
7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 1/43

In [1]:

Adjusted
Data
Algorithm
-
Contents:
Theoretical Basis

Motivation
Traditional Baseline Adjustments
Affine Transformations
Estimating Affine Transform Matrix

Ordinary Least Squares
Singular Value Decomposition

Adaptive Coefficients
Weighted Least Squares
Linear Interpolation Between Affine Transforms

Anomaly Detection
Notebook Functions

Imports
Baseline and Absolute Data Retrieval
Observation Time Weighting Functions
Vector Distance Calculator
Statistical Time Series Filters
Affine Transform Matrix Generators
Affine Transform Matrix Interpolators
Do-It-All Demonstration and Validation Wrapper

Demonstration and Validation
Synthetic Data Demonstration

Construct synthetic time series
Estimate Affine Transformation Matrix

Comparison with (Quasi-)Definitive Data
Boulder (BOU) Observatory
Barrow (BRW) Observatory
Stennis (BSL) Observatory
College (CMO) Observatory
Deadhorse (DED) Observatory
Fredericksburgh (FRD) Observatory
Fresno (FRN) Observatory
Guam (GUA) Observatory
Honolulu (HON) Observatory
Newport (NEW) Observatory
San Juan (SJG) Observatory
Shumagin (SHU) Observatory
Sitka (SIT) Observatory
Tucson (TUC) Observatory

Theoretical
Basis

Motivation
The USGS employs 3-axis vector magnetometers, typically using fluxgate technology in the modern era. Alone, these magnetometers are high-quality
variometers. That is, they record the relative variation of Earth's magnetic field over time very accurately, but are notoriously difficult to calibrate in an
absolute sense. It is only when variometers are combined with frequent absolute calibration measurements that we get what is generally described as a
geomagnetic
observatory.

Historically, the merging of these absolute calibrations and magnetic variation measurements has been a laborious process, ultimately resulting in the
magnetic observatory community's standard "definitive" data product for each obseratory. Definitive data is processed in one year blocks, starting no
less than one year after the first observation made that year, and so not nearly a real time product. More recently, some of the most stringent
requirements for definitive data were relaxed so that a new community standard, "quasi-definitive" data, could be produced in a more timely (~1 month
delay), but this was still not real time enough for many modern technological applications.

There is a growing and still largely unmet demand for calibrated near real time data. Following INTERMAGNET terminology, we will refer to this as
Adjusted Data, although it is also often referred to as "provisional" in the magnetic observatory community. The Adjusted Data standard is not strictly
defined, but the goal stated in the newest version of INTERMAGNET's Technical Reference Manual is to match statistical specifications of quasi-
definitive data, while acknowledging and accepting the fact that real time data is likely to be more noisy, and/or have more gaps.

This is always required for inline plot rendering in IPython Notebooks; might
as well do it first, even before the markdown sections, just to be safe
#%matplotlib inline
%matplotlib notebook

1
2
3
4

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 2/43

There was a previous attempt to produce Adjusted Data at the USGS that went largely undocumented. Given subsequent staff turnover and
decommissioning of legacy computer systems, it is now impossible to asses the quality of this prototype data product, or fully understand why it was
never deployed operationally. We speculate, with some anecdotal evidence, that the algorithm for generating these data was only a minor adaptation of
the definitive processing software, which we already know is not particularly suited to real time processing.

This report is an attempt to: 1) distill and document institutional knowledge associated with legacy procedures and software for generating
(quasi-)definitive data, partly to 2) assess how or why these legacy procedures and software may have been inadequate for near real time adjusted data
generation, and 3) desdcribe, demonstrate, and validate a new methodology that is specifically tailored for near real time processing.

Traditional
Baseline
Adjustments
Fluxgate sensors have a limited range over which their response functions can be considered linear. In order to maximize their sensitivity while still
measuring the extremely wide range of magnetic environments encountered across Earth's surface, it is common practice to generate a bias magnetic
field that opposes and (mostly) nullifies the Earth's main magnetic field along each of the instrument's axes. In doing so, the fluxgate can precisely
capture minute relative variations in the magnetic field relative to the main field. One need only add the static oppositional field back to these variational
measurements for an accurate and precise measure of the time-varying geomagnetic field.

While this oppositional magnetic field strength might be estimated from first principals, significant static and time-dependent uncertainties in the
fluxgate's mechanical geometries, plus electronic/electrical inefficiencies, conspire to require frequent and regular calibration to meet tolerances
expected of magnetic observatories. So frequent, in fact, that removing the sensors to a lab to do so is not generally advisable, so the sensors are
effectively calibrated in-place using absolute measurements, along with various physical and geometric assumptions, to calculate so-called baseline
adjustments.

Absolute measurements should not be made too closely to the fluxgate sensor, or there is risk of contaminating the data. Therefore, part of the baseline
adjustment implicitly includes the quasi time-stationary vector difference between the fluxgate and absolute pier different locations. While this value
could, in principal, be obtained through careful simultaneous absolute measurements at both locations, it is not really necessary unless one is genuinely
interested in isolating the fluxgate's true response functions.

Also, alignment of the fluxgate and absolute measurement coordinate frames is never perfect. But, if they are close, misalignment can be corrected
using simple baseline adjustments and implicit small angle assumptions. When coordinate frames are not well aligned an initial rotation may be applied
to obtain nominal alignment, and allow simple baseline corrections after that.

