diff --git a/geomagio/algorithm/SqDistAlgorithm.py b/geomagio/algorithm/SqDistAlgorithm.py
index 6ac282abb333b7d00136c0c431e2f8fb08876a49..d9aa1584a957f8b79023dc6f607ee927ca4dd2ad 100644
--- a/geomagio/algorithm/SqDistAlgorithm.py
+++ b/geomagio/algorithm/SqDistAlgorithm.py
@@ -25,10 +25,25 @@ from scipy.optimize import fmin_l_bfgs_b
 class SqDistAlgorithm(Algorithm):
     """Solar Quiet, Secular Variation, and Disturbance algorithm"""
 
-    def __init__(self, alpha=None, beta=None, gamma=None, phi=1, m=1,
-                 yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
-                 zthresh=6, fc=0, hstep=0, statefile=None, mag=False,
-                 smooth=1):
+    def __init__(
+        self,
+        alpha=None,
+        beta=None,
+        gamma=None,
+        phi=1,
+        m=1,
+        yhat0=None,
+        s0=None,
+        l0=None,
+        b0=None,
+        sigma0=None,
+        zthresh=6,
+        fc=0,
+        hstep=0,
+        statefile=None,
+        mag=False,
+        smooth=1,
+    ):
         Algorithm.__init__(self, inchannels=None, outchannels=None)
         self.alpha = alpha
         self.beta = beta
@@ -73,11 +88,13 @@ class SqDistAlgorithm(Algorithm):
             end of input required to generate requested output.
         """
         if self.mag:
-            channels = ('H')
-        if observatory == self.last_observatory \
-                and len(channels) == 1 \
-                and channels[0] == self.last_channel \
-                and start == self.next_starttime:
+            channels = "H"
+        if (
+            observatory == self.last_observatory
+            and len(channels) == 1
+            and channels[0] == self.last_channel
+            and start == self.next_starttime
+        ):
             # state is up to date, only need new data
             return (start, end)
         # state not up to date, need to prime
@@ -112,22 +129,22 @@ class SqDistAlgorithm(Algorithm):
             return
         data = None
         try:
-            with open(self.statefile, 'r') as f:
+            with open(self.statefile, "r") as f:
                 data = f.read()
                 data = json.loads(data)
         except Exception:
             pass
-        if data is None or data == '':
+        if data is None or data == "":
             return
-        self.yhat0 = data['yhat0']
-        self.s0 = data['s0']
-        self.l0 = data['l0']
-        self.b0 = data['b0']
-        self.sigma0 = data['sigma0']
-        self.last_observatory = data['last_observatory']
-        self.last_channel = data['last_channel']
-        self.last_delta = 'last_delta' in data and data['last_delta'] or None
-        self.next_starttime = UTCDateTime(data['next_starttime'])
+        self.yhat0 = data["yhat0"]
+        self.s0 = data["s0"]
+        self.l0 = data["l0"]
+        self.b0 = data["b0"]
+        self.sigma0 = data["sigma0"]
+        self.last_observatory = data["last_observatory"]
+        self.last_channel = data["last_channel"]
+        self.last_delta = "last_delta" in data and data["last_delta"] or None
+        self.next_starttime = UTCDateTime(data["next_starttime"])
 
     def save_state(self):
         """Save algorithm state to a file.
@@ -137,17 +154,17 @@ class SqDistAlgorithm(Algorithm):
         if self.statefile is None:
             return
         data = {
-            'yhat0': list(self.yhat0),
-            's0': list(self.s0),
-            'l0': self.l0,
-            'b0': self.b0,
-            'sigma0': list(self.sigma0),
-            'last_observatory': self.last_observatory,
-            'last_channel': self.last_channel,
-            'last_delta': self.last_delta,
-            'next_starttime': str(self.next_starttime)
+            "yhat0": list(self.yhat0),
+            "s0": list(self.s0),
+            "l0": self.l0,
+            "b0": self.b0,
+            "sigma0": list(self.sigma0),
+            "last_observatory": self.last_observatory,
+            "last_channel": self.last_channel,
+            "last_delta": self.last_delta,
+            "next_starttime": str(self.next_starttime),
         }
-        with open(self.statefile, 'w') as f:
+        with open(self.statefile, "w") as f:
             f.write(json.dumps(data))
 
     def process(self, stream):
@@ -169,15 +186,19 @@ class SqDistAlgorithm(Algorithm):
 
