv9NosLGdLJGtus5hGcrEomqKtTtKKBuaz55FW7GT/tpv7+bEk1BeKIUe6IMZ9rYW5/AlRuMYJTUiRHWD3YZ7hwIXneHCLgdrPdGUPqHmDnxK65pvIdnNxcazvOKYOOiwNNRg6fDBfKfsJnZ93XfaZJH2lDZStQ0d10vH6dadMU13KvESdakTVA4qi0lFAYimXks6vN4FxKY9LyKFnSizmSj68qSZkMq+P15IASZYt584ZGg62QFoyjJKnkynZxoGp2hCE6xj+P2QZw4mRL++BqVCJT5CDs/+bdw/H5Gp1KYKPolhvmaJflXgFQ0ghmdJMxUmnMZpiMSny54fS5Klk0Q1iUl1a8ztOrnIHREhQ17TwWnC5vMLyH+hTMzM8wGZilTN4CEJl8Uu3QQkUu+f0KB0DpJaE0UddLYw07qq4kqNjORt+SYEssLJo2KGFNRPtYXYe1MIhNKI2PKDJOzKSxGUxlGUOo0vER1qdM/10r/XBue0Cg2MYxiy8Xv9JCgO5h39wE6AxX51I3OMp9XzpDqMQMeJPZAmGhGAxFtlELPOKqmoQFCapyWLkjfjEgyUnTMJaXGrQrxLogF+SgK/XmFy/ZN4q4ym3teY3/VFWY+SCPHYPFoX9wsKpEUTgyxvfklhvPL0VAMv+bQNL8/OU54jQt1VSJr+5uZn+ylWA8x5u6hr6DBrPWroEmdXnslqzmxlLVFKvj9+cj5THLSZskPZ1KgZzCa6sUj+vD7l/zfotLG94c/xJBWyQMbloIcLiaW0PY24Vq/Pu77dfKvvsZx75Wkpk0w682h6UTbinM9pl+bwDABDWU5gTnc83BTcwBVg+GMFKOylZRkzC0wkwTFU5KPv6ChaK3MKSrD5VWMpM4gRZKxEDSd4pE+w0NBQkpeEKHoCEWySm/jMXk7mlSwaRqlI6fxLI6gTc9Ach0SQ0uCxCgEvjCP1CYIzz6E3XmZka9JN3zmlGUROuGuef4gECLQmEh0dD83Btfza/sxRtOyVjjHAzxb6OKyYDGrxgdozytjX/U6dCFoLtVoKM/ho+MprJ1JYt7dxdDGFxGKDrogfAwOLxjOpMV6K4qio0uFiYkKMyWB8XB+snE7ejwHnrHJqbrGttDr7Kj9DULAwnWgHBhDqrqhrtGI7+HVshNF6EZ+KylwyWT6+/uRmmTsjOjVy3mJPbzA0WgFLbarMcp1SX6UuInsox5cpT3Udfw9CbKe8sJ8Hs66PB6tqEv4ifi00edqLIpUQZMaM81PUVT1a56w3UpUGFF5YeDh3Xu4vHWS0JCPiezCeL9KReFwo+G7pkidm154mMb+ZoLSAQg0KVjU7HhKGomKpTQDGgoH3GuNQZSGmcQIRlBwSLhlzM733RJNSGxSctstN8Tn99DQEIf7htDSk2mRs7iiY9TrxssLOpx64gj7nS1ousYzjhZuCG8gR7rRkRzKZCl/GKCpKkMF5RROGMKmMEdvNEtjKj1Mum2lxjLXroPdvJQOjsecpCyEWdsQjae18o5/CK2nAk+JxhONDWhmkuDYU3UknMOjZR9EKio2GeUz3h/icwyT2ydJ15OoGHJxcJWXx3v/jZwbnOzacjPqrinCr2YgpFHEXBUqCRk9lOz6NqVqBKNn9iFyICBVcjo+iihwGGZTCV5PEUkuH+nuSYo9m5gIGuONAHfaBIqiUSO6qJJdqDU1NE82opvjr0uJPW+U2+a/QufibihoIugq5uFneljdmEvKbBR0Q4upITmRrfDM5SlIFQ5qM2zwz69w55h0Z/LDNeWEhUDgYGdiHlt+o9HY2UbefCr6rhxuKcmg9OfdLETcuLZ/keC+fybc/Wtjf2vczXfvuptoXPIRPCduJJcJfiY+GdcS/UvoNNeHXLzkaCcowvE5G3bNkzvnobru91BCJ+k81karuJqcnNMgYHKigtmAkRMsUwmiCEhVnITGTjHmzGBc+IwXASmZ9TzObyrdSNG3bJbI+LWaAzYaOo+iyCx6kruRIhJzWzKITQup4PLWxVMgDYQ1fJphIZjRBF5Npyavj+lVPwdhjJsUEXyrQshZdfn0iguDmq7h3+ykKrmMy102vvdqHwdyZygo/C7VomtJaFRByzfava67g0cro0TVWLlD80VKSj468TRfaGtlNPQHYFMRZkLjNJtgPAQ+DfbNa2SKWcb8T+MJDRt96CwiP7Uej9R5teBFmia3EjPjSwQdhakoeM3RFOTOq4znZICIANmkSZ07nn+Qkcw8ikb78QWTGShqomtHDdoy6+hy14aVgUxL2uG60T6y/SEKT+2lcGIQ1/gcrXVNJM8H2Hz8dQomhpbFRRh7Qc7kEE1Hf8BC0nrmE5M4nZRKSDc0n1JI2pQc1HCE6ZL/IG++mNVDyRxONTRlNgxfcGE2b34+lZ7u7YjgWh6pvp8dixVcP9GEIlR8Yg6BYDaQRevxPeQnteAqW8WHt5TQWLmVptJ0LgUsoe1tZv8jj/C61JGBbGb9WTQdOUqWx7N0giooTZvhtEgjarrZ1w4lA0Z6hQd3hqkZUagbniaqqmTMLZAeXEQiuOdZI+eSANpLKvj857+Kpi4N4Y19p7nixHEckShhm0ra4XlCTYafSpXeyydbOrGl9bB7+GXmjy3SXpAT3zhEbFZLiRqcXXoTlVEKxl+hcMcemgcioBai2gqWrHRA6niUbcEUcmaaAJ0yLZc1SjMtVBGWhiN1TGtoJB+G16vXxoU6XVE5XlpNe7HGPzR7aUjrMqJdFeNtKyHVixpWmZvNof3ENaxJ0WifVc2N3digR9Oy4qV1MKP3hJRcNXCSHWsPLCXvBMKbk4FZQ2DTwP2QQs+qPDo95eQlnGYyNw+nP8Idd5WTo7gQqsAZCZnCsIadKJfzKkLAzbbXaBdXEZFGCHvRkRA3vy5xyiv4yfVb0LVDfGjyMIOF2zmwaDM3MqOGrBQKQmpm0nUjncN8hosetToedBKWgFDoz09mODeJ3a8/iarVEcUW14yZCc3QpeDxq+8kuNdJY8dhQKIIKHTlUDe1B1sZRM7cWM2fpZ4xGof6CDrXcNesg7zAPGOhdobTMijyTpO7YU18vGNBOAgjO/p+ezcZ4VRypZsJ4eeoOE1UMxzmNQEvJ/kYmHOQ4erjgP0EyE8AdhBgR1A81m8anwwX4MS8IBV1M5S6ItQnmxGSEuOlArn0DFBgIi+RmWwNlzKLIkAXIItsDCphBrNdS5HAph+gLlVez9kYP66hMpmZwvvSO+k9XWrkftPhqikXyflB2h/4DgDpqwr4j8l/pmZ6PXVTWxBSkJTTBWrECEKQy59NGnNZrRT4P40v9XkW1NNkZg2RkWVUKFFK27j6yGcZme/hpJpKJOxYdo/QJeB4fqEhDkkdVWps97cAcCp4BdEeB7JnEAm0tM5Q9TCrDQAAIABJREFUc10JNptCNKojhCBYYywBXShEtCj7+zv43LqNcXeOl1NziXiD5jUlr63dwFSCSu5CHsmaSnlWIpHROWTUDMlVVGzZtYRnB0n7yB9yMmMdEdXMSC2laXZWOSS3ERWx3IgKbc5yUkSvIbBBXKhxL+jszrsTNWRDqDs5njnNbCAlXt82JXWKouJWI8p21ghkCughyC0hJATPyGOsDtRim+qirTJ1pU9WXAiTcetB376H2CGb0fIS6M5IWnaeSizsOLfjwyTMVJpeazATjW+KhqkeCBfvw2YKbDFBL3q6GLJMKXDZ9cfd6XTnljJqT8dZ4ORUOMwTjclcE07jupw76J3+e5bKdiz93ZrcOf75O9+geWMtSal+7m24m6gCdqlx1/ivGQ1XMxrWkY45nnEcQ0NHpCi4Iw3YIyn4ogozIhnNcRmqPEmZq4gNaWuMrxcR9qsCGRqGpJXXjQd2SMlwyiI2mbDMEi/ImQ9QPNiFBAqB+YQcOpRq4qmPztxXzGPLZVlF6tSNDVLZFYLAMCO5xby8/QY0VWU6I5fNx1+PN0kHTrvKmHTmMpGmkKacor12/dLzTmL2eZQE58/QnKvIHLuOm4b3oOoqq6eDDO84yXbb41TRFW+DyzUHCIpqivn7K/6SnrY2eF4wjpcD9h5j9KXE4Z0ku2EaYXsNt3KQqrSfAZbQ9jtFs3+eX7Z1Mts3SG7Mpq/reDPSqRx2kLxzJ7asLNzba3Ad/hOGfArtE/k4F2xETX8IRYeKkUyiQGuxZNv8BNkz82gxR8tlvkctNauWfB3AMD+6nOx0OXGEVQp9s8icLBaGExCpYWZO7yS7L48tyS+zIekEe2vKkfOCaFLqijch28w0tuCc+Z3Gj9RFH+tuvoJydwWdB8bo2DeKXJbvVFGhc/8YcwqsS1Sp1wsh+ccUy3b2il28wlVGUlrTz6Evu+AsLRxCoAmF/Zk6m6fqQFeRRJGaoLsjnRu2VjF6UiN/uoncKTcZwk+3OsYpdQQpJWFFNR77y/wmJJLnKhrYoldTbSZORUDEYeQfEkgK9kdQFCeDh9Ipk/1U2IaZLb0RUbeAmphFcU4ji5eVs1+vxxC3JB/Rf0SV+aZcSze321/hwfAuJILv3/FxJjNyePDam83eaeBPMzT0RQWzvhdIzUiKKw2Xp2uOzuMtmaI5p5iDuZdxlK18WX6NP9f/hgdmP0pvWo1hslU0tEwbV+x/mhcuu+mMTO0ybp548bKbAFhMSGSrr4VUewENM/D9w0H+drWTvuTlr8cG+ZM+6k/nM54m+GFZGPIFuR6d9UPdIKHncDvVVxo+HWVlZSiKgq7H/LVgMn0efPC042jcPxJAl4JD8wnUIDimzNHvHMOxcBzNXsDmzEK+Wl3Nk8MbGGw+QflEBFeuRvn7fNQoy0qIGlZPgpF0XLYZIzWJSSRZYXrATbU+Zwp+NmQwD5miUOCfQtFrDD8tU0OqorHeN82LiZVoCtiIslq0owhIyQ8SnEgkKXeB6hsH6VGr6ZBrOHDsAUrLPkLOwnrW5o5h1wYQCJzpfRiFsM+sbgLB7KMEaQGx1EdxBZASISF9mD2zi2xSn+OYIy9+n12yhm/wNeNlRyimIsvQZo1EGojiiH9ZLLK6byTA7V9Yz6GDo5yYmiVxbBFZYHSaIiUbh7oIeHPJqXBTvHMn6qlJvidjiVWNOdRRs44O081AmfFxrxB8L8NGgzeKsKukXLme5L/+GNGZLJoODGKXENElugBF07BLyZ7pEF3ZgrAwBJ1Ouxfp6F5x/+rsDFWRbBShGn6OGhS6axlnFKQkN6+bqupDCCHR9TZaT1wVF9xiUZkS6LXNkJjmRxeppoXgDDWXuSYUoVPGMKqQhGzZQNBsi8A9shP7YhYuby2J/ko0U9MrgAaXyuxcFJ9m6Hsyyl8nsXQv8QYAruP1hHuCOJLdRO3z6DZDOB13p/PEup1oQtAOPDk0gq4ANthv03CKq7mtaR2dLV9mLtqzQkvnXlxNzcd2seqvvsb8Do3shgEz9UcH1cppuqLraEhUaVV88UAEKXUiDj/2cCoIiZQCxVZAprOQ9cnms0MIwM7dYx/mlNQZ8w8zm9ZnmixNc6SU6ELicwbICjlBmoZKKbEFY3umQfFoL6q+K16z9tzaNUndaH/872rGB0nqGYWZkyBgKL887iunAePFdRR5xpCajobCMfd61CRBqQzhL7zprOddgVfjypY5juaGmMh7jJKRPWbeR4Gu6fSNOVhIs5GbYCPVHo1Hlrrd48yP+6hoX0N95c1QCfvvvRcNLf79Kbmzho+sAF2P4PMdxO3ecNY6vxhYQtvbQLN/ntuPdRPWBcraHdx0Yh95fi8IQX9lFdvuvpviK5ecGF+VU7T9+FlUhJGXC4y3ktj8xzChHV+byu36JDO9SfHjMRq7TqLq2tKiAYbyizhaVUfhxCDeejuVNw+TqBrSVW7aMKFAAY7wLP3uLdyXvp3ahRaU4NyKB78aMmsnLlscytoGw/wLjHT54i+I6aqgIMUGeUmcPDXDQBQQGqtyEknx11Cd8TTVsosy+rhPfAZdGmHdQZv54FmurpM6qtTZ5hHY/ZWMP9uInjXA3JiLhYlE+sZtnCyuRPFGyfXr5Eo3udFUEgJdvJjq5ERx9Vntjr1pnxQNVOlL5ohlXYazJErb/DpUvwQkMhqlu/untEo/Tw7+lHuvuZegqwp9PlYgO8qcSEGa+bSkEExJs1KDohJW4cXNO5YuJOVSnjqkcZ9IrtefQE6WkdNWzmr3yxzKnucQHzIywEsjynXDcCe3JD/Cv/FFI8oVSE/0MunMiT/Mha5Td7qTjoq6+DV1IXj+8ptBwkF9N1tb/oXSaZ2GGY0PDUT4xio17vdmmFUlm07pjLuz+Olut2nySEMU51M/NkDNxBCuhPx4nxUXF3PDDTfw1FNPGVFqiiCvoYbh11vjGepjD6FtkWp+T+aiAC22jXw293KkMHJIHZkTTA32Uz7QwxX758meW2TuWg0zWf5yRSAA+Tm3Mz30G+xJbfHjOWu9BAZS6H6yhJSCBeZGXQQmn2Q6/zrqA35uOr6PQBGUZp5kXqQYpeUKeijovJIBirmsZh9VShe6LpgdcyEQpOQH6VGr+YZiOISL6igfDh7gk+vvRyhRZPWLGBZtbWm6cS5rkL40zZffiwS7t45TKW3YFjM5PVPHGmlo4V4XuwhjVg8xVTdRxc7+pi9wl6MQfr6IpunxxAQ6sLYxlxFV50ttfVQ4Emjdnh4vDyVR8J8sI+DrR9gU3O+roPTJ03y01MbPKhwrO1kRsVYTkZKOqwvY3D6ONt1F8uVrcGVFCA09zdpALf9+aI6n8m1MzveSFxnm2qRS1vbW462OGN+L4KWyfKLhUlaND8Q7x+kdZ1JfQJdGJKwQCuvCdSQoSbSn7Y0LbEKAomhLSVBNE6HhcwWhxHEWklLPsY/IpbWG4XowSSY5mhumP4Uo+zZSRBFSJXl0O8n+SjBrCgtT22tEyUqybAKfBgmZfeRtuN+4cGxsJYRnfRzevAtd9bK0ucCoO2uFC4CurNRCfX16Gn1esLu5irk1PcQcJJNespG7bhd9Bx5k8YNRFnboVCtdhilVFXRU34r3ZCG5TkGBnkEL/WhmIII9nLZs4hnzJssm4vcTi7TNsSlkJivsmytE8SQRccySoaWRpsIxdzOKFGSGspY1V2KfmUZdMIV8BCO5RQwVlLNn31P0FVfTW1Zn9KGUnJkvsnZiyPBpNLV4YVsYab6LFI/1xX3lVE2jXCo0/v5XmOnt4L7mSepDXaydr8OmVnFk2AG5csVYT6TZUKVCgb+aiZR+xtw9aCMaw+k2frE7jajaSI9cw7T37/ly2kkUIU1/tlxqfFFmnu1D2ATpN1VRkFnEKZ+RYxCpMziRS+6qQVRdR6CiB1dzqXBRhDYhxJ3A14B6YLOUsvm3nHcd8B2Maf0DKeU/XLBGngf7Z+aImGYC3Vy0MaFNAkPT01QvO7+1f8SMpxPLNgFjMsai7ADstgIWiofhdOz3S9LG6r5uvvPPf8v/vueP6U/PMq4lBEOF5RRODpFUGFzxUEGJ4so+RXg0g6MVH+bVKScdecUULo6S5Q+Rn2bYD0O5xaiLwfgiVaSk4rob4tctrElHtSmkSMn2JNXIxj82x7hd4IlIAlLHuzDNVN8mHIsqgbzDFE3NcvPC65zKKaYzvxRvSprxZcueyELCH3QG2OVL4LXwBKc8NtKGMwEYzyviO+uqiCCwSwffOxxkrV9nXMww4kxiOC8/Hrixwk4lJTYirJKtS943sVOQCB0We53oM9MIMtExfIISFwRZPhvT6SGe6H2CjPFa1NQKdIwI1Dq9g9N9WxhOP0VLdIEO+xHIWEfMx8yTmrZiTFeOr+EI/oxyE+/zDVLk1UlZfYR6NCMHnzSukUKAYyW1BHGRKr1Mizw0AY+Xf5DbOv4Lm6ahSbBrUT769MO8sraBF3YuZQ83Bk8QEXaOZKSzZuZ7vJ78R/xTfcIynxGD6uEQ7nABrTl2tGXpECQKJwvKOZVXwvrQHLuW/Y0aWkCaJlI9GmWsewARciNs5gPCfG5GRQS7Oa+Pp9vN5NDG94el5Duv7eeqtla85fls6R0lqWuBWZ14NZHl1FRcQ/vEJIV621IGBIFRH3DMFZeIVBkla3aaKbGa+rQjjGd6aBZb2SwOUGOaStwpraz79SCia5GRgiwOOaOUTCRgA+bGXJyUa4himPoAFhzpCLNklSGMLTPTLhviM5THsNQVcaam6vm2v4APFY1wenEP+qyCx1OEL8vFq+xhhcSKkRx1e+P14ImS09DPi50TjAkdF4Lr95Sxe0cR3325h4gm6S1xGkL3Mt/F5jQbDd4wMqqz0DaNjOpcMRWlNU3heIbN8AuNqTMVw1PKrgg2R7xMfesPkOEw3h/ZKNk9DXqU4NEmoqsv48mN1xBRV+HQa6l76TCzc7k0p9hXrO2W4ioy5gPk+6dxjA2iLszjYZ5Xxh9kddoOchPLUIRCnVbEfNZgXGAzhlLg9+fG70WdCpC64CGUmMh8lnFcACIUQjqcnDUghj6bp9lDkvSQ4q+luPnPCGZ04vLWcMSfBnjYRiYKCkIVaKZ2Ugemo8Z8cmV3IYS+cmyjAu+kCz1bXXldCQUzHmwS0+fP0KbrCvE/npOSrwbh81OxQleABhnqRgbv/zt8nw0aT2axNBUURWWoM535xX50uZVsPZlrQ+s4GPURXXRjj6TEZ5mujaFHhgmptUAmulxKWr1cIB1YfIaQbTVzzgWOuLuJ2mcpCBbElQNGDjgdWyDm72bjxJpbeH7bWiN9jhblrid/zObj++jdeRuHMtLjDRZScntrB+t9KoNmZQkhBUmzS65ChRND3PXkfYZP62g/L6kbePh5D/9+dT1XvPgYWiSMzimONt7Ds01ZK5SohmVGMpBjJyWaRd5cGQWBKvaX/YrRnC1E1UYw166mbMY3kEQkwcfkRAXzgVzytXQUBNGohvfRbiooYIEox7Q29MAkjydcQfvBbdyc3MfCVA1dMxq3f9FPXoWbi83F0rS1AbcB3/9tJwghVOC7wNXAMHBYCPG4lPLkhWniW2d7WjJ2Icw6fzoFvinDlCkliq7j+D/fJ1hTE3fkTqssZf7ltqWFhOEbtFxgA5jtnOExtZ4brlfRn+4867qr+7r50g/+jS9+8X8RFiIefQMwN+paXp4UqdsITVVTtCsVseYKHEcOMJ5gmGU2hA8QIVbfTyEhOx9X50kSIhEqZ+bJKyyJXzOvws0tX1jPwAOdKIEQijByAZUW2XhOe5xVWiq9EWkUcZ7KQJ/diVcPkRf2MepeFpwAKx5MEtDtLgRhEgMtuEN+s2d0bNVpRIVEF4qZVkQlJ+DlKcdRpEOSG1pElTqabvgtGZsGbJsb5pqkf6da6Ypvtpo0zW5SIHV4bbac+TlX/P4EgtqhZKpHknh2ywQvnXiJy8bC3Jg6hjcnkXraCE2WE6ms4vGZNiPlRYK5YQoFoetLgtOyiMzY/cZKFWlS8nhdORmjfjKG11GT9yBfkX/FSbGGZDnLz8UnCWP6Ay5rXUTYGM8p5G++9016S6pY19WBLehlbWeIyex8jq/axHI/E4nAHQngsL3MTzPfT0TUxX2RkBK7rrO9KwxCpWwqauT5WlYP0tDcKUwUFbCcjtbWFfemTQZYp5bhiNSw334KpJHoI19PN8dXkhKJly2IP9RbaxpZdeooheODeJITScKoM2tW0V02RQQ+30FW123h8LFnqE4JG4pLTRBZVKm6cRChSqQm6HmqlNpgKSKYRk+Bm/9U7gSglUakhCvkSwyFU+ncMsFVvgxWZVYTqatEjo0TGBghOOEiZd806mVGziebIrg6txI5aQM0pC7MVB7LtOMCpBQEApmkpE7HlFaxYYspGpBS8IP+axlUddIdZhAKgpHh1fRnJRlxqctNTQJ+vyiHIk+Ux759DC2qs06107Arh62bC+LO0VsrMtGLXcyWuFasLbsQbPSb+bxsColrsmj2zvHZ9QlEhGHaLB/sQigZpEbT2FaaTmptGtvTkil78BdMhcOg68hIhOCYIDLvQPOc5sWc9xFRVaQiCCM44i5io1dSNDZFR3ZxXEAJJCbz+LodfPzZp0j2e+L7kSc0SvvMPrITipFIRjKO4SrpiTddSujp3mRq2YwOVoOjRIJzSD0JsnJA11FVFdt8gJAjy1QwLe94Q9SQCJqFjSuIkuivJNFfCUQIKi/ysH45W80KMwjBsVQbrolFPFHwasZ8DU7VInU7EEWXkNAqSHleQZ0NwpVipUQOVI9k8uWrsnh00kvmdJiP94f5aZmDV3JtK/aCVxs3s1l51ljiEkKli4Rmw4aKIqZo1c09qeZrPPfUEN7QcV4Zf5CchBI85IBSgc3UKiIlujZOeO5hMp25NCRtXtGu5Rq3hL7nuLl7H5PZnbyyZzfZkWREJCUusOlSw6d6KJ2+ArutGs01yKEqP69taTD9QQUaNoYKytl6bC+zkxpkivi+VzfWT9HICYZciUujISQBJY1MEUCVRlBb0Ww1CR6Nl9UNjDnzUKM6rYePIDWjVvdIbgHPbiowUzoue26YayMhJBHjtdy0uAFFN4S0V+zH6SmOmksvygdT95PlPoXUbQT6dpA2s4asBDea0A3BVEomRIBDjl404URLLEELJ8N0Ed7hurgbwkiX75IQ2s7xPvvOI6XskFKeepPTNgM9UsrTUsow8CBwyzvfuvNnozuJh9dX87EEyS0n9pEX8CJ0nYre0+x++RUyJycJHjocP38xz8lz2yYYT18EIBY1F/sJmAEHAj2qMTYxiOmtfta1V/d1893nH+UP0xx89tgLFE4YZpbgpIueJ0qZayskOrYD24FdXMd95B37E5qUbv7X+1ajAIWLo6jBAEYGQcN8F5qewO9yMJXqQmr6iraDIbiV7Ck29hRpiJlDFWMcKXiO3oRBo6aiMPKW+2WYkontgKBgZjouzMYxP9t0yUYz306i6lpmhRDUTXZi1yOo0kgr0uTV6FHHjN4QIl4tYVvbITYdfRXVXNBHkgohVrdPGGafqaBZb86MV0gqXCD+SmucbdQn1AV5ngQyFzMRCPIDPlb1jKD0ZDA7m02BowCH6kBBwb7YgapFUDQNmxbFpkVRNA3ByvsUZ5puBeyt1Nnpf5G0mTDVdHELjzBHSrygOeY9Ln8YzbiczNgWuGHvs1RrCxzZdieKEORMjxEXipYJxE+ol/GR8FfweoM4pI6qS+w63D4U4XvtsxRNGQmfizwaH385wPbuccqnx4wEwrqOXQhuKCtcMQfqGxri11EwzDWKEGTIFKOyhtnfxmPTCEIZz7MtqTvN+9IVhcGCMnQhSZ9fYLHGlKqFME8zrqFKgd2exlz/31DrjoJQ8JxKp+epEuzLcrQJVZJSmIBiK0BBcDxpWVJi4IB+GcePX0WbHmQyPcxDVV7ct3yJe3b+NVuuuTV+fxkdk9zxxI/ImXiMu92nuKVxB1nO7zDVfguDr/4pE0c+eoY6UEEIG7OOm1HEGT6DMfOoVBid+Qxb63bx4Ge2sXbDFmxm+PL8bCbrhwbiNRljbRaA225jpMuHFtXNJSrZmpK0IppNpjmIrkpfmivm3369pog9d60m9Zoysu5pIHlLPh1XFxBRjJxhmiI4XVpLT0kux8ucbCpO43OluWx0J+HavAnhcICqIux2XPlL2v48fxKqDkKXqDpUjAcRepSm3iiXd7XgWuZmoSsqR+s3glipI/CERnl5/AFekS9yuOjXZ+TSEgSDSxVHMpKSsS3MG8LbYhDXwCnSRgZoUBOJZucTizSKrTGBRixVsKqolO/cTYbjL3Gpz+BSniHN/pc8KbPZgBpP3yJ1Se/MPB0hnWnNKFWnAQueCgZf/RMm2m7F+/RVZP2HjYQ+hZzpaa6IuEgI5uFYzCQhmE+atxH72jV8a8bLSZvkN9nGPX+8P4xqlraLje+ulsNm9LpAUR3krLsTZ58jHiBl3ghCsTFxSuIdej3ebx3+A3hD02YOfzPYRijo0WFAIyehGEWoKOLMugIwEpkms/sxVAnerByEVAxNY2y7khK7z0PJySHswQVstiLszi3MuEtXWDSElHElQcnQBDYdo6qB1KmdGGIh0Uk8ea3ZCNWZxCN5N9Pm3srJzPfzeG49a+64C19yAaoAu02hYVMTqs3YKwYLy+IJnM/2mYNggqEVVXQbCkZE7RWn1tPY+SRJ/oe5avbvqFE6EYpEKBoZKTMshFLYG1zkV6l7+W7efxIRUUZVr+EjiCHm5ykBhmy6ORQSoQoKa6xAhDejEBha9nkY2HKuE4UQnwE+A1BSUnKuU95xNrqTWNCDvBTwIRUFCbiCQbJ8PoTDgWvzpqVzczfy/UzJ81snqBxMZtvJTMM3iFgBDcMfIJbywz25aMprxit7YtNGFpqXLMo7NjTwvqYGRlNs/PLEIbSo8ZaxOJXM2ms/RYW7B3q/DnYNNBX69+KL3gICRhIK2OI7TOJgF5orBVtwFsXcHHXAm+pa0fYY+dsKGANmTkyTtjaLmspUHM856EztIXsuHxUFRVWYlzacoTRU7zrcC+Pc1tbNI2tqjfs0SyUlhcPcPZxEw0wCEsnk4mD8OqqQXB06xur2L/Paxn+kfl+YBn+EfbYlkQApyQt4qRjo5HDtBkNYEIKogIHJD1Od8zWklER1G8/27+HDtQ9jl1GEBvMjS2+CmunboqChK5LxzEW0hCl0oZtmLtNMo6psW7ONe5330jzRTCAU4Nl932R9fw0bOk8iFXj9hkaqVA/fqvo9okJFVeCaLDfPTAdW9OOg3cnc+/+OqoHv0KyfRAqok+0o6lJB8+VCrqJrrO4+ji4E3tQkGr/5j/zd+vW89otUDgxNxWwpxslSYlMEG1ZfTYcyzf9KfIrA0XZedd9Fk1djrV/DljmJHDrKYMnVpuAW5c6BU+jF5ezL6Gc0LYsbqovZ6E5a0e71O3YChsatrqie3IMOpNSZsM8Y9fskICQjio9szU0USHMkkaBohHVzowXsqsr2ihxc63aT4iwjcvIokocQZh1UAaTORqlxXIYvMoOuhwEdRajUb7mJCUcWp9sfRWrTgKFpW/RdFm9n7YCks554HxaPzjBXnItvYZ8x5lKjeaKZxpxG1l51PQAHnnuUk4u9tFUcxaFLbiu6zbjnXdfiHymlvWOURU8l4dlCai+fomx1OZHIDOnpW7jKvYGRkQpOdX3NCJjQFZKm12KLuCms+gBXXnX1UieWXssnep6nv/M4ZQxRPDDJicIbeVBtiGuMVWFo8gtrElBtCpqmo6rKWQ+Q/TNz8S0ihgB8UQ1naSrO0tT48cvLs/hX/wwRXZpClSHeSAVOueBa8zzX+vWU/PhHBA8dxrV5E66sCLz4EDP/9Ayb2/Yym1JGf66Nsoko2068SEp4CvnJP6N+cYppzwQnC8qX5q1MwZFyG4U1C2QVOmh+8hGkruPTJnFdUc2anDvQfd9kSXspcacZ/myKEOzctpmXjryG1DWElKgL81SPDNG75jL0wKhxv0LQ1NSE2+2mbLEd+vfSn7KJsh23G/k064sYfu5eDvV5+FX0To7KGm5ozEVpn0VGdTQBryhRvMmS4qjCkE1ndVhlXVhl0VPForeK1Ul9CF6N92+NPUjW9R/h1ftPISWoqsCzLo3IjM+Qu1TBkUwbd58Oc+/hID+tcOArSuIuNcQt5evQMneykO0jPX0LbvcGUr5WS9qJR5nIOcCswwhSkOiMDT/PyoTAwky9tFwlJ1DsxbCoMrk4ZPoNrvRrk8CvXc/yfhXQIMs7jaIoS1uM+eLuDHhMzd0gui0fTdFAdmDTNxPFeC5d+fqTppLARrpP5U+9Hl6YnaTAP03erG+l1tMU8npseYwl5DGRkMeO6iz+6aoamkrTqc1L4cBpD1srMmkqTacu7+scOvQcjy4eAnaBtEOsxNYyoXHQ9SD29HzWBretUH5cPl5DbX0z6aSjSwUpjReeg45RrrrKRSBznJ8OPYwudcZd03w29R7U7kGiuoYuBZMyFY9D52iFnV3pqdx4ZfkloWUDEHLZA+Ft/WIhXgDyzvGrr0opHzPPeQX40rl82ky/t2ullPeYnz+G4f/2x2903Y0bN8rm5nO6yL3jxIvIR6OowG2lpeSEI8aGF6/fadAy2ULzqUdwB8bwzKdg8ycRcug4wwoLC+M0/uIIMwlOshYj1NVNMNFsmDuFw0nJffcR6upi9rnnSbnmatI/8IH49452ddD+6ksArN61h4Kaehg6BD+5GbQwqA74xOMc0av5yA8OEInqrJnrYNf0XpA6ilnQUdeiKEJw80c+RcX73pqCs2WyheaJZipkBXa/nbKyMvomxmn9oQ80owTO6rZ/5e8+6KC3ZBWZgRGaphx8wnMjBdJ4qz7mfYEe/zGEEFQ2bWYtP8EpAAANKklEQVTTlnoK6IeynVC8mdBAgNCxNqaCR7i/x4umGxqsxPEBbN5JRrML+eVNnyJqU7FJwfcdKtvXafh8Bzk8WsbPj6awMH+c7Y5DOLsVyusvJzMhyNRciP8zkk5U0ynRO/BU7GUibQG7YudzFZ/DM+qhIquCTFsmZWVl8aTKy+9937M/Irtzgtorb2dddRn85GaaXVXsT29i+46PQu4qbjvWbaTxwNhu/7Egj4/WGsukp/VXHHz6WwRGEjm+qoknaj4QL0xfrkyyzuEi5aGHyR/tO+fYPPjCC3yRtHiUlQr8Q00RHyvMMieoMQ/mFnexIC8jcWcTSm4ig3d/kuGMjUzlrKdycwFl6izhyTLjOWBTyLqnYcVD/1yEBgKETvuZSp7ngWcfQtM0hKJyKlRHZdRNq6rz/31mMzLNwf6ZOdJtKr6oxva05LMEwpGRB+g89ZcgdYQOTe1B3Lc/jj/VxtFjH0PXIyiKnQ3rf4bbvcGY8wd+DonDZGZeS2/XasZaps2XIJj6kI1jSpgN0SCfqdqAx+nh0899mogewa7Yufeae2nMaTznXN6Yu3HF78ZP+w0zpSk83fKF9efczP3+o/h8B0kKrcE5Woazwn3uPjxjbTbf9QR3jNoImxrMb9QUx8dv/LSfkS4fhTXpZ12z2T/PHS09hHQZ9990KoKHGqvO6t/Y+bFx+MueESK6xP4G5y8neOwYwUOHGUpey5DHSXFmiOK5Eyv2uUcefZA/Tq4iqqiouuTjL/sp80tu+ZMm8ircjHZ1xMviFdQYSbhbW/+dyal/Aamj6Qqtx69kzp/F1Rs2sP3972e0q4PnHniQvlM9EHLSkruJP7p7Fwef/ZVRTlBV+cQnPnHW2jyT+w8O8kzbGNevyefDW0ric7ffpXDXkycIRfS4jrwgqnDXnAO7ENhsCtfekMTCn98DkQjY7ZT+5D5c69evGJvhTBt3tPTE+/T+vHzqTvoRgGtD7puuJTDmz/K57ta/ysvf/yUYIhOrMu0M6vegYUNRoMTezGBoPRoqUpugZNUiTZs2Q6+K3umNv99Or7fxmfDnKBsMsWZIcOudXyWjehsnmg/R/vwzRBHYggHUxSCogvq7fg89ks+ou4fN6xoYm7Dz9Klu6hcCFDuTOH1qjLyMSnZdv52IPcB9991npAMChPlTCoEQCmvLa/lybxqRqI7dpvCLe94891nLZAu/Gu4g7KxnttfDo650s2qHTpL3pyTOvU5k+NN8o2gnYwcnid3o7o/UsnpnYbwvTw4/Sk9IoaHo1vh6PnONDw0N0d/fz2JCJl1zjrgAeSEQQhyRUm58S+e+U0LbW7r4Gwtt24CvSSmvNT9/GUBK+Y03+s6LKbQB8YE/14P9fIhtjLE33OCLDxGcdOK6+razBMC31rBD0L83LvwAHBnwxd9u8kPj8U0UOGtD/Z8wftpP/5OvkDb0KqGteRyuyWBj7ka6fd28MPgCtyZcz45oE84KN57QyFu+9vK+VhfmGGpvJdvu5LRnnpaaenavqjnnA2j5fS9flMuPq4kD53xonxfn6PNm/zy/HPcCcFdexlntiwnd8zM+RosTGSrO59qyOnYXboj//o36582+/1xtWjHXzLkVe5D9VmHjjW572bhM6snn7Os3w+8/iq//IdJnIrgr7oy3NSYMxTQTv41X9g3T3jLB6sZcdu84O5P5bxPK3gpvJDz9tzhjTGIC1bkE2jdiuSD22wTiN/q7873eW/re/g5q+zvIWiincHPDm/ZXbHznelWGW2apbGyMp5qJceb6fbv23OXfne5y0DZqCFpX56STMhuNj/e51ss57/1/2KdnzvXWl5vpPnyE6k1NNFTpjB8+wki4wehX+6mVn5f185lr+bfN/djekpiSwsLs7H9r/x8aGuL48eMA1CYmsniyg6mcbKq3b6e4uPi37r1vlfv7W3hmYpgGl2TB1080WM6t9TtoKk2nfe8IvccmqVyfExfY3i38rghtNqALuBIYAQ4DH5ZStr/Rd15soc3CwsLCwsLC4q1yPkLbRQlEEEK8XwgxDGwDnhJCPGseLxBCPA0gpYwCfwQ8C3QAv3wzgc3CwsLCwsLC4neVixKIIKV8BHjkHMdHgRuWfX4aePoCNs3CwsLCwsLC4pLkoppH3wmEEFPAwAW4VBYwfQGuY/HWscbk0sQal0sPa0wuTaxxufS4EGNSKqXMfisn/s4JbRcKIUTzW7VBW1wYrDG5NLHG5dLDGpNLE2tcLj0utTG5KD5tFhYWFhYWFhYW54cltFlYWFhYWFhYvAuwhLb/Pv9xsRtgcRbWmFyaWONy6WGNyaWJNS6XHpfUmFg+bRYWFhYWFhYW7wIsTZuFhYWFhYWFxbsAS2izsLCwsLCwsHgXYAlt54kQ4johxCkhRI8Q4i8udnveSwghioUQLwshOoQQ7UKIz5vHM4QQzwshus2f6eZxIYT4V3OsTgghfnuxSov/EUIIVQhxTAjxpPm5XAhx0ByT/xRCOMzjTvNzj/n7sovZ7t9VhBBpQoiHhBCd5nrZZq2Ti48Q4gvm3tUmhHhACJFgrZULjxDiR0KISSFE27Jj570+hBCfMM/vFkJ84kK03RLazgMhhAp8F7geWAV8SAix6uK26j1FFPiilLIe2Ar8odn/fwG8KKWsBl40P4MxTtXmv88A37vwTX7P8HmMcnMxvgl82xwTH/Ap8/inAJ+Usgr4tnmexdvPd4BfSynrgHUYY2Otk4uIEKIQ+BywUUq5BlCBD2KtlYvBfcB1Zxw7r/UhhMgA/grYAmwG/iom6L2TWELb+bEZ6JFSnpZShoEHgVsucpveM0gpx6SUR83/z2I8iAoxxuAn5mk/AW41/38L8FNpcABIE0LkX+Bm/84jhCgCbgR+YH4WwB7gIfOUM8ckNlYPAVea51u8TQghUoHLgR8CSCnDUsoZrHVyKWADEoUQNsAFjGGtlQuOlPI1wHvG4fNdH9cCz0spvVJKH/A8ZwuCbzuW0HZ+FAJDyz4Pm8csLjCmqWA9cBDIlVKOgSHYATnmadZ4XRj+BfgzQDc/ZwIzUsqo+Xl5v8fHxPy93zzf4u2jApgCfmyarH8ghEjCWicXFSnlCPC/gUEMYc0PHMFaK5cK57s+Lsq6sYS28+NcbzlWzpQLjBAiGXgY+H+llIE3OvUcx6zxehsRQrwPmJRSHll++BynyrfwO4u3BxuwAfielHI9MM+SqedcWGNyATBNZ7cA5UABkIRhejsTa61cWvy2cbgo42MJbefHMFC87HMRMHqR2vKeRAhhxxDYfiGl/JV5eCJmzjF/TprHrfF659kB3CyE6MdwF9iDoXlLM01AsLLf42Ni/t7N2WYKi/8Zw8CwlPKg+fkhDCHOWicXl6uAPinllJQyAvwK2I61Vi4Vznd9XJR1Ywlt58dhoNqM9nFgOJE+fpHb9J7B9Of4IdAhpfznZb96HIhF7nwCeGzZ8Y+b0T9bAX9M/W3x9iCl/LKUskhKWYaxHl6SUn4EeBm4wzztzDGJjdUd5vmW9uBtREo5DgwJIWrNQ1cCJ7HWycVmENgqhHCZe1lsXKy1cmlwvuvjWeAaIUS6qUW9xjz2jmJVRDhPhBA3YGgSVOBHUsqvX+QmvWcQQlwG7AVaWfKf+gqGX9svgRKMjfFOKaXX3Bj/fwzn0CBwt5Sy+YI3/D2CEGI38CUp5fuEEBUYmrcM4BjwUSllSAiRAPwMwx/RC3xQSnn6YrX5dxUhRCNGYIgDOA3cjfGSbq2Ti4gQ4q+BD2BEwh8D7sHwg7LWygVECPEAsBvIAiYwokAf5TzXhxDikxjPIICvSyl//I633RLaLCwsLCwsLCwufSzzqIWFhYWFhYXFuwBLaLOwsLCwsLCweBdgCW0WFhYWFhYWFu8CLKHNwsLCwsLCwuJdgCW0WVhYWFhYWFi8C7CENgsLi/csQog0IcT/Y/6/QAjx0Jv9jYWFhcXFwkr5YWFh8Z7FrGH7pJRyzUVuioWFhcWbYnvzUywsLCx+Z/kHoFII0QJ0A/VSyjVCiN8DbsVIor0G+CeMRLUfA0LADWbizUrgu0A2RuLNT0spOy/8bVhYWLwXsMyjFhYW72X+AuiVUjYCf3rG79YAHwY2A18HgmYB9t8AHzfP+Q/gj6WUTcCXgH+/IK22sLB4T2Jp2iwsLCzOzctSyllgVgjhB54wj7cCa4UQyRgFv//LqHQDgPPCN9PCwuK9giW0WVhYWJyb0LL/68s+6xh7pwLMmFo6CwsLi3ccyzxqYWHxXmYWSPnv/KGUMgD0CSHuBBAG697OxllYWFgsxxLaLCws3rNIKT3APiFEG/Ct/8ZXfAT4lBDiONAO3PJ2ts/CwsJiOVbKDwsLCwsLCwuLdwGWps3CwsLCwsLC4l2AJbRZWFhYWFhYWLwLsIQ2CwsLCwsLC4t3AZbQZmFhYWFhYWHxLsAS2iwsLCwsLCws3gVYQpuFhYWFhYWFxbsAS2izsPi/GwWjYBSMglEwCoYAAADi7cOTjVt65gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "\n",
-    "positions = simulation_results.results()\n",
-    "\n",
-    "time = simulation_clock.time_array()\n",
-    "\n",
-    "x = positions[:, :, 0]\n",
-    "y = positions[:, :, 1]\n",
-    "z = positions[:, :, 2]\n",
-    "\n",
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "x_position_axes = fig.add_subplot(311)\n",
-    "_ = x_position_axes.plot(time, x, '.')\n",
-    "_ = x_position_axes.set_ylabel('x')\n",
-    "\n",
-    "y_position_axes = fig.add_subplot(312, sharex=x_position_axes)\n",
-    "_ = y_position_axes.plot(time, y, '.')\n",
-    "_ = y_position_axes.set_ylabel('y')\n",
-    "\n",
-    "z_position_axes = fig.add_subplot(313, sharex=x_position_axes)\n",
-    "_ = z_position_axes.plot(time, z, '.')\n",
-    "_ = z_position_axes.set_ylabel('z')\n",
-    "_ = z_position_axes.set_xlabel('time')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHjCAYAAABxWSiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUpXV95/v3p7tpQLk1cmtFbSfBxMuoiRXUOF4R422JesbRaEY0Go5HPWPWOhrN0hVPTM5E43iOJ8s42gddoImXJCMjjkZpUUNmDSYUIwhCtJEotiBdCF4QEbrre/7YT5Pq3XXr7qr91O/p92utvfbze57ffva3qvb+7U89t52qQpIkSWvbur4LkCRJ0tIMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAzb0XcBKO+GEE2rLli19lyFpgi6//PJbqurEvutYCY5h0qFlf8avwYW2LVu2MD093XcZkiYoyXf6rmGlOIZJh5b9Gb/cPSpJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgM29PnkSb4N/ATYDeyqqqmx5S8F3tQ1bwf+t6q6cqJFStICHMMkTVKvoa3zlKq6ZYFl/ww8qapuS/JMYCvwmMmVJklLcgyTNBFrIbQtqKr+x5zmV4BT+6pFkvaXY5ikldT3MW0FXJTk8iTnLNH3lcDfzrcgyTlJppNMz8zMrHiRkrQAxzBJE9P3lrbHV9WNSU4CtiX5p6q6ZLxTkqcwGvD+zXwrqaqtjHY7MDU1VatZsCTN4RgmaWJ63dJWVTd29zuBC4DTx/skeQRwLnBWVf1gshVK0sIcwyRNUm+hLcm9kxy9Zxp4OnD1WJ8HAJ8E/n1VfXPyVUrS/BzDJE1an7tHTwYuSLKnjo9W1eeSvBqgqt4P/AFwH+B9Xb99TqmXpJ44hkmaqN5CW1VdDzxynvnvnzP9KuBVk6xLkpbDMUzSpPV99qgkSZKWwdAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSA3oNbUm+neSqJFckmZ5n+S8nuTTJz5O8oY8aJWkhjmGSJmlD3wUAT6mqWxZYdivwH4DnTbAeSdofjmGSJmJN7x6tqp1VdRlwd9+1SNL+cgyTtJL6Dm0FXJTk8iTnHOhKkpyTZDrJ9MzMzAqWJ0mLcgyTNDF9h7bHV9WvAs8EXpvkiQeykqraWlVTVTV14oknrmyFkrQwxzBJE9NraKuqG7v7ncAFwOl91iNJ+8MxTNIk9Rbaktw7ydF7poGnA1f3VY8k7Q/HMEmT1ufZoycDFyTZU8dHq+pzSV4NUFXvT3IKMA0cA8wm+V3goVX1476KlqSOY5ikieottFXV9cAj55n//jnT3wdOnWRdkrQcjmGSJq3vExEkSZK0DIY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGtBraEvy7SRXJbkiyfQ8y5Pkz5Jcl+RrSX61jzolaT6OYZImacNKrCTJ64C/rKrbDuDhT6mqWxZY9kzgtO72GOA/d/fSXk7ZNg3r1sHsLN8/c6rvcnRo6WUMe9s738cHHn06ZLX+9y4gB7Bsuevecz9//evYxSzr5iyvsf7ztefWtOc5wmH8nHXM8nMOH3u+Wdazm1nWU/c8NsBs169Yxyzp+sE67mY9xToCbOAujuIn/IjjmGUDMEuAMMss6++pbz272H1PO6xjliPqZ9ydw1nP3cyynrvYOKeuEGbZwC7Ws4s7OXKvny3Mdj9hCEWo7nf1L7+P9dzNBnZxBHdyTP2QH+c4ZlnPltnr+em6o5jhBO7gaDZwF7s4jHXM8qC6jsO5i+15MEfWHWzKDzll9ka+v+6+3MYmbmPTPb+XMMuR3MmjZv8nN/BAdq47mcO5Ewi7ax135XBOmv0+d+UIfpRjRn+HGj3XXdlIKE7iZh5WVzNTJ3LNuocxy3rWsZsj6uccmx+xZfZbXLnuV7mDe7F+djfH8iO25HoOr59z1bpHMVuhgN3ZwOF1Jw/a9R2effdFbDjih/z3dU9ix+z9+UmOZUPdzY9zLHdwL2YJh+dujpn9ITdnMxU4bvY2Hn73tdy24Vj+af0vs7v7HQY4nDs5ip9y5Owd7M4GNud7nDJ7E9fmX3PMrtu5K+u4bsODSc1yr90/58i6k43rf8bjf3oZv3TrLs757XfN+/o+UKmqpXsttZLkj4EXA/8T+BDw+VrGipN8G5haaMBL8gHgy1X1sa79DeDJVXXTQuucmpqq6el9/uHVgJ2ybRrWr/+XGbt3G9wOMUkur6qJ/9H7GsPe9s738YFfe9wB1y0N1Tp2E4rdK7NN6qC8YvYDPOiGo5cMbvszfq3Iv2hV9VZG/0l+EHg5sD3Jf0zyC0s9FLgoyeVJzpln+f2A785p7+jm7SXJOUmmk0zPzMwc0M+ghq3rXsbJ3m1p9fUyhl27adOeB3rztn+3pV4348v3t//+PHapfvs7P2GWdaPAdiDPeSD1LlLjdB7DcXXjku/n/bFiUbSqKsn3ge8Du4BNwN8k2VZVv7fAwx5fVTcmOQnYluSfquqSOcsz31PN89xbga0w+i/1oH4QtWd2drSlbc/G3dnZfuvRoaSXMewht93GJaMHHljVOrQt9boZX76//ffnsUv128/5o93Zxe5aRryZbx0HUu8Cj5mqf+CHue/y1rdMK3VM238AzgZuAc4F3lhVdydZB2wH5g1tVaMIWlU7k1wAnA7MHfB2APef0z4VWNnYquZ9/8wpj2lTL/oaw/7wTa8Bj2mbpz23Jo9p85i2fo9pe9CtS+8a3V8rtaXtBOAFVfWduTOrajbJc+Z7QJJ7A+uq6ifd9NOBt491uxB4XZKPMzp490eLHQuiQ5dBTZPW9xj2h296DX+4EivSIebJiyx77AGs7wkHWMcezz7Ix497BQCv2e/HPW2F63jBCq9vZEVCW1X9wSLLrl1g0cnABRnt+90AfLSqPpfk1d3j3g98FngWcB1wB3v+GpLUP8cwSRPV2+kVVXU98Mh55r9/znQBr51kXZK0HI5hkibN0+wkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqQO+hLcn6JF9N8t/mWfbAJBcn+VqSLyc5tY8aJWk+jl+SJqn30Aa8Hrh2gWX/CfhwVT0CeDvwJxOrSpKW5vglaWJ6DW3df57PBs5doMtDgYu76S8BZ02iLklaiuOXpEnre0vbe4DfA2YXWH4l8L90088Hjk5yn0kUJklLcPySNFG9hbYkzwF2VtXli3R7A/CkJF8FngR8D9g1z7rOSTKdZHpmZmZ1CpakzkqOX936HMMkLSlV1c8TJ38C/HtGg9gRwDHAJ6vqtxbofxTwT1W16MG8U1NTNT09vdLlSlrDklxeVVMTfL5VGb/AMUw61OzP+NXblraq+v2qOrWqtgAvBr44PuAlOSHJnhp/H/jQhMuUpH04fknqQ9/HtO0jyduTPLdrPhn4RpJvAicD/1dvhUnSEhy/JK2m3naPrhZ3LUiHnknvHl1NjmHSoaWJ3aOSJElaPkObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDeg9tCVZn+SrSf7bPMsekORL3fKvJXlWHzVK0kIcwyRNSu+hDXg9cO0Cy94K/FVV/QrwYuB9E6tKkpbHMUzSRPQa2pKcCjwbOHeBLgUc000fC9w4ibokaTkcwyRN0oaen/89wO8BRy+w/P8ELkryvwP3Bp42obokaTkcwyRNTG9b2pI8B9hZVZcv0u03gfOq6lTgWcBHkuxTc5JzkkwnmZ6ZmVmliiXpXziGSZq0PnePPh54bpJvAx8HnprkL8b6vBL4K4CquhQ4AjhhfEVVtbWqpqpq6sQTT1zdqiVpxDFM0kT1Ftqq6ver6tSq2sLoAN0vVtVvjXW7ATgDIMlDGA14/hsqqXeOYZImbS2cPbqXJG9P8tyu+X8Av5PkSuBjwMurqvqrTpIW5xgmabX0fSICAFX1ZeDL3fQfzJl/DaNdEJK0ZjmGSZqENbelTZIkSfsytEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNSBV1XcNKyrJDPCdvuvonADc0ncRB8C6J8u6D94Dq+rEvotYCfs5hq2lv8H+aLVuaLd2656s/al72ePX4ELbWpJkuqqm+q5jf1n3ZFm3DlSrf4NW64Z2a7fuyVqtut09KkmS1ABDmyRJUgMMbatra98FHCDrnizr1oFq9W/Qat3Qbu3WPVmrUrfHtEmSJDXALW2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVR8aEjywu51MZtkwTPTkjwjyTeSXJfkzZOscYF6lvt+/dPu57s2yZ8lyaRrnaem5db+gCQXdbVfk2TLZCvdp54m36+tjJFzaln0vZbk8CSf6Jb/w8G+LgxtBynJw4HfAU4HHgk8J8lpY32OA94HPLeqHga8cOKFjllO3cBrgWuq6pHAk4F3J9k40UJHzgOeMTbvzcDFVXUacHHX3kuS44G3AY9h9HO+bbGBaxWcxwHUDdwBvKx7rTwDeE/3Gpqk8ziw2vf4I2BN/HMyMFcDLwAuWahDkvXAnwPPBB4K/GaSh06mvAUt5/3668DjgUcADwd+DXjSJItcwHJf9x8G3lVVD2E03uycUH0LafX92soYudz32iuB26rqF4H/B3jnwTynoe3gPQT4SlXdUVW7GL3wnz/W5yXAJ6vqBoCq6vvNDMuru4Cju/92jwJuBXZNtkyoqku6557rLOD8bvp84HnzPPQ3gG1VdWtV3QZsY98gsmoOtO6q+mZVbe+mb2Q0+E/0wrEH8TsnyaOBk4GLVq3AQ1RVXVtV31ii2+nAdVV1fVXdBXyc0d+uT8t57RRwBLAROBw4DLh5ItUtbsnauw/qDVW1DaCqbq+qOyZX4rxafb82MUZ2lvNem/vz/A1wxsFsQTa0HbyrgScmuU+SewHPAu4/1ufBwKYkX05yeZKXTbzKfS2n7vcyCnc3AlcBr6+q2cmWuaCTq+omgO7+pHn63A/47pz2jm5en5ZT9z2SnM7oQ+xbE6htKUvWnmQd8G7gjROuTf+iydd9VV0KfAm4qbt9vqqunWiV81vOe/bBwA+TfDLJV5O8q9sK06dW368tjZHLea/d06fbQPIj4D4H+oQbDvSBGqmqa5O8k9FWnNuBK9l3a9QG4NHAGcCRwKVJvlJV35xosXMss+7fAK4Angr8ArAtyd9X1Y8nWuyBm++/mWZOl06yGfgIcPYaCstLeQ3w2ar67ho4HKlJSb4AnDLPordU1aeWs4p55q36636xupf5+F9k9E/iqd2sbUme2G31XVUHWzujMf4JwK8ANwCfAF4OfHAl6lvICtTdy/t1Beres56+x8jlvNdW9P1oaFsBVfVBujdnkv/IKG3PtQO4pap+Cvw0ySWMjiPrLbTBsup+BfCOGl0X5rok/wz8MvCPEy10fjcn2VxVN3Vv3Pl2Oe9gdCzeHqcCX55AbYtZTt0kOQb4DPDWqvrKRCtc2HJqfxzwhCSvYbRLfWOS26uq94PhW1FVTzvIVexg763mpzLaWr6qFqs7yXJeO89ndMjG7d1j/hZ4LIscv7dSVqD2HcBXq+r67jH/lVHtqxraVqDuXt6vK1D3Whkjl/Ne29NnR5INwLHse+jJsrl7dAUkOam7fwCjg4Q/NtblU4zeGBu6XZGPAXrf7L+Mum9gtHWQJCcDvwRcP8kaF3EhsOds0LMZ/Y7HfR54epJN3QkIT+/m9WnJuruTPS4APlxVfz3B2payZO1V9dKqekBVbQHewOhnMLBN1mXAaUke1L2WXszob9en5bxfbwCe1I2ThzE6CaH3cZLl1X4Zo0Ng9hxX9VTgmgnUtphW368tjZHLea/N/Xn+LfDFOpgL5FaVt4O8AX/P6A16JXBGN+/VwKvn9Hlj1+dq4Hf7rnk5dQP3ZXRw6lVd3b/VU50fY3SMy92M/mt5JaNjAi4Gtnf3x3d9p4Bz5zz2t4HrutsrWqgb+K3uMVfMuT2qhdrH1vFy4L19v86HdGO0NWoH8HNGB+l/vpt/X0a7ufb0exajLfnfYrRbte+6l/O6Xw98gFFQuwb4v/uue7m1d+0zga914+V5wMYW6p7Tf028X1sZI+fUu897DXg7o6tFwOjkmr/uPoP+EfhXB/N8fiOCJElSA9w9KkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRJktSTJK9OckV3++ckX+q7Jq1dXlxXkqSedV/d9UXgT6vq033Xo7XJLW2SJPXv/2X0vZQGNi1oQ98FSJJ0KEvycuCBwOt6LkVrnLtHJUnqSZJHA+cDT6iq2/quR2ubu0clSerP64DjgS91JyOc23dBWrvc0iZJktQAt7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtEmSJDVgcF8Yf8IJJ9SWLVv6LkPSBF1++eW3VNWJfdchSatpcKFty5YtTE9P912GpAlK8p2+a5Ck1ebuUUmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBvYa2JM9I8o0k1yV58zzLD0/yiW75PyTZMvkqJUmS+tfb2aNJ1gN/DpwJ7AAuS3JhVV0zp9srgduq6heTvBh4J/CiyVerte6tf/lOvn/EkZxy58/445e+qe9yJElacX1uaTsduK6qrq+qu4CPA2eN9TkLOL+b/hvgjCSZYI1qwFv/8p2ct/kpfGbTv+G8zU/hrX/5zr5LkiRpxfUZ2u4HfHdOe0c3b94+VbUL+BFwn/EVJTknyXSS6ZmZmVUqV2vVN449il0cRmUduziMbxx7VN8lSZK04voMbfNtMasD6ENVba2qqaqaOvFEL4p+qPnJxiMWbUuSNAR9hrYdwP3ntE8FblyoT5INwLHArROpTs3Ykfsv2pYkaQj6DG2XAacleVCSjcCLgQvH+lwInN1N/1vgi1W1z5Y2HdpuXXf8om1Jkoagt7NHq2pXktcBnwfWAx+qqq8neTswXVUXAh8EPpLkOkZb2F7cV71ay8ZzvLlekjQ8vX5hfFV9Fvjs2Lw/mDN9J/DCSdeltpxQM+zM5r3akiQNjd+IoOadWjsWbUuSNASGNjXvp7nXom1JkobA0Kbm/SAnLNqWJGkIDG2SJEkNMLSpeetrdtG2JElDYGhT83bmxEXbkiQNgaFNzSvWL9qWJGkIDG0aAC+uK0kaPkObmpcl2pIkDYGhTc3bNHvLaKL7Wtp72pIkDYihTc27m42jiWTvtiRJA2JoU/N+su7oRduSJA2BoU0D4FFtkqThM7Speetmdy/aliRpCAxtat+6LN6WJGkADG1qXsauyzbeliRpCAxtat4R/GzRtiRJQ2BoU/M2sHvRtiRJQ2BoU/MO465F25IkDYGhTc17IN9etC1J0hAY2tS8Z9engN3d11jt7tqSJA2LoU3Nu2z2scD6rrW+a0uSNCyGNjXv79Y/dTTRfffoPW1JkgbE0Kbm3cnhi7YlSRoCQ5uaV2Mv4/G2JElD4Kebmrdx7BIf421JkobA0KbmPXj2G6OJqr3bkiQNSC+hLcnxSbYl2d7db5qnz6OSXJrk60m+luRFfdSqte+mdZtHE92JCPe0JUkakL62tL0ZuLiqTgMu7trj7gBeVlUPA54BvCfJcROsUY24jeMXbUuSNAR9hbazgPO76fOB5413qKpvVtX2bvpGYCdw4sQqVDNm77lG2/xtSZKGoK/QdnJV3QTQ3Z+0WOckpwMbgW8tsPycJNNJpmdmZla8WK1th/HzRduSJA3BhtVacZIvAKfMs+gt+7mezcBHgLOrana+PlW1FdgKMDU1VftZqhp3JD/jLo7cqy1J0tCsWmirqqcttCzJzUk2V9VNXSjbuUC/Y4DPAG+tqq+sUqlq3K6xl/F4W5KkIehr9+iFwNnd9NnAPt/wnWQjcAHw4ar66wnWpsbcwb0WbUuSNAR9hbZ3AGcm2Q6c2bVJMpXk3K7PvwOeCLw8yRXd7VH9lKu1rMZOPBhvS5I0BL3sR6qqHwBnzDN/GnhVN/0XwF9MuDQ1aCN37nVM20bu7LEaSZJWh9+IoOZtqlsXbUuSNASGNjXvh2NfqDHeliRpCAxtat5dHL5oW5KkITC0qXk19jIeb0uSNAR+uql569i1aFuSpCEwtGkAxl/GvqwlScPjp5uaF2YXbUuSNASGNjXvqNkfjyaq9m5LkjQghjY17yfrjhtNJHu3JUkaEEObmufuUUnSocDQpuatHztbdLwtSdIQGNrUPL8wXpJ0KDC0qXlH1E8XbUuSNASGNjXvrhy+aFuSpCEwtKl5Px/7rtHxtiRJQ2Bo0wD4jQiSpOHz002SJKkBhjY1zy+MlyQdCgxtat69uWPRtiRJQ2BoU/OOqx8s2pYkaQgMbWre7Tlm0bYkSUNgaFPzfsIxi7YlSRoCQ5uad1zdOpqo2rstSdKAGNrUvJ/s2R2a7N2WJGlADG1q3t1sXLQtSdIQGNo0ALVEW5Kk9hna1LxZ1i/aliRpCHoJbUmOT7ItyfbuftMifY9J8r0k751kjWrHkfxs0bYkSUPQ15a2NwMXV9VpwMVdeyF/BPzdRKpSkzbX90YT3dmj97QlSRqQvkLbWcD53fT5wPPm65Tk0cDJwEUTqksN2pEHjCa6s0fvaUuSNCB9hbaTq+omgO7+pPEOSdYB7wbeuNTKkpyTZDrJ9MzMzIoXq7XtyLHvGh1vS5I0BBtWa8VJvgCcMs+ityxzFa8BPltV3023BWUhVbUV2AowNTXlqYOHmHvX7fwox9+ze/TedXvPFUmStPJWLbRV1dMWWpbk5iSbq+qmJJuBnfN0exzwhCSvAY4CNia5vaoWO/5Nh6Cbcr/RRAJV/9KWJGlAVi20LeFC4GzgHd39p8Y7VNVL90wneTkwZWDTfGpsL/94W5KkIejr0+0dwJlJtgNndm2STCU5t6eaJEmS1qxetrRV1Q+AM+aZPw28ap755wHnrXphkiRJa5T7kSRJkhpgaNMAzC7RliSpfYY2DcD4JWEWv0SMJEktMrRpAAxtkqThM7RJkiQ1wNAmSZLUAEObJElSAwxtkiRJDTC0qXlh96JtSZKGwNCm5vndo5KkQ4GfbhoAL/khSRq+ZYW2JBcnedbYvK2rU5IkSZLGLXdL24OANyV525x5U6tQj3QA/BorSdLwLTe0/RA4Azg5yaeTHLuKNUn7afxl7F5/SdLwLPfTLVW1q6peA/wX4L8DJ61eWdLyrWPXom1JkoZgwzL7vX/PRFWdl+Qq4LWrU5K0fzx7VJJ0KFhWaKuqD4y1Lwd+e1UqkvZTjZ0tOt6WJGkI3CShAfCSH5Kk4TO0aQBqibYkSe0ztEmSJDXA0KYBcPeoJGn4DG0aAC+uK0kaPkObBsAtbZKk4TO0aQAMbZKk4TO0aQA8e1SSNHyGNg2AW9okScNnaFPz/O5RSdKhoJfQluT4JNuSbO/uNy3Q7wFJLkpybZJrkmyZbKVqgd89Kkk6FPT16fZm4OKqOg24uGvP58PAu6rqIcDpwM4J1aeGGNokSYeCvj7dzgLO76bPB5433iHJQ4ENVbUNoKpur6o7Jlei2uF12iRJw9dXaDu5qm4C6O5PmqfPg4EfJvlkkq8meVeS9fOtLMk5SaaTTM/MzKxi2VqbPBFBkjR8G1ZrxUm+AJwyz6K3LHMVG4AnAL8C3AB8Ang58MHxjlW1FdgKMDU15fUeDjGh9rrIR7zkhyRpgFYttFXV0xZaluTmJJur6qYkm5n/WLUdwFer6vruMf8VeCzzhDZJkqSh62v36IXA2d302cCn5ulzGbApyYld+6nANROoTY2psd2h421Jkoagr9D2DuDMJNuBM7s2SaaSnAtQVbuBNwAXJ7mK0YFK/19P9WpN85g2SdLwrdru0cVU1Q+AM+aZPw28ak57G/CICZYmSZK0JnlBK0mSpAYY2iRJkhpgaNMAjF/iw0t+SJJBCVoTAAAI30lEQVSGx9CmATC0SZKGz9CmARh/GfuyliQNj59ukiRJDTC0SZIkNcDQJkmS1ABDmwZgdom2JEntM7RpADwRQZI0fH66SZIkNcDQpgHwOm2SpOEztGkAskRbkqT2GdokSZIaYGiTJElqgKFNkiSpAYY2DYDXaZMkDZ+hTQPgiQiSpOEztGkADG2SpOEztEmSJDXA0CZJktQAQ5skSVIDDG2SJEkNMLRpAPzuUUnS8BnaNACePSpJGj5DmyRJUgMMbZIkSQ3oJbQlOT7JtiTbu/tNC/T70yRfT3Jtkj9L4n4vSZJ0SOprS9ubgYur6jTg4q69lyS/DjweeATwcODXgCdNskhJkqS1oq/QdhZwfjd9PvC8efoUcASwETgcOAy4eSLVSZIkrTF9hbaTq+omgO7+pPEOVXUp8CXgpu72+aq6dr6VJTknyXSS6ZmZmVUsW2uTl/yQJA3fhtVacZIvAKfMs+gty3z8LwIPAU7tZm1L8sSqumS8b1VtBbYCTE1N+Yl9yPGSH5Kk4Vu10FZVT1toWZKbk2yuqpuSbAZ2ztPt+cBXqur27jF/CzwW2Ce0SZIkDV1fu0cvBM7ups8GPjVPnxuAJyXZkOQwRichzLt7VJIkaej6Cm3vAM5Msh04s2uTZCrJuV2fvwG+BVwFXAlcWVWf7qNYSZKkvq3a7tHFVNUPgDPmmT8NvKqb3g38rxMuTZIkaU3yGxEkSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGmBokyRJaoChTZIkqQGGNkmSpAYY2iRJkhpgaJMkSWqAoU2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAb2EtiQvTPL1JLNJphbp94wk30hyXZI3T7JGSZKktaSvLW1XAy8ALlmoQ5L1wJ8DzwQeCvxmkodOpjxJkqS1ZUMfT1pV1wIkWazb6cB1VXV91/fjwFnANateoCRJ0hqzlo9pux/w3TntHd28fSQ5J8l0kumZmZmJFKe1pJZoS5LUvlULbUm+kOTqeW5nLXcV88yb99O4qrZW1VRVTZ144okHXrSa9K9vvm40UbV3W5KkAVm13aNV9bSDXMUO4P5z2qcCNx7kOjVA217yIs786Cf41omn8gszO9j2khf1XZIkSSuul2Paluky4LQkDwK+B7wYeEm/JWmtMqhJkoaur0t+PD/JDuBxwGeSfL6bf98knwWoql3A64DPA9cCf1VVX++jXkmSpL71dfboBcAF88y/EXjWnPZngc9OsDRJkqQ1aS2fPSpJkqSOoU2SJKkBhjZJkqQGpGpYFyJNMgN8p+86OicAt/RdxAGw7smy7oP3wKryIo2SBm1woW0tSTJdVVN917G/rHuyrFuStBzuHpUkSWqAoU2SJKkBhrbVtbXvAg6QdU+WdUuSluQxbZIkSQ1wS5skSVIDDG2SJEkNMLStgCSvT3J1kq8n+d0F+jw5yRVdn7+bdI3zWaruJMcm+XSSK7s+r+ipzg8l2Znk6jnzjk+yLcn27n7TAo89u+uzPcnZk6v6wOtO8qgkl3a/868ledEk6+5qOODfedf3mCTfS/LeyVQsScNnaDtISR4O/A5wOvBI4DlJThvrcxzwPuC5VfUw4IUTL3TMcuoGXgtcU1WPBJ4MvDvJxokWOnIe8IyxeW8GLq6q04CLu/ZekhwPvA14DKOf822LBY1VcB4HUDdwB/Cy7rXyDOA93Wtoks7jwGrf44+ANfHPiSQNhaHt4D0E+EpV3VFVuxh9UD1/rM9LgE9W1Q0AVbVzwjXOZzl1F3B0kgBHAbcCuyZbJlTVJd1zz3UWcH43fT7wvHke+hvAtqq6tapuA7axbxBZNQdad1V9s6q2d9M3AjuBiV7t/yB+5yR5NHAycNGqFShJhyBD28G7GnhikvskuRfwLOD+Y30eDGxK8uUklyd52cSr3Ndy6n4vo3B3I3AV8Pqqmp1smQs6uapuAujuT5qnz/2A785p7+jm9Wk5dd8jyenARuBbE6htKUvWnmQd8G7gjROuTZIGb0PfBbSuqq5N8k5GW3FuB65k361RG4BHA2cARwKXJvlKVX1zosXOscy6fwO4Angq8AvAtiR/X1U/nmixBy7zzGvmGjdJNgMfAc5eQ2F5Ka8BPltV3x1toJUkrRS3tK2AqvpgVf1qVT2R0S6l7WNddgCfq6qfVtUtwCWMjiPr1TLqfgWj3bpVVdcB/wz88qTrXMDNXajZE27m2+W8g723Hp7KaKthn5ZTN0mOAT4DvLWqvjLB+haznNofB7wuybeB/wS8LMk7JleiJA2XoW0FJDmpu38A8ALgY2NdPgU8IcmGblfkY4BrJ1vlvpZR9w2Mtg6S5GTgl4DrJ1njIi4E9pwNejaj3/G4zwNPT7KpOwHh6d28Pi1Zd3eyxwXAh6vqrydY21KWrL2qXlpVD6iqLcAbGP0Mi52wIElaJkPbyvgvSa4BPg28tqpuS/LqJK+G0a5I4HPA14B/BM6tqqsXXt3ELFo3ozMAfz3JVYzOFnxTt6VwopJ8DLgU+KUkO5K8EngHcGaS7cCZXZskU0nOBaiqW7uf4bLu9vZu3pquG/h3wBOBl3eXibkiyaMmVfdB1i5JWiV+jZUkSVID3NImSZLUAEObJElSAwxtkiRJDTC0SZIkNcDQJkmS1ABDmyRJUgMMbZIkSQ0wtKl5SX4tydeSHJHk3km+nuThfdclSdJK8uK6GoQkfwwcARwJ7KiqP+m5JEmSVpShTYPQfV/nZcCdwK9X1e6eS5IkaUW5e1RDcTxwFHA0oy1ukiQNilvaNAhJLgQ+DjwI2FxVr+u5JEmSVtSGvguQDlaSlwG7quqjSdYD/yPJU6vqi33XJknSSnFLmyRJUgM8pk2SJKkBhjZJkqQGGNokSZIaYGiTJElqgKFNkiSpAYY2SZKkBhjaJEmSGvD/A3uTyIcf3vYHAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 720x576 with 3 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig = plt.figure(figsize=(10,8))\n",
-    "\n",
-    "xy_axes = fig.add_subplot(221)\n",
-    "_ = xy_axes.plot(x, y, '.')\n",
-    "_ = xy_axes.set_ylabel('y')\n",
-    "\n",
-    "xz_axes = fig.add_subplot(223, sharex=xy_axes)\n",
-    "_ = xz_axes.plot(x, z, '.')\n",
-    "_ = xz_axes.set_ylabel('z')\n",
-    "_ = xz_axes.set_xlabel('x')\n",
-    "\n",
-    "zy_axes = fig.add_subplot(222, sharey=xy_axes)\n",
-    "_ = zy_axes.plot(z, y, '.')\n",
-    "_ = zy_axes.set_xlabel('z')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/test/data/ras/unsteadyflume/BaseCaseParameters.xlsx b/test/data/ras/unsteadyflume/BaseCaseParameters.xlsx
deleted file mode 100644
index 56f3e7264b493e2016dc554a868c855c3a92892d..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 9866
zcmeHt^+Qx!_x?yDAl(f^jI@Mwi*!nNj35jQ<<OndF@Q*el%#Z{G}7H5rP3wR@EPxY
z@Auy8z2Cp!efJON%*;7!o!R?5&t7XkYpW|EqYwem02lxOfF6*^4uRU;0|4+)0RTb(
z29lu+)WH?(;A;BJ!x8La%;|0qq02=<V$B91A@2WQ`!61WQus&JPHybb1Nj!2BsSY>
zCrOO51@jO1%se!7z<ml1m0Ur}g@yI!meNI~(mVMYlvj7{4KU_vW6LTIl*!>_h*6Xt
znvQV(-aD&<fv?w@V6qVH4nZuY1>~x^@0Ye!i(Vh1syLEMW5y&LW2!>s%vMG9=8KJN
zWZ%wIu9@`J>fLLnj^1x@6$p&>fbh?{9%CfUzJ4vX_w6JA=r5H#gd0$%+aG);r-c6s
z4lTRfOrWK{|4Erg&o1_H@JIJTndX!Fk30uSii9<R5PE5Ed>r$`jMXg8Qi*g!(yvd1
zS&g+{V1DXXks)RsMaR2u=Rf<Jq3j7`&CM6_^{l}7La->eyjL4=u@isG4_R$w06#%F
zmcFO;9#zw>Ld{4c$-PNKY(DZJ<m<`()wqs64;79_j`*rgU$2Xyq#r%rVm>(Z^FP41
zuXa(B#>)+zh=cK8^~V?7tr5z2wX>>IFN-c&PjDgNb$5phQ2!f8Yqhx<zay?FBPfW4
z;HarH7~;ak`SbWcZvGb&@-JO4O;Az$otxKTeP>fkad^^7Zc_5i^v`_#6&7)8qw|22
zOYJOFc+V(;ke~Xs`d)upSQ3ri?xX*)##b6iKqSIg=T;V)a_RIE{UNh+vYb=tY8O6i
z>U8Qy>QhAzR#<E7!;*%g9HsshM!AV2+4p!OoVpa4g!xpVBx0!n20beJ%NFP5_ok$^
z_R2yl>mO%tCyu1~%_J9W;YfrFDesP_68E`SSkIMv_d)1SFDSINY=mA^T4Xv4GkBO<
zK|Y+wrnM8^cyp+x_h~Zl5u867dD_dAed=dW!*?{0;nDRNv$Le{us<-8wrCj<uKr1q
z1a$Z=3gU_cG5|mUz_{lQ;rg8?Zct}C3n<j?XDIuFGxrej3~}#&cPmX8u<hc;esUIa
z8#LDD^vFj&)am({=4<;jUw=oqpt1$Jq0h#Fou+XAhd75S9{G+lnpe#Wer{#wKw1iG
zVk?FFfu%68r5)-)_rMTi_y-#$NCp!sGV1Kt8Qo@G+xYcDvp3@5MHWFwor}<X?0NMt
zdMB|t!Q%9TILj@&xjb<T73ahP-0=~9I*AFQFwFo7cs*T2PVDfVUGqCzJ~5G-vG`3a
zl1GQ5J*ct)ZOl4{hAi>;8{n&<H$SLGq!X|7J{=7ulU4DPx1~#<$#fC+787p>>IXNP
z63SVYWMK=y0)=XmIi2fmS+PAIuFUohj#TqN?>_cb&wiCay!wA)h`7joH3Welc^m)$
z7jXvyLw`k2X^J6qL4c@t1$|efQku37-H>!3g)AAXS7RPvm&Wu02OAB^AeUpBs5k-6
z#qndwja55x29O-M^`u4q^5`&KA~uE@`T!&&!az(cTDe$mN#DVUuhoWGs)jq05g!8Y
z5$#cSB+z@BTl#py)Gu{6WU)MWmI2^MtoLeqZnjPv9!FGC-iHw;Vn?r4YR>w&?i29i
zdqs>fP_<Yu`7Eel@gb(=TrmB#9Ys7F{w8R(DOkRv6757=npb;lya<!C+d0iTL;fu}
zoeo^XhdrA_G4E(76zi2PcAbyo6)}0!$S5fKt-3{7vwxKmW7gixOUMjIy=X=$h%rm4
zo-rLv>u9TEPGX_A#a-~GD}diWXEyOpxlgot5ERs0e&7`YR=dOLE|cZaUr*mc$B+&Q
zLq~60Z~CGzI~nzYL1@~FvjL6v_VD)ZRQF>h3sP>-e&0;GB2q55Lz?R6h&&#XV#88G
zxDtt;Uvx^nrZ;`Oj<z*(Uhsb3#Pv;X^Le$G$I1I0q5bSD*sVLR@Zi*s^M!?rAQ4Y&
z(#-X{w)Ae$W`;B>P%cSe^7zf>>hmCRkRz{WtVfJKKe`<hsEU6$$}cO;u@Z7JytGU6
zQ3<4<*+n5iI*yea&A1Muyf(Qk*uA3)+UiPwI|ARG(&8J!qb7m(TF~k_a>laU`0%u5
zzgLaI^OR{Y9d2cGP5kzO;?ksD?+V2@T}&_62A_-14LY2M6}DLOSWbr|!SX(}2O(+h
z`;r++BY5Jh4KW={9xW>qnN`A5DnFj4Xl}OIP|Rs2zL-}EJkvEs$5T6pr#2Q@X2aZh
zOJ77MwuEEW1-iSP-DqZB%eqIK4=E_tTM<qji}t(R<VbAeT$^i!<@4E5_iuSvjl6(l
zlsZutS<XV0wU}|T#wupuT?&S4pBWq$?nKq>VxFzr?=NVU_u0y;6?dMdy+H>*4O%=3
z+@;sG2jliX;80L`M-jj$uKe&_yx)3M0m0b#KKxQAkusy_YNAH&jB6yuV6p-GSk1Cx
z%Tndt9zXHzgPGK+*Rr;4tP%^Zm-=A__iO_&-f2w`G4*_CcJwL`rboXC8-IcoLXT5=
zP<}8NIvld%)M3)T9?RJ>+;`xS(df4sa%1jJZ1UsIp`Ik{($(l@n2e2({WPd+jKnu^
zzweTOt!QXK6Js}opuB3neEH2Sf|vhfY=fr1{sw}n3y9gA=y%4t*qA$mt+ZU7UpQF1
z{G9Y5WBrJ{6%Q~fLU6}@T>LCobs+bh^P&u}3+MfJWaUTp*hhj^yGVYq_b`Dhy&lzy
zd3ChqL5vR|Vo4T_tSEF-ZSP%KyZ5)gcyss%<@C5_RuX0PS(K=$5xMwJDj7ux1p6{F
z&2R{JVy!Ud4=&>l2NOL&@4xXcSS8_UP%V#GGZ3~^klbSosX0@W1YVK6zeFyZwIy~1
zlbIJ=jVk&MR4jK4W^B6SR?i=W#}@0v2n`qB@X%h3evuZsrfPgM8L7}Z$Up4ju{mbo
z9X9sTZG=nRe8&E^1ne1ei%1FoIVvy3Q(q*a0RT}HKNoes&10@MV0$pvZ%3Y=gR-k{
z7`Y%v<jeJ40;5%=O`)o_ixM)YI={<Izw>s(2@+e@AHyfdyBv)fkRW=RuP(1-df#V9
z286>mI+}9(IwV-&249Rfp)B=OFm0fqhRIIv?U>uJx6AO@V^ZT5SFVC#d{rTHg@rPc
zqJ{^mJrL;x{e@P3D)^i7PE<wa@G6x0C8jU?`Ae}9P2n)vV9Q;9pAI+mh3Med2k-%J
z?4fW|Gne!a)gUEH;Aer1Bo>e`T00NN%)_K?D#nBc)j$hJFCSqh%U$ezB{#Rt7PVCY
zd?SIV7oK#+mYve(EMeNOJ}c3TPYOxb>`6-y!bH2yf_K!rP(^K;iBG>KyKyCtsXEAZ
zlNb&;WZybBFPb^)Y55dXk2PtHoU~?F|EK^wgREUf`;OvH-x2|$d%4G>BKIc_>YBtP
zdTq0J$Jd%?zD<>&nVgued|o`-9QnYe{$*w111=i9>=@#6=otski%IF9KZoK997Zb^
ze&xq*L3#oQhEaZtpq=cTvYCkk<>{6lCLiEX)Gm4i1lsE9rtDgLB6wdmZQ+`dj|`Bf
zdlCqY(HlM@iq46Uk?m(?8m38oqVDbj=YBAhWB^t#?)1AjnM{hnnExnWo!sJ&xnh&x
zO(m|{Z&b6S_OYZyDpSG>c6_+i-)X8wBPQ%|?y_9(44yTX>Q}D!y6DvP^Eqog`O3A@
z?tT4o`t*h9%n_IG<ytqiz5SC|R0Br$2{g0C{c_`?-t_ip-7@k_H9}6<Ti#+Y!|r^x
zvEPC$J4AveANrgp3Xg|f9i@$<{EFd`|4efDyrVHB^bmIcp(V13$s&IPjqH{*p3;bJ
z-Yj6BSFV}87VY!9U8TrF$N0hBj6y7GH^Ll7!xehPD3mi&mpEMu7jn7TY>%K^*=%yv
zO2-XeSonLes~ZN-T9aB2XdUt}U8HM^!2+j0E-Fg;VN`h>*>P13e(*EO_jB!guH?1R
zO<}Rhz!s8lgFajy{tkC?4wMLc&M?*j&ktvD;SeBh@|IrjX`{dL2sc>OFHop{&PdI?
z#bCT5uw!<jO)cg9D`ixnnu|r5sI5L45o|`Hk+O6Jf~{G#b9y+dvjewz&;joWPW)LM
zIvk>MW*->sn#F-qFKP5r@ku}*OXOt2z`*O&gY^Vee4U5L^H6zD<pkc-8+g^#T~yTq
z|0NaQ(*C*eWJ@B!j>yYRcqp{<20f`cjHDk2n`_|9;HgxD1V;T;JL$gt!SThw%bZcV
z<!%Gxvc>f>tTRx~cS&~8^1AKbu(`<_>}(DDhm*t3t?_A39aEu%*o*8>KJ_T1o=1g$
zqmy>g`>Z=9;M(Id!@EC79`>@`R)^BU`&0eA82g%!K>v@DsdtNM&(}W2v(B^KHc|he
zV30wNw!p1}RlsU_YjsWV<LaQ&(mR7djrus7QVM#k3Wgjx7$>^{35m*<Z_+z$l9?QU
z?M~^3j{bm6orTlZT`EA`v+%W7gIX|P<)?Dx;l}5lhTO#__bMawv?b%Wk~f-Ox;wk-
z7q`k4;1C!zrUGjoMUA3-ohqhHPq!{Ne4>cs`G}~bJ|}z3rY+V;31285hi@z?ka^f?
z0cTr0Jvw@<Wlz<71vll0$~J5Ol`EH5P?R!~&ueu>PX7ytRIDqH{j;L$BmVGLABtrZ
z7Gax*GgFd;`ScNnwP=Bd6-+Zo`WN-_L2uI(dL}?LSYmqykx{NNtovCnLQabx`FT~=
zSYgSZN%0B6<Xq#IWz{Ww^By7#(o@Cwz0>DoK^f+qk=B`9DSib?F}{)1m{OmP`6eoT
z5tSS1fu_sQRFJnn%`>`x%p)WDSVr(oKjx1N>!s>KTXG>4zDS`7bz&jA`R?yGD#sKh
z76kly;PJ9LoR-n1X~msv^|I<N^6Gs%WekeiT;8BJRxO}T&FT}K#Cai3j2d|q!?n6h
z#?pBAg;d&IRo$|5I-MOw?ep!<uv-NB_5<C&e<pI5Le(t}=E4O9J~4&Gr1zt>Fr3M@
z$py1n$0yWzwXeCgRDKD|SDZLVX=&00@!zPnP9EKO)*k4xwL0wGQ)Xv~DDnL<1_q#O
zxTgAfYV1*FnXXOgFNE+!4k-JWfY{cyPn2rwZcZX)BwhE>Yo$t-x6$%-T6tMLS{<q<
z?*};)lLkjGXOmtIO@9v9p#oLT6o;9NLX!h+$&y>L8MYo9=7;K*yljyxoI4Z7JqBY(
zi6+L1lHi$i+nqrX5$a!J7^n;R9U{7^BjOk$9sik&ySRElz`up`x7zm5G;X|G@fUX=
zkKJsu>6I9=4c;(l&lf1{z4dwd0jP5m2q|Pt`?2DNMo=WYmw!W$6?@_`BIX7gFVVUG
zy)SCh04&&q!DI1ml32GH+pm!;5LIqkLt7(<c;GNz-#e+@C(*!-XxCxnwG1E!5_&ew
z&n69Nv`(1ETH;1EwY3MntmGH5pzO2(-_V2PsX|>CK)MZ2_4<!ZC4v07Va%+xkfL=%
z&IS>f9$CNh%Vw?l(K5h0d%ip-+q}kCYUIK*)xd-lIYZ-SEC5qexkrDdi*W)|&Sp4D
zC6`PD0YQ(?s)vEyCi}xvDWN#pQL(M5pz)Pws}dg8v`K|OL_FUjiQ+SR7})0EIMWGC
z&U+9gmBuy{1VVAn%=wdysJz^Esg3<Y1^cBq4uF}xm3o3*A%fKrV)q<3Kp6Y4HBcd=
zW-GLm@)c$Rp07FgxyD3fVl~p0AH;E*XFAjtn~^*fQ!N)IE`>=>9xg3cs6IYyo*I@K
zIIdZ9EhHvxgVSt4B!!p=*M>)SW-c*dhKw)cLR{;$L(Pv{F<1!ilMm8Vthir;3}VFs
zPAzUE*ll-sZ`o8C=lRyYE$}MK_7cyk0NoirG!kuCvvg)%gNeCAkg03L99J7IRgV1i
zYxB}`4hl|4D+n*sQJ<CRso-`jWl21DuaT&VpamL@(r@$nO_m4s9oqOE8pnPSN4Hx-
z$I83UCQO#OO8a=nZD2?RA3f5s72|mdJ7#jfCn2zU=k&Q2d#7N_t&qn(6Q{f8nfnw}
zLpnMi*vvyM(2w2nxH=P6)Y{YBvc)#rqQ0(P0q+N`J&FpPOXm#izJ7!m0gQNjGIz-g
zO29nZ2;owd&;9m&twy8D+33;7sbby22P&<jz}edz4CieW^1J)TrvD1+r@e5)8idk5
zfd>GP{SNA%3rrUqFxb_F>$lTy*%@5VP;Fg~%%@`V4sR2rZa(7EgQ17N06ELiY;Lw+
ziHlnIuT@B&M}yt@jLaTU&*EVwxVO1{Njouq&P+<%27O#z2;>@vxCs?LNF7NqPA?l@
zy4k!wsCaDsT%7HbO?`yG9A{(toqWVaSc$1$qx<kNv|A<t&da?UF>oQHzdvGJA5NQK
z|4eXBe9qh|V{@UXYvy{H<A(=9*~3xT`Xgz0bM*L9%X7hz*ww!29X{1ScHc$j<|^j?
zM3rY9cWd-Zq&N!#;-L<dn=3SD)=qUxL2H~#Z#QEjT*Vi9zGm&a>C-IPSMDD?lXdDe
z_DLOuP6&=fK#Ya6UF@C~+WjyZL7kZDe%O7#bhlbm-*mWQ>jH<^<!n2b;9C}-2d8J2
zHQ4oxX%6U=T8dYAF}UrQ0$wRyWf5h_W`BsRMBWX)grE06cM-blBeOU+<&V6H0xiN~
zZofWnOMCd-?@P6IRSeDJ&9A!`XTVlJR-X64XgU!mQ?Ya)i!Okch_b=7;DSHWo%I4y
zf3SZ2*xB}tkZ}^O<ocMgCj4=6{+p4t-rT{uI~p`xBL3I3AKalIV<v;O22V-Usr=oc
z{*z;HccXTkE}Kox<!15~K+~x+8&gnGR5|DIu16@arz670N+~e2WM(5!bsC0gX`?~s
zuBN-u;Ug`&*7<scmbdeLw!{~l-i}+cJ$d8v8Q~XNYkDjd=8M7#VTm02drf(A!|lhS
z?wcNhKH`U@9*!;T+zvNjM!$=XrtebeTW4&HeeHThw@yv-Bx_(+M7fnTJTU|}9^u#{
z!dYl`vY%+$<;d#oHuCr*Iw`tYnTJl|eMUvCo#6_5l2_iJxfM6v!w?S>b%uc0!a(<p
zaBKFJw5K9h^d8wV2TAeDpIfn)_C|G{(oqPD?o5)gKgjpGUNc+dbO5etnmg^3<hOwL
zJ6y2EjH?o{-0ay*1fvKQ#PVv#$1yrOs__>qR(;XW3<X_)jDh5zLg0$Ft16$RaBzj)
zM>~owF$isnKI6S%LsjS{SMTh6K=b4CBx97vqTG-=Q~VsYcXqySY%;e)E!E4U{PJ3>
z!mhD>q&r_rF`@VPJc>ZAbVYm7<^m1WNq2<U{{0#xUUc*ku!4E1<*m2gd9O|DJIA%8
znis1`lUHZMlvb>8Nb&s<ml~GvY&0G#Sr4igg4_7M_OFl`#xjW_6zDNe$k?A!3)paw
z^CrmW5)qGc^OW^ZCs4uxEQ72LCtFhwwpy*1xc6aYPLVaru#&p`M!h!^`Hm@<u#ZN*
z&d!m<+M5d053zYWSo>teR5VQ2Gll7nhl;t3{G{JfF|ukK$ZwKMHwKdBDPp0?1_<E<
zQ!0lCTV^+E77691KCO9^yz9@(SD542iHTpI@suYxUO~-$9?f}UOhv{DH|nMu*=Gdv
z>%4)R6B)FZtW4UB>iZLy%gu@r(-P)atl6*<R_-vRVd4oRj39}aOtBd0EHo+iR5`DR
zhfJ8qI=Nf)LvnmlS!nd`uR=v+J1`YK20^qfwpC^er2r-cs|27``bNAb=0H#A*CF+N
zw~VP>^5#S@Z-dUFq$|%0a6pu)-V|wMJ}d>ExyV^mqIzgsO{+qbmT%GL(~(**vDeTW
z)+KRxF@I{h(OG~ao)gU+<#-T6-O?L&EpdoC|HR7VFxIg-CC|kieG<=Q-rUohH3-?X
z$T--hBdj`LJ3}1B=LX^*IWIy{S-UU&Nc_sIMwnI|Rws+91FA@ub3xl;3OLS_Y4h{H
z@V~%O7A&iQy9^1=4`Pr~Io@-W3bO<9(VU8wS04B0=fZeVI3bSK1bcmWua;IE<%;nf
z;V>`djGj|)bsNK8-ql7dYrC3THzcvNWPtI<RZE+(g+!R<+_DL1&wh`S%}D~%Cib~E
z2*r(g?X!3La8=cX#g*2TOV`xhzs~d*JaR&+2vOoCB89<6$kA3%OLb?cqYIZM)EWGr
zs_Oq#XvEM3Cuk^jaubEDpx(*!SKGhQu}ZE(X7P%{L1Bx4(l;&ys%R$I)cZl_9crrr
zV*7>8282>JPFhQYpxin(+H?fntblGlQd`698C&vUbu()1^l1aBfCpw{EiG-I^b>jP
zKhJ$biy|~bR?`%)R0)6$^ON@^?@4M>dW0RX$x$j~NW9^2V7+>4_(6ec#T+xnd7E|L
z-<+3V48MOa9MYz|ge=&p9)z;V&W!)D-2`23J`%b0k(1);gXja-C=sxWKzN=PwA%)<
zAYeNo9y+3Sc;$IIu8R}04eJIZ30af#N@fUbCa$EnV(QF?n@L5N)AtfK8iG~I46n+d
zD2HL4-LG6y{PHUJL{UT!>8o?b6+DzkW2Xp`6qKKvr-$~JGMworJl|S+O1d`UP3qYY
z*UNfG02QlI4DSVlQt{OMAN5+(=3gVA_Rk#pT#LeB7cs^W2oNGNj-NTSr8&e>#>V`G
z!%qylCM?+^)8mC4VELe@UiB=gC)AWus!y=U(@Gkp86R3}U~VnUkSLFrE@Na0`C31(
zTriE2v)=67U=M&z0W@`*%&S<CvU+1vsI&1xsDoiT_~$zJe%zdBv4kW;h!UT?GD8mF
z>A9d@r+W&P)oawBdv@Wx9R9leHn?*)iL9gO86QPO+Vdb4B*_(p4NR(KfJ!mC<mFkH
zzC+@1;R^gEtYFdWtDVMIEF|av%CZhdW9=f6Ax0#&PQO_awgF8R=Z6}k0^&n+t>v8`
z=4GN-cV{CfCp)`fTCeY8Rk6z#ho_{c|E~0#D`4WiLW~(cLRG~3D?QB}9skEp1XTXh
z(i5bh3*6Wt2gsMS*h`c`OX}DGr55tK-z&}UCDd7~6j<g|0mDn<cV}Yj#wO=Hx1%?_
z+%IJnmZ*eHzsHSrtH0XJB|=4^v?KkI<UYG(>`RQAfLVLQBgquwzb0qut(iteXyxpW
z`V^&9Rtc`7nQNcJ+h8VCIo`EMz9w)0hEQ0q3e2ZGK<Y24YDspa!{DDx*&<>s=+aiB
z#VO09K0kDFQ^qcxs)x5!hn^>27FG*cK#I<ND?cZtM@DSbnVDAQ<#8sZ*W21fhw-ED
z^thuit)Okw3|7`eJCWCJznBWje~snp=Wef?dv1@1mah1nS%fhBJ=(%#RIQr4zC`zR
z6bB$D0rEQ3Qs`{h?(7NIQ)JSwJ@jTs=BrdrU;B`6Z3UPoM7joqj{3NdR0S6Tpu#T0
zk4;k5E?K;&o2@$HL$ppiL#(~!o89d&OlCa9pDj#V6<wgJ?ug?|ia{S;(OWIOsSLZE
zI%($?y<Pv_d3x-r;mdhpY|YEGa$9wa^#`%<A#ori?tkC6^T+G@<NPnXc+{2t?%?m6
z3jQ$sd47xF#9y`;{A&33LhD}*`w>g^|9{!_S3kcN+y3-~gZZ1Ezn0#9HU3ri|I@e~
z`**G2*DAoT9)8ux|MW10kQ)%)_*F6ghl5`Pia#BsA}SGolPi8T{dF1mr>O(!|Lgic
z7KOih`Fo1-rw;%?j~W2@N5b)|`LDs@PX|l1zx|27g^FLT|2~2KX$t_H(f#G&|CvtJ
Wl~57b__=!p3($rLMs<uozx^LdvomJ^

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O05
deleted file mode 100644
index 665462dfb631d8d58efe2e9e9b3ff7d151d8e406..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 5376
zcmeHJOGs2v7(Ui63`}&9DGm6HpwvkjUo)56LjohAB&evS)Dp~~#wd&wTht<2L=w7)
z$i!t?!7OYcRG_6~O+q4QEfNY!sX%vizH{cgUawh>M4Rq`pYJ^W*ZI#k|DBaWh`6X^
zO7z%<5VsAv_1jU^a3)j}tUhlui)orFz31i1A+7QpmdI;IedEa*$G&};BXtV2`LgV{
zNPEP_SWf(%4RxWqV7;gE^r_mq`WlaP7t^>k(A?~bTLYH^E(cr=#LfYHBl!J5{j&E?
zm_Q*~0&|TRS_=pCdK(7(b{tAyq1HrExwYIbxi8ub=o1m|Xw`%%J{9?e=r0-?tSG~|
zg${oyNml|mC+a*~0-c>{CH^<lzAul%Mn`61A#}dUx&8*LyBLG_viy+!+opV_wVqPw
z^dwH0PdzgJ?13_U!<GQ{a0bB{=Rf2?o>*JBuq@UN?TGm^<EC}!n0US300g?s&A!Jo
z_@E!u?#_p+N?POFR9?igk(NOGs&aKl_`J|Fq<j-a<&*M}m(xDxwiqH!oXNLQbujwE
zMuHUTZ!SDsj5!hd$Q6h|J<Roe9;!TfAG;29W5N8HNm-9c>y4bYM}i>(@-gyVy)V(z
ze9n&?z-<2ifo=NRi1M{m{@>mAT-}E#uElA75FPwCBR5p-h=>;)jhG?{{I6WVf2Y5W
z@yqHRiR6FWn)M|a1Jl07M`7dmp7)CXm*iZCJ}H|2#jmpcko4-WzCe`!Yi~x(ja@Rn
zIB4-7d#oeQI9L3ad18%x72*LG8MGs|HzCfihvvqg`41oTgW5ftj8_s~oviX9HdR~<
zG#=Y-<NvNG|23i~Er<X2AB2r}Qh2BCP*Cxoh}+>Vye0Lx@Adv&{<k-c$$E@gZ^U@S
zzJ`ziNl4NBC+?1$<3Inu!)ErN{+-X~KW{T1p<i-B_kW_u(fyyuJct>ub^j+Kp7&6{
zDW<`HA*{Y1{SMF%u_Iace<JyRwmq$cG3>~UvDe$3<%eW$n(~!J`QN;*-@Lv-#<%r<
z?9m6#I9L3ad18%x6*9n*P{vtgES3N0!&-zu?dXm<+VOMpT>rQ4$1;b1=(GPjZ40t=
y|0hEKU-DmwVOfJ=>y4cG3EBH0siT_z#I9D&f2Y2?j{QHRTQj$2E(iWk4*UcFkpZ;;

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O06 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.IC.O06
deleted file mode 100644
index 422c225e6a634840f945d36a99cd2b34f4c7e35c..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 5376
zcmeHJO-K}B82(D=P)mnG=*QYUw6K|oLam!_JChS@LI<NuVnRwTEUb!)Kd8_Sc&I!n
zVT6QcxLav>=+KXZ5R?|-r9%`{ga=nBbS*HdgMH68^N!P);VO7(K6rV)@BQAtdFSDs
z$zY6a(#6fuWm=5gl)37kt1MDg=gRY%ywcld@#y(^d~vsYi!161Mw)7CEPC_N!)=ae
z?rZWt%>9uYYc2Up>%xuUs)(yBS|18WYFs>ATC4A6EM|+{1DgXj2W$?c&jEZR==*{G
zjh#*?K*m&QX%NF|`GVbaXRBn!@%Kq_CJcGhpjkfkyG49L<hykyp|Gh^o-fninK32&
z2`LVt<6Dc2e1uw^sx&&=;4gQid|78x67#edz@`^_#$^3j<Oc_X0m!S0S)V`T^26rF
z_Jq>p<oW%V0@@R*5_GtO;Ewi-e4$R94P4$9LqmRqlV9SBacS8&Ht&=nu%+6}I=Vv)
zii6&rJCu1GlH(o`brH5CRq1Ev386zwZ}fxM6NWsjWXovEN42elC=+*#y(kuVd0t{2
z^G4ilwdF<76T%*~0<kDA_S*AY6~6R5W*f3i2cLJ{Rv;_+s2xrjl5t^9ykElhf;|#y
z0JG`;2Qj?o<095-`JbF@6VF4KeScb<32Q9;Z*4vx;u9jDvzqhb<4Mj{S0VA9km3+J
z8g%~aNc``sZuIYoq<lXfrX=<H4)I?1KL-D0nfU*8s3ZVMKAHCw>ioa9FRs+*^86<L
zLr49@9qk4Gd7U_;UV(UlD=hLOocJ}kZvG<%#X;}xx_abcE(5!AMLmQSy%(j=<HbUU
z{N8A#*b`zVt%?5wyr=P$5x4nWh2TFSTCtJ*AL~yj5bCiN*)yjMd3$eG@SkvEX1BqA
z`hSOSPyL{X^(X)T{(@mY{92p;Lpo;nYV)7aT2HJ}oBxE!*Ve#!aR>9CG2;Cd{X0N$
z2pw;9{_9Bm|K1uE^W2(`Du@1PEEs^C+B;{=|E`=tC47wMH}M}jii11a3;y#uaYnrY
zDZwi6>DKl0A2BEndPixgMl;U1m*&4&pUxifVZXRIA?Cl;w|haG|AesLNd7+>i7OCm
lU36Bv`TXbNE7Ima;euP6|72%l`u~o0&+MMr9QeOE@Ec<K0^$Gw

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O01
deleted file mode 100644
index 4752905f65d8a6ab51a313c799c65ea63af2a0fb..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 12800
zcmeH~O-NKx6vyuvv<M9$h!7WU#7R`t%*JN&O}?0-78Na$LL@@l=%#2DIMYTb6f6rO
z(lQ*svY;q(5ka41WGgp?A4HHFNnJ%`*8Sh-pLz3~k#Q`wxEGH9ckjFB+;i{yap$;B
z2$3SqB`sT8maPeK%P)r(ZGpP8^)*=)C(hJlnfOy!WDAhMW2TH=R4ALA>vTm<R{Z#Z
z+;Yx#%RMRo66ue%(UMvJP$1e(_KU4()?XQZ(bhf~3~JM7pc&8%Xa<(f0DdF*`+@Vz
z{Muzgg$Nmuix;yNHq2|<+H2Ug?s=;peQK>c6tLSw?#4ZMPsMsyXS&Q#x9|(`+S?O&
zq5P?gLv3`wRqv@*o*~0HHs<p_n)YmS%@`&3i#=H5TFQ*v1NLFrk$}4#7HpXDcx$tK
zm}58Y&^~5=#(U(6F)DpxsofXPLz7`M);x@*rfl-VFwZxin|+M$5QA}Wb{Peuepuy}
zYUN8E&J7yH7jCFA#4J5Ms=gDo)-Cp?U!PXz<jm9FM{ei~@uos)*|Z^cO{-Yw=NI&Q
z?aIAC(eO_B$!BXnt;(1CvCrY$rRb}cZW9*INA%t{U|%x5if8KZz(E5!fNa)3i1GPn
zcuD+c4)mz~P+w+WQD;uIvybQg4vT*()~j@NnPLw7&n@7eaj5Hq7XMVTU0*or>pMT?
z**!F6lze}>1A7tgr?6)k*Wy3FEvFpzZF0)9GfDoDr;1IL3&d;AZ!+<tbJ_eO2IJuD
za!*zHVPl8K)pwv?ZVnoQ2ijDw$fNXhm3mLbx0wBq1pkAQ|927oJIn4U{;4<%aK$s>
z8E`x`<<IgzezVJjaUG|M*$xBNvftvL+Ws-ZKkIk+W~9a9pSy`x%&$IY@lVY=Zt+ib
z=5z6r#XlA6HKm8mP@c<==)Cu-j6-d_JAePrE7{(6X=K5Dj<uOFo*z`?l*76=NBAE(
z+G#d7NG?k=)ct^X7-Qae$LC+NAy4$FjGu@;+pv885rc7Xc3hV^M(M){|54*I|3v$U
zkGZ`6oqn#zeTsi7=C36G1NXuv%$XPaqFwSYE$yVmKlRC^#XsjItMTh6+`DYLe!}_U
zG*~xLc|x(&`At~&#F`7{VDR}D>L>2u|E-@A<DYdCm30nP*H4kVnspD^v1_9Iua)|V
zxwCGfVtgfkKmK0*Wapo|jaJ-MtedE;bEwWckaZI^x_(;t|1;xIb^Ww9>L-%Gx`~SM
zmE?c5>nA7Qx*xgk^;zh%&<tn>Gy|Fe&46Y=GoTsJ3}^;41DXNNfM!55pc&8%Xa+O`
LngPwg>M-ydAD?w_

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O02 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O02
deleted file mode 100644
index 383f1eaf087b9b82d656f8cb30a1b7b33e58cf8e..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 12800
zcmeI0O=w(I7=}+%oVH`S(M1+U5JZTf$V5{a)0y6BZj7WT{w%DmR0y>R)<&DOE|jrz
zix8@UQxdTfo7id+aHF^oOI6U730N$2;i|j(1A+^&mHuSn_nvd#&dHfco0;mkIS0PH
z=bn3hzI*O-?|mn$l~PR-t0eA`xXUU^9nVSAbxU{u{@tNO>V9ir4b@hey(1+>#&kI2
zkW=s8SB7>w?e<}t^w}uG?@OiH>lxoE<FPhMJ>#F~T{=vTm+XX0f88=QUnuzSd*B)H
z40r}=X8_*_em}5(&F!-xRH-N^zj)EBvY_A4<%5B(nOnzmIHnG?MZI?PJ(KLgc`DYs
zWy5T!)~cMW@X*46F+HBjd8mmu=k<ANX|W)AMnT_u`OKI5is^;PV$eC>vJq=EO%?Sy
zb1hNu&6ZO3Yl(yVi|OP~cW2PY4ql<%X4mz3$rEkJS1SiqQF|=vSMQw(t8~*%%}uxG
z5a`F;>^7dm9GnMx*FAXK7Q~T5JM~!Vnk$8%W%8(Q!<-L}oYVJ-I?$#bIVJn$=I9<H
zIkYJ?*R6Fz_EduXzUX*#6Y5m-N3Kv5_CwuV&$u4T>#_T=Z!P-Q>Ddsm+!*!S#{pvN
zT$kpVntJW=06Bnc`X9_OGBHyV|HBsz|J1|l4gXY|ebg`QF#J=o-iybCizN8}HcjrS
zoQIltJLW%D^8frh`OFK$#q?*w{OKR^ow%0I9sa-HRLUa$7%HaM)yu!+iMf%lR@}g4
z3eMZ{+{E-v^N%?=5BBcP!Lb}-`ys<OwRLqAOr5a#-x>376!+q*m+RpFBjI0y*Y#(+
z;h&1FXe9qnZ=MYi%*R!AUig=IcHZz$y=?JM|BkU|lGXUHeuL3}?-j#8^^>IGpX%l_
zxy|rT#d`D2GhwtwzyB4vr*a<Z=wZV@mGAbR_wyC+bF9tGQSS;%S;YARW&WeB)8V!~
z!sXS{X45wc(8j!Rj`c+;$P>p@&c71<E_w6(V-C)Pz2myf(bkI}l=-*YYpG*?^ymBE
z9Xt4d;h&2BjpYC2r!yhK&5Or;|0m-2KehC#dH=Itz3Td>_1FB9;Tij3{ySi5_Ft^|
z(k1i!P=Ad56V?5GT!{S>73(F$KSkO<MHSx<&O;rI{S%eX&r|P~{nNzuqx$=?C|-)^
zp+T;cMcgq`etztI<F(msb{*%DC)%hSQ%&u$sMGgU>kH-(=vRw>Y8CH<*b)0D>KhA%
zplho9{LnX1>-JB_WKR)Fr4fmgd48z4wnjcbH}p@x%J)N}7(YMMUDo%*_D{pt{L{+#
z-}krSpL(I$d_Slz|BuD~iHi01h<}RKVZBQJIS+O8t@!&9>nh<I9;*LHJ_D}%KP(1=
zzw~MTcS+smzb9MDJ}mL1_=bA@6Y|vj$BO&CTygoQ@2S>*rTn}8>FmH*4)J?r{1f%{
zrYOiCxB35<{L=~9Q-o3{5z`wC|5RLCBl*9ffBISYmuQLo6Lrqwzq)_2`NvgN7TjO@
zCMtan)n$ObiR$>Lir>$ihf3c>CEwmZ6_)%~!M^{O{)sfuH&M~vNdEtC|K#%Rk1IL!
yd*b)RGvFEU40r}S1D*lTfM>un;2H1?cm_NJo&nE*XTUSy8So5v20R0eW#Av=$z=Qh

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O03 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O03
deleted file mode 100644
index 87c7777a5b1c773ae6b264406ad7d7463875a79e..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 12800
zcmeI0T}V_x6vs!CkTR&GkUr3dLMgP>%(h&+n^z3NO+hFh>=XQevQX2I1Xmw~@JR(D
z2?=ureF%vHB?x+mGAKw0DyZ-w>#dKM9(u6(-`RhAy}IVEsRc7|{Lh_x&Y8J$e>;2D
zRYHhZX))4vN=vadA#Qo)(7Y}GY<-0(&9&DS7(sWN%%16zO~zz8;;^Q|3k@|Dj&b{C
zn)KNx!!um2UD3p6%XrL<7EOFf;mk03ou#s=zcT&2t#7=gMVsCO&46Y=GY~lg_>SQB
z2lmhRCSXE^@Eh|Uyz(aeM%zjayKWxs_TrjandUFF+t%v%0^Fx!zM;1P)88k&^84~Y
zNz!F2p2|Gb_T*>QeX3fg-+2Ba-81R+xrbVPMsL%e9L(`b_IV%rvt}X>cJphI`{VXh
z4}9##=e3X7`?!yFVvNd|xzrwu{`%Jg=3IUlONdSM!r=EQxHkJ3?;!{CVDJ3puEVX;
zvdd3dvDDNozj3_tx;2KJId$)>_e8Bs6Gv)0irmgMI<K)dj0y2H-_nb6Po>fC>XwbU
z=u`PDP&E3Xub!vdiskdzedrsB#y1a|uy8TrLB9dpk(6ukOg(nL*uWaVKkFal=&6g0
z|LVtz|Ei#NT~qv1D;)ek%u@VQG2i$4fGHZmfAv9fUmW}#Fb{S0k8$grQptCdC&P2E
z%;#>qA>U8Yn8p7G^sUb^KFfZi{pCa+thCeTo{ExxtP}h6Tk!(JH0L`Ru3bF;$iY0=
zyK`kD-U?}PC*E6JQCr7ajL+G2{!a$^SBf(!S?+^#jm~R48pfulpD6y%$UT)tzx-y!
zKNbGq3W`QQ^p}GF{!N1>jPp2EB-}P&cViX*)JuU7|E%8;JGC}4{;%{X{u_hp8&>>N
zo$EPTrue5~zWjCa9P0xALOA(n9%_4H@ca*IOpxz_FX^++bIgsLXz15=Oyt!|+no~P
zKh_*Dt4>QU<0cO&PrrdNt{eB*pOy{l#5GmLEbQ;2HH+sTIhY4~$C<fCyMAj3@oyiG
zq>udYC;!ga^ZOP5RQN9^|D$&TCd|1mUW*BN{!1I*p!lcujwt@=7p;b`pA^s7k8llh
z>iQ|%?u5=xz8ls(b494L_5Z1#_zbL@s2E?)&(G4;PYdH;*H0v2wvu})>z>)3tS$b`
z|G!c{@flb*Q8B)p{4ZVov@rhvZv7Pc{mkDFtedF1e)>1+C-Tp_iMrhUuXO#yvrX&F
z|3&Hj(EFho&<tn>Gy|Fe&46Y=GoTsJ3}^;41DXNNfM!55pc&8%Xa+O`nt_#L;1`i*
BM!x_6

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O04 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O04
deleted file mode 100644
index d3ae31b765b806c74fc15fdec84f95c6822e5d5f..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 12800
zcmeH}Pe@cz6vl5x4p^K1EFxO8C>SJS%t<Ckdy_AwomNsH<)VeQNg{_<EoLaPMT<gP
zw2~H%VWJz2TC~WWE~B6#BEh0%WNpjtckg`ly37polo<`qh2wYMednBe-|g3#vso!s
zr)`tA1KRclhEfkxda3N_xR~klwZ-Crz!1~DI(t)04;|Cw#NkZo%hv|_ob}*iRQnv!
z;fG?e#?{2fbv*XQSWWz?^uJ;H`LNAq|LXK*$LK;fD<*d!3<v|lKzIi58^PZX+~1ku
zybo0>=antI`X&4h?rHRb+V^cZg=cDiG?xzArRMq*cu&QC%_DhVEv=aS#?!uur!o(9
zXmG*2r`mJoyph+7$<&QVV#`#-<iQ?xj_<JcacZI+2EVg&(Kh%5jo%ww3(n1ZeNL?5
zyha&RM1!%IUl|_ri@2GkZFM_SF!=Fo!8N`^4(7q#9nG9S4!hUWYhtPR<{zK#n>FNY
z8T??*OYM)UlgXQrgnLH!8HdA~Qu7@~r}h16qu>5FFIq9D!XIaaV$ctB`#mEjmfsWf
zp>G)NZyEPtrDD{sF%Ne7d8^@q+I_Xl!x_Lo`yb@E-dS7zvEPNRKl~@iJ(b*3$vu^9
zga5C&NMdF(;>Bm`<M@^*dd~OI_2&OU=i2#44(7q#J<7aK!G85vzNxo<W*z=}3;bI}
zO<EQIkM*5uBX8uMO3tAe^uxRw{NG*9`!Md~Y9;)$e@E<iLpc85?zZ)xdS}_zf2w<)
z*|@F$RP1+qtLFc6@%qm^)S*nF{uh*dZ-2R%boatD?i~a3rOAnQ*l0GAI9I6u&B-x;
zwp(*KKX=S}<~*!17v6Ecq6f}t@=|S3MStfS*3Lh2Fc0pI8}p1oZTs@K{s-5?%#k1d
ztp9H8_gA+5Q{fNJp&0bXyc+yJo6h?%?&GT3q3gf4cZK>-eOjphu7B9)(*2W4;hW11
z>?QqE=^JwYE!g)Ii?D3{Km8NGfxjD6tk?4YPxbnz+VC&^lO?HA{x?ehv{Cr4UjI}X
z|LmKn>~pAY4P@U$mHsIl{~M)$BLD20s93LM{a^3?$>m#~vst+VxdUN97!U@80bxKG
i5C((+VL%uV2801&Ko}4PgaKhd7!U@80byW$8Tbw0P-w{j

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O05
deleted file mode 100644
index 07f60620f7714e6c08c0a922995c3877001b4ed6..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 153600
zcmeF42XqwG`~HU}9RgAVNDv4e0-<DCvY9MZYLMPTM+8I!1O!}As#K*V6hlWqsUiZ|
z4Ly_qQWR;177!4Epfn}_`@VOd%{bp(HmvNP-#LGC&YRE9?C!nq+<ETYXYb6;W>6F*
zR75%vr9}j2{uCuf6{}wO*JjWMLwk4cHB$4omwH%1lwLJR{E2r})xDE)YA|5fz}~v`
z+QnMpH8tehJ$ip#@qVhC{yeF_S@#hE?OMtA)Bm8Vjl-K)3#wWxKyH*~S#0J%p0B1`
z4%RJK*DZ_9{Kxxi>XvKimP2&QhJP+ot82@vs>`pcF2Aa}{Hp5mtE$VdsxH5(y8No@
z@~f)LPgMVp{Hp2ltES7Zn#`}7uKiP&<@-~Y<@-~Y_3xM4m-@WizSL#8eW}ZG`%;(X
z_N6Y%?Q<;K+dp+#m!G};Q=ix6XK(-1=XLqn+duVrU4HiVPkmmOpS}GZ&)eHSby?Sb
z_Vy3fwSVfe+`iOh`To>pxqYe2vi(z+<@Tj6%l1!QmfM%QEZaYIS#F<W+1~!C%bcG$
z9K6)ul0zSV{9pXn2LEZ`KMnk+ftS|+c|1B2i=jS%+V6vcm(4^)v4o`_i0M`T`$w;<
zo2g=$mVskTybLN4bsK79(Od(U4^n;Ei(EFVev?rjzhBh$k8)66&WqJmst=TTTEg<(
zy>865F}>m9I|uoBdJTm=YgJHv5^+0}!ZPzgNS!_bb?_R{{#pggdeZZhC#?tZ9%t0Q
zzuKcqW@oRXb-}^GVHETp<fdJR=co*nLv8n=r6k9wA$$0};PC8GVTossn~=lkO$q!w
zs6^~-c;<L=2%dLE%8i~=lz8565fgW*5#x3_+W1uMr?u&M5ZgkeKa@+4<@RjhoUlFG
z*Wk4;!)lL`M0+H0ZqDA9_{gYITsc0`M0J6~+MF~|4y0^hY)JkA^!{8e&b*ZVOShBz
z3=CXUlG_>7YM&lIsab@}2dTb4-#%lu?0ARuzuS17+b7OWlmq5mTY}pjg#HWMdSa|O
zE1hBe=KYR+L)$~!EdErAMV&I57K>=TAiDt?)3zDCkp8smw2$dI%9GZCw9eI^_Pz8t
z>Z4QtTK`lA%AvOVz2M4liUI2koENxa(kEg0x<+gC-^{LmN!k}LqyLnYgS_7YdTv)|
z4cP8zW5e;RM%p%z+Jbb2HbEO;eQ@xr)qm7S=S6#*cd7r#+4WV9spDAxk#>$canzxI
z7QbEp7vc{&(Lc84pQLR&Wh%|>3PvRr=VcJv4=&14kjn?DzDh?AnUz7kxXoe*9^-um
zq8u<GLve0<FeT+<(T6Qzu@z7Aen34SGN$F)-~SnE5K-0dp5yrc{(JG}va93G%9XC%
zKGdIR9o|pR;c*K64eZ6+2crD6QPkt&PaYfHAOGn%EJIPK?NA(Y)Uw&h&mH>Lu78=w
zR6e~P$AA5MKl=C<AOAsmy)X5zC?`Z4oN(+TeSVf}4OEI*+bq0)!KcYbSpWLhzwEN!
zKUHk~3+E!5L8Z2kf3E#gQqM!YkHCcT>3JE{j~@qroXh$LslL8#elaT#4ZM8`N1KMy
zHaMs&FS>yAFCfN`4WAb?MxIR$$shNf<Jd;!*f&5GR68yUG*PrKelNu2p?{)0xm?g*
zfivj$1$>XQ*QT}q=>1c^YtzgWN!jMg{a|P4ZA;kC#Tq(1B776*seeiq?Heb;vb?)Z
zIoZQDvq(4YKOk+JFZ+)>{}dNFRHc}6;UP^^E8z1_M>xh0t$!+Z_S8%1e}AvT-0oo1
zgmk<N>h<4s{~XpQNcDC4S@?=9&h?LS!07Xn`1lP%|Eo(EH?BXO91<SuTK_XHmoZWF
zoBex8sE7Jb$t?8`Qk%N^)9W9;$Jy)Cs(-zI8g?y*nW9<t{M_!~{jy`jerQr(qyK;B
zpD=y|Z2nG-5Mdc%v{@4B*ow~W&iV&w+kB~icmB!p-cXg|%iL1`V4bHQI`psgPtQ6_
zzaTb4rEPi9AMM{=-R1Eg46Z1T|Daw2g@2aEe~{{{*;ROgKb`9z<$(SL<?$aR|3rPD
z$;@JI{nOen15Fh73f^<*|KlR@=FiKC`X6`V;{%mN>yS4+hsR`}C{J2;@I?*uKhOEr
zKP8k%J^o`GUY4{8yuJ3%&v?HjxrWX1tftLSKpy`=dc808@6JEPh+{uRi%U}fV7ZC%
z_>b-JlzRVE+~J>8mD)o7x%N-_EVBQAQH5mx0rlg@((SVUfK*>c@=xcS_aBr4`rGG!
zK#U)Ut;LMHPbG)U*yVcsXuUtsMDfkXsr^UWZrEDwI_+b6KILco_+cmB<BZz((qnJ<
zr@O*CQEbgF{Sz4ettG7ctp=L$<JHVRskZM_KM~5>?l#NW9=3~-vj2e84!-O^?)+0^
zkD)3><^!_-fIEjd_fHiZ{wZzxFWW%+Conil`X^AY|3lZMe*&q#cgR1La;|@r14du5
z`zJf0{|SG*Va#zNIb_H8uJu1^XBiX4=`x=CC(4tw?4UE@+t=y!?+yRd;(87<MbRA6
zKY^cpF*fY!_*d_rPHYj{-zxmm`@%mRsAKE>mh?}cul4WFKgA6cpC3d#EhF_0?#h;`
zf31JI>+nxn{X5^uw101ok;i{f@t4PcP_KapJLK^nr25K{f4bmY|0oBHwjcjN=)c!a
z_x@?wo<I{t-4XXf!t9?PUfMs2JX!ys^QLjJ*0=tt?cLPlzkWZYb(uDVw^!$%lt(pe
zO8Q#1$(`i!AEej&^7!x0KdIu_PqFWy)IWH0xVQb2MWwcofB*R>siFV;)BivIDQ)_P
zZvx?S!2kSH>NN%b`6oI@@7wctp8F@Q{xJ^xlXOgkZvx?SK>auk-vs{WpJbbo=b)hW
z!nt+rIz0C>=kNaWPvSZoAN!|bQ*iz+Ms@U-jIRCD+_&X*N}%#qQ|Zq^-Sto3XU`c<
z8Ud-kVxNimr`xmb=kJc%&)-Sv%k!VPj5P-0^T(v5kBvX9e;V>6%;xg^UFq@VOcamq
zzUJ}uACxEM@1UcR{`Z0Y*x`-&r(9L$m?>t|m-A2Hq?6yO*;fAX%IBYAUbm`|<*lkx
zp`lHA)X?^Izm<Ic0;E=;zK+&F8({sb9zWd8KgH}Bs8Xby3t)YL&2!InoWIbXzq`5`
z=kL;{|AnWfupYpKj3cCe?bQ1x%e(`uUy$niaE+LMD!WOZUz{|7_t_jf_2mVR>BjE|
zq5of^zo<R0)9sLmSzBD{f1|OqiDK(VHyoe8v42?8_MN6(r+v&%i#++YAa=A9YTrwb
zz2Tpp1Qs$=By7vW`vL6MtDdR&=hYqObVhG_HRtbwe%qu*p5LTe=C-m~!rIu@%zJ8}
zZ3C$pe5rr8^H0M^sc|Bv<(R?x0vlYc=+M7*{>g6&&fjVD?_}T7D%$Q|dG2t#gTYtB
zcp21dpxdByeEbKgzTH#Byo}!z?w_N7-^ls`Q4SbgVhQUXg#I^<Z|~UG+B%Ustt*`v
zV4@glOg;aQSSH?l!6@pteCarUN9#}qJ%`79{!Zjc%akt@6{Ly2oqyW5_$SBlAKUP<
zq|K7snc5D#oK)PVYzwfZpFf?C{~*2Im-=@%|D;?Rq*6S6y9nzG9QfsI*8j`4hyL~Y
z^LJ+){wYqSw&1@P_@@#*Q&>k}RO4p645qaB=k??HQlx(ZslF5BpO$~_)IXsd(EqmG
zKiP@?bEEedW0zkahfKW@>vH@UQ@5;%BK@1044z*9L3y%%K(vt)>f72I{wZ?fY;$)J
zjf>6Wyui-!Gt{G(A36FDu6qJKz5eOM(pYgVUaYDdZ(y@5ZfHBSVmbF8keb1l{l~3;
zS||LIh-r;Wu)e^c*3SLY_6_h)Y199{^0M8*KFPEB_z&v+Q?dEa`S=e~eSJ3y|1|mp
zAHPS{T*vziL^)va+kK^fvJ?965wfB7$uYM>2Ca4NpT<2XZKBvV<A&q<53NQaVeLBY
zV}4%bN$V(ICf?+P+V|39Z}_M2{sqkx?@h|V`Uk78{M<A=Xq012eO3O+uf-NMAbg9e
ztZQMjG;C=rJuVmPAEajRrT*Rdr-0ETRf@Xfm$JUVA6nFL>Yomdf`8KJ-^sqERkTm1
zynTh+9qe<p0xyGl4RjB=#K&il>T5Gv_=*|BxPMmob3W?|L^+`U-}6}iAoPDyY3SJ3
z+B%Ust&98PO%uhv0jd6JbIEvf!J4A}c<C>xJX(h`=s7%Q|0MFHWy+U{3erU1`lm~V
zuN}vKY{ScvHcM`2YCF)fC0iMra;J=KMe?Vte~@19OZ~g^PXVh3s}!5Q%ftEt)6e+K
zEB<NKRLnmms?-+z_X7V^`pMs{BQW^A=DZB*$BzrI=jP8JAl0{Un($9Uzi{fGP!1T~
zYPtOUVJG^}tf*1O$o@}58s&67{}g&D&_wY|Kn8=+!|P`$Pu3HNHgZC}R=we$Hu=po
zQ|#(DpYsBDFBqWu4SwqAKk!YUr~WC@7^|LW7OPtNG_WZl4Q=_>FXjFNQZx9n|G4u{
zme~VUina05KY`DeI`>b>+u)zlrvGIpmvOs;34yEl_z&v!zwNj`j~^h_XZ=q2r_R6e
z_%^ZQDc)xw$^nC?4wC-KPUwGsN<!@=Z`}(yH**`85AE4ysS2vKmzOnBr2pcs$KRhw
zC-S7SL3{a5fgC_@_@~Xw^P4HAe3gaw19&FjnCWD{WsWiRmHDSnwyMfV5xJY%lts;K
zoeICn`Uj~Ye5rr8{%P(AH9$nAh|R1oFs$rbPW_W@5d4!y|4#R=99O^T@H4kN*e81t
zUIwx6!T$B)Sf3!(S9!4T6=S>b@&D<vPgq|d$^reK%#!}ePUwIAlv<8`jk<_PogU|n
zFJ+=ID#?z|4{-tU=F(Nk*L=e5L*>yrltItoG5aTxCzlJNf;7>${%K>u>5k(+w&7(-
zo5kC!yZ*_NtCG!<QpvVDaun+yq}TgW|8D(L*&%9xh{4ygu)e@AE==%>e~RA@|D=Rd
zTkzit{8NVld05Y2)c8rPFEE|%{9PYobM{Xl)z@~X@K5u0^Y%qY73TMYC<l!0wL|(R
zJJEk0&020eTrZQMP{$)K$B(F9fhLMG>2i5|{w`(iZq5%x6FH+^tKRTW6}Lv4D~UL1
z|E@L|IdVaGn|<y0SVVciH-Vn|rxVros6lP_sFpTWY?gCXY~S}k#Qg`PcJO8Yap#}Z
zguW`plw!46UtrrtD;(p8_Wa$#x$sYE)Bh+_Yt{ppup*E2Pj>3(U$d5|#QFuPz6T-{
zzX(2lXS3YraRAhp7hFT0hXP6e^!@Ey8LHGSdiOy{l>ZKw`d^<Z&_rR${ls(sB=RIZ
zrL)tS?y*j<e{cAwkn^R@1`!*YX5{?<22ETO8X7c`wJG)gYR=z9Y}lyIirT1JzVB?a
zjO%K9Z_s)^e+T+n|L*)#oNcs9(PL8$))!c(rQ*=P_Wa!{aW0M8OKeB#@gF->M|xeR
z%kumk7*)i~`vKHzAoAl3eEbKgzK+v`uUIve`)BS&TUcKp$^oPA*w5eDiQ|7YrK4N_
zw8#=*qWJFUU59_FS2o@}ypE{fPtMO#d9)6B({p&t{z>FX%akuu*CsDs^sRrYHSdDg
z{F73oxXtowaogzd8QjM}+J0Xi|K0f~b=@G9qFdXdtS_*8_~%~nPw(!4fAUN1KQHi4
z4=&~A@c>L(J(+a{>itvmDG}U%K&tQVF5#aHd!70xlmq(L+{yKU=s$<f#28Z=rZbGL
z=lcFPS(}$KQJlMy&GYkjB2Vr&;0rno`W@&E{}fnfuDP^`vt1T(Uf{TH6~bRD+v%12
zr?{EB)x-_ERprylHcPH5w$Bdj=l%owy8pQIPl*fqsuXQ5N&f_X_q}uf^xjhVr?lxm
zew~He9gMo%irXC2>pyw-Le?)x^(Bi?+Rx|l?cv|8`IrZy956U*2Yx?D-ii7^@0FI?
zJuBV|nK9D!{L{5-fhLMZ9skAsJ4BwWfAA&r?+yPn^jrz^2O@%gf694*=^oTEjk}e>
zF{Zw%`KP!|o7Ig=H>;N8ZEeaY?QJvfU1k3S`da_){F7S$Bb8$8?UAf6Fn;SBPW@A>
z;qXry{kz!5q=U*QF0uZ>KC4UfGKgazxH|JG_V*ywcjiO#PXqY)pIB)Y??({jfc|^u
z$m74AIR4kUtUC5J>LMa_dc1f*NfX7`=c)ebr#IuxhU%jJ&YyAnP<gZtWzchYEdA2}
z-ag7#TR!S}F@5WwHs6i$nt!s?D`!(GmbV2bjN{`!NZbE^$v?%^cwePBFgX|N3q114
z6tDQFa>C0<T?C}bKUIp##d-z{C(7&UK>hiPy3gNc{{&KfORd5`J=*8gKcO7ZKmRV-
zf9yp6S*|QG_8aqeNNn%jE<b-)FY%^{V)eSrp3gu1xsUrzik&a&FX(rmH~iDo(zDGJ
zyK=;EUSRoyiE87cUHMo<^<&-%^mP6yC@D@=G6?^)vXV`yQQ0;w^B(R$ps)LnJO32W
zy{}5~?N>(D7g)OLO2_!2oqsy;HT+ZB^gn*$9By||89Pn-3s5)z`diav)-Oo)z5k8y
zPg~>p_}wbgaz5sP`tpJ!d-MB2=wEqfUG2~2{T6b&?zb-Wf9b6<CW=p%-*$ZdhBk@N
zvUZ*JF+VTz<ky0DlM`y+OOL(bpVE~mZdODr&hdcr0<)LeW?Gk{pJPmYRsKo+Y^xe)
z5$Eq#MA$6mw{0sA<zW4T)C|5HKiv7J$Q>h9inT`<vA)0p%R(Ib*UmrX?G68=(Z7>@
zORH#~K6`S4_5YWhQ6J~zWl*ny8o#VzeS%b9?>@p;lxocVb7O|SydO8&iE_Z`H>a`w
zLFhkaZ8^uj*4ByCY2A&VN}G~Id@&{U`ll>!#G7+e67{Qt9sY^dp$vKskI6r!lx)n~
z2crD6(YOBT&C2h-GXIobcm7VfUe%^tt7fZu?_JhENbTTD{kxlgitF-$N^!uHPWmT1
zE1tG^#Xmhtf`1B1lYa^fD$05WxBR%8^#$tv)7y0?vws4qzTbWo{%QX`-ac{POnyIz
zazOvlKX82@`p*~BV~w?+XErn$f86ExG2lUfiDJ;_ejfWL%9Hw&gD>bf=y#wu{L{gx
zC^N;e4J$b>@ci<l;VFNv;A0Wh58niO>Yq*&-mk{g-LER9LN;Y)A={Xzm%0CdzV1Kn
z{8MD+9x6q{BF$J|;I;-E9OH-9KXr7Rze}6`j}33b?S9<Ogb+V&b5O5;<M8sVUy$nC
zLg(+YH0R@Yk57|%9O!8$$^nBPHs$w&(EsQxRcl|&`6y)H=+t||vreTxRRJ~VXc<#w
z5!p{a_x${w$dk%VXQwRQ`G4ph^oD<0F}#AA;{9BAI4|&Wf%wpS3x~2css4ZKpD=zz
z?%kwDY}}+O=fwHDrCn`hZ-2w{Paw5~FUJpe{weX`XqBRUsp_mR(63@jDCL<><g4{h
zrAER(Y4q=W_p*QLmGd&|A52(Kj+a5~d+_gq=lJ*xQhncuYsi&GL%4rdC^VP%BZzXq
z=nC@saS-}ndZ3<L|8)1wk|v4`4O9J7adEBqJ2gc8qo+Ci6RktO^c)_OeM%?tq-D@W
z)3{jeTmSUi>NT&-KjHqdXba^+8Jopc*7jb)C)~$C+Hha$-<^N5oFA-G{58Xm^#!&(
zG1V*nDMol1Y9n#DO_P6mXQV$L&%r)hzG8iW`tc*6##HuCAk{bVj_^-|es}7hP!1S<
z;w0AxqW^r{|9j)M<n)GVM_vDZOVJi@m?)Y}&SCKQ{^KG~ZXeJ^PodS&8t4uGG%Nmd
zGex%EYdJ44XldQ>0zKF8v54x2Zvs8_PcilPsmcBKsg_?0h|k{zZH6ruxc`8(-M;KU
z?);Owxw}g7OWx+JFL2E%=l-d|O3Xi{P5*1=%JbD=pC0dUn}d4&e|~-|>ldW@eiET<
zUB$=m0a-`#F%LvJU~pn*>7VR`{_i}TRr_I5a!B<fuJ50D=xA9JMV-yRd+eVmPu4$3
zJKV(|bPsyNKUKS2+D!5Ewac6rIDEnkQ_DI5jxqJ$`X`JZ8!K;B{Yr}Yr)#ZkmYHpB
zZ3E@~3qWcLU+UkTe~LUjN~PEqHi`8G4sKS)@%cgPpE~t`f70mx1^ZX+Dt~VUjM|))
zk3%5#Jy>qgGWJg()wimr@D<zYasNE2$T@Qm<$(SNr?UP*=-)D|v}0eRE+SH=$6sd*
zG*PTClIowT6^l1tsvzp0^^U_o(K?ht&*3ror<8B&@%DizKW+4_f2thY)ocFAq6XV6
zb*tMt4eZOue~{Y2m-=_-pJKLtpi<mV_nh}H`02W_Uhz+%!plhAMWo3;tv^+W^$c#A
zw2t)!>aU-D{>C)+PaxIz`aR*Fvj5@KKcO7ZzxZj{f9yp68S&A##$!hm!_$fTxPL<P
zc3rE2>Xi5*CW=1W#gAop`u#hRC$|r1ufQ3Q1LzI^lvHtsnIg~ijhq)4V7sTDJ+$tX
z`=@~Zd)2t9dsSs&ew*@Fe%rN;KXLy7sU3XTf86<}n6BMbihLPbu)e^c&Kn)$hj#vH
z;kWQlY14mFHu?QKP#LgH`U_BZ{_e*m`B|SJ)z?>i2T#dzll%9lOA`2)2kOfUt}#&h
zCp)44xtWjFF1b26<kM)^{^`86oQa~p^}gr+N#x1;2b~Guz7Dzvz2Tp(Y<ts85jyt*
z=LH58FA-Lv`9jB-`l|fXtlryHwfi=4{diMx|AOYWs1Hl9{y|^s-<^MovyBkfkB?CE
zHr~Mc0{bR5aOhv_pUf@bpEUY+v5#rLCe7K&#~o0)b5ZKUPV9T|$L|M9{o6_PwTckF
z;?p;{e~wu6Cchulmls`o9P1y1{^xAX;@H=yi-^?e@!$SsO%xYqruwJR1%-bT^G!;k
z(czzH9m=5R@R;lq<;mrOs31-Bt$(V1($8!DNfEzYr2H0Y+q|j~>mQ_M@a6H}oqvie
zI9#Q$9zW0f7i?FruUGuj(EN#Z{}h=f|I~Mq{Jm7LPxpA%7pVXI-Ta%i?4LlYZ%d&>
zaScQ6FeyQKJ+9~%|0oCLMen#N`;VQ}f9M+8iieLI)x{YNLpmOI>7VWx{7n=Wp5*rY
z{skgW?myrQ`VIOW=nelgGyNB4iUJ>Q=k@~UJ)9JNxb`hR7E%3}cLF_~e^RO+RAagw
zR4plrxPCC5ZQ|Mc+<!n{_aAruDXvy$mBQM;GasM9eb>Hoj2~M6RDBuzQ`+?Z^TYAn
z?qEVtdv0@3um7o=Vpu;Q)%U#!Wk59d?;=&Y@G-BbohSzkK4!mu+)j)i8^R~luKXZ5
zWb$d({;5jYvZl%+-WvBW=AT5Ktbgz&^zRM-^ze8&GsV5*KXG25VcRFBV(-h}_Lcho
zci+Fm`MaR9TUE8Fn134B)@FI5y{&7)Ek1t-`da_){8LQDk5r1H{$p8R;K30A4*hHW
z)243lPa6HZ*vHha$8sKJ{euaQGVwA<uhE9F{31R+gH+!ik-}H>2;=_QV|E+fk08nc
z{fA89{sTh)C-;?b>z}d?3^Y;X?VbAliT8`fn{DMq{gZn-{1dH1&h#7}vwsqK(lX`C
zbkR1>SNqmKwY>Va*Zh-ZZgp}0jvBUXi+l3%AM~~U-T9})tV30beG{JW{soVG^^sTn
z(-*?aNL>t0lYhFhw*>1M+%oGh>k8D*KlRJ>HTx%!>WeFqXtr$hbLyW^4(Q+bmh3-v
zqW>hdK4PqNJH4UsKG)~(l6Dm|QG8Y;hsW1HQJ&O3p!0qr*V5~>;SK*}-Se55Vs8g|
zUj;DFzMSD5vfSfi5#<2i1bXV92Io7V`qe(5Dv8gnN|O|8SnE67e?VXNA9wyK@l+?3
z;<dK&{xaayzS|w+ht@we758GI_EHp${*`o2cQd_i&C?aEcd$>{)!gQw{`+@5LyGeF
z0aAU%w+sJt^e*@B!XL<c27@RE3{JA&|H)2#|L(^zr)syq_-9C5JJ;7g73oyoR8+*0
zVGlgN|G3DL+Xr;oGS2ny4gX}$Q_>tR;;+G{IWMqOTv%9>87mxP>Z_W6in}A`o_^h?
zDwmtsEblh64XqH!`Uicjf4BZ=$_O<^#I)jDSYKd)ea`RyWN8Hdq}9LkolH9De)T)n
zKd2~2q(1DV*Jxw<tO(XWNcBy6i+qK=zhUzq<o!QDeR;uKKH}pqh~s}sx76=iYU@Mh
zv@TQgiYAIY^`C~|H&Ox$i2Fa4p!%yi{1dH18T1?;vwsqK(lX^Mi5k*E-}<K&&wh94
zAKUP<q^*+Mnc5D#Tv@d#t-@`^uGeGzgY^3UOY=`k@^F>n#D~Xt|AIr0ckzmUDq0l&
z$&x1jRPaP`)-xEKErE3f>OX%gUvFUl1X6u9i;MZEVR@bUCzJz5=eoo7f#^Ruh8{4M
zSdq?<=LgsKFGxtqXQJ43!}IUoQJ$<HkObr6k6xz@Z}_KKXFoMltZsFL+Z}u-zg0C(
zeaOc$$^pI!^wd8E722<=A>#V+cF(NJnP=7=&62qPfYcPe>_6`OQ(TWuD#hN;UHS7Z
z*!hWb{}go?{wZzx&r;CJ?Vi=n;9z<F0@VAbsp7t-v_C+qZ}So1pA>oiA}OpC@3R|r
zq8u=~u>Jgno%sFv13hvWgF0k4JdQcd<wJLNX{v(ijHTsG(?sOh{io;W??j$dHsvd6
zufYkB1LzI^R3pE?xw?oltK|F>*tqn$u=o5^&tLpo|AhIc!8N~E2ZwyGT56kZ%Cfq)
z$QsRA{~$GkFZJ)vKPdrX{1CA<LY}_>gKzh7e16c*KUJ#*|D@5slYL98Xuqz1L;jv0
zs7$lZPuhun559LQ8|xFK`YMD7UlD&nj&JqO@|?*DJN4xS_wLWfUl7Ot!%d&?en34S
zQm5q{om3OW`Ibc-_pkBK8*eUKMAU!6&*7hF9o|pR;W7IsktZ!vzD!h*Ci>Pt<=-^J
zd;aN6Bb$=0v908hhTQHTHG?np?{5AnuJA~eV)NlOynn&2cf-BnpB~kNf0~>o|CF^^
zS=KXXS^g^@S3$jhs=f3W`zMg<>)S}oKV1oA{}de+#qS4E4w%!VaQ_3*e=--kVBGvX
zgJFEXLoUaUXV3GRDAEnj>G}MV$dmdF<?F8h(DT~xhJQLeVX~RxlR{^>-M|{z{lhoR
zm17*`0N(_9>YoNLidWVB@v1WVq*YmQ(weW&Gwwg2ultWX{}kD<tx7Sp+B@u@!1nj7
zj`2e~{}i+n{z;?%7tB8eAClMYJD77bA6J9z)ayUX<_fG&km`GVm+()W<@JsIX8*?H
z2Z(YUJUoPT7i=f=AGG31?Lr~XLh7t_egFNMzmzvo?9cUw<MX#xpBMtP>$H#gd66fr
zqkNfolM`y+OOL(bpH|)pFjMS0bB6N)r@j{%7QA<dWBmBH{t4HQM|S#7jqLE9s@!|a
zW_iDftyA+VtbdT2!I$HQJO31rQ`~=CM7`LZJbr*fszf;Suk}x(>cc;2_3vcoidD2v
zE9}_D#~m<X@*ds~pk4!C{ZyCr4^n+&8VFzUFdO&J9p|#~`$3cg27f(5>fcW2f8F+U
zj(x4I6PeSxLN_X#D7I}>9R8_Y{&;hKaldh8dwGX{qID>Pp2K7IPa;oRrhJ*GAWihG
zfBN3?i_<p2_N0ZhS#mp5+kuxih1-;~X4|m7a{dXV*ZWfcZv9ilhiaUNck9ag!+^Ql
zckqgTiWXi*w%4pQ`KOhmrH=rEtK4B-f%@^o)b9uOPaxIzsEL?=+FI7Be?mE6LSQ=X
ze<1qL<8D70e@#knm>=u<{9Q<lpNYb@Gpon`iSp$30ZA|}{^)hu@P>cd^Q*;7F?5*x
z9x?dDf3Ld!TnXM6lmmPd=&65F+Z|Lljy$L;KOeIy`How&Z~24A50IL|m;J|`e^O4h
zQ7H=K>(9q$aA1F%WBkzir@&M2PifQtJG&2Z8-smH{lUk7P_O@#?o(L5Al29TwD3><
zRX9IOqcDCyh;l&x$O)`J5c(hSS`p*0y7>%)j90jP=*})pRZ#t?Re2LdV5!HR-~UPE
zNo7;MOnU{+fE++?_@`@G3z{ivB%kAU1EZ=JR-Zixa$NuMs{B(#nH{R7!VXn=7;00R
zh1n_&>B{;CsU3W&e|P>VGS@JbqEy}6><_>S&)#?FU+bSX1;IaQ^zUrvigmPKBkbQ>
z0hP9sc|U;I_u%50*IB<H)whCvKV{z@&hO*?yLg|0C<hF_)|1~4LjSu<Kj8g<dO)O3
z%g4hTn<#!7TG4U*-zw&sN);CM$K-eTCt8R1({p&t{z>FX%akt@6{Ly2^-rgkb@Q5k
zvg8-vpQzW&R;$rl-0mPXgD>^(&OasoI#Q*$8W_d<7p%6YhFAPkk!J8u3)1ADYBnjw
zdIp=dmG?&i_2b9GpHH)Y0;#?p5n}%7VR@(i3FUw}8>Z*+0Yv|Ku<Hlo+o9<VKkPW*
za{TZ+nA1dYy@lt$A53{tzX4y=ZP4#PZ}=y3>_{_3?bq(|cm~GynXS%yDDMSK^}{!T
zp8BVtrU%rG{lxW8?GIa(uMS(^y>XZO59sUu<IX=Nn%k%p<;uLv{sgSA#5u+ft$%8N
z6aFb}`Y)8{61O`TWh%tWp#J*5ZIL@!pCHxu)33rmjqSksec<;gAD2Ot1NuLi$@&AK
z|3Bx28CzcsHgq#(<^BcD+4ZRks?V;MGf|9f^W5Y4r<5@rc>6$m`A&fxKyUb`$piD6
zr-*o(bd}o;{QKuvHS>p)U%h`Cx=TGVc9*Jj65rpRS>5(UMS1@lkQ&05<A*!{6wpun
z{+Ec)J7#8mfvwJe>d?Q|KfP|h-bYb1`ggi_rGGm9{wmf37+lN1`vJth2VY-1n)U0T
zsP7hCf7J9-9^dMp9nAX-L^%#NXwB~rwv+Tv=dhFO%I^WA9uTS1a;=+vOcb{k_H%sy
z`e1f(|0m&>l)<~|$k$rJXdT{9&*3rqCy^&DQ@%`8kS6-pKYg2Y(y6D!_N0ZhS#mp5
z+kuuX*IL;uCED2bKCRDnfb@D_>ffDzin%DhKOrKZYd6*xI5+%tulT2q!{DD{(&V3p
zjj6zT27`BJlKQq&@1KmPAMo)Vr26iR5c5y@!q`6r2g~#64(iHFXq$t_9}we5)F;=B
zJ93Ke-+k=*{N3=U*-aD^8f0^P{?KZO_C5V+*J&T~lOj)ANBJ^&rSpH<_tIl;_@@gs
zN14xw*x39jAIHEyitks)mT1B2sBZWs&{O}Uett+z{`Qcn6kcXkiZ8RiK11QpI3Trz
zFZ+)>|D+frREp|<f577h_}9UGj`2h5pK4x!e@dJFZxuMnZG79#U~^_(2KCoJ#k5+&
z`UR=J=@*56svXYx;l4Mg?DxSzIiUYd`}dFR#P#DhM^!Kus9eDCdfDq-KD1|7rYfku
zKdHQlBJnG6p3l?!cZfWxY|58uufQ3Q1LzI^w5;Rn<`@xO&)?wj4D1zIQ;i(o?v?o`
zT>rE&euwIJT+BZWFxV_xYuh#)7|i1bNbTTD{k!u|k#{~&Ddy*Y#^VRrVcTej{<Z#T
zT@^V_DvCz`&UUU?NBcGL=?2yT*k{B9-VY%5J$NGY5+64~s&A2)gHqO8Ilt<b?|7eq
zC<hF_)I*Lhc0L#0iTu;OWywyx0#c{?4|Qr{iWgy=RM~O<ZbI&ObI(Ge{)op8|3vGM
zFFl9H?4LxQv`qOjQ9+vMTmN*_($;(PPYcBSQ+zYqsFw2n1t2wpFZJ)%KV=)G#)x>Z
za31Rmw8jQ|#Xqec3IDVvP5$ZXoN}yZaJo4&FN1pjw7Tpg_D>Fq`bv)x^G~(Io%$z~
z1Lo|Xlg9^;{1c5K@k4(xjvSN0&}MnO%kd+5WmXeKnJ->*eEvY+(DnuGI_+c9#yF8D
ztpjPDt3T~~>9IHbQ`L(@%t0dZtjNfDfge?ysaBueijQqnH+&Q5seg*86R#$B5Z6B)
zU2Ij77F*L5m)Adm)E2(%Kkocf<faxXMbi19>`%Z|Vf!89ht@w``~&_eZTioX{uZ|}
zs8p;VeTAKR|Fr(M3#?C&>YMmT_@~J-zvvGa@o^c{mlwU$e*a}Vq5oyJ*2XofOomBA
z^SGRUT6DIoiQ-7#)ayUA8ikIv>$H#gd66frqkNfolM`y+OOL(bpN1{UZ5}G(=Oyy@
zTfh$aGKb&nwf>d)CtUwDcyg?&&Wlwo3o6=_?Uiirgv#Gf1*sW)segC=$?~1J|FVb%
zo#gl1z^8A2=Fq>^Kee^rJ5o_J`ggK#X%+3$xy9xE&p@S-{Qd)|*MOx%OFmA4RNtH8
z_fnLN{ds)*>h%cTXCTS}gQrCB`$2qu{>FIJt$!+gVvvbq;`PynF#G3+PqM|Ecle3=
zgVs3w6Rktu^c)_ue-e4pGUdy3(KgOk`_?~w_tz??ZG!Dd3$dS}f4oQ8+s0<e)XrA9
zotf(Z>Gi(UzdQe=wi&Hb)L8!(>kDi$Gpkqp({E$ppEjn+KYiG=4C@)pStKhjgL?mz
zJ?t4D-$AOc)p+5bF4lGGpHL1seP=Ene?at~C!>BgZvHyGp>ZGA*FPOfe9c7hwlTfO
z^H1YMo}?krc|VbBp*7GO{%PXoA!drrAvriNFmhiXHGe*Nu7&D{Zvs8_Pf7)G?<cdk
z{%PU@tFnE8H8$5n?mwWf`;R;S6qBWeO404+F!oR2j^ob#Q)rIUe7sbYwCO)@<-gcR
zfWaR(=4DW?|35orXZ?dzUxi$!&B}^doZsq^2l==Rq8u>#_EO%@AoPDc?}x@^B?cS5
zs$R>bf6CaTjEN#|KnBO>Z)lSUEo;|lAM^7fPkt?kH#wp9z4X`{{^^l5kD21fTj@A2
z@Nvn*;S;mof93v3*<w>;;%%y>UkRI~_nWqQe}2jO2dNo+IexhHPqzoE77-I)4`6+P
zPrsPs)Ia6SBmKfZ^zUTf(kj}gRRX7SyMxMOE4MkQ*TDKQ@;<*H)wfiH(k}~-Z|#d7
z<2e%$<$%FzJ=Q-6{Xb|j$EjC9>Xb+O;S)?0QM12se13i-bG-R|;g^)So(}&+>yS4+
zhsW%nM4q%v`7%*Kn&?~qw66ROzBd{2_k^@raywJoftD>dI@y#4U2N&LmgaT`>Gi(U
zzdQdFd1;JF@kY@nynn%-6A$w57kSbq+V`Xr+gmkA`~?IA(E2s2;Gedq$v?%+uf%!=
zlhPODWl%qUEH0Fj^$1dZE!T?kcRSm$e@Zwi@5ctB9I)BiLhPSF^q-i(TgIY8G8&c?
za((~ImK`&hC?bA*&13&Wc~Uz$NP=<kr)_6?><$0qx2(UJ;{LGLIWO>|jWg68pMS!~
zHmV!G3G~!I1=T&QZj3yvD)YKqm7(3OasKJ~cn4Bb__F`F^G|A?#wtbn+GBY902h3B
z$T5Cs=bwh9hkr_&{wu6}$ZZTpCDh?%P_KVeslQpjAl26(qwr4`CUSlU25#l!GKg}(
z=*)|GKZDT!{7L<cr3ch7<n5o$rGJWjy{w7iM$Yt(&)-^&LdM#4+Q<C7$dlGlzD&Hy
z3AOK~$KLQyJ;!G=Q;a(P8s`J9s*o;x`SKrLxqq5f$f~Mkt*WJIpiOCC#uhbs0goRb
zHG?np@76z+dQY{8cq^$e>kE8y=PZZ*wewGR?B6$26pj9!>|0tz`!xP_dHoZZ&^d(l
z3+gqH{^wDwUy$nCL)SlT{Dl3}Pu1V!eFmZ&Fu1t=`X@V~|K|}uy7f=_?)EWJ^gP_p
zq5l+dty43){wdk!@K3Z3dDC-vEa#s-k-kafOY2=Ujf>U3^-seeop9PF*q*cy`}u$7
zpB{_rpK7$R{oYw#{{+(OeW`zU{>gIXBb8#w$6Z-p;P=1e^~(Iygmv&wacS~T&DO~4
zpTJey<nOtF`s-)EOv%N11gXBl8^rumxsFc#6UqUnUoOn!4@muo&Vir#<C<~N4;c*G
zO1i%ODX>Ha6Gck>3?BO@%9C^ly67mpTCY!U_^0lFykqVmVonM9JI>&~Ha*lo`^hnm
z@_=swJ@rp9H{;a+MO^=Mp`BH^*3P=K+;i@ups)LnJO30j>@AfdHrH4lKfrNi4?D&W
zt$%t}6#gk~`oDD`1M2~dy4PL$Cp-22>8sch>~BD-uV8WEpL#6i{8~lJ-$w!U<wZAM
zEB%w57(b@mooKwG4m8Y4U&Ez;dS^mu6GiPV89kqW5_yuIC|~9aI)GmP-tbQoYUMCf
zq}2E0e87_1PK8hVB|ndGQvd(%{^J-w64%G6C-%jumaK(smV1S5-!)&y`Uicje|P>V
z?$o;~MdMTDSYKea>Cq1TYyDFtyI)Wgjs9KiV`|s0%g^9;2cu>mVgCc_H8ALlz5IHR
z>N`ySrC%N%-+C9m!k@=LlmiAw)@S{L(Epn`7CZF{NS*Q+^4bIwMg6?%9R7*sn%)q8
z$<_Q5J%??O^H1{ro|G@GNBL=^Z~fCdbuu_@6KqdfNZTd1GqoLP+0w3)&9bSptzFTI
zTn9+6|G(s)B6o=SClRGHW@LSVz55^c%KX#tP4G|gY4T4GI>_svK;?-1Jz)oRzyDRa
zRUXzONcG*{D(0Ww?BdivIm)q@o6w~Q`zH|nXV%Y`j7wk7U^t!5_4Q9r#wsR?mNlM-
z7(KmyR^-Wg0!c6~{`C6vhJR|CbEugj@Rs}@B)DggsvfyLg^yK~2YeIgseelR>7e*N
zs5pQ3w24)z-qboT*CXyfAT@<A`;R;SWcjX<xc;M&S}fPcJbr*zH#qlCkAvZ#(x(3!
z^|G@bz-GC}ahrpB|MXq!aP~JK)z_+~@K4>gbACPF&B5;nQ4Z*T=v%H2g#JI?I?tG6
zXkWwkbAw#^r-y4wnkb@kWcJ)Yi9A{VpbPEOYQ6rw;h!d5DQKoxQm&}fx}AP^R+(Sx
zUH6syr?@ZosL64AROPdrHcQJ~wjXltWc`D*-M-YnJO32$u%Ak?!B&Iy1^%{WsZ;;-
zS5`Sr3cr|o{HKj_@<;o(Y&MnK9qhBJ8~Z0vuYo#hK7Kt&_0{9^XJ7LC&-(pk*gt_N
z2Mn$fD*cn4xPR=ShPj=31*A=RTzP+piNf~V@_(GaTPHk}EB{2#VH?;##eK=!r+}y+
zP4umQT34fp*UsN5gS*)*4<l{av&C{9AT@(8_3w86DQ>K45%G1)`K&MSXpxy-@lO-a
z!atoz?LQgQIaLSg>T#|rtY=X9(0+d;Q0Jf8eI3Ah1gSpL1>v984rc$<r%w|1FHm1z
zLW$DSKiP@?GotuiV~RDSA$hv%^LGVTJ`bfRvEW}^{~_|E?WTO0PFqH<M85;Q;h$Ph
z>uRRxnpvJl1!q6(u4b#hT#hLsU-%}_Q~wlj<gglfMV!Ce`Ycwd{w(&7hw}U#NL%j9
z{^Qm^ovEu@M0A)tp2rVx+^-3a@k2ZRbh-lkQ`+=jaA6kK0jPXGoZB4K&%f@-R+Ie=
zNc9z}Ec}ykBj*>lIs?BSL^+`Ucbm9A5dLYHGTXSKK|@2ntc6_qr*y%kOcWQdXYzRd
zmGWfWgD;_fZ}_KjjWU=i@*OD2d4VGe4hvW2RD0$AX=8@ns-?(oRau<Jro5Ne_I2xT
zdE5qlt$%m^DdzDzD#e{GRaswPgC<`(^sk+Nin8BtTZ~Jo$A1_5m~_yzcnr5Ys7&*h
z^D=hg*au!NWn%q;R9~d{y*VYmGtUnkZXM441k{%oe6%^gAB6t@2s!B1KNYR~fr;YV
zR-ZcjlUaDTYvTKMO27)o`8!&NeCatnX8$Deq-DyN>7s3%ulB8f+S=0jHDTDEw2-z#
zZf9yc(6VKz`2EMEcD5hys@(1%z229{e|P>VaoT8=qJGOT))(0Dct+NLTH4@6uOVlo
zz5XfJCHSYasr}~#{^@icIc|ededPU-K>g=$>-jfXk08~z>9X)ogFbNTpHL2%@JXQb
zPj;gJ)VAI<mdcvZ@WBYz=kHp#d>Trzr=a5T_>nU31Ma^d>BZHbzTLgypSJhyX5J<u
za7Rtf3oMcpsy_KeUYkI9z&C-O`lp}|#kspFBIaC=Rr+0zUA8lY`wvKM;miKx)<2aJ
z{z=4^zodTx3%5Py7(cZBX<-BSr?lxmEWnT39aM_Q^BJK2`**pgbz*-5Qhg=f68<Uu
z5gy+vr4Qio2t+wxw7-q(1EK$4`z|%EFn?e;G~eLTKkeyP!bCCY>A(2>B9SNQiSlK-
z62Dll*S|OX)6*T9%uhs2TNuRofL~WCX)Zozz$^DpN|(K=I(n~aF=Vt^Ze_F$uD74{
z5BggF?)+2Smwi-<1D#E*FL1~HRSx}Y{nHWq_stYVqkk9snD+0r(sGU)Ovoqie+lX}
zFr?Oc-cKOa*M+VhZ~q#PZ^;u5@%$5ra=_r{^7}g=^uM*t=WhK|@$nN(6p{5eIObpJ
z{9RL?|8jo)I6a4LVE-iYq-DyN>7s3%ulB8fY8#g5wfQGYmd-Y%Ul-fCJf*nZL0{|N
zoqvi+8lzH-S^Ee3V{pnh`@J&%H1rz$Q(~I@Q{hw6FM&zREAsIj)cdD8Jxa44L8>q1
zhVV~IhdcF8C<km-tStK{5dCMk^@{OCn+%2@`nW!SH-7jZp%i!DeeC)9JCP^%8_;=2
z;kD>@pf~)}@@zfK6lzD6^8$NJDx-EPypE4mR6l$Z=&65-csE`R7$NRo@Yj)8CFp4E
z^`9Se{{em7f86<}xOQfhqSTO2c>Dl6|KQv|*}A|#rA_~58y4Vp2NRkt;Wh{L`u}<R
zX!bWC)i)+m_@}@toL}Y(27W(?a=_^Ihq*qG^iTKis5g3p@x!Ad4aeu0T>7UG!-|_I
z)(rFf{%7e#o}?%61@iZaf9g9dtC`|aw=m8Nd^h(}^Prf|U%7u8Tx7rM7cPGPvBiC>
zGV*t8nZM;d3PE4%-<^L_clJ~%<~(f3`U1_Z*E{u3S#n6fpeP#syV%L3g9lMPxZOb|
zZleACmL!gS;Qq6X`1K&wH$a49iR1At&-6j;pFn+i!A5!CJ&^QI*T0S)D}RR#^?*p7
zmLD}6Z=zT}d#hvqiTsl>i>Tkl_wVRAl*Rr@<VnkvFB27{iN5tuHE#6sntxLIcePm(
zyV=ScA9EcbHG?ldKfCi!%Ex0>irGE4vcAA7*JHfmpSEPX%z9Cjn`!b-t4jy*@f?hM
ztu`-%`tc)nLUk@5r20P0b=j;Ye#-tyG(W!|L^)v2udA|u0^y(jDtO;G?@C64X`k!!
zcQemC2&GuH)${o$%9HvHNP2Pghkgfo!#~wK@wS;_*|@hjFYxoyCUxMv1AMHa`r(^E
zPyN%Z+DFuYrbkpoIl4<x5AC`+ME>qMNNwTE{^QO+CC&_0DPGGczuyMd825u?{Ls!n
zWorljls5f;9+Z#U9ZXs%f4>pb&p-W=?F05VAl3J62jQRIKhNXav>&VTJ_At>=>PUX
zt`CI%FD+YZ%$U(&xLhWuOaGKLrnre>qTj#x{UVVk>51}Xx)Q%w58Z>_n16a?_%r-Z
z5&o;>eIvkoKaLEK%scg!`=^Lrd)1BO_Nq$8$5ti$iM4RPWBmC6^tJxo`KQF$y;O=f
z8`o!jfenwWb?9F^|Fqxn{X32RUF>7puZde%vJSvL<7;u7gV^_AmaHRLzaZ5YP2a!E
zC%=E!Z}vd;B_PTHgCDoz_k;NS@OI}jZs(u!Jm_Ph822dk{^Kjf_2FT3{d&X>9$%?E
zT8Dh;IXq_nB=V$X%9rV)ZJe+6t$%8l?YPr6!S<wuv>kFgQ`>=-E!kV!EN`{3^@^3h
ze+Sa*eR=$M=bs{Pe56twj_D%L58D|v#yj7?v--h5C8x<hZ7*M$^$Z4=sw4Gnr+)m{
za=Rw$5v2MC=DTcGdQNoepY-J=R0(GP1Y-Q~-+J4)t$aqq*XvxLzq`BhUMR&^Tc3J<
z|7DRU>j@;mxcJlS(;NQD5))yjxRFkNuNVBWT%cO({$W10Q6BJ3pr`(6aPlEF;BRsM
zE~f1+C9c)3p*`jO$3bceU-ln&{>gHzj!H4DxAafo(In^o>AUygpVFrPwhiR>CBWcD
z^85s-|NOAv<}~&<Al0{UsPIp3{K@0nl$G+H@gT|pqt~2f{ejT`qkG$p=K@<A9?mZA
z(m%a>tEh>h;InLw^A}o;LdM#4+Q<C7$dlGlzD&Hy3AOK~$KLQyi?crrr>M}SBj*GD
zbpLet&3<3Ma{r`^+ph*K7xPc;E?SjNm#m+Bb)Ls4keb1l`giA_)H>Z&ia&d`V10pm
zzu4&1KdrX^-kYLm^zUTf(kj}g)7CELb_au3=jJvC^%{7ikNmz7NcHve7rr8-8INzH
zf0w^m2%;PZ&o!0fi=EJa&$7FndIh9Td1UG`!bH*htIr(sPY1>I>rZlt`Ufv^_$OM2
zyy-bSX8$Deq-DyNi3-w0-}<M6TP;r81lyAq(q_r+Ol=2RwnVqHS+2CV<<1+%b%6AG
zU+UkTe+oD<TBQh|5X|}lt#hAyW&Y`dg78m|)8wD(W|HUYz`!x``an=Wek_`6U_F9V
zU-lwm{>g8$Q~!i=z?>JWvws57fAZbEZrn3CgW>K>*XQq^MBEOgu*`hmv45gGNk1Uz
z#nqo)pWg6K&y$*&{}wT_e^<^6tQk>2O+0g)k8P9(d=u!Yf1>*roJbbu@9cl4YCq-v
z1JY_=_8)itDe;j}rMPlj`X_K$o0E?5Lp%TU>ty(+wCTTktK!`5V8W-nxXnTR=ZDN$
zm$1J9slMl*3IDX_HP-*Q)&2SXAj$!w!xOna5c=<A+Hb5^r>)`qkdiL_)7o49CW`%q
zb9#LJALU7Uau7mrLcRXI;h$<1OAfCo!uI%GZa1*Vr|HbY`y7Ae{wXHQK~=3RzJFT!
zfK_>Xz?#zU2J0X6wf^1tC#7vym7-GhcI=<PiO;q=^sk+N>Sq7F5=GJI-^sqERkVMv
zR9ndH4)z%(?<)!FH88x2yw3_q_4(89_dYiB_%>oxX`X)qQ4SdVc@x$j2>l-_E58S+
zuMery`qxj6GEwx{Fw^n*VY={25#*mvEO7WIT8DDzIXq_nB=V$X%9n`>(nR0-ryZyI
zdCxzY+S@EsI@osJHF6ywHG?mY|8D)$L*bu9tca<=`T_&;Jo1Wvs`EFle^Sg2Nxb0t
z@xaw@vYx?a5jA)j)cdFKDpgpIAk{ZSxoozKAIIYdzIO+r90yxeX8+X8PV}E6vlEP8
zj#CVW^6%s4p?Ui@sDkR%+}A=WiuJwdv45gGscg{EMou0e2hbb-sdejaW{OR7-{HK#
z6>lYlO;hApPW8h#fu8!OjkWfvgM;^}%J!DAN_^|suvLlNe?V#mU-ln&{wdBBrc$gd
zHG#(uFmS;M$M~W3PrJW|e@dJFw;1K;X)x+r`Fp~k{`+_Ht$WztfK;C`R`{oU#aaI+
z4PWqh1fm=;`s>HMpF!yV*_2C0^`p9m$0hT-^iPL+6*N(7Xpz@*|0MDxJyE_)C%VTf
z=pOWjf7<nBRx^dg_zAZgc<%d-b^jVH?+HcqkKXiZ?*HVM?}(b*NSwcJHrJ}`oNN7I
znf(3)=xhDE^-sq3;`blhtLA#WS^wb7_+1YDYyFeOe!Y*_j@08ncBqcjuD>10&+QKO
z>0@I517hEU6YgGR-vLs6>*@L<WitDhDJL)S@dQLUVDJ_r>kcIS(|54jbo$2WwLVCh
z>L2!JQxnC>RYMJ`{r)v{{ZnTVuC9Ng=a4)5Cy^&DQ@)a@AuaT+e;PafTnKXal(bcH
zJ5$?%mn%owEOFg!#{5IL-9dW2FOUE3{F9PAR;B3l(>T@_INC7IEB>j4@G`Q!GN$&Q
z7x<^~n@X^r!ML9Cdtjjc^LNg^L0mpa^^MLT=ARmlcj})|4wy4v74}CU#*giRM~u;m
zVz?8r*QI~TnBz()MPR3M9{VTCliCL)y}0_L*J;BW{%PB=M&@rtJZ&<B^8(k7yAZas
ztd);#lmmPd=&66Q%-yR-&J@>w1Q=qK5p`mpT)W7}JCNGKm;J|`e~P?dQYrejm;MQ?
zcFehddUOE(DQ)_Xs#t;B9aR3f!ENrK?*1Jajvi%y15$kx4-5aap)~8?udw_)4?4=R
zmmA$Eh3f;M|EBA&8as~YVHgr$(WQU7oxOmGV(F=W;h#jFq$kRk=}P=!y;l45*c<+7
zNrt3wir`}Mdyio5x~lo;Z2LW-SpToaKMl?*uK%kg{8PcnR%P&HYiLP%{|?aC`giA_
z)H!WciWLj{v3~;pUSxIZpCSv$aZ*t<`ggI9X`e1_zJT=(MnyekUjgbh(6ha~-v>zb
z<ts?OLY`l#P$)mYA4EA|@E7trPZ0XgtZwDwkiI^oPU{UrEGCL6xuP8B@2(2()-k83
zKWK(y{)yJ19C{9qrGE;x&pUyrAuaT+f7;bh-WweGdqUbOdLQl|i!u~b2b*PDM_Z}I
z25xtdUhm7}zgz!QeT=Gz__#!Io__+n-?`-#|8zDT{8N@R`KLRzq<;dN{U-ersGom2
zlD;bI5v2N*Ok)1&E9d?R<v2K8`ln`gqW`S?<B)MwmXwgPU+i(|pG-L~hf>Twf7WCF
zM0t{iK+=n=KWGi~hJUI!wyv4tNs*5@FR<sYC&PAy+FrSTnst7U8gzP(s+_GDtF#Y_
zT{Pta_aBhj!k7KWoqtl-nN*5=L!^HKQ*Ju<PsLBeKc!9odFRXX*RR_dRsKG=IjGlv
zv2#DNzX7Sf*q?-ds#}r$Q}R6dd#v~EL^)uyyXjfqAoTy~&>O~)SAz`G9=_(%KRxZ5
z&-6sZ=IFeR^B2%25jxhc(>~_sMV|ax5N~oq?R)95H~iD(nHRz-YX2y&+XpLszCOHQ
zp>i7i|2zMbUXkPItn-J}h|I!2T^eRph77lUy;XjH0;Fc}rT*Rer+ckcRmA*#@3Maa
ze`^!x)IaqJgn!cL-^sqERkTlstY6D*3@TaLNq=FdUIX1af64j*slG;Kgs)f-#p7GK
z&NJCRf%@`-qdM^WLFoT_yDM(}(;K!<CJMD;3x|KQ34gRQpQu0iyu&}yI^<2y;W7Is
zktZ!vzDyTw<9xNK$HgCMhJwnhW1kz-uETTWV`M1Gh4@2`@{psJJ+9~A?=ouFz3gL3
zm)`R~{>j+VW*PFf?d(?hy+@E<Pq`B55B1SwxjkE0FR9y;`Wn3UW$4a7slgwq6epjK
zW_^LXQi`+wU#2c+uT3YmOMCyPdE#D7^g2b!;n+8dLa+MYKYCr4o$~iuKxMi7JPzvT
zpFUJearq$C_pZ2yfl_T4w>f_I4n#R%Lhmv>et^_}X#O@X{99w?rcXkWt6BMZY^yzM
zRZz`R<U%OL+>`?$p`PA<T;$2^1O9KbIMyHs&>Q|K*C4Z*V&nsPUJ<OmXKmQ_pf#HD
zBZ2e&xARYtO|0sy+E!H=`ctf8IT!m@7J1(~kT%|z{l}euvTQM{6h}hk{R_bNqMhHr
zAn`BwCyoAJF#no4p&GX<`14tLeGsVkPqC&y+24Rv-yY?R*|J<^{ZH$%i}x9ba=__t
z<Yaw=7(aHr^Vry{NtmI=?|EGMr!gJ#m?(N3&F}H~yN^Ylq-W3}b|(*@d(a#HscgNU
z!zp^Ems$rWHG39bqIfHf{{NkS!uX-u62$oc5uHm}m42nH8J1?}F$(mx{@wYffS+2Z
z6s5l$%Kiz=SUmOjv$f~%Qh)zWqkkv+mR8Yz#qZvM_?<cs`yRya-hu!9{+(=G=`CKZ
zfBNtD@5DTZkAMHJb0YkcUz+?=zhZ^?cnTJ-A^j7mA3vt<E6M%|r21-H75-`NP^bP0
z<$%o!O8*36{D>>R&6sKT<B+}au`c~nk$V?HDXLY9_xS!#DRYMM_JS@BExa1X4A2|?
zY2vsrGsRb5PT;)2j=!xAyB@h(Gk&}p|D@iJRTC3q#rSbS%s>4SJLmOy{@e%BhW}sk
zPjTnO{hvhCEhGICcxb$H|I{em8T;o4js9QYp9)Qv{s~;wQ=Xpy_4?nj<_Y^7km@Uw
zN%*Iq%&h-gsyyckq8xB~NG|E0?1cV<w?8rtzUgOJU-Y6&{r}j?&qOg`Z9b3ZpD0h#
zGx#$4_lAG6jXo7lQFy?&taWf<TzGhs3+*)ee>MKeujWxTpx04VnO4NAEGc50oLBlM
z(AWBR>z^76|0E*LGK~EbSbBkT|8yf1^G_Q6yV%L3gWs-f<u(SRTFLJ`f;jepZ`>=z
z`UI)I>n1U$vgi@d51dVY$n#Gi$^nD@-)H@S(0@{>{2flz10r==9y73(iDFn_PKW;e
zUynCWE+*<fQHblO@@O62PtV~o%|E3qe8lrkAj(f0eLMd&yzgeO%|BU2)wd}t8rX6_
zlII9PY6o8)|J}_$1=Jm(Qnbjro%b);YH%~J%s;(<5&kJ(n*7t!Eb{x?;HoO}ewv_u
z{^|H)dH->c>U&#wC`)m9|8dMafhY%@-dWy%97O*q*?GHhVxGq#iDuXS>90GNLMggu
zI^wZ^qCBZTfiLPe=y#wu{L_K@b<F!ksLiKvUSPL#%fr?TmG@?$`Z4bWdV2j+Oy5{l
zZ7=*&mYcE4wOg?d<{xJN1p2!FxSM|p2&t=5w7xIzKMs~{?A$*+dJX<bqyHE9r@=o|
z<#q>?BD3)_sP|9r<ay5i38eatWjiCTf2z;^>76=pJRX542W++?H;+Fc^gnCkAI2vw
zGZ|_OI^xnlZQGp7L~&-uzq$TN{(dXvOS*a){d>bdoh+6RPLVC!UT!z=$Lv?tni;yj
za{m;Qa9BO@Nc?_LWk0JD;b(pK`>Z@hfxgziJO8B4X)dmRYObzaGMxPrIH>9Yr|0jA
zb%cM?=-<Uorv0Ck`yjV57~JwN_7@<Iec(moOx7nz^|kCId`0c*oZsPU_4xfD$^re?
z$ot2D(Eor3g`Ii@q)zppYgWcYQM-Jy<NU)taqomaWkvlX+By6atwX-_93GQ>qC9EY
zK~#_?`qn>XeZ$CJ6#08X+AQ8)`}u2>Vd+-OrVI+P6&%xvkN+UO{{NDHirh6+r6_Rr
z9`9c;vFI?b_@{5S!#@>DlYbhKkcW?>U_#4cybS8Ue-u?FAL|jM`s(f!^H0`D9zTME
zaeh=1<v3WO827&fJL%rb)Q1u)uQZ<T|9eR32iskaAL&M(4^1y(W8IyO{sTQojnLkA
zeLj|+ODFQA*MhXp)t|O(dh8AVl&*o%oL)rF-P1TPFx%^s!umIwt{FdG&HPi$pWD^J
zzid~Psi9V7R+#nlPusZvfYcVg>_6`OljTH1mE!j|EPQ+hw?rIqj33(X-_<Jz|D@6X
z3;dHMSYGc3sy*cW$U(jSEBDU9`Uk1Lrj^9})0wuc{~CTj@;(Dm4miD5A=WpD@nh!`
zrOv31uNe~3CAidodUFmFMTSH9JU)L%d6JevSK6obdi{IDKfPb%Q1}oL8&3Ve?FOa<
z-B%Ca8?Vv-tC@d_I4tI$9*Oy<vh!n=HS=OC^~}xVHb~p;OZ~g^Pce-fs}wtKjb{CW
zA5A~x(7*Ql-Itx=pEUZXjdJow`*(N8L)^w-pLOYY8PsdwYKFP2Pmt<6*G2dWlY#Rq
z@T>{@ClKX;{=ZIQ{ejSb<fp~l`lso40!<W&KizX2|2v4^-}|tfs6W1=!#~kF<W0}v
zG5aTxCoNOHOegK)dX;be(>F`&d(S_;QPXBASIgG6RyRKWgS73w)W6&LrvXFN01<Oc
z4|)HB+5AU%#Xl|D0{>JrP5!Cnhp)4qLCa@F<nh%`{patE<@2&0L8?#PCj3*4u1@`v
zzPx5Pig5n}(SI5~S!3*)@Ar`Mn_T;+dZE9BQcUj^=kfd#<;nd9blqA0XZ-Mnf9kxi
zrkP^d-kF>ic=zUnun8ekxsOx6n0Ep_oqvkhE&S7Z;h(-~XjSIDW&I&k-ggD`b^mea
zpW=ozQYp;ue9XsZuzccS$M~W3Pm{{PKWX&;0{^tAesykl&~hNZ)W4m2{WttBJL?~$
z`bJg|^G}c3u>R*KpX7Z8>dR{uUr_4bPSQX9e#L-K|1uUooY8P=iR=6CU(1=@L{aEU
z9)r=->;FWatbgz&^zRM-RO+EEoZ`lUL~b`Q<m%_@?4#o}`hPY4X>bGa``Pb``KO{w
zVwH!BV~qpkHM*d$_3zF<spA`~6z?pS{t4{U%ej9F_yqn*qkk9sm~>F2>P>EAF!+mF
zybRK7v{BFUfb|PfeS1F@z9K-LUterl#r_FIIbd|Tg{(gi$N!PTTDtX5Ne4=pD4O-U
z=lK3mXL0@dM+Q;<V0ryIl}GE4Gd+jL?4LxQv`qOjU9^q!)xPyld*0vgHUFesdef$S
zThex><W%-gps)4s&Oa%O-cu=>3@*sWf6%|mOt1K-so%gq1*FM8JuffE3ov-UydDbF
zpT7&K?8kZpsXo&t;h)xba_XN@4w$gapZgz({xj<OdgHkx_e0K(bnTx87P}fsaec>r
z$LA094Q*f0uG2o|J|Xht*MiPF3a{0^mmYh=KmAy<y7`QV^n*X=yugf;J`MY^>Ll*t
zR5yGR=&675`((Rn87%zM$(B|nx|P*>)W-b>^mYGn=bx1PZ>ba|XOHFn1Fjk9+&^^)
zgn!cL{{{Z(qjvK8CorM2><^&cKQ#`Q{t2Y|YL*xNDN_2UH;bI$eFmZ&2S-c)lwc?H
zKe6N^WA^4541acXegD`VyR(`o`rXatv42V@@+3WhFOdKLe17nTfAZh4Bb=g2!f)Je
z;A>0TsC!c^8vVZ-|8yd6yc$zg+&}j8vRFk~9{a`!dHxRcwf^1tCuL1zm10vr>7T&J
zM$Y|H#g*_+8vVQ2$)tmQEB@j(-fL%6XkT6i={4GT>q;P>zXqwkqN|0ksJN2*=Z7_}
zv40wFC&~e%tE^}JfzbcLXCJ!tPiuZGYWhk<=T52qsdbfj^KT7A{SmQ_`6pV3oas3{
zX8$Deq-DyN>7s3%ulB8f8eFX?w<YrTgtQ&>zLb=Mj&|VfKAXp8nVi=a7{7>*{~*2o
z|I+-ErQ^FQ#n7Y*tS@lYv4vjoPva)SKb1<8e;W984%Rc6b5C|&2KDDJ#>`T9KY&!<
z&B@~Wr_~MFKSf8$?;(RI2b><`$NmXK|1lnjGL|lICuGGNTlslth4!cTQz@#hOAMu$
zymgz$^H1YMo>VqSg}eGg4xl&u)5-AaW{Q3r=5Su%m8KoT4up2&K2G(+H-Vn|C$-{M
z)slCss{B67s+9cPTEMWL`wvKM;miKx&OZedXs%K$>i!}3AMkWk>h&Mm`KQ>r@J|~3
zzra6DI#`3-9SmM2?<)!F{ZprX1z7(e)fd-L_@}(RSpS#5m%q;oq8u>c%p0t45c<#2
zU8z&Maz;beO|E~x=%?eEO%#`R`g!c1C{NOpgRaCc)<gH8H~iCE1-FM&OwRL+wGKus
zj8qMEzR>9Z)%d66Zw{#&kBi?g^80p|61inp)tfna+y;HEe|P@L@~nYMaeuWue+^E)
zoO=FRd;ad&8u%xT{$1>2+OJ__pK}|7QLP5>GKhT-KKZc%`zMg<+rL)$ieqcIe~!6#
zi^qHr<$%%3H>^Jp`u{lQBe(u3bHk!0iqhe!{;5Eaxc_(~QGfe5hkv4V$d{hOWA;xX
zPg<sYnJ(JK`D)+#rw#>6zB2!W@1LSAl+1oMWvid9!<Z#}{0Dule|PgwYEpld;@sIv
ztS`{?Y>`*|Q%(!~Q`t26r<A{Pv7W)7KhDa_pnm)q^u}M@e?Y2l@_6B&2G(=xpHL1s
zJ%hY{7NmO@P#-FFX^C-X**hVp#Q2VVtkJhB_N!X5c2ek@A`-J&9rL$NUi&}CeY}RW
z@v+F0mO)zQ>JRS&z2TqcL{~FYJQ^~O^8#zX-!W`$+xFbYsebq-&{O}kQQfKrl^6c0
z&wQ)$$pY)F+MBumfYcWMm;6)AwdN{?QbJxo3l_Ya`u!uVe@b5m{z;?%7x<^0zsdP0
zaQc1u`xKyl{?)qkbv_=0RNwV5as5+udHrASp7M8jL6igLyit_(4PyLQy6>@ZagX$d
z9S;t;)PJkfubC*0luZ5p5wuB!j<xHwkLmewB2QWe;yuo&eJ?%shJVU6W@~s(5$0br
za9-e<*@5bpwd6fDsqR;G|M8fe2h_MT2UI1pP^>b!Q0%I0a{dXVcJQVC-T9})-y5nF
zv$IJ51ZFZg_fL&Zz&~m9?`-Fab=0o+>&ow&g38g^(pT82*T5e+dh+ofr23|u6uzR-
z2_D}{)-1yB2leGe$L{9+43hq74EUzuEVurt&sPOZ6c^2@*FR;h9dFLtPSjuYro%tc
zI^<2y;W7IsktZ!vzDyTw<9xNK$HgCMhJwm`Rrh~-IQ~QL`KLMJ_p?_#u^wEufsg+n
zZJsan@6JCdk9w;VwO6UEFYuZF8n5`LTBG2fDr)w%>-#@FDkZNU2OkX0%o+go<45p<
zN8Eovs_(#P;h)BbJM~W}2h2G`-v0)~`0?AO<;Lh{cS8PX<k~-}LvM#t6wI;TWB){X
zlEy(7-GNur>$Kqw|8#6`RWn7uALnykpgO-}Sd(gRb04Q1;F~~C{nM;gTh##Jp_Dp{
ztxEkR)(dyP<NgEsy8pPFe~SFFg-WsivAq8cSf+(@|Ma{%{F6riFYr&|Zlc`o;Dgcf
z`>3G)^TWw!^87VO_3aB0{%Lb(*8ijLPxC$lQ4W|hP+tEBLjN^-+&5larx;9aUH^Vj
z#KlY|ikSzqdVc-5$dmPN=ga8d8~&;D#LeLp8S2Z=ZQ$Lg*VMtgrfBs4YUZCJg7&Eq
z^~LWOSt4SUSuJCKIF*UVZP3^HcjuoXPc>30p5Bz_ufdv&QqNy&=bxV3hkw%O-^ETQ
z9lY01etrfm-M`{C2erpPdOY=)DSZ3~slN9f3SaT$K96smht%QsgD3~|pLde=2SWdw
z<}7yWpT5hN*F@1aAk{zRGRK<>^(6n4k?W`OXdUvV=kS>QlgN{nDPN|GwsF4NxBh9@
zVtFkY^7n+a9dbKU+kuy_{%BRKKUu?;$m?H0dj0<;|CAWlU8R_Dvl;JSaNf=hUhz+}
zTfjdBrTV8Aj32+;m3|3qmRsry)Q=zPE_wfDkm@_$QuwDT^8U+0zjj?pq8xDgwe<Y?
z8btqz`(mcC){LZ($fOM}KYv^H{TfPf;P$tk`zMhn>4)-_x+29m|D)%%;SK*3_hmKn
zZV`=-FW`K@W%;Xy&F>t@ZAm%6H-Vn|r=Tnw)mgu7P?akOtxBCk)@A*cvws4qC4AX`
z-1(<~hpol$N48dn@09mn2LFsmz5lXy{wY@r_@}h#zjQnKnGp<JRFd}ts6T)Gq-GI5
z9)nchpKlBQwBsH2PrHrRd7s7EiE_Z4YfG@cLFm80ttZA=Gt(Kq*|guK{ug!1Xj&|y
z^@8l4`zMhn>51|sI#<42tJOX|_J)7*KejQvh={L0ljAse;(l&5U)N}j{{NkS!u211
z$M&m1*Y~T~Zo_do{{+%{U+Ukjf0|uijii`5j>ivh)QO`!e$Xdlt$(WYJN%PI|JYa^
zX`fDfSGGHtG(q|&P_Kb6GEHUw1X6v=$v;*4o%4IJMEWNX<$(Sh?f%J5=zsD;_x`DR
zmb@m4`8iYlQ$gXC%94Mooa&!w9rC8<@R<FR$di^SU#6~2UcBgA|75=AMgO!x_@}8q
zS-**q{t2Y*_oe>b%|Au%=&n+9dnWx8*!X~V{L`<E;Ge3e$v@c^$@|@amOgh_SD@ZM
zEn4vd_aBhzGc^(Z>3mrpKlJ_y<$%*`r<4B4PV}GKjprI?RlE@r)NP~7@#Dj7$)OZ`
zE_#0cj`E~_1HP!gpx=Ss@K0aXtY)UT(>RLr0<Rva7IvXdfM)zi;OGCXe~KBjQ9aRa
zqqu*;F{_er+&Z?&TJ}$%ultW%|8%I08X%%Tnf`oy2IGg?9OH-9Kc$4jKc!9oWp7pC
zb_EM(lh;3idi{sxm)AdmRNwCU;`*oHo~(cC=jV8zfhY%T)<<6d1mgU)VOX+pQPY%=
zk_Y#=)c@>nGMFef#Af#R`lpm?J$ZY<m(jmB{8RNA8^S4ekC5L328(}tBkbD~@>~-2
zzgKns?!@vvYQ(pD#68GQ>{235?JE0wMxOToeXW0Y{z(mPD1N`9q1xqBdHxPe-s$}O
z-JXJn*e@uGM*l8$GPUd3H}kO`z^K#mK3pJ<ePHAdEBW{jQhfvb#qW?@&d&M|Sl)y6
z5273}den8U55)1m?k8*A&OfbqJEw`_T(Q*apT;&8=kEp!U-MT!K0Z)+v<~^wb9l`D
zN#se(lrPgo+c;nCTmO`=>?QA=zw_T@Rd#Q(F3ur;e**Ni{@wYfxXfKtiV?#*^8N+=
zk8ShH{8Od6@J}JB{^<q3-?AZHPSz2a)I)xs71WO(yXz)!{{gAK`Spc=`dj{fs@^}L
z9MFHh{QXoA{b$YCXye5FH$twSa_yg<Joz(}VpySr9$!CBc~ZXto%a*D7X1$NhJSi!
zsAm2{#J+c>e*%BsR6XoOZh0*M)eqkUdOH6U_rpeYuvPe{2B)pc&@<K{b2hSn0)5?o
z-1(;%OIwwq!5;bhsbIm)slT79^-p<f!ar&B|AP6~E><}Y2?k%3=kGxM{L{3)dH8q?
zQhgf@!avpN!sEyE6nR|*h;qP${_^}C2>m~}c*8hz-?Nb3`Qu#rr^?wfm?)YWGJ5Qv
zC{NOpgD>a+&^_o4|73h~LwFq#@eTf8d*=ZjMYZ<vNhpRAh`^=93xpy?1Zl#;lFel4
z5RiVQ2tgwjiXos#(JWG=g%Uv_q6R{dYDhrpCZUJ{3DQIiNJ0tHgiuw!i}}v`p8aq3
zPIj|ozwAEu`JU|ay!q|U?#`S!=YMAYdFSkzDqJow=jwr=(AKu|cl_V-PZ&R|{E@6G
z#Zy$}YG<?3w3~V44293zpr`fk%s(kxx~LTUD$DshzzJLJU%y+?3jWDP{|?%i+V!o<
z^8Q_5V)!rYe?YW7c(|0AkN+TTFTBkmqp8<3tp9tB<(v~B)&u%qzt8OqLjUD<Cpz^{
zo3@lPP|U2Hn}3?!JJlF6N%)!yb*%o0mZ7}#9-fnbqH@w}&_UHWSnOH<bTQt?`u{Wb
zp`fH4q3=Nd_`af#PEyR#NpF__k&pi%eg3~G|CHHiph^+c<uz_!u*;U+Zt+izD#Jgu
z%k@wBoIgS$y;)D7=|U>E8K@oqG_Lgq?mr-HuU%E)pQe=O{*!hjguf4BJ)nQ(YqI}X
zNd1TY2hZp;T_1Mmf^PEgjSkNrO@Dq6ND)$JyX*c*l#?_><(0Z3#n^v9YoI&)(<5^W
zBSlyv>7T%}Gkt?rZ~V>r{|9^%=&FBOXxgZnUf-xHtCVEZ8(zuk!)4rmK&lB(_8({d
zDKlV*N^vcA2=^cGviA<V`KQ`F;h&yN|9@VR`6n={tGs>(YV}_)-Jg%gAZ_n*Z*l#u
zgS>thIy{s04`Mx_?>m<3cNXIO(JM^kpKd?aW$xMQQ2(*nUIvP!VI^JmPg6xXNzb5t
z<;$heJ?IYqbpGh3;9o`j_DK3x@W!muLERS1-}2J-3oHK=aAL0-e_^kxC^vU0N~zuT
zm&p7RNPF%{{X6qdnVUPR6#Dn&^*eBo+5YuAr5XH_js9hG=J`wYT5hEDt)OE1iS-Mj
z?ZJkrJNWny()JFu5cwxlRX+YNTrh>d4`MxFOtrhLKM?xAThIQzN>FIp{*{+Y8z^?y
z%*{WA^h!0p`@ZlsO9QO_iI$<f^d6pb{z;URUQ>CQ*uWFfv;Jww$zoiWD8DPD-IDv6
zTMzvDocR4v*wUoaiD`WN2kG;k)W5U*lae`5r6{#;IJYm@I(?U0{8J@A_$T#={L|-s
zOR$c>7GECVHUqW)e@B14hWigl+iO=L)2NIsYu7(vJzz}fE3*Gs2>%pcbB_LInM*pK
zHk%xtKXNi32U1+>w%7IfpF}xXKOhOl!9%N8clf7KWm+03c1)DxpTIdS{DK}1&duM#
zH-WDDr)=FOHM`a()$~m<;h%~pr`KP>{RgC~@MQmS=ATk74N)ncJ}UFK;Qha4{+7mn
z*yf*RSbu-_Wcv3nDf3U@h?><|AD}k>TI06-{T)c#tFDUt(|hvwci%KT$^8e!dcd@&
zEc5SMi1SC^>@5A1KmXE&eVgP^|L;V387L-=@OF9p6P1(o4?563E!OJa9sa3H>ZV|d
zaf51bxxk-iCkEYkzVLs4cWhCT8opfIKf6mMvyxibJSa-ucMYWd_N4xu`6tswG5@}Z
zb`|CIJMg6r_OIW)*%$uFM*p-^b{^Eeef!IN47hBGoQDh4YT%38C;0de()I=n5dLXv
zLq7iRZ?KT{4`MxF+8Q~21BCuBPu}e`|CBYmq=BMX-Q4`sTjKY1i>C=+bE1jWKhZLj
zo8H57_D`am^qR`cv{NsR7kSn{9lBN9eg5g{+eymikx9Mx{KUt9koMh^`giJ|KIyM2
zB2LVg<2S%wo8<Tnw5_Y8^GCC$;t>!KK<g-92L7qT6ZxmLDRTTcnCQQk+YHp6KYCwV
z$^8eU?S=S?{L`&ccKs991NzUp#JUC1f0{I3pkMItlCJDc$Np);NN)qh;I4;VA3rY2
zN%chKB|7dadCwp2@J|n8TN)`MC&=I5fmv<Dc#zYl3qAjod2N%r@bo5CX<jnflu<Hy
z<Ak-`e?U+7A7}n4bowhQ#fA0*`S=K4uWjEyjeQ>ZCma3ebN#x}yK+1nnD(Lke;m~6
z-#5;ekH;Ww@6rpxKaF~s_3uAi-cJm~daU%W#{MYHLg>HD)N}gNgC6P{-{0-fKP_$H
zWuVv}_t@q9tCuJz=^iYI{@vl9V${vS6gQ&-xLjcQh~+`Y>rJ<wKME`V6n=iU>X)@!
zRmRUTD<SjD)Bd>6`UgF&e`o$l$rAI&ia7J$2dsZE>u3A(XU-V||75Fw`>jkmXj@$R
zR`5z!h1&t7&)CK%2Y%z@KS<k)9xMD)$JVU>@x#94HUqI9u*W+-tZxwdf2H_7r~avC
zVle~7^`~!J_1{F?JEqD!;cJGpwfZMohBDK8c+UPwl#^ald71XB#=%n0`loUG0<HST
zJ`|L+BXU1;>w#adYMG?8dNHYZm$R&YkUsz4<eyTS^ie6wZV%`71$!0W@0R>i*x3x$
zi=uRSBLCF>xrf|F;Ichm@oP|f{#f))B=;YXwx|C!!>BaB%=;I!tQvnG#CpJ(gdbS9
zAnt!Rcl1bogFC<KeEY3)c>ZWt%-aws;*alkxa^;DnqB7dfut8l53N?+;h#dTwlY%0
z)R6N(fx5?M455#r3*A2{@2^vpA?sArQ#F#6t2L76|0|074@h<4$^PTaKc!53O{Ex`
z(uMT}c09Dv?)AIN*7-AS^q-G^`t<KctVi&dL^*yO)aG9|oRs6oLE7GAF@L7%Svh~^
z)z9Sp??9{vjLMMX$3dJw+MUbNU-$n@_p-0!{L?R!6az)$`CcyPpCUy$N!Oqw?bC9t
z{@vl9J}j{*I8wyyq}p6AFeGbJ(4M2w+*hd_h2@{JYbL3&4MqMbHertvzkSc83Nrr$
z(tdkV|IYkV?88nfMVSpU{{;Sc*?#^hYdHLqt^R4R@;<0uho;H-&cG`>|KK_YwHhc}
z`aB>1LE7GhFfsn=Zd3M8#rAy0-v_ZC(6>_wKE8v{|Lro#PW{s)rG$ZEVzu1-)7U|&
z#(J}auem7iUrg(xWhghjhv(#<sGRf~%v&q@EfL#s@F2}l(7Fq2{-+49W>)=U9|}q;
zE`2A@_@`Svl9Z)AldkSR!^eM+KJQ8WJIg<X?(eHojK4XWkN@E3Q}?>XKQ%fH{}htj
z*7=No>UT@d`wJ#kTFz|-YR@0pwch9c1Jd@Yo)P}(uk&{O6V?OzS3blV1JQr}T=JfN
z&nFqW*FRbB&_BKNc}W9Bbh864`zI<V>j@;mICyBa>JI<Za!+d`#h<Ur`NzTL6*CMU
zu9{cq{;Ago>&5t|^<w-}K(c9Kt>lLD7IXgrsVY3#f1LTJ%z!X4{wYlDw6zoK3-npO
z!LENA&;<D>8~x|wpZagB&w2!-8pv@GpmzMzfzWb%JO*idDb0j`8aj~AAMXv3`6m$T
z0ez>){1XWM-=CYVA5-FiZrkl$4)wqCWyL^o<-sHC|KGM6g^X>N**>TDr;2jYG7#Uf
zN89hxbGP`Xy_<qR5YhhYx?C>MyW!%X9l<lK=a0hjPse`RrDmq@5@RYpGAn1Mn}@~U
zW&MLx51!P&GyfF&byt-l>5$Anfme#zA3y$=3I54e|Mpr}o>#LH<o^p`l({6g1E|%&
zK<|fq{0C`!6{ZXSG(~0oAAII(ZZi<;0e#C@=Kr%0`d`%Opi}?UDbve9@kgax|Ku|~
z)p&4`@HKu$K0eU;Xc@{)@8LQ5r>UZx^cu8ZGme&e)<5a%_O|LD`%qBQp3ryl_@{&A
zMgGYzX~_@gS^pq?-jn)w=ASY%Us5SXEs*p7fzg%a{C@?l5AEl**Y7HxfPd=sME<FJ
zADOQOtF@M6HbHIvX{A1b`wvLlt9VNIrwi$J{S(#$`j`Hm^$Vi^49|+xuRWis%UH0%
z;rSzRL}>%XxnI*<_D?yP^7rK+>BZ4QTi5RJPwGCMk)rzGXs#D<aqBCFqp2Skx_@dq
zVT0=T+6GmL7x#~xQYX2~k{IqkAk~E@`;Sxq6es+Xi1hLuSzln>y7hMbQ>;Jyla2oK
z@lU?T<alv#oKemv3u^V>d2>lV9)q;Ki`9jHn)VW(KXzW($;Uhp>j9(YS7LpG(Et69
zj_JcA@95?PIllknmY#}%A|m6S%lfBslCD8V+Nb4O{ky|I=~6cbQ>+V>zl#N*jru5P
z`=to$`J=G>Q~a|#RKNP-{*OD3o0VRt%=+b5S^psIw<q=Q%s&Ox3{ffG>^+I~Z)KxY
ztNv~0f9kjt{>fJVv{!i_)V{?x)?z(?_b$u%pg^q#CYCME`Uh!yV?P)EsdfnK-+Rhd
zZZi<;0e#O`VEu#8|Bb3YIQ37)fjNN`V{FEc&wV}BcxI{aHI=(t{Sz%ix#>MT=lqi>
zC%vZf67$wdeoH*-pMw5++p2%;LqSP<Blk169{BZ;eP$(lpZS%$7g_%xecqG$cjli$
z{|HejYF3=c?F)W7^?SGEpEi66|J3h^{FCn&8Qex-i}z%kf!gy&r4rAve*$THO=E?B
znz)wtFYU+?KIem259mK&6YCa4|5?<*sGk**uA4q@4fikTgxXU)REoyuN*O3t?%e6}
z`Gd;I`T=R}4jw22=nnt1U`RXTd=aS?7jnITKOg?o(Cbc(LibOZ+t#SPK3k(IVeOJl
zqXUztlzW%^4@gzv$^PTiKlzPRGez{SBkz9%UW$_UKhlmL@6iJO$wvSA_@~#)%JEO&
zh^%Vd4xl#w6xc`3KMvCNc8fU-lyrIj?8jvev%WyA2Ta>(xqr5Wr2oIg?@uegb5_4z
zd7!I!({cW3*WR2!iZL0FT>t%qC@1S5bfA4&4Bdn7@K2_(;`*J4g-z>mxxkEDi-VST
zon<|L6qbLAeY8tGmLu{{K0`(RX}H<@&3mkWkoMb?`gi7^Or^T26w$GA{&Dd1yY}->
zans<RZ1qojmG?pIdh)K!Kb^8r-6+Syf@pgyEBwjF|1T}1?Iq0={^_{9|HQ!Aa{kRh
z7GgbM)Ha!a0&)Bwbl7?RY4r*(!zvM1YUSpi7K&WcvS{IJ0@_>s6D>n|={-DW|0K#u
zuc^GmytR_w63_alF(vw0^^bihC~0r#JKjoeJ@9@<lulC4mre@rm%;i6>GPh{zcc?7
zJNG4(;<c*pa{Gd{Lfw;p`XmPa>E$Q#PorDQ`I6tUP}v<O{RP;oeP>$_^;Se(?mr-H
zuhDYhpN7Z%hkrV1@lo3K`FGpEx&_gHo(>4npP712cTE4aL;rN6LV3e=5#P@|=(>Lr
z<z)SUBp3$|tybOPpOU@}G@3;;o)E?L0#2T>+;C`Pl|u7R=s%%PeXaWazE)Mj4arJ)
zQ1ZNxsoZ}+stQl`AE*B56XBmkd~)+S))zRvwY>kf)<0FZ=AUfzpO1eU(^KZ3z-5(W
z{t2|zK0Vh>miZ@;wl_%RpA@6aKLu2i`6m$T0n<jy{1XWMPj2(0zEf(p?nvTxhx#`^
z$_b>nHs!9%`p*fL`6tkU^m(yX|L*Wlk-IhrQ&jy$`X{jVsSktd1Q&k(scGzXHB*Fg
z;G|gzKW+AD`5WsW^tAq+`llB{RFjDLZDjrl+)~4S{>eWU{>fJV_FI|Sw|Qqd?hH&^
zDfJI(HSm75r`V5xw7rlxF@D^)7w4aDuH3=LR}kv~dz_T|2ciF2UmbCpf4Y9*aUjL2
zin;#D|BX~*lh1{(Y1z~2pJ*A%P4D43`6ntTy|&VR)i_w{S^u={@wh_sPkFB2`NWx(
z>2c=etuC|vK~L-7nSV<8cXySd|1_z8utX=Rf3&Tu)Ly@f`V9VQ$P@XeqqDDZ8>Lw|
zA~KX;gWB`Qg@FO=pFrB)i_3(68XWr{{^^LtKVdzf|M%;pf3gt$r%6^{{oB>f>kdRX
z9zVXWPDKNS@yIdP|Nj={<o*LX=qa>V+a~VtPm|jP87GN|UOb2E1ytXQGdvz$q0syj
z?q8vFTBnA-AjXj23rbdQsLB6aH<SAh=;{9B%s<86AE{F4gB!BGz|fX4*6SCx^A|KO
zhWwL_{`2uqANa`szrhi{@^_h_Hve=u;D1>EAZ;(Gr0`FN+w=Kjcjxu2FA(bi)3%gj
ze*{ARvt}I7@9prrZbpf14*ioMP%%&}8gavQ{flz4{=ow1-yQyGWy|>B6(TNlll}=z
zJ02QTu9fZmvkPbb%<x-V)$kkQ{*U{rBq?L6C1uS$$NC37t$(Nf$@eAIBw}->{Qnz_
z`62iIkG9wEI&Fo2vem!+MkXDMJt6;p0IMa)@qeK97&!Zp9RCN>_GWDt{;AF&*8k6=
z<^1I!)&ur9FUS9Zq<{JiQR&&oocgDUJst&8+^L;A|5L@0sm4Ytgs-VL!0Ml98OlxX
z;W_!IoZ5p}|DgSvakSL4{^`q{-0^?dhk}y!guau<KgHKID-E7Cm;F%w{{YhGJ^BB$
zGykMc=&Dl8E-Uk|;DGuv|60)c(0*R)pL||{e+qpf|Fr%5c0S&NN_08tFF;NH=}dwg
z-wo3C$`2L(X`{UUEauI$T)&glt}kZ#Jk~FW^GE-I#q_T(IIZiD5a;mxF>mP828#CT
z4xM2{Ks#++P}|c(yBx3iO;JvIP32|sLi>O4J<uKg=~nelMvAXL`k3nlZ1X`)Lw3$c
z>po)MC(zaTpG@D!slDRjRMU&EBr6{dO@3i;D?WdKR1==;KhFG<+HsspvGlwbA0NSP
zhN*V_)4~AwCma3e<DXi7A;&F);|9q4h=AJvAAECs_;?J`_R{N!@lTWc@cCo=WV7r~
z7GgbMRO!mBZxH(baQ+E>&4+h%Rbm{Ee>zw~F;GlBf8S;QMCBwsgZ7m#mqPcTJN(nG
zDVu{S8hA<n1h&08Bk1?^iCmYo{ldC_m$GGtnvy8SKmEB=<e&DKug|~E`UgF&e`o$F
zV0d?xqRwlRS^uEkY(M`rehK`Ot^Vz|GS%xhBjxxfaM@K~)(42T2ea>av;INeo)`nA
z?CQq)zxN=4+YH2dz_f;P{1XWMzdhlwQ~z}Lr<_0vv$+4A-g5jeBgQ)Y&u7BdRPJW=
zPqYl>rT6fh{nO5Fyni_s+OHW$OFiqKihuWpRsYzBf|B-xzLUp4#ip5+c1O+oN67I{
zAbsAG$A4%3$<(`tN)a;eeQsZHQ5*M+f9gF5{weH<{L`J^_HY|zTc~_jnqOO~@lX2#
zSMl*5r0tCuEc}x}{yqx+>4?QgS=VD(uYbe2tX~lQCvsJ3{rRcC=(6st=Ji7-)Slv@
zQe+OVVz?lpZprUmK7UX-Sx+FX-N6H80NvrA=C|%*r0{!TI@b%>wsn0&Mz7F9^H0b>
z#gAOArgUGeDvO3Dn@$W%{&HzBpFcpV3QzVQXZ|T*`8bs#y>m_=l?`k>Bhs#a`qY|#
zveAD&{%J%9nSTQ7HJAA(Q0t%CM#%gVNZVU4@=vC}W&Y{&Z8HA^Vm+Ym5t)Aiq5o~w
zzSEbS_q*=0-f{kE;1I<?vGnl`m#^PZIZ4kT)v2QgbPu}2Kb3ABA55`&yBt3b&ZzTR
zP{&P$pMMH%xJ`|%w@uvtuCn<3cGV>1`CnQ8R*K5-r2d`xr%>f3m15`vnSTNkPTS8v
zDO=#5Z1r!yg{fVuN6Y*Zm^QBp>jOmFg9!<8{xguar-~euVv_Tpg{+tJ2ZC6Sm1QmS
zpIHd~zn=A@Q~$K++@nB>@&38_r+42@H8zhGzUF#AtAC<pC@;N-=j5NfL^<g-XuoD0
zE%mH_YEUe9{xj@DK}mZ;-^t^jG7V<s%^-8ay(_GLkUsB8{X6qdN~W0qOhn=b^7p6U
z?6Y$Ivx3%#_Ve2O)2Nr>pWb{T|J3o*6!sIKQo~333k$XL7nl!x#r_7Q?adn~{L^^(
z`%(BOP`kdER`NO(i20uyRrAwdjyS8UGJ35;|Kxw_8N)LoQu~~6-9L$PvYtQ^jDv@^
zuHE6Eyk>MWdW)E}%*6c~9DK8>Vfm1k3(Y^F{~XI+qnb{Mm^LiglpLBo%C{T$ACRiT
zll{k;e@ZzsPNnd#@o)A|;J0slVAnqlyLO6?mx^Me|9t#Yqi}iO5U@uH`Fm7Q>z_Vu
zEawjdX?q=Ro-!(zTJiti3*U=jeSuhyl?KcFffnNY(W~E1egB`X>7qv@IMjdDbj3iC
z6Mflr{flz4{y_)Yr^Q<RyTd;ndNv`L;$AbE2Lw+p?GzNTtsU1Tm7~z|PlFRwwSR)D
z4DBxNU(q9J^+(59{~+zRC-v{lKdGJjs1&>A$@v4palh}g>fiSIUEF^7CtLl~UgdpI
zy&lYx^$xD7Am`HrwHnx;Q;GW*NZZRkNaM$cv;Nn_{lINzrDlCm+vNQFAoSm(%SosH
zY1LPM1X66Mk~{t>a!jgm&1&Im{+9Q5qV>@-l$+kebMjAAPI?XIt(E+ii0wFdkY*@o
z-Gw#(Q~0z6R{dii3Q8(2eFw*Xd|wHuzekC!zvs;UYpj2eKJQ8WJM&Mmb32Ri<DJz7
z-R1me;H5}8{~7kjRcigy(Q5EdqjK9ipZTB4za{_21C?XJeErQzP5vo3MqXzEX?qR*
zg?|d4!{@isKiA=NK4@K!WxXwa?9Unl(SM%5|6<!doqp1_+P>1^`D1TV1p~$Pv%7Rb
zu3o<r<zzj9Bp3$|ZJW5mKYiMHh>>Df+C;7waPAjR1!lELXKhnCaNQ1c_4-{v$rWn&
zFR`lW#D~cyohjMac6A$CKS)*K$^PTaKbba8Rw?4jy~+9lpYp9@J%8Aae;QQ^*Y9lf
zpO1g)>m{#WfWCocxE(<4_@^KK%Hi=(AZ;(YtjIrI>%`{|ecf;Pm<M7#U{tUl>l=jr
z?~OX7uRQ#=ZvTpJ9qNDhQN=*9D?a!9VXINd*mjxib9#TOC?_og@f~}#{VqLshksgC
zB|bP#L{zpM#|%!NI6kOvn_<@TM`8J=(7oTPDJkEoN{2E@N^04ps7)8RkAYMVp47iH
z{}kJ?r%Dl7bpq#Cz%3C6t@^k1PXoSyf3nrTz1EfI)&1pUy@OZQ`>{Sitp?_lkiVY*
zX?rup7;<GpPuBmV268+Ii1mOyYFoySTL}HX^tAKw<FCK^cOb=BG5>g=<@mpNM5=L6
zjPNxLdRX&Mv<&5@_wbzj6P1%*TWP;)94z&$e;RWr+^T=<LqSP9!uzZJ{aw|~W@Y(i
zbEV`<tbdR`?@9eT^G|C35b^&`h&sw!jvoiRdAVo&_{FO5PvKAGpX&A>%54OWSksRE
z1*rZ1JI4DX)*ndQGYSu-q|CJIpRgXV#if4yeGvU8qO97s(StL(c{3efzw7y9RRhJ|
z&OccDkFB1l?df5=%=S6IDay%u0(qhRKepec=kD-NzLi6b6ra_K;CcaPWt9({H&)&o
zo3;(#1iI><QXZ^Sm9&+rsY_(C8evM_y8RpWPaxHVC;N{x|D+tAtWvB_f0gwG{*+qD
zdj7EWPcyCgCma3e<DXVMEARgW-m4(<PoP%+OS;Sa6G+>O5cwz5Lz#bC*6wrePaxI<
z`gW1|ClLBS>9bq^DC4@$t9hbB|FrCFF9XGrl~-KWKb4d81lm`=T&mT-JN#2XtAt>R
zdgr8%1^?;WBWTz4!p}d&`X{P>|4397Kaqd(>5;T@^hrK{fS%UBGyfE7?4wfDUn28Q
zpx0gd`KNPYEH|~AqS)%+ek;@Go~kJGPvD4qmiap@)N0_j;d1^CkhWKAxA0H5<oq4x
z0pGFyLGAj|_FLxfun_uR+W5HB{8RDue+5zut)6@R?x+|m-g>3*HOv2H^-r`6<)-)W
zoc)t1C%vZfGVNE5gQcGJPYF$P=kLHi6qK|hazAtHLB94eE1^E-RVC#7XCQsvlgEE&
z{>fBa%-<oR^IAE691NT2p7G-yt^R5J6Zxl)$G^&Y2V1mm!~O!)o<AzCpTfEWX?yEL
zC?V7B`X{W%%1##lWFhsR95MgR7wtN?z1{Sz?z^^*uiu4Ls&1h8ch{d?A3rY2$@&3F
zFb*DCt-8ZM8OnzlDgO2Ex42%xxo`Og29HfG^!!tJ;wsf|{wh`ZEHc@&)RcUy-FEg*
zAXSAY`;RmK6#MIBl_Fs1FxD5iB)Fno|5Ppw*YBQ8|G%I52iH5;LwA$=1E|%1lZfM-
ze*$THsXq$;w5tLC|7{4K!`}z79?<tWdH+-p=Z~)8oAsqD{id4~67SGIr9bO!ptx8i
z!}ak`qMW2_Dz7|_IuO5Dtku6e{8Q8UTZ1XW=F4$t;GikZf_Cf(;JT!86juHzpnbd=
z-zHvFl#h~>CexC#|31il45Zrdr2d`yr{n$AP!X-G$or>)wMWVOr_%KY+x*kHRQM+w
z{nJj_c~HHcG{|vh;Ib>S9YC!HmY1!<egvfLH9jKz(-?XGBJ=2@+-4xw1Ev+L$@&KA
z*iU0P%+H^4>Yv)~d>Gh9L^Ho!|1|cURAYm+!q;3JYV}XF4CSWx@SOZp&gd}KJ!q#|
z@>%3r|J36|v{nDuhk}xJhQ5>M`kiGjCr8TPPk^-8llph+pDuS&O(GV4E3e;ykFpEr
z`dvZmv*`2xc|Xje`Y5W8A`KL2phyEn8Yt30kp_x1P^5t(4HRjhNCQP0DAGWY28uLL
Wq=6z06ltJH14SAr(!l>e4g4<!2sS4G

