diff --git a/geomagio/algorithm/AdjustedAlgorithm.py b/geomagio/algorithm/AdjustedAlgorithm.py
index 7b9f0a4d44a2ae2112841a31d3de0bfde50768b5..3e2d1c2c71a89c676153036125340a186f3b8361 100644
--- a/geomagio/algorithm/AdjustedAlgorithm.py
+++ b/geomagio/algorithm/AdjustedAlgorithm.py
@@ -23,8 +23,6 @@ class AdjustedAlgorithm(Algorithm):
         inchannels=None,
         outchannels=None,
     ):
-        inchannels = inchannels or ["H", "E", "Z", "F"]
-        outchannels = outchannels or ["X", "Y", "Z", "F"]
         Algorithm.__init__(
             self,
             inchannels=inchannels,
@@ -35,18 +33,20 @@ class AdjustedAlgorithm(Algorithm):
         self.statefile = statefile
         self.data_type = data_type
         self.location = location
-        # load matrix with statefile
-        if matrix is None:
+        # initialize state from statefile or inchannels;
+        # override both with matrix, and don't call load_state
+        if (statefile or inchannels) and (matrix is None):
             self.load_state()
 
     def load_state(self):
         """Load algorithm state from a file.
         File name is self.statefile.
         """
-        # Adjusted matrix defaults to identity matrix
-        matrix_size = len([c for c in self.get_input_channels() if c != "F"]) + 1
-        matrix = np.eye(matrix_size).tolist()
         if self.statefile is None:
+            # if no statefile provided, default to identity Adjusted matrix
+            # (requires input channels to be specified...is this desirable?)
+            matrix_size = len([c for c in self.get_input_channels() if c != "F"]) + 1
+            matrix = np.eye(matrix_size).tolist()
             self.matrix = AdjustedMatrix(matrix=matrix)
             return
         try:
@@ -59,6 +59,11 @@ class AdjustedAlgorithm(Algorithm):
             self.matrix = AdjustedMatrix(**data)
         elif "PC" in data:
             # read data from legacy format
+            matrix_size = int(
+                # assumes matrix is square
+                np.sqrt(len([k for k in data.keys() if k.startswith("M")]))
+            )
+            matrix = np.eye(matrix_size).tolist()
             for row in range(matrix_size):
                 for col in range(matrix_size):
                     matrix[row][col] = np.float64(data[f"M{row+1}{col+1}"])
@@ -122,27 +127,48 @@ class AdjustedAlgorithm(Algorithm):
         """
 
         out = None
-        inchannels = self.get_input_channels()
-        outchannels = self.get_output_channels()
+        inchannels = self.get_input_channels() or [
+            trace.stats.channel for trace in stream
+        ]
+        outchannels = self.get_output_channels() or inchannels
+
         adjusted = self.matrix.process(
             stream,
             inchannels=inchannels,
             outchannels=outchannels,
         )
-        out = Stream(
+
+        # if F in inchannels/outchannels is not in the last position,
+        # still return it as the last element the output Stream
+        inchannels_noF = [c for c in inchannels if c != "F"]
+        outchannels_noF = [c for c in outchannels if c != "F"]
+
+        out_noF = Stream(
             [
-                self.create_trace(
-                    outchannels[i],
-                    stream.select(channel=inchannels[i])[0].stats,
-                    adjusted[i],
+                (
+                    self.create_trace(
+                        outchannels_noF[i],
+                        (
+                            stream.select(channel=inchannels_noF[i])[0].stats
+                            if i < len(inchannels_noF)
+                            else stream.select(channel=inchannels_noF[-1])[0].stats
+                        ),
+                        adjusted[i],
+                    )
                 )
-                for i in range(len(outchannels))
+                for i in range(len(outchannels_noF))
             ]
         )
-        return out
+        out_F = Stream(
+            self.create_trace("F", stream.select(channel="F")[0].stats, adjusted[-1])
+            if stream.select(channel="F")
+            else []
+        )
+
+        return out_noF + out_F
 
     def can_produce_data(self, starttime, endtime, stream):
-        """Can Product data
+        """Can Produce data
         Parameters
         ----------
         starttime: UTCDateTime
@@ -155,27 +181,18 @@ class AdjustedAlgorithm(Algorithm):
 
         channels = self.get_input_channels()
 
-        # if F is available, can produce at least adjusted F
-        if "F" in channels and super().can_produce_data(
-            starttime, endtime, stream.select(channel="F")
-        ):
-            return True
-
-        # if E-E and E-N available
-        if (
-            "E-E" in channels
-            and "E-N" in channels
-            and super().can_produce_data(starttime, endtime, stream)
-        ):
-            return True
-
-        # check validity of remaining channels
         for c in channels:
+            # non-F channels require valid data for matrix transform
             if c != "F" and not (
                 super().can_produce_data(starttime, endtime, stream.select(channel=c))
             ):
                 return False
-
+        if "F" not in channels:
+            # only matrix transform desired if user didn't pass F
+            return True
+        elif super().can_produce_data(starttime, endtime, stream.select(channel="F")):
+            # F adjustment desired and possible; matrix transform possible
+            return True
         # return false if F or remaining channels cannot produce data
         return False