diff --git a/docs/algorithms/AdjustedValidate.ipynb b/docs/algorithms/AdjustedValidate.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5a45b6b5704d8771a272c1a597a95831a77b5bec --- /dev/null +++ b/docs/algorithms/AdjustedValidate.ipynb @@ -0,0 +1,12915 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# This is always required for inline plot rendering in IPython Notebooks; might\n", + "# as well do it first, even before the markdown sections, just to be safe\n", + "#%matplotlib inline\n", + "%matplotlib notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adjusted Data Algorithm - Contents:\n", + "\n", + "- [Theoretical Basis](#Theoretical-Basis)\n", + " - [Motivation](#Motivation)\n", + " - [Affine Transformations](#Affine-Transformations)\n", + " - [Adaptive Coefficients](#Adaptive-Coefficients)\n", + " - [Anomaly Detection](#Anomaly-Detection)\n", + "- [Putting it All Together](#Putting-it-All-Together)\n", + " - [Programming Interface](#Programming-Interface)\n", + "- [Functional Tests](#Functional-Tests)\n", + " - [Imports](#Imports)\n", + " - [Test Configuration](#Test-Configuration)\n", + " - [Test 1](#Test-1) | [Test 2](#Test-2) | [Test 3](#Test-3) | [Test 4](#Test-4) | [Test 5](#Test-5) \n", + "- [Synthetic Data Demonstration](#Synthetic-Data-Demonstration)\n", + " - [Construct synthetic time series](#Construct-synthetic-time-series)\n", + " - [Estimate Affine Transformation Matrix](#Estimate-Affine-Transformation-Matrix)\n", + "- [Comparison with (Quasi-)Definitive Data](#Comparison-with-(Quasi-)Definitive-Data)\n", + " - [Boulder (BOU) Observatory](#Boulder-(BOU)-Observatory)\n", + " - [Barrow (BRW) Observatory](#Barrow-(BRW)-Observatory)\n", + " - [Stennis (BSL) Observatory](#Stennis-(BSL)-Observatory)\n", + " - [College (CMO) Observatory](#College-(CMO)-Observatory)\n", + " - [Deadhorse (DED) Observatory](#Deadhorse-(DED)-Observatory)\n", + " - [Fredericksburgh (FRD) Observatory](#Fredericksburgh-(FRD)-Observatory)\n", + " - [Fresno (FRN) Observatory](#Fresno-(FRN)-Observatory)\n", + " - [Guam (GUA) Observatory](#Guam-(GUA)-Observatory)\n", + " - [Honolulu (HON) Observatory](#Honolulu-(HON)-Observatory)\n", + " - [Newport (NEW) Observatory](#Newport-(NEW)-Observatory)\n", + " - [San Juan (SJG) Observatory](#San-Juan-(SJG)-Observatory)\n", + " - [Shumagin (SHU) Observatory](#Shumagin-(SHU)-Observatory)\n", + " - [Sitka (SIT) Observatory](#Sitka-(SIT)-Observatory)\n", + " - [Tucson (TUC) Observatory](#Tucson-(TUC)-Observatory)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [Theoretical Basis](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Motivation](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "The USGS employs 3-axis vector magnetometers, typically using fluxgate technology in the modern era. Alone, these magnetometers are high-quality variometers. That is, they record the relative variation of Earth's magnetic field over time very accurately, but are notoriously difficult to calibrate in an absolute sense. It is only when variometers are combined with frequent absolute calibration measurements that we get what is generally described as a **geomagnetic observatory**.\n", + "\n", + "Historically, the merging of these absolute calibrations and magnetic variation measurements has been a laborious process, ultimately resulting in the magnetic observatory community's standard \"definitive\" data product for each obseratory. Definitive data is processed in one year blocks, starting no less than one year after the first observation made that year, and so not nearly a real time product. More recently, some of the most stringent requirements for definitive data were relaxed so that a new community standard, \"quasi-definitive\" data, could be produced in a more timely (~1 month delay), but this was still not real time enough for many modern technological applications.\n", + "\n", + "There is a growing and still largely unmet demand for calibrated near real time data. Following INTERMAGNET terminology, we will refer to this as Adjusted Data, although it is also often referred to as \"provisional\" in the magnetic observatory community. The Adjusted Data standard is not strictly defined, but the goal stated in the newest version of INTERMAGNET's Technical Reference Manual is to match statistical specifications of quasi-definitive data, while acknowledging and accepting the fact that real time data is likely to be more noisy, and/or have more gaps.\n", + "\n", + "There was a previous attempt to produce Adjusted Data at the USGS that went largely undocumented. Given subsequent staff turnover and decommissioning of legacy computer systems, it is now impossible to asses the quality of this prototype data product, or fully understand why it was never deployed operationally. We speculate, with some anecdotal evidence, that the algorithm for generating these data was only a minor adaptation of the definitive processing software, which we already know is not particularly suited to real time processing.\n", + "\n", + "This report is an attempt to: 1) distill and document institutional knowledge associated with legacy procedures and software for generating (quasi-)definitive data, partly to 2) assess how or why these legacy procedures and software may have been inadequate for near real time adjusted data generation, and 3) desdcribe, demonstrate, and validate a new methodology that is specifically tailored for near real time processing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Traditional Baseline Adjustments](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "Fluxgate sensors have a limited range over which their response functions can be considered linear. In order to maximize their sensitivity while still measuring the extremely wide range of magnetic environments encountered across Earth's surface, it is common practice to generate a bias magnetic field that opposes and (mostly) nullifies the Earth's main magnetic field along each of the instrument's axes. In doing so, the fluxgate can precisely capture minute relative variations in the magnetic field relative to the main field. One need only add the static oppositional field back to these variational measurements for an accurate and precise measure of the time-varying geomagnetic field.\n", + "\n", + "While this oppositional magnetic field strength might be estimated from first principals, significant static and time-dependent uncertainties in the fluxgate's mechanical geometries, plus electronic/electrical inefficiencies, conspire to require frequent and regular calibration to meet tolerances expected of magnetic observatories. So frequent, in fact, that removing the sensors to a lab to do so is not generally advisable, so the sensors are effectively calibrated in-place using absolute measurements, along with various physical and geometric assumptions, to calculate so-called baseline adjustments.\n", + "\n", + "Absolute measurements should not be made too closely to the fluxgate sensor, or there is risk of contaminating the data. Therefore, part of the baseline adjustment implicitly includes the quasi time-stationary vector difference between the fluxgate and absolute pier different locations. While this value could, in principal, be obtained through careful simultaneous absolute measurements at both locations, it is not really necessary unless one is genuinely interested in isolating the fluxgate's true response functions.\n", + "\n", + "Also, alignment of the fluxgate and absolute measurement coordinate frames is never perfect. But, if they are close, misalignment can be corrected using simple baseline adjustments and implicit small angle assumptions. When coordinate frames are not well aligned an initial rotation may be applied to obtain nominal alignment, and allow simple baseline corrections after that.\n", + "\n", + "The USGS, as well as many international magnetic observatories, install their fluxgate sensors so that the primary horizontal axis, $H$, aligns with the local magnetic meridian. This means that the secondary horizontal axis, $E$ (for eastward), need not nullify the Earth's main field in this direction since, on average, it will be zero. Also, it is assumed that the absolute-fluxgate pier difference is zero in the $E$ direction. There is undoubtedly additional uncertainty in the $E$ direction, but in practice, it is ignored in favor of rotating the $H$ axis by a declination baseline angle:\n", + "\n", + "$$\n", + "D_{base} = D_{abs} - \\arcsin(E/H_{abs})\n", + "$$\n", + "\n", + "With the absolute and fluxgate coordinate axes now roughly aligned, the $H$ baseline correction is estimated by projecting the absolute horizontal intensity onto the fluxgate's $H$ axis, and subtracting the fluxgate-measured magnetic field:\n", + "\n", + "$$\n", + "H_{base} = \\sqrt{H_{abs}^2 - E^2} - H\n", + "$$\n", + "\n", + "This is illustrated in the following figure, where the blue vector represents the absolute total horizontal magnetic vector in geographic coordinates, the red vector represents the horizontal vector measured by the fluxgate in its own Cartesian coordinates, the green items comprise baseline corrections, and the brown angle $D$ is the declination relative to the fluxgate's $H$ axis:\n", + "\n", + "\n", + "\n", + "Finally, the third axis, $Z$, points downward to complete a right-handed coordinate system. The downward absolute magnetic vector component, $Z_{abs}$, is assumed to align reasonably well with the downward fluxgate axis, $Z$, so a simple baseline correction is all that is needed:\n", + "\n", + "$$\n", + "Z_{base} = Z_{abs} - Z\n", + "$$\n", + "\n", + "We note, for completeness, that it is not uncommon for small angle approximations to be invoked when calculating $H_{base}$ or $D_{base}$, since for most observatories, the ratio of the $E$ to the $H_{abs}$ magnetic vector component is small. For example, even for Barrow, Alaska, small angle error is rarely more than a few parts in a million when the fluxgate in aligned with the local magnetic meridian. However, the local magnetic meridian drifts over time, more-so at higher latitudes than low. And at the magnetic pole, the concept of a magnetic meridian is undefined. If following traditional baseline correction procedures, it is best to avoid small angle approximations altogether." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Affine Transformations](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "One problem with traditional baseline adjustments is that they assume each axis is independent of the others when they are not in most real-world scenarios. Therefore, there are necessarily more than just 3 degrees of freedom to be adjusted. If one considers separately non-orthogonality of the instrument axes, scaling differences for each axis, rotation, and yes, actual baseline differences between the fluxgate sensor and the absolute measurement device, there are no fewer than 12 degrees of freedom that might be considered.\n", + "\n", + "A more rigorous approach to adjusting raw magnetic vector data is to generate a linear transformation that directly converts variometer data from its own local Cartesian $HEZ$ sensor coordinates into absolutely calibrated Cartesian $XYZ$ geographic coordinates. Standard linear transformations involve rotation, scaling, and even shear (that is, non-rigid rotation), while alignment of coordinate frame origins (that is, translation) can be easily included with a simple augmentation of the measurement vectors. This is known as an affine transformation:\n", + "\n", + "$$ \\left[\\begin{array}{cccc} X \\\\ \n", + " Y \\\\\n", + " Z \\\\\n", + " 1 \\end{array}\\right] = \n", + " [\\textbf{M}] \\left[ \\begin{array}{cccc} H \\\\ \n", + " E \\\\\n", + " Z \\\\\n", + " 1 \\end{array}\\right] $$\n", + " \n", + "...where $\\textbf{M}$ is the composition of potentially many separate affine transforms:\n", + "\n", + "$$\n", + "\\begin{array}{r@{}l}\n", + "[\\textbf{M}] & = & \\left[ \\begin{array}{cccc} 1 & 0 & 0 & t_1 \\\\ \n", + " 0 & 1 & 0 & t_2 \\\\\n", + " 0 & 0 & 1 & t_3 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\cdotp \\text{ (i.e., } \\textbf{T}\\text{)}\\\\\n", + " & & \\left[ \\left[ \\begin{array}{cccc} 1 & 0 & 0 & 0 \\\\ \n", + " 0 & \\cos\\theta_x & -\\sin\\theta_x & 0 \\\\\n", + " 0 & \\sin\\theta_x & \\cos\\theta_x & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\cdotp\n", + " \\left[ \\begin{array}{cccc} \\cos\\theta_y & 0 & \\sin\\theta_y & 0 \\\\ \n", + " 0 & 1 & 0 & 0 \\\\\n", + " -\\sin\\theta_y & 0 & \\cos\\theta_y & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\cdotp\n", + " \\left[ \\begin{array}{cccc} \\cos\\theta_z & -\\sin\\theta_z & 0 & 0 \\\\ \n", + " \\sin\\theta_z & \\cos\\theta_z & 0 & 0 \\\\\n", + " 0 & 0 & 1 & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\right] \\cdotp \\text{ (i.e., } \\textbf{R}\\text{)} \\\\\n", + " & & \\left[ \\begin{array}{cccc} s_1 & 0 & 0 & 0 \\\\ \n", + " 0 & s_2 & 0 & 0 \\\\\n", + " 0 & 0 & s_3 & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\cdotp \\text{ (i.e., } \\textbf{S}\\text{)} \\\\\n", + " & & \\left[ \\begin{array}{cccc} 1 & h_{xy} & h_{xz} & 0 \\\\ \n", + " 0 & 1 & h_{yz} & 0 \\\\\n", + " 0 & 0 & 1 & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] \\text{ (i.e., } \\textbf{H}\\text{)}\n", + "\\end{array}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that order of operation is critical, but there is no single standard for composing a full affine transformation from its constituent matrices. The preceding example follows a norm used in the [Python Transforms3D](https://pypi.org/project/transforms3d/) package, that might better be represented algorithmically as $dot(\\textbf{T}, dot(\\textbf{R}, dot(\\textbf{S},\\textbf{H}) ) )$, where \"$dot$\" is a matrix dot product function. In words, a shear correction ($\\textbf{H}$ is first applied to the original $HEZ$ vector to orthogonalize it. This is followed by rescaling the orthogonalized $HEZ$ vectors with $\\textbf{S}$, which is followed by a rigid rotation $\\textbf{R}$ to align all axes with the desired $XYZ$ coordinate frame. Finally, the origin of the now rotated, scaled, and orthogonal vector is translated to make the coordinate frame origins coincide using $\\textbf{T}$.\n", + "\n", + "Looking more closely at $\\textbf{R} = dot(\\textbf{R}_x, dot(\\textbf{R}_y,\\textbf{R}_z))$, it should be even more evident that order of operation is important. The rotation angles ($\\theta_x$, $\\theta_y$, and $\\theta_z$) that combine to form $\\textbf{R}$ are presented here in a manner that resembles typical yaw-pitch-roll rotations. This is 1 of 6 possible so-called Tait-Bryan rotation sequences (re-orientation by rotating around each unique axis once). Proper Euler angles have 6 additional possible sequences that involve a rotation about one axis, then a second, then again about the first. If that were not enough, both the Tait-Bryan and proper Euler angles can be with respect to fixed axes (extrinsic; as above), or with respect to the new axes after each rotation (intrinsic). This leads to 24 possible valid rotations! It is highly recommended that one convention is chosen and used consistently.\n", + "\n", + "The astute reader may wonder at the particular form of $\\textbf{H}$. It is certainly possible to allow shear coefficients in all the off-diagonal elements of the upper-left 3x3 matrix, but we choose not to here for at least two reasons: \n", + "\n", + " 1. shear, by definition, must not alter the volume of the original data points, or in mathematical terms, its determinant is always 1, which is guaranteed by this triangular form; and \n", + " 2. this triangular form permits an efficient mechanism for separating rigid rotation from pure shear (see \"Decomposing a matrix into simple transformations\" by Spencer W. Thomas, pp 320-323 in *Graphics Gems II*, James Arvo (editor), Academic Press, 1991, ISBN: 0120644819).\n", + "\n", + "A nuance related to item 2 is that the solution is only unique in so far as this structure is chosen for the shear. If a different structure is chosen, the rotation matrix will be different, even though the composition of shear and rotation will always be the same. In more practical terms, this means that it is not correct to speak of \"rotation\" and \"shear\" separately, and certainly not appropriate to drop one without careful consideration. In particular, the structure chosen here (i.e., upper-triangular) means that the vector is rotated so that the $Z$ axis of both coordinate frames are aligned perfectly. Then the $E$ axis is sheared in the $Z$ direction, and the $H$ axis is sheared in both $Z$ and $E$ directions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Estimating Affine Transform Matrix](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "While the constituent affine matrices can, in theory, be created individually, through careful sensor design and construction, laboratory calibration, and/or surveying of the observatory site, in practice these are not always possible or adequate. Ultimately, if absolute $XYZ$ measurements are considered the \"truth\" to which variational measurements are to be corrected, the linear structure of the affine transformation allows us to invoke linear estimation theory to determine an optimal transform matrix $\\textbf{M}$ that encapsulates all the necessary corrections to the original $HEZ$ vector data.\n", + "\n", + "$$ \\left[\\begin{array}{cccc} X_1 & X_2 & \\ldots & X_n \\\\ \n", + " Y_1 & Y_2 & \\ldots & Y_n \\\\\n", + " Z_1 & Z_2 & \\ldots & Z_n \\\\\n", + " 1 & 1 & \\ldots & 1 \\end{array}\\right] = \n", + " \\left[ \\begin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14} \\\\\n", + " M_{21} & M_{22} & M_{23} & M_{24} \\\\\n", + " M_{31} & M_{32} & M_{33} & M_{34} \\\\\n", + " M_{41} & M_{42} & M_{43} & M_{44} \\end{array}\\right]\n", + " \\cdotp\n", + " \\left[ \\begin{array}{cccc} H_1 & H_2 & \\ldots & H_n \\\\ \n", + " E_1 & E_2 & \\ldots & E_n \\\\\n", + " Z_1 & Z_2 & \\ldots & Z_n \\\\\n", + " 1 & 1 & \\ldots & 1 \\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Least Squares](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "The most straight-forward estimation technique is least-squares. Many mathematical software libraries have efficient routines that, given measurement arrays constructed similarly to above, will use linear least squares to determine an optimal 4x4 $\\textbf{M}$ matrix to map $HEZ1$ into $XYZ1$ vectors. However, what these all inevitably do, at least under the hood, is rearrange the previous matrix equation algebraically such that:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ \\left[\\begin{array}{c} X_1 \\\\ \n", + " Y_1 \\\\\n", + " Z_1 \\\\\n", + " 1 \\\\\n", + " X_2 \\\\ \n", + " Y_2 \\\\\n", + " Z_2 \\\\\n", + " 1 \\\\\n", + " \\vdots \\\\\n", + " X_n \\\\ \n", + " Y_n \\\\\n", + " Z_n \\\\ \n", + " 1 \\end{array}\\right] = \n", + " \\left[ \\begin{array}{cccccccccccccccc}\n", + " H_1 & E_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_1 & E_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_1 & E_1 & Z_1 & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_1 & E_1 & Z_1 & 1 \\\\\n", + " H_2 & E_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_2 & E_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_2 & E_2 & Z_2 & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_2 & E_2 & Z_2 & 1 \\\\\n", + " \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \n", + " \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\\\ \n", + " H_n & E_n & Z_n & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_n & E_n & Z_n & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_n & E_n & Z_n & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_n & E_n & Z_n & 1 \\\\\n", + " \\end{array} \\right] \\cdotp\n", + " \\left[ \\begin{array}{c}\n", + " M_{11} \\\\\n", + " M_{12} \\\\\n", + " M_{13} \\\\\n", + " M_{14} \\\\\n", + " M_{21} \\\\\n", + " M_{22} \\\\\n", + " M_{23} \\\\\n", + " M_{24} \\\\\n", + " M_{31} \\\\\n", + " M_{32} \\\\\n", + " M_{33} \\\\\n", + " M_{34} \\\\\n", + " M_{41} \\\\\n", + " M_{42} \\\\\n", + " M_{43} \\\\\n", + " M_{44}\\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This system of equations is equivalent to the previous matrix equation with a 4x4 $\\textbf{M}$, but perhaps makes it more clear that we are solving a set of linear equations for 16 unknowns. Given that a single vector measurement comprises only three actual data points, plus the augmented \"1\", it should also be clear that no fewer than 4 sets of absolute and fluxgate measurements are required to obtain a solution. Preferably, there would be many more than 4 sets, thus reducing uncertainty associated with the solution." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is often desirable to constrain the system of equations, usually to reduce the degrees of freedom and reduce the uncertainty associated with the solution to a given system of equations. In fact, while one of the biggest advantages to using affine transformations might be that they include scale factors and shear corrections, in addition to rotation and translation, it has been our experience that allowing so many free parameters leads to over-fitting of the training data. When this happens, the solution, $\\textbf{M}$, does not generalize well when used to adjust raw data between absolute measurements. If the frequency of absolute measurements could be increased substantially, it might be sufficient to reduce uncertainty enough that realistic scale and shear calibrations could be obtained from absolute measurements. Until such time, limiting the number of degrees of freedom helps avoid over-fitting the limited absolute training data.\n", + "\n", + "We recommend doing so in a manner somewhat consistent with traditional (quasi)definitive processing. To start, if we look closely at all the transform matrices in the previous subsection, it is evident that the final row of $\\textbf{M}$ should always be $\\left[\\begin{array}{cccc} 0 & 0 & 0 & 1 \\end{array} \\right]$. We can exploit this knowledge to remove the $M_{4*}$ unknowns from our system of equations, and their corresponding columns in the measurement matrices, thus reducing our number of unknowns from 16 to 12, and slightly reducing uncertainty in the remaining estimated coefficients." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ \\left[\\begin{array}{c} X_1 \\\\ \n", + " Y_1 \\\\\n", + " Z_1 \\\\\n", + " X_2 \\\\ \n", + " Y_2 \\\\\n", + " Z_2 \\\\\n", + " \\vdots \\\\\n", + " X_n \\\\ \n", + " Y_n \\\\\n", + " Z_n \\end{array}\\right] = \n", + " \\left[ \\begin{array}{cccccccccccccccc}\n", + " H_1 & E_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_1 & E_1 & Z_1 & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_1 & E_1 & Z_1 & 1 \\\\\n", + " H_2 & E_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_2 & E_2 & Z_2 & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_2 & E_2 & Z_2 & 1 \\\\\n", + " \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \n", + " \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\\\ \n", + " H_n & E_n & Z_n & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & H_n & E_n & Z_n & 1 & 0 & 0 & 0 & 0 \\\\\n", + " 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & H_n & E_n & Z_n & 1 \\\\\n", + " \\end{array} \\right] \\cdotp\n", + " \\left[ \\begin{array}{c}\n", + " M_{11} \\\\\n", + " M_{12} \\\\\n", + " M_{13} \\\\\n", + " M_{14} \\\\\n", + " M_{21} \\\\\n", + " M_{22} \\\\\n", + " M_{23} \\\\\n", + " M_{24} \\\\\n", + " M_{31} \\\\\n", + " M_{32} \\\\\n", + " M_{33} \\\\\n", + " M_{34} \\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This simple constraint does not buy us much. But now suppose we wish to reduce the the number of free parameters even further by imposing additional prior knowledge/assumptions on the structure of our matrix that are (mostly) consistent with traditional definitive processing techniques. For example, assume that 1) the vertical vector component $Z$ is perfectly aligned between the variometer and the absolute instrument, and 2) it is perfectly orthogonal to the horizontal components; also, 3) the transform of the horizontal vector component is a scaled rotation about the $Z$ axis (that is, no skew). Finally, 4) don't allow any translation of the horizontal components, and 5) only allow translation of the vertical component. This is accomplished by removing and/or moving elements of the previous matrix equation to give the following:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ \\left[\\begin{array}{c} X_1 \\\\ \n", + " Y_1 \\\\\n", + " (Z-Z)_1 \\\\\n", + " X_2 \\\\ \n", + " Y_2 \\\\\n", + " (Z-Z)_2 \\\\\n", + " \\vdots \\\\\n", + " X_n \\\\ \n", + " Y_n \\\\\n", + " (Z-Z)_n \\end{array}\\right] = \n", + " \\left[ \\begin{array}{cccccccccc}\n", + " H_1 & E_1 & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " \\color{green}{E_1} & \\color{green}{-H_1} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " 0 & 0 & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 1 \\\\\n", + " H_2 & E_2 & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " \\color{green}{E_2} & \\color{green}{-H_2} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " 0 & 0 & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 1 \\\\\n", + " \\vdots & \\vdots & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\vdots \\\\ \n", + " H_n & E_n & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " \\color{green}{E_n} & \\color{green}{-H_n} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 0 \\\\\n", + " 0 & 0 & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & \\color{red}{[]} & 1 \\\\\n", + " \\end{array} \\right] \\cdotp\n", + " \\left[ \\begin{array}{c}\n", + " M_{11} \\\\\n", + " M_{12} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " \\color{red}{[]} \\\\\n", + " M_{34} \\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, green indicates moved/edited elements, while red brackets indicate where whole columns were removed, which in turn corresponds to a removal of one of the $M$ coefficients. It is now clear that the degrees of freedom have been reduced from 16 to just 3. Once this set of equations is solved for its three unknowns, they can be inserted into the corresponding locations in the $\\textbf{M}$ matrix:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\\textbf{M} = \n", + " \\left[ \\begin{array}{cccc} M_{11} & M_{12} & 0 & 0 \\\\\n", + " -M_{12} & M_{11} & 0 & 0 \\\\\n", + " 0 & 0 & 1 & M_{34} \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Singular Value Decomposition](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "We note at this point that solving this reduced set of equations is not exactly equivalent to traditional (quasi)definitive processing as presented earlier. In fact, such an affine transform would look something like:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\\textbf{M} = \n", + " \\left[ \\begin{array}{cccc} \\cos\\theta_z & -\\sin\\theta_z & 0 & T_X \\\\ \n", + " \\sin\\theta_z & \\cos\\theta_z & 0 & T_Y \\\\\n", + " 0 & 0 & 1 & T_Z \\\\\n", + " 0 & 0 & 0 & 1 \\end{array}\\right] $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "...where $T_X$ and $T_Y$ are $H_{base}$ rotated into the absolute $XY$ frame through $D_{base}$, or as presented here, $\\theta_z$. But such a matrix cannot be solved for directly from the measurement matrices via least-squares. All is not lost, however. $\\theta_z$ can be found by invoking singular value decomposition (SVD) to obtain the eigenvectors that define an orthonormal rotation matrix between two vector spaces." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With modern numerical libraries, this is actually relatively simple. First, remove the means from both the $HE$ and $XY$ measurement matrices so that their origins coincide (ignore $Z$ for now):\n", + "\n", + "$$\n", + " H_i' = H_i - \\overline{H}, \\quad E_i' = E_i - \\overline{E} \\\\\n", + " X_i' = X_i - \\overline{X}, \\quad Y_i' = Y_i - \\overline{Y}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, create a cross-covariance matrix between $HE$ and $XY$:\n", + "\n", + "$$\n", + " \\textbf{C} = \\left[ \\begin{array}{cc} c_{11} & c_{12} \\\\\n", + " c_{21} & c_{22} \\end{array}\\right]\n", + "$$\n", + "\n", + "...where...\n", + "\n", + "$$\n", + " c_{11} = \\sum_i^n H_i' X_i', \\quad\n", + " c_{12} = \\sum_i^n H_i' Y_i', \\quad\n", + " c_{21} = \\sum_i^n E_i' X_i', \\quad\n", + " c_{22} = \\sum_i^n E_i' Y_i'\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, decompose $\\textbf{C}$ into its singular values, plus left and right eigenvectors using the SVD routine found in your favorite numerical linear algebra library:\n", + "\n", + "$$\n", + " \\textbf{C} = \\textbf{USV}^*\n", + "$$\n", + "\n", + "...where singular values $s_i$ comprise the diagonal elements of $\\textbf{S}$, and the orthonormal matrices $\\textbf{U}$ and $\\textbf{V}^*$ can be combined to give the unscaled rotation that aligns $HE$ with $XY$:\n", + "\n", + "$$\n", + " \\textbf{R} = \\textbf{V}^{*\\intercal} \\cdotp \\textbf{U}^\\intercal\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, with $\\textbf{R}$, simply rotate $\\overline{H}$ and $\\overline{E}$ into absolute coordinates to obtain $T_X$ and $T_Y$:\n", + "\n", + "$$\n", + " \\left[ \\begin{array}{c} T_X \\\\\n", + " T_Y \\end{array} \\right] = \n", + " \\textbf{R} \\cdotp \\left[ \\begin{array}{c} \\overline{H} \\\\\n", + " \\overline{E} \\end{array} \\right]\n", + "$$\n", + "\n", + "($T_Z$ is simply the difference in the averages of the vertical components, just as with traditional processing)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that there are now four degrees of freedom ($\\theta_z$, $T_X$, $T_Y$, and $T_Z$) instead of the three traditional (quasi)definitive baselines. This is because $T_X$ and $T_Y$ are allowed to float, rather than be trigonometrically locked to one another via $\\theta_z$. We might effectively do this with an affine transformation, and obtain a near perfect analog to (quasi)definitive processing, but one of the main problems with the traditional approach presented above is that it requires that the fluxgate sensor be aligned with the local magnetic meridian for the math/geometry to work out. Using affine transformations, this is no longer necessary. Of course by increasing the degrees of freedom, the uncertainty of our final solution is slightly higher; but then the uncertainty *should be* higher, since a potential offset in $E$ is now included in the calculations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Adaptive Coefficients](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "ddd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [Functional Tests](#SqDist-Algorithm---Contents:)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The purpose of this section is to demonstrate that the algorithm works as expected, and to a lesser extent, demonstrate its utility with realistic usage examples. While some material here might be extracted to generate unit tests for the algorithm, these are primarily *functional* tests, and may be more complex than one might want to incorporate into an automated testing framework. Explanatory markdown, inline comments, or both, should tie different tests to the Algorithm Theoretical Basis above as much as possible." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Imports](#SqDist-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# standard Python libraries\n", + "import matplotlib as mpl\n", + "#import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import scipy as sp\n", + "import scipy.linalg as spl\n", + "import glob\n", + "from datetime import datetime \n", + "import re\n", + "from matplotlib.gridspec import GridSpec\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from openpyxl import load_workbook\n", + "\n", + "# 3rd-party libraries\n", + "import obspy\n", + "from obspy.core import UTCDateTime\n", + "import geomagio\n", + "from geomagio.edge import EdgeFactory\n", + "#from geomagio.Algorithm import DeltaFAlgorithm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Test Configuration](#SqDist-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# define assert_almost_equal\n", + "assert_almost_equal = np.testing.assert_almost_equal\n", + "\n", + "# define factory for retrieving raw observations\n", + "# NOTE: need to make sure QD data is on cwbpub before public release\n", + "#factory = EdgeFactory(host='cwbpub.cr.usgs.gov', port=2060)\n", + "factory = EdgeFactory(host='igskcicgvmmage2.cr.usgs.gov', port=2060)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [Synthetic Data Demonstration](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Construct synthetic time series](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "- define a regular series of times t, and synthetic \"truth\" vectors (x, y, z) that represent the desired results\n", + "- define an affine transformation matrix that converts the truth vectors into a different \"observed\" basis" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = np.linspace(0, np.pi, 5000)\n", + "\n", + "x1 = (2*t - np.pi)/np.pi\n", + "y1 = np.sqrt(1 - x1**2)*np.cos(24*t)\n", + "z1 = np.sqrt(1 - x1**2)*np.sin(24*t)\n", + "\n", + "# plot xy plane, xz plane, and yz plane\n", + "plt.figure(figsize=(8,3))\n", + "\n", + "plt.subplot(131)\n", + "plt.plot(x1,y1)\n", + "plt.xlabel('x1')\n", + "plt.ylabel('y1')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.subplot(132)\n", + "plt.plot(x1,z1)\n", + "plt.xlabel('x1')\n", + "plt.ylabel('z1')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.subplot(133)\n", + "plt.plot(y1,z1)\n", + "plt.xlabel('y1')\n", + "plt.ylabel('z1')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# first, create a pure rotation matrix\n", + "def make_axis_rotation_matrix(direction, angle):\n", + " \"\"\"\n", + " Create a rotation matrix corresponding to the rotation around a general\n", + " axis by a specified angle.\n", + " R = dd^T + cos(a) (I - dd^T) + sin(a) skew(d)\n", + " Parameters:\n", + " angle : float a\n", + " direction : array d\n", + " \"\"\"\n", + " d = np.array(direction, dtype=np.float64)\n", + " d /= np.linalg.norm(d)\n", + "\n", + " eye = np.eye(3, dtype=np.float64)\n", + " ddt = np.outer(d, d)\n", + " skew = np.array([[ 0, d[2], -d[1]],\n", + " [-d[2], 0, d[0]],\n", + " [d[1], -d[0], 0]], dtype=np.float64)\n", + "\n", + " mtx = ddt + np.cos(angle) * (eye - ddt) + np.sin(angle) * skew\n", + " return mtx\n", + "Mrot = make_axis_rotation_matrix(np.array([1,1,1]),45*np.pi/180)\n", + "\n", + "# second, create a pure scaling matrix\n", + "Mscale = np.array([[1.5, 0, 0], [0, 0.95, 0], [0, 0, 1.2]])\n", + "\n", + "# third, create a pure translation vector\n", + "Vtrans = np.array([[3],[4],[3]])\n", + "\n", + "# fourth, combine these into an affine transformation to our new basis\n", + "Maugmented = np.hstack([np.dot(Mscale,Mrot), Vtrans])\n", + "Maffine = np.vstack([Maugmented, np.array([0,0,0,1])])\n", + "\n", + "# finally, apply this affine transformation to our \"truth\" data, extended by\n", + "# a time series of 1s for the translation\n", + "x2, y2, z2, _ = np.dot(Maffine, np.vstack((x1, y1, z1, np.ones_like(x1))))\n", + "\n", + "\n", + "# plot xy plane, xz plane, and yz plane\n", + "plt.figure(figsize=(8,3))\n", + "\n", + "plt.subplot(131)\n", + "plt.plot(x2,y2*np.nan) # to force 2nd color\n", + "plt.plot(x2,y2)\n", + "plt.xlabel('x2')\n", + "plt.ylabel('y2')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.subplot(132)\n", + "plt.plot(x2,z2*np.nan) # to force 2nd color\n", + "plt.plot(x2,z2)\n", + "plt.xlabel('x2')\n", + "plt.ylabel('z2')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.subplot(133)\n", + "plt.plot(y2,z2*np.nan) # to force 2nd color\n", + "plt.plot(y2,z2)\n", + "plt.xlabel('y2')\n", + "plt.ylabel('z2')\n", + "plt.gca().set_aspect('equal')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5,0,'z')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# plot 3D view of 'truth' and transformed vectors\n", + "plt.figure(figsize=(8,6))\n", + "\n", + "plt.subplot(111, projection='3d')\n", + "plt.plot(x1, y1, z1)\n", + "plt.plot(x2, y2, z2)\n", + "plt.gca().set_xlabel('x')\n", + "plt.gca().set_ylabel('y')\n", + "plt.gca().set_zlabel('z')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot vs time\n", + "plt.figure(figsize=(8,3))\n", + "\n", + "plt.subplot(131)\n", + "plt.plot(t, x1)\n", + "plt.plot(t, x2)\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(132)\n", + "plt.plot(t, y1)\n", + "plt.plot(t, y2)\n", + "plt.xlabel('t')\n", + "plt.ylabel('y')\n", + "\n", + "plt.subplot(133)\n", + "plt.plot(t, z1)\n", + "plt.plot(t, z2)\n", + "plt.xlabel('t')\n", + "plt.ylabel('z')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Estimate Affine Transformation Matrix](#Adjusted-Data-Algorithm---Contents:)\n", + "\n", + "Define functions to solve for the affine transform matrix $[M]$, and perform the transformation once $[M]$ is calculated.\n", + "\n", + "$$ \\left[\\begin{array}{cccc} X_1 & X_2 & \\ldots & X_n \\\\ \n", + " Y_1 & Y_2 & \\ldots & Y_n \\\\\n", + " Z_1 & Z_2 & \\ldots & Z_n \\\\\n", + " 1 & 1 & \\ldots & 1 \\end{array}\\right] = [M] \\left[ \\begin{array}{cccc} h_1 & h_2 & \\ldots & h_n \\\\ \n", + " e_1 & e_2 & \\ldots & e_n \\\\\n", + " z_1 & z_2 & \\ldots & z_n \\\\\n", + " 1 & 1 & \\ldots & 1 \\end{array}\\right] $$\n", + "\n", + "Below, we:\n", + "- sample \"truth\" observations (similar to taking \"absolute\" measurements)\n", + "- sample transformed observations (similar to variation measurements)\n", + "- invert for optimal affine trasnformation matrix M\n", + "- use M to calculate adjusted data\n", + "- plot observed and adjusted data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def get_transform_from_abs_ords(xyz_abs, hez_ord):\n", + " '''\n", + " pass two 3-row arrays (or 3-lists of vectors), one for each of:\n", + " - absolute magnetic vectors in geographic frame (XYZ)\n", + " - observed magnetic vectors in instrument frame (HEZ)\n", + " \n", + " Returns:\n", + " - affine transform matrix to convert observed vectors to absolute basis\n", + " - sum of residues from linear fit\n", + " - effective rank of affine matrix\n", + " - singular values\n", + " '''\n", + " tol = 1e-15\n", + " \n", + " ones = np.ones(hez_ord[0].shape)\n", + "\n", + " ordp2 = np.vstack([hez_ord,ones])\n", + "\n", + " absp2 = np.vstack([xyz_abs,ones])\n", + "\n", + " M, res, rank, sigma = np.linalg.lstsq(ordp2.T, absp2.T)\n", + "\n", + " maskM = np.abs(M) > tol\n", + " M = maskM * M\n", + " \n", + " return M.T, res, rank, sigma\n", + "\n", + "\n", + "def make_adjusted_from_transform_and_raw(M, hez_ord):\n", + " '''\n", + " pass in:\n", + " - affine transform matrix M\n", + " - observed vectors as 3-row matrix (or 3-list of 1D arrays)\n", + " \n", + " Returns adjusted data in absolute geographic reference frame\n", + " '''\n", + "\n", + " adj = np.dot(M, np.vstack([hez_ord, np.ones_like(hez_ord[0])]))\n", + "\n", + " return adj[0:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/ipykernel_launcher.py:21: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\n", + "To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\n" + ] + }, + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# sub-sample indices used to solve for M\n", + "idx_abs = np.arange(x1.size)[::250]\n", + "\n", + "# solve for affine transforation matrix\n", + "M, resid, rank, lamda = get_transform_from_abs_ords([x1, y1, z1], [x2, y2, z2])\n", + "\n", + "# calculate adjusted data\n", + "xadj, yadj, zadj = make_adjusted_from_transform_and_raw(M, [x2, y2, z2])\n", + "\n", + "# plot sub-sampled observations and adjusted data (should look like plots above)\n", + "plt.figure(figsize=(8,3))\n", + "\n", + "plt.subplot(131)\n", + "plt.plot(t, xadj)\n", + "plt.plot(t, x2)\n", + "plt.plot(t[idx_abs], x1[idx_abs],'*k')\n", + "plt.plot(t[idx_abs], x2[idx_abs],'*k')\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(132)\n", + "plt.plot(t, yadj)\n", + "plt.plot(t, y2)\n", + "plt.plot(t[idx_abs], y1[idx_abs],'*k')\n", + "plt.plot(t[idx_abs], y2[idx_abs],'*k')\n", + "plt.xlabel('t')\n", + "plt.ylabel('y')\n", + "\n", + "plt.subplot(133)\n", + "plt.plot(t, zadj)\n", + "plt.plot(t, z2)\n", + "plt.plot(t[idx_abs], z1[idx_abs],'*k')\n", + "plt.plot(t[idx_abs], z2[idx_abs],'*k')\n", + "plt.xlabel('t')\n", + "plt.ylabel('z')\n", + "\n", + "plt.tight_layout()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# [Comparison with (Quasi-)Definitive Data](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Notebook Functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Baseline and Absolute Data Retrieval\n", + "\n", + "Functions here should retrieve baseline and absolutes measurements:\n", + "\n", + "**Inputs** \n", + "```\n", + "obs_code - 3-character IAGA code for observatory\n", + "start_date - UTCDatetime for start of interval\n", + "end_date - UTCDatetime for end of interval \n", + "```\n", + "**Options** \n", + "```\n", + "path_or_url - string that holds a base path or url at which to\n", + " find baseline and absolute observations\n", + " (default = max(times))\n", + "```\n", + "**Output** \n", + "```\n", + "h_abs_bas_utc - array holding vectors of h_abs, h_bas, and h_utc\n", + "d_abs_bas_utc - array holding vectors of d_abs, d_bas, and d_utc\n", + "z_abs_bas_utc - array holding vectors of z_abs, z_bas, and z_utc\n", + "pc - array holding pier corrections\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def retrieve_baselines_resid_summary_xlsm(obs_code, start_date, end_date,\n", + " path_or_url = './'):\n", + " '''\n", + " Retrieve baselines from USGS Geomag residual method summary Excel \n", + " spreadsheets on local file system. This is a very simple data reader\n", + " that assumes a fixed filename convention, and a fixed template for\n", + " the summary spreadsheet.\n", + " \n", + " Inputs:\n", + " obs_code - 3-character IAGA code for observatory\n", + " start_date - UTCDatetime for start of interval\n", + " end_date - UTCDatetime for end of interval\n", + " path_or_url - folder in which to find .xlsm files\n", + " \n", + " Outout:\n", + " h_abs_bas_utc - array holding vectors of h_abs, h_bas, and h_utc\n", + " d_abs_bas_utc - array holding vectors of d_abs, d_bas, and d_utc\n", + " z_abs_bas_utc - array holding vectors of z_abs, z_bas, and z_utc\n", + " pc - array holding pier corrections\n", + " '''\n", + " #from glob import glob\n", + " import os\n", + " import fnmatch\n", + " from openpyxl import load_workbook\n", + " from datetime import timedelta\n", + " from obspy.core import UTCDateTime\n", + " \n", + " # some default inputs\n", + " if end_date is None:\n", + " end_date = UTCDateTime.now()\n", + " \n", + " if start_date is None:\n", + " start_date = UTCDatetime(0)\n", + " \n", + " \n", + " # initialize outputs\n", + " h_abs = []\n", + " h_bas = []\n", + " h_dt = []\n", + " \n", + " d_abs = []\n", + " d_bas = []\n", + " d_dt = []\n", + " \n", + " z_abs = []\n", + " z_bas = []\n", + " z_dt = []\n", + " \n", + " pc = []\n", + " \n", + " # openpyxl uses Python datetime objects\n", + " start_dt = start_date.datetime\n", + " end_dt = end_date.datetime\n", + " last_dt = start_dt\n", + " \n", + " # loop over all [obs_code]??????????.xlsm files in all folders under path_or_url\n", + " for root, dirnames, filenames in os.walk(path_or_url + '/' + obs_code.upper()):\n", + " for filename in fnmatch.filter(filenames, obs_code.upper() + '???????????.xlsm'):\n", + " \n", + " # load workbook\n", + " # (data_only=True forces openpyxl to read in data saved in\n", + " # a cell, even if the cell is actually a formula; if False,\n", + " # openpyxl would return the formuala; openpyxl NEVER evaluates\n", + " # a formula, it relies on values generated and cached by the\n", + " # spreadsheet program itself)\n", + " wb = load_workbook(os.path.join(root,filename), data_only=True)\n", + "\n", + " # get worksheet 1\n", + " ws1 = wb[\"Sheet1\"]\n", + "\n", + " # get date (pyxl retrieves as datetime object)\n", + " date = ws1[\"I1\"].value\n", + " \n", + " # these spreadsheet files must have a particular layout; if there is\n", + " # any problem reading in data, just skip the whole file\n", + " try:\n", + " \n", + " # (re)initialize valid list\n", + " valid = [True, True, True, True]\n", + "\n", + " # get and convert declination times\n", + " d_time_str = ['%04i'%ws1[\"B10\"].value,\n", + " '%04i'%ws1[\"B11\"].value,\n", + " '%04i'%ws1[\"B12\"].value,\n", + " '%04i'%ws1[\"B13\"].value]\n", + " d_time_delta = [timedelta(hours=int(s[0:2])) +\n", + " timedelta(minutes=int(s[2:4]))\n", + " for s in d_time_str]\n", + " d_datetime = [date + td for td in d_time_delta]\n", + "\n", + " # get and convert declination absolute fractional angles\n", + " d_absolute = [[float(ws1[\"C10\"].value), float(ws1[\"D10\"].value)],\n", + " [float(ws1[\"C11\"].value), float(ws1[\"D11\"].value)],\n", + " [float(ws1[\"C12\"].value), float(ws1[\"D12\"].value)],\n", + " [float(ws1[\"C13\"].value), float(ws1[\"D13\"].value)]]\n", + " d_absolute = [d + m/60 for d,m in d_absolute if m is not None]\n", + "\n", + " # get and convert declination baseline fractional angles\n", + " d_baseline = [float(ws1[\"H10\"].value),\n", + " float(ws1[\"H11\"].value),\n", + " float(ws1[\"H12\"].value),\n", + " float(ws1[\"H13\"].value)]\n", + " d_baseline = [db/60 for db in d_baseline if db is not None]\n", + "\n", + " d_reject = [ws1[\"J10\"].value,\n", + " ws1[\"J11\"].value,\n", + " ws1[\"J12\"].value,\n", + " ws1[\"J13\"].value]\n", + "\n", + " # (relies on strings evaluating True, and Nones evaluating False)\n", + " valid = [v and da is not None and db is not None and not dr\n", + " for v,da,db,dr in zip(valid, d_absolute, d_baseline, d_reject)]\n", + " \n", + " # get horizontal field times (for consistency with WebAbsolutes, even\n", + " # if these spreadsheets always have the same times for D, H, and Z)\n", + " h_time_str = ['%04i'%ws1[\"B24\"].value,\n", + " '%04i'%ws1[\"B25\"].value,\n", + " '%04i'%ws1[\"B26\"].value,\n", + " '%04i'%ws1[\"B27\"].value]\n", + " h_time_delta = [timedelta(hours=int(s[0:2])) +\n", + " timedelta(minutes=int(s[2:4]))\n", + " for s in h_time_str]\n", + " h_datetime = [date + td for td in h_time_delta]\n", + "\n", + " # get absolute horizontal field magnitude in nT\n", + " h_absolute = [float(ws1[\"D24\"].value),\n", + " float(ws1[\"D25\"].value),\n", + " float(ws1[\"D26\"].value),\n", + " float(ws1[\"D27\"].value)]\n", + "\n", + " # get baseline horizontal field magnitude in nT\n", + " h_baseline = [float(ws1[\"H24\"].value),\n", + " float(ws1[\"H25\"].value),\n", + " float(ws1[\"H26\"].value),\n", + " float(ws1[\"H27\"].value)]\n", + "\n", + " h_reject = [ws1[\"J24\"].value,\n", + " ws1[\"J25\"].value,\n", + " ws1[\"J26\"].value,\n", + " ws1[\"J27\"].value]\n", + "\n", + " # (relies on strings evaluating True, and Nones evaluating False)\n", + " valid = [v and ha is not None and hb is not None and not hr\n", + " for v,ha,hb,hr in zip(valid, h_absolute, h_baseline, h_reject)] \n", + "\n", + "\n", + " # get vertical field times (for consistency with WebAbsolutes, even\n", + " # if these spreadsheets always have the same times for D, H, and Z)\n", + " z_time_str = ['%04i'%ws1[\"B38\"].value,\n", + " '%04i'%ws1[\"B39\"].value,\n", + " '%04i'%ws1[\"B40\"].value,\n", + " '%04i'%ws1[\"B41\"].value]\n", + " z_time_delta = [timedelta(hours=int(s[0:2])) +\n", + " timedelta(minutes=int(s[2:4]))\n", + " for s in z_time_str]\n", + " z_datetime = [date + td for td in z_time_delta]\n", + "\n", + " # get absolute vertical field component in nT\n", + " z_absolute = [float(ws1[\"D38\"].value),\n", + " float(ws1[\"D39\"].value),\n", + " float(ws1[\"D40\"].value),\n", + " float(ws1[\"D41\"].value)]\n", + "\n", + " # get baseline vertical field component in nT\n", + " z_baseline = [float(ws1[\"H38\"].value),\n", + " float(ws1[\"H39\"].value),\n", + " float(ws1[\"H40\"].value),\n", + " float(ws1[\"H41\"].value)]\n", + "\n", + " z_reject = [ws1[\"J38\"].value,\n", + " ws1[\"J39\"].value,\n", + " ws1[\"J40\"].value,\n", + " ws1[\"J41\"].value]\n", + "\n", + " # (relies on strings evaluating True, and Nones evaluating False)\n", + " valid = [v and za is not None and zb is not None and not zr\n", + " for v,za,zb,zr in zip(valid, z_absolute, z_baseline, z_reject)]\n", + " \n", + " except:\n", + " \n", + " print(\"There was a problem reading file %s...skipping!\"%\n", + " os.path.join(root,filename))\n", + " \n", + " else:\n", + " \n", + " # add to lists, filtering on start_dt and end_dt and valid\n", + " d_dt.extend([dtt for dtt,v in zip(d_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " d_abs.extend([abs for abs,dtt,v in zip(d_absolute, d_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " d_bas.extend([bas for bas,dtt,v in zip(d_baseline, d_datetime, valid)\n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + "\n", + " h_dt.extend([dtt for dtt,v in zip(h_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " h_abs.extend([abs for abs,dtt,v in zip(h_absolute, h_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " h_bas.extend([bas for bas,dtt,v in zip(h_baseline, h_datetime, valid)\n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + "\n", + " z_dt.extend([dtt for dtt,v in zip(z_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " z_abs.extend([abs for abs,dtt,v in zip(z_absolute, z_datetime, valid) \n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + " z_bas.extend([bas for bas,dtt,v in zip(z_baseline, z_datetime, valid)\n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + "\n", + "\n", + " # get pier corrections (one for each measurement, NOT one per file,\n", + " # even though that is all that is stored in these spreadsheets)\n", + " pc.extend([ws1[\"C5\"].value for dtt,v in zip(z_datetime, valid)\n", + " if dtt >= start_dt and dtt <= end_dt and v])\n", + "\n", + "\n", + " # the following is a kludge where we assume zero-amplitude horizontal field\n", + " # serves as a \"flag\" for when some change was made to the observatory that\n", + " # was significant enough to discard all previous absolute measurements\n", + " # (i.e., an observer set inclination to exactly 90, which should never\n", + " # happen for valid absolute measurements at USGS observatories);\n", + " flags = (np.equal(h_absolute, 0) & \n", + " (np.array(h_datetime) >= start_dt) & \n", + " (np.array(h_datetime) <= end_dt))\n", + " if (flags.any()):\n", + " last_dt = max(max(np.array(h_datetime)[flags]), last_dt)\n", + " \n", + " \n", + " # close workbook\n", + " wb.close()\n", + " \n", + " # convert output lists to NumPy arrays\n", + " h_abs = np.array(h_abs)\n", + " d_abs = np.array(d_abs)\n", + " z_abs = np.array(z_abs)\n", + " h_bas = np.array(h_bas)\n", + " d_bas = np.array(d_bas)\n", + " z_bas = np.array(z_bas)\n", + " pc = np.array(pc)\n", + " \n", + " # convert datetimes to UTCDateTimes\n", + " h_utc = np.array([UTCDateTime(dt) for dt in h_dt])\n", + " d_utc = np.array([UTCDateTime(dt) for dt in d_dt])\n", + " z_utc = np.array([UTCDateTime(dt) for dt in z_dt])\n", + " \n", + " \n", + " # print message about modified magnetometer\n", + " if last_dt != start_dt:\n", + " print('Magnetometer altered, discarding measurements prior to %s'%\n", + " last_dt)\n", + " \n", + " # only return data more recent than last_dt\n", + " good = (h_utc > last_dt) & (d_utc > last_dt) & (z_utc > last_dt)\n", + " h_abs = h_abs[good]\n", + " d_abs = d_abs[good]\n", + " z_abs = z_abs[good]\n", + " h_bas = h_bas[good]\n", + " d_bas = d_bas[good]\n", + " z_bas = z_bas[good]\n", + " pc = pc[good]\n", + " h_utc = h_utc[good]\n", + " d_utc = d_utc[good]\n", + " z_utc = z_utc[good]\n", + " \n", + " \n", + " # return \"good\" data points\n", + " return ((h_abs, h_bas, h_dt), \n", + " (d_abs, d_bas, d_dt), \n", + " (z_abs, z_bas, z_dt),\n", + " pc)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def retrieve_baselines_webabsolutes(obs_code, start_date=None, end_date=None,\n", + " path_or_url='https://geomag.usgs.gov/'):\n", + " '''\n", + " Retrieve baselines from USGS Geomag web-absolutes webservice\n", + " \n", + " Inputs:\n", + " obs_code - 3-character IAGA code for observatory\n", + " start_date - UTCDatetime for start of interval\n", + " end_date - UTCDatetime for end of interval\n", + " path_or_url - URL for web server hosting webabsolutes service\n", + " \n", + " Outout:\n", + " h_abs_bas_utc - array holding vectors of h_abs, h_bas, and h_utc\n", + " d_abs_bas_utc - array holding vectors of d_abs, d_bas, and d_utc\n", + " z_abs_bas_utc - array holding vectors of z_abs, z_bas, and z_utc\n", + " pc - array holding pier corrections\n", + " '''\n", + " \n", + " import json\n", + " import urllib \n", + " from obspy.core import UTCDateTime\n", + " \n", + " # some defaults\n", + " if end_date is None:\n", + " end_date = UTCDateTime.now()\n", + " \n", + " if start_date is None:\n", + " start_date = UTCDatetime(0)\n", + " \n", + " # convert to unix epoch time (seconds since 1/1/1970)\n", + " start_epoch = start_date.timestamp\n", + " end_epoch = end_date.timestamp\n", + " \n", + " # used to identify last epoch of obsolete observatory configuration\n", + " last_epoch = start_epoch\n", + " \n", + " \n", + " # open, read, and parse URL for WebAbsolutes webservice\n", + " baseline_url = path_or_url + '/baselines/observation.json.php'\n", + " full_url = (\n", + " baseline_url + \n", + " '?observatory=' + obs_code +\n", + " '&starttime=' + start_date.isoformat() + \n", + " '&endtime=' + end_date.isoformat() +\n", + " '&includemeasurements=true'\n", + " )\n", + " response = urllib.request.urlopen(full_url)\n", + " parsed_response = json.load(response)\n", + " \n", + " \n", + " # initialize observation lists\n", + " h_abs = []\n", + " d_abs = []\n", + " z_abs = []\n", + " h_bas = []\n", + " d_bas = []\n", + " z_bas = []\n", + " h_t = []\n", + " d_t = []\n", + " z_t = []\n", + " pc = []\n", + " \n", + " # loop over all sets, disregarding observation grouping\n", + " for datum in parsed_response['data']:\n", + " for reading in datum['readings']:\n", + " # extract only complete and validated baseline sets; also,\n", + " # filter on reading 'end' times to partially address issues \n", + " # with database time stamps\n", + " if (reading['H']['absolute'] is not None and\n", + " reading['D']['absolute'] is not None and\n", + " reading['Z']['absolute'] is not None and\n", + " reading['H']['baseline'] is not None and\n", + " reading['D']['baseline'] is not None and\n", + " reading['Z']['baseline'] is not None and\n", + " reading['H']['valid'] is True and\n", + " reading['D']['valid'] is True and\n", + " reading['Z']['valid'] is True and\n", + " reading['H']['end'] is not None and\n", + " reading['H']['end'] >= start_epoch and\n", + " reading['H']['end'] <= end_epoch and\n", + " reading['H']['end'] is not None and\n", + " reading['D']['end'] >= start_epoch and\n", + " reading['D']['end'] <= end_epoch and\n", + " reading['H']['end'] is not None and\n", + " reading['Z']['end'] >= start_epoch and\n", + " reading['Z']['end'] <= end_epoch):\n", + " \n", + " h_abs.append(reading['H']['absolute'])\n", + " d_abs.append(reading['D']['absolute'])\n", + " z_abs.append(reading['Z']['absolute'])\n", + " h_bas.append(reading['H']['baseline'])\n", + " d_bas.append(reading['D']['baseline'])\n", + " z_bas.append(reading['Z']['baseline'])\n", + " h_t.append(reading['H']['end'])\n", + " d_t.append(reading['D']['end'])\n", + " z_t.append(reading['Z']['end'])\n", + " pc.append(float(datum['pier']['correction'])) \n", + " \n", + " # the following is a kludge where zero-amplitude horizontal field\n", + " # serves as a \"flag\" for when observatory change was significant\n", + " # enough to discard all previous absolute measurements\n", + " if (reading['H']['absolute'] is 0):\n", + " last_epoch = max(reading['H']['end'], last_epoch)\n", + "\n", + " # print message about modified magnetometer\n", + " if last_epoch != start_epoch:\n", + " print('Magnetometer altered, discarding measurements prior to %s'%\n", + " datetime.utcfromtimestamp(last_epoch)) \n", + " \n", + " # convert lists to NumPy arrays\n", + " h_abs = np.array(h_abs)\n", + " d_abs = np.array(d_abs)\n", + " z_abs = np.array(z_abs)\n", + " h_bas = np.array(h_bas)\n", + " d_bas = np.array(d_bas)\n", + " z_bas = np.array(z_bas)\n", + " pc = np.array(pc)\n", + " \n", + " # convert epochs to UTCDateTimes\n", + " h_utc = np.array([UTCDateTime(t) for t in h_t])\n", + " d_utc = np.array([UTCDateTime(t) for t in d_t])\n", + " z_utc = np.array([UTCDateTime(t) for t in z_t])\n", + " \n", + " \n", + " # only return data more recent than last_epoch\n", + " good = (h_utc > last_epoch) & (d_utc > last_epoch) & (z_utc > last_epoch)\n", + " h_abs = h_abs[good]\n", + " d_abs = d_abs[good]\n", + " z_abs = z_abs[good]\n", + " h_bas = h_bas[good]\n", + " d_bas = d_bas[good]\n", + " z_bas = z_bas[good]\n", + " pc = pc[good]\n", + " h_utc = h_utc[good]\n", + " d_utc = d_utc[good]\n", + " z_utc = z_utc[good]\n", + " \n", + "\n", + " # return data arrays\n", + " return ((h_abs, h_bas, h_utc), \n", + " (d_abs, d_bas, d_utc), \n", + " (z_abs, z_bas, z_utc),\n", + " pc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation Time Weighting Functions\n", + "\n", + "Functions here should calculate time-dependent weights given:\n", + "\n", + "**Inputs** \n", + "```\n", + "times - 1D array of times, or any time-like index whose\n", + " relative values represent spacing between events\n", + "memory - time scale over which weights decrease by a \n", + " prescribed amount relative to the maximum weight \n", + " \n", + "```\n", + "**Options** \n", + "```\n", + "epoch - time at which weights maximize\n", + " (default = max(times))\n", + "```\n", + "**Output** \n", + "```\n", + "weights - 1D array of weights\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def time_weights_exponential(times, memory, epoch=None):\n", + " '''\n", + " Calculate time-dependent weights according to exponential decay.\n", + " \n", + " Inputs:\n", + " times - 1D array of times, or any time-like index whose\n", + " relative values represent spacing between events\n", + " memory - exp(-1) time scale; weights will be ~37% of max\n", + " weight when time difference equals memory, and ~5%\n", + " of max weight when time difference is 3X memory\n", + " \n", + " Options:\n", + " epoch - time at which weights maximize\n", + " (default = max(times))\n", + " \n", + " Outout:\n", + " dist - an M element array of vector distances/metrics\n", + "\n", + " NOTE: ObsPy UTCDateTime objects can be passed in times, but\n", + " memory must then be specified in seconds\n", + " FIXME: Python datetime objects not supported yet\n", + "\n", + " '''\n", + " \n", + " # convert to array of floats\n", + " # (allows UTCDateTimes, but not datetime.datetimes)\n", + " times = np.asarray(times).astype(float)\n", + " \n", + " # quick input check\n", + " if (times.ndim > 1):\n", + " raise ValueError('times must be 1D array')\n", + " \n", + " if not np.size(memory) == 1:\n", + " raise ValueError('memory must be a scalar')\n", + " \n", + " if epoch is None:\n", + " epoch = float(max(times))\n", + " else:\n", + " if not np.size(epoch) == 1:\n", + " raise ValueError('value must be a scalar')\n", + " epoch = float(epoch)\n", + " \n", + " # if memory is actually infinite, return equal weights\n", + " if np.isinf(memory):\n", + " return np.ones(times.shape)\n", + " \n", + " # initialize weights\n", + " weights = np.zeros(times.shape)\n", + " \n", + " # calculate exponential decay time-dependent weights\n", + " weights[times <= epoch] = np.exp((times[times <= epoch] - epoch) / memory)\n", + " weights[times >= epoch] = np.exp((epoch - times[times >= epoch]) / memory)\n", + " \n", + " return weights" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def time_weights_linear(times, memory, epoch=None):\n", + " '''\n", + " Calculate time-dependent weights according to linear decay.\n", + " \n", + " Inputs:\n", + " times - 1D array of times, or any time-like index whose\n", + " relative values represent spacing between events\n", + " memory - linear time scale interval; weights will be 0% of\n", + " max weight when time difference equals memory\n", + " \n", + " Options:\n", + " epoch - time at which weights maximize\n", + " (default = max(times))\n", + " \n", + " Outout:\n", + " dist - an M element array of vector distances/metrics\n", + " \n", + "\n", + " NOTE: ObsPy UTCDateTime objects can be passed in times, but\n", + " memory must then be specified in seconds\n", + " FIXME: Python datetime objects not supported yet\n", + "\n", + " '''\n", + " \n", + " # convert to array of floats\n", + " # (allows UTCDateTimes, but not datetime.datetimes)\n", + " times = np.asarray(times).astype(float)\n", + " times = np.asarray(times).astype(float)\n", + " \n", + " # quick input check\n", + " if (times.ndim > 1):\n", + " raise ValueError('times must be 1D array')\n", + " \n", + " if not np.size(memory) == 1:\n", + " raise ValueError('memory must be a scalar')\n", + " \n", + " if epoch is None:\n", + " epoch = float(max(times))\n", + " else:\n", + " if not np.size(epoch) == 1:\n", + " raise ValueError('value must be a scalar')\n", + " epoch = float(epoch)\n", + " \n", + " # if memory is actually infinite, return equal weights\n", + " if np.isinf(memory):\n", + " return np.ones(times.shape)\n", + " \n", + " # initialize weights\n", + " weights = np.zeros(times.shape)\n", + "\n", + " # calculate exponential decay time-dependent weights\n", + " weights[times <= epoch] = (times[times <= epoch] - epoch + memory) / memory\n", + " weights[times >= epoch] = (epoch - times[times >= epoch] + memory) / memory\n", + " \n", + " # set negative weights to zero\n", + " weights[weights < 0] = 0\n", + " \n", + " return weights" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Vector Distance Calculator\n", + "\n", + "Function here should calculate vector distances given:\n", + "\n", + "**Inputs** \n", + "```\n", + "vectors_A - NxM array where N is number of vector axes and M is number of observations\n", + "vectors_B - NxM array where N is number of vector axes and M is number of observations\n", + "```\n", + "**Options** \n", + "```\n", + "metric - string specifying a supported metric\n", + "VI - inverse (co)variance by which to scale distances\n", + " (if None, calculate scaling (co)variance appropriate\n", + " for metric from vectors_A and vectors_B, then apply)\n", + "```\n", + "**Output** \n", + "```\n", + "dist - an M element array of vector distances/metrics\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def vector_dist(vectors_A, vectors_B, metric=None, VI=None):\n", + " '''\n", + " Calculate a vector distance/metric between corresponding elements of\n", + " vectors_A and vectors_B. This is essentially the diagonal of the cdist\n", + " function, but without all the undesired extra calculations. SciPy \n", + " doesn't seem to offer an equivalent function.\n", + " \n", + " Inputs:\n", + " vectors_A - NxM array where M is observations, and N is vector order\n", + " vectors_B - NxM array where M is observations, and N is vector order\n", + " metric - string specifying an accepted metric. This does not include\n", + " all the options available to pdist and cdist, since we do\n", + " not use those; available options (for now) all involve the\n", + " L2 norm:\n", + " \n", + " euclidean - (default) euclidean distance between points\n", + " seuclidean - euclidean distance between points scaled by \n", + " the combined standard deviation of vector_A\n", + " and vectorB (this is what pdist/cdist do);\n", + " basically assumes the vector elements are \n", + " scaled orthogonal basis functions (e.g., \n", + " Cartesian XYZ coordinates, or EOFs)\n", + " mahalanobis - mahalanobis distance between points; similar to\n", + " seuclidean, except it doesn't assume orthogonal\n", + " vector components, while it does assume they\n", + " belong to a multivariate, and potentially\n", + " correlated Gaussian distribution.\n", + " VI - inverse (co)variance by which to scale distances (so it should be\n", + " symmetric with dimension N).\n", + " \n", + " Outout:\n", + " dist - an M element array of vector distances/metrics\n", + " '''\n", + " \n", + " # quick input check\n", + " if (vectors_A.ndim > 2 or\n", + " vectors_B.ndim > 2 or\n", + " vectors_A.shape != vectors_B.shape):\n", + " \n", + " raise ValueError('vectors_A and vectors_B must be 2D ',\n", + " 'arrays with identical dimensions')\n", + " \n", + " # transpose into MxN arrays for subsequent calculations\n", + " vectors_A = vectors_A.T\n", + " vectors_B = vectors_B.T\n", + " \n", + " # stack vectors_A and vectors_B, then transpose into MxN array for calculations\n", + " vectors_AB = np.vstack([vectors_A,vectors_B])\n", + " \n", + " # convert vectors_AB to masked array for caclulating variance and covariance\n", + " vectors_AB = np.ma.masked_invalid(vectors_AB)\n", + " \n", + " # default to euclidean\n", + " if not metric and not VI:\n", + " metric = 'euclidean'\n", + " \n", + " # generate inverse covariance matrix if not specified\n", + " if not VI:\n", + " if metric is 'euclidean':\n", + " VI = np.linalg.pinv(\n", + " np.eye(vectors_A.shape[1])\n", + " )\n", + " elif metric is 'seuclidean':\n", + " VI = np.linalg.pinv(\n", + " np.diag(np.ma.var(vectors_AB.T, axis=1, ddof=0))\n", + " )\n", + " elif metric is 'mahalanobis':\n", + " VI = np.linalg.pinv(\n", + " np.ma.cov(vectors_AB.T, ddof=0)\n", + " )\n", + " else:\n", + " raise ValueError('Unrecognized metric: ', metric)\n", + " else:\n", + " if np.isscalar(VI):\n", + " VI = np.eye(vectors_A.shape[1]) * VI\n", + " elif np.size(VI) == vectors_A.shape[1]:\n", + " VI = np.diag(VI)\n", + " elif (VI.ndim > 2 or\n", + " VI.shape[0] != VI.shape[1] or\n", + " VI.shape[0] != vectors_A.shape[1]):\n", + " raise ValueError('Invalid VI input: ', VI)\n", + " \n", + " # vector component differences\n", + " component_diffs = vectors_A - vectors_B\n", + " \n", + " # vector distances\n", + " return np.sqrt(np.sum(np.dot(component_diffs, VI) * component_diffs, axis=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Statistical Time Series Filters\n", + "\n", + "Functions here should identify \"good\" elements in a univariate series:\n", + "\n", + "**Inputs** \n", + "```\n", + "series - univariate data to filter\n", + "```\n", + "**Options** \n", + "```\n", + "threshold - threshold value to be used for filter\n", + "weights - weights that can be applied to series\n", + " (defaults to uniform if None)\n", + "```\n", + "**Output** \n", + "```\n", + "good - a boolean array where True corresponds to \"good\" observations\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def filter_zscore(series, threshold=None, weights=None):\n", + " '''\n", + " Identify \"good\" elements in series by calculating a potentially weighted\n", + " mean and standard deviation, the number of standard deviations (z-score)\n", + " each value of series falls away from this mean, and finally, setting \n", + " elements of good to True that correspond to series values less than \n", + " threshold standard deviations from the mean.