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O06 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.O06
deleted file mode 100644
index 7ad2c69f9dc5229f71a816c758ed4e58143a336e..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 153600
zcmeF42Y3@l_wE<l7#mFQ5JCsjJJ?`J3j$0F0YZn+0)!T7=uO06dJRcPr~!u_Lho1t
z(;?K*0)!fR58;D^z@2kOue8}uLbgD<|9hYRKF{$_+LdO`&b+((?(BLMs3?j-L^2Tt
zMdZ;;in2fzv)(v0=+VAsp3)UH-%8rcVxsgirNtz^Rz~+#%Bg0L{-1Ty&DXxIBtBC?
ze%-6@o5lC3ZkoKQ|AY2}@-+KMexLr9D^tCOxoqh&74wuWPb*crOr5Ir#rsO)mF|66
z-TQL7_xkUP)%;g^6?N|`>E1`^-beoXJ+->FyfV7{%INYdqsy<1F26Fm{L1L^E2GP=
zj4r=2y8J}-|H`kdF2Az6{L1R`v$ua)UHd!V%kMki%kMki%k^`<m+R+zFW1lcUap_>
zy<9)%d%1p&_xAR8zL)Fge6P#T-u}+zy8P_z?_93S&))vd<+}Xr?eAD_Z-3`|U4HiV
zcP`hppS}Id>Du4<Uap_>z5KrOy<9)%d)fZZ_j3K5?`8Wt-^=xLzL)LqcyDii=X+j1
zu{%i8H1EL3k^dY2+Xnxuf&bOO|7sxV8X%8Hdtz~@&qM83z3x&oQBf==$BsA|ed@m_
z`dsFfM@?FOlec75dJlFEx75_etw#yfX*o#sSsE-g+va|wQVkWWP3G@|C<ipRiQ?s;
z%+q2THKnlObmM@?=feY3Dj#9bn#xwkObs?t<WHSEvP$PXQTPmK|Ez-ddeU;rljei?
zjw|ZF|MR^c$nLtF!U8g?6!e`adv4l!SVm=_9BR8Mmp7{v_cJTpE?}EgqfPtTpW=B`
zX2rf2xu3w!;YxJy)<+Tg9QE%hS(>LP`>QcuCQ~i%Ioo*4(}z`PK1iRZT!}QHJbEqH
z=S$85>!bY)KARNonYP4C;qE)i$gNh2_{BX~&)}X1eNB`DDO(sDl7Aj5qh7QuE3x`t
zJ?<c{4;Z>8oZB4KYM)-0OtFLY4^n;6^_G~`D>GDTi-i7T`1>Hr0TaHjB$wL>{fD>7
zZCDcYETUecXPgh(gUS?>O7Ugm<VK22k*^~vd#QiQlgb9EaCZ}O0QdbJ_tyHSGEfe+
zUBu2RD#f*YBRDUx{G*Yk(ER%~`v2Ije@W^Kuk?T8kx8lc*wMzP*I#G-gVYxO)PMZ^
z#bye$v7XA5C02?T#k#Zp!CH6wIP}lrx9h)iQ(4x(^zWvFsjkA=6SytF$gNWUpgx~-
z8KnL}sxNt~#b))k)c<E+Te#0almjL#v+Li^*RMy4^|F`-U&(0D*G2D<I=%k0yJCDQ
zqVlnO5!nCtn;U1IeN*Ui?F?=oDvRc!ELw)wuf;@p(t8l)Cx$yyzP<jb43tA{hkB8t
zmMyIN9QxPJPs(d5pFWTMzy7;VD*eLx2kG<v)c@vHKbR@>dEvdXO6Xt2_>xlpV9NVa
z|M;A@)cdDH4YB?3K9`z9Oz!>D-fn|=``KgXqQ7qPd$5zvKgI1R$m<GHeXBkaI(S)|
z^*bT(Dt~{xohSzkQwFhq!B_U}r|;@MQPsCRjJO;0h`*2akon8wN8iAjMvC&m4;<SM
zK1Z~Fmi3~YkJr3h<jJ1}@g*0;_dxg_7az5Ii=_LfPopwd?II#W<SNb!%zN8n`e<`?
zM_a%*fl2jGuV3$z{%QPUlQR0T$+CTzP3bzqHn~&_-hMz@H-BzF9{tns+^Qm?&VYwT
z$_;F6%HcSEX#G>Qc5+)3A64n|a&oW#KYkj*Z47Sv`3AoS_5SJB^a8AZkm@ViLHO!t
zwf?1lYzHU@3>!XB>fcWIr)uG!N2M<GDB^4%_xdk6HrhzhxX0rNcywr!HEmy8?L6&k
zUM%wD&w}>vxPtb(^cud$)n`dF6!badrk#gndjC|V^j9jy;i4ruFEHm1BTVBTRpWV7
zX2rhm$Unsi|FlHJn0_`(n*O%k^INh0L0UJ;73+vL!2Ga)cYFTe(Lcot{fjuT;{od*
zO#3LiL;qU;G_RNR3nE{~I$&M&q;+e*UGD$E)2rnEAH@2D+4{=;KS=e(^bx*d>%aH^
z&_Bun!!FtNZzuG>zJA~TIv=Jwku$ws*0H9MV(+B~4*icW9%t@q5cTI7%k4wu(LCf!
z%kY}~6XnU}f~X)7gzs_nQLWbBr2nM&Cvy$w{vYd*R8p?IzV`EHd|&C<&!+7B+;-}a
z-2a30d4KBPqkoz#^e^ISwA}xLor}r+Ki0=v>its}hksI4Y705JKYmnfCyyUsR93nD
zfcoP{mh%Nzk090eA^E3@uD2hQ1BT7DZ$EZo`w5xcFDmTQ#}S5g&T~WA@4N=8_^Sqn
zM;j?heErCK|0MF{azWWZF8}KL#25Z)&2O2iQamUk{S!#-vaqdLbNqNm<4?iDKLv_-
zFwAC|HNw_7SROw>Y6yRBKc4)PWmRsK;{F|Z`~U|8y7o^U9R4Yh`i~sSZCue#=oIv%
zf2yw@`6s*nKienIA3&4?y3_yNa{Z$M{(KaXwyJym&;KRbNO7mqlm9FF_l192e`BUf
zF{GySPhhhwBTXX)YW4q){L^mXo%W09FZ|O#pW7CG(VG1e=x_ad^iM+jiU<9>_D@><
zyWG9;akWZOx&H^@b3pw*5WWc{|1?_TpZ@GD^$(&P(4BuuQ=p$m|MXy6O(R9lwGSQs
zX|C`}gUCPicKRophrDSSUjM)5pBgvxt$(uEKDW)D*pl@R`dk11bN!P=b#68PZ}_KH
zgC9ps-{b!H@&BWLI(|J<)e|DJy(j$>csIgF{;81gPWk`;^-s?6r^M-hLUHMzK#UWC
zdjEuRCy?qZt{H#&t)D!8fG7uaH~v&IXaA^lzdnk{B>D&Yd!l_Crfpemeka;UF~0Q^
z$MM6(XZg6OosZXC7RH@Gdj+n5?}5JXPh}p?RLhEhZvrQkA7P4o<%993(ZV~8vyVTe
z?r*C#MEWO?+QFaa4<7wf633t79pg`0{k!U2IWEyKhxAVk>}>X2o<D==d$8p;IsODv
zeR1TU{*vd<Z5BxVe{3hp0mEL~&!6qY`E#D+p8eC|sWpuh-!%KTe;V}$|3u4>JNqY*
zC%vb9nXa40<y?P{Kb_zA?)($3KcFp?#^U^8_2;%+9i)E(X~q4ie~<pje*NL<=l1a@
zJGUBrGyYV4D6ZcvP#q!&a_^rS9$n2k0w2%I&tveQ{`hfm;b_()NcE)~DaM}$PT}hp
zQvy5i_d%2c#%`a+%fVz~oQ1Zb`nR7%HSL=ra>{}Xyxh^xawTY8)U0iL7_*6(cPcUx
zW2E?;c3aTS)4t}SM4tRvP?qoVulBq2+85(bzhzHbm1172jhq*F=c2d|X7m9$Pt=X;
zc3@Jk-{JbVWlToZvNV&bC|zvI<}S8@_Yd>=2S^R!&+W(K_>(QAY7x<CT{_km*eIZs
z<NAg6`dwsWT))%k{|(o#j}>XhZ49mqKg91rz5dfr3}yX;RG+np7=OB6n)BOpeGPvf
zL^)vC=iOP~AdVk>Bh699y;mcSr@rRsbJnR;rsyw4ty;`zq{#99Y481$$dk(jW%(}u
z>h<pn|CIHgIVwfE7X>&kaN*7dCR^Gpj<$Gb*YC<*Gbu-|nk?f7+mz}<ZA&VZXZ?fJ
z5dPG^C;w#GRZyiUaqR+Mp8}Pl865i8jz0wpFC%rM)xXQ`Rp@i3PV)Q#+<E&Bw>hZS
zz>h1!xqOi7d)!y}rwR2~|Jhc{>)#;C0mGsPOa0pk{ofkj-{bhxfF?DK6zzLD{ZnX(
zICD-TUB4UexPC|TkT)&EYxYkfPkK-JGF>-~%enscPxtmnkB9udA+3m9PkH|<%1~DK
zwJ9k-x3$VH&mTbgyg&8t(LbGgUsXg*Fg@n}1^Wc%Wc_1(yrus7UH*yiPd1g>f~Pn5
zr|MbevyQ-e=PIziLH+$tg%-_XJ%UtU#VNu+HJ!)X4}24da=_q~v$%W^+s`*kc1LY$
zpEmM8Q_}Ksw1<5SR6+IX_S!~@HI2f&_fH~EDx30U+ADAc<N*4@KXu#`RJD_cxT*5E
z4Sv?_py{hFPdG=aAHE6n);}rr(yEr}BGR?9DFxfxiltn{#}AO&!JpfYC;y}z4^Szp
z49Ld%0vlDV;5dG0{nNxA@K1@;|IC)txQ)RZUnFDwfqMVcIagKIKS=du>?Qouxb~di
z?KIN=gD3|KzBWqg-%jX%`JL~h-mjWGvPAdfZuQ^rc5@@ej@}u()_*dQC+P`vrF+bS
z?m=Jpr!w89s1(=c6z9Ca=kqq3Dy$r&(f>QTem5$)YPm0>-DfuCyPmdoy{54KL0Wfz
z>ffV(`Zl|25izmaYd(H}!~e|V(7)C{jc*VCq|rY*R7dL9`lGvZ8-s<L?&J3$`W~Em
zEjjBSr1~O05&mUb3D$qkPd4%QL6ifA9qh{b2BH75mS!IPQ>qQMjTEo)Iq%;H505jS
ztSIV_=<e`OG!OaGGQ4L0B=V&9lrK})CU1J{Z~s(mVS3IH`FlfJAGx0Y_D`0cLu{5C
zLv6>lM6>=u`n*5&@5w(|zA2<ql&<+J_b*s4AiYog)9M-UPnT6{3!dKKpDbs;;XVRe
zj4`slLH+ULMBRm~N090p{*~}g*M4y6pHL1M+jkC^57PbPGzN7hd|lLMVW}b;M5N;7
z(29KxR6(_5?kHmk5!Iredw>2d@?<@M_6l49Ie@<KPhs0%s}vnKT;{w$%cgZE!@)pD
zTfjGgUi+u~sZ>jbRH{;^waqf>V_UI4UrPUEC$)n=w;zxGDf26nB4W$soUAW!&8<p~
z<A>HibsGl%lsNsDZZ@0S9jv-T-UAKl_2078r>uXF>T5ny_@_nk|6PyPEysNZq8u>x
z#CWNHJ8}HzXxSF^<AspOODRGfea<?S!c+y+&`B+g6kGnv?zMlSJh@y@mhbW}bPxK%
zKlQE@t5R(EL0+o^M|>M^N~<j7T&ezdHU4B-6rw7nLsg|uC!1wpXPYJ9d)7Zl4dGAy
zd-6}p^7Jaj&lN&h|DfegxI_P1|CGNw{F6riE_+uVS9?$E&u!et&JrEveU>2l9voOT
zC+i=i`kwa?{$;ny`R)Js7cTFBohSzk>)4O=4dVarmPL2-=$|f3jW(VaQFZu3$Nhf=
zip7~*RuT128s+d$G!OaGGQ4L0B=V&9lrPgw+qjzTZ~xS)O*zgH`FlfJ5Bgq!?*4Jh
z_x){_;DNT;BO9~+LHfKu_3zO?9n7m*M0|YV7WXe$wR2XV_@`By;GdML)D}Fw!9P8Y
z+RA+d{*X+bAAtJfN8xoRSdSppcYT}iPgf4|_OtwpWxRcWC<lyvyo#5DxPBM9GuY6?
zk|Q$PnjE|wTCuNzDyUXi)WBF#M9(z^y+3}4JgIETmuauS6_5ky3;*=`<`b17Q?tK0
zAMn=Ii>BKzqaAGl-voN?pUUM_EjM$j%AwjerG6dTni^+#`vIvP{JH&j^iNsOnG_LI
zhZbdhfo&trj^l^cKh+uq|D@6X8?N8wJuS~4z}k(obDM*D{XfgvkM$2yeVIoK|1@e0
z=lAf69KQuo4j5Z?lGMMQ@K0*~by3S^1V)zL?)1zWeX62c)Zcz;XrzexFs=9c7kP5I
zAa%H#3AzV;;hz=^AFWahUH1{^1xA*OGYxC<BhRDy-<5w-76+<IaFD75d}33wceK4a
zF^lyNQd9U-{~rBQm9(lNqQQeytS_*7fnpB*YyH#9!SGL7{k!g9YS%5dMsXX18Arb6
z_aOQn%x*ET{z0lQbeQlj1KMzY^_Ix-TM*@dvG2?AR}lIyn=i(rf9f}>x{;#9N~eFC
zTPn_6vzn;C_m>X;MDvg@EyHW}Pa;oxPx&%kH;v1={`OCQx9`b0B7bj4D<aqP-{Vh8
zg`PHLL@!&+ho7?kLHfKu_3z0)DQ$A76uD~s!~F|3$|J{Ly=fEecl6iqPVI+(N|z}A
z)Ohm>?jvx+`eD3(2ldB~HF39Dk0908?Xd7qAs2Z2fo}p)4j4RU6PFKS`<a#J_o&gk
zGDq%zoSBzn9jQOXq*CPC5@Dp+YYq1L`A?K5>j|XN-Au><^o4)AmFk8{QRYq>UT?5w
z3acqi(@!030pA3A?VnC&R+WR9RZFF+HYHUxTZ7l@dHVsWDg3$pc=S(?_L&qBJ*vw4
zi@=X&M>~!mTK`mPF8ovC^k2B2JVt}b+eLDlgL?fxnmmW~4^n-n7YP5<<$Kou#Ii&A
z`yk2zgDZT;%RxGSpordmJL+uJG?DQ=r4FDuyEIinwcEKCMhf$u0^aLi<jML6?G?BJ
zasYkdpNjq5Po=oAz7OXGuKIJAsr;Q+Jdf&sXa1=|8rAYlM4Bcx%jPDw2Nid+{y}O7
zf9l_pf3if2=e3D=`CE3@7r5i2iVpp2{nH)`{F6rit~yuDqjrtkGn(5N96BKd>k~xZ
zgUM%n!1@QNzT002{}Ljf&z5ag7=Ir`Ibd+iXsLfYvHvgp*Eo;<DSvXak>cDir++$F
zMvOnz5cL<B<M2;35BbtEyk`F-@}&2aFVjuixSH*6|Fk$H)}eo_LsCiWA=mTY{>gHz
zn@vg6!}gy)db0jO`n*5&@5w(|USv@z(%cVV{e#yw<!AjTwLSEo*ZZf|N8z9HIQ`Qb
z&c6@sS<HO|-p~F8>l@VH|J1+F6V@Y0^=&^P{L|E{F8veA0b}=X<?=xqzoqDq>ul87
za%m$&+q=L2Nj+TJXcCd9&R>r4TWxz#-_xX>r+v)}MV>T|@@4W&*MGF%rPsdjPqB5c
zs1)H_a&fzW!*Z=KZAtby&!f8Gn?SGq({OR`Q#El;`_y1lt{QDQ(k|!i2c(wp=l0{#
zKXu({Qbd$!P?q%ts^PUA#}BQ4>aZIADRKHQ@PoYH8~nY;hur4ir@H5#Wp1^B^$${g
zmDUUYG<!Ygm;KRH{yvCuz}O>;csYpc7Zoc085KM_EVA8ddHjL)?8;OH)pYk887UT2
z%j>;=5_wYDlrPg>fh!;f&=>w`#L2GeFcBA;P2_yQUZYl<a_oFxqyKkw|5HeqYS|j5
zD*fx)l#qJ16lM0Y{y}O7f9l_pe^OdMG*MVG=VN_=<#t6m^sn_#jb_0=Y4z`_ckRd3
zxXDrnb{_mXAGbM(z6X1bj$!?SRNt=egnyYnne*#$M_#`MQ4Sbe+y4JUcEUg9zc$;W
zf9n3!V5B%V!Fm7qrU-HW(}$w|vzr|LiRK|+T87u`pG2PYp7Le7ZW@<!{q3KImbGz?
z$ln{%ipcf+w|`PnwzXOEwzH*N62tlj>GS^7zbF5sloR)wi0Bw4|9=Q<u&|_0{8Rix
z_@~lN|MZ6IciE@x;ywcVubs);52*J~k87vp=P!d)U(=_H&6YvQRBHQ4fmiwaAj$z_
zUmWD+Ag<rNNR!d<ATUSd`10<r-!;6a8Yv!B&h7Q_gYqOjft0hmNv~I5_@@T3=hTKG
z!nTy)yujK^wwo$v{+{Pi9`H?|*Zyg>7!NHXuHPk;uql~K+RlD?jkh0=+QOgPk4OKM
zLX7K(crl?0@1H?)$_9?(ht@x}*$V%p(f=FH9}I2f_!BtbdP{C|P_O@sy?62c7^M1w
z;)Q?uCZ6*<X^`6wh;qQ#!%Mk*5XX->Q*K9vg$GA=XcX+|bGhGRb*kd8+VGQFMv4cA
zGkL9l%9G0lxp>!q^!oROe>$A6i+V)FoS<(xFR<XMIi@>(N;%r%-Hks5tCqFFsxq*q
zIDSOi_C{`J{e#pJ{?xxm|J3exlOm$s%Yv*g@cX?chyJzx>FJN~Pg?!E@89HxncVJR
z$zD~s%|X2es+^n0`Uk1L`KyJ0DYuC8yOq8LfB&YPC<lzqF`Jizq<=aFOtdcd=%40>
zM;hmeXdL{|@%;Td;{WSXwV?5*BM$#W^N=?!!)x|WB2Rix`7&KMjmx?I_D_4hbB@1a
z9g<2~5&F)5J-;Bbu}vx0#5U*3B-TGjpZBN!J^H5(;@XplmaB5GzQ8X3k>jsPZ4dqD
z_2W;~6#RaL>hw=<IDTBbCjW09{G{YO);FlXesN-D4)#wV)z>I!iP^GM+><FL_$CnL
zfU#9h%I(Ka_^03hNM>kTJagpdt=wO~JAA5?@n;bo7KeC!{GdFk4MED;-K1}8U-+kN
zlTWA=8``U!7kGZe3e!TvdY(slz&C;3`X`G?T)QhEuHlU;Xj8HlvL!5%=ieZ;g+I3+
zkNzoUnn@8cdA*6ZAFy-Ij~vGjt$#{51^<*d{r6h5jrXIy?Y!P{2)8+?*MHILH+X*x
zQhlMn3jg#{+@~d`NQ=BaUD-~Q0|t-W$mN3=e@ZwIV%Yj!SY(cU?#G|b9IRtJEu!_>
zw-|pCd6J$eUnV8(X43257yc>T+*T?@hUW4<0&u|jA55ihbkgYm?Z%&Q|E#5(7<($1
zTD9zsuqnACZPD$|^6>+trtqi!J^H7=5114Yt!I^DeSx!cI<H@A{nLZ(@K0L(yY67>
z-(DZiVjX~E7uMr82lX2GuJl^gKS=dit-`;QSj+jn8Y%A&2T=|f`^`cwAH?~?gR1L2
z`lqWIDjF%uX#CR|aeq_wwxa&#mmU6z<{@udhS%($M4t4X@@2Yi8kckZ?Vq~$%<9lT
z)*-2+6_M+y8-Lnf&!#N;z?QIO2J0WB&-+vV9{tln@vK4-1+(X6eSsNYRq@IAQ_W!b
zrv{1gPgVYwIs&&Xlw%&C{`k@3%=_%0K&r23O5vZji~W+A;F~~{1I8Lo%k9Tb+J5L5
zQvA;IsL?TLB1f)vfB(nu%0-P7HNQ;ey?+vUlAb7EsVmCb^`zITFZ@$*`{OFbuiwe*
zMqu+s^Gx$5Y~vg$5BMg~TmPgiO`|HGix`>DrWDI>yS+J{w;zyN!k^oZNB=Z(f=Ll!
zE>M-XA26s$W0(Hv*)8~|#OXg**6q9>1+SJH$88Sk_5V$Gh4l|oebw#@|5WNe=Xbck
ze*Qj)a=_SZHeL?m`0;(;P(#XTp^^Q!x&QyWGFPe@DR%YC8R_ls-@Pt*pVt?3t$aCG
zuYX_ory^~esT7v0a$F3ov;R9&{w8BJ`hPqB<aqvBusF|KETUK`o8^mAwj&|(|0h6y
z>))e)+P_geFMXq_aZCl)7dUK6U5Ea){^|B<_$RIYUH3Be@7~E`Kciv!!QHscLA?gD
zcK(I^2uSrkJ16{0_+id(X~cB?K8SL_;IDq-<skIGp=p9g|5P-686(A_=Fa<{3fGA<
z|J+s7KTF<UOy$u$<W0-)n*Ec=lipLlOxI20a<0Gq(=WwpI`ofqNGfSX<a++wKUv~U
zHp^Jm_Tlx}y#EL3^Zwlbd-P97&zKYu-#n22KLi$<F8_ZhsqLZvyng)YVgdN4c8T&&
zdk)EGG=e{sTgQC{>aSlcDq5b8A0X9tw8#>1|KNKnwS7dj)cl)=Aj$!Q$Nw(3A3I6!
zGzQhN!uy5|9kWIboB40gO=XHnr3jC%Xr$QKCYRU856YAE1XAg4CVgA`!apr;cvxK`
zqVcb7IWI8&=2BDkI=6Tp<pJLWdhMT-Y^u^Nn`$YS(Pn9$(ROx?{QY2%n!=ykk4OJ>
zteHs>k^Evb@1MaxQnzp%KeXdd7oWmEB~Jgnif!ioD7YY0-oFIu{nO@gA*_Fp>ihe-
z@K0G@aDHu%{LFm@q8u<dY%ebdar_9`7ijomOi*N#pMo5H&N`LaR0Y&)<tiH~)^|(q
z_4xzk$>oBwe3yUq`uBx@imcE~rT9|$nezg>kDhKi)J|RtmHK~2{%N-O-@CNp`A?OK
z*p$UZY(;L!=f{H75dPG^NB?wXxk(YR_j&~D3yjTJ-=Tl4e_DJO{z<EUm))ySy9Vr#
z&xio)7L@-V2kJFYv+N`GBOujx@qzF!zhCD3Zj^~*{emb5jQwK^F9)IjbO(O+=${6M
zmoQQ+RGs%fRTuX+-4W05RD$L69jH8-hrDSSUXy=%ef=`)40PQxuIKvOKefEt>tFi<
ztVdEvYeJvL`2)VIw5woKGF7yV%(9UE6G)%;r~W<qrwj=uMMT`8GORB!c6Tk-Ki0=v
z>iyHG3h+<86Xl<V&$P0hz<+jb=RO1V$B(wZn)vtuQhm=Ng@0;UK&7^aZvs&c7<~Rd
zmk;9lMYmaL4CN|hj9m6f#(!ys$`q4Iabr%nk)p)@l-~O%ktgd3q|)6?`abc6e_H)?
zpGuLnZC}m{%>2hZ)9z8P9c=;M1bXYAEN1cBs3pZS$giZdDK%2rHeWo=+Yd-h;m_^I
zqkkG#QT*OUMN@cqUEY4cEj?Q~jvre8^j8|(|Cc!Z_sgHa`tNJ!un>9u8r18*=tz0}
z8l?KZ%P8*u`&M4RUUTme_t|PYQ4ScJ!+!nRPUt_&<BWzX^Ft$-A9O$dba!nPBSqvw
z@5i4gPtrB$M*2KkuYX_or?uzntLsHnn{<i$0qox6Yg5_}HfZ$!cK!+Xe<-y?KiwBm
z<UO0E>3g;#_2m73puhF+(Le1L*RMrPiIdl_!KG=P*RQqysoP8VC$0Wn_cHbG>OJy#
zc;H`qCUBdBdJWVc7|8p7km|F&7XD?KxXvP`aa-j1H;8h;*e1KUd=UO={@7C<{ZqT}
zqDG3r5zg_a86U-&8x9ini)T&BwX~RM9`dGTcun>xnaGpggRWb~^<01Zr({vGFOa`C
zq&1=M{g;1wRorG-Si*LC;bPwZgY<cS?*Bddr~2Z$u!z)0#c@DPVA<GuKJiaCtH3{5
z66K#l?#cT<z&SnT^#xEr{?w{<b>4nJs;`VH{L|#ZDy<)U6Nqxa;53hU`vI~2tSJ|2
zP#=dyZp)RLmqRO5rkGTUaYynSDb@}R^4>p*JXud5mF{Lj4xlgm)0}$ZdXI>J)fUbR
zoTPkhs?jls$MUFt_$JU>|D>c5_kP?K|AVwDh0Rhp#CD_c5#D}4Y6^dDKOX(l_97-l
z#QE0p_aVST^;*01PlxitKP688_cF`>p8yx1UdsId>itvdsfAhpAl28Vkof=80O3o;
zlslQieFmZ&FgWG{mk&b!qg!M!yc`f5+2ecn_m5|vTi!@<q;qEP$Dc%=tbdS_b~8cu
zpfCJW)}kM%6voB!S^Hqh?9)uYypUsgQvYw~pK$z8g2esflSSAv*ep*o*iII^#QF!R
zDg3E_kN)Y#P?I8JV?cF2et;9IHg)J<>z@)bWBgUCf7cyM?fUBHW$Y)w+Ks<ueSqkD
zFwL1vtbdT|GiMj$uj0AxR7=V(hxq#-$^nA|j!OO83H`TCb=jkTQjZrjQhb!gdH?t+
zaesLHDB+*N-*@;YnumO88D5irqCDxngRYy#<y?RJr~DtveG&5ahO{EQzWV29Hq2vF
zuH>;5-?EbR57OuTseh0D>CagvMMUU41NSc&J)@yd{L^<W;Gf1N%0F2P9_8%^TsZ7F
z>kHKTrzY)M@b&{zeaG5}`=2^jRH^Nke^G>wA0WyBV{gha6%gBxvayii{?km65A(af
ze>_Lp5=M&CD{^{${GdEZPax&&Zqn=37yhYJ>)mQ+5m`2k<GjF1i|3ju9mw_W{nIFM
z@A!2Q%O6{n)sL-@=04}`2c)*}=l0{#KdltM`z2z<w1&L>fY+0^a~wak<4?0n!apTW
z|Fa6q@mFwQ>DAm1px!?XA5oh14^n+0<;3_?m+UIFUDv6B+-D%l0b_4p<?=!3f5fxY
zhN0I2A`gbSe}3lfd?k$(LB=#*pFdEZtbaQxXLplc|Gw}~J!*ZRQgkh?a9&`EkrPb~
z+Fjy#l*c>!|GOsvs-;z+s<aHVS>}h?$_|$IKY`R1{?xxm|5UGoNfFU;Z%x)e7+Sr#
zL;qU;v_2gENvnU?JxuL7DRw3A|0mmdqP)ER2I@7i<w;)FKS=d8EdGPp@<QBGDW<PJ
zy2yR@wVfyjj2&{8mxH8#8iOrg>!wHlH0E$VBgOUf&he-2ZQ{%e#|i(`xUj=N(LCf$
z%kY}~6Xi+oLDwzgdal3yQ@z!4ECcy_Ls}F19{zs<Whm#e*p!x8ZI`aE=KViNpZBN!
zJ^H7hSd${6MyYDtzhK*Y^8Qz>kGD)F*0)S)G3CjVhsqe)4gP6bqWsg8zxMF<1DZ>p
zXMKVC<43KIop}2JslKYc#Q4)Wqe^WL-vpu@FtCIiQvq@Om>r$Xu%>eQ$gy40bNy%!
zDpO1<#qhOxjTB7|rt<#z%OX!IoAPB+>24<E0Q$l|t#7?krTFf$yzdfRTJ{^$j>*N|
zy?<&heh;Fqh&`9Bis_0qH1Ad3en4spe{Me>{ZqDYjf#jb%#C^b0ZTk??>K&F{nOEC
z_@~6_ze|e!tbb5l5zo2+_4;pDwi@dnr21CW6XQ=og;Z+0`hREQJ_At>7(C`7mk-kK
z7tuCQvR_U^%ls)Klhv2cFNEf(OfjhxnTnP&W)zWnMHa996XnUe2dQ*76LJ83;h)A8
zj8-Yib&=N<LDQirrV&>IH2Qx><4@<rvkQ8pP?h1Yt;(F&*2b@Hv;IM93V-U~qksBM
z{NJ63od@LgYcRz%=k;r?f67%E{z<EU*Bwm#I_&%^)<0Oa{3_N5h`t98XDrG32dTc3
z1~LA$DyvGh#J`aDXMiXN3@&v=>fcW6|A&2f-=lvzR3?v+qFyEE_|vcsapp@?gnt?!
z|38t+qj|`emf<z|C(4uFJLtM;T+a2kf66mndQIf-4QWMqef8r{1=84*Z`0Vajgik!
z2I=$u)W1jnRI#f`5n)Ir&mX`F+nf1h{HaSH_@`Nk@=uNW%j*~5d*Sk&57a+D@WY1P
zc>4jVzSsT5_|pf~RBC(pCJ^O-=9|fRp9tdl1><gKFdXcWD)R6w_rHHv@6%ky4@AVi
zNbddklgN|wMEOcxQP!>}y<UCcpEftzrEV0_&LGFl!RhhSOn<j4qd9(D<o(>+Uca+^
zC7wq%Ld1o0R%O($)^>-_@$mzsmhk8H<Iz9e8e&vLjBeP3{S!EUbqAOJ$<Px1DRKJ0
zUu!S7D>zj>z`6kS`cG5wL)Je?^#!&S{;5hSmD<jHC8yN4ohSzk-u|4+2jQQp+OipX
zRSt?Q-qHR2;}Zjl7$=BGb2**Y`lmcu_aG(hX43257yjwW<eKUw5w{l0-(3br?Vez|
zP%XVi|L@2@-4tU_ZRsBJ`&Om;ee2VouCx9@Y6^eq-=lvD5Wm|ZVsPFMS^wb8T5TNq
z*ZQYkjo_cO`gh&I)W7vN%jd^}<BQ4rUqQVF{>m%we+8+&8cl_NI+I_eT4sDNJuirI
zz~JWg`(N$E{y%^BKRx=VX-nTTQhZ;;>7Pn<5zin0M);=-mAQS$KhZqoP0R3_{gcR(
z-c!Cz*G=PcuD|`${=6?aN96AfX+`9E>i+-k?_@TmU4ZS*pPO0#AbsAS`uFIcW{Cfr
z5E1aK4)-rOr;a>-@TN_)-$^FcS3CZ+c?$f~f<*bJ1y4`#@dK>&k32sH_2=KcqDS)a
z1El(L&lLXY&ju>BeYS)eyw3ws4rs0-|343;v0I8Se=lwbv1N#C@j&iJv5r)xm{f{K
zOA8n&(k;sF_4zmDNo9jnxVs5CfWGig@vq}mimhekb0fg_PkwExnY_N{`0=j%lel;M
ziMUs1(srxTe!I2y@>jh5fYcWL+<rXzCp9KY5z%W@3*LUf=|6OG96z+<Pm@1|e@dMG
zQy6!%{=wP5A7g!h`s>$=erV462dTcwJ%oR{Rzan<>yj@I_Zf(Cz~GMZ`Zb92?>+M}
z8@8`b7P<UfvVZL}sZ24c6oDlR7%7rnOy#xyDNoX~gH*bk3AzV;;h#QPQd8|H;&=;r
zT@f@@7-veJ`aO;Q-;saXDt-?oXMn0$FIkn;m#vdZ%ln@|Y6^eq-=lxpEuL#6qI4&D
z{TjS^qpd^#TK|;2Bm9$A|E@cj`t|mVb*z7|ZUg!Mp&<Gm9QsXN);~z~1$GhsX=QPh
zYWX8)D(*87<$%E@p0WNw=s#iFUmpF_^U^tt6c0n3*Y8S;-!5)DSNNyj<n<jYkLDp?
zT87u`pG2PYp7Le7ZW@<!{q3KEevxg7{JkNqh+NNq`zPgtCsrlk4{P(&+j##E(&zoD
ze~<pjnAxO=_@Huq-v5Ig7k$k7_ohv>-_iT0OY`BMmOA}YGWyhiPgKs>Me=ua!Q-c2
zu&zM8e;RaX3~xUm)ptHlT)!LNLZuqun?RHU29A;ElpwaBF5_|=GKk+r{a{#Ht{>}Y
z&zj0se-FxOr1<RQTO2<`o>VsF%d}VE3djNUg@0;rWxGmIs{V4$2Rv7MhUr?0Hk#wd
zyYWxTCGq<$=fv-~bXs9mepq4MT>K7iKOnV(Ker!`{%OJE9g2wAyIS$~1LmpnspI&e
z^-p;%@J|~3zv20@PsbeM;|F*kK#sqHdi_7iC&ynwsxN$u@J}VGsnm8i>dG-g5aob@
zXXN-Ri1Y7__wyKPl};Ynu%*1e6`G?m#iUZi94cTOEn?%r4BlVA7J0JnK`PzNgd9L$
z_@`f<R8=VkO~}W2fqSM+FnxSSJO27^{F5b(cy_@Iaj$c+eO4v+KI`~z9<csFY6^eq
z-=lxJHB5}Z4l{0!mgBGBs%6gcSFL{v8UX*K)xYZwrhd)Tbpz`kZ2z4+e*n?<;F4PM
z`~jr;0*8qEpT3vp4|`8!<b4*1a=_Sp^85kB{(thO*B<@T-pg5y6zhsP{nLovaps<j
zgnt?$uWwR$G!OaGGQ1}LM0wJC&~?kWp6hS_v@IrwWB-qJNGfSf=sWoT34CAaAnxA?
zxMDqTlh6MH>GS^7zeoRc?5a@_G2laa{s4A8BhMeOKHgIApFUdx|Fk+${wa6KeZ2jE
z-AcS-eS!Mx7hAp<$NmYV`iv`ue`@ftN^K9{1fm=;ri<LZKx{vy^5rnxz7QJuSx8E*
zAMHV9ib<u2N}tt8(Xe5#_vhatPb!=8Wm4&GCgcG6!aqGI6t7ae{Avy71J>#`*;MI+
zPLAyd*X=-W|NqW1HKl49l~PsCEV3%q;;g;zUE$*gNKN6-?Z=~kQY*wOB8qNo&Hf4e
z^>^3)ss0T3CyoB!;Gc$fk<UK^_w>EZ{Q&CyQ})~gS^pr_SLGXV|G2rXN^RF^c_r>M
z5aod84k>v#i1F8p-{vxu9~ltYacKb856w}TVp1t`b;@mgPsFG$slC=e<w<3ORJgkd
zIe@<KPt6`yRVlt1UySnt2OSt|O4Y2IM*r`~KlKa{=MMp@@@l<R3EN;jxb_z7AEdVM
zr~W<qC*_Pm5z*m+cn+GFz}WE}9p?{P|I}wP{F7Gy^v(aCs9y(6-o*QVFg(p~+z%l7
z9xV7r7uG*W^^Kb@#-Ey3RjG!P6?1c+fhY%z=^@V_K%76c_&vaYI<!RAG;hh{Ova@m
zj%fVT`2KO`5-Ws%nkM}v9ZzT;%AjR<&EroZPkK-JGEqSy=x_hD@aK{a{bL=HN?I+s
zp1Sd;KlfXe;Rmek3hZM2gY<cS>ffV(dT)$T5fPn2_AeMTOrAd^wLSEo*ZZfIyWyWU
zC(1t^TycuGAMm%1DY(x-{qZC4;SAn>K&tQe1LFGK-tH>3{j|Ui{CyDRfC-DFrv~Al
zy0$B0*f&32WRIWIv97V6RHm3z3S&SnBgN*=vU-2~5P4GBlrNDAcQ+vi&=>w`W!Y^i
z#gegGI3I9R-5I8-Q@?O*Kk!YUxBf{9%b+S9Mcj$CDzjs)qZ=pV^FEN;!k^oZNB`9L
zNW3CqbN+UG`~d%~)6H@G(2hS<TLAx*IQ=&cl=qK=ulhgcegO6QzdXgl`Uk1LTt5i^
zWN4&P+cjDe#eD{%9MF8pe*M}`=>J@goCebdCGxk6^8e7FIVw|3Dn;+OoJNY%$3wlo
z|B3RXvOy}`-Gm%KU-+kD_p7QDSqqotyuemHVohxZe5ld?yYWv-R`ENXeMF>OVpWPR
zvDP>$?|%ZRE&Qo}&;DujHboh|?aDcM{Te)S&3XM=>z^{sgMZTK-%STozdn2>pC1ce
zn|+h}0Yu+}<9_*^^$${gRThfzr)9NOs-|DF!rW&d$^p$^h4ONc^iLk@%AFvO{;Alr
z3`UBEWt{gvT@=rEnnl0A7a`BDs63j7d}$e8^Z1j<lipLlL^n<2a<;$y)8S_ZhyJk+
zNhPg_Tu+^UYP8v^9NcWp(s4KYCy+kxPyKuJPkE9X6%nCB<oN^Gxsp78NNRiNKd<*s
z3s1p6*%IZSLf=2a{wbxM@3ji!J_Gf~k3l8A<?RQg`VRgo{8P8jRcd?qrs;Mcg>t}z
zKi}u_K^#A3r7390HzsxD;Wh4`|FnB&CL_h>CaJtXeuzA&4Jlu#E6UpSq;G3q_@}0e
zwx|@RXYS&Bz)DZ2m<lbM=-7VXo4};{C;b1aWwZD{V~XnCtxAvX)*C^Oc>4jVCH%Sl
zc=S(OL#>L4o1x<WxWxq4p4;7}e=4&X{wZ<#uTn(nAM8<HUS9z9`X5|)JnJ8%`daP~
z*Y7H{Q7OOLV?N+M15pkbcwUabg3$liJOvHq=LJT_?{okBf`G91j1-gCr}h5&oye1Q
z4^q-@CcXZB;h$cVHmVdmn#td-1^Wk&GrfQ0Q;q)LjeoN24OA7AxPLt7RI74-iuLl-
z$E<&ln!=y@_voKynd21^4<AT>0M1F>#i4(#e~McT|D@6X8~S%_yRE$c2e(vz!ukO9
z8u(AzQLKNE>btOB_@~G6{GnF+(%fet$^p%hX?Qt^|DTxjG}xnm%6TxIF^7naX`R>a
z9uA8$$7~e-sdY!*KhX9>^N=?!!)x|WB2Rix`4ZhUjmz2o_D>z=IL{xj4oM}gh+I#d
zf7<nfRVlLAnseS>);~y}_ox0n`X^<;c11*{lr6b`!41hfv;LFX9{SJg{nOfu@K5^_
z<)41rBkz9#x37@;2KC2}sBCk1`vIxG)mMdo>N`lKwugTLQ4W~!Lf&5s;`lKlKDQyF
zXGmo9w;`-+tS6NzCY9pHLg|eZ0VRSXBRl8$uj}RXL7MPgJ!u)`N%KLP=Wfz}-xvOA
zRHkhzMV(Xf|GvQWnJ1cN2T#)+KQ8iq&RhS4>)-Ud$(D8E`O5`bS(OE?tcw(R{Q{)6
z@aOj9(Leo~-KvN<d`<c%a8CIij^l@R{K;?-{wZ<#uY6A4{{(K`FQ2ag>h(Wt$yC-q
zNcGh|O8<ZNsY-44)4-3o&p?y|2DZt@%RyYf7}Y1QVRUG+NMl*|_m7XQn$<|r>!*}n
zpFg~={3+`nq@3MNdj0#tKeeA?R4GcAtIm0WV;+n#WotG>qyKl~pOofe>}iXL_lH=O
zmxHZ~4&LSC2S{z<PyKuJPcN6nD<bY?Ys<$E@cOi_4*hHW)8u{dPa6HZ>0s*LT#w}Q
zlfkt;<oN@r*TA+q^85j$`pz5@*Y7&Z^M@BPRk+VUlmo{6VZVRFPVE1eMuvLyPnFB0
zF;bM?_aFkl|9Dh9A9MK*;h)~?>F`f94|&rvyyok7B2Rix`7+(KjjP%I_D}0R@9fY&
z)*-2+^^ohS^H1ldSe24ft#{KLVEu#id4KBPqkmdjGhPu9^0z#H05fHg=MPD35B=x$
z{;ADh@K47Q<)7BBJj2K3HFj3HnT7id)E_^V4O`5|50L5$QkI(4jxj2={VVeb{{BC9
zq8u=xKsYZ4vHd*XRNkO&NfTM`hWp<S-kB?lks?!cX0NZ`QJ&O>Am!|C(zmrQ{L`LJ
zn^lSmM~-t|;CBV4nxdzE@7R9eo4}-wKRJHC;#4}-Qdm6y>2O}F@;r~V>rVmfLqTc_
ze{Me>{ZrYGtcr+_ZJl`k2>w;7r{nmc^-t^1!apTW|0DmF=MUi1haueNpkDvyFU@5A
zgH+#!i{kp-fSxL~-L}Fl`1>Hr0Tcd~&o=<!pHgPbV<<4<b;Q0SuX%ff_NYuTsT7Al
z%w(kKUM$3G{f`oPQrRFC?ruU3pfCJWfk8%<;?}V`oEMn2=or(GTcb7le@Ff)Mo}$i
zMSGV1*s2ux*g7ymKK}`%w(zI^J^H7!*WwisCwIu}*Wd>mo!76m{%O@2_$Q72-E=VZ
z>o<SP-_HiGHIwHLAo?CWlwF=bfK*@51u_0KptDNVRP1EtJ_At>nDBR2UJlaze{>9J
zx-+Fm|1_w7m~o(pK0i49Q>`&^<{x$m|CFY`!#~kH<V(x&n#Z3+p7fsbCAw)Em$Uut
zpDvgNI`ofqNGfSX<a+A-Q}5y8{_zpkuQnWH{{+(K{i%PC{^{%@q5nnkneMjX{spi1
zmgf&iZ4dqD_5Nvbs->(KMLC-&{}gic81Jva!58KJ9n>E`h9s=y;|ECfJx(Y5)5ftX
zwLSdPYrB6!Ibgzo;&S`36aJ}Iry_=~$5KU3c$tcIjrF85#iUZSOqSM2VO!w+@840L
zR5nP3yPJ>$=nMZeuf`^oV#N7hIWKTq|4F9R>sC0nANVFPss0Jq@05k&_gfaHR+T}o
z;+3dZ@jvx=%G(b}ZQ;-D$D@DR)!(X!7~c9*-hRNL^?JGVPaPh?KP688@!6&R!BN}O
za+`yC{fGCS%lZeYzPLYyfBImEN^Mv9r>^{c5aod8n|XOT2>mZIg&SJD9}w9sI>4>|
z+jY%kq{yJ8_I~_T<Vkv_e2J8^y9v4nec_)546341oJiZ4^8r6<9cxP0XNE@q@5Vn_
zjs>U|Q=qE+Qo^d#EMcuxN$MY@w(zI^J^H6w;yg!0jhdgZ{=tWXoa3)r|FrWC{F6ri
zZaSFywQIh3-v5JlkIVa$K=eHr{_-oSe><tZf)B;`lhRwIY8G#<$9)E(95BWvpGg5i
z|6lhD^XQ*O4@qgHs5;o`pH7SCi}%|v{8Q0k+&)wu%|pJl46k|oN#sfIDPKu9jpJgr
zzx~tP2V)%i$2ugHv>I|fb^fVNGpk~2W-U2Z{(d${pZBN!J^H5tkKz>(dos1>{sm7w
zk>?LdZ4dqD_5P`4CithziSkbqW909iPqMT0$MXIpP=EZGasMaYen6^kXm;VBu8miz
z?e+c%<$wu`<o^_a*nVQO7BEcsD>$-1LHEyJuDLLkv4)7LKY9QBOv;nm5Tu;lP5QR>
zg?~zae6yNP#0UAWa$ew^kH(uqAFp<7Kk!YUxBkiUXNYQf8loyo&&Mm7F2s)=b&vfM
zNNwTI?Z=~k`YOh%h-g%x3vWMQ+0(B5Q?CGwza~!q1D8wvgCE|N&kqOn`ak*CBGx}h
z_032j{{M9OD3#i-baXH7GZ5u~G2IIBauE7o*Q9`9SH0H}P3F2EfBG?dIwQsC8s3jT
zQJ$o02PtVclV1P6@K4jzMXA$7)IHsr^8y=h8*Li&%N&jV-;sa%Qk;w36G8XYbqlp_
zy?LMY4^mV3Q~w_QQ->N>MZ{N`<@hUjb<1at^9QYes+A1q4;uZyp?_z8D1X0bj-7jI
zr{gvU^&0pn-#peoNcC+^PXB*8RHbT;EosKzKW-<=0nHuq@p2IQ|D#MAkN&Abi4bFX
z5ku2Fh`{|D<tE3O3mp~ysqYsK|3veUH!Z_!9)A*f(tFC6=%#60&i1!|TC>1;{(yBz
zDrrUNJ2-#F_m!xkR^{uW*27KZ@1KJ7d4KBPqkqa%(5i?yIY^#AfUjrE^9QVtx77Qm
zJ*DBFZY9b;-3&j+=O18jtlYnY`r}9cnp=7M0ja)`6_=WoSJPB#`-;^j^Y#Iv955!n
z0xt)#{WPgm$&lu1SmYS-`?lJ)pfbgzQv7~3t&w6wrHo!*zo0y+d<Us?H<LCGdhHAU
zw7c;}b&rUmMelH4V6`2SOqnz7=C-1`;hVsu`X|TzPpibUpZ*c?{G)g!q(OYknSp%$
z4y2~==l0{#KPd~Wiinu0-FW{9J{sA_as1F;zw447{wZ<#-(Nxcr+s!_sFa=C9MtPS
zMYm<Fe~{`MlVyon?J`ECwmY+^KY#zUohS!P2rtUZLFm8t?EHpj{r`#hbI(6+uiss?
zrZ)a2qVpv0pWi`wlAb`y+1;eqzc2h#ubWlW-XeY-^$F(%R&O}kH09_I8vVbWf5P=^
zOCE9ku8-KCOgkg=e<prfYkB?vQd{^_{~rBQ<4>%L2vbaF);~CFqx1T;);|?a5C5dm
zznc!G{w<Z$#(D!=pOxnipk4#luFCTVkm_5QS@@@K<@rOQj%~TmK$HUpwv@*g5c)6I
zKCMUplzCyWks|lW`w>;__rErt7H2+wQuwDY$8h^lc{C4s(=xnf|0MFH_mnTuP1CrX
z?Qj3o;m&M_{;>{8C9Q~DPu=*_h?G`kZ%XUbFOTy114y6ur~W<qr{Ahu6%hr~%JT=X
z=LUKHkkt0je_rpON>qb?dXy;tl<Jgx{y5lgOfl{=Q2+d=ar13_`~a!GFQbKjYW|f<
zZ4ciBq8u<LTV*aE#Qh(q))Y4!ESxg3^GEKV|742`HBu~C8S1@%5_z(oKuX%pq;G3q
z_@{cKHmDSP%l*N5fswN(n5MNn>eznZn?SGq)Alg&+jk;*Pv4;&o3i8YDgWW^2c)L(
z=l0{#KXqASRYY|EqdV^(!I%B|y7W)$!{MJ2r~k3jkMr>ZtZ_>|zXsI%r$SfPu>L`+
zFSMlaPgN$W)OKTU%4bf1C<jdVyA<~+i2FZ!d|%Wse2WtK{#EzSFDSh(wUOfK!ne47
zE%GE?Q@*?%P||KDz5adSpT_ryR4G>P>%sYeX~V~urhmI$qyM+_PdI;2UW(_Be-fZ7
zw$J00M}6XlCj80z2dOFiseh0D>Df4|BBJ_SIsOU`F4Ehff31JoUI6|{qyIPb@1?Xm
zS^wasf%5q>pk4#3UoB_-gH&I&B8$zo5wR*&v+VCK+-D%l0nH|Pd;#H~S|3g4(LXgk
z9%Q5lTX5fT|9GL9aprO7gn#NZ-r=8U9`dGTcuoF^@}&2mo2GF&+u#1F;qE04{bL=H
zN?H;64)l-jD@*srD`ETMyJkMl`UmOr{?xxm{}j^0s)!hKN1i``m;RCG4_F^>srOIS
z>%u=hPn3Vkyz(e-Kj1fc<@GgCfBd-hD1o;hkm|EESZcP-{YIs>hi?K=4rp#8pN|7#
z`x!N*upwr7^2l|+xPSign5n@=iu|d)zkWw~Qd@(Rv%5*(C%*7c%TsPrDW-h>7v}{Q
zN;b~4ul*^<_5<Gpdh4H*M&jCC6A|`l%hQLv{eU#vpWBZ||1@%|RS^-txCiea!95RL
z`=<q!;hz$x|GtH!{=x537vwev_4?n?Wi#s^r20;qgn!yNRi(B&Fh$<80HPc)VL*8<
zAB6t%ZYpG$cl~8Vuk!B4pDJGrHBwxQ4)*&0?<h~wHAp$ToAmnkg@1aGv$9HYs!xB;
z3oLgk#*{3?rqTa9@=w;+CQBJH{$xA2LrJ%9N1^Ye{y}OBf9l_(f4cgeRS_{RzZ`!B
z4_9!GziR!{mCEo>8vVQJVCrAXYw4fB&rZt!j|TM`C>yqp^$${g{Y>KjPeUfDRLyZ~
zKkhRS<$y8!<?{_doIk9ul)<BadVMIsNHH+dIsVjrR-F0QOTs@bpX~5YG!J>xGQ1}L
zM0wJC2i>%dtJ(hcPsxAU;LtzTA*rPG;Puu0ey|eWI$oL9I=<WJ6TJTi>GS^7zeoR6
zWRiH!!X#^l>+<{o?AlVEKP0t1^q<%Jr=O$XpOk9U7CgP-_gfAOlGncv+S%r>BHU-7
z{`fIwSv+q)Al0W<72{9JOqJ@=-~WViz!+Numk;9jQMy+e!?T``BZ_Q$%zh5*$@$x_
z-`&suw}Ikp+%?Df2R=u%f0p&4osZXY`AoU}h<vr*!FRR9_ds9xr=ve@SC5F;u=yX(
z2aL`+%CxlaLC5w3-vlPrKjHefGU`v0^5UsU>3wsDqCDNv>H~TIAV}-)&+W&fe+pSC
z&OcUK>yMS=PvFfWuKiQJX!xhZ>3{V&`Tuud=o<O|p`d>JwPcDNtbdT|i>@d9)0G)2
zwOvAg>7PK9115YgpHB`#|KV+N8+zt?7Llv_Gq?KxvT<@FMW)EtUhALoBt3(av%3kp
z2Yun6l3lN&zP?sP?fmgD&I>%9{0mcP{{0&Lza#&Y^@T|pAi_SKUN4`Y3DRtT>ffV(
znj)U_DdI&jseiE6UDy7pLVfrrjsCH+I#Rz*J}Q4deu|yB+sW%|Ao?C`o<-ij0aAU(
z8wvk(QQp5Xpwe*evw?P^9580C{r(L*q5qeCGJ5n++wvtdQtV6S^iSF5#F?A?F8ouo
z=??!y^N=qs!)x|WB2Rix`7(8F@}{@`_D|o|+U3wc)*-2+^`Y-z|Bvr0>0)+>UxeE6
z;^0a4Pau8XpZfRcpN7vD&q<$eT|Zi$KY*hLN&RDeyrteh1&Mo+s4PVZN|b-fu|}SM
zfZwN(#}82NpHi0I&c_ds>YGtnj6Z!Kk00<)Aj$#FY2@((#P+jbXL`fQB6lNFeSX*N
z@uTjT*9M9)D{gyz{GdFkeL&KSyGh?CzVJ_jc3RcJB907_{t28jWu$3X=w8S61K$KD
z)jwhUR>}Lwq+}4G6pdGUmx^ytS&rX=)E55SemwdolX%XXh$%1S_5<!Z=sbRC?|-^h
z1O6#-`Y-bzdHeu7)Ry`O^}ioHAx7#Sr1~s%#Qo!ArT%jkwQ!$-C<ly*mih;A{W@q>
zM#HKt_aZ(Cy6;y1-&qvnY!P{v-gDglq17mKtevNQ&C5leG>`IS;!7^5{Vu)sg?~EQ
z-J~8DQE$<3&Ii1<YNToKMy>wek$>tSwBKHYrTliq^2zou|09ndAT@(O_3zO?6<lmp
zM7&NT{S(;rj8p&G@uyKu;GZ=5chR>ri~96YSOV(}96U(sAJl80xmD^Pr22BV6#i+o
z)PJqkQvV>z0b_dG^=~Kk|Idzi_D}yArWh%r4mtH7BYq#a`Ay-UcFl13Cz^-6X&GL#
ze-e4pd&-yTrfpo!_P2lPRB)eT|BrP@D$&o_|Kt0L^1FDh{f%w6^8Ld838c^aQ~w_Q
z(*dD>5hdP}`Um@6_KknKSRVc<BvJn9K?ZsJaB!`B{{90y_5Nwt?rrR!K&r2Iq!@n+
za_yf`4j8k$B5MM~_M<e(VCYilZp8fF?)}s7{ECqxX44(7{S)QM+YRVyL$S|;)<9qQ
zr=>TnD#aIRq<;c~M~pP3ue-;w{lGVYUi&9S96SDgXi_4|#VeMG_~)7A_$}z~?Z=~k
z$`)r;MC`aO{S(+@tMmAw^-mY8!#^cX|CNSF{a3Uz{FT%{sMmi$0eSoYslNWTg@>vk
z^*`G%lKbpCJ5df87%Yz;Ag*8Bd6dCWr}Djsv!n01^-p)}C`O8UU)}Xu|CA@`8GM8M
z73d!Hg@4+))THhbQ7l^eC$NUl|AW_B{lA@m!u{h4>Hme$ziqbgPwTf2ejxP^`dj}V
z{Znpn{vhJU3#otb(SE1?wf^a1WB4bH{@rvk_3O>l(m#Rl`5^ip#CZcq^$lww{FD9s
zAv99@ClKX;IBx)P{?PN7Xa6)~s$!&wzU1^zwS`wIP5x<|(?8KX<V(x&n*9^b8$dU0
z<7&3Q{nNEg&hrPXLsCiWLErf=|758y^k04Zf5N4I0_pSrqx_SH^M|CihyL^W@uzd|
z!#{;3%0CUSzK-|T;F@;w`81&Z_)*I$uYZG7pDmy8PcicPH=a8Vq8u>BEPqoSB>zO)
zQ1*>4qSlT%8xeBwtlQ&9zJ`wt6t~(Qbo~FSwmqotY0}QqzUGA@Pnt*hGI^%!Kicoo
zYhU=Md53nZb44s^Ebo5;XHD*Js+?ityZ28a7fec@^Co5Gns`Oo6#rt=Iyru8C$)q>
zw;zxGDbp0IBI0nGu6%w8elyT{|E$(O9j^xelsNqtZz2ExsDz#CKb8Io)a(C6M|u7L
zQhgtaYj~Dj(^YD_lGBEApOvx`<$!@P^85kB`NN?dX$_h7-j2AC_KsWquZ(zQSRrEg
ziW}bhCy^&<net7l{(a$}Le{7%#jF(4KY=GgN0<(e(*FPH+xaJ4zfjWLH!1h;nUr>E
z#r5mlJ3>E^|Gy1VANo`O9{p2B@jKrlVvkDy1pc<dwSP)*j6Z4gPb=kOqW)i(P5LLW
z$3!{)1kz`;(e;cxe*mez4r2VtVw2|&1Nut;1fm=;aFqT0!A|(6!<Rk#r(wetBgKl#
z_Z<2kCcIK#@=x2G{)y%xXIh5W<ew-{dJnp27Pqtf?VqYO^5yu`A~F87XxsJ5(m#Q;
z^8VDn$ML6B;`+6S!FlEQ6PWqBZ^obQrH6k?mni?VbC~@7ZE)7|T)h7W^~aA^spRvY
zK&mewi||m<^7&8jO(4nv%^~vsbP(Imn4bd-3s;_rSpP^q4;`Afi&+&^OJ93oC?g_g
zr&EsY2cIL_KdWfxX<yTF%9G}S_>L=Tze}%u;h(yl-m6k9|Kv~33*1q+zv*t?Rqx(E
zg$n<4Q~0NLzsD=jZ^v)>YCHQUklMkY+mA>8RCttC5fOS{K0g!8wc7RbpRQGae@dMG
zM|>)O{|jumCO@}1sMr6ARU3Ky6{PxdihIbFu~SrPyPys|`THQs0b`=e@p2IQk9!qt
z_`2`4h_+j=x%E#!6?kD-Eh7Bsxwp7}H-&XZ`I4q7XLplc|Gw}~*G`K^$B78qA%9m1
z?5+$o^<TbCqyM+_PdNWpQr<Kvi*J~eTB+idcIo4L=a#=e4^mtBQ~w_QQ^Bvr^}DaF
z#&~)D09JhDJb%!RKb>>j|D@5sn+~S_&2~(Vzk(H~%KM){y#{hOlJ`G>RA2v(#Q0ON
zJbySnQr`arq8u=0ul@cfJ8}MSw6ACXbShmkBSp|-r++Fa?sXbT_dj)X-v31NkT)&E
zYaV|RdD45zm+7W$T+Q~ke|o<D-QE8L{i7|E1%1T%L*E^__RH(nAg#AQ_3zO?<rUAb
z5s_zxJbwVUjq;6uy6JfSc&0@8r}ksE@cz1ko%tWh=Z}N><44Z(^7-Q+)t6a3f84TH
zK7Sm(3BMnVa=^f`^7-Q+en0ZorsRgn2hT^`O?$!Z@ndD`SBB*x3Y_}Y>*ELINg4uO
zZ6}xqt%1JqPq~xtRo@r!viW1q3tU!kps9&vx#swBk=w=F>vxXxZ{@N$|Gs2WKL00P
zIjvahKeDlZ0{y-Hc=S)z2Urym9Xm+>1Ws<?+CSYa2LF^e{lCaBfB)+*JMn))pkDv@
zzax<93okAFll}jXGUe;eeU{lylmp`bjzC<$E1oXIQ2*BTh{>gYcdP#c&0iY!iFjtc
z;I;l8|96D{LxR{{5V{9_;h$QqH>(s&bIITH1_#a=YI<7B`Ts{1`@Wrja_GPBEt8T<
zM0hK4{?IOd>+cDyf6(9h_voKI{QnVMf6)4;{$^ai)9Bwt-_k7V*Go;Me*&M@mgf&3
z`X1a+OrAf0R9~uE!atRe=MT5;3}pR-C<lzWUzV4H@K0m6dH(;q=OF<`iY4jpM?~45
z{}l3FoVn&z;h&<X^7u5BNAr*`EyHW}Pa;oxPx&(4w2iCT{`OCgBAn+BScjw%{rq44
zX<XKL<yhAEIib=&f%N(RQT}PiOsgW|!F+lC0JcBxoBzM7^%%#GY>DzuOV=*v{WaLW
zu6%wPs6T!jD=nX&22y<|o-Q%l-j~l$%a%}sw+|5IfaXgDc{zyfr)`(3QD3h)6mj{n
z{5@Cb#I9piP<^@Xp@E{*U)#Jseo&rNHfS&3C6EK?3;%R_|3Q@^ZrxqZ3#_x`Gt;rv
z-*Q_~{qRko*Y`g)Jz`Q;{A^O5m$NFZD_J8RF5=?{NDbl7?Z=~k3a)BZL}a)me_tIe
zI@9_5W$pF5C;5`5{~U$o_!F4As(k)FsMr7f19JQor1}aM7WzLZ$6qfM>dbuxq8!jX
z(LVlaC-mR@`(VTVrq?6R&AaZ_Kb=YSkAdQ!F6X`1zsQsIZ>LM)+h;=epfCK>kXF@I
ziUp(P?`eRSuM9EWp8AtU|8M7?aQsk;iSef+V*IJgbaDUR%=q!C<@gimZ~c4pPvv8*
ziio(JUDzLh5yzb84_g1UuL}H=X8-S|lc`@bq?P^&9GF?&zX77}!CP(R{Tm?F*FqK7
z@2blCH!PJt=RO;0C&~c>1LXZ1AoO4IL(l$c`L+P#3K27_JN?sC@vMS8mxX^i;(UGq
z%|pJl46ph6oye2kQ@%tuP2+O5zx~slYR>yNuntKjtq6Sw_y6Jh%Jarz{IyAZ<puKo
zKaf7}&;7s0@u#$tt%?Z4bE$tYLl@upr{6E*`0-w%{L_Rwt9gG7UjI5R>mSq~Kenjy
z_rE}@Z^d<S{v9TN{|mkeL^)v0Ub%gOxPFmr_~WQ9`G1Zm+)+Lc+R@L{q4wt&ES>qc
zVY!GGy$^bQ{f_davK^G=yZnnBKwtQ$7LyLE6gLK6=e)q01$&x)8ahpL{CK<ZC&%$4
z=9o!oCL+GERaxH58dvit_D>)+gg>_*kN!!`V^u`#ijdFm2dDOO{{ENNKXpi#H2qJk
zyPowAF1(kG+Z@#E|8h$C{Be-#Yn(~=r$X}i<3XP`<L`qg2Q=T5&j$f<{0RH%Wz?;u
zzeSXM_?uh*^hv`P28y$%j(V+s%9HdAx)i>BCUg(_!ap6@8m&_NHNPw81zvbE&=hrO
zkw*XT$Uoh^Vp1B4px-Y#d?`L;$VS#b=x_ad^iQ?gi{HO%Z{6KZK0gp#^MmW>j}I&f
z|D@UfyXj==*9s%$|6hYos>%B|K=eJBW!x&hehpH6f#rmMx<5{(YASF0jQb2kIbh(b
z61*HF{nHri^a1HTKEL3?{Xiqde}+1rpBeadoVoD@;h(Babc{dIJmgEu@S6RT$dlev
zzC<@o<8rpY{nOH8KRWb}bx0~{MdW(wo<F{QzIgurg7_}G<o{oT^m%{o|2_Jr5hJaN
zh`op9^#}0kxAOcUsqLZvy#D_2erIv~$df4lw6~$We;mwHG&T1bs6T#GEBhU9KOoiD
z@`CVBC;O|^_V7(0$^iqH%jY|T@K5ibe-RZw>SV;o-6!21Kjx)MW}GkL#>5j|A3rEh
z))PocyP5QD?F;|Zpu{2dLlK##|HgTN$@BLyT{%C|vHf7&3G{mW>A-1|vRcH#PFAH}
z7wguqHpuH2c2ZOLbNlh=pIWCC<78>AaZNkO^KU!9JJH?o{AI0wTAnOv`rkTf1M3a6
zu9f4jp#J$!?bgZhSCHyko?Q5+L2~@nc&icj8HjQ~bELe#1cZM|l}0ff$#f;+*H%~D
z>c8i#R|bl&2ma!<{wYt=HRwkAJX^1SU-+kA21TnUMC>@$f%5{l9Uf#Foo2R1|L@2@
zJ-;TN|0JS%DyvdCwYC1ITUh^~zxD6YKb<vO6%j20I<fx2FIPIpU$x^;YjeRrY4-na
zI+^-+;THM-6N~I@*jJuEfO-v-=)IKp{~*;@KHp-qx_z`t)l3`LiTiB2ohS!P7$(mj
zK<Gbbeb3JyuRb8T(JUgxTBm>7Gb7GC?2PbFLE{|$iRK}1T87u;pD0gy54vd@m$Uut
zpOW`?o<Cq6l1f?;`VOvN<NM07tMN+pYw;gVKF0b7>GS^F|9kXLPd~OQB7UwW&mX{S
z6MXah@qleOeiTTQe=0s=5$~_T^c#a%|DfJKrJgpGw;zz|s~Ru<|0u_&Dz*LcFXZ+C
zq8u>c1G#;I*nT#yJsNfTazez?_jkKJejHl;#6a;yzqMXpzZfO*Bn^R-v%3je1AXD2
z6vHu<qR<y-I4>}0NoUi+rUNv`k9Rcw)NYUPPP<J?wP{wxG{ahP)i=ETfYcWL+<rXz
zr>9Hf6%nn|x8?mKICo-Km;PztpE!ObPXD`WNdJ^zXJ=!2ZgU62Ej6{<!2PE4S^pr_
zH~$5le-Bfs?K-ddfWP0#PDeTRa?O?G{UspuAKLhJ)P*TmBEn9)_fL6ei)TNHC{q8F
z*ZQYCNzWkV>~4bYL0|Z%&JUthic8Bs=DffWg9n*1rkJVG|J(T|T)$8@3hxvlqH%t!
z(x9NVRuSo+Kxzwr>ffV(+F#77h*);?6V^Xi_N;UKRqLPbIe!06qklIYO#M2nfb>t`
zy>ywm%|Y}%*sN$A>mQ{0KFuP2zvZAjf4Gz&fBz0dIiPu>{rtgB=s!y@&%b|{O8oW&
z#k8Z&=VuNPzjc@L7vZ0_jB)rUnumO88D5irqCDw6=%#60&i1!|8qwDI``K8Bq>@&I
zzJu!z_`dQq#HvJvS}%MrfBz1o&-+vV9{p37n&S7nYFb<7ljjfM=3Tz|{kv03;h(}2
z<)6BhlJ`G>1z)~meSz9z2fdC68qeDgNcFW?DaN0I+Njj_@J%4f0b_P$<n0s0{o^~r
zu0+ioyEnqHcduLjROpgoEGQ!Ac7oT(56YAE1X9v&CTI=xg@5Ys{t5LH5l6Bf<-EY}
zXMSqBk-wwn`0<YX)3g01Ww(f43&sDn#aXLek7NG?Qd9VI`|;?XEULIqMU6jpwKeY_
z!Q9Eaxb#n#F2O$~PXB{{UB!9>PrgdYZ4T<6pLu=2H>`h<>ig=NxPLaRuS#tfcgeut
z2T=|fvsYdp0df4;G3|a-`32`AVtzmGR{w+M{bQggQ0Rcy`hT6OFY64XoZU^(J?IPn
zl;L7sHKT}9gPU+(V5d8uo9gu&tI_}4`6nDdluW;wl;#&r%CGgUO2>xQhv!$a{y}OB
zf9l_(f2yWf#goLX#<A^L|6u=W&hb~Re>#-Rh5p@iF!k&CR`T~Jzz)6AahrqadvJHd
zd8~hs>N5lj{f`-{QZ?uA%j?%5$^ipo@^Sefu0Is1p2p+#yV3<hj1<*#JaCM^R-YVa
zZg5oir<gAs{)y%xUs{IO<ew-{dhei{wsAGv-~K7)-VBHSu?|Tktp~5K{`Xrd7O^VR
zidaj0CZFE{(&zoDe~<pDP$8=#qDrhhe*o+LAkQC?+8+AP>#yHcnGgR|JW>9s(UTu}
ze+@1g^n&#T>iyHCX=8Z%0ja*53x$8G)Iz1Uhi?K=4j9;4p5KEweoV}HH!8l<k%+5{
zkGMU4+$@^hNO7|05y$qUZ4auSCha`!YhEbwq<NGtlV`gAqx~+u_Jx1C)908<v8CdE
z&IhdAw!6u8s-<K5!F4;(>+5%P|5G;+p)0M*w?A43d?}9~Ahm=)w;zxGsh#+p84=5V
zY{mOWuvhU<UHYfZM{xW|oc>=|l=uIEX)^?Kn}d4&m#Q(H^$${g!%v9ur$Jp+YP()D
z<nI%KC<ja!mYvH7q5r|rkE0rm`z>P15%>2$4agl}q*%7Vd;O0Td6Jev%Guqd*S|0P
z)38-_Rf?jP4>&Jy{NMdezx5ub(f>R0PjTY^PXk4S_pvH7`&lQXUCsUpq_*&<{yqAq
zTifCl5#8p>@mH|%edqYA)<0!>@B{k=MbYTrO$Sr|=J+U{_qU*VuRMPM^&0r8lsta`
zslFjkelS~>^--ysj?L?HpMfaH!LQ``gV|2fKY6HW+rm8hr)~LD8Y%wj^}uod&~JR4
z`SSz9KXn}L@J}=kdDAkyCjUfv(tFTN)3}`NZ~s(ekMsNi>yT8^iqLm({($c*aSg0W
zmWI~-C*|*Vf%JKQ>ffV(>Mj0HT*R3^^85juQBIyeV12x$-ajc8_@~lN|D@2T{(GW2
zZ<U<G+Yk7~_?xURP=EZ0+wnOcKR~MQ*%#va-M6(>sv)A9ynhNrIiPuRC~sdN-8)Fz
z&y)!}qDp6ok0?=JZqH~Bd)8F8dLr_<;kby7)0R87AAF8z|19f8J0GuUIps<3L43y*
z@jcKN{^?TA(<;TJUN+7P%p2I&RAo&S&GF+MjX%wb7voPm#Qh(KtjdI+twAA^`1k=*
zJNR?^@#vqzgN=%af&H8D{t+x*zN1V3)MY39lScn<`2EKwane756HEcz=Ad5xO9xG2
z{ex6r**(HPiTih`?Y@qe&vyb*4ww+0h06yq{%Y*^Bq~#;%Mm}fyzKV;;rpgRMv9kT
z9`|1V_WO(|U(z+@>~4bYL0|Z%k8jphDfWFC&G~>W^9?WseIcKvMfJb!^9ykNP`X?(
zDW`>hx<1CLWFBkH+jtG@AEdVMr~W<qr=_v+iirQDZo~QqKRfLlf7SXY<ud$}M*nU)
znA&yB$Q`UVaNst1{s5xy!3;TOu>L`+ul04|pXPT{shW_1(X4L}<$&gNIe0mU^M|G}
zsXY3pK3}IYQWT%*9DhnNRy==vkMK{E266jPc{C6C(lWee|0MFH_mnTuP1CrX?Qj2-
zGlP5<Df0J*v?6jnb@z`S?qO9LeP(SKdx-T9(&zoDe~<nt&z^Wi#EHxD`~htIUN_$V
zd($S`@96#0${z4f<rC$f(uc+I_5<ebeSvia>aSlEecYM1ACT&M)JyoMhbEQU9=-`g
zIiPv7yuS*>_H!=h@u;wIJ0o)Mk^c{Zb)+)Iq*6@yF1eAS&=jlp#}APwl}-5)sc?4_
zasYkdpT_k&t4<Knro$%A2YeCK&eY~cQQp^3{TO!wy&ivhvdg6G5HagFF@Ag5+Ns2B
z-hM!83x94u9{p3tX+}jv?Qa|N{t--3vV%+iv~?N$lScn<@K0y5E@S<JFMfZ<{Q&Cq
zKkI1>>mQ{0%Ka$((~G7mwcXK7^8O|e<$z{`ygmX#{~L<^7B#H!xrm@1=iK_I2V(4r
z;_;{iug700Ptp@eIlG&nd(apDDd6V@YLJLe_8K`a(AGjcA1_5yjsD-!_>=8dlXCl<
zNtrQMJlB4{HAkd;eg{Zx;ZOa0^iQ_=I}{O@v&->UaKrA-4*hHW(_cs6pEUY+)4|lQ
zYx-|zy@AEgCgU~-(f8o%XA@cfAk|mrr0`Ggbx^6A>%~p{eGuh<2}k7pRUq{L>Sd@$
z|J15$Y9mF+&rbi;Hzv;f(klE@hd#W2pz>%Q@}*^XP5x=5$dlfKlyhPyfBUCO?>o;Q
zuntKjts8v@=MVV4(qpVu**4a?^2Pz)|AX{-f9l_(e+n5T{!egJ{MM@<bN_;6H_P(}
ztdF<U`={d_;GZHA<)2oyS<2fFSZCj9))%Nh|K5MEEpI;{)mN>vxPBK<MWwcfZvs&c
z7*kcA--FnGO4qy)b#>6ehy$Asx;=i>{y*)VcX$-l`o~8I0WpLs0i-GkQG$R7EV!8&
z4AOg%fLv;TNRg%>0=l%&t5gMPp(7<AgitbqG%3={l^zJ?0s#TxqTuhm@5y%=*IhR3
z&F&w+C-XdSKAYLybKW`UJ9EBMcIH3XRf_n;eIENK%9Hg3QqnFa$3F3fe@fnTLZ=9L
zc@5_UURV~Ttz99n6`(xen?R5K(};cI`7I*)UQ1Ne8;QBj$ngWDrtszZ<JLbN+Ndfb
zvgK^b>kpVKe|!7*VgCJHy&3RNY14lJRbKxGE^Bm?`vG*+|E0BGu>L`+@9;OmKW(qC
zQ`=n%k>@8slmqUV{|b*UAg=$ITH&JgMBX!&dM#bwKQ{Qf*mn?-;~mehf1*4|Pax&&
zYI4-SH~iDNM~!rfW#uc$c2A{cNFS|o&+6&#pQfDElvCm!{K}d{rQh1bIe8cJ_yJN|
z_)`CF{ZsLg;fjbH^CMaR;E1f9?D{wRr-V)LPiFl)?_uiSE`IX<v0#ru54j&eM-8lO
zGMx1fQhop3D*V%+7CO}uy#HP9GZ5u~JHC|r4<L@e*1D9{t$&J0%&Ah$eQ?|U{H~K<
z#zwT+B>YoYG`A0pCo~Uv(|dT$$Dc%=^grcGblx(~=la?|#f^-#>mSSTqNF8}%jt0Z
zY31xhC16hCvF~=X{z3Y@FZJ)%KNVlIRS|LgJ-Pn?jz1&!A6~RQ96#^qpKexzf3l{@
zKh;|OHTxBCWYP}S73esABz#+o*B_ATn<Ac}YMc0$PHjIf^CkX1h;qP~T=)5X5cgl6
zJ7Af0&a8OLg`@E<{nP7Z{|YZ5qWpjbp6`E)JgE&SU#Tm~+WF+z*52?>``ew>DQxGK
z$h=Z{yijv3a*{ljPI<sLfgby(cj7hWgN@?(cYcQQFpJSO`b%DaKxzqJu0L-5Q(O^E
z5s}otK5rkv%mw~sA3x0gDPc7HQ`+>OFlGho4U8Wl@52Q;>i@x?y;%Ps)mMK!9e=8!
zQ`?1>kk>bXC<lxP&&JzC5c?0mFTQLIKX=YDwd8r1`afLhWtHOPgoF0+!>m!NpC<D>
z^J{vK@}zkn&2u%Gze}&Z;h+4I8tD`%*UEBU;GSlEwJd+hXQffy>305Zu(<dBIdKj7
zl&y)%<86s2i!EdQgVYwj)W3WGR8Ccjms1ngeaQL;>#pc%*T306g)fJHGV9-Y4^z9A
zI4hq&0mjU@&HVs6YT&m~gIWI|)z@>?q6lSML!D}wQKby)8$>zau(<*JK1lkfF(9Ur
zzgz#b`K#P2Mej^0_U-@hfw2*vtrz|&MqVF7<<UIkP4D3~`6tSg{<qV4(>R^$Yyb4;
zC$+ujpWYPLzfND7*njU%);~xK?o0i<^-t|`hKpxahR21qWc`EJK9>6r=vz<e=%4bv
z4gaL4$v=I1P+tGkH<c~EjAwm;j^oGl`Bi!S0ja)R<%NG*SX`&Jhi@92>Z4E&7*q0w
zTt8EZ{qO04iPqthwpg<6m&cRQ9#p27bc(DqUs1D(=pFC*{l_U!DjTH2T}{XV^oD;r
zz2JgQvHkP!I4|&4@Q2!hl6QC>)eqkUzNmk)|9-pIR!ylYVrHPB#OE}c*Pg`d4@hm{
z%k{^tf9mjorif^~u{N(i;NhrN_VL5)pJIE#Kc!9oS=9yXSHMd}<ndR~QU4DL$>Xme
z)pw$=@K2vq)v4`%j?2p1JP_r8J08mOBOv@!*HQbe@wHA^T8=y6(m&nK?XObIh~Db)
z@mI=|^`A=0+0_KygWm8@KYq|cr#OBrg!2Lqj_<C;)sXkvmHJPo^LO=5YRX6A{%1>1
zBr3g6C9W<%ll2c$TliA{Zv9jA7F7}P;CvI-KRDxlJG=hP{wZ=6{F7P#&U={J^{0t)
ze-*rvB=;Xc^gURjPjBA-gH+$ZIpX+J-I_Yp(!x(ZUjjrqU_|HC{fAUy|9QuUes2BK
z;Gua{iqoOb{L}URu@Ql*g@0<)ira_QCz^+R={>wA|3rDx|Df}haX#1A{^|6zD&F%?
zfnxt*%+|!<ZSwg=AT7Bs_3zd{DWz3K#N>T){{al%BKIHAx1Q3`KMgDi|5QCq{^{!l
z^Lcv>M*k7V`T`xtk3X(d;PnTj`j&|2S12c6)2Z#@pForY`bS>j@<EIr6<*qB4H5S*
zIJndG{R<ig<xwe4XZs)SKQ8j5wx)cUl(dV<u}{3=pKLFm*D2Z^p3eDz+p@RT9_*IK
z@+c4ZCh$f56V87t^>%BDwp+7B<uz>G^BL6-%;NC_q^9uY`s3C=O%>-YL|oldledpx
zhrc52<A>QlmHij|Q`+=j;I8yf;MluAb3cHN_s=|6w=wG<r23-UiQjLpFQ-%6JuWT%
z5r}d?|B8>fd=UD-Q175MEbz2tbraXuKjmqVU8U%g<$t(;hscw44^q-DCP)2y!#_34
z8L2lBG5KH-&I>FtriWIzy!@@M)PFkpry}C|r#h#_Gw^OCD(C-`sMr67^$${0_)`CF
z{Zr8_nj)fOY(v&R7_+#IUH@kPlxG<HlUe`HJDA$_tyvp*`wxyNc#8W0bkx9!iS1ec
zAk|lNr0`FnR-J0;`G&kc97H+bj$`ur4G{k6$mo~c`ls>l<X6XuNY0;PfBxNuKCuzo
zmk9rKL$(jCPc#pC(|dT${z>FX|5Lt1=Pl!WuCM)*ZMpQK$lnvvlE~$BIDgmdXrglU
zXkxxO^7*GAecqS)ck7>Ku2K~dox98HH^3f|^7;)=+Qj@FNB=b1e*fiKY4T4;Mvdb2
z2Yl;>JPran`lq0Yukrc=Qhoa~3;)z6yH0JteCRUPC5UoB|MN%reGu!<_opXWo8*qO
zjHn&wa{v3{@0rvKBCJnlc)b5jd9t2BO4`L_ZfAP!4gXZ8@l`!cM2Ao0^DMz*4{B(q
zx~%0~sc!ft&}08pbFHRSUZdI0mNb-BAx2nq8y-JEY6@SjKW_b#b)u$-uw~YH`~V}H
zH?@x+X8-hlBlxGZ=|6hlBGwz&YJ@z04LbU#lv48iHAwYM6VIQwh0F8TU3UG+eFmZ&
zFlO65ejkMXyYD$>J-qC!Wlzdkm-<%=<y0xU1n;+>zc6bQGB(dMzoz#oPnrkfJI-kS
zF1_}Ke=63ig<eF&!45&37x?9|p4!5K@>m|#oo?sv?w{3^dLptvOjP0?B}Q+Z%lZeY
z9ek;OxBlr-QSq$GqFTXL^87Uzo9Ws4YqNi9&<Fm>tbb>{E63G}f%5*b;K|PqazB8M
z8d$ctIdA_#s;_oG;h%O@(5aRy{(1PA35asQn3_+d{!@wb4|6v@wK~>C|08pH-K%v0
zmEyg(Q|#xj*Y%8zD8E4Xr_1vAH2Ei*hqCBByk`F-@}&PMUn0s+3w`aMg1QEI@Ay-J
z%ZbXC%ZUZw*~a<@sU3W&f4BZ=>0MP3@$H&My!{6Yb#BYsfAp=Vbo5VUZ(;nXmnQ$z
zx~;ta32a*RYt|L$=%2JvIe7g6slFpAV*k6mqEp+$H-RVz^pD%i<%8J&j@rJ|I%~-W
zi*`}&51~D%Ofl&ch0f+tDb{_v(c|%h^5pdfq|#kX$N}_*e_9!OQ>UnUR6bV#%rv~F
zHfh)_&XwwiZvs8`PxZvLPkA<Kw(MmMrA0Yo%a)<M{(#gJzFdFY`lsm&HAO_wxvISW
zfX&A=bn2gyD!!Qhi;bDZeg&M-Zaud-=&1iQvnsOwL8{NN2>k~Z(W&hUw2}MoAj$##
zCnih%rxN<#S7xL2TGSCs!zD*t`X`$;yGrrZx*t5(zsQsI4^q-DCg>jYhJQL;shv*o
zdd)!23#|BcC#`lzd8}IMKb?+0H9M*)wT@`E_1O&Dj+c$^mXBfmgVYqh)W2K*v_b55
zi^x=~7V97E@KH;<{>}brVh8vq^Y-6)2UENH^_0)=0<(XzlluWg--G@`>ahMns_*m8
z;`*nnrFE)hVtaZ2C=lg<{?QMl{!@wT$LEDTcI%&-buFYe712l>e|oQTasK?tZm|((
zW()rm_CB`{txq%$`O<rMP5z1Ur2p-7-ZW0<`r1E*d?VWu`FlcI5MEx#`)8iKm#B=t
zpSXD5X4XGQpZBHy-TJ2{1vEv(v3qj=0Zi&8_a8iI6Z3Z*{nI0HFJ#$Xjnd?wlF!cM
z?KQX}WjyN(bo~8xNR_O-{(w~9!DKOhlzzzig>M2;4j7YPuAd;rkL_RoU@dv)M@wWG
z`8;qeBlV}4bc)wXy{1xRE$R91k0?)WACO9SF(C)g8~&+I@(sPNh-^O(;C2U}-fE!z
z+H4}vqx#{SK#%>?BysP8u_6{%FqG5p8lm;a^ZEl)Q}}ZIaqFKBtke_{r&?QBU*LdM
z_3h(_`S??Gi5Js<N(bqm!2NTUa+`yW{;6P{QmlWF>We5Tjz1mBqf^`64V35qK$HW<
zG?w=V0ipj74{fkU-alrUQ2Dq^|J3eyph}@{N$}V|QJ$nHkaBi4LHD3H{L?R4I_MOu
zPxx_O;H&<fHR~;TPg$w|bn;Jr;@YP?$2H}*Jcg1fpD`wSEbAYnw(zC?-TJ4MgT!w=
z25D<<MzH?D!R0@+>)-63qUypwnYaJWdzjia?54c`8Te*#dHpMhz6U$LEw6tCslM_J
z#qp=c#dWIX-d9h#A3>A@#vHlM?}Ir0^qu9NTmO`>w1`U4E9}|zPm4OoM%<Vx{L`Mw
zcK<~4kT1Q5*L?g*<VpWizC`CO<9x2K{ZrJqyPPBP_k^@0aycE&-wnxPC^xbgZ^Un8
z{e$#*U+Ukje_C2YT&q|^yE|PTUj+Nqm)E~~(kABbIQpl2+c17Kd*+|~=u`iksGPV>
zy?A@QE|p2GdU2nDj^{5PRQZ+l2vU6~5`}-Nd6@M(A#(@*{=`(G95AM&yuJ#=_|fQ%
z_SSX3FSTR~llSAnGNxv&3+mZ+_^DY%3=9}$-~Yhph^e1ty_o0YHNP+N<j;cmk`v;4
zpf~)}o%ep%Z;QCLC7Rm}Y?Y^+b|t7T&!hU`o4^<KPk4T$l544^>|HFbAFp93&1)Gy
z2Ug(q2c%~3<@)2+Kdn8YDI&gH7smPmGu^0eA3x0g$xl3si~CnG>Hj(Rk6o1eJJthO
zJMRK+bI{R0wQ5_8{S!#_<tQlpQ_&ncwOvSv9P>ex1IEmi*QbLRKbi(_x3-HpV|l#K
z_5BM5yq;hELd1VA?6qJ20d2}<rVQlv(mWrp={?Gm{s(EEs|nu&z2Tq2o43;`)+YVQ
z{Qw44>89D*B$)J{PX6hDxOYJb5wQgfWllk(z=o-;e~{Y3m-=_>pAtrEiioC7s<HmT
zZFQR2^>6l1m8-x%nf33yhpAuNC&=d)fo0Zw&utE(@4+H{%dq}Is_&*%9DjN*NT*sl
z6}ZLU2T=~_zvTkI57PFZ)`3Y?Zn^bOwHp;zDUOwX=AW8(h>aLKLHMW8vfMsY9?e6(
z^d4UG@h6cd{ZIKaoi~lsxxV&KK_8st9Fe~#qy>@7`FH<hn-OT(0&*Iw8m?#kgY<b{
z>ffz@%G6C$L=^wG_#Kg$z)>?>u>L)16Z3Z*{ZnQ8{R1P@<ez?CGlI8UU}97x_ZjFo
zel(k!$a(~+zK$z|f9kr0mk<64L^+`U2KhUE5dO*k;uve2i>oY?3asXQu#D7ZV$vy=
zef*kA5g6k6^Mff*))PpjyO@vz=nel=aNiTXkceJc<@3M57R}0P=Vr;@BvJkFP2h|A
zC;Ro|gI8-x#nqb4zp-JP(8RcCX~*jiNKN6(^~bG$ns8N9MC>dT%=!X1zpmNG53_$t
z_%Fr}lm4IMpE?CkU_F47k4<L%gO2+5JNpWcA0XBD_Mc+>xc7wf>-O7x{yvCuz?d(j
zzXEaoqMtIyTJ_@tmYmBExYU2a=7B23_p?`ceEf;>Wc`CKv`@34d(a#H>Cmn2`VkR1
zHs9d9?Cjf0`$Ct$sgU|lC;wFOpr&L!Aod|b#P|_vG#S&E^$*f=`%?dI{ga>A*Aek;
zWqJM@d>Z)d{I%IXjVSF*|Fl&9oTyzJJXp!?UO$z;9$Cct1=085k5}Jd{ex6rsj@=<
z9dhYZLy6qd9~Dm}$^re8PILJnw*RAgUvul9_C&v~a#Vcgp90&)MywRiYf-)l<@Jxs
zqj|`e-otD5Pa;qHpYmn?vsqlu@wI=d^x03GBl7ozv@rBN{Qeqc*m}KcC@HTRe@v72
z-v{aQzSO^4|5Ra^rikc$OrD<w13ESLihmk55BuM(pZTZfj34S-<9Pi6FL!FdeFi#?
z9|Ov*XFY;cU-AOspEj&>>Yq>!=-+xFmk*NO=^EOHOJ-W*ifpmuZt42|1w&7Ss1*0w
z@AZ8A5P6b@C|@QC#>E7!f!^>>_h&!RDH=_z&g}x$n`zOiPAkCksDAh+&}09!QutgE
zwsy@8<-mtV&v!oO@dKo$@a6jB)<3;}M^i*(-Bg101-Adf>eN4-Ov3n)HvOkWNd1Ga
zM2z4z2Oaf)J?X!!e~{{{nk>eTT-P|iz-&|a`yk2z{YP)*_d$#wzn!0H-F)w$C7|Lj
ztV?JvRhqh>-r{B+m7>q-Rh}Pz6?szGlrJ;20%t%Dpf~)}NTs(<aUjb{&IjChEK-Xf
zC!h67^{3nQ<BE9pWAZ`GmQdcX`ByL+ob1W^2dN!=seiZr>FQ=p5urY<!1@BqcB^C8
zzu7;X%<D}5&U#mltG$NF<Ne@|Rc5k2LG(SCX?R}tPaxITEJ)~ote;M`Or9yPZv{~f
z=pP`jPX}@Q^_Lpw-TJ4!B|=mRzrbhLKXq&w8}afG;h(A(;r5~RiRK|+dJnJJKZ!i)
zf6ABXylI@y^|gO0c}sd(<nIY-LF95e9Dk}=!mynxVSHRuKK~S?&-+sUZvE56Z!|?j
zrxM}ZzhLJ|jlJTZwtNcz)b5#odd~T~{0*w`b_-lwv@q)mbR0iE$~%Dd2vU8!KNJ2b
zWh5`(n9P^BJP_r8F`vupt3Zq&dUO`+pvAK+k59<!QJ@v-Pci8f!Ly%)Q{36x#N+c9
zlqc&6q|#kX$N}_*f4Uoyts2FtVEKCx@K}Q^+W3p|-q=(>d=u!ge>y%>Q%cVe&%f(t
z*jo26Heb6`mC6UHDSWy9xbsgozd)TLd$k;_FEEQG%szgYk3U`g72}6V|IgWf_^b6a
z)&p32y^Zw`I_m$+&=l4`NcGJ=C&rKB;+bk<vX+&{OhA+a`cK}(<%9VBUH_KfTQ`h9
zV`*~K_4&KZ6^f}8FJ1He{2k><{cR^D?P7xNL2vk{iBr4l6qhH-=MI3I_IJ`6>D{@l
zsQz^GPq)OmyP9V-TU<rMcD#~tXVxh8ParjgFZJ)%Kb_p6DI)HVFVFe{^G>g2*T306
zJ$@?vf})u9@4SPlU8ldhnDqdzR>yIhgXnv(U!^SUpFpawc_yL%D)%|R>xDM(_d%2c
z#>|nwZw0aaU%TjpTmLk0{hKO9_X;VN@YL(a^=7dVwFU_P^fV9GPvy}(<V)}2HTx%#
zC;d<PGMzV#)49I(Pu)w(u@d=vLRt{HoPYOE%7)U05*cRHsJ(>s57Os-seiZrX`47-
zB4YSxd3_uBc5Zq7t0!$@{*L4MyVu&nKSia<KSi}^%{l_3Yi4HsgO1}zW1~9j5v2O2
z(*18{N3nk4n?RHU`Y#>I<%1YMwyv;RYg}JoSzCA^=YwUW{uGl=ai&j6mE!i*rJnmI
zktgd3q|#kX$N}_*e`-@KXEllm@kO~^z@KmbrRo#=+1moX3G~=M{kA|;1})HR`T7~k
z@BNK(<AQnp0jVi`x&FBGPs;HEIz`FZ3hN7eV^0bD_+j=>Z*GBqGU@+0{;5;{LEOgR
zynC&=A3#U_k2~-a>mQ{03TzYOM+bxRJD1#&zYn4u&_7Pz-vh+>F=au2>-z<FS@yJW
zegCubmfR}E+#9n!KmIE6Wc`CKv`@34d(a#H>5W!4onrGoc^^kmpISo;-4w=cN%g0j
ze;T<<Q^Iy?w#gqDwxF7ZU;Ub_e~^~jm-=_>pQa^giinZRLReqm^}4!U|7QQR;DPiD
zielD3E!96KYS-g4<?~O$d>3Q5%|Y}%c=(4WtbdT|yZK1?my0(zzaG8i^;00q0b}lN
z<MKgl{~HWD;?_TX(YCZoai!+7<4@Nc$3_^RiTWD_a{aVE(LCf!@8LE3Cy^)pPx&(c
z*(@&S_}V{RStZ9x<nIY-VdQc;_@@r##QE#;#*z!MtbdR`?@Rr=^-uXXX^M#9$KU1t
z1wRX@%lh}EP0ZhM^iShkz&}N&$v++cy&LNY?E3Bl{vUK4KaTlVU_F9VpW0IRCtGt~
zKKLdO<$wX(2lM&^V*PpCIMTXn>N?A(2jqD*EF<-&m~@IPl`5%zA~wC``TcJwPu3Gi
zrMsAr1LzI^G~!gQY82V3<=}P!m*ss$>(Hkq=Sua%H-R4er-$M^>y>qy?biW@GJl}a
zrLNBF4@gbn%k{^tf0|ubS43oK`%v76R#CwG^NQHV53_%oz7YP&r2psmr^gTE?<c^I
z6Ljte&{6+$f0El{km_r>Ncg8;mazWscB#nU2T=|f6FrCD2jQQJPi=2~tKd#c+ZH?R
zea<?ig-+G~qb~VWile2z_5A#u$dk(jW%*A3LieCI{8QdiBXo+O?Q*{f>@io>0%GO9
z9Mzw0{wa&_Ppf{?lwTVgO8=%tgN9XD{~$GlFZJ)%KZX9ODI#Xa7iN8dky9*o{hR&M
z<g@TkX8k+uUWMAV@!7eo2T&{8hxG}f@4>ffp5^U7NcF9_ApFZA@jDMO6?$g|e;-6S
zp#OFG`ymkezdCi7TmLk9O<9#<NcLyfKV7XG8xhrA)L$<X*H7iqJmgF7;Whgwkth96
z`7)h1jnlcl_D|!AHs!WN{+^H)L@wvw{gbV$)lkZW8x3~Pk@`<1ecqS)ck7=@iQlD(
z*kUQe{R@US{J<;zX-6>pQ};Car?N?FRBB)F-zSE$u0Y4}V|&NR@6+c&s!s_KaVm+&
zw?)6K=kh?50|q>jzbON8{`*?7dsTz3*(|$q4dMEs73xnh=@ju#62do$nD%gIWozp3
zTYQd4AEe1V&-|L+`|D&9=Lga}SCjd>^x7N#X-D1QY80)8KjP&EL$h{NFYoToxl-Nm
zO`ymA>F`kTJUMZUyWMC*nK#B5o%pZ{l@C%|_;USm>z{^H)D;n-m19|7;I`xxmGY$h
z2eW_rZ2|m~N&nCBPZfKO<#q=HpK83#0v+`~`tCyB9)nb01M*L$rGF|P(wM&wq8u<L
zf2w~<CB~0Ed1qKFA3AUOcYb+(4cbf9rY@*|kUvbNsNLj{=f__~o>VsF%S^4n8IS|$
z4ga)v^_MzD;i)q?A8?<4N9{ykd5sFypKkssS)6B$5>cj!VH?!c2>zG6{tu*f@TLCU
z`ltQEKZ&^0OZq1;u$6QF6tErs$*g~8y(_nqMdIZ35@4=jO<2Dm`W`gS#<TuGs_%x_
zr%>u{<ne9B&O!Wr5aoa|A@Z6Y5c;n^exqCev@E!yN)g=PnSZKZJvO3Kdr^P6WZphd
zc{C6C(tCK#{z>FX|5Lt9=S|~uuCM*mN1?^JEs?(`qy>@7`FH=Ml&NFba?~~E?~=bi
z1?ls?)W2K*wDP97UiYTfF!T-97uaM*xL5pBv%K(6z0%~Lrfko|Is)fDEyw?Zj`x46
z)T0FZCy?qpEkY^$jZ^=Ga=?JmRag@s)}LO#4u7xyw&|Ahx2ALb&<gdZm~@J=c|%nS
z>-2e^?|+LtSx+F9?qWg?pf~(e=hN?2qlnre@2dcQpB$$4oO;3jOau5P&}09!;cM~y
z)G3<s=Xk?-bE5HM&uM)96G%<r%k{^df3n4^Iz_q4pR&Hd(5pW=^-te@1^<*b{SW`6
zDeDdN?<RlO3_AL!#7sSTdkj*2f7pb7Iw^i9BBuL09&>ph$^m1#k7fOXIQ}|*+S}I7
zDO)X(rMJ1%|D3vcRf;yr<2*lqC-P+dgOs$33AzWp;h+32Ow=h3<(1Dt0E2@<v|L>m
z*xMrA{L`!3#Qj*eh-->E8p`5MMwjZZ%Hyx8q^9tt{@wbgT;g|aB5q`Qh4lp%i+aoH
z@u$&0!atex|D684_nGuh;Ov{y|AXjzu-`k<KY>(VC-P5wHgJ9stK>ERAj$##uf($c
zLF_-Tda}W-e~KwqQKk6g(QW(o|4reQLdZYOyJGiGG!OaGdw9+MN#sfYQ@%_WZR2dV
zul-Zuh+^DU$lnvva>(WUyMMBMQpZpl)ipA8kp2mz&-+sUZv9i)Tbd%G+5Oj9U*Ib}
zz2lz-=Y)UyG)?{~*qWPl1je^2#{Ywk_kZf$^=0-?Ak|kQm+()<7^nUT<$wWk^85w}
z|5P=3;d_UESZ%3s%k}*W?rp8EQk?qstmpgRB2U&6NP=-OIqKCL{%O>u@M;vHf64o>
zfCEq0R%Z_0l>YuH(+W+Qv0O9mPB4t1Nyd~JTiHK>)D*s4f86;eC05rdj1lcvU*PD{
z2~Pdfz$o~qwCR7`;i{~6aIftS{|`F)r$aU0=It>^^^NHy{8MyeUcY+|mHGuy4j8aO
zjxQke-)&}AYx5EDmMMwyIv{8-Rhqh>?zcR*O0oNwA)f1B<jML6Q!8)=<N$iZKUGcn
zMyEK?wG-zB_85~>%f7ZA&!hU&%|BHZ*HbJI_ur51ZP?oMHL5?p%lZeY9ek;OcmByX
zzlct8de(i`KUlp_VW<A7`U?0blm4A`u9!#ddT_+o+{R$$mKGkfLG(Qs_3^i?e~{|C
z_Py{g!{)L6Z})4)-v?0+7_)sAzYmiB$wLh;w9Ku4%66cNN|99c+4Jv8sp9&p7NY){
z2kicd<{@8t53kuji9G3l%9rV)ZJf>awSQV3^}AjFScVrREr(przxyX;a&vM2nh%X0
zm*xFqLHfKe_3zd{CA_37BIfoh$oc}`f2mTs9DjPz_RRSFS6^kcK}H*7Xdpua85+pY
yK!ye~G?1Zz3=L#xAVUKg8pzN<h6XY;kfDJL4P<B_LjxHa$k0HB2L69*;Qs(h4mczL

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b05
deleted file mode 100644
index b6f60ae..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b05
+++ /dev/null
@@ -1,99 +0,0 @@
-HEC-RAS 5.0.5 June 2018
-       1       1       0       0
-       0       0
-       F
-       1
-Initial Conditions Flow Information
-       1        Initial Profile
- 3.1E+38       1
-Flow and Seasonal Roughness Flag (plan)
-       F       F
-       2       0       0
-       3       01.14E-04
-       1       1       0       0
-       0       0
-       F
-Project Title, Plan Title and Plan ShortID
-HEC-RAS Flume Case
-Flume Unsteady Example
-Unsteady                                                        
-Job Control Information
-  Computation Interval  = 1MIN
-  Warmup Interval       =  0 
-  Instantaneous Profile = 1HOUR
-  Hydrograph Interval   = 1HOUR
-  Theta Simulation      =        1
-  Theta Warmup          =        1
-  Friction Slope Method =        2
-  Maximum Iterations    =       20
-  Max Iter WOImprovement=        0
-  Number Warmup Steps   =        0
-  Abort DZ Tolerance    =       30
-  DZ Tolerance          =     .006
-  DZSA Tolerance        =     .006
-  DQ Tolerance          =  3.1E+38
-  Weir Flow Stability   =        2
-  Spillway Stability    =        1
-  Write Restart File    =        F       F
-  Echo Input TS         =        F
-  Echo Parameters       =        F
-  Echo Output TS        =        F
-  DSS Message Level     =        4
-  Write HDF5 File       =        T
-  Write DSS File        =        T
-D:\py\FluEgg\test\data\ras\HEC-RAS Flume\HEC-RASFlumeCase.dss
-Computational Time Window
-  Start Date/Time       = 31Dec2016 2400
-  End Date/Time         = 03Jan2017 1100
-Initial Conditions (use restart file?)
-       F
-Log File Information
-       F       0       0
-Computation Level Output
-       T-3.4E+38 3.4E+38       F       F       F       F       F       F       F       F       F   1HOUR
-Mixed Flow - Acceleration term reduction based on Froude number
-       F       4      .8       1
-Number of Gate Groups and Internal Boundaries with Gates
-       0       0       0       0
-Breach Data
-       0
-Hydrograph Data
-       1
-       F       F       T       F       F
-Upstream Flow Hydrograph
-      60
-       0     .05       1     .05       2     .05       3      .1       4      .1
-       5      .1       6     .15       7     .15       8     .15       9      .2
-      10      .2      11      .2      12     .25      13     .25      14     .25
-      15      .3      16      .3      17      .3      18     .35      19     .35
-      20     .35      21      .4      22      .4      23      .4      24     .45
-      25     .45      26     .45      27      .5      28      .5      29      .5
-      30     .45      31     .45      32     .45      33      .4      34      .4
-      35      .4      36     .35      37     .35      38     .35      39      .3
-      40      .3      41      .3      42     .25      43     .25      44     .25
-      45      .2      46      .2      47      .2      48     .15      49     .15
-      50     .15      51      .1      52      .1      53      .1      54     .05
-      55     .05      56     .05      57     .01      58     .01      59     .01
- 3.4E+38
-       F       F       F       T       F
-Downstream Normal Depth
-1.14E-04
-Internal Observed Stage/Flow Boundaries
-       0
-Ground Water Interflows
-       0
-Old River Diversions
-       F
-Lateral Inflows, Ungaged Lateral Inflows, Outlet TS, and Observed DSS
-       0       0       0       0
-Stage and Flow Boundary and Ungaged Areas
-       0       0
-Time Slicing Parameters
-       F
-HYDROGRAPH LOCATIONS
- 2 
-       1       3
-Rules (number of rule sets, number of lookbacks, number of tables)
-       0       0       0
-Extra Commands
-       0
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b06 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b06
deleted file mode 100644
index a7e9cad..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.b06
+++ /dev/null
@@ -1,99 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-       1       1       0       0
-       0       0
-       F
-       1
-Initial Conditions Flow Information
-       1        Initial Profile
- 3.1E+38       1
-Flow and Seasonal Roughness Flag (plan)
-       F       F
-       2       0       0
-       3       01.14E-04
-       1       1       0       0
-       0       0
-       F
-Project Title, Plan Title and Plan ShortID
-HEC-RAS Flume Case
-Plan 06
-Plan 06                                                         
-Job Control Information
-  Computation Interval  = 1MIN
-  Warmup Interval       =  0 
-  Instantaneous Profile = 1HOUR
-  Hydrograph Interval   = 1HOUR
-  Theta Simulation      =        1
-  Theta Warmup          =        1
-  Friction Slope Method =        2
-  Maximum Iterations    =       20
-  Max Iter WOImprovement=        0
-  Number Warmup Steps   =        0
-  Abort DZ Tolerance    =    98.43
-  DZ Tolerance          =    .0197
-  DZSA Tolerance        =    .0197
-  DQ Tolerance          =  3.1E+38
-  Weir Flow Stability   =        2
-  Spillway Stability    =        1
-  Write Restart File    =        F       F
-  Echo Input TS         =        F
-  Echo Parameters       =        F
-  Echo Output TS        =        F
-  DSS Message Level     =        4
-  Write HDF5 File       =        T
-  Write DSS File        =        T
-Z:\Projects\ProjectArchive\Projects\SW.WQ.BIO.2016.GC_Sandusky(GCT18_EW204)\Admin-related Documents\FluEgg Users Manual\FluEgg Program and Files\HEC-RAS Flume\HEC-RASFlumeCase.dss
-Computational Time Window
-  Start Date/Time       = 31Dec2016 2400
-  End Date/Time         = 03Jan2017 1100
-Initial Conditions (use restart file?)
-       F
-Log File Information
-       F       0       0
-Computation Level Output
-       F-3.4E+38 3.4E+38       F       F       F       F       F       F       F       F       F   1HOUR
-Mixed Flow - Acceleration term reduction based on Froude number
-       F       4      .8       1
-Number of Gate Groups and Internal Boundaries with Gates
-       0       0       0       0
-Breach Data
-       0
-Hydrograph Data
-       1
-       F       F       T       F       F
-Upstream Flow Hydrograph
-      60
-       01.765733       11.765733       21.765733       33.531467       43.531467
-       53.531467       6  5.2972       7  5.2972       8  5.2972       97.062933
-      107.062933      117.062933      128.828667      138.828667      148.828667
-      15 10.5944      16 10.5944      17 10.5944      1812.36013      1912.36013
-      2012.36013      2114.12587      2214.12587      2314.12587      24 15.8916
-      25 15.8916      26 15.8916      2717.65733      2817.65733      2917.65733
-      30 15.8916      31 15.8916      32 15.8916      3314.12587      3414.12587
-      3514.12587      3612.36013      3712.36013      3812.36013      39 10.5944
-      40 10.5944      41 10.5944      428.828667      438.828667      448.828667
-      457.062933      467.062933      477.062933      48  5.2972      49  5.2972
-      50  5.2972      513.531467      523.531467      533.531467      541.765733
-      551.765733      561.765733      57.3531467      58.3531467      59.3531467
- 3.4E+38
-       F       F       F       T       F
-Downstream Normal Depth
-1.14E-04
-Internal Observed Stage/Flow Boundaries
-       0
-Ground Water Interflows
-       0
-Old River Diversions
-       F
-Lateral Inflows, Ungaged Lateral Inflows, Outlet TS, and Observed DSS
-       0       0       0       0
-Stage and Flow Boundary and Ungaged Areas
-       0       0
-Time Slicing Parameters
-       F
-HYDROGRAPH LOCATIONS
- 2 
-       1       3
-Rules (number of rule sets, number of lookbacks, number of tables)
-       0       0       0
-Extra Commands
-       0
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco05
deleted file mode 100644
index c9698e3..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco05
+++ /dev/null
@@ -1,58 +0,0 @@
- 
-                                              HEC-RAS - River Analysis System
- 
- 
-Project File:  D:\py\FluEgg\test\data\ras\HEC-RAS Flume\HEC-RASFlumeCase.prj
- 
-Project Name:  HEC-RAS Flume Case
- 
- 
-Plan Name:     Flume Unsteady Example
- 
-Short ID:      Unsteady
- 
-
-Starting Time:   31Dec2016 2400
-
-Ending Time:     03Jan2017 1100
-
-
-                ################################################
-                #                                              #
-                #                                              #
-                #       1D and 2D Unsteady Flow Module         #
-                #                                              #
-                #                                              #
-                #          HEC-RAS 5.0.5 June 2018             #
-                #                                              #
-                #             20DEC18 at 11:38:22              #
-                #                                              #
-                ################################################
- 
- 
- 
-
-
-
-                 Volume Accounting in Acre Feet
-
-                           External Boundary Flux of Water
-
-         US Inflow       Lat Hydro      DS Outflow        SA Hydro     Groundwater       2D Inflow      2D Outflow      Diversions
-         *********       *********      **********        ********     ***********       *********      **********      **********
-             1.240                          0.6180                                                                                
-
-                      River Reaches, Storage Areas, and 2D Areas
-
-    Start 1D Reach   Starting SA's     Starting 2D  Final 1D Reach      Final SA's  Final 2D Areas
-    **************   *************     ***********  **************      **********  **************
-            0.2934                                          0.9163                                
-
-                             Error   Percent Error
-
-                             *****   *************
-                          0.001272         0.08295
-
-
-
-
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco06 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco06
deleted file mode 100644
index d512a69..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.bco06
+++ /dev/null
@@ -1,84 +0,0 @@
- 
-                                              HEC-RAS - River Analysis System
- 
- 
-Project File:  Z:\Projects\ProjectArchive\Projects\SW.WQ.BIO.2016.GC_Sandusky(GCT18_EW204)\Admin-related Documents\FluEgg Users Manual\FluEgg Program and Files\HEC-RAS Flume\HEC-RASFlumeCase.prj
- 
-Project Name:  HEC-RAS Flume Case
- 
- 
-Plan Name:     Plan 06
- 
-Short ID:      Plan 06
- 
-
-Starting Time:   31Dec2016 2400
-
-Ending Time:     03Jan2017 1100
-
-
-                ################################################
-                #                                              #
-                #                                              #
-                #       1D and 2D Unsteady Flow Module         #
-                #                                              #
-                #                                              #
-                #          HEC-RAS 5.0.3 September 2016        #
-                #                                              #
-                #             03APR18 at 15:12:48              #
-                #                                              #
-                ################################################
- 
- 
- 
-
-
-
-                 Volume Accounting in 1000 m^3
-
-                           External Boundary Flux of Water
-
-         US Inflow       Lat Hydro      DS Outflow        SA Hydro     Groundwater       2D Inflow      2D Outflow      Diversions
-         *********       *********      **********        ********     ***********       *********      **********      **********
-             54.00                           53.99                                                                                
-
-                      River Reaches, Storage Areas, and 2D Areas
-
-    Start 1D Reach   Starting SA's     Starting 2D  Final 1D Reach      Final SA's  Final 2D Areas
-    **************   *************     ***********  **************      **********  **************
-             1.679                                           1.688                                
-
-                             Error   Percent Error
-
-                             *****   *************
-                          0.000012        0.000021
-
-
-
-
- 
- 
- 
- 
- 
- ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
- º                                           º
- º                                           º
- º                DSS-Writer                 º
- º                                           º
- º         For Unsteady Flow Module          º
- º                                           º
- º       HEC-RAS 5.0.3 September 2016        º
- º                                           º
- º            03APR18 at 15:12:50            º
- º                                           º
- ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍͼ
- 
- 
- 
- 
- 
- 
-Output file:  Z:\Projects\ProjectArchive\Projects\SW.WQ.BIO.2016.GC_Sandusky(GCT18_EW204)\Admin-related Documents\FluEgg Users Manual\FluEgg Program and Files\HEC-RAS Flume\HEC-RASFlumeCase.bco06
-
- Time Window:  31DEC2016 2400 03JAN2017 1100
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.c05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.c05
deleted file mode 100644
index 90b7a6400fa8dc145a67d80c2748f8bda121a2a6..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 2440
zcmeI!TS!zv7zgmP>lIUwYAF>{)O@JO^r#Pl?z&P!wA~(zUc`tt0(;4X=s}kt5-Y?@
z#u3Y)i$Rdkf^0#M-Bj`vA|?^u3YVym3QUR0=D#@q&d|-5-W-_y=FIQx%<i0TW;aaJ
zv@lU8qQr~lbJ`F@L7zj^>`kJi{<~c4udUtnb<F+FG44hiV<5(iq!(&COG-mEc0(ch
zQ3ewCIT3YT7t!bRmN(F{24@vByZdM_k~}W!`-~`C5w1}(W}01ya!k{oOdFkkNVAFg
zw2A^+Pv;zMe!kYJ$L^ukY+hAt9n%}AqJ4Adig|MCXgAt-DCVterER}cNyB`;u`9IF
z^(Sdq7bDkCi^ytG%wOL_yHs&mF>~S>?ZNF^G|U&wAEV{w-KT}t<?MUf)u)3re3pdQ
zUue}QCKWT<!$Z#uYt`uasMxjMWi)@Q=C-b<|I>2X%Z6yh?j<MEwl>BqcB*S4bd9mh
zfq}v{!ze<&<}EH=Q<0ki-;jHE+t5<JigjDc*PrLc|H#*AefYQex|p*Sr!Vp~C8E!5
zZtMFsU$F^9F=Iw}PR`l)yU-`kLL)nxd$((<gN8kCj%LtiItFRj^ICl|Eih|W_O+g0
zPODkFhK4i7`|3DtDzkuwF+IJfX>W(i6!Rvx(VUK>iutOp)8>M8iW&XgwCA7CE9Osm
zL>tZNRLra%qD7wTRxJ2rl2*3*v0_@<2U=HPSh0j--)SvJrc^r^$uljXWJa;fra0Po
zvt2pw^t&r*8yjL2bG=ETooQN5!?X3QNT+38NTlHz?JZhItGJm)!!tS*><?WdhvfNc
z6YWS*5%K>(M$ueU*-}}3_yCf5p=8U(Lj2nxn9Eu*zui*t_XXGTGsRg9eeo8@efX_F
jw0;k?Wepc?6ueiCD<k^R#ywaMS>#yOab;WH^QZU&CRCz`