The USGS, as well as many international magnetic observatories, install their fluxgate sensors so that the primary horizontal axis, , aligns with the
local magnetic meridian. This means that the secondary horizontal axis, (for eastward), need not nullify the Earth's main field in this direction since,
on average, it will be zero. Also, it is assumed that the absolute-fluxgate pier difference is zero in the direction. There is undoubtedly additional
uncertainty in the direction, but in practice, it is ignored in favor of rotating the axis by a declination baseline angle:

With the absolute and fluxgate coordinate axes now roughly aligned, the baseline correction is estimated by projecting the absolute horizontal
intensity onto the fluxgate's axis, and subtracting the fluxgate-measured magnetic field:

This is illustrated in the following figure, where the blue vector represents the absolute total horizontal magnetic vector in geographic coordinates, the
red vector represents the horizontal vector measured by the fluxgate in its own Cartesian coordinates, the green items comprise baseline corrections,
and the brown angle is the declination relative to the fluxgate's axis:

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 3/43

Finally, the third axis, , points downward to complete a right-handed coordinate system. The downward absolute magnetic vector component, , is
assumed to align reasonably well with the downward fluxgate axis, , so a simple baseline correction is all that is needed:

We note, for completeness, that it is not uncommon for small angle approximations to be invoked when calculating or , since for most
observatories, the ratio of the to the magnetic vector component is small. For example, even for Barrow, Alaska, small angle error is rarely more
than a few parts in a million when the fluxgate in aligned with the local magnetic meridian. However, the local magnetic meridian drifts over time, more-
so at higher latitudes than low. And at the magnetic pole, the concept of a magnetic meridian is undefined. If following traditional baseline correction
procedures, it is best to avoid small angle approximations altogether.

Affine
Transformations
One problem with traditional baseline adjustments is that they assume each axis is independent of the others when they are not in most real-world
scenarios. Therefore, there are necessarily more than just 3 degrees of freedom to be adjusted. If one considers separately non-orthogonality of the
instrument axes, scaling differences for each axis, rotation, and yes, actual baseline differences between the fluxgate sensor and the absolute
measurement device, there are no fewer than 12 degrees of freedom that might be considered.

A more rigorous approach to adjusting raw magnetic vector data is to generate a linear transformation that directly converts variometer data from its
own local Cartesian sensor coordinates into absolutely calibrated Cartesian geographic coordinates. Standard linear transformations
involve rotation, scaling, and even shear (that is, non-rigid rotation), while alignment of coordinate frame origins (that is, translation) can be easily
included with a simple augmentation of the measurement vectors. This is known as an affine transformation:

...where is the composition of potentially many separate affine transforms:

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 4/43

Note that order of operation is critical, but there is no single standard for composing a full affine transformation from its constituent matrices. The
preceding example follows a norm used in the Python Transforms3D (https://pypi.org/project/transforms3d/) package, that might better be represented
algorithmically as , where " " is a matrix dot product function. In words, a shear correction (is first applied to the original

 vector to orthogonalize it. This is followed by rescaling the orthogonalized vectors with , which is followed by a rigid rotation to align all
axes with the desired coordinate frame. Finally, the origin of the now rotated, scaled, and orthogonal vector is translated to make the coordinate
frame origins coincide using .

Looking more closely at , it should be even more evident that order of operation is important. The rotation angles (, ,
and) that combine to form are presented here in a manner that resembles typical yaw-pitch-roll rotations. This is 1 of 6 possible so-called Tait-
Bryan rotation sequences (re-orientation by rotating around each unique axis once). Proper Euler angles have 6 additional possible sequences that
involve a rotation about one axis, then a second, then again about the first. If that were not enough, both the Tait-Bryan and proper Euler angles can be
with respect to fixed axes (extrinsic; as above), or with respect to the new axes after each rotation (intrinsic). This leads to 24 possible valid rotations! It
is highly recommended that one convention is chosen and used consistently.

The astute reader may wonder at the particular form of . It is certainly possible to allow shear coefficients in all the off-diagonal elements of the
upper-left 3x3 matrix, but we choose not to here for at least two reasons:

1. shear, by definition, must not alter the volume of the original data points, or in mathematical terms, its determinant is always 1, which is guaranteed
by this triangular form; and

2. this triangular form permits an efficient mechanism for separating rigid rotation from pure shear (see "Decomposing a matrix into simple
transformations" by Spencer W. Thomas, pp 320-323 in Graphics
Gems
II, James Arvo (editor), Academic Press, 1991, ISBN: 0120644819).

A nuance related to item 2 is that the solution is only unique in so far as this structure is chosen for the shear. If a different structure is chosen, the
rotation matrix will be different, even though the composition of shear and rotation will always be the same. In more practical terms, this means that it is
not correct to speak of "rotation" and "shear" separately, and certainly not appropriate to drop one without careful consideration. In particular, the
structure chosen here (i.e., upper-triangular) means that the vector is rotated so that the axis of both coordinate frames are aligned perfectly. Then
the axis is sheared in the direction, and the axis is sheared in both and directions.

Estimating
Affine
Transform
Matrix
While the constituent affine matrices can, in theory, be created individually, through careful sensor design and construction, laboratory calibration,
and/or surveying of the observatory site, in practice these are not always possible or adequate. Ultimately, if absolute measurements are
considered the "truth" to which variational measurements are to be corrected, the linear structure of the affine transformation allows us to invoke linear
estimation theory to determine an optimal transform matrix that encapsulates all the necessary corrections to the original vector data.

Ordinary
Least
Squares
The most straight-forward estimation technique is least-squares. Many mathematical software libraries have efficient routines that, given measurement
arrays constructed similarly to above, will use linear least squares to determine an optimal 4x4 matrix to map into vectors. However,
what these all inevitably do, at least under the hood, is rearrange the previous matrix equation algebraically such that:

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 5/43

This system of equations is equivalent to the previous matrix equation with a 4x4 , but perhaps makes it more clear that we are solving a set of linear
equations for 16 unknowns. Given that a single vector measurement comprises only three actual data points, plus the augmented "1", it should also be
clear that no fewer than 4 sets of absolute and fluxgate measurements are required to obtain a solution. Preferably, there would be many more than 4
sets, thus reducing uncertainty associated with the solution.