\n", + "\n", + " Inputs:\n", + " series - 1D NumPy array of observations to filter\n", + "\n", + " Options:\n", + " threshold - threshold in fractional number of standard deviations\n", + " each element of series may fall away from the mean and\n", + " still be considered \"good\" (default = 6)\n", + " weights - weights to assign to each element of series\n", + " (default = 1)\n", + " \n", + " Output:\n", + " good - Boolean array where True values correspond to \"good\" data\n", + "\n", + " '''\n", + " if series.ndim > 1:\n", + " raise ValueError('Invalid input series: ', series)\n", + " \n", + " if threshold is None:\n", + " threshold = 6\n", + " \n", + " if weights is None:\n", + " weights = np.ones_like(series)\n", + " \n", + " \n", + " # convert to NumPy arrays for convenience\n", + " series = np.asarray(series)\n", + " weights = np.asarray(weights)\n", + " \n", + " \n", + " # initialize good as all True for weights > 0\n", + " good = (weights > 0).astype(bool)\n", + " if np.size(good) <= 1:\n", + " # if a singleton is passed, assume it is \"good\"\n", + " return good\n", + " \n", + " # This should loop at least once\n", + " good_old = ~good\n", + " while not np.all(np.equal(good_old, good)):\n", + " # copy for comparison\n", + " good_old = good.copy()\n", + " \n", + " # weighted average of good values\n", + " wavg = np.average(series[good], weights=weights[good])\n", + " \n", + " # weighted standard deviation not available in NumPy, etc.\n", + " wstd = np.sqrt(np.average((series[good] - wavg)**2, weights=weights[good]))\n", + " \n", + " # NOTE: it is necessary to include good on the RHS here\n", + " # to prevent oscillation between two equally likely\n", + " # \"optimal\" solutions; this is a common problem with\n", + " # expectation maximization algorithms\n", + " good = good & np.abs(series - wavg) <= threshold * wstd\n", + " \n", + " return good" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def filter_iqr(series, threshold=None, weights=None):\n", + " '''\n", + " Identify \"good\" elements in series by calculating potentially weighted\n", + " 25%, 50% (median), and 75% quantiles of series, the number of 25%-50%\n", + " quantile ranges below, or 50%-75% quantile ranges above each value of \n", + " series falls from the median, and finally, setting elements of good to\n", + " True that fall within these multiples of quantile ranges.\n", + " \n", + " NOTE: NumPy has a percentile function, but it does not yet handle \n", + " weights. This algorithm was adapted shamelessly from the PyPI\n", + " package wquantiles (https://pypi.org/project/wquantiles/). If\n", + " NumPy should ever implement their own weighted algorithm, we\n", + " should use it instead.\n", + "\n", + " Inputs:\n", + " series - 1D NumPy array of observations to filter\n", + "\n", + " Options:\n", + " threshold - threshold in fractional number of 25%-50% (50%-75%)\n", + " quantile ranges below (above) the median each element of \n", + " series may fall and still be considered \"good\"\n", + " (default = 6)\n", + " weights - weights to assign to each element of series\n", + " (default = 1)\n", + " \n", + " Output:\n", + " good - Boolean array where True values correspond to \"good\" data\n", + "\n", + " '''\n", + " import numpy as np\n", + " \n", + " def wq(data, wgts, quant):\n", + " # sort data and weights\n", + " ind_sorted = np.argsort(data)\n", + " sorted_data = data[ind_sorted]\n", + " sorted_weights = wgts[ind_sorted]\n", + " # compute auxiliary arrays\n", + " Sn = np.cumsum(sorted_weights)\n", + " Pn = (Sn - 0.5 * sorted_weights) / Sn[-1]\n", + " # interpolate to weighted quantile\n", + " return np.interp(quant, Pn, sorted_data)\n", + " \n", + " if series.ndim > 1:\n", + " raise ValueError('Invalid input series: ', series)\n", + " \n", + " if threshold is None:\n", + " threshold = 6\n", + " \n", + " if weights is None:\n", + " weights = np.ones_like(series)\n", + " else:\n", + " weights = np.asarray(weights)\n", + "\n", + " \n", + " # convert to NumPy arrays for convenience\n", + " series = np.asarray(series)\n", + " weights = np.asarray(weights)\n", + " \n", + " \n", + " # initialize good as all True for weights > 0\n", + " good = (weights > 0).astype(bool)\n", + " if np.size(good) <= 1:\n", + " # if a singleton is passed, assume it is \"good\"\n", + " return good\n", + " \n", + " \n", + " # This should loop at least once\n", + " good_old = ~good\n", + " while not np.all(np.equal(good_old, good)):\n", + " # copy for comparison\n", + " good_old = good.copy()\n", + " \n", + " wq25 = wq(series[good], weights[good], .25)\n", + " wq50 = wq(series[good], weights[good], .50)\n", + " wq75 = wq(series[good], weights[good], .75)\n", + " \n", + " # NOTE: it is necessary to include good on the RHS here\n", + " # to prevent oscillation between two equally likely\n", + " # \"optimal\" solutions; this is a common problem with\n", + " # expectation maximization algorithms\n", + " good = (good &\n", + " (series >= (wq50 - threshold * (wq50 - wq25))) &\n", + " (series <= (wq50 + threshold * (wq75 - wq50))))\n", + " \n", + " return good" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Affine Transform Matrix Generators\n", + "\n", + "Functions here should generate a 4x4 affine transformation matrix given:\n", + "\n", + "**Inputs** \n", + "```\n", + "ord - 3xN array of training data where rows correspond to 3D\n", + " Cartesian vectors, and columns are observations; these\n", + " are the \"raw\" vector input to be transformed\n", + "abs - 3xN array of training data where rows correspond to 3D\n", + " Cartesian vectors, and columns are observations; these\n", + " are the desired \"absolute\" vector output\n", + "```\n", + "**Options** \n", + "```\n", + "weights - array of N weights that can be applied to observations\n", + " (defaults to uniform if None)\n", + "```\n", + "**Output** \n", + "```\n", + "M - a 4x4 affine transformation matrix that maps ord to abs\n", + " NOTE: functions should include some sort of condition\n", + " check (e.g., minimum rank of system), and return\n", + " a 4x4 matrix of NaNs if this check fails\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_0(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to a rotation about the z-axis, a uniform scaling in the\n", + " horizontal plane, and baseline shifts. This is closest to how (quasi-)\n", + " definitive data is processed at the USGS, and still be obtained directly\n", + " from a least-squares inversion.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # re-estimate cylindrical vectors from Cartesian\n", + " h_ord = np.sqrt(h_o**2 + e_o**2)\n", + " d_ord = np.arctan2(e_o, h_o)\n", + " z_ord = z_o\n", + " h_abs = np.sqrt(x_a**2 + y_a**2)\n", + " d_abs = np.arctan2(y_a, x_a)\n", + " z_abs = z_a\n", + " \n", + " # generate average rotation from ord to abs, then convert\n", + " # to rotation affine transform matrix\n", + " dRavg = (d_abs - d_ord).mean()\n", + " Rmtx = np.eye(4)\n", + " Rmtx[0,0] = np.cos(dRavg)\n", + " Rmtx[0,1] = -np.sin(dRavg)\n", + " Rmtx[1,0] = np.sin(dRavg)\n", + " Rmtx[1,1] = np.cos(dRavg)\n", + " \n", + " # generate average ratio of h_abs/h_ord, use this to\n", + " # define a scaling affine transform matrix\n", + " rHavg = (h_abs / h_ord).mean()\n", + " Smtx = np.eye(4)\n", + " Smtx[0,0] = rHavg\n", + " Smtx[1,1] = rHavg\n", + " \n", + " # apply average rotations and scales to HE data, determine the\n", + " # average translations, then generate affine transform matrix\n", + " dXavg = (x_a - (h_o * rHavg * np.cos(dRavg) - \n", + " e_o * rHavg * np.sin(dRavg))).mean()\n", + " dYavg = (y_a - (h_o * rHavg * np.sin(dRavg) + \n", + " e_o * rHavg * np.cos(dRavg))).mean()\n", + " dZavg = (z_a - z_o).mean()\n", + " Tmtx = np.eye(4)\n", + " Tmtx[0,3] = dXavg\n", + " Tmtx[1,3] = dYavg\n", + " Tmtx[2,3] = dZavg\n", + " \n", + " # combine rotation, scale, and translation matrices\n", + " M = np.dot(np.dot(Rmtx, Smtx), Tmtx)\n", + " \n", + " \n", + "# # NOTE: the preceding isn't quite how Definitive/Quasi-Definitive\n", + "# # processing works; the following is closer, but the two generate\n", + "# # very similar output, with most of the tiny discrepancy arising\n", + "# # due to the fact that the operation below *adds* an H baseline, \n", + "# # something that is not easy (or possible?) with an affine transform,\n", + "# # so instead, a scaling factor is used to adjust he to match xy.\n", + "# def_h = (h_o**2 + e_o**2)**0.5 + h_bas.mean()\n", + "# def_d = np.arctan2(e_o, h_o) * 180./np.pi + d_bas.mean()\n", + "# def_z = z_o + z_bas.mean()\n", + "# def_f = (def_h**2 + def_z**2)**0.5\n", + "# def_x = def_h * np.cos(def_d * np.pi/180.)\n", + "# def_y = def_h * np.sin(def_d * np.pi/180.)\n", + "\n", + " \n", + "# print(np.array_str(Rmtx, precision=3))\n", + "# print(np.array_str(Smtx, precision=3))\n", + "# print(np.array_str(Tmtx, precision=3))\n", + "# print(np.array_str(M, precision=3))\n", + " \n", + " \n", + " # ...or, solve for M directly\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + " \n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 13:\n", + " # - 2 for making x,y independent of z;\n", + " # - 2 for making z independent of x,y;\n", + " # - 2 for not allowing shear in x,y; \n", + " # - 2 for not allowing translation in x,y;\n", + " # - 1 for not allowing scaling in z; and\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((3, ord_st_r.size))\n", + " ord_st_m[0,0::3] = ord_st_r[0::3]\n", + " ord_st_m[0,1::3] = ord_st_r[1::3]\n", + " ord_st_m[1,0::3] = ord_st_r[1::3]\n", + " ord_st_m[1,1::3] = -ord_st_r[0::3]\n", + " ord_st_m[2,2::3] = 1.\n", + " \n", + " # subtract z_o from z_a to force simple z translation\n", + " abs_st_r[2::3] = abs_st_r[2::3] - ord_st_r[2::3]\n", + " \n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + " \n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T, abs_st_r.T)\n", + " \n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = M_r[0]\n", + " M[0,1] = M_r[1]\n", + " M[0,2] = 0.0\n", + " M[0,3] = 0.0\n", + " M[1,0] = -M_r[1]\n", + " M[1,1] = M_r[0]\n", + " M[1,2] = 0.0\n", + " M[1,3] = 0.0\n", + " M[2,0] = 0.0\n", + " M[2,1] = 0.0\n", + " M[2,2] = 1.0\n", + " M[2,3] = M_r[2]\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + " \n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_1(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to rotate about z-axis, and a uniform horizontal scaling\n", + " factor.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 10:\n", + " # - 2 for making x,y independent of z;\n", + " # - 2 for making z independent of x,y\n", + " # - 2 for not allowing shear in x,y; and\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((6, ord_st_r.size))\n", + " ord_st_m[0,0::3] = ord_st_r[0::3]\n", + " ord_st_m[0,1::3] = ord_st_r[1::3]\n", + " ord_st_m[1,0::3] = ord_st_r[1::3]\n", + " ord_st_m[1,1::3] = -ord_st_r[0::3]\n", + " ord_st_m[2,0::3] = 1.\n", + " ord_st_m[3,1::3] = 1.\n", + " ord_st_m[4,2::3] = ord_st_r[2::3]\n", + " ord_st_m[5,2::3] = 1.\n", + "\n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + "\n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T,abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = M_r[0]\n", + " M[0,1] = M_r[1]\n", + " M[0,2] = 0.0\n", + " M[0,3] = M_r[2]\n", + " M[1,0] = -M_r[1]\n", + " M[1,1] = M_r[0]\n", + " M[1,2] = 0.0\n", + " M[1,3] = M_r[3]\n", + " M[2,0] = 0.0\n", + " M[2,1] = 0.0\n", + " M[2,2] = M_r[4]\n", + " M[2,3] = M_r[5]\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_2(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to rotate about z-axis.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 8:\n", + " # - 2 for making x,y independent of z;\n", + " # - 2 for making z independent of x,y\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((8, ord_st_r.size))\n", + " ord_st_m[0,0::3] = ord_st_r[0::3]\n", + " ord_st_m[1,0::3] = ord_st_r[1::3]\n", + " ord_st_m[2,0::3] = 1.\n", + " ord_st_m[3,1::3] = ord_st_r[0::3]\n", + " ord_st_m[4,1::3] = ord_st_r[1::3]\n", + " ord_st_m[5,1::3] = 1.\n", + " ord_st_m[6,2::3] = ord_st_r[2::3]\n", + " ord_st_m[7,2::3] = 1.\n", + "\n", + " \n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + "\n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T,abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = M_r[0]\n", + " M[0,1] = M_r[1]\n", + " M[0,2] = 0.0\n", + " M[0,3] = M_r[2]\n", + " M[1,0] = M_r[3]\n", + " M[1,1] = M_r[4]\n", + " M[1,2] = 0.0\n", + " M[1,3] = M_r[5]\n", + " M[2,0] = 0.0\n", + " M[2,1] = 0.0\n", + " M[2,2] = M_r[6]\n", + " M[2,3] = M_r[7]\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_3(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " with no constraints.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a, y_a, z_a, np.ones_like(x_a)])\n", + "\n", + " # RHS, or independent variables\n", + " ord_st = np.vstack([h_o, e_o, z_o, np.ones_like(h_o)])\n", + "\n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 4:\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((12, ord_st_r.size))\n", + " ord_st_m[0,0::3] = ord_st_r[0::3]\n", + " ord_st_m[1,0::3] = ord_st_r[1::3]\n", + " ord_st_m[2,0::3] = ord_st_r[2::3]\n", + " ord_st_m[3,0::3] = 1.\n", + " ord_st_m[4,1::3] = ord_st_r[0::3]\n", + " ord_st_m[5,1::3] = ord_st_r[1::3]\n", + " ord_st_m[6,1::3] = ord_st_r[2::3]\n", + " ord_st_m[7,1::3] = 1.\n", + " ord_st_m[8,2::3] = ord_st_r[0::3]\n", + " ord_st_m[9,2::3] = ord_st_r[1::3]\n", + " ord_st_m[10,2::3] = ord_st_r[2::3]\n", + " ord_st_m[11,2::3] = 1.\n", + "\n", + "\n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + "\n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T, abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = M_r[0]\n", + " M[0,1] = M_r[1]\n", + " M[0,2] = M_r[2]\n", + " M[0,3] = M_r[3]\n", + " M[1,0] = M_r[4]\n", + " M[1,1] = M_r[5]\n", + " M[1,2] = M_r[6]\n", + " M[1,3] = M_r[7]\n", + " M[2,0] = M_r[8]\n", + " M[2,1] = M_r[9]\n", + " M[2,2] = M_r[10]\n", + " M[2,3] = M_r[11]\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_4(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to 3D scaled rigid rotation+translation (that is, no shear). \n", + " \n", + " References: \n", + " https://igl.ethz.ch/projects/ARAP/svd_rot.pdf\n", + " http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf\n", + " http://graphics.stanford.edu/~smr/ICP/comparison/horn-hilden-orientation-josa88.pdf\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = np.ones_like(ord_hez[0])\n", + " \n", + " # NOTE: do not sqrt(weights) as with weighted least-squares (WLS);\n", + " # NumPy's average and cov functions handle weights properly\n", + " \n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " \n", + " # weighted centroids\n", + " h_o_cent = np.average(h_o, weights=weights)\n", + " e_o_cent = np.average(e_o, weights=weights)\n", + " z_o_cent = np.average(z_o, weights=weights)\n", + " x_a_cent = np.average(x_a, weights=weights)\n", + " y_a_cent = np.average(y_a, weights=weights)\n", + " z_a_cent = np.average(z_a, weights=weights)\n", + " \n", + " # generate weighted \"covariance\" matrix\n", + " H = np.dot(np.vstack([h_o - h_o_cent, e_o - e_o_cent, z_o - z_o_cent]),\n", + " np.dot(np.diag(weights),\n", + " np.vstack([x_a - x_a_cent, y_a - y_a_cent, z_a - z_a_cent]).T))\n", + " \n", + " # Singular value decomposition, then rotation matrix from L&R eigenvectors\n", + " # (the determinant guarantees a rotation, and not a reflection)\n", + " U, S, Vh = np.linalg.svd(H)\n", + " \n", + " if np.sum(S) < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " R = np.dot(Vh.T, np.dot(np.diag([1, 1, np.linalg.det(np.dot(Vh.T, U.T))]), U.T))\n", + " \n", + " # symmetric scale factor\n", + " s = np.sqrt(np.sum(np.vstack([(x_a - x_a_cent)**2, \n", + " (y_a - y_a_cent)**2, \n", + " (z_a - z_a_cent)**2])) / \n", + " np.sum(np.vstack([(h_o - h_o_cent)**2, \n", + " (e_o - e_o_cent)**2, \n", + " (z_o - z_o_cent)**2])) )\n", + " \n", + " # re-scale the rotation (must be done prior to estimating T)\n", + " R *= s\n", + " \n", + " # now get translation using weighted centroids and R\n", + " T = (np.array([x_a_cent, y_a_cent, z_a_cent]) - \n", + " np.dot(R, [h_o_cent, e_o_cent, z_o_cent]))\n", + " \n", + " \n", + " M = np.eye(4)\n", + " M[:3,:3] = R\n", + " M[:3,3] = T\n", + " \n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_5(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to re-scale each axis.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 13:\n", + " # - 2 for making x independent of y,z;\n", + " # - 2 for making y,z independent of x;\n", + " # - 1 for making y independent of z;\n", + " # - 1 for making z independent of y;\n", + " # - 3 for not translating xyz\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((3, ord_st_r.size))\n", + " ord_st_m[0,0::3] = ord_st_r[0::3]\n", + " ord_st_m[1,1::3] = ord_st_r[1::3]\n", + " ord_st_m[2,2::3] = ord_st_r[2::3]\n", + "\n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + " \n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T, abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = M_r[0]\n", + " M[0,1] = 0.0\n", + " M[0,2] = 0.0\n", + " M[0,3] = 0.0\n", + " M[1,0] = 0.0\n", + " M[1,1] = M_r[1]\n", + " M[1,2] = 0.0\n", + " M[1,3] = 0.0\n", + " M[2,0] = 0.0\n", + " M[2,1] = 0.0\n", + " M[2,2] = M_r[2]\n", + " M[2,3] = 0.0\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_6(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to translate origins.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 10:\n", + " # - 2 for making x independent of y,z;\n", + " # - 2 for making y,z independent of x;\n", + " # - 1 for making y independent of z;\n", + " # - 1 for making z independent of y;\n", + " # - 3 for not scaling each axis\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((3, ord_st_r.size))\n", + " ord_st_m[0,0::3] = 1.\n", + " ord_st_m[1,1::3] = 1.\n", + " ord_st_m[2,2::3] = 1.\n", + " \n", + " # subtract ords from abs to force simple translation\n", + " abs_st_r[0::3] = abs_st_r[0::3] - ord_st_r[0::3]\n", + " abs_st_r[1::3] = abs_st_r[1::3] - ord_st_r[1::3]\n", + " abs_st_r[2::3] = abs_st_r[2::3] - ord_st_r[2::3]\n", + "\n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + " \n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T, abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = 1.\n", + " M[0,1] = 0.0\n", + " M[0,2] = 0.0\n", + " M[0,3] = M_r[0]\n", + " M[1,0] = 0.0\n", + " M[1,1] = 1.\n", + " M[1,2] = 0.0\n", + " M[1,3] = M_r[1]\n", + " M[2,0] = 0.0\n", + " M[2,1] = 0.0\n", + " M[2,2] = 1.\n", + " M[2,3] = M_r[2]\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_7(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to shear y and z, but not x.\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " else:\n", + " # Wikipedia indicates sqrt(weights) is appropriate for WLS\n", + " weights = np.sqrt(weights)\n", + " # same weight applies to all three vector components\n", + " weights = np.vstack((weights, weights, weights)).T.ravel()\n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a,y_a,z_a])\n", + " abs_st_r = abs_st.T.ravel()\n", + "\n", + " # RHS, or independent variables\n", + " # (reduces degrees of freedom by 13:\n", + " # - 2 for making x independent of y,z;\n", + " # - 1 for making y independent of z;\n", + " # - 3 for not scaling each axis\n", + " # - 4 for the last row of zeros and a one)\n", + " ord_st = np.vstack([h_o,e_o,z_o])\n", + " ord_st_r = ord_st.T.ravel()\n", + " ord_st_m = np.zeros((3, ord_st_r.size))\n", + " ord_st_m[0,0::3] = 1.\n", + " ord_st_m[1,0::3] = ord_st_r[0::3]\n", + " ord_st_m[1,1::3] = 1.\n", + " ord_st_m[2,0::3] = ord_st_r[0::3]\n", + " ord_st_m[2,1::3] = ord_st_r[1::3]\n", + " ord_st_m[2,2::3] = 1.\n", + " \n", + "\n", + " # apply weights\n", + " ord_st_m = ord_st_m * weights\n", + " abs_st_r = abs_st_r * weights\n", + " \n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st_m.T, abs_st_r.T)\n", + "\n", + " if rank < 3:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " M = np.zeros((4,4))\n", + " M[0,0] = 1.\n", + " M[0,1] = 0.0\n", + " M[0,2] = 0.0\n", + " M[0,3] = 0.0\n", + " M[1,0] = M_r[0]\n", + " M[1,1] = 1.\n", + " M[1,2] = 0.0\n", + " M[1,3] = 0.0\n", + " M[2,0] = M_r[1]\n", + " M[2,1] = M_r[2]\n", + " M[2,2] = 1.\n", + " M[2,3] = 0.0\n", + " M[3,:] = [0,0,0,1] \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_8(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matrix from ordinate to absolute coordinates,\n", + " constrained to rigid rotation+translation (that is, no scale or shear)\n", + " in xy, and translation only in z. \n", + " \n", + " References: \n", + " https://igl.ethz.ch/projects/ARAP/svd_rot.pdf\n", + " http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf\n", + " http://graphics.stanford.edu/~smr/ICP/comparison/horn-hilden-orientation-josa88.pdf\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = np.ones_like(ord_hez[0])\n", + " \n", + " # NOTE: do not sqrt(weights) as with weighted least-squares (WLS);\n", + " # NumPy's average and cov functions handle weights properly\n", + " \n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " \n", + " # weighted centroids\n", + " h_o_cent = np.average(h_o, weights=weights)\n", + " e_o_cent = np.average(e_o, weights=weights)\n", + " z_o_cent = np.average(z_o, weights=weights)\n", + " x_a_cent = np.average(x_a, weights=weights)\n", + " y_a_cent = np.average(y_a, weights=weights)\n", + " z_a_cent = np.average(z_a, weights=weights)\n", + " \n", + " # generate weighted \"covariance\" matrix\n", + " H = np.dot(np.vstack([h_o - h_o_cent, e_o - e_o_cent]),\n", + " np.dot(np.diag(weights),\n", + " np.vstack([x_a - x_a_cent, y_a - y_a_cent]).T))\n", + " \n", + " # Singular value decomposition, then rotation matrix from L&R eigenvectors\n", + " # (the determinant guarantees a rotation, and not a reflection)\n", + " U, S, Vh = np.linalg.svd(H)\n", + " \n", + " if np.sum(S) < 2:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " R = np.dot(Vh.T, np.dot(np.diag([1, np.linalg.det(np.dot(Vh.T, U.T))]), U.T))\n", + " \n", + " # now get translation using weighted centroids and R\n", + " T = (np.array([x_a_cent, y_a_cent]) - \n", + " np.dot(R, [h_o_cent, e_o_cent]))\n", + " \n", + " \n", + " M = np.eye(4)\n", + " M[:2,:2] = R\n", + " M[:2,3] = T\n", + " \n", + " M[2,3] = np.array(z_a_cent) - np.array(z_o_cent)\n", + " \n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def generate_affine_9(ord_hez, abs_xyz, weights=None):\n", + " '''\n", + " Generate affine transform matix from ordinate to absolute coordinates,\n", + " constrained to rotate about z-axis, with only rotation and shear in the\n", + " horizontal plane (no scaling), using QR factorization.\n", + " \n", + " References:\n", + " https://math.stackexchange.com/questions/1120209/decomposition-of-4x4-or-larger-affine-transformation-matrix-to-individual-variab\n", + " https://math.stackexchange.com/questions/2237262/is-there-a-correct-qr-factorization-result\n", + " \n", + " Inputs:\n", + " ord_hez - 3xN array holding HEZ vectors of Cartesian ordinate measurements\n", + " abs_xyz - 3xN array holding XYZ vectors of Cartesian absolute measurements\n", + " \n", + " Options:\n", + " weights - array of N weights that can be applied to observations\n", + " \n", + " Outout:\n", + " M - a 4x4 affine transformation matrix to convert ord_hez into abs_xy\n", + " '''\n", + " \n", + " if weights is None:\n", + " # equal weighting\n", + " weights = 1\n", + " \n", + " \n", + " # extract measurements\n", + " h_o = ord_hez[0]\n", + " e_o = ord_hez[1]\n", + " z_o = ord_hez[2]\n", + " x_a = abs_xyz[0]\n", + " y_a = abs_xyz[1]\n", + " z_a = abs_xyz[2]\n", + " \n", + " # weighted centroids\n", + " h_o_cent = np.average(h_o, weights=weights)\n", + " e_o_cent = np.average(e_o, weights=weights)\n", + " z_o_cent = np.average(z_o, weights=weights)\n", + " x_a_cent = np.average(x_a, weights=weights)\n", + " y_a_cent = np.average(y_a, weights=weights)\n", + " z_a_cent = np.average(z_a, weights=weights)\n", + " \n", + " \n", + " # LHS, or dependent variables\n", + " abs_st = np.vstack([x_a - x_a_cent, y_a - y_a_cent])\n", + "\n", + " # RHS, or independent variables\n", + " ord_st = np.vstack([h_o - h_o_cent, e_o - e_o_cent])\n", + " \n", + " \n", + " # apply weights\n", + " ord_st = ord_st * np.sqrt(weights)\n", + " abs_st = abs_st * np.sqrt(weights)\n", + "\n", + " # regression matrix M that minimizes L2 norm\n", + " M_r, res, rank, sigma = spl.lstsq(ord_st.T, abs_st.T)\n", + " \n", + " if rank < 2:\n", + " print('Poorly conditioned or singular matrix, returning NaNs')\n", + " return np.nan * np.ones((4,4))\n", + " \n", + " # QR fatorization\n", + " # NOTE: forcing the diagonal elements of Q to be positive\n", + " # ensures that the determinant is 1, not -1, and is\n", + " # therefore a rotation, not a reflection\n", + " Q, R = np.linalg.qr(M_r.T)\n", + " neg = np.diag(Q) < 0\n", + " Q[:,neg] = -1 * Q[:,neg]\n", + " R[neg,:] = -1 * R[neg,:]\n", + " \n", + " # isolate scales from shear\n", + " S = np.diag(np.diag(R))\n", + " H = np.dot(np.linalg.inv(S), R)\n", + " \n", + " # combine shear and rotation\n", + " QH = np.dot(Q, H)\n", + " \n", + " # now get translation using weighted centroids and R\n", + " T = (np.array([x_a_cent, y_a_cent]) - \n", + " np.dot(QH, [h_o_cent, e_o_cent]))\n", + " \n", + " \n", + " M = np.eye(4)\n", + " M[:2,:2] = QH\n", + " M[:2,3] = T\n", + " \n", + " M[2,3] = np.array(z_a_cent) - np.array(z_o_cent)\n", + " \n", + "\n", + "# print(np.array_str(M, precision=3))\n", + "\n", + " return M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Affine Transform Matrix Interpolators\n", + "\n", + "Functions here should interpolate between 4x4 affine transformation matrices:\n", + "\n", + "**Inputs** \n", + "```\n", + "utc_target - list of UTCs at which to interpolate affine matrices\n", + "utc_list - list of UTCs that correspond to a list of known affine matrices\n", + "affine_list - list of known affine matrices\n", + "```\n", + "**Options** \n", + "```\n", + "fill_value - if None, disallow extrapolation; if not None, use this\n", + " value when utc_target falls outside utc_list range; if\n", + " \"extrapolate\", extrapolate based on first/last two in\n", + " affine_list.\n", + "```\n", + "**Output** \n", + "```\n", + "affine_target - list of interpolated affine matrices```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": { + "code_folding": [ + 0 + ] + }, + "outputs": [], + "source": [ + "def interpolate_affine_polar(utc_target, utc_list, affine_list, fill_value=None):\n", + " '''\n", + " Interpolate between affine transform matices. Interpolating linear/affine\n", + " transform matrices is problematic because the rotation component cannot\n", + " be directly interpolated in a way that maintains a valid rotation matrix\n", + " at intermediate points. Here we first use Polar decomposition to decompose\n", + " the transform into an orthogonal matrix Q and a \"stretch\" matrix S (M=QS).\n", + " The Qs are interpolated between Slerp, while the Ss are interpolated using\n", + " using standard linear interpolation.\n", + " \n", + " \n", + " References:\n", + " http://research.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf\n", + " https://en.wikipedia.org/wiki/Slerp\n", + " http://run.usc.edu/cs520-s15/assign2/p245-shoemake.pdf\n", + " \n", + " Inputs:\n", + " utc_target - list of UTCs at which to interpolate affine matrices\n", + " utc_list - list of UTCs that correspond to a list of known affine matrices\n", + " affine_list - list of known affine matrices\n", + " \n", + " Options:\n", + " fill_value - if None, disallow extrapolation; if not None, use this\n", + " value when utc_target falls outside utc_list range; if\n", + " \"extrapolate\", extrapolate based on first/last two in\n", + " affine_list.\n", + " NOTE: SciPy's Slerp cannot presently extrapolate, so \n", + " this function will simply extend the first/last\n", + " affine_list matrices to all times outside utc_list.\n", + " \n", + " Outout:\n", + " affine_target - list of interpolated affine matrices\n", + " '''\n", + " import numpy as np\n", + " from scipy.spatial.transform import Rotation\n", + " from scipy.spatial.transform import Slerp\n", + " from scipy.interpolate import interp1d\n", + " \n", + " if fill_value is not None:\n", + " raise ValueError('fill_value extrapolation not implemented')\n", + " \n", + " # decompose affine_list\n", + " Ts_in = [] # translations\n", + " Rs_in = [] # rotations\n", + " Ns_in = [] # +/- I (accomodates reflections)\n", + " Ss_in = [] # stretches\n", + " for M in affine_list:\n", + " # polar decomposition\n", + " Q, S = spl.polar(M[:3,:3])\n", + " if np.linalg.det(Q) < 0:\n", + " # factor out -I if det(Q) is -1\n", + " R = np.dot(Q, np.linalg.inv(-np.eye(3)))\n", + " N = -np.eye(3)\n", + " else:\n", + " R = Q\n", + " N = np.eye(3)\n", + " Ts_in.append(M[:3,3, None])\n", + " Rs_in.append(R)\n", + " Ns_in.append(N)\n", + " Ss_in.append(S)\n", + " \n", + " # interp1d Ts\n", + " Ts_out = []\n", + " Rs_out = []\n", + " Ns_out = []\n", + " Ss_out = []\n", + " for T in np.reshape(Ts_in, (-1,3)).T:\n", + " int1d = interp1d(np.asarray(utc_list).astype(float), T, fill_value=\"extrapolate\")\n", + " Ts_out.append(int1d(np.asarray(utc_target).astype(float)))\n", + " Ts_out = np.array(Ts_out).T.reshape(-1,3,1)\n", + " \n", + " # SLERP Rs\n", + " Rs = Rotation.from_dcm(Rs_in)\n", + " Rslerp = Slerp(np.asarray(utc_list).astype(float), Rs)\n", + " Rs_out = Rslerp(np.asarray(utc_target).astype(float))\n", + " Rs_out = Rs_out.as_dcm()\n", + " #Rs_out = [R.as_dcm() for R in Rs_out]\n", + " \n", + " # interp1d Ns\n", + " for N in np.reshape(Ns_in, (-1,9)).T:\n", + " int1d = interp1d(np.asarray(utc_list).astype(float), N, fill_value=\"extrapolate\")\n", + " Ns_out.append(int1d(np.asarray(utc_target).astype(float)))\n", + " Ns_out = np.array(Ns_out).T.reshape(-1,3,3)\n", + " \n", + " # interp1d Ss\n", + " for S in np.reshape(Ss_in, (-1,9)).T:\n", + " int1d = interp1d(np.asarray(utc_list).astype(float), S, fill_value=\"extrapolate\")\n", + " Ss_out.append(int1d(np.asarray(utc_target).astype(float)))\n", + " Ss_out = np.array(Ss_out).T.reshape(-1,3,3)\n", + " \n", + " # recombine components into M_target list\n", + " affine_target = []\n", + " for t in np.arange(len(utc_target)):\n", + " \n", + " affine_target.append(np.vstack(\n", + " (np.hstack((np.dot(Rs_out[t],\n", + " np.dot(Ns_out[t], Ss_out[t])),\n", + " Ts_out[t])),\n", + " [0,0,0,1])) )\n", + " \n", + " return affine_target" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[[ 1.00e+00 0.00e+00 0.00e+00 2.00e+01]\n", + " [ 0.00e+00 1.00e+00 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 4.00e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[ 9.24e-01 3.83e-01 0.00e+00 2.25e+01]\n", + " [-3.83e-01 9.24e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 3.75e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[ 7.07e-01 7.07e-01 0.00e+00 2.50e+01]\n", + " [-7.07e-01 7.07e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 3.50e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[ 3.83e-01 9.24e-01 0.00e+00 2.75e+01]\n", + " [-9.24e-01 3.83e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 3.25e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[ 2.22e-16 1.00e+00 0.00e+00 3.00e+01]\n", + " [-1.00e+00 2.22e-16 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[-3.83e-01 9.24e-01 0.00e+00 3.25e+01]\n", + " [-9.24e-01 -3.83e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 2.75e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[-7.07e-01 7.07e-01 0.00e+00 3.50e+01]\n", + " [-7.07e-01 -7.07e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 2.50e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[-9.24e-01 3.83e-01 0.00e+00 3.75e+01]\n", + " [-3.83e-01 -9.24e-01 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 2.25e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]\n", + "\n", + " [[-1.00e+00 1.22e-16 0.00e+00 4.00e+01]\n", + " [-1.22e-16 -1.00e+00 0.00e+00 3.00e+01]\n", + " [ 0.00e+00 0.00e+00 1.00e+00 2.00e+01]\n", + " [ 0.00e+00 0.00e+00 0.00e+00 1.00e+00]]]\n" + ] + } + ], + "source": [ + "t1 = UTCDateTime(2019,6,1, 0,0,0)\n", + "aff_1 = np.array([[1,0,0,20], [0, 1, 0, 30],[0, 0, 1, 40],[0, 0, 0, 1]]) # 0 rot/ref\n", + "t2 = UTCDateTime(2019,6,2, 0,0,0)\n", + "#aff_2 = np.array([[ 0,-1, 0, 40], [1, 0, 0, 30],[ 0, 0, 1, 20],[ 0, 0, 0, 1]]) # 90 rot\n", + "aff_2 = np.array([[-1, 0, 0, 40], [ 0,-1, 0, 30],[ 0, 0, 1, 20],[ 0, 0, 0, 1]]) # 180 rot\n", + "#aff_2 = np.array([[-1, 0, 0, 40], [ 0, 1, 0, 30],[ 0, 0, 1, 20],[ 0, 0, 0, 1]]) # 180 ref\n", + "\n", + "tn = [t1 + h for h in np.linspace(0*3*3600, 8*3*3600, 9)]\n", + "aff_n = interpolate_affine_polar(tn, [t1, t2], [aff_1, aff_2])\n", + "\n", + "print(np.array_str(np.array(aff_n), precision=2))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "code_folding": [ + 0 + ], + "scrolled": false + }, + "outputs": [], + "source": [ + "def old_do_it_all(obs_code, start_date, end_date, validate=False):\n", + " '''\n", + " This function will do the following for a given observatory\n", + " between start_date and end_date:\n", + "\n", + " - Read in absolutes data from Webabsolutes DB\n", + " - Convert cylindrical to Cartesian coordinates\n", + " - Generate different Adjusted Data transform matrices\n", + " - Apply each Adjusted Data transforms to real HEZF data\n", + " - Compare to (quasi-)definitive data by generating plots\n", + " - Return transform matrices to be saved\n", + " '''\n", + "\n", + " # retrieve absolute calibrations and baseline data\n", + " if obs_code == 'DED':\n", + " ((h_abs, h_bas, h_dt), \n", + " (d_abs, d_bas, d_dt), \n", + " (z_abs, z_bas, z_dt),\n", + " pc, weights) = retrieve_baselines_resid_summary_xlsm(\n", + " obs_code,\n", + " start_date,\n", + " end_date,\n", + " xlsm_dir = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/DED/'\n", + " ) \n", + " elif obs_code == 'CMO':\n", + " ((h_abs, h_bas, h_dt), \n", + " (d_abs, d_bas, d_dt), \n", + " (z_abs, z_bas, z_dt),\n", + " pc, weights) = retrieve_baselines_resid_summary_xlsm(\n", + " obs_code,\n", + " start_date,\n", + " end_date,\n", + " xlsm_dir = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/CMO/'\n", + " ) \n", + " else:\n", + " ((h_abs, h_bas, h_dt), \n", + " (d_abs, d_bas, d_dt), \n", + " (z_abs, z_bas, z_dt),\n", + " pc, weights) = retrieve_baselines_webabsolutes(\n", + " obs_code,\n", + " start_date,\n", + " end_date\n", + " )\n", + "\n", + " # recreate ordinate variometer measurements from absolutes and baselines\n", + " h_ord = h_abs - h_bas\n", + " d_ord = d_abs - d_bas\n", + " z_ord = z_abs - z_bas\n", + "\n", + " # convert vector components from cylindrical to Cartesian coordinates\n", + " x_a = h_abs*np.cos(d_abs*np.pi/180)\n", + " y_a = h_abs*np.sin(d_abs*np.pi/180)\n", + " z_a = z_abs\n", + " h_o = h_ord*np.cos(d_ord*np.pi/180)\n", + " e_o = h_ord*np.sin(d_ord*np.pi/180)\n", + " z_o = z_ord\n", + "\n", + "\n", + " # generate static affine transform matrix equivalent to traditional\n", + " # definitive/quasi-definitive processing\n", + " M0 = generate_affine_0((h_o, e_o, z_o), (x_a, y_a, z_a))\n", + "\n", + " # generate static affine transform matrix type 1\n", + " M1 = generate_affine_1((h_o, e_o, z_o), (x_a, y_a, z_a))\n", + "\n", + " # generate static affine transform matrix that allows all free parameters\n", + " # to vary in optimal fit to data, but enforce a uniform scaling factor\n", + " M2 = generate_affine_2((h_o, e_o, z_o), (x_a, y_a, z_a))\n", + "\n", + " # generate static affine transform matrix that allows all free parameters\n", + " # to vary in optimal fit to data\n", + " M3 = generate_affine_3((h_o, e_o, z_o), (x_a, y_a, z_a))\n", + "\n", + "\n", + " # retrieve raw HEZ variometer data from Edge server\n", + " factory = EdgeFactory(host='mage2.cr.usgs.gov')\n", + " hezf = factory.get_timeseries(\n", + " observatory = obs_code,\n", + " interval = 'minute',\n", + " type = 'variation',\n", + " channels = ('H', 'E', 'Z', 'F'),\n", + " starttime = UTCDateTime(start_date),\n", + " endtime = UTCDateTime(end_date)\n", + " )\n", + " hezf_dt = np.array([(hezf[0].stats.starttime + second).datetime for second in hezf[0].times()])\n", + "\n", + "\n", + " # multiply M0 by hez1, plot results against XYZ\n", + " XYZ1_0 = np.dot(M0, np.vstack((hezf[0].data, \n", + " hezf[1].data, \n", + " hezf[2].data, \n", + " np.ones(hezf[0].data.shape))))\n", + "\n", + " # multiply M1 by hez1, plot results against XYZ\n", + " XYZ1_1 = np.dot(M1, np.vstack((hezf[0].data, \n", + " hezf[1].data, \n", + " hezf[2].data, \n", + " np.ones(hezf[0].data.shape))))\n", + "\n", + " # multiply M2 by hez1, plot results against XYZ\n", + " XYZ1_2 = np.dot(M2, np.vstack((hezf[0].data, \n", + " hezf[1].data, \n", + " hezf[2].data, \n", + " np.ones(hezf[0].data.shape))))\n", + "\n", + " # multiply M3 by HEZ1, plot results against XYZ\n", + " XYZ1_3 = np.dot(M3, np.vstack((hezf[0].data, \n", + " hezf[1].data, \n", + " hezf[2].data, \n", + " np.ones(hezf[0].data.shape))))\n", + "\n", + " #\n", + " # plot Absolutes, Adjusted, and (quasi-)definitive XYZ\n", + " #\n", + " plt.figure(figsize=(9,6))\n", + "\n", + " plt.subplot(3,1,1)\n", + " plt.plot(hezf_dt, XYZ1_0[0,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_1[0,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_2[0,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_3[0,:], '-')\n", + " plt.ylabel('X (nT)')\n", + " plt.plot(h_dt, x_a, '*')\n", + " plt.xlim(hezf_dt[0], hezf_dt[-1])\n", + "\n", + " plt.subplot(3,1,2)\n", + " plt.plot(hezf_dt, XYZ1_0[1,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_1[1,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_2[1,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_3[1,:], '-')\n", + " plt.ylabel('Y (nT)')\n", + " plt.plot(d_dt, y_a, '*')\n", + " plt.xlim(hezf_dt[0], hezf_dt[-1])\n", + "\n", + " plt.subplot(3,1,3)\n", + " plt.plot(hezf_dt, XYZ1_0[2,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_1[2,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_2[2,:], '-')\n", + " plt.plot(hezf_dt, XYZ1_3[2,:], '-')\n", + " plt.plot(z_dt, z_a, '*')\n", + " plt.ylabel('Z (nT)')\n", + " plt.legend(('$Adj_0$','$Adj_1$','$Adj_2$','$Adj_3$','Abs'), loc='right')\n", + " plt.xlim(hezf_dt[0], hezf_dt[-1])\n", + "\n", + " \n", + " if validate:\n", + " \n", + " #\n", + " # retrieve QD XYZ data\n", + " #\n", + " #factory = EdgeFactory(host='localhost', port=11111)\n", + " factory = EdgeFactory(host='mage2.cr.usgs.gov')\n", + " xyzf = factory.get_timeseries(\n", + " observatory = obs_code,\n", + " interval = 'minute',\n", + " type = 'quasi-definitive',\n", + " channels = ('X', 'Y', 'Z', 'F'),\n", + " starttime = UTCDateTime(start_date),\n", + " endtime = UTCDateTime(end_date)\n", + " )\n", + " xyzf_dt = np.array([(xyzf[0].stats.starttime + second).datetime for second in xyzf[0].times()])\n", + " \n", + " #\n", + " # Plot QD data over Adjusted\n", + " #\n", + " plt.subplot(3,1,1)\n", + " plt.plot(xyzf_dt, xyzf[0].data, '-k', linewidth=1)\n", + " plt.subplot(3,1,2)\n", + " plt.plot(xyzf_dt, xyzf[1].data, '-k', linewidth=1)\n", + " plt.subplot(3,1,3)\n", + " plt.plot(xyzf_dt, xyzf[2].data, '-k', linewidth=1)\n", + " plt.legend(('$Adj_0$','$Adj_1$','$Adj_2$','$Adj_3$','Abs', 'QD'), loc='right')\n", + "\n", + "\n", + " \n", + " #\n", + " # Calculate and plot delta-F metrics\n", + " #\n", + " dFlist = []\n", + " plt.figure(figsize=(9,3))\n", + "\n", + " dFlist.append(np.sqrt(XYZ1_0[0,:]**2 + XYZ1_0[1,:]**2 + XYZ1_0[2,:]**2) - xyzf[3].data)\n", + " plt.plot(hezf_dt, dFlist[-1], alpha=0.75)\n", + "\n", + " dFlist.append(np.sqrt(XYZ1_1[0,:]**2 + XYZ1_1[1,:]**2 + XYZ1_1[2,:]**2) - xyzf[3].data)\n", + " plt.plot(hezf_dt, dFlist[-1], alpha=0.75)\n", + "\n", + " dFlist.append(np.sqrt(XYZ1_2[0,:]**2 + XYZ1_2[1,:]**2 + XYZ1_2[2,:]**2) - xyzf[3].data)\n", + " plt.plot(hezf_dt, dFlist[-1], alpha=0.75)\n", + "\n", + " dFlist.append(np.sqrt(XYZ1_3[0,:]**2 + XYZ1_3[1,:]**2 + XYZ1_3[2,:]**2) - xyzf[3].data)\n", + " plt.plot(hezf_dt, dFlist[-1], alpha=0.75)\n", + "\n", + " dFlist.append(np.sqrt(xyzf[0].data**2 + xyzf[1].data**2 + xyzf[2].data**2) - xyzf[3].data)\n", + " plt.plot(xyzf_dt, dFlist[-1], 'k', linewidth=1)\n", + "\n", + "\n", + " plt.xlim(xyzf_dt[0], xyzf_dt[-1])\n", + "\n", + " plt.ylabel('$\\Delta F$ (nT)')\n", + "\n", + " plt.legend(('$Adj_0$ ($\\sigma=%5.2f$ nT)'%np.nanstd(dFlist[0]), \n", + " '$Adj_1$ ($\\sigma=%5.2f$ nT)'%np.nanstd(dFlist[1]),\n", + " '$Adj_2$ ($\\sigma=%5.2f$ nT)'%np.nanstd(dFlist[2]),\n", + " '$Adj_3$ ($\\sigma=%5.2f$ nT)'%np.nanstd(dFlist[3]), \n", + " '$QD$ ($\\sigma=%5.2f$ nT)'%np.nanstd(dFlist[4])),\n", + " loc='upper left')\n", + "\n", + "\n", + " #\n", + " # Calculate and plot vector distance metrics relative to (quasi-)definitive data\n", + " #\n", + " plt.figure(figsize=(9,3))\n", + " plt.plot(\n", + " xyzf_dt,\n", + " vector_dist(\n", + " np.vstack([xyzf[0].data, xyzf[1].data, xyzf[2].data]).T,\n", + " XYZ1_0.T[:,:3],\n", + " 'euclidean'\n", + " ),\n", + " zorder=4\n", + " )\n", + "\n", + " plt.plot(\n", + " xyzf_dt,\n", + " vector_dist(\n", + " np.vstack([xyzf[0].data, xyzf[1].data, xyzf[2].data]).T,\n", + " XYZ1_1.T[:,:3],\n", + " 'euclidean'\n", + " ),\n", + " zorder=3\n", + " )\n", + "\n", + " plt.plot(\n", + " xyzf_dt,\n", + " vector_dist(\n", + " np.vstack([xyzf[0].data, xyzf[1].data, xyzf[2].data]).T,\n", + " XYZ1_2.T[:,:3],\n", + " 'euclidean'\n", + " ),\n", + " zorder=2\n", + " )\n", + "\n", + " plt.plot(\n", + " xyzf_dt,\n", + " vector_dist(\n", + " np.vstack([xyzf[0].data, xyzf[1].data, xyzf[2].data]).T,\n", + " XYZ1_3.T[:,:3],\n", + " 'euclidean'\n", + " ),\n", + " zorder=1\n", + " )\n", + "\n", + " plt.xlim(xyzf_dt[0], xyzf_dt[-1])\n", + "\n", + " plt.ylabel('Euclidian Distance (nT)')\n", + "\n", + " plt.legend(('$Adj_0}$', \n", + " '$Adj_1}$',\n", + " '$Adj_2}$',\n", + " '$Adj_3}$'), \n", + " loc='upper left')\n", + "\n", + " # end if validate:\n", + "\n", + "\n", + " return M0, M1, M2, M3, pc" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": { + "code_folding": [] + }, + "outputs": [], + "source": [ + "def do_it_all(obs_code, start_UTC, end_UTC,\n", + " update_interval=None, acausal=False, interpolate=False,\n", + " first_UTC=None, last_UTC=None,\n", + " M_funcs=None, memories=None,\n", + " path_or_url='https://geomag.usgs.gov',\n", + " validate=False, edge_host='cwbpub.cr.usgs.gov'):\n", + " ''' \n", + " This function will do the following for a specified obs_code between\n", + " start_UTC and end_UTC, incrementing by update_interval:\n", + "\n", + " - Read in absolute and baseline data, removing outliers\n", + " - Convert absolutes+baselines back to fluxgate measurements\n", + " - Convert all cylindrical to Cartesian coordinates\n", + " - Estimate memory-weighted Adjusted Data transform matrice(s)\n", + " - Estimate memory-weighted average pier corrections\n", + " - If validate is True, also:\n", + " - Apply Adjusted Data transforms to raw HEZF data\n", + " - Retrieve (quasi-)definitive data for comparisons\n", + " - Generate common time stamps for each update_interval\n", + " \n", + " \n", + " INPUTS:\n", + " obs_code - 3-character IAGA code for observatory\n", + " start_UTC - beginning date to do stuff (UTCDatetime)\n", + " end_UTC - final date to do stuff (UTCDatetime)\n", + " \n", + " OPTIONS:\n", + " update_interval - how often (in seconds) to update the Adjusted matrices\n", + " (default = end_UTC - start_UTC)\n", + " acausal - use absolute/ordinate pairs from the future if True\n", + " (default = False)\n", + " interpolate - interpolate between key transforms\n", + " (default = False)\n", + " first_UTC - earliest observation date to retrieve\n", + " (default = start_UTC)\n", + " last_UTC - latest observation date to retrieve\n", + " (default = end_UTC)\n", + " M_funcs - list of function objects used to generate affine matrices\n", + " given 3D Cartesian vector inputs; compose final Adjusted\n", + " affine matrix by:\n", + " 1) calculate 1st matrix from inputs->outputs;\n", + " 2) transform initial inputs to intermediate inputs;\n", + " 3) calculate 2nd matrix from intermediate inputs to outputs;\n", + " 4) repeat until all M_funcs used;\n", + " 5) final Adjusted matrix is composition of all in reverse\n", + " (default = [generate_affine_0])\n", + " memories - time constant(s) used to calculate weights; memories may be\n", + " a scalar, or a list with same length as M_funcs\n", + " (default = np.inf)\n", + " path_or_url - url for absolutes web service, or path to summary xlsm files \n", + " (default = 'https://geomag.usgs.gov/')\n", + " validate - if True, pull and process raw data, then compare with QD\n", + " (default = False)\n", + " edge_host - edge host for raw and QD magnetometer time series\n", + " (default = 'cwbpub.cr.usgs.gov')\n", + " \n", + " OUTPUTS:\n", + " utc_list - list of first UTCDateTimes for each update_interval\n", + " M_composed_list - list of composed Adjusted Data matrices for each update_interval\n", + " pc_list - list of pier corrections for each update_interval\n", + " \n", + " (if validate is True)\n", + " utc_xyzf_list - list of UTCDateTime arrays for each observation\n", + " xyzf_trad_list - list of static baseline adjusted data arrays for each update_interval\n", + " xyzf_adj_list - list of Adjusted Data arrays for each update_interval\n", + " xyzf_def_list - list of Definitive Data arrays for each update_interval\n", + " utc_bas - UTCDateTimes for absolute measurements\n", + " abs_xyz - absolute XYZ values used to train affine transforms\n", + " ord_hez - ordinate HEZ values used to train affine transforms\n", + " Ms_list - list of lists of Adjusted Data matrices for each M_func,\n", + " for each update_interval\n", + " weights_list - list of lists of weights used to estimate Adjusted Data\n", + " matrices for each M_func, for each update_interval\n", + " \n", + " '''\n", + " \n", + " from functools import reduce\n", + " \n", + " \n", + " # set start_UTC and end_UTC if not passed\n", + " if first_UTC is None:\n", + " first_UTC = start_UTC\n", + " if last_UTC is None:\n", + " last_UTC = end_UTC\n", + " \n", + " # default update_interval\n", + " if update_interval is None:\n", + " # only one interval from start_UTC to end_UTC\n", + " update_interval = end_UTC - start_UTC\n", + " \n", + " # default M_func\n", + " if M_funcs is None:\n", + " M_funcs = [generate_affine_0]\n", + " \n", + " # default memory\n", + " if memories is None:\n", + " memories = [np.inf]\n", + " \n", + " # make sure memory is compatible with M_funcs\n", + " if np.isscalar(memories):\n", + " memories = [memories for func in M_funcs]\n", + " elif len(memories) is 1:\n", + " memories = [memories[0] for func in M_funcs]\n", + " elif len(memories) != len(M_funcs):\n", + " raise ValueError('Memories must be a scalar or list with same length as M_funcs')\n", + " \n", + " \n", + " # retrieve all absolute calibrations and baselines from start_UTC to end_UTC\n", + " if obs_code == 'DED' or obs_code == 'CMO':\n", + "\n", + " # if a file: URL is passed, just trim off the front for now\n", + " if baseline_url.startswith('file:'):\n", + " baseline_url = baseline_url[len('file:'):]\n", + " while baseline_url.startswith('//'):\n", + " baseline_url = baseline_url[2:]\n", + "\n", + " ((h_abs, h_bas, h_utc), \n", + " (d_abs, d_bas, d_utc), \n", + " (z_abs, z_bas, z_utc),\n", + " pc) = retrieve_baselines_resid_summary_xlsm(\n", + " obs_code,\n", + " start_date = first_UTC,\n", + " end_date = last_UTC,\n", + " path_or_url = path_or_url\n", + " ) \n", + " else:\n", + " ((h_abs, h_bas, h_utc), \n", + " (d_abs, d_bas, d_utc), \n", + " (z_abs, z_bas, z_utc),\n", + " pc) = retrieve_baselines_webabsolutes(\n", + " obs_code,\n", + " start_date = first_UTC,\n", + " end_date = last_UTC,\n", + " path_or_url = path_or_url\n", + " )\n", + " \n", + " # recreate ordinate variometer measurements from absolutes and baselines\n", + " h_ord = h_abs - h_bas\n", + " d_ord = d_abs - d_bas\n", + " z_ord = z_abs - z_bas\n", + "\n", + " # convert from cylindrical to Cartesian coordinates\n", + " x_a = h_abs * np.cos(d_abs * np.pi/180)\n", + " y_a = h_abs * np.sin(d_abs * np.pi/180)\n", + " z_a = z_abs\n", + " #h_o = h_ord * np.cos(d_ord * np.pi/180)\n", + " #e_o = h_ord * np.sin(d_ord * np.pi/180)\n", + " #z_o = z_ord\n", + " \n", + " # WebAbsolutes does not generate h or d \"baselines\" in the most obvious\n", + " # way, and not just because it makes small-angle approximations; so, if\n", + " # we want exactly what was measured by the 3-axis fluxgate...\n", + " h_o = h_ord\n", + " e_o = h_abs * d_ord * 60 / 3437.7468\n", + " z_o = z_ord\n", + " \n", + " # use h_utc as common time stamp for vectors\n", + " utc_bas = h_utc\n", + " \n", + " # stack absolute and ordinate vectors for output\n", + " abs_xyz = np.vstack((x_a, y_a, z_a))\n", + " ord_hez = np.vstack((h_o, e_o, z_o))\n", + " \n", + " # initialize outputs\n", + " utc_list = []\n", + " M_composed_list = []\n", + " Ms_list = []\n", + " pcwa_list = []\n", + " weights_list = []\n", + " utc_xyzf_list = []\n", + " xyzf_trad_list = []\n", + " xyzf_adj_list = []\n", + " xyzf_def_list = []\n", + " \n", + " # process each update_interval from start_UTC to end_UTC\n", + " while ((start_UTC < end_UTC) or \n", + " (start_UTC <= end_UTC and interpolate is True)):\n", + " \n", + " print('Generating key transform for ', start_UTC)\n", + " \n", + " # reset intermediate input values\n", + " h_tmp = h_o\n", + " e_tmp = e_o\n", + " z_tmp = z_o\n", + " \n", + " # reinitialize weights, Ms and pcwa lists\n", + " weights = []\n", + " Ms = []\n", + " pcwa = []\n", + " \n", + " # loop over M_funcs and memories to compose affine matrix\n", + " for M_func, memory in zip(M_funcs, memories):\n", + " \n", + " # Calculate time-dependent weights using h_utc\n", + " weights.append(time_weights_exponential(h_utc, memory, start_UTC))\n", + "\n", + " # set weights for future observations to zero if not acausal\n", + " if not acausal:\n", + " weights[-1][h_utc > start_UTC] = 0.\n", + " \n", + " # return NaNs if no valid observations\n", + " if np.sum(weights[-1]) == 0:\n", + " Ms.append(np.nan * np.zeros((4,4)) )\n", + " pcwa.append(np.nan)\n", + " print('No valid observations for interval')\n", + " continue\n", + " \n", + " # identify 'good' data indices based on baseline stats\n", + " good = (filter_iqr(h_bas, threshold=3, weights=weights[-1]) &\n", + " filter_iqr(d_bas, threshold=3, weights=weights[-1]) &\n", + " filter_iqr(z_bas, threshold=3, weights=weights[-1]))\n", + " \n", + " # zero out any 'bad' weights\n", + " weights[-1] = good * weights[-1]\n", + " \n", + " # generate affine transform matrix\n", + " Ms.append(M_func((h_tmp, e_tmp, z_tmp), (x_a, y_a, z_a), weights=weights[-1]))\n", + " \n", + " # calculate weighted average of pier corrections\n", + " pcwa.append(np.average(pc, weights=weights[-1]))\n", + "\n", + " \n", + " # apply latest M matrix to inputs to get intermediate inputs\n", + " h_tmp, e_tmp, z_tmp = np.dot(Ms[-1],\n", + " np.vstack([h_tmp, e_tmp, z_tmp, np.ones_like(h_o)]))[:3]\n", + " \n", + " # end for M_func, memory in zip(M_funcs, memories)\n", + " \n", + " \n", + " # append Ms, pcwa, and weights used to generate them to lists \n", + " # of outputs for each update_interval\n", + " Ms_list.append(Ms)\n", + " pcwa_list.append(pcwa)\n", + " weights_list.append(weights)\n", + " \n", + " # compose affine transform matrices\n", + " M_composed = reduce(np.dot, Ms[::-1])\n", + " \n", + " # append to list of outputs for each update_interval\n", + " M_composed_list.append(M_composed)\n", + " \n", + " # append to list of outputs for each update_interval\n", + " utc_list.append(start_UTC)\n", + " \n", + " # generate/pull data for validation if requested\n", + " if validate:\n", + " \n", + " if interpolate is True:\n", + " if len(utc_list) == 1:\n", + " # can't interpolate with only 1 transform\n", + " start_UTC = start_UTC + update_interval\n", + " continue\n", + " else:\n", + " valid_start = start_UTC - update_interval\n", + " valid_end = start_UTC\n", + " else:\n", + " valid_start = start_UTC\n", + " valid_end = start_UTC + update_interval\n", + "\n", + " print('Validating interval ', valid_start, ' to ', valid_end)\n", + " \n", + " # retrieve raw HEZF variometer data from Edge server\n", + " factory = EdgeFactory(host=edge_host)\n", + " hezf = factory.get_timeseries(\n", + " observatory = obs_code,\n", + " interval = 'minute',\n", + " type = 'variation',\n", + " channels = ('H', 'E', 'Z', 'F'),\n", + " starttime = valid_start,\n", + " endtime = valid_end\n", + " )\n", + " \n", + " # place hez traces into hez1 matrix required for regression\n", + " hez1_arr = np.vstack((hezf[0].data,\n", + " hezf[1].data, \n", + " hezf[2].data,\n", + " np.ones_like(hezf[3])))\n", + " \n", + " # generate list of UTCDateTimes\n", + " utc_arr = np.array([(hezf[0].stats.starttime + second) \n", + " for second in hezf[0].times()])\n", + " \n", + " if interpolate is True:\n", + " # interpolate transform matrices\n", + " M_each = interpolate_affine_polar(\n", + " utc_arr,\n", + " utc_list[-2:],\n", + " M_composed_list[-2:])\n", + " else:\n", + " # generate list of identical matrices\n", + " M_each = [M_composed for each in utc_arr]\n", + " \n", + "\n", + " \n", + " # generate adjusted data using composed affine transform matrix\n", + " xyz1 = np.transpose([np.dot(M_each[obs], hez1_arr[:,obs]) \n", + " for obs in np.arange(len(utc_arr))]).squeeze()\n", + " xyzf = np.vstack((xyz1[:-1], hezf[3].data + np.mean(pcwa_list[-1])))\n", + " \n", + " # append xyzf to list of outputs for each update interval\n", + " xyzf_adj_list.append(xyzf)\n", + " \n", + " \n", + " # apply average traditional baseline adjustment to cylindrical \n", + " # ordinates, then convert to XYZ (this may not be exactly how\n", + " # MagProc does things, but it is how BGS documented it)\n", + " h_bas_avg = np.mean(h_bas[filter_iqr(h_bas, threshold=3)])\n", + " d_bas_avg = np.mean(d_bas[filter_iqr(d_bas, threshold=3)])\n", + " z_bas_avg = np.mean(z_bas[filter_iqr(z_bas, threshold=3)])\n", + " \n", + " h_trad = np.sqrt((h_bas_avg + hez1_arr[0])**2 + hez1_arr[1]**2)\n", + " d_trad = d_bas_avg * np.pi/180 + np.arcsin(hez1_arr[1] / h_trad)\n", + " z_trad = z_bas_avg + hez1_arr[2]\n", + " x_trad = h_trad * np.cos(d_trad)\n", + " y_trad = h_trad * np.sin(d_trad)\n", + " \n", + " xyzf_trad_list.append(np.vstack((x_trad, y_trad, z_trad, xyzf[3])))\n", + " \n", + " # retrieve (Quasi)Definitive xyzf data from Edge server\n", + " factory = EdgeFactory(host=edge_host)\n", + " xyzf = factory.get_timeseries(\n", + " observatory = obs_code,\n", + " interval = 'minute',\n", + " type = 'quasi-definitive',\n", + " channels = ('X', 'Y', 'Z', 'F'),\n", + " starttime = valid_start,\n", + " endtime = valid_end\n", + " )\n", + " \n", + " # place xyzf traces into xyzf matrix\n", + " xyzf = np.vstack((xyzf[0].data,\n", + " xyzf[1].data, \n", + " xyzf[2].data,\n", + " xyzf[3].data))\n", + " \n", + " # append xyzf to list of outputs for each update interval\n", + " xyzf_def_list.append(xyzf)\n", + " \n", + "\n", + " # finally, return array of common times for plotting, etc.\n", + " utc_xyzf_list.append(utc_arr)\n", + " \n", + " \n", + " # increment start_UTC\n", + " start_UTC += update_interval\n", + " \n", + " if validate:\n", + " return (utc_list, M_composed_list, pcwa_list,\n", + " utc_xyzf_list, xyzf_trad_list, xyzf_adj_list, xyzf_def_list, \n", + " utc_bas, abs_xyz, ord_hez,\n", + " Ms_list, weights_list)\n", + " else:\n", + " return utc_list, M_composed_list, pcwa_list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Boulder (BOU) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [], + "source": [ + "#\n", + "# default configuration parameters for BOU\n", + "#\n", + "\n", + "# INPUTS\n", + "obs_code = 'BOU'\n", + "start_UTC = UTCDateTime('2018-12-01T00:00:00Z')\n", + "end_UTC = UTCDateTime('2019-05-31T23:59:00Z')\n", + "\n", + "# OPTIONS\n", + "update_interval = 86400 * 7\n", + "acausal = False\n", + "first_UTC = UTCDateTime('2018-11-01T00:00:00Z')\n", + "last_UTC = UTCDateTime('2019-06-30T23:59:00Z')\n", + "\n", + "M_funcs = [generate_affine_9, generate_affine_6]\n", + "memories = [86400 * 100, 86400 * 10]\n", + "\n", + "#path_or_url = '/Volumes/geomag/pub/Caldata/Checked Baseline Data/'\n", + "path_or_url = 'https://geomag.usgs.gov'\n", + "\n", + "validate = True\n", + "edge_host = 'cwbpub.cr.usgs.gov'" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[20540.08888174, 20539.97689157, 20539.79632613, ...,\n", + " 20533.31383075, 20533.60335062, 20534.0016337 ],\n", + " [ 3049.64347206, 3049.630928 , 3049.55800175, ...,\n", + " 3044.91292622, 3045.42813888, 3045.55756173],\n", + " [47577.05220498, 47577.05120498, 47577.05320498, ...,\n", + " 47577.36320498, 47577.37220498, 47577.45020498],\n", + " [51910.911 , 51910.861 , 51910.791 , ...,\n", + " 51908.912 , 51909.054 , 51909.283 ]])" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xyzf_adj_weekly_007_causal[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": { + "code_folding": [], + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-01T00:00:00.000000Z\n", + "Generating key transform for 2018-12-08T00:00:00.000000Z\n", + "Validating interval 2018-12-01T00:00:00.000000Z to 2018-12-08T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-15T00:00:00.000000Z\n", + "Validating interval 2018-12-08T00:00:00.000000Z to 2018-12-15T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-22T00:00:00.000000Z\n", + "Validating interval 2018-12-15T00:00:00.000000Z to 2018-12-22T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-29T00:00:00.000000Z\n", + "Validating interval 2018-12-22T00:00:00.000000Z to 2018-12-29T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-05T00:00:00.000000Z\n", + "Validating interval 2018-12-29T00:00:00.000000Z to 2019-01-05T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-12T00:00:00.000000Z\n", + "Validating interval 2019-01-05T00:00:00.000000Z to 2019-01-12T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-19T00:00:00.000000Z\n", + "Validating interval 2019-01-12T00:00:00.000000Z to 2019-01-19T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-26T00:00:00.000000Z\n", + "Validating interval 2019-01-19T00:00:00.000000Z to 2019-01-26T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-02T00:00:00.000000Z\n", + "Validating interval 2019-01-26T00:00:00.000000Z to 2019-02-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-09T00:00:00.000000Z\n", + "Validating interval 2019-02-02T00:00:00.000000Z to 2019-02-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-16T00:00:00.000000Z\n", + "Validating interval 2019-02-09T00:00:00.000000Z to 2019-02-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-23T00:00:00.000000Z\n", + "Validating interval 2019-02-16T00:00:00.000000Z to 2019-02-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-02T00:00:00.000000Z\n", + "Validating interval 2019-02-23T00:00:00.000000Z to 2019-03-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-09T00:00:00.000000Z\n", + "Validating interval 2019-03-02T00:00:00.000000Z to 2019-03-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-16T00:00:00.000000Z\n", + "Validating interval 2019-03-09T00:00:00.000000Z to 2019-03-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/ipykernel_launcher.py:312: RuntimeWarning: invalid value encountered in arcsin\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-23T00:00:00.000000Z\n", + "Validating interval 2019-03-16T00:00:00.000000Z to 2019-03-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-30T00:00:00.000000Z\n", + "Validating interval 2019-03-23T00:00:00.000000Z to 2019-03-30T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-06T00:00:00.000000Z\n", + "Validating interval 2019-03-30T00:00:00.000000Z to 2019-04-06T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-13T00:00:00.000000Z\n", + "Validating interval 2019-04-06T00:00:00.000000Z to 2019-04-13T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-20T00:00:00.000000Z\n", + "Validating interval 2019-04-13T00:00:00.000000Z to 2019-04-20T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-27T00:00:00.000000Z\n", + "Validating interval 2019-04-20T00:00:00.000000Z to 2019-04-27T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-04T00:00:00.000000Z\n", + "Validating interval 2019-04-27T00:00:00.000000Z to 2019-05-04T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-11T00:00:00.000000Z\n", + "Validating interval 2019-05-04T00:00:00.000000Z to 2019-05-11T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-18T00:00:00.000000Z\n", + "Validating interval 2019-05-11T00:00:00.000000Z to 2019-05-18T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-25T00:00:00.000000Z\n", + "Validating interval 2019-05-18T00:00:00.000000Z to 2019-05-25T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + } + ], + "source": [ + "#\n", + "# Run do_it_all() with a \"short\" memory in causal mode\n", + "#\n", + "(utc_weekly_007_causal, M_weekly_007_causal, pc_weekly_007_causal,\n", + " utc_xyzf_weekly_007_causal, xyzf_trad_weekly_007_causal, \n", + " xyzf_adj_weekly_007_causal, xyzf_def_weekly_007_causal,\n", + " utc_bas_weekly_007_causal, abs_xyz_weekly_007_causal, ord_hez_weekly_007_causal,\n", + " Ms_weekly_007_causal, weights_weekly_007_causal) = do_it_all(\n", + " obs_code, start_UTC, end_UTC,\n", + " update_interval=update_interval, acausal=False, interpolate=True,\n", + " first_UTC=first_UTC, last_UTC=last_UTC,\n", + " M_funcs=M_funcs, memories=memories,\n", + " path_or_url=path_or_url,\n", + " validate=validate,\n", + " edge_host=edge_host)" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": { + "code_folding": [], + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-01T00:00:00.000000Z\n", + "Generating key transform for 2018-12-08T00:00:00.000000Z\n", + "Validating interval 2018-12-01T00:00:00.000000Z to 2018-12-08T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-15T00:00:00.000000Z\n", + "Validating interval 2018-12-08T00:00:00.000000Z to 2018-12-15T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-22T00:00:00.000000Z\n", + "Validating interval 2018-12-15T00:00:00.000000Z to 2018-12-22T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-29T00:00:00.000000Z\n", + "Validating interval 2018-12-22T00:00:00.000000Z to 2018-12-29T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-05T00:00:00.000000Z\n", + "Validating interval 2018-12-29T00:00:00.000000Z to 2019-01-05T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-12T00:00:00.000000Z\n", + "Validating interval 2019-01-05T00:00:00.000000Z to 2019-01-12T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-19T00:00:00.000000Z\n", + "Validating interval 2019-01-12T00:00:00.000000Z to 2019-01-19T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-26T00:00:00.000000Z\n", + "Validating interval 2019-01-19T00:00:00.000000Z to 2019-01-26T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-02T00:00:00.000000Z\n", + "Validating interval 2019-01-26T00:00:00.000000Z to 2019-02-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-09T00:00:00.000000Z\n", + "Validating interval 2019-02-02T00:00:00.000000Z to 2019-02-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-16T00:00:00.000000Z\n", + "Validating interval 2019-02-09T00:00:00.000000Z to 2019-02-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-23T00:00:00.000000Z\n", + "Validating interval 2019-02-16T00:00:00.000000Z to 2019-02-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-02T00:00:00.000000Z\n", + "Validating interval 2019-02-23T00:00:00.000000Z to 2019-03-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-09T00:00:00.000000Z\n", + "Validating interval 2019-03-02T00:00:00.000000Z to 2019-03-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-16T00:00:00.000000Z\n", + "Validating interval 2019-03-09T00:00:00.000000Z to 2019-03-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/ipykernel_launcher.py:312: RuntimeWarning: invalid value encountered in arcsin\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-23T00:00:00.000000Z\n", + "Validating interval 2019-03-16T00:00:00.000000Z to 2019-03-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-30T00:00:00.000000Z\n", + "Validating interval 2019-03-23T00:00:00.000000Z to 2019-03-30T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-06T00:00:00.000000Z\n", + "Validating interval 2019-03-30T00:00:00.000000Z to 2019-04-06T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-13T00:00:00.000000Z\n", + "Validating interval 2019-04-06T00:00:00.000000Z to 2019-04-13T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-20T00:00:00.000000Z\n", + "Validating interval 2019-04-13T00:00:00.000000Z to 2019-04-20T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-27T00:00:00.000000Z\n", + "Validating interval 2019-04-20T00:00:00.000000Z to 2019-04-27T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-04T00:00:00.000000Z\n", + "Validating interval 2019-04-27T00:00:00.000000Z to 2019-05-04T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-11T00:00:00.000000Z\n", + "Validating interval 2019-05-04T00:00:00.000000Z to 2019-05-11T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-18T00:00:00.000000Z\n", + "Validating interval 2019-05-11T00:00:00.000000Z to 2019-05-18T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-25T00:00:00.000000Z\n", + "Validating interval 2019-05-18T00:00:00.000000Z to 2019-05-25T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + } + ], + "source": [ + "#\n", + "# Run do_it_all() with a \"short\" memory in *a*causal mode\n", + "#\n", + "(utc_weekly_007_acausal, M_weekly_007_acausal, pc_weekly_007_acausal,\n", + " utc_xyzf_weekly_007_acausal, xyzf_trad_weekly_007_acausal, \n", + " xyzf_adj_weekly_007_acausal, xyzf_def_weekly_007_acausal,\n", + " utc_bas_weekly_007_acausal, abs_xyz_weekly_007_acausal, ord_hez_weekly_007_acausal,\n", + " Ms_weekly_007_acausal, weights_weekly_007_acausal) = do_it_all(\n", + " obs_code, start_UTC, end_UTC,\n", + " update_interval=update_interval, acausal=True, interpolate=True,\n", + " first_UTC=first_UTC, last_UTC=last_UTC,\n", + " M_funcs=M_funcs, memories=memories,\n", + " path_or_url=path_or_url,\n", + " validate=validate,\n", + " edge_host=edge_host)" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-01T00:00:00.000000Z\n", + "Generating key transform for 2018-12-08T00:00:00.000000Z\n", + "Validating interval 2018-12-01T00:00:00.000000Z to 2018-12-08T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-15T00:00:00.000000Z\n", + "Validating interval 2018-12-08T00:00:00.000000Z to 2018-12-15T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-22T00:00:00.000000Z\n", + "Validating interval 2018-12-15T00:00:00.000000Z to 2018-12-22T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-29T00:00:00.000000Z\n", + "Validating interval 2018-12-22T00:00:00.000000Z to 2018-12-29T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-05T00:00:00.000000Z\n", + "Validating interval 2018-12-29T00:00:00.000000Z to 2019-01-05T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-12T00:00:00.000000Z\n", + "Validating interval 2019-01-05T00:00:00.000000Z to 2019-01-12T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-19T00:00:00.000000Z\n", + "Validating interval 2019-01-12T00:00:00.000000Z to 2019-01-19T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-01-26T00:00:00.000000Z\n", + "Validating interval 2019-01-19T00:00:00.000000Z to 2019-01-26T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-02T00:00:00.000000Z\n", + "Validating interval 2019-01-26T00:00:00.000000Z to 2019-02-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-09T00:00:00.000000Z\n", + "Validating interval 2019-02-02T00:00:00.000000Z to 2019-02-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-16T00:00:00.000000Z\n", + "Validating interval 2019-02-09T00:00:00.000000Z to 2019-02-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-02-23T00:00:00.000000Z\n", + "Validating interval 2019-02-16T00:00:00.000000Z to 2019-02-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-02T00:00:00.000000Z\n", + "Validating interval 2019-02-23T00:00:00.000000Z to 2019-03-02T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-09T00:00:00.000000Z\n", + "Validating interval 2019-03-02T00:00:00.000000Z to 2019-03-09T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-16T00:00:00.000000Z\n", + "Validating interval 2019-03-09T00:00:00.000000Z to 2019-03-16T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/ipykernel_launcher.py:312: RuntimeWarning: invalid value encountered in arcsin\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-23T00:00:00.000000Z\n", + "Validating interval 2019-03-16T00:00:00.000000Z to 2019-03-23T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-03-30T00:00:00.000000Z\n", + "Validating interval 2019-03-23T00:00:00.000000Z to 2019-03-30T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-06T00:00:00.000000Z\n", + "Validating interval 2019-03-30T00:00:00.000000Z to 2019-04-06T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-13T00:00:00.000000Z\n", + "Validating interval 2019-04-06T00:00:00.000000Z to 2019-04-13T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-20T00:00:00.000000Z\n", + "Validating interval 2019-04-13T00:00:00.000000Z to 2019-04-20T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-04-27T00:00:00.000000Z\n", + "Validating interval 2019-04-20T00:00:00.000000Z to 2019-04-27T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-04T00:00:00.000000Z\n", + "Validating interval 2019-04-27T00:00:00.000000Z to 2019-05-04T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-11T00:00:00.000000Z\n", + "Validating interval 2019-05-04T00:00:00.000000Z to 2019-05-11T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-18T00:00:00.000000Z\n", + "Validating interval 2019-05-11T00:00:00.000000Z to 2019-05-18T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2019-05-25T00:00:00.000000Z\n", + "Validating interval 2019-05-18T00:00:00.000000Z to 2019-05-25T00:00:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + } + ], + "source": [ + "#\n", + "# Run do_it_all() with infinite memory in *a*causal mode\n", + "#\n", + "(utc_weekly_inf_acausal, M_weekly_inf_acausal, pc_weekly_inf_acausal,\n", + " utc_xyzf_weekly_inf_acausal, xyzf_trad_weekly_inf_acausal, \n", + " xyzf_adj_weekly_inf_acausal, xyzf_def_weekly_inf_acausal,\n", + " utc_bas_weekly_inf_acausal, abs_xyz_weekly_inf_acausal, ord_hez_weekly_inf_acausal,\n", + " Ms_weekly_inf_acausal, weights_weekly_inf_acausal) = do_it_all(\n", + " obs_code, start_UTC, end_UTC,\n", + " update_interval=update_interval, acausal=True, interpolate=True,\n", + " first_UTC=first_UTC, last_UTC=last_UTC,\n", + " M_funcs=M_funcs, memories=[np.inf, np.inf],\n", + " path_or_url=path_or_url,\n", + " validate=validate,\n", + " edge_host=edge_host)" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Generating key transform for 2018-12-01T00:00:00.000000Z\n", + "Validating interval 2018-12-01T00:00:00.000000Z to 2019-05-31T23:59:00.000000Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n", + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + } + ], + "source": [ + "#\n", + "# Run do_it_all() with infinite memory in *a*causal mode for the entire\n", + "# interval\n", + "#\n", + "(utc_all_inf_acausal, M_all_inf_acausal, pc_all_inf_acausal,\n", + " utc_xyzf_all_inf_acausal, xyzf_trad_all_inf_acausal, \n", + " xyzf_adj_all_inf_acausal, xyzf_def_all_inf_acausal,\n", + " utc_bas_all_inf_acausal, abs_xyz_all_inf_acausal, ord_hez_all_inf_acausal,\n", + " Ms_all_inf_acausal, weights_all_inf_acausal) = do_it_all(\n", + " obs_code, start_UTC, end_UTC,\n", + " update_interval=None, acausal=True, interpolate=False,\n", + " first_UTC=first_UTC, last_UTC=last_UTC,\n", + " M_funcs=M_funcs, memories=[np.inf, np.inf],\n", + " path_or_url=path_or_url,\n", + " validate=validate,\n", + " edge_host=edge_host)" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/erigler/anaconda3/envs/test_GIMP_py36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.