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
deleted file mode 100644
index 0ad2ac3..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dsc
+++ /dev/null
@@ -1,308 +0,0 @@
-
-     HECDSS Complete Catalog of Record Pathnames in File C:/Users/mberutti-temp/Documents/FluEgg/fluegg/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dss
-
-     Catalog Created on Jul 11, 2019, 13:32
-     Number of Records:0000298                   DSS 
-     Sort Order: ABCFED
-
-  Ref.
- Number   Tag           Record Pathname
-
-0000001           /FLUME 1//LOCATION-ELEV//01JAN2017 0100/PLAN 06/
-0000002           /FLUME 1//LOCATION-ELEV//01JAN2017 0200/PLAN 06/
-0000003           /FLUME 1//LOCATION-ELEV//01JAN2017 0300/PLAN 06/
-0000004           /FLUME 1//LOCATION-ELEV//01JAN2017 0400/PLAN 06/
-0000005           /FLUME 1//LOCATION-ELEV//01JAN2017 0500/PLAN 06/
-0000006           /FLUME 1//LOCATION-ELEV//01JAN2017 0600/PLAN 06/
-0000007           /FLUME 1//LOCATION-ELEV//01JAN2017 0700/PLAN 06/
-0000008           /FLUME 1//LOCATION-ELEV//01JAN2017 0800/PLAN 06/
-0000009           /FLUME 1//LOCATION-ELEV//01JAN2017 0900/PLAN 06/
-0000010           /FLUME 1//LOCATION-ELEV//01JAN2017 1000/PLAN 06/
-0000011           /FLUME 1//LOCATION-ELEV//01JAN2017 1100/PLAN 06/
-0000012           /FLUME 1//LOCATION-ELEV//01JAN2017 1200/PLAN 06/
-0000013           /FLUME 1//LOCATION-ELEV//01JAN2017 1300/PLAN 06/
-0000014           /FLUME 1//LOCATION-ELEV//01JAN2017 1400/PLAN 06/
-0000015           /FLUME 1//LOCATION-ELEV//01JAN2017 1500/PLAN 06/
-0000016           /FLUME 1//LOCATION-ELEV//01JAN2017 1600/PLAN 06/
-0000017           /FLUME 1//LOCATION-ELEV//01JAN2017 1700/PLAN 06/
-0000018           /FLUME 1//LOCATION-ELEV//01JAN2017 1800/PLAN 06/
-0000019           /FLUME 1//LOCATION-ELEV//01JAN2017 1900/PLAN 06/
-0000020           /FLUME 1//LOCATION-ELEV//01JAN2017 2000/PLAN 06/
-0000021           /FLUME 1//LOCATION-ELEV//01JAN2017 2100/PLAN 06/
-0000022           /FLUME 1//LOCATION-ELEV//01JAN2017 2200/PLAN 06/
-0000023           /FLUME 1//LOCATION-ELEV//01JAN2017 2300/PLAN 06/
-0000024           /FLUME 1//LOCATION-ELEV//01JAN2017 2400/PLAN 06/
-0000025           /FLUME 1//LOCATION-ELEV//02JAN2017 0100/PLAN 06/
-0000026           /FLUME 1//LOCATION-ELEV//02JAN2017 0200/PLAN 06/
-0000027           /FLUME 1//LOCATION-ELEV//02JAN2017 0300/PLAN 06/
-0000028           /FLUME 1//LOCATION-ELEV//02JAN2017 0400/PLAN 06/
-0000029           /FLUME 1//LOCATION-ELEV//02JAN2017 0500/PLAN 06/
-0000030           /FLUME 1//LOCATION-ELEV//02JAN2017 0600/PLAN 06/
-0000031           /FLUME 1//LOCATION-ELEV//02JAN2017 0700/PLAN 06/
-0000032           /FLUME 1//LOCATION-ELEV//02JAN2017 0800/PLAN 06/
-0000033           /FLUME 1//LOCATION-ELEV//02JAN2017 0900/PLAN 06/
-0000034           /FLUME 1//LOCATION-ELEV//02JAN2017 1000/PLAN 06/
-0000035           /FLUME 1//LOCATION-ELEV//02JAN2017 1100/PLAN 06/
-0000036           /FLUME 1//LOCATION-ELEV//02JAN2017 1200/PLAN 06/
-0000037           /FLUME 1//LOCATION-ELEV//02JAN2017 1300/PLAN 06/
-0000038           /FLUME 1//LOCATION-ELEV//02JAN2017 1400/PLAN 06/
-0000039           /FLUME 1//LOCATION-ELEV//02JAN2017 1500/PLAN 06/
-0000040           /FLUME 1//LOCATION-ELEV//02JAN2017 1600/PLAN 06/
-0000041           /FLUME 1//LOCATION-ELEV//02JAN2017 1700/PLAN 06/
-0000042           /FLUME 1//LOCATION-ELEV//02JAN2017 1800/PLAN 06/
-0000043           /FLUME 1//LOCATION-ELEV//02JAN2017 1900/PLAN 06/
-0000044           /FLUME 1//LOCATION-ELEV//02JAN2017 2000/PLAN 06/
-0000045           /FLUME 1//LOCATION-ELEV//02JAN2017 2100/PLAN 06/
-0000046           /FLUME 1//LOCATION-ELEV//02JAN2017 2200/PLAN 06/
-0000047           /FLUME 1//LOCATION-ELEV//02JAN2017 2300/PLAN 06/
-0000048           /FLUME 1//LOCATION-ELEV//02JAN2017 2400/PLAN 06/
-0000049           /FLUME 1//LOCATION-ELEV//03JAN2017 0100/PLAN 06/
-0000050           /FLUME 1//LOCATION-ELEV//03JAN2017 0200/PLAN 06/
-0000051           /FLUME 1//LOCATION-ELEV//03JAN2017 0300/PLAN 06/
-0000052           /FLUME 1//LOCATION-ELEV//03JAN2017 0400/PLAN 06/
-0000053           /FLUME 1//LOCATION-ELEV//03JAN2017 0500/PLAN 06/
-0000054           /FLUME 1//LOCATION-ELEV//03JAN2017 0600/PLAN 06/
-0000055           /FLUME 1//LOCATION-ELEV//03JAN2017 0700/PLAN 06/
-0000056           /FLUME 1//LOCATION-ELEV//03JAN2017 0800/PLAN 06/
-0000057           /FLUME 1//LOCATION-ELEV//03JAN2017 0900/PLAN 06/
-0000058           /FLUME 1//LOCATION-ELEV//03JAN2017 1000/PLAN 06/
-0000059           /FLUME 1//LOCATION-ELEV//03JAN2017 1100/PLAN 06/
-0000060           /FLUME 1//LOCATION-ELEV//31DEC2016 2400/PLAN 06/
-0000061           /FLUME 1//LOCATION-ELEV//MAX FLOW/PLAN 06/
-0000062           /FLUME 1//LOCATION-ELEV//MAX STAGE/PLAN 06/
-0000063           /FLUME 1//LOCATION-ELEV//MIN FLOW/PLAN 06/
-0000064           /FLUME 1//LOCATION-ELEV//MIN STAGE/PLAN 06/
-0000065           /FLUME 1//LOCATION-ELEV//01JAN2017 0000/UNSTEADY/
-0000066           /FLUME 1//LOCATION-ELEV//01JAN2017 0100/UNSTEADY/
-0000067           /FLUME 1//LOCATION-ELEV//01JAN2017 0200/UNSTEADY/
-0000068           /FLUME 1//LOCATION-ELEV//01JAN2017 0300/UNSTEADY/
-0000069           /FLUME 1//LOCATION-ELEV//01JAN2017 0400/UNSTEADY/
-0000070           /FLUME 1//LOCATION-ELEV//01JAN2017 0500/UNSTEADY/
-0000071           /FLUME 1//LOCATION-ELEV//01JAN2017 0600/UNSTEADY/
-0000072           /FLUME 1//LOCATION-ELEV//01JAN2017 0700/UNSTEADY/
-0000073           /FLUME 1//LOCATION-ELEV//01JAN2017 0800/UNSTEADY/
-0000074           /FLUME 1//LOCATION-ELEV//01JAN2017 0900/UNSTEADY/
-0000075           /FLUME 1//LOCATION-ELEV//01JAN2017 1000/UNSTEADY/
-0000076           /FLUME 1//LOCATION-ELEV//01JAN2017 1100/UNSTEADY/
-0000077           /FLUME 1//LOCATION-ELEV//01JAN2017 1200/UNSTEADY/
-0000078           /FLUME 1//LOCATION-ELEV//01JAN2017 1300/UNSTEADY/
-0000079           /FLUME 1//LOCATION-ELEV//01JAN2017 1400/UNSTEADY/
-0000080           /FLUME 1//LOCATION-ELEV//01JAN2017 1500/UNSTEADY/
-0000081           /FLUME 1//LOCATION-ELEV//01JAN2017 1600/UNSTEADY/
-0000082           /FLUME 1//LOCATION-ELEV//01JAN2017 1700/UNSTEADY/
-0000083           /FLUME 1//LOCATION-ELEV//01JAN2017 1800/UNSTEADY/
-0000084           /FLUME 1//LOCATION-ELEV//01JAN2017 1900/UNSTEADY/
-0000085           /FLUME 1//LOCATION-ELEV//01JAN2017 2000/UNSTEADY/
-0000086           /FLUME 1//LOCATION-ELEV//01JAN2017 2100/UNSTEADY/
-0000087           /FLUME 1//LOCATION-ELEV//01JAN2017 2200/UNSTEADY/
-0000088           /FLUME 1//LOCATION-ELEV//01JAN2017 2300/UNSTEADY/
-0000089           /FLUME 1//LOCATION-ELEV//01JAN2017 2400/UNSTEADY/
-0000090           /FLUME 1//LOCATION-ELEV//02JAN2017 0000/UNSTEADY/
-0000091           /FLUME 1//LOCATION-ELEV//02JAN2017 0100/UNSTEADY/
-0000092           /FLUME 1//LOCATION-ELEV//02JAN2017 0200/UNSTEADY/
-0000093           /FLUME 1//LOCATION-ELEV//02JAN2017 0300/UNSTEADY/
-0000094           /FLUME 1//LOCATION-ELEV//02JAN2017 0400/UNSTEADY/
-0000095           /FLUME 1//LOCATION-ELEV//02JAN2017 0500/UNSTEADY/
-0000096           /FLUME 1//LOCATION-ELEV//02JAN2017 0600/UNSTEADY/
-0000097           /FLUME 1//LOCATION-ELEV//02JAN2017 0700/UNSTEADY/
-0000098           /FLUME 1//LOCATION-ELEV//02JAN2017 0800/UNSTEADY/
-0000099           /FLUME 1//LOCATION-ELEV//02JAN2017 0900/UNSTEADY/
-0000100           /FLUME 1//LOCATION-ELEV//02JAN2017 1000/UNSTEADY/
-0000101           /FLUME 1//LOCATION-ELEV//02JAN2017 1100/UNSTEADY/
-0000102           /FLUME 1//LOCATION-ELEV//02JAN2017 1200/UNSTEADY/
-0000103           /FLUME 1//LOCATION-ELEV//02JAN2017 1300/UNSTEADY/
-0000104           /FLUME 1//LOCATION-ELEV//02JAN2017 1400/UNSTEADY/
-0000105           /FLUME 1//LOCATION-ELEV//02JAN2017 1500/UNSTEADY/
-0000106           /FLUME 1//LOCATION-ELEV//02JAN2017 1600/UNSTEADY/
-0000107           /FLUME 1//LOCATION-ELEV//02JAN2017 1700/UNSTEADY/
-0000108           /FLUME 1//LOCATION-ELEV//02JAN2017 1800/UNSTEADY/
-0000109           /FLUME 1//LOCATION-ELEV//02JAN2017 1900/UNSTEADY/
-0000110           /FLUME 1//LOCATION-ELEV//02JAN2017 2000/UNSTEADY/
-0000111           /FLUME 1//LOCATION-ELEV//02JAN2017 2100/UNSTEADY/
-0000112           /FLUME 1//LOCATION-ELEV//02JAN2017 2200/UNSTEADY/
-0000113           /FLUME 1//LOCATION-ELEV//02JAN2017 2300/UNSTEADY/
-0000114           /FLUME 1//LOCATION-ELEV//02JAN2017 2400/UNSTEADY/
-0000115           /FLUME 1//LOCATION-ELEV//03JAN2017 0000/UNSTEADY/
-0000116           /FLUME 1//LOCATION-ELEV//03JAN2017 0100/UNSTEADY/
-0000117           /FLUME 1//LOCATION-ELEV//03JAN2017 0200/UNSTEADY/
-0000118           /FLUME 1//LOCATION-ELEV//03JAN2017 0300/UNSTEADY/
-0000119           /FLUME 1//LOCATION-ELEV//03JAN2017 0400/UNSTEADY/
-0000120           /FLUME 1//LOCATION-ELEV//03JAN2017 0500/UNSTEADY/
-0000121           /FLUME 1//LOCATION-ELEV//03JAN2017 0600/UNSTEADY/
-0000122           /FLUME 1//LOCATION-ELEV//03JAN2017 0700/UNSTEADY/
-0000123           /FLUME 1//LOCATION-ELEV//03JAN2017 0800/UNSTEADY/
-0000124           /FLUME 1//LOCATION-ELEV//03JAN2017 0900/UNSTEADY/
-0000125           /FLUME 1//LOCATION-ELEV//03JAN2017 1000/UNSTEADY/
-0000126           /FLUME 1//LOCATION-ELEV//03JAN2017 1100/UNSTEADY/
-0000127           /FLUME 1//LOCATION-ELEV//31DEC2016 2400/UNSTEADY/
-0000128           /FLUME 1//LOCATION-ELEV//MAX CH VEL/UNSTEADY/
-0000129           /FLUME 1//LOCATION-ELEV//MAX FLOW/UNSTEADY/
-0000130           /FLUME 1//LOCATION-ELEV//MAX STAGE/UNSTEADY/
-0000131           /FLUME 1//LOCATION-ELEV//MIN FLOW/UNSTEADY/
-0000132           /FLUME 1//LOCATION-ELEV//MIN STAGE/UNSTEADY/
-0000133           /FLUME 1//LOCATION-FLOW//01JAN2017 0100/PLAN 06/
-0000134           /FLUME 1//LOCATION-FLOW//01JAN2017 0200/PLAN 06/
-0000135           /FLUME 1//LOCATION-FLOW//01JAN2017 0300/PLAN 06/
-0000136           /FLUME 1//LOCATION-FLOW//01JAN2017 0400/PLAN 06/
-0000137           /FLUME 1//LOCATION-FLOW//01JAN2017 0500/PLAN 06/
-0000138           /FLUME 1//LOCATION-FLOW//01JAN2017 0600/PLAN 06/
-0000139           /FLUME 1//LOCATION-FLOW//01JAN2017 0700/PLAN 06/
-0000140           /FLUME 1//LOCATION-FLOW//01JAN2017 0800/PLAN 06/
-0000141           /FLUME 1//LOCATION-FLOW//01JAN2017 0900/PLAN 06/
-0000142           /FLUME 1//LOCATION-FLOW//01JAN2017 1000/PLAN 06/
-0000143           /FLUME 1//LOCATION-FLOW//01JAN2017 1100/PLAN 06/
-0000144           /FLUME 1//LOCATION-FLOW//01JAN2017 1200/PLAN 06/
-0000145           /FLUME 1//LOCATION-FLOW//01JAN2017 1300/PLAN 06/
-0000146           /FLUME 1//LOCATION-FLOW//01JAN2017 1400/PLAN 06/
-0000147           /FLUME 1//LOCATION-FLOW//01JAN2017 1500/PLAN 06/
-0000148           /FLUME 1//LOCATION-FLOW//01JAN2017 1600/PLAN 06/
-0000149           /FLUME 1//LOCATION-FLOW//01JAN2017 1700/PLAN 06/
-0000150           /FLUME 1//LOCATION-FLOW//01JAN2017 1800/PLAN 06/
-0000151           /FLUME 1//LOCATION-FLOW//01JAN2017 1900/PLAN 06/
-0000152           /FLUME 1//LOCATION-FLOW//01JAN2017 2000/PLAN 06/
-0000153           /FLUME 1//LOCATION-FLOW//01JAN2017 2100/PLAN 06/
-0000154           /FLUME 1//LOCATION-FLOW//01JAN2017 2200/PLAN 06/
-0000155           /FLUME 1//LOCATION-FLOW//01JAN2017 2300/PLAN 06/
-0000156           /FLUME 1//LOCATION-FLOW//01JAN2017 2400/PLAN 06/
-0000157           /FLUME 1//LOCATION-FLOW//02JAN2017 0100/PLAN 06/
-0000158           /FLUME 1//LOCATION-FLOW//02JAN2017 0200/PLAN 06/
-0000159           /FLUME 1//LOCATION-FLOW//02JAN2017 0300/PLAN 06/
-0000160           /FLUME 1//LOCATION-FLOW//02JAN2017 0400/PLAN 06/
-0000161           /FLUME 1//LOCATION-FLOW//02JAN2017 0500/PLAN 06/
-0000162           /FLUME 1//LOCATION-FLOW//02JAN2017 0600/PLAN 06/
-0000163           /FLUME 1//LOCATION-FLOW//02JAN2017 0700/PLAN 06/
-0000164           /FLUME 1//LOCATION-FLOW//02JAN2017 0800/PLAN 06/
-0000165           /FLUME 1//LOCATION-FLOW//02JAN2017 0900/PLAN 06/
-0000166           /FLUME 1//LOCATION-FLOW//02JAN2017 1000/PLAN 06/
-0000167           /FLUME 1//LOCATION-FLOW//02JAN2017 1100/PLAN 06/
-0000168           /FLUME 1//LOCATION-FLOW//02JAN2017 1200/PLAN 06/
-0000169           /FLUME 1//LOCATION-FLOW//02JAN2017 1300/PLAN 06/
-0000170           /FLUME 1//LOCATION-FLOW//02JAN2017 1400/PLAN 06/
-0000171           /FLUME 1//LOCATION-FLOW//02JAN2017 1500/PLAN 06/
-0000172           /FLUME 1//LOCATION-FLOW//02JAN2017 1600/PLAN 06/
-0000173           /FLUME 1//LOCATION-FLOW//02JAN2017 1700/PLAN 06/
-0000174           /FLUME 1//LOCATION-FLOW//02JAN2017 1800/PLAN 06/
-0000175           /FLUME 1//LOCATION-FLOW//02JAN2017 1900/PLAN 06/
-0000176           /FLUME 1//LOCATION-FLOW//02JAN2017 2000/PLAN 06/
-0000177           /FLUME 1//LOCATION-FLOW//02JAN2017 2100/PLAN 06/
-0000178           /FLUME 1//LOCATION-FLOW//02JAN2017 2200/PLAN 06/
-0000179           /FLUME 1//LOCATION-FLOW//02JAN2017 2300/PLAN 06/
-0000180           /FLUME 1//LOCATION-FLOW//02JAN2017 2400/PLAN 06/
-0000181           /FLUME 1//LOCATION-FLOW//03JAN2017 0100/PLAN 06/
-0000182           /FLUME 1//LOCATION-FLOW//03JAN2017 0200/PLAN 06/
-0000183           /FLUME 1//LOCATION-FLOW//03JAN2017 0300/PLAN 06/
-0000184           /FLUME 1//LOCATION-FLOW//03JAN2017 0400/PLAN 06/
-0000185           /FLUME 1//LOCATION-FLOW//03JAN2017 0500/PLAN 06/
-0000186           /FLUME 1//LOCATION-FLOW//03JAN2017 0600/PLAN 06/
-0000187           /FLUME 1//LOCATION-FLOW//03JAN2017 0700/PLAN 06/
-0000188           /FLUME 1//LOCATION-FLOW//03JAN2017 0800/PLAN 06/
-0000189           /FLUME 1//LOCATION-FLOW//03JAN2017 0900/PLAN 06/
-0000190           /FLUME 1//LOCATION-FLOW//03JAN2017 1000/PLAN 06/
-0000191           /FLUME 1//LOCATION-FLOW//03JAN2017 1100/PLAN 06/
-0000192           /FLUME 1//LOCATION-FLOW//31DEC2016 2400/PLAN 06/
-0000193           /FLUME 1//LOCATION-FLOW//MAX FLOW/PLAN 06/
-0000194           /FLUME 1//LOCATION-FLOW//MAX STAGE/PLAN 06/
-0000195           /FLUME 1//LOCATION-FLOW//MIN FLOW/PLAN 06/
-0000196           /FLUME 1//LOCATION-FLOW//MIN STAGE/PLAN 06/
-0000197           /FLUME 1//LOCATION-FLOW//01JAN2017 0000/UNSTEADY/
-0000198           /FLUME 1//LOCATION-FLOW//01JAN2017 0100/UNSTEADY/
-0000199           /FLUME 1//LOCATION-FLOW//01JAN2017 0200/UNSTEADY/
-0000200           /FLUME 1//LOCATION-FLOW//01JAN2017 0300/UNSTEADY/
-0000201           /FLUME 1//LOCATION-FLOW//01JAN2017 0400/UNSTEADY/
-0000202           /FLUME 1//LOCATION-FLOW//01JAN2017 0500/UNSTEADY/
-0000203           /FLUME 1//LOCATION-FLOW//01JAN2017 0600/UNSTEADY/
-0000204           /FLUME 1//LOCATION-FLOW//01JAN2017 0700/UNSTEADY/
-0000205           /FLUME 1//LOCATION-FLOW//01JAN2017 0800/UNSTEADY/
-0000206           /FLUME 1//LOCATION-FLOW//01JAN2017 0900/UNSTEADY/
-0000207           /FLUME 1//LOCATION-FLOW//01JAN2017 1000/UNSTEADY/
-0000208           /FLUME 1//LOCATION-FLOW//01JAN2017 1100/UNSTEADY/
-0000209           /FLUME 1//LOCATION-FLOW//01JAN2017 1200/UNSTEADY/
-0000210           /FLUME 1//LOCATION-FLOW//01JAN2017 1300/UNSTEADY/
-0000211           /FLUME 1//LOCATION-FLOW//01JAN2017 1400/UNSTEADY/
-0000212           /FLUME 1//LOCATION-FLOW//01JAN2017 1500/UNSTEADY/
-0000213           /FLUME 1//LOCATION-FLOW//01JAN2017 1600/UNSTEADY/
-0000214           /FLUME 1//LOCATION-FLOW//01JAN2017 1700/UNSTEADY/
-0000215           /FLUME 1//LOCATION-FLOW//01JAN2017 1800/UNSTEADY/
-0000216           /FLUME 1//LOCATION-FLOW//01JAN2017 1900/UNSTEADY/
-0000217           /FLUME 1//LOCATION-FLOW//01JAN2017 2000/UNSTEADY/
-0000218           /FLUME 1//LOCATION-FLOW//01JAN2017 2100/UNSTEADY/
-0000219           /FLUME 1//LOCATION-FLOW//01JAN2017 2200/UNSTEADY/
-0000220           /FLUME 1//LOCATION-FLOW//01JAN2017 2300/UNSTEADY/
-0000221           /FLUME 1//LOCATION-FLOW//01JAN2017 2400/UNSTEADY/
-0000222           /FLUME 1//LOCATION-FLOW//02JAN2017 0000/UNSTEADY/
-0000223           /FLUME 1//LOCATION-FLOW//02JAN2017 0100/UNSTEADY/
-0000224           /FLUME 1//LOCATION-FLOW//02JAN2017 0200/UNSTEADY/
-0000225           /FLUME 1//LOCATION-FLOW//02JAN2017 0300/UNSTEADY/
-0000226           /FLUME 1//LOCATION-FLOW//02JAN2017 0400/UNSTEADY/
-0000227           /FLUME 1//LOCATION-FLOW//02JAN2017 0500/UNSTEADY/
-0000228           /FLUME 1//LOCATION-FLOW//02JAN2017 0600/UNSTEADY/
-0000229           /FLUME 1//LOCATION-FLOW//02JAN2017 0700/UNSTEADY/
-0000230           /FLUME 1//LOCATION-FLOW//02JAN2017 0800/UNSTEADY/
-0000231           /FLUME 1//LOCATION-FLOW//02JAN2017 0900/UNSTEADY/
-0000232           /FLUME 1//LOCATION-FLOW//02JAN2017 1000/UNSTEADY/
-0000233           /FLUME 1//LOCATION-FLOW//02JAN2017 1100/UNSTEADY/
-0000234           /FLUME 1//LOCATION-FLOW//02JAN2017 1200/UNSTEADY/
-0000235           /FLUME 1//LOCATION-FLOW//02JAN2017 1300/UNSTEADY/
-0000236           /FLUME 1//LOCATION-FLOW//02JAN2017 1400/UNSTEADY/
-0000237           /FLUME 1//LOCATION-FLOW//02JAN2017 1500/UNSTEADY/
-0000238           /FLUME 1//LOCATION-FLOW//02JAN2017 1600/UNSTEADY/
-0000239           /FLUME 1//LOCATION-FLOW//02JAN2017 1700/UNSTEADY/
-0000240           /FLUME 1//LOCATION-FLOW//02JAN2017 1800/UNSTEADY/
-0000241           /FLUME 1//LOCATION-FLOW//02JAN2017 1900/UNSTEADY/
-0000242           /FLUME 1//LOCATION-FLOW//02JAN2017 2000/UNSTEADY/
-0000243           /FLUME 1//LOCATION-FLOW//02JAN2017 2100/UNSTEADY/
-0000244           /FLUME 1//LOCATION-FLOW//02JAN2017 2200/UNSTEADY/
-0000245           /FLUME 1//LOCATION-FLOW//02JAN2017 2300/UNSTEADY/
-0000246           /FLUME 1//LOCATION-FLOW//02JAN2017 2400/UNSTEADY/
-0000247           /FLUME 1//LOCATION-FLOW//03JAN2017 0000/UNSTEADY/
-0000248           /FLUME 1//LOCATION-FLOW//03JAN2017 0100/UNSTEADY/
-0000249           /FLUME 1//LOCATION-FLOW//03JAN2017 0200/UNSTEADY/
-0000250           /FLUME 1//LOCATION-FLOW//03JAN2017 0300/UNSTEADY/
-0000251           /FLUME 1//LOCATION-FLOW//03JAN2017 0400/UNSTEADY/
-0000252           /FLUME 1//LOCATION-FLOW//03JAN2017 0500/UNSTEADY/
-0000253           /FLUME 1//LOCATION-FLOW//03JAN2017 0600/UNSTEADY/
-0000254           /FLUME 1//LOCATION-FLOW//03JAN2017 0700/UNSTEADY/
-0000255           /FLUME 1//LOCATION-FLOW//03JAN2017 0800/UNSTEADY/
-0000256           /FLUME 1//LOCATION-FLOW//03JAN2017 0900/UNSTEADY/
-0000257           /FLUME 1//LOCATION-FLOW//03JAN2017 1000/UNSTEADY/
-0000258           /FLUME 1//LOCATION-FLOW//03JAN2017 1100/UNSTEADY/
-0000259           /FLUME 1//LOCATION-FLOW//31DEC2016 2400/UNSTEADY/
-0000260           /FLUME 1//LOCATION-FLOW//MAX CH VEL/UNSTEADY/
-0000261           /FLUME 1//LOCATION-FLOW//MAX FLOW/UNSTEADY/
-0000262           /FLUME 1//LOCATION-FLOW//MAX STAGE/UNSTEADY/
-0000263           /FLUME 1//LOCATION-FLOW//MIN FLOW/UNSTEADY/
-0000264           /FLUME 1//LOCATION-FLOW//MIN STAGE/UNSTEADY/
-0000265           /FLUME 1//LOCATION-TIME//MAX FLOW/PLAN 06/
-0000266           /FLUME 1//LOCATION-TIME//MAX STAGE/PLAN 06/
-0000267           /FLUME 1//LOCATION-TIME//MIN FLOW/PLAN 06/
-0000268           /FLUME 1//LOCATION-TIME//MIN STAGE/PLAN 06/
-0000269           /FLUME 1//LOCATION-TIME//MAX CH VEL/UNSTEADY/
-0000270           /FLUME 1//LOCATION-TIME//MAX FLOW/UNSTEADY/
-0000271           /FLUME 1//LOCATION-TIME//MAX STAGE/UNSTEADY/
-0000272           /FLUME 1//LOCATION-TIME//MIN FLOW/UNSTEADY/
-0000273           /FLUME 1//LOCATION-TIME//MIN STAGE/UNSTEADY/
-0000274           /FLUME 1//LOCATION-VEL//MAX CH VEL/UNSTEADY/
-0000275           /FLUME 1/0/FLOW/01DEC2016/1HOUR/PLAN 06/
-0000276           /FLUME 1/0/FLOW/01JAN2017/1HOUR/PLAN 06/
-0000277           /FLUME 1/0/FLOW/01DEC2016/1HOUR/UNSTEADY/
-0000278           /FLUME 1/0/FLOW/01JAN2017/1HOUR/UNSTEADY/
-0000279           /FLUME 1/0/FLOW-CUM/01DEC2016/1HOUR/PLAN 06/
-0000280           /FLUME 1/0/FLOW-CUM/01JAN2017/1HOUR/PLAN 06/
-0000281           /FLUME 1/0/FLOW-CUM/01DEC2016/1HOUR/UNSTEADY/
-0000282           /FLUME 1/0/FLOW-CUM/01JAN2017/1HOUR/UNSTEADY/
-0000283           /FLUME 1/0/STAGE/01DEC2016/1HOUR/PLAN 06/
-0000284           /FLUME 1/0/STAGE/01JAN2017/1HOUR/PLAN 06/
-0000285           /FLUME 1/0/STAGE/01DEC2016/1HOUR/UNSTEADY/
-0000286           /FLUME 1/0/STAGE/01JAN2017/1HOUR/UNSTEADY/
-0000287           /FLUME 1/10000/FLOW/01DEC2016/1HOUR/PLAN 06/
-0000288           /FLUME 1/10000/FLOW/01JAN2017/1HOUR/PLAN 06/
-0000289           /FLUME 1/10000/FLOW/01DEC2016/1HOUR/UNSTEADY/
-0000290           /FLUME 1/10000/FLOW/01JAN2017/1HOUR/UNSTEADY/
-0000291           /FLUME 1/10000/FLOW-CUM/01DEC2016/1HOUR/PLAN 06/
-0000292           /FLUME 1/10000/FLOW-CUM/01JAN2017/1HOUR/PLAN 06/
-0000293           /FLUME 1/10000/FLOW-CUM/01DEC2016/1HOUR/UNSTEADY/
-0000294           /FLUME 1/10000/FLOW-CUM/01JAN2017/1HOUR/UNSTEADY/
-0000295           /FLUME 1/10000/STAGE/01DEC2016/1HOUR/PLAN 06/
-0000296           /FLUME 1/10000/STAGE/01JAN2017/1HOUR/PLAN 06/
-0000297           /FLUME 1/10000/STAGE/01DEC2016/1HOUR/UNSTEADY/
-0000298           /FLUME 1/10000/STAGE/01JAN2017/1HOUR/UNSTEADY/
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dss b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.dss
deleted file mode 100644
index b235d149e14a143c6e435a73b8ba59317b12aca4..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 324608
zcmeI5349ba`^O7-aj1x*9HOfzhbY}`=>fFEHc&3hA+!jJ2#P2kh@vQ{fQqP~g8D}U
z5qSZ{3ttqx@Bl@i7XlUpROligHz>y|p8e;^(Vb2*nHfr9w@p5uou_F#&*nGZc``{R
zlew;4&z@IQiiv^GX)!S|iC10QwpuHk!O0(=*1bm{IVR5EF1;<bfk3PH<W_Ml$RE#$
ziGly};m_IlGa7#m;NM+#CEXWik2#%#UBCwtm|mxoAIWAQ-eyZa{69`V^~|bg;c}EF
z^{z#~{5n>M%=2iz*SV}v%z2O6CG(~E&f~f78+)j?H+NHe?h$HhA1?VV@$og$IsYs9
zyW^E>%D%fXE6e43sptP=Wq5&=$?p4ptVxgUM#f-0W3rAhC}2$N_OIx_A5t|Y=C&H@
zqX0*E%}eV4(SM~!Anx*Gi}ih&!^ui3Usiv!RnhI$)&KA1ukSRmdiS!o{@)XE1j+-U
z;A<!1NYU?T)a=-fSQBVmc}UBqd-&&4{HwQ8mEwzz!>)5Z9>e4Cl~Nb;8b{_)Lo=ks
zE%D3k&y>iLwspzhlwI!qW4wNrU5Spb=j~^@^VjKm`hOkzQro2uwO3y!-#`6^lE44!
zQJVkbF=~sT<Au{dV~7zpzdufY1%0!2ua^9?>`cy^TJnEnxsmL<A7*74HHQAz7*-b9
zKJdE-Sy}A<exiP#%^2jeW1i0#eA`=Hg5`{v`oE&*uQL9TQ2IeGW2rP{UGd7X?|t^~
zbl(pf(j!>?51K#oD7B~mMQznTsjc!4wWt0~ZPCBfR$_M5`P9!EHlC1IhvrvaK<$cp
z)aKNs_RB)L|B}tr!uBQ@gi)lNY2iPn{D=O09Ul96t10!FJe&Tm)hudTyiRT69BRMb
zMC~^}QJcoTyA3M~{Vm;YJ<FVv|9l1e-Y;g-zkkNc^eOxPk6C#>WZ%Dlm8UH$NBjDf
zVs_yE?IbpS@f>6F3}Y~!F?otH7{{25Wegr;OvW$<16i57GZtOhvCm*EI<sTnk+I;a
zI@+8^87}Hk?&D-xO8#Vh`-%JBRZ~j;UG1mKecU#o<nOP!mgc)TTub;~H(W!1y1oas
z1G-UrV|Qw^vZ(FZi`qUtsl7In+8INsoqi9svxZPR^KNQix{uobyPw)=_fq@vFgmtM
zb9k(`QTS}AGK&7TlEd|!@7sWV_r<I%m$2_{$jVZiefI^dEOqgBL#mI<(p=J>evEzp
z*hlF9x!n$8?c3Fi!FTMKIqm-wW3ZVW^AKb3b62|OTE^gecFZ?m2D|WB$q$T~lmAHl
zdzkpiE#d3O*snghr4E1l!>lLuPZ9mygO%x#9a)Lmfi<WdUWMBJXHk38nbh`WW8MAE
zrundEcR#(oi~ircJKg<1|1a~mE!skV`+11kkG4|#$<Ne&u$|h4+o*kS2etEmq4p~F
z-OX58=x^O`Q$zHBTeEVsWZ#>_%8|gnH=dOvz`i$@m17h;_IFmJe*R)i{$LD#XH2$N
zr>eIyCR-STLdIm%F*4|W9Ii3uqxIDcb58vEzoz<H{Hwd)nE6}xXmOe9uh#!Qe)$E*
z;d{HjeEiDe#?zH}tb6IJ;r}#dhJWsH0sXmq9cp_x+;8c34*kErwZcB&r~Wl*zE^E(
zGtZ~?x^t=ReIB(R45D`at<>%sPi@<N)V_T?wQt@LzW%>=8~xq8gQ-0-mfAy4Q2WN6
z)Xuq!+I>$^yXR?Ye;Y^bfhVaAu<wp%W%=d?`up2iS(@VShSZFe<tp~Qv8){TvF{zu
z%5gdS-o~sPce3vt!pbp}eeb=v9E)G0zRlY;j6nfAX8dnEENwUb`%R2NAv@+<&gOri
zb{%7|o*nazjKPl<W+nHEyqr^ncQ*AIBd_$~678uL{#pOz{s?gXH~mn=uAc7q)&E&O
zjsTnkSK&`=`;4qE>Apa0z>iaG&&;$A>9PI*p7;~z4<yD0I(EzI5!*c@t*g(U80+)-
zR<Y~Z&dM<{@EM4GWCrjbaPn6vAIGM=tJtxzsK|kT=d`Yvf0D@m_xkkcl;9sn`M+P@
z4_tZC7aZ^n@V^p&Eb-qyquaH%;eYYP^Z=A#A5Yn{X<Fsw2$gRgj{N1}-~Lhw{}z=0
z&8N}7!Fd(HpW^c>HlthHw9HQ3x?Yu@k=`pd)*r{5`vUlq6PwkwXJ&d@yFPGjd95n!
zP3NP6yKMZ)jEhTxZ{Ysn?>d$42*hG0aHReCQ_P88{~`XbYMa%?whp-Ka{Aq?Po>v?
z=)z?t&~sqZ>GW@U8{tQQ#lM=rybgGz8P!&Te<J0dLc=%0#p~k5G<jwTplXUg#qsZ=
z?f)!P>^POU{*&6-=Npad1D&Ge2&nnX10RR@!WL9t3I546_CJUc>AINs2(bFU3I5R(
z|H`)ik4f~%m0;hJvcKsReN?0B2q^i>!@p8%3IBkfoB$j3xKC8!=kZ^n|L?~&fkWHB
zu|Z{)X!`}|;NKbg9EhHCK-T{+!CzhnB({_Br-Og@vugmfE7kq~c;?*akF)guzw*%z
z1oZvG{r?2g!sPy==O9OLNrM-*ha+90|7RViiRbqKd~q!>Cw>bcy))HSf>D4D0(R8x
zfCz?eDjIA5+wdptz*rmpqon-lAYdcS-*k{8`$xz4_XmpWX&9&F@&B=uKOF!ZuE+l(
z8@j1<3jQ?yZTSBx<xd9y>uCO_BOJj$y1D+F_(MC5$A8nSsjiaOe>w<wpXMLI&`m{C
z^B3aZ%>O1Se>w<QOY=7!<Ou#z&7a+;4PXD`P4WMVls_E^yjSy&VCdnZ;d}9_{+|&4
zX8vns{Nw02;CY&V_#j8{PY(Qr_&4|e&&;60N?iZr=osJ_%|C*vhl>Vne=qHSGynEd
z{&WoRBF#U1kR$jf2mV6*Cz!7Pqow@m_}?haKZ2=;i&h=~=q3Km{6CTMXOjRm|L{SM
z;GZ1$3-O<5ivQoF{OS1L!<v5tQx6vnZrXc^e>49px==qQ+kbTYub$=~KFAULlLLPt
z{*z4cf3uW79se7t`A0DIaM2w23;lmH|LIcxbo}o^%|CpQBlst{@2jZ)h4@c4#s4}f
ze>(nmo8}+E)Wbz{;4j3#ng3aAZJZL<|9Cq7cbeuOKFAUNlb85!X^Q_2QvP)OZ;<96
z;nc&$Q}7q!-^_oEls_H+J45piAK(c63D!0P_AZ_Qw_O8(OFO%6_*o$E*<--4tRZ-f
zH~#*RKtiiPT&n~>Umsu~-x1s2@j3#qlmPgE#4XLyZI|@S^d3EZzE1cV(W`o;Wfb8A
zZC6<`@8{}gJO>u$LF<n`1{LlcfB@0we#MP_&A;NZhq%}LHGf_ISKM<TO5;Cgc`kC%
zZ;?N|hC2<U-ou-u3tjeG*t%Bce#^ypU+A}h4@lh79Nm^>zhw|U2EE|(M=qLQBM<#r
zI}cTFn}@3O&O_U8%tLoPnTKY+l81KA%0rE^^Uxzd<)O4~d1%BL`KVrld^F+md<1R3
zxK8=#{C@eU^R4-4;`n?t`?Y-Z)LZ%J-u!$tV@p12yf+^$J!>T@YPb?z7P}JN-C!kZ
zRC^`beC|rL>u5e|x+@>8!T;Cqt9&$gUOuWhJ0EozosX&v&PO-jkdHbh<)cq8&PU77
z%}4L<$wPe$^3a?Wc_{YPJk)+{9;!Mb5AE-qhprFgp%snt&_loFq8jUS(VCUHDDnAR
zv|wZ|sysZGlvTG?k8>XlPE%d~>-t}x0~PZe(D7d}x$}6}{55}mE@*o~&IR6Yxe~`-
z@tRBFH5YByTZB-B)DN${%GX{B-)k9`#qPCqFTU48r(*leeU|okU+A-d4@hA7&-6ER
z+a*30-)+(NTgrRe7~cO@-Zg4{_I*aORFkgvPe{EViRYo_Zyy_x$m@8QN%PnIkM}vH
z{YB3?<u?BF@-tGM`z`X@Excdx1b%0Lt9}c6gwWh?xeM<L{TA>6iCdbZ+p_GlfPVO_
z%Fi$UOq*KQ;GdQG83zBv#EikKW75yGsZ;U)&`%(Kfx$nk^Yab<xpmMl2LJq1RAlfE
z{~cKVzhJo!u-rFT{+(cXS-|o#f;E>P^g#QcYpb!oVG94~7>=G8E)6TU@n4$n(ECR2
zxup3=E}Ih(H=4iZe<IE^{T-2co|X6b=Y5tE>l=sfwJ6_j#rqcX@O!TKI``rGEot4^
z{gy!S{TBA_EA}d5vioGbFZ5f$2PAH3j&8fK`!wX)7W~33_$}OfktOqfu7AdBJd^*G
zSTg<(f0X>qZXf;oa&)|4>|e8AQen?&;15Zk14}C8anSK!vCn-S{}nUtd3~?rU&lXO
z`1tvtZN;h&bo^KBb6;QoD^|Q)>vtXhI{x+bzv7+)I{uFzdmKmZ?l-9CNqy1G<^2Y_
z)UwZfzu|SfFWhecACS1EIl499Z-DWCxCsJ(k=<{A-_gC?Z|l|k-~6J{gMt?kJ3RQG
z9V6EkefD^8O|SihMSndPJo5AWBSj4+2W!`>_eW8)>A{w(-~6Yj%dFt7FMjiH(Gzb3
zeT!%RRdnAw!3W>#_UGvF^Mm~#S^2-w*DVO9ZGYi#(Gwp9Gv2%LP*K%I!D}D5@?g=k
zUj)aep8Ch)kCp^4x%kCD7Jv73@ROKJ{#?BOn_$Y1xraw5uLw5qeZ6b+dpW^>2Y$MF
z^kw<MZOQ*`YLoqK@RORa9=bSxb@1O)S|7c*#dpE4j{NdR(FX;=cVGGRXi<lC!6|9a
z{9g3a_rcb61|2GVYC|yZ?z{FDcK#uF-HQ9R7uNVG*n9tdTZ%s36m0u{9YRGJg~1CN
zJbR#MXefBJ`klX??cWltciLwM&)&8rm>N^<$k{Ld9DMtwWrtr2ZVjG#Ta|+sZ{8Xl
z&@%17YY%M;KJv!leg8dkdvNPTb@u=F|F#D^O=-RVzx96!UcWPCf14@41jjvk{{F?M
z?+DJX_v^kk5AFy~*!cRsZku)lN4}V_uUpd2;NULH_I7)IXK>@~llK-D?hN`H&)s`t
z!(G8Aw|=s>aL}&cjoUWtJuqWeu*nCf?K_aSEBM>!7W)ny-4)z?%EkN6!B|Jv+a1jR
zbJgA=|L)*tzmC~Ey2I|^OOGFYVq@m+V4HsbKGCPo?%>YkQ^sw)VRw+61=co%&M%49
z;{yDnwd}gw_z09T_6Yw{`Y3G~^#1nu=gayW*YSVyj(u6Pb>m;hf9dPcXs*9>{OkCS
z=JVH09jEo#pW{0I?T<}GIJflmUtj+#!g;Q*0rGlI$A5IkKfmA56w4@HOUfVHGc&D2
zy6r+zrZN5eKuipLTs@afU+q_7J*kCwU%1}@J|J;Rb97slYvAhVic0rfkzW6)bjL5+
z&%YWFqHqsbe=6iL(EKa*xv%+a{<`k3xaYvhi2nm4vy0!|VbgDsPmnV8TMo5w*=M1z
zqb|{B`4R66eHQQmiCdbZ+cNF5Jd};j$Dg?mXQP6_*=X|p*=YWg+31&v+34+ev(drj
z*~q^!8~t%K8>Q6BLGL!oL8H@i(A2&;X!kui=;?_$=&w0BX#b)dG-`bgTD>O+-BCFg
zp^I|S{{p$FW2am+b6_s|{efI`cw#Opd^;CC^K~xjnwN`a<mRF;unjKFMHwIFB540t
zdp8$-_ew76`6Pa)%7eM6+by}Mcb8n$FeMiaZk&sTpP7rs{h5O*{gQ)L<mRBkALXEi
zvvbg)aXBb=Xb!61KL=gW7XREd2MxIhmn|j-jVsJX*_*S`hfA~ddpjbyZGAH0Utez`
z=X#_0M-GdV5f_@j=6^EIJN=!Jao*|pch7;}YiWYJ2&Q{2?K8SvYkRAO_bKWoyX>#D
zgeNY1CHgCs@V?Mr0UwaKr8&Ai*0pbo*MBlQll>gQZCG8GxIc&WvC_v%p9A_F(C2_Y
z2lP3h&jEc7l+SYj-szz3uh3g8z&|NA(6L)qkJ#=RX<dE(#8}?^Z`0akpC#ZI`Yes{
zzR+g@ACS1EIl4X8K8x9h-Ot+^bxGZIU6<6VRj)~%c4ec~!$X3pq2F&$ou4-<wfE_>
zQ)_<kO=|7ee@bmRrHb)f_IXCtA1^f?@1AT7f3~CX!t85}Az$2SEUovjvF6|t#ue$4
zjIpz(7!3<vGdk>k%kZD|zA@p^PmSLPFE#GEGuIf_pupI@`6r|1u<gb_ukAE0=)cow
zmc7%Mvv9ky?)8u{;Ob4r{@d3Z=$}<aqoujV-ES>5f`2YD0$(mP+O?i%Y%Z8>wEKO!
z5qxs8@%cLwjCwuB8b`B78jGe6GWxIYWi+jNwK4wPL?gM%<wjxC21bKQRgJCHx2G;Y
zYg_8#Czhm^CWiI=uksoHZqEtLU-Nf+uIT?Of9Hyh|MJJwOPp%{n!lIxrL6y#_gSvQ
z4SUNy7FX};7=+(~=jvS@fdJ{VnAgtgiuZ*+3;2M<EzQxbdF`y@y>1ryh7-IN3yJ>|
z{GIw)Jo&SDC*!yf{&3>yb70BIh`*D4+;#j{>~mkof8^A~C!_w+@vr0mWSn;=`?{yU
zpVoUi{&oE8_^-I<fR6u)%O0+Qy8W-)|GF(yanFGY8~?c4cfQvke+-?pm+<EPc5d%A
z#0mErZovD(y$0|BiCdbZ+p@gZ@b`za{;vP%pdj$SH>Tg9o1PpVy!hT5MxD{&(O~Oo
z>pz%%>A2t>*N*Fu^3V9-JuBN*e|P+(V2>6v?>RU3#bDdtQqJA6bV~4vq5X^oYo-S`
zUD!Ehb<6(*Kb}AE^?lFG3C`VBYg&!_-VEN9bL$WN=f4|#GOO}y?LV6ztkZVXB{{b&
z2!1!GeYd!jkAlm8TygIcy*~{OT5)R4dY^tC96n>>XUPqh1pj&Ct?dVDd>uS%Ovd;@
z7km>uy~d;2UnVaP=Dd6JxC<W14t6_j_kXHv$qf#?qW*+IeOCrs<(zxyt3Ou-e}1g$
zLwl}Y6Fkx+dEwaQ-vvY6&U*S~v^LoF`A(k=`F35f=bIaUIB?7QVEu>3Ph9x#hG4zi
zhc-5w@<VXx@_n=4Z~jwoK>xQ--Sow#;J8Vjw@FAZ47Po(cAbB23I!*3yy4!x7j6lr
z|9<}^)z@qZ`s!{xZ~B;@gG~<38!)}e*5GL`|M1-BIa`At)t`FVs#~@Nf1jRm&x${`
z1!u)QvcNxXd$7^Sv5yWv^OxYH^LA7o{LC-G70*`Ri>mAhjyh$@Ma}Qu5qz!k?Vo?Y
zc}H;0xntY?(q?Dy(=UxXM^E1wJiStfbDICQGdQsBC*M4uvMab|gmG2(vAcr3Yjxg#
z^qXBlqu{|?6aLy2?EAzkJBBsi9n9N2^6k}qy}hI3bU4-Y*#8m|aTV}55dQicsIW1h
z<G*6pe>(mvZrdNKeI5Tg{^2~(ZNQ3I59s)>*yp~!{#VSn=k>jge;xmD`RC_@wiT;B
z(D8p_&V7Eb!H>VL__>DIjBahyGCOtadR2Nxdau~n_&~e#wsHPIqA#w6-!D9m{b1*q
znA7n7@Tr79Jq8TR8Zs=cyFWgydyhbJAdt{15Z5ZfpBacJ_ZzbD|L}Ad-nTl=fDcIA
z(j47Z!3O*i--Czydfqp{m(?|s_~Pr~@_bD2!uB!2>FKa%&T_nF?93cwUf0(~Cs`}Y
zN$2~nb+!<6zQJ^Y4@lh7Tuh8oV|;8+a46FV&(rgdE0+EMyLsgE2P7<ayVjT>Xe?wJ
z!3QL6Y0g1odS-eLtdeUa_y0^R2Vs^EV3sj>ePRcll%<2thF7~iXX(rA&F5?#yf2)y
z-~$r3H0Pkxfn}FbT~c9<00)gUE=?NaBrN;7)<|EVW7c>L(+EBwaZ7U!8Z9i%G1&`q
z9Edr>I@1ms+vEC2U@6l%*|ko(=(btsc%~D4K;o9>9CSLcoDxUZdT`Jwu#A_m{MNNb
zx=^24<5H#(d_dxs<{UJtSpJcV-g!QUtQYQ}QQ#=kczQ<3m{eX%;^^8QW}SaCo!|!&
zw>0OVQ^9goetv3t+$Chq4hNkAOWE}@XwhkVy^N#J0-7}@;C-uOLEr-tw>0OVQNeP4
zjXc!zzd2;xcL$9EOPR(It~Js*2xg5#m`2bEejss6a}GKkSoZBRmaM(vpi^L(Ac@Nl
zT<a9uK69B)@BxWinsd;oVEJq9JoNR~Ib{8Q2aN(tnZ`Y?HHz(?5Yq@gAaP4`_8Q^(
z4-E{y77uS1n6D)em#;i9i>#sJpi^L(C}DY7my-35eO!udpSpNoIA6gBByMTWUMJD0
zU|GFw9(pr7hrEZuL8HJ@rtt>X8pU=`52g`(K;o9>95gCoa@y3o#*|fa$T~=7jW%s{
zfn}0}<x8%0ifx|>Oegq&#4XJ^=v1(*(mM~$*_}h)r(xD9>30b%Wg1tx)+n}nzF``{
z2PAH3&OxIC%lBq%CF@x^XcRamOE^M#&gkkkF2%ObKTIe1;J)ZjbgS%lDOhg5F%O-G
z-)#c#MRCw6u$1XcbE`34Z1*JMeWC6FACS1Exze#5b5~^p)+KY$D6niPVL8&ZM%wOy
zy3yP&xSQz&KajYkIR~8zmUldvhk|G2lK0y<=oDDWbS`kMQ*8UZ$uxowNZit#gGNPM
zuFTIc3VNPq!1{9BS0r0L-sAEbfQK@|<5FMuqssW06r4ku@wEN*;Hi<UT9=I<0grK5
zg8yGq{<Lj+zUI#laYS1O{?_YFz&w`O;zla1Wc<@M`*6)aqPg?JIq<h$hfDCkOUj@2
zXX<GF{18X9g*AVn4dC|rZypzZL&~4_^X}99BbqxeoCAL${>}UgrTl3hxEA9N=a%Ii
zpTuYJEfu!*bXM1%ndxcm`o!YCNYh+ex}BBj`qKk(HZzbw8W!9yFTb{>JOX(AZ!ht0
zzMoL1KmG2K*MB-TaIcR4Qi3@#yTg0|1%Dy_&HS&C@oz!LP0rK&PYl50@GT1dLi^u*
z4{E%WKOIvVW2*m~;WA3bUa9XcX}x{qEDK)&swYB;!efzSTp=!*IOcxIKj=-Vj{w~F
zQScYy-^_n$fBN+$>i-sWtnDIa{?xaG|IG<9{z;@^!Tpw6xOPB}Ks|h{75s(xH{ZAX
zyFWdMCHd3wzfrpWkB&18&*4+>7vkT{KVg83KOO(`Y5wJbzYzcCd)-5%{OS1L!<v6o
z@P~KTdWnBC|G85Bbo{TL=3gH83-NEB9}$xBr{jMkHUFsK4|A`)#J`z;-J7VylI=e_
z{&%6~Umo}i@o%0}(?iOij{n`J`9}r+49w6={G0htknvBT<A0}V{^fzc5dY?RSl>wb
z)A7GSntxRA_d5P(=KqhBKOO%&L-Q{W{H^hiZ~unp|0Ui`C6;LaC9wH_FyU9Hh(7`z
z<G%#|yQTc;_}}@Of5fwg0>XVcMf*>PfAjpmH>Ld9{6EdVJn*-U|Hqm6Z;|q6^Zzve
zsNfHU^b-H(`Cs*5Viry%um5cRpXN^wP84hv{Dt^8^Y1C;&*uMW{!u_aCI;r#DEJH4
zfAjpWXQceu{6EdVJn$Fd-^_oRjDI4V|EKv!1%HTrFY#}l|MjnwKb!xj`IiU&Lj0Tg
zC*49NmT3PaviX0Se^l@vbVnX?j{i96T4qC~{OR~#d$zEwv+wv~-{!I9TK^|Gw*qmb
zbHRN_#Q~1+LOygbN5!ATznuSDQvP)OuZc5%=3CDHYB_(>x!}Gd{Ln^x@!|)?!~lPX
zXF#oefD+GubCE~zv*7$X05Na7rVm>mz`WkXZoDt7s{uYBaZ7U!YcVL+o0$1Z9(pM@
z7x_1OUOPmpu{nO;&7DRX17?j4@xGuDd_dxs<{UIStT*v*`$k6X*MIW5c1ZEFyzmU5
z&z~5}%W|u0o#OgTeVI=10f}3hbI_?^xpP(?y0Ako`s1i~mgX@_UXGcrHHzyqO=cRw
z2PAH3&OxIC%Xh9%Fj`KjVt9>7^SBHz$3~YL$(ph8bllE-&VI{uf*(lS(wu`%1<OX+
zdFY|6T$EDFvF@?9KLawIwfeh_OFA}X)_6MJ7vd6pK;o9>95gCe#>9*<nm^LYcrN=q
z&n(S-Y+jD5`@7XBuFVw0`+`RB0f}3hqg!aML%mJvZVzk!KJrr@y7T^A^ll^XEM+>!
z_IIh1J!fcUIRftsI>84dZfUM`EZ^#Ool*72OFgqR_m_A%zUc2(BkfC@HGY8i1&!bX
z61OzxpivT&bp2ntj&s_!Jk<Z0Tr@h}J4>0)|MhpPllB?SI``mxK_~ct#4XJ^=yZt7
zZ~na1c)WYEXO`w?UwAoU2e{Qp`$cArm*IUuBlv*CEzLP-l(6LMagR77AMJc47ftQ!
zjw3t+5L^5}zAqrtd7EpUV%z5irW1TX;+EzdbShX*n>y9F|IQ)C@Mk-EW@&zoftTYy
zt~HA7o|l+L@BxWinsd;oU|Fw0K6+zOF4}#MJC<gSGL1h-G}^Y+TZnC+RZJ)Nfy6D%
zIp}m?Iksq=@xttDJ+m~=N$2G_7tc*|)mCpIwtLRN`$AlT4@lh7oP$OM%L$j~qq=Ky
z(bE&Xvy^Fsxx4N(itU~>rV)I=2NJh5=b+Pp<)>|)HHLg~r)QSt`Ng~(Pq@}8wtYr2
zo!|o!w>0OVQNc2<Q$D(9OD_6rj(3(ajbFOe$mUm@uOkbXM(_cNTbfgAgzLX*?cYHB
z0%K0S=Z&TH9`?-AJf6qP^1ExDV%ujg(+NHxaZ7V*ovQa&oZl}Wbt%e4`xkj<Dbwh`
z*=1ZNi0z)s@xD;^fDcIA(wu`vMN9(6FXqlP)*O67;Ap!xL%2<VyItXVpS&!CUF#Iv
zKK+<Z@BxWinsd;ph|A8m=A&VFUG7oqJ+qW*oaI`h*zTFaG=dLE+|rzbMhBMhcfDa;
zkv>Ua*(Kc<h_${~#>7!J76Rq@(X~#o?X#Nc1RvZN{fTa?U{i^GdU)ttP8^?)Mm5Sq
ztM_<kDbsl#zF+C;dYK@$d#d7nAuhoOByMT$*jcX5&o??9eA^g1Yl>%<vaygZt~G|+
zJ?3i(VmiSOByMTWL8l@vXTO$@zQAj&-+|Y1b{N~Tj`_sNbdGbaQ*8S@#595rNZit#
zgGNPM0?Xf9EixJwyylsuY%FB4YmH*NXCc!FJ|J;Rb775e{fF4}5|>ZCm5)B|lZVhn
z-dW0Y9(Aje%`GvXultxz@BxWinhWccYII=v;Ecsahuv>^W+@vB3E+EWuIipdvE9=M
z?+bMg_<+PM%{gdP#N@sC`3U&KJ>dTZyt9<)yxp}<vF&ps(+NHxaZ7U!Iu$H$9rTOw
z!?JG-|5@+5WGTPj$;&a@wMMbs^D@&2J|J;Ra}F96EN5)VN3EX9LmfN0<!I8FB!5TQ
zPp)-}ZJ#wvC-{KGEzLRTbYR(dNr5rp(N7KTOWR{V0=!+OUjH?Gu9&aI=MJae%j-3$
zmopP-`>-9m|9|Wy(|ewXBjBzrCg-0a<xktrmumhe0$-`W!+}4W`w`}EZofSt<xl$+
zNb@f>n-k%{fxj^S%gp~vDSz7Ex=iyw5%@~|9S-Y%3-NDm^Zzd8Py3?XHUCnxIS~#V
z_zUrG=I?)imas(oFNr??(OmOC5%@~|9S-Y%3-NEB8!%YPpN?O2)%;7%=0rGf;4j3#
zng1*)e>$$?*ZfZezT@&8Fb3eZ|8JgC@}rbL9rMc2{ErKp6X8U`Ux<G*|MMQCr7L;;
zr(=OvX#OVxUFp9=z5cgw{Ws4;>LTS&$NxHO{-tMgB0Q-13-NE}KTgV@j{jY$`JV`S
zrT-2!e<A+ObJrG2`P1>g-kN{u*_;3m?$&<~kN=waAC>Z_<9~^o{|TU1`mb={FT}rj
zzGGkn{r-~eKRW)`i}6>qEt&7|^S|afTaQhW_zncf-~#tudiC0ayY=70@o(mTyNrJ_
z9sf&q=Fi#|a{iym`IEr~?pxC<{Sk2BZ;gK(qTzYKv!(p$_+Q6UOJ6qaq3n;qtC*pp
zj<&Y{OYr|m%Abz^HPZac9^P^I1_%B^{F|@QwMWtdl(_yU)A7Idn*VX2Q}!<0t^Ztn
z{V!fK0@jP@D&<ed|C(t2We@K-e1ijjA^y$t|DKfcXY>Cw|KmWX>|HqU7q0(i{!66%
z+5A7vzwF^1hi`DV{(HFoH_!k2L&~4c|I_@B1D&#W;lN*re>4BMhiLgqw*T1tKh3}F
z;T@-MQ1t(V>%V#a*Bw&+Z2q6-f1K!)y&DC8A^y$$=g9cCWb^+t|FQ>n9KHdb*-`Kp
z;@>>~Ym<~eoByZz9|t;R@4|t<5dUWW=RZu#SK|8LlFk3q{L3ERarg#^eJ}BEp8wTN
z%Ad{u)BKMEow9e~z+Z@eGykWg{Mr0J&A;s79fxnIdY`BD-vj3PUtdZ2v-y9T|8byG
z_AVUw3-NE}|EH8coByZzmp!~ve#6*D=(XSB8Bl8<z;7M{=0#|ap9SRYK)9yZt|`gZ
z2QaVU(i-mz>zjZNNZit#!&(uFH8C3R%}1Ba$U`#+dS4Smrg5}ujWh<#8t-Eo!3QL6
zY0g2T!+IE>uGwJxK6t6;wN3a~o^}2APh9H^uOY>C%wsyi2PAH3&OxVw<<hfOqFd(Y
zq2C|y&XVgiuW|pIYmMUiQNJ*a-~$r3H0PjE!SbJ?BIEJNn~l5f%=OIDJTAk_aRq)p
z$4yL<_1_c4HKZ=a`$JrUA4uHNoP$mU%c6!W(XRYFba<k7mNK0;yVRM<o=r8!WpAbt
zd_dxs<{UISuuM$ZXAEml;F+blkIl<5-L*zK{$kenJktn1AaP4`bbG98^j#La5@r9K
zhYH{J&Qhjxook(RoWZO!m+1r_khrC}(y?q^{h+aX^G}{xn)^$<9B1Kq({AE2Gf7-O
zstVp0ViJ5n;+EzdG)iL9y#D*$4OXK12lLP~UwdaM)7inbPI3LH6s8k=K;o9>9CRw;
z64nCyY13~;&0*U;voyDTc{#?o)=2wB=JWM_rV)HV;+EzdG)h?V_1_!SUWsn~H4k;o
zbH|ac|6Y8L*DurgscW5L+vh!|6MR78mgXFEI<TyszSH>UwVj?>nxA9f<v8eCquB1*
z!8C#oNZit#gGL3*&F8K}u?O<dj9hmtWBp-{GL6mfoK0)pW7}3w65BpLyg$@G;0F@7
zH0Pkxf#u|mJB$nZduM5$lg`UAP@;3lu(a;}__Xdl0?C0uLaP92_auq!o<2+?_<+PM
z%{gdPu-tVtAHBaf4}IY>F3l`u8e#6Hm8Dc8o0D&@dtP7~!3TUGaZ7U!Iu$Ho9n{AT
zZ8e%@duCZ;elah{_pWt{ZJ#`*6MR78mgXEZDp)q%m5(ZK%0t1Wp5s!g@oYSo#vMzs
z-E#`w7h)28K;o9>)Eb@Ee+QQ5RNi3BS?KwCSz@jzFH1+)I>ok6D$@x*AaP4`YMrX}
z-`C)^GZ(MULm3}>XK9`f&CBtqYmH*NXE@UcJ|J;Ra}F9EVluhrI%D1IA>mqSzy5pi
zwM6>ftwpYNify0&GM(T961Ozxpi>c-{l3aaKQGHe)!y~aQa0vu$hAhX-LsQv1Rs#N
zr8x(U3YM^z|GZ~b8w0N1B(RjP{~qQj8w-K*T#4`HyQ_c1w$CMaU#Ne;2PAH3&OxVw
z<=}bwsPTXE(0BM<Mh;_?!Z@`|=Pj-^itV23m`3mciCda;(CEOjP3%%*|LyBNvy_d6
z%y6wS-0m^A3tnV8!4D*EY0g2Xf@RIw`Karwd8p@;-dW0Yu6L`G%||k8%x4<G2PAH3
z&OxIC%h4AuHqbw-JhPOIh1A6NS6szpOR?Q^D&7}j5_~}7mgd45k7fP$4x{tY^Uvj>
z9S?eEDbv}>wNA0^V=$fI0}{717uHGcNm$=Kp<oH`7TbT*BBRk#&ttIx*;vS9t~HA7
zo(Gsl@BxWinsd;oh{-C0>H6<*53t)U-dW0Ye&$-I*!G#vbb=2^+|rzbP6w9hXTEFP
z{g&r@Bqi>5^Ku+^tx;_E>|z?h2PAH3&OxJs<;^$bqn0=3q267*a||T;q&ly{_Xpk8
zKVsYGQoJwJKi~rrw>0OV(}CsvZRQ%mKNsos-}%8Tg>{(!W4-qqFpnt>e3pJOKS$si
zo7s}K4|}uw|KMM}wp{V^|0VjxW99FECyf^FyA-nZuIvcl*!L?K3GHe#|5v5_Y1=u`
znLqO_=l_M2e>|C7&V6f$r9T1={Dt^8k3)Vh<xl$+y`1?o-(mjdv6TPG`ICk&_g#AR
z+5?P*dx?KD|FfT?$FD^Fk0JVSN_OTi#J`z;>|~kmc+vsjzBRql9{~sc*7(OmWa0H+
zI?DNz80`oX3UrG2Bj9oU_Y(XcmGdVt+DP+{c=k|0hxNaO_&3+li{$*t07iSwzdZ1_
zw*TYI{13_blYyNkntxRAhe9gae?t75?~z?OkxI0*|Hz<MJI%j5@E79W%>NcSe=-<&
zspcOY{JpLJ9B00-Iz!H%3;-g{zdZ04;@`}Fy_`Q80K81|FAw~M>%aM4d`;;Zy?!zP
z*j@9F3jPl3e+%(%=HE%mKS0L+nrr^$fj^7?;xYOX&wd`3^C$iPOuhbpRPf)A87lgJ
zEdJ&EuX>(JEZP4Hkp6$1=3gH83-NDm{|%D!C;k5(ntxRAcenm)IR4H2Uz77E{r?u4
ze|g|9#J{=yw?WRI^#A*7{^fzcaQ!#)Kj#H1(Q^GK{eMIAj|%<{>;DSzZ=S#1S<avI
z|NCkF<$=Et|7QM=OZmr<{(n&Oj|%=!NJaloh=22(|Ig+8$^4(bntyrVFT}r@{}DNV
zGXJNQ<{uUOVa~pn_&2W&()>j#v1I!%j*S0Zr}>u${zCkl`QIw%PsaaJH2<jJ53%nh
z{>{&S%#`yd<9{7B|MI|Jh<`KxjdK2E{I8Mb9~Jx`I+%kX{+r>C?K&V`(t7)PW~OyW
zkL62+`figypFytumD#f&QE>otAxZszg`7W)f8bAkD#q`dDd$hF{delvkE*ju5&vQS
zmiXTw=TENv19kjI4}UiQ)29B<?9?SaHda#q*L;aeEZO&qC)fTDDo2m}id@njm?6Zz
z!`e!03^2Tgl(`MakKYvhEHFP8z^Cn+l5Bkd^Ljkb;C*4O2=D=kTbgrND?+g*M#rRl
zw6AL(YMA1EO$?dF)vh&)>qjkP8o>u7ZfVXzqhdV_ylSj5t#FnR_;R7=HHY}Ky!@)p
z%Tg6T*W->Qeb(E|@?WMCd_dxs<{We?SblnOJ~}@x4-IbYoh8?4UjH4r)ySS_Hfv16
z`@;DOJ|J;Ra}F9EShiXIqS3DPJg+QEJeSGK@sLZ6WF6FipN!j^bq-}Z!4D*EY0g2X
zg5~ma^U;L*d1&~Vo>@wDE_A6gGvFs<(`JotF^%8@61OzxpwWTlib2mAn+s-pW@&!L
zj+bMfdyS+IX4d#K(+EBwaZ7V_3)6L>-X?Xob)75)%XjzWp;N2pp>coacwM8f#IuCF
zERFCp1+MCzfS>d=%sT7ieIYKv2PAH3?$}wb%+D|ud^O%^_xp6uEX~hL@p9bgUL$Ew
zn>A)Kjo<?kw>0OVQNq!@{(IkoJTzi&E~@m4ca}1pFT2-C+KpzN&oZ6h0}{71=b%#&
zm%#G6z4sfzCntMmX`cJW%dy72MlvtTtZ_Nh2tFWjOLGnyB`o>+?{ik<p-<N4q7}LB
zI9k?!FY$~QFH1E%PuOK#lE#l&XA#p0J|J;Ra}GKkSoW)PyYcxu6Fjpt&tu}{XzN}h
zY515mCgXjf?g1Z=xTQG<jS7~rc+JdzzsW^|KXS*?v}SmmOyk26jkaxdyn-{V<zm)(
z57P;LAaP4`4muSqr%kPEyjJ5Dqh61(E?I`>q{^<BA4+se*G3Nngm%x{Oe6S!#4XJ^
zXjHIlKQ<37pOcFk&UVXEtr6z#yNk(y(C*pFG=dNKK;o9>9CSLc^qt+#IGR1uGfUZZ
zq%odn>QblB_PG%63vmfPAaP4`4jL6KtB%M+8z<zVL*u-&lxghmUZc?N$zmG82PAH3
zPOZ^t{db7VRTm@~i>43q%u;r}oa$bu(Dr$b=>#8;xTQI@PSyJF`#a~MDx-2y?ojV6
zWg5S8uTg0CtY8|!2PAH3&OxIhCRgR>r*7+;VDw+#OW<gG-^U-We`ME^>UjQ-%eWNU
zJ~4P-h)eJRiCda;(5Z;a>jQb{zUy;Q{r=ur$~3lfuTg0Cv}78=2PAH3&OxIC%Q}l|
z8BMEREwGfY{~qROp1;Y<0rnC1I)%2+y-X+g;J)ZjbbG9Q%N33CP);xxUD4J%OPS7(
zTx+CrSk3L8cbG=-0f}3hD;>+mJx?*lznkcprFkwMFUJA*8jIUKW}VxZPVfVXTbgsw
zsff#me#=F%Nw|(}>Yb%bXA?a4z+K%FC$xPU;C-R)0UwaKr8x(Uinz?n&q#gd{4<Q?
zDwlg^X`WZb%Q3*cMxou)i)jQOkhrC}u*PFq|GmcgT=YQATr}h&?<{3Hr@7ZDw0$Nr
zo!|o!w=@^lDIM2xU|DV0ved$+4Lq}y-8(37uTg0CWHXK60}{71=b%v$lWSJyBH#~m
zK>mvH&Qhkc241(-Wn2nvpGtUNh)eJRiCda;(CNUk`hYp94JuXj%u;smAl<!2q21Gp
zX#^jTxTQG<jS7~D&*!3fzvZBDh1o90VZ&_#SOZw5bCi3XLfdB;(+NHxaZ7U!Iu$Hy
ztZ$g|&e$(fw^rYt>h8W}u}(Zp5MH~Km*Zpi8ijVxyG$eafW$4$IcQX{Tre^h%~+m;
zvNwBXDb@I^gT@l?!wb+gw#{vV?Mx^5fy6D%Ip}m?`9Q0iQ<tB$%`;2cm`_tYC&gXe
z6JOl+;TkT&`$F9VJ|J;Ra}F96EGrMsMdM!2K_4#l&QhlFCifbJcF(m;Blv*CEzQxb
zvaRmGGNtOpsf(XjQp~a$c4^zUl*}pN<(MYbI4q03yRm!myBh=XLc3=o(+EBwaZ7W@
z&Jo^o4DZIhH$QyO((9Z#UWV`7>l4~LE0{j;0f}3hbI>Q@XTJXf?;oGu>4@=6)m_Ec
zNgIZ?^TK#Js^PgMVk}A-3hkXDrV)HV;+E#TYvlJuKp(vOw~w<v+j&pC49LAcp`DY2
z_l3F!d_dxs=G6K+cFXF~6OYMfb<KpKd0$NM!uDKWOw7(STsx-?8gvTczML$yi{WE)
zF4MU`lKG!;Z&1&iF<dV)1M#H2Q%%qRqz5Mow!95x!#^AcmifQ8%lVUb;G!tdt&2#H
z0OxO0&$IaN)YUrwf0mp-X(K-hm4Z%DaRfMjoA_tfdCcDu|366iw;=b6_nZ<H(sd!(
z5rFHzP5g)XTju}QnoD<vP=^n_{<k3gs;xTy>A{JTt%5(h{)_d0XE}e;=L~>DoucLl
zIJf`B`u{OGf6^a+TG#(k!yXE%;2(~E%k_VeoIe?_XsOr!jT-(ih5-DV<4^He9gHIT
zW9b#&A841}HqIYNj19opLu^*po|)-s?fS&}d<WS%uoFM;1)qV~M`oY}8P8d8dej_(
z3SCea{5z+0#r%^*{`KCWht9&EjCVEH*MR6auYv=<f%v})e=PA&YJ5fb`_Ow*{$vdB
zam~M+@V5<r-|g>9`I9lggSrh6Rr~|Ew37J0s%=)6SXCYH!a^!@HGbwFt^<Q{7PkS&
zIN;y94v747fYtwM{`PgiY&O_ml79jj2W)`P2c07S2nhW@7j6HAOQ^1rZNCIE{uj`7
zf8;~wC2aD{5(R(T!2fZnls_5&i_v{Qesm+>viiR%E@|=g-;aOlcCGTdUwMU;KN<gf
zOV|66&z+Z0*8ijY9ov50S5haIYd;zPnXK;t@gp4B){(#MCBWCeK+2zt|LlZ|icXP#
z1laYzMEgHBqg&gw%ue09UPb4B#Pcy=A9<$SGz9D$x{*pOc^^1|i~$YM?SN?KPw)RL
z_`faZPsV_%X#Ua8pRN5CU>5<OALgW+<A0l+KN<h&smFgJpFb`kT&ivAe;WUOd;S;w
zKqZ!}{}ajhPeAjJcK$;A!`c<*`0p*}PsV|=H2;X_53%nh{;m99kn<<wKuMZ^wDT9@
zAJ#iD$A7+@KN$zQR`ZW|{!l<K@o(jS+K*JC<@!(NfhB1E(av9pe^?{O9REQ%e=-Kx
zNAr(%{zCiT%73JsKN$mTt@%ehe;DIa)c->K!@5f5_+KdJPsabQ*ZiZMzYzac{`=+p
z$@pJO%|GJ#@5KDP#6PUXWsd(QKT(O6_8%GlyFv4hX#U?|cEH}@8Blr+kgNf~#SMJJ
z^;!?)x?o;grVrj1)<OUukhrBe^;!t3H9eP}wGwT^Yt!H3yk3XxGw!?$)7|SM^`2SZ
z^GqN3fW$4$sr9MXdf1Sbm9;1Bfd@`0Uhm1~8BWGee1?yg0qk1$8cA%MHRdpl;Dh_3
zKhZ5r2ZQqrK0Q3VTL9M1`Fm0h`ebl;?HsSqDbo_*wZ!JSJxA#?%w~O+@V;=4f)7aC
z(wv%M7s;9{e7z1>%j&HQ8l(<CaJkc(IrKW*#hzh1_xgmjk3dIDrV;!=;+E!0r?K8m
z4N}kl%~50cSu@MC#=Hy<yVoeJeRL1g2R<NiOLJ;{>Nva;#mC17r%fFZbXSjx&r<R-
zEOf7rjIWu`(YKgB@BxWinzPpj>;J$rK&rYF)|RXFysJ12GbCp$f3uL!$IG$Ty+&c}
zqb*D$_<+PM&Dm=NeQJgS(SiNVgYUdOvY6qqJP*gq5%(sY3lDQ+Ps6{=8Zz*fL3m<(
zoF6|*7f6l?1X{%>w~A}QpOqWPcf__H-nS06-~$r3G)K4X)6>b~Kb`QScvtmG%P7JL
zG|G~BKk3hS{*Ul`_?`Y#jAH=sHS3DOTE<!Puej{te9-(ge_6ete^)Wi3myMa&$)4C
zVeuG{qTgaWkssFbAlCuBxel-Cz@O=J=(~`6eCECj!uvws1$;o_mgea8xb|Jlj`7b8
z@o|7p-KPuDD*Tx{z7XYoQi$$cRERGBybvAzr4YTcs}LpcEkr|VhtRWiLg<nUL+Gz|
zA@o|u5NgmRg!<hdLUTui(4kQwH0zBJn($5t4Shd^p4t#XwKj*)h;1P>ui6&0xaJl#
z^nxuY`JWK#9J2*&sI&!5*%Cs1LLqejrVv{ANeI2V0Ds4OA@t<95ISQ_2qlcf{<?+G
zR{UM@ZA0kF^F!$Dnjv&nb^N_Q7NX|g<FbE;%RQqIO`TSVo}E&N&bpxxU3*<2y0>>B
zT3fde{ZywAb-<tF)@FxesO$QuuLF*iA&ki$>%Mxw=pQH1{G*>?Y2r}x*ZfO!{^)(9
z`}~Q7_~-Y{j%5upXud#t46jAzvfo1HAej3tx8r@G-vT}$aZ7V_+qONqP3Ai;_gu`5
z;b-0cuCVQI%|5#8Pt8yB)8~Lb2lP3h&jEc7RGf2QC4SelbHBy*mWz*f0p5P!b-#to
zEjIUCUcmc8zXg0i;+E#<)=R$y=8u{8b@MYE2l~m!mVTy9t!wZP{+q!+F)?Ed{+Tv)
zD*hk(iH~1k@DKKZ|DS#a4f@64A6%9;{KJ0-mj5qU?gK3M4VHf=SY8&eyo_M+{>A0T
ze`A_5Qmf%Py8Kfv;~OCB{%3{le^%4{D=d46d(FS%v{_{Jyyma@%gzh^yYhQp@O}$l
z^R0N@XZqeJcyh;a?O$j%Kq|oRf8gu?hUbf=b!X4I1WeDmkmm;B{SZ8ThWCa33;2M<
zEzQwwTH7A!SGCWi_g(PIC`$FLi`g;%8Lxjzeype##8*`9S~orS^*K;+V?eX7xa@iT
zr_X_kdk$#!6_>q^f6ZRUzdi@_IZ$!W0nNVRve(yt&0fd9J_k<3Ie@>zdf%Z-x-Sqb
z+;ecAGqr7z+j|c5J;dgF4*7UrxaR;qAaP4`bX&&v9L5~kI~3+JVLJwF|Ig+>OYDZO
zQ^5LqE_)5^l9qwjiLE{U9k8JXf13}s|D?GK!OmRy^Cw_qs$cX4`}-2G!O<@*C4YaS
z^>SkSU!Ftkx7Xx@U6L|t6|svSSks1${f~M3ngaM;|H;kPk^kM@cs<zQ)9D+*#x%M4
zM`8oBH-TM}RyjoSd*Zf$?Voes&tPX}tk_EazN+qaVjEol3)q+y6Lx?N4*h&5*#6so
z+(rJrVE1nF_s9R(L;l|2_q||e*4nm@{QitJ`^oRK-#q{}^jqs+$=^r+huF})|I+-q
zJ%5AW_g^@d*qMtC5j$o`(m}HSr4JE1ru9d}_OHB){ywMvA>!{yI<aF`-AZi#x1J_;
z$<A5Su3JFt%&)&8cFf9eiS_xvqkn&49kJ0@m*9h@@Bip~fchM$pyz;&e_j9SbD-j$
z1DbusWv|D7G<zNY`W(>bK*c==H2aFnUSIz;`*I%t{GP)VSZDEb4*ppBh8ceVzmOx&
zA4rT1!23bWFE)e20_o5a<@4Fy!_PM)koW4CpU?gg?+f=Dzy~C5X^w8oay?xA3{Uxe
zhUd7kg=>I*{=4En1FZR1T=o$6n!o0+>;H;-4(RxgDE3GD+Pv#D+-I?!AjSI?^}cc4
zXCd#&gms_H{g%pjf9SV>A4uHN9Nm^>zvU1<2Jkue>1>oUG8=s}BpbamJ{xr%o{i4C
zB^zBjA{+I)DH{d5Wuy0Q%tm87W+Q)6Ho7kz|DQh_)x9Je&5O-OSq-vL^>eb(USBqf
ztCfw8R?S9J>t~~7HM7xaHL}qX{QJ3ev(a^RveB3`vQgjjv(cbN*=QgB{gzbh=ele(
z8<*q4$FouF>)9y#&1{shIvf4{TQ+KZFdHqsAO}rP%t2KGIcP}F9Q4GH9JF;n4mvs}
z2X%fq2fg)p4yrvf2X$G9|2{bfReC=M&03m+y1$x(3O~+4>#}o>-+Mfcu?~m#f9m#s
z#qB3*{uP%!#J%RP`Rn?>;+_LK{wpr~<6Zyrdo4|I7r}I|g}ez~ajV70`xR*`T=!ez
zt$miJcwgwVfDcIA(j47-Sqs;^pR1pbvHh*<-ijT6C!4>n|10+Sr}=CCC%X>P-+%JX
zK^^}m@7PDed0&zF!+RdoeHPnWEk52SxGmRppQVMh&(a<53w;*w0f}3hqua9Vv)p=7
zm(+On$v-qd_2J4dr~WnT@zf8OE=X<SpOm`x;#*TQE}5KK=hA+uqZVG8dh_#Hsh9q6
zPHL@%8&akxS5K`r;`5YAardTt*Zh-|4$ohcvikOKTQ7TkXv(Smer|o>NaNO-FQSwx
zvvOMRIyj_ta<jWrYJU_+Y5s7dl*4})w#rYaopQM9q?CmDLsJI4eI%uKr*^3|nq;IF
zPIx1ASi-i{#}4dHy)3c5(eK_A<KT=G<D%I&8HcWV)R;8!VPjd7Nye}nXBd?~pJJ@2
z|E5vt;e|$@r{6O6%=*OGaMx1f@R1LUjJLls=FHAB{%Z2E@kOs?#^SraH6kJ2BCQM+
zIsPM!#mOj-=C7~+C*!=+-x(R_osR#=;Bd0yLGzD3{=Cmp;(h6Ue8<JZdpjnr46mUD
z?@d>~yCWe1`Yz^mv>wF!L*E7bK;o9>=(dd4(bCUu!Q4$qrLm>ix3u4__b(m0<8l0s
zhYx)YErG*WsyIBE`=8A3*5}R=IQ%E=+&P)wt=TVu!++A)^Wz^0W#DDeb_w7(Vdun&
z{4ULQ2^{Vd#@6lej>Iy#ExZ1|C4ldk&#BVvtB?H>IDE%^>?7s)l?M%xax9~*9GZRf
z$8TxRIeiXP+;hMUd;CAn_Z*z(O3f??-*a%d-;ij%-|!UP7w$KJ4@lh79Nm`j{f7SE
z9T-a9CGpV#`reKMmyd(IZ*PyM$vY%cJCpZ##MI842>H;=&nJ=J?`Ze}*fDhiFM<s&
zZt#C#WA?3?4Ayt^P2{~Fq0E|7$^ZRb_zL;IxgX6S|F_|fndJAMWX%Q}`e7w`FUXkm
zm*0fE@5c`BlE3#oZ$8OyZ1n;8zbm$q_k@HVc=uz-_aD7*5!m3)j$eXZa#Q86`1?Ql
zkE~4I8RF}jv5fq!N{wu=WA1L22X<z{ecuwhuR4Bb2u_`23c&Wi{Li&u$E-h(yf4Hz
zu|0WTNdFgxlJ|uKm(C~e3+aE&zlHFBzK<>>?+ckZIE}n7WJ%k><b5GCKYM%|{5|x}
zEb`uvQ2(#Vdqc*IT|?d*67%#{^4^f(uZPKdLwsEi(f5Y@eu%s`B<9sa<h>y=%{G(w
zhWPUG$a_P^O!<_)H{`62<UJuVtrrrzB=r*VevnY*$B5POj}Ly-w_{6t9jvJPYxWiQ
z+}G?YE_+_z>2sjso&%bF#bvMKU$fWoug?K}4piK8K(nv7?Dh3uvyagD=l2@|xO~NH
zNyTP#YnztYsaw~p(lgR~#m2_-_jmZ>TKN6u*LV0p7Nj{F>9Y-Rzu^@8=`mnf){tRo
z-Tm=t-FpO*1A)X=f%sM}k}?AcNpR008+Kx8D&Ds`{uz8g;+E!OVyfUDDzQ(G!NYw$
z?;GID>Y52|d|lEr(|h#v73X7u7q*WHPEUt@E8km)D*vwl?Zj)_I_M;8XSvb2*}cwW
zC?D5Jp8vsRDqvc{4<v4B&OvK@ELJMlnunjU=N|{Hl&L?!ZY25q_|@=IrgeS@Gj+I+
z)Y7aKw490e1*YHw61Oy`*2&jA=8Vlu8)g=wMjHyqy2TDUDN`3Zd$`t_=(p<Zz;uES
zNZis~SSRp@bJ%+R@^uGfT4CLUjr%iFVf_FHtpd|H8>Y{=*Gk^A!_QyP^C;5_J|J;R
zb78GAon^(;PUmv>I?3AHW}Tlgo!|o!w=}2LX~&btKQLXmCxfg9;gxB;4bzw(-NtDm
zS<la`^$61nK1kx0WmR>rifP@a3(?lO1!Qe;2c1Hk+UacNUME=t#H=$G?+f)2_<+PM
z%^e$4*mq@qe(J<l<5FN<4+ov;#n)3)on&`Cz0bW?^30%F>tLo8d_dxs=G0nMOjlv1
zi~d_c){1w~DloOv`JQ{7WUhi)=WM1Ed_dxs=F~dv;uQ7;rc=khlLG6sIOr7W-2|H$
z-HFQxAGnV4Pu7ruw+tGb);-RTUylZDq(H0q<W_MlG6RW18)*~M3O*olOLJ<iDyDPC
z7ox)-6_B<69kdEe?X+I{Q&^+A-H=$KjRaaQ!23d+f)7aC(wthS6Vr|Z3sPX+9S5BP
z(?lDleckIM?IUa3;TonD{6ONC=G0nMO!Gb|L{ldhkasz7U)rABBf#5#HvKFiwyfve
zoV~RCyzYQ{Ff))u+M{it!=+P19|5m*PLie0*(~Qz+UPfG{t?X{3g^IIh<_{pI{T<Z
zOZ=0*ORDA{?fiu{N3tdUd&v2d{#=^oAMyMHNj^V}i@3f1TlqgD=TG{%4K@F0=P$&6
zOH2GOm-8om|F)Wc#Pf&yAztF&%0Fg5m1w#ClQEG?H2-MlZ;gL^OQz&KnO1WCWSr<4
zI4N|B=p)b+^Yak@0{{Eu{K@!PyyhR#?4fWD{Dt_p-jjV#&Yz4c_SF0%o<H38^%DP9
z{yU}olgapBK=Y4w{zCj)?`vOrfJy|^@S)?s$z=R5OY@I-{`kJX;U)g9{QJuJlkvYK
z%|F`t3-NEA1M!laKN<hKR`ZW`{?_sTfR+DhIe#+#m!SDaJb#!+tEm5l__xlNsrD<C
z2&m!1uK#5GuaD**?fixKxAJc%=TFA}T5J9h&mRzZiGS<ds!?+OWc=@X%|F`t3-NE|
z|B0MG8UJgk`A0l|xL$jSf9w3OgL3|4{O<<MKic^V@o(jS<!@9XpoR}^|Fxv^|1|%I
z=g*&`u$liMwEwO1zXr+q)A@gzf3))#;@`@Drkp>W|EKv!Jb!qG(aZJUI{)hjIe$9;
zPxFs<{zCj)`JZ=?N(9vKVb^~;|4;LecK*Wk-#Y)RtDHZb|EKv!JpWj{rh=mW7vkT_
z|0y|tI{#1ek9Pjn_{X<@OV0oMTF#%&|BHC_x`1#5JjB1i|8F^eI{!}}-l#YN3jRX;
zTjzfz9-<PVs)rA2|Izt>QK7zK7ZN|$-%`Qfdi{^H@*gVWk825drX0qUbc*aF;J{yq
zf9w3Ox8?ll{J+SSUg1ku`!K!sdwmAjdJljf$PM^eaDE*CYrl>NT^|6h6+ErP`@;Gf
z-~$r3G^bv3Lbblew5fHC{!jhZ`opCQJg=`|9qZ&}sfC|;bE%WWfm!G2cwf*7J|J;R
zb84NcwKeWsREX~XPXX#W+~t~brnP?H8BjZ|8Sb?T>s6&Ot>6O^w=}2L>csTVCcRRc
z_$PU0Y8}7gWf|vQr?6JlLrf?5fW$4$sdcKDUjBI@%9&Sy&b!4sQ#+kYBsvvwO2+Zb
z=kJG1EBJxLEzPO5Ix(Hrd3MU$i*NPJ)H)`?%krm0t9)IfBw?+p1579QfW$4$sdcKD
z9{r^dU60qmxpahgrgl18;Ab#g)<?oxRq*@|e4tJOKajYkIki?5Q<z&m=J{V+XIwJb
zD^uLeEIH1=%QD2hR$;BGo0(4V0f}3hQ|nYQePvf6>hyX6>UWc8rnWlYbgz^2waqd5
zD$@x*AaP4`C3V93KOWb9G-4A*rqsE#pJ%4lz5_4M&+fI7ex+IKdZrb8K;o9>N@}(0
zR54B7TZm?SSb&1vyfd}ac_E%F?JiE~^HXM>=iq%IM!^RpZfQ=fQx&7YAL4ZRpl?$~
zExgn-Q)_>Km#3F|twI~=YNi!@K;o9>)LK<chtv+C7PAV_dpCM#YNvCOd!0i2=n1A1
zd_dxs=F~b>O!4dZjLQz+kaF|$S+01JwUoo{L1B(RFHf#}twI}VG1Ce@AaP4`YON}!
z&(;Z{9v>H=u^qiLwLZ(h%W?{y)8;Zxh4#@OOegq&#4XLKbviNqXW9CcOMf`W71LM~
zPwSj*UKYcm6Exem1(Ss~Qas)t>Ll<3iCdaeYgIA5<iZeoF}DEule{yv)B2!At3s#H
zM!JjX1Rs#Nr8%`uC#DY$xGc5S!VM`7eQ@hIOu#x1mzU)O_d1K)N9OCyT&5NLK;o9>
z)LK<c|7sUP@t+l-`_jELwbQ!Sy;h-(w1w#eACS1EIkip|(`i$u8lV5MFJ*dib<c5X
zH?GnM&#`e?9|`TF`gmW6QSbqYTbhfBf$Kk?0|?{5UfM{nbqpb20bbA3@13cg*8Z-w
z(mAH)b2p1=1s{;OrMc2EJvz2cYPAucdyZ4Pag}NAbqejHiA*Q>fW$4$sdZXo6!@Fh
zv2V~Ngs$INfa+f2ovEGHweGbFZKNEg6?{PAmgdx2o#J#@&9SMI;_mg#)NX9$EPOB2
zU7WTQ+DBFJz7VJ20}{71r`Bm@YUbJR{t#;YQvsS6YtIwrfUx&!Snu})?6h`tuT^Lx
zr82GH0}{71r`D=s8Xv#FnAWCW>UYgQ@yyh2Y~?ZcI)(Pp1579QfW$4$sdcKD&K(g#
zn~oHqtOoW>?ReVhgfe~ZUaQbXdY@?pAKVxHiEdTb7$>H8KQukH!}Hg8Ws19O@-d|U
zxz}0TM&erbFrDB761OyW>`V`h3Zb+bYf<%cJTtY`>Bslx+|);OZTFT!8|iYqKh#O!
z2NJh5r`GDkH1~xSsjF}QwzbE0uW<jFm*sYsS~CMJg*MWSOegq&#4XLKb*kcY)*B%-
zyz*MK*XNz7-5Amww>t4zVO`gKD$@x*AaP4`bbG9Eir-CO)E>4lb=m7fJ;$lt*ve-2
zT7@=J0n-XTAaP4`$If)ZJ0W!R!nG)_RyN|kqS-?G&&&J|E2|?_VDE4}1MTt5I6rB}
zC6T}AO(Y)yul28W%q;d4DSy(wy*84C>#~s};K1M7ABeN^A1voj+WZOn7)SgOaNutp
zcNE^UI9tx2^o9CFyn0<gJohKg%k|$nzP?G$pY#t~>%$xIN5FwUi~l&=cXD2Es`UC#
z`pq}9^}iM87xN!q?B6;*u_|8XKZ&&Wx&Mei$PrvXhx(sg|Lyr-Bj-=X5-K_KXa4Q^
zS8XBXPx=?!e*_=ih%cH0e<A*@{l5uv{$z~h7QOy|#Pc7C`6=pWA^xrWmr3~t$k@~A
znt!zO7vkUA|0|O7C)ej&HUEg`?{59~@b%xyzvXGN>vMoypHJ2Nqn*DH|JMHBFgbrR
z{x?|jk9hw76cxEx|2-W4R{rzk{K@!Vb<IE8`3v!Hor||a&Yz6`-J$tMJAa}5Z{>f<
z>C)>z8UL%Q`A0l|ck920>woLK&Fkg-$@t%0nt!zO7vkT_f3loE8UH(5^N)D`Fh5K&
z{v%xft#f==$@!D<zq>X6Xy-4)zm<R0Gi2BQI5Pfsrsf~<{9(S9m-x5N2X8CqPsac5
zVf>x_hwuMb=j<*>mYrX8{yg^|@dr7A3pfuSUj-i_{;m8Uk@F|xf9E>$Xa4Q^@00T<
z;|tt>1RvgrFPZ~?;regAKmW0uKN<fU=FFe@5A(Oqd+y?s#eV`BU*P^D{vbzi0r`CI
z04`%}`;4qE>AryYJW#m*XXXE!oIi=rbDa4L@o(k-q?|t)U*P^D`0z%2(H!_&;~(QG
z`Aki-s<QZuBk?%^Iu|-c_7PC8|8Kqi3;b`9^C$6HMe~nr_E0*H{H^u#Mmc{v|4Z|a
zc>WISzYF!hb^gz})ui=58UMLO^N)D`P(Tm;zkrp07b*XEI{!=ak9Ph-{9EV$JSpc-
z=YMJb5zpUY{b!;5XXXEuoIjoarTIrYe<A*@^MC%5^QZH_H2;X_4+Zpc{kQT@s4i>&
z#nbs;ntw#|-;UV<J%?vN*fk))pV5l5wgI`wrubPvK+Zq5YwWT00nBT6U4-|AwMM`P
zByLFtZ}>PB{MEWfnQE;OSeK&rw4JG^_WRlMS|iqL9WTqx?sbxS(5$mJ(+NHxam#(H
zbgI@G8Tx(*{T06!9j$r{YmMM%K<%`?>Ru~}d9&6Rm{#xsiCZ^XotXB&qlR(dNMp}T
zt@Rf#%X*Ve7`E;)U|80WVQJm{@oC+A1d;=R#8!d$RxOh7+7@JN)2uU}=>#8;xFs39
zQ8De3o|)dGr_YzwH4~O=@tN1|`r?5tXdGTY=9$LcncC?*2S2aD;}dkk`X36dWE{_|
z^)$Rc#3}fJ#4X9-jZ$lTELJMldh4KHj8Uf#OZ9!*!{z!h;d>I+F)3b_t4&%#v!Xr{
z)_Dpto!|o!w<Lo%DxIo0t+hFXUTVJ<EvxC4sk6=}-0Kw9c!KA@-~&v-4<v3$25(ea
zRdG59Gi_ekXH=P$<1$XeTJ5eei`{D_V^HREcOlaWJ|J;RGI*oXsbV@}TL^u9!&-D&
z4ew0tbpGL5Cw<n=taCrp2|gfkOEP$4)=A=j@Ni$x`vw%(K~7Ao{nXOfb#RDhrgqnu
zcsz%k*GcL)4UlmKv(_efUpRNc2PAGu25-z-t?dRC(|Oglpla8yMN3?--4#A}?R4Jd
zUMJ~4n|0pAbb=2^+>#95sC24$lJ!4hV%j|WeZWX=cDLuc*X}wq*S%JujWnHU1s{;O
zB^kU?X;m>@TyqQh_@1?BZe8zjYNvCHd!0i2=zFFUd_dxsWbj6%Q^geT+UBX(yBW1V
z3b^7)*MAS6zt%baygc>sTu+yADzuSm;(Z}b!3QL6Nd|9JT2)MkUa$rI^3+;%T^;XC
z?Q~|j*D17*Iy0T%0}{6+gEuOjPD~%2d%My6;YO~Q#`?oNt#h_{SteR^I@G;F8)+=l
z3VtAQ%l)ggs+cDK6GESVx)zN&!#h(utvMF0_HDs{&_?=_=>#8;xOJmb#T42{Yg)c&
z9R9nol|vugIu2+1zOE{GK90*6Ep8u~uQNxPR`3IfTQ^!&OgqPHK}VObMSair&eS^R
zn3pBhwN^SG*{m}T?+f)2_<+PM$>5FZ+;w7FtL`gCenM@}acZ4g$;<M9d!0i2=uV~+
zd_dxs`-bbkN~?<LhDuvdgSBhXphn)A+G%~?y;h-(^aj%kJ|J<+wW@SFG2Q>tEaPz1
zNuHTn=gaZ3>~XJCXdi``PVfPVTkcz>)5?>y|L`1;nBequ*ni5F5c=WowP@clw0rHe
zUXJI8xT}-mgf>z=yf4Hl_<+PM$>5DjtBNU%3r@J<b0cBC+x2RTucyKsC|;Hu-Rl(E
zN103~_<+PM_pQ=tWojNn>Jti~E|u1yEvfb~s+jL-t97b-twI~=Ii?kSK;qVoRwt&r
zgI^j0-ag_rP6KvhNCob73hkq8rW1TX;?|8$71R4Sh0vd;twVLMvu9dz{rB*>Yo`;+
zbSA!+=Q2)(Hd1B0FT^SM;J(NYY@<4VotO?zSz`3=)XwGmRKi;A##TDG*IC>~;#yLe
zPVfPVTmE;IP8HLIpM+3{rt8q`zTTPI>3r0sPO|<xz5@Vbv*tF^aHbXfK;qVoRuxlt
zPeVe@?~NKwGCVW28(aCzrPj>2c%h9npXmf2khpcDQ^oYv1tIiw<8|o5$GtPP(|N?b
zPN99Yo9P4}khtYK!K%(*C#F+={mv+y@P=omc4I5C`2M83`Y2v#BVC5~h5875K;o8U
z@J6Lm#q`<tLg>au>rm|L-kI9z9PD1F&_3$Nbb=2^+>#95sB{8PX#d&WlYuzBwEk*i
zSi-hc?oZqDcLd<fv3dT-I_@C6cWzmIdfxFkh3f~dV@dn=4)~=`5q$(4#+`)uf7UV6
zA~}E3=C7*xM>KmVoCAL${;lJyEiaVDKVAPt^N)7^Li}6#50mpJ{ll|0|A^<0*MARq
zx&B+n;^)cvlYaBvnt!zO7vkT_e}|NR3%dS`<{$C=VeX%o__yA-xuk*Y`rm?#vE0M>
zJNu94bBl%X=C&<l{*y?5pZkyagB-yH#Pz>l!AFRHEC1`|{K?qUxz7BVe|!Fq$oZ3T
z5bi&M4{yX5&4Itr{<q%an=I!~;&YfYf95~T-+F)IV>y2^zQFxQ{6UW30y@<HLi}6#
zuafg8@p+Cje<A*@{C|`4C*up;e*_=ih%cH0e{1~XTTLa`f2n$r?E2h-#OHvBSFa1`
z@%;}1|F&}eBtGHZgHDls1eTwhj}+}cA^xrP^CNQpWc=^u$d;~4hmU{*f9v&Mc>nsx
za{grek6sz{VUFY@;J{yqf9qV6-{kzs_}?v&EL@k39D$5(*TyR9e<A*@{F_}&qa2$0
z@S*pA6X^Os`WQ$25pduy#J_c3(k*iSWc=^eh*z%*2r=s={;m99lk+Fzf2Zoh8}UcL
zfxi&{);Vk&<^0L`-{6Q>uL}s*YcKI{<$tbEdi^Kke=z@2r^r46?)Vpv&-<<IzrW=C
zN&oKxw*GfyAAt&9I`#U$to{%4w_g7fE|JDR>Hj^T`A7cArRHzFKjXLZzgx;bk@Wv+
zYyJ_>-`)Dp;rO>+|KF1HC;h(>nt!zO7vkT_f2*87>HpQ&{3D(}6j0Ir7q0)-`Tq?r
zm0kZ6N&oL5%|F`t3-NE|f32K9>HpQ${3D*f!}{Ms{9EV$KQHG`=6^h*`A0i{A^xrW
z^W^-={Ev$@|A^-g1@v<Lx6c1RwW0L-Pv(D&*8HQLzYzac{%z#^$@pIb%|GJ#!`jnc
z;@>*|e}tSr8UGu=_&fVAUb6*HFD*I0v`w<CerZX@7r6h3KgbbUzz;FIZe6cx@AVmA
zYaf8i`vX4<&gX%EwO?bAt`7kB9(dZ1_l5gK-~$r3B!f4qbu3itbv!vPgqF5lhqB-F
zzFvo&&UpOHn@gRf9c0$o1n&zv!3QL6Nd|9JI#uhhOq)8@`1#YHjmHk`_PqWIJOgTN
z*YWb)<zB0>{?$!PEBJuKE%&X`s$zP^m=G#zy$)rp_RiE!=Un$X$+gYQbUM=sJ|J=H
zMyC_gfj9qXT$Whh@EW7m>ohOR7Ku(poRWInto3`Q75qTrmis?erU@f4(-!N{-@kch
zYNxe6em2EjoYLo2%{pu1eIZW42PAGu25(e4otXab)3rvwds93!wO)I9S+d;gB-c%|
z&dzvW_<&aM1BqLb!5fuURh&-f7D6?;twW6udS_~<b)tK%!unTZnNIKliCdDv8<kEK
z)0mhs#^To7je|41GqpZX#mkc8UMCrAH8cH^=>#8;xaGdhI$`}MFYDrO?HEFp(K@vB
zf*j;fC$YXmaoa9nr?m>6L+mn6$+)6f>rti^d_dw>rq!y`iRl+F{9s%(`zEh(Dm){@
z%aZC|CmBC8>x{$uLX3hBNZgVP-k6zMb*f?%_{X;mq1uV-(DX#lOl`G3;9jfHM!J(}
z1s{;OB^kU?X?0@yT+wRd&{dCmW@>%zg_q@h_d134(Hl%B_<+PM_pQ>YVtVEIA>`}2
z4pj-b;|X(sP3y%A&v@|i>~XJEXd{J~R`3CdTkcz>RmF5=eugn%K**Rh@nO$Qt#g@p
zSuV$O8eP^$Li?y5-WTE&d_dxsWbj6%Q^oY`njthHWgQyQ(;ZVYPdlAAT6BVD`?esR
z({HYmGMQHJ1BqLb!5fuUC#LT;EijffndF(Nb$$vj%T$Y2g-)T3^c>R(J|J<+eXDe;
zn4VQVgzmm_9eQGjccyka3*750ZXcPMW;3ne2NJh#v^p`ZH(-S^?8X_MnOf%@@UonV
zN3M9B!cdd_d(0AqHd1B0FT^SMfW$4y;Ejr@>YZ&3vO?&}ZR^m8bG$RP)7injPN992
z!gPWUNZgVP-oW)=sa5gLwrNxA8mkWcU=*SATrv&MBeJ`mK5EkHP#+0xq~S~}_<+PM
z$>5Djrz%dHe_x2Qny*7g$GBzctn)MXI)(Ppe5Mn8K;o8U@J6N68l%A9yk0yo9o~0^
zv7-K)o|)QRXO6hnDzuSyGp*nQ61OCSH!7_vrggt7M6cIdhdRIPovEG9SUeYs*GCTL
zuFyWZ4DSo|5%_?_Ey>`GN~e{nmFK6wd}>sBc%dy%)B69y{eHXa%wYFgg*H+@rWJfZ
z;+ACaMx|B7bnc8o)G>Y?dh2oTOzm{ecCC}nc{N{4UuHVN2PAGu25(e4RZQ`_D^mZe
zo@?}Z`Yl_gZ2f<Mr`<IM%CyP7R-ujb9n%UvxG(Yp+o-gvm`<Hmi0a}vtv%B_Q#-8}
z;5iHK;xw_ijl{Lo!23d+f)7aCk__IcbUHEh)&11iGwT!2OzrMdT;ozFUH_lX*)yNN
z?U`2a1BqLb!5fuU71L*@6e53>b*Rfi?@aBqPH?F;GcHkRBaLA?!3QL6Nd|9JI-Qt)
z+Tm?u!(B@~Gqt-<vCO?rp?$Q7=>#8;xFs33QE62%J?n--^nwrfPbYh4YNxfxy;h-(
zbeL%cACS0ZGE2cUBlY8lzAz3S`M@(%yZaO^@qJjA^^wp%YL54X`UreL;+ACa#)&7i
z|9m*f-amcqb%kgmj?+r-duM8=b(njtLL2EerWJfZ;+ACaMx|99rx~f!K78BAc>62Q
zOzrMd%yX|(XdlgDI>84dZb=4jR612LdT;MS)MwXPG;3)N;=X`Ce2dNc|HAwqtKP}+
zw2b`xh3iLVToQTyr;79Z59>VwVgAR6WSRe#<hsoLb1m9>KLRlS1CH>O_!HYcBdbfg
zFCg>>x}^2?^~_A`kRF@WwP$8}TDv~6%@Sl>l1Tlu5Kac2qT&eD!yFa-X?#lfzar;P
z>ay=N|EOROh3taI_Z0jyJ9SBqjg{~(kn&F^_5LZeYKWR+P>~DD`8UG{K~n#R`IDNU
zxcc|CO_bID$>h4cx^hK6qS2+DKmV(~{&(tXz5YKW=TGjl#OsBBqUI#v{B7c&UH>tE
zOZ+d8^KSut$yfFDKWg~%^`C9xKg{3K{@)|#PsW_C(eYni__OQ3SpPRnl3xGGINam<
z`X4p?8(@w=(x(2W_m8@W_5by9{z*{(7wP)HyzmdlzvcS>qMSb&v+bt)e^J99<_Z8V
zoAF<E|2V+k&m@e`=E=_kG7fYN8~=@-gHZuXs^(AIe|~%Zr^?6Y$v9BF<{$Yd6ytBx
z{_mBZL5Kg^cJ#r|#REW%TguvhElK<T9NqqleD17-&|U+QSK*Ij{ExN&@ckd_34r&z
zQGO02g3kf^9Egf@09Yybv;M!F|I2dzqz_O<^N$Mtz+S;WJpM0<|21;{$#71s(PKbS
z!#^qtstZ{rM}W-#FB8w&X*3)G%|99_m0cM%|FS!_(coG0j|NI*S4Pdh?2c_Tc-H)*
zfl}F(QS&dmV;c>gHUDU!RCZ<5{LAjxMuTU~KN={NT^Tk1vOBiX;92vJ21;dDM$NzM
zj%_q}*8HP^QrVRe_`6%jH@v2qbqxSsx*WU~08IVnANw^H>G}ZXwPwD=`@%XF-~$r3
zB!f4qH4mKDc6e_1G-J-}JkM)8*sfRH!nICeous2oXBF%N61OA+dHmsXGQ6zgyS8p2
z8d7x~>i(+twL0+n|9(5IsqVGL!MqPM(>S~@Fa;lwxFs39QE62%t+u{lO6$x1Yy8#Z
zW3No{vV$exFT%_6fP0<7T9S7%o!|o!x7@c%r)s^9pXwB%r}26ng&%unYOC{oiB3hF
zlIQu%Oy6Ky!4D*E-Dq`UIyL1L<BML)JTtXhOLC7y>!87D-Q)c2(%S}-1A#!Rc)Ipg
zQiAo|4KbbI0}{7xbgGzkz)WkdT#MFaduM8=^K$$wKCg4ZDtMB)nP#4_{sVj<PQec(
zZb=4jROhb~)6}%_#^SraEoN#n&p15K)bgAmFT)K|jWIEdWp@)xGXK!5u?N!!J|J<+
zeXI1TSPs2l3wghRnWfEhRN;A)mgi`A878~eN9Na=^^Irxzy~C5xo?#|xc;jcVjpeb
z-3BfghBewST<KmTd49yK@oT0Ld_dxsWbj6%@i^%V&xN$ncPf4+R*Xa0IZD^bFzfr1
z=>s2-xFs39QR(a0Eel@bC0)ZSCT3?^OiU9L6LV+r`x>n0sC2y_oAWf)y+)z!6NmRD
z?E$6{e3_F<qbd&PRdXGOVTLyP?su<GXz$$4^nnjZ+;WX7eQJgq1cvH*RD52Smtmeo
zAH+YsUP#YVp{+BEX#_uzxaIy;8dVJ8x_JHM0yO4~@VjEH=P6s$l+`ohGpW1`+btRu
z`dV18`#&&!-~$r3+_y@fs-A&1>zL<%ZT+Bsb1UB8vSAq3XH(C>GrKP98KGTM3-1dt
z2tFVIfBrN11>Tfa<KvxvcG4JruGB_jmV1qfR)(FKM(_cNTav*Wl|FSG-ihncnrY*o
z+MmW5+MJ`d&rS0(JnLRxl2zYhOdt4w#4Y!&(r1l9;BQ_p8v2ng<1oz7rY>FPUZc>a
zS;RDg4@lg)(WquPkTBf5=|C~VV}16Om!-(06CQh^^-a5U);5g~w@s6UcFkd?6MR78
zmSph83rjP{#+ikv;f4Zqv~RdRmFWcjum&J~2aNr5p1eFQ@$;U%?on%PNuB{Uw{e=|
zeWC6FACR~u8N5+xRn@Kd9Wbf<!{bt>73*ZrGZ(*;N_d``mt~k#r>yTt-$iQHc^lIS
zJ|J<+eXDd@<I~LasSP3YU9+`lYJD}+Fi&Tl^KcpABQlk071}(rm{#xsiCZ^XRZIsB
z`o;KiZWSZ*MU>)>X?T3nZj5J#d!0hN=O?BUd_dyXjZPKQem@qXpYi)iw+`?;9$<U!
zUV@*?a><jlf2`M+^YQ)=r{D(?w<Lo%s`FRH6y7bdbISKd<<F-$jR)91cg)MsN2*cQ
zhNaIWo8z-9(+55vam#(H^tI27g|3#guQlg+f1B^xC${-8<?=TCoIRH3YI!+ckZP1&
zS6U`o89vE0f)7aCa^GAd)c^1wUdEcAuDS(HZL+S!7?zDr)|Qn&Kg!FJ=U%7K7Fxn|
zf)7aCa^GC1Orz>t#rwB;X4Se9;~q8|!+lE0Gm^X<r?isAq?Bc{mE|8yBlv*CE%&X`
hsA>y6{nUmu;2$4f6Ss-(L^u6VRK$I1TXBxS{{tn6lM4U<

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f01
deleted file mode 100644
index 1d6d40e..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f01
+++ /dev/null
@@ -1,22 +0,0 @@
-Flow Title=BaseCase01Data
-Program Version=5.03
-Number of Profiles= 2 
-Profile Names=PF 1,PF 2
-River Rch & RM=Flume,1               ,10000   
-   .1728   .1728
-Boundary for River Rch & Prof#=Flume,1               , 1 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=1.14828E-04
-Boundary for River Rch & Prof#=Flume,1               , 2 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=1.14828E-04
-DSS Import StartDate=
-DSS Import StartTime=
-DSS Import EndDate=
-DSS Import EndTime=
-DSS Import GetInterval= 0 
-DSS Import Interval=
-DSS Import GetPeak= 0 
-DSS Import FillOption= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f02 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f02
deleted file mode 100644
index fb7f220..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f02
+++ /dev/null
@@ -1,22 +0,0 @@
-Flow Title=BaseCase02Data
-Program Version=5.03
-Number of Profiles= 2 
-Profile Names=PF 1,PF 2
-River Rch & RM=Flume,1               ,10000   
-   .1296   .1296
-Boundary for River Rch & Prof#=Flume,1               , 1 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=6.84117E-05
-Boundary for River Rch & Prof#=Flume,1               , 2 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=6.84117E-05
-DSS Import StartDate=
-DSS Import StartTime=
-DSS Import EndDate=
-DSS Import EndTime=
-DSS Import GetInterval= 0 
-DSS Import Interval=
-DSS Import GetPeak= 0 
-DSS Import FillOption= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f03 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f03
deleted file mode 100644
index bd9970f..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f03
+++ /dev/null
@@ -1,22 +0,0 @@
-Flow Title=BaseCase03Data
-Program Version=5.03
-Number of Profiles= 2 
-Profile Names=PF 1,PF 2
-River Rch & RM=Flume,1               ,10000   
-    .108    .108
-Boundary for River Rch & Prof#=Flume,1               , 1 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=4.89227E-05
-Boundary for River Rch & Prof#=Flume,1               , 2 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=4.89227E-05
-DSS Import StartDate=
-DSS Import StartTime=
-DSS Import EndDate=
-DSS Import EndTime=
-DSS Import GetInterval= 0 
-DSS Import Interval=
-DSS Import GetPeak= 0 
-DSS Import FillOption= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f04 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f04
deleted file mode 100644
index c599515..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.f04
+++ /dev/null
@@ -1,22 +0,0 @@
-Flow Title=BaseCase04Data
-Program Version=5.03
-Number of Profiles= 2 
-Profile Names=PF 1,PF 2
-River Rch & RM=Flume,1               ,10000   
-   .0864   .0864
-Boundary for River Rch & Prof#=Flume,1               , 1 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=3.23062E-05
-Boundary for River Rch & Prof#=Flume,1               , 2 
-Up Type= 0 
-Dn Type= 3 
-Dn Slope=3.23062E-05
-DSS Import StartDate=
-DSS Import StartTime=
-DSS Import EndDate=
-DSS Import EndTime=
-DSS Import GetInterval= 0 
-DSS Import Interval=
-DSS Import GetPeak= 0 
-DSS Import FillOption= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01
deleted file mode 100644
index ca5b8d8..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01
+++ /dev/null
@@ -1,60 +0,0 @@
-Geom Title=Base Case 03 Geometry
-Program Version=5.03
-Viewing Rectangle= 0 , 1 , 1 , 0 
-
-River Reach=Flume           ,1               
-Reach XY= 2 
-0.03262518968134 0.78452200303490.926403641881640.17602427921093
-Rch Text X Y=0.2560698,0.6323976
-Reverse River Text= 0 
-
-Type RM Length L Ch R = 1 ,10000   ,5000,5000,5000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Mar/30/2018 08:58:45
-#Sta/Elev= 4 
-       0 101.489       0 100.489      .7 100.489      .7 101.489
-#Mann= 3 , 0 , 0 
-       01.02E-02       0       01.02E-02       0      .71.02E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.5731,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,5000.00*,5000,5000,5000
-Node Last Edited Time=Mar/30/2018 08:59:38
-#Sta/Elev= 4 
-       0 101.245       0 100.245      .7 100.245      .7 101.245
-#Mann= 3 , 0 , 0 
-       01.02E-02       0       01.02E-02       0      .71.02E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.36,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,0       ,0,0,0
-Node Last Edited Time=Mar/30/2018 09:00:07
-#Sta/Elev= 4 
-       0     101       0     100      .7     100      .7     101
-#Mann= 3 , 0 , 0 
-       01.02E-02       0       01.02E-02       0      .71.02E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.15,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-LCMann Time=Dec/30/1899 00:00:00
-LCMann Region Time=Dec/30/1899 00:00:00
-LCMann Table=0
-Chan Stop Cuts=-1 
-
-
-
-Use User Specified Reach Order=0
-GIS Ratio Cuts To Invert=-1
-GIS Limit At Bridges=0
-Composite Channel Slope=5
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g01.hdf
deleted file mode 100644
index 39de336ff1ec68c23ffaa7c1588157520348f7d3..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 113480
zcmeI53w#sBzQ<?#1_BfTDGy-<(IStNQotf2<xvPP>7|8F<)KN-(gfS2G${rFiQ+}z
zh;mdEL1}^Gv5H4IM|mhB5xEyU_(0?;C_+6T76e6)JfuMH%+CDNB+aI_6lltSp*uT|
zot^n^Hu=rWe`XgNh74`ouuVh4wwM?aL1NWI*p-XTuvt=rzz^|8alm5<Ss?tyVf;WM
zk%Yy?iSSsFzxiE$Mu`YdADfawXiCT*ToFy=cX;|32tfC`B49`vn93@gA!-eur=8++
z1~7&xwp_)LKNI}$xlD$DYPwZ@E}e~dhQ-y)7n9cy0`R#siVxZ*Q7vPnZ~X@6+w68Z
zP04atY*u-=)uH6)*>X&(FRdVdswqpcvon0s(U4Il>lAsgZHAIB$B#BytrlzcZFbq(
z1#%y2VNruj)(7NK7Awz##qsdL3cFB_R|F4FnUbyercZO^7i2jK@*xL!ZtD8yS|U;E
z?~79uxS9BUk;6HmWN{yKBuNcm>0{`>bc-WLp&`xbUrYK2^&MogEAn8r(<jPaUnV+Y
zq^VfC7}A3Nnx!}$l&zgKlLyccwk4BZjYzL@aa~E`IYy{)g#NAu+D;Ad4LvnLNAqEu
zM4G7Ogd)i4mRu<B4Qjlaj3nwuoAP_=6Ov?o-#hjCI};LlxQ@iD2dup8-*_e8PCt2S
zeHjv{Z$b}!j|A$k;B$kTey}Y!FGq1G-V9iVj2Ej5oS&Xwps@4#_axE${l@P}3h6rD
z;Cm8&zxgvm^&(fE9y0K`Qh)3{p*25{NSOLrT_Cc6?+1e@fLUB$N6cypi8Q0nLL5o6
z7360r@(`25BpXb29!XQQpntrKJOg;nW%X=Az`b+i#$Ec=rB6TFamSd=H??{8i@PQ~
zv$p%tfpb1Mv(o*;^loYQj2R-4X!@-2twfXq>hE7Zy-4S7#t$H!TPMzM!rf%<klkna
z0i;X%jr%i1xKX4_KJS~Z_$>GD{GGc_k#2Vvo)hF(a;rEJ;Y&n1_d?%v@sD%AL4+5J
zbmuntrZaBfewPRr$*Oet_fDkd_l~PG&jLPoW*hgHikx>Z=LZIUd1C&M`xglRsb57x
zKb<K;(W&DE;Csg{?w<_zv8ivtRRxviPz4#4U1U&>E$abg3RP;#)TvCh%~0s^RPpHv
z96#QaQvmu2&L5L$SCtk0?X`Pn5HQ{=gTXedBVSH&=9#Qi{wY(Tw1$~e@=XOfmMl5l
zl$oPYN$D`<JE$s@Q*x9UTu(B|INX|*ujEpRBBxm%qQarlc~lTMELo-;nWZ+^@+}Y1
zD^hP7&6`$Ylw!?xnC;{q+Z6gOsMxdeEqP3=GB#{e!|yTWLVZ(hIWw8gggScsskC_X
zqzb>y!gSME#gt{1D>C4^)ZbrmL&T9+E&1K39PR~?mJ{N=v@;Y@tw*4E?;OO}04Y*a
z*S(!Ye~nlf<3!Qm_s#!zfqhT1l+dpNF4J?tHo2W|tdO_#SCwypb*=9?=tBZX00|%g
zB!C2v01^lt0!}H*Xf*2k^w|(SHog~WGb3yv3v$!$hBzYm9QK=a^of(NzmRzH)777o
zjigDWQ`$AI|FP`_llS*A?`WW(^JVm)aN=CkV3|{DuFzalwyiegEJ?bv1JM~sF3l@%
z+2Mb=8YjwxtbQ(Phf`|QJ-$bm5u-mIw{uKd-mWg6j8@_z*W9dc6Q=Gu-Ao57r$!l_
zQd+9qn2=}mQEGu`&XJk1#)!<=wvP?Wi9P!0uP+qMCgD!f*(sge^N$83IVRlQ>!*ur
z)}DN`q`^Q#>mI|W{qyX_JC^QqNl|e|+|__VQf849m2>GkN_g+qt`WvK_jKj0Nl^oy
z)J3h?>OQsdr_ye>{`tG1e}3d6=Z7!9IPkAs*S6g`<c&=u|1vOPr~CMwBldi^C?z{~
z$Lc2seD|LownHmV9-A}ZonKE6nb@Vn%4ylh47T1!mY=`9=avp<eqH5kzIk)$tMkt|
zw`9Gsr0EO0<{jBHp#Ovse{b<%*Y66ZU7T{E_=e@PZtLIg*=ZlYm9=))505Y1{ld<>
z-tP0RE$`u;zmIw4P^YIltymwsWpu%uZY$>>?eXm9tk3`Vu7C7?@8Wa)8=u{A@qy3U
zuGjZVjGcS$xo^4;c;(WuO9x&3ozVv$nd_FC<hjDzm5}HpJghAar+##|I<D*dfKy6L
zPmY{lJSoy~H+f-6R4=DwXV3h&WO7H?Y|`lChB}(07YU1uj7*bX&NdcBX3irdacuY@
z{v~A`xUF4kA0ow**8D+t>0{@A{!N$gm?r;j(puhp@1joo%}0_Zeemy=-_0w3_f*G@
z8-ARWJ@u*e>o?5)WXn_24we-kZU0}N^k04cr?Qj3hvQd44ZjIX%A?vhIKOeIxGO`q
z<<PrAj*#Z+U1{vn>muBT=1T`UDqY(gHFoIJDIz{TgB)x4qw-_dAD^DG|8KuP(RJ->
zTh6{&cK)|vPhQ&c^RUbdH7p9A7I$v#BTaUn-=O|#8;vDVUcZb{B&?YID5j;-QPO6y
zVf5G2a|jAWA`R63rBu-oCc(I37!UC84}yLraKo8QpqVw3JBTq*nY4-_t>%ggM9>is
z7SH>U+~tjktop_9DLrQK5}Be*rK9DF8plqJ5&4FPg_nvU5mpq|Ev06~MlspO@;*7}
z{RtK0q3nt=WUTE$HJ<f<MT>MSV5nkZqu|tPDONo<EIdqtvaxs_F))Y5v9X&tGT4?=
zkZa}RqHG8U#)F`L4BS!5REIiDPe<mn&Ek-z=i@-EOnj4X5eFI$^z#um=o(~85^=_!
zK@!m@7#AUT2TxbmW3~D>g?Wx<@e{FsQ<DuwAOR$R1dsp{KmtghJ`%Y6_6=_*#8Lsz
z+X=FYsdD>)xLAa5dxyAc(B9d3t9k`etL+^f;TCs++BM9yOsic(?I*bT$#Clw#W~nk
zV0G})i9PVmU=1<4`L`c=XvH4djo?<*eyq&dUCwgz<y^gXB|D$CE1?MEsC_VFt=``1
zv@4_NNut^WY)XQ0ZotxuhA*_M!Da178qEy5Y4edCc<g<cN438VWZzL$`{!<K|ET<M
zhXjxS5<mh-00|(0>xBU5^O}$ET>bV>BELD<{-GSO{X+-e=%zLPQ<Z)DaBTmm{BVZ^
zkN^@u0!RP}Ac5<J0JML!#wVcv9qhPZPypPj#wRXk9D<D<&~b>J$^2&2YI{ek-4JYi
zB9@i|#wUOWxaxdm6JOni%~w`uF0&O!#O!4)ecqbaO>;j9^|>Y+j6ecN00|%gB!C2v
zKz$?t`rN2tKU4?wxp@=^f0gt(pRp0hPD@=EP}mQFE(h0Rr{ysl@+<)4St^KCLrbT#
zH4=ku1sXb?+r)uwT(BH44hbLuB!C2v01`j~NFbC5fKJb=LZ^csg#L4I!^M2-t2mD$
zR?K~7x}6oP+V=f{=8fw}o_gB?>2tQ^DD<BL2XH-VoUgw*YRn*5iIZhF*i4sxS3HYz
zj`fXYDYSIEm>bWM1l$&B=yqsVLHPonjDbi12_OL^fCP{L5<mhWM*wttRrW8S2SKlc
zdo}D|vN%;%1ol@eI=v?LFW&1r0S|Ebdihkgi<R@4V&`F0tkXinI!{hs7h?2#^N$Gj
zILqK@Bpd{G*NNbw@qyzZv{W1zG9e^1U9EObyhe3aXtZxU3)pL%hrvhy2_OL^fCP|0
z=n~-Thtl$U`laL4%0NFX=(h?z%hw}S=M7ThiAcIKCp(p`1IkXU{(3!O>v)f_s$D&@
zqdM!z1ny_n^LnW3kjD6|LmEqCM0G2@ze!6!iPy-fd3x_Y)X-1t8n__=B!C2v01`j~
z^^?Hm=qIKTYC%7pn#s{JspgR#S5iNz>+p%&>3Pqk@N4O(_99-(`AkDc!T373TIXXp
z5<mh-00|%gB!C2vKxh$=NJF(xZj+}Ul8;zQe(zBN9SHrA;8q^5CN4(6cYTQ(ttYOZ
z$5AqU%`UGN;qvvhOU*Tq9c&941O2a1UvN{|>)|V2YOk&;&cl4y7H6-O_e)09FyCaf
z(>3t=ggT-Z<!elPcw^wbPjdRqJcUKD{$IMJyQd!&-e0e!|1+V(m7N@5JL#wYiOdth
z{5+_CfKxFD2_OL^fCP{L5<mh-AOs2gQ9E1EgP{At)zYz7vR&|$;4Ihhy{b&pf-Gj*
zoMopIZyXKOE?}A)+6BM?+yHt%klgp!*~Y<z`SQ^0(g8PFq$>f#+<>VFNfPPgM>P_N
zV1r0!UK~7KU60jj=k$XcqEUe{{sSRm#0E}dZ7ST501`j~NB{{S0VIF~>JI^E=YS6O
zf8Qrt1A}d#2cdlfZpD1U0c!s{A<3jyBhsr}7;1aBcPg~xx$+3n&+i?^u2X$`?eMr4
z*@<+c(v=lc&9XY<A>Qx(RL3sttlg8O<{7Bn!<r0Q?VgN#)zhlIzQ-b&p9gz^ufl)|
zBG5$wNB{{S0VIF~>J5Q9V7FcT3a81W$5pZ0R@Y|`cW|s?$}-FMm~vHX4(;{P*qX_K
zwiU8(DC#F)9_T{?NB{{S0VGf#3Dg1oRJx9Xy*B#EGDFG#1Nw=trcn74@ORla4D?e)
z|D10;`j7w;Kmter2_S*cCvZ9XiD`sdST`X4U5=4S50C7q&NyCm*IjB%FC@(W$XHcB
z(YJ0n=sR#}IIRB(>#Ukz;DyuLn?**cf743A!<{1CzBhxXTOiWKy%RiLU60kWORVZW
z2md4c)(rG0j6>u6D_=h7Ljp(u2_OL^fCP|0s1pFY#8jb!{p}L{^&r?If_n|-U#;8D
zp|hefnW{?E%WuD=s<{TTLu^80wCoT)?+;d2Wbj*Lfu5(O%l}*ORxcW0_oeI?DEz3)
z{kWhP2_OL^fCP{L5<mj=gaGLBWDQ*o?<D{|2zngciupnvxIiW{X%$0S%@urn*GF@g
z*I+)7VYkRjuAvV1o)0wMlvAM4`9R+Dn0Vi_yPRF-YR?lARU;ES!V!1<+e6qt?#l;#
zNB{{S0VIF~kN^@0bpoKnL#Tgz_ct7RNcWG=siJ>8$4{5j=8d{RdkA$o=Ye}9fCP{L
z5<mh-014C=0-(#a`p4P3>evQ)5c<Wzt*U=qs~@@+`pwNh@S-uv%8FNQ`;|cb=9k+)
z&h79c$ugn4Gq#CBYB<FrUFoM92}H14q;q{8JY9)M7jratI=G=lzf_U#8bvdEA9iW@
zoPi6)adqZL86v=J;|Ha}zk4}9fOX=`A96p;Q#kdjNC+Qn;YBAj2pCcZs)lB8|6u}-
z^Ner##p6J@Rhn;HO?(o4;}6Sor#QKpSb8SuHy)57uCEhUl*mnVa!?EzZL(S|*6iEt
zvQ_3|bn+0B!^C!;_W`lBVxYW<`XNeILQ>zpvR;3u`k&_?EZ?z8Hk}MqvwZpUCTTuz
z<|tk=y{I=nZvw=1;`l#r22t<Q-+ciLGFcyxM_H_jT^??oY9n5Lww^v6ndX~!IC~`*
zM8M}iR-}{Y6T!k@9RPUViqG-{JH_?2>_c0Ne6*ZnoqS{9=K%V>!1YaqJ|utykN^@u
z0!RP}Ac0UNP}O^L{q-R9Lx5Yke~Y*n3*Y{&8of8ye4ayPMPM>im7?DBv!?yLd4i6_
ztEnXQiZNuY?LpPwobCg!FX0mDqiL%&jtsWt6y(wcBv|@Tes3=CcMJC{#8DIhEeW-{
zm3GjcC~X})9kh2BbPk@b(gi{^K&u^Ps-pU(&HNI`9Dx7x6QWqK*hl~gAOR$R1dsp{
zKmvXQoYKiXA2cBPm~i)n$?vXNySw{cH!pi|(=D%lbg<m^+CG;Q6=%d<4HzU%Et1Io
z@=^+T@79qmNQ>yaRr?K-ZeKp(x2CD7+h+~kctCdCx~VwsVqC{X^W`Px|Hv<QNP8x)
z!GuW>jT=5abdS7kdgM*Yf)`7tPintDX<xG=!!NarD%|+q>0iDtyL;i$6^#-K7e6&|
z&iC8)e`|QDxO3sz*$bAQ*m59wR`26Y3w6ppM-N|Idf?mBpN@FDchqh74M{lo(xKyR
z-p_c_k(vGaFJ-g3JvVX1hCk)*I5)3f|4z1%)4QHNG5z6pT0B3jY5T>F6WbSGD74@I
z)g7zP-!XIU@$}AboVkD2<gd$aJp9EoUp@cu_^cE5Rb|8M2@@XLs@wbJw1ffnGE3i!
zUGB54{Hb4JS=akMne2S4@ZQDS=gzQw@%i4iXSPNhDT;omq-l~{YLe#)Z&yO1@vwF{
zxTnu3iQV3HnAs_18R-_58EcHlB%~XOV9&Nh4S{rF1MmGcrLg~uZLOA!eA@EuzoK<|
zHwnjG^%=PD504HTM-H>6dR60jBsMa&k2`EvyIV$mk&>}ye)`SJTMTvoU(xW`aV^*X
zwMkgkk_V4o_^jME!Zzo<pAx!#|HI_jhx=wL2QRIDIQ`qNpZLp*XAfQIB=s$Qr2Re#
zpNQK3W^fnWv`=c;@x&shl$f3zNp6tCZg5KWU0psIJuaD$PH%=!a7t;ZG^SZ>nB;TF
z9;T8g^<j!_``Eyo*eDWKOoa84-;Zbrd%=zn)}QrX{|fqnz=i%(aIeMsSJ9%&O4hI+
ztg3&Nb;v@m7c*{Pw@*j7MN**kuUH?e*7{fMeA#yqEH%h~B`mG}ISYVgg$S?>Zw@6D
zk;1?NP6PX?0H<OQ5<mh-00|%gB!C2vKnM~5eGc;>{Pp>bqE4U(L6?JDG0$g!7-LT+
zy&92T<zgWxZ##$zEqSgyg4)M3<>?*9E>(kdvQpa$2}`9bE2f%db?hO$=li4zqvOk+
z@5Alp!!+&YlM;EMlUSwcRw5RxUBJBr=cxz~_0$2o`E{ax%Y-X;@okR{Ns~tuShK|2
zTnM55w1M4w4goBwww#$c)U2Lc)f3|J3#<AHKmTA?yq}m`*7Ntpu=f>n|2V(vQNPdi
zpmbm-1Le@N$1k~6oFVF^)lO{$8Tq+kxA+FY^+hw)HxhkF00|%gB!C2vK)oPP)%*NF
z4^*^AV$^m8>r-bMp%&ifcTPwbb}5hS@NQq69Q1w-?5*|c{o&&QF+TRzObbE1{PiEa
z&kx#7@jW4>nq8$G=(Kfr1y2_*&O9|NcsgjWoJtFxu2MnjSU`1kXk*l&b?gpeagYEK
zKmter30!#sphM4zOG#qo39#D$HFO1asH+#h2;0}94&}-(kPc-U6Y2&1j#|2jtx*$f
z`)5nYiKhY|vz1{RxZH<(B!C2v01`j~NB{{Sflwz<)p{EKdJuFpxYxiAd{cj3D7I(v
zRF$Zg-|y>EZ)G4m@T<AbhK@l0b7N{S6GMh7CPzWOBB#&H^Q=4Rt^dJ}KuiBmgd3>V
zuJUfXpZ+H@PXl&EsQ)W7!w@8Z1dsp{Kmter34}5Murt@12MY2L^dRVdaIb~_A1(?d
zYs>?!%I<?{TBz5xo(H-P3Zn5L>d?wBff!+c`@z}*xFG=~fCP{L5<mh-014C|0-(>e
z=7E9^1Q&EUxOHG2XvR1pVX1Uw#Z)D0b^7bC)I3l&Hx4*~t2N*4vp8QJ4nB{;PyPAG
zVNH+#5<mh-00|%gK>+NGq2urx*cq1^x#(bfkL;+9jtcyK5xrW&Kz7CrX$<I`iuDON
z5G{LyraZdR{%h1vm6%`v5<mh-00|(0`c9w@=%@H;*HS-OW+?eGThEE#X)XPv)&F!1
z^;3O+M6iBH00|%gB!C1e5vT+D$!x#M`pJ8}CI9s=tE-=WL;Y0gGlc<200|%gB!C3!
zI|0y7*KnPn;@MY3KgFxJF3|X$_dH=(FPyJa8A%M{hA+7vM)(4M0y0E!oF#ZVvq+bb
zA3U8?q+2#Cc)A55-M+_yrxVGpy2JD*8yy9^F>s+ErAv9a<3#|zM*zrNA1=H{0G^*D
zQEl@=-_JA5-~XfU34pU@4UAgr{l`Df&oqeZYqg(RYvc>T<$mobusely0>Fjz=pq3m
zfCP{L5<mh-011RPfvVOE^VfsWE&|v4y>mh<x)_lNIxUDPR0ylV`{qi8v}HwL*{E50
z+s8ie^X3}755h&WVlBOBTEaM=_d#6Eb-}dOS*YoHVZ0w8oKME0^^>24mW5i~O1n4_
zVtzGvI%x04tPh^9(gi{^K&u^Ps-pVlRelL%4#5BU2~jLqY$SjLkN^@u0!RP}AOSxD
zPU+;H4;m1COt|~P<agJs-QE4Jo0mPf>6TYNI#_OdZJ$euiZkM_1`Lv>7D;4(c_{_F
zck9R&q(yYzs{MvZw=bXYThr9k?X!k%JRm!6-BcWRF|OmH`SKF;f8>`tq&<_@V8Wz`
z#tokyx<}qNJ@O`H!HcESC$(Rnw6EEb;g?!Q6>fa*^e^9+-M#SWibe^Ai=Ub}=lgB@
zzcsv6+_~`V>;+3tY&noTtM~Dyg*xS)qlYgpJ@D=6Pe;7nJL<Okh9n$(>Co{u?`J&e
z$jpBIm$F&io}0L0!=G|@oSWCLe<$0>>0M8snEvoPEuJ6NwEbeoiS3Io6x#3q>W<at
z@0dCFczWkI&fGt1^4DcI9{%E)ubzK+eAWs3s<L7Bgb5FA)$RRqTEYN(nWgW=F85hi
z{?sqAtm}QBOm@Cic<<uvb7$DT_<V2MGg~8$6h%K&(lp5}HOX^@w<{shcvw3e+|y^2
z#BT383<kdao^SLb0VIF~v<SeuP8p&bNFu!FObX)x&<_MI^q+#O)gO2T`&aePi?YfZ
z>#kPSzsfpfq1WqLue)jiuo^e$qt#GSkwC1t0H?)hoQJ_k00|%gB!C2v01`j~p-BMr
zxz@U?H;QV39t2$uZXH;6b@yvR!cytVim6K0>exeEsdZNwI^YDZz)8?<9!OlDuD{(p
zw6lsf`L@Tvms(4hwCv`M8~Bx6;`-cfhRr78o0~l(bc6E9;oP4b$z9wBCeTbQVYom<
z7mF`a9pN)2n4OvW{zFSn#mf(A+UE3+HN}CqA!Ts)u>;fOVTvtRapcd`iJ46j5${iA
z=Z{zN?G~GrU5cIGF2MP{d+2*4%4tfTL&?pgEA{l$C-h<I{q3v9SuGB`oHo-=)3JD#
PANwpodD4c<YLfp4%owaG

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02
deleted file mode 100644
index 659b315..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02
+++ /dev/null
@@ -1,63 +0,0 @@
-Geom Title=Base Case 01 Geometry
-Program Version=5.03
-Viewing Rectangle= 0 , 1 , 1 , 0 
-
-River Reach=Flume           ,1               
-Reach XY= 2 
-0.03262518968134 0.78452200303490.926403641881640.17602427921093
-Rch Text X Y=0.2560698,0.6323976
-Reverse River Text= 0 
-
-Type RM Length L Ch R = 1 ,10000   ,5000,5000,5000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Mar/29/2018 16:38:53
-#Sta/Elev= 4 
-       0 102.148       0 101.148      .7 101.148      .7 102.148
-#Mann= 3 , 0 , 0 
-       09.79E-03       0       09.79E-03       0      .79.79E-03       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.5731,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,5000    ,5000,5000,5000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Mar/29/2018 16:40:02
-#Sta/Elev= 4 
-       0101.5741       0100.5741      .7100.5741      .7101.5741
-#Mann= 3 , 0 , 0 
-       09.79E-03       0       09.79E-03       0      .79.79E-03       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.5731,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,0       ,0,0,0
-Node Last Edited Time=Mar/29/2018 16:40:28
-#Sta/Elev= 4 
-       0     101       0     100      .7     100      .7     101
-#Mann= 3 , 0 , 0 
-       09.79E-03       0       09.79E-03       0      .79.79E-03       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.15,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-LCMann Time=Dec/30/1899 00:00:00
-LCMann Region Time=Dec/30/1899 00:00:00
-LCMann Table=0
-Chan Stop Cuts=-1 
-
-
-
-Use User Specified Reach Order=0
-GIS Ratio Cuts To Invert=-1
-GIS Limit At Bridges=0
-Composite Channel Slope=5
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g02.hdf
deleted file mode 100644
index 6e2995f01696d8dfc03123dfb03ec3c951892898..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 113480
zcmeI533wDm+Q+Lixqtx@1&M;t%3+Yh31<M2U<eGSc@p4>$dO5Cn1N&_$xLtnmGSrx
zTv1j;5tRTgpYiw<FF=uHM0Ul+0}&Nm#IPVn1Qrht4KZI;SG|+DdSXI=On4j8)pc}r
z)vu>#{#E@})nenY;mw;~)0D6+HkL$^IQ0;ARbn%4mee5dLwvS4;IV`(68_Q%ejt%3
z!r~G{c$~=J{0={(OoWfmNJ}F$CFBpTh$iyeJbf$#pnF*nFs2PnXBEy8wT92r4)Hky
z7$X#0zTzmF3x4=qra(X~-I_j^&SpHr(pu(=$r}d&_*`a-585VCt?Ve@`lS}x>~=X*
z$#qz4R(Yh=p%fL^@=U5Pv$$x6DOa(xGkns~kTE9fbUD>FM=6pM$C|8Gi*@D=cG=n$
za?h}^s9R0e+42~RmFL0YczCM9E|ljL!Nb$0&s2QVXF7_Ca~;J+kOMq74gGU1k!bbz
z#VHCLFMeNS9Ve6`?t`8rs{t&1Ed4j$;>c5I$d&Z3HT{G7-fFTdaw^*yl4P$h6FteM
zsaU#L(u)3?r8ymxt)0ZnLud%wQb?a>q)(N&t|ajsBh@%Ue^-NTCx`fko*bg5`LInQ
zE!1*C5#;ffd?@b~YP_0^^cpbMRMg9mlq@Ip8`#G%uy=nRt|y7=0V^;2H&H3F(@&mS
zUxozgo7B_LGl}}E`COr<PqpP2<S7otn*qy^@nUs>^T!tzvtkkcJxMfwzwvvLQM!CL
z_@0E{Z~n|sy~vfP2Mm0!)E|3KXx$Ga5}|%p7l|z3`@tv*U>4Wc6SJB^BJuQDNFbTE
z;-Xwd9%gcwWTVN>BWa3O^pBU3X8_N+te#B>xC2LT+-X=_{@8uje{kF8Yp;3y^P49v
zd#T6pp?AM`dX@Y8!tR;lZW|_%82YU7txS{y>hE7ZgGlF&=Le9^trzFF;BE?c$gb1;
z0MaG@%Kcd)JX@qo`Q0~N=^5_d@f&xYBHga8JSWJntcy4j;Y&q2_hR34i4StWQG}O@
zbZ0mDrpw;I{VowMlGW(&@0}>k?;TfXo&|jF%r@>X7dh`*$q$VD^2Gc;_b(FulRt}u
zemYZxqSL?$!1s<@+&>xaV@uzHs|qU9p$al4#BR;A<<3^7Q>CWNn88%r9EBdw5TBml
z@e@sX#h{<y{M&Nus<NWLy>{;mg2sDgkZQ9!isUqBfyqkcpE3hVYn(g1$W)wX$(6^O
za`F@^DIKOF2UUe~TAnh8>q#aVM_O}>lzb{t<V?#v`U@R!9u))*ORgzTW~q&~BFj8_
zMe5C@dDBXaQLHl^W;+>Yn@+z46?<-xrGSZ5#)fTb_&8HO)HmIhH<#&5sH4Z9PK!rR
zs`lF~OgCjHrd+dJodMUS{{HG4B96Rj$?ryBxEDlPPKfu?&QL_P9>L<ha}ZwxWVM>Q
z;q4^)YsAW!Ac_XRZ~ngv?0b@>gnkupnVt)^$?be&g}kM|s(cHsYkki_9}++UNB{{S
z0VIF~kU;nla7ww^+1ZAE{Wip8B=#ZK%!ydcg50#bA%RFfhlA!HdHDFtPxU_j$=c7z
zM$#h6Deasv_=oMqQ}*?1Gpgj&0O^R16mD;Fom09}p_!&_TWic)nmn)r(HluV&8lF<
zp?|rW_m&A+`$Y5yPN`Xs#GYM8js0lCj@vQ|c6R-EtdbDbv1{b5BMvR-ly;_c+K5!r
zIg(6nqTlM2GSlVege)^et7W3ON9Dw2N9M$}ePC!_+>!f!erokyMCT-(ozn5$uQeel
zu{w936P3@sbo|w_CPR%^_Z&Iv^)r?Im+y5+(FxhOs{@1NoYhiv-X8}k;XPZsMP?_s
z3zat}M-O>KAN|}`_sLZ!%DZ>@%faD)x%Wfo`|F+=`nPT`wcRo7l})4nIy7mA`{=+?
zyAM8;HZ$&nwT}!r_)AaQx2ul-aQBe6e?B$rj;<Y6&6@dx(bo6y%HMD7wWY)9pVv6A
z+`PH`g@vb`TXJ7n+VZKL_aELpWbmX>|JUlyZU>8JRZc%wdd155Hw+&1_^glK$bD(&
z_YW@L_0*1=-|Y8}t>B(szuoryw;dnt`1D(GTgDdO-F?-<BRwDAocq~7Z+@-syOmE2
zZhq#2%GsZ`eakSYcie*8&;Gl|kmvvS;g18Z!OoZi_bzZtEec$^c4Z_c84v4=!^t1r
zZI0?Y&vr_^$EQRsES((XxP?5mG`f#dva{!YLJH|0aTjU!QByrl(uYJuMMY)Ct|K}3
z6Ou%9&+{*-?4jG*rS~IJBDtD9<(r$k4Eo6Qo8FJSnk;@|-4AC!Np1FC*ViNd(e34B
zCkFnQHtgkJ`hHP5cg(uSUz_>ke-D0C+5YtY`5SKe&yK-4JGXrQ)lHB7qQkF(I(`$D
zRYgxdGh)LDabt#W%cD1j941%tuV1$zPM5OevDP1LT=?*Jr{29iCu5ys_NM>DznU@m
zu{R4(wVpQdi^{4q6~A@*BwBB96CLhq&%pgc^wf^?UU&0bP!{d=a~Mq`O4%=AW;%U4
z8Xp%ye=@xe*&|4<kR#YzM)t0wiQ2!EE;_;_c&`}21N{4gpkE1G9g_((pLn^0cn2zz
zHnF750yTF+qUift79XLDka%B`yNX3c(l;Y49KxCrS@nz8s`Qw}OJuq-gT6&q)Hrrt
zthk;oLRT(cm9QeR?kY7a_I8tPEbj?ZwoIyiPs*+sOEPSCs`0E}EJmbb0mBs&dpl0w
z4H=o2p3mOhB#=~FUU9yazZYe%aNvCq^pAl%Mw#JIU(?e!^E1ujkf!JFf!MYACU+7C
z8V>aH(eJ&GTe67F?iDhb$DW4V5;|Q&kJakm6y`aa#qW*%o0@De0tp}iB!C2v01`j~
zjgi3lw{Lj+C5{Ss-d2%SOo8nh;$jiL?Hb~$L%U{27xfCHp4&Ct;x1UbhMAUWwQH#T
z1UEk!X`QY(Q*Fgo2QQu21K%vx;G&y<`;muM@1flY?xkoyveMA@BNSl*wGU>jYu$c~
zrYDJN6R;`K6K&2-SbEXGg?2T#to=x%nPE3=KC%Oky$|!K_P4?8J8EkG+=A^Nl^^bq
z01`j~NB{{S0VHs_5CDB%_xC#&zx~sj-yCfJP!56Z%=3SL#_%?l_D@ar?IW@M!=EPH
zBLO6U1dsp{KmthMG9du%AFcNj(Ekp0T<}r=+)MF(g1u9q`g}(Uzeg9X9TZ2e2k$3<
z2e|5ZWfPy>hK*NNM=rA&N5tr5E&D8wJsYn}z<x67^8h9ofCP{L5<mh-00|(0#!LY8
zdA5fAPy^QI<}v)n)U!U%QgaPvr^QC>Xz6p0otDRJ$TI<uXR08Uv6fC}b0mh^92z>E
z+r)uwT&Nr{4hbLuB!C2v01`j~NFbaDfKD%{L8pTrg#L4Ibz&U&MI1*F$Cb3lw!hZ)
z{lUkF7pS)_m_BDyj)Fc14&Zv!IG=xW%x$;AOq?vcR5P9WUGYrLnc*ADQfTRRF$SI`
z3A!!T(CyH!g7O7D83U035<mh-00|%gB!C3MjsWQPn(SXd4}x9?_fp!w<Z{}qXzZ_^
z^t<->T<`gvfCspIzI-a%#mxCkvGXu0)@k8jo+l?SGs*T_`9}nMoE3018V-WH>qYSD
ziNWI`v|Jn*b08!<U9EObca7?-)M(#$Ca~8y4}*~a5<mh-00|(0@Fl?K38m%t^h+nG
zm4SX(&~Mdxmd`t?jvJ)L%~5n_PIfArpOl?g`}ukz*7F`=Rik=j$NA4gYT)%y=OK;t
znTIrv#)#?$tly-ipTsh9YM$P^e`@F_b`9K+01`j~NB{{SfyPPTeDo932=$<!PR`|M
znN;)0jti-u)Oq;C?ewg3Dg0XcslABTa&~LzD0sgPuGaY&js%bZ5<mh-00|%gBoJN%
zB+^vvliTF!hfGu}Ao;DM1UeA<Bf$-v=Z&~n2K6wXxZ!@aB%XKZY7x#~U#rEVbq-u7
zsTI8*^uI!V!A)n&!&fhAug)sY!+hr!XUod_B_nE>Z!%h`;PVsei9xNkM4Hnc-dI@Q
zNghA9Kw%NA|Cg=F1pTP6e!Z6d&w+&O<RIHgKmAW+o(Sg8fcghH6@!of5<mh-00|%g
zB!C3Mkieg{vjsf}x*uFE9eW|$1&<2Oavj%CWttXbG1KNOJH1$OG+4WUX>Mp200(e`
z=>1@F-(zQ+02iifvxeGak**93b2Snti*)jR8VN+OQKU0337xK?$7;262Eh%{s6dAQ
zixBa~22NvbD%_9&5<mh-00|%gB!C1O4*_WBfDZOw?~~1e!8Xu?(7pk;dOYC}wf~)v
z6w;>|=~E>PwY}Rr)mrjwRix<W_YPy%slC0nF5ww=BHgHTWyMsptj+rn?{z=bcNccn
z?nzej4A$;pO$M!YPuA_~X|<l;V~NbqgFV=}dkm-`0$n741dsp{Kmtgh(GX|=cH5=T
zbD9^;Zd;w7LEOO%#guE7$C>g~YYy%C(b$~H!M0VhZz$>~UmoZ~0!RP}AOR%M7zs20
z{Zzi5gS|BR$udVN`V;y|Yh8%-vhSw?^iy^JoNqk(kN^@u0!RP}Ac62Fa6bBpX@q*1
zHz4sHj*&?ZkL;+;d%WQD`y13;`FlLyd6$~g7-9ZLGF1IUSKV^ZHE?M-%>N1VteT%v
zv(em{MMmlWtC>WNaEf$$Uk#mZkw};DcIb2sJyy#uv8Htn{vrF;4D=|xhsN<&zI@P!
z1dsp{Kmter2_S)RCjfSd=|Ttl+a>zzL9j;z*W2z;Xhj!eQV;Vltl!SzvLY}!s%C$_
z?G&x?VtSIUUM-j%Vhb9hWryflKUkfS!EcfUdY+aphjxd0(IC4oWxqh-M_um61-(cB
z2_OL^fCP{L5@;j@K$oXz=yF(>0Q4Z}ad4~03w7YanaHF~ENQbq@bT5>?y5SB2Quyw
zdC7Iu=icLiCYth!6*?X$usz|fVwbtt<Ag-j$kglMh`avnA?zRb<%2#XfCP{L5<mh-
z011RU0np)f?H||bZw}PC#Kl<o>T=?$gD&6oZw|d)`^_(Q|9FvT_wcF&?rna$oHlRN
z4cbGf%LAEV2ogX7NB{{S0VIF~!kGZ*a;^SxwpJb6Ko3H{IJh<Sj|b{=-Vg1o&+F80
zZvLJZjY(Ekyjt6}1nW0H-~MrKhaW{&2;H5vO%zhYDHZ9;Kha1ag54sW>+8_z%0#-@
zBcap54PE_H4e2gXG_&_%mxj+7xKJEdXMU6=0?amkP%iwtR`LU*;9-8B`@vr5<j*1@
ze6WQVo$w%FOdF~in!){t0XWXnzU3FUUs$F2#?{3q(G`DKo;$?J@nXr)<X?F}mbiX(
zJO5fbI4G8kHCe3|>&zSMvQ_5q=;UE0hl%Yx>jAO3VxYXe4a1b&q~rkuWP@R#`k&_?
zD&GucCLIh^w|x2YCTTuz=4f6rK01jIeBQ(d;4*RipEskZclmF=0B$u|XUk(OR>dxl
zw9c>*FF%`4pT3#qn|C-{k_#f>^B*VDN%V<eVF|(y&s*sk9<W1PU&}u9YH^;HbFiat
z4E!8GzZbZ^snCZ6kN^@u0!RP}AOR#0t^{gYH`iYeLO%q!f&E*=#aQ_EZ`JAjv-x)p
zl@)=>P*sY0kK3B{-_4WsBvDNzsaK388MZrB|CMwfe0~X+NZ+{D&E@@WI?qHLt0SQ$
zp;k9w2knXSt3#)Q_U@w2q0<FiAWQ?a+EJz&s$U-Omq6wK{GXpN#e&5~0!RP}AOR$R
z1dsp{@FU=qj_-c22{FX#+~=me^W00jdfa^7iaR%Tdf~$ZRkj!Rx}@lYY~0m>LGp~%
z64_T(P66-PI=U5U6;rTgpK<byD<}QhGCh6!{NWq-%Z@IaN)sv*u77Buywv=Qysks$
zvVta)CPy}J`q=Q@^0vaLYn4UMlow8J|5oze_`@UrXdPX$@!eBDeOGbI;v-KtODb9N
z=pA=|w{71y#%D`Amz=q4(eh(k_NUD6d$eVVUKw}fQ04Od-<<kn)SG>yZ<snP>A<t!
z9=+!8S&uk!X1@GW#r*D1-0}2=oAN(6d;g%p9c`lvyPY~#c+cCdo*dD#{SwEq?Mu#;
z*r$Eff9>!6=Po!pzVj=mr_G=8b;VVOK413LllM%_J!W51F~XiSY2H@-o-b!54Y5~P
z22^&PYF%|=Q16OvQ$L>Ke52&{CEFLwv3>s8p0=mAMjl=rGq0>=vRi6V;L^1#BQbbb
zKOEeJbIRhjcN<}LO1ar|i^z$~j?5vXJBeh^wnPnq^btdE|2eH>@SJUJmX3bR^3A_u
z^aeN4;jZ=!+|zV15fjKE_EfKFem{weO7G{6*x9brn9tL)o?AHnx|OYlyT4dHGHyca
zxBk{5B6sPXN6vj(WgBI?``r^s-M{;O%3X&B%v28ivG$(v-+cY>U!OVi?YWN9fbx6W
z@0IY0sQ+&Uck#7*rPkLUd&nu-cXs`F?1U6TI=-r#<dibgQ=&+GT!iFv$ey6GX!Qw-
zYx}^^ytrr*QA&i#lHV_9<M4tVA<RGPKmQf<1Az<ur{G?K@jdHfM3<GUVLw<?|0?T{
zg<daa+`#Uno^Xq#VDn$GK3T2#uh{vr?<81ikpE0rTK#ht0LuyyWE*)UlvG3t0}D6}
z?5Bd9ia|&K2_OL^fCP{L5<miBNC5OXjEC^o=U0h3fgS{14sP{0pCRHMdkX2(jP$7z
z6FGU?K~!tWvsIDQKAtI0?=W_$I*i9pZ!07$m9DIqYL>OJhwvWnlP-*o&v(2Jx0{d9
zw3|=v%?q8(DowYt|Ka{c+)HqriU83_9k82UFY32KxN=wVVHW;jnewP&Ypz($g%Ik`
z9NMGTFu;;-%bS}=&FZ;TJs}>yu&S^2^AC3Q`o!F_p05|f)+^@z34Yh3exK_>>A+3~
z%AsYCU)DvOA?l^oPHhGm`MJOQ+2O<WMKjeeHF}W%5<mh-00|(0#z3H^_545&RJTWB
z)piBzQ)e2X9@g_aE2Im%lt*@Ww=X74*-{64YlC`wg01Jrv=G$GU;n{+e$Z}8>;);+
z>;iV6)7IY{I$feT^W=!o>7c!GGBb3#fPyrzfZFQNs7}5WfZBUL5WdmqLjp(u2_OL^
zfCL%=0nnjmMO`E@^90y!fF8JjI@HyNUxe*Fvg7=9C|7>LbSTr9P%r3r)Y46Cj+#*0
z>#ZRto(g>G;6)k)Zm2vk4hbLuB!C2v01`j~NFaO&)HI)lza9h~4elkd1K%{57mDqf
zJXIy?`Ri?$deeg0fw!VD(4GK246bUI;%^AfUg^uemf%6`#Yr%OaXo?l=jPO4CYB6W
zOpf9rMIJx5z%%cpxBdq^0xkW22i!olc7eO?e)^xtJPp_tK|KS{#1JHa1dsp{Kmter
z2_S)RBmj2iTH`=LK7t+u-4E`i(ElSvp=6D5pf%ZjFii{fVj7&?w@Wn+bUhS=6(Y#i
zp^aYx@rD8J2Wt!9h6IoR5<mh-00|%gB+z&WfIin62MRh6T+rp<Hh^)USrdeWrP7rZ
zQ<bc>>94;~<3QQiIN$`X)_AwLPQIThP~{$jAKz&7Aps<S1dsp{Kmv_`0N5Er$KfTg
zGcM2OqJ!-{vZFRSD){;$2KDX)vomf=V?gIr&riT_rk1@yOCBAt|1<$|;!)u9R3zXG
z3_t=%00|%gB!C3Moj?Q7Pl>a*=wN$~?6_$9$udVNlG%Jt{7!1=C$0Xc1E`<E{Sm<O
zBLO6U1dsp{s5OBGpr6e4i>#l#=Ueih|FX9F=?BzLwf@ZE2}l45AOR$R1j3yF=%-6K
zPf+Py7eqfLs<$TC`#bM(!Z2SrpQkd47{v`;I*k`f>;7hmhy+XMbY_t*t0;6jr%1PA
ze&}?IM7q5Xgia@tU37=(Pxf{c?8d-_f|M`k<xUg<xQ+mjxjbB0M*yCmWKnJNV&Bg*
zjNkvW>jc2rvIa)2`Ti3h<YyYi^|jhhS8L=8!N2;oqrmPI<_Q27(xZz6kN^@u0!RP}
zAOR#0-UMozFU(&LLc0iD?{(*dR&+5Uk#txPQ>YMDhxO*lg|uZwVA-fydE0l){_o~G
ztOwzuS+SO03@u>-Nwwt_=UWM3>sVaOdBL>iS*YuLVZ0we#|LB4y2y`1%YxN5a7z$D
z<`+VzgZ6IhTcOhhULia~wAxXo8mezz<Cj3@_4j{%!jlS?8VMi)B!C2v01`j~NWh<f
zQ#!u;y(YvEt8<^5^3HQF?doy!bt~@N)aiu}4^-J+-0PB}6S8qv2L{PAR!d}GRXGK`
zXY1%zq*YA8ntjH}H?ExYYs>WX?em9k+%G%2Y${EtOt}7`h4NDKFY>w$nac{AOqv|o
zyy;`Zcgx!fqpnpJJyTvdx&2$od*cs}{G)Yr$;Nk2{q$YMEsKvl-7KkO$)k7N{oS^G
z-x!}Q?Obx^u0_j_ZP}kPzwgnOC3<DtkwcZs_kVNhlTmN>jlN;(u%rXeetYzqzh^z-
z$eH=_PZjgKKXJ#?8*a+~;OzZ_26wcLF6?&dSm8Zyw|a6!%l1ng$F?syS7M*`RsXfW
z_n*7q==jdBoSrs+%GVWF9r}FPS5MwEG545#O~nX%(xiD?^?SaYl{Ca&VHr@_b*gpM
zi9x+9x=sCfit~+<+m~!#Fvs@!XM5V7-Wqv$b<Di7mdS3ZMS)A#u8hRsVf}D$7tSe*
z+um&iy!iHiz|oHckN^_UAOQ0^Wr=PeiSV8?DS`(;KM=Uke+sTvf8Yh|Uo|`_$|`Hj
zyINEKD(jGiUaw0%@2UmBYTTa>*Fs4}0x@C`PK(tz4}*~a5<mh-00|%gB!C3MlK|**
zt$A0k64e4d2)Z2H1~BjHt`~)brP7rZQ<bc>v4^-&^R6;<zzJM|lc3!^khnZuf4g~T
zXRY4k+a3d7dOcy%vYXG|z^~*I*XMRKY%~$y-0UHt8<a=Zaeqn_cX1z_K)jfOXOW05
z6<?%!!beIlJ2Q3tLrY%u;)gUXv%6wVao}xCOYM;{G*cd-*zy%e(OkV4*(4FMej+=6
zqEckH*r?SOKfhg&^ZWKR^z1EXDg_QDKZnlL)60<5kEQpwubN=BIP7xfTsuw2;#qmv
NX93ESIZ{@W{69rHo7VsU

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03
deleted file mode 100644
index ec6ff0e..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03
+++ /dev/null
@@ -1,60 +0,0 @@
-Geom Title=Base Case 02 Geometry
-Program Version=5.03
-Viewing Rectangle= 0 , 1 , 1 , 0 
-
-River Reach=Flume           ,1               
-Reach XY= 2 
-0.03262518968134 0.78452200303490.926403641881640.17602427921093
-Rch Text X Y=0.2560698,0.6323976
-Reverse River Text= 0 
-
-Type RM Length L Ch R = 1 ,10000   ,5000,5000,5000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Mar/30/2018 08:53:54
-#Sta/Elev= 4 
-       0 101.684       0 100.684      .7 100.684      .7 101.684
-#Mann= 3 , 0 , 0 
-       01.00E-02       0       01.00E-02       0      .71.00E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.5731,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,5000.00*,5000,5000,5000
-Node Last Edited Time=Mar/30/2018 08:54:55
-#Sta/Elev= 4 
-       0 101.342       0 100.342      .7 100.342      .7 101.342
-#Mann= 3 , 0 , 0 
-       01.00E-02       0       01.00E-02       0      .71.00E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.36,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,0       ,0,0,0
-Node Last Edited Time=Mar/30/2018 08:55:04
-#Sta/Elev= 4 
-       0     101       0     100      .7     100      .7     101
-#Mann= 3 , 0 , 0 
-       01.00E-02       0       01.00E-02       0      .71.00E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.15,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-LCMann Time=Dec/30/1899 00:00:00
-LCMann Region Time=Dec/30/1899 00:00:00
-LCMann Table=0
-Chan Stop Cuts=-1 
-
-
-
-Use User Specified Reach Order=0
-GIS Ratio Cuts To Invert=-1
-GIS Limit At Bridges=0
-Composite Channel Slope=5
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g03.hdf
deleted file mode 100644
index fc8fa6bb3c16b72269de37e44fbfcc184238e70f..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 113480
zcmeI53wRS%+Q-i{y#WD&RH=Y6+_Ws0O(|djkya>#oAjZDry^j}GBklUX`2)S6{wd*
za2I7&1VL$mb+^i@>?(?)l126dmsJt@6cn&NAXYwbQMqY>e&@_NZ<?f;bXy8E<sD_t
zoO9kebLKZQ>Hpl9nnsRl-Lhj#!nWvW5>5>2A?&KfX4)#LLEwk@OmV<t30Wfi<zf6l
zA`yhe#for)NZ;}fKchl~r%y^rA=DDm2UkQB`E70=4FTw0R|HHc$*JsyGsIoP`?O2E
zX8>cgV$V~Yh4a7<?`0AM)YGl&y>zwW36|G0T{LeV1mL~Q6ffEqaa)-YzV|nx(C%=^
zX-c-!YPZQ_Y)+*x-=1q$eQ8C7v&`9wgPq}HM?=P&Z8PN&_PI)-95=yivsrC9w>xB8
zFGziol||icw#|{pTWvfI7RSR!DC|PHUJ*PzWoC}zYoF#UEXsBk6+#N|-8A+0S|X9^
z-xrt2a69q$Mb>dbN#Z%^NunCS?4#*_=~id1LPOfqe>c*9aKCq(9f~}H?Tr0puOAaV
z$)r}yE}F#9zh)^eCuQp(?d0J!gl$P=Kr1q!T3lC>c#7d_9HD<#18t{<`-YwxuBYj+
zO(Jd7d_orFbZZ{u_XagyH6sbe3FgB7#`r|pm^ftMz#+!LJX}xW)B~1Z_TLnx&_Ulk
z^?n%=xZn7G#(weCU&H4H)qaFMFF#jtD&7oOf{Yit7dSt?ut;I&^WRCL`S%-tCn==s
zc!S?b`1{Sj8LAh#^7N2__e%X^?+I=AfkeX8cXf$K0)8J%A_Eq2eLb<L77}SkzlB(m
zW-lttR^*Xpr&%_c9Xyg+#L#~{k30eR&Smv%Lckp|?ycR%^_5RO+->K?t+#Z1=CeDe
zKE1K;sN@CzIJ?&UT|u9;dnS&QNEH3n_*NnE0r&5pKcld7x8nz3=hln!+i*9DJ7mvU
zegJlfr@22vgl7u7q+fmQ%Fl8Cu3xz85_Wrf@suFFird7I2wyJj+)I7!;vVCElL#*t
zcIUVF+GW1U{Ust?nAPd<-<=4}-<^`4JPCO3EOzd%6e;gn%@0ic^2G81_b(CtQ$Gnq
zKb<K;(P`oY;CII@o}UcQv8`{$RRxviR0SCmVt41-v*#!?sZvvB&0?x;u0oGziMJ<k
z{1kI;5$Gp4e`1zHRaW$Gufscmfbm`ljIi6Bg>s53-)y7uPniX|HO-q@XfDdNX3Od3
ztXzdkN~gKdNmZeolB>++dXh=TF}CbNC67uJIn6qs3Wr+fQ9<CeW}9<mW^J+;TIbU%
zQg0efo8H8D#g^l=ILJNrne<msaby=-^O;y>Y}lrT-(${$`%Sgy&SN?g?$P5<rP-q=
z)%fjJrkf@y=4^{xlK|JH{{ET=B96T7l0S{w;a(7FJ|W&qJ3|)L`v?^8or3roAZ4m`
z)7we(uMx{*tjHStee?gjz<wv0CDf~c%k*5ZP44U)E95QxtID^)y4Lp`^dSKxfCP{L
z5<mh-011Q+0hg4WnVD%EH0aH!NpS;6$GKrkS&*AnH^dUj=WuB8u|J&r>vIVwKVJVS
zd5g4(a7nu-5Bq*c(ewj@EIV5m7knOdw~n|rv{>bm+AB2Gl<n(HxyuuWbRl{Z$)joI
zuR8LtlGX__A?u%w-06~9^^NP-YwU!7Pu?{#Eq`~fk0vOw5gWQ1JBF#d?p<kP<*dj|
zmz0(&w<hFiW2BlPnsP*zAu~M7(CN|ST*I-4e|oO$L85b!o-XO+-oLdVNzpp@fFCYy
z*m&}_iWbSHoBNHK{r7Vh?^v<FM2d{f#9adzBxaRKk-3+?p@jEs>m8mM>n>1UpB6d%
z34P>-ZSGTRf2izp+wZ>__4|iDbbavR^T~hey|L4-k*{tU_s8V;UGC#U#_s**@su3H
z&h<|W|K{g@_OI8T{C>gkw|_b_^1fbO*3QoP-eezmboH;l>Hl7rvp=nKwcon6@}<RR
zUGHVTy1eakyB|5aclfZWV_%7Rp!YXLvoFrPP=3Se;@gJ}eP;H*U(epS`@6?h?0Ih2
zoo@_!$DY5i|1T5&@^$woyRX@7cyB_{f<9{(AM5wb*6dIJ=gz+keD~tB!&;x)d2!As
zoi-bXCKwjod;Y7w!~b&W`%8yQhPk2+KeWg#waG8hb*>;$iFnvp98Ue8yTfsP&p9qB
zAw4N#arv|e=UwEv<&gtil7oHolat6DVGoj4|8A+LCId)VL_|cI{9;aKSwz+&gd|MT
zea(NQGLyG=P8~#~IC3-l(6_cOkz*Ery7jSa!<_a}1u0WDosNH|+oPKv{%5aUD-Uk#
zetWm9!#`~P)9GnxV|QD&PW<KNs%M^j=gBvVN7}#YK7U))CD$eVC1}7ef%^M-e%nJG
zx(<2$&*H(1+MY`v3^_{L^Iu@M(V$Ce-G1V!SGsm8j<i3!D!tdCj<33QY>Zji<H+m<
z|6Dn_sJi;%!n>BfF6s0}H^E)~8RWnGPzPPc8#(+DR786HMT{h2<?N4PS}JWFZD$Ch
ze>J@h*;hzzki%FjBWvquq1G>@ii$7^+7-iifPZ}u)GL9jV={rJ(@yRp+CXK}A)0hp
zq^3?t1Z}Tn@nO0!iPt5$t65YyZ5d(V5Y~#ws$Vp#(qk4ck(tUY+KR5IaqPTkaXnp_
zu2M9Wuq?9bDm5wAy2&<{_WQ~2PpxSuWmk+Qlk5+u@vL4fO4zZ0QHq(hj?=aw6Z6vZ
zS=&u48DY;Y%CqryQPzY5?LkmK2JU!emQ!t}r!Dh27I8@Jc{>ohHs9nP;y}ZJdOpG$
zU4v|iA}+Ik5F;7|?IPr^;C4+tR;zwfbkEVuegf8SYO=uyB!C2v01`j~NB{{mM*^2$
zzTxE;0~PSRtRkzJYL{zB35)P8*N~D1lxud~re1+Ga=C{0xC>OSVO`6#$~CnA1n+(_
z#x_%Njj$KloIH184}3FNfs1bb<wqV`vxjmcxYwfm$Z|u=kC27Qw0|&TUGMT^Bt1#o
zHi14RdZNv_1+y0gTqswA%gT>5nsw}^#YcAF>F>ilYX93n{X6O^|J;S;AC({OkN^@u
z0!RP}AOR$By$}F>-thLFt6%;};137OKa@l5a^~f?pE116rTkM@|MoFh{^4H}?vVfz
zKmter2_OL^aGel<@{d;g1k}GnKQ3q#0QXw7Pp~!xs?T>N@n>|^%0UKtJ!qc*9^k6u
zmCby18#Z299l6YA91)|Jwfbk>%<n;SKMnP{CL4@E0!RP}AOR$R1du>;Bmnw6Q=|V-
z6V~UJ@%(`_vOeb{HUjn2Vk366^tq>>mZ#g0X96J4R6#7eS~{K0kr-?%($ML=PaO1(
z3zh=LAps<S1dsp{Kmter34{^>(CPVg=ycG7P=5|??S3qcHeSLY#yB$_&MvQJ;c~};
z>%_Qq|8XCBlCM6tK>D0bISTq5IDqR><9z<j@e}WcnK)T;BP?|4cf~U~=Oo`)W}&6q
z#Ta;I5^#H5L$^b@3i225WDG<CNB{{S0VIF~kN^@0IRc>D>+1gkdJyzFxYx4(OE#y?
zvc~>3imnefKG%DGC*T1tpD&-vb}@54Q|vs9iglVfnCHpG^Gq`RR{jye9%mICje~>0
z?j{jjHYIR8gjR|JQx=4TrmI!XiPN~9H5%m`&jj`w=V34sKmter2_OL^5V{2TJfSrI
zo_gt6^=6<R7W7+<p5^n7s^bP}=jI4HGbcNh%}>fstp9vHVVii3u&Pl#vg2~=pY_DZ
z??au3G}>n#QUi?<w_9udCN2FWmXTA_^xl1-p`X|_a6<w}00|%gB!C2(CxOe+PfQ~;
zf_^$RkE3N$%_BRmq<&K8;S-P3v(BaPYw4$3MZA{tiH44X_H}Tz&c|>hfCP{L5<mh-
z00|(0&>|p_mTH~c7Ee7SZ?Tm8)=>f-2=$TRUcvsc#z#0xrmxxM)ht}TzAjNy4b%@d
zhQ>hsE8H)*scd=pnnmr^S;cvn@7&^SS$RJ*qK5gJ(Ms3A^Apz8pSGqoywR|}lbk*;
zUtt+%^}lpVcTYVktY5FC|FfXNm7N@5JL#wYiOh{){tUSP0H<OQ5<mh-00|%gB!C2v
zKnN1}Z~NJT9t7PFu9l9ylI4OY1!uW|>!&hJ3$mDLbC#T5tT-B|T);Fplna0ZxB>Kj
zAi3}9XB!I_rfahX+hk!^0UdKSj1z^O{IG_B2sQ~j%d+5hO+8ktoHG<2h{g>}^lu0e
zEjDl(D^uZy1dsp{Kmter2_OL^(0m9$IR|vG|9YQn4h*(|9)$7@xHaPmhpYAPgd~vx
zt;m3C(NWvGyi=nk&sT?wdVcRPcAfh7*Ve^8&rYNpm98wCYLfM75Ak02Q*FC&uyRkL
znr5JK4=XZgm3uPoRZpw;{2q_X{5;qTd^H`YAOc+^fCP{L5<mh-pxF>;0{ynj|H5f9
z>2X#1ZL9M$h$lEnF=t!kd(3%iZw~GG(b$~HfwncWZz$>~UmoZ~0!RP}AOR%M90@c5
z{ZzS$gS|HT$vRgl{4ewqpG~3m8}N$k8wUERrhd*h9(_mv2_OL^fCP|0=o7dc{lqjv
zBg`8R_YTL%q=!d#)TbRUik>LC^TGHa+Ky*bQ|0Y=zVj}%_OhR(>L<GDmXof5OT%IQ
zPnc)b@|>EC=FTE6ocd=?6E(sm?DoGF+-`}mi+ww|T~m+M>X%s8ItTxheeVqPD6~W4
z_$yyN=tBZX00|%gB!C2vK&TUdeu=3<2mAL+^w)#X9}!&deuqLUmM|vav}nPSgs=wm
zH{7&?CB)Y-U~*JV>T=5|TI0ont#8nVUR<jmqG$bJbw&oiNfzjNTDly{9n>V?_POjA
zEc~d;{kWhP2_OL^fCP{L5<mjYgaGLBBn@2->k@z-1U(LJ&3K_MLW9esLp15INbvF1
z=kDqT=yTH^k(S)Rc@VtE15GjK7AbT*Q0?-ByP93*YL62Vw?<}kgCp+xmxo08#@7ga
zNB{{S0VIF~kN^@u0wGHPba+GS$F=I4YwKK6!XWwTa#GR&UB2flPMb;9Myof!+V$gw
zqTIu8rS{(Lr^|`VZJ<1ay1X_s3_$`&00|%gB!C2vKqwOcU9MF>&ep198|Xo(7YDbl
z`tjQOoYzD9>hlKGn_Ir)S!0s5LHayUz4_(VkMn-`5oDFn-5J|OCN-RLVOROFhJgrn
z3%impgWFXIyXa%V?cjly{aA<HHHv2aeb}YpJp&iAQ__<kWrzTaogY*R|DM(Sz$AEB
zKHz@nFLdfBVF)j_@S+nM1WYN(sVt}P{9yo&>#T47#p5Tcv2Rp^d=g#pho!kooZU`L
zJ(GBv2V{ur*Oc>bp*{Gb$po{_X0_$q?vQOVZ=;h(nw@60^Q;HN=8A#*CKyL5+3|^k
z2g^p|5cPkaez0^WDLHg7P{Y#Y-<zcQy;&l8&iLpgLhySNFTi!;_<wIEao?4{_yV}w
zY?~vGx7rkkJjOQ5PQ3hVK7HCU%{T9Gwj>us!253yb`t#}SQyL$0N-2rIc~5^Twkky
z=*=P>E$5r=zA^CU0P4NK^|eAD5<mh-00|%gB!C2vK&TR^Yu#LbJqYy>;MT6+YP9xe
z%dZ?N%L0?3sucAew>A4eTc_$toN6VhE#A>&lKlbI-=6LR&o5CT?4xL@G?t98=N9GB
z2_%?(D6gB#>)mwpp7>T44kZZ@;O9VjqVne8c2M43(lfZ7U-BXA)hb7s>$v^Oc76sj
zN8tbcge(}$I1)etNB{{S0VIF~kbn;XmvnOPKUxrDw9b8D`a2so?&*7H*HsT}>G9Hs
zhpX)`?=O)eV>5Br00xP($|Q22x{?Ckw{2VuiHXWzcfd65H>;<fZkw9Aqj=O?2W97N
zTgqcE#&&yrvAo>!v;1P0w5Ri1Oq~|qy5&=&_R8A}B5qNZJYQKb?bgkS``aBIbLqy&
z(zo6{^W(QwcP%}(rd53DvM29b@a^^khfFV&_bfg4;F1+5-aD97Jn(qiQoVA|u_G5(
z96WU9<FRiHjJ$ou$oRuAe0{v*`x#F-vvU6WV^wjVXYX6{=5O<Mo_}QMu<rJ81-;Ll
zC|LM*%*xSiZ(Zg*v18eVQpf#Y+_C=GJLWAqp5F7-v-cNI|FY_)BcDC}#ma?KvQIeH
zRgHGUPo2L_zwh(e@xvWe*1;Eh&9JTgVQ4~C?-?IWcfDSE@3I|>=Gs5|bYG{l+rp2Q
zMa{2ho9LF><d^6=SCA+?Y#a{mg1Hrj9lb|eTvB!>-NLdAnc-Q4^daHw+m>iYAbnW!
zy+5Ut4x78Z!}4)YSr7dyN^f)%9q#JSz<s|iDr_=2!oKQttsfzVh}1#uu-%<|jQ=bp
zW5eR~uB&54x&OCpjA8PPoBz}%EPMF_$1Z$QZ69l2@a_-seZKu}`h!OX=O~9StzVda
z=*vI+@%eLKU+69ku6*d${Stl=jsMHwF1lsEbYr&@kGmwt?p_~Fn4CmN_t$h&T~b<V
zQUqyd2$Osc*%wq1seVC*PLC$%8X`$pIT2l!eEx1W7Z3C!g!yOv=f8q_AaJ4n6x?et
zzGqXEsIrnZ`VZDszsf3Pq1KCaZeY(+FM1>eT8ER>v1-kK#m<*~C&5yK{Aa?_s-Lq0
zSeA(Z+nDx{QxPdTSioseZyMlK3_=1(00|%gB!C2v01^m60-(=fJcPeKze(H^=t0os
z;MR=u87|t`lgNNpWI(l;$jQ4OM2(g_UmZ^S$1~;W9mX!zfbsaLorHv?(v@XXO|m}y
zA-u=?q>4_*mpk5v_nQyX>^Gm7z%!l5ZklctzvKQT+)HqriU83}9q2c|N!;Hm;mW<l
z%PjmO)8w&5wrsJQ3nA2>mfW}hNWhY6&z+Y`yVdhv^@Mo*qE~&5pTF2O>l5>y^?bb;
zwq7y!PxiYW_4`~8atHlnARk)&@hff<XNddKDyO!Bg#6rJ{rcg<^+hq&&l<f*00|%g
zB!C2vKyx5a*Lr@S2WrYAd|eDyr_MA&Bdq6lUPu>qDUa;%E?>N#{C)%aTN~BK6KFj@
zriI|X{PiEK=LhAcxc*?NCRb|*I&IUP!R_M2nWshvw}bM^skGpBwKCGg0_v+nBYODW
z0NlOjh476=9}++UNB{{S0VL222!IYfFYZMWGfzOj4bTHuP=}Tb;1^+gkL<X79m<to
zARWpyCfpa)J8J1BHb+gc?e8~2O56&3>fl8h1a7c2Fb)YI0VIF~kN^@u0!Scq2-G#7
zhQA&J9S!a^=m)-K7|#^jGkK~?)XUe~CF(;9)DQe>&a<H>Q2*STc9@AKqZG5Vs8Es9
z=jD6mo%GiK(2qb%|KA4>P`$g_yB&V|pUB(>`W2!6ugwfYkN^@u0!RP}AOR#0$^@XF
zxz;#PkdL4TLHC1uE%g5wkttbY9B5trKA5J3`?}WSKsP}~G+v@E9sCSL3j;h4Ru;ew
z2_OL^fCP{L5<mh-p!pC0eXcbQ6m%fCpv%E+0^>k4CJPBmr7O#(Dp~7OUw@^>fwHl2
zzzJNf@ot75zV8&Ma!-dJ-)Qt90VIF~kN^@u0?mK`^fQKv!)wsbxH6NA4z~Bmj{4}R
z!0U?`)u$7vpK(hX13IT>eggh5wfY;h<<YhFpTt5+JPLfC8>w{$1|R_>fCP{L5<mi>
zPM`_sr?}Z%bg;cgc3d_6WSy%N%4|L-{v@^ZlUDuHVbo8d{t00IkpL1v0!RP})SEyP
z&`%b}Rn|}5^DX($e_3Ds^gZgQdcSjc0un$1NB{{Sflwy^`so_Z6IA}-712*|>Z1wN
ze&;<-80HJ-^HfF<lX#%Z@8_A)dcGMVBGww*&LZqG3WM9Zgx#v*;C4%d-Tp^|+X=I)
z?lAqyT1TPZ7`Tv;$`w4{aUuZM5dbpRhYRZn!1t3VZrifd_kD)(`~U4a0dTggfl+I|
z|G3BanI>_4t@6{&8tFptX}@w5^gD%l0>A}(bddlOKmter2_OL^fCNIDKwa~N`RhR_
z7lG@&?wrtyC5%Wo9TvnCDugv)y}3#uZCMsrGHO!Z{X6FTXKMr2gD9a%v65aC&0#DV
zVb3kfvk}79vACM^f@#gO(9rq9cs+oQ55}VRB0mEq3wF1)w^$Kmc`3LZly{>y2e+$z
zh0qMqDo2^?xP8kyKLeTHzyJ3Wnp7~?NB{{S0VIF~kN^@u0{#SC(#gI5XhDq8I`@U?
z?`+t(r|+FzS3R($$4eg`uC~9tzeI|R&BR>;7$nXrlgNSUN(y-2wsA2eCMtj30n@bK
zte$$hZEEU{;!$rMl%2P2DUZDv+wJki@^Z`1@{3*4p3ZMEby|4qmQRh^D{n7|xJ6m=
zd}YD3TQ?`}Z+CRer5htl-+K4VkKb0^we;AUR`I3Fp1g0tx7!aKGQCjVv-I49OIDnC
z?_g5#z~gO8^~ycRj$B-E@X(o$$G$Nz^7a`c;}5^^_3@7HXFTD|%K7V$RmFXty>HE%
zzs=iu{*j@>y4%MU^geT<VBy;_D@V7zb(!<Tj%6209ru56$NFFIn78P7de2wS-d{ZZ
z%c`4>eD?GgD;G}5KH*qbHQEtBb^bQ}zRzdJ4|h~q2Vd+p!?yN^p$S#JXM8l>^?K>O
z%XTc9Yya%ieVxv33qM*GHNT>5qFZW{U!v<=L89=maX7dO=2jSX^d1cj-~Jys`jG$<
zKmr;BU|y#TQ4J&!UUMde@c^g?0vGB}!PTk{yn^+s#+4$kvc|ltb=9x33R$T2y4Lfq
zS^=!a^Z9T+<Wv}l5rc4Aw8nWDj0BJX5<mh-00|%gBoLYeK%Z;PyLywjEzpCY%fW2|
z^RDiBSx8taU0F6&$y%TO5Las6RfY~Yfh%wl>^Bc2u20v$-#nDF%C`8H$H14`NSL(x
z&1b&JuT&zg&-=}=(L{W6vyX&skRMsc{Yeqr#eHA`?Zgy3OGI?J_#xF3K2n19GgH?;
zwC2_<en@RuzbjT02i~TX5q&2mr^%xgd!FJfoTnEfn<OIEPh{s$Q3@SaJMFc_&+i=I
z{DJ+9{SxFfCEuy!Wzm^>`Wxd1F?;|1Rg-O2r$bJg=b&~hp5=$V3y`0*F|um%{{cds
A7XSbN

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04
deleted file mode 100644
index 981b073..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04
+++ /dev/null
@@ -1,60 +0,0 @@
-Geom Title=Base Case 04 Geometry
-Program Version=5.03
-Viewing Rectangle= 0 , 1 , 1 , 0 
-
-River Reach=Flume           ,1               
-Reach XY= 2 
-0.03262518968134 0.78452200303490.926403641881640.17602427921093
-Rch Text X Y=0.2560698,0.6323976
-Reverse River Text= 0 
-
-Type RM Length L Ch R = 1 ,10000   ,5000,5000,5000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Mar/30/2018 09:02:26
-#Sta/Elev= 4 
-       0 101.323       0 100.323      .7 100.323      .7 101.323
-#Mann= 3 , 0 , 0 
-       01.03E-02       0       01.03E-02       0      .71.03E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.5731,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,5000.00*,5000,5000,5000
-Node Last Edited Time=Mar/30/2018 09:03:24
-#Sta/Elev= 4 
-       0101.1615       0100.1615      .7100.1615      .7101.1615
-#Mann= 3 , 0 , 0 
-       01.03E-02       0       01.03E-02       0      .71.03E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.36,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,0       ,0,0,0
-Node Last Edited Time=Mar/30/2018 09:03:31
-#Sta/Elev= 4 
-       0     101       0     100      .7     100      .7     101
-#Mann= 3 , 0 , 0 
-       01.03E-02       0       01.03E-02       0      .71.03E-02       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.15,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-LCMann Time=Dec/30/1899 00:00:00
-LCMann Region Time=Dec/30/1899 00:00:00
-LCMann Table=0
-Chan Stop Cuts=-1 
-
-
-
-Use User Specified Reach Order=0
-GIS Ratio Cuts To Invert=-1
-GIS Limit At Bridges=0
-Composite Channel Slope=5
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g04.hdf
deleted file mode 100644
index ccf2bce1e77819ad86882a7713f0dac528a7dd3d..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 113480
zcmeI53w#sBzQ<?NHZ2gK6_hFniwG8ZoRsn?BDPoxDG%vw3!lnEl9q)8+N5n#3?Nb;
zmxG>za#R#SX@TRlzB$LEf~Z8~UhtrZhzcISdO@sQKz#5}9=$U=^G}mBo1Q+9w)_{m
zvorJG+1c-IlHbhyclIIE$Wd)uU)P$jB`S)9lW27lR#jp#ZIaX^h(o?vZ17w{mWX({
zj&DdLg0Q?;ksd9|x4zBys1WH{8L6p+T0;2{ifkfp<n~dJfZ-KIz?3>7ot<#DIBU3{
zwu}1=V2oBA`HHJ(9>n3kOooIyhPB<7?l!!@@;a7_<}HH&+?Qr?qiqnUWsdMazmy_}
z(<x^vxh|W-E~nXDN>PC$&!WaMi;HGjaup}r!_SVUjI-Eh$SIDwN|78l-eR}g?6Yoi
z%J$w+dWMZ<-EOhZk;mEWybPAd(^C|7pgf-po}M~mmf~-p=_)GDbrlyu3GlgT>i4xo
z^y=@6TU0nk{JzLxoKUj34hE8_CNTRb`Y+4o%2Q}c2l{t4{e$zp-QrZ_6t*%BlzqNT
z48%;Wm|Ya<NPo>z-7d=3Nn+$An!=W3GO!I9SS5}tNxZ~xHILBW)nLoXB>&WtNd{UD
zTO`s>ttV7L&a&l0eXmmURWp)c9B(NaV2n?cjYDrSCft%Rgr^%woVvm4%l=JLik$S$
zQ_q(nf%A>;Z|omW<JEkwQteY5`2~53OYvpE3S_+4xxoHeMa2r+pMOsh&EIeQo}`ej
z;03-X;rE+=W~g4|%F{~*?kn}j-kVzg4T<Q~dv%E@0=^$iq5@WNd;_tn77~e}pM_YG
z=_oGBRpgNtmqj*NoII0Sbfka0j=TW)oXhIogg|)9*td2V*H%7u{|(zFY`XrsCqBD%
z^5ZY{8#Q9#`=?iXzANmTdB=p25{aarHNI4cdcgSy*3T&HJTZI&>^ugse>)x~^MLF+
z%{Ra<@fRM?7U^bTm;9T*UHKUv-~KBP-NJ5HZ(b6VSJ6vsiS%W{&hwDJUECje+$7S=
zh27Z={&wa!dAvlV3$t1S{=E~S`Mp!plNSN^oz=nPm7?TbEBS_rAD&o0;PE9Qe)1<_
z7@#vnDh5rQ0DSLw#PyTmI=1((xT>HsU8*2sLhSZDNA4VD232ax%$ZEJ%~k03OmX)F
z&!1$;D+c`p`%lPms>+J~_BwqF2%7IxK#IfeDw0#(1r|G%f67d#t!dtjB1>_eEmzL6
z<m4$-Qo1ZfE~*OU)I4P_*ON>#rrC3glzb{t<V@RqDjaI;M+Je)mTSqAnYGDLWSdWq
zNTZpwY<d#o6#Fcf)k*Gf%%I<biZi#!R=~t6W5X6T{SHe$oNu}#ZywW`aE{)1I;|ev
zsXFekG2N7*SaPj$bpc$L2F9x|h}iNuOMW$Kru#so^@MyM?F>~^&m&mAZwcaSfRw4$
zO>ZU9Un5q>SWz|jeGB|uVBeF>68cpjWO^>tB6so674nw;s`4ecuJzvsV@LoAAOR$R
z1dsp{KmyH&fLqEno6W|-gWrtIh#N?*o2z?>C3$FfLoAW}His=Z^5^3(Kb>%V=h{!n
zTclltTiP*k`1f0jr|lbT-PX#u@QcXX!-#ubs}*jkgF;J9-Llq{w=D6NZp2_B`LwKp
z6^H&=(l$XRWbKpsZEmSezqtOr$Bh4I;`Rxd1v`3wJYI>7Sl8Wnolaf#=uQVKXX?#v
zDKlMeOUUC!y;>n!azswFIXox2^MfPuqL1AF)6-@5kT5st>6VV~{#z@O92Mpnc;dpk
zmyW+y(Q1V0+Wu*?|9<AekmY+zBz>$ISM^|!m{TU{^Dcfv3Gdn5C)^zCDO6scs!w{v
zpkKGyb8_{G%D%n+^v$S0-S?sUgXf+Z@z*{tb>2Sm)eU3+G9rGv=jbhCc7OA5>a6H(
zYadDa=I8#7uU8-ceqqwapH7XO(!1O0*|WYkIR+hG`P<C{-tBh!r#0>ln>JOxu=uq5
z-P~7~wSRiY1BZ7f4WB&bm5z7!`KEaGg&F6|uUfg_rs2b$nElb~xi9Vb?vKlNJ-z+b
ze++)xQE=~oUne~Ob&p4Tta>B*-SNc>`>tMmr2i9}azFi_TmLrboeNJ6Z+m9jg*l&e
ze#1B{A$rlBXaChN>G_M_Up!bc+#PxFzC|9XT|r4$mkJV@h?|YY;pG2$Ivq9ioa2@f
zvXUbfmrspw-A0~XrXT2*oa{3{F_{d}-9y@Z)Y?Ez1`=IFL`0_i+$?ihM9u?*BxHnr
z&A+6~Berx&A55e;axMFyZ))W+8dCq`_+d%c_5BVrHvZDJyRtpwS9#<lQ(<f8H!mdI
zbVJU8ofi*(|LK%DJHFiiUHOrPkIX(1^ZEWBFaGe}^wmlDMNr=_!;6jzz3%jzW5i_{
zwIz>U7IK($V3(zPYmYHH+_P}P@r~)_J74?x^&7J$exV=LWydR1d!^0abmDr)q|bl8
zP<1A^*G|2`=pkXasyhSE3;Jskzxvz9{0da)eSQx0L|4v!2{Y5_&}dAwj{ao&Y_cDF
zvraW9q%R%mlSnJIe<@vbgh?>2sN)HN{Xx*L1YsDH2~_UH$lb&ks7yLVkxq+*1d5>J
zwJcv3rjvMIlBbGgh0~D{mJVrch^)rNuqxeV`4X9-%%r2}ikipvixS5R(}h)vp%PX_
z)?K9*#YQ*T!ph#5^4{d?aZ+}~D3am0Tg_+vVv)j*C5%!mY;>HC4VhS!?$5?<Vo8c4
zuQ=b%$3@u?4vYsu{}_bhl$kDdn4XTz&$5b5YR|`k*s=K{-zYXT0_f)>Y|u5tk|^@b
z140<lEEpFdw}rNA>bY9|o5DRuv-%0xzp2RvGmrohKmter2_OL^&=LtWynVylFVR%M
z^R|ktVyfA$Atfxszg<I0>d~&*-b+0KY2<bd_qYqzu3@faTJ0L@Kf&Ek((E%7cZ#Ff
z?&7r*Yv7yB8eDV<Y(MhU>NT_*A-o*zM^+o!euOGar2fH-b)DOfdb*Q1Z2~?e2BOWm
z6|)x&TxeHA$l8xIn>lvV<|Eti`unhm>VF%|zoWMH&u!TLQTgEt2_OL^fCP{L5<mi1
z3IWjP^&j8){o6kY{NiByhjOUd&TRPj8N=IB+CR1Vx2IwIhku%IjRcSY5<mh-00|(0
zD}(^Ff3(IYp#L5GxL{BK!rI0s{KtDdRrML~N#@t0QQJFO?S@d}6VbFDFg^i1AXJ}M
zw(!|)*z?Njlgn(z5%Ki0mVef@wcKY@QJ>dB2(ys@5<mh-00|%gB+#-5fIc^C_zyKy
zpKIyhM$qlnar{y=s%|%kCpLolX{qx93jZO{<q&%Pw7hOZ-U)!bQw6c=YUy+~M`Ea@
zSVO0CpE&T13snN<Aps<S1dsp{Kmter2{b1HpwkO#(dnQEq5mAhnmWAEo|lLg&p0z3
z&JM3up`p)#hl%Ib1E2dakOK9x1=Htj%2DV)2M!Q=)i|GjbKHd6VJ1#iT#A)W{jPW?
z=gjcWWfoexT|5KNOoA>CYv^`pS3&)P?u>~@00|%gB!C2v01`j~&5i)*_S*bkKo5dm
zhp;yPmzui1;r{8Yi9!9-x94)&tZMA9QFMJM{}<o+oqz{~e7<}t+r`ZJOtJGcD%NS`
zV4f#8uQM?Ry!l5YdxI6QH5N94hwDXh*`(n4kXk7=OgWI!JVUK^PMpT+tkP)Tcqg#e
z*bkGD01`j~NB{{Sf#yqq&l5`P@9me4RZj-`VL`uD>sdbUsQTO>b)JZzGjp<C+5Dtz
z$GZD(>(=ugVO67gWk*B%pAE#w&qJMuG|F!t(rB6^PPfMUo3!+kc#WJ|rtj(l4gJK9
zfeR8q0!RP}AOR%MG6^(9KQWEa2>R*dJdT!0HLvWrl=?}XhfiEi?|UvqTuVQ775Q4h
zCmK2m#@8X#+8@)A01`j~NB{{S0VIF~nim0yv{w7%HhB9X`G}<y@E#@5fzTfbVa;)L
zQo;!MKc`l&`NWM6aFk46v%{-ZXt=&EQA-Wx2iuY6K>sV8FNEpr_3+g%wO3~q=V|_P
zi?i3t2bd8x&EJf6x(1)0u)6=WE$!irg7-VgS@Q}MR&mz<OQ&@A_M^i4>$UWM4s^J(
zor5gL1N1+Uxe+{{2j?GTS4=_zNB{{S0VIF~kN^^Bh6MgyKU>g)p!*@z(y^DaUGS*j
zEZ6h>sZ7&?EN0rA6&Gs$3Z}WCT>u;)45Igg$$hV%Z7dv^zMD1FA`80;aLm;(P84?X
z{Tc=$*(B_&OGDc=^<1rX&M>$j8YeIza3DmC*uZYAO@#{*Kmter2_OL^fCP|0%OL>m
z9MHjm@B3tPV6X-BAhd5FtbU#_N$r0pB$*6sLk3m}M{VEsPPLXiTNN()`F+#aaq8}`
z9Txix+mS9*y0U7jMb>3J#P_|Q>ez*owR;lPGJ}nWuqK06yC?fjb+<at@A0tA_k*>-
zSM5Lr85kk~B!C2v01`j~Ervi7@Y^nbp3`K~<9G4fR_A9BS1?1d<XYuBEcvQ8hxYtv
zY|i9h%PQGF74?%p4~!uJB!C2v01{}41e$<;s$9>(ULO5qo2wN48~TaQrcm<^ct!S4
z1N~IpKj)v1F(iNlkN^@u0!X0w6KIHjVj7_l<_(B@n`30s!z(-LGL9EXcNFe?@O%&*
z$1|#>@^L)>d6(My*k`EviN1BqMc;u-(_#Kkm}k}cv|5bj$|??={$H9VYKB|b?R_n@
z-4bCJyD_v~Q_t1%ORViZ2mdYmpBd;;7>CB^ul)I73<)3sB!C2v01`j~&7A=FC8i4<
z9O#!As0YCx5kg<TL!lK*7?Vbre_{Pr4wqGd$x*fVhPG3*o)-)CeuH-O;97o&-uDNq
zGcp8BvOxFK(&dW<Z)y^B`9cmz7ID<&0bDSO1dsp{Kmter2_S(MLI8AmvW6~)_Y!~}
z1U(L6_47jAxNs&i=@dmeEfReE^|`029?t`rc8Rj&dg^oE=Yb|!@`@GuJW$Q{1b;8u
z@BN$*+(uJxfGr*dwui8P+@BA|kN^@u0!RP}AOR%M+zEgVuW$djR)2F%ol8m>D}P;H
zuX&4i{fk3y)PD2dyMMf}mj3bl09{U-H|hfIA=KrZ2d<F-5<mh-00|%gB+ya_fG*eS
zA7}5XV+-g(=og2uw*K*&`kePe`|I<1^_yG2<5gpll~u3Kel5ZJ%^TW3&i(Ks$O@sm
zv$u#!Y6RuNu5zb_fk^fUyOOU$+f@j=s3W26;DVO@Sc~0d%4YsP?9gzZK?v0;>B+aU
zMS|7AH!4MZ*Gj$t^Tb&{;Bk0P;p9)k5N>P{#h`f*Fr|)2XElZE4-eqDPy5$jd>n{s
z?4MPym_*<B!^+$)_Kp!#&m{iB6SBqetK0e4(}#ni$ast0ZnMw2$tl}qK1L^xw74v6
z<$WIzn=1zDn_wKN<i;ls9V#1*x2XSl`Ju|qP-fAGf$CQ-|GY_>pEs+X*Ni`%L<oM~
z#0_wT1c9G7lQ{3nU;P2xZn4ji$Jy+PQ%<wbbP%67n@^vPO!LJzoxPF^GT{D?7IqT-
zM6fiN2LL{A<!89Tc5!?y|IlkiIa<NN9{xG-a{&Eb5c*qT3<)3sB!C2v01`j~NT9hA
zsO`PEfqD@7At0>TzeP$I3;+JDdW}C@f8$VD6_^ZFrKs<7TeE-IG}%DnR4Yk6Vid`6
z+^xnt&~@<nB}#;SByE+(k`zZ?aXy_ug4s9c_vZ3`w=nNS9A)9ql2A{##tPaKmDh&0
zgZA!{o}uk(9H5ydXtkp(wVZxsOn`yR0R(=2nkg2nHWEMrNB{{S0VIF~kU#(dw{(2>
z`>lvED$H|!+S}`1+STvY?kn!zaN`Rf9;|Y_xVJ>o$C`0f4+e=d%OtX|s*(cUvw3Vs
z(lN4N%|6rAn^#W$rG0w()&-;9+Aq6$Z77eu5PQSJi{)k3pXKMeWj<ceYVy?Zwyhr<
zwOig&7;(L_<eAFCsa@Yl+#7Q^?c&w?(zo6@_2akaZhPp+sy6YZOCO!G@Y^l>4w#-T
z?^$~0o+ZnVy}Lho!Jwn<OAX2$M-E+BzW>0fon!tnNPp8^BjXP~`}NW5-phW(l{4$*
zAI~l5`{a~WZ~h^F+t~+(4e#L?TiEB+vBG;dc6@4d`>sn}$F?p#U+SFx<&d?%4Vky-
zXjacxPfuSk?W=Rw9Qy3>FQ2-1QtmP5nscL_@ssCoHthLgc6^faoNefZ-gntopBR>K
zuFqW`PjkOsdgs!ui{?5$`*cs|)0@K&mqpI6XrJhj+7*<9b*UhcxY;-yJcV;BqPO-L
zZDpTiiMst5bR+KkDYbO?+%27!jeX2^;GdBOqlbjys_qOt)59Wl6Uia=8D7)&0TLaN
zKG>t%(dEW*pQUE6Tb$K>WyevT&&$%HCtm%=U)$+&m)(8j{3lh8F^+}roQUuH?RV4e
zIW%;Za`58Xd$SIF_2<7lbLQ*wJ*1(P_jTPX;r-wE-vgfF>-S1m-*D_<x0H~T96_#<
zbyvA1=Z@YVkDr)KNRQXTCcCA~bea<rt&{vVbIoRRg+3?R9G(;1`N0u+(R!jQC&E`L
z;3u<1MZu2{=AR9m{|fqnAcX!?2rt9)J?kSymzAvHKUiD;D(jGiUN7d{z%Hmkcq9dT
z4=3wm)tdi`?JxUJf~6(}&V;4aKW785tP(+%v<^^HktrN3U^noe3bHFEAps<S1dsp{
zKmter2{c0jpwHoXh(LXQjW{RJgP_YHtbWcXNsO^4lYwo>z$!73ldm5{wU#_v6;A!*
zney~aV~488JXz_Tg@mQjl~q$MvM&A*zR&xl3#a3TKJUZ*=5?BW^N9(((uwS(=~D5Z
zJidfS2|lMHK(x>R{N~q-^IIW8xwp8PMSNtYJf_&5E8gZp2#sfs=r>>_U`co6&C8>1
z_1vqT5N}*~)mO*)ja~hIV(wYb-xtH)SIpxR1CB@Ie#e8_fu9W2L(3n(qL<i1oR?NR
zwG9*$5S|I}!-wOGW@>;nMv(v#Kmter2_S)%K%lnw`GFp&ZjVH%?F!bX&NM<JywC5f
zkS^>{UfJQ>zSx-ZUOoJ+jq2qI_C7zRh2Xpb^&h;?586#}1He)(uEq*<+WK2V+r^1J
zPmT_42kn)UnW61!RHTU|)K!P-ZuCC^ID796;h&8$B!C2v01`j~NT3A}03CW(oQou8
zo&diM&;yrHhn5WF2VrZk>}a?S<;pLZ4rLk>&I|e-wR97kqbAhSRzp8AUm3PQ$YZ!h
z0!RP}AOR$R1dsp{Xzm1Rn@<CDCg?!W(GdFjkqDa-#-tJE)7UV)T3558)#4kjtJUgJ
z{oJzV)6mlYQ{V!!ixOn{`_%ykGB*OhBDn5BcEuzlfCP{L5<mh-00|(0W=H`1%(b2a
z1$78|5OhC;m*F|k4QZlMvc_|uwfTK8O$+CBxt{}F4;9h4ciMIeFc2dQa6Q1^L}PbM
zMgm9x2_OL^fCP{L5@==wK%Z+p2MRh6LeS+9Hi73rvnL7(OQkETrYc$M(vN?so&#mi
z#sMb?wVro-H`ZT=L(J>&)6DKGtS%Bj0!RP}AOR#$I|1-BhK|F_;AdQE=AwhGy|SY&
zIx6`4MU3jn2lF#-O>;o!RL@VqS!wwjwCCA1*4t4()nI}NNB{{S0VIF~S~`Iypr7Jq
zUrzmGo2wMbY(6J`rM2{vR{ztNsGnN;M+DCg2_OL^fCP|04FXL-KUtl>vwrfOZz*v8
z%ev~P|3&>&<DS9<B!C2v01`j~Eu8@9r^`4`Q29NVL_hs|^8~?s;e4LT2x1Z!eA#pu
z;R}8TWQ*ijTWCA0u*)tAZRZwtD;9*dTO#cCJ{a0gnEmbn)1Pc~6#T{@go;!y=k?}S
z2j3$AT&|Q5-Xj2?pG0xu)`$G>XYYFe((E%G)W#dvcuxTAEo*?(n(sgEk9<#)IKEc<
z=~|6)A^CVfI|}?xVV(d8!5%{-fCP{L5<mh-00|(0=1ris`N9JAAhe4hyoB?GRSId#
zs=#EZDn)($W9R&^sUGixC{Zt1OPeo@_XC7^-}5Iw0WAylbZe|)MT+%>(00(?jd~-r
zU5x`Y(*&({l%<x_x2_2=kU4<B&rdVOg4IR>NB{{S0VIF~kN^@0AmEmc?|#1(F-C=X
z&QE)L-AlXr-P(P{-5YLv;lqPfju-cqNcvbauIj-cab}rB_El9<z<V~2?MOOC7OdH4
zntJof$-lHuPv5#=)LZ*ySFa7_u@_=*czChA%=)wZT(``}3tCN{8s4_`W21J<TM8qt
zSC%|eSva-p8;N^k4yRqbT3`CsJEwm9_S|g`9a+^TzI5rMQx<-^W#0kQv*kTY&)l<Q
z`LTERCodRuw0)^Tx#P&83(NN(IJI-kKL+V<x@%<o!Dqiddfj{3kGOJXz5L_31%02K
zvg*x0<ZnCsz_8&x9AgXnoH|x`@5YW#jc(s{sq5I*rRPhX)4v?D_O~JP79Gv%`ReKE
z3#NT_?wUiNJ^tlW_fE<^=3H}bv@?G4{LO|vU(AkAa-Opdz0mtE`|1<J63+Fx>*Hze
z*GunQx^>Z9$7i4J>3n)~_~Ek1`4#OGJyN@ZlCUlnBoa3phl8hZZbkIgKBHmaJK*z;
zQ6zu_kbo8enAa&=bOT9*_nb*Oo&fzo5JLYcgqLC7RpV2luCm6wtF`s7vJP43^}5{i
zuG#>s#s&ItE!0#Ph#41Pw<wMMFc}FT0VIF~kN^@u0!W~F5&(U!HSg**;<P{yf-Z-!
z3Cz2?>qQ}9sdQ!4R3&R&{2?yYysHcyaDq_aB<ME}B(BUb&~F~vS!Emi+hY(*ZzN1w
ze)Hxx`H@P*@wwj&dzy$Z9`+%j3)Dvr<MHGO9^yJUffzA`;S!NuF1|<&gg+_4{LG^0
zzfrb4Mb4U6Ag0YB9jHBPiUV&`YD&M15t;I6#gVVLisl)_lT8w7TfP4zrO0V>*x8}j
z{#}CXKd8U4e}bH;6u6Z996D3a0Au`MW^W)y7SQAI@+R7CE~lJ1&q?iAIxCOe3s9fT
IG+8zIf682*n*aa+

