diff --git a/geomagio/algorithm/FilterAlgorithm.py b/geomagio/algorithm/FilterAlgorithm.py index da0f2df18f115f7be5d9e3d25c86147917a65e4a..6cd104487ae05b0f5a0aa69ce3ca8fdd3930209b 100644 --- a/geomagio/algorithm/FilterAlgorithm.py +++ b/geomagio/algorithm/FilterAlgorithm.py @@ -307,7 +307,11 @@ class FilterAlgorithm(Algorithm): return out def align_trace(self, step, trace): - """Aligns trace to handle trailing or missing values. + """Aligns `trace.data` with `step`'s window to half an output_sample_period + by padding or trimming samples in preparation for processing by `firfilter`; + this ensures `firfilter` output always falls on desired time stamps as + defined by `step`. + Parameters ---------- step: dict @@ -324,20 +328,42 @@ class FilterAlgorithm(Algorithm): data = trace.data start = trace.stats.starttime filter_start = get_nearest_time(step=step, output_time=start, left=False) - while filter_start["data_start"] < start: - # filter needs more data, shift one output right + # roughly align starttime with filter-start to half an output_sample_period + while (start - filter_start["data_start"]) > ( + step["output_sample_period"] / 2.0 + ): + # shift one output sample to the right from start filter_start = get_nearest_time( step=step, output_time=filter_start["time"] + step["output_sample_period"], left=False, ) - - if start != filter_start["data_start"]: - offset = int( - 1e-6 - + (filter_start["data_start"] - start) / step["input_sample_period"] + # pad or trim trace.data to get sample-resolution alignment + start_offset = round( + (filter_start["data_start"] - start) / step["input_sample_period"] + ) + if start_offset > 0: + data = data[start_offset:] + else: + data = np.concatenate((np.tile(np.nan, -start_offset), data)) + + end = trace.stats.endtime + filter_end = get_nearest_time(step=step, output_time=end, left=True) + # roughly align endtime with filter_end to half an output_sample_period + while (filter_end["data_end"] - end) > (step["output_sample_period"] / 2.0): + # shift one output sample to the left from end + filter_end = get_nearest_time( + step=step, + output_time=filter_end["time"] - step["output_sample_period"], + left=True, ) - data = data[offset:] + # pad or trim trace.data to get sample-resolution alignment + end_offset = round((end - filter_end["data_end"]) / step["input_sample_period"]) + if end_offset > 0: + data = data[:-end_offset] + else: + data = np.concatenate((data, np.tile(np.nan, -end_offset))) + return filter_start["time"], data @staticmethod diff --git a/test/algorithm_test/FilterAlgorithm_test.py b/test/algorithm_test/FilterAlgorithm_test.py index b4c21d45afc0581d78d340d7310cdf6cdeb1e30a..2a0b9833b655dd0bf3737c88c69d5844d726adce 100644 --- a/test/algorithm_test/FilterAlgorithm_test.py +++ b/test/algorithm_test/FilterAlgorithm_test.py @@ -270,10 +270,11 @@ def test_starttime_shift(): filtered = f.process(precise) assert_equal(filtered[0].stats.starttime, UTCDateTime("2020-01-01T00:01:00Z")) assert_equal(filtered[0].stats.endtime, UTCDateTime("2020-01-01T00:14:00Z")) - # remove one extra sample (filter no longer has enough to generate first/last) + # remove slightly more than half an output_sample_period + # (filter no longer has enough to generate first/last) trimmed = bou.trim( - starttime=UTCDateTime("2020-01-01T00:00:16Z"), - endtime=UTCDateTime("2020-01-01T00:14:44Z"), + starttime=UTCDateTime("2020-01-01T00:00:15Z") + 31, + endtime=UTCDateTime("2020-01-01T00:14:45Z") - 31, ) filtered = f.process(trimmed) assert_equal(filtered[0].stats.starttime, UTCDateTime("2020-01-01T00:02:00Z"))