         if self.mag:
             # convert stream to mag
-            if stream.select(channel='H').count() > 0 \
-                    and stream.select(channel='E').count() > 0:
+            if (
+                stream.select(channel="H").count() > 0
+                and stream.select(channel="E").count() > 0
+            ):
                 stream = StreamConverter.get_mag_from_obs(stream)
-            elif stream.select(channel='X').count() > 0 \
-                    and stream.select(channel='Y').count() > 0:
+            elif (
+                stream.select(channel="X").count() > 0
+                and stream.select(channel="Y").count() > 0
+            ):
                 stream = StreamConverter.get_mag_from_geo(stream)
             else:
-                raise AlgorithmException('Unable to convert to magnetic H')
-            stream = stream.select(channel='H')
+                raise AlgorithmException("Unable to convert to magnetic H")
+            stream = stream.select(channel="H")
 
         for trace in stream.traces:
             out += self.process_one(trace)
@@ -206,44 +227,52 @@ class SqDistAlgorithm(Algorithm):
         """
         out = Stream()
         # check state
-        if self.last_observatory is not None \
-                or self.last_channel is not None \
-                or self.last_delta is not None \
-                or self.next_starttime is not None:
+        if (
+            self.last_observatory is not None
+            or self.last_channel is not None
+            or self.last_delta is not None
+            or self.next_starttime is not None
+        ):
             # have state, verify okay to proceed
-            if trace.stats.station != self.last_observatory \
-                    or trace.stats.channel != self.last_channel \
-                    or trace.stats.delta != self.last_delta \
-                    or trace.stats.starttime != self.next_starttime:
+            if (
+                trace.stats.station != self.last_observatory
+                or trace.stats.channel != self.last_channel
+                or trace.stats.delta != self.last_delta
+                or trace.stats.starttime != self.next_starttime
+            ):
                 # state not correct
                 raise AlgorithmException(
-                        'Inconsistent SQDist algorithm state' +
-                        ' process(%s, %s, %s, %s) <> state(%s, %s, %s, %s)' %
-                                (trace.stats.station,
-                                trace.stats.channel,
-                                trace.stats.delta,
-                                trace.stats.starttime,
-                                self.last_observatory,
-                                self.last_channel,
-                                self.last_delta,
-                                self.next_starttime))
+                    "Inconsistent SQDist algorithm state"
+                    + " process(%s, %s, %s, %s) <> state(%s, %s, %s, %s)"
+                    % (
+                        trace.stats.station,
+                        trace.stats.channel,
+                        trace.stats.delta,
+                        trace.stats.starttime,
+                        self.last_observatory,
+                        self.last_channel,
+                        self.last_delta,
+                        self.next_starttime,
+                    )
+                )
         # process
         yhat, shat, sigmahat, yhat0, s0, l0, b0, sigma0 = self.additive(
-                yobs=trace.data,
-                m=self.m,
-                alpha=self.alpha,
-                beta=self.beta,
-                gamma=self.gamma,
-                phi=self.phi,
-                yhat0=self.yhat0,
-                s0=self.s0,
-                l0=self.l0,
-                b0=self.b0,
-                sigma0=self.sigma0,
-                zthresh=self.zthresh,
-                fc=self.fc,
-                hstep=self.hstep,
-                smooth=self.smooth)
+            yobs=trace.data,
+            m=self.m,
+            alpha=self.alpha,
+            beta=self.beta,
+            gamma=self.gamma,
+            phi=self.phi,
+            yhat0=self.yhat0,
+            s0=self.s0,
+            l0=self.l0,
+            b0=self.b0,
+            sigma0=self.sigma0,
+            zthresh=self.zthresh,
+            fc=self.fc,
+            hstep=self.hstep,
+            smooth=self.smooth,
+        )
         # update state
         self.yhat0 = yhat0
         self.s0 = s0
@@ -253,8 +282,9 @@ class SqDistAlgorithm(Algorithm):
         self.last_observatory = trace.stats.station
         self.last_channel = trace.stats.channel
         self.last_delta = trace.stats.delta
-        self.next_starttime = trace.stats.starttime + \
-                (trace.stats.delta * trace.stats.npts)
+        self.next_starttime = trace.stats.starttime + (
+            trace.stats.delta * trace.stats.npts
+        )
         self.save_state()
         # create updated traces
         channel = trace.stats.channel
@@ -270,16 +300,31 @@ class SqDistAlgorithm(Algorithm):
         # if the data array is longer than expected, as when self.fc is non-
         # zero; HOWEVER, if self.hstep is non-zero, both stats.starttime and
         # stats.endtime must be adjusted to accomadate the time-shift.
-        out += self.create_trace(channel + '_Dist', trace.stats, dist)
-        out += self.create_trace(channel + '_SQ', trace.stats, sq)
-        out += self.create_trace(channel + '_SV', trace.stats, sv)
-        out += self.create_trace(channel + '_Sigma', trace.stats, sigmahat)
+        out += self.create_trace(channel + "_Dist", trace.stats, dist)
+        out += self.create_trace(channel + "_SQ", trace.stats, sq)
+        out += self.create_trace(channel + "_SV", trace.stats, sv)
+        out += self.create_trace(channel + "_Sigma", trace.stats, sigmahat)
         return out
 
     @classmethod
-    def additive(cls, yobs, m, alpha, beta, gamma, phi=1,
-                 yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
-                 zthresh=6, fc=0, hstep=0, smooth=1):
+    def additive(
+        cls,
+        yobs,
+        m,
+        alpha,
+        beta,
+        gamma,
+        phi=1,
+        yhat0=None,
+        s0=None,
+        l0=None,
+        b0=None,
+        sigma0=None,
+        zthresh=6,
+        fc=0,
+        hstep=0,
+        smooth=1,
+    ):
         """Primary function for Holt-Winters smoothing/forecasting with
           damped linear trend and additive seasonal component.
 
@@ -360,19 +405,19 @@ class SqDistAlgorithm(Algorithm):
         """
 
         if alpha is None:
-            raise AlgorithmException('alpha is required')
+            raise AlgorithmException("alpha is required")
         if beta is None:
-            raise AlgorithmException('beta is required')
+            raise AlgorithmException("beta is required")
         if gamma is None:
-            raise AlgorithmException('gamma is required')
+            raise AlgorithmException("gamma is required")
         if phi is None:
-            raise AlgorithmException('phi is required')
+            raise AlgorithmException("phi is required")
 
         # set some default values
         if l0 is None:
-            l = np.nanmean(yobs[0:int(m)])
+            l = np.nanmean(yobs[0 : int(m)])
             if np.isnan(l):
-                l = 0.
+                l = 0.0
         else:
             l = l0
             if not np.isscalar(l0):
@@ -404,8 +449,7 @@ class SqDistAlgorithm(Algorithm):
         else:
             sigma = list(sigma0)
             if len(sigma) != (hstep + 1):
-                raise AlgorithmException(
-                    "sigma0 must have length %d" % (hstep + 1))
+                raise AlgorithmException("sigma0 must have length %d" % (hstep + 1))
 
         # generate a vector of weights that will "smooth" seasonal
         # variations locally...the quotes are because what we really
@@ -416,16 +460,16 @@ class SqDistAlgorithm(Algorithm):
         # smooth parameter should specify the required cut-off period in terms
         # of discrete samples; for now, we generate a Gaussian filter according
         # to White et al. (USGS SIR 2014-5045).
-        fom = 10**(-3 / 20.)  # halve power at corner frequency
+        fom = 10 ** (-3 / 20.0)  # halve power at corner frequency
         omg = np.pi / np.float64(smooth)  # corner angular frequency
-        sig = np.sqrt(-2 * np.log(fom) / omg**2) + np.finfo(float).eps  # sig>0
-        ts = np.linspace(np.max((-m, -3 * np.round(sig))),
-                         np.min((m, 3 * np.round(sig))),
-                         np.int(np.round(
-                                 np.min((2 * m, 6 * np.round(sig))) + 1
-                         )))
+        sig = np.sqrt(-2 * np.log(fom) / omg ** 2) + np.finfo(float).eps  # sig>0
+        ts = np.linspace(
+            np.max((-m, -3 * np.round(sig))),
+            np.min((m, 3 * np.round(sig))),
+            np.int(np.round(np.min((2 * m, 6 * np.round(sig))) + 1)),
+        )
         nts = ts.size
-        weights = np.exp(-0.5 * (ts / sig)**2)
+        weights = np.exp(-0.5 * (ts / sig) ** 2)
         weights = weights / np.sum(weights)
 
         #
@@ -443,8 +487,11 @@ class SqDistAlgorithm(Algorithm):
         phiHminus1 = 0
         for h in range(1, hstep):
             phiHminus1 = phiHminus1 + phi ** (h - 1)
-            sumc2_H = sumc2_H + (alpha * (1 + phiHminus1 * beta) +
-                               gamma * (1 if (h % m == 0) else 0)) ** 2
+            sumc2_H = (
+                sumc2_H
+                + (alpha * (1 + phiHminus1 * beta) + gamma * (1 if (h % m == 0) else 0))
+                ** 2
+            )
         phiJminus1 = phiHminus1
         sumc2 = sumc2_H
         jstep = hstep
@@ -475,7 +522,7 @@ class SqDistAlgorithm(Algorithm):
                 # fc>0, so simulate beyond last input
                 et = np.nan
 