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05
deleted file mode 100644
index 8f17466..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05
+++ /dev/null
@@ -1,63 +0,0 @@
-Geom Title=Unsteady Geometry
-Program Version=5.03
-Viewing Rectangle= 0 , 1 , 1 , 0 
-
-River Reach=Flume           ,1               
-Reach XY= 2 
-0.03262518968134 0.78452200303490.926403641881640.17602427921093
-Rch Text X Y=0.2560698,0.6323976
-Reverse River Text= 0 
-
-Type RM Length L Ch R = 1 ,10000   ,50000,50000,50000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Apr/03/2018 16:12:59
-#Sta/Elev= 4 
-       0115.4828       0111.4828      .7111.4828      .7115.4828
-#Mann= 3 , 0 , 0 
-       0  .00979       0       0  .00979       0      .7  .00979       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=111.4828,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,5000    ,50000,50000,50000
-BEGIN DESCRIPTION:
-Upstream of Flume
-END DESCRIPTION:
-Node Last Edited Time=Apr/03/2018 16:13:05
-#Sta/Elev= 4 
-       0109.7414       0105.7414      .7105.7414      .7109.7414
-#Mann= 3 , 0 , 0 
-       0  .00979       0       0  .00979       0      .7  .00979       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=105.7414,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-Type RM Length L Ch R = 1 ,0       ,0,0,0
-Node Last Edited Time=Apr/03/2018 15:44:48
-#Sta/Elev= 4 
-       0     104       0     100      .7     100      .7     104
-#Mann= 3 , 0 , 0 
-       0  .00979       0       0  .00979       0      .7  .00979       0
-Bank Sta=0,0.7
-XS Rating Curve= 0 ,0
-XS HTab Starting El and Incr=100.15,0.04, 21 
-XS HTab Horizontal Distribution= 5 , 5 , 5 
-Exp/Cntr=0.3,0.1
-
-LCMann Time=Dec/30/1899 00:00:00
-LCMann Region Time=Dec/30/1899 00:00:00
-LCMann Table=0
-Chan Stop Cuts=-1 
-
-
-
-Use User Specified Reach Order=0
-GIS Ratio Cuts To Invert=-1
-GIS Limit At Bridges=0
-Composite Channel Slope=5
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.g05.hdf
deleted file mode 100644
index 61da3974b8fb3529ae4f05daff6c94ab77cc7273..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 92869
zcmeI52S60Z8i4mGiVBDgR1DczvEfmJC<38~1w=qZqj(1#a`Cvs<3O-P)WoOJC@DTg
zeTvT{%8LaH#x5EQiW(CeXcQx{MKL5qWB1MM&cLzUa?zL<@%^Lh?6iMozMZ@Kr|#_F
zfFP^JZ5uP#SXeM-j16~7FHea%@Q#G@qHY>4BR6~~!^|S?)h7IngfVAuSZm^ML*(BZ
z%BQ$Q{3F8y0~r*P%BMC7X7a-L_!iUy?EfnQ!GV5ZxWdt-*0enpl6FR6^jBz-6gq7N
zb<=j~OFf>^Hr6h$Z|4OjKBHWS{%R1Q?J|#4CzIGR^P2VZ*J@Hy*a$_OPN`9+Fw9`N
zI-d2{q$#wlV~AX>R;tH#NnzDpX{vA~4th(j9>)$=sud^&Z+L%yg<7Z3s`LVQ|G@aM
zikk6h`<GGyMr;XV#eH8FnDP-V8Bgv;!Zctk(7#BfPNhITEzn;x^hf0nQ>W+@^7sr^
z@By@BWGEJnXTh{YzXE~jI#l))rWxyle6aCl+?p_MPf30f2`|x%3uDmlks(vzQ`5J?
z#}diGM#5Ng<)p=6Bb7<Cyv@0AE*c|!Ge8mNB6ap;on5_LJiOfA<o&Dbi)(AaL@Bf>
z=!w;;ud|cX$(40<bsi{JV=?r>H6y=oEUAw#X$RGEn{#sgHA%@Tg-#*lg}LH7Q?8NP
zR9t+<k_pBZ^0(vChs#qaat}8rMY@6wkn2!PoF4zt^d7xDdvVot^OAacxq7l;At6{!
zwY*kTUIh05Ye?f|wX7k}*_jvU;^p4k%h>}7tSPUmd=ZLx#9pndAyKq^E?#cE(SxWi
zANO^S>hT&aAAY1^T1B!}6Q@W?sUg)+IX(DdIy-wwUA?3ptRE>SmHRrCOF2GkdEH&T
z+zs%wrE){$$;k@sU}daRyh=qL5BF>YJl*($a?Ox?Ks--hY@zyFQF(e#*-(9*U8<f7
zs;?V)F8uG8iKt$6uRWIyX<ZDHvyFGJ<}J9s;sogLmyCR26q5R~mNhHxr_*Vbv8g)x
zOBAHiOke|)DZDTKhUAUjZy7s4ouHvo^!=mcs#Gc`Ory%czhg9Vl{-wXML!cvwOgaa
zzZ(%cIsOG@167JN{*KS3w!eNZ)!&DUXn|f5TY^5}7(LZz>F>v-Mx=n`IpEJRj!FAP
z)Ltl3kK$G}1IW)2GgqK5*Ng=&AOHk_01yBIK%hPoNSCA(bv+iM@MZkXS{!w8V@%wf
zZQk6Rv-LAacjw`6_=N1WI%e79NdNa|zHMRVxx=+UdO~yX;K940vkzn+ZoGSTMn>a|
z;+>Q39&K}egzMOIvrRgExVtpv^7eJAqQ>!GODB50HDt~g#h+YG9J$}NxWfR;e_H#w
z*<>xY9UC>KbMKz9-COhz&zk>W!B!jAz2~w!y{CO-E14GNcOhL;{@sc}rbF8m{1PV{
zKYW7h-09JI-(Ts{<3fS1!JGzj{8iSUSPypSQC_flMyIBOW2C!e+jC~N2v7uu*+qHG
zR66~1<l&PRdlvTl!TVjG-8+@#o0N}VFa7;1Ywt&ED=u0)<d4_QE9z(MIx2C^vJDPp
zm+Y>c?zL(DwaYyU)J;}BEbhJcaHlO1?XG#Y-MM(gm7dm3M$OGzEKk~%{gt29HLF`)
zmj)ImmHlSfXUfu1ac`Gx-M_&3wo`@n@r7Gwa?7^OFDmb!(xq>~fv!>BYyRQ6_3Qhl
zcl#yZopB+*i);4_1;;ywE-t=!;1}n0qb}WU6?5^@aqne&F0E`7^LRq<aNowklCG@z
zXPGUtOpqh`%<G+(ZDA3O1%rZz4Q)9yfA*-JMW;UQanxmi^TgcY&gXABDn`$-@Lz4w
zcwnB{puC3t20C|d*6sZx{TIi|KK;VG^BbR9_2|~k&3@6)du<~FY^SdX8&~9gJ9pB_
zoV`<jh+DgS*S&3%KZ*D`apR-Mr6VPCm)=?GZ8>$<s@OG$fBCoaVv5I_UyHNd2m1W<
zUZ*ySc#m?g=4XTEtze6;O2?jD_kF8tH$qC5ca5q1v}AMl`)3@ESl(QI@UrUMm53H0
z%lq`X@rk|W_!pyhW&62x`CPGBjqV$HZ%Rzg`RB~<_osN2|2oOjarf0xpY@u%G^O{F
zwD+&{wQF&_`Nk2)OE!-?dt_2<`WPpx?E}hG=T2W7)hl%FYaI^{2ue7)?#D}mE)N~&
zRnl?1N4eIjWs~_*y9^g?sN(C5`IQ?Fr1tX5pSyINr+rjLWc;mGzYL0XJRZ^smG(@)
zLW}vc+b`*}G-QW$U`LDY?dN{{eWB`{`?s40p1RYsvwe2Rj<$#V4;21n9)Gf+Wb>eR
zyH}Ji+U7mEPr~hiF_+J;xYnf9+I!5swCndDEG)G?bZma4ZR?}~PSTjAcb<H>-PSy$
zqx#{9=CK~ysPz-i&)MnP@@?;+&^KLfy05;urL>RZ)35t<ll{1}XvD6cl5%^kyq*|&
zsAWmt(M#{NJ(W82hslj^jawF!aOXc?^*pk;<@v9ozV&#sNpGBX#Eyr73U%)R-C7Sh
z{?jncO`j)`qtw0H+h^m1^EU-9t?U={arhTYHcdQzK6cQ!{U0tejr^vt>!z3)+i(BJ
z$*yY~Wyg|zeaqIw+}ZMY^r{03_P5-Agb#LdINEZ4ipPl-L7~~Fzq}abzSQa6-6Q+&
z`Mz+?*_?HIc6iLG$O_(g{~#{$>7Jn*-aYBEaofQW>-|PA)CGLdaK&ET@{cNej74Q`
zb#Uga@6ItByI#U6EBl)S#Lehc^5b|!Vu@zP{N$dgVcj}hQyrgZwRNVXb>`pt|K1qO
zN9OP5Gv7mVgXZ?vx5TREmM)2t$z(R>u~CjzapT^YZOSyNVCM0@C+7a})ycUxzS>l_
z-TJfp<sW|dVfnOu@iX?S9GENDn!e9Rk_GKkg?TW{k4y{RBX2-No+Mm$uDH0^A$!Og
zPiFecCKE_p^H>|1S*(rydwwdLtJ8nY&Y8@ZrZb(YLw&!HFh?01JYJ8-6>P}(vxJN=
z(D8LT9ze$tOqonG9N!iV(Bd%yZa(1;C_s2T*9QHCE97yB<i4(CRq-SESZrO9Q5cSI
zf&N0}+%P`l_y^+S@&qVS;<U<SJXXY|;Ab(!6XSdsRPVtGH9J_5prbK8jf|HxV_zq8
z6f9$B!Prej39$_SL^P?RP;p}VKBtUu<=8}85Z~vLk)Y$IkVs_$o<jy#20bCc&mkj7
ztK_D=*bq%Tp3E3*L<W8qEc)};sC8OotBk}q^b7*iljZoyCqGBp;4m~Zm#U`d8J!Us
zHmHH}^HeN@(xRbAt&SU@MER#1No%O=NCujA(xD;II9z>Z^7F|UJmf7lLZw8LB}hi5
z5gCFy;O1ME_`PRK8?K-4tY=7z>uQcZ?f84h#MA^^OcT@+@C}(3ME5vc!o({QRCvOR
zi-f{0$oHG6iOFg!oRDGgS6tO_C!Te~2FIUv(tcD#=#T&jdTP8c!xX>91&dzj_^h-G
zABE=Y+mUz6I`g)aNRU>w9^xUef{A+({=%ro#@PCZOD=rnWc9d?Q1s^~K<Ah8h=_Dz
zXOhngmCVg2g=(}(a+PwTBA$&%RLHe#kUUPO;l2Zf;ZX{eCQhl#pi$^t6PX9XUwNDv
zj=m(cY(%OyK^}*HduTlR`8B2&5HVGj*nExfdq8Zy#<oh5;hSJtO@FGVQQPo(h?;4@
z1q6Tq5C8%|00;m9AW(k@@cmn~DwZgy5;Ec?;k(0(FR2PQUWM-I_#JhdqJA(=YG_;m
zC;c=1Yb@8)#59_8ffJD%XUnOi`u*$asDE9(zO*UoV_PsmTBOS3g<G6rj}oGBf!9%D
zQcWf#Ri#rVt1{Tw3^r1uldIUFF)nO^2I=m&CxF(g@;z(14tbbbiI<0Qa_|x<Dn}KY
z&@Cm#rB{M3hEwhNem<@>Z_?e#jfmw){2kpyA`tInV&@4~A`4T65sw02VMtB4j5vc6
zYx=(|u6ocei^KUwAlfeHaqW_SA`*sQhh5b!X@`;k$L*6v_q1IZXrEl`q{%Gl=aj6I
z*KeN<^yE0>mWjqh>H$xi(SL|1KawS3{@%|yd2C<-0U!VbfB+Bx0xto9dZ6b}RbNzZ
z<oh!(i{99f*GY+DD(oN9c>-$F{vmanqSYEWss4N~ZYD3VUx>59f3^CBSpR0KcADW_
z|GbefJP+0gkCr4W%Awl*m-m+|{P?_a);L>(T&nlU+VlNo;r=STtbptt#^P}Qq&>1p
zwV7J`vDg%{QwsN?qay<SaVmxpo0sau2a8@~WHp0?9ARFnCLeGC0U!VbfB+Bx0zja?
z6A;rIt*HVkQbCPi!BY<spX!gGH;RA*Zy*2!fB+Bx0zd!=)KdbW=hf2(2gL>gKmZ5;
z0U!VbfPfJK`~eitbqdBSd9c$Y)uiAZQ;JL;&MSNSgLT2XHcy><aL@kb`KKKm_muDc
zx@?p0{TWTo%crVhWKVy5n0=`%`kwi*sF6zh+a==$MXlSl;o359uc@PxcBl3T+kGJ=
zwp5w(Xvwdg`n}=%r0mFo`w#Ofx*Ry0v~cu;GrP}*ROI^}a-O7na<ETx>yLdi7G9Y*
zZcqN}oA%gjyZ@d=*3%`s9G_a-_G8*@&s<Fo3h~?54jnlnab()?9?}O-jy4LG+?W)K
z4*|1i+rHnX2OiPyCfrfv^_@O*maB9WQ{*aL$`p0D-XxUCSa0u))3IjOj~X&2D<uU)
zYy-X1Nzkh2>x>mX@M~`)MrvVNkU3|9uGRMUyO>p4FYM@E^6+U$D|=}HV`>SP=U{Ni
z(v49*Ek=A#t+3jM&Up#*C@}ewT^Ay?+-uUhv+r5=8x7pe%%_=!oo+onw{u{QP4x7Y
z)2xzbO}KhAclp%yw?lv5(7h}<M15_q_nFF)<c-Sq_ICGk--(@cqtoL99fFE<caF{*
z`ZT@t{_&ehQ=4baaJW9r=MvM<vp`~<oN3w)ZeJ9Kdt(}oEZ*>BTg@Z;v}+v)^gJ@?
zs9%fDj)w}8FZo!QGN$>Ky~rocg!`m1Ob^Da$_JmsW123JuuSRG@0z}o@3T3_XG^JX
z*|D}ad^UXF+PBT;<vszc{MO$6$3dT#J~sQ|L;Jt}@*y8uBfq8fF<8Ph;?|<&koi5~
zx<p@6DLNihdtKsRz7EfEFkc2d1&NCxvJQ_gDXtIRx8|==r6#FaXHtA_-JKnBkZLkD
z&X=e@m0a)r3N_@A(@^;Jdk%VXxI=@`OF-D+5rKmZtlg{LPgg^ptA4rK>B$RJ$JZfE
zd>tTur$=38ir}0a`aIEcM9#o`Ze8>s3<v-LAOHk_01yBI^^XAE&&7)9`9ghA=>9YN
zj4&;9{=_{cj}42)YG*Ay9-r@6{l2w^dU`z4yHSGX=#T2}oZgL2+KgAE_s~D}Q*579
z^*(=mcBBOpu9<+O@p2pL$qiD-b*Wl~=zbe}E|vIYo<Ps0uLA--Tbvn$00AHX1b_e#
z00KauJ`*seXAAW~q5B2s*|Jm~AQoMRo-O5K;eGhk<K?_Q+!TfA>DhSqdJh)A2$WT$
z0r<Md`|HxP_0Q7^<6jFZs%PUd_PR{2K+mTA6*`Vh?Yd+@7!UvgKmZ5;0U!VbfI$5r
zK-aCvjErYfJy570ij5P$0R6i#lgEg&#MyI2&_8FHALpj}w-u*<lW}J@G9wwk?xgDd
zX;cpn)2K33O0~k0@x{SNKd-H~>#s}U^lS1;D>6#XdyzL})upH70$1gW-id|t6FW!1
z*t(NLB6>QEhhwT>fB+Bx0zd!=00AKI>JgytGtMJb6Rt0(dO6hxYr9|kxwp6|Xgx~u
zT)s>=OVM$1F}-&&pH}o5C9fHT$JDW*^`!4L;eFu>1b_e#00KY&2mk>fP~QpAbs()p
z#;1k)pwL~t&cX+c4`buYxHVzio)QK51&mWCF61HOtg%|kWm9{c+L4Q8XuKI0g^m+P
z_ZY#&t7}~OS=N6T8&|Fn=-0x210DD03I!J+00e*l5C8%|00;nqdQX7r*Q|(sEz}2v
z?iZjx7yg^4h(%-lS!A6D_d08X>os16{fvC+#G8X8wq_W9XE!#u!q|YG&2xY&5C8%|
z00;m9AOHkj6#`Vxb`;UGh5De-{Q~rC={g=J7X2dhY<@puph}U(y_lC5UOnFaI?-ua
z#?FGVn@S$!vyN*=gboRiptm#2NP1=ty)kSj6YtgkG#pNSGs#WP3hHCn&Z6FH>5XA~
zHStc|YB>Dw_N5&8IS_`)wBk!dnj>?GZlEO%uQe%f;qIF8q&s<c81bk59_i7V@fIEC
z-CK)DeBNRbD{IC(QNg<_e&y{%63?b1Uou+0^f&msMIERQiTFRZ@H!?uTSL$9q&6)^
zSRsE$Ia7bI|33%>2l|EKnnsiAvcyg%pBLg}{N*ZTtd{%YWFzIVDsHn13Z$)@ey(VI
zW3~jP#A)g0wi!AL85`l}RcsxeH5a?~rMF<*f|jpi?Wo`b1b_e#00KY&2)rT$=)MD%
z{P0VNh9Qyg9#kKodax;z#pxlosE3Jlgu!xkJUUl0O`&B&<w;b_5r>1%r)1IJTk;eI
zcUBHM#l1@kt7fC*s#KI5ht*}8v4;Ddf4={0QlZxss#1T1>%91W7VhoyhCNhQX(3FE
zfU$m7bTOaOQA_~%ztRMR{VdvFDkkF%wDNSnKRV(zL4!Q2++k=#eu}=EKS+yypRrVc
zz!vLg3CBCc`dMuR@`TR*g8mjBsKbWN4^x}>g)0yM0zd!=00AHX1b{$&Cm>-ObN%P7
zL=hG4^B3xawBJo_b2RRclbV>CNQkbOiJ9QHHDG`0*Mwm?H|fTsdmJud;uQ%hxlX}_
z;dB<HzmN9$N0TW&Tm&qJ6Q$q(ozA^?g71+@xEzhYAHtH!M56G#2R?_ZHF@70e{NSx
z>`w|v%1z6U^mwIO$DhlE-}A;D%~j)IE>0@a?~$4>h{pSo^SekibRMta^ARi=DHlb;
zJlpwV{5XIqsuORr&d{6;+jQQhxXf@k^`-sY^q;BEt8I(*qh#dsAy#{tpdW>rJ7<KS
zAF=e{4+MY!5C8%|00;m9AW**u&~uHWiJmCdkD~e@?LSdltUvG<_OEhE2x3-beXg<o
z749QZwHWt%usBPy63tluigKX#AMIa>>E}hXAh-|)OhKH$lV7e@wI7c5n*_1I2?T%u
z5C8%|00;m9AW%;UQ2jhuL_f!8oMA)tQL2|yyLz9Q*tu@i^B~o_<h`e6WSn2$59jk7
z^C7-ha6)8|>WYiWiF}s%5JTs<)qHPv&G`_Fiq3~nF4T_ZkB#HrFM@jkloPdaIkAyG
z;cdEJig&^F|Al~X-CQuKxDDBtM>+WEbXsL>s!oB{$YE2pZtfY^(UEQ)YLSNbCkgle
ziS;Kt^Tnujog-LMOuL=3S~0-`2mk>f00e*l5O`Gx(EUj=q6iz`pLBv-QDlp>bs2&X
zuKdGWlQ?8}e-hSd!WHtkM7=FdRL|ie8Mx4N!y@=s6S4;4=zHP#_$USxpW8RpLqE{K
zJ(V9o<o7iYN8gLeNAWrNR1egTqkpd_KRSZdY1o0O>NtD?2#FM}AKAdYp?z6Y1Qv(t
z8682=jWUp4-^-A!7qGu8tCG(ItB^99pMHN1zi*OX*M(Qp@uuJ*jcM4X>$>t9QO(qF
zJV)Xk-Ky?*wBHuS)*a7qE-#O-n4XW%a;(d25YhLA>jUeO0bxJ@2mk>f00e*l5C8)8
zhX9>7k`eV+xUP$8#Z(^@y2aOZ@%v-&z8Os8Ip%}XpYj-SdYnC11Y!T-dH0jNZ11ZV
zJ1>k!z%XBn=;?I6iasA2A8a511b_e#00KY&2mpclO@PkJ<dJHK>FHD-q<T7a|Al%w
z+l0>yUvYK@^>nfE>F!1z%eMl(m)3{cbl$*-7zhReKmZ5;0U!VbfB+DvCj{twe#G8a
zPxU}C+xWhQKRr&}+LqUUaS`wzr;^qlr{-6r{FU#kuWO%zr<5-wT^CbN9zPWG1rZSL
zQ=sdfwhG?=^St{KSdnsy?NboGe@Lu<XzYC7M<V@0Iv+x9k>Y_j5C8%|00;m9AOHk_
zKs_Vy5})tuNnW{$`-E5xtu-%V?EI;QC=uUlW0)X?T$id<pgk;^$QS#++UNTwJJFhR
z)va}*`#`q#sXHF+??w-)J6^2}>ZylVKZ>sJ6RTFM1VISPyXm+J^rHlPzzGC^01yBI
zKmZ5;fqG7W?gObu=lf<l6P2D7S$Afve}#2g+ADb3&-ab)PfJP~8aW_=>gU{~V?A$!
zP<$W&1b_e#00KY&2mpa<0_l?SQ!A|YF*fF59t9>}vg<;mmU~TFclJH&exrfAnfWxc
zu+y!l=XMUvv5B6(a++20tO-|-<}RPQ{&wi^8@iVzhp4aZ^*&QslDtvb-rnwh?mMxQ
zZghHlphHlR?#|J9L!YLX-amdbX=?MV84lN{`CMWedKO5mlQT`*!R?FUaBob*k;NOH
zY^#2#a0di{01yBIK)?tAIzCsA&-Z7&$q*JAx-z&<-q?8EUva)afBq!iWxyL7oCz{?
zw2d|8-M;3$4OhbinsKMNGR!OzyqXM5R=<CtF=A}N1SwSt{=`;3B0UF{@(vF4?-}kF
z!S+{Zk`y{^M)f&8<bBaNeUw6*LXJws>Fv;;Ful8z)X5zms;XdJq|Tmb-3-6toxXQ^
zm|CezVIwk9bc!Tg5-bOw4@>2s^Hcp(Q*@dnxi$lbi><4OBJBgmF=VFT!s(erk^#;S
z8(3GtbAT%l00KY&2mk>f00dqY0%CgO6eD_L@K~ye@+3fSd{tTm)B^|r0U!VbfB+Bx
z0)`2o`Thl?6OYN;9cmiuVwq}@o1Ku5y}<r_W#6a%%2BP?ZkoB@{OZ1Nr=1JiWSrl*
z{_vnAkB=6#aow;@UbeK2|7QD1@+}`<IXKSq%9V$w#(Z<9^2dD#em}LU^yl-HH_zWl
zsnl#=+-FF@kYh!^DFduMpEUl*nx^^3XT9g};QFoTR#}}U>{|QziW9aut9;YS7q75Q
zA7poT;-JiBhYQz@UiI+7u+Z_@t43HJ`DpZx%e!A2o-tgzbCgX3f8=!8S2?Woe4~rw
zPBi%rIT!ov&)t1ba=OXH0`K^<>t@76Mt!J>Jnj39DH8O!SJ9PEj%)9<-aO+?<g}V*
zk}>79ZK~C&=}VAP`E73(^|*O$8_YEM*XSLMzv)<b{>zi6d!8`UrIjD~X>u2bQw>i~
zS-uU$+_CZJ4~CY{I5h@^eDE-=>ldAVD+-Xdx_;~2u%TPWM0WB1)NXP&RG9W1&d$nj
zbw~S}BhwQlyAXG6PGR=IlE(keX;_kf^R3IeUshgP^vL?RHE*SrxAo3qk9_dK=T|$P
zD9QhFcBysu)JJL2HyT%*mtUJxYTakdqqO4t4;Gfr`}9AR7b}ys*R#LT#qXFJx9;b&
zpH1Aed-Ft}DT_Zk_T>eSC(0#@|Fx&Ih?&^nqw=;#Q`5>F7W^KRai6u+d8|)+``i)B
z{M&aOHQpy&Ta~QaJF3^kW}oy*NXxZe9$0wwwA#L%>eCJ`H$Uy{V3vha=f8O+Z|C^C
zs~^lcjskZq+CBJPr{Wy9F@EkFN6*+6b1|#iq5Zb2$M-ABLRqJ|d5*Fj6EZZ=_nQud
zX;xPsJU-|!w1vY;CsXf+IDAXo$(}>cw)*7kUiUmJoVU+|DI@3Jy8Uq@nOmYiF5Jk6
z>haFGfib@h2;4GGdUj8E)GYrl?<g8Mnmfl=zVlW2&BB%!1|2^<Jg4C;F2aftvtz&e
zS9tGcgBy4)8NOp}<splYhHr|vYU(|v{dxCAH@AE+WJIaQ`UR!amNmly+$Y~EJa@b2
ef<DuhrJ@q<{6f+;=WqRgZ;a(5$+$@lBmWCL>iaPO