It is often desirable to constrain the system of equations, usually to reduce the degrees of freedom and reduce the uncertainty associated with the
solution to a given system of equations. In fact, while one of the biggest advantages to using affine transformations might be that they include scale
factors and shear corrections, in addition to rotation and translation, it has been our experience that allowing so many free parameters leads to over-
fitting of the training data. When this happens, the solution, , does not generalize well when used to adjust raw data between absolute
measurements. If the frequency of absolute measurements could be increased substantially, it might be sufficient to reduce uncertainty enough that
realistic scale and shear calibrations could be obtained from absolute measurements. Until such time, limiting the number of degrees of freedom helps
avoid over-fitting the limited absolute training data.

We recommend doing so in a manner somewhat consistent with traditional (quasi)definitive processing. To start, if we look closely at all the transform
matrices in the previous subsection, it is evident that the final row of should always be . We can exploit this knowledge to remove
the unknowns from our system of equations, and their corresponding columns in the measurement matrices, thus reducing our number of
unknowns from 16 to 12, and slightly reducing uncertainty in the remaining estimated coefficients.

This simple constraint does not buy us much. But now suppose we wish to reduce the the number of free parameters even further by imposing
additional prior knowledge/assumptions on the structure of our matrix that are (mostly) consistent with traditional definitive processing techniques. For
example, assume that 1) the vertical vector component is perfectly aligned between the variometer and the absolute instrument, and 2) it is perfectly
orthogonal to the horizontal components; also, 3) the transform of the horizontal vector component is a scaled rotation about the axis (that is, no
skew). Finally, 4) don't allow any translation of the horizontal components, and 5) only allow translation of the vertical component. This is accomplished
by removing and/or moving elements of the previous matrix equation to give the following:

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 6/43

Here, green indicates moved/edited elements, while red brackets indicate where whole columns of inputs were removed, which in turn corresponds to
a removal of one of the coefficients. Also note that the component from the variometer is explicitly subtracted from the component from
absolute measurements to provide a translation that is completely independent of the and axes. It is now clear that the degrees of freedom have
been reduced from 16 to just 3.

Once we have our data matrices arranged properly, we invoke ordinary least squares to solve for the coefficients. This is a very common method,
available in almost all mathematical software libraries. We present it here in matrix form for completness:

...where is the independent variable matrix containing the variometer observations, and is the dependent variable vector containing the
absolute observations. is the solution vector, and once it is obtained, the coefficients must be inserted into their corresponding locations in the 2D

 matrix:

Singular
Value
Decomposition
We emphasize now that solving this reduced set of equations is not exactly equivalent to traditional (quasi)definitive processing as presented earlier. In
fact, such an affine transform would look something like:

...where and are rotated rigidly into the absolute frame through , or as presented here, . But such a matrix cannot be solved
for directly from the measurement matrices via least-squares. All is not lost, however. can be found by invoking singular value decomposition (SVD)
to obtain the eigenvectors that define an orthonormal rotation matrix between two vector spaces.

With modern numerical libraries, this is actually relatively simple. First, remove the means from both the and measurement matrices so that
their origins coincide (ignore for now):

Next, create a cross-covariance matrix between and :

...where...

Next, decompose into its singular values, plus left and right eigenvectors using the SVD routine found in your favorite numerical linear algebra library:

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 7/43

...where singular values comprise the diagonal elements of , and the orthonormal matrices and can be combined to give the unscaled
rotation that aligns with :

Finally, with , simply rotate and into absolute coordinates to obtain and :

(is simply the difference in the averages of the vertical components, just as with traditional processing)

Notice that there are now four degrees of freedom (, , , and) instead of the three traditional (quasi)definitive baselines. This is because
and are allowed to float, rather than be trigonometrically locked to one another via . We might effectively do this with an affine transformation, and
obtain a near perfect analog to (quasi)definitive processing, but one of the main problems with the traditional approach presented above is that it
requires that the fluxgate sensor be aligned with the local magnetic meridian for the math/geometry to work out. Using affine transformations, this is no
longer necessary. Of course by increasing the degrees of freedom from 3 to 4, the uncertainty of our final solution is slightly higher; but then the
uncertainty should
be higher, since a potential offset in the variometer's axis is now included in the calculations.

Adaptive
Coefficients
Even after switching to affine matrices to transform variometer vector observations into adjusted vectors, there remain long period biases in
the residuals that often exceed (quasi)definitive tolerances. In order to remove these biases, and therefore track the non time-stationary relationship
between the variometer and absolute instrumentation, some kind of time-adaptive algorithm is required. What's more, to support arbitrary epoch times,
it is often more computationally efficient to interpolate between less frequent, but optimal transform matrices that we will refer to as "keyframes" (a
concept borrowed from video compression).

Weighted
Least
Squares
Absolute observations tend not to be regular, otherwise a recursive least-squares algorithm with a finite "memory" might be the best way to estimate
non time-stationary affine matrices. However, since Absolute observations are also relatively infrequent (sampling intervals on the order of days to
weeks), it is not unreasonable to build up data matrices from all, or a large subset of all, available observations, then estimate the optimal
transformation for a given interval using ordinary least squares. However, to reduce noise and obtain a more reliable solution, typically many more
observations than a bare minimum equal to the number of free parameters are required. This number may span an interval of several months or more,
and since ordinary least squares gives the optimal solution for the entire interval, the keyframe affine matrix estimated for any given epoch may not
reflect the true (noise-free) transform for that epoch.

If a method existed to emphasize more recent measurements over older measurements, the solution might be made more representative of the desired
epoch, while still using many observations to reduce noise and obtain a reliable solution. Weighted least squares, with weights that are a function of the
age of the observation relative to the epoch, is just such a method. There are many techniques and software libraries available to estimate a weighted
least squares solution, so we just give a general matrix-oriented description here before discussing how to choose weights:

...where is the independent variable matrix containing the variometer observations described earlier, is a diagonal matrix whos elements are
the weights to be assigned to each observation, and is the dependent variable array containing the absolute observations described earlier. If

 were the identity matrix, , weighted least squares reduces to ordinary least squares. The solution, , is actually the vector of matrix coefficients
described previously, so each element must then be placed into its corresponding location in the 2D matrix used to actually adjust the variometer
vector measurements.