-            if (np.isnan(et) or np.abs(et) > zthresh * sigma[i]):
+            if np.isnan(et) or np.abs(et) > zthresh * sigma[i]:
                 # forecast (i.e., update l, b, and s assuming et==0)
 
                 # no change in seasonal adjustments
@@ -492,8 +539,14 @@ class SqDistAlgorithm(Algorithm):
                     # valid observation
                     phiJminus1 = phiJminus1 + phi ** jstep
                     jstep = jstep + 1
-                    sumc2 = sumc2 + (alpha * (1 + phiJminus1 * beta) +
-                            gamma * (1 if (jstep % m == 0) else 0)) ** 2
+                    sumc2 = (
+                        sumc2
+                        + (
+                            alpha * (1 + phiJminus1 * beta)
+                            + gamma * (1 if (jstep % m == 0) else 0)
+                        )
+                        ** 2
+                    )
 
                 else:
                     # still update sigma using et when et > zthresh * sigma
@@ -512,12 +565,14 @@ class SqDistAlgorithm(Algorithm):
                 # distribute error correction across range of seasonal
                 # corrections according to weights calculated above
                 s[i + m] = s[i] + gamma * (1 - alpha) * et * weights[nts // 2]
-                s[i + m - nts // 2:i + m] = (s[i + m - nts // 2:i + m] +
-                                            gamma * (1 - alpha) * et *
-                                            weights[:nts // 2])
-                s[i + 1:i + nts // 2 + 1] = (s[i + 1:i + nts // 2 + 1] +
-                                            gamma * (1 - alpha) * et *
-                                            weights[nts // 2 + 1:])
+                s[i + m - nts // 2 : i + m] = (
+                    s[i + m - nts // 2 : i + m]
+                    + gamma * (1 - alpha) * et * weights[: nts // 2]
+                )
+                s[i + 1 : i + nts // 2 + 1] = (
+                    s[i + 1 : i + nts // 2 + 1]
+                    + gamma * (1 - alpha) * et * weights[nts // 2 + 1 :]
+                )
 
                 # update l and b using equation-error formulation
                 l = l + phi * b + alpha * et
@@ -533,11 +588,11 @@ class SqDistAlgorithm(Algorithm):
 
             # freeze state with last input for reinitialization
             if i == (len(yobs) - 1):
-                yhat0 = yhat[len(yobs):(len(yobs) + hstep)].copy()
-                s0 = s[len(yobs):(len(yobs) + m)].copy() - r[i + 1]
+                yhat0 = yhat[len(yobs) : (len(yobs) + hstep)].copy()
+                s0 = s[len(yobs) : (len(yobs) + m)].copy() - r[i + 1]
                 l0 = l + r[i + 1]
                 b0 = b
-                sigma0 = sigma[len(yobs):(len(yobs) + hstep + 1)].copy()
+                sigma0 = sigma[len(yobs) : (len(yobs) + hstep + 1)].copy()
 
         # endfor i in range(len(yobs) + fc)
 
@@ -545,20 +600,38 @@ class SqDistAlgorithm(Algorithm):
         l = l + r[-1]
         s = np.array(s) - np.hstack((r, np.tile(r[-1], m - 1)))
 
-        return (yhat[:len(yobs) + fc],
-                s[:len(yobs) + fc],
-                sigma[1:len(yobs) + fc + 1],
-                yhat0,
-                s0,
-                l0,
-                b0,
-                sigma0)
+        return (
+            yhat[: len(yobs) + fc],
+            s[: len(yobs) + fc],
+            sigma[1 : len(yobs) + fc + 1],
+            yhat0,
+            s0,
+            l0,
+            b0,
+            sigma0,
+        )
 
     @classmethod
-    def estimate_parameters(cls, yobs, m, alpha=None, beta=None, gamma=None,
-            phi=1, yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
-            zthresh=6, fc=0, hstep=0,
-            alpha0=0.3, beta0=0.1, gamma0=0.1):
+    def estimate_parameters(
+        cls,
+        yobs,
+        m,
+        alpha=None,
+        beta=None,
+        gamma=None,
+        phi=1,
+        yhat0=None,
+        s0=None,
+        l0=None,
+        b0=None,
+        sigma0=None,
+        zthresh=6,
+        fc=0,
+        hstep=0,
+        alpha0=0.3,
+        beta0=0.1,
+        gamma0=0.1,
+    ):
         """Estimate alpha, beta, and gamma parameters based on observed data.
 
