diff --git a/docs/deltaf.md b/docs/deltaf.md index 375226675bc52746b1252be65c7c78f2a0e59344..07d04b40a38ce310811f66e4f192303a6ed9fdb4 100644 --- a/docs/deltaf.md +++ b/docs/deltaf.md @@ -26,13 +26,13 @@ magnetic observatory operators. Delta F (∆F) is, conceptually, very simple: -- <a name="eq1"></a>Equation 1: '∆F = Fv - Fs' +- <a name="eq1"></a>Equation 1: ∆F = Fv - Fs ...where Fs is the measured scalar total field, and Fv is the estimated total field obtained by adding vector components in quadrature (see figure for vector component definitions): -- <a name="eq2"></a>Equation 2: 'Fv = X<sup>2</sup> + Y<sup>2</sup> + Z<sup>2</sup> = H<sup>2</sup> + Z<sup>2</sup> = h<sup>2</sup> + e<sup>2</sup> + Z<sup>2</sup>' +- <a name="eq2"></a>Equation 2: Fv = X<sup>2</sup> + Y<sup>2</sup> + Z<sup>2</sup> = H<sup>2</sup> + Z<sup>2</sup> = h<sup>2</sup> + e<sup>2</sup> + Z<sup>2</sup> Of course, if data are only available in hdZ (where d=(D-D0)) coordinates, as is common with USGS preliminary data, they should be converted into a Cartesian