Linear
Interpolation
Between
Affine
Transforms
It is straight-forward to linearly interpolate between scalar values that fall on a common axis. Almost anll mathematical software libraries implement
such a function, so we will not describe the algorithm here.

However, problems arise with the rotational components of an affine transform. Indeed, if linear interpolation were performed for each of the matrix
elements used to define a rotation, none of the interpolated matrices would actually be a rotation matrix, and strange, often non-physical
transformations would result. Fortunately, this problem has a long-established solution known as spherical linear interpolation (Slerp; Shoemake, 1985.
"Animating Rotation with Quaternion Curves" (PDF). SIGGRAPH 1985.).

Briefly, the Slerp technique finds the vector axis of rotation that characterizes each given rotation matrix, then rotates from the first to the last at a
constant rate as if the axis of rotation was tracing out a unit sphere. Slerp is not nearly as common as standard linear interpolation, but Scientific
Python's spatial transforms sub-package.

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 8/43

Assuming one is starting with an arbitrary affine transformation matrix, it is necessary to first decompose the matrix into scale, rotation, and
translational components. There are numerous ways to decompose matrices this way, including Singular Value Decomposition (SVD) as described
above. A simpler, and arguably more robust method involves so-called polar decomposition, and is described in detail by Shoemake and Duff (1992,
"Matrix animation and polar decomposition" in Proceedings
of
the
Conference
on
Graphics
Interface
'92, Morgan Kauffman Pulishers, Inc., San
Francisco, pp 258-264).

Once decomposed, standard linear interpolation is performed on the scale and translation matrices, while Slerp is applied to the rotation matrix. The
constituent transforms are recombined as described previously to give a valid, more physically consistent, affine transform at each intermediate time
step.

Anomaly
Detection
TBD

Demonstration
and
Validation
The purpose of this section is to demonstrate that the algorithm works as expected, and more critically, validate the algorithm using real data, including
a comparison with reviewed quasi-definitive data. While some material here might be extracted to generate unit tests for an official "Geomag-
Algorithm", these are primarily functional tests, and may be more complex than one might wish to incorporate into an automated testing framework.
Explanatory markdown, inline comments, or both, will describe the purpose of each subsection below:

Notebook
Functions
Before proceeding, it is necessary to run the cells in this subsection to define and initialize functions used in the actual demonstrations and validations.
Some functions have a general functional interface, with multiple actual functions to reflect alternative algorithmic choices.

Imports

In [2]:

Baseline
and
Absolute
Data
Retrieval
Functions here should retrieve baseline and absolutes measurements:

Inputs

obs_code - 3-character IAGA code for observatory
start_date - UTCDatetime for start of interval
end_date - UTCDatetime for end of interval

Options

path_or_url - string that holds a base path or url at which to
 find baseline and absolute observations
 (default = max(times))

Output

h_abs_bas_utc - array holding vectors of h_abs, h_bas, and h_utc
d_abs_bas_utc - array holding vectors of d_abs, d_bas, and d_utc
z_abs_bas_utc - array holding vectors of z_abs, z_bas, and z_utc
pc - array holding pier corrections

FIXME: Presently, functions here rely on an ad
hoc "flag" that is defined by baseline observations with absolute H values that are all zero to identify a
known change in the observatory configuration. All observations prior to that time will be discarded. This needs to be modified to incorporate a desired
"epoch", and to discard observations on either side of that epoch (past or future) that occur before/after observatory reconfigurations.

In [3]:

In [4]:

Observation
Time
Weighting
Functions
Functions here should calculate time-dependent weights given:

Inputs

import Python libraries↔

def retrieve_baselines_resid_summary_xlsm(obs_code, start_date, end_date,↔

def retrieve_baselines_webabsolutes(obs_code, start_date=None, end_date=None,↔

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 9/43

times - 1D array of times, or any time-like index whose
 relative values represent spacing between events
memory - time scale over which weights decrease by a
 prescribed amount relative to the maximum weight

Options

epoch - time at which weights maximize
 (default = max(times))

Output

weights - 1D array of weights

In [5]:

In [6]:

Vector
Distance
Calculator
Function here should calculate vector distances given:

Inputs

vectors_A - NxM array where N is number of vector axes and M is number of observations
vectors_B - NxM array where N is number of vector axes and M is number of observations

Options

metric - string specifying a supported metric
VI - inverse (co)variance by which to scale distances
 (if None, calculate scaling (co)variance appropriate
 for metric from vectors_A and vectors_B, then apply)

Output

dist - an M element array of vector distances/metrics

In [7]:

Statistical
Time
Series
Filters
Functions here should identify "good" elements in a univariate series:

Inputs

series - univariate data to filter

Options

threshold - threshold value to be used for filter
weights - weights that can be applied to series
 (defaults to uniform if None)

Output

good - a boolean array where True corresponds to "good" observations

In [8]:

In [9]:

Affine
Transform
Matrix
Generators
Functions here should generate a 4x4 affine transformation matrix given:

Inputs

def time_weights_exponential(times, memory, epoch=None):↔

def time_weights_linear(times, memory, epoch=None):↔

def vector_dist(vectors_A, vectors_B, metric=None, VI=None):↔

def filter_zscore(series, threshold=None, weights=None):↔

def filter_iqr(series, threshold=None, weights=None):↔

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 10/43

ord - 3xN array of training data where rows correspond to 3D
 Cartesian vectors, and columns are observations; these
 are the "raw" vector input to be transformed
abs - 3xN array of training data where rows correspond to 3D
 Cartesian vectors, and columns are observations; these
 are the desired "absolute" vector output

Options

weights - array of N weights that can be applied to observations
 (defaults to uniform if None)

Output

M - a 4x4 affine transformation matrix that maps ord to abs
 NOTE: functions should include some sort of condition
 check (e.g., minimum rank of system), and return
 a 4x4 matrix of NaNs if this check fails

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:

In [17]:

In [18]:

In [19]:

Affine
Transform
Matrix
Interpolators
Functions here should interpolate between 4x4 affine transformation matrices:

Inputs

utc_target - list of UTCs at which to interpolate affine matrices
utc_list - list of UTCs that correspond to a list of known affine matrices
affine_list - list of known affine matrices

Options

fill_value - if None, disallow extrapolation; if not None, use this
 value when utc_target falls outside utc_list range; if
 "extrapolate", extrapolate based on first/last two in
 affine_list.

