diff --git a/geomagio/algorithm/SqDistAlgorithm.py b/geomagio/algorithm/SqDistAlgorithm.py index c3686fb8c0542ab69c1ceb77f117b789a77e1bc5..d79383de83a98dd9d4ba08d5592cbfba6a5bf504 100644 --- a/geomagio/algorithm/SqDistAlgorithm.py +++ b/geomagio/algorithm/SqDistAlgorithm.py @@ -230,12 +230,13 @@ class SqDistAlgorithm(Algorithm): out += self.create_trace(channel + '_Dist', trace.stats, dist) out += self.create_trace(channel + '_SQ', trace.stats, sq) out += self.create_trace(channel + '_SV', trace.stats, sv) + out += self.create_trace(channel + '_Sigma', trace.stats, sigmahat) return out @classmethod def additive(cls, yobs, m, alpha, beta, gamma, phi=1, yhat0=None, s0=None, l0=None, b0=None, sigma0=None, - zthresh=6, fc=0, hstep=0): + zthresh=6, fc=0, hstep=0, smooth=1): """Primary function for Holt-Winters smoothing/forecasting with damped linear trend and additive seasonal component. @@ -291,6 +292,9 @@ class SqDistAlgorithm(Algorithm): hstep : int the number of steps ahead to predict yhat[i] which forces an hstep prediction at each time step + smooth: int + period (in samples) at which Gaussian smoother will attenuate + signal power by half Returns ------- @@ -358,6 +362,25 @@ class SqDistAlgorithm(Algorithm): raise AlgorithmException( "sigma0 must have length %d" % (hstep + 1)) + # generate a vector of weights that will "smooth" seasonal + # variations locally...the quotes are because what we really + # do is distribute the error correction across a range of + # seasonal corrections; we do NOT convovle this filter with + # a signal to dampen noise, as is typical. -EJR 10/2016 + + # smooth parameter should specify the required cut-off period in terms + # of discrete samples; for now, we generate a Gaussian filter according + # to White et al. (USGS SIR 2014-5045). + fom = 10**(-3 / 20.) # halve power at corner frequency + omg = np.pi / np.float64(smooth) # corner angular frequency + sig = np.sqrt(-2 * np.log(fom) / omg**2) + np.finfo(float).eps # sig>0 + ts = np.linspace(np.max((-m, -3 * np.round(sig))), + np.min((m, 3 * np.round(sig))), + np.min((2 * m, 6 * np.round(sig))) + 1) + nts = ts.size + weights = np.exp(-0.5 * (ts / sig)**2) + weights = weights / np.sum(weights) + # # Now begin the actual Holt-Winters algorithm # @@ -436,8 +459,18 @@ class SqDistAlgorithm(Algorithm): # performance. r[i + 1] = gamma * (1 - alpha) * et / m - # update and append to s using equation-error formulation - s[i + m] = s[i] + gamma * (1 - alpha) * et + # #update and append to s using equation-error formulation + # s[i + m] = s[i] + gamma * (1 - alpha) * et + + # distribute error correction across range of seasonal + # corrections according to weights calculated above + s[i + m] = s[i] + gamma * (1 - alpha) * et * weights[nts / 2] + s[i + m - nts / 2:i + m] = (s[i + m - nts / 2:i + m] + + gamma * (1 - alpha) * et * + weights[:nts / 2]) + s[i + 1:i + nts / 2 + 1] = (s[i + 1:i + nts / 2 + 1] + + gamma * (1 - alpha) * et * + weights[nts / 2 + 1:]) # update l and b using equation-error formulation l = l + phi * b + alpha * et @@ -609,6 +642,9 @@ class SqDistAlgorithm(Algorithm): parser.add_argument('--sqdist-zthresh', default=6, help='Set Z-score threshold') + parser.add_argument('--sqdist-smooth', + default=1, + help='Local SQ smoothing parameter') def configure(self, arguments): """Configure algorithm using comand line arguments. @@ -626,4 +662,5 @@ class SqDistAlgorithm(Algorithm): self.mag = arguments.sqdist_mag self.statefile = arguments.sqdist_statefile self.zthresh = arguments.sqdist_zthresh + self.smooth = arguments.sqdist_smooth self.load_state()