         Parameters
@@ -626,13 +699,15 @@ class SqDistAlgorithm(Algorithm):
         boundaries = [
             (alpha, alpha) if alpha is not None else (0, 1),
             (beta, beta) if beta is not None else (0, 1),
-            (gamma, gamma) if gamma is not None else (0, 1)
+            (gamma, gamma) if gamma is not None else (0, 1),
         ]
-        initial_values = np.array([
-            alpha if alpha is not None else alpha0,
-            beta if beta is not None else beta0,
-            gamma if gamma is not None else gamma0
-        ])
+        initial_values = np.array(
+            [
+                alpha if alpha is not None else alpha0,
+                beta if beta is not None else beta0,
+                gamma if gamma is not None else gamma0,
+            ]
+        )
 
         def func(params, *args):
             """Function that computes root-mean-squared-error based on current
@@ -647,15 +722,24 @@ class SqDistAlgorithm(Algorithm):
             alpha, beta, gamma = params
             # call Holt-Winters with additive seasonality
             yhat, _, _, _, _, _, _, _ = cls.additive(
-                    yobs, m,
-                    alpha=alpha, beta=beta, gamma=gamma, l0=l0, b0=b0, s0=s0,
-                    zthresh=zthresh, hstep=hstep)
+                yobs,
+                m,
+                alpha=alpha,
+                beta=beta,
+                gamma=gamma,
+                l0=l0,
+                b0=b0,
+                s0=s0,
+                zthresh=zthresh,
+                hstep=hstep,
+            )
             # compute root-mean-squared-error of predictions
             error = np.sqrt(np.nanmean(np.square(np.subtract(yobs, yhat))))
             return error
 
-        parameters = fmin_l_bfgs_b(func, x0=initial_values, args=(),
-                bounds=boundaries, approx_grad=True)
+        parameters = fmin_l_bfgs_b(
+            func, x0=initial_values, args=(), bounds=boundaries, approx_grad=True
+        )
         alpha, beta, gamma = parameters[0]
         rmse = parameters[1]
         return (alpha, beta, gamma, rmse)
@@ -669,40 +753,47 @@ class SqDistAlgorithm(Algorithm):
         parser: ArgumentParser
             command line argument parser
         """
-        parser.add_argument('--sqdist-alpha',
-                # default=1.0 / 1440.0 / 30,
-                default=0,
-                help='Smoothing parameter for secular variation',
-                type=float)
-        parser.add_argument('--sqdist-beta',
-                default=0,
-                help='Smoothing parameter for slope',
-                type=float)
-        parser.add_argument('--sqdist-gamma',
-                # default=1.0 / 30,
-                default=0,
-                help='Smoothing parameter for solar quiet',
-                type=float)
-        parser.add_argument('--sqdist-m',
-                # default=1440,
-                default=1,
-                help='SqDist m parameter',
-                type=int)
-        parser.add_argument('--sqdist-mag',
-                action='store_true',
-                default=False,
-                help='Generate sqdist based on magnetic H component')
-        parser.add_argument('--sqdist-statefile',
-                default=None,
-                help='File to store state between calls to algorithm')
-        parser.add_argument('--sqdist-zthresh',
-                default=6,
-                help='Set Z-score threshold',
-                type=float)
-        parser.add_argument('--sqdist-smooth',
-                default=1,
-                help='Local SQ smoothing parameter',
-                type=int)
+        parser.add_argument(
+            "--sqdist-alpha",
+            # default=1.0 / 1440.0 / 30,
+            default=0,
+            help="Smoothing parameter for secular variation",
+            type=float,
+        )
+        parser.add_argument(
+            "--sqdist-beta", default=0, help="Smoothing parameter for slope", type=float
+        )
+        parser.add_argument(
+            "--sqdist-gamma",
+            # default=1.0 / 30,
+            default=0,
+            help="Smoothing parameter for solar quiet",
+            type=float,
+        )
+        parser.add_argument(
+            "--sqdist-m",
+            # default=1440,
+            default=1,
+            help="SqDist m parameter",
+            type=int,
+        )
+        parser.add_argument(
+            "--sqdist-mag",
+            action="store_true",
+            default=False,
+            help="Generate sqdist based on magnetic H component",
+        )
+        parser.add_argument(
+            "--sqdist-statefile",
+            default=None,
+            help="File to store state between calls to algorithm",
+        )
+        parser.add_argument(
+            "--sqdist-zthresh", default=6, help="Set Z-score threshold", type=float
+        )
+        parser.add_argument(
+            "--sqdist-smooth", default=1, help="Local SQ smoothing parameter", type=int
+        )
 
     def configure(self, arguments):
         """Configure algorithm using comand line arguments.