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.hyd05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.hyd05
deleted file mode 100644
index ed72e124e5c1ffc0d010a3c99a251c3893595ece..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 313268
zcmbr{30w{T_c;D6Zy|&%k&+NuQgknONHtnSibQroWy!wpJ6WTw*_VW@*&|t^>`MsY
zX5ZKB>;KF-*UW3WyuRPx|9c;AkI((YeLBv(X6AKX%Uo~Yz}7*wLB1`#Y+HK;`g*mt
zZ5iO}ALJEiORs%-Oicdvy8+(bt-XTi&y+PWF=^`+*xEP1-`3M3$jk6i)&JZuH8BCo
z#0-A54)O>L^7Z%m*B`Fu?CI5{u9LHt{j(T^ip2j@*Tu=nzfB7f0uJ!DZ5<R4=;7mK
z>k;VX(b~3pYYzwM4*_GM{2BPICQaerseVbZDSxJ|N1(5V=;vkY6By8@B}i?3K*|e$
zrmc@ESpo3x_VDvltRnDd{t>GDhdcw?NOsFWuO_~Rq_t<`QR4801K|+_d1ZgwRysaD
z@)43*`HlQ3+cvGeJmnwDZ~mvx2L%Mdzp1@#8-F-bQlz<FegQtdO+1)?bgti5{{CPu
z{~%-LfBJm8*0%luo?f=Wt-btgy#fOR0&QD(v{U|)Kk=(us`C4PKJV=p5d8n=^Q}Gp
z&wu~FLdPJ(hAOfC?H$Dbuh8+2_Xr#Ew~xs`gZTeXe}7O@uOJUu`+t7}=SY*lfYz<y
ziqeD{Z}oPq@k}HuADkm2huDr75*qPO{C~<3d_F8<z=(f-{(s6*M99$4!66a0z5D;2
z`JX-?=nH4Qt-nVLuUfWvMKQdGbJrG*pRISquzsOTbk59s>8+H5Kkc+-5E#B~9pUoj
z;aJPINmE-tFMpq)rqVUZ*$G~`KKuXje@$98@%f+r9_hNK`M>=&w*Q;INBTGaU;Zu9
zzZ(d;e@K^m_QnJ^o<D82Y{aoL5y!mUq(95Pq`zPKCFS*~RUTbr9iajJ{zSL3L3;80
zIX_qF|JS>bA)eFI`=_1K#rEInJ-Ka-Tq%El+<SZd8Vne|w*DX2nsIA``|c@OufdHp
zZ-IYb34Dcc-KNbh)t}U%sO;J@t^>F&UXl9_+%A^nQoLbYx5y{g`p?@Ak#4o{n&@W7
zxYfbkWN>r9tyzKG3TcDjzlguOQZA(YJ_w9+nZG1QBdLFLqux-wlKaS-&BGwByLw^?
z?T5_Jf4aloDsH?DxiO8O!GA-z?#1OzwTbI8UH-&dnaM*n$iqE@`vKzpVQ?wG!;M_2
zE&Rztw8KJeWVxoYn>)W2@057$DpI`5@HNWFmCQfx&#=DQO;IWJ{uOUc#;t2`>9~zG
za@q4DaFU-UuEh1f=2yytz_`;5$8GfoU-)l=k;}&Wz$;5LH7iSYbLV%mp*=|X9bm{W
zofnggTsFT6LpN#n*XSp^x$`@KX%7z!?v-le;J?X6E*tN`)9tl|7vA~nag*|JmvPG&
z@=NV(3fJAyyNkA;_P88x?mTp0@?dRn+u&=Ok;~>``kg54%!QL=H+LR7Gx0hZTx!45
zja)Vl6@v$8pD%td=OK5z*O~L8fx*2oxi<V4Y2>o;mN+n5`>b9!+07kqF{Yh0GPrbJ
z%rtV@c<Y`XtgV-N?Vsm`gTa;BnXAF=xbr{wZ?=)k##^k)Z0)0luCkjuUJVm(V}ncQ
z+Z-d8jaNH(h}L^-YTbXG#|{7D-oe*gBUg%7`Xya|KhJHfS>NU6U)zJ!enrNetvZjR
zj9fO}+EI5jJucso-Q4YAI@5j!8O}FMZ^!vYE}P$wpYhu5Hhp9_cYX&l?e~%D`mn&r
zW#b*<+(DbV<lpD9o^i_>j+=CMtB}Tb+op8UZtM5IJCAJ)E?sw`jpAkVa40cK+ilU`
z&tvJh{p~!ihp!kTm(9cUf}vVr=4v^=xsRI-bKI&K;-%}EvCGEWc<DUt*rf|(mpyJ$
zydF$`T?{VXE><t(#yiA1OnWM8iR|W%w}c^HssG?$aOpa^$jFuAm3~R*h27nDnqMC?
zWH)!b?o7Os4Clq(Zf5(snJqSQ+5ArVd0peScB$;<j@O*YZ(l?ErR%S;%jS3a-A&qC
z|1FYTHeRWJreos0Z*WJBkX}o;@oulzURx*8?60nL+)grXX+wT*;&pu~*A?4$(bkSQ
zB)hru;LqgY&;708yax^DJur6JJY0nP+lIKQvdiW{iZ_^v_s{)p1>G>X@viX;)qY7^
zDZ9DjwPNC}Zpg#W4FTUa1jHJ-Y`o2)=4s!LjF#Qp@v`mg&w0@mFO<uTT(+Ivy&0+v
zj`-i57k}bCdPsU1yHdQ;FX_CP;nG3ldf@-<yr_hAzzS}>|J(CII*<RH7gO*;xzfmG
z<IR(ksrfyB)j#vwm}w7=hV%F#-Zzb1HowmI<2BPF{(T-7Wv)9uhV#u!DlcMI{WV_6
zmh#)>+zZX_70PkT-5we-@m4g%8&4NXBbSZ0*vHkHHU<72ZxJS54@129As!QxHAXJm
zemh-!qd9J>xV(6+{#+-eZd6BOmyLIf&q~eyLjQKzc-;)~hDw*;eSA0AwvzU4a1psZ
z<UWrlzNR`$>h~QnxMi@wSj)}BR`-?K$j-|3EO#D0Gx;rGxIU!8=tG$ZW0%dtxNhyW
z`^PHRv)u8%HpDBP7k{q5Bd}j$?6T)Y<vs&6=L0XudB`1a9j2X)G#t0;cG7E|Q6AWM
zlTEK^9(XO3-Q4jOVDb=d$nQ<8vy5Ff-Z5)#X~bCN`kOmm_WoAO5bsQ>ytrZPvhn7f
zvr&^|t(<SU<27UA^)|#SU_WZTQ6AXy!t(b^O%Jnwx8H_Ler*i#zJR-1gL%d-8}B3E
z)tWL(lz4OJfjuwW4e>6=aSgs(cz7jk?Y4hEFYMvI$(|P}2G`G1dTrq5VZ_{Z+RA~G
z{#w6D_hUDv{eCjIKc!)U)y6KHht;-0+C9Bq%XL=n<5r1riyF?iZPM-do3YCtw`|wZ
znv?>Wa{JAl--}Fp7-~3fov}k1XOssv-h4kUX$sXEF1u{JQhskT@%}k4iekZO?6T*D
zmqU)`sAatD=8m@?<CZhTn~eR`jem_-vZedb?RCpFX(g0?2^+6;+*}yf)o|SUg-I`C
zm(B0T@$WRF`&|BKyqQdX%Nydg#&KF>SIY07cndhK)I9c4;?13hJ50QP?ic5=fQ#qm
z;a*rJZIf%i<o3(vK{{@|8TZfqVjT9Xja~M*xfMO3IrA+=&O>fjVBE%rJk*wkqptAX
zuZvn}d+4gkZtgtTG42w>IPD$muW#b!p<G%OO^M`v|8$EpZhk|1m>Vg*`0k2Q#kH%Z
zRQ#(e<+m{7ZZNp6SO@&wmD+^Veh*%D)>ba@_wfhGZTV6ePt7#AudtBaY?KG~xH%>4
z)tIzMljF^O+}xOP@TP|2wi4?LzI(f5bM31(wPiQ=aoftc%MHh^1rDehyX<+<)vbo6
z$#IAoU+Qst={&y4xTc0YP~Eb{C=aY#vRnymXi*#4&7Ft0j2mZgw{5|fk;~>cv&LnO
z{ksFQ%jQ8kZh4sYP|uLx&R7p67`alsf7-(b_l25!5C1-{EV;f+d#G=Sx2V*e>}Kq;
z@n%;ksCDTQ``37-{5E3pkk=4zGS*qfE}P#1QBj(t3xDrFNb$xou8Sewe$sSSnXTMB
z?5$B!>mL92@hHi)W%97m;96t-X6&+g=%u@&$+~&)uX&JM2PWRShCG}<C%uea_PE(P
z#Atj<u9Mx|?d;JD<vi9J;>F8kwQWXuVB>u%6x4dWSth%=+gVX2-ap3;yOWcRT{hmQ
zGy7{!9shfKkn)hp#A|Dam&R%N?!yX2w4rT^$?@jSgD>N*Ft~H2;gSa1|C)zC=f%06
znVQLClmF?aGVS3{ee8;LEZ==SJWxCSx1;Q``IXL#AxwUw4A-+)uceo<%bpjT+E>uH
z7yElVliVYWo5zrcl~^C|Fv<h#Zg^m>y;#HUuklL9?E&MiH@GdZJNb9_PkxIXch;`|
zc|~?}A2(MfzklvSKYvRvW0!5e;am4=Mse;#^_h78+=nvpKEKl_53F0&qPezn+rQt3
zq&#e9+&}lB9azsByHXDR<l+9<&o13Ir^<O?+k@n?*PRcB>%$D}Kk(h@<9=(B^JxF+
z_F>M8nTF%m6~_tq?x&Fs+Rk4#{<Gg#mT}J*-1^urF?OZ={>ekR*U1{~*E4dwx!c1w
zrag#;JecG7!>+#`w?A%y7(Z=|cY^HZ&TlW~xGgoDZ%?qlW9+iWEpOsGmxi5p|I^LG
z#G7M?HwDKv_-=~-FU|SaRb)4J9y&4kjWpzU3HGCmT{gd0;_hn}t@wBU;XD(sy&>KK
zI9_7xvU&JgbGGJa$C+}xx$~RE#Oq{;*9ZG&eE0VD;@Ze}KmOUy8Zqvl>rO=+he_nN
zhq)&+G|h!$|BUwtlLu!*9zNrEwXw_Q;pK<<ni4&x$!_lBwwsCfPru|Mj_(+|>~Tw|
zSxCF6`dZn|o!^g4ym<`q#$$KV*k$9r=F?xZr<XDwmD@eX#QW!dJOOX?e0Pp@5v}L?
zf^xjM^U#EG|J;v*v7fq|d)x|zW@<{g{<|(b#^mA8{kRT}NAX?z5rNvmEuG|ebLU}@
z;rj3%#u5MAk4>@vYwWW5{ZwM2_DCD$`j9&hg_(F87_K{d9Op82+4j)gVUG6s%*cPn
zYsJJ{+2HQSezmcyiuZDe_WaEi|8(y$$E}dTjl%IWV^@k-`X$wyOS2MOlDb~|r`wEi
z_ZZr5IQG}~7_|o}-al@g`L{F|6C22G?)(;D+<u1ZjvJ248M|zLdlr1BITm<Pc5}Cf
zIOe$h8HXv0b%3$U#@pe@RE@5ga@=yq8_&dB(-7|)9PcxB*?152Fw<6d+3?SJ-!Sq1
zG#s}ytS^jRwmo!t-Agky;qT){QorO36R(XS-qkpc$amlEHPgOKHI?Jdod=O||6CtN
z;C$9zqxQh&p$=RhY7bMc54n%q->we<I6i6YvUxZ>DoUgEn*Pst_b~C+GvuKfF5oeC
zrSsv>ul(=wHZ&R9L4Y5@Yoc5AHhOWTwk57-tdyA{PFm!P?>~1=7tK8B=f68h7fQa{
zb^1?%b?w{g#eQpAqgCa4hS+_aH@<)0C0$H!MnBKQLW}PTUB9SYn_#`@S~wUj$7>nl
zivdmW{o}6b;ySms_<jeDr|vU4Zhvwh{cod;Pb#-`JH1$RXb1efa5Y2h*vB2;XLd^$
z^VMjN?`L5B#&=VCe^j|<?e*fFJDu_KO*1mY@V>72{!~c1IM=KbzVC|Tw0!sHsHZA7
z2i$EwA^7>8SD>CBBH;Ut-P1+K5?%3qeXI-l?vEqyRqo>sdU4#Yp7{CUmovn(6YAsp
zs2=H}Wtr~y-W<n&`R<^#?}ejGJG;?QFSfMmg`b~!DMPHWzy;rr=$S6|FB6LIpJ2Vo
zcfUld<2~C+FWOG)i=SV4F+;T9=#1|>ho+00E$Ht{!ExpN-1gA6wc1VYtQX(D?vGaD
zg$%L5F-LqahNX)e3en%U1nXG78+78GD!)6r=*6S$2BVdJK0_RnT@&9|4Nn(+zW2lT
z18}^W@0JKuyKB1Y#remF;pg?|GQ^Sj9q@gDUg_fQ#{==b57x(gcdkb5Mt9ST-D-`(
z&woCfAwI5YkMAFW8+&dDzORS_JbbtP;<u_iOb*eDPK(Fl=Zk~euzh8Gf1-D~sM#_c
z-+#uso9|Zq^hV_l?yeW%x`v;xc?OQ#Oj~@vs!zH&b}IclE@It%fZHD8s;lGe-a{`w
z-7^U-@6#FLmLt~qepKIdaX~QsJL0kK=DWuVtK)6eQ!ifXJq4}q=^0}FFXi!ltB7>5
zrTqkaKLP7*zB}Js?Yf8R#RE3e@beSXGDK4sOMG9wU%EK(Gvy~3>u$cga>Q#@e(Qwk
z#Wfkz(OP{fLo7eMG`{}{Zt?b$@qHbvyZP>=hp$wwb+}%He<prD<z$99Fu5eYzuZ4v
z?7g4zV~Tb6LGE$8V5xQs_tJ|4U1y<{oth!8DOeoeuN#mqCR<Q`^jLTE-4+8LtKxkN
zZoBuh(JBOPazs&l-*;fT*e8VYvmfhjzPq{DL&0R2azDP>TQ7?7bJ5bA$PjyF6~_0@
zgVM$Kn`YqqD6G5r?%DG9Rq^iYqZey*io(zLIG!Q?9A6OM=YZSnCFMOF>u$d5c;cSQ
zUD{VKmMpOVt>|MJVh5K3_<qmebTP3e<=qYIZoaFH$yT|eBJ|?7lhJ6MI11|#bMoQ)
zAw$wd^InwqvRHQ~aofY_%X*dDzMo#aKYAfrpHiT|b081CcN&^5USB&0-@n1So9|9v
zrFI+i*NbQBEXL0}fP3)2-;Jam)(dcjn{+(Wu<qu&slU~(<p8~y_;3ljosVRQSu4Jw
zyKz{$=vj=8=W49G`L0<(wfh;|*k#MmjZV%Gx4C{ox9jk9v6RPr{P_s1yZP>%>}#t0
zo*$?eC;KnQ&tE<a^CEBFp<8rBx;SP6wUYp>yAN@X+pQXRRc^u{z1Sz;N^}c?J9gbG
zbWebrc!=6bHLSb&uFL8>DtG2!y%>046}ldW;J5`pLwCf;baB|H82tHfTu91y6Ber7
z@F99p=(h$xKRPKxTvGZGx-~|ni>n<M;m<R%?&iDaY}KykP`wCie(>{q4#M@}MmD-x
z;I{5b?QaLx-F$bNpW3Z7OfMGBT#xSS0~z9*RkzWdJsSGeOQ`+Lz`C37TG^=GU*Nu<
z9fxiWaM$&^fvzwnU0j^L6o1|o>+Zwc_ONj6ZDAtQpUfJr7qi^s@$+H(GsNMIuA=)C
zT<_1+uIppn&3Efx&r-FA{Uh|^iI1Dm-LNl1>|6R0x-nzZ#hsO@U7KUw&36<0Z>!vx
zk$N#<%NBI+@68bBe>jV7<8g4lwOD~ae}Z*4-woZSj(5N)y%^JVD}KHbxbJSHq5A~f
zc|+-ZNx{0C@AmAkcAJgXi(^V{M>k|ohUj?W1iDe<;d-`=&X*-vck^8*d$n72j9%<<
zdI!4ec4vt55>wFCPDmHa9$t+<AAogtGPgZUPr9YbugO@w*nIph{QSej3^8TXA#}6A
z{dSwqLm#ZW`R?hhYBvkqdi8drYY(nt+<tT?OiUO5`@R-`UJ>hVzALz1RmHnwoL;ng
zx(7c$a2M2@>ATUjngsbRLg(RUth@QHV@!t1ojhJI=3BWB-9tMw#F-y=pt}#;`Q<j?
z&o5%#&39+TTv54gCg{Z%tq$PlO~IY&uoc~a$?0ND6*|A;vF<*?J#GzdT~@i(ChEnE
z0!iq$*^wb`?Xd~n$KWoiwGn?l0qbtQ+heWT{Q@pr2J!P7wr7Z|<2Il>b_(nRbf)V@
zFxK6CcY9H_dwP;yTt6@w-JES1V*2Q{=oX)vE>_Xdb)yc}-F!FRM(r-2tQTijO+mK_
zxcNG-LU%p5Z#0|n=cZV9^W7s8E~)yHeW&QfVYiOr=NE0w5W{?zqpO*gE}pMP*CRdF
z-F&xEV{n=4Z^Nm2v2)aMbe|+-h<zF@MfViA3!D=0=liklPT{r(ZF#k8Hcc;jd8Xp$
z1#pi$FG9EN^mOq|O}frSVcpGl-#ovliZ=_~+FwtiJ9i88e``jg`w-l^Rkz{K!?Et>
zyLIcR<J~%4FP7e(hM&K;IYaDPEehSiGt$MUR&@Pz!@8UAwk@WPcgzgE__O<IbhY4m
z)trOwFL0fU)Ah3~*4=!!ZUMF1EK)B%Dti{)Ih!)XMNTu(of(-fKFPZifBpvRZocdF
z{(>sM<z`Czu+QP=AH-*fQNna|EoP>R=W@vHf%o~NM(sfwPnCX2<8p)Q)Dt$=U!jAy
z@S5nBpK+}rUXQag&^-w8E(|7@>Uq9vZDu7@$`>iS-ysiw;`Iaf$^J-mBfwp7k@DLR
z`wx8g$vbnwz3(X5{mi(-z&$^V@>>PmtUz*UoPh6kI&Uhxvg!9%Hx}G1>sc6YHna!7
z+tki1uwTM=7p3PD0y>Au?pG$>WN^10CU+IM*1gH4@dv(pb#)$L)~fEZ`-5@y;FbuU
zjq!E{_rhm7-(FyUhwonSG!bq_c9UHbrak0=^P<KZa;?FgHG^Cl*WkMrIuoH=P*>T_
z$GDZjZ9kLFw>xls$SzCn3G7Gl-6b!7>hjd@EW4(R>k01MN^>y}E5Y^LOxH6SFX6kt
zc7NBM9j>@$j2jAWm;K~+0e7ZA?sDv(@!h1K-*r`Lcaq~ZXWZ%FzHc!P<E;qp;B$0c
zr*W8L-1GR$@b9`=LpsW?1>?qp8~BjiY`9+>=tAxg?Dz5AV?)2`oC_<iCF7=p+jlfw
zf7gLq@15cPhT}VYx3A4lUFl;T<an(Z_c^$$E#_k$dVqUn3c1a(KgoCdeEg~_QLVk~
zR%Bc=xDSOVkXr@Z#%0N+aU;GP*7LJ2ahu{+X53ofmiJhI@jizBL--czKUBtkD&IXC
z{aI(fxSbqtHO6fL?ukrtH-THBF}XAz#dnwG{j6*EI#_mVGHyR`ef!h>xG%U>uTVeg
zJNAG1?xG%FbUmxImEAgw8wKvfyfK)ETHsoQlS|`VeAnz=j_%qIC0-ZC-2raOGIHNQ
zf3oy<>Q821znbsr9)8kYU!b`48TS&n&7BrvyouoYMUhM6XMFcd$R}Nm@j-GP8Zz!X
zaN|yrI~3faRmn}j{`zt5d3>}=j&5pf8`*VZ+!D|~Th)R3XZ68#Pon-hjmz=f>Lxk5
zg%^}~JsGzyxaVGx`yJ|ln*rob!8(BNu50^A=iNzheHgbjxc8?o#{4FOoA8M078>v4
zyCnnO>DCrj+~$ls6x<!<m!LZd+>K+%?TGaS-?f|gUUzGJpq$?T#$5>Rie2P-f*W3v
zTpCB@yYZfHb+$hgw>9JL1-Gpy_16o6`)m`{h4rv*;k)b4yww$Z(n^lE9phdDch@a)
z&q2NU(T!XhpX9s8>>&?plz2Nb?k8~j3|xl!jRH6BI@QN!SP${tl|5eTf;K7fc4gc$
zP!HMXk3}~K+{^vQrEyQbJD}TJUDw0_IS)M;w?4SuOUbna_sf6eKEOJQ@4icXt(*5<
zal;w69k{=0Q~h=u#vi_|q;WtRPd&jskH^-0rF&DZr5tZx#vKW+b1J!O!F{D6_Yl@^
zeD_?b*Sa~!{AG6l<1Phve7hBx-%xPpT%hq18mHyE&5pg$-RiC6VF=?M1UKn9xi!Ge
z3?nxN>q5S3>i1IjIzowe1moTWx9X&o81EYxH(L9f#*JwFm+!W>c&QtHvW1+7F^u~a
z+<c{}p5FuRk)`DJ#d?$P)*Agncc!1>PGH>fFiv2;iQG}(n${(k#+CW*tDVnv4xWlT
znQ;Yhts1Y!Jh*`ydX~oJnqVEvcO!;9*ERHPCg))~<8}mh)g^NCgWDvGTpF+DyN?$<
z(cS9bTy|$O?r3mlg|5MP&%pTP920V_us-Iyt|8BKS~EY{oyWM#!FBmU?tE~k$I`eb
zjf3;uXZ@b)Zmsi`-Dt)=1n!kNG;Y)u+`SrdbFl8_yQK#{(Y0T$xQiJ#3)}*>>o5-$
zz<qLw#(!yiJ(YWXFd6z-*J+vJ#xm}Aa33U+dmqM?%SVuV7U$9VZtU<!y85w-yNYqG
zU|ep8*LsY1Gq^2G$)$07zWe>bV_m8GP38QqW88+|Zn{bC0C1hx)A;&&oS)~r&)+}P
zH9x7i8yUAFxNRe798nAIg~sI4d;s75e(sTO*<K$x-p!0V7Tkg+ahQi6Fwc;4i{=@|
z;JiQIZTj|}F13u}ZfD%(;3mY7n+k5P5#-W51K(Y>>XFWFueTiUF2+3!u64DI81F1_
zi<Tm{HLfS%ySps!=~hox+`WvO1#UzVxq;xG+Zl`FNi=`Kceg!zpu7CeOOE#-<9-Ks
zd7pTUw;Z?`Ey%5j>lFCz;&b<P1%4~;VaBZh<JDH>X}mfc=AAO0)4UVSi}2l<wX=1-
zc6iG19%bBy;1)bf?j~@@M3S2i*FT)(p2sJnvUPTso5*e|<8}l$Ys6;E!$5GO?a8J2
z7QS0=dbTcYu;QjO?ig?zR@;JZ18{Gq(!5?4*4=!!T(xZ7nQDrAmT{MZTP~Aa6L7tH
zkW2G8e0NdK9bLX?4>=DP88->sWm6L{-qSF@IW{l3dvLu5-*r#9t2@5UU3N1V_ZGPK
zooHTU0k~Dy(Y&cG*4=#f@RHlQ!7G$_Ga2_AxR39W+X38Q4|3<=IuO1aIpU7)Sc(#F
z7UPzOd7S1^+b|Dy;C{}g`QtBGck|s>+AQ6?sY<+h#?^t_v+;IxU&6e!W+J&gaeWEj
z?Gk)fXW7tA&hLH3Z4YkzOLF&syTq2<OIUaF-QUx0>XN+`_c7y+1lMaR&6AA>_rp<|
zpKpZgR`~7$Axn4Yr>h+AbH-f??s3nZm<JzlKZcOI3G41t-1B(!wwpTV^^Ils731y)
zw@VJW#lc;lm)ugg9)|B;JAYm0GERy2J>y;nciM_w7;hG=e|Wf_*2zr7x|{Fr?w6(O
zSWt04GVUjEmo`sCcLTWHyvTit>umV0ZephHUUVZl4__I#49uI_d?B|#xMiQvdX08i
zck|s#p_#gCy%qNd<7&X&6HoK84Zyu0Np32x-{HHB!>{R@92ewx^UPA_8G^t)-f9o#
zAs@JtYLe@ObvNI=Y<EL<Dy*UG=4afY;F_B3MfW_chq-W`*2Ap8bwPZ0T+}sP4-X~Y
zf{YsjuKPA}mw>x%Ah`vx?&iC<(=v3h^i__x2;(M#+oIh*jJG?uE*9ht#q~yfciPXZ
zI+K!$YtFcr!Hv#O^YgXAt+|iZ8)akN&3BKz%h0v9Y#_&L!MJb1?X#WSFR(tUVh3{l
za2-<`_dM><I74?lRB_8Pt~snH@MwPk^Kb&(mp^IU)d8%#`R?~US9JGgD{gtlbp&^O
z{)6a7fxB@nxm9p|6yIH3E<?91OC#sOhH?GD{j#0h4&WZ}CU-v8-F)}ISC@33t?J9J
z9pm-`_gAMRjMpCA8ZV---}eL8UGd%D*DmXPT4`msD&x)pw{T%v2l5Wq%jKC*ZZE96
z`EIP^1>Kh`N*){-cMG`t63IORuBC?DtGJ$v@9sR5sVnN{B*$BmanFJ~zw2SlLnOFg
zZqLI!xMSVTcRPqzbQ3l@%B~~hz5v&&XfnF3!Ht_n?p9nU#&>nG7j;dx)|Opo#w`r%
zcjhLMTM^ugj^tWm-OYEmF2109bD*Z|Y8cl6+-E(HV7xD3{bbIKxtNEkxc-dqj_h$s
zr#)0db{jBmQ*alQp!G%vz+E(j+_zYF^IfY}=XIGTirbKJ!@*sWMDA3{btJbF&UdGC
zuMbJLPwO0ZJIL|6Gww8S!@D2FJOqM!=;j>ELps*oe0Nm91>N0cira*7<G@{8^ccD}
z;J%(pt_#k0^WCP4&geWxDy}!<o&fjIL2_ThI^DWX<gUTGoA2)IbXJ!bWiRKU8ROmu
zw^GP)jQ1e8&u`DhJQTtCZoV6{?6huJS~c1AXIv9l*H*xc*0oIsx4=wtM`GR0cO#~z
z>t+O3m)%y3TM=BJL~?_`z2!pgL!9sCyE9Lv>$=)0d1%A9uHatln2LF@1NZd3S(t~G
zSa<W?3OVVzjwKYgJ>zx)HznUmbl<|d?W6O^J&g0+e7B_gX`PFM;&x)(G2j;8L2fd*
z2@T1uj&(QRZ60z`=Vq$7-57TnxRZiUVZ3v|jej~5^RN)-yZNr)+ce#V16AbX)`M~P
zgFDrP)=zc-xA|gnO|b4h%{`AT2AtIGxL#Ry!x{HFxWRGcI)K~FliUcL@8-L4J5T9`
z#Vc+f#{B?pNXvB0!)I8>Kj(cU=HUj`-F&xwhZDL(RTQ^B<CcVVq}@M~dkWldYsmG)
z`EI@&@au%`7~>9RTqkfNR-DFo7lGR=fZUx}ck^AB*{Qk>=1RQ788-mjyq;&!?Fnx7
z&l#A93RrjZ-S1US>gtzM+)<3%58Qcg$gKx%>#gKQV%^PmJ<pxcxsItMw}-KeI|tks
zi)j6CUT_z6B=-Z>-F&zAhGV*ji?*^mk#V<xTdMIn%)@2ahf>>&+-_KR^WEriM|BrB
zDDh5Z+;niOJtB84xE+(GV}8$J-OYD(p~rRI?kMrjVBE*xE}wfI;~fO<%iiQRz`C37
z-pO}dxBQEZoQGMAn;+I~Z?AU&U3YK?mM3=u*4<~g=kb7d$-48pin2S8aqYk@mPu|2
za5K(K!#otnx|{Eo-*;5EzljoWG~>F1n=}3*#(NL;CG8qR?pUn5`R+o;qq?To6n7Eh
zb^$lc{t~*o!1b<0?o+J0`EFpy5#8!D)^Z+}G45D!N1r8k61X9EreYp~u<qu&otG!;
z!Zs@Lu3+3)aPtkmjPVA7TWlV=N3rhayA^62(OrqCAji9gaSwoNZ+Qh>J8*Bfky{Jv
zZoWGs<gl*r1tkyb8TUH46ONFZ1N+q8y`6%2Sc-Kw-}PvHSXb|*l^kz8<9-0QY0nId
zHx=CP>&VTIb+@t0?rR?0;-zYzM9gfxxNp)0jLQMs5xc4Vj+NTOHOj+4th@Q{!fkhj
zi9?iqYJ=xU`^GP!D_tiiN7HrE9?lEr*VN8#W8KYnH$K0vir06pUY!2oGP(!h{#JiC
z-RIN5-TIZz<EB`5pEWv<**x5yn4yZd!aQj|dIq|M!M*>6`jgWAVz}Xcu?OpJzFTs@
zWmUYd!EM{-8oHgJpBm;yb-+(>@BX0sn=RJed^daFB~`pfqNIK9ndt6<`c1Qt>di&a
ze|Yej`VVuk?&iC$8!oEioi|@E+Naz=w*a`NA8A~pCiEw_zNP-z7p%MaZj(IVGVP)B
z0%`yJEp)rUc*&b~G|rU*?%l`K|Luu&H{bo#=Zq@eYSDV}Q}x^ECc!x3vU@b{=?`^F
z!wjk~E@9oxcPsWkt%~;@xN!SIw=B3d`_nl1EpWY)seWsObvNJL)&X2*U3^lEUOW}8
zM|U`k+dKcF`Ia!KkMFFf`gjx8-F&xy!*o@=lNU<+{qLcB9p<zAm(e`gTX2&iY5buS
z*4=!!)VSlSc)b?s#l=7FquU7FPu?_dIt0dH&J3dQorzd?^WEkn!DZTm>0;?Q0uRw$
z5A(<CPSQO3M{r*U(fHX*th@Pc=Ax6T{S4>94G(*at|_>0OBmKaz<6IuLmEeHhjsTk
z?)4#l)G1XSVwOnHCwPi(Us$iPC6Ly``~<g_onibJ>u$a~JO^AR4;_~3#rl_?p?eY5
zF$G1_`lv}T{(IMy#=)Ji?&iB;8`bevS|&aB;03xa;I_F&>*eype1P^Pxht^l=DT@A
z)$u+77gnC58w=|O?W}2?<1}y|U!Zx0f>?L+-Q{*^s{HPVm7b^Y8r|Qpo;EFPKHlF<
zVczNb4w}aqigh>N{hoSKmEWPu^<w7wx9Em}TX-+6gPsoVt$8$0mW_2c-#xZVo!^El
zq~|oeNB2CeUvHU@)|nT8dC0X9G+*e4bvNG~zD6Byo|SqrzUT*ZwcuK`kHkDo0e5>-
znvXqzbvNJ5tgDVU4cz(1Kcc$|_Fq`;o`$Xo%y)OTqxtSCSa<W?gAdj5&RwM!M~wK4
zt|_>6i%vmzEV$FYkvkvjZoXS$7P!oHGH|u@T#2vf4%!Ig_I)R!`x)F@muNk~kK$6{
zeV%(BFBq<l*K&<s^tty9-P>^);_TQl=njJQ8n5DLy+$vryZLU*3hH?8fa|pQ2f9tc
zecER@y3fE(A4%(0u43KIcSX3KvDb%nYxQE;=D*P0y&*&V>^2D9?y!DmsV}Vya>u%x
z?}n^ORpmE)o%9?Glg8368e4E1l#M|52Dlr_(fX*ZSa<W?yLHsp-&*UX{bc0MT@Ur~
zr!aK=VLeynC*)dU-OYC!A4?TXnCs*_aG&nUgYkY}2m7$^grIu@+((JDu5BvT-F)|!
z7r4yx6!vbA_NnDXw-2~CFLXk;KCBzOGM3g2zQwwm@2)GZj(1d?^xTeo=-yhJA-+5n
zjP7P|$9d8E$xc{z^If6OaaFvHHcI>7@}uhq?uuK1=$40dq%{lDI?{BkyZLSn^P{T#
z{s8xY&41_~T?6ArdHvCy0q(sta$T_Q=DWT<!DaG$I9}RUN3I53YX@I+bHMeVwgKDq
z8mzl7aL?m$UDff9+ax__qyWa7usTC5(!mqmuCQLYn|mC(MX>JXyEhA`sN!w3S=z5>
zimn~F&sVykdm7x@U&$SbbvNH_^7)7=zu&=)j4X(5?5Yg$@O=SYXIK}%b>~Km_aWBZ
zd^dHCI^Lu$(mudK=#~UGv!)i^Sa3gw#-rO3>u$cAm8gz)RD$$el)~uFUYQ}@nBa_V
z9@r<*xcnw`4`bcUcXu5CmuU|Two3a8&CtycuH%hb=!S#4>m0e&vF_%(!JF0bege1M
zdveFG$Pj1Lt&Z+Fa6QIt#&{QE-OYC^Us1=qcbhanUj*a*x;#UC7+o1%XV{N3yw(<U
zO|b6fyJLSPtMV{pyYw8FqUa6-_jkUE=q>~|=O(!kSa<VXe^H$W=N)=+@1$brzKezZ
zdLzoC`w85vX$ctb4XnHQ?#H?6JiG<BMkjN0`++OIERAkE*!NY+X)C&(Sa)CKp2sCp
zAP>xSefv&noS-<m&zHeCZJ!e89t5}B4RUv4-OYDPNA6YSx5qB&xicluodxcmd*<kt
zfPH{12XDi8D`4Htcb9ZHq>8s<qF$W#g50X$Hrh}W-TvTyFgy<-66<ch`|ZJDRlHf?
zemhwb<4swbAzo-<hVEH#uOHZs@qWO%oA35tqHYhdyQOgr3v}CoyXs9rbZfwVQ<Kg+
z(CvnGH{WgbK;3@Z?UA07QwrVpOJG04;sWSKf;-G)C%Wgb?&iB`+3NOCX0Kjs)21}K
zbHUB)o*&&u;PzZkZUd~l`EF=ab^E;v?wLAe(5(*c#MgPy^??1y&AoPEyc@9Y=DTy>
zs`DGOPa20Qi|+BoFwQ0XZYcGsR)PEE5xK>&?&iC$=IVG`?U$bGLv9yv&o29h?pJVQ
zrX^y$W3le$yCL1x@tPmdi&axBG2U;BGQ`yXKA{^l3&tNR??(42*4=zp-wMtP=DL0s
z+}LI1&|L;@x5#(sCV;#51i4%AK7YyR`oQk*e$p&RaN2QH9``)SxR=09s7CR6fLkCR
zx!tgy=ey-bdkS-&?2_G6jGGto`!ene#(Nj?YtxGITL$|Ne0Se+A0ep7=D)fw;J*4n
z$88L_B{xxfIEUi|eAjPZV<FQtPIk{Q@%98ap!!dY*9zRi`N*A&{Sv-g^Qle<?6h8X
zFEQ={a8LPD`#l2Z+xD)8^9{!z_-=nIoe;Nrt?XWB+!SzY>^8yktvk5Ij?i`IHTHM-
zuJ7^&!llY<WcLo^z6AH+2|ADe1NXT#xf^g?gYTXzr4`mxP~3-%TMn)dd(P*@c(=gy
z_xw1z{&v8A6yKfOUn_jDTP?@?f^ogT4av%fZUDGj?$UjzIF6U_-HTZo;c?I^*?rHr
zgTXEIfUc7t;J(?$o!nE{KjXUxAG-+of31|=Z;ZPd+@-Jo!+2xC4PHn0<FPmn!*{=|
z(+JIy6gSU7<@#_IT;E@Gzi<P0Wqxw&V!w~?>fY27^0!mmf{gnG+@$<;e|rS|9j|ce
z?>xov9lm>Vc|F1T{0cb_#TmB>+&2SC6v8~r26yBc>YuH`{v_W$)2g1Z?yBNiGHxqy
z_m?k>Ze4KK*Csaz$Bp=I(h?V;<WR-6VchZHdex-<Lnicp>nx!DZ(;1G@?CRZXTj;+
zaybw7jJpNgw0cD_-U(72V0aGJQ5=uryI<kC9X1|{Tbpq+!PU4^KdLIYKig9sFdX~8
ze0N-VXJNLd;%XQ-AN0?fG%tqno`ZVmz!9p4YT-B+-}Nwa7TlXEt}El#0oSb!^(UqM
z(gQ1#dmsDNe79eZy28qnv2uPr8Ml+<h7`wmt-#$9Np;~;96#f`Cc(}^r@o5YoN;G@
zTev^<tB*q+>-L)JSbyxVU*_JA?|rKy%&Vrjtr>SOxHCtW#CZFFTQ-Q?{J0*5?>hBz
z5^_E*lk?Dlaqoe9WSRxKCBd~#qH%&GtONLNctIzjqo?AAFm5rZTNcbKg>DjzKisw@
zcOZ`U@!bkub%a;1mdf$=W?TW>gymEZbqDwL3>q)7$NGZrKHKLgT(wf-9mu%h;HJct
z!FbKUz4DsIjc(&OBHyk3SR>?EEBA|`jJpop?`JL1-3jASds>nkjdcs(9h>7MOrD~&
zhtZ6i1#b8msyBndb=pVcXH9W@lJDv)9ffu`l>AO&Tnng==O<Udcul}<XHD)etcUpS
zkhQgiU4xd$$1Rd^n}fT3rwzJWU>x!BG#W>weLj5mz?j;?i7$&}H;QqmfctWTExN72
zef5UMJ^Nst#dm+Lt07$Mthh@UHwoNx^X<_63FEX;9mu8qLwvW`WCvlBwc@U3+;`w+
zj;@04W^f0cq;cizSikYzOAa-Kkwq8Ed5CA+>M#xy*Uz5v0B%oba%o=@-))~-T_~Sl
zad$9oS8zWD(fH197+>$UlE&9XtPA;WjinC4hc+>Cy!#n<F}QiWYGAxuz%5*uT-xu%
zcdu8gE=(<_xG9W#4&0`7Xq>ApxNnEkJi~UZH~DVIFV%!nL!#w)(-=1&jGwhF?TGQ_
z1$W#-nirvcRDAbdQZ=DpxZ+-9TphSEd7aSR4)ZN#0?93pbu8cYGN~rSd|e>No5{EX
z!M*o{#t}P$Tj40p57GWCzB}Y}HKFQU#nm%zJh*{3>S4U5;6^!;J00s|zFTFuy-;wN
z;yz*AJKz>d)u6i@=HJS%r1>}6_r-Sy{i-53v{BqQjB5eowEpq+(G3Cjq#3#IvF_%(
zVax1=^V8<b`Tfke&A@#TtwXmMxNc);9+LKxUE$v6vkTe_+qx?5FUFk&ZsNp-=pKT3
zQ~h(AH|>ITH{bPLP(^sMC`yjEK$21i><9NkA6ImHf$Q6mT-v9`cjHS}7Gk3nw;1ET
z0(XEvjoX(6ci&l>KR$zXH{ac`w~Da#%se^XGK^ap<^$FV9vE*b%y++NL@w=r<GV>y
z>;(55#kFDF_TVO0XoBt#aKCJ$d2}t--F(+`TV>&S55=`--1*?nHT6Qb61WR1l1uyQ
z`0m%6cEYr9#jVY_r@;03=#B0rSf@~H0j(!khjlmK^_XfW>?<`_&aZ}Xe}LQYc2jgG
zfLk^{xwK!8@0#Vc6H2|FBfE_lw;s$p)j81&T}N;oM$meVVpw<cU453V(5b89dNOV=
zaJ{zsp?e3`ft-0x>q}@KAm2SZsG`uds^Yd_+*ROKo<s9*bHR=4Lhfj+yZP?qmA1m`
zjf&fbaj$|qeq>9G*A?7fmlxo8AMG#XyS+<R5<V7C+)j*J80I09d(b@OD_Fnt*^AuA
zSa<W?@j<qN_Qx#wxb<LMcW|Hh24TD_!2O;yALFHci+s0CFKeN6hT=vr?l5q_Rd0)~
zKe*MM$PL80oA1tcu@!<ADee%)-3sndi+1S#f^}ChakTD=_CxaB)Co3%Lsi8c&A9i$
z4gJ*~-R<D^w<7ll*4=zJU~XmMNxd0zekU+)d6@4`|JV`T&fp3QY5f`Pv*f!6cT^G*
zZ%mclX^a~P?y1L}(JcaQh&j16u<qu&4k<Q5=Z{llcMju5g6n;)E4qha9bUxjx!4|P
z|0dt9{-lC%Mx(efjC%y!goCu6pg*|Ug5)m7x|{Dd*kCQJFECk-H<ocffO~m;4~(}W
zxOJw_!FXw3Xa@Iwydud;7&>l}?5<<n8nCWn>WolyFT?uD#Qfyu#k!mC#vHQ}8V*w2
z&5YX>+|Gl-(VYUW#}rzZN&8LtZm-z#Lg(QV<#=~7?m}=KTlPj*3+~yx<o3t9o9`B`
zY9(~lD((TsJp=CQdVSG-2J2oIO`e7MrG2b?_v88Ug7|*C9Pd%aHG%aoWv%+5yBypK
z`N+M6bvNIw|I<>adToO2rZKJt+&3lz&<z0Bc?zx5rTwvd_t%1Qf=TspvU`zn`+(c$
z;Xrirg1a(5x!zcJ^WE6amO|iE#m!{g)!_Q44n}t$tXIyO7K!<#eYbpfvffg-W2U%w
z8TTr<12+vtw>P+LOvz2e^+tU6SXLRKVy&@q9v(ApAy{{nK9$y8*?{XdllHgJeqO%&
zsjH>n8a76DUo&oFaQ*s@#CWg3I`cV(eKR(=j*0JXOe-r))hO;q#vKCg=N6;Uoeu81
zxwL+r_6hUdcB9G&nFUA7@&07oP2h&q8jEg2a9<TCcNVUX;=AASl@+qmN6BvfLrQ=B
z4!CcNk4N_n><=ika2mD;+JDS<?-eR7RDCg0c8f4>30U7}{dxkr8^DbzOYSFJcg1(F
zJ})J#+NQXr7}p!ztcSF2umiY_mQTfaX<swn4IfZOXj@8gtr&L<xSelI!g$TWty_`Y
z?zo<d?;f)*E!ZRum-Ar9xI4l1NuP|aw6EjldfL}P`=$Brnf?|+vC@iLgK-~%Yq5U{
zx?{k-P@UWhxK51k{?1og2+<Ff<8@}-a<JZWaQswsoxts~eKO{k_F?ngiBn4ot&$X1
z$G9!P?YfB8r#^x2jmqOfu7K;$_-?xx3t?X##r0s^$>9E&IvwL(39d=fB#f8#ck|s<
zpGpc_W-D$}#@!EY!0;L9wgxxJjoghm-+h&PpMQC<gy1rHh@9V+jQavypRh=D&A|P7
zaw5h{`^Ne1*;osqc;Uga8_c-2u&#J^@Jw`%!S{%L@FTY*&Uf=&PyZ6a!jwU>+l6t1
zz}0!rLU$y%)i+JRcxgX6-yPAkxKMZYK-mpr+(>Yj)}{5;PT;QGKOWujIN!~8PnIts
zRBooY{TcT#xGyWs!FZp*_q4T68;36KbLYDu)rt##TNQU0<Guwq+ML#zuLd{%`dD<I
z<9s*Y6&e&5JWL13c^J#MRbl;l@K17s!CmuY47#*`p6}L3GZ!}1?Jv7i8Mi&SMPARt
zJeY&q@9SuE+v0pT-}P&0E)1xqxU(5|F1TlIN1>Yz->>IwMlS8k=etfj&4t-QgdA@)
z;~oRI&Dr_rP6XGi;wX&wIL>$T-8UzS3a1bCmEBmz{Rr;MeGAalfg4b7B)YWUpYQH1
zR7{96SK?jExDK#S;#gcXy6<~Kzr<$*x{f&C&3C^}EGlf@-$#yjGvjs!*FT2#UnGD#
zqtkG7={W*?_qVpF@Xl7r!%oIs0PdSf3o+hMaKi=-LpK)ZyZP?)V?~8Cb$ZM3?q}SS
z;658j`%rAa)kY3Qm!40+cOAZ(2}|O7$!-ecegU^+=fxQBjb89QHmirATL9;~`R?|L
zMTAK+755b5)`ERA8=5XbHyYdm`v;>-&pqI~$B&u`c@o0qcrP$+H*kMxXrGTCxE(JJ
zLU%CEck|u+>&%4TWtDiZF|PDHXp5@LFkb0<J)1lkh%P-(f$zp<78dNkg~{>WX52Jz
z50{KZ_gFZL)0&Wb7w5bAZo6lNg~g>qW%nWDeg`-CC%I$5t!Fg=<E7^`@ZF)83klAn
zm3Ut;t|RQv@_s@4v$WtIbm@<7Go0_f#=Rf=Z!aWdC-;=&eb2bv!L_=+0`u@L4924Z
z`k_nDf8e`MoC^sf92EB(<4WJVGxWqtbhm+frEdhf`*6OS?>=l=80zjGa=dvCEB*D;
z;NIU!``>zj+bOayy7XKLzWcaDA)(U;<@-7cGVTv>f394O@m2=6S6m--?Qp)E?@o^}
z73#Yxt~uk@f&F@=W~@P19}4>!PV`2Xo>#$lcWO+9hAl$mJd|bJ?%-MvT8r)qaPQvh
zh3-6@@8-MNsRf0Y7u{snhH)2zyQ<4Nbc4ZtZ$d6T2ZQfU99%#Mu~Fi!%DAV&jcv9b
z-BRFQtr(8+e#iN4W0&36>}Y;dwO;ubxJ8GS$90)C!S&3c<F*#ujvp!BU08SX-Cg(6
z1d|cU{_a!BdU2}16}qdSJ(O%m?bjOG!|1ux9;oi-yAcuUeH}B7=*7>~E1+8*-1i^p
z`Y<2dc}3~Gpzl-TyKPUX*A;uFNZ$`>P3u$Px-)PqU4MUrn=*mU<7+tI&36-?!n$o{
z{d%6G(mr8w%Yp0PhwelD;JUN*IbC;XzMJnpa)b4>On#HW4LV?h@h*q^+k!fDKfVd>
zngF`~((|_Y?g`T*RlFmP>BY3@is)7Z_w;w_?}%`}=(mIJLtnA(=DWofsa@ye()U@~
zqPrgYQ4wdT-<JSxH8Z*&@5K3TzT3OL+I<1;HlIr9R+svHE2#fl3i=N>dQks?zORGt
z9xZiHmEX7%da;U~9lG10zkYWp)fc0|HA$lWjy2AA^WFVhz-8J)msGvD<OjJLaI5=M
zos|vl3p48XUB$Ya@75Znb}dgz-@jQI<2?*@;ptjbZ+byL)uSWzQ)lCRH{Z?Bs@==r
zj@wlQT~BbY6s5X*Gq@$=sbB4ZbvNIATtl7TS*P^khuKxpJqP0tx8KpYMp39QeBM$W
z@CE0)`R=F41FHNsNt5<>+oRhC+%Y$3d}jc-bLvx_wFB$!>qhr^_Bz?)f!h5J?k)Ff
z=;~pd>)51mc>TQu?$9w*7lz_|H{XpN0eKj%TqpOYOZ&#FquUEy-*%(WtqXPRg~L?G
zR=~QO@Ak2Vc$xjN{Z8w})Q{wTfbrD!^@pLm09=djRCj0Kd^g`+dP1EC`!mvhbO(%g
z0=Nxq2ci2G+ycvKoM0x_-F$aRl-j)u?v^bz&@}_Mdtn-14}ftE%lb54;*Rs(d^h&?
zepP-KpOyBx*F<+I%m?Ux^}=`)!0m8_+|O8d^WA7mIBraS1J3Eig<Wf*TLs)DZ+oI!
z2*$at_oeZuZ8+b}cTcZ`c$w>i>3M1Yd~I|SVScF1t8VD_1h-0l8kg&dbvNJbUsavo
z6mUnEazxi1+ybvVp_>Bk#aME!aK4-G_Is($?}!W1zI<{o!aQWJ4>Z47P8v^jqH)j5
zSa<VXeb_!#ersRUi#<=*!FaoY>r$c(#ybeytYhTjbay1*^|}K4zL@+z05@~J6T0tV
zzT2#RD|FMqO=?Bs%5GS9^WE8B)b6rNda>DfXLP56`z)jdy4EnhK3-4mN1X5GyVGld
z%UmD)FH6r6sEe*8xaVSg(H#u#uD&#GzZL6lz8g4mk1D_UuINRVdiBuV2J0%stF#W}
zB)F45k=q03yZP?Jm*6t_JpgWeQ5SSQz@2F+V!W0x-?D!K&9{`px|{FTO9q$8L%$5Y
zX#JGjOjy5@+`cioeZc)>m>;@?^WA*+Twis(m99$9J<wph{lFcaAfS5)+~9dM?=%DJ
zZocc9pw91gaPzO!qMHxgoNrom&0zk`q!i7+x#D~`-~Iel9q;UG((@GRqZ<qB&+_`w
zy0(ts{$4`v2dumK?p+6Ue%-F?#aFEwpj#K*M+tQ>-YwvEEKl>B2{_-)cirypR<(y5
zaJ$vgp?enAIbJG3>l{CWdvQ6rAy{{3a_`4Kx2f|RpQ#tG77)<w0q)#UwBFMT=8w~@
zX#Us|=ezlC$MWj@cDx}y|AE{eu<q6S0j+zD2G@EyxfikS=DW`_ArDOZHNUABlMgk-
zc$a`XvvnoR?;UVkm81FjX*l1_ceSDFcvHc3THFX-XK;sHv_{tf))UNIL~bLjyZP?e
z`s(90;+FJ1#jfa{gLT^nT9rq4Ft|&K)B1-TobTqlLAkCwHM6AWRWwFdTEA|8rVP5t
z;HJ$YcQe-AeD`@Jb$<2W&aLW(ZhmlAw4wb0|H1l_^nA3wq#Mq6^IezP8&&Oh+HL7M
z81Cq%z`ld#{<NRL4cx~)$t}B2>QM6CaK{}g*X5309CC}?q2PuuEslAZ0&bNIa?fMk
z&37$Y?o`z+55axD#{=Va0N3U!?Qc0H#p_Ayf~Mj+bG|#iEx62eebHU%IT#|kcVItG
zm_<>Hw-Bt4YIu;`hB)8Ncb5#=rE<OX(sMAHpc@VDy5_VmsRg*!b!gqyJFL6;u8BjU
z%KZXv6HiZcy}`AgRS4r<0B)g;<Zi<GZoZq{0NNQ-cPC`)#UvXqbicxWGK*AGbgzLM
zZB6Uiy5c%>z8hOxeI9qaCp`y)+-=~#`}!Zc<zXG(%Z22Y?kHU-`EJ4>^?7V@UwRIP
zH^v(Ru4kkC=ynFTlo_oXJco5R-(4E5jyD}#i|sz>mIAl($h_#T1^4Gfa;M;YH{Y$<
zS)Jc85A@=!$foF?hW(p`l1$Kj2yXNTa&=gD^WDh)>h@6kq4XRKUvwveYf<PI?vJek
z>pdTZ(R$CfSa<W?lv(Qh-UD}_Ycq5;;FjD-`*}mbotsH+Jl5TO_ue^mybB-c#RqVq
zl=h0hgni9}8-K=l<G@Ywrgg8KvF_%(Go8R?+OPLxz1ZPBx$D8*_$&wAhv4?uLvAVQ
zFEzQry&t<)Rmb}U-1F!BFy4;fPF(O7T{~D;>{p4_6`#er+t_9IckeK1C;T{mSRPL`
zd7`+|zVWwyAJN?h@y_f?@lL|JoA0i>-AvFF+$Fok821Xe-|Eo*?pEMV+D*r;0oL7o
zcl6fg!qQ(mW!H*vi$Hs@enIWw1+?GEdC7f)bvNJj?blowbWw@dfpNX0_PdGpcTWR%
zcS|}i;;`=KyAK=s2}cem%JFI#cLKQOoalV32=1qqblvHMbvNG~n6HKKaF618Fm4jK
z8>8~zd3+GAlO8YV`fCv<btw7n%1bSToP&znf^k2B`{@H+cLKqk(SY33Sa<W?oC|(J
zna7ITj&YsfdiFh-u9Gj|zPWZ9-QOl+-OYEu3~w$xUZ%LAjN2F7u?Ok8J{??B!+pL!
z*4=!!Y}1ay=CB>|aqG>vTfx=o=ssi#?wZQfe|Uv;H{bP)3lJi1Z<XD_jQbQ^*Np}7
zxb1}gS?X}=pKZXxoA3JFX(8B`N|4>Lj4SPzzGp`Jntj3Dd6xRA9kK4_yTw2G2`%ln
z$nFfr?FMe`A=H0(0R8G&mB=m8OuA6=-ODXn2o+~2&uLh|xGTU-yi)}8Fc#c=BdHEZ
z$GV&E1|DlBoKM>%$Gd`YrG3o>n^6C(EVvCXQav;Q>u$d5=+j)t%BQ&TjB5e?zD=9V
zG2UHJXVtGpt_JIFzPt5^uONJmm*Y)jTz_zVikCpw4_x;NRByh-x|{Dt^zs$9`6+HP
z<4Vup`8JgL)lZ=A&dH>@dp*|Oe7E)Wrot#I#Z712li;?#OLf2$aBnz~+aBv~zU$)X
zD|FLrl=G0mxOt$ynB!R*^B}DwT|bM)HHyEH3U9s}Gt)=tTVHYYjN1s@1zV{eIt1e|
z5f5n`CJpOuzH8sgSLl+gJP+g<<BkNkMj1<tw=K9k8k0K?>+YLI_j&eyT=!x};pmHf
zavq*Du2dIZbG1VEDU6?;m_g%QE?9T--Nl~*ga_M|>&{!otpIhbCLis)od|BJEE?~7
zfps_E-B`N0kUCj8FTOHvZ*b2h*<!p_;4Y|3?pmz7`R<ABO@)n%l>Fv>s`N|tf@>FA
z8Qpy_p89<bji<K5x|{EYENLQi?x;L(r5NM>0@wa$Rdj>EUGt2_mCYAQ9ZJ4?K-)y9
z)oh)7+{!U-Qy4F?jH2<992f_0>qG8Ith@Q{@;Oa}e!8`?Ta|I6!Cm1{6XRU~uJuM5
zUmuHgH{U(y<srP<r#x@PnQ^ngU7lPUT_<qE{v)>@*4=zpU)x>ST~Kjd8Mg|Ib9HLr
zgzhDnzvvuF^B2#s?&iDU?cIfo5z2F1d>OZ&v@i5tU33S6n?0N6Th?IR&3DJ{bQ5YH
zR`%t$VcdP-CJfe~TO8b8{xm-njCD8PZ8)^C5FjdU2;=?&w@cmz=<b5~tOq4%KC7rs
zx=`}n>(v?y1G*{CTj|HRJ}~Y%VJ?lQ27+ssN$U|)vF_%(HXB?8hq{V8nsKARb*|`&
z@#erh<dGFLUpNNqZoXSKvyl+}NqH{HbjG~_?z}B-=q>{Ha(9~FbjG@y?|QFy6^5-*
z+y#tl3*+F0J!l+U3+{XenvZ>obvNIgut^X$*(=W(S;e@$z%8HZiSgcq`Qs)zw7zdO
z*4=#frFkRa`bfpy!nnJ@?b*f$-7(;{I!yE3ZLsd<ySq#q3Y97-?mou-3T~GtG=E_Y
zZn^0+KVRgoRCx2<3(h*B<sjv`5+@kf9p*(Q4xoLOM`1mIw$%_^4|4+RZob>cMJId>
zP~1z58wsxYC)#J(6WqlW2BSL)>u$b#r)@)_CG)(MEXKVIZt>YP?<B3mOEIj&bHcj&
z7WaPa+Y_F5HC1^Y$P>mb2lHeV%hG<xEwBz`?;ct&_XO*1zWX`3fuMP-JYOS+aYMlE
zxUns^2Y+y{P416*Sc!Ev-~ATcKv>pNaep)JW^l9X(Y{4#y_`!Rt+NTjx|{Ew-=+}~
zEETuNGv$8#R+=wNqJ4`?z|ChDf$^G6kvf!ociH*|!u53Jc_3vOR|oT^4V!ntJP6<p
zdfx}#V_0|d-Kabo;Z!rlt<1O+!A-tK^Ss%x?kdZ$u5BdN-F)}DhgKNfd9i#yuEV%#
z;M#=H{=#YC+Ag8>Ty?PS=DUMWy9h$6@;s16jB5__-7Ox5VjgOMyR<K@KYN6AH{adn
z<syX7SK@8TxNX7pA58P}mwKj)BN~Tcepg`K&3ARHT!cF-lz4*}cNMq=e)Pe3hlA^C
z5sGeWth@Q{s(2T{p_AfvW!y*LUY<?s6e@r_?P(8m3ssjclzexPNj;&=N9B1SeHphl
ztbf>5jP~mt?~yJpKiVDLqgZ$IUHxHaVUy27xjl?z+#%pzTs9c<&>P$$OGD5dfps_E
zt^dYZ=zC3xcPis1f!oKL)|V6qH)LQpbZcYX&3F4=a~A$vthn<TH!rM*agG~-@$T;q
z-vjO272Steck|tbiOxdMJjGqkxW3@l(Tqm73%HhcUC>>QbvNJL__2<VM~Ig5yNPk<
zgZusf?W-#Q?uMV8&~1fvH{b2J(Mhmeq`12oHxpb(FWUdMJp|TI-sp&K!Shn#&3C)p
zs{_yNP@XfA!niiDKI+z^iI|7B;2zrB0o@d=yZP?1dyc{?N5wtMxS`<MIZQ_PcQ@Gg
z71JKwVOV$b-BGVa;lzK+b0y9*?mlq;n?w85R)QNiq8+-mu<qu&(_1+UWz3cR^O=nM
z3*69~Q!!pIa9w%?qx%5sZoaF(<Rs+3Izw&`_ZZh3*2_(<MEl8Jc7^q4t=poz4D0SJ
z?tOms<yu1Ymg%zligD+HyR`?c?^_IReeX8tw#2%d@BRpN6e5Ea_Y31*1^4HcNX&y9
zxRJUbbWI0K9ZJ4?eo-wUt;sYw-u%y%`>_?QbDZ*u);T`y0_z{@v_>}>>u$bl{-TC3
zsjK1^XWS5QTRPFY%ouPzssy4t6zgujJ1U@-(0-%xd;%-R-2|@rP}=w93hsyUt<bHB
zbvNJDT&*Eo{-Qibpc>=81~+xzT+Hv2&go)ai<ao#!@8UArkFYi?+++$J;rr`b+5%f
z(f+I$aOax^pt}_7ZoYdct%l$bqPT91I~v?yI@(9&3hssc{^$l^-OYFF*Q+jkuu<IR
zjC&N^=#dLB56?P5yubX={jaQaq2#;f;SNIm50m9~)|PP#z<TAhL(%9i0(aAw=I9>A
zx|{D>)o~Dd-%_4?(4BExfLrt@?W1xBH|Ik$bcbNw&38KwtR}=aP~z>+xY6LYa$kh;
zzU&C|LvMZ2b-=ot?}qHL7itVu;vLPnH^9}6UySZDaARLJMK>GkZoa$kO*LVEKgFHK
zxHhnUefKfi@8kt;%5xudmtft^cazQRg}5l?ISmUKw<oyy^3cAd_Z_5hE^l;OVBO7k
zQylCC{d~n;!MIz%4Q>*Pc~}kZ_@`dz=07YI-h5YVP*r$0R(VdtCdPdO?)NFQf5;Eq
zJkLDQJ%n{P-`#VovT*mB@?43%jOzmX844bw{X^f{!~T}%P0$^LbvNIgnzyQOe7zFy
zQN|q&?t?tE&u0_3GoFj+R>!)V@7}LgRajP9iT5ny9tF3EC+!z$1MZ-g9_Z?^?&iB;
zE9``td6nlsWHRo5un*<@<TZHQ@`F3zjXS!Fu<qu&_ZL?d9(pOye|W&S&B3)lLHm3X
z+re|5a@^4M!@B!6_kO(okex7ny5hcO-1*>s%uoAqLcm@3sWH0wLZl8Q-~AS1CnRf?
z=QMm{-0R?WZn6RMP#oO8KU~p0h;=vLwd!mq)H|fO|Gi-D$M8LEw$tO#JrWG_Z+XZa
zh;=vL9i^)%H2I}G_n-vhb_Lhs*hX{*fSXvb5yo2$>u$bVaC{}<v4!GVGj1HX0l(wX
zwE=fk@rLN$!MdC89_?f+*ydB7S5cjDpM!hOeKWcj+CrUGRzP<l*4=!!?0I+&=TqhW
z=E%4%@V$L^Zf-$$B)F%|b?7$7x|{F1=_?CQCoAW11I8T#?&6TG=-PwpUAzIhc?w7u
zO1}H(k)7~1SZTi=jC&m1myfrhd#w#TpVp#2x(BfC=DTx;R1&sLRgPP8#w{d$FJhk^
z=uQQ<x0M#%0a$nQ-6J<`gwltV=T)?2Tz_y2zTAnf2Hb5`H0V~vx|{DtuC);?bjouY
zLKrs&T-!d0=spgDeH~6N=-$S<oA3TN&|0W<aIoAjiD29t;J$dY8{H+~9&)XRZVcAl
zeD}>xE1~l3L9#o7aVx<0WcKa07hPX)_08*|>x*?a-<@;4yil&1@_d3RjN1*|d^h%?
z`=d2H7rUb~x+V!y;mvoaf3_0BDk|<g#*G8FYwH8(ZU=W+Ung|;W8KYnU#~7NMD<jj
zdl1XG&%jN)a1h;Y;JS>hgKj^pyZLTU^KwFT5yjoexV7Q?P1k!LLbnvS)#f^)TLtTG
zzMI~`N;sXNJojKH;|>P5N$O#APX)qrC05l&Hw)`-zPr-HQYgAjd5*wg#@z?*(nd$n
z9S!crUA53%fOR+D?N_~=5V%!w(-`*~xGo1$(5(&bx73>GHpRM|?;b8&R`}$oJVzjd
zab4m2ZcjKKL-&3wc<$HD8tDGUx|{DVSY|0WO;w(IaF=l>gZp{oada1h>+{9|-Mv_M
z-{IcpT`O4%Z{{fOGsZmyZbs!)bbY~1%1>?t*4=z}`k_+7erx5q2Ok-?5PYBT#ib|F
z{oOKMTwzrm<E@N!H{Trz`JHoE+3#=iQn}B!05`Z~8oGPH)z__t?oF(_`R>WYGQy7N
zaQV7Zm~j_?yK8njy1l^lYi^J3e5||qZng3j!j`?EvRjsMGr)cK>omF*!Cf3$6<r^!
zyZLU3<kCVXi!j->W8AWPVg7j7S#+-kq>ED~R6+MA*4=#9Oj}B@yrRTgn{hjWd*S6d
zbZ3FPYguJ<_h8-4cQc!o5}fNPZUe?$1@5V^3+TFoJARKHx_z<kHg?&4i*?)|tJXo=
zywZ#A@hxy&rYX2fo}EGW61d?*C=Zpe?&iDgTAWqwXLttgzDfS*&Vl2$wGOohPdILx
zEIMvCu<qu&FK@y34>9}dHoca<M=StcYj78xrSl>I+@9sA{YGKk&3BK^SMPrdc_V#~
zSW9&G!g;)S&I!yz5jc-WigdntVcpGlpO;gwgD(A6FBUJ+3f(|(2Zhu1EF9deUFiDo
z1M6<SYu6Rl6*K!q(!rhng50-o{k8L>>+ex;9}c1G<Zi6H`R<G2;4=9g^G^C6u|SMB
z3S2WyGUlNiT-RNv(sjKz*4=zJO`~4NU+cZ}Jz}lVbp|)GI^8!1fO|2D?nAa%ck|tW
zwbbriaI;4Tp_>8s`H0GNpHBt%@DjRjW@6pVcO6W@W%3)9BYp3B8+3<(8(3*S=D`x~
z^R6rCK0g=hZod1lIk-%I-9Jd*Bi0sOOK>k+Q~xXi+}Eq9U*d^%H{U%LsosC_7F^fD
z!RQ`_{-nl^`jbb%9lVPAQQxud=DS-PsPnt-qh8$kklb$IKC$10c_;z>NskrO@7slS
zH{U%P2m4!?{I>ceeNTKljJE)|BQ#V8gn;X~nEI)`u<pKVbU$XVXN4|89+>>*{VYAd
zq&>O`Qk^AI-I55dZxr>bD`MTvcP*UN`Ar13=+F-6wgUHF>jcb09;h#VO`|&C8rI!>
z_uVda9=d<gi&OkNqWcBv&8vN>-V6Zu;c%*3=3w2;cW3?HuDY(5_$qy`eJ6C+g6lMs
z>f;sQmhDM(Ruind`L1>W>~~`FdjQ-%`8uN;2=1t=RL^IFJ6ub3;a9A?`L4Cy7FE36
zze&%*AlC%kqT6U(L#kuVOHv)X6YFliTlDf)RXa2Pt`}P$=z{TXh4B*4nluhG09>ng
z<c4G2&37M61DDzFbO_v2(OuDP5AKcx8aLVxuI>`m^VV2*^Ig;6ZL0kC`XN0BqZ_)?
zIM<+BG|u%K+#Ne;{NXCr-F&yQwYoi&`6)dIBLv-DFfMmy3yt^rz<5dCC>k%BjdeHQ
zjcf`oa~_`rx3XP#bi05%tmaBQFXn+eB7(+uJh1NOyXM~Nc!&Jbi;I7dTNvDnyJ$T1
z8o158X*}u+*4=#fYi)3u_FL(<^c;*H81DfXr#02k_-_RmKg+C0<8nK&?&iDcj&R(V
z_HY5*al3k=8!oxWmtr2efxFr;-WQ5>H{TVms`ER}BwNgx9g1!#a7+8q`1(e0{m#+&
zWCg6d`R=*<>UeAB$rhm*p?d=61LkDXJi~KvtE{2%)C{b<`R-~<b$)Mxd&@l>-NE1<
z3!~@GIKnt>_dzuNI}__}zFX}W#LKj^8F{neIT*drwF5Wg3(eyU1owqIjaR#4-OYCo
z#HibuHea@Q;v>0NVBYD)ESh)P4es5dG`{{B>u$dLJw%<~2jFTi^~QLofIGDc&69lq
zcSk0<+pzBDyF-6~%e3DG`Lp3U7=6&yfZO^o&Fg7ko*{b;%`^1Gx|{E=TB6Rc+ke^c
z9E`r`K7o12869aJau~Qj!)RW_s-@JS<hwJss`Ky?+?cKr=q>{{?i<a=?ge*DO`6BK
zjCHr3d!P4;QM<7Pvc&>IKXm=TJ+W*So^Kz(?e~V<NUXd0?)G`={Q8(?!*ekDqx&1?
zyIZ-^ymVcd&zioI=Cj<e?&iCr+|}ptCve}sCN~k>%XevhejvDq2Gac7N36T~?xhpz
zJghI6E%rD)0OJh@x8XEePp}=_=Cx_Qa4Xi`eD~HW_5H17p=|N``hn<H05{EL8s_&I
zxYwVM+XL%vzPmC&eSP=^ZnN=&(7g=nDvI8r^&0jtZ+d$z&6}3P2VwAC@4}D==K7FO
zI2)dWF&Nz$;QGy@^(EcFec6uYc`sqz&3DWEe}vt2R8`9xH*m4A3l&?yz(562(E$XG
zl!S<=*xjwD*ouX%*nzEJd+qMR4p3|lDmJ!a`+m>!+?Sd2yYHHpweDK?pZmGbnlpRv
z`OeIq-OBv_&?>jl;Orbht{Yriw<v0dShzd#@w#+0<!-&ZVyAigX3t|Z#N{1K?q}@Z
zxoYJ7J2&BuIKi$v<!-%OY!6)J{mor)OTS=uGhDCm(Nu3ftj|{%5KQv~pDB0i-8By8
z^|sGz#5ov4sNODcUti??Q9f|(O7pt^X3E`q_uf`>H%~sJA<Oci<d%kO<3Eh*9R=6^
z9J?JUckA6^|5NXNxI-f&$xX)ov#`rU$lV1uPe0!OP;99wc<Ws^tIcNZ+d01x=U@yY
zcP?Dpb`j*7_G{SuyI<of<!-(E{(t&IfdWRHgE5@kAh=&sd4FGN>@Nx5$NNAgQSR2e
zlRKhbWn6LyZesQk<mP}oVnjcxHx%yr7QAo8jdHi%JsNB7b}wi&_@=OX8v7i-S@j`z
zBHTIO*!@JgTkk$~GVi}ug^V}{V<go(7OwBsp5*R_J7OX4-`PmHTkp0WU|#Q0xQ+`)
zk?RgO$*()PuT1Uh%=?WxQ0~^d5xdOYURFk&gE5-iAJ|XZ=wlahOJRRhjmzv>(}6*H
zx7s3ew`gIbp=jV3a`(f%v9uGp!EhgT<$YI|DR=AL+MD1i_lFa3XI2<X?ohZd8}h#5
z(QtG9ViyNm;LoUi9_Jr!ejWEKV#I$oj@(*s%YSZ5^=^aPIfnP2EvM)Fe_i!`vXDG;
z#fXO~8S}K^in|BykSd)s+Bfds_We%#*Y)mi|Doc;)T94Tw=DX@@!Z@WR--@6ZOr|w
zDUBcWZr$@;#qbsKJ?wT$y-{%cP33*X)!{Zv<Lh`k%@gR|elcytsz>rY)?SMH2=27|
zeW@Le<G!<S5#P^p)3`+Mp0#W#c16qgAtM#n4fls<<pz=)1~=ND@4ww>{z32lXx>!Z
zDY`zReJ3mKLb$uy4<^^NpR47+`?*fgct`JkdelTL`5@m@Td272;X2RZ{lDYj4&Bes
z`O-A6p?CW?ZX%+KNjFY$1MnQ0bc&yE)^L3W^SERfjidDL?8%LVefiZH?XXvI*TP-=
ziJ!-&@!4-D9!Dk8e2LzD?h-7ze3S2!B`EGsxKpO{K3#vfc|P(uwFZsP^lpP}jm4t8
z^8L4D#chi5&WUn7jxu6g{b2`>tEbUCjNbKF7bKRqmG6_iRNO6aOYY%u-*C8fhH$<}
zrS%rQduT(T7_vpWKNL4B#;Mc%c${hl_kj!NAupQW(Ysz1gT%51(#>5|-p|^={d14U
z)mxF@n*Zdy8B60yy*u@0ps-yh-%~54xVz!5?$7&a{ov+1&iOc<-jmR~+0z2V*6PxA
zP~1GoL+vwj9(s&Czhe^T`7j!%>fKh!0iwH)d{50?al61hzJT-FXt))FdH!J=%}43o
zzlH!|{Zzj9)ktwo-%;?c%z4uqZo48p50jI|zj}9Nu%GC&NV@G6*9!T#!2!<4yD@K6
z;~~#Sb)|VOz58cdLouz0bO$JIZ@ArpInRf{&ANf-&yLf$TJP3b<|n=%l<$*8Deg(Q
zj*oc$;Wg&_W)0%`zLGS5rgz6(@)e^iOLwl~7RP+a&wji=bqZY9`aC}wN#k|BTV}GK
zsCY%bPqs#J2f|Iy#Pdew;jYZZ^QkvzUQX|ho9rXDxl4DK;wHcin#=oBPheiT{B54E
zu0}aP@AmuZEvjFU?|q$C+_IQIyJyGqa_!+xiR1b8sWjiGcdI<}5eIrp_om`T!ri%t
z_ox2CI>U}3ydLnB*7fwR-!X47wxx7a7556<<qdh>a|zr(-n@R{LGy@uw^2cZSX4#6
zPnNE@<uRXXlg#@_>%!ewl-FC9QEt(@kEb^fi<I}&a#+jz<Vd&&yYswqGS;06zu<MJ
zuk=2S-krP7TO|IG?|oS-ZX(>yKY1VNV7NsO@;X^4<srQr8}2FUzm)H1RaV@}m|wp$
zmFMkE`**x&@w(ntn)lSZDRu_o^h>(+6n7ll@g;ekVHegRgF5j#WDd$%dN=5Sr>Ij|
zx&ex7+V44fGp~z;!TsUF>!zJ)K2`5_y5lLfFO=_nwN~6}Sa0zZypHn`>&KV#@jCA@
z%5Qqtv4DqYeoDH16n6sLtQUCQX&zkPR9^2cLG!eF*L|j^IPNUnQHpyPu6t`<C#wnf
z;bC5%A40iM@2>b7C=P#@&-uxU>w<N?JdJo=?-KSCydJ~*39i%puij1V(opP7mCuVg
ziaQVP@&>#PY1$8C<H!4994K$<U5kHwMDS~Q9WPhhG`QZ*yl$EeZbNI{R}oF~%6iv*
zl&7$Ek^OA5;`(4c_D(Tg=UtC|Aot$zzLh7meyn#l9<49jJmq_JhZJ`?+@e2u|D+Gx
z)@OO&N`0EI*1L-*yNLxU^8L4qiu(!f@&~&qUp#Mw_f1#X(mdA^%Ex+ly}z4S*I2%%
zc2{u&us&b)5btxG3O9YU4Y^-v|C!z${6dJB{&O;Nz$?XF1$V>}-se~qZn3sy$!$!z
zJLNyQTg}J24RuAf!Lu{mUyAz$uHT@8)DBmJ6AX^^%aFU7a<|?cn@xz9r=^>xn7pqC
zV!uYm5Z;eC2yR@N(&SpwI=bGSbfK;&mr1&%6n8b;t5tYEVo{TusT8@LD0l1Kb}#A*
z_p$OlKnKN5hdUz2acYMHL3q#SNeOa~Q11S(n;GqH`p2}d;Q87Z(KbPzOO;7+r(pli
zvVFX7u)4`TSDf79l)Lq=^WxSb-$Z#oOILokuW&c#<b6!1198sC<6`6vrrfP}Q@gr}
zv|Vza`Cr9tiv3X|i=Cr(=m|Hl6uVa`ckA7|s~yGp8*+cO+8?&UwatE>Tr0TUI$Kk{
zRVjDt-OX>Rh`sIP{@;>H`)0=evxm=k|Jm^Xd_QY@QF13!?$*0EuGtI6LvsJ5+8>(3
zZF-RR;q`-S`?m<WDU`eQ?v9c6B59R$>nrtcg1c}g@53t%w{0VK-6?nLUDw)GMa#u~
zGp^%c#r+HST#swiz84xM7>+M1O!Y3N+^u*0Y$^%oA+p|fiW{~U`!Zc`kUJdi^w(D8
zexls1cWe1q5pl2OKHa{GyAkdbt0Z#m;f@sShEVR-yN5qk78MW4b{MU=f8hRkdz0Lo
z{`d~l)IwD6Cd%D<w?N-YV*OZI?@YyQvJdaEo=GNmB3!$>1<B1u`!)3L>{NSE?WSzs
z6^a`NH-5<-a%-9Dt;%jk%H97Tw{I2EaFN_!y;X64!o4-<9=VVG@ZQ0w0#xr|%H4W*
z(2I(qcUxKSQN?YvALohrJRo--+~h0y$+f23t#`-ZcN_jz?t{LpxNG6|EBT0Ae2~;2
zY}t*V+^u)3KeZS4x=8nd;-<r```$?IM_<gR4$epQUZLErcRiQb3nvHZrYUaVfkeZc
z(~rqr1NZK^yyRA<+^u(W<gph`e#`d#t+*@UPG9_#+%UMSOR_tOa<|^yHlvcLvrG2h
zyv617_!Ha@{hyJW74Fpjd8l3^<!-&(#JaM0*i5>m6xZ({#!<d6$ldLO{j{fZlj};k
zTkl59s~~<)m;1pT6n81yJw;xT+YN5<lI$*`+^u&n4X-G+pO^dB-4!<tuK)Ab<Q9W_
za$qj1_ao(Qz1tyMB@t~W`$Lf8dL6=f@rTmLz2Kc-xNt5fxxtjX_3p>6mBfd5>9$tf
zg>WCtc}MO@xIfCUyODCY-aXu-q6o?^f4AO>`x5S}ZXd|42DjPJ98_;s+83mE<4ac%
z_w&g19jUmkhmqf0K9Or|fcGJ<T9VtIa<|^CcDuZo=`8o#&rsZ1aC>L@LhgLH6)LlP
zh;p~yz5BS5`0+%x!&1e44A=SIS8{#f=8DQr^%kYvt#{LBRS>0K$^N@ZacdvJey+{m
z$o+1>KAU^l$Q?+zTkoFTSYG7+Cf$RI8x1#o#1C?}!W~hE-OH4__3njV<;AqOvVAWo
z?p?S^{=dlW2sh{4tW<9$%H4W*bm59(?I3wSyQ{d>jwTuol>9?(5xBSBWFdC~<!-%u
z>`+C~QyHJVRNQfJ9pC*WH^B?vjq+#r5#?^Z>prEN*wsw7!*|8K0r%~LOjP3-xF6SL
zrhgZdyY=pr2NlJNs<It&l#ut|3deA++BpldoZ#NKV0QuKZoNCWjh%36Cg1BQuDFqK
z`)^_Exo3hQTL=Dse4yN|cQaS7DC&Nb_1Y`$1-RW8a+}7&9eSACB#3gi-o5yuyqK~=
z_FospEp;5{CXL~~6$<xwNp|BYckA7KKIMdKifjiz#q9_8d1t;BEa6`H%6%>i?LX7I
zHa_LW+*z{T=8Ah9?$AKKCmiv>`Lug}Q=e-`x%=^da<`fb9~~+uZU)PK)=hB>oxr&r
zPJ9oGfV*cXUwa2AckA7Qv&)IePo+Clal63XSd8!GRp1VG`N`KF<!-$j9a}-PI4ke#
z6BTza-2N8)?0Hll>p0)OlRJQNx87Y=(?-0X+9@NqEKpp_lZl4!PuN`yH}xprGcQu^
z*1N-xRS?TE%l^Aoaa+Rub%~$tjo>zoN~e15DR=8#hsCy{`S#8k_3l>OO>j5=!()-`
zaNjiKXUBNT-FkOPd^yqkjQrhBDef=00~Ya^?1+1U;blI4);*xyt#=!4u@iIZNcV=~
z2A@K{7|mnIA#ms2<Y#j|%H4YRrI(}ll3C6Z+*8~*xLYUiSlS-$>j@vJedkl|*1KH_
z*AQb%M`yI}Q^oxa_eBhk{qMLX7<$#_G0Hp2-FnxdTLm%JL7t29QE?le#=f?NoPp-R
zjZ5b-RUqYVy}PAdc~N?aJijDUNqJvi12<v`XEuMhgO9$Yc8H_gt#`{r*$J;d^1b~0
ziu(!fz$KhrE#QjjJhrr;eU5tfW*1wrMU2U4-!h8peFpE<E#j<w&=uz{wt7SLwx!&y
zck>@BE5`Sb=WA3~-1%^eEZ{kZA#lf5<uUet%H4W5Uxc0L>nGd6U2#+4wwcd!B-P>8
z|MimUwW8ducdMY@RnO)51i^}1`z+?cV|cFUrNFrQ3TK%9l)Lrr@q@PF!B*M6Z4`Gh
z+>f()Zfh;v3ag(}y%#8V>)n@cY(&@?>GoFKTW|-=;<>oCa7PU0ELVYYx8Cg*T1G5A
zA<yj?skjx+B^qi@{dZ0hZi~QFsyB*qx85D>Vk0vB8JW?~rYr6cxQ>%}4mGJB)*)><
z)841tt#`+tu@Uj(WItP~xM$(+7+;dcQM2Kuf8`ABLb+S-=AUdU&YY0_Y=h!jC*V3B
z&vVHEaA#jkp>~)@xm)k9EoURfW|zO)KE>@0clbD-`_2xx)jFPwcuTok@3vf5R=6CH
z{r9Zm?uA=(G|$zatc&v$#`4@rL(1KH_j0w;V*E0BzQ!%Z&2}E|9}nTRg|ToywtGnJ
zu%2?a-ksRAj5t<P_J?PR+Z3+FKpXnq+~9U`<vFBGw4YY*ip^z3l9g<SFN(VkZjrvc
zcJti@*M;?cs<$=eZoM0Q%SLobmi;VCDS2Q24EIehJF0gN+^3)JlDm&`x89vIp|sdp
zLSAoHire4<a$#3q8;gK@Es5v;3Q_LXyPXD<6;lVucCc04d2okyEKl`1!Y#D>Hr3mg
za`%5-^?k^0$LhMO?~BYUZN&Rzyf1Sc+F{5gZr|$o-Rv#+cRNqHTkmcgl*3isZ@;dL
z(J<sLyI0YF-<{-smIT-7GWXx|l)Lq=P4H!rX^{Nh?ZC1|!#2Mt+DF<6?$|KCF5Gav
zou9?m@mR{;diQ-f^Y;$Q+87NlcC%X;?k!Kgj-%mjN#y&^J<8pBcVP4NX7A&ihHGax
zp6b1Z`&r$leBU__x5}p{^t;ue+^u&LPOLS1pP`4X5#Li|cNW~7!}va#3-@)W9DHAo
zq1>%^FUPMlYu~(fM!Z+YZXjHnm3&_hfV;ttpF?SsyY=p9%Z+C3uov#No)f4YvcZiy
z#?PTya3g&Ax#>^2TkrNy*<j|jFK5L2dh8y<b8}`2KR0i{J<*e&^J^)0>)j3?;VSQo
z<S1`6_;^pGdWXY3nT6fL7?(Vs$>Wm0l)Lrrgvr=nt@PhraL4Rmw<g>>wmg1l3D<WQ
z&w;k0+^u(=?abS^O$DQ2f0;>CZyLr?k-j|MSq8W84IZEEq1>%^>-;fyvsW}4K2B$M
z1Kc&eczpH%?ymPdo-9bYTkpPm3s-61f8bX8&TeP8Kj-jxvJA$*`*QQRx)0^<C;!Ra
z>iz7%OuQ$ov~O#B(|e1PsU6C|y|S0bza8KfslYkl9OZ7kTO{7RpJl0J#CP!6y^rzw
z{1hIquY`NI?t8k9%TeyuyLHZ)x5HMr_dKJi-X(BX<z@E~+_{0AhsIFu*1Jmzn*VOi
zD;o_(wy_%yx2zlImeR;?-CJ{hyF<BK@7{?tZ(oZlMnj{LQ>fm;a9j1{oYe;I<6fLM
zYg6vlyZINJ*SiTWhDqe!KrVD#!ntrM+#^FiQ~S=L+^u(?Ts3dsrd3VvZ?YQ$H}`qY
zvA5yQ9ml!*HRW!-J0jA&Km3OKyVF#vw+Y+>e>itrVV=Ny63-L(QSR2e{ZE;<L!5&V
z-$!S+AY4(K-NtacM)SPJ8p_>zcgePuX4i#pH6y+=IF0JPkNF4tf9D^@!yVR@=V5+R
z?$*1Gj(Fc+xsKn!-Moq2Rd7GP<N1<9aKoDMyirTa-Fo-)&Umx?`uyrfL#p+3s<$)T
z(hb=C1ov17&x!A*+^u)hGvWTLydUdP!)PcwiQRH=ePVdts0QZGo(1vzS$@jhdiRYz
zemCX5^8#**kL*6f{Moq_p6BWTH@6?p_w}aSt#|JwnD^hgj;8lxXHYwAfZL!JyQ|^;
za_9NUvy{8_?(qD$j+J(Bb28$4i|qD>>ou9@5%0pC;>`1@wv@Z|?xYgt{Wle^rI<<e
zR)-sWpXWUbVV+i$=Q;e*l)Lrrk@e>7FuSJFV2Ee;Bj#y)JF*)9*N~g%m2Xq-*1HGy
z;yPA-Hy3B4VPxT1RPTPcu2XsbcO2X?QS3TX?$*0Q)|t0M3fw(W?2dxl;R(-I?}b}9
zo!!}#yY=qcIP>3aMlGY^-CK4&;Z76mrop}5ht~sMQSR2eZ;P3?Z|&MfoSQV8+QAa;
z=><G*Z-@1ZEsxmsq1>%^Ki9!^thDcaxSh|ldll;pzrXQ1Lo>K@f_W`tHRW!->l|W!
z|D9OJi1V1{P`!)bo^8qQ6u6m=u=|U0x87aw(A=%&Vl*VLWw$-ts6%WWhTFL+|3AVh
zckA6mKeU5#pG<;Vs9+4$TN&<nTXxgn?pnm|F3R0{_eCD_em1(U(GWC--49sL3YpBm
zl?~S4DrV*1FdyY^y*t>?{JN-E&uEzRn%zTiuf66z8w&STe|CFP?$*1Te9hbU3fyBY
z=2AOMf;*!ryW`<Ly3Otx%H4W*i8EZKeTNDo&ZS~E1a9Mze6QIFcZU~WBQ}(~_3mpg
z^Y$(4YBbbxo=5c-hif0e_r}L?=WSwlB;{_sTgC~la$TH<+jkYaPq7|bp)}vit*|cb
zQIPLJ$&|bGZnp2pn@T(McQYC`<eg9T?u46=iJv_la34jmTa$9P-d$J9yd8?U8x4;~
zusa&=k9+(K?g!WPHoG$^ckA7sYs~w@ak!;kup0n(&ORP9#KQgH%J=w}l)Lrr*=pwf
zw`YB$p;@y9)DG5gvo7N?&IP#9%h~m&+^u(O=P<vH3wW5`b7%J%_7ilQz+<v6a8Leb
zcO~U+y}P8UdHWuKd!fccs&^OMojrIAX@~t9zuWS&`6uOWz58s5dHZ(sG#aulXEzG&
z-4Gu0hQM_?!ftcQ-Fmn46!ZIfPA?<Q6I(>}hQeLp#$)v1aC?{JG0G0g-FkOln)!9S
z6Yj7`cFV$jR)sUgdbpOu*v(7tOY7aH?@_NZ-f3kp8g@Qq_Z{}bWG%rN=qg-~q<_b1
zl)LqA$)4uzo4J9}@FsLIwZn0^b@Fg#`wllp4IW#bqTH=_*X}cK-%W5U9Ah^I?l4Qv
zn0DC5G&!2xvXr~^?k&@OUAaFr@iv_!u!QRE1UE3#ziVS~n;F?1LAm>>Hg~7YHE)NX
zaPgQS*BS2N@4SXJ7;bD`9=qS9-2GoyT}OABTEKO{fog(E$TZF)OmUl{KTPS){h=4y
zx6lvnzfP39_3p=nz2eHq?-}bCMHM$U?hlc{d>x;}bv$M!U&k{jck5m2C!@vWUHdcK
z0*X5gu8$+%CxhX>oWu9Y=ajqk?zT3;Vq2JeuftAp-@~0hlke+q@f@-}&Cj6*l)Lq=
zp;&!!eC*VWdfgP)^xT}ci=S_c;O5TG?h4A?dbi_iFR`Jdbek&fKX5Jj@N>RC+#bIC
zoc~U_TkobtHxO1=rQ1t!3t=3!ax9N`o?;xeYU00ROUm7PcXZ<hVn&j5qZD^AT>p7I
zKAR4A^hy5re<*kB-S+l=;`*iO8ST4Jag*Ub-o!PU_61G+!?ovrS{HXpy<5M%pXkv-
zx|<c(731}JC%8>-AqRYRWw$%!ZoTWc)<-OyDc$3Wy8`aE+uR36!L2l$f5VfMyY=or
zpS;C|EYiKHxS5a(_rB$8p&Z;F{dlZansT?^U9i_%codnI(Y~)0w=-O0X1*s}K#sL~
z$78DDl)Lrr_Ex?k*Kb*GCLeh}I}7)234TTlggdM^UwcWEyY=qtO}?VlM(Gw-+{&1L
zs8*Bjxy9g)e8u;Q8kD>B?xM5a!Z230LuJLC0oTEg@43e?Uy|IH$5hiPckA6;l^Tfr
z@zV8B+%&i&+VH-W9&oq3=X>Te%H4Xm{atV2P*=K56}K_wxn2$6d9DI*mki;tj~C@`
zy<2g4D`9h2p3~4yagV@Vv6tujwqw5U_!S<bET`P9ck|?ICVos_o6*mDDQ+dqdv5v7
z^OKF?8td>g=^N#4y?d-lfOt4fp3^W&ac9Ck`R_dKSIqw&-N9ptFv{I}w_am!QLC5o
zexc&NgS#+7&R2i_cfNW%<!-(Ebc&a_m|MPw9jCaBF~7cTJ<qQPpxzT_dEP$PR8#QQ
zyI(SSi@d?|ee^?$yA!VeU0x6PjCF=bO?WKPm2$V<^-pLZQX5P6s^VH<z2#LtUKd#b
z_xmGW7db(>TkpR6>4AOm@_C%9xDjv{y7M|t0Nmn(c^#(|<!-&3{hgQSzfr#5{Znz1
z;J)m~>rP*=o;5oguRBFj?$*1<GBpsT6Xfrf-&fwx>R|nC_!?e+TLpK(d|rP`q};7{
zef=7UVJ&3)mQ&otaH}NqdSM`3V|iXLtWLRG?^Z2f5G^0bdh06gcets!c-=G|>!zOj
zd4I`N%H4W5_ct$5x~Fu56t@-DdH1>VI`3Mz$AWo1HkER>-nIDRAwIgx->sA49)#=M
zkJqIe!?k$M>(ZW-yY+76)1JaUUb>NrTLSCzQ7d^J{WsRpbB*QwCCeyx>)n1+Jw-qv
z>CRBx5pd(K+R%Q2&2Y;Ue?;po>6E+mZbE;9=>1Z<s}%Ph+~F2><c7m-zKi!0G@;zB
zcc0C!FWyAS>urzXx?=ysXvcEoW`}ENe4pywO1WF_zQlX^3l_@$a9(j^;cn_&p4?s7
zS25xBU2=0)H{B@pZmo$P;%A6#hlh&$3vR&t3gmWz8!(OcfpnqVt#>O_@e&(z$a+62
zZkvnvuJYN6<Q9P2v@-7lIYzl#?{+LyUwnQi&r`7UllO;1a9uy!lY6`l_Ay<)MeR_M
za<|?c(al4goG5>{Qi@yh67o>F%H;Nk8$R$RxkD*;>)lvq53#elY+pyk9RYVuSQT>1
z!nG)zMDBIU-FkP`lKR5=l57Vb#k~txL{%mCYHjQ<Idp^EYLvV6uImX8v23fXx258W
z%lIzAPClDq3|yNI*U6nip*QtExm(T0cka0f;UL?$pW-ftn`W#=^*X{WoP*yHeL}fg
z?@kZ*5XJ1JJ6>_W!FA1FgIr@RydSXh3f1dDxm)kn?dL8k1xt64;x@mMXt?RlXMn`O
zz1HS3xl1W`>)o=s-NgO%@_d3Vin|A{ZBHkv*Bfp`E`GQ73*~OT+q<ck80#djw_}Q1
z<SNeTT~?Fa&(7Env+DxY8%nub@A|~J371IO&yo~30`8y$XL94<F7AAu+%1&5_3rGo
zuA<o~*$yui_d49~pK6iY67HtL3FKNP+T%{CchBQ@^E)Z){jIo;*Afk5Z0nGl8}9zo
zXUXkMxm)jUjdBxBPe`|*zr63vf@=}tLhjL;35J9r{LcGP%H4YRK$@$#a!s~FMa6vs
zckPI}<PL&6s>*4qw>af)y}Pk~eUVyH_TPGn8+aY(1#PHDZh5%L5BS~xA(XrIZr!)_
z#2!CcZ;0Y<fZHokkbB1|!7y#X399!R<!-(EVYIs#dQ7%&C&jhAf$?M}H*#mdJs-el
zAXKH?t#>aLb`@juNO!2>c7>a{nmf5(aEoL)M)gKh?$)~xN4kmBIO$GP+*5EHx2jL>
z7e|bL4<8{ng>tvveO*q7D`B#IS1PVeBF-b7=t1sgxVeTOCfAK}x89u^?j|PYm-X&c
z+%a&icX*Q99<FcgL*y=^+^u(4zIPG3%F6Q}5)}6?+~#+@$Sn#t;mZMXKTz)0yH^*u
zio(leJKR^?x=C1n%i4h4i#725*j@X{4WitwcTesSBI&Ah-z)9{xDJlq<VL}b7`Ttz
zc*@;+cjF)-rsR=smWJ~F@DZ+0D<5*}!i}oAmt2csrr@o2cMKOIe7kI4YsGDRGtsba
zf-kvmt0x#j(|42GhH|&wwQ5mM%w8z#bx_<baIbIkBX>PqtAo49-AB1w?^X$_Cvpvw
z^?E99&RaNlG1;HoHgI!}-AQgi%H4XmNhIz&`DMLL6}KB)qeTF@h2hR?u!Gz_l)Lrr
zn{}?DN-lX_bW_~Za6eZIB==&q1jD2p|B!o*a<|@f&s$GqdMDdqgyPyH<J{ZuAaW<b
zjkvLmTwBWBdbf5C7vUE!&mo$vxTD}kjR_{#4eo-KTge?oxm)jEIbT<_IVS5}tGKt}
zX4=q*+|LdPhRr><kef`oTkoFy>?>}EugjQ^+OD{+w-XKjybmEa9<Gn|W^$b<ckA8g
zNN=&H%K8lVh~ln*o6R+p+*WW;U)@OV49eYlx9dE2(bqxNdqr`7!EHC83AqK~-kP(4
z+~<_L_3qHkbw$D>Ie(U-xGnD_8p@msBllueT*vL>$@QY#t#@DFs3)FWlINU$Qrx|8
z_h)TJ?nJnstH+TWOSxO`K5AZD+-bccqkVG($opA=yLivXt2wzIaO-DVPcG+fy*tOU
zmKZiYHp4BgxV_*;j|eCCXBE7U^MKEq3#HtxcWuAd7Mljkb3>gJ_l&9DJuS%H2lwFa
zHB|2w%H4W5vS(fK<C1I#Z^gB{muSfKsU^7s;f|lSnp{iD-Fo+OQXSEMvg{AxiaQ#v
zb<Nh~I>3!=zlz+Bl)Lrr^P;uHf={x2`zUTQ+&{hBko&SS@}}!bat~AP*1P?7)DiFh
z%Jv<rxHa#?jc-ftdbsBbuOOGt2iLpr=F}DmzS5nixHI9-c-)TMPH@M4h$VL*<!-$j
z7v&<-_R8OFz2d%v`=e|Ja?8M-cWD{9mne7Z-A;9C3uCIR_kiMhKfr#j)*Z>cS1G{|
zvw11G_LRHz?u_8tqHHZ$?<K`u0k`_%PUJ3zTYuUTa-%4BKhx&!B2{aO=rMABJw<WT
z;a0ucncQ%=)%!0d_dexry<1>sEipV+_Os85+vH)Qp-Yag<Q9Q@Ds&OKE|k0V?vH`B
z#Ym%UU&}yw-`N7Uf_FD^6YY_QoEMTCL%Cb;+AMY!h4RXJODJykM~McHQQgU%3)iE>
z0&?F_?$*0^$2yAzzS6C(xE<hL+TDZPP`GIp^U3w2+^u&#OV$#$S!FwTDeghINpE|S
zTfkKBi@D^krrfP}Z#HxmbDPV0n<{Q$BgPN*y~({=5&J5x$B_Gr*1PrYqdiWd??c(o
zdMa)oxb@rjA$Jbkr-$Z{8&0`f@78ZzON_rG-I0oW4(^AAeaQ`h`!jAfxjQI#>s|M;
zHO0hnvK?kAu1yN|gJ11OZhp8Hb7zs8hjO>xEsyi%>`u#dhP8@24DN_*1IWEz0qYl0
zGs)%kZoPXt6xUlpS??ajy#aT*`#^GI;GXO^gWMC8yY+6@A5LO;W7)n5id*$Dez(Dc
z$ZZ0*O#A8NmZIFPcdO-e662o8cDS#&6X9mt6hUrbxJ5#zksC?5TkkfW?JN#Xk?rtS
zaUa4h`eZP<H_Kz3>N%C%>y*3oZtlD_#nUIU9V~+6eaGbq&hINRl-xydk2p^u*MV}k
z-nE_OB!0J$u9f1>hC3%TlH8VXt5l9Am%qECcZYSTCayP-^R$%|_Zi$`<A;%38t$G7
zlgUk?+^u)3mU0yRE#>d#rnvQ=Vjt<=;pC>2!}(mLCz0z$xm)l4zUVCS9GC47thkHe
z#;1)ScMaTVtBK?;qTH=_EqhiMy*|o$&yI@w4(<%wQRH@qTO{8EazD^|x8A+8*hvf;
zEZZSMas5;AzG?H(<W_;(KIeFHgD7|F-NC(Th-cQ)ovgU4;I5xGhTOMyI4?eX6uI$~
zyY=pe@72YGx3V3UDsDR5@khs!y9;i!tmDYFpxmu@M|5!%CGSdii{gen!}kt`k0Un{
zZjtO`$ZbQpTkoFxSWQHqll}L&;>N*!QZR~Kcesahjv{v-<!-&3meol-t}Wa5y5jzY
zTYL+<7I6FJ96@eD%H4YR?(J$~%mCRAsfyeDd7@#e&v>f$oGs3W$v=$TK9sxl?$Gfy
z#0uqiOIO@&aECo&cLv<7MTU}lj&ir&ojstMs8Cqen=4q}&$7P2bunxL)f)!aSavYE
zwv@Z|?(Q4aMDTMtuUuMjTf>bgFp=EiaOcz<MD8fc-T!sf_aXOx_cMFHdut=3Au0P(
z+Lu`e?eO9Vw?j?*Zu2*dB$xM@>)mU+tX$Ro>o-G;_}(qM!_gl$#BqN}gBy~GuQw;k
z-FkPU|1Gn9x|<st4Sp%?=7(G6F<%$$aeuIS%lC&Fl)Lq=ZC~t99U<Qv4+}LKCN^3|
z?U0D;xNTc@<Kh0W=lkSyTJP4oOR6m~+sB^<_sAi3<KRww&-aJNa3k#azV1c2Tkn2(
zv(T&^CNwb`(ksPMy`$i^a%Z;$o<kps@^dJba<|@X*KE02y|!Vd?_9AP1b1dM-zUT2
zzAnqpP5z#x-u>s^YO{Jz!R?i0In`SX?(2(uUpGDH-CX!NA4<7f@5W6ue}BG5Q=?(s
z0CrRG9E!`y?mf5;EqGkAg>tvvt>Ot+dH*7BGb6qy%<g8m+5GtVRvP0dF_OnombBij
zcW+lW-)FuDu65uFYKI88RVR$3>$oFa+Z8<S>qxm<@0Q<)dX@g$s=3k7bU(Z9aIH@A
zbABz{CWm>PdYE#z-rd*+?{6yYU=eQm-q%X1*AnihOzft@jl9d_YHP~fdN)^$`R^77
z_uO1|Z(tmCpaG9}Dk29Ye&if5kaG9)|Kx7<el|DF{C5j#VLG>C71g@}?v2SjKI;y*
zd2Y@_mne7Z-5jTJ?t$`tzz4XZFT1_quDQzN$vC*5OLKm+r`)Y~hwe3R-^DGBhKRfD
z)`1&YnB8Y^zd3W>jH2AFcdZYZx37CEBfi(Xn%W@?+}`bYTwMV<_KRU2-Pi9^?$*2a
zUYYl^CvacwX7?I$z^@HMsQ-3>Td4`>ZWqekde<=0{CAt$+Gr?ew}yW=xU0T!zE}<S
zV>_NFh@srAck8Y(|K50wHl}kh*zFB>qk&x`-1<FvUgHhrZoS((z`T8L!d>)>T>*Db
z4Cky;n1`7#i05JW{cgQmps9I(7}?fz4#rw)ha7NgKIUB55^mmMJa4p`a<|@H?qJ>y
zw(U&kV6dBv9Gh5^-34&{NAo<_FM7XQ?{2m?|J}~QZQ#9*>fHc$%oNVY*Wf0P;CZ=l
zTJP4o2eX=AZ@t<Z@jYyIN5Jj*g!6nZ%p<Oe;CaLyl)Lq=jTKzwKAEqB(QvTLda5@F
z?qUyi4RDY2;d#$Il)LrrTPySTarVIdG@ad2aJww(PuIm5Q@uTw)Ah#RiPyW+KHwY|
z<-XIhqv;$BcHd(jX5kl}FWCe4cUzwSJwdr!?_RxO{=5B!+pSw1wZloc`<k-*7H*wT
zp06%Nxm)i({%-!et?Ohu2ZP-OaJ%l|d83M$UmtDY`SnOz@7BB73YlMT4Lh5@3m#AP
z_Jq5)D7$Up7I)_Lfa{dI_3rB7=I!tfuGKbn-QiXn!SiPe;4ZP@^$Q2e-Fmn81pIDF
zKbzad^u6&7RIe4>Pmg)N?>t<Qlh<3KDR=ALW!22b5B0hl4b!Hu`wa7wF~00tV0~!N
zS9Vh<ckA8L70lb=5!_Q>*gXU{@3vmle_h~Sez=bMuN&oVy<4k^d4HJD&2$dNMrwz-
zaQ7Euw>Mm;Q@ozFh;p~y?b_A6-b&p~-$!S+2i*A+d7gF^+*WbC{`P_1@7BAQ{LK5=
z6}SW3H&MMFa4UY`dF3Ry&Qp24Fo<%u-c5UL-VPBxOy6B+w<z2p9oe<S`es5mUf+zT
z+^u(8=Qe*{6z^#?Jh9$P^`>Foe&1D|Uw4Ij#fR5pEhu;E-Pv!<?~_O2+Du~i4BU5K
z?DmD*$7U1thc=YE_3q7|=Iz_Lm(kGbBfHDtcHYJ746EQi{lPAutEP8HwJ`4wIeVMV
z!Pr9WFa+*edv<TYEtJUX-32Lk>)nEp=Jjrad-)Q(jo{{r<@J^<SoeRlk=N(@Q0~^d
zojlEdw`P4z-=E(~_1eR&R*>CVaKDV<{RHP|y<6`-s&8KJ54fK3>{`J6J*^8}$6etT
z4E}fj1LbbL8~4`yIkcj$>AUvZsNM%y&$?pC?mW0Zif^a>Fp6@w-t{bkb{Hmew|76I
zVQ&<>``|8|!0TkE;P!vcZZhR=y*q1zc{{v>`~EGvbK$yVV)rB5QM-75i4)~+y_>6|
z`R_KTztK>+&30;szHkFZ^Ln8j_QPBp!~0=oQ0~^dHXF^`*Li^H91L~?;aXX++X(Je
z1MlB?PVaZ?-6Nw=uQGnP3wL>)f2iJyaI=l)b<@#sy>sz?BQMI`dUvR)pDDR;>_DU8
z)>?M6z`c=`-HmXsU12wta<|^?7ij)`t2oGLC{S<*)%ytR$Im8pp#FOsuID`7ca=`(
zs_EU3-e_N?-V1OWj$!vG+;Iii&5V6wQ-b$U{|%+wt#|XA`kC^a?;l|_On%L7EL`iw
z?Wx}Ca0}+*{byS!ckA7@AI+Z^g$ElA$6M^Ab{GYBgdMvr;T}81t|jGey*p{8c{}Wf
z`~3{NZQw54#q0j#;qD*G`|vta?tY=o-A@zEueWwXj0R`tT~x0t+@&7uZiRcJ`hIHP
z!<4)K>#F<LYqoZFUHhwB#{1o)Q1AbB*Px%xyvO})DEh<pw|re#Q|{KggGRm(AG)|?
zxYmk09rsDw1AIT*iTgv><$T{6NV!|@ZgZS1raj7<;pS1?5_rz9yu{BT54d+W^L_mi
z<!-$@E5T0`E_*&>|Bi#=j)D829giPA;rZ6N3qObWJafI<V6CILlzCf*8?Lyw;66FX
z<EWi*r#0l~W)$Uay}K}ri#T&+Lxww6acg4y+ddDEQ~SYPRi2;o_bGSl-3s<TqVND&
z?<&Qe57(n7kJrn?UGap+Q7*LJt#@~}Xe7Lk?#!t7u;TuNd-w|Hi)4)ZTFm8fUkv4L
zy&GG;xwy7!Uxu5cxZRKo|G0B5oCNo79UiB?q1>%^BbGK1UzSMst>RvTTXQSt*g9};
z-Q)4PALVYno9|?}*m><>M!i{;>(~wR4~cd>Pmqe-@?aF_i`A67^=|I6O~t2t2Qu8!
ziW>*_!+f4EG3BiG6**`9qVI_5-B)RiMRKHU2N%W7hk34)EIc3O4>v54^JX}$ckA7i
zO~XXlUeXOw++lF{4C48-@5sk(#&bU2LAhJ+{&sFGs$JTf(GEQo*9bS*$n$+$;Es3Z
zJfDYhx8D6)DpYjZBi#v#>yLTb{lPq++8%C1D$i?lr`)Y~H~$kVb}f)@tm5u~`{W?c
z{}zOsV=>ReoS@vTccb2gi2TE)yGL=0V?E%eJ<qS7!MxF}0G>B0MY&t=)><Aah98mc
z6~!G7xA6jA4;Th_*<YSNi=^DGcMq2i6=}AzKRj35*Kp@&;q?{=xB<I)zVABaZoM0H
zt%-Q&xId#m{8ikhSkL-dkJp_ZVSX~lzw?t0l)Lrr-M|phrhsgRVngL~^Dx}p@7bLX
zcYZmZPmQMBt#^|yg^0kW(sfeY@>nly|L?k9L%3fb^1N~i<!-$@aejz+S6R9NiaXu3
z&fA99A^&0?{Ma&{2X~{~t#^kl2@zRK?8#`~PKx^p?%IO99=jWEw>CU)&)*T#yGKR^
ziBTPPXSkykw<XqNvz%qOH{A1Oc%9(`eMe01uD1&jKO4$=7bxxtxWOZNo!1ubriZ*P
z5=6OM@BV$;NPOEZ-EE3n>1CoJv(qFVS7ROL=t^G4iKq2$y=!+TMAV3u?pej119$2(
zc4xu;)rr@gEGT#D-B;6sMbm83eWbYQaAz%>O!fN0Emw)x$=Xov*1Pv+hlmCDq?@j|
z?O)+Ns?cb1e`CFHP8zQl?xWnTcfWc!62+EFH-DtO-p<0cw46fjZn%Z_@cL#!%H4YR
zN$&trwePNsepXp=tG-S&3_i$iKe$t(cs;fc<!-&ZEi_nMNt3RZ;?9NJsozwp*B<W6
zU|v5yN4Z<??oA99m5$5nqNU<~hig}E8o7_K-o3B{uXo#0?$*1Vjs=LvD`dS9irelD
z-fy|Z?h?3<Uh;mUQIxy&u3K<xF)HO`M*B`w+)HrRESXOA2El#1jQ0~HQ|{Kgn_IRJ
z!(vZoxC<4xZW{LYwVOe%1>8Q({@wpTxm)iRejO@W#GS}+w<zvvxKGQ@B=-RJRWvBW
z`;BH$?$)~(OEwax4js#IPbqGWw^)CB#O@%tnI4X&{Pvu3x88LK^A{7F9nNs?D{ddS
zUzg3IdTYSlHJkUBcv0@wy9-t|6g>wW%5c9Z?sd35!e^8F8v9|^`46XhV<~s*-Ik)E
zIJHl@`G?8txXwGAZ*Mh++<3U-{_?({bozd`-mUykfC&F1+reIOm%%M_jor?0>ul$J
zL7|kpU;Za|tNHlW`Gz8Kx2)GgaWlQgczt>d)oTMcbB{sP4qGU9>)o*a0iv0OtT$Y7
zyTVQKn@jEk8@yLnZUDLb{cgP*@vWiAzD3sCUvV$M9hYSuxl7^tJn2hrN6OuLcimxs
z5!6V!Qxv!Q2h2|%Wj7q|-}Sx8JxsY<@8&;-^O%auJhWPI=fZtHY(CXn6z<C2J;}AE
z^=`epZ&84lUtPBEe#K3PTeS89a+AtpABaPDatBiG*1P4dH5C3mWIJ3_+%_Mv9{Zl%
zxo}T@=|b)$%H4Xm*e!oiB}%$46!$pXznd3Qy`gX`9`8i1J>_n_+cel;#Kg$<{j0bY
zK4Cqp+ahucz#SRWf!rv{-FnyP=_j(jmTs}(@;aUZca-g7a<7%aJZ+bD<ld*;t#_L_
z_=$ISWR7)I+&6HW-(z<U+#K$0$aSIIt#|7+@)OPxvR;414f&jCIKN;C)!P{EkixCV
zjiKDFcPH2J5sR0|e9=*Hcf#%5Xeqe`;dc8RPVO7Z-Fmles;~I|Rkp)0#Vzs$`_FPL
zBlkvWj7zRGBiD~|x8C(T>LbFVWxX+qI}C2hadzj!oxCfI+|`u3_3opi{=#>bY~Ogr
zeE_%r$XKek8C<`ZP;!4|GYu&9?yL&9?^wv|;;7<!eZ~84b(WJ`6mHeQA>@Wr?$*0j
zK|bQ<XxYBE6n8D$x9`}!T?*f;YadMR4$9qn*RhsCIQ*75>z(3eOUFLExD`}yEZpr)
z1If)pxm)j^y5=L6`^tJPN671~JKUNbR+8HuZeOp4<aVdrt#=!``iKvIW$rGcxED-r
zu~p>S!JS&$kK7ZKyY=qx4&LHgi0o%|6xZP!_HAEd_gP7tTUW)0+)|Xg_3ncTK4O^S
z1}pAtxYwtwrg}HQ^|Nb0ZY1Syy_;)}kNEsc*4ssKKf=A@wT9fja6L+Tk$atTx87~v
z*&sG2%k~|uxMAP1fATxK&Tw6ddywluxm)j!u=Ev{v9jKIin|xCVdq+^H@yU0Yj<*^
zX}w$TKKo%1BZkO&H!H6753G0hTu1I<xZ$N;$xWf$t#{wP@f1hC%KUapafiX(R(3tP
z6X1qbsz<IH<!-&3=He}~FOv1%RouI9eUjPrha2MPLhd5U-Fo-n123^ondkbbxUN4j
z|1c|#>dg<guUl<$KVZYbrcHV`HmA4vFhbUwW2C%}m%|<76Ho5V;<!KfJChqkxm)k%
zJm@9Pca!%W8^!$tH}xmGv2Yu<bs{&Oa<|@n`O8bp+a+BW#cls9(XeFa2CBCU-17r!
zkZVD?TkrM>XdoWnmTn`(Jq~wJ&yD0(g`0V5HFDcf?$*0`_Irv)gJeJJs<^hl(GF!c
zk^8Awf}w7FRdV-H?$*0Krg(~B@1#3gaiicSC9!)5ZoxB^$t_5^Tkmf8$3uAANOyta
zrojC?bu-mF32x_9dvg0w?$*1%aGv9YJF<N@DQ<&5xSx4$AvXx_oGcZ|Jx94)@9sWY
zUo3nt=O0cg?i#qqzOY*qZfe!?<l0j1*1Mzndf<E*>E2P?%zv>yziBJgYqZ9>mf?2f
zj-uSHcjL-<ic7Dh`(AN7!TsBA8@Zd{E}39MZZhR=y?e{vQ%rd(UCUAOIz9>asnvFJ
z2g7~2qYSxDl)Lq=_ZswvebOzXxOSP649gPO^?)1pxD>fFD0l1KE7iP2-$>cdYANn`
zxP`|2L-po_yT+;{xz8zg>s_DQ?xIh$oHq(m+!VM=oOY0VvnblPQE_s;D0jco=I&!F
z1I7B>$1~<1+9<A{MUr9t2X>diJ>SZj+*r!pdiU#QUs3I&oQLVJxSQcF+Od=B?F_f&
z@FL`<cQD;3_3ric22r_!bSEfop3F&x!vl7aTMh0%>#fKQrQEG|^TfG{O&{gBdYR((
zg1f!yZgPJXNieK`Rgl~*l)LqADLW7G^ow+NDDDNg>z}cE4(`yJ1<19e+^u(i4{{SX
zqNSUlxRtUb8LF+`L-j6z8#pQ-xg9BY>)rHuZX(w#IsSd5xRc=?YPFZ#PH<md%0up9
z%H4YR-spOwxrH1@r7P|exQ7evBey2pyEeJWwWi#ycWZa3FQz8Tdh?E!_Xk7PB*Xkm
z?EWo`=f%LB<PN0Vt#=oVauw$+rCVNcSHX>)w4ds|3fJ$nCApU<ckA7v`#nVDN%_0g
zQ`}71k__!U50D!R_gm5I<l0m2*1HztUB#Gfvfjpu+YWA?AMEyqYu!I9xlxq6^=@2u
zS23uobh|0;A-Dr~9i)0);kuvCOzwTk-FmlpNg@0_<@jv0;ug!EWZ2Q`5V?8aMmSoK
z>q5C(@3z|LDh3pk{cOJC4uyNt?l8Ict?<2rs()Qgx5yaE-FmmXznfTBN4CR8#Z7|y
z{T{np;GTT_liW9yyY+6q&-Fxyjj|n%E3T7el3~rfBUJBbxYtg6BiD~|x8A*5MTn!9
zq<c$oXTj|sc$C~maN95ZLhfqH-Fmmt)4HP2V>#YQQ{2~ZLo**E*B0)}As@;8Rn#<~
z)Vm>b+(mFh*}j>_$m=*DN0MRbA$C6$!hCAbJ95J*ck5m2nnFxoA^Sry#f^tsZ}4%d
z_Y~ap%5TWsLAhJ+4r*Lalv4IpR9D<AIg<=)tDYctA>8NIFUieAxm)kHt5sJ_J}t)&
zK8o8OZjTgpd%`_i>>0V;DR=ALYd>AY)}PXCt+<Eac3E_i>UD=(&gu!dCn$I8-9V3e
zVtYN=9|kIJv0O=p6~U*-Edcj}m66<1l)LqAuE*$SucRBTxP#$N$$FaHrv)+Jm;V8|
zk(9gjZY8UF!q-K*v5I>g?y-aH?t@#T*j;k3Q|{Kg|5T_WM$D7#yGwB$awi#@3^+se
z&V*aHVluf7l)Lq=BhJhG-Cfq3ptw`v9;|ql+>UU=U6RO+rrfP}-OJP!c4egdP;pb?
z-oDRn9k_9gu9KTWxm)jU$x>I0`Y7Aslj3^iNitlRdyeYO4fk5FE9AOS?*6Z<z7J`6
zr=8jR-8;saz9Yu_GQZ+?D{jyA8qm+&BDw!AqTH=_ho+V@d%yd8l+h5EcQ@_#w1w;V
zoclvD+|P=pexQ0k95VgsU7LspX8V<IjW-&MBiP-C>#amCcIU&r>HmY=Aj;i(H#{8Q
zH&yoO4w+yylzzePbhufg_<Fks*V>AoZ}F77^{!|4DQ5eM|G;hDY!9_VB-|qQ?B>Pu
zxM2f+9$QfE*1Ho5Of_qV=!vH9h_Txl?uLha-|>Vy^b3z4+EDJ+yLDE~F>{MeGJQvE
zFV*V@*Ye-{*>Jc`pYV8RALVYn`)Jcrvv$}CH_LK%?cgr)<9ZLm-E7U{zJipy_3n;I
z=I@O+ooxD!*gmQ^9nYamANam*f$?wLa2}`jq1>%^{lnLo)%z9h&`5SK!o9PYT|c<j
zAM?2S9OZ7koBq~(-}bU-qv4;Y>@J5}v_89Y;0|rf`NEcRx8B_vfO?hw>psP3NDJLh
z?Jx+gb1FZNZ^13SgY(cR%H4XmPXqIIFv6{Pj9q`YU1qXd3b|0^=3JOexm)j!&bP{}
zpN*Sp`i|HEs@Dc?P(60r!_D7}bF35P?$`gx-Rk|U=zH`2U^mTlz6QJL7)OnL%Hy52
zaQm#~+&zPGx89wX&Ac5>!%fV7km|hxcjg>+pTo_R#`6TvDR=8#uLI`wcAaiI2ZP->
zxL)q;R>i!=PG_Dk@uJ+VcgGchtGv&UeTLECo5Jo`xPh;EoZ1)ewMd@diKX1FcYnv3
z_p^;~Cp0=l?GO&vcL}@yz^!_S=cCdGnr@VOxA-0Nb_kqlItPPYN4UxU?0$sX<_piC
zg;MU;yA^kuw?i7-uayo{y}96ee&-xe3-f*Fs#c&pw1slF-W}4#y#LOeWjY6g-Dk)x
zWw)?97;bb+p7*q*+^u(ijWchD>a$JfU>u=(Pr#ksp4~lg%TM8X+K!aF_3r+?=Iw9|
z?%DzD#=@;)#qJllvHN*m`7q^fz5CA-^athrp@=!Ab1>L7<-+l2IltAxJov8XJP&S7
zxm)jsv@pNkio_TVMFWpgJA}gRK7!q$a0eE0q~C2I<!-$@eUo|r-48cxKfBf7F0Ib)
zUby*PYm$43a<|@npJv`4TFy0{gK>=e8C>6IoV!26wQX99Tzkshdbgsbc{}`sdv-3n
z&oNKXa5=j*v5wPZU>$O!D0l1K%1h0Ew-xhD=U^PCdQZcB-IUz{aA!=bOYVKj-FmlV
zPIK3DzUdqccGtkIn2+6UaP5`}a$P8Q>)k<z(Z0(4%m_E)F1t~1JDlhFl2>pm$GMRk
zL%Cb;j>&5NUfqNRrgJb(P&>4Tdwo2+_E_J{eyBdVZzy-`UB7H_mFIEAg{E^b*mZ|H
z&7IvYa1G}?$@Qb$t#=1`nfHhDaLd`9q<Txk?fRYPqgKI<zic3PHRW!-dv=F;|LwWR
zbPfi)e=sk1a6h|u;kG*CP3|w#XCFrE-A*^m>&>&+Xju4*-G^`khO%1}>+=`R`H~w>
zxm)j6A83A`+y?hr&r{S6$KY0|!){}^_m2CMyMuDK-hJN7y#F>{Vmb$dUDN#J?k_w)
zInA`6;9vl`c_?@5-I>Dty}D0u8+f0lddI<SwTIm^aKG&gBDXu`ZoPYcwRyb@mzvJO
zV7C+8u0z=U12<%2BXUnr?$*2Er{F66x85?-IT&ZCUT?UAT-dFPeJii#H72(d<!-%O
zvbgzmd<X8Q>Fid9d+Qg^EBAw&Jg^D5k(9gjZtuS4?JzRdbPfi)dEmyMU^fnKa9C4v
zuT$>UyA7h?D)*f-%T4ECoTYYnhxzrXli7U;_inA`<T_C9*1KMb=Kc3L+*OI}Cc+&Z
z#BLGnyINVG1-a3byY=qw{~7;wTwyu~;~dqyAFibpyMb`8y=+Nt3gvFSJFkR!|IN12
zbPfi)v2ah_;q{C0a66uCO|Bc|ZoNBbA=*LdXK`>FmrS5~$HP6ehTVN|i_dOL?jp+F
zdN=<l^Zw9qmFXM|c6-3R)SKNjxWC)9C-=i8)1Th$w!ysrzJz<~3%en3zq_z&gZ+p*
z%5)?*h;p~yom9a*7tUO5ItSxCwL>kqH!`u?9B%n{oyd)++^u)xH<-7B;~JyE<r=#s
z;Xb*@>siy__S)5jTnozGdbdg;^XuXU+yU+vsNT$Qb1h-_DBR$_-N<c2xm)ihT{XWh
z2Cp@pgTd}=tn1b5#_k8Wdn)%JcOT_$y?eYNT;)10vd(l4#zm?(32xOo?3Tkm-H3ZV
z$t_5^TkjrtgmzH+?|!&8lh{2B_jXoxo54Lazc;ykD0l1KH&xC1L!0%cb1>Ll3-{*@
zUf-Mw_hKOLgFZ*OTkn2yG5_8E!kyRt61Bq&xcAqvdk}7opZ%y_Tgu&Uw7EO?|BR#7
z#F@^)V0S3oA`$GqfqQ2C0CGoB?*6Z<?q6@{>gD=fjLvvpdNb<%zwS5mv*~^Ly4Z>S
zkTnnYvt-KMdUtm<3)e>zn`gMS6!!<77Yj=8^X)b654{@m{lSTHx8A*Mw?YihY?tBM
zD((`D&z831amg6C9<h9%oI$x;@BXP4Cj2UX&)833P~6PO7stbSJm~?q&v?GCKd0QS
zcYn00EG}KToZ${r+;F%vEAV*T3U0kD{2cP4+^u&<IM)z<`A%iH>hHD<?y?u`rsBDI
zU?4v?V<~s*-N!vVMXSzdGTfU=z4?*n|7_*_wjJ)!wfvk<$JZ9eSJS&=ZZ;N4t*>Ob
z>53Z(x78@l#}RPL&*O1PDCKUwTQ8=y_@_})hHIr<7pZVJHs*PansBdm;c?U!%H4YR
z=+w5tKQ=kTt**FDF@NS$iRX>pW88PqfyaH8l)Lrr**<MV_t4uJZh+#Rgu5^k&&zFx
zo0c9(*KtS6-FkQ7%htjzk94~#t|R7u*W6~eAKV`28<KmNa<|^SF|dWW(d$-5z2g-(
z7H;0{JfB(vZiP5Ma;+(M>)n|pT8I|&Z)UhF6*mXgFIG?F`RWhIL!MK3|L;J`-Fo-<
z?v~<SDOv9!#T^3oXe(Y1*a>$@Z{GiViE_8z9pl|XoPHzgy{)(@a5p>hy2xO-k3+qv
z9qcK0>s`Bu7GmK^>3&w+V612L%g*a>E^y-n@BfXW+^u(GZCi@xQ>0rUUf$Oa!cD)&
z?srq3ufqF(?^Ev9yK9z*3)^JrIw)>Mtdm{Y!RuM3{lA@yyHY#2Q0~^dzhat;`#<D$
z+)#02;GUn%>u=-WM&_?aZVcsay*uqna}hRJx?L6b7hLz&3AC=~4Yx^7-v9fCa<|^S
zY}ZWWubP<Af5$6s_q<r|u6~}}9B{kk;{CsVl)LqA_CZa>;~43#RNU)ue^^`~_X_5@
z&RX*R-_?}6^={h{;o@K>*$#&k*F7J`J2%;#3%6+w-v9fnu4zE2cPn&jF7C{cZnENT
zfIDN;MXEO(uA?RI{|%?yt#?m6Zzk5?mhJFKajo(rcaOP5ZfUr~^6<Rp4$9qnclyib
z;;D<QH{S+%U5tUdyvb#9A7h^OKw+Mz%|p3c@0PmPM10P6Bcnf5RooYF*OtFR?k2cH
z?0H_fJLPV@>zUkKG|VIG^;O)k0@&a8jokro&(`L7@Dr4~^=|bCVPfDgS#KxBJp$MM
z;#I2G1#W?0p0_VWxm)k<YtlsgId(mx9mXnd#ezwO=dstw{fl*m`Q6LWbsR~#TkqO^
zY$E2ZknS?Yodb7rzw6{Cz+EujmfY)<yY;T6M|0uQN%ph7iu)7p3$GjG&W2k(wk)|0
zl)LqA!1OSYeUfb7>x$d8P?Di<;Y4y<z%6vBG`Z1~yY+7GUSXndUg@SO?iIKrp0R5K
zHztMm>84Qb*1KKng@|==S2KRMTpQ(eQO7FDV7oVo>V1v%xA=S|s9rb9-Fo-@*(M??
ztNh(6D()({6{ByGy9e&-y2Z#{M7dk<W)5p6#ub*oo2TODDx72xt!|M!2JWf0Mali}
z!1SkgTdc)7BXQR<+M$i&M!-#}l1#2Y+{H14$ql01t#?zKHx_SuN_Uvz-h&(Xlik8_
zZO#-TH=c60-rYY4=a-C>?mWfyE|O$8ckwpW`v~jO&c6$gYeBhN@4m^|QZ#xb$G@8t
zcL&_KwRgykhx?;sesbGT?$*1HeZs|_f9_<o?<vJCT{OuMKKd@X1K{TK%uDV*%H4Xm
zL25Jc!r^X)drxtr;Z6*{N3MVy);l-31u1u@{U>*;`8cy@h&V7zj(5@(_Z{5d4)@8m
zgnM;oPICKD?$*0SK7@$3S>!mi&?b4kg<B^XEV4WxHwpVSo_*u}8s{i?>)qzx8i{a6
zS#Nd4JqFk5HoI%!I{5HDU0cfCdN;Ous3^Zc*6Xjh_QjG6XSY41di%p|IE(kKjH2AF
zcfU6Z7RO%5>$r>J&Vsvr{3CMf!wpU4eKyIIyY;T!fktA_PWjv%tGHj_b_zF=YuXo-
zQ}DhZC(7M=w_=+{qFk!1cbVe0DV}8TtC~WtX`k-4D!h+r2IX$OoBvcJF|L!WcaP$p
zhP&x6yPM&zzsLJ@pHuGEyMCo{uG(bjUQ^tvC9qE{=`qzi0&eH|yieDQa<|?cUnEHM
z50&lkMsZ`{M#VoNHxO>)aNegIOSxO`W}VtdWKWT9_RaFT_y)Jr$fx9%gnPau@6%16
zXSz}9-47FkM9G8lxoM}k?MfyYN;OI)_YL;prM!Df``SV&ckA6PLxM%iDzaWT#XSSp
z*Y+8?N8pY>_L|%+l)Lq=ceP;Asg`uZ71yB@p7WpCodvhj;uqvvQtsBfYeI0Y&pqi5
zRNT36n<YG_dON^9)i;&gj+DFgZk;MYqDmIozS9-=8{8I4Uyxf9Znk!h$vsTDTkl%W
zYbXMe<?}6Gaod(oGSuk(lHBZYueNwZt~KRuz5DB7keJs>)_X#6Ps5$&{)*h&*zZ|6
z@IJW%DR=ALRZ)TB;CAWWSKP{FFfJ+Zn%vEBv%B9R_Y&o9y&K>fAg;cX?eJA`XTz<M
z!tPkOV?1t=Yfrgb@A^0giiFp4d{%Iayxu;;ExPLs)f)!)wIPw*D9YV>_xytZk)^0~
zt151*vPlMqiD~58!%YggM(%ye-FnwzNPxIJRk}WkdkpU0W^c*;RUpC8sO@EPT_|_!
z-N9J{L{hYD-}Z`I-X_UVzv4S`ufz2jb%ER%%H4Xm+-QH1`?4HYk5JqxaC3iUHy&=u
zwdcrvL%Cb;?s()c8cvt)0>ym;cj1}$RPSiGT`!*|*N<|y-Yt~7p-Ao^-R+7SYKwWJ
z`5(v)gX{JE1i7mzckA7VF%3ll7umk&6?ZS(>RmsQTN$oRxnt!1YG@iz>fPmG4aI{H
z={{E65_U<3F||LDn+fjl(8J`0Q|{KgcO(6TO9eS!{abOzz+Ic=Gr7t66AZPMA0T%J
z<!-&(qqm=!@lLwdTjllk81B3q>~4pfes3?ic_?@5-N+06Vn`GDyE!SYZ@DBx>gq34
zZ#3M8w!6vgPPtp}#=i9zRr5+WKyf$2{W#z&x$WRC9<YPl6O_C4Zl#vK;`w3O4qX&C
zUwMrCJkrT^fjjoZHgZc*?$*1d{d`4-IJw?3MsWwiZI<^Nxdq{7Dz}B)NXp%McR{qD
z_<mfvixu}K+@kl`eU&f4&~wH{a<5bF*1H?R{6zFH*$z7tw{8XON8I?G>OBSb&D%I~
z9VmC}-2rbKh>L$NX5^tuin|o<tRX+hT>&>!k9FimQ|{Kg?`r!Bw<nh}+*HN=19za|
zC%MDmj=i^<+!V^)dUtXcUok&Tw(noX?N~9%(7wPga>L**4O&UA8|7}j8=L4S+7^-R
zYrRcgZ)e~Re#mY$xXx!|$z4RbTkqzW;4S*@m+j!Bxc2sVzHR<Z_2z_|8nTq!4{uF>
zdbig}Z}G6WbORK3DqP>lKjfz7#q;9HB65Q$ckA5(?+xPl&I=j8TUW(>4fng(Uvf{v
zO_;cV+<3~}diRi<uc-V{);n5p8&yg&47JQeYv0S^W-UCAT+@E?Oqt$lb9W(IgXr)>
z*1Je?x5NF^hux8ITkoDjZX3$odN-`3w`gG@uZtauTd*?v!wq&@z^%}37P<Q<ckA7p
z8@)xN-O@d;xDjw0)wQ5@s10{jrWxc?>@KKx^H($oI}6zkPZT!^Zpd<W3&U-+e=50j
zn=Gn#f2;`<cXr5e)HlTyRgw&qvS+4x-{rwM=^oMK(r~hr-rZZPp(uJ%j(_uQm)F}$
zxKsPHdlBx2q>1F(QtsBfZuxvgODE}8P~6N_P3xQNZh*UZ?09lVQSR2eIr4jnSKZ|E
z%|mfJ!ENT5h1y{X+(7?v<R(+@*1HMayu=e_{Ln&iPr>aG&u$O6?L9}4>qNO*@6H?N
zCC)aJ_p^bDTiyZVhkRM7UVpe#K1Gr{gL1dt-C*z%r9z}TO>rl}Jv4;f%5b}Fjv)6r
z<!-&}`PWk{v61)nwThbxH}F2Yx!@L_+@D-8%H4W*;43fjrirZgkmCAQ!*$#s8@0o$
z-1yFG<KE=PQtsBfR*&k7`ETU??55(bhx=+HyO-h4sotI3^mV2irQU7w*h{pmDBB@T
zakE#)e#8RVsorgH+uL;}H<WU>-u>r=hX{Qx>&^a;yxzLO{V<f>IdCf!ZcpwO%H4Xm
zS2<5H`?Yk-DDGLf-5;<!2=4n_t;w~d+^u)}_pC3zpOyE?x{6z&2KFmAu%vcq4)<iq
zaB@3R?$*1D-*}157P5Uq6n8S*iyPUk3%8O(7`cZjckA8XKkJM96=XYfSKMcCALh?N
z^_GHLFgS!<Yr0YD-Ie=1#Mb`O9jmy$ju=l4W%qBc1jFF*f#eRP+^u)(HE|bCk+OXk
zEABeDH}0|f6z=e&`1UaVE>Z5*y9+wFi_InEb7+U+W^qa~Jo3y*?QkBhM_F%j?J0Nb
zUHg~y#e`s4?|H@T40m!IyW8MC>*Gmo6y<KcyQik7*xFOJuTgPN!9A2G7u7o#?zbau
z<ld*;t#@;sa1-eVWIKFUT-%yShGK)*9R@eCay@cgD0l1KhNa!b;2hE|xI<pY<KUJ`
zX15*O?i*{98$-EU?{*vLE*6cFZe_)N2)C76ZfXZ_xZ^6<B=-&FZoT_=fU9`4BOzlv
zX;54@=On|fRqQ&z?R>5}xqg(p_3p*L^+khzvfh@88w>YUwmejCA-ID&S0#5f<!-&(
z{JFcZdM(`niu)68hu-Xd%b8$!_r;#vU#(07%Ky6R`;eO)N1MIh-D{W8U@0zBjge^I
zIvcqi>f`?4@rLg^;gq}e?lv3LpzNpJzuSoKh_Sm0{dY<xcJt%8>05sQ)w_dox87~O
z_Nv+YWK;H-z9V*p>TL*jT@3fL@o-mdA4_f?8c^!p_RH}ew(=dZf_qKh5o5O=+#XHY
zJpy-V$^>$|Q|{KgeQ)$NuNUt7x9qyYJ?Y5qE4bHQPA2yR<!-$jQF^4An{A)bP^HaP
zYKJ<eb|}nlDU7S{1x_Qk6y<Kcd)8{E**@sGa66x8w;bF-U-*933T}_FoG&6NckA6Q
z#TT2^TV=oLJ7U+U-fVD7++cSV-2T3tv#wL_*1J94;k|sNpIv}^Yc0D*JTKaAVmA%$
z?>>vE9ULfk>)lol;41Ge_Bvqtj@Wgo_YmBuD0T(%u~@mB+-S<(dUwbTb2ryPqak1n
zyNlq~Z^7<lxZSR=Avc9`x8D8ag7*%T{<{h8<k##*zzwLuZX(=F-{Q%2qui}`55L3r
z+?96lKV<rj*bQojCU8esvRel8QI~RVC3g|!ZoM1kX6~lK{c(m}C%6xd{G9Ir_gcQ4
z<bL>T`qR7Jj4RCg!^Fd;^K25S-U4v99$<GD+~MW+ksCz0``v%?yn3G;S{km>4t7UO
z=U}k=4&$hm^Vt0jw~#&0)5cTo*1KngdH+2DH!g1y)q53gnZE4$VgC22GtXCBQ1I5f
zwz<svS;wQMb1>N52KS5~yK~__sCJgxp$)Bf>)p{OV$I%X_zk!83wC4R29#s>F5H9?
z7s=g6>)m=cWvKb@7JJNe4#rJthe2>_{^jv+Ijpx7$jj?31u1vy-A)(Ge>d0TrgJdZ
z4TIa@9=m<vF8;;mxb&git#|DQnD^h?a4*!jMfKK!n`=M2d*FV3%Ijq3D0l1Kn?KCk
zA@YRj91M1g!M!-2-QRF$Cq1P0wWZvxcjKFyzrSgH(sT|+GS&MXd1&N7cKxsp+4uyX
z<1&hJx87aY!MxtRaEC^+dmnDD5O!z7?Xrs3d6Ox3>)pt5=D%ChQ>Jq;*gX!{zZ$!@
z;O-rgM(yB4xm)ixvBh<vypQt<Zd&MVYKL`j_vU7|4A$r40(pIY2IX$O`|2zDgYq1T
zIc+)zgWaicgI;sq>;ku%RXWxCoN~9`-9O#@I(9r`ItSwp)!P^D_6zKq&Od8u<b4%h
zl)Lrr_{rw&dll}|CG0kVyL=P7AK^Z2nu+!W#ZvCpy9?Kv-_QD={Xc}=byStj`ZsVD
z3+yiJ76lXCqk?P{MHEpnK(ULo12M3>J01f&unVyhyTC*RQS89L*7v)w>tWCA_c?2R
zXRWiAf1LH<I<xP6?|bGubKRys8272(x^S0FXSW{qt^7R5`(eKBH{B@p?tnv<<B;>b
zsSgIbws7kPvO5-TNWM%|Z)=)&>)kw4EwA55xNeE;W`NtN1-ob977F2gOxtPRt#==-
zwY<(+#F+YEJfLxSVOrm*#;y(aU3H1!eOFm%-mQ0SOInV@8@NZK*}VqWJ{P;5aJ@=$
zpUCbs@7BBGtmWr6<ASLVMm*Jf0Pg%0UN>3@cXlxMojF4DZoQj)*z!JE`J$;02D_`_
zri)|O)ORLN6z}gVMDuRFJLQn&Im?T1{jDBSy_4Xk9AwwjcP1bU_njF?^KQMn%ir>Q
z(eIL}4+gva;VxRiZWp+BytwboWtw;ET{ln5`>*w7Qy&a=JHXvGmfZ-re;0G#nTj;;
z*1H!@Szf=J;1=|FMB~s1?txzHK81TKmix|(qj|U9_56c+mHT9~E2cge>{f!isu{bL
zuupejaqc@4PxEfQ`*E!0_4@+utn!bk-n?+vRAV;)?!->qccw1QyY=qz>Xz5<l&hvb
z80`MWI_-*l>~4o!ejfLonMd<(y?Zg(@_HzL&C~}Yf$Dt;chV1D|9u0u+vzfN-+4px
zZoS)Yw&nGE4z3}X-CJ-ACbDaf{p)|fmm{|+&AavPoc)&L+vmEe4+gu(;FgPFw?EwJ
zcD&zyEzP_2Zo5;KZl)WiJ{XBK4qM^&-^uPyxOScRe88_j(*vd6?e_`epv+q~!hN}q
z-9>O?7PI>S?$POdo}mNHyY+6)+?L-rx0|Lu7*D9)ad2;qVYfQYUo_eK@A(UwckA5^
z87)7zWVoH@up0umR^NZe7jF1HJ};7;=G}TXyqjgcQ*N31V6fW>ZdI>;#}{ttAAG*0
zFU`C4ZdKp^@A{23^}$G@acB;As$lmG+}?R=({*-|=G}TX|8dK4I0x7I4!d>XHZI4m
z9nKGxsLp+7Y-!%DcXRxI<IpG0)Cc1!)mt8}=fC-oKioPV+;?U;&Aauk)eFmdv)oQF
zj@r#`KDd*=ah|ma?ucI8cjgAoyY=p%MR1k-<Yu^0C7w~e8Q^wFV)q$b*WuiErYg<5
z^{)3f%g?Rp9aA3+c0VG2TXK!vQaD%V8qR%ZrqH}w?>e8fJm>xrZq@JXCc?dPnB6XL
zch2R$Gl?|s*1OX@E$<Ig@0$8xB-1$DgnR7Yyl@#@?*&G>&Ptem=QDix&%9gRzaI3m
zVf}@@Mw!n`uSC6Rt|xvk%C6_@Y$V1v<Q`uS9yFiVyE`*wsQ=iztJ$rjxTfdd5fk|L
z;w-)wjgE1jr%==LLsq?;XV`l2-B`oy=2hHOxY4!w`ONe_iJzf-f7nRt1bX+lkFRhr
zWHY<96}Knmg`bbJTO00+JA6O8WqK~jsdt+;t1bMFy)mzY`z!7-xNRMIK2!j1kBe35
zbK~^~y&L|fj_@e**zEqJxP`F}ldyqZQ$Mj~QG8#wH$Cs<)4Mw_I*a#19+=%riaP@C
z@_fAha1(C6aaE|^PPDF}cdw;*iM*{7&2Ea~Cc<@{$nGY%4*B@^ZJOyhs)*jL<LfJ`
zTzzhK^D5s9Ppo@Z`Nr-DxS^x@_xJ#<m+0MRk$z&#lvifAhT<ND8xqXxa?RjYiRbfg
zNv7wsl6p6$MOX14NL~-E6t^1kfb~i27KXdM9zU1xI*i^u@wltlJNd1--eARD3Ae8=
zuU9`eJ)bS(=O`!Bb6+{VdvUw35L@Lq%u-w%<RV9|u^R<9GBcm63#9cOz5Ce8PwXlo
z$6>qTj(~fq3FjBn;l>Q)b9Kv1&y!X3u5+rdxVJ&pdr5JV;g*PI*AMQ=r+lvN9IYGa
z-T9|Fi%pYXo5%O1;(FJ{xv%P+4>`b{>C4aSpG?oG)%EU!zCPl}?3ZTO`kuW1o`k!3
z1G^dET0h`(b-W&>caJ~lC`v7tZe_)-Rwvdtv}g|c?YND3%W5B<w|JVKe;xJi<ncb@
z-Rl?TdYdWka=5Q&v%3{;=XjoHh0!{f-u1ZUBUUt*_4ZZVERL~w$4pMD*K}U5b2mP(
zx5e~aU0?6!n(ZUXG?wmU#T^2-<_LD%!kwMW=k;#W`kCH+n4y#Kd@bGeikk?x(pz>b
z!u=S+^J6PhPUfO_^KI%NX8)G=vong@vM$cucF#rQ@C)<#9qITSAg{~m-5Ucsi01b4
zb4ya(D7a2>?B0UgVh*npbTQ2Xn(EzQ$9%=!{Bj)9-<Q{Kg?gA@xaX#NP3Hg$mf>@N
zGibd}?>;%xPGmF4aVVv@^WgSA%I;XWH>3C*V3cWo(L(PUM|Kp~dr8+>aeu=tR3i`7
z+YWA62VUPvrgcQU`}9hC5nf!nT@=^ffb)>+*{urK{<97JZss%1TiWQ|fD0YOj-S#U
zrMPi$*B8!9^;*GQKZn=3czsgurrvHZs??P3a>Z>V(Dz^_yAQA~*R*C<syD<mAL^)g
zt!A|oOV>Oz-yfnBcN^Rsf7#s!_r@bWU$}zSJ@xLM3>}2m#ALI3M{x_*$3DkF`Dh$w
z!o4(&*C#KS=2?Dv_fcPO@#x!Avzw~8;czcKWw$rn+V%O|Vk)ht>fPh9ZN<kB=@xh(
zzZb9IX6TTg>UD;D=q<0)mNm`adg|TNTiS`W#pL+bR@`<CaG$)uZV|ZOR`a<<UZ>T&
z*+V;u25;o}dMWNnxS1Okpn6lVUcJVX*Q>{v=7s)x_iFpL;^#kd9QrG+T|?}j+{x}`
zxQFuop>_LhwEnAiH@dYG!&=F4n5DRj;r=dNkm}tC_xu!Ix4&naZ-(ey+xgz2Kp*LD
zRorw=vBq5s*&PQr?_WL-nVHs=_3p8qZN&ASN#^V9g5vta?UA_<)$0e>Yi=ryLoL%h
zc8J~`7~~@c+>-a-r;2+UZi_H>9pU!=^od+vuhzRg-8%?BfB77hE?!>0MrY*nAK1+e
z*SZ(KKVY_Lemqj|PDWppu^(l<#T9ou+>yNt(>R#US=uDOqk5xh9bE4o%;qgdyU5=+
zp|}MbVSVx*yD@N2jpz5Fyfn?b$Ligs?OTg}Ipuw_qvDQ*Tc%|Zs&@liZ@X7iZ$VmL
z*SjS~c!|36<@as4;y#BPc!J%DaJS!iPOhtI-aSe0=Dy!n%&sHrU7)zFUGP1wU6krI
zo!<<e!sj=6-CpnZ?(HewHk03rJ&Jn>?$(X$HiDbIG3T4BO!Mv;dbe6+YcYPNbgwIJ
zX=AK$K#^ipZwa{fG9}VDT%tTc@6PdWEed(d@qMef)8Q_k$*w8qwK>i?@AupY{^#l4
zmPOkLxAD@oc__aZpWr_D%kBfXv&P3$y%i{D(7Qi;TZw7`avUltZYNjV*9Y0sI7Gv}
z+mhek($+NZUaWT$UU~`t8`5o}xToQUK4W(UTrb<ZR4?Zjdbe^NFOlb<ys!6AT)W1x
z#<&i}sopTSjeo|GyTdf^Ua5CSuk;i{Ge~!=;x2%D`vSY2;cid3MeYO2MfC2jjIG4V
z;nMv_aeu(g+n@y1+Ys)R7=AB|wQ2uDgx+;H<tg?Zm-qF<irc*j&c8*nTLSKx{nw~o
zN6K6D?vy+&#q;nd=HH9EiW>vBX33INZ#uXIBl#R_Pt&}6lir>E)Km07A?y9DxDIX@
zhk5Ki!Tu7llJ}Qzj-z+4E^aB}>&bfaK9b*y#c=I2l%jgi!nKOHK;v-CH1CeoyNfG%
ziQHdhz10-=58Nt4*xd-X=s)MleNFk0-W^!OL-ac**P}cXw^vg<r#@qMI^0a#&yrij
zv=3yj-Yp*0QiQFS<IqoWFTw5FzBG+PFx(x7PLu0Kxs%?#y}zaSa7Vfm6}M(HJg1&#
z*9&goIo`)K*fj4xq;~_7JjBshISy+TcPZTc^~zAab>LP>JWlm;o~3tpt!XLp{gUoc
z#r*?!?-q6o!@ZaB7`azX^X_AM*I{KdvByoWd&VnnPxn}3`yyqj-aptUHp-FriT$LU
zOz%$F*iy_$mGypA+zW79PiOZD+?ck9sou(_{V-?r?w@z=qHtqbZ-K}1dtu)k=hVKl
z8w0n+tV86sr~FOtmXBy5{vJ*+-yf<g?jpEe0p(~MBH@Na^Eu%Org`@Ty=&O-A?|#Y
zZVScz3HS1Sb{D{H@R836@1|T&?>^n-A@&`TZa>BC=7IGRkMdM+DBPR1_R=^!GR?cM
z>0RG??&9M5N9J*uq_}6{jy%k6H@HtG^ZDa!lo#q<zp~B6xe@YnTdTNLT43LHl?qg^
z8{C|?c2d0t)4rfMy_<V+Q{iMM>piZxv*ET_#;yb0brp7y+lO*Uz1uT?OL4HS9N&A2
z`x$OO>xxuw0l4u)_+0Y>)4cnE-u+ObnJAq2&^*4WitE!d*61^W-QU>vI`Q6Cs+aRk
zy*oVFU3e{&<C`ZzelL!~E&GDqXK<6M^Lgoarg?XQ-W^n>sd%#}-dwM};+FQrx_$df
zG!9qc8aDGj-C~rR>RrDD%|wN3avYi~?j*SF&$4>}?$~^M4%^+dKPp-8dg6V;gZIgL
z`zr2BxVvgqrh3=FeLIoQVGpA`R`2H8)m$_<C$F<{itE`b)|hV{yHnv7de8fy*O}(s
zZ}e`rg>GW+Vp;D$in|+bmpoOd-a&9}2JrcA&Uy9j%*<}0*b<pL9ah}@Uih6K%dQ{X
z;2*2$I{R}D50oi-_gZW-(dL${H&$^&;Vyj3t{dEuV^)!CNBObdtv9`i_*q7}DT@05
z?uJfwG!8Z3-nQZW>prG^Vqf)cv6gOPyQ>_B?1}Pw;oKViqb{&(3)khJ6;$tJ%BA&g
z?ze8DT`gH}CB=<^+r4g8sy7SVP1X54`d-t#`?ubGc*;%uiInxaDsHAWvBr8E*!_g_
z0gEmyrFuE<*1I#4-9+_5()CkZf4FDzR-<|!!QDJ?3As5b?@rO?-ED8UifJQdAGnc<
zdkJp(aCR@j{a9i#x%DaU*1Jz<HWyJ#<^62F;#O~q-2Xkh`{8!jx{zFd%DeS$bSa!`
zE-Sysk&3$j?&B`@G!ARw?rX*8Iu=vjt#>zEX(I9$mTrvVrow%Fh27b3ZGO(9dQVf{
zt#>PZaTB(yrJJa@zTUCM`VAeZ-jQ&-Me@1)6w|yrkKPTb>MB;Zm-pY_iW?0#c^kX^
z;O-wVhw3dsdAHt8Lf?bx*7AE%_=)_!6>o=eC{ms3Z4dW(Lq3n=L3y{{eHdXB?d+sm
zTXDz0O+S_0CUBQzn??18Qr@k16FnM>^Yx_bskjMni>I<%3-0&$8RTxHyj$-!zU?Bu
z<d)yJ0L67_kNa8A8Z-`N;7*C+^G>%Y@7BAwP8&tBInte|xDjxJZ?KyOZt5KFPmrF@
z9q8RVFB*x^hq6!P8pXBh5Nqu0RFmpW4|jg(R2m0+%DeUMgh{R<^KM!1Va4qYx6XEU
zKj1vs{&rKy?L>LE-YpVr6f=5BH&$`a!F^t&7S)>oH^1O>YSSq1*1I;2E~0uqc|Uuv
zxD`5LpYCLKufv^KeG=7sfbwp=8)S4Ahc?K5@!68(_hK^K#-G?d1^25R_i0F?yj$;9
zoa!oyY>@SqQ`{GDmvpO5<FE&A$C7*wFb|!-(7V-|xro$C(sfeYW<J>edxhO~aN}&b
z|AQ0d-Fi3mgOfOJE62fCaW}(_GSs1Z7s0JubsUXvAm!b9xAsgIaU(@uzk?Om+Bep?
zXCu3l;r_0|eI=Gr-mP~H4$dO}kgRvM;`W1^GoK^XI|6RvkTF#6Im)~B?mVNDSlnCo
zd)=bA=i#0l!)_qlwGpGp{bZVVyXf5wJDtUmb<#bpxD`90U&SkS{osDQIg;GcbPh%D
zK3VG|hAHo7c%-;f;C63cm&U;hZb*huay=>U*1N@pi>T)%Kew-n`y8(IX?BfpQ_Bn|
zH;nRby*uC5NnETX$05&C`F(TijPoM)^{8G)xSd0WlDmcSZoQkb!bx<vF8i|DDegwN
znU=F_>f3Su%3yMDQ{Jt28}Du??(~%PHc{M+ezC@bnG95Kak%e`4<gr!@@~ER(5r#?
zTSfM#?WVXr;kFpSZeF<i7xTI18gw2<@0M8QEc%DZdP5cW6kMBlb~D3$`7wm*?Lv9?
ze_i$5VyLU1#rf`9$)@*+CDZ@+aTwnsb=h^o?@+Fl+}CFY<=uLBVrVgo^W6c@6O8v7
zJty}JuCu1=`E$#U=XI<6JP(MXyj$<~IC|aUoMrtNruT@k8v-}50lUlKb|}j8&1A~E
z^{&TXoIh6f>BhqKD)xfv^@5w@2Y)X<!hM#V*9r1b-mP~>9UX6R?yJMg1mm=+?7G8!
zca`0GSl1XA%j+dBbS_En_M0-nVjS+nJ^h7U7r2p;?2d(dX$h}Kg;3tDcZ0r8x2U)G
zs|4e(9xrJeYQjA<i``3bYhL2@z7>>r>)lwxLW_F8!*#sQZZWt^1KBN!_0)^~c|G+4
z<=uL>dBPG4ciwB$d&FK*z3JfQY{u>|xHVgyq3=biY2H0h@BW-=`M&Y0ZxW1Kwz8Xq
z--{1r*u4sOp7%v^%TnI0cW0c&`B>$ga17j}La+II0r$->{=KM-Tx3EoKF8Xc&S&Y}
zXRa$OuHRm7P45w7cQf24x7i&JckZCuRPPwdyY=q!_Lk%D2d>XYc4xv3-NWvExX*iY
zUbv0&ZoRu_B<fYhVfj1Ld&J(*I1GS0Wfr@pe!4q)KcRZ>QQob0?=FL@oU^R+KEZhT
zGP~YzjsEP;fIFZ)pEu1+dAHuR?}~9y>b(v(vv^DO3b<pMu=@n=tj6!C-ddD*>)pwb
zmTtfYQy&a=OTmpO!>$4Q6x=I(Cbv7CQ`5U%eJ#f!b4r3SH2*uQH#6MxfBE@rF5Ij+
ze~>$y@@~DGxrF6)wifPzaqPaq^JL6JcAvvNll+(5Xv(|wZvL;9<Iv!vsSgIbx8OdH
zX4ljwePaUeH+o5Vx88N>XnFnKhFiJwdm4vmxVM+Hy8v#li@fiuAm!b9H|Ge;@A05d
zral<#u7x`#l-*Zwb06gWXRefY>)oQ6EZtn6O?@yvP`%UO`gUa31^eaRujM}f15NYp
zWqS8Wvt<_Fi_LIvuVZ&G+)@9|15D>P&xY~&%~h0l>)p?DEbDFj#ncBQh3f4DcW)7{
z_ch#gUGvaByi1gK>)p$fEI+r$aNWnS+XU{{A3Ps&#{SfBC*Jq^-PC9=LhsH!YkB>K
zrJDL+uxk%DG@jiBa32@r{l66`@7BA$u3C;mp|7Ss7$0dI3c`JOl--wb|M|-MmD^I@
zt#?Omwfr9Mh5P+1yXoO}Tg`4m?62+^%lo#+(YZyvJHHxS<$mV*&D00u6V>|$^Vmt_
z*_{h_?Rwt7zJu~^y&G4|avWa44PL|UZMbWCvzr9>(J<b}|A6vtz3WoZ^8EbN@1{N&
zpQ+vxa62_)*YrN0_wIb2!J6`Jz1yd~<v5i6Vd{gy?smBStFk){Zpqx0==yb}yj$;X
z&x&zSo+ppPE&hVtrEoXrW;Y&g!W}+`(v$LTz5D&A<@dt(r>PId7a9lCy2hO^ysl9V
z=W&X!;B!9nO!Mw&z3X|`avW0O&OOEMV7Pl9usa6sfKJtE9F9@mt#^}mV;q#<<N3c5
zj29eIsot(|r=Dc@I^3<r_<dimDeu<1-M?C1XAZwjeK6Q<0r%TRcFW-0SGfd!KUopV
zyY=pt%$DvYxD9Q-QoRE1^jYi<f;(^ppC@ypyj$<47P7p4{r{NyV6a;euFDX1Ps3g9
z&F_^POnJB7-SPkZUS#@f>Vv^<LAX0Rv6~O)>O^Kf2e_8<ZoT{LIIaif`dtI}ZR>9|
z4w>M_xw6{>ZiD@N4)7}F-Fml)sV|ChJvgOHL>~-xKVu!Sj~%<F_ZJQe;P)5)q(-ND
z_ia_n&+R_kZdJciy-(qe%g=5)yvOlH9yhvvD^uRBcL%jZy~=%Zc=|;2!C?0m-08o0
zJ+&3wdWV~l+n(}ny=&Ldavbt!NJJluA5`xtxT})cT?Myr4-axDP~NR~Zx^wwcMseg
zL)hI5_uMsh-@xr{&F}TxP3L*_?ux&-9+c0`(<%{tFxXuW_w-?Q4R{afzBOJ{?<2~)
z^=`vk_}rB1>=oPzo<C_E7Q=13f!)b)b2zmnHyh>MdiO;$%W;^RF%f+**qs7*^jvmt
z!Ci5;9k~X|yY+5RF3ZoYe5OS7!T3e>hQiG`irtcU-|gGrj^y^Cyj$<~+hAGmDY(@a
zvl|HaVPAHG;Krom_x>)Ryj$;{PqO@8bj_S-46yo5^>%@4^k&!ee)LT9`Tgi8>0Gnk
z&H2W19Dc)HH-KF)xKA6gYlZhJZz$P~#^D|1-FmmhP|I;xktGp*FxYj4d%YUFt>6yc
z+JoF;ly~dh+GQ{f%Jo|}Ya;q!{GoBE2lsq2c9+84X5X7!cgnl<?m#D;!&a`}IJj*O
zv1<o+n>D*ha2xOKOYShryY;SfqUAUYwoXJJjK5TGNx0EpId`(h`>?Ay29Uds@@~DG
z>y+g<<hDsf9}IR2z&)1C?r^wndxOZmLFc>m?xwny^+v))>s89KZQ#zj&F%@f_3ZkS
z`^VI1I>Se8-rZzLjr!|72AR(_$73AQ++h3;-HYMzJ%jNbyP4nLZAW>x-W_@DqiE>n
zV|K$7w;P_TOGfbTMK!qZr+24%eJJnNySanciZ@ScncYCe&477#hW7m2_Xyv&;ZM7e
zJDKusz1wd}Uy)@@0kb<zafiYUf6Z<b+=a{dd%TzOZoT_sMHAt4GK1MYsJM6Gx`goj
zEds93!_HK1BIVtBcWFi^F=)VN^FF4Ridz@!a-lESoeQ^29d>h4-mQ0EH*^<)h7_|~
zK)KFV!Y$aH*Gopg%{hSYll3X@*1JA<f8n+bAI)w<#m$IyaR2-4c7gkLvM-H;Kjqze
zx4_1ZVsf1?X1BZI4uG4n9j_xcg8OKS54npe@7B9}Tsw&xIlr3S35xp&?u_f~mWG>S
z6#ovLro3D4mM!8ZHoyL6b~h+)3*-#xTk`sPdbrC1I#9hS)Zkw4&WZ0V#%KL*cF!qp
zG~7uS*nNWE<Nh7_eeNYF@7B9@rgjlC`us4v$%<R03)ZXMIKMarcU4pVo%f);Tkm$q
zd)K#qkmHago4oHVg<JhJyX)a5ID6ALgi_wEcPl>WBm%BWx02#!?uvDAXF>OP)AP=g
z2K>CUk@9Z6Tg9Q1C^<m7%@ubr-0RWo`olfbunpCFi}G&0Yg4+jXk1&m0g9Ul_f_5c
zRIdlz3@)w7O;35Z-d$hKN8J3IYX012Dz0a@SYyCmb{*h`HRtC^d&;}@?kulPVrX7j
z?{>vK0(Y=O1FAPK+*_?%QN5ig@7B9P|M-Ym{pI)VisDx89&5DQ#%?N}t1ETo=jv&c
zckA6#jy|HqCpix96n7Ea4HX(vz4zfd3}{L99-zEi@8+!5L43$7?>o7(%j-9N51eOM
z%kBxd1E;hgH;M9Yz58Q=ugJSj)>~b1L*RznI#Ipr;f`Fv^Oii6ckA67Z#oEvF|yv)
zihCcf^AdKa!@aw&Io0b#dAHtuT*^meT_@c^irchjtT9hsXR5b9+$=ZT$ql5uTkl>;
z>?j@u$#IykxO?F?oyBfDxJ6#^yl@%i-FmlArH<mkd-=P$M{!H`iZve3(unG<4>uwQ
zyXPqH*1H4iwHGD6d@_IEZYl0`xQEBFTL$j=I!$RDKAGm-ZS?M@D(!{yOzD1B+%Is$
zf3j->w?|i=cbBHTTkrNO+))(GA;%$q4tf1{?~V2Kp)NEIAFxhPczP46*OT&Yz3b`P
zPVDY3>#d`>m*LiX&+a|A5&IjH8%BAz-mU(&qX=Co>-ARLdVSD8%HK%!o`Bo?39oBx
zp}bq~j>miAZx)sH4pH27aPuXxyBThaLhRnAyj$<?>gX+k+sfyiMT(oFFV4?*cBOjf
z!EM~iNaJ8ddAHv6Nb(j-@=15U;*NmZG>+XcxX-4zkXwWDZoT`bUnkK$x4f_4RNQ2^
zty(vxdb`6NvWM5Bx=`M&cT4qYFQ(ed`+ADvw(f_0nU~pZZW`ZYXR3FGY2F>Ace@pC
zCyLCG_nkaB<@Fm4cSqAERBvs#spZ*?qP$!0uA1j9I!u(;S#`y&;E!DTB)cWxdIj=&
zUoz$0diPhSwxak9>3S*d9Jr1R+^Ak_xW>H=X&mxV-mP~t&TJ!cCCKYxfZ~3KyKz6e
zU$E}kHUqmZly~dhu-V?i!Bf^dM{#=wV860MQ>r%su6L^jRBs67-FkOeL>uv`g#5nk
zRNTvOJ8xn4GTc=WyiU7<@@~ERt4AC0be0^4Yl>SZ5bs+o(~Rmp1lRr>_m{gsdAHte
zp1X}0+giHs6n7Qe%PZL305_{AyQ%boC%x;_zl}KXLC&*s=91TM)*$R(&+kt4&V&18
zi-E?sEalyL_hauiqH9k%zSR_WAlzZI*&PFS>mOcUZ%ui(-VO6;Bf>o7IJ8jQ`*2rg
zX-@S9!fo4`-7%DR>)n-ETZ^zTISzq}>l%zaHk@4_xLuCbrE%CsdAHu3(Yv*Hv{$;*
z6?Yrl+TYo23io*#cJEQ%t#|t*wGwx-elY*eZ&BQQA^3e8=t1M)2zT;q?z@<o@@~ER
z@?$H}E&jdPjZxe%xD{TqTORJ6U!1qpqP$!0Zra#NL`F&Xh2kc`wd&r2>dg;#d=R_c
zDeu<1M}~QcIy2=sWX>(GUyuH=M)!N{TEYE!hx=O2ro3D4c6{t9wilB1mRH=paO1pM
zQoWy$XU%TGZZzfHdbj48R>J48bQ>#fu>t7EAH!}ET;CI%lf9(8Tkmdb<R!v$%5mtS
zxD()BZsbYz-h#Wo4!Z>@@7B9tpLmKsS!KQ9iu($#*CBRK!_BjY`y;wi-mQ06Eb$Pw
z@v^Vl8pZV*i1kVPR#fkPs+Zk?ly~dhEr(kQw}rC5+;PP{2zTlRb~nK-aDe-#uA;nK
z?+$&^O0=5&&iuW2sJJBu#Tu{KdQrVg;P!Q7_Y&pZdiSYoOA%6Bx<3_n65K}%*qsh{
z>_N_Bzt=RK@7B8!9X&<fi*kI6<dNTtH*j5TT2sAYa3?fow*uwedUxDkybt@Y>@QbO
zaoY@r8_sTjxWBJ+U(2?XckA7WA)canJ^8t{Q`{)Hk5k$04)>HFyW=SD*1N+;dWh$-
zvfd$zTXIOO@j_4=8V7H<JyY!IzP^L<ZoRvEwue|!Mvm`%#hnEA{u6ea!L2@?-3OF+
z>s`NpT8PUzq`OOTU&Br8*p}*T05_!&yVjI<>)jehTZrh>avZKGZtJ1Q^{%q(0N1da
z_Y*i$-mQ1ry=f-eJ(hiP-YD(?xO-i_sowH%k9e`$lk#r8yKzzrF{7=l*CwyLer<>0
zeLhj_7J*ys9rq)hM|rp2tv1?2q^}^|ii$fP?g#sJRBsNrH)pVWjPh>1`>ndW$Y3Y?
z5H(TUWVo5vvug#np*_2=Deu<1siE#-{yEt%sHft3499wP;r3MTckC~5xXb-hi%{OJ
zcYic#E^MdC&uyII?t*JSi{1BdYlpMzMtQg1E%mFpaE+JlD#a~00`Gsz(1GfG26tv9
zb_Y}5t#><C^$^EK%JDs{xM6U8hO_$s?xUN$&t@&<-Fo+Rk!Ip|UOB#Z756dR9<SLo
z^^pym#_m<hyY=qZ5lw}0uk3G>s<^J9vBm~nJJL8@ggeoh-Ji2eH%h%bv%b41)mGM<
zFQ5EgY=+zC7P}|mR{z5NX)9CSt#{XlG!s)pq+4Bavya5Nj;20T?;*H}+t_VSdAHu}
z*T_vQcqRJ~c`9yyxOt=5-3|A2Uv?*$=G|}f?%9&f#B8MxT%h9Kf;-jTm+IXLcVl^W
zcT?W2caL{=7khfj&uxn0)(eX@iU@Ys!hQdY_lZ5Cyj$<)M*dcGs~m?7in{{toC2Mw
z-W709ZDKbY<=uMsU8d$@YbE)8JE6GgMxj5!baofO-QSB{1LfU%*C%%~(e0zW9^w_Z
z7u=P9*qsSCpc1=%DDT$0i*1^U&oia_U2)IDeKM#sjl(3k4N|xd@&d}c_3ns4O+@1*
z@^dSgUw$vDjK(@lGP~h$Yae0vB<0<D_xAIqBK-(iZw<wr4fmC=AJrQQxB4`8-%;NE
zNt<`?y6q}XC(G-hmEwMY>vxsip>RX}*eynRx8C*5)KqLz`b-BXZrd?94{7W|^_t%M
z(7igl?v!`y-M+t!B6_^+&oxzX_ruM!pWQ&X4msEzMtQg1&EnofwEH2)VZGuO9vf>M
zU#TnA+ZV2XQU!WGTSs}f-o4w=O^o)E*TZqe4TD={CA&S~wmQb{4a&RquI+21XgFPt
zL%ia~!+oE#8`awt?(ntj{&|51%6xkFx0kD^cue;F`mVT6;dtM{ICeY19Xo|xJIcHD
z?y8GMamz#2TcCjaUaW@u`4hW7aQ*tR>qB|B-YwwYSj-$R>#d=<>Br&xai8uq4(;F$
zXv6Mg%DeS$K%9%HkW;!X6}Jc626x$Q3paCpcK1@=t#{wAFp8x|Wq+;!#XSSJSo0oK
zZ)>=2mDo+Byj$;PE!sp>d?d$rqT*H<kMnv*+4Y2*Cl|XpDeu<14d%Ou9bU5DHHte0
z?jHM|RBsEo&#c(3PkFcAHM%wu8I=B9M-}%u+!AY~`}-U3ulA?BTknQ<a}}F<$a?Q8
zuKNVckMs1RdYhx(sCVoxro3D4c3k8lu6LL2XT{wLH+%xS?r=9fWA`-W-Fi2}Sr^fz
zn{;y(l-~=RiOBuGuxsj@f9@f>DW-XMExp^r!&#hpD*GGRDQ*DVh~B+v987NVV|GhW
z-mQ1{Pjwdc?PcGuriyzJuHiPjrg0dYz^(`7-Fi1G-sisQhje==uH7W$0Zsc*y(afS
zBD<lKckA7SZCymS?6MEsXvLiYx4|LlHu?8++emr0-d*qPEV7N4<GWOGU&9?;sjvAu
zoB8i`c8l_Ey}K;dNi1zI-F=GdF&X>#m$K`Daj5r$$00rC-FnwH7@u1uIlk8vcPrcm
z*8Qkn)AzVQ2L2w~Q{Jt2Kip|34wjRBTwW`#^^{oS)e-Erf?FmpyPYWS*1K=4(5Jyo
zjzgwG@_P{gH{}JpUT_zcW_KFp-Fi1)4QDZSlyple?gh9GKK?WgZQ#zX$?gHlyY+6(
zB2MCI9yt#66}Qq<><fxv*BfqtJG)7gckA6c5e>xV4zfQ?d&Qjs_i5b#s<$KD?cLeU
zLwUE}on6^kqzGB>0L4v)J8l!ZzHseFvFk*6x8D7>v1|PsJ@=XS_f^65khb4*<8-Wp
z=MJKJ?QkCFm7^^^M+H*et#=>zRjKd%bgS7l{T`?7PyI0i`zrbblk1D~PP-}>Aa@z%
z-FmnG{fzaScEw(E`cJs?VLb1o?WfH+3;UQ>hLC#+=gCU9%T4Y%%DeS$_^?EA;?r!i
z>j^h)|L-%nhYt5Aw;No?z1hkAWSV#P)Vo=;Ul)0oOg6ipF>guRue^UY^5gRZ$jt<I
z{Yq<cOH<yhcl$VA5swbz?D)UqumWz{{^|*HkV9S>NNyy~7q(cJnOslGyY;Tk-m7B0
z%Q&;^3^#2*c<Z@XPrWvXTyMAs*IAJpMtQg19lGp>IOi(eM67G1?O!iD5ASceIhfq<
zI2UR=kNdB0p}bq~R{9((X62IOFdA;!e*155C*K}I?n=1%V)-2FZOXg#?wOo%;%Elx
z7J-{~KH$oH?4P_plw4=HTNd!STPw=D_3qmjvEq@HboXQ3GwnP>!~*mKc{GgNB%Bj2
z)Pc_l*Py&x?>-$ICvMtFw-wy9^B2PxqR-Ql;p9$*d%iTEYwkjMx86PeDpqv9D?hgv
z$Qjbki?mpT`F!#Sa;w4Jo`cU}&!D_p@7}F=OGFHk?gY4L=UYlH#{KMND7kSsH@+|%
zpBs;&yj$;P-E>PV^_8wI+_dvJpWr&a8A<MFxb1EEoO?3m-Fo-Oo13C;P3ay$4w-g-
z=-d+Y+kO{DZUwmco%vjTKFYiG?yNI6#qr|O^@N*t-f7uV<b@wbk$W9|1l|U49|0H2
zyY;TsnHwV4;c)Z!_&IX_wDVbk%Wz-+IGWs1aQ*gi--8g!yY=p^+c(6QRni>`H|;!G
zgXP$F^=S;bmEb1j=6<>>DDT$0HG5wd4?c}G*INi~+WEH}EAW2lPh-iwjlL3HCq&V?
z@e7o9>)mx7u8SIvq`MRQchb)5J%k$>8cyycxS<*Mk(+9ocQ4Sp{VQA-)*Ynl1~=_|
zVdP4zD}QIVHr(G!xo<~V%DeUMQ-^E9W5*ctI6TCDxwP|;qy9m^%n{?L-emL{*-(%B
zhPI}>Tkjs|b4~nlk?s(<Y3Davtco?>_{#1Qxcz^wqj4BRdAHsTZ+T4|UoTy2xM}B2
zi><~w;_&fQZ*#cYcXR*AZIpNG-H|P?io;Vzo5x`__PwT^k9`UE`4@Kopzn;!l4Vry
zJ<7ZFuG8%+Vo*lu)`pvQp7-Dy<RU{RP`!KM?w`Dn+{~1B>)ohESHz8Jqs;YQz&`V|
z^T(6cVjb}#y8&>;H16M5i}G&0+cNlysIf-6esI&yOSg%LHU1eek?JiCH)$RBt?N#C
zx87}A{j&HrEzDf+N1VS%JKtSm9df;Q?A}Aapw>6Jui9+NyY=o=o6BNOW$8|an|2=k
z72J+Nlc?SWa7$ZpKe1@ayY+7IH<v{0<&oxki@;4gKYw67a{rg?wuC!z`w05nUQ*tz
zcOS35EGoX2^=`xYthDp~6E@)e$9*SLy;<SbY1p6Kf|Pgb-I#fo#nyrHb87%Mtv^Al
zjact{#_pMHF~-B0`jG2tns*=4yU%SdiIQQm-m6&>&HWULZo>Vn=M<`U9NbHV(Yp!%
z8Ay4z-u<!vqL@=lx?SO>^?!H<w`n4~jo==#_a=80<=uKW{^|wcA0<Dx4>$*y)~{mc
zX1w32%T%g29o(wRJjlI7dAHu(?QlV4E-Bq{aMSv0jMx%u-1mUpQ#N=XU`bbUzq?}M
zeMax*X&WO-dxn~?vwU#V`hhgsiar7zr%}C=;O_V!$gMzmx86N@Ek?Akm2L#iZ>IGx
zvECMId>PBGJKP?pYLeTQ@@~D`e$;u9qwNTDy|v(`^;@|CH(%@NRBukWDbK2qJC5>h
zz3aU@M*KY~-IF*Uo7Nv@*>=2t{tCOX)>zkgQ-<6fly~dh8THSJhE<1~>un7;t)ES|
zNUVFh&!Bo&!tF2!J;Lyx2b6c~-FyAciy>2`n}Bn|Y5jL9?!dan8FqWYjeC-hTx-g^
z_3lTn^CGy4bc5lh^$U6jw`Zf7RIfeUpds1Gb)>vo@47rVBQ`u9Y95DQIES6q-)Qen
zoNJC|_eWOr1)P|P+@6$o>)oi5=R~FJ(wzo3tshh9F7&5$oJIAXgBzLtH~sy2ly~dh
z{twTJ)DY<wgqzks%6T{51G0<Vg>Z|xy(jk=<=uMMXUrLqwXk&8;rx7BzpIRU&^O6$
zHq{#rcY^y9a$i&4t#`eGR*P)i1I^>>4L7Yn*E+ZkYo%L#Zxa3QicsFIcl*4J6wW*S
z&2B3C2&DBBYrQwtn5EzxbG_bG66t^EMtQg1?P#|}xP9(xc2~kp>woqGZu;rcom_~=
zVKC+0diUy|ePZrCS+679w0><n_o2VsAL%}|PN2WPmhx`BJLc|A@oTwsZ=wG~T7S8&
z`*Hqw@LcmaG_dAzxJr4q-YsW;SmfO-Kes+`)B52RIe@(TrF8uoJ*Ikpt}@*y_3rf2
z`^24+(*1+}8fpFeuD~tXb)LE2I{rKkl_~GmyAS-1iRUiC=Fe>g+_Zj!GY`fZPsB+#
z<Az7{ziUr<x84m;Iv`5#2r|1R;imORbUlRkIJTH?uJ>Rru6F|E-Fnyh;7PInOo-Xt
zg#IOI{Twq!;oR+M>5iz*_3oy;Tkp=ZJtRDK$$IO-O?%Jw5x6%D3(WO?{>7i$Bg(r!
z|0nOZ!ad*gUsE5-g(EWx*PyQE{gb^E_a5BxE!jPV`@^VLKk5HhHp;vI>zceYH_&6L
zc;UL#?EX^R>2L!&u-gjv_2}QZ>Hce=y!*edT5s7MHHGT{7qi<KpIh2E%z*3Fm)$LJ
zkLNE=ZXe3K|F>&;m$|8K&pWRSdEH&jZWqNp3^!^lyGd{-*p?@E0p;EQbxmfP`>yL3
zL+x%u%&x!Ueudiv4|({Xr^}D$hvG}^$URAU_y6Jk%_hbNOf$Pdirero`aGRr*BP#L
zNDXq|QQob0hvv^F_8aG!-TsO@0dC4ub_3w{?NFE8Vw895-F+*q#Ivpo%<fRdJp=cG
z^+FnlWpF1gY)Gy<<=uMMe?)q5;ESwxwBlxpjy1a3vwH#V^TLhE9Y%S#-YuQ+k6~=^
zd~>~%6t@Z7#5U~yfNOiEIl1d7@7BBTE2J9M+R1w7D(-l=Rfn@%4bSVfHnb-92Ibv)
zcNxw?8newc*SlPCPr!9p!EQIWJr;K)_s@4cP?poXdB=S+Tv|5A>~2up-*5{YXLljo
zax1%%Ye#vv-p$_Ti@|TAbayJQI1+12eZp=G+_?2TfAgWdTkqyu|H-hb?`(6uQHnbp
z?%d3a=sNoi*W*ku)jOH;ZoPYH#uvk7Z|R;^+<kD%S7Em%=CRq{4Iy_g<=uMs$*L~~
zuL9D&qPQR7Zf(hKU$`sEa$oF3%DeTh*QhUs5t-%q-cekKqp`-If$aVRw`e4<6Xc}4
zTkkr}{AOr+TGsnmaf9I&U&QWBxZ6B=U86qb-FnyY^Ls-~ky+-??Umwgf!p&CyVh8T
znVy;Z{QFbh{eQUr9}Nyh>3&w+WVrhtu-gc(eKhx1UQBtn-i<%-*|0B8x~AuywBMn!
z$6}3@|FSzAZpi_2>3TR#dAHsjQ8v}k{HJuY;Q1`g?FM&qnZ<PdM#6nwk=M^sO!Mx>
zdUt=fcZN-EW}3%0kK(R`d$b9=$#9Fj<M*MIpuAh}HuU~tNWClFqKbPD?x%k27RUNz
z*8SXP+Jo|Lz3aB&y`fn~>6TO60>`mGY6iRQ;nttT@AC<zyj$<qKl;hA!dJT06t@lB
zY&+SV4fjktUZ>qidAHvElsCn2w4!wDD()P(1#Yr?9`1sw{NAWrly~c0cbsV+Gf-X+
zjTHAX+<{-%{R{W>pRIJArKh}G?+zOF!C*aJ*6XggSx>|o=NDc=*O>w9>znWM`no;k
z-Fo-wvyX<1=VzF&vo?y`1n$K8><)r^<K!Nyw-e>vdN*b9d&AR<((R<U;c$m{VRt*+
zFWdNib<-&C*1J_4-WoPU$>*rvihBg^vv78w!>zpjFx7j2@@~D`*XpC8RU27vh~j>O
zdw3nYrIF*DSit?ZlPK@jyT_}1F!*nsZXVy^id*|6-fMr3-A-_?PCG^Q=Apd%zpm-I
zI_){Nc&E1pcYEoEEA9ZeDKFSv0{8TUbL2Wv-u+)!ef|x|`^m5<j~s`oin|@|{%lL>
zI=caPP54D}11azRudCK;?exK5Q%`<w^A-0wTq}Eab09CQG2<$^%P8;uudCL3{qH+N
z-mB7Gp}1vF;X3nT*B!3c+?(W{qr6-1COLjI44Ng!cb(#Pg<EtmyA$E|T+F%YC)2!p
z$bVgR9Nz5tU})(j>)o!nE8vDKV)q1G$IbVt-qMtJ>)i*hKNv#3N_W5F-iG_;AiKZd
zrXGAmt|#T)dN*arN5hzO(mkrUc~9f{_ddG@<lVimaNZq8dAHvEvn9o_u#0rhDQ-)+
z6MwNg6mG6p$yDza%DeUM-R@ru5q?w6-?wXuI~DGV63giN-2?YS*4O0Tro3D4ez*Q&
zXdN!yyNY`nZgeAdKfs+;@jba#ly~dh>CICNc3I>&JXYMlaDVq;w<`8k9BcN8+!~a3
z>s_BY-wZdFO)-zd3&k~@i8UroWH$ir?_pob?Lv9C-rei>%~0m|WV4&1xI^GZY-D#c
z+}WFck~@R)ZoOMHA=R+shphLz;_igIHiq3~xRY*jpY$loyY=qF=3fm%=1Dg_*89?)
z&tAcu^oreb*uV2A1NTW!ro3D4dVc?A7+6iZ){0yHEY>x$FQ@CQ2VBRJ8EIcoKFYiG
z?%cLN4M{KM_~upIu5fMa*<A}aLqp!j<U)D3-hFcDyP?<}=@wPo<#125V)rrJXTDjf
z-Vn;W^==RUUxw4$q+3RD<KPAkWVZzNa|MUmkh_BNZoTUm_tTI)haBH3iks^k&ebho
z*AMR0WxW6F0_EL$x0J_kL)?=|=Ighn;x>o7X&<})z|C<iC)Jy3ns=|)yDL(D7@oe6
z<6uzSNpQR0X7>TyKTmicURlb!_3qGy>BY<dS+7xXkHJ0im0erx8%&=)AJyBM@@~DG
zrQ07vZ6E12SKM!K^A=e_*KcRIm+SC;#4(h2>)qF9{}>+INw<yS);f>#ID*|3a3i~M
zzxZvGckA8mXVZzjcckm9xIu7lbz(OjZq}*XFa93o-Fi3P@2|l%a-#Wq=&rb%;QkrK
zt}XU^raMrK#y2zN-Fmm^qjaKCHd${!#Z83kvg+UQg<I}fadK->-mQ0={>>nw9!)UU
zJ5X_p#$f;Yad!WK+r4lpa=TOBt#{+?Gl;KFavVYxw=G=v1a=?8o!XT9(9fp4Tkp1L
zmriuaC*5$xoekGB{YtvdN@Abx{gLIU-e}6Z^=_Yf8N|<N(w(BXF>nWzVYeGxn@HaO
z`;zi*y<5G2m5BH%$9In6roVvaGgo#^=N1Pi@p-+1ly~dhQeUk^)!NcsqPPNX{a)-Q
z!Tnf-&-1!c-mQ1nre+YUe5AWdaR<ZAGl^Z(x$zJGo*N%XdAHs@S=UNz8$8~8oo!Iu
zNVq#Tu-gZ2*IC?0U=`)vdbfM7Od{WQ=|(DUGF+c?>~4XZIp*K~50rQ7-NbBGqKCH}
zhkc4$>LPwGp0oQ3ZgVT{GxFUV6Yn^^`z&K7Q9q}2qZQW&?#C?u(Dhr*)NjR!`@>YA
zyj$;<_sS?f&64AAN^$4IT~vwP{%{A5<^DTuDeu<1SH5NvF+0YYKevmDdl7DWcXs!{
zeSebs8;zs9Tkpn%XA;XgO8181T3w1YcJOD{)R*d|75AmuL3y{{{o$QSWSKAByNcTo
z?vZKi)<YkyN=>=%*8|GC^=`UX8Abmqa(o{t?l8Fhx3W7DZu@E6SIwI8ZoTXBDvM}*
zC)_-~$%?xJ?uLu(9)r922KSe9q`X`24p@>|IFyy+@K$l3!+rOP-Sp@SIKQwP-6wle
z-mP~N?XrlWF4Fz1xFs*g8lAGOqU*N_+`L_zkvos_ZoTVtF0+_9R*u6@#q9{UiygaD
z;ilW#oZMrSckA897qf_6*QA>P`xMfi*XP2W@4@b6xV=8MAon%p-Fnw%b{64KPr6wZ
z_X6BCf$Zi+pHnNRR^%3;yj$;nESFWpSCwuq#Z7+&{mf^u>kYTgEbjN}MtQg1J#;Ip
zxY~NG`8q48xCXe3wz0bu?v;4%dpnr&?*GGWYc1Bi8)J5hEABwJgD<iB5bjDl?kl{O
z@@~D`v}{(9v_#fhR&lq$?em&lQ-9^NVccK&D&^f@{%78uw$3#oz*_XYChM)DxQTEZ
zWm`?xZy&fRSGdpg&z+_lrQSU<G^?muN`7wD6}RZsSYtCgcDKT{E$K(sLuJal_3r)k
z*21ZebR8A94cs0c?7oNlWI$JP+f&}HcMs*U5m}9Ld>bn6bhym}*{zNK>zQJ@lRJU(
zZoOM0r;S+qO}eg%dkU`m40c1|x)$$6?rzGv_3q!NHe$;L`MJ3(?svE)wy}E*Zp~qR
z$bCe4x8BXYCcAL#5oW%ATPtq$Yk0rNMRqfxZ~pI_{m9KmdAHtu)yi6ozb)%+ueknj
zd%t4W9j?(XkX!@h-FmnGgzVx&^k{Rveu}#WuC2`)x_;-vJvAwq+&+|d>)jV_Ho~r+
ztha~a-i4b~ncX<Jd!F<scLC+yde^Uf4zYQ-9AAIM&2>H2*v6gRVx@5ou<;;rPg35k
zcc)d)A^JU*?f}JY0{3b^c6-2`8!?33ca(SQ-N(1HiQwfU&Eq>%aYw@~J(b<faJ{XD
zlUt1PZoQkSRt_<4pmawm?moEvH?jK;ZneIl<hoPdt#^m@&LQlZ%W)X5xUb>fJ;!dH
zGBL(qXT!)HMtQg1{jw;#==VX^J5_PZ+`u`XWOl>g7OXsm+;x<9>)q8ia)`?3Le1kl
zTXB8h_RqAIuHRE|Yr2J#dxP?By<0FShq#em*1JG)=fd4tj$P}rIM*>^9JzmN4s^@r
zsCU-}<rJk#j4;=`OmWY_-RsJ(7u*s%#*=GDdAHtuIyskE)?k>~U8A_a;fD2KcPZTK
zNfXHRp}bq~R&SC+xc8Ogut9Na-^BYN$Fchu?%aZt$em1ix87}pahU8Z$6=e|2Ex6*
zhTRI~aNeoKWODaX-mQ1P7tbXeS4(%7;;x1J^f<f0aI1}*LT)1E-FnxmLLRa7l-zf9
zP;u|T9rcLa18@@$O(i!c<=uLBM(>=$I(oSIb33BAId9>4=Qq2*;XZjcjokW_ck5lJ
zV!1_u2zfo6QryOHo7zV3b9H&Fr<R{Vu0Q47dUxZeTw<WDbk8g9NVwVRvpWlJO~0As
zE~dO&?;cIcEo`mj_+C-mU2tdmuzMSB{Nh>Uo~FE8@A~b_CFZpmY98O4iu)X{;|O+3
zRKV}%_1Wa6nC9K>^lsVBxyAXD(!Hy=#bYraTFh=AxSy@(l3SAU?*F=KUYNC~q5hu)
zyjz+66YjhQ^OmaLpV4PECl38J?AFo07hoI~4d?M~L3y{{EgfuA|GTw3FMSsI#itqU
zuD^}<?nJR$0Pgm7)2ZH2%DeUMkLeG^hFcTO^_GGgRf65|cW}PNX+70@0oU)>?0o%h
zqP$!0j`uwwT&?AKk)_xV6TbT?S;o8QixSQ561bV`^7k#4@@~C5@xvYw@?GwywT0`}
znB6aM9cpc$zcC1I+l738NKbjU-rc@;hiKHjpLrbCV}EM)J4s}%zlZmFZeq6$+$NdX
zb)dXk@AlfULwt1XZFcS8-tuR+&HY&8&mtS?Z`6Q0el*`FJ5%1RcV8@s6gPJCFuQy4
z9>)d0o{*L90iL5~u$vd|;?I0vpGJAN-u*OUr})%Ex^?0D%wcyI+zG$f{fOU-gZ<b&
zNO`y3jhL`g96H?HTyHeqXIZKYyItckzQLQQ_M32bKAuR|?^DXV_3oHjJ4J@)-OR2t
z+~j?UWaWGqYm9x!?jE?AI<lLG@@~CbBganhcY$<I;eDaoo3eWpZVAuL^fwm3J#>wK
zkDV#+*1L1N>=b$2rP~<p;QI+=1wTSx)?@4rh5O!}-5|=l_3qmjJ4M4V>7K#+SPjAK
z7JrQM-S%7PZ?uQ|&v||>Sw?xc-u?b7QcNDz)jYm#aMPt@_Yz#^RqPtzhBjySJmuYb
z_v(X4u`0WC&*Qzc=jK1A8b>6czjBVP^zY(ub6n%+v(Kh^_awbLWJaVIm7$Bd-ez!T
zm1nm?BHp(+irw^Zw{&E;H09lTw_4puk+HCJWANVJwuc^3jkn<5e9dk$o>RS_@N;S_
z%DeTh-SzFFOea5CFWe#??1n!<-z48{^fxZUT|R)_QIvP<-QZ!7VvDP+_dMRKobd1=
zS=Ew|qhDZmH(a+rW9j?0h4OB_d(F6A*zc0{y20HzfZh9WN7ma;e`6`!U!~Z+LwUE}
zt=De5C~-)-XYhXMU@LYfKaDlE-^A`%xRpJ4evy&#ZoL~=b(^?(uCsZ3jc}_ij;9)H
zJi|Wz0+ICZesFJ&8BOC*gYs^@8+T-@h<n}1?4H2;yFXQ8Hy-ZJ3GB9pYkzDMxm_vm
z*1I7OwuqYH(shO#75#u}oScmLPzt*Z;HIWycP8cCdbi8rt>Wzj=|<!I=;5C1)_5Lk
ztkHD`{f!E6r#0nyVHD-vdiQ13Eh0S9*E|jexNeE}$+{1B>ScEG!Y#XWB#py!%Dex!
zYdU*j`ftwGTP)rWc>wQ;&oPAE2`{kk)v%NP#vja&Q{V9XI6vjxde`N~W{da7)`WX2
zGrLt^;{4l2c3;Dda%0zp@@~EB>jPJLpXH8}1oXkUM>WR6&6RH#{rfK5#LXjU9Qsq<
zt#|)6-DFX36}a81vK#ga&%a~YJr8$dE_PQ^-mQ22`&zmiKO~?J#$Bqh>}%`;dCl$t
zxRb~5y2b^{yY=pfVQ`gkC=K^*Yj!Wf{nLIo{f&)qpT8YO<M7oq?>_K<xc-*)u6Und
z-23znS%coh8dslUcQM>keb_BWdAHtewREFJy#?To9L{dxx3R`@_Iv1WOolu0*-)yt
zHRauUw?_I67N6VPcL~NuHtZgSn`0Tfp>Q1o*u{~emkW;R-LM~)t~K1u|J<e;d%nZ_
z#;x|!zXRbG`NHd5+bQqXyW4ZZ4VT~J32*Ux?7(i;_jo=FVYe&Xx0BetM|rp2{jvzI
zay|TfgWuy*aa7|DxHs;y+Xil;ExTDL@7BBho!488?-00c+p*i`1I~rI?xVlq26s->
zVEWu@Q{Jt2|4v$GQSY1A3C5x?V#!K{8^4|125`&!vfG{VZoO;V1y^}*buYLHBiUV+
zg7e)4_tW2~3Abt{cIQyut#@-2uyo^J;rBQPyA40$cYZ9pmEo2;!0V|;DDT$0mAx&;
zp)K6tHMgk71h`*cuv-$Yoj<!TDeu<1bDylW7>A256VL~P-SMAr{kA?pf1@zmIi=Vw
zM0vN~o!>9Q;&W>R_s7|rWR?4j{Thea%?<bXlYw+SG^V^;@7^zLS?|FY3Fw2t?pe6Y
z%N(S?VFS1KR(1zc-mP~JPPcTc!JYj223dW-V4v7@b~D0_9m?)%%DeThS14TN`xfy$
z!Ps&PyIE6XjR!xn`v>dxwVJSdneuME`yybC#phNCZoWM1Zh`CNdx&cP4%g0>-S53I
z@lMvegBrtC>YbUKV7$NXI$7>taqjjMyI<hm_&k6<w~CZ^>)i`Jmi4BCyT*~-mvDDg
zj-tPj0@o{+U2n>}_3o!tt1a%6gP-B|_`)@^rhUWvW9PB^4sMRa?2e<nTkpO<xXNN2
zUOY`OR_x4frSEtz!8dl_z&*Q#-JO(o>)q8hs8_k~bb|Z#-BqghJltYk57WP2!QH=<
z-FV8o^=?XY)T_8xlkj^yj@{lruwU*hyD#A;&SBS@@@~ER;rKrm<Io81$o%YD{lqz{
zs?k)h$+ex$Ze7Z|^=|W0aFu%ZKEdztrYmHvfm>-lyQXniwus$cly~dhA=NGGEe|(~
zV7K8f?63aH?rXS%*RVT}@@~ERd*w=tdY2?77_VHuO!eM}JHzh?{rfH4I=k3CPI-6g
z|IE8hX9P^o)jh+r)lar6WPV<ELA`0N6WsSL+0BUO^}(h1dHoIL-FnwAI!4^Bb<ey`
zJ6~~sVtm70*u4VRdMM9hi%{OJcZUsLAy$vwY<71m?rXSv>a*Jq^Z6`=c)g@4<=uMs
zNWF>T(IR<n@qprffos!%-8XQ%wB~iLA(VIPU0b_BqE?LD7qmlhvtfMCH)6LB*5$@_
z=5@rily~dh_SOBxa8H@Xu2tNMa0@kK_dZ-(A6}=uMtQg1%^2@5j+~Zx;X=hV!u{&S
zZY!)Suk+%Z;nxY%jZ*J=U-B1`Wn?ZrRdM~`4)A674BQvZIS;5zdAHuZRX#v0Uo71)
z#T^dUuNS)ptlJlGn?t`B9VqYCyDy@HMB{XFU&R2$od@?<FuOb97Id3O?nKJF^=|oZ
zL8A6*x&NV$;%<eTJe=JM6|rvAWC6LmDeu<1JDUWG0(+$EtGH+2ejCT`O1Os_FCzCb
z<=uL>+r1#MZ<-v3R*L%wZsH7f^Hz#6K6YC|Zg$GM^=^?IA!1KE={8o}RJczTu{#Z}
zW3y%C8Yu79yN1~z;)=E0e<l<+=kHkK(ADgwt8B_4SCHG6@@~Bw)ha|Zh>-PGSKNwl
zt+uc`9B#7bKjbc?yj$;nZxAfnJ4n~`dy#hkZ3OrJ9(LcsUDs+gxhE;_*1M;yf<=!F
z(k-gEK5*9@VYhb`yf>=NT5{i0-mQ1fxdn@IFQl7GaR<R|caGf$aPPNUN3Jd9-FkO*
z&i>+@Qg0^3oenqU8oO=nus^lq26Ejg@7BACWrD@GtFqo7%J1enxC`&GdjW1_r%mJz
zr@UM5mOdRKs?C+|2gQwsTOo;Em#Q(wcYa&QT~B$p-aUmLF5<9spDAuE+;eZ(JqY(s
zw{7I!puAh}rW!-UqN&oouefjEwo7H#zFLg&dyhzR{}wwx(6*`GT{9s>w0<t#>x!G{
z5Bd}QWp@MI#eH^?Tb1%|z1wzWuz2ex-Lr~Y9ImhRQF`97wa0#=zPriwp}bq~u0Iki
zw#G>}T5%oWp32Ma0=U+Jd&!+bdAHuJcRNTpH<j)##cc&Q%$8kihZtjpp#9|Tqr6-1
zX892;9=DM02F2|Qw`c`+!{Pb_A0#)C@@~DGtw4zQeN(#26?ZJ$;STJ6g}Y%u6uG%5
z@7B8uriX}yR`UKkS8<oX-Byp?{?%iQdxu1m+ko<Jy*q4Ekl1re);mdYcfrkPWcL}|
z3?q(`>rZ*N-aT15L_7+U?nuRrfgA3@Zs!`<?-_cW+$EHE>)razLd5&K(jB0<32;w%
zvwI6}yU{1fJwti7-fg!gSQPS?Zg0i?2DexjcAMA4_jt@{a#Kw6?ml|=+_GSC`Gj<R
z6*te{Sfh7ec2C0nHSR3AB`NRLyQ9K`MVAB8^-|o*a1Re)w_YvuahZ6Y+!mB~>)l21
zK_Vqkx=j?<2)EKmc6Y#?H2DI#p_F&)-Db(bVxW_Bh2r|c{bvHZ<!hVX=W~hNO_X=*
z-NCWJqPcQkcTn6xa1&;-yAp1{=~u{&rMz43238CaAt|!n@`^hRZidC|=BtC;Y4$a8
z(^KB9ck?C$i~Rpcx2WQ-g`06TyVK!D%)LRb1LfU%_r|GUadMw@b1QBXT$|18rgw}n
z4qb4I+|HDD>)mPRgG7!7(#@o}H{mwj&F*lxy%)xjJB{*gy?bdyu-KbZx<3-+^Vv(d
z5r^4*2Y1cFJLDduyj$<i3k?<tXQcaHanq-ZGtNKFZtuD=#(hifk^7YLZoL~k9=~rf
z(tW15Mc_`q%<coYca}dOHxK3AdN=-Qu(%r|=NI=Cw+7s8aqPCKhxdIge@Lz~<=uMs
zXSHAv)lJrWO>y1fo_)mb1-NfkJSI1Y@@~EB`Y}jUT`%1;irXD-+;euF4Kc>is}jjw
zMtQg1jdu$XDawBP!-_is?&S~c9)w$DO%l21Deu<18#4rnsjFqZI~8{>+)LltttMiO
zOCp|;``I+_UaWV2I0cKUzS3Q<xSQcdWjIF9QS0EQTmPKg(v)}W-7Zx^#1wn!E?3;+
zaMxyIw`hIzS6=^;+*Xu#>)o7Bf<%S9(w(EYci_&*&+a_9RvTWEJBspdy*sFOkoeYH
zx)T-mJ=_V!+0D`beY7^dC3g$u-Fnv+<NI0py$Ds@Ea~Hn!4=pY4R^_=_vGH8yj$;f
z&ln;MMP<GH6}JT3HV*85hMR743b`36@7BAq8-s*x7U}j<+&XYYJ$3^dV%=!-Cvt00
z-mQ1HH474z=SkN`aa+QD)rj3hxZSsYA-5~#-FnxdZm{^G%#S@4w>R7!?(BASLO=6u
zU&)<GdAHszIX_4|50Le`D()z_v)izH74DVo-^q=lyj$<?#P9reKj|72cLCfAo!D*S
z9Aj*}<0rY#Deu<1*(L-DrySC?SKMuI6MC{64L5YhZ*ucf-mQ06eGL*3@$$Z2PH|7c
z-5$hl%|_V&yW=mpE|hoc-M{{UBH^BN3oGt@xD$u6y9w^6+vyr&DLP$$%DeUMdD{@N
zBbOY9oQnGaZqYI9mT<xO!aM27T}gSj-d%JmNOZH7Zbrq;k|EAGZ!)`!;FiCWf!qs}
zckA8U83V<_b#ffOJ(kZ8CE+%h!>)}n#(3ej6}ewc^X~I{_x8|WvG1;Q-zlym+~_6j
zj)NO<J0rQ}DDT$0&DI2pRWqcUq`01N1J<zn6|Vj5Oystvyj$;Xz7i;+=1TXj;`WAH
zeG9w6uE=BKGLt)&@@~Dm#5YJ7zDW0q;*NrQbT_+6aQDS!A$L3F-Fi3U(;)HolXOoj
z?gF@WhuQUMjB~efS;@UedAHs@-#$nbIxE-h4=L_exF=4rdkt=ItTnk=DDT$0KUxNf
zxou^=I~4aMT*D=H-I~N0Pu{X2w>IV7dUu>5K=f`V-3Z0K2lv@6cBA21-^xaAcgnl<
zZoA1rV)kz7E>Ya~aC^kFTf+_ge{W_dcMj#<dUs#VU@<Mb{2tFz+{{+^oqx*iX1K98
zbC7$4@@~ERrGB8u*;m#(UU7@V{r!gB;!V+S@McbOUsB$!cWdts67SE;>tTfA)`Hvi
z3%d*8THVM+ZXwFM_3pG&fnrBz=>{uqbGR#hvuoWf#@OvzZgLw_-mQ1PHwqMEZb-L>
z;&zAoF4J*(o*WCe#??IJ4y3$W?@q}VDB9S|@$I0vBj7g5$?g}pU9aRNcQxhRdUqn+
z7G0#<LUHH7ol}tA0QVT<(aZVBy-azx-ksbdNL*Vb$HAz$8{u9p!EOTF&X@9&`+XQD
z-e2|Zk1T=Wda}&3>MHJ0xSkc+ZQmT{V=ojSw<6`;de?tJfQWo7>#eG|v2YJLuzLw^
z*_eXldQ;x5cZVMh6t#y*x3uEEf}5!xyDlEc(a#kkcO2#2dUqFk&>w6nKes}Pn?7Tl
zF?S<&55i46TbSIPly`sC=G_^?0)%^ES#Ng5Ed;lJGj^-C!1~$gBIL$X-mQ06j|vo7
zn@cyn;@ZO<?!|5dT-Q@Y$+f1uTkn323lRIaN;mb9e12#GcWp;@3$;YfaH1Hwbt&)G
zyT=Px6dgOPGw0~X6?ZD!PQBO-g!@mH;^g+Cyj$-&W$GoiSKV!PH!ALSxD)%c`w(ub
ze+hEuQQob0m**KEF2zKd-35w!32tO4yX`#DFX&-Oa*tEqt#<=_hKWrpj+xzwikl3#
z)dY60!#(a>n%p;(ckA8ch*0tR-3hZhOmY9h9X6BQmaQ<p@ny&@LV35|UDYQ{WV(OK
z?D{Ki;Y@MH0*lza2)A{Qa^yCpyj$;XnLApvseIb(c2QghxC{Pa*WC;6$$U|s+#!^A
z>s_bVF!8W~bXzNKQ@DROuzMbEiT)MIT}yel-d+56l(6|A-6o3L1+Lu=cHLT||5<7!
za<5U|t#{YW9VH^2&zQ$SDDF_W)eo?H2JYywRmlBy!*rw6yAL0X5=ll`uf5{VgxmNS
zyT&&7ozGmA+{%=9>)q*<MvDfGrCU~U*THo>$L>kEGiFvJw*%$fdUtP)FflKebPFkN
zG+ghi>^irNF>cN4K<-4!yY=qLN@1d02I*!~+?#M`-e&g*+#O4+le?SpZoNC~^e8d@
zu>4-6Q{0zu$3J3Mc;ol2L``xZQ{Jt2t&fC>(ha5i`Juf3{)M|VncYKh|B0wYZg$GM
z_3nlNVWQbp>Aq0hf|=utE#I;0*beWjt5k<v1LfU%cU0Lhk>`qZA1ZD&xH(eU-3K=|
z(ve)e6656pC%xM++eop^LAo~-w=vwzf7q?j9{WgZ)+2Wz<=uMs>$Q>MZGP#VRoqT+
zA7?s2&yzdg`W-Nkdy?{Qy*ncyOw9ds()>L>thj^VZpy)K)ecyP5%tM^PkFcAy^j03
z?`G-lP~2&7w-#V`3*1FV8<1;DdAHsT{}U=&otEx8#a#_|dU19ubi}%xixau-ly~dh
zk4Hm=Pjl%mQQQM?-OIBZ0eAOlXL5&A-mP~B{TV5epUdC3nTmTE?ysusmhy=)j%(sV
z?t03*^={^|BSglcvfgmTO@bR$o86Ug_n$YCdxP?By_>o=RP4SX>m91NKj8W|V7G{G
zjIpD8V{-piy*s{I$N#$O`R;sgK8ZZ%`<VAn&WOjk+pfGX^KF(m<CUH4Mxow3rCiCa
zN_n^5?Xu^x2!8Enc4HnS7=1rpqVK}ttZ~NEB~H@6!%gEbkjKG?^6vlbrk$hm`i6In
zEBjt;;g*`jZhz}I<A-VNc7yvf8@p2|@7BA<6w7lyqwXgdpBG}ckWHNNX9~M5;RfI2
z>tP?|-FkQBYRmn~N%s<rky|g)|M!D%S9dr?|8|8NwujwB%DeUM{F*B)#-SD5!427M
zlMUauXm%UIZ56?8F3P+0uHDh47W<Wt+)Xfw>ldiT*KjwLI8FZ+aQ&CE+ko<Jz58qN
z5{rH2Rp9>U!S49%amKvk*fqe7UcjzD<=uMsTxGb*^|0g)&NF<8p&E<ih%?@KBHcgp
z*<C_;x8A)uda;F@5$@!v?CyeFyzv?O8>V`TEN1r%<=uMsPxD0<<2&d!&NCGIe|+6#
zTvg5YHgFre3kw@j6dN6T8`$05Ef$JcfD)o8f+(UOBG}m2iOErHQL%&D?rxv!tmXgA
zoX_w1%&VI>_xCL4?7h#Pea)K9Zu6YUMya*z)`Oe8g5CG#dAGaXwV4f98HfAH=J$x5
zp&D<)y_)e9{cS!T#znJhM|rp2tx?*#-ZpS=HD-50u4H56aCRHRJ+hJAwv>14-2?lv
zr-V}P-fQOfh@GYyGv>y9)M<8`!ELvjT@T8;_3ngu)@~WN!-umQ4%e$Z|J@R<%L#VZ
zQ{Mf*?*CnL%>Om@fvfa&1YJen?RT!Ra-L+Pm>;|5>%)$J*N1DAckA8xKdkHhamBn3
z2D=GxBmQHz3*6C<x!$ytckA8jo2|dMp>PkBV7F^t<XO%5JM0BF?N@f4DDT$0)yG;N
zXBRI&z&;p!%sz#?C5Bz|^><bdzW(;5yj$-Udui>~h1=raIW|3CvN1dzpCcpSo+!(1
z0Oj3!xBqkNafrEuzS|poO~{@<*?2vW-3f4)Heh!z<=uMszwg%9hwN~#j$(HeT<4?g
zPJ`>xi``VpyY=qyMR1kA#VHrf`(W_3+^ImaVPE{;H52aCsqE&Vyj$-Msf_ESa{S)A
zfZyXFc8|f`Kb_r$aF;J*w-M#tdiQ)${9Y*MaSOO5OS9X#V6sv9Cc9y9@9txFEalyL
z*J+RSb$#o3^FA2-8~h0Fl3M&*7X!E49d^Sh@7B9xx>^6e6@<IRh22Sokei0EyA7^e
zI=<gILwUE}eGzIs4zrTX`(W_BQ@X;KZ@y*s5Zo6I?0z!OyVvX8*mu_Trk=y^@i=ya
z;ik0Vdz7<qi*;qU6y@D|H^w{M>U(PgH%%ILOW7tH**36y6Yg;@b~{kst#^+mTe~~X
zn)kurxz%>Koip&g<x{w2wz4~u@@~C*wZ;mo<F^pph2_|7SR~mn2D1AF?yP(4Zlt_h
z@BS$aS2=!XnaulOaJG;H_v}G-GvU6vWp2K&zCn4n-mU9rUGJkr^xd{$w^vc*=!Lka
zst{birtD^*yj$<q`D$IS3)}~Hd2P*8xY;JL>j3w>2fNiM@7BAgj#=MN#+@<mgTby_
zG2H(qu`A#f*~#tz%DeS$PdB*AbtgC6ap~DjTO8}I?70`N9o)??*bSt-Tkp1TLO+>u
zopd{G-Uox%YA=LaVGg?k;npkPoaQb2Deu<1ZQEJ*sogwf-UowS+Y)%rb%$LyxLb#?
z`;_u-y?gByTxA^U!98%0d+FA~ZB+YT&n4WoYuL?CdAHupwA8u}F!CgRkK40b%`Vx<
zu$bLQxGPfGZ9;js-aWg^dK}WgZSjzMAP>SF_nh5$xV0;^pz$3~dAHuZlEb<$bnprD
zJ{at_D2cq=;GWjAaI3kp8$o%u-W~bZdK^w3H}8YN?j^WySF-yMuIp}gO_X=*-Aw(g
z>n#s=ML74a_AZrdJo?1$ces=Pu=~|K@4l&b<EvZG3;h$!`(Ut}3io6??nTbi2iNsh
zE;PPnDeu<1uX<U#Pmh`R!Qh_baix=uG3(fMfctPMyPYWS*1N6=*5l9$?(0tfdYR$+
z{$aNn-1n*MdQ#r4cNea+?rYv~)VvP{_jG%f!Th*8_onxQyR=qI8izQ_yY=p#|E$L$
zGh7dMc5TXHezBF^X>jY!V>gBJZoNCf)w;iX<Pq~e80-eYb<D)Q|4ZQJxy!B%<=uL>
zTD<i*oH=aX2ZMY33zoxkxqj?!gS)qSD;kHIly~dh!R63DuUsd~!#(Z9?kczk;@Le1
z_r-j62T|Uwcf%W7_vQN@GVg=IdnlAGk9Duvc+ZCCa2-<F4WhhT?-rhneGio1<3|V0
z`(UuU8SbRP>}KklXw+=nn#SP}<=uLB#ZBw|2^zz-eHKsi&1&|z|J}!KS-5*vvHP6z
zZoQlE#(Er99l-DLbawZ`J)1L`KBF1jDu385M0vN~?bOVAAB>;-&HG@m+n_?Sacd~M
zL*RZJ(1ymL8Rgx2_fr|`eK2~$9k+TH)p#84)&uO$g<JUqyAvtz*1P*Xtm}>6XWj>c
zT^EOBqgL+g^cgX5vsY+K^+r+N{Y{&9A58fp(wu5$d5-u_abKg}$=|r%HT|$3NWBi^
zCQ;t4ca6d+Vt45Z7B>^d;s5I05BKaNc4zd*eaY=k<bL<Z#5=RzbzgWw<Ze;u|Lcas
z4ZO&1qXC%5*6B*FJ>}hcx4^GGqW;$$7Wbzz4t{W-A7=Lp+|?7hliQW@ZoQl9+%{1r
zPiBkzTydwv{kDbObpx?4>*Ai|dQ;x5cipCM7KiR<u(($hcM{y{QS5dag!dA}_9k~5
z<=uLBXY)0p@9|6)cbDQ$hPybJ-H&j`9qmi*9m>1)Zkv!;F}j@`hcLx8*IVC*-Q|PP
z$NHc@xmhUh*1NMKVnxZ9(w(8W6X3eLvs-@%_U*_ph+JpNyY=qn%<IJcdRZ*vFi>&F
z!reNW-A8a6ISe6pDCOOHH(UO7V*D}bwou%Wa5wd1H(+R@(WK)ra)T-F*1I=`tQBd$
zOV?3xhrvD4k=-i8FrS|`g50B&ckA65mDY(;^Q4<kaR<W9)QsJ0a9gYzMeZxgyY+6q
zgKNdWUef)(S6(0b!maMi?)2f<pZ3HUa&0N^*1LPAtreX;rTai}d%*2gkzKnH*w69#
zIC5Pm@7BBd*RK^Vvq<-h;&z5RqBy&!;9kfvfm}DryY+73g;>!ey>z!KZhN?Hx!D~(
zGSRqQZ4$ZBly~dh7mH#=#1?s8ELGfAaO2ann{!m65!}^{+>4ZV>s^N%u_CFJbZ07V
zGq~r!@bCOCxcjC|CHL1O^Mz9H`j(6pE!s$Th~hSed-plJJx1d?xojG_4wQH6UHdGt
zV#p60%X!>daqGb?a+lqoa4+tePHqp%yY+6n^D$!P9qCq6+}dz!USc<D49?^0Gs*R#
zyj$=3O^y)>C!||gajU~^c!J%gV{twEJe%Adly~dh5x>@mx0|G!MsX{{oxX?NCvg7+
zc#(Ub@@~EBkhDf@$RpjSd*pfS05@SHyYt4O|6;i}x!Ec2*1KP;#R$6t@^|Q>;+BD%
zH<DdPSIk@1&LOuh<=uMM;YhS_Op)$x#kGU$yqMkda9wuIC3ghn-FkOQx)@P=m2_7r
zZV|Zk=CV6se4;V;m=C$3ly~dha;u_6L|*CoDsBO|5mVXCI|1v=lYGfdpuAh}dJT&f
zt7=PkoZ{wzdvX-JyWkc`@gw&w<=uLB?3ifbzci!eeCw*X+2Pje$8NWYiALj8e{zda
z-mQ0M-B>LyypV2v#kGMusw2B!;1+y0kK9(2ckA7U2Ud$b9?~tNxar}>Hf49&B)rG*
zX8^hGly~dhOl_mZ&zjQBuDHK3Z+Tjq-8z#KjY%07kQ+;Rx88lbB}z=rA>EI=<@xp<
zZk3Ac-hjI>S0K5UDeu<1N1|4XpzZR0@{Zzuggc=)yVKmTj<oPXa{o5KvY=6V_dts%
zacz=xPbltNxVv(*TWAW_8<ko_t|R5$dUt11l<?>w-8jX40rzuycK5=aTQP{-UX*w1
zUAwER#JJb#EywQ?#eD+T^()WkyHCYFPt_Nb>rZ*N-fg*Ksn~8Of9EGDuDRakFWG$s
zH?mnUx$%^D>)mm)BSq*Q>Go1wbG?u6u^Zry_fGZ<A@?EW-Fo+Ln^oec;x<v-M{qk`
zVb^|IqA_jE5^{4<-mP~Z;5lOU)v{g(#k~vn(J6LM!QD4Il-&B1ckA8e`y<60yz9!`
zCzd9SSEIa&dlPP}{p=3$!2S;*OUWHYdAHtukU3J!ZYkaG@$!7T2KPc7yJ@B;8cSlA
zksC&Nx87ak6Dh`xm+m9Qy$ILo-`<(4;7-~bM(#<<yY=qE_z3aTQMzXp_blA4OSoP!
z1Mkr_EhqQAdEPxw@AexPDXN{4_h-8l_Y~Yee(c_a+x>PpxptIy>)o)@5hBxZ>8@1V
zV{qN4v+Fh!`vtvPL2g^hyY;SXXoMKxFI^wSJqY*YICgW-!uuhAuO!!l@@~C*ZA^rC
z_gCKUj8oh_aH|etcZ=E05lQZP%DeS$QoEJnN)}mfcg5WSH@+*oEob9BV#QaHdyVpL
zy=yyfrKsU9>usdCad2z5WH%M=OUEd3(^B58cX!0E5WB}n*Iscqn8&vsyR$u!Z`NB)
zt`p_mdbiBnm12OcbaN~28n~UE*e&9fXnbxJO>SSxyY+6CIV*%$Q|W%+CC}qXxEo8e
z8xMD8&o$%*P~NR~KV4oS8f}vIQI8dOIow<Y+3nzs_b?5MA$Kq3-Fo-$?r`z0t#r>R
z?h?3%v#|Rd?&wLe<fc;It#`ezhKp*R(v4T#MR3dh=I8cv=U|@^&$Z;{p}bq~4vh^L
zOX^8CQgH*|hP`9A*j(%bw_qK)jVSNdyXoJDi}#80e#c*Nec)zEWp@wUiDB!>9ZPw)
z-mUa_x%fCux)T)F6Yjwq>~`=;G={9%KyEnY-Fi3Qf#ssmVCnW&-05(;oMZPHT>C8>
z$vs1Px8Chkc)1w+P2TSqiaP~v{-f-A`6e2L_iiHhlX>2~Pwy^Uy<FTZChK)n+zD_!
zcd~2imuPfO*i3FI%DeUM0#lf%a#q$`Kyk;wEw_%{?Qox*jU%@M<=uL>x!ZEFxsP<y
zDDE)0apCN?^2dGD)h*=Cq`X`29zVWJ+{z~1XFKKfVG!Jb3)y`DclYhB<Zh(ATknRo
z2@}T~NcW23_J#Yyi(U75$YWEtk$Z#kZoQjWBTW3<A@5TUDQ*wAJKWgK8G!lm%kAW5
zpuAh}7Q{F-9U|RzirX3PjFIfFh1>VT4sxqe-mQ1Dms%$32<ZkXZacW0`m$SZKCYAB
zc9J`Q@@~C*VB9hhTT!|mit7URV+VGxz%BQ87rB9yckA7#D~m+20`m8wuj00Xd$cLL
z0~cWZZ;svM?x(z4?=}itDsJDC*U1)&+YD}qGrM2l<|w*{+^3Xx>)k0cL&c-qvR)^}
zZ47r@C3fcrCK^r-d&$jDdAHteU3aM{`B2tttGM;xHn(H9<U-`qwfB+Rgz|2^JH#<m
zxa5=drc+#JxMlOP8xOZ|^Zn$Gr@UM5M!g6XtscvIU+<9Tu{nqQm5JR}i|{+t`2e{Q
zly~dh+fJcktebRiD6S*ib3ZtrzY8~Uz(I0Nly~dh?G@lwm2QIK+QSWd!|uc&<h)}K
zk^9v=?|!a#13xVhWo)FoS#e9l9rTFZjEfTu=V^z@ElYW~-nHMbMBI5Ne=n9PZZWu(
zud^Et*Vg9<xt%EQ*1K;%hKSc8()Ci@LU7-i*mVp>-V$__Tu;io_3pl3A!1l}>5f+1
zyl~?WvwIZotMFsw#!=p_ciY|%5xZ+hx2xjjfa|`4-A*BRuUu>bxha%)>)m4AmWYLy
z<?lsf#kGN3eJ#8H!Tqx3IJq{IckA7zvx7z61=6jkxar_l2xoWd66D8wPmo)a@@~C*
zqk4$wTw1#M756vR6Z{EeH*+ZZO^===cM#>>diTorU{SofbpLLb=kZs#CNFkZz}<c3
z6uCi^cYoLB-Bl(8i=^lB_u_@(et_%e#;)U1yw~XBX>t!y-mP~RZ(1yt?v(B|#eEHT
z+DLW}!+mr847txK@7BAguPqjLW2Adjai78M(3jnI%dk%DULv`LDDT$0snvo-hZpHA
z&r3Eb?qj&kI<k8oZnjhtxy>l=*1OxT28p^3vffa|y$82fGj?6W(69I6EV&aY@7BBd
zzAY9H_Q-m@6!#`v=Q`~Eg?sMpIdY>Y@7B9b4h4xH{iQobaj(Ly<;ZT(avTqzlE_V>
zyj$-EbP5tRYDu@d;$AS1Z%KAbgkyiBZ|BMVz8n*8TfG}UIY>C2Piy(!nka4}+#dPa
z-3oW%uM6bbQ{Jt2&+J?z>OGaNqvD=`D>Ad&U`3+QC(R{tyHeh*cZY>75>G;<TTpS2
zz;*t`>-)~Z^-X`7TyM&|_3ojrL1M*3>84ZMeQ<5wvD;@Q=CPTskh_iYZoND2<wCKb
zy>wr1lh>VixIZ7W`wVWzELX|BLwUE}eZGH@sIfea<$Fs}+^uk{-elK30`F(YdX3yH
zly~dh53?4ExFG4CRNReldnU1)F%tX5XG<p6neuME>r-c;sO2x+ZHgNU*W(zwA#ew0
zzfSH@%DeS$#gK)<yNYyID()({i{sg~TZR1;vfm&#nDTDD+pz0Gv8(l8OFyr_;x309
zxq;m+aI<E=N$yd~yY+78f`Out;!afDP`Fzn*sU979^VvlUs2wzcN-O+Co0Ft>q9Ta
zT>|&%Vs;bYuE>3hTwBV!^={Vi1!7}w={8l|MR1$?vfFMo<}C$olj}lxx860jFA#m6
zN!Lkn1K_suVD~26l11;3>qdFE-p%}TfjDR{-J*)?19#Rqc85kM8sqKmk{eBVx8Chr
zd4b55SGt)L*AwoILF~STyQIuLaxYTet#{Y=TOc;)lJ1AC^7`NbH*0rxXRN`#<M#K-
z{q@m&q13zOeCLb1HqyPTxNdOmTeF)n2G3I~Js{VC@@~DGt<3`A5+|=`XBF2KZuN%j
z2E#4t^pM;hly~dh*XIMohH=u}t+=D%x>jemNG$GCt34vuhw^T{Tm061k?==eAJ!=D
zP`Jm+v%41Vry7sR-9dS`-mS4FK(sk3-Gz!f0B-4`>^iN*I`dko<ld*e`+r@vZ!vsV
zvekOpeOn$F-%stNwU|ZB_tpQ-i*Kkm?Io@^JLTPaw{iI+R{ad$<IL|7WA_N$w%54c
zTX3s~v0In&ZoPZ*&UUMMTfy~vxr6HMg1ozNW&WK%3-_i6yCW#?*1PXlZ?vj6YP0!0
zV(dPIyVr-^6L8y)VK<cWZoM1&bgfmr-#3}xBgXD%tb5ISo84n@(~Mv@f%0y>+p|iH
zRlVKe-ip~y<M0-)UsZlikO0?ZB)e}Z@7B8=eAZaiyKAHQJ!0&-RmAxEvTGiPisRTV
zMtQg1{kA09YMpsrxC2ewsNSz|BU9K-ggefS-By%$>)jc_*7c6xfPRL)>`t$gY@Dgg
zIYScMt+Uv5r@UM5-r0zHm42KH>&@>G+e-ERggefg-79cc%wso}@@~BwJjlA<N^p01
zvpdT%*|>C#-4wWWL)pDddAHtecn7Xh@4R*9_lU9k2kr}dUQcizZuvFr{%!vww!?J2
z>s-{j-Y09#?-AQV<1o8&vJvy|osQ4o`fO*{k@9Z6YZs2=S6Rp36mBNL?q9fd&vU)+
z;I=r%ZZFEa_3o=Z*5^f3ta(41II7pH3a-C)yl(J2+#~<4Xa1CT>)q<_tn2+5W8MdY
z-84?gM&U{9ro;93{v)n8p7L(J8+*XI-X3s!f7nd*dcrMplHD9|lRmTikn(Q5+bSm3
zYJ7LCG4F%H?jN|f3h;XSLU0FU<==~3ly~dhymPGGoN%8MVs~cMWMk+EcFVxcXvc1S
z%DeUM(hj&zD#!1rX!AZ8oA`W#>%Na&^Y2^izu&h}ly~dh*mc&|-xI6N`(Uu^Q7zdB
z$Z~@|qaNJS?YQ1B%DeUM^%2(fmVhfRZ6xa}+}gd_Z3%bJFm_K;-mQ1zf5KJzai&F?
z_rYM-tvdSDHnH0s?&{g>zBkXi!}YHBmUULg!{t@xeK0mqy&vE<{mJf7xRt}%wWGXS
z?}lu!b}Pd5o5!we4XnFrbCW(}GTdCd*=<XCx87~~0<LmA%#AefgTd}gxFuGyI~Q*2
zE9`nu-mP~p&0B9Z4tFBV`(Ui68b{PbU&jk}L*T~0V|P8}-FnxpCS0Z7T5xYQX7>@?
zMk0kiBL;4!T>sJi*)__$_3o6W8?5RLTxs41V;x!jYhgdf0CwZyPOrjlTFSfi?xBv>
zZt4p2J{at#z-@n%-P3R{c3{_u@@~Cb(82mXsvg|R-`7&T-D;!%&HfhseG{(#M0Wd9
z-mP~%=fPEeFM`9(`(Utp32v^b?7o0oGL+o_%DeS$yN=fNK3i_y2ZP<#&d9S)vilqE
zmA&llrMz43{<vpdZ$r3VJ7VeIeiH6~d2iF-dDbNwZ*Q}kN_n^5T^GB_>NpDxdtkUU
zW4B?QWaG;~cFVz?llBQ6XL%^^*1M1MY_=NT=gZ9dV8l?3``|v`%5Gh_`|a6nM0vN~
z4f}(7mG7+~+^eJ5tzI|TSoMqD_HZAzXLl^+-Fo-rK-8;TCqtH+_rX|0^=^jSr1c&8
zdnnv2?(BwB-mP~}?1ihG$4^4d`(UtJRwQGM2D{VYmWgKf4CUQ=x6dl;@vR59WNCII
z;EqgXHw13ZBz8ZU=iMf~JLYSgRlSRrU|*{EX!^J3ua|7JsdktC-T*h<H+D-=-mQ0g
z6^5&PZ;wLE`(Use2=~w|b`#+CDf^U;vksJZ>)k!>Tddrga3|kdO*LkykG_Mm?54mi
z(V5+uly~dhBKhDd-<yB1c^?dRXTWV)@E(1}2e|FM+1*Hax8A)o#Jb*Fi_QCBu=^fv
zmBH+0TaWeCJJ`KJdAHvExWc+#N4RG~qNv6Z4Ui9QVYfWo4-eSQKzX;`ZGC8~)%ea1
zGVg=I?mf8qzO&mH?!&y#=zFV1dAHuRNw9V=E;8?fv5M;L+7R=hX7}muK5#QOXLkVQ
z-Fi3l2VCWQD+#wq8+Omabq!*7D%|L4>;_Wat#_M0v95RGLi0WtkyK-&M#+ZDEq0f{
zy%fjpe#*P`uK2Lcs@{aa2gdpd?8d{rTlN8c#x}T7kJx=mdAHu(xeBgwzU6^CE<L*r
zjgyU%<JnDuThjJ9eQ)_G@7B9}ZopNplY<tR_rZvu8YAHv``LW~cUnhwn^4}ZcQ=g3
za~S1&+cE!v@u>p4d72~}Mbkf|&&aX?`|QnQcRc0YdN**~4y$oU1NXqem1OzCz1@~w
zd$^Iu*^QvQTkn2ww07GEnD@b8_dDDH%h+uJch@g=O_X=*-77`mD&r7255LC`S5UoU
zjASG9KD)!=wypDmzPGRDdG`;!yML#3y|4Vu`(Utp5AOI1kLWY};4W}uw=Ct|dN<T*
zr&Yam;a<zcZl|W$hiD?Z>*0Ri&Tc2lyY+5|`EZrv*Wb^)4@NlEcmnRD{p=>fo%5Dm
zPs+Q0X!Gu)k*Om4f^L@FDO_<U!R@(>-7OojFV%`yG`?|^ck5lhVi!cjr^XgHRB>y=
z{V<u`8Jn=bXR$ZrrcmCkcL!8CF6#EIWpRBJHxt}<o!D)#8SCZz-;!%XdAHupcI<$N
z=~l(!x+?Bn91pXrvilA0oyYIUtx0*e-fd>uEw<ZMw76XqcOTrST>r*54)eD<AIKd<
zdAHs@^?a8oJ=osj)>ho5aG$*4^J37JMB}R8M{<KG@7B8oF76O5>Xo;+g%#HgZmSFI
z=G%&S;nh#%9-_Qk?}kNh7uiHPi~GY@9=~1Se%Qk9Nw`Ofe<Ald<=uMsxA!)2zDHS$
zdrNU^z&*W?-O1aq@67P8<QAg5Tkr0AuuWXJSH|KVQrvuSJ;t$HW_zOHxb+*k%_#5I
zyPnIoiertX8>zS-ah>#U$L<xlTR(j#cOvE8dN=Uv79rl3w$wXIaj(G*sm!j|jznXz
z_(^UQ<=uL>aK)|S%W3KMSKN5G5johcvJ>}{UcbmqqP$!0-h8-4OzI-t#)=yXcg<`5
z-Mj<$)XCrEe&2|RcSXHh<YSz;y|<KQ97-v!8{E6+*$vo*96j@2a_uSa*1MwGMiKX1
zes6z$<nh}RZl<m5R*z3KGE_)I*X6F1ckA74KAT0ZZ_<6BxOL%nTg2{NxWCS^>rHvL
z-tF$US;TIXZi3?4!rkM_ZouwDW8L_)RPQ#*yY+78qnkt}<-Ay<xIb{e^Rhj=HTU3o
zb-r}u-l4o(?<VftBq~P8dgm(cZMgNE*u4k0<X(2OP~NR~o0r-wUKEq=FvUFxcSWv$
z<FGf;XwW-7)$2@ox88MZy-DP_C68Yh#a#(E-8;Vjt+_AJDD<1%p_F&)U7L0r#p&JB
zbx_=yaK~O^_b%M?Q5mS-V9LAo?s1QeBJ7zwFS03aKe#z|u<O4c&r_RZB=;!g-FkOz
z)CO_mp>$u*mFGo6xEF%ibvl6ihsW%`qP$!0ZvDAIyecW(i;7zUZqy`pZ^GU0lZooJ
zrMz43{&v|QKIW0`PR0F$`9-rX?0Ox<I<ay#<hoGat#|#-;Q3^Sl9uaEsN&v-o3<vq
z6%JwlzSHcwQQob0uhm~KjHc3^s<=ntUd+$#MY#QjXQq0iDeu<1eOs&-L+;vH>g}bt
ztKqtS=6S69VZ1*eQx<YBQr@k1JqxW9{_CY%PjS8B4!F*4@gs@GqqXe*%Ft(f#y)y?
zyX!jfy}EQuDDEJ*E_>NM0k=T&tW>W9<=uKWU5Rz#_~H_laY(DUP2g5o&hDtAxK2K1
zw+H3jdiTuuwIW>|>88$+=S69_89dm{bu7`i=beq}^`X35@A_fi4%f`mJ)^kk;TG)8
z?k>1b?6Q-)gYs^@JMMa{XjHejWgIps?qfVBXjYHio(YMD-C=g`Q{Jt2y)(y(ishuc
zP;pPfZC#ArUvQiC&O!BNr@UM5o-xIU(g%uJ>YbptYvE4#&Cj`3A2+|hh26T8ck5lz
zEk=a-NVluv`oZ0BkKLvx&^Nv$C)GQG@@~C*CQXbuv9+kBUT4J}0k_04cAvnl?v#t%
zP|CaYZq}u1#QJdQ7E#=maDAfL4LFH>^DMgwly~dhRwdVn=Rwl_<1LS02e|j=uv_UA
z`h14xrh4B}-mP~7?njFcNkuH<@JMm9z#TD^-ScoA(&izz80Fo1cSW^mF=ME7PbuyT
zJeRxLoL$$`SogY;-By%$>)nS&v`B9+-HnQS4sI2Dc5|IUo>eO^)$2}qx8Ak8xLSzy
zww7^NsJL-(cV}jIJKR1O*^Q;VTkl@#zDmqKDC-@sxIu7xyx`~H9TKq*#^`)h?`6un
z_3jM6RU&;ac|3Gh+=*~AC9(S&?)Z%P$^APZ+n#|7^lo_DDADV^thct}c7}Us3%h|P
zyk~GVyN;B1>)j<cSBaAQq+3LBYrvfn#BQatiALdi1*qO$ly~dh?k=mu&<N@N@sj67
z0k~BrvTK4HpUkd5<=uKW7u*t6rTa*6zu-A|@h<F+JeO#sjxR{{##7#{cehW76t8+n
z_q5{Pg!{QByBU)bjrv&&k^7MHZoPZyRiwzdO&-6S6?dQ6Ey!*R+?O%z=Ayh?@6NG_
z6fPa4yI66<;a>m7c~;}|xG!l?nCh)hdAHtuH9tbcA1Z7)-`o_}oL}6$#qM3WUz6D#
zMR~X0{ZlqV)Vm_xUW(fn?%PA`dR)N!d0lO(-Z09$^={L25u!&?={8i{25|F6v0LCG
zj)zP|$URAUx8ChJbER0nU+#}sT5;{*3U79|!(FwC-S_5s_a?pjK4GO;;w#<Eiu)IN
z*3cpBw!M^Sl&xKq>b0Z1TkqbUyFygVDBahd@_c&;H>f$gPvJV8XSXfo-FkP9%?fcj
zv7qI6xU9G*;J&eE*ZVT^p&`YnUJuH<^=_u&D@2a9(%q}Lv2g2TWw+=RywCjyyXz_M
z*1LUPg^SKt3RvomR9s)U8(-a`8h67TwYWI_eU0*Ny<7bEa&fD_bmu7UaJbbkvfKVD
z`WDNTAU7@L-Fmme`Q;*KN$HMI+?H^Icd+{u?z02zI#J%OcaP0nE|&exZyASnit7M3
zM<~0V*Wh-rqk8*N-mP~7J1rOEDoVG8;%0*z{%`$5;bgoQJeA!5%DeS$bn!4emXmH_
z#eI!jdRQ;6cN^SV(@IjkdnxbMyIJRkiKmD2S;pb_Y<XT>fLo$IyDhGxe<)iia#Jbq
z*1OkY!o-v5(oI#|ZE%;BVD}ze*C=-LP~NR~yBf>Ho1b|t^`2GSV7Oh=vg>vO`&Cpg
zP4zaSyj$;X7R!WNFX?Vq+(~fjrSdwPtT(aW>q&OUQr@k1(_C9Bn*GjWsdt&;c7>b%
z47;o09_wC)>J6v7Tkq~_yj1vJmhKG2tqu3hMs{nZBpM;l*gZpex8BVdvQ#|WBi+G@
zTL|u+Kz7f;Z8g0t)%(dj@4l^fM^6kD4P2z#QgOdy9Z2+eb_d+TbLDL1$Sp;Ax89B2
z6)Ns+$!!^5C&j%5H?lLkpWrr(V7CM1-FmlQ<Py=or*sP_?jg8qYq2};cA~M&u{_l~
zlk#r8>)(Hg`0XU!pR?rowhHc!!t55klW3ei#O_AQyY+6sswHCb&Rmvpc%-;qaF74w
z^>W+bPHSsV_1>VoTkl?USS*s=<o9-3afiaqc%R)ycN2}*ciGKAdAHt;oE#!f=8^6e
z#cct%=5cl}!~N@8f$FVBdAHu3Z66|BX36mlRon`27p`S@$UW@8^OxNLly~dh{ELG{
z$r{p~uDDs@{+h?`XSmyf9H`zv%DeUMmCC_l+eqmSQruTq&((A+yMFgEzbILe-2Iey
z>)nJh!6N>cJRVvq?gh9TJFr{mL86hejoqh|ckA6g35!LEQPOo%-0g7fYOuQjuF<Fx
z)tjI4ZoL~_eX$5_Al*WW8v-}7AiH%QCK_HB*lj|2x87ZRDoBhOl+$uv{Fy1wH#fLF
ze(-wQM7R(8I#RvkDewNN&AUGtLE^tQ()~|yyTko`m)#zZuuk_SyAhOk>)qb%f<*0<
z9F}^M6t@oC<q7OQg`3HvGSzFMyj$<OcrOyk>1DmU6t^f`hqdfZd5peAn=0gfHP5@V
z>D^-KgT%5<vfh=7`wQzQ-^^n-Ln@x{gtA+f@@~D`wag;1>3w#~ILuYtdvKSJWj6$F
z`%+F+ZzsyT_3o-I3&op0(jB9?32;YsWVhshc%SeVc0DQY*1K)r2a3vtq}y3>W8nJL
zWOobPgt}F!-Z;v;^{y$?LNV)kHp@5&#r1_dq%gbU3F<w?ZVKhydN(05P;?zD-O`FX
z5^l#|ypI12+=88|QN1>lckA6YzZQtvHKdzGan0*=XFg!J%TwGx++nvS<=uMMv1*{$
zm_@oDX2|o{5$>Rq?B0jlWkhwVcM#>>diPEM`a-K_wT$mA#mxoRe*?RtpCN~Q&u$Rq
z-Fi29;sWvPXcmimTyfuH9rU$8cE7-FHlqgBdx-LGy?e)NzIgXUx|<aDD%>;^+4Xv!
zXjIBrlicT&ckA7)m*<Ou6{WjGad*Ql(v970FA|X@vs;MrZoT{Wcz{@+B=;Mfp}5Q8
z_OHwCQn;lH)uMWvQQob0^9KZoI#JRcqPR2Q9w^RkiI+IvqS&2CdAHtuniL?W+ex>r
z;`W1EE*-lY;6AXgP4z}m-mQ0kT$m>|-nX$F4>c9HG2CTOlF6#}3iE(%>?Tp(t#{XK
zpC>{NOSib<mWG?{9J>eL&USXD&-jiPRvoOTcY73^Cl(vh&8WB;;reW2*LaQbJ;JU%
z<=uLBO5J&4NE+$BnJ&-cXXt16y@cJfX194As<$iU-Fnw2#a}e?%48Ye8;W}t?v`on
zc7B6>(v#Trro3D4Hm%_=1_<dMQ`{|ZTl{;ELJHg&o$FG)+bHkWyNMb6h0D&2mU=fT
zZV+4>gX<mm7WWS~*}X$~x8B|2>nG|Bk#30MPJ+9kJiAZfF779&-Yk@N>s_0NzT#tj
z>CRBxZg5?*u{-u1))PEp*O~Hey<4N7pC~jigJm3sDy}o!*6*%SjUVAw9#N0}9!hz)
z-aQ&MSETzb>usyJ#o&Ir#_rVj=#PEPZZPHDde_$8SM*c%+peX!f6+hmWk0*W;P#(X
zpXxnIdH4UiYJYcU$IDjhGKYGY-y;@I|9=GPt(1kw_YB+}4cUD~dAHsz_rkird+oFb
zhW*jy<d(yEZ0gSLI=DxQv1?0tx8C)fvd604H}2;5h_Sm4ZuJ;;gWzV!$gT_J-FkPz
z(H&OnUK_xTPYt7bOX2tU#~XHM!Cm~3zc)9^yY+4@r)^gCE}V+KTX%ND;m#I(U3Z21
zEtTD9%DeS$_L1lhP}b8vm|}j97`wS}Up>Q@-NA5|-(>e9<=uKWiw9g~y>bn>Hj&F{
z9DLx8xx{V{xP#BL`>Vj%go0!BZjp^}m38L6Zs=!lV)r}T8bxo=XS9Qx?F73Hly~dh
zGRv*U;l^b1d&HKKH4gLRxMA!zgZp(qyFDoH*1LOxtjD1u+^*f&eE|2;Hg@a5P1(V&
z59Qr@H-DgYy)!4FpW#_3)!PNnxvqR?w<g?u8`<4KdAHs@KWwYj@o-_H`8{Ino`xIT
z^d^0VBisXP*u77Ax85xf2v<2C?BK4?!EPNqSDv(x-STiJtYkMk<=uLBZ;bVMF=2xF
zJz`6!#?5d)UuV}2ZuO<?)}_2#?>1TkSE={d_y<PK8tfKFJ~XE!Kj*TAn>&cz5tMi9
z-78p6tDbMU;r=)kLiGm0-8G8cd~ml0up3Hwx86N*(b^s8YTgHf-89H!5A0+&7u*#-
z>?Tm&t#_B*-)=Py+r~XG{9guBy_4Y1_{nZoxFfvSeM@<_-hH|Nu5#V^JJ!4p2D^{p
zmTJb&!EN9!oyl%7%DeThL!9;Xw;kO4dDu1g4;>3+H$B`g9_+TFyj$-cs1H}EH)4!=
zAB@E`4(9bczpk;H7VfI4?7CClt#=<)weDwlG1|Nj2D`Pejwy5T+w>WKasS}w#%?U-
z-FmmF7hL5!=?r(EDTu7KaBYUM`x|b)$?RUHyj$-MC<j+LFMLPg_qZ>+`LP~xSsc5+
z;I^H_?%xT;&P<HZyTcb-kHgiG=6x_0QN45Fe*P%kBNN$mq`X`2-t*aI^}X4_-Q~^h
z2e^&v-J#Dg*SqeY+l%sUy=$5WR~d&fBh33?usaCrii^&XuIImT@Ta_6?>?w#UGKi(
z=6x_0QjHhjo=jx-59&Se?|X}<yj$;nZy9e@Zw9zFg53sK$6q=Zud_*m<9FH=9^Z$Q
zckA74C*UgQMTcSLeJ}#4-pz1ByRn-N?j3h_b5Y){cWt7q-IYVl`(UtJ82v4~R<fHB
z?%nC^)~CE%?@q73+iD#C8)DuEV*%Cc3pef|yP4q@pUv(l%DeUMxIA!`ai|Knq%XT4
z;8wBc^?ljl+RtG(jPh>1TYRo{y)y=*@3s)T{hMJvG?v}ma6|mqJxO`D-tG3-y53WR
z%==)>r*Sw7_s0%)3&72_fZg}zdG|rRyUo-3zB(t|$qm?bZjSZfU)e1Rx6@*F?I`co
zyV>5tRnE5_1I_zj1W>&(aG%uU^}i+I9$m(6TgtojZtLD~mFr~m0P{W=?B-~JyxWUi
zd$=_s+4Z2jTkqZ*yw~b@c+uay55_#I*8}eNlk8T3YZJ@vddj=??wb2>m2s#J7eC|V
zrotVWh1c=df;(z6yVof1*1M5O*7Z*BXWj>c-S#fY#@u%7HiX-I7rSXG@7B9t%j~xr
zhlIZ7eK7o~-u-ZA1hd;5?xTb3I#J%OcjLqNS&c(xxVIX!Tc#z}6C|_S9&VeH?DnO+
zTknR9vaYv7AM-vKepK&5xVE<3=VP9?^!hh%381`N@80}o?Jn(Y-Uox-uW%3cWp^Ol
z4cEEey_9$B-OTw9SdGK&Ugmu;e5u|+t?;~WHM^tXj(NatD&^gJH#QQkay=^v_u~R~
z&%vGcm|Zux2`|{qLwUE}of>Fe@9>`HeK6Rq**e)+TK*B$?ge+}XLcJ=-mQ0&E*-S0
zcT*4ZJ{Ue^MZ#S^irx8e+ok3C{8-An_3r5x*5mNDJKjIvjNOcFurF&IyJ2wi=3qCR
z@@~Dm!v2ue_f`XLjvI5SURSu`Z`h52yUUi{Gn9Ah-Cx<@D&L!XH}gIi>|Tfatm<R>
zjBRkYmuL5rdEWg>@4kG7@l~#q2fLd0!I(o<gSN>=_Q~uXhP$H%yQL`a*1NO5S&ze?
zF6MnO*j)?vc09Z1;Ld5nZU@S{_3qcUhpon;3EYyU+0EV#dDa(pQ{d+4$nH$ayY=pm
z{?_i?&e)eK-kZi@GThJ3sr2_#xGDYF-AH-2-ff=|u5w*J-O0QU2D>S63wp5o6>dIP
zc5hJLt#`K+#q%@ec*qQQ@+~i_v2lB>pFF^>%?I2^&0;qL<=uMseSr0Ixz-)c`(UuU
z4(^{H>=uICei6IXDDT$08BSZ*yP$)49}IT0cfk83>itKx+r#~^iroQ}cmLAn-Boj6
z5ceb6Tb|R-SKN5i`!*-LpWz0LYe1h7NO`y3eYEt5=rFsH#hszJqv4Kx$m0<I5yx5O
zhUD(2yj$<?+P+)N%Ia)!hbV4ExHWdMJNgs)>QdQ#N_n^5O*edpsJyDW#cip$uW_73
z`><Q|Gxm#L)`;rOPkFcA{eXQiZVhv?xRn%lC)}iN?4E^Nv_)fbn^4}Zcb)gfiKaU%
zTioo5>jC#@d3N2u;JN)rcE?lRt#?z_Y!=g#94+qa_VPGu3^(8_Umr?;O*Fz+H=%kX
zDDT$0tLkqS`#maI+zX1E8E%6_b}zuq*VZ7{M0vN~?Y3s4=+RWVTNU>bu9Mlq*>(Sh
z_sV@`_p5o{T}<!Z$hb-LF=StUkm4?fdw3MPrM~0&Z*)_tw=Ct|dN=Uh2C**D!7>ix
z6?Y)qg@WC)a0j(%Ms6p{yY=qnkPX6hwsboxt^-_=joryVus`A_c0DQY*1N5atQS`@
zNw=EfzQ^xo-8+w{#v(t_PZrsn{*I%(TkpO;xn9hEXm1&Zyo$RYZsRTN9*29Tc?)t=
zDDT$0p6l0%m4~JKv7J1A=fG_=o83{ruwVRZc5Nu{*1JuMtP|_nNcXDZwt+jb1G~9?
zCmNSSU8vrgly~dhQZ3hsV>Z&=t+@H%E-1<FZn!D+T9P}6@@~Cr>%CUQ=aKs~EK}S&
zxbM6Ap6^rp{6YW4Lw18G@7BAYcg70u%+j5vxNG4$o?!Pc+)w_ksNO@AckA5(YhuNM
zQ*xh%UW)4q_ev<cv48P=$FViJ&nfTLyUP+{#FH=5t*5xoa0d-%w`CfWvEwqkg(&aV
zyZ0)_h|vwDTTF4&z%5;e-Is9RPH98+Hlw^-?{=viBOYCs{pf$%%H!9B`GqM9yNlAA
zjMKJl$(=}fx8B_tzDBq=k?sS<4S~D#_5-r2r85~ehuMvyyj$-MJ`^o-ev|#^#}&5^
z+$mewy$bj5fOhm5NtAc%-Q(?|#l4}@jaA&TaEE)c>z3YR3{BUb-0$Zw@ouYkSCo$y
zb2iKVZa>9+jrr!FPV5%QU@~&YvTILyx88lfX0@o?PP(HMcQ4$5W!T*Vw_o!PRBu<x
zyY=p;s3>vwg6!{Zqqtsh6F>9wl5QDIhT{`<y(#b3yN)5N#Ge|n-pY#G25#C!c0a)#
z=--j*-9~x0-kn)tl~_<mx;YiM09^kS?1p4A8Q~Q=k$Z>oZoRv9^D6PUtaRVEk>|xd
zJTJLEmfdPLCgX^S-7J)M>)ps>k>cZSIlk8vcLUt|jo7^a*KKrXs@IwFZoPZ@Vx;K1
zS@xsvRoqE%U*%zUY-W>Tm$eJILn-gpyP+2%MCuCZu29^1a1W*ObHprJOvZtY>;_Zb
zt#?PXiV$A;r8`S;Gs2ztuYZ0m+zTzcQoTnh@7BASOGJnfV@p_m=Lah8MLd^lJD=-q
zlGS90r|iC>yj$-k#;g=2i%Yku;)cVm+mGG5aC`W6qk3&A@7B9N(ybKhKFWS{d&M0B
zw^~(pr)4u4ZOU{f*M;(Ky_;j!3NbsIbh9dMWw>M0vzsrw$>@HJT{p_R^=?u0eU(ik
z-Pf(<dGQs`e-~fp=k{C7ZoeK>Z#3oIde=5JT%?&N``j-pZUWr6jqJ9_VKVN0XZIrI
z-Fi32g>bRVP4)@zQQQS^)BM}l@&Vi~OM6nizsk?LVn0jomND?&)L%s`$62`Ic89yB
zBiB1Er^)D0wHLV#ly~dh+^);T(Rk_3Qrwbo8<b@?PcD;@;T*d?DDT$0!#u)7`Vi?3
zQrs8F8LoW2Lp5%IyKGo*`rC){ZoS()BuunjX=@pW=878+*YzB`jdPofYJb_?L3y{{
z-4(M;oLnMZ2gUV-n?8!&8*oo8??d(8r@UM5mhQMrT&OJFoQm5T?zu_qj>}^*K33~X
zZg$GM_3nsoOGQ*U*&q9%l{_!<!+qa^-Sl})hV5B)>r&pWcWtIF75RP?vW)Ky#l4R_
z>rN4Nm&46BxF6L!g7R*?o4d$Tv9zdk4=L_OxcT4SCaZEjli~E8-B8NA_3pXGp<-7=
zK})@>71s@JvlHwdhnp1CpFSgj@@~DmCu)g!mn>ah#cc$4Xc)WQ@|%n`<p+@amhx`B
z+w|HJ(QkbLOTD8NH!IwPG3-8v+v*Uz#VGIAyG5Ueh<1L`?Vz~H$YX0aW_M-*lX0=r
zK&rPD<=uLB_UsVxGLv*`D(-5yNAk0qtDwoa{)An3%DeUMjO1WZ=#<hIs<`HTEjvEv
zbrq}OuADK5>W!tmTkjrr4-q+XO80L|d0y0pd-5>5H42%GjkyMsdztcXz3b$&SX7%L
z`$8WpZaTP!L)bk5w?quPf4wW;oU=vmR&)p!FS1M5q_|1Q{Ub-P+pVz4s8o9h)$2%k
zx8C&%4-zYH<h2}UTNQUXT-Sg7v8iy=o7n9|dAHupQEaj3@?Rc{8>+ZN;7-iL^}5-b
zjAy-vQoa6^ckA7wm4bxL1nGJxt`ppaPk6mi`XVNy=PP#ODeu<1PNx@&R-@!N^jF+p
zSO>D<AiKeE6J`&idLL5Wt#|!1E)pGWq}x<+6X9kGX4kH$$w<sSoZMWLckA6zaI2q^
z<KUpUOW^h#&h8et3)iq)pYm?K+h+1YQM0Oab1Cisxa;e&Td$bOI9y`{)jNvvZoTWg
zHBdbIDf<9FyU6pc65P^x*gXSx|4DYkDDT$0cV7mIN?&tXj<ef}`xWb$PCeoEeO-&2
zjO|@VQoScB@7BBJiw274&!n56xF_Jc9b)$Z-0)O(-<#*%NqYCd%>`orWa(~D+(mG!
zgs?ldgbDlXj-q<)DDT$0Z~vPwW*m|IZ;KSS58O{9*!>FkT)NTZwxzsV?~d9wU(E54
zuAAc8!+q0$-8pt9qj@m99+Y?M-Hxs2ivumC+edLfV!hn8eC%c~X)+esjiGwiQ{Jt2
zXM7J3$9m+j91n)#9)<h*Ij?(N2KPxEyVof1*1It^(C2ec_P<q7+(5X+kFjf43io|=
z$5Op%Deu<1Q)>o@*)h`1rMNxe_Fl&B2Dl?nv+G28x88N$G*5&o{d!+o$n&i%+?ap;
zh1E)%46n}PsNTMmckA6oxBNx^^RiFvuHwGOy3BV5*SjBXyL;>gP~NR~v-tUom=@AK
zskn#XPPJvXNg0z7I?9#m-Aj45-YxgoPmKN~``<Pz?tHk<-|{;1GjQj9VmFoYZoQkk
zslRyiLH3h{C~kMSi%+xLp{&W6F?&4Kn}_mly<6?KujtcG*6X3TW#HzBWH%XZV&)0t
zHln;+?;gwHC;CLodIu@)JFF{?pUiHbawcO`2)kn`@7BBDNBfE<&tyMYOT|45cT;P2
zAHeNYbRyLoPI<T9ojcH1_{^4WRmBZ}ySx;;!^@kDOEK)8p}bq~E-CFJO0|@3A;s+h
z*Yg|qU%Y@@*l`lo`^h}-{;hX?M)-)Qi8hw&&fn(pd@BQY#YJ{q?M=qRUF?>kyj$-U
zc{f*dwvp~r#eIkM>oM!t{Q&owm`wF{puGFHHt#-IajuBpBm2HCD((@umuIm%rGm+b
zN?>;;<=uLB+?_e1b4BUyRon$|+jV328(fo%8`Zm!@@~D`qQM;T{)X&#ic;L3aF08(
zJKe!#M4xB(2Ibv)w|@FLqK~t5{S~(yT;~kz{(^h6^AxH#1LfU%cjhc_k@KbO`x>vf
zAJHeV;r2DMW>+*BCvLD?jq+~2`zh5+c-)X~55-M@>#~d8zi?Odol2iEfbwp=yXk_L
zSl&arjT9H1^+x6e?0Qx*;XNSi22$RwcWZs~67_@ATh5CLirWY7_QC9?aWolohq_a}
z`zi0%yZ^;{inxZ-&7-&uaHk4(z2F{y%I;IjyY+5(+u7pN?sS%Vzc-WT@fY;t_~!jL
zzHq0Fo<{ZNr@UM5_Hmdk?zWTeBgH)lx5taCd^}V}p7n~|CX{#U-EEm>iOr_8mU_=B
zZV24*$JzZ2cd@Gnea3joyY=peN;AdKH`3juxC7x%TEXs&Dkfw0J9Z-|@7B9huX~8R
zCFD4)R9q*xQIpvH1~+2TbgI`xdAHuZvtqh9m?Z1<QQY6?`+C)y-6>A^efz}jSM$8P
zvfk}me!6gVknT9eJqNdQ8FoLw4Vf~7>Mcuox8BWF&_m3)mB#YDbywVQxCuY6@OM?!
zWQ_g7ZYRpS^=|DW?qcq4={8c_5pZi>WA`Q8((W_qGdwBp*1MSpxQj-Wq+3C8Yr)+S
z$L{cIxbOSQZXD&^dbe$;yI6DokL7*ic@;N3T<3r9d3^-;@YGpUZwlqzdN*C&DWYf_
z>Hcgg&*LlThkV<Q>+M(FWIX=Nt_|hgdUwMrH_^#Px~Yo08t$pu?B0O;)NMA^Ta)r`
zy}KaAO|-oJ%Q6lZ6xS85S1xut*Dx8KKe9WB@@~C5c*7*ocZhWNDQ*L}y`NpC8qdM?
zndnJ>2T|Uwck_iz5-rC5u+$r^xY^<QCa~MACi1s8>>i@LTkr1eK1p0|A>9RvdkcNH
zF)P?T4EJp<FRJ%B<=uL>c=3s%vhm$g?-a$|0Qc}@c5Bx%8I9f8Ekt>@-rYB0yof*j
z&EgJFTz9xv+OoS9?xdaUHlw^-?_N)E6&v<{wYaSmw*}l1<=HJ)8@cp5b|+Hat#_NQ
zcNOJYf3dhV6t@7}MSm~Rm`1?;SlOHYj-tH#e_ge|`%0dRBF*I9mh0J2!~DK4{@x?t
zo@&PR_JLa=JG)7gckA8lbB<fN(M`<n<>KSN5RS8T0qj<Q>-nC?;rks-y!+|h@^!7(
zLI2nIfw67^UkB#H-Ft!EU-;gx|631hPkFcAtzC1!RlSaIYb@jI;Sadq^YM9n6|U`R
zuD2`Y-FmmfDD+<_<2$7h`b7@%?}GWdKDQUU=Htxe-*M(mdAHu(`_bAx+z@>o5Bc};
z8r-~5>;}N?9L4o+qr6-1#`UpwGs3-<iQUHdo%c;;cNpAHf$ZL)yj$<Ccxl~_)4l=L
zgFEv5hxvVrXB_zVxGCI>GuX{SdAHs@9))_9b<kn;v2ME)--i{%{p1^0c1yzbAH}XS
z<=uKWWQz4T+^>iA)$V*h>IJu4JiC8!J^R{&-Jz6s>)o!^(chvR5B6}=MDl(4OSqrE
zv3n2hw-)RMQ{Jt2`;N4B#|v|xJI_zLVLo)e0pI@~f!nw?yGJSS*1MT(tj~)*b<O?g
zZghP)3U}@tc2~hoF30XG%DeS${ycD%@9kF|oX0uXt$=y=uhZ;$!rfbdU0ce#^{$((
zb-hjD)~GR=>J5hbGAqvu2f;0#iCq`UyY+7Mb=K~DXLBF+ByxYiJ>Q<)rf~gU^Yzn>
z@@~CroBe>*@o=fOxnFuBxr6cC=s*a&<>CIgz-~0<-Fo-(CTq6<+*>jHe8{}7yUTTU
zv%sytgWZdickA8FK5&)qtxqlVJDK=7Sq(g&jJ3T^wZFoBNt;l1e>pFDTxXHq^$W1B
zcXdtlCB5P2dMn_j>&Nb8xE0;mb)dXk@23Ba{ubqYORa(aq5SNo!*g)4n%&)SSNCSO
z2j$&*cc3$VhZMI0+#G_Rn~sJ%_A$FF;C61vt`Ftide=ygei5Y~XH0dR#{>BJ@fEo1
z%k%S8Pq<S`v%7=xZoRv{He99Nt<`WI`|@-2y2x>Mk79QiTxT10?^E8bcPHJ1s~ivS
zs^UD}#CbwAT%S00+rVA)ihuvJQ{Jt2<C3iFtq!-wCC*hcBQLD|mfh-b!>+Jfm-24C
zo8At6D9SjvIhp%6IR|ouyR{nU7q)O)?Pqrc<=uLBk&CsvyNbEbl3nxr$^M(nZd$ly
zSF;;RdAHszu*};1TG`wW$vK-a=hC~`eSvw)Lw|M?DDT$0e`X)G`re%34j;~WqdE7F
z{mSkYxHc2meM@<_-u3-#UGFqUbAKV{t{JiZp-x@S3lG7K?#XU3%DeS$@f)aD`QG+d
zGWP*;PCN$gn(6GWgL}ORyR9hi*1Pw|AG315RW$eOabA82ZtX+t2E*-9iCuTfyY=o(
zleOy%cf~JWH&6@fcbffXcLrR$g6zgp-mQ0g7KW>wZ|)8cjPj+~4ToF0;VruUj)eO$
z4ZD{q@7B8sJ_%Oiu%`m{Q*hyR8NcD)oy~3+xZ7Xx{r2CGhR>HA(Yp)nt=-S|*!N)E
zK&o*N)}Kv0%5G!0wQjQONO`y3ost*x3*|al1Mabq0py;7`}!}tmElf1$!;&oyY;SL
zGwXTFgz`9#_w^^&0qYzc{;jhq3U|g1cKs>u*1Ik}t=+BVa30_7M{Xe8++MuSCJWq{
zD0bs1@7B8q-QX(6!^^TbkJGdJ2JVxi?0&;@m=g=xeMot?-u<0oU9SV&j}`h-y`8Y0
zw&h=TpTdor$!;#nyY+6v&L^ynvteb-@6qi;?k>2G8{VP6Z@?WjhTZy<ckA8Aeb(-p
z(&qQw_9n}`Zu`$Hb`#;Y>BH_Q%DeS$-N=(x_1-OI-WRYJx$bcD9%gqR++A(h4WqnU
z@9wj)c5UI>AMHtQ3S84qb~nOZS)bjLly~dhgt~B*<DpwgoX4p>$gPXMg9YL){T%`K
zU}bjSo9Eqk^=_r`Q&!^;WM|$_jNO%RUrl3oA>7?|?AlS@t#?nHvUW`+u+NB7cdGFh
z-1B?c^@4jRH@j^q@7BAIbDy!QHyzyG-MW$6AN?)vU)Y@l_f<M}Jt*(iyE!sjyY-4=
z-;U{B$vq0UK&^Z9_fWW9KF_4T*HhlDcN6}cw))=OiebLFx(ogPCDBK<XfnG!;qH6N
z?lsE0^=|&MiB{LixS}|ZPjx2O8}8eG`+>B9`}G#PX({j4yA#sEReq0Ci{Lzd*@@go
za7(=7dK<&_y1=dz<=uLB@FQ!tDBK)**fr1xSh>o5`iz=zv!7tMFXi2Ocg}okw~H;#
z<Juj`S_Ajq7<L`tChui8fbwp=JKWY}H4gI&oA*uPK9+Ro3thgET|2nD<JjFxdAHsz
za}};~9v>@Y-ruM_)jJrj-BWf8z@4;)-BilE^=^k7*7bfVXx@j2`<fEq4*vK4`D}1s
zE@w9n<=uLB$aZVj5$^dU?!zjHzUD!L9#HM+;Vuqhw-M#tf3$h`g;u-8*4p(g&nHVM
z?lIKcy$ZYL>+hL=*Wa;}ck5l({+q?~BGoKz4#gb}_tZBY-y!%te)Nm458;$|>s{Ob
z)`~{GWk2u70&*N|;f_pTHw)$g^*79>F*!qdx8ChjDMq}_=wPY$rsAH(@jH1QyK!)h
zPM+j`GS9nn>fPqv(IO?iy~RDGxHI8yZqIIeJSS-Jjong|ckA69FQdfYoU+d{N^zaw
zw)yv7&o^)@cHrkQ9VqYCySv6l34gnCmU`zXuKBtXn8Mecg?Qd~Ae!Boly~c0hb&QI
zR`s$LcbMWXg&VSpT}M2xzWR~fjg)um-SqWW3A>YJEN)B1Z3TDq5O&YP-QAp@uiv1&
zTkqz+5h)_=rR%7;zwkTMuL8RxoiUFMV>bik-FkOue1zCNxU{9-T#CCL?vU5~yP2_$
z$(a6(-D;F~>)rnKBE;Bi(*2NMo)<&my6$8*8m?E}IduFEpuAh}29$~r+Xt7j)O%fV
z3&ZtwXSYFJ^oz`AH<0pfy*stbO3`a$NsGH*ag%Uga-%-GDRBL6vAdu0ZoQi+dWBeX
zQo50f>jgJ!I(8=utP83*m&V~K<=uL>L(~d!ceLz(^H$uNa6Ql5AuDG+lMy+c-Tahy
z>s^PL;bN+bbcZSKbKIw<UC8cwxJ}No+l2CNy*pt<xJcK&gk^kND{ds*Yn|C`QXlIl
zZGEWr@sxM#-O2xj3D-NtEpBDS?F{!~VRlpCb|1-Z1m)d&w`R%ZqRCR}=2hHGaJSy$
z`Ow4$CZp6|c1@Ib>)o{7!^GQwVwQTp<df&cLClAa#<H8ap~)DY(U->It9jntQ12ct
z9435nOZT?oj)$8%n%yY4u3gwIOL@26t>v&x1oo8uZ^sn3EZkz%*saybWE6>Jw-e>v
zde`t;iub%0v5Z5k;-+98yX-5^=g+|%@rGSb%DeS$t(T#q_crMUDDEP-AOH1>3~X$|
z9yES5zHyXy>)jRJp(67oTT8vJirWnCJRh$26WsOl*iE6lTkj^d2^C%c$iA;Giu)bU
zH72)VH=v2hD4)!(4dvZ>*HmhWNX{nft)sYG;kL`mZZX4T#Fg@=ai~dox85CKvqa3u
zE$c0=xI^JOr|@&GZE)kqu{((JZoNC_Yp}RKO1kM3w+P%OtJ!VR)MPy0&u$Rq-Fmn5
zwqP;*Qz6Uu_B5|N-!9@g*TfO*UV-~K<2)LNLzH*x-D5GqVqOL5o>yF7xQnZ>JG7a}
zaPP$KbIQB*?z_>8MYnIVPi>dt)`R=&Ge4*O4EJLMyM-w4*1JQagG8ml(p|2&@6FFs
z53}pj9M7wtvD=LDZoRuI!(tKZEBnc2EAD!@O?}zT-vaAws`Gw~6DjZ3yGM%$iO032
zJ5+J|!L@0}ZVcQxv)GNIyj$<aFIyz?h01=i){2`C?(_WYR(C;v;Td+5DDT$0cTEe0
zM@#8eRb0$4jhlBkzc>c>U7q=LoPB?diMOlX-7$2b_`Xi|lND54FSs{i*=^Sn&-?nY
zYfpK%-gRrcQ0#gy`<;I0k>`cEudcv2c5lJ0zn0yuly~dhgJS|kzoODjRoqv|MZ9aV
zJEE1zX#Iv=Z_2y%?i+^%B5A+ucQPq%EZj7IIDh*9*WP&njqf(fyY+7Hu?6D6BI#~d
z+}?2g{`CjUZf!E&c(Qwk@@~C5J#oIM{6qFpg(+?xxW$6F-pp-G#+XEQvryixcYQa_
z7jF_}U(#&FHTS9g>A~(2xE*o_(l|I%-mQ1j&kYc!BhnqFxSnu7mt?niTa!_xC%Z!_
z@7B9#@68kQ>q)n*;?{<n=>_M~>)<9uu^UWzx8D8YIZteuF8h*dDDE5NrcS%qt<uh9
zWO>T&QOdjZ?u(K0#Oi&rFR6&)n)lmYIg{NzaQ~~kkjD2F<=uLB$zy-9)J3}K6t^#2
z?0rC1!}ca4z>Qs7%DeS$hO>U+=SJC=^gOpbkMqNwn~U93aPJ*p*M;(Kz592RpGX-Z
z-Ajsl4*7i96ke~<wgdK^NxO(@ccZ*p@9w(kD|%Fs?q0>63pZ*FyO-hGyRaKgdAHs@
z+}ckV_OdT&wc-l6ZN{?Ovm>5^2eNyS@@~C5c94%qe@6EC_$%&5tgEO~o83Eb?XIx<
zt7X)uR#AG_>!OcHDkR<Uin|$ZuQcoq>V!VwLP0dX4wQH6-I*WeiteT?miwI^iaP{u
z@L67O^dH>Z|Mq+DL3y{{^_)6aWGOA(Mv7Y$?!!=aM|MWeyPE6up}bq~UU5RboikhN
zwO8D$SZC8>0J|^Yo=s(U2j$&*H!OIL==oXp<K$A@1#q|iTYu)-1$}@O7Ss6Nr@UM5
zUOne6ik+A4w_NgkYX&#pCtff24sP67cC%C7t#|WO@D{xv$$p#%iu)VuuHGMEcVbtp
zW7^JcUCO)lt|^_j@aQMqM8(|=_kIAoAK<qA$nFTryY+6yATN=SRk}MA*A;GbS9T|N
zLqA#VU>e_0%DeUMfX<$xaG31#30GWuxZCai)eE<{2fGQBckA5?KRm^YlNl_>*&M~a
zk9By7FD_G!le%Ml>OpqjQr@k14?mtI-VTxO7{y%<_x5gf-^1PUo84lRckA5(+h&S1
z7t>qn?W(w)%<B=o*&W}*WGrtKLbbP|yj$;9kC`sKuS&Op;%0;E_ir8aYq)c~*>$J9
zTkkd)=^+|~O1GTip2B+1%7wY!(LHgTonSYX@@~C5Hqk@u87SSHiaQ(bg~ylZ-~I&d
zuMA7*@5_{T>)q;Uri<^5(pkp$TTXc%JHws3jol%=Oh&O5?Ea1E@FVu3-c3K=U6e_d
zeJBqV_dV9>j+nvjeYiIM>^f53t#^OTnJQYxNcXJbZiYL|h27r0O-9NYc6(9Yt#{Xs
zpDM~`lWx4?4uv}_AG_D#4#*rz<Lgg(x85CfbFwINB8_EyBNf*U?yCD2$?Dh#`!uv<
zH=goty*s9ko0wZyy8eorf_2+z;@CY4_uf2qA5z|}cjuLyEZRJm{UQ?;cM05(Y3w%b
zi}Nj!-CUG+>)rKzCW&noe_Ph^_fgz-a9x_SdkF4ho24`+^(pVxyUsT!h{6M9zeqF1
zwSk){FT1t+nT($;*d0ZAx8A*Rb-cLwNV-)NHv#<t0rxIYja%T>^kX-S@@~DGt>JhP
z+vKNZ911J$Ot`f+vs<=5_N6+-?n%nK_3oI`<Hg2U*)Nh_acjeMn#OJf+;QobQSI-|
z^X@l#cUGsd!uFZ$7kQmSULW4$J$N0PvzvDSp7%9j*N*aTy<4mDSdq?8_KVz5+|6*8
z<Yjjr+yGB@+fv@GciXlYBew6A{UXN|cR1W#_s`S6{SRE{!|Zxc-mQ1NhmR6Y@t-Z<
zTb$ySf?IwIyORc*jMyLSuBW_P?~ZvsN-R$M$>N47?j5|paP4$<pPF6gFsl6;<=uL>
z((MtV-KdWi*IRMJ;C61wZl6Kuhje2%E#=*M_f-E8;@FoD7I&=Tc82?;0J|6A*5ARd
z6Xo51wR!ie|Aq;dm+viZcg4*Kcf;c(`nMZ{u`d2KyL~C|*1O&R4ig`yNVkdNnra{)
z+QIH_xcMtCr_TtWyj$-Md@xj8sQJ!PucPAnz#Z?&uKf_?BE#9;OL@26-CuX8c((M7
z#VxG3jp4erV|NAI)6wjvQr@k1+tnW=)-{xFI>r4}9qT}fvYT}%@}axz=Apb>?`AtZ
zSd3ot%2Mx}?DG1s7jE?z=V(l4!u2d1PJcI|yj$;nJv2b{Eh*g;#dU+bY9G5V;re%B
zcP!=IdN+B;K+)s-b4$G^71s&wP=9v&4nsfAB6h<m@7BA4{rZa~2VYp+ZHoJ{8lF#f
zWA_}~_(XQkP~NR~V*~q(zmBrrm5RF_?#Qz2is9I&H{A*v-%sXwx1HX7)2yE;5dG9r
zufO6Bf!p}wS+X|5eOjO0Qj~Y=UC;J?#HHs?Ebb)5EeW^&adr!i!2EbByB#R+*1NtL
z`ih(L{<FCK757e6^rHu}>kBvic6Mh{-mP~lRqZ9VrjhlwQrvL3;|H?)9`4-d>~5sI
zTkn?i?k!s7O|{fpTXDO=UF*bd|B=|orSwV~>l>7J>)jGndx~#89$DN{ikla1$-gGD
z&cZFxhusX6ckA6YUweq|6Qr9%aW6XI{`UgAwMSun$r5&}QQob0&wcGKYOa20srN@V
zd3{&_H`6M1*T5~E#O?sfyY+6v)m=pf=LZ(|KgDeYclS7UvyV0zRWn4;m;_SZt#{wV
zb`#4N-?z9|6gLyxNe$R_hnv4XyZb5c*1IDjyNE&K?^)a<ihH68+#Kvagu8t*yH6?a
z*1JFMbrylU?poYUit7b;_}xVMx3?aH=LDPC%};r^-c7fuv-oI#$Kr-5ZUeX@x3C)z
z*ZvW^O(^fyyK&AP#GQ50oujzFDr3FpEOv{I#q$!|NUD82<=uLBQT<M$m(OiWz2g;k
zKivE6*!6*1y(7C3ly~dhxMS^wOIqpnQCxSpO-r!*67B~-c1@Ib>)j<eI*4(5QY`hh
zRNPu{kGwfU|Mo89&@X+M-LK|(cL%-u{C8Us+D*E(6!)W}x$l78{cv}GWVbBk-FnyM
zL|d^l+YL*-r4)Au+yRT(E$NEB1BX>qdnd}f^=_sCZN!0>(#@&3<KY$=#I7&g$phH+
zq`dooUA4d4wuE(mccZLW2mPT9)%6T+oz?7Ch3j0M-8jm-_3l6e>!6kOsqR_OcUy?v
zUijXQKVUZ%<C{J!yD5}+>)jhoPguP#DL(T9!>vJUs`oV9ai#e<i-hZ&%HNv}<=uMM
z<5z-Jy&r7QcRQpNxm9r<cNxZRPq_b&u=|e7`TPF|PPXhlGP07L?Idy;Np@!0dqzYQ
z$w(9-dxbJ1WM*bYMpoHeWJHv`%J@CbdG_g?>-+iK&d=@kz1_V3_}-n*xvukio##2{
zaW1<v<Te!h-Fi2tH(cc$v<=+F3)%~J9o$np$t?zV-3D?8i~VlB``O*posbiGy}b^?
zHN*4w`g?M3W4yJTPVN%1->rA!@*>xvd~Ojrkk`A@PPk*?Zmvhq-z9K2^dk49*zeZ6
zY#G`+%O!Jt=Y4jZgZ|Z4xOez_$b;N2aI-Ze_pR9P*1MgG;rpQUuQl95<;k_hd)^pD
zZhp953X@w>?04(k)Bh(oGa?(#LAPlm+8YY@!EbV}<GKF*13lN<i2ZK8>+~M|tF$-F
z4Db2Tt%aKx^FA+on(qX`ofJo|yV&p6yDg`h_QSKR7{^Nt!gYsRX&$*<;Es(Tcazxf
z*1I>0ATOe{*8*<Rp;p4Z5BI<&atp&fxQN_qV!vDOR`f7+duPEoerPY;mZ&eXnbUmz
z4&L*g<H-H>7lrpMz5A#*T;=<_{GZW~B@4OR;1=ji?kcz;9m%y4``voiVY+F1Z~Qgl
z9*masxuM?7xr|&FxJk9h?IHHN^=^j=rumjUaLYKg5bi{{v3JNV4|jBaa%YSEZoO;o
zV(PZ}V>IlTXeZpea2u4MI`#$TlT%Y^KDkfqckA5~H%(oi-$p~jRn3KKi}i=YeaPJj
z_sk7)AB+8Ny*uk3T;+3%N;l#j3|rxDhWlY1xo&XVMv|LH?04(kWi4Y&zQ3Q-jJOAb
z2{${|qjEeUw-Ma38T0ifV!vDOmMDn#n=&qH!hM*N+|h8KmZ$Zd->5HIPoee>6Z_qI
z_eV3hN^Wu3FC*^3XeQcw9d76#axcI=+nd~FV!vDO);?_7-VHyEhNNyyg=>R#&l;iR
zE`qy`ksB@cyY=p_Ri<wI52L}uvx#t5z#aF3+@5gHmm~MR*zeZ6y&l6=z7P4~X4%+S
zxIf|ct3vCZ72w)sCAYNL@7BBRUz_GoT7SnlKG#UN{jd(sMv(gkb*%GCs$(6*ez)GO
zI{k{t_hH&MjN>;Ag?kq6`yJ#)!rgv}To19|t#=1cFm?BS#W>DSZWZi{1imHL8*Yc)
z<ZcoB-Fi2s$5oT|CVs&<ZqPuqcLCfyHEBPfE!<y0<lYeb-FkOyZ@9|mRub-+KJ|tB
z9&VFy<Q9T!F`3-oefQ^Z-LH3_{xof`(`Srh9~<Fz#r~Ub1i6o}4l}toxz=L8Tkn>t
zc+I3AW_`jq4yz~JgK!U}lDh+L-i-B~-eSL7?>0SU>K^!LG>nX`D_nl>%)z>}Pc|8D
zaz$$IJh9)ccdK7Bbzglj8os915$<%jV<(bp54UJeawEllx85CG=eo(~Rtm0fF>)Wl
z%^FE=0l2H)(Yl;b?04&3->-0$=VXUeBksYdE!x`x`||@nk^30yedBJCn@{X_>s{-j
zaVF2n87UaY18WI)Gu&M^w0|59ckNMfn~D8yz5CT1uF~GU?=g=3Y6>?i&TCwCC)W$^
z!;R#Q6#LzJ_jm=<I?MPD<2byAaEHQO7fG%o+~9fSt`Pg(dUy6a)AkmE+wi8fa4*2^
z^@-dva3_u>_pI3O*1IL6(OzX7+b3fjf2%IsYB;}hwcc&<_hhUq-|SBA2eIF+cYoNK
z_JjLdjN`K8&WGD*BDp8wx-xPt#D2HlwP<(K<a68d2IJV?O0+QvuG>CxgWy)JM6RRQ
z@7B8)_M5sllQ51)R1>ZP&WQ!5k~;{lAuqX}V!vDO{#k44W`X-Pu&Qu(!0lE0j`({6
zxS^kEpJA)m@7BA=I^8n)-0Hl>IF76$tXw$XXEl!8TyV=jBKMZq@7B9>x4~7$MgLbA
z$M-4=cO*YI7*6gZ?6-8iK<>XogUpXS)4M6jrf%R%BksYdB-|Ldf8UV14{l%txwXW8
zx89xq$<#ge!f3FnL~d1_Bduo@Fa8ZbxJj$X?JM@X_3nYB+a~?+I?-r2<X}k_T<hWF
zy1>2dORm4z@7B96bKxrEttedk@fC&p0<L8kx%J?_A4BdTvEQwCOQyz~JSST`$2bnI
zAl%kCSDZVM+#GO=_aOJV*zeZ6C(kCB^uy?97{^iNg&PL<e#Hdw_ea<-474M+pxE!$
zyT)&KP26B3#_^MK!pe?w<~s(GyAN(}D{`BQ{cgScxrC{E@+rn~Hgbo-9UemNe7H3W
zlRH}MckA8AR`*QW`|=6KadivP-V1Q^JR!Fq+}Y{0AG=!YckA7YSI}PN`%nO`Z|AbY
zt&H43x3YJ|-y8Dwz9#pA*zeZ6LHX~Sw72nNjAM^7!kP<rcVBYN;ilar_Y<$X|LNTq
zFHQSlz$1*~wWWod2=~oua$jJ-+w3H{OZa;}YZm(~|L0FO{5StUzD_wLbpz|;Q6+QT
z$VqX%;U*0x*B9+=UVuKg?P4EY?=HK$niU%-bBhfXw+!5g)yOS{aq+o7xu^L2A-mok
zyJjU@WG!=m7K(cu--lI6^nHkc>%WKGJ7Rxc@3skC!HTz%xw>qM>k4;C#(nVyJlCtI
zk(<otCAswOtG>%wh=p{MAIi_|H^%Yjq14_4xJMl5{g!nB{^ZuXz7>|Uo_S=h?v~<i
zggZIo`7jFek`pV)Es0amU-RhQhW^29-WHiti&EScaJxOG=UF=3MbF8tgV)d?bG_U3
z>N3{LN4lF7_ZgnQXI7KD81rAJIyA3t%YPOopWeM6vW$i2k*>eu&W3B{Om2D9LpQz1
zbrtu}>)qjvma%N7WS(rI;#PvYqX4=4;qHqecM{J57Sy{<2Q6V++e^2%;$Fo2xO>KV
z@Rq2%or_T2y-=Kg(7QIbm#~(LWS*?0;*Nk@X+FK@Z@^vKpWID+-d9BLE=dex7b;2D
zN^x_;z1fP~0a)J&-%0Kfajrt|z8n<9_AiimvVw{mj`>;WADZ{QhwJu*-0OTkSzPaq
zFBZfm9+A1PpAY1C>j-z{F><}I-WO{}>wPc8c@4dLCih~t@SV(kJyYCN%ztlBAvYJ+
zX`}tgP2=;_QhGP{vPCRux^!a|cPZSg^~qfUcg8Jp3$MkW(t0<dVjvqjP`Z(d+W@X}
zD%C9&ux?+gEUnvHVU-|9S-pFrDt?FQh|H6%Q{20#hi-(E8xGfh7`ZLnE%2b!yXSoZ
z*u1}mGv7mV6n8q@kdfpz#6Hga2y%P!Ym>_9-9F<3Sfya;j#FF<xWlWE8x6P1cXG#y
zdm8lav}X%g$NbXmp}72B*5%Ks?rx8Ly}K=F|7{N6C#$G;cf4J|euv1Mnw{bffxAA0
z+*@#~`jfj>oQKi7!7dBf-#-O2``1cwbHI&pCAaSc<V|moyN}lamG$oYmHx~;O6I-_
zDef+;YdDuC_c>hO5}U+)B}SaH(YqDn=d%w-rTgo?GLGT?xJ&CsBPZfss{Z6Y;q^r|
zy<0VTKC3fV=DuDi?nkUgZC*icD%_B*<bDz7cl2)WC_gr(p>(e+?sB-RyOZnT9&2d&
zj@-Qb8Ubs)%P!1gcSp&5))B>R3OA$>xxe6!v)L^A*D@S`YUtg=Yw)`}O73g3;y%VY
z;+;5J_nbKi=Z!qcZBk;~*%Gz%Zku-V*qa|RM-`yBzHl8DlWR5^=fqBu+j$QEJqf*g
zKg(P;%}nOWJQTMo+*3~E`oZ-z+amg5I6qcgNALQ_%wZq0%k~aX+*qtD2jnF;w+HeU
z4&-`^b4+@-SpGSznYYYmwO3sJy98ZgY27{muKgl%gL(aCqj&%8pN)GDWIn6D;ueML
zxPV;qDY1r~H_6>4&PVCpq<OR1TqU1XPH~T7KVZBAxr^b36$=&p8_ny&hI+SIc3-w=
zZLZAcPA<jm2X|vma`R8c`dJ@x?}~F*diVa`S*-0#nRohpPd*>a;J&y>`%a7DCaxzp
zh1Z)+^zMXWKJ0Ky={{E69oQe*=tpioPt;jPa<kzv`J$=b9lmrX%Y7zCW<Oj~+>UUY
zwk0<JZlYzF=-)E@m<`jr@li8ahxyqv-2;mI8T)z#a*&&68r~Pf$hA3vKel@Jq_r0d
z*(==*in|7Gp^LO{Iv?(g?c_RG;rG7m^lr;(UMycR=`K)QJGjOD$jvq#@A)_64iLXD
zqIduHo5p;v%lyzJ#eIqW*wJmtodq|=daLN)DO7daqYO6rqt?d-oTjln@zNcjxC`N4
z%t3BC+}>l!4HW0v^zGeTZYq0yIBVwT=BT*!;C6|jeSc3coD<taZYZz24SIKY9}jl=
zy>uHY?p^H9|C>+lC%Dy9$UP>`%jw<JejX<Ip$dvS6YhBja>shd8Uku>6a9OG*WGRP
zuH(MRZ0=B*A2L_m%5eARCifNGljF&KEzaTT-7K5j+3arrGS7+qxGSFzS8%T4Vl166
z888F);YE=9hwuBh*Sqa3CbA*dWqv48arrqA>p*hv!p)XKZc$!$JL=uIGZWaOH!|lF
zr?{oy`gJ6?(@gBg*4i%mw+64fo%HV6$`hEyT=}~&#}zjk=WMJCkb4pC(=p_>;&pdN
zy*q5{I5u#rbhjz)NVo|%=zNr|59)wj<o4!|$<BJWOoj36`7)Uw3Rc_#aMv#*_W;~?
zN#weT`*-wi$qr*!bUm3LnyI))a6T&BnOv(`xQDaq4$;4UyzcJyzg;stG5Gq~r^92I
zMXJmXjZxhGaQ7A`cLUs8L&;q)&N=GcTrWnkcUNS7sF&jAfSZ2rl4xUL-&jN8E#w~H
zb+@zLO<g;Jl{HGYmEuO=yj<&b<j#W|^pxCKaeh+oR`nmr;u^?)sH3<&;ZE&G?oYUv
z%I*|xH}bl>m)`XqGMs%mEAvie755L$Bj&6??%3J*{o_95ei!F5^=^TELs|MBnRm*i
zxZB}AdLAR%_!w@hmE`8<b$4IA+s1AfyZBP(oxUc>=T2w1iCf9-G6(BBx5%x`>uy)Q
zYg277%l1vW&lL9u&XK+vNp3XUnfZ5#wliLL_tU$H`G>H`PSU-uxSQb?sY!0Vxwuck
zk=$;)?(VO5dvqVf{3ptM)^Wvc4|i(nMbXC1a97SFcO-vI4%E9na|~p=M@V;v;(n@`
zV0au!ZlQVD*NZ0CN1RX9yOX>0XFKl6eAaTsT@QD}6mosw2B(p`lGois^lpVN1DIb6
z>CRT%)^JNSBR3Up%|_v(Pj-uQuX@+~whOZ~m#&-Qrqn?F_WOdcT>UU#pFr+8UUv`E
zyWSOD*_m}8GT)o7in|)_`!nRm!u8ul?gMe2R`0G@(U<M-BHi|iYY(@SAGwX@#~R#U
zko$qx-6Qqx>QjB$v}V$6thmY635E`i<c7jMYq4AONlspOkJh_wU3#<6e^N60p|awx
zfO|DRxdr_39_mSMIbL^<(Yur9^kT2_$^2Vk#cct%{q6Ijjnm=&3?jDyue-<T-Cq7Z
zS-bNxr}i&iK6l<!PcW2RP3}v$9+$}N!0YbudUxb5XV$f)bl)rPa=5wrk=uDetl_{v
zatHIe+fDE89PZ3c=aKG1#kGT*!;;)6xObcE5q;vx>+Xqqcj?P+?B|YmnV;Jw#eHLy
zU?}_goUke`#5u7E<OYfJ%6j*})$T0BAl)O18w|I@ZgK<Q=Gj5+HePp6*1KUXy0ASn
zWnM2#aqZylo=EN|xSgMpdqSLp*1JpVbY**INjF$=ld2^c%o~&I5)f;sT|7ec$!%VD
zPu06|=Q^_e-((JOmf|jl8<c)lSZCmVaU%DvIA5)I!}4}!t}fDbQ`{DCo17)rDiAr8
zIpqH1=eefo-5M!QET+tx%<n@##eG{9=M?<OT?}_(6uBjM-R-4!2V`|(t?Z=RL2*~Y
zwd_RhXSnTC$*s-nZg0Ii^H~SBYLLuBHd9=CxQ<21?XxJ>aHH~G(buhc-91z9-mz=X
zCjFK9LMz36Uj_FFJUAn)lW^<zCD(=5-9CEvykmRj>?_^kin|8x+fC$FT#ULUh+KDG
zchAzh>#sYoCc~tgU2$8(?K*<od2lPAC)c0X-Lv(sXSQ~%M-l0Mxg(#GA1mXzUW?o$
zxCefa8zRoH>s|jGZP|%tGH02nxEtV}`VuYrw?h!_t*g0D{QWSmyXWcMO|4q9ZD}tu
zzrQyXw>{j`$I0Cd_xnI{uZnZ=dUx5Y*38FMwl`XFzgEKj=4^8FFNrlQTTX5wue<&A
z?w-;Hwz8OX_bTodxS{RIb%R^*61l&`d3(J(jkRLzt;~gnC~jxCZwiuo18&<iatrdh
zd!gRlnWrT)w3NBfMT(nliQf;ncUpW_b(Y2&D%RdF{$7pO-GO?y^PQH=|DkkeDDF<U
zmYc{8f_r!%xputnUZi(#F0^AM*T}r-SjFuLH+=-TDR9k#$#v#+caYv~xw1L)*e6{V
z#WjO_qYk-F%aD(~K<*e`cQ4Vq4_h>6H|I&$QE~TIM1B1Il<3o4a9@2RcecnK=-n#o
zZCQgyG9TMaar?tPdYar^!TA1KMT&o8HLtsa_3ny@X3W2;bgL__Io#Cw<PL+I)Q8-?
zyzXAEcjFDsSk5GwyDh1>$133WrMr-O7Oq7Axfgley;AQs+S-&^U6XDu#T@~6c1d!}
zEk{n`1i6nyPD1Y%i*CXk6J(zE$8GtXECx5<vy-Avr^CJZj@-|@?p~vJ9V#_uBNJrq
zHc4^MmB;-AJIRfQTg&2r_&4(Kx_hnOy<emeOG}ga*t?4B4)?x0xph_`C)|<T3cT)K
zuXo!_Zp3D7mF^|QEf4ntBX=R(pWfs)=5_Z5y}P+^eKyuvx<?c@t{n2F*~v|WyL>mf
zop{~7QSWXHt<TC#dzksY*si!U;Lf;yLiB0#mADV&5xGNo-MvZgW_eSO{fU(BD#fh{
z_vR{cSHNAL_n`PUym;NcS?|s*Xv2=qk~!h|iu=$4=fnn)n*!Ib8M(_u4n^<&o?MsN
zxk`7c;x2?+x(2yzR^i^6QRMF6b$6KFEpf0e^I3jBvwue_ZWFj)zZ@6;+c&^{y^7q^
zBHyBS&y=anDvXwHZ^cb2n_zf&irg=7i(Mo)f!E#J_3ozLwOG~&nQL}X+|_VD_>=3n
z8u{Zd<h~QR8NKT?x)uw4bvLsgnka5NxQ)A$y9sVy%R{11%y`|sOYauGR1@Puwzs<C
zek+6Dv9Tcc8{CM_<d)`jcevh-Ot)qZA+o)t6?YrlW3P{iHg;GOYsfl-+`7E(-t*tC
zn(xlF)$|;+!!4YHjxHsv66l9jm8iW>(caMpa@+B`J3{X|jWW%3c-_P~=$9phI~VSn
z!Q^_v-EB^8e_nU*)w`G5BHyB%dyTk(bI^IoO@Z4cjNBq{za-H2VY0X{Q}6meHq8$`
zk2B(T#7c<v_QtrV@|xUz`2N1#Ol|<LyCe1PO&`-dPI0&{J&OzXEZjmF<G3T-VdKc%
zB63N3*D1<0*U|1e@_Jsygj);GvxgJt`S1qMot#a`J<99uLwfg2xM}{v^BVGcn~Mr}
z4ct;k$ejoGMpkm;MBYj7CWRo+pyU>}U&T4-i$#Q+9q*wpzsao#cg;0=uD{}S_ffs;
zb_uTXeMq>1bI|V!3wHwCBdzH@bPDgG>#NC47da}u>)*w6Tx5rvzc9Iv;C2ll*9C6x
zq2w0fb@y?-8*tCmtsjedN#jDIz3nhBDS3<BpO`<?t4ppmue(p^-MigPa|eSiV;uJ@
zDBJ^ZS7*$lR>Ad4r}<7xUU#3;yDq~_-NlzMj%ODTt_9|k!w1m(tTEhzm&xtLr<14k
z?woRWOg^{cF&M`?@(b4=?yjxm-o<>f>q>IR^SV1)@0z!TtK?9UE@B*C%O~8=aK9&$
zI~DHJA>_^#c{06Q-PP1B2G`}Yxo}-kUyQS%`l1xvsrATR$LsEMde?Fb@)t^bTVB98
zE=g_-+(1uqkD<Pp@t5k0NRd<1yI(C$-LdB}j_vY__SQwc>353UesGhok$Z{P-52%l
zwJgYWDC2F_IV0}D$Rpgfa2>Nz9s3XU+urr$J{9>ly}PTrX<p>)S>*K=<QA?O)(O%w
z>h3VOx5tqCjo00m_3q{)rtZ5l$m{LRCET%aX9ZDv9pE}Ja?N?&9jkZe958i@!`*Qw
zr*Pxp#@r$IJ?i<qdC9HB>+Y+1*C#J>9m;dEWi-a|uN=Z{j&-B-QnbDk47c(_S|@16
z>+WlMx8qs3%J*#4X^i9Y<ZgwV)}P#FaD&6i?ZWHsIKA7wJ8~V$_hH#7jN>-hMSJsO
zy)P`3+-F$dS?^8m2wr#J(7U7DP4gnhPhuR8&L&(BxRaB}^@sbsBe^qq-F-{%<~VQa
zCZ51JUScNP$8amwqV>soaPyTXce%(H>fOW3Omj1N;3gf)D%>_$|Mi<l?tQGwW&cR)
za^bx0zN2?NvzfX!$1#o{W)W^U+?Ye;&VgI|9JyyjZc*=E{0&$6-1;2DIL<<DVXWI<
z{Yh>uxGPtXdym)MclB=hwvSD|XEUPseHDN0_yHwvxZ_&Tx_vy>X=8?yn=0~<dbdR5
zCnoNuqx@cp-@<(b*JU2LGvHQjLT(OTc0bU&9Zo%AzRI{bdjvVP=V`+2jC~yEE96#z
zdnz}%WqIBGNbi<?Y1-Zwhmj|%^-H)>aLo$Q{!kp&*B3mb_4WF^?tZLyH(YvZ(%$TF
zeLa5&*An}0VLi$9g!^X?xsJT<exi3<&wpytzts+5UUKf6a0B2LSx;^yxPG(99mwl$
zqu$-R*J$FlJBa5_{;$IQ0(a#za<5^(Wk7dwr}Db{nciLE0atlWjywRj&u8KG!+xx>
zD(!DhgFB`wxr=$-ov3$fdp$Gh-}#Yv?u305?nSr_$C6tG?&F`dpA{zZrh3<W!ZVY8
z*uEdnhtyQz*2X@1-Tma=#6Fqv8o9@L-ThMU&fjO+-i!M%j#-LuSHiXZMy?OssLkZw
z5;<1An|sZ3llH#c%X9AUg!>0>YR0~QO}Oo+kekHo?j*e%wcpe=gWK@tTj37Jxr*aH
zbe`ZL_D!Q5$^9$xv3j@C@I;f(tzrbvjlU7@b+`@Ble-Y^=knwh=Vf=Y-Ys`9(WD>j
z_V9f7YvDG;d6)ya=zK|2xUOGm|F|ZvyWi_wpRK0tb=l2x*e`{<9_|Y#a^GUV`&%rz
z23~ik=w1KOFHG9&8IE!MJ5ji1ILCBr3At<G*4|8RUtV{o>fMm3rtb1x7;g^Gg*yuF
zt2^X6!EG^>+zGty{-}4&+P*aT-1hCncndZP_Xb?=l5{@m56(ZNbtHGb$O-G+^&4KA
z^uv`M7;jIW2)7Z=pVe?BcOTp@mC4=6>+UalH*L9TdtYzIc(Z;i-1Tr*g^)WGZpCyu
z2Xav4kM(Z-C$CJ}n+0wekB7p|igSZS63HzAch_xlukgD2yWX`w4p(_jme~e3`o3`a
zIY;NJm&IJ-3eLlf2`Bft$TjQTD9g7dpPS8AqoG0Gd&0c|xBD1!XTZJdOYRR|cmLG8
zeIF&8^h3KajN_gO!fl3gr04dLTN`fi-sBeGb$6QH?b-XCiR&7QalHACa6{ov|3<D6
z=a{C}CbudtyVLb<sK<MgesJ5u*B@>PHy_UbHnWWt{ks%yp6uk>^1Azv-o0Ppy-9oL
zZ073(H-$R|?qgqaTf@EoaF_Tuy7RjGuijnPG{vO7D>oVOyWnxceG1n*hTQKs*Y+)v
z+|j)5{-<}hUr8}(?~V{&cV823dz=SPH@_m<xC?IIh2+i>`R=Utd~T@zQO~dc8Ry3;
z^pm-yMT*PYyDNd(TL=A+>n6FYM7~?^?%V3m8jg~AG7rU_1h?!ea*x10QIbBl2$ApB
zyCWwoV2z5(T-^Z0%>nmAS8`k6``dO9x#vZ`TkqbjzmR$5ldhxUuEzIwTW)eM!M(bZ
z+=n9H{l8r^bU0rJ?$>A`Yp_w~O&ck$72IB@X<T%}bI0Qoxu1C5om=lt8@Yfr4v;xv
zOT|5g=fko|<UWAgfYI|e7q7eX=-q8M7O>&1N@eB_3Mj54+=<o59fJ2zz#MYR^Sawy
z?=F7k&)(b09Cq49`Tc!}=lbmj^!!bR8+nD?M!f9Kr+1$|_Gdp+r29s3$H0BGh}=n-
zKg1QGd5IIRy9?;u4)~q6V(X-vpt$LHZx*m8_a|Hz7jlR2y1Ss>?Q(oROB*EJ^NJe?
zcfc2V&(FfVZ}1j!r;B{I-nH-S$E?OmcfaD6gS&G(x!EzVZt{lQB_iLgcRM@!u}vxR
z`w*hI5tv8WxR4tF_e3441GbBNx87~_elGi5O15{A;<kjlEkC&hP!AQELhdPEcNf>Y
z&NJq+mKL(TUW$7Q^VHR6X`Z?a?%m_$-Vyn3y*ncJT=sXe9B-o(cL>}k8RvhCp^hz>
zh3eR3k?+>Kdy36rP1Z=am*Rd!9Z<LiwRaWVoNdX?%IogZdiU`3*=$>V>9$ea`EaK_
zrMjgQ)*rSlB)255yUXg`9h-ewmV(l?QQXpSKL(S#2CiisxpjEmZJ~GTmz~WP$H{vH
zEEP8#b>Tt>a!X^~sC5xqH)_kv?s9s!=xiSr^s{*8^Q@ra+QD7?o9g4WaQF2j*Ok}Z
z74&ZNZ!=h@SJM5nK|arJqV8T7Np4B3_gSqacaq3=>)oQ2XR^*CrTboShr)e5g4|Vb
zvp*(xp~!dZ-MzcK*zynZJ@im<zhk|`&4S#bSf@Q)p4L-0iF~)-U9`}Pok);wtl}<&
zo9#BO?<|G;Z4kLfM7~?^W{;o73c5-+N^vdVCis(^AM5K^L&?1^^4)qj&%&u}vyF7O
zEAD=*bDgv!cL7|_m*l<>`EI?t<L*=zm{K(Jd$vk(+rYi}h1UDBVgDkgD(zpS@w(eu
z@7~$v!R|%L`xN{X_deDqM~9Q^19#jAatrgiyN2G4@R`Jlo|o=q#T^GX*I;sgz%9Ci
zTq|C8*V4N$zD;6FK1z3};%0%nq$If$v7gm1iQE>v?yjwOul}CMUYSX^yW+0Ex^ht5
z88QET3pa}u?d$dAWp^FDYiT}#xiyz=E5)^jJJFBaLD+}fIfC4=BHyidd#1aw^rdn>
zX`{HOu^+IrIl1@Yp4vw49FgzVy9r@qSvPCxR#aSPxJAFxzDQ^6^ZtHG?pl%W*1MaB
zjb&F}%X=jXD(+kCw`|@`?gh9PE7QL8K9TR%yH!t&VS56k`)|E`PWr%g9ZGI9?9Wdc
zLT-%6ckA633r91r*RsC&ptwchjw(y;UhZa`CwL<A-FkOW|B<ZzDd`#&cNg~G7T%$K
zJxiQ_sQZ-K`-RutP4(`OJtNruck;f9IK^!Vx9B2rSHf*omd<PB<#jjHyXWc;XT}M#
zy{8p70sEV-ZOF}qb1Pf>kZZ~7Zd<)OH+~q436<^Lr?_L`=KVwayk2nItR%Myue<H^
zZmBhc*}Ux14N+Wvjx_fXa+BfiyhUzjUU#?9yAf-Ku%VA-9lJzv*I-||%mi}#t&KIT
z$bVQoD~9v3yQSW(S!W>YvqZW+idz?M_v++cg*(iVTyK%@*1IY72QfpSbSEfo49*iQ
zdQRsQY}X+VIgi|6k?+>KZH@iemXq>6kb#QZA8wuX<c7n&9Zl{ok?+>KDNp*bH*=-i
zRdK)KyvF+;<d$BK^G0dpMvHv6-p#qmg-w4c@9nTx+(mHH3XnS=Zv93_#OHQb<h%85
z!Tm0*^$_XWC~jrAj<Iwe<_p|56Ua>w`EI=%___}(l~uZyihBa*cP`H*chCmhPrH-c
zY`pGv)Vo!8_GS&MO1FsOI>T+$g4}CxmnV{2hS%Lrdbgx|FJ>Gf?=Q)wxbJX2D*G=w
zchzJg<|Sp1ivG3Xb$3U-TfRk47XC!uU-D(0e6G)hTl^5Yp>QYnAlHFECOhlh(C$6h
z(oV9yFBR7UZmJu(`9fk1HjBv}!0YZVdiPk6GwU%_wl_g>58+%}^BUw%g**8oxl=^G
zTkqa@(2c$8Dcu;w?F4t(D>^s$6z-Hi<OYg-x88Ny(T$Z~E$?xOQruTKkJxq#xel8!
z|7{p0KDSVj@7BB9rgdhWT&259ac99T*`M5faG#AO_ZY9cd+ObF)jP2^De@kdwTfFB
zZpG5%7T=6KWGJ~eM85mKUA}hqpY^jkqdGIIIOzr|Ze(e!|0a+%18(pG`ul5<@7BBb
z4tHb=c1m}q;yS?{zKpCyxMvGe+yC%;{`=}(mvv6;=OuYRjGN-VDuw&nI+N?L1?_E1
zZc$!$yXxJRN1WK6!_pn7xU=AH&r9wexV62>t-<T=etLJ+3MUqKLb_cQw+!6&m*_iN
zC=~Zk?kBeuue<x}-61X=nMXb88Wi_nN#yG0k?R5XN5&ZG%^#Bk^=^CzC+1mFx(yY#
zGu$ez$h`;mco`bgZX(~Uck^BCz&^K-_wQ6w+&3j~zT_`Gb6FUEr=knFej?wkcW2IZ
zWbYbDx1{3EgPVMU-1TtV%_Voe$am}AxnDc5ixKjkoIHwK9`5q#<o<zcag^KxBHyid
zZ6Y1n@SD<2Un`&M$BHKyYBnKvz}8s9xny!<MZR0_)@<&`au1PiisJT!oA#CF45#51
zFHi3}qsVvb-GLn)S+CG+nRT~OaX%Kr{Ury<Ew>H7li7{j@8Wlu^zP(7j;z{b>E2S@
zK)4g!$(;#ze8xLJKd-yT=-trQ4y@!U>7G|yE4WMRlKTkm_ruiQ%DnC#r*{u}wP&vj
zNcV{1o-c}fkW*<c-E2F?TN1g9*WKgw?uoVztgD^8-)N`e4uYG!hul?gXP2hAS~p&I
zyXoDKAr8#@nY@Q+o#Os3g73pva=*ZR+=1MYBHyidU2;0Gh$6DRixhVa+)p*g?Xn}*
zP;v&jJ|f?(cQ<r&U}4#%J4<mJ!Ts=-YQf!bzwIG+rO0>d-SXYqv7xnOKe#LI?ZOF$
zzPrfHxf3~*C*<xH`EI>CYGXS#u8eetDXtsbYZ;lA!Eo>9ryAy*$am}Al^$)`;5YI<
zrrwHc4!2KrYVQfSSM11rAoAUMw_tP|cCL?f9Tj(1p#(#%H?)>fY!`m_cRaZtM7~?^
zwyoTjB{!CCbH#OlTX-kA<Ke#8KyFSxo%GVXv)8s^UU}sGQFRpeWkKA}HHzGea4TIS
zw;Zp#z4dPIdTrT(1nF8T?i{!-)yXXvj(a%M$!);v?wNYGcvKrUWcA<7JWg@NtpNAX
z8(NE-0@r9wYX%*7-R+}y?Ka>idlt$2u5u~v=>oV9dKbA@;ac}0cQCKJXX)KBNv&CA
z1L>x%k?)~?aI=pgx6*Fh2R)x$Pm%A|yNkXWSp8DcO;OzR{K!k!AlDOazeD5(iF~)-
z-EpEdJ3c-=vwxo{?pnAn-es&&!@d2S+-)M?t#`kL7+BG)^4_m_#cjgfJ>*u}gWn;|
z$T*)6`EI>y*1r|YeN^7h6{EQK@}b^zBX<hi=FMp>?Y78w>s_y|t=ZsC(mk%YQ{aZy
zCHD&4kE6(aEAriXcim5WcCD^-BNVqd+!CK?FT^4O^Xir4{^P&jvQY1abTY77f%4w3
zEsA^49J!eT<W7LQ@+`R}c-<YScN6{XSy+U0S17JC+{+&1o`vg_LT+tdcQ4Yr^VZn2
z`YolqKykn1O)x|?Cb#Hb<V`cqvbW}ScaYxo+1`@nog(l3@>bmCaLfLpy}Y4t2ehHJ
zYZqR3FVVYKZrQV)x8(g?6BM@r+#M&#Jp{MS1ajR)zFY6!UC@#}&M)1eihCyyejnY3
z-0b^s&U_uY{vzM4cgx&r!DiNz_kQ(K+{tkJv?A9TuKNXYLwMc2T<<2kwq)IQNVkLH
z7K2+SJGr57x22MMnAhDa_3q@CEm-~P@_w!sihC$G`r#7oaesolycF%dTow6ly*n?~
zj>T1#u8rdMgu6a~+!p)sJ~oh>DDvHU_p5zNcJGF~pR1bUe$R#9ljub5BDhD!lKV^i
zzMkIQG}exd{Pi*O`CCSDSHs;^nA`_&qgRkykk{So_3o*-=B&#F>E>75W^kt^&{>MA
zk$CQ$BDWf^yEo|FA0O@5>C4hJQ{0C+6AbOvlIsrF`8BzAyzbtpce_S6XH}H@uD-99
z?@e#G)B2Np3huN5wAbm(>+Vf@H|>Zmn|@#3qxDvC%fX#vNp7wK`2J?x9W+MdyY;Ti
zTst=4f^?rMZgdX5enw}3y2G6}fZ97-<h%9m&MM8>t8DTft=oz_7;d3(ayP&&GN0Vl
zBHyiduNG*|9G}X2zb+|mHn?lt$bAiWVg$K+MZR0_Mn^H0^_aZx>V)EM%bs8u(}3K%
z2l2VZlY3F*yY+73ZpO}jm+n5rZ4bBBPdanv3AbxHxsOD?Tknn-Zp%W7Nq4K_CTGL%
zYMdfB8g6{XU0t7f-MvfiW*f)Y%}(+jt+k4~7;cX_<mNhr`MLw0S;)id?r^=kAx|?_
zVZ6NWYO&(hgL}+@+)i-sk0-YRue<mBx2xv68&!H}a^Ca6DkFYp`>HsX84CCDJaS{u
z59_Ov+nCqg5qfu6PSc#v-IX{8Jv3Ih#qhaJzD#aQxPKng=hlhW-Fx+Jcz|gR<>v~V
zSKfO`xC`JW7o_jm5qy91tsr-($am}Ake8-8lu~dT{<<jKKXBjnCAT)*JsrsP;&peV
z-c5M)%%p#tEXR4}HW!3D3FFOr8@XHYJe!l1++`x)t#@taJU4NB1se?`mYfsr8@R<j
zk!t~WUKBllcZhtq-u=4VG|w=38O|#|JR{uxcuwxLqvzyuyoc^iAosM$ck5k;NpO{O
z=F67Ctr{)d+i)8Oked&#!HV1jk?+>K$#vhDoGaeB1m~b9o)T_Hyx#&JkUJamhb@n3
zUh+=lyY=qtW^Ya0=pf`7PMi?#CAhV$>3#eS^S*(><eKri`?%hHdg-mn=a#S-@3)-C
zh1&}A65r|Mj)8mMf!xx(?mnS+uf-&rxbGHW9CwQn?n$`kW66Dn`FhA7ny=U8b@wT~
zdm*3cIrD#k7{?or2)7C5eXYvSysszRn1kfD<I~C0dN<(pJCpt`3b)LgL&7}(cheYh
zucFSXK8D=>yzY+HyHo0zwzpaU#&Ls#!mWk*dfIVvTf@Cyk=)55->r9_#=SS`U$zkA
z*e6oB+u`2IOLfZ$)W@UmQ+*sD^4)qje^82v+i?NLaqK?fRz#ik*@fH&aFdsiyG7)?
z_3jU!6qEiP=#TMMY_D+F!F`vJ;f=t$#sdd(kMg?vqTW5dJ=MgWI3MF};2z-?LmgW%
zo!V;!w?P(i<3zq&@1{kWy0iT--onF$yBKat2dcY6u^wf4jMj}_iF~)-om=XIN&g1V
z!+86)Q@A;?{;+Z#x#i%xO(Hj4{BEk=?eA{thRwxzv)>`yS#Y~2le-q{h-Ye&TZGr$
zSM~1QBOgtklLzL&4csQ&UvP^tTHh%Fcf~7OPqpTC_cgs+BMGjWW1Wq0d@oG6ldv8Y
zxRBiCSpV(5ncSAV?vB&Dx$c>|H+?aVD}@R-8SdZv<Q9fo-<8~6yzaiCcP)p0GWpz$
zvydMezgf6Lu-?}xV;ylR*4G_MkUL)FyY+6hA)ih9;k^&Waa4$KAHiMYN$Zn^;O@Ld
z`wVkMzFY4`tov-z-n5w*$JsUt*BR@y^JB<eihYrvi^*Nb>+U;xcXWv_Chg4y*SGU}
z;a-J%s5q@x7lvD{1G$mB?oQCV<xiNpMQ30fuU#wL)>sEWF^t?`>}SQ~B=?fYckA6b
zE@>wHP}&>$p_i+Ldlv4vqvRHV%g)gL+f$M6*1P8-ew*}zg%`$g-BrT1$Nojpj5~rB
zV!yEabaKD(y8D6NO`7}1q`l>*W4w8-5bhbcHwMstOLn-s>yvBF>+VN-xA~nvChfJH
zhVd2?Ozp+K(}4rz`eL8A(|g*NuEgu^$9lI&rGF-FB~OgE!po?=a4mAt{@ZWtqo-~o
zw;8XypXlAh$bTmNP-!a0TfZgLUhM0Qa3yyd+;0QP?ZWGBqu#A{<o~pH3dY-x#lnq-
z8?=wy?>MK>t_-;&c-{R>@7ndsVyn(4Ej{3V4is)n?8i>dM*F-TaIG@VSj-gpZoOM?
zbQW7R?{7I7<Jc}hxToQE?oI9&oG<ZQN@o_9i+s1<&H4}RRi3{UCSe>eSRh<G?038E
zCU+9t^G@W3i+s1<ZEBO%#I<n8IKDGqxToM6{*n6$=Xa*(BKNGwckA7H1+$v;Lz#&f
z$L0NmYm0LVd7SB-!X&r>=QGYMh<vx+{kqq*y(K4L9FLwW+~aVMZ71t1&Rsp8MSo8f
z`EI@2r?HtydyBYX93Pr3T!wQXJ<`aU0{3Qf`g;yub|>rIHE&JZTVOoKaTZ_UM!|jF
ziTd;>&b5_GqrNUH^4)s3`#>|3&n@pbeqY55;WozkojzO0^@h9qD7p1{-JPO$zrHrJ
zwO77p*~jvGC8i7aFkG{5<o?CEL8~d`I`X<ZRqsaqGj;!t#`o;p6yY|&`6!?EG<N60
zE!BYBfg<0ncN=<VGimRSQTRUenIzl;a1X2}Hy7N<PxP#q%Ioe=diU~ZQ}^RYd~P4y
zgj)~i+KPN2cQMY9_S#SGVv+CGyBCe7?wb*KPWp`%?q0Z#26{&ng*$TsxnUyTt#_YC
znVWncZVkuhR(6zdZE<d}e+apOIH!B78o9?szFY4$SPECEyN?fp8#zq4m*7@TBR4zT
z#zuN4-4gk3z3b~{Zt}T>4aN7tVX$z!<Gkmco-}8eg>%prYsgI!`EI@Y^r)%3Xb8R!
zPx=e@3EW<h<fh}Cd1yCs|BBzk*1Nt|`Aph7c`&{Y9xlQih4ZxO`DhL~6|P^#T%tHH
zyVLb<YKm!lT?g@;dvD=>fjesyxnFUPe?`W<mNiAbTkjs<n9t<<U>L~r=+45OiF44U
zFOcgFx2-SDsSLdC{;PL)B%1a^^#S<Y8g~_LZkz{yRe@@i56DS8W#sndb@xBLJE%c^
zlm0ExAD`Q`j=~Lwd(@j;H@IKF(Oh_f$akCB<G7^BpKSOq{(pR(a^CA9Y~WzI-;&f%
zx;5a=Xiu&Y?xOnC-uWWmZDx=EcauM=>+a~wPS=s=NN*@EzYouto!mj_->|9VZWQ@$
zGkX&h|H0k=ocFXF=*OyA%3SDa#cc?;a}<4UuizFuP3}Qncjqv(2V?R_bq}`iXJ=e3
zGtY_bQ{2P&o^2jU?l^pZU*({2aYf|2&FoE3{D<l;zwOVuRj-!mZc*HZa2FNJ`2NBz
zmvJBIbCK`XyNAyCv!-s=neGb3J%DkX5KZHF2A&UdS5bR^@VYyX-fi8%pEa<ondvT2
zTpPG;#*mv0&$EM1$t}R^ZgaicX48E3<ZF#g*IRM-;W>Gw7`Xv(?K7UgRe9N+PwysL
z%x4L<wKClaidzTnp40UFErj<);&^(l+w!`*fZp8^=*J#xk^L}CarfXo^k@{hE8%`S
zL~eJH@7B9lI?ZF-lVm^iQQTT^M;0Zw4Bp3;(#ahy^4)s3hVxuDCSJNuin|-{`9G)V
zeY_FwlvXr<m?iSvde=L6E~{2m_Jh6R)_^-^6uFj|NA>e3cNMR@i|XBFmUGy1FWKIP
ziW`o3RPCbVhQWPxjob*4@7BBTF3)C1KFD!lt++MdHabo7v#OY<ek)A#)bk?Wt#`Am
z@nz8!rCUyM!!b|YHk#aRaF_NX_o2vl>)qD9eOb4+)ib}pMHIIN+<L{yt%f>a!#Z+5
z@w&V8f4l0r_@F;C+3~&7&8fJ%Q3pIYL)KQfflul0x%gwUtls_MFpC}eY?ayGbXWPl
zs0H`gII=3E&N^mEZ7<L3ZVSD8?#)bQ;UnFTiW`AC%d#}NTi_laMs6csc9+w;<3G({
zh12Bo_m$$-fxGo0eYeV^j_tC8Tqj<4SJ1mXD$QVN3#9u%ardK+9W;sDb#O<%C3gs~
zyDRG5Jh3xaquJ7pQ{4J+D^wu21l9@q)TA*oUF5s<?(y<7ScOMbGe5WUihBs_1UA>`
zS+fl8=W*mN;dOUqy?bYmH|x<+x>1VT7;fNna?P<0Q)Dl>+eN-x@0N4+X6DbTWVSa#
zaig#fQ`U;yd2siql6y+zyY=q3T;6QsBI$-It}WbzczUP(fqSJ6J&W&%e7D~HKER7@
zY$Dw?ihBy{T*u~+I|b`p*D^9n$s*sacc0&%#>Ti+&g_RpirWgVnGLz`;hOKI_GaaE
zcMZL3b$2?uvq`#h6!!ww5$hXi?lc7Jh~rbpEh+Nddbe!x>Fi0LN}28TRNVG(a|V%n
zAMTBs^v<ut>+afmx8VF~Y)^mbj#pg1PJ6F8xt*|1+cIO0(w3Lqb@c9^PM$30kev4o
zQQWR@|GcBQ^jWyScTjs>MZR0_CVG3ayltf0TXEyD4(__1+(uXj4|+xJBwlyh=-n;t
zJlWcb((R<Uec*<5Aa^I+T$O2VxlrW0_3mo-schVuikY9AL2;j8pP_de?K70YKEw5a
z<ZcrAZoQi)ZYrxgQo2nQcL?0d;p8rY>$-v5BO>3ecW0fN!fG6>klEfkikpOe97h*&
z|G*8nPwsVIcQ?_yj!!+<#&XiFthnRg9?wheIP4GE6{8yFg~)g7-SSVSuxv%7TSjp|
zVgJqM1np-%hC3+Zw_MVA-Ocpwj1H4oTJ!Rm{ZLSGr@<{cj$9|~zm*K2_7>)Kx2@i-
zU2QTeK2^He756XpH}6}J8wIz=MRKh~zFY6c-t}OOewE8?Z@P<|Kg@&s=sN9hR>S`0
z?SJI9;B|Kkz3X&h5_A4#k?DR?+`MoH%px}!?ww||Z`zZW-7WR5*Q7}-W}9@A6n7c+
zrOj=~{R`KAGPz?#zFY4ejdy34ewNK_?-Ru>1-IY}+D9Laed*PE$eknd-FmlSggYBQ
zUb=S_cN0IKx{};@xbt3-yH@18^=`%7?(DjgbYm6Q3hn_1a$8{EziWBg_ut3s?zVdO
zbWwL!Gq_A<KSV3;UYx5Kokr&>cECN~i`*EI@7BB5%egaq7wH~R+{SR5N03_x=PLGO
z+(G_C<h%85({&TrfzfjPVUOaT#<>;$LF9VEtsO({{le>RN4<OU_XO6mq;x|Sw;kN{
zqU0Lkmd`j}l9$)rPI~uPjR`E)OS)?nHxB25T3n*@J8k*->V|Y4#*)|F9rf<Qa5pyA
zQQo7qL~(n=E$vP2ZnzW1klRG$yY;T$C^y!?MY{79_ZiMzy{|)VA)Ghby_ww3BHyid
zZ|ok=&i0n~Qq54@(Qxfw(0Q&Ya9iFbceu!R>)oR+<5{8O(w(fhpK-2j=xTBwz)dly
zb64IX->r9dZyv{rzn1r1jaJ+la6dYc+Z^Y)e%X^7%<FDvy&F<%Jll6bx`PxqC*0Lp
z$lV0@_7rk=iF~)-EzoTo8~;n*OVwL(m*AY^y2ErHF)Pl?b<DVvC|cyZ_3m}Iv8=~=
z>2^}wGH|2DkUIo!^QY9_yCUDMcZbv*$13|tx2@uCHA^sjt3d8~xP^<*xxo~X@7BAu
zn~Y&`Bjx>3wu)N^?%9N0B8y)c=N#*_B{v(dyIu9}gi&MIq$;w#^%eJ6R@`45NbVfC
zy{3^{hS%Nw^zMkhW0<FM-<7rEwt-us6}ivhz6vMThS%Nw^=^YTquKnI^1iEzihCmq
za@aq1ihkhdQ(HeF*MUDK2kPC9wxd}uZ|Rm)TvxawBFNnUw_!m#Pdk9u-GlV*=!T=&
z!c+2|rvi%m`d_>u*D!K_!98eC?i7*l*1K2TN3rM6rJGZ6C&67+hTL8_S8O(k+(2G;
z57oOdfg{-SpYook-+kpg>fhgZ!@65LME~xGn>CEwP?7J}yJy2jvDKTT`&DrR;9glk
zZob1fXMTs=V<O+JcXQMn!FonW_nqRFg!`o>xg+3S&PI3n-4OY1y}PX62v(`MbQ2YK
z>z{bTs2|%!KSaYl)qvdBBHyidBTkQCgM;P0R1Xx_25yCY<d!~yeZ8UN{@I1PdyL-g
z@n<-jdR@A=6!-M+ctg|(a^2x3XWW%oROGw$Zu5ZQ?9eQE&(meab%Oh|Jh`!Ox16Q+
z*5Gybc)h!_!f=*9QM%EJdp{lH;@&pVzZH*S{r4let$5w-rgx7I8_puHNcX7Xj(}Tf
z3AvtdPnM@UE_;i7x87aaX&5VzAn%Xbr?_9z;tfX~$h{6Xx+A%6yzX|_yDzH_Wskh2
zyIpbTz@46j+)7cnKh=v|Kaua&yXQ9!WtXc-H$-s@!5wjItLR@(xGQ&%yPntG9{(SA
z@eo!nLf#*>QgJu^iZ?8oMDA6%0rBJ>5czJs`>?=J<{vEG#fn=SZcI&bD;&eQ?W{4P
z?XkS>_SCyU*@iG@gLM5A_vFubL)BMd!kPp(t~R+wk?+>K+xre?x0cF#sb(l{N4QTy
z$h`pfT3>R%^Sawh?~bcAggx&gT@S^5_#@sB*@xT`$8pZlkKFvc?)KKZlUfgES9?o$
zoZ^mw>sN%_QE&@Hl3Q8iyY=qLc7s^Nb@R+RYnbAueUCSUTniQb8wJ<xF}aM_-9CDE
zr`sUb<9^;ux1ZuJgj?UA+}tOyKADT|MDE7x?pb=*ckV#e*i5#!hvJrj8`+B7K5z%w
zkULW3yY=qq#{*c&60*G=6*v4_ykYzAEutT`!;Q)KjRGH$@7B9{stshfhUdxbhc=39
z3-`-Wa=*dt=SS^bDe~QV*V$qKv+ge4=8AjmYrLVuWO5BBV+|Gek-MAM-F|wv^2`D3
zo4?$jZ>YHa;O4AL?ozlm_sKmc^4)sZr(J*6vXpFZEyYd!5^wNI-Yoj}G2FpfFN?oF
z5czJsJMUh9w&S<FkEx2{&VoB*JGs?Qp&qg(_XDrH7wX-LzWv#OU(zk7xP{=(8bYoI
z-0t1U&B>>efqJ*#3RiYvnskdPZs_ND!};>$o`yTzi`;U&?p~yKi&g5+vh0>_e#LDF
zH}&Br(WiM%BNrM<ZUd3;*1O+>UD;CQUaB058}ljN5U`qDXSm;D$?YKW-Fo+?n=6Yw
zoilS>{Ou#>seRzq>_P4ZxNe`w9W3(QdUuka3u}B`-kbDYao>H6H?%2C?n}5eO2vvk
z@f7)Py<7333(K)wx~Yom1J^4qL|C<=@%wr$$PE(tZoTV%&4vA0Al)RzEd=*SAh{lJ
zD-I`jo5*+T-O;`JvPpK*H7f4b5AlYQj^v(zTQ`v06C&TOcO&=oWltZ-`<U)4ZWFlS
zImyj>26b#Cxwl2WTkkfu=*w6(>E2Y_E2;5@ofkHW{&j#m@-De=MZR0_PD<><JXT0I
zR&fWw9WaO7#c+?Nllw0_>hAS=_vek??A=v)Z_-)C{hShSm}XDzEx2(NuZXsn;M2(s
zdN=EXJ}kmZy2lmQ5AKP-8^}5vYZ%g&+}gbE-l%sc^y$skEtc*<#VrH(>q&C^!o4+`
z+}6DA-lTVrb?D7p3}%_*c#q=leIIYQ<4x{HxWS9bb>VgQX1zOYQ%_cEwsf~DZfm%~
zj9epJw@7l`MZR0_R*vk&+}lZaqvGCw7jKyGYrW`S%X9esp?GrrdEFhRcYieK#pbNb
zn%NJl6n8w_&?s_;z|HrQ+z^rP*1NNB_hg?+NOy_in!znOjohtpx0Sgn+J0E%yY=qH
z_C46{?$Y&F+%?JZ2Dc{UzJ%*(NA6XT@7BB1HuPk_^GMfMacjeU`+c2gW0mvRHyucB
zqR4ma-JOkkvb~Y=J|-{4J@+==u=EJI!{D0FA@>)ryTkSF=F-m0C%befDQ;i5K~u>M
zg}XJ3+=3$C{ok&d?|!=W0y}fAPUiO^qPNj-u5br&E^`mu;4s+_Z!`L#n#gzS-IV$_
zn6KhK?PWAX^>Pqy9`x^+hvaU==Vnoo+H1$_?!9`~BY(V!n-}ih^=*VZ25#XJ^nEA{
zclkB?{yK|%x86OnC&9#R*wbj(`mB|3ufuK9gIqt1<Fd2K9mDJHNWGiy(OnaFKo6X!
zt=dw!^)N1GFDLgGp1;o;kvm)DyY=qycK1zOKWC$1>6qriT?zNd9dgIR^-rev#cE!6
zAJV&P`R|3ESH2J3jfQ#qnhEzO+|;7<JbRA!apBG6?iKlNy?Y@znfYFm?)h#;L-((Z
zg*zV4$+Q9Fwt*Y$MD9gicOTWeiRo`m`r$!WqoIAXhQdvR>${8GU6@DN{-pWYBa!dc
zyH=}B-49)ih88|H!tIIo(9<vE7KHm?8@Zo(-F;l|&Y$$wq<?e5t$)6ba4*Bn-h$r8
zo|soZbtX3tue(p^-75>wzsh(k+u3NSp1YQCZ83l7vw&P9>Xy!C<W>;*ZoRwaxT#yO
zlhIJVleKUo;MTuQt^?edNUF0M^Sb-A-o3uc)NR+%Xebt3O}G^?KPzED^Rr0Qo7D!B
z+lklR(R#O{@tsLOxHuUNdGA#gZZO=zBgicSH=z)@Lq)z@?{0f$>biA6KET3KxH&NY
zb=yy_AJ!jspP}^!FOl!oyB>bXjVqtq97m(!`=Ii|^@KY*jogn|-)ZJf?lO_@*1PX(
zr<k}a+8Yh;x0My{Teu6_P<`PF_mU;KJ4C))@78_z-sF9;)4^zXo?J?}uBeA>g2=s$
zb-4$(X<hEL$am}AU42tc+Iy^>(QvPB3E{@U?QoymhH$gbBR4_hyY=plyD28^z1r4j
zxaLt*xGhm{R;)yIY$(=KPc$O;oyd3V-BAZj+xw&q-kZk?2{#gM%vf>@!;MLzb!9VN
zcVE@Jwy!_1Gs<%^rM1zp<ZpiARz^J^c9`5*SO>4Mj@;6`?!KmXM{WLK(!YNUMuT5#
zbK$Op+wC8@sn}<@*^%73BHyidtHh$c%J(-vT(1SWg_{%WFu&T<I?O=0=l`7-bE<YC
z->r8$9{y<3-g2#shKbj62zMIX-ofPF!2Zy{gXH!X`EI?trQIhJx28Svn?<q-_buGc
zkIA)%8<z1~M3Y6nTklTjXX>(+Mnk{eS%m9?^|R$wX}#|N_TM7QP<sPJzFY5hZ1b6I
zR{FPn3!@>dX?pW4_;U?zfeGYRf%_otoao;zBH#VLU7qdW^S_d<bKCw-YMeRmYhs7*
z*|~4Rb;bJR%UE)!W8ZZ6WO9#+eE0u$|C4ViR5zFHv}+AAUF+sXgLlV|!cBsEr82Gm
z-p0Q4`O@UZiF~)-O`n|0w(H=AnQj?dd~SD>h3kQJ<@A~4)`S~>=B((4S0dl7caM+F
zWm~>tqfFPFVO}!mm2m&T4ZKgTAI=jr9Yt<Bue%@V-NR>d+4ia--QP`(2D@aVa09V!
zU$Fu0Gd#n&is*vm7U6aGW4*i2HMi~h1nItOVl-HLJQQw8>|dA%k!uTg!O=6KAFO%Z
z{Y39J^2lx5YN&J{Hpct-Z@h5B;GTLz?rNNec{q^Vmb~sZ>fM;LxosUcNH?|--kS?<
z2)8cwhXPw~6K(v8b3rq5liN$=yY=qw{&{S3G?d@pBMmXHE__9}C*W=iA-5}B=g4UB
zZ;TiDZoTX4oX7U-SJ~dM26#@czaU%(?CWj%Mebgl=W=!-cP_8HU+CS1hx6E`9FgwQ
z`gopIjTY`5xL!TBi#Fzm`#BrA>qNd=@49u&Ys;)<KX}{VxwG$>a0g-EbV<fO?^v9d
zdm3?C{2P%X->r8)Hp*+8Z;*6H*5mW)L&ALrH#+YQVexx!|MVvJlE`=K-N$KgJ*3;M
zF7lA)_X>9!_N9LfC$}bCgBiI`MZR0_F0nSZZP7=%tPY>2?h<Zx?9W#{OKu>}ds;`F
z5^ev+>+WQ|8&b*KwnSm+R;kVBlVQSL3b&5MPGP0s+^b_Ba?M4)TkmH7Y;N0btaS6$
z;`6=`;g-X>ieaAQc7~gpjoeBi->r8Y^5nD4ds(_)Yw-Em8sYAOd-*oG`*E%~cHc?S
z_GY~9PSv|VX5_Oy^HI8wtob}@xo{id+=_jjUBW5~H!kBImo6gTt#?;-t6>|k(kt`%
z>t7w~1b-I`_Yd5_-Q?QhJUDxMLi`&ec-{R;?~b`p-FCtv={B-LJ-=XqaL?jg(5>p>
z!WxBh@jIrGJ5%Jl_3qlx>b6IdrTelf-kU|{3U@BfN448d?rMI2Ngi^S^Sb-1-c9Ud
zZF|1vjLd#mRt4XOrryGJz&WvgRd$Q^#vmv0YwdCI_i&N#*1LW8TH8)*J2TU5Q5kh%
z$BDwti}P~-LdpFeigo*%<eueq_Yb}6;9bM^-%y`S_pK$K>w|_1Hx8~%B|7I=4Q|(y
zlyA8w^4)qjGNp!X^9RyhUJ-S`WEbHs$2rH4jNgpyy(JcRE0CKi^4)s(`}mr+>sQXo
zY;W@lSU2+TB3ypnbF?L$PhGGX=T?lAcgn%b?sUCt^|hw$)zZG1?#pugebGj^7C84h
zcMG}4H{txGJGo^=zFY4W+)&HbZ-8_IE%<Z2nQ#-~CR);Y<#!=CFPEL%`n>M`t9QL?
z*0wdYo}JlVo3i}*TSvG%aIUy&7`f%)c3(xAHAh}||I@p*O4PBPQ9`=$rA6H>TsNGr
zwyi?v%)4%kHKbQ3cc933XS2`pfBx{f<bUR=Z!ZpDN9H`qy!UpW;{HQ>$A6;sM#1ej
zh}@|n-~GSc|IAZMH(AK8SQO9fhcLyR3fH)u+-B&9mfOf(Eb`rYw@Y*ooB2oP-!>|4
z5<a&<&g4eJ-SnQ^Fp=-pyTdjtVLx5#X0~^&;`WAnAf3Kv?eIOTk@0&;$3?zd@A{?(
zF{iO|zP>_nFJoN%&iMXbh3oE3-?LjH->r8WEnC7mZ&BtuirWlsO$TakH;lKA=g3VG
z`EI>?w&oJn;-!2KEmGWYJRgp|qvuWnT<bjaeE2&Mb+@_R-B)1=bKWN11&Ui1?ue!2
z_Qi9jS{HJQ^Rhdi-d+13h#hR&B=d8dr?`vooV?PI+$V6ett7W5ue%HAUB}=cR%yF*
zeHHf)-WNaa({p_wp1;o@l4}t8ZoQi$B#5nfF8g7o;<~||Ka<?&a355l_eEck@7B8o
zH!f!N?W8+hai8P8IkFPDgYkZAH;mi~BHyidop&u}2l~kG*%ZZfhI`@?y^o*6t+SKd
z`6Az~ch}5b%&vt=*IjXAFn@SEj@&_b&;NNx?naUC*1NL<7qiP>WgY9LxJ}_sC_?U2
zxc%$W{NbR;ckA8S=N7Ti&*eBCtGK%{kMfD4d6X;WI~U!_y(046dUwOiKsLLKbVn#|
zMYx{^kb4jAx`X6C7x`|zYkh1HGX_g{sNyciJhgfba-A{ni~C0I4_<ed)w_qj2eP*T
z^)tuYAjQoE_r-3S|Hi?s*@Wi51$f<Up?B?S2IBYBY%*O}#hrmVprA9k4w(P`@+7w^
zFT2a>-F(#-u}#@!d;2Qx2h>CP)2MDa3wKY(-5|ES?yjJB8_o=1?H|?4Y;RA+9S(QX
z7IK@RzL@!w+S^^^yY+6rkN{TCUAo;A_aW-S5su_W!mZbo>Xy+W->r9B?+Rei2c_Fd
zal69J_lfFbE7WffJ;|LV^4)s(){g+T@uYljIw|f&)ZKN~k{bf|Q^s$zt`hlfy&KwN
zA)B^N?q@kDt}Wc>t;j8kI@awQwKqcKyY+5e&xI`grgU2??g4&IH<{KS{NY|{K=tu?
zk?+>K3ok8X1<Od+UU93#9k-m^bht;{$$cpD-FkOKxrNNpuXg75thwUybGo~llk0}{
z2aA2=e&Tg^4ZWMa%R+X2g>;$XmVj$~m9c&Xcj9|;bBTPn-hH2Y0bAEu-UrfHaf7ff
z*K{el-LMYhQJvOd%8Pur-rZVr0sEaQ-TI1~6K*R;?pe5dhmqTem)&*ruIqvY?7{}=
z)>Yh@Sf8BylGZ0}u+BAWGr3M8->rA|r24bft)yE^alc`m_I41to8ex6MD7q?ciZUQ
zRwMjb&$;qm6l=wGgS)gDxdpI}xUK}P_e~f1ZoPZ@%X}8z)H?HfR#kD6unzw9C9PL`
z!+qbC+$Fs3Zm4%B;=Z67j?%59xC7yKSxW93xR!zBZWsA(y=#7MKHK(6-d|EdaUWox
z;jt~bJ+MyuG~;(xPKkWC-Yx7ppG^t3%IpUV#qAC^*Bjcuh=yDBFSYlM$am}AvakHu
zZd>V=R@`gY9~!-a+!|O1f83bXtCK~(Tklrr?Z+nlmi16^#dU!D&YoO;U%X$&eeqd&
z-EFIP=O+8He*L9eL~+kz|LtVTX0b-{8*bDNYHvxA@7BAy=lHR)kE>?(Z$ZUv4mWNc
zxx=u}Fv3V~9bR|0(7P|I`?05arJGN2k79q*u|2uh;0BkVeUY}j>~5)d%ZJZn{$J$1
z9eEVDKHMAMHi>?ykA0l*PUO0Ze7D|h?mmyXeU<lX<W$@U>>nqDk-G-&y}9I068Ubu
zyZOglW?4qI*GzG(;a=`W?jN|%j*+`i<h%9m9?yAfatG;VQQU3V_YeCQBKlzn_Q{ey
zkh@9byY=pdfpghYe|c}m?^1GIqY~VKd&#{Bw|K_yUmOwnZoPZ_`&`y;jdar#Hw5P@
ziuNbh8vBqXUCxWPUl;jqy<0wN4qJE2GV}ZUU2)68t&xx1K)Bn3$bBL5-FmlNhq<h_
zm2B@<#a)AQD<w{B6m5JDxBPi>(|FzOq<4P|o5SkmtC-o|kBVCyZlST{cEbK~>+j?i
z=5=>Ry?ge^9CqQP?1xmvU5;}>^~;bO0k>d{3!?2-yzcI-ck|qz&C*B8doYp}w=i6v
zD;tEBAN%u>{m5-0^4)qjyX_p-_KNI>H;NmCb62Ik$Q=jw&k}NbihQ@;ozr<X`&nJK
z_od?IhwE2^T%M~dbdKDyBHyid+vJ_YlC7nisJMYRFZc1`dg@c0fB5``+&LoOt#>2e
z`?CGR<h>n6#mx)%bRfC&;0~;MQT!WgMZR0_?v8-#DBZ`3yAbCb*ET2D2=`Pka`%aR
zx8BWq*q2plE$;()ptyP9{zzFT+GvY&D|P+JjS=~7y_-7Jm!(dY?p?)Q@Fw11w~5@9
zaMO;G`$Xis_3p%xzHHDDc^^o;;^u~%*p=K5aGxiU`-Rutu6nn}BOg{`v%Fv9mf|i<
ziZ>L=Ms9nYH?l7oBl;vSue<x{-RKoQZ1`yD#wl(dxcv{W71n0B0qw}O<aKv{z598R
z5Bq75?p4JNc#ZkPNOFI|?J<SiCcN$*sCQ4*@?m!>N%ykin!~MGhTJYVCstxBxt&G6
zTkp=U>BI7@lJ|jJRNO_c;tkKPtr7jO9q!=U<PI14ZoPXac_w2Uq<da*^TQ3EMec97
z>$6-E|Ax27ckA5}U1zW*t>nEOXB2nI%Xq`5`s8-QIlRxc$qg3yZoRv?!3=iSO1h^M
zw=mrPuUCsUZi8DTBmcHb<h%85^UgEawL|jWjuVQz{6)MW+d6W8!F}RS?Tr@sZoS(+
z(2F^~lJ{#wDQ<DNg*ubl5$7jM9wPUy$am}A*~7h<PjlJc!-~5mG2ZYwE4iECHhD&F
zipY2C-H2XZ>`P(k9#Gt}aNizYCHnUx-2VA4i@#?R`EI@2?vWQ;`ME^qdw##-ZhRhZ
zm^g-91J1p!X+mxpk?+>KQ@%}O*0ZD=p}3ZC>s25(81B&_<l6AM+fDD@Y&M<w#>)Mn
z-HN;QS-in1ex>-|{sQi@#pF8hx_hGDebdjAjhZdpor-G>H((*THmC7>w^8H{;B~jV
z-mO!18uR;CG_!xVDQ<)jZcB1~;aVq>J4NKX_3oQgPd4VPybmNyac$sQe_J8?Ar7un
zzF6`1Kwfuy=v}kTQ(4GD+1@RRd-y5NKkO#AEY5?kYD8|R$am}A&<aynJ~QcVR9suQ
zF9wr43a--ta*v68x8B`(2KT^Kl>M+?aigCgKU9+3LvZi;lY2wtyY=p~BU9Mqjq-kt
zwTjyo?!36=qEEA&i8WN-Pws1x@7B8w>U*%#59PfQs}%Rj<9NerKXN<3?R1~qKgUsb
zd+XibTRhnLm(pFKxLx6HYfkP8xGDe0Eh_Tede^r5WY*x9yjNnG;@*9P{eZ8*q92~X
zEoOB^{Jn<AckA7nn<lf-&1HLo6t_RzfZgO)L$0G@XL4Kdx_g%1jn3l1^5v55BE^02
z5c%Vw<W7KFe+s$1MZR0_-r7Bh4IU)>AwY3Q!@XOE+@o-Bt|!+`<h%85{sHbR#}j#9
zg}>r{dJu0&y1h*F>0h`n&ywpW^4)rObD}$&7${vo#hnJ%GLYOh=WvcGiQM%f->r9-
zr%YrAM-<3>p3PC*fA^6?X-#eb+`Rd(inbpR`EI@ISJ<6R8X?>3tGNDfZGSHn)(yDs
z^~sGD`EI?N&|o5)^jzNm;G?(&;dVGoZZYJu^7bazDDvHUxAQ|cwq%QRy%l%$J?sa#
zk=qCE9B*>J^SV1w?+$aGz|72K|4vif3UH@ck-Hvl$|iF2^SXPH-t{dpk-a`I+v};g
zJMQAXpl3@&{~F=GI8Sb6UUvuS-QWu2S@uoxUI`DywSn7i9k~@R#2SVsk;_EBTkk%p
z<i?ubG0*&-xhwARgm^>09^?*z+c)nu(e`d4->r8aO?6`z56bpVRNU5Z%?gma74ELu
z<c<{iZoPZ=+F16bkZkXG#l0SnbEKDpL>phit=W}aACd3YyRR3FW6kPGcZ}lpf}1#p
z+{zcRPCJR*l_KA*cb5(s&$9H8?r6n*b_e?{cH|C)+kXYQyG6cR?}l#}!@8TvdoV`)
zzdr8gmEkas1Nh0x3QG!Qk{hjvgL%rqw<PnUg>AG+iv5g(L=KBuIry>cptby3%56zX
ziA2&^`L*pUk%NO;yV%M6JotQ{PkElx^AEfZ@59scIlSMT>jt;sbBX4#1#Wa7-80(n
z7Q2}|4@tf;cbIeE6S8!=hwclwz6W$4X}??SMrPbZV_~}zL!3JcZqXRJ+GtD~|3o)K
z``u#q$>JdiFLMVuR}HSI3SBF>`qFEfiAwoSu8Cb!rJLmJGIxM;SK_kdeO;th5Zv!Z
zbhXOey)JhBAs0Ecv)v9W=T?Ag2&0<>_pu+{dgbok6uT+ElLTzc?dROcoh+5v&@H%t
z|Kv2f2IcM!i`|BRgT#N>UWJ)+_28D5pxXwnIfU*I?RSga!eb{n-C=Go=bqonQmec`
z^YwunJV1Af_PfPyZLX8F{Hp%nvu@5cf*V^#_ZZy12Xy_k-z|1S`3_S3#atujKHtbv
zM<=>ja8+4!w`spy?5_6MiEfU$U7YIzH&=~r&84zed_yxiqWx~MYnvP)DIIg$IX8O^
zdp6N|YT3bc)uEf9{cf>)bzmp;A8fCpjdOkAe)!Pc0JqqPZkqPH#qN80gk&a|+se5b
OaGRRZy$APX6x~0tI9M(K