Output

affine_target - list of interpolated affine matrices

In [20]:

Do-It-All
Demonstration
and
Validation
Wrapper
Function that retrieves baseline data, filters baseline data, calculates affine transforms, and optionally, applies transforms to raw data and pulls down
(quasi-)definitive data for validation:

Inputs

def generate_affine_0(ord_hez, abs_xyz, weights=None):↔

def generate_affine_1(ord_hez, abs_xyz, weights=None):↔

def generate_affine_2(ord_hez, abs_xyz, weights=None):↔

def generate_affine_3(ord_hez, abs_xyz, weights=None):↔

def generate_affine_4(ord_hez, abs_xyz, weights=None):↔

def generate_affine_5(ord_hez, abs_xyz, weights=None):↔

def generate_affine_6(ord_hez, abs_xyz, weights=None):↔

def generate_affine_7(ord_hez, abs_xyz, weights=None):↔

def generate_affine_8(ord_hez, abs_xyz, weights=None):↔

def generate_affine_9(ord_hez, abs_xyz, weights=None):↔

def interpolate_affine_polar(utc_target, utc_list, affine_list, fill_value=None):↔

1

1

1

1

1

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 11/43

obs_code - 3-character IAGA code for observatory
start_UTC - beginning date to do stuff (UTCDatetime)
end_UTC - final date to do stuff (UTCDatetime)

Options

update_interval - how often (in seconds) to update the Adjusted matrices
 (default = end_UTC - start_UTC)
acausal - use absolute/ordinate pairs from the future if True
 (default = False)
interpolate - interpolate between key transforms
 (default = False)
first_UTC - earliest observation date to retrieve
 (default = start_UTC)
last_UTC - latest observation date to retrieve
 (default = end_UTC)
M_funcs - list of function objects used to generate affine matrices
 given 3D Cartesian vector inputs; compose final Adjusted
 affine matrix by:
 1) calculate 1st matrix from inputs->outputs;
 2) transform initial inputs to intermediate inputs;
 3) calculate 2nd matrix from intermediate inputs to outputs;
 4) repeat until all M_funcs used;
 5) final Adjusted matrix is composition of all in reverse
 (default = [generate_affine_0])
memories - time constant(s) used to calculate weights; memories may be
 a scalar, or a list with same length as M_funcs
 (default = np.inf)
path_or_url - url for absolutes web service, or path to summary xlsm files
 (default = 'https://geomag.usgs.gov/')
validate - if True, pull and process raw data, then compare with QD
 (default = False)
edge_host - edge host for raw and QD magnetometer time series
 (default = 'cwbpub.cr.usgs.gov')

Output

utc_list - list of first UTCDateTimes for each update_interval
M_composed_list - list of composed Adjusted Data matrices for each update_interval
pc_list - list of pier corrections for each update_interval

(if validate is True)
utc_xyzf_list - list of UTCDateTime arrays for each observation
xyzf_trad_list - list of static baseline adjusted data arrays for each update_interval
xyzf_adj_list - list of Adjusted Data arrays for each update_interval
xyzf_def_list - list of Definitive Data arrays for each update_interval
utc_bas - UTCDateTimes for absolute measurements
abs_xyz - absolute XYZ values used to train affine transforms
ord_hez - ordinate HEZ values used to train affine transforms
Ms_list - list of lists of Adjusted Data matrices for each M_func,
 for each update_interval
weights_list - list of lists of weights used to estimate Adjusted Data
 matrices for each M_func, for each update_interval

In [21]:

Synthetic
Data
Demonstration
This subsection demonstrates the general capabilities of affine transforms with carefully constructed, non-physical synthetic data. It may contain
snippets/gists that can be adapted into unit tests.

Construct
synthetic
time
series

First, define a regular series of times , then construct synthetic "Truth" vectors that represent the desired results as functions of :

regular sample times fall between and

def do_it_all(obs_code, start_UTC, end_UTC,↔1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 12/43

In [22]:

Next, define an affine transformation matrix that converts the truth vectors into a different "Observed" basis:

scale axes by , respectively
rotate basis by 45 degrees about the vector
translate origin by , respectively

In [23]:

Compare 'Truth' and 'Observed' vectors directly:

3D view
time series view

define and plot truth vectors↔

define affine matrix, transform truth vectors, and plot results in new basis↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 13/43

In [24]:

Estimate
Affine
Transformation
Matrix
subsample "Truth" (similar to absolute measurements);
subsample "Observed" (similar to variation measurements);
solve for optimal affine transformation (Observed -> Truth);
plot "adjusted", "variation", and "absolute" training data;
compare original affine and inverted solution matrices.

plot a 3D view of 'truth' and transformed vectors↔1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 14/43

In [25]:

Comparison
with
(Quasi-)Definitive
Data
This subsection cycles through each of the USGS observatories, retrieves ~6 months worth of baseline data, and generates three different affine
transforms:

a "short" memory, causal transform that is similar to what would be used in real time operations;
a "short" memory, acausal transform to demonstrate the improvement possible if future observations are used, and is similar to an automated
quasi-definitive;
an infinite memory, acausal transform to demonstrate the improvement possible with any kind of adaptive affine transform estimation.