\n", + " warnings.warn(message, mplDeprecation, stacklevel=1)\n" + ] + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1a311d2dd8>]" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#\n", + "# plot differences between different adjusted (and quasi-definitive)\n", + "# and static traditional HDZ baseline-adjusted data\n", + "#\n", + "plt.figure(figsize=(9,6))\n", + "for interval in range(len(utc_xyzf_weekly_007_causal)):\n", + "\n", + " plt.subplot(3,1,1)\n", + "# plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + "# xyzf_def_weekly_007_causal[interval][0] - \n", + "# xyzf_trad_weekly_007_causal[interval][0], 'black')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + " xyzf_adj_weekly_007_causal[interval][0] -\n", + " xyzf_trad_weekly_007_causal[interval][0], 'turquoise', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_007_acausal[interval][0] -\n", + " xyzf_trad_weekly_007_acausal[interval][0], 'blue', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_inf_acausal[interval][0] -\n", + " xyzf_trad_weekly_inf_acausal[interval][0], 'red', alpha=.75)\n", + " \n", + " plt.subplot(3,1,2)\n", + "# plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + "# xyzf_def_weekly_007_causal[interval][1] -\n", + "# xyzf_trad_weekly_007_causal[interval][1], 'black')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + " xyzf_adj_weekly_007_causal[interval][1] -\n", + " xyzf_trad_weekly_007_causal[interval][1], 'turquoise', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_007_acausal[interval][1] -\n", + " xyzf_trad_weekly_007_acausal[interval][1], 'blue', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_inf_acausal[interval][1] -\n", + " xyzf_trad_weekly_inf_acausal[interval][1], 'red', alpha=.75)\n", + "\n", + " plt.subplot(3,1,3)\n", + "# plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + "# xyzf_def_weekly_007_causal[interval][2] -\n", + "# xyzf_trad_weekly_007_causal[interval][2], 'black')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + " xyzf_adj_weekly_007_causal[interval][2] -\n", + " xyzf_trad_weekly_007_causal[interval][2], 'turquoise', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_007_acausal[interval][2] -\n", + " xyzf_trad_weekly_007_acausal[interval][2], 'blue', alpha=.75)\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " xyzf_adj_weekly_inf_acausal[interval][2] -\n", + " xyzf_trad_weekly_inf_acausal[interval][2], 'red', alpha=.75)\n", + "\n", + "\n", + "# plot differences between absolutes and static baseline-adjusted data\n", + "idx = (utc_bas_all_inf_acausal > start_UTC) & (utc_bas_all_inf_acausal < end_UTC)\n", + "plt.subplot(3,1,1)\n", + "plt.ylim([-5,5])\n", + "plt.plot([utc.datetime for utc in utc_bas_all_inf_acausal[idx]],\n", + " abs_xyz_all_inf_acausal[0][idx] - \n", + " np.interp(utc_bas_all_inf_acausal[idx].astype(float), \n", + " utc_xyzf_all_inf_acausal[0].astype(float), \n", + " xyzf_trad_all_inf_acausal[0][0]),\n", + " '*', c='green', mfc='yellow', ms=8)\n", + "plt.subplot(3,1,2)\n", + "plt.ylim([-5,5])\n", + "plt.plot([utc.datetime for utc in utc_bas_all_inf_acausal[idx]],\n", + " abs_xyz_all_inf_acausal[1][idx] - \n", + " np.interp(utc_bas_all_inf_acausal[idx].astype(float), \n", + " utc_xyzf_all_inf_acausal[0].astype(float), \n", + " xyzf_trad_all_inf_acausal[0][1]),\n", + " '*', c='green', mfc='yellow', ms=8)\n", + "plt.subplot(3,1,3)\n", + "plt.ylim([-5,5])\n", + "plt.plot([utc.datetime for utc in utc_bas_all_inf_acausal[idx]],\n", + " abs_xyz_all_inf_acausal[2][idx] - \n", + " np.interp(utc_bas_all_inf_acausal[idx].astype(float), \n", + " utc_xyzf_all_inf_acausal[0].astype(float), \n", + " xyzf_trad_all_inf_acausal[0][2]),\n", + " '*', c='green', mfc='yellow', ms=8)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(9,3))\n", + "\n", + "for interval in range(len(utc_xyzf_weekly_007_causal)):\n", + "# plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + "# np.linalg.norm(xyzf_def_weekly_007_causal[interval][:3], axis=0) - \n", + "# xyzf_def_weekly_007_causal[interval][3], 'black')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + " np.linalg.norm(xyzf_adj_weekly_007_causal[interval][:3], axis=0) - \n", + " xyzf_adj_weekly_007_causal[interval][3], 'turquoise')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " np.linalg.norm(xyzf_adj_weekly_007_acausal[interval][:3], axis=0) - \n", + " xyzf_adj_weekly_007_acausal[interval][3], 'blue')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_inf_acausal[interval]], \n", + " np.linalg.norm(xyzf_adj_weekly_inf_acausal[interval][:3], axis=0) - \n", + " xyzf_adj_weekly_inf_acausal[interval][3], 'red')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 370, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"900\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1b3fbb17b8>]" + ] + }, + "execution_count": 370, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(figsize=(9,3))\n", + "for interval in range(len(utc_xyzf_weekly_007_acausal)):\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_causal[interval]], \n", + " vector_dist(xyzf_adj_weekly_007_causal[interval][:3], \n", + " xyzf_def_weekly_007_causal[interval][:3],\n", + " 'euclidean'), c='turquoise')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_007_acausal[interval]], \n", + " vector_dist(xyzf_adj_weekly_007_acausal[interval][:3], \n", + " xyzf_def_weekly_007_acausal[interval][:3],\n", + " 'euclidean'), c='blue')\n", + " plt.plot([utc.datetime for utc in utc_xyzf_weekly_inf_acausal[interval]], \n", + " vector_dist(xyzf_adj_weekly_inf_acausal[interval][:3], \n", + " xyzf_def_weekly_inf_acausal[interval][:3],\n", + " 'euclidean'), c='red')\n", + "\n", + "plt.plot([utc.datetime for utc in utc_xyzf_all_inf_acausal[0]],\n", + " vector_dist(xyzf_adj_all_inf_acausal[0][:3],\n", + " xyzf_def_all_inf_acausal[0][:3],\n", + " 'euclidean'), c='magenta')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xyz_30_list[0][0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "#\n", + "# configuration parameters for BOU\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'BOU'\n", + "validate = True # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "#\n", + "# configuration parameters for BSL\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'BOU'\n", + "validate = True # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Barrow (BRW) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.953 -0.258 0. 0. ]\n", + " [ 0.258 0.953 0. 0. ]\n", + " [ 0. 0. 1. -138.482]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.564e-01 -2.690e-01 0.000e+00 -3.468e+01]\n", + " [ 2.690e-01 9.564e-01 0.000e+00 -1.031e+02]\n", + " [ 0.000e+00 0.000e+00 1.010e+00 -6.839e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.611e-01 -2.860e-01 1.670e-03 -1.769e+02]\n", + " [ 2.658e-01 9.611e-01 -1.831e-03 3.168e+01]\n", + " [ 1.549e-03 2.803e-02 9.611e-01 2.059e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.463e-01 -2.909e-01 2.291e-02 -1.248e+03]\n", + " [ 2.656e-01 9.592e-01 -2.012e-03 4.351e+01]\n", + " [-2.062e-02 3.236e-02 1.050e+00 -2.752e+03]\n", + " [-0.000e+00 -0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd8FMX7xz9zl14glQChhJpKC6Ek9C5FQEUBEbGgghVFBfQn6lcEUVEREQFROtIF6b2XkECAhIReAqEEkhDSc3fz+2P3Wm7vbq/fwbxfr7xyNzs7++zc7swzzzzzDKGUgsFgMBgMBoNhGImjBWAwGAwGg8FwBZjSxGAwGAwGgyECpjQxGAwGg8FgiIApTQwGg8FgMBgiYEoTg8FgMBgMhgiY0sRgMBgMBoMhAqY0MRgMBoPBYIiAKU0MBoPBYDAYImBKE4PBYDAYDIYImNLEYDAYDAaDIQI3Rwtgb0JCQmhERISjxWAwGAwGg2EFUlNT71NKQ+1xrSdOaYqIiEBKSoqjxWAwGAwGg2EFCCHX7XUtNj3HYDAYDAaDIQKmNDEYDAaDYWMOTf0QWTvXOFoMhoUwpYnBYDAYDBsTvHgb6HtfOFoMhoUwpYnBYDAYDAZDBExpYjAYDAaDwRABU5oYDAaDwWAwRMCUJgaDwWAwGAwRMKWJwWAwGAwGQwRMaWIwGAwGg8EQAVOaGAwGg8FgMETAlCYGg8FgMBgMETClicFgMBgMBkMETGliMBgMBoPBEAFTmhgMBoPBYDBEwJQmBoPBcCJOXtgLmazC0WIwGAwBmNLEYDAYTkLy4fXwHvg25k7u62hRGAyGAExpYjAYDCchN+0YAKDh0RwHS8JgiONC/gXIFDJHi2E3mNLEYDAYTkJZYS4AIOK2gwVhMESQfnYX5ImDMO/bZxwtit1gShODocHO6W9j85h+jhaD8aQiU5h12n/bZ+L352Nw4vRmweNyuQzzdn6JClm5JdI5LZl3UkApdbQYTxzZh3cBAOrtv+xgSewHU5oYDA3q/L0XDfdddbQYoigszkPeQ12TxMz32+PXCd0cIJF4KKVQUPMUhMcZqaeXWefVnPAHup2lyJo1RfD44tlvotN7q7Dgx2GWiOeUrFs4Eeg6Eqv+eNfRojxxFBbfBACUSB0siB1hSpOTcj7rCLZ2jsa/yyY7WhSGkzJ9Ukf89lEPnfTeOx6i14Y7DpBIPHM/7IxN3WMdLYbTITFTafIr4/575Zfg/MntqKwo0zruk3ENABCQ+fj5SpUfPsJ9SD7lWEGeQCi/ylNBHCyIHWFKk5OSvnYeIu4BWLFeK/23d9phzgTdjvJJYOH8Mfj1856OFsNpeGkHxfOHXXNKosu2+2hiQ78dSily8rkpg4L8O9j4+7suMX0jdTdPaVLiWVQJxYvjsG5ML610Iuf+Kx7DFp9WcFOOlVIFtm7+CatWfO5giZ4cZA855bzFNed/t6zFY/gKPSYQ7qchVRr6HrsL0XXD4zdaFEO7GfvRa+0tR4vBcAF+f60VHiYOwLE9S7H97afR5Nfd2Lfye0eLZRQ3dw+Lzncv59qLgKsPtNIl/EyoMypNs95pi7lfP232+a2OFwIAWh96iIjx89Hs63Wizisovo/Ckjy9x/+aMQIzR3DW0H2n1+Hm/Utmy/i4IsstdbQIdschrxAh5ANCSDohJIMQMo5PCyKE7CSEXOT/B/LphBDyKyHkEiHkDCEkXqOcUXz+i4SQUY64F5uhUpqA8rIirP7pDSjkcgcL9WRBZTJQmWsspT2VtgWzpgzQsaZo+g1RmQxUoe1HtHTdl9h/bJVdZLQn3Y9y1oecEwfgk18CACi8dUP0+ZRSrF71JSoqy4xntiISN3et73fzr6KkrFD0+RH8rCypMvAnCi5BIXU+i0DP3Y/QeYX9FZLzHTshpUcHvccT559E71QFMs8fQdjQz5E8zHzFzhUoKytB6rmdAIDsuxkoLS/Cvws/R2ZUNFbMeUfwHGnJI3uK6BTYXWkihMQBeANAWwAtAAwghDQBMBHAbkppEwC7+e8A0BdAE/7vTQBz+HKCAHwJoB1f1pdKReuxQKJWmtZ+Mghx8w5h7dRXHCvTY45MVqn1/XDHFsiKa+YgacSTnrIdXsPGo+fSy7iSeUyVvmHxFzgfHYvDuxbhUUk+suKaYe/QHlg0fQTmfdobd+9cR+vPVqHGK18CAD5+Pxa/znrJ6PUopbiT7xrO8pS4ofE1TlGsqjAaYvVv7yBu8ios/WwgyspLMH/Gi3ZRoNxlRVrf8xL7Yf1LXMe+9ukWWPHpIFHl6CpNnNMJJQSUUpy9dsRyYQ2Qk3sZRSUFZp9fWVmBJV8MxsOCu1aUSptqpUCtfO5z8vH1yMsXni8+seh/AIDomzYTxSn4e1wX+Dz7PtKOb0JRlyFYO6wdPBdx7iEtZ+5BWckj7Nv2BwAgJ+cCNm+YgYTUh4JlHT+8En8OiUFOznmTZMiMisbygTGW3YiNcYSlKRrAMUppCaVUBmA/gGcADAKwiM+zCMBg/vMgAIspxzEAAYSQWgD6ANhJKc2jlOYD2AngKXveiDU5fXoHSks1GkwJ18g1viqH91Wu4ajMvq46vG7Bx2Zf669pz2Ptz29opWWc3In//v4/s8t0JLn52XhUrN/MLpaK8hKt78EFrrG6S1aobrgqS9Udu2ztBgDAza2rcS0hCQBQ6+wdtP37JDptzMbJNQu0ynl9hwK9Zqcavd7Swc2Qn9gPq/4cj9Sj/+LI7sWi5MzPz8GCdzri0cNcUfkNcf9+Nk6lCC+v14RI1U1cScpxZEZF4/ThlUbPazZ7LwAg8b9s/PN6IjrOP4Vl73UxX2CxSNTLkOS8lTM+XYZ92+Yh5mIFWm68IKqYqtP6oRe4NiTgRinmvdkabk+9jv/mm9+GGONhpwHYPIxT9goL7uLUsTW4fu0slj4dg4M7/9Z73qblX+N08mZs+PEtJKw+j83jxCmJlnBi9xL4j/oMF7t3FzwelmV52+IKdN3H9T9pP08CALTOVCA0X/0crXmnJ8LGzcTxnUtx8ZlBaDjhT71l3fruG3RIpzg8939Gr1tRVozMqGhkRkUDAFpdoLidcwE7O0Rj67dvWXJLNsERSlM6gM6EkGBCiA+AfgDqAgijlN4GAP5/DT5/OIBsjfNv8mn60g3y8OE9FBcLa8fW4OatdJMdTq+eT4HH0A+wemw3LPqkHxZ91BtEov5poi5x03ItDqo7m+gfjHcYq2e/h/1b5gEALmQdBgCkrZ+PxEXpiJl7CNtWTMEfbySgsrICJa+9j8bT15oktz04sHU+Fg1rjtIS9RTFzYyjWnnuJ/bGzdb6zexiKS8ttrgMR5B3X231oVQ9hRtznrOcuV+5BTcB/S90/mrV55R9q3Uz6CHhPHeNRr9ugc+rkxD4zjRR522ZNBxJux9g4+QXRV9LHwdH9oHXS8Y7/eIHav+/Vqc5/4sbU77UyrNu9jisnal/uXq7FG6FUGyy8Wmyq5dOYv67nXWslgtfisf6P8YbPV/mUU31WS5XTw3n/v2H0XM1Cb/HWWuUhPADgMirlWiRytXD3TMHTSpTCKpQYMnYdjh1eL3OseYXuGveat8VXq98gaOzP0frixT3f/tZb3mN/vcPPF7+GPICzkrl+agMhQ/vIS/POr6MclklTsdFY8+P41Rpl/9bAYCzPAkheeC6U1CFD+/j33m670mFrBwyeaXAGUC7NPVzp2mxDLvC1UP+jQuoYaQLjb7ItRHu3r5GZdwy+WWdtN3LvkOdB0DEkgNGz7c3dleaKKWZAKaDswxtA3AagCHHEaHFjNRAum4BhLxJCEkhhKR4Zudi7StJJkotju0Lv8KjHs9j7qjmUCjE+x8lf8Q9NPXPF6Htf1fRdks2HpbrmrYlVe7u4rU0g+XGzdqFGh/9jE1zJ0I+eDRWT3sFZcfV0zf1v16GLgeLcbJtC9WSZVOmMGzJlSsncSfnMsq++wlt0yqxb/Xv6mOvv676fDnruPD5WcmY+2EXZGdnCB+/eAKLno/FuTP7VWmyCvOmXx7k3cKCoXE4tHuR8cw2oNbkharPcpluQxidKXxfvhpxDu9fMPwsCeFj4p6ybgXcSJYUqy16pUXmDWCiruq+6uWlxVj60VMo1LBkJazL1MnX+CrXdKz+4Q3k5d5E9KztiJmzGwCwZdk3WPSlcHRjDxH3WzZgBDruysWan95TpRUX5qNdSimiftmi9zxKKRe7SqPdWPdOb9Vnv3vCPXpRUR4KH90XPPbvD8KjdH++qEfQDnSZff0sykqKBM7Qz+FN85CwtxC5n09SpS0anaj6nLxjmToz/7srJOqm29gAUwEFLnXqgrtJ3KrZyvJSnNo0HwUP7mDFiwm4deWsSfIWPMiBhwwIXrhdLUO5+v2glGL+hJ44f+6wKq2O7WYIbU56r86I/Gkztvw+ASe3LVSlX45rifXPtDR6vo/GI6JcTFCWJxzOZP7rrbH8ae2pNamPH+bPGIF97aORk637LgJA0QXd9GYL1QNjuZP5lTrEEZxSuoBSGk8p7QwgD8BFAHf5aTfw/+/x2W+Cs0QpqQMgx0C60PXmUUoTKKUJANDmrAKVleVY+NWzKCwUbnCUrB7cHFu7GZ5j3bduFpaN7wv8y1l/uiTLsGRif4PnaNL8MtdwaGr1AR7G3bNkTw3Hj1/0Mpov/9g+AID7gRMgAp2q5ggr/7Zz+KqU9xuB888MgFI3llL1i+NfTLHovW74t3cM9k16Vfj8waPQees9JL/1ApaMbI1lQ1toHT8+42O0PavA2R8nqM8pU3fmSlOxGPb+/hmSTsuR94Pw6iy5TIaM1G2iyzt/9gDy7hseWd/PzhJMT1/2g+jraFJ+/57xTCaQfS0Dt29pTyU1T+PqN+y8erpj13NqC+E/U1/GkvHmz7Cv/9/LaL3lOjaNN76lw85l0xG34BCOvaB+f1IOrUWDb5aj7UrhuvU0oe323ncUWecOY8lzsUjepT19ebBvIi4d3a6Vtnpwc2RFx4BqLPZocUit/Gluq1JSVIDbN7jBQHZCB9xq00lQhqBNxwTTlYOv3jvVPaJcVomiPi9gI+8/lX39LK5fNh73qDSf0yjq3lErQm0PqQd8BbfUkaJj9nPPNNVQmooe5QsXzMsYl1EJb15Zrawsx7+vdYPXxz9h55t90fJkMY6MH2FURk2kUs7R3kPjtww7ra7cFR90QscNt6B4drRJ5TorgYVcRTb4dSO8x01H5gn1cxd3wbQBcu1crqzIBcIWyo6HS9DqorYSXJh2BB3nn0RYAXBk7zKdc65kHkfrLF3F2UPD5nDz6lks/bA35DIZ7t+9ijNHN5okt7Vx1Oq5Gvz/egCeBbACwEYAyhVwowBs4D9vBPAyv4quPYCH/PTddgC9CSGBvAN4bz5NFMtHJ6HdP5nY+PEgbF8/AwuGxuLInhVY+q22I2xcViUibhseDYV99jviN19DvSz1KC0sRfxKHSX+GrNDZY/EzaP3X23cOzH4FtcwRV5VoNqmEwbzHhg3VNR1DXHh9EHsTorG+u/ftKicGg8B8CPRu3vU5n+vSqDtzjuIvEGRlGn4t2l8Q4GEEyWIP61tJqh3mdOvmyerLR2lRcKOq2umvoJjWzg/jNOntyPnlrZzY+zSZACARCYsy6pPn4ZkxIfYu2amVvqyTwZg299f6eRXPP8Wjgw3rAzn9hJWDFrsNC/4keSyevXSkuGtkBkVjX8XmR/vpuipISjoIeyPEqzRTza+LkdmVDTOHNuMFotPIGHzda28Gce3YGvXGFzO5EaeD+5ew80r6s489/Yl3M4+j8Nb/oLiEff+BV/UXm4vRME/SwEADTSqy3e0OJ++vyYPwvq5nxjM0/RKBdK+eR8JGQrcX6VWmnb9NgkhVwtQ+eo45N/PRjavmDQ7z/XiFaXGpwCvJySioPcQo/lq5wFrBjTTOwDQbPxz73IKTbNz3HtS1OcFlPQ3Po0qL1OPuCil2Lt4qtbxskL1j+2u7AiJWmnKzbmi+nw2Zavq88N83Xbt398/RBzveByXwVmH4jKFp5iEUCjk2PDJYJ30WhpNbVia4UG0K8T6MsT9t8dh2Ye9jWe0gLX91EFrfW+qn+ciRRkWjuuBVT+PAQAc3jwPF/YZX7l7ctwItN6ajYXj++LE8P5wf3WC0XNsiaOidqwlhJwD8B+Ad3hH7u8A9CKEXATQi/8OAFsAXAFwCcB8AG8DAKU0D8A3AE7wf//j00TR9jg36pXczof7jD+RdFqBwLf/h9ZLUnHj4lmcahaNZa+213u+Qi7H318MxAM9FgGJAvjz/U7Y2168xcJL4/1vufK06PMA4HJmMpZOGICSR7odf4Mb4n/myLPF2LXuF2RGRWP3Ou1O/sB/c0EVCty4fBqpzaNx5TznNJx+eB3On9qHlV9xWzTIh76J2nlA1F/aI5L05K24elF79JqXexMXM7RX8hTkq82/dXkDSEKytpO2EDuXfYdlrydBVqkeQWuOKMtKi5AZFY11/WIQlO2mSi9+WI71M1JRlC88BRK7+Diqf/Q98u7cgMfQcXjYQ7fhBYBGNymKCwuw4vNnIJOplTT/LK4DuJeVopU//r/LqD9d2ym5MJ+74UbZ2o3zjctpuJbFKbwrJll/c0yPQnX9JpziOqTIaeuwO4lz0Hxw1/Ag4FG+sHN3QWEu9reLxqo/1AqJpsXmkW849nf8AVe/+EmVlhanfmcyfv0SEXcoDs/+HFcyjuNel7541E/dme/9Zw4Keg1G0Ec/wD2f87moJ2I6Je6iYbNRuUc1pLYch3INHyMA2PL7BCSuuoConzdh+egOWP7pIBQV5iEtLhoLhzdX5XvoC7Q4VcLfr/q5Cv/tX9Xn00/3RlH/F1FUqFbyGs8y7quokmXxV0bzxF4yfJ+ZUdHYtfw7pKeop6krysTH3im8pbZMZ0XHoObUJVrHm8zRtbDGppchMyoaq55pgWu30lXpbi99pPrc6aDuNGHcnL2i5UrfuRIb+sRg6Yh4yCorkBkVjfMxcWh71LB/Um6Yj8Hj//zfc3j00HpW2bW7fsWBVF1/MFsR8giolZxtPKMFxFxRW7Aib6jbsXs5WWi3LQfN5u7HkgkfIW1DA/gvvGi0vCh+JiZp+01E5KjLK3mUh/LSYuxa8Z2+U20CcXXN2VTqhUbSuc26IyJnn948Zz4djubfr9BKi87Snnf9Z8JgtNggbjllZEY6JFJuVUxpySPsXz8LT434THXclKkgIcKP7MWtJG6vsVNJAXjxr6NWKTctMRDD/z6CvOsXsPvnDxG37Qpu1HVHvWy1dpc+tCXiVqr9YU4NbIhWG9Wjx+isTBxa/jPuX76PO9cTEX/qZ7RN3a06vqtTNMJzgRoHtuFi6j54+frj1Na/0X69+XFb/Lb9i6KndBUb6cp5kA/Vtn6Ve1RDcuuJqPSsDk/PLHTYPktvuac7h6LFgVzVfd04cxQymQzlL+pa1E52CcWIuQdw6L8FCP7kRwBA6qi2eGnSIlzLSkbu7evwGztZVdaa/jGIvUxxuS5RKUzKZ06hUOB8DDd6uzv9Z2RslqLl6VkIemi8wbEWaa380Xf2Bvj6B+FU+/442Woc4k/9DP9i9Yz43aljUfj7HNSf8iM8XuGcT9cnEjxzVH8bc6TtlyjzDoVXaS6Skr9WX++F5qhUyKA4fwHtzurv+LMaSBB1VcF/jkRO3XesUjcZkSNxt2Y7hN05htjzSw3mvRQhReNr+n0Yyz2qIT3mNcSd+wueFbqWpBIP0/3DAKDIS719ijXJeLENYpdzCvqZF5qh+aqzSGtTDREZhQgoAWoc3oNtb/dB/GnxVh59FHtq+9bZgoxXuyD27/3GM5rAyXb+GLEoWbwMl49B0p9zJdDsS5YOiMG5egRTf1f7XlZWlqOyshw+PtV0yjFE+sUjkEjcENOoLQBuNfDlFq0NyxXng9j0Elxv4oH6F814CAUo96iGtLgxKPOpgfhTP2m1EUr2J02H3N0X0spidDliuuXo5pejUOdrtQ9pzPmsVKX7ja2xSGkihEjAxVqqDaAUQAal1Knd5uqFRtIJz85G9/3vGc9sJTw3rUDNWg3g41sdW/rEosF1Be5XB3L6NEfzVWdscs0ST7UTn7FGWx93QlriXOxoxKbPR9gD0yxfSsKP7setxC46nePNUOBRh1hE/yvsqG0JB/o0RuftukpXdk2q5Xuxr9MvUEjddfJJ5JXoenCcTrom6YkhiDuqa8p/5BuuUiiuNS9Fs6PaPhsFsyYi4D3tkZECwiZfj7ULceyXjxF/UH2d/R2+h9zNB1JZCboc/tSgjLbiaJsvUOoTBu+Su0g88Y1ZZezp8pvWNI0KStF9v3kbr+5L+h4Kdx9IKkvQ9Yh5dWPJM6GPc5EjcadmO9S8cxwx55cYP4HhEsgXfI+4DuICXr47PgbvbNYeDJWVFuNqqwStNAB4c3ocHpZTrJxsWts45tNYKAgwbzp33r/PtEZkpnELvbXJajIUObU5Pzuf4tton/Kt6pgt3nvABZQmQkgjABMA9ATnxJ0LwAtAUwAlAOYCWESp821jXi80kk54bg73xcIfylXgHuKOqJ1zCFEXjceoUbKn08+AxB1QVKL7wQ/NuratXhJL0dc5AgCRV6KbGR1kuUc1HG37FRRSD53GwlKcoR6tKYOzlrW38y+gEt3ngigq0e2Aac+ELRQwhnNRdQZCH5pWf+U5V26fR3k3ziIemZGOrxcORte4kag56kuTyq56jaAjWxEWFIF1/eMQfdl+u0gYalOV7+KDgKY4GzcGCqkH985SCom8HM3P/mGRddieSpO5Pk1TACwF0IhS2odS+hKldAiltDmAgQCqAxhpLSGtDqUApWh4cY1Zp+vzd3A29nX6BXu6zkZOeGeASJAT3hl7us7Gvk6/GDxvT5ffsKfrbED5YEs9sKfrbK5zcjKUPjGPfGubdF7i8ckIyU0DNPV6SuFVkouk45NNlmNPl99wOGkaFG6eACEo8att3TpT6Jmi0pduC6woQ5uUadx5ykEbpYBChjYpUw2fKAChwh2DvnRDUOJmUrrBskxMZzwZDP0xFkdPbcQvC9Rd5Nz1UzDsh0so+Fw7htjuY8vx5Zux+H6hcKT+Z+a0QP8f4lCgEXbin984R+vOC7cKnmMrEo9PRtCDdJ021bM0T/VeBxdcAFG2F/y7TxQyu7oaWIq5StNMSukBKmCmopTeo5T+Qil1TNAa0VCDfk2GuNRgEB5Wb4xLDQZaVSJrk3h8MsLungDk/DydvBxhd5ORaEQpiMn4E1DIdTq02PT5Jstgzc5RiIzoVyCXeiMjWjj0gD48KwrhUVEIgKiUaID7asoUJsApp/osHda6zw7HJwPySu16lFdy6XZCKDCaoXRD+BdrLKDQaEaE/B+MkXTsC8G6STr2hclltUmZBlDrPK9JxydDWnFPqyzvkrtmKeUM1+XMZe1gvF/9qcDeXydi7FK1U/qNi5xfaJTGosGCvCvImTIFww4o0GWmbqT+zfvmYerMCvy4QI6XZ3dVpde8wq0wDAmta7K1yhI8KwrhVZaHqm2qVF6m9V4rpO5wqyxGw8vr4VZZzFmdXAhzlabfjWdxTtxkpdAfG9MwSsvN3VrtAUJwt1Yib00wbLlxFJ4VhZDKSgGJB/cASzwglZUZVQpq3tewwKgafIVZfk2ev2j4jlnYOWqitIaV+NU2ybKT9uFw1ecKj2rwKruP0HupqHEvFZ5lD+BXZDzycE6I9neVcqpZZ3wHKfY+LzZ0B1mzUCvtfEP1lhqeFYWqTZyhjORLJCYreJaQdHyygDItN1sJ8Kgsgm9xDmIzFsC3OAcelaYFVlSiWTdEGRzSzLrxL74FSvn6VTb6ikqTntebNalKLu+adbXKokSCW8Hq2CLyxc7ZdhgjaK/4uGNPOn/O1o35VHVxxN1HutvjvLOgPxIucfmEopXn/6B+dqYvVFtVvW4UYOv+v0yW81J9qfFMRqjwqAaJogJepbkIzDsHibwMMnftFYndDn6IzkcmIOaXF9D5yAR0M9P1w1GYbnN2cXxKc812Aqd69Cypu3NqykK+HjnhnZFTu5NxXw8iAWgl6tw8iFvhnUCJeS9Ui06DkPzXOrhXFiPi2lZci+iLSnfjofWN0SZlGs7EvYVyryDV3LhX2QM0S5+rkzeriRui+CXm7oH1VOnNM0y3nAFAUXU34L56SkqlnIKoFCdpZQlkITUEz4/OytRZ2VjmL0VUXDsk/zEF/mO45fmDt6Rj09wJaPQzF8wt5MFZeFY8RO2cw8ip3QHlHtXNkt9cPCsK4VWehzKvEEBRCRA3eJXnma24dTyqjgMVdl87FMXlmkAjgcDDRV4EfmW6E1ze1e8iKOuiVeqGohx+xXlwk+2EzK2X3uc1e9JwyBetRESOQmslW2VEJXDHg/PxyCvXegfLvENxvckMNLzN+TTVrBeJXAAKAlytS9Dohu69VSUnGCh+vjcCIyLR4em3cD42zux7FUPEqRO4d/sy6jdsoXpuw2rVhzK+y+X6EjS6br77apkH4GWdhVt24V4QRY088YPu3ieN180n63Tz/N8CgYwatL4s/Kw0zQEUb/0AZL1m9Lq5gUAov1bFY/gw4DvdAJTGuFcdqm1VTGlTQ+pEwvRohmqyp41B3UmmbS9kDcy1NDUkhGzU92dVCZ2IpGOTtawlSuQyatRPyBG0SZkGz9IHWpYBr9L7oqYauh94HyFB89D0yjp0O/ghuh94X3WsZKHxuBiZDYHkrkEAuM6xXcpUhN0/hXYpU7U6y6ocSfIzWjYApMZ/gnLvYHWHRAjKvEOQGq+7asq3RN0geXp6iipf73U7B6HpZV0fngqPagjPOYDIc98hPOcgAh9ewhszuunkO9GH2x7x3Ii2ePDdB7hch5O/6XucL0Pbrs9p5R/w1nREZ2UiOisTdV6vDkm/EvgX30LkxVVmK32mcDrGW+u7X9EthOccQGzGDwjPOaBlmbv67gCzrnGLt9yl9qyFE024+sgOVXdKlRr6enqkWp5j3bkTr9Z3Q7dXIxF5cZVV6qak/P/QLmUqfErUz+t93n3xzPPNVPl6j5qMoE+4/eQyk4JV6ZL2zwLSf3o6AAAgAElEQVQAFHpaV6qxKa9/dU6xPtMpFD6vGO/kAKDH4UwMHDcTnQa/rQploo+NnSwPxeft7Yf6DbmI+ncCgZMttd+hCi/xY+/UbuqBxJlmXDlXG3DnX66nljU7TNeiCwClGuPTwnDDiktaU4nqdzOF6zW5/w/GPCt4/E5D0xTyQLn9vdjE/uqakkmk5tlQckPMO883IMys85ITPHG0X2207W75HpbmYO4blQtghoE/l+B6Le5/npF3QPnieVYUgpCH2j4wAJq2DTPqJ6S6prDxwSb4F9+CVOnPxMsrkVeInmqo1aqjYHp8O2Ffrs0J6kbs2S2ZGPXHYcF8mhRUiSVXLayOKNkSj08GkVdoTIkpQOQVgr+DZqRuLy8vUeXrI/xpYYfM5hnzdTptIpHiEX9/Vz59AQd6B+DlmbsAAM99sQgdB49B3B/LcHZMZ7TsKBwwU5MO/V7HwLHmbZNiKtdrcr/l/VjtOC/B97j7DCjUVU76vKEOP5DRVLxlsv2WwzjzVie89NseuNfnfv/q7mrl6OZ7XDDPa+EEskZcj3Y6gmD4jK04mRSA6F//Qp3GzXE61jKFWEk4H2sy+oJMpbCF8MY0tyLtwEjt+r6G6KxMVGuk3qbnqTE/IGtMDwz5ojmqhXrr+DS9Ml297Ymntw+iszIxfN4BrU26rcXwiSsMHr/wZk/B9Id6jMHdjmZixD/a+xRKFIaVAtlf6u2F+n7NhVxIaeODdlP+REpbH8jbcM+YQqpuP0qrU/Q4lInLdSQ4G6d+Z0s0dHjib/hddgNB4uHTIMtmomyR7hZHmgqYXEP/il/xHyoX/oDGHfoKlkvdTPudgnLN8fqzD5QAd7ixLdzMfP4q3e0bI3vU0jS89tNuBFQPtet1lZh7t48opfv1/VlVQhtS6cXdfnk1dWN7eZSuonCrp3oqxcuvCH7BEgBU5Rbl4SXVO0VxOJpgi4YykR+rHj4pX1Rrrca7F6SbJnP30fIbqTq/rI/q/y1D56EfaTUmSoiQ0zMAuZF+8lYT3fu7EaNOSx8WD59G4qYaPCsKUesOt7eWRM7Z9mvdOYZr4bp+MfmJUQCA5Pb+8DC4N7RxfH3rGTwurbJgS9mdBITUwVu/HtXJH9G4FV4YpzulaG8KtQ1KCMvjJHevYlnND+BGlQqBR0Dqqe7EKqMbqz6famX4mfOrFoShH84DAMjl3O8jNBVOALTux/mH+D47EF7efhjx11E0iGwDdw9PDFtr+qbDQtTNVd9zaZWZd3JFeG9GN19tC+kz435DWJ1aoAoKEAKJG3dDZZ5S+FYXVu6IRP8LpFgzR4zoOngTPUvAVdfU7gJqHtyJtG61EDZH/LSHci+7kz2FV7A2S1LHMgquUQ91Th7E8L+PISIyASMXp6J6Uy6Sel6EevTqxg+GBuzKwAtr1FO3mk/j5Yacv9hNPQPR0vBguLl7IKp1b7RqpxtPSfMZLvBXf65RqzGatx+g9/dQhHINbdV3xpkoDhIvnIK/TeJm+FnRh9TfiSvCBpirNF2zphCOQvkCVmj4JA2YpGvWJxpO4yFhh1CjXjDiutbF0M/bIK5LOEoKhSfkr9cmGL3+HMYvPadKk1RTv+GP+NHc1fp98bB6I1ytLzyyEUuZl25PY8rUmCa1m8QDAPJ4neaOgEIGACcSxU2nAUCnNXtQUDW7hgLm7lsNPUdOxMkEP9yb9o7Bsi7Wl/BTYgfR+uSPCM85iJKEBFT66L74vd+fiTpH92LUwmRIKrgVK/cE9kM+19j461Cjei2Dxx/6C6cTN+f0e1NyrZk/8qqpu6ScGtzvEhKg3SAquxGpETcNqQc/9VJHguHLU3D65da49oZ6z6uTLYTr47qMM/Nku5fiUm3gfF3t4/Edn0F0ViaeftN2WyfUUG9HiON96qFCCtzkB7XypLaC5/QdLRyTK7SuH+K6hOP5iQmI6VwLEfGcAp86LA5pI+NFyxQT01l0Xk3cqhs2o8tOndT6HhhaB8Pn7IGHr54HWQAJ/yxIatRAWi89DYUG/j4hcNPooHu/8BEufTsaL8zYoc5UxXh17dvXcDDeDQWB6nc0LLQm6p9NRaM/1Au15QQ405JT0r1qGx7gaL6rEoHnWaJHiegybiaOt5TCfd7PBstXsqsl9y5d79RAVH5r8OC5rqLyUQD3anL36RdW13BmPRATYj1WWO5r7nDMUpooparJXkJIEiHkRULIy8o/64lnW+p88S2SW3lC1k54l3AVGs8ElcnRd0xzdBkeiZA6/ugyPBJ9xzQXPM27ROhhUqedihcfR+lCjPH7yW9h/ZcyN5zr/O51jBQ8/sLv+1SfvRSG3whPT12bf0WgL67VVvsleXr6YsTSE4hqY1iBLG7eSGdKrNfoaJTUFWi03STwD+SmdaLa9sDNYODmEO19BcuX/Yyui3fonluF6p6GtYV7zWriWGuJatpROQqXmmjSN8TdAKsVpUZB8SBAQ+nmlVkvT21/BeX9eOgx2AXsXIfzb/eATw1umo0SzjI57LOl6Dt+Ji414hpo90jhLX66jZyEe9WB+BfeRb9d6Xh6ezqIRPz0hj6rg7m8/912tMjIRAVvlfb24Sr/ahV/GqmbsF+HZlvRbUQM+o3l2oqXvlqN4Z9rO90aigVs7tSd1Mhy7vLYxoLpnj6mKE38ykCpBL71tX/XM1Gc3Bfe7YNLb+j6+Cl5+rnx8PFRtw+yKmuU+j73Cd5cfhb5DdS+Y0Qqh4+7DxrGtEXej+NxrAVF8S+foOuMFUjpEYZBEwxbcCs91b9h9usCG2TrqfPw8MZ45Z90xLd5ymD5SnqmcfVTXFfAScsIV1oaV0KF6Db8Y1H58kPc0P23DUj/uB8SuhrfBFoQgW7u9DvdcHJMBwBAioalWZ+fnzF29HIebcuilpwQsgTAjwA6AmjD/9klKqc1iE8ajFEr0tDo6X4G82k+E3ITtGrN6aoKvg3wadQEAHA3EGjY9jS3VF25TFoh1x9HSWq44wg/thd+UeJHrqZCpFLU2LcJYQe2aKV7easbulAFNz1zuke43nKUtfeAb5Of/no55B7cvWl2DMY6SiLQSdUIb4ThP2zRSa+UqffICg2rj16HMzFi/N9aeVq2fgrBQfrlVqLwNzzVROQKjFxyGq2SuSkFv1JluvWcQcssc8sShFDt6YoKvq+lVSL8Vvga9huqVTcag9//DVS19F/7eH5TzvnTv2kc0gT666TOw9DleCZ693sbUokUUgNTVkI0WWD66h8xqG6DEEhX/o4OK3dZ/RqqOjOR45H63xWpkSmX6tXUltP0IerBn4eX+CmXR4HcMyEJCADRcCbO+upFJM7kAggPevcXPD3e8kg1Q3/ZgVu83kQV6k3rOgwYjVdXZqFdn9cQFt4UI2fvg6eH4XdV83kfOvZX3QxGnOzF0uTQQYS8PRZN47qq0uTRjbTylI4QXkRR2cCwtUwfHrXFBftVeEgRFtYAz4+2xBVZt20b+u5sjBj3J4r/+gZDF6t9W/WtQDfGB7PSjWeyE5YOfxMAdKCUvk0pfY//e9/oWU5GdHwP3KsOHO4v/KBp/s693v9RMI9MoCZl7uozGx4/gpOf9MHTb04Hlv6CmDUbcfVUAu6GtQGUHYNEirthbXG03f90ynoYaniZfrWAmiCVXPyX7HBrrtZQlxVcsxGCanDWrJMf98aWntoNq/JupQZiYCmP3HrnFWR80AcBgWG435wzC9ds2UGdz8jL1f4t9eauihmfw2sttz7Xw11Xo5DLLN9YVKn0Vhh5YySNGsJN4gYvN04O5XSkxEIHdK1r2GAxTkmQD0I0tskLnjgJWzq6ofPLE3CDX+F3KdIdvX5bj/QhcUYtOl41OQU0r5b2MzL8+824Pfsj9H3p/9B9yXZg+0Jr3gYimogfOGQ04zRDoXdXB2WdE4KmLbqheohpEejFoJCbpzQNWrQbiv/+wFmB6WU3Y9PCEglODOPM2CFt1RZ3r+oC89d66DlrPQ6+2BTPj5kJCdSKxjPDvkC9+uZtGk70POOenl6o8OUsclRuWZyC6p9+YkQI6zhwu4WEIPT99xHbZyiX0KcLYtduRP2lSxCdlYl6fy1Aq8+Ep5slNa1nOs2sJxSA1/g95hlztRUwJCj9XhOShmi1yeYqTfoomD0Rh+PN88UyF0uVpnQANa0hiL0QcmAFgC7HMzF6xm6tNKUTtOYp/n7C5tLzDXSrsmSgemWKv28gRrzOTbtFJ/RBjfAmeHlqB3iW5am3oVDI4FmWJ2hp6vet8UgObuVcr2dKn3o6wryneMTomRj/m7Y/hIxfelzpZfwhDqsXgyFjufoYOW0TpDuXoV13deBJYw1WRIR66Xds/5fQIDZJb96AGsYtSMZQdqzlpYY3wHz+U+2gcspGghDxr9rRXjVwrK3+UbKQ/4UlHHg1BkOmb4Cfxq117vQSxv95FtX8glHvJvdEhV+tRGBoXTw/ZbXRxq/X0E9w5uN+GPirdhBEd3cPdO/xBgAgLLAeouu3Mypfk84DUSEF7vW2riWVEjc0zEhDkzNqR+O0scJT9Uq/DVN+R5MxU7kPDKiF2CZdQGvqTv+4GbE0SSRSjPxyDTz2Lke3gerYbR4+4mOpBYfUxZuTN0AqdUNFpXUCLvk/NJ5HJrVstWTTuC6GM1TT9de8YcGCLYmvL5qmnEDUz7+DSCTwSeAmZXyTkkD0WLUkvKX3fqDuC1d3wZ+ot1T8BtBB7wr4iep5j3M0dGYKbkGTXkzocKytNCX2GIXRy22z6b0+LG0BQgCcI4Rsd5U4TRW1jc8R1zy6CzUO78CJ3pw+6F4/AgBwppH+c1r9ugjH32yjleYVEKwnN4dvdU8EP0gHiJTT1okUwQ/SBVfihQQadkAGoF5+r2+YJkD/tUbCApjwQvSeugyHugVgwFeLjeb11JhulErd0LRulQ5RxDTokQ8SsbqbfhO6Mr6Rp5e4FYOGULprVehRmjIaSSCT6K4sVBkoTGgtXpu1H68u1t02QYm1FzC/NWEt/HwCtJZzC1Gi0UcVBKk746PNpbgh4K4xdPQMVK9uuh9HVRpHtUPc2XSM/FR8ByGGynoB8JR6wsvNC4cSuZsb/sE8wyfZUmmyMOQAFXhZ9flaKSESKQghaFSrlUXXVhLVx7LYObf5zjqvun65ywZy/kdNBo216FrGNquvWp+NM86gy95TenKLQ+rnZ5J/mpS3FBYJNGF+HTrAN8G4N4xywNfl6bd1D+ppTGosUE+lGvNDIkZCTii5VPvx2HfR0ojgX1lDCHsSEFgLKCo2mCcwkLNMvPj9ZvybOAUvDP0WRxI6ISk8Vu85jRoloNFHi5E5T22OdjdiGv/j3X2Qh2uviskJ74w7NRON7oJ+LwC40SwICQfzVGm+9WMBJKM0WIGSexL4VBn0laz8ASkb56PzMnXIfn9fXTO85jJrTV8OY4SFNcQbc3SX1QshNebcK+Lten2s6VsFmIuy4aksLVGNNG7WAOrc4z4P3HgKMoGNa9WWJuupOiboxCZxu5E/AtMe6aSnf9ATcTN34eYI9bNK/bwBcJaRl1acFLx3a2Kqb5MYPMrUJrtR846iuEy/eUP56xGp/h7k2GvxKM/PhXkTUtBRyA62IOh02pRhvDmX1H8/9/2Bs/G+Jt2Pn18ozNsMh+N2VHXUOvoQZRH6le1n3/0NMLKhgRiokc5eIdc26bpL3eEOO08F8ZZCS975uz99hLvZGYg2oQ1qFtMNyl3rHvkRIxYi48IFHNqITp7+uNhJ/2IAY2zp44fQqNbmv19WwqyhDeF7AENxmog1ewkH4enpg6HDpoIQgg4Jg1G3VhPR58oJkDTU8HYtI79NRNjdE5DwASglIjfUBYCCUA+MnK9tJer4/Ke4Pmkwes0/jhtVpsJPv98drVsMwFtfbDBadoWQKm3ln9OY0lS1wbIF6ePEb7ic3omr0ND6au9luZv6HjykHvARiIFlitIpFlspTZWNhZ1Onx87C16H1mOYRjwpKjF+786OPEA9YPBw90agvwFPA+V+zgYsTa9+ugxjphlfgSmWen2HmXYC70N51oQgnxIDSlPrI6l4c84xk0SQGFAqxdDsk2/xbyJB24+nW1SOGCi4NqZMjx4kl1vuC2kpDSO56WtpoOFZC0DbEqxJz6fewIg3OFeIEg9gd0d33FP5KRlvlyqH9jecQcSsQK2QJgjwr4k7Fhiex888gZfH2n/blKqY+4TvJYS8RwjRamUJIR6EkO6EkEUARlkunutxl5/9y5/6Prw9Dccw8q3uCamsFAqJOyTyCigk7job6m7o5oUDY3VNsIm/LRcs86lR0+BbLQhX6mq/DMPeni36Hs6/rnbIFjN6TWtAcMzACh4hpEZM1AozVxKZQqNW4pYMn/5iIF79aTeCUvehRi210nS/LTdfW2yoj9JwILYWt3rqxp+oGoRRSUaU+JFx2+H8liACfm4NQqK0E0wIA+Cs9Hz3J5PPkdhyeq4KUhP3e0z8YjZ2tHVD21+XIEtcYH2DU4I+7j5wk5g2GSE1MX9Vmsf0wKS/z6FJgzbGM1uIcnpO6ee6ur831j+rVqQVCtsP3PTh/flHCJr7K5p06ocaP/2Abgt1VwVXRcxYKnDbGrzy6wHc7tiQSxDxGg8a/b1g2cn96om/ME/t74QXUrkS5j7hTwF4DcAKQkgDAAUAvMDFvtsB4GdKqXXC89qAQ0MaIqhhjE3MfKY6uikDNOrbaHTiHOE59Br19U8VAkBdEgrgnmnC8Ix650+BVP03NnDjCa0AoGKQGFUi1G/i8Xa+aHfc8JSqOXiKXFY9bAQ36g3z1d4rKbB+LJb2uIJGCV31xtlQ3qWlI3BNRny1BlkrRQTuAkA93aGcRjNGw9hELBrTBkn9DAcWBWBb3x474eEt7Ox8JxComa+dRmyg/BrDVGN9/fA4fLD4LADg9rRp2JO2wWgbJ7FQydEpz0rL9O1B1dWKk2doL2zxqVZNNdV4uFuA3aaFSjyA6JFvqL4H9zNvT0chGtbW7jcM6TvrurkhvGUHblpP4FH0VDrimxCGp1nznrgsOrdzYtYbQyktA/A7gN8JIe7gHMJLKaUF1hTOVrwxZbPtClea8UX6YGju3RV5cZXJl9vWxQt1rpbrvtB2NAT46tkFXohboQQBRRSefobPUfoblHoAvvWaAMetr4N7evuIVCeEkbi54dvZGYYzqaZ1rNeZmNKZmqrEjxpn3IkfAIprBwDIM5rP2TgZ74v4k5wC7uYubCIs9ySo2p2olSbbKYsN23ZDORZppJh/rcQ2g5HYxvh+hlafdjdz01d78HDptyi4dRX1J3CDQoVq4Yxw/uDQetj2wzAcObIGE8dbdxGCIcr8LKzDn8Ttg2qMz+ecVX32Vui+ExJ3fkslEx5TQ9PBroLFd0ApraSU3nYVhcnWqCwLdhqRvvt7MvptPqGTbq2lncV+XGdPfa2zv1D0T7OxZ3QsmsZ2MJhPyr+Q2Tbck9HD0zI/HDcf4+erHIgdNp1lm+v2es1225jYgn3NCNaPqoshGoH23D3EP9PK1UvE03aOwA0j2yEodR9uhimDvdr+mZFY4GB/bcZbSP5Ie9m+xImVpvYJz6JBfW7ar8AHoDL9+xwqGfH0l5g97SzqhghHTrcFLVdatgDdt4kIK7TSOiTyEVN00Z4uvVEL6DL+J2xvK0XTyepNxA/EEqztb4Pou06E66t9zoqd+kh3qbugpYcGiN8TbmeCFIdihAXu/v0K7H66BgZZEM33v5ER2Daas4XFRnfDOx+vMWotqRHeGNtHNULN6dNsVpc+JsSi0aRi7Sys7e+PrkONb1Vwuis3pVdb5EbE5qLXQG6juvNwc62Gcezqc/hs0g54uqmtS/piGCmD0l6KUB9v+L8Z2NcrAN1eGG9TOcN8wyCXqMyTNr0WAHVgXTPo238cRr2p7Zhr7nYv9kYCAB6crLYcmJmDb13ztsOSBXCafWiQ9UMnvvzB37jw9QjVdwIgLDgC4xano2WcOh5hvd4D8X8z9IdlMMcncEc75/KfdI0n3AUxNQjedSu/uAOn/IPkZxoazFPE93tvLUrFS6uE4wKF147Euz/sh5fAvnFi+fTzrfjw43UmnUMIwbhJm9AuQcQUg5l4eXONjNzEd7JFbE/834xkoyElAOD16Tvhl7wDwaHmbYcglquRwlavimZNAQAH21gWCLAqEivupWdtlJtL5xreq1YvlL810rurKq1lQl+MnXUU7u6233j5/hsD8W97guZ9h+scy7Y87JUW1raIS6X2XZJvCXXqx2HlyJoI/MY601mOQi4leNCtGeJXbUHYd1PhHRxm/CQT/JAArj0O8tBYwafn9O6vfWVSuWKIesO2AxVTMTfkgN7tkAkhRna/fTKgJipNAYYDTZuMj5c/Rk0z7LuV8ipncvWUesLbzTrTb/bgnpmdYVW8+KCXpxvZbiTjLnVH3Wrm7R5uCgMXH1ApC5oM/eRvFK/7AW8usa5PmCXTOrZG+WvmBwtPFRlTkvNDOAXTLVj8ViLW5KUXp2PSwnMIDdJ+bgrmT0T08n+sezErP/oSF1KaJESCrz7fi67tdZVTVyIu4xw6zlkFj7AwBA1+RuRZKic9s66pd5sbgW2sNDFnoUCfjq+bfI4tMXe4uJ8Q8ikhRNUqEULCCCFLAZi+jvcxwtwYOtQBYa1Gvfmb3a9pDYr8rbQnlJs7jn7TD61mGokC7QJ4ePuiyF/3dZYQKRJirLf6RomlS8vtyY4E7Xq58t0obOqvXyHqO2s9Dr3RAr1GOpcFIrHTKNSt18K6hVrZsV3i5KEoPP04t4XrtZxPztuv9MH1PradxlfB91NC/lz55k8qPBGY2/K1BvAdgFOEkA8ANAPwEYDvAbxsJdlcGxOVoGtNq6PlSfv60vt4G9uJ0TUpXTIFftXEbXT52vOW7O7tXMjdJQAUuBJO0PAW1yrqG9k98gL8yyy4mBN3jlXHLTV8tOe0Bg6aCAyaqPf80KD6eGO8lS06ZpL6eT/cSDlg9eXuB3oEofPuPDRK6GjVcqUipqwdSUTjePzxbgK69B7jaFF06D7xF7tdS/2OaL/HydOHIKi68b06bRVg1xUwN+RAPoC3eIVpF4AcAO0ppTetKZwrY6qvgDQ0GFy4K/0cjSZIzDTtad2c5AavYrnoRvdOABwept5S4ts8Z5VyDnXxR/ioN12uPqi7enmwPof7nIEtEbnK/Ck7Z14lpcJ59TrRvDRyBjDS+uU+99W/yJ9SgPBA8bsciMGZQw4oGfOu/cIHOCtEj0/TqEHf6D+JOi7YpzNhrk9TACFkLoBXwQW6XANgKyGkuzWFc0WIauGLaS22R23j2r2/KQExeN6bn4LXl+nf/FWTCzNHo9r8J3p2VQt/iR/6JY12tBhGucTv5axyYNbTtv09kPM3Wd5DAuphWbgFawdFtA20yn+GEi93TzSxssIEGN8gmOEkmBhyoCpVLU3/fhKPRW/XN7kc6daF2J/gOv60gPk+TScBXASQQCndQSkdB248NIUQssJq0rkgKr3GxKW3AXWt34ABpjl5D+ozHq2b9bWJHJZQa6DtVtAZxAVGVseGNkWDedzGxUq/OH2m8++/PwPJwdX44Pu9Fi8Nl1gxWKfVeQwsTLbGlSJ3M6wPkfIviZnT7FXPmvT6Mnz3/jbR56fz+lXTBu3g5uOYBRfmYm7L2ZlS+iOlVLW1OaU0jVKaBGCPdURzTVJfaoEN7QkaJHQxnlmD0ObtjOZRdobWDk/g7HRMGIqvh0uwvBv3uNprPt3YLujOQHWvGohrkggAyOkWBQUBcurpV5IjQ+MQ4lvDovg8gEaj68TcqcX51xTVCXCwJM6HNbf1Ybge8eOnYns8QYPPDEzHVYXq+WwiB6b1Q9SsOdYoyiGY69Ok13eJUjpf37EngY/GroDsLRncRS69LfEEfMoBH4knxPrllvVJMl9AF+WfLzOw44/Pgb2mxXuyBOICSpOmRXPM+8uRPGgPoq7dAg5/b/A0U+OIVUUqcf6l5RF9XsSfCbswedRCR4vidDwO21kwzKdJ3dYYt/ycSedQE2M76eOtZ6osvnH+8ZcWbALayhBCRCtMgHqH7aqbRwqWzf93c+apERuiUDo32+l6xIG7nItFs/Nzk7ghqUFvoAGQCcNKk9zPMj8CV5je8XXzxYwx4qcMniTc3FnTzzCfJ3n1HBtuOBhlnAy5TMTWsarYGi6mmlsLe9+2lUZWtsRc5SW0cTMAXOgBs67rxMEtGcZxBaWX4bwwpYnhMJSO43K5caXpSX5QAYBaaxdi8Ve08/VMxz8u1qzzvKWcv4/MTIODK6ySoi7gyP84sj+OYMELLELi44bm9NzF+tZTul3NCOAQpYkQ8iEhJIMQkk4IWUEI8SKENCCEHCeEXCSErCSEePB5Pfnvl/jjERrlTOLTzxNC+jjiXixF+Rgq5DKD+QAg+hI3hedzK8+GEjkxROufzXFmR3DlViBJHc0N4sO9+nbXQ+2A8p7cmbOzDlsTbP+Dd5u3Hl98vtvm12HYF2VrWOYOdJj+p82vtz+OYHZ/53uH7S4RISQcwPvgwhXEAZACGAZgOoCfKaVNAOQDUG448zqAfEppYwA/8/lACInhz4sFFyvqd0Jcz9mHqnyajFuarodzP1dJHYFNxp4AFO7cz1vqaZ+eXl8AOGfg11E+WJ9IIHE30yGbt8I8jkrTzfcG4nA0QdNuzzpaFKdjyKz/kL1xqk2vERkUieqeVtogkuF05AUAMfXaW69AjWZ2Zyt1g1S9Xn389P0p613HSjjKxu4GwJsQUgnAB8BtAN0BvMgfXwTgKwBzAAziPwNcEM3fCBc5chCAfyil5QCuEkIuAWgL4Kid7sEqqH2a5EZ/jAp+hwKFm8vphlYh6qkXMOfUWjRI7GafCzqxpWnqe9twLjcN7u6eZp1PeXvd46g0jXzhO1QO+QYeUufe0sMR1HSzTj0AACAASURBVAtshHqBjRwtBoOhQjk999AHCFV4ACjnD8Ap32G7W5oopbcA/AjgBjhl6SGAVAAFGnGfbgJQhsgOB5DNnyvj8wdrpguc4zJkNOIUIJ8Q49aj0y34KM5N6hrO+JjSqHYcpv2ShreHz7LL9SpbNLbLdcwhxDcUnSN6mX0+dQF/LXMhhDhlY+to7rBwVQwLqNaQU7bPNLduBG/luO1cI+f3kwQcMz0XCM5K1ABAbQC+AITCUCtbdaGxMDWQLnTNNwkhKYSQlNzcXNOFtiGdf1qE/75OQuPoDjrHUhtr3+IrnyzHH982Q7+nP7aXeE6Hu9Td5C1qzGFjD18M/Wihza/jKDyceMNdhnXZ0Ynr5O7UNc8qyWAAQHzrfjj911t45butVi3Xk3e78FRoz6A468InR3hZ9QRwlVKaSymtBLAOQBKAAEKIUtWsA24TYICzINUFAP54dQB5mukC52hBKZ1HKU2glCaEhjpXOO2o2q3x6dAFkAgEG5TU1LY+1Q1ugpnPrTIpDhTDNI7Hcb9DA7+6Ll3P+5oZVorCW3ZAgS9w8rkoi64jcz4/TUYVwgO5ZtLD1aIIMpyOYUnjEOgfZtUyPXl3Ew+ppMoT6pxakyOavBsA2hNCfHjfpB4AzgHYC2AIn2cUgA385438d/DH91Bu7eNGAMP41XUNADQBkGyne7ALEid2RH5c8VdwipKr+/p0nbUMqYvG6j0eGlwP1XaswZjx/5h9jdn9JVjxYaTZ5zPsQ2DfpwAAhb3bOFgSBkMAzVXRVtqqxZbYfRKRUnqcELIG3Ka/MgCnAMwDsBnAP4SQKXzaAv6UBQCW8I7eeeBWzIFSmkEIWQVO4ZIBeIdSajystgtwvEMA2h0ucNqH5snAtbWm6JqtEF2zlcE8scHmxXhSMnXaUdGbQTMcR/euY7BhUy281KC/o0VhMHTQjNPkCq2uQzyvKKVfAviySvIVcKvfquYtA/C8nnK+BfCt1QV0MF7KWUobKU3ZIUDd+7Ypm/HkUM2jmqNFYIiAEILBjQc7WgwGQxCVokQBaPpaOulMi2u4qz8hbJvRDyUVxWi0OYNPsc1DU/eveTiTsgnRNindxeFfVHs4mzMYDAbDtWBKkxPxYX9u9+eFpR8Ah3bgUZdmNrlOdNNOiG7aySZlPzYwnYnBYDDsgLKxrWIkYJYmhlhGDP0Ri6L+wKgWbzlalCcO15pdZzAYDBfHxZpapjQ5Ie5Sd4yOf8/RYjyZqKKDudibzGAwGC4IUWpNzmlY0oFFWWEwGAwGg+EQqIsNUJnSxGAI4lovMoPBYLg+zt/uMqWJwdDgQQ0uOq082NfBkjAYDMbjT3kst2XslWbVHSyJOJjSxGBoUP+DzzDxFSnaj5roaFEYDAbjsWfAC//D2/8XgGffmaN9gK2eYzCcn96xQ9A7dojxjAwGg8GwmGCfEOx96SgAbpsQZ4dZmhgMBoPBYDgBzKeJwWAwGAwGwygKF9BIXEBEBoPBYDAYjzuXB8Y4WgSjMKWJwWAwGAyGw/lwyFxsbuPcU3RMaWIwGAwGg+FwfNx94NeiKQBAEd/YwdIIw1bPMRgMBoPBcAq6vfodhoQMwZZnP3O0KIIwpYnBYDAYDIZTEBkchbOvpDtaDL2w6TkGg8FgMBgMETClicFgMBgMBkMETGliMBgMBoPBEAGhTrq/i60ghDwCcN7RcjxGhAC472ghHgNYPVofVqfWgdWjdWH1aX0iKaX+9rjQk+gIfp5SmuBoIR4XCCEprD4th9Wj9WF1ah1YPVoXVp/WhxCSYq9rsek5BoPBYDAYDBEwpYnBYDAYDAZDBE+i0jTP0QI8ZrD6tA6sHq0Pq1PrwOrRurD6tD52q9MnzhGcwWAwGAwGwxyeREsTg8FgMBgMhsk4vdJECKlLCNlLCMkkhGQQQj7g04MIITsJIRf5/4F8ehQh5CghpJwQ8nGVsj7ky0gnhKwghHjpueYovtyLhJBRGunbCCGn+TL+IIRIbXnvtsCZ6lPj+EZCiPPGzRfAmeqRELKPEHKeEJLG/9Ww5b3bCierUw9CyDxCyAVCSBYh5Dlb3rs1cZZ6JIT4azyTaYSQ+4SQX2x9/9bGWeqTTx9OCDlLCDlDuP4oxJb3biucrE6H8vWZQQj53qjwlFKn/gNQC0A8/9kfwAUAMQC+BzCRT58IYDr/uQaANgC+BfCxRjnhAK4C8Oa/rwLwisD1ggBc4f8H8p8D+WPV+P8EwFoAwxxdP65cn/zxZwEsB5Du6Lpx1XoEsA9AgqPr5DGr068BTOE/SwCEOLp+XLEeq+RLBdDZ0fXjqvUJLkTQPeWzyF//K0fXj4vXaTCAGwBC+XyLAPQwJLvTW5oopbcppSf5z48AZIKrqEHgbhD8/8F8nnuU0hMAKgWKcwPgTQhxA+ADIEcgTx8AOymleZTSfAA7ATzFl12oUY4HAJdzCHOm+iSE+AH4CMAUK92e3XCmenxccLI6fQ3ANP46CkqpywQjdLJ6BAAQQpqA6/gOWnh7dseJ6pPwf76EEAKgmp7znR4nqtOGAC5QSnP5fLsAGLQqO73SpAkhJAJAKwDHAYRRSm8D3A8A7oXUC6X0FoAfwWmVtwE8pJTuEMgaDiBb4/tNPk0pw3Zw2v4jAGvMvBWnwAnq8xsAMwCUmH0TToAT1CMA/M1PgXzBN6gujSPrlBASwH//hhBykhCymhASZsHtOAwneTYBYDiAlZQfzrsqjqxPSmklgLEAzoJTDGIALLDgdpwCBz+jlwBEEUIieKVrMIC6hq7pMkoTb5VYC2CchsXHlPMDwWmxDQDUBqetvySUVSBN9aJTSvuAMy16AuhuqhzOgqPrkxDSEkBjSul6U6/tTDi6Hvn/IyilzQB04v9GmiqHM+EEdeoGoA6Aw5TSeABHwTXMLoUT1KMmwwCsMFUGZ8LR9UkIcQenNLXizz8DYJKpcjgTjq5T3uo0FsBKcFbQawBkhq7pEkoT/7CsBbCMUrqOT75LCKnFH68FzvpjiJ4ArlJKc3mNfR2AJEJIOw1HxYHgNFBNTbMOqpj7KKVlADaC+7FcDiepz0QArQkh1wAcAtCUELLPOndoH5ykHpWjLaWZezmAtta5Q/vjJHX6AJz1U6nQrwYQb4XbsxtOUo9KWVoAcKOUplrl5hyAk9RnSwCglF7mLXarACRZ6RbtjpPUKSil/1FK21FKE8HtS3vR0AWdXmnipxoWAMiklP6kcWgjAKUH/CgAG4wUdQNAe0KID19mD77M45TSlvzfRgDbAfQmhATyWmxvANsJIX4aP6YbgH4Asqx1n/bCWeqTUjqHUlqbUhoBoCO4eeWu1rpPW+Ms9UgIcSP8Chq+ERoAwKVWIipxljrlO6T/AHTly+sB4JwVbtEuOEs9apQzHC5sZXKi+rwFIIYQEsqX1wucL5DL4UR1CsKvNubT3wbwp8ErUifwpDf0B65DpeBMkWn8Xz9wXu+7wWmFuwEE8flrgtMqCwEU8J+Vq96+BqfopANYAsBTzzVfAzfXeQnAq3xaGIATvBwZAGaBGz05vI5csT6rHI+A662ec4p6BOALblWS8rmcCUDq6Ppx5Trl0+sDOMDLshtAPUfXjyvWI3/sCoAoR9fL41CfAMaAU5TOgFPsgx1dP49Bna4ANyg6BxEr4llEcAaDwWAwGAwROP30HIPBYDAYDIYzwJQmBoPBYDAYDBEwpYnBYDAYDAZDBG6OFsDehISE0IiICEeLwWAwGAwGwwqkpqbep5SGGs9pOU+c0hQREYGUlBRHi8FgMBgMBsMKEEKu2+tabHqOwWAwGAwGQwRMaWIwqvAgNweLx/RASckjR4vCYDAYDCeCKU0MRhW2f/wc2uzLwYb/jTKemcFwAZYv/B5yudzRYjAYLg9TmhiMKriVVQAAJGUlDpaEwbCcJW90Ravv/sam/i0cLQqD4fIwpYnBYDAeY+pm3AUANL3GLE0MhqUwpYnBeEJZ9NlwZKUnO1oMho2RMl2JwbAaTGliMHQg3D/F47svY+r+9Wi7Lg2Xx71qdhkVMhmKy8utKBXDFoQ8tO/1VjyfgMWfPmffizIYdoIpTS5ESWkJNi79xdFiMB4DyosKAAB+xQqzy9gyoBVutGhpLZEYPBVFeYALb6Te8mwx2mw852gxGC7EjevnkRkVjZPHdmHu/41CZlQ00jPPOFosQZjS5ERsmPsFln3+ot7j6957Ck2mzMW2pdPtKJVzIZPLoFCY39GLwa2EcwQHcb2Oa+9/i3A/95bgsfz8+7h0KZ3/xlnTauSbf63IazLzT7Yhq2Z+gkNtovEg97ajRTGZswfW4nJCB6z97FlHi8Jg2I2U1wcDALxfeQ+d13AuA2dnj3ekSHphSpMT0fTnNYhfewqUUqz8fTKKS7RXb/nd4Xq4vNNHIZdZ1mFlntqP00e3WlSGI7gY2wyrX2xn02tEX6wEAPgV37TpdaxNwYM7qPnJdzg8qo/OsfLyEhx/tjMqBzwPALhxdJu9xbMbIas3IfgRcO7gWsHj2VezsHPlr3aWShxpS+YCAGLWZ4nKv3Ph17iexe1wIJfLsW3xNBZagGF3zibvwqa/vjH7fK9K3TSicM7nmClNTkL2FbU5+9/ZE9D819XYNLIjbt++jqLCh6gofqhytWn133ms/HCASeVThQKZUdFY8XIilzB8DDz+n73zDo+qWBv4b9ITCC30XgQSaqiCSBcVUBFBig175VrutcO1oF7Lp+K1YbkWVERQQBFURIr0TkISEiANSAKhhBTSdjc73x/nbAnZTTbJJruB+T3PPrs7Z87MO3POmXnPO+/M3PXPUnGOJMZz5kxmtcpRkxzepSl5faLO10p+nbd4r6Xpq2emER8eQXx4BKu/fJXFdwwl99xpANqmlW5sVvzfgyT3HUCHE1p5ll/Xh64ro2td5lpDv2wn9m3il/8+XuZwwt030vbFBeUOgS16YiJ7Ni6vKQmdEtKxHQAZzUSFcUvMkrZv/ED6bbcDsGzeLDr85xuW3D3c6TkbVn7NN8/PdI+wCoWO4d5/0OWt7yt93g/TB7JlUASOnkTppT6lSmlyMyfTklh093AKC1zr2L948V7iwyM4eZPNcbIoRjNP9okrJHv0tRwfPISkAUPwL7YNS/VbW/FWOwnx+6y/LUNakbuynVqpTNfdRNTk0ZjNZuL3rHVJ/toiJ/88JXf80+GxH+ZO5/v7RpYJTz20F6PBs47K+7eu5rvZ1yDd7KMy5JcY6+/Oby0iclc2W//3khYg4Ke3HuL76QM5sGkZpj27S50bkWgkxOBWcVzieFIMS6cPIPusNmyWn3vO+tudtDqrfff+KYZuC9aw6MlJAHx/7wh+mDWUtic0hUQ6eZM9nhRL/9+TKXhmjlvkyc8pZsU7e8nPqfheNJ09CUDr09r98t2cW1g+obfDuNuWaf6Njc/DwW0r6b1kLwD9djofc2359JsMWh7F3799w/czBlGsHPkvKRbfPpQlL99erTS+euIGYqO3Wf9vWfZfa3tS2RGQvtH5hOVZ7QGlCEo7Uw0pa45LTmk6dTSXX/77XwDWffs6JSYTmWnJ/D0kgj++fpVf3nucH56YaI2fdeo4J46VNpUfO3iWjx9az7GELGvY0hdvY/Wnc0ibeB39t50htf8gigrzK5TniiVbAahfZAsLPJnlMG7nY6V9ebIzUzieEs/eTb+Wibviv08gJ9/KonuGs/SGyXzyyAayGnYF4KdHx1nj/fL2I8TvXc9P824DoM1pybK5N8Ntj/Lbp3MrlN9VHNVZRRQZTZw8dQqAjAGDnMbr+9MB+m0+ZX1gl0/sw5Ip/SmcdBs/3VtWmbKw9N8ziQ+P4NsXnTciv378DIbiolJhRqORpe88VqaByM8p5qc3d/PTm3usHWT2008y4K9jxO/dUH5hK4EzRTDyZ81aGVIMPb/cSL/ofPzvn0uD04Xlprfi39MA2Pvntyx6YiJbVn9V6viJ40ns7x1Btm7JOn7wOJ/M/ou8eq0rJfe2uXfRO7qAP56YzPHkOI4NvoITw8ZUKo2q0H/VYUpMJvptOU3fndnW8HOnNN+vPz+fw+8LnrKGr3/hHooDGnCs0+Pk5xRjKMxn6T/GkZt1skr5b15ymIwjOWxecrjiyKdsHcWa0T0YsGw/EckmSkwmlj5+DafTk6zHT6/72fpb3P1MpWQyv/o6/aLOs/u3Lyt1XkUUF5V/rzni6MHtnM1MrXKehXnnWP/5s5w4fpjzOZXraJPjd7PyvccwGh2MDwE/v/uo1aIbHx5RZRkBdq75jvjwCHau+a5a6VSWrMw0ls67A4DI3dn0Wex4w/oSk4m/Rmjl3Lnqc8z6MG9Bls1Hcs/G5Qz5/Qi+0+8hPjyC9QtfIWzOJ9bjq977R5Vk7ORggCM80cTGRa9XKb2aRLj7Ddjbad+su3xu0ruM2vKkNexYK0H7E6XrIWpCF0RhPn03aA1lUnsfTP4++JaYSW/9OiX+9UAU0mXADnK3rKX3zlyH+R1vIej3/SoS9vxF5sKPmbx0D39+9TL8sAz/u++kzStfURzQgNged9Pr4JcEGhynUxGx/eohzGZ6Rhdy5p1nKHzrLdplamX6+4o3KfGvh68xn5HbXG9cTzaN5GCv+6hX8DUt0/fQIV1L72DPEHrEFRA9uQfXP/8FK56fSYPE45gCfIiY+y4JG39i6Mx/AZKWbbux7J1HOX1wHCX+IUAxYzb+i7ANv7Punce44t4XODf1NgJN0Hn/XgKDQyguOM+OlQto/pLzBt301dv43fUkefXasK/f4/TfP5+zDU8y6tcdpA4YXCpuSjt/GmcZGbo3npSYrZikxHD+PD53P0FxQAOiej1IUZP2tOq2h+IdP9J7n2NlN2pAKDMX7bI2nsdbCM61DCYwz0D3ZBNx3W8ns9UQQBJUtJ3bF/yTpH4DrOc3/WslDcPagK8fxxN20aRlRzZ//zZdP1lD7vxn6TPsevas/ZaMP5fR8qqb6DX8RsJaduTAphV0jhyJn38QPz74ILnBs+gZ8zktztb8EFv0qJb03WhTFvI/fIHobwRFwc0IKjzNFbteJuTXJex++g7qX38jxefz6Pbxb7TZsYnQhk0xlZjx9/MlJ+skf917LT0Ollb4tHvsXiJGGjjz07P4SSjx8aHn029xWe+hbLx2MM1emsfBX7+l/2+Hie/uT8QhWwcXe3kwYWMmEVCvIfXnLWbnsIe4fOuCKj1H9X5dwo7XHqD3jmxiIu7mdPP+BAYlE+qzgj6/p3Comz+Tfo5iw9L5lBTm0zJ8IL2HTuBQ9N907zuS1WN70Tm9hPPvPs2gCXfxyewNlJjKtq++foIJj4eRmXKQQeNmWMPzcrJIu3xYhXKKRR/RukN3ts24mg5pjidFxA4OpdvdT2Iymgj5R/m+Jt1iY/j59qE0Hjee7iOn0LB5R+qHNmT76i/J2PEHU15ZijSXIHx8AYjf+TsRl4/n+6cn029lAs03/saBTb9gOJ9Dzu+/0DtGU5w67trG1mXvU7h0GZelaNcsZmRjxr70HWGtOlvzt1dGQn9dRN71twKQNqEPDYaOJP3QTiK+06zv59+fQ2ZiLD7LfqXls0+TP/eNMksqHLnzSgLXbGXEqp0EBIVw9mQqZrMkZsNSpNlM215XIG57pEw9nHn5PoZP/yc//Xsajbv1IzcpmvAfSj9jsbOGc/Nzn5Vbn8744e5h9N2WRfSwpsz4YrPDOMePJ9O8eRsCAwMrTO94cix+/oG0aqe9DBcV5JEUt4ueg8Za4xQV5LFpwuW0O1n2PsyuB0P2HEQIzc6z7dcFNH7Ksa/f8aem0WfcTM5dPblCuQKXrOT3BUkE558g8p629Bk2Gj9/P02e3HP8cvdYTKEh3PrVFpcU0fTnbiFgwfeE/7iS5npZLXx/30j6bT5Fj0MJe6WUAytMzA1ckkrTM1MWaH+kZMzfs10+d/3ID0E4MCRWMp0LSeg6nYzWV9I6YwvhR5ZUOZ0Lqa6864fPBx9/MBsZs/kJj8hQEdsH/ZvCkBYEF2QydHflHRG1utd8QELyTzBkz2uVTmPj8Pcw+/o7POZTYmTU5rJ+NVXFHdekynnXwLV0Z3miet5PVtM+hJ05QN+4qnVszq5lVa5jTd/7Cs/TPS4WH19fl+L+cNcw+m7XLO0tt6zn5JVjiOnfgObXT2PE9CdY8vZjRH75FwD7Bzfnlm/+BmDlZy/RpHVHrrzuzlLpWRSO6EGNCMzOI/yIZhlKenwK1z34KgAbhkXQ8my1i1kpdgycQ0G9VgC0ztjssE8726gb0ZGPErn/vzTJOeJy2vuHNEbUr0fkX2mIJZ8ipz8AoJSmmqQ6StPZRt2I6fUgZt8ArTGUEp+SYvrEfFKpC2/BnQ20O+V1Z2O/fsR7Wqd4IWYjYzZVvYzVlbE8Raey5dww4j2kozJKM8O2z6my9dAeb+iA3XpfuDEtb1V0nN0XwmxkdDXufYX30C0uBl9fv3LjLL5/DJGbqu+7F5EQX+p/eVaazNceZdDVMzk2aGi183UVp88OZZ/Fqo5+OKM2laZa92kSQrQTQmwQQsQLIeKEEI/p4U2EEGuFEEf078Z6uBBCvC+ESBRCHBBC9LdLa5Ye/4gQwvUt6aUEKYmM+m+lZA/LPowwm2xpACIkCMyVV5gAhu58gRaZu8HikGouoUXmLobufKFK6V2IQ3nNpgoVvB5x/9NksijUUoLZRM/Yzystw7AdL0CJsXRaJUYtvBoI6djh0Fn4hQzd+QJNzsaCtBvekJLAwiwG7flPpWS5YscLBBdkli6jlLQ8uatSClNuiPNj7rwmVWXQntfBbCojQ2XrC9xbHrOP407LWXj5iTm5f5yFl8MVO15wWF9XVPPeV3gPFSlMgFsUpsrSYs77rHrw6lrNc9Ce1wkovGBhVilpcibG2qetH/kh60d9RElAfRCCkoD6rB/1kaZw1RE84QhuAv4lpYwAhgCPCCF6AM8C66SUXYF1+n+A8UBX/XM/sAA0JQt4EbgcGAy8aFG0XKVJzhESZ11OXK+y48eHu/gRO6BemXAZUp/Aev40bpNIQIgv0iwYtju+TDyArFDtOyIhngODGgBQb/WP1uNbh84js8Ug0H0F8PEls8Vgtl8+rzLFsObRZqtm2k3qauaUXhNmX3/8jPl0SVqBnzFfszpVgJ8pCoRZm9JgbfDNVh8a+zeedLup0TH9tF4/amRLa1jkgZ0gLLeZnpavr1WZOPfO01x2IIr2W/+iW2xMmbcpZ4Tl/h++xoJSHZKvsYBmbX8pEzf6qvYAnG6oyd49LpbIAzsJKsoChFXJAfAtKSI0P6PU+YldbA2j5ZraE2jIxSwsJnpNCfMpKSK7cxtCfv62VNzDD48nIiGeiIR4Ou3fQ+d9e6z/L9+nfRv1pCzhUaNb0fJMlJa2k2vibmKm9+dYa+3amha8SlYoHL/Zzp/ArmG01FeLv/+0hiV0dWLFA4r90cpjUVgtaflAi7PRJHbwof2eneXKd/qdZ6n361K6xkTTdViWfouVVk4q+1IEMGznBYoOgJBaOHC0le1+PzCoIZ2j9tF5/x5iewdbwwsDICnchJ8xFx/dl8Py8uJjLiHQkEuLTeus8S87EAVA7C2DiIus+Pm0cDAigKJPteFkscR9yvPBbo6vXaGdaMmPXm/9na03k/t6BVMZErr7sX9480rLVxk6R+8nbnDDGs3DW+lyd+0uDhman45fiT5pxq5NDSo+Z23v+0a/j4+puFS77WMqqtKz6ilqXWmSUp6QUu7Tf+cB8UAbYBKwUI+2ELhR/z0J+EZq7AAaCSFaAdcAa6WUWVLKc8Ba4NqK8g8qPoefMR9hNhKREM/1z33NhK/+5sDgBtRf/YO1o5q0OoabF+2hw77dtNu1A4D4noE89OFo7n13BLe88AD3zR/FQx+OdphPsT8M3hpFm+3auPSULzfRZus62nfpZY0jnAwPuTpgeqGC0SCsDXLhO4xetJ3T7bQGbPTmJxix7Rnyhp1jxLZnGO3Eb+T4M7a1W7r/uBJ8/PHx9aHRmfUIsxF8fIke15bjLUubX3MnXglA3PS+tJ6izdDofMNtpeI0PRtDm4xNTJ87mF6j2tI5sjnR13QAoGu/kfgHBFIvrA2+floH03m/49kd9ohmAUhdUbF0SCV+vtz8wsfWa2gtz5T7ASi4byqA1Qcht1cPwEiDZsE0zjqIKCnC5F/W3HP96hhrmsN2x1s7j6Cln1rjtBzclaCgWG56si9tMjbR5Nwh7pk/iw7hA4lIiKfDrq2cefURJj36rvWcoOB6BIaUVcybrPyBwKVfWP/PXLBeK4+vdk3aHteviXDNl6KynG4E015exDXrDxKREE/v0VMYtjueKc8uIKRxCE3a1Ce0aBH18jMIMJ7nxIv3EJEQT5MW7az1ZB7cz5peiX7LRF/eCID4oc20AOEDGOk5shX4AsJPeybXxFGvfgPr+bG3aDMnD3X1I2Z6P/YPb8aIibNo37U3fv4BXH3HzXpMUUrZcXXIfM8dtme4976t4GOxPmrffn42JT+7T3tr3Onf7iAwKJjA4HpM+mYL6c1ALpxP/wPxXPfzEXrFx9Oxd1N6jWrLtbO70iZjEwHGBK2umre21pV/QCARCfHc/MI3TLVzPI7pZ7s3ovTnBWzK9JQV0fQbeRMRCfGE973SYdk2DGhSbtmjRtqUloiEeFj0EVNWHqDxnysBOHSZHydevIcDk8LpfyCewJ++pOWmtUx8+C3M+nU9eaM28aLPEy+Vm1fhgnkkdjNzqokkIiGeyb/EcMvnfxN1tVa25Pa27iiph/ZMx/UMIiLetoZdgp1CF3VFUwBOvGGb1GNfloiEeAIDg5j6zQ5reMnX75aJa8+5V/9J7IwBHJjcgz0Dy74h7RjUkIP6/Rg9LKzctCzE9Q0qE2Ze+E6p/0fut92D7bascSld+3q5kNCV3zNw7HROv/5ouWkkXIiLkAAAIABJREFUdhFsuqEVKS2gyPl7jsuY/EPwNRUREJhOUOEpkAaCJtpWtw8othv90HFl9MNCSjsfkh++mtPz7idoxUIui9pLt5jaXXOuCvZr9yGE6Aj0A3YCLaSUJ0BTrIQQlqe5DXDc7rQ0PcxZeLkEGPIYse2ZUp1qSGhDpn/j+M02JKQ+oD+E5aQbdW1HApq2oMd3WjrJnf2JDAjEP0Arhp9/IA3CbFO0kzrBrNeHseQfKygMbmb1OQouPEX/qLL7yyV09SP8SMVDBD0unwDAkNe/4tCdM2itzRLn5pcXwcuw7Pkp9FiuPWxHWws6ZOgWlgDbg928XVceWaAvTzDtX4zevJzo8R2ZMd+2dlP2O08RXL8RN428ia0RnzB10oPagamPARD/r7c5fJkfEUCfOO0tuGnblxk5s7uegvMVqQOD63H29UcJe875qs0DH/g3u1/cTl7DfPpE/01G62GcatWsVJz8D+aSn32WkaOnQMKUMtdv1uvTrL+3r4qnfc+O5I6f6jRPC102ruf00Xg69BzGlkaQObYXNz/SD+1WBkOD3wns07fUOSENmjB8qms+MW279HUY/sgCbXr+ktueYfRm9y68eDAigB7x2mIrGQPbOo1315ta57z+23W0ek0blgv/smzj7VdP63AOd/FjwH+/pSAvGzFf810QPlrnOGbTo8SHBzDqlmhG3dKjTBoNfvuRBo1bkL/nT/h+N+YBvZn2kuMF9ISPICDIl7YHlnK0/dWYAiqefWTyAT8zhDQOI605tD0FJqOBTn1bI0Qeg67rQ9zmDApyisnaAU3yIKRTd6DsGmkBwSFctbmslXT8g32svzv/+nKFMtnTcOxE2L8UAP8mTR3m64joBybS99PVumDlN/E+9RsAp6z/IwZo91jL9l05t/Bdru5xBSGhDWGmpph07mXzkQn8fgFZGUeYPPE++LcW9vO9v9P9fxsd5tV/9M30H31zmfCgNh2Ao5T4ln4hC129lOtadQQhrO11/CStPg9c24mZ7/0GgHmfbSZa0aevc3TfhjLPesrjk8iN3klfZ36MOgMm3sIVU+8DtKU9EvuU3lsx2M+XG5//kmWm27nhqU8cJVGGqT/s46+F82jzxg+A7WU3f/dQfHx8CK7XkAgg/jNN6vpNbYr5sSen0f7tpY4TFoLYyRH0WqGllxcMofqKD227aW3RiMkPEa+3o0cfn0SH90pb4qUPPPDWegCW3jyI3jHa+oLxs64gYuG2UnGjBjchclfZJWNy/zefBvdqL+NXbtfWNuuyfy/LH76Kcf/6kPbd+/BzznCCw1pS77MfraMfg2b0ZceKOJdGPyxMWBvnctyawmPrNAkh6gPLgMellOU5fjjyLJPlhDvK634hxB4hxJ78ejVT5Jnv/c6UuV9b//t2buU07mXR+xi/KoZ6DQORuuOcKNGm5Erh49APJnii4xXAL7SqWGjbpS9jHTTiU/5j21oiNdLWtAjhuF7MegfHBVszDJ14N5EjtTeIYRaF6QK5Jq2KKRPuKs06llVRUx69wfq7c6+hDH1jDHcseIrQ/HS6H1lK1+tKW20GjruVkTeX/6ZlYeh199CmU0/r//J2t2vYpBWX9RuDj68vI3bEc/NrP5Y6Pm3RLm58puZ8ja5fsBZDOUamg121jjIh3NYYxYyx3Y8pbW2PjsWPqqRrR87revOkN3+qUIbIq21rWwkHzp/XPvQmBwY2IOLVD2h7WSTd+o2CEsswnC8xfbSMTUHOO/U2nXsR2rgZA8fdSpf9O7nJicIEWC3AeU23M2LbMwy4PsNpXAtx14UD0PPyMQxbtRX/xR8SGBzChIf6MP7BYTRtG8rImd0Z/2Afshtpz4Fl2v2JphUmX318bBd58pyvXT5t1B3PA7C9f31umve/cuOGtL/M6bGIy8drCpMTLus3isET7ysVduOT2iSbdP2VN65XENH965crQ3t9inx+t3bWsML6jWnbpTdBIaWtPWZ/rU58G9o8MQIDtPu8IBD6jbyRG58oO9Qz4cE3mLFgAz7+WtzcEMj96KUy8QKDbW2Ij139W9wrEODr58e0eYvLrZtSCMFVd75YJrheaGOC6zlO41griO0fwtDJD3C2AaTOdjyIctMrNoXqjH5PXugbeX7+Uxx7dKJDy3TTGbYXx6BeXay/R9+rKfgGP+i8bzddovfiP2hUmfNT2vlw+ZXXktWgdHhAcAgzvtpG++6aC/KNz3zGNffOw0faRj/6X92BhxdMcDr64a14xNIkhPBHU5gWSSktr8yZQohWupWpFbbXnzSgnd3pbYEMPXzUBeEbHeUnpfwM+Axg4MCBMmJPxcM/1UUEljXJWvAPtI39+xnTaZN1kILQ/YTk9aM4wPYQdY+LZeUDfTCFtWPqg68T/97PjpIrl/RnZpB/Ot2hlax+kO2tq2mH7g5igPR1rDRVhqSHrqFVD+eLUzpEX0I/JwQa6lvw+QeWVorady39FhjWrCXu4vCkjoT/kuq29NxJSGhDTrQU1nWzLsTYvT0cSUba6TL+7ToBmkNqbscwSDtD1NDGzPxqG3E7fmPqoGvIeSqDwvM5Thtye+o1KH9oIjC4HtO/K229bTj6ati7jNZjb2TYpIdY9twUxj7p2h5wAcENKo4ETFm0C7M0s/uPbxweT+ngQ6ejZmL612fGWyuQb0qr0ndZv7EOzwFodP+9pH34GVdMn83RnoPp0c2xNdAdHGspaH9SInxsF9AydF3eZAELLcOa0NLOMr6jmz/dD2svZSYfMH08j6z0ZAxfLmTsXS+wt00njEX55VrSK8P5Nx+md5/RNO/Yk3AcK9X2DBgzjfTfejCtfTi7x3xO6DPvM/Ejx5booW99x+ZX7uPGZ2xWnuZtOpIOHBkYxgCHZ9nwEb6Y0fbiHjhqKod4iSNd/OiaVNaK7+vnx7FWgrxR/ZDHdCtfBWVxF9dssL3wXrnLuZ+nr58fMdd3oUX/kfj8T1vX7vzs6aXiDBp/NwB/fPpcmfPbDbXFHf7wu5xcrD0DljYgPwgC9dEWh0sr6E3QgHWbMRmKOT7sqvILdhFM1vfE7DkBfAHESyntB5hXApYZcLOAX+zC79Bn0Q0BcvRhvDXA1UKIxroD+NV6mEc50kl/I21Yvi+BhVu+fJDQ6wu55fuVmFptIdi4yHrMx9eXG/8Xx9Q3tQYk9lqbX0Pcra4pIVfd9SKTnna8Zk1QgO0h6DPseodxml6jbUHR9qqq77p+3WPvMWDcrZU6p0vfYcT1DaLk2XsBzQnVx8+xjn/m1QeJ6RdCz0EVPLCVIKDY9ZXLPcIFjc85/YXc+P2nCMtQq12cG56y+V9Z/X70DqDnkAn4+PrSuFk7Wney+dyVR2CwC733BVx776tEJMQzYso/tLf1//uFsBYdKj6xEvj4+uLn54/JqA01ZjWANDs/vMLGWt0UhWnPZ0UduoVhNz/BuL/jCWvRmf5jZ9CynbtUjLKcD9OsIY2atSb1seuIGah1Wuc/fJEWixc7PS/nvedIuKfsCvh+o0cA2iK+vQ/G02/UzYy99RnGrztISIPGDJ/6KGNuK9uhVpVBk/5Bi069EEK4XL9tOvfC18+PIZMeomdCPCGhjtvPNp17MuOrbaUsUA0at6B7fBzTPt9UYT6+vrYuz8fXl6DFHzD2+3XkOLmdr9lwkKkvLip3n0JPM+3/VjFy5lMI3TzuE1jWTxKgWaeyQ+D+/jZrdONmNveRoJBQDtzUk5D5thW5u/WxqaTJ943kYEQAzZ/XxmWDQptSP6xC7xjy7tQsZkdur0i9tWGsGdfNKuMJS9Mw4HYgRggRpYc9D7wBLBVC3AMcAyyD378BE4BEoAC4C0BKmSWEeAWwbKw1T0rp8Z7OrL8dSifDXRfiHxTC2PvfAmDqZ9qMGmfrb0x99zd+NF5F+/G3MPW6e90grSDhtkEUJyc6fcsce8ccuMM9e3BVBj+/AKYu2Q/ARpOJFt0HkHXQsYVw+NTHrL5U7qLENwSo/vpKNUVu5yaQYVu1TlgmJvr4OeyofO0VTqvSdPHuoiR1y2hxAJxrGULbk9oq7xbLqaiG5bSmuerT1exY8jbXTLxHC3hI+xp01QznJwFDrr0Drr2jTPj42e+y/MjVDH/qA3eL6jX4CB/HDhsXYBletTwvnfppL1pNvviU5H3rnFvbAgNKf3shlvkLwsnLZeSYmRzmP2Q0A8PMCRhWrWFiy3YO4wJM/0/pYXqz2YxFf5n4r0+gCpPzrpk9H2bPr5RVM3/eQ3QaNI4Skwc2zHRArStNUsotOL+9y9jHpbb6Ztk177VjXwLu3TypmlgeRunKE1zZtH18mPbRevcl6OPD5Lm2YYzoUS3wDWvqNjO9uxh1i+ZAnO5EaaoJigKaAFXba6w2mPzxX2TE/U3BTH3BOKse5FNKGdo5fTCGnHOlr6l1in/tDDV4AksDKwVc9cEvZA7XOkep++j5eLHS1LBpG655ZL7b0vP1D+Dmjze6Lb26jMV388I7v1u/EXTrN8Lpede9voRVz0zl+tedOGV7AWd6tqBtZibtIgY7PO7r58eJObfS/YrrtckmD79TJk72G7MJqt/I4fnONriuaYZOcc0vtbbw6Oy5ixHLwyhl1TukpC5mjD3a1bjyUr9Zi1L/Z3yysYZzrDv0n3QHxhXPVhzRQ/gHBNGh3zVYvB2EVQ8SNO3eB4jB1LEld7680MHZ+uQD34vY0mTWXrvNAuqF2vyvrJYmD3UACs8S2qgphUB6a18qs3x0/UbNmfFpxcN/1eHYoxMw5OdWud2f9v5fFGZnlJp9dyFjbi9/E/ahNzq0TwBgduGZKQwA/8qvA1unUEqTmykZNgCSd9F15A0VR3bCdasPuVEi51zz4Fu1ko+7SWshalyhvGzIJOLxXqXpQiwquo8QjLl9LrGt2zN1lGM/stGvfMXf/5rJuJe/rjX5ahuzxZQvBH7+tgkPlmFzYfZeHxVFzRHWqiMJb/yDK4dO8LQoZbjGgeWnMvj6+ZWrMFUXkwvW2Ygtm5FV9PY2+oK/nsWpsCCany2qUjo1jVKa3MzkOQuh9l2AqoSrTpregs9FPJxUXaw+Tfo17TW2rG+LhRZtuzFtyd5q5xkzoikiJMTrhnPB9lZsFuBrN+vHMjwnzOUtKqG4mBl248OeFqFOIk0Vm5CCG1R9LQ6zXfMuvPid5uK1zysuOobd9DCxvQJpNKfuWIBqi+wGWosTFFy5rSyqw7TPNnPzex6fsOoQs/5WbBkl3z+0Ecfn3ErkfU9zrj70vrturQ2jUHgaVyxNVSHhMu2l5tC1tjXDvFlpUpamS5C4m3vht6/8Fc69kcDgUG7+KariiJcQZ166i+L8bC4bch3Rv37B5M6uLRlwsWOZPWcZt7zlq+22g3scL6+hUCic06HHwBqZT1zUtikkZtIsciisSgRAePESD0ppugSZ+sqPFUdSkDP/GYxF5z0tRrkMn/G09Xfnnld4UBLvwlyiDSVUYz6GQqGwo03n3jWiNE19/w92r/6MMZMfJf5VbYNzZWlSKOogQ8bf6WkRFFWkbc+BwM/khrtvlXiF4lLH7zv3LYVhwT8giCsma8sKZLT2o3WGiVO9mtFka5rb83IH1VKa9E11hwGtgUIgFtgjpVReloo6SezIpogc920pofAMfUdM4cSvrZnauZLb9ygUCqd0Heh4Dzx3YbhhOHyygdaTbiSu827MUQe8ri0Wsgpjh0KI0cCzQBNgP9o+cUFAN6AL8BPwTgUb8XqEgQMHyj21sPecQuFtWFaad7TBs0KhqFnU8+caRUV5BAWFVhzRDiHEXillZZbeqjJVtTRNAO6TUh678IAQwg+4DhiHtimvQqFQKBQKRYVUVmGqbaqqNG13pDABSClNwM9VF0mhUCgUCoXC+6jqOk3lr8WuUCi8kpi+TrZzVygUCkWFqNlzCsUlQkRC3VubS6FQKLyJqipN4UKIAw7CBSCllH2qIZNCoVAoFAqF11FVpSkFUMvqKhQKhUKhuGSoqtJkkFIedaskCoVCoVAoFF5MVR3Bt7pVCoVCoVAoFAovp0pKk5RyNoAQIlAIcYsQ4nkhxAuWT0XnCyG+FEKcEkLE2oU1EUKsFUIc0b8b6+FCCPG+ECJRCHFACNHf7pxZevwjQohZVSmLQqFQKBQKhStU1dJk4RdgEmAC8u0+FfE1cOF67M8C66SUXYF1+n+A8UBX/XM/sAA0JQt4EbgcGAy8aFG0FAqFQqFQKNxNdZccaCulrPRmNFLKTUKIjhcETwJG6b8XAhuBZ/Twb6S238sOIUQjIUQrPe5aKWUWgBBiLZoitrjSpVAoFAqFQqGogOpamrYJIXq7RRJoIaU8AaB/N9fD2wDH7eKl6WHOwhUKhUKhUCjcTnUtTVcCdwohUoBiamadJuEgTJYTXjYBIe5HG9qjffv27pNMoVAoFArFJUN1labxbpFCI1MI0UpKeUIffjulh6cB7ezitQUy9PBRF4RvdJSwlPIz4DOAgQMHOlSsFAqFQqFQKMqjSsNzQoj6AFLKo44+9nEqwUrAMgNuFpqTuSX8Dn0W3RAgRx++WwNcLYRorDuAX62HKRQKhUKhULidqlqafhFCRKEpNnullPkAQojOwGhgGvA58JOjk4UQi9GsRE2FEGlos+DeAJYKIe4BjgE369F/AyYAiUABcBeAlDJLCPEKsFuPN8/iFK5QKBQKhULhbqqkNEkpxwohJgAPAMN0S48JOASsBmZJKU+Wc/5MJ4fGOogrgUecpPMl8GUlxVcoFAqFQqGoNFX2aZJS/oZmBVIoFAqFQqG46KnukgMKhUKhUCgUlwRKaVIoFAqFQqFwgarOnvvNwYreCoVCoVAoFBctVbU0fQ38KYSYI4Twd6M8CoVCoVAoFF5JVWfPLRVCrAZeAPYIIb4FzHbH33WTfAqFQqFQKBReQXVWBDcC+UAgEIqd0qRQKBQKhUJxsVElpUkIcS3wLtpq3f2llAVulUqhUCgUCoXCy6iqpWkOcLOUMs6dwigUCoVCoVB4K1X1aRrubkEUCoVCoVAovBm1TpNCoVAoFAqFCyilSaFQKBQKhcIFlNKkUCgUCoVC4QJKaVIoFAqFQqFwAaU0KRQKhUKhULiAUpoUCoVCoVAoXEApTQqFQqFQKBQuUOeVJiHEtUKIQ0KIRCHEs56WR6FQKBQKxcVJnVaahBC+wEfAeKAHMFMI0cOzUikUCoVCobgYqdNKEzAYSJRSJkspDcAPwCQPy6RQKBQKheIipK4rTW2A43b/0/QwhUKhUCgUCrdS15Um4SBMlokkxP1CiD1CiD2nT5+uBbEUCoVCoVBcbNR1pSkNaGf3vy2QcWEkKeVnUsqBUsqBzZo1qzXhFAqFQqFQXDzUdaVpN9BVCNFJCBEAzABWelgmhUKhUCgUFyF+nhagOkgpTUKI2cAawBf4UkoZ52GxFAqFQqFQXITUaaUJQEr5G/Cbp+VQKBQKhUJxcVPXh+cUCoVCoVAoagWlNCkUCoVCoVC4gFKaFAqFQqFQKFxAKU0KhUKhUCgULqCUJoVCoVAoFAoXUEqTQqFQKBQKhQsopUmhUCgUCoXCBZTSpFAoFAqFQuECSmlSKBQKhUKhcAGlNCkUCoVCoVC4gFKaFAqFQqFQKFxAKU0KhUKhUCgULlDnN+xVKBQKhcLbSW4Jpwe0J8LTgiiqhVKaFAqFQqGoYSZujPe0CAo3oIbnFAqFQqFQKFxAKU0KhUKhUCgULqCUJoVCoVAoFAoXEFJKT8tQqwgh8oBDnpbjIqIpcMbTQlwEqHp0P6pO3YOqR/ei6tP9dJdShtZGRpeiI/ghKeVATwtxsSCE2KPqs/qoenQ/qk7dg6pH96Lq0/0IIfbUVl5qeE6hUCgUCoXCBZTSpFAoFAqFQuECl6LS9JmnBbjIUPXpHlQ9uh9Vp+5B1aN7UfXpfmqtTi85R3CFQqFQKBSKqnApWpoUCoVCoVAoKo3XK01CiHZCiA1CiHghRJwQ4jE9vIkQYq0Q4oj+3VgPDxdCbBdCFAshnrwgrSf0NGKFEIuFEEFO8pylp3tECDHLLvwPIUS0nsYnQgjfmix7TeBN9Wl3fKUQIrYmyltTeFM9CiE2CiEOCSGi9E/zmix7TeFldRoghPhMCHFYCJEghJhSk2V3J95Sj0KIULt7MkoIcUYI8V5Nl9/deEt96uEzhRAxQogDQuuPmtZk2WsKL6vT6Xp9xgkh3qpQeCmlV3+AVkB//XcocBjoAbwFPKuHPwu8qf9uDgwCXgOetEunDZACBOv/lwJ3OsivCZCsfzfWfzfWjzXQvwWwDJjh6fqpy/WpH78J+B6I9XTd1NV6BDYCAz1dJxdZnb4MvKr/9gGaerp+6mI9XhBvLzDC0/VTV+sTbYmgU5Z7Uc//JU/XTx2v0zDgGNBMj7cQGFue7F5vaZJSnpBS7tN/5wHxaBU1Ca2A6N836nFOSSl3A0YHyfkBwUIIPyAEyHAQ5xpgrZQyS0p5DlgLXKunnWuXTgBQ5xzCvKk+hRD1gX8Cr7qpeLWGN9XjxYKX1endwOt6PmYpZZ1ZjNDL6hEAIURXtI5vczWLV+t4UX0K/VNPCCGABk7O93q8qE47A4ellKf1eH8B5VqVvV5pskcI0RHoB+wEWkgpT4B2AdAeSKdIKdOBt9G0yhNAjpTyTwdR2wDH7f6n6WEWGdagaft5wE9VLIpX4AX1+QrwDlBQ5UJ4AV5QjwBf6UMg/9Yb1DqNJ+tUCNFI//+KEGKfEOJHIUSLahTHY3jJvQkwE1gi9df5uoon61NKaQQeAmLQFIMewBfVKI5X4OF7NBEIF0J01JWuG4F25eVZZ5Qm3SqxDHjczuJTmfMbo2mxnYDWaNr6bY6iOgizPuhSymvQTIuBwJjKyuEteLo+hRCRwGVSyhWVzdub8HQ96t+3Sil7A8P1z+2VlcOb8II69QPaAlullP2B7WgNc53CC+rRnhnA4srK4E14uj6FEP5oSlM//fwDwHOVlcOb8HSd6lanh4AlaFbQVMBUXp51QmnSb5ZlwCIp5XI9OFMI0Uo/3grN+lMeVwEpUsrTusa+HLhCCHG5naPiDWgaqL2m2ZYLzH1SyiJgJdrFqnN4SX0OBQYIIVKBLUA3IcRG95SwdvCSerS8bVnM3N8Dg91TwtrHS+r0LJr106LQ/wj0d0Pxag0vqUeLLH0BPynlXrcUzgN4SX1GAkgpk3SL3VLgCjcVsdbxkjpFSvmrlPJyKeVQtH1pj5SXodcrTfpQwxdAvJTyXbtDKwGLB/ws4JcKkjoGDBFChOhpjtXT3CmljNQ/K4E1wNVCiMa6Fns1sEYIUd/uYvoBE4AEd5WztvCW+pRSLpBStpZSdgSuRBtXHuWuctY03lKPQgg/oc+g0Ruh64A6NRPRgrfUqd4h/QqM0tMbCxx0QxFrBW+pR7t0ZlKHrUxeVJ/pQA8hRDM9vXFovkB1Di+qU4Q+21gPfxj4X7k5Si/wpC/vg9ahSjRTZJT+mYDm9b4OTStcBzTR47dE0ypzgWz9t2XW28toik4s8C0Q6CTPu9HGOhOBu/SwFsBuXY444AO0tyeP11FdrM8Ljnek7s2e84p6BOqhzUqy3Jf/BXw9XT91uU718A7AJl2WdUB7T9dPXaxH/VgyEO7perkY6hN4EE1ROoCm2Id5un4ugjpdjPZSdBAXZsSrFcEVCoVCoVAoXMDrh+cUCoVCoVAovAGlNCkUCoVCoVC4gFKaFAqFQqFQKFzAz9MC1DZNmzaVHTt29LQYCoVCoVAo3MDevXvPSCmbVRyz+lxySlPHjh3Zs2ePp8VQKBQKhcJtGI1G0tLSKCoq8rQoNUZQUBBt27bF39+/VLgQ4mhtyXDJKU0KhUKhUFxspKWlERoaSseOHRF1fyelMkgpOXv2LGlpaXTq1MljciifJoVCoVAo6jhFRUWEhYXVOYVJSonp3DlkSUm58YQQhIWFedySppQmhUKhUCguAuqawgRgzs/HmJ6O8eTJCuN6Q/mU0qRQKBQKhcIjSGOx9l1c6GFJXEMpTQqFQqFQKDyCoVgbbjObDB6WxDWU0qRQKBQKhcKtzJ49mw4dOpQb55577mH12j+Jio/n32++U0uSVQ81e06hUCgUCoXbSElJYePGjRgMBvLy8ggNDXUYLyoqiiceuocuQQ2IjIgAwFxYiLmoCL/GjWtTZJdRliaFQqFQKBRu48UXX2Tu3Ln06NGDuLg4a/jhw4e58sor6d27N/Pnz+fkyZO0ad2Ku599lk27dwNQnJSEMT3dU6JXiLI0KRQKhUJxEfHyr3EczMh1a5o9Wjfgxet7VhgvLi6O2NhYFi5cyJYtW4iLi2PIkCGYTCZuu+02PvzwQwYPHszDDz9MeHg4ALGHD9OrWze3yltTKKVJoaiDmA0GSs6cwb91a0+LolAoFFbmzJnDK6+8ghCCiIgIYmNjAVi+fDkREREMHjwYgJ49exIcHIzRYCC/sJAmDRuSn5/PA3Pm4O/vz1WTJ3Prrbd6sigOUUpTHcNcWIhPcLCnxVB4mIynniZvzRrCYw4gLthSQKFQXNq4YhGqCXbu3MmaNWuIiorikUceoaioiD59+gBw4MABBgwYYI27d+9eRo0axaHDiXTv3BnQFKsbx41j4qhR3PnKK16pNNWoT5MQIlUIESOEiBJC7NHDluj/o/TjUXbxnxNCJAohDgkhrrELv1YPSxRCPGsX3kkIsVMIcURPN6Amy+Npcn79lUP9+lOcmOhpURQe5vyGDQAVrqKrUCgUtcXzzz/PqlWrSE1NJTU1lejoaKulKSwszPp77969LF68mMjISGIPxtO7e3cAjh05QtuWLQHw9fX1TCEqoDYcwUdLKSOllAMBpJTT9f+RwDJgOYAQogcwA+gJXAt8LITwFUL4Ah8B44EewEw9LsCbwHwpZVfgHHBPLZTHY2T/ugKAwtioCmIqLnYkUvthNnsLoR6hAAAgAElEQVRWEIVCoQDWrl1LcXExY8eOtYa1aNGC/Px8srKyuP3224mKiiIyMpK33nqLRo0aacN3B+Ppo/sztQ4LIz0zEwCzl7ZtHhueE9p66NOAMXrQJOAHKWUxkCKESAQG68cSpZTJ+nk/AJOEEPH6ubfocRYCLwELaqcENYs0m0GIUsvG5x0/gC9wLGEPjZjqOeEUHqdYGgkEzufn0CAkxNPieC3mggJEQADCT3kiKBQ1ybhx4xg3blyZ8JycHOvvXbt2lTm+ZftOHp06HYDrhw/jiXmv8semTVx/ww01J2w1qOmWRAJ/CiEk8KmU8jO7Y8OBTCnlEf1/G2CH3fE0PQzg+AXhlwNhQLaU0uQgfp3kyKjR+LdsSdsPP+DIlcPxa9mSrhs3WI8bTxTgC+Tv3us5IRVegW5notjo2c0rvZ1D/QcQOm4cbT9439OiXDKYi4oQ/v4ILx1eUXgH+fn5DB8+nFHDh9Fen9BSLyCIz159FYCgHj0wnTuHb6NGXrHnnIWaHp4bJqXsjza09ogQYoTdsZnAYrv/jmpFViG8DEKI+4UQe4QQe06fPu2a5B7AdPIkhVFRFB08aP1vT1CRVrx6ydVbw8JcWMjZL79S/jBOyPr2O+LDIzRrn5ci9btfSIe3vAJthiFA3tq1HpbEs0gpKbRbK6emORTZjxNz/11r+SnqJvXq1WPfvn3Me+5ph8dNmZkY09Mx57p36YTqUqNKk5QyQ/8+BaxAH24TQvgBNwFL7KKnAe3s/rcFMsoJPwM00tOyD3ckx2dSyoFSyoHNmjWrbrFqnJOLFpZ7vERWrzM//d57nHrrLXJXr65WOrVFyfl80h59DFMtKbyZr70GlFVavQmL0mQ2Gj0riBeTteJ7T4vgFeQsX07qlKnkrV9fe3muWFFreSnqNsJochhuOnsWAEN+jsPjnqLGlCYhRD0hRKjlN3A1EKsfvgpIkFKm2Z2yEpghhAgUQnQCugK7gN1AV32mXACas/hKKaUENoDVuWcW8EtNlac2OXc0vtzjxmqaKjOj1gGQEbWxWunUFtnLlpL355+cnF+7exMV5GbVan6VwWJfMpkcNzjOMGVlWS0wFzvJmxZ5WgSvIHP9SgBObVlD4YEDlJzPr7G8pLJ81mmkyVTrIxAmyjcCFJd414thTVqaWgBbhBDRaMrPainlH/qxGZQemkNKGQcsBQ4CfwCPSClLdJ+l2cAaIB5YqscFeAb4p+40HgZ8UYPlqTUKDXnlHhfVbJdSSjRl4GDe0eolVEukHNwMwNntf9VKfufq6fmml6+8epJ6xdq38VRmpc47csUwjj9wv1tkSBo/gdRbb3NLWjVBZkn5z5E3k7dxI4Zjx9yS1okTmttoanocqdOmc+zhB92SrkO8eEjbESdfeZXzW7Y6PW5ITSW+dx8Mqam1J5QHKUpIoOjQoVrN01xBh2auQKmqbWpMaZJSJksp++qfnlLK1+yO3Sml/MTBOa9JKbtIKbtLKX+3C/9NStlNP/baBXkMllJeJqW8WZ95V6cwZmaSvWxZqTBzSfmWgOoqTUb9JjSJuuHTdFhqSl7AiZp7Q7YgjUYa69kY/L3H+dAZ+VG7rb/NBgP527ZVeE7B9p1uyduQkkLhXu+dlOBfUHctamkPPkTS+AluSavFwXMAhO1MBaBw3x63pOuIujZcfG7RIo7fe6/T41nLfgKjkXMrljmNc9FRgeJrOnfOvde5gv4sOMe7unW1Ya+HOXbX3ZyYM5cSO2e3ggouS3W7cn+zdhMKY2E1U6od/Hxrb7p4+me2WVYBdWDB/NOnUqy/M19/nWN332OdSHCpE5Bbd5UmAKowTFKclOR0iCywSEuvJo1BJlMdr/MLOHxQs24firu0JxNYkCYTxvT0S8by5gilNHmYonRtiKy40DaUkNSqfLXIUM2+3BfND6b37+4x/9c0PqL2btMjCdutv82V9BfyBFnZaZRkZwOQvfgHAE6uWu4wbuo7r1p/F6ekEB8eQUEVLUV1YeZlib9jGWUduK5VIXvdHyRPvI7ML8sY8UvhW4NKk8GoKU3eNaBSdTLQ2uUM83kPS+IdmPXnXhpKW39K8vMx6e1QpfF+g34plNLkYQz6MlPnzttmCFQ0/PZ3v5qRRRoM1g7Ym5A+NfNUSSnJmDuXgn37rGFnSmwWP3OJiexly8ld82eN5O8Owv9I4vCQoaXCTv+9xmHcws9tjtHJ+tDPybffrlK+piLvt1KaSwLLhBXGxJDQqzd5GzfWvkA1TOzqbwBI/OM7TKdPc36rc1+dmqLEqHemdaAjdMlp/RL1azcXOx4SM+bp/dQF9WJIScGYllb2hIsQpTR5GGltXWzvZg1M5bc4QTU0bJTQp2+ZDtgbkDW0sJk0GMj5aRlH75hlDfMx21qDEpOBE3PmkP7YYzWSf01hLsqhODmZrO8rnnKfnRRDyp23YUyv3NpfBWdOVVW8WqOBg3Y/8fuPAUj66t1alqbmSZdah5bhU8iR4SM4fs+9tW5VM+gTE3zqgLJxobWk3Lh1QAl0J8VHjjgMN+bUwIziOnCv2KOUJg/jo+tK2U8+aQ0LqMC23dZcr0p5FR065PRhsMecX/MO15WihhqsfH1JAbPZ5tQoTbYhHbOXTXUtD3sLoZCQfNNNZM57pcLzgnNLKNqxl4P/dO4M64gzS7+rtIwXkv7kk6TNfqTa6TijUVLZTvFQXjIAR4wnaizf6lLlafvWBU9tQc4sBjXFyTmOFyr0RgyFBRXGsSwea77ElCZn2LePFTF79mw6dOhQbpx77rmHPzf8TVR8PP+eP7+64tUKSmnyEnzibdP/hZ3SZDh2jJLs7FL+NcVCkjFnDoWxlVvlN2XSjSRfX/F+PscWflqpdGsaZw1WcVIS2T//XOV0M57RGngfuwxaxdkW0DRXooHwNPYWwjxhhiKts3S1A04pdrgurFPiUndUHKkczCYTuatWk/dX7Sy4ePTJx8n85COkvjBs6DnnCrG5sJDCKM9til3ldbR0i6yQUKLf0iZj7Tpmn8z3XmXUgiwpwVxcjMGFIWajfr/ki7rzAuUODH5QkpONuaj0Nk0lLk7dTklJYePGjRgMBvLySi/9URgbi/GEtnBwVFQUvcO7ExkRwStPPOEe4WsYpTTVACl3zeLU5+U7Y5aHvWk76eprSBg9vNQUz8yiPHKWLSf5rqqtkWOvg5hzc4kPj+C8nY/H3tTK+UJIk6ncYQBDairFySlOj1eYvt2DerBnTw4//hBSSpInXseJZ59zet75XTtIuesOp07L5m1lp14HGuw01tW/Vllmax4FBRQdPlztdCrD0aZ2Q4znzxMfHsGJr/9X7jkXGjellKVmdF5IgaxeZ2wsrl2fqIJVa8h670NCcjS5O6Q4t8Ac++cTpM6YaV2RuLYxFVdtP0HbMLa0DicZChxbjY0nTpAx91mkm5cIKKnm4pbm4mJOvTsfc2HN3R+Hbp/Bob6RGApsnXmJk/wCpNZF1hMBNSZPbVJ4NAlDdsVDbP4lYDieRnFiYqnwIBcf+xdffJG5c+fSo0cP4uy28Dl8+DBj77iDfiOGM3/+fE6ePEnrli25+9ln2bR7dzkpOqYkJwfTuXOVPq86eP+c6jpI0fZdFG3fRfP7Kl5EzpERpdfh0l2YT6EJo4OG9Ly5ao1rxwTbRpqHBl8OwPEHH7KGmUyVM+nHDx8Gefn0iI11eDzp2vEARCRUbrHIwuho/Nu1Q9pt/ClKzJT8sZGse6OtYVLKUhs6Ficn49+iBckP34f/eRNZh2MJi+jrUp718m1132RzosM45uJiDCkpBHbrRkKPnjR5bDYtHnI8zJT6j0co3rqD7lH78QkKckmG6rKvLQzVqydtn6YAZ79RudXUMxd+ybk33qbTyl8I6tatbARz9axwxbWsNFkIOOu4gS05fx5jWhpB4eFk7d5EMJCeEkuHsJG1KyBgcmHYyBFCb00anrNdm/xCx1tQxD10G4EJGRh6dqfjzLuqlJ8jOqZXT2lKffs1ir/9kbzcTLq89IabpCqN3Ke1U0Y7C0hO9imaBJcdSrLu7ehFG8a6xO/PwsmYMsEBFteLeo5dPKzHBVZfI7krGCF8oGVvaFf+i7qUkoMHDxIbG8vChQvZsmULcXFxDBkyBJPJxG233cbbTz3FoN69+dfHHxMeHg5A7OHD9HLUzlTA4cuHVPqc6qIsTeVQkp1NyiMP1KyPj4ttTOqHb1l/Ww0vEgqj93N20TeVytKnggH6EBdmQZiLiqxv4uJcLsLFoSxpNGLMdM2JOHX6DI5cMczhbML0kzbfLEO+rfGTZjPJEyZy+O5Z5Plo1q/0sxWvfG7MPFWuZcWeI/94kJQbJ1OYpi3ZcOaDD53GPb9LG8bKz629WYn2lsr0A44Xuyxw8OIszWaSnnuC4ow04pdqZdr588eOM6nmYj/F+TW3CafpzBmn19LkxBISO3UiKTdOxmwyUaQ/lFmFtfsGa6E41vZCkPDYvcSHR1DowguHn0F7BtumGfHTL8+pPMf7Jx42aeHbkqo+PJp460wSBg2iJC+PU++95xan86hUbfX/uCObqp1WRZjsFPfivGzOfPJJmY2NLW1PTU1G8SRSmpEudEBmB5b6Yn+7dC5oC+bMmcMrr7yCEIKIiAhi9Zfp5cuXExERwaDevQHo2bMnkZGRGAwG8gsLadKwISnHj/PgCy9wyz//WY2S1SyXnKXJkHmS+PAIl978LX4ie19/mkGvflQb4jnlxM41tNJ/+1pefiSkTr8FgLBb73B4Xn5cLEfvupOuK1e5nNdlByq2NMVMvpaAlMxKW4+OPfcMBat+p/v+ffgEBwPa24np5En8W7VyeI504JDta7I9qHk5Zwis3wAAQ672Zi2j45BaEGYXrCKJI0dSHORL2UnqGhnvv0fOx5/S/UA0uXu2Ux/Bwdgt1ANMF7x6nPl5GXnr1tHpg4/x10UvSE8ltHnLCuVwB/ZKZt7ZEzRxEKfYH0IuMLUn/vI9phV/EL13MzkBJloCZ41ONsu0aygNqakUp6YSOmqUyzKeO1W52XpnF39Hw/ET8WvUuMK4R64cjjkowOEboa/ZiCP7rl9qJiA0i65+uPh87S6/IaUk9p8P4ff737awNZqlcPcLDzFi6UbH5xmNSIOBLpvKDoGXGIrwd3BO70Tt+h3LSa2yvMa9mt9X3OP34781irxQP840gqbVqDaTURs6MsnSL6qGYykYMjOpP6hiy0LKG/Mo+nox4fEHS1mg89atw7eJ7WkwBdq6v7THH6R+cjan3/tvqTbNYmmqc7PnxtusdFJKZFERPsHBGHQFxq9dW0zH06BhA4LbtbfGNTgYLTC1bkZokxbaH/14qckGdhvI79y5kzVr1hAVFcUjjzxCUVERffr0AeDAgQP079/fGnfv3r2MGjWKQ4lJdO/cGYBO7drxybx5Xq00XXKWJvNpzToSt+Irl885kpvI+c1bMNTAOhQB5fTnyS1sv+un296KQnXrvSuL1O156k5Ebj6Jo0ZXST5zQQHx4REc/bq0j1ZAija12N7RuCQvj/h7b8WU63xX6qy12u44Z06mWh1eEz/8PxJHj+HURtt6SCX2vhb5ZYcrTh2yLcpoOH+emIG9OfbDV2SdSLWGh+nGBlnimlXEsmKyI059oTnH55xMs3qmFxRrFi6L4c7yxnX62bkUrd2gHdPP33PMPVuXuMJV+23lbbd0s8M4jh78Q7o5P9dgW8jPbDaTs2s7B3v2xJhp2+fObHfdk64dT5rd8C5oyzlEjx5K+m+OHfV9cx3vCyelLLOiecbW9Zx6+TX231bxJAYLPkWOnS/qFdnkLkxNJnbWFMxFRVZLgqHYdq8VO/EHqinOrP6llMJkT7MDzvcYTOjdh0MDBhJYVNZqUFKBU7lfsRFzYSFnv/66lMVAms3Eh0eQ+KJzn0ELqae067UrdSNHW1WvSwmR2r0XUqJ9W6z8SVdP4Pjtrg0jFizUtjUtyD5TKjztkdkcnXmL9X+xnU9T/WQnmp4s9VUnMWSkU5yURMl523NtOKFP/Mip2OJbUpxf6twLse8DnnvqSZZ98AGHD0SRmppKdHS01dIUFhZm/b0vLo7FixcTGRlJVNIhenfvXq4MBYfiKYyNxXDSNtGg6Ozpcs6oOS45pcnC6Xy7WVIGA7EP3IEh07Ep27ewgOP33UfSVeOcpmc6c4acX1e5dZdvs93VCbXTG4Yc0vIIKccgZDh6FGk20zy5eg1/wjZNyTn2+X8dHs89lmT9/ffcu2HLPjb/61aHcaWUWNSSkzs2cKhPX+K/mE/cRq2R2/L7Z9a4BXaLfZqNZQuav9O2cvehzT/hd97EqXfe4Exy2S1E7B3BpclEzIC+JH+1wKGMzgjURfANCsJPT+501nEAgoxwYtVyEnr05OyO0kpKXoj2nXjusMNZUUeXLeLAwEi3Or5eZncbOxuKzQ4p/V8AzRf9BoCfCasPh7nEyJ5X/oEoMbP1C23bx/S9WwnKLqsYm0tKSHr+KeLDI4jf/BsBJ7I5Pu/50nEKCijcH8Xxtb84lCv27RdIuWkKiYttjusJx/cDUHj2DJmb1mqO7X+tJv94KseXLCx1fubG8re7aHLK9lDFTxuP786D7L96qNWSUFRke14KjlVuBt35HdvJWV/17Ta2r6/cMLsr2Ds47+5a9l6oX68R+5+4h1NvvEnSN7ZZs8X6cHLxjysqzMNiTTUjES2bW8P3TxvHgbmPaukkp7i03EmzRM0uFpgVyNmo3RwaMJC49/9jPX5i/07t/gqPcJpGiX6J7YfEL5wFBlCY53j4Neqj/7BjwhWAXQcpBAfHjio3X2/FfE6rh/Nn7WbISteH1wPPFmBITcWYY6tPH6kp1qZz56zK9rpt2ygqKGD0kCHk55zBlJ9P6Plc8vPzOZEQz/TrJhIdFcXlU6cy/6uvaNSoERERERyMP0yfCvyZhFFrdEvO2CZnZCQ69qGtaVxSmoQQPkKIfkKIiUKIMUKIFhWf5Z3khrYjq2FX8gIhc90f/9/eeYdXVaQN/De331RSSCCEEkrITagCgdBEmoiuDVfBsnZXBduufrK6dllddUVRxFVxdV1FUQE7WFERJYK0QEIHpUgvIT258/1xzm259yY3IeUG5vc8eXLunDlzZuaeO/Oed955X9aOHcGS6Xdj/PZntpyuaWMOvzuX0o2eSM8lRTXvonGWl7Nu/Bh233UXBY5Md7q3ALX/268124RdO8nr6WBdj8xARfnQvp6C9KFfctly5jhWXfXH+hXgxf5ftZ1fRyy60HO8yGfHzdrbrnEf7y7TbJVil28NWNamV2YQqQsfG755B4D1C/+HqNADCEuPcOPjQyWAsNHlF89b5N7j2ttHlVNQPMNfGKooK6Zi1y4qDx1m96a1mIrKOTxjhl++UPj9h6+x6M2P9nJCuvrfWoiSn2f83Z1WVlLk9sOVmLuaDb16s3Ger4az+N5HMR8vY803tQcE/fLCEax46yXyF71br7q72BcHldUW5jMKyok+oNmkJB8Q2Mp0/zRVFaRs0gSJA2Xa7+C3m67Fsc7ffqXs8EHK52nLwIVlmlBVXu0d/acLRrB90iQfLan3ztDSt7UQMEeefpZNC/7HqpmPUpWbC0Drw5D/wF0ArHv8Xn4dcxbHH3ic39d4dkHmPxy6Wt9+TBv+IvaVum2Ayks9z11laWBtWDB+u+oadt98a52u8cZ0uOZQHUtvvZjVrz1TpzKrvNozYJP/C51BGjB9rwmlvyx+jvwMBxvffZXjR7TBpyoEW55O27XfZ+qK3SRu8wxatjU7Mb/3Bb9/9xlbx49n6x/OpeLAAfIzHGx97w2fMlyCUMxB7X62YjP7JmomB4YXPHk333aV3zXrzh1HxcFDbLzqUm2M0me1fQc8toyrRw72q3cwocn63BvEbj3Md/dcRfyvR/V+ALEruLavJWAp9IyjBi+luqyqovxw7TtFDxT6tr946yZtXN2oCcOjBg/m69c1wd96rJSSndsRJWXs3raJVpVVxJWV8+NPP7Lsvfd446mn2LNnD2azmWVLlzNAX8I7eOQItzz8MKvz83nylZp3/JYdPlDj+caiRpsmIUQX4G5gNLAJ2A/YgHQhRDHwb+B1KesgtjY7gjU9/8yQJ//KofI5mIBjuUtprZ/98W830Gq+r7Zg4C+ewcZZXo7B4mtF+9PQPsQd8x+Qjh86QP6Vf0R070rUJ5ptwpf3X0nXCghF4Wutg11l3qvPUHbkIKV7drGn/HeyAFuupnUps8SQl3kNPda/irU8dAPcjT//Tt6ybLISVtN1z2q+/etlJH+60idPQoFnkEzerA1C9hLJTyP6Mmixb96tc1/CtT9FlGgTceZaz6Ae+ZtnK2xpkeetJnFnzdqyiCXa0peoEhwtOUxMtfM75z5HzF//qX144zkAyg0QgdY3q3rcSGlEEqetfJroopr9FR2c+S9a6cfHP/PYiXXcpL3Rd/zFY+ReeHS/2/6s+w/aoLT9f49Rsm8/ZfM/IHuRx7XDocOe+6564h6sr84n9ZMPie7SDYCK4hLard9L4b/m8k32nfSPTKm1rsFIOgxJteTp+Kv28Hnbk7X5eTv5GQ5ig3gbXXv2SKL14/L9Wj+0PqLtNjRYNWuxuB2aIJK4YIn7uqL9e9g58kwAovS0yMJKKqdOwwpY2noszVamVDBuD7Tb6dE+Llv0Auf1ehUAQ4Al1uM2iApxo+mWp++ntS4rxRR4+nfLSzMof3oWTqPmRy0zX7N7Kd79G8Jswd7a8x4pKyvZ++WntBnnWU4sLy7EEhHt/vzrrBmI6GjaX+5ZckrOr3mDRNzna+HztXDV7aE1BqioZYnRWVHuNhGI26I9rAeefgrLC9pySXVbHllZCQYDwuD/vp2w/UhAk4HDN3gE2Y9nTyUDWP/SP0g79xKOLvuBNf+Y6h5/XdiPB3aFkBigiwwbd7B5yBAAlp09DJNeNVHk0bLZDvlrcmvbjNB6nmdJvUx4aaudTpZcex7tLr2WzmPOr7GMlkDh9k2YSyopNdasQ2l1xPOdCMBQGtxdhZCa5hGgorLcbStaduSQe/QoKipi2LBhjBo0iA4pKQAktGrFc/ffX2M9qspKOfDj95Tu20PT7Ef2RdS0nCSEmAPMAr6X1TIKIZKAS4HDUsrXA10fjnRo3V3ePUHXRkjJyG+n1LmM33u0ps+/ZrP6xkkkbws+KO3MaEVqQXCryJjXXuDYVTfX+f51paDbJexOGUrK7iVkbHon5OsWj5qJs1KCs4KR39fD8dj0B3GcdQn5GQ5+T+zD+qzryMp7meSDqwNm/7WjhaSJf6LHJTeybuhpWIvrtnpcaoZN6ZH0XBf8O9l96/mkzFhApUHzxr6x2yXsThkGQETRHgYtn1ane3pTXQAry0kk/ss1QdW5VU/+DeNdjwHw28U5DP/rvyivKGXX0JHuPJYXnuDAPfdQMekiEma9zdLsByi1t8ZWsp/BuQ/Vu66hsn5gLJnLgtuoeVMY4VlG3nXtONrNXuhzPv6z9zl01gSftFCeC2+2J0GnahPn9rNjybnrXT6b9RqHfh/sV9buZEiph5Jgy2A451VNOKq+LOMoyGdXwUqOnX9poEt9iP7wbQrPnQjA0XhB7CHPUFr44E1kT7yVfTu3cHD0OXWqn6Mgn3UOR6OELNl96RBS3vqBMhN0+PRjNnzwOjm3PEx+hoNjCSYG/rD2hJaqDkeC3Qm2arKM0+CJknCiHLxlAkMnP8r6WU8hnp19QmVVGDXfRQC/X5hNm3ma9rOuG2Eak/z8fBwO3++kJIgbGG+k0ISc0kgTtqIT3wEphZFie2ucBhORxXupjDJiOaa9tTiFtrTnNJgpjkqhVZsIyrdvwlAe+n037d2LebLvvJ25oWCFlLL/CVc+BGoTmgZJKU/M9W+Y0RBCU0th8bBncBr9984YqioY8X3wt9WvT38+sF+SE+ivr4dNB4O5/gJYEA62Smd1ryn0Wf0c8Udrt5lwEaxvgHq3s6ABBbDqNMZ3Eg405HPR0M/Y6xNg7J4uGPdsI2lb/WfyhYM7YTdM5rSV0wNqB7c4rHTJb9pwJ+HK3gRIbh6fovXiZBCaGppSazwVFk1nbKiqILLY30t8UURbnEYzRpMg4nDtLmG8aW6hqTaXAy8Ap9WSp+WhC4p9VgU2bq6Nwsh2rOh7OxHF++md92Kdlryakpxl97O5y4XsTeoHwgDSSfK+5XTdUrNxZ+a6V1ifeY12jRBaf8kqsta9Wuc6+E32Rgtfj5jZYJN9Xua1IAyszbqO05feHfJ1OcvuJ7/7ZRyKz9TaCSAl1tLD9Mqrm5F4IAGsOCqlQdsZTtR3udebhnwuGusZ67lS0Hbrltoz1kJM5ZWU2u2szbo+oHZQCUweWpLAFO4cPbCLpvRjXhjV3u/Fzmk0UxituTSILvzVfeyiqlL6nG8JnLK754A6aSa8Wee4CqfRzvHoDmzreBabArsXCpkySwwr+txOmaW6Nc6J8UPOP9ibPMAjFAgDe5Oz+SHnHzVe1+bAKs/uCpcmUjpDWj6pjjnyY817tLscCc5KsvJernNZ3nx9+vN8PWImVZYoEIIqSxRfj5ipTaAhYC0/hq30EOASCrX6GatK62wrlLPsfuIP5vnuSJESa8khBiyvua9DZcDyx8BZ6dePDVV+XShIn8jR2K4UdJtY7zIy173SYM9FQ5bl4mCrdI6kPsuh2G71LsP1jJZGJIEQlEYk1ekZVShOhKrjddvIcKJEFe3GWOlvOyaclUS6YhIGW9lqwF3njU1tQlNnIcSHwf6apIYNjK3sMKaKIoQz9JhLjoJ8HAX52oA3YibFUSmaRC0Eu9sN57fuM1k8LPiulo2dDXRes5LiOc/Q5gd/D7yb087jaGxXNqeF7ocmFAYsfwxRWeYzmYjKstAmWmFAOCtI/e1rra+EJ5TJ0SfvJK9/NMzIp0kAACAASURBVGtuCuz7adWfh7mPb3h6OhhcjoxqF8AOPlR76BmA3qtnYKjWNkNlaY3aw9XdPYrVUjOUW2IwOMuxlewnIr4Qk9VIpTki6PUAC4dZOH7Z2T5pSxyFHgFMrwtAZOdU9kZ7BLCymY/iKMhnX7KRjb2jsX/8Do6CfGI/eY8Sm96O2Z5wJ46CfEqfvZ/1Z3Vld/t9fuWDqLcxeH1YPOwZvh4xk4OJvUEIDrbuzdcjan7216cFHmICCuYG4X4uvJc9Nl7QB4B9HT2G1Lsclfw6KpP9d1+J4437tZFMcMJCPsAHt/UnL+s6TYPZ4/qg+TZn2bG+4a+VPDIldGFyT7+ao8CfCMdqfpTrTOoPHh9SHX5aEjDPpiHtfT97vVBWGr0mxjcaX3Csmv0UhRF1m4x/TzTWngk4bhfYqu2EDTdadai/wF8fhKzCEMCRsJASgz7fRhXt9nd3IJ1aehBKW3uUCWV2X01WxLw3qmdvdGoTmvYD/6rhr8VhKS9k+NK7OaMeNg8X3zsAWyS+UrGUdOgRT86y4Bb/Wf98CavFRr++ZxKX4BlFXJPQ3raDQAj2ts2pdRIKxq+djGwf5fF1sT7DSXTRLuylB931BLCXHgxpoh353a2c8f0dpG+dxxnf30H/1Z4dMIP+cC1//F8ul9zmG2Ijf3gqABffUi30hjCAqCJpz1eaAGb0KI23jkpzH/9+3zUMvii05ZSEIxsRzkqftglnJSU9/QfJ5Wdq9bJaPbuwfrxhEL3WvcyI7//C4NyHuPqx87nhmeEM/fFev+t3dPL8TO54eTUVRt97jJz8uFsAi0m0EXdoPYaqUkqLK7GPHA7AliwrfUZpRtCnf5vHee/k0qmrts02pUsWPZf+gu2Fp3AMGe9Tdt8zJzFh+kekXXcXlopCImKqyFo3m8ii3VgqGu5NsvjBW9zHB6d5voPDXT377JyGwKv5TqOJ2AVvcbiT/16WyFGj3cdHoqqdFAaQFfQ8IwWDSfgI5i629UrgvMfm4CjI5/RFue700fM3cebM9xl+9VTapDlAGDEYDQGF/NpYdXEmJTEmDg1I4+sRM4lefTVV5khNg2mO9NEObbrK80Lwh/d/ofOAEXRf57Eb2dQnmqyLbwCgveUdTclbTQM29I+epdwRr3/MlnO7smO453fgIliIi4K+se7j7b0Tg7Yrphi2DKxZDe5dd4BDib73PPzfxzgepT3/0Qnas7AjzUpkqwT3y6SLbmtWce7sz32uX9/RM8l1/NGzW9QxYBQ8Nw37qx7XHzv+epHnupG+wld18kd5zv+ekeB3fulAQY8hZ9Nz8U/8eq3Hv96e9v4+/1f18jwrPWZ5fGXtqL6lT6f72jUMWLmetMymj3tWFwwGo88TVGn2f57KWnuepUr7iVvgS2HQXs5lhaZ1kk4tDShvZUXIKvw98gs9PTAms+c7k/rO9VKrJPq9/9Ixs3+T25XVJjQVSim/DfbXJDVsJI5VH8ADsOvCbOIWvO3+3Lp9NPboCH3d1rOkExNvw1p+jGOtAk8qRnPgleVgrvkDpe