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01
deleted file mode 100644
index 3575255..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01
+++ /dev/null
@@ -1,173 +0,0 @@
-Plan Title=Flume Base Case 01
-Program Version=5.03
-Short Identifier=Flume Base Case 01                                              
-Simulation Date=,,,
-Geom File=g02
-Flow File=f01
-Subcritical Flow
-K Sum by GR= 0 
-Std Step Tol= 0.003 
-Critical Tol= 0.003 
-Num of Std Step Trials= 20 
-Max Error Tol= 0.1 
-Flow Tol Ratio= 0.001 
-Split Flow NTrial= 30 
-Split Flow Tol= 0.006 
-Split Flow Ratio= 0.02 
-Log Output Level= 0 
-Friction Slope Method= 1 
-Unsteady Friction Slope Method= 2 
-Unsteady Bridges Friction Slope Method= 1 
-Parabolic Critical Depth
-Global Vel Dist= 0 , 0 , 0 
-Global Log Level= 0 
-CheckData=True
-Encroach Param=-1 ,0,0, 0 
-Computation Interval=1MIN
-Output Interval=1HOUR
-Instantaneous Interval=1HOUR
-Mapping Interval=1HOUR
-Run HTab= 0 
-Run UNet= 0 
-Run Sediment= 0 
-Run PostProcess= 0 
-Run WQNet= 0 
-Run RASMapper= 0 
-UNET Theta= 1 
-UNET Theta Warmup= 1 
-UNET ZTol= 0.006 
-UNET ZSATol= 0.006 
-UNET QTol=
-UNET MxIter= 20 
-UNET Max Iter WO Improvement= 0 
-UNET MaxInSteps= 0 
-UNET DtIC= 0 
-UNET DtMin= 0 
-UNET MaxCRTS= 20 
-UNET WFStab= 2 
-UNET SFStab= 1 
-UNET WFX= 1 
-UNET SFX= 1 
-UNET DSS MLevel= 4 
-UNET Pardiso=0
-UNET DZMax Abort= 30 
-UNET Use Existing IB Tables=-1 
-UNET Froude Reduction=False
-UNET Froude Limit= 0.8 
-UNET Froude Power= 4 
-UNET Time Slicing=0,0, 5 
-UNET D1 Cores= 0 
-UNET D2 Coriolis=0
-UNET D2 Cores= 0 
-UNET D2 Theta= 1 
-UNET D2 Theta Warmup= 1 
-UNET D2 Z Tol= 0.003 
-UNET D2 Volume Tol= 0.003 
-UNET D2 Max Iterations= 20 
-UNET D2 Equation= 0 
-UNET D2 TotalICTime=
-UNET D2 RampUpFraction=0.1
-UNET D2 TimeSlices= 1 
-UNET D2 Eddy Viscosity=
-UNET D2 BCVolumeCheck=0
-UNET D2 Latitude=
-UNET D1D2 MaxIter= 0 
-UNET D1D2 ZTol=0.003
-UNET D1D2 QTol=0.1
-UNET D1D2 MinQTol=0.03
-DSS File=dss
-Write IC File= 0 
-Write IC File at Fixed DateTime=0
-IC Time=,,
-Write IC File Reoccurance=
-Write IC File at Sim End=0
-Echo Input=False
-Echo Parameters=False
-Echo Output=False
-Write Detailed= 0 
-HDF Write Warmup=0
-HDF Write Time Slices=0
-HDF Flush=0
-HDF Face Node Velocities=0
-HDF Compression= 1 
-HDF Chunk Size= 1 
-HDF Spatial Parts= 1 
-HDF Use Max Rows=0
-HDF Fixed Rows= 1 
-Calibration Method= 0 
-Calibration Iterations= 20 
-Calibration Max Change=0.05
-Calibration Tolerance=0.2
-Calibration Maximum=1.5
-Calibration Minimum=0.5
-Calibration Optimization Method= 1 
-Calibration Window=,,,
-WQ AD Non Conservative
-WQ ULTIMATE=-1
-WQ Max Comp Step=1HOUR
-WQ Output Interval=15MIN
-WQ Output Selected Increments= 0 
-WQ Output face flow=0
-WQ Output face velocity=0
-WQ Output face area=0
-WQ Output face dispersion=0
-WQ Output cell volume=0
-WQ Output cell surface area=0
-WQ Output cell continuity=0
-WQ Output cumulative cell continuity=0
-WQ Output face conc=0
-WQ Output face dconc_dx=0
-WQ Output face courant=0
-WQ Output face peclet=0
-WQ Output face adv mass=0
-WQ Output face disp mass=0
-WQ Output cell mass=0
-WQ Output cell source sink temp=0
-WQ Output nsm pathways=0
-WQ Output nsm derived pathways=0
-WQ Output MaxMinRange=-1
-WQ Daily Max Min Mean=-1
-WQ Daily Range=0
-WQ Daily Time=0
-WQ Create Restart=0
-WQ Fixed Restart=0
-WQ Restart Simtime=
-WQ Restart Date=
-WQ Restart Hour=
-WQ System Summary=0
-WQ Write To DSS=0
-WQ Use Fixed Temperature=0
-WQ Fixed Temperature=
-Sorting and Armoring Iterations= 10 
-XS Update Threshold= 0.02 
-Bed Roughness Predictor= 0 
-Hydraulics Update Threshold= 0.02 
-Energy Slope Method= 1 
-Volume Change Method= 1 
-Sediment Retention Method= 0 
-XS Weighting Method= 0 
-Number of US Weighted Cross Sections= 1 
-Number of DS Weighted Cross Sections= 1 
-Upstream XS Weight=0
-Main XS Weight=1
-Downstream XS Weight=0
-Number of DS XS's Weighted with US Boundary= 1 
-Upstream Boundary Weight= 1 
-Weight of XSs Associated with US Boundary= 0 
-Number of US XS's Weighted with DS Boundary= 1 
-Downstream Boundary Weight= 0.5 
-Weight of XSs Associated with DS Boundary= 0.5 
-Percentile Method= 0 
-Sediment Output Level= 4 
-Mass or Volume Output= 0 
-Output Increment Type= 1 
-Profile and TS Output Increment= 1 
-XS Output Flag= 0 
-XS Output Increment= 10 
-Write Gradation File= 0 
-Read Gradation Hotstart= 0 
-Gradation File Name=
-Write HDF5 File= 1 
-Write DSS Sediment File= 0 
-SV Curve= 0 
-Specific Gage Flag= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p01.hdf
deleted file mode 100644
index 4b602b0b8119ce69b6e8748b267823e792319607..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 180960
zcmeI52|!fE|G;OtL`4OU#58@G8s-IRikgXXh~+`zLFT~<E4#Yv;_iZrW>RTk<<Vtk
zrDj=_{R=ZoGn359vco)5e|cb<VyS87m8t)kH}l=&v5y7B1N=T^=gqwD%$xblym{Z5
zH^<EQn7CRsZmmJs5g17PNU(egKbOT(xZX#00y|t!7AG2E<_a^9ixUm;r+<Wm3in_U
zzW!70qfodH85|o+s3e3BrnpR`)m%PGIOxs%q)6B|FW@KfA|m=Pxjk3dPy8(eMZAO!
zjY>iwKDKuPi)xaHZ@e%!D)O_h&YZ5ZS+d1tl3>)Dq!_JDD;#38bS9e=Z8oJEYzDK*
z3UY&W)=Z<#DwkE}22X*va%r#0L&$@G(7dS#K)Fm7^~@@f`ec814AB;|)hZ?GQdp^z
z`k8DxONQB~m2HWcmT}q?om>{(<fu!3ttpij*DRey3LBs`nGB}1JFSwbHH1Fcz%KRC
znkGp74JIB2yT;w4X<^q{j4l_rdu(c&&RssyX30#kWm+HvksNZPmun3Pke^w*h;WE_
zawT6*C`#l*5Q&r>n0z4pH^g8w>ZnUS`qzN|L3;aWtvV^1{e(wIE|p0TNv2XvE|Aox
zZ?jmtjk2|p5UCe+VMi3{T$6OZEbgn(@DTmvYlOa6Jsl@{xx1d|6-2{fhlbRa;|Woa
zh8WTzzIEm6vKZ;uZGhI&F+3ttis;h4b9nboUAcP@36oD)eA&NYI*XN-JUP7#38Xio
zeR%r_YIpLfE6Ycl(=&`Zo6eO13y|?*X#xL3ESW4?gx8Zq_5F?YB%^fm9#Buh`<p*A
zgyeF~(*Xv`mHe`IxR(D!Lww}2nk#~U`XOFKKrikeMD((RhJ?^(A(SMVGc74PS#yx$
zwN`$SO4O%+JdQj7c+Mr+Hz8nlzyFg>;Y*61d#w34gVx-3>kC`&8S(tGc5%I@esN}D
z!QqK*69*28(U5BNS>s2chzF!!8NYBLR}jKaK&~K2_^-{)C~lC=XZQ)oMgGI>Ny0r@
z$VL6@E|+(f+c%!)rd`NwZp}l2@CsXrGvPj0$Q8_VmkWE6+vA0Mo{&4Y%3Ut`V{Xq8
z?n2C~!RsA=)p{qVB@Y719kv_1BCS#aQ129oc0wey7wWhtQ`VpoZL&hf6tO-=bIJr=
zD%I3<<Hj+qElWqw$B9;_=j+3?#!S$k!2h7JR#~%RZ4K7|JYIJRfVNO<7Ae-AL7Okp
zX5Bc5ZG3jBMVo0fq)0=wV~skhQrff@8`TP>SfehB>yu1n>}N``=+aqRC($sOzM+fx
zqY8n|kfJq8Ogi3dF-)d+q}D_lHcdo-ohi+xw~~S8R9Xw_tSJ^lhHHaKb|0ushx8_x
zjoD1kgfu$r2{d{XsMBsXFuiH8PMe~aoB?pXRB3l+h&XdeCC`oG?k*51G`Q}fJ3|y@
zq@J$3h7e~oPm*E`G!qSDGZ_Gp5xlmd?=Q%h>tt%^+la*_RNNolZ_4)qt0$Qx^s9i$
z^tqA_sfqhlq2AKBDnC5yweEh<h6IoR5<mh-00|%gBv5$>*flB1$;shex_n%1a9C$@
zYnIPU=2Sqt8$yZ3?X<^~L(d$0@8wR%eq8c1`GnN=w`(>H?RjKF=BQm=8s4|)bT`c*
zUovq+_1o>5dO8|t?D{3~#<`K*n~|V+l1_uln1A5AoLZeELYB-6_{OfO*)FVo>-z?L
zKXl`u#Eea?e;A+(^}nOFU!T4QrnQJYn>VI!G->HaMph46XV)YqNVN!gK0H8<6Aj&e
zY;dyQ*x<&~dmDofJ@)s@iytPwcGA+WIkshabrKcmThRIV#W$86`=GFT@AyXT`;Gtb
z?8UAx?#$5ygeK!pIT%EaU91T(UfNFyZ(G;KFFCYeqHe{=fL^nM0^V3xaAM){qPDG`
z-XHh$qu<)UT>5J7H`^?0yfNneRrf#JJ7QzOAKmZUvj3^rwBT=+%<i@SRD1Kjg~yIe
z?X~*v(=iXVZnkiI+L3tk-3J%^dsoM`&CdM&y1m|-HAU|{amKzj<^8#JUf%Th!7aUd
zj=1mt>Q8F3KXd%W)c^A8E|_v>&mJ#~|9(ZvvQ3Add~x&38}Iq3%ctgyM>?J#^!C0x
z=G^hh%HXvFGN-m(_{5?1FRV%V`RjX@-~HLec|B{L{pR9?pBk?W@6joE+JonQZP)AV
zOGhs4&FN{cw)fF#1)AC!IlfH_Nwr8kttbvB{w!$tM^MWNc1@=tQT|Wljr6zOOJ1HE
z(AloBvgdwi6zS^oFsb={jUX!0nfUno`zHo2C1W2aB!c+9%`2(o-s_trbRn8B(uh6f
zYii|$2l*v*_|mTtnK^Iik#j#r*ZiXOhdy7mdGGn--T#b@dGFNS+w-#fFMVNo+Mj>z
z|NdgrGrOmJeD7}?dyd_-_VA7lb58kURZz~Fu<&xg=(Bx4J}xpQZoQFa3^_>Z@#?oA
zJlHpC)^iQM|Ky2hen0)$gJTCTwM|&{TgV54M?Uw_#M2GN4BLM3^4SaLTl^Rh6kb4l
z@u%zz3f>7AeaGYv3wRb32DrQq1Bg!^dlM!m(66H*!9Mhr>2k^*K~h)pVP6^9w~p#^
z|5AeJ@Y29{MIY{<><@x|B`|%Nnn1$|k(!Bbpb}{qNE%L)Lnp+aey?TMeSCd1yf3NX
zGP~qQzl<<<aH~lq*)Be-(sOoQLsE6)=vQ=|e2w`F6!-J>@huXcN>~(Gca<Cz`?|>v
z7WU9lYezW0ld?MolELOl@^#iPR!zt;hd7;<eI2LYhT@r(`e)y6LP@mQn3+yH1(`hi
zgahA$pnnX^{<?8C`7=HJGM}awr&OMQ2V(c;htxuxs2I@CN9(;3k4SMfxnqf9j`1|)
z-jd~R^s8$9n__s5YV<o{|E4M%ynqCd01`j~NB{{SfvQO0%G)=*{Sr(Sc-~f#WK6}|
zH6({!aBtU;oN}~lHnx)QKq|Oh!$;hCYS*x#WoqpjI(~u=Kj~*m)!C!XnI;>Lo%jX5
zNvy#|4`ut2yE=cN-3aFOXg{*p(DoxlVJICR%vhJX{TM(!iDVNPQxZhfIag=$qJazT
zYA{**kzQs4yJ_>0ojAt(FpE6?*3<Y7Z|$FZvHc_S!yhDo1dsp{Kmter3EV6MKtC`4
z_nm9s{^`Us2irfCL-BUzm482Dc&keL$J_Y!e%SuuPZRzk0VIF~kN^@u0!ZK{Apq?k
zweJ(q{|@80;G+PT*W>#H`=&tk^NmqFkFHreD45<4zE1!TFy;BmTE4mso3AX-TxKhd
zh}p|(<Fg#&*?3xt{f<QayciR7Kmter2_OL^fCP|0RVD!Xd9up*p&M8~*Z1ccQ^ERq
zk{qh1aa!`afMWa*=;dHK#%Vc*4LKG7ax4|Z0#?)0*&2x@9X1s`osWrwv2i7ZfY*=!
z5<mh-00|%gB!C1e69LfEGrZ{OpbtX-Ihej;9{4q!M-j|5X~)?9GLP@~JU=``&Nff_
zIa_iR`p<y_m=0~6ufN%UP#;){lLZ&8r%S)<9E)=fcE8Fb)bw^S2cC&|JZ7rs?a;1*
z_<8h<jz|CrAOR$R1dsp{KmwJH0O;-B#=n3*2>Lph*K_<!3a8DY#{Mcue^;NM>$<)Z
z@BovqmrvDpv2s4s*tr{3)@kJUI#2$@&f`py6+8b3XNNH#&hCd3&!!|g_;>!r8(yOM
zMb7E?g-|^=^M&`t!#sxru0`S`ek{1$Sf*M#r>#mf7pSyv91Ga1_(NwTfCP{L5<mh-
zpz;#n>x9zyJNl(V<-|ZgEa-1eeU`5~D$g6Fs*^umnUi^C>yt8%WnZtyC!hBS%Q~t<
z?YQ!FNW*zL<aI~`-PR!urdL1@RPNuTray^o<m512f4)}HpV&R{Kmter2_OL^fCQ>0
zfh*CUn2t~Z`qPPQj+Uuv4z=TI>QC}Id?Gs?`&<gUn*P*OTvs!;sOVAfeH~0S|LBec
zkN^@u0!RP}AOR#$xd>?J?m(<hZk6bmQ?7#z{g9vsLVqNf#n*WwIgCIBtS27+I19-6
z4PB1HmFw3za-g2Z!Pci&p#K%p3uXe_9^SdBy}YV8cXMA`oNX(w5F@giyBO_s^}Ie|
z5D6FYt3`Ww17UwBX-Ia4j$L5=zidw?=tqV9>(%uCu^`AidpJ%g^nW68A^vq9=f`<K
zhE7NT2_OL^fCP{L5~$P!N;}RL^g+=3!Bo>@uV%Yojvy|TbN^JP(}P;fbaNJ5kl1n5
zQ@eoa+|Vun4q$rF_dTimj{Q_a;l^}t){+iM$Q8oCTovI+AtybiA|RaOg`9p?$#OUP
zRke0b56BRe1PoSw2oYawz#HsytKuD<kpL1v0!RP}AOR$R1S%N;Xy<?)to+Ww*1%u~
z=!4L{0n<63u$SEbPDm8#T$6OZEIyF9ws)Mm<hjd!qMzT@joqj0<F$Q5Uu7QYK~+~4
zO*zQ2d=GKm_f!6MVP)-}NI6VT?H<--P;2)jJt%uC^ZFjMB<>G>;ro(f02N$76A2&z
zB!C2v01~J&1a5$F+j(zunoRX@s2yd|qdc##7A}X%^(gmwZ}R#KA_oWSv?+RNpf+6|
z&7r<N8e22j)3H!;cSZflod?>G01`j~NB{{`MFKZ~{#2CD!CoKz$&jV9ltO<}+ZQ5V
zaxWF2KRNs7+^?ez2_OL^fCP{L5~%zHu0(%gIzk1k8xZy>$H-I<huU#9`=4sj8;Rk6
zWU#D1(OtJ}bPrtW&e#9+Be2e@{$(CHwO_pmDB&$N3GQweayvgLSuR(|g|04H?nb|=
zHZIZIJ_lb(?kNL(6uv{l{4;kcv>^c`fCP{L5<mh-00~r90x&KyLFmECafwQO5XK{d
z={oLE=!!XvMFp(CkiUULWl>=2s2u#2wo}yRiv^Jc`EH)ZA=ai>)W#t?_79d<WKb-!
zK>exd<<RbsZ|dRa7fInL?5LM3xS$mYAOR$R1dsp{Kmt{S0O;jWDtbBWO91*H=;L5I
z=L<FCiZhW&!$8t-n&9KEpBG#%$9$mp%_1zRocg)ze4t@kW2TPI2P)p4D7egSbFJqI
ziKLOy&Ebrj%JvZUkGu0h8xlYQNB{{S0VIF~Dmwwt!^_)0uGZgNT+byrjFr1yPIAhj
zmv8=+L$A<&^K0EdZV~Mso|NLhW`$l(n>X?S?IG05i!(zPB!C2v01`j~NB{{`W&)s>
ztM!kwz3SKj`XKa+gXyh*ytsbO`=Q<S^K$i@>ksp&F_o1?ugv3GJoTGjY5zDMhwo43
z3%xsOy@;fWktgJeepC?<&ILj)=YJ*36$-h)LnX^WhAuwoMeaIXX5)R>t)ZNO3DL=E
z$<LC6gWk+fiiCah0)7%Nc<8_6b{H>o;%^}c1zT9rs2l|1V|&X3%^?3_0*?KRd;CTA
zi&1Ir*UDql&>eqRm>Y%X5V7=3<UiaYN!;Jr&cBUL4hkd#v?i0mly;|8GD-X!ofM<B
zY1xlsKOnYN48*rnc#JM3BC=aIDLlNp{GW$kQn-V4X>>AB`NHMTn@06{(+BXFg^P6K
z^Cm#tB!=>Nix=rGI`0mkkJdCn>TfXVtWrPII5Tmvv-R}pmuY^uy0b00-~yEYU?HcW
zPXu!d6?S;u^3HOHjpF`l<3k$>e`?15JKV3p>j3(_z;u^F8xlYQNB{{S0VIF~kU(W6
z;BDVrr9KG#5MUPX-y%7Tg?s;2xxPQ^|K(6w6qp(+tD>&+w#NUpW<(GPlchBB9RtZ=
z^Ca0`kN$dI-!w<aSEH@cP!er6W~S2xB$#|<-Zz)`yZJg6;#lklEeScf#eSeYQPikp
zIcV?Zwk%n$*bOSFgIYUE>m~U`AqoMB15iFcl@tp`8wnr*B!C2v01`j~NI*frt~s{l
zi|Qmi(6`{fQJ=oCY;(JNZl6DCRf~7N-Fw;m?#>)dKxi`ll!HO!xWyW>>v9nVylvh6
z^-29|8L#h(A9>e;5&zUlNZ2qX?vve;t<|c$(2JqXpL#-?t3M?zZI<|aM)eUR{c6>C
zE^dpoexm<vy4+WbCXQ^nGID3g!G4z-1T6aGv(qPkzi{u&L$B0~STt+SLsNfWziUtY
zYk4gfoqag>#iMI?M@_l=k2;HjbOR3^xcK7kJ*R)X@1wf|?i?KxvG=uof86?c(rnw<
zwD(S4n9_FML$7??A^n?kkN4<#hxz`AZB8GZ_{i$|FZHd{be8SthFSkDvX0r&b;-Y7
zv#0$rq~-f(#!MOYzYDh<*!ujAmmV3Ga@6|zg}&B^5tG*iZTn?>L@(<FL$`~qN1GNN
z@6qW(o6$dvvaeY5;H(YPvdmk5-q!fcI=_R9t4%Jf6Ir0Cosr|)q>xm@(~99xFfpqz
zcte}Mdb=hinI1l4gOmNn64I9Vv1eOD2Lc88^nUQ~*hM|F);FAc|8s^t-&G3=FCf17
zQ+5UgV|=Um3?&EHQ~i3a$4Rh%LYD%cO-)+#-x{0r#uGzsUr;};VEf{J!9yFYe6zMs
z%G^nZ{`={&`9Aa1&yGj5{r&K$hYxg1)9t;q<dGqJ{`btYub$oa-yNE6MUOV!slg|r
z;%kP2%-eQq8Z<xplwD)p)cS`3L!$_};{)Fjc1>bJls^dx_R+YVvL~o8Kz@RP8&B_T
z3=SYZc|;6ZQoK2<h84yU!uqqy^{=2G2u$cd1@k)0@5!$wx~wFX@q^y_S6PQF^m?(u
z4J;>v2p^H;Y5gnK$Evpe74t8-FM=gIDObW$>z^|KSQZHnN56UyQ*luYumEo`e#(Pa
zbV34100|%gB!C2v01~K#1VBHB`4CF|{1%ZW&<8;;2h%yvr<eG~9z{CWB%Lpdg`8Z+
zK{$2EbC><-_;{vyy1KDjm191BLSv!AQq`43Qx38$;~`w<`y_}#$5%SvhmV{0Q5`oQ
z*@;Iwk|mlRg)_K4ms<(WQxPDlr~%{V^F{jR3sY(>3bU}sBue*Xno`7WE`(5fV()ex
zV*pEn*_dsl!|M5{dO{p_F{<8a=LOrjKQSL!&-aUA`xSHhP{sYI-R*u5I~XSe@lYF&
zU)W0c5b08Dr`Cjk6z0E*arkh5(M(lHqZJ7t0VIF~kN^^>3Ix3E=Lh<Lvpo_hw<}nm
zI@1v<U_ZZeLUm!ca;P1y?TewK)|O+ub-0{8{Chy4+jwiH3qiV+`XB7)2koY?jvy%q
zSL_G$wETNYmJ1U;PxLKW4%#ax5=)jV7Lgmwp{#nSe+%~nK<XU@!u>MZkN^@u0!RP}
zAb~1C0QAsvA}t!R@&t_A0Da&p>Y+KE`AyibL+!Y7J(O#Hp7c<rV?w&1-%(9(Vr$ft
zbbQzVLgG?jlP51yCooG21Fs<gB!C2v01`j~NB{{`9s=Ih(@^Szphtsw9mavL>d7O;
zewlhItEgA5Z|BIF=4l-GwOnT-h(P~yEjnN(ki_Y<woHpo8j_viSa;G@|A%n|YWn{}
zkb!dQivMg-=>J6GGBB<P_5b3`&;<z~0VIF~kN^@u0+pEnj5Al82MX#V=!2m5gLysl
z|9&D;lFB?#Z{t3gP7CR}-t$27AtEY;s98gWfcU}y`N7%(cpw2JfCP{L5<mh-00~qb
z0-&F(%>xBJ5KPd^!Mp+HfhG+VDlAo9Su|ypwJiPhS8E<9n;Qq5z*L*>7Tm(UOo3MJ
z81UnM8Er@a2_OL^fCP|06(9iPjG^Q3I*c<eO6E!j`*o-tWznNN?=KQA=Z>dw#x>{_
z&~u#Y6Y$Jb8*fmDUoQ6hQz(SQFM-XGkYYa20SO=hB!C2v01~L|1a1KRDQrAfI@qs6
z?YL(8lOaoIk=S}pJSWxkC$;{ky{JD`_D2BYj|7ka5<mh-pv(kr0R2gCy~g^J>v~Jd
z^)Jh+KOI5+smx^#Js<%jfCP{L5~%D1K!3W9>jdRJd{y+PFga^HeZO;^Ck*R_^K~ly
zNxaC=xnp>w)bck;TnIIkET<Q8NtTl3>_Tq-l#=Cgh1|~RCCdr1Yi=<8lYJe9absXY
zM2cSI@eUIXxQ_skxj9VOM*yCmNRe#)O!x8(^Y=@;PXPFqR4}To_aF8o_ZctluhxEQ
zq!KPT|D$L}!MIacCjd;4M-vGk0VIF~kN^@u0!W~86Y#cPm{K2vb`hAa`_2hnF^3WH
zqtk+zh6--w*l(^#sJ1K$EEqW`*YO<_{#sLx{UCB^P^_g_jm9w4Z9j->xh|O6It%4p
zFO2sC`0~kEG=0(w(6W$|TkI!Pxai+0Sq|E}fh$XvD|UlQ>Y&z+(t1h0{&j_b!~rOu
zpGt}aqm2ZR01`j~NB{{S0VJRxVAmYm@<nwL9_U-}->6UDShl&{J-5%Fw5r8B-|oF^
zes^b%CLlB!f6Boia@=AK*>$;y0^YXn{`#bTwT#zy#gDve!H9qABqVH@68Fh&$<}IB
zUg*Wp=1)B#&DEchmNrX#KBM}Gk$$ymJQue`T0hbMHeK$kMH5FhT^YGE<Y2!`4FVQ@
z^4aN=zhAg_=Al<=Ml6~&=b@>;uiv#N{<XZ8i_Sir`{L2HyQ8Mu{YRZeLArs54qSY3
z_ny-~-uKbn0e6m$iP-zvzCUjLJZZLVY}$J#FHC7W@1a*d?vVb?xyO6-yu*C|#5Sjo
zPJCo_{g?XIX*$bxbi=Iw7Foya=(^<JuG!Q67}E0nGh?QV`rn0H4s3mX$4ie4OF3$N
z{X$=B#E8l3g0}rKKBAZPf}z{R)}u`ekN4<wq0Q(YM%h;^dT`c;X<6p2KW}S%W}V-`
z#nmPk)`=|8)XvE9ZBj_8;c3NiD43X47`&lPU-<B?c)rn!1dsp{P$K~AIwgs2APwO?
zXBr>w0R2E<LjNh4YW;y%v41uEB@tIiW!+V8{j01)7J9v|_qwYF0IQNg-!6fe3IQ==
z5WEGd_(NwTfCP{L5<mh-00|(0%1Hq9bG3C>ZxP7?eGv3=FmHf$S2w>aR9LFIvS`XG
zYgxuaT&;Ci89Lwuroc&X+&qxDIZfrbd1z-XUgh2%16x7`VNx46pZqbuQ;xVlA2;JC
zTI+<I+r+O!e5CLBS=5i*g!mV*hlw5zIbUv%^5-UuuZds7B|t7i*ypb0E>T>Z6l`&q
zD-!m=?ch@g-k?T^Sb`^4#4k@&q(Ne4l7@)=4-H10G)!l)8q6jpT95uUp?{Fd_}J)n
zgL@}Rcef93-$_c;W!QA-W9dpe9m6BKFnQ(psG%l<%_=2kTd5qo&cb7P1mPw2lVp(~
z!e?x-@ow@yj4U3o38V1G);a`#5Rbt+Yo^g=rBmhEKO%OcCj`=~%ujFgh&C4RJ4iGv
zJZ?S$%K9)|AjlW>0T4+rYEAMSB1^i~CY}{`O?Ic9ZFJ!&8-0o#<uwdEs+cg&6Y8a4
z@w^7F=jCy(sK0pmRezsj`BedYlQ=8OFT4*kM7;(WpdPKL_c?!0`#8q827b=(0QU(O
z_5?-!y7()1xsAeJ^bPog7~dQwytkCRf=HAM0N#&sJ>y*7PJXY}r4m3b&X}35llo|_
zIw_j{ghz0GL8P#FIC1o4%P-5}tf1!*&WP?K6D;QOx)hrgPI_BX^mKJSuv$kZ4sSpF
zf%bj+4QkJ{fcAZ($0TY^shQRZ*<pR7heSk<i5=cCymRZ3y;IW-rgj#cQEStsN-^dX
z8buQgm&P?VElnC~r4^<$Kx@j>8o`a;JB`+*5)Dscv9yka7r&f9u*nvd&h{B1p-x_0
zuaS8r>dh8gzZjNOriYY{R}>ScJnG1LNnf3r*6fySX^6qbps{co$k&+^A+E$F5T@=<
z?zP>+5qZeMsm$Ed!aK6$({%D0MMKY+9yi25i{WsCDb+klzRuFg-i1)UI)%sRQX(R|
zb(6xwyUYJ2n^`LE>eLT!k;9EPr)Ol^<X11v3VM%3n=XTf%ffg4?iDeh-$3f*qL&8C
z{s(2+sDJtfr*G*jtx@*Jng$TBi1<N62g~+g*-iOgPTt5R=i_^s;l;xX0k!vXpeRS+
z9m-!ty_eyAqI|D9+iARBqbh5v!D^Ng%|^O#Du0e#pNBZD(aPQt&gZbY{DeouNYQ4C
z&I<7lrV58V5r{~#6Ql>OJN<{q&tZH_oHX2Gu+d6FYe~;!kFb2O=eXqi^LoJPpVtCL
zLy8<3@BW?lr*99dUh0!MZX8QFKh*t4$pRYEOcDP$ZHi7BXijC#XQMgAU^B3YsD}gX
z-C&s`O9!jdC`!5Mt;P{}I^S<~NPQX;*}p#1G(k!<Or{wXA~kd5L&HGQaGFRL_$MT%
z7jtrkQ`ZrX#0*-mYK;;bGeDCdAEl2^h$9^OLZ`2DyENE534$SN;fUK%zrdxABb+#c
zo$3ob6gB^lt{@oKA?HpY=@=soG8wZ=kq^8)Q~5HM=Wsdd@V?{z4Q8W(Cs{53)%q)x
z{aN1nE9^h>l!KlR9MQZv2q@nx!6MnoqCXTUQ1wWgn(fqY;^9I$O||k{2=^7`(p!H8
zmfvz_Ko#+(EWc2XNuvBfGNFF2D7}dHSFlye__0cqTey$1978<NbSI!z4=BHnczcgU
z?d0U4{?eQIeTu~GHZR~O@O@bSCAa5_3_J0+5QGoJ!iq-aAfT)VpuHWY_`U}3vBb>u
zbgd=Z(O!=#XEN2wZ=SgC#vQzXc`Lv1yRrP1GYhJOH?{IxB+3sYlJ`3iQc>ks+3%hs
z%B`ptiLx9+{hIV9uP8w-N7xs?b#qpr8WP~KpU+;O^Ee?ud8-F94sb!xEATxACI99y
zmGwZFNcM?e;Ys5TqW`%M?J1hTdJ5oE0jx_2(&44VrmP2YckvJ)oP1&5EaCz6z}!9V
za;t=W=RWXR$_P{uF%9wcSPz_dgVzIkkxp;zTC4}ENP#G4GL-cIybsPPo-26D63Tg>
zYwb-<U*1{BQ*!P%ZhCu9+7EL%;DYbTYn_wV_kPOf1KN9`LVtqT$=}mKX{L_wyhMRO
z8BKUk!u|69;vqt~`dfHCpBu_eD4+SFe1n{_yq7T=m0n!!Jy}r13FU|sdaDP>Q7#Xh
zu^y=OMWaj!P^$+d@qU27c)yQC#{-RH!+<KN9&qXZJ;=);Jl}=FP89Kg_@K!N!1w|s
zuON~v3ux#lE4GfOYkS9KTUJt!R<jb7)M(uKLq53F|B|OeO&`%8;UVPy$xUzdP@rhw
z!+QbiAvybQnjd976ed!hC&~|ih_;xmbUp(e4@n1o(}ugKkmMrG+VN0s%hqmp)<aRE
z+(J0Yat!f6)181?J&<vXlbkE`Ja6?t@IPEWQUs6nfIH`^Zi9LtUnCUT<(tp(a-mkv
zl<fvJxpO++t_an06L><q1oYr|QEs6gP?lrId#a{;I1t{=YN~O!pX4OxpW>#sdO*6s
z<sd(>9=N$ml(HVsi{vL?=H<dU&YkJEfh5kNl~n>5{7Hve$%jL~74`viwxS`!m@SQ^
zQwYp9I?D0^X`I>O@W$%_wmLsQ5=6P>cO^twjwK<NbQ&atgTjax_JXq|%Q@bAXG)e+
z1b@R>VLlxwWEvP(>dVswwPte>b1{rxp19APl<v;;1w4<d^`|+;LiX|H3yPI~KLttl
z=j-FQ>OmeU_RDV1qQr+%(-YTq1Rfr>b_C21Jg4EFGOAM{`3Qy+H<RtBz~TqvXVlg|
zQ*r?N)k}Y<NWZVXi8K9<v@6pcL~`YH@p({TWSG`s(2iw20{n11Z#*01u-O$Jv{OF^
zd!kL7rt{RW6mA3LX`Jc;ux<t1=mzAvxK$~*LV3zL&!3OEf+wG?<FJ(aq<3m69RY7P
z(F)Eji`?2zE|-SWIbjwlG1D@R4x^`ci8JyELp(NwB$xWmWfQFE^2Fk;URoq6y;BEk
zN!KeudD<CXhVrEU@5;&(ybnR&Jtx9b%jGa}A>k5~9M6)V*DrR|44&oSJskXR$>DkS
zedD-RbUEj`%Mf!0o!pmd(-$k!-s{a9{(ThOqZH-*>Ts27k=_=awiws+j>VkZ94bNm
z5g%I$uJAqz7SHFEzK@(GRW7+ihAU%su^UV&#>`ZMDUFW8(b3spRHM(LtB^1?9iHT9
zvnflLtu@iPUT*GCJAj@I@?|xzPI+=oj(f54UY>6F=QL+fDazB;;p$Qv+@3=3@A)7y
zUoIM4j}0X;bPlr#7Tuv&9D1yVmn^3q&Px=02vgkFVRa~74j1<mH$BXQMiN9e%CElC
z>e<ajLFZZFY(Ig0cw%gS_ZYa_(%r4aY!4K3ad+^hSH<>qmsi@n-9MVnQI&=#D!n=E
zrSe}wB)s{jUK5Sx4ArJedWVujpmS11e}f~+ZYSv-=r;{F7k5i<V}`!?+sIv}B%55-
z_ScQGsR((?KiPk@UTZSZgm^eg<$tgtO|KFGZ~l8{rLjI5Ni7Lp`3e7ONhqy<wIq1+
zAD^9Skz(j_U3$++D7o}Vl8b+jNhpJVk4f<6pVhRUW6leMxBQd+dyIJ*{CkXf>HH7Z
z+1R2d3AB;xu?Trfzl(p5sVIYgkE!tL-zJ&b4Wq4jkFodgKq{PugMW{)R|tEsI{bT#
zy$25pC#Od3IRW1EAg6!N2`IgP&k6A6U)I_@M_o>7sr-A6dg=Xpj(Vy5JN0kRiSSnb
zoc=v0!kd4X-{I`1<2?#6?gaD{FxgJ6O!H!T80%4W^zZucjzu=6g<bd6*n_wqiQ1fp
zvfq-3eoLps^*u|7lOkLn5o&j9S;`ApB$y3seH<z`m^OrDQ>RT~jeXfp`%YOGAGNYY
zjHtoZYorD{t~7PiX#n!7PBfYk;q;J_)RixO%VNJ38Hc;e7ljJtP#y+XCohVjc5#4Q
zlZm;w7e58b@Zy&gE_ThP^q$9toc^}Jq&sYQyOB9<$D<ij_w=plzs8ys6jbZXjBgh0
z$T`@%bA0U<wG+=CoA*r5+*;4A$$ICDkhjLAf7LZV(l>bLo2_@|6xBX5b>*v1n}2;&
zpV}pU+QOB~d&bx5vibRp8b?3>vh~}A$1hwuwDzl|Kcp@Hv`&lK)-ki6Zo7Nx(yUn-
zXIuALfBf@y<0cgze|&lM)qj1my<h%?e~u069`Vg<8C(A9x&Nb)N7sJ!bN{2qeP@2T
z`_AD{XN=MNub(=6>F2*5p8a*rd-fFk=JSFn`RJohH6-1hNl)S_+V*_LcSmSYZ;x!z
zg}m}<klC(T_HSzP@EQKTWKL4e+o;rvE+7B&<zt#51p#l^H3vpM{Hy8dUAOf(`Eie|
zSL2OjX7idFRcDs|<=fu>IpU)wKcBp{Ze#N7T{V8SYf_Tw;WKtvSgn*5(o8zt<tS;w
zU3V_pVE&}nJNpKXKG=Qkp-+CI_pVlBYm;YMOwqK=ZSXXY^9JIV{ma*9R>vP*I6X0A
zV(J<5vgfJMW#cmsgx~7(#_j4qwmyW+KT<D*ZWXuri|UU@1^Xwod|OJ2xpi01-<P!9
z8PmCCXnf;$n!oeKyG?Fy_ugZl&G@O~OXt6zVE&-<o(uQHEqu1ip?6RG+WpLN<Gt2@
z+l{(($vSKGiI=yBy!MiI;MO&p=4?E(BjTmcPv!o&rR%OiIYi^*7Z@x>Rg#k*Tjcwk
zCv6%qHp^?R53ldHx&GV+`oztPZBcVxTb&WG@!s!W*sQ5{qS5*fr!QRE=KYgL)^+^n
zNas<fI;5n|-aGV>rC%M=F8bxymgZ;E4mMr;_sgRU`Pn10j+}}-JpABojh5{Ae8pGe
zj=l0<r2})RUtvvi&sOcOv@%EkZUkW5u5w<Way@8RfDx9OWcpAu8WQi7qTiFndeH5J
ziqM;W@yoUv97{es!{h7jL3pslGz+h6>q{5O>EPpv1KIdXwm7A{IHYo1@d}rCR=Ra8
zE#u{MI@jkC>nSo7%REjRoGCBQE$gTCUD7GW$@Aul$O{&bxA9KFx6+KD2Ym0s@lG<1
zo8||`J0*z}hYK@L%!2|Da=W0PX`EP|g}C)2^QG2gQK%onz@v)ktz8BKV8C>3m$5d2
zdb@1CXqN@^f-UZUqqoao94LJ6PHOBH{bCg1c_ocXmMiA5iaU5KSIX}xuI1`3%0|6h
z<<;h-A8{jiqn9gI|Ff~Nu>T8~4c$^v+;Xmtd$|G|@Pp^FxKDIJ0!RP}AOR$R1dsp{
zsEh>E^hUN9S4l@5_hy%4lr8FwB~im`NB{{S0VIF~kN^^>yad$r#@b$z)D-nbFNE+i
z5<mh-00|%gB!C2}76CQA(c5?Gwx~B&t%885K>|ns2_OL^fCP|$7Xszg8>3Ng^g<Rd
zBLO6U1dsp{KmtghY7r=}-Z%pF#;R2iFf~X32_OL^fCP{L67WJmO>f-d#UEU5r82L&
zxe&m4GC&GVB!C2v01`j~NB{{S0VGiQ39$A9TSXDpVFD9Uw%EW|T9SkVuEz&tZVnUH
z<I5Mx%@F2J6Rf~>bvVF2k+8t0az8_8mx2l97VN%swRE=jUoc&mj;{?S$q{v|r&i|u
zF&+Cu?#$pxXSZU1a`461U5l6RS5ZHFJwAVuAOg%am&_m5P28AXvK*}2H&?L_v@+ho
z!l7t<$>B*tF4S1EoHG1tWruPliG?B6%2iVlAt+ByJ1++zQbq5->L_2qQ#d+yYj#_Y
z<tvCJ%Q4iD#&oSzy6-RB?=i+;wOI^fGv(Fr#j5yXLsGWBZFA}a*263=ZxyTPvt59b
z5@Vy~;Hi9d+0SAXUe&mm{2;K?;?Ln#=M_JL^J+_@$e5|{iek}|)5Ca0n~j<2CMiO8
zq(6)go7(|=-1Y&LVvV{id5;0&Tt~RN%w2@j(KQ^FX%G(01&fXC<R))CRh+R(c%59s
zb6uA>)+Fx>rxF@ZpL}l-0cH7y{JKrt0P+j$*I<9$oH;zd^fZd>wjT2f_T5``iYElt
zgAF2Ka?IJfnk*lOnhZ8p#999NQ&S|HM07|W?Z_1B4ok(lKNW<y<ujF&pNoNJOS;x*
zm`pdyp?fWvQw+9jDUR-|ZMGD<o~YMpEpXB0{!#S2Jcov+iKQV*B;*Fnzf~`nBLAG_
zx{jPrj(y2xU_8HE*YEbQANlBx@{Z)(LlEI_G*9`?ww#81A9$B_bVr)^kpjM2|M)Fl
zGH0S<Tm`FG*a4<oXt@*qA^{|T1dsp{Kmter2~+_BYI<W!FKK&HMQ?=u1JoP60L05k
z00|%gB!C2v01~KV1l06KZ(jr7Q|OKCV+K30zmapmUnGD8kN^@u0!RP}R5b!>dSes#
zu&t8de-wHn8&ts#7|((IjhqMmA^{|T1dsp{Kmtghst{1q8yk7i8-wfeL7cz=^+q6p
zCK5mbNB{{S0VIF~swRODIzN^jtM+h3apyj6I_K^1`E7}Go*bJ_2o%^nE7$pGi8h@!
zmClYbm<(1uoiCM`nUbQjTE}G?joHkPM*c@gs0aY=oAV~uKNr8nO{T{(X_$`&CfqkH
zkIPBI0q3CunVZ9edFU_?5axFki1GszqRr_UnKqp?fEGe+n$9YPS#0B46FT2h>2A~6
zZLJ;i#v}+pVZwZ25Y&j0tkLl21)5n<UVX*<y?Qj9W_0kzmCrZ#$#{nseReArq<j>g
zZ=Ni!TwR0DL-(Pn<VWb+JaTGxmBfX`t4o$s^Iuin)!OZ^LV;2weDQL3ejw&35DIy;
zA^{|T1dsp{KmwJYfL)V0c)*|o;lXP^*f4E=<KOdNe67`}E^A&|I)49SLqdj)e0bu5
zekmcpK6~uM?Hi_jGw`<hHAa5@i+%5ug<Vgre`Z<h1K&M$`_WH(4)}2T(4-wLHq2Yr
zv*puY)m*mH^1kunjQkNZ=WSo}MB}Gt7ql~fba2|}F@qk-ulDGivweoP{&Ug`nY)L)
z*F>6k>9PNNd((c~)-!eYKlae{p@GvEu0J|{?Z4TlJ_z00Cu?uW<U`ea`sY6vb$jYQ
z%bg$j{JCmkl4er37VAD(-7m0bwdW4C{=pFN>z{!a%rpM?Wycvc_a`sa?O5ac#fW1w
z`ZV73+r+f#HBY~k*RuPmCR;T-#?HO)R$<`hk3==tHstpsAKe-|d+V3ee9Y6Ey=NIz
z^S<0k-=D1eR)>VhgWEe9M_i0t+5FRhU9W!MFd_MH!aRLJj}M!i-20h*Phd;qfrrj7
zXg6%?JxSeG{@CZ|`@h|{r~31aGM~_1s6DT`c508<^R<?rjUMz#pWogySXx^r?E9wi
zvxa&8Z*KXn!`EM&IT97{*gD$_r|NF)((2U86}ri1-kE&g)A@H#e)5;5Lubr+=Hj{Z
zM|=<Nsqw5`lRmfipy}bkGk%);Pp|LOcRlVmY+l&O-|BAO)GFo|`}-Xqywz}j_t+Je
zM}Idqb^HBw%zHok-2CqBWkJJqUE`<UcIWinJs<e&vBKpWKUjGDPs5>Y`E!1|`_zQn
zpPc>B>ka1q{`FYj-Q)6C@3F3!`CH@M=i1I(VXwJ;;rX9hYzx`qm$kmn`?_8`Pnlky
z-RJg*Mdv%jB^{m|)$Zp7^-jIEJi6h<NoNjpxHn;S!uDq_jF|P{x)+c1ZMflKv(fZy
z*E_>{T&!O6sh8`0tgSyfde++5^G^lD&EK}Y&5XL+W{<kGZ_+&Lfkv|yH+}Qq>;rwC
z^nH8MUs8*J^jG@595U<hs}H>N-`-IVKbSSKYmF_bJsW*)_IvSXbA0ESV{Y00!p_S7
zuwe?201`j~HxPj<>4(}(I}0kHA1eP-XFn7RQa-L%Ka^VkNgaroBJb{5;kp0Bkr0JE
TT9E(}Kmter2_S*WPvHLnkC3A5

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02
deleted file mode 100644
index fba30a8..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02
+++ /dev/null
@@ -1,172 +0,0 @@
-Plan Title=Flume Base Case 02
-Program Version=5.03
-Short Identifier=BaseCase02                                                      
-Simulation Date=,,,
-Geom File=g03
-Flow File=f02
-Subcritical Flow
-K Sum by GR= 0 
-Std Step Tol= 0.003 
-Critical Tol= 0.003 
-Num of Std Step Trials= 20 
-Max Error Tol= 0.1 
-Flow Tol Ratio= 0.001 
-Split Flow NTrial= 30 
-Split Flow Tol= 0.006 
-Split Flow Ratio= 0.02 
-Log Output Level= 0 
-Friction Slope Method= 1 
-Unsteady Friction Slope Method= 2 
-Unsteady Bridges Friction Slope Method= 1 
-Parabolic Critical Depth
-Global Vel Dist= 0 , 0 , 0 
-Global Log Level= 0 
-CheckData=True
-Encroach Param=-1 ,0,0, 0 
-Computation Interval=1MIN
-Output Interval=1HOUR
-Instantaneous Interval=1HOUR
-Mapping Interval=1HOUR
-Run HTab= 0 
-Run UNet= 0 
-Run Sediment= 0 
-Run PostProcess= 0 
-Run WQNet= 0 
-Run RASMapper= 0 
-UNET Theta= 1 
-UNET Theta Warmup= 1 
-UNET ZTol= 0.006 
-UNET ZSATol= 0.006 
-UNET QTol=
-UNET MxIter= 20 
-UNET Max Iter WO Improvement= 0 
-UNET MaxInSteps= 0 
-UNET DtIC= 0 
-UNET DtMin= 0 
-UNET MaxCRTS= 20 
-UNET WFStab= 2 
-UNET SFStab= 1 
-UNET WFX= 1 
-UNET SFX= 1 
-UNET DSS MLevel= 4 
-UNET Pardiso=0
-UNET DZMax Abort= 30 
-UNET Use Existing IB Tables=-1 
-UNET Froude Reduction=False
-UNET Froude Limit= 0.8 
-UNET Froude Power= 4 
-UNET Time Slicing=0,0, 5 
-UNET D1 Cores= 0 
-UNET D2 Coriolis=0
-UNET D2 Cores= 0 
-UNET D2 Theta= 1 
-UNET D2 Theta Warmup= 1 
-UNET D2 Z Tol= 0.003 
-UNET D2 Volume Tol= 0.003 
-UNET D2 Max Iterations= 20 
-UNET D2 Equation= 0 
-UNET D2 TotalICTime=
-UNET D2 RampUpFraction=0.1
-UNET D2 TimeSlices= 1 
-UNET D2 Eddy Viscosity=
-UNET D2 BCVolumeCheck=0
-UNET D2 Latitude=
-UNET D1D2 MaxIter= 0 
-UNET D1D2 ZTol=0.003
-UNET D1D2 QTol=0.1
-UNET D1D2 MinQTol=0.03
-Write IC File= 0 
-Write IC File at Fixed DateTime=0
-IC Time=,,
-Write IC File Reoccurance=
-Write IC File at Sim End=0
-Echo Input=False
-Echo Parameters=False
-Echo Output=False
-Write Detailed= 0 
-HDF Write Warmup=0
-HDF Write Time Slices=0
-HDF Flush=0
-HDF Face Node Velocities=0
-HDF Compression= 1 
-HDF Chunk Size= 1 
-HDF Spatial Parts= 1 
-HDF Use Max Rows=0
-HDF Fixed Rows= 1 
-Calibration Method= 0 
-Calibration Iterations= 20 
-Calibration Max Change=0.05
-Calibration Tolerance=0.2
-Calibration Maximum=1.5
-Calibration Minimum=0.5
-Calibration Optimization Method= 1 
-Calibration Window=,,,
-WQ AD Non Conservative
-WQ ULTIMATE=-1
-WQ Max Comp Step=1HOUR
-WQ Output Interval=15MIN
-WQ Output Selected Increments= 0 
-WQ Output face flow=0
-WQ Output face velocity=0
-WQ Output face area=0
-WQ Output face dispersion=0
-WQ Output cell volume=0
-WQ Output cell surface area=0
-WQ Output cell continuity=0
-WQ Output cumulative cell continuity=0
-WQ Output face conc=0
-WQ Output face dconc_dx=0
-WQ Output face courant=0
-WQ Output face peclet=0
-WQ Output face adv mass=0
-WQ Output face disp mass=0
-WQ Output cell mass=0
-WQ Output cell source sink temp=0
-WQ Output nsm pathways=0
-WQ Output nsm derived pathways=0
-WQ Output MaxMinRange=-1
-WQ Daily Max Min Mean=-1
-WQ Daily Range=0
-WQ Daily Time=0
-WQ Create Restart=0
-WQ Fixed Restart=0
-WQ Restart Simtime=
-WQ Restart Date=
-WQ Restart Hour=
-WQ System Summary=0
-WQ Write To DSS=0
-WQ Use Fixed Temperature=0
-WQ Fixed Temperature=
-Sorting and Armoring Iterations= 10 
-XS Update Threshold= 0.02 
-Bed Roughness Predictor= 0 
-Hydraulics Update Threshold= 0.02 
-Energy Slope Method= 1 
-Volume Change Method= 1 
-Sediment Retention Method= 0 
-XS Weighting Method= 0 
-Number of US Weighted Cross Sections= 1 
-Number of DS Weighted Cross Sections= 1 
-Upstream XS Weight=0
-Main XS Weight=1
-Downstream XS Weight=0
-Number of DS XS's Weighted with US Boundary= 1 
-Upstream Boundary Weight= 1 
-Weight of XSs Associated with US Boundary= 0 
-Number of US XS's Weighted with DS Boundary= 1 
-Downstream Boundary Weight= 0.5 
-Weight of XSs Associated with DS Boundary= 0.5 
-Percentile Method= 0 
-Sediment Output Level= 4 
-Mass or Volume Output= 0 
-Output Increment Type= 1 
-Profile and TS Output Increment= 1 
-XS Output Flag= 0 
-XS Output Increment= 10 
-Write Gradation File= 0 
-Read Gradation Hotstart= 0 
-Gradation File Name=
-Write HDF5 File= 1 
-Write DSS Sediment File= 0 
-SV Curve= 0 
-Specific Gage Flag= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p02.hdf
deleted file mode 100644
index 0d825116b0f54adcc317feb63f1116864b8b7bcd..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 180952
zcmeI52VfLM_rT}U0|7!2LQ$3`L5deZ44{&bLXZ|Yz=)I_$&ov_+=aUf93T({6$^p|
z38K<0vBwVtluw8VA1Ib6sGxxHFJhD;A_7YL&+N>*vboKX5K6*Z$j#2|o7tJ)%+9`<
zo$^RZVsf2Y&1w;LgoTkH5-Fd;&v|j|+7uu=fgP@=ixZ77=L)lcixUkArhkM)3HL}5
zzVQR@qeQq58=90vs3e3BrnpR`_qlwWa4=f=NvW_GKgUl}L_~}qbNgIjKYC0Eig*bd
z8r6hAN>Y3(i)xyPZ;CLtDe|+Q!J2Jw*rtlhB-O09NQrufUN|I8Hdq`|g4L2~a+s_Z
zJID<+*mKPeyIfY88$1R6%B8b551{}8Li3s;0Oc}W)HCZu>eGY0F(lZmcDtlAWUx{v
z^|v?-wj8TjFWYpvw(<H5gIpH9<fzL)y(N<t*U1K(6g^09v6w7b?d_7K1B5=*#4h#K
zTP8{aO%@&oyT;uUXkj<l%pMoGds1eW!CPMEu;pera%~WTNDjH$%e97t$j_`(M7X|q
za-~2{C{E-<1c{X$n0y%hH_YTP8>mY|`ga}ugY@>*+YM3z`_XolJSvk2l1`<VTo`FY
z-)2cp2W4v~^`$=4g&lFEdu`JFytuDM!$S;`uMzrQ^>rNW<L!F1PXrBz9U4+sjweJx
z8fMCd_%@KQ%VMOPc97oIRT~p4X=8ica!W65PwpN;qU947U-oZ=!Dgo=PfjmG0_lzE
zqU{nx?QT8|WcdVZc8=NLFnBUx0Ww}JE#QBcE!V*O^Lmn~zQ3`aq>!%R1L{e5fAeRC
zkhxs*bdiB_CBN)lu9ZL0kN~-?&J{sG{g5IeU=;U{AVyh2L+aCKA&Tg%xwZ_0tT{+2
zdON>JB^uE`9!DMkJm-?^n-DO24OqKfyQ1`|2U>3(vi|yJ&+NEu<kN3-PL7}P(TNv}
zex1}wH+V>*hJ?~*jUOc<9*}-z{Io)@s6IadxuOW+zb-f9xIv0f@Dq@WJ<jcE!aZHc
z#r^9oS8$TsxBbISr;sb|z(a!YN^TTq!hL~|D|*CRF8X0^PZ90~LhjT$Z@Kg}+@2@g
zg_vK1*E_+g^-f+p9t4y-Y&ZBtTB8J@-YF98gji@V)bmcJtU>7<vO>lbvA$+&#zaFV
z)zl2*$1|;MvVoqD7p+d;*GK5hxu8FR{~_b-vS!8F8lD08yzUVIZJ{`9Qj#-=HeV8~
zhVc;Fl&P6EeXiM*Aq~@yGaIN%>CoF8R4bH{%!bKapJXaye@lkVkj>gUI@2_&IF#{6
z6#|DTLvNOtbc)qxnnv$PtvVVuO~gQhCCg#7lfl+ZS_>NN88%anXM;(0AFR)Y^rl+P
zQ<<I#X>{3BY4j*ix7})DdecyYKEo)v1K@h8((cX>apsXqo*QM|Js?tOaNR?9hA7HN
zeO>nqA=zx5A|;w=CYr|OG5{hYcx^@BUyw0Z$kfoc5sOQdxIet#l<x&rPclj9R{@jh
zbLAaU3-7B!y`^tee)!gFz5SpK2_OL^fCP{L5<mh-p!yJSYBJK()3rT%tO*?&-JLX>
z9PkKpDx%#DQAFc)+I#we#}B``xZB|`R(wU)lDff8&GzB9|F$`I^zI(Ut>M}k--h-L
zB+ixL`A$tk0}VB4(~1=Hg4kXyNkj_CreWpe|NLoQoo*5#E1nJ6>eSTk9NneEor69b
zzHNvuXM2aw2N|M*SGLkN3y^=>w4xs?$A_dlHM&%(4k1r#L*xk2kb}oXrU#9SY(6L6
z9C_e@V~dyFM*^Lsol|r8>vzLRTv%XH_akRlzH#`SlJNMHrd|3^_|M6+w=Ue3rwNHl
z$Dc|th#j{~6JkF16D7QJW5=NMsG>=RRii@sJP{GHa%0ia7mt*7y794}k{`SO6X(Y-
zKOg^6$2Xd9OMH9XfG6W)wiW%}>&~x#dNe63a_fpG`uy})7weBN9{z1cpZAabop^7D
zmM>1o`YpwJ%l_y7y{YSmEl(U<?rgYzed%itop64b@%Dmxi?`3-|8<|+N8b5XqbVJK
z%AIgF^Grd5=cc#6z4tQ{K3kRX#`a$yURb<%+ik0Rd|=I)+4Y|xum0F(ew!ulMSeIa
zcSffdA3D(Gne`c8{qMGSZ~5=pXK$}_a_iZNUp9YF+q+xjtb0!V(7Dg6=YBi4FYk6|
z=)U`B6=~|`<OQ}UA)&E&T2&m59xQ6|dqlg5PEEIAalsE2j0$$#K^89v>F(6n*)u;p
zj@%k>AF2IWtq3a8odg622kWGlv(lFZkDE<Mx1oVQ@=7W_ep8Fo9z+vOnz9FdeVsh1
z(L-OYe>fv@V#Cl$Nh1o6$2`+|PT>PvI&53CXJec8t;g*<^4?3wN9pd|Zd^a)pVv=6
zGyjA6Yo;e!e`qsp<LPtGb668pq9%~*&r=)kZ_=vQs#iqDByTd)j3N6;LtX<HX(I#U
z>NFg3^sQFSr-xXd%^%ibZ?m_Zo8M@(sO`@aW^7qBJoo(hvor5_WR)f`LR&=er{WB9
zUcbLdVA|>|o&_Z#9&f}D5>UWihPqVxb+mqD0DWtEoU*5oG>`(=S4Q@&BV6uZN);Vm
z8u+dlz#WwRLC~)RW*}1&XgKwymf{<zM4E(=CbQ(w2??g(YuWXHzyJ;JODa0gE(Osq
zBg`G#Y7<Gei_fa`oL$$DOv8Bk72P0TWB$U#{Q?65OU0)W7Dd)wB?ra6ZnA@gy&-<X
zNcVSAcE>O>)H+4J&ichdg&cE8Ht5;car$j2g;}Y8_U$H$Bv{S4*|bxT$+J&5@I46n
z$G{wD81Ilj)6*~WSw?Y6<@t9Yc5i-2ZN-U-0sVZ0eRM77h!xk;yOtwFFTr;aa!2`c
zSNm19{!KAFM>YE0uzypP4PHP3NB{{S0VIF~kU&i&aPjRM-hPRs3OsMCNHV6f?HZED
zE_k<VNM0q{HQR2K??9@!UBgG*`D)j&p=E0A8ajT04?pQ|$uu|<thp8kkDd4hzG<w%
zMGs~Bk-NHoq1_1Pm1sY**wFSPL}54`AIw-+xcwMHJ&9x!7*i5K)H#PUdC|ayb~Tu+
z{YWpff!(zE$WC12eV9caf9q>}hrjmE9oYVn`QZ-|Kmter2_OL^fCR1;0-&E){`=15
zZ~t`TnS<>g%AssK^WwjsF}yXU{o`+Zdw*>I@TUoXkpL1v0!RP}AOR$BjSztLkJ|SM
z=zoWCT<}o<%q#JIf_+n<`uVmvo=2Ch9TZ9L2j3@v2bl7FWj$ZrhRs)&XD+i9N5t%9
zweeX^c^XuIN1=YM$_6hW0VIF~kN^@u0!W}H5&-=?U1j{xRji*I2l5Q5V*Q-Y*zh$@
zOI{aHj2{BM98A|ZE!VIi*8)JUrGi*=)%0|>Mq+tKu8N+{$Hc+dxbi~4Ye)bIAOR$R
z1dsp{Kmyf?0O;vCe)M$E2ciEQ%(CNHs%*YQq?qH(^l)~2ISLm$4?IxJTUXBeh#)y~
zw)xV}*^;Bse-0eLbZO&!{mp?x`oc<_EVu+CUHaYNTAXvJ_f;mLrnieZ@Jz(#@u-U4
z4(%$4pHI)|hy;)T5<mh-00|%gBv9=LfZpzJ{0r!Vps#~@CC9&HaM~<t?5|4n`ts)I
zdamyTJiz4Z<x{m?tenp@cJ4-%bs9Oo&QmaP@;H-p#m+y%*=6Lz*#J24ZAzkpzxWT{
z@Dj~0a@4>tL>jqSD7-Hl;X52~Efpsz<G|(WGS%8S(JIkgqSC%`Enu(W51o+!5<mh-
z00|(0>PvvH6H4Rn>X(j^69fIQpuf5GS-$S5Ja3SyPQi3#PUe-ZPs%)2e7&B4Lf#`R
z>!>cZ<6`@tBZ!u#Ltck8%xfLeNO}eIK;`~TYWkDdMotdX^XFp~{fXTJ4<vvDkN^@u
z0!W}{61W)siRlPcpg$d*%F!}a&82o+O8rS*hfiduYoAMDSJR(v5ZBd=FIDs?_`VLN
zntyah0!RP}AOR$R1dsp{s9pp#bax=uC$~;?%qiEwhJHxU1ED_>%u6^vRy&)cWKm$Z
zm!oj;`gNWhs;_adjp!BVe}(jdnaZ|@cW-JhuPV;nyw?_I+sZ4%i0tMqMmt@7uTSXi
zKdnQ1c*9_SCu!K!90Q9u>;GkYGC@Bo>|d{@|BnMf=Gn(_SfT$Di3{<s^8&gLf9Qk+
zkN^@u0!RP}AOR#$JqcXsI9t#MLGK4sO^>~l?SlCNwN%OdQ<+W=YBAHzS#S|z$5CJH
z0;Y3Ay8t+V=|kW5rS7}-Q;mWf)4f^CJ0u}j0t0hZgky!A^ni+ha840&#(Cw-UF}!Z
z+Bv-;LsSwlMEM~^e6ay<tWAXn5<mh-00|%gB!C2vK+Pcl?Htg9mESqo8W`*VeGu9=
zV7liM_L2MF35g@!Ym@Hh#Rn44_KsVZJas-u^z(bVvHMhfymnyJ^UNbXsOrk1DF<1R
z?;)Q1e#+l2?5y1rD~IW;-NTv;YVDr1dt`4FUf<(UiTi_J_`c*CKm`}jL;^?v2_OL^
zfCOp`fvaHLcEPKhCR06JYDY!%s8H%rbf?1j45~+I<xsgE<vs6BUY~*AlMFTJGmO$;
zeYQNBLw$WTwq~-gV~OPLiu#i`540fxB!C2v01~K)1g--8skD%Ty)ycfX|lm~0s0eP
zO`&WFcuVqj1O3U}Kj(cNZAbtKAOR$R1du@WCvY+P6Vnl@VBLV|4>(4qdbre%OWFTa
zhu#SKtA@(@6Ww*oLHEF=?tJ~vAOh>G8W;1(sr?#7K&h{&NpN?kklXc6`EqlGT-5vJ
z%U$hP)y5_I+vi}5<ef6mN8vj(%s=y%LK_l50!RP}AOR$R1du>=B>>|RQ-vO^9G9rn
z2Vp!Sn4aSfg|3*#SOn3g1q%|~Dly)$a5D>t?_t2yQ8}oKZKtTs7b|angSzzQYU2=H
z`v=P_GAI^Vp#IeKa%gu@5ueAmlEPWoQ7>0;K`RnK0!RP}AOR$R1ZoHY(97dg^m5pj
z0Q5o7$H8>Z7iuYVaEUYtBTZ%rKHmCy(fLZ~=PAV^EUA*~Ab8FP8lgAm8t8nWvh9hY
z^XxX4d!CR;8X40X&bX;;4~h1Tw-DNp01`j~NB{{S0VIF~sx1M~!z<fAuGZgNR?j7Q
z43f8APVy?DmlyxQX){%|%KFVOcmKFew0n3`%KlmvdO4A}477((FE7gsU6240Kmter
z2_OL^P@M^YUar<Z&i1Nf2k3*)FAk=^{_(Q<Iq!$|*3T=|Z*KgRM~$hhmD10B^_yR8
z|2Q9qA58Lv-kr8dL{h~l5OSqos0aw>A|aReefe@FLN4q;`Ern<%l`BucZDvq@jmR<
zP|m=F=;XEIXKBL0XyqrR!e0CwKS>chj30A5j2Ak3Ob9~37FIN>2Z5BN_*52C$bXoC
z<2>OVf06w}7WTeWDVv7w_`|~7CVbZyOV7j}=MHJ&{_b}E^>hSZ7#XCuSWK3z_IAl4
z@o#ieqTZorKd$|N*jh0V-)`DOLq<$&&z_Q2+e`k>!!Iw~p@u9v8K`pM^5;#X`n(xK
zc+9jS-T1r-5Z8#IeBM$-x=a7@2GCb;nJ5i3Sqyfmzh%6Yc-Yx``t-{*KRn&pmRxWF
z%73Jg)6ge^xxqRB@VphA<O18o{nf^YHWlHh89%l0z5=fU==TECTMBJR00|%gB!C2v
z01`j~)s=w1eRGxiAoN3kS+;+x%Dz7v|K(6w6qp(+tD>IswkG_seq;oRmZdcE7w<4K
z)H+4BH>AJ5*Eh`*@}aa<8buPU=G<($fCQ7T&im%_ez!oHCVngnf|i7EP#DmjC~aE4
z9JF`mwkuyw5q!0^s<or^ev)5WUm+lI1j^^9+JeD|BLO6U1dsp{Kmter33w53Y7T$>
zQ8>|t1s0td{lUsNiaX!dDu2qlwy%A%@4WT(U3r?2sC4|P1cTV|%QR&7`BDma=f(kz
zNTbl4<-1cx-SphZ<MmQgH&0JqyGL@|xUL}TY*gz<ACeXr|B_yAse3vneB`L0I<=lk
z{#x2JDfoKB+~-Rtjk@8z*j@Ga_dj=C$kMg{{rk^fPT%p!fhDzLmd=}h?~GqI?cSU6
zLP5KwC-0lP@X&{Q;-=s7d%dL*hQSAZKD%(w-oL-NbM-AD?Z+g>?0ezI-<xend%`g;
z>&-t;Pw({Xy-U{IoW1qb?B2Jxu@0Ej@$W;EX1?EOQNMaO%yS&tJnzg>``GVpUGeX&
zQ)m4?tliru#!eso{prR(?|AyVMKeca9I`Jz-OnB~a@xj-o!?G~>0>`_>Up-q7|V-C
zdUreBam?qVovW7KGjH>($<`fT?QDKxW6=I(q0>t0#TIGm=HvyoC?TPES~VPsCQUAh
z+}yFB(W%Kur$@lJ$n>CbgmfZ7?Ag}Pfj|)f@%J1{T6+8BO-&XIc*?Z*)6fWQ5edYf
ziZdu08yFfeoczq5>g9E2lgQxI9z_A$TeKaxBPng=L&I7<*C@H@n`QkYhhO*JOLYS>
z7EC#C=F9WeJFPSRdnBgQFTaky@8_ObhJEK&%pA7&`^TSr{^XBm+Gu)~-haa`4L%W7
zUo#ZtUcXCoUF$=SIyLs~9X=m4JdThy?*xu?YILb_!K8j<fX3^TJwYWQ@)H!<d``SM
zGK2&a5HV!Q>%Cc1EHI7`)}K|be+B(OU_$>Xm{(waPhqI&vXWHB5Blq0WgW86>%|5)
zu)K^ABa(dW!^!$s)z-ga{w424uw*CYN?2<Bb0z@GBH`oc-w<LdE{Xvb;0^jseRxGD
zB!C2v01`j~NB{{Sfoezq^mCXGq14YCi!^~g2zoh~?s-0a#5eXh(!Dn6eqJo(<T(z)
ztxKLdA4JE;GtJY}joqpe^YK%g3l)~Ct}L2zkQEsZ;W^(YRSY`5*!ezu+<buQxcS&_
zJkqf&(ex;JklW{SE5Ugx0z?fpVBCD6NMF7%r4FJn3wxqYx--|3A$D^igxYoSox3Ii
zmQ<^Gs+kU}=cDQgaoNSFdbgbyZ1?`ed}KY}FNW<`%<aP!_oH^N`$6nroD9T6Z9IO-
zjlzdWms&fuHUy+F|5c2`hx?0WszMsANB{{S0VIF~kU&i!;BP-a&<EV@5xy@5>r-bs
zLKW=icS@)(>{c$d!?S&{A$~(8##?LU?BU-7!o0>?GhGPMrPTjmKR;+UMRx^BIk+-E
zpr;kyR=!-c@OiXf`Et-+IjSpPu1rL(GKY%lp}}pv69B1q6$tOkXhQ->00|%gB!C2J
z00GcLPl>c>#L5#eZUgjzOQ?tDb>}x>zb>`o;`LCj`T5dAnT`qRf__Iey@{<+Q{M5P
z>mVd91vYu|B6R|@yfE+@5<mh-00|%gB!C2vK=mQuZ#@mAJ_vd=m{(vN_`2J9q}VT0
zPh}PL;`Qx3In#WN1HYW>Y(x;~f38CZ%!H9-gWi#AGf2ax=D60K^wj@h9D$nte=lU9
zoVv0<n-%&$k+=+uD?<IhEHiXL0!RP}AOR$R1du>=CII8i)#ibM`Uv_U=>1?`3H`sn
zh?Jx<57ghd52n*Xx~}v*&_alaN+D|5L?Ix)FhG8=wg4VT00|%gB!C2v01`j~HHQG`
z=W6pnK@S8I^l~t-f_b26!-Wb<RaX{GS!JzAfBmJJ2g>Hg0Vgok=DS6<^)6GOmAeM~
zcwa^v5<mh-00|%gBv1ngz&K;*IJ^Smj7!tG(!qXRYDY!%DBt^wXyx4THO{yey#jiU
zdwl|)nQG$=>ha5Ee!q-@koYCAxe`*w2Ra}DB!C2v01`j~)t$gqpg%=V;7SMkb*UYf
zO@A^?HrOP#o)gbWHT_Ag|7joUPu2Yq!1yBpB!C2v01~J$fvZ4&GTJY*{^Ysdl5+ja
zit10lq5f3iGKU_J01`j~NB{{`cLJb4UBPvN3huik`ct%=HNL*zdCn7t^}_i&mBA!M
zWaxsiJW^`;n<g$qnaY<l3b`~}`EpJnmp{FHxw%4a*PQa@gxF;_nEuJWj>5PxFd-tP
z3wgYwg#+#*0A#KW6ZR2+=O<Pq+xUogd4~D>7rIXX_?A>Ks;&1Q{V?~LBJQu&erl=`
zE;t`ow4-3$DXbF!Cdi|S1dsp{Kmter2_OL^P`wHGTQ5wh4??>LOwWDigszy!hy>AT
zK}<shw@U0cS1MFn76lfJ9F*tyj){M)uf%>3c{C{2(hH?AjPlwK;&QGFrnb&PW!DSi
z{Q!Y{G8Rpr^bE8t<m8t5i4rcx*UFcJ_HNjF<;#`1K{a(yYe(t*B;UAPAs}%8%IBw=
zV!>!50VIF~kN^@u0!RP}C<r(;hrj+PoM^)Wi_VPxVC5Udoo{QEKV@Cp*FM>I-un8k
zJWWVcI{s9GLG1Wt8nXL*DFwW9<A6q_QE1Nc-6^APdT!+Lda0?Krzfx7BROtdR}ghJ
zs`aA}NehgBNiVn5J)ILia#T>AT2Cc^Ep3_<e7#}r^QDtU-SA%QuKN4?pSvz(>DvGP
z{pT;I?|9_ElG-s#=gq%&#xI+8?@f83pxx4w_sv~+=)*m6({K5`-qHxe-~&IOUASlO
z-(TFh`j(LPV-jQbz3}7j%{HVx;TV_o=AWmhcY5~TC2MZZ-g;_w@7vp02Tbbt_n}EM
z-*2?2U%eaVISy@}cV?-5?02`W`1jVSvwk1e?(Gv}r;q;rbmO0QJpJ9GnIkd|*_WU0
zXO9^<ZDYjFZzsg`v7a{eJlkQ6<;5etyPfVh=JV0cRZH)gw|UlN>yEE>Hb1d3X#cX%
zX(jbyi!^m}@&a3wkWf6W8V*I1CYMBR?${4Ld@G)Bv?2i{fCSVCz`9Opq8ms<c+Z(8
zfIC1x5SY+^3Z`0r;3e!|)h-fol~mSU_1C}3I%J{O>q@V?Y67q-8T82th^Y_|GX}w1
zn2JAiMgm9x2_OL^fCP{L5~!X8KtESoceSxd7U+YZmxFl~th-wLx=>-M>dK-itE?3n
z4{@p1U1jKi6PN-g!Ey6I;@UKo<L05AwQQYtdkk!;RfI`x+<f{Pey2Qfe?D#|NVL`o
zIl7%+hxkN&#?NBE;3mYsh&@d7068g;+v9?{3FB*0)^iDv%MtbkA99yCE>6~c?JZX#
z?BpBpDFm-lqrO;zXRe4}fv89$#LOfO5&IvS%m!(M!DcsEElji_{cA!0AeAXe37v<=
z>!e${XuEWibcP&<A$uHMX{W0;rU#Q(j*l8{F*)p#ZmONivFj{6mPZhtuD>LUL=Zk>
zgN=8S_hDr5fK3>MKepB(_=9*1HP~~_4m+JH&;Ajy8$BVAUS)pzn@6;*h~Gh?Vc~J@
z5m45LT7jTY)CWK$)vUM3bBJu&dWU#c*frUmcDB)lryTSta+TL;@Tg+KI8UgTBE|C>
zxrvv@xuX8!<yZZEj^$Sc@HOJBEWhwR%n|h(V1RnGs@~`PJssd0-x{`o-vREU74}p`
z{hGhUTdqjhOSXbfi1D>y!h1`}D}uzy0O0*7*E8<r?d11r11bU3lFhl<2C1*!Zjch#
zkG3o47ePwOhLcQRw*0aj&MJBi;f(AxD%ED4V90RT;UwOcVWg|;fz>`rcXyY&@9NUG
z|Bx<B3+U1>VXRJX$;`D+oEqIPVOUJ;*rdC=YP)wB6`z@HvUIi?%zB3*Q%baE&?s7H
zxHPUwSy|F>JFPIKL3&HB-VAQ^-dVIRm1uYpi=}-Oy!hn=f=#xtbau%R33cleT(6ON
z>5NvJqkkexD$_$e*IQ<!SO9KLaZHSIs3+?q{R~!GquZuR!%Pkai}}A!zRsiw@gyyQ
zFm-qHuIn9+$U7EJb>^L=?Z%Q%)5&WR4LxJ}+b|O?es`NJnbs-tb(T){4uo>mO`B-Q
zh>7jlQ_^aC$^RvXRVwT1&d0`bxCz$moLq<e%B5LB@1b)Ta%i|Le9!M)F@yRKrcNIE
zXr%0aNUnqWr*CfhcAl&^%l=rC0OA#sGGzEr*&ZpoDc{Fw+qh&tzK<DRJp2$)dmj@~
zj=(#Vzp8p4!+S*eK6SUxc)dnd)l8G!D(S3dx?n1Qjy#`-WWCwW-VN^OFkF7ZV-lqV
ztIc4C_(xJjL!JOcB-shl1J~XD>&wq!N@B8fx6S0Bm4x1woy#6!`C!j+`S<7bfZIQ>
z1<a-lIWqqJyYElm8g`@9H+TGamU4cm`;U_aG^C{>{>l0bgEZKh$(qe(Ylg{TVi8df
z2im!jGDnsUR;N*va+6z)Bk*+V0rf~D8WY*SG1oFt(wU~wjH)lSbmc>nFw$g}NEi4g
zB(D#1a);Bv6%SnwtylGCiH#MYNsx~Vk57G9IP^tMU*k?`sC5biL)5|%x1oN4OFdUO
z$tEY&6L=_U{vllvFrGusoiNfhQ5s?~PrZPA;N_XhSFk*5<*38^j{7%R%_g2?wftA>
zr%?7|`Rk|1`HH6;^n2il=CwgU`Cf?>$xajfpg@7DNBYdEZv7?&E>zM~E5EzMeNPqh
za_O(10?ThDGoXfeQ<h(-$D%~N2FZl_y{hyg-cP|+C*wz<D7SDQWjTg;py^FOtsYQ*
z7xDKVi`~V^L;Yp6^81vE+Z8{@PvE<-@ndeED>CfpF(C*ahJ_W4>OnwR4?ufcQhZl~
z_n0m>J6ms?>T0jYRWg}s<#(C5Z_#(WfcY!GaeJ`*Rx%4}gg3SFTO!I2B$D?#5mHs<
zSJ~h06y;V_i$qzDp?*z$iC2^$=M?t*SFX(pR6|01_VeX5;yjKDQ2y!x<Ih|W^a^~B
zLCL>1Ol3U~Es|aO13YQmLG(ZOr9DLxSx*6cDuDGUL0Wr(*p&4^-fkWOgi|2w+eAE|
z9+<n=Tdq*pi+=>47Z`yWBBmjMKI?(fmAoD>igfyG*J3?TLkdJClcB5!;C*mZ@m#@E
zmRiaCTyAe_`f_mzPs!2$<EFp&WX`W#4!GcZ@^a_omA#+x`GEFbq|l!rcJlXhP@1VD
zJTGw|P(c&klW@O+KX`}`ZhB*0&*w#P6Ut|SDBmEbEbkSJMzt4Ldrz(_<%IG?3jNgs
zrw(#?;EeS^wJ#bKN`P8D5GCFZ5E$?Gk?1&}@oe}{71aYC{lEKpIfUnXm$08Y04@*{
zG(8Ex_yQ%b2$C*~X$YJ75=A`QJ09Dyl7_UJm8hgf<INwad({7uuR~2AN&k(9kSFRF
zfAtU%4SaYnU_B&f-!=22tcRjS%9n}q10WJ?Ry&=?K*vGS!QQmtE-ECsNV9f4l-r86
z+uik0tSGk-j<Os>JkazepjHnU4|9@pg`VfH9tb<m<zq$gSPyt}uIV<Y2MR?(p<TZ1
z6fYNQ<xJUbP?I}q;O&Y?BR7F3v`at_juYh;>H%drhWAu@ZSQa(yld4|<DT;;C%ND+
zZu+YSqE2%;$PcUsuB{TKtOtxD`Dy2Qxp0qjXZmdzNw(=_l>i2R(xF!J;nHt~eGr|c
zXv#59mB!I21Xc$fWqFr0-fDAs<MjYrm7gCeqTKSk5~3`}l8{UN8zh8-!blPJbtlW0
zgZEzgiSp$X!C!S&m`4W+nFhv{2J&=4t=U?{TnyuvC+ssPrMr7w0pH_lgK3VjkOKnw
zLSnUvB-=%^hMu$Q8j@)k&!)Y|*Vui+gj`@iP~km1QtX%Ao<)fdrKTsI>j!)kzhNZI
z3p}dfo^ryekbFeKiI>UtQDE_d@iS`co+&wi{nDjBN{&}xKwx?co)q@$O1m=M5oE5M
zE<XP$nvBrfO!{%GM}Qx$=Z$BBi!%?}t)GKk=g?;vd^IeE+aP)Rrn&&ER{=M=3c2Rr
zcmZ6YJURbirG$_L94GyacAZt^BtA2fj)1pXXa(n$MPBVEk4tychr%Z5a&6=3FnW5U
zWHX;I#A8E9dPQzt0okf9Pb}W*rA3mmyWMOr?|L;TPsQ2_l&ADF7gwI(eF*yQQ4yY6
z7DH)GIR_=jw<PHG`K}t@w_KQT4*R$K@O=BedR(izoO9h}m^Ft^?#px-%M@w<_2yOo
zJ__r70p<MCaFuJ3c$-0AhHG}$GEQC&)u8@}OS%BA@IDF?&*#OykK83yF1bX8D`WPs
zn=BdT+)R@ti;luE(Ai*Aqn}JyA7N@bJjn@G%Vfh;y@k&8@^XjTAq500X<nN0<e41r
zV&%U)UG>kYbI1jhr%S`tqcnIuh5q035hPzOAzY7*B8hYkvjrC0p;ugbtcI5?w;s+5
z7JLX(+}34vDP1lX?-MUQ%!fu2LAJ@Sz6;f}TZ{6}v%=ke0{h*%q=DWs@U~@pTg%w)
zD&ykq;7_kg>gO%5wE4S#0-d8O-K|r4bJ;J*e>sux=bw7jnXNghO_l7M%MXFhNfrGK
zt|)t*WZz7`X?VGKTjI?*#<FiCZ<+FJa#cIfFy5ge<S+kZ{|QFD#X=L}<G3LILrqym
zl?eFrA3r&Z_0dRbN$|^0_*YB9h5A=Zf<ON$Q!{N+B3-7-=sOAJmmW#-@b5DT74Yvf
z3I6=En$~yBd13IEf3km{F|UAspE18M|92Z4Y_XG6+Q{`;g#4x7!@ti|RKUN_RQUDp
zkSv`?(AK=q*!y@O6;5}9f1j~e2>Y<Q{QHc(4-X0_w?^$d0sizLw}0OWxN!fz6X4Ik
zthM=$x}4Gr^6xw97w+G8)Gx@tTmSZ*2!G|z?caAI{P~CZ9qxWQ-lG8HPC!oqlkL#T
zG%u!yu^v@d|84;9SY%^b*!4h7P6YQOQJecv_FEFsZ|Rn}vS+EuQjF&#LhW8HOL-xS
zRI7=tk3;2#(uR<18uS^gu`k<c-zn?jqgJ+v5jEI4jnrVr#ini!4M1MaiAFO<OAjec
zUHRg-Ec08Hakzy>p^H{~Q$?dum2s#HgG-YaWl(!KK(4und0g{81xc;9vk#k7GvLL^
zpZ<1YMC0{4x()96xwH5Bx^oUbdb;y}k7fOE_VifmSm&9kby99foV`Ep|FpSv8gxA&
z^+*|<-EU!=f%E=Z^G^Dt5UJ#Yx6OeodcSn?n<I-I+v_H_Srz~9UvJJk96zB@bN<)%
zA07GO+_AQMX8d70-TBCY^eHV<S{&F=Z)n)bcaJ2kv;I@}&=K8|hjLmzK4{yFhZ;wo
z{Cst<-&XH9IY&3;lkivDw>#VT%e<d97ZvB#pD9hsKmFp|HhWH5ns1u1YVFMThTQ+Z
z?M+{DKH25>wP{Nq-aBeR>}R8z_Mh|qyS?il81ujSH}7cQ=1iT8hR4>n>^^2q>n#J)
zXKqYNI%4jf-057%BOmW+@<5}Tv!=A!vvppZG55XFdQWIZLtD$Y{x6v19<cT0U_Lqj
zPyhA_k3BuOL)@B{&(tAL&#ay6)U5w-;g%yk8b^=?J!&0xYPPTHvF6K<AJ7ad3R&sY
z{Lt;UXJ7b!^}Unl-?;BTOYZpR*%!VX7S^1+cBIbZelF^Mxa*f~AFTcK&%JAI+Pdq7
z;ZI~uN!Udm|E2bCPEAHSJp#s!h^~{dN_vFOq&Y-daMxW+H(S^CdF{u+WA^u2aA571
zG%}&JcC>iB?Q~7Mxz|0$)A5KV>=?}v-GW^+zZ|k@%h@M)J=8dCQf7~BkKd(j7O=9F
z`j4Y8AyTsjP3Z1(Uu_Q$h-nmDd{6iTPZ*obtW~_bZJo^JCswZi?emx4G6rraS{)hO
z^Zo(OC8KO(Ha6YyXX>%Yo=N}aum9hxZ*Fz`u;{+|JJ)|PujBfy69zsu`jhP)axHs%
z&VS<In*9Uzw^%%5`Cm;>Pv3gOSl#b?{$0AU)O@!69}T6rJfaB*3X7~BC-={4aEgq0
zwA}-gRq?yweJQKdpE?#S?IeAnZ~D~8lf@$!eci#K*>czF)J`)RKe6C|Jz!A|g*Et(
zVMkVtvOYO+f7FbfryTDL8?j^5`KJA>xApARN4I#0ZP1f<*dEz8&HhiyFU7xnF#pVv
zq~qT%IXL8|^>=(XcFmK6j<>R`IrsF*@M=N{GPGzx(1s<sZHg|o9>3cB!?<1Lyg=nT
z(6I0#EHTOSp_Vi;yjO~TPZsMycNQu_JpJM~)oyYv_3RFhue%4~!P3$!yo#+WT`HsG
z<BG%B_)E4ZrMxJla$NB$k9bzQ^($=?<aD~%=Mw8FG8M}@UK*M!FUu|Kr;R+)DaOh3
z=8DJ*7LdR3PGQYxM$iMkcj0&^8OJsA1LK|2M2fY-Tqfp00SLKW(BCp%EYCu``jPok
zYqBWR57FRJ#q`%Mg8?vLdbZ108$rEYwm`JYB6-0U_rKcPWiSpDzIUfK_lkZQitxOi
zQsh$^!E4OHU%66#Pw^~QH&IsV<!V`7o+C58h+ggGiq-#Y{2A=~0%kL>RFt*c>izh*
zMoR!ccrMHOL>DB01dsp{Kmter2_S*$NI*?*WP5Oxcie?~V|jS+8WKPPNB{{S0VIF~
zY8(MIy|J#Jl%}KJ=!XzqMgm9x2_OL^fCP|0%_5+tH(u{2nHJO={Sd;-NB{{S0VIF~
zkN^^>Sp+JpH$H}XW6dfEm>ML21dsp{Kmter3HTwPrZ=)VspTC7s5h2}2d^OkB!C2v
z01`j~NT9|MP}3Wm!omlBQhY-_?|J=TYc2fY{Axb{@iG!X0!RP}AOR$R1dsp{s73@>
z`+=>Z2<tF`2}#H|@fLw39B@58AaiY)upVEbNN$cWi!IPnyfhqOpGa8XQ@NiZv`fK+
zatroAx>`DG0!Pw?>G;}Uk{nUjdTJHkAJerzWN{8pI=dD7lY=k2?plg`zpDD->+uDX
zR1sjFwS4}tZeme(`Esys-(1B$(8_p63Wt&j<%cH;xkz*Qa?0>8mmSKLB>G3x%GC`b
zLQtOEc3uwZOI5x9s;hj3P3P#?t=VmTmahnsF2_(qn$xvX>At^gzsE$A-C;A0%avEd
z7pvln4N2MhwymiT=oTs~Zx^fRvt5AGbV&(v@Kior_OncdS11>g9|U$<_Bp)dyy70@
zygJb+GG;2g;#l<L^e|otR&#E)MT(If=?~-6M83{ly!HW=lFWw5@*V@ky^e6W%w2@j
z)iWHHX~3E0g3ZBpa+5cnD$7_Uyl$T1d9F*GWRdrUQwfcyPrkRG{DOHbkY8ZG4EyUk
z=kxqB(kQaq`phrbcdzg-o)B0MHbU$J%huIo`8eESa<C%K@-Ntfd(6$*V_ca+-C?O%
z@27$guY9I*@^dlRYRlG}P1EQ`IdrcjYlg`&RZ6D&YFlk(uIr2jy$vpU+&_+<SLWdR
zGZPYb_2ysU;tR+>ce$=7=aXw+av2!UFVFS6ee6d*rmMUoIrk7j_#4evzOyZ-1uio9
zCi|GKH1A^te6{}Z#(pwqvtnEYt610prd(*b6aFFrB!C2v01`j~NB{}c00L@yV>>@-
z`(8zFg#H868~p&p%SZqTAOR$R1dsp{sAdGz^hSSQ1J5h;M)om-9oXN<Ip8l6Kmter
z2_OL^fCOq90X4l5^gy-r_N&i7#=~_ssDd3Zo&)<EIS>3r0!RP}AOR$R1du>YA)ux=
zc7_3wDhahWK)q1~4LTzMB!C2v01`j~NT5a%s88p|vZHV>R}_nX<fePx4xitqqx0n0
zbV7i@=2>~pN7FeB`b;`I%49LwjdZ@0E;l2?V7HIYHJhh0KN|TTAyFa#xUcgiu7Bpg
z!cC^fGHIBP1}5BBD&TUGaKL%!K<3&oVIDfn1BCfq>qPkh3JKQioLq-N8bk}BKFeU2
zqHT`x9SEK8sdRT3oQ@8zd1Dd;pfF*+FbHZyN!Doi^8(E*D6fHZwi|P6NdIE!;Eju)
zZysQLjTe0uEDKUT%FZ`W7gsK=!RMg|&{Xmx@>L!=wYy5<LjL>Z%c=RVsqSj+_LWee
z6ba9N*P9=RxeA0r9<4|K2_OL^fCP|0^(Wxe<PIG)<Y#T<hi(3Bc_6uG>hAu!)X6ue
zzLyi<H)!*gCa*5;-uT_?ch_y%_so<-J74Sj-ja`ZHT!b<&3}#GkU!}b!>D^==47v3
z+5g$XS_hw-v&;70%C>_xroFY$Za8@JoNw-2{pP+Nd(s?1FFIGYJO9_&8PhiH3)--;
z*6_}08()6&=U2x4Lf$>z;D*~q*Ueh8W>MI!ds@HQSNf#sXGgw$<FTy=$2n{7p4#sz
z`;gKOc?*MTwL1N5@8#E}ZJqaVt##X5wL7_|?VK^1_di|L>DBO2Kla<T>beP`+k^Ln
zg?8+`e&6BnZzr^G^nF_6`Ayo4D%hCR`K!fW=GR@<c=n!IwVo(Bc<ZqELBn4h{Kj4T
zV{bn*q-5UF4~HLV^YR?$))qJG{|$IBVa$w8uYB`|uH%Y{3qJqkwg&@xKm4D>z<p2t
zGWX<xEeDgM_050$bmQ)E-~2Iqq3&R(Mjt+NretvbX9e9Newb1?FznzD9X_?ropJrN
zX$=}=4SIUO;(Mn@Srfbbr<1gB#LSozYleh&jXd-6%I6p5uZdaw&I_HJ{MzrEm5I+8
z`ZWlvmu&s&dyVGwAIlo#WIQ}`<1A8;SFf*Alf59uI$In0U{<Gp`s``kwUH(~y6@-)
zL5CZ3xaqZC>wjtV=D6AB9XFld&?9x>>c2~VI<xPu(?@o8UHsAO=Ft0d(wnuKa(C1_
zMYB2`TmR~eTQ<CJDt`FS=bn1>vE_z`rZiZs|1`bMXPJfJ^9OFxub!Q=s9pcYTMGLO
zJ@)4N|Bd_L!N6M=Oj*(Lv;Cd-KR96LGpWZ`tef<D=%Juyxi4=Hzt{2AtRH6{-x7Lf
zlba?U{Ntt1|GmBGEJyq^&Nc7Hj~Kh$ynaYp>Sxa{2+|kcUu*j8|GVzGwEUglbbNpR
z2k(wPce3{<JDtfpQtR~9Zk^Qa;ch$r*tfX$@g+AlY`x?Ax9!QJk4-=MRrc;J`&KWt
ze7CY>dcT~Zdz()<{E_3$leP0YF3hg}&mE=!2_OL^aHR=cOh44Ow6mZJ`k@LwaQ8#8
rAm!sq^+T!kpEQJsDKf10D&PGlu7oJ$(TW6+01`j~NB{{`e**sx7xU#=

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03
deleted file mode 100644
index 14b6682..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03
+++ /dev/null
@@ -1,172 +0,0 @@
-Plan Title=Flume Base Case 03
-Program Version=5.03
-Short Identifier=BaseCase03                                                      
-Simulation Date=,,,
-Geom File=g01
-Flow File=f03
-Subcritical Flow
-K Sum by GR= 0 
-Std Step Tol= 0.003 
-Critical Tol= 0.003 
-Num of Std Step Trials= 20 
-Max Error Tol= 0.1 
-Flow Tol Ratio= 0.001 
-Split Flow NTrial= 30 
-Split Flow Tol= 0.006 
-Split Flow Ratio= 0.02 
-Log Output Level= 0 
-Friction Slope Method= 1 
-Unsteady Friction Slope Method= 2 
-Unsteady Bridges Friction Slope Method= 1 
-Parabolic Critical Depth
-Global Vel Dist= 0 , 0 , 0 
-Global Log Level= 0 
-CheckData=True
-Encroach Param=-1 ,0,0, 0 
-Computation Interval=1MIN
-Output Interval=1HOUR
-Instantaneous Interval=1HOUR
-Mapping Interval=1HOUR
-Run HTab= 0 
-Run UNet= 0 
-Run Sediment= 0 
-Run PostProcess= 0 
-Run WQNet= 0 
-Run RASMapper= 0 
-UNET Theta= 1 
-UNET Theta Warmup= 1 
-UNET ZTol= 0.006 
-UNET ZSATol= 0.006 
-UNET QTol=
-UNET MxIter= 20 
-UNET Max Iter WO Improvement= 0 
-UNET MaxInSteps= 0 
-UNET DtIC= 0 
-UNET DtMin= 0 
-UNET MaxCRTS= 20 
-UNET WFStab= 2 
-UNET SFStab= 1 
-UNET WFX= 1 
-UNET SFX= 1 
-UNET DSS MLevel= 4 
-UNET Pardiso=0
-UNET DZMax Abort= 30 
-UNET Use Existing IB Tables=-1 
-UNET Froude Reduction=False
-UNET Froude Limit= 0.8 
-UNET Froude Power= 4 
-UNET Time Slicing=0,0, 5 
-UNET D1 Cores= 0 
-UNET D2 Coriolis=0
-UNET D2 Cores= 0 
-UNET D2 Theta= 1 
-UNET D2 Theta Warmup= 1 
-UNET D2 Z Tol= 0.003 
-UNET D2 Volume Tol= 0.003 
-UNET D2 Max Iterations= 20 
-UNET D2 Equation= 0 
-UNET D2 TotalICTime=
-UNET D2 RampUpFraction=0.1
-UNET D2 TimeSlices= 1 
-UNET D2 Eddy Viscosity=
-UNET D2 BCVolumeCheck=0
-UNET D2 Latitude=
-UNET D1D2 MaxIter= 0 
-UNET D1D2 ZTol=0.003
-UNET D1D2 QTol=0.1
-UNET D1D2 MinQTol=0.03
-Write IC File= 0 
-Write IC File at Fixed DateTime=0
-IC Time=,,
-Write IC File Reoccurance=
-Write IC File at Sim End=0
-Echo Input=False
-Echo Parameters=False
-Echo Output=False
-Write Detailed= 0 
-HDF Write Warmup=0
-HDF Write Time Slices=0
-HDF Flush=0
-HDF Face Node Velocities=0
-HDF Compression= 1 
-HDF Chunk Size= 1 
-HDF Spatial Parts= 1 
-HDF Use Max Rows=0
-HDF Fixed Rows= 1 
-Calibration Method= 0 
-Calibration Iterations= 20 
-Calibration Max Change=0.05
-Calibration Tolerance=0.2
-Calibration Maximum=1.5
-Calibration Minimum=0.5
-Calibration Optimization Method= 1 
-Calibration Window=,,,
-WQ AD Non Conservative
-WQ ULTIMATE=-1
-WQ Max Comp Step=1HOUR
-WQ Output Interval=15MIN
-WQ Output Selected Increments= 0 
-WQ Output face flow=0
-WQ Output face velocity=0
-WQ Output face area=0
-WQ Output face dispersion=0
-WQ Output cell volume=0
-WQ Output cell surface area=0
-WQ Output cell continuity=0
-WQ Output cumulative cell continuity=0
-WQ Output face conc=0
-WQ Output face dconc_dx=0
-WQ Output face courant=0
-WQ Output face peclet=0
-WQ Output face adv mass=0
-WQ Output face disp mass=0
-WQ Output cell mass=0
-WQ Output cell source sink temp=0
-WQ Output nsm pathways=0
-WQ Output nsm derived pathways=0
-WQ Output MaxMinRange=-1
-WQ Daily Max Min Mean=-1
-WQ Daily Range=0
-WQ Daily Time=0
-WQ Create Restart=0
-WQ Fixed Restart=0
-WQ Restart Simtime=
-WQ Restart Date=
-WQ Restart Hour=
-WQ System Summary=0
-WQ Write To DSS=0
-WQ Use Fixed Temperature=0
-WQ Fixed Temperature=
-Sorting and Armoring Iterations= 10 
-XS Update Threshold= 0.02 
-Bed Roughness Predictor= 0 
-Hydraulics Update Threshold= 0.02 
-Energy Slope Method= 1 
-Volume Change Method= 1 
-Sediment Retention Method= 0 
-XS Weighting Method= 0 
-Number of US Weighted Cross Sections= 1 
-Number of DS Weighted Cross Sections= 1 
-Upstream XS Weight=0
-Main XS Weight=1
-Downstream XS Weight=0
-Number of DS XS's Weighted with US Boundary= 1 
-Upstream Boundary Weight= 1 
-Weight of XSs Associated with US Boundary= 0 
-Number of US XS's Weighted with DS Boundary= 1 
-Downstream Boundary Weight= 0.5 
-Weight of XSs Associated with DS Boundary= 0.5 
-Percentile Method= 0 
-Sediment Output Level= 4 
-Mass or Volume Output= 0 
-Output Increment Type= 1 
-Profile and TS Output Increment= 1 
-XS Output Flag= 0 
-XS Output Increment= 10 
-Write Gradation File= 0 
-Read Gradation Hotstart= 0 
-Gradation File Name=
-Write HDF5 File= 1 
-Write DSS Sediment File= 0 
-SV Curve= 0 
-Specific Gage Flag= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p03.hdf
deleted file mode 100644
index b0a7f93a7a33e6055807dbf47fd6e55c164e5c41..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 180952
zcmeI52|!fE|G;Ot#6(?>l+^O&QJ7|nSdnIe2!bbp2cEIQ!mcj6xVz|*N0h((k!4wS
z*r{p#qMse~vpiEt{iXfPBI}=;7nUiNn%SXw{%79IcaO(DRuB*H`;?tG^S(20<}>r=
zeP`Yrk0tg^Xn0+#>j*nSLrD<P%BS#iUK~5t2gpufhwJI$L?g^XVHR<5q9MWbkC1TT
zt`*@MS8*R@!hL8;d_19&5I&gVGLcqt`556~wDOa3VK04&pCpQi7&mZxp|Br2E(Arq
zgbj^aLLf0dHkm~=O~f}*n41;(+0S6jF*t1b;xb7#>n&1Wy+bb?;wKv{4k^xR$uv1k
zR*N0vQVjMyv%@ZzRptgyfxmL;Y`{Y(f`HJxrU*c}Oc(Xc3X%HsU~dd@Hmlt(r5Z9=
zsgsf{4udV%YSzoP)I3|3KEoiFMK3w(GEi^Hq{Vfz!6rov(pxMhOZKgH$<hfzPcgAe
zee{-z(m<1ihrzCK_c&VE4K}mK1@0c7nQicvPj%SxG8}m}2tg!=T<zsrLqg<d)+r*~
zL_E1tASV<f@*#{w%MMIFl>QrPa+nR&r5XLZp8i34`{?ZkDUSW<q9l*XB#fj}DJB<6
zn$x#gywgG1+DQ|sH+5l04C&s0bU!cdtI_ZfgXC+3zE^!6$9j9a9_t-O!(oSpG?L>9
zQILk3av;7<<?FH-iP8<y+q&r@qb1!vJ#@Mrkx|?|j6}#MEWYgDaD&ZGOP-uwh6K_Z
z*;UsylG@#Tn#%HV)|_0k!C~-Zzyf5vSX#jUP+OjX`RDZ{QGI`7JxL*5!w1xp@c!n{
z3?YSF^K_AcawWg)U9QzX(U1VStQLwOpngac5ipAThY_PJp&?D^vk*>Ft$DT#gRD77
ziF!M~NF|!nKORRO06gcC?3)lUdkk2<MYpK@nMc}f8nXJvR?mKY@2Gi8Zcm7v{>fjj
zl^mMXC3WzSz8X@GK5P6a6Y+rbE90jVawSdp3CNX%3IC0_8N&@y`WHU|x#&N*Jx#c$
z3%Qt6-f~4JxP9~A+;j@L(oQ@i2(RoGaVFg73b~TUyyYVP$?b{4y-3KNT;VO3zKq)o
zgu4*)Yw&s}She0M=*WYBa)<2(zewwp0Mt7rqMZ;8?S;nP$&@vyREMmPQMHToF<Ubx
z8ZxP-X2{B7TH9m;J<k%YPT$vu>&<zfKY{-t<L$C$#o8L40r<S`5ddwWIBZh9GnY1B
z;;e=&h;3qircIw`Hf2ad_2bP3s!}@iHV4%TrFgSpGS?@W%9v!yuo-e#TPM}@AXOYH
z_@fGe!<3;nOH4Y^YBN1Z??|nwG;ErPfd)&q!)Pait(mkIG}tq2rd-bklk7fNp9ASl
zwwm*qo(XAm*^_DXC{VZEYGQg*ib0=Yl-vPuy;Ny;XNWlSNF~pWitZi|DKxn5p*uqq
zWu(5Ydxnr;woZ}ynrJ4P#^*5rA|rThMc-eLF;~dc(6<qbOSrf{yx)}X1y)ZoN$6Jr
zlj(Dn9a0<bt3th{Z&iNy)@!}}pbZHi0VIF~kN^@u0!X0t5O8WT($mv*cipwDUP?rF
z(rR+RW6Y_9b~l6*jn`?<sRy4p^3ID<N4{9}6<JOi1v@ochV}YsW8T=EcNsU;*G>Pn
zUY|hXTwH&?Q`5{qLycd*DA7DOx<^|QmPm4FSh@3m_+LT8D2b3o&xdSsY8u=g(X~_m
zL7xxXJR~)DOQ)@a4B^3xZ`QR6kbm0WOg~m;g`_(*smW49Lgwj0<OtD_gU4&rgT`xH
z|0C9{J^0A+7Z*+=flkuVsX4OkgZd;UG_a)m(X)$}9C^R2er)0mU6UsK=fv5&pW9KO
z2?<ZfpK36O9=}i%Vm`N@68>gg=b-fPl1YZ8V?ugA85Xj5UCFW6j+S@1<?;Oqk3amG
zbHkgj#J<saN$bsh-&--@>Db84B|rD*zit2Q_-yT_MNjtL|9e;KzSoZYG`;uA<A3%Y
z-Kp(s6S99wwBC8(rBk<cThsQh<F7lLtzKRJ_N>30Yck%O+xW#TGY@R*-D_0;cbiY?
zygzTk*~~LVO<$UNYp<TqPWXIj#*!_E{`p+#i<|HL@UB(X+!@{e9`e?{_D{8c`6KO`
zL3z`=yf*7#*JoE}eD&$QAKdxz+2?yTJhAEQ#4lTar0W@_eQ4y#UAOms>)cQ0_7?PV
z*4z8=LnWF<xdnl3%1FIvJgq4X$9^ek`EyvuiB3(_(3s#^MPq^;_mLOphIDso?ChBz
z7DMh1m_{0Weq9(9=}rQIgM(A0H?z|h29KXfNK{JTK3++s$F6Uad>7F~kQ?}eUZB&?
z`f69Fz|cnDH@ZPuJ#u#YoyG&vV?O!*`u#J{uR7MQ-LhZCWM@6~(MQXsZC&%!guSPW
z4&HSC)?SNF9X);I??9{ys#z13oe#OG{;A~&B3BaDn`y3)1EiUpD-8>DVL>JPW@&b}
zGjwisFum<v?SmpB(#TKO{bKl~^Dob2?)=x^Pjp`L?=>ghKYi+teovlT^J~BHXQ~+$
z^cH?{$-|9GPc4(*+Ue<KAs%nW5E4+tUW%#7^ebr-Z2*0Hx=uku(UAIb|5CE(@Y29{
z#Q^T0><@x|B`^b-nm_|<BDEFYKqb;Ll(c+E+#ra40b$p9KT^s021JtW;`1pzXV*0(
z(~w2KmK)@2%xkC!H!vWuTznE?QDNOua!~9mCOcTzNBXQC<^CSZ?ifl^tW)IctpBT?
zkYf%B20i-<PDd?iWxoM|0UC%KyB<aonL)3yZ#Us2&T7ufp`C&(9QFwZz6U}77?=YM
zSq}L#J^eDDZ4{?eo__~oapH&6L7b=<(9cKMN7qV@XmKsQTO~sD5_}gS_f;-;wO>{1
z-xR}hRHGk-{hO+6@B$J*0!RP}AOR$R1nMGzi*MiXc7m2F@VuQM$(Sm(A4mba;N9LK
z1=VQpY`#Ul1F6yWP8i`M?tHat*w8Yyb`2dr!H1tDSuzdIIBTB8!DA<Wfo~dXh|xpY
ze&nw1UuZXi>974*k#os;7MeHbs<kVbf7-5uC=8?HgBfc%d#lo}456MxvI&eSsf=@d
zCNCPk(5?oPwIAtaHn5vEAK8g(ybrU;<8OV9@9@|DxewbvGC%x50!RP}AOR$R1dzbB
zLICvh>VMz4{OzA8o;le5p&YRN!$;(+egE+{zC8)sKi5iChv`HDNB{{S0VIF~kbq18
z+COUFC!qfw#&N+%0Wkf2pSYOs5bWCl{SL7?hUZm{ws+Lp4V8VL(9(Fo_X*$uraWI+
z&sVo$^Ofb9%WTCFF?(4}Kfi&eP4#yS>gTF#@B$J*0!RP}AOR$R1nMFI(9hFV#t&Tu
z`nho+2Y;FLb3S9k*ElVCT|hB@2=sC=UE{P|!-iZ70J)Y5V#!d`)7ct{l^uC1dO9By
z2V>(Z3jwbo0VIF~kN^@u0!RP})FuL;r|0_7(?K7E{&O$`#eD0_IFCXr<~}pMokgq4
z<NJNh8xJG7a<=)>&)Jfr(0>jbz;tQjeErRVL;Ao<oGiFFBVGF4;98tB#rrCgP}AGR
z+;}G9^O&uow?n%M;^)&dIwAoifCP{L5<mh-014DO0-(418~+0OAn5C0UXJlE8JsGM
z0{g2GJ-s^PUp&`$0v=%U_429OE>_NG8asER$~uiSU*{>9IC)w~x?<-a;p{Tz!`T2h
z@oh??gTM4w-tZF5FLKPlFKCV2EEe7u4)+}nxR#5P#PQ&Ab(w1IoCuX@zO2%|aV=o4
z;t!pX01`j~NB{{Sf!a%euOCX|@9LKhmlFg1u%N%W^;y0isXT9xs!qXlWlrXmtpmzD
zR(-vmfMVVwEbFc=wWBKQ$oTGO*70=6>yU<etwXA%S3nO`?%$-QKZ$MR<S;#dHmK-N
z>>hX^0VIF~kN^@u0(FzX#pq8=N2me)=~zBT%TzU&+HooMCwUz{k)5u6E`?o9f4WIr
zS2Mm;(WBt|I+$wy(H#jO0VIF~kN^@u0!W~C5zx@xfmom13ehpATn8KaAwds>{zxz@
zey=74jDYw064hEyTsM;i<o>oUN8#f2>jF7YU*lk#(<{*b3h4zinQag6-qc=RRh+wd
zuPx5Dl~;%n+09#wcDnjrpD>K*MEn}k9^O#c_emO>pKD+jSpP5ElL`7!VgGtH{eL_N
zGS5DaBMSYWNL+}2ofm@|eE35rB!C2v01`j~NB{{Sf!aynLdV&HJ_ve0m}+|LrEC{G
zB~VM%+*g(9^q>|q-JAs%CUzY4)h=K<H?#|Y1DHPaeP8OnYd_U+xG`TIn%&yxAqlxM
z7?|r*ijZg_Cq1GfAe<A0oN-R&a##CRwRTQV$PkqT3{idv5npV;8*5YHfdr5M5<mh-
z00|%gBv5w<KsyKYVC8oXwgv_}Kp%wm4VdovguUhdcS2%F_Xec<dGUe7v%TZiB~P9Y
z68-$1ZtOl)AFmx4{tEL*530JdXv#rW<$H+dzMt~93p;D~M9X3NYWJ`vgIc>MZKUk2
z%IkZ~mbgFoh3`wQ0aS1SO(cK>kN^@u0!X0F5V#7)Z5O@8X)@KrrFK+BkE-gtH+g*q
zk%K7)eTGpQtk020bEvP6#@0;sb-XNjyQ2Q&%>!*n00|%gB!C3!B7v(we=0BLV6Tk+
zWSVTSU4Z_?S5v510^XIp-9UeG_s@A>M;j7A0!RP}AOR#$`w3i({={^I8dx_VVim{8
zR1cThaVh(s8qyny;eRAW)}QFETMoJhE_LVYe+Cg)XVv&3kDS`CQ3RCyFEt77?i6x6
z-mhG)P{@U^tX%GDzp6Ga(ceA?|CPK`2Kp#`hlcrQ-co2o0!RP}AOR$R1dsp{sI3HG
zTw=1&gO%eFmHHrzM+EZ<%)ct$$YHanF*Q|IQ7^vzk}QYnYaC)DdPQv<qHF(Pc|``r
zA`8@?nqK~>;4R<O$IrKt!co{!FIR9uD-u8gNB{{S0VIF~>IebQ%VSjZa@dyu^g+<a
z!F10TYReU5B9WG%q~$|`kN5g$CFiR#A1JX@ge6r|5BHo8G+b}aGtl`!p7WS^-*d@%
zcALvRPe>$<jBW>K+*G!Quz%c}5899b5<mh-00|%gBv9K4fF53p`o~Lmap<+We|);1
z{&BNHFQ?5L`GEEi>gAjV{vrV+fCP{L5<mh-pso-Ay<Dw-ob6S|4$udoUmQ$-{o`u=
z&^6F+Zal=J##B}oy(*7i@zrmBvHjzG9DXpFFZAxT^&*lgMv;&!|3XDTIF|^yg6}Gq
zD-&{|2P>C@3|;t}AGs@ZnT_{hw}x^CCPb&8BR@+M4n`|KDHrzAm-q>+6KCAO?J!T_
z*l{5U1zT9rs2v0n<74H4W|03d0mu25cl^cUK=`OM?`zeuY3PnWEX>Wqa}%-jO!Obz
zAx+#rOx#gJZlsfgLdhV##bUB#-)fgE68}ag_0>D{?8mhq5L+t-;v1#wYsiR<zULlE
zr|TjA=iyftZi*qBP6n!8xcqt3s6KDT5FRs~NH;!j0>m|9D4(}Pk?!)py#e&mTP8{a
zO%{V)O0r~GiHDu7r%%63^TX4fZOH`}p!{ovoQ6IT%njB7fak5~1Q*yW?yojJ^ac@*
zn(<S6?<?>+fPOD9y`|8G1dsp{Kmter2_OL^P+JN3+c#IK4?;f#m=*iCNC9Kv-M>|>
zeRGYcI8+t|riRL@sOS8w3BRr$6-FXtDUE!`P?BPuBHNqMU*GGS76|!zv{f2T;;iPp
z9J+u6ldsMD=JI~GK-WSX3xl8~At$%O540!BZ>U@j+Pj4vE0?QqgIemK){fHqNq%_~
zg@D8XD4(BNiUp&M1dsp{Kmter2_OL^pdjGX9NG3seWD8uEIBiF)#4?kx8Hm7{3$Cs
zy#3kU^VWawDA0t2r{hmG7({0+)R3L$%PHV*)(vP*n%B#HeP`mB+g=*=N8{w=jZ+hr
z@0J|5tSAaU8{TgAENQOscj?Wxsq=E{j~Wxy@VaLbwn^(J1>a~We5HKSn43O|-qGYh
z(z)wH7A*hx&)<GLecxjTUv3b&V9rycr~kNq=bpq@i#jeiF|F{q!)tcOOuh5x#tXs>
zgAe|2_PO1A{`{i<hj)hDI<9Zz-dFei+-hywlaBG(@BDUpYM19nzr5^@oJ}WZ_UzT(
zI$%=gKMzluv9kFK{Tkmi$8mV$oHGmT4{X1C(W$%hANqM{$M^nvVCvZKPPh2s>v`K>
zm@z!#u>JMZ{p^vW9$Xjp&9@UGd)rT&?m63OoaMEnJ)=%{9=CO@bLoPSb2dIS+4}WY
z-?aW~UC@Dr^&Tv199^Pmlv@zkri|3X)0*K>GHG&|c4Oy$MyDntogM+>wdq0Q3F$(D
z*t4yn1A)Q<Vn-g2U(jpv`j&GCJY(APzj|T15)z0%RcBE0Kw!OqVdMw)RKMPECea2b
z-&GQ@rA>!{U&p5{o;CF5mzpP({NKVP?Xc@VdZST5#@s0f&wP2_+TS|;<D-#XempdG
z+7I_+8}^=CG-K$V@1A)2l@t5UwAb8I{_ssZH26f+e9cgjcjFGt_3aMNc50%A#srh5
zQb1Fu#=fP~)<MH!2x<R*;3%giHJM&%q7Be^owA3iEJS{ow5|UUYu1L4fFdGBFDYK4
zwb%;d2x0wM<@#694+JLkpMrTM*1xJJx~wFX@q_;QS6PQF^m?(u4J`Y@2p^H;YyB(M
z$Evpe74t87FM=gIDObW$>z^|LSQZH%M^ZD0skkTxSb#SeKjp(KIw1ihfCP{L5<mh-
z014DW0-&G6d<dm}-a@1a^g+<e!F12_=`Fso$B^y~NcZz%At%pq5N=)a<oO^vKAvfw
zo^I?`)mSGhxwTMXsp`t2DF<1V@erQ#eUinX<BOf|!^h1BsE(VDj^dGyW{IXpnOLy4
zkXs4PQxPEQr~%{Vi$(h83sdUk-5%?kD)rB^WQg5d2%+}W*xS4H1uV%{bH14ltLLNY
z331uQsCu`Z7i{<b#C&8u-!F#kSIq6h6!)WculqslV4MuZLv1{M*)76{NS9hWwE+aA
zFatVxJHY)#Gu8Vd+K>PeKmter2_S(wLBQXBexMJy+asZJyMpzpGaaD@_VYU_R2OzD
zm)hakzBtlnZ8gSQ>*W05-vdIu##=L82-2n0|6o5qXg5W414%i!3O}Hy72jLAT!ip>
ztY77F&|W!~TDe?>h+Jh3Rn<cqq8@sc<se1}2_OL^fCP}hr6&M-=t*%ajaYdC#%+K$
zbP4s)g6{k#?6(H>P_Fs;(nFb!3F(4<M>V~Ptx;3i@t^A<BrXLuHdclmU~(J&A^{|T
z1dsp{Kmter3DkB1{?^k_>Vu$1gLwtUfv@PrBgKB1dMc}^7vJw&AZMkoap0G8osBR8
z{m%{QfSFK|V9-1AYzAp)ey(fXNl*PB#u2FL|Dz!T<<wRD*{IO}iNs}KToLO36`7$6
z5<mh-00|%gB!C2JGXWT9t~L)8)JM<<LGK6iO6dPdB2tpdJWzk*KA27m>AKSMK#L(F
zDut+ROND^=!T|Zf+5&hW0VIF~kN^@u0!RP})Exq#pR3IS1w9Z<(96NR3g&^P4HGIX
zRb5#$WtFum{q>h>9w?g|2b{oEoA35zxVIh-HrIfkx>MvZB}f1XAOR$R1dxCr0OO3I
z<M0ZMGcHf(N(cLOsU20(qkQi#qLWkTYn<_Q^a|)X?)3>c5Vi3JjrrvYzu%$$RDlUP
zAOR$R1dsp{sOto-0{tms!j;sYOp^^ZiLK|vb6QP*QtN;E3H7JC{)k}ukN^@u0!RP}
zR3LB_=ubxbW!9fO*IQDqe_2)i=?~PODwHX7Kmter2_OL^P}d27{&WS`2`ZX)N%W@(
zIqQ6Vzw?|Y4C{sSbt;2NqR8;M55N~b-z6YTIER}mmoo~vG+X6zP9ZmcYUOf;LT<-D
zDwh*tm)&6cC;K`I<Ho>*h?GCa;~gO!a3296b8VQgj{rPB(IVN#$Gpok%-_GzeFDI@
zq=Hdxz5j@Ra-WIf{%Y-~8&tvt=ktno6pTBCbppTyc{Gs#5<mh-00|%gB!C2JHvxa^
zg(>wxXcvL$x$m6N6$==VAUZ9GX{g{<js51zg=)*9z=Dy3@*E#K@z>SW*bkzB2E|%>
z^=J&kz4n8+oa=(At+P<w^}={RKp>xtMbjre3oQ#dxfOoGg^Tg+%H^QF8~Rb@ause+
zOC8kOQF=egH@>bAkT?M4^HWQ)V6>3{5<mh-00|%gB!C1I1e}^9+dipJbfJMIXU48t
zyrlH@dvBgUWkrX#KihlW`tKbDnvn2x{HX?m=&Xervh#d71^msr0nJJCdbzLfOdNCD
zOQZg1oSeLIYQpl}lH-;YMd4?|+s&RO%{Bfmz1cQ(UT*zSV}cr9_e{bzY5k<&8x4i8
zlusIS(?`)enjA<vcYVl$<sbj~+mEO3d+gxL4I&rJd200ZAJ^~PllW>;#|0;*6+U-(
z&F+|~cmCXXL6~9i!5_{(w|mc@U-bX*&X8Nj^^M&7>b{>_txbE<F+Tg9-%d~M^8DzR
zm)()G>Ez6wz1mv`OzQmS;Yl-AHh-aC<D2F<4sV=uW`X^I?RPIab$9+lKM(Er-d_()
z9sAws7C(GFZ~F@~hG!hMzka%(J#y58>%zYIc0y!t`)SiXXFH9vymqu_)alOSwvKf!
zT`+Ra#)l?bzy9i*)_<)FI<T<bgJq4QOEisg3j*7ek$QMqGaO1LO)k@J?A#ANd@G)B
zv?2i{fCSVCz`9Opq8ms<c+Z(8fIC1x5SY+^3Z`0r;3e!|)x99%Dygiy>aTy5b;v@m
z*Ogv()dXNwGU&5K5K|!_R$KsYp(_5+83`Z(B!C2v01`j~NT7BS0R3ET-PIN%S)dPs
zUJm9}u<mN<zl91*RaX{GS!J!tc!*22?kYnEoWK+~367fw64$1w95)Z`tc5GQ+hbr$
zt|3fn<L1+s@jDfW`}1)#L87%z$gwT_I>aaZbAA^61ver7CG26M2gpf*+#VCmO&DL3
zxSC6VT&}RsUBg{sxHws{&0DTa*vbEaPa$}f8coC!hJ_-2MWP}N6El-EMC^ZPG8?4f
z2AkbvwJ_0U^sf#5gH$HQ$K9S1n=0MeRo692N;Tv<3_0WJN;}<jk#{k9<@l&!7L&s+
zrRLkI9J|iKV|fJOr6x(TNEqQWHrRMKc^^g=57>lJ_+x7wf<K5yiou>|cG&4udG?Qp
z-RKE{^eXey-#nttCHxK&4GWKJkASj1<g0ZOQY`8NAd+m>TjV)Jwj8}fJS*&)>`pt|
z=)zMD`V_g!YXo>yF=3o1)Jt0NylU6;@>nS9FJ6At-{)9<RRCWj&dTx&@55YCuK@<A
zM{DYR&fn7kuJNs*Yxy1EK00AfR@ATa|LZMRBJ5?Gz$e7`+A!h0rQ{VxVq^gDew6DO
z_wsh~d$lQ*0BQ;5yc~nnM{hSsaqLGI#rcJivWnp((3dU0EQhm{o<lgJdW=c7Stl4W
z9CkQ~wPhIT>Uv<ck4YWTb;SK$`y>tN%Cvy4{o)=-)mt+2>=W}N`o#^6jD8?~L^oac
zPGe#-b4-@oZ3eU6VaSyFS~F-AEi_yj*ZAygX_%c>n9?A<B~Nb#H+t`ET9-;RJc-59
zJ_cU=ast67TUa`~=8A;6^$D)m$h=aGR+}TKFH0)ZLp;}8W~5jEZcZ^wjB;o!>m&UP
zR$8Om@};3B2ZP1@UoT&0QiOPtmOz-gyLmVA4oBo23#T^o&elb;<kNKWnnXj-nEp1@
zM2p`DlO@wSMZV6`$=-obuA+2(4H=Qq_uM1tbUoz%lEW%hbam%r3pw04Yff&SLw@Db
ztf2Qubr^DKxGa3n?_H6Dk_J;J4}DZC`yZ0$p#JHbo4%bV>&>!1)+B&<MJ5gzmLl7=
zvYYaKoVJ-u&d2vL!;6O>0&4GLBFYhXhw@ib?_+q6DBq{<_8G6&sH&Q2vRkE8tC=pC
z%AX_8=OICFwzGGG`#G#HKjD#mr8uk2V2Ai?siGlI03wp?1nGh6ZvRc>=P<Evf;7Tr
za?nabZ_CMJkFb2O=eY9w^LoJTpVtCrQ-&NF|Nh<gr*93rQR<VImBmud4|V@BvVexP
zRm49*pJ9*&TQga+*=)@)IZP}f>ft~;S1WU5>0oslMJYGA)i?rAw;s@#G^a6<{TuTv
z6QxwsgEXU>NNrvD&@z;?d`P4V{1Z~pn>o3|Y3hncYA&r;^=65U6`)Cwj|-1a6IVF&
zMNVJiPASDY1%e@J;fUK%zrdxjE1U$Alj;dP6gB^lt}qzSA?Hpg>DE^oVln4mKtAyD
zOy#Rso^^86;eE&bo2+INPqJG6tMyYT`?37>Q{;ZdQx5t)a76RkAfSA&XhpKqL_a7{
zpz4u6GvBS>B*KMinrh{Dhq&*_QeH0o^;2N^t!4()5pT-!3-wsIsMjEwP`}rdUc~z;
z*y?2bC>G@w?xQTn5DzrH38>Wr%I_ln-eb`_IC-eQj8=Z1a&f!Tm-q>M7dCF-_Ck?i
z$Bqj@_%JN2Xw(h@%6b6W+mhnD8ob9+^Kx?ZwtQE6J*Jw;R4cy=#eGY*^8)6t{Ko9Y
z@>|U;s1x4Q%5Rw{Kafb???gyVm0x9lyHk`~Q7sZ>IfnW*`3+uCf}B&>=l|>4tUxs+
z#AiQWZgbA#m;mLk9x(pE1wpUC_ZXD?Yr|C50}&$G<-6cX;|`+#xex6rn#g(z;8Ovt
zM+wrp3&f_Z2MTub5Fnf)Vc#s`0rf!P9&fo~VK3bWJ})o=bwo@<0)5s4<%@YeU=-=}
z*RI8SppF!XY9>Qj55W82nBuvDr!2Xe_qp8O)b!=jGM<uS-*eO7douSBmjf>Np1j;S
zd1ddXd_JJPrxp4W#7_R64oWk1gy$s&1gdDldlK$f^eYb$!cA|%>-mCkZbJDi66G7@
zl;ypO(Wv#}YVXMv<(yD~NTI)a;N&k{9ynt?Q0t3El@g#<4}^>N0|dtVeIz;#D2omM
zsiAtnqyP5+FNg4a?-2Hr2f+nmf~F?{7+;{|6-Lr!F%4leU&4uJd&grtR?>`Cvl5lm
zXuSCYb&vXA@^z@`Bk4c!5DG;7;;$YeqJa<Z1+0hU?7L=ul=V=ANclohegH(A&1$Ff
z80a`iI@p^w+(m^X7irdxhjLrBcDuVCiWcP-!cmrEhzFY91k~yQ;}K4>Q0RI7>VeQd
zxO}t-9_s;b&UM`e^+2&mD74ErpXB92t(+;_4Qg`747^>THF6VpLc0X?;22SEp&n3{
zV|Y)cH}DPz!n;;YHSW2;aguX?=cd1UApA6!gZ#jH;Myut%6h;klAm^-mkakecc$Nl
zk_4MxRtaG6Cmm`fA1?h?*ay*Bil$t1zBHarA+S2=D9ih$EUV4sjn@NgRepXXigL^E
zN{F%?OF}OBPmmA}3L{b2SDdI^4&Hm|e^oB02>z<G!aO=q$TTpnG?1qYYRz^c=3*GX
zJYk<XDc#-c3iuvZ8%%SIg&Yvb7ZPhgB-t*SHT0Za*N{v@7Mu1WUt{+P6>@<ALB%6^
zq}VUJJ&O__N=;8Z*AHkMw{{fF3p}Rbo^tC`A^Fh4iI>UtQDE_d@iS`co+&wi{nDjB
zT#i>@Kwx?so)q@$O1m=MVWdz_7oYzWL5AyXCjEHUBft;W^TxBm#hC}~*3ZG7>d<E!
zd^IeE+aP)Rrn&&ER{=M=3c1d|<pQ`ud2;^EN(muzIZpZ;;X13zNo-~&9RY8(&<f5g
zi@e%T9+yVYhr%YM=Gn67FnW5U1T&v7#A8E9dR1;-1=*S|Pb}W*rA3l*qVBL)cD)vq
zr&3)N%2WE8iz`p?J_LRDm<UfTi=nh8o`aI(TN3p8`K}t@w_K=j4n0+Qc)opKJ+3uf
z&bjU~)S62t_hmYa6^gX~dh@D(ABFb3fO39mxXQIitj(aWz%{2^1t%|uT2Oz)#9shc
zcprs|=ksFUNA8j;ms}#ll`(tRO_mIEUZ%;CO-JDv=xi{m(NCtUk1#bIp5!>IWwIe(
zZ=rL&yxgI7NCd%ZnwO?Lc_zoZSotqcSN(J99C88W>C$lZC=Fguq5t=M7@04Z5U$6D
zlfHBgvjrC0p;ugbtcI5?w;s+57JLX(+}34vDP1lX?-MUQ%!fu2MmEc@z6;f}+llhd
zv%=ke0{e*6_<`Or@V4c6TPxV^ui)bC;7_lL@8>PAwE4S#9G#;ojYw5`bJ;J*e<hLd
z=bw5_HCuC4n<_bXR2~AIlPdZfTv7Hq$+?4m)9`Zfw#1rqjTPTU-ZGWh<f?X{A<Lm6
z<S+kZ|8YjW#X=L}<G3LIDW+_rN(B7*kDZ*&`e-DzB>3eg{HrD5Lj9{H!Jq%c{7jqF
zmoC#~^qqvtOOGUZ`1hHFD){%A1b_ZnP3t@6yfFC7KiR*}m{-BS&zN7B{}BcUTkIs6
zHgbIyA%E%j@b5DfRq*dK6@L9YB+Ko?X=~nR?0r0t3a1g^-)HO<!al4n|2|{y!-K-f
ztx@|<fImIR?ca9-F5JKG1o-nWYi+)xE~oT@{QHjjh5Pp%^$YUv*1vrx!e9Aw`}ds)
zfBs>9hr6GS_b9-)6VOw@WIMDn&5P+_tVh+=zZ<|i7TK5<c0Ev&8^--e)aE{v{gy=Z
zTe>B#>{)Vx6zTbhP`g*lQeMa+*=l0z<50O2+7OaWgFb^b_GLTmJ7ryb)XEkyq6S;1
zks9o{*wp=l1|YBIM57t0qlc8Hu6*%ZR`{*SINV92&{e0qt*X(e$v9Mp!KKNI3aC9C
zAlF>PJg#}4f~3yd*@w-kIc=Qwzoaqe-#aq!>(s$fd%t)uaQ{7Rr*(O6owYb4-B^6b
zz2`m->CkvltWBCUf7QA}hQqPuxx1&%v-O+*((Nnvm3$u-b8O7;Jt2LkB>uW&Y_GqU
z-B_5AHS>={BU|s9`AvG@u4S(Vt-fQ%rlb|8AG!6^sBe<Guita)tONJWjsASP{m{+3
zv-95!JGxfe`tZ?-C*oE#{`8guYg-H`JneXANRL5N?%ALD(v0;<qd(dH{r+D=dL|f8
z-n{x(O>&!qYv<1lJ+ZRCw0=nRxtGsw`pWt6TdmW^6l`nwM6cxE0?5H2gN-N5v}@VC
z!M8tu>#O&*`#|$nhp>H4O|$LmCU$-@IFMxQ2#s}Wwk*AC*_Rt0(F`pKS?tt|rU@9k
zdS6b@HK%q>Uh?z~@`@v@rK<B(Ysyh${+pkFHEhxD-+DD|O{PCz-{jO}q|+l{{P2i|
z8B3+d=&YB+qz!l7v0$ThdGELP4IX!($J~R<zohrBciq=*p6D=D)3NaS$9bF|(}W&>
zXU>t{?LJtZ)3bidep$=Y+HHJ#rxca&i81tvStY7JrS&yr+y6Ctm~IqT`a#3>I&E;N
zd1J^2Kka#Q*6eOQJIu+rKe^qvKc?s&G1Tuh;H|IkJa_8-u@hF^(Q)7SFQ#wol{X_N
zCTrBh2iNvLx3$fbLoa<@`1#pUU!T7J_^k(bkKVmz>XVxf@A>R}P^ealDIl7FT5?jh
zAZYE~GrBYcCe4FN-_eHjS=MJu?#*$fG5_mcLOMl!OrnZoI?R|=+~xJ`pJq>-cIy2u
z(^tI{cT@Y+12?W&a;E>xt-t&>_ohRsGZMx<y=KIHODBG?a{4L9`9}Fq?rt~r{ps0{
zZ~gA>zZcXVC_Mkp%qwZ!{<FL8x!8&n{d*CBal6WSfy#BDVc|tsVv^}YZD~lnSBid5
z7VALYE>whA`o%BbZgMU4><*8wy9eRH($Xxvs;w(sE~kT!D-LDjFWI7$@}iK+am7nL
z;#up~ue42&)9GHHORT5JR4i+jl#(Ye%Ps4t%{|g7#>w;MipUEVkiYRxp{=+UD|h-)
zc^vP=s9ie;jCV>CN!AH-p_m5+B;<BMk|j$l&qBQVk@-?<vMAIK5#Uk9^w%zf0We^C
zw#!%>LA_lzSG3EtykLv_U+wKO7zYa9yOUdcMZW??cwSE`@~ML0HRj;2Tq(b&c$TZ%
zC@b}HwXhM-kr`e@ul91q>VG!=4EB8iv!z!mDq2o7_AY;51Ag#aR`iK3NB{{S0VIF~
zkN^@u0=1EVn%>Cv;HvCs<lXFYjj~0(u`+6S4GACtB!C2v01`j~wU>aJ-q^@bl5Rx3
z(GMZKj0BJX5<mh-00|(0x<x=uZ}j(_x-;sHb*ms?YLEaDKmter2_OL^;D<nU^~OG^
zH~JxqmyrMxKmter2_OL^P`3zFS8p7NdSl%x2$&iqfCP{L5<mh-015aZpr$wO^y3dM
z-=s3Hx}6Zfc``r>O(cK>kN^@u0!RP}AOR#$`w6i216xHA)?oq@Qa0bjS6Y&U1Fpvh
zWUdVp*5fM{$;}mJsRdTxx-=YMpGa8XQ@NiZv`fK+atroAx>`D0`%g<3rsHdaNpeJ8
z>#0?Fe@xf@kfpgi>FieQPY%A~x@(E@{c7rmug4cml0|?8*2?+Ax``z@mCM1peT9mB
zpq25~3Wu@@m4_z@Ijy;JIc4~l%MRsA5(`7Bm8+XXgrGdR?YtZ`k!pJXRaf~6oyyU%
zTeI8xEMH+HU5=rKw5B@*(0zZ|evf@kc8AS0K2Kf^U#yBRHY8>1+qR=VU_H!=@^-O`
zKHCL2Ej2z)4xY-_m;EeM;Z=`|$qxcMt@s>Xa$Yfya$a3%6d5xWUNJ0sa(WoAIIB4?
z$09|_j`WA|VRJixkJmn+QoPwPS>9uSxYrS`FLM{+bn^^{Wg3J-bHV0dJGsdlPgP{B
z5?+*Nc%JJL$6Mrm;Z#E7>67m*BA_hakY6{78$f=6{W9#Y>wJpmmyt%1-PUJ*!M=ON
zzw?B^daz+)A6T}oCd<cR7L$V&ah89<)D+1kk$2>bb7cy3hoxe@p9(^}@|nuX&&6P?
zEk|!QJxDjop?fV^Gfa+rDS_^*ZM9Xno@zAcZE(@!{xS5tItSmMnUI*PH~)%Xyny_3
zm+QuIKDqWKmx1y8@?5{$$A0AFy2(3|a}QyJztMc<JKJ&^@_q1a_Ho^4-bV}gYW?Fa
z{A5n9Vq68QSl9ukTxhuy{vrV+fCP{L5<mh-014Cq0&03=M?YzsrJ^@N{{iZaegNWS
zB!C2v01`j~NB{}cG6HIPV?RIXSfbDy*~biaV1Fa$fWJrp2_OL^fCP{L5~yng)bz&Y
z@L^je!N(PPBO6q~4j9jY{f(Rl{vrV+fCP{L5<mh-pso;5(;Hj+(HldW@<E)y0rf^8
zfhH0_0!RP}AOR$R1nMS%CUkx*JBs&kMX_`rH{J7g`24n1I!}&GCj<&?o|Wf(v{Z*d
zpGjv&nJgx|k<OP&&CAFz*zH+)W^+FCqmlm+5-tLO`#Rs?`se(Aag*t>Od95+feH7O
zinyF49B>{wkhwNYn1>GY0AYUD3Q>N5LYy@xH_u^^2GK&O&o<bl2%96T6QT1xmF^CM
z)6vN_Z%l#!6ei3U20@J|$r=rRUZ9x;<u#Dbc4KbM=wDkpc;n*dn+F)*=0%?c%Yu}T
ziu29W#g$8I@OkI~G?o0&zQrS_c2`MUn7^`eIW_-v)m^RK{vs48MZ)KQ;LQ)jTm?cQ
zk5(jr1dsp{Kmtgh_7iYw@=|&Y*`U+zdHQ7I<@bl&_Eu70P>Z5bX>+xm#{c$x_ZL2G
zx2*lH{c(lopM14PMDw&SzWsae)U{Ji#D4T{yZ^nhfBKFOcNy<m@Kw_#vrq2Ot(=qC
z=AqL5NfRIcbZqFm9jwNW-hS~eWBqqVz8kdq<e7W#U3f>E2NtaC((JpOcHeayyKT`w
z=a)A>dgIuTeoOw<EOh(lQkQAcZ%qbTUU+=oKbL&`(C<4<1HRAbR~}K&BFNTt)vS^4
zbqL?`;eVUX-zwcQW#E^Ij*tWQw(l??WyPun#r-z?*kW7Idn+G(v}sQEl%N4Ce{4D^
zqQRzl2fy9EZ(&p8pHma3j+r^`=z>Rjoje}==7@Q3E>5*+cMdsm{<n`cYnT3S?SGrx
z{6*xJ>%!N?Se}0F*WwA^{IX+qS*y?A%4`+)<h$|rFAO=9*rV*#{QaxGf9B=yK01E)
z=%Q2krQ^-7KKyaBN2ag-;nt|~KQ>Ih@r|fHtFxZ4wI2W4>DRs;Q})JtQ8#zXSi7n9
z+|Q;ReL5v+d3euVn*x8T-*s{97fDa-3g5bY;I;!NNBlXz#r|<i8n#+G;>X_I{`g_p
z-wif|U-yVplQTDxWz3_8(vCm0;@zKO4m{KJ;s0(+sNdze+fp`~H^2Qs;gQXgW6qw~
zXwr5nb~;ZS{d@Xy>!SyYBX*6u+5BkS<_#OR1#f&Re#W04zWwRQ<atlNIiUY-Z=V|O
zG<A=@<DE^d{&8sTe_k!#Zq93P_{peGx8Go%{Or9w-+pTDyZX+(4kYBQ>HTYqQxSLe
z=pT{)!M1wa16w`1_qB-npSFnmW8coF)}4&Gu}@yF!>xN|o*n*a+c<5<uS$0>E*g@&
z>|nF3=FM*1-Jwg;>+8Q*{9t^8z=17(elBIe_OP+%_BDRq{zLt(vH#b(W5A|I8`ayt
zck#@j;deJ2F}vs8uh{#%`g^|<OSb%H>FSlyqwnaq;l!MD>(<si?w<XC=Fw+AtNl+J
zrT_^b0VHsB5xAIss8ZTlPy_u?MXTKXP%KFKxKjO4YW*jTA!3T`i(Klv|HPFLg*;l3
R01`j~NB{{Sf!a^t{{bl3q{;vQ