Furthermore, these transforms are applied to raw data to validate the technique over that ~6 month interval, and compared to quasi-definitive data
when it is available (not all USGS observatories have QD data available at all times). The comparisons are vector-component by vector-component
differences, a Euclidean "distance" between vectors, and the traditional " " metric, which is the only one that does NOT require QD data, and is
available for each observatory.

In general, QD data is considered the "gold standard" to which we strive. The short memory, acausal transform is generally comparable to QD. The
infinite memory, acausal transform highlights the non-stationarity observatory baselines. The short memory, causal transform is an improvement over
the infinite memory acausal, but tends to lag with a time constant that is defined by the memory. Also, to make this comparison as similar to actual
operations as possible, the causal transforms were NOT interpolated like the others, resulting in step changes. Interpolation does significantly improve
results, but this is not surprising, nor especially meaningful in the context of this validation study.

Finally, while most of the results speak for themselves, it is important to call attention to the CMO results. The reader will quickly notice that the QD
data from the CMO observatory tend to exhibit bias, even/especially in the metric. This is because CMO (and DED) baselines are generated using
different software and geometric assumptions than the rest of the observatories. All processing performed in this notebook makes appropriate
adjustments, but QD data, which is done using the USGS' MagProc software, does not.

Boulder
(BOU)
Observatory

[[1.207 0.481 -0.373 3.]
 [-0.466 0.765 0.607 4.]
 [0.759 -0.295 0.966 3.]
 [0. 0. 0. 1.]]

[[1.207 0.481 -0.373 3.]
 [-0.466 0.765 0.607 4.]
 [0.759 -0.295 0.966 3.]
 [0. 0. 0. 1.]]

sub-sample observations, solve for M, apply transform, and plot results↔1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 15/43

In [26]:

Run do_it_all() with a "short" memory in causal mode

In [27]:

Run do_it_all() with a "short" memory in acausal mode

In [28]:

Run do_it_all() with infinite memory, but update every update_interval

In [29]:

Run do_it_all() with infinite memory, for entire interval

In [30]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [31]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

[[9.888e-01 -1.491e-01 0.000e+00 -7.364e+01]
 [1.491e-01 9.888e-01 0.000e+00 -8.578e+00]
 [0.000e+00 0.000e+00 1.000e+00 5.744e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

configuration parameters for BOU

INPUTS
obs_code = 'BOU'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 16/43

In [32]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [33]:

Plot for different "adjusted" and quasi-definitive data

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[32]: <matplotlib.legend.Legend at 0x1c383b2470>

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 17/43

In [34]:

Barrow
(BRW)
Observatory

In [35]:

Run do_it_all() with a "short" memory in causal mode

In [36]:

Run do_it_all() with a "short" memory in acausal mode

In [37]:

Run do_it_all() with infinite memory, but update every update_interval

In [38]:

Run do_it_all() with infinite memory, for entire interval

In [39]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [40]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

[[0.966 -0.258 0. -122.238]
 [0.258 0.966 0. -9.155]
 [0. 0. 1. -141.274]
 [0. 0. 0. 1.]]

plot delta-Fs ↔

configuration parameters for BRW

INPUTS
obs_code = 'BRW'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 18/43

In []:

Plot differences between different "adjusted" and quasi-definitive data

In [41]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [42]:

Plot for different "adjusted" and quasi-definitive data

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[41]: <matplotlib.legend.Legend at 0x1c2fb04518>

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 19/43

In [43]:

Stennis
(BSL)
Observatory

In [44]:

Run do_it_all() with a "short" memory in causal mode

In [45]:

Run do_it_all() with a "short" memory in acausal mode

In [46]:

Run do_it_all() with infinite memory, but update every update_interval

In [47]:

Run do_it_all() with infinite memory, for entire interval

In [48]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [49]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

[[9.966e-01 8.293e-02 0.000e+00 7.297e+02]
 [-8.293e-02 9.966e-01 0.000e+00 1.635e+03]
 [0.000e+00 0.000e+00 1.000e+00 9.679e+01]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

plot delta-Fs ↔

configuration parameters for BSL

INPUTS
obs_code = 'BSL'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 20/43

In []:

Plot differences between different "adjusted" and quasi-definitive data

Note: Quasi-definitive data not available for BSL

In []:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: Quasi-definitive data not available for BSL

In []:

Plot for different "adjusted" and quasi-definitive data

In [51]:

College
(CMO)
Observatory

In [52]:

Run do_it_all() with a "short" memory in causal mode

In [53]:

Run do_it_all() with a "short" memory in acausal mode

In [54]:

Run do_it_all() with infinite memory, but update every update_interval

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

plot delta-Fs ↔

configuration parameters for CMO

INPUTS
obs_code = 'CMO'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-12-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
#path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

1

1

1

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 21/43

In [55]:

Run do_it_all() with infinite memory, for entire interval

In [56]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [57]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data.

Note: H baselines are defined differently for WebAbsolutes and the USGS residual method spreadsheets (which is where CMO baselines are obtained
from here). The do_it_all() function in this notebook properly accounts for this, but MagProc does not seem to, thus leading to bias in quasi-definitive's
X and Y calculations, and ultimately .

In []:

In [58]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: H baselines are defined differently for WebAbsolutes and the USGS residual method spreadsheets (which is where CMO baselines are obtained
from here). The do_it_all() function in this notebook properly accounts for this, but MagProc does not seem to, thus leading to bias in quasi-definitive's
X and Y calculations, and ultimately .

[[0.953 -0.304 0. 97.479]
 [0.304 0.953 0. 269.167]
 [0. 0. 1. -55.313]
 [0. 0. 0. 1.]]

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[58]: <matplotlib.legend.Legend at 0x1c28a2bac8>

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 22/43

In [59]:

Plot for different "adjusted" and quasi-definitive data.

Note: H baselines are defined differently for WebAbsolutes and the USGS residual method spreadsheets (which is where CMO baselines are obtained
from here). The do_it_all() function in this notebook properly accounts for this, but MagProc does not seem to, thus leading to bias in quasi-definitive's
X and Y calculations, and ultimately .

In [60]:

Deadhorse
(DED)
Observatory

In [61]:

Run do_it_all() with a "short" memory in causal mode

Plot Euclidean distances↔

plot delta-Fs ↔

configuration parameters for DED

INPUTS
obs_code = 'DED'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
#path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

1

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 23/43

In [62]:

Run do_it_all() with a "short" memory in acausal mode

In [63]:

Run do_it_all() with infinite memory, but update every update_interval

In [64]:

Run do_it_all() with infinite memory, for entire interval

In [65]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [66]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

Note: Quasi-definitive data not available for DED

In []:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: Quasi-definitive data not available for DED

In []:

Plot for different "adjusted" and quasi-definitive data

In [67]:

Fredericksburgh
(FRD)
Observatory

[[0.951 -0.311 0. -101.46]
 [0.311 0.951 0. 38.33]
 [0. 0. 1. 12.488]
 [0. 0. 0. 1.]]

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

plot delta-Fs ↔

1

1

1

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 24/43

In [68]:

Run do_it_all() with a "short" memory in causal mode

In [69]:

Run do_it_all() with a "short" memory in acausal mode

In [70]:

Run do_it_all() with infinite memory, but update every update_interval

In [71]:

Run do_it_all() with infinite memory, for entire interval

In [72]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [73]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

[[9.832e-01 1.827e-01 0.000e+00 -1.003e+02]
 [-1.827e-01 9.832e-01 0.000e+00 1.187e+01]
 [0.000e+00 0.000e+00 1.000e+00 7.033e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

configuration parameters for FRD

INPUTS
obs_code = 'FRD'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 25/43

In [74]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [75]:

Plot for different "adjusted" and quasi-definitive data

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[74]: <matplotlib.legend.Legend at 0x1c6e4ebc88>

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 26/43

In [76]:

Fresno
(FRN)
Observatory

In [77]:

Run do_it_all() with a "short" memory in causal mode

In [78]:

Run do_it_all() with a "short" memory in acausal mode

In [79]:

Run do_it_all() with infinite memory, but update every update_interval

In [80]:

Run do_it_all() with infinite memory, for entire interval

In [81]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [82]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

[[9.556e-01 -2.945e-01 0.000e+00 2.169e+02]
 [2.945e-01 9.556e-01 0.000e+00 -1.738e+03]
 [0.000e+00 0.000e+00 1.000e+00 6.510e+01]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

plot delta-Fs ↔

configuration parameters for FRN

INPUTS
obs_code = 'FRN'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 27/43

In []:

Plot differences between different "adjusted" and quasi-definitive data

Note: Quasi-definitive data not available for FRN

In []:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: Quasi-definitive data not available for FRN

In []:

Plot for different "adjusted" and quasi-definitive data

In [84]:

Guam
(GUA)
Observatory

In [85]:

Run do_it_all() with a "short" memory in causal mode

In [86]:

Run do_it_all() with a "short" memory in acausal mode

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

plot delta-Fs ↔

configuration parameters for GUA

INPUTS
obs_code = 'GUA'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

1

1

1

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 28/43

In [87]:

Run do_it_all() with infinite memory, but update every update_interval

In [88]:

Run do_it_all() with infinite memory, for entire interval

In [89]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [90]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

Note: Quasi-definitive data not available for GUA

In []:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: Quasi-definitive data not available for GUA

In []:

Plot for different "adjusted" and quasi-definitive data

In [92]:

Honolulu
(HON)
Observatory

[[9.998e-01 -2.221e-02 0.000e+00 5.761e+02]
 [2.221e-02 9.998e-01 0.000e+00 -8.021e+01]
 [0.000e+00 0.000e+00 1.000e+00 2.522e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

plot delta-Fs ↔

1

1

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 29/43

In [93]:

Run do_it_all() with a "short" memory in causal mode

In [94]:

Run do_it_all() with a "short" memory in acausal mode

In [95]:

Run do_it_all() with infinite memory, but update every update_interval

In [96]:

Run do_it_all() with infinite memory, for entire interval

In [97]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [98]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

[[0.986 -0.168 0. -45.084]
 [0.168 0.986 0. 100.831]
 [0. 0. 1. 127.731]
 [0. 0. 0. 1.]]

configuration parameters for HON

INPUTS
obs_code = 'HON'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 30/43

In [99]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [100]:

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[99]: <matplotlib.legend.Legend at 0x1cb8f7f9b0>

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 31/43

Plot for different "adjusted" and quasi-definitive data

In [101]:

Newport
(NEW)
Observatory

In [102]:

Run do_it_all() with a "short" memory in causal mode

In [103]:

Run do_it_all() with a "short" memory in acausal mode

In [104]:

Run do_it_all() with infinite memory, but update every update_interval

In [105]:

Run do_it_all() with infinite memory, for entire interval

In [106]:

Print the last causal M matrix, then save it to a JSON file for production runs.

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot delta-Fs ↔

configuration parameters for NEW

INPUTS
obs_code = 'NEW'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 32/43

In [107]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

In [109]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

[[9.644e-01 -2.646e-01 0.000e+00 7.591e+01]
 [2.646e-01 9.644e-01 0.000e+00 1.436e+01]
 [0.000e+00 0.000e+00 1.000e+00 7.429e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[109]: <matplotlib.legend.Legend at 0x1ccccc2dd8>

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 33/43

In [110]:

Plot for different "adjusted" and quasi-definitive data

In [111]:

San
Juan
(SJG)
Observatory

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

Plot Euclidean distances↔

plot delta-Fs ↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 34/43

In [112]:

Run do_it_all() with a "short" memory in causal mode

In [113]:

Run do_it_all() with a "short" memory in acausal mode

In [114]:

Run do_it_all() with infinite memory, but update every update_interval

In [115]:

Run do_it_all() with infinite memory, for entire interval

In [116]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [117]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

[[9.787e-01 2.053e-01 0.000e+00 1.847e+01]
 [-2.053e-01 9.787e-01 0.000e+00 -4.315e+02]
 [0.000e+00 0.000e+00 1.000e+00 2.691e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

configuration parameters for SJG

INPUTS
obs_code = 'SJG'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 35/43

In [119]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [120]:

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[119]: <matplotlib.legend.Legend at 0x1cbaef7710>

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 36/43

Plot for different "adjusted" and quasi-definitive data

In [121]:

Shumagin
(SHU)
Observatory
Note: SHU is kind of a mess. There were known instrumentation issues in the summer of 2018, but it was thought these were resolved. Regardless, no
data from this period was used here. Things seem to settle down by the end of the validation interval (~June 2019), so the final affine transform matrix
is probably good.

In [122]:

Run do_it_all() with a "short" memory in causal mode

In [123]:

Run do_it_all() with a "short" memory in acausal mode

In [124]:

Run do_it_all() with infinite memory, but update every update_interval

In [125]:

Run do_it_all() with infinite memory, for entire interval

In [126]:

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot delta-Fs ↔

configuration parameters for SHU

INPUTS
obs_code = 'SHU'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 37/43

Print the last causal M matrix, then save it to a JSON file for production runs.

In [127]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In [128]:

Plot differences between different "adjusted" and quasi-definitive data

[[9.759e-01 -2.184e-01 0.000e+00 -4.665e+01]
 [2.184e-01 9.759e-01 0.000e+00 -5.371e+02]
 [0.000e+00 0.000e+00 1.000e+00 -3.283e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[128]: [<matplotlib.lines.Line2D at 0x1c6dd4e048>]

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 38/43

In [129]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [130]:

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[129]: <matplotlib.legend.Legend at 0x1cd3094f60>

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 39/43

Plot for different "adjusted" and quasi-definitive data

In [131]:

Sitka
(SIT)
Observatory

In [132]:

Run do_it_all() with a "short" memory in causal mode

In [133]:

Run do_it_all() with a "short" memory in acausal mode

In [134]:

Run do_it_all() with infinite memory, but update every update_interval

In [135]:

Run do_it_all() with infinite memory, for entire interval

In [136]:

Print the last causal M matrix, then save it to a JSON file for production runs.

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot delta-Fs ↔

configuration parameters for SIT

INPUTS
obs_code = 'SIT'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 40/43

In [137]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

Note: Quasi-definitive data not available for SIT

In []:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

Note: Quasi-definitive data not available for SIT

In []:

Plot for different "adjusted" and quasi-definitive data

In [139]:

Tucson
(TUC)
Observatory

[[0.941 -0.339 0. 147.305]
 [0.339 0.941 0. -226.881]
 [0. 0. 1. 74.17]
 [0. 0. 0. 1.]]

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

plot differences↔

Plot Euclidean distances↔

plot delta-Fs ↔

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 41/43

In [140]:

Run do_it_all() with a "short" memory in causal mode

In [141]:

Run do_it_all() with a "short" memory in acausal mode

In [142]:

Run do_it_all() with infinite memory, but update every update_interval

In [143]:

Run do_it_all() with infinite memory, for entire interval

In [144]:

Print the last causal M matrix, then save it to a JSON file for production runs.

In [145]:

Plot differences between different "adjusted" data (including quasi-definitive) and a static version of traditional HDZ baseline-adjusted data

In []:

Plot differences between different "adjusted" and quasi-definitive data

[[9.795e-01 -2.014e-01 0.000e+00 -6.626e+01]
 [2.014e-01 9.795e-01 0.000e+00 -9.680e+02]
 [0.000e+00 0.000e+00 1.000e+00 3.506e+02]
 [0.000e+00 0.000e+00 0.000e+00 1.000e+00]]

configuration parameters for TUC

INPUTS
obs_code = 'TUC'
start_UTC = UTCDateTime('2019-01-01T00:00:00Z')
end_UTC = UTCDateTime('2019-06-30T23:59:00Z')

OPTIONS
update_interval = 86400 * 7
acausal = False
first_UTC = UTCDateTime('2018-10-01T00:00:00Z')
last_UTC = UTCDateTime('2019-07-31T23:59:00Z')

This is slowly evolving horizontal rotation, and
quickly evolving baseline offsets (including Ebase)
M_funcs = [generate_affine_8, generate_affine_6]
memories = [86400 * 100, 86400 * 10]

#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'
path_or_url = 'https://geomag.usgs.gov'

validate = True
edge_host = 'cwbpub.cr.usgs.gov'

%%capture↔

%%capture↔

%%capture↔

%%capture↔

print and save last M matrix↔

plot differences with traditional HDZ baseline-adjusted data↔

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

1

1

1

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 42/43

Y In [82]:

Plot Eudlidean (vector) distance between different "Adjusted" and quasi-definitive data.

In [83]:

Plot for different "adjusted" and quasi-definitive data

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: M
atplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the ea
rlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warn
ing can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 warnings.warn(message, mplDeprecation, stacklevel=1)

Out[82]: <matplotlib.legend.Legend at 0x1cb2fe9828>

plot differences↔

Plot Euclidean distances↔

1

1

7/10/2019 AdjustedValidate

localhost:8889/notebooks/geomag-algorithms/docs/algorithms/Adjusted/AdjustedValidate.ipynb# 43/43

In [147]:

In []:

In []:

In []:

/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/pyplot.py:522: RuntimeWarni
ng: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.fig
ure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the r
cParam `figure.max_open_warning`).
 max_open_warning, RuntimeWarning)

plot delta-Fs ↔1

1

1

1