8Z2Z3i6MAXVBjhzIV5yPap7jRbkVaXSnMEkUW7abdbm2i9NSk7/u8S9/H24R5pfkNX/3aUU3sokgtf+gJHQT5Gk4ljrQzs7KcN2JNnjWTyi2MZ8tgEeqTOZfKLIzmix4vseeMDbDwjlV2Tz+GMy+7CYDSS9GHtfohKIrT1clNFEV22zMdUUYTTaGH0Kx/55RUGbVCUSOz/eQ6evI9x/SYFyBf459D1iZd8PlfE+Aa7rHBWuQWwKx4dTN+1L9B534Nc/c+hjL7/30TNfo6z3/2lxvaYIyJIG3l20PO9z7mC6/9zIVc/OZbkAysZuPwfAQW8+tJ+6Dj3cfYfrnUfp933iPs4ddeMgEuEY67rQkpGXw4OHwDAUY9CiL5/uM59bKr2CI387lb6jP+V4RMd3DRzJJNnjfQ57yjIZ/zcwBqN6kyeNZKbZp7hFvJHfhe6v6RJD7/PablrGfLGp4EjaIPWbsBc6r/Lx2A00n7xF5RNuYxz384lJqktjoJ8zn1Of25cdh5CIEwmeo8eTqsP36b4oZswmEyc88RHJJ/n7xA2s6DAfbznDI9ft5GPam/XUS8+w9jXvqD8lsAhlADOfG4++/u0Z09q4M3ZBqORn4d4BsMhSwpoNe9N9+fTMs5gwPJ17okpPXcZZ36Q61PG0cEZFGa0wWTxF0jGnX+n+9hqi+RQVjuOdNRC4TjGXEinwR6BpvSIxytrpys8QvyuVP/xKONiL8F+kL9jxLb9tCDh9phWnHmXRzDr+V/NntPb5+vhCI+wkNijL0eSI9kwohMVAYbzDT2jMJiDbCAJQ6q8QsXQWhN6vdtlMlsxpnVCtE/BUFGzT67adHbl8RHYSw8Qffw3zIa9RJTsJ/r4TiKLtZBJ0mSiIqU1psoSrHYDcW0jMZcXYtKX9MoTPQNHlckzFptMnvkztm0aVSZB69dfJ7XHgFpq1DjUJjRtP5HChRDbhRBrhRCrhBDLvdJvEUJsEEKsE0I8oad1EkKU6HlXCSFe9MrfTy9nsxBihtADCgkh4oUQXwghNun/aw9MpXPs7KH+jb3tPPfx8ZsvZvQ/XqdNRm+fPGUllZhtRlId8cQk2TFajRQfKydj7RoyP/0y4L0SE2t+awqFkS8soN/P/t6uf7vzIpI+1hwjVnp5znbFBhr64710dv6P8z58kzMnWH0mWpfvnGIrnPWSV5iPAP46agtYeSTGd8Ac+NM6xrzpuxSZktWP4Q9oxuRlugBoi4rlvFlfMPqWJ935EtJ7uI83pgfWGPRdvo7Lr4lmRMJXdNz5FcOX3k2/FYG1h0b9TccpJZ1yRuP4w6V0HjwWMcr/GQiExa5NKiX6b7fcpHXulvYCR0E+FSW+Lg4y1uUxdoGnP9sPGR1UIGtMAnmADkZ8kkfgNhiMlCRGUjJhNG0HDqfzily297GTcff1npHTS3BK66HF1Os1SluWKj1jAOk/59Jl0UKSu/ckad4c4t+aze8dtViDO7t4hM69Zt8QOYVn9KXsqgvq2tR60enrL0mbP88n7arHhwDV7KOoYoiuSTYcDGypHNUmlT5T/u6Xbo+2EJ8Sydjrs4hPicQerT1EbdN70+8Sj2DX5yx/Id6b9Bvvch/HdumGoyCf9iPOxGi30Xuyb6iTo4meSd0cE8vwtz/n91SC8qdXcjmeaKDkb9pSZNtMz94fW0ysT15jTAyimp+6Qa/OJ3vBN37lZuSvp8/5Hue3BqORIe9/Sc6iwEGkS6o8zhcdDo8zSkuqZwnzQFdtiO/UYxDxs2cS9dSj/F7q8e/mwhodKOIilOnOPr0DzlaYPVKEEIKcb5dz/oufYQ1gwVEa0xyegeqPS2gqsQlsUbE4BVTFeoTkqPgkLJFR2GLjcVr8xSLvlGORfqc99zFAbEpnT4I+X5SZPR7aDSYrMfHJxHdtQ2xSFGaLEVvZYeylmpNKYTLjjLAijQYiu3t2AXr7NzOYTNiS2pLaZ2CoXdDg1Lh7Tkp5oetYCDEY6OR9jZQyFL//Z0gp3a47hRBnAOcBvaSUZbq/JxdbpJR9ApQxC7gB+An4FBgHfAZMBb6SUj4uhJiqfw5pC5Ut1qPSLYyC6OPQbcCZHLF+QGQZDLg1sA+cq/8ZfKK1R7YKmG6LCfwDTv3tQXa1uw+n0ep+yAyVpeTUwf9O194jaZOmvYUWJmtP9TE7HM1qAzt3s6ODk3FvLQKg7QUXc+RvD3guNmpfZfVIGxU2TVBZf0Yqcev20HZfFQfbR9LlyWlQbfI/Ni6HmIU/EnPDNdSFrJfeYcdH/8ORllFjPlOQ9xthMBCTM4SYnCHkf6T9wHa3D/w4Z4+8ivJPH6Brjq/NWMbMl2v1NXOsQytiXG12KQz0fnPdrVf2WWxhGpWxkfr50JeGArGzpwXr0VJONGCDdxie3R1NpOwI7gvF5DURCgSnLfF42bZGRnPW25qm7Ms3F2EqL6Ljr5+zo8NYqowWDHp7Ow4cSeWS78mIj0cYDBijtcEuIVP7SZdEmYES9neIJnWLJmgaq6lVs2e9VWObinqmYdl+4nZcWzIicKS0g5R2PumRsVbcX3RVBRhNCGF07xIUHTsBG0O+j/d40a1f8EAKwmDAUZAf9HmMjE8i1MXYo21sxB7wnfENNTlzEoIBS9b5JHVZtDCksCc1Iaq9aJmDufjQsZR4XvrMNo9GvO9DM9h55tkUntGXwU++TPnWLdgTkogYomkme8z2t48yR0b7fI5742X2fvMZcTGJFALFCZHY92jPYKUtCvD3Dm4O9HMJwUN6WKHbk0oBZosNc1YPIoGSg6G5IiiNtWE/qvlYiqoh0lN1p6ZVVdrzZq2ASn04NJr9NZHeSCSRnf3tsKo/R81NqGFU3gCeAoYCA/S/+vpEuAl4XEpZBiClrNENrhCiLRAjpfxRd7D5X8DlhvU8wOVY83Wv9KBIAxT36cygKzQbHdOkC0i+9wFK2sbSpfdQeny8iLav/ruWUgJjsgZ+KEwm/8m81C6IjrNhrtBCJ7gM080Vx2vcxp03Zaz7OOnt1+g8wGOMffoQTcVf1NdM5qjLAbAOGxG0rAij9tbkrPYUJJi0t7nWyV2pzNEmvJiep9Fu2BjaDRnlkzd7+my6LPyMrOvqFj6idXpP+ru8dNeAszanGF5U2AIHJ+1yzsV0WbSQ3nc84Hdu/8A27M8OPJn9emUOAz//kZT2mndk61Va/w66aDIHepWRPEXzdWVJSCAjby09fvo59MrWwJh3VzP88w21ZwxAldf4EiU9X2y5JXRBzhjgeXXx5xkjGJKTx5mfz3DbBnpr0UyJiUG1akIXRoRXAOWkNv62PDXR/91P6fVz8Jhw9qcfCXrOm5LE2KDnkjsaaLf7Owb88iRZw9uR1juR7Sn65BMT/LoG4a7ribzmCjq85mtkHJvULsgF/hzo08UvzUTd6m3p2JHo0aNrz9gAHO2vLeP3H+wxoDcYPc9gdMfOdFm0kAEzXscYFYldD7nhYnNvf5umMnwlnjYDhtL7/6YRmZBM4tNPkP3uZ+5zKRb/68HjzPJQLy81XXjN37VitWlaJauhducDFYGEE68kaaxL4wV3TJtG97Fj3S9VFovdL9eN99/PZ999x6r8fB5++PHAJYWZ0BTqlNQfyKzuFTwEJPC5EEIC/5ZSvgSkA8OEENOAUuBOKaVrtkkTQqwEjgF/l1J+D7QDdnqVuVNPA0iWUu4BkFLuqaa1Cog9M4t+b38CaDYTUkqEEHS8QPvB2tp3wNa+Q01F1Jnqk0jnBe9jTGyNiIzk0MNfUFKyiv4TR7J3WwSbfqjZL4wRz+SXUE1FmZqVTcmPi8mITUQYjFSNOBdHjO+AEPH8YxRP0dT5GVnD2M8LWL2MZiujbAx/bi5b7r+bofc8izAa2dXrP4ycFFiTJITA0qlTrX1QVyomnk3Vkp/IueJ29v/tPgB2t4aUGuLxJZymheKIf+Pf7Pj5K6JnzOWY/sJp6Rh4l9Lw1/2XFQCSPp9HRqomLAmLxcfYMCoukWFzfePriRoEjaZkWZaBwXmaUGIwGEC3RTO0bwubtp9w+SaLlR7Xa0F401evpLzoiHtQrI3I41pdbEUeLUhyWu0xGOtCp/EX8f7Lj5CZH1iAdjHq9qeCnht5eUf2vj4XgOxLNU3oQpcjff3NvbRV4yzTOK4NHDvPYLXS9dtvMUTWviXOEt8W8BUsYw55+qPonP5EfrycpiLyjpspXrUy6PmB/1lE8fLlRObkkI82Nhmq/Z6C/X4B2ke2A3w1ZTEVwZ/J1uP/4PPZgKDKJDBW+k5vrhiTnf82jSOTrgxaXjhjS0iisgpsCYEFQ2+C6PTdR5bUDji3aY4orRkZlG7cQEW0BctRfz9jO37byffLl1NeUUFV6zZYAZPd/9ldU1DA32++mdQ2bTht/Difc9JsQlRUghBY09PDRngK1dAiD2hTj/KHSClPA84CJgshhqMJanHAIOAuYK5uo7QH6CCl7Av8BXhLCBFDYNm+TsKbEOIGIcRyIcTy/fv3Vz9X1zaFjOWGP+G0+0v41oxMTImtMdojmPDYeVz+zF/JGNSX0yd1Jy7GEyX9SAALLUMttjH2uGS34bMxxv+H0nG0RxmX4OhN5B/PJ/0NbUZI/zmXrO9+wBSfQPfnX8FgsSCMRlIvu67JbXJ6PfgUfb9cQuIFF9WeWSduuGZUmjxgOKdN1LRA8WeMq+mSoCR0cDSLHVIo7G4d/JndNzqwL9pOE/7c4PUwWm3Y40MfFo7FaRNhmd0zIXaIbfgt9wltUoKe6/jlpzgK8onvEdxnb6BlBFePC4ORtAXz6fmZv+uQxsacnIQxqvYdLCKAxnt/R89Gj/5PNe027Q5/voWMWcEd4wqzmcicHECbKKXRUKdxOXWI5zceeYVmG9bvrODG8dXp0iaL9IVf0OFV31ArrhVNS2xgs4uWgBACc3JySC910ktNbcvIwJaR4Tv76uOhU2hCbURmFgTZUfvE9JncfcMNOLp0Yf2GDZjitMls48aNDB06lJ49ezJ9+nT2HjxIaps2XDN1KktzfQV5e5euWDp1QgihzUVhYoAf6utxIrBeCJELuMVKKWWNjoWklLv1//uEEPOBbDRN0Txda5UrhHACiVLK/a6ypZQrhBBb0LRSOwFvM8ZUwGXUsFcI0VbXMrUFAi716RqulwD69+/fJF60NqbAeX/5G/zlb7Vn9iKn73kcnbcWAPuYM2HuIoqyPXY/xjpspa4NIQQdHnnMU3Z0dA25m5/avji70aP+NcXH0fXbxZhCeMNqadijo2F/4CXcSIv3d+gZ8czRrajN73S3778LOOE2GK4v0OCpl8nU8APh0Gfm8e8/D2TkT752PQeGdMCRWvtyYHTrNkiTk/LTPRsSzFYLUEZyQgdtMgkz2s6Yzp5b76DLZ59ybL2/QCeqbe6IuXgCtqysRqlL12+/ruNrrYeMn32XuJ1darBg12nXIYNdQHFyFI5774d7aw746qLTO2+zc+rd9LvjEYTJhCXVdwnUJTRZI0LYah1m/DP3nxQcKgh6XlZWIqsqMez0aEydRZ4NLYadmn2ms7wMKiqRBkH3Yz34S8wF1XZ3+3/R6zdvZsPW7bz60CMsXbuGdevWMWjQICorK7n88st5/vnnyc7O5uabb6Z7hqbNz9u4kd69fTddCZMppJeEpiZUoenBuhYshIgEDFLKQv14LPAwcBwYCSwWQqQDFuCAEKI1cEhKWSWE6Ax0A7ZKKQ8JIQqFEIOAZcCfgOf023wIXAk8rv//oK71bCwKI+qnwWp70aUcve9RAHr+9SF2bj9I1yc9LrEMIjy1H01BbT0aH+PrWMWcHNzwNhiJU6ZgblsfpWrTMeCNT9k79w0Kn/W3vUuPTAO0JUfHyIlQoO3VsNgj/ISmNX2M9Frl8QNgah3EMU1D4Vrdb2Qtu8lqZ0W7KkZWSx94X2i2igajicw8X5uygbM/ZOvs6fQ6NzyXaVqNHUerAk3j0s05hL34Lj+Kai9b7R5+tNHqYk6uf4gEg80ziXf++CNMbWovKyY1Dee0aUQOC203rAt77950+2xh0PNm3fTOR8PRchxX14gwmULSPhnMFpyVVRitNgJZ51R/rgAenDGDR6dNw9a1Kz2yB5Knx7+bN28eDoeD7OxsALKysrDb7ZRXVFBUUkJ8fDwLFizgk08+Yd++fUyePJmxY8f6ld/c1NhrQgghNYL6ZHLlCXAqGZivq1lNwFtSyoVCCAvwqhAiDygHrpRSSn3p7mEhRCWaIcaNUkrXXtKbgNcAO9quOZcV3+Noy3vXAr8Cfwyp1WGMt1raGBtLx//6qtK7tcmiigVNXa1mpTwlDvsfxiPnv1ljvqT0nid8r9ZTJp9wGY2NOSGB1JtuJ18XmnZ2cJL6qyZMJ0R7zPoybplKwQu60BTpr0UUBjvaO0wT4RaaGt824YztkVBtv9mJ2N5FtutAz/unn1ilmghh87e3kmG61FwT1q5dQ87basKFtWeqI5HZAylbuoyIGO/luZYhNd2dHXocThfewX3tPXr4nS8qPAw7dvn0gKj2BpS7Zg1fLl3K2q2azWdpaSm9dMP9NWvW0K9fP3feFStWMGLECDYXF+PQtZ7nn38+559/PocPH+bOO+9seUIT8I0Q4n3gAymlO5qeLvgMRdPufIMm0PggpdwK9A6QXg5cHiD9feD9QJWQUi4H/L5FKeVBYJT/Fc1PTPUtaQ1Et/Muo2DqND9fKSczvb/W/LrsWPAWgQat+Lv/QumaNWFrg9TYRLfuwuHD24grxMclhLcAbrNrQlOJBX7rk0R67r6gzlUbC5fvMImBLp8v8lkOaGg6FNmpLjS1RKocnTHmb609oxdRUZr9SJXJ6wsODxvaFkWnmbOo2LMnbGxpGpuKxFjMB44GPS9d4U9qeJYenDGD959/nvHXaU5t9+7dS9++fQFISEhwa51WrFjBnDlzuP3221m5ciV9vIQpgEcffZTJk8PzBbY2oWkccA0wRwiRBhwBbIAR+ByYLqUMvv/3FEaEsMWzXuUKQfrPuWGzW6spSd0b+C0v+erg8cFOBXr99RF+vll/DzEEtnmz6pomYxW0bd8dcvfR3toG2NxEtfRgACwdGnaHanWKHR2gQDNxNKW2o3Lnrka9X2OROed9qo4Gd0ESCFNMDLasTBL+7DH+d1YG99GlCIzBbsfaubNPWkrkCUZnD2PsUa2oPHAUaQ5iN6trioPp2r744gvKyss5Y5AnvExycjJFRUUcOnSIK664gvHjx9OnTx+6d+9Oq1atcDgcvPbaawzSr5FSMnXqVM466yxOOy34Zo3mpDbnlqXAC8ALQggzmkF4iZTySFNUriUjG1GoCXeD7cbicAzE1W3+OCWIOM3zlmYQguT776P4xx998pj17b6mKknPe5/h16O3k/7IP9mYM5imwrWKLw2Nr/Yo00MyOIGun34a0B6jJWCw2XzsfEJBCEHa+75K+z1VmvPGjSmcsNPUU5kB193X3FVoNEz2CCoBSxCbNJPBjERz0eDC+5c8ZswYhrb1v/boUY/2Kjc31+/84sWLue222wB47rnn+PLLLzl69CibN2/mxhtDC+DelIQ8s0spK9DcAihCINZYg895Rb04HiGIO9YyJ7/GxtUrAgPxl15C/KWX+px3xcsSNguGiAg6Pe+Jpyciavf90xAIV2DlJrmZ9m9HeyNZFsspvzplP6ZtA+iqRvB6Y8/uj73nidtNhivCaAxoy+TCYrVTBpi9dxOegH1iUVERw4YNY8yYMXTU/XDdeuut3Hpr3RwlNzWn3hpPE9HhtOHNXYWgRPTvT/HypnNu11AkSyuaP1QFQORZYyn6TIsq7xKayqSvU8eUp57C0kGLfdjm4YeIGOAb5LLzp59gjG1kL9c6ycZY4DhtrY28S88L0UI1TA3NkJVaDIyaoqkogtPthyUYwnD7e1NisFiwdOyIweslS56Ai5LIyEh++aXmQObhyKlpOduIdJyjxc7qMDlw8NhwoP3sV+i29IfmrkadSb1B85Yc4bVmfirTYfqzPp7KweX/20PsOWe7w07EXXwx1jRfP0XWzp2bzJdVj6Gao9Jewy9pkvspPJgDBJ9VhI4pIcEd4PxUxhgd7RNb02bRlo5dIVas3btj7d69WerWVNTmcuBMKeWiIOf+KKV8t3Gq1XKJ6NvXbyILNwxWa4scABIuu4K4iy4+JY3ga8OlJA9nP14J11yHuW0qMeec3ej3kq5+UJoVAI7Fmog7pIzBFQ2L0WylEo8XfcMpsNOwthH2UyHEN0KIQNEi6+bqWqFoAAxWq8+bjkLDtexiNzVOTLSGQJhMxP7hnCaNIXWq2zK5KOygLS3tHBm67yOFojaExYIpKQlzI++GDSdqE5rWAG8BPwkhqjuOVOORQhEmuISmU9VXVXVccplSNGlktNe8MPfqObqZa6I4mRBCYE5KwnAK+Q2sbYSVUsqX0RxI/p8Q4j9CCJcVmBqPGonEOyeT+srM5q6GoiUSJpHAmx3PdkIF0PqSKwBoNabxl0YVipOZkIxDpJQbhRA5wKPASiFE6CGkFXWm9XVTmrsKihaGqPZfoaHe7DQi+vcPe1tLhaIlUJvQ5B6DpZSVwFQhxEJgDtB0+4YVCkWNCPfynLL3UihaIt/t/I7j5ccZ33l8c1dFUQO1CU0PVU+QUi4WQvQD/hwgv0KhaAZiMAGVdEzs1NxVCQvcGialelO0ECZ/pcVaU0JTeFOjTZOUckGQ9MNSyscbp0oKhaKuRLTVYmRFxCU1c03Cg+rR1xWKcOeSb6u4fmF1T2stlylTprg9fQfj2muv5ZNPPmHlypVMnTq1iWp2YiiHNwrFSUD7l/5N4ZdfYU5Obu6qhAVKZFK0NCYsPXks8LZt28bixYspLy+nsLCQ6CDxUletWsVDDz1Eamoqffv2beJa1g+1P1mhOAkwt2lD/OWXNXc1FApFE/PRlo/4ZW94hSN54IEH+Pvf/05mZibr1q1zp2/cuJGhQ4fSs2dPpk+fzu+//05qaiqXX345ixcvbr4K1wGlaVIoFCcf+ku7VConxUnOPUvuAWBu9lx32u//+Adl+QUNeh+rI4M299xTa75169aRl5fH66+/zpIlS1i3bh2DBg2isrKSyy+/nOeff57s7GxuvvlmMjIyAFizZg299HBP4Y4SmhQKxcmHEpYUpwjtDkiKwygq1r333ssjjzyCEAKHw0FeXh4A8+bNw+FwkJ2tOVrNysrCbrdTXl5OUVER8fHx5Ofn8+yzz3LgwAFGjRrFTTfd1JxNCYgSmhQKxUlHa2MrAOKqlAWC4uRm+su68fgoqHRWYhCGkDRCjcGyZctYtGgRq1atYvLkyZSWlro1SGvWrKFfv37uvCtWrGDEiBGsX78eh8MBgMPh4MUXX8TpdHL99dc3Sxtqb/Eg0gAADzFJREFUQ40oCoXipCMzvT8ASXE1795RKMKNvAN59b52w6EN/Fb4WwPWpm7cc889fPzxx2zfvp3t27ezevVqt6YpISHBfbxixQrmzJlDnz59WL16Nb1793aX8eGHHzJ06FBGjRrVLG2oDSU0KRSKkw5bmvbmGjM4PAdehSIYkz6ZxJSvpjDtp2n1uv54+fEGrlFofPHFF5SVlfkIO8nJyRQVFXHo0CGuuOIKVq1aRZ8+fXjiiSdo1aoVDofDT2g699xzWbp0KW+++WZzNKNWGnV5TgixHSgEqoBKKWV/Pf0WYApQCXwipfw/Pf1vwLV6/lullIv09HHAs4AReMXlI0oIkQa8DcQDvwBXSCnLG7NNCoUi/LF1Tydt/jys3bo1d1UUCgA+/2klndqlkN6+ZrcglgrJtzu/BeDeQffW6R6tiiQlluYx6BszZgxjxozxSz969Kj7ODc31+/84sWLue2229zH8+bNo6ysjPHjw9PJZ1PYNJ0hpTzg+iCEOAM4D+glpSwTQiTp6ZnARCALSAG+FEKk65fNBMYAO4GfhRAfSinXA/8Epksp3xZCvIgmcM1qgjYpFIowx6bbSSgU4cDYhSNY7+wID6+hqKKIVftWMaTdEL98kz928sLZBpwCiiuKGfjWQM5KO4snhj9RY/nlVeXEFxoBCW0bqRENSFFREcOGDWPMmDFuJ5gjRoxgxIgRzVuxWmgOQ/CbgMellGUAUsp9evp5wNt6+jYhxGYgWz+3WUq5FUAI8TZwnhAiHxgJXKrneR14ECU0KRQKhSIMyTTsIP9gPhd/fDEA317yLVHmKCxGiztPToEkp6CKw5Hw6fBPAfhs22cBhSYpPQ4xj5QdAWtCI7eg4YiMjOSXX8LLv1QoNLZNkwQ+F0KsEELcoKelA8OEEMuEEN8KIQbo6e0Abwu2nXpasPQE4IgeSNg7XaFQKBSKsGHwnMH0TOvAZ5ERboEJ4PR3Tqff//rxZr6//U5cERz57XDQMrcd3Uav/3p8G1VVVQbNq2g4GltoGiKlPA04C5gshBiOpt2KAwYBdwFzhRCCwJ5VZD3S/RBC3CCEWC6EWL5///56NEOhUCgUivpRWF4IwP8lJQJgK5M4fvVMV4/nekK5HoryXPfy5meZ+1gld8z3j0n3+fYvfT5bKzzH3hooRcPSqEKTlHK3/n8fMB9tuW0nME9q5AJOIFFPb+91eSqwu4b0A0ArIYSpWnqgerwkpewvpezfunXrhmqeQqFQKBQ1UlFV4Zf236ereOjNKuKP+Qs38V6b39roiqacAv983274yudzdKnneP3B9fWrrKJWGk1oEkJECiGiXcfAWCAPWIBmi4Ru6G1BE4A+BCYKIaz6rrhuQC7wM9BNCJEmhLCgGYt/KDVR+hvgIv2WVwIfNFZ7FAqFQqGoKzd8cSOtj0jiCiUpByVzH/Mso704s4q5j1X6aJ1CZcvhPAZsdDZkVRUh0JiG4MnAfG3lDRPwlpRyoS74vCqEyAPKgSt1AWidEGIusB7NFcFkKWUVgBBiCrAIzeXAq1JKVwTAu4G3hRCPAiuB2Y3YHoVCoVAo6sSGA+uZPct/ec2b+z4qR5vefHn8teDXDSqQ3PhZYKGpbaWyb2osGk1o0ne79Q6QXg5cHuSaaYCfRy8p5afAp0HukV09XaFQKBSKcGDQobbAkRrzmI75C0y1Ya8Irp2KLqpzcYoQUR7BFQqFQqFoJB5Y9UOjlHvll8GFpsqSugthDcX8+fMRQlBQUABoDivPOeecZqtPQ6OEJoVCoVAoGondS+P90to9/a+g+e19+zZmdXwoOlrG/H+toOhoWYOVOWfOHIYOHcrbb7/dYGWGE0poUigUCoWikYka7YnJFjN+PGnz57k/d/txqfu405y3POk/LAHA0rlzne4Vavig5Z9sY/fmoyz/ZFudyg/G8ePH+eGHH5g9e7aP0HTs2DEuuOACMjMzufHGG3E6nVRVVXHVVVfRo0cPevbsyfTp0xukDo1Nc3gEVygUCoXilKDzZ5+y49LLSH36aQp6ecx8bQ4HsRMupOiHpZji4nyuSfvwA4yxsZgSEki+5x6iR430K7fD66/z65VX+qU7o+0YrNYa6/TilMVUVXqMyPO+203ed7sxmgzc+PyIOrbQw4IFCxg3bhzp6enEx8e7PX7n5uayfv16OnbsyLhx45g3bx5paWns2rWLvLw8AI4cqdnuK1xQmiaFQqFQKBoJa1oa6T8uRVgsOArycRTku8+lTJtGt8XfAJD6/HN0/vgjAGzp6ZiTtcC+8X+6AnM7/2AXkQOD7IEy1q4LuWJaDt0GJGMyayKAyWwgPTuZK6bl1Klt1ZkzZw4TJ04EYOLEicyZMweA7OxsOnfujNFoZNKkSSxZsoTOnTuzdetWbrnlFhYuXEhMTMwJ3bupUJomhUKhUCiamejRo+t8TXlGCpYCX5/O0mKu9brIWCsWm5HKSidGs4HKSicWm5HI2Jo1VDVx8OBBvv76a/Ly8hBCUFVVhRCC8ePHo7seciOEIC4ujtWrV7No0SJmzpzJ3LlzefXVV+t9/6ZCaZoUCoVCoWiBRLZLAsA0oCtSl0uMVltI15YUltNjeDsuursfPYa3o/hY+QnV5b333uNPf/oTO3bsYPv27fz222+kpaWxZMkScnNz2bZtG06nk3feeYehQ4dy4MABnE4nEyZM4JFHHmkxwXuVpkmhUCgUihZIbLeBHPhqFa2yx1Cip5lEaLqQs270BPs9fVL3E67LnDlzmDp1qk/ahAkTmDVrFjk5OUydOpW1a9cyfPhwLrjgAtauXcvVV1+N06nZVj322GMnXIemQAlNCoVCoVC0QMzttbCspuQ2YNR8MxktoWmaGprFixf7pd16663ceuutAfP37t27xWiXvFFCk0KhUCgULZDYCy/EmJBA1Omns/O775q7OqcESmhSKBQKhaIFIoQgesQI7dhm1/6b1LTemKjeVSgUCoWihWOMjsKWnq6EpkZG7Z5TKBQKhaKlI4TbrulkRcrg8faaCiU0KRQKhULRwrHZbBw8eDAsBIvGQErJwYMHsdmax9DdhdLjKRQKhULRwklNTWXnzp3s37+/uavSaNhsNlJTU5u1DuJklUqDIYQoBDY0dz1OIhKBA81diZMA1Y8Nj+rThkH1Y8Oi+rPh6S6ljG6KG52KmqYNUsr+zV2JkwUhxHLVnyeO6seGR/Vpw6D6sWFR/dnwCCGWN9W9lE2TQqFQKBQKRQgooUmhUCgUCoUiBE5Foeml5q7ASYbqz4ZB9WPDo/q0YVD92LCo/mx4mqxPTzlDcIVCoVAoFIr6cCpqmhQKhUKhUCjqTNgLTUKI9kKIb4QQ+UKIdUKI2/T0eCHEF0KITfr/OD09QwjxoxCiTAhxZ7Wy7tDLyBNCzBFCBPSSJYS4Ui93kxDiSq/0hUKI1XoZLwohWpz71XDqT6/zHwoh8hqjvY1FOPWjEGKxEGKDEGKV/pfUmG1vLMKsTy1CiJeEEBuFEAVCiAmN2faGJFz6UQgR7fVMrhJCHBBCPNPY7W9owqU/9fRJQoi1Qog1QpuPEhuz7Y1FmPXpJXp/rhNCPFFr5aWUYf0HtAVO04+jgY1AJvAEMFVPnwr8Uz9OAgYA04A7vcppB2wD7PrnucBVAe4XD2zV/8fpx3H6uRj9vwDeByY2d/+05P7Uz18IvAXkNXfftNR+BBYD/Zu7T06yPn0IeFQ/NgCJzd0/LbEfq+VbAQxv7v5pqf2J5iJon+tZ1O//YHP3Twvv0wTgV6C1nu91YFRNdQ97TZOUco+U8hf9uBDIR+uo89AaiP7/fD3PPinlz0BFgOJMgF0IYQIigN0B8pwJfCGlPCSlPAx8AYzTyz7mVY4FaHEGYeHUn0KIKOAvwKMN1LwmI5z68WQhzPr0GuAx/T5OKWWLcUYYZv0IgBCiG9rE9/0JNq/JCaP+FPpfpBBCADFBrg97wqhPOwMbpZQuN+pfAjVqlcNeaPJGCNEJ6AssA5KllHtA+wLQfpBBkVLuAp5Ckyr3AEellJ8HyNoO+M3r8049zVWHRWjSfiHwXj2bEhaEQX8+AvwLKK53I8KAMOhHgP/oSyD36QNqi6Y5+1QI0Ur//IgQ4hchxLtCiOQTaE6zESbPJsAk4B2pv863VJqzP6WUFcBNwFo0wSATmH0CzQkLmvkZ3QxkCCE66ULX+UD7mu7ZYoQmXSvxPnC7l8anLtfHoUmxaUAKmrR+eaCsAdLcP3Qp5ZloqkUrMLKu9QgXmrs/hRB9gK5Syvl1vXc40dz9qP+/TErZExim/11R13qEE2HQpyYgFfhBSnka8CPawNyiCIN+9GYiMKeudQgnmrs/hRBmNKGpr379GuBvda1HONHcfaprnW4C3kHTgm4HKmu6Z4sQmvSH5X3gTSnlPD15rxCirX6+LZr2pyZGA9uklPt1iX0eMFgIMdDLUPFcNAnUW9JMpZq6T0pZCnyI9mW1OMKkP3OAfkKI7cASIF0IsbhhWtg0hEk/ut62XGrut4Dshmlh0xMmfXoQTfvpEujfBU5rgOY1GWHSj6669AZMUsoVDdK4ZiBM+rMPgJRyi66xmwsMbqAmNjlh0qdIKT+SUg6UUuagxaXdVNMNw15o0pcaZgP5UsqnvU59CLgs4K8EPqilqF+BQUKICL3MUXqZy6SUffS/D4FFwFghRJwuxY4FFgkhory+TBMwHihoqHY2FeHSn1LKWVLKFCllJ2Ao2rryiIZqZ2MTLv0ohDAJfQeNPgidA7SonYguwqVP9QnpI2CEXt4oYH0DNLFJCJd+9CpnEi1YyxRG/bkLyBRCtNbLG4NmC9TiCKM+Rei7jfX0m4FXaryjDANL+pr+0CZUiaaKXKX/jUezev8KTSr8CojX87dBkyqPAUf0Y9eut4fQBJ084A3AGuSe16CtdW4GrtbTkoGf9XqsA55De3tq9j5qif1Z7XwnWt7uubDoRyASbVeS67l8FjA2d/+05D7V0zsC3+l1+Qro0Nz90xL7UT+3Fcho7n45GfoTuBFNUFqDJtgnNHf/nAR9OgftpWg9IeyIVx7BFQqFQqFQKEIg7JfnFAqFQqFQKMIBJTQpFAqFQqFQhIASmhQKhUKhUChCQAlNCoVCoVAoFCGghCaFQqFQKBSKEFBCk0KhUCgUCkUIKKFJoVAoFAqFIgSU0KRQKBQKhUIRAv8PMa/XBTWAzWoAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for BRW\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'BRW'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Stennis (BSL) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1.027e+00 1.268e-02 0.000e+00 0.000e+00]\n", + " [-1.268e-02 1.027e+00 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 9.470e+01]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.006e+00 2.007e-02 0.000e+00 4.933e+02]\n", + " [-2.007e-02 1.006e+00 0.000e+00 1.682e+02]\n", + " [ 0.000e+00 0.000e+00 8.865e-01 4.722e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.683e-01 1.253e-02 4.848e-02 -6.055e+02]\n", + " [-6.530e-03 9.683e-01 -3.909e-02 1.440e+03]\n", + " [-4.063e-03 -3.342e-02 9.683e-01 1.474e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.938e-01 1.807e-02 4.521e-02 -1.063e+03]\n", + " [ 1.660e-02 1.032e+00 -5.847e-02 1.702e+03]\n", + " [ 1.286e-02 -9.395e-03 8.882e-01 4.348e+03]\n", + " [ 0.000e+00 -0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4FNXegN+zu+mNdELooST03ruFIthFsGBBBRXLtVysWLErqHD12jt+NtQLIkpH6b0llNATEtJ7stnd8/0xm+xutqeQgPM+Dw+bmTMzZ2dnzvmdXxVSSlRUVFRUVFRUVFyjaewOqKioqKioqKicD6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB6hCk4qKioqKioqKB+gauwPnmqioKNm2bdvG7oaKioqKiopKPbB9+/ZsKWX0ubjWP05oatu2Ldu2bWvsbqioqKioqKjUA0KIE+fqWqp5TkVFRUVFRUXFA1ShSUVF5YLi193pfLvlZGN3Q0VF5QLkH2eeU1FRubDp+OpFBBnK4Lvjjd0VFRWVCwxVaFJRUbmw2AElBDR2L1RUVC5AVPOcioqKioqKiooHqEKTioqZpY8/yZbevRq7GyoqKioqTRRVaFJRMdN+8U+ElFU0djdUVFSaAKfzStmXVtDY3VBpYqhCk4qKisoFjj4nl7RF3zd2N84r1jw8meIHRzZ2N1SaGKrQpKJSA4O+srG7cMFyMqeUCY8v5Pe96Y3dlX8Uf910JYXPzeH4jq2N3ZXzhr4bUgnbq2qeVWxRhSYVlRpUVJQ2dhdcUpCVy9ZvfmnsbtSKX/59B28uXkDQ7EmN3ZV/FKIwC4C0kzsauSf/bD5cncKeU7mN3Q2VOqAKTfVI1qkiPnxwLVmnixq7Kyp1oLKJC007r7yI4OcfY/NH/23srnhN+7RdAEQdbdr3+EJDOvikcu6Z+NloTrxxXWN3Q6UOqEJTPfLnh3vQlxtZ8fH+xu6KSi0wCeX/ivKmPaHn+ZcD8NexxY3cE++p0Ilzdq3/zryXovLamVoLa3lcXSksr6TSaHLb7kx+Cc/951MKyiz9LNMbKa4wOGxffddF0xSaCssr2Xw0p17Ok1+qr4ce1T9SSvI3N6PD8nSyiyv4dbdqoj4fUYWmemDhzFUsnLmKvLOK/Tv3TGn1NpXzB6P5bagsa9pCU6mfMgWWnEMBpL6QPueuzyPWrGLrF296fdx/lm6h7J4Evvk7pV77k1+q53Cmay30DzOuYcGrb7g91875jzD5ndfY9s2C6m2f3TuV7++43PWBTVNm4vOFr9Py7X4UltTt3ftt1iT+uvcSj9ufzCll6Z4zdbqmp2xLzaj+vOSdR7n0k+4UFKpWifMNVWiqByY/2R+/QEBaRqSQSH8mP9W/8Tql4jUm89tQUV7cKNfPK9GTnl/mtp3GLHe00kU1cI/qH6lruCHn7yPZGE22UkFB3jGvzzP69ankbgii45vX11fXAPh+zp0YnnQ9JgzefJhxX3zq9lxlKdsAyN29vHrbqPV7GbTV8feV5memqYrZ/f78jMLl/pRknGDevJdYt21Xrc7T868TJGw863Df4r93syn5hM22Nc9PoedbfWt1LW/xO7Wp+nOv35ZxbHkMvzx60zm5dn1QWlHJr1sP19v5TCaJlE1UineBKjTVAz++up2KUkBYhqSinHJ+fGV743VKxWuqzHP6kvoTmn79YTH/uft2j9qeGNKLgkF93LYLkMprG+0bWKe+NQY+xZ5P2wajia82pHpkrtr05x9ETBzO/+a/aLNdmoxe95EMXwBEqndmnoyCcjYcyXa6f9iSLfCXIC3Hce6fnGLPI7UMZi2j0eCtGbH+Jqn7/vMzH/xrKhlWgv6iL75l4QsveH0ubaYWgDMZpxn33y9p80r9Bwr0+XA87RfYCq19VhyiaFMY0uT+GasrZ9MsRaT9spUKZv3XHqrVufJL9cx58n4+X7K6XvrmCcvnP0bbp8ayZ3v9RGD+eP8kPv/kk3o517lEFZrqBWcD0fknRTcW+7cnY3IwcEmTiY1PP0zh6YavWh9gniMzHv53vZ2z9QuPM3r1RowG95O3X4Vnz0uVcJeR37TNiFVIKfn9jtvY8ecqNHrHPjeO+P2/b9H39on8/u7Ldvv+d9kQPr/pquq/S3+4FwDfdV/UvHjtOg0EeRltXvJkB4KedK+1yPz9M4fb9y+8u/qz9QpcbzChN9i+G1JrHrqNJjIKyvltr2cmJo3V7fh5wfMs+/kHj45zxD3vPM7wZbtI+X1R9bZeLz3HmK+/8f5k5n7lpO4GoHRfcK375YzSTWHkrIy02aY1Ki+Tvty9hreuBBU5vsZdL73HrU+86HCfM3bOGszklcu4bNUUl+1MJsnBjPoxAQavXI7PCT8y1n9X95OZTHRbkUq3z1+p+7nOMarQVA/cPHcIvoF6mwE6LCaAm+cOacRenT+s/fAtNDdezbLnH7Tbt2XJIpp9/xsbpl9te8xtk9kytHbmz6KsHAozspzub55TTv5Z5/u9wa9CGZQP7/zL42MMbgSsqqfsbEHDD/TOOLBiNWnJnvn86PV62vy1iYD77qU8NtzjaxTtUNIqlO5aarevQ2oeA7ZZrm8yKRKvrKHIktJ7TVNhlHJMpa93x+lXhOC7O5CcAoswu//4Gd5/8gYOnbaYjI788afD48v376n+bC3rldzdnNJ7mtu0rf6e0sT/PX4TkU+PqN63cvkKF720CF+dFywi9MWnXbR1THml7T09nuxe22EySaeatK1/byBEiW3g1NEj1dtLvRCw60pJoXMn9OPHT9XLNUyljjXYM1e+yUPLvvTqXM03lKLN15H1W4TLdku/+Qjtg13Yf+CAV+d3RIU5iKDcVF7nc1WWFwIQdFZX53Oda1ShqR4ICvOrHsWESVGXl51Oo+DgPy+R3NInH+HXe27z6pjMbb8BUHz4b7t9+WcV9bXQ22pVYjbuJSSndma008OHkTZqhMs2xw9u8Pq8pQVFGJ0kxjz18zs2f5sqK9ndvStr37Q3ZeRnpbm8TtV8apINb1Jwhph1D4VXXeW+IVBaZMlL022HZXJa8ebzLo+LzsgDIKCskk+//Ik331c0Go78IKT5/aspNGGSpO9NJvuo55rKjFbKQJ4yJNpt25zCEvYcs9XyHD16iPvuv5c3Zk7kzHO3MPLHnaR+8Gj1/u6bU9l5PJt3lu8FoKTCQKXRRInGr7pNWb5FyMpYH8mZdbYaEpP5KRASLl21n9AUy+QT9cgsp/0VNe5PhJev0M6Uo6y7fiC/rNxYva3XT9vcHvf95x+y/84+ZObk2e0Lnj69+vPgb9dWf157z8Ve+bwUlHpuqvzww4/5fdW66r+LC5znTkq9Z4LH53XE6wsX8tZ771Hpq3W4PyDNB58yDW898TDvzH3O5bne/+YHVj7ueuyyxve7hVTuCiZt6Xsu2/29O5nHX3/bo/tdH25IpWX5dT9JI6EKTWZ2f/VfkhOTOLTsx+ptBSePsf7fdyON7lerPgVHiU9fR7/trxPTtpTQgpMUTLuzIbvc6JScOIo+13awaf/jUjqu2mSz7ejS78jctdnpeTr/rQgJPbaX8se140hOTKI4O4/VI/rQ4i1FFdwQkdK7enZzuk/WwmX2xMABLL/a8YBm3GbrgHpk92Z8K03EfGhvykjdsw59ZiYABSXlfH7DKDb8bRHiqgQD3/LarfgK00+z9rl/nzMnzLKiQofb4z9c5HD70bQcsvNLiEpTJsHmx4ro9dqTTJj/PPn5xWzebj9JFwtlKMuv8LHZXppzmoLrriZrwliP+1uuDQJA6N0/A1seG4vxkcE22w4cOsI9f6zisjWpxG9UtBRtv9ti0yb2sZ5c8sBkjJUV7Ls5kfW39cLQrm31/sX3XePyuumUKB8EVPiGsr3Xg1T4hgLgW2nfb4tmyu1XqiY55QjfvvWazXNy5I2ZtDpQgu/Ld1Vv86vEzgG/itwSPXqDicCv5xG908Th1V95fP22f2Xy5+fve9z+p4c984Paf/AQw958gzb3zKjelnLytNP2kafqpvG6+M83GP3HaxgMrt/X8T/9xiVffktBaSV5JY796Xp//hgtFnuuBW99SNHu5Zw+7tI3sNnccUz7+H2+/+Jzp23qM9dXaalz37+mjio0mdm/5CMAtvxieUn/nnEdUb+uYcMPH7g9fuCGd+h8+DtCStKIit1Oj/0fNlhfPeHYwSMk72nYfFEnx15G6pChbttVPPwMuVNuBSA3r4DN6zba7D/V2mIHabVPES5Wffw0zc+WoXOjTElOTKIgp3YZdv0qLMKwIdv2JfZWaKqsVCb4dkcsKyijlVDT5oQyyUkp2fbJQg6ssvgFrJlgK2iFPjCX1JGjlH1fP8+AHZmEW63GNeZ7MmmjfaSUrHS82pYmE7/deyPph/aTNuYSYhb9j80/20dp7evShb/Hj3LxTaGyuMTpPiml3eBcWmyvXajJN4v/ZOHXvwJQcdEwsgb140iXMABCCgX+5q91ZlB/wm6aVn1cxhllAhFmNX/fVNsBvfnJPBuBwhWlegNleiNBOcpE022DbRSWIyGz7aoc/PcH2PgcDXjGscnrWJzlmSrYpfQnffcaQvf4ELelkm6LLNm6+27PwWQ08tW0S23O8cZ//4+DJ87Q3BgAgEnCsTbjKQhL4Fib8fbfqbSCzas32m33hJMPXknPDz4l82hy9bY0k3K/y6WtILFozn0Oz5F6UQ9+vPtKQs0aLaOX2lHTN+963HbQ6hPuGwGnv7T3H9KXOBbswbVQ6An+Kf74J/tjqvTMSW7TvQPYebcSELLzyGnO5hdVa9FCT/i4OtQpbbYc5puFzv2HNHuUoJLO8+39B6upFryt/O0qjSz/4mO3LgU1KSnK9Kp9U0IVmoANd1xL713KWx18ymqgNCgmofyzqfz1wE3kHLEXQkpzs0hOTLLZpsexGvZcUn7FJJh8bYOdv+xshvtGwPb/fW3z94HLhhB61+3sWm/xg/DzC7I7ruOnKz3uy2/zHva4rSOt4fEdGzg8bHiNhp4N7m89eAULbh1KSZll0E1OTGLT+DEsn2/rUH7o7w1sGTmQoNcW0PkTi19L7NEsklcupyYbLxmBcfV6Sz//WMWPr24mMt/+fgH8b94cUrr3YMfKJdXbTu7cSnlxMeu/f592K3dwdJoljL4g5wTJa36nJD8XaTSybv5ctCZJxDHXA9rOFc4Lv6788Qs2X9ORY8csfiAVZc4npLV//MnPN11K7Gv3M+aF2Tb7TB5Evm2+fyy/znuWzgcdv3OFxmspCOtAarsrWH9xEu8+PN2uzYoPXiM5MYkTPbqz56YODgMSAJbNGsru29tV/52ZZYmCy8v0wPznoIuH33EeaVZSWEDfLZb7mJuZzmXznsU0dgy+Rg1rhs8nV/sM6fEjQGhIjx/BqlELWTN8fvUxv8+4lNC7byesyhfYC6Gl9XHl/h/+/SMMRhPFFQZ0ocqzl1jDgtxh+Uo+/+r/qv/WVxr47eo+BOcLeq0/TIx5LaHTeDc2tjkp+fXTD/ju1ovQV9YiEtLM0YOWsbv1D/ZuE9GlR8kt0VcLxu9/aasRO/RoD9LSHJvN80sq+OHFh8jMzmF/eoFTActo8Cwas/XGcuK2mP3qbrqI03d3o+yRlhw66TgZZlWfv3jxUb5+9zUAFr3/OivXWsyP4XmC9j/YapEKyyvZdcrWTOZbpiE51UnaCgfb9l3XgdYvvcHy1x7w6LsB/PvJR1jy3TvuGzZRVKEJCP/LShgKK2HTv+/i5MaVtDulPCalyQeIXL6dsxOvxVRZidTr2fTqoxz5ayl/fWv/4xeuWuP0WtJoRBoMmCoq2PXqU2wbdm5zOZUX5PL3pJFsfGQ6JidaCWuO/P49O8aPBsBUVoaxuJg9bz3L8RGjq9tIvf1gUFmhOCkfW/qf6m0Hf/6CyFxl0D7z0kMArH95Ni2T3WsiWmVIfvvIcaJC7dnjbo+vYvWNl9n8LfV6ym6wn0hzjyazY9FCTu/ZZLfPmvG/H+KiTbkU1dCmGPJCOHZ0ErlhHau3GadPJ/Ssk0iWe+2d4JudyiJpp0UDtvm97WQcLSYz1rHpJnCxYloumPs0f/33NX66fBglU6dxrF9/zu5UfEUi8y0TT0VJEcz8F6unXML/5s4i+n33ppOjyfsJeexVp/uNX71IZIovqW9bBPYKFykcYu6/n87bTtHCfPtKrdp23+k+OrDT3jI6/vf/7LavGT6fVaMWkhE3CIQgI24QezosRFc42aadlJL4tywat9A9/vgJx86p7Vbm4bvBn50rV5GXnUPu8EHV+47+sNBtX9udtp924rY4d0DefoWtBvL4+DHVn7VGyeDNc4jN3ApVwqXJSGzmFgZvnlPdLviUohkKMis93elPSwoqWPzmdkoKLFqRvGMHWXxDD0706k6wdOwdH1YEA158tvrvZXeNo90B+0AFEdrM9npl7k3MHV+dR/dN6exeuxiDAxPTxoevYvUtwx0cCWfzi9iRms6Zh10n/cxd/D2ZfXuy98XJnE5PZ+TcubYNlhrYM0vxbTqcWcSXz7zEwhl/cvJADttv7EXXr5ax84FRFPyrF4vee4WzeUW8+MCdZOZbtLImD4WmKr7+cyMh+RoCdgaStyqC3GfGOGy394a2LHv/Rfp/tYQ+Cz9l15b19Jr/CS1mzLBpF3VWw/bDp/j0qckUluk5+lwfWr7Zgfxi29+p+FHH16nGLKSl7N1FQIo/AAXH97H7lHs/pdTTGdz241LGfmtZZHy0yP79bcqcf67rDUzoaX/Cdqyn5FfLCr/bKovkfaBHD7QSwoDKT5fQysE5EnY7d+Td17M7OoOkMCqI0OwS/IDcoylEtE+svy9hRfJvi0iaMLX671XvP0e7w2fh8FnWtHmOMfe5DnWtfHAOAcCOAb0RFXr8K0zUVBCn9OhJ+ohEQo9lURUonFtwlpioVnRdYzGdmR6zqH7bHisn+dsPiPr8V4+/S7s3PoI77LVKWg8GXoCdP35C3C5bFf6OgX1wlO3IYKok4LkFFAGkJDtoYUtZse2Asa/LdBAa9na9g5EbZjs5yjPWDJ+PSWu569mx/VgV2w+NsRJrHWeLs8qE0jy9HOZ9irXrsKnYfkCrLFcEuLj0UrLX2jvh12T9wheJevdrl22q3GlEiUUTWVFaSIDbsyusmHE1Hd03c4unSUC+v6k/3Wtsa33ctRnF/957qalnbfbeEodtnVEUFM+O3g/SZ+c8QkocaxBiz9pqVgJKLSKPMJnYOHCuzXOBRktm7ACyonpz5LUnCOoy1M7xG2DFvDnE/9deW/jrU3dRETKNs8f0rP46hYSqHQWFdNut9CWg3DMzVaeNjsfAs19/hH7UFL66/3qCOvZCnNphd/+dETzraba1epwjl07lpkefp6KsnPzsXJotdRzFuXnHLiI+GE/AmmYE4DoUMvaQsoD0+XofJ8New1GMZ7NTevZuWIv+/rso6fE6+Gj47b2djDRfvs12A+BPz32fs/zQBq5ZfoT9h/sSZxZVczPSae/hdwXoc59tfrewjY5FXp+dgbTY9xVVInHJc7fhZzdKKyR90gPDxihKH2qF3+oIsoimYOyvhFm1CT7g76ZnyjOw/Yc3qcoqF3P2NC3fTkC+nk3y/gPs+fhpJr38LRsfH8XprlO59Q7FfJt9wwhCa6hcx265D6bWbyLZhkTVNNUg7qxrFbDWgzEjwGpBYazUk5ehTNR/3TQJnUE5QWi2ZQWSOeEqVlw22M7M5wiTycTW/1uAsdL5qsVo7XPy0PMcXGsRTMrSLBld4xb+SKXeM4EjoLAc/wrnqv0W61IIPmVZNe/94WNSunR1fdJn53l0bXf4lHrmqOn/5Ot22wLLHP/e0ksfhnKzULJq5AJWjVqI0TcYhMDoG8yqUQtZNXKBmzM4x6RxvLYxaXT8cfM4tvfuhjSZyAlxfg7fU/ZZkqvKxmglFIfaXiMv/QzJiUl8NOWqavW/K4Hpy6dfZOHdqyjXdQKgxfpA1ozqQ2F2JnleJLDruK1+wruHbJ5DQOlZi/+FlASUZjJk8xxKiotZdOvFpJ0+Tvftzv2zAFYN60VyYhLbenWpl35VsT/pVozaAPYneRdpWkWXvSUM3jwHv/JcMJmff5MBv/JcBm+eQ9dPFtP2kUdoc8b2OT6zexvRH9sLTP+5ZyWnsqdw9pgyrpzYk1Nt6uu43qLt7LHWM7O8MzpvyuTLGRczePUBenzwDd2XeVeqJuyUjr4ff8/Z44fZeEVfci+5yGnb0BumYljTzOl+G7QWgSRL58RvSMK6Lwxs6vee5f2u1Ni93zqjwHQsFYC4o5bz9lvl2OxVFBTP2mGvUxTUwrO+OsDa+T8i1bnf04nFzQnN0JG32pKqwPj+E55dxHwJg9nFoc//WQIy4lN8OLskhpKSYrIevIqey5JZ/fGzxC/Lo+XnFmtD6Fl782zxski7bU2Zf5zQJKWJRdf1I3W/9yHlteFQ955kjFIiwiK3HXHY5mQ0xKe6V23mnzjC2vmPEfzMQv58ybHj5e5l33CoXz+bbaYZs0lZ+wvJiUl0WnXcZt+KZe5LNtSG+Hec+73Uhe297AWxuOPu8xUV5XjneKg95Vi7lLL2F07u24g0Gvnzfsvq6MQLivNvz93voDFU2EzWGkM5vXa97dX1rem/7WW0hjKbc2oNZfTf9hKttp4gsMzIkmuGEekih13ngw6EY7N/i8YEJn9bwTNjjKKiH7orhT8v6U9hlvPkiQWFRZSk9wSTJDt0ZvX22Iwy0oaNot3++sl55Q1++kKkWc0ijIoWQQoNfvpCfn7hFnptSmP7XW7qtAFx2YrWKchDDYs7qoTq0uAWIASlwS1qLVT76QuJzNkHQoPGqAehITJnH3565z5knf5vK74O1hjOXJ2cCeyeUDOqr4ohG+ruBJx2xeXEnnS+iDux27nze06zTqwa8Y6N6Tyg1HKuTu841hoKID7tXY/e7wGHPH9e6ipA15WIg/ZauEqDgd379rB+63ZKypR3wE+v3KPALevt2lex9q37iDmtCEa+SxV3gXjz62+qgzN9U6LBhCYhRCshxGohRLIQYr8Q4gHz9heEEHuEELuEEH8IIVqYt4cLIRab920RQnSzOtc4IcRBIcQRIcRjVtvbCSE2CyEOCyH+TwjhNh1dQU4GvfaWoL/G3o+lscjvbitpr5g2nrXvPMEfL93LiomDOLLlT5ITkzgzdhLNP/gfAAWHdjs8V9FzLzncLmcot61K01VF6tolmEwmtnzzNsmJSZy1Sg2w+L76KWWQG1Z/L0tguYkjW22dxCs9CCj5/Z4rvbpOyFLb+yulxFRSgpzxGCXX3k5K1260/MOSjLBDsiL0RuYfQlSt/M0DqzAZiCiofc2mkJI0i1nJfE4JNmadDh74hdlhHsR8jNBtp3P/tlanS0gb7tjPYeHMVXz1760YfYKUlbdPUJ01a55woJP76Mbg4jSaZ2wiqCSd5hmbCC5WTEZ9flES/XU86m0JkrrTf9vL+JXl2Ey6/mXZ9N/m+L11h943lPj09fTd8Qbx6evRexAlWJN1Q7vR8vgCRWNl1S9MBqfC/vJrYtye90i7KygI68CRdu6FU2/xdxOIlvW680zZ1qZzb/CphMjclHp7v+tTgK5vlj04GnnDnZx4cxs/P6T4J7Y2W1zbusiT2f4by/zR6qhFvNj+6jUcm1l7TVpToiE1TQbgYSllEjAIuFcI0QV4XUrZQ0rZC1gCVHktPgHsklL2AKYBbwMIIbTAQmA80AWYaj4PwKvAPCllRyAPcCsJmQyWZdbvz93pkUmsoZHSMuuXFOQQv+U4Mf9ZTKsvVhF/pIC9r9qHMIen2TvXLnviNhtHX0+46LejHOzSlZDnlVQLOVNuJev0YZa/fC+JfzrWjHmDQQO54bULk3VG5c22yfvC841s+u5d9qz8jvWfOp58uu32Lplas2KLoLfk8ZtJSerCwb79XBxhwaT1QVdZQkLqYnSVJZi0Fln+SEs4E+1YiNw/XE/KvaPY4yA2QGesIKgkna77PyaoJB2d0csaH476WZu6bHY4MY3K+svmnG/ldLZroPkPHz8q3ChBeuz/EI2pkuKQVmhMlY2eBgRga/9HqQiItGSZFILygCi296ld6Z4e+z+sTnXS+fB3tfqO0TlGOh1PsTh8VQtOOBUGRo20pH3Y1s9WUKtyws80O+Fnxg22i+qrDY40RM4I2mbvqbiyjqbzQD1E5QiX77c31LcAXZ90XJFdncpC5tiXBvI2x1vgpwfQr/PQVOoh5eXlHDq4r17P6QkN5ggupTwDnDF/LhJCJAPxUkprOTUIy6vaBXjZ3D5FCNFWCBELtAeOSCmPAgghvgWuMJ9vDHCD+fjPgWcB16lPrXJltFnkeWkLbzjSxocOJzxfxfZcbfETODlwmN3+xP32BT5bZVgmvN0bfkGr86HtT64jvTxl651TaHesfuqa6UzQ4bjrCTQnFCLNFoWDA/V03uz9IBQ2R7GbRwFrTEZGTbcVNNOjNbTIcq7OP/bo1bR7/SeH+xIWu894bM3o9f+q/lzRbx2dfrY8C3qdINhs6jl670W0X2jRml37oeIHsXTpt7BVyQxs0Cj3cNjGJ6vbBc/qQNCzdTd/yr3e+ZM4IkrzAdmVd4JGpwgCZg3FUKsIripOz7qcQ8e3IrKzGb3J9fuxdWJr+i9RImy6r9/Eqb6DyIgAU1gEUIoPZWjs0n9bqOk8nx4/gvT4EWiMlYxabx+pWFtMC59Gc6/nBWpvmjuMr57aACZN9f3SmCqJSn+m3vpUWwQmtJXltDn5BydaX4rRhTDQLLYtVUbx8W99T9YIS/JQZz+Li5/Ljgzz/Nrcaq2zr+sdioao252M/Nt7IVMEfYem8EpFyKm698YKeuz1PIEm2L7fbU57nhqlJiElaWirFj9mIURj1DsNDGhoyn3Av9L+3SmIGMHCmavQDJ9f/e6kJNWvj19tWDG+NwlnIP33n8/pdc+JT5MQoi3QG9hs/nunIb6FAAAgAElEQVSuEOIUcCMWTdNu4Grz/gFAG6AlEA9Ye4eeNm+LBPKlrF7SVm13SWCBd2GfJ/opD/WBjspDnTHOefj0sb7Kucub1a9mxRUGQyW+tz+GdprnuYrc4UpgcuanUBcKrKpVDHnhjzqfL+Rt+yzbeQlK/NbRYcojv7uHbYRIz1H1H71xvLWJy1+2NfO1zbAIbn5RbRwed9llU8gKlxzt6ljY7DfFdfkRT+m107nvi6f0WLUfzNm4MZcQwuw7VBP9mWPc+8Yq7vlsD9tGuV51hkS1rf4cFBjKtml9CX3zNaRGmXnTddrqJJ+HrLT+qfcqjsFV4fga86SkMVbYhePXlZTpg+l60Q122xcPVvq4IUmwva9t4dlFz2wFqbXRNJm0vpxtVT+/aV0Yvf5fjNgwmzanVzJiw2wb4aAmoVEtqz+HBLuuf+YJO2/oRfzmtex/YBxbRsUwelMyGW0UbVF1cEUdTcAhwbn1bjqvKwafQAJKM9FVnCGgNBODj6NY3trh7VhdZh4S7VJZSCNte4XX67tjTbG7YD0nJJjdLDd/7SIhZwPQ4EKTECIY+BF4UEpZCCClfFJK2Qr4GqiytbwChAshdgH3ATtRdP+O1ifSxXZHfbhLCLFNCGGjMnAXtZAZIYh/ZBEh1+vp+ux75NzRlUEvWPxYMkYkEn6r5Rcv9IsDoNtue6EjtbNFM5RnHkeP9qibT8XWnUs53K1Hnc7hLckdp1AQ1oHkjteTMboE7WUWX5qMEe61Uyk9DRxNMvDrGIvwUNbb4twdEde6Vv2y/i2z+9oLxkajjgodlDVTAqk1NZRO8Qk9MC180u642nCkNfw9KZ6eCxYhhEB+9ArZL9xNRYAka8YV1SVhhNVqzjD/UZtzjPh7P5f9cKj674x/1a3+VUMSlbOX+PR1tCudS3z6OqJy9tr4sVUJNQUtLWua2GGO/VwyI8wrbl9LHTYhBDc/8RV9B0+iAnPSPyGrI1kDZ1rKFU28bwHb7r0UP30hWkMZJo0PGqMek8YHraHcpZO0p2wdpkj5I29TNEyRv/9E4Tzl9yvzhbRIZVg1amDKlxspMX+VgyMEN88djM5Pb4l4k0b8ynMJZwFbbx3MqSjv+pIy41L3jerAmSgoMOdSLbLKGxEUYRkzffxtJ/ohm+agMZTbOUsP2eR40m25cQ03zFlEaFgM1949j1veV3KKmcrNWhiTE021s+1OiG7VyaxBKauzaQ3geAwcblu3KbRZx18Jzz+Ewa854fmHbDTKANtHu9UDOCQ9qhlb+j7mkU9ZtlmmKvdTfq+NA58nM7Y/VCUiFVqO78pj48CGEeyNDm7h4cMH+OLW3hw/edThMeVWNT4Tv3ReoqshaFChSQjhgyIwfS2ldGT7+Aa4BkBKWSilvM3s6zQNiAaOoWiQrNMhtQTSgWygmRDVmeiqttshpfxAStlPSmnjlLK36x0YtQHs7XonPpfZl+LI6hpN914DaflcKol9RzPskR8ICAknLVaR1wr6dqL5YzstB2gc65+Px9jWsTKZ77qjKBZvCJ76SN1O4AF7zclaqvwUcqN7ghDkRvfigPyMVRWW+mHa0XfbHX/Etjg7hqFXMvzLHYgYS8aSHpffwck2ihSj86mdls76t2x9j71fh6g0UKkDTYSyKjZF2WfVbta+j902bzkbKQm9+UbueH0FLTop5+sy7AqGX3c/LVZtZuxMSykDrbQI0t3H2eZkQWOljQBaDrySnVP6suuWkXXuY23JuHOgw+1VfjXD3v2JiosLCIr+iOCXn63eL2Y9xIrhcMlkS2hzVGuLoLz3GsWv8EgHDQad8p21vo6XnwahPCfWtQgDAm1zLQwfcyPgvZP0xrHxnH3cvcbxxg9W03LPFiKilAktpm0SzVp0qN7vL5XJxqgBnUbHqU6K1DT8+aUEhfnRrHm5JeINQWTOPjQUM+2xT0hOsC8SfGLWRKd9aT+4YYTpFVeb3wUJYeasDCFWQap+AZZ7rtHYTiN++kJ8Ks0aebMhwKey2E5gTTWXTwoJj3XYh/xg5VkYunkOGCttndSNlbQ85bq4LcDh6ZdSdNtldNq9k/F3zqXLoE3cOX80vRdMp1e7ldzz4Ti353BGeKUOrXQ9hWZH+zndt2b4fM6enOYyo/t18yzpYnZf7jqX34HpF1WfN6XbXCr9wtz6lGVEQFGU8k4ZzPKjq1QWDUGRg1QpW1+9g/6bytn42l022z9/fBKfzBrKpuHnVllgTUNGzwngYyBZSvmW1XZrL77LgRTz9mZW0W93AOvMmqmtQEdzpJwvMAX4VSqeaKuBqtTDtwC/eNK3KnVveWCM4ogZGMPykkU26t7TXSppOd7xAGowi2kagyLtZkebMGikfQlxMyYBfiWWfVX+Oy0POBYQGsIEVlv8xyjFSJ2FHhutovE6jriBokts4973JNqmNYyOjiM0OIQYg2V7RLuetHpmHlmzLgZAe40g9kr7vEKOcPRbrvpYieqyRmMwUukDY+6Zx74r4xn6hH32a2flM7wh/6oRjLjRcd6TmPAwRfNkfhR8pOem4sDgcG549iumPu6d/0V9UGz+qUY++LHLdiFhEVz/wHwmvn+AnmMs0UuXX30n932YTHSkRSCIa29VLNlXEWBNVsORzs+x0FSJvfO6f5BtKkKtWfD2xkm68PFruf3tFYy85VnnX7Dq/BotIb62I31giBIBK6RFaDKZf+exH6/E9/P5RDZXSrAYDf7VwpyfYbNZmHPu8DP2nldIubwjzZZbhredV3Xh0Oxr6TloLFn/mev02NpiDFHWqQLFr84Z5eYh7MCgODKeurV6e0jxacJz13Hdk4OIbJlHSLFtQdxDHQOY+MduklwkjjWYDQd++kKLCRjzOyo0RM64GYBS53IJlz/6NgNmv4HW/DyNmv4svgFBxCb2ZuDTtU8DAoq22q/C3lqw+cZe1Z9bffwxZ8ME+o8sJqSEvbsARTjp2C8GhCKc1DQhn4oCPystnilEec4POtFuJQwZb+ePZI0UUPbmbE4/ch2Hb1cWXwIwr0MojlKe29qksvCUXCtr9bHpF5EX5Ng8VFVlwmRV066oIIcBi48weEUusfZuvucMj4QmIYRGCNFbCHGZEGKM2UHbHUOBm4Ex5vQCu4QQE4BXhBD7hBB7gEuBqqI1ScB+IUQKSqTcAwBmn6VZwHIgGfhOSllV92Q28JAQ4giKj5PrUd1DcsMkvlfcxMArZjpu0EV5eONaK7lso2ffg8/TV9k5OhaaJ5v2mRBc4rkXZKo5VDe13RVe9x0gvWeFy4GuJq6ENP8OvciaPZVI02cgjTarPaGBSQ9aBoi4+NYkvJxa/fexWAhPuITlvZXvntbGSKdh5u9klYwtMjKWLkMmMGKWUpyz09wDRLySw77R9Wff11YaqdRBs2bhXPfKClq1bmvXxmSoewh6aHwiQuP65uvbKgNCRIsO5H/6HodffNRp26pnKii8fhPAuRPMrf0M/N6dT9mn76LRain/+jOH7c/Oe9buex+/ayJF8x0Xr42KtSiPhZXAYNAp/ZLCcaZOg1loCrQKHgwICUfvIykPMPupOEtO6ISj7U0MvMXizH2wj/PhrTDY8XscE6+oZPeMaE2YVG5elUY5MDSShIEWR+l+VwRXC3N9ZwwiJPdjes1SJlVHZxcaLVe99itxbTqR/fzdnBygYerc77nCbB4cMeZqj7+rK0xWF/cLNj8X0rkD974HrkF+pAge13y2itE3zaY4UGncY/+HBA/OI6Z1KB0G2UculsWH2Z2vJkbzdPrTEFFtAr5mdp9qE7B/iKI1dmTeqQsFHg47p9v50DzT/ub0G23xc2vbqS8jNx+g5zBLyhNfHz+K//sSYT/+F98AHaBD66OxMyFf+petQKmvUB56o1ZYTKUfWDTXLTr0ZPDmOURl7aJauAQlKq80iyGb5tBlyCQuueN5wtooSWiFhOB85TuYEi0LmfpIZeGI7d2VH+tULEx4dAHhJdDKQdouk7n/JqvvkZN2vF76UFdcPm5CiAQhxAfAERSfo6nAPcCfQohNQojbhBAOzyGl/EtKKarSC5j//SalvEZK2c28fZKUMs3cfqOUsqOUMlFKebWUMs/qXL9JKTtJKROklHOtth+VUg6QUnaQUl4npfQoDrv/tpdtc5KgLGSqQj0L+4Ux8pZn0Wgd357+T39P7qOT6DtBCbtNnPgAiVNfpuat+HGC8qDlBltU3Nbkd7dNOOioXpY3obpZzZUHrCAygePdPC+MeShBKWp6KEGpaaaPt2hA4sLbMeK2OUz58EuomhSt7lvrxAiSr21P8vVKNEVksB+Z8crElnrNbdz1r5fodsO/2T22nIT3ltCilTK5dBx7G2e6VJI/XudcyAh3X3TA7rc0C3OTn7KN29cYZLWGsIp1fRQHkk3D2gIQHFHDllgLdP7uC4b0fn01xQ9dTNKI6xg8eBSXX3u707apV7YnrXcFIc3c58Xxhqpw4mNtxtvt25gobCbKLv1H0mewogXs3Xcg2dH2GrmRDrSy4x96nQHj7B2lAXyszLDWr012lNKvvDTHTvKxB5VhYXCK5RkMCg2ny64DdNumBOZqnZjJnSF0tmvdK79ZY9fmRKKR/03oTZtl9vsA/Pz86XzgANMW/E68Vnmumotgh2079RhGfrAg9ZGp9B5wERNW7yexW5Xp03Uo9/DJ9zP2i/1uBfPa8MesUdWf/f0V9Y1GwtlI5X5mPT7Npv11d79In4G2PlVHO1ikbVOo8sz6BljuQ8p0pX1Yb/dmZmm2wZb4C8qvyOfkpWdo3i4C35IfkIlbCAhRgglCykDvQBEe+/cat9dwRNod9u+ENWdjlOff11Ba7VeX2tbyPMcluk9N0n/kVbTr2IuyIj3dRsRz7ey+boUTaY781msh+LP3SL5zLEkjLAvryKg4/PSF+OoLAXMkq1QsIFIIZV+g8lv4WI1TRrOFJLBlp+ptnmhpD070PoKuhY+ibXb3hkYYFFVScEkWOzb9ys7uSfz53E1eX68hcJdy4EWUEP4ZskZiBiFEDEq4/80o4f7nDSElaYAw/3IWn/KqUM/mVz3k8vjImBYMnf6a3XZpZZ5LH11K7/JOQCERVgF3hYEQavaXjnnwffTTLeHPntbLckbp9VeTu+w72o6/noOfvAsOTBnW1FTlZplrmglhZHTa/QAEx1k0AhqtBuEjidCtJbt8EEKjDJBXv7jU5rxF40fhn7+b++5XwoIvnnQrTLrVps3QMRP5RRvNSBcFi30q3ZvLqn9LMA8QysfolraaCq3BhFFr+6pOfv933n5yJrPfUBSUkdFxeGYUdIX7Xysmrg0xd73r0dnGPb2Ys3kFaLXeVYd3hqtQ/LDiR+i908DgFGnj9KvztbV/JCz6g78+eYLu3+yolz7ptD52/co7E8WqUQvt6uv5Rgo4KjnaHNqbM3UEhUbhY7XAMVW4Lo1iTdrAcjRT3C9Kxv18CHfeLxqzsDbxiU9ZnjaRIXOdD4uDt7nIEGhFelsjDZlJ7tCwGDr9pTz1EREWp+PIQOW3EEhCnn2FnV/PY/INj3KwyyDKC50nUjX6+oE5GUF8rLII8Q0Mqn4rrnr0bc5ctZfxHdxXnFPeV4m/xp9bplmckCesUgwNacf2UwjkRmoJLrAf6wJC3GuzAPhkPhiNcKcSgXzlna/yw9Ej9FjiOKrudKKBmLO+lAvL3FEWGwPHleyPkVFx+G3fQECArQCUct1gIv/cYvN7jp9p8c3R9jhGjx+3cmhEe+KvnEpNWnTpD7/sR7ZLoEvPUXTpOQqAU60DaXWyFK1WS4UOctu2ISQsAFl5nIhWHcg7U4lfimIeFb6KB4zOR3mnhYTMPh2IXXWETkMnUfnWD57dM6DZoDGwxPY5rkqRYs2h3tF02qmkBZc+ypwh3YhNVXUWE7dKuFWp3TnMcT7nc447oeltKaXD5D9SyrNA3bKVNQLF4QEEjszHV1+ELjKIYVN7sW3pccpLLKaZnmMmuziDc4SV0BR29/f471oJSw/h36uI8l3KJF4SLAk1PxDxfUfiuBpR7Rg7Yy6H+l9M534X8e3yefRyU2fWmZ+SlJYJOjrWEs1294LR5k+uq2BPeuQDj/p7xUjHjsVVlBQ4rwBfNqiYgE3Kqsm3sgifyhJaan/mRPRdaLT2Tt4JJ+wFsPDQIJ5990uP+ionVZKxR0OpjyDhiPNVfoB//fqhBfj70ibO3jm4tgzePIcjCVeTGd1HcTY3GYnN2k5Y8CIywmKoiqWo0jSdmH0jSTV89Vq0bENoVBugfoSmgdNf5O9Z11LRaw75J7Vm1ZMkNnMrHVIXAxbTVtCEWbD1HfIvvgi+UnLkBIfZmi4j4jvhifeFYVQhF7/vvLh2bQmLiGTyIudlPFwhzOLFvs6+BAaGcMlHv3t03KHRrei02vu6fTrfEDAvFWKt0jx06zucCt7jTMdYrh9zBQPHKBqNrv1HOziLhYH/fhf9ZMXXyD9Beb/9A0KxLnQU54HABDDt1SV8/+Bl3P/cUof749t1pfjz9+jXvT8p/RXtztFZV9N+gRJz5O/jwtnJiqQhyvNVsXkwxUcPofXxoe8Ns6lccgeZj08n9mVbr49w81ASYDRhEho0EhJuuRs2P1XdJjjIvuTvVS98Ai5Sek2a+wXMxaGQnBOmYewts9kc04brL73WZt+IxaspL1Y0M732JWNxmBhS/Sk5Ucl+Xj1HmTWVQsJV87/n9OGdtOs6APelyS0Ehtq7DBy+cQhJXyolykp9lYSgAZdeAjuVNDCiSsPsRtXkV+xeW7ylk/CqXE194U5o+g9Q95CiJkRUfHuOT36OCevuw//+zURGRtOxr+LDcKw0j6xs/+oVo7dIq+N6d+tLUbsu7Dm8lMApPxN0jWLTNgSZwFzl2d/f1tl1yOY5bBzwDCatn03ytcFbnEeJ5Hcrx6dSEB5XhtBo6NxPiaCYsM1eSKi8qBCflVaTujSAsPf/0FgpNYKC6zeLqzf4t4gDHNep0j34HUxRzFrDNj7JkdaCrp8t5+IWrRy21/tIipt59oJV+Iayr8vtdDvwSbV/QfOn95C/fwfhphLyF86g2Q6LKiatk4E+nfI5le9HwqCmlRpg18O30+tNS8HcDYOeQ2qswqw1WjJjB5ClG0h01EdAOikddURnVUKpIGmA45D2gVMfIeOdxfXSx7jYODIjX1CysVW/QoLM2AFkxvS3mgRg3NS7OTz6Bm6IDSXlK8U8EBBgKyQHBDcjq2c50btdJ4Dp9KZn2p7GoMxfx3VeJN+dtHA5r8zsyVXrvPPL05Zb2sfFW8zh7RN7c/zXn7i6jXsTuTVtu/aiKlGGrFRU6v7BYTZCk6c0b96O+751/Rt1HjgKsDw2A6+5iyyz0CScBOY4wy8sHL/eiqDXoc9QSEkmCUiuITQVmn3m9AgqfJQC7UHRLah7GIljopf/TOtQRQgbON6+PIx/UCj+Qd4t1owaRaA0CYGPrz/tug72ul++gfbOX76HLTUqA81eHj5WTmdajWcac2ly/9sV1p/Lq1f84wr2Aoy86DLinztKZKTtCr74jiXkXjW71ue1npK1Gi3NQoIZ8cJf9OvamZK+ygDSpbPzch5++kJ8K5Xos6oio76VRRhbZDs9Zm/v8VTOeBbNQ7ZJIUMM9gLClm732/w9dNMc+3pTQjLtpaHkmv1WGsJ3wlOECxmnRy/bl1wbpCXOicAEcOyxf1H6b88yNzvy9wkPCWDI4GH0HjoWn9mWMGDDsCLKpzxC2GtnaTk/lfDwuif6qw/S2vuTE6tl6p22TuadLysnSJNlSVxnMqLR5zJt7hA05gFNK+H4dVdwso+JmATHob3W3zOvS91Lukx+sj9aH0XDVIXWR8PVT9j7h3RsrkQh7u3mfM3nf7vtb32gXyh6X0nsKIv20tffXiNZxbHJ3TENqXu0UK3xJn02imnQmQ+VK3RllaS0U66V1HGAzb62nZLw8fNMW1OFVmv5TUwVypgXENjwUcCHkhShIqRZ/WllnREWaxbjI6LQml+j4Aa8blSbzgSF169PY+9hE8mO8EH3kO2ccOjqnjZ/H21pO/5bBxglJNlbCnQt7UvcGHwsz7JPpWuXkY9fuJrvFj1JZLp74aq8dtlp6ow7TVN7IcSvznZKKeu/EmMj0r1nP7r39Ky+mCOa73Ce/t5/2hw6tXmYzBnbKNg9gbAzjh+K4OI0InMP0CL9b9JbDKXCN4wjI0bQv+9qKn60dzK+8eH5BPnbJ2hb1b8DE1en2mwLCrP18/HTF6KRRkwarZLNWejQ6bQEhfkxaHgmRn3jytTOZKb1V/ciCdhwx1UM+UjRdmR3a+vyXFfeOMPt9d6ftQbjqIXVf1v7+1ibqPr17EFyUilB4ZXw6hEuiwhACEFksHcTTEMy7If1+AfaT6IXXXEla4pT2L8uzSwkawgs2UdQ2LUkXHIrhb9vRo4ex9R/vUJR+QsEOHi2alJxs+MIOXdkR2rJig4lCYhuFUJopD95GZYEqWFR/sS1ce6XMvg/6ziR4VgTGRhsO4mN/fhv8kr0REQEkmmuNym0zoe/cc/+H5UmE0e7dXPapmHx3uwQSiBKCU4Led9+T/iU65weoy2vZPQ3Gzlz/BS+PjqMWkl5RP2YPIxmoSkkPJrUzuEEXXldg/lnXf7VKoqyc/ALCCT1rrGU7NjSYNcaO+dr/giew4SZj7HktnF02ZdLTEwrdvzrFkz68gb1Qasv/ANDGL5hj932Ap2tprIwOgBOW3wEUxN0dH74VY7+8hVJkfZRppc+9xZ/hzxB/3se51h/c7oao2+19t4/7iBwBGeKpCFfJ4MbI6Fep+Q4nLj13JvmwL3QlAW8eS46ciEQ7sL/tNvY6TB2Oi2A7Q+/RmpuhsOXyzpKofPh7wDo9P0BzqYfo+LHy+zaOxKYADomdoQaQpOuwF5jFZGbTPC4EZzN/h1jcXviWymThOH5HMorTdQ+X27dkU4mjrteUhJqTn/kJZLNQlOwvu4Cy81zB7Ps1vlkRfXApPVDY6wgOnu3nV8NQNlT3+MbEUlCZCPpiN2gdeDPkRtiFgwNJpucYsXhI3h/1hpmLhjD5s9WcVlCHFqNoFmg61+/3F/iXy4YdeWtterj8L9ti21WlBmIaBFEv8va2vkZOqJVTDitYux9RwCSBl/KIau/g/10BPt5XmpToxH4eWhKqFfMWl93jrKOGPbUp+SttTWnDunVzeUUpCs30Cw8jGbhinAauWGnV/fJFVpzckSNRsPEXzbUyzmd4evvT6Q54/zEhxrG1Tb1xknED7sIjVbLuEeVIO4rv15NSV4+Pn5+TJrxWINc91wSJGqMGzUeQ5NOQ9KoCSSNcuyGoNFqGT77VcDiFN6yS1eS2+kpCOuAoSgEWGYTNOUtdU0KXVfcvR1FUsq156QnFwAl/uDvQb7CSROvdN/ICq1GEODnj3PDnoNjHDyTfiZL58TIAuTaMGLPfMioOx8CbDVsfjotfrpGmDSs8aKSdlio48nTG4LC/DwuvdGn7wAHZ2g66BxE2xl0zquTV20f2Mnzsg3Gf92EOLDMa98RZ9z2qqVYdZWfYW3xNu1Ak6MWi+jmrVqR4Sfxq/D8u5eH2k6ScWHuU2a4I+2RO9Au/pSBfS+u87maEhOfto+Y1vr5Etq8fk1nTYmaT5LGixxoOpM5WvczH4gbBEBJXnNWjVqIELYeYLt2/UaHxOF17e45wZ395fi56MSFQmQ9ukCUhdnafrU+tk6tuonQaqTz6DJHaIMt5rnUAffVvnPnCG/mjfBxd7pv5AF631CaZ2wmsOQMzTM21VtSt/qmeFRvh9uTbx7JoSs6O/RFM2ph2ktDCI22nhglwZF+THtpiF17d/S75SkSX/3b6+POJzaMH8DeR+499xeupcyX3FsJ3DjYWcfySxTBPiPWojFMS/Ql656b2TOkLQDFw11Hw9WGi+94mNFL9xEY7NxnTKVpYtLVDJ6wfRA7P2JreCp1U2zXmWuepsaiLu2BhznVy/VCtGZC3pKQxnEfcXlVKWV1qlkhxBAhxA1CiGlV/xq+exc+e8e2dbi95SVK4kttTyXJk0+NSLugR1Zz8K4lzk/sQOLQWGmOYiOVB094oc0553jRtfrS/PTY/yEaUyXFIa0Q0uCy9EZjInwcm86ufvJ9rnj1Z5ttpTEWfXZQmB/SZC6KqxMo+bgFQWFNxx+rvqkMqL3H6PR5nzP5jlnuG9YXdVSQCaG84+VRzXjwXSVP1NCVlvqYPrP/y4j7n2DCgp/53433cMU9DVNPTOX85NIbbE2MNR/H4CjbQJfYr78nb/a/HJ6rOEAwZNMcQqP9bawGYTEB3DzXdpHW3rFrog01K2XoRl1MYvIBEpPPbRSsR8ZrIcSXQAKwC0vGRAl80UD9Oi8xaCU6o3ejXqcJk2G5vdq36J5tJOk68mXgzXQCdDrbSbJF8+a0aO48g7XWLA9X6iQ+BqVPOqvUy9LfcZmKpoQjmSm9s22yw9DRuZQU1U8YRU1H8DMtRnCmxQigYRMM1gofe/ObyUm4YcnMBwl8fgFBLZTfP7pVMG26RdJ1eAv2r0+ntKDu0W9NmcIa/vClzSSB+U3TfFddUqa2axkHX8tXZ3nvE1orEaYhgX78++mmr21WObeEJXSyqXqv848ALNmZAwNsU9C07NqNll27kfzqPLtztVz0Pae2bkSas/cLUyVS44PJaPJqkVYz8W1G3CAy4gahLdPQq55cA7zBU4+/fkCXmlnBVWw5lOhLl/1e1i9zUiQ2oUUM++86ydWRiopbq9Wi95f4lnv2kLRq1wP4jcgBBaQcDqNFlsDGzcO8IhV1Xdo2II6cYVtF2GZ82XHtd2SkH6eTXUvvqXIEPxvVA6n1Qxgr6Di4NUOu6eD+4HOMj97i1K/3N+FbrsE42vFv2XXCTeTsWkD6QCX5nnUW4pFTOzdsR5sAOV1tS5KNzcsAACAASURBVLKE/99KsrOyGqk3rqmaA6SrfBt1QOekNJSKc85cNpiATl0buxvnnJPzP2D8kF6seuohhjw0h9Mb/ibSRVqXmjUA4xK7EpfYlZz399CmW1StF2lOK2U0kjjiqdC0D2gOnHHX8J9MWJuWsN+7HN86Bz4zpgTFNNe1hSXcWgjBntY6+h1yneeiiqCeI2k/5X5+TppHTMabkGUiKsSimYqNTaAECG3ThOVg8wRytIORHn2MNDtTxOJud9kISJMuGgm4r2PlCVWO4FLjC1IiNb74+mubpOnK99iR6s8Hpk1h7IkPOTFjtcO2kc3CCHhxLx0daKcuZAqClJqPYVfaJgRs3yae9m08d3g/lzSQrFSNs3qaKs4ZY5Uc9nwl7aKOiJOnvdKYjx2nOGZPfEdxUYhoa59Ys4qE5b+jCXacJ+xCW6R5KjRFAQeEEFuAajHxQsvTVFfyuo4g/rdjNgnA3BHeuqtdyYf1vYfiaF3jqcAE0L5NW47em8akyCBWH1pCj1Z/kZbQnU7XK8rX7NadaXVdOt/Ez7bJuNyUEGYvwkqNP82f2cXPqzdww2jvHZY95f1ZazDGj7DZtm9dOskbMpi5YFSDXbc2GFvFoU1VSoBMfeg54DlcpdUM9K2fMPLzCYNZRvQ7jyLponP15v8bJq66vmoYqpxfXLzQabrFesG3jeMC2/XBgK1z2NrPqlIGoPPVcNML3mcxrw88HUmfbchOXCh06qzkOKpZsNAVwXFtKRCyWkAAuOGpT+ulP+2jFck/6e5PWLx6BTcldiPr4Uz0RhMtwwPZN/Mk18R4n0X4XCGt3Dt8tBquu3iYy/Z1pWaeJoSBTv3jm6R5rqJdDIFr6r9u2oVElVIlUNP0NIXOyIr0g8NFZIc3jJCraYzcUyoqdWDzwOftyn0Z9Ca+fHJjoyxmXepEhDkBi5RyraN/1m1UQKvzfqALCw6kw5WZdLzKYvkM9a/f/PDxUc24+bprEUIQE+pPy3AlIWO3+DD8m7LJxmyqOFcPWM08TUhtkzXPSZ+m78jf2By5/RGOJ4XSamDTqgfokqrhtIEe+ib8tqv8AznTynly4H1XjwKgZcvt+OjzlJJfKK9IcLgfN89tHE2TO0PSaiHEfUKI1tYbhRC+QogxQojPgVsarnvnFyF+tZvINk7ZwrJJ65GjtASM8NKR/ALG4hR77q6p9w0lPn09fXe8QWDwYUoLPchW2giURyQ0dheaPDfecTuDv15PREjdEzaeKwJEqPl/NwlwnBAf2cLm/5r4+J8/90KlcQj69Xd8vq2fYtzuyBvpvExR68HDyV+0hElPPk5I+SEQGjRGPRJo2z2y0Raz7lQj44DbgUVCiHZAPuCPsmD5A5gnpdzVsF08f/CPjKEU0LUu9+q4kT2VIocnO2/B4CSa7p+I1rzc1pxDX3XrvEzNorYzfubMc3dxL9D41m5S/Seh8aAUTFMjeuabnC69i8ypL9XqeOOUOZSW34Lxesf1AAP81edGxTWtOzWcf5IdrnzsAoMZ3FtZHOr9QohPX0+L9L8pe2Rho6ZJcSk0SSnLgf8A/xFC+KA4hJdJKb2p6PGPIax5O2Imp7OH9rU6vrWbOmYlzQ0EZeg4E07TyxvUALSO7gjspEW486Kt9U58BaRVrWCaruW5LrWbVJouEwd0Jv+TP7mklsLeqL7dOdn2L/o20ZqIKirWCBc+dtZFffXaD+h8WLHCDGjkCDyP47yklJVSyjOqwOQcf18dX1y0iYC7HYd+15U8c0hnXJ6bhhcIgeOmET22kIzrZ5+zay4YeCNH25m1fU1YMPHTnF8aFBXPqat2zN3iS0WlqeCo3FMV1vUjdTFDATjUtvFTZjR+Dy4wbhmZRKe4Zu4b1gJNmfs2FxJdOyZQOucwE8dfds6u+cKTT2OoUF6LDKsEkk2NkITzP9+JiorKPxvhwjzXMsJSu3D8DCUxb9A1jzZ4n9zxz0vech5T6GfEsXvnhcu5XjVHBPnSyVxHoP+xpiulRnYeRNPMaa2ioqLiIS6EJmmVC7x5m3iapyQ3CbcUdykHnOZMF0IMr//uqLgiQNW6nxO2jOuGxtdE9vX3N3ZXnBIVojr0qqionN+48mmqdf3FBsadpmmtEOJ94C0ppQFACBELvAl0Bvo3cP9UrPA3eZ4RXKX2XP/6t/y0/RQ3DGrb2F1RUakXWo7IQajOGCpNDFfmOWMTFZrcvUZ9gQRgpzkv0wPAFmAjMLChO6diS3b4P8041zj4+2jPC4EpcXI6iZPT3TdU+cfz9vDPWDjqq8buhoqKDUJrn8g5z5zusKkKTe5SDuQBM8zC0gogHRgkpTx9LjqnYktpqOIYd7izsUnYdlUal3U3HSG7qIJrGrsjKk2ep24+j7Kiq/xjcKVpkuej0CSEaAa8iqJVGgdMAJYJIR6QUq46B/1TscLHT/FjKRdquLkKjOwU3dhdUFFRUak1rorbG2XTTPTszjy3AzgM9JNS/iGlfBC4GXhRCLGowXunYkNV2gqt6pygoqKionKes6fsiNN9RlPTVDW5m31HSCnfqHICB5BS7pJSDgFUTdM5p2k+RCoqKioqKt4yJMI+lkwGKE5NUU20vqY7nyanvktSyg+d7VNpKFShSUVFRUXlwsDf1z6PTocvf+HA//4gKeE8FJpUVFRUVFRUVBoCra+f3bbYNnHEzrqlEXrjGapzzPlIE66JpqKioqKi4gla3fkX1KQKTecRkqYZTaCioqKiouItOt/zr7JBgwlNQohWQojVQohkIcR+c64nhBAvCCH2CCF2CSH+EEK0MG8PE0L8Twix29z+Nqtz3SKEOGz+d4vV9r5CiL1CiCNCiHeEUFUwKioqKioq5wM+qtBkgwF4WEqZBAwC7hVCdAFel1L2kFL2ApYAc8zt7wUOSCl7AqOAN4UQvkKICOAZlFxRA4BnhBDh5mPeA+4COpr/jWvA79PotNJEAhBvtLcDq6ioqKionE/ofANs/l41tkcj9cRzGkxoklKekVLuMH8uApKBeClloVWzICwhYRIIMWuLgoFcFMFrLPCnlDLXnKH8T2CcECIOCJVSbpRSSuAL4MqG+j5NAZ/O7REaiW/X2MbuioqKioqKSp3w8bcVmlq3b/qlws6JT5MQoi3QG9hs/nuuEOIUcCMWTdMCIAmlVMte4AEppQmIB05Zne60eVu8+XPN7RcsRXHdSJx8htQ2ap1kFRUVFZXzG1+/mikHmn5anQYXmoQQwcCPwINVWiYp5ZNSylbA18Asc9OxwC6gBdALWCCECAUc+SlJF9sd9eEuIcQ2IcS2rKysOn2fxqR1jxEMq3ibsKF3NnZXVFRUVFRU6oSuhtAUrAlqpJ54ToMKTUIIHxSB6Wsp5U8OmnwD1fVGbwN+kgpHgGNAIooGqZXVMS1RtFGnzZ9rbrdDSvmBlLKflLJfdPT5W6+rY2wI61+6hUu7xTV2V1RUVFRUVOqEb4Ct0BSS2PTdkhsyek4AHwPJUsq3rLZ3tGp2OZBi/nwSuMjcJhboDBwFlgOXCiHCzQ7glwLLpZRngCIhxCDztaYBvzTU92kqqAGCKioqKioXAj5WmqbN/dvS9+Jhjdgbz2jIjOBDUYr77hVC7DJvewKYLoToDJiAE8BM874XgM+EEHtRTG+z5f+z991hVlT3+++Z27b3ZdldqoAUERBBBIPBFmNiNLEmamK65hsTNVGjxhC7RqOiv2AJdiMKCopiQYooICywtAW2srC999vvnTm/P87MnHP3zt0CW2Xe59mHy9y5M2fOnPKe91MOpY0AS1MAYJd63oOU0mb18x8AvA4gGsBn6p8JEyZMmDBhYojD6uCO4AmTM4eFKNBvpIlSuhXGfkefRji/GkxFMvruVQCvGhzfDWD6CRTThAkTJkyYMDEIsNp4RnBCLINYkp7DzAhuwoQJEyZMmBhwWC2cKJFhwkaGSTFNmDBhwoQJE98mWCRujGpWnINYkp7DJE0mTJgwYcKEiUFFWq1nsIvQI5ikyYQJEyZMmDAxqBD9m4YyTNJkwoQJEyZMmBhUeFPjBrsIPYJJmkyYMGHChAkTgwq2hezQh0maTJgwYcKECRODCjoM9p0DTNJkwoQJEyZMmBhsmEqTCRMmTJgwYcJED2CSJhMmTJgwYcKEiZ5AGewC9AgmaTJhwoQJEyZMDCpMR3ATJkyYMGHChIkeIJWYKQdMmDBhwoQJEya6RYoUP9hF6BFM0mTChAkTJkyYGBR8eOm5SJ7kRN15PxvsovQI1sEugAkTJkyYMGHi5ETzvP/D2dbLkHP6aYNdlB6BDBfnq77CnDlz6O7duwe7GCZMmDBhwoSJPgAhJJdSOmcg7mWa50yYMGHChAkTJnoAkzSZMGHChAkTJkz0ACZpMmHChAkTJkyY6AFOOp8mQkgHgMLBLse3CGkAGge7EN8CmPXY9zDrtG9g1mPfwqzPvsdkSumA5Cw4GaPnCgfKYexkACFkt1mfJw6zHvseZp32Dcx67FuY9dn3IIQMWHSXaZ4zYcKECRMmTJjoAUzSZMKECRMmTJgw0QOcjKTpv4NdgG8ZzPrsG5j12Pcw67RvYNZj38Ksz77HgNXpSecIbsKECRMmTJgwcTw4GZUmEyZMmDBhwoSJXmPIkyZCyGhCyJeEkHxCyCFCyK3q8RRCyHpCSLH6b7J6fAohZDshxEcIuaPTtW5Xr3GQEPIOISQqwj1vVK9bTAi5UTj+OSFkv3qNFwkhlv589v7AUKpP4fuPCCEH++N5+wtDqR4JIZsJIYWEkH3q34j+fPb+whCrUzsh5L+EkCJCSAEh5Mr+fPa+xFCpR0JIvNAm9xFCGgkhS/r7+fsaQ6U+1eM/I4TkEUIOEDYfpfXns/cXhlidXqvW5yFCyBPdFp5SOqT/AGQCmK1+jgdQBGAagCcA3K0evxvAv9TPIwDMBfAIgDuE62QDOAogWv3/SgC/NLhfCoBS9d9k9XOy+l2C+i8BsArATwe7foZzfarfXwFgOYCDg103w7UeAWwGMGew6+RbVqcPAHhY/SwBSBvs+hmO9djpvFwA5w52/QzX+gRLEVSvtUX1/vcPdv0M8zpNBVAOIF097w0AF3RV9iGvNFFKayile9TPHQDywSrqcrAHhPrvj9Vz6imluwAEDC5nBRBNCLECiAFQbXDOxQDWU0qbKaUtANYD+L567XbhOnYAw84hbCjVJyEkDsBfADzcR483YBhK9fhtwRCr018DeEy9j0IpHTbJCIdYPQIACCGTwCa+LSf4eAOOIVSfRP2LJYQQAAkRfj/kMYTq9BQARZTSBvW8DQC6VJWHPGkSQQgZB+AMADkAMiilNQB7AWAdMiIopVUA/g3GKmsAtFFKvzA4NRtAhfD/SvWYVoZ1YGy/A8D7x/koQwJDoD4fAvAUAPdxP8QQwBCoRwB4TTWB/EMdUIc1BrNOCSFJ6v8fIoTsIYS8RwjJOIHHGTQMkbYJAD8DsIKqy/nhisGsT0ppAMAfAOSBEYNpAF45gccZEhjkNloCYAohZJxKun4MYHRX9xw2pElVJVYBuE1QfHrz+2QwFjseQBYYW7/B6FSDY3pHp5ReDCYtOgCc39tyDBUMdn0SQmYBmEgp/aC39x5KGOx6VP+9nlJ6OoCF6t/Pe1uOoYQhUKdWAKMAbKOUzgawHWxgHlYYAvUo4qcA3ultGYYSBrs+CSE2MNJ0hvr7AwDu6W05hhIGu05V1ekPAFaAqaDHAAS7uuewIE1qY1kF4G1K6Wr1cB0hJFP9PhNM/ekKFwI4SiltUBn7agALCCHzBEfFy8AYqMg0R6GT3Ecp9QL4COxlDTsMkfqcD+BMQsgxAFsBnEoI2dw3TzgwGCL1qK22NJl7OYCz+uYJBx5DpE6bwNRPjdC/B2B2HzzegGGI1KNWlpkArJTS3D55uEHAEKnPWQBAKT2iKnYrASzoo0cccAyROgWl9GNK6TxK6XywfWmLu7rhkCdNqqnhFQD5lNKnha8+AqB5wN8IYE03lyoHcDYhJEa95gXqNXMopbPUv48ArAPwPUJIsspivwdgHSEkTniZVgA/AFDQV885UBgq9UkpfYFSmkUpHQfgO2B25UV99Zz9jaFSj4QQK1EjaNRB6FIAwyoSUcNQqVN1QvoYwCL1ehcAONwHjzggGCr1KFznZxjGKtMQqs8qANMIIenq9S4C8wUadhhCdQqiRhurx/8PwMtd3pEOAU/6rv7AJlQKJkXuU/9+AOb1vhGMFW4EkKKePxKMVbYDaFU/a1FvD4ARnYMA3gLgiHDPX4PZOksA/Eo9lgFgl1qOQwD+H9jqadDraDjWZ6fvx2H4Rc8NiXoEEAsWlaS1y2cBWAa7foZznarHxwL4Wi3LRgBjBrt+hmM9qt+VApgy2PXybahPADeDEaUDYMQ+dbDr51tQp++ALYoOowcR8WZGcBMmTJgwYcKEiR5gyJvnTJgwYcKECRMmhgJM0mTChAkTJkyYMNEDmKTJhAkTJkyYMGGiB7AOdgEGGmlpaXTcuHGDXQwTJkyYMGHCRB8gNze3kVKa3v2ZJ44hR5oI24zvSbC9YBrVMMJnwTzr3WD7yuxRz70RwH3qTx+mlL5hdE0R48aNw+7du/un8CZMmDBhwoSJAQUhpGyg7jWkSBMhZDRY7oly4fAlACapf/MAvABgHiEkBcA/AcwBC13MJYR8RFmGTxMmTJgwYcKEiT7FUPNpegbAXQhNwX85gDcpww4ASWqSyW/9BqYmTJgw0ReoavVg2delg10MEyaGPYYMaVJTnVdRSvd3+irSRns92STShAkTJk56rHnmXlz98gLUNDYNdlFMmBjWGFDSRAjZQAg5aPB3OYC/A1hs9DODY7SL40b3/T0hZDchZHdDQ8PxP4CJbz18QRm/XPwUPsvtcvshEyaGFS5c/ylqdiYD5Wa7NmHiRDCgPk2U0guNjhNCTgfbpXg/8/vGKAB7CCFnIfJGe5Xge0NpxzdHuO9/AfwXAObMmWOmQDcREY1lR/C3lS/DXbISWJ4z2MUxYaJP4PQRRAPwyr7BLooJE8MaQ8I8RynNo5SOoJSOo2wD10oAsymltWAb+P2CMJwNoI1SWoPuN4k0YaLXoM1MiYwqaBvkkpgw0XfwscUoXIpnkEtiwsTwxpCKnouAT8HSDZSApRz4FQBQSpsJIQ+BbaILAA9SSpsHp4gmvi1oktthB9AuGVl/TZgYniCqvm6xDIch34SJoYsh2YNUtUn7TAH8McJ5rwJ4dYCKZeIkALHY2L+mEdfEtwlae5aG5JBvwsSwwZAwz5kwMVQgqZPKUCZNlFK8/eASFBcNWD43E8Mcmm5qsVoGtRwmTAx3mKRpmGH1l9vx2povBrsY31pIEptUBoo0rTtQhp1H6nv1m4r9BzB7+Uto/f1V/VSq4YGdO/Zj7YqPB7sYwwK6ec5Umr4VKL7nH8ifMnWwi3FSwuxBwwxXfKXm77zcdFTuFwyweW7qnxfBFR8FfJzf499426sAAMTdAbc/iBj7ydmN4399LeIVAlz7o8EuypAH92my9et9Cp59Af7lb2FGzjf9ep+THcEP3gfAVGc14tzEAMFUmoYAlix9Dk89+1SPzq0piEP53oR+LtHJi4raRgCALTgw93PVRgG9TJ3TFuwAAHgJ8O5Ttx7XfZcuewUvvf7Wcf12yEAxJ4ueQiNNbbf/Agf2He63+9AXnoOtzdzJaqCg+AODXYTjRse+/Sj91W9AA8PrGUzSNMhocwfwp+rFuK3+oR6d37ovAa7CuH4ulTEUheJoo6vXvyuqasSnO/tvoD5elFTV461Pvww5FrVpFQDAMUCk6XjQ7mG5dpLbgBudb6O+3dvra5z/1L/x3ace7uuinTBKG5xYvbu8+xMjoKmyDvlTpmLn3f/ow1INf2ikyX6MIuk+c7ep/sC2Bx7D9sefDjnmrW/AwYf+Baoo/XLPQKD3fX+ooPKnP4Vv+zdoKhpe2/uYpGmQIf0tG0WrMlG0KjPkuNcfxJqte8GCB4cGVn28FsH7z0RRWWWvfue4ex5m/P0HJ3z/Dm8AAbnvBp/Uv83E3Dv/AI/brR9zH+3bDrzrWDNa3f4+vWZg1QoAgASCg+syYLtrPAqKjeWqgoo6vHPzZdhfUhH2HQ1E7v4rPlmPf977174pcC9QecOFmHrDxcf9+9r1qwEA8R++36vfNdQ344t31h73fXsL9549ULxetLe0YcPzb/T7/URN7qDd0e/362sUfbgWe554brCL0SWiPnsL0qevouNoGfKnTEXhQ49i7+9+A8vbr6Pgw4/67b7u3Fx4Dh2K+H3900+j+PwL+u3+vYW3sCiERJYU5aGyrhGHS49/sTSQMEnTIIJSisr1qfr/c8tadJL0xf+ewOUbFmH3jq8Gq3hhmLT8IQQ3EHg2rezV79y77OioiEZbW+sJ3X/rI5fg1ZeeOaFriKjekwgqE7g7uDmhOKPPLo9gUEba9XOx5a8/75PrPXfbn/DfJ/6NDh/fCsjulFC7OQkdH71s+Ju25+/BrM3F8Dx7W/fllRW8tf0YKKWY8dc/46erP+2TcvcG6WUn5qvnba7VP7e0O7E5Zw8A4FhDBwpqIl/7yA2XYvQDd6LuyJGI5xSVVPXJIqYh7zDKrrseO6//OQ786hpkP/c48j/9BO7mFjhr6o77uh6PDwdzw33jaitqQszNUh+oqJRS5E07DVv++reI5wRbWqB4epZMU/H7u1Rj5LvvRPSrL4Qcy/9yK/KnTEXZ/tBn9peXw1/Zu4VdT5A/ZSq+/nNoPzqyei1y/3wnACCmlSKhXkbB2ncBAIF3/weXm7WnysrtfV4eAKBUQdn1N+DYlaFBIbUffoz8KVMhO51o+u8yBKur++X+PUXBa+9j5f1foWLTDhy9/HKULn1R/85dWYi2G84BueKiQSxhz2GSpn7AruJqVDV3RPy+tK4NFU1OuDpCz5n04BQ89uSj+Gz9drTuzUZuzniQGuMVRFlT781kJ4q6FqbIVLYcX6i7r60BHd4A/MHjU4vGvVeFy77sO9KkqOtvn6sD9z/9Gv755MuY3t79s/374Tvw/IvPdnue3+2Et8mOCV+G7kHtDcioau16MqlpY9+7/UHUtjEJ/qLPN2Dhq6+g3SKHnV9el2d4nWMtRwEAR9rClSYNpQ1O+IIy3rn7F5jzq0vw0co39e+UXip7H33yObbv3tfteQFZwZ6fnYGljz0ZctxnT0DurNvgavPh2bvvw/Jlb0a4Qijeu+3PeP+eu4FPNujH8n7/Q2TceD0aystArp0By2VzAAD7fjsTb/z9/0J+b2lieXFbm4zf/87/vQ350gux7bklPSpPV9iwYhkAIP5wHoJtbHKvq9mLku+ei4rzFh33dXN+cx0s11+BmqJQ1bHlovNhFV7j6OLQtANlZbXIzz8WcuxoXj4OTZ2GvI1bDO/V1tIMq6Ig7RNjBYXKMornL0DuRT1TDQtnzETxHaEETG5vh7ewKOJvGl9iW5WWv/Yo2o4cQ/GKDwAAR753MY5c2LMJOFBbC8UXeWuZ8iefRsUzz0GRWZ9L/yJ00wn/vXci5otQhbK57RgAwCJTaFd20/7x21EikPiSJc8gd9ZtOLx5R7/ctydwFhahPe8gACB/9UE01ASwcQ0bCwvWvaafl1i8CVKFBHiHBx0ZHqUcZpi17DSUPhnZbyD1ycnwP3Ym/G2hoeZV21JwzdpXEbV2NTr82Si3/hh1+3cZXmPs/8tC7t7dyD9ahs8290yNWvLCUtz1wP14/r6fo7Cy9ytahVJ0xGajrPgSNFRywveXe+7CXU8y6by4rgPeQPikDgAerxP5dyzAS/d3r3pooJSipL5DJ1qtefHIK+2bVZOkTiR+rxPX/vcJ/PSVp5C5I7rb3/3gnbU4/132vMEuSIXPw+qIdNpb+tW7b0Hwt9Mjrqy/+norXL+aiZzdufh08W/gvHVmyPdBS7gDtK29Aes2rcfqNatDjmukhxDjrt7hdCLu91Pw3h1XY87HuQCAjDXcQdzn6922G5P+ejtS/xg5FcInDz2GD39/MxqqyxC914vzlocqZEfHXoK2xAnY+XEpvvfhKpzx1GPd3pPKMqZ/vh6nfbAGXoVPgOn7WP9qrCyAuzoKwQ4WZejY6sdZq0J92YLqO5I77fn9wca9qG5sg3cDC9QgW1/E8eKrF19F/rZdaIpj7aJgFIFPvZ8XAdgCJyYBRZUyv8H60twuz1M6RVs5f3ge8JNLQo4de/4fkChFy3/uMbxGfdWxrgujkoy4xp5vkC5/Gko+is6ah6OXXx7x/Gqpnf0r16P8xz9E8J/39vheGkoWnYe914cqwY0HC7DnoScAAK5XlsH50guQvc4eX1NOjgcAHMsmIOr7lXqQ6iHY3AzXjt6SHOMx5NiIc9GWOAF5uaFO+f7KSshtoYqr4nbDo5IbI1BK4dq5s0uVte3jjxGorQ05VnH55Xj7uSosvXkTqrPPBYgEl28SNi1aimPZ3J+SOofXJtImaVLxxKqtOFwRuYP/85UP8MjrqyN+DwAdbg+27d6Dko9GInlzKCHatO0b/OfxO6EoFNVrk+FfK6HFFWqu2rxwCdZNW4bDvksAIqE6+1wcq/sFXrxlMwBg4zYexpv/bha8796L6GcvwDlvXhNynUNltcD9ibjr6f+G+NNc+sG/8duNb+Hako1oWNf7FTOhwKGpvwSlNmx4hStgv/34I/xmwzOoa2pGxr0TsfLpvxv+PtDaivgNTlz4/vpu70UpxZqvdmLNqv9hzBNjUf7gafp3E56e0euyG0Fr/J2dKTW1o7nRjde+yAkbLIhMQGvtKK+pxbHbpmLzptDV57L3P8GL730Mrzt0oN1R2gRFoTjvk81wH7TD6zZWC22vPoTAYQvk1x7BaR/uRGBHaDdtSAsPG28PODDpmd9i+n9C/ZBOKWEEM77ViaKKOvzrwUehKPx53LXlaMqPx5mfEYz7EgAAIABJREFU5+PAODaZrh8l+Hg5+QBb3dSK0nkT8dxdkU0yACC3sfKt27gNTW2hdXDK229i8tdfoa2C+Y4R1a/qxVs2hwyuh7fWYNOipdi8MLSd1tQ14eP/vRtyzB/g5aWJ8WHl8QXdYcc6Q6MRxMLr2u/zYcofr0PH9bPgbGXXIBH4urPDjfwpU7HuwUci3mPEkieB3/wCSVFsAlUI0Yk7EVIB7C1vQbu398pEojqcuLvZlJd24txG5rrYnAIAQHp+k+E1lOrIyiUAeH3eENXw8OadUBQFHfWN+ObFUPVQ8XbtzBxpstYeg4LCGmAVSbtQjSJdN+ZgqEpb9fOrEf32a3DW84Vla33oi28qKIlYRsnG3qUkHKNS91PtwauuQvkvfwWlF07jtNOiTetHbSmsH7XUpIb0oyMXXoSieWcj2NSE/ClTUf3uCuz/w//h2NVXw98UuguZq82HN279EPtnno3yX9yIwy+/BiP4WttQfeddKFl0Xth383MWY9LcDEDRGpmMjLqdGF3H54jYb2J7/LwAQAMB0GAQit+P3T/8ISq/HFgXFpM0AVBkGb//6CpULrkm4jk3LrsTP3vpzi6vs/3FWzDvfeZwZ2kJXVmMefN6nL9uNXxePlFSX6iD8Pycxcio2wVJHfQk2QeHvQg/f2Q+qqvKMX956KqrrbkSns9tqPomBQDwxv/ewLqvt8Gz8i/IfzcLt25/EElPpAP3J8LpDSBQHgW53o76fYnw7D7QTa2EYunNm3Bk4v+DOy4LAEFzjRtLb96EpTdvAgkSKGVRKNjwPqq2pWD2+4xcdnaAbleMFagPVn+Elx4IjXbasekTzHvqSsx6914cWZuBgOBGVbYhXf+8du1qvPHc4l5FkHVWwoKB0IFWUztef/At/GDpVVjz2edo8wR0M5mGxveeQGC9hJHP3xxyfNEzt+K8x/8Kr4ercTu+3oSxfz4DG1a8oh8TCQkA7CqtR5vbjzLKVtAVAeMJKyU+M+yYVQF8xTGQK6IAsEG8zeVDQg1rh4kNMmJuPxOXLX8Le9a+p/+u3cVWoj4r4IpS60PiA7HP2a5/rl/xH/jabLjoo1CTzP+efhwrf39pyLGaI8UY88ff4tBNxjmUij8MVZh+/sj80MGVABl1OzE/h5lgdnyzH23tLhy96VJMfPgBlB3gJk+/0Kei/OETbKUQ8SlObrJC8fIdf0VbWwcS1VOk5hqsvfUWLL/uZ2hTlWClLApbs5hJK2e8BEppmEpY+vQDAIAxy/9n+LwiLCproQQgankkGx8vor63ALuuOA9lhZH9qzS01DXh0NSp2PESr09LkLdvzazUU3x548+w/fFHsevMGADAtpmMAGj1ljv3TGy94Lvwd+LtsjOUHB9rqsOR8ZejLXEiPn5sLcjNN2LHow+i9PqFSF7yGMq2bNTPzXv99S7L5PWGjiO777ob5RHUdXdjreFxI8jq+Ku9yWBzM3u3QdYGnQGusip+3ob23vZ/qP/xj7B/CU8TQ/1CGdUEuRKlkMDq3+HuPoGto7oGABApkUZrQRFyf3JVaF3T0HZ47U3ZmDR3BIimuJJgSD/SsO8LNkaXvPQ4AvlM3crbuR5yaysCNawcuz46Aqc3DkfHMhWy8YMXEaiqgvPrrwEANe++h5qV7+PQR+9EfKbt8x5E8a46YfseC+oyzkLliMiLi+6Qd8ZM7DprNgq3f43YI6Wouttwl7V+w0lNmpYv+x+e/+MGHNp3FDU5yRj9SS0CsoLV6zYgICvwBxU4fawD+Vpt8LXYQ37vDchYs68KZU0uNHT4kLJjI4o/HGl4L89WB0iNHZ4OPlF6XaGTpsPfDkvQA0WyQZL9UCQbZH8rtuzZjuLNq1C2MS3kfJctdBJfuHIxznj9StS52YjWnheP/HezkP9uFvZ9FtqwGwPt6AnK6lvw1t+uQNwF0XB4mgBh0olLceCa++bq/+/YxQYyS4cFX321Eda/jMLuvdy/pbGaO2yWVNbjxftuQFltI6Y8dAfOfSc02smz/h20FMXBc7Dr9Apz19+EBftfhuOhqXjl7+vhaut6pbl9Zw7Kb5qOQwWF+jG/Spo2L1yCTYuW6mqHwz8J72e+geqPJBx46ELEPzw65FrN+TkAAOfR0GikYJMNissCn4crHJ4PlqK1JBaOD5bpx7wePhB7XE7EX/kd5Nx2JYgaHy4pxlF3mVJy2DFxoFUUirZfZgJ/HKsfS28G9jYxFaaqbKt+3OdmxC5gBTJa2X0T6jnZ8wlmieo248jC2ctex+lfh07wrbXMFyWqxHgSc3pClYq3/r49dHClQF3GWdg+70E0lpYg8dc/xdEbFkCpY3JKQxVPYeEV6pl4w+tswr18gG6p4YrB+jt/inPWforDv/mOfuxoxQ5MWLcRZ+zZh8pG/rzJ6tyUpCjYfMNPUTCNK58A4BOCCbw+P3K/YBPLCz+5DqsvCjXVW9UuxEgT+9w5U3dWaRNcPw4lokbY9sITkCiQ+AyfwElyEvKLjyC/6EhIG9RAu8jcOjJnH5JefwvJNtZWEmxRWHfTjcibNR0AENPhRmpVPfxe3kaq31mBojlzUb2C9eHNC5dg0+MVqM08GyAETa3J2LRoKfZVzEeNOmTlH+WkqbKe+00FW1qQP2Uq3Hv26seaynhUVcDnR+xHa+C6OXShoqGlkzvDsffXwN3Jub6hogPLbvsK1aXMsiAB8BQUoHjBOah54019nz5F4b5fAWej/jnqc2baDbzPtz0NCgSLqkSVKEQ39tq8zZDb2hCoY+TJX1kJRSVa3vz8UDUtAtE9cMdvEZN/CLlv/lc/plB+bkvObtRefRncO7eDEjaHUGqBJeiFwx863jeqvpsuyYf4djZ6ELuEorPn4+XFB7D05k04tK1Wt3hsWrQUh0Y9hJILLkTF728CALTevxiti/+BihZjf0qACQGxSXZAWzBTGXZvMxbsWBzxN93BFqSIdwdQ62J92UN6tzA4UZzUpMmbA9Agwa53+OD49coXcM5rN+LrD17GyiV3I/+fZ0f8/SP33Y6FT8xF1uOjUfjQIpDCyP4wVpk1zEN5PIoi4A03z/jtCciu3oIz9/wb2dVbEOu2Yu7KaxAsDG+YrZR3akopfEUxaPomGbFZp4SdW5W3MeT/Sd4qfPjpp3B6fFiz6i3IivFAumv5C5izJh9Za/4Ciyb7UwoKCqXlKNKyOalxWjhhSX7tJlRsToXnLe4T4S7k6taOx3+J776fiy+f+BPg4c9RVNOCujY3Wlu7lv8BYN+hw2hel4bgtkSsL/odvI0Stn9QYnjuztzd2Jd3AP6X7oX8DdD4JrepK35Wbk3p0zu4wqTkuuiHkfBJHco/TkNQWMX7oli5q0cby+k+Dyccvnb2/jool8BFhcTb3gjqsSBrazE3FUVQ5qjB8WihLTRWlaEmJxnVO0LJlaS+4naLrJtOOpr4YNqs5kxVEoVn9HRg3bpP8M3OHAR9/Hk63B58lbOblbOzvQfQfXUieek4pCj9c1llDWKUZYgRBldCALu3GfNzFqNG7TOOIj9c6mP66gSlSfC7knxdm7XaWzlp2u9mvhT5Qf6bKi9/PxbhWqcE2Y0zgzJG5rJ27HFy4uCP532/ZMFcxPz5Jhx861Usyt+LqRVlUIK8JrT3QNF15vmeZKV3NRSGHbNIVtDLfghcdik8rvCIVVnqPikoEXy7xny1EzafEmLW9atkWgHQ9sD9AICmx9i/EYut8GciNr7QkKO4bHVAjU4ru+46/VjNLj52le7Yxq+nXUtYMgTjuanH1dwMz313I/+KH8BbehSFv/4dFI8H65cdgN8r46vlR/Vzd9/GSFjb44/rZXR6+aK2oyXcdcMjPGnAz8c+nqyR6KuZQHQaDl5wPkq++10E3B4cufAibLnhGhz915MouPaXeOdPq+Gzsw5YWxAa/OPetQtyayuqHYyYl5UK2dYFpSn/Zeb/52vsQFwrm0Pk1EL41euK74/KrD0SgXBQ1dfNyOKRUbcTs/ffH1YHAFDdHjkoyeFvx7jT0wBCIMl+AARpTQfDSNzxgKhjiG1gOdPJt41KS3Mjlt68EQABrFkAAI/Tik2LlgKUYsont6F5XwI8ccsxs7gS1job8Dj/vS8QxCtP34PzrrkF161Zjzokom5PIpKlFkg9yFDsKiyGphf5PC5Edfp+xiGuREwuZjapeqQi+hdJYdf6zpf89TmFLLz+YPhqe4svD6In0LjdDijKLdhe+iNMz1mFXfEOnP09bp587fFbEDfuTMjtbGApin2YzWQqCAA3zcLzf/gS56vH7JOnATiE8jSg3OvAd6CgSPboz+uv4xJ1bHMRABviG/dCG1lknwfxf5kOW3wAsc2J6Kp5KsEAsp4/D6sWvglF8Acp3FGHwh11sFgl3PyfRbxOnvolnDGxKHd7MQJAoasSI9TvAkEfosCkZPFakJiUnO45A3YfG8xFVUNjBLIVqGtqRmVVNc6cMZ1/7XND1yYN/DK8AqnKLzuKZAAWhYAGmwBYISl8MBLNLEakKSl9DABWv+1OY1OAZnWLtSTrJsjyA04kgake6UEZgAUzfH4AbFLze10YcyszS9dezfe62nnX1cjacAQVa7hCKK6WlYDaBiN0idgibnpU/noW5u6PQ+73DwDkVKayWuz64Oqpr9VbgqIu8wpa8rFAPeb38ncidZMhWRbKOL6SXXV+gVBuhb8Tj7MdWmugmiO98Dyu9iZExzFFxjUqFSkAqpOBrBb27OW7PsZ4rYyCqmhRtGtyAqX0wAnc7fSgoaYBYyeN0Y9JU8YAGwvRFA+kahyOEp3Iepzhk9OOWQ5MaGlG3n/+hXPuezzse3YNVjAqPLDPy4lBwMfq3B0FxKnqkTNGRpIXWJCzGDsuehCy06qOGRTR7no4A0v057VbotBcXAoQAoudE52mql0Y1akosSNT+PfbPwFfCoT3qWBdjf65uZkpVDEtbhy+/hpsn/E4NtzOF63tjQF93J9+8BYAQEUakKEOpbLgPlFbW4vONgSPIDCLxF1r+xRAEBYAFM1yHMY4WZ05VRPiiAOF8B4oxNFJ16IlkIijYy/BlOIVKC/aiczTZ7FrKArKfv4LAED9GexdlHoOQxtlRP+nurF2JG8BTjn2X9THE8S7AF/2dsxYxRY3fsH/STMvy5JFr0fNLGlk8bAEvYjy8rYk9nV7KVfyqCzDtX0H4r5zjn7M3eFHdvUWZFVvQ1X2OfDbE9EX0KOwBziV4UlHmmJdVSA0CErCnWkJDSJjbwAAgVLbwggTEDLhbf1oJc57bS0q8r+BaKwxIkxFxUWI/9/FqL18hU6OWu3x0IwmPoMBLRK82eldfl9TyqMfAp5w5m+3OgCERkK58x2Ica2FvzAeLZPXAQJpmr75M8SMWIOi034IAJi7+zHsnXkTgrYUNhBSiihvExbedTbkzew30ZQ1pzGNQEeGDYAPcVFJAFinkhr482ominjKJ2hPWy1a1S1inNO6dob0e9xo2pgCem6kM0J7kqdShjfWhfFu9p6mFvCJVvNpMhBMwuBs5+RU0X5AgJKHv4/0pmrgTZ4fxu9zI0YrjXauoO36vG5o465UU6UfL7XZMBMU+xyARlOcgmKgrRJFtI7PhNZCDh3Yh1MNyi5RZjpR9tqAbHassTwBmxYtBVECOO9rRgxtCEInTT6XThx8sVxVjN7FzHG1JbugHRUjCQN+DzTtpbndhZUbt+Pmn1yofz/2KDct73fHYTIAv+LAyNocOGOzkDhvEnwNrC1UHtuCSeq541Q+KBVzFcDn4+8yEGOH3RnZRCsLC4r4jvA25hIIqd/N2isTidUXJzQrr5srTbJK3NwOoGIkxehaAjJxAvAFc6iuqeaqBlEnJ4UARC2CLHefALVszmz2u8OHsOOcM9Fy6kREnzUOgECYADSseRgarfK4wnNTKVYJRy5YiFS3gi12qrebEP8nbcwTVCm/ELgQ9IWb/erjCJKaKRz+dsjBIAAriBwAtVhBiYQMJaCrOB5ZRt2P2NhCb+FpCQIGfTCggC8+PPx5NGVEXMwF7uMpLKqOlEKbnoM+J+bufgy5Z/0JihKn/ybK04jTD74El9pYXQ7oxFhpKNK7a2LqCP26hZNtmFwYQO2MMRhdxcxcAT9vz1RQLrVrJUbxju9VTZubFy4JWaRVZ5+L6uxzQTbIiN5+B2zJSUi9gUf2jVDsAHwYYUkBwBYdIQuVGEYum1MABFhAi6PkYvjsReydKOGkSYTH64FGXzWLR1b1NlRnnQOfPREOH/+NIjzjgu3H9M8f3/pnTNqwCZ4HHtD7/0W/moySJUwAOPXICkhy77c/2nrr9UhdtwdTC7iLh9PN5jOp66miz3HSmeeUNmuXzNSivlC/4Ni3bRe3rztWvA0AGL2jGVUp6BL7Vj+H1hVRqFz1GHxq33AJmru/rTnCL8NRW7Sz6++P8jIq3vABLWDg2xDlA1IK2XBk31uKFpdf74Rxx+yQdsbBrsro8a4qAFqdqD43sh+wCIqB4FAtyewcYuWDQlAwURA3a3qjd/HlmqueTyxZFV13rLZe7m9FJQJCKVIbWRnSyjiBk1U5fcGOxYh21/EJg1JEu+sQbOf2d1cHJy+cNFGkfNYBeWe8OlkwiBNLu4Opmk4bXycHvZzEEokPQtFqNabplAtorub5gxQDpSnz4HL987hnnwz7XruuJr0TPcKKmSBn7OfPKA5CYruJHcHovtsBWNTiSg5uFvQIk6qm/lAAX/7mEnz3nj8hP8ImrgrYNeLSNkNSAnDGjwYkWVddA37uS1ii+sC7TuF6RECox7JzuB+XEYKCSTTOG04+T006kz+Di01uQQtA1aFSJNYhpMnHJk1FAvw2dq7FwteksuADBJW42WUhAixorJCVHTqIz6++EE4nfw/1paVIbvHilJyDIWY/DWPW8rbtc4fni7NAQrSbveRa1S8PADwuYRGnT8b8gT2CMhrwq+9XrI8YPp0o0W0YWbsDsa5qOMhBxDnVTabVy8YQbs4kDv7ZbzA4i9GRR8VtNw3KKKKumY8R8W4gd/adUGh8CMnyRqchd/ZdyD2NlaEki+hbGgYEZU0WFsXUqjp623i7DIhKk2KgGgrvSTs3khksK/1D2NZ+Arz1NupLuFuGjbD72ajgWyuY5zS/uAAkgLKAFos7U3fkloU93mLUtC1Zdby+SZA/74xDyzC5eCXiXVWYXLwSMw4tg88hRJZ6jBPFTtqwCQBQ8AHP3u4X+qdLzeXclmzMdCilyJ8yFbvOOyvkeOo6lqQ2ILhHeNTEqQNNYk460gSwyREEIZMjFDnEOa10JO8klZ/yvDVWgZA0JXY9sWd9ziaJ9I0l+mAREMLQve2NRj/T/U00GzcAZFbvNTxXQ0s19+XxtITnYLL6wzuymPAuwVuO5CfTseKpP4ecQ4VBTJGiEeuqRmzUJ4h1VSNoi0FbI3fSlNXQ/fIMQFJVB2rhk2pCO2/wHf5wkbMmj+eXSeroum6bW5gMv2DHYkhBb4gaaLVL+PkjC0LOVyS2qpdD8/oBAILqJObwt0Mh7ASisAFGIRZcvIdPJh4h4k1zERDT3rjd/FzR0VurakcTH7gCfj6Y+N38ut/fwy6c5BP8lIR6NnIUjdvEQ+3tzcYCcno7l96pZGd1RiVYgl7EeETpnf9GnAxi81Vzhw+wq48Rk8wj+ZobuVrmd3JyOTGf+YNUFmw2LFc7UbB54RI0VP9Kd8KvOiTrodJyCy9blDp5jSDcXC2u8mXatYODXwhJj/eFn0tEtUwlCbLElULRiVr0WZNVMqYQTjpFVau8mPupUPX49DIqKE3G5rmyW67G2LwqbL7jCv1YXatA3NXnqcw07i9+g7QWVoFkKISPZy5BRdXNcyIpcokLjXB11hbH34l39Fc6AY5r6cCMQ8uQ0K7oCnNQWJRaVS2zKR6YzJuQDtFfKD2VLT7cgmks0kjR0cr7zL7xRI0gCwhEg4LIfnZcYmUQ/chE/8Wg0Fe1upEI759BIW2JIrPOIdaN28O/96tjiMPfDkqZGYwo3AzWHMfHAn85V1Y0gaZU4eO7IkQCa75d5eOfwbGpLKCFgOiO3G/fzQmyaxzTF6szOAXoHEXceR7K+w5X27yerhetKa2i7ybvJ1VT2X3Lx4ZbegDmsgIAcTXGyaE9wqJ1dPzgGMpOStLk8LfDrtoUtMnR4WsJcU6bVs57jyfAnZIddfylTanoWhcMqO/UlWjTO2N7JXc6D3QYbyui+ZtoKwQAGLm966SLI0t5DimrEr5qvWpr12WNO2JH/rtZGPnNpyHmH1kdsNwOYNHWv2Pe7kdhsxRg3u5H8Z3tf0drLSdr2gAugYCojEKcgKNcfOCwj2Kfd0/kI0u9M1wNi4TDhxgh3T7vQSjWqBDmEvQreOvvodsWUAJICkXQiDQJg3K8sxLZ1V9jTu6TyK7+GvHO0O0Yivdu5tdUR0XRaTZn0xf6Z59LCA1WUyJMEcxSfoFA+9UJqS4Z2DJNVTsTudLUUi+Uw0Bd6Ck2L1yiEhOi/1Vnn4uceTwfEhVGe5HY+WL5CjdKbWIlRTxaqb6WR9A1trLZz28BGlRxzWLv7MHHkCxLmJ+zGPaYI/qqm1ioHirtENqF7iQvEEfRnwQRFBv9eYQB3OEJr0dR8dHM3IoFiPG3hBYAzMziPHQYHQcO6pOmInHSJE6kvtoC/bMWNZU3ludpChr4IQJAuuqiYzvElcaqOt4WFFUdiCSe+zzhk09IolNBKfQaKU1Cv/II15L93G9HQzCWvd/NC5cgJu9anQA3JS3ApkVLUTrmX7pPkyySDPXZpQgPERRIcVRNrnDfrp1ZmpzcvymWEDj87YhJYERKkv0Apcis3cHIi+qgKFFOdgKiOuQPN/kSSRxzBPOc4J+mlVAjUgAQEHaCqEtnZjCL/xlkV2+B356ACWPP0L9vWPux/tkCdo2gMKj6BaKjKdBZFfcjpi1cwbroD9nCuUpI+QBA7pTjymge0uB2GS/4cyazOtk3je9HJUZwBtWoTNkSGomuoaWGt+28jR8gf8pUlObyaN9mIQJbq9OeBEz0JU46nyYNDv9OpFd7Qmy2Ir6YLeEPn7KGFd+WC6heSVFCrh57sGs1xJ3aBlTY0TA+AVllbGCf1sjZvtxJOo9k45bkABZt6TqLtnt7AjRdSvGHr6BTepjQNuOwHU3CBJ1+9FMAceiIYQoDIEaHAM3HduuOm5oDpAQFDlkGIAECAUt2uaDx9PQ69V8pAK0Z1uw+HOIn1hXoFy8CsGJ+zmLsmn0ncy6ULCASEJNgx9X3zA05X7EQWIIUssEyoeMQV7iMHPFFxG19FVpb0Puq0AxKv1yluQvBqpIIlwPIPsLe9bER3C/H08JNmwG1LcgSEFR7ZazEB5b2dkE97GXuHRHzcxajZMIVaEibAcXigCT7kN64HxOPfKCfQ0PMcwKxi2YTbGMikKYuhq1vcrNgc2MZNL2rqLUAMwD4rUB6OwVADB3YAVZ9Dn87rJIMv+Z8CpseKm1tF5LfaQqIMKF5O1p13xUjfy8RPpcLnZNYeKIJoj3suroDO6DvmyZLQPZ+Ky+sCr/HjYorr2TnXjFdPZfog7hIDOQ2nnpBIwk+GycK4qRrhKMZBGMa1JQQRCAc3TjcBw0idKsJH3dIykgA7GW6BXWQGJAmn8ep++ApBkqTEsW+nZ+zGDtnXw3ZdhoUiwNAABl1e+GP/USoG17PcjeLAFmomw7HaKSD9Su9/0VIfun38jetkVNFiQrz1QGAUfY0AOVIDXJtPejj9016SNj3Tq8bPpgEhOehonlOc3wXOlWABnU/wRT5PUwuboV/RLo+3jTbbtXPLZ1gxRhVpIxVcy+d4fVC8zkUVVatLVjldkgyU7AUBABVwZJsfHHhCbLfiYRDFlKvGM1DkAMA2DzkdBnnkKP6v7zu/SJxN2hXInZ/sxIT1c91D/8D2QAOPfQn/Zjs5FGMnZMSDxROSqUJAOaueyPMZitCI0wAMHEzXyE3jO/5Kv+UfWzSUwTbd7KLN6DkxtA9ySLZuDsnJjPCSEG0SmiPvF9TT+BeOoeX8SvW+FMFE7alnXeYKcv36J9HVHwGAIhvJ7C1s6alCCu0KBdvbiklalZkQfk585vQ+ugKp32jbonhb0da00GAEBCFbfo5fkYaYhNDcydpZhMj81zytp4n+hyVw9uCxckmQo+w4ly4jjvkO1tZB++IBtLbWHtqGyH4eNVwf4X2JnauYoG+uapVcNb0tggZiU+ANImRMaCKbhIQVVZRaXK7uQxPBBOUfq6wj2B7CycGp3rUQdNKEO1jPwg6jZVVbaSV5Sg93UZ0Wq0eKm0XEpdqg7xIjnyiWambCdjrDg++8EbzRiELSlMwl+VasgWBKB93+tcQ8AnmV7Wdi+a5EHNHPVc9lAA332jPE/R0vaqpF4JnpZD7BuCzJ6Aq+9YQc74Gv8E2OJmCK6U9lasPdUeFrTQM/IX8omKgKk1JAicjVt4n05ucevQVwHIFxcg1+vOK5JSoIeuRFAO/oNj6VQWbAIhxsYqWDFwPAK7kNiRxH8v0kTnG4z5hZZ9QadGJoEjWxA2PtboRFbug6NOktkFKoFcfFZQmf7SgVQgkQjM5ysKYOTZ5iv5ZlrRM48IzesKj9gBAtjIFqyLtRV3BEhdAFl315xfT1M5I81CKn6vRHpexeU6rO6vCn1EMeBId19sMEoE7q7klxjuSldGWwCcfEs1NhMFA16pyf+GkJU29gV3oMOlHey/OxTXzhpCyn0+62dtDzRWRQj17m9NidI6xGaSneLd8RNgx0f9p1g7eUe1u3oRSN7GJMt4DZKkDc0JZeN6kgIWF1gMAEcJlLEahMz2AFukxJ/ffSK3fAnd7uKmDSsxkmGRQlenVx9f5JquWqTo7J8VBm+Bbpfr4+ITXMfMgv1fKOq5wnb6CKZD2AMV3DussQv++pI4nAHT8mzWkAAAgAElEQVTJvdsPrjP89gTEutgkHuuq0cmJBipEt3gFXyuoju3ioC0SqDiPQKAqmDmJik637eGBD7VJ0CeO1LgN+oRmsW/SJzRZ2KA4S11oikqTTyBCSjdKU8AV3gA8ggOzaKKYtoNNMjHhlhl2LW/4hMXMc+x5RJ8mWRFMW1pIOgG0Rwu6jElTs8o9GxMEM5mwaKFyAEfHXgJ3jLEZRTaIpNXbF0JVETEruW4AE96f6JtCg+GVEkIMhHxz0XQv/PYEuGxJnDQJdTP6nc0AQgmYCPGdyQI5yapk1xi7y8ARCpzkUQJYtBD7CGZQTV5ttSucNHm77meiea6+iC+AqLioUU/xC6qIRyA6ElXgsyegxfJL+GwJahmFuhWsBgGLOpAIixqRvGhtkBAgq2IZxpV9jrS2H2Jc2eeYcWhZSNqLqStZGoKMBqEtONn3keahWd8c0891eyIsgLTnCvI+5RMDnrSFICHGu+Yd4PWo+ZeKNkSR+HX2wRoomKRpADAp19jpzQh+ewJG1uYgxlWDkbU7wia0gcCPdvadkXiCQbJYMRnZuBID6aeXECM9Zh5eidRTw7efoBJBhrGiDMsJPu4I8HdkFYjfEXXwpBF6WXJD+BcjWgQnXYEAnL2N11NpsOeboHbG5oVL0Jg+C664bLaBZlw2GtNn4ctz+Soy4OHlSv6aR7xpkVhpAo9yjeS+dsE2bkKcuY8Nbh47r9zYzZz46b/PkDHpKBs+k4q5UnXWcn7fXZPDI+JEpckv+AZa3d0MpO+/G3ZIm3wBY5IRcl/hlYn+XlFV6pYrBMhS3T3E9xcvONrP2lgDnz0BrrRboUis7VC3MWkqHkP062rwq9nHNy9cgsbWP+q+Q5rDr7hfnxyBjOnPIJQr7W/P6p814kcEZcDTwTtQXFl4ZxKJrNgnEymbtBVJEkgTJ1i2bsR78Rk0v0lQ4MipTJqJi+AKqUURyxJA1QqkkZRIta+6U/kCSI5g/iEGSpNP2GZFbJuaVa5W2BLJ8gXvB16PD0fHXoIgGY2abEZ6aQd/XlccJ7LaRsuiItfRzHOyUYGM22TmkxQTGKeTaXFbJ23hYxWq45Rln+mfOydZ7jwPebzhi4/yLP5ZFgIq/CLJp5w0RRvwVzFwCE2aTMcPeQVVWVOFB9qnySRNQwwzDi3To04kJRhmNuwPGEXrDWccWh0eck8l0m+ZY6Mi2Pd/sJv15nERNnntDjO+5APiGIEnXffV8ScmiSS9n7WT7/03fj+fOMYV8yHi9M8NsrSncbtRYy13Do1X5xsaxQfB7CMGL0AY8JrGG+fwuOrrsrBj4sas7jZeT9N3dB3VM6686yFPNsg/FHJf4XNASCMw5SAjUIpweZEYZG4NXTgdHXsJqG0CqtWJEh5jVWPeYW6O0hBUlZf5OYthlw7r6SOIgTmftnetUgcjkERF3wpEMBE3cl/Hilg249WIryyCyqdltheTecqCKnVYdWQs6JzVUrusUEbRdCVF2MVAg11VbNyC75jiMyZCp2xnzyYRIeXAjl2G5+qZyAVCmfTGJ/x7wXdPs1JkK3xsbS9lTkqbFy6BK/kZRnohoTaTkd6CvTwxZOxRthBRwKPnxLbQKmS4h2quKhvzNApmaNFznEzvWhmeVNLjCDsEwDjlgIis298O+03QIummaZE4ukWlSSNNEtGDSUT4sniDmlQWbnnwCNfSCHRP8uv1JU5aR/DeYt856Zi17fhX+D3BiTiCnwjEKIkpxSv67T4DhQx3+E73tAdbRxwvpuSduFo2UIjk0xTrNQ7x7Q7ZW7hpZP5n4Vt6TC3sWkYQV4n2gsh7WHVG1nYejTZ3VX4XZ/YOUhE3JzelKkhtCiVZE3YJSkRNOJmbW8wfqPMmtkDXfVxzsjWCYKFEUFWlHP52pFQ1oXbkVIBSUMkeZs5vP2CcG0svo0H+NgAgWii7QJrk3dznKdbFZryAEAQlRVBxtPxADncQCertREI5TeXiNgvLHh5WlnahHlVfKgsF7J6uSVOUSiapBBC1aEoEk06CS1PW+LHEYuPVzuQi7WK8bpJaBVXxEF9cSGo1dgQ58RubzxZZkYIyUtL5vorjNzCCJQGYvpNJvJJQzZ8eXANtu1otlUV29QNwR1+OtqTIwR5BC2CVgeqxFiQd7pvV5CkVCkarQ6FdSLHgE9K0aEpTSASngLM/NFggCaxI3OOxSXUxMMhe0684LqWJEDKCEPITQsgfCSG/JoScRSLVwhCDbBdCbNWxyyiiqjOUmJhuz+lKsflyEXe4PDyZ2aZlAj0TLXBijuDHg84b1BrJ+wBQ1tOQth7g6BjewitHsBHq8HQDj8ATwPlPvBV2jFqGRfMcEHTn02SESEl8tUzUx61WChee1Avuk9HYP5r86Xl8MndFd020Jy/vOnfa3I3h+dL4/obaxGu8C31nnJPPn3fKCpbodvPCJajNXBiWPkLsvzMOdO2vd9rXxsSgOagqX4Kak3yEK01xbeoELoieFl84aVIIMGUXUwdm7OdqmmyQGsISYe6eskkwt6smKEcAOLW46yzqUarv39g6YJQqRtJunYeprg6ltnbdxoyyagPA+GOsXLIEWFQHdLdBEESkBUzm1xEULhVx9XwOu2CPQHoDWtqEdtj9XfvGWrX9c9G3Cz5Nzf/+Lt5W6qr4AmfmFtYn0st7HvkW3czH7paaY/rnxAZ23eBQJk2EkPMIIesAfALgEgCZAKYBuA9AHiHkAULIkLbxyElchdCGxMKJxg2n6YKZ+ufoKD6Alqn5/A5fx7OWfrNoKkrGX462xIkoGX9Z2LWIg5OuaNWhrykJqM3mq84TdQSvHsMZWEXXu64AEAZwIcmnNoAXns13WtIyHItoN0gbVTZaQZv6mEfO5ZsGF17Do/FaRnI9WNsfSx6Zqh/Lnx2+x15vkH9uJqLSwh3Zu1OaDs7rQYX1EQ7ODVfCAKAiM7yeSzMMTjwBRPJp6kyUO6M7v6+u2n5XOKW0f8nsiZiex1T2vTq5fd6DqMuYC6jZmyFZUZdxFrbPe7DL300vC38BfbHIinEbv9hFeez4jFw+9oxo4KQopZrNjqOEbQ5P2xluGpVoaBCJhqhv9oUds/m6J8Kz1ld2e44GN2FERTTLOyqM92XUMO2gz9BsZISRm7tm+bKVIEblBqNbIyQf7eECpkU4PKKCz1dTKnmdxR1l5vHR5bIePRfJJ0lDjLP/d7sNHgpXoLOqeu7EnSEEX01+k+dsalfYZBPouctwn6C3I9YPAPyOUjqXUvp7Sul9lNI7KKWXAZgJYC+Ai/q8lH0ILSwWANomq+wnwth49r+5HdcRwyb2xiQKLfr4AGGmic0Ll8CLW1CXeTZACOoy54cpNtZonreifSzbwlax0DB7bCQHPGeM8YBSfsdV+ueGCSyLYN4Mh55peMVCgaV/P3QluG3+o2wAF/Zwqss4C9vmPwpvCld/tHDdAxeP1499uZBP/MUzma08aOP7jftGceJii+HPrkisPHtmxfCVpaDiBTJPjLw4ibFvCFXvmzfbmLAoScbHjXB4OmOMR8YZL3GOjuXHCyeGnxNI4OF0WpBJUzwQNOj8lWm8gZRMZvetST/+yfxEJ9qKTvfW1Mqu2v5g4njJXH9hfs5i2L3N3O9FkWH3Nh+XmtxX0bbHg7QIJKCnmFwezqSy+9j74bKc8HtMPmC8/cfxIL2la99CS5AiWbUsOtrDSUJvFjDJPXilE4+wsS8q0L1Pkobx5f1PmqwxJyYFFU8xToQ5NZe9y1Fd8+A+R29J03ZKabnRF5TSIKX0Q0rpqj4oV7+BSJylt53KSFMkWdgazSfSCXN+AACw2+N1R0GPNXyrARFiuK49hjN9ouZtCnfxjNzYq0YYq2HRcXwvM/5sRN9JvVXI5EdtofLQzP3PscG703Yys/Y9q++vBHCHS5uVV1RMLFeEfHFstvdZ7bpPgDWK38seKzggqo87tkbRpX1JIFXWhBMTKud+ZRwKqytNDt4BN57Bn9Ea2735VYOsKm+y3bj7+OOZmuZ2sKSanUEcXG3bv5CRREXi1y3gllx4hPHCmZiK3Fm3wRN1/HV0PBNt2RT+/lqTQpld5LYPtKiv9eAM42z2tWldKwvlY40Hy55gqJI5nldMYv2NSEhrOnjcRKe7KCcTg4fxVbx9j6kKn2QG2h1jsHDG/hPLpzSpwNgM63AOjzxN9/VLKQYQkhDSmNjAtNOs2tDB+9Qd2zFp29aQY5Mv/Rnst9+Eme9/DL+NzRRJAW0/KmMmTQWCFh3PowKI3aH+jkTeOElF0ULmUEQiZFCNSeSmLagqGgWPFgkIXMtrC/UdSm0tAqgWwksBAliCHqS0FUMRzFmaM6MSx9WjxGRmvlMAxAdYqLjLouiPI9n5RBkVz4ldB2WroZoJCTpZtcbxgT7SVhs9RTDKWKvVkqoRIaeSN5OTASm6a9Lkevx2/h+1bmQr7z6fzhES3SWwevbbgKmFrGPXZwkbawoblGrtUbYAE48wJXCKkHbGJ/AGt/18tCVOQGN6eD6e3qAnE23Lz2fpn10j2feV6Szjdc/vw/5VbBHeSTeXasnk76RKbXpHJhsTKTEkvymxazJnhENzjs8sXC2YVA8b+P7tnh9at5G2sdm8cAm+uWhk+AW6QU8VhZ6iuw3o6zL5WFmdNcCx3t8yDKZS+G1ArJe1P+8QN88Ne0iSEEL9u78AAJJ+/JOQwcKSlARramrI7wghmHDTbYgaMVJXSOLcbpy6MwdX3n4aAKWTYhPEKbFr9d/HJabxMojEwGAS2jNBSF6Wok4cEQaz2EROZHSliQh7Hgm/a7SFkzsq2WANuDDhyAcA8UFR9wSyCJtVaqY+axSfxEaOPEW/lyeGPVtAooZKU2wiJ4xNKlPyS1xpQgxX9Cy241cXAECONo6h1fcqE1Qeh4WTpu7ImhTPz9VMfYpAmgIO3nOl1DT47AkonHIrKjPY71wZ3DRqEUy1sUXMMZJEUPpliasmXus8gEhwJizsVjWpS4k8+0WaaPefyx2oolIEvzCVaCoWTpoKJnUvufvt6qLCEf5OG+N7ECqsxpaUZfPU2Z4x3HxbcNXp+uf932XlPTjJxqJpIs3nwvGDZ/D3QCOohkao/N3F/HdRrN00JhM9j46IoNAeqzPYprExrt2Aoi1WBHUhpucm4ne+2z9D9+Hp6ciddRsKJibpY+LhMzjxaxjD2rPPCrQmRYhXHwTsnzXAcefdoC2hZ4TSVApPHD31Qesr9LbnTSGEHDD4yyOE9HwvikGEJIT7ppx1DkYvW4ZJf/sn8q6YDQBojQ/tfKfu2I7Je/eEHEvKHAcA+N6MX8OSkICRU0bCok2gqmIjKQFMv/rH/F7pfBlK7KwMFIC201HhbE4sQpw+BTNZwMBCF59s7CmsZTEe38hn41ghS+vhCexiMQ334dxv/oaxlRsxbcYOnLeFKSp2N2+JGrmxRnOlKmMETzjod7COLjqVWgWlKTaJT3QaqQoQRXfQbFA4GZNU0lQz4vgGQSXWmPw0EFYhPgv3LUgcyX20gpau/RPGjOVBAbLKcMSIPCKYPqWEJBRNuAqu2Ek4Np75nJUQPsHYY/nAGE81h2CgfFy4hD+hSREc9rWQF7lbGb89vvf1FxB2bY9NE2QTVSmSLURnd4kxLIR6wQ5t53i+65QU9GJi4WIevh3F38lH3xmtXovzl7y54fljAG5SDdoF1VNQCq0xgnKqKna2IAACLMhZDCnoDVnISEEvFuQsxt45jCyJifRoCl/UGEGM0IkSVGOtbjriCCT1XpVZQkcVSHpDVjQc/nYo1gBA7GrZeJoAYjc2YxqWpw+Dnion8Idrj2U+YM0pV+rO/1I8759EJcCyZBxcUT+ia7KwZ9EY/fO2BXxhemw0u9a+szhxzPseP9cIe+dzBdudPU7/XDiel6HwVFZRzWk9n+r2XtLzcOGDwkKjZBa7V0km0JjWMz+eSAuYpnQ+HpWPUn1Kz+i5b1DZPB6dVp9x/HndTISjt6TpKIAfGfxdqv475GG3ha6O4hZ+B8Rmw5yzWPHpzOkh31uSkiBFhw5m5z/3DlJvugmTr/klv260FbGuakwoeQ3JI2PhiI/B6LO/q39/yjRu7vCrq1qZAET1F/LF83IJrkMgVjYoExDD1AiJaVnhBwEkqP7QY4TNqKMnXqp/1ga8aClWV07ix0wCwMhZVBvPjaKTpig+SSXGsQGPAvCpk3lWO9EnQptg7opOyQwrn58oiFP79ZQxp2P82o8xdvlyQCUi4qRQM7fn4amRSJOmargVni9lwqipvIzBries1LET9M9SPbuGU9hWwhrFBvvNC5egqup6NGScCRACf9RsbFq0FLbYZ/i9hEm34YxxAJgpa8yx8JmQTpzMI640UkMs3UZcGe2xJ6IlOXwAFk2yCZkT9c8akVUkIMqr5lnxMCLs8LfDqsZoE4URbVvACUI7oHvtCf1HIbzta2ZflyWCvq62BUWSkF2nZkMW1FKb4FenmaYTOxRkNrJy2QMsHwJREynaAx1w+NtRa2XvT/TbsziMzbOt6hxefCafoKMF1bhpAusHsoWFwQNAwwxhgSQortRhY0EjjvmG5rnO4wwAlI03fpHa+qd4FEF7N+54ToOMHr4UYXuO5ERdzfRFnQEQAm/MbF3NJHGCY6SDq45aZz8wj5Ofw5PDn2H/TH4sbvw4/XNzDBu73HYgoKaCoYIp1yLcN/dHY/RIyMYU9aUIBNoiqOCxasNqjgMC6vUkqefEwRbV9VhQNp7fl0bxcduZysyrQUldYACoGnV8iuCxCayN1aQBbq1uojihFJ+mwcA3sCV5mv65/pxT9c97p7N+UjhF0vMb1cwenO1IKrpep0RERyJ/+sLxA68w9vaN+imlZZH++qWEfQ2LBRM3f4kpeaHC2MRLr0baLbfgrCdf6v4SiYkYcfttIZF4v37yXFz0EyvOff0RXHf/2fj1M+eF/CYti6e7zZTYAJzgFswywmQg7u0F1eSmRLA3RMeInt7axQjq1Plk/3TeqM4+83v6Z7+6yg6OH4FTVr2P1JtuQrxAwGKsfCDkJjc+MCWoRMhCgSbKcoXUZNp1M6JNIFjRCXxy00rjF7LIzZ0+C1ETJyJm9hl6RmWbTHVbNYkQ725EImkEh25tQrNRPuCNENS/i255FIo1MtMgwmA+8xgrzxwhkjZaJZGKZLwaFI+LplpiUTculgjsSxmxynjvPf17W1wij7jS2gBVuo24ol3sLeBMdODYrPC0DEeDfFPZ+EyeMkJTS6jEffCaJnL/m5jEILKrv8ac3CcRm1CCeGdlSGZsi9AWtP2kFAmwBdnF7PFCGxahmUHF9+zg5zoSBMVHbc91aVZ0qLw5zlnFyrXnSWTWbkGckzmLpSvqRCf4HEoRzMKamZMKfT1WMF3qQR2EB1+IPmtin6E2K+bnLIYjuB9ENc8RwTwnRYeb59pSjCdwre0HpNBcSUaoGBNuRnM082d3js3ost1aEgQl0M6VJq0v01h+/YRRU9AZYjBEXLzgv6guCBWJLx5DiFAsr4/YCbP0JLxHxv8QAEAcfIEkquCaeCsmPTw2pXt/MW28sdi7NjvKYgoW4f3yvgwoKuFvHJ0MI5SqalhtBFc6j0VTd/mCjwpzxL5F/IeebDa4lU+Q0KC+KkmoD5vgM6rVb9Bm12eUlslzjQvRh6g6JVxF3/39UwzO7B4VpwqbDFuPj5SeCHp7x239UooBhm3kyJBJEACIxYL0W/4Ia7JxI+8Jsq/8GWJGh++TBbCIqcxHHsH41asQk8nOCVgBi7bFQJBvxZF3y+X650Z1f6tYNw2dPFRE8gHS5ky74MMVPYmvOGbNZsraxd/7DaKmTsWI229DQhojQhTAvDsfBQBk/Otxfi1BPUqZyMxVHfPngHpY6KdT9ukd0S6YTqIEf6AkVZxRgn7E/+53AADH+HH694qPOUGOrAf2n6KqCxFaqZFFzR9hlTjJxcozyspD0+w2YdCNi8NpBw+G/OazOWORcuMvMGrpfwAAI/72N6TfxrM2i/lnUgmrm7m7HwPgCzELWYIepNf+Wz83MZVL+pLaDikBJlzwfUwtyEfK6VzttCUkY/u8B+GPSoE+TREJ/qiUrnP7dEGaTl/9KYgUXqnXbuEPZFcJtD9K0vuKYiH6ZWk0b3czz4duYkjLzsOMQ8tYkINm3hH8xbTgCEaa2DGHMKgHYvl1NR89apGYXxMAScx3Jph9qeD0p6h8QDR9OC5RdNOHRfXbIyGkiU+UR2cyUtucQPmGpkI/i0seIfxOJU0S3zJDEkiitZOfksPfDgIfKGHOvxTc+dcW1fMITk2JDVi733vLaO/Dhtm8H9gSUkFohC1QaBD2ZKGetclcEoIrrHwsTRg/FZ0hBrHEOTjRtdk4AdPSmoiRpZYYrt5W77tYT8Lrimc+fc3+v+jn2mOFcduilYvqW50Y+dUBQOkYXjaNnEjdkCZFIC8kWjQRayo534pFXAy3JfP+1ZrE+kRLtrEyPqpDdQEgRHfhkIR6dsQI6q26v6NikZCuZlSwCX6TUUKwkKQuWqjVoj+veG5/oC0WqMlmfarhFGHD8sTeBz4AgCIsSvy2gd+NoVekiVJ6CwAQQhyEkOsIIfcSQhZrfydSEELI/YSQKkLIPvXvB8J39xBCSgghhYSQi4Xj31ePlRBC7j6R+/c3iCQh6corEDVtGkZNPgMAEK1I6FCF1lwHzy80djxfrSWqq5cRjYrxxpbCCpjvHE717QrsFkHBEuT/KXf/A9lPP4X0C7n6lD6CKS8Wqw3R00/D5D25SLn8ck6aYuIw7r2VGPX88yB2O6YW5OOs197Cog5GxuaVR+lTl0NYNUcJKQfOP8AuNuGoF6P++hdMLcgPGVTHZ84DALiS7FxJkkJnhWOnpWFy7m79/7KwkvVE6ERnv7QSwRGpOO/e/+jHrN0Mjm0xUci45x7EX3ABAPx/9s47PIpq/eOfszXZZNMDIQkhIQQSei9SpAgKdsV2RbF7bdd2/YkVu8L1ig31YsFyvSj2goqogIJKL9JRQHqHENJ39/z+mNmdCdk0SNiNnM/z5MnsmTNnzpydnfOd97znPSReeQVJf7+e8gEnVcqb00sLT+Yu3FbBnws0/dR2/abA5/hEw6IXGAqowloQGZ9ssjQFFnaq0dJkqaIjXZdtIyItFRnEsrAix+i07TGJuN77gFYzfwa0G88rTB20ySoX38z0oqBbO80dtcXUEQrdIuQTRqgPa5Tx0C6PMQkHXdhJiwj4FDmlcV53giE+ff7OUQQXEWZfKBlYPMzkK2USRfmpen0ExOm/I+kw2svdxDT8ZrI0OfT+wBZt3O9Oc7gN3ZriE9Ek7tWcf5vYfg44/9rqIJr8v40ya9XftR8ZxEFdJhgiw+5ya75pPk+lySwn/fogriTDSr5FaEOeHqvZSm505mbxUqTf2mbfp7KUyi8MZkuTxdQhOvT26DPvQVzJewJr7OEro+mu+SQlfRjIGxFjsozroWA8NjgotC/FLISKmxkdd5Rp6T2/iLA6jO/hm5Mqd+zmYV276eXQL8I9FqMs82jE+mbGy8EWR1mlsswkbtbUT8xh48sVNuMetcSY6mU54j9gN/lNRpomC/knHvmslsBLuLOKCQh7dIP40kGV3SsA5g+pne+Xz0LgubCnqSHW42JqL5rWdzeEu9fUt4Ri/ubR2rY+A85Ge5oWmv6OlQlSys7631cAQoi2wMVAO+A04CUhhFUIYQUmokUmbwtcoucNe1LyOkFSEll3PEisPrs00RReKDpGu1tL7bC9YB0AKzKCLzgrLBaSbrmZ5q+9htXvKIwMzChwBrEogNaJxIwYUUGwWKOjib/8MrL/qy3GaNGDTvqfo46IKCI7dMA9uOLQY5d33sfVpzftfpoTuIsjow3zsU13BN6X0YQvemrnW5EZvF4dLrwa6XKR++ZUEvUf2pEWtp5/uw1LlPGwsnolBfpzrrxXa4LhzMqiw49zsCUl4b3hKsouvaDCAzoYifYdQdPbP/ciWCxkf2OsCp7ZrQ9JDzxAzrxfcUTaSEiLZti17Ygq3I7NV8rOHKM94k2dfcy+H7UNb/CfvzM23ojtg8DiLQNEjbF9/J2Q74geNSlRa59gTrzeRJO4EYIWndsTFR+LV1+vy2cx3np9JvNfQhPjQVjmX1rCFE3Dao9kx5COFN5/G8JqWNb8lkLzA94bZ5rRJvyiyUKk7kvlzTeuOSbJOK/0+UWTCCqaIvcYxxn7jTaw6UM93ggf0lpZUHpNvyNnnGEt8Ur/bFBjCLggyhRqxNSZ+zuOWN/7NN+sWcCy4mYELGD2II7gVc0wTNIvp8d6GfxlykyQ79oaa4gbmz0CZ9khLD7/Ir36chw+L86yQ8T4Z8oC8XGa4HeUQeQBreMXJsFpM23vztTueWlqO4dp0odDFzI+0xCj1WTN9lsVnWWHsNpBWnTneaFZ54oijS7HHWt07BZdNHltEpfPb600rl2Mez2wnXjAuFkC/pgma6b5e9/fRH8emYSOzRR/7zDa78RrNdwpykoMfyFPU+N37zRZfIKxrY8mdAqijIqZ29lpsh4FrFoWY7jPborfF232KfXfCzZr4HptEabgw90MP82tyfrvwBbc59Bluq126qdb0914Lq8YqQ37OcswOhFTeybGmQLS1UB5rFGu122aiV7Dos0NwdGKpnQp5UVSyvFSyn/7/+q1ZgZnA+9JKUullBuB34Ge+t/vUsoNUsoy4D09b1gRddZZiLiKA9cWp5Pcn34k6eKLAo7awxcaX36p/mZf4oDuW7UHdNcNVd8cyTfdRHS/vmDTOz3TLChbHZYEFEKQcu+9RHboUCE9Qn+gRUYFj9YtHA5aTJ6MxeUKOHdHmeNSCUHahGfo+ca7NLVrD5l0gk+tFRYLbRcvIjq3DYf0y1hteli0nPYlCeedV+EYabVyMEb/BftqnhyyxE4AACAASURBVH/a/ta76PTAIxWGUYKxwl15wVXQLHZ5q1biyMwMpMU3SSf50r9hi43lynH9uOTBXuR0a0qb3HX0++U+UkcZcZ4cKcZxB+I0q2NcFa8c/rfAMkcMka61dFv8NFGH51Y7NbnklEGByQSbexsP7Sb/vJPeE98EoEhWVuCd2p1TKQ2MleUtNivooSj2eo22cZp8T2KE9kBzYXxndmcEgye+T/dR1+PTO7SsXYZocpjieMk4U2gHXd3stJUSp1+QLcVwUI81WXy8uuis6lfia2a81frXAzPH2bI6Xex4ZhyHJ76O1K2VEaWwqoMmZHwmU6DZuhCxRltKo8M6D05dvPyJMXHBZfK78ltmpMVYDV6Yfif2iMpDNWYBuOnavwW2+x/U7nOfVQZdpmR3e9PMsyCWJluc0fHYdJGQcGC17ps2HnfyQRIOaNcW28SYZZqqPwNiiiFJHwoq8pWyaWRftvRpWsHKGntAd8SXxkW0GWjMF/IPz/kEtNiu5bGajrfpLzWz+j9LwfbkSs7zxVtGB/JGxZmGTPXhucMOERjbN685l5FmWEbNbWcMV5mEm/69b0uR/KG/+PhMPk0RJsEfvVl7mEeWQdYm7Wbo/rMxE0ckaMfvjpcU6jd/VaKptKlWx/Rd5mFD4/6ITjDuZ79okhZI0V++7ab7zmqe7am/KEirNXCc3eRgvuGMfwS2c/W4cSJIqJqdcRC7b1OldF8bo++IidfO67VgiCZzwOfI6p+/Zsz+a9L0O2lMoulnIUSHmrPVmZv1EAZvCCH8T9I0YIspz1Y9rar0sCJj/Dhyf/2lUvqRwSodXmg1ayY5v/xMdmpHACKcseRc+HcAPLWKWB1wzQyk2LAR1a8fQrcaCbsdV4+6Of65h54LQKv2PWvICbZTtWGqZi0qWnxihg/HkZ5O22xtdLV19ik1lmUv0n0EDpjG8rOzA22Xo7dr3rKlxLi0r75N8341lutHRFQfF8fs41MVHv2hJ6zBH3597n+UnJ9+pO0FFxI/+S1sd42pMLU8NnsAULVoQh++67jyVWIS5+Mu3Eb8wQ+rDGLYctqXdH72eYr0n/aaSKPtEq+5Bqtbu2ZHgdGJlDotNBlzN7m33kaT9z8g4c2KCx63bNYXgOTE9oEV6cV2ozPw+9Xl52TR75p7ONQyjVbj3wjchjaTRS/ugLGIrd8HyGkW2ImGgPL6BbBFkPriF2zq1Z1htz4U2G+O/+WVxnflFxr704w3aGFyNvfoC5vuLjTawBrhYvCIs+jdt1/A0uQqEcYQoenhbDMNubRqr82QLc9wB66nb05f4xpNb/F+65+0iMCQmi3GeBGJCDJ7zllsiNvUbl2N+l56P3G9D1Ly1luBtPwnDA+Flvc/CUBxrCuoVdFmmvTh1O/HtC2v0vwffSlo7eRvD50TuMdSs3MCebuco/sRWSVz2mnllhYXMPyx1xj6xkxspo59c5bfK9noZuLcRkfp0DtCsyXZ7Ftm1zvVKuN5WW3s6R2PNamMFtmGL1WJLpTabhDYIrTvSpQb7ehukk7i8MP8et0FFOhN/udtFwQen1aXcQ82t5juc11lmN0BzBb1uTnaDZC1UxJdVFmYJ+zTXDDiDxmzH0uq8OIv2238TgITcUzCITbBuG8MS5NxjybbjGtITjZEb8DHy2o1Ju2Yhufseww3kUi/t0eQ2a0ODxz2Gb+/aP2w4hJjyETE6jG9nBjWMlO/F2Gv/XC01XTtfsuXtxaTIBqCoxVN/YBFuj9RreM0CSG+E0KsCPJ3NvAykA10BnYAfstVsJ+MrCY92HmvE0IsFEIs3LOnnhc4qkfsKSnY4uOJaZFB9ODBtHn5P6SeehoAWRMm1HB0xYv330vRhQ4yXnuV3MWLAMj9bTkt3nm7TvVq9+hjtJ4/D3tMzcH3Wj37HG2WLqkQedtM9zFjcT8xju73PFRjWZ03alc0bLGkqF0uRcOHVdhvi4vTfKJsNjo+Ph5baiot+tZeNEVGVX89qfuq3Q1AhxUryFtT/cKdtmTtAZfSpyc5V4+u8LbVY/DFABSdXXFttIgnxlF2wQU0iTU6rBiL9pCJDjYjQMeZnY2w2Wi/WWu7hPzgPU5puXFxzR58lMQrrkA4HCR2ak/T3t0r5O120+2UXX0jJz1nzCzNdmcGtoXFQuuFC+j10adEuKPo9dV3pHXtEviBmgOdRpZUXhvQPBvNmmwyvZdqoiZnn51mebkMf+udChH9zZMg8qWmOvc7ygKdTPGocwP7zRYQe6lmCWpiMdYhs5vfevU360Inhg9IFSvat7lvAnuefo7cL405Mq1bGuFFnOblk/zCyyKM4SiTX8cur7bgbYkd9ujDzEmlhohIStMsa0WxMPCcy3G8uIlu3Xux7e7b2Z0bS+czLgnkbd65K7YZP9Hx5wWB+21lJ+Mac08xjPI2Xah4rdBt6DCGTJmGzWblt/Yt8TS3VpjUkdy8Oev6tGHnQ48FxE6p1L4nIQR2k2jy+/NUtZpBpG4Zd5kiipiXrnJEuDj0n0kVfKbMWISg/+S5ZM1eT2xTw+8q7k/jHklCq0Oiz4GlTRHO3EIcdhtNJmzhyjsewa3fju7k1ID4MN+vq4R2b3qFFvYFKgYMjjANgw0p1BokyjSD3+My7tHiltr3d9glAi9k3X8x7kHpNO6xeJ8hav33jdV0jyZlGJNFygJrh8K2S/pijyknsb/xrIxsYhqe08s6YC0LiFHzEl+ytRGPzo8tiOtAwmEQpcZLh/+FwW0K3eKfOOQz+RlKjFmNZZ7aBzK2max/ft8urwUKq1oDrQE52pX0jmodByllzeYFQAjxKuAPp70VMHucpQPb9e2q0o887yRgEkD37t1D4TtWI3LUZYFtYbPR/KWJgc81dcp+4mNygI247c04kLSdxL0lZLU5r8bjakJYLFhruSacEAIRZJjBXFb6eXVfPLXbR59Uu9/VpQs5P3xfpzJd7urfdHYkCyrPBapfYlKb4vrlZ6yxFQM8Zp13Fpx3Fh6vj/VoM8JyT7uewrdm4jr1SnhFEzAH4q3EH6j6wdFliYXMadPwHPGy0GybsZ5T0/Orv0eE1Uqnu24BIGrCBApvv51eNzzEjm+MjtccUyeA/kvzmYxwKRFRwGF8Dh+WMr2TiTce6lZTJH7/Q7ksoaIZv/XiRcZQjU677VqH02uTNKw4Tif5l1+OPSGhgmiS+qWXSAeHXCXEFIHD7Ayrv8lGlZp8v6Qkpe9+PEUVLYpWi2DAGRXFfNNm2RTo2xFm0WTypfLX0Rpr+Lm0SWijXa8dWt//HAfOHE7a/c9TcuXlALjcCeS//xFN4rV7JTFaEx2nXHkdXHkdAPtGX0xcpjaEmdNcF6DCH7rBaC9XqskfTB+qPTKEx4UfTuNIhBCcPflTABZ9rk1E8HkNpyq7eX1Lv0g8QjPtb+bGa3cEQhkcjiQgXiym9nJERNP55P6071zKW/fNQZYT+M5tDgujHu2jCTWrQEYaz5xyvQoFKRB7+qVY1zxP8umj2WazEVdFXDt3YipFfsuL00Xsj78grDbaXTIYgIwdgv16TCBpsmqaZ35GZ58OfIwro5iizVolCptEYS8uRtokNv03UlU/v/2ZF+jz4aXICLDf+Qg78s9hzwWPUv689tszz3Jzt2gTuMeKpd/3T9L77pdZc9l+WqU0we/FF+NOwG+3krr4t5lmjjpN1rJ2nfpWck52Hq689lt0bjFOh/b9HWxmo7zQQ/IhiMjOBpZo59AtzD4BFukXnJJNQzLoXboK6ay9/DAv+u737fJYodfaMB+eE0JEA1QXp8mfp64IIcwu+ucC/vnfnwMX6zP2soAcYD6wAMgRQmQJIRxozuKfH825Q0ny/dpyfrl33Vmn43J++ZmWX39VIa3XAC14ZY8B55I5SPMd6Nlt4LFXMkQ4B2kPLFKDP+iOFasu7g6dNiLo/rJq4jbVJ7b4+KAhAABsVgubH3sG9+fTyejSidxVK+ljCnvgbJmL+/LLEW43Lb+q3MntzHYSmd0Sd+9eFdJbBfdxr5GM4VpYhLg2wR3uzUTqnXW0NDrSlrc+RWrvAxyeMJ6y5lr7JjQzhg8siVpH7wOsZdrDujipori1ulxYTUNZBU1dZDz0BgAlj0wyhjNsEfS+9x66/f36CrGTMvboHa813chrEk17LIa/VopHE1BppQ4cL23D/vomALxTPsD+WcX2PuTWCqvg82ReIkhvD5sUgYj99gRDvCRFaNfuiBGk5GSSt2Y1WX2MofSouCTadmpL84yqvRD63TOW9pdcWiEtIPzMswVN0eyth7TutVktLKtmerg0v5vu0ca9UCGUS8CPxUJkm2IimmsmpR4zfqXP1z9idWm/P/NcBXMH7tAtwVGxTpyRevgRfcg20m0nKrbixAU/kRna/eQZPJRul95C5HfL6HL6BQw+9Vy6dqv4O/CT2DyHcn/sK5uF1CZxNEuMJmuXYQYTencpTEO1DtN9Nejmx3juvAuRby/kcI6Wbh82FM62U3h6bGDhcosPModpLzHWIYYAO2XIMAqe2oJl3A5apTel3xs/c96IUwKO/uV2U/DZGMPCFefxr3wuiY6w071lxVUibKbvpFwfpowRkVj178c8ESOtaSIHs928NeC0QNq2g1tI/mUBi/tr3/e6NpKyVxbjGHoOEc1K2HvZtYG85lmKTqu2bRVg09tOCsnAJ7/E+9Q6nPFmX6vKzB9kvLJGmEYFhMkyGgrqamn6TAixFG323CIpNZu4EKIlMAi4EHgV+LDqIqpkvBCiM9r76SbgegAp5UohxFRgFdpsvZuk/mokhLgZmA5YgTeklCuP4rwhJWnUpSSNurTmjCb2n9wfW3x8pZhS7lNOIf2ll4g+eQDS4+Fw375Edu5cRSkNT8abk5HlNU3tqZrmD9zH7zN/IOOJJ+qxVhWpzorndgdfoqY+ONShLTSrnRg8daRh2D1SXPkuOp30s66Ee+8JemxCz0uCpsf+ewL5d96O84yGC+TvGHQhTH2PnL6GRSqvc294cye9gAM9h7F4zXry0tLZr+8X+j3ts4CjVJ+tZK06NITts29onZJEXGwUrFlNHv73XM3S5Mc8lLeu97n0/PZjWp53M3LJjVpek/nfH79rd7wgY/T9lNxxBy1H3UuU6c24fZeKKwcAbLnmRkqXza5gnXRFxwXcwps0aQksJiU5B0vin/j22Ylr2hq/DTClYy9mDMgj+bI7KpS7PyeBhPX7cVRjwa0W/z1ThW9QTMs+wLuUx9XNWyPlrlfYVHolrW81YpBFRyQQGLTxW2SEoODfsykuKSYLcOh+Ps2jtWHrONMjwhzl3WHyOYxLicS65htSt8+l+J8TKcqvOop11N2vMd9yK4NveFQ7T0LVFmXZpByx20580+Yk6aabRItx3hKHHZdu8UwWUcA+kmUEpY4YVrS9ih4ek1OyRfDKEw8D8Mftz1Lw2n20uugWXFFjSBWCom81twirD3bevYLDcWfS+v9ms717t0AZKbGm4U1dCLbZrnmjtIprSca5e7F7PAiLBRnvwdW8BOHT7+0jY0/0s5BSsr9CkiPgYyWIzixHrnaQnJgasERZLYI+0+bTB1id+w0AJy/3khQfjS1RE4IeawTZKQmkjf4nn6V147xTh/DLKy8D2kxMP0lJLSgBYpOtJO3UfgVt93mIddmJddnZsieKyjYsg9hWaTBTez5HmvwX/cLMa4W9XWJJWpIf9PiGok6iSUo5RI+fdD3QV3fW9gBrgWnAaCnlzqOpiJTysmr2PQ48HiT9K+Crykf8tcmMiQ2aLoQIhAMQVisxp50aNN/xIqp372M63p6aWuuhyYagNK/h5hX0+uCjeinHFh182DR39Sryp31F7KnDgu5PPf00mvTsFvC3agi6Pfwg3ttuwZYQ/I0y3h3JkB4dK6QJfZjFa4Wk6DRgIxmtBlR5jpw2lYPJBobnTA9wc+Tgy597jLLtN5GXlsq8B7S0uBhDICdFaG1ilZA1YjiMqJ03wsjr/wFos492PfYQJft20Tw6PiAI8x58hR+j7mXw3eP5NONNei2ZSEyLvIBoctptnDHp40rltp3yPdv2HUNEF79flhD8OWAg8Uu0GGdr/3Ed6V1PonvvXnz2j4c4eWStvCcC5GW3IG/yDxXSkuPiDR8Jk6WpQ6vK31N6v2GsyRxH/oU3kTVec1yPijXux0hTjKvz7+zDQwcWkPvvN+jZuvo16dpmN6ftK5XbMRgrL7+F1GVTyI2KotxlxV7kJT7N8CO0NE+GVdpiF/aTL4G547D0v4g/DuwlP7YV6xcKsoOUO2TwAOSgHytYwNx6UFSrF7LSUsh6ZAEA24dYsXqrHmL//PyRXDb/v3gGnIX33KvwAHZADo1kdvRwEpdVtjAD2B+ZzYbCErqZE/0BSS2Cd/vfzqm575LZJHh7RmcVcXiji0N/G6gfq+/QLynCYeOiEUMrHGM1OfLHdR7A96dlc6D/zXTLakbMtSMpe+g1o35BIuCbMbddlGm2p9OhWXJLrdBm4rd8OftXOO/49XV19mk6UYVKOBA1aBCFM2fS7KGHQl2VE4Ki5ke5ONJxxOx4a0YIQdwZp1d77LEKJl9qGpbt26rcL4SoUjBVhd1ixwdIm6Td81OY89KzDL+hbkPXxmwjY+ikWVRawFdDCIEzTbPyWWKjofgwsaaFr6169Ohj8ZYYOPIiAMpNU92T4tyc9+gLAFxx7Q3ADbUqKz46gvjoo7QygTEsJ+C0SS8Hks+50QiDcfaNFx19+SYiTC90yV6tA022Bhf2iXHRnPT1rwghWPb8EzhKBPEJTQOWuejYivfnQ4/9o3Ihx8jIq/+BlP9ACIH1tfdZ9b93ODfPsCI6kuIBTTT1v2w0L89rgVwgQV+b8c/VZfw5cCIWb3kl/8cjHeDjE9MoQ5spbSb64Z8pryJOG8CdYx9h4Z+3cVJaxedR2piFZNutfDdaE01HLp3UKtXIb4/y4I20mG5qwcO33USJ5+9EOoLLgHl3TcX2wYN0v2mcliAr/AuKLcJJWbY2HBjvdnH+hC8C7SAXrqs4jBody4FqyjIPJ1ujEyjWrXtOfRKLzwrNEmK49txhXFddOfXM0TqCK0JA84kvIj2eCtGNFQ1IWE4ZqIizhlhTDUnel5/jK63fxT7j4jLYDxxumU1CfCxn3Te2zmUEItibo0unpAWNvpv25qesnjGTvDTDqvhn2UbaAZ56uAHsuj9JSUoVixIfB2xS/47k0V/PH3fciccna5wY4TD5nshOQ2DBu9i6Vm2p83eicYO8RP5ZjDXZEE3mIZmGQggR6JvbdW1Hu65PVdhvi42smJfgj4XatGxck1R2A9bsijNImydVP8nGYbNwUnblF7g4/8w83claVLOezoH3ZuNy2vHcpVmehcWCxSJwVSGYAEYO7oUc9I1J6NR8lTZbJNFv/hz4bBZJR4pIZw3Lt5jz2yNjWJxzMfmxrYj9XRPTTYpCEG8AJZoaFcJiqXIqv6L+8R1DJ3PccISuM7a4XIGo8fVF05xWbH3lHbr1qOwzVFuCWZpSEtx8NupG+p5ecQgqNTON1GtHVUhLK9WHMI66BhX546kJ5HZuiLB2tcPr1TxHyoMENK0tZ1x3Ta3ymTu6/rfdy8e9zuGCvu1qPG7t+f9lyXdTuDMhmbevvZrUzbPJC+G97cfatP6G6OOSU4g8fw/PRVxNcA/EoyOlXBuwa+ar+vvtkaNZVvM9kUAJqfbEKvOaMX+fNl2cWav5ZdicEWQn124umCNIKImYRx5j6WsP0nKzDyEEf/7fWP6YnwiveyBZC4eQnx/HDwMnIqSHo39KHD11nT33lRAis2GqolCEF0KG5k2mLkS6qlgmvRHTbWB3XFFHPxzlF01OZ0VBd/39t9C+S81BJIql1lFa60kzn3HOabTKDF3c3Xzd7223qBwjqyFx2Cxc3L891iDBNY9kWL9e3P3Qs9isFm6/859c9NwXx6GGNRMZVXGK1uVPnITNYalgtbN4SjipmnUg/VgtAtfje7nngXH1WkeXPlRozarZh9TbI4eYFkWIHhVnEWYM3EvzQdVPn8y0aEIr01v1i5LNVvWkjSOxHHFffH12U9IuPL9C2mlXXYw2z6syUoTG5lPX4JZvAt8KIe4TQoT+NUChaEAag6XJYQrEp9DwP9RsR9k2vdpr0/wjqvEzqU9Kkh3sbhVfc8ajxFairTo8cHn438/hRkR6qwqfo2KdRLo1a7/wav5qjvICnDFVrwPZ0Bz4+6vMH94WeeXTNeaNHvkob3UfTsbg0RXS5149k4XXz6n22MOnjyY2q4g/zrmy0r7AYseWo48D4L87Y71aYQl2zT/uzH900oZQTc9jYYEzbwvNzPC6zp6bKoSYBjwILBRCvINpfXYp5TP1XD+FImTEWkLnL1RbjrSmKAwinEcVMo6k9A7sA1ye+hqgq564T34mzdlwQWdcBdoj2lXd/O56ZM1ZlxGZltrggWGPZP1Tz1JeVlav543KyuVIOZTcPJqY5dMD4Q9m/XSAWXe9cdyv10/fdll0/9dUnLWIK9elVQZdHn+lUvqwWgyHD+jfj89jfubsDs0q7XP7fIAFl+XorT9+TRQpo4F8ol1alPeMtommFcJkwEE8I7fhfd6CcTRXWA4UAk7AjUk0KRR/JWJTggfCCyf+Kpam5Wefj6+0tF47Hkf80c1+jGvTkQVtc4m+9Op6rE3VZCWFvzivC+eOvzck5z3rnPqfdh6ZVfmOHP73jiz47ApEEzj5kjacfEmbej9vXamNYDpWhBCc3Tn4MHNKUgn5BS6sxxTbTlNNhf94nEOPP0D7EcZQnbAIrCWHabH5W7Z2vJDysuO/fIqfOokmIcRpwDNokbe7SimLGqRWCkUYkNu2Vc2ZQox5hlhj5qJxj9VbWXOuuIzMVdPJdde8VmIwHDYrp39c/bI9jYmjXWBUAc6oKBY99AI9+1R05I+ZPDtENQpP3jv/CVouf4chOcf+2jPgnCFwzpAKadc/fzJr22oTCk777sVjPsexUFdL033ABY0x8rZCURcy3nqLyPY1z/oJNZYqFjM9kbn8n3dzuOTOKheKPdGwKNl0TIy6uHLQzzYpRyfI/6rccuUl7Dh4Lu7I2juCH4mvmpAGFouFxO9nE5sY+okvdfVp6t9QFVEowomoXj1DXYVaoYRBZZw2K87oEC1MFYZ47SqyjKJhsVstZCQ2rH9lk7QmDVp+bVGvIApFI8R2zd9DXQVFI8Hj0IT1mh61i82jUBwvPA6TBGkkkzuVaFIoGiE5/7w1pOvyKRoPmT4tTlNKRGhmGykUVeH7fDa/5OrLrDQS1aTstgqFCXHZlThSUkJdDYWi3iiPSgW24ImpfqFbheJ40ykziZ8bmVumEk0KhYnc+/4v1FVQKOqVjAee4bMD93L+PU+EuioKRSX89iXZCIIJgxJNCoVC8ZcmMzWBW9+rHNBQoQgHar8ccHigfJoUCoVCoVCEmMYhm5RoUigUCoVCERLkEf/DHSWaFAqFQqFQhJjGIZuUaFIoFAqFQqGoBUo0KRQKhUKhCCmRonHEHlCiSaFQKBQKRUhI9GliqYUlOcQ1qR1KNCkUCoVCoVDUAiWaFAqFQqFQhJZGEtxSiSaFQqFQKBQhwQhuqUSTQqFQKBQKRTWImrOEEUo0KRQKhUKhCAlqGRWFQqFQKBSKWiCDbIUzSjQpFAqFQqEICYHBucahmZRoUigUCoVCESJ01aQcwRUKhUKhUCj+QijRpFAoFAqFIqQoS5NCoVAoFApFtWjjc41DMinRpFAoFAqFIkQ0rihNSjQpFAqFQqEIMcrSdBQIIW4RQqwVQqwUQow3pd8jhPhd33eqKf00Pe13IcSY0NRaoVAoFArF0dDcGwFAC0tCiGtSO2yhroAfIcQg4Gygo5SyVAjRRE9vC1wMtANSge+EEK31wyYCQ4GtwAIhxOdSylXHv/YKhUKhUCjqSoS0av+FPcQ1qR3hZGm6AXhKSlkKIKXcraefDbwnpSyVUm4Efgd66n+/Syk3SCnLgPf0vAqFQqFQKBoBOyOzAdgfkxvimtSOcBJNrYH+Qoh5QojZQogeenoasMWUb6ueVlW6QqFQKBSKRkBEdDwAMTFxIa5J7Tiuw3NCiO+AlCC77tPrEg/0BnoAU4UQLQnuXC8JLviC+pIJIa4DrgPIyMioe8UVCoVCoVDUO91Gj2TLT9PpeNqAUFelVhxX0SSlPKWqfUKIG4CPpZQSmC+E8AFJaBak5qas6cB2fbuq9CPPOwmYBNC9e/fG4qSvUCgUCsVfmuh+/chbszrU1ag14TQ89ykwGEB39HYAe4HPgYuFEE4hRBaQA8wHFgA5QogsIYQDzVn885DUXKFQKBQKxV+esJk9B7wBvCGEWAGUAaN1q9NKIcRUYBXgAW6SUnoBhBA3A9MBK/CGlHJlaKquUCgUCoXir47QdMmJQ/fu3eXChQtDXQ2FQqFQKBT1gBBikZSy+3E514kmmoQQBcDaUNfjL0QS2jCq4thQ7Vj/qDatH1Q71i+qPeufNlJK9/E4UTgNzx0v1h4vRXoiIIRYqNrz2FHtWP+oNq0fVDvWL6o96x8hxHEbPgonR3CFQqFQKBSKsEWJJoVCoVAoFIpacCKKpkmhrsBfDNWe9YNqx/pHtWn9oNqxflHtWf8ctzY94RzBFQqFQqFQKI6GE9HSpFAoFAqFQlFnwl40CSGaCyFmCiFWCyFWCiFu1dMThBAzhBDr9f/xenquEOIXIUSpEOKfR5R1u17GCiHEFCFERBXnHK2Xu14IMdqU/o0QYplexitCCGtDXntDEE7tadr/uR7UtNEQTu0ohJglhFgrhFiq/zVpyGtvKMKsTR1CiElCiHVCiDVCiPMb8trrk3BpRyGE23RPLhVC7BVCPNvQ11/fhEt76umXCCF+E0IsF1p/lNSQ195QhFmbXqS350ohxPgays6EbgAAIABJREFUKy+lDOs/oBnQVd92A+uAtsB4YIyePgYYp283QVvw93Hgn6Zy0oCNQKT+eSpwRZDzJQAb9P/x+na8vi9G/y+Aj4CLQ90+jbk99f3nAf8DVoS6bRprOwKzgO6hbpO/WJs+DDymb1uApFC3T2NsxyPyLQIGhLp9Gmt7ooUI2u2/F/XzPxTq9mnkbZoIbAaS9XxvAUOqq3vYW5qklDuklIv17QJgNVpDnY12gej/z9Hz7JZSLgDKgxRnAyKFEDbARfAFfk8FZkgp90spDwAzgNP0sg+ZynEAjc4hLJzaUwgRDdwBPFZPl3fcCKd2/KsQZm16FfCkfh6flLLRBCMMs3YEQAiRg9bx/XSMl3fcCaP2FPpflBBCADFVHB/2hFGbtgTWSSn36Pm+A6q1Koe9aDIjhMgEugDzgKZSyh2gfQFoP8gqkVJuA55GU5U7gHwp5bdBsqYBW0yft+pp/jpMR1P7BcCHR3kpYUEYtOejwL+BoqO+iDAgDNoRYLI+BPKA/kBt1ISyTYUQcfrnR4UQi4UQHwghmh7D5YSMMLk3AS4B3pf663xjJZTtKaUsB24AfkMTBm2B14/hcsKCEN+jvwO5QohMXXSdAzSv7pyNRjTpVomPgNtMFp+6HB+PpmKzgFQ0tT4qWNYgaYEfupTyVDTTohMYXNd6hAuhbk8hRGeglZTyk7qeO5wIdTvq/y+VUnYA+ut/l9W1HuFEGLSpDUgH5kopuwK/oD2YGxVh0I5mLgam1LUO4USo21MIYUcTTV3045cD99S1HuFEqNtUtzrdALyPZgXdBHiqO2ejEE36zfIR8K6U8mM9eZcQopm+vxma9ac6TgE2Sin36Ir9Y+AkIUQvk6PiWWgK1Kw00znC3CelLAE+R/uyGh1h0p59gG5CiE3AHKC1EGJW/Vzh8SFM2tH/tuU3c/8P6Fk/V3j8CZM23Ydm/fQL+g+ArvVweceNMGlHf106ATYp5aJ6ubgQECbt2RlASvmHbrGbCpxUT5d43AmTNkVK+YWUspeUsg/aurTrqzth2IsmfajhdWC1lPIZ067PAb8H/GjgsxqK2gz0FkK49DKH6GXOk1J21v8+B6YDw4QQ8bqKHQZMF0JEm75MGzACWFNf13m8CJf2lFK+LKVMlVJmAv3QxpUH1td1NjTh0o5CCJvQZ9DoD6EzgEY1E9FPuLSp3iF9AQzUyxsCrKqHSzwuhEs7msq5hEZsZQqj9twGtBVCJOvlDUXzBWp0hFGbIvTZxnr6jcBr1Z5RhoEnfXV/aB2qRDNFLtX/RqB5vX+Ppgq/BxL0/CloqvIQcFDf9s96exhN6KwA3gGcVZzzKrSxzt+BK/W0psACvR4rgRfQ3p5C3kaNsT2P2J9J45s9FxbtCEShzUry35fPAdZQt09jblM9vQXwo16X74GMULdPY2xHfd8GIDfU7fJXaE/g72hCaTmasE8Mdfv8Bdp0CtpL0SpqMSNeRQRXKBQKhUKhqAVhPzynUCgUCoVCEQ4o0aRQKBQKhUJRC5RoUigUCoVCoagFtlBX4HiTlJQkMzMzQ10NhUKhUCgU9cCiRYv2SimTa8557JxwoikzM5OFCxeGuhoKhUKhUNQL5eXlbN26lZKSklBXpUGJiIggPT0du91eIV0I8efxqsMJJ5oUCoVCofgrsXXrVtxuN5mZmYjGv4pSUKSU7Nu3j61bt5KVlRWyeiifpkbG6h2HmL9xf6iroVAoFIowoaSkhMTExL+sYAIQQpCYmBhya5qyNDUyhj+nLRK+6anTQ1wThUKhUIQLf2XB5CccrlGJpkaHj8prYSoUCoVCoWholGhqZLiynsMasQs4K9RVUSgUCoXihEL5NDUyNMGkUCgUCkV4cvPNN9OiRYtq81x99dVMmzaNJUuWMGbMmONUs2NHiSaFQqFQKBT1wsaNG5k1axZlZWUUFBRUmW/p0qV06tSJLl268NRTTx3HGh4bSjQ1Mm740ssjb3tCXQ1FGPDx4q0s23Iw1NVQKBSKAGPHjuX++++nbdu2rFy5MpC+bt06+vXrR4cOHZgwYQI7d+4kPT2dUaNGMWvWrNBVuI4on6ZGxqDflBO4QuOOqcsANZNSoVAYPPzFSlZtP1SvZbZNjWHsme1qzLdy5UpWrFjBW2+9xZw5c1i5ciW9e/fG4/EwatQoXnzxRXr27MmNN95Ibm4uAMuXL6djx471Wt+GRFmawpSSci/vL9iMlPUrkrw+yadLtuH1KfHV2LG61iPse0NdDYVCoQDgvvvu49FHH0UIQV5eHitWrADg448/Ji8vj549ewLQrl07OnfuTFlZGYWFhSQkJFBYWMjo0aO59tpreffdd0N5GdWiLE1hyrhv1jB57iaSop0MyWsKwJb9Rcdc7v/m/ckDn62koKScy/pkHnN5itDhavG6vjU6pPVQKBThQ20sQg3BvHnzmD59OkuXLuWmm26ipKQkYEFavnw53bp1C+RdtGgRAwcOZNWqVeTl5QGasBo5ciRnnnkmF110EZdeemlIrqMmGtzSJISwCiGWCCG+1D9nCSHmCSHWCyHeF0I49PQWQojvhRDLhRCzhBDppjJG6/nXCyFGm9K7CSF+E0L8LoR4XoRD5Kt6YndBAfb4ueQXlwXSftt27JHAdxcUY4/7ld0FxcdclkKhUCgUAPfeey9ffvklmzZtYtOmTSxbtixgaUpMTAxsL1q0iClTptC5c2eWLVtGp06dAG0pmObNmwNgtVpDcxG14HgMz90KrDZ9HgdMkFLmAAeAq/X0p4G3pZQdgUeAJwGEEAnAWKAX0BMYK4SI1495GbgOyNH/TmvYS2kYvlmxgy+Wba+Q9od3ChEpX7D20LxA2tpDC46q/Jlrd5M5Zho78otZXfg1Ec0+ZXXhN8dUZ0Xo6fK7j7S9aphVoVCElhkzZlBaWsqQIUMCaU2bNqWwsJD9+/dz2WWXsXTpUjp37sz48eOJi4sjLy+vgmhKT09n69atAPh8vpBcR21o0OE53Vp0OvA4cIduCRoM/E3P8hbwEJr4aQvcrqfPBD7Vt08FZkgp9+tlzgBOE0LMAmKklL/o6W8D5wBfN+Q1NQR//+9iAM7slEqZx0e510cZ+QD48AbyHa0Z7Z15q3AkT2fJ5k6USm0KaJnv2If6FKHlng/0B8udoa2HQqE4sRk6dChDhw6tlJ6fnx/Ynj9/fqX9s2bN4tZbbwXgvPPO4+abb2batGmceeaZDVfZY6ShfZqeBf4PcOufE4GDUkr/nPmtQJq+vQw4H3gOOBdwCyES9f1bTGX6j0nTt49Mr5FyryZMXI7wcOmyuVcAXqQcQev7Nc03MHkbN3/tYevNO42M0lDfewpKue6dhTx7UWdaJEYFLfe/v/5JpN3KRvkuzqRfWXVwIFFr1jD1bQ+Tr/6jIS9JoVAoFIqgFBYW0r9/f4YOHRoIghkVFcXkyZNDXLOaabDhOSHEGcBuKeUic3KQrP7xhX8CJwshlgAnA9sATzXHVFfWkXW5TgixUAixcMPO/eTc9zVtH5zO5n31b21ZuT2/0lBbTUSm/5fI9Cl8v3o3logtWJw7GfrjdvK2QvLinwP5ktcZ2+e+PJPf8r/n5H/NrLLc+z9dxp0fLEZSDoBPeum8UhNL7ZatqVMdw4GXZ/3Bim35NWdUKBQV2HWohDfmbAx1NRQKQBNIixcvZty4caGuSp1pSFNLX+AsIcQIIAKIQbM8xQkhbLq1KR3YDiCl3A6cByCEiAbOl1LmCyG2AgNN5aYDs9AsS+lHpAdVK1LKScAkAGezljK52Yc44hYy4OmHQTpxR9goKPEw5dre9MlOBDRrlM0i6ryq8ukv/ADCw4gOI7Faanes0Kf/T1k+h6isiQB4F2tpy8t2cAmwv7CMVfM30VU/Zr/7BSJdmymPWgecEbTc6DZjkd4osnbFc99nHlbcux+fXqXwdbMLTn5ROeO+WcO4b1RcIoWirlz/ziKWbjnI4NwmZCYFt0wrFIqaaTBLk5TyHillupQyE7gY+EFKeSmav9JIPdto4DMAIUSSEMJfn3uAN/Tt6cAwIUS87gA+DJgupdwBFAgheuu+Upf7y6oOS8QOHHELAXDnjsUatZZi+1Kicx7hkld/JnPMNDLHTCPnvq954Yff63zd7twHcbd5hL+/U9lpe+PeQmasqrx23MsTvUye4GXF3mWBNLs+gLlXFJM5ZhpdH51BseNwYL/VtVnLF7uMZVsO8tvWfHYXlPDx4q3szC8BQFg8WOz5nPPjJtL3QbOFc4lwaHLJajLUzVm/l8x7PmHCjHV1vt7jxYGiUtx5Y3AkzA51VRSKRsfB4sNYIzfiree4bwrFiUYonHruBt4TQjwGLAH8wWYGAk8KISTwI3ATgJRyvxDiUcCvQh7xO4UDNwBvApFoDuC1cgJ3F0niCmFLssCVYYyhRqS9i/S6wBeBNXotz/08gkt63ozLYaXd2OncMDCbu0/LrVTe7kMlRDqsuCPsgbQfNs/lcGlX1u0q4LyXfua963pzxdszKBP72TD2xgrHJ+haKL98M588qamllRlaWkFkEdHpDyGsJexbb/g0NTkgefxtLw9dauX8t18BBJ6C9tgTZuP9NI+1Y0fT+Q8fZTbwSk0grd15iL5btUixUYeKmL5yJwcKy/jyjxm4c59l4vxR3D707to04XFnb7EmNp1NvwbGN/j5/thzmHiXg4QoR4OfS6FoaArc7+JKXsLe4hFkEx3q6igUjZbjIpqklLPQhtSQUm5ACx1wZJ4PgQ+rOP4NDMuTOX0h0L4udcneAa8/p81I+7WNYMI5FuIKod9KyZe9ViBNw3GujDfp8bgmkmzu33hl7n7+MTiHSIeVfYdLKSrzsmFvIaPfmE9spJ3MRBdddvlou0Xy7qA3aD+2NZaILbjzJjLp10ewNn+OKNthfL4bsAQZuuu9z7BOtdMMSWTshpUtNMtRRLmR98VXtGuY8KqXC+/RoqeWH+qIPWY5MmkmT3/bk3unaiJrXhvtXLujtpG2WUuL3FfCde9/g9W5A1v0Wuxxmm/Vaz9dQNcW8XTNiCec8CG57msvs9sfnyD2pzz/EbHOWJbef85xOZ9C0ZB02byGK771UNpzH9Ay1NVRKBot4TF9LET0Xit5f5wxpT+xQPBBPwvJ+dBus9TERt6YCsfkPZigbYgykFbASkT62xQW5LG6+DCf6dPAP23fusKxC8ofxGqVWLywZMsBHvliFWt3FVBS7guYxzpsqmw6v/I7HxuaCU5a5WP4oupN6/aY5dg8Eq+1mElzl+Pv7v1+TGU2w/F9b4wgOvvfAFi9khG/Sr7tKhj3yyv4ZjVl+f/dyoxVu2iR6KJLCAXUhj2H+b8Pl3Npy12cslRyylIv3N/w541u9TTlnmgg/EWTzyfZuK+Q7OSqLQjbDhaTFO3AaWts3myK+uCyHwpILID8Tasgr0eoq6NQNFpOaNF0JCMWSkYsNETU6O/hwnu0Jhqy1MeadMG2I0SUH7t7VYXPE99ZxRV32LB5JLd+7uOFMy1c+42Pk1dIhq+fjT1uPpaEA9hLUiqcPxiPvuMNmu7nmUnakN7cthYu+snHtO6Ct055PLA/Z5tWbodNku87CYYsk3TeKEnMlxQ74fT5Pi6YK7lsJlx4jybh2j2cgSPxJ7yFLemS3JMPbzgJKSU+CVaL4LRnf6Sk3Mt3d5xMq/u+5pbBrbhzWJsK9Zr002qe+m4uqx+48qg766Evv449fh5v/tCMp4Ls37K/iO0Hi+nVMvGoyjez/WAxK7blM6yd9p1YbIdrOCJ0mNckfOa7Vbw8/ys+u/I62qfFVsrr8fro+9QPDG+fwsujulXar1AoFIraoURTDUx90lPhs19ECSkREiJLYez/vPycZ8HuMTqyQ5Ew/nUPEWWQchCKnJpgAohuPRZhqT+HzPR92v+LftKsXKcvlMwyLRqdpMWzZOhSycyOxrDgyy9VFmPN9kn2xYC7zSP6wTNZvncDa3d24NRnfwRg9SOn8UfxD2App9V9h3AkzeLVX/dw57A2FJZ6GPT0LF4b3Z1nlj5MVMuVvP1rX07Na0FGoqtO1+Xx+nC1eA2AwuSKTvk+n8QnJf3HayEX7jq1DTcNalWn8o/krFe+5IBnE3+0u4sbpnlZkx6+q/J4pfHdvff7f3A1n8mPmzvSPu3USnnLvV7ceWP4ftfJgBJNCoVCcbQo0VRHjhRRfjJ3Vwz7nnKw4v5yk6HF6fXRZZ0k5QDkbWmY2Sz/eiO4dWrQ8urP99wk7biL7raStQv2xAJJMxn+8hQiM6Zhceyj/3gnEc0/AiAi5XMApOdXFv15Fhe8/ilR2RM49/W/E5mxEiElT34/kye+TqRVUjKPnd2Jri3isVur90166us1/LE7n+giyUPvevmob6FRx+/W8OysJSAFEalfYo9dxnOLTuFf008JavGqLcVJE3DZC1izazSDlksGLZfsGFtMn3Ff89H1g+jWQhumHPz0LEaflMnokzKP6jz1gc9rfL/lzhXYPZLDnuAxrHx6UFRnkpp5eKITvq8BCkXj4IQTTaVOY7vYAZFlkN86koJ9xQGLzdFSEJXG4i630XXJBNyFFUNGDVtiiJX/Pl39cFs4YPb1WpAj+NfIFwKfS5vfzu2feIkog2fOtfDyRC9vDTnEyI3Tic6ZAIAr8xUu+MnLBXMkf7vrJTw2wU7goklPcm3/ltwwsBXvLdjMpb1aEBNhqxQPa/LqFxCOvXzyolaP0d8bovSlleOIztHCRlh8EosHSP4OZ/J3TFrZhzuHTar1dUopA+cetDqf0xf4yB90kBh9//gfZuFuM5aL3l3DmP4Xc6i4nM1lc3jo680M75BCE3dErc9Vn/i8xkLOg1Yc4PqvvfznqkXQ/8JAekFJOWt2FtAmycrUJz18fJLQgnwoFApFA3LzzTfzxRdf8Oeff1aZ5+qrr+a8884jNTWV999/n6eeCuaAEX4cn6lIYYQ0WTgK9NGiovY5OIIbkOrEb+2uwWuN5Ld21x57YWFEj/WSHmt9TH3Sw9QnPVh8kj5rJF02SN75t5foErj6Wx/ROU8QXyB5arKHvM2SC+ZoQvH0BZIuv/twlUjceffw0/YfuPujxTw9+1u6Pv0iWfd+Skl5RSHpip1NtHNl4HOCyb3IEbuA9D2SNlsk97zv43//8nLhj9rxjoRfanVNCzftJ3PMNLLu+QqAf01fw03TfGTuhudN8bm+2fkSAM6mn/H04keYvGMkkWnvE93qX/R59mUAJs/dSOaYz9i4t7DCObw+ybhv1rDvcGmt6lQXioqLA9tn/qrNrvTumoXPJ5m9bg/rdxVw47uLueCVXzh0WJsAcN7PFa2MWw8U8V2QuGEKhUJxtGzcuJFZs2ZRVlZGQUFBlfmWLl1Kp06d6NKlS6MRTHACWpoiTTqxxJHG7H63kR35E7ElyyvlLbFXnOZfFT+c/CKYLCUlrib8MHAiSMng2TfXS73NHEqRxOw8vob2uz42LD3vjatsKYsoh6GLfVw7Xcv38LtGnktnGccubCX4z+D3+al4HlGZSwEtVELuAw5SYiIoLPPw7jW9eP4/XpIOBa/LrZ/56Lu6ogAYOVcycq6H+a0Fe88vJSnaWem4y9+czfLNxRwsKsee8BOO5GLwOdldMIRXfp0RiKu+d/uEwDEtijYy4Tkvj194mGXZ2opAEyd6mNrfwuyOb5A5pjXOlE9w583jlJc20SKqExv2FHJauxQu7JHOf+b9wJ/7evCvkV14ZsY6Xv95Fe9ccTL9WydX09rV899f/+SpT37iA/2zQ2/qQudhNu8v5JqPn8dzuA2xSStx531JQckngWO/+m0HN767iMlX9uSmT9/AF7WYJa2mEOlQs+pOCOq4woFCUVfGjh3L/fffz6uvvsrKlSvp3bs3AOvWreOqq64iPz+fq666ip07d5Kens6oUaO45pprGDhwYGgrXktOONHkj4+UPmY0P/2Qidcayabd/Un2fl4pr18w+QQE89suzCklan3lzjkYX/YQnLGg7v5LO5IEzfZKtua5SF+tWQxcpmHEde0iaL2yhLUdXWSsKSKyDA6nlxO9VQu0WeCWuAuOz4PSL5iqo/vvku6/7+XOqw8w6n0fa5oLZnZcxu6USArj5+HzRHH2f27kqyoEE1BJMJnpuU5y/usfMfvWv1VI90kfS8TN0MJYPbr5HonPAic9n0R86n8DeR3WHYHtCa9qiuS+qT42NdEsUQA3TfPh8MCMrmMQUtJ2k2Rl5mvsAdxJ8N2Wi+neph9RmS/zR/kWnvzKyXtrPsXd5gNu/GIk9/a/khEdmtHp4W85o2MzXvxbV2rLczMX4mhqBL/3i8u7PvZxaZP/EdHsUwASDjjpvNhHQZ+CwDXf+dP1uPM28s9po7GmvIsVuPK/03nvqhG1Pr8fKSWb9hWRpZblUCjCh6/HwM7f6rfMlA4wvGZr0MqVK1mxYgVvvfUWc+bMCYgmj8fDqFGjePHFF+nZsyc33ngjublaDMTly5fTsWPHGkoOH0644Tl7WiY/DHyRt3/tSbmrCQhBWbmLuf0m8sPJL7K5udHxe+xa52yR8LseGcCbGBnYX9Je+6J7LHwSfB7wTwOXEnweeix8IpD3YLQmXH7LFGxtqm37TEpsUwtDv67vaMTbKdeTS5LcgbSSJoZQ8zi1DNIq0AN/4001zGOFsdr1eCzwe17tvu4V7SOr3FfqiGFR59sodcRUmac2/Pt1L102SC6Z7WPSC15O3vkLnf7wkb33MLFZxxbx251eOUZqcXkxeZslfVb7uGGal8ff9PDv17xMeNVLZPq7vPNvwzI2fnJwnzO/YPJz7XQfXX738dwrXsZO8TFskY/s7ZJ73vfSMmIKRevnM/VJDznLv2Pqhkm4UqZy7lwfUc6vuH/6R3QdPwlr9Cq+WrOMHfnGcNsXy7Zz0pPf4/EGF6E5UR/z7qQVQfcVxjzP1Cc9/PMjL/d8UMi10338tnR+YL8zYgOnLvLhFfM4b66Pyc94+M33ODe8O49XZv3Oe/M3V9muR/LCT/MYMfUS5mzYUutjFArFX5f77ruPRx99FCEEeXl5rFihPac+/vhj8vLy6NlTi2vdrl07OnfuTFlZGYWFhSQkJLBhwwauvvpqRo4cWd0pQs4JZ2nC7qC6OSTregsytoA1wssfnZLJnqet2OI/IvrKkRQ//Q4AjtQ8YC3uwm1GjkD8HEFx1iHcet/mnz3nsYBH3/6jYzQ5SzU/GFukHdAcqwqj4lnU+Rrar3oD0MaELZGGkHGkxME2rQeXevwjn9UaEE12m9HZlpkMYdJRChhLvVTFLoeHrEiIKoYNvRJoOW9/YN/GFsPJj81mY4vh5K5/v8ayasvtnxp1/vPoR64AmPizA86vmHawpLDCkGGFc39y9I7593xg1Puab43tLpO8vD70ewB6rSukKGImd72q7c/ZXsAbw15nb6wge7vkYDIMeHkT13S+hOsHtOS2L/6HM+k72jz+G29e8jf6ZidjsQjW7DxEWlwkD7y0uMr6nDVPu/96rpPk6z57/9v6Mifp+ydP8BJRDs26rwzEBTtt+UG+7XYNc/6Ew+vvYUTHCzhc4kECaXFVC+gv/pyMLWojMzbOpF/Ly+vadMed/YVllJR7Sa3mmv7qCDV/7q9PLSxCDcG8efOYPn06S5cu5aabbqKkpCRgQVq+fDnduhnhThYtWsTAgQNZtWoVeXl5ALRs2ZLXX3897EXTCWdpArjwvh4ICyaBQ8AyFBsZR5vZX5Iz60eaJicFdkfok5XcWW0Dadb45oFtu6eAqMLttFv5OlGF23GUF1DYJtMoX3dAlwI8ulSVdsOPJH2NYWkotA8KCJPA4VEm69PgoYFtr9Wq/7fg83+bdmO9NOEwHpJFLm0YZWubivGSjrQexZfAbj1WpHBpHcys/s/yw8CJbE8bAMLC9rQB/DBwIrP6P0t902LPsR0fWVxYKS2/uGqHxD5rGibsQ4FLs8B0/11W8Anr/rvkpZe8vPKChyff8vLyRC8xSR/x1sY7uertWbRx/I+LF27GlfEa13z5IC3v/YqSci8jXvkfg/49o9pzXjLbOE+sHgA+ucCwPPqHnM2BVK/51sfoGV66r/MRn/kEm/bt46TxX9N3/FfVnit7x25ee9aD3LGtVu0Ravq+egtDplxYc0aFQlFn7r33Xr788ks2bdrEpk2bWLZsWcDSlJiYGNhetGgRU6ZMoXPnzixbtoxOnTqFstp15sSzNAHJzd1I0IxDUgacI92F20lO6IilaTYArRKbs5N1xLaPpnxjASBwpbUIlNM6twNb9e1Tdj5M6QZNWTXduwSAbVf2C+Qt1g08QoLHIgCJsBlWHwnM7v8sPquRtj1tADCADTnlZEdNDaSLBMMU47PpYgwRWC7FGxEF6L2jywF4kALKbG5gH46iiiLhj6yzyY9txR9ZZ9N27Tt0WVPGplStMEu0NizYZ96DLD7pEoplexAWkD6a7l5Ik90fs7UJpO+GDV1jablYixW07ZRs0r77Ax+wu7kgpYHiUQUjecLUSmkHD+zmeC8Gc9tn1ft4mWcE/vdpLy+dvom5eXfw9Cdemh2AC+Z4ufuKOWzMm0veI3tplvoihbba+dCZ+fvXNfuanb5QcroupP629T/EtPpQu1k5n+krd9LE7Qwsp+Px+rhj6jIGz/2dmGIoXPAR/xdxGtERkg8W7OGa/i259ZScOtezodiZX0Kk3UqCYy7Osprz/xURgZ+fsjQp6p8ZM2ZQWlrKkCFDAmlNmzalsLCQ/fv3c9lllzFixAg6d+5MmzZtiIuLIy8vjzfffDPgKN5YqJWlSQhhEUJ0EUKcLoQYLIRo2tAVa2hcbgfxzaIYdk07ElKjcJRrPViL5h0CeeJufYIm53Qi5c1vScjQlqdwJDcL7LdKTeBEZThIveXGyueINSxVhQ6t40ookAGLkLAbAqm4fawTAAAgAElEQVSgZSJ95j1I010LkFJ7sktZhjt/Pn3mPYjVbSyPYYswWYp0wScgUK47MSGwuyTG2G6ypVD/r1m1/Najnc16gxDsbNabHwZOZHa/5/A/XP3nndvnCYrpqAkmAGFhV9Oe/Nb+yYBY87gNh2Bvs1RAu8H2NzGsZFuDDL1tzq77zK2DscFFWP7AFghn5eGXot3bg+Sunk0tgw9l7q68Ukm9cOM0H89N0gSTn3Fverlqupe4zH/x+nNeHnqvqOoCqqDpwZrzmIlK/oAXX/HwHz1G1i3TnmHkW5MBmLrg/9k77/AoyrWN/96Z7bvpCWm0QAgJJXSQJggCYsGOeuyoiKhHPXZRxIKKegR7L6jH3o5dFEREpYP0XqSGnp5se78/ZnZnlmxIgoB4vr2vi+taZt6ZeWd2M3PP89zP/fxBu+f+wY/eS9hr1dZLKvmm/BI+3HMpvpS3eHr2xw2eY3Gll9s+/7aG9cThQM9H/0vPCV/xylMBnn3+2PdIOxLwx7hSDEcQgwYNYubMmTWWFxcXk5ycTGpqKnPmzGHRokW8//77bN++HavVyvTp0+nRowcAe/bsYdSoUSxcuJCHH374aJ9CvXHQSJMQoiVwO3AisAbYBTiAPCFEBfAiMFlKWfer7DGGyycYUaBW3TJYka/lVXPz+oaXC1c8KY+8B0DW61/iXforaorRK87ZuRutvngLJb05SnwqBUOvBgjvy5FsjL01/nhgOtkVQX5P0O9gpkiTPyme+PUbUP2VCKwgJQIrSqAKu7cEXAbxUO0mQ8WQlAoZJi/W+GR8aP471qR0QNM/OUsj/RNqi/1IxeDSQbfGEIT0I0U0EuFH1Z9D0mWQFZGQaOxP110ta2fHs1vzLCpubCNhi0YO/XYbYKQnQTPU7Lam5gxnd1HpMT/AxmSFjsXa+v0dEnGuCLK0zQjy+kd/D6jYq12P/Y0kiTsjnyCVNtidImiy/YDjue2EInYr+jai4Oed7E4Ei+7ptamNi2bLa5KYCqfEVXloT6loNgsnLZCctEC7yPlHIRP28tORxKJrxVeUuATzNl7GmGkv0ShuKa88bIy56rsgA34Pst8j6LJ2Pq8MXghE79FYG2779lV+LXkOz4z7GDvwrMNxGgCs37WfDp4HKLMav81gMIiiHLvKhGXbimmW4sZjb3giYG+5l8vemM0LF3aN0G7FAk0xHEsoLy+nb9++DBo0iGbNtOxNSkoKL7zwwl88s7pR153jQeBtoKWUcoiU8iIp5TlSykJgGJAAXHykJ3k0YIvXHo62rHZR1yuJaTj6nB6xTKgqllZdUeJTo25jS24EQPLgDjTO1vqiZZ18HHF6esxvMW6Klow0pvedpGuGRPhfcfLxTO87iYDN0ClZbdrN0JFhx8SacOoarZSeVxiTMEV/kkoNUpA87Hh6zR5LfJozQtuV0MjJpROOD//frxO0XrPGIoTXNFai+ipo8se96AEHhNuIgFlMJE/q5xlURfjuvasg21hvq/lwaLYrOqXrMV87WMcNxvq5OUlhgfqunS2jbvfdLK2h8s4cI0y0uotG7LxWCKg1nyY+j0FOFYfx2RLiCw4jVbY+3/hclPa/43n05m8buee9II+9FuAf7z/C5Ss/4ZWnakZrWu6ALmu17+TKKUGWbd9Llc/P2e88yMqdOwDN7DNvzDdc/66Wvp6xeheBoLaNc/N8XnrKz/4/5hEISqp8ASq8/nAFoZSSx3/8iR0lNfVq0SClZMu+Ck5+50Yenhzg6VeMXGhQ1p0q3lFSxoY9++ocd7jhDwQ55ZkpXDF51iFt//xvP7LBM5oHpn0asTzr6J9KDDHUCrfbzYIFC5gwYcJfPZUGoy7S9KSUcoaUNe8yUsqdUspJUsrJR2huRxXNXnuR5qMKwZ1S59jW07+k1UfP1znOnZBC/vJlNHryXTwX3kSTB68n+d5XydMzRYrpsrrT4sPVbwdCCvCYoktWm51W076l2ZczwtsICY3SNdISl2borpQ443ysPu0BpMbZSH/0RTouno0MmmwSgGBA4k6wh7lYyAvP7i0h9HMRQb8+LxVroDQcaVJMYnWbx1AQhUgTJr8rYTqfaktN0tSolpRS8sk9Iv4/ve8k1P23hAXqG5fDs6Om8cJ10yPGFdu1xr7BOFPqTj+u12KkNs0IpBjRMtWpkU8hIV4PijlNDQW9boM0BZW/5nV+VUHD9U514bFVp4Y/n7L9K878rX7atPOn9GPygulUbnuPkV+OAeCRKbNp3OhWFq96leZ3fsZl//mUF39aRyAoOX7m7ySWQ/sFs7nqozcpfPIW2t7/Pv98T7NLmLdlIx+svpbhHxw8giWlZMrKdbR/vRv9n3uac1bMrTHG5/fxzYoVbNpbO5MY+P6pDPtSe3l44IfP+X1bw9O7h4LqgI+zysdRXvT4IW0/Y/lExv4nwLaNrx7mmcUQQwxQN2l67qjM4hiApd1AnDfWr4ReyWiJpV3/Osc545IQioIQAqEoeM4ZjTARBG/QeLjacjvRa9ZYnBVFhMMxUuKsKKLXrLF0TDBkZBa7C0tWMxSPyStJQNaL79PkjguwtDCiZRanEf3J/exNAFq880p4WVoTD6pPe3u3u1TSmmjEp4nU5tkts3l4bGKjcrK3zaDr/EdplbmH5H0ryKlUwqTJYpqPzWWam1Xbl5CGIFXYjAe8LaBdh83psD9N+7zsuOjCoUaPvqyfl3bQnrPH0jR+o+aTpSOvezoXj+8Zsd2Y9/UMcpzhdyX1ykOfBaqjuJcG4k0k0KVvZxqmOAwC5nMakcCgHrVaW2hE+X7vbZDIlV2MORxO7FYPQy+gA/DBI0ZUaeS39c/Cf/Cwny+/fIF/vxLgxF9m03nCZJbOuINnnw/wwntTOSkwhvvmT2Lxypc476Wf2SW0VG1xWSX+JY8yauF3nF38EJvXjQOgqmg9kycGGPTbTF75eT0AZz33C6c/Y+goBr56LwOee5VbP5nIw2+Wc8Efb0a40YcQ8Pm4bc5whr6vBck/WvozFd5IhfjQJbu4eGqAuz6bw8zFd3HF54eWMqz2B2r124oGX/l+rvouyJjPVh3S8Xot3ky7PyQD5+6Iuv7DResOab8xxBCDhmM3sf8/gPiU6Hr5qmbaA7ZjpqF5sjduit1bQlBoD3IR1NKFSlIidm8J9q4DwmNVE+FAjxRJAWp2KzyXjY04ltVEXqytu1GwcgWWVt0ALSKzftFuAjYPCEF1RYD1i3bz7KhpZPXUPDUS8g2n6nbHl9F6zQfElW9l4BVtKVz2Ms2uP884B3c8LV++l9w3H8VhJnS6dksgw6RJNYm1MzdpYaXkYtiQpwnXg0p0PYewWGl6+zk0/48mTP6tx/38UdIcTONXzynirTHRe9CVuAxyE9Ja+VWQgZqkKegxSI8tIUU/BwO+DnnhzwGdGK7s6MSvE7Cgy4imudxG1CpoM7RhVfrHVW2jN/5d3jM56vJoaLml4SLntZ0T6x50iLjra6134Lm/BOhT9CjXf2f0ubvh8yBd10razPiSkorRHP+7RlpE1X7u/DDI0PmSK74Pcv+Hm1hTVMITH2lNY45fWsVb0+/H6w8SKB6Ffc/NSCkZPOkHui74iDYbJvLem1PJ3QH/+Ck6Wen22Kt88LCfS2et58I3vuK+edfQ+YUrIsZcMSXIaXMkM7aOYNJLAa77uoTf1jW8o3f+/W9x6vNf1Hu836/93burGnwoAIbP1M65z7Lo576n+AMKnj+Vt+bNO7QDxBDD/3PURZpaCCE+r+3fUZnh3xjOxEZRlzfrrvlSNO5hlGfaEzVdVFzZFtp0dNF1/mPkZewkvSCbgpUrUNMMDZDTaURhsnTykeGI9F4K79dZe1Rj+JhueJIjUzpxKQ6G392N5PtepdUP/8XWxkiH2R0GiVAbt6VgxXKcw+8OEyGHJxFb3/Oxdj8Np6emEBwJ6bpPpnuPIfyWydo5uKuAoH6zN6W4NucaRAfAffkDWNv01ratNRMWPY3kxjgHoepu6gq0iWJqnZGcE/7sStW+S8X0LHImG99vKNPqt1rx6wSsxGWQo4RyY0OpH3drumBJc90d3mqQvhUnZIU/B0wVlpsztLHlLuOktzc1vr+MOqrk1gzUfMU2NjU1rfb9eSuIVV2iRwUTTfKja74OkhRFjjRooeTJlwyyN3hh5HwcPrj3sxu4bM5PADQqhhf+M5uJP7/PI5P93PduCTtLqyhcdwOXTQ1y3Zd1R3U+ef9FQDMC3bPndj54JMCoWfP5cdXOGmNDovhuayQj3nuStTvLaow5GB6c9yiDf7uTaz5/ii9+38buOpo3B4KHXt1XVGIwLUstu7n1kyBDV27g6blXs7xoGyM/fYoo6osYYoihFtRFmnYB/z7IvxiiIOe5caSf2wVhjR49SLr3NVq8/RTOQReGl1n1yrPCZS9zwqiedJ//A4Puu4Cho2r25HGY0kJdT9DSBl1qqTiyeWonTWlN4rAe0KjValNIaxyHUBQsjfMi17kO2FfI7kC/57riDf2UM86kaRIGaQqZlVtNhXzBzibxdugGLoyfZq798PU269DIMCQNC9RrIV5BE0n06KRVNT2T3SYiK71aaixoUUjbG2RPYh4lgTHsTdD8ikrMB9ErtwImd3hPmfHgEu6aInowCGKV0/jONnY0CFZZ6GeRbjwxV+UZhLMqSSM3PqvCVr12odOS4vD6bRcaFaVr2zbANTuKJu1wovfU2WEdYAil7z8Y/nz6W8dzxfeHVsAb6i04ZIHk1TfPBKDlg4/VGKdI+OStD9myemrE8iemLmLW+iKmrtxOi3EvRhAXgM7rJUPnSwreeYHXvxzC6NdeOuh8qn2HGGICLnvyzfBnYeJBew4gald9F+S+dyu44Z2rSZ3yItPXHeY+ZTHE8D+MukhTqZTyp9r+HZUZ/g3hGHAeyQ+8Xet6YbFg7zooYlmoIq4+UExjPWddTd6M7/EMvzb6XOIObulYXeknOcvN4Ks0v6qqitp1MXanJ+ryEB1wmkiTJ8FIK4kwuZLs03nI1s5Nw+tt/YcZY0ORJlWh+XPjAUjs3b/WOfWaNRaLTYmoALTYFC4e3ytiXM4T1xPXuJLMIUY6MaS1kqa/AuE0yM1W7+7w5+Ss5tq+g8Zx7CbPrmR9eZLDRUIFLG1zBQjBkrZXArAx3USKdC2VWXzuKTWIjjBVHqJH6bY1AkU/RrXLIE1m+4lqPShVMtr4LZi5mtSNU6UgbPIoVWNe1WmaiVZAkVTEGftdk6NNdEX36Kk8EUpNtraysvnhF8EPWFwzEmLWKr3+dO3Rn1J3Nj/1eYxSd1atY0IY8/Fe2r7cm/EzX691jGX7H/gCQXyBIFJK/JP/wVNvDuC3CWfy1XuTGPfsM3y4YAXr923jkZlvhLcbtEgy/i0//5r8HFLKiF6DZnh92hdjDcB5b73Op0sW1jnvEK6bOjH8ORQR3bS7nHMn/KvG2OY74Z9frePiH4Psnzuj3sc43CiurGRPef0qImOI4VhAXa+IG4/GJGIAmyM6IYkGiz0yXaU2alxjjL1xFcICIi6RSmpPY0X4VXU5uGep3a3plNQDevUakSbDudJjMvYMl+BhVM81jjcIR2ZGDuE6phApURScA86i5ZSuWJs0oeilyBLq8Jy8JTjjrJRWBxBBH1Kx4oyzahWAJjhOHk3jk0cjdc2IPzEY1lqZr43zleeouPAaAHy7tXyXPc1OetN89gONurekdIYmRLY44wnJh3sdN5Btsz5gjbyLNb2MHQZsHqb1fxZlvwSu0xaaSFMojbKlfSpJRZq/fOuMJsAC7J08prECoaf9vC4roEUPVFPUMfQ92DxmcmMiHDKkfxPhsVvP6kjjD3/XV2tP2s1ZSjgaBlCpD650GGRt6z96kP3ObO24etuegCJ0EbxkZUcX+Ys0D6sNnVzkLKygKLHhRpt/FssKLiOgOllWcDnHzRtf5/iP/r33oOs/mfkCT618kf0OJxYq+fccyWlzJKBF7P45+VV+nvsat3VJ5qR5NfeVUA4Tv/2FZT9M5PbbXicvPZ5/fTmRBetf5f3L5lJSUU7oG730lUf5qLfCme2X1TqfQFDy7dIdZCV7aWHSfivAP9+dTy/1V579cFrUbZN1n7O120s4/d1bsahBPh7+5xIIczfuJRCUHNei7ipkgAsnnohFlvLZmMV/6rgxxHC0cFDSJKUM53yEEL2A5uZtpJRvRtksAkIIFZgHbJVSniqEyAHeA5KBBcDFUkqvEKIpMBlIBFTgDinl10KI5sAKIFROMktKOUrfdxfgDcAJfA3cEM0e4e+ACMPKOqDY6i4tb/Hl7yAERbu2Ev2dtuFwOOLImzGlhuO2SBawTZKRanJLNz3MjQewDJMmW5zxYE9v2TlMmkIPbqFvY2uqRaQScspx9zWMRwGajLkY34ZVpDWKI37xFLK2/ULlLc9SUVy7bkRYrDS57WwcvYexbvIT2jFNpCm+UTb7bPEsbTMC557Z5E75GiUxGSU+gVY/fouamsXK9lrK1Gq1h0lTwtXjcPUZgltpzZdPzEGqNo0sSokSqKb/mQ6YHro4OllTCFceCruDnGduZve/HyD7guuRZ12JSMpi3t3nA5qjs02/dj63HdCiK9Lk3xWKLjjcBqtVTAJ3KUPeEAKrHlAUCRmARppCUb6gAKn3Slzd2kLhKm3w9kqDBKiZTQGdNNmslLqzKUq7iaSiicBW/G4HoJGm8uREoIIKJ6xJVmm1/si7ck/r90wEWa/wZDGt/7MgJQN+uu6Q93vVd6EIV+3Rrb7LJX2X1y4ab/bEVQzdDHPzJ/JL7rmc+NhLXFUEj6w6D3twL5fq43KKNA3SiutLWF82n5Nz+4ejtiG8/u10fG/fzJL2vTn9gOMUfnAxP+QLauvsFTJpdc59n0cWar/kzmvLefnC++nSLLoesy7MveMiqq2lrL/jZv7R9ow6xz/2pv6bGtPwY63dWcY7s/9gzCkFqH+RzUcM//9QLzGCEOItoCWwCAjd8SRQJ2kCbkAjPaE7+QRgopTyPSHEC8AVwPPA3cAHUsrnhRBt0EhQc32bdVLKjlH2/TwwEpiljz8J+KY+53SsQPEoBMuCqFZb3YN1hATMB4VDu9xpKU3ZC9i6ZRx8fD1gd8ajemqmaDq+9gGV37+HNcNIuZlv7jKg/WSUgBENsZiq+oTdQfyJKcT1O511n3wEQKI9MvKW9c0fNY7rufguAIYCVe03oTj7Y+vcus7z8IzQ9DChNjZBoUVHAOJTMsNGmc4KP9amhhjcktksYj8RxFAIrO160RRQgn4CqqlpctBPix5tWR/6fyh6JEQ43SecThwnXknjE7V0XujqVQntIZ2xW7Jfl5QFnQbB9nkNcVjo2lrd8YSX2i2A7quli4ylAJv+wLTHm7yodDInJGGiW20ztj9lrkHAnCnGQ7VSqloaUjgoTrkSuA/pcgHaA1Eoet7QIcN2DGZsbK3SfJU2t9+7xdNhbgl70wPE7VbDxqkNRbd5D7O43dVUO5LD5NVRtYf2S1+s9z7WtFBotf7wNzsIFR38suELhnzxDjlF2rUeOXVN1PFFZ/YgyQcnnJ+NpTKH1vZi4pqfy3EFTVE+vpP+CyphwQ81tuu9QtJ7Re3vkCG/sYELDbuF/7z5E2/su5ImYz/gjV82cMvgfHaVVbNx7258Yg9vPvEkGfnHcf81I6Pu84RFGwD4bcxdrHzxOPLT//x9pzZ8Pf4Kzv5uMctyP6KwoO0RO87Zz52M1eLivZEfHbFj/K/huuuu44svvmDTpk21jrniiis466yzSEpL5bW3X2HiY08RF6UF1rGG+io4uwJtGhrFEUI0Bk4BxgP/EtqTdADwD33IZGAcGvmRGMQqATiom5wQIhOIl1L+pv//TeAM/makqdWPvxKsqgw/SA8GS5IV/z5fOApTHyhOF81efwF7fvu6B9cB1R69Qs/SvB1xVz0YdV0wPkCf7oMp/XwlBS1aU7Ze63RtcUaKu7N1v50BLQpYPeYGBlw/tsa+DgZH79MaNB6MtFJI0zS97ySm/WsOZGumhpWVBTw7ahqqRWHUM/3D20khEVJgq0WHFrQ7UHzl9Di3A3Pf/52AasMWn0T+rO8h4GPlhFu0cQpY9Oo1pZbqR1mhRWscPiO1KU3O655qQ4MWEqnbXHFh0mS1OgBNXCxDfkHCiDQ5E1MJZNpRkt14dA8ra4BwWlAqCpYOKfh/30OjG4ax80mtaNaik+dp/Z4BrwB9SkFbIy2i4zOlI0PWDsKC1CMCy9vaabNMiwiWJCcQIljoEa6tjRNoVlqG9YAuNRs6O8hZULdYOq58K2pAjzjqty0l4GVH1k7idG5SnO0nYWvtt8CAVQGOXIeo6z8ppz6uL6GU5vOvbgVCfXQ08bb/CJjGtNm8mc9H9ee0+cV88vhjTPvxGU6bu4n4CripDEpm/Aa1kKYQeq6UfHn7KbzapSNZ2V3w7bByw8gR2C3R73NVvgAOa811W0p28Mmqr/lntxE11nWavRgF2L/+VzjMpKk6UM1HX7/K/s3refApjQhy8FOOQceGDRuYPn06Xq+X0tJS4uKiFyMtWrSI++67D2H38/i1N7Bn/xbi0o+dRt+1ob6kaSmQAWxv4P4nAbcBoauWAuyXUobu9FuAUAnSOGCKEOJ6wI3W7y6EHCHEQqAEuFtK+bO+3RbTGPO+/jZQ4hJQ4urXATbn06/xLlvQ4GO4evZr8DbRoDQgGgbQ4uUHsDRvg9qkDdXNWmLrPJBFHTXjzWqLSrQko6vLqXT89tQoaw4/FIt2PmUqlP9rKM1+egTLgGdYM3ur7vsUJK97Jr3Ozo3YLu+bzwjs20m1MzrRGf28IfJ33nASAMK2Amya9qxKT5O5i4M01rM468u2EA22CiPVGK6IchuEM/QHvDrXQlaRD6oE8QnJhKS1bVu1wZFVTMW8lQR1A9CggJD+252cQcGPiwDw79rGmgcm0+Lcs9izTEu9oQpavTMTirdAfHaYNAW99TfSdOvVgIpdDZO5UPoPQJr8rFB0smZRwnKs3e2spC7VtizLagwL1lLshi25Ttr+XsmKNjYKlkeaUwL4rS5UXzkBqwvVV4Hf6gqTNoC9rQQJOgdZ28ZN7vJIQXLAcuzb2FmOAKfrvqiKENH2P3Mb12+MfFeOrwRfIMhnn37P6WcMwlbLdTplVgXM+hX4FYAptr2kdhrMmqWLuOTSyyPG/nRqd9RbJtGmfT6/TZ/GsOFn8cuPs1n97EgGLZe81OkVNue35YRzL2L91EWce8UoAvphA/7Dn+69+YmzuPbV9TWWr9i9iuy4TOLt8VG2igHg3nvv5e677+bll19m2bJlHHfccQCsXr2aESNGUFxczIgRI9ixYweNGzfm3DOHceWwM+nWuxscXFZ7TKC+pCkVWC6EmENIgQpIKYfVtoEQ4lRgp5RyvhCif2hxlKGhv8gLgDeklP8WQvQE3hJCtEMjak2llHt0DdNnQoi2dezrwLmMRH9PaNq0abQhfwtYMhpjyagp+j5WYe97jvG522DAVLJvEQRPykX4fFG2PDpQTILsriOf4IXF0wnMLTIZZSqsnlPEugW7IiJNlub5WJrnEywtrrnTesC2fRdAmDAB5O6MHj1RdHKyok88aUu0br5mJ/h+J13Kzg/+Rf7Ak8nsM4g9H79CYnbL8NtNs3EvhtO5U2/R3kN2uoO01HVbvTzGe4YlLYuClSsAmHO1dr7FUicjCZG/u0aOBCrR0mDzut+ltePR02DIAJlNjNL8niPHsWTLJfS78xm+u2sUoFkzhM/RRALDOiRFhP/Adxa0IXWpprtSPdoLRlBAwGIFKglajX2tvLw3+a//wvS+kwiqhsdVwOYhAGzJeIy8VTdqC+0OQg2ZAw4b6FRzfTOVFpsCBEyRj9+PT6PDDO17K3dL3OX/PzQ0HTZGTy58+/gdtHv9C75ZMYjN1bvInL2IzWmCIQfZ177/Tsbxxht02w3j1r7Ldbcbpp9NN1Ww/d6rmROv0majn1X3jSNdGs/Qvgv3wcKZ8O5MMoFvln5Dpj61svJ9zJk1C4HAXlyKarHSdmDDXhSLS8tYsmAhrnw3nRp1ikqYPh5WSMY2H2/3S2b8v3+p13737ith69Yi2rc7ehGUCXMmsHLvysO6z/zkfG7vfnuN5VJKSotLiEuIRwjBsmXLWLp0KZMnT2bmzJlh0uT3+7nooot45pln6N69O6NHjyY/Px+AZStW0u6WPJw133uOSdSXNI07hH33BoYJIU4GHGipt0lAohDCokebGmOk4a5A0yQhpfxNCOEAUqWUO9GJmk7A1gF5aJEl853cvK8ISClfAl4C6Nq1699SKP6/gpI21aQssZPXrBDXpPo7JR8JhJLNibrW5+LxPfnw4bmU763UIx5B3IkOzr2zW9TtrYeYf5f2mmmIHndG7zUWEmd7HXF4KjTSJN2GjURKr6Ek/NoDNSkJIQTx3U6M3N6kf7tkzDt8sf1ULnnsfb685iOKE3JZMddCi+NqHte5S5Pmt9pbk9RW2KHgxDPZdNrntBh9B/Me2xohugaB02nk1dyNmtP3Da0HnAxpmvzGn2FEOyCdKklE9JY7upWFFHo0CgiaUj4OvWqz5+yxrG15FrtSCwmqdpBe0ncuQqpfG4eyuwhVvQWdxjFCzZulyXAUk+B+Y46Ttkur2JUISEgrhtUd4sj7vRSAJb0Saf9rZJlgUSNIr+mdeVThV2s3vWwofAumA5D3n+8Jubm12XzwW2u3Ncb68z7czK4PI2WqmXslmXu1lwS1jrt0h5824dW/9pz736SGvFYn//XF16NOpON87bfw8pCW9I0yps1q7W/hoq/21tulcOGF/chaX9Xg+fxdULx1I/b95ZRUJ5GQns2YMWN44IEHEEJQUFDA0qWaHOOTTz6hoKCA7t27A9C2bVucTider5fKikqSExL4fOpUfvETIpAAACAASURBVHjySXbu3Mm1117L4MGD/8pTqxUHJU1CCCE11OrJFBpz4HIp5Z3AnfqY/sAtUsoLhRAfAuegVdBdCvxX3+QPYCDwhhCiAI1o7RJCpAF7pZQBIUQLoBWwXkq5VwhRKoQ4Dq2M5xLg6Yac/LGIYOrhM3I8XCi7pDdyyfzDsq/eby+GnSsRiWl1Dz7CCITsB/TIkjvBTvP2qSybsVVjVEKQU5haw74gBIutYenK8HF13rC4h4c/WiTQ9LdtnJPTNerY9K69YMEUWhw3BN9v3zG7x40kVkW2wLAk16/Vij2pEbuTHuWNcRsgXWuTs3FZaVTdlqjSyNr2vJyIfbSYMQV0ItbsMc3PyBm3C4fbStdTmjPtmSkouA3rCMBqEsyn/6FF1NovNkiVNd7kJRY2NxWmljtG+s6ZqgmLpSAsVpemiJAnSVtv95ag+isJKlaQPsCC6q8iaDWq3hSHhxBpMuvEQlEwaSJj5gbTQf14foth0hpwOwGNNAVdHkAjTRtyLeSs9VMcb8FT7Md9cEPwemNfHCSVRl8nNcoJwNZcG9lrtVf4bY0ETbdH3qrXNRFk7pS4Gjivgt9rObgJ1Xo0s93y1/SG34cXtoMQwP9c1Y9yNcjIF36u174y1xtR477f1d2fb+PqBcy/6XJ6PPQy+Pw07tqLJR++Rlphd3ZvWE3w3juwPvaMRpgAX3U1Vvvha6i9+MmHCJaW0vHuh2usixYROlIIVmvVBIHqcmbPns13333HokWLuPbaa6mqqqKwUKs0Xrx4MV26dAlvN3/+fPr378/y5cvJz2kBwLCBA+l03omk2bO45ZZb/p6kCfhRCPEx8F8pZbh8SQhhA/qgkZ4f0cr+64vbgfeEEA8CC4FQO+6bgZeFEDehpdkuk1JKIcTxwP1CCD9a5d4oKWWo9vkaDMuBb/ibicAPRP6K5TVKio8FdLvrlboH1RPC7oEm0QnC0UYgoD3xQtf8heumE/AHI6ImS2dsY8WvOyIIRUOw7l+nUrptHQWmZf7kBGAX/uRkbr33u4Nu3++mSVRcsBpXZmte+y6bgOqkYu/xQP2aSx+IgD+6CObA5SHRuSMlsvTcbnJUD8Hs9bUw8Czt5xSzuc95NcYBkVbVOmzJUcrbTek5xWYQFneqyaQyJIw3kZu4FMP2wmuLJ3vbz5QmL6La2h2vLR7VVEThMxcjmFKE9vLQ09jkL2YifqFGzwFVYPPqfQbjPIAWSjJHzsriHUAZQYsSvqZLjkuh/SwtN7u4azyF80rwK1p7m9yNtYuUlvZIpN1sjYz5DnLnXp1no7UeFSlpn0f2Wu1tvzTJAdu1h9zKTnHkLyxFKoQJk88a6dT/Z7E253SKE3JZmzOMtqtqN/s9Euj8s/ZdbPjiDXJOuyxiXaB4P8Jiwbd9E8Gg5L1376WggaSxctiFtAFKz9MMIr558DKa3/MG+4B1XZLIK1ZZ8e7j4b/7kt3bSMnOqW13DYb1+be0D1FI018BCdx11118+eWXDByotQcrKiqiU6dOAKSkpISjTvPnz+fdd9/lxhtvZOHChbRvbVQ8N9ktGfPqOK4dPRoAn9/Lrp0baJTREkst/UiPNuqaxUnACOBd3V9pP1oESAWmoFkHLKrrIFLK6eguNVLK9UD3KGOWo6X0Dlz+MfBxLfudB7Sr6/h/FxyLhOl/GcFA6AmhXfeLx/fkl4/Wsm7WHwRVOxarQotOaTWE4A3BqSNrtuQ4/Z63+cRyCWfe9VbdOxCC1+/Tq6bcWhSlsoSw51DBwbeuAUWFaO3NlAMyht6rL2XV06/S6crbGrT/48a9zoLJ93DShbez4bGaxK7Sodk7LDw9h07/1aqSXMlGWboMupnf8SKE+AShvxupNgfWD99m6/zvceutiaQAEeIXJnF3RkHXsOdXk20vkbRPsLpAoTxxJ4XL9rO0i2FlYSk3GIKZ6DTfql2gxM1GdEQxtdQJpQUDqsEBRbyxvcVk4yB1khZUlfDYoMOIOAT16ENQgDVQ8+9/5Smtyf9qlX5c7Xa9tJON5C1a9GjxcUkUztoXsU1QEazNUcndEABTsYLMzYHly7UxLhdQSsoeyd44SC6FVSNOJOPdOWxqMQJX2WQK1mr7XXx8KoUzdlNfHKgnK8rsSVFmT5SAj/4/31jv/RwOVN06gRW3TgCgYOUKdn76DnvufCBiTJTsdIPR/O43wp+9erP1aovxglBZHql/XP/gtSQNuwh3WjbbnnqAZuNfbFBV9LGG6T//QnV1dZgwAaSnp1NeXs7evXu5+OKLOfnkk+nYsSOtW7cmMTGRgoIC3njjDTrnaQleKSX3TJzIwJ49SU93EpRBiratIaVEsk9uIC372Kisq8vcsgp4DnhOCGFFE4RXSimPsq9vDDEcftgStYd1IF57ILoT7NgcKkHFihLw4hc2bA611vTcocITl8AlD/237oE6aiM6yPpXsIVwyUO9mXznL0hTQEMo2nIzzjr9ZgLDbmzw213TFgU0va92P5uQAWd8y86ARprM7XfKLf2oTmiJXZ6AkJO1bRxuctt3Ibd9F+ZO/QCACpdE6BYK0qTbSm7UNEyakvZpJKTFqiBLj9MeSKrXeJAlF/QIz0F113TkF4ox1mJqbSPDdgzGWNVk1mpPMFLPQTWku1LC5y5MES6pe24JtDZDB0I1VdaGjuu3O0nZp5GmlK0V4TRY0Poe3eZqtuChfSkm0mQxEz+P9jmpDPbofM/h8rClyTkUJ+RS6Tgb1uoR5uQ0QCNNZXbw1BGVqa37QO3NtY8OVuRrrxhHOm3YbqGeArYYxHHH+f/A/c5bJDRuRfHe7VS/PY0dbxtO7SvbPk3eoDMIbFuP0rxjWB6A1YrFo/32KtcuZvvDN5Pz3OcRx5MNKKYJlu1HOD0H9foLeqvwFW3AltUKkMiKYlDtKAf2HjWhf9/enH3h5TWWFxcbZHHOnDk11k+fPp2rH3kEgOffeYdps2ZRXFbGus2buWr4cOwuBZBYaomQ/xWo9x1RSumj4ZYDMcRwzOLEax7moy076HvDhPCyylIv2dt+rpe7+NHCJQ/15p17Z+GtMpiT6qvguLkPwEHrlWrCnWBHVRX8wSBCBRkAVVVqEEMhBBbx58LhH1/SnvTmhRHRMFV3KLebbsDO+MQa0Ylq0Z1fe3dHCfjIcxoNZQt6nc7UXnegDroR8bmW8pGmMJnNauwjfC4S0vSoScESw1YgvnELY15R7COKrQaJsblN5CXUs1CIMDlRTUUBTnO6USdNUlXCGhxhikRh9ueKIn62RWj/dNYRlNh1vpy9uZrlrYdTnJCL3X4O8ExEFM7cPUBxGGlOoacbV+YqpO4Katd/oRX0w3kdnbT2PwEfKfbJNabwR7ak6daaLOibXjYGzBrLgo43UulsFK6odFbupPOiSfzaM5Fev0W+cy8sEHQ6iAnn4UbIvHZDs6Hkrzm0NHd90PGbDeHP7grJjjMuYmscVI+/nQN/bZXPTmbVI88j/DWvaaiidckNlxK3rorFrz2KWU25sn0hvpefR8p8ZEUpijseGQxCMIDQiVugupLq/bsRu4qRdgVXqza1zrts8zqslZKq4pVgJVRgSjDeiiM+BaGqKAf2NBWCyp1bsCUk1+rnV7FlPdaEJKxxSZSXl9O3Tx/6du9M0ywt5T76wgsZfeGFEdt4KrQfsq3cR/nypZTbBf79e9j1yQ+knXU9ct9mROLRrSg/NpKEMcTwF8Bpt3Dx45EpsqGjClkxSdPjdL+gbndxgPl5osFpsobAnWAnqJONENGRinrIb8lN2ybjSrDTtm8Wy37edsSI4d13fVBjWWYoy2Mxbj2O+BT2+6/GYh+Oy9c+fJJpO+eTt+5TSk423mA9Tjunv6aVg3/0qVYxJS1Wfmon6LI2+oNXCoOsAVRMfpMdmzbSyu0MtzdQTNGfH9sLTlgiUawWQk8M1VzhZ3pLDzmrW0yaJ7unZnTInEKsshukSXFpxxUyqtwLR5JhXLMnVXsYFWUlAiU1iaa3QE/b+mix9iZtqiZvNbM2LOSGL3UWFKwlohhULATtxjFCwbe9Jw6m6eTva4zPFB7s3r0EhX7eOqkMCu33qnqyCInkt6ZB9i6wNGsGKzZGPT7AxsaSEqeVwjV+phznYvCsilrHmrHfDYkm660Dr9e27OPZln38IaUNDzVapZaC658Taix37qskuouOlrZaeeMIKoqriQM2lheFKxal3uAZbwDfjs0E9pRgzUrDv2s30idxtG1L9fJlWuBK30ZUBwlUVWoFFlEkIdZK0w/RFMRSSnx4S7RIprNdElUrluLU/4BslV4orqZi7348rXWj0eoKEArC7kQGg4j9Ffj3V2Btk4Db7ebXd99G+utHlkNR2rhKyY4KH7vveo5NDz6HuwLiLu9fr30cLvx9k6gxxHCE8HHnrvyYX7/8+ZSnJtL4sejNhA8nmrZNpl2/bIbf2Y12/bLZ5drIpMtqjzKtaONgS9PoN+Ghowrpd0FrUhvH0e+C1gwdVXikpl0D48/TbjmWNoaSxO1JId71MC5/R40wAQiVXend+a3H/Vid0ZtZh+wYhGoh77E3WfJ6zYcRQEAxbroAXXp045Th52JzGETIfIyEltpN31z2HmfWU5isCNy6vZZSblST2c0C81AUzPRw2pdsvBmbtVTR0nMOU9uiwhETGXdhEl2ueppqSy2mdDrKHfqt3XReqinSFCKtUhEaWwvWkuoN+pHmB6t+0IysrOjjFYXpfSdR7UzVzln/V+1MZXrfSWHBfbHbpAezGUTmrcFGlOLnHlo0UkXi0K9jiinFuGrYwQtK1uVFVrf2nD2W9KK5CN0pXgSqSS+aQ8/ZDes+ALC6pZbGXN3y7AZv21CsLGgD380ifbf+4mSKrJZsMfykAns08ubbtgupdxoIVJQRrY+Hd+06KpctI1h2aEqbyuVLkCbJgEVPe1v8ULVsmfZv7Qaq1qxDBgJU6Vo6bdvlBEv31Zsw1Qa3zp1X/DjzT+2noajLcmCIlDJqeY8Q4lwp5YdHZloxxPDX4e536iHQ1nHD4JOO4EwMmIlNvwta06+OKFiTJ6ZSXPHXGYfWhpuu/J7nO8xkYrterNaXxXmSUIXR1NIMKSJTeWaESZPFwoAolg2VNnB6odxpNEY2w+aODzeztpmIjt1m3Bbnt7HQeKuf9ASTrYOe8jBrdNZkxnPv+ZcRJ0q536RlETrLMDuR9+pzKkzS7BpC7WjMzt6zL+1Fj8mai7bNpGnqk5tHn3u05YsE9Jo9ltkDxuGv1JtDI3FW7MRd+RzLh49k4exXuGDwVTDhXQAUu5Nv+jUhtWI/caG4gwAlIOg9eyy/9H5I6xoTIklBPz1nj2Wzx0gRuvTAhivBiIDtaJ1KxiothBhUVXr+Opbf259Nhas9QdWOCHpptGsRues+ZdHpWvXl9iwLCfs0oiak8Tvt2rQHWkE2OHWxOgJsspJqWyJlXE617QXs3hLcyYYWbnaPBHrMjhRbV7sdoLfUXtvGT+5yzYZCKjaQEqnYUP1VNSJF33VRGDI/uobmwGjVrvSuTEvvelRF7olrN4c/75g7/aBjfZtq9uw0o3L7duy2rfhK9bR5bsv6TSJYf4Gab09Ng7Ly4r2HLc2lVB75BuARx6tj/ddCiB+FENHak9x5JCYUQwwx/Hl0a57MiW2OvZ4EXZpk8dRZwyO60jvtTi4e34uENKfh0yQljooies0aG6EnioAMpSwjS/9K9EzZ3P5aRGdfklHub4bNZezXYiI6SrsOVNhga2EacWO/Zc59n2IxaZaEKeU14RyFn9oJhg2+k1njbuf7ex8ku0N/Y2zAIE1PDlOY2UaQk2FUC9pNmqZQ5MXtMUii3Z3Ix70EL54UeauWaF5UQij6cTTiIYWC11nJHRdex8VjZ9Iu27BgsDrc9B/zPs3u+SrcRBsheP7UQqYWlqKEXNr1fSkyQEApYdOJWtO1B045IbyvhCSDSG3pbGi4HFVB7N4S4ksqwgUVUljC5MSiRxKFMCJlVW7jeghz/MyU8ixXnGxoNpQATdjQbKh2bZKM41ptNbVsQY/JJsIpmd53Etuyj4+IgG3LPp7pfScxtYuh/cq21u57drA0Zgg/FRq/x6kdDr/6PW3aKuO4Y588+ODgwaM5SnUgTJgAqtfW7VHVUAR27qm5LHj4JAFZRUfXr7ou0rQYeAeYJYQ494B1sfr4GGKI4U/DogvRg6HIUdAHAqSug3G4o0eapvTKZ1c8/NE1smXG2jbaA9SRr0Xn1jX2hPuUmWEzOauHLAWWNhekdRzBq2cNoPq4f3N6x2xuOykfuynNFdYDCcgb8ChvnXgGTVOMSFXTpBTePMXKa2ckhqNhUihkDbmf78++EofLVNGmC8VLnAZpMle5OeOT+TRnAsUdXoyYeyjK5UqWbEicyQ8tnibQwkuJbSsLT7sam0UhPyOyP5rqcNG5aRL98tKQejmmFPDkzW/Q7u7Pad42hextM+i24DGyO7lI3ruCL7orXDf0NF667x2ef+BJ3jpBr0JsbXhm72l9cvhzm1laqxmvLZ6M7T/TZcHjlHk24bVpc7HrkR9r0G+QxDjj2pqjOCFD0bU5T1GU8YRGeFDYln080/o/y9LfDecaGaURsGq6juUOx0Gr+hIzjfZaMkoxQQjd5j0MVEeQe9VfSbd5D4XHeEwE251gRMM2ZsQemSGo1Q2PDkmhUuFMD+vw/irUFSGTUsqXhRA/Af/RW6JcK6Ws4OAp9RhiiCGGBiGtSRzbHXso3/oMCc1uInWe1sTYrOsxY/SFk7gmfiL/HXJVxPIvuj/E9GYzGXnyLYzevpeLTvonr3w/ljveW8v4c7oQsll0OLSH9VfdBINb9eTRsxWKUo/jq1ZpVJx7DwPyTZEMU/ourkQrKW+2JcCpA07hrgGn1JjbrsJXadnIg3hfm5tUBWMHavoXX8BI/fg69Ofrrv9hZquWXD91LQAWU8WbMyGF+ffUTD2GsiNtT1JpmnQ5cY6r6ZidzvR1edzYskXkWLS3Y6spzWmQJkGKx8mQ/FzIJ1wEMfCyQo63XEmwfAD3K4KJ52kmhd6Tx3F67gxWpccT6m7WtatBXvZ6ILkMCpe9HF7Wc6CHtH9pbYLmZCbSDvghz8Gw2ZogTDG5rZubgrv0B2uvWWNZ0GU41Za2BFUbSsBL2u5F5FzVCUJV+2pN0qQ4jfOtcCXS66faq/rmXt0ZWKNdLz1qNTtPULhRRvREiyvfSjheoBMnKWFpzk5ytkLGPvA77YD2G5EmTy6hainUGMBS3TDiE1DAZ0skYLHjt7g4tF4Mhwf1EoJLKVcDPYEiYKEQoscRnVUMMcTwP4+f2wjWmzKIQ0cVcs2tQ5EnPcromwcTv0t78LoTorfcKczK5JerHyXVE1ni/MwVgzjxzNF0a57Kd/e+yhW9O3HGGU9x2iUXMeTU8eFxNouFc25JYe7Qq2mXmUVm91eY+I8nEEIwpG0GVtW4PdodRjRkXnMtredXar/xv3JpN+4cWhCONJmF4BZFUG2LZ37HG+mS0YHnWo9kxJlPGeuFcVxXUhS3dGC71mIPh93F8blN6dQ4AyEEJ+S2rGGS69f5hDmCFdSNumrz042zu1gwYgm//zOyM9Xjp53L6pufjjhGVoKRAlzUypj7Vj3LlZJtCN9PPvFuLrpFxTFwfJg/qC5jXhabEaVR92pRK7u3BEG11hIHSVCxovqrSM7PC48NGX8ubGFycTeRRG9iFnZvSbiqT+gGlKGqvsR2FxnXRq8WjLPYKNW/9lXtTVE7xY+7fBttl72KEizCEqwmTrWFbSCCLlNa0CS+jxbtXJNJ+LdQbTOOUaz/pCcPNDZ69pT/X3Vbfv10Sz1NqHA3xWfVficB1c60/s8yrd+kv2RedUWawr9AvcHuHUKIb4F3CTt6xBBDDDE0HA/l34cQEnOcJt5h5YEztEauj5/UgZTAUt4yPezrg1SPnfO6aekWm67TObNjDmd2HFNj7OyLp+O0qiiK4KHTe9a6T3N6Lq7z+bx00iJWZSbzda1b6AgFFkwkQwgRbjGy7NtNrLtHExDfX+ji3B8q8GU15Y9UaLobXKYHsBkTh2WRvWcHYzPrbs3hV7U+bXaTgacMhnRLtW9X3w4FGfGJbNI/pwcshMTXtw8dTmr8TzybWRiuXD+hVUveT/iNlmkefhp/MwAWu/H9qqb+bDtdDvKAqf0moXkrhyam2QUUPbGRcGJWJ00pPoVQSYFqsn6wpOcBS4gr20Lq3mVkbfuF9Tl9EFIjKn3atiJcRxYiyyZSXJHqAjTBeGrHXyl8QquY3ebbQKdZ+1nS2YM1VIBoIoERPlz67l4bZGHE99rgme3y6bmxQ4Rv1NZkyNYbhfXcE0/IoqGbuy1geJYdiD1xkKIXcRa7BQnlNb/coDj4d15fVFvBfoTrTMpcNhLLvHUPPMqoizTdd+ACKeV0IUQX4OojM6UYYojh/wOWjzuTwEGEquf3Gc/4r5eHic+RgMdevxoehyltdG2vk8mfUsIFebUbBIZQ5dFSUP447QkT7m+YqVkurJpVxKpZRagWhekdT+Cjrt/yWJPO3HtWC1L9m/hSjX7uJ7R6mMllU2mcULfYPxThUE0NpksTNT3XvoQ/3yDcadOiN/vd4LXaCJGmsaeN5Ib3utMyzRNO5QHkNtIiQCFNk83pxqsTO9VqRGZ+G3AGfwRfIk2o1Ey+aWmx509W2JEkOHO/xkjS9vgJsROLyaU9KUmzSDCnDTssNYwt4+MSw6QpHB1E0EgnL60WGW1kXEmGcB09KigVJVyhKUwaPMXkJB8i0C1kY2Aj0/tOopnPyja9zCrkGyWCPrJnaETaH6gMb66a9vVdJ8GQhZJ1GZC9R+tr5hCGE6UmuNeIWaiK1AwzeSpzgP4zrTe8VhW7r366pH0ezXkeoMJOvZtD26wGAY+Kv0jadNC7kZTys1qW75NSPnJkphRDDDH8f4DLZiHOUbvo9qrjW7LxkdOOiZ6Mqk5evuoqsFtUFtx5LvcP61Dndt/2PYnx5ynM6Bby86mNJEreOHssp6Y+waBWbXnk1Jdpn/dyLWPh7qHdWHrbbWHCcjA8d6aHqR0EnkwjnVXe9yIeOF9hlsk4FOCVwQqvDWoYSRVCcPmNKv8ckUxA12P92NXN6R2z2fjIKXV+f1abHa/+M7CY9E0PDxnJO42vCovlo+HL+OvYZB9L0tqtAKxpZIzdbQqFxOVEj8itzIadCeA0i79D4n3TYT37DB8rT6rJgdoUlQpFmiwmUqVGKWJIiNOiTz1nj8WethtF941CekkvmkPztWP5vqN2zcpMfx/BdKNZtlv3FLcIo7E1prQuwqKJpoUa9SFf7DalMWsz1QwJr0UUkX0t30lIbH/T+PHkDRmszVEaLyamj4y4fyzfzJjBohUruGfixBr7CvXi85Rv48C/G8VfRaKt9r+PI4mYI3gMMcQQQz0w/E4L/uKO3AIkuesnRW2dcB5vuQPc2GgYABeP78Wnjy+geGdFOGWX0MjJmTd3xp1g56FTtQdN/7ws+ufVYiCJRlQc1roJE8DswD38mr+d4Z7U8LJrew2ksmIy1/fvGDH2y5y+gKRmm+mDI8/+LK0aJfBz3Mfsq/yYKcf1Z3Qd24Qe1apqPLbN7WjS452su+dGyoureen2GVhREGgCbiVQzSUTBnK20hOnVWXaTE2rll5iPFy7drqA2a0/xOaDxo1y8SvwTVdB3g6F1n8EeG2Qg2+7akxniSkV1/x3rQCh9fKK8Cz3uSFJdxdPamQiYKHthAh7bTlTjUo8y4HtRtB8xUDTalndDqoVq95rTrNmUIMl/LdDe1JKljKnd2e6z50BQGKCiTQ5bEC5RuxCp2w6h6CIA4udalsCSnBvjTlYTZEobbuaZL7alkBA34ejuuY+wuNMqbqgIti8aTMz5s3D6/NRWl6OYmobpAgFrTQBlq1Yxf0jR9M4I4OOBVF6KugmnmXuLA4MKwUtDvZ7RwI31DqvI4UYaYohhhhiqAeGel5nSI9olnW1456TCzmzQ3PaN9b0NW/c/ou2whR9Kd5ZyRu3/8K1Lww4bHM14/2Rx/PWb5tIdRt6IYuqcMeQmlV5s0Y+dUj1XW9erqmLXv/FxcNdy7in6zUR68vtsKJJZLuhp09NZOjcYnJbdghXQ0XrHehOsGP32AmW+cKRjHJ7Ge4EO6Hk4ot9A/x7NXzdWeHXAkFiObyY2oQrz9IevAtyWtL5dguivDl+byJtyxaySB3GLc0vYl9FZApo+ok5nPHmar45wcNp32tM6b0TPVzzXy3HlJSSQaiRS7QYTVKmYRAZrfLT3CxXEIfFV4rf6gaq8driERYY0vlu7re/yCXNrgI00pScYESt2i7UeilmFUnj+xIKpZ4mESZYPpsH8FBtl8SVGaaYKEakKHRNpYAqK/htTSJ+nz6bR9uPNO3DtD6gCvAZfmQPPvcct40cyWuffMyKtWtpl6VVV67ZuJGR991L2f4SLjnzTHbt2k3jjAxG3HEHl519Nsd36xZxnRRTpKnMk6lNUDdxtVftxZU9pca1PRqIkaYYYoghhnrg0bMP3rYjGoQQYcIEMHxMNz5+dB5+X5BQYkW1Cs6+veH7ri8KGyfy2LnRbRsORH0jaLXh0p6tSPXcyintMyOWX3ZDHP7yXC42LduRfAoTz3yfd+IyqdYf8opJ02RG89xE9geDnHhqS8Y8MRW3jJxn5/YPcc21d2F1nULRbiu7HZvJSnBxU8vPKanyYVUVSlfdS88WGXRr7eClZU/yxilX07tlzWjeFxnxfHSLSlUwLkyaqqo6ABrhTYxPYHEmfNldYcAebeLuEiN9l5ptWD64XebrLvRz1IjhtH7PwEYJtpBWycnutI6Q+gwj++aztuhyRvUtIOSnbTNF4Wy6Bsnm1yI9oLVX8ZRvY9fkt/Fu3KAdT0qEDKJIP2UhJiUhXUt/QwAAGF1JREFUYFEo9WsRn6AqKAlI3RsNhBQEFAughK0ZbDk5pF1qVBgCFCVCo2LYneCiaZV2nZavW8eytWt58aHxzPx9AcvXraNtvx74ApLLxoxlwv130adlPjc8+CCtdGuMpatX0y4vjwMRajYsZAAhvEgcus2DIGXPUnx5f001YYw0xRBDDDEcJaQ1iSM+xcm+HUbT2YRUJ2mNoxt4/t2gKILTOtQkIk1L/02XZpGpqtfPvoF3555K2/QMFujLLInRhe0nm9oIjR07mNKqyF5557fvx39m3sWtA7sz+orc8PIRfYxU2qK7h+G0qdhUhcH5z9AuO9Jp/okzFPbFCR7s9Sijp9zGNe1uBzRP5375maA3FHPZHdx6Rnd8xZ0ZsEvrJFZp4nCNUrPDonKny7ARCEV0FFVlfktBy5UPs73XOMr3VesEWuKo3EPS7pdIdA3kpUs0Ih0iTebUZQRCPfyEQIQbwgk95adHnaTEZwGrYQRvQETuK6DYIgcIQVCxUubOCkeaBFDuEGxwQJIlHdB64N0/8UnGXncdQhHktWzB8jVrQAg++ulXWuXm07FjXyjdRUHLlljiXXh9PsorK0lOSGDl+vU88f67lO3aQ/8ePRhxy42sa2RFBjxkeMHqLcXmK0MJVuG1xWPx1K9x8+FGjDTFEEMMMRxFVFf6Sc5y0/WU5sz7aiNV5cdej8D6or4tyL6+oW+NZbmN4rjnlEhNlUWtvTAghCbJrhrL2mUn8P0/T6NFavTmzgCJLlvE+AMxI7M70pvKgPxMvkx+LqLqL9lUZWhRBFXbh3NB9yawXqvAq453MOGcCrqslVzldIZJk9nfK0ROFEVhwnAVKOKODRbKqUbqPtdKwIs1uD3q/K21kabQ7vV0VtzI6wk6LTiL9+C1eggqKq7K3WxPdpO+rxxFQnmyG/deLTpUlmDDU+wNV9RJoVLuzkCiatwLUIKaN1WJC+J1rpJibc7OskoaJTvwAXMWL2bazzNZunwFjB9PlbeagvxCgv40lqxZS2H7jkiclMY1Zc6aTfTt1YEV69bRuoUWccpv0YLHJjxM3N4SRo8bx5VCIehNJ8FpRY0LYNu0k13Jcag7Kihc9jKrT730oNfjSCFGmmKIIYYYjiIun9An/LlVl2OvP2B9cdlNKlLAnMO4zwSniznNBduTIIo0+KAIWRkcKm7vMpbsJGfUfZnThkIIVj5wElZV4ePPtBSXoqjMbZbG/FZ7uN5qPFYdikHUFF0orgagYtNVgMBb6ceebKfd4CYs+mA2fquLYC3VhjaHJ6xfWtpU0O4PvfdieF4aaXJW7aY6MRkl6MNRvS9MbJ1WN6ARJaGYK+0ijydkAEVWEVDcWnpPCPxKFduSgySVG6LxjAQ3GTqZ9AHjnnqK915/mcHtOxFQYMv+3fQ/8wIAkhKTWbl6OQC/L1nIZ59/zDVXnc+SOb/TvrXRfHzatKk8OfFprjn/AoQQFDbW0ptlVT7WJWTjtlgRaM75tkSjRc3RRIw0xRBDDDHE0GCU+Fsjg/a6BzYAqhA8eIEm3r7xsO65bphTeQdCsdj5pUDQZLekAMKVi+HegopKH/e9fL9qdcR2juwmhFyfFL15s/AHWHibJpSPN1kKbJxyMx2nLWNlbvSqSJvTTcji6NUhChNfjvRJEibLgYjPOtOKcznqHBsyyAwKJZwO86c1pqRapUpxIkQVIGsQram//kq110u/vr1gfyVqENJTUqmsKGNf8W7OPet8/nH5OQwY2ofcFi1IiPOQl5vLR299QPdCI/V68pDBDOvag3NGjWb4taPCy102C06rhYx4B6Wha5v017xwxEhTDDHEEEMMDcYHp7+GRT38Hlrl668/7GTsz0K1WXnyDI3MDDGvCJmzqgrPn9+XgOwTsZ3TlaDHdmCXW9IM8OGPIEth6NEfeYAH0g0jVaqt8I7DIE3e6lYQYRlKDR2SFCqVjlQcVbu16JFqMQzqleikSUGzBFADe3BUa3TPnexg03YvLuECTBV4Jgzs1YuBvXpRYbcBlWFx+o7ffqM0PgmkynefTQMhEEE/nvJtVNiszJg3j9EXaQLzGXPn8skvM/CVlDGkb98IqZWiCFqlR5qiulIz+aK7oMoKrIo6rSOCGGmKIYYYYoihwTBXBf5ZmB+Qz507jOQ/WcV3uKFYbZSvvwGhRFpny1BBmqq14jnQKNJtc4RJ07yuqbT5Yxfbo3kSARadgAUPKArbniIIVGaH9VFvDVC4vdc18KbuURQSgutEqNqq6aZCPkte3WdJUS2EZeIHtPUJwSY0F+4IwiIUChtrIv5dlRqpCtRibhlwxrM+owSkjZydGsWTwo+t+v/au/Moqao7gePf33u1Vy/0xtoCjWxhnIhGUBTRoIkdQlSiRtoVspJJQhJjEszJzMQTjdkmk5yZiRmPGD2e2O4akslEjIZJME5QOUYQlygg60S6laVpeqv6zR/vdVMN3U13U9X1qvl9zqnTVbfuW+6vC+rX9913bzOR9iYOjajCaW7jYHMz8+sW84GzzqK6eiytIZg3axZnLbgQt3EfbrrH3QOwPwH7RsPkqnHce4HfK3dX7/WzLedJk4i4wPPATlVdKCI1wP1AObAeuFZV20RkPHAPMAJvVvgVqvobfx83AZ/AW1Rouao+4ZfXAj/x699ps5QbY0whE2pPGX3sakPMjURZ9elL2N/SfdD+ry88nbfTf+TNc9/PNT1sVxSNce9pwosnC1snTmTJDe9yzcjJPdQESXkpTfqIhaCnHbqdmooi4tEoH7vJ+8q+bvSoo+bTEnHYPFqoPFiN7BPwZ2fvmmdpdwtJf0iSyNFjmhzteb3BzKK9RXGaQgcI9TDTOYArMTSVRDuKaCj5P6r2QUeyhZJ9+wAIJYToOw2QSPD71b8i0XiQzIuM/ZkjrM0NcdPSEE8nSzn45pdRdYEl/dgyO4ZiooMvAq9kvP4e8K+qOgV4Fy8ZAvgm8KCqngYsBn4KICIz/Nd/B9QCPxUR10/G/gP4EDADqPPrGmOMKUj5XzKnJ24ozinjSjn75Mpu5Xviyn8ucGnvZTmgiOuystblhSkOE5wr6GiazOTi03usKykvIVOn+9fyw8vm8oMrZhJ1w6Q7krTsvrTbrONdA8Edx0tWwodwI9rVDaZAS6iZsjEZ6wxmHMPJWP+xNe7dmXggEe1aszAzkQpJguaoEJae59MqjoYpDlUxZWQZTfEIm0cL0WgpDSVeD1jIOTxeq1viNgAhimne+hlKYjH+50uL+dONHxvUfgYrp0mTiFQDHwbu9F8LMB942K9yD3Cp/1yBzkktSoFd/vNLgPtVtVVVtwBvALP9xxuqullV2/B6ry7JZXuMMcbkThDWGeyJRHseYzW37HO0NZ7DuaM+2vN2IrQ1zqV528dZMvtMDm3/JGdP6mV5nA6vz0WdnmPgOsLVY37OQ1d/heKYl9w8Nkcy5l5ySIYqqWpPkGqTri4iAWIdCd7d3Zwxp1PmV//hpEkjMTaPFtqjcXZUCDsrup9LabSUVMsYkpHu0x+0huFAHCIhhwkVSWJhl3RbBdpRRNiJsT/hsLNCcCMZcRzk77oiGeOuuiuJhlxOKk8wprTvqRiyLdeX534MfA3o7MurAPaqaufMZDuAznUJvgWsFpEvAEngQr98HPC/GfvM3Gb7EeVnZvPkjTHGmHDk6LmhAG644BTK41/lstPHdyu/uc7hQEL4L2BK+Coun1/N+6eNZOt3P9z7QVLe12K6l/FCIsI3FnjjofY2t3Vdqpv/lw4SeDNo11QmSI1I887uJjTF4W4oR6gYk6TFHzDdbcqBjKQp5hSRbi8nGivhkLOP1BGDi8oSYeKRUuJHrHvYmVyNzCgbX1bC1kaXomiY1DujEGnHcUOk8cYlhQeZNLmOcN7UqkFtmw0562kSkYXA26r6QmZxD1U7f2N1wN2qWg0sAO4VLx3ubZu+9nXkuXxaRJ4Xkef37NnT7zYYY4wZQsHsaMKtqO6xPB5x+ez5JxM6ItF5eaLDtpFeY379hXNZck7v0xl08cc00UtPU6aSWJh0Wzmtb9fy+c9Eeafo8Jp2bsghFOucmNL7SownQrihjDvmMi6Tpf2gt7tQEg/japLKohjp1lGkWrvf1i8iRyVMAOn2MtJt3edNKomHeW/1CFxHqB5RTDxUhOMIm0cLDSXS1dulvTV3kJfvci2XPU3nABeLyAIghnfp7cfACBEJ+b1N1Ry+DPcJvDFLqOqzIhIDKvF6kE7K2G/mNr2Vd6OqdwB3AJxxxhmDWY/SGGPMCebLn3KZvEtZIh3Hrpyh9e1a0u0Du7twb5k3KqWhouSYdR1HOPjm1wA4VPQ6KQdcOZzMaFo5FGqiJdTM2FA16ZTXY9Q1/skNcSji3b7fWlRMS9tB9iaFGa7DjLHe8aeMLKG1o4/b2DKUREqJhnqeXwqgPBmhPBmho3NeKw13XZ7rnjQpu8tcig+lKAkH6w7KTjlLmlT1JuAmABE5H7hRVa8WkYeAy/HGIF0P/NLfZBtwAXC3iLwHL9HaA6wC7hORHwFjgSl4k9AKMMW/G28n3mDxq3LVHmOMMTkS0D9ld1YKOyuFbyTHHLtyhpvP+wKjSgY219Rzs8/iqfBrtE6bxfJ+1L976SxOriri3B82ozOLcTIudxVVxNi9dxt0lFNccXjQ9p5SYUSTEnFD7C736pcB7xYJqt17duKREPF+5i0TKpLHroQ3eWm6dSSqLhL3pyQA0v78UOqEadeRNCSaKHeOvaROPuSj/+vrwA0i8gbeGKeVfvlXgE+JyF+AemCJel4GHgQ2Ab8FPqeqKb+n6vN4yyi+gnfn3ctD3BZjjDHZ0o9LU0Opo2kqAOXJgQ02rps9nvnTBzZjdQplQ42D4/SvL+P8aSM5qTzB/Z+cT8SNdLtE6DoOqZaxlMe693Y1xYQdldJtIHjE9cZraXv3OwMH47HHHvOWmXnVm3hzzZo1LFy4sOt9EaGmYgTvGTOia5JKBBpKI+xLQEcigWiYdEdpUK/UDk3SpKprVHWh/3yzqs5W1cmqeoWqtvrlm1T1HFU9VVVnqurqjO1vVdWTVXWaqv53RvlvVHWq/96tQ9EWY4wxJ4bF4/+Jpte/2bVsSi5NiM8CYFLi6MWN+3LWpAqqirv3armOw4wxJYwuPWJqgFRR1/uHGspZf0cTcghSLeOoTPa+2HF/1dfXM3fuXO6///5e6xTFwoRdB3EOj6VynHIaiqJEnThjR8SJuA5uDmabz4ZgjrQyxhhzwpGA9S/880dOZcutVw7Jsa46bTYHXvkuS2fNycr+Qq5z1BQO2lFKqmUcjjg0rnuX/dsPsnH1NmaMLTnuW/ebmpp45plnWLlyZbekaf/+/SxatIgZM2awbNky0uk0qVSKZV/8CjMvW8TZH/kod//sDtJtVYgIpfEw08eUdLvcGCS2jIoxxhiTZ5OqivqekiALxpcn+MVX1/LHjsODyDb+YRcb/7ALN+Sw7N/PH/S+H3/8cWpra5k6dSrl5eWsX78egHXr1rFp0yYmTJhAbW0tjz76KDU1NezatYtHn3kcgCpG0+ZESEaDn5JYT5MxxphACGbfwvBREg9z3a1nM2XWKEJh7+s/FHaYOnsU1956fD1c9fX1LF68GIDFixdTX18PwOzZs5k0aRKu61JXV8fatWuZNGkS27a8xXdWfIdnf7eByvIyqssTge1dyhT8tM4YY8yw9tx04byXFMLBvGNqOEmWRonEXDo60rhhh46ONJGYS7J0YHf7ZWpsbOTpp59m48aNiAipVAoRYcGCBUddIhQRysrKePa59fzikVXcd9c9/Gn1au66awhX3T0O1tNkjDEmr352UYxPLneRkopjVzbH7dCBNk6ZN47Lv/4+Tpk3jub9bce1v4cffpjrrruOt956i61bt7J9+3ZqampYu3Yt69atY8uWLaTTaR544AHmzp1LQ0MD0ZDwsSsu53vfuaXrUl4hsJ4mY4wxeZVyXPYng39pZrj40LL3dj0/r27ace+vvr6eFStWdCu77LLLuP3225kzZw4rVqxgw4YNzJs3j0WLFrFhwwaWLl1K2p/s8rbbbjvucxgqljQZY4zJr5aJkHiVUD/nKDLBsmbNmqPKli9fzvLlPU/TeeqppxZU71Im+4QaY4zJr79dy0H9G7HQ0K5Yb8xA2ZgmY4wxeXXJzBrSrWOJuPaVZILNepqMMcbk1c0Xn8JXL5o+JDNvG3M8LK03xhiTV67jzQRtBk81oKseZ1EQ2mhJkzHGGFPAYrEYjY2NgUgqckVVaWxsJBaLHbtyDtnlOWOMMaaAVVdXs2PHDvbs2ZPvU8mpWCxGdXV1Xs9BhnNm2hMROQC8lu/zGEYqgYZ8n8QwYHHMPotpdlgcs8vimX3TVLV4KA50IvY0vaaqZ+T7JIYLEXne4nn8LI7ZZzHNDotjdlk8s09Enh+qY9mYJmOMMcaYfrCkyRhjjDGmH07EpOmOfJ/AMGPxzA6LY/ZZTLPD4phdFs/sG7KYnnADwY0xxhhjBuNE7GkyxhhjjBmwwCdNInKSiPxeRF4RkZdF5It+ebmIPCkif/V/lvnl00XkWRFpFZEbj9jXl/19bBSRehHpcZYsEbne3+9fReT6jPLfishf/H38TEQKbs7/IMUz4/1VIrIxF+3NlSDFUUTWiMhrIvKi/xiZy7bnSsBiGhGRO0TkdRF5VUQuy2XbsykocRSR4ozP5Isi0iAiP851+7MtKPH0y+tEZIOIvCTe91FlLtueKwGL6ZV+PF8Wke8f8+RVNdAPYAxwuv+8GHgdmAF8H1jhl68Avuc/HwnMAm4FbszYzzhgCxD3Xz8ILOnheOXAZv9nmf+8zH+vxP8pwCPA4nzHp5Dj6b//UeA+YGO+Y1OocQTWAGfkOybDLKY3A7f4zx2gMt/xKcQ4HlHvBWBevuNTqPHEmyLo7c7Pon/8b+U7PgUe0wpgG1Dl17sHuKCvcw98T5Oq7lbV9f7zA8AreIG6BK+B+D8v9eu8rarPAe097C4ExEUkBCSAXT3UuQh4UlXfUdV3gSeBWn/f+zP2EwEKbkBYkOIpIkXADcAtWWrekAlSHIeLgMX048Bt/nHSqlowkxEGLI4AiMgUvC++Px5n84ZcgOIp/iMpIgKU9LJ94AUoppOA11W1cyr13wF99ioHPmnKJCITgdOAPwOjVHU3eL8AvH+QvVLVncAP8bLK3cA+VV3dQ9VxwPaM1zv8ss5zeAIv2z8APDzIpgRCAOL5beBfgOZBNyIAAhBHgJ/7l0D+0f8PtaDlM6YiMsJ//W0RWS8iD4nIqONoTt4E5LMJUAc8oP6f84Uqn/FU1Xbgs8AGvMRgBrDyOJoTCHn+jL4BTBeRiX7SdSlwUl/HLJikye+VeAT4UkaPz0C2L8PLYmuAsXjZ+jU9Ve2hrOsfuqpehNe1GAXmD/Q8giLf8RSRmcBkVX1soMcOknzH0f95tar+PXCu/7h2oOcRJAGIaQioBp5R1dOBZ/H+Yy4oAYhjpsVA/UDPIUjyHU8RCeMlTaf5278E3DTQ8wiSfMfU73X6LPAAXi/oVqCjr2MWRNLkf1geAX6hqo/6xX8TkTH++2Pwen/6ciGwRVX3+Bn7o8DZInJmxkDFi/Ey0MxMs5ojuvtUtQVYhffLKjgBiecc4H0ishVYC0wVkTXZaeHQCEgcO//a6uzmvg+YnZ0WDr2AxLQRr/ezM6F/CDg9C80bMgGJY+e5nAqEVPWFrDQuDwISz5kAqvqm32P3IHB2lpo45AISU1T1V6p6pqrOwVuX9q99HTDwSZN/qWEl8Iqq/ijjrVVA5wj464FfHmNX24CzRCTh7/MCf59/VtWZ/mMV8ATwQREp87PYDwJPiEhRxi8zBCwAXs1WO4dKUOKpqrer6lhVnQjMxbuufH622plrQYmjiITEv4PG/09oIVBQdyJ2CkpM/S+kXwHn+/u7ANiUhSYOiaDEMWM/dRRwL1OA4rkTmCEiVf7+PoA3FqjgBCimiH+3sV/+D8CdfR5RAzCSvq8H3heq4nVFvug/FuCNen8KLyt8Cij364/Gyyr3A3v95513vd2Ml+hsBO4For0c8+N41zrfAJb6ZaOA5/zzeBn4N7y/nvIeo0KM5xHvT6Tw7p4LRByBJN5dSZ2fy58Abr7jU8gx9csnAH/wz+UpYHy+41OIcfTf2wxMz3dchkM8gWV4idJLeIl9Rb7jMwxiWo/3R9Em+nFHvM0IbowxxhjTD4G/PGeMMcYYEwSWNBljjDHG9IMlTcYYY4wx/WBJkzHGGGNMP1jSZIwxxhjTD5Y0GWOMMcb0gyVNxhhjjDH9YEmTMcYYY0w//D//4W2MkRNd6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for BSL\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'BSL'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [College (CMO) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.96 -0.326 0. 0. ]\n", + " [ 0.326 0.96 0. 0. ]\n", + " [ 0. 0. 1. -57.574]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.596e-01 -3.294e-01 0.000e+00 4.678e+00]\n", + " [ 3.294e-01 9.596e-01 0.000e+00 -4.416e+01]\n", + " [ 0.000e+00 0.000e+00 1.025e+00 -1.426e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.970e-01 -3.495e-01 -3.531e-02 1.486e+03]\n", + " [ 2.957e-01 9.970e-01 3.063e-02 -1.307e+03]\n", + " [ 9.227e-03 1.401e-02 9.970e-01 -4.730e+00]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.512e-01 -3.564e-01 -8.754e-03 5.854e+02]\n", + " [ 2.907e-01 9.725e-01 3.049e-02 -1.245e+03]\n", + " [-3.643e-02 1.433e-02 1.048e+00 -2.274e+03]\n", + " [-0.000e+00 0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VMUWwH9nNz303ovUANKLgFQVsGIXK1YE7Pos6BO7zw4WiiiKglKkCIJIC02k9xKagHQILUBC6s77495sSXazm7Cb3eD8vi9f7s6dO3Pm3Llzz505MyNKKTQajUaj0Wg0eWMJtgAajUaj0Wg0RQFtNGk0Go1Go9H4gDaaNBqNRqPRaHxAG00ajUaj0Wg0PqCNJo1Go9FoNBof0EaTRqPRaDQajQ9oo0mj0Wg0Go3GB7TRpNFoNBqNRuMD2mjSaDQajUaj8QFtNGk0Go1Go9H4QFiwBShsypUrp2rVqhVsMTQajUaj0fiBtWvXnlBKlS+MvP51RlOtWrVYs2ZNsMXQaDQajUbjB0Tkn8LKSw/PaTQajUaj0fhAwIwmEflORI6LyBansHdEZJOIbBCRuSJSxQwXEflCRHab51s6XdNXRHaZf32dwluJyGbzmi9ERAJVFo1GoykowzYMY/3x9cEWQ6PR+IFA9jSNAXrlCPtYKdVUKdUcmAkMNsOvBeqZf/2AEQAiUgZ4A2gHtAXeEJHS5jUjzLjZ1+XMS6PRaIJO9z5fMXPQvcEWQ6PR+IGAGU1KqSXAqRxhZ51+xgLKPO4N/KgMVgClRKQy0BOYp5Q6pZQ6DcwDepnnSiilliulFPAjcHOgyqLRaDQXw+3LlPdIGo0m5Cl0R3AReQ94AEgCupnBVYEDTtEOmmF5hR90E+4pz34YvVLUqFHj4gqg0Wg0Go3mX0mhO4IrpV5TSlUHfgKeNIPd+SOpAoR7ynOUUqq1Uqp1+fKFMitRo9Fo2JS4KdgiaDQaPxLM2XM/A7eZxweB6k7nqgGHvYRXcxOu0Wg0IcP+pfOCLYJGo/EjhWo0iUg9p583AdvN4xnAA+YsuiuAJKXUEWAO0ENESpsO4D2AOea5cyJyhTlr7gFgeuGVRKPRaLyjDhz0Hkmj0RQZAubTJCLjga5AORE5iDEL7joRaQDYgH+A/mb034HrgN1ACvAQgFLqlIi8A6w2472tlMp2Lh+AMUMvGpht/mk0Go1Go9EEhIAZTUqpu90Ej/YQVwFPeDj3HfCdm/A1QJOLkVGj0WgCil4+TqO5pNArgms0Gk2A0GvuajSXFtpo0mg0Go1Go/EBbTRpNBpNgND9TBrNpYU2mjQajSZAKD08p9FcUmijSaPRaDQajcYHtNGk0Wg0AUJ0E6vRXFLoJ1qj0WgChR6d02guKbTRpNFoNAEjNKym9Kx0tp3cFmwxNJoijzaaNBrNJUeWLYutJ7cGW4yQWdvyzalP8d1bd3D0/JFgi6LRFGm00aTRmCil6DCiCR/++V6wRdFcJEPmvcm41+9k67EtQZYkNKymK0Yt5ZG5NvYvmRtsUTSaIo02mjQak8zMDEZ/nsVNj44Ltig+sS9pH8dTjgdbjJCkxvBpPBBvY/cvuXZgKlxCpKspNkUBEKl0k6/RXAz6CQoxMrIymPfPPIzt+DSFSVpmerBFyBdfD7qe4c90Iz0rnYysDFIyUgB45JvrGDTx0SBLF1yqHsoCIDntfHAFCQ2bCTGbk4iwmOAKUoRQSmFTtmCLccnz6+5f2XV6V7DF8BltNPmZlIwUUjNTC3z9kK8fotgtTzN/+Xg/SqXxhfT0tGCLkC8eiLdx11Ib+/ds5vkhPfnPq20A+M+ne3ngjWUer4vfPYfeQ1vZjaxLkTKmraRWbwiqHBIiVpOY7/4UKVp1PL8cTT7KofOH/JLWoM9v5On/XO6XtDSeaXDDIH585eZgi+Ez2mjyMy+/0obn32hf4Ovrzt5AqRRInq99DwqbtIyi1dOUjQ1h4LdHeOo3376Kdw9+kQ9GprB59ZwAS+aZTFsmWbasgOdT/GzBP2CKEgvWTOY/73Yi05bp9rzF7GlK5tI2mkY8dxU/PHUN6VnpF12/+o78mydm6Z6mvNh1ZCuvPt+CQ6cPXFQ69ywuOnrWRpOfGTjLxlNTCt5QZ4jR6B04tslfIgFGD9jLL7Vi2eY//JpuoNm0dwUPvN6YM6lnAp5XWvLJgOcRCKxZSfmK32ZzBgCph/3zRV4QBg5qxnPvXBnwfJTA9+MHMXP+NwHPyy2WwulpOvX6YB4Zd4IdG5e6FyPbaMq8UCjyFCZHzx1hTqc4XvvqVvossXHLckWfD1ry2q/9/ZL+4dMHSGgYx9jvX/RLekWJP9ZM5NlnG3My+YTb83+9/hj3/55K/IcDC5R+ZmbGxYgXFLTR5Ed2bP3rotNoutNoZK9e4N/GbfHEITw4I4WD/32R31aOZdKSEQC88npHnnqhiV/z8if7Hn6IQb/YmH1LB86knmHarmkByysto2h+hScdyp+xF2W2UyorkzHT3mL/8d0BkCpvnptuY8D4wBvCFlsmV7z1K7Wf+izgefmDfw7vYPDAy/n7yPZ8XVf9uGEVZaS77y0tfc74f+ibry5KvlBk3ucvUiMR7vsqwR723tgs7nzzzzyvO5p81Cdfmq0Tvgag9YczL07QIsj+99/i8T9sTB/zX7fno04bQ/y2lIK9r1JTzrn8TkxJZMWRFQVKq7DQRpMfST0SvC93b6hko3KXOJ9F3b7vc3m/LwDo+8spBs4K/DBJQalnLivTfK/iSPP2NLzxVZYsDYy/V2ZW0XS+l/AY0iJKsLb5syQneTb83n27J1N+H2L/feLo37QbNIGpz9wEwNA3ezB18v8CJmdKWjJr9nr2tQoEpU8Y99QSpFsrkr8mdsZb93B3fCbJV9+Sr+ss5uiGsrrPz2qWv2NC0anjGVm+9UKUiV/nNjzay2j76VbdyGx/k9f0VWQ4APsrh4Z/WqBRSvHX1nkA1Eg06kviqqX8tXo6H7zsOgTcdKvR3lRaf7hAeW3Yvth+fDYpkfH9r6Jkt4cKKnqhoI0mPxKW6qhMgZr9tmplPKPf+IOde3fm6zoxpz5bisjQcaYt06Oj8rHl8QHJMzU12X68ad18Tl44SVpW6Pc+ZVgs7K15LUkl67Byxt9u44z69F5u+3k/9f8zyh4WO2U+AE33GXW154QD1Bv8Y8DkHPtcD2KvfZSELXn3APiTsk4fssuX/FJo+RaUMgeNL/bwfH7HCMY9VClFc4g5J+u3LSG+S1OmTP3Qa9wyZwNrCCqbqduA5hJ8klPPM+KLvvz0ySOUvu1pvv/0QWomGueuX2Uj8bVB9J5+go1/zrBfk/2xpizFC5Rn+i+/2o8XDBvENatCf7hOG01+JOOkY9w3PfXih9eWto1j6cKf7b9Pnj7CoXeXkHo0jHXP/5zHle7I/ZV0+Njei5QwcHw7oCMJrVu5PSfHA/NikEMOP7LDaxdzvMWVjLmzRUDy8heLOg1l9bgIDlftDGIhYdlR4rsOY1GnoaSmpTB7+c+cOHecTt8YX+NhTkZzLXOJp8qnwZaVleu8J5KSEpk84vl8y1p38ykAjmwOTvf7+QN7WbAgcEahO/Lb09Tyb8erWSnF1/+9kbUrvQ8L2cyPokO7NjD6jiasXz/PY9wzSSeYPePzfMlVWBw4/jdnzp3gxKvPUeME1Hvje6/XBLr/59SsKQDUPHJpm03Tbm9L1+GrqD1xOQBXfLPSfs6qoEySUX6b0xBw9sfa0crXuqS1ffdqhj/QjCPH837HxDgtgdHwx8LthS4oATOaROQ7ETkuIlucwj4Wke0isklEpolIKadzg0Rkt4jsEJGeTuG9zLDdIvKKU3htEVkpIrtEZKKIRASqLL6SdcrxMt+3Z6PP10394mm+frITY0c+7RJe7izw8jsopRj55CImDEqwvxxPVuzMsP7xjHxyUZ5pH0s6xPFzRzm939h3qvJxx4M//21HN+j0US/z45u3h8z6UF0WnyUmj06eqWNeZ8SbN7Nh5Sx+7N2Ykc918xg3OSmNaZ+uzXPoCsCW7ORjY67P0nlr4PQxdfSr7NtTMIf/pLOGgd5+5WBOha+2ywuKisdW0X7lYH6+qzW1HnqHxDZdvKZ3/twpn/M+3K4zjT+fzcrhLzPrx7dZOtu3BSSz1wrKSHPfg7hr1xr27/dtfzR39TQl5Ry//vS2x2vKfvg9VZ74H1Mev5PEA+cY9cwiEg+ecxt36fwfSWgYx+plv3Ls6F6mffmcx3T3bzvJ8AHx7N/uuw59Yd/OdXSevJvEl7w7IJcwVXpgwUw6bM4i6u6n2X/QvV/Ugvu6UOulkWxc+bs/xbVz/vxpJlzbiF++eQmllNtZbM46++7FXiycPty4tvMNHGnTiWrbjQKFZ3g3iZQyejvSIkr4EFfx2dMdmDl9qD3sn31byLRlkmFz9HIom+ProXmC+xmJF8vyheOZOMQ3Z3XnNiw9Kz3PHvDEA+f45tnFJB48R2paCuOHPeNTu95qtxGnjNPSZudiq7L4yo85F1uFcuZ8k5NvvcXIJxcxrH+8/X2UXMp4H414Mp4sWxbr3xhIt1XpLPrwyTzzDA+LdBs+pO/ljHrtBq8yB4NA9jSNAXrlCJsHNFFKNQV2AoMARKQR0AdobF4zXESsImIFhgHXAo2Au824AB8CQ5RS9YDTwCO+CrZ/20mGDYhn9KP3kJqawtplM5g2+lV2b1vJgqlf2OPktyE8E+54uPZuXOSSX3ZaR47uZeTtjVi+wtEtGTd8Hp3nn+Dy4StzPfzlzsJPQx8n+vQbWGwbILvyK0X9thW5/z33yxsopRh3b0tOtbuak2260WKy8TJy7vZvs+AYYHSxJi2sh+zoxTePXOU2PW+Gx87VRxnWP56da495VpAP6YChr/jOX3CqZD2352PX7STug8l0nbADHnsbS/TTXLHA9UV87Ohextx5OVs3rGXCWys5vCuJpRN32M9nZWaS0DCOhIZxdvlXLujAsbLNAKj52VS3cnmqE7Ys14bVueH6+aNH+L1LHCnnHbPcDu9NIO7jaax/4m6vusupM6UUK2/sDMCy9u9TJqMN2Hs0hGMV27Ks/fu03567oczuTs/5gtmzfZX9eN6PUxjWP54dq/L20UubNZvL3h9Puec+znXuwIEEziaddNFZZbMj9vwBh+P5uoVTmTvmdfZvO8ncj0+z627ju8hmvrQOH9zJrKubcOHCefZsPsaw/vNZPmcZ2+Ma2e9dNpOfu44G74xn8pBBbsuY7ePSaPFmJn+4kIzULCZ/tIipNzUnoWEc340YyNi372Li0AGUe9Lw7Sr2yCBOdb2OhsP+YNWkEZw/f5pxvRvz20/vcj4lifSMNOZ+uwWlYO6ozUzrbciVlWnWB6eepr9axbFo5igSGsaxd9d6/owfx4zx7wOQ0DCOuVe6lufsbfcBEJnVnGH9F7CoYx/WLp1AwsYl/DVzlds6022d4wFPvvoWfvr4YZLPn3F5+TXaZeh286SvOHJsL8lJaYx/dwkbmrZj1pi33N1qF5zv6e5da1nVPI4Fs0ayunkcX/e7gp/evYdmexVNPv2Nsf06sbNRE+bN+AqlFMkZxhD47K83ohTM+mot7X/7h0ovf8nho3ty5XWyVH2G9ZvHzO43kZWZybgPH8w14+qf2n1IKlmX7fX6eJV7xMCFtFtZjjovf20PXzF1GLsaXc7uRk3tz+LmJXlPjnDWQXpGKgkN49jYOA6bzebSrmTzw5t3Mv2711zCSg14m6ZfL2bsO4MZPiCeZe1uYtyNjfj5g4dYby4Hcub0Mca91Yf4sQkc3pXEwnHb+btxM/Y0bo5Sig3LpjDm4bZk2bKwKRtpWWn8MXIT6alZ/DFyE3ubtaL5l3OZ/OnjpGWlMf2nd1ixdDJJKaf5Zcyr7Fh9JM+2Z3PjR8myRrO58WP2sJqJULneAiLS10G2QWzLMj7Wlgxi0ZVNaL7WsLxEwfGT+9m26hDD+sczrH8/NjWOIzMzg5SUc1hmuF9ap9fKTDpN+Zth/R/NJZ+v75pAIYHsWRCRWsBMpVSu6Vkicgtwu1LqXhEZBKCU+p95bg7wphn1TaVUTzN8kBn2AZAIVFJKZYpIe+d4edEkKlo9ec9EssJjsWYkU7npAuqPdL1xJ4e+zJZZ1cjKECKiw7jq8ViWTv4fXe99k5q1jcXODuzbyvb7bifmxW/ZMDuV9ndWIHrgnbnyW9cqmpQKQ0i/kEVkjJXE5IHcbK5JcWb4G2yaOITOi88CsKFxP06Va0rZE5totnWUSzrxXb7ysCWDYsCwrsyePpRKZWvTqsut7Nm8jNLV67K1Vz82Nn2S5hu/pEyS51kiWxvcz7FK7QCodHQl6a230fyntVRYOo/4GV/R5OPprL3vY5IORBN1fi3Wc2NIb1CN+96czNZ189i/YQnHEnqjbAqLVSiZ8hqNV5+h2ZYE0i6kMH/KEFp0uYOka3qzolk/Uko3o0KdCK59vBFT3rqXtrP28dfVFbnm2S9Y8u1gzic/SVa6YM1IpstfL+d5PzfHPUxihZaUP74W1Xwj6YlHqdr1Jir/dySLOg3FZg13c1UG3Rc9a/8VPfUHZn1+GggDWwbdl7rvVVh09efYMqygLtDlkTDWjfkfKtxK27mGt/qqaysTmR5GswUHWNjtHZQqTXTyMdqvfgeA/W88SLdbn2HGW32x7t5Dw01GwxLf7UuwCZBJbPobtFueRGo4bOlencqrD3Cw+/9ITixOmRMbibjuOI0+nm6X6VxsVda2eAGbNcKoH0phyUqn1fpPKJ6c2zlzW4P7OVqpHZWOrqTRjrFuyxnfaQhYwl10USp+Fqvuu576Hvw9j336PBVfMGaore5SnjaLE820PgRLLJBC98Uvub8YWNzxI7LCYrBmplDp4Es0+MdNnA4f2p/bvOrF9np3cbjKlVQ5/CcNd010LZun50gpui/O/VV8tFxztjV+lMZbvqHiSdfeY3+mlRfu7oe7sLxY3uZ1LsRUJDrFUR+zyX7+w9PP0nbtB+yok0LTHL0r864uwTXzjXYqvusnoKJ8ej5zlSWfOsvrnnt6vi1ZGXRdajzfZ2JhT/PStFx22qWOdVnmvi560+vhMlDlFMR3HwJZ4VgzU2i+eRAlz3p2QnO+77uvOEnHWQd9KuPKK4pzIfwdr2W0y55P3QLEdx4CEg5io/six0iHt7R80b1LPp2GgDUcsnyrry7XmfejWqv51B86y5DZEgEqnYoVx3LToFFExhRbq5Rq7XPCF4FPRpMYA/PNgCrABWCrUsqrmefFaPoNmKiUGiciXwErlFLjzHOjgdlm1F5KqUfN8PuBdhgG1QqlVF0zvDow210+OalRvoF6+bYRroFOlSq/FS+vh8zXtHypgCdL1Wdj0yeNL1fz5Yiy5WkQLerwEbbwGCwZKXT9K3cj4dmocOTtTTZ/ljE/uveWXl5ly+/9zo9c/ozra8O0ovVrpMRWtv+OST7CFWtcNx32t/694Wta/tR/IMqY1/N9slR9Njfpn8NgTaPp5pFun8n8GjqeP5Tc4En+PMprsWXm78Xno+7OxVZlXYtnabl+SC7D3Ved+bNeFHZaOfF030O57fF2fmHnoShL7rojtgy6LXHUnYK2Kfmt+0+OurrQjKY8h+dEpI6IjAJ2Y/Tu3A0MBOaJyAoReUjy6+lopPsakAn8lB3kJpoqQLin/PqJyBoRWSPYXIa4LJmpNN/gcIpstvELLJlpecYB46bGdx0G2Q+/NYL4rsOMm53PtGyWMLdyO4eXPbMTa/b2LGZ61swL7htnUzZbRCyIYIuIzSUbGAv/eSJbmd5ka7T1W6OL1qmM2DJpvOUbt/HzKqOv+vIlvfYrB1Pm5BZHWk7ptVnzvj3IJ/k9rLLsLlyU+7juwr3l7YvOFnUaSkqxKkYdNP9SilVhUaehLtd4ejicw329l9l4GuqDfNxLD/pyDvc1rfYrB1Px2GqXeNn+Xdm0WfM/477lKKNznQDfnu+yZ3Yi2XXATE9smbmeSV/Scoen+5Gfe5RX3fX0/Nus4bnqD/h+H7bGPUiWNZqtcbmnjvuqM1/yarbxC7f3siB1zOe6n4+2wNt992sZ8b1u+1Jeb2l1WDGY6JRjLuejU47RYcXgfOXjCb/U/QDhzeB5FxgH1FFK9VRK3aeUut30SboJKAncn58MRaQvcANwr3J0cx0EqjtFqwYcziP8BFBKRMJyhLtFKTVKKdVaKdXa/pbw8MB6e6i3Noxgbeeyxk3NYYDlvIEuaZF3A+HLg2GzhhOWkUydv6cRlpFsfK25QZT7ruKc4R1WDCYqJTGXYRGVkkjFuAWA8fBYMy+4yGbNvGB/eCqd2IDdCdkex8b5SFcH57zKuKuGUQ3PxO7EEhPpkpY7fWXLZclMzSVXi3WGXJHpZ4lKPeWUlpledBTFkw+TZtYcT/I7D590XDkYsjJcZc/KMMJNttS1GulHDMOakeIqV0YKHVYMZscLvdnYvgxx2xPYXj+SSic2oJzXgBBxybuSdYrhEuN8f2yZlD3+pf1ntqFgMR1DLVlpuQwFgA4rBxOdcjx3I+cUz60uLBCWaciz79W7mXqNw3FzZ53bSSpZl511bgNg80MdiZnxM1vqW8kY2D5X3bdZct/LjisGY7E64gCQlUH9Jmuos34tkPM5yiaTDiuMYcq/qwpLe5ZnWfv3OVaxjeMLVRz+XdkUT3by03LSa84eEU+NdvFSjuUu9j/WExVTDCSFtr1rgTKeyVqrV7D6mvIAlJ7/a+60AFQW9bd9Q9z2BDa2L82m1sWMenFHS3sUT3UTsTl6mwUkLIyjrdwvFNpx5WC39bHjysEen//yx9fT/G6H31DZhUanf9kzOwkr7rrhr/PzGd/VMBKyjfiUYlUMI6Grwzi8bO1qezt2xc2XER5tJSs8dzuWqx0W17xOlFI0+v1rsFqNT2in8jnXsfPRRh2DrNzP7woPdR/37UC2Pl3SglxtQTbGO0Llen4bb/mGc8PecJTRSX6xZXK4bQYXTJXsq7Pf6dFwX8ZsjLqd0xIWt8P0ruXNTt5RXpe07PI70opMP4tNzDbPdKC3iZXI9LP25FZeV8fIB/ft69qHr8gll1v5nOu+suW437nvUaDxZjR9rpRaotyM4SmljiulhiqlfvA1MxHpBbwM3KSUcvbcnQH0EZFIEakN1ANWAauBeuZMuQgMZ/EZpjwLgdvN6/sC0/EFEcIykml/W10iY8NRMcWxTP6WrbUF6/QfiNuegIopRmRsuN04yYqIsl9++68buW/Un3T7czwWq8WlgbaEh7ncQOe02t9q5JcVEelyHowGwo6TqnM+GN2WPkfnv16m5sEFdP7rZbo5dfVGz5lEw4RtHP/sBfp+3MXtS77Ditdd0otMP4sSpwfDjJ8eG8Ftz39E3PYEiicfMh7V7GdRBEtsLFGpxsNTf8tmY8hQZVC+7jlQGRAWwQ3x24jbnkDdTRvsZZSwMDMdBSJIWBgdV87gprlbiduewA0LErDZhMjYcEpVTMjTMFS2Q67lA7Ks0GH1AtZfXRwmfE16RAkstnRKlI+mWlwZwqOsRMZEELc9geZbHKsHG0OeNmo0CzMaALMxcNaT3aHX4rim7lJjS5oTL/fljplbiNuewLUDX0eZ11ushtKUWGm+aSU3P/YBfb43ptXeMmMDcdsTEAnHEmahafdqRvwwQ7647QncNny4Xed2UcPCoORxF9msmRewWcKxZKVjs4RjzUx1abzc3mtAicUeb9s9bezlElsG1Q7Em7oI48qVhjzXPjCY177cwOKrRxDfdRiJFVuBCIkVWxPfdRinDtxHzfotuGPGFro98Equum+JKE7c9gTCpox2lcsGIHbdSlg41zz9GhHRMcRtT2Br4yhjGElSaX9rHSJjwyGqOCJi1pttdB/wCXV3fEHuD5msXB8fERnniU0+zDWPNKJYhXAiSjiGGWqvXw3gaOydhwiUjR5PPEipudOps3E9PV8YyoCvuvHEyBtpc10dnhh1EwO/6UV08ZI88OUS4rYnUK5CbccLwCktS5iVa5ZOAKDP939x1zgj31ve+QkXzPtRuspRkCyj18ISjsUqNL2qOharBaWgzxfut0e6fN0ylMWsz+ZikcpivNwi089CxfKOZxJAhIq3X0/77jfY62GFyrXsx5kZNvOe1gFLGlmR0fYXfNcHyxJ54aSL/sPSTnDnf9var4+MLcbAb3rx+Hc30era2vQb2pUS4cZaTFvqOV5HK7vWthtX7W+rS2SM0Vbv+e+9rGtspVX8asqUqYTFaiEsUuxtNVbY+Xxvezpt1ifQfNNKRKymoelw0P+6p9M0MTPMEiY07V4dS5gFrK49vRuaR1J97i+OtJzqa/Gfc/fMdZg32nimne97eBhdl02g7VV9HO+HmHDa31bX3t7d8eVsWm4y9HXfT+uRcAsRsWGO5yjS0SbuuqMWAMmRsPaK4kRknKNU5Rh6PNaYMlWLEVM62m29yC4vZBptT5jFqFtORGScIzb5MI23jiY2+TARGa4zTbOij2O9sBSiv6fq4SUUP+/w1YrbnsCDn8003nFWs427qrq9fT1YSXHfS997ls2UT2wZnAxb6GiXrWFYrEZaljDJ1VYXBu77/x0MB1p6ieMWERkPdAXKichB4A2M2XKRGMN7YPgl9VdKbRWRScA2jGG7J5QyukVE5ElgDmAFvlNKbTWzeBmYICLvAusBR0ucB2HpB+j818vEfZdAyx417eENZjumOg/4ypi+PumDHyiR+Qs12lwDi2BzXSvOcyJsNuPF2KRLVbYsPoTN5jB4UiJd0wJo2aMmu7avYvt2iHx2gEtaomxYM1OpuX8u/9ToQZYHY8GZ06UUJ/vdQXrKOW6raTiod7nuUbOg4YZtYstCiQXCwnO9SAGKnz+IoCh+9h8ESCpRi4gajrxXdylDWHoaERVj6HBrI9bM2kdqcgYlZ04iMz0Na1gYT4y6xqOM4U5GoliEiKgwWvaqybo//iEjPXePWLa+fvviV1pOGuYx3eh0CLOlEZ58Ckv9/dh21iC1jPF1f89X5kywrY8DDuPUE8Utb/PASGPPrpyzXrIpWT2TzIxEbuh3C7+/9Bk6Rk6CAAAgAElEQVThGcUpVvKaXGmXr1aXMqeXcqay4rZX+jH5o29QKRaMCaC5eWJEd/txpzvr5zpv6MzqqjNx/YZJjyhB1cNLqXJ4GYerdCQtomSudNz5+6RGl2dRp6GG/4r5ouu+5Gn23Hslly39k/p7prrVXVam+8WccobnrPvZ1Gvcga3iWKW7drNyxJSMpHGnKmxdepiUHDMrU4tF0G3pc2y8qykte0x0SSubug3bUnfRdPY/t5j0FEePpjXzAlGpjo+PnXWsXLncmMVUv+391G9r+IIl3DuC4wd2EBddjJLzpnNo/1YYF47FYjzfm+ftQYmVmBKlKFGqvNvyuyMswnyWxOKxrciL7ktM59wxQ4m7okeu8+7qjDPWsDDKnEogMj3Jbf0oUd5CeGQEFWoWB4Tj+5JIOet5KW1393TMgHK0W3iCpeNOkxVd1hFZhMzIckz5YC39v+rqMc2b3v2FX8/1otN/vybtRmPGoFitNF/9HKWTydFWd4P7HFt6DPiqG3u2riHttgXUPLjArK89SfjM9Rs6u44dWfYuUf9cRlpEScrm6DLovuRpe33vdGd9ln7wgv3c/vf7c/etz5hpnclVX8ViuE6cj4JiphdFZHRMnu+InPqMfjp7srnrpPOBw6+2H2frYXkrKJUMWSWqAPuwKLhvzCqX6+q1qghAgqmKHfWjabDTWD9wdyWjvBOur06nO+fS6c76nE86xYF2juuznxOAiifWs6W5ay/j4yMNn6QZNzWj3i7PvT3ObdyBPwfSYu4h9lU1lJ8SicelZbLr/tFSkFhqCufLhvPwT44RjE531mfBzJHw1Cho2tlj/v7Gm9FUYJRSd7sJ9mjYKKXeA95zE/47kGtBEaXUHqBtfuUqXa8xcWvW+BT3zlcc4m6aWpNb6rlO73f3wktomC2g+zTrNWxLvUW5X0TOvUY1Dy7wSb4jDctx28PvuD13mdlIRH/yBIerdCT82luNvrkcNN1qDCemhjv2JCv5lmM5hD5fxnP4+D5qVWtgyG8+iAXB00vULWbX7J4aFi7bn/slHZ7leKjjxiVwPOU4FWIqFEiuOz6b7TXOfa87jJ4Hfn7DY7zYEqW5a4pj4cf+X+R/EUhn3Ols+ndXwfIp9vDsewjQYNckNtXK7axSc88bpJS4hcRyTbFZI7FkpVH+xEYqHzb28rOccRjU17/+DfNbjGDv8t9xZ0Le+VobJr+1FJs10j5MZM1K5bY3fW+4jpeESuaI0rX9m9rDu9zdIFfcnp9OYfp7fbnvVS9fpkBmho2wKMGWPgdLWkeyrBEujbKS3LoBiGvRlbgWXQGoUr0+VarXp01Hx/mY93oTkwYlSuVtgHsi5ws531h9b6ozLa6LlOasHwArGghX7FDc8VLX/MuSg77Dl5Clslj0lPvNgr1NNipZqhx9fzDa5GztClBxyiRSU7xvRp1zuQ93ZNexSQmZNJhv6MBSI29H4/SKpe3HZcpUzZUWOOrr3oTVbtPw9lF0sUSXrsSJ4rCzWw2PvRuL20chNkXlRMeQa1LFCDiaTlwFh/eLWBxW5NkYx9pf8+66jMxTJ6h6ylGpNjVwdCA474ThjdiaDYFDZIUZuq8y93fOdLkuz2vKJ0G3Fe6fu6tu8M+mzPnB25N4mYjM8HRSKeV9455LhKaNuuQrfoyXfY/yQ1IMlHSzHmBaMfcLg4HjwU546xANdk2i4Yw32f6F5zxOloSq5jo64U7dvxERkXaDqTCxb10gcKACVD/uev6PlkKvdYrlDYU4cGswTe8WhRQr5vbF70x0TDH/CF1ItOp6N+c+muIStvaG2rSauRcwumRzUvtQEttjcg/jHap6gTJJkFm+tEv8q28YADcMcJt/+erFcw2NKgXlq/m+lcKZYg6jyRvly1Xj0SG+fUhkG5lnTjTkyJXu1xwrCEkfvMC6+RO81iV/s6xlOB3XZVC8QhWfr0mOct9eOPPQdN8WEfUFESFMwnjg/Q5MfGoaF6LL24ekSlaI5pYX8j9YISjq1Lrcp7jlL6vPzMuEo10aer0/lnBHb2um04Ny+NNn2bt6juv10Y6eFeVhI2T7eS+GYaCIKlaKTqsT6JRHnP7frwfgt16OyeUdP/yZuUMG8MBzDn8zi5Nhvq1NGa5YfIrjpeDpt2YBMPF+RzdURJhDj6fLRVJ7v9GDtbMKnKhk9XgfbBmGHm0Wo35Urlgbb83A+vYWQmlLeW8+TYnAp3n8aXKwsY7/F/U/UE6Y09qR7t4P+jGzSxSd3/jW5zTEwxd2NicedfgBRMeWyiNmYaHcHDno9b9x/NFSaDT4E48pvDJiPS9/7P7rtygTERmVK6xVH8dQgtWS+16fj3IM47Va9wlVDy8lPaIEtd78hGldwun6xAf5kiHMlmb3d8hSR8gIz98efSsvNwz+LV6+9guKWPzr69D92kd57NP5fk3TF24cNpudI5+nWk3fzbVN1/m/R8MXYktGOvnNmc7BWYrYkp4/7jyhKlf2HsmkZLEy3DJ9Dc+9NNketr9dKunX5n4dW5xWoLY5vf2uuv5xHn3TdUHbTrc9YT/OyrGgZm6BHa3UTt/t2wKTnduFcN8nryunYf3atRrz+OdLiI5w+DxZnQyhKm2MIcHUaMfzqZx6ok7XcAzDtvvIsd7btXM20vfHDZ6F8HUZASciMvzYA+EHvPU0nVNKLfYSR+NE3Cdfwy39+LNl+EV/lZ6LgjFXW2jR5U5KLf4L2A9Azxuf4rqbfV8gzBf6PPgBCR8Yg9/FSpT2Ejt/nImBdc2i8qUP5TT2n+nmOYur2ZK4n/33tVyUiIiKyRVmsYRh7zx30zBlhLkfpolrmkDbrw0/gRO5rvKMs7/Dk1+Py8eVBnViawC7OJ+Hn+rFYPGwXENR4lRJRVzpqvTu+pj3yE5ULF8LY8MF96xsIAHrMSt2/hBlT22j2UcPs39Dai7/NF+xuvHLy4uYcNdnomSfdyhRp1mueJYIRy+6t/d3RHgk8/s2pumvW6nX4so84ypzZWwlUHHIUOb8VUi9kpEe1qJzQ9I9N8J705nTwf27yer8oeFOOVaH0XT3B44BqLrVGtuHVSPczIR0RswPOslHz9yOfJSxMPDWsuwrDCEuJZrFdWLyt89zQ+OcO8gUjOGfGH7vPy51jPta8+HfkB5m+I8U9rCCMw3/+ouW4blf9HlRpnV7+GY+/7SuQa0/9wVErsUvX82Jo3/zXy/xNtQJ3EumIETF5F4XySoWu9GUHpm7wdtXI4zS2/y/h9aFSIUl/0u1UTrc6M0sacv/tb5gCQsdoym1dBYZbu6JN/ZXVXT0Hi03yujtqHPE/elINz2R/iIz7Vua7lbUjnuL2gV4aGwYwx9Vmze/KDmuuPY+t+GWcEdPk0UEj86nJk+8Momk55IoHZX3h6SYvTRnikGPZj25opnXzSkuiuw1tirHVM07ohP33/8BY2KjebDHU27PW5x6kuyzhZ1Xo7A6jKroyPy15/Y0zHTzUwMzrIGrrwUhz5ZFKXVr9rGIdABqOV+jlCrcLcOLCLdfmb8vQ084Lz5X0C/nmCXTqW8J7l7G3hocd3Tqcg+rFtShX+WWzO/a1OXcXy2i/WLE9H/oS++RgKggTGvNi/Dw3MMdFqcvw6SH74L/uE5dP3vF5bDN8G04FwXFU3One2CCsZ6RL7o9WwxKnIcjAwrm1pjdFlsCtEe9ywvAiewRimW31C40Q7jxwo32L+x8YStYvRMRLhs7nqRU994iEYGb/0P7UZPZuPPPAut26du9SZwzg+c69/YeuQCEmUPbmRbfRoosYvGp/apWvxkv3GClTVf3xpq/sa8Ak89h6Adv9TyJxdkR3L6SjnMEq+cPnKmdrNjKluB1jzGy081tjHmjjDW0fE59enpEZCxQB9gAZM8TV4A2mvzEnhH/4bIBrv45zjPLC+qjUa+Mw79hSG8Lleq35O6PfZs9GGzaVjUcD2vlcAK3qEDuM50bi4/TwwsLq5teFOcG76GeL7E7h9H08Atj+Ps7Y7hifa8aRCQcICrd1UDq0fwWn2U4GyuUOK8gqmANmgoz5E2LCFBPk8ePDONeli7uu8/MxRIRVbAxSKv7lR18QGhSNY+emgB+uF9WpRGXVWnkPaIH+t/5AdyZP/+6/NDyrif4cdmvVL3zAcJG5X9Y2RMR1gi+/GSL39LzFcnDkLmodE2HeWdneaye30GvfeNb2ct37cm5sQvYdk1DbvBRlgoZ/u8hvxh8/eRoDTRyt8ilxj9c3+0REnA1mpynDVvyMSTniVEfGkN9CR+H0mBT/okKK5yen7QwiMyEbR1rEJjvXv9hy3Q0LFY3BnaENYKdVaD+YbjshvtoNrgn5zPO54qXXwraU3RZ34H8vH81lfrcc9EyuMPipoHfWQXnNRxDHqvnPWDzxNukj0AaTaFOpVJVeelHwxfys1mTabozOcgSFYyEWhY6bLERVsq//qfZNLrhfn5YMJbiNzpaPn9MrujY6kb++r0sz1b0fZu4slVz+6YFE1/fxFuASoCHUXJNQZnSQaiR6H5IJNpp0oDF0+azF8GEzhaSml8GwFBgaG8LYVngeUnJ0CBAH1e5OP37cJYdXsZzrfzrdB8I0jMd423uDAaAa+asZfnh5VxT05iKX4GCrWsFsKd6GNWOZRBevmBptK7Wlqj3JtKobMF7JfIip+G499cPqRJbniOPZw+dF25vZUGwBOwT9V9sNTlhiwgtB+P8cPl7w/lx0Ze816RAXm9eqVqqGv1H/EmpSMdMahXhHzePDlU6uPzeVRnq5WFZFK9W1y/5+gtfjaZywDYRWQXYp0P8m9ZpChSPfhlPcobja+d0LJR28/EjsbF+z/u6B9+lXQfHkMyHby3DRoHHBAqNwurv7FajG91qdPMeMYiMucpC8z2Kqxs1dzv77Y+WwrloGIwxw+iqmv5Zu6j1u18z9LfX+aLXgwVOo0m5wK2+ktNwvK6h0VS93a4i9fYcJqxVq4Dl7S8K2tPkiVnXluH62afy405ySVM2vCRwhh1VgztRpiC0bdCFtg3yt3ZgfikTVcbld0EmfPiCt7kgkR065B2hkPHVaHozkEL8m6kUW8l+/Mn9xWjZuCfdXzEWLjzjZCfV7HE7jP7TL3lmG2Ylwl1nYZWKCoX1mTT54aVPlrAhcQPli1XgsBUizBft6npCqfOKrkN/Isqae12ni6VVrfZ8/VThr1t0sTzx0iRGXzua51s/GmxRvGItoHUjHpzgq4eVA04VjbHJQqBS38eZkfgaJe/vG2xRigQqQNWm9rG8z1evWC8wGReQPI0mERFl4HGtpuw4/hft38fo14yl+H8fMoXax2DaNbFkb9xSObIC/hp9tzepRbTtPNyoEFaPKyKUjS7LVTWM3qNRT9dBdu7lK6Dm8BGkZKbQokKL4AoYYpSNLstLbV8Kthh58tVdxXhy4nm2Nojl+gJcX+WWu1x+//d+KxIZyY0N2pL++062dQ2tl1CwuPbyWyjzQRXaVGoTbFGKBGktmsBvu7xHzCcRXvy8LQFcIqMgeOtpWigiU4DpSqn92YEiEgFcCfTF2NFsTMAk/BeS3Qt6UzOn6auR+V9V12s+RdBqevjVYvzc+7NgixGSfPLIL5wxp5l3qR7YrntN4Hj7lT/oUb0LH16VayvOPPnouRocPXeI36u4OtmOeXE5VrGSqTJ5Kmwn73d635/iFmnaVW7nPZIGgHv7vM2ut6cVer6BGhYsKN6Mpl7Aw8B4EakNnAGiMLa3mgsMUUrlsWa6piBkz5rLynIs3Z89IybNj0usFLUOwpQIWP6A+40x/c2WmqG1oKUvRIdFE10sQEtsawqNstFlWfto/qevf//4HLfhxSMcewL+cO0PBZZL8+8mrJBX2c9e6JQQW/LF2+KWqcBwYLiIhGM4hF9QSvm41aamIFQzx3jVKSc1B8IPoYh1NCXUDyfQ7rtnYqFUMvDiwADnpCks4ltYipwBrNH828k0fTQlK7QmJ/nc76WUylBKHdEGU+AZ+0xjUsOh/B135j7pR0PH63ouIcLauoacZ6uV8RLz4sleUPTy0oGZCq8pfMqU932rCY1GExq80TeCae2FyOL524cw0ITOBk0aO4Me+Z5FPRZxY2XHol6BMG+KzPBcdDiQTinx/7ILRZUXHrFS7qzSS/L7QFH03dNo/o2kRECMuT7h632/45edvxATGVrtvjaaQpDiEcW5sc6NLmH+7BWa2cHCvfNsWEoVjSUGLBFhQDpE6OqazccPTeTg+YPBFiOkWdpI6LRNkdI2tFYU1mg07nF+y7Wq2IpWFUNvPbU8h+dEpHoe5zr5XxyNR/zYK5R809XcOSiMKjXqe48cApzodwcTOlso+dBDhZeph7VuQoXG5RrTs1Zgd1Iv6vx6b00ef9JK+2sLsd5oNJoCEx5a28y5xdun+2IRGQl8ppTKBBCRisCnQANAL3BRSGQPMfjDdPqg+0ccPn/YZVZNKDOg0wvMrX4519W+LuB5SY7/mqLLrFt/JyUzhdjw0Ore12g07gkLLZ9vt3j7nG4F1AHWi0h3EXkGWAUsB/QCF4WIP322I62R1C5Z238JBphwSzjXX3Z94Tqua6upyCMi2mDSFBk+uN3Cqw8UzmbkmoKTp9GklDqtlHoc+BaYD7wIdFRKDVNK5WkTish3InJcRLY4hd0hIltFxCYirXPEHyQiu0Vkh4j0dArvZYbtFpFXnMJri8hKEdklIhPNBTcvWbL30jpVNDqHLgG01aTRaAqPq+5+mf73fBpsMYLKT11D2y0CvPs0lRKRr4GHMBa6nAzMFpHuPqQ9xrzGmS3ArcCSHPk0AvoAjc1rhouIVUSswDDgWqARcLcZF+BDjMU16wGngUd8kKnIUqxCZYb2tvDJ/dpqKhy00aTRaAqPBxo/8K/3UyzRuDkPP2Ol73Oh2+PmzadpHcbilk+YPk1zRaQ5hlHzj1Lqbk8XKqWWiEitHGEJ4HYmWG9gglIqDdgrIruBtua53UqpPeZ1E4DeIpIAdAfuMeP8gLGp8Agv5SmyxIbH0uzuJ3ixZo9gi6LRaDSaS5Cve1nYX16YGqT8G0XV5qqbnicqzP+bjPsLb0ZTZ6WUy7xmc9uUDiLymB/lqAqscPp90AwDOJAjvB1QFjiT7ZyeI/4ly8DmepXqwkIVkYU/NRqNxl+c6NGC66p3DVr+olRILjPgjLdtVDwuBKOU+saPcrh7QyncDx+qPOK7T1ykH9APoEaNGgWRT/Mvw+L7YvkajUZzSTDuunFBzT+mdp2g5u8LofJmOAg4rwlVDTicR/gJoJSIhOUId4tSapRSqrVSqnX58uX9KrhGo9FoNP8WdlYJTLrHS0Lxy5sGJnE/EipG0wygj4hEikhtoB7G0gargXrmTLkIDGfxGcrY/2MhcLt5fV9gehDk1lxiZO89pwfnNBqNxpX7X7Dyxn2BcdI+WE5oVDb09/wM2L4UIjIe6AqUE5GDwBvAKeBLoDwwS0Q2KKV6KqW2isgkYBuQieF4nmWm8yQwB7AC3ymltppZvAxMEJF3gfXA6ECVRfMvxKLNJo1Go3Hm8+u+pnJs5YCkXVJiiAmPCUja/iRgRlMeM+umeYj/HvCem/Dfgd/dhO/BMcNOo9FoNBpNAOlYtWOwRQg6oTI8p9GEFPrB0Gg0msJDFZHOff1u0Gg0Go1Go/EBbTRpNG4QS+iuSKvRaDSa4KCNJo3GCfG42pdGo9FoAkfRGJ/TRpNG4wax6EdDo9FoNK7oN4NG48S+SsbXjkSG7t5HGo1GowkOAVtyQKMpioy4qySljpzjuyrVvUfWaDQajX8oGqNz2mjSaJyJLFGKXZbziN6wV6PRaAqNorLkgDaaNBonvunxDYsPLqZkZMlgi6LRaDT/GorKJBzt06TROFGteDXujbs32GJoNBqNJgTRRpNGo9FoNJqgUlSG57TRpNFoNBqNRuMD2mjSaDQajUaj8QFtNGk0Go1GowkuenhOo9FoNBqNxheKhtWkjSaNRqPRaDQaH9BGk0aj0Wg0mqBwIcL4v69OseAK4iPaaNJoNBqNRhMUdlQ1huVOl4kIsiS+oY0mjUaj0Wg0QeF4KeN/WpQ1uIL4iN5GRaPRaDQaTVCY1bMsGy47RY+r7g62KD4RsJ4mEflORI6LyBansDIiMk9Edpn/S5vhIiJfiMhuEdkkIi2drulrxt8lIn2dwluJyGbzmi9E77Cq0Wg0Gk2RolaVONbUt1Cz/GXBFsUnAjk8NwbolSPsFWCBUqoesMD8DXAtUM/86weMAMPIAt4A2gFtgTeyDS0zTj+n63LmpdFoNBqNRuM3AmY0KaWWAKdyBPcGfjCPfwBudgr/URmsAEqJSGWgJzBPKXVKKXUamAf0Ms+VUEotV0op4EentDQajUaj0RQBHmryEABxZeOCLIlvFLZPU0Wl1BEApdQREalghlcFDjjFO2iG5RV+0E24RqPRaDSaIkL7Ku3Z3HdzsMXwmVCZPefOH0kVINx94iL9RGSNiKxJTEwsoIgajUaj0Wj+zRS20XTMHFrD/H/cDD8IVHeKVw047CW8mptwtyilRimlWiulWpcvX/6iC6HRaDQajebfR2EbTTOA7BlwfYHpTuEPmLPorgCSzGG8OUAPESltOoD3AOaY586JyBXmrLkHnNLSaDQajUaj8Tti+FEHIGGR8UBXoBxwDGMW3K/AJKAGsB+4Qyl1yjR8vsKYAZcCPKSUWmOm8zDwqpnse0qp783w1hgz9KKB2cBTyofCiMg5YId/SqnBuL8ngi3EJYDWo//ROvUPWo/+RevT/zRQShUvjIwCZjSFKiKyRinVOthyXCpoffoHrUf/o3XqH7Qe/YvWp/8pTJ2GiiO4RqPRaDQaTUijjSaNRqPRaDQaH/g3Gk2jgi3AJYbWp3/QevQ/Wqf+QevRv2h9+p9C0+m/zqdJo9FoNBqNpiD8G3uaNBqNRqPRaPJNyBtNIlJdRBaKSIKIbBWRZ8zwMiIyT0R2mf9Lm+ENRWS5iKSJyH9ypPWcmcYWERkvIlEe8uxrprtLRPo6hf8hIhvNNEaKiDWQZQ8EoaRPp/MzRGRLIMobKEJJjyKySER2iMgG86+Cu+tDnRDTaYSIjBKRnSKyXURuC2TZ/Umo6FFEijvVyQ0ickJEhga6/P4mVPRpht8tIptFZJMY76NygSx7oAgxnd5l6nOriHzkVXilVEj/AZWBluZxcWAn0Aj4CHjFDH8F+NA8rgC0Ad4D/uOUTlVgLxBt/p4EPOgmvzLAHvN/afO4tHmuhPlfgClAn2Drpyjr0zx/K/AzsCXYuimqegQWAa2DrZNLTKdvAe+axxagXLD1UxT1mCPeWqBzsPVTVPWJsVfs8ey6aOb/ZrD1U8R1WhZjzcjyZrwfgKvykj3ke5qUUkeUUuvM43NAAoaiemMUEPP/zWac40qp1UCGm+TCgGgRCQNicL/1Sk9gnlLqlFLqNDAPY9FNlFJnndKJII/97kKVUNKniBQDngfe9VPxCo1Q0uOlQojp9GHgf2Y+NqVUkVmMMMT0CICI1MN48S29yOIVOiGkTzH/YkVEgBIerg95QkinlwE7lVLZm9LOB/LsVQ55o8kZEakFtABWAhWVsZ0K5v88hySUUoeATzCsyiMYW7XMdRO1KnDA6fdBMyxbhjkY1v45YHIBixIShIA+3wE+xVgFvsgSAnoE+N4cAnndbFCLNMHUqYiUMn+/IyLrROQXEal4EcUJGiFSNwHuBiYq83O+qBJMfSqlMoABwGYMw6ARMPoiihMSBLmO7gYaikgt0+i6Gdf9bnNRZIwms1diCvCsU49Pfq4vjWHF1gaqYFjr97mL6ibM/qArpXpidC1GAt3zK0eoEGx9ikhzoK5Salp+8w4lgq1H8/+9SqnLgU7m3/35lSOUCAGdhmFsAr5MKdUSWI7RMBcpQkCPzvQBxudXhlAi2PoUkXAMo6mFef0mYFB+5Qglgq1Ts9dpADARoxd0H5CZV55FwmgyK8sU4Cel1FQz+JiIVDbPV8bo/cmLq4G9SqlE02KfCnQQkXZOjoo3YVigzpZmNXJ09ymlUjE2Ge59sWULBiGiz/ZAKxHZB/wJ1BeRRf4pYeEQInrM/trK7ub+GWjrnxIWPiGi05MYvZ/ZBv0vQEs/FK/QCBE9ZsvSDAhTSq31S+GCQIjoszmAUupvs8duEtDBT0UsdEJEpyilflNKtVNKtcfYl3ZXXhmGvNFkDjWMBhKUUp85nZoBZHvA9wWme0lqP3CFiMSYaV5lprlSKdXc/JsBzAF6iEhp04rtAcwRkWJONzMMuA7Y7q9yFhahok+l1AilVBWlVC3gSoxx5a7+KmegCRU9ikiYmDNozEboBqBIzUTMJlR0ar6QfsPYcBzz+m1+KGKhECp6dErnbopwL1MI6fMQ0EhEypvpXYPhC1TkCCGdIuZsYzN8IPBtnjmqEPCkz+sP44WqMLoiN5h/12F4vS/AsAoXAGXM+JUwrMqzwBnzOHvW21sYhs4WYCwQ6SHPhzHGOncDD5lhFYHVphxbgS8xvp6CrqOiqM8c52tR9GbPhYQegViMWUnZ9fJzwBps/RRlnZrhNYElpiwLgBrB1k9R1KN5bg/QMNh6uRT0CfTHMJQ2YRj2ZYOtn0tAp+MxPoq24cOMeL0iuEaj0Wg0Go0PhPzwnEaj0Wg0Gk0ooI0mjUaj0Wg0Gh/QRpNGo9FoNBqND4QFW4DCply5cqpWrVrBFkOj0Wg0Go0fWLt27QmlVHnvMS+ef53RVKtWLdasWRNsMTQajUaj0fgBEfmnsPLSw3MajUaj0Wg0PhA0o0lErCKyXkRmmr9ri8hKEdklIhNFJMIMjzR/7zbP13JKY5AZvkNEeganJJpLiSNnDzFu6ZfopTg0Go1Gk5Ng9jQ9g+tqph8CQ5RS9YDTwCNm+CPAaaVUXWCIGQ8RaYSxn1FjjN2Kh4uItZBkDwq7TzIIgwcAACAASURBVO/mfPr5YItxSfP7C3fR6rHhHDhQZBaA1rjh9ynvMaR/Aw4e2BFsUfjr22f469tngi2GRqPxA0ExmkSkGnA95nLl5vLn3YHJZpQfMHYbBmN/tx/M48nAVWb83sAEpVSaUmovxiqfRXbPLV/IaH8jY18uktvdFRkabE0CIOPsmSBLorkYUn4YT69FFtbOGBVsUViyci5LVrrbeF2j0RQ1gtXTNBR4CbCZv8sCZ5RS2bsLHwSqmsdVgQMA5vkkM7493M01lyxdZx/2Hikf/O+F9nz0Wne/pulvFq6eTEpqIfWwZY/KudsTO8SY+WIN5rxWI9hihCRRacaNtGRmBVkS6L3U+NNoNO45k3qGlIyUYIvhE4VuNInIDcBx5brjtbtXVF6vL+Xlmpx59hORNSKyJjExMV/y5peT54+z4/CmgOYx7bdPsSmb94geGP5CM4Y90xiAm2ed4cYpR/wlmt9Z8+c0Kt3/OuP+c03hZJhl2O2Jxw4VTn4XQZ3fYqkxJZbjR/9h5pSP+eZ/dwVbpJDj8LbV2j9No/GRkbc3YtTIxws930XXt2fYw60LPd+CEIyepo7ATSKyD5iAMSw3FCglItlLIFQDsrtUDgLVAczzJYFTzuFurnFBKTVKKdVaKdW6fPnALuWw8PZu2Lpf3MsrMyUpz/MNX/yWSZ/2L3D63Wal031OwY2uwuTkjo0AdJp/hvXbFwU8P4v5ft2yytvm2sFl4oTB9uPkpJPUee07rvzBN2N9zGcP8PN1jUg8cTBQ4oUMnRefYsuaP4KWf2ZGRtDydib1/Bm2L/wp2GJoQpwuWxSdhi4p9HwbHIIbViv+jP+x0PPOL4VuNCmlBimlqimlamE4cscrpe4FFgK3m9H6AtlvrRnmb8zz8cr4dJwB9DFn19UG6gGrCqkYHmm87+KMkfk/v8n4fm3YsXmZS7jN5pqu2vv3ReVTZHDqJdj3+ScBzSotLYXS54zjjmPWBTSvi6Xpm784flhd5z8sfu9KFn7u2XC/bNJqWuxR7F61gNRzp7FlZnqMeylw+p/gPSsZ6RcKJZ/pwwcw9sF6nD/v3hdv3ud3sOLbt/l728pCkUej8ZnMdPvhPz9/F0RBfCOU1ml6GXheRHZj+CyNNsNHA2XN8OeBVwCUUluBScA24A/gCaVU8B0YTP7ZtaFA150bM4nWa6ysmjLCJVzZchTt0p4o6MDJaKq08m/G3xDn02XpGWlM+vZFsnLqLQ/OHHfteZk07AnWr5jp8/VBI8y1LlQYe5KSo117nWxZWYz9pC/JyUmUN9+r6annmXxvB8a+UfirdezcvIR//l4fkLSTk9I4Wulp0iJKAHBo9HB+eLFdQPLyhsWS//WDly0azw/v3puva0qMW0TrFWHs2bTM7fn0xYdot9bCP2sW5lueosS897oz762Ofk9XpSejbEWjd76osez1mvbjmBPngiiJbwTVaFJKLVJK3WAe71FKtVVK1VVK3aGUSjPDU83fdc3ze5yuf08pVUcp1UApNTtY5XDHif27CnRdw/2GkZC+9W8O7N/KgpmG8aSyXF/+zecfyHXtpUjiOsfQSqkUaL47d5zT506QnOr6sE167XYu/2Qmv7z3oO+Z5WgUL/8ynlMvvJgfcYODJfdjHG1+vO3csYojh3YxZchAWn+7iqnPX2+Pcy7xAK12Qstp/p1c4Atn73uczY/dE5C0l07cSVpUXXbWuQ2A5nsVbX87G5C8vHF875Z8X1Ni4Nu0HZe/ns5I83579N8yw3ft+Cvf8hQlqo09QrXxp/yS1oVzZzh1ZC9HD+xm0oPNmf31v2/ZiPNnTrJowtsom40LF86x8q+pfk1f2WyUmVbK8du9W3JIEUo9TUFjzZ/T+GP8hxedzvFDjmEAW1YmqZmp+erpcKZc8mm23XcHVf7zBQDZnWgnS9UnvvMXnCpZz6d0dm5bzsH9CW7PnTzhcHbet3cTCQ3jGPvVc/mSUylV4DJmk5qZmquxn3J9HL9cH0ezxbm/PFbNHu3y+2ibTizp5dqTEH7kuCHfId/9drKy0nOFVTnp8+UBI/HAOb55djGJB91/hYnzlIgceszq3Zdtd9yE7YShj5gTjlmI6UknAAgzbcXxz7Znwqd9SUtL9Z/wHohNgzp+ttVGPrmIYf3j+XtdIoiQWLE18V2HsajTUADS0wpnqMyZk8ccuzvsXH2UYf3j2bn2mMf4e7ettN+P5QsnsLp5HD+8dAMXUpP5rk8zFswa6TYtMW974tG/+XXMf5nSM45jRxztUaXTxv/OUwr2MecrG9fOZcwbz+ZZXwPB/s1/uvQEHTuwi+RzeS8bMnXoY/z0zs0ez0//TwfmP3Idmxb9QtN1YcgvC/wmb1Fh+mvXU/HN8Sz5bQRTH+9CiYdf49dRL/st/f27Nrr8Ln7iAtN+fNVv6QeCf6XRlJyUxrRP15KclAZA7KOvUvOtMZxNcrwhj+8/y7ABs9m+dgtZmZmMG9Sbk4m5e3f2bzvJ8AHx/DL0MzbET7SH7920kL1NWrCzUROPL72zZxLZt9sYopj13euMfu5xu0FUf49Q47jjBZg9PLel8aMgFjY3ecxrOZVSZNz2MInX38q4t+4moWEc393b0n7+z2/fsR+vfPNBAFp/5d5pNruc+7e7fsWNfbgDOxs18SpLNjkb+8Qj+9jbpAVjn+7hEq/R39Dkb8cL3ZmDK/5gxvDnGP+ao8GrdTTHF4ppSYiPM6d2rj7KtI9OcKxsM5/L4szM0f8lzeml7ElfBWH2yM2kp2Yxe8Rmt+c3Tf3Kfjz60c724527VgP8n737Do+iWh84/j276YUWei8SEmooAkoHQRT7VbGjcsUCKtivvd5rR7147SLX+7Oggg0UEQjFQgkkkEZoQSCEAKGE9N09vz9mstmQTbIJSXYD7+d58iSZOXPmzNnZmXfOnDlD22xotDYVgJDsQuf84jxjf7eZR4GYn4/S74N1fH1T3dzKOpSZzpezp/Hfy/s6p6UmGbeTPAkoqmK3ub994jBvkS1894FyfQPdycrey5P39iM//8Qplytja2mL0bJPjAFTl32cVGH6dS+VtmY0ufMZwgpg4A87+Pb5KZwTX4T/s2+6zaskbm732Lv0ePEbeu6G9d/8x5lXM5cRO+I2/MrcK2PIOWFEUgf35PD+vbHM/+c65zHRE7/Of51vXi/7pJXfDfeidwyiqMDOt2+swWGv2QXVnh0JfHvdWSyZ91mV36Pln7/EX7fextynL3JO23zNJXx3d9nbdCd/J6PfXcOA/9tKxn73gWS/lZo+O+Hg0oUAdM6oWSvIyeebk9X0WDF37n2kp7s/JpzsWF7VeaenlT7Qvm93EgcP7CJim7GPZG9cQd8NxvGtx+vfO9MVFeTx27xHsBeXv+B0VWYbtXZeJOellR2Lo/0hiPrnQua/dgcpUdGsW/W1u+y8Sp1pj+N2aRGun7jtA/KzW9DiwEb6pJTteHY03EJmTDsOhtxDcUEwwXkHiMh8nsg9mgNNoO/iZRzYu429qXHYbcXs/K0/2m7FUpTH6N8fcrvOuKs/5lhWPo1bBnPB9HZkjTL6kGQ1hpYuD8qtHPYydr8QrLY8Rv1Wmtf63n7kNH+DigYPuv6fPWnSrLXz//S0TeRfch2FAY1I7HkrvZM/JrCo4tsTOaHtWD9wJhaHhYGbXmP7pAh6LdhCx9hfaRrRlpToniwf8RJYw7DYThDc6B1GznqFrh16kxJl9DH6bfRYCvkbXc85gq14EyOuvJsmTVoBsPh//yLsrf/S7euFfPvCbsAPi5+i38RkMg8cJPrV+QBEJm7hm1f+zribX+WnWd9UWW6AA08/Seqv4QzYNJs+qxYSHGr0Y/liyjn0W3uULVHNOBH1NPlHFRfPHED61q/467N3CR97PoXHD6G1nckPzeWd6ctx2AF7EWNXl21tixsYxlXz1mDLhV8+TKRF503sWfQh3a66jfSvPqHRrsN02q/ZNLIF172/igVv3s3+lPOBELCfYOzqh/nrH9fSpscg+g69EIAtcYuJ7jeeby/tT8SxPiT3/jsBrWIp3Pk9jQnE3rQRuUUVX3GNjZ1e5v/DTSJJ6DuDmIR/0+xYxa0JFe0ToUu+Jvd84zmMzOYxJPf+O722fID90fOJGTKBtVeO57xf4vjhygH0TIPo1LKtl/v+SqVdxyhmz+zD6GU2+m7agtXPj7+SD/PjvxMIa7uc8HXfErWt/Em0zR+x/O8fCSisWKyKZrvuZdg7X7I9YRWtHnqTkMVfsPK5qfgf98fe5zl6L3iM7NDjRH65kJwJl5M0fTzFq1aS3fRlsPiX32hHMWNXzXT+u6m3P/0Ti9n77N/JWPEjAYeO0fqKK0hf8BnjXvyCdXdOptdfkNoeMnu8jcMOFiuMuyuINh16EBbejB/H9aLHvz+kdYeefPTq/cx69iPefngU9mNHuOfdzWRm7CC8UXNWf/E6O9aPPKk5sIRm+rvj+OTBSQy6+l669T6X9P5nl0vl+tnGx9zrPi+tGbtyRplJmy7rxqg7X2b50zfRJ87q9nM/HA57LppL9v5cQNG2l5WwlhsYP/l+3n1gBDo4jDuf+4nfVnzGoHMvpyD/BAsfvZYpby8lNbonYOwLc6eeTZ7/i1R0jGrS5E0cWYe48WP3fa7mXh9D76RCdt86ll7/We6cvmLES2hrGFgKGbv8PjrG/QlaYw0IICgghHcePJ+2cX8RWUGrpet++p+7fkY7/LH6a0YtvbtMug7rfiesUVPn/99/+BjdXzVuRWVGQGvzejrugk7cMPtnUjatJ2mp5oLb+7H+1/cZMulWFrx8FwM+W0fIT1+xcvYsUIqb3vyF/109m2NN+9KmRwjR79/KkTceJmtbAsFf/cz42CQ+fmA1hXl2/AMV3QdvIHL4RbTrVNp388Txw2TtzSThpwJG39iVoCaBrPvuQ1o+8U6ZbVww+24Cwxoz6bbnAcgvyCXQP4jFL95Ft09XkXxBD3reNJOU377lihlvlKurkmO5qwJ/CHLzAKjfp6+xd+sfZGzZS87hvxEU/An+oUVc+8JCLFYrqRuXk/bS7Qx5dRGtOkTywaxYivIdBARbGP7Tnc5yb/n0UfxeWOj+w3PzGYJxgbX0o2TG39aLnLw/yD2axahLbo/TWtfLmAVnXNDUsUUP/fDfynayttiLGb3aOKguHzXHo4OSJ+lqNa+Rb3h0QnCV3ONGMlsPoXXmWnpu/dRtGoA/Bz1GXmgbAEJy9zN0wwvVKhvA8hGzjfI5issFHdXJB2Bz9K0cajmA5llx9E2ZW2G5Af44+wnyQ1oRnHeAc9Y/V25+avfJZLQdAYC1OJdRv5dtWq5OueJ7TSO7eV8iDiXQL+kDt+WpTn7OZSqou+rkVVHAfbKkHjdyoPUQWmX+Sa+t/6tWeU52uEkkCTF3E7PprXKBWnpkIJ3TCll57kvY/UPd1n11t3FL9K0cbDmAFllx9HGzXxQGNOK3oc8ZD0koZdyq1HaG/flEueA7s3kMyb3+Tq/ED2h1OKFcXtUp1+EmkST0u5uYeKMeghZ+SsHlN5ZdV89bQVnMPDU47PRK+piszlvpE1f57dDYc1/G4R+CpTiPqLTPyuZlbmOvpI/dbkdldVfhNgJgY2ys0eq16YLO9P8pvez2unzua/taGLLZQU5oOzb3vp3CoGbOsgUVHKbTzvdod9CIavIDjP52Rp3NICbefZDvSf0n9bLQK8lY78b+MxmwaTbhueWjp+p8llXtFwDJUf4UWW8hu3lfUGmMjX3LbbrYEW/gsJY/ZpecbyorV8ed93LWHjvb77+cs15bSELvaRxu3o+Igwn0S6p8lHvXi57K9glP0lZVHyXnjpPPGyUq28aeI+No/Vzlx/eS9TdqspwrnniA0LCm/Oeu5Wi7xuKnGL3MuHjsuTVVgqa64i5oKhOcjHgD3Ozo2IsZu7o0OFkx8k20mydjlMPGmFXGwcbTQMeTdIUBjfhtyLNg8Ss9WDpsDFv7ZLkTQlVfVud6KztomnVyuEkkW3rfgcMa4FyvxV5I3y3v0uzYNo8PSOVOHG4O9p6Wu9Kym+utKK+Ty1bb5aqqvqqzDUYL4EPlgoCz415ynhw8rX9PtqG6AV9lAZG39ovYEa/jsASAtoHyw+IoYvTq+8otW1Vg6Em5PKmH0vW9YXx3S1QRkELldVhGJXlVVncDN75CQu87KApqWroerWl2OJHotM8qbOWtaHurFeRXUWfV+R79NvgpCoNbEJh/kGHrnimXV3UuOKvaL2rzGOXJNlZnfZ5uQ3XSnuoFnSfnSU/Lh8W/wnXOeP+8eguazrg+TQpH6UFHa6y2fM7e8E/n/GFrn8RanFc2TXEew9Y+WSafc/98AuzFOAch1xrsxcb0krz+rCCvP8vmNezPJ428dNm8XNMFFh03DuBg7EAAyuL2wFZRGHzy9LM3/Av//CNlD8JaE1BwxFknEUfTUA5babkwdviSL3XPpA/BYS9bdoeNXollW2JaH4qHklHMnWkdZU5Ajgoez3Y73VHB2ELm9HPWPkmT7NRy22axFRIT/2adlauq+nJVVd2F57qMSu6yHWWupquoB+fiFcXGLtM9/SyXj5rD8tFvYw8IA6WwB4SxfPTbxoHU1C/hLSy2wjJ5WWwFZeoear/+m2Wn0C5jFWfHvUK7jFU0yy7btF9SdkpOVNaAcmX3tFye1IOTsqAcxbTfsxzlKPZoyBBVyQgqnuZVWd2F5+7Dz15Quo3mdgYVHnF7XKlqe8/e8C83+4+9zPHV0zrz5HtUkldhSEtQisKQlm7z8uT46ul+UZ19sV/CW8b38KTvU8l3wJNtrM76PN0GT9JWNf/sDf8iMP9wmW0Lyj9U5rMGl/PkSXXvep50x936Sy9eKj8+1bUzLmhynnq0BgWW0DAGxy1z3jfd2TEPFRJm3pp3GL9DQon8YymRiVuITk2h+fLFHGiWA37+gDJiGaXKBTHJ5zXDbjVaCZTVSGP39yew6DiHG5feqy0bEJlfIjcBUfPDW8qcEJof3kLSjWezrbNi3aXd6bxxHRln2dAVtLCcHPGH5+7D355fWh/mzmhpEcqgdb8QnZrCgWbgsPpj8bPTa0w4gaH+2AOC2TyyBcm3DuPQpKDSkwvavBJwcDQikdAfPqfLpg2lK1QWlFXRNGu5MfS21Y+uG/8kOjWFwy/Potnh1/EPtFYa1JaoKLjtmPUMe1tbCSw6Tkh+Vum2mZ+8ppihv5302KzFAsqO4ne3J6F+CW8ZLRfOwKXswa9Ex7W/UWQFu58/6Fw6pS8kIMTPuJIE7POMfgSp3fxJ6+xvnJgt5j6mzbrz86P56zfTdNlio8rIJTQ3g15JH+EfVkBAcdl38A1bW8EJoVyQ/yTBeQfKpAvOO8C5LieOigKFE1c2Jr2NEV21/T220oCo5eqlgHFCcPi55KWME0JcVDrlKAsWP0X7PctBF4PV2E+33XcVYJ6MdUGZwLFkvzhgPq184r0XAeib9AE9ts0nPHcfPbbNp+9Jt1E9CQxPBJWWq7LgxNgvCsvsFyX1kGJ2D8kyyzd21T303ziLyJ0LGLN6Fj1GbaAqFZ1whv3xKGNWl+Zl93uywjzO3vAvLLaCCr9TNv8QrLYCmmanEJSfhbIXUWSOb+Vq85W93WwvZQLh8Nx9hOQdKC0rEJJ3gPDcDOfDBp4G02Acd/yKc+m2YyF+xbnO71F1ZL4ys/T4qqjw+OrpBUNVgZCriKNppf+41FmZoKiKbSy3vgqOPdXZBk/SVjU/bsCDFAZHlLb8KEVBcHPiBpTtGuB6blMlT1lXcLHvSfkouZCo4EKmPlR/5LUGzmK10qxdGIMmdWbDonQKckt7uUWnphAN/PTuZkIaB9JrRFuSVmeQd6yQkNDSA0mLtl04PzYZh5t0mCPQbx4ZznWv/1Qur73bjMeAMy4fXKZczQ9vIbDoGG0zfiOj7TAKAxqXK7vrCaC43Tdc8dYG/AOCyqQZ9+M2+u7JYf4Lf4J26UOBg7M3vFguT5t/CGgHFv8C/E4UUBTYGIslDIs5ynRmx2DGrJ6F/9cfcVbvwYy+pmTJ0nfBvX3HcixW6D2qPYkr9+FQAVz2vTE+jcNmY19zyIxpw/Q5JcuUf0Hw8EumwSXTeP/eWLQqfepNg9t+CgcbHUdbSk5iDiMwDQnj4u9Kx6FZfevrgAP/oACatg3h4O4clH84Vj8/olNTnB0fp79XUq4JbjtDRhxNQ1n9SmNDs7PrriEnGPZWChvXfEdU31GENGpCv6QUSp+/uwSAvXtSCQuLpUnTVmDuYyWW37kci0XRe1Q7o+4cmt5DJgLQ2ky7bsVXJP2YzbTXJqG15vfvD9LsYSMAKxNw24vN27flD0qBRcdxlJz0zbp1KKsz3c6LWtL1xywzsIWOff3ZHV8IVn8umvUeuLTc7xyjUAdsxtWfyxXysLXGUzUR5sVA7IwV+AdYGTCxExt/3k2xXzj3zNlMWso67JdPceY3/X13+4Wx7fa/P4VFWYifuZLiwtIn3yyhoQyOK/sIeMrnjVg395+E7thPrx3uW2laH4onWTtK68y8OFI248CbfJaF8z9fQ+y3cwhb9iRTPvkDmEhK3K9sXf0tGzoOxN+hGDx5JgM79yDlkTiK8kvWpXD4aTKu78p5173Lz2/fzzVPfubsMN3qs/+xZ1sc/oHBDB92OYvnz8MybgKT7niFr68YyOVfrWXvzgSK/za13GerFGgUWP0ILDpOZFIixYUFFNsKuKdRhLH9bvbd3qsXEHf36jKfu9al36k+UzWDz72At27rx/m/2egYt55NSfnQeC7RPYby0+2jGPTkx0xu1w2eh5RZK122F/wbhbLv0iYcXKmIfu0Dil87QGhuBp3TfyK98wUUBIRy8LX7GTnp785lkmfG4igwP0ulcFjsNDu2jT8HhzJ0XS4ACQPCGWPeDkq+ewITJnRky5pvwNwU62fvclXz/nz94ga0XZe5hdpxZ+nwMWMuvh37pL+z6/0kQhsHkrXwDvzzR5Y7vjr3i5JjigIc5U/IEUfTjHkuwQLKSmbLPTQ76e1XBf4YzRI6n247fmZH1/PBEghA46Xfcmz8ZYxZPYvo1BTsjknOp5DX3zQIlf4XNGpEz1/SjIOgs3lDgdXqtuV6f5tU46KnZNw2pUBp9nTfQauThk4p3V6XtC7bW+Z74iZAOWftk/w+5BnjQlxZQDtQDhvnrH0KgIBF/0fxiRM0b9uRkDfXERIehCVkM/6/FDvrvmXsz2SNnlhuO8qtn9L1o6xY/BRtdy1jX7sRaGv9hzBnXJ+mQYMG6Q0bqr7Kq6mSA1fw9/+jc+RAt2nycrIJCW9WJn1lMiNgd1QjhvxmnOAOhcOI9e7HXirx3j2x2Art5klBYfWHUUunV5g+KjmJ1J7GS3xdn1bIOX6YpA1LGDq2bgYiPNnch9cQFOpPj6EhxH8aj90vlOF/PFYu3bYZY8hfcRaOXi0YP+0yZ9B6wR193eTqXkndu26vu89jX0vNtr7vlA0AiuzcOWdMDbbw1DlsNrb27uP8f3Ov28oE3MfCGjN408m31N4AVXG/jtWX9GHE98bjyyc/reLO29N+xs9WhF+Tzdgdw7AXa+58u3wwXJFPHuzNkB/sbOymuH5RcpXpS/YL14udW14aXmH6yr5Xy0e+hdJ2+ozv6gxUp7/jedldvXNyYOhmv3C3n1XGtewln23Mi7eye3NBpft4yXI72yi67tfOdX5wywL8i3OdgUyxf+l3ytMyebq9+3ensuuKy8kNhvTIMM6d8SK9BoyrMo9Q/SyX//Mb9g4xhgk4+vgdON54l9wHpjLhmgecy65d/gVbv3mPG+csRylldAp2aOd5VVkVd/57FKm9ervdviX3DabjYvfjRy0f+RYWf7/SCxibnbEryz5ll/n8naTG9ilX/j5XFxExbSbHQyAs32hI77DuD8IaNXG7LjDeWpBXmEOTsOaA+/0kL/cYc+//k4DgQAZe0MW5vtG/3mXU0xWjabIgli29A7j66wTednMRNv2dsSwaE01Xl/eyJ/awktVqNlgVfcd0NLfXxtiV95SpD6XttNu32ghQlJWxq4z5iT0DCL3wA3ZtOAGOIlB+tM1YQ9S2L93We4nYETG0OljoTOPJ97SxfQXHrGPQFqvLBW5ZSql669N0xrU01Zeg4PAK55UETADrLu+IdfseBm5xH7wm9LcTfO4YOjduB799DsDRqZdWuf6AYD8aNQ92nmTyc8qPEZIyuSPRX/4FgHIzqjRAeKOIeguYgDInwuNb/kurD9y/xuSSGf/BMa0Ai9nSNuraHtVe19qLW6OPZlNV2Ho0wq/MiWHAhE7VXldtsviV/dq6tkD22DaftG7l+7g0C5mLf3p/Djbvi8MaiMVeSItDCRQM3GXkMeEy+N6zMV8AeqTOol0W7H9qKmOvrX7w2CanKXCIATs8u2hz3S+6D2xVZfqD7QJpsc/9uDhjV93D4ejmDL96NSOujvRo/RWpy/3iUCM499UJHNqXSudenejcy7PljrUOhP2lT+S5XnS0OmSMC3f4jQc5krGjyn3/ZFVtb5tOUbRYtxmtHfj7BVYjD2Pa/mbQJhvCWralz4byJ94hY69hyFhnczfB4QHk5+yj5+bvSO98AbpdF7cj5DuZLRO7ujnosqM03Y5HJxO04VmmvmU0ZY24OhK7w87i/16F1pqwiNYc2pHM1Vfew5grS7MrKf/aVcZxymGBrWdB9DYICCx7F+BkAf6BBPi7r6MSIaGNmf5u6WuOStaXEmX8b2nSBL5+j0mdjIso1+Dfdd+esGwziy7sR4904/t22dcb+WPZPEZOvM2ZNjM1niMrjfTJV0QxdoERIG24YQDNm54g8t2lzvwKuncgzBZE71GN2bfzPUL+DHd7d+RkRwfG0Orn0vcfFlvBv4KueyUB2sEmmvMW3EpAQGiV+dcHCZpqDtaqsAAAIABJREFUWckjtYX5uR6ln/KvJUDpVUbKuUVE/27c197aw841nxv3xX+d97xzmWadqw4Q3J1kfqSQgKjL6PCK8caZwVNeIefLil/s6m2j7nuZ7+OXEbne/UjOloDKD0pVufmVFR6la3nFFae0nvpm97cAZY9ETbYkUxAchcPij3IU4bD4k98mhxsefYfj0/YR3bIDnwx8CZSu3om0hg3VBRGhwCH2dLZX+8TtiYPN/SsMmgDsLVvWwVprl90fOnTpTYcung8eC2Bv3gyofLj14RNvPYWSVc6voqdWPVnW3G0d/p69W/OWl4bz6dNX0upQEq0ObSL6f5W3nClVGigV+UGA2cXpopuehpueLpPWarFy8c3PelQOfzPb3CDo99JcUv/8mugqgqbaENG4LWf1HlllOn+LP3ktQiA9l7QuEO0f4AyYSoQ3a4U5cDzW8GDn9Bsf/z8AYr84m1YHjT6V176wED8/43PWjleddymq4tfVGE8wvZ0iGlg9thljl1Y+8OahAX6MbFv9i+K6csZ1BK9rJe/8OrmvUVU29XaQ2BXaDP+bc1qLux4vTeDSiXvYxFtqVLaLXtnJhKmvl0446dbs/gvyyJx4Al+hlOLST6v3Dq66MPKG8o8x+5rs/zxOuhkHKDeBjHLYKApoRLuM1Yy4tSW9R7Wned/JKIuFxi07AHDz/yVw8/82l1/YjcNDG3GoEbSOjKlReR2tugJwqHVwFSlrJmDiBc6/bS5HuR0djX9yuretk/XWhtVDjJNRYWBFYyi5l2Hc5SG8cxR/nucgcWzZUZrjhxr9N3d0ql6+9Wn7yLYUW6FVpOcj84+f/gqAc/+vjO2YUQdddljIrPjOWbX1GjSOTcMd6Luup1vPoUy69dXay7wSlsDKW6pctbv+TvZGQNOZ7t+nabeW7hdjpr7Cut6agw+XtlwdiC5t4S0JmKD0LkV6K1g92J/Vk0oHWj5ZRJRxAXAgMgyAu95aU2W5m3U8q8o09UlamurIybdQqnLx+ytx2IpI/K50oLRh59/k/FtZPbvyqg6tNVvbGyfZaGDkv5LKBVKCisey8iGDzrmUvf/pTMrvn6EXlz8QHWtmoa/55Ev00Gdg6Kmtb9KjP7JrxJf0HHRejZbvP/padu/7js79qn4dUI3yP+8Wcl76CoBtY0MJTMxlf/9gGu0yAgl7YO1/n2pL68Hnw9of0dW8pD3U2krbQ3YICeaWOVvLzfePHAF//omjDo4lteWWl36h+JlcAkLKP8FXkdYtunB40VzOaVX1yfW4JQgw+oamdFR0PKT5bog65dbOwKBgrvuwfJ3XteK2zT1OO2riVJg4tcL5fkGlt78at2zHlK9Ty8y3BlXcgmj7/E26h0dwwVnu+/GWOGfCDax47QhXjrweMC6Mq9KoS/8q09QnCZpqWcEXbxH70xxmtffshbolws3XoPh36AEsKjdfVTBex6nQQKeHH3QGSn5BYbW+jtpwIkQTlqewWdy/i05AYHAY3XoPo1vvYSxYXP4qvdv9z8Mt/6i19YU1aUGfi92PcO6Jzn1HEN7kV5q1r5tm9wCXK/DC4mDO+2ohwY0iWPXlC8Sv+YLhF9SstbY+BLZoAUBWp+p951sM70NS6z/pN2RSmel7J+Wg/IIovbHguxdGymKtVsBUolc3z64Cul4zHVY8xfqb+9I8Pg0ooGVT3211rMjhRhBxHIoqCWSqKyS04n64AFgqDnD69J9Q4byTjZl0d9WJXBSFd65W+romQVMt6x8znv4x7nv4e6L3yGv4uvtsTgzvVebqR/nV3pejhNYO+o+vu74NteVYuCIsz3gipT6ltoNDbavZx8cHuHtJ8aBzLiOF2guaakNEx7qr2YCA0qDJ2rgxjVoYtyDH3fg8xVfcj39Ys4oW9bq+Z08i8+pXiepWvcBu+B0fsWvtj3QfULZj/shnt2Cx+rPs238Dv3MwqoqT42ls8KiryV5xNje26sSCTx7gj4Kf6Tq+YfVZBNg6oQVN1h5kWLeoeluntxrcrZU8gegNEjT5mJCQcG76ofwj2E07Vq/lqjLHQqBxXq1lV+dsVmOsqfoMmhIvHsiQOx8izIdPrlWJ6wED6/+OgU9wDZoaDXIZmkApnw6YANp06UWju9cTEtG+WssFBIXQY9TV5aYHhhovoj3/6odZ5Mjm6gvdv+rlTNGsTRcArrj5VfadM5n20UO8XKLqm/LEErL3baNlu9o7L1RFV9LSVJei+o7yynorIkFTA9E1cjD7KNup9ZQ5fLeZ3lVG3wA6ZRRysDG0OFZ1+toQ0nEwHbt6PuaTLyn5VAP79IWtnnXsPt0E+AfxW7SiILKQGVc/4u3iVFtoi9of1kJZLFx03Su1nm9DpSyWBhkwAfgFBtOyDo5PS8faadHE6r51vZ6DpiXng6PYwX3S0iRqwmEOH7+7NfSpIq2nGsrAphfe8wlbOz9M0bd/QT0FTeFB1X9lg7ccOqkLSMmhTZ/Unv7DtR0oOnGUxzn9+fn7Mer+52gZObjqxEL4gJ+Ga0KCbV7tDnDtA18RGtHO/UzzeLIl2lEvZZz5ZvUGXq0vEjQ1ECEhYSRemkeHEN8Y4Ks+te4aQ+uZS1j6bf0dTvz9fP+JOYC9b91No/AWlaYpeZfaQ0/9Ug8l8h3dXYbvEMLX3dd+P7uDvNuDskXXiod60OaQBEp5PsxBdWU2g9aVD9vkdRI0NRABgUH0v/BFWvas+NUR1dVQWppKuBt/qM7W1TBiJsZPuKvS+Ttfv43g4Kb1VBohRI09eYROvnzgMcdjqsu+pUppStvKfZMETQ3IWaOurdX8GlrQdDhC0e5APZXZlw9eVTjQLoCorcXYWjVl0oX3ebs4QghPVPb6F19gHhPr8uJVN4DDro9/SqIuNID90i3/7h0B2BpZD1vg40HTxivzWHix+5c2XfL0V/w4rTNXTZtdz6USQpyuGg03XteSOeTU3tdYGYePH3fhFFualFItgWFAWyAfSAQ2aK1lCMIGoKG1NNn9jB7PDlX3DaQnd6L2NcP/9jExGWlu57Vt2YUH7/upnkskhDidnT/xTmKXRnNbu2F1to6G0NJUo7OPUmoM8AjQDNgEZAFBwGVAN6XU18BrWuvjtVVQUfu0D48M7E7TcRfAN1s4MH5Ana/L14OmTv3HQf9x3i6GEOIMMrrD6DrN3zju+vZ5qaaX7BcCt2mt/zp5hlLKD7gIGA98cwplE3XNt/fNcs4bewtxK/syrUXNXhJbPb4dNAkhxOmmpKXp+1p4H2BdqWnQ9Ie7gAlAa20Dvq15kUR9cfe6DV83sFXlL4SsLfZWlT/GL4QQovbsjYAi821hE5of8W5hKlHTjuBnwvh4p72GdnuuPuwy3ptMk4jG3i2IEEKcQez+kDk2lC9GWnBc+rK3i1MheXruDCb99cvLGVfE7EsttGrbwdtFEUKI015aW+P36v4Wrp76DZNHTWLgiBu8W6hK1PT2XJRSyt1LrRSgtdYN86VdZ5oGeHuurp1nL2Zy8CEO18MTekIIcaY7EWx0/s4LgkYtO9Lzet9tZYKaB027gItrsyCi/hwJh0Z5oK1WbxfF5xyOuoGI1Ldp1LiZt4sihBBnjIby6E1Ng6YirfXuWi2JqDc7z4eFxyw8G9Ha20XxOZGTXwD9PP6+PjqvEEKIelfToOm3Wi2FqFeTb1zIqD++pFWbrt4uiu9RyudHAxdCiNNPwzju1iho0lrPAFDG647/BnR2zUtr/WxtFE7UjYgOUUR0eMrbxRBCCCFMDSNoOtV7EN8BlwI2INflp0JKqSCl1DqlVIJSKkkp9Yw5vYtSaq1SaptS6kulVIA5PdD8f7s5v7NLXv8wp29VSp1/itsihBBCCC/IV8HeLoJHTvURofZa64nVXKYQGKu1PqGU8gfWKKV+Au4DZmutv1BKvQtMBd4xfx/RWp+llLoGeAmYrJTqCVwD9MJ4992vSqlIrbX7t5gKIYQQwifpM6Sl6XelVJ/qLKANJ8x//c0fDYwFvjanz8N4jx0YLVnzzL+/BsYppZQ5/QutdaHWehewHRhc4y0RQgghhFc0jJDp1IOm4UCceXtss1JqSwXjN5WhlLIqpeIxXvS7FNgBHDVfwQKwF2hn/t0O2APOV7QcAyJcp7tZRgghxBkq7izF25PkCVhR+0719twFNVnIvIUWo5RqAiwEt+/mKxl50V0AqiuZXo5SahowDaBjx47VLq8QQoiGI+Lfr3Ff0x7eLoaoBtVA2ppqFDQppcK01icqG6upJE1l+WitjyqlYoGhQBOllJ/ZmtQeyDCT7QU6AHuVUn5AYyDbZXoJ12VOXs/7wPsAgwYNkmGwhRDiNHZBlxpdzwsvCiDA20XwSE3bL79TSr2mlBqplAotmaiU6qqUmqqUWgK47SCulGphtjChlAoGzgNSgBXAlWayKRhP5gF8b/6POX+51lqb068xn67rAnQH1tVwe4QQQghRzxo5jDBkWJMoL5fEMzUdp2mcUupC4HZgmFKqKcawA1uBRcAUrXVmBYu3AeYppawYQdt8rfWPSqlk4Aul1PPAJuAjM/1HwKdKqe0YLUzXmGVIUkrNB5LNdU+XJ+eEEEKIhqPkplxD6YFW4z5NWuvFwOIaLLcZ6O9m+k7cPP2mtS4ArqogrxeAF6pbBiGEEEJ4X2nn5YbRp6mhBHdCCCGEOF01jJhJgiYhhBBCeIcym5pO65YmpdRi19eZCCGEEEJUV0N7nL2mLU2fAL8opR4zX4UihBBCCFEtzvYl1TBammr69Nx8pdQi4Elgg1LqU8DhMv/1WiqfEEIIIU5bDaut6VRGBC8GcoFAIByXoEkIIYQQwnOncUuTUmoi8DrGAJMDtNZ5tVoqIYQQQpz2tne20i3dQVHzcG8XxSM1bWl6DLhKa51Um4URQgghxJnDEhXGrf2O82zbrt4uikdq1BFcaz1CAiYhhBBCnIpRBcHEZu2hpX8zbxfFIzJOkxBCCCG8QqEIbEB9wSVoEkIIIYRXtBlzOwBR/YZ6uSSeOZWn54QQQgghaqzFkKtgyFUEersgHpKWJiGEEEIID0jQJIQQQgjhAQmahBBCCCE8IEGTEEIIIYQHJGgSQgghhPCABE1CCCGEEB6QoEkIIYQQwgMSNAkhhBBCeECCJiGEEEIID0jQJIQQQgjhAQmahBBCCCE8IEGTEEIIIYQHJGgSQgghhPCABE1CCCGEEB6QoEkIIYQQwgMSNAkhhBBCeECCJiGEEEIID0jQJIQQQgjhAQmahBBCCCE8IEGTEEIIIYQH6j1oUkp1UEqtUEqlKKWSlFL3mtObKaWWKqW2mb+bmtOVUuotpdR2pdRmpdQAl7ymmOm3KaWm1Pe2CCGEEOLM4Y2WJhtwv9Y6GhgKTFdK9QQeAZZprbsDy8z/AS4Aups/04B3wAiygKeAIcBg4KmSQEsIIYQQorbVe9Cktd6vtd5o/p0DpADtgEuBeWayecBl5t+XAv/Vhj+BJkqpNsD5wFKtdbbW+giwFJhYj5sihBBCiDOIV/s0KaU6A/2BtUArrfV+MAIroKWZrB2wx2Wxvea0iqYLIYRP2dhVebsIQoha4OetFSulwoBvgJla6+NKVXhQcTdDVzLd3bqmYdzao2PHjtUvrBBC1NDUe63kB8D13i6IEOKUeaWlSSnljxEw/Z/WeoE5+YB52w3zd5Y5fS/QwWXx9kBGJdPL0Vq/r7UepLUe1KJFi9rbECGEqEJOiOLKXtd6uxhCiFrgjafnFPARkKK1ft1l1vdAyRNwU4DvXKbfZD5FNxQ4Zt6+WwJMUEo1NTuATzCnCSGEz9gyZQuPDX3M28UQQtQCb9yeGwbcCGxRSsWb0x4FXgTmK6WmAn8BV5nzFgMXAtuBPOAWAK11tlLqOWC9me5ZrXV2/WyCEEIIIc40Smu33YBOW4MGDdIbNmzwdjGEEEIIUQuUUnFa60H1sS4ZEVwIIYQQwgNnXEuTUioH2OrtcpxGmgOHvF2I04DUY+2TOq0dUo+1S+qz9vXQWofXx4q8NuSAF22tr2a8M4FSaoPU56mTeqx9Uqe1Q+qxdkl91j6lVL31uZHbc0IIIYQQHpCgSQghhBDCA2di0PS+twtwmpH6rB1Sj7VP6rR2SD3WLqnP2ldvdXrGdQQXQgghhKiJM7GlSQghhBCi2nw+aFJKdVBKrVBKpSilkpRS95rTmymlliqltpm/m5rTo5RSfyilCpVSD5yU1ywzj0Sl1OdKqaAK1jnFzHebUmqKy/SflVIJZh7vKqWsdbntdcGX6tNl/vdKqcS62N664kv1qJSKVUptVUrFmz8t63Lb64qP1WmAUup9pVSaUipVKfW3utz22uQr9aiUCnfZJ+OVUoeUUm/U9fbXNl+pT3P6tUqpLUqpzco4HzWvy22vKz5Wp5PN+kxSSr1cZeG11j79A7QBBph/hwNpQE/gZeARc/ojwEvm3y2Bs4EXgAdc8mkH7AKCzf/nAze7WV8zYKf5u6n5d1NzXiPzt8J44fA13q6fhlyf5vwrgM+ARG/XTUOtRyAWGOTtOjnN6vQZ4HnzbwvQ3Nv10xDr8aR0ccBIb9dPQ61PjCGCskr2RXP9T3u7fhp4nUZgvLathZluHjCusrL7fEuT1nq/1nqj+XcOkIJRUZdibCDm78vMNFla6/VAsZvs/IBgpZQfEAJkuElzPrBUa52ttT4CLAUmmnkfd8knAGhwHcJ8qT6VUmHAfcDztbR59caX6vF04WN1eivwL3M9Dq11gxmM0MfqEQClVHeME9/qU9y8eudD9anMn1CllAIaVbC8z/OhOu0KpGmtD5rpfgUqbVX2+aDJlVKqM9AfWAu00lrvB+MDwPhCVkhrvQ94FSOq3A8c01r/4iZpO2CPy/97zWklZViCEe3nAF/XcFN8gg/U53PAaxgvYm6wfKAeAeaat0CeMA+oDZo361Qp1cT8/zml1Eal1FdKqVansDle4yP7JsC1wJfavJxvqLxZn1rrYuBOYAtGYNAT+OgUNscneHkf3Q5EKaU6m0HXZUCHytbZYIIms1XiG2CmS4tPdZZvihHFdgHaYkTrN7hL6maa84uutT4fo2kxEBhb3XL4Cm/Xp1IqBjhLa72wuuv2Jd6uR/P39VrrPsAI8+fG6pbDl/hAnfoB7YHftNYDgD8wDswNig/Uo6trgM+rWwZf4u36VEr5YwRN/c3lNwP/qG45fIm369RsdboT+BKjFTQdsFW2zgYRNJk7yzfA/2mtF5iTDyil2pjz22C0/lTmPGCX1vqgGbEvAM5VSg1x6ah4CUYE6hpptuek5j6tdQHwPcaH1eD4SH2eAwxUSqUDa4BIpVRs7Wxh/fCReiy52ipp5v4MGFw7W1j/fKROD2O0fpYE9F8BA2ph8+qNj9RjSVn6AX5a67ha2Tgv8JH6jAHQWu8wW+zmA+fW0ibWOx+pU7TWP2ith2itz8F4L+22ylbo80GTeavhIyBFa/26y6zvgZIe8FOA76rI6i9gqFIqxMxznJnnWq11jPnzPbAEmKCUampGsROAJUqpMJcP0w+4EEitre2sL75Sn1rrd7TWbbXWnYHhGPeVR9fWdtY1X6lHpZSfMp+gMQ9CFwEN6knEEr5Sp+YJ6QdgtJnfOCC5FjaxXvhKPbrkcy0NuJXJh+pzH9BTKdXCzG88Rl+gBseH6hRlPm1sTr8L+LDSNWof6Elf2Q/GCVVjNEXGmz8XYvR6X4YRFS4DmpnpW2NElceBo+bfJU+9PYMR6CQCnwKBFazzVox7nduBW8xprYD1ZjmSgH9jXD15vY4aYn2eNL8zDe/pOZ+oRyAU46mkkv3yTcDq7fppyHVqTu8ErDLLsgzo6O36aYj1aM7bCUR5u15Oh/oE7sAIlDZjBPYR3q6f06BOP8e4KErGgyfiZURwIYQQQggP+PztOSGEEEIIXyBBkxBCCCGEByRoEkIIIYTwgJ+3C1Dfmjdvrjt37uztYgghhBCiFsTFxR3SWreoOuWpO+OCps6dO7NhwwZvF0MIIYSoFcXFxezdu5eCggJvF6VOBQUF0b59e/z9/ctMV0rtrq8ynHFBkxBCCHE62bt3L+Hh4XTu3BnV8N+i5JbWmsOHD7N37166dOnitXJInyYhhBCiASsoKCAiIqJBBkzabsd25AhVDX+klCIiIsLrrWnS0iSEEEI0cA0xYAIozszEfuQIKiAAa2hopWl9YRulpUkIIYQQXqFt5vtxHQ7vFsRDEjQJIYQQQnhAgiYhhBBC1JoZM2bQqVOnStNMnTqVRYsWEb85nidmzwZ7cT2V7tRI0CSEEEKIWrFr1y5iY2MpKioiJyenwnTx8fH069ePfj2689ysWdiLC+uxlDUnQZMQQgghasVTTz3F448/Ts+ePUlKSnJOT0tLY/jw4fTp04fZs2eTmZlJ+/btmfLAQ6xav55Cu92LpfacPD0nhBBCnCae+SGJ5IzjtZpnz7aNeOriXlWmS0pKIjExkXnz5rFmzRqSkpIYOnQoNpuNG264gTlz5jB48GDuuusuoqKiAEjcmkbvyEhsSNAkhBBCiDPEY489xnPPPYdSiujoaBITEwFYsGAB0dHRDB48GIBevXoRHBxMUVERefn5NGvcmMN5ecycMoWAgABGjx7N9ddf781NqZAETUIIIcRpwpMWobqwdu1alixZQnx8PNOnT6egoIC+ffsCsHnzZgYOHOhMGxcXx+jRo0lOTiayW1cAflz0E1deeSUXX3wxkydP9tmgSfo0CSGEEOKUPProo/z444+kp6eTnp5OQkKCs6UpIiLC+XdcXByff/45MTExJCQk0DuqBwAZ+zPp0KEDAFar1Tsb4QEJmoQQQghRY0uXLqWwsJBx48Y5p7Vq1Yrc3Fyys7O58cYbiY+PJyYmhpdffpkmTZoQHR1tBE09jKCpTZvW7N27FwCHDw90Wae355RS6UAOYAdsWutB5vS7gRmADViktX7InP4PYKqZ/h6t9RJz+kTgTcAKfKi1ftGc3gX4AmgGbARu1FoX1eU2CSGEEKLU+PHjGT9+fLnpx44dc/69bt26cvNjY2O5+bWXALjowok8+fwrLFq0iIsvvrjuCnuK6qNP0xit9aGSf5RSY4BLgb5a60KlVEtzek/gGqAX0Bb4VSkVaS72NjAe2AusV0p9r7VOBl4CZmutv1BKvYsRcL1TD9skhBBCiBrIzc1lxIgRjB8/no7t2kKRJjQkhLlz53q7aFXyRkfwO4EXtdaFAFrrLHP6pcAX5vRdSqntwGBz3nat9U4ApdQXwKVKqRRgLHCdmWYe8DQSNAkhhBA+KzQ0lI0bNwJwNC2pitS+pa77NGngF6VUnFJqmjktEhihlFqrlFqplDrbnN4O2OOy7F5zWkXTI4CjWmvbSdOFEEIIIWpdXbc0DdNaZ5i34JYqpVLNdTYFhgJnA/OVUl0B5WZ5jfvATleSvhwzYJsG0LFjx2pvhBBCCCFEnbY0aa0zzN9ZwEKM2217gQXasA5wAM3N6R1cFm8PZFQy/RDQRCnld9J0d+V4X2s9SGs9qEWLFrW1eUIIIYQ4g9RZ0KSUClVKhZf8DUwAEoFvMfoiYXb0DsAIgL4HrlFKBZpPxXUH1gHrge5KqS5KqQCMzuLfa601sAK40lzlFOC7utoeIYQQQtSNgJwCbxfBI3XZ0tQKWKOUSsAIfhZprX8GPga6KqUSMYYLmGK2OiUB84Fk4GdgutbabvZZmgEsAVKA+WZagIeB+8xO4xHAR3W4PeIMkLN8BTsvuxzdQF4eKYQQpwNrka3qRD6gzvo0mU+79XMzvQi4oYJlXgBecDN9MbC4gnUMPnm6EDWV8cgjOI4fx3HiBNbGjb1dHCGEED5ERgQXwpXWZX8LIcQZovhAFo68PK+tXzeA464ETUK40EW55u8TXi6JEELUL9vBLAp37qzflbo8B6/z8+t33TUgQZMQLvIx+jIdPH6sipRCCCHcmTFjBp06dao0zdSpU1m0aBGbk1N4YvZsoGG0NHljRHAhfJZdGZc9xXZ5haEQQlTXrl27iI2NpaioiJycHMLDw92mi4+P55lnniEs7xhnd4sCwFGUjzU0tD6LW23S0iSEC+d1jpan5xo6+/Hj5MTGersYQpxRnnrqKR5//HF69uxJUlLpK1LS0tIYPnw4ffr0Yfbs2WRmZtK+fXumPfAwq9avByCvAVysSkuTEG44fL+VWFRh38xZ5P7+O2etWol/y5beLo4Q9eOnRyBzS40WDcg1+nSy/qTWntZ94IIXq1w+KSmJxMRE5s2bx5o1a0hKSmLo0KHYbDZuuOEG5syZw+DBg7nrrruIijJal5LS0ugdGVmj8nqDtDQJ4U4DuLcuKle4PRUAXeC9p4GEOJM89thjPPfccyiliI6OJjExEYAFCxYQHR3N4MHGCEG9evUiJiaGoqIi8nPzada4Mbv27GHGzPu5fMKE+u+MXg3S0iSEGxIyNXw5edkEA5kZ2+jYsbO3iyNE/fCgRagiRWaQE9y7d7WXXbt2LUuWLCE+Pp7p06dTUFBA3759Adi8eTMDBw50po2Li2P06NEkJyfTo2tXALp06MDbb85myrU3eXXYg6pIS5MQbmjt8HYRxCkqNj/CwwU53i2IEGeARx99lB9//JH09HTS09NJSEhwtjRFREQ4/46Li+Pzzz8nJiaGhIQE+vToUZqJUu6y9inS0iSEC21+Zx1ye67Ba1RysWqRa0Mh6tLSpUspLCxk3LhxzmmtWrUiNzeX7OxsbrzxRi688EJiYmLo0aMHTZo0ITo6mk8++YQBLv2ZfD9k8jBoUkpZMF6J0hbIB5K01gfqsmBCeJOlAVzxCM9Y9mZ6uwhCnNbGjx/P+PHjy00/dqx0vLt169aVmx8bG8vtLxq3Ew8fPcpTr71CQkoKr3z4IU++8UbdFfgUVBo0KaW6YbwU9zxgG3AQCAIilVJ5wHvAPC33MsRpR1qaThe79UgrAAAgAElEQVRFx7K9XQQhhIvc3FxGjBjB+PHj6di2LQARTZrw5uxXse717faYqlqangfeAW7XJw3VqZRqCVwH3AjMq5viCeEd2iHXAaeLQ/mHvF0EIYSL0NBQNm7cCEC+2dfJ4Pst/FXd7H9Ta73q5IAJQGudpbV+Q2stAZM4/TSQhibtcOAoGVtFuKUbyod5inJWrCAlKhpbtrSsiYbJchq8e+4/9VIKIXyE9v0LnTKyXn6JrQMHNcjAqSAtrV5a9BrC+6xqw4E5rwNQsDnOyyURDZEvfE8Kixp+0CR8iCMvD22znXI+RxcsZOvZg9F2eVVIRRpK68SB+f8DICfzLy+XpHryExLYdcmlHP7gvTpfVwOLg2tszxFjQMB1qSvdztdac3zJL+ji4voslhAeawgXrVUFTV2VUt9X9FMvJRROWwcMJOOhh085n/1PP4kjJwed77sDiHmLMmMlx6bEyhP6iDxltNTsP5Lh5ZJUz7YVXwGw/af/1v3KzpDnVArNE06Ow/3Ves7SX9l3770cfHtOPZZKNBy+cKHo+1FTVUHTQeC1Sn5EPTu+ePEp51HkMK40j+Q0jL4PxRkZpERFU5CSUufrCjfPN/Z/+ebjricrOcz5QtN6daQd2QVAhqMebis2wBcJ5icmVbtV2VIS8FewL+y75x4Atv++8JTKJk5TvvA1aQBDvVQVNOVorVdW9FMvJRS1TpvR/Albw+gHs+eh+wHY985sL5fEdzka2NN+zlFK6uEY2dCehCzYupX0K68ka3b19veSVtKqbi1n2I/XtGjiNOZJzGQ7cgR7Hb7ixPVwUJyVRX5ios9dEFYVNKXXRyFEWcd++IGiPXvqLP+S+8aF9sI6W0dtKtwQD8DWneUHRztT2U/koouLS/sAqLIHFtvhwxTv31//BfOUo/6CJmqhH2B92r3+VwD+WvZVtZZzBk2+f7HuM4r27vV2ERqU4n37KKqnl+naDh40/vCxi55Kgyat9RUlfyulzlVKXaeUuqnkp+6Ld2bKePAhtl08qdbzzf3999IdEfCN9ljP2XT9dlwvzsrCfsI3W+PSBg1i1803OYMOh93OiZUrydu0CYBtw4azfcxYL5awCuaBUNdDc7yjgT3wkHooDYCsat66dPbHq6pKG8AtkOqyZWdXu4P7vnnvsOO88Rxa8l0dlap6DvzrRbI//Z+3i+FVyuUqqqSFyWb3rYsej56eU0p9CrwKDAfONn8G1WG5zniWgrIHgGKXK6KMxZ/VqMnyr1unknLJROf/du2gaPduCnftqnlBT2PbR45i6wUTvF2MchzmWCaFcfHOaXZtY8/td7D72us8ykMXF3v1tlW9Nrk3pI7gWpOXZQRNqrpVZNap1XpmvVLUUVjAtnOHsenmS6u13PrFcwFYvsg3RtbJnjePAy+84FHaor/+4sj8+bVcgtr7Ts6YMYNOnTpVmmbq1KksWrSI+JQUnqj0VrRvXdx7OuTAIGCY1vourfXd5s89dVmwhujEoT2kREWTEhVN4YmjNcqjopNJ/KpvnH8fu+85lr16b5V5FR7LZvPLj2A7dMh5gvQ7kkeQMx7T7Dh/IjsvuLBGZfUGR0FBva5PHcx2Bim+wvWKumRvyTnoYOXwV8gJbUv+oX1V5pHapy+/XTGc+Y9dxnez7wRg20tPsv3156pcNv/oQZb+a+opBV0Os+T10ebhsNvRdnuD6Nu08JWpxCxIr/ZyqSlraHnIDJos/mXm6eLiMp3KrXbfOgmdqqwjxm3owI3Vu/iz6SIA7MXHqkjpe7ZeeiGZTz6Fvbio1vLULg9MaJuN/MREig5mYcs3WjwrOjflZe1BO0pbc3ft2kVsbCxFRUXk5ORUuL74+Hj69etHTHQ0z82aBYBfXmmXkZJjQ0Pr01QiEWhdlwWpLwWJSZzILNtfyJGXh/1YzYIcV0v+72Xn34lfvO/xcn98/irLJvYjZ/9uFl3e3zl99dg+JPSJBiC7wChfZvMYlo+aw56dVTdFL7llLP4ff8e24SMoOH6k3PwdyxY4/87Zu5OsdSs8LnN9OZhZeiDsvsPG1pj+5Kxa5Zym7XZ2f/Aa+RnpZZYryj3OkocmYy869YNK6l23nnIetcpS+rVtZh6TUlcFY7cGs7nXbaQPP885P2HSGFKiolnx4LX8fNVgAFISjD4zEalH6PPNViLfiwXANvcrit//rMrVr7huDO3n/c7Pb82q8SaUdFZW9dABp3BjHKm9epM4YQzaZiNv46Y6X2dNnVj7p/Nv15YmrTX2nIo7cB+77jb8zJjQarESPziGtI/eBIwAObV3H2daS7Gd5c/83edORjV1+KhxPLdUc3Na7DZO0I1SazdoKtq3h6MLa7sVqCy/fCNIsdfiZ+iwlZ5Tjh02LrzsB7Io3rGLowf+4tjutHLLHMrcgco6xuH00iebn3rqKR5//HF69uxJUlKSc3paWhrDhw+nT58+zJ49m8zMTNq3b8+tjzzCqvXrAbAWu7mw8bH91NN23OZAslJqHeAMBbXWl9RJqepY/GUzSOh/DzEb3+TcP75l3aiBNM6B6NQUHHl5qKAg9qQe4cd/J3DRvTF0jGpWLg97USHLbxpLxE3/5o/vjzJ8QjBZuRn0NOf7vzGX2KIjdB52IRb/nm7zsufnYT9+hCbPfEQTYMmd11IQdCeFAR8TWHSc5hnG1eG22AV0fPkLAJKjpwCQZ7+UjITV+AcE0yLa/Z3SkoMCwP6UjeXmd3v1WwAKAxrxzUMrKQhpyYA5tzP4v+UHHPwr+bDbbThxYB85mbvJKerK0o+SGX9bLyIHtqqk9qv2V/JhfnhzI03z3oeCVPqfNH/Dpy8T2cSPI7u3ceCjt2mbmkP6ax8SnVr6xf1h5iX0XH2Ab623UxQ8jSP787no3hiKDv5OQEg4bXudTezEATS7dxYDLr/duX39Gnen2bFtZdZ3OMW4DZa2PtPtNq657RIiVm/D+sbTRE6cXGl91YaiwtKWr+Wj5hh9VHIBBYUhLVk++m3QmrErZxCwIxOA1j+U3spj8t3l88wv7T+TvCadFf/bwfjberv9LLvsNA7YxzdvovDoIYrTdxPQvBUB7duXS+taD/vSvmTPlx9wxSd/EJ5kdCZtdLxm/Y20wwE2GyogwO38nx/8GyU3B/rsMNbhtzfLGTzYn5/Hyl9PMP7mSJq3LyB7ZzJnjSw9nBUX5rPo44e46JaX+fXDR+k052fsbz5B7/M9u/1ZU73TSk8QRRYHCV+9R8chY1nz4j2ctTydoM/fpUv/UeWWa+TSGGr5cgGBxx3YX3kXphot0oUBjUjseSu9kz8mcvtx2P4bK5o/xtjp/6yT7dB2G8pi9aj/VEpUNFv6BXP1lxv54r7xhBPKpNe/dc7P3JVIQGAozdp2cbt86t23O4+71dHSjJXaZ8H6T56k8+hraNG5NKfY8X1otceG9YMXSf/HI7R87UVihri/BZjw9XsEt2hN5KhLSfjbBYQdtRM84UICQ8NqUDLPOVz6edoK8lDKwqsJb5KanVrtvGwFeVhKWiG3lp3XJbML97W/0fl/YV4ODlsxRcUFhALKLEZSUhKJiYn8e/aLLFv6E0lJSQwdOhSbzcYNN9zAnDlzGDx4MHfddRdRUVE4HHYS09LoHRlZYbm01miHA2XxjbG4PS3F08BlwD85DcZpSuw5FRywpdff+eGaITQ2r9YX33EBWwcMJLFPL5a8vwXt0Cx+Ow6tNStevIeiEzmsnfsSyUu/Yt6rN9M+Pps/FmaB1qz56Rh9FiY71+Fvg1ZvfUv+5Gn88mEiWsMv729h8+L/khIVTdrqH4m98Gx2jCptFbD5XcWxxmeR2v2aMuW13fEYy0fNMU6G1gDjQGQJYOE7xcx/w/jmrxrd17gteDSblSN7cnRnMnb/SJaPfIvsxt0pvKXiu6k7ulxKbnhH7NYgkhwjyM3OImnVgjJpfno3Hu3QLHprLV8+dKGxrvxc0secx9HJU1n2ibHtyz5OYskLfyeufxQFuWWvjP/44Am+fXQWH8xcycG9RqXbi4tZMGU48b9+6Uz3y4eJgIXj/jfSaXf5ToBZBQc5fvVUrA++SGBmG+c2ljh6cA89Vxtvyj5yvDfZ+/LQDs0v72+h+LYHyb3+DuZfOZB2mYrgfxjjMS153/iMtvS+rdz6mh+Fny8ZYGyj1iz9IAGARTeNYvHdRsAEYJ/5NACbPn+LJS6fudaaH2Zdzi8V3FJNW5/J23csJ21DJkezjFu8S2b+ze18gM3ffuA2H0+kREW7nf7HzNLnOlZ8uhU0LP1wCwd2b2XBnedRXFD+FmXf3w+yc+gI9lxzAzvOG19m3m9fziZ+yX/L7Pu2F96iT1w+Cau+pVuaEdC3zbCxf8fm0m2Mq/gN538lH+btO35l8X/e5ZeL+5Patx8Ae9I2kWDuP/YC43HoTj8kV5gPwMpfjxif5ceJbJl8McXTHkY7HKzrb9xef/OBkfR481dWn3cr27dcxIGIfsR9+TzZ2/6/vfOOj7LIH/97tqX3hNBDh01o0kFKAAtwogdY4BSxfFUU6915x50FOb3z1PPAguKp/NQ7RVFAwQIiMdK7lITQCS1SElpIz+78/ni2ZneTTUjZ4Lxfr7yyO8/Uz/PsM5/5zMxndrHuvb9RVuockBzdncdbD6ZxdM9Zvpg6mqwuZixlpZw8lMVXT45DWq1kdTHzfeokn20sLbzE6azNbtalTkfB9Mxstv/uWY5a/sipuB4c3ZhG8cVz/PzNNuZMTWPBLXey7Nkpbnm1PeIcrZ87cRCAw0mjuRDVnsNJox3X8tPcfb5tGNqdtfMuX4kqvnSBPSndyDInc3Ddt2R1MfPd9cmcPXmEL+8YxNlfjjhklr1Dc8rabYf2fPX49jjtvt3L8YyN/NzNzA8ffMzCF38ha9xjWMpKKbyQR2n+WY7t2cSHk1MouniW2CLN+n4qrgevP9ab1/840Gu9zhzLd3v32DFZIPyfn5M7agK7Vx9izgMr2bf+GInHtHeP5b7ptMqFoCnTHWkqPq+mp2djeWA6ZUWFhJ/XNIji4ktVymrJE2NZt2gFbz2Y5niHLR3bnZXD3NVA1/IuusyUuPrkKjtwiNL9B9zSWcpKtek1l3hWqwVrQQHlxYVYLZKyYgtWi3QqTC5IoceiD0Zv0bmtLLIeOgJHc4jKN5Af3pLgMiMXjx9i+qOP8Nyzz2D65SzJTVuy/eetlJeVMP9/H2E2m+nVoztWi4WUlBR69uxJXtYuCoqKiI2KYsnKlTz03HPc8sgj/LBundYmQygXTlu4tO8wJQXafSsrsVT5rqhLRGUmWiGE8HZYb3XjBBKtEzrLP0942z3QNioHl5F7RVzi+BvP37zSh8zGqjd6RNNZykhd/TigTcvtTr4HhE7LU0qQFlIy55GYt8NrW3+6+mUshlD05YUMW/snj+u+ynWtY1Vt8LeN52J1xJy1srbfDEpCEggqOkObgzNpkedM4m9ebm0c9BIWYxj6sgKGrdO8pR/oYOJ4s5erbJu/ZVanXjVpQ9qQWaAzgrWMEas9p7wqu54f1oLNvf8EQu/2XPTd+hIRBZ5ewl0tDkGl7kptTerujf139OfYscnVysu1jf03PUGYF28YPw55GakLdb/XqbF0SHd30noksQXZHR+n18+zPGRQ3TZWJvsdg0IpDgmjwDodrEFu9XLlaAsdrU9Y3fIKs04nLrkXHd5dT+HcGYROnelZp0rqUNUzY8efd8vRlq043GU6IWeP0CNjLmd+a6blgo1sndARfeYhos9Z6PvxN5QUXiAnYyNHt53gZG4qQ+9MpH33VhzpM4Cz4VAaJojNkwS/8hzWJ57zKPNwWwNtD5dzsK2eI63+ASIMQ7Bg6PJpABy5azhJH7gvEXD9fceU/p3uW7Rn9mg8tM71LZ9zM6YS+be57OseRvLv/87xJx/ncO9XKS0MIqTwFNGmdzGvPekp66GzQRh8yvXQTd1o99Uu0lJfAwwgrDz01kj2mDUlJ7uloM1xrTtMWPktJ3ZvIiR6GCvezyQ69HtufuEZTh/IJCapA+s/f42W//pca6MpDH2p+/Nj3pPF9tWL2fvKM5xt9TpWC+j0kLpymiPOzlGt6b7sKNaFX9DO1g2XNGlGaZGRyPgQ5GHNZFQaYsBQUk5RZDCGoBCCTmnLNfIjWjvyisj3PIopP7yV470SccnTDU5BaDOseiM6SxmZG5Yz6p57SIiPQ0goLinBnNyZ7956h2fffJvopkk8OnEChvIiHnr5ZVJHjqRzWBgz33iDRXPmOPI8d+ECf3n1Veb+7W9ey991vpTN/zsH0sL/zRrEL1tX03bomK1SynrZnFaV0pQOLAS+klIedQk3oe2kmwL8KKX8oG6rWXskJXSUfxo/13EjdJYSuu+a65iSyYvuxK6uU7HaLTpe4oB/Soy/efmtqA2ZDTqXGVVfnayf+f04ZDbSm2IhJX23/IOIgpwq2+CvMudPnfyVlz/5lZgiyewyhfMxnZ3xpERnKaX7rrcd+aUNna29cCtiLWPEquorrLXZBr+fi6Gva3VzXLcyYpV3y+LuzpM52bQ/TU9uJHnvf92u1UQx90VtPvvVVXTW932GotBEQgpPMXCz+8L22nxea3OA5Q2f6bzhI68SUyQH2o/nVEIvrce1Wkg8s5UOBxc7lOYNfZ6iMKwZAM1zVtNl/2ce+bjibaDiLw0xKG3oe+lLwa3NepXNeZOOidpUelWKDrgrSxWJyD9ao+sTfjeWx6b9gd90bwfAqdxcBt56K4fS0njlsyXsP7iPV//xGvs3LuOaKVP46eOP2bFnD/uPHGHmo8731fRXXmHsrffSvWtPr+VnHzuoKU0usnj4P9fUm9JU1fTcKMACzBdC5AghdgshDgH7gUnArMakMAGu504AIKzl7GnuNGnGnd+HsJa7xYFyx4t++80pADTN3Q5Y3eNJq9uL11tewlru0Xn22PE6WMtd8pFgLafn9tfc6y50CGsZLY+lIaxlmnXBhQP9bIuerT78WlQIH7TxWUIKT7uXKyUhhaeIKMghs3XVbWiau925pduHHPzFX3mBJjNdeYlb3XXlxQ6ZBZVeJLTotFu7tPzK3PK7esOzYClzl4GlTAu3UZ02VqcNyZnvgdXicd9TMt7167odU1k+YQU5pGS+T1hBDqYyzx0r6UNmk5Y6h5PNBoAQnGw2gLTUOaQPcR4X0xD30p82VnWv7dinsIvCmoIQFIU1JS11jtbxVLONtVkvf+9jRXylq05e6/v/jVOJfTWFCUCn51RiP9b3/5tDXoXhzbVOVghyWgz1eC7s2ONbTOEgBBZTuId8QVPUtvZ8nBJTpEce/srMn3j+ylVI7+9D13B/86rOvfRYUqE3ucmrNtsImiKUH9HaqWQJ4QyrQHBRLh47+aUkpOiMX9crLs7+aXUapaWlDB3kXG+XGB9PQXEJRy3h3DJ+Ehm7dzFizBBe/u9nREZG06VdO3bt3Ut323omKSVP//vfXDd4MP3at/RavluYn7+j2qYq55bFUsq3pJRXA0nASKCXlDJJSnmflHJ7ZekDEiEwlBUQY9pEUJgRGRrBxI/WsS8lmKzfdiX6u4XI0HCCwoy0P7gYQ1kB0hjiSD7phS/otGsnuyYNBL0RnUFH95GtvCoxaTc2deQ1cEIHgsKMWIK0vLKua0+XLG3dRdz5fR7KHFK6dTBHWukZsepRhq9+gk6HFjF89RNu1gTrB7Mw9v8tAG1yZnhXBDY6FQHQFAuHc0FHR2Kh1BSMeU8WN3+fxd6ORqx6I0IU03tUIsZggQyNcOSxfBgOZS7q7I+aHPQGzHuytD9bG/tueVEzhlT48ScPcW6P1/9vDjI0HJ2lwCF7q977Qt8zrQ54dMpWI1y4x7kWoNQUCdKKIVhPRBOJ0Gt139YnDDH/LYcMHFYae35C5zF1ZW9j8tBEx70+0sw5AjzVxPb5/Vex6o0YygoYOKGDow27J/Xh8NRRTrnsyWL4mvkIg97tJaczGggt0jrw4WvmozO6Xged0eDRwQ9e/xT9t/yDxNyf6b/lHwxe/5SHvHzZk+3hZ2f/ya2dDsVcbyTy24WUzpmBeU8Wlndf8pGTNp2QH6Hj4G+6srdTEFa9EX25815aTMEA5D16iyNN09ztoBfO/cVCgF5H6tpPHXFOdD3nZSBjIfHP44la+AGdd+3UNgEIH4vKKw4iPNrotN4WG6WzXtKq1ctFucoZH2WLB8mfz8IQEeomSWEtp+uXc2i3ZROXXnuafdNGeSpqQoAOEvN20P7nzRRNv50TKREUP3yrWzV9KXjuz4SoVLG1+njDS7TfpNFU4t4BSklY9Fn63ubcSWXek0Xkt1/Qof8vNlF57+T3XqNZGLytnwI41i2OkwmHkJTb6q/JQgpPZdofpdsfBTjsO/92sfmrTDfN3e7eawoBQnqVf3Lme+7PD85OPvidf1W/jUhbft7vd5WKjgvG8kK8vRUM5UV+XQ8vyHGpFwwbMoKln3+nhbtwfNPPxETFEhcbx/KvfiTtuzW8++b/48CqtRiNRlZt2ULf7t0BePuTT0jbsIHFK1bwwScfeC3fuejv8gZ1l4PfXtCklGVAAJ/L4B/h0WUkRX3EqFlfuIXftNC5DfnBN7WOd8nUv9N9exr9Vm9nyUQjEWPHYwb0RiO3zpjnln7IrZq2nNVF+14YLJn2svv8fK/rtP08WStmctPw8QgXs6vAir6smKSj33Ok9XVYKigLScc8O4Sjj9xA6ze+BiBlwChSBoxiWbmVoXf+hezptgfJUqZN6en1nooAEH7pBHFndxNesI5LYYMoMUXR/HfOsvWlFoavfoKsKVczYNx7DBinhW/orW3xHXn3Sxju0pS33T1C6b16IedefhywLXC3tTGi4ITbd4RA6A0Mv+NOtpzJwvTRl3TplUqnPtobaf3Xpxn6R9+m/86/f4Vf5unQlxfQ77YebFt2hLJSHWMe+CerF38D7ZPovlIbgbjuqtPYAoA9ND5vF5diiomPP4XMjKbEFOVRXrdrdnFq9TKG3/49TZ/XOv0D910N767ldAykrtKUQ0t5Odyr7dAyz8vi7Nu30CIrn467tmMwBnnkKyXo9IKuw1qQ8dMJrFZJv23O+lqtntf39Y6l09bqHbY8aOOzbOv5BEUhCQ7TfUjRaXptn03bXdswG0PI4mWHIr6ro4HhqxeRuGoFsU1a0qKd9pvoOuRG2HOjzwXl/TZrW4zPnjrCurvG0mvOfIrzbyMlJJxWna5ySD3rddcjQnQV2qg9A502bQCTia2/H421zAiykH5jO7N1WTbSGE6H8WPdytYbjFjKPV+0rrMbq3oaHG080tbC8NWLiPthKXnp2vUuq9aRPfBqW4ZGR712rjgEQk9IRDQA5XqIbdWO8rIjBIUZ6TUqyfYMRhDVrBUAfa+/ne/32d4rQgeU06xDKaeyw7FaDY7nstddT8NdTwNwavBozk6826XymoIXasyksCwFKfSez4Qw0eGndA4MS/Vo+y3TU/h6xhqv9z2o9CLGID1lJTiVOSFo270r5r4JHAUOTuiJGWjRLoUW7VJ4d9dPWMqd7yJhLUdKrZP/xfp7TqQ6hZ3TYig5LYaCKKcpTzPh7TUAvP3wj5hMejeZ7RgSxzUzP+TMiBsAyG6Cba1MAf1v7cHGBTuxmJy/nzNNdAxJ30XatHSQ5bQ8+hMnWgxBVhi4tm7bjSmvdOKD6Wu1g5sdU7JWBm1wH0RqU7YWuo9oo8m1zD0vgC03d4E8fYXn1ciZF6aR8LS2Lqf0xScw/WUW8rpwdKfs50VLQBsU2QcEMuN60h9fTZBNFps/3YFFb2LtuFZcvVibVjty37Wwt0K9hPP9nJ0cRpvd2s5XY3khxbZynG0SDkXnYnwMkbmurmc0xTUkIoii/FIv04CarExllyg1hrtdF9LiLMf+7CBs4aBv3xbLwcNanbzMLpZczGPY1KmMHDCA1s2bA/DQ7bfz0O23O+Lk28o3lOVTboxwlieg+4hW7EzL9jBU1AeVrmm6EunTp4/csmVLneVv70zSnxvNgxP/7Xf8yshJhOZeNgqY92Sx+sbBRB49T4/tGW7XvnnrZwpO76XN0vfIaX4157qmMGDxDJ9ltP15M4ev6gtAx4wdGAwmt/rtu7kPN73wX69pc/ZuISQ6Hr0xmC0LXmPE1Be9tnHDTe8SHGakz2/asOWbbIoLyrj7pcFe81z7w/+Ifdi3d1xPRciTb1+6j+K9mYyft87rdXu9cjvFMWTJGg6vXUHxvZ5rgc5EwtBNzvJ++m17muwxkZj2LadGjCH75l6MfuFjx3Vr/jkICUdn8LEQvRbw57lxZcXYaMJOP05xcLwjLLg4lz7bnqPHLq1th9d+x8knH6frknRCwmO4dPIw0W28l+OtfH/uScX0XXbtQBi9WxPtZG/8gQv3PkLQ6y/QZcQEn/EKLpR47Ryv3vC0Y8CwONXEuHRtGrvpj9+x94f/MmDyM876ZO3m3MlssnesoteoKY68N/Q2E1UAx5+7l5bPvc/JBMHw1ZXv0AM4u3IFp6Zpz5S/8vEm29OP30qT2QvIi4DBm73n4+uevD/lM4qD4zUFR2cguDiXQRufA2DNqDew5JcQefEwli69KLhQSlJyLKOndvdaxtsP/4jR1slv/DILadXR5MyTpGSWErpoIZufWsqpJn0c8g+LOMotz/yOsCjPAUNlbchuDm1ytE0dY792WhK2Lv8vp959g1GfrUen1zrMz568ie5LPX0I2dsP8NFTa8nPKwFZDugJKs7j6o2e78NOO3egN7m/+1zZ938juOmPczzCj2ZupmDCnW5lAsx5MA2dzn3QM+1t78cb2csz78liyZPjaTrwWvqNf5AjPy2l9dAb3AbZ9rh7xybTeeluyua8SdvmiRSFtAYBIREmTRHCucC7rFk8xl9y3cosjg0lprlmIbyQvQ/TpVIKgiHM5p719owAABnLSURBVEO43AAGmzGsKMJASL7TalsUHI8UVnThAi5akUJPSLGWf0jXro54p49ov72QCBNFF0sAQXjBUUJTulKU4d5v+aI4JgSdwURUYiuysrIwm7X2r+9lZmtHwSMLsuptTVOd+tsXQmQD+WjrosqllH2EEM8B9wF2m+FfpZTf2uL/BbjXFv9RKeVyW/go4DVAD7wnpfynLbwt8CkQC2wDJkspa89F6mUwIHlU1ZGqILsJpC5No2NINP/7y2/o/41m6Ftycxh9e0zADAxZssZr2t88dBVwFVmfzqTz/gVkT5gEwPFEQctTnopycIjTn4hdYQI41lTQ6qQkpF0Hn/Vs3tn5rFZUmFxxVZA6VuHLyVpw+We+jflz5XPdSWvSKPwlG3M3bYuy0RSMN3/jZTOmun0f9uVBh9+Q2D1ZVHy16iJial7pOsJY+ALFIe5DvuKQBNYNmE0P2/e2V4+m7TrnlIovhak2qUphAmjT/xrIqFrhCIsKIiI2iPy8YoS1DCkMBJWcc7Owhl90vvRjmrVhwORn3OsjBLHN2hLbzN0nkH1WoGn77hyfNJCUW9yfCV+YmjX3K54rF0MhshBO/f4WEv+tWeRSxtzBmdkLuJjg+5V9OBFi8iHp369yYeofOPGbFMw4rcnNc9aS0/xqN0vqvf9KpSjnCEZjD0zNPP1sVeTBN4c7Ptst55fO9+TwtpV8/fpJSOzrjCwEBZeS+ODPa5k2t3rnIEq9Ds1vvPu7qvf1k+H6yW5hQlS1NBcSWkWQ1DWe8z88hTyd4mFN3vfkGPK2/oTZxe/XgQl96bBws1u8Hj78dLXo0I19OFa5OnBVkOyzEf5w4ytOly9Jw8b6jGeMTXB8DuvYmeCyUowhYQBExGrT4UUOvcQpy+IQQXCR1Hxp2Yhs1Z6Lxw4S3qwFxUcOE1QKZZGhGM5qbjyoIOeQ4lyKooKIjGtD6ZkKjp1caJLkXNtmyNHWD9vPRwwyd6Yky3da0Ky6MS3ae702cFsWA4FHFtTfeYqVKk1CiOvtiouXa7dIKf05hnu4lDK3QtgsKeW/KuSXDEwEUoDmwA9CCPtTNge4FjgObBZCLJFS7gZesuX1qRBiLprCVcGfQMMQHVX9l2VF2pyGkChtV0uPG6bBN5oJ/8bJszF39m6h8UW4QVtLpbevJfCTxHvvo/SV/zDspgerVd7l0nvob9kRPYv9XSLou6Fqfyc1ITS+GaHxzRzfhclzNFzQJJSRv/H0rxQojtb8ZfwfOrL6D/M5E98dqz4InaWEhNwdDJ5Rs4Ohd5qtdM/SZHD8kTFYS0s8lMeGwN45hvxrmoeCYBHQe+xdsG0el15yv6fHbuuLNWuvzzZcjNURWWglJiaRbhWm5isjqIPvwYbPNLZhX+tBo8n54HPizkJ8647kvfIkQwf6HoyFvTqDCyX5NL96DM0yrsNs0F7v3TOdg4fO+7U1PsYP/82JnWsxGwyEtfbeIflLeHQTuo2YRFTTPJbO3ubcmQggYOxj3ndBeSOrgw7zAStSp6WvqDR5RVd1h2m3nH295izt93uuc7rp3le13sOFkLatAafSVJmlUB8UzPlYK4Uje5FSdY0vm/xQiCiE4CYtyGkCMWEmdAZjpdZtV0mGt2xH/smjxDRp5QgTej1RbbQut8Q2dafT6SmLj0RnNEGh+wYTKSCySSv0NbCo2w8CEH5Mr5UF2FGKVVXnWyHEKuAOKWXFA63+AvijNPnLTcCnUsoS4LAQ4gDQz3btgJTyEIAQ4lPgJiFEFjACsKv+H6I54QwIpclk8M8c7S+upz9XV2ECGDjqbva/MI/2t0+l8FXnAZXbrg8HgwEzkH3fUNoOusEtXY/JT8Dkmh+XAXCyUzDW1s2r1amGxiQycMMedr95P2xYDcD5SEn0xbobURiCgt2+d97+M8JYd1Nsdc2x1jpaHdXGvontWqMvL8KqM6KzlGLVGYFimvbsVnkmPogZfQMlB9eQkXwP4+64y+/pFztN/vg4+pjoGpVdGfbOMWvmCYeCYEcKuHrSkzDpSY901838qNJ8+8xbzMHv/oe5Q49K49UGQTZj2MXcXxi8ztlRdx5b+XE+w/o4neIKg+erXRr0iHILZ6JhaP/RdOg/2iPO5dA6OQ5DsJ7yEol9DU9QiL5aHvGtRj1gRR8eDlwgLqFVVUkw2VyGnE7U0+RU5R7mI7r0hJWaxf5It3iSdlUczzsZPuUZlvy8hi4r/XOiOHBd5RaT2iQvSlOaDKZghq3KIivLt0JXHh+FtJQTFBKOJI+SIAgJCiE2qbPPNEHNW1By8gSRCS3Q2TZKnHVRmkqjQohq5VS2g1M0VbHY5diUyrBbboXHOipPjLHxVcapT6oaLu8EPgE2CCFuqXDNn95LAt8LIbYKIe53CX9YCLFTCDFPCGGfy2gBuDqVOG4L8xUeB5yX0rFv1B4eEDRr0saveCefn8S28XFk3Fh51aUfo6nKMMTHY96TRdJ9ziM02uzYzO2vbeb2V9cDMPoP79BloG9TcE0ZvuRnRr75TY3SJoQ6p/GOmev2SIKKR3LogoMR+vpfaFhbXPe9+wus1BRJi5zV9N72L1rkrKaoS1cfKasmrmU39rW/mQtRHVi9wPt6kkrT/98DRE+4rcblV0VmjzC37/tawd6JNbeFxbTuRJ8H/lbtdDo/po58YS0prHFaV44MiedsIiStTWNnR8mlu6+pOlENsVqFtlt4fAeCQg2UlVbvkOQw22DT0Ocqmj//DIPeWlhFCkgd/QAASeNuryImDHvEZZ3pZG23Yo6P2XS9MYhxc9KrzLMhsNpeS0Yv1vGKRDRtRWSLtgSHRmDq3J6oDlUfOhMcHk1UhxSHwlSRyJbt3L4LIRBCUK7HYxmAK5ammgLtOCfQD6XJFO7puqIhqcrSJKWU7wohfgI+FkKMAaZJKb3vR/TkailljhCiCbBCCLEHzRL0vC3982jHsdyDdyVM4l2xq7BFwC3cA5vCdj9A69a+nXbVBnlDWhO3+ig6Py0Uw295Fm7RdnFkLfH9Uk/pfw0H+WuN6uRr23FIUN0qIbVB80ht+uxUgkCYwtAOWasbjEG1ax2sTy7GG4jMLce8J8vnInH7NM2xREHn/Qs4dUuo13hVMffhdCzlrSFR+y0d3HqGOVvT0Bt0TH0ztUZ51jbd2vTHuiMNgG1DQ7j9P55nL9YL/jqn9ELLrt6PA6kuo95d7fh829Lqn0lWHbyteaoOQ16dT8ZzjzLiiVnogoOrTgBEDxlB0MIvCDab2TO3coshQMT8N5BlZUSf1ZbVBtjsj18kPTuT3e+9wrhxD1Qrnd7FfU61cd095+O5jjBXPhALj29Oqd6EIcJ/K3NQUM3eU3WFX8MgKeU+YCBwCvhZCNHfz3Q5tv+ngcVAPynlKSmlRUppBd7FOQV3HHC1xbYEcioJzwWihRCGCuHe6vEfKWUfKWWfhIQEb1FqjcHvLq/WLqKKlOmdet/2Ls7PpmDNN5IvBcgXHVZ8R+dV6TWuT0Nz1TXa7GvbyfdjjdVGKUda1431JyrGadWKf8r3WX2BwIV+7ot2+yxbT/vvncsPRYjvDkfY/VrV0HppKfduPfAV3hB0eOYloifdxvlnr+H2d7Y2dHWqxe6O2n0xBV9GB9dICW/dgQHzvvVbYbITkpKirTPs3KbKuC2vuoZW/UbTuYe2zKFwZCCsxqseXYfeyoSPNqPzw9IUaJhi4tF5mT5uLFTVBTveqlLKcinldOABYD7Q0WcqQAgRJoSIsH8GrgMyhBDNXKKNA+xr+5cAE4UQQbZdcR2BTWgr8ToKIdrajm+ZCCyxnXf3I3CzLf0U4KuqGhzIdNmdSc5jNzu+j33HfUqr/ZIv6Jy2slp5Glu1wRBf+U61QEYfHa1NK97/uONhLIiomx+cLtQ5okmYXL8L36vLgI9WuCnn+vBwTDYraqctW+i0dq1nIp0g4ncTnP7hamgEufWpvhhMOjeniMYgPbc+3beSVPWLPjycZjOeY+Dv3rgsa89l16MGncPgN+dzcuZ4ouMufzPJr40un39Fpy2bq44IxDRrh3lPFqNfWFR15HqgXCc5HxnALoAa8HcUSFT1i/Y4RVJKmS6E6I2mPFVGIrDYZsYzAJ9IKZcJIf4rhOiJNpWWbc9HSpkphFgA7AbK0aYBLQBCiIeB5WguB+ZJKe2LNf4MfCqEeAH4GXi/ijoFNEKnw+iyBTs80X1Xi6lTfezLCFzsOy6qsfnvV4k+3LmeZ//vhxESEY8ZMO/W/ArtX7EIkOh1NbPYJbSKsPmyc32JShJaRvhKoqgGiUk9SEyq+wXnVyLCZHL4WWpsdN2yyXncTQCis/3ei4MFdWED1bVrg/VQtuN7abwJabXUSVmXQ6VKk5TySx/h54B/VpH2EODxy5dSTvYS3X7t74CHR0ObH6dvfZTRr2J4Y2bIqCkcfGl+nZbRcd1aZLmP8+kCGjXSqcj6m+MIjY73uTPxxvvneoQ1b9oe65kD9OtxbY3LNQYbiIhzd1SqUChqjggNrAXPFYlMbM3Fon2ENa96XfDDDz/M0qVLOXLkiM849957L+PHjye2sJCFy5bxwuvu5x1GNfXfr1V90ngnFq9QTM20xZMyou70a0Os/1uAAwl/tqf+2rjnBe/OTSuj/X8+In/FCkKSvXt99ofqOCpVKBSNH53eQHT7qnfeHT58mPT0dEpLS8nPzyciwrsFevv27cycOZO48+fpaTZjMgVzPNFAwqnAHtA3Lg99vxLafvUVnZb/0NDVCDj6DdR8SLXrFjhrZxojhpgYYm69teqICoUCAGlQAzZ/mTFjBk8//TTJyclkuvht2rdvH4MHD6Zbt27MmjWLkydP0rJlS+556q+s2rwZndFIi7gOlOnBy7F/AYOyNAUgwZ0D0yzZ0LS58W6K2/cjKLnq0c7lYI0JrC2uCoWi4ei0ZXOjsnKf/Mc/KMmqXdcSQeYuNP1r1S5vMjMzycjI4MMPP2TNmjVkZmYyYMAAysvLueOOO3jzzTfp168fDz30EF26aKfbZx7Opu9NNwGg1xkoSDAigUCdrFRKk6JRYfc8W1d02rLZqzdlhULx60TzTq7wh6eeeornn38eIQRms5kM24G8ixYtwmw206+ftgQ5JSWFkJAQSktLKSgoIDY2lqysLF577TVyc3MZOXIkDz7o22N5Q6J6B4XCBfWCVCgUjRl/LEJ1wcaNG1m+fDnbt29n2rRpFBcX0727tm5y586d9O7d2xF369atpKamsnv3bsxmbRuL2Wxm7ty5WK1W7rvvvgZpgz+oNU0KhUKhUCgui7/+9a98/fXXZGdnk52dzY4dOxyWpri4OMfnrVu3Mn/+fHr27MmOHTvo0cO5yX7JkiUMHjyYkSNHNkgb/EEpTQqFQqFQKGrMihUrKCkpcVN2EhMTKSgo4OzZs0yePJnt27fTs2dPXn75ZaKjozGbzR5K04033si6dev4+OOPG6IZfqGm5xQKhUKhUNSYa6+9lmuv9fT7duHCBcfnTZs2eVxPT0/nsccec3xetGgRJSUljBkzpu4qe5kopUmhUCgUCkW9UVBQwJAhQ7j22mtJStJ8E6amppKamtqwFfMDpTQpFAqFQqGoN8LCwti2bVtDV6NGqDVNCoVCoVAoFH6glCaFQqFQKBQKP1BKk0KhUCgUCoUfKKVJoVAoFAqFwg+U0qRQKBQKhULhB0ppUigUCoVCofADpTQpFAqFQqG4bBYvXowQgj179gCaw8obbrihgWtVuyilSaFQKBSKXxkFF0pY/OpWCi6U1Fqe8+fPZ/DgwXz66ae1lmegoZQmhUKhUCh+ZWz55jA5By6w5ZvDtZLfpUuXWLt2Le+//76b0nTx4kXGjRtHcnIyU6dOxWq1YrFYuOuuu+jatSvdunVj1qxZtVKH+kB5BFcoFAqF4lfC3IfTsZRbHd8zVuWQsSoHvUHH1DdTa5zvl19+yahRo+jUqROxsbEOj9+bNm1i9+7dJCUlMWrUKBYtWkTbtm05ceIEGRkZAJw/f/6y2lSfKEuTQqFQKBS/Eib/fSAd+yZiMGrdv8Goo1O/RCb/feBl5Tt//nwmTpwIwMSJE5k/fz4A/fr1o127duj1eiZNmsSaNWto164dhw4d4pFHHmHZsmVERkZeXqPqEWVpUigUCoXiV0JYVBCmYD3l5Vb0Rh3l5VZMwXrCooJqnGdeXh5paWlkZGQghMBisSCEYMyYMQgh3OIKIYiJiWHHjh0sX76cOXPmsGDBAubNm3e5TasXlNKkUCgUdUhIr16E9uvb0NVQKBwU5ZfSdWgLUoY0J3N1DoWXuRj8iy++4M477+Sdd95xhA0bNow1a9awadMmDh8+TFJSEp999hn3338/ubm5mEwmJkyYQPv27bnrrrsus0X1h1KaFAqFog5p88nHDV0FhcKN0VO7Oz4Pm9T5svObP38+06dPdwubMGECb7/9NgMHDmT69Ons2rWLoUOHMm7cOHbt2sXdd9+N1aqtrXrxxRcvuw71hVKaFAqFQqFQ1Jj09HSPsEcffZRHH33Ua/wePXo4Foo3NtRCcIVCoVAoFAo/UEqTQqFQKK44wvr1bOgqKK5A1PScQqFQKK4oOm3ZjC6o5rvBFApfKKVJoVAoFFcU+vDwhq5CvSOl9Njef6UhpWzoKqjpOYVCoVAoGjPBwcHk5eUFhFJRV0gpycvLIzg4uEHroSxNCoVCoVA0Ylq2bMnx48c5c+ZMQ1elTgkODqZly5YNWgdxJWum3hBC5AN7G7oeVxDxQG5DV+IKQMmx9lEyrR2UHGsXJc/ap7OUMqI+Cvo1Wpr2Sin7NHQlrhSEEFuUPC8fJcfaR8m0dlByrF2UPGsfIcSW+ipLrWlSKBQKhUKh8AOlNCkUCoVCoVD4wa9RafpPQ1fgCkPJs3ZQcqx9lExrByXH2kXJs/apN5n+6haCKxQKhUKhUNSEX6OlSaFQKBQKhaLaBLzSJIRoJYT4UQiRJYTIFEI8ZguPFUKsEELst/2PsYV3EUKsF0KUCCH+WCGvJ2x5ZAgh5gshvHrJEkJMseW7XwgxxSV8mRBihy2PuUIIfV22vS4IJHm6XF8ihMioi/bWFYEkRyFEuhBirxBiu+2vSV22va4IMJmahBD/EULsE0LsEUJMqMu21yaBIkchRITLM7ldCJErhJhd1+2vbQJFnrbwSUKIXUKInULrj+Lrsu11RYDJ9DabPDOFEC9XWXkpZUD/Ac2AXrbPEcA+IBl4GZhuC58OvGT73AToC/wd+KNLPi2Aw0CI7fsC4C4v5cUCh2z/Y2yfY2zXIm3/BbAQmNjQ8mnM8rRdHw98AmQ0tGwaqxyBdKBPQ8vkCpPpTOAF22cdEN/Q8mmMcqwQbyswtKHl01jlieYi6LT9WbSV/1xDy6eRyzQOOAok2OJ9CIysrO4Bb2mSUv4ipdxm+5wPZKEJ6ia0BmL7/1tbnNNSys1AmZfsDECIEMIAhAI5XuJcD6yQUp6VUp4DVgCjbHlfdMnHBDS6BWGBJE8hRDjwe+CFWmpevRFIcrxSCDCZ3gO8aCvHKqVsNM4IA0yOAAghOqJ1fKsvs3n1TgDJU9j+woQQAoj0kT7gCSCZtgP2SSntrtR/ACq1Kge80uSKEKINcBWwEUiUUv4C2g1A+0H6REp5AvgXmlb5C3BBSvm9l6gtgGMu34/bwux1WI6m7ecDX9SwKQFBAMjzeeBVoLDGjQgAAkCOAP/PNgXyjO2F2qhpSJkKIaJt358XQmwTQnwuhEi8jOY0GAHybAJMAj6TtuF8Y6Uh5SmlLAMeBHahKQbJwPuX0ZyAoIGf0QNAFyFEG5vS9VugVWVlNhqlyWaVWAg87mLxqU76GDQtti3QHE1bv8NbVC9hjh+6lPJ6NNNiEDCiuvUIFBpankKInkAHKeXi6pYdSDS0HG3/b5dSdgOG2P4mV7cegUQAyNQAtATWSil7AevRXsyNigCQoysTgfnVrUMg0dDyFEIY0ZSmq2zpdwJ/qW49AomGlqnN6vQg8BmaFTQbKK+szEahNNkeloXAx1LKRbbgU0KIZrbrzdCsP5VxDXBYSnnGprEvAgYJIfq7LFS8EU0DddU0W1LB3CelLAaWoN2sRkeAyHMg0FsIkQ2sAToJIdJrp4X1Q4DI0T7aspu5PwH61U4L658AkWkemvXTrtB/DvSqhebVGwEiR3tdegAGKeXWWmlcAxAg8uwJIKU8aLPYLQAG1VIT650AkSlSyqVSyv5SyoFo59Lur6zAgFeabFMN7wNZUsp/u1xaAthXwE8Bvqoiq6PAACFEqC3PkbY8N0ope9r+lgDLgeuEEDE2LfY6YLkQItzlZhqAMcCe2mpnfREo8pRSvi2lbC6lbAMMRptXTq2tdtY1gSJHIYRB2HbQ2F5CNwCNaieinUCRqa1DWgqk2vIbCeyuhSbWC4EiR5d8JtGIrUwBJM8TQLIQIsGW37Voa4EaHQEkU4Rtt7Et/CHgvUpLlAGwkr6yP7QOVaKZIrfb/sagrXpfiaYVrgRibfGbommVF4Hzts/2XW8z0RSdDOC/QJCPMu9Bm+s8ANxtC0sENtvqkQm8gTZ6anAZNUZ5Vrjehsa3ey4g5AiEoe1Ksj+XrwH6hpZPY5apLTwJWGWry0qgdUPLpzHK0XbtENCloeVyJcgTmIqmKO1EU+zjGlo+V4BM56MNinbjx4545RFcoVAoFAqFwg8CfnpOoVAoFAqFIhBQSpNCoVAoFAqFHyilSaFQKBQKhcIPlNKkUCgUCoVC4QdKaVIoFAqFQqHwA6U0KRQKhUKhUPiBUpoUCoVCoVAo/EApTQqFQqFQKBR+8P8BrUxOukr4f8YAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for CMO\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'CMO'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Deadhorse (DED) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.919 -0.355 0. 0. ]\n", + " [ 0.355 0.919 0. 0. ]\n", + " [ 0. 0. 1. 22.798]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 0.915 -0.365 0. 31.443]\n", + " [ 0.365 0.915 0. -96.716]\n", + " [ 0. 0. 1.005 -242.835]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.385e-01 -3.521e-01 7.930e-03 -6.235e+02]\n", + " [ 3.762e-01 9.385e-01 8.013e-03 -6.399e+02]\n", + " [-8.826e-03 6.592e-04 9.385e-01 3.586e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.218e-01 -3.630e-01 3.892e-03 -2.486e+02]\n", + " [ 3.587e-01 9.029e-01 8.678e-03 -5.393e+02]\n", + " [ 1.709e-03 -4.195e-04 1.005e+00 -2.993e+02]\n", + " [ 0.000e+00 0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd8VEXXgJ/ZTU8gIfTeS0KH0HtRURRUQMGGiApYsL+2T/C1FxQbqNjBV6odFOlFei8hdKSFXgJJSN35/rhbs3drNtlE5vn9Artz587M3jJz5pwzZ4SUEoVCoVAoFAqFewzBboBCoVAoFApFaUAJTQqFQqFQKBReoIQmhUKhUCgUCi9QQpNCoVAoFAqFFyihSaFQKBQKhcILlNCkUCgUCoVC4QVKaFIoFAqFQqHwAiU0KRQKhUKhUHiBEpoUCoVCoVAovEAJTQqFQqFQKBReEBLsBhQ3FSpUkHXq1Al2MxQKhUKhUASATZs2nZVSViyOuoIiNAkhHgMeAATwhZTyAyFEPDATqAP8A9wmpbwghBDAh8ANQCZwr5Rys7mc4cD/mYt9TUr5nae669Spw8aNGwP8ixQKhUKhUAQDIcTh4qqr2M1zQohmaAJTe6AlcKMQoiHwHLBYStkQWGz+DnA90ND89yDwqbmceGA80MFc1nghRLli/CkKhUKhUCiuIoLh05QArJVSZkop84DlwC3AQMCiKfoOuNn8eSAwVWqsBeKEEFWB64CFUsrzUsoLwEKgX3H+EIVCoQgkeaY8Xpn6EIfPHQp2UxQKhQ7BEJp2At2FEOWFEFFoZreaQGUp5QkA8/+VzPmrA0ftzj9mTnOVrlAoFKWSBfO+YMgbS5n39JBgN0WhUOhQ7D5NUsoUIcTbaJqhdGAbkOfmFKFXjJt05wKEeBDNtEetWrV8aq9CoVAUF/mHDwJQ92hmkFuiUCj0CErIASnlV1LKNlLK7sB5YB9wymx2w/z/aXP2Y2iaKAs1gFQ36Xr1TZFSJkkpkypWLBYHe4VCofAZk/68T6FQlBCCIjQJISqZ/68F3ApMB34DhpuzDAd+NX/+DbhHaHQE0szmu7+Aa4UQ5cwO4Nea0xQKhaJUEnHyJAB1jinhSaEoiQQrTtOPQojyQC7wsDm0wFvALCHESOAIYDHq/4Hm97QfLeTACAAp5XkhxKvABnO+V6SU54vzRygUCkUgEf8c9Os8kzSRlp1GuQi1gFihKEqCIjRJKbvppJ0D+uikS+BhF+V8DXwd8AYqFApFEDgrsxx8Drzlq/dH0vWLtZz94wca1msd8HYpFAoNtY2KQqFQlBBiDOF+nVdz3joA9i+aE8jmKBSKAiihSaGwI+3KBQ6fOxDsZigKSerFY3zy44vBbobPpNbT9Ey7fQyeYjL35KacnAC3SKFQ2HPV7T2nULjjr8FdaX7ABLtTgt0URSFI63gNfYAFhspce8vYYDfHB7RIKumRehFVXGMyCkBiyi19QtO7rw4grnJtHnjw42A3xSV5pjxCDGq4VChNU4lm3uafycjJQEpJbn5usJsTdHLyc8g1Fe11aH7AVKTlFwcn045zNv2054xXAem7dwS7Cb5hlpXCfXzMwzK05zb9ykU+GprIrws+DXDDio4b/7ePru8v8vt8KSUpZ5IB+OqjB5n85tBANQ2AlJS1bGrbnOnfPB/Qcv8NSCn5ZUh7ktcvDHZTig0lNJVQViz6nnp3vMC0p/rz2dRn+P7WlpxNu7oHwu8HteKTke2C3YwSiZQSbc0EnOvQl23X9Ahyi9yzccVs5nwwphhq8k1jY8+5K+cC2A7vCDFp97D5Yd9CDtQ8q/1f5bf1XLNVEvb2Jw7Hl/z2OSlNEvhz+tsBaWdJYuq790G3wfz104d0nrySXt9tC2j562dPpOwVyPvpV8+Z/4Vk5WW5PPbdmJ403nEZwz2lSZtbOJTQVEJJ26FFUqi+9wxNPp9Hxz2SvSt+JzM30+1DbM+ipdNI2bfBc8ZSQqfdkn5rstm5/s9gN6VEsHbTAhYtnwnAtAFN+WRUB0B7qatdKLp6Z/34FhPvSCT9yiW/y4gcNY6mny0LXKNcIIH0nHQycjN8Ou/vhVM53bor0z9+tGga5oL4QnbJVS5q/wvpKHSdmTsdgLT5Pxeq/JJI9Aqtj7uwJrDajm3Jy5k3/3NOZp0BIOcqtM59/+V/2NWmNcnJqx3SL2dcZFPyUjosu/om8kpoKqnkafr5fLs7JE15rOvWlrn923hVRPUxb3D2jnuKonVB5dSTTwa7CSWC2Dsfo/qolwFot0/Sd8Vll3nfuyuR8c86Rfrwiyrvfke/zZLk5b/5XYahkLEb80x5pOeke84oBJu6tWNFnySfyj++6EcAQpesJONKOh88kERWzhV/mgrArn82c/7SWY/5KhoiXB47lHbIqk10hUsHcpNmvpMGwd/rfubDe1txOdN/odcTn9+eyJcv9y+y8u1puj8fgFMn/glouWGDRlPv8Q+omqoJ3J1T/t0BR7Ozr7Bz31oAFq77kZy8HGJ/nEdkDuydO9Uh768jehI16KGAt+HExWOkZ7vux0oCSmgqqeRp2/E1PmSikjlk57H9W6hyEZoelhzct9mrYioUeP6y87L55Km+7N6/kd/nfcIntydyKeNiIFseUEzSxIn0Ew5pkdmOeX779UOOHN1d6LqyM70YhEsRR47t5auPxyCl5IaNkqG/eh60vaGi+XHJvHKJzx7oxJS7vRPiA8mXo7tzsLU3plpBpTSoY54Qz10whew8xwfon5P7OXRin0Na9HptBWXTlGyOtG7HdSszWN63rd/tFf3uZNGQ7p7z5eo7M61cOI2sDjfwzavD3J5fw2xRFAXGd3FGu2kV9l/k7Msvce3abFZ+95bnhvtJ922SLjP8C9TpL9duzPcp//ZNC9m1bRmg+Uu6EkjrnMrWTbcnpUkCOxMSfKq/pDFjTC+MN43guwmjqTH8/zjQrCUGyyUNC+f8hRPM+PQJABL2OF8TKSUmqQnnv/zwGilNEtidssanNlzseA3zb+lI6qkDTL0pkRXLfyjUbyoKlNBUQli4+DvS0mw+FDLP1gFYbpJh7Tpr2vnBd3pdtpSSmTNeJScvh4VT36TPvONsf2oEEW9Pps82yYZfprBk1Sx+XfJloX9HoPnquZu4mNSbbZvsVO92fVt29hUaPvsZm0cOKnRdGWmlP6D80p8nWT+veXgQnSctY92Koondc2XyJHqsvEi3Df5rYPylx4oLhPo2RvLdp2OpP3Yin9/fESkl30x8gDPnU0nrexNZvQY45K1/wrnwWqc9axouZ1xk1tSXHNIsg7E3fkoZNRxVRdMmjmLTunmcNpue4tcnuz0/xmy5zy6wh13zPZowVuMMxFzSflv+xZJrWpFS8uvst8nO1XdFWLtyDjsSE5j300Rr2unyvvmvhd45FnH7GE6dPMiBpi35dtxg3XwVD3kWmgCMJVARlZufy+HT+zxnBOqkpAEg1621phnytR8lQsKYP6Y/LT+cz/JfJmPSudSTHmjPDzc2A6DxK/8DYPvbT3tV9zePX8PKuVMAaHrQxOpPx9Nun+Tce0Un2PvLVSc0nT6cQvKetZ4z+sm5U/8w8852nDt12Otz9iavpsbDb/H7qGtsifl5zhntXsrobNh3Zq9HdT3AjAmjaPHyD0x/cTBZ57W9rZrvycNodjqVJhNVR46n0UPved3m4qLSBm22un29vilo7yFN49b4iOtVbzt3r+ZoqmPHkZuXy/SvnyPP7jpnXU4rbHODwuaN862f04/aZveVz2i/be9Hr3osIyc3my8f6kHytuVe12vILYGjRAGknSN4+w81weOatVksmPUeHT//mwUP3UiY3auWZ8or1ArNfV070fyNOSyZ84E1LevCKY/nnb94kq07l/HbWZsGefWK2SR9vgLxwNNcTv0HgNArjsKcqxWlVd34tFU3z83On3TUBE197wE2rPHd5Dp98uMcP7ZX99il9PN8fXMi61b9xMW0M7w9PJGtO23PWMH+a9rTNzD1qev59bPnaPTSt+xv0Zr0nHTSsh3fzcOzvyDEBOmz/2dNyyrn/XBmX+++ddrKvTqLd3l9vivy8/LYkZjA53e28ir/nOsS+eZORw3m8gXfMevLZ12fM6gDKU2802p9/1R/MrsPYMeGBQ7pP/dJ4It7HOs1DwfkGm19afx5s9A09w/iT2sC7IX9yVbh3J4+f6fT9oDj/ax8JtNjG1MPp9Bx/jEqPG0TgLMuaH5kxlwT2blZrFjzk8dyiourTmgqe9nEoTH3FVn5f714Fy02pbNwnPe+RGvmfg5AnYNXmNkvkVVJCYh855luSIZj55jXbSAzPvLsqGpYo2moovYepvb3tg6rqtlaY1GplkSizJO81J02NW85Oyva3nf1AxhuWDePqW/dQ35eHsabR5Le21GTMHP8MFq98yszX7nLmpZVQNN0Pqt0aJ72/2TTEGZctPmpVDY3v12y7bnZaTZHFGTxDxPosuQ0p0aP9rre8pd8E5qklHw/cTRXrhSNGfToif18PrQ5ySn2Tqv6XVzOGU2QKXfWUYuwqEdz9ie28LsNkWalW+a50yz/61uSExJY+8MbHs9bemdfwgePIS3HZk8//uFrWpk50GGZNojUO+54zZf2bMmPA5y3TdEb1ApizHD87e2++Ju8h10P1nrs3LCQVh/9xZoxt1rTtq+37Zs+f1h3Ou2WlB35Is+/1pMB6yQrX7OtmszLdRxUk+Yeot28fzixUwsVYZCwplc7DiZ1dMiXm27WiphsfVeGIdTrdl+y07LlmH27qpyHc+eOs7BLAuuW+6edzc3NJsQE3Tc5Xtujh5PZ8LfjwJ+TnU3Tw5KOmxyvQaWxb9F8gmvhtWmyvi/a+lYJpDRJIGWTLXxDtW3HAEjd4Wgma3Icuq53rNeyiKDrVlt/Udb8PDc6bCIiS3v2an+3xGXbCpKFiVNpqWTkuF6IseNbZ21S27+OANDwUD7TH72OiiNeZNWCqU75gsFVJzQB1E8N7Az5p58/5L0xnflg2vO0/lubxol87+to/816AMpfghb/SOLTIeyc88DS5JCzICXXe9aatdilBbyrdThHtzNNmzPd67YWF1/f25Hvxt1m9dEYsFj/pUtcpT+LjxjxNO2+3cCPj1yjezwkNRUA4/Hj1rSjJ21+UYs6J3CqVRdmvH2/x7Z+Ne5GUpoksHrZDN3jF9PO8M1bw52E0y+e6Mucz59xyp+ybz3n09xrJ+bamSXKL7OZbEJy3Dv37vzqTd307MvaYO1OQ1GQGM+TSAdmvDWCtp8vZ/bjN1jTpk0cZf3889T/8v17D/pWqB1/v/0o3bfmkfzqY9a0nHUrdfMaDFrXZ7B7T/ftWkftM855s7wfi62EzvuT/HcnYJAQ9YNNiDh7+hg7EhOcJjuJB7R3275DbpasH6gyJy+Hi1naCFfrDLTc79pO+efs95g1WX/hxEW7cT3f7EMZ5+M9zTynaa4rnclnx7ZlHNi/mYN7bVqnxnZ9lsWcaqfIID3T5k+5etH3tvbYCUM1zkFELmRmXmZziwSmvTeatqs1oanlNptpuNw5z2a09PSLrN8wD1OeTb2YY+fL+Mfo/tQ4B2VHvaR3ukd++u8duunnbxhMzP2OE7x9Gwu3CvjC2ZMO38uY+/bN377FtJe0/e5rnTBbE6QkIyeDY0d3sWunb35GFsLNj2OEB0XshXM2H9SyV0yc79CHIy30F2Lk5uZQa/p6t+VVPKDN7i/uCWwoCX+5KoUmgM2rfmVL8wTWLphmTZs8tgd/ddPUngePJDv4GLkj4fnPuGHpBSr/YReg7XIGX/+nv1fmMz0qrt7jVb7Wm7xfSl3WRYfYbK+tA1lk1noVhn8ObWfezMLFg+m0No32s1wHJly9dAarF7sW9kLMfW79tSf1M1jui7CZb86ftwlQ1c1ampjFjh3MnGkvs279XIe0zrM0p+HsF/6rW9XcsTfR8dv1/Pyx4+DV9c/jNJ041/mEm4az4vbe+u0GDu3ZSP0Xpli/V7NXiJk8OPq4OJ6Zbhu8PhvdmZQmCezdu9F9WW44d+EEF9McJZBW32kaz3bLbelJn68gpUkCs758jiZvzKDtF/pCjivy8/LYd2Azv//+McJsv7bXoLRO0e/hTebVqbVP2N7PzCH36uYtOEjsWDOPYwd3um1Xrb1ZVD2mXeuTsbZudvETtxJigpaT9YM5Jh7z/D4faNaSE606kZPrXkhYMfcL6rz0Jc0/0h+cy6XbhIUsPxdBZGZqwkt8GoTcPoacG++k5ruTbcfDbHktKybte8ScTJtmrdwjr1s/91nq7N4w89mbicyBpC8cTcg5Ru3/Kucc+1p70+Uvn/2HXz97lt/u6U6Zu5/mjw9tgvX5Q7Z7mbTDO/8le/LtBLBaK/TNlNJYlk2tHicjzVZ+6vO2YJm5uTl8+3AvdmxZ7HW9B/v0YslfzvvVt1l4nKTZO7lsN35l/jibIy2SuHzNIMRg/ywtcV4+Iie72PquuFRHN5Pp7zzAotm2Cd/Mx/t53wAhWLd0poNQFgyuWqEpcuRzROTCkS9tN7DXgtPUOgN7dqwi+9rBLB7mebWLPfUP2jqAFtsy6fTbQQ7s9M9/KtK7UExWTNIUEDNb9ac1X4xTJxz3X9uzbyPfDmnB4cOaVuNStmuNxpXrb6fe+G+5lOZ5tVZmdoZT0M78bM8/vtyY/1Lu4Vcc0i5dOkdKylpy7baSiCpQ1NRBrZn/6xTCTmv3SubZRsSwy84CRf0jJlKaJLCsYwInj+6l6eszKXuPs3YINPW+HtEXNWk1/4wLAc6OtEtaR9f4H9f3ctFrrrUxVVe63/6l5aLjuunZJ3NY3vVdLkdXo8cyTd2UP+Bu9u7ZwJ+/ed7eImWHo7BzslNvdvXR3p8fJz3JkUPuhYzmE2yBA1f8bhPc9+/bzI7EBHZtX86e5FWsSkpgud1A8f3j15LX/04aPDOZiKPac5S4x7NPUoPJzoJEmBeO5XMmPUHIiKc5NmQIP4y/nZ8/eZKVy2bwS58Edu1apXtOo0O2zw132vqIpT9/wrfDWmGy06pUz3AdcqAgi7573e3xYwt+dHu8TUoOyxd8B0BmhuPDu8Fs6vHEid80nyJ7J+goO7nDXnM16k/td/beLklpksDyDgnk71/msQ4LHRem6qbn6GgCt66Zy4GmLdnVogWm/Hwaf/A7jT74jda7tGejzRybdra13efj8e7bkJeXy/cvDSHt4hkyMy4x4+2RZF6yXbsoO8Fi8YwJzHxZ0zztrT+YtNgGLPhmE9uaJrD4h3eJzahufecWfvNfOiw+SciwRzxdBltd2VD1sXdd3qfLF2z9asJB1/3JsWN7OX/ec990OdLrpumyZt43tPr6b6q/NIVzZ44x+9MnabvYswBU76jW9iNrFlJ2zMsOQlkwuGqFJgvxJ7KY98ULrEqyPXjnz2uznISDJn55dxSzX7CtqrAXTFYsnU6e3aBbJs15ScGlu4rOf8qeza2aMuf6ZgEp63+v3cX5Xjey8H82bdHyV++nw45cjg0azPIOCRxv2YGvH+7lcN6WTX85aNaWfOvogPzp/e358rE+DmlzBrfjTAfH6NWrxj/BplaPkx1W1qd2L7irJ9wygu0u1N7H922iXXIWtZ+dSMJBbYRstcamYSmb7XrUrHwRMi95tl2tWj6TlCYJJG9dak0LzdRmW9l2nevlK/pO5/NGXaub/v2w1swc2Jz0yxfp6ma1WvwZ/wTn3It9yTdGsjNxpEN6/sB7qPOfyVy+5F7runb+FIfvBjTfsxUvjyDx4z/JuH6I122p+MwH/PLZs/wx/W32jrqLEBOI20az7e2niU+HSo+9a83b9G9bp1vmUtHvu9b0Y83pPjYDWs/cTpNP/mTbp6/Q+DiIWz2bcu3DZVR5fhIdtmSzuFtTa1rSdu81xzkXdGyJdrRe4HkxSqWxb5HSJIGVU21m221//2414//88SMs6tUEgDk3NWdun0QApt3XmanD2iDy/Z+oVUoD01H/tZkW9FwOwkdoE5uwPJg2651ClWXPvmYtaDt7J/MevoHfRl1Dy29WM/cdm4k50u4RrPbyV5w/PpxJo5dwpnJbEILU3Vn83W0Se5a2YGfifdZ37tLxM2xq9TiXo6tb+75dW5ZoPkpNElj41css7ZTAynlf6LZLT3A6tFNfiLdn4rN9uNx3IKc69/KYt0whF8mem2Jr++lu19DsQ9/Mkz032S6ulJLf+yYye0BzDiavc3NW4BH+mo9KK80iIuXsOnWs37NDILzAQrUDj/Sj/ifzHdKOvfsoMZHliHvkFXY+egO5y5fQensWG3pXod0S11J6dlhZDtw9iX4PNic6NhwpJRcunSE+thI/vDGcTrc9QdaN7mOvuCp3Z+J9NNv1NY3XLuKfNu0B2DGiKxn7dzFowm8c79DV53Lt2dKlPJ1fmMzZW28n2oXW+nQlQaXTkq2NjLTam8/GzvEkrbYJBwnmjW+nPXYtSX8ddUgD28vecOd25rxxH+GxcaRvqM2l6NZUOL2JFinf+Nzuv18fRNcXnWfZoV+NJ3ekswnNNPNTVk54gh4b3PeYqRUF1c5I629IbpLApdgQ4tJ0Vjqa86zukEA5s3x0vCL0XLqdfc0cHY1jF//GqlG3kB0dStttWQ7nW7Bcpz2P3kjjj3VMej5gX+6k0S6cOqWk93LbrHfrDfUIa9ySi8v+ovMWZzvvn0mC8uFxGKtVR4SG0uaHLYVqY0EuR1dnc+vHabNlImUy9DUOJQG9/sTjOXbvcrgHn7Ti4EgFqHUWzsU1YluLR2i17WOO3FGFVp9q2sQNHcvSbm3w21mU2P/2+DTvluzrsaTHJw4uAG6RkogrZ8iKrEC11L9psm+m3/UWF0X9Xnp7HxL37N4kpfQtgq2fXPVCky+cKQsVfewrdiTcx5nKbajWOJxbnujKwq4J1DgL+2oaaHjU/1na7oa3k1qtK9VS/yZ+SBiV3pjm+SQ/2H57K1rM3OrXuZejq7O58wu0Wf26wwu14cZ6tJt7kAvRUM48sT5RDvY0+wCT0VnXbsjPpefKx72ud00TQafdzs/17nphNDnovzbCfnBrsXUNexKbej7JjpMVWrGr6f003fkFlc95dmo8VFVQ90Tg3097oWnyQ0vQterm59Lbh2tuoagEgDXtXuJKVGUiM0/RaYPnEArBwNf7a2F7wn2crdTG70lCUbG8yzvkh0RhzMukx6r/BLs5xcryzm+THxqNMTeDHqt9W1EINmGi8e7/sbvJ3ZiM4d4LT3b42vcVN2uTXiQzuipRGSfouNG9udgfvL0PSmgqQtwJTYHs8Jd1C4wAUFzlFgWr248nK7IiEVfO0Hm9vpO0PS5nZQW0HsFiV+O7OVmlA1VOriNxj+9C6pJuE8EQCqZceq98ogha6N3MzF5oykjL5runFiKNkdq1lxJj3hU6bnjVr3cgufHdnKrSgcon19J0z/eeT/BASX8m7PH1/pbUd7k0XfNAE6jfbi/kZ4fFYgqJ8E1okpLKpzfQ4MDPJUL7WJCifkZ8Lb84haarcAtC1+yvO5C02Absrzug0B2+yaB/aV2le0undePYX/9WTlVqC8IA0kTl0xtpcKDkbMRZ8IHPiqrEkp6TPL5Q7Ta+yebWT5BvjLAN4PlZtNnyfnE02yUFB7eTVTtysmpHrwc3pw7AGObV9fCHnU3vB2FgR7MHvNIORMeGI4RRW9GUnwuGEKTB6HNHXfAanaraiVNVOxVaABAyDymcBQshfbSB2RFobZi/97eo+ohCY8oDHWEOk//XPFDmrqKm5baP2NFsNCZjmLUPMuRn02LHZ16dX/BZuBJdRfsgJWHZaeSElbWWq6XngzAv/7NPR2LMyyqRAhNoffX2ZqPIjoi3tjsi6xzNdxZ+9TUU/j4UJVe9IzhoHf6SnpM4VbUjCMGpqp1Y0nMSy7p94PlkV7jqYArR8QCs6vQGpyq30wQmAGHgVOX2rOrkOYBeSadMxnHbcmRz5yEh6D4srnSx3upoE5O/1Jb6WztKCaY8mu7Ud+r0hyU9PmFJz0nkh0aDEOSHRrOk5yStE/dA/PkUqqeuoN3md6meuoL48+5X4OkhXUyiXaV7S+e14zDmZjpcO2NuJp3XjvO7zEO1rycttj6Hal+vezy1gm/lubu/21tFuTyv3cY3MeZdcfxteVdotzG473KXdeM0Adr+9+Tnaul+sjNxpCbMN/XsLB9Myl/ci7D00ebfL0x5Xgt6roR5IfMwmDTXAJGvLR4y5mfRbtM7tjHBUl9eNtVTV2oClp9sax/t97nesKnNM2RHlrcJiEKQFVmBTW0CY8Yt7H0oSoIiNAkhnhBCJAshdgohpgshIoQQ3wohDgkhtpr/WpnzCiHER0KI/UKI7UKINnblDBdC7DP/Dfe3PUXR4XdZN057GQp0pIXpeEDraA152Q7lGvKyg97R2tNu45u6v92bNobkZxOdkUrT5K+IzkglJN/3uCnuOP6893v2BYoqZ7didRyyXhOTg9/L7kah/PP4LQ7n7Rrc3PtKXGlevNDIVDjzBY33zaJMxnEa75tFi2RHYe5oZW/q9zHdS8JzLiHNM3FLJyqFsybsUE3PXZllcpRavTsIA6nVu+tOjs7VjvGpjQXvrwTr/a05fKxT/vPm4stkHCc/xGA9D0rGJCE855JtUmYe4BEGh2teZa138bSswnxYjCbMh8V4LcwHC5MxlJDcDOof+JmQ3AxN2+GCy2857q3mTsgPyT5O9dQVJJknJ+Uu7KFMxnHC8jIc+rxQU5b1PTxX2fZcl1s6l3NvjmVbh1iPv6H52KLds63TunEY8nPsnnsThvwcOumMb3+21R9IMye7d9nw5T4UJ8UuNAkhqgNjgSQpZTPACAw1H35GStnK/GfxPr4eaGj+exD41FxOPDAe6AC0B8YLIcr506bOa8cRmXnK4UGPzDzl1Ww25udpDj4iFsJzLmGQ5iXs5o7HIPMLrW4tk3GciKxz1nYCRGSdC3pHa0+ZjOMgAFEw3XMbu655kQ4b36Dy2S102PgGXdfob5PiLxXq+ua8DdB53TgMeVkFBNUsOnsQgHf/x25VpDAgTLnUOLp+WTBpAAAgAElEQVQEYcq1qeTNmIyC60e/wfabm1jTBr02i8sTn8cbuqx1oR3w4hkOHfuw2+M1PW+d5vc1csXfdtEzyl7SNGFJm97RNGEXnN+3sg+5/w2gdfSVT23AYBbEDfnZVD613qmjl258T9Y2th07/fKDnO5ZS/tid3/Bdn87X68zl7PrdcNjIq0DpiH/hFeThFN2vdyuO9t5zO8PFc7tcNA+Vji3g13DO1uPl4uzqeNOuolt1HLbRzqTvCxabf3QmmdVS80UeNFFtPqCnItrxJLuH3E+tqHbfDvdaPncUeHEU3Rf/SxlLi2m++pn6VXAPy25ua3c9jeP5OQzwzh4nxY7yEnIFzYhP6T5Fuvk5ELML9bJibs+L79CGevncuWr0/WWMQz9znPsv6ZJfR2+Z4eV1Q3jkm4XFmxtJ8/CmIXwnEtUOam1w5CvadCqnFyrO76dL6P/PrXtfZvbOnqtfILuq5+l9jH9+xC34Bev2xtIgmWeCwEihRAhQBTgbjQdCEyVGmuBOCFEVeA6YKGU8ryU8gKwEPAhvKiN8JxLmKwPuibgmHRms3rUTHDtexYIs0dBlnX7gMyYappa1PyXGVOtcKZEF2zpqm+n2DOqj2765t5VrJ+j4qKIrxbDtQ80JTojlbDcotlvzFcMIb7PVsJzLhGWqwUltKjWw3Ive3w++g6yDeS9V4yl18onyIpfRNm4ScSKV2GaLWiksVMnAG5/y9E3rf3195CwO0ULcTCyB5t7VUEPB+2ASV87YOGfAvtQdR/8CMefHeqUD+CCC6XLuVjHjjA85xLGfN+vkT0pt7W3lWe3jXqF01/qasIsWbYPaUVc1boeyw/PuYQx7womQyhIEyZDqK7fiDHbOTjmP5W0/7c1tJk9egx9gh6f/UXE7K+o0mA2vVY+QaODP5Ge/RS9V4y1ngNw3m48Ch1vWwV0/4Se1Ox/guZzXqdm801eTRIixj1n/TzoJff7cZ3w0dRooUWys/Zx0PNf6eZNi3ftg+XOzLKpvnYDc2tUJGF3Cp263OxV2yymvq2tR7nNF3Ypm809XatJj1bUT79tbjINd2yj9kz9/edkqOPv7TVyHMYYmzASf8Em5Nevk2EV8pv2vt2aZ8T0bWwb0Bh++JSzbz5Do2T94K/GHJumODzM+8CnoG3/syVJE7pcmaRNdhKAMPgmDuSElaV66krabp7g1pzYa1tg9za19IdVazUOaLneUuweh1LK40KICcAR4AqwQEq5QAhxB/C6EGIcsBh4TkqZDVQHjtoVccyc5irdL8qkH6PC+WSqpa4itVoXssO8l7pdYW/maLxvVqHLA5sj+JkKLTAZwzHkZ1Px7LYicQQPqVQZE2edJOsbH53Ivs+dNzU12qmWRrxtixGVZzbLpbSIImG7682tckJw2HHeH/IMti1U9AgNDfer3Jj045Q/v4v0DpmEbI1CSP3n43xFQbw5llNEpLPEIfJN3PXu79bvK2OhQhrUbqe/R549g5/RnCBdRQCucG4H4TlpHp/hzCuXndL6jhhPytvOe+flG52SANhTTdA5zdH2Fl8/jpB1K6iWuortHfoSk+6bgBpdvQ6g7UPVbpdnu962WxJo/VMKvR96nfMnj+BN15wTVpaojBPWZdJ6HX3URdfaHqHjIF23eWd2LPjB+j0mPBa4wPGa2iBn0URb7lv7/veS8pQtcGyfYZofiNFLB/CWvYYwq/l7VBo6Ek8xu2M9yKzb6gpaHnK+1jvqGWjuJoq0PSaj9t7vbhBCk/3OL7DFzFL7yAIO17qWfGMYmWEga1WCA6eoVtPZDH2iPFQ1K9Rj5s0kvf/tOiuqIt063GfWqsgdn2pxyHYnJDodd/eEhYSGEeLCHGTMcz5ThtheFPt+v/XIJPZ/qwnJiW368kd9I+E330wCMPQds6akTU+X7cisGEf5fd4HPLWn9Y4U1j2yjCU9bfcxtXp3Uqt3ty7QiMiBY5WgxmkQRhcvuwu8Hd+q+bCfZWmgUJomIYRBCNFaCNFfCNFbCOHR+8FsQhsI1AWqAdFCiLuA54EmQDsgHrBMx/R0e9JNul6dDwohNgohHMLPHrTzg9CbWRUFrrQ33mI/Wzbk5zjMlnfeFWBVvZRk6sgYBqH/2IScdv921LjfeRn29l5VrZ939fRb5gVgfZc4znow0Po6m7JgeT5qdmxGy52un4/UGjZNRGiY7eJlmD/mV3N8RYTlifWzXXpt9PQM22/b4YnLMfqq9TYHnMvo+0Qna/1l8371+R0yhIWx2Twz3ttYf1Z9sqkmiOYLuOONn0jYnULFqvWo2ag158vonmJlWbcPOFuxFZkx1UEYyIypztmKrZy0tHWPOncjlvegfnQN3bLtz2hx62gAat9yr/sGFcBgcD1obeti6zciI6IYPns71w96zGV+CyEetoYpU0BQ2zdxLDP6hFHv1Ym6+VPffZysqY7HLM9wXltn4ScrVN/Mkvv+OG7/YD57Hu3PgMec6yqTaTu/Zn1tguZk6kMz9SXu/NDpfABjbDmEEAhX5lYPPqsGo/47mV1DU1EdrmIrILZOE928oRWrWT+HhUdw87ydXP/Aa+4rtiOnnqZB9WF3HQfufr0TlU9tQJjNvqKASTozwnb/DAHog/TIL+RikJKGX1dJCFFfCDEF2A+8BQwDHgIWCiHWCiFGCOFiZIW+wCEp5RkpZS7wE9BZSnnCbILLBr5B81MCTYNU0+78GmjmPFfpTkgpp0gpkwrGcTCFFO5ubuxd1XMmoMzyebYvPkrzerhSi1Zq2MbDmd6zp46BHg+/qduxGFz8hrxy7ket9tfe5ZTW7zXXm+76itEEBg/yQE6Wj9u4F6BSVCW3x00unvo/22mDU/kOjvsmpQ5IIj0C6rXorHdakZB52cUmeXYcqKnd+It9ujke+GESR2qFsL+2s1akrJ1mzVC7AaBp/izsbK7f8+945DrOlYHm1w3ldBnt2ToQY9P2nGyoOc3khIDpjnsA2HZ7a4cyoqJj6bLBvfnbW58me7a21vxXosy2wJrRnr3iu1+nmVSvGews1Fx042Yj3Og+Oj/zkcd69cjzoLyK6dXT4fuA68fw30nbqFzFJgSceHssG+9sC0Cfm0bRur2jF4Qwmc1uRsfKttYVrL2nA2uSnH90x77DNCHi4Qm6Qk2MecuO1Aq2YzuaP4QpxD5IpMAUEkFKS5uzfY4R1l6rCSp9nrZds2XX6pu1LSxu6dwGV0KE5Xeml7dNijrr9G0WcqdOJGb+bLf1u0KEa3Ucr6rflo0d3K+wi44Nx5h3BWkI0xYpGMIcTNLnqxo53kibaRrKlferjZ7Y2NI/7X5JxV/R8jXge6C+lPI6KeVdUsrBUsoWwAAgFrjbxblHgI5CiCihvS19gBSznxLmtJsBi5H3N+Ae8yq6jkCalPIE8BdwrRCinFl7da05zWtC7rqDE164jm9ub3swdzbVHoDV3cox8C3vXoQalevZ6gzRiX/iBXtr2T670ijk5QVu762b5ydTuUYj31YQmrxfKrXzsf4sv7k+seWdB6FTHjbNBEge7ixk5IeFkKtzeU9U0h7zww2jCI3UOvCUBv4Jr1Fh7ldWSRez08yGTYlbt5Rrb3vSIf22/5tGu60pxJbzZolaYMjL8fycCLO0XCbGcelyQpveXLdgByaD/iCzrk0kx+OhjPmZT61syyd1zgG47ZEP6LohhSrV6tO2n+Y4Xbv7TdbjFcyC5smKgj6DHiV86S/cMf5/Hn9DQdxpaV1xyzcrCP/jB/LNJihc3F+LdskdV/73EZXmaFtjXIyC0wWsp7luwpFElonzWL4ex6q5f84N4bYB7Y9+thcvKsom6PQeOIa7X3Idt86iqRAFrs2wP3cx5plvGTHNpuBP+/otznz6sjdNZ+2YXtSZpPlRbRzTC1PY+46hHZAgoOV1tm2s9gxtx4iPFpOwO4XyFW1awTEfLcUJu8fxoRnuN5S2p+uT77O6mZE6L7yte3zri47bYrVo34+adfzcF9Q8XriaDIaWcS80ffbIMvNqUZsPbGr17lbtap4hhNsnL+LKrE9p/0jgVmAfsTOolO+uv59macVfoelDKeUKqRNOXEp5Wkr5gZTyO70TpZTrgDnAZmCHuQ1TgP8JIXaY0yqgCWYAfwAH0bRaX6BptJBSngdeBTaY/14xp3nN9Xe+QO81Kaz3IAmHVre9fGFJ7UjYncLIL1ZTtqyzZJ7tYWYn7Ew2x3wQ7A0e5JF1rSM4tX6x9wV6yT/VtUdkX239R8VB9Wo2++yp6/qxumiWORJa92H0W/7voTbouS/JKTAeNLxtDCc7NnLKe6KxdqEvlA8joU1vkh+7gU5THH3ADk97jbhVC13WZ11l4mLQtGIwsHFwM3YVuAZh+Saqxrqf7XrLab/WiNooV8mzGdRqNrTTKp70ot57f9hM39UputF87VPWJegP5t0HjiZhdwqDRtkNSAWe/XpVG7s2uXjAG+fVo9VsFUZERFOvXmtb213UW7eu50GxTdtrqF9PMzW1XbeVTqsct1pxpyUN9dEJ2HreSPdxkewvbZ1QmxY1PNz7+oTFwdsQyrb2ztpmIQSbWkWypVkYHTsPpHuv253yFGRXAyMjHptM00RtgcTdj03m4Ul/EZW9DpDWFVvNulUjNNJ2Xu+H/Ftq78rlQI8aVeszcs5OktrqCwPD7h7HpkEJ7K9eeLuUIdQsNOU7vgT7LUYOu+cxT+cnWMxzLrWrQhARHkWbFj1pWF3fxOgPfVfsZEEn7RmqlGhb4KHXxtKGvz9hcmEqlVKOl1I2kVI2k1LeLaXMllL2llI2N6fdJaVMN+eVUsqHpZT1zcc32pXztZSygfnP702b7p6x2UMO24NZpr6zQ6HDb3PxnqT831AOVIFmAx+0plWeMMHbJmLwoPK5d/oWqvccAODRt8MXcuK0GWd+/aqk1ICzBcaYQ7XsHiFzzI6sGq6lQWEeGEJ0HLItv9AbfZUQwsl0GBkWxbA3HDfqTY+APm9M4++kCDq+MgWAwWPeo2o1x+XK/doNomp5fX8VgDzLGC+1PQhBX+iVBgN3vzabQX8mO6SH6ziPBg/9Z+mknTLjbHPtWtRo1d2aVsUHh06LU6mQEL9xBdHrFjnc2OjEBEz/+5jjrzzgsoxLX76BaeanfgtIerRI/oI6h+ezt+EQjFfm6/pdmUJc3ytfBld3hIWGE1ZwJWeBTQDtNa4hod5rqHcNa2v9fMPgx9lbz7W2yV77Z7KrPzIsUi+7LhbznCHESJkGDXTz3DVjM3fM8X4/vtxQ/eucE1/NKvRSbi+Zl3KwPM9nY6FC+Wq65+nhLrREYbnr9Z+4afGuwhcUpj0jBSfNV6o4B6+8rBPP0mKec6VdzQ8vGinGaDDy0JR1ZP3+LR16DmbFsKZseKi3S/eF0sS/4Cf4Rm5NZzOIQRjYXF+w4uZ6HHtNZxmrgIV941l0Sy163+Z+T6m8Av3TKfNAdOtd47lxWQoxNWxLoxu0KOAv4oaMWM8rkULNqz30TFR+Y+5XJHDrohS6rdf8RsL/nMmRdx7lwmCbf4Ol83Tn1Gz1RtDxi5LmAcnVii2n/AW+G0MjMIY4qvpOVTZQpWJtHvh+C3Vr+RAssgBWgc5oE4z/6qRzoRvrz9bKB3trDHtc3J+csrYrese7c4la9jutu9zEhraa4JzcziZVeTLbCoNNaKocU5FasY7arbYjXqBp2770LWCutKdD11to2rInLqx6uhx2sYzcHsvy61OJd7C4TQirbq7vmEFHZhLFIPMWrOLKg7YwEAa9bU3MpIy9nnU9bT/cEO04s3F3+Ux2NzKymU3YMoZ4b76+ZO6bjPGVEH66HxTEVZsffH8El0eEs7jlSe5/+V6uH92iyByYDTrv7J89/Yv95Av2GvTKrbVJy5Hm+sKgg9xnfoByCjTbol3NiPvCWbvqheC4u5Z/wmVoaBitG3YAYNT4OdwzdlKhdwgoCfjbk9cTQvzm6qCUcoCf5RY5ZWIrQLrzEs4759lmBd9vX0XZ6vVoOFH7iTI0jLGfrPKq/MsxEJOlfV7zYGf63fl/Dscr1qiHJWJRVLT3YfJlbAzgPvBdSKSmYsoKE+j1/Muvr0aPP30LgmnxbSloiK1XtwX16rZASsnu9/7QEs1Ck/SqE3N+e6KaJ/F3+gWa3P0EPOR5J/sT8VDntO170/ael+0XFiklldK0z1VOOfugDP3Pl7rnNerh2SRRbLjYpDv2nO2ehISEUruKpjUwxMQAmQU6PPe9n+t1ILDthvoMbdDa5XEnfNhUvNLkz2CIvn9Rwf3xsnOaI8p+SF66ARhjTa99VKftFr+dIhqgQXu27AkJtZnIjG6EkVsf0vZm/OSeVnTZku2kxXV39ex90268179ApD0/mMPvU57lwfte5q8JD3o+wRtc3HMhBHff+gLc+oJdmk1A9wk/BvDOe6/4fpKPmAyAedVjm3bXsm3JLO6t5Ox2ACDtfoTl9x9/4R5a2uWxaFNjX3ufKrc7TlLcXbIddQXND0lMXdqwK2o7ibud45f5islPoWn96/fS/sVvC11/IPC3BzgDvOfmr1Rz1yuzGWDnU9HvqY/d5HbE/sVt2KQL1So7Bt2LiPBvT6D8Zp61JK1638rCPvHEvK4vcIyeuJh/vvGvY5QuXi8hBAsH1mDxoLrWF0L6uELwzPuPs7JfVfqPfIUHvtlAt953sPlRz86DYa+MY+YtNs2hUW/JtpteYdMjfV0fdEG+XWduWeFjH1W3oCnJulTYjaaguKnqIiq6qw7NsvRa2oUqMHkwokZXqwPA6Uo2DWnZh59kex1BwmjforyHVdAcOM6V96xtbdO8h8tjBVfPQS6N2lfm7tc7kfaD++Cw1pVt5vu7pmnhV8EWxN0s3OiFee6+r1ZTde1Sq5bPiptyTdK1I9WGhoLld3iOoF+9an1Gj5+DQRgwGAOjUfVFAPJXkPVUhUnHMT8kq+hVJQVNWC2rNSc8pIA7g5421Px/3Yb6oWe6JToHJXa1OAMg1KxtFLgJ21BMDB/0rG76upGdWXWnc8zAosRfoemylHK5q7+AtjCIbEoMwSQgVsfhuyBbByey/7Ebrd/XD25Ctxvu082bGg9/dPHeZwBg6KP6S46v2I0jYcYwxk5aRdcug9jrwrR/fSfHlR3rOzg7QGXo+cW7me2PfXshj7z+B42ef5f5bQRtn3vfZV49ut8wigc/WEKIXYfbsq3n4O59eg7j5TeXuc3j7lXvf5v+i+gO+4Et3OwF7y4WjrUDDODKxsISHqlvYjhVycUSa8sgbDfAVj5nm3XqxWHp1Gcom/8zkGs+tSmkr+txF7fP30XLRp18am+vgaNZM6orvT4pXADX8JxLXKgsrP4dEEpYhJHo2HA6trkOgOQ6tmvgsLLWKjMZubTwW274ZlGh2qKLO6HJC2EkKjSKKtFVnAbCspdcP6Dhp0+6PHbP77sYPU4/KrYr3GnEfKE4hCZPmqaC8cwywiH/q8/8q8sHLvliAbQXZjxoQ0NCnScdri7zhqRoLlTQGmIo7z7MyrZE7+95oK3c9z7zFfe/NDPApbrHX6Hpn0A2oqRy2+xN1N62wau8w177kZvGvGv9XtfFygqApguXMvoz7za8tKDnA2RYOoeIH7/j8CTnwX9nHcceYdP9+gPVbVOcl+I6dFjml9KVpsmetondeeKHXTSu4Y3vkPvy3Jl3fMJNNQYfnGt3N9QkyZjythVwbQ5r18Zggg2NDboxePLNP8OYX8hQ53ZsSSpcgFRXzswVntJMHtv/M9AhvdUjr7CrJtQZ+5I1rVya7Xjm/z7g0IdPOZV3531vUalCLad0XxFCcN8TX1C1iuetUjwhibE6Eid0qWR2JNaosnU1N/xue98vldcRVAyCDjU7UKVsYFZCeosvM/2CQTKrnHHOs6WNpvGOuW5IodrlhJ8R9wvii14jpKwm3Z6J863PONDMvQOcKd9RaEralkKHBNd+qJv61mXP44W/nuFvv8KC1oJZ/dy5bzh2bJtaRLj1F3VZiosLfdvXK7np/V9YPiKJAQ+/67a3Ngaqr/ZAajws7u69S0tR4ZcuVUp5q+WzEKIzUMe+LCml+w2RSgD/VMLjFgRhxjDC/NxZ2d1LXyXajw5Xp9NsXFVTnSc2bO90rNY1t8Jq20qyu57+WrfYyHBnc2G63eBvqdYHtxLv8BDTycnE4Cfu7kOI0fsOfuAXi9iWspqEmg25aE4zRQCZ2rYtg+asJ1tns1Wbpsl7f4Df725MbvpFXBmxHnhvPkdauN7z0F+69bmT7OTBJBS4LglNOpOw0DFw5IlKgnrHtHvY3qylKQ2El19E42Xab2l/t2OYgHIRjjEV8u1WcFkHJDdajSvT3iM7278tLyBws3BvBs2OL3/ORWMubep3ZPX0ULKupHvsD73BqKPN8AfhQ4fTpGVXXhpWlWsHuF+kU5DB46ZyYYFNo/1HjxhkWIj1Okhp09AlNwzxeH3u+uQPn+p3RefuQ2jd+UZChOvh2TqxFYIGydtpJAxsatvMnOR4/0/HYvXDtLD0mor0WniGvFD9OiLCIokIi2T0s9MAuFg1DlJO6+Z1Z+Jzbrj3WQvSecVmehiC7+ZQKAO0EGIaUB/YitV1DQmUaKEpetVc2nkIUlhS2FFbcKZ+ORJ8tCnfPew1MgY/z5Hmvg+u0RNsQc5EYZ5yHbztCi21XoyG/DBB+Qv+DSnuOl89dbUuP39BuTIV6NnecX3DyT4tqTN7M9sbGmkaGk10qLMAavETMvigafrPi+53744O888vzoK7exrupSCpaT5KUhgF77ht3P/450fvIuebQu0GH8vCUDez6jbtbihM06jerjd8aovP668fid6qL9CeRcvS9dDQCNrU1VbLdW7t1z7nuhRWaLoUCWWvwOU47+NEhRpCeWv8Ep/rigyL4QI28/JTnztaFUwmm9CUXaf4gs8CRIZ4ct+wvXuhBfwljQUE+7LTvmZ/6j4SgIUdwxHVq3PLE5OYkTGQAS9P8ao9t034nW/G38o1vx93OpZZuRzsOOFVOYXpMTxfk+KhsF57SUCiXpDLkkyt8vU9ZyokgVplc9tf/sf60BvEvSGp6y1Oad6Y57zhcM0QWuzJIyLWi7DfZs70S6L8dO/MpABpcz5kz2/TaD91o8PqkoJ4KzQlJHTVTe/+xEQ2DVhN7/qu9/yzaJpEXuDMc4UlEPeytMZbiQz33PGej4H4dMhv7zzhCJjZWIc2nQdwcG0zDgzoTw39Sb1XRDbQwl4s6BLloB25GK39Lii6fcYMYYUzz8X9PpMfXxrKnW8EbnslC3NviCckJpZ+sw4BmrAFrpUfpnyb0HTzWz+6yBVk7ARr6x5yBfzfWjfqRGuzH+HYb7da05/+2vu4WWWiytKm623wu+M+ganxcPt7v/NPy8Brvi1cCYzyMmAUVmjaCVQBvBMzrwKKI55LcWILOeD/D1t0f1uMYREkAN2m/Mqav2cxqL77FQ8iLByJtqGkyYUK2cLipFCi0vOsA0THZtdydrnr6N4WCsZ08pa9NQWNjkqM4RF0b3ez27xnxg7lwMyZDOl5q9t8xYm7FVPeciqhCvUP+xa+Itj83DPSKxNUWpwgPl1SJspmrrsSrq0DlxFFG6enXlw9DhayjO49hvLRe/sZ0tVxIYpFYAIwFtFqTlFI80njGi144ZsABIXU4Zn3tbAx87p+ydnTh2kYEcmmBoKjnRqjt0YwpkJV0oGFXWMYGx2rkyN46PXGFvGpqARie9IjYHWCoM1/3tF18XCJH8rTX7tHErhdVQtPYYWmCsAuIcR67IIIleQ4TcXHvyCKF3ApqRWsW0ZmW/8f20eftu1bVa1yPQYNes7jOQ2bd2Ziv3haDRgFa3X2jbJj1HebnLQniTeN4J/v53Jq2PX+NdoNzaf8wKbVP5HgRZytwcPGw7DxAW9DsOl657OY5jtvSFtSmdnNwD1v/uRV3tQuidSdmUzNjra4X/kvPsXUHybwzK2uI5iXFIQQPNb/Jbd5DH5OGDxRVOUGkv7X2raWGfTLJpcm6XJxFdm95GuGl3e/C0Qw0BtdbHsAFv09yAuBx6b7Ltz6M/VuFu5526fipLBX9+VANOLfSKB9gYLFfQ9/zOyesxjetHiDMxoNRp7+QJsZ/rjGvdBU0KYPUK9WIlVWbKJXEdjB69VtRb26rQJebnEREVn4fXZCwsIoOUEUPPPkpDWU1dlnTo/7Xp7F8aePU7NMTWva4K4jGNx1RFE1r9gxunEy9pZzX73CSbOvjAVDgEIOFBee/GQ6VfMtPEaxoxNyABH4GGIA0s7HqzgNKiXNeOOXHk+YPRTdxWkSwY6G9S9nR93AXd4j7z1C8guDdY+FGEIY1vwO/cCRJZyo0KigB2UrKcy2CwIaiGsSUnDftBKOtwITaM7e9gLTv5FAaIS6dhnC4CEvOKQFKrjl1chfbQzsdr39pSM6ksTaFto7GRXvw07wxUx2AZn6/IwJLO3m/t2M6lW4BRaBxl/j51IhxKNCCIcgLEKIMCFEbyHEd8Dwwjev9FLUY3VkADfxua7/wwy+x/O2JcGjpM01Sjbb6jg/G+M8BAH1FUPBCMWKUoXBh73lfKE4TEP/Vu79ehWdfnWvVXfHLZP+IHnmeCrEe79psd8U6GKOVPZOlNjx7CCH711a9Se+ovsJyo03jnF7vLjxV2jqhxZiYLoQIlUIsUsIcRDYBwwDJkopvw1QG0snpUDD8Vebkt/G4iCrdFkUPHLBzvqWPPUlVk9+KOB1GAu5SqooOePBZ3dH/dKz9G9Lo6Lahb5oNIXeRC5X6BMXEed9DD+deWS12OoMbjnU+UAx0HH+Kla96dmFY8zg13RSS9ek2N/gllnAZGCyECIUzSH8ipTyovszFSWJx38omlUqpYlFI1rSuF3pCc7oiuwQCDdHNTDaLY4b3P4O6+dPbjRgNIH+hjy+EeJhRS+sv2EAACAASURBVGMwKTgVuFTAbaXv9CWcOHuo2NrjLwLBddOXcSpNi42TL2BN++iABKG07CcYaAwlIPjg1UBGnx6wYz5xfQd6zhwo7FbdFjR0xEbGcf8tL5PyvOctTU7Hwt/tyrgM3lvSKXTPJ6XMRYUccKaofYBKgSYrYBR+hbxLHn12hstj52Ng43M3B2SQKk72J5anW/JZp/RJE5IDVocxQNtlFAUFw34cbRBJB7vv8WUrE1+2eIMV+kv56IqUj9a2+6i+ZTX3hAYm5IGhiHzSisrsp3Bk+Kj3OTTsUfrF1gtK/YXRDdX4ay5jo9zvZ1eSKT166lJC8cVpKl0qzcIRnN96oE0FHhv8ZlDq9hk7GbpHG32n/kASEuJ9xObiZkeL4O9PVRhcPe3lIsp5HbHdEyE+7E/mC8o8VzwIIahXBALTl48155f/Fq3jdf24+pQJK/wK3mChhKYiQviyH08B0oM4HuWUwIli9X63BaVeQ34RqriKiJ9Gt6bfwEeKvJ6QEqxpumPSAlbc4T54aknmXJwmeBh9iJrvKyFFJNwIc8iB86V3TLyqeW/MLJ6//b1gN6NE42/IAZfu7kII19tAK7wiK9KzZiW/CHwS1r4xjNPfvBLwcgtLx3b9g1KvL5uGlhRG3f56sYSHKMnmudjwWGpG1/KcsYRS5pX/MuFWA0nXFG9stEBgMLrfmkRRepEeNlm/WvB3urFcCPEZ8L6UMg9ACFEZeA9oDLjejEvhQGY4RGU7poXmej6vwZsfBrwtI24dF/Ayi4L91UWx+BkJ1Um4JLQEC00AshTr0Pu3upX+rQK/7c7lSChzJeDFOmAMCcXEv287KYUjriLe7K0GmeG+9c+l7Vnxt2tpC9QHtpjjMj0GrAfWgIPPpS5CiCeEEMlCiJ1CiOlCiAghRF0hxDohxD4hxEwhRJg5b7j5+37z8Tp25TxvTt8jhCj9S6DMRGR7nqc1a967GFpScii7+k9SHtVs7SHF9JKVRk1TceHvvn3BQN1FjazaRW8zEwbtuShtA6EiMFT8/isafPNdsJtRpPglNEkpL0gpRwFfAouAZ4AuUspJUrrfDVQIUR0YCyRJKZsBRmAo8DZafKeGwAVgpPmUkcAFKWUDYKI5H0KIRPN5TdHiRk0Woojix/uBwcvVbSadbKuTSq6TbbCoHl+HmPAYoPhU/9mxMcVUU+FZ0E4zi4SXKech51WC3ah9uWPLIDak5CCkZH6XwG8rZI/R7NOkhKZ/Nyld9feD61ytM+2q/LsNTf76NMUJIT4HRqAJLHOAP4UQ3qo/QoBIIUQIEIUWsqC3uRyA7wDL9vEDzd8xH+9j3qJlIDBDSpktpTwE7Afa+/N7gomemrNMucAtx5zU38D07qXYVuFA8XlKJNeC6179ttjqKyyD3/+Fv2c9SZmYOAAOehkj79/O1rqCe5/8KtjNKBEIDIz8dBnGNb8WXR1moclQ+tZQKDwgzZr3IxVhxDt/Brk1wcNfHftmtOCWD5t9mhYIIVqhaXsOSymHuTpRSnlcCDEBOAJcARYAm4CLFv8o4BhgEWWrA0fN5+YJIdKA8ub0tXZF258TNGwzLO8EFT2hyeDClyY7TBKeI0i5vYnXNuP/vraCXJMXTlKlAFmMhpb85vWpGuvtRlDFz5HKUOuU7Xu9uHrUi7MtQY779BMW7FxU6mJMBQrLexVjEhjEv2XS4B+plQTVTkuu3NSPsmFlfdqHz1cMoVr8J6Vp+vdhuaUh6G+SfrXgb2/SXUo5wU7IQUq5VUrZGVji7kQhRDk0LVFdoBoQDVyvk9W6Z7OLY67S9ep8UAixUQix8cyZM+6aFzAKE3KgyrAHddNXddS0CFFJ13hdVvnI8t6H5i8lqP4Y8PB8dUnow2NDSkmMqSLAIjSpwRty33qOnzoLku54rMjr0jaIUNdd8e/FX5+mY26OfeHh9L7AISnlGXM08Z+AzkCc2VwHUANINX8+BtQEMB+PBc7bp+ucU7BNU6SUSVLKpIoVK3poXuGYP6AOp2OhYquOXuVfdm1VwHGT1V7t9VfODJnwK3++eSvX3ji68A1VeEAtmi7NGBppcZr214kLckuCT7/O9/Di17soF1V0cZ8sRJXVrvfeWle3dk/hPdJuwU1KyVXuWwnGk30E6CiEiDL7JvUBdgFLAUso4+GAxfD+m/k75uNLpHaVfwOGmlfX1QUaoq3gCyr/eXI6GdPfo26lBl7lf+TV38la8QPNv7Ht2SNcDNiVylbmyVtev+rNDQo4eFNSUe4uU+pp3KEzj44ykjvyZs+ZFQEjvkJ1Nr19F+2nzAp2UxQBRpjyi7yO/PJFu1AhEBT7umEp5TohxBw0v6g8YAswBZgHzBBCvGZOs3hvfgVME0LsR9MwDTWXkyyEmIUmcOWh+VcV/V31QFxEHDfU8z4MfXRoNK0rtQYgxZwmhCDPAGv7VbtqfVJ0MU9IikMH5CoOSUnhgce/5sh9R8juGJzAnyWdBuUa8NE9s2hUrlGwm3LVcdfA0roVq8IdRWZxtV9pXgrMukEJtiKlHA+ML5B8EJ3Vb1LKLGCIi3JeB14PeAODxIxxPcjIusQEoO7WDSSU4P29gkNxvlElW2oKMYRQL66eVdBWOJNYPjHYTVAoFB4pBZKSHaUnQt1VwH/v+Mz6OSas9MQIKjbMckxxvGIlW2RSKBSKfwmlS2ZSQpNCoYf0MjhpsHnhsQpcybzA/GA3RKFQ/Lsp4h0SVjczUNauioU9yxI2dEiJc1FRQpNCoUPpEJlgxoOLMLkPwl9kXJr1LpERajt7heJqwBInr6hEp3KmUPLt9vSoGF6OYT2fLqLa/EcJTYrSQ3HKBqVE0xRuDN7GuR1a3Bi0uhUKxb8PYSeSldQeWK1dV5QaSpnpW6FQKBReUrB/L6n9vRKaFKUGi/KneGYgJXWeo1AoFMWPISwKgPxC7HbhCyVV2a+EJoVCh5L6wioUCkUwqNv7en7tKFj1UI8Al6zplEpLl6t8mhQKHUp6cEuFQqEoTmrF1abvW1NpVqFZkZRfWvpcpWm6Cnn74ap826f03fpgrRJTKBQKBSRVSSIiwEGXHWSlkurIZIfSNF2FTLh/FgcvHgx2M/ymeGYkpWTao1AoFKWZUjYXVkLTVUiFyApUiKwQ7Gb4gSbIiFIwG1EoFAqFN7iK/1QyJ66lz0ajuGopVuds5QmuUCgUxYYoICTlxsUHqSXuUUKTotQgiziMvyNKaFIoFIpgsKsmtHn4+WA3QxclNClKHcXh06QUTQqFQlF8SOs/kN2qAU0rFs0qvcKihCaFQhclNSkUCkVRIx28mbTPRmHUz1wCUEKTQqGHkpkUCoWi6LGTmaRZWDIZSu4aNSU0KUoRxbl6TklNCoVCUdQIuw+H7ruBFU0F0XcOC2aT3FJyxTmFwgkVa0ChUCj+rTx67QvMqt2AGxNvCXZTXKKEJkUpwhzPoziUQMoTXKFQKIoce5+myJBIhjcdHsTWeKbYzXNCiMZCiK12f5eEEI8LIV4WQhy3S7/B7pznhRD7hRB7hBDX2aX3M6ftF0I8V9y/RREcilKc+bmTVnpuhapFWItCoVAooPQFKy52oUlKuUdK2UpK2QpoC2QCP5sPT7Qck1L+ASCESASGAk2BfsBkIYRRCGEEJgHXA4nAMHNehcJvIkeN5L1bDNQeNCjYTVEoFApFCSPY5rk+wAEp5WHh2hwyEJghpcwGDgkh9gPtzcf2SykPAgghZpjz7iriNiuChCkiDoDskKJbjvpI+7GsrNaarjW7FVkdCoVCoTBjGftLiUdEsFfPDQWm231/RAixXQjxtRCinDmtOnDULs8xc5qrdMW/lMp9e/BjZ8G84UWnUAw1hNK7Vu8iK1+hUCgUNjJ7af3trp4tg9wS7wia0CSECAMGALPNSZ8C9YFWwAngPUtWndOlm3S9uh4UQmwUQmw8c+ZModqtCB6tqrQhe+QgXrpxQrCbolAoFIoA0K/7bdz2fAi33v50sJviFcE0z10PbJZSngKw/A8ghPgCmGv+egyoaXdeDSDV/NlVugNSyinAFICkpKRS5namsBBiCOHVLq8GuxkKhUKhCBBVY6qyY/iOYDfDa4JpnhuGnWlOCGG/XOkWYKf582/AUCFEuBCiLtAQWA9sABoKIeqatVZDzXkVCoVCoVAoAk5QNE1CiCjgGmCUXfI7QohWaCa2fyzHpJTJQohZaA7eecDDUsp8czmPAH8BRuBrKWVysf0IhUKhUCgUVxVCyqvLWpWUlCQ3btwY7GYoFAqFQqEIAEKITVLKpGKp62oTmoQQl4E9wW7Hv4gKwNlgN+JfgLqOgUdd08CgrmNgUdcz8DSWUpYpjoqCHacpGOwpLon0akAIsVFdz8KjrmPgUdc0MKjrGFjU9Qw8QohiMx8FO06TQqFQKBQKRalACU0KhUKhUCgUXnA1Ck1Tgt2AfxnqegYGdR0Dj7qmgUFdx8CirmfgKbZretU5gisUCoVCoVD4w9WoaVIoFAqFQqHwmRIvNAkhagohlgohUoQQyUKIx8zp8UKIhUKIfeb/y5nTmwgh1gghsoUQTxco6wlzGTuFENOFEBEu6hxuLnefEGK4Xfp8IcQ2cxmfCSGMRfnbi4KSdD3tjv8mhNipd25JpSRdRyHEMiHE/7N33vFRFG8D/85deoMEQug9QgLSe++CCoiKCq+KggIKdlFURBErdhH1h4INFcEKgoUmTbp0QgfpvQdIu3n/2L2W68nl7gLz/XwCe7Mzs7Ozs7PPPPPMM9uEEOv0vzJFee9FRYjVaYQQYqIQYrsQYqsQ4paivHd/Eir1KISIt2mT64QQJ4QQ7xX1/fubUKlPPbyfEGKj0Da2/0MIUboo772oCLE6vV2vz81CiHEeCy+lDOk/oBzQSD+OB7YD6cA4YKQePhJ4Qz8uAzQFXgGetMmnArAHiNZ/TwPucXK9JGC3/n+ifpyon0vQ/xfAj8Adwa6f4lyf+vmbgW+BTcGum+Jaj8DfQJNg18kVVqdjgJf1YwNQOtj1UxzrMV+8NUC7YNdPca1PNBdBx8xtUb/+i8Gun2Jep6WAfUCyHu9LoLO7soe8pklKeVhK+a9+fB7IQKuo3mg3iP7/TXqcY1LKVUCOk+zCgGghRBgQg/MNfq8D5kgpT0kpTwNzgO563uds8olA2/KlWBFK9SmEiAMeB1720+0FjFCqxyuFEKvTgcBr+nVMUspi44wwxOoRACFEKtqHb3Ehby/ghFB9Cv0vVgghgAQX6UOeEKrT6sB2KeVxPd5cwK1WOeSFJluEEFWBhsAKIEVKeRi0B4D2QrpESnkQeAtNqjwMnJVS/uUkagVgv83vA3qYuQx/okn754EfCngrIUEI1OdY4G3gYoFvIgQIgXoE+FyfAnle71CLNcGsUyFESf33WCHEv0KI6UKIlELcTtAIkbYJ2gbt30t9OF9cCWZ9SilzgAeAjWiCQTowqRC3ExIEuY3uBGoLIarqQtdNQCV31yw2QpOulfgReNRG4+NL+kQ0KbYaUB5NWr/TWVQnYZYXXUp5HZpqMRLo5Gs5QoVg16fQNmeuKaX82ddrhxLBrkf9//+TUl4LtNX/7vK1HKFECNRpGFARWCqlbAQsQ+uYixUhUI+23AF852sZQolg16cQIhxNaGqop98APONrOUKJYNeprnV6APgeTQu6F8h1d81iITTpjeVH4Bsp5U968FEhRDn9fDk07Y87ugB7pJTHdYn9J6CVEKK5jaFiLzQJ1FbSrEg+dZ+U8jIwA+1hFTtCpD5bAo2FEHuBJcA1Qoi//XOHgSFE6tE82jKrub8FmvnnDgNPiNTpSTTtp1mgnw408sPtBYwQqUdzWeoDYVLKNX65uSAQIvXZAEBKuUvX2E0DWvnpFgNOiNQpUsqZUsrmUsqWaPvS7nB3wZAXmvSphklAhpTyHZtTMwCzBfwA4FcPWe0DWgghYvQ8O+t5rpBSNtD/ZgB/At2EEIm6FNsN+FMIEWfzMMOA64Gt/rrPQBEq9Sml/FhKWV5KWRVogzav3MFf91nUhEo9CiHChL6CRu+EbgSK1UpEM6FSp/oHaSbQQc+vM7DFD7cYEEKlHm3y6Ucx1jKFUH0eBNKFEMl6fl3RbIGKHSFUpwh9tbEe/iDwmdsryhCwpHf3h/ZBlWiqyHX63/VoVu/z0KTCeUCSHr8smlR5DjijH5tXvY1BE3Q2AV8DkS6uORBtrnMncK8elgKs0suxGRiPNnoKeh0Vx/rMd74qxW/1XEjUIxCLtirJ3C7fB4zBrp/iXKd6eBVgkV6WeUDlYNdPcaxH/dxuoHaw6+VKqE9gKJqgtAFNsC8V7Pq5Aur0O7RB0Ra8WBGvPIIrFAqFQqFQeEHIT88pFAqFQqFQhAJKaFIoFAqFQqHwAiU0KRQKhUKhUHhBWLALEGhKly4tq1atGuxiKBQKhUKh8ANr1qw5IaVM9hyz8Fx1QlPVqlVZvXp1sIuhUCgUCoXCDwgh/gvUtdT0nEKhUCgUCoUXKKGpGHHm0lnGLnmPPFNesIuiUCgUCsVVhxKaihFPfz2YxPETmbKs2DrXVSgUCoWi2KKEpmJEjxlb6LxeEjd/TrCLolAoFArFVUdQhCYhRJQQYqUQYr0QYrMQYoweXk0IsUIIsUMI8b0QIkIPj9R/79TPV7XJ6xk9fJsQ4rpg3E/gUV7cFQqFQqEINMHSNGUBnaSU9dF2bu4uhGgBvAG8K6VMBU4Dg/T4g4DTUsqawLt6PIQQ6cAdQB2gO/CREMIY0DtRKBQKhUJRYDJzMhm1+CUu5V4KdlE8EhShSWpc0H+G638S6AT8oId/CdykH/fWf6Of76zvaNwbmCqlzJJS7kHbiK9ZAG5BoVAoig1ZeVnBLoJC4ZL3vniU24d8xyffPR/songkaDZNQgijEGIdcAyYA+wCzkgpc/UoB4AK+nEFYD+Afv4s2m7IlnAnaRQKhaLYseLwCnJNuZ4jeskfW/5m8AuNmPbvTL/lqVD4kxqLNhBmgsSlK4JdFI8ETWiSUuZJKRsAFdG0Q2nOoun/CxfnXIXbIYQYLIRYLYRYffz48YIWWaFQKIqUf3b+zvTXBvL8r4P9lufBL15n5A8mzk16w295KhT+JOuyNi0Xt/tEkEvimaCvnpNSngH+BloAJYUQZi/lFYFD+vEBoBKAfr4EcMo23Eka22tMlFI2kVI2SU4OiKf1okXZgSsUVyQrJ73NoL9MdHx7md/yjDmfA0D82Wy/5alQ+JOyJzTNap19QS6IFwRr9VyyEKKkfhwNdAEygAXArXq0AcCv+vEM/Tf6+flSSqmH36GvrqsGpAIrA3MXQcCZXk2hUFwxVN11EYBKfhxwC4PWcQipRluKEKUYNc1g7T1XDvhSX+lmAKZJKX8TQmwBpgohXgbWApP0+JOAr4UQO9E0THcASCk3CyGmAVuAXGCYlFK5y1YoFMUSE/7XBkmhj7aK0YdJcXVRnPQBQRGapJQbgIZOwnfjZPWblPIy0NdFXq8Ar/i7jKGN6v2Kkh9XfM+vc95k4sglRIVFBbs4iquInPAIINOveZ6VWn6ZJrWCThGiFKNPWtBtmhSKUOPyKy/xzJRM1i3/I9hFUVxlGOLi/J5nrX9PA9BiXY7f81Yo/EFxmjpWQlOI8vXa+ew5ddTF2eLTwPzJ3c/XYexX9xb5dSodMwFguHjBQ8zgsvd4Bv+d2BrsYhQbfljyPx55rA4Hz+73HDlYhLtW/g95sQnvTH3K5fnsvGzenPsq2Xn2U3zRyv5bEeIUp+k5JTSFKE36DePXR7oBWme47dQ2y7nLubmYTCaf88zMycQkfU8XKjwz3cSNby4P2PVEiL/KU0fcwndP3uzy/Pns8+w/F8ICQoDJe3s8Q383sfLrt4NdFNdEhLs89ejUTDq+4trX0qR3B3Hj8K+Z9N59duGmADdjkzQhi5HmQBF8RDFqLkpoCkHOXjoPwHWrtCHi2+/1YdPtN1kEpUbT1vPWpCd8yvPcxbN8eF9T3vjfAM+RQ5goNcMAwM5je+i9XNJ7ueve5vWR7Zh353UszVjAB/3SGfhcHT6ZFsICQxETe0mvq8uhrHpx79TSXftP3Lxb+3/LHrtwGWCh6YnHruWJF1oE9qIKRYBQQlMIciRjld3vlj/uJn0/JJ6xaonSf/jLpzwPbVtHrxWSjhNXu4zz1bxvWbL5yvXY4C3WUU/ovh5L7rvBY5w7Z1+m+XbJnldH0HWtZMSPJtLe/sxvZZj+z0KmLPStHQYTk3kVWQG0tIFCGgsm4ew/sY1juWe1H/myMAW4GQ/+w8T9084F9qKKYo3SNCkKha1m++jp/yzHETaLX5KP+dbxG4zaPsZGPe+dJ/9j87EddnGaDhvLyYdCUxP1xS8TA35NIUJ3eq75dmsj2bhzFWNGdyQr57LTuFFZ1rZS5qz/ylB34FAaD3mkwOk/++EZ9hza4r8C6WTlZnH60hnHE+bHGcJCE2Gup+fcMXP4zXRdpXtbyddsA61pUih8RglNisIgbfad+vWpmy3tKcnGLjnBx82gDeFaZyxMsPv0Dvb06k5Op14O8a5x8Kde9IweXIeXxl7vNk7zke8GqDRWG5CTF84H7JqFYeWz93LbtCO8P6iR0/PS4N+v5uXsi2w+vMpzRDfs3rmW1qN+YdFDt/mpVFbee6Ql83u1dLlJrTSFris3oQ9ufKXjOqsgmCXshcJQF5pOXDrBuezQ1kwdyTyi7LSKEKVpCmGO7d7ML7PG+T3f/WcOczLzdIHSZuxcxpwln1t+Z2dbNQZtF1/E4Ic+3hAeAUBsFmS17EXFkxBpYz4RzA6h3yITfb/Z4zligCijKykqP/NOcAvigvwf/RYbtN89V0o++ORpVm+yF2ikwb+v+acju2DoeHeh8rhwXJPOa+7zvwDTa94l0vfD7joNGDsonZ9/1PZcMwsP23es5IM70jHladc+fHo3B0/tcJVdQDFK67u/YsfiAuXRbNEpu/fZ1hA8Lzf07Lnm9WnHZ/e1DHYxXLJ65c+cbtyRLycOCXZRAs7+Qxm881I3cty0m+c/vZFPP3+C98fc6jKOJ0JcrrfjqhOaEi5C2Piv/JpnTl4ORzp04o/bWrP5wEr+3fYPR04f9D6DGwdS8b5xjHulD2Puq8PhXfZTFq6mVN4c2oDd+9a7zHbugolkbF3IjB/GMWvKC07jvDKqLVJKxg6p6315A4iUkiPn3au/9p7azuXsiwEqUfDJy7W3BrZ9ibu+N4P/RthPseb6MIwbN7wZU74a7TZOvX8KNjiwJTdL0wIl2SjzsvKyuJjj3+d461JJ7ee+AKDkCU1I6r0sl67rJGs3zANg0403sLu7vdb1yHkn03sBwHjeOnhI6DmY40e1zbhOnz/mUz5fT37QcmyrafryzTv4dZ7/7Nr8Qb29kh4rCz5lOmP2W7w8MJ2cHN+dd27ZvJgvP7zPbZyjL2mDp+bvFkyILU5s2L6E6d3S+eKHp7iUdYH5I/rR49v9zJ70DAAmk+StFweyeuMaAD5+rz/9395Fmzdm0+27zbz4cP1gFj8gXHVCE0DScf+Obj99uB1xl6HRLomhywCiew9icf+uPufT8+ut3LbExLnvvBPqbvw7i2UvuB79VHjgXS73HUrqqM/pMtX5SPrmH04wt006fReFpp3He8Mac7ppZ5fnd+9dz6VWvVnerrFd+IWLp1i9fQ55ec5XI+0/sIUPH2zGlB8+ImPPdpf5Hz5/iI9evYUvJ1jrWUrJ3xnrvCp/Xl4u//vkPsY/1IKLl/0z3edJW5C+R/LNhOGW3+V3eedheuZPr9Jz7nkavzrd4dz+Myctx2XcyBOZZ7P4+e01ZJ51/wEzOfnAfdmvEX91b+wktiO/TBvD2497r524eOmMZfCRFZHAmgaPYhzwPMuWT6fiSShtMzs0+7eJnG7aklkd0th/YDN/L/iMibekc/BIhsfrZF4+y6btcx3C12/6nWMndntML7bYj7nPHTsAwNzxzv0z7T20kYPHHNtv0zf/tuZpIzPX+jGDa4a9zYzp45gz+1OmThrpsUy+4EpjfejkQXYe3Ob0XH4OntjJ2UzvN99LfXwSt/wjmfKS75qO/4YNptmHS7l00XF68NV705l8UzrVd3pXlg9HdOWHb8b6XIZAkpWXRa4plzVrZ7B7j+OioPBe91N3n6T5qJl8M6I7iae0/lOe0WxD1q2cww1Tl3HgSU3T3OGTtXbpb//LN03m2fMnmTCiAymnrGEfvnwrGbXTWLT2N5/yChRXpdCUmAmbNi/gtaH1ycvL5efvX2bC/9Xh2Mn9rFz9kyWeSZr45esxfHFTOuv//Ysdu1fzZa90lvw9xS6/jvMcvyJ190g+nfgohw6fdPsRmTnN0Vbn2j2eNQPnYyuwsM2bkFsagBXLf2L3bketkzdL9CuetP8tpeSnH18lJ8f6AuTkZDPt8yddCiETn7ue39ulkZfreP6nL0Yzd+ZHTtPN/cW5rdLpzONk51ym+3z3xlt/PXsnACn5HsGuZq2J7fUwnz97PR/0r8N7d19rd37RcwPoPP88jUeNZ/vgmyzhs39+wy7emaad6fjVFpqNX2QJ++K1e0jp04+fv9A6yI+e6UJG7TT++28DAEsW/8z0Ka8B8N1rd9PuvaV0mXOWWe87Gk3n5GQz+d1BZGU7N+J2xvlLnoWvRuPnWY7z143TPM8cpeazX1t+f3RvQw4c0QTtqR+N4EKLNsyY8rrTtLZavr+/y+DQjjMs+t7xA5mdc5kJz3Yjo3Yaq+daBwZL538LQNsNJmq5UNDu23KSjx6Yz76tp5j26VPUGj2V62fb39i2rYv4qme60/T/NbQKWHuq9OBsiRrsqdKDQy/Za2A/ee0Wqj2ptcnqR2DhcwOIfOJt2m6WbOzr2ieWme8f6ISx10Mc2p+ByZTH3DmfIKUk4tbH2d/Z84rH1AP2A7rFCyaxpGkadb9aJJCTYAAAIABJREFU4TT+pU63ca5db7d5lrX5IJntIlOf/5yKj79D/Td/dZ4I2L7qCBOGzmf7GudOdsd/cCuv3ptu985/9er/WY4P7NvAhQunmDF1NKtuu5nlT/zN5Jfu4sKFU86y4+vPHwfgXJuezLytncP5XBtbz9171/JZn3Tmzv/UEtZi+k6+uSGdlUumOKTNz8Wci+SYcqh6RPu9cuNv5OTa99F9lklabvVOSzv5pnQ6zzxAnbHf8sqodrw59jqv0jkjz5RHTp7njvu1e9L56H2rVnnr1mWsWuUoaJhMJjJqp/HhA81Y3bwBU/o1JKbf0/zX7y6HuEdKWo/T/jlpXTuB1i5lpjbyqPWfie+7O3/XANaunsHXXw93eu7o+XOcuaT1Gb8+15dOM+3bV+cpmwFI7jeCHz5/0uU1goW42ozb6kZFy+lVq1p+r6hvpMr+PMqe0gSRfxs+SlTVedTt3pnYO0dY4l2Igm0tU2i84Cib60Ryomop4rYdpuKQ4aSMGO/yemuuvYuzpVpQq0UKXe6pA8Dl7EvM7NWY1JfeJfLuRwt0H/80e4HL0clEXTpO59fqc6nzzZxIgLYrtdHwxrXzCes3rEB5m/mrdRSPTFrLB3fXo86OHMrrszK7ykKNI3Bi0mhKl67Gqrnf03S8tuVIiYWzOHpoFxdO7ielxPXMmbSFOhsnknJyPWlb7Ufqx08f5kTLTpbftuczaqe5LNfaETcQ/v1sOv0wn2PNOlrCSy+ZQ3Lpipw6uZ+jrbs5pDPnv2vXOtY+eid1duTZnZs8qhctf3Bt21J5xTomvzCdVgvGE5N1jg0tEziZWp6OX221y8dc9rStGayvm0aE3tf/06MJJnkfNz3ZiOSK8QBMGtKKVgtPs7Ga4LbftWnZua3S2NOmAvePs9dYnD59hF8+f5YWE5e5LGNWRAKb0gdSd8tkIl0Y1+Z/DufPn2L6xIdo+em/DnEXNw4n6byJOtvz2FZF0PKLWZzq6Gi0v7DLR+TlOvYlxjADQz/sAMB3Y/vT4Ju1DnFW1hbcMXUVuxs0AWD96L60bHM7lSql8VunOuyvFgVhY0DEEhEbRpvZQ+3SL2gVRXS9erT4xL27jL/bvofJ6Lg6zZCXQ4fFj1Jh+UIOtmhvd279NQbqb7dqYVM3rScsLIL5f31G6eSq1GvYxXJuyrixnN3Zggbrx5M7uid7V/xGs2nbWT+kLfX/p03tnI2BTa1K0/e1n8kxQekSpflvywlmjd/AjY80IPOm1m7vAWDBE13Zf2wrLzz1K3uudW78D/DXPbUovWg7jXa77+NrblzPzB71STsAv7UwMOIL7aM1YehfII0YwgQPTOjkkM7czjc90p2aLbshjBFE9rV+KM9FQ2YUlDsNG9MGcrxMI5KPreFi+ZncM2GxQz4AWV+/SeRdIyzlCg+P4MN769N5mTaA+6tNJBGRMcTtP0uT7a614/OHtGXIQxMIs1mN+MeMCez9ezpxlavT+BPHd+hISajx008sHHwL4b0HcGZFHRqtfZf4TKt5wM5y0HOB/fvz8+RnqD3uF6flSNuawYS761LxQB6952fw47djKF+uFi073sHa5TPY/PJIKg0bRvseWl999PgeZg2+gdQDkrarXGs2v31/KA0/Xmi5BsDKBmnEX7Z/vzMzT/HZwx1pvyrKab9gG3f1oqnEDh5jd53DpaDcSdhRSdBrzhbWLvyJqCHPWc47628M0z7BdJv2jh57eTjtb7X/Dtn2jz/1qkvadvczPzGzpjDv46e4+/U/7J4nwMVLF5g8vC0PTV63RkrZxG1GfuKqF5psWd7kOS7GliMm8zAtVhduD2BXHTTk0OnvgglKAPPbfwjOlsJLSaeFw1nZP41m33qeRvCWzQ92pc5HcwqUdn77d0GEQ14OnRY/ZndufU1B/Z32be9kPBy8oy2mRUtpsK1g04XJ/8xh3oBu1Nvh2K6X9alG8rI91DzimO7fB9vT6KOFbvO27fivzfjcaZw1AxrR+EtN+FjYszLtZ+6znDMLuuGxObSd/ZjT9PmpuWEtO+s15J/WCbRa6nmF0dbU2zlUvg3lDy2h9o7vncbJLzRl1E7zSthyh7t22XrpcLtFB97yb3XBmUrj3bZ3X8iKSGBnjZs5mtwQDGFgyiXl+L/U3PWzT/ccP38G5/WVpzueuYPU16YC8HercZjCYzDkXKTDP663O7Gl5sYNTBryO3nhsRhzMmn/z9M+3ZM/WN04iiZrrJpOd8/y2rQZJH/yF3taxFNtuWeNp8t+UOTS76XazHjgBppvct44Ng5sSObGTbRYZa91OVnyGtbXG06D9eNJOuvegH9fMhypEk1euKDlMu/t5ZY1fZ5LMSlEXzxKy1X2U24Ji+Yy/9EbyUspTccHxnGxV3+H9Ob36dqHaxEx8AEAdjzem9R3NM3esuvK0vJPa0eU9eUbVE1txuFW1kGg+T39fEBjWqy4SI31a9m3ez27MhZR+dnJlnjJS+ZwvI3VHCRi5leULlOREiXKsbp+GrFZsKXWXRwp25yyR1aQvs2qUT76xoPkkkf5ytdyZNhwyjlXAgJw6YvX2PzBizT516qR25A2kBNlGlH62Brq6X3itqqCWnu1/ndVq3jumrSC7Jxsjhw7TMaCL6jyitYvpW7awI669VxfEPtnfe6+OvS4/zW782YBLH3bViU0FRXOhCZPgkhBWNDuPaTBsbMQphw6Lio6oSkUKA5l9AVPGgpPBKI+fCmjM6HJG4HQHZqW9jHyjFHavUqJMe8yjda+YzdS95WTJa9hY92hmIwRlnwNeVnU2/iJxw9mfgr7HF1R0Ocbqu/JkdIN2JI+EITBUufIPOpsnkzKSdcLT5xRFPe4sNUbRSZk+lrePU/1pdo4RxtA8/sUFbufVrPfsAhR1+yYzvbUvl4PTrY+0IXaH2sa52U3N6TlT46aWncUVZv3R75re9ak4cydbuPYPusS2WMwxUbT8N6niC1diSo1GwZFaHK9O+RVRNPVr7Gh7hCyopIsnUTU5ZNcu+l/Bc5TCudV6yrcW5qufo1VjZ8CYbTr0JquecNz4gCRvvkzl52uN/gykgwEJoPzZ+YqPBi0XDHapRbFHZ8M/5u8DhMsv4+nNGF+ShOfO9X4zINW/3T6QExCoQQmgFJntiNMuWCMsOQrTLkFaheu/BUV1o+RkHlO32sh3U871F//gUuBMJiUPbGOLdKkvb/mQbU0+SwwgdZfrWn4OCZjpIMw7Sv5BZq8iDjmd5jgVyFTyFykcDLYlc61YfkFpvzCxOWLlbUymvJAGNhY5z4uRyezs1ov6myz2l65EqrMAhPgs8AErn1GFlZV4o8+0Z3A5OxZn4p4E6RE3DOci4D/5lN846o0BM9PfOZBjGZHeHonYcjLLlSH33T1a2DKtel0JJhyabr61UKX1eLVwqIlFIX+OPmTsifWgXlj4AJ0upvSB1k6mFCg6erXMORetnuWxtxLXj/LomoLtixr/hJHU5pqAhOAIYyjKc1Y1vwlh7i5udaPeV6u82nQggiEYXlZxGYeos7mScRmHiLMhXNJXzEZwwnLyaTGrp8Jy8nUhIwC0Gr5aKIvHrV7DtEXj9JquXsXC57zfR7ycuyfb16OFu4Gi0BoTkPBBUK/IwwIUw4V989HmHK0QVoBiM88aF8v+n8F6a/qr/8AQ26WXX6G3Ms0WPd+gcrmjFbLR2PMuWj/rudc9LqNuHxvDNog93JMGRCCo+VaMr/DBOa3H09WRALba9zK2RI12VjnPssiBb/cz4rRRF885tjmVxSuzTdd/RrG3EsF7hM9EYhnXVBCZ6gcZHLDY4jNPETVvb+zt2oPcsJjvUq3vn9j7hg9xcFwOT7zIIa8HExhRhtBLIfTcYeI924FuEsics4TnpPpc1kLwr5yUPlwARLqna4xbxl5xpZILzrdQIwkC0JhO35N0MUuvRbuP0G35YrRrGo0guzIRMuIPiLrNE3/fdMh7uq/vqHF9dqS4duea8pPb64mN8tUaE1Am2VWA9GUE76Pil3R0cYersqBeW5iuicy+xwmvR0KUw5ShGESxgLZcOXPF2HQ881DCgMIg1f5mgXCKvv+4r/K3cgroEDobzotethyfM3un9zE9EyYKYvwzFOF7q82Xvug/ZSQEJjCothQb1ihpppsicw+Z+mrhCkXKYxIH9pI09Wv8W/Dx8mz0aw5ne6zIFjaymqnczmmDACHKrTjUIV2hZ5G0+5Hu77Iy0EawpBetk13FJVm2Yw/Ncz+RglNOt52+HvLC6oe0h5iRhXBHaNdL281dxatH+vG0nf/Iic8lhO1S1H56EmXaQpT1q0906k90797eZ2ulkTlw6dY3zKR+su05XO2K8ScsTY9zNLpeop7dNwjpDyljR4CMV1Rfd0qfhzYiPM1K9BumhOLcBd42/FvqWEkfZdVk7Oyf12afbuJiJwLhOdkEnn+d7Lie5AVYU2/ukkM7d/4nsoVagJW48YlPStRs90tlB3xnsfyLW35qn3nLATZUUksbfmqg8BpGy25Ury2x565g6fgmoDiQPyFA5Q+tZnyh5ZyqHxrsiJKFCq/zZXhYvsmlP53I5HZZ33Ot+PixzgXrW2LVBiBMJTxlzDdcsVolrZ4Od+0v4mWbrQmecK636a3JJ3OKNCzBPMAyX6A5RZXApWUpBxb5XF63RviLhyk1KktfmvzZsLysgi/XHhh2BWhOqBQ03MuiJk71Wl45IhHWNLAyMHPn6bXLPfTTW2WPUfz1a+S2jiF5qtfpc2y54i7pm1RFJfwXycTVf0av+Z5Mh7CL2srVyIyvXD4ZKZUotPgszHW42xdXK+eZvWfc+b/amKMi9Z++HF0cSLB2jFFRsXR/9vtDHlpgdfp1w9pZnmWhxPWWp6lM3KSrR2S+O0rBoyezvbKwpKehB2kDY2m89MVuPjVmxz9dDS3fPq3RWCy5f43/6JjzyHsS9Z+r7q7JbUznAvF2hRifnV2llN1uSHMvvMJjwojqXysdVrNlMWCATU4WhJW1glnbm9t9Lu8QxIAa9OMOJvUOxnvtGhes62y9Ti/sXp+1rZJIm1rhuXv3JR32PT4LR6vUW/zp9TaMY34zIPU2jGNeps/tTufUdHmGu1TqLx+nV1ZdvSwvmNZ33/IrX9lcPdzX2OUX1nyPZbwE/U2f8qfDQVlls4no7L9h3HZtfZa19T5C1hwrePH859W1hfmQCnn93Poy1c4lARi9rce790ZO6p7P27ePsRxZRdARi1N+7PxtgZe57WirvfTfeb2H5l9jvKHlwISQ142ICl/eKlbrUnq+nWImb7tAOGpjZjJE5Dz3QT+7mAvhBhtpqmjLx7RTBUsApR0L0xJ83mJMfey3b1ljOjJsnYlmHdjBY/38Hf7eM5Pecen+/EVc5+WcsJ9n+iKee0S3J7vuPgx2v3zNFUOzKPdP0/baZyDSaGEJiFEGSFEHyHEMCHEQCFEMyFEsRLEdlV2XtwqFa3u4Jf2s2pKOvUYwv1TN9Gl5T0OPiPccUYXwsMiowpWUCdE/GE1rK5ZqyVNbx3MmhqCf7qUdoh7yLkcY2FpmrXTPqJ9G9nTpRbVNmnLitM2XHCWzI4NzXXPaC5GT1GfvscffStQduV88vRqj4iMtJyPSEkhL1diyPVsv7Kxn+afZnNl+/Bqax03kjW6sMc97+WjaN7euqls7ZHOHTw6o3bNpgCcqFvOEpb26Biat7mVmrWa07jZjXRo24+YaPfSRrkJnzKnbQlue3KCphVyQnzmQaIu6xpMvVOOunzSqcYo77L9/PC9b7Sh3+jmdp3fg8/8RoflGQz4cQMPvbGQtK0Z3PLmTJbcnsrN368io7JDtuxqY5U4lt3o2vGdK2Qf95s229J4hP3Ch+ZNetB38Ms+XzM/NV6wTpXEN2lGrE37BMi2MQhuUN/qqT67QW3L8eBvNlJj83oe/W4LpUqVo/3U+fxzj3Vhz93fraXs2n9YMbwDG1/oR1JiWR6cvsUiAJpJqmX1jm4Isz73jHYpluPOzW+m8z8Z1K7e0On97Krqvjs+k2J9Cf69RrvGsRKQ5USW6v3YR6y6Bhb1Lm8XbjDp5gdG7wWwe37YBEBmpIeIwPkbrQPN7IgEKhxaTON/36LCocVkRyRw0Unftql2BGlbM4iMiKR2alNL+N/1C7/L2ZpULY/d1cOo17ATD3yynP3P9rOctxUmBn79fyB0V/TSBAi32iUAQ16W5d5+ud7aN9w8aBwDJy5n+FuOHufz88D/VtKsSQ/Wt3YhbQeQrRWdhw+f6Nxhq7fMb1IwO7vCUiABRwjRUQjxJzAL6AGUA9KBUcBGIcQYIYR7MTJEOFPS9Yt+TB9A3PeCNqfv6uEDLKstmNPC+hC3VbJ/MY4825/fOkRSo73/NE01qtpvI1E6uRp3ztpCpQ43OcRtM8/9rvT7rrE+rjMpWk9mlL6uLNK1Q0KwsK7gm+72PWKDxtfx2Ni5JCaUw6CrKiIirSrdrn1H8MCHHek0spzH0UVCHe0jcbpuWUvYsRIQFR3HL91j2WmVU8iorwlzm2vYv2SVZnun+i6fZh1hh0VY7+n4eM2Dca7NWxTWrpVD+jtfn83ej5+i3NolNGjsvWBgpl69Njz86XKiIqLdxjPb5Zk1RrnhMU7jnTtZECM1SIhP4v4xM4iKiKaEE7u8snWs9x5ZIsnrfI989Ax/tI3kunvHOD1/IMWxEdaq1cbr/H0hIbkSe3WZIDaujMP5SOm8o04sUw2APRW0skbYCPulksoyaKTVN05YWDiJ0YncM/xjbuvnziDXqpE4VtY6QDO00Op5bm/PGoesCPddfELdZtZypWuC34kKkaxtYx14zb4hid9baf3k3TMyGPKG/TSi0N9lEeZeaPrzXvtp+iMfP0f41xO46GRcdNzGM3VCNat2z1ZrknhS05ocrVrSMQOD846rzdOFn+o3NtQGbCabpiDzXPuVq9YglazIVbS6N5G67StQuU4SYREG7KfxJLW2fasvoLhs0QiFxxZO6MmL9d8g3RUmD9+I1t//4fLc7419E2I/v1nrA0/Ew7Apm3xK6y8KqhW6HrhfStlUSjlYSjlKSvmklLIXUB9YC/i++VoAOffNK8y7szbt3p3KZb0/WneNga02/VD8J+PY+dY9AOx+bzB1PnG9ZP6uH9fz4GTrfmQy30vb55bnGfHJOpKSq1jCDnv/XeGsD9PFXW95nF9ujLMLC/eg4Uqr2sJybBaUBLCtptYRrqrnvkM8GQ/oI06EYOgPW3j5Pdf7s53Tv+dhkVEsSRfMuj7RokWpZTMydEX3W59kx0ePcNfrsy1hRytp9/jMe6u5fJ31Ax6XoEm/pjj73rlc+dpMbWfgj97uNT05OdapyfKpdSzHjZpqwqnt3l63DnQ0vI6MiKRHx3spGV20oz5v1eWGcPe2AUecfIPyU9bJnr152dpqub0VBOFRWue2vbr7TvGfB1rSsdPdPPbpOmKitDZrHqxsqCr4vq0BY57vC6QPuni3DiQ7lmf5zTUsx8awMHIe7c+PrQSNrv8/h7hhLoqSa9LUmbnhru/3wrR3iJ73g5tS5+OUzV51paxCzE0DX+XglJcZ9vpfTpMtaWJ917PLue9kDDba8twITQq4FGMkbZB1+4on3l7K45M3usxDmDUkHjTvAx/Kt/1UxzupX68TW691HAxIm5eqS9/HneaXGa3VdV6EExcBLrQ54eHu+8FcA5yOxfJNyM/5GBB5mndyk8H6+cy/iTbAqnTt/PVD6/H4ByNp2KIx7fvVoudDDYiOjwCEpkEUgvhS0VQ48g/NV7+KuDDKkkdBPtAr6lpThZewtptFLZyr9RYNb8EPbQo+QZS+xdFkIDPK+r0oU6qKw3kzj3/jmw3uuFf/ZcOY24n9TNuFI+fH8Zyd4r9VyN5Q0JpaJqXc5+yElDJXSvmLlPLHQpSryLiot5vmjW9m+KifqVwhjeMfPMm8+oIWH0+j8be/cEnfJ61Rw570vFFznnZD98e4pqbrDULDjeGE2Sw3NbnwhFGmrLWDzorxXsreX877uEIIRr65kslDrBKgweA4Qp7XxvrxLBlu86U0C00mMOofv4jSjqNuW3JtOxm3q0U0jj13N1NviCE+oRQDf9jI428v8ZgmP706DbXTvuS2sW5BER6mPehdVQ1Ik3ko7Njcx0zczJAx85hXXzDnCefPN8dmOqtUqUrMeqoxb9xqwBihdcAXvZhiCCTrUt2/1mHh7gt8Mtmz2ntZbSfPuJTWhg6Xi7B0LAYnqkpb27a7hnxody5u+V/UXaC1hdv/2MKLn262e5N+6RTl1ej0VLzzOJlO3rkyZatZjo3GcHr1ep5Rk7dQskQ5h7iuHNy0/L/H+LGVwPDkQy7L1LReD6pWqOPyvJldFbUyGitYvSWbaqfaxenS5BYMLiwhZJx1viosy72vKGEjQF/3xIf80jWGxmMn0qJpb75va+C3gdVdps3Rm4nQB0vCw/RcRHgEvzYX/NnI/hkYq2r2fFtSnbc7gzAwq20Ym6pY0+1JgUP9OrGmhkDUq++Q5kK75s4L4aFv2tgnjVK/fk/ELOc2YrkGEPpee9JozcuIY9kTWndweZ3kSnHUbV+BviObULd9BZIrWQe5N0yYYTl2pcHaWNP1fZRsZd3yRkZYn0npGo71BDBk+Oc8/9lml/l5wpmAeina+cDMl8G/K26//UUa1de2L6pXpwstmvQpfKY+UFChaZTnKM4RQlQSQiwQQmQIITYLIR7Rw18UQhwUQqzT/663SfOMEGKnEGKbEOI6m/DuethOIYRX23XHVK7K1vFD7MK6dRzE8O+3UK1CHSqn1KJRakcXqf3LroZOOmUX5CX6ZmUrhODNx+baBjC9jX3jTo6zTm0ZbEZN5xK0Bp8b73x6x5YNNbV0O1uUtWqaXKjGbbm19zOMeXsNwmDAaDC6/AD4QkK0jXGD+UWWUPGuIayrJogc4LhBJUBMVDzDv9/Cw/dbNYlzG1jvITvLfvuFJwdO4YuXNxMZGcOkbgbWPtyK3e8PYfkzXfAHP7Qz+Ky2tiVauq9LT7YnJ1rWdnseINzmEqtf6s2P91ai+21P8ccDDej2zk8Ig2vtkO1qJmHMN2VashKlYuw1crtbayPVLVUFT324moe+9uzva6mLUbWzlVSJja0fGYPRg8Do4rZKlyjHqMlbuLHLUOcRfMBgXiJu46aj9wDv7bVMkdYPsDjlfrdmo43QVLpECs+MX0NaNc2W6sVPNzPiqVku0+5/exALH2tKnll4inCvwQwzGBjx+UaGT9lgF27+6Nr2QTLfh3j4Ryvp9stSy+/TVWIYNGg8/X/bRKKN9v6UfuttuwxyWgaDB6EpPCqOWhXrUadyQxYMbuZwfneNGKKba1rsE62sdnulGjrGFbi+Vo+h9WjfrxalK8bTvl8tegy1CsjlylgXhSQkOO/3DTFuNGbZVv9orYZa240Ic2zb522UfDvLW8u7rKWjdc1n9zrayrriVPVkp+FXwv4jwTDazgWekFKmAS2AYUIIc+t7V0rZQP+bDaCfuwOoA3QHPhJCGIXWo0xAs6lKB/rZ5OOSqMhY+nT1j08Pd3jTOO571XFHapd4IYh4YvRnW/itjfWDKWwdsZWwvpztXvuK7/skceMTH2H73q9KdSxDeLiWR0J0MheStE4zK8mzsOUtnubL7bDpEBPqaTZPuxqUpk3Tm+kz819693jE66zKJFo7jRxdaMqvUTIYjbz1wWaGDJzEDdc9yr0DXG/c7AtPTFjFfZ8v90tezhAG9699/2GePeHHY+2077rtdUY9/RcGYeCxR76jYpnqlilL26lL82KEQzYykdHp/oz2JOnCvTHMiNFgJNzJ9kT5iRPOPyrnEq1t/oIe5dp0q4bSk0CZl+p6qsHfSJteJMyLezZT8qx1T7iciu41xEYfFrPk54buTzJ0yFdkDe3Hj60EDW9/gGVjbnQZ3yAERoPRTiMPkFNCUz+cTrSZKsz3fY8Kj6ZEdCIb07S0xopVEUJgEAa71aDrH+7GtDYGKqTaa/SmDarK5K4GO6F4Uy1HISIuxbrCoXMnq+BlXhmadMZEr5uf5Nwf/+P+x63TjU2aON63NLnX8nlDo0qaPVd+DU14tqaBynXyKpdra9ErUCm5qvWEE8ebJpv0edHWdybG5JhxryqOtrJrnXwTAHIra9PCJxK181/3L81P96c6jVvcKKjQVFsIscHJ30YhxAZ3CaWUh6WU/+rH59G8obuzaOwNTJVSZkkp9wA7gWb6304p5W4pZTYwVY8bEngjNEWFR3PJS9cT0sWH7vP+CUzu6v1jvO/9+dYfNnl27PWg5bh62dq8+NpSSsbYG7c0eu8zlr91OwAT+8Xz5T0p5OqreqQBuj4/iU/7xXH9k/bGlt8MrcIPD3nWXthiNuTO8WGBhK1c2anrfWyb+jT3j9VGylFhvhpEWp9g9mVNaMoL0BAjJjyGhAj/rqOY3tna0GJLpbiJCVFRXujQje4rQzgR8g/X1aSlixWt7crgQYADiG2ijeL3tPReYMl24encEGcdHMwf2pgpHQ1Ex1s1lK7Kc0q3swqv4Vs7LgjmGU1psrZBEebD6OG81Q9c3E2Obhh+a2f9eMamuvah5i239xzFqMlbqJxSi4G3O9r0mTG4GPj1Gv4uX96WSKuXrXseni5pYG8Z+PFWe+1GmK5FtdVMm7WVu1Pgwbvf54XPNhMVYT9we2HE77w5frPd7JzRiSaoTDPrQp0wG4HerPmq9p+2sXHzqu0ctOMXI2BefWFxMSH9oFfJ09tAdoR9Xtds1bRJYXozX9wq2mInmhTn/P12Nliy7dMyI6z1cb6U1l/m2VSRs3dDuBK6o7TwE6W1Z/Pq6MU898QM3Cjfig0F/QzsAXo6+btR/98rhBBVgYaAee3hcF34miyEMPdkFYD9NskO6GGuwkOGWS08f/EvePmQaFFUAAAgAElEQVQtz3OxCubVUUsZ++4ar8uUGGtVm0qbD1+EBzsXgLo1WnHvjS8C8O4LK3l95N9EP/oIP7cU1BvyDJXL1OKdF1ZRpoT9Y3j50T94fphvTtpSJn7ArKaCn+4p6zmyC25qcA8xEXGeIzrBzk9kjKbDXl+zWHnTsKNatHXpZ3iE+0YXHuG5LRxLc65+NyNKaHV2qqSBHeU0LV2YZYWBb/XYvceD7P/pZYaP9N4zdSkXEq7547e7LDw9dAqvfLyZsLBwy8fBlebFYpplcr1Kyn9Yt0cyY/RB0yTaWjVnPbsNczhf0WAVRNq0uc3hvL94YUA46z95wGO8hOgSvP7SP9SuWM8yWLrQoSG1Zs5ixBhXy+ttpR9dkPJCRjHoU54XI52vDG7cwKqlMdisBvTmW3/um5e47t1vOD20DzObCWr1HehFKvdk67amrgZsF2IMbKgqKHf3MMv9mHKy7eKs1u2f8k+Fg72mKaeRVRN0/egvebuPgWPTXrFGcDZQclHnydf15EQ8/HddA2+iFysK6hE8W0r5X2EuLISIA34EHpVSnhNCfAyMRavXscDbwECct1eJc4HP6TMRQgwGBgNUruzEwUwREGcy0P/9P8g4sQl3Y7k5d5Uncu1hdlY18PS3jurcvWVg5f0taJ3WDRY67iMWZghzUHd7ixAGvm1voNk2k9syuqNn63u5vuXdGJ0YmheGZqldqfTxPEpFl2LXZ5oB4+VwiHLjY7P0tY38VwCbllS1Wj1eH9WOnm3v91/+heBgMlQ47iaCkzdG2BiURie7F0RdrTyypc/94zkz1fX4qH2/ETy07zcG932F6NiSnM0+i3hD961UANmzW7pnx5W2uFrlZr6zC9XsV5XlGTR/Xq7czFk+sG6WlvsbKa3XEj68X/GR9nYwB0pBRdtNCARsqwC19N19JtyXTG5uNv7yu/95FwOmaolMe0Iz6M/gY6/ThgsBSMolVKd6CUcj9P9qliBt63Gya1i1jlJ/qsKbL7L5OUp7u6kvH6jGpb3/Ybuzme3iGW/y7nhtXwBq9mnAxZ7PEusHD9nl2/RkbvqXHGtfG1tL232Vw6m8L4f9bavT7pWJlIsrxz/iLQByc+2FpoYfT2bPyW2wYLVD/rbToCVirO9EhZKV+ew1zTg8A9dOK4ULMahdi1tZPzuVh0rVzZ+g2FNQoWmp5yiuEUKEowlM30gpfwKQUh61Of8pYDb4OQBUskleETB77HMVboeUciIwEaBJkyYBEXYNQPkSFSlfwo1zJ2DUA7PYd2YXyVFJHP62k925uQ0EPf83mx4lqgLwS9WXqbXXj522wcCQ12Zw6Gyh5F+/C0xmysV5Zyh/LgYSLkJSjPtpJ1+w7QyEEDxzp2c7n0DhzYjaIY2NhqRmjcILlyVLlcOdiXFiTGmmjLFfkTNV6o5BvRDKCovJow2gfSUurCfoulYSFulcy2ZRkpmKvvuwTM/ZhPkiNOX/jq1vk0jFX60+IoQw0GT6b2w8uJw04MMnFxW4rM54ctwCSkRavWSfioMkz75xATiUYqDKoTwMic41xAPG/Mz7zUYx6lbrMnNh9F5oshhnC3u3MK88NJM8aT9otbV/Et5siWKOK4RfBCaA6hXT6fr5LCrG239HMmO1sufERVr6SfP6j9x8mqa6lVpQt1ILflviaDlzsLxVBPC8GMfxvFFvrOPuCCPmgonhv1n7mfrJTlbrXQGqpgLNN0gphwMIISKFEP2FEM8KIUab/9ylFdowdhKQIaV8xybc9gvZBzB7rpoB3KFfqxqQCqwEVgGpQohqQogINGPxGYQI3s5nR4ZFkVq6DiWdCAhlIktQVReYANZ1SbZz2lhohJGKSTVoVq2T57ghgCtHm791iMQkIDbF/ZSRj1crcMqPrzfw/j3+2d/JGeaPw3v3Obd7clbyzAoeXML7SLQ3dk/5MAuiAsH7vQxM6ub/6c6P+0azsK4gN9xF3sJsb2JPq5c+YtrL7YiLc+7XyNL2fPh4FhgbbYgZj6v6bMg/rKrduBtgNRqWQlAxqQY9rnX0Q+UPysSUIdJoFT4XPdWFsXd496wrPD2KZwYYaX7DYKfnk2JLMea2j+0XA+jTaN4MJmy7kDMDNcPmU3HawC8i3+4DYbph9Ml4WFdXm25eUD8wXqifv8vIhw9rglK1EtUcFj8c0YWdnDLWPsC8aCYvx7k6XjiZ4o0Isz4nVxrmrzoZWFhX0wDmxzxjN/7ZZbw01r/Cd6hS2A17fwXOAmuALA9xzbQG7kLzHG72fvgs2uq3BmhPZi8wBEBKuVkIMQ3YgrbybpiU2pBACDEc+BMwApOllAV3NuEnjpaElDOwrUl5uhcyrxPV7D9MTw77mZmtPoaBX7tI4RveTMMUBx588TeW3PMnfVMc928LBqNfWei3kaY77qx5L9hNKGhkxmk92fx6gk4btI6uz7DxHJ/crsjL5A5p3hDYIHjpxQVk52V7SOE7Y56bx3/n/mPe/6wrJXeXg+r5naDn6/+bpHagSWoHl/lad3QP3PRcQQW0sHxatna9H+Ous3/Qa8ElWv2b7ZeVuL7wzG3eryq9rsEdXNfgDp/yN/vE82p6zubBD+z+PPcv/YHkKpVp7SRmcrka/N8DRu5pOphSn08HLpEYU3SDIVumP+vamShA08de46HUx5lyzwuWMLNg78zRJoDwsHjDFQ+8/junLp/i/GKrUPR9lzBun5trqfO4iDjiiONYga5QvCis0FRRSumTbCClXILzmc3ZTsLMaV4BXnESPttdumCQGSvgjOTamu3dxtteHo92RD0efNfud1x0Iv1aPUsG/hGa8vtC8RDbL9csCsolVKRvPed+WQpOwe+3dLT3/kwKwv4UQdmTkogSzjVNuRXKwtp9pORFYB7LlI5Nxp0ZVCCwTG0ZDJSJcb8UvqAkRiWSGJXIIpsPhGaAnv95+vZ8bVe07S0DC+oZGFe4orq5llbegrbAiPQ0YAZzGgrSgITIEvx6/3KmzW8KZLv1H1QcMeouB7yanrMRRI3GMN4ZvZTYCOcDnDBDGPMf0SY8vp88XUtfyLJ6i6cBbdOa3Zj7qP02IhZD8Dzn+gtDOe2dW5omaJ1h3b3BQsXyTlJB5YTKVE6ozBKsQlNayTRgo++C/RXQ9AqrH/9HCHGtX0pyxeG6Mb30TCX2j/asGq9epvBVm11obXLwW/kbtxp4+/HA+ccBb0etwSHnsUE8M8BIWqsbHM7tS4Zos48iHzWJO/w59esM6aSjDgQ2lzt3fSvW1BScuN7RGaE7LDZNeXlcnvgi973ow3YoPqNr5ArYBtu2/j+GjE6i1Vuf24WfLaWNkS+X8p8ftVDAvOIx3Iv6Moui5qglo0p65ffL8kxCoD90hUVoys11er5N9/u4/yEj5V62cZRqczvtbdzOOM3f1s7TbGMXgH5yQQPBuWjNpUQoUFhNUxvgHiHEHrQhrQCklLKe+2RXMOaG68ax2XcDnO8ZNWKgkYgceOXrwjtFM/PR82kcv3QSZ4u18xs3julvIDNSMNNvV/cP74xaTFx4HKN2tuDeGZcCdNUATsP4yKC2TzCo7RMA6AugyBOat+vZQ9Nptc55p+mJTU/25L2ds5nvOWqBsAiifvD+XlAG9X6Z6am1GZLumz2PxcmqNNGn9u3+L5gNR1IM1NyTR16ivQbkUBIsvNaA4xpae8KN4Szq77hWp9pDz/J8uWd4/t5n/Vja4GO29/JqoFNAlxGWrjJ0ZSaOJQlSTknywpy/X3ERcSwZpmmnzCviztpsWF8isoTzlVQWbPa069CSI3+tY32XKhT1JibGIf1ZSDYlogIzNeqJwgpNPfxSiisQWYBh4qRh88jKuUzm14W1hrLyvztc+7bJjbJ//O88PsfBGDIUSIrSjHPb1b0JZnwX5NKEKPoM1NPtX2TxuoLtcvTsDeN4tsgmnQiopsl2uwzbBQRhhjD61b3H5/zMU2YUYPNgX0kYNpwR6R/y0c33kTnO+v7uHj+UnilNXKa7EAVxl13n26VWT9o83bUAjl5Dm5K10lhfAea1j6Ot5+iA60UlrghhWcnC7mE9mb30N95q79oru5lPrzNw/58myg1xvVeiAzZNv1eHYUz4MJfHrvXNLGJxfSO9luTx7KAwvPXcN7jDcyFlf1sgoUkIESelvODOV5M5TsGLVrxxp2lyRUpsCnm5uWz3EG9idwPno+GzghXNQvmb7B2ol49znNM279qeZwx+o40yBG5nXIFV8+e9S8XgYRLaaggpZcDMz7ZUgvPRwnsfX8GanvMDi5pF0X/mJSJqFP008e1Nh9Kn0UAijBFk2ITf39j9NkDvDSvHuVPH3GqKrzSBCaBa+br8+dZwnq7Ry3Nk3ZDf5xZoabu+JgwcI657lePtHqN0jOdVxHc9PZlf+85mZP3+duGXw2FXOc/2tkaDkYebPO5zGa959Flub/0qc25z5bTUkVASmKDgmqZf9ZVvvwJrpJSZAEKI6kBH4DbgU6AoJ/5DEy+m59yn99xAbnriI+IK6OnalvZ1PXsDPt3vOqYZf6D67V50SEVNAHzkmBFIPhs2lxyTG2+aoYiU2EpNY+8wEJELXxTBpeY8VJ+Skd5v97LrxsZwchHnr3e/SMIfmGwEbF+1Cs7o+ch4Hmr0LDOaBWZH9YJofCfdO5uLuRc9R7zCEELwQENHz+fOkPn+9xYbax4fUwYOo8FI2VjvdlBoWL45Dcs3dwgfMTKJ1NhK3Oo0VeH73z51+9Onbn/PEUOYAglNUsrOQojr0dwCtNa3PMkFtgGzgAFSyiP+K2bxQ8qCCU3e7MXVvlLRf3TMDOkyit+qNaB3zVDY1i+A1tmR8V53QKGAdXWXffgLD/9ElovVNIXlk15TfYr/cN+3+eSaT3iooQ9TAgWkVEQpNM8l/qFZxdbM7bfQb/kVBVFhUVekJsmfmPfwzPSxmsz2n/4QwEOZuf/nzm91CK+OCSAFtmkKxeX+oYBluXBewYSmUFNFhhvC6ZMamNF1KJET6V9nkEWNyYWGs1ZSrSCUxjmx4bE80eSJgFwrTFiXjV7pHzqF95SsWIWx1xk4dE0CHQqQ/kpz1+ALstCL7a8MCmsIrsjHysbR1NiXiUwN7BL5q4MAjnSKWd9o3VA2qMUIIWx3XHbuzbg4cCkCov3vA/SqJTG2FG2Gj6VV+VYFSl+U3YJJFGyLpEBRzLrEIkMJTX6m1aAx3FZ7JAs6FO9521AksP1J8eoiLNNzgdjmo1hgfX5HkwXV9gexKIVg5H0RJJ/M5ZtgF+QK4ubUm31OIwMwPTfgcSNCavuDXU2ciYWSmcEuhfcUdPXcbOBBKeVe/xan+NO95g10r+nodFChKEosolIAjeVDG+vXbdud7Wjx74IglqXgTL53FrvO7Ap2Ma56rD7Gik5qmnf30pAe9BRVyaZ1CGPwrIL5lgsGBZ2k/AL4SwjxnBDCG3eqCkWhkbpjuiL3XA0UN03TiZLa/9KLhQRXA7aOW0d3fQvQXCQUNyrGVwzowg+Fcy7GajZyl2OLbnKmRGQJSkaVLLL8C4vZI/heP++A1CxKs7vcWtG/+RYVBV09N00IMQsYDawWQnyNjTWFlPIdP5VPoXAgSln2OjDh/xJJ2XOWceUrW7eKuJqryUYjEBMewyODjUQmJXNLEIukKL6cvaM778V/R+ObPDuOvNKJ8LPKyajrbs4mGCgORpmFEZtzgEwgEoinONxtMeJQkmcHY1cfyhDcFRPumMqc/+aQFGvdLDj/LQx4TBstrwxguYKF0DviLZW09+iV/p9TvUT14BZKUWwZ2upJPosvyT31Bge7KEGkaDpFc64JpjBAW/WwqyzUCFGnRQW1aeoOvAPMABpJKa8+j2pFyJh+BvYnCzoHuyAhSmBEp+IlNVVOqMwgD1safNX3B0z5HTldqeiNJN6kCYpNyzYNYmEUxZ2osCiGNxwe7GKEPL821/rNggz4bTXj8XnRQKD2GfWNgmqangP6Sik3+7MwCo1WPYfQsVLHIst/YV1B+02ha3AYCoSYu6wCkf8J106qHZRyBAPz81OtXKHwD97YqP/SLR4hBCOLvjhBo6A2Td7ui6goAA83erhI859yc0km9DzPxiK9ShGgVoYpvERIZRCvUPgXz/3v4n5LCpBt8erXlZ+mq5Bf+szg4IWDwS6Gz1herYBogYqHqunJQUakcO6av3jcQdFyVRvDKxQBJtxw5S+mV0LTVUjp6NKUji7tOWLIUbxGJIHgus6DHToqoaoJi8iohCaFwi/EpKWytrpgYesov9rbOu2uQrgPU0KTovgQwBdJFhOjJndTuVezluVq3iNMoSgKqlRrxKDbjdx5TdE47hB2x6ErNSmhSVGMkDb/KlxjcV8c1FIoFIorh5TYFGbfPJtysQHwLhzCnbwSmhTFB91gMBCiQHbJ6ABcpYgJ4Y4nUKgqUCj8R6X4onCr7zgYDuXhnlpioih2BGLaKb5t/aK/SBFxtmlVtpeHjW0Sg12U4KE3EqnEJoVC4UeU0KRQOKFemu87oYcKVZrfyKgBYZRp0yvYRQkiyhBcoSgWOBnXSGBmM8HZmICXxiMBF5qEEJWEEAuEEBlCiM1CiEf08CQhxBwhxA79/0Q9XAghPhBC7BRCbBBCNLLJa4Aef4cQYkCg70URWIxpVdhWAX7vHFnk16pesvhuudGt6nW82uZVhjR8MNhFCRqGYmLIr1AodGxeWSHh685G7n8k9CyIgqFpygWekFKmAS2AYUKIdGAkME9KmQrM038D9ABS9b/BwMegCVnAC0BzoBnwglnQUlyZlLumGc/fHUZuU7UlhjuEEPSs0fOq8JniEsv0nEKhCG2sC1f2VtCEpG21kvii+xeMbBZ6vsUDLsZJKQ8Dh/Xj80KIDKAC0BvooEf7EvgbeFoP/0pKKYHlQoiSQohyetw5UspTAEKIOUB34LuA3YwioKSXrsOzzZ+lR9UewS6KIsQxREUAkBmrNE4KRXHhYokwOJhLbHIsjVMa0zilcbCL5EBQdV9CiKpAQ2AFkKILVEgpDwshyujRKgD7bZId0MNchSuuUIQQ9KvdL9jFUBQDSnbtxCc7/iSnRSq3BbswCoXCNU6WzYXyUCdohuBCiDjgR+BRKeU5d1GdhEk34c6uNVgIsVoIsfr48eO+F1ahUBQrkpNqML+BgerVWwe7KAqFwg22K1yLw3R6UIQmIUQ4msD0jZTyJz34qD7thv7/MT38AGDrHKIicMhNuANSyolSyiZSyibJycn+uxGFQhGSpJVK48vuX/JI40eCXRSFQuEW4XgUwtJTMFbPCWASkCGlfMfm1AzAvAJuAPCrTfjd+iq6FsBZfRrvT6CbECJRNwDvpocpFAoFjVIaXd3G8ApFMcB2ymhzfc2p8KmaScEpjBcEw6apNXAXsFEIsU4PexZ4HZgmhBgE7AP66udmA9cDO4GLwL0AUspTQoixwCo93ktmo3CFQqFQKBShj+30XHbzBtxWZTHP12sZxBK5Jxir55bg2s7LYfNkfdXcMBd5TQYm+690CoVCoVAogsGtDQfz6++LaVnz+mAXxSWh5zlKoQgiU9sZiL0sSQt2QRQKheIqo0GZBmwcsDHYxXCLEpoUCht+aq2Z+T0V5HIoFArFVUUo+xmwQQlNCoUNrcq34uSlk8EuhkKhUFwlhPBSOScooUmhsOF/Xf8X7CIoFArFVYMoXjJT8JxbKhQKhUKhUEDx0TcpoUmhUCgUCoXCC5TQpFAoFAqFIjjI4qJj0lBCk0KhUCgUiqBQvEQmJTQpFAqFQqFQeIUSmhQKhUKhUASFnGhtEX9mXPEQR5TLAYVCoVAoFEEhs0FZxl/MIOqa+GAXxSuKh2inUCgUCoXiiiO5VisW1zUQl9o02EXxCiU0KRQKhUKhCAoNKrQAoGvN3kEuiXeo6TmFQqFQKBRBoXqJ6iG/Sa8tStOkUCgUCoVC4QVKaFIoFAqFQqHwAiU0KRQKhUKhUHiBkMXMhXlhEUKcB7YFuxxXEKWBE8EuxBWAqkf/o+rUP6h69C+qPv1PLSllQHwWXI2G4NuklE2CXYgrBSHEalWfhUfVo/9RdeofVD36F1Wf/kcIsTpQ11LTcwqFQqFQKBReoIQmhUKhUCgUCi+4GoWmicEuwBWGqk//oOrR/6g69Q+qHv2Lqk//E7A6veoMwRUKhUKhUCgKwtWoaVIoFAqFQqHwmZAXmoQQlYQQC4QQGUKIzUKIR/TwJCHEHCHEDv3/RD28thBimRAiSwjxZL68HtPz2CSE+E4IEeXimgP0fHcIIQbYhP8hhFiv5/GJEMJYlPdeFIRSfdqcnyGE2FQU91tUhFI9CiH+FkJsE0Ks0//KFOW9FxUhVqcRQoiJQojtQoitQohbivLe/Umo1KMQIt6mTa4TQpwQQrxX1Pfvb0KlPvXwfkKIjUKIDUL7HpUuynsvKkKsTm/X63OzEGKcx8JLKUP6DygHNNKP44HtQDowDhiph48E3tCPywBNgVeAJ23yqQDsAaL139OAe5xcLwnYrf+fqB8n6ucS9P8F8CNwR7DrpzjXp37+ZuBbYFOw66a41iPwN9Ak2HVyhdXpGOBl/dgAlA52/RTHeswXbw3QLtj1U1zrE81F0DFzW9Sv/2Kw66eY12kpYB+QrMf7Eujsruwhr2mSUh6WUv6rH58HMtAqqvf/s3fe4VUVaQP/zb03PfQSqnRIqBEEqYpiV+y9K1ZQV91v1UUsK+u6tmXtva0Fu2sXEUREkBIIkA6BACEFSM9Nbp/vj3PLubnnlvRkPb/nyZN758yZM2fuOTPvvPO+76DcIO7/57rzHJJSbgbsGsWZgDghhAmIB4o08pwKrJRSlkspK4CVwGnusqtV5UQDnc4grCO1pxAiEbgb+HsL3V6b0ZHa8X+FDtam1wOPua/jklJ2mmCEHawdARBCjEIZ+H5t5u21OR2oPYX7L0EIIYCuQc7v8HSgNh0O5EkpD7vz/QSE1Cp3eKFJjRBiKHA0sBFIklIWg/IDoLyQQZFSHgSeQpEqi4EqKeWPGlkHAgdU3wvdaZ46rECR9muAT5t4Kx2CDtCeS4Gngbom30QHoAO0I8Bb7iWQB9wdaqemPdtUCNHd/X2pEGKrEOITIURSM26n3eggzybAZcBH0j2d76y0Z3tKKe3ArcBOFMFgLPBGM26nQ9DOz+huIFkIMdQtdJ0LDA51zU4jNLm1Ep8Bd6o0Po05vweKFDsMGIAirV+plVUjzfuiSylPRVEtxgAnNrYeHYX2bk8hRCowUkr5RWOv3ZFo73Z0/79CSjkBmOP+u6qx9ehIdIA2NQGDgN+klJOBDSgdc6eiA7SjmkuB5Y2tQ0eivdtTCBGFIjQd7T5/B/DXxtajI9HeberWOt0KfISiBS0AHKGu2SmEJvfD8hnwvpTyc3dyqRCiv/t4fxTtTyhOAvZKKQ+7JfbPgZlCiGNVhopno0igaklzEA3UfVJKC/AVyo/V6egg7TkDmCKEKADWAaOFEGta5g7bhg7Sjp7ZlkfN/QEwrWXusO3pIG1ahqL99Aj0nwCTW+D22owO0o6eukwCTFLKtBa5uXagg7RnKoCUMt+tsfsYmNlCt9jmdJA2RUr5tZTyWCnlDJR9aXeFumCHF5rcSw1vANlSyn+pDn0FeCzgrwG+DFPUfmC6ECLeXeY8d5kbpZSp7r+vgBXAKUKIHm4p9hRghRAiUfVjmoAzgJyWus+2oqO0p5TyJSnlACnlUGA2yrry3Ja6z9amo7SjEMIk3B407k7oLKBTeSJ66Cht6h6QvgbmusubB2S1wC22CR2lHVXlXEYn1jJ1oPY8CIwVQvRxl3cyii1Qp6MDtSnC7W3sTl8IvB7yirIDWNKH+kMZUCWKKjLd/XcGitX7KhSpcBXQ052/H4pUWQ1Uuj97vN7+hiLoZADvAjFBrnk9ylrnbuA6d1oSsNldj0zgOZTZU7u3UWdszwbHh9L5vOc6RDsCCSheSZ7n8hnA2N7t05nb1J0+BFjrrssq4Kj2bp/O2I7uY3uA5PZul/+F9gRuQRGUdqAI9r3au33+B9p0OcqkKIsIPOL1iOA6Ojo6Ojo6OhHQ4ZfndHR0dHR0dHQ6ArrQpKOjo6Ojo6MTAbrQpKOjo6Ojo6MTAab2rkBb07t3bzl06ND2roaOjo6Ojo5OC5CWlnZEStknfM7m84cTmoYOHcqWLVvauxo6Ojo6Ojotht1up7CwEIvF0t5VaTViY2MZNGgQUVFRfulCiH1tVYc/nNCko6Ojo6Pzv0ZhYSFdunRh6NChiM6/k1IAUkrKysooLCxk2LBh7VYP3aZJR0dHR0enk2OxWOjVq1enE5iklNhKDiCdzpD5hBD06tWr3TVputCko6Ojo6PzP0BnE5gArKUHcR6pwnJgb9i8HeH+dKFJR0dHR0dHp11wOpT9caUj5D65HQZdaNLR0dHR0dHRiQBdaNLR0dHR0dFpUW677TaGDBkSMs+CBQv47qdVpGdns+TJp9uoZs1D957T0dHR0dHRaTH27t3LmjVrsNls1NTU0KVLF8186enp3HnztYyM78GYyePauJZNQ9c06ejo6Ojo6LQYDz30EEuWLGHs2LFkZmZ60/Py8pg9ezYTJkxg2bJllJSUMLB/P66/7z7W/b6pHWscOa2qaRJCFAA1gBNwSCmPEUJ8BIxxZ+kOVEopU4UQQ4FsINd97Hcp5S3ucqYAbwNxwHfAn6SUUgjRE/gIGAoUABdLKSta8550dHR0dHQ6Mn/7OpOsouoWLXPsgK48ND+8NigzM5OMjAzeeecd1q1bR2ZmJtOnT8fhcHDllVfy/PPPM23aNBYuXEhycjIAGXl5jEse3aL1bS3aYnnuBCnlEc8XKeUlns9CiKeBKlXefCllqkYZLwE3Ab+jCE2nAd8D9wGrpJT/FELc5/5+b8vfgo6Ojo6Ojk447r//fpYuXYoQgpSUFDIyMhZPouwAACAASURBVAD4/PPPSUlJYdq0aQCMGzeOuLg4bDYb5vp6enTvjtlsZuHChURHRzN37lyuuOKK9rwVTdrNpkkoARcuBk4Mk68/0FVKucH9/T/AuShC0znAXHfWd4A16EKTjo6Ojs4fmEg0Qq3Bxo0bWbFiBenp6SxatAiLxcLEiRMB2LFjB1OmTPHmTUtLY+7cueTuymfM8OGAIlhdeOGFzJ8/n0suuaRDCk2tbdMkgR+FEGlCiJsaHJsDlEopd6nShgkhtgkhfhFCzHGnDQQKVXkK3WkASVLKYgD3/75alRBC3CSE2CKE2HL48OHm3pOOjo6Ojo5OAxYvXsw333xDQUEBBQUFbN++3atp6tWrl/dzWloay5cvJzU1lYysHCaMGQNS2Qpm8ODBABiNxna7j1C0ttA0S0o5GTgdWCSEOE517DJguep7MXCUlPJo4G7gAyFEV0ArBKhsTCWklK9KKY+RUh7Tp0+bbISso6Ojo6Pzh2HlypVYrVbmzZvnTUtKSsJsNlNeXs5VV11Feno6qampPPHEE3Tv3p2UlBQys3OYOFqxZxo0aBCFhYqOxOVytct9hKNVl+eklEXu/4eEEF8A04C1QggTcD4wRZXXCljdn9OEEPnAaBTN0iBVsYOAIvfnUiFEfyllsXsZ71Br3o+Ojo6Ojo5OICeffDInn3xyQHpVlc9sedOmQA+5337fyJ8uuhQBnH/++dx22218++23zJ8/vzWr22RaTWgSQiQABilljfvzKcAj7sMnATlSykJV/j5AuZTSKYQYDowC9kgpy4UQNUKI6cBG4GrgOfdpXwHXAP90//+yte5HR0dHR0dHp2Uwm83MmTOH4+fM4qgBA6hHkpCQwFtvvdXeVQtJa2qakoAv3BvsmYAPpJQ/uI9div/SHMBxwCNCCAdKiIJbpJTl7mO34gs58L37DxRh6WMhxAJgP3BR69yKjo6Ojo6OTkuRkJDA1q1bKS/cDZWW9q5OxLSa0CSl3ANMCnLsWo20z4DPguTfAozXSC8D5gWeoaOjo6Ojo6PTsugRwXV0VJSt/Zrdx46mfl9Oe1dFR0dH5w+DlsdXR0QXmnR0VBx86h/Yq4zkvvZc+Mw6Ojo6Oi2KdDqQdlt7VyMoutCko6PC4+Tqko2KaqGjo6Oj0wJYc3Ow5OYhO2gfrAtNOjoqDhgVg8QDziNhcuro6OjotBSxFoll326ke+ZqKSkMfUI7oQtNOjoqrAZldmOV9nauiY6Ojs4fC1nj86JzOZ3tWJPg6EKTjo4WHVQ1rKOjo/NHwCF1oUlHp9Ogi0w6Ojo67YeTjrmNii406ej44XZ81TVNOjo6Ok3mtttuY8iQISHzLFiwgB9X/Ux6djYPLFvWRjVrHq2695yOTqfDLTMJXWbS0dH5g2HZnw+mKGIHHNWscvbu3cuaNWuw2WzU1NTQpUsXzXzp6encect1jIzrTmpKSrOu2VbomiYdHRXS+79jS03OmgrMOza0dzV0dHT+h5DV9cjy6maX89BDD7FkyRLGjh1LZmamNz0vL4/Zs2czYcIEli1bRklJCQP79+f6++5j7ebN/oWIjhnuUtc0dUBc9WZ2LbmZkUtfxhif2N7V+WPheU87+PJc3sUnwd46Rm1LwxQX397V0dHR6Uh8fx+U7Gz0adFms/Jhc0LgwX4T4PR/hi0jMzOTjIwM3nnnHdatW0dmZibTp0/H4XBw5ZVX8vzzzzNt2jQWLlxIcnIyCMjIy2P86NGNrm97oGuaOiAZi2/B9W0amfcsaO+q/PHoJEIT+5TOzdGBI+fq6Oj88bj//vtZunQpQghSUlLIyMgA4PPPPyclJYVp06YBMG7cOFJTU7HZbJjr6+nZrRt7Dxzglgcf5PK7727PWwiJrmnqgNhqqokCbLW1funWslIOvP4EI+99ulnl1+7bxYElixjz2n8xxOpaCn+8UlO71iIcTsAIOFx6PKlgSJeLguceZMjNi/XnXOePRQQaIS1sbgEnbvz4Jp2/ceNGVqxYQXp6OosWLcJisTBx4kQAduzYwZQpU7x509LSmDt3Lrm7djNm+HAAhg0ezMuPPMLld9/dYXtgXdPUQSjd8BO7nnkAgL1UKv9FlV+e3defi/2t78j/7J1mXavg9qtg8wGynnmkWeX8LyI75jJ6AC73er9Ldky33I5AzjMPY3npMzLuuLy9q6Kj84dg8eLFfPPNNxQUFFBQUMD27du9mqZevXp5P6elpbF8+XJSU1PJyMphwpgx7VntRqELTR2E8gW34XjpUw5vXI3TPRA6G8jajsoaAOqqKpp1LavDAYClkyztHFr/E9nJKRz4/O32rkoHpJNIee1AXZGyDYNhb0H7VkRHp4WxVR4hZ/ECZAeKmr1y5UqsVivz5s3zpiUlJWE2mykvL+eqq64iPT2d1NRUnnjiCbp3705KSgqZWdlM1LBnMtodWLIzcFotAcfak4iEJiGEQQhxtBDiTCHEiUKIpNau2B8OlzL4HblmkTepodYjulR5QQrsh5p1qf0mRVjaay9pVjltReHH/wGgfPnbrX4tn0lTR1UO+yNduqYpGHvd+wcaD1jbuSZ/LMyZG3HV14bPqNNkchddhvx8PVn/eqC9q+Ll5JNPZt26dQHpVVVV9OzZk969e7Np0ybS09P56KOPKC4uJioqit82bGSqewmvrLKS2x95hO3Z2Tz7zMtIJ1gOd6xxKqRNkxBiBHAvcBKwCzgMxAKjhRB1wCvAO1LqawStgcmhPYtwmZqpXehkyokjmBkMHBatP/h5RCWT3dHq12oRXD7hripvJweXPUzKC58gDLoS2UnHmYX/Uag5uI/CC67FNb434z79tb2r06mQDju4XIjomLB5LTXVJAK1leWtX7FWwmw2M2fOHI6fM5ujBgwAoFf37jz34IN++ZwdTLwI17P+HXgPGCGlPFVKeaWU8kIp5UTgbKAbcFVrV/J/Gae5mpqMjX5pHplm/KaqwBMAQ35+K9eqY1GG4ilWIdpiOVFp/XE/HWiDazUfdTypg7dehfg5i92fvNWONepAdBJtYWuz75PXyVvWNhqJ6pJiAMSew21yveaSnZxC1nVntHc1ANg1ayI5E1MjyrvfpEwgC5zNW3VoTxISEti6dSsP339PyHz2Djb5Cec994yU8netA1LKQ8C/W75KfyxyLzkJsbvGLy1cV288VNZ6FeqQtKFqrJNp4dSG4LUOO12A6roqdr/0dxy//Ejyh2vbr3LtjS40AVD3gNvb9q6lrX6tSkcVBqDK0HleJLFhb3tXAQCn9hw5DG3/jDtqqzHExWMw+sQHy6EipMNBXDMjiWvSwR6lcJqmF9ukFn9kChoffdVlbKGnqLMMKm360nSwNzQM0ulbRiw3Kr9nqa0M+zPvI9M7x2y/1XB1kudbg9wTJrH76cUtXm7Zhp+wlpe2eLkBdN6m7xy003ZPTpsVe8F+rHt3+aXLQ+UQYSTx+j25WI+0wTPYSuiGD+2MTSNUvAgjzMhmzuI6bX/WBhWPtfjiHrk6kGdKMFwahuBStk29M++9hpyn7m2TazWJDmYL0RhcxTbsr33R4uUeuu529px/couX68FgNAKdY+oR6fttzW98ZO3WRgZ8aBusJQeVy9qa0cfU2XGVdN4JXTihabgQ4qtgf+EKF0IUCCF2CiHShRBb3Gkfub+nu4+nq/L/VQixWwiRK4Q4VZV+mjtttxDiPlX6MCHERiHELne50U1ogw6H0RH6TbAZmvemeDu0BsKZveIIdQU5zSq7NRDuGvc5XA9Oe6tqyEbl+OymXB04JEOUu8/yE5o8P2wbedQZvtyEfD1sN9BuCGfnFJqc9XXNLsNafpiKtCCG2CWtFxBVeJZsOsHMzGUP3w7Z/3qQPWdeTO4b/2qDGjWFtm1oUa08my37ZnUGEdtHOJumw0Dzwk/DCVLKI54vUspLPJ+FEE8DVe7PY4FLgXHAAOAnIYQneMMLwMlAIbBZCPGVlDILeBxYJqX8UAjxMrAAeKmZ9W1bNJ55gz10XIrBm1vGSHn8J9tBZeaw54w5uCogJSe7RcpvKTxNlFQsyR43EefJExn/3Eetfl2H3Y4pNq7Vr9M8ZMCntlh1rTtU1PoXaSad1ak385YLiGpmGXsuOAmKbfRQvcttoTkVQiDpHMOg0xXeQ7Yq7Te6AeVb1sGCjrO1h3SvUHSW0CgemlLfjjb5CadpqpFS/hLsrzkXFkII4GJguTvpHOBDKaVVSrkX2A1Mc//tllLukVLagA+Bc9znnwh86j7/HeDc5tSpoyDCaAriWikEiqt5MTNbDdFgCdO5cUeLlV22aQ22mkrNY05Hx9U0eahXCS8ejZxsA2+TXXdc2erXaDYakw/pcrH7xUc7tBaxprCw+YUUB95f2whNxla/RkvhcITXNO0XSmdbILT7iPbCt1rQPtdv8s4JTRCa4mo61lZR4YSmgmaWL4EfhRBpQoibGhybA5RKKT0WZQMBtQql0J0WLL0XUCmldDRI7/SIMIK1q5nTuM41NwmkooV2TDQfKubQ1bey6/JTNY87O/DA6qH45+8D0mQbGEAXOmrCZ2pnHM7A3y/z8XuxP/seO//vunaoUWRUGVpnZu1ytv7g44kP1tYGyk1BuiIQIt2DvOiwurPGNbR0udpVO9UJHouwhBSapJTnez4LIWYKIS4XQlzt+Yug/FlSysnA6cAiIcRxqmOX4dMygbZGN5imN1R6AEKIm4QQW4QQWw4f7lgGaFo3Ea7Dcf1BzPdr8tJx1plbrfyKw4qWxn5A29c3/9JTyZk7odWu3xJ0f/1L8o5R9m3yLc+1vjq7ztDxjeTrNepYWJQHQOmhjuFmroWhiULv/u8+ITs5hbzXtC0qnI7WD9jq0ZJ3ZKHJfLCAml0ZOCOwafK8Vc11vmlpmqrpsWRlYdmT17KVaQyddMlcTaTbqLwLPAXMBqa6/44Jd56Ussj9/xDwBcpSG0IIE3A+oDZMKQQGq74PAopCpB8BurvLUqdr1eNVKeUxUspj+vTpE67a7c7ojNA2Tc3VNHUG6o6UUnj2ZWRdeQo0WJ5rqf7Y4lTaWcuDESC2yIEs6fiRwZ21ymsc5alqkGWY7CfuIfekiW1Uqw6Aqn/O/ue9FK//iXIUQ9YqOpbKvyUo/FHxtiv/8b/eNPWSXH1l68d3q/q7EiYhsWNtF+bHgVNOo3D+RTgj8TL1djbhO93ciWPIvOi4sPlalKZojerb5tm/7bbbGDJkiF9aQy3XggUL+HHVz6RnZ/PAsmVtUq/mEqnO4hgUrdFCKeXt7r87Qp0ghEgQQnTxfAZOATLch08CcqSU6sX7r4BLhRAxQohhwChgE7AZGOX2lItGMRb/Siqt/zNwofv8a4AvI7yfjkMTnvnOpmnKnTWOrPnTG3VOxRElsrBzT2BH36+Fdg6oXLcKCD9ry05OaZkLtjIDSxUpoeeW3doZ3vwaV6EdS3Xz7TOaq0mQLhdZ58xi71utFx/Xb0nl7a+ovOE21bH/PfajvBgHDD7vO7XQVLJ9Q6vXwVnYfE3+4fUrW6AmwZFO5dePSNPkec6DTKzUuGwGDDvbaCXDUx8p2fvpWxzJSGub60bI3r17WbNmDTabjZoa31J+Q6EpPT2dcWNTSE1JYeldd7V1NZtEpMNvBtCvkWUnAeuEENtRhJ9vpZQ/uI9div/SHFLKTOBjIAv4AVgkpXS6bZZuA1YA2cDH7ryg7It3txBiN4qN0xuNrGO7E+5VzD5nBtlL/0ThT19701wCrMX7cNkatxdbRcZWqvfmRtQBeCj4ejnZySkc2tr0DtdV5kLsaly4W4tLsUdxtOLwlvCs8gg22agxAlzWeizF+1rvAm4yHvIJBL3TCkLmtVvqW7k24akrL0PklmN5/JVWu4ZJNjBKdgmvljZcLLR2DfzaxEsbrYFCgEtlt1P51nNNrVFIXA47hV9/AEBdM9+ljCf/ypHr7yBz2UMtULPQOF2R2Cy6f4xG9JltiURiWfIEhy+9olHn2etqsWRmYAsygbJVhfYKMoVR0j300EMsWbKEsWPHkpmZ6U3Py8tj3tVXM/W881i2bBklJSUMHDiA6++7j7WbNzfqHtqLSE1qewNZQohNgHekllKeHewEKeUeYFKQY9cGSX8UeFQj/TvguyDXmBam7m1K9iuPId55m+E/biI6sVvzC8ythNwfyd+XR193UrQD9pxwGrYpg5j0fuhZ2Y6b5yNqa5nw/s+UXOh+sZJ94awy7luAaUsayT+la55f+Paz9AJyPniBvpNnNP9+IkS6VRlCdtj+KiIyLj+FqMwjjEjbRHRCl1a7jvGjVZrpWaekIvZbGbLWd9xit9DsmjRTqLDJ1jeyj3UGPjgeAXlUZnAX1PQ7ryDmh60MWPkt3QYPb63qRcTB336kauNaxt7997B5x/8caJ3gUkWML3XU0cP9efuCs4j+LZ+RaZuJSkhsUt2yTpyIwWyjPnUssb9ks8tcR3Nt2Asy1zMC2JO1jnHNKyosrjDx8ACVpqlVq9JkvNVy+Ffw8U2Pk1MeGHPPZVZsRGW+AeFwIfMExrj4gOPkgSE+we/c5J7J3BF/Ztg6ZWZmkpGRwTvvvMO6devIzMxk+vTpOBwOrrn2Op7+y1+YOmECf37xRZKTkxECMvLyGD96dNiyOwKRapoeRnHn/wdK3CbPn04Dat/4D7LcQP6myCIyRLrMccjhC1Ef655Q2nLDx2uK+mU3prSSoMeN/12PLLT6xd3Jfe9l7+dio2KcUOxqW5dbaQzvurzzzivJnTymBS4WPktt0QHy3wvcVajwxy+oLQr+O4gcRV1vqW89g/ZQiP3KHCf3Rq9PB64I4tNk/OP/yE5O4XDmttapl6H115gtccFj3UbZ/QcZS8URDqetA8D5q7LUsXdbkOCQbUjVDXcgXv2sUecI1QOtDn5qUgkJYpOyhFvVjC1VRJEdWSUoPahsIL4r7/dmC011bmG6RrS+3Y1Lw7uyIR6NZMOwJ62J3RyBZ6pnda6J1/A6jQS5LYkiQLmaoJW+//77Wbp0KUIIUlJSyMhQrHI+//xzkseMYeoExblm3LhxpKamYrPZMdfX07NbN75atYqFDz/MRbffzk/r14e9VunGXzj4S6AHcWsSUtMkhBBSIagE4MnT8lVrf3bMn0bUrppGBXu0CEgEap3Nj+rrhz1woLMaBDvuvAJTRiZjg2iKIiX36vnEej7nb2AMtwC+IGpt7SvqwqdpCjbNM/2QhiuE3F9XepDiNd8z4pIbQl8sgv5w91VnEnPQTuXxp1Nw7wJidhSRkpFDzR2LqehjYMKvPhV0RW4GVTk7GHrO5Uh34REZnbYih2trvN4Ukbyt5at+oA+Q88uX9Bl3dGAGVW8rHXZwuRDRMZFXqA3CIgwoVrRJu/vBSPe8wWDTFhh3nXMipkN2+uRkE29W7q0sdyuKqSQ4rRZKfvuRgScGVa63GOqJlHC3c0XODkoWXoljxgwmPBp6SXPcdt9Ap97QeWS+796tRkGUHSz1zQ8dUe+WlOpcFno3029i9HZlchhf2/rvS8O4VXnvvoAxvgsjLlA7hnuW59rOkDTjspM4+quNkWVu8DLX5+cgunbn3mm+7Y2cNhvSaccQE4c1K0vJ1zWauGob9fEGeg4f6zvfLeA4DWB0Pzpx48crl3K5sLjPD8bGjRtZsWIF6enpLFq0CIvFwsSJivPJjh07OHqyry9JS0tj7ty55O3azZjhikb37HnzOHvePCqqqvjr009z0syZIa9Xfs0tIY+3BuGehJ+FELcLIfy2LhZCRAshThRCvIOnV/kfJGqXr0PZv+ILKvIj32LE9GjAKqMmkWqahIZHlBQQ9cNWRGHjbJu0qKr1CXn1Ea31+9hxxjFsnz+NqoJdZJ49HXPpwaB5zYX7yH/msbBlepYVpGi8zVHmuTPZ9fYz5F55JraHnqbywJ6Q+SP5Dezlysy3rLKYmK3F4BDeTtd02H96XXTJhdTfu9SvbEc7x3wafNBXx2B70znrarGVKZqHWvdWPZVO7UE1zuIbHTNOSCVnYmqj6uNqpOtx9nN/p+5IcI2pFoN2Ke9FlEpLkFjss9XIe/tZsscmU1WwC9Mh5feVKs1MRfUh7+e0W86leuG97FnZ+r4mWs/jjsfugiI7ps/WNqos9YbOajzebZW7MjSPNw6lfYWUdGnmXDHG4g5ZUNV0zayloozS338OSM+amkz62T5rDvXSZfX+vTgffR7b/eH7ptbGtS/8xrfeVcOGz0q9A1l6xC/JtjsPe/5eGjPzVfe5TpvSd5krjwTJ7WPx4sV88803FBQUUFBQwPbt272apl69enntm7ZmZrJ8+XJSU1PJyMxmwhj/FYPHX32Vmy+9NOL6tiXhhKbTACewXAhRJITIEkLsAXahxFlaJqV8u5Xr2KI46sxkLJjfqHMObvgZ858Wc/DCyAOOx7awq3qfosDeKNQrULrhZ1xBIt6m5AQO4Emq90EtowRb0t/18ZvsuP9WAKL2mIneVUPa/Qsw5FWx8W+3Bq3X/pNOw/bSf6g8UOBNy3r1CbKTUyjP82lrPBGbpQgfWE49Y7TXmTHkVOD458vYypRB89CR0BGWu9bBjsU3k/uf54Pm8XROBpNvgwtbnaLJaDj8Gyy++nq2CexIm/9qbfILkHXyseTPmkulanIQbFXCqdraoKHQGAkOa+Rq/z2rvoYX3ifjusje28zjx/p5PKq3aqxTrR8Vvf8auATb/uvzH7HZfL7yUiXoVu5XlmCz8tZFXO+moiU0FZqaZrwfbquQA9992KRy1bSGI0VtM5bnsi85ifJrF+Kw+k8mRY0gJs83CVC3za7rw/Ttbbg8J4G64kIs5aGEFE/0/wgEIfcjb9UqL8jp6uR6t7DkCpLZI3yuWr8eq9XK7Mm+CVRSUhJms5ny8nKuuuoqdmzfwbEXXsiyt96ie/fuyvJdVjYT3fZMUkqW/OtfnDJ7NkePVWnAsjOoz2wJAb/5hAtuaZFSviilnAUMAeYBk6WUQ6SUN0opm7cm1A449hRg/G03Bau/ificbV+9BoCxPviL47RaqNoT2TJexmN/4XDmVqXMCIV/oyUwowzy6+376RvKr1vIloUXetMaEyTSVBMooDXsyB0PPknUZ2v80g4Jt5Aiw+/zcqSq2Pu56LN3Adj69eu+8lUDllanXLLT52JrV3kR5r7li/XR1X0bkUT+jfp8La5/vBD0uOf+jSafncyRvbmA+yWSkoKvPvDTVIBvwG5LTVNZE628TWVK3YvPPC9sXntsaB+Syv17yE5OYcsDN2sez30z8g1Qdx/YrpRZE8EzLCWGUv+HVf3sqmOc1boFqCqnr9x61XKVS72Njns50WlsH4tgl7Fpy0PhhHXnYW2bJqfdTtakZLY+GHwCFEALrrgmNNh970jWNgq++wSAjL9cS8nm4MJr9H5F8LXbQgeLUgf7rKlruffTVlNF9vPhDfeDIYB9J5xM/rzZVB1Q3qPty5b45ZmwXWMSHWbd3WKLfAyIUj02jtoqb720cLjbcd7Mmax49y1cB4v9BL6qqip69uxJ7969+XXNKjZ++invPvUUxcXFREVFsW7970x1L+G99MEHrP79d75YuZLXPv7YdxEnHSaceMRvopTSLqUsllJ2rE14msi+fTu9nw/+vobs5BS2PvYXzbx1Mvzy16arT6HojPOJDfPuVZbsx/jON+y7oXEuolEaE8ZgQS4zMhRPqbICX7yevMlhY5H6UBkte7zYTOYIZrqepymCh9tgMLLzkbtwWOqpc0sWtQ5VfBm3kGGQ2i9r0WHfkpvdUsehjT/jsNRT/unygLwNl4J2Lr2Lit254Supwjvwqu6ten++9/PGhxdSf89SNj95j+b5ziAduKWqgoLvP9U81lT2JoUe2K1ljYslU7rtdwp/+cEvLVzU6swN3wJgXqO9nFRkC6/q9+IWeqWAgh+/JDs5hcLfVmtm3Xx/w92a/FEL4F6lk8knADrUYTxs9oC8rR0ZOvuFf2B0BrZtKKGpLGcne78KfO4h/FZAA3Nr2PfT12Q+6r8ZbXnJfoRVEPfxmrB19mmjW25UazhJK73oMurvfpBN91+H8euNVFx1Y9BzPS3lDLI06UEdOb+bxiq0y2FnvNs+LP5IJRmpyRz47aewdd9041nw/Ptsfz/4JCx0xZR/hnpB+o9KKIeyrz7XzCpUgl+wlYUGxbq/RP5bOY2CuoJdIXL4yvJMDuuttUgpvcvD9VkZmHMzcRz0af3NZjOTJ0/mhOPncNSAAQAsvOIK1n/8Mc89+CA3Xnxx4JU6gPl0JwuT2HLEWn2Nv/UnRdNRvG6FduYIfiixWxmIooM8tzZzDZnPPIy5XtHCiEYu2WtpW4J1356uQMPjOiL65fk86RLcmyUm/6q9q73/TNZjNB5+uWbPK//E9MEP/Hr3pV6NmTqmjMOuDF5xVjBoBaFTLQ9lXHcGZdcsJO2Kk8AWeG11Hfds+hnT+z+QfdMFYeuoxtOJS9X+XZYK38BvWav4SuQc1PY2K/z4DbKTU9jVYHDbdtUp1N/1AKU5LbcJcbifvbQkSPBLNapHvvyy66i5uXGB56wO92y/QWW2v/4k2ckpxB7Sjk697c/XKDPrv1zvq4rTJzTt/M8TAGx973Fqig6Q/dLjfudXbgz0uFHHZEpUGRh70o2qgcdmVc3gVYKuR2gKFY3/t6tPZMP5xwbPEIZNr/wdnnuX/hryZNL+4HPVQ+dejOWeRzSP2cJ4P+UMMVJ32z0Y3v2e9Lef8aabKw+FOCsIDQRpa2UZ1uqm7QLecP9Ng7sz+73g94jLcKre1cqCwGdebdMUq9HFFO/1LVMnZZZjtAi2v/xw2OtWlStBRgsORW4DG4xai2LfZAniTKzWbIfdgFj183g2wTU6XVgqyzDnZQXVSsbXOBC1Vpxm3wqCLUr7RVBPpsz787Fk5+Cw1IMLDHaJQeXBfol0nwAAIABJREFUmZCQwNatW/nbg/eHrrcK857GTXZbgz+s0BQtfLNLm8v9ANmCqLIjEJq6uYWgYDl/u/5UDC99RN4nrwIQ30htsFPjl0oKEhm7ue6xPQ767kKGUe9nrvFt2eBZ908sr+XwzjRqi/1d8feqZmmHq5VlgcNVRXiHeZXQpJ41ORyBmr6a5570fu6Wo0wTjbvLidVSCkoXdaUHsVRVUFapXNdpbpyNkUdocqoFuwrfgNC3WMkQX6EtDZdtVtzX03/6j1+6o1TpiAoP+pZ2izavY/+agLBkEaOllfQjAnf/eLdBrkvVCW581efcIIJomnZMSyY7OcVrbN4w176v31fquF97UI79dhMA0V9vYNvc8WyaP9XbmUsBdUK5ObO0kXvBafDM2xRmbPGeb9cwCFInGeyugPQRr/meS6dVpRFUBYv0eBLJEMtzPTcV0z0ruBHvxnuuJe+rD4IeLygMbrMxJL9pNj52a2jLbGMXX4yevOw13s/m2sgXFILZNO2ZPps90xTvp7UnjefnJddq5nNarWxddDF1Kg2oQUq2LF5AdnIK+3/+1ptuD9K3bb7pHDInJWOr8QXR9Uy8AAouPCvgHJc99AqC0+Vrc88QMGKztrCv1oB4BGxjVCO8SVWoxwaPxj2oXaeqP5J14c0iApBgLynGYHNRVxV6mx2XynpTGqC6IBeHzep37yZ332OqqkXWK++Sesm7ucpIY337b2sVsvcUQmhv/64cu6jlq9N2OKurWX/RLLbMn+qV1occcFF9cD+57/hHzjU4Izd0bfhoV+zOwXy4lH7blQG2bK+vY3TYIpecerbTpvI1YWw4DuxUBVV0Zx2x08yRi65k11kn++XNWe0zOu1xSBVa36ug8rWzWmiK0mj++JJA4STBCjHWwLdSShf7jj+JnJNmYjRFGs/VH08rqG2TKmsDl7n6FPg6bfXMbeQu5X5ii/zPkV550VfvqqtuxHzLn4PWZdVfLglZ14kFoXsmQwRCk8cxQKh+k/37fdqwYBG1o6rdBqoeT20g89M3SH9DCes2KtfqPq4SzF0u9n77MQ2JLXHSZVet//Kqe9AULhcJFUp6RbbPtHJYYWC9jCr5WK19bajNALCoBh7RiOW5SPZ16/rVRpz3LA2eoRWcBaxhhCanSghJOFBCdnIK6a8/SV1VI5ZPvWg/E6VZ6fQpdNLv040cztlBdnIKG5/0mUL88shNxK3ayb5Zvn3bhISEzxWtofnW//NLV5N5dDI7XnmcxLV5GKyC3z7wbctjUWlGYmoDfzd7mP5XPUFSOxO4nE62PLQImyqekjrKvkfbkrgqslh9oYgqVZ6roYVBxiDV2GSwBn9+pDDidHRFikCVlefWwnm0xlX5hMwYqySq1o49b5emUsGoskFSx2RrycXtPb9rL9G3NuF6z++EED8LIQZqHPtra1SorXDU1tBjZzkJu2rB4ptdHpx3Kq7HXuTn630DvlB5YdjMgdJ8KGPLkrPOI/vMub68tb7Bvqai6YHltKg7Ukr5riw8j+bA4uZ3wmP3+16I3+YfE7APW+LHqge3wSww1uz/fej7v3k/e2bOE9JqGbPbHV4AyZGcHTitVu8MCwANDyChYfcBEN1wPQifGj6mxucB0tSlcadqdporA0MruOJ8Qpldw0NMVNdTV3aYQ9sV7Ugf74Q+8Leqr/JXJa6/91p2fbOcqF+bt5TXddCIiPP6PdtOp2Lc/cgdmgKHX15PUEAJhiVPEfPk6355TSqNzy9/uhDLnx9i7YNB4ml52lxArNtgd9Jan6bqYH3oUARqjaza5lDrHvY+4luGFKrYaL0r3LZ9tdq2aT+/7DPUrS46wLpF54Xc28xurvF/xgEckc2i83/7MaJ8EN5LUQ7s7/0cVaQI/HtWfkTFxjWa+XM/e5vibUGWyFTv1OZJPoeJ3Fsv96W/oRhIH1nlC0jY98vAmETBgmSqhZeMqckY6gVRy972ppltPk2fNUwMqqp92ks95btzyfvoTU3tEcDqfy4i4aPVrLrtHG9a6eH93s9HFSnnJWU3QfPTAEN1GDsOlcY3lEBije6GJBprtP8uFX4hXZrYKVoOaYSYkSqPY0P4QMWhqA8So/ZITeNCkLQU4YSmHcAHwO8amqUOGlg+Mrp95Ot4qsr2Bhzvt95nsJawx+fptfLZv7Dptkv9NCGb58/yfo5W9Xsb/nKVcr6fxl4lhCxWB1FrHhV7csk6fS6l8y/A5t7BPdbW/J+osLfvc89dygu85h6fEXufct81oqz+nX5Z99G8eOtqyruNiuhahqIiDp97CStuOBm7SjgZ93OgRifBrH1vB3sHptlVQq/V7UHS2A1nvb/rVbd70056N9Bb0prg8/qprQ7UPvQpd5F24VzKLrmKrM/e9qa7NF6ngmNnse3950g/OpnSnB30+HIjjv97RCVoBWKN7kpa6p1Yo7sGzZMyfnZAmrnKqnmeVC1RDFuhaEkTPlhJ9aDuAWWsvsPndae1L6Kt1jeIWWJ8XU/SSqUd+3z8W8A5AP3eUZYqhxZKRmcECgHRMXGa52kxVLUqqLXEaCrxDXQGR6Ag2+PHjfxy9yWUFxYAsPryOay+6XTqLL6XfO3dF9FrVQ4/Pb4oaD12T5lG9iT/XaYSC4LHN9s9yPd8ZG+LXGja83HoQJhGh08asEYr1zDYHdh+9wkymSs+YeXls3E5nbjuf5zKy67zK8OjfVN7qcap4ib3UXkzDvtaccBJrHWy+9cfWDd3HEZH4LMfZdeWmibuld5n3GHV2KZKVQdrXWihyfDS25rppWedi/OhJ9n3xTu+vKpHpaxMMTtwHvZp43bfeVnIawUjf813ZCensOEZn9C9R7XLq5Z5hDqUQuJh7eVgKV2YszM4tK+ami5HYY9WtsqxRydS0+UoahKVULf+4WWaJjRpaewEviVt9ZKpZl3D2N011IxbS4pYfeNpzd40vKmEE5qklPI1lFAD9wgh3hJCeBbB29+MvYWY+auiwg424AzZ43sohr+zhi4/beeXk1PZfNw4spNT6LpH+6Ho/vWWgDInbPblHbKh6ZJyw3JLzjiXBHcfkfJS83cJX3vxFAAqEgM7tKSvtmqeM3arfyeVMe4GpISd44N7uqixVitt0zsrmpyvB1OTMKAxVQZgoMaqQvyiB72fa59Rlol6N2G5s6z7aFYf92xIIXBItq8D2HeW/+p2Se9Utkx5HqdN2UZA3O8zYq55/Tnyf9VwRHj8BWLqBb+9/lBEdcwedSlV3UaSPSr0Ep4ah6WeFc+tparbSPJGXOh/cLfPayZBtRvrlF8DG7rHb768zhwl5tYAlbz74/0+YXt0QeRL3vFmEbLtzSX7A0I9hMLz7vSpChQs+6vkXKPNxcHMNIozfeEt+uZV0Pe7HeSdd7qSf+sR+q8tYNyHvndiRLrbRXvdBlbersT/2fOjLyimp64NtSnDdgR/KPuV+7rbbl/8QLU7gOwPj14X7BSlfj+HDoMy8VufgbTXMN7uYsRe32Bd/cCDDNpaRu5GbUcZl1toGvuFz/RgvIZLvJq+R8B+4130KtH+3QYGiXPXvwJyR1xIVbeR5I4IdOaI+crX91nDbF3UO4yNer93fVr0OLWGskYRrEfs9k0o+mWFDm+w8srZrLrI5ySw9un/Y3tqMltWvgVA8c++DdmHq4YFpyNQIFl54ynezyPytJcYXU4nBick1h7EZDf7tEhSYrKbSTS7HXukynmpiZqmhDDO5eFsx2KqQredJ+CpB4ML+v+6D0eYkBKthQjlwieE2CqlnOz+bAL+DpwHXA285DnWmRgfGyc/GTpU81jWmKso6Xcs/Uo2Mjb33Ra53vbxN1HWayK9juxgUuarLVImQOaYqyjtdyxJJb8zLve9Fiu3JVh9/PPaweCk5MRfbgt7/oapD1Afn0RcXSkzNoewAWljfpn5OM6oBIx2M8evvzf8CQ1YPWcZGKLAZefEXxvnjRaONXP+jcsYFZBucNqZ++udfmnqbYFevm0NTkfgwKV1XiRYo7uSMfZ6xme9SYwtfGTjSAnV9qumwrxGbJCeM+oSigbMZkDROpJ3fRQ03+6hBkaGEO5qe0CiauAt6Z1K1rgbGJfxGkll273pxSPj6L87+Gza+MxSnH96IPIbaCNqEgay9eg7mbxtGV3MRZQvvICeLyr74A3fspE9x0TuKVjWfTTbJ95G6vbn6FkVyn09OI15xgF2H9ubhKNn4LLUMfBt7Q2tm8LhXtDHLVzvHxHNrHd/4sDM4zTzDl6zku0XnkxCtfJenPfKtez776uIx/z3scxOjiYlxxbw/uyZMYjhG5RVjwG//MSmf/6JQd9nal0K+wvPMyopCQDT6JE48hSB2BLT06tpAoiy1RJrVdasLbEQ65Y9rL27EnOk5d7ZcMSkpFBdmE9Urc1Pk6fGYYylPq4v8fWlGJ2K8LWrtJSoRf7jyNjcnDQpZSPi6jSdcELTNinl0Q3S5gJvAn2klK23bXsroSU0NfZljITWKLM1y21JVh/3b0U4aIjLzolrg9exucJWa9HcerXFfTXmGmqh6YVbghhTNrFuLT3xaMm2a+13p6lCcUsIFK3Bb9MewhrXh5j6w8za9LdmldXcCQe0bf/Q0r/JzpTrOdx3Mt3Ls6jpNozJ25Zhi0r0XqMoycihfgvpVZZBWe8JYQV6LdRCk4eaxMFB26xLbfgN39ubmsRByr5/0kWXWkV4bG+hKZwrUcCbIqVcI4SYAmiH+u2EBBMbm7P+6DJoN22w9EgJuit1B7Iwm/X7g/x27CNgMCkvrJTgcjBr44OhT3Q5QGNQ0zIEb0smbX+WneNvwWWM9t6PwWll4s6XIzp/bObrZI29Xnn5Pe0hnYzLfLNF67h94iIQRr9rpG4PvjUMwMX3T+Xjpb+CiPGeZ3RamLwt8ojdECiQlPSfTkn/6c0WSJrb9mpmbHyQ3SPOp7TP0cqz6XKQdHgrI/O/aHL9QGMwN0azeu4LEQ/mGWMXgDCwc9wNTRYoWpKG92ON79uo+wlVljM6scllIR0gNPoH2fL9Q0v9Jg3fi8pe4wDYfMxfMdrrvNdwRiWAEJT1UezcigYeR9HA45r9/iSai7DEdMdhive+PyZHHbHWlolRLYWR+tjexFmOIFpwU/KaLkf5JwiDL620ZR2oGku4bVT+GyS9Qkr5z9apUtszc+ODxNUd8lv3jasrZaZ7kC/pCQlff0jOSG2BJyUnm+oGtqiTtj+rDPZq12ocxI9YF9QbIBKk0K5Dw3TZQlZyKTnZ7LzkaGpjIz8nxlbt2xXcgGIVKAxhl2sUocrq9zsY7XXhha0W4Luzk9h+6UTNY70q8xAewU0q5pLC5Qg7A82460x2jjHR70i6KuCn595cfks4Hn4/1+fZ1mX1l9REaOPcqzLP90X1zIWrY5/BXTDGxAac18WsHcw0Z5h2l9EaE4+DPQPbHiJrey02HPsIpUlTFYEJwGCiNGkaG47VDgwZKWMzX1cMkFXPLS4H4zJeC3ne6uOfZ/XcF3BGJ4IQXoFi9fGhBd3OxKTtz2Jw+L/TBoeF1PRnQp+owazfH/TvUz2Tsd9brn9oqd/EYzcXdJIsDH7XCNAGSUlS6SZmNLPvE9Kp2Kp5JlJCIKRsMQHHGt0NpykmwCsP4K5HH2XMKadonOXjlgcf5Pu1a0nPzuaBZb4tsPzGYw9SEl/XvgIT/IGDW3rYM8RIjK0a6Yn/4o4iK1WD/NiPvuaoUZM475ud5E2I1yzn2G3Z7Bnue0F6VeYFjBhGg4nr7nmIyTuyGbZlI2vHNV49NHXLYw2EMaXjmLrlH+SP8QVT2zOr5ez0L/7bB0xN9y3p/Hi+4nnx8yxfWxSO862Z7739bHqX7aRX2VouWTyV8ccPIkaoBnVg+4kDOPTAArKm9vQluqoxmtwDuOd3MBgbZRtTdEfwSN/bZ/QIeuzOf/zEuFOuCXrcZYzCZDfTP7kM4TIrmg8NnG8pGpqypYu46OanMMa68wkDBpNg4omDMZgMYIom7b6zqHrzUVJysr1C6bEX++IzDRowmmnbsknJ8f870E/7uRHShcluZkT+F5jsZkQEkdkBYuKjibYWMS7zDRLMRV7bAQBbgz7f1jsRLYJqQCPcM23nWaOwqJo0JSebk9Yr9yvjE4mON9Gt6ktMdv+2zzonhYz5Y8gZZWLnacNCXmPGxgeJtpT7PKxcTqIt5U0emPJHmhi6bYu/UCxDC8VqJm1/FoSjRQSKliSgj3ELJ3OuSCAlJ5seK/5L31XawVfTT/HXEAQTeosu7I/ltcfIOG9cxPWKsVVj8Az2bq9Og3S2qO1cpEJe2WN3sPO4fgzZ8jtmjQll/rBzqOo2kp5HdmBwWPzb0vM/zGejw9Ii9yaFgShbDQl1JUTZapCi+cN+TeLgkF55BYWF/LplCza7nRpzcIP8HTk5TBg9mtSUFJbe5VvSNjktBE65pF/f1F784YUma7yRQz0UL4OBRWs5ZuuTDCxaS2Ktz/03afBI7+dzPkmjaH6qVlFMeMbfhkOgDGITjkskJt4EqsB4sYldSQgSaygYO88aRRfzQQye7QHcL5fBaaeLuYheN/jU3T3zW++nvX3p92TfMo+bXtrAgUHKdcqnTqD2ib+w+9xJnLHocS757G4u/fRv9B7UheMvG8MNryxi0PpfKJipeMQNnHUax1/xf1zwrs/NvMeH7zBkfC8GFq1lqvt36Fmu7f0zaP0v5J8zwS9tz1WzmbcwcKPM9LlKLBrhcNJn5TcM3fgb68f7xw4xmkwk9Oirea2qrnDCr3cxcfu9nH/XxSSU3scJKpuV2md9nm3jZ5xOSk42sy9SfoukQsWL6MS1d3DrCycy5+LR3PrCCSx66USuvPZJps88H4Cub7zIxnNHMnbyCZiX3Er5bY2PHXvCr3dx3Pp7GVK4iuPW3+tXx1Bc9/hsjrt9EElHtnHsln8we4NvW4Mj7rAZHmSQ4KDXPjkXsAUMNmffPRT7K4+R8IW2s0JtAozJzODip75i7MYtmnluff4Eblx2PFd++Kz3vor6Kde54PHPuejJ/3Le1zu5+N/f+dlrNSTGVk3vsgz3rNsFQtC7LCNgYDocRLau7Oki6kOfM8dZ3+wkLk4RJDAYEC47gw6sBiNgimbnlECTzwPjuzA6Q3G771WZhyna5Pb7jlyLtvfq4wHIOzM5ZD6A+qf/yq5jNeJwqNh1sy8mXXqKiS7mg/i2RHJrJ0wmJh43HYB+Q8bQa2CggNr/l5Vc9qy/h136jB7eCYdHmHeaornoL69w9Jxzuegx376LpceG95btWZ6t9A9pofsHgPiP32JM5k5GpG0KW66Hw0OLwmo2c04dzuzzbuXiV38mPrEbx6gmlGvm/JvVc1+gpP90EILyPpNwmRpoctUaFHUUWE9/7qhnYNFabNFd2XXmGG/WoscWkpKTze4rZoS9D0sX35JgnOUIsdYKDC47pt5RxFl8nq8xY8d6P1sbsQKSaC4K6ZX39xdf5N6bbiJlxAiyd/s8NHcVFDDv6quZet55LPvyc0rLyhjUrx/X33cfazc39OYQCOkixlLpngAK7Im+Sh68PfzG4q1B8wxs/geQQmA3wcTM1yj92810eeggY3Z9TF2iJFgoqnlPLmf70KWIl9+nZFQinnCPUdH+Uw7PoDX4qbUcd3mfgHLinUa0ghpqkZKTzRB7Hfu+mYLJZSXKXM7Qgu/JnXIJGEwcOH4YXVUysNEiaK2oEAajkfPvVNTV1hgD4EI4HEw9+3o4+/qg53Xp2ZfT31xF9YG9pAwO7HSHjJ/GkPHALRPJTk5hzK7AKNHqss56/GPW/ZJCL/fyfNL0eQH5KhNBmBQBSThd9B6sLH+NvXQRLHnWv8xuvdGax/R44QVcVy3ytq56B/CeH/4Ha1Xw+Do5/Y3MKnOybbSBlKC5YMyUExgz5QQAjrnyjhA5WydAWkK3Xmg5vM+7ZjEr3/uAQQc8Nx34TNXGSxK6xZDYM5HaMitCSKSEaHsNg0ePYvBoJUyA1vAmH12Mwaj8PjFxCeyZO5iowcNCthXAtM/WUHm4OEyuQGzRXUkwF2NO6E+CuRhbdFf2nzeZWXc+zu93XgymaMwWM30qfPGanEaJ0Smo7+miR7+j0NoA5pbn55I3QVnePec7ZbuZj65Wnpg9I6KIm3M8qVf/mZQBQ5UT3niarM+ewWUTxMSbmHzaEDZ/uB2nSotWdOVcBry3JuBaZyx+mfThLzP/ohtJm/0mZZ//hyGbtSN4Tz7zakoP5sJG7Q1fU3Kyic/aQt0riqv+9PuepfjuRUTba4iym0lI2IxjwBVYzMEDddZ0BUe0ICVpUMCxroNHkPqx0g/mXDyZ4z6+l7zkGOC0gLz2GN+9Fyw8k6Evfut3PH1KIiOH5JP4ueK8EKp/KH36LuZOVIS86AR/4bXw8jnMvutJCqZODzivxwXXUPxjFAanmWEFP7LvqFP8fhOAo69bHPS6wXtciQEr0mXE4LLhjEoE6WJE/n/JH3EeIBiR/7n3emN2fUztQ4uYcvFn5H47HoC4Loo0P/+BN9l33ibqLtTWjDuNYH33UypzssHlQhhNuNzaHhEXh6xXRS9PSMBVbwapaIu1Ar56iB42lF7XKSEu/Jb9wG/ZL2v3bjJ37+a1Rx9l/datZOXnM23SJBwOB9f/9a/8a/Fipk6YwJ9ffJExw5RxICMvj/GjR/tdz2Oo7hqUhKO6mK5Jw4iKGY3rUBkjt6WREhfP7+9+QbeWMc+KmD+k0LQntSs1g/sx6es8pBDeeCmmGJ/QM2VLTkD0azWTFj0Aix5AbQVjiNYwUgTiu/XUTA/1gGphcq+PqzUB9eOGcfpNjwJnUnVwH0U8SfmFc6jdtp6uFcpAV3JUFKYZM4j9YS2JqpBStiipGUG7uJ+gf4kka0Yvv8Gr9NI5CFOUX1p0n96QX8KAPiMbFhOUrhoCU0MyhgjG7wsv9BUPS6DXNqVDGJ0yK+C4FDBs8knw09v0He2LkDHjwltZX1JEj+d9M924RI1gecDI1Dn8OiqObpcvAKBLVDS4xauk1KnU7XBiAao0Th9/0qWQ8T5jr2k5z8a4E+bC8p+934v6+MdDagrxXXt6habaLiAXXkef8YpLuT11HBxQopB3SewF+Ae4yT05malA36O6MnRCDOPmDGDN2z9hPhQ6Vg+AMcp/QDrz5cgCN3bp1Y8uvfqFz6iioVGuOXEg5sSBVNRM5tSkQZy0XNm245vz/Z1wco9OZOwWM2XdetC91wBNockYFfju95txCmz6hO4XXsas6/w3UEiZdQYps87wSxuWIik5+XTv93lLXiL7PeVtO9RfePc3BEi99BYApp53I5x3I8suH8tpWyWWaCie1JthaiEqTD8zcMQEtvQWOC6Yz+xjT2DYb1n0cPd9oTR3NX+5BsdHHzDjh3S/rTI8lA0wcPpDb5P7sTLon/rnZ1mTeQqpD78YkBfAEudrw1MW/pM8t9CUP8TAiH0uRmXWcsz7L+Ba6mTjU/dg+eU7nLFxDMwKDOdQb/aPndfv+68pOX0+ACc/6B/6JePUYYxfoQQ4jk3oygm/3kVpD0iqgCGF/qEKbEsWkpIa2M/Evv8K9YX7kd8GHAJAuJzc+tqZHFi/muiufUkaPxmnw0He+NsZUriKlJxsspMXeT+rhcrKJTdS+d9XOfUEXwDNIeOnUfHdl6xdchWjt1azb4gRj57OFqesahiEAdTL40IJFCkTErxCFIAxLgEAe7054gmZlleePToRe1QCDz97Bw/edhtCCMYMH07WLkVL98X2rYybPJnJUyaCTTJu3DiizGZsdjvm+np6dutGzp49PP/+e5RXVDL32GO56ZJLSOjeh4TuPqVDTJfuRMUppiEpX6xg27LF8GTzN0eOlD+c0CQHJnHS6z/x34fcD6AB5OiBsOEgo1Jmcdj4b4zuDaokkiOzhoad9XqIwb/jrBiTSI/cWu9MuiGGBhGJgwkxHowa+wYZo3yCXreBQ+jm7uT+u2AO5CsdZ/cbFnH0xTfD3+CXf99H35eVQHtH7rueAUvfoiYeRn70KaXzL8QZLSnrG0f/knocPf3XKeY+HBhnat7L35H75jPMvvm+oPWOhMoRCX7fe086GvZtJX9qb0YEmUUDuFRt23XAYM08x15/L4ePmUfKRP/BcOZtS8lWC03x2hE0jFFRzP3aF7zwjOXryZl7DAOXK34SwyZOZ+3pkxhy2S0B506/ZQny5vubvYmymtkPvUj2ct9TGRc6oG5EdO3aG4+J5bjvfia+j08gOe2x99ixbhI9/vkvTpk6h53rjyFOZaaQUKEEejn9Ft8U4sIlgarzgqFGhhY4qe4OXd2zQ4OWt2Qr4fGeO9x7Ii5jDEgbo48dzMwL/AX+mHqfVuXXsYLpO5QGHp9W4xWO7FGBAn3Cmy9QnecL8Hj8rY9gvfxOUoJMmhoS3y24zV3ZScfS990g25fg0z5umNuHURNPhM0+d/VxE+dhRlvTBGCKiWH6uiy/NKdBYnSFfmanLbgPFgR/72ev9o8nFN+tF2d8lhYkNziifcOR3x6RvbvBvgoOj1Pa0WA0MuPep+FeJVCtZ3JriYJY909nw9+jrsewkZhW/4i9TsO+JtZnC9qtm7KUGR1E0Jx05e2a6cOmHAdTYMhcK//58yrl+XK/8waDk1TLe8CpDJ55ovY9hmDGlXfDlXcHpPcYPpq6rnFANVVJiagXN/st9teG1R85RFRiF0yximdJfYbynMaNH+/NU56fRVx9I2fyDUjbtoWf1q9nR24udz36KBarlQluDVJmZhZTpkwhcbRix5b2r38xc8wYsvPzGTN8OADJw4fz9LNPE1VawcKHHw57vW79j2LuE+/Bk+83q96NoVVtmoQQBUKInUKIdCHEFlX67UKIXCFEphDiCXfaUCFEvTtvuhDiZVX+Ke5ydgshnhXuEUgI0VMIsVIIsct5XjDYAAAYlklEQVT9P3iv4yauR29iErt4o/JKg2Duq98zYMU3JI2ZQP/PPiXxZcWKf2xODse98UPE99u1j++xXTNBMPPLzSFnaglO/06p1xsvc2RA8H16DBoGfN3iArezALDHKy/H9tQERWByE6vSnhndA5bDCD1HjSMlJ5vxO3Lonqh0Tv16h9cImWLjGLeweQJTSk42M771t2c5/rH/0OfzD3CmhLHbiArd8XgMlPtMDB/CQ6sTK7/0+IA0U1w84zdm0WO4T5183LIPGTJtrma5LSkwaVHRU/s13nNU5K+3KdYnfKsFJgCDKYrUDVkMOf40ouIT2D3N3/akS5DAfg0xd1G0Sntm+TwEh4zQtg8MhvWvt1B78/mNOsdDjK0ao6MelyEKg9MGmIiONZLQzX83+rh+vvvrK6MwNLA97PLmCwz6ItCx+KiZJzL+Wv+l1ZgIBSaAmK7d2D9JW9vZt29k+wU6cBEV52+sf5RqoI6Ufl98SsJLTzf6vObQc/AYzfSZj7zJkTGJzH7qQ83jHmLsvt+pr6lXwPEuAwbTc6RGf2KKgv+7EXnH1YyZfiolx/Slx8N/w9mE1zahWwwm955LBpNSQEKPBGa8HVnMMnNSI4dkzzim6mO09PNxvft6BSYAZ1zgZCWMjIyrj294ja8rwtAgFIzBZefxx+/ns+efJ2P7FnJWrGD9F5+S6bZp6tmzJxluYS0tLY3ly5czccwYdubmMmHMGAzDhmAaPozvVvzIvKuv5oRjIw+e2pa0hSH4CVLKVE/gKSHECcA5wEQp5TjgKVXefHfeVCmletr+EnATMMr959Fd3gesklKOAla5v0eEd9sFITBGRdFtiNIp9Uoez+C5gevtkWBQDbrOCFp22F0Pez9nJ0czaNpciqcG36Kj4eBbNb4nx5x3k2Ze6d4kseFu9OpvpugYdx7/c+c+9wWOK05nzj3LaC8MRiO9xx5NQpz2IOJh0OjQwlBz41fNerjx8YDamkietZakezf/AHopE06I7ERPPdUhEQYPb9S1U6/5E1PverRR53iw33ABrmkzGZmaQErJs4ye0pW66sBtKGa+/o3qm6D7i/8GIOppJWzdoJknag++LUDdWH+7Dms3qB4ay+wblwQ5wx8HTmITtSdSjaH3mPEcdcIZ4TO2AP1//Jba045mzqJAJw6AniOSmfPlZrr019Ykl56qGDOXTOyB7c/XYesimTS3EYK1wUDKDXczduFfMRiNnPDeL6ScfrG3Xzw4IXQf1JBBE4cyfu4gLrrvGMYfP5A+g7U9TgEOnzPl/9s7++ioqmuB//Z8JzGBACZAIiEBEgIBIgKCfFYsouVVLVahFQSrPpUnr69+PGxXl9ra+tEPW6u1atVarRFaEbU+v1qNissHokWJiNqCr0VdVWIVVCRk5rw/7klmkkySmWQmcyfs31qz7p17z733nD137t1nn332Zt8FTuqiihc2Uvto4k7rQGvC3tjh0YC/+/gweRWVhMa3nbmY242VKTQ4OlHGEwlH3yX2//z0c/U0NTXxhenTEWuRLRoyhM/27+fDjz9myZLT2Lp1K7W1tVx33XUMHDiQsRUVbHvjDSZWVuILhvDn5nH8gvk8fc893PfII3gruu+49zWZGJ47H7jGGHMAwBgTz0WgFREZBhQYY16w338LnAw8iqN8zbNF7wLqgYQikeUY63zaSdyj3tKd1g4w6oRTWf9UHdUPb6fJunaMqzkOHkxsfHb6H+InOAXI9znDXQXhtpar4UWjaTFQe3zOjd1eafLn5TPhu8kFN0wXUxevYvcdfyRy/nJ8N3Tsrc287Oe8flfbAVTPmgt475XnKH50W/9JkNgFvuZoK/ccXcKQTY5jeqzCuOekKQx5MP7stBY+Ob4KGTqiyzIA86+8k78cOIu8R50hy2G10xKqp7GDSBJJXRC8eDR7Db44ZoKJF18V9UE8P/6UeXAU9uaLVuL7yZ0MnfYFSucugC4sxqnEZy1T/1ciVAO1m6LXLX3if/Dnx0/E3Pq8MYac3K5f8gcqBxB8s+skqn3JwBEVTP3ZvT0+fs5P1/HqFauZeckPCRYMgHMuTep46cR9ooW9E6oo2Za4MhM7TD13aXzrWQtzro3OKg0WdrSOdUfA/vB+8eItKsLk+DlseFm3x8Wzfrd/D4R94AlHt3u8PoxfkMJByPuNeMNNHPB+TsGn+2jyH8b8Y2ayaPJvnbIxriTvbHkB70HwHF7M5s1t5bi/oYFnt2xh1Rln4PX5qa+v53f33Enk48849guzCeS2ddtwA+nuoxrgCRF5SURaTCKVwGwR2SQiz4jI1Jjy5SLyF7t9tt1WAuyOKbPbbgMoNsa8B2CX8eeMx+GorzqOudWnpyc9RyJKE0COzzGZFjQ7N1nNslWEvzKXgtt+0Vrmk8STuLcyedklAFQtazvtfMTkqBNjQa7zgPb1nVtJ0gwYUc74bTuYcEHnM1baU7XiQvzHOdbC7ixNTcsWcXD5ot5UMSPsrIn2XmMfdubkaA97YCT69x55ziXdnnPqzzcw5bIbui3nDQaZcn3Uh6Azn732HI7TAy42nfe8U8GO8fFjqSXDhHMuZfTm55l+WR9bW+39GvZ2vHHzR5QT6uTFWmCcP3GVFJEzsOsQA7UPde4blQ58V62h6bjkhmGTweP1Uvv9mxyFqQeIp+v7d2CoW6+PjDH2mJOc5ayv4PH5yB1VlRJ3gEjIi7/kCMJ+RzYRj6No5VaNJ6doGMbnhDIwvn14IgcJHfhXm1AGgaDz0vL4PITKRmEGFRBsN4vx008/ZcbSpcyfPp0Rw50h8Xnz5nHtVd/jxssv5+yvL8WNpFtpmmmT+p4ArBKROTjWrUJgOnAJsM76KL0HjLC57r4F3CsiBcSfYZ2UAUFEzhWRLSKy5YMPnGlGR8z+ItU7XmfMycu6ObpnVNL5FN1Yxs93stEfMSNqCq/54a8omX1ctFAP/gPFtUdTveN1Kk7qeOO1RCQfPGY8TSdMoeSGW5K/gNuxZuvulKZJ3/kRE7/9o9bvwx/dwMsLHWvLK2PdO0/iiBnHt67H+jN4vNE6F69Y1bru7UOH686YdMXNmNIcpv53eq2YJaHke+zx8Bck7o+UMnoYeNDT4nQcMeQN7hje5K2Jmeuxjzn1TCbdWJex63fGvjHOS3zkgPhDQM05zjPkmH+/PO5+NzD+7Iuo/N/nGHdW72fnNgWde6gp5CFvdDXB/AE0W9+npkDb+zI0ugrviNLWQJkHfWAGRjtDvmAIT+lwQuVj8IVyyB3e0YKdl5fH5hc3cdW32jq5++0oYU5ir9A+J61KkzHmXbt8H3gAmIZjKVpvHDbjTIgdYow5YIxptOVfAv6GY5XaDcQGACkFWnI8/NMO37UM48Ud6jPG3GqMmWKMmXL44R0fKKlkR7Wjkewb3rVZtoURx/0bY7e9yoRLOo7nf15ktfWxHZ1AI6GeDzy1mls9XiZdfzfDpiXmyJtpdhcnrj2aHqYJGFBehdc60gZSEDk3XUy8KHq/RGJMTbFK05ivR90CvS4wJxZWT2Tcn17msDgP0FQy+YbozLH9vfifZBNie1YRE6FwgOPIH47p2H8yuN3M0NXLyfvFtX1VvYSJ5BuaixKzXPaWcbf+gYPH1XLkqu/G3T/4xps4eNJMQl3ManQD3m4si4kS9jnPu2Zf9LkXynGGgwPBtn5SHp+fQEHUd67ZA7mlIx2Nwh4eHDio2+eOJ46VL3fIUMRr8JR2H+w0E6StKy0ieYDHGLPPri8Avgd8AhwL1ItIJRAA9ojI4cCHxpiwiFTgOHzvNMZ8KCL7RGQ6sAlYDrSMXT0EnAlcY5cPpqs9idLcEhcjiReuxInxAlC57mH+tuZcJv0y+hLwXHw2/oJCimZ1DOSY8PXs0ut1ryUlHodZPWh/Zfdm+IhpmVWS/HVaDTdZ8r7N+yxaUenkN/UlOL25r8i/5XqaGnsZXKoTQgMHsf3LYxn30A7eLgtQ/YZLu6xxaYnEndxRXntcWCB38BAiyxZRvOi0aIF256u+oG3cKLcw/sWoP2d4dD6eY4/vonTvOGzYCCZ2YQErnTmf0pk9f85mG0FfEPiMIFFFJmdIEU2BAKH8+M/cQLPznM2x8ylyxtXELdcZvkCQg14wedEhdW8giLd6QhdHZZZ0PkmLgQfs+KoPuNcY85iIBIA7RKQBaALONMYYO3T3PRFpxgmTfZ4x5kN7rvOB3wA5OA7gj9rt1+AM730D+DuQfO6JFFMcCQCfM9Tb+xkseUNLmPibttHSqs6+qJPSieOPONHOg4He+370JbmzZsKGjZT/7K5uyw7wOG3L6YHiIy62MMWjyR+N/u7txL+opcfXuygsqaN0bs9mqCZKJNCLrNiZpIfuKF77w4Y9zn0w/js/arM/7JpfPnFq/pjkTDKlV+QOL2N/5G1yS9o6ksdalNrjTTIVWDxyqpNTtDJN2pQmY8xOYFKc7U3AGXG23w/c38m5tgAdJGuH81zVFSg5/VyaLv8xY089J9NV6RT/BcsJr11L3sDU+H70FZOuuc1RkxOg/Mg5vMPV5MzpGL23O0ptjJdh4ex48ca+Z/2RTgKptvg0pTdklNJLpN0yUTwxlqZ47D0QL0lOmhgaJDwsvW4QSuoRr5fcssTigR3KuMtm3w8Ydfo34PRvZLoaXVK56tuwKvHZaNlIQelICno4Tbzy1HP4YO0zFH3NvYpvLLGz53Ib98a1Kfj9NiZXCsccw2OH4N3RebR2N2AEmmdUEHjz7UxXJTF6OPOpMOwoxfme+FNty//xeY+rlCzV9Vv77FqK0tdk1ziEovQBQyYcRfWO1xm1NH7gULchxpB/wzUwLEjV1+LXORByhivDR3ZMqtpTajY812XEezcgBibc+QhVz7/WfWEXkGeVnlCSo2mlU52o36OOiR8+I9jbKK+KogCqNCn9gNyfXIlc8LVMVyNjeCNQuuAkqp/u2MM344vgq8fi9fsZ++pWau5JLCFuthPZ50ywDUb6zsKSCsbUOtHVC8dUdlOyLTWX/JDRzzzJ6K+ujLt/3yBn9tPeDERR6C80HxU/IrnSlgceeAARYccOx6m/vr6eRYuyLxZeZ+jwnJL1lH3ptO4L9WMGtIuuELr623z+lpOAddz9z7Rul0DbHGv9GY+d5GCyzMJSesyxfHT/3RSMTT4YpL+4cyviARtvZ9eEYtyZ0cvduN2i2lM+/fgAT/y6gQVn13TIwdhT6urqmDVrFvfddx9XJJB0N9tQS5OiZDneGW3TmJSfsozqS6/OUG3cgSffyY93ULLDmT+WgeOntIm3lQqyTHdU+ogtj+zi3b9+zJZHdvXoeGk3ZeGTTz7h+eef5/bbb+e++6IJlvfu3cspp5zCuHHjOO+884hEIoTDYVasWEFNTQ0TJkzg+uszl+s0GdTSpChZzvirbsp0FdyHDRvRPp/WoYvzcjNGBaLAr/6jnnBz1HGu4dl3aXj2Xbw+D+fdOC/h8/jahWfZsGEDCxcupLKykkGDBvHyy05+ys2bN7N9+3bKyspYuHAh69evp7y8nHfeeYeGhgYAPvroo943rA9QS5OiZDm+3PTmcstGWvPhqZKgKB1Y9oMZjJlajM/vqAA+v4fKacUs+8GMpM7jK7DR0q3Bqa6ujiVLlgCwZMkS6uqc4KHTpk2joqICr9fL0qVL2bhxIxUVFezcuZMLL7yQxx57jIKC+Mmo3YZamhQlW1kwEd6PmznokCc2y7qiKG3JGxAkEPLS3BzB6/fQ3BwhEPIm7dfkC+XSDJjcII2NjTz11FM0NDQgIoTDYUSEE088sUMSYRGhsLCQV155hccff5ybbrqJdevWcccdd6SwlelBlSZFyVKqY3KsKW0pCTo+TaVN+ohTlHjs39dEzZwSxs8ezmvPvctnHx9I+hz+nFy8o0chgSB333Yby5cv55Zbogng586dy8aNG9m8eTO7du2irKyMtWvXcu6557Jnzx4CgQCLFy9m1KhRrFixIoWtSx/6RFEUpd8RsME8cyLqAQ1Ee/o6XKlYTjhvYuv63KWJJZiPhyfkxBarq6tjzZo1bfYtXryYm2++mRkzZrBmzRq2bdvGnDlzOOWUU9i2bRsrV64kEnF8q66+Ojsmr6jSpChKv6PqtJXsvO1eBn3z0kxXxRUE7HClX6fRKWmivr6+w7bVq1ezevXquOUnTZrU6iieTajSpChKvyNYXEL1q9szXQ3XUMYAYA/lkfjZ6hVFSQydPacoitLPyZ85z1lOn5XZiihKlqOWJkVRlH7OmLMvJvylU/EOG5npqihKVqOWJkVRlEMAVZj6P/09eKkb2qdKk6IoiqJkOaFQiMbGRlcoFunAGENjYyOhUCij9dDhOUVRFEXJckpLS9m9ezcffPBBpquSNkKhEKWlnSem7gukv2qlnSEi+4A3Ml2PfsQQYE+mK9EPUDmmHpVpalA5phaVZ+qpMsbk98WFDkVL0xvGmCmZrkR/QUS2qDx7j8ox9ahMU4PKMbWoPFOPiGzpq2upT5OiKIqiKEoCqNKkKIqiKIqSAIei0nRrpivQz1B5pgaVY+pRmaYGlWNqUXmmnj6T6SHnCK4oiqIoitITDkVLk6IoiqIoStK4XmkSkSNE5GkReV1EXhOR/7TbB4nIkyLyll0W2u1jReQFETkgIhe3O9d/2XM0iEidiMSNkiUiZ9rzviUiZ8Zsf0xEXrHn+JWITR2eRbhJnjH7HxKRhnS0N124SY4iUi8ib4jIVvspSmfb04XLZBoQkVtF5E0R2SEii9PZ9lTiFjmKSH7MPblVRPaIyM/S3f5U4xZ52u1LRWSbiLwqzvtoSDrbni5cJtPTrTxfE5Hruq28McbVH2AYMNmu5wNvAuOA64A1dvsa4Fq7XgRMBX4AXBxznhJgF5Bjv68DVsS53iBgp10W2vVCu6/ALgW4H1iSaflkszzt/q8A9wINmZZNtsoRqAemZFom/UymVwJX2XUPMCTT8slGObYr9xIwJ9PyyVZ54oQIer/lXrTXvyLT8slymQ4G/g4cbsvdBczvqu6utzQZY94zxrxs1/cBr+MI6iScBmKXJ9sy7xtjXgQOxjmdD8gRER+QC7wbp8zxwJPGmA+NMf8CngQW2nPvjTlPAMg6hzA3yVNEDgO+BVyVoub1GW6SY3/BZTI9C7jaXidijMmaYIQukyMAIjIG58X3XC+b1+e4SJ5iP3kiIkBBJ8e7HhfJtAJ40xjTEkb9T0CXVmXXK02xiMhI4EhgE1BsjHkPnB8A5w/ZKcaYd4Af42iV7wEfG2OeiFO0BPhHzPfddltLHR7H0fb3AX/oYVNcgQvk+X3gJ8BnPW6EC3CBHAHutEMg37UP1KwmkzIVkYH2+/dF5GUR+b2IFPeiORnDJfcmwFJgrbHd+Wwlk/I0xhwEzge24SgG44Dbe9EcV5Dhe/SvwFgRGWmVrpOBI7q6ZtYoTdYqcT/wzRiLTzLHF+JoseXAcBxt/Yx4ReNsa/2jG2OOxzEtBoFjk62HW8i0PEWkFhhtjHkg2Wu7iUzL0S6/boyZAMy2n2XJ1sNNuECmPqAUeN4YMxl4AefBnFW4QI6xLAHqkq2Dm8i0PEXEj6M0HWmPfxW4LNl6uIlMy9Ranc4H1uJYQd8Gmru6ZlYoTfZmuR/4nTFmvd38TxEZZvcPw7H+dMVxwC5jzAdWY18PHCMiR8c4Kn4ZRwON1TRLaWfuM8Z8DjyE82NlHS6R5wzgKBF5G9gIVIpIfWpa2De4RI4tva0WM/e9wLTUtLDvcYlMG3Gsny0K/e+BySloXp/hEjm21GUS4DPGvJSSxmUAl8izFsAY8zdrsVsHHJOiJvY5LpEpxpiHjTFHG2Nm4OSlfaurC7peabJDDbcDrxtjfhqz6yGgxQP+TODBbk71d2C6iOTac86359xkjKm1n4eAx4EFIlJotdgFwOMicljMj+kDTgR2pKqdfYVb5GmMudkYM9wYMxKYhTOuPC9V7Uw3bpGjiPjEzqCxD6FFQFbNRGzBLTK1L6SHgXn2fPOB7SloYp/gFjnGnGcpWWxlcpE83wHGicjh9nxfxPEFyjpcJFPEzja22y8Aft3lFY0LPOm7+uC8UA2OKXKr/ZyI4/X+Zxyt8M/AIFt+KI5WuRf4yK63zHq7EkfRaQDuBoKdXPMsnLHOvwIr7bZi4EVbj9eAX+D0njIuo2yUZ7v9I8m+2XOukCOQhzMrqeW+/DngzbR8slmmdnsZ8Kyty5+BEZmWTzbK0e7bCYzNtFz6gzyB83AUpVdxFPvBmZZPP5BpHU6naDsJzIjXiOCKoiiKoigJ4PrhOUVRFEVRFDegSpOiKIqiKEoCqNKkKIqiKIqSAKo0KYqiKIqiJIAqTYqiKIqiKAmgSpOiKIqiKEoCqNKkKIqiKIqSAKo0KYqiKIqiJMD/A/Xbb3MHeKIoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for DED\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'DED'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Fredericksburgh (FRD) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 9.785e-01 1.822e-01 0.000e+00 0.000e+00]\n", + " [-1.822e-01 9.785e-01 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 7.087e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.044e+00 1.641e-01 0.000e+00 -1.408e+03]\n", + " [-1.641e-01 1.044e+00 0.000e+00 -3.916e+02]\n", + " [ 0.000e+00 0.000e+00 1.117e+00 -4.638e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.006e+00 1.617e-01 3.380e-03 -7.428e+02]\n", + " [-2.269e-01 1.006e+00 -1.492e-01 7.756e+03]\n", + " [ 7.804e-03 -8.029e-02 1.006e+00 2.759e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.642e-01 1.658e-01 2.112e-03 2.130e+02]\n", + " [-2.168e-01 9.504e-01 -1.926e-01 9.512e+03]\n", + " [ 1.226e-02 -1.969e-02 1.103e+00 -4.244e+03]\n", + " [-0.000e+00 -0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAFpCAYAAACF2szYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8jef7wPHPfU6GxCaxR1SNoGaovUqrU/ekvjqU0upefnSoanUpYra6tVqjVaqoiL1iRoZNECRChuycc//+eE5OEjlZJDlJXe/XK6+c88zrvp91PfczjtJaI4QQQgghCsfk7ACEEEIIIcoTSZ6EEEIIIYpAkichhBBCiCKQ5EkIIYQQoggkeRJCCCGEKAJJnoQQQgghikCSJyGEEEKIIpDkSQghhBCiCCR5EkIIIYQoAkmehBBCCCGKwMXZATiLl5eX9vHxcXYYQgghhCgGu3btuqC19i6NeV23yZOPjw9BQUHODkMIIYQQxUApdbK05iWX7YQQQgghikCSJyFE3qwWWP4KXDzm7EiEEKLMkORJCJG3yD0Q9A0sfsbZkQghRJkhyZMQIm9aE+7mSrqz4xBCiDJEkichRJ5OJUXxUP26fGq+7OxQhBCizJDkSQiRp1OJlwDYp9OcHIkQQpQdkjwJIfIUE5PAjJkZNDiR4exQhBCizJDkSQiRJ/czF6gVB7dutDo7FCGEKDMkeRJCCCGEKAJJnoQQQgghikCSJyGEEEKIIpDkSQiRD+3sAIQQosyR5EkIIYQQoggkeRJCCCGEKAJJnoQQeZOrdkIIkYskT0KIvEnyJIQQuUjyJIQomHJ2AEIIUXZI8iSEKH0BH8LM7s6OQgghroqLswMQQlyHNnzq7AiEEOKqScuTEKLUveFdk5uaNHJ2GEIIcVUkeRJClLqVlSo6OwQhhLhqctlOCFHqxv5hoUeYhmHOjkQIIYpOWp6EEKWuR5i8A0EIUX5J8iSEyJOWFz0JIUQukjwJIfImuZMQQuQiyZMQokCSQwkhRBZJnoQQQgghikCSJyGEEEKIIpDkSQghhBCiCEo8eVJKNVRKrVNKhSmlQpRSY23dH7J9tyql/LIN76OUSlZK7bX9zc7Wr5NSKlgpdUQpNU0ppWzdayil1iilDtv+Vy/pcgkhhBDi+lQaLU8ZwKtaa1+gKzBaKdUKOADcD2xwMM5RrXV729/IbN1nASOAZra/QbbubwFrtdbNgLW270KIaya3igshxJVKPHnSWp/VWu+2fU4AwoD6WuswrfXBwk5HKVUXqKK13qq11sAPwL223oOB722fv8/WXQghhBCiWBUpeVJKmZRSHZRSdyql+iulahdxfB+gA7C9gEGbKKX2KKXWK6V62brVB05nG+a0rRtAba31WTCSNaBWUeISQgghhCisQv22nVKqKfAmMAA4DEQDFYDmSqkkYA7wvdbams80KgGLgZe01vH5zO4s0EhrHaOU6gT8oZRqDSgHwxbpmoJSagTGZT8aNZJfdBeiQFou2wkhxJUK+8PAH2Lcb/Sc7ZKZnVKqFvA4MJSsS2dcMYwrRuL0s9Z6SX4z0lqnAqm2z7uUUkeB5hgtTQ2yDdoAiLR9Pq+Uqqu1Pmu7vBeVx7TnAnMB/Pz85KggRGE5OnURQojrVGEv232ltd5wZeIEoLWO0lpP1VrnlTgp4BsgTGv9RUEzUkp5K6XMts83YNwYfsx2OS5BKdXVNs0ngT9toy0j6/fZh2XrLoQQQghRrAqbPM28hnn0wGiV6p/t9QN3KKXuU0qdBroBK5RSq2zD9wb2K6X2AYuAkVrri7Z+o4CvgSPAUWClrfvHwECl1GFgoO27EEIIIUSxK+xlu6umtd5E3o3+Sx0MvxjjEp+jaQUBbRx0jwFuuYYwhRBCCCEKpbDJ0w1KqWV59dRa31NM8QghhBBClGmFTZ6igc9LMhAhhBBCiPKgsMlTgtZ6fYlGIoQog+ShVCGEuFJhbxg/UZJBCCHKKHnPkxBC5FKoliet9f2Zn5VS3QGf7ONqrX8o9siEEE5nleRJCCFyKdLTdkqpH4GmwF7AYuuc+TtzQoj/KC0vyRRCCLuivqrAD2jl6GWZQgghhBDXgyL9MDBwAKhTEoEIIYQQQpQHRW158gJClVI7sP3+HMh7noQQQghx/Shq8vReSQQhhBBCCFFeFCp5UkopbcjzXU+ZwxRfaEIIIYQQZU9h73lap5R6QSnVKHtHpZSbUqq/Uup7YFjxhyeEcCZ5yE4IIXIr7GW7QcBTwC9KqSZALFABMAOrgS+11ntLJkQhhLNIW7IQQuRW2JdkpgAzgZlKKVeMG8eTtdaxJRmcEEIIIURZU9QbxtFapwNnSyAWIYQQQogyr6jveRJCCCGEuK5J8iSEEEIIUQSFSp6UUg3z6der+MIRQgibtCRnRyCEEA4VtuVpvVLqDaWU/R4ppVRtpdRPwBclE5oQ4nqVcWon8/xbkByy1NmhCCFELoVNnjoBTYE9tvc6jQV2AFuBm0sqOCFEKUhPBkuGs6PIYXnQd1RfWYn5m+c4OxQhhMilsK8quAQ8Z0ua/gUiga5a69MlGZwQouRNn9SKZl6NGDTGwQ8IOOlFT+kbj9MmAgiIhhFOCUEIIfJU2Hueqiml5gDDMV6YuQhYqZTqX5LBCSFK3oBfK1B1fpTDfs56w7jFaiRt8pLOYmZJh4vHnR2FEOVeYS/b7QYOA35a69Va65eAocCHSqlfSiw6IUSpqFbAvdnOymEkdypev864n6lj7iTm/CFnhyJEuVbY5Km31vozrbX9xgit9V6tdXcgoGRCE0KUtFPh/+TbX0v64hSn9/9CYnRYsU+39sIj3LZbc2THpmKf9rVY+mFPVs98OEe3Cye2s+7XEVfV/KgvR8Nlx62pRZUUfZDY4xuKZVriv6NQyVN+9zZprecVXzhCON+hXX+yfO7Tzg6jVGz8dma+/TMPWyV1+U6np+bb/5rmqzX//vIIOj3lWqZSohIuHGPND0/nShASHv6AhS/ed9XTTYmNIDZia67u2lahZme+4s9BMtTypxgaTgtm7Tej+HlcGzb99hbRg/5Hnfc2cv5USJFnMe/Z3sx9us81h5oYl8p3bwWy+4nXr3la2S2c1I/da6YDcGT1ZAJ/e7NYp+9QMV0Dt6Ync+FQzpOuxNiz/PzeLaQnxxVhQlbSTu8slpicQV6SKcQVwt98i6ZfbMFqsRTrdKNPJTDvpfVEn064pukkxqWy9PNdRJ85x88zRl7bTjE1Ld/euoRvOvronZtIjj+XZ3+VkpxnP52eyqWILVy+eNTezZqRyufPtCR4wze88UIb6r+/n1df6wRaE7Z9CRGHt+UbT2bdJsaloi0ZLJo6mKiTuwpdnryWcUbiBSyJMejEGABSLxwi+sQlfhgXRtWvTrDln3nM/Lg730/04/wRo5Wj2x7FiQOBhZ7v3LGB/DzhX354dxDHu97GqUFP5Rouc2lec/JktbJj4VucPXSKOS8GMH3Et0SFZiVrf0z7H7vWfmuPbc6La4k8dJI1345lziOtiI0+6nCy9T4NpONiCzUn/GnvFvDcw2z6Y1KhQ1vuP4Ree6DXvjz6z3+S6e+3AWDvutn8Nvl2/pz6IHNfvzHXtrR1yRG0y41c9L6HS1HH8p1vRvIlrIkXCozvWOgxLh1/lYy3/uDbcc1Jf/EHak9YRsrFYxzdMAXrpROQnsLJk1s5dmJTrpgiQmOYOSqAX54bxIY5Q4wnZa8Y5siepcx5zJdj+/4C4O/5zzD/vtacDllj3PeWh6jwVbz/SgsWPtscrFaHw8x/vhfR97zMDtvyBfjx+f50/DWSxZP/V2D5M8vg/3wAWx6ayFdDffnj0zsKNV5Zokp651hW+fn56aCgoBKZdsyZSNb+cJQ7n+9CxaruJTIPZzu08xxrvgll4LOtad6pdr7DRoTGsHz6Pu4a255GLWuUUoRXH8+6no8R2voZKlVZwbBPC/cas+hTCSz5NAilFPe93gnvBpVz9NcWC/Oe+Z10d2+qeHnQ96HzNGx3H8kJZzm4bwU1vW9j2Zf7qXfjau577SvHM8lIBRTLZ4dy8sBFTNYQ+m6YybE3H+XO4e/mGnzpF8PxrFGX2/73UZ5x//TiQDqtNhqWfcNzXyZaMestbvjqT07UV9y+NjRX/8RLEbi4VsK9UhGWq9aE+bayf71QrT7hXcczeHQTvJvUIePyORZO+D8uJz1Mxz1f0nHbSg7f1I7feyjGjp+PJSWa4wfWsCTgX4YEaGKqNWdf+zFUrfY7Hq5nafX7kRyzO+fVntA2z9A6eB5Y9nF+0A2kXYpm6Fc7iI86QOWaLVFmF85HBLP2uyNciqxK045euLksoO6UP0moAM1WLsF/3AN07fM2B7fWZ+Czral/o5WA79+iWvXahOzZTbqOprLHVBIvWlGWdNxj3iWl9mX6r7MSWR3qXTLiiX6pP95TA9jaeTzJnrXxSDpPhudH9FrvOFlvGRLMnrU72bokiUaH51FtdDvqNWxE7aa9UeZaLP50FRlpbiTHuQJQ+9w2Wh/8KdcyTU2J51h7480y8R+/SkLqGY4s/5Uu3fxIS06g66t/GMt8zhgatxrBhgUXsrYRrUEpsFrRSRcJWDqLepMWsL7bOCxude3zTeBnuh7MOqbU/msai/yTSE+uRIWk83TfORGA8DZW7vl5FwmntnI5uR7LvzpOxz1fUjkxMlf5z3m1J7T1M7Q+MI+jPntoeVs3LiXEcfuIX9n+1xS63fMWl07tYfcTw4isqeh8WGdb7s8ycHgzmvvVJfpYABH7l+I5LhCAkEbQOiLnvILuq8rQj7Yy+4X1WDIcJA/WdDrfFUKXe17Bcvk8oV364mIFn52bOdG5BwD7H65F32ETMbtWwKtRF/uoGxa9Tpz/ciJaTYSM6lRIjqb7jvcdLvO8BN2oiG3wCSY8Macn0WfzG/Z+x+/MoMHApzhy4CJnD/XBZDXRac/nBHeKpHu2q46bWimeXrCdr4d3pUJyOxLqPEPD9kep5etB1eeyktSzY26n/5gvSIxLZclna3FLWMIjU78mqJ0vFVPhyHMDufvlaQT9M4uKL00j1a0KW7uOBrd6dLzDQnz0ChpMXoPrL/NZOz+MG7ue5ZYnxgEwa8xqrOlmTOlJ9N1ilMHR/qeolFK7tNZ+1zyhwsxLkqeiyytxuBh1nAoVqrLsqe+JqdmWxm29aHTTTho060mNui0LHD+XzB2WAynJCaSnpVC5qvdVlWH3+t+J+b8J1Jz4Lh37PmrvvmX5HKrX8cGs2+Ub46zRAVgtYDJDtdiRWKqYGTIra+WPOX+Ebf9+w51PTGbey+tJS7Zg5TLNOm8lamsgfd+eQ8OGN6LcPIkIjeGv6fvwarCMAU+PZPWMsbjXrMI9Y37iwNY/SIo9j0+bnpwf/ASnR/bh7tGz7fNZ7j+axDNHadL+LvZtuYl7X+uYlbhoDdpqBJnNvJcDSUu24uquqNtsPh7VfBgwxNipa6uVmc+tBpMrWNMZPW9QoepzwXtbuXTOaCVxrZhAvyc0GSYT+1bNJ+b4Czi+AKXpHzjGqPcu75Li4U2F5Gjqdd9AdOBaOu81sbM9dN4L4aPbcW7/cKxmVwfTyWDUzIEkxl8g4LvxDH5pNudO7OLSoCH2xKL+sencuvQnlj7fB7NPPR4av5Qlnz5G40Vx7O7wEh33fEmj3z9mwwtPctNR7Af7o2MH09RB8qStVnasmk6Vl41lUdCOz5KWhNnNkx+GdKFzUM5Wmexlbxb+Pt7xObsVdIAJ7D4Fq6tnjh1xdgG9vrQvz/4bX7Z3T57+Jh4vfMLRDh5EVJ+CtuZujTFZ0um78aWc0zK7giXntAL6zHC8rWpN//VjcsZThGEBDjaCM40dl2FtnxmoPPYRJks6PYeepUWHQXz/Si96bsx6M83W22tTd9d5fLLdFqR/mkzcc29TLRHW9ZiCdq0I1kRahb9Onaic88izDGTVWWHLWdCyzmv5FeRqxwNY13sq2pR7W1PWdPpteMnBGIWIp4jL/WrH3+Y3jqSKRkLrmXiWrkF5t9oVVEcHn+1K8pa2XPRqS40L+6j7QHVqfzDF3v9cNagTa3wOb/YIkfWMHxzxSDpPN1uivLf1CPv4F73a5VmGYe/XpVKdVrn75SHzONqk01HcqhxmwCNTJHkqDY6SpwUPdqTDAeMAGNLSxIN/hPDLq4Nov+IkQY81wf1sAjcFXiCgz1TABZSVnptexM12G31gr6kOD24mSzq1mv6M3r6H3l8tZNHH59AWDdZ0PL2n0HXJWQCaHwgGBVHHYljy6U5u2v8lvbet5dSxwzS8oRknQjYSHxtF2x4P8PcAX5qczvugpbVGKYXVaiXy+H42zXiT/q/PpGrV2mxZMJFz27fQfpPRxBzUzsQd01ZQs7YPYS19SXOBLX387cnRU593ZvrILty5rWQOEuu7f4LFtSLm9ET6bHF87T/VrQoHWj1Fm9D5uKfFE9LCTJ8Zv3Nh4P0AbO7yLqme3lTxqkDbW89xeG8gLP+XJufhuI8HbSb6s3ZmHpeAtMbr8qtcqPR5ngeE52f2NQ5Stv6hO1ZSqVot/voin2v8tnLmVw9AsdRni9Ax1I82via6Q0XbrUTZE4vGUW/R5EjOs+nsrR+ZO7u8rBpQkUqJGfTYmvs+Jd/wMIICl1Jx5DsAbG6l6BFqlC/eA6o4qPr8DsCOyljU9as419WC+ud1sIXcCVhRDsz5rjsF1F1eB/rsLTm1Y3Je2ypsnSVUrM9Ov7cdDps534DeU40D85Ws6fTfUHBydbXJxrUmKWDsb7Z1Ho/FxcOYltZ4JEfRce9U3NPiHQ6fff9UEnFddX06mEdhYsnveJZ9fc5ruKJQ1gz6bRib43iWeYWgWdfT9H/icf6c+j+63PMibhWrEXPLYIeJX6uD4ZI8lbTmVTz0gkXfUfHF9zhT20StC1ZcC7jF5Vo39oL6J3hA5WRbIuDhjXtyND0KOOtOnPYN2xclUu+MPylup/BMsWAa0I8b52Xd0BddDbxj899pFraM57zaE9rqKVAm+04FbaF1yPxc04yp1pzgNiOxmt3sw5osqbQNnk2NuMNF2pkYZzU9qRe5iZaHFxY63uzW9f4Kbcr9XtjMDbcoZcu0t21TEjyGk16hWlYcWuOWGku74JlUTow0DjSd3gBlzjHdzrs+YaffO4WOP6Zac/a1HZ1rOu33zaBG3OEcw5bUgak4XUvytK93HS7ydrEtz4ISmoKmlepWha2dx2PNPNjaYvaO3kvzI7/lOKDaD8yuHoAxLWVNpvv2iYS3NdMu6JJ92Lzma18H8qir/A70+bU2FLSNZLe183iSK9Y2bqRSCtB4JGXN11ECYs5IpuvOibinxee7DnbdNob4ykbZtTIZJy6F2B7zq7PWIfNJq3yahidi8hwX8kkG8tk2sreutA9x/AxVfvuBs492pPk3ywlp6Urr8Nz3JCWNeBTzd3+z+eYPwOxC5nqDNYMe2yfgnhZPQsX67G0zKue+CI1bSta+KN86wkLrA/M55r2fbuG60PuIVLcqbO42yZhWYWQ/adQadAY9thll8A0PQ1uthLdqTUDvT0F55GpRzi+uMXMHlFrydN3eMO6WBhVffA+A+ucLTpwAWoV8DVZL1sK3rbytDxgbS7t908Cakat/+71fFWr8nV1mENDXn1TPWqAUqZ61COjrb6wseQhaGAPKxPk6T9M+LInmx1NzJE5gJE4Aob7DAAhp9b+rLmOdC3uNS2GZ/QC01eHOrGbsIZQ1I8ewypphP9C32zcNU0ZqjnmZMlLs9QXGjiygrz+R9XuDMhFZvzcBff0J7DU1zzLkpfu28cbNktnLZkk3uhexbJna7z+KqyU5axzbeC4ZyfadVeXEM9gv29lPVhQRNSPpHDQZK7nXmc5BHxH6bM6nhWrGHsq6+qe1/fOViROA0o5X6MzuSjv+OZa8uhenfW09AOgcNNl2zLW9EBOj7I62oc5BH+EbHsaedlY23lMdl3PRuZcnWctTT/+oSMuz+7YJDufbfdsEII91A2Nap94ZSpUls6CCh7FMMtcDBa7pCYS0z2BfO6PMR195jH87xpPhYgaUffvQJjPuafFol5wns/b5Klv5lMKqrHQOmozJxZotFnKsf1ZlzpU4BfQx9i9knsyY3XLtX7pvG4/Ovj5mq9PwjtUACL7BWPEsLhVQppzrdeZ8z1bHKE/mJXOdbhzvbeXc2M5Y/jnqnKxlfen1IUbZyapznW35xX+Q9TRsxJuP2D9HV7HVmSnbclTKPt6t/2xC/zAd3/AwjjQ1lkmlRT9ybMStHBs1mMhxz9Bt+wRqn99p7AcBSMcj6Tw1LuZ86u9UY0/7/umit3E56qJ3e/v+6dLk5+3Dhr871rYfyLasbAlAuimSwa9/Sujw/nSb9ieOtB/7f8byzExQMveryoR7WjznJ7xC5cQzxr4o+zpI1r4oI9vRPq75qaz16opt42Il42tBx7NMoSO7UfvcjhzzRGtIT3K4fNFWtAKVWb+2MgAsfP1hZo5aZ6ynJk9jfXermGM9LegYVVqu2+SpKILbGzd959iBkrXCnetknCnmOrjZ/mce3Opc2Asq98482Sv/pzgcydwRWlwrglJYXCvmmWgVZqeZKa8DTvTom7IGMptR1nQanAoA0sHsYlxytDn37QT7Z6vZFZf0RGqdXYqyJmI1uxHeyOhXM/YQysM1a15KoXQG3jOexzc8jIRp4+j8qMXYkdljslL7/A66bTfm4XtgssMNXCV/nqtsYb1M9p2PvXHAbGJfX2MnagUwmexlU9Z04yyxABmunqCtuKVewi3lImgL1joN2dOjPmBcjnVLT6BCciTdH6hBxcRIXDISONy2BpUTz2DK3Awzy2AyUXvBJ/Qb+n8A7G1lZm9fLyNusxmX9ESaHl2Km6cLSjt+IqagRLH7tgmY05Ny9DenJ9F92wS2djbi2dHcccvGxldfyLc+zn8wOqtuFn5t/3x0lJEMVhtg/K+ceMb+6Dxa574rLFtiUDHJSEQfX3iQEVO2UO2pZ40drtlYPvYdsdlE0ON1aNilr/E92/LUZC3Pgw2yZtMyJBj3OeMwV3ADRVbCb4LAbh6c+/BZ47syYXIx4clWlFmByYXYKtDjvlHccGNHfG7yplJ1N7yjdmFO3k2lmhU451ObO75Yxu2z/+HwC3dy14gJvPZdGE071KdNn/o0OjKFVMtGKnknAuDRth3Ng/exp1+2exmVCZPZRNv+DTGZFSaTG2lTn8VsdslxBq6VBa+WK2nVuy6mjJxvl/ENDyvwoLO+jcI9LR5l+9Uuo04VKBPHfBU14ozxaicZ61zPreNo0taL+pEb6Bw0mRZdvah8+TSxFcF9ivEAQ42LYfj2rMMj47vj26MONS4al2XajZ3EgYaRkNnKlW1ZV06MZMCQcZx643Ywu2IyKyypAZjMyr782t49mqN14N+BVej76Gucamzh2Pih7G+SWR9Zy91kVmiTmSXdjX6tugwA4O4Vu/ENC6VhGz/ufOUr7hz7MbcMfZWjEx5H9e0MJhNY00C5klL1FO2DZ3Fw1G32OP1+WoTVQSsdgNXkQvt+We+tuuOB4ZxuonFxy6BG/UrcOqINNepVxLO6Jz12GnXywJv+1G/UhOr/LuVULbgxOJim+3dxQ9AmzGYzkV19qFQhkkZtzLTbNwWzCsTNZDy12O3+oYCxL1ImhVKXcfW0gkmRVK0qLUNDaBOSdc/ivfM3gYsryqzs+7rMRNfSpilgO57ZV66s5ZP9ZG3/c315/PmppLRvDdi2QVtSZsq+78w2vldMMC41j+G36xPqR26gbgtPe7+2fwUXeOKXK6lWFHiSWxKu28t2bXyb6t+1GwDRNTTeFxUuv89h/SfPUve0iaSBbUg5c5yqzdvRZ+iHRPboj/nrz1nzoyvKaqH1LY05EHgaNAyd0pbfXr+NXs+8T8APVVDJCficXM3JRrdiMbvRYMAKmr37LwBr+07DZLHgnrCR1Mq90MpMxcsvc/NuS77Nulc+hRLQa6px4+qVdDr91xvXoz1+mUXyY6OKfDkqoPc0lLZQzSeOSxFVQZt5YGJTpr93N9Uva8Z+HcSRdp0IvakSD/ye9Z6OJT+8ytFD23j9w8289WF//DreSwefTpwd9gynb2uKafdRbjoGoUO6Ytm9hZtCTQQOmIkpKYHGEas53fZh0tMsjJrRzz5N/5F5vINVa3wPv0DfNfuZNWpdziZjbSWVN7h9QwoRzTNo9NonxEaE023IOyx84Avc0+LoOes1QjZGkhSXyumIN+m55AQAN+zZSvLlS5zt5fjR2b2doP0VT67vGFybLn+eZ88zftz+5ESq1/JxHHMmSwaYzGirleB9f7NrYXVMpjQUAVjVLWiLK8M/6QnA/s2Ladq6JxWr1Sb58gU8Knnx+zv/w233Pgb/s4ewlr55ziagzzTAhNJWY8dotdB/w4vs6VeHDuvOEdD7C1BuKG1BKzMmSxo1Yl6h4/hP2D7hLZL61aTXvKxHr481hBtOgdeWTRzd9ScNbmjL6cN7qfqSkahGvD+Y9ev/4oOvdvPV621Ij3Xlre9C+fXelrjWhQdmhRN5ZAv1buxuj3vb4Hmkxh6jqnsAeI0i8eIlTG4VMUWewOfESg41ux3XWk0Y/nEPh031K2fvJ+7fxdxwfDOxz3+MJd2N20e2BeBS1CEqV2vA4badAPiri+LuHcb+rtH2LUTc3B3Ium9w5ez9eFZ1x0wgKWldSU9W9mllxluYJ4K2LfuMGzvdg1f95gUOi9VqlEspIo8FUe8G44rDqu/eptHHf7Cqo0JVcmXs3Nzb6bdvbqJCRVf87vQhaMUJUhLTs9abTQsImzSRioP7gHbhrlEzWDTuXs5HjcpKWMB+6S61oiumb6eydsuvtGQMqSsWY0reTNWn/UmKS+X2kW1JSU5h7cM30/OH1USGbOX8gZ30HTmJ3+5tgXbXPLIw51vLP3nBj1bd7+Pux8bZu61a8AatuzxEgxs728uQcjmShgf/4FK3UaScjqbn1nF51vPujQsICfyVoeOXOewftOFXVvwyiXc+38qWnyeTkhDFba8UvUUic11o3auefT+RfV1I8IQuu8OM+3L4t1egAAAgAElEQVRm7ENbNVlnzhY8LHN4at4iFj3RDFffNgz+v6VFjiE/qZdO4l6tUY5t4psJz1I1JIQHF2/Jc7xFr96G69mzDF6wHwCtNaG+rdh5k4nHftjOyu/e4t6R01l7y03Ui7SwrteXmCqYuKGjleN73UhPSaPJwZfpuTSAyMhD+LbOah3/e/Z+0lYspl7kZi6OnETcP5u54N0Gc3oKPidXE9H6fjKS0ui38WXqblrNmsdv41LfZox450/+uN2XFsdtZXOrYlyeNLlkHa9slyf/uPkyj2y0EtBnGspqof6ZjZxq1A9l1fTf8KLc81Qa/Pz8dND2raA1ScnxHDmwjrbdHsqxM3PIdgaPi1ue0/70aV/u2mx8Pl3PlT5/b2b+kJs52NLKlx+Gs3fdTNr1eY4VP75B08l/4x34F9F97waMxOXKRKD/hhfZMkjTdJuiw4o1RPYYmOcK1nzAMZLWfIrbGVdu/zucpQ+2omWI7WZDZdtpKuxPC8V/9QZVxk5hTwcXrPEW4j3h+d+zzlCO7g/g4J5V3DHsk6zyF/Y+FZvMDX3e1NvwWn6KVp9NpUW7gfZ6PrRvHR6VatCwabtc42Y+1ZeLsjJ6lnEG+e0bGzGZU2nQ/AzHg6sCVahY/Sfa/7yV473M3DHvgH20FXNfRKO5a8R0e7eIQ0EEvPYklR98iAeeNO4xyysp8Q0NYf7YzgwYPY1GLbob9WFyXgPulXFubguDv/gNTw8PNvyeRKptZ5b8mj/xF+Lx7Z/Mxjnv0HV1DOu6PkvVhp54um6kRrMJOQ4Qmf7+/l2aTP6NczWgzrwfCN6xnIeHZ92HZ7Vk8OsDbUj3rcewyXknukCO9aagZCRg4TvUfm8pNf9ZQJ3GHfKtg8sXjnIk+E/a93ulwDqKGncX5w9s4uFPthJ5aD1JaWnc2GZgvtMH+PmjB9AuZoa88VuBwxaXiLC/aNTyriJvb/nxH7EGtAUzG7GY+wJmmoe+QLflAVSqkvVUbezF07i7ueNRqRBP81qtxbYNFCVJdZbg7X/gXb81dRo0A2Dm8wFkbwBWJnh+Zvn52dezJ/dRtUYDPCvXtHeLPL6fuNsf4ejoztz1wg+FnlZYS19SXKFDcNbyS4g+SlTYWpr2HsGSD24m8UIMQ6flfJ3Isukv0cx/lf175nFQaStamezHwSgvqGU7n4uqpagVpbkxeB9/zhlOZe9mDHr0fUmeSlpJvufpwulgogc8jBVonbkTKCDpyNxprO09iUpJificWMmRmx9HX0yjTscl3P2C8d4Wq8XCwdbGC94Cek8zdlpK2a4iWhk96xbb/IxH9K0Z6SycPJiLZ15Dk4YybcKk+mO1aAY8HkqLXmP40/9/9HpwPDVq1DVuJM0nMbxm6cng6lHowRPjUvn+nUB0RlaSaHK18uSk3gW+Qys86BdadHgIZXbctJ4f/+Et6L/VOCDsHuhFxzUX2DkgjSdnOH65n7P8+/uH1B//MwBnhnsx4I0NOdaznx5oiftlxUOrsnZmyQnRLP7oHu59YxGVqtfPd/qbls6k5tvTOesF/TcV3wGtNA+SmfM6UQtu31B2D8ql4dyxzSjlSu0mXQoe2AnKQ/J0pVlj1uHqZqbjoMbs/udkrtbz68mpI1vwqFQDrzotCx44m9XfvEfDT7MeBNrf+lnc0+KoF7mZY0+8SlRYGL2eqIk5+jCu4xdz9pZEun60jZgLx2jYtKd9vNJ8VUHRjyqiQF4NbuLUFw/TsNWdWR0LOHvceZ8nqXFxjJ5+D+GtjfuL+n6+ANISwe1++3Amc9Z1ZK+YYOo8eGeOpmX7fGzXm00urjw2/u9sc8r+3iIj0Ro85vuiF/JqFSFxAqhY1R2zyZ0MZcE4AVGYlGuhXj7a0u+xq42S0fOCCWtjtIR5VK6H7/5V+Lp5FjBW6Rvw0P/x/ZG/cHWvxuOvrMrV/9EfNuZ6o7BHZW+GTM790x2OWNKNZj9dfI0fpS59+gj++XEew96VX5Kqc0MPZ4fwn5M9Uep4a2MnRuJ8DW/sflXjWStUyfG9bbYnFts91Azfhrdn9Rw4At8qDcBkwrNqvauaX3GQ5KmEdLgj/1cMXOnJj4Lsic+MuxR+non4ArhVzDXs1jur0W1FLC7x8+jzmHGpos9jLa415DKrUesaue4/KHHZWt8u1/GCMpg4ZRr29vY8+7lUvLqXqGay2hKv8pw8tR34Mm0HFu0liUKI0lPHu2aO7ztu1nTZbux01OUr3qVXrVFphZUvSZ7KimwtU/6f5f4ZjOyGjFuAv/sAhgyZVtJRlQnZ78NxRpI4ZFTuJ/euF9pa/luehBBlW7Oug4jgY/v3Kr59Yft6ABo0aOKkqPJX4ne6KqUaKqXWKaXClFIhSqmxtu4P2b5blVJ+V4zztlLqiFLqoFLqtmzdB9m6HVFKvZWtexOl1Hal1GGl1EKlVAnetON8bjWa8PJHR/HOfllQFLvEyfdw9k0/TK4VnB2K01gyMlueJHsSQpSMitkeVgDQqfFY5jyNx/wXqFTZ+b+H6khptDxlAK9qrXcrpSoDu5RSa4ADwP3AnOwDK6VaAY8CrYF6wL9Kqcxnfv2BgcBpYKdSapnWOhT4BPhSa/2rUmo28DQwqxTKJv7D/O77xNkhOJ22SMuTEKJ0uXtWpE2f15wdRr5KvOVJa31Wa73b9jkBCAPqa63DtNYHHYwyGPhVa52qtT4OHAG62P6OaK2Paa3TgF+Bwcr4Vcz+wCLb+N8D95ZsqYS4PtzQvSeBNylO35X/U3lCCHEtDmW797vmzTc7L5BCKtV7npRSPkAHIO87XKE+sC3b99O2bgCnruh+M1ATiNXa/rsS2YcXQlyDG1v2o8GkL3D36e3sUIQQ/2UeZsBC8B0uPNzzKWdHU6BSe7ufUqoSsBh4SWvt+GenbYM66KavorujGEYopYKUUkHR0dEFhSyEACo0H4Qqw08bCiH+C4xDublmZ6e+eLiwSiVCpZQrRuL0s9Z6SQGDnwYaZvveAIjMp/sFoJpSma/PtnfPRWs9V2vtp7X28/a+tke4hRBCCFE8VOaPx5eTh1NK42k7BXwDhGmtvyjEKMuAR5VS7kqpJkAzYAewE2hme7LODeOm8mXaeEX6OuBB2/jDAMc/TS2EEEKIsqucJE+lcc9TD2AoEKyU2mvr9g7gDkwHvIEVSqm9WuvbtNYhSqnfgFCMJ/VGa238nLJSagywCjAD87XWIbbpvQn8qpT6ENiDkawJIcqoRcNSCc7wpPR+KU4IUZYlVDKSJqtH+XjTUIknT1rrTTi+LwnA4U9Na60nAZMcdP8b+NtB92MYT+MJIcqB8SPWwKUTzg5DCFFGuN5am698zvJaz87ODqVQ5A3jQojSV7Op8SeEEMDDD//IPYGTqNBhiLNDKRRJnoQQQgjhXFXqUuGeGc6OotDK/vOAQgghrgux8kYMUU5Iy5MQQogy4eOn4ZI2s8HZgQhRAEmehBBClAm/NLmL1Igtzg5DiAJJ8iSEEKJM8LzjU+TKnSgP5J4nIYQQQogikORJCCGEEKIIJHkSQgghhCgCpW0/xne9UUolAAedHcd/iBfGjzSLayP1WPykTouH1GPxkvosfi201pVLY0bX8w3jB7XWfs4O4r9CKRUk9XntpB6Ln9Rp8ZB6LF5Sn8VPKRVUWvOSy3ZCCCGEEEUgyZMQQgghRBFcz8nTXGcH8B8j9Vk8pB6Ln9Rp8ZB6LF5Sn8Wv1Or0ur1hXAghhBDialzPLU9CCCGEEEVWbpInpVRDpdQ6pVSYUipEKTXW1r2GUmqNUuqw7X91W/eWSqmtSqlUpdRrV0zrZds0DiilflFKVchjnsNs0z2slBqWrfs/Sql9tmnMVkqZS7LsJaEs1We2/suUUgdKorwlpSzVo1IqUCl1UCm11/ZXqyTLXlLKWJ26KaXmKqUOKaXClVIPlGTZi1NZqUelVOVs6+RepdQFpdTUki5/cSsr9Wnr/phSKlgptV8ZxyOvkix7SSljdfqIrT5DlFJTCgxea10u/oC6QEfb58rAIaAVMAV4y9b9LeAT2+daQGdgEvBatunUB44DHrbvvwH/czC/GsAx2//qts/Vbf2q2P4rYDHwqLPrpzzXp63//cAC4ICz66a81iMQCPg5u07+Y3X6PvCh7bMJ8HJ2/ZTHerxiuF1Ab2fXT3mtT4xXDEVlrou2+b/n7Pop53VaE4gAvG3DfQ/ckl/s5ablSWt9Vmu92/Y5AQjDqLDBGAXF9v9e2zBRWuudQLqDybkAHkopF8ATiHQwzG3AGq31Ra31JWANMMg27fhs03EDyt2NY2WpPpVSlYBXgA+LqXilpizV439FGavTp4DJtvlYtdbl5qWGZaweAVBKNcM4AG68xuKVujJUn8r2V1EppYAqeYxf5pWhOr0BOKS1jrYN9y+QbytzuUmeslNK+QAdgO1Aba31WTAWBMaGmSet9RngM4ws8ywQp7Ve7WDQ+sCpbN9P27plxrAKI/tPABZdZVHKhDJQnxOBz4Gkqy5EGVAG6hHgW9ulkfG2HWu55sw6VUpVs32fqJTarZT6XSlV+xqK4zRlZN0EeAxYqG2n9+WVM+tTa50OjAKCMRKEVsA311CcMsHJ6+gRoKVSyseWfN0LNMxvnuUuebK1UiwGXsrWAlSU8atjZLVNgHoY2fsQR4M66Gbf4LXWt2E0OboD/YsaR1nh7PpUSrUHbtRaLy3qvMsSZ9ej7f8TWuubgF62v6FFjaMsKQN16gI0ADZrrTsCWzF20OVKGajH7B4FfilqDGWJs+tTKeWKkTx1sI2/H3i7qHGUJc6uU1sr1ChgIUar6AkgI795lqvkybbSLAZ+1lovsXU+r5Sqa+tfF6M1KD8DgONa62hbBr8E6K6UujnbDY33YGSk2TPPBlzRDKi1TgGWYSy0cqeM1Gc3oJNS6gSwCWiulAosnhKWjjJSj5lnX5nN3wuALsVTwtJXRuo0BqM1NDOx/x3oWAzFKzVlpB4zY2kHuGitdxVL4ZygjNRnewCt9VFbC95vQPdiKmKpKyN1itb6L631zVrrbhi/e3s4vxmWm+TJdgniGyBMa/1Ftl7LgMw75ocBfxYwqQigq1LK0zbNW2zT3K61bm/7WwasAm5VSlW3ZbW3AquUUpWyLVQX4A4gvLjKWVrKSn1qrWdpretprX2AnhjXnfsWVzlLWlmpR6WUi7I9cWPbGd0FlKsnFzOVlTq1HZj+AvrapncLEFoMRSwVZaUes03nMcpxq1MZqs8zQCullLdtegMx7hUqd8pQnaJsTyfbuj8PfJ3vHHUZuOO+MH8YB1aN0US51/Z3B8Zd8msxssS1QA3b8HUwssx4INb2OfMpufcxEp4DwI+Aex7zfArjWugRYLitW21gpy2OEGA6xtmU0+uoPNbnFf19KH9P25WJegQqYjzFlLlefgWYnV0/5blObd0bAxtssawFGjm7fspjPdr6HQNaOrte/gv1CYzESJj2YyT4NZ1dP/+BOv0F4+QolEI8QS9vGBdCCCGEKIJyc9lOCCGEEKIskORJCCGEEKIIJHkSQgghhCgCF2cH4CxeXl7ax8fH2WEIIYQQohjs2rXrgtbau+Ahr911mzz5+PgQFBTk7DCEEEIIUQyUUidLa15y2U4IIYQQoggkeRJC5ElrzdI5r3M+6oSzQxFCiDJDkichRJ7Cd62h5ZfL2TbmCWeHIoQQZYYkT0KIPFkunAagUnSckyMRQoiyQ5InIUSeVHoCAFpbnRyJEEKUHZI8CSHyZLXlTEp+xUmUguS9e4n/+29nhyFEga7bVxUIIQp2/nIa9QH5DUxRGk48+hgAVe64w8mRCJE/aXkSQuRJKWV8kNxJCCHsJHkSQuRDOTsAIYQoc5ySPCmlJiql9iul9iqlViul6tm6V1VK/aWU2qeUClFKDc82zjCl1GHb37Bs3TsppYKVUkeUUtOU/VRZCCGEEKL4Oavl6VOtdVutdXtgOTDB1n00EKq1bgf0BT5XSrkppWoA7wI3A12Ad5VS1W3jzAJGAM1sf4NKrxhC/MepHP+KjdYabbEU81SFEKJ0OCV50lrHZ/takaw7KjRQ2dZ6VAm4CGQAtwFrtNYXtdaXgDXAIKVUXaCK1nqrNu5o/QG4t7TKIcR/Xgk15O7s3Jrw1m1KZNpCCFHSnPa0nVJqEvAkEAf0s3WeASwDIoHKwCNaa6tSqj5wKtvop4H6tr/TDroLIYpFyZxfVb4sd6ALIcqvEmt5Ukr9q5Q64OBvMIDWepzWuiHwMzDGNtptwF6gHtAemKGUqoLjqwY6n+55xTRCKRWklAqKjo6+htIJcX3I3JjkPU9CCJGlxFqetNYDCjnoAmAFxj1Nw4GPbZfgjiiljgMtMVqU+mYbpwEQaOve4IrukfnENBeYC+Dn5yeHAyEKIs9fCCFELs562q5Ztq/3AOG2zxHALbZhagMtgGPAKuBWpVR1243itwKrtNZngQSlVFfbfVJPAn+WUjGE+M9T8jYTIYTIxVn3PH2slGoBWIGTwEhb94nAd0qpYIxLcm9qrS+A8XoDYKdtuA+01hdtn0cB3wEewErbnxBCCCFEiXBK8qS1fiCP7pEYrUqO+s0H5jvoHgTIYztClITMVxXIRW4hhLCTNnkhRN7knichhMhFkichRD4kefpPuXgcNnwK8kPPQlwTSZ6EEHmTHwb+T/nm67t54c/viLtwzNmhCFGuSfIkRDmX+FkbLq14t0SmrWUX8Z9Sf4WF51dYiTx50tmhCJHD0cC/2DKgK+nJSc4OpVBkzyhEOTc8GaYE/1Qi05aLdv8tVRIh1a0Ke5ZDYlyqs8PJX8Q2sGQ4OwpRSk6+P4Hqp+M4sneds0MpFEmeypCYHb9xYeuCggfUmsi5DxK9ZmrJB3Wd2rzrV8bPu4+EpFhnh1Kg93+2MOQ7t6saNzEulaWf78rzQGp/w/hVxlYWFFTG682hpg9y6axmsf+aUplf9KkE5r20nujTCYUeJypsI7OWPMSBRW+WYGSlR2tNSkaKs8MoM7Jvk//+8iG/DOmKLmf3BkjyVIZ8vnIcH69+L0e3hONBRHzSHGviRXu3fRt+5cnEcD7cNbNwE06Jg7TEYozUyazWEr/htcYT7/P45+H8NuaWEp1Ppr8XTuL78SuKdICP272AMa+2Bq5+Q17zzRYiD8exceEhxwOUwtN2V3NwLWj89ORYvp7Yh/hLEWxaFk7kkTiCVhwvrpDzVJhE7djhlcTHniz2pC779C6eCGL2BB+ij2yy9589JpA9fv5E1+4ESpEQ4Yn/yABmjwnMd7pnYk4UOZY/nu/PH492BuDvuftIS7Gwau6BQo+/Zvtf9J1diZU7AgjbEYn/yAAO7Tpf5DhKS0HLcs5wP4636UDY/n+LdV4Rh3ezefGMHP2jTyUw58V1zB0bmGObSE5LIi0jNc9pXSksdD0/3dmKowdDWfDBOpZOHFGk2PKz7qcwIg/Hse7ncOq//zPtg+Kod9YYJzqycNvpte43rpUkTyXg/MlgVn873DjIF8HQX1x4+hczAPs3fMfq74by4+8vs2SvCyvXzLMPtyskgOlzLIz8zlyo6S7/rBVrprQuUiwlLiUeMtKuatRlHzRk87xHcnSzJF0i/Sp28gXpviXv6++J0UfISCmeDTf+d08uR1Vg3U/hBQ9s8/tnnzB6Rf7rWERoDDNHBRARfjFH99ljAvEfGcCZQ0YSenR3tP1AuvnzPsx9uSnpiTHoEs6dzhwOZMHEv0hLyWB1toNrgTthqxWSLwGwbOpm0lIy+Gd2sL334o8fIT3iHX58+whHNseAhgMbjIPwrDEBecaTvb7WLnqfoMBcr5bL18aFh4g8HMevE3fkjD0tCdKNlofUu1/hTNdB9mE3/pYzcV0wtgMLXvFj8oe3kVrI1opTh8/y7RuBRB6OZcnkeZwfNJQ+v3nw56z/sw9jyXC8rmR2j4mN5GzU0Rz9dvwzn/get7P6x/eJOr6fXX8aJ2zzX+jJkjkvAvDPN18w96WcB+oWAWc5U/Vj/EcGcDna2M7jopLxHxmA/8gAEhMvEX50S4557Q341v65wlmjxbdFWDoBX+8HrVk7P4TTkeFERee8Xyt49c+EtfQlKvJIju7FmZz+MqwrK2a+BEBCchwWqwWAmAvG79IH/hpM5OE4ti7NiiEtI5U/PxxKWnoKfbYZ+5HwP/wdbpNaa86fzuME5gor52wm8lAs6xaEkHj3E9QY5w9AakIc1tRU/p0fQkaaJj3Vygr/nSx5eTBWq5UTbTtxtE17AJZNepKDu1ex7qdwI4lxsN/Z/9EbdDqqWTdtC5fOWEnd68uZw3vyjCvhUjI/jAvMdTK2LyDcnvxm7ndOBhtlP7k/hoC+/gT2yrqKomPjgIKTo3/mBJOWYuGf2cFordGl/ASpKu0ZlhV+fn46KCioRKY947Wb6Lomg9Rp79Ojz8OFHi+spS8AvuFhfPWkLz32wanGLrQ8lEHI4515cMIPAPz+f4/SZtE++7CFmW6KK3QINoY9tHMJsXHn6NLpTqjeuKjFA63RiRdQlbzzHMSSEofZvYrRcpGRCi7uLH+jA+pcHHf+cIwJI1pTu0Y6oz8u3A4DwH9CezJiE7l1tQthDeD+f7PKPuOtlkRfVrw/w9YtIw0yUqBClQKnGxj4O6fPhDLkiXeNFi2l7MsC4MY9Ozl2YBUtOj9AbNw5UpLjqVOnObMeakVaI1fGfraXhDNhVG7QqtBlAcCSweyxG7Fk5N4GzS4mRs7o63C0QzvPseabUKpemEunA/vs3U/PeZ3W9dqiK7jj4lmZ2jV9mDs2gPRUUKYUOmx/lYqfvkjbvs/h/3xgnmHVPTEa3xNwasrrHPnpM/rt10RVhz5bjbrNSE9h/ru3c/tzX1KvQRsuxp/Cu3qTHNP4/p5WnKilePfrEIfzCGvpS0CfGXm2bJk8TmBNakzjtl7UarCM6o070az9Hfb+Kye25+jpz1EOx9c0iHiRxqcrcaTp/Zyv1QmUCbBS+3wQNx5dSvv929m3ZxX16jfHu1ZW7P7PrQAq4ObhQs9/RmJR0CbkAItm9OLO4X9wKtzKmm9CGfhsa5p3qm0fb/aYQIfJiTJZeX7mANb2bUntKEXVJd+w/PMErGbX3GU2wyj//jnWPYBLFaH7LsfbefSpBH6btNNhP5MlnRpp73H33NV4ulfGf+QaIPcJl8lFMWpGvxz7n4jQGJZP30cV/SOdArcR7FeZm4IS7P0zhz0/7nVCNjUETNSoV5HH3u0K2JZvr6ngoJzKBM32jaZBDNy4bzdnjyaxfPo+qlX5mw5/rgAgdHhfzh170PH6oTWj59xCYnI8FT2qsLFrK7xiNRGPdCXp5DFqhEXRZ3sYy/33cjL4Io3b1uSu59s5rKNMGz97nYa33I1Ph94O+2eWt2bgCmL63snpWmYut6jHOV51uCyxplO35ix8lx7kROuq+IQYCcHh59pw/uQY0lIsuFUwcybxebo9OIozv/5Et61xnPpgKDU9ahC1Zyu3T/geS2qqcTnLZGLu6HVok4P1xpLO07P7Me/5jfm2FPcPHA1Aww1r+XFccB7roGaUv9Ha7v/cKlCO19MBT2YQG3GEzg89T8bFS3w9fg8WS+55ml1MWFJTwOSKyUVhzdB5LtP+68fYv/qGh/HjuM3Ex6RSxcudoR/2sPfzH5nXyY9mzJwBu7TWfnlWQjFy1s+zlEnakoGaWJP4Z7ZRpYFvHgPZDnRXrADJsVF4VKsFgO+2DCqmwuoF7+LX9W7c3T0KnPeKn1/jBtvnlfc249ZwY9GYbK1XOlsrVsy5w/bPK3v74vbC4zRt1hOf9v3swyqTCWtGBnNnPk8foEI6fPNaC56aEoZl6DgqA788NpmalRpz66tZTfuFsWDuc8T+u4mB78/Gu1ZjIo7tom2X+1n083vc0LQTblXqYL7/SX66twZd2/ThzJ9L6T1hFk2XpQDuWFKTeWyDFTDDZM3p/YE0aNvX4UYVHXmYdZNvpYHf7fT/LZXMVdb3NGz4x5/eg4wdwi1/GONOerEFw1/6jU3+g7l81JP/LQ5m8dwhVKhUm1sfmMjHr3WhXaO63PvmWlLizlOhWh2iPplAp+PAE+/yxkut8XRTZG/XmvF0Fwbt1qz88DBnFn1HnXOKPn9tpW+whuA0/mk8nMYzt3Nu/P30e2KSfbyLEaGY3SvgWrkGJzt2Y8/d1ek6/GPWvz2Su2b/wZYpg7Ckz3NYbkuGlYiwzWz6aDj9Jy/jzJ6FnAzbwP1vrGXVN3tRuBJX43/Ay/ZxGjz3KTvrQfNIbIlJ1uPo2lqB3Z39YaEmbE1nKkd7keA1FnC3zV9jzkjBkv4lvieMcSKiE+m3PyuxmzOyHbpWE+p4NaDXknNsCB/CydqK+9ZlELdkPoGLJ5MRcYzn5gbT5ZCmy6GcSeHan8Zx6ZfFDF5inL0qnYF2sHMGsCb7gIKTwTGcDO6BsqbTbC6kXjyGW9VGVP4rFdXB4aig4WJDb043HH9F3Zo4X7sL52t1xjfxMm6PvcQFIG7xTFZNsxrDKmNbTUuxENDXH7Rm1/j76bL4Eofn9GFjry9Bu/Lv/BA8q0WQGHuWFp3uybNVR1tNzBoTQN9zRhwXTh/DaqrruMwZmiN71+fqXj3RSJL++Hw3977Wkd2L3+Ly5u088FtQnokTWtNt+wTc0+I52a4LdbZvoceW/2Nz14mgzEZZtQal8a7wNdAvx+h/Td8J2pV46/3ANkzmdHu/5EQjEQjoMwM2K/sNcRfPJtkPbP2BHtsnsLXnRKyWrPmZM5Ixm6bRIMYY59TO5axdVAut4VL8AIzfiIeMmChahXxNaOunAFPWcrRm0DpkPmGb4+HpdzjaqjLetpOPxEqe+G6LIrDXVA5kO8Ce3B+D/8gATGYYOaMflthYXKpX50xYEPGRJ2jZ/wG8vl5O8tfLsYYcYN9f39Lunqf46ene3PbtelcAACAASURBVBQUYz/pBNi//CfqAw2iLBB1irOOcy0UkJJs3CqRZk3jUiXY02kGHFSAkWWkpVjwNk/nyBJN/61GnabP/w3PE6n4AHq85lA7o6Vo/60N0crx/V9WkwsJ8efoHDSZvW1Gke5RDftC0Rq31Fia3J0BgUanqOAgrKaKjqeVARmpKRxu1wH6zMhjGE3GsLFUAvSDo5j35g7HCSS2Vk2zcT+m1ULWeke2z9pC+31Z8wroM4OAbMsv/kKqfb0aNimfKyil3A4kyRMQsuobXGs2JvbUVir/Wo9VMYN5afohUlOTcXf3YO13Y0k+sYm73tvFjLHNqVkhjcemnGTr2h+4wbcXq78fhd/3J4l7+CJWn8HUu2BM97718NP/tePpT7NaVzaunM+FHTO5d8JOln7w/+ydd3wURf/H33OXXigJPQFCTYMk9F4EQcUCIoo8iopYQFDRn4+PFQsqYi9gQVFUFLFTFJEqRVoCCZCEXkMIkAAhhJTL3fz+2M3thVwahOQi83697nV7s7Mz35mdm/nstG1Nnmcjho37iZZTfrf7Cdlp3Ja2e3XxlLqBRXMm07Hvf+i31hhKCjkB5179jt8i5uIV3Ihxb6xg3q3tya/jh61FS/rNibf77bnIxC/nWxGBFwAxc/2ADH71HUeLdteSk7aXHiOeKJI3pzNOYDKZqV030O7W6Ks1dDgFiYt/JvD7v6iXBefjBhE5ZR4wj5/v788twJ2/nSJx50L67YQdv31pf4fOmr++o/CZ/c/3bqT5p/v47NaGDLr9ZVJ3/kPPW57i27HhWNx88HG30H6ZFywtvgKj/qTpsHMCaQeM3pfhf5mYZ7uNa5d5A5Klv7xNu/e1PIhv1Z/bVgAc4xtG0Hl2Ekffe5L2+hC7tNkYs0Ry4b/w2i3a77R/ltMrXquUjh3aZT+fs2YbANm/L2etLOD8jgUMfj2Z3x4ZwRlfaDLyTqKBDgtPk7fwQboD8bcOpW26J4F1PmBbh0eRNscnMisDxjQn8cGhdDhhZuEro+i9Kpdj/aZrjQD65HCTh72BL3xqa5uqByELnD41IguI+vU8cJi/e0usZrSeRD3qBsdS7V4z09Psx0JC31X5wC523KqVn45JVjomaeeP74il17eaqN9/yBi6SNyxGtOIBzn3/tM0eeUXmiBY+N4jhFMsm0tFCjeWvDOKZjPjiY+w0SbPRJfYqWzu8hRIUaRx7RI3jdS2Fs77FTjt+cBWwK6lf1B4Juv2h6C7814SbAV0/HV30V4yAdIK89/MAulL6KfgWfAWeW6PgHR32BtLEpCxg6b3NQV9qktG2hG6xM4mrsPj2Myehqiw5tJx6zukJd5MYHEr+HnaSqwWXxZ+sJkeC1awQi8LJWeYDc/8s/afa5f+TOv8s5hsVmxmM8JWgBRmTAUWIhclYH1dW9VmNFxaGZMmX3sZi0QrYwcTN5bcayglAV4/AOCZfxZp1R+SrBYwuSFNZnyPptjjYo4hJpAO5XmBFleSzQYmky70tHQ1zEhg06e76Aq0SsqiQO9Mc9MbZZvJebNmK5D8078TAcdz8P/iQ7LufRiA2Md24af7mT9uAGFrTrDo74V0Wa8pvHyHofmgt+YCkOuuPZBK4TwuKdyQJm1WzHFTrlbf2Uouj4WYHP4UueeMxSorfFKJyin5+n271uKffRR3aw4W6hSZE+pWkMOx7G0E6b9Pxv1DdEIyCVETigppXcSkH9ByIzrhgxL9FJJ9+gQ9Nk4mOfQOTgVEFin7WLURByRF/p8gtO7HQhslBGQaHQKlcaRXf7r4BhHb7RmktbDOlGCzEnxwWrnCqCyu2DlPuanxfPdSU5CS3CffYuXUR0heNhuAa5aaWftsOL8N7cT+5C00ef0vWn1/nnPncxj4lxsxC3w4mrCEOhOmsvWBa+j8lTYGX/uHAHzfWVMknp4LzRzet50HXghnV9yf+D35JmFzszmWeoDwuR7EzD7Fxq9eLtPe9qvdqfP+j3z95VvFzvnlwjVbJP0WHGPrP0uITrTRZd1Zmq3bV8xvxAqvYm5h7/2N531PU+e5WSyfejXrJrfi28+1HpS9A/uxfkQvsjJPMfPxVsSv/J7G+lC9OLidenq9smvZLHt4x3OOAnC4Hnid18Sfm6cRb87mdfbj5p9qNvb+8Tg5tzxI3We/4szp43RcB93+Po/pUOnzojYv+4LT191exK3HP0axzvrOsCtnlSHA6v+lPU1mrDBEa+pBQ4Q5o/sfKfbjTR+MMU4IrfLL8/cm8JUFNP0Nss5l0WOn5Lo4yaHkjXavhf0Tbiat4gg84zBsKXXhZrVhvWcoISc0Zy9PTWpGJH6unbdXjFJ7Et9hzIcrpNeGyWCzOFRQEqwWzV3HbM3DNzuVyMRZ+J1LxWzNo8E5o9I9n3HCfuzlMG3E5FW8DHln5tiP16w2JsWmPvggAH6PTsWiN3JWm9aL0XPjZO1x1NFGm1WrYC9IY0z8+9iWaD1WMUkmvPPBP/to8bxD4J+disUs6bVxMmbL+SLhmy3n6bVxMvvnvGikzaL1kjjNr42TcbPpee9oq0Pen0lPpdfaA4jCcQtp3COvvNPknjtijys77Yhut0M8+pd/diqnTx0ukq8r+k1nRf8ZWAv8QAhyzqIJjJLQ7Q44XXSYz5qjCYGA08kEpa6mc9wbBKWutvs7flCf82IraWsAw/1I4ka6xE7FMyejaDqkxCvnJN6NDUFRJyuJoNTVdNnyJj756wg4lcyplgGlx+XoLkwIm4XgIysAq9aQA8nBWhnKdYcjjbSGueEPqwCt0XcsQ9KhDAUc18ppylLjf+/3rrHNhzVFK/P7M3aT51GLuJhJ/D18WDETM+po311ip2p2FSnDBXSJfY06B7WKspZ0B6mXMS4o23oZK+R0RFPjeG+SQzaY9TJaUCyuXhsnc2LNIgAK3H0AGx55p8F6GqSVAncfAo5n2sMy7dyv1Tt2MwqFqSQgcw97XtXmyRXzg+GnkF3XDsYz/yxeuacMf7pfM5rYMq6XIG0IaQV5nlb7fsVkzUZQtNe2S+xU7eHvgnQOuU/rsfXPPlrcLgTYUqlKrtyep1PudJjrx/H8YHzyatE3UUKisdw78GcIRJL0f6NppbvN+2kmPYG0ejGs+MiNyMBomu8t2uB6FECWbxBbOkyi49Z38c9OZfZrI3lsHSzd+TgDLZBRpy0rpuwnpnYbAjL3sGbPSkaUYzF4YBYMnbuuVD87pzxGjH58qKGkcQUXGDX56ijggayziRlxK4jxbEPzo3v47Yne9FnjAX+8ZPcrU1IonEORv3oGXnpxqn9A63lolg6FcsGSfc5+Xc7h9QDYBOgagn2tvWi1V5scu3jsIHsaIveUni9+E98s5pZVW1L7vHZdZLIhpGovXAyYyfINYn+rSQRkvkuB2RBnq+Y9T8dS4trd2kbbvVp4nVYbIqPBfq0it3gEEBdzO+2SvmD1yG72YVj3gw4VV2FYzT1pdEKLW0oLbpY8mh/+i30tBiPwwCyhwARuNvD09QegUXo8SVgBs0PFoj2JX4jW66DHZrOAcANhKtIb0Xv9s/bjhumaMImP8qTBKU0pBZ41JmD7G9oIy7bicwW93zYm+55eO89+nF5fEJyh2equ16Pm2AS7jV55p8j1qgfSArhpvz3q2itzPYMIyNzDcX/tnu4KglBdNwmZjU/2WUIOLmZ3zAiEvqi0Xaw2mVyaChWb0fPhmX+WUIeFXykNBcHHz+rzogy/jvnVKD2eJGm74IlZy/vdq77HH3AvyKPABLXPHiDHO5B8jzrke9Qi/UCi/am/7eeagDdb8/DOPUXIwcXsDLses00bLmw9Y2GxvC0JISxIm1vRoRDAhI2Y7R8X8Rv66mwAohINoR265wf78d6FX1IfrYFf1+1lPf3C3nAFWt61+83elUjT7KOYrXl6I6bHbbNgM3tgzTQmQnfYYsTXfb3Wa/N7A61no9fGyazrOQWkuUhcjmJiwOpH7Mc5zf4merUmAmunavWKlwVaHNXir3XO4YFE09EOwqBo70a2m5XaTvI0Uq8vG7v7c6D5dWTWboVvdh9gXhF/+e5aoP7ZR7FRoPUG6/fAZLPgn52Kv6593MxuSPL1sqTXZw5lzM1i/CdNBYZwzBx1n/04OM2CZ36+JkaE0ZNnklY888+Ss08Tv73XP8vOno0I25DG4WbuNDusD7euN2w/d2gffoDAhtmSS/PDf3Gw2WBs+vBavc3GQ6Kjn0PNBmM1F90SxeesVofle9TCZMvHIy8T75yTZNZuidmah9XkgZAWgo6uISW4HwgzVznc0+Ypy4vdA00ciaJ1AIKjL42398qazfl4Zp0k5OBidkXdjCnPTJNTxYK6rFyxE8bbeXnLH0NCLuraFX3eBZM72CwMWPNYsfP/dH2BXO/6eOWcpOeml4qd/7vXG1jdfDAXnKffuicvyoaLIc+jFjsi7qVd0hdFGlFnlGVjRcIqya/FbDSol0pGnbYkRE0kJuHDMruAy7o/F4rf8pDnUYtNnZ7C4lGLRmkbidj1zSXZWBIr+n6AkFaCjq7haFAfpDAXaWAc2RZ5P575mTRJXUdqk17kedQu0ni6As5szAiIwGzNL1JhX+Xkf3ax4ZeUB2X5rUjeVxZZvkFs7vRksaGTLnHTiOv4BDaT3mgLgbBZaJK2/pLv84q+H2gi0VagNfDS5jSda3u8irslm5CDizkYch0Wd98igrwy46ooK/u8e9FlaFWf95xPprZa6L9mUjH3svLhSJAbTY9qoqisMmZxF7hbSm6Ta8J/ujK4mLJ1oJmJ65cmVdmE8XKJJyFEA6AX0ATIAXYAsVLKiq3FdyEuRjyVNs4/4O+Jl3z+YqhIQ58UOpq0Rt1KbNyh7DQWktDuATICowhM30Z04sxLirciQqwkyiNIy5u2ssTVhZS3sq0u0ayo2dgFRiG6wLhcDWlVNtCuKAbyPGqxt9VwTtaL0ualSYlnbjqdt75z0fWTomqI2LXTNVbbCSGuAp4CAoCtwAnACxgGtBJC/AS8LaW8IkpUROLnJEXcq1VkDk+BkYnl3AumHBMGoWKCaHvkfVjN3myPvL/Ehv7Cxj2tcXfSGnd3/iRVykRjZ2Fl1I9mRf8ZTsMqb7y7W40gs3Zrdre6hfbJX1IRLhREVnffYpOoLzasXJ8GZYZVknACY1i+Mm0EONgA+3yoqiQh0kx0YsldhQcGh9NCn0u2o42Jdnsq59lqXyNolVa2v+pkS4SgY1LJD6L5btqQPsDuNm603VP0P78uXNArWbt+Q1cr3TcZWwp4WLKKPYVDyUNwl0pU4mdsCoPQ7JLD3dsIWuv3xCrAfJEDGJWdhg2dbHSPu7SpvJ75ZzneoKN9fhVCkOddn3U9p5bY++RI4XD7wQbgLiRBx2vy/vyKkiirlA0B7pdSdpFSPiClfE5K+YSU8iYgGk1QDbrsVl4GrE2NPVqWDjT2AjrSuHhBT3v8FkCb9yBNeoPgMO/BPUJb/Vba5EFwMmHQYVLqrtZGZekoiEqicCJprk8DEMLe0K/oN5347kXX65RUrzlz77Vhsjb/5AIbI1KeocBUykoWkxvf9dOK045onzLjPVJPEx4r+hs7Hp9s2Nm+YVpKv6KbUxZO3szzuGDfJlnCpFNhNPLbxmgzmUKTpjqdcFl4f8rD6m6e9uNdEe4lLxiTkkNeL2jHJU2MdbAxrY1zAVbIwZgG9uM9bbQyuKjL5amUD8UE2I/jBxjplfU095RGRqqTuhkzR/x79rMfWxrUBWBrd3+7W26rJsXiSveH7OLzz0mKNPIjp4kWRnKEQ94/cYP9eMv93ezHyT1K39frcD3jeG9LLf+2RRoib9f9xtrzLVcZeZ6qXxc/vLXdLWFUjP3YQ59E/3cv4398vr6xHHzDLS3txzZPLW07uxr337uhYZhvgzZFbO69/lm6xb5Gw/StdIt9rcjwxeaeWnxHA7go4m41LkzpZmzIGZCr/c9juxvbrCQ9aOy1cy66mf3YmXDa+9AA+/E+/bZvb26U1023tXVqzyF967gjDmVs7b297ce/99HczzistD8cbhSg+tFX248Xdi3+/9g5wLinWU7K3eEOhVsyOP9vOSb1vMP0nw9HG/+Dwz21fJR+Eq9cLZwFg4wyNr9H6f/bXUHG8bYB2vzDLa0hpbEW++HeRrn58hojrD2R2j3LdahKDoQY8f7Z0fC7tUPxejzuRmNi48c3F7drZ7Bze39xsl3DP+FGXCcdJpftbaR9n/Iz3DZ3vLiHrLVXGdtnpNep+ulHZYmn9VLKw85OSCkLpJS/SSl/vgx2XXbcPX3sx/1v0cbYd94UStNjxk0oLMRXPfAKKc/8B/O3HyKEO5ghamBThM0CwkzByBvxmv8VDb+fhuP+GhoC31ztEc0z/6w2cRe0CX9gn5RqNZUuiCqCsGk2bO2jLQmRJQgeZ+5FbLQZNubVPoObTV/JguPrUYyVLKEpmps131Is3CLxCmiaXooQM7uRZtLuT3KEVlE49k450mvDZC0vLxB7LYP/tPup0zhMT9tRjErRuD97H9V6eTXxW7q4um+Wsa9OaJKFnhsnY84/UTQ/pMQz9zRtjmpLEXttdG5ju77GSrv01sUXqP8x3GhwreFGg9pQX5tdK6/s99klhFX8KTzbZggAv4ZGI+mXrjUK+V4me8Nj6mL0kHcadDt7GsPaYfUR+ZpgdFxlaR5hCJ5CzgSY8NLn7O8c29PubnNY0Wd11+w5UMeoZJvHGA25b8Pm9mORVXoleuxaY3OoRmma34ZnjWv8mrezHwsPw4ba+nqH+o2N/d98AwwxKKyabbV9jZbP2jnKflwvwBBdHue1/8eZRoaA8DAbIsXsZdRNhexo7rzB9bNowvJEWPnVk2MjKkL72I8DjxvitPVB7f7trWWUn+YdjVbSJIv/d/NqGfnlVcsQKaY6mt/gHKPRb9N5sFPb8n20+BxHKX2bdjKua3cNABYHgWAadKNh9wCj1fd1Ug15NjDKSsao4mrA0kkLv9f6Z/HyK1oXeJ8/rq0Q1Zl5nWFkaBPjXrvratLNZiNQXysS6GVsxNrRU3swdBQQBxs7iP6bjXJx2Kode5lMCL34ZzXtaj/ftccI+7HU/7ezrzbs2t7RKFd9gk7bj7OdbMxra3Gt/bh/gHGvj2nPQZz3c/7fCsvW2plzDtsZNg5yKM9tjYQ20xeP5EcZQs3Np+yNjAvZcYvxmjFvPy1Pd7SAemeqvnevrJr1uTLO11jcHTaujBpwB5Z5H3D9a/M45/A0Mmx5sn0H70F3PU/bTlcz4eMBTPhoIH1ua4tn/wWk2ybRe8C9tAjtSvM2nfDwM+GbnUqTQ7PwzU7Fw5JF8hBj5+kWUfUISl1Nu8Q3qRd8knoZ29nUVoCt9Eo/o27RnYG7xF7QiwL2ht6+saY+VKSJggsFj5Uusa+ROLEHAI3j1iJ/eoOcOa/QLNKfoNTVhJz7nKCQDOplbKfhuP8C+koWx7089KUstmk3kldLq3yb6ZMje26cjNldFInXVJBL+4TJ/NJXs0uSVyQN7p5mbnuuK9lttc3QUht8WGLvFMBZL4dVUoX7xQgTnnWMyr1uQ61BS6sj8PQzgzjGoLERFJCKlFmEt9WebP2zjyJMbtqeRw7id1lno1Exu7mz6CZfYidqvQ6e+WexmQpXtVkBgZS55DU4Td17tEo99gafoiu5dBsjehoN1wmT8Vc0//w27w418fiUBXY3j/AwI4+yNNEUesxoHTb0LN67leUN1hKmJe5vBLMGO//7hz73vPGjvVZRL+8rON5Y+8/kenraJ/r71DPEgnfd+ty0Mpn7X19NgS68Lf5GF0HIsFHkuaGVdx0TYNZN9A00Gtw8H6O8m/K0p++Gnn7s1KMLb2+8c9Dby6ic3c6W/jqT095GufDTOzf9zhr50K671qivCxcIDy2f9wQJe+9YvdAo1kQKlnYQePrWsV8nChsjhyFvr149SGymb9nhZeSDZ46WYJ8gQ5haaxmCyexbfFPdtk8ak52THjfWhJ4I08RTdkRQsWsK2dMYTr1o9M5Z/Ywy0anjdfbjtPZGembrq/NvvGeK3S2yy1AjDP2/ts6hhyGnRWOevcvMqyNNuHsbPY672mr5m+zQwxfVywjr+Tu1e/3xEJOxl4cw6oSGLaJ4brSZh8eZ8TBr+VT/DMwd7saxutD7rkftfuuHGOLWJ7d4g+of3cp+3O/ez7jnMTO77zVWw/rla9vOeOafxc1dvw96WZYXrFYN9jTesBAVZAg80zmtDMhsoww362r0xHmbNLsCzhlCdve1xg7ovUd8AEC2J7h7aPlw2t/dniWeAUa80ZHG/yBH7+HOd4OfR1n4rbvghr7Gliqn+//XftzwdPH2pkFLo4yYfYzymKdXfx79uvHt+Dx+1XvOUgLhn/vOcdZdu2mJfY2HCc9wo2470kurX9d3MpPUU8vL/AgjvZnNyy/8gwZ9aD9289AM8zBd3EvRL5Urdp8nIQTHuzUl9zVth+qo6EF4uHnSccsOfr7ah6C40rcEABh7x0e88HkiZpPxJ7n/rQH0/rAH1/8+m7yw7+i9/lnajBzF6ZdvZc/YGIaMj2LYwpfo988yRj5/Ox7P+nPHrwlE7LU5EURGz0fO//4DwJ+jNbWt7RVTuLtvYcUt8Hh9BCd89D1QCiyGX+G434bAZM3HPzuVERO/IHxnMnV8A4lodyMdO9/CjQ93ZchvzzLk2x8Y9vRt3PbTY3ToN45/9Idyk9kEIpsC9wV4+rhh8vCgT//7uX7qDBKbg/nNRzkYLPHMP4uPLqiE1QIIPCxZ7OySz39nbOHXe91w9/S+QKxI6gf7c/8j37PnnWEInA9n2czuhCcn0W19PMHRAYjWR7nt2e5k+q/F59x2Ym57yO43svdN/NhbsOfWcO57ZwATPrmTtl0ac/8HQxkz/WpqBxp/em9/DwKb+BGZaIjf3olHODp1EJse1hq7/74Ry+iJc/Gd9wLzuwkCQ+uSK9dQN/UN2vULolXHpkx4835uuel1mm1dx32vraRexnaCUldTN3oV/r6J+OXuILC+sadLxxuMV4+0jRzCzGmJCLOZnLdv4+AjLWjTXuvh2djZRuDNmqDJetjYFTq0ZTDZeiWXXksbIln7n8Z46QJhY6jRkCwbXouoGW/y1jvF31O1rVct2kUNYmV7wdoIQYMmrRj7qJkzEV60HjiA1LqQN7gdCY92YEkHQZ8bH7RfKxwEoOwfytIYQbNBA1n4H38WdRHUqtuImO1J3D3feGVLy0NGg1pfGk/GZoen0br6u9F8PQMImf46m9+5Fi9Pfxqu/I6mG5bQb+Ao/ugt2fX6cBKbaA3IQUOH2TnQEEIbF3+Fjqm5Hyd03dCwcWuSx2QSNbgBJndNaFl93dnUz8rGtoIWXQcQddfN9L7rTtzqOIg9fR8ki7vRKNXv2ZfMq8+x93ZPzuvF+HA92Bau5ZNPiNGzaI42ei7cHMRg/ph8/rw9l8get9rdrr55CrMGm4gb15jhw58l6b5Mbr3d6BH59lZYHi14brSZL2+Arl9+Qa/bZ9vPp3kZ9ymkudGItRr+AOvDBG/dI5l01wzSHm1L55jBzB9WwMxrTXj71ObrASbev8lEyNAbWdBNEHCTMXRJy2b8cs8c5jz0Ax5+xljNxGeWsHEC3PP2JrubX0AQzz4E8+/P4WbvHG572o0Hbp1CmyNaeTjnZtSpzQP8+fmhRSwbv55Mfy2fv7nKxItP/kmvT1/F2y+Qr66Dr4fbqFu3kf06z8GB/N1OsPD+HN6/28a3/U10aGf0qPjUD2HjA9sZ+mQqb42RnKgNDXsP4r3xBTzyoJkGzWuT5r8a78YvE5i5Eb9z2v4Yb9+s5V+rbkZPTaP6Ro+WR+dAUgIh99qzfK4/oLTq0p/l0YIVUYIT+u7eue7QfcR1PPm4ZMKEqbw71MTsgSYCGwQTf/9Z5KgMWvXpwKxBJur3CaKurvFq+dflwYlm/m+smQZBRo+0+3mtjvcsgAcjb2B06zQiB0/kvIc2zBkaHMXiToLH7zPTPK34Q1XrNoYAbFQ3j1mDTHw6zkJ8C63u8A1pzyujlxHaRCufaREWbvFrj3eP5nx6rYkGvQxR79/W6B0b0Hco307MJfTq9tzcJIPT95yi/02P8dT/ScZMMtOwaUgxWy7kRG2tp65WE4de5sIecpOwP1RVJaWuthNCnAf2OjsFSClllJNz5Y9ciCeAN4H6Usp0ob2o6n20uVbngXuklFt0v3dj9IS9IqX8SnfvBMwGvIE/gEdlOZYQXs532xVikzaOZB2hea3mZfotfHdSkZU1QiCllUbdv2bEmG+wSRsmYbL7XdXrVeo0D6Lz9SHE/n6Q3GwLY6b1Zv2GL9j+xltEPfYIte9/X/M74E1869em1VV+HF6dz7kz2Qx6vAEhwe2c2uMMS9Yx0o9soHGEkwHxC8jOPsGp0/vZsciHPHmCZh3cyDrQmLSUgwx7uDueXlrl+uX/1uLlY6bzNU2I/SvNngYo+X1hEsnI57pSP9i/2DlHksPCWRUtGD8vqVR/Z9KPcKy31uNQ2NPo+H6xnWO6cvP/vio9wbbC13s47z4+lLyQX9a+xGP3O5Q5KXl+XDu865t55pVtRd4t5jQ9391CywEv49koEnl4E6JZV/s15z98mo5Xj+bsiUTOnTmEh7s3gU17squ9Nky1pzGs72sl65w70982xItjOuNbw6hFReM+EPcXPn/czgna0v659ezZ+Sut29yIcHMvFkYRu/PPcyrxJwJiRmu9bZbz4F2n2DWxbUxkROQS/o8H7WdM48stn+Hr7k2j2HNEL9Y23Ul97iqavLIS71/eJSTCaLCcsXPPX3wy4zFGjHudwGHaisbY/3bi2nY9Ee4+bD94jkbPaJtMpgZAk1OQPvkGAluGs3/nPG64ZwlkZ4CHLz+8fCftf0xkZ1sP+r7998R4EgAAIABJREFUIfvjvqPLyI/t93hP8gbe/3wsfQIyaRk5kje3L+HDUR/y+7SJhG610W19PG7umqJNSVzKh/PHMyTkaur7B7B0zxzGjVnH9C97s9DNn99HLuRwvyEcqws5Q/vQcvYadoeYGbpoC5w7DnWaMvz9cKQNfn0sGTL2Qe1gbQdnnfWLJ3P06HpGjPkDtv0AjaO1d1d6+hfJ88+uMRFxWNIrWRKenMSdL7YjxDOXV57Zx/mk3/BuNQjhafSUWTP2UJCdgWez7qTvXYpn7WD864eTffgffJv2YPaoMLrFmzj35oN0uVGbTL35r7n4PfJysXJxxwuRND8Br32caN9iIfWlUJrINA78Zy25NxV/F2jTDWvwq6PNCbNk7Oe7r/oypPn11L/lU7ufrM3fYPJviG/YYKM8xm9Evt4UHtrIuS3fc37zBzR8Np2fro1kTxPB07ONesF6OoVzfz5F7VFzICsNLDkQ0EJ7obPJjbW39Cdwlybua0+sxW8Fx3jooZ1s6N4Jkw3a/LWAtL43sS1EcNsv6zj5fnvqPxLPifci2O0m6PNkGt+/2xIfaz5+gZ3ZsGYPJ2IKeO9RY+h+xy9PkH/+BB3v/BrOnwKv2lCQy/FfnqDBTa/x6pSu3PKrG7kfP0JUu0Fw9ijmFr1JjtDq8EkPmHhvpo2vX+rD1JHGCuiYL9oRnZvPV+N3kfNyXWxDP+fw7Vrvcm5db7xOa0NorbZuYsqk7pysDTMe+57cmX0Q3R5n8c7fmSGy+XrwdILD+7N20TTeSPyGiT71GDxxJbas46T/9DAN/vM5yTHauw1tn09j//oHkR51uemRRGxbvsbUfoT2ntM9SyF6JJYpjbDacjnS6QUKnih5xfYnd9i42ussx9zcuHvifva312THX/dGMPiLJFb08yGnVQZrbH4seDqxylbb2d9G7OwDJALNS/qUdm1ZH6ApsAQ4BNTT3YYAi9HEWXdgo+4eAOzXv+vqx3X1c5uAHvo1i4HryhN/p06dpCvx4mtdZFJomPz0saXyi//7Va6d86n87qUN8ov/rpbSZivi961xbWVSaJhc/MG9ZYY78+ZwmRQaJndv/fVymX7ZOHcmVy75fIec/uAyOf3B5fbPJw+vLNf1u3YvkifTd5XtMT9Hvnt7uLznmQi7U1JomP2z4qupF5mCssnJOi4t+eeLxFkRCq/Zueobp+dHPxchk0LD5KxP73R6fvak3vYwtq39qNj5vZuXSPlCLbl9SvcSbXjp3nD58S3hF2X34aOxMu9onEz4qHOR83MnXSeTQsPkN7eGaeU/60SFwneMY/umJXa3Q/vWy6TQMPl/EyPk2u/HysdebiPzMlOdXj/v+REyKTRM/npDlPMIrAXS9kItad29TP9tlVJKmZ95VJ45/E9x//tWSllg0fydS9fcbDYpszOklFI+/UorOe/9HnLp/Jflsu5hctorXYpeb7MVqwsqwpwhWl3wycTecseqaXLxnGHaiY0zpUyNv+hwT+9bJRe90ciefimlXLb8R6flOWXZmzJp9vAibhmvhkn5Qi2ZcSRZPjm1q0wKDZMfjNe+N0VX7P8gpZTjn4iQj0yKKPH8X9Mayn8+6luhMH/7ZpxMCg2TT73YWktn3jkppZRXvxMpe0+PlNKSK1/6oLlM+Lh30QttNiktudpx1gntXlutMnvObVLmZlXIhiPfjZa/vNlY2vTyUsiExyPk+JdD5fGv7pGbptaXmYe3Fzmf8d0DMnPxlCJuM0dHy6TQMDn3ldvlbVMi5MTHI6S02eSCNxvJuNfqa55OH5bSZpMFaUny3E8TtLIrpZSZR6XtxbrSmrKlmI03vxopZ98YLnfsXC9lXraU+TklpseWc0aeXDBZygJLkfo2KTRMvvViCzn+Ca3uWr9ompTnT0l5Nk1KKeXQ1yLlVe9FygPrvpZj3msjd/44UWYvfErKF2pJtC2ULlqXVORTlsDZetkihp/QVuwddBBPnwKjHPzsAhoDo4BPHdw/1d0aAzsd3Iv4K+3jauKpIuQX5MmFC16UVpu1TL9Wm1UezNhTBVZdHlbOSS4inD57bJX84sk1lR/R4Y32ClHKouJpyWUUT45siAmTr4y5OBFyLOlvp+etNqtcd2CZtJXQ6M57ZkSpom33Jk08JZYinlKObpK7DjmPvyy7S6JQPP1wW4cKhessjv2JG4u4//X9LfJkymatMShBOEkp5dzJWt78MqT9RdtQIbJOSJmfI22WfPncV73kqYy9lRr81yM18TT7voGVGq4zjqTukh/eFi7HvFq2+LEk/S4tb7SV0pIrCwoscnn8LLln8Q8yKTRMbnhydIXjPrhxlty/bkbJHgrypbQWVCzQ86flnlcCpeXg+qLuB9ZImZpghHs5sdmcxrHrj+fk8e0LpbTkaQK9HGz+7n7Z57MwuXfdFzJlSl255bV62okTO6U8k3LRJqZ+OVQufqORtJ0/VaHrbn05Uj7wZIRsN7udnDSjpTw7tZk89nJduWRaQ5l/ZGsRv7ZNn0u5b5V2D9d/pIk0naoUT2W9nqXsiT8XgRDiJuColDJBFB3mCAKOOPxO0d1Kc09x4v6vxt3swQ03vlAuvyZhornDSp+aRk5WPu36BRHZpwmJa1I5n5nHdeMuabTYOQ4rWC7Ekp9T4rnK5L5JbnTILX3Cc0n4N2zl1N0kTPQMGej0HFB0wYETrIXT6Up5i29Qky5l2ledNApuWuT3oJE/GT9qNS7xOqvUV35V1SpoP20isACm3LW20oM/1qMB6fuOc7pb+Vc3XSzBDVrQvUM6t/cre5NZt/AhEK7N+TMDA6LvhWg4+1EAYX2crIMvg+Zd7y3dQwn7spWKdx1aP5te3D3E2EbhosKtCEI4jaPtdcakflr2L1dQnYe/w+rYL6D7XRDSgaBMvXmtH3pJJjYe/RONz6WBd90KXfddcAhuh9aA/nocHkvCf84tNDqZDI2KzlMUXcYaP7qPvyR7L4VSxZOUciKAEMITuAUIcbxGSlniG22FEMuARk5OPQs8Azhbq+pswoi8CPeSbHoAeACgWbNmJXlTuBCOQqnfqEv7Y1eEeX1MjFyjr1rML/3lxJXF34dS8K3gpv1/txP02yHxqd2wbM/OKEM8tainzX1pGlB8+byr88pYdwKPWfnA31k1VDb5jbQldlta2Cj+atiax+MP/MYMn4E8fNecsj1fKmZ3Oj91aTu51hpQiuhXXBqeftBLfw1OkxjtUxmY3bS5eBXEbcwiTv8wgbpJczg78A1q1Q6CCRsqx6bLRHlfDDwfyATigLwy/AIgpbzambsQoj3QAijsdQoGtgghuqL1HDk+JgYDqbp7/wvcV+nuwU78l2TTTGAmaBPGy5MOxZXJiG6BzG6UxrDfzQRENC37gkogwFbxzeKiOmbwU08fnjdf3Du+LT6lL/P11Dds9Os+plR/rsjn45dx5tSeEifxl8VNI5/ntvxhvHdd+TdRdWXcvOvw6P1x1W2GQuGUum16QNIcajUt/yKm6qS8NW6wlLL0ZS7lREq5HbCv8RVCHAQ6S2213QJgohDie6AbkCmlPCaEWAK8JoQo7AscDDwtpTwlhMgSQnQHNgJ3AR+iUFwi7e5bzQubZ7G09vPcFHNj2RdUBsM/g0btK3RJz/8eomfumYuOMvza/uxYm8BPvcQF743X8WsAL2Y6O+PyePs1wNvPyZ4F5SQwsDXLJ+2oRIsUCkWJxNwBzXtCQMuy/boA5RVP/wgh2uvC53LyB9qKu71oWxWMAdBF0hSgcHvnl6WUp/Tj8RhbFSzWPwrFJePTZSxDO96tdUVXBVHFl2mXibsXuF/csBRAx84PsO+pg0yLuvuiw1AoFIpLRogaI5yg/OKpN3CPEOIA2rBdpezzhBZIiMOxBCaU4O8LoNgbeKWUsUDN6OdT1DyqSjhVF0Jw61VTq9sKJ6iXqSoUCtelvC3DdWV7USgUCoVCofj3U6p4EkL4SSnPSSkPleWn8k1TKBQKhUKhcD3KerfdfCHE20KIvkII+379QoiWQoix+kTuSplIrlAoFAqFQlETKGufp4FCiCHAg0AvfbVbAdrO378Dd0sp0y6/mQqFQqFQKBSuQZlznqSUf6CtglMoFAqFQqG44ilr2E6hUCgUCoVC4YASTwqFwnVR7wFQKBQuSKniSQjxhxAipGpMUSgUCoVCoXB9yup5mg38JYR4VghxmV8ZrVAoFDpqj0yFQuHClLXa7gchxO/AZCBWCPENYHM4/85ltk+hUCgUCoXCpSjPDuMWIBvwBPxxEE8KhUKhUCgUVxpl7TB+LfAOsADoKKU8XyVWKRQKBajhO4VC4ZKU1fP0LHCrlDKxKoxRKBQKhUKhcHXKmvPUp6oMUSgUCjtqiwKFQuHCqH2eFAqFQqFQKCpAeSaMKxQKRaUyv7vAYobnq9sQhUKhuAiUeFIoFFXOt1eZgbLFk1DDdwqFwgVRw3YKhcL1UKvsFAqFC6PEk0KhUCgUCkUFUOJJoVBUC162svfbVaN2CoXCFalW8SSEeEIIIYUQ9fTfdwghtumff4QQ0Q5+rxVC7BJC7BVCPOXg3kIIsVEIsUcIMU8I4VEdaVEoFOVn88EjrDl8tLrNUCgUioui2sSTEKIpMAg47OB8AOgnpYwCpgAzdb9mYAZwHRABjBJCROjXTAPelVK2AU4DY6smBQqF4mLxkhIvqfqVFApFzaQ6e57eBZ7EoWdeSvmPlPK0/nMDEKwfdwX2Sin3Synzge+BoUIIAQwAftL9fQUMqwrjFQqFQqFQXJlUi3gSQtwEHJVSJpTibSywWD8OAo44nEvR3QKBM1LKggvcFQqFQqFQKC4Ll22fJyHEMqCRk1PPAs8Ag0u59io08dS70MmJN1mKe0nhPgA8ANCsWbOSvCkUCoVCoVCUyGUTT1LKq525CyHaAy2ABG3UjWBgixCiq5QyTQgRBXwOXCelzNAvSwGaOgQTDKQC6UAdIYSb3vtU6F6STTPR51F17txZTbhQKBQKhUJRYap82E5KuV1K2UBKGSKlDEETRh114dQM+AUYLaXc7XDZZqCNvrLOA7gdWCCllMBKYITu725gfpUlRqFQXFbUXpkKhcIVcbV9niajzWP6SAgRL4SIBdB7lSYCS4Bk4AcpZaJ+zf+Ax4UQe/VrZ1W92QqFojKRQskmhULhulT7u+303qfC4/uA+0rw9wfwhxP3/Wir8RQKhUKhUCguO9UunhQKxRXII/EgXK3jW6FQKMqHEk8KhaLqCWhR6mk1aKdQKFwZ9einUCgUCoVCUQGUeFIoFC6H2kdEoVC4Mko8KRQKhUKhUFQAJZ4UCoVCoVAoKoASTwqFQqFQKBQVQIknhULhckiTtt7OqmoohULhgqitChQKhctxJKoBh0/s43gXP0ZWtzEKhUJxAeq5TqFQuBzSbOLbAWYsnqqKUigUroeqmRQKhctRz88TAF9P1TmuUChcDyWeFAqFy9GpTkMAevoEVLMlCoVCURwlnhQKhcvRwSeIvw4f5SaPRtVtikKhUBRD9YkrFArXo1lPGlutEDG0ui1RKBSKYijxpFAoXI8GYfBiZnVboVAoFE5Rw3YKhUKhUCgUFUCJJ4VCoVAoFIoKoMSTQqFQKBQKRQUQUsrqtqFaEEJkAbuq245/EfWA9Oo24l+AysfKR+Vp5aDysXJR+Vn5hEop/asioit5wvguKWXn6jbi34IQIlbl56Wj8rHyUXlaOah8rFxUflY+QojYqopLDdspFAqFQqFQVAAlnhQKhUKhUCgqwJUsnmZWtwH/MlR+Vg4qHysflaeVg8rHykXlZ+VTZXl6xU4YVygUCoVCobgYruSeJ4VCoVAoFIoKU2PEkxCiqRBipRAiWQiRKIR4VHcPEEIsFULs0b/r6u5hQoj1Qog8IcQTF4T1mB7GDiHEXCGEVwlx3q2Hu0cIcbeD+59CiAQ9jE+EEObLmfbLgSvlp8P5BUKIHZcjvZcLV8pHIcQqIcQuIUS8/mlwOdN+uXCxPPUQQswUQuwWQuwUQtxyOdNembhKPgoh/B3KZLwQIl0I8d7lTn9l4yr5qbuPEkJsF0JsE1p7VO9ypv1y4WJ5OlLPz0QhxBtlGi+lrBEfoDHQUT/2B3YDEcAbwFO6+1PANP24AdAFeBV4wiGcIOAA4K3//gG4x0l8AcB+/buuflxXP1dL/xbAz8Dt1Z0/NTk/9fPDge+AHdWdNzU1H4FVQOfqzpN/WZ6+BLyiH5uAetWdPzUxHy/wFwf0re78qan5ibbF0InCsqjH/2J1508Nz9NA4DBQX/f3FTCwNNtrTM+TlPKYlHKLfpwFJKNl2FC0hKJ/D9P9nJBSbgYsToJzA7yFEG6AD5DqxM81wFIp5Skp5WlgKXCtHvZZh3A8gBo3ccyV8lMI4Qc8DrxSScmrMlwpH/8tuFie3gtM1eOxSSlrzKaGLpaPAAgh2qA1gGsuMXlVjgvlp9A/vkIIAdQq4XqXx4XytCWwW0p5Uve3DCi1l7nGiCdHhBAhQAdgI9BQSnkMtBuB9scsESnlUeAtNJV5DMiUUv7lxGsQcMThd4ruVmjDEjT1nwX8dJFJcQlcID+nAG8D5y86ES6AC+QjwJf60MjzesVao6nOPBVC1NF/TxFCbBFC/CiEaHgJyak2XKRsAowC5kn98b6mUp35KaW0AOOB7WgCIQKYdQnJcQmquYzuBcKEECG6+BoGNC0tzhonnvReip+BSQ49QBW5vi6aqm0BNEFT73c68+rEzf6Hl1Jeg9bl6AkMqKgdrkJ156cQIgZoLaX8taJxuxLVnY/69x1SyvZAH/0zuqJ2uBIukKduQDCwTkrZEViPVkHXKFwgHx25HZhbURtcierOTyGEO5p46qBfvw14uqJ2uBLVnad6L9R4YB5ar+hBoKC0OGuUeNILzc/At1LKX3Tn40KIxvr5xmi9QaVxNXBASnlSV/C/AD2FEN0cJjTehKZIHZVnMBd0A0opc4EFaDetxuEi+dkD6CSEOAisBdoKIVZVTgqrBhfJx8Knr8Lu7++ArpWTwqrHRfI0A603tFDY/wh0rITkVRkuko+FtkQDblLKuEpJXDXgIvkZAyCl3Kf34P0A9KykJFY5LpKnSCkXSim7SSl7oL33dk9pEdYY8aQPQcwCkqWU7zicWgAUzpi/G5hfRlCHge5CCB89zIF6mBullDH6ZwGwBBgshKirq9rBwBIhhJ/DTXUDhgA7KyudVYWr5KeU8mMpZRMpZQjQG23cuX9lpfNy4yr5KIRwE/qKG70yugGoUSsXC3GVPNUbpoVAfz28gUBSJSSxSnCVfHQIZxQ1uNfJhfLzKBAhhKivhzcIba5QjcOF8hShr07W3R8CPi81RukCM+7L80FrWCVaF2W8/hmCNkt+OZpKXA4E6P4boanMs8AZ/bhwldxLaIJnB/AN4FlCnPeijYXuBcbobg2BzbodicCHaE9T1Z5HNTE/LzgfQs1bbecS+Qj4oq1iKiyX7wPm6s6fmpynuntzYLVuy3KgWXXnT03MR/3cfiCsuvPl35CfwDg0wbQNTeAHVnf+/AvydC7aw1ES5VhBr3YYVygUCoVCoagANWbYTqFQKBQKhcIVUOJJoVAoFAqFogIo8aRQKBQKhUJRAdyq24Dqol69ejIkJKS6zVAoFAqFQlEJxMXFpUsp65ft89K5YsVTSEgIsbGx1W2GQqFQKBSVgsViISUlhdzc3Oo25bLi5eVFcHAw7u7uRdyFEIeqyoYrVjwpFAqFQvFvIiUlBX9/f0JCQhA1/+1MTpFSkpGRQUpKCi1atKg2O6pszpMQwiyE2CqEWKT/FkKIV4UQu4UQyUKIRy7w30UIYRVCjHBwu1sIsUf/3O3g3kkIsV0IsVcI8YH4t5YahUKhuBKQEsvSGcj8Gv26yyonNzeXwMDAf61wAhBCEBgYWO29a1U5YfxRiu6Ceg/aNulhUspw4PvCE0IIMzANh91phRABwAtAN7TXTryg7wQK8DHwANBG//yr3jKvUCgUVxI5f85i78PTOf3SPdVtSo3j3yycCnGFNFaJeBJCBAPXU3S78/HAy1JKG4CU0vHdNQ+jvevG0e0aYKmU8pTUXuK3FLhWf1VKLSnleqnt+Pk12huRFQqFQlEDyT94GICc3all+FQoqoeq6nl6D3gSsDm4tQJGCiFihRCLhRBtAIQQQcDNwCcXhBEEHHH4naK7BenHF7orFAqFogZyMu8cACes+dVsiULhnMsunoQQNwAnZPE3aXsCuVLKzsBnwBe6+3vA/6SU1guDchK8LMXdmS0P6GIt9uTJk+VOg0KhUCiqjq2njgFw0PrvXjX2b2fixIk0b968VD9jx47l999/Z+vWrTz11FNVZNmlUxWr7XoBNwkhhgBeQC0hxBy0HqKfdT+/Al/qx52B7/UxzXrAECFEge6/v0O4wcAq3T34Anenfb1SypnATIDOnTurl/opFAqFK+ICc1oUl8aBAwdYtWoV+fn5ZGVl4e/v79RffHw8L730EsHBwXTo0KGKrbx4LnvPk5TyaSllsJQyBLgdWCGlvBP4DRige+sH7Nb9t5BShuj+fwIeklL+hjZ5fLAQoq4+UXwwsERKeQzIEkJ011fZ3QXMv9zpUigUCsVlRj3i1lheeOEFnnvuOSIiIkhMTLS77969m969e9O+fXveffdd0tLSCA4O5s4772TVqlXVZ3AFqc59nl4HvhVCPAacA+4rzbOU8pQQYgqwWXd6WUp5Sj8eD8wGvIHF+kehUCgUNRHV83TJvLQwkaTUs5UaZkSTWrxwY2SZ/hITE9mxYwdfffUVa9euJTExke7du1NQUMCdd97J9OnT6dq1Kw899BBhYWEAbNu2jaioqEq193JSpeJJSrkKbagNKeUZtBV4pfm/54LfX2DMjXJ0jwXaVZKZCoVCoVAoLpJnn32WKVOmIIQgPDycHTt2APDLL78QHh5O165dAYiMjMTb25v8/Hyys7MJCAggOzubhx56CA8PD/r3788dd9xRnUkpEbXDuEKhUChcClG4DkgN21005ekhuhxs3LiRJUuWEB8fz4QJE8jNzbX3KG3bto1OnTrZ/cbFxdG/f3+SkpIIDw8HNIE1YsQIbrzxRkaOHOmy4qkqN8lUKBQKhaJM7JpJKPVU03jmmWdYtGgRBw8e5ODBgyQkJNh7ngIDA+3HcXFxzJ07l5iYGBISEoiOjga0V8w0bdoUALPZXD2JKAdKPCkUCoXCpbBPeVLaqUaxdOlS8vLyGDhwoN2tYcOGZGdnc+rUKUaPHk18fDwxMTG88cYb1KlTh/Dw8CLiKTg4mJQUbetGm83mNB5XQA3bKRQKhcKlEE6371O4OoMGDWLQoEHF3DMzM+3HmzZtKnZ+1apVPProowAMHz6ciRMn8vvvv3PjjTdePmMvESWeFAqFQuGaKA31ryY7O5s+ffowaNAg+2aavr6+fPnll2VcWf0o8aRQKBQK10QN2/2r8fX1ZcuWLdVtxkWh5jwpFAqFwqWQap8nhYujxJNCoVAoXIrCOU9KQilcFSWeFAqFQuGSqFE7hauixFMNRGaf4eT4AViPJle3KQqFQlHpqFE7haujxJMLcjgpg4/Gr+DwzlNOz8dOf5r0lcfYPXA4uzenMWPcCnbHHS8z3JNHsvhs0t+cTMmqbJMVCoWi0lF7ZCpcFSWeLoKyBEtZ4qek6/MteUgpWTJzB1LCkk+2O73+h8w4+/Hy2Una9xeJTv068uen28nPtfJnCeGWx8bqwtXsUSgUlxPV9aRwba5Y8ZS7I5HksHCSw8LZ26M124a2YGdMWwoOJBD33xtIf20cALazp4td60ywWA7sJC9+DQBLPtuOlJI/P4q3nz+T8De77ulX4vVHtv3JZxPX8tH4leTnWgHIz7UyY9wKZjy4nJzFszg3fxY5a37nvC2PFf2ms6L/DGyaV2xWNL/jVhSx1VZQwIwHlzNj3ArOpucCcDY91x6utNnY/fi1ZG9bhcxKJ3vu5BJtdKQiYqYsMVnWeaRk6axtlWZPef2eST/E30M6kX2mcnr1sjPz+PXtOLIz88oMr9xISVK7MI5Nn1B5YSoUCoWiVISUV2a/aDsvb/ljSEiFrlnRb7rzwXgpGfD3xEs6HyAncYq3wORe/LzNwoDVk4o4pdWLISniXhAmLUwpQVqJTPyCI+GxtD3oTa2UAg6GmNnf/P0S4+3k9hy1l58B4HhrK4lBH5cw4UAy4RNjy/2PJ6zAZgWTGcbPGODEP+TEb8A7pjufP/43eeetePqYueu1LphMZtw8PO3+HM/f906/ImFcKAbLY0+fziuIuON5zhxI4GzSJkJunljkyrJs3705jaWzkqh3bg5RsesBCN/pfH7ZsUMJ1G8cxo9Tt3Lq2HkQcNuzXagf7F/M76IZCRzankHz9oHcMCHaaZyD7o+kbaeGJaS5uF+vxF/Ifu0D7cT0R9j8/oeM+HQ+Pk3aALBr8zGWzUri6nvDCWktSHx1PDFTf8Dk4WEP70x2Bp7CHW+fWqXGWxLJ2/4k7UgSV13/+EVdr6g6/rm2NW5e7nT9zbXnS/46ZQxh325gV2s3hi0qu6dcoZGcnGx/we6/HWdpFULESSk7V0X8V7x42hAq6L6rfHlQmmBpmJHAyr7vI03F9x0VtgKuWv1omdfnedRiXbeXweRmnLcV0GvjZDzzzxYLd0Wf9zS/hdgsDFjzWDF/Wb5BbO70JAhzkXi7xE3DPzu1QmksSyDm+trwytY6NEvze//YXD77wouSuucnfDKAbX/O5MTGdHYd6wLy4uwBcOvciOO70kjoWIJfoF7YV1gOHObO91faxRXSwoC/NdG6pW9tOq7ORDzUH/nRKgDqzv+cn9/JLTHMCZ8MYP0744nfews2W/FOXrObibFvdSU/L4evn0koU4wW4ij+2p99jsDNWu/o0QAIuqDzbkX/90GawWYhMvExGp6Cww233ZZQAAAgAElEQVQg8D+3cG7OLzT/ZBV/fJBATMKHdFgyi9hr+tLys48IjrrKadxnMo/j41MbD3cvNs+4n5gx77C3Y1cA8r+dSnSnYaXaXl4qIiZPHsnit7e3MOyJjsVEa0F2FmZvX4Tp4jrZ5w8IJ7mNJ099Gl+2ZxdC2mycXD6HBoPusrvZbDZ2RUQCJT8MuAqF4mlnazduVuKp3LiaeJo4cSILFy7k0KFDJfoZO3Ysw4cPp0mTJsybN4/XX3+9XGFXt3i6Yoft8ps35Zy3oOObi/j53U8YfdtDhCVrQ1XZnrDzKaMRyNdf7Hyo4X6Q2osK7aJT2miYkQBAzw3Pg9WiNfCaJ7Ba6LnheWxAaq0E+/U4ud4z/yzSrN8Sm0X7FiaSm52z27K/kUMiTCaEzULdEysQNgsIM9/2L35L/bOPYhcpdrEsigkngEbp8aXaGJH4uTZG6JhGWwGROz4DsAsngOiEDzAV5BXxayrIJSb+ffbd9QTR8SWc3/oeyWHhuE96l6C534D14u0BKIhNIzCrFL/bZxL1ySYyc59jxrgV9qFQhDsr+s9gRb/pdFytvZupUDgBnB56H11ipzrkaVFmPLicOjNXYbM6F1dWi5WZj65n9v8SnAy/Luf8yYMsfGYYCZHhHFm3kBnjlhexz2aFBN9XNAFJUeFUOKwLuhA3e5AYpaWl2Qnwfe9nGqZL/nxvAwgT2yPv41D3vtTPhKzbHmJbZJh9WHvuqCh+/XQSq8Zfw7Fu/dnXvgML7uqB34dr7cIJwOOOp+3XZCXHMufp69nw9zfkF+Tx9dNDyEpP5XDcMvYdLrqj8NY1u5nx4HIS1u1hZXft+mVfJgGSpZ9p9zkzLxOLzYLVZuW1aTdx9uQR+/V/fqLP5ftYa2TXxP5MTv551sT9zJ5OXZlz8x3MGLecVb1ux1ZQYLcxvyCP5LBwVrz3ELn7t/Hr/JfZuTHVPqSbcmgbbVNh6N957PnpS7b8+RlJ6w6VOd9xxrgVzJ2ysczh2TKHqy+BhcM7k/HwVFa++ZDdbfuedZUeT2lk5mVy1slDn+LK4MCBA6xatYr8/HyyskqezhAfH090dDTt20cwdeprVWjhpVFl4kkIYRZCbBVCLNJ/CyHEq0KI3UKIZCHEI7r7HUKIbfrnHyFEtEMY1wohdgkh9gohnnJwbyGE2CiE2COEmCeE8ChuQVFq+deiy9Ykotu25Lnr+hH78sMIIQjfmUznhGSu/8/LJLYyMfeqSLYOjwEg/LHnQWiCpV3fhiAtYDLTNCGO+Vc3xv+v+WB/wrVpesVkImbbRoK3bGPUokQwmxE2C7WC0sEE0uxGaFKS3a6AZhCUupoG6e/jm7mGehnbOR/ellXjbuVwa8GQlYbfBz7qz8mgz+j+8cPUdf+AAasfYdgdb3IiQDvfIn4LqyMFq25rg8WUhW92Kv7pX+KTnYqHJYulY7rbwzr9vdYAL+vsDmY3kBZCutYCoXVxbP3iR0ATVzZTyWLGkcAzuxG2giJ+ha2AgMw95TpvR8/z4COGSCykLLHnyKUKQ2f4Zx/FK+ek3iNmXOeVk06XWK0iiE74AGwFxcKNiX+/FEH3GYf6XEfrX3bhYYVzY58kYkf57SsrLfY5c25+IARWDz+7UARwdxB8MVsthL27hIYrD9vd2mw6U2KeAKTcPJpOv+6n9oOvsa9dDF1+PUBK74Fk3/Ew+YPvsAuY5LBw/vl6PwBrZ+8jKVqzS7tNAnBjxrgVzHkklr0RUeyOaMfNX+7haJ/Bxly+DH0uX4Y2l2/bZ3U4GNWJenc8p7k3uBskJEbcw6527e027mun/a8bf7KSA0NGEva/uSz/fJs2x+7TrSx7wxjuLXjuDbwnvcPK2cmAZOmsRLIyjrE5bgGLNnzNvriVJIeFs+gdTaCcOnqO9fN3cWB3LN++eic2aePPv79g8jvGi07/+lxbGPLXTOc9K1JKzpxJIzksnJ/f/ZAZ41bw5WtTkVKSb80n25JtF2Db16Tw6SMrmfnoKk6mZNFmZw4Ahzes4ev/dOLrm9tzeOsqADLqtGX6g0tZ1+0mjh7dxf+3d9/xUVXp48c/z5QUQgIkhBqqtNCbiBog0kG/iiu7Cy6o2BHFsu6CbS3gWn6rrAri6uoK6qIuoougIspGRFSkBEjoQqgiEFpIn5nz++PeTHqDVHjer9e8Mjn33HPPPZmZPHPOueeePPkrb/7nEYwxLLyuB1/cFlvsvMBj6cc4ln7M//vR/Sm8fm8cH/51TaFg8VCP/hzsfkn+18X+Lcx/+g/4ct6H5MxB/JqVi1ey61ACtz/UDS9ezlVFzDHMO5fxvvu78Oyc68+5XheKxx9/nEcffZTOnTuTmJg7V3XHjh3ExMTQrVs3Zs2axeHDh2nUKIKJY65j8Xvz8BkftWFErCrvbXcvsBXImVhxE9AC6GSM8YlIIzt9DzDIGHNCREYBrwOXiIgTmAMMAw4AP4nIYmPMFuA5YJYx5n0ReQ24BZh7LpUNCHAzdmkiY7G6uw/cd5roiPoc3vYXTu3dRuwfPqTPb9oS5A7A7XIxfbY1N6dRi0TcP66k+8wb2b8lmzT7jVuvjjWXacprQzmVnk294Pxzm9aNvxi3uw7XPzyMRa+tIubqucQvmkvr2R8QMP0fXHTxQLjvKQCOz34VV1h93E43jz/xEQAtXv6Unw8coW/rpmyf25Cje3cSHRTMHR9Zwdau7RtIv/Z6fp35Z5I+nU3M96dp8Mh/WOp8h3pBIYztOYStSz7hthZtCQrMU7dbcp/mdPQ7xA0mm5Y967AvPhXEScKINnRdtgeAow9OIvJv1o0dvYFBuDJTCU/+kiORw/E5A9gxdQQdXl4GgC8oBFfGGVrt+5KfLxqBzxnArjZO2u2xPjyT7rmGwa9M9dehw+5FHMszNWfr8OaQYQVXF/WP4OcfkjHiZPOEi+n27k/s6hSAa+hQWs/+jGZr1sCDPyC+bDrENGbHql8xzty3QJNj8WwxPmvIMk9wtaX3Nhovh9PBsOemIfSY+zWHpt+I9615tDgCpmFjJCUTk2e+mifEyYHwQ0Snwt72+63V/oR8wUxOkFjUMYsL/ioqb4+NL7O56534nAH+4VCHN5Pum18rVFZZHG/oI/xY+b6LFRpyddrfeXLqW2CYtryKKn9F7Jx8Q7rF5pUAUr1PsGJQMfMVfTD/ka1gQhj8zTS+GDQbYufkKVHYvvoY21eDwzuR7dFdaAW0AuZs/zpfWZlp1oUhOfWaf1Nrbng7KV/9Dm9pDw5D2p5ebIvu7E//5rLn8LlD+Oa9bdaq3AaWTP8vOV+L+iV6APsLyhP/BmBz51sRHGzqchvhQ8ZwGrgM2PbYIqxBvV9ZTjzG6eaLN+KJO7aduO//wYNjXyV4rHUhTVjiRhb89DaeJe3JzjQc3XeG1R/vYthNXfD4PHhNbvDzyr//ieObVgRc9B0B331Iv+2GD523cfDUfpy//Io7+EUwsPnTNDYsuJP7NxiWXbyeLsBph9c/hMvQA0wZewMJxxJoGdaSsIAwvkj6ghGtRuA1XhZu+Q+/7zKO9UfWcyTtCN6lTTm08xSL3/yJ8Q/EFPka8RkfDrFet4t/XsxVba/Ca7x89v2HXH3Z9Xz2RjxZGV6Wv5nIHZ/7gA1Q4NoMr8+L0+Ek25uN13gJcgUVeawcqacy+fKfCQy/tSsh9QJLzFuUkoap8/l8OhzOH5gbe9lROdurGZt0g1GlD6slJiaSkJDAvHnzWLVqFYmJifTv3x+Px8OECROYPXs2/fr146677qJTp04c+2U3CTt20LdNB/Ye2oLTFUjTBm05/ssZ6jUOxh3gJNuXXWrbVqUqmfMkIlHAPOBp4AFjzFUisga43hizq4T9GgAJxpjmInIp8IQxZoS97SE727PAUaCJMcZTMF9x+vbta9auXXvuJ1cLebKyOLJzC8269CzXfttWfErdRs2J6trbn/b1n35Hs083c/LhSdT/qxUwddq6xf8B32zlcn66fgT17ribg8eTCHxvMRfP+5ijo64FoGNiAp9Mv5qmfYZwYMlCuq49wYkwQ4PT1ps78qvPODp0NAA/PDCU/i9+xb5IaHD37WS//Brt3vqQLX++iSbbM4jetpVvZ02jYYuLaD38t6y6fRQdp71Iy16X+eu7bsk7ONwB9Brxe3/ayf27+WXYlbRc/S1vPxwPXg9RB7/lYPMBGHEy7rE2bJ5wJfXvuoOevy96UvQbkxaBnCF2ygjWLk0iIzWbQdd52L34LYbOmMerty/D6c2i17Ud2fDxdrzOAFo0+hftPtrEithXCh1z8MqpNPthNYf6X0ZKPcPR+gG03ZvNikEvg89L1MFvOdByEPiEwSun0mbdGtYP70/H/3zGkcEjAVgROxvxZtP84LccbD0E4/ESvetujjQIpkdiJt9c/jxeVx3/OYgvjY6e2fR5+nV+GTySPV3rErE3lbAU6zMiY9rtBD73Om1+XM3n18fgcgfQYPT/0fDF/xC88G1EnPzw5G3EzHiX09eMBeDg3dfQfPZ/Adh8cUO6/XSMfRc5afmzt9j5ddbnem7v4tnO5Stt/l5eJeU9NSiMsJUpJZaVXL8Dm7reickJRgGMof6JbXTZNj/fnMXk+h2KDVwL9rqWNKev1JUkCwSJZZkfWJY8JeYDHN5sYr/NvcDlm8uew+sOwZmdyqDV08pVH4CvB81CcIMvm2Z77qfTASv9SD1odArOBMF3nYUR6w3zhjho4XkRpOgLb3Zd8RFN96fQ8Yt4Yj//gZ8v7s+WlkLWzRO59OH5rI4Wmh8Xfu70crF1677+bvY3EpKvGE5qwpdcucaw//WXOfbqbronvEXU6v/x8MyLiWzQjuj9hiWNfmb6ze9y4tQRPn39AQa1f4cDCSeJ6lKPq+/uzTs/zue63mP59eSvvD3vKR774xu483wRu+/+LtRp0oEZf1rI46ufpN1nw0k9nkVYRBATn76M5PRkRITwoHC2bt1Ku4s6cPJwKiE/PEHQmW048gbqGak4DLiDQ/Dhw/jAm+3D5XbgKDAvMCfQ8vkM3mwfDpcgzbqz45JJdAzviEMcGGMQETK9mQQ4AhARTmSc4KZxNzHxponEjohlwRvvsyVhG7NffZmPFi3k0yWf8s78dwCYM2cOu3fv5i8TJtDr6quJX/45B/bs57k33iA5w8Nbc9/F4MGVdYg6meCK7siu4zsQA5mHfHz72hFk4F6mXH8zcB5OGBeRhcAzQCjwoB08JQMvAtdiBT9TjTE7C+z3IFbP1K0iMhYYaYy51d42EbgEeAL4wRjTzk5vAXxujOlaUp0u5OCpIvm8Xn5duZSmV1ydL31Tn2iyGjrou6zopQW+nTYZ+XkXMQuX+9OObYvn6JjxhDx0PeGDJ3D0s/doc8ejrLqqOy6P0H3BV6z+7SBk3I0MuTX3Q9iXlY43PQ13vYgKOSeTlcm27rmBZVkm1/qyMxGHE3EW3Zm7oVs0QdlWWSun/AZnlz5ccuO9bH77OXre8TifTLuaTkutnrtOWxLB50FcAXgzUnG4g0j48kNc9z9F8Kv/j5R7HsTlFZp8vYTDQ64qVMfkLWs5NP8Zuj37EUc3rcHpcBLetQ+b/vEUUcN/x1dP3kK3H46zYtDfcToNrU9+zL6Gv8frEybPtiaKG68Hcbr44o3HaPXCQvY2E0au2FL4xIqxtZM1kbPBwnmcGHsjAB3i1/HVtN9x+aOvs3+AdaWkf0I7gAgOJ/h8IJ4sK+hrPgDjdDPQ+SJdX1nMts5d/W206k8xbEqbCb6cnirA52XwynsJmv8KGTfcU/iiCvEwOO4+mi16m0O/uQmAZks+5tBV11p5nS789wSxg7aM+fMIuuFGe7s7zxw3D4O/uY+tHSB6B3xz2fN4A+qQ954izQ59S6edH/h/PxZhaJgsVl53buBaMLDIUVxQ1zLpCw60HJYvAMsbtAVknqTH5lfzzWss7YKWko5XMOBMCWnOT30fKjLAEF82V6y8r9Tg6FwvTinO2e6XV0pIczZ2u5OswAb+ugVlJNMt4R9FzhWN73I7xxt2J/zYRnomFj3MHzfg7/ichYM6hzeb1tvvI/4iF2O+9/DsWAdpQcKEFV5WRzu46WtriPPrQbORIs7LYEhLu4fGf3yadmfCaNuiJ05jHcc4vEQ0DyUtO43QgFAy7OGzQw2CaHYig5TQFoBgMDSIqkNGVjppmWlEhkWSun0rbi+cDm1h92oa6p7ZjwDJoZDpBqcP6jZoRsieQ6QGOskOjCR+3SZ+M340jSKsz+P0bA+dO3Xh/fc/4tlZTxHlCuL6e+7GlR3Knx6bypChg2lZrw7PvfgK770xB09gSwBumTyRN+e+k+9cQ1Nypw5sPpnFT++cAF82/+r3IJ0OGN57akuVBU+VPmwnIlcBR4wx60QkNs+mQCDDGNNXRH4DvAUMyLPfFViDRjn9rUVfP198elF1uR24HaBly5blPBNVFIfTWShwAui+tuR/tAOeKzyq2rBTTxrmCQLq3mHNWYn5ZK096dnN0K8Kl+sICMYREFzeqhdLAgJJiW1JaNw+mn2+qEz7ONwld7+3+2AenpPJAAyck1tmrykzALj2hc/YutQKOMThAIc1hOUMCgGg26jxMGo8AElPHuTUsoU0aH4RDYoI7CI69yXiWWs4N7J77oTu7ndYa3hd+vvJnPnhaa4Zc5SoUROAkYXK8AeBZ3mfjNRruxH45UYadeyJ75kHMV4vzqA6jHhpSYGcDhwuB10HNSfhm4P4fIYpcwf7g68myQu55MftgBVshcy8B1e9CMThYMALq9k1bRXejOPUS/qArB6TyTyTTegD42jW5wq2g3++nD8QcwX4A01Z+C/SNq8mtPVF9rk6AA9R+1dyoPkAcLrJjm1Kr3798K76ihWPbcfhgManVnK4bgzGDvpMvTDgND6nG3EIIRwmnQi8PjdZAWE47xhJlseH880vCe4UBd8dxOd043L7aLXtv+xtORyPy/p7b+kZSottKYRmwNE//pbAb5dhzZ905gZtDmi373N+6TgaXxZ24ES+CxdcnnTaTe5EvVGzOfDR27S8ayaZvWOsq3mdLrD/GYrDcNkPj3GyvZtT3XtQd9VaHG4nPo/JLddnDffW+3Q+mx+dwtA3l7Gj72UEp/1Kep3Gua8TYwhOP0Lv+L8D9tBwn3vwecR+HRkcHquH7WS4r9Sh5c6J/yw2uCpJj40vs7H7lEI9kj03zi7DK9cSmnoQr8N+T9t1c3izCgVOBQOi45E9WRE7p1DvG4CviMA1J731EWh9xBpenb4wdz5Yh0O5z4t7J4qB/1tjWPFqGO6J4f7ACUB8To7vTwPAnZL7RTbU04iUPCN+gnDygDVPrl7KMbI4RkZoSzLyHleEM6HW/82IPEEMJ602cVIPnwngr397knfe/ICBl8eCCEeOHmHolQNwZDsJD2rExl3buSGrLhsTNvDhhx8wcfz/sXP9Nrp17EhwFqSUMpKZYteBkz/7L4aZtO5lMIb3GFryzhWoKuY8XQ5cLSKjgSAgTETexZq39JGd52PgXzk7iEh34J/AKGNMsp18AGuOVI4o4BBwDKgvIi5jjCdPeiHGmNex5lDRt2/fmj8jrTaryJtTuUqd/1/hLp69BHN0D46mHSqkvNDO/UrPVEatx94BY+846/1bjJoAoyaULfNZ9kz3feZDeNoHDgfNrr2l2Hw3P9qS4CirjQf8rnBbH43I/0295di78v0+6bmc71Z5A/jcZRYGr5yK65XpeO5ZRIfdi/L10IV17U9YV2t2UMNpv2Nc5H62fP8xDeN2EdVuFX1e/oacoM3ZsDlT5jbPKRWAZbcMAyDcHYJj0sUM+nEaXRYVnH9mLzthDEcaPk6Ha++B9GRafTyT4Dvns63zVFod+JpfW1ofxWENI3D7TgNC/ebt6T7/KTZMXoHDAVGuBA5kd8VnXERvSSBu6kqc5gzG68DnDgIxBDgzyDJ1oHlrwm+1/satpj4HgGdgJHgcgFjxik8wCOGjW9PolocIam/1tm6cvAIRHy1Dd7M/rQM+XHRcswpHWATNPlgDQJt3X2bVnBT8a2bYPV8+cRKYdZpfBkfRdMUOXAFusjwe/3ZXSBDdX7yZgDZd2D34ausCGm+e4Na+GGR7OxcddxUIrgR/cBX+7zkcum0y2V3rE3nbdDJufZi0oa3I2LyXiF935Da/fz8IP7WTtZfVp+9q62KHrFAHASm5wQlA4NThLNswusgeorSQpvl+P9HdUWJAZNw+JNsaCvM4zj2ou3jtM8UOU+dsZ8JzhfYTn5c66UfypQWlHyMjqGH+iMwYgjOOlSsPQErdFv7P+2++XUFWVhYDY3Lfg40iG5GWnsaJk8f57W/Gcf2ksQwePYCL2rYjLKwe0e1jWfjR/4jpZL3/Q1J/IbVOk3zHwBhC0g7nr1eebWc7L/JclCt4EhEH0ANoBqQDicaYEpdfNsY8BDxk7x+LNWw3QUSexfpkeQsYBOyw87QEFgETjTF53gX8BLQXkTbAQWAc1pwpIyL/A8YC7wM3Av8tz3kpVZC43EgFBU4XrDKsrZQTOBV0vKWD8H0+vAHOIreXhbtXS4Iv60PzYTeS/MQxsvfuLDZv5KQnAYgZOp7k8HuIuLf0ifP9b3uAX7feQ987/kToJaNKzixCo0nWBR/Uj6TOXe8CEDSiDRnL9tBr+mMk/fsfDJnxL9bfMQY2naJjr4EATJmbs+5X/vW/Js++As/h3Zz68GUi7plV6heWvrOXcPS1TdSpF0iXAc1I/PYQaacyaXnnB/ny5R6veEF9hxHzfTSbutxGk7FX+ss7vTOTji8sJ7phFMbnI27qNwSGuOk9shXrv9hLdpaX0MutZWCit20lmtwh3g67c3tkA3PORRzggO6xUSSsPISPACJvHErDXlfQeN12f1CW/Z+GuDpfyvEvF3Dk/r/icIAjK5VW+75kf7ff4sl2EL1tK8dvzv2n3uMnqyfGm57Kjl7WSE+bO2cxYPgI9g39M3uTfPhw4xAPkYfX0+7njzn65/FEPr8AHND7mffJvP1RtnaYal0daveu4bMCooZvvUbyRCvYb/buLFzX328FIjm9hCL+oK7R3ydz5L65eIN9uDxgsh246mXjaeyBHcF0+HElOy4ZaLeJ5PtSE5p6CF/rOoQmHeQM+YNBADE+HDlL3wDpoS7qpKeTUcTAjcuT7n/u9qSRISXnyQwS6qYeIj0oAq8riEEDBjNoQO4XBhAQ2LV5vz9t2Sf/KxSQ/bD6f9z/u1kAnDh+lEeefo7NiZt4ac4L3Dvlj1Z9wtwERHUkGMjYmzOH0G5HX9EXzlSmMgVPInIRMA0YCuzEmqMUBHQQkTTgH8A8Y0zhv1zxngXeE5H7gTPArXb6X4AI4FV7fNdjjOlrTwa/G1iGNZv0LWNMTj/kNOB9EZkJbADeLEc9lFLFqabb2yf1bE/4vu14nWd//HYLlvmfR4z7Y5n2kaBgGv7xn2XKW6//KOp9t/Oc2qj1//sIM+UHHB2uoMfg3wHQ+9WFeHatJ6Bpq1L3dzVpS8TUv5f5eKPu7O5/Pmh8x/JXuIDuiW8Q/dEDecrLLVMcDv8cOoDew0s/nxyp4XWBEwxeOZWs15+hx8CODPh9Ttl5gju77d3drBkfEaMmEjFqItEAXg9kXA4huXMh+z83nx0Dhuc7ljPYGhqngQNxOOj61XKOvbcN395DOPHixYXTk0Fg1mkahDUjeksCGB843Vzx9X/ZetcKOxjIDRbCT+0ksvcAkgFfgCGi90hCX95L3GI37gAHvYdFsX75QbIzDC0emUjdkVOpM20fgVfdg6NhSzIWPEzg2L8gAcH+QKvuzYMJTMoipEk9+l7ZmrVLk0g/lUZI6zRaLN7Atu69MPbqQw4xGK8X43BhxIEjyIEvw/r3HORwE9SxA6f3WesHBmSlkOWu629LCTSYzJzXtBWoBWSfISsgFEQI6tieM0k7cGUKPocDZ0QIzuzc5fjy/mkK9VsXeK+kpqVyzW9HMqz/JbRs1sz6G9avzwvPvWQNgdcLJPVUJsZnCIhqW6As6D64hTXcb5w0vaoJbN9W8IiVpqw9TzOxLv2/wxSYYW4vMXA9MBHrirpiGWPigDj7+UngyiLy3EpuIFVw22fAZ0Wk7wYqblxEKWWppvVWomgAQFNf+S/lrlLnGFxKQDDSIf9q7o6GUQQ0jDqncms7jzu3x9FZzEUYpXK68gVOAM7IFkVmLXhRSHpKFl0HNvf3qJ1c3RR2QpfYEdYwZZ6rQcUhBAQ58/SuCR2WfYA4XUQ9dhsBHaylCgOG38HkPHFb71H2XDt7aDh40t/824KufyY3o/0aa/HnOfn+Mbb3r7xvrd7dceXnbPvlOI1a5b/NkvFmI87OmKwMsg/swd0kCsThz5eVdJg6vhTcrdvj3Sc4G7XEc+oEnuQUIpsFIi43mLr2eVtcwXUgM51gp4vAJi3JOJIG6R5EBKfbgSfLi8kJxkSoExZA2uksa/0m+yPFnXWakOBQvlr6LaEp+0gPgOAsa1vDPEswBIUUHkJt1CqM5LQg+l3eIc9w/zB4oeq+7JX1VfmSMeaHojYYY44AZf/qo5RSpahrT5iva6pyKTpVY+SJ2Z3uqp/zWKiHblwHyBwPQYXv/1hS71roH6rufo+ORq2R5PRC6WLP35KAIALaFr51S0Dr3KFzV2trpS93cCjuxt7cK1ULxCRBjVvgydqJq6kV5NdrVIfSFFzT6vjP+wk9c5L0ekEEd+0KCQkApAUJFXf5T+Up66p2r1ZqLZRSNVL1DNpBWD3r4zMgtIb3PKlKIXl6PB1n2/NUkUSKDJzOWyL5l/gouNkdgLttF2tY8WwV06ltittQw1yw97ZTSpXOVNOcp3a/u5bGfU7S7vax1XJ8VXXOBNuLsF6TO6fliEnzP48ICa/Q4zUcWI/giKwKLVOVX5B9ZWVwgSsb62QXlRnoIf4AABTcSURBVLvmKWtI31ZEFhe30RhTeKEfpVTtV01znuSiQYS/sBwad6mW46uyaTS86DlE5XG6rlA3HVIvHkXQf61b3LQ5mHs/uvDIyHM+Rl6Rr64k0pNRoWWq8gsMrUNW+mkC69YFwFW/Dp6TabjDSh8CrAnKGjwdBV6ozIoodaELa5VG3Z5tqrsaNUeTEm8SoKpZ9PrvILCEe6uVkeSs/ZlneK6Dw42XTKRBNo6I5sXseZZcAdWydpzKzxnZguCwFP9wqKtZK0SScDapHQtYlzV4SjHGfFOpNVHqAtf8k43grh3fupSiTsUMp4l9iXve4KnVQ9PYfcdTtHpwcoUcQ9VABeaRicOJq/lFJexQs5Q1eEqqzEoopYDg+tVdA6WqXM6sOlee3qDAQeOJ/mkwhDYueielqlmZgidjzG9ynovIZUDrvPsaY+ZXeM2UUkqd91x2z5O74P0hNXBSNVi5rrYTkXeAv2HdrPdi+1EldzBWSil1/on0Wj87NKrguU2q2t199920alXyyvK33HILS5cuZcOGDUyfPr2KanbuyruARl+gc8FVxpVSSqmzEdoqiFMJGbjr1avuqqgKtGfPHuLi4sjKyiIlJYXQ0KIvLoiPj+fJJ58kKiqKXr16VXEtz15513lKAJqUmksppZQqg6avfcxFz96Aq3W36q6KqkCPP/44jz76KJ07dyYxMdGfvmPHDmJiYujWrRuzZs3i8OHDREVFMWHCBOLi4qqvwuVU3p6nhsAWEVkD+Bfi0HWelFJKnQ1p2JqAMQ9VdzXOO8+teY5txyv2Rrmdwjsxrd+0UvMlJiaSkJDAvHnzWLVqFYmJifTv3x+Px8OECROYPXs2/fr146677qJTp04AbNq0ie7du5dScs1R3uDpicqohFJKKaXOD4888ggzZsxARIiOjibBvm/dokWLiI6Opl+/fgB06dKF4OBgsrKySE1NJTw8nE8++YSlS5dy5MgRpkyZwvDhw0s6VLUpU/AkImIsxa71lJOn4qqmlFJKqbNRlh6iyvDjjz+ybNky4uPjmTJlChkZGf4epU2bNtGnTx9/3nXr1hEbG8uWLVuIjrZuWjxmzBjGjBnDiRMnePDBB2ts8FTWOU//E5F7RCTf0p8iEiAig0VkHnBjxVdPKaWUUrXFww8/zJIlS0hKSiIpKYmNGzf6e54iIiL8z9etW8eCBQvo2bMnGzdupEePHvnKmTlzJlOmTKny+pdVWYftRgI3AwtEpA1wEggCnMCXwCxjTHzlVFEppZRSNd3y5cvJzMxkyJAh/rTGjRuTmprK8ePHmThxIqNHj6Znz5507NiR+vXrEx0dzdtvv03//v0BMMYwffp0Ro0aRe/evavrVEpV1kUyM4BXgVdFxI01cTzdGHOyrAcSESewFjhojLlKRASYCfwW8AJzjTEv2+kvAaOBNOAmY8x6u4wbgUftImcaY+bZ6X2At4Fg4DPgXh1CVEopparOsGHDGDZsWKH0U6dO+Z+vWbOm0Pa4uDjuvfdeAF555RW++uorTp06xa5du7jzzjsrr8LnoLwTxjHGZAO/nMWx7gW2Ajk3s7kJaAF0Msb4RKSRnT4KaG8/LgHmApeISDjwONZaUwZYJyKLjTEn7Dy3Az9gBU8jgc/Poo5KKaWUqgKpqakMGDCAYcOG+RfTnDp1KlOnTq3mmpWu3MHT2RCRKOBK4GngATt5MnC9McYHYIw5YqdfA8y3e45+EJH6ItIUiAWWG2OO22UuB0aKSBwQZoz53k6fD4xBgyellFKqxgoJCWH9+vXVXY2zUt5FMs/W34E/A748aRcBvxeRtSLyuYi0t9ObA/vz5Dtgp5WUfqCIdKWUUkqpClem4ElERpSw7bel7HsVcMQYs67ApkAgwxjTF3gDeCtnlyKKMWeRXlRdbreDtbVHjx4tqdpKKSjmnaSUUhe2svY8fSYi/xORonp0Slsa9nLgahFJAt4HBovIu1g9RB/ZeT4GcpYWPYA1FypHFHColPSoItILMca8bozpa4zpGxkZWUq1lVJGoyellCqkrMHTJuDfWHOQCvY0FdXz42eMecgYE2WMaQ2MA1YYYyYAnwCD7WyDgB3288XADWLpD5wyxvwCLAOGi0gDEWkADAeW2dtSRKS/faXeDcB/y3heSqkSmJLf3kopdUEq64RxY4x5Q0S+Ad4TkdHAFGNMGmffsf+sXdb9wBngVjv9M6xlCnZhLVUwya7AcRGZAfxk53sqZ/I41uTzt7GWKvgcnSyuVIVwaOyklFKFlOtqO2PMDhG5FGt9pg0ickM5948D4uznJ7GuwCuYxwBFLitqjHmL3LlRedPXAl3LUxelVOnsi2GVUkrlUdbgyf/90xjjAaaLyBfAAkAnDymllFLqglHW4OnJggnGmDh7Ze87KrZKSqmaQqSqVjNRSqnao0yfjMaYT4pJP2GMebZiq6SUqin0LkdKqbN19913+1cOL84tt9zC0qVL2bBhA9OnT6+imp07/VqplCqBBk9KqfLbs2cPcXFxZGVlkZKSUmy++Ph4evToQa9evXj22drTF6PBk1KqWLpUgVLqbDz++OM8+uijdO7cmcTERH/6jh07iImJoVu3bsyaNYvDhw8TFRXFhAkTiIuLq74Kl1OV3NtOKVU7aeikVO10+K9/JXPrtgotMzC6E00efrjUfImJiSQkJDBv3jxWrVpFYmIi/fv3x+PxMGHCBGbPnk2/fv2466676NSpEwCbNm2ie/fupZRcc2jwpJQqgT1sp1GUUqqMHnnkEWbMmIGIEB0dTUJCAgCLFi0iOjqafv36AdClSxeCg4PJysoiNTWV8PBwtm7dyksvvcSxY8cYMmQIkydPrs5TKZYGT0qp0unUJ6VqlbL0EFWGH3/8kWXLlhEfH8+UKVPIyMjw9yht2rSJPn36+POuW7eO2NhYtmzZQnR0NADR0dG89tpr+Hw+brvttmo5h7LQOU9KqWLpnCelVHk8/PDDLFmyhKSkJJKSkti4caO/5ykiIsL/fN26dSxYsICePXuyceNGevTo4S9j8eLFxMTEMGTIkGo5h7LQ4EkpVSwNnVRVanrrcMJjWlZ3NdRZWr58OZmZmfmCnsaNG5Oamsrx48eZOHEi8fHx9OzZk+eff5769esTHR1dKHi6+uqrWb16Ne+99151nEaZ6LCdUqoEOudJVZ36D75U3VVQ52DYsGEMGzasUPqpU6f8z9esWVNoe1xcHPfee6//+aJFi8jMzGT06NGVV9lzpMGTUqp0OudJKVXBUlNTGTBgAMOGDfMvphkbG0tsbGz1VqwMNHhSSimlVJULCQlh/fr11V2Ns6JznpRSpdNhO6WU8tPgSSmllFKqHDR4UkoVq3NEYwDCjX5UKKVUjir7RBQRp4hsEJEl9u9vi8geEYm3Hz3t9Hoi8qmIbBSRRBGZlKeMG0Vkp/24MU96HxHZLCK7RORlEdFBBqUqQGRgGACNxFnNNVFKqZqjKr9O3gtsLZD2J2NMT/sRb6dNAbYYY3oAscALIhIgIuHA48AlQD/gcRFpYO8zF7gdaG8/RlbuqSh1odHvI0oplaNKgicRiQKuBP5ZhuwGCLV7j+oCxwEPMAJYbow5bow5ASwHRopIUyDMGPO9McYA84ExlXEeSl2wNHZSSim/qup5+jvwZ8BXIP1pEdkkIrNEJNBOmw1EA4eAzcC9xhgf0BzYn2ffA3Zac/t5wXSl1DmSwAAAXHV02E4pVTYff/wxIsK2bdsAa+HLq666qpprVbEqPXgSkauAI8aYdQU2PQR0Ai4GwoFpdvoIIB5oBvQEZotIGEV/9zUlpBdVl9tFZK2IrD169Gi5z0WpC01Qjz40ufgkTW8cUN1VUUpVgtRTmXz8wjpST2VWWJkLFiwgJiaG999/v8LKrGmqoufpcuBqEUkC3gcGi8i7xphfjCUT+BfWPCaAScAie9suYA9WkHUAaJGn3Cis3qkD9vOC6YUYY143xvQ1xvSNjIysuDNU6jwljTrS4JlPcV7zfHVXRSlVCdYu3cOhXadYu3RPhZR35swZvvvuO9588818wdPp06e59tpr6dy5M3feeSc+nw+v18tNN91E165d6datG7NmzaqQOlSFSl9h3BjzEFYvEyISCzxojJkgIk2NMb/Yc5vGAAn2LvuAIcC3ItIY6AjsBnYBf80zSXw48JAx5riIpIhIf+BH4Abglco+L6UuGFF9q7sGSqkK9trdcXg9uTNpElYeImHlIZwuB3fOjj3rcj/55BNGjhxJhw4dCA8P968gvmbNGrZs2UKrVq0YOXIkixYtok2bNhw8eJCEBOvf/8mTJ8/pnKpSdS7e8p6IbMaa19QQmGmnzwAus7d9DUwzxhwzxhy3t/1kP56y0wAmY01G3wX8DHxedaehlFJK1S4Tn76U9hc3xuW2wgCX20GHfo2Z+PSl51TuggULGDduHADjxo1jwYIFAPTr14+2bdvidDoZP348q1atom3btuzevZt77rmHL774grCwsHM7qSpUpfe2M8bEAXH288HF5DmE1atU1La3gLeKSF8LdK2oeiqllFLns5B6gQQEOfF4fDjdDjweHwFBTkLqBZa+czGSk5NZsWIFCQkJiAherxcRYfTo0RRcflFEaNCgARs3bmTZsmXMmTOHDz/8kLfeKvQvvkbSZYOVUkqpC1B6ShZdBzZn7LQ+dB3YnLTTWedU3sKFC7nhhhvYu3cvSUlJ7N+/nzZt2rBq1SrWrFnDnj178Pl8fPDBB8TExHDs2DF8Ph/XXXcdM2bMqFU3Ca7SniellFJK1Qyj7uzufz5ofMdzLm/BggVMnz49X9p1113H3LlzufTSS5k+fTqbN29m4MCBXHvttWzevJlJkybh81lzr5555plzrkNV0eBJKaWUUucsLi6uUNrUqVOZOnVqkfl79OhRq3qb8tJhO6WUUkqpctCeJ6VUlWsRm4w49eNHKVU76aeXUqrK1X05CURvmKeUqp00eFJKVb2AOtVdA6XOS8aYQssCnG+MKfIObFVK5zwppZRS54GgoCCSk5NrRHBRWYwxJCcnExQUVK310J4npZRS6jwQFRXFgQMHON9vfB8UFERUVFTpGSuRnM8RaklEJAXYXt31OI80BI5VdyXOA9qOFU/btGJoO1Ysbc+K19EYE1oVB7qQe562G2P0jqcVRETWanueO23HiqdtWjG0HSuWtmfFE5G1VXUsnfOklFJKKVUOGjwppZRSSpXDhRw8vV7dFTjPaHtWDG3HiqdtWjG0HSuWtmfFq7I2vWAnjCullFJKnY0LuedJKaWUUqrcak3wJCItROR/IrJVRBJF5F47PVxElovITvtnAzu9k4h8LyKZIvJggbLut8tIEJEFIlLkalsicqNd7k4RuTFP+hcistEu4zURcVbmuVeGmtSeebYvFpGEyjjfylKT2lFE4kRku4jE249GlXnulaWGtWmAiLwuIjtEZJuIXFeZ516Rako7ikhontdkvIgcE5G/V/b5V7Sa0p52+ngR2Swim8T6f9SwMs+9stSwNv293Z6JIvJ8qZU3xtSKB9AU6G0/DwV2AJ2B54Hpdvp04Dn7eSPgYuBp4ME85TQH9gDB9u8fAjcVcbxwYLf9s4H9vIG9Lcz+KcBHwLjqbp/a3J729t8A/wYSqrttams7AnFA3+puk/OsTZ8EZtrPHUDD6m6f2tiOBfKtAwZWd/vU1vbEWmLoSM5r0T7+E9XdPrW8TSOAfUCknW8eMKSkuteanidjzC/GmPX28xRgK1aDXYN1otg/x9h5jhhjfgKyiyjOBQSLiAuoAxwqIs8IYLkx5rgx5gSwHBhpl306TzkBQK2bOFaT2lNE6gIPADMr6PSqTE1qx/NFDWvTm4Fn7OP4jDG1ZlHDGtaOAIhIe6x/gN+e4+lVuRrUnmI/QkREgLBi9q/xalCbtgV2GGNylmb/Ciixl7nWBE95iUhroBfwI9DYGPMLWH8IrDdmsYwxB4G/YUWZvwCnjDFfFpG1ObA/z+8H7LScOizDiv5TgIVneSo1Qg1ozxnAC0DaWZ9EDVAD2hHgX/bQyGP2B2utVp1tKiL17d9niMh6EfmPiDQ+h9OpNjXktQkwHvjA2F/va6vqbE9jTDYwGdiMFSB0Bt48h9OpEar5NboL6CQire3gawzQoqRj1rrgye6l+Ai4L08PUHn2b4AV1bYBmmFF7xOKylpEmv8Nb4wZgdXlGAgMLm89aorqbk8R6Qm0M8Z8XN5j1yTV3Y72zz8YY7oBA+zHxPLWoyapAW3qAqKA74wxvYHvsT6ga5Ua0I55jQMWlLcONUl1t6eIuLGCp172/puAh8pbj5qkutvU7oWaDHyA1SuaBHhKOmatCp7sF81HwHvGmEV28q8i0tTe3hSrN6gkQ4E9xpijdgS/CLhMRC7JM6HxaqyING/kGUWBbkBjTAawGOuPVuvUkPa8FOgjIknAKqCDiMRVzBlWjRrSjjnfvnK6v/8N9KuYM6x6NaRNk7F6Q3MC+/8AvSvg9KpMDWnHnLr0AFzGmHUVcnLVoIa0Z08AY8zPdg/eh8BlFXSKVa6GtCnGmE+NMZcYYy7Fuu/tzpIOWGuCJ3sI4k1gqzHmxTybFgM5M+ZvBP5bSlH7gP4iUscuc4hd5o/GmJ72YzGwDBguIg3sqHY4sExE6ub5o7qA0cC2ijrPqlJT2tMYM9cY08wY0xqIwRp3jq2o86xsNaUdRcQl9hU39ofRVUCtunIxR01pU/sf06dArF3eEGBLBZxilagp7ZinnPHU4l6nGtSeB4HOIhJplzcMa65QrVOD2hSxr0620+8C/lniEU0NmHFflgfWP1aD1UUZbz9GY82S/xorSvwaCLfzN8GKMk8DJ+3nOVfJPYkV8CQA7wCBxRzzZqyx0F3AJDutMfCTXY9E4BWsb1PV3ka1sT0LbG9N7bvarka0IxCCdRVTzuvyJcBZ3e1Tm9vUTm8FrLTr8jXQsrrbpza2o71tN9CputvlfGhP4E6sgGkTVoAfUd3tcx606QKsL0dbKMMV9LrCuFJKKaVUOdSaYTullFJKqZpAgyellFJKqXLQ4EkppZRSqhw0eFJKKaWUKgcNnpRSSimlykGDJ6WUUkqpctDgSSmllFKqHDR4UkoppZQqh/8PweMJ66MkcXcAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for FRD\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'FRD'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Fresno (FRN) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.965 -0.22 0. 0. ]\n", + " [ 0.22 0.965 0. 0. ]\n", + " [ 0. 0. 1. 67.484]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.408e-01 -1.886e-01 0.000e+00 5.645e+02]\n", + " [ 1.886e-01 9.408e-01 0.000e+00 7.482e+02]\n", + " [ 0.000e+00 0.000e+00 1.006e+00 -1.822e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.869e-01 -2.097e-01 3.919e-02 -2.164e+03]\n", + " [ 2.192e-01 9.869e-01 -2.772e-01 1.167e+04]\n", + " [ 2.441e-02 1.699e-02 9.869e-01 4.362e+01]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.863e-01 -2.097e-01 3.932e-02 -2.155e+03]\n", + " [ 2.187e-01 9.819e-01 -2.749e-01 1.158e+04]\n", + " [ 2.281e-02 1.457e-02 9.959e-01 -2.955e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VMXegN/ZTXaTkAIhISShBEIgoXcIRRAUQRQUFfVTxIsN20WvXhteLNeG2K/YO1bEjiJVQDD0DqH3EEIIkN53vj/O2ZbdTTaNDTLv8+TJ7pw2Z/aU3/yqkFKiUCgUCoVCoagcg687oFAoFAqFQnEuoIQmhUKhUCgUCi9QQpNCoVAoFAqFFyihSaFQKBQKhcILlNCkUCgUCoVC4QVKaFIoFAqFQqHwAiU0KRQKhUKhUHiBEpoUCoVCoVAovEAJTQqFQqFQKBReoIQmhUKhUCgUCi/w83UHzjYREREyLi7O191QKBQKhUJRB6xfv/6klDLybBzrvBOa4uLiWLduna+7oVAoFAqFog4QQhw6W8dS5jmFQqFQKBQKL1BCk0Khs3/bX/xy91gOpK7ydVeq5Pfp97B27ke+7oZCoVCcVyihqQ7Zu3Epc/81HovF4uuuKGrAnnvvot3i3RRd+Q82Lpnj6+54ZOPCr2j98WKCH5zh664oFArFeYUSmuqQjNvvJv63rRzev83XXVHUBEup7eO2v5b6rBtVcei1V33dhQbNiYw0UhOTSE1M4kTaHl93p9os/eo1UhOTOJN1zNddUSgUFag3oUkI0VII8YcQIlUIsV0IMUVvnyGE2CmE2CKE+EEI0Vhvv0EIscnhzyKE6K4v6yWE2CqE2CuEeEMIIfT2cCHEQiHEHv1/k/o6H28wlmsappKCXF92Q1FTDNL20Vxw3IcdqZymJ/N83YVqk3n8EHPf+k+9HuPF+yfx2awPWDjrf7a2pU/eV6/HrA/y3/8EgNXL5ldru79+ep9f/ntHPfRIoVBYqU9NUxnwgJQyCegP3C2E6AgsBDpLKbsCu4FHAaSUX0gpu0spuwMTgINSyk36vt4GbgcS9L+RevsjwGIpZQKwWP/uM4y6VS7A6MteNDx+uX4oP0+6xNfdqBKL090gfNWNKik2y6pXamAsv3U88W/MYeO6ZfV2jMvnpdDn2ZfJS7cH0si8E/V2vPrCT5ZoH84cqdZ2TR5+hXZfLK+HHikUCiv1JjRJKdOllBv0z7lAKhArpVwgpSzTV1sFtHCz+fXAVwBCiGggVEqZIqWUwGfAFfp6Y4FP9c+fOrT7hOAi7f+ZglJ+/vd1rPrpPV92p8HQbmMGCX8drtY2xYX55GafrKceuUeeI8bqwjZlVa/UwGhyJgeAvCM762X/+w/YzXCytMT2WXDuCZjWLouGK7cr6oGCwnxycrN92ofPxw3mg1su82kfGjpn5TUhhIgDegCrKyyaBMxzs8m16EITEAscdVh2VG8DiJJSpoMmpAHN6qbHNaPYFMr67vdxfMc2En7ZTNjDf2/fk1PHD/HLnZdTWJBT5/teNmYwR/sNrvP9VobFcG68pc74+/QyrxnWoS0rqvWu5r77X83n52S6ra0428GcWmr3TTsXZabzlcUrV