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04
deleted file mode 100644
index 2e1990b..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04
+++ /dev/null
@@ -1,172 +0,0 @@
-Plan Title=Flume Base Case 04
-Program Version=5.03
-Short Identifier=BaseCase04                                                      
-Simulation Date=,,,
-Geom File=g04
-Flow File=f04
-Subcritical Flow
-K Sum by GR= 0 
-Std Step Tol= 0.003 
-Critical Tol= 0.003 
-Num of Std Step Trials= 20 
-Max Error Tol= 0.1 
-Flow Tol Ratio= 0.001 
-Split Flow NTrial= 30 
-Split Flow Tol= 0.006 
-Split Flow Ratio= 0.02 
-Log Output Level= 0 
-Friction Slope Method= 1 
-Unsteady Friction Slope Method= 2 
-Unsteady Bridges Friction Slope Method= 1 
-Parabolic Critical Depth
-Global Vel Dist= 0 , 0 , 0 
-Global Log Level= 0 
-CheckData=True
-Encroach Param=-1 ,0,0, 0 
-Computation Interval=1MIN
-Output Interval=1HOUR
-Instantaneous Interval=1HOUR
-Mapping Interval=1HOUR
-Run HTab= 0 
-Run UNet= 0 
-Run Sediment= 0 
-Run PostProcess= 0 
-Run WQNet= 0 
-Run RASMapper= 0 
-UNET Theta= 1 
-UNET Theta Warmup= 1 
-UNET ZTol= 0.006 
-UNET ZSATol= 0.006 
-UNET QTol=
-UNET MxIter= 20 
-UNET Max Iter WO Improvement= 0 
-UNET MaxInSteps= 0 
-UNET DtIC= 0 
-UNET DtMin= 0 
-UNET MaxCRTS= 20 
-UNET WFStab= 2 
-UNET SFStab= 1 
-UNET WFX= 1 
-UNET SFX= 1 
-UNET DSS MLevel= 4 
-UNET Pardiso=0
-UNET DZMax Abort= 30 
-UNET Use Existing IB Tables=-1 
-UNET Froude Reduction=False
-UNET Froude Limit= 0.8 
-UNET Froude Power= 4 
-UNET Time Slicing=0,0, 5 
-UNET D1 Cores= 0 
-UNET D2 Coriolis=0
-UNET D2 Cores= 0 
-UNET D2 Theta= 1 
-UNET D2 Theta Warmup= 1 
-UNET D2 Z Tol= 0.003 
-UNET D2 Volume Tol= 0.003 
-UNET D2 Max Iterations= 20 
-UNET D2 Equation= 0 
-UNET D2 TotalICTime=
-UNET D2 RampUpFraction=0.1
-UNET D2 TimeSlices= 1 
-UNET D2 Eddy Viscosity=
-UNET D2 BCVolumeCheck=0
-UNET D2 Latitude=
-UNET D1D2 MaxIter= 0 
-UNET D1D2 ZTol=0.003
-UNET D1D2 QTol=0.1
-UNET D1D2 MinQTol=0.03
-Write IC File= 0 
-Write IC File at Fixed DateTime=0
-IC Time=,,
-Write IC File Reoccurance=
-Write IC File at Sim End=0
-Echo Input=False
-Echo Parameters=False
-Echo Output=False
-Write Detailed= 0 
-HDF Write Warmup=0
-HDF Write Time Slices=0
-HDF Flush=0
-HDF Face Node Velocities=0
-HDF Compression= 1 
-HDF Chunk Size= 1 
-HDF Spatial Parts= 1 
-HDF Use Max Rows=0
-HDF Fixed Rows= 1 
-Calibration Method= 0 
-Calibration Iterations= 20 
-Calibration Max Change=0.05
-Calibration Tolerance=0.2
-Calibration Maximum=1.5
-Calibration Minimum=0.5
-Calibration Optimization Method= 1 
-Calibration Window=,,,
-WQ AD Non Conservative
-WQ ULTIMATE=-1
-WQ Max Comp Step=1HOUR
-WQ Output Interval=15MIN
-WQ Output Selected Increments= 0 
-WQ Output face flow=0
-WQ Output face velocity=0
-WQ Output face area=0
-WQ Output face dispersion=0
-WQ Output cell volume=0
-WQ Output cell surface area=0
-WQ Output cell continuity=0
-WQ Output cumulative cell continuity=0
-WQ Output face conc=0
-WQ Output face dconc_dx=0
-WQ Output face courant=0
-WQ Output face peclet=0
-WQ Output face adv mass=0
-WQ Output face disp mass=0
-WQ Output cell mass=0
-WQ Output cell source sink temp=0
-WQ Output nsm pathways=0
-WQ Output nsm derived pathways=0
-WQ Output MaxMinRange=-1
-WQ Daily Max Min Mean=-1
-WQ Daily Range=0
-WQ Daily Time=0
-WQ Create Restart=0
-WQ Fixed Restart=0
-WQ Restart Simtime=
-WQ Restart Date=
-WQ Restart Hour=
-WQ System Summary=0
-WQ Write To DSS=0
-WQ Use Fixed Temperature=0
-WQ Fixed Temperature=
-Sorting and Armoring Iterations= 10 
-XS Update Threshold= 0.02 
-Bed Roughness Predictor= 0 
-Hydraulics Update Threshold= 0.02 
-Energy Slope Method= 1 
-Volume Change Method= 1 
-Sediment Retention Method= 0 
-XS Weighting Method= 0 
-Number of US Weighted Cross Sections= 1 
-Number of DS Weighted Cross Sections= 1 
-Upstream XS Weight=0
-Main XS Weight=1
-Downstream XS Weight=0
-Number of DS XS's Weighted with US Boundary= 1 
-Upstream Boundary Weight= 1 
-Weight of XSs Associated with US Boundary= 0 
-Number of US XS's Weighted with DS Boundary= 1 
-Downstream Boundary Weight= 0.5 
-Weight of XSs Associated with DS Boundary= 0.5 
-Percentile Method= 0 
-Sediment Output Level= 4 
-Mass or Volume Output= 0 
-Output Increment Type= 1 
-Profile and TS Output Increment= 1 
-XS Output Flag= 0 
-XS Output Increment= 10 
-Write Gradation File= 0 
-Read Gradation Hotstart= 0 
-Gradation File Name=
-Write HDF5 File= 1 
-Write DSS Sediment File= 0 
-SV Curve= 0 
-Specific Gage Flag= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p04.hdf
deleted file mode 100644
index 0cc477eb025ce91c05c1e6e01b42f6a0b06dacde..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 180952
zcmeI531Ab&`oJf>3kAZVR6tl!q{v}PK`V$9dQk4#atR0xZQ2CVq$DY%B2u5C=o7{3
zi3f7&d&RR}9HLMwN|h&8^eHGp6@<bc6p>50{xduC<=AEuT8hx}Ei|(;`_1gkZ)az}
znVtFeq12?5CXL!OB5aF@AR$C6@50Ynv2862l7qkx$1}x_M!55YTg=6YhJ?~TLZU^u
zR-|uypU0>a;iJ-%lL?iC^uZN}iL{2xCx`%}mG4vuf5mfrCsky`_%Zj-6aGVog`min
z@S#&r2&5(tNMl(YC-R#r+;YYB9AvQO8637kahRl;^%f~f@6d~Y<QWEwLrSz-vP}+?
z)nW&^bc4OX?6Avqm4(4w5U5@{8}k&3At7`xD*{k2GetYIT9iIB)Eh&h&1$zx8HOxY
z>!iUJhryO_HS1+xMu9CypJkBiqL&;E8K$>n)9O0IV3T5o>n#?OCAYI(vUGve(@pHq
zK)q#}G|Xh-X|Q8FJdsv*gU#%5fQKh%=Ni1_GaR;pEJuM2QV_)<mwLU{kTCh4b&3o(
z7k91{%n2ok>kvia<p3rhLH~_1Im`wc(vtpNLI0q<1NC-;l*oQ`y(EvuB#LBGDJB;|
zTG6LjveQA?+DUV%KMi490_oM5^g1iftI_ZjL*!$GK39Ehhx&Vm9_k-O(_x#2G?nuS
zS&&AV@*ux0<m0j!iPH_&+j{C^<0aiKeROes;%?^QQ6xs*VfkhM#u#jNTJz-cG9*ym
z*dDqbvDEM8(?XU{wC3fT4Gx1R1C}7;#mWNlN7)JtEIw~1iR$wk+er%PGTxw_gy%QE
zX9$_cHBT2As8{mC-W6K=9SsSR>*_p_1hfySA_GQo{wQLUB{ZZty%(ZMhPA+!Wso%o
zDOGRh2dP9W`p5Ig6M*|%l4BDBZl9s6HtCjCJ@Jo@8%M6ay3JEx-#Y%uSG%VSnElbQ
z7fbg}@0KxQWRix2(|e6?l_DQder5i2Lawwq-vPPOC=tIYcN4fnDvt3Tkc&UU{o_P<
zrjSec%UiDaIQN(T$z7+AtLVa0g7hk{7keUnfsiYG$XhPvLGDi#;l)Dk#A<K3%$3|<
zB*KMQK!>+Gp{ngpQ74`R)I01q1Vq}P1fbn175#*G=r1($E~czOWjJJoj45IR&DN}G
zhHR>-8FF%%);7aH_j5$A)A#W)dUFBjPY{3P6uYchvA%|90zQv>BtUy84x5zh%%|O#
zM5`eOa+_M1ZPOQ+O<B??{S>o-s+11B%|W$7DcNk8!SzX|G7h$6*$jECuajZAiz*J)
z;!%abVan2*B_^F}wVCdsXQbW?nl>%OFoPx6VYHJG)@<4e8thp%Q@&@1Ne&;O&x7)&
zS<Qt^&xA6%{Ao0M6sX&8H8H&@-Js7hO6~->UaIuFFNoOlC?&rd)x$j?QfP48LwANO
z%1C`3_e>$hY@I13ndn6{O(|di#D(Ck6@7leg}F$shCYp0UZTbM;rXU~F0gizNy4}a
zxJ;k(w@K~1j|%mcK2`bVTd(zwgFYmH1dsp{Kmter2_S*`L%^xY%FN8v-E`B+@bs8o
zq|J<=hgeW49d3vw8n4~Hv-Ui4@U>^-4sKrd6<I}^hB`HyM)%vdq2SJKHyJlZ>Sli%
zJ}{U#mq#viYFZj-s>x-`Qq2qE`*a{tsU(l4mA`P;=S5B8Btn+`D{P}v)3|#~k1j)o
z|95ox$c+3=UA`D@hz?zTjjm0Q{B!L!^krpESf*2xktQ`E<VjtaoFSTW=oD>c$P{hc
z`v;h{d;W3w*(G<AU?=J1)EwOMRwPM?2rljQ>*?jM9(=PhazN@;JqAyG`}pabpWa%e
z35(9epIR`8pRz;~W<K*1CH&3$t|6JxrPB@XObqM)XjItp^`(bi{I#mv_5b`S<)8O{
z=KT2O7Y4l4_0_iJNpGwk`uKp@^3wf%hHUxi;pANH#$}K8|LKn&)}1dN+&8=bn!`tv
zCUoiW;?&%Isn*`RpZn{Eo*#BNc6h0?<=VAXD;_xJ{4nc{1<jt_bl>hR{rim{@_MV8
zU4JT=dOG`5af|0>b?(>qsj2^cC+pQsdmntd;@R?B-@WO5YyLew{~Y<Bo!35g?ep(x
zKO9~#yW5Ko?CJ5;+N`fWz4fi$ADsSIzb3~wo}Tt)+xK*R<Fs?`IPpXG{{K0%@63*(
ze$Mb6_s%KRG|evxZdXad<8imHI2`)F($@Q<I!$wG;zlKeK2SU{)Nvbmc0pJ#r^e3i
z`OyjF=AgSt<Nr2_q9VOWP-tjqhV*i7=917U_Yo489=ww`QketF+NIq@G%@5VcB8M2
zEY(FN-+pknCaC>KEwk4gX@8BOJpE58X-w+$M)sdp#C7gC<;TrucJKRY!n94_ZQonG
zXZE90e{KH1?bp8Y+q%gw_Q!^xwvFK#Yh_r_v6Vx_Wl1SB)5}73la}nVT+^sjrwu8c
zJ@Vk1wBpTg{_)Orqeg!lmeOw1>l3dZeAn7vueOf)-yf&X9?!adb6AwFlmz2X%^8%g
z2)i==`?tQ}SD-S?<8c^9f{NLbFe8n=8f~r(qK{0EUG}ig43fnO=|<o5X-K3zzLX{g
zyfpA$F^C5!$Ae&83EW_&CQx;!xzs_t1C>bY2-13vP=P|}`&xE9C^$&N$C66VvO^*C
z%?JyJu*O7^{o=JM-Dk%&B-@Zf-=Z7jV=P{TIA3s3aFuvf!m`MQtK_8E+fBBywAUoA
z8}EKk%FY-;(ycS)<7`|kT*$G26oa0<9jEVxQkj>=XYX#JNut$UkVgjvnLK-i1Mh=i
zd<@)Sh8&0dnx4Ly&ozo&D$m~ov2*iHx=!q<I55sf*h^PGTf8`y+0%~@Jp}JX$Zh`R
zF7=~o<C|i7j%xPfaC}ph4IV%ONB{{S0VIF~kU&EuaQ^)p-ha_j1)ld+BpFlnehn#N
z2fX_=q^K7Cn)2)AGmtv&*YFv4zWOz6YMENUhR&bh(@zFlvJK8eYk|eVb0>a*?>N@s
zqMNe+$V1(~&~F6yV)P$bZfO4zvM`#?4`!@u+<y$Ckwmcx%qfW?>YO8)yy)OUzZzWD
zf24=m#BSPsWIL|;KFlM}zx6f0BT)b6Hthe%{O|_}AOR$R1dsp{KmwNw0npED|9<E1
z@BhT{i-Y|i%AtBc^ZehRF}w|>{}X6_`(W(<@Vg0rkpL1v0!RP}AOR$BnGk^fkJ|eQ
z7=MR(T<}r=+(7Rqyx;efo~_OMo&<g^>a@S3)^G6lenLz00q-Y(2e|TjWj(iU!`3Uy
zE0>wY5wUt%ZGP5O0qWUA)XxJD!ox@a2_OL^fCP{L5@=WiKtIn^nLl*C`nj4OTnBo)
zaTvc8b*i^Vi4_~Z=4r`x0mb|w(96Mf&C_yC8*&){a+wNZ*;UiinT<q$TY-w6&gaCz
z+&F(J;4vhC1dsp{Kmter2_S*`L;&>k`~Z47=z}nR4sLZlyw283XvG?5riZiB%UL+z
zb>P8b-MVt!M-<7IFPks@oS7Vj@pIq+u1g!|_BV%(90-;;S#pU+YWm&aGR~RqeUwS4
z>Fr_-JQMM`J*=X)L%$00=QA<}A^{|T1dsp{Kmter3Di3RptlE_{{s3T=<DDHn*UN=
zuRs6!>8y)E=ckuvaoQ|v?5|GrdVlj@JncIH4{*7?e5$q!%lS-W=V4S?r<vn+o<fO}
z=b2<GzWgJCUCu(-8wxwVT}ce^SNz61UZVR&4jK3Xt&zJWBKndszSDuwDzTF~1wt+@
zSFN8Dqms?%Rr)tB1NJKMFc=9S0VIF~kN^^>zXZ6QP?~?&xOB8!7#N2I{mre<a=WAQ
zx<RTsg;L9$EGn~4$|BZ${&r9a9}$*yRF~RuzT?kPM90e^+aZncvO}t+M?eo$e!odg
ze-fXOlhgG4`B+7NV&}jO2_OL^fCP{L5@?tN&PRV@Izk=jPlpOQTBfSG)Q$_OKgo9Z
z#N~8-=Ti99^r!aXxSI2&iXH{;*TGebkKsrF2_OL^fCP{L5<mj=i-3lH9f*y|tri1w
zN;}vv4hec7j7Nf7{XIG<Vg$U`snyD!xb8ldkoz6FoQ3n(uZ!eFea(YyMUTMvE0h=9
zH1>IT_ebqztKvM&+qO9Sth_>u$YI`MbkNneeM0y6X%jla8v);Ul13Hg8(7BK_%Hh=
z6O5z6_v_X4|0y8IBKz15D)fIMaUuS8UQAx_5f6iq01`j~NB{{S0VIF~>L-D7oo5UB
zAn5(zs_C&8vS09+KrPks`>9N)2ep{#<}5jX_A8jq4gCV(0Im;x-<P`Y`krbuoS1%_
z)!!xwxk{Lrt0EjP<fMP72#DZRA!nTLU+z*rs@Bix3l~JC03($zLc|*zh{pO<xFG=~
zfCP{L5<mh-00}f40?^L^Jy`jkgW14f8|Z`3zX8|1p0K|>{!T~&>D8F@IxAj~c=mVP
zy5xzoA!3~0GmM?5=JU0KqhDYV=|)vomQ6Xyn!FG3{O+gx?!wOcJ@ImyzTSthE`wUX
zXWSifv>My@cv#}`;1}L6xh7D-0d$c75<mh-00|(021DQyn73X0A5N309xk<`CVEsj
zjVOjwVSWbHqjYkrT#xcz_a@tC;O8Xi27Q)M8llgVXLG3AM`JdVeQnQ6-l3>JdGkOY
z5<mh-00|(0hDhKN(4VSGIM|D$KbdA2Z0Ddqacc_IYryN0cNpkT?(sSA<LE;INB{{S
z0VIF~>OX<=(Vv)(PzQDcV&3N%nd;$EJ1*q-Qxke37_Ul~^(Xq(EeHJuE)D1QKSK!E
zSv5Y(GpF`z6bYsMTTOz8JB8fVH~q`a6LQgO{L5YHN7d#f2KvsyCz5x`Kp%zo(6Ii@
zTMB(h00|%gB!C2v01`j~^_2k3OH31buyS6aQXho*h~Rq8I~2NN5o1vY_7_SvaHuQ`
zOdXYzKi__e+Ilg6-#2JVPp&o((e?dc*&>6&$O4V0rk6h;cvBId+qaS;Sol#dS8zcu
z5<mh-00|%gB!C1O2m#Q`6IAqa_$~qHgP@Ot>s~L^fh*2LBCR7x>p6mtw|-uFwifGw
zQY%DSQZ4m!&-FlK^yUHsT@O^fKf%9?_IIxnf@(CeBkXZk*&o93ac@58Ljp(u2_OL^
zfCP|0eJ22Vcx}hW)yA8v>$#+evGUf-Yh|~%;s*}BPRGsv?(y;I0mjGk6nZ)B-pCvD
zhfpu)Jn$C@AOR$R1dsp{KmrYg0O;jv<KygGb!-ED5XQy94KzMpT|ejJ(BArat;Wrb
zdwJHF%F41=<9RK<#?8-ne4Nk24<!qQ-aW2NWKzW`7IIaaRRlzEsgNuB-oIR>kc-&k
zUk)zllHUW!U8KWoz7IP!)H84)J4K!N-Z&9pwDO%Q;jeg(?|_{+<Hy_&>l6+h7J^W*
zg%_RrK_E4GKpM*_Tz^=A<2>e_e{nkyS=jqft$Z5##UGYtxrp6dn4XD0!UM*M^Sk@`
zSJTBo5oEaDVli2AJKH6T#NW|LNqUE#{kXmd#B9Yte&cjWhOF55TW*nbx<2xMp1!|y
z(+#<FF;MN&<@cLL^?oyk@to;Ix$%AzATAR}dB3HKa##K74Pc<&GEEw0vKZ{rU`vjb
zc=(w;efnmaZ=T`olU#5B>c3XVY3Lon!oUsy+;7Flxj?x%zuNrJt3*0#&W>xnkHF&q
z#=XGxmO>vAKmter2_OL^fCP|0eI*d+ySYkz5XK?Etv<d*iWm#;@vU0De>VQbp|UJ6
zHB?qbJ=bkb{cY{|C=w$}Y2-6TkaX)z+24}>`nGRcB;><suQZw@TFnJ{)PMw&ug~Aj
z<>PL_E<+qkLZBxh7q{9E^e3vW@-GMd-Fcn-%T+r;Jq=LnN9h9;zpA-HK;i(D_fI{=
zg4sp_NB{{S0VIF~kN^@;5O8V^ZuuyZ=puqkPu=<c@>eUm-+Il$nX9i`@!5{E)>pO`
zX~Lp2@uwCH;&Ya0$hNap6!16ehqfZE!t<AIOPzSbbK{RROH11@D`nMo$#MPa;^@=S
z9Up!`T44M`dbvZ!llhV3Cx$d>^hC-Qscd@a)rNU5R861Q{=N9E&36wzb4A$VRUaJv
z{g;!sJ+$Zf#<7d%KQ>|ZFJ;?)OkGsmY4P#9=RJMk!|e&Pdhc(xILa_$&#u!?Z~yV=
z<{|I)4(mKADR#%Ao%`FY8~3PVO73gFpPbe0UlX2Rd1Kzj6ZiG)cdd2k^sYw_OuuJM
zt7ir^Yd_y{V8i@Vi|v!YyLs7PHy6&?KdRFk$0pCZ^ZS!m?)v)4@1D75Ox6MW(vySi
zvE%PrAN9?*Q)BzvPnvEy-DQ&H#b5izo$Na4i#wg~EWTs@hB-5=Uw`#Y+hglPb}tFP
ztFl>qsitXuQE<CT5{|od!=ZHgj7sf>u7iy1PS((AKT$yg?l_#hxZjMj)(eI{Vfyj&
z@F-m=3C5qAGbo)L93C{9>|*!u(kAy2ZD`s}r9qq8T{rCO<Z;U%7<J8atx`(=w`8z(
z^cC;D)HEn-!OT6UzC3FkVx9fLud&^J*?Z^RyKc!f>^QURo>4!3|H$Jn9N&5BTFot0
z_qN}v!TMkK?LcY4)mt@JbUg5|Qxi8TA(XU`f?7B=_Dx;B7(P0IkZa!z9`Dp-q|qbI
zwLu!M-K@;a%*wDS+RTtC+P3!(Fl)m|P%#m6l@yQ62IYl$gkXPGY5xkwfxw0FQ*bZB
z`ks<-F=QpF%pVLizRCt<VbqIFZeSNQO3X;|^&L(&#;Rujip7__jbO<^N=sO3<8vke
z%QE3(8{86dDh`SX77z{QPx*+7K}Y}zAOR$R1dsp{KmzrU0O;qi9zv;~Un$B2`XK1#
z;JVlO^cU~g6G*Sdq}N$t$jNgagj<(9aW;g`k7t^vXBazGE$n2awG}EXRb5#&<s@q|
zAHs9JPnwu?e7@^__`LZb)p_&raXi!Utk86;oXh?5xR>BM6#=4wIxug(M3ir#aHTGy
zG7EoFhBTzWk|n<8LJ0L|4Cvl739zJD&4p$<t)9=SC&c9!v+CV`Ua{TZC+0Kj`S)Vj
z_lmiHwBmf!?{z-N9n6z~e5lRGue@Hw5am+qr#6O!6z*}wJbXC6=%y;9(TfC-01`j~
zNB{{m1OkD+=Lh<LyFU^k_bb?#I@1yA;Cp^2gzCah<x)F5`xk2x*VSUawNAb~{Cz-#
z*L-WH3qiS*`X7AH5Bg0pJwZ}VuG$aiX(hM%mx~cG4-N7!2mO^p8UE#}W#keIsHq+r
zbe(qrp!BW^;e8l=NB{{S0VIF~kU#?<0D9;NQ5KD`JOT4IKp(h(dT3EEeiHWUQajFH
z59OMlFFlm$m{2YlcU04xn2j2LTN4%iiOrQ^8@SwuzeoTHAOR$R1dsp{KmzrhKp=Y>
zpl5;}2zoTQp7ThAOc7&J2lg~p_jBvjENMCU^Vh58>{0!>VcFAA)Bh*H1!Nb+$M*IW
z3IT}=!Mq~4?mnVo5E4KFNB{{S0VIF~kU%{o0Q1b%)`5a{2>KxC{or1Nb)c&Ui%dx>
z>p%m|`(QdPl<Q)z11*7!sMMV%trY^|4Fg;cm~WyI9fOeo5<mh-00|%gB!C3!83EAG
z)z*Q69tbYz<=|cd>p;hi7Ah=NU0F6|m9-}0_!nv&C|er`oWNCE@AhG|w;m2Y*My&X
zR<AI-NB{{S0VIF~kU(GpFwYnU4llwy<El)qbg*BS+EEid%J=t0baLT+%`<L9kAR-z
zwokxWsm(WN#t&EfEl2&S8WRja0!RP}AOR%M&<R`u`cur*i>W`EW*BS|v**OGw3_~;
zHvaS->Q4>*7Qyl%0VIF~kN^^>M&J_ApN#guS%31hx1_XxSyTP#XVjmn)hP@>0!RP}
zAOR%M&<TM4bP??Y72kb9^rv&P69o3cxt+>Tk}59vg30iP&vy+NCxW9*{^g89Zk)}(
zoKwgxoaJ9`o{-ymzkfL)_P0As|734RVcr<HkddmVdA|A8!S4tFm&?V4?+C#C6E6yG
ze8{^#yS@W3*pg$VGA_T$cLE@`qykdS-ha%4JZ7pmzgqw4DwT90_@JU61@lh9P5`(d
zk1i5G0!RP}AOR$R1du@eCJ@M8m{K2vei67A&|X-TP;FTjm>MdpqMq|(r~S6J7T<#?
zk}p_8vlqt40fJrM`IDZ4o`qc8YCq8;#JIx09Q1c1-t#Y4?F98SK&>C84^VvLQiXuT
z0VwaEdWr?JjRcSY5<mh-00|%gB%mPR)EwOMQ6$kt1ecz=^Zn(oR&>AhnuRl0U$^43
z9cQhtY%S7+MQ7qqEf~b-EYXl{XR9dSZ`KcOMOuaDFWr_p@rLKdA8D4BwqaJvs_l~F
z`qjnJr=vSQ{D8E;_=ogzhm0rlBgan+Y0~J4lr2)(^w6sf^IoW$KC%6K@mrhk9(?AC
zu*IuBIQsi9CvSUb&-0CA7teoe!t7tlw*8p8sJPSO<9E+{`oM?V6K3_^-)wP|VZ@$Y
zr=Q;b<I&AS-t8UMc~VmBjzv57w^=vtQOA_r*M2`atJ}XOJiqeByp1RB>)Y>I>(J?4
zj~<wQ&ze@x3~JVXzT?1#`KK1!Cx3VIvcGOFoU?yar#FsGo^|K<C$HS~^^@N{bI+Kp
z1NNmS2iarC-?cvKn{TJa_P3uj-Ez9iB+HAx_KiE)b<!7iI^S7*$NUX*W>~-e>YKL5
z)`#p~5`I@@v-na?)BK{~c9kR?ck6~j>GT<u+6`R?!HaLj{f%BEfCP|$8Ue8DG)@cy
zX$T)V(**GV7zY9u#!tb$2zFO>&xpKADt1=`jjyr+Ss3-Y*mhS<09NG!eYOm8Dg=bZ
z1&9`*5)Xrs01`j~NB{{S0VIF~>L&rv&(-X%UMY$N`XK1#;9dfDS1Vo-DlAo9SvF;r
zwI=f+E|lF>h7LG^D{vB=HxDE(Pggl_9{O2JR(toyz?W7>nAGOYXRhRDDiY`C^JYRs
zZ=H}soA`0aPxOEJUi@b6LjFtH%|thllY+TFA(Xo?zb17pmjJnZ;a~6}4@uzSWc3zr
zxk}+D|AUx9@Dg>J3loO(ME;6JLmDMkCTU0$+F(VH6qDH?jWO8lCaZ;swxoaU=pU3a
zH94_+`hX0ncMn~UI4Q%B?=a*|p_X=f>SAwV@=*lr8}jr<TTBkSlu>A>a_l%uk6j~3
zFJrJIi$oE=VuQ_hbLC@HVZJcmBgbR54j~@oBi&#xFgxsYsXY5f#MkHvf$}P^XP|XN
z<)!=#5={%Y%a4GvJ><2SkP^`z0FgAa-XgIzM7BJ=L)<Ium>f<A+o<6w2fd42^)&_}
zs<<%E6WS%MxL>tpygtqo?H8}V>d$kmzbb$)lVD~2h38?uXx9J(w4-(PJm=5pAh~U4
z=ZILx&j9Dq34fZReO>s8w_K_4S8jxukmJk4h3A%%R}@K*0l@Q7ZfD%)?d0cU3n~HB
zQp^Q;25F$)Zjch$kFFQz7ey+or^6ol{IHzPJ9Hn?8Q*7On$0@Zkmaz$&H!7Mky_US
zuYF?1*dAkV?=f)j$R11!=rJg9a)#cLU0|P97&9nwRBZg@<gq<<y}C>skez3;bhjDI
zdWRufO0s6rELv!~G_T3IxzcDmZ7`+bdP{-c3}N)#xwI{nXnGRMrF|ki_~inEPxi2K
z_Q)3nb?Xyc50QCg7_BzP;3QU5riXaiTV|wK0&Y$TOpJ19ChH@E3|88r+X|&oCI^GX
z;$I;jXHtZCl9oW2hP!z;^-f1zJC;s;=AG-}&07);Eiu#IMww{!8*8#;TW2ynGB5TF
zgnAXHOEP4|#@}*_q|^10|4R<5R6W#v9j}zrO|<6a7dYfcF1-}=92pKnzDVEmeOK)8
z!6Vpt-TJ6jjz6-%LF3aWH+?$K(3|Cau`U7RD>ilH=ychymBW<J<8kF&av?sC8D881
z5Kwy_6H$*KI@G_qdLF}bMEN{*-w(W9qpE7Q$!?W0tY&I3mEWhH_d|-_Y-i5~_k9>C
z-{G-IQliynutWZ}RMC(Z01-(Jg7Uy|cl_q^eVCe*B8|0~9JG<p+wuz7Ei7-WJ@kKm
z-VV6q^H#uY%91k^IKKP*^r>MtN&^dWa#+dvrXD{*7SNCmiu|YOvkcM*Yc}gPo2^+U
zhlyoGJss%hYGsbB9IQ>FDCI7<8b{#i)&rW6Rx~Gad}D!Snv`L>i(aVaQU}*{XdOXX
z&k^N<_=FVoXF=|CTDbC&kx$!Iy;%~b5agKWo}cEfbm)VeKE|C=x^*Tc!8f&Z;JCYf
zG;^hsVscVFfv2JtAIcR4^Eu?J6G3_=Nh2-h!gII|ygpO;8rEl>oOO8K@%SdI*~E*i
zcKy}HDU{<_fyOEFzv3ka{T?`?dwCF0K3BA&*yF@FC{Up4kv_Z7t>2`=fm*t1^>?c{
z?}-XtF9VHJVEwJ-1!y4Al=T<dv1rk*K{26yuPeQXk5e$~WPB?T^%l;ftjCZKbiE0v
zwFAocB7vS`@mo20XupiiC==bPxI-$Q<2&$P*!VH`&l4By&|x76FNTE|o%%sQ*$zN|
zTT;ANgXdUAL0+ETR_N-lC)Bc-YV~)CIB)59yn+R)zX{v1{?_smG>B+w^|w;gA1EXr
zcOs;&>aTLV-6`s=XcmdG9z*+@_7ZO>LCz`s3;%t2HlP|3=5w4czZK_kNPr5|4j6ZF
zLC`DkIR-WV@^F>yK#VAM)emr|@c=RYJdlnQO=BYk@Tx$5mrVU2trPJBIm&jRXd6!f
z(kT}Ha*+>c2j>0gEmtD^6+0njpffkD;~Em|vmK~f&f5W_C~lyBEw%#<t6tQ!G|F}W
zo(G2%_Z8e_X*E5;MUq$3mn$lHNe=zY-9XRD{JmTbxZrd0B3;mnbXw*80sTF#(4Qb%
z^80j9nrR^1F9{$}Ll>TtaK7T-c#4p2=9RpiFN)?a)X!p3zd=q}-)oqSdM~c_oLpVS
z2^EPF25JXR{2!MG&e#sr`>Ii+0;shE(c<|4iScnCiOvJcVbg!=s2%Va|J}{&A>7|v
zh5y7J2!WiS>q!9S7btl}kxW@kL)glfXyV!5@%S7oX-S(|iAriT-u!{ONBb}N+SK%s
z%zZqCBGJACYKMsE;KOqP+adY#T{b_;b|^-ae2J((03y+5wbOMBbRHy~>`goFqCt|Y
zH0#Ghy{%cl-Q5nwi+T&`DC;rg16^+dYVCmWASXFb=y`$KfrukqK3*h`?SMDuhVFxQ
zphOfD`sL*(c)d`oXUcwqn%p4+?^kGz+y$P{F9AI`LDXAl2bA>~o>Q5Pz0-m8E>~BL
zd;ag7<bprA8>k(KKFQ_adSE+ndDSRoJ75&WA9t45izvcd2Cm=I^^!KdtP;TFPde2~
z-dy^v@DHb}6ixZ&LTL(JLSS{!S(dj;bn%!g8gB<eT=P;=MZM)`B}7?|C6R90QIHS;
z3MW<gS0DE;2hY9CWB%n7$zO6_SVsp6nFiLC2J>=3tJzWHTukGa7woejWw_g}fbV&=
zq4bKel!Jn~A+g3plKrAvL-*Nn4aqj-uw^guF?OB^Ar~AJQgR2+6#HeTXIbJ?sp*cV
z{eT}5*NumDfrm6aQhp>Ak~b~vc)9F53M_vxe@4yjnUVweFI@Sf<$MJP1!uP7MPa|L
zvMb9SMdr!n;_IJc$QZrNq@Th@1o-B<-}q&4app<8^>grNIP|#&UmZ&kHe6o5sV)Ha
zD&RzyAlHT0p95E@PtHGCEg@t9$4P%<TzfUy8IYY#XTV!6w1M-wL|*+Tk3(bWO<|KV
z3T!!a8a+KxikUAM;<+ItvnD66foxsZCzfyZ+9FALaW~ri9j^!VsX|wS`jmO<{OS`t
z4?*8OB+^s6#86vP&p^%bEeU%4LRX9LTP{KbNBreKJ>Rh}ozS|j=UjIgWzDCH`?4Lz
zYE?RLyLrh!k0Sb>Lp{GRT;*0|fX$$<#x<{JwIHv6deD9(B%cFUcpgQF`}2ICNA8*`
z*IXjQl`(txO_nTkLAJ?~OK0I2=xQ*k(a$h&H68BcM5|?np-^w3YrS|xaR6F}R1mDC
zdtvI6XK}o%Rp9z`$=|2Wk>^mKE(}+X+Te8;27b;*k%e*%;d*Q|Nuq0*EnsYi9&zch
z8eX&9dN{9G@FGlcT9?<Qbh$#jcf9m49~wy%DVHC8=c;FS6!o273U~hr{9`kchk56~
z+n49<t>(MET8MW*AiXMikhi?j7wG(nbd9PsHbWWB<v*wRelig#K8>1Tw&tsLRq}51
zp8{QzD#jaJS@zn=yOF-r@Cxzv3^3;#t3QprW&HW%rgoSi$Dtw===#a=6ODR{g%-re
zc24orO}R#u3<QclU`8$*qmk5#5RjjUuU3R}jjvXOK=D%xvu#omHPdDET?GHNN0L0^
z`z%5Y;`=N@p!lq%^__EG83J8DIlj-F*C4*noS$3#u?7b-c9KRrxjw5<pz?df_gRV>
z#P?Z>fbkuYrTZA#oA;S}A2*~TXe`9{nR|t>53eh}&)oZnpa^nn)V>Q4NDp$y_g#Q<
zkMFwxf#S<roA0d4B|WG3zO#Pr@qK6goZ`FnZ{LLoRR7%ZeHS87d|2P%9;f3Y3NY^k
z^b~N}7h0L-#q=;XqUsvo4dMffY)%V19<0fa;&CMEb8pIVOCrWC-4YjfFD*ri^}I!>
z->YXS8?s2VnwWhYDwj?>Lb7YnXR*${?5AU=Y>1C~nGqxEFguOZVcYqZ?tYqpY|V*g
zGge18X`H(9#ZOu7w=VP0n`WVhPIp61vr(6Ms11V)b1kZ&_6UHh<|5{C%zGCkb>6`~
zd``{K^|Q9DIQ(_k51-HKyeQ{`MR$gmH64E7%7V|%%!rC=a%}F##ora}9?&bb>2*yr
zI-eN(eftezpA{^;vTxZpFDyKIMYqi)WNCPBbAsc+BkR7ed||>2sm-%Zwk*!gGdD}W
zuZj7<KUV*if4tJMv%h`b$&hX%`$XQcIRCF!)5}bg`mO!szN7;`g|~Qc?&7`ulTP%D
z9dv((T`#<OY~S+V2j2ev($OCf(zVJokY~}9_1)nA%-Pd<(U!-zk~bDKdDW?T_0+o`
zt!&XajJ#dew7FBW>7AQae);h~G^0wxmOC|#H?J|Yj@r<!P}}CyFmhi-qe9<d|EKFd
z;{f@&^B!5QU|3|9Q<IfRx1cFwVwz;VBRxcytsEfjc<9!}8?3APuh=<a((XPB_N@An
zo-(}A*X<s;ZkDFgyet06v-*%G;_z$p4}Sgl*0yW4KbIevvnOJD_D$uF+^%aAwEP<N
zAICsKcD&JQIQ`ID#am5^bWtG*Irlcv&fbz3Mvi?Jt!v)*@t~BF1r>MvRW^U}I{hpA
z#t*sY>s22%esMtV!b7p&zPq{8Z`~(s+IFnu?Y)OuFZ!zgnvq3B6BH7ml@jX7&YA1-
zgQfr7(3uhVD3THgO`Dna{#-}stOK_#o3(G)!|`)(Sv|1%?$9&WJahNq!;Aj?%PWRQ
zUwb_E*c-oRFZ$yCRdK^l-@ZvZ`0;+naty!ybYq_hXLsLLzX(KVPdr%~-1LjMw&&Zv
zVf>3j0Osu~*99u=K!f2$FfqyWp$;_5d{m0QPZoBdy9*Uz0Da?EXg9e`J-gH6cK0AX
zFfGl}tC?NtDj68eyP)YYqm;5yNaeiZcRcc0@9bCFrpo1X+vgJY6q$-;&5_azWV76|
ze%i{ToMN6l@2-ez!4e8I-zlOEy%2PR_gy&ONyc&6{J?ytaiYXJ;Vu#Dpa6v2FJShr
zMS#~hGB>p*AA$BE1|q7sf%;`I0R~*pei`c{sQ1ejh<=%tS8Q?qOTAwP^FZN!cUoJo
z>{p`*_v;D8b*d(KnFR!@SIYM(p7rVm%1XUnEosWH$UR;}FZFuG+J83x48HpUZfmbn
zRQG(;%)9=95BR}-Sv@9(AOR$R1dsp{Kmter3DiddYI-C42A98WE9#B@@Zd2dfCP{L
z5<mh-00}fW0&03=(*Pyii+W=KLU<SnAOR$R1dsp{KmrYmfSTUO<~aG=j-uY^4-Xzg
z0!RP}AOR$R1du?3BT!qtG17Z_u*(`0&TnjRRRjx!1dsp{Kmter2_ONPKyCHLt5I*n
z8iWLp01`j~NB{{Sfy;`3n%=nl94WL{d0*X8#K-Z+a|DTENB{{S0VIF~kN^@u0!W}9
z5MccWW<?R~Fo6qMUufc%mLw5?_V|Fz<>7)oz7kQ~eBoADzyjBW;Q-%>1OuPS?-@eB
z6kMpc;18zO(wXf)Ej3KXZG%a2MqT#QYW#gn*Y_bS@_EtOso0;Ke095Psq*>i>WACo
z3l(2`C8WsepFh}5EY0&T2X_1BDZT@(%(qqqR8IAuo+RY7X8&@^^#3kD)GJ9ChE%Ip
z?L~&5KDqt89yFKg`unS{`V}#YqhqILr}bICqDZEkLk($5ZKcxh{<7~qCYkIGn`ugc
zYz<#n#TOqWW%g}5(imV5v%0)pSkY%+0Uno;oG2$x<s;=dOH_D;b20fwV7t}t!wb$U
zVJ_#@jb@QCQ{k1svL}~^@k+Fs3-T;dtQ<&x7$0VX5cqg~2UJQn8)nGg7$9yt!jUp}
zkxoy~bl63Mbm&#EIoOxn<PT3(XRMN5oM(ETc8QZM@^|4>Qsd>5&n+^btlx0Gt`;YN
z>jnP5;rqJI$N2R!(k!ym`n+E7-Mx}OctOA(Y?Sy8EVHZ0uH$Hn$-$~PyMCe66~!j8
zH|9-pT@)G)reeMC3PQZDGnJF?ixE~^p5AP_i+(7Ferw5^WpWfsDfGMAR$H~>8AgNN
z1_wRPpFsC(v+?gU6OwT0UcZuO&*A#H>vc2vI=Q|}E(7D&%hP_hkMEIB>M4JboJWWv
z{E6o4y0cGC!*w5VgMCs@dhO!{e6{iMD+64dSjD^w*08V*T)EQnApAuFNB{{S0VIF~
zkN^^B00h+Z#!dmsHb_Npgz*E^8v_8u!$<%LAOR$R1dsp{sAmM!^v09`<uEJsM)op;
zZ8+Y@Ip8l6Kmter2_OL^fCL&E0X4lb2wrTf6!>k0-pD3Zunp#O;CLhFfxk!q2_OL^
zfCP{L5@;v{)bz%X0D9xQ&G{rw;DCA~kU$p+AOR$R1dsp{KmrYuKy$i2mTe_Jaz(LX
zCwJZJcKG_X47yH^EhhvDY@L<odbA9OL7z=mN0}@pyOFM!$|%UnGT7}o1!i+0i=&bM
z5fUvDfb%+E;`-;pe{+}Vu}m7)qk#+Om5RBXBm!_9I*_?MTv&$=>i}VW*J@FJfI^}*
zFTcQHkcQJrsLwUnr5KwdrwgI$J(b}OgVWK)wQfv;1Qaf;7Y0F%sL2`)zh9u61@$$U
zu6AQ#E$LqeI(g&#*P90!SMaLOl4VKCTlMwknc~QWb@)2;AX-YkY5&7Br*>9J99X!<
zznoh9h8nKcZ+`(Ql%n7Z-}2@MVy+6IkVh{PKmter2_OL^Q2z-yH3jJ(jo78re)#5w
z{{NkC+xod>OIcWtwD%6Y+~WJ9)hB-L_2j1=S6=(Wy|2G==H&M)?i)Dsc+Zue{;}ha
z51tK<dt=!nUAz8Ok~h<F)8e;Uy!!C{Tl3#re%;`vuWk8!&9dKHm)+2*&6vDtmTrB5
zzWm_ZCw8`fto6>VYfB%ydFkg*6-@Yiyk*FkBif;F{`A?`hWs^_J`Wu#?OxV1<cUdT
zyZ280^YnMKcdVa#;N4F9p6-04RcWK3H4E<icu_^8*LHoXkKArpu%OA!aRaSIr^-{G
zyFKXm^AWS&8h9}C@v{5!OTKyg;P!_yU!E~=>3qZQ&faBn{~Gj7i$&WuI!b#-?>>`}
zA2#{J<&CDka>OydNyokW&h)?c=CYAv*6fVzw4v`Fr)F2{@~aQqn*CqOoJU@t_r^ze
z5BYcG?yY^E3T<=f(QaWM+<fDt?*>LrI63Cb7gxTzuKjD#6LPQl?WNs|f4%>+s6MAl
zW{3atD*c^tDStM3%Q}1Hmji!(>5aH9ant&5Z2S1WyW1}q(sg}w=N~o(?~DAkO4{4$
z)4WIaOzZs5Bm3XnAKSg`$*(57d+fCv?#`~-X#JzZ2kRQmacc4w#E$$}r=7cZ+~GN^
zU*DIoyCUu0Pqw5)c6<7U^bO|n6>rTu7&9Z`^zp4GZI=?K^Z2iS&R%7myQd`PhXL1^
z=O&kb{PEkN8y-u(=jgjDKD{ID$wv)ChupB@fidx>UgJ97^<eLajrvb!EL)$muX{<~
z%{^c2x%EIy;mY(5`b8g&=~F&`f7r|&-H+Tp_1&k^4sRLSdSWwUtM|_&4c4uUUUqi#
zJ*Pei->-dT+Is7|U;g#_BmEzchIHJyeQEK?w3T~W=Co?rdHZ$U?iet4QR2~u`#BdD
z6ptO!J#W|AQ|mi)+xuzD=jKjL8xrzp<ExvNts4}+LT737MypldF18O`^v9s%`wZK*
z{b>GR^S_q=bTXynw=dd`@B8rN(~mv%Y5l+1umnf|2_S(>h`{-bLsihhf;t$7Dt_NR
t4#kp`w~I9nr8a)j3^Jy;cD>&5J$~XUh(aE{NB{{S0VIF~kU;$>@c-XIZc+dM

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05
deleted file mode 100644
index b5f1dfe..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05
+++ /dev/null
@@ -1,183 +0,0 @@
-Plan Title=Flume Unsteady Example
-Program Version=5.05
-Short Identifier=Unsteady                                                        
-Simulation Date=01JAN2017,0000,03JAN2017,1100
-Geom File=g05
-Flow File=u01
-Subcritical Flow
-K Sum by GR= 0 
-Std Step Tol= 0.003 
-Critical Tol= 0.003 
-Num of Std Step Trials= 20 
-Max Error Tol= 0.1 
-Flow Tol Ratio= 0.001 
-Split Flow NTrial= 30 
-Split Flow Tol= 0.006 
-Split Flow Ratio= 0.02 
-Log Output Level= 0 
-Friction Slope Method= 1 
-Unsteady Friction Slope Method= 2 
-Unsteady Bridges Friction Slope Method= 1 
-Parabolic Critical Depth
-Global Vel Dist= 0 , 0 , 0 
-Global Log Level= 0 
-CheckData=True
-Encroach Param=-1 ,0,0, 0 
-Computation Interval=1MIN
-Output Interval=1HOUR
-Instantaneous Interval=1HOUR
-Mapping Interval=1HOUR
-Computation Time Step Use Courant=        0
-Computation Time Step Use Time Series=    0
-Computation Time Step Max Courant=
-Computation Time Step Min Courant=
-Computation Time Step Count To Double=0
-Computation Time Step Max Doubling=0
-Computation Time Step Max Halving=0
-Computation Time Step Residence Courant=0
-Run HTab= 1 
-Run UNet= 1 
-Run Sediment= 0 
-Run PostProcess= 1 
-Run WQNet= 0 
-Run RASMapper= 0 
-UNET Theta= 1 
-UNET Theta Warmup= 1 
-UNET ZTol= 0.006 
-UNET ZSATol= 0.006 
-UNET QTol=
-UNET MxIter= 20 
-UNET Max Iter WO Improvement= 0 
-UNET MaxInSteps= 0 
-UNET DtIC= 0 
-UNET DtMin= 0 
-UNET MaxCRTS= 20 
-UNET WFStab= 2 
-UNET SFStab= 1 
-UNET WFX= 1 
-UNET SFX= 1 
-UNET 1D Methodology=Finite Difference
-UNET DSS MLevel= 4 
-UNET Pardiso=0
-UNET DZMax Abort= 30 
-UNET Use Existing IB Tables=-1 
-UNET Froude Reduction=False
-UNET Froude Limit= 0.8 
-UNET Froude Power= 4 
-UNET D1 Cores= 0 
-UNET D2 Coriolis=0
-UNET D2 Cores= 0 
-UNET D2 Theta= 1 
-UNET D2 Theta Warmup= 1 
-UNET D2 Z Tol= 0.003 
-UNET D2 Volume Tol= 0.003 
-UNET D2 Max Iterations= 20 
-UNET D2 Equation= 0 
-UNET D2 TotalICTime=
-UNET D2 RampUpFraction=0.1
-UNET D2 TimeSlices= 1 
-UNET D2 Eddy Viscosity=
-UNET D2 BCVolumeCheck=0
-UNET D2 Latitude=
-UNET D1D2 MaxIter= 0 
-UNET D1D2 ZTol=0.003
-UNET D1D2 QTol=0.1
-UNET D1D2 MinQTol=0.03
-DSS File=dss
-Write IC File= 0 
-Write IC File at Fixed DateTime=0
-IC Time=,,
-Write IC File Reoccurance=
-Write IC File at Sim End=0
-Echo Input=False
-Echo Parameters=False
-Echo Output=False
-Write Detailed= 0 
-Computation Level Output=True
-HDF Write Warmup=0
-HDF Write Time Slices=0
-HDF Flush=0
-HDF Face Node Velocities=0
-HDF Compression= 1 
-HDF Chunk Size= 1 
-HDF Spatial Parts= 1 
-HDF Use Max Rows=0
-HDF Fixed Rows= 1 
-Calibration Method= 0 
-Calibration Iterations= 20 
-Calibration Max Change=0.05
-Calibration Tolerance=0.2
-Calibration Maximum=1.5
-Calibration Minimum=0.5
-Calibration Optimization Method= 1 
-Calibration Window=,,,
-WQ AD Non Conservative
-WQ ULTIMATE=-1
-WQ Max Comp Step=1HOUR
-WQ Output Interval=15MIN
-WQ Output Selected Increments= 0 
-WQ Output face flow=0
-WQ Output face velocity=0
-WQ Output face area=0
-WQ Output face dispersion=0
-WQ Output cell volume=0
-WQ Output cell surface area=0
-WQ Output cell continuity=0
-WQ Output cumulative cell continuity=0
-WQ Output face conc=0
-WQ Output face dconc_dx=0
-WQ Output face courant=0
-WQ Output face peclet=0
-WQ Output face adv mass=0
-WQ Output face disp mass=0
-WQ Output cell mass=0
-WQ Output cell source sink temp=0
-WQ Output nsm pathways=0
-WQ Output nsm derived pathways=0
-WQ Output MaxMinRange=-1
-WQ Daily Max Min Mean=-1
-WQ Daily Range=0
-WQ Daily Time=0
-WQ Create Restart=0
-WQ Fixed Restart=0
-WQ Restart Simtime=
-WQ Restart Date=
-WQ Restart Hour=
-WQ System Summary=0
-WQ Write To DSS=0
-WQ Use Fixed Temperature=0
-WQ Fixed Temperature=
-Sorting and Armoring Iterations= 10 
-XS Update Threshold= 0.02 
-Bed Roughness Predictor= 0 
-Hydraulics Update Threshold= 0.02 
-Energy Slope Method= 1 
-Volume Change Method= 1 
-Sediment Retention Method= 0 
-XS Weighting Method= 0 
-Number of US Weighted Cross Sections= 1 
-Number of DS Weighted Cross Sections= 1 
-Upstream XS Weight=0
-Main XS Weight=1
-Downstream XS Weight=0
-Number of DS XS's Weighted with US Boundary= 1 
-Upstream Boundary Weight= 1 
-Weight of XSs Associated with US Boundary= 0 
-Number of US XS's Weighted with DS Boundary= 1 
-Downstream Boundary Weight= 0.5 
-Weight of XSs Associated with DS Boundary= 0.5 
-Percentile Method= 0 
-Sediment Output Level= 4 
-Mass or Volume Output= 0 
-Output Increment Type= 1 
-Profile and TS Output Increment= 1 
-XS Output Flag= 0 
-XS Output Increment= 10 
-Write Gradation File= 0 
-Read Gradation Hotstart= 0 
-Gradation File Name=
-Write HDF5 File= 1 
-Write Binary Output= 1 
-Write DSS Sediment File= 0 
-SV Curve= 0 
-Specific Gage Flag= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.blf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.blf
deleted file mode 100644
index 5b6598a71ff79ad2a01ce14414ec262fec84a209..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 1706
zcmeH|!3_d23<N19CD=LO;E4nu9!LMxK-PjRQvo0H8(HDTtBq)_waEKr>yc{<9aDlj
zXaVg(2hb6;f=;0GH|gVcNw_3j5-tgsgiFFD;gWDkxaf0s>2T?A>2m4F)1-SQ-81o?
zcJNF)n6!gQJD9YCNjprcJWX(^JUxR;<>?t*Do@YgQh9m?m&$X_Do+z~sXQ0tY0?fR
z-7{$ilkzla2b1zNX$O<?G--!Pm8WUo^|9T?b9$fWIJ<G&n{oTAMWG+?Ta&#>_9iqs
k(C9#;1C0(eI?(8{pI`XDuGz5v>-zi`s3No9@$=X90weciS^xk5

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p05.hdf
deleted file mode 100644
index c2f462add2c90af84916c9bcfd7f3df845528f7c..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 299299
zcmeEP2S5}#7oMdEN)b^3%jwv$fOHW>K#HJ(2ngt*u)qSV3%f2$vtjQdSh0eN1q&kf
z3RbXV!QLx~*sx*apP5Wp7#J2k?|#vYvY8|=FE8IDnU|L`GaT(4)ao^@hmn`EGNyoO
zP`B`>l)l;|C{RJr599sl8xHMGr`-*5;D&=KVq}~S9j-z1$K^r5Jv!XO&E6g(C?S97
z($QE}9dKt21CaYiA>e3l<4P9Tn=Z8@?dH(+jP_!#0&W;?$CYsD0Q*Q@m;|>Kh6VB^
zd|_BPr0c^IhVmrh80dH7g+~Y^;Z$8E!(c0DK;JRzwJK&#CFNlCFlFMO17E<yJz_*W
znqfnl2W%IP_O^O%HtsmgR~56S)2m6-d-BBLgpgzenO>XtW2QINH_$i5`$mNEa3cdl
zb4)4+;4>(UFA2xpW5Ol8P{>EM9G^k%xNStZL>S5iW#<q%ly9G~yt<&dV~%vYlhr<R
zKo5f9WTxo);}BrBPXii(5W4<AK&bZV6c!{DhjPgVSs~n&E9Mfdl4u2G^<Ebeu(<9n
z1ME1&TMNEltQ!MD*lt2-|8%l35f_vz-v#&~-N$~wuS16`120CfrY=awY!}uv-Sj1Z
z0@9_^{@i6SgeLq&9kL%IC51S`_p}Dtc@S4T-Oqx40Aqbm18Vg9ry{`Y2VgrA(eDR{
z3v3nCOC1LO0~hoIa>Tn7T!bo1T`(U5+V9GEPbI5Yq|2fG`A`7>(SOV@eE&1?lIkl!
z-=X?(7oxYOks<XJE#eR2?I4H<<>7<E2t9-w7=znKb3;V}f>;#`p;AD-iQ+>lPv!Vn
zmg8e*;UkLiA-LHG2m45P;S!%fLb>x1bHjb0N=0P_eU!(R8_v@g8JH4$ROud{g8}`B
z%FjJSD3&<cky(;*lT`!C4JDSAw?3txLA?$4;7dqh$#e~>NLQxd5pm=tEw6e-J~VbD
zpPy6SV7k1ZMRACnNxjsAPdo-MepsL|ijs%SPnY<E<ux$u%MBwm$!@rTfd%y+mk4nK
zV;E{^2tuWLrWVE5Rv0RZkWjC10umw*cL`5K@Fn?^uT03_(AkN4qe`EH29<t5goH?s
zJB1N%`$(>UN~c&po#TK(Zj`?P#f$k~@*}|~u6y)261|rI9_Y7f1lZn7%5*(~sbIbR
zS??v-pEBPo%>KpD4tM5BLWF@rfiRdDl`{Jm2R<>d<KcGvpdg-@7Zw2fOKH0T{S=`>
z2lB&(xVumg$rA%U<=d45R}fC7mA2=)R8K+VZz~k@!XXYCM5hQ;Uz`epxWIU6`UX^c
zCd^2<mzWgMiz^O|AiDzUBFj;I{-8gRrU$)=fFD2!BRjn`f1>XX55ap!kPy+?SL#=!
z<+r9tI9N-D{0`gz9_}Ix<l&w?fiQqD8<2v?mP3QWkt_$<Hxf`%LwPnFA)e*yK_fyE
zDt$;q*a+O6KZ<xz4e*v_&p}%m(~hMJ2Ge8Mcq=kU%15(I4tEjJKXU~*Q6~t?2DoZ2
zPlGZ(gTi^ZGdCJ{6GlNc7#klt8zL>VkJK;Y<G_#R1=3vD(!+A8Qg12pJwm?4lrbYa
zd_b5WrUuUe)MtYJJL|InB|3a>g7kc$fDeky_WarGC(LoDEc;1TQ-B<)i=gYzLxA~y
zg8I$|+HL_6f%+-*!}ekg1HRK`tG~Lm0FHFMlvRIoT7Zo4@5~>O{~ic1>o4g2F)W0x
zKd_X&g%M$agzcGWl6NB18}ePnwA91;jY9?u7mWMKw*-CB^%kaM)?-M9+=>XW^#caY
z0i7$|zGd|Txvc>`UXeZW{UHc2`vIU;VVH=nKM)27fiMbpj0qGAgT-7?NSR*gLQV__
za66tzLIsw!W0;V|tz`eB>n%*rtj9Rb=b9t9fpnM?@Z<D+08RGCIBflZISwH3rrWoy
zen7V!pfBr}{}=>OK}iJI`hjS={y>!6_=K6l0;kNjIPS*d283APhQysa;TRAXO$ghk
zE=<VcGW!7y91z0v%z8{mV~!RT=|r?Yz9$I((|$RGb(_MB295*A<8mMX!a`3AVoX1r
zKiohog30g!&_F5@8XFlTCl45^U^wOH&~&6mNA^X5ydVKr!lUBIq{{RRrM#THs6F6C
zW=)DgnX5EuO^{?W=Tb8tsU1Rvh*8GeC4@1ATp&Uk!HA0-*OOB|bhenWp&c)Pu!o!B
zMkZyIkBDdLnL2HWKy-aK0_1yxe6DbP7jzZi17P8}0d@p*JhQ$5TO~_k6pRo+2p|Ly
z0tf+w073vEQ0owg=IC8$<)|=Fqt3mSHt~u!3O0&1=|e5kVm_Ol&dXe;f30Xy=k~L>
z-G**E(|MwIf3GeXN{eg_2Ad>y(VAcUZQ0wy&u=a%Ju5$+XVoOQ+3c%J---`D|LnH7
zZ9CDRs3IHZJEsKgCrpV=iXPi;``CUj=by5=-pT2O(>?Qu(86~U+V;^5xhVR0@11c$
zcstR`o^!8uZ5z|^VAN8V%rP(e2kl>!HRrs|o8?A-cbE{fJabmD*3*}3UIv_rnfYy2
z&g<rThqXRG;?c0<mUr5ePJ7X3T;IEs6viF!y?%b{nfDzm1Ki&)3ALTKO!M0CE1$Qv
z-K#g@uiXc(roA28*Do{mj*H9ozxuv${3d@b;9&D;&VJFiNs5@#Nx7U__W+T=2myou
zLI5Fv5cmNE<O#bUX(D1<4<)tp)urrw_F;kLtbCR2eC1cTl6F4nIy#WPY+))bD`_Vr
zZA{QiWyg)7=B%XYz`AJCvdG*AM$Uo2bWSer9(tZO{iX7%Q0t?p1!qoSfxKvtVa?Y^
z)uGBu+0lulq?{Gj+mY+Ai7@GUDw>|OwA1vYY*0Q!;-0*u^zwkeI|yg;hc<e)c_XGB
zUDmvjPA`xTi5a^7JOr5YM!GZv>CoUy`>UHbB2C4xJ~Pb5tblTeSpX^xosdJ%GjQk$
z3CIt+vihTcKEEO7M=k6GMJY3H|Lpk<I8PJb2SDRU7mzvMp-gU4K-YI8z&77OZ>y`s
zZ!_$G=@?kw$|^vm6es{8fDk|kAOsKs2!Yy;fOK5=UyozKLLCnFedAGj`(?TD;(tFL
zC3PgICqaFmgUM52^m1_G6c-JuY9!L@I{oO10>-20JOdgI<S-Cmjz^(g!kV!@7}h^m
zM*1K1!hNI6^~lnFe$6PmOg|n^guC0|_5xlc*o{r>pa_?6!z3VQro9I4f0Sj1$&v>p
zB5g$I`tuNg^*)_0`gqzkr*`v8@vs#O!-?~zcmee3TK&0%;nh}1Eb7H|ow;FQ{IK8-
z;dod_n1Zs~;JvxT2G{=lFzJ3{5N=Bx*2NPG%0+;1`@mpcMS9rYV1Ez!v$^E?4`iAw
z`h_KZ&w}?AeXIjzKW#wJLH=;RUFCBf{HUzRb*haBTakUVgpfU)uuoeNA>?I^nW$hU
zrF4GKjs(Z?(4|PreqPZg9~kh;O4{BT=SPs+qzN*zeQOebP+o&>VEw8&ZfI;_WM*N~
z4e*kd7wo5nM~#u`%a_-XIA6>d*EOb(g)oN?4)#aPbCRTdNz0TnM(%wU5JxyM@gnmf
z%M9i85Jylea8)r!N<a>A+8LSNjT;UjH#5=aMH5@zskORfdh!pZH|uKNl{^3qH?c4<
zw=g!xU7aaDQhtpgKjLHx;s}xo+yJje75Et%0)|Ewrrj-w^}m3jlwX;A?z}((`!Gob
zj;!(-S(tPu9)wgr@P^=Ee?j@kqeWcBJds#PY<Ul_z_ltl&48HX!5qdG24=VoRd7`d
z@&)_Z%i;LF@|qf3m{x%&*r!kMb>@mhJaK=%zkZ;A*r@}SQj_Ip;AsK`rK(}s1CrKf
za2^Z6uiR6vs=S6qWzU5uuL%t#cz?-NT1QM(0^%ok1h@mW3&W!6b?X}-0djw91mOG2
zkM1yX=+b`ls90<piA2ozk04GK0^!uYG&_Dc2$ddCSMFU#99k13gj~vpdvXO4kdLcS
z5JSGlAaR+WK8!)?7xKyX2C*-Je1n$L<3KKz!^`I)?GF>7K);B~HXpc$Jk*D{uF=nd
z%|5;ukX8CkA6794jz4F^jVKkPkq;q&5I_hZ1P}rUf!_duXioU)j%S^D)|jnA!!t%E
zn4F2BMz<Zwds1{w4ZT`fIUiO#tJ>vMpD9!SR#q_IZ=7Y2D?D-H#Cw++$CsR}cW6dT
zOud+E2S&d?)8yu0<KP=J<l4<SbT|CLzBIw<dVxm`Mp^V8Fl*hl`42*d9Mihi#z}RN
zx{ZlO{8Fu8Pv7?4_53?G?Bf<c_tU~X8n~(6%6Hu-BxrFaxZ2!~<`gX)8giD~JiETX
zk!pl;>XM+KB@3I~Ebduq%lFaQvVH0?#V1GH^bag<5_9vw)|350%@P(iG2XV9`*3*^
z+a1kDb9c>qd}4(8<Hw&b`<{PS{OHK>50}^9eR;FE@Mb}Hv2fqg9s}$KoIU-PZ>Mhl
zt=_cF^>?0|KDouG{O8_{<J(0Y+_H96u2%AT>&T*|tF)r~X}=%UZ~V%WIcY=JfBrPc
zW#p3egH=x@4Bh|W&|h9LUg85j8g*<5uhEg>L3eM~y)z<L<s#u-YIQ92&__<5%BU>M
zz^iGKhIx3-5qjiVpO+^XeeHVs@%(e*cRD*JbtAlL6XasX=4nN!U7om%@bWKoHwqgO
z*R;-5xfMhA*E`=f=jNtMd3w1DlE|V{&&G6Uaak#EY|>tWa(~9lnFEU^UG^nnW`1_<
zxUSvX({=`p^Pk@sG;oivM+eIV+G9Eq!nAI4b^6Z6@5F!UVtPcf+W}8!<t*uYz253%
zrRzHjdq0r8UUM(;i~8Hmy(5d7TE^q2X3kvuq;2l?ottLdRqq_}CDOZ~-m9D3r?c*=
z_wfA^d9CEr;=6GRHWuG07K!thoR<Xdj}1tBc{OEJ=Aj*<ti~=)IJ@b#**E^Or7JS;
zp2kMiNhoT1CL*$^#ljB`F(tUF#B6Ki-#1RF?tJlHS7@1Q-1vIhVV|yd8qDt+6q%}?
zWS{dSFRWQ}!GbnMg$vrZP>3f|@9g$C{lLig8$QiCM?~&VJk)=j{<UNiUmMemp_BFw
zyA$6j`<T{-k-bjG6In-^nEPn?IuEqBKHnxMQtip7uP0gzY}jIrzPzOp8NVywlHS0p
zjptuIY?`h{=56(9?2y^dU(BoPXA)vd3OD3)*hs@v`(baK?01bYxSHwaIo-Cya9&+q
zMZ>`2;k%0pa~j?5ckZNDveI*kVAbFm{ufucb#KtWj>R&s{acE&l@q+SyFZb)^lg39
zG_i2k%mIV%nr&Tpcf!gBBm>hi&vS0P&|BDJ!paCj!UO9#O_Tqx|3CVwe&LK5-C_vY
z`1&~x8rW#+&KW*>r!UXza>mHXa8#<7;mtx_-q2afwi}e|^-Wjkm#);SuVLo~ou-`X
zv((>j!8*(Ktrn<t>D0-jS>nKtO+D<iCa!WFaoX}l>gY?!hhy&tY)Lx!aqpP<?k__!
zzI?qqgfn~jyXBUuu?N@tZ$9~YHUCby+2%LbmYDXndN#RT6JDTMk%i_}hqzVv=_dxk
zm(p%Eep=vsJ*nfc;sw`tbS}Bl;*@G((uoIx8;{)^Iw$q$Q82%m@Z7qg2bb8GbXdz<
z8b;jLwcH*eN?tVe*0FH2qBo<>bq_u9N$EO!d3g6_ky9S`)NXiAGh^_%>pMnVJvG`t
z+E-s~pVLFZjl4TPU0r7X)%K*5L(rwPNB8<Y7&yY>dfSm^MPju^Dsv6AV~oTuyrUUA
zi!+W#bhX(zd-(|SW}Yz~fzKPi?&q(2&bb{S?G?Ml%5!J5Ue;r|^L};vw#uDb&z^TH
zM{vXR!uGzG-|4k)w#0dV(`?)0InNXWFJ)cd(QjPmS4D|?Eywf-deL{-gPW_Ks@zq#
z^!*r_PqsAm?6Y${v~)t9^bLkBfA?+9J}pJ(wqc(KYx<jsJ-3d!IqQINqrWX3T)G(*
znr<lEb+?CZ>CqmY{2m=RJ^0|W(A2JL@<Tkb8(r@?boslcmm>z=A5-u7h?NdO?>6q%
zJGHdY&E1|C%(|&`C({nz|Jj}w*4?R-&VX~z1_=wTzIphBb#2{j37K&2cKhYUy&UGb
zty{KzRNhVhej|>}NtE|EpVM*suu1z~Y}D88*o5Eq`jMUwHxGNa>+8_<#}^)JwC@y%
z)^Bm9(cEye+=dP=OY%0|@ibkoKkm?wKAE?2HeXFn%iM1^>s7pCM#%|M;ygW<ZR0K(
zW$ZmMc&p9O#S*)jN~;b_k`ju$1QRkhJ~4Ir#T!^g$9rVT;y!YA0h793e>9RnVwrH#
zT#;UcYo|6(1?NVo?U~Ba8UKI%Pqr$>aXYbF(VPH3KR*pce@|VtfDx@`$YXV1VR0Zd
zclQ0=mu462-u`f(dP+&roH=ufCL9TzbXd>=d;GNi6hP$Xa75s0hGCDeh9Dr_$vvIp
z=6B=TwQDVw4A^XrO<bcAMbj$!YxpVnYc!i|BhYv<@y(LtF_?Tb)=nC0y^e#O!8ABn
z9m)o*K`wG8F6KH-Xb*tr3dm#QsiOt72m>W)BcSFJK+<Y|NqeRS@kgCVLf==Hpp4!f
zP~p`P6LBQHGVuqG(AKR1Jt>bJFFZiZ7nOZF0nFO7CnobDPsixb3&Z>Kf+UdAT!y`*
zs&)1x58Du8Qims?*!28C9&Y^L5GaWC5Ag_+P*X^BVeEc@2PH!}CXPSA!$HiaroC`y
z;<Q*omi{t$kk0}q{)ib`33))RKn8tP&%i!f#0?|Tihdxiqbo5p7XfF6F-#(ZNBKPn
zL|Slk3OUhC<R2{~ZB?=pJcwy0^3d-9>U`cYKgOf~fZn(}JRf+x3?7U!kkz*=@#ODI
z>sCJB>EDr-fQ#6Z@lVgYksI$xGQx<3Eubr-JmuGePaw{_0qeFEsJ?|HNDrdOSbyO9
z7-bP4f%9uR)YpSB%$&A#8_*n-53;hNA{^;x5j410PyWls%32?>XEYGq@0TqB671hZ
z0M0L^)0xoC2lFnQ83Ga1d=fa+kT}mf5O)vZam6@s#<)aC^?}TI`poedNCM}Y=y{-U
zSSBxG+Et9ZM~H)n<I0IZ*lw*M!FRfB^EJ$VfNj2JEL6N$^6leWF(QN(n9@&(sH)dP
zR7`_>2myouLI5Fv5I_hZ1P}tX2LW)NE3qn;*87;}$y(Dzf%+h{-$DPsx!;-;i8xQz
zfY#wj)s)PZQc25?uj8omWWflRgMsfYIfw~Wo?N&^DfUD{!Y<H~NK6+Kb0)qj%ohn_
zaQ_(GLntARHXk_52q!*&N+*z>9|6`OQ{V3;(vy73f45iQAJi#)m{Hdt$uP>~2gdoN
zRRLTfqv#tJN0$yapT<H!2ZPcP>!jyZPv=TU?^#hjogW>IZ>yf}{}szNp7E41o;l`U
zQDQWnsfY*iAp{Tt2myouLI5Fv5cu5?s0HI0Y%Bm>#&`y3@*H9pA-VsqY&-)eBIpN4
zjz@6fzM63jHL8Khr02&~9@o?<$H$Ny(HLPEn;uSnQ@pyXDPw*Us_oE4^9t3WhvE<d
z2myouLI5Fv5I_jjJ_O);;B;Da=DY&b1ECA&6`)_9SmjIVwB^?clC1v8dOeaKF`qDf
zI>`vE*CVs5az24g?`=mVW&bf?(R&-wNs!*ljvb0Y2p|Ly0tf+w073vEP#Y28U`mwU
ziqi&JHoX_>gHYd<`m6t*%1_XL$Il1Al3A14R;mB0Vty1A2LtC>Ryu!)+;&8tEl3iQ
zcIeiG3+>RA>BH%hl*lzU-tP9c6nj?tvN~i0$SVEfsTG5|(DV>bq-R&e2l)^J2myou
zLI5Fv5I_jjb_9sCWiGDjCqJ-x*6RSjkzP@LH}Zz2-+J7k%k3;lomq8e*$UL>tM_lw
zr6_C1q;~cD4>LIEw=a2WLpz?mtG1`vRKEVRQ=h*z%v{{-zU4TpLkIXp+xcHx-u<v!
z-SW$pS9jD~>>MeHJKam&*e7K3%55zk-qU`X*LC~crw_Vhg{iFne69Q8lkIl7H-Bp0
z^uW@=kM-15d}gOF<%S+yvfD=OsoL|7%k8g)K76a%W9)LDfWIH^IkwR7h5jq?*W1sp
zq(0m`_jFO8@D4q*j(7C5+&s;E&(RY3_q{~#C*9uJ!MOA7taI&MmR`Ga{Iy}4&%GCo
zhuyh%&T?huy)|`*eU0kwW?j#b(-Bup8Q&;gj_`P2Y1w||E<BnuS}@vi|Jc)VpW`0>
zJu}Vm;EveYCo+#E?aXVTn^|<|=)>*SC6nqa7R3sN`ISEUyyV_P?~jUSJ%{j{y|_N2
zpJ&>^ZBJKPTEq?wJrvQ!_0a8b|GWI;FU#Jv>($Eo+rv`}OFpN+>TvvO=;EQDt{l4R
z{A#Clw&7^Ww-Y@y)#q8qEPfm}B6DZU?U@>TOC~GFmo7V~TdJ<r3v0e_{091<5St^-
zi6ciix>yqsVDRbNnYxagg3&JIAz;c)Tld=j$;^9P&^umw&xuo~8yomwr;QDkW2f8X
ztGHk>Tbmh@>2L-0FG`r)8cr6?wobXzNr=@e`Is76FAmqm43y=w#?Ok9G~PF*gF><T
z;<l#OKbJZ;Zf1~$$*ZEDAHX16)db_0UL)|myh`l|rlII+mL<0dPjfa<JuIiw-ukL(
zK^;>C#R&?oc{&qQ+uJ8=cu!n2K}|G0>dBeZq}Z)5Ts~~;{7~c^_VlpjmE!B741Vio
z+9j#O{YMwH`+B^M!)eL8GjRh;qwkiSD-4a*jGxpZe}dILOvyZpqb?dR-yGfkEF3=i
zDh;`|?c3gpNA`)g=sM}0>UYMbVSC-|EYUqHWqC|~r)pQarO8n(4a2%%3S}YWNj&n=
z91f1%ExlNO_)e=G$yU4WT0cD7w7_cHEgkD7Ym2Px*4u1(KkbB7BP)$#sL}q{oe$k;
zYx~Q-3i&x$UCP#!Oxt~!b~bA|4YUVUo?rgg?QHogfefT+iWGyz&ITkU%LBgCKztZD
z3^%03r|fFlgoiFBR^faJ>8a$zo;0vSjKPOk!3i$XKG&igAL`H`;v*oqm%Dv`ys~YM
zg`aVGe$C7ABfjfg4LA06q~td)s=EfU%%>B@p)O?Ss}4OBhY&yrAOsKs2myouLZJ2`
z0QYm@EP6iF@1Z`(^#7CjauO|Ky=ZO*fQ@8LW>ZOzC(n13es4{woE{Gjtk5J9LH(W5
zyNQ!F19{P1%Afklw%%2`UyD3DlK2jrFp83fJP1Rn9A5_>R}vxSvCgMAqf)W|1TpmN
zx-==o73taR*r6DN073vEfDk|kAOsKswGjbXdNxxZWcq)Co^5^z07tT}M$a~&sK|A;
zQhPbjv+ENv<@9WFb!r!!{17M}Mi}6$xA#}4XA?8aWqe)1XF*x@Y|_SF-8F%sXT$Ld
z)UTmi9S;<T5I_hZ1P}rU0fYcT03lF&5P<7e{AAd(p&rQ8583R*KSBRaJ_%qXvm~>p
zL@0mGGO%+){acOFziGQO?hzv*KX+30{WPeDy9xy{0)7}z6|*Lz2|c>9-d=uP3Z-Au
zpR}T_<RFOtLRNKpIw^2jzFe_{%#ZCH2U+V*l34U~WDh4%MHfN<A%GA-2p|Ly0tkWM
z4}qGVUk3F-sHaQ)KmYtP5@ljNienyto6M5Tu1Y<fP48U_(z5>QZ>$(a+SJJlmP;9U
z(Jw*(A%GA-2p|Ly0tf+wz;A*8TnD1VVxMN}gG|44orM))A0{tr%tQq<DWw(UpJ1o9
zzDMyTKJ*9FQYxFuc4}RUsw#UkDGIa`dv_U3(N$+x{+{(8vh2z^4E>rpZlIKTN+R@w
z5I_hZ1P}rU0fYcT03q-@AOQ7ioJGH8>Vr)GPtc!}3jvTMYgYU5ufCs=`q*|g72-NW
z&nCawO<vHBjr44Q2l_<_AOsKs2myouLI5G~yC4AdY+V*To2d^n{Xap^R{j9MBw7Cq
zJsa$2v={IqsSj@e=2ClmORx|G!!d1TOgol-kl$<9c6S+I$05G5=SQc%c8R`WaYS_Z
z_`56wFrId!pH)v6Pe)&SS3TVZI@+28E&0{c|JSh)M=%G1VcwoV0x0bsH{ieK0bCtg
zz+@#r0qK+#!JRH04#z#pjVscLG=V?95pZ2;e%3uJ(rxGt{5d^<8$#3N3o6pN4hMb_
z9Zr+|=MK4!iJYy0=XXLE3ZmNp$O&<V;mG|n5OB1&p{lw!U0j@Y9qIN0QLyC-`2J$5
z<HS9<{sL;V3K0ov4~D^Z1?gqE93mx|7Pi|4#97GX#cZ!^>+sYm>dHS2HdPFR^0loP
zjC=?IgaASSA%GA-2>eC}z<mce{o?1)8U}|R=Rkb`>cR3@Jf(+d5hF}eN9fND3nb2!
zjO2-N7j7uja@YYP&ymE5zuw$%9(7g@af*9~a6An6<O(8)<YZiRR|CB2apylDKg;Em
z8w!=FKg@MrV4Ovc_QCbBK18TGsZksg0a@cLgH`}nU1mb$|057!j<eu+DV?@AKoH=5
zf8vPSAR!T0=65AF<cF8{gM+kSYsDc0hRZh2V%j^{##v1m{FvUBjPVw8ei+RYGZ906
zgaASSA%GA-2p|Ly0<{|f4pxsEKkuOxQRa8#nED_bcSBc^u=|rq<>ci!w5~XwM1=fW
z0~rp(R4|<K!|6&eKh41cc|iiMgh$1Z>6Gd5KC#c=fS%%mbH@~`^5fr$)ORPqh>Sz!
zDEs>ms@Qlk8zMjQ94;NqR!Dwt4xHQ7hzzF%q~(V46M8&9Oajj3BER!S9nDqYU@nR)
zq2Ci~K7$N|(dT#3WW;&ARiBTbiWyKO9PInf7Xx+x`7%2|NK5*G!VDQMoVQ6Qzs^_9
z1;@Lt=GD_x!=hG2v5lkrWE9_=F^<A;P;6%Vsa0SgVG#ld0fYcT03m=7KnNfNSP_8d
z8hg`vBHK6$>Vt6n1YNfAz`r=Yif&EIinFZGl{LO1$4F2uCdWM_II5U8>Bt;kK^&l4
z)A1FXetsGXLgilhCvh_)3@leG+YbllPZ?Cmix5BvAOsKs2myouLI5F9OA&zjxg(2y
zPM&c_UQi!}dO38Z`^?zRb(7A6NOj4Nr3$p2zkC>(&kxLp=;+h36RImICdKl5=0mDF
z$F1Ty7ZvA2$n4;J2*d@t-r(3c>iZ(3whwWFE?GwMQtktUhU=w3DEj?V5MZvGbEFHN
zPw&5jIM_%eV!nTbgh#BABd@Y`bKkj+jvm$#HL~jcNzDC!Y~#uHK#WSi0cjP3=q6dV
zU$kN@@*xBe0tf+w073vE@H-#?_b2($im>ecNx9UDA}vB&_agvs<JWj=5(O8zKZ(?7
z+<4r8kaAm^pq@h!Rq+GU4RQycCd8|tDIY}AlLvJW^whqoF6ASuxQG1hX#PE`peY{&
z`4jXMf2aqRrzwA5j=#4%E)n8=Bf<j66F_JpFw0OrMaBE7_GLj9Bs-#<-tKe~pNdH<
z`Ksde6ZUt7lslTj4`y0^JV$<S60GYYSJQzjkvN^Cx(lxBn(kIToi5G9U|98ZaNMTL
zub!?tnSO;hHa%ZchHx`j^nK>~KpAXMG(rF&fDk|kAOsKs2mypZEkOXz8~M@dFLPZN
z)QX`#$n>+X>jL{@$bB;;6hAN@<Vw$Fk?G0oDG`|ChacTf@~eHXUY!J~nrj)0o(|`$
z;Pa`51&TrlAOsKs2myouLI5Fv5U526z<HT;T4pvq9qNNnPlx`0QBVKq4l*Nu$?U4s
z)7k9Pon<_OREFLQ%L83FZy<vWibe<^1P}rU0fYcT03m=7s3i!%@BFZRuO8}wY_9Bm
z4gc6q{fb^<LW)5CQ7UO=J2hC5@^5~xzPf!18ZkgghwEZ$$>T?2{v-sL`xM~1r+CKq
ze|~gd0?r~Q+dc*6_lMZVhqBK1z05K`g!3WLWf2brBLolv2myouLI5Fv5I_jjG6a6%
z^L;f!!H|m_6Ow9ZrFjuq=T9jSi2w@>bKr3$5n>*(hh;nwN{0X5=leQF!ID$Ot@H!;
zfy7U)o(_(84HB!TtCT@44PYBb!S#J?#VTTqqc9v$Lc0nYN3kJ?!Vv-p0fYcT03m=7
zKnT=M1mHf9T6Dgz_b6JW$63~$$r@jgIxQR({OafX8pK0M>H0+<kO1{_YSOWGRy`y&
zLI5Fv5I_hZ1P}rU0faym2t;#=F0WEMf@vtanq|pt!qc1$R1eGPw70%$T2RMSL2-hD
zYo5-;)b{qt8r~DvOi&X|k9u+@H7R!M3zrYuIzJRShdn)Pd8PQeD1+a+nRZF)aR1Q-
z?Y<sw<8WH??o8ak(&)P-=L$n(HRC6>$e&<!4^uMF;;4(p%Qr{2KMRMCzDh%`ZTq&j
zil>W$5CRARgaASSAy72}&^}j-&-ed0g*IUkrmHH~$;-0W{Tt`|v#n1~Ujl^9T?Slo
zUcI{Y^~y<r4%y+VuD`!~D06*1P8awUU4LNt2Ze=8c-+7k=y#6@4dses%Iwf^T|SJL
z<-+w(a6OC$b($`Q>2w8_;dt6WEUW%%tO4~`*15Z~<U#SZ69H!Zh3lr$SAu#0OEn-u
zB8nisgb3?xAD%FjClSXGUyKhD5=4;N049*(g7bgnh%eQHt6wl!X$1L%)BgE<5DxoS
z$K`+m(urt)JVRa?+5a}tZ11t?WPniOYT(N12h2ADI*9Xc0}v`mjSyh=1F&80q3aK1
z0{Q{Gw?G&$BAf_>?a&$$e5VWg0dlt{xHcGq7Z>E4OZ#6LgK$_sUFrG_>6rB$zR$c<
z00pEQPy3VC!I1A1_!lMTV2!9}0da)-fb}eSO5%J)AUNm;FxKx{p?=^OeZc>bSj>I^
zwzn)sdx5RT^*@s9pJv1Mo=jd3N|KcdTv_i)>oh>;_)i5w>1!nduzjS{()-bFt~Pvc
z$yeDAhja$<u)T1ws_C+DKqq3L1KyM5sR-bTrt2+ihs=7+NRGTT0&M-jhD`v;oGmr$
z2OKj19ef@L;6Doi*bjKq#nzzRe7gQXH2MgH{#=1nPyVOx4fx$0oX+6YHc$`2FNTfZ
z2kw#&RIH!l>G}=nnDyO&=4bsBP(V7o1l(DF1}>CeqcQC7Ktglc?@jlEG`nBcVe1Fd
zw}Nu!(zwdf2a<OHdh=hlq)4!T69L!{q|=#%&~ENtP%qft^EwAX{CJw4jqcT5K<7%+
zL5HaiOsDHDpvEv}J%;I!TM+>`zXlB%%=1<A)Bru`?WE&o=>Ip)S0$gJyqvs&Bgljl
zfxM#(q2<q)iYLCK2FLmNJ1f>F41+y-#q!GXfqJD_W{(Nk1#48*DWU!ozrA`oSbww3
zAaYgngHosOuAU$4Z?pDPPgiv=|9+?{7ENVB&eJFpXnJzRe6GI$eg+zANWg#-6l~ui
zcZmq~=ZSG)5bh-5iMiw#0>klgm#tVB9*(>7sBZ`2A|XGFAS)M7?h_}GF{k1A{(7xL
zrLXE6fn>q{$#()tk%;;o;#PzD{ZDZ;w37me+l$3QG48<QNy?C_B0eCf9MTX+Y5$-@
z7QgJd!Tte$AO7DwcMjktm)lK>8*F|UvtJ;-G)~F+vwyxH4{**NS>Lq?Vg7l&k;AM(
z`7aawBFU1vDwp4nj`?q#^7V+ci<kF<dI#k2;D_?aJJQANxDp=jF5!lXaNW@Gj%0Yn
zc0C|WK+hP{%@~9FH%a>=mn?nOAPeMFR<V906O^XbA^`PSZ@L8VeVj#)Ct<<hdIp@T
z$nHEbAH3S=`C%N+7sGn13lp-q4e0d?%<-!#^>tx#{7klR9jyHPQ@PIuS9+hqe4*Q$
z8_uJJD(m~p-^gkg=EndhoJD>V{Cgw7Y!|RzUCV@bp!^m3Z{kHzp}%*R@I*9BjQ*eX
zeE{@vISi-M<=g=I!CYU_evR881oqoHw0#oNCDP-~Jq&qiw!gi@HohKz93WKoTx6{G
z!?FQAd>+3&aHxP45P<zaIvqM4x|cz{P^C3A4yI1LuawKieehjXHtwU-5!zocul$RM
zaSt<x<8s)(qYs1pz%Pa+)BdcZAOwt3h}3T(1>{uGh3|L#ef4zKbTWev)zjfLoyNQB
z>1eY5+<|%q6E9VIyhJ`XRYK2j5eD*bS1_z5^?3~fc(4);r(}lXcCfmF7|+rrAxljT
zPo(}jVCYE0!J#cHZ0Y5RIzy6@^`sNwmW`L>!1pvs9f*vV=Q!p7mg5MY^r}1#f;Ci1
z^Z&d9^_V=v4qUJ3{+CTASU<fl&;YU!0&5F~IbNxr&W}!So>x7cBTW~5sd_qdnl9vG
z^>jE*=a^eP9Ze?FaS%ih14u*M(15rYeMUtuq%@U9h(pTi`H|cqWzBQ{H+cTc5|wZ7
zL;>CSk(4>jjmHfLfqtT|Chc&9*M&=fkK-OOBG`A!d|)yNCKK@$QT28wa`>)GMiw%o
z%gaDv`~4!|GBc4uP+kTD{09Ue5R;LG%;@qm)VzlO%-Tro`dxZheAGZ$G4D&M)$X8S
zdvZ^DyIAi!`2=h8_u)4g7gwFt3HTD0q&H{Ul%nD_CMzC(cz<G8tnki-&x0ejKYPB#
zs<8W@hzFm(c3=7RP;lmp?!)FjjCy)-W5dF+7BBNYJbY(<=kGqtV<pWCKY!dC>f~H^
zPlrHL9d(g`T-0mp+pQzpiL~nvUavY?zWMC&qw%K4(i9Gy4~$?C>`%K?8s~ULebP}w
z^`Yn6-6>2|dfqI$38&|tMM^`|wsq#bzq#{$v#-f59sI7yUm%zo6mp6KvF7*u6w)3{
z*k|*+@4Zedx2ZR&qhzi#VQ_uBS=Sb3ZB{xnpCcMSsX>-}Pw)E^O7(m1C@oFP|Jzcc
z|Lxnz=376H&FDYzXjAnUtp*?1Khm$|mg{{)Q@1zBd4F$nvE%Kwo(*%}PZ{-0hs<N6
zr3TO6OD^x5tM3zHPqPDlQ+{B($ae8XD(?d8eK*1K<M%h0zAW~6cW|lg)$kb~EI!<t
z{&djJ?90C4!?I%Zg3oQcqi}7&hz|`9+z(YS>iJQAXSaqp@fdTrsb%3B3O0*-*ZrX3
zEq=0K{I}Dsl2uGLZSgaDk~!*G=pbM5xi)eN${M)!c#MN?ehvtG?EK_K5en0yIRSn;
zifdXKjOk72Ww{t9nsdoCDY)Cw%rh;f?wl~Dj*(5;2f_Z%d1~(smMcD*&u?^e&0q7M
zFZi<kIalXchpSz%IAfhd(H!?j;psPne8YDCHQi=M>v*e|fnzPZM{k?AV5sl*?L)0J
zCWUAuH4nEQwP<tXj*`Zv+OuQj3hb?W?G55!8uLe&L~}Z8#O5D+7@Jq{Y{q;SRaMpZ
zpSL94C^~N$yn9q$m(g{mD!pH|DnlJ>8mqn~nzPBTze}#J<2=y<zmPo}_cp{@UsbpZ
zigL8O0>-&VOg|9zGD?%6)d}YOPEWd*gL<fRegZ_mc|*tRfI%)zU#4&V!1vopPQ<*9
z-&jI-B`#6~GJ6Hm!_-S*{`ctdiYrM(Trk}GDv*mA?syG^kEf`mKcwDH#eityUYCmG
z0JWJCh74fCLppEMvP{p{R>rhr=`4N%E{W5=1D6eS`IG7VAuc(L^22Z)+76UX)5Gs4
z0Z_1C5s%!28sMQy&tsGG^wfBoN9;V{OUm}qk>ez?g3*s13zBpthik+IM;O3Y3-C~0
z{vYB2P+^~M@*<|D#JGEeIEWiSPFOhzgi&M~Pa1#RLntBFwUzm8L%3mKJR$^KBt7ma
zq(&*W5up(RLUoQL7*XN<N#<l~>2m|El}=oRQ+eL;N87g*T{EmP6BW#)l<p9ILi@H}
zSMm8#6_DBQsbbbt={Q(3sy<7xq0y3v`2ocE3ZM<_0Oj{TlatrOj7i*pod8z+U$DQ6
zPOpeZmG1#n42+;Tm>Pu#T{X%OAltVFff#Jx6(;A)>H1Q;TYZWTTyKF73gb(N9)W3h
ztFQ>5icyx7U(M`zRK2c(4-As>tC@VvazZ}Pm9C2*`$g&c64-Rg%F6-Bfky#sQzVTn
zyQ6G;fW-y$%io{BEWBiuU)K9tYR_v*?2J;zoVn5b(1=jnlPieek;`g`xpywHeumi6
zN?mO0TwuKuY2WWn5?12N5Bo=a$1CSl&G#S5ONeUqZ^--h%UuhSFWdTA=6sZ_c~!@I
z0O5*nYcdCP{Rs%b`4n%uusXDBK+k7F44Ct(uw7b1g70+M>Tf!oZ!W#=R#yE@egGs9
zeP{lN{P#cr)?YumLgv%O@+$%XaK4E-|1KTZkn2O0!Tf)@^#SDjyZm>6h?Sngut0if
zL*xPGQKb99rqlHnwhLxG{yotC`K6Gx{u|m08q!%qI|}s6(nEg2xWdmL2todm*;c7X
zLpwnJLr??a%b)_|q%yCJ8&I#5u?;j`?n_vss!lka4vv0SJ)JU57k|HcI`|&QeOx_V
z4$UwBb@g<KG@a}7>gfz%IUZF{2mATt{OajcF@OwM|E*iL4gj{`GX0#kPeE=_PiOiG
z{S_}8Yr{c6IhVA1l=D`)h2v+obHsjudY&k#K|TNJxbnmPA+B}7*pz-?%yBrx6}qth
zfd2oW{}|t0iYs|nZT}HZ@Bh<)6_B>0(#=Drql$qR%)wNsaVc0HN-l8*Nz3Xz2V?-V
zfv&Nk9WTJhz|aggGO21}n{6G}9(sS`cv?a>I==>>g}Ksns+cmBbxqqTd~UFvGW}#b
z^>VlGU#S7o0kX!`)VP={!P)r88W&S|SCih38&jixf?ixg)NNe~DQHKB<%RD5p+4`i
z1(}n-<X@Hb`KLcuqM!IF&y|Hwjh`z^`rqKWzH<J5JXfN<R%eTn^<1brLAST6_{eJS
z<=bmj>199HU;h20>s^EA3ia2l7vN3sqwgQOTbJ7V;CuxIt{p#|u&?_^kjr=gr8BhO
z$)cm}am;xUn7&dtO;2V^<^<`={B%4$ZBnL#l*v!a#TF0Wm(ei6f8_of{c2V99=<<o
z-2RAuu_`__ZhtK4Ww$@D&r+FI2$=6n>g7Z{8_)!#`-h?bKhXbjBSB`QDC8Z>`x1-{
zYN`jpazQ<a>HnwW6)-<RcdW#~2i6DZ%6hI;U0_d+%c@u9`{gRKC#DZ-rbqq4^+I{V
z|D#?I?d+e7W2N;1FoN{~x;3sBRVS}`y<kZ%yI!a=#)~>s&kfgu!*x4Sy&CSruIaqB
zImMq-)*q4c#2hS;7eq|K^FZE2j$r<{a(LPLayhwVAHahY37T)%*YP|7ZzMmeG}3iE
z)*nImJvzJ`D=GxqC7@u;_3`X@)O4NBPs1ZOP>Kia?keFy?6@y0>5treKOWNk0;F-U
zvc2)Al^+Y0mLHlwt0=$Yj})6V%|F4T>iy<F4G)6|DIV4AL;tyWNay{3>|6=*y*8$r
zP6|E<9NsWosePw8*e6qVP6anW62TSV)Qgjx$N-j3wtX{De}yh==d$M8a=(ETWgQYj
zKIHwq5rFe;z{-eWI9*&n+WrSi&$d4u*0=BNrQtjt^E|YlwLjg?-5qy~2^0&1#avNH
z<(=xX+Ql_F&>2BIAP&g=GZ0|53s}#i>HZR;z+6W`cGqNFS+`9SQhw?ABp_buFFUV<
zIS(DeI6u(*3y{Q{AqSKPxc~vS`3hVCwCfP~Tx9G|PgF$xz@J>FU_X#fgWyNI8udWE
zkgh|m*}7I)>qH^epdTPdAK=oVc0o(m?OM}*Kl(idM!gtjT_4B=`7m7rIv|~%w`0ab
zzcqc6rCB{coThWtsGg1{`_CPyXE5<9|J=T3e>yBBbjjYBH2ZL{>i4BXdg#`CU-}7p
z>d>PCcFc9~7`;BC0@44`!>qs4>3)|@Bv>zBDM5s)riAm%S#<lWnyQ@Dpl<d2aGJrr
zI@Qy$<@0Zc*K}VRlpfl-pucP$NDYMKG6b${-@qx;5r<ZIWZSjmMK=L!a>z;ERcQ~0
za*U_@EBG8?c&-Xy!VJ$+1>xgqxof&F4WyFJ4?zEaFh8*2G03b&c;IyTlIik6Jgn*G
z1<MV?<JAH4^fElae2LWFr%T1a^##xl0L#y;A5uJOY7hPH`f=}NMLeii8ngfUS^Ics
zSXj^fW6mqW`9o@c<2&|O!Fmew`%$;1`;KHkzna=_zx(;=e5&~Ts%+nA-%-{3qGZjB
zN$rnl-w~Juz_IfCge&b2`p5ftvZyV{mH5JS3qQD@3By?U{^IhI>k6q?ecAgSj3j=+
z`LpzW(tZdIiz>~R!1rV>xiFHrtm$%L7*6?R{e1uYhz^Ax+kUso`qfXHFS&O_ipRe;
ze+I`-OuN&M?zi}UeE+lgIE~X%JkfldoSgL~DIWjfd>ojG_|f&wW$l}4?r;@@)Rn$(
zf6w_oHoNC|9q=&6(*Vhu|43{G=*v3VGGNiopMU_gdxF*|eS1bTzDM-4=LI3Qw!%>2
z`^a4Cd^qaksB}cRbEm10D(Cr#7&6>dEDYic;4#&J0aOQm*7&XL{mA%U)6bm8tXK|d
zUq;@^YRAznK|97l@zL)eh5)l2!}@Pc_wNvne|sMD9{oK~m_OEpu9plspghP02*_&R
z)~!+d{*&tpvwfS>VBmDW53#AxzH#YyP}uCDu$|(N0mEg^?<mvXyNBuSH3#()qvZfr
z1>!v6j&wMKAM_f~H+$&syTWj$YfT5_bg7;nPSbgJs-BJ}`_CPyKQQr<+NWyE`PofR
zf@fbF&(9`jW5H$6s``2Y>t|xy>gjNr-}E-s)6rzL-l^%l9M~cuotJ}t={(fGHjkmv
z4rE47iII0z&SOCP;f8kLxh2z228QRi2jSzH;T=GDIvrjM@Nn$<9e6m><xXalJA^Lx
zct&`lZbdxGuebOa-*J%gtJ(Q)vi7k^`PFP4PgQ&4%8$&X{Awm2nkTAu8$B+4AO4*4
z=UC@!&^!>;l54(isHW=%e%ic;tAe!Og0F4Xd7x{0pdb2;=YhtnO7ZyD=Yg2x_TO+G
zD7}#sPc#oCCwH&86c02HMC&=^dj4N|-xnNLik5>>S^P@iO7#+OJ}_ZhCU(e#!p~_@
z=lZrJ$_U5tj`p^CZZ__?9{mXyn=q~*CY(=vDmf-x!V4w#tXb3V3k_lnrHny-o;-0l
zc_;)q4X<4VKT~}JeN((|L>LbzPA4)a_=spe<jOFL&v4>n%(w$-z$ZTsL&bt~hb_zT
zv$OCK#rP0kda(}<_L1<yB|d?~L9{+%ZnzH=o%#$6^idvL;^US2BJps7k5qo*BnILi
z^$8l{I9s;}aG(V#KUwJ^9%b_#lmZCRD9;Dzj|2{s{2qLXfRvr&qgjqm1>tZ~AR>~u
zr1FsGJrOtvxM9Q|K){5EXUYS<aZ@IheKc`06q%v4Uk2yAyN3wH65Pp-%7o@azC4-b
zlImI7RQ~S7X}rWnXYw;W)D{*mepn!R0tYDvUM@Z3oGFPAH!$wY4I`dyH{6i;=nLEV
zpt*(wBjS2x3|v|E&S+CWSN7tkQlp<g1p%hL6WU`mOhCPWI8fi8ataF)(gAGtPgwtT
zVL}#H*7|;^ctN-P`u@oT&$4wumA*TdNZZXSZlGYUkNq{*_sh{=-y=p-W)<;g!U)@I
z2;(_1>Hai7S+6MM=!(c3cLCK)dfrX>dR6`R3^$wxENhoNmhAt@cLiLh4&6iDtF9T>
z3LrutK9Bf_J$b?U27KrjA%GA-2p|Ly0tkWM2?3xl$W_u8KDVm6l#AK`4Sgc5Z(XMK
z1xQ_VmX4qUV0@Y33lbt1A%GA-2p|Ly0tkUxg8-X-A-m#hzfyVHpQ%Uy?F`WB1?_&7
z5~2Wv073vEfDk|kAOsKs2!UFO0Gr;J4mZfMlu9?D>iH?8H?jbRf)N4;0fYcT03m=7
zKnT=w1laV(MitG8Wu<I8sG=nip5KYqGnGMvZV&<p0fYcT03q<(A;6|Dkb9`Ay4vJc
zR3xCjP*IDhDkTa-2p|Ly0tf+w079U)BEY6EtY#^Yxo1Vq0O|{62OY4aL%|3EgaASS
zA%GA-2-IE#*z|=xEJeD(qA#HRP%MC<V1xid03m=7KnVN>2(al3K5zjmOBoaFtF|-1
z)vy&~S(u<;gaASSA%GA-2p|Ly0tkUxg8-Y}*jI+$Sk$MYW(en}klt8p9z7BiA%GA-
z2p|Ly0tf+wz;_|QrZ;Yup*MExi}c3t0vZt`1P}rU0fYcT03m=7sO1Q->5Zu}^u~w%
zk=|I#A3YKuA%GA-2p|Ly0tf+wz;_|QrZ+CDs1{b@IeS1w0_Hq5I<Kh`WGDb3fDk|k
zAOsKs2mypZtww-NZ)_l=RKoLBpVx)fH_8AGMI!_d0tf+w073vEfDovq2(ammZ0Er*
z8(OuU5!n}OX$3%HBLolv2myouLZAi+u;~kI=fQ6sR<*uRF|-C5BNBuFLI5Fv5I_hZ
z1ZoWeZ2H1#mJ*y`(HGEp@GO9#V1xid03m=7KnVN>2(al3Z0Es;_*S$ez;(~)Jow+B
zGN2+L1P}rU0fYcTfCT|IePK<-Wv!J`&-1EUZ-CqLE5=qzjsg$@2myouLI5Fv5I_hZ
z1Zo)qY<i=Q4875Ga7E1!+MAHxSj#E^5*HzW5I_hZ1P}rU0faye5n$6B>%k54EPN7%
zRIfLp{ZlN!p<sjnLI5Fv5I_hZ1P}tX6ahB9QC&uPEOILvB$2&Q24E-}A%GA-2p|Ly
z0tf+wKrKgrO>bm7pXo$k)pkZ?U##U70f~<gKnNfN5CRB+Y7k)47ue2cy1}bjU#J*b
zO@=56A%GA-2p|Ly0tkUxhX9+tz;-^<YZiS0ozGP39z7BmA%GA-2p|Ly0yRc}O<!O;
zpJ{$jMN0x)zk<$Zsxjn<5FvmNKnNfN5CXLh0XBWX2X2^WDG}~hwcY@?SyhZ>VS<7Y
z0tf+w073vEfDk|kAOva+0&IF?Um1Gi82^fzA+$Fky|LCjdL$@903m=7KnNfN5CRB+
z??Ql0Z`6~)<^B1J`|P2<2;GWWr3_{$8X<rXKnNfN5CRARgaAU|mq*}7^~Me!6*WVs
zFG9Cs>@N=k5)dJP5I_hZ1P}rU0fYcTKn4OosyBKdy-^0TC>kMv5I_hZ1P}rU0ffNs
zg}{&MjT4aG_<L0ZR2qZ;LI5Fv5I_hZ1P}r;5Ma|AO=YAT&$7M|p4*1zsbv6&q7ecJ
z0fYcT03m=7KnT<_1laUO8yV%;iS$Mp2%%_%073vEfDk|kAOsKszZU{*dSee6#Y|(&
zQ$zbA+7}}OI24T#KnNfN5CRARgaAUImLl+@dSe078*AwkM`9xc5CRARgaASSA%GD0
zF$5Z58dSpZDd0TD<aNMR#T=<{4ptXaCjPk#1rZXyFbw9>kT@5-1>u3GI1UO6m+-iO
zF}MRij2|At3&h<c0s?s9;Xx4sK@5heVy-m5))YSvekc!jmvBQxIAo1`@xmlH$%yMO
z;L#b8`KXu6$3-Z?ZA2mgKL8L(<!p#GA~-v9qxqo`p}3d3eSh3uEEb9ZqXu|O4A?|*
zOj{Y#j-~lS`8OJjrA(|+Ih#}bfSh#UtB_C@UkuBlvXaVKpDMqnP=MP61PCL-B>b>o
z3}fO+#77VaNl9>i7~vE1a0ebwQXbDHl$;g$;e*_9r?4P_Fp4fFCQHsmn^#(qw9@i7
zt%|RmJ3b&nQjW1Kz8R)17<{Xgw?9{cJH`Zxg*BBI(n;lQR+YSc#00{DQCtbHhV`H_
zUr-Mi`1W`2g1bf#mDi3RNhOhmgOo39SK3v{Yh;J_4ippZrRMx#yQ=be+42MevYCmA
zD)WPK>Qp5s#n(P8@H^y$<!)RRzp|DptK2&_ud^TvB7N>SD?i+oCk`O`6mBq2rkn%r
zrCL_xt3kC>w}>#D>I1y^VSz+*BHO7hK?wT|BLh2oTO$KQbKKC-!r0ux$OxAR@k*g4
zs+c*+o=B%n@wF9(iXtRjvP%X0J%kdj0Q3XO<@g&ISdjk>rRf`2o!-vfo#ao-S4Db*
zXpY^OD4%n8OAjSXjeo9Z-*NTj!nCIg-|KgDnk7h>>f9-!pIhIA_iay}nZA1V0_ThI
z8kz|S1Fsj4zVo5vOAD(~pSgvjdL=zwezow$p>uoB7aoul94Q^z^v=T7?QJvnhAjOy
z^WErog6A9GnT>vbrSM&z>&q>LO)scC{kpG*yTz2|+g9g?AJx1cHg(PhgWWdWY%B*h
zGQI5ZVeam&`F>-T#1%i`9~pQ2^AVNP4y{&i8)%;KJ~@B()J#|LCELr!uV=g%nY6cc
z?7%4+C2fZ_TCr!aPSLL3Z_W1Fdc79R&YyE`%<Ycdyk<$#E*HLS(yYxWzTbv6Lk>Cw
zHWu?v?f%Q*$f3RU70-U`aAft;4o4<hDcNN^=xJXG89g&CrRRkRy=9#{z1pgAuJMUk
zPdbEZwdO6JuCbzx&e{_*db>r{9pNx)R+{NL<x>N0Ps#LsHd!zBh02N1?o(#3SF)cw
zs%_nDNl&}^DvuS7=k9IooEd&(sM(<dUmF}*$?s=(cWZFn$k!uR$7LzpFF4w+b+^n$
z++}I&{i5HO?!L5hyUoYl#((FI8)tp(+2T%Twv6ep{8ax2pT?YQ5ahJJUigb~jXDLo
zP4O%2a(}kZ#(V2b9Nu2uvRHJvZNEm3BV4YT+_jaoZ`<2-@S)y&9{RNNiBIKyFc_$O
zr`XY;-+9e_$DgRIZR0+<Rq2h%_HR;;^t;)d>)Ll_ZunQ7gmojja*xLOB+M)hy4}2;
z_JsmoOUcS6b?Wjis`dVGH*eytWA7%e9kpJ>&*9u388%fk)X?Um<_&!Xy{!#Wc4kcW
zx>C3I_76G<F<*U$KD@Jd%HLL}C%1G`Uu~b#UiDxvPuBykT>{nfJD<8^G(<P`f>x?-
zuLe8f8r2=zJWXZp=j*fXoWI!UNs|%EPa50z&RjKfb-ROo>Z&z0ojCmS;QQO1R_ETj
zsN1ty=gt>bEYo+)&Q@7FD7ANjgH^)G3H7*5^6Jg0-%p|4yW0~ZGJWow2HLM{d1><1
z3!Ec6XG&J_?7Ci<H+byiQ^(bMN9QQsKRPOSV1B045u3RUCORc)wt6{bVt(4xjNJ9T
z|K9O(z?Ss4AqnXTb4K{Yj!sy-Y2B-ykCwgoV(T?I$GLQ}%24|wSFIxwu6`JEdsRz)
z<<%{BD-_(mWY@GvV_)N4g-xSZXr5YE+W5s7oz9nE#Ok-@t!zB5|MUj>XXCV5v@GmA
zb9m{N{SSw)@S7`MRaER^GxCDx{Tzkv1229&*!y6_c+sfAt2KILEY9&y+Klf`vC;AK
zZoeT+r1eg6QS(rznfBVjD>St>X3xCi(5J5N2(9TadY)<I)@*M6qH~+H+rJ#s_Lkmd
zZLQP0R34v;QanGaf!uZbx=*!E&N@-}q;9xXmxit5+A0^>zgfMjv(b^jD~F!!GrIrf
zM6^v{la7u%qm1)2t~4xeU3$;z*nyXt%ZGdzG?CZKx9!K^ha>8KJ9Mqp;X$K&h-N&F
z9dPefMEgFAPZ!PGv)VZOFS$N*9}UnP`}XQw&0AJ0i{GqV{?g-K;?Db%+77$@X4u3*
zw&oU_qubq|_Gw4*X^R23TD<o;(qU-WqU4Yd#&zrDnK&63Eqk~yw)taT_Y=J~Ek4$g
z-*aJd*tv#vTR1)PPCYiV&?N3?pOO7<eb(`hJUHq@vzTvhvo(F(vPvFcaYHsXZ_}@(
z(}Qkv#gp$_)=k>6-(}*>sH=TlO9#$T&@Or$y}4Vq{2KFNs+$)1y!2=@b#v?mgSeJ=
z?<{=PaenuxqGBukvllYf^wsn=9jsI`YKe*4IP(*dxvQ^4DkgpmOX(gJ_-fn&t9G~Z
z)%$c6?pu7R@y+epZVT<Td(K`u;A^VNll^DbEZAjrdC>V;-&TII-+guTz=9-S6VGt<
zvA(6Vc5Pka{CGs{yvXy{AN6=vU#-iBl*hi~;#V(Kis|~zVTxi4Nyq!mQrqu$AF^Bc
z=-c5r^R&jUKOQjD>CoQ!&tmsC*g0nH=l!?xKTq76(%@O|#U~=&>^^mAdUx%7%}qYK
zSKoCWe0JojadAaEcCT0IIIBngzzxQKrGK>Ro4JC2cgujw>m%wc++;L%t}##VleNB5
zaPG{Kq>y2&+U(RGm%PU}u94Aw%dyR$*)5ds<tiwVWOR=0Gj~jLr=TIt#=ctS(&FpQ
zkgtQ3mg>BX3oGf7`?;ae>GqKcU#=W%C$G|D)Xq%{TPR+ee}7`Pw)2u4gkO9wt?~K0
z>7I;*J&gpZr*C+fbU3@{;?>Ny2PJ=hdiS8QTJH8$yZ_P)jLn-mZqT8W9j!-Xlw9ub
zRcEk!<okYZ`WdU|+b-?c;nvK0cMc>kjqKMqZH&vs(k>l`6gSc95oY7{FeyPir+a~2
zuQi36&hj_hFy6N|$i->JfDNN3c3iT+a_vmHh89V05<P>Lx?P^y!DCoZ@0a#-8fkO;
zhTmR!QA0l9)9!bzhNc^>8yb=l9;@1M!@XAgm&U6<_4wcvHNVx0H^P+b8B^^Z)EVxQ
z*f+0V(+zimJ2lbU(xJGX>zp_8`<{eaFMCkPPw1Hc`kjTpZ^VsHPg_J3D0LEUU9-gY
z?a50U;yNwLzqIwz&dbf$3^-|9xFLC9a*LOn3T}!lKY97uUNN>?&?|N3p{w;I4}9d`
znO$i;VEd4Ir<3d!j9YwW?(mBj9(DQ@9Vw@%zp?#=?rKeYJybW9Tu8o{-OcIi0*g?|
z=GE)@&jRO5W_6LvD>%0NriaefzWXnQUEEhV{E_y^NxSyWS)V_mTgb|cPIK}P*lce+
zC^hM%^Tk14?LI4do%D8CxNht|mzdyex6;O51s}&Yz7hMN>6RYJy<4nYTyV>~vG~jA
zC8wG^JK?jcr()wzrtdoys10g0>(uE$ot{(2yg7C9WtwI?!9KgF;u9KrsmUb+7UVm9
zsCVjPubG}Ze3N^aES=ieceU}8HM%1&w#!IuX@5>d-|gI%ghvZUPB>89=YsN_SssPm
zChpQRA7Hu3VP3(R;*?8f%RPJSa2nHL+r5s*M)XW5eSc`OmDW|K=*-5Zn%_3>8FECe
z_(k76F<w)<lor1ETeFwNy>*kdqm2T4Y5Iw5k0=Q?#*02%PwkS~s$k<Wp}OEe`wLg2
zi~{#X^?G`Hk!a<rF+(*=BOY&TJ8ayW*pkua!o(vnPAX4l-fWUFE^5ouTYQD5L7Ov6
zZ}`TKwbzWbSn@&WF-~!4;<uc6t%^V2I<!0>X3FFdx<2!cg=!lIzIHA)kG;0N|B<tq
zLl+#|`uzTZZSlqPgPUZG*=@Ug(`9jsHy<Y2C54@M*R{u<H187<v$zQZ?dL_$eA>Nk
zX~}~Fla*3leQDA)`s=&kp0P93w%&a`BU`Ppxo>)W@wz6P|1yj7?4cd<SEilqq%Ima
zN6njQy!rmcLJjB6X1yn!8MpM+(tACFTPmt{cz*tRzg<l}ZScH)bWH!rmTlhW#$gS5
zb$*(A+kvyyCnNRILj9C)K^H#wa3a?Zwrd%IKVE6?Wh_Y^+hKm#*<70!2m5z&zF?oZ
zb4iNdCbcc^RX-hmGGpMnCOi0vX8v7_ay*7LYj4)%QD#WJjI?#`+TB9WymnsyBx!zw
z^^07FoZgXJVmfEhso~sR_D$!cFQ5J4rF((%>$bO=t#nwrRY4MWW?j6C-ejRuho(k#
zU(|QwpB?7B+-G6$;7O(<OGaycJ)4&`bZgsZ4b$Q#wVA(R$XGeK(H-VxFMO@jexYO2
z)Mp=ij_7vVtJ&P?tM>EXN13X6&$m9icK9pbrPhmvUQYj<tv@8(UF~7y^VQo52esNC
zroH7;53Oh0BNL*Qc6uSW?Q}kH&_DxWhwCqz&bpEkZDHW5SWx%%0xuJ-(Zb^c3$%EN
zk`oE`6YAa3pSh-G{e{~i_|2C%=&p&*QlIy7-E2-v|J2lhb;F+=zgRSAjiJz|%aq`b
z_ie{@DS6v$QrC;y8a-RBaN%W<Nyv3a)y+3u4EOaFIo)vaI^tk6_Ex0$)~bn~D?&ZQ
zV^r(4w2L2gT{n8{_1+Kv?sIQZ`jofD4*p3JbKWBL>>JL@_)#Syoy|A;pT0Ql@Q8zn
zqvD#y#k4jYyVqDX=&w~NAA*%n<W0M9cc|?J-k0`$KQxtlI^DU^9TSBCkGc(vd5F(m
zsngr{soI29Q3j8FTh3N)m3XV0dhbaBjjzvp>CEY7=C=Ko_3Y8wjvwx*TSwa9dP5DB
z)8yq+$2_v0-N|RbZn;lu&S$-QyY;hmmyjX-9!wvXIB?&hTTvhSjJ&#Y!PlKF)w4IR
z-KA-tKXvP>n+0Dl?0z~tBQb6Iv5Y}G4zKIF?%3v(O-CE8^4~pAYs0(aJJxir`)Mq<
z)AorbX`S!gTYxQnk}|&Wa861@Z;s)sHFFn_e)y!jZ>M>MlcE)^KDBx=Cm?vyC98qL
z9i2<u0%L@?mOi(AX7wl`Beuz3&2FnKTeEoJ@pds1%Zvpn;>WLruZ;Q%^Xuj%-FftF
zU59x}`m1)DigVT9tSiWV^y>K$|KWLyj@Eg1{IdV0`M00izwJ9vJ-k=f6i2Hj`Azgw
z8ctMIZLXEOy>rI3uVKArc=Zc7yg|{#>Hex?^<B(-`z%&l`KtI~uScVne9lU^dZt5S
z>;aRYyHQ%1UEDj}A3M+dQ~t;UCdqc1R^f@QPABb22v{-wVP~}#rA;F|HGSVs4ER)M
z-PRAs-XzR6j&(kG=G}sirN>()B^+xwHNB@+=91&)Bdq+I&;7jnb@cqGZEeE_pB@u;
zJm66H?BzM}J6|>*J492+56F37p{-+d@Z#d|qiuSAD>8jLATQ?D$AXSd-;(57Bw5bR
zzH4HzB5&3rQH#~t#XjGzp1*0>Gi}q7uBpBj1$z`e_gE2sYrU)2R6+BOBV78X&l<H#
zA*o=yMP$+?)0q8zJYPq;H#ASWcl_Z%PR~q1kGb8v#4WZQkI!os_wY-!cGQ<N^8tJ3
z7U4N7Q<B%bcl<hfqTp-Mwr4M#h8reMo%K|O&x=ypv0Oi8^Kd1}qDF4Pc_yl(2IX8i
z`96A~r{kp1poj4vMrK@lshpYJhkv7?(gt<&-eWUeCe44w-8fQ|l^;4SXYVcbsI-<T
zPFLQCJRcVyH*AOEp}+7<-Y(t5$nimUb{{@*U&%3Qp57Cck{vy6G(9w`B*o&WR(RLv
z>pMmTKfJi#zwfta)3vkX+`d_l_Ni;-xOnb$+=_3d=V&<X>hrM@&%n4Dk$V?37@;0}
zqu;_s>!N)ROj~N=Eb1FsU+<m4;h~w$>viX<o-Mu}n0`e$F6jE1X>-#3$7#(uWjy)Q
zf-X&O88oizYkYEeQmZRPCsWcVW!dDZ4tGzS`FTPUiQ5S*z#-6eq1j>nAPc>#?Y@Zm
zukVmnN912TqsZSZ$v)-6Zk10Oz1ChF&~0o=_q7*S$Z`5iO>w)?YwWGegx;@*D*9~i
zx9an{)(SE0E<IbeFKc1jPU)AAUtDq0?)tvyc}wiBD@j)M>M+AI;=<wNuKQC94w$JA
z=`in3pU{t2UbeqGD)g=69p^ezZir^wbT092zoxThNaP`{scqZk-g<IUu=1My<FoVQ
zE&1A^U;L(?wtS!~o@!R7qhS5I;d+j@Z#r~0ZI~c3pEs`SlF7Qe9rw*QX>j%I?s-Rg
zs0mi?UbtmIha+vQCQcsRbVJFZDW?K2Ul<vwvSNQ4=bhr;jst>w_L_U6cfEdjt3GsJ
zK6QZSwDW7uKHBM~ru6nGpMWA{^X>k}Tjq&Q#2OEc_d5P9+Hhg&rq%rQiD%wsud-}A
z+r`T5@TE_#GxN>V8-G5MzxRfDikfP>m;HJD^LNcy*<n-iaihuaSGYR_1}cB`NuI5;
z8gKeyt?G(!n;i)bN52U1lT+gkZ~8Vt!jIEjuuqtBIO^JgFQZhNbW6P#5v_A@OzP|b
zVXbxqoYiS$r*QH3v^55=zKoiAqes23e7$$x-8CEb^SqSZ@aU>H(T$JaX*qS(@Xj6I
z+!RI69p=<hJhj!h*Y$>MHfU7$pl7by`TKhYYg-RqXPdh}Ywnlq`csMrT3J{{8ys?Z
zvvw%oHo5V(<*M1LhqJFeZWI%Sotyo3m9^Gf%gotnTIxq$PhOj1w%JNuTd&n|6?wz;
zncYs#s^jNaq&Ymj2^PAdoyqmdMa>M7L{WS6UN76#NAUIdm{%8FUc?HgiG5vHW{(+P
za$)}=)xlr(WsT)Mwu^gaq&oP(@s+J+E$%b2wEM>M4;Q~Tj`bh8cYpuj*WYgRyfbcI
z;my*&=Fhg>F{`A>thpY&y4*iFBChYVVFF&xiH;9F@fn+DKPnk$raE|kJ<sK(xq&&)
zg#G<vy0rWdec(;^r`>I%eYPwg=@}K-ZR_Wq<Fl`R3(9%6-95VJC*7-hQQ<wcvL7~c
zj^3ZQc<(peWplfpPS`EXn_sZ`tIf&-U!V7G(bDZ$d`a*NyK~J{zO65vJD@1mPP6oF
z=9e7B+1m^EB%a)6zwGMyVJAzLx;Hm<H?KFXNyhueW^W?@8r=@h=No_BHhAv){8=fn
z;dRY|l2XPG4NqTRU@&z4>#WpJrTq1qR9dLt7_h?moa2b|Ya6?qyJpsQ@q;!ilFcH!
z?tIqW@AZe~MlbJAUT|l0j=8XD#(|82TQ;LN_gLz@ZsVnR?n>ti@80XoUu=KzWs$2v
z$5}m_Jx{-EH2>R@>s(R4I*-l0k9KW0>068K$KOwA($>GQq~+RzwrM+#w0|dQ+L*7F
zx6wqi&yWX++@^|Sc4nn)^tc$!o1uBvBSU|?bz+}R&R!<AGac$#&Nb{)ulV5Po+_8W
zI<M>Bt)b3Ar`16`<B(Dp|KjO&?VdU9c(tl-T!#+xJbeT940CCF^sn}NQs(De;k`F6
zZL@5c{x19br&XVgI-;rm(k;i}n8KuY^YU};+w?cR?wp$7o^W}&_2<xat<Uqdw~SSL
zK4jZ`mt_TOvTsD!E94y5t2y9rVS(-1em&2Q-BSN(y7}<iyH$pDi;H)8CU`r;F=cVT
zbq~I#>b(uwsugx6ZGD^2rn)Ql&l|oeFFE4eG?zM??%!$A(nzCyR-3$}%?nT12Ct}J
za3cgSUD0*LOV?@7y2m~%v}*DB=$MY*);2XM9IJcBSAJK=aXUWk>@?=!7~KVrL%*ai
zZ@+WHs*$h7Mo#XN-XDA1_GUk|bFpLcy`M)<cPW`y>=)5<#p8Y>BIh1WN?hx)cVOde
zq5hf@%M$_1-iV)h8?`7>T6C#|w=uDOQ9mVzxT6n;opvlf?EO6V^}0UivmZWH@%^OL
zO})(>{k0>eo#=i4v)jIRqr2>ieYMV6-ea3^XZ?jM+^5vv-|MJu<K;^qI}aS-kzjdv
z+Ldzyr@r6Z?sDk7PH!_m=N4TJXt40$f^*&*vyx-#b{rgM-}{!^aEtX5M=1$A&GE7c
zoYgJ#baSN-BTnlE%+%~<-!)|p?_vCfv(wtIi<?mR+I~T#wc;VKgD2l_Fp8XcpkPj_
z)*;Ew-m{eYJ6y{NHMual`H}WhFJ0IhU}zL-Jm<z{)k~RNkIZP*xYi3AopNY1=6d^Q
z+Z~#GyTVO5{Bh+KjeQ;#bq3VyUEsV-GiYi?OyCLKl*LLHhFG?flr-yq-)o`B`oN4v
zt+Ve9kI^Y|AJ{ulq8syQ&eUN}%C|2xpYdw8^-NKdDH$CPPj0hj<knc_(EVE{A6Huz
z@^n#xZgVX=6|Xplx2H7T=wDj=+^Xf@dLv#XCFyp*WwSVM<;RpGV}lkJj(ZXH_;cHF
z;ZLnswmszZB;L;V!Wh?y#XWQ~KItW#Y3Y41&S>teZ{jZ>ClGzjbH78UAIR5#WpN=Q
zZGFc#2c|WP_Gz`SSUW1FXNdfH-;qlS`Pt&OMIn4ctKgz>`aSU`*}L^O$3EE_I=su=
zcbB3kT@`xx6&Z~!G#D1kwYu7G*5LhJ{s$jG;J<HO9@qEf^Slp3c>J@7wfo=oIP(6J
zo^q_SW;*NlbuV7G)|$6-*ow!~bQrSuJ5wGXrOlAF)8hxbpG?mi!S!FcJpY;|uNP!_
zyJ-`6{8bu{FN)&hIP;#j>+*?lc0I#=czoX(9>4$JI9U7530&8U?rX5JL=zo1icuB(
zg9g9Ygve88>DU|x9GjU!W<!i{DJ+^6yfekY;nDPdn>qU5jiyab=7_x)P4m>OQBxU1
zM)Rz(%sqy*_E{o%M+}|lw7{+IF_ctn0po$&>A0sAdj5%_cZaRuc_@Zbu35k=Y&-QF
zZw`e6+iBh-3ry7CPO4e#Z|qSn^^%)~pOO2h%-If4x91Q!SwMGr2DL<);<kJmed%I>
z-VW(xbHf}jozm&!FJtB-DJ1>T6e|v;Qdt*sjJ%OXR@UYSbWf)Vea+zUB#q?1n_{F-
z8g>0*j1I$8QomvXwF9XX5N!gxeyMb0g&BO`q|&Q+BeZQ!p*PIOlakX&H^Lad98+nW
zhA9rorqP0aM)>?OnS#8HQ4x_snL5TOoRms?(u|-}nM?-d#>gm0rH74Efr%*;<7SK@
zYAK{2V2JS!DKuJsDjx4oB3~C%glVUd<*upF+mKB0`wTGaauVHSdDa!lRIqs}T*{NF
z<h=o^s@Z&CWQ3Q)SvwyHMb=5wzR3{l%aZB#00V^eN~Wj5Q}HrCnck@YRWp+)+HEQ#
z6p|_DlO9fuPNcg@1{jc$L={DBX>ymfw;G7*l|&~u0&d3>slPiRJ~@drrV)AuCX(|8
z){jCGwdEN=qh~T1_9k@sm`H-G9<1GVQ`Jp<%qdHxiqBSf;Fd?*HdvrYV?Qm~Z3zE~
zd9?nBK5jJS(7Rf~i%RzU#Z|z=+1a#HMi+rGnKb5yfWvFEXoHVFepY7FoqHmzh|HnZ
zLAprl%%p&mB7FLnMIUzxxM7t=`J46F@1Sg2C=&4OWfsLc2pFxKO#>%P!M4y0>RYIb
zjhUJBbCrPLXIZ3_s)K&LGwD&74w9@g$z-@L#z<vRy{!%sTr;VuNE`l7GswtE7vT>x
z$S`aQBE*?Amd%gKSJLUq4A!1vCN24?jg3wjq$#Hj@r!hFiq}DDR3^#yo`RMa88jwN
z8-Lt0C~&?eYRpq<!U!#_kV&UMw{_6#QU=NROv3VxG<uk-jn!+@Y3=gKcr`ek+J8*K
zmJewZv{(znAEnXt4oz&ko=WefwDDX>r$-Mo5xO#s)`w3<Hp`1&sflp|(&%)pCLCJX
zKHU#%i9c7L>TmF$e;l&8FZte&@n_%fAWx)erb&F|OIxx;pF1l{!cR2rmGJxs?%x_F
z3|akyN!&Na9%7u;ADYAblj%Ko@w|lhJWuut^Lgek>x+4O@HrlDe9P<1f_a{PE?-ak
z+VOZ_7oMLrk?Tj)cwVU#Z%?T|L)Pzy{@ky&x3hVL^>eqD=RN<y^Lq5-?d{#jb>A&4
zkJV*p^6_68$8}w2p1))X=atsH?)^Ki&z9%oiErcm*8k%15O<!hxPkM9COogni1Yjp
zd|W02nI7ngxPx5psmk+|4)OSf5XS$zPyf}i`xs!)$LHwF;*2Z&SI5Tf)xpQJHHYgh
zb-cYPvvmyi{r1M{;MZthtcPP-@z~xZg}58m7%=)KneWp=Ww&FL++7b>FC3(CYL*zV
z@)#AmPlv_DLdqQLit0UQXid5^zNDR@J{4{#tS%+_(JtuhQ$lawJE3928Om{)iP6i?
z&>tNqXjT@}*AX+Yu&9`hoS1=ANyW7Jqa$0>7n5$*3~anmOy@_=!22<0Xj-*1K5Ct%
zNA`}G)3=!JRXW1nrI;cT9r01Um;%!rAvLUsE`&@&$o$i^U)d4AY>VjMhw1o!x`>n?
zI%4v+B6_>s0WLj?s4?CVNsUGH)nYn^WEIg1Upq|jKSjr8IH2nNDJrgW!1zn2X<?Zi
zo@bw;sSdLd(p*7DJlqkOd4&eNn*sOya=JZyIxe3pqlq(Z5HagKCGD|=&+2pJ0b5)?
zbB@$c*um}ZdAfho7Iml3(aaTgnAP<>t@&;X>7(Z;@4OABO+UxhVQjt{T1sb9?2tI=
zJgHRM!e-ey8p8H@G&Y|j7Y7^c+Eq%=OspaGu9Rj?w8qDWB}CJ$p|hrxB1M)+O*>0o
zFRk$7YYACjw1nHXv($9a23B#U6gQ6b)AbznpJs{rO(mqIYlew`is^E-C9<qa$kxCT
z?f=;4GT#E#j%Vq~I7<XF?77ntpMRgFd5g?&q~Qz&$yh-q^DMpkX@;P6XXrzl2`+ps
zqW5|hkWM*6rB6(e$3C}AISaH0ogukWQ{40}rZ>M$vHMgp`PrG{`GaEWb=Cw;tBYt^
zlnDYq7STbrzht3QM8Da5yX9dqoo2sBl0TiM5PxGfznrH0Q6{K-cbe@xnINj=G+E@b
z{4=MiO4Ahn8;Z#Cfg$|1ouaZFd+e9LL|>0sL9?TbYWAD4{q{2Il|L1SJ4$JUvN2k|
zl+vHoQ&GFEl)mkrik@*L)VPV@+Vw06^NkSQP(mpo2DmO$LW9m4V?#wLbqzN_=&=&Y
zUuuBWOG;?yaKOgo40#?hz)HolwDiB<OQI6$^O-RJ&>4E90bHy+L(^OI(eHUNIqo!s
zgKY^7o&rQ>pQY7Kgc0m}FjrR}kynbS`j;LGeif0uG2u8BQ_ttD?rkxR?@zGOE2b0U
z*nZdUBGO{>@t>u|WH?G6%A<<uXm@>tbQF=y!?_ZFUjI@>;?GKJo=E(_&5f;3+4tUL
zX_UkVw)Bmb=%VbM5^Or0F40eJ<vwlWmMh`kK5(BXuw$In`<ZinQ=dJOx<Q|K{_Y-J
zH!a~@Jdh#tn?L!yZs<d<s}^#7-C|z<Tg>&d#aut}g5@*+a&+hI#T@4KpWgF)RT-|U
zr}MnwavWEmXK~hFs1)}>>mCf*cvqY9{A(w9{lZ$#C#~ZBwl3%OJHUPL=3dU-E;D5H
z!-w*Aef_y^zL_EG$Fz>upZ<T>KaAI}PG&l*QwZVt-UoU8)^Yqk9yrK#jefkHdv|#|
zmuwlbc1xO=&g$DH@cd3ao+tmm>#{X4HTZ!|IIY>$pee!?ca*cSkv)t0t2q<asz2!G
z9CcJy-k~6!$*}HonVv5*f#;&D6k6|ud$X&EcFo3#>G$Yjv=?kL8|a$f94wvjfRf+L
z#?)R9sCJb*YM0-q9mCw=o>)(pPJ5tn#C;02aL1LldQx8Fj^v7Z${gc?)~I^Q&2qz-
zhI;zF%N37*-lOeRu9&&@9^Fx%1%(N9B)!@N&v(_4SCAV@yWFF3-mZAK^B$GA&cgl&
zbrkc)6)k%AXhfqkKKH04lLlAV_PR%tp3KCmz*;)v?2Nx<HKg3(jNREaBxCFfy@hpT
z7c&#mTWiU8`AqotuB9d9h`ju}bn}`sHcQn|x0$mb9#BW_``EmZUrjGvo$$e@n$E6f
z^G9$swaIy4dQ$^Ew{%0%iHBtVau!}sd_>($98nTjPXpT>@uB;Da{WFXZd&YmC(Xdv
zr2F(^x&z8y*O79`bQBfdBh@+6q4Khh6fRGPc;P*=9?9mx$a@q%a2i(3s3WQ9>5y)&
zqxOht7+zXSN7p&PL!*u?G##)|w~lfh**w%(M<R`B(CA)EgLm7)uA!QKKb?l%p0%`R
zvpq_W*OHxq9qxXtCQBWA+;~?*H=o#{`=A=?x{f^`h_0cvQg*nvt(sIe*+BlzT{_uh
z1KXIp)KA_P4fF5PnowKx)vKngnYMW1SWS;MSVM1I6)p3%M(oEb+HlJT>zwaW<_8;0
z=zW*Qdsw0Md=-tfw!-}UJCwAI?OR>CLkDMCV_RSqt^8n)+kbD<N5KkHUsO`$Vk;!R
zzeAaI*6<owMY3Bg;D5G~mRDHd>Cj5*`^gNgg}3P3R4b@=R8qe&W|;r;7R?-P0r#%A
zN$!vZrk}n|3aVyM?s|)U=Gx=o$r>uwwZ)){TAJF&3Le_EB&%SGx88T@hPNqRu<`E}
zo8sE6DmrLpiV^G#h{-<_q$%B@Rc}qv=3GVnn~adyR!Pp!P2r(>hfcgU#*9`rE)^5R
zzpJDbK1TR)?KY*hnc_&-JM`z55fsK%QqCD;6s)KuayEqahTD`h-w;QJ-6FL&M%dzT
zn~J8Gpune+dX`Vcw~||AJJJwqWp9!9Dnq1%+@gOg4bXJ*2HpN=1oMDf<l1V8{_k$l
zVXaMke?v)4;?J)8`1!1PS<IK&y3W7WU*dmjMg~jpTK^pqUsyaeRl=8j<ogVsPZ%<v
zTvyAnQ;+!!t3Usdt+$yzb1FygXW5ea^&=TF{Tg`vn4Y|DQ+cMuZ<^QhyoI-Tp4v)Y
zU;mTq2VA&+CeP=5g9^`c9>dyUe)aY%%V+*|Hioww9?9d$`*?pV&vIQciq}8g%j-sr
z<~pwOyjP{X-)(2PZ=Ues?O09c{okzM_0#_{&id^L<Mm})y#AIy&tDeD>*I@fd{za=
zWt~iC_o+``-rjyGo+qBq`9x1%KcI~3z5l0of6e*oB!;YCm+w5!xSacT^mN|7-y1`N
z#Kj>v-lLmAlgm6PuFt~{Gi{W4cw#ci!`em{UKiU)+$O+&XcHa3WsHw&8|iMl6Z*|)
zCc)Da8da_IvcL<W+uqWRY4gzN*G89`=HXQ2d%AU$?eQOeOHJLqaAH&&8GrS}!~Jh5
zp<)gWM82cOr5-pR_lC+E-Jz8Jh9bi~@ZsHSvaj<%hTR)di1UE5#T$CkZ8oOAdqe#X
zxFPOOE7h!YgWaUpwEm(eP7QcN&#%maJhhTpkUOduw^GX;SBOWp((;>bIQFZRzTS6*
z#*|j-zGD_r_q?RSZf<ajctuZ_y5Q;e7Am_p6CD99botOM>>d7+dTn&a)V5bt<vJ6;
zvRWwLY8KWzzN8TeE*R+jk}e*1M)jf>w93x|E9>6SB3n0j`Mjk_HjjjLyrDDlF4$!H
zno?b7U|FA58WrdSy@XfP_t8wm39Ynb$#lH8c}bcDGY}s8lHz@4V6e+8av0_etMFI!
z)6)@}%U{y7H%{=Wc}ePm6BN(1(5B4kSl6wEPDnW-b3+SFu9%L~WiM!(q61pR&nd2D
zI#yhIK~>2Pc&z`NlE*ut?>9D1ZF?-c)=VQy91xuMobDGn;8VkMTK>Ww7w$FFi9HVJ
z|GSwcXWF39s)@GcJ0Rw3GyVNwiy;<GG%j}<{*^u>DzZnzw`bIH!XBs3J|j<kTinWf
zN?s~<xE9z%eUq(WG~p>N8sLC4de7+7C>soEenJ~w*}^HYiB@Y^qb=z%dF{4=>fI+a
zovnA*oPJCS?DxjhYfou@q7_ahKc-k|D-2Ize`oh>;9U2Z^tW5$m-1s8?qG$Z=8e?%
zy%lEZJf<fVR`^@cNU^W1pf$LWX4aS^I_MF##M+@GwTaFtF&|cWO8f7y-+e=#()ce{
z7?Jao0w$Ux$Mp%lU_P%U$J)s?!>kF9soCBF*YzKh#eGwJ>Dx$km(4IdzL6SUn_%OU
zhqPs@IiycE(olah#4K*4o+49d^?yWuX2v+X{{g8*nPcewN2F<Eim&4z(brE#C>!yB
zbYo3X)BccXvN0Z?eL%a+*zW{(MsfdfW1Qc|=JmZsSkKlsBVh`Cr-zg<!U(s<H&A<q
z5!|Zplf_9xG%RYMCr(rGPothjWgBBfa06{L_mcQ?#Kz$ge_nW@TH>4b|Cs->?|sOH
zaEZ??+qOlb`+eIk;rA#}!tI`=NbpxIUr)zeX8y{2_oaD;q(0r1>xDs#GyOptL*|>4
z<}sb|$O4W|OSvvRiq{SJ#&uJ7Uf(B>w>zu{$MZIP-{o^W=apM|-p;GMesLAogAVg{
z6EqpJ{_2Nw-BgYHx3??TkIFKgUGI-yyq)O}xc=%S)7f|zeB*V8q&a>a%<GT+Z#*x{
zSU#(_{BIs%`R^z4ywwhjvwkNSa{c~L&NKe8e3oZe$MRU+Ya6cnDe$~y`#Hb<g16JB
zjqB6aaa~uL>8yU05%XnMZ`{mvg$k}8(Bs@PMcW|Hel>#FxphM;5A^lli?-)FShj5`
zWI_kxXNDz=%DW*|$_T4hex`SZw(zBP@?h)7Bl|mOV7@ydg)dZSJ{#J7zLCmMFC2XL
zo#G$QLAdM>5~AiJ#``BNVC(F|pT3jY^VwKl{hc%>&&KGL->K)AIk3?EPI;OhsQveq
zb~w$(x_;luFUtcvR(zuhkq1U~ex*K|Zur#i3;o>UiGKUOQcas1CWn5ZCM6HZ?)yS_
zn%(i#?<;wacSqyL&$LS46{Eg%(g6)u7{_+fvLWsm*84L}H=l)*3pz>by*t~d{7m6&
z-CaAZlTNt1z<*{3*}rf>O8*Y}yKFWV^!-jsY<(Uz=^M=-G7CfFzfkrr7q~@yrr)z?
zVr0x`l8SYP!m|zvj&s4}>7QwRt}{AEb<*#J&S=@uL3Vwe5jLZPJXScP_)|N3p5}~s
zi#jRT-WkF69h50M1Hr-V6tiRoo}Owa?-!2j+}S63)8UBuk3Z6Zd`A?Ne5CX1ogl=1
zBKM~0I6C+vO}XL-kEV}w#KZ~WKA-5@^Xc%G{YV)p_89TFjSiJMz$)=Qt$XeW$G8vF
zV(x%|ksm0R?MwB$)kd5DvGwx5cN7sY9d`QfX+w}bTJOE1lX3P)QEnrztZAt1-A39M
zrs3S>cQmWb2D6&pQ2y3wh?)70G&k9!tLi)Yu4RjE6W-F-jkZX*_L_cL+F?ZW8+P{G
z4(5;Fko!b?Tnu_k?}pmoPrujnEzlZfr&=l2z!pj~UsGOy4Wa^G(=rn)?0)--u8y`r
z9Ge%*=CJ3ni(08K`}-Sq_!WKVVTZ%x-;hUN8_e%`P02m2@j3Q21+KP)MM^8(Z?#6(
zz}Ix*zBw+xdPSZ+tZ{&?8<zey!@2O6Bx7rdSwCOV19$eE*{PLAyfcI0_LuaBJx5Wy
z*h1O2%ur|lk_P&)bEe@fw7lLFs(o7MV}==0FT5bxVU|#P`jVz5nBthz3o<h|K{qzP
ziRYW+z`_^go@9#Z1uv-ERa4BJ|AH3U8{<mLGb)NQhQXv}l4a}d13#N7ai%He_j*ow
z#>S8je@1EdjF9U3j7G5i9E0)A^r^uRXT~;BTX*LBR?n!vwlTs&p3#({MrcuNA|ZDw
z4ze@raq7lsM-zR|pJ!0B=rkI=Gz^Se4r9e5DFf?y84#~;#-+|U$o8s6zm!OLi|*iQ
zX*hbGszRRWW~@uA!8P;E82|Ymb|{47N}qaM=oXImukYb$_i(hVsYmUEaFo5hhdB>6
z<AGWoa#wGL?14I@dTz$gwp!>-*^C`mYEd?FGrC`?fkLSmb@yxVC0mRsORCY>8HRms
z)zE$#h83#SkaG(|%jCPTKNgB&@4NVG8Va$)U6kd8BFLc%rQ0^a=>8q7mfD08lRK!1
z4uOOJ9cb?f!Az}6e2)%BRL@Gps|RCb+il#d3_?>*CDc9!<HoK^99|WI)}FU9Iye|V
zi*6xaCm4^bZo;P|2q!1sg!JejD9*frG1E7q{O%1*8?h0tA=lA+W*}Tn-oU@|K*Sha
zgW<#tc)093)<$hWhtqZVYixjN;}z_0T8EO+*D$_%9acQKimw6d;1PNSvP0Iv$u9@;
z3w+`Iz5vF@ec;ZX4_bX*imJb-vGbu1LLVH*?{puGom7f`2Ys=9%xN@?_GO>jMYNjw
zvu7H`7<0@Ia%aj>bR_`0Mx2HH2|pwTNx|H29{Jj*;x&7&p>k{r%vYMy^oF<8&(@qi
z%=<#R^ViacfAR=l9!={8$fL+?7oE=Rj+gUxlTTn*6o1)8W2F94n12F&RQ*bOC+wm$
z=9OmhJE`C1PP&~IPraPKkXJ-J_0Q|1Y<8~qcFY&5bcv(q*<Z+MU>rGxe4#+;cruFp
zPS%&>Nc8z5-59!qL_Qrf*=z?rF8)lX>vvF~%2%@cwS$W0f1m@-v1I7-g}y$BC9C}(
z$wn%c3@&t1hG#5w_G_mLYO!R?JUDdK4qCnb6Ul|gQp?K@lDZy4?a3dh<yH)vC*ITk
zl4x4my@MQ`W2j8y6Zst8P9tZ(C)-KeX?ed+N>Yp=IipY1Q$L!j|9zl-Rnhc9)IqCv
zY^S!uPvqbfO^xq9QNXuoYG2zyp<SZs@1b@|oEuFK7JQ*xuPFK<_l0JNqiDNbJ57*@
zCXe{<RFk%iPI-MN<v)=$?Acd3_H!FOvHM1AcWtBTKfco{&26-E<}Z5jCX$|?{XxSU
zB59$|Z@PRWl0@~ts8{c8q-6hx>Ys0=jP{?@@;Z{%8FoeN@~tE@|1ar!Y^8Ts|5DS0
zt+e237o2L?N{_w%k$FJ`4SU)JCh}X!`d>GcJl#T%Cw0R&qX?Qds|)7#k05XTZuk`)
zL0SX5Blp`DQu@{%6Lq)H-ml$|?XiW*^}6H88g@=jp$GaO4X0-L?pWxug<eYafI*)v
zG|ov1ojbzm&bJ=8acnc)5cfcu`)2y-(gQLHo2koNDXh2?PNr{VV9_9^l_}Dgtg@M!
zC&*x(>1HyzCXLuIF*V(i!HK)<+;yA`ChLo-W2`J5PZZPHI$2cB2&1zz<*?^NC|Rq>
z;zddr1umDvqPwAVew{2PDv9Y)o*az4S-xUV$eM+bcAuWu`#p^Qwe-ZH{h`!%PcMiT
z2Gd(dIfUO2r4?Ix;nTTI^xCQ?Cg_Kf*SOv|xFMLLwR&S&Q!q8%mxq6P5cSaMjm@iq
zX#JAjm}D1BUy^!Z*{2|OF0nV%uWh73e!WrCHHh~5^?}l;Kx&CpK-$#xq-EI~wo8M^
zgz1sSf%Idf0z^51)Lm5(sTFJ4JlzL!=Qfbh@V*$ByPonp6|ic=db;qUFGk3%C9l&8
z*yX&AR1WsV_40KjyNC?_K1;+H|DFav<l^vi`xET1i$J*NC78<vA>vaZ0)7PG=&55c
zS+ER?j~zpYXbE1k^JX>27NRroI64<DMDCX3I9s{^p*qLWt#v-MdmqQY-Se???r|vE
z&S$=T9EQR3@q?XTiwv2Es>T9j_nL>bF$D<eHW!+D1&|st7Za+FLV30q{MQ%YkojEP
zH9Lw)C%m9P>nKK@^@8ujBdEPL2leL<qyF7&1T-GP6!C1#Ej^6)TV~_U#6u7lu>FD=
z{Jex|4SUYX)~}u(4B2|~-+$*W824GqF>pOYrU&}`@3~tle?F((l|Nq#{>kxZABJL2
zd`V)+@>dx1{oa3D`98AQ35KlQ-UB(RyKsHybG~1ku#E2uKN`aMne7~%HuC+5*UR~S
z#%c?`Z*kLu^UiFxPr>^Ac!sT$S-&|w`MyQF9pBIRRL0lUc1nD`yjF|zKbd^py+|x?
z@T&V@c%8d}2RaXF{hAEqgdL>w`Vn}V6h|W_tcK2waB|i1!G`IfB=y(_=Pw77%WWSN
zC~u;=am$gO%>JIw`N5)#n8tnggKkb39k=wwz``(^|IiPoqs26|cK`}!iHYI@a7S)4
zl{f}qYOa`mO!bHBWHD8A_s7EhV!CGKkFl@Cl+$Mgt}))M?2qqNVj6Qf0GjMvYz3QB
zP%5UcW&ucw64Rb70c`(IOfxh6@!m?zp1b+uaJ`uH@B6{nT1+xO{n0c{O!5N*@TXQx
zySE1*vHNCPf4~ogbz&+X6M(0|VluD^z{dw-nzhFtgMHXI()>|*NlYPPf6OfwQ_^EU
zwEK$5=9NGDO(Lc>_x#!WH)8Tt3qU}-nEE~Q$ABy`)l~SS{Ir;&ulu3*R59HS^v9__
zV%oLQAJ49c$v>Qp?}nHjxA^11jWGJ9>5r26VlwaW!^AwMTLqw<`AL2^KSbq->8FuD
zCVGl#u0{a1O%hX|=YCM_C#Kc9e)zsbOe0wQGaJtWsQ}P0G2P4e!w4BM9kKC)`Ytg|
z*7L^~c7I1F_@Q;Vn2xh?AN6AQV~Zb*dW$Lhn;&u?Gr#ij#j}TDbbUksjw!I~t?<Kq
zIWhH>@<k#$cYJ@HKTbagBbz<G$c_o4gLiyUvNMcQJpDjl!bqyc5AQo!y{jJvUk#<7
z4u04<GmJLVaxAe4qgj!Dh&##7Gf(kHbT9UPi-9ltEDa;wlYaPkJ(Qv=d~s|}DE%<;
zMQBYZZR_s~=Sg7{!EoB#Fp6C0hr8LVT^V0gzuH7TyO*P&DU>!`@P+RBP&&cZBxl$;
zH>u#|upJUgIU&A~wF{+h^~+IoIF!nUsKMQB9~t#njH44zQo7<w+`dsl%RScPK*mLS
zmAet|K3t+~?_l(JR6&P!Zi2J=Wiq-Kj3-ksQ}VwM^!#+0_U#Nof$<f3(inmlW|wLE
z_)VB<ahXnO2V<84dzWy0FvfPfOzSU)AiT7K<jx0Uj9~@sUl|OWstO8G35MdG3Nn-r
z!jZ`p^zCjC-VdmtnB~FP*;!82Y#g2k%SrrqBOEW6Q^$pk@USbV)qjKVs`U~{hXu0d
z;pOyo??#-gxkUZjI-z*o8*>XQ;s4GHPT$#iXXZ0z?cBFAbGRQQOyR%xCtP6r9?U0x
zC$oJG<{Q`4`Tj=jCVsx-uU(QPE)&X-wWFiVd1(pX4_O(-@#buXtex#YIlq5|=S}hB
zbtB$!oco6BFMsg%z2g|Neiv!7ep&sU;d~!_axou=?<_vPw~1WO`^5Ra&1^q}ji;=h
zW1SA)$M`#hA=4?6bN&DAt6aUruh)Go--oc8%>0h^JI#Un-n}-yk071Ieeu>QuGjYF
zKDz85*QLEUKRt!t$2Jd+0p(oZk<Wd&_$Aj@25^7YKF#%o<CuT5e$!02j}KYHe4dRr
z{Q>v)@()~}VZrBx&nkRgDA~yQxrcwz<tjVtHsm3Sl*ePkj?3t4H5dbb7h~$T-cY!G
z94d;kSQ~T%=h?ZALd#stsgQ<!LLQbo$Rac|4@&Q3Q6rm=CIdOh56EZxpK@%kY(KjG
zkVEi<e2j^bLw|PuX1<3UiUaq<IZO@%4(x}GoE&ac<-x7H9Nxy|A+tah>J53Qw3WqH
zr94>K%R)^q4~u@vz~Rn5ggll(<eGgbzbu2LzjN{Nung2Ib8%2n2H&*zVRWf9)GzME
z#D~&sk9HqK+0q!7y%(ANq#<6i7uh0d`1$U|wxk}|)UXFtZ+oD*bPp6a_JH)Xz4)cu
z10M@=u%>qpT+G>n_!CknwaUT0)$F<}bFk4(3Zv_?;s3rnY)&TO#ArGAhh`zMSPuW}
zv+;}JGxoXm+9L<ck}P~+Yqw{zSqQa}LtI1_{8z|f$LUP8PLzX}e-^Z_%CfzLOh{MA
zA|Npn^R~(2o^K{QPbPy(hYZxp$zo_!26Q&a;N<Ca6#2?PWlIL;4V8ghcsj)9GWcAR
z4&%ep_*ayMPt&Baxh@UbVbWNfmxkR2(&*lvhV~mhFyTciTPv}(ZfPn8FYJLCLsH@Q
zT?)y2Qt@C!55(L|!K7PKuw0vpBeSJYQIU*C@={2#PeFyD6mICG;Md9S?Acl}%olY>
zuQAEcM|YI^CnHazJ928{Fk+w#+e=D9<5PD3LlW`4uMF%c2};e<STr#a*8OFW^EMH-
zFQm~pIT3zqrEy|BLoK#e{=6G1GSW~xxEqf@vCpA10q+xf;Oy@NEOG6DX-x?z(&>Q_
zvvy-g4g1X(x(oecq|h)W0nW-&sQs}EBd17V(#l<^eA68}5AQ@$VRu}+w-ZnHbw`W#
zE;zpJhU0bdAocF(|9vN(6?cQ_`FQ-C+YQk(;-MpS!|65gn0%)zt{29^ptUQOq{QJ>
zVpp7ZiAVaXu84ZK12NOP;!Q~$bW*#ZW77^Cjqid8{T&dtb%9304s4#(1x7AAaLVo<
zIS-1(V1~v+qM*628+xY2;E-oGn4O5h?AP5O`zr?L)Vg7gW(?%}b;AL#7#vaPhH+cB
z<B3c+$lJ%j`e;|YzY~pv{#`Nh(RP&o?E;<LXxNu^LE5Q$$@kqv^`gY@t~@>=;q80)
z`ZKYWuOHnf@$bE31owyUySZ-!@8bONA?_2q7I1F#m?85|z2TgXPUC*jR?OR(@`>}j
zQqFDn@%3oGaE?iie4Uz?&-=f>l=IX7onK>qwYh+wJ4-mo(flo6_g4RRPMG=ET3tTB
ztTX59=krb+2dVSx3X5XM@*JEv|M`^j{5*dC`h_AtN1gJQpNGCOpK;dj<um+z_v~yQ
z_x;A+17X+cF@zy&uXqD{FNNW-{tTJ^coFBF>73i0=jY00$~h+fWXSR?UvZ8O_P!3|
zh1m@MYp;PJ>-XRa_PH=U)}O!s)A8SXK`dT7oFUUo3OP@l%-$Ph+;KZY7B9<cL9duu
zh#XOc%+Ds6H;Mgc3hn~rFO_27tVyuAS%ecqHE{LKDJU;g!@#>IVP&9-l)Wb)5BAQ&
z=Hs~IHWsIz9Y@tu6@(=p!zB|H#C|IP+LbXx;~2hPQ^tel0<4~?jA5Ne(RgMIz|MOg
zeWQZo5l7hj3Mz1oJc7JKDsV14j0vor8-<6Vk*Na9F-P!rgbI5X@GyEmQihDfAzUj`
zM#aWMNO?Vmy>osL4b5ZNGr)srQyPOm?0k2p;uu6;XP>X567Ees05fy;PPEklEP65;
zVT1Fr?Z9Z92*}5eDWlPCR6Z(pj>7d7`_WB*6e8I?5g<DX{`d1>%%0Y4md%64xRJPi
zb03sTM*y?-Atho2u6Nmo%g2VJXHqT>qz#9yQZC-a4@Y#<UUXCrL%Q}}1TP+jX0yHM
zt~Ly#@9qH(3`MnTHbT!0Loj<D-Q8n2(x&CWqkR~5KgfpC*<o<C&c@=*VNhT=N^2NS
zu;&$RZo^Q`o-gz{J`~|HS+I5-ini^UIDLKy{*KLrLG2Kjcguv^@F8#y$-se<!Duhf
z!0xT=-RUjq(C9Ik)up56#vn+0r=$1&L73f^2Ity=82Kj^kLC`<_&cfSqcjkgLQ;|Z
zZvbLvq_Tat0oXe-g?)?z&~r-)S}*j+y?rTo71SRtX36;Qs~?Ua8EZZIq07A_So~4M
zDU&2@tx-gegd{W<D`NSoL>O8tBJWfpo)+|lSJrM!ckhdBb9dv<<i3c`-i<Yd3b?Dj
z6ZLBqk+miPR}>Wys+IujO?@$7=PoGe^hK@aE*xLh7v(CuaQc!0W|!~8C?5svow5^&
zh6>nuH6FeT`rxx!JYL%Ofu}<}L=StzdUG7=yZ6C}?(s;T(Hkx*aX8%Gi@ig>10QDh
z!nF2SXb$d$o6<Y5>5V+fvtr@mClCAIF%ap<W1?0p4#~;maWwN$t)8e~6@%Aha(FD>
zj!&=TaI9uK25GSQxgr_|DrGSsIvV;pvS_W0M$l+k{H%(?p(YvRo`^!i1sS*vio#Aa
zwueJeSky%Z5f8V)SS$^5oo$#0Y21+72J6BeDA*bagGFpFsCg?or}lu3S0o0{mqJ<2
z7Igd5gT1@B6<%yT;XJWM@;x5+miu$qx?%}mS;oKj!es6fy_RvGk=w|9X4oNy%r{h0
zxn3O4^#QS*-&w-_W?(G$pELV-JI1*TnSa!>@B4rLarrLC<R<PvtucIlP(RB1FP+ML
z=lOr{Ewg-cF+<kxy#L-`X6<<I<oeSH{$AtFD27abros6So6{10{4zsUFO$PDXlju}
z_g7@d^pRUQpY?+C<6-<h$bV$W+OzXy$ohS{@Qfrsw}~Osvno0Nrcxr&Pp6%g=m|cY
zKlsj3c0j2_&&y)S`dc5%d1duE3BUH1>*;FeC3(N)8M3^0uUVY+yXiaEzfHR!(SOe6
zIK2l$HjaYf?DJ#!>>WV~m%7HeR^KW#u`>bBlP<zB)EK8u6k$_OJ#_Ov3C-*&=wS20
zqa~A}cjhR}3pMdD_XvV2Cn9_55tMA4fLXbR;ATDn4LuHHwwVTEKOIE=4RzG8_g?}+
z)nR+_|5`flxE{avkGJ>Udr7IxQk>VjWR}W~N*PHzN<$LuT|^0qhP^l0ls&@-l~G8d
ziG-y1UEllu{q=mj&V6;CydS+^_kFH&oy&gwCt-okoBNUY-W*B$_hI`Lb4=3Nhkb75
zFrK;(Rg&h=PT7ky%4Ya+Y7cp$8Rg#gAn%qbwp8y%%TH4@TJA>ZI8(R}+l{8$K{&W=
z7gkLe1i#BWq0mcyJ$)w{{Y_9}wiBs`jqz<)1%^#GMh~s;8fuI%w6F|+ZH%#YNE!0R
zlCK{w!v|Ailvb7E`&lF0eq4$LhYe9g`^L>Bh6r-mLG^TokTTeTpk)TQyL&r~^bOD_
zvK{-r>q9=F1c|cx&?TQU71D=xGp)O_^&nrf4O?R94DdvHPwm%%Qg|`0ozX$S>a7qh
z)WMX(t(dl58>e?~!OczDFqyRlHN&(K)VmqwgS8+TyBVr|no!c&jLo{5crd;Qr*~+e
zvV0T1zR<v==bNx_zdCeV3o$)Y9f^sBXqQmOnimC>S5U*1RfUjOP{WAyjTp636_yqS
zXp>V#^0p1wUZ(<iy^V1HsElh?8z8wt86$45hf9bGvc&T-OHu_PMC)71aEo4#(Ib^H
z=GZzk{ZT?g`#M<tQiPfAI<$UP#KrnNT!>c0myfwvb5#K$$8(XoS^=|Mb8&I10@nP_
zL6xUGcH59|HOe7&bPf`C%VEr+Y!s0nI=;$++9O#=XJ%oy6FuoaWFoXj21=8%(9})6
zDF!m&GhGH%@|p12DUIKu8JO@{3TeI>NKd356ej8Pw<Cr0pmcn?D+!&iX_zA^iA$Dg
zI8!Ns<!@3k$5H}L4ypK7Ck}hs^YR%Zj<pFXP-quJPjfO>*NNd!O)`pUU1Zyv4EqAw
zQ`wV*BjZHrxtWNbvm)@ZNJPVQdheD<z~Ots=(bu5|1M#~)~<$%fe7A|#N*OKVJt9<
zN4SMB6g5_3%_||;U0sE=vqF$syb6w1LYP*x3cKF^Wg=`Pblv{417$IoE%}$_y^O)s
z+J5GDAPNhX_A}MOC^#+aW9K}g@YJb~>FY;g*u>xL{E7&ix!ucZtHW{N!Y?*ye>eua
z{$&3tKjzL4pGdvV(TwrFU^kk4h0Ybv3?cs^p8L-8h!4+_cHXb9m-GHqxRM{AYfb({
z@e6`^N=WkeQB&r9Dn^^v*86yB%aJcp{L@1`52y1!m6^k9(E;)&y6!uMelOxgQSu}5
ztNnIF(oyxiPaS#4Yf(e;B^u9n=Bd7g=ikI@oPTBf;I)1oX^MLrQN^+T9#1bVBKcf(
zdNnt`-kj%375aQ=-ptAT=j80g^HL0v;s;*xdfc2F+|QMs=gCTMa{9a^&uT`bc&lx<
zxbYjecz#g2!)bXbp4ESEb8%{>ce#02h!E-b^=smpn#(g#`yMww=oyjjJF|}0OHc5u
zaXE`)cJ>HgbQrDFn@IcPUO0MN!N+PhzKC03O3F^W6g9`m_Hz7FFvDrur_3@O3=8RU
zBv_k5)V>UcHwQtft`w!_gWyl=_p^Q`SR~kiWwIv7G2Vd_e#VG(-;VhQjUchJ1iNk;
zVP<&=8bS?Wv346`oei-fXd6Uk7$ExNR)oLN$7rKsOxUasVUMl&lB0(!T3eB>qz7Az
zEm-HJi;2mb>Ah74w(UjmK2GneDMgTaqK$`cMVR|n3-^pS;f1U=7E5lz8YL~H{wl!R
z5G|M-FF;_ACaUOMb@mWVd=1@*dA%C&-?;%+ei|qf+lW0G>a-`l0Uzwtab`<CREyNm
zaBn?UQ_q8w{_F93pDJRe(fak93ND4M!$MsZbXnx#A@$}dsLI2;d}YMn&Bd@jC1f1R
zMb}+Lh^FP>-c?21Z_GxnKoLKavT-0@0d2wAs5mc=O&_wb*;yW9_cQV5pd9{%Wa8yg
zIh?M~fah>ITyf3BL~~gzTapgZJ2FUqoQ{W@GIT~E4IcNTkrbN-X%lJuH-hvW%9|9V
z!s~}5o;^r`-XlpU4@rS{lLYRGq+s<z35ah<MzxFt7SBn7)>d)U^d+I~rWme#NWhn+
zVo*Q67DA6jVZA$^awej12wn|`B2g^6yBd|gG%gg6-;N>>jaY?2FND#b8VlFm!q^)T
z3sYHPgw#i4&<!Dkjg3JX^*YQpiiTV3U$);T3db!6*qHhi(DLnPb<ZMD-_*}!$3;+G
z!5<c85`lwzezSzx%b@+am)Q<m29eBPY?@OTPMrJ6QUXIT;>-^g)*6D1!adCDbr7b9
zd}p^71)=I^H|zKq0O$5^%;R4Gx>tT<zVG}|Gx{sL!2I!fa~GR#zXbcnburm1ehA&w
z!G2v{j0Hv=?8Ql6c>Zo>>lQA;rb}&X&$>nUH?);?O<oA~ou63J3?DpcZDAQ=3s9f^
zky(wLk7GhD%qYbhE-KB;V5Ap%J)4-@FHd-^Xkrh3d0=$Kdp53OF2tzLuxk(1b#8pi
zf=b=7B%+b^HO|4h(+y1I5Y_vbzhOtl%*300Z&<$lY|Kx8&5l&ffV1#xwn=^_mRG)H
ztpn3gH18$tolnCl**Ye%nCjTu>zK9y@6Wyy$rtGRT{nq*h2F<j_meM?mRQ64Q+FiK
z8X4Y?P(V6~@&jtT4_*C#pK|NqeabPGAAh34`;t)%&)4d_KRK`FwQB_LPvgCLUV6ea
zsg6kV7dVnnkuPZ|^1k(p5y>Zqo#pkxEj&Hm5Gj6Y3-3#VSKsG;Zb<~s+jAdqI?R(u
zagDva)-rm?jgP&;bI3!UONKw<;*xuaG{1#v4L5I(ERpm@L;iD1Y3H@(HPUq7Uk?1Z
zp3@U9?&b-e1KW6BnEsTDOWRAN`*gPP%>2gl)TjTraql!D-A}XYIXCa+>KEMj+aI+Y
zyES;8oKVN<TlYy*e7<}=r$03F<9=N`;1y$vg4(T6TV{x`;>}oRp^wRVMNprhi;wd+
zp-fK~$%dOSPg)0~vkH;EQya4$6u=`<8}(%cI3%r&0NVnHUeUx@-woI^RTHEB+d#QU
z4Qy!2$4wIrH2db`M7BDXtL0-wr5dWF)+47~6;cK3@M*OwjvD1*>0(t}8cgqHl`6QA
zn2Yqk%J5pA3zI@+#J$VLG<jw0Z_P%3nGy=Uv+;L85t*B_AbXzn$e(A@9;pHbw`F2@
znmjzuXJF-MdFnBgj@n>3oGqsJEb_U@PU-mkO9u5qX^0b%Mb_<9d=Zm@ntUqQ8fgri
zpc<klv_4HwK^plR6HCUrZIY-zmV_zI5{OVs#92oP1knDGRFycMpI-~tOfg)xh)3Bm
zF*wG>LrzT$e;33d`H=_|+~OepTm%*Rv1mC<`An}ET<s7>*Mb<%zg&(-BW<Y=gvuk4
zGW#EM(pv$)M+2;;Dgv)R_p|Cj5ztHPWBz-VVey_mrenAq?+fT0zH2D1jqGLL&W1v-
z>lc&!5RCTwKUvqdK<K{x$p%w>WR1-)mh2aR@6|t;!ttf}bEJn&cJRlo=I?Bj*%F9S
z{b7^5A5KpH&gRbXMb?ULHcxyp4hMF#=$Q+#zwR3|oVf@Y<GwN3|GZ%=`;DzJqW)AR
zUszGme4Lp1g>AhuA93spo8s+>?txAgo$7&)a$U?LYaX0#bg-a<?wIA+!43qt<EnHA
z+t@rCz5CnQsRwgVHnE-U9yb$56580t;j?fosg2cKpN11ZTG?)y8SwFLWtN?8xUKV<
zEfRLa1c%Qo;hihC_<mx~9Ht`bZwtHOG8OL0Eo}QEIv?ZT!d8hoVXjIG%Mzc0ORSld
zPnd+geIHoC$4N-^X=X>X>Ab#LGmE1-W3)E01JaI|==h$^c;<+#SMS-A90zC?zhjP@
z?GbbQ9eXv-p88w8W2V~$uzCHK6&+>B8vK?$pU5Ebsgc?484L4=jZE#@7`VJ>V9q9X
z2zv2`)vMT|ukSUR9BqrFJ+E1XvNgioU$fF(*3gN2#e_bO#K6f{EKP9~&LzEM{m~=f
z;PaAcoF0M1P4%owXBZ4a>RGwxPzWEbV{RcsvFl?kQ@&$G_o-ti|5(7etd>dc;eEj^
znD?Q(Q^=p_d!F@%_pc|3ykEJU=Y6Q^5br;q%E)iXC&TX${}(@#zfW!*&)V7l?=${9
zQ}v&5ak5j0<V!<*cpC2{{~_ID%=4iT`4HXj;1J%ADk^!Vp5mD(Lq0_FPOIkqY0ez-
zA&L)<<o!te2G6qvyictX<$0^0NO1;J-f;72*fnr;z0$z-AJuK<^^QAypVdj3jokG;
z$KG<>5JUXmb0Pj67cU#}jvLQB&TFaS_nba|f~QG96Bnm{x``W4+{5dvkPn<Li{&XY
zrJ0M{zN48N@7u&{>xPe<9)FQY^PV?u<>KbQZsW%1dA4)h6+``D>GP{M?BI0C*iKIG
zyWh#_fn^ymTp*9*d$KS(SP?-H*|1erMy)mF&*YS`z%~aqrD}+ybE0;+n%Mg|8v)dl
zYyG<{bO^N3_$CXzo!W4v_dc}}ZOpuwi9TO#jGvJK^Du49aLGV<rxqr3q@i0&8}4h<
z;HalXwYq8e8?A{WYN;4gtckO$Q?S=s6Z<QYA*84YYh9|XtkHmKN+R-m)nWgGY9T+W
zLv>IBW(29@*ui*g`a*fq99mz#P@|q}aZvP8gLF<TDn_Yce{C%CI#u!PU<~TctKev2
z6jX1h;KPq7Z1}2z2mLGXQACA2Cj#O2Dwy{t9Dg<{<HhbU%(hTQg?||Cw<uxorBEEn
zRl<jy5X84A!gpa1tgk4-??@m{v@77cbpWlg6p{AaAGdcYK&yBO(!~^TwAc?z-^jyi
z_+of%kVmJrFDB;6W6Ilw*m+qFoec}{nQFNt%IRIFSr&>XC^zRPi@X*uXbIDL|9~e(
z50-^yqzB&m$-rRTJRE9}#;!SYv60sO7xLXPcd0ZUznqQsdD3v(KN|*HrLZ?{2B!N+
zp=8K(OzxD#@ZcFRuaQLE*=fi=APMghH}u|-fMcZ_j+~XimLfOQT#|sF_cX-NKHYOy
zH>}c>fZPLDbdRHb)HD~g+lnKt#}&7Ziec1A7X&;JgO$Atr2NFNc$y15c8Ma|%LQi9
zREyW*49zQ|I2}I~EefKzG{qUS9H=JG&zbsR2*X>#8Anw_uw$Atc8iI?V73$O9SS43
z)CtRUgt0kh3YL5pg5tHwxb7u{DTAh<%}xj@+a@Dk`XBQgIR&R){A23pC&O>+U*@o5
zA_CV9u+UGFaMEUgt?QWxYpnsc|I#GdyZpm`lud-Ha6c1SH~~`U`dB>GJ1?2u$4YwX
z-1vw-RyLi^yXW<?rmXSUeYBUQ7mtUvV=qhG=LngVKiU1K<8k2W4^~Tc%x~m>FrBC4
zkT9}`wfWGw!Tmifx_KO|hfq)Qdk&}>{GIiTcSPOeZdM-VfS})B*_9f5%)CkU>0cdi
z_3l?T>zX}G>3P;yDZuLbFU&j50gG;aVFyg9Z;EIad!S$sm&Q(Z?K~iSp@TIY2C9E{
zu)qKT%G5fTD3vcgnchz4=ot)`w=r9jSKRm6UxN3oL%F;!l{NFe^x`$|KciCLb8$VJ
zc)xLuB9d>kjrh#@KnrW-*m#Hck%zb2xcHlLyl>>T@P4v#IIkOPcwdpv=l$eYBJU?x
z_jPgi={wIeP3sGHpM{Y;Yb(EU^ICo)k}pZt@ibogjf*q$>*mIfmUMGEMB_WB4KDFa
z_3q=wuOIE_#y_PEaN7Ra0H;+<{&8$N`H#O}C9fSkgarTl_l^t^68z5(h5wNzjvXb;
zaipR!H{NrM*IsraoGxzV^_<1@{~%C&Pm73PJn{TLo}<@@a{6uv&s%SKzCSO^#oKHo
z(!9yxvRqu_IiAVpa-8n!<n_f;IWB&G6F=^2BhOt=Z}G$8CEYC2B^g(TOTl4r2F#2p
zKRPZ8RX)bp^j{Wc4>7};>sc5ZZh=XzS+Fs-!sPNyH1t@aNiP#G1VgbuF9R=kTH*fm
zbnN?N2}}1hgg&>#n!+@g4YopoaVp-&TcZ7L3M#)?K&Utw*No_Xp2?WqI)u&yCg9?+
zA^7E-gvxGnT>qQ^y+rD<{B13i`^+%cWG(u#%^-bmEo@WFaM55b3||k%vm<LTciLd+
zyRU)lJ5&6ST!Yeeruexi9;IVU@xDF|q2YsIPWi%T<%6KBz8Vc)CQ!_bqdGGa3`}2z
z+h>f?v}P4#CL3d?(<*FRVT`Sju~=4Y1nHVsj0mD0V^>zf^0Xm+cVbYgZwP~il@L`i
z#9G&A^w}F=m{~N`V-0YxHU_r8_2G6Y3hux45FZsqb%J_0_dF7JdUY}SXe5>|*M*T(
zBp$ix;;L#StSB%2i1Li%y>&3QBm$>Gv~jsV0*;#6xL_H9d-2-HITVgC7cFE2hr`BO
z3y%*|9iOKr&Ur6~(nU=iu2=^37Rt{IU5?|_n^J-D1IvG_<574R=H5_;pVcx9qP)$p
zF`=jlQbR;=D56Z&5jZ~-tLS-VQyfBl-&8S85CV@ist6e!f}AV#9E%Lb`}ZoiofnAr
zy~?QG9gMBzwEt%nh<QgTpR*tkChE#KdNmMB3Y9Q-AONwClwhA5fHO&o*lZX8`6kL&
z`v>6UecH#H?hl0*3TPg@6tCAP;6~|E+%+Sv_k;dXdAw3simXC;<cs>jeWE<}&0m72
z8|AQUs2|>Y$suae5<Kvf!(}I59HspAfpA~Ut*3lX+G5zzdMM=0B4}#JK-z3Eo(4$6
zU2hRA=15~u!Xo^j`j|wgg>cl8MtU8s5Beoxl)Mn9eoI2J$Okv$B%x-q5JHC~@w3ne
z8|gXrB;1GcQWA*DpkBd`#9?%cdYEkzN904wS!RnP#A8099K><*$b2-u6oZ}Kd_YtT
zQB7WmDH22PV^6d{5QXqdFC2{*MTD0pO4f_wf~zOICyF4hd>*t?L@?;22O^!Q2HnO3
zsU^Zl`EMS+X$a%i)VVl3N0@rQ%tODlFb>$x!?BY>sL*z&-V;J-+;$UH*N4;dpZe_+
zW8|N6tUU69qugui*H7aCPW2qO{qKGB#&Fy$B>#Oloc0#TkLkMkR-Tzr<kNKhel}gF
z@#2d-A8p}j^tPQF-}{bdOa}Qh#dQoLpC*oY)xrHf2j_QjdVg&vr-M)NTF~+ZRWxsK
z1^G3_o8BW$oObprr*}G$Pm_*Vz;oK<Zd8!goFpaa|6~WH5t4$qhc@^VEh(6_WHc^@
zNeT>%Y;m?)Qs7}}i{n00g6%JCVH+bQn6Q+3_Et*?Ty{_|--Xfw@zHijc9$0P^w=Wj
zthAuB(iY*<WCXCF9$dCE0y$qhyy+vx*wGmnS;06jJCvEo3N)1MAl5A_a0;`7v$UK*
z=B^!nt(6m0eYK-KXG=lu=6HnO93qHV7msbbh6v8J#iPl~LU4ojD&`-v5X4PMfb$wl
z!M~-6IN50_uz#6|pUbTT+czh{yvIuLKsy<VJBA7}79~@?+c3dIIyW>_W4K_gMhaSQ
zEkb2#1JfRpgZp~wn0YN92?J(SL$Cq8J|mF)Cm(KMHn1(&fEhb&QBC_w<C^Vo+;9Wj
z_u66G%Y2+3OKZEre3<MT1M#wa6u-BFV(EHVJJ`Yf;Ch^*dXVCj^?1137Abk_akpnQ
zhFxEWkoPv&(VT}A9UE9&SckWTHaPP$53RY@aIngw_q|b&8?p}NV%8X)kc+9WM`A%)
zE=ER<#H53{xORFZp3-^M(#s>TYi<tWO6c!nRSy0<8IGJgIZ)IYjzIk!xMU22*vuR}
zDjJ3ksce+Yu)-cI%Itl4Jd|tr_i3Y&q(b&Kse~3w#^6Mhgd}8bQB5dfX6(aJp{$ik
zVMfRviY#MKp^|wlG07lF55_*0?C&+5I;V4T-rxCcpZA~lb3XUydG2fd-q(HI*L~m5
zbSjKsKv7W^R&+Vue$a$JNAGdj)zTerbh2JF4BX!<*SJus%k50}=><*9`|qY4m)<7r
zelmPRiJ*4w!{bsBKZ@YB9z_i^a}NF;4_l{`1($m4Sy!#GyJqX2bsYY6H%D96j@|5D
zIv{v8;DpW2#$Dw%jk>Qn%a@0g+nj&1`&oIk&86)MF+#J)Ze!*BitU8_?nizI_uj7c
zS}-R67R}XC!B39dIl1P{(p~$uComM%dxF-EtlahD%>83eP1k)qb6~gL7vT?s2C;z)
zt|D8W6K<*I--W-F$1Hky`qg0C+c+`N>orL=<=L_O7hmm)Ro>29w1((-_WVZ5{jQDW
z+j;BE34@QM7rcvE6l`ku<kV$_?H3wj8!d##_B4KM7nD9+9q3<mK=<L|7n^FWxDKd%
zO!m^^(#z<0LN#9`<^AH>M(suV?`$`>8CIf8QddRAhP3B9zWkCHfLNxkGE3vQ8F2h|
zXVU5L_CqhPCw=^tPema3Z4!sQM68a{No&zXeI~EF+61o%SHE8M=DJ_CgT(PW2R6N+
zj4At`UN4y(l;|J#_=U-`;lPa>S|3~sNI3ZDrQwSN8sA>gq~BI_9^AiV`$ymE<@<}m
zD}zkh-#s=Io9*Xa#cS|uX2tTSj2j0wbl!aNy0hlw>X0YMnIVjVNUmO0%-E@Q#Zs?g
zB_ex@54=7d*XFde`c8R_Xw1D$8?VR?pK@)KxUxw*=E(5v3MpjgbolyUw=FTN)b<hY
zHmhISbz>Me@oeNmSlPYH>#;MNmfewhmW0`&jjO)0EB?g7=CzkkPM9xjZdtTT&Tt{u
z=|xF0h6{NR&N4sR^z?b|2dZ2jzo<R4yy5J+K$^joXGA1d3}rVeT;D8OcjjQw!2?IN
z{Rx}HJiQ-kZhmz`pkn`ZIl)_Ub(_P^yyV(_YlY3~>#J>72W-5)@$!23ue9BH@1+ln
zfm~9_3BS2qq8J57xxZ!Hv~ARMpb3{DL8+wAt%!Ki*(+#XoajA^M9SaDNN%6=3is>1
z=QfN44bG_=>Yr$F97ag(-m|~m9UMLRWlqt&>Q;x|?EN*fb4bH%dx`P{I^OO*z}xbI
zZr$!Z=O{WcL)V{m+c=HBp{F@`ef|_J`P{p8p(x7aX;*WJ`4Z|dQ!*G`a<IQZIMdqT
z3&#8HSx*(w;@0|)&8B0AzvO$@HLEH0k)xx=E_|6pdK9x5^wSN4q-j$Vm4=b(#E98P
z@pIUncdRHkyxq!9$oUF*>4{&sbONziXL+}Wcjcg)Jd327F_4edFL}T>=Xr{({<);*
zqRa8zStB*P>>TX`QGpz8SNUoZha68g6{&P0^`-VRH5+RBG^<_QLJE@{94%y%nV($7
zs}rs2@KOHZa<gXRqnU?frZU4v^QW9yvP=ccoNlyaSKEkc<xGH=WB8Q2ChF9BqBe1{
zMNC`mDc|CLJ^CykMlZC4$)lf_QNnB{Occ2P^7trHkBj$ux$K0Xv%677$?I_YIJ(_r
zp)w=7Fk!qK{%?f#JaW+?w9es<YD-_S@%3=g+5EkXwh}SQIDM4U1yelXSFB4{d|S^f
zZmnUBSf+_P<)s>><YhFZe4g?$OzoaY_&hXIlDv)JZ5X#VM3KlbLr)6sFpaB@@|QPz
z<Cs=k6cs8jR5g@VdxTb{cKg|LwWr}M7EjuTOLH+wo*i>Fn?t6gEniQ#>&)z(%{^A>
z=Apyv8obNzG}~Gy=l<x<-cURFYch5Xl@k`Jq9dlMXQSxZ5x%*(@;<Do96$VmqO{kc
zEnFpOwj#x84N(Iwa-m)W=a-{1qQS8p%9tyxxsdl=6Cny6C&~QvL~?)mb4+mj0EWAB
zahjnYjrla3HekDi+}0q1DM{5Pc$tLPO<0b`vD_PK-HIBa@z=Q(CBSpm%_oDt9#fL2
z3Qd&YrC-%GO*vOPp`!bM#lfA(;xNj4te6x*6MhO!E)<$CO;|pFCQRfYE2ad~gtPBM
zy9a$)avS|PrX&OY-0=xPcoxA^s;f{N4=oH@c%56=WUX6R54<zG3Qf7X3r*|c8Ou7y
z4Q;g6Evx^-)a?4+8K3lzQ*-NkXMJd&_Np$O@_rx_f?gTKdOk=Kp>wuReEAh|^c25}
zo(=5p*qeJ5#RaB!xWdyWkk*k0PrJb7B6D{K3oq6#z+6~{wDA{dh4MUSeTfl^sq$~1
zm_CwQhdv)H^h&Dg8ad_arS{flWO64K5l^{pFYbqWq$<=n*txdm_Sj(Txsf^J7F{GQ
z=1N+=U%I&lk2!HADc4UXXZt=hEhhBhdtc_on6QiP%i5aNWt&G<(Q<w5bGkVS9k^yL
z)R*VA@nha6ES*(bu0ncfZNVw-o32`CmhK-q!iVvGxWqz0e47p$N|2;i9(aEM4V8;f
znLOy7$Z{r^k7ioVX`p>QpYxm2=VDpT7ds}K(%CHOPR#psq|U9NA9a79?v8PwyQZg#
zx`)%0395AZ${BI8OVUeXj>eoWDvEhInxmnGikg)Zb2a7;p`z}$nGXK3gw~i>uCvF*
z>nE%&L(tGs6O8wx1wbf?VO82zuqr3@fe;LY6LG9ccMe3nDvqUBUCPoEjbZ6o2BKv5
zFq*RbRhshXVzSG2ZInE@jO=2oNOtLoB(x@ncTZoR^`%9hS0JkyD3jG{g9)?y#cL+k
z1V3O&PVNE1HXxKdWJ#vP13{JSVk1p<>6Rk2#xH@k1K#y819hs<&O>YKF4V!*x`ogB
z(+b||qL!1gn1MzGXeIS-xp(W_a#eNEmi%a1fssDiA_NUWQ9uN%%(<>Y^Kx&;7_|oP
z`Uyk$lgx>`G2SUggxO;d3jNWoWHqDPv}oJiWVMD$Aclj`%pIDC+;23G5n;@L!5;E>
zms)q>0bytm2{9E7RAsoU@W38u2cXgG+%j4pvaGmcSXL_g(4s@o_fkiT-s_@8lUvB+
zJ!dfk4J9>h8RzQVGTwI=nq&-<2I}>@iu7@;nSpxy{DJxbr4Z8OmYMP7@Q$X$a3vo2
zU)V$JqGx?sPxPCWib)aGZcT{}m!hWL(k7Y`1@^X*@^7-9>PL6vjdw4i(N$GShX(4G
z(wbG}>rO?_zL{uFWOf_G8|GQ1jEGsLjOfsCcVr&u-?3H7Fq+&%P8lK59PYdxNm=fa
zdPptN+$isa5$147%B9Mb5mAh>uZMBGVwWjjzuBGQ{q&SeZ7CyrNvUPz)T2=}qxRN5
zdLN-xyua0pq>j$C&-T&z*xe6aMF*iP)=%$dcRzZ~+@(!DCowXNF#|j<P9<LZfos)I
z-@@+VOJrhMvzOGynWpUS$ZrcV;!DRze(R56`CKyL>Do%>xjN<kYg-(2aXek(7W$lJ
zMJf+u@s^@XUB-W#4QDcc%`4%&{TZXYs(*07%xz}huX&Z6PyLzwzvfkOj!37MENWL3
zuaR<9UDrRdkF)^cd|srQ<Ui!OlhJpj=LPH8r4pW=b6D{eF4GTG*<FOEXEnP!^I-Ne
zdZoQs{B1H@cY5E<a<;Bo(i(PmcHhh|h=19P+C!H?&#lu+mkypNXT=Pn&o-#|q8jap
zug3Nd6E_-bCXT$DIP%47;Ks`Ki6dR?*N-=x2&xYihdj4>su2#NA17|Ctedz&dBNHc
z9K+ghmQDBeI<EGdbqbQ`lxQjIRCOZjlpux2zr;nPk?E@XNV(hdIQn7YaY~ox@k?GG
zAMZz>A8Ma?Y+O6>xF5v16IiGEK)pJS)jl|0`20}a#A7Sy>&D}=XZetZ_d2MpiXUnl
zoPf_>?V8?r2xG#Ogy(uMo|MK!LV9CduU2+?89w_oytfTmq-}$K@ymgX2FPMtmCLBD
zr8a7-*=>==2LczNnNGKo_7@C#?#Fj~?r(d@;vKD>xHhYWZi+aJZo;q}`hN>OFG&vV
z^6v879|ui^pc)&#jI=+uZsHopY-!OTF9`%AG|)|xJQ#5UMG%$1h}TN@R`AZ~M01h$
zD}z!=96nek5g(l2Wf9j&NU!y-rE1}@9V_#+#NjQg+aj(CI4d#qt_<LAh9}D;Um(3!
z0p2!X=;t?+?cVC4LegNyJ{BL$5p^lX?&%$xy!#EB{G<y;+(?)l+T(^1ZwMx+rqqi$
za(W&!@A5nb1<=6q5E^F-Pw9A;LCddbT+f{Rc-eu`1>{g$eo$h9!Z}dH!}B^cWZ0+7
z;9>&HU?zfgK>jlAK*N4C&P*M(h9W9%SaO28NEJ>ao`=WlC+^84uy)DUOx&A2j9N$h
z3L-1SqeSbqFyi$jf@%U6NR7g?9GZCD#67*HE_LyG4&WY!M(^@GOazWv?Zmx`daCiw
z<o@66vMIFeNeQx@d=xDkqlcP7g)*}|fSOGtLNFQ%2<Z()&`N5l#@X<!hqf0(f9+B2
zo8ExI(0c@cFad2BhHlGCwi_j3=qc)`S&=T<5wQ>Lz=YB&jWp1XNi~c(?Catt*J+j6
zcWISGm@~U|<WS~Pcy54a0YNo=BRr)+jsVT1%hRF(XlgYRdFk;iM?UD=L4z%6jnE-<
z4Q4;O#_U&gO}-yZ@^&0+S&=rnCPEA7;WSCY4VvW0X0rbI6=eObIv@u+lY-D+O4jfC
z1)i#8{g+*y>VlZ)8kmb1SRd->bfWTyH7T)pGUWlDydTBHcUdGF5z^~Lp`G;F`PN39
z%!HE*aZ-WIy!{YQwu-}(6Y8jXbCUuB`FbAR7KxRhQA<cSyi6mSX``5#t2Cm}3!aA<
z(jgQ>@~4fuQw9pGl*Zz$6o+T%cJeJuqEMwlMnTt!3~3SlB3dW*EmKj%q-f<O)gI!u
zN|TJa&ce5;OY}#Do=+sxkA~!02|6cQDPCfXx?f=#Wz33r7kO2<rP4VGNpz*C68GxZ
z14UzaG3F>S|E--Wnq^hJ_fh!Xj8XRxz0pHiCZiDtGu(@4Zs~Mfw{eE@-nP;AhfCZ^
z*I8B>C+eSA8AZ*x2S30SeQtkXrTZm~-r$-<Up?6<RXz$p9^$XSaIZ|Z=kHUC$6skp
z#9!g4r|uhv=F!b~5D2Xj8V5$PtC?V56AkZ+$-;6zG;a4hH15e2bd4(zs(r#h-v@jW
zG%=7>hqeo&m_(s*=LgWZ%?_g+<sc#sqEhfQ%nK2Mb0YWqUr`RSF3M32FjT>Pu@=gq
zqK<Mj)Kd4g#p18b?gzat#)Ba+yBwpqwQQ9Bpt+loG)l04D*(?EbyS0bE=E#2^ar5d
z0na<o_7LokiIatiqGaLG<z(Sbe2YSl0!FdN653&CR?yZ!YXe;>$V!vhN7i8X2wHGY
zJU*_XmTKS~hmXUik88CYLbcN1z4%vDYvwX7_`No&Mb<~Ps$=kRAs}Z`Lp2BlGcf9&
zDR8X==6q?vle@sR0+_u)3x?IQrSAbgj24Fv6HCB{*>*7=&Ov`Rl&0Ggiw~=)qiV}S
zlfWo;^J5g@yc0>_fTl=}d`hP23TdHRW<qGX7<F`uCA>>N#D`(J84m|Qr3#)K$&qr`
zX}a!#AOhkMdgvC?erUcxyGGMZ0guIiV8#c$f!FkSeAwMus`e7_b`HF8lOspm#`3gb
z`E9ufJU=j75|7VXSxYtD)XjLbgkWzhOpYXi+~`7b<efNt78K2_)`$2kJv(QI!ASXF
zTJ_`&S~aZCYN(*qn1kp!D3j+@w9#|fbyQR9F2*Ai4DA3Ti^!4L5g^X+6v#JK15-IQ
zR8tKQFeTVGF2E=<S7Q|IRLPMI>gYK^a3}%}WAIsUPB>Sjhn^cPc~NvJs~=n|)Kg7S
z(B*+<1iEx^Alb!;-Ga$INU*Ox0k3Px=5jY_(q@_{|ETf@FJ7BkQQ&~U`JH6*5j%K_
zlg$acKq{0bZTkQps8vtZgoKY>2P6t8?nC(}7+Wvao&ix&pxvNJ!&LIaR0jIhQZ=(c
z)D~Eq$>vXg0}FBZz=|5GrcO6wwX>=lgYdoC*B%3@O=R=3aRKQFZ7`4k2EZ4-n~`FM
z$+ZQb+1F@kJqh?!NChL9)0B-AbNTDEG&2p<nEL_Vu8V49-o;4SK(KGvfyqq?prr}z
zLmLN4#;HO;t_AXGOzw6+)Hpa1pK4q~HBu#;%ijn61EBv9pLz~R${=|PBrjlc{R(PR
zZo=zAu*Hp}34s^sc)Z;guPmcA;2h#<q=wD4-43{Jf~)<gF)YwXXZSxqpLa77V8Iwl
zlbhuNXcx`)qYA`&sx$*tkWR!$2K3@1x3p7r?YbBV3kddHZ7#VsTp)Rsb}_;iRWPch
z>TUv-8yHvw<Oncu7*!~LhbjQ>NWiVD3gr8=i|xoW1;8B%xOJ5W83};99&r1Xct5q-
zOm2p7U$nK3ZkF={3x`mJvtN|nC0qxY?U>wTaWHX**7yD(>dYOBFF036wJhjnh!wY;
zr(0lhQ}5FHgnUtFX<+38c~-13y^~;Xa&w&67jYGJPK&`8aMVyO>$@1~(gb_@Dom~&
zKe^dR6Lk)LfG_x5OSR+%@_9_I{{ZtnUkAyu0QOr;sX>NJG_4N~Ib(z4wa$RO0I*vE
z_H@8b2kfa4;8+_RgO&GSd>4?9VsfRPPod7b5ApuSwbV_XbBvf|LVt}G#^wAfin3f7
zO%%>qA%o+?E34!2{<htW7z5Y-nvEEjq)3{mkPf;MqV69sO{t5~1~nm2`-QA57Yu6Z
z=t}Mw{DChXhx}8z7%{xS#$sKPd_awDk#&7#`4^RVjSeu$=h}ZmA6==NfcI~#rD`k!
zk|2n$1Z(TS8hC;d;;&Ul)!+h43P4^#R?fanBflP;I+?hoj%t|N#Srw;t4{{(Zvne4
zV3!Z0kpa6NcOpLVGl*mZYb&sL$;u5t4vxns-mRw^YN{S!zTFITZnCocZ!~g*AF6jT
z2A}9xL)|l7m||!IYD<AFMp16~71R>&iTt3pOVykC))nYW$jY7259?+m6G8M>AaMY=
zD>O1xO}%OmPXX3VLVw*tjEiq{Gtp)Rx!~z-n&s<3s&zPE*8%MDUcf(wak1G%E|9xM
zvxGG&18X!K)~F7w(Redptpzn;!5R&(04-Rf@f)LaoqeNEI70<3fLoy@V3z^x;ecHy
z3#@JjwZ*^+rCCCC35V*U1JxydU39&(4HnE@rdbX{{}njLfarP<y+X5WNAoNJyFFmf
zO&MaO0rp0~o*GPRfpuyR>oj+_r)o>ub)bWXRB>{F{2f{gq`N(&d+xb9syU>4T05{U
zfPI(N(vCK@z(Tc$g=%gM7CQ<3#y6490w^#oP+;t#z~m;>Qq7^lq-_AT9iSEf-u3~A
zID9Ttn6z3TpT@XIRiG2>OLYGre#U+RXlF1kcA}I5*yL28GK%#*z=uL*JdoARh_l6v
zLuK@UrK$pzF|?wFdH^b8+=}sC?ogFgpel=v0zILQ3O8uRn%1_i+QXotNcNBuK~y4i
zP_YJJ#dR^_GztB15Acw?3tD=p7$4QUJ`U2oRtUs@0eUb^1=3v%(p~=x_EadOdmN<u
zvH{izq`L~FyO?wZKJ+wWyt~#FRF;rEKGjoAAZ1b^Ww@iC_wvblIA`o-Y$$@bTS43%
zzF1ggXw^|oAm4>mz3HjD2>lI5G2?#Y1@7`UX+?m&b<i!}N;e*#p-@Lv^t4Ym*#qWU
z*yci+4HlU3l)JQ|cKoFxh`SZUUD2~O%>;5Lb>sMi`*SqeJ=>2~BviTpOwPDx`@*|A
zn4E~Wf)c4%DBdQl>hd;~gYA*(@f`Ja=j)g~>EJq-C+k`KNMDsQRW_ALYR8`;2^~a>
z2fc97&L61y&$}1`su^{Ow%Bo~kyB;p;mNlZGtH{OG58Z-JP$_iW(f4v@5hY$BE*qo
zamhS=!){OrtxeqL+7EXKpc{<X?4?Y}h0{nW@%U)1cB+107bDRgGj6kkGW9fyM%v!m
zC-Xs7_q5{VQ$HF>=vP!#*Bah^;r%kIT3v>ZhTtdif;}vDJlTgvnk$SJ+fNitk8`gf
z%|!?MjX#USd?<_(<DNP&=QcO_CdvM+No>SGh}|W*!T}MZFy-Qy+QGv8#B606D=t5h
zxjsdr-&HoiRvF!va#gwCJJb)AN@2DPo#1WIun;#$BZ#I4^z1}sQ?B6^w+K-xlk8nA
zE3`&8({+zAEu)7FvYo8rF!jVq137GoK}(1GjL9*?QAIPmo>(BAB8Mucuq;ZHW82+A
zdrr|E-H&BBk~NJw+*{W)B=5b}vztCTd%kN!N}@$un^v|DQ#NHK-A(Tpu47Y*odsGM
z8xxjfbxC>n%&~$znYh<fG>~7DxWGO({~6IsL1^-N4|i^dP8`NBE@@JEPF9P!gc6(o
zoM^?%ZK;|4is+@1BIBtk|ISjtL330kN|PAPoVJ%6;cpP5yBQu^!q6nf6j<eG68Fr;
zy1yW{3UZ5T5zC0J!VNaAK|P0DL`4I7WGu8spE5mn2u%j1(241xJt9$B@-)j6X$C64
z(UYv4$OUmR%}KAD^~EmjNC_MgZjkQJui8JlHzdxziYTM0ff$hcF`T<BebIXf9ZCtf
zCivs6AC(f;A&%uEXXz7f?xjD+ALapy$rm@l`UTj^Pg#3*Szbo(*_Y!FvxY?Km0d%U
zmm#~j&v>8C7eaQm1f%!veo#v2a}C+njtRYPv#wxm{ith5_Xcd`)78i>(F*)wUTme@
zt)hT#XKdxjW{S00D0<HfEZuhvv00(aU#|kvN+7)k*%fbz-rq&`NAGRPbl9a5gx<3P
zH1fbdhOHzBQmi9h_m_{XrC7iJ4ZVjM6oJ3iDx_Notk)B*R@ZZZJpqdKYpQsZYz1Kf
z#X5fhva9;6q_z7ZzyXG4z$qVStORG*W`b<iP^^2(@Q1Gec^r(9Kwqgqs9p?PdF%tH
z%V7bCLL~4u0iD}JxPBR65CW?(sul<z1x9B6uKk`nh$w-G2*uj{7i3q_RrFrUJM`Y`
zexKR(>48HcbZOTRrX#j;l%LXJTZ*?x>`+Qi9TcGxfV6|s@jd{}J6*W%I<pGIFhE;R
z>2P0yIEsR(Dy1WTG2++)BA-FaWl+Rq4W&cq8k(10fwyo0l7wrBoie54P##S!z-}Fg
zi$SViMe~e5Dy2Vn4UxKx=4rueGr$M~Q5Aqtj<>)8X&1PIk&cQ0gzIQt-E`m@M~Hmh
z7U21VxSeZADhJ|72H!Hz@fL<aG6V~YC>=e33<tjLU=WAF!a}g%i{?4CU78Z1F9EY0
z*h+Z;#IeW+%?oK)N}mPNa%?4$lhR=Z&=i0q0}_yOBpw(X_`D0&APZ7UOI%meeL?&j
zm|Y6uSI|7Y4@&9v;OP#KL2XnHyuqm4hoWkfT=mY2P}V@ymqFC8rVK_Mq0W3-5PiR<
z+*PlOA1gVs7r0!=GWicmG4-He1PT}+@gvJFmgCiT(I+ym76+kMA?MX0=VMF;qiPml
zB|mj2#pu9m8i=ccI44+WSBmigqqbN{f+A&&*=6)<4oF>PdLB@J4x*#L+klmXj9&&B
zug;5=l!Mon5cDeL1zw#w6m>+3vIesTSr+^ZuRacNP*BptO5S!RN9%QAL7W#^1_^%^
z5?);%j2#0<f|NB80brpFuPzK@;{*%B$TG_-=+$!oR)A4uf9SjbWzB0#{O*yQt1_i{
zbw#jD1#NE7UV$tdt;DOF07)5~Z3J}7kYz*|$TN`efTjv05oB2(K=Kt}a7hw2P}bxN
z0uC5mBdD!$)$5VNN)ja~VfkE$wn{MiFz16(vK5e4Qo@A%(T8HC_@lDzO3B-?l14N#
z_5&*{e;uOTav3<4_@fTM;Q(O_=r2dKb%BI@R7!@hZvTuq5&1TJDC#W{eC)$YjxMK!
zVSYm&dV=^e5a&a*t3iAK+-<>1%CADSEx~(#1^y^Z%v)!y<ef|80e#zbASwpPuA&bi
z<CC9*W$+CdpWF<#!(8=jRVZPQ@kb%!lXrnDF>ob934@G(SeMSK(uRzG2pOO358`&N
zdMO-;He~!m$oQj%Kr#diizs1`@kb%!lkLFwVX&|eEcl`iofIi6NL!P+fXWSmGL$f=
zG}=&Uj?RECAGlkImCRm>XkRSDAGHLDos_UiF@Vg2XiLNBJO-nV`gr^7jOQAPs;hR@
z>*mEKKIK5RkxTK165EyHrGN}--8Mj8f@~Z8s1%PMjH=s<O&s}!V(7jM*=7V%!zg3m
z$~Ma&^tSyo{GreerTAR1yNF_l5k<B^oxcrrJ{||AjIoJp@nnZXHd`r%LZRqwu^0G5
zQebZ%HW4yDUI#?ZU=!uUk!@+u@rMA9&3cOAYKmcm4|*F)e7vZu-nMRx+TFUHAhiJ5
zR$T%5Ls3WN!4<#@26KjBZXuu*L$+lDv@GbZ!zL1BDTZbN=xt{hKoE0U?+^;^u7mxR
zKnH-ffL9H~l)x8=@q<{ft6uUVWE*!G{tz9y_d!^YV)#B7z3rr?ESN7J-wtun0vrN>
z7I0*Pyc!G(tn~wqKyZ8xo7fPHKIQ08N_*m}$MnJ`W{V&;edTzwavla(B5?zy9`1fm
z#ee|wYAi~r7y1o-n*IWBRzDckxW`q`j*C*?1ApJ926Q3j@?3~bQ4snR%8YTj$_G`2
zG+r>v4-6i}CJn4W4lq|hR|v6zR5uG8ifUBACi3CQ1BdLkg7r{v2G$|ujS%uqzy%?1
zgpkXNg8^^^A-7vksb3Aie9)&5@-zs!6ofpo5kfA%0I`9Pn?cBp<tg<LavKP_8HBtM
zLY^&#*g(kBAmoh@a-uAy9zy;ULY}r_ZsR^P2zeTW+-@b%ebJ{7a$^WNQ3-s37=%0x
zLY}$^v4N1ALCDh}<aUCTdI<SbC!VMkWNo{>l=^&LzyL!{9f~rLrtIknMT4~3mEx3#
zqG~r{aZd#iL1Kqe+%s3&`5lx!`QnHmq`8&{2;cOM*%-$KVw<tJk*$<HP}zfe2BT_!
z!Qu!Kls#~Z3Zgv2Yncy58HiK%z`-)80_>W)(z?!KamReopzWI&C{ZxD6t9*0K`G7+
zJb-`LPPK5*t%WWIj0T}WIiPlriIs|r0UDOF$9)wdm<D2;Ls2&YtxP#yD-2+G0@{^`
zpgf@Uaiv`=d2q@`YY*UA4fI8bpoAsLC&>LAueAnf7l5`J5i|l>2zKp3EKY6-j0}u2
zVPwLTJs2)T5bC<t_(!F<cyKF8+4DM&c3?LK0-*Z>uZ0J#?Jx`&^CZBl0{_RrCLp^A
zTv5<i1<~S11goK2H5k=kkHy`=d!KrS%MuDfAKAaa8{>zf8f>vRqd@f0WQS6!fh(;?
z4~v7^VtTOxZ`|TagW8fM1l;~gyfHXvuma%=1lgztU*N5#WVx?JOw*p>jfv3xg^~q_
z7*pNncw^*)QmV8oErka$<pypCINyQAjqavorIg`~`Njp*4kNaUL4FBhS`G4cLs3SH
zC|Q_Ah-ol5hE28MG~nPyOv}FnZpai0Kp#~AK8SY1ax9Lx3Nf7ks7J??QeS~%RZ5nb
zKl&&FxW8g?5?Gu(*pUXmut6Es5xo>sPl41zN>)TL`pEdBQYs9YxEuy{9etDlNS6Rt
zg_30pKyd9!sk^{5j58aC)(0^XoV^_Uhz8?d1NKFLz8o=a04*;Na{^y{;OhlmPk1QG
zkduNJx{5}nm*e&J3`N!N#-dM!5v9&q&)p**qWn6P5<#fm0;ocWQo~23#93FG%~}dR
ze+{A}U53|-1QUv2A_$GD0PYkBJAtqOqQtkR-xr_13Q^Jpu~6X2yV8<ZB1+t)cs&#7
z+PKoX1wnKPqBPpBl(+%xics(ozG#$H1zyhxgq>zy@d$ZE)-T1P1TJ9tqfw2Z$N^mr
za2bq7K|N0_2Ss5DK7dNoae|;nLC_N+==IA%47@|oyN_Z~IYC4TwoyIiV3gq=P`-vn
zeF=0`=#*Oo<9LSGgRmRc5nJ!q?*!QeAPX3zU~KXfJd_uuV2BoEeEmWIEQTmSc}dKI
z?mF-xOTj~ViGuQy7{rW1x;?=FFBo`+w@Mw1GU2AMdi>EsnM%Bs;ZPJ^9gAl3B5uSF
zN*ViHX-qRLD!&GClYWl3Dj13~vG06UBhV=?g1EI@LkmBDRLW>@rKR#CZg70DiW`ig
zlU-?cycE{^Aha+atepgP;I@RKg>Z1pC<0;E0FTo38C<~Jj73McQdm%53ZcHxf5D<~
zd|^R-DTMlB1@*;5oWg?oQV8`W1L_O&EEYBLMGLq0%l5nN&fo<KKiKC%+@PdeaYJ_n
zbcGN%DCt&#;6MS3LP<YS4JDlgCA|<zx)qdk`aUcQB|Sr@2`$_LPnZGtNW!wMz*{XE
ziV6n-u#>$QaqBC^TWQlLj$6U8k-ivg3xg}L0b^#ah3;x_1xUGo>yAYm0647-Z)FYL
zB3GI7+bCRccDcNJdWrTDawvLv%SY-1C7|<BxKf_s_stAi)O133JB7>a8hTj)xGS*&
za!ZjV@JBQ*pM&mM;3`tMUKhFS9x+<NU5VeP2vjOi<-tTbm>9CC*@_h)NP>y0V4{Qi
zz#dGjLzV;scO1HG2eK5d?OwGl=ViOpfw>G>q7r~!Zu~%ffPwBW;0{10v{N7801!V`
z;H^J;*$=pmpvq6-au-CF7y<XStiD&x<EIaJU1i|7E+EH)EP<%+<A&}E=n5fAAnN-9
z0g(b$0M0IoYvtAg4xsS>Xg&~IPvIH{c0AbKP2q}wh%|!TbD+EmSpu-COY!@300Ttf
zHi2BgCFBP&10YSHAOQoe!0$_h?oH?}rv#e)hQ>B_P?NwLk)IMMbOnv=FUK3`3|YL@
z!wTGi`_WpWDkU)D8XEig12xIWRR#`>nxoJ02H~KU>?&isffD#0xR^nUx9h=(Gzecu
zWAC<8lUiJ5w&ya>bPZ`j&<!ByNf2~fc}gGz-2j6A7J^Qc1PoWvSO|I&1RbtOnh<mY
z2zn9(-By+oxZUc5{Zj!ry9C17B^J&u26lrM$3y`uK!>x7K|Ofh1F~F{KsdV?Xh3%_
zSmHu7;p`Hd0>Wqep}<(lLRAlhs;&uD-N0_h;@BceAXIftsOkpwfaWw-0IIrXxdqyy
z$qjBgfOZA!E&(wZpeKOc1|Y!ZXFx}UNC+aD+yI~qZ?FfPt_FQD2OH^8gXhp+j189)
zMkFB9wHsVzy4ON?H6j6-uFW-QQRj{gf9r?df=t)8hAw2f%{Gb-Wcsb$=`6YqY@`yp
zpos_Gc5FCoq_-y9sSm4$Eb5M7!(k(pxCmTP&{{>&fsIt68oE^=Y>y4UovI=@nRCmp
zgZfYy<Sjs62$5*`NPRd9@@qkU4I%+WT|08f;;14;2a5Ww3gAwGuoDOiAQF5NfeUq@
zs7pXm*A4}qysHcpbqOfy+9uGofdL7E=n_O?6ku%tyCM`FDC)PMsB1%(Bo9}HiOXHs
zZnGHNffU4C8)6QJbRCGf1jJk$VqSL|Y;YqI5c3WRh`BbzybfY+vjoJhp|?D-;RJ{Z
z#QYY-{2|0VSr9<LP|NV95c9^>*l>vXS%`Uk6(o8lB>E#rbUO)36(qVTB>E#rbi3u0
zDoFH9Nc2Yv*l<YnDoFH9NOV(3^hP~wI3#+83=`bR^CD-Vq?@J=S{QRvs-UE2LP<9@
z1Tl5+1zaN7+~+C-B|RKU`dKLHrUgS5#<ZCw;p4ZVq@RV7p85GB^$|=ul=QPu(oN$4
zDj9I_QmUY&XXb;olb{Y<DCwDZ0T#@E>KBqrT+t&gU~a~SLrJfKlAhTEs=okc7!j28
zOepE5=73EchHx3ptZ1h`G6gVavEfkCGq=l<ryrbhFx>=7(%?@FYy_g2LeLe2t{m71
zK{NTm-$hp$sfrVu%^HsY4l(4c3V=3-kwNgQ0C4z6YV0f5bodq^1;>|wh#`yGU$G{e
zu_myO@<~6#Ybp;~7}OEP%xZT6Z2`gu`>3YWkcELfMGE#&zTg*lO~XNp+J#sX*hl%Y
z+o`cx&|QZ$fqhg8_R#=m@DRkr#>BF~_I@zJiSVVB;Wg!5)04z0Qu!hXpKdu`6QWV8
zg*AEWg9dPb5j*G}2AeAozCQ3s9e!1V-wr3n05~yf;(=+4H8~cD226HPV+~x>yYxVI
zDZ+OVWLsc3J1J6dVhn&2qh=KdTY+$4dCU0>DCs6p()pmI2S7=W#X$ELgbzx30F?At
zDCxEQ00JTbB|X*=Eb&vMprrFbNsoQ~9y0x{iQGbj4?Y6~d<IfB3<82e2Gm-Bq#G1=
zQKa7cp#i7U@tvP0oZ4~+nxyi^dP(Cm(I1-@czQH;hr~tWJZI-j5e~A2?-_4Irk%xu
z6f;}3xCeWUTf<$)q;dmst_tFF6lr|r#1f>n9W&T#=u&uM<k5BJv#dh+Y&;q?wd9J5
zaKCDsQe{@^#7tdQBqKB#uTl`%GTu8*Ycau^myLdGvZZ%oksN%Bt21MiTAH<(9*T>G
z-=1S|j1ze;vkdyjQC^BAGUbAJefCPX{Me*nVM3Xy9To0wI+QMpC=`T*dpO@?zR41!
z<8R}5`^R0!BwU(2tM>FCu;^?$K0fs-SEYbFet<F)@tUIYirCc@n9g#+nj@oKO;+@Y
z0!p@%rMs~ctz@9-emZL}BI88PU<FMHbf`pr!kidrQkk9}>fJ?mi^ajGGWRha`UD5!
z>@?$UjAGh)O(U4^vXFw%8T+ALEPcWlDelDRj|EMM=DI0V7xk`1#6C}s_3Edy^i@29
znT#wROH^4UwcUOE5kjPVZc0vP5fB<tJaw9pRrLk?GD|#<Rx%hgwQ1Z{p^7*gkJEp`
zNtvl879&~Qy_a!QmMABdc~Tskn#b%@q>%eCbB$RU1t-kKhkJ#*+Qxb-(^=0cj%sH^
za4ZXyN+~M!avjTIPAB0C-ti(rmZ%%WF}iaZLc2spJ)C`*(+_cN&J+Px=PS(V+c-5B
zvVeQVOt>aR+L=7p)g;^-j1#BQyoY<&6?B*~h_hKZM!4z6rX%zTB_#b4Ioy3r1D$X~
z`r*}W%$z=vL2)ektce)s(PZ6nu9Jp)Z!o6=aF)HdaX!q#x;_0Jg*{F2>8$NYF^Vba
zZ@Nfh2~%1s5o=_YPPFO}9Cv9QzCdOcHfE{x-p5I&voOf=-U!@@OXN0~4^?4o7<0N9
zr&vIX#7_CL3Y)SHyi-PIKVrPQ1jn!BxaB-2&c4iA(;JQ3hE7-`dU&#n`<M~kEgZ*?
zeBal!nC=#ebD`2aRHn!*NR0a4I9x_PjT753Te|^Cu|%I!Ml-`Hqzbq6p<WUC#64Ww
zC9<7LM{%7al8{FuQdB-*=pJL7D77{#{GB1viYG^^bikiT$6ZXvN8-+oHDt+R5HiKG
z7vthFCQ7GP?&;SUb$8BSij4L;I@7aIGI|x~@T7!7`iMzX>6krMkp&0$(Ov>wX`rcO
zXjc%<gi4b@ygp&VRU-Q_CfLa5s#9Y-rh1#1y;%<CO}Ms@Or+RRjhR(EiYHG^jlquv
za&5C$NMn5%`UIiPs|OR^E<8@<n9R8WG`_K>+;LD^`4}lCvK8m-9y?sIK=GahFNk6v
zn_YlsPbB+Kj!BI*DfS1F8gkEqp8*gjy;hxSe4#pZ*M%%Q5<GQQU_yaG6l-s8fRg~J
z;5rz$2jgv7NU`*(Xp(ug>QoLHh<m4c&C7_h2@cVCa!IG~I6Zy%;%(;i#kO=8a>iI6
zPA1FK;~L0?f*XcQL1S(;y!ZnQ_jkCqjj;6EiebT_!s8tkQwohmy`#k~{TThhK01i$
z!w8CAs!mmq@*_Q)s{kKhG<F&=w;$>|4C}59R;}bz#Y{o7XXGa<=KzOs7>7y)1W*J5
zs0I%5GF-wPh+xX5HGE>s4F&*9M6j3y%gon-F;GyMYXeLk7}N}Vgz_N31K9F-_EzPp
zLdUSBeYP<d4<s2p*&A)<u|WMv9kU-q+Ri-zSLNVJ5yZH`$P`=8;mcJAzVTU`Vh3CS
zO@DHX2u%3>D$#T53A3<9v0qYV_@WqK;{pW-@Y;7enq+q-np8D3Ta&xT0!2LwN{LoI
z&ADLA9#+`I7@j>(YQ<g6r@@pW3`rGKlwpkgE@YF*#x|l?Lv9Q#uQphlC&v5y!LSQN
zVWtrlm+-h$+wjFD;BN~kYXHj<8dLy^1EZ4hp&6FtR51x5wti}cWqGcx-#VH!b%O2C
z!Jc)I%$&aI-~k@Zpe--dAMN8xXUVkX4N#jEVMTcsG!a{w&9cB0gM^skn(7rE*Wj7R
zVdv&z$cop*^r1dESW^xsh-5obhibQD+ZI?;#VzcxDFdQJ7^T(OXj1b>OzxyHWK<)}
z@t9yZwI2RCT3lQ4GxpRsShXdvr}YD-(sODNj70~=FaXhaERpXp7Y0Z7$E%7-H^D1A
zMC?><`G_&`EC?s9>~$PddW<%qrL9h6wKeY~d+{e3(K8oL3eu_GClj*}pBdpPk#|Pv
ztZtu~YowJI@|oD3kCi|Q$wYjLXsVn!cfiQjDUo&Kcuvknq^MWPhtxzATm8=aG2&y1
zVtBZF6G5COpLT-#!UnJ<1-$_<EP66}5%Wy+qK?@CO&{*l(TfVMf~5lB=7Q;&*F-VF
zcb)+5EL$FI!Rq6L)yD~|uY_;icwolz3wyy_1F#jTZ<hDkgDk8)A89xva$m@1PPdfi
zu-)LI7wP2DIu=feutA1baw-IXA9s+BeuDU@fW@%`(7BV&()GD`E_#vj8}Rd7m6P9*
z?7-ctlg|27nkP;&KWW`krMIlt8AMNjS(R6yw-Nli(<jnP#{h9Qv^$J}7&V^W!ypv+
z4lT{|Ch4CHgO`3sGLB<x9f;!r?i`G~xf`nZqY%={9n}L(J|qf2!h)6qKyobc&^uWV
zT4I1^Y7HparL(MkNH0}6D@cQq3z>K_%IUlv=u|Kk4jMDRkyZvxbp$SqEC*C;fzt-+
z3J|nD7=1_a#I4fp{p0QELgi-B{<_j)m^SBNX5o&<;xH0NwVCqL&tRpf6qFS}Sq6Y;
zjVbNy&ngjmCkQ?S*x`=^h#bI)X6ww&q?Pi+OVKmX;RT&tz{z7yTb*Qtx2<}21bR{c
z!K(}Fu(Ee0^x7agjwN2^C)s2L@Fof~&V<GV{k+f;<;U=SqO`aYkg*ev#12yx40vWn
z!zaxe;srC(Sf<Kp`~mM@S`1qbM+IrF!{-$-ovZg8*gpXfRe(Px0Kh4n=eaL%f|+H&
zxy@n-zOw;)C(c4FlzduCw}33HFiu!uN{<u4Ev&Fb9TPr>PqLG#2wL<h$OC^EurPG6
zCP$WCSUx54g!3JGZN`Tb@=m80|Dx48dQ%09BRcpv;C-??8rAF#1hUMz=uKmyV@jv7
z{yTS`9?wL0J)%H^#nw0ttYuRoyWk&j6L}KE^wfKy=R)@1-wTs<&9W226Z|d|-i8=u
zCYu!eK`9HA;4fR<1WPRBodMe>a>?Mu<P(H<YB%_VG}`1W3NO*%r9;WTY9nlLA?)?_
zq7}59e<Ot)mt?#1&f9+a3fo7S>H+owdtrYTkVvr&3OHVTaTg4Fu>HY0eGvh2ot7wb
zV+Ct<$0h|fb_mJ~d%*6j2)<y2fv<qbjX4p(g4J-kvI)H=VS$=&8dIXXIlXW#{+M$u
z*omCDpS{LTt3jB?R)L}#8zeQbU}MgGP&@@J6|lPzTJa0j13~Dn{_F3K12q>MOv!_S
zB-n+m4OnvL;4c6LiZQSy#;G4Qc$LGzh9>B`dRgne*a8D6U=P3=C=|9s9+1S+hxWhd
zf#JkYFyu~0vm+t~Mqq{UcDRLV@<vubG}t)2+4CX<EFSRKkVn(m*jNdyW57ZIbU_eU
z<^empMDmHCcRPTr&z=JIv~z>QF?K|#H%&H;%`G&Lkak^gu|?<Brb@mgwQ1*<Ejea1
zcP_&A!Hn#I*%ucUZydgNiqO3yhjmj%E@&AEJIflFQ&kgFn;RV(LI;=~*5=}K(>~Vl
zFGYTuEFX<z@}#R#XFpDwGdt><rNsyyHGTVXIa_{wsq53um29C9JpS^cpHHgm3$u?V
zOg(ItY*FnV)6V@$3ba2#n2K!{XesU*)6A94C)M_SB_%W~wiI`d>E=4*lj{2-?b`@b
zKw`-FZe+FIGR~8Kmd0nFcFE4yT#8}V-ncy1I6pZoRITTXRLk2}$Km}6!BEn=J3&u%
zHYqG^Chea0@o~G9uqTC)7{RInV1Ix4sxy$FS21kgb7sf4mros`n5Nf1iv0)jqk$^3
z)wbm=0Oe{yc3B#q3maKK8yBN*;sE(VJowd7B<{Y;_VNv)zH?@F$v&KlIl!!_(<KLe
z6B>S{m&5LMs)d2@-2G#c))UA>%)}W<bN2JE_}ReN95=Rc7Z~&RmyD9m1Cr*BxyE_f
zR%)MSR1U9Un0@ViWXG+%MYZV_J7!O2y0UhreG3*F#q_7C-x+M$cVq0A;V|-r-y!`N
zF0ah6wC}O}BS>FC!6<%=>DS;|mHZYLmX^n!G{@XVE8MAwOKgDOAQiv+)AOG(Y1Q|7
z^1F}bwl`Dk*tN2Q11}lu`Th~i_epGX@&2arm$^RS{q~jdcjZ5<9B1@R>WGpr{4rr^
z+4KpAQ)_;oy|g>_lcaG)<)%Y_o4qzqwLep&x$Wa$kU2PK-uZDdzQ!+dV4i9Eodc2m
zabRq0g<f5?uZ$V&H2))BXo;`xw~jct|2w27g!-vh;=Mn|<P%SE^v@n3h9h3XoXUR=
z<9oCwuFMP7F_)>YhG}9a^<QA&R3c#-^Sft0K}z5GA;Z~=(0h31XF%*^7!Ol}6#QvA
zqJNC*cR-Ny->m->)rFyYIp6XJR$suk)z?RC%v$C$RX!f}V{U(2VMWo?<?|%x>_^D_
zpYXt33`owKP9<NwexBvs{4NCvkmKwn_5+@;$@QN32xVu+-y*~=Q?uvh$qnzUe_C6S
z^CZl4^*m#$XdM_ES4{Ab#1$1(yO%USa>+FvaETo4S76TAXSKGRD{8xFoL?<|kKXM4
z<n2{G+95@P)A9V6u;+E$WRbh}U1xS+l%xjy^j20C0CCv9>(k>xVT{s_0lzkv%Gj{1
zA1S{JJ?Z-N=$pu2wY=Iy1NCUH|7Isa&k9vCs|zS#m-HXX=I<GX<UR;XYyY`MW=fiN
z{k3X-Ev-my&7XDjk77$X6EjcwRcTZI+mdFdYsQIQSawez^4aTloq;k1oxJQ=_Izqe
zdfZy#VmDtUpWl>6kMBG)J?6>vt^R-CqS#fpH(B6^P3!A!;M+V}g<-F@#>;ZuZgZpy
z%u$UHKJtpI=2BnRAmM8w=@+p_+;^ZYxZyAR-oJJO<7r|^|F8jk--a?1t^OWjetVNQ
zA!F?Qja@G7GO~8+vg2Y7>+b88)jPre_ffFT8_LdS9yR~FdG_Y``*{8yWQxO2Gni-T
zo&0s3ef4ivNYl$1D+|!$_zLcS%_|H~W%Q@Kxm2)_NXUdr{b$OIVVF&ebB%wWq<=_D
z_n!vEHa~A#{_9*S>zk~Hiui4czGq4{-4xmKW5WE40M9>Em`RV~dGq@1PkCL|7eM=Q
z{rsLMWw5^jn*aV#=U+DLssA~jxpM8kt|gd|zf2RX>>`@`*ygIkit`kMe;DcJpGL}t
zGJo!e?f5zO3Bv;=7d&*%6}dPy7BoK^*Q2>ZNp5{*IsheES&7+lvC%`)y!Mr8H`HC7
zzZT>fAC~u`h?-ZXZftrhyGXleNcwlS)Vw-Qa5DZ2;na7TAWcaeTjCGGS0!uk@Ll3h
zE2kWDb=ui^{FkHI?_1f|h=&hef79$eU}^=2DVW4Rt618VGIjDN)?S~#oyxwIqS-yk
ze>vu6&R+oLUn@)jk7IFs(l);4Ys~840KzWNY3H@s1^O1{%(E7=KhKMQ9<<q}2EN_`
zemq|Pr~J-acuF39Ej-c(!zkk}r_<;>O2&lUtNvX5f24MfI7!j?F97CAO}G~PHzB<X
zZw{NAYiXWzYHl=<%pL8_Nz2f)XI5P_KS5?RhBxOFW2k8abFwE6xOePR!-REm8(sy+
zH}`z1sJloUCR>sj#;q5LPS$R0dS{EVq~cu{b28&N5dV?;yS49Pf7ks7?%P*P?3{OK
zo|ih@j-WpNc#!;h5g=ub!+E=4p8cBCdLVbyYq;e&xmR+Ky|Mmy@*mrF5;uz$!B=H>
zHTGBsU<CHe8TR;!q8aQ9A!+%+c~<z;+8b=KskS}D;TaY?CZPZ1t3GUYA|YQZskBX5
z3*;I5ARxg$2<Wi0ZOl!4zI~jf`j<8F`)Q;JCH-6l;8Xw9d^=$Dcr9D28N$$G`u(o>
z<Whl`DctAU8_jOe<}@9Oyk1sTW}a97w)g(A>HY3#s@BE&uXjxd-h87k44v<U@^44x
z+sv2s=N9~)xr2Sj{9f>3z*DoL^95skV7^0IvA6$xSZ0*xi`+olPh01IcpmuQam&uE
zxs`v<gtETnZ@&lP+X)E{|G3}7GrtPEwobXsmk@0w8uQKFzYZ=VU2W#igUPqEthony
z^a7+0JCpx)jQ<CaUn+>j|GWoZvSVM^u0sO+cLxhI@vk%KKR6W3DDP=u{Pk<n*Q5IX
z&Md+9T(Y6bd^fWw?CZU3-m^gy#`~m|!(4gYBLZyt@$8Ejdt3i@PT0*)j=J;xH1Nk>
zKmX?c&nJfYt%$(Ac5TSrr)6o&e!8SdwcLUqE)%WF5cjViu6{gR>SxZk*eQiStzXD3
zl~+HVtYPtc*!%rn7_?PG>q}nz`H7D%I|gaZJ`TXq7OsxpFCy$>*sIOYfKNAner)@G
zO!<d<(fo(EpU;s$Zq`2>E&knI?f0Y2zrL&eS1|qY5pnl_@vioNAM&5(*>|=1k81NC
znf`;j+W(4Ic1Hbtnffo@)qcK!&TpQbu=C%Ke!lnrhj+Dq9pL{7EdQmu+P@v@KVOi3
zp8EfwEPMW^?rJ|r{XYW*E?@uuuJ&Wi`!@yP|KHXA{POry*?_y6<lJ1rKU~seb1#yJ
zPUhV?m<d|Cp1su9o7i72Y{~_2mn&r7+=kios)95<`yB&080r%?@t?TATl+)oZ@T}$
zO%9{G&CZEA&Rm6S+Oj`>hWPXMn#nT*qf`AZ^Bqp%Vgc8xf+v_J{SWNJ@sFR?dksrz
z(}>5E3tZ>eV{O&9-_g=I^~dE4E)H-jn`i6Zww^6EUV`iSG=;J+v7m4LyFMd*ugKS*
zaLnr92e|LoH25xg_bGe5|Bv0u{&p`_9f)I7av=;2S%3WO*zP=&`Ss?Qy`DT5*y=uW
zBQ*4E?bRQ@%E3=J->!dSaRU{99qZJ8?^eeC0QU2JlPg#1+}Hafe5w8V1@7LKKfY`K
zKez<U9{mA~E17(u&-eSMZFXqpx!=JSH_t`uf8f>xx7egVZ?WIQgZv(z{|C3&$-iA3
z0TKISGNjM{z+l<Q@vkq!?arF$&lkt`#;;e||I9^;y@UKWr<C8GPMGiB2#0>S$->R~
zTt4;3kCER#y!`92{^#z&F=5^snYm}+Gws*k)doI&{auY5#r|FG`~5AGI9poSIvW^2
z-)G!^_+3qKo*&4*{q{ER&uahh>s)VJ!3>YQ{gN%N3oLKionLumU1jj<oO@O8s*E*q
z_6JqRADL!o<-C%(kfk}KouQKx!DB|Xx7+4)zraSzF3jSy@tH2A%}%u1vM5%>{-I}S
ztrj0W$NK0c@b|4EbFa)kuWO3A9=>$bA{@u;nD~JdQA^zjpN6vfQbk$Yw+b=I6+<%-
zpS_N`dbSvNAE~$4bRn;Mt6JQ)q*Yoi&Pn{$4~Xj1MR9uz1r4@|Om!WvN!n&9b$I5}
zUN@sXSx2rVxH<{TrJYr`Ou=bKp2JagVyp2VZf@}i7_<wKMDLzsTC^XdNNV^~o7CNl
z6Te*9vfE;-^!Q<qG#f$jS<~+B=@?UrjAwKI{X1t4_R7jdv5pZGJzuY~jZ_(ud;Vep
z{PTH~6H0!r4yPRa(TQ~$GdoX}3L`OYew?q=JC%{520x0nx=!>ulJUBJ4ut$^-Ni_5
z-J2f-S9i=<X&BhP8wy3oxHXJqPo2tLH{|bk>zVoi^&o=v@#t+LA#PT)3Z5$|My+Ad
zC$CqpdabOY=3%x`v+NF&G7%?@dmgN3F?I}RTIYN<-Av`|{kucKWt0}mSQEdJ>`2P+
zH2IwA$l-fWr7xv-j)y;Xh>=XLxixCkwOrJ>vQBmX%{|RwyPKRmGf($^sJZA9U%6Pb
z<cxkFL5GkW>ky0UI9`>W6gzUK<Kn%BY^`1WzSa|abqWvhy7iwIu{CwwUrVUF8E#E|
ztYP5&mUo%kYa7j$QwN-RbY|~-u;_ai%{$G>Clw$vrB1n|{p4)Cb;AJ-je@fMBDJk|
z%O%%l7>YJ*aJd*T;S(0U?$OrS1=OYIxm*|M)*2i%G!Wq!j32o%dGd0N(7iN+z?Yd%
zjtnTZZC@zG&wG2_C#P*;EB1&S>|83nOs6jScHef@H*d_2+}b00So%!xg@EKF)007~
z4Ug6fHU#9459si4dU-~%9BFea76*BLC>gbHeaTuKa`ZE0kCUiUX==Uw<5H){+njlE
z)4Q@X8Jomki=H}#5@j&AU#5TALKw*o^S0S@&pDU8L(Jw}T;%X4z1xjDmRD4}yet?o
zdB>4`efst8m+AQp7BO3Wx7;pwvemma_od>#yOYYqEz{>6j5UV|dq2!f+>uY%uQRi9
zdaL4KQkB)~v?ra6;>2s+guYeWTU4XoYRc@e`P2>nJm^fem+Eb`tp^?U6*g3pqy_Hx
z9(MH0kYBP5Q5C=9d*|Zi^4-Cd#)DBw%B5!{H8*dpn}`@r;z|CJN!WK}>sr5N>sJSx
z3|^iwc`BkY%{t>`YNvYZf_Zmu^IObSFa7veDvqx?7LN?wM%suQpVIVPlHLrfx8=A;
zH<46!78q|;tF&6r8r&ySq9d;Cw=Qi&@fK6Sf0xn3Z;y<*pQX(0-?Pm9a$e3(9a^;;
zPqh`_CsWdRP}#8;>k+ESm!S9rBNw{f#+Zp6okrgNj|;O_413?N7C)7db2IvaxR1V_
zq=VelDV6%o#O=Eb)%=z^s8GK=758e;$i%(BBCnA9RIT)R?aW>xi&x2@`&m?0V6V2z
zsn`el{h!DZElbm|n*v2;)>+EFGAiHLuUNA0?HB$n=P4T>^=(!@z9@f>=b7R;es?a8
zAs#!*{<W?PG%M_Oto`K|&P&_KxVJ>sQZy=mZ<Jo0(A=E+jVC#@9S2gg6X@rP5)D{e
zvyDc6CCh6Pny%xW>S87C;QCJMj{Is|y{X*HeQ86YSG3o;b8}6e7qq5R`GY2NKeX-f
zFncgH<=7&3`(|RT`<Zp}v-N}go$a57T?W(Uf}g+N_+n|kqx>76%24~OgVRfwcl6z#
z`?&6rP}|1$ZepE1A}j76zNA)sjZ(Co&^hw#Oh=hk!?xb*u6}(5<gH`d)Q|S6ByGVe
zMMU|~o8Q-z7?w%Lmw!2FaOFnP>6KMIH{TftUo#dAe2cN@mph$tVOhtUh{v>KAtSYi
zJ3b3P)LD^dy)7|+N~wawL1Rs4_06Pxy%P`o6RANG<6aw19Sb}cFTQ8o+qXI65aay@
zRIs_}aH~PUVG{@Yn&W%Ev@dzLZu-9D(@*uUmRoptR|yM_SrCqJ85Q$Xa&P3{e`24z
z|K*u%^_ASmVqMBY`CQ0Nd`En~=qY&<@(iD*ihLH*7fKD!EZinYKf3vX$EW8{+IR1W
z9{O<nfvolElm|7Kp;8427AkZp2f1$i?2y@hq1vY2H!t6w6%kO|r_tb<KwSJJu}IK#
zf%;v&C7HViHVt#~XV&VyB0URR6_s^X|MaRWiu&!Dr^F779NKbcd0u{%Pa<yZ3c<(L
zkF-n6nta~e%j`(FWH;HxcX->HVV}mk5;nz*6qip**-9F++uxl+UnUJH9m}qon91UL
zVp{shNXKR?KCYSR;F=zmwWZ;X<T>5g4Mr6=U3W=y?>QbN)oGS}bs2N&!LHYNM<loK
z7aq8mbvt3%vXWk*{bmKq&-D-56dnugy<>G@Fl?~9AM?g#72YZM_C_XW9<|JO+Y+l0
z44;4g1)luk+dECg{imWW)=eINjrixRAHQ{NOs(h(XUHxIcXqCN9DcLl7tTSf@}~eX
z6B9<uKuA<U+{)lr<95Mj!+TB5Bv=tE!su9`atYS?EVIC-_k@DI8p-LadH+v)Ujfxt
zx9p#k7HNtUcWH4bTBNv3ixw#wG!%*xJa_|bks?KlJEb^9ic68A!6`wDJ1y>isND5`
z-@D(vZ>@KqeCsh;`%LznnZ5V?GC7&EXC*1?BXGE9X>HFCo?a7OuJ`$5etV>?dA2^w
zgg0{2HlVICz}x%HWbhdSFa8<1|IV5;?Vy+VN~&sJqVCJNpa~oq860h^rbWp_#<F9T
z+ZDH`z&qkg-xdlhvN_Z?#Ey74@s#mXV2KoLE*vI0cr=?XO*WBS87JgP^{yDQPpH+J
z6mdQ|A#5~CCZjMdy+OFT1nN3n{G(t@r|MwETI^zJgOJWt=mGy8p}@2E_IF{towg#+
zQ`2u|&uWkx?4yd?YwAs97`0CF?g-^d*oVK}t7emmR5v#FWR#Ve$T4T~=T~d13;;^8
z7vCvSXr5ZI@2Y={YV_hQnYtRIj)_D=gHR7g(1DWvtGLG$=?q7RShbtyJs)?5Zg42t
zh?lz%!w3)i(u(hxGz!)A%P;2^inXfWgT{1fL2?>As~cKyd1Mpa7>k)>Gx|B0v&kod
z2w1xYxZd{$CcYMv8ClZCX8F`l9X-FYETV<k$IqmOZ2EFI%@k3uWD+mr*I7OqR^1z8
z@t%mQvkw$Ltt=auB+<mNmJc3REq$4dbuQlM6WdB7Oh#~rR3b~Yf;m_fl~ee+)Hr2@
z582+!<(}lOgvP`BO1tSJ?CfCc{_kxWVp)?UodK^8Yl?K6l14Gs;tS?82^u2@UAgFC
zShEw{jNI5wTl&qjdpI&5s=pmsF!pMhD(EdYZm`i|(%-Nhz?hm*VMc>=MSA!^<0C@w
zD|d20pK(c)$0EC6-q<e6?}=R%8q*d8Ze_Kbixg(8AD9qBGpy`#%@4x^Q4$?mJ8slX
zmXT1!phCM$2|OdpXWALOHKlvL8th8Y+Peas`Ylx=HHgu+w(nH0P2W&xQEVoZ&MP*e
z#jg>g4Av!KA$`C?zhS3%kfL8iAqR^J*SxNS1N66(<P`%&w?FdPDxpbf@C$Uf9W$TH
z`;1?lGtlZh-OIXO2<o-nRl0d7`XcQ7*g_f}ngwT^Yo*mJTkT#UBB-NUOv|Q|&)X}*
z&e2XZQG6DmBKh7=MAXL}<^l%^#(y$prf^CVcMOu%kI<?WA}H&8%lg1~?2Xyk+ueIM
zu}6X^WfBULpR?igNgtOTuP;{iK7L-pG&6;Z=SI^bLf6!4Iw%Pmev;^?eDP=G%4_4d
zS8`;WEUKps0OyYMuS8!w$gUoL^Sa4$Z%}05D>>VO+D;_8%QYRg?3CX7Deu_ff}>lh
zQCkz$AM{91rVma&N^e<k%GUu#Y&@%`VU>j*`js1*NKMr=Ar5oKKEt{Zs3KO~^WAKN
ztWODGno~BsGhZzd1BF*z%{rCTDN`Dy9K4{qp>F1k>tJeJ8)8Iq;{!+$%<SO^e{@p|
zZ__NQtLc==ynL5_42fHS8yvH~9D|KyKUPBNnoB|dE^CcmSB!q9=~OEN-c9G;B5B(g
zE^qp;iMlgS3t6r2Wk}8Td=WAg(N%~Kv3tI#N4J4zC78D@0VbWlrEQ6}y16#tv$@JI
z^vDJ7HgxOD3Yp#R0464X=i4Nq!PK#BZn=3y*Eq|X+yvZ~$Jokv+nOx6u0auHyCZZG
zH|Y9fCEo>k1w6`cpFnQq_{}TT&rntg(tzz0DV}P&G@A(GZHMn`MVfEUJUKIB_pn+-
zt)H6Ni`RvL5A#G0TJWOp@kB0#ggE!q8+y^ovQ79G<~=#pmHliQ=@!Qh6{ZnCjhq7|
zVmY_R3l*ETG|~+ac8YM<ly8LdeW#BR2rX}jm%Zow9(DSKr)D&-v26g&`7UJ3?UPsR
z$KE~b_%OcYh~m*t<lf<e=rO~5nB~;xbT;R~G@)YbX_=B+Q2{etbJjh`lT55lcEsy;
z1-rw&kq}nfQpvOE*>)y7goA*6EbgpC<1m>U3q|wm(_NMY(bC9XN?)qfG}5{J;L|-B
z-0zlW@TJmNSyHq~*~t#Ri~-g5!jB0{M4?TPbquF=-FHW-lXe)B%H~+x9Qx7h-!-wM
z=^1kkDh;97XCC8&!zlZ!D|%|jB?c`gJdoHaia8;{ZNs~h#qN>Ur~EsW$I8fxUT93A
zQ+`IBJ50C^n|#q5yuHntT3`R{>2(K<-dR8HSgKHdgFxY>M-)8FbIjkqcAaj0eLeRM
ze@*;+lsqhmgAT?&UxF4n4jXhzx?_79O+7Vixn<Quj%i@;RJ06)ZZ5%HkVT6@<66K~
z>?o$vBD7OEHCG$K$wsPiEs)Rx+M(<wjjg|vQ_il_Lv<M&D_n3My5pw5OXsGbXK;<6
zjl)Tr=nS4;=}p*D(tz%pwn-Ok+3{%>{OoaxFc+5@otPOV*4pG*l<ECe&q4xDWx>4#
z`Z?=e4X`r0kXZ&7jOY8tp86|?D#kB+(vz<#tdzRIXE*iwz7h!r3gd5du6}7*SW~v!
zlPw7ReE7KL_#6=8D!S|ngvL~E;tTJVsG+oBFchqI@M7YLYVpBDN^W9CIT;%A8&-rn
z)d>S`>thkP0!<7Ji>7Q(2W`AJ9#og<VJEtt6bk4I+xNfnHS!ZiX+}9lsA!`BfP|P{
zuE5!<0;>UzZ_l0l8-?GqMC>P~WrLlcP4mxuYM`EJXs~POIh*%@0f>mPL|lPD4nXgD
zMmUFPzYMQvnGl`mD~uV5IL0A~q4v)b002NVxOYgT-nvHwRX0pjN~%FrLxVzW<prL>
zFH>ttEs-1|O_B5IaFIfiDG5Z>fP@cvyTr|ryF%|7_5^oMrUZ;Y#A2wrJ|X}>iYUG@
z{-X<14B+0GE0Cgx^O1xqaqGADN+B|j(y1Diw?w6I6ln$#i0RR#vB4*HEavv+2>R53
ztgHZ?ChC{eO9B2e5I$~hwb`?&`K^<rW|$KGgKAx}W%7~*HwoM59uk%X=pN~^UVmR9
zKZil7m3OnBrH#d^3;F6k>oWHJF3xS)Wq(=c9p2(IDRJ+tJeQnhedGOF6@&rPs_o#8
zi}CqD`m?hX^JGLn9`g}{TdlI%rdof!-0*<0m<E-~V7<k%B=b>N&6%Vcm1@5%?e2$z
z%-m3>6%(B!DgsXla57>rJ93BQ^PnFHicjdta1-f(ue7TWJHTzE)(fvn!o0f=Y0gc;
zJa%Vu+|@fkV{ri#`F6c3b_KpS>`F9mZ<%9kD5-BhZ>=#rFBPfrJ|o&LUbDgF8hECA
zbSKxLeqtdl!3ueL*axC@XJ3dS-iW9|HdnarOFs><KDB-0Jyj&B(pFD*K6$YJaDt+d
z<(T5k!P~74ylJ@P81T3UfSy_`clfCyf+1Vw8=0zh8*KZ?S(k6!SX*@poz|4XB(7lR
z9>S!{0Xr6JaOX~KlKe*Rb~XTMsvY`sg{JLobL~*mDH<d0PBcu<fwyPK3KvhOFX~(x
zj_Y`xyY+i(Q^(JG-xk)dlv31kmsw|jQmo~hpB!`pe+O?*)NHyNHRM!Nn>+F4R?U3b
z0P%b+oD_Xjz0JDbM3JOjN)Z&o{k^=_qp_0NmJ>EPG|rATys;96yj^vAXM697nFe1u
zyP3f^+vApIkTr!5^S*tuaP>5O=_@xVsi>Twid|`;;JLrwR4_*8VJ`r%3N#74xJeJ!
zH}AG5Zo8MsY2O9z5!EFrCi@Z=LzanM5*;VO-`$7*<cJ|opc?Vc4f)|wH^+VZr4K_T
zB^f!Yy>CFcI&N-B-ftd58*P+QPuTQ5ZR(VJ7mtNPjzb>5DB`l)6P2lL?FY{|r8tB9
zMP{X0Yu<7MdNzG#XiX|@%FUJ;vQORV)(Xe7@!%_IgWuzBEqA6VaFz+Zd1|rf5rj}#
zyl+eBwQ1M0hHq2B-(r?p*ZqnVZWY7bkH0scfU?`P_8{B%6^F-EoHm;tlfWvAznY1X
zMV*~n2Z<iNx|cmT3qJnj>7;~_sd&?Nn0NF;MkyMD_%M02!g{4TJ@dpj2-Uj^QFIAf
z_ioYlgocT(DV1m}9g%x*H66gAeB+R%aJ3OU_h13VefT3H3ODM=#l#6)c*sOga&lwg
zgvAM+!VB=5vW|fDo^HjCx1>)u1R(YuulAXOm=i$75vS$~F3gsqaM8J_rTjj3MW%5s
z%00&CBOxn-56^x2cqtcN6Mxf~H*94jQ&Xbi3SfwG2`_e$JB;LAD=uN#s%1O}u-x8&
zxB>-Xt!;a(_}QI@eqUM*kAm0ZddYlFxXXDIxEpphrMt^Z%^r?f3)he+SQ0A$2A<3f
zh##$a;Ai_;U}W-h=vPR8j`mG$WOFlSjMc27L(lRrA1{jIfo4sRgKSdH;+*xOU=1f2
zGSa-Qt?}z@%j<xF4Lp>_9sfM&u$apzg}#m<N}Bd8rSIWpeXeeHrf?}JZp{=WEsiMh
z`nG{rN2%Gx1-JsyQvvKtL*8oq01hG5nurnI&lg+ijSZAINWg1Ycx&Smn_RiV5=%9+
zYz%V14h_JLt(&U7r9c!f0<6CH@&*e>zA?Qu+ILyK@DPgj`s4+1^N%g^hG$PFWCT?X
z6qX8s1F}5yKFePZ+{8R1oE2bM&zEQWSsLz}bQ7kWkRaQ8q709A(<ls&WHyY#M3C$T
ze7+XR8fc9>5iQy4l?5!wli^XUto;Cr8w1DC-Y-BvN8y0e#r`M4QclgD7<FquC;skx
z?Fb#!F0Pxmm~IiQeXqDLJ6Mv#Q5|wW^C(PuOwLbDl3RS>akaTX*E0fsh<?lW%KJ~p
zN(QaK3wl`u_@Ky7A9l(2^0((_TqgI)UBPMRREh8de3{6U67v@PMBlu(gO)7`>(aYA
zrp6QHZx+LNnH1;mw#Cy<2$i%25fa_aciZFs3eJzzjOH|ss}Ou%Li~*-BO~|Iv3YF~
z4Ovo{>Yo0AhwRrha@Tt7OwmtX(#o-WxZjH+d-IKGcUsD7+x<^#52fyUEcv|de186r
z=@=sq$@yTj1j)TZ{I2(b!qK&gZ3B*y#Sv6+O_SX14LYIQ9N72J`8BV{Jc47>cY!{p
zG~sHk+&i)Idvh#GX4@b?>0t_DB?Bc(VEc=AJgMM%h}^Oi5=T1^-)dandcHunzLXhD
z2QdR#1;(b=HRp(}zcb&&S=6spb+7DED_%fJ;3gS@C)L$3kO<DKARI%0Hv7~NzV!Ci
zeXdkOteq6!(5>+A5b@A0Pn4&<hu5iAJ6I)c`*hun7VC0G7j1giUL+G%mygUIo4!uM
zY@i8wJB4Y7*;g(u1CfZSC$EKg>lfS?JSmxJ6WHMmt(<!wFb(RX**9qRniFIdaPRF2
zS+Z_rFA$t=XeE>-yF0JbU)*c=(xQ^IHp=1gsNqo3Az^Vv|4eQ>xtS>jj#-|h?KV}6
z(J&Ezko-y?vL^mnpcI2{0B>r=7cm}?tYJ%aDdv(jC9SjKPNSeS=MpApGJR_&c0GSc
zc;sc$dl6z}8{<>>S2V*R%tJxE4eI!;gO`Oxz28R7$rilyJW`k5%ZF~xVwIF7c;eKJ
zgbPOn3AVp>Sjn6s4mn$L>q6*iHhoc>p3i?BZM*eJtw)=!2ajOo&N$6?f<>$6YPRpn
z3uJ9W{Gmz>`?!%twRW-$ZR`hFp`b?6ahmRqzGtp(P2C*cJ9`v!2mG#%tP6?+YxY%x
zRUoBPV^;0wlY+`o8xt%W*-6v!GaVluuLA8wXRWptRQIso@Ouegr5%4i?NCrcFv>;P
zMH-q{=6=Kj+!?t(b(M|$*JUGD<*2K2)Kxj^svPydyBu|OhyM5O(62r!{~K@Ifq=^g
z06=`vF6lM^=Ld&Az5av0vG~c=A4^LEE;P^oKtGf&4rG=;_4t1auK52c1mvW}RW2Pa
z`sMYH&c$=dmp|j;m-t`KE()YS;`is_GD3ewG7xwf)tCLB^qZpq(0|DAF2q}?0Kko3
z{c9-KeyD%|)IZMuGQW6!sSgC0Ld>j;93el>U5<$UYaWzq*G#N_x_D`SIphz*z0kO%
zOJUdmnH~UOc-j3gCp9HyDInm|%bx^#_K)$W{-yWE;~(q&eqRsx|6{#h!~Nyi<@N6J
zb^pWV?i>x}@4NQK@!#U|BbY8!{}vE`-|R|yg}@a8R|s4oaD~7X0)JryT!H=?ipoea
zoZ2TV-myvOQF80FsQB*kl8ovSQqDNSYmoI|JP?d;OdsX;*Ls)XNgiPMSIL_1J+SR>
zX7s%ZaYCkgOKFFndEeXNV2<K$3l-JV5xwUi#!A*^^XIgXf8jHq#;Bc?|FPfvn$}iX
z-ocm7&Jp%r);F2zrsz)<W*l&&tuk?>8~RIHr-Q9VC4EEp{k2|eCHh-64@G2R=3^-v
zDzUZM*{Kc_H02{u4;?_I3}EYrLOzr8R_^%95er@&JbQfNj&d1ND6E*&Ou1EaSz*^c
z%ydlSR+2PR^S4>yz_W1zW@naNahm4F8f~0tH0^}^4E%lH<?)tTV3-+epbz$R)o!R8
z<(=9_5|EZTCF>^C9>h09apds!w}cNeFOmo}dyW)I_y!_<KtKi>^~rDg9%ZqOro}If
z2;2C+jn;dhi)KB1hKXUOI7#I`LY?8OH=H(8p*{VHSR<pX@nh36Y3XsI-op>!Yx3m;
z-9nhnK5$4t_H;^jNTFglkkdA@OU3eCg9VzZ=#uPKHlbV<Je%_2%Ewu0nwz!s=i7wG
z;<bqoW1jL683}qm-A#AU;<(*0kBojy>qvjcV3t|Fi`zb+YTCmJs{T<u%HMh2O|_$K
zqUV@atv7C-#-jqef#QiDV?D5}O0{O00$KIWL(G+B(=VHjS8>9RBAy|Wc`TbE1wjd=
zV|jTjpWH*MC5Ea_^m1uVTzhgTDKl}Uz;XCUNWLcDX}Xse#fAPmFM(Fx?SgsSN0oD=
zHgfZ1(p30Itgs`5HY};YTVQ^FX!tIpvET-0J{pU3I`8r|=(`YGGFxO`?CAvQNYn5c
zW@N0$?LK!Gtf~~3M7;EBuj90%jWy!8V^z7X6*A6R)ii>X*Ynt1R6jWEdU87lr8P~u
z3m4=T4`2L}CPrvl`yGE;482*T(COF`MJN_oL~<(Vo0HDD?V=<ZX8O_u{@TLu1M0H%
z*$Kxj-ny(U*~0Y6#;QsIz#%LK$GtdSK}VFs?(jZ;A@1q!3Chx<IFBpPQw?b|CWhnL
z8gXuPgr9>SXdxFqM07JlJ`>$kFs(3%q#@8{WK6$eW>auhSN!8zQ2xh+xCc<PL=ZvK
zkUsb!oB=`+IDrw(E<yMJEPn3wp#HU){d_VgsM+{F$pJXwGZzutz|B0o))_1~$Vf=X
zP=NA=8oJ-s>V0xF4%kjDL;O3G@yUkJu13AiG)Je6#}r)t!}}h#CR}Z*qN<M^7v^A2
z)JU(ktrYUN5_~+f{cF;Jb^A$ZSUCvv4HmVndjNT9-ag3^xORk8QE-|DetB~FLd?g$
zVToW1o-gq{_ZZg=3m<8SLy`Q@9#drh%-HnF%Vp?<$7{XwT|?n1OJ*}Bm4`--fy2*G
zFp(T2uLJN7G?-~0K4;p7#=PsI#IV(uHE@t7o8c+yvygMLUwH}lxAV)tJ;vqo2?bAg
zztwk9tkC4+4rw=-?6Ys8#D>EuQIGnT>T2>K&<d^!|Arw4?s@qvE-ya+?77`%k2~cL
zGz0yZ<EjDfWeO-~6J+;jNLwY3uw{09p29Is6Fc9Ly!8y?r;kL<wZVwE+mt?Ogtgz)
z6nFq8;Uc!GUPl56rp=YsqPHlq>xlY*oN5HCQe=5$PV4<1q0UrMfo_#{D&w-ZoSk|b
z(VxSfVP{q`;@UE0PH$g)$K&ERY}r54?uE9gbRcx9zRIAFE5NRuBICt3VPcOq9S^gP
zBYaBZ%L%U8zNDN*9E_avAZIG>SiM^wBH`Gp^&V=olXV3SMX5eRauBzb3GZC1_Gwo;
zQla@=zJSh)Zc)uih>l^x?jAd4p49j{B!goS6}Dl~T2RudP%`@|_7>^5Dt)J+_IHNm
z#q;xl$D|p|H<V&Xh(P+ZItyF8-I2bt%w{oPPrJLOF8=cQp%i+$9P2q{00J9{*+Lr-
z`<-!`A0G68vA)L6!1#&1qx;69D+u<c%DNk(%`A+y1S!P!fiB%Q63KEgPlP1O(F!3j
z_#p|yj$Su>1PV4*Zh7v>j_NjsV}Z~R7KkE5P|k~Y$_y`SoxRS89L=P`W*u4a*Xz`z
z3-TsILK7(S6WJ)J7E6`#`^%nkCPr5|6E+GZ@E<lTlT!oa-Y53)5X~!%n<3+AZ)=jU
z4EH}w&9uP0rT?^GOmiYuK0S;qqSN6z8eGl}ZUs)WT`jyD?53}ZANGVDsAaCP@)b-1
zy@^O)RtNJAM4>^0+a*HLN{6-Kc5C026lL`c4uUlVEgOcJ$wS<2i2H>Qjlp$Jz9QDa
z8V<Ek(d+}P+K6(^u@9rf?5W#Jasx7!mG@Ua**`*iLEctluL((l_td7N%uJ|3_Jk??
zMlFwKn=G<9_Bs+D!FC<>=J%c15;YX7I$KFzk}p+qTQ*^AyDiRy#CsT^n#-QwU02~c
zT-V%3Q$I33`U`)+|C6QvXZE2YFSZW;1^ZCxo<FxBF1H>ohx|eRQ~OYVwtvET?bpKo
zz}~w2Uh&TpzxPl6=ExuPuew(VTp@6Uz!d^l2wWlX*GB*dK>blGGyIhw{IQOQ_RGcJ
z^%xWY;zx;&@S@N~d66urIM|v%pwNE`#AV%&@}kLDSV3%ztRcS*E@l6SF72c)+NB+}
z)MX{`CmH|Zf5tBD2rk+WJ2eaU-*zs4X7EdnbK%#|jEMTDttP|)YGG@0c^dXlY%k};
zxM<=IPo1nGHjdC=`tbjNUEqa|q^-4`lOu#$-Qp)cSih68Ke4}@@75pes2Q!HOuzI=
z|B3zo@9V!H58nP&a=r|i%h32i|2_}?DgW)O;zjTnJ%vE2866zWE*Adp<&F?nN2b5Y
zf5jW*H@3g$G5k5~zx?=T`Six`iT^NTr`x~Hr+>eH{szb&^sl;C2wWj>g}@a8R|s4o
J@YhG+{{fR+EFk~@

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.blf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.blf
deleted file mode 100644
index c2f87b14c91c11cb3df9c6430b8c7746fa7b1124..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 866
zcmY+DF%rTs3<Uj@Ji$^Rfs%nV6yg7`0iOyV>uyKmc(pTWt+h2?$1{6uOI~{K@qV0x
z_N50XK`V&&u9$709drZT|4EPACEyZp3AhAY0xkiUfJ?w7;G*a3l5k15BwVUzqNhps
zOuA>%4kqnj(her=VA2jI?J%i&nuI2}R8P;~QawF`OZD^&F4c3+s;3Dq)zdR{sh%r(
nn)FeV?wPcMNj**4!K9uh?O;;RN!8Od@bx*5WuEUi<L7EWUOcrN

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.hdf b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.p06.hdf
deleted file mode 100644
index 3957680404aabae839a19cbc03ae1b9ed8e8afb2..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 267055
zcmeEP2S5|M8^3}K1raB>&w=7Xwm3nS;6Mb$g-C@0#nNI62%?A^_g<*D{_ZV`15w-y
z#r0e`aO1!&`b6P>xg>=aj^cRliRP5%l6=X1`DNUf<hw7ET^yY&R;X2h0++TnRgThU
zZ}Cq)x>{E)#|B|Pj`u}3Jmkh9cfA_C;ZYhCh%-dt`Y8XP{V+u)3h(XV<U}!)IDhP-
zXo}tk>FrQJkObajA^(MVc;kW?2|5b>amfGrEh0pGAs=zd2m&rno!tSe{Sdz{$UUW0
zpIro!5J8wU3Pn@yBEFb*<cIN5fK!A(97a1x#QwrCp+qdhbRGg(xF}4<wp9>@dx5HU
z8L0zvSdTLz?jMB!ZkN7joY{*?@2jB*gM(BelhK|6KhWxES8<p?8Y&U-S)XUPG=T3X
zVB4Ys9TU=>FZO4eYlJ{b8~5Og#X@mlQyDF8hI982f+%~wcqrXnD291}I2i80G<Jbh
zR44+5JNX9+6zM&~q~U&H;ZmFfDh~Clw`(4y$@bYu#BgQQb7^&mkR7TAUCM?H0QB0-
zzuv+yk$?%Q%KTMk{&0Ewh-F~{zJC<0G?3_0z6=$h)26C1Z!@RJFa}#0RhhPBLcnE5
zS?W-h`RKVk9?TKGH7Vx3THN*8Rx$LotuB)fxOkKv%O_@o?kx<#{8nM(Su)DhqI0O!
z+|<m5HnVDHX5P-i8iwmq#_SE?7yR=QNM%gRW6KL5!R0kGF*Pw``~~<_Vd)(tA)z8c
zm_Qi^fEOqWPTyM^E&%D_I7xB7zsWesfb<7nc$~!VZ`fxjDh^7Xa%6D3Vqf<1(C@$D
zQEF^kjYC=B@xcW#5QLtuO9inMJZ3b|W%{?LBwXqzU?m6Ig)f7V3`I5O5Ap~z!2O(N
zQ&SXn+jZM>)^t_YoUsj0_Drr@Yu@D!1LkgO<=lDH;hcojC&OBLy7hGAQCdu2gI6Zv
z1D9W!KT|}P3I;3Y!gQ&+(4VOXT|4Md7jobYrn7ku{ryn5FQT*itVp;1BlMs88@iE*
z?m{z|6V5NQ3A#h!vk+bCWJNmTNzm_t!q+3ZPkR;Ve3PI*7KI}+l@1(tG&skdSR<GP
zZg*tfpc2yGiU5y0sc4>HgXasC6pP79P@Z9|Kn4Ucdy&L%sKB3*)C2(mKx&H+F!upy
z)>(YK7he>P<tLoJ=MWhyS%JAm;S7q6FO&f@LkW}8PLZL^^u<9U2*BLBMEOhk;Ub|Q
z-J3r|Bw$3!FupX5kqT)ikst!flR#v275hmAAz-fKDICEF4n@*20zsJ2k1wJDwTnb5
z9Kk%1@p>|OGll3b5C?_@$tX98KQjsnWPVa%XyFMH8}7yr!R2+Ah@ya;iOVSWyEE)D
zfEM^ALLfJJ2>5<MbU_ACE>-pyR0z5&R7zMIMZ*h$$bg393(3xyMHbTH;tS{CERqbT
z9feFK3WtOP08mB1(TaJ0;fnc>Tpsf#0K6EY=i~RA@_PY{lYkPht6&$%b0uAL9mQBA
z-ZF1hcoi?#DyAVmf&f8)AV3fx2oMAa0tA7wgFqzD&)3)2)Y>{p%fr}`suiI&83d&=
z%MFGUPvN$G^y6vSn-^PTpI>#6+C%ASMDp6d9Cc>$^Zh%swf>sx`+0MEdDDv2gohQ3
zB6(E>Otwx(R=J2~*|e)q>AFxMOlF~r9-N7-XhBodss)-SBY8Tlj7^$#?UB~!R8P;)
zv(3)+5EyDSYF5s^%Y)I4oj$G~+{J-1Do1&j*F6-;^K_>xQq){iO_nPrca0(XzU7AK
z*B;+lr2lyA+r=wJQtFWu^X%+PJIYgb+Ulv6FTbwdl)Wvpd}o)MCa%FdKYnd9|9UJ>
z)6kdvd<O<LLssxKMS1rags&WGQO?&eb(kR0Thn%iuIB1Psjm}WX0>cG^`7(8F{dMs
zu36goe=RoEKIOP|Z@1Z<%}%90YuEMCy(vzC`X^V-u)X)rL~=JF`{^j#eQ!TF4s2FG
zAvo}<i^S?-{O9K8DfM&Su8gdjoSd~`Voqd=-_}``7M~sW@RDuE0bRFL8{Xnxc<@*M
zFYBwsM>p-*eqL}|qTi;oPbSU3u=rGmUDo?0p)uxv_gr_k(ac6mcI&6~2p`olVd7(x
zdC7hkPjuK}b>QoQjuk(i{5mwf_HNVm7W$+6f68cOyDsl(-ksQvky>}gj85h0g~qDa
z$)vPw$nDR<;q~)WgJ-%%LnC<>z3nt6uJ_gm>qIS{rD++-lYxHU$Bt^FHj>gwtDwt}
zSW;>l8XBJ3Yp5aPD9VgdUk8UN-_A$sxLZ>^W2z?T<;fLeO?At;w?0~~CN+7%nx~)i
zj%w;JZP>#7z>#)Ow<h{H9&0z)b9(&A-d$@(C*{>Uf9n-LJtgpYqZzjvCEbdS`TEwz
zmJ9^nI~e9kGBrLAPP&R}#`%bdsTt}aRTYlEsiykscGKt7J!lnKJN@aorJ2pw3_MzW
zX5{?)bN)Ad-KZUj8$ajUzIxJiX~pjth)Au0S{pO4;sN6^JEy=J$kZ(KI@F}p)`K^p
zr#rJhT3KI>d1V&51znJ;LaV`j#`5g?k~>=P;^BQoH5j109)#DGu&WNl1V-GcOxH(y
zpfqKmO&N?vB9I2NUkl>Z)YW)!Eh#l0M3rN9MnE_Y)1heAkG55rdl1i~`~?BbF1mn?
z1L?HU^VHSUv(Q!vU=b`=u~~uLO>lv{Ei;b}DA*?jPt>M7B*WQwur8*B=s<w8fDd-Z
znY|$w;APT-y&FTyK_UtdVHO1eJ=ns*`$2ep47=S00b%SmJ+m_(7=&&adbke+o((U$
zF}mS!@H!te>Xmrepjcn?63OKHG*qXO>3;QCuJui%p2Nw$1zF$Z#D+u=1PB5I0fGQQ
zfFM8+_#F}8Q9nArf%6xAMu3NN6`F;q=)8uC1rdt#8Y=cX<~669uuq_V^1KFW+!Z&k
z0jgzO^BP8f0;-?5iv0zV4w7(j7~~H9Vto672^VuI&mUoE!7rXSV)wt8KLT!;`6Fhb
zPj$x21by@TQIko8icMji5?zWL=kkCaO>ptN8oOZr$V3ChZf5!jZshttz{Bd_7N_5#
zYW~xS%zs$?$PYn)AV3fx2oMAa0tA6S1pzFdfB*i@zd!%6fR#h$KMW2<=b1mge+J<F
zUFJWk^xIv@{0H_X@=FjP2oMAa0t5kq072jnK>*Kxxb`RT`a9O+!kYrv{V(<>z@7pl
zpP#aWb@Z>zgY=o_;r$7W2X@)-mHE)R4ftM}{c;&t96?_%bLnT*f@R?R^(OK;CpIL4
zAV3fx2oMAa0t5kq!0(6vmd|}T^oM?7`8=pQtdO59pF>Ml#p!9W-|Ha#AuN|;SFWce
zR~wQW0Fs*u0_<|h>5L9kiB|-NoDOy3ux?z5S&&GA06~BtKoB4Z5CjMU1c5Sy0G883
zRmkaB9>nYC*e$BZ^3%ST(1#MUT!;Ug_4teX4qP35x32u%hb|S$)>?7$IWRej*UvEy
z*p*A;(Eeukp7z)hC&<nrh%x;xkQ?XpP>cl>Tyi`51|E<Udrjq#+wr^#^H*$Q5=amr
z2oMAa0t5kq06~BtQ05T8a=R-17c38Ac^$j|rT&W_L>sUM{(g#FU()xvh3z|GJg^Jx
z<uhVCvYZbjb{NJ8>kM<y&XWce33;Y`l}`Ra!E$F2zUzi>ig#(W!0(a_Cthg!MTH{&
ztP~is9VK7kReU};Gz;Ch48bA4mdiEIY01InQjYnJ+<-ktIuc9}AP5iy2m%BFf<W0t
z0NM#<_?NFs8?uGL>#$gUE0AZQ-BI?tK}NRHU@UWjq`*EYNcipcdepYV6=7CJm5Uue
zZimzqmV>oJs;yv$RG*1K#VvAv6PNsij*(;YEc|ndLw*9!AQwS^AV3fx2oMAa0>38$
zKO#Q?8Q~|$Pp_jOv_Mpoiyi-@{KVSfL)9ri=Mwq3<fnQlp3AwyAxGi;b?kDbC*cGE
zf&f8)AV3fx2oMAa0%Z#U9&<VnSd-g}7Uq=gVB>X2EC=HCNbLTD`mv_tAe4Xw@OYMm
zAD6FV*<6d$gRREI;PqErUhKMq<KYVqwP&r0!!SkL;^0_$B{GT)QzT;+U5mF*s7sk5
z{wgvnyxRDDC%Si3r~pKO^<Qu%6JAHf=ht(||3fe#NL<YIR!RP+Xh?*%?;+^Lq$5ED
z0fGQQfFM8+AP5iy2m)mjfzs;PVtEkD{n+J_WB<u{!At}-{hjBh0+}9*#XvR(+3BJa
zM~j;m0GS)l3os7YEk@oiPTZHDr)r2F%$&_y(nTY>Osts8L2QHQ=&>9GDA)zj1x+uR
z?pKfHn&-5~6~a+~-pU&xXvYR8!{^*`BqzZH0fGQQfFM8+AP5iy2m)mc0X)yaa<K9~
z2e5$wE-Vk?`3-gpz9+P0*WW41j<VFDEc4L@N#XfUfh_qczZ_cUFB}G*^X>ZD>V``}
zLgr#bSHLEl<+tpI6h8Np-Mf&1d5;a7XL0i$FlFGH_w?(}Ci`al9y4i}4*%l)CAk6>
zjvy{UfFM8+AP5iy2m-$i0>6OX_WE@YO(1&6#g1>0ql&Y;R-m_`#Rz7K-@UQ+8Bh&+
z2>5<Mv>QK!)#l)~j|OZe7k90o6+?;qq=*Oc5d;VV1Ob8oLEv{p;1`gevbIBD{~P&9
z7$K0BLVn^p7h)%^*ebC6RIom$7*Biz0fGQQfFM8+APAIw1b#$*0y4r+up3~!AHoPk
z54qU!Pp&^zWFCan|0oYueqv7D3S-W|Wx}ET&vF#Dvl_G*GRO5Bgfenp%S8dhBN5&8
zZ6(viAv(i-CDZ-tv0QqIs?Iq$Nh_8N%cFQ78h?MLNJV@E0fGQQfFM8+AP5iy2m)ml
z0j!tkj^tovy+mbs5bGmix3JzJk`-eC7Uh_!1;`SIeTTl`_G2I;c!mKGN7<}?be_WX
zy;w=-8|X0)=h8!zpC8OxWKc4)z@+1n%O@ke8IoeJ>$FlZ@)NmS2^Zoe2oMAa0t5kq
z06~Bt@S7lj<#Ia?xg4KMfaO6fk7Kvsd!hPB2B#?lZOULY!bed)PtE@h`P}6K%8UL^
zI|zlp2lC>J!UfFtKt<;hsrleB|Mqu6sAv?wA-;pI@_Y!*Zxo4$k03x0AP5iy2m%BF
zf&f9F%p!p0@b6t8=UQ(rD(6zM03=1ZoQnMpx%@%~L>q{zKW*Lo-(DXdreb|usw9_F
zG%Pfp4-vT>;z5210t5kq06~BtKoB4Z{4NM!xtwc#9Gq1LE-Vk?b#d&fS|2YepTl)%
zMfv=@*3E;SK-PfB`d#vQaqH$kx;_r|@HMDKNbc@;1To3stVeWN=Q#*aa4MpUy;(9{
zCZf}RTrwT5&=qe~(EUfzK;H*E8n-j-Vs>JU;9Wly5F~*&S;&7O9^PO(aY09+AAhIt
z`Yj^F4I6ohQ#KHAaq8?2IK}mkKfsC1QRE+W2Z|+DjQTDgk2&!N<ar9Eu8d62*t~}U
z{m}CZ=J|D5J2E}^VzE#h*i=S~X}Cv6JMzQ$;75KQ5U>@4`L!^06!@9hv~5e9nzm#A
z!~9Fi*FzA<d<^t``NICj<LqxinvgS7RBqDW5D<Tequk$IP`R`IRs_JFFCI#F7m5Wk
z+EpANp$hqdJ$+_p8eWCN!I4}z0=IvCM8{)#1PC)ke%#;Ie}n<2(DS+ULu;aRT+V|=
ziZS?gfY-gSt4KwB1Ob8oL4Y7Y5FiK;1PB6U6#-S}<|@mBcpU<}Mc21}+WvFUX9y}_
z0f?cjC|dZtt>9P519T~4mWs#jcxzK0lHshsD)U>sebZP(5A2&7QVtSPcnD)a0??P`
zb93Rko4VW($BJ@zCczfB$Pb=RWYsL04$pVvj7p{}@_;fLz%`HJt0;a}WhDX{0-)S~
z$|x*^ZGr$nfFM8+AP5iy2m%BFB?KaQ*_RHNr%bigQ@;$_zk1V!Rvj8F8osyjhSPWQ
zB^$5D@-z*7$<KFSU=y%{N8QNJVgSB!s9QCvnpWt_8!q0>;|IL2<nDef+Ii0{I;_dw
z^@d*!8%~)>&kA}+uc_}jH?;f!?{XC@%yGU%9~q`mR}i-}YnXSv-8R=NKXlEjuDN{A
zfe&vU<#w9<c!`eL^64`Nj(T+D#%-5n>y4Iw92qzNManI^Xsc(Hmg@@K9zXax|JLmf
z=ezE*(roJEXm)4W-DkB9_L~tlByjVa+~}4I1};fz9dh#1xb__zNxBVd@!`d=n0?h2
zcBxcvdf1C&)4wd24ZhZ9)#o-*qo4IQ+L|*sdeF_>8V@edy|ysM%kPD3Wo{Rl*?<v;
zbgx_uHnWxG3fq2d<|9sc+1?_zh0nP`k%`OuPd_#~LUQ@ymD)Ln$~|16H6pW;O)5_>
zG*-P%CZ$Dge+~|*!y+>EkG1F$6v^}RWiGWL`o86cP*h8*9O&CTMiEF?t#kjkPRlz+
z95I;HZI1Bv87*DYR7#!vd^-lIgVnXv`cMx*uU=Vk9Hp<}Zk?)jwoc>jm!0~pp4huV
zd^P9PzgD>F_o=@7e|l<uvxYzZlAbT=Dj9X)rCG~IPX>*A&^AzTCvR0u@7p)0&0hNP
z?w3ZqwpnB9UFVS=@$*N9)bP63dDR=fm=ej8oo#lmM;|+iYP3y#KqSx8-A;q5tgpsX
zxCK2ZQ<LpM`nAV*7U^qJYU?SavZVCp{5`x_j}Y6RRknYH*MYE$*H5wgAAH}lT?;K)
z(H#1Ns@7M*f-GM30?G}bCUucUQgP>Sf;Cny`&S@6t!M;`4N|s*#kD>s#J~b3in&~?
zVop&cQn0|uu>MprNl6evfFM8+AP5iy2m%BFf<PHW0L$n2dkAIuyap;0mItw1j@^Rq
zd~DGkyB%ezLs{k{Lr#VDAPQv3Px<8-{dgdG77hcC`i}4M-D@KemJwY6n{1Zfq7PB{
zdmneCbo`^=`#`;UHBP;G8w<#^4Jb5oWln(pIOwIwcPa>o-_*f+^V?DR79p2zh8i>S
zJ9^Sx!^M8+G#83u{GOd#nLA=w+$EwY5u;WQwdyHK?nhen1%BAD3(hBon)UF!7;s)O
z^!HJE9^+Sd9_9|~$zVRX^zk#BpcJTFT=P^NoRO0IMM)1IKOap~m8glAAV3fx2oMAa
z0tA8I0RdI#`C)mWU_JuR#Q<ySKt}ip=lOj?q6>JGT<j=3zp%_a`W^b#rfl`V{QzwR
zeQO{K;c_X<fA~B<JZ~~K$CPY#MSifHw!K5ibjB#<>n<hJ;rYsI&ywkiF!GB9e5)L)
z)mX6rxb*S{p%_hk1Ob8oL4Y7Y5FiNr1_)p|^b;xz4_ThTdK*|C_y^_CSWEa2@GBQP
zeq0WPl3#IhD3CF6x$wFpm)rzw)Rc7Xtd4VnRM^LUyvPJ$x1>Bs96^8}KoB4Z5CjMU
z1Ob9T*+D>+Jq=}f5X;fnEv!d^WW`uedPRG&-*ukD-j49$;1^`gX8+@Ibu5z=ke`1q
zdm3Ew|3F-UY^jU>98;42DH_sXy&@w27sZT(5CjMU1Ob8oL4Y7Y5GczCU_EoL??AEm
zh~+^n_ha`z_zrZhD`JY~_zqN+-UpCrak>8M??AU>MmQQ#eFG%|w8Mbw1M8b`BqzZH
z0fGQQfFM8+AP5iy2m)mc0W6<$eFuu=K<r|<9J{~3ccA_HAQ6@kT>+b{$oeho`2W;*
zpy1m$j1zXbzIUtASh3+?sa&q`qZmzm1Ob8oL4Y7Y5FiNr1_)q1W4v(qALtop`9h%s
z{L00SZ;_*lKVQU@t)1fZj4LoPSk5W1PXH^EOW&Xpj4tw<ZisV&QP?LhNRbpIfFM8+
zAP5iy2m%CwvW~znAU_!gL!krw%EgX<O@0za2&6Qy=LBn#OMc>7f4W2Dr?TD!2>%2D
zf&f8)AV3iKW(0l#`6)>DFUwDb?JX(Wzx-DD=_!$)zPZhj1Ox$s06~BtKoBVF2w?f?
zKeQ9He&jzQKb6i-5VjW%?Nn+|E~r9h4Tel{)o(u(VJIw_E(p=}la@>uiRczZmrNIj
z=&p}1nGTWt>kg1V!R{#58^bPUBx^q88`cgvM*!pUr?~hW0o;FVP{D&HE4F9(IRLKW
z00~1Q_j8;RfK$^PKyumpH=YDjx}fKC&7W#=<covfE6t;@-YK>dfL%;aT!H{WfFM8+
zAP5iy2m%CwvW<W$dtu7*Af6Xt_aC$umW4!Hzyc6MSy8mGe#g*P$=`7vL@Zljzni@<
zxDKE$Kj)90hi4XSaf|#IqL82sCDY;guJ-Pd>54p{j0SMcqxdR{AGA`5fQA4l_n$Hf
z3t^ieKoB4Z5CjMU1Ob8oK|l$CNM81(!{sScZS~YIgZ8i9bfHy;28)L8ZM@<1oqWm0
z>#;mdLtpaq9T?aItl&{M^0OF#uN>-DjjE;<y7GpLck}oG?<={xAB%S0bBhjZvUk1V
zSHp%=CepKl-qCC7d(I6lKft?O#R_wrFVRPaY19?OEzKI{U2nI|^~w)j^Qvnu-*e!@
zn@72wCO=-HW43(y%z>jG9l3GaW!ZY8<sV1J&3}<{%P!jLS*7K=0=LHxzRtgO`@{LJ
zyR0;u`Z${1S$6kXt%Ln$gbfMY{3bWL<${4rl3ItH{4}n8$3~KF!&-cJF)U_ZwS`?O
z)tesn;@I>r%VmSFwORGKP1NXTy^Xf!42~XjGq=Wr%X6<SjPde&AzPW-MP@c&#39`)
zSA)%LWx2w(Uz_=e6JEBr$Zg?sZct?6^8VA0jgF99zIdf}&Y^M-S7?pMtYnkQ(+iDN
zuaik>k=vhxL+Y@IO#Ndmy5Nm(rT$I41Ob8oL4XSZY}ctDS_a}#aOI4r1_SUq5O(qU
zDR%z@yQ`)P5wA3d-BnfVt6)JEuX_F0c2|WMSdI!hy$W-R2+$XUIGHv_Iuc9}AP5iy
z2m%BFf&f8)AW$|D!16hl-PIbXSXds!ayfQ?0lTXgHX;$05nTbBtjPK;`Vjw=-Bkb`
z#tFL!PKxNwV<i4eS6Oc!&$CwSRh*AupZiaOiA!(ZHwiu|7Cj&8&6Gp4b&6_I1&#oi
zA2;L|SA*f0|5VVKm<!X<>d<ee0bQ(Lvw)|V-$CTRqYlIEAUSo%MUhU^75bZWgDxWb
zWu3~%1Wz2|a6MvM7k!z;qbf23mNw-q6bWcAfm9}xhyiI;=C2O(hjDaqa%knz*^{<1
zF*UKEJq4j*f{-DMr5$rqGiyMvOPK<Pp@;eP5evg)v}crzp#$L{KTt<FKTlVhCDEne
z7aKs|P0mN}s8D3ShfN1;9pZGD4-bJXTofi_K9vXmD0CV<Md9*>Cc_l7QlP8qJ0inF
zkd9{Z0#^|DNQAkvphI1Vhd1~=6?7E(<6tuC^;<+(Hkt)umN*yzJRWXG0inosKL#sU
zmx3c8j{<LYroTw}eql^sVfu_n;wKD?LiAOc`lp$D)GVkTOe+<JilXQtQFL!f7+*y9
zq5~vSc`~5y$kL(&%IlM8_@c0j-{aWNy*{bU=BuU-7dmwquD~OB^5=kf9_23x5b?tV
zY#b<pHq(;;iMpD)`w2)39tHl2=y}>^9vwi*zi?zIe!_*nn}ldH86HOrbL4G`!tIWh
zOo!hO+6POf(?|LFrj|@cBf43KOQu6)|GI<Q6^+>AYFE_|XSh8T_+dM!OxK4MPtlZt
zHf1mx(Q7a*1!VmL?JMpA<PAI;Jhs^OrAzrTQJ_E7hW$<?8BRM2Wnog`kZ`sGdWP|V
zD`Uwh(El2;^w95IgkA>e*<RSs)5!tS;d#gk4!rCjSqc5{AIB^8CgiOp;{eP!@PeFz
z@_=#5K_Utd5z}UfeHI@B#)FDU^<_H0l=cjl2Jrm^w3A2>!J^5$&t2FgO8J-<&Zl0X
ze3)90h6%-ibYD-W?sQR%Ir6h8oL^yi!%6I4LT-Tn@~{jl>I=vn;KJi3_7}_>|FQP{
z=^^ATh;hJUi>)txB%f_Za!NmzTOdyvvv)j7ldVTqSYkpz`v#&cu0ONZAwKd-VZzbp
zt(0P~pcLzwp=0}nn?xGI7YRoQ{N?W>+L?K;Nu)*MJ%a>%DUK}kd^_g;doFAz!0y+r
zKhsyGsK0`CT?vj)ST0}zgY{LP0SMPuG4g<qIXf1?1O;+*(RwdmC?B`xG9PoM?xFNd
zQC#}*c>RQ{j)MNioIwgOuz(A@Y@>xi<d+~o5FiK;1PB5I0fGQQ;5R^kOKvn$QMMQk
zxe>1)5V=tWfFznAKoB4Z5CjMU1Ob9T8AE_eZmh1joLHn(tCi$Nu$ciavfc=BAio3w
zf&f8)AV3fx2oMB*Hw3ukMm`n*ISRb@v!Y-Llq$f5^*P9TBgBLJ5(EeW1Ob8oL4Y7Y
z5cpjX;F23hsgN6M<`KE^cWDEp90UP^06~BtKoB4Z5ClqtKqSx4*Vk8HV~Ce=MZcj9
zCaY8BUsE$+==J5tBztT(+;#JL*lyP2J?V+oNm>==R@6+4qJ)#GPX(rfQ@YvntHr(<
zc*`nC`^e!lK@~d>Gd-G`w0_0PYFdYTZK?5GT)CB#wPBlEt7`06HBV=Tvv!q1wsyf&
z)eKrKT+wTm-N2XcdM>s2n)Gq$q~SvnYq(ELd@gHU_hjfR>SXwr#YdkTd5eeitsNL0
zDcvki34fM4s?weQhqq|oak+n{e2(}1+UgkzZ*H{D%RTH9_}9%RF*P$BY*MConGtF}
zuKjSEPvbX9u78~VZd8YkZuLj$ZSvW?<(|0OB&%C4{Cq3xDUnx?J>Dq1eNg{+rQFEo
z6VkW64yybrC39P)I-ieQ&5t$+*=ss8P_5tHBf)AzC+&?Mb9B$%H*sILUC+wQ&o^nL
z@xRz=v(!B7D!A~P(Tr!6F10N3q$vZ+{BACNdR3b!F?Jb0X2>FE$6gH={B6A3?)r0^
z*THL?JJ-5yXWU$CezV7o9D7uCy5jP*fyXK*jannlwbbc)=1TWn)f!kfGYzFR9<Mmy
zI`rheg!Z?WG&$UQ<mL~F2Kn<P(hjwrKlt+ET#HC)k}yv&{B|3!uS-ouP1-KC+9di=
zJ$m|z?dE>98$IcBe*d6ueWuQPVmWPO)y3h-NA|aCc0Y1O<<qBXp6S15)006)DWfD7
z-lsNaRDT>ktx5f!m&dyr2j1R#YFf|~pO?Aas-=fAIrus7uJ9%6CN(jC9#K6#`oflk
zwbiHCJdYS<vaI@+!{Jwkm>=!G=j>3v`=_4sE{<?^V;(g2yp7`kFOz-RkD09B-cO1&
zA3k<O&9;K8+0SwgHmuOX)72xDdFo#`M!8-&pS`-4^LahyK~~kD9GmUadBe1&;Y-7l
zHIpwL-?XsT`<wo;iQ>Muo_@W5__dz20dpVHee<d4UGu%KgkH`5+-bY#7ni#(I@6Zk
zWq69p%vkw9y}NowgRDokzcTV(#>&S!clE3W=fBN(bKI;)2rqehMAgNA<<)*Z;?sy0
zMjt*Io^E13a9i-eBj<+1$Lx3UoVGOLd~n69A5N|xH*Z%5H!Z`qP1`c@OKw}tGg;SR
zwRG*Y+5NX1-Y*XQbjj*TN_GDvpTCk;H*zyeh#J?)v}*TSfx9)I@4sti6l2wUuFm2u
zeRpU7?Y`WwR;vaEDNFyVwfXtdx7HV{EO$CLZRrz`Z^qWy&b`8{$5mK7wR<^`_NLjO
zRxxerHffr8EG!gczVY1gBd3z8nn}H+UPD8Z-Og59Gu&^(v15zlH{1??;=Xawpc(($
zHf`yarMF{Tg;wqEA3r@$f6me&afu#dGTtouSkG*J$^`Fe(uioU0gb-ynY#F4#m0Xh
z8!z)}9@<`S^PR?3G`|?no^27En2~rXzILM9C*5sEgPqUoES+EB){MJp+baJ(dDDj2
z*@?>&Gc3FeV|oAS|1tTeQtO*rw5|g>SV++MUWO<3ylB<Xzf<J)b3=1Nsyx_nzHNT~
zsk2G$yNu%3PH^m%v)y2dFrZ<>)lSog_yr_Z>^1bx#5FF{YCUR|*00kJ-D?{Hm!&^>
zIIhw)&qL=&h2I_2@$11a4$am*37j!B{*bnRtlC5ElXtIHp8xdFl6IGKkBT}+Y@YII
z-`1NwU({ZjK+TCgzjcsKw;^8^j9U{UTcmMn>!97Q&K|JU;Mtm2d)+8C%KzHdoXv0U
zOq^foK)7$my;EP@d?Y!zZtK;$uPs~I(a8~`wlwb(XxsA5#=|vVYuwn~Vy*f5J5EhU
zNKyx`NF3TX%YSKb^V~JhIybsL@x{&Xb;%AV9EYzrUU4^rd62=BP5#koZP)Cp6g+EC
z^3MA@58rRBFuzI@btW4#o1P}yuK#c6;R^b85!ug1&7n_P2dp=vsSymR&sx1XRjt<=
zpL2Yzc4PPR@Vh#*EgP(8!uuN0AUWdp-&a~jSRUJ8zv8Yn!~E>}ZgE<Z4xXK~LVX&O
zQ~dqx%F$=rKcYNm4@$l|@5$tCLvQ-Gx$vqvL#ltMuGh0q+1oEwKP;KFtaVKL7bD+f
z@Si*%9MgVmi*_mTr@RkYr`7RK9__bPr|R33V^jLsHtVi^LzKOCP0Fx4dFNaBw7u}k
z+&@`UmJ-n~WlGGhvs2Y}&<23uujDqHM)kkcLTBzc(KX+#fsKter9EGLfEQ*xF!|}#
zPn~WIdhax<Tt~Y=Ch@3|Sv~eex@|h6R?{vparcsAw~oHOyw@{0))HhrXz;?;Q@71;
z-lP29X`-Zv%YUD`v2%|}&kxks1c#)drq_lERzKP__~5e&Ri}dJoY}U==07^Uk!Q(U
zmR&3D!}*C_8b%E}5U=@uAe(%R#Nc@1x^eR!x4m#<>tXL}SL#)^klCK?Piq6#gg!%O
zpK6=aZ)>?5c65f-qUU*i+cw<$bYl04?`nf$@f|KX9=%oThPKJLm8T*qKHhI0yfdqH
zhX(o7*LqH%Xj$*>ty;guKDfe|^AQyftmV~O@t^+xG+6hG#-y0~6}YU)C|d^tt5M*a
zUi?)#cCkcKLyP%Lo4IKAm;C%`2w-b6_-lS_r6dnom%@0si}+$1e6r7chYyTcD1<Yn
zoB1IE#yo>e{`EMt34p1Jy7<&ULllLr3;1Zm_85v*OJVyhu!=z1Z&57&<Phcdi>>Dz
z)P(H_V}sY$-EqJVy3qQM8e>TTUS8$k^YC+GkUs(OK_j~JI*N2T$X`QGkzYjq+dJ3_
znlfGm)+L~|HFo@QV@4T-2+*d{V*W7RY`m#8V~r$}rNCC&*l=JnjtzxcIEjVQ4QS`>
zE|mle{K91TrnA&9NEji&UYWONUz5JQOzd5IngAPeCS4o`d-BEp;j*Do#$6nGo7oI@
z>T7Ol+047Me~3`rN-6+ms{Cn3iC=h#K+NRpEDCoD45a(Wm;sXR!54?~ML3Lkb|5o$
z(oB9d;8Ny|&Bif_LIl{ydK~yNfk`M+MsOA21FhJx<@5}aNW)wmK|D7;b|9L;4O#)|
zB9Jg6x0EsYB@6=~fpnGGctAx_eZ-7iJidPvjR|3JA)NJCYa%$BMs)=8Da$wqnp&|X
zEwHAh%a*gZFhoH26^i{O!`XOHPVlb7?a<V$D__hslQy)eX*>2m9VVeoEpVur84NA3
zCRl^b*Fh2z8jkEevCr@f6NEDPg8YHT7|!3UhpQXoEmZ&dZ2F$zVN81F4b8lTBlsdV
zokrnwE<O8ruzr0uFXi{{3^e{MBJW)QFS%48!1dm>R(g-&cKfs5yZC*f{N5}W58=4R
zh@}2PnS}O~h#~}1*pCYL2WP%W2Hpt;{jfZ9uT7ab(hd@-K!%I2&%EHF#wN`M;qu`4
zg7lTye(2)pO!t)v!<a#WFAWI?U6{Q<KQ8(Ca2zN|4@Uu!(2r$Cb^3zmGj9u75N#hG
z5CBRJFYfeqECG+Iuf#uNUQ0l`N&JDaRn~B%5HP}>547*ZW2}S$96>q2n8rZK8fxXj
z5#y;#VLmD`CiYPJpm6a}+LN*R#k`X^toz~g6cuX=3Q~|y6*(WCq0E$pv1bWRm|=>*
zUZv-!vOFK=1<t&_BWVxGaGVXrl@EFhlNRGrNuH0hFp`lEU@lzgak&bts{tE%+LXB?
z-BT=zDn&iO_RP?KV|zAbS?96bvd?4E3nd~UEHYR9bFD`xTR&E{9<kN{%E4H!#yAr9
z&p<%=y@KVG8OVAzMghyE*pK^*9S-<Lm#h8iRfp}-1hq?5?RRT!NKb#`^9lLyfq-)R
zg`+=3xuN!hOKC3&7yI*>d6$EPu^(Ds7S@%qMh@OpO2KmZpT-#|xo|xK*s6rrW7J=8
zzff++O38^AA;2{b)TjyjwKeMBs>Xq&`eYpVlN*)tH~^(8it<A32V=upw{?l~XV-y3
zgXD50G<ZupGRGINfw&)owT6-|<#oxIhOiyt^vdm+MwuOSQlxu~{F>-giISfAJH~O1
z1NG`coI0WYt!f<5YY6G_xcoa}MasmD0M|I+gW3;H>A|cxOWV=xLN85w2>5<M?PxRR
z&XaLWnF|r(e*CTDKu#US{;k}OX_UW78$~)V<d0|z!!f^qipyhG!&%G`@XDtXbU;90
zbnyNpcJaRE3@b>n0#_hP_Y+Ph@M;9J2CRTPcDbtXsa|%>=@$j-5IXES0&4}Ib_54%
zuosxu>oI?rJqt5OfgjlJpv^7ijgN^}mNWBcTyi!W@>5C#z<UF{V{kjcZaG{59Qn*>
zrHHq3`-5wh9EnLVL4Y7Y5FiK;1PB5I0fIo8Lm-mZ>S6<za=r95GwXMrrO~-uXN}I=
z2X)*Um1}+WuR}{ru4gZ3(PS#W&7d7=Eynii-nZpWtpyII{Vf-@tTFdp-jer+Ut}!K
zKc^lmu&o(bd)l@5_tKOXxgHA}8-?~6p53{}oim~)V<wDV9y!V=aa6ZgbI;h`Xzu#b
zHPa?M<oSm&jk{C{x)k~;^Ml1xnNes$hnd$}H;!tSGCbbx(8!nF1Cke{PEYUrcB%Qm
zremU(9-8{D#*<g8U-_j)P05>j>P?+}J`K}{KJ+=>@lK=sNiVy^biF&ST+D&NH`2GI
z<uvW+=b5uO#9_{oD%XRr=5A}euhp2kdk$RN`hHYb-$NVjxVa_P?fTXwPyM=I3iIJX
za%kQ-4NB{@+Nm;EfrMd#06~BtKoB4Zd<O!mPJ=91=YyweGN)4(TIGZKTZPy83Tvi<
zb-n^UI+$LrP>Og3>x6~%Q62eF?4DIYI;gJ=Ru*Zc)3L!G2wvWDb@S}q%Byqt0)BN^
zjU!g!%vJ0!h=dO;y?zutg^*oGXOaRw74+?ZIyDnkpihP9!Ad)#2fSha@G+zX^y=)o
zsfQ;+#9Yex<28D&eIw;{bXEICdF|jjAHa-Ue;xwL`$onHf(1(ZFeU99fjuMKp7H*X
zDkOQ#E&!VbCFG&=>UromZk!)puU0i4{rLWdnsW!(6~LqA%iBMDe*^E+L^#5SxuAk7
z?{~aZ!e14hBpxEbwcnx30ni*1#eELk?&J-CBOM7Q2oMAa0t5kq070PaB2X|d{I}<^
z_<Nmin~!4St_AbOe}6s-WF#ynVR@g&oL2?H@OKng&W%BOoxZ4v!1*Y*odq%<ML_+b
zj`DmIuS+yh(htV%&;2LigunMx)<-V*&aXDRF4IjQ2&Fwc(@r8m1Z$uKd_f@#<BP)}
zBg*SF`1?<;^%_lAIR9wU4Z5n<Ykb@w9mXX{0-u|OaJUc;Z}7Y_=qU8ZA;4b0MTCme
z9u!ENUmXGE{y`&#ol*P2{40OA<{2Im!h8lKAGh)MLYQ8a%VkIB#6{GQ6u###s&9z%
z5AcBW`Y3?3UyRJ3;VQRZyxypZ#x;xrv@^lz0i$*+xBCHXLoq~n{KxVKPRHfq?^UpT
zvhF=>usEM|<bRa|!}0i<fch1tJAwR<d;FOLDA#-Jd{2nS%U;k`^&XqiAJSo*$vD8(
za(~Zo<#7P_OFi^{z@<j^X6zZu5JP25Anu2DnBW^-I1Yf_1bDgq54J;`?};nW|M;q6
z`&^6KH>Oi=@A!ST)l)IQtH__z2ZnzmyT2?skE&Aae9z=296y7=rYLi%n(vWu0OItg
z{wj|H_<c~rOR>M;e)qHHd;c`vT<^&oRIVE6{io_ZxnK~)0n0h$J^4@9+^?0ta{q8a
z>{+AsgSoY5jP}u3Xl4Q(Jw54y&%Fy`KsaLzFo3ZESP;n2<Nk%;W6Jx{=TW=Gbjs}*
z^Fdri1i02k@A$xe9gE0SjRW<DKzckrl5s#0=il9@JPzRZK_~Qnz~#s5K8&4B#(<=!
zK+0NElh32&eIEB?W1Nt~#qu(4cUK3%c8JsGA%8u@hg_~6rASwA2K0BD1zpU4#3n^L
z=L66ma1gp2Y?ZlSyuPfAmoDYYmIcVu+RUt^@O%f`I0Xb%88~RhRo0Kf^-yU1r;EF|
z<dKPkA<k?0&{Z`KH3@)pxc<mE1ZwBcxs=BtERUQ(?FS>_AeG2u%=qJnOiqE}2*k0&
z605Y!SOy3QRrb@yA+lzG4!3JXc|?uv10eotC~SwAE)V(Z$zV7huY6GZ#&pW<9pv>V
zU0m{rI1u6%ioj4c4!jIf#F>l(e^M)=DCKbg_pkE;*e);{eHs0HDeW094PeZ?GJ(Jj
z6^KK&UKxAfk}$@Mbb;R?h%Xikm=JiecB{IBOaK+O3sR1GSHdg64?Yh+e+KezMSNg+
zL~n{BUnsfUq0wEvsU_3l_nyhLlIi3b|Drco9#O`tzz(?{^9_R`#eOH@E)fEI-(dZ<
z$afM*UmLFaQH&M{yg+>bgbMt+a7;%P#bw_H(--J{!~Fhv{cm-zTv(;R)CpjNRRJ!n
z|839Mx50WX5n@Oj3)y3=5yLlCgan3fN8t=&^1H$}P_EXHuR~i0!*qpd3g6@RY(PlK
zbhv$biAtuUQRdD=OQys9><)TA6z1tyxCi!w*(UYtwyPN$uu+$)UFC4Jt0qXkQPr-1
zWzJt5j}w(jfk(l2UQjO&zb|l`1M?w}4XSo3q%|0wz=c~Z^pycT@@f)1*tsvLOLaAM
z>&B(R!-lP39tF=OK_UWU*bd4UpnZUmSKdA>TFVO0i(%^k-|0o7d_X%hq`df2A%BSc
z7?&dRZai9Imzl)`3JPbebl-zLu1YDekoQNQ&&o%I@>9MIQ7X4`e8Ky^7Hbc`hfpjG
z2@j#Y_@ZzDEeQZ0b@G{c98zziRN2SBEIefo04<U)Kk|q2ZQT0YKa%g?`T3oS<@X11
zD1WUHYch>%-9>r6s%pOF6#-iu9^J@%i|w|5%#ZSX3(sphq4f?7gz~xz9{=nx!8f{G
z?e`#h?wxShE>*SPt&xx}6g{7`-*2plGER=$uP<tlS*SeXaj;!*txM%Bg7HC!o~u1J
zSq|x(S3(!VrM!>10JU4(FO=IcPDflt1b9^W66Y0AWP|n!KuSD+2m0{f`WNQ!ZaW|o
z;1@i$#QA$p6l^E60CVhRjBiTi!gi%itw+>%CMdQ$<xJvGz{J>+>9i4D!tj#m`r+qB
zmrQpG(dA4knQjrH^BG$*ohhQ5IHF`aJkD>8DVa`}g2=#g6piKbH=fM_Ii6;o$y0+p
z7WZ46tFj-Qn}p|z%Cau-GxNmag5_a6=CntUC;omyd7bJPXy+4?OVQ4MI<7+T58_(7
z@dM+F#}DlP7sd~9Tmi1&uEg;p0qt+=;|9o{&d8)H<)ur(9?YYFooqw64+giy*c{~T
zo(CU*AA?;*yV>&QE5G4-pC+OG_gKUy*Zb6ZHtb<ubD_(ewZ=ZWwEYy<8}6sde$Y?*
zdOCHNGpux@YTnGwd--APIcde^qiWvE?n9Q49@raFVoAY^$B9#@Lb%2WT<-s%J+GYu
z9}a%OU$O1^r`IbpP83%k7`#%~D@Q)1u2+uqzd^m;S^8hpE7M;~T5D2OuWXw@{jIos
zN?orUe5kJ1U;h15V_hlg74I{h9}h>??|uKE;h$p0VYn^_&)$rJmFy^#g-L}&!h!Mz
zq?E4<s-i>rDewE@^hLrEJ!li)NtjOVNAYM|ST2Le`A6$?T=DpQ8Hp48OYT20t`^sC
zN;|H~`yVqd7MD+{`yWSo)%_33)!IlPP<~&sFDIsMU>7KuKVtvCApada4j%?s0e2kl
zOE@zqtsI2Qh2<b+|BudB;Qj*|Sec0rZV%X1H7>Jlfjc=}>UII=UHGwb_cv%4IqCmJ
zyI}g+kIZ8W+6Bx=ULokF)a|19<fU&H9O+fJ3*~)%Lw4lG`mgvrngY4nke#<zrfty<
zupMQoLs{md0i>vXKpU2xCm)Z%zB!Nb7X*mFVMX}80r!uKhJ!g9pix&-J8>W80a(Jz
zH>@@<U>ML8)*E>_5)%7@Nan)t^G?%YcqSVPe&kuPA$Y!l8B?~GSQHPa2LR@gU@`0;
zEPu|kg7V|#z9QvkR#ez>{H&iJ!K21Mi${}p1$cl*v6r$Q(a*-CU>_OS#Vy#!F0zis
zgDo4f2z9gogJ3>9vV=|vOTqnHu%1x|>Wzhm3}F=im<?pUUsyPE&@4OQ_6!q*LXNof
z$O`%$d=_rks`i)8qjd`0Ysmf*cU}FCF?fFouBuTKUZ?g!>s`3aKl}R_tVgN*eap}K
zuA|uR_zJzuRrQOl3t>;kc#wX9Tf(2=D)$Tg7LGvUB}PG6ZvYI}AdVfjf5P_~O_2Ty
z9^aMsYw@@pq4eFD@;Wr;_fK(E^>1-J?B5ta(!c+dmI2GD+`nm5d@nTaV>Fc4-SGMv
z?vFN@u#_&`|1S6rBM<2T;rwdMhwaiD@d0OV6lJ{^OP<9)h(^KA`%0$6?=!FcCDRrE
zlwT(l%MZ$U>7w}(u#^8S-(g@hunXz~Oo2<QCy&$Nc{TR`3+r!r&Ty^{M1JttV%OjB
zeEGyu$XP5y2rhZ}G8n!c2D35p+d?<6{i-oDC3qz*!6hw3ROl9uuRe=QrYn@>kGL%Z
z?aI2>H?%8f)P7=7?csJ6kx;sJRWJ`H`sCG^l?eI%(s$~UQ&j3`P!&b=$$wBkn=@a$
zANGs#t4bb>LH5k>ctzwv)RF%XM_C@k@3#OYy;$Y>9+unez7r=dJ)+0xxtge5s%pPi
z*TQi&6!AgY?{`*68BK=UuP<tlS*RQfcEEPQrPo&Pq++|_YLCkH9WhMGdg2FByT$!N
zxgFzl#8pH<m7X}PrT<1x9B|5fUs!l*1NN&*oM+Tq4>_JCFQ&2lt~58wdg7Y9FapJ=
zjzhs)x0XzY-|r{ZluXwT<)^u^WV%y`u3l2fbc+z(#O)>1;raPigda*)#KGhI)y*a6
z_tW*6p}vB|PZ$<eXgOVe`=ff|xHNb}6gN8T|0n0u0OZoP^Pi6E59%$b8b8o>KD$5w
z%87Bsc>jyI0#?9dOB_E=Ap2(DtEX46uljv@;s7J|qQS4cdCPCO-lunv{k2$-jJdep
zr#^=u@-c^@`_uK_n11?G^ocq0`4;`A;`k_G%bdj+>nW(x6UXiMS8dNfy<VAdqBuNp
z!~7Qgq~h`^b-i-%LFyIud!Ro=gZ_`czfvB5mHj}Uu{izG($*_mmt{at{8#U<c-=B*
zC*<^d-#@SwFnZZ|T}+k!H(r-hMThcJ-j~Aq-$lX^J>Iv%baFq6=h6em^jz_Ho)?J=
z{4crx#JKuX`X4hc7MIVrjH|_^FYUOhN>BV3=zl=&18fv4|1tY_Y?C5-;&9|=^+-z4
zGbil=4mis1Tefkbh6X5<{mi&V^uz%$XaHBO7yX~<iHl93uv98N@fv8}=nKlmT=;z+
zkPJt@Og0q!;FTa4fae>f$Kzkq6Hl-%C_i2X`IGg;&vz=ogXoF>OM2otXq^K08nVA6
zA4vX)8@#`S*Trd6>WNC{4RGm+<9UM3H=>30yp+#3_?dd*is!oE88?!@Je-`sOA@ay
zVHX$U>T&p9!Rz*<UtnbZ3|F~dxS(Pupz#u;psY9WbM(Z)S9b79KynZ6XUgl#m=EGA
zBA`mIBH<M5-xz1ozZLQO-F?dan??nWLE}Cyzw){pUSGrg@mt?}%6j5Wl+N4ibQHEr
zAH;_tV#Mnl499#ayEF<2IA1ayexF68mrSRe|F7o9@`Ey71$vR+rYDZq?Xe5$7a&yN
zSN{Imn1uxI1K{s6F+G+iu>YUjhXuSc``dXk_%Of<xGQ!Y4$qr&&cOPQWeC9~4?hdT
zx5HpIMt)o9Mp<9{@#&J=6CP)0AibnQS^d$srPUY5?dU&fSJpA#(5@m-`-w%hirdxN
zw9>UJqA%{wBFCeU{c*g{^o#0W7mT-MgI{1@kbQTf7x=HdK02_V-{Il2$oe4eUlT9D
z{$+>CMNu^Bfh9Y?^7^P>LHWu0sG8dOp#^ySi|eCsW$1hDa>`pD+Z+|wV1Tb+y#GDz
zbYMC4L^s$!ANPQ6!S{^tybflqDp1M~ksomh_Py#e;NkA<;^ffEqq8U7iuMpjFor}r
zi}|7`nUFbBFiI9C2w}bla$%w7F_N4%^AG3e#T-)wjMjnt>J*com5Hf|1#_N7D3b{=
zP-1RsW(_jZrLs_dz)}mFUodlcA?*wfN_OMJkKq{#kZ&U6Vm=47^JX3mNM-n@v(zt$
z;Td~n-kyC;`t~xhckO8co@Ua;VX!A(>>n;08fDzYp|_dMV5h$3rk2gTJNt(S#jT_Q
zV1US<c9i&qhX}+>zRsd>r@%nEkBliBWAIeWm{Y-FxY$g7EUPka3>=dvM1Xy)$AK>s
zn1o7$*>dVqcB~8JF;L##QK9T{A0FY*;2$U_=ybT8^7T-5Qy<p`zzyf4r+`~;VHkUe
z3dpBQp?nnBqXA1S8%#cMrUv^RgTII`W^Bg5Oc)Z7k5-|4*mzUxLh0Z+L7qVpX&CM5
z2y-nd9hN%`SiU_OD~Js4Ow)muYWfPr{=gz3crIP&xk`3-!z8q+MOVI<sn|BOnVG4n
zs&yFgbtXgR!Y??o4#UFn$NVU-!@yQgQJU9ayTCxO=kB?R10*OwVcnJPDHcV+2;4u7
zaY7E4M`^;oj1nlzfmp8qyXs5}1*D+;k7r!D{V+AC2q?FI#!I>ZIoDSxKv8>FaU7ie
zH^IvD`J{Ua>=$7Q_g5dKdMZNrhXoWqACeJo;LDnE1$@6C>}PBdvI8s4zDSu+_GQDk
z%=M#ifwsxM-DoqK8GcPo>3*It=hFZFOdhPhkA<I#!}nnD&(uXpb%1M)MXV%3Mh}q@
zWtjRkEs+XDM)Io985&f{x7vvt9*=j9Z+7B;JFEuheX@I~ZoBWqNd4IvXPk#h>j$J6
zg!t{u88ats=e~3Pm%P2YS?5Kkw|#X;*XYru8h&YlM%Ru!&)9Z(!;`k@vc?-*ZmH5K
zTPD&y&@^<p{mCh*H^y}N@?`m$M-}cJiRto{_Pf#NUazeWWOFXwYFQ_Jxb9Lv?=bsO
zlN-gX>GjSntL5+mJ`&xTp25%SL>Zmf?6{`Qv-Rx+OXG~^CbYYgVC9_NHzqIie{ENX
z?lYII56xV>qwU}g-Kqv0GT%9)xz>{k8ecm~dNyl%O?&l;$n$NQze>^(RPE3xW8Tq6
zN9IjP$j(0VDn9gRyYxAS&YX1SUu=?oJ~KIMvU|)i&v^kIB3t)f{>E}b?YCpEUFw#w
zWRtGPyt;Q1&C)+v_unA;m}YEMqh;?)$sHdwpT1GF#>mXsE#=LqnQz-zIWKH;a6yX)
zjm*3!z1it?qg@kc>9%3J`nz_Uvg2vuY~h)ye6xnjr*-YKKPGZ(c<mnigo}?RN7s8B
z-0SApm&>$H+}9M`9@O*XC_lSpbE1#Wjrl9maHpY1_UR6F_c!bHxc>Xzbu8|@=yPAz
zv3&BhHEqvK+@0`r<;?lr=4o8+P~Uv|mBnYWcO+EyoOUbBs9l=p0?~_lb)=&u?`sED
z%dc{^gL#Gh^A9ew@3Cpv^BtEq+BXi$+h=g#mj2_q=Buo_2JfEb?%Sc2=fP?^^$lvi
zahf8o>ebUaVvE<D#PL^WrKEW@IbXR#^t@BMw$E*#JEBTnXxvUCr=Y3LCZrsB)#=EU
z3Xi(ZbpLW`*r>r-jhgQ@n6dYE*Eelft~~yxQno|*ph#YiOG8~Q^Q&q3UJ9<bY|zDB
z&TFhDpBb`a^P^k~C#Q=Soy-Sl&fgW(WA(&xg91*7R`hp0V_n6nb(FBPL5n&!ye?aQ
zU3faKqIGNjR{n>>&EmW^M|{3CNxjmfg&*sjZ`;wk#`C{hn_HS&H=omMt4B+}di$n*
zkk#o{W1FAOr`*$Tj}BOSw`IfHCRY+qkL{S|JI(QtT_f2!<I^ElerZ>>H5mGKT<EN8
zsdt9;H%#-<K0MdtZMtRU1=jmcx9ZY3?wZzvg@?44Y<1~%HF@l<U48WuTEvT%wV$vl
zH{yt|<^81_sb_D)-dg2{-wL*IjG5g}Pq41Su#DyReR^xO?6vUp<HzkrzMem8&!f9t
zM9)GFJhA!T-#6X8w>9nA?Oea1+l&mZ_M2sXaY}~?S~Fgnh{{KIpRwcS$`&ta+uC76
zp6#lb7-KtS<HVJ{Kg>Q}-Zs=LsOiZ`pE7GkT#kNnp|Sm65Bz;L8YJ%akve_u+tT*&
zn*H$`%#P*cCDNxR@6Q=_rrUy%M|>|Ef4Cd*pwWx~z1dZhZknzPo7H+t5_L!`Nbj!O
zqRJu98#UGGZgV-f(ej=m%_SC>J5+4+Aujqaw*bj2TKLgHy61iq?;Oo?IUlmZo6QN>
zc)IOfox@>${QvH1)UMvVuU{>y40q_+@P6!qmflOpKD{&5-=tx^^i9>ZZ>2x+E-$Uy
z_F?E*^SDooAAY#;Zly)GU8ZKYqXwO;92k@4Io#r-bA!dB56s>Ye^Tpi<+&GDW&1a3
z@SvsdZp)b|<#X-t93OntXF<Ok^)>suKZ@k}`5J1hZeTjnp4n%)K=C4Z?LVwI_R?j+
z%C9_H^WwVLk(%a**R1WGtf3SB;t6FI*QwIOxx#7={kLygrm=cXN_qWpSykxe-icKA
z`894b+3mIDOVT$VN=k80qaLQW??1Swo;YhkM)ax;=`U@njr;U)k@}^}p<50|e12Rp
z!eT`~-l?Y7T2jVO$4er4yv9^UJ~&aa_S>`e(zG-7;1tB`x8HQ?Q~qhEO&jBFDQbmn
zT-<hBzp+(@mHc*8C0D{FoPvF&!g6JECTniF@<axd$YK;2_|@e~F#iMJ%He$r>{i2q
zx<Y9v>ck_A5RAb4YFOS>A}3yg06~BtKoB4Z5Cnb$1i0jdRUBoz`M7v_LB3(gk&Xlt
z1PB5I0fGQQfFMwI5#W*+_Hq<y<dfp%1-U{EM>-Nr5FiK;1PB5I0fIo;MSx3Q7zj64
zI1A=@OOXKYOJHdN>j`mYKq3eN1Ob8oL4Y7Y5FiK;1j-ZwTykS4MX|6*nU>#CBp`BQ
z5r{|tL4Y7Y5FiK;1PB5If!_)NF1b<ZIN~B@UT_z$EW#)vHx_}21P}xW0t5kq06~Bt
zKoIz?5a5y<mntqN7AbS9`$TRm0tyKr2oMAa0t5kq06~Bt@Eaq*B{x=9QRds3ih?Cs
zZ&U#oi6#gT1PB5I0fGQQfFMxD5#W*=x$JbAKQDfrk=W@f;|+nZPY@so5CjMU1c4F|
z;F1?sainp6QM|lB>~wJeMuG_f1Ob8oL4Y9e8z8_XFL2rE%Hoh0h@GzApfQjl5CjMU
z1Ob8oL4X4RE_q=s$GIUm8_TTX*BP*O3$fFMks>ZZfFM8+AP5iy2m%Cw-va?Ixv`%L
zx$)*xA~*gXEr67QAV3fx2oMAa0t5kqK<N<Rk{h}7pWD7IUS1^n&!xkgP!R+O0t5kq
z070NEBETgtaOpqycvrl<K=hx>V(k;22?7KGf&f8)AW%94xa0*c{pVL4@&eI+E*;*4
ziXcD`AP5iy2m)mh0WNt#)j7p0vWs75z@bF{xh%E@!ZSgDAV3fx2oMAa0t5kW1i0iz
zRp%7vzQPhB%$wMM=Ej)B5CjMU1Ob8oL4Y7Y5cnMs;F23#t0<iC9=5Ci39%H3U9#S&
z0zeW?5FiK;1PB5I0fGQQpo}5FB{#NGQI69Ov4jW-u@AdMZd3svi6#gT1PB5I0fGQQ
zfFMxD5a5y<RjoJX5V^68)ihz3AV3fx2oMAa0t5kqz>guoB{!;CZ!~&@R~F&(u@Ads
zz46EDg`_435CjMU1Ob8oL4Y9et0BN8H+E9N=*!IF^&7F>HX=8w0FXoz1PB5I0fGQQ
zfFM8+C}Rk4$&DRVl%plbcQHh6Q~?}`CI}D&2m%BFf&f8)AW%jT;F25Lt0<3$(mpj_
zUnKj~Du5%=1Ob8oL4Y7Y5FiK;1j;A^TykSu73G;u<VF<;k!XSdL4Y7Y5FiK;1PB7Z
z7Xp<jeYQYXJ)yp0P9Ny%QZ8&bk19`TGygm#qVO=GM2t&cl_9Igcz7tFk60Ea;QL3>
z&O)(J79{YeJ;VL{1TtAbxJVR5QM!~n%C8}tUvFWEfc6aIhlJ8NYr3yM97cnT_(Mbj
zlrMOWUZLl>Ny6yPp`jw7A0#T^vno}M$+-tVQWz2*LihD_>P|aJr4lL3s4`ujf@`8Q
zWuQ$Nj7Irm{;O20#hNZJ;Ij^!ALJ7iz8DTw<x5ei?4t_!ti+bzOCq8>`}s-2#bH8m
zAVq<4)-6;{CO(`&sDOkPifJ=bQ&T#`$AY0N;Ik&nr(%9|A5Yp<93YYmN5!O6@p&Sz
zuRWkG$hTH;`8s;iJ;TEaWvnXS?m5c&7RzsUei-c%<u8?#mS0R)z;Es1`0XNP5cVI=
z4-=HK9Td$MwgV-6yL+~z-NTv2>nMz1lc>U>AYa_C42t8|+>y5TmoojO^!ed_Rcw7Z
z2t*>#&7@(7fzs!T`7|t!Pc~mCvHv&liSw&oTz>MNs*1n7Ovg5$C<XOSbLL083#5L`
zn8FVfsN|DAw_Pb;eYT%^go|l*4CpHq`!n4M^wY-7^YOT0YSG!<!_0;@vubB%-p<m7
z4wKM|VOFMq-$<U*+31#6cvR{eoq?5HF9tO5OEF$O>94Sn+v4|M7j3yY#p>aXwQCJ(
zpBN!Fi?STy9rCE(&;~7?8Z>*=_u*}mYp2`R`B?kpi(`Xk=70W@UwLxg*}V-KU3hBN
z>7IG;PJ!cM|IIUJUo^9@d%dG~uzkJ6zgEw%5U%-j%%A^c!0F19YSlR3DYM^I?a8}e
zJ$)T{;?CLIhQr^RziT}6if8uq#v>i-<W&%+=&kl^-DjWVslf*A)3pU5BaBXVtX@Zd
zsNsP8#ar)3-L#+7KWcCJeD78<)76H3_Bvu6y!W-;q{Un3c01@CFt2JkmuTa-s}C+%
zo&0hpro(29^KG6@PX9bHWUPx+dff8#>Ix$U>9!R0OT9e6bzks;ua%xmHtE&iuBger
zzUC*BWVSnW`rFsqer#4^yqZMax|z<E8^QE3@138wk9ofC<m>rgPwc)v{(17Sh$k%@
z?rK@(;TogN^%IWW4z6sF?t0*o)0~fQM(;JWaXMjAwT95SM%C~*pP{F3`}$rs8k0Mt
z-K{ekmj;wudO6&2OI7VnRkcI<hIZ@Z+G|p3^?g&`b__l-r`&<1U0jmt3%XvoSNDDO
z=x$bL^Hctpz_Z+Px0#3Az2zI|w=3o(e|CLqvE*X==8J7iCqKVovTD!!cVE`mcrdc{
zI$PZf0kyh#<;*^_xAU#hGiR>~dc4M=srav2Ui(HK{xZPegR|9+z&ld+OVjUN)Q&kj
zw3l_8hHWY)KJBaiEVsw|v!l0ne=~NJ`j)t}6SKO-94$Z0%BV+$V52^cZhbEfY8NN)
z)!R{Vxr^zCmDy=ctq&M(Sf#b;vwc!}jVj(3Pp{meJ!EqW<GH&p4hf(1!m6jssEcDa
zw$$O9*50v0Z$rTKg{#!+IBaUxDr{Bm#UA41zOoNb-MrQ}wAmJYbnu?g!AF>8dGTw{
zG#(ZEX5f_m6<dwh7mPPNI_rb?K(DE_%=tc^_b2(!6Led@;dJ+|!;X7Qzq+JK_T%7X
z{v+N<hyOKV*wYU$pKZ+T>eTnzvW0g$j6NI~?YJs`pY1%~M5}S1gUTQNyUK!g{<EsL
zzIQ3jdd8&N0sP*YPWNj`cXksVm_O}<Ud>KRHijOIcT2t8>DW0*zszOFpImo76Vzm7
z<4G$n^c1-TH*LLhkzaH5t{(&DbUj->>G|X9-CEgN2+BpT-|_D9u$zzSzVknHs?w`_
zPsa>sSV1%Dma%@Y(DzZTx}Qbr@1|GC$&KG|`T5_GD<)q$ySl^Yb~A3Q)R?|Hc8_#k
zjBES8+a@3L$gMo5oYmcHwfaA7=Q`7`sjIr*`ox%CjkB8^KiBnE^SXh@kNY${?<TVh
zjc+fm6?|aYsaHLArnydP9y!tG%w3n48)BSy##9|3=Fb=zJ4d%_tFBc&>y5j0duXed
zVWw|<GxQIhZusWq^U=m_ZMuJn(24nYuHS9TSuN@|&bSe0)RjJUJhk5hyA}3!%ZK<L
zwf(q%1aDl|={AzMQ%!i=4v6iC2d|$}wcqajmGY|(*ngs8_hr5L@#_v-|CKs7$Lrbr
zy2h4AAO3H{<Tu%lA$3+Y*fOKy)@60x)U^+HbG`Ao#(|uQZ;#$ev+L1f-_;R%ryt&m
z6Z$2dqimy}$A$L_J?PwJQiefNW8?DMubNl)aNFIp(c96IN3y$Bwtlgj-J|uUEuAjp
z|F6cYu_l*t-x|LNPVN1sqSO7M@dsLL@Y*=}wrA(}{u=z9)}l(bzN=Tof9l^VGVI~b
zPG2;R-)z!&qy5`+6TG9=*}ZRHZuZ=H#{%n5?w@e#*!}K4DH~57v|em+v-gpJLrq1(
zZR@&w+1;DawL|#X4bk;Z&KWen-v`N%BUO%+e>XHwO{N<(Dw5~dy#1s1fk#}|)m_|l
zsm-<)87_@a->fjY_wI@n=Z8n;zg!kFB0jz@MIWrhjIX@LR7U>a`T3m|xqj#rSN>_I
zqk8A;A3i^8KP>GGBihWeo$+9)t?Tmbwj<tF`8$&L;J{W<Vt4PWNe@#tZn<&H)6KqW
z&vx0TI@~*!O5Za*{&G#o>}mV!QaNub>M(hmQtA1ReaqSU?#u6#cO$z~<x1!5<4&Bl
zmoRyQXLjxMypx;u(@uwL%(A7ZdA7Pq+ie334eTO$Ro5R9=VnWG-d^@BCb?Nvx3;@m
zb$q(Z;@$YFPr?PYySYUTJlS(&(&SrJ^j5CiskeLKm29f{iK=&*XO`#X<VEu8o;T}e
z-^=jCn@w)hox82Bf4JvsTSxsK4X#|cka<1p=9RvoErNyxU1+j$;@Y(n2OOc}=&Xqo
zoCR$xEIc3N-F@`>OTy7;w`y&Z2iAUCXXoQ6d&z?HHCsHE<<xrWed*#h8`HswqR~gk
z4iyWZ53lq5W6P(NEYr;1b$L3WOT>HY9eIwON3Y#HeEriwLq4XsUl`o%x#Y_G;Y0E-
zuMW;z5w!fmrK-(8H;qc^>G{g@(jk|tmxtK(sqcQ}knpKP^Ut#m<T-fO?{%q5;}5$&
zt=TxU*)zWZpX*m2W$&~6!j*ON-q$>RWvq^@T8&XnD`ZHkxqaxq=&}XhGkyI2go=$m
z3XX0}sF*v#B<zFtC#@F4sqJIZChv&kZSqZ97If<PL*vw)hfd|6IN+O~*y+INJcD;T
zUWluhUk)Dlx#33Xq1%sFEfr;a{rjR$;}NYN&o_KIXMe`gJ&_-s0;h+3mCPM|ce{i8
z$wNl@cRqdWdb{r77P)ovq@$w_`n>YZ3Y+M0p3+{q!{zT|d*(D<=l-U4ul^^a-+hi4
z*d}{O|6X^s8~fMwTfFsss|$W<(n^c;uDoxUlHmF>{oOh$!@vJb$f5tKlMheH{O>m4
zTb$LZIO=kIUdEo`qrz|WHt!RbUG?mTLpd+*<_4$7Z#(oXv2KdR?vQoIdZe^@bmvNx
z&s(2&w-3A;!B1VEOb3Ox*|`7Sjh8xB_qW}#?UwwmW%iM}3H=l6PMvP?HYsJ~;l0fz
zX3=;4y470i>dR;IGb-=@+VEXY-+(@Cl3E80ej~{}epDx<Zfx_9!<KhU&TNu6IZ9T`
z)}_6BXyUf^`4h(8omT$r-{}<foaZ+sl2<*gqsx_Hbz+BIUSlxTCCqr&y=TX2B(AJ6
zX~h3Lo(i<>PqoaN?vPb+=an-?2kvAB1!<pdJi*08|Hz6JEA?K+++AqvuU93m$~?iu
z6pwg^L6;{5Mm63v@~L*6^nn*@USGcF#i4g+#!Vfwa)_U0<xc~GZ*?;0=M|`Hr0&$?
zMDOOW^JbYX(%aQ!`l}mugJ<q|(<Af2D8CpJ{YuW+&F@{>J9~ys#+{mjGA864Kff%1
zAHMJ1(`li8DY8~ZqTtXPn&WrY2+Uc0A@az+4o&{Iwf(k$@p;j1Lsv>ataO+ly}E3$
zRo7Po*B$J<;meEnb^DmNXc)7+Z{CT9F>B|A|5bVJxHB8x#w}?*KT>$Co@bM;4M+4@
zoFGehk{o>VMtm>lw}%ED?Rr)xP&mM~gVg7vaf{q#qg(}n3*X%v>oG4hr=I7GI$`k<
zEj|of+HcF-uq|`f_ugsbmLWCj=ogk>IljwuC(k2x=TB{LA9c;8L*)o>vmsxP%!zo=
zWshk_P?qqX-Si!gx6hhdyY{p3=Ot6T${+VTbGib*u}6&x<InAx_wsb=13jbe<tk*%
zyVpIl{xiK#JtBGSV@{mRv8iV3{!Sxtxzpb_6FSLGESPVh-@WIxUh0?YzpEn(Oq;hW
z`D;g=?%Uc9(pu|q!yqG}!vnvQ$xpQx)$ksn)qP3Nz@*%Fhwg069k0D8;Lw(GYip~u
zd=ZegRM_{{bKcrqgGu9_Zcb?%G2+CM?3`|Y#XglSA8>fr{^#YA69dm*w=#*>TU*^E
zUF)*RHm{pT>pCW0ew3lTHlz0Nu}{+%Ps)zT%a<&iFRRe~$yp!G%jqv~^Ul7jW~*`8
z_Q@gY@{#hbQy*_w9(zG2se{J5)+VE<B-^XGCW~U`hu7_%@wH>6h;5hddHS}Ce#AEo
z$sKBNee{Ujq*!5>=evDB=R7(dvEucxFP*fyXC(F1xZJ+)aP<$aHz#ZDj(ys?>BiLe
zNo|D;!OVU2G}r!RlX5sLx0XeFckjjKo5ntEAHUOgK>X~>Gv4jrd2ZCpbxHJR{kv67
zQ`UWmZAIPh@VqG*Yspyqua32Ih6Yvgt#;yu$K##jo1OUI4y(a=pX?s0+wMCtQh#>F
z8RwzW`T=PMA$~h^#>`3Ex$m6+C2y~8)_KwCZC@SIHF|WZhF_YX(X}JbGqzpc@T6_J
ztntQ{TdH)*mWgx^G!0#De{xFdjWJ!mJXwC`QH6U)V!C{#{ciNR*K6wo*_?~FTGmM)
zuDjIFJIsF6<VG=TdcAYYYB~IXk3@H-XYlhnQAQ^=JFaQ-Y<)Yy(m3O}3GMDASUIQn
zjmZoBU)$B8`^;tQLo*leXghdAx2ge$%y-UcuJxpX#@CLLp3RzG(_Vcd@_d`-uaa~G
zRXa4wn0NHik$Dpmva`>;iVr>7E`83SGbf$-7n`J?&rHsm>>hK>b6!A)$kx4=zp<Q9
z`|a3km%1e^*`(_+ukM{hv-D5a{Wpj{rWsq+XxaNxa>obFr*9OkF*0*@OL;SD=G!(_
z&I{WdT+re{BQx(wZ+3d!XxGG9x^395{;u7o?0A|uTX<$F->l*CX<hs5kBQtGUb_cB
z;o_so(e>U2_qsXu<ua`k_caB#2lYHT%Fk}uoap0oWB!UX+-c~MeY!*4{mptkuK&Jw
z9g90J`rMawET24WP1`dQcPBhuIdguuc^a2H)Hk1gW$~Hp9SM~^r`-xOYM17@K=h(s
z9qDMv``SU(@~d3!U|wPW{DaHvdu$r^e8;7Y_Kkz`_8A<wrT@6D`6{cf!MkU<`*vvM
zd9a#JeS?~BoTiAYdiAu9*y1%Oas1U;DQO-}&R4DwJ@3@6?Q<LGj;N9s8n@HPDQIf5
z2`NWjbvkmT!lSM;-M?HKHfnHIqvm@JX6(J)^-bHAE04dal<g2cD3aIX(omPn{Ayah
zmx3!U8+37(^BSwkXNK(9{3zGL$?4)nC-VWC^LGXHSUs`apnwyi75!b$SXZ%X9VP5+
z(4x)_ugjKS7oLu*Xx*B>mH**zvpBEK5uYzjQm-^=;m11X+jjJ>@%-=B=9cEx&FA#m
z>e14#-o9xcWOcgL*ygA6Dfjf-qXX97ZP~E4$(6*@V>_n#PIG)@*GP8G_;iSsU)q&z
z4TioQ7dq=&>YZWz4byzI56?Aun{HWof%U%At-3UhyQcME;UVq+Z}vKmz-zmk?raI?
zo2NZ1XRdYY>fdFD5=<V=S;g?`Q^_aO|D|`bEL`d)M)0LB=PJBC|502Bt4`qblh2-6
z)qI#bVf)kj?m4e=_dK^)^7B?e%zAZy@3Rrv>s7_CMNBZd*k#ko-uF%~hqKzJZ{w|n
z+V2$XrAv}tZQ<QqXWzA|ZDGjQiAOo@3&JwgkGKDLAX#>~`uPPFr>l=s;#P@o-Wpfr
z`YT+={@K!9vsM}&`Sx$K!immZ-wIE8PpdhUa9QK){j$f(eQA6Xg}2=@SXeSaf9*Dg
z{p=Zh_x)xF=Dt=|=k~F<oTWV9KZk9$@nsuc<*yypSN+oR-z#K(cP`rgNG;|Y8_Tz^
zFG@8hrL8(?d7t}WNodMXFI6kKDS!VO3za+jD?MtMrV}%#>E*rd6g?%m^Q%QU?wo%f
z!&xM2`J~{qQOA#&Prly#ywLcq!vi+&!{UxYdm7IKmm7a~Q=D19XX4sf$Jy@-PQI|{
zZHltuW1WPpCjEOke>>ef8h<!$TEtCxw#a~|qt)POHAuf|kP$e93K~R}0F90U0c;}b
z{1?cQ_4nT(G-zQHXt?!18i43xU?~3qQKtYE$be2EynymA%z`jHpd+>!havn9DF4GJ
zs6ybt?kE^~A>iTa2%Z6nfI8g*O7nk*qzjmjobz)FN=s4|e1UV4zzKn31&yMTG))Eu
zO!1P`iV{uu0KWpv05qDBfgPd-nvNKuDVdQGA^;VJr(0&=bOJ~Ww2{}Dje&s`%4cF`
z0xRWaPyowAwFB88^^6QDscAXD=_{}t$O#-kdq5hPnV9zfgm@9e1sMqjLO>ND01|Y1
za5##AApyjtISBUicVT2;g4)i&kd7Aq=nhbT3cTlpZB;>6F*5nM7IJRJQ9iwAL=8Vs
zyn_HdK|r{p<Y)+thQMeDjE2By2#kinFbaVR#@-NL|HlRbd)IIIpZLusvh!5t?02i)
zwCbkrR9LmGqg&t4C{tO;dXubO%a8Xx!PYHYVNWJRoI5l7`=7KwXSSYI)?1=^D?BQH
zaiGm3$!C_u?}JX{9y#_neV%q^ZqTKsk1=AZ=P%E_z^2>Wdt;^7oPB$0{(n0Y9IEBp
zSa8ZTZL!6(=w1y;|5I!?HIIJy%_RShYo>3-WVbzHR*yZovlqp0STf1jqDVgBva&>s
z-ZS;po4>l=46zVrYd4)OC(QMf(O+Us_bSa+-6<@|t=ncaZZJ-Gyg8~r;>+x?%^4=M
zeG)65Ue5DT+-@-U!2LsqVnR!kzcX;})K!s^e`ddZ*9N_R@~gPk)_uCIx85cE-Q<S7
zM!zlkBvw8TQ+W`4+n#Z~N8-wj*R))dr?9OTf21hgm)N`YsFow|l2oZrp4;N%L^c^%
zD{Z{PT;p)Xoo!lo^%TFYXFR4&a(wf!tXj`6KHPXp%%XEs*TpQA&eZ98!>Q->^+Ne0
zZ7rsPS?(V$+cIo-@;>yJaYMzHs4HDPrFCkr<Pz6SH7rrceEro;MRl9s`^mOZ3`>QJ
z{BN5I>`Yx3%DVbtl}C0_OJGANgHFnl%JLPCn&nsi)StRl+;W!hp;v0ep```|x`OLW
zb2E6pus^%u&i>}y&vWa}`{|_!NMFCRu*x96b(!Yc!ZYWuXUpGd{AYfOef<gj^t(GZ
zFr9FZ&`Ngx-ty|LPu;zptKF<--&-nlDcq-g5ntwaNr5&0|Nc8X`QL&dX_HXZU6F4V
zmIa&38s3}oS7+CXGqKj~vlksYm}kCv)l9>?sgFYaAKggxay|D;u{`PUkL?WgO8)P2
zOMV+RzkKqeHfDjT<nfOOZ+y{HxU3q)yfgjD>5`X6*6z;#=6hjj$(%Vk<;&Fb%MY<T
zI_e5q1#~ZzjpD3UGI(jsDRwFMAJ<oAX1NN+)?jdwwKWg=clb@GSf_@js?)`|8<+IN
zU8aZ>mfdcQlD<9h?S|9)@6W8+qPbdh-;GW8ZT45zozq@uyyHY>lf~YKmxr?|L+?y|
zy((~r2;X8Wzx2caud5-4ycZv=OtgLH_=D%s>)p4`J$^DREYj$_nC6rI#1C(l)HRnd
z+AnEe8d&;x_pPaQlci!MS`Kzkofl|-QRB-uWgdwL#o+(dW}MA(8s!tB*Q~v{u=tph
zzC_+4i(PF(+5K7FVjiKVzOPw2?VZDt%J8DP=bp!3$(nXwt-h3MlKE%P<+4LeGtJz8
zXRS%vmj2eJ>o5Bn?a$I~ezhy#PGUdMy<t|zKE^fwDzvkl{Wc$r{@k}=%Q4GW+1F?7
z7rf0C{d%Epnx@0zT78d-pIN<4N?OWM>V~`w`3#T5Zav;zomlKpVN$*3fulvmB@X{-
zW;%S6mgTwW^gKJXc<TSxGq%j((Y;_gwY=tMZDil7_UnInIGUSsQrzFSiaUIB%9|rE
zr^lng;=1_es?E%YYF~Z{{54}@$Bwmnm9;J>U%6=>thBk^-dnI=O?qWPl|_nI>bZ;C
zUnrmMYLoHbr#_`G+3C3Z<r2f}{_}sOYXz=5{SeJO;~!ThC--`1=jz~j{l5?MOX<um
zaoNDpy#G_VQP40dUq`(%8Ulkk1SlDYdI=mqqQW@Te=f)n1Ze01WF#02)HoEb@smfe
nff1<tVALWO?BgeJkH8d;(xV|T8UmvsFd71*Aut*O!zKg(8v6JC

diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.prj b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.prj
deleted file mode 100644
index 67715db..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.prj
+++ /dev/null
@@ -1,40 +0,0 @@
-Proj Title=HEC-RAS Flume Case
-Current Plan=p05
-Default Exp/Contr=0.3,0.1
-English Units
-Geom File=g02
-Geom File=g03
-Geom File=g01
-Geom File=g04
-Geom File=g05
-Flow File=f01
-Flow File=f02
-Flow File=f03
-Flow File=f04
-Unsteady File=u01
-Plan File=p01
-Plan File=p02
-Plan File=p03
-Plan File=p04
-Plan File=p05
-Y Axis Title=Elevation
-X Axis Title(PF)=Main Channel Distance
-X Axis Title(XS)=Station
-BEGIN DESCRIPTION:
-
-END DESCRIPTION:
-DSS Start Date=
-DSS Start Time=
-DSS End Date=
-DSS End Time=
-DSS File=dss
-DSS Export Filename=
-DSS Export Rating Curves= 0 
-DSS Export Rating Curve Sorted= 0 
-DSS Export Volume Flow Curves= 0 
-DXF Filename=
-DXF OffsetX= 0 
-DXF OffsetY= 0 
-DXF ScaleX= 1 
-DXF ScaleY= 10 
-GIS Export Profiles= 0 
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r01
deleted file mode 100644
index 0e14bbe..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r01
+++ /dev/null
@@ -1,69 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-Section - Arrays Sizes
-Flume Base Case 01                                              
-       1       1       0       9      12       F
-       2       1       0       0
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       F       T       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-       2
-       0     .01       F   .0098      20   .3281   .0098       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       1       0PF 1
-6.102375       1
-       1       0PF 2
-6.102375       1
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0        
-       0       0        
-       3       01.14E-04
-       3       01.14E-04
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000    16404.2 16404.2 16404.2       0                           0.107           2.574
-       1       F
-       4
-       0 335.131       0  331.85   2.297  331.85   2.297 335.131
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       09.79E-03   2.2979.79E-03
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               5000     16404.2 16404.2 16404.2       0                           1.573           1.576
-       1       F
-       4
-       0 333.249       0 329.968   2.297 329.968   2.297 333.249
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       09.79E-03   2.2979.79E-03
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           3.039           0.578
-       1       F
-       4
-       0 331.365       0 328.084   2.297 328.084   2.297 331.365
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       09.79E-03   2.2979.79E-03
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r02 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r02
deleted file mode 100644
index 07a8514..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r02
+++ /dev/null
@@ -1,69 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-Section - Arrays Sizes
-BaseCase02                                                      
-       1       1       0       9      12       F
-       2       1       0       0
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       F       T       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-       2
-       0     .01       F   .0098      20   .3281   .0098       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       1       0PF 1
-4.576781       1
-       1       0PF 2
-4.576781       1
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0        
-       0       0        
-       3       06.84E-05
-       3       06.84E-05
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000    16404.2 16404.2 16404.2       0                           0.107           2.574
-       1       F
-       4
-       0 333.609       0 330.328   2.297 330.328   2.297 333.609
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.00E-02   2.2971.00E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               5000.00* 16404.2 16404.2 16404.2       0                           1.573           1.576
-       1       F
-       4
-       0 332.487       0 329.206   2.297 329.206   2.297 332.487
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.00E-02   2.2971.00E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           3.039           0.578
-       1       F
-       4
-       0 331.365       0 328.084   2.297 328.084   2.297 331.365
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.00E-02   2.2971.00E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r03 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r03
deleted file mode 100644
index 716483f..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r03
+++ /dev/null
@@ -1,69 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-Section - Arrays Sizes
-BaseCase03                                                      
-       1       1       0       9      12       F
-       2       1       0       0
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       F       T       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-       2
-       0     .01       F   .0098      20   .3281   .0098       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       1       0PF 1
-3.813984       1
-       1       0PF 2
-3.813984       1
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0        
-       0       0        
-       3       04.89E-05
-       3       04.89E-05
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000    16404.2 16404.2 16404.2       0                           0.107           2.574
-       1       F
-       4
-       0 332.969       0 329.688   2.297 329.688   2.297 332.969
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.02E-02   2.2971.02E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               5000.00* 16404.2 16404.2 16404.2       0                           1.573           1.576
-       1       F
-       4
-       0 332.169       0 328.888   2.297 328.888   2.297 332.169
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.02E-02   2.2971.02E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           3.039           0.578
-       1       F
-       4
-       0 331.365       0 328.084   2.297 328.084   2.297 331.365
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.02E-02   2.2971.02E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r04 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r04
deleted file mode 100644
index 252e40a..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r04
+++ /dev/null
@@ -1,69 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-Section - Arrays Sizes
-BaseCase04                                                      
-       1       1       0       9      12       F
-       2       1       0       0
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       F       T       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-       2
-       0     .01       F   .0098      20   .3281   .0098       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       1       0PF 1
-3.051187       1
-       1       0PF 2
-3.051187       1
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0        
-       0       0        
-       3       03.23E-05
-       3       03.23E-05
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000    16404.2 16404.2 16404.2       0                           0.107           2.574
-       1       F
-       4
-       0 332.425       0 329.144   2.297 329.144   2.297 332.425
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.03E-02   2.2971.03E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               5000.00* 16404.2 16404.2 16404.2       0                           1.573           1.576
-       1       F
-       4
-       0 331.895       0 328.614   2.297 328.614   2.297 331.895
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.03E-02   2.2971.03E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           3.039           0.578
-       1       F
-       4
-       0 331.365       0 328.084   2.297 328.084   2.297 331.365
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       01.03E-02   2.2971.03E-02
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r05
deleted file mode 100644
index 5b9849d..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r05
+++ /dev/null
@@ -1,349 +0,0 @@
-HEC-RAS 5.0.5 June 2018
-Section - Arrays Sizes
-Unsteady                                                        
-       1       1       0       9      12       F
-      61       3       0       3
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       T       F       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-      61
-       0     .01       F    .003      20      .1    .003       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       3       0Max WS
-      .5       1.4477215       2 .403181       3
-       3       001JAN2017 0000
-     .05       1     .05       2     .05       3
-       3       001JAN2017 0100
-     .05       15.00E-02       25.00E-02       3
-       3       001JAN2017 0200
-     .05       15.00E-02       25.00E-02       3
-       3       001JAN2017 0300
-      .1       11.63E-02       28.64E-02       3
-       3       001JAN2017 0400
-      .1       12.09E-02       27.42E-02       3
-       3       001JAN2017 0500
-      .1       12.58E-02       2.0642757       3
-       3       001JAN2017 0600
-     .15       17.37E-03       28.77E-02       3
-       3       001JAN2017 0700
-     .15       11.30E-02       27.04E-02       3
-       3       001JAN2017 0800
-     .15       11.99E-02       25.64E-02       3
-       3       001JAN2017 0900
-      .2       17.34E-03       27.28E-02       3
-       3       001JAN2017 1000
-      .2       11.52E-02       25.42E-02       3
-       3       001JAN2017 1100
-      .2       12.51E-02       23.97E-02       3
-       3       001JAN2017 1200
-     .25       11.35E-02       2.0521406       3
-       3       001JAN2017 1300
-     .25       12.63E-02       23.56E-02       3
-       3       001JAN2017 1400
-     .25       14.01E-02       22.64E-02       3
-       3       001JAN2017 1500
-      .3       12.90E-02       23.39E-02       3
-       3       001JAN2017 1600
-      .3       14.67E-02       22.30E-02       3
-       3       001JAN2017 1700
-      .3       1.0644845       21.47E-02       3
-       3       001JAN2017 1800
-     .35       15.42E-02       22.24E-02       3
-       3       001JAN2017 1900
-     .35       17.64E-02       21.27E-02       3
-       3       001JAN2017 2000
-     .35       19.74E-02       26.29E-03       3
-       3       001JAN2017 2100
-      .4       18.81E-02       21.46E-02       3
-       3       001JAN2017 2200
-      .4       1.1135756       26.90E-03       3
-       3       001JAN2017 2300
-      .4       1.1371284       22.56E-03       3
-       3       002JAN2017 0000
-     .45       1.1285696       21.18E-02       3
-       3       002JAN2017 0100
-     .45       1.1562583       26.15E-03       3
-       3       002JAN2017 0200
-     .45       1.1815034       23.64E-03       3
-       3       002JAN2017 0300
-      .5       1  .17367       21.45E-02       3
-       3       002JAN2017 0400
-      .5       1.2027799       21.08E-02       3
-       3       002JAN2017 0500
-      .5       1.2291546       21.01E-02       3
-       3       002JAN2017 0600
-     .45       1.2875505       21.70E-03       3
-       3       002JAN2017 0700
-     .45       1.3029256       29.10E-03       3
-       3       002JAN2017 0800
-     .45       1.3175578       21.75E-02       3
-       3       002JAN2017 0900
-      .4       1.3679012       21.46E-02       3
-       3       002JAN2017 1000
-      .4       1 .371589       22.99E-02       3
-       3       002JAN2017 1100
-      .4       1.3754609       24.79E-02       3
-       3       002JAN2017 1200
-     .35       1.4180924       24.98E-02       3
-       3       002JAN2017 1300
-     .35       1.4119918       28.13E-02       3
-       3       002JAN2017 1400
-     .35       1 .406457       2.1114301       3
-       3       002JAN2017 1500
-      .3       1.4428244       2.1147146       3
-       3       002JAN2017 1600
-      .3       1.4284927       2.1515737       3
-       3       002JAN2017 1700
-      .3       1.4154813       2  .18403       3
-       3       002JAN2017 1800
-     .25       1.4477215       2.1842001       3
-       3       002JAN2017 1900
-     .25       1.4269008       2.2213254       3
-       3       002JAN2017 2000
-     .25       1.4081997       2.2523037       3
-       3       002JAN2017 2100
-      .2       1.4382429       2.2466414       3
-       3       002JAN2017 2200
-      .2       1.4124274       2 .281561       3
-       3       002JAN2017 2300
-      .2       1.3894127       2 .309322       3
-       3       003JAN2017 0000
-     .15       1.4191277       2.2963563       3
-       3       003JAN2017 0100
-     .15       1.3893773       2.3283369       3
-       3       003JAN2017 0200
-     .15       1.3630884       2.3525086       3
-       3       003JAN2017 0300
-      .1       1.3946227       2 .331126       3
-       3       003JAN2017 0400
-      .1       1.3615198       2 .360618       3
-       3       003JAN2017 0500
-      .1       1.3325785       2.3816974       3
-       3       003JAN2017 0600
-     .05       1.3700845       2.3495327       3
-       3       003JAN2017 0700
-     .05       1.3334168       2.3782524       3
-       3       003JAN2017 0800
-     .05       1.3016858       2.3977329       3
-       3       003JAN2017 0900
-     .01       1.3420733       2.3577345       3
-       3       003JAN2017 1000
-     .01       1.3031967       2.3854274       3
-       3       003JAN2017 1100
-     .01       1 .270029       2 .403181       3
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Post Process Set WS Elevations
-       1
-       3112.5458       3111.6644       3111.6643       3111.6643       3111.7678
-       3111.7692       3111.7708       3111.8609       3111.8641       3111.8675
-       3111.9511       3111.9563       3111.9614       3112.0419       3 112.048
-       3112.0549       3112.1347       3112.1418       3112.1506       3112.2292
-       3112.2376       3112.2479       3112.3255       3 112.335       3112.3466
-       3112.4229       3112.4337       3112.4462       3112.5209       3112.5327
-       3112.5458       3112.4946       3112.5006       3112.5036       3112.4406
-       3112.4382       3112.4325       3112.3607       3112.3508       3112.3409
-       3112.2627       3112.2501       3112.2387       3112.1554       3112.1424
-       3112.1312       3112.0433       3112.0314       3112.0216       3111.9285
-       3111.9183       3111.9103       3111.8099       3111.8019       3 111.796
-       3111.6817       3111.6764       3111.6727       3111.5504       3111.5486
-       3111.5474
-       2
-       3106.6544       3105.9221       3105.9222       3105.9222       3105.8279
-       3105.8432       3105.8573       3105.7922       3105.8153       3105.8394
-       3105.7917       3105.8228       3105.8547       3105.8168       3 105.858
-       3105.8957       3105.8656       3105.9124       3105.9538       3105.9301
-       3105.9802       3106.0239       3106.0048       3106.0566       3106.1015
-       3106.0856       3106.1379       3106.1831       3  106.17       3106.2221
-       3106.2674       3106.3628       3106.3886       3106.4143       3106.4939
-       3106.5025       3106.5136       3106.5806       3106.5772       3106.5749
-       3106.6323       3106.6172       3106.6035       3106.6544       3106.6289
-       3106.6056       3106.6526       3106.6182       3106.5868       3106.6326
-       3106.5905       3 106.552       3106.6002       3 106.551       3106.5062
-       3106.5636       3 106.507       3106.4558       3106.5184       3106.4561
-       3106.4005
-       3
-       3100.8923       3100.1816       3100.1815       3100.1815       3100.2677
-       3100.2398       3100.2163       3100.2708       3100.2311       3100.1974
-       3100.2366       3100.1921       3100.1548       3100.1869       3100.1416
-       3100.1078       3100.1357       3100.0951       3100.0646       3100.0931
-       3100.0573       3100.0333       3100.0643       3100.0355       3100.0195
-       3100.0539       3100.0328       3100.0235       3 100.064       3100.0501
-       3100.0476       3100.0166       3100.0437       3 100.075       3100.0643
-       3100.1209       3 100.176       3100.1809       3100.2561       3100.3226
-       3100.3297       3100.4068       3100.4726       3 100.473       3100.5464
-       3100.6067       3100.5957       3100.6629       3100.7159       3100.6912
-       3100.7519       3100.7974       3100.7571       3100.8127       3100.8521
-       3100.7919       3100.8457       3100.8821       3100.8073       3100.8591
-       3100.8923
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       1100.8923       0
-       1100.1816       0
-       1100.1815       0
-       1100.1815       0
-       1100.2677       0
-       1100.2398       0
-       1100.2163       0
-       1100.2708       0
-       1100.2311       0
-       1100.1974       0
-       1100.2366       0
-       1100.1921       0
-       1100.1548       0
-       1100.1869       0
-       1100.1416       0
-       1100.1078       0
-       1100.1357       0
-       1100.0951       0
-       1100.0646       0
-       1100.0931       0
-       1100.0573       0
-       1100.0333       0
-       1100.0643       0
-       1100.0355       0
-       1100.0195       0
-       1100.0539       0
-       1100.0328       0
-       1100.0235       0
-       1 100.064       0
-       1100.0501       0
-       1100.0476       0
-       1100.0166       0
-       1100.0437       0
-       1 100.075       0
-       1100.0643       0
-       1100.1209       0
-       1 100.176       0
-       1100.1809       0
-       1100.2561       0
-       1100.3226       0
-       1100.3297       0
-       1100.4068       0
-       1100.4726       0
-       1 100.473       0
-       1100.5464       0
-       1100.6067       0
-       1100.5957       0
-       1100.6629       0
-       1100.7159       0
-       1100.6912       0
-       1100.7519       0
-       1100.7974       0
-       1100.7571       0
-       1100.8127       0
-       1100.8521       0
-       1100.7919       0
-       1100.8457       0
-       1100.8821       0
-       1100.8073       0
-       1100.8591       0
-       1100.8923       0
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-       0
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000      50000   50000   50000       0                           0.033           0.785
-       1       F
-       4
-       0115.4828       0111.4828      .7111.4828      .7115.4828
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
-NODE   11               5000       50000   50000   50000       0                            0.48            0.48
-       1       F
-       4
-       0109.7414       0105.7414      .7105.7414      .7109.7414
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           0.926           0.176
-       1       F
-       4
-       0     104       0     100      .7     100      .7     104
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r06 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r06
deleted file mode 100644
index 9676c00..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.r06
+++ /dev/null
@@ -1,349 +0,0 @@
-HEC-RAS 5.0.3 September 2016
-Section - Arrays Sizes
-Plan 06                                                         
-       1       1       0       9      12       F
-      61       3       0       3
-       3       3       0       0       0       0       0       0
-       0       0       0       F       F       0       0       0       0       0       0       0
-       0       0       T       T       0       0       0       F       0       0       F
-       0
-       0       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-      61
-       0     .01       F   .0098      20   .3281   .0098       F       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Flow Data
-       3       0Max WS
-17.65733       1 16.6825       216.07345       3
-       3       031DEC2016 2400
-1.765733       11.765733       21.765733       3
-       3       001JAN2017 0100
-1.765733       11.771711       21.768767       3
-       3       001JAN2017 0200
-1.765733       11.769161       21.770519       3
-       3       001JAN2017 0300
-3.531467       11.389794       21.802249       3
-       3       001JAN2017 0400
-3.531467       1 2.28216       21.432712       3
-       3       001JAN2017 0500
-3.531467       12.801502       21.659112       3
-       3       001JAN2017 0600
-  5.2972       12.841915       22.025836       3
-       3       001JAN2017 0700
-  5.2972       1 3.92496       22.196783       3
-       3       001JAN2017 0800
-  5.2972       14.498059       22.811183       3
-       3       001JAN2017 0900
-7.062933       14.632547       23.391718       3
-       3       001JAN2017 1000
-7.062933       15.734402       23.804687       3
-       3       001JAN2017 1100
-7.062933       16.254492       24.538166       3
-       3       001JAN2017 1200
-8.828667       16.431442       25.131091       3
-       3       001JAN2017 1300
-8.828667       17.528893       25.616398       3
-       3       001JAN2017 1400
-8.828667       18.000274       2 6.35645       3
-       3       001JAN2017 1500
- 10.5944       18.222512       26.916453       3
-       3       001JAN2017 1600
- 10.5944       19.311354       27.436736       3
-       3       001JAN2017 1700
- 10.5944       19.742496       28.164446       3
-       3       001JAN2017 1800
-12.36013       1 10.0084       28.694324       3
-       3       001JAN2017 1900
-12.36013       111.08103       29.238958       3
-       3       001JAN2017 2000
-12.36013       1 11.4791       29.950885       3
-       3       001JAN2017 2100
-14.12587       111.79085       210.45885       3
-       3       001JAN2017 2200
-14.12587       112.84504       211.02375       3
-       3       001JAN2017 2300
-14.12587       113.21672       211.71972       3
-       3       001JAN2017 2400
- 15.8916       1 13.5722       212.21221       3
-       3       002JAN2017 0100
- 15.8916       114.60528       212.79508       3
-       3       002JAN2017 0200
- 15.8916       114.95488       213.47847       3
-       3       002JAN2017 0300
-17.65733       1 15.3525       213.96195       3
-       3       002JAN2017 0400
-17.65733       116.36305       214.56144       3
-       3       002JAN2017 0500
-17.65733       116.69472       215.23433       3
-       3       002JAN2017 0600
- 15.8916       1 16.6825       215.82604       3
-       3       002JAN2017 0700
- 15.8916       116.02056       216.04506       3
-       3       002JAN2017 0800
- 15.8916       115.95254       216.02785       3
-       3       002JAN2017 0900
-14.12587       1 15.7227       216.05589       3
-       3       002JAN2017 1000
-14.12587       114.89893       215.84371       3
-       3       002JAN2017 1100
-14.12587       114.69582       215.49485       3
-       3       002JAN2017 1200
-12.36013       114.38449       215.26355       3
-       3       002JAN2017 1300
-12.36013       113.46265       214.85821       3
-       3       002JAN2017 1400
-12.36013       1 13.1817       214.34584       3
-       3       002JAN2017 1500
- 10.5944       112.85581       213.98532       3
-       3       002JAN2017 1600
- 10.5944       1 11.8671       213.49557       3
-       3       002JAN2017 1700
- 10.5944       111.53575       212.89658       3
-       3       002JAN2017 1800
-8.828667       111.23403       212.46656       3
-       3       002JAN2017 1900
-8.828667       110.19258       211.94846       3
-       3       002JAN2017 2000
-8.828667       19.821993       211.29984       3
-       3       002JAN2017 2100
-7.062933       19.570595       210.82656       3
-       3       002JAN2017 2200
-7.062933       1 8.48115       210.31356       3
-       3       002JAN2017 2300
-7.062933       18.073236       29.633651       3
-       3       002JAN2017 2400
-  5.2972       17.899219       29.126683       3
-       3       003JAN2017 0100
-  5.2972       16.761486       28.648818       3
-       3       003JAN2017 0200
-  5.2972       16.314324       27.953119       3
-       3       003JAN2017 0300
-3.531467       16.254657       27.409228       3
-       3       003JAN2017 0400
-3.531467       15.060842       27.002091       3
-       3       003JAN2017 0500
-3.531467       14.563483       26.299874       3
-       3       003JAN2017 0600
-1.765733       14.693266       25.690785       3
-       3       003JAN2017 0700
-1.765733       13.404716       25.420096       3
-       3       003JAN2017 0800
-1.765733       12.834469       24.724866       3
-       3       003JAN2017 0900
-.3531467       13.267956       2 3.94956       3
-       3       003JAN2017 1000
-.3531467       11.959105       23.932511       3
-       3       003JAN2017 1100
-.3531467       11.371168       23.319759       3
-Section - Flow and Seasonal Roughness Flag (plan)
-       F       F
-Section - Post Process Set WS Elevations
-       1
-       3 336.588       3 332.639       3 332.636       3 332.636       3 332.963
-       3 333.087       3 333.146       3 333.435       3 333.569       3  333.62
-       3 333.873       3 334.002       3 334.049       3 334.288       3 334.418
-       3 334.468       3   334.7       3 334.832       3 334.886       3 335.115
-       3 335.249       3 335.308       3 335.534       3 335.669       3 335.732
-       3 335.956       3 336.091       3 336.159       3 336.381       3 336.517
-       3 336.588       3 336.475       3 336.422       3 336.413       3 336.241
-       3  336.14       3 336.093       3 335.885       3 335.757       3 335.691
-       3 335.461       3 335.319       3 335.244       3     335       3 334.849
-       3 334.772       3 334.515       3  334.36       3 334.285       3 334.012
-       3 333.853       3 333.781       3 333.485       3 333.322       3 333.254
-       3 332.912       3 332.743       3 332.684       3 332.295       3 332.151
-       3 332.121
-       2
-       3 334.557       3 330.752       3 330.753       3 330.752       3 330.658
-       3 330.848       3 330.972       3  331.01       3 331.228       3 331.378
-       3 331.456       3  331.67       3  331.82       3 331.913       3 332.117
-       3 332.264       3 332.364       3 332.561       3 332.705       3 332.809
-       3 333.001       3 333.143       3 333.252       3 333.439       3  333.58
-       3 333.693       3 333.878       3 334.019       3 334.136       3 334.318
-       3 334.458       3 334.557       3 334.546       3 334.538       3 334.522
-       3 334.421       3 334.343       3 334.273       3 334.128       3 334.013
-       3 333.919       3 333.749       3 333.615       3 333.511       3 333.326
-       3 333.182       3 333.076       3  332.88       3 332.728       3 332.627
-       3 332.421       3 332.261       3 332.172       3 331.951       3  331.78
-       3 331.718       3  331.47       3 331.278       3 331.273       3 330.997
-       3 330.785
-       3
-       3 332.675       3 328.872       3 328.872       3 328.873       3 328.883
-       3 328.762       3 328.837       3 328.953       3 329.006       3  329.19
-       3 329.359       3 329.476       3 329.679       3 329.841       3 329.972
-       3  330.17       3 330.318       3 330.454       3 330.644       3 330.782
-       3 330.922       3 331.105       3 331.235       3  331.38       3 331.559
-       3 331.685       3 331.834       3  332.01       3 332.134       3 332.287
-       3  332.46       3 332.611       3 332.668       3 332.663       3  332.67
-       3 332.616       3 332.527       3 332.467       3 332.363       3 332.232
-       3  332.14       3 332.014       3  331.86       3  331.75       3 331.617
-       3 331.451       3  331.33       3 331.198       3 331.024       3 330.893
-       3  330.77       3 330.589       3 330.447       3  330.34       3 330.155
-       3 329.992       3 329.919       3 329.731       3 329.516       3 329.512
-       3 329.338
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       0       0       0
-       1 332.675       0
-       1 328.872       0
-       1 328.872       0
-       1 328.873       0
-       1 328.883       0
-       1 328.762       0
-       1 328.837       0
-       1 328.953       0
-       1 329.006       0
-       1  329.19       0
-       1 329.359       0
-       1 329.476       0
-       1 329.679       0
-       1 329.841       0
-       1 329.972       0
-       1  330.17       0
-       1 330.318       0
-       1 330.454       0
-       1 330.644       0
-       1 330.782       0
-       1 330.922       0
-       1 331.105       0
-       1 331.235       0
-       1  331.38       0
-       1 331.559       0
-       1 331.685       0
-       1 331.834       0
-       1  332.01       0
-       1 332.134       0
-       1 332.287       0
-       1  332.46       0
-       1 332.611       0
-       1 332.668       0
-       1 332.663       0
-       1  332.67       0
-       1 332.616       0
-       1 332.527       0
-       1 332.467       0
-       1 332.363       0
-       1 332.232       0
-       1  332.14       0
-       1 332.014       0
-       1  331.86       0
-       1  331.75       0
-       1 331.617       0
-       1 331.451       0
-       1  331.33       0
-       1 331.198       0
-       1 331.024       0
-       1 330.893       0
-       1  330.77       0
-       1 330.589       0
-       1 330.447       0
-       1  330.34       0
-       1 330.155       0
-       1 329.992       0
-       1 329.919       0
-       1 329.731       0
-       1 329.516       0
-       1 329.512       0
-       1 329.338       0
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-       0
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000    16404.2 16404.2 16404.2       0                           0.107           2.574
-       1       F
-       4
-       0 335.131       0  331.85   2.297  331.85   2.297 335.131
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979   2.297  .00979
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               5000     16404.2 16404.2 16404.2       0                           1.573           1.576
-       1       F
-       4
-       0 333.248       0 329.967   2.297 329.967   2.297 333.248
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979   2.297  .00979
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
-NODE   11               0              0       0       0       0                           3.039           0.578
-       1       F
-       4
-       0 331.365       0 328.084   2.297 328.084   2.297 331.365
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979   2.297  .00979
-                                       F       F       0   2.297       F       F
-       0       0       F
-       0       F
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
deleted file mode 100644
index c68a347..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.rasmap
+++ /dev/null
@@ -1,187 +0,0 @@
-<RASMapper>
-  <Version>2.0.13611</Version>
-  <Geometries TopNode="True">
-    <Layer Name="Base Case 01 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g02.hdf">
-      <Layer Name="Rivers" Type="RASRiver" />
-      <Layer Name="XS" Type="RASXS" />
-      <Layer Name="Storage Areas" Type="RASStorageArea" />
-      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-      <Layer Name="..." Type="RASMoreLayers" />
-    </Layer>
-    <Layer Name="Base Case 02 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g03.hdf">
-      <Layer Name="Rivers" Type="RASRiver" />
-      <Layer Name="XS" Type="RASXS" />
-      <Layer Name="Storage Areas" Type="RASStorageArea" />
-      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-      <Layer Name="..." Type="RASMoreLayers" />
-    </Layer>
-    <Layer Name="Base Case 03 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g01.hdf">
-      <Layer Name="Rivers" Type="RASRiver" />
-      <Layer Name="XS" Type="RASXS" />
-      <Layer Name="Storage Areas" Type="RASStorageArea" />
-      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-      <Layer Name="..." Type="RASMoreLayers" />
-    </Layer>
-    <Layer Name="Base Case 04 Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g04.hdf">
-      <Layer Name="Rivers" Type="RASRiver" />
-      <Layer Name="XS" Type="RASXS" />
-      <Layer Name="Storage Areas" Type="RASStorageArea" />
-      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-      <Layer Name="..." Type="RASMoreLayers" />
-    </Layer>
-    <Layer Name="Unsteady Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.g05.hdf">
-      <Layer Name="Rivers" Type="RASRiver" />
-      <Layer Name="XS" Type="RASXS" />
-      <Layer Name="Storage Areas" Type="RASStorageArea" />
-      <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-      <Layer Name="..." Type="RASMoreLayers" />
-    </Layer>
-  </Geometries>
-  <Results Expanded="True">
-    <Layer Name="Flume Base Case 01" Type="RASResults" Filename=".\HEC-RASFlumeCase.p01.hdf">
-      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p01.hdf">
-        <Layer Name="Rivers" Type="RASRiver" />
-        <Layer Name="XS" Type="RASXS" />
-        <Layer Name="Storage Areas" Type="RASStorageArea" />
-        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-        <Layer Name="..." Type="RASMoreLayers" />
-      </Layer>
-      <Layer Name="depth" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="velocity" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="elevation" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-    </Layer>
-    <Layer Name="BaseCase02" Type="RASResults" Filename=".\HEC-RASFlumeCase.p02.hdf">
-      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p02.hdf">
-        <Layer Name="Rivers" Type="RASRiver" />
-        <Layer Name="XS" Type="RASXS" />
-        <Layer Name="Storage Areas" Type="RASStorageArea" />
-        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-        <Layer Name="..." Type="RASMoreLayers" />
-      </Layer>
-      <Layer Name="depth" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="velocity" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="elevation" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-    </Layer>
-    <Layer Name="BaseCase03" Type="RASResults" Filename=".\HEC-RASFlumeCase.p03.hdf">
-      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p03.hdf">
-        <Layer Name="Rivers" Type="RASRiver" />
-        <Layer Name="XS" Type="RASXS" />
-        <Layer Name="Storage Areas" Type="RASStorageArea" />
-        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-        <Layer Name="..." Type="RASMoreLayers" />
-      </Layer>
-      <Layer Name="depth" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="velocity" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="elevation" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-    </Layer>
-    <Layer Name="BaseCase04" Type="RASResults" Filename=".\HEC-RASFlumeCase.p04.hdf">
-      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p04.hdf">
-        <Layer Name="Rivers" Type="RASRiver" />
-        <Layer Name="XS" Type="RASXS" />
-        <Layer Name="Storage Areas" Type="RASStorageArea" />
-        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-        <Layer Name="..." Type="RASMoreLayers" />
-      </Layer>
-      <Layer Name="depth" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="velocity" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="elevation" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="0,16.6666666666667,33.3333333333333,50,66.6666666666667,83.3333333333333,100" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-    </Layer>
-    <Layer Name="Unsteady" Type="RASResults" Expanded="True" Selected="True" Filename=".\HEC-RASFlumeCase.p05.hdf">
-      <Layer Name="Geometry" Type="RASGeometry" Filename=".\HEC-RASFlumeCase.p05.hdf">
-        <Layer Name="Rivers" Type="RASRiver" />
-        <Layer Name="XS" Type="RASXS" />
-        <Layer Name="Storage Areas" Type="RASStorageArea" />
-        <Layer Name="2D Flow Areas" Type="RASD2FlowArea" />
-        <Layer Name="..." Type="RASMoreLayers" />
-      </Layer>
-      <Layer Name="depth" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16711681,-16777077" Values="0,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="depth" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="velocity" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-16777077,-16776961,-7278960,-256,-23296,-47872,-7667712" Values="0,2,4,6,8,10,15" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="velocity" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-      <Layer Name="elevation" Type="RASResultsMap">
-        <SurfaceFill Alpha="255" Colors="-8388864,-16744448,-256,-23296,-65536,-16181,-65281" Values="100.0166015625,102.104797363281,104.192993164063,106.281188964844,108.369384765625,110.457580566406,112.545776367188" Stretched="True" />
-        <Contour On="False" Interval="5" Color="-16777216" />
-        <MapParameters MapType="elevation" OutputMode="Dynamic Surface" ContourPolygonValue="0" ProfileIndex="2147483647" ProfileName="Max" ArrivalStartMode="0" Hours="True" />
-      </Layer>
-    </Layer>
-  </Results>
-  <MapLayers />
-  <Terrains />
-  <CurrentView>
-    <MaxX>1.06769596199525</MaxX>
-    <MinX>0.0676959619952494</MinX>
-    <MaxY>0.989311163895487</MaxY>
-    <MinY>-0.010688836104513</MinY>
-  </CurrentView>
-  <VelocitySettings>
-    <Density>1.5</Density>
-    <Lifetime>100</Lifetime>
-    <Radius>0.75</Radius>
-    <Method>2</Method>
-    <Timestep>1</Timestep>
-    <StaticColor>Black</StaticColor>
-  </VelocitySettings>
-  <AnimationSettings>
-    <DelayTimer>0</DelayTimer>
-  </AnimationSettings>
-  <ProjectSettings>
-    <Units>US Customary</Units>
-  </ProjectSettings>
-  <CurrentSettings>
-    <Folders />
-  </CurrentSettings>
-</RASMapper>
\ No newline at end of file
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.u01 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.u01
deleted file mode 100644
index b4ff53e..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.u01
+++ /dev/null
@@ -1,20 +0,0 @@
-Flow Title=UnsteadyExampleData
-Program Version=5.03
-Use Restart= 0 
-Boundary Location=Flume           ,1               ,10000   ,        ,                ,                ,                ,                
-Interval=1HOUR
-Flow Hydrograph= 60 
-     .05     .05     .05      .1      .1      .1     .15     .15     .15      .2
-      .2      .2     .25     .25     .25      .3      .3      .3     .35     .35
-     .35      .4      .4      .4     .45     .45     .45      .5      .5      .5
-     .45     .45     .45      .4      .4      .4     .35     .35     .35      .3
-      .3      .3     .25     .25     .25      .2      .2      .2     .15     .15
-     .15      .1      .1      .1     .05     .05     .05     .01     .01     .01
-DSS Path=
-Use DSS=False
-Use Fixed Start Time=True
-Fixed Start Date/Time=01JAN2017,0000
-Is Critical Boundary=False
-Critical Boundary Flow=
-Boundary Location=Flume           ,1               ,0       ,        ,                ,                ,                ,                
-Friction Slope=1.14828E-04
diff --git a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.x05 b/test/data/ras/unsteadyflume/HEC-RASFlumeCase.x05
deleted file mode 100644
index b410e89..0000000
--- a/test/data/ras/unsteadyflume/HEC-RASFlumeCase.x05
+++ /dev/null
@@ -1,58 +0,0 @@
-HEC-RAS 5.0.5 June 2018
-Section - Arrays Sizes
-Unsteady                                                        
-       1       1       0       9      12       F
-       3       3       0       0       0       0       0       0
-       0       0       0       F       T       0       0       0       0       0       0       0
-       0       0       F       F       0       0       0       F       0       0       F
-       0
-       1       1       0       F       T       F       0       3      30       F       F       F       0
-       0     .01       F    .003      20      .1    .003       T       5       T       F
-Section - Expansion and Contraction Coefficients
-      .1      .3       1
-Section - Job Control
-       1       1       1       F       F       1
-Section - Junction Information
-Section - Reach Boundaries
-       T       T       1       3        Flume                  F       F
-Section - Encroachment Data
-Section - Observed Water Surface Data
-Section - Roughness Change Factors
-Section - Breach Data
-Section - Storage Area Data
-Section - Storage Area Connection Data
-Section - Pump Station Data
-Section - River Reach Data
-NODE   11               10000      50000   50000   50000       0                           0.033           0.785
-       1       F
-       4
-       0115.4828       0111.4828      .7111.4828      .7115.4828
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
-111.4828     .04      21
-NODE   11               5000       50000   50000   50000       0                            0.48            0.48
-       1       F
-       4
-       0109.7414       0105.7414      .7105.7414      .7109.7414
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
-105.7414     .04      21
-NODE   11               0              0       0       0       0                           0.926           0.176
-       1       F
-       4
-       0     104       0     100      .7     100      .7     104
-Section - XS Manning's/Roughness Data
-       2       F       F       0
-       0  .00979      .7  .00979
-                                       F       F       0      .7       F       F
-       0       0       F
-       0       F
-  100.15     .04      21
-- 
GitLab


From 48b887699e2790468d36ceb08976940a2594681a Mon Sep 17 00:00:00 2001
From: Berutti <mberutti@contractor.usgs.gov>
Date: Wed, 7 Aug 2019 13:22:19 -0500
Subject: [PATCH 6/7] Removed other files.

---
 test/test_transporter.py | 9 ---------
 1 file changed, 9 deletions(-)
 delete mode 100644 test/test_transporter.py

diff --git a/test/test_transporter.py b/test/test_transporter.py
deleted file mode 100644
index ef37a92..0000000
--- a/test/test_transporter.py
+++ /dev/null
@@ -1,9 +0,0 @@
-import unittest
-
-from fluegg.transporter import *
-
-class TestMaxTimeStep(unittest.TestCase):
-
-    def test_time_step(self):
-        
-        
\ No newline at end of file
-- 
GitLab


From 970bd067c894d2482522d815c1f8e607bbbee819 Mon Sep 17 00:00:00 2001
From: Berutti <mberutti@contractor.usgs.gov>
Date: Wed, 7 Aug 2019 13:27:58 -0500
Subject: [PATCH 7/7] Removed other files.

---
 test/test_random.py | 67 +++++++++++++++++++++++++++++++++++++++------
 1 file changed, 58 insertions(+), 9 deletions(-)

diff --git a/test/test_random.py b/test/test_random.py
index f721f5d..4185dd5 100644
--- a/test/test_random.py
+++ b/test/test_random.py
@@ -76,7 +76,25 @@ class TestNormalRandomNumbers(unittest.TestCase):
 
 class TestNonRandomNumbers(unittest.TestCase):
 
-    pass
+    def test_non_random_numbers(self):
+
+        self.assertEqual(NonRandomNumbers().random([5], 1), [5])
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random(5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random(5, 1, 5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5, 1)
+
+        with self.assertRaises(TypeError):
+            NonRandomNumbers().random_array(5, 1, 5, 1)
+
 
 
 class TestHDF5NormalRandomNumbers(unittest.TestCase):
@@ -84,11 +102,21 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
     def setUp(self):
 
         self._remove_test_saves()
+        
+    def _average(self, numbers):
+
+        sum = 0
+        for number in numbers:
+            sum += number
+        return float(sum) / len(numbers)
+
 
     def _create_HDF5_file(self):
 
         with h5py.File('UNIT TEST HDF5 TEST FILE.hdf', 'w') as f:
-            f.create_dataset('TEST DATA SET', (100,))
+            arr = np.random.normal(0, 1, 1000)
+            f.create_dataset('TEST DATA SET', data=arr)
+
 
     def _get_file_path(self):
 
@@ -104,8 +132,7 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
                     os.remove(r'.\results\{}'.format(file))
 
     def test_HDF5_input(self):
-        ''' Needs way to validate the results
-        '''
+    
         self._create_HDF5_file()
         file_path = self._get_file_path()
         arr = np.random.normal(25, 50, 100)
@@ -131,16 +158,38 @@ class TestHDF5NormalRandomNumbers(unittest.TestCase):
         numbers = HDF5NormalRandomNumbers(
             file_path, 'TEST DATA SET').random(
             arr, 70)
+            
+    def test_HDF5_array_output_dimensions(self):
 
-    def test_HDF5_array(self):
-        ''' Needs way to validate the results
-        '''
         self._create_HDF5_file()
         file_path = self._get_file_path()
-        arr = np.random.normal(25, 50, 100)
         numbers = HDF5NormalRandomNumbers(
             file_path, 'TEST DATA SET').random_array(
-            arr, 70, 100)
+            0, 70, 100)
+
+        self.assertEqual(len(numbers), 100)
+
+    def test_HDF5_array_output_value(self):
+    
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+        numbers = HDF5NormalRandomNumbers(
+            file_path, 'TEST DATA SET').random_array(
+                        0, 1, 100)
+        avg = self._average(numbers)
+
+        self.assertTrue(-1 < avg < 1)
+
+    def test_HDF5_array_size(self):
+
+        self._create_HDF5_file()
+        file_path = self._get_file_path()
+
+        with self.assertRaises(ValueError):
+            numbers = HDF5NormalRandomNumbers(
+                file_path, 'TEST DATA SET').random_array(
+                0, 70, 2500)
+
 
     def tearDown(self):
 
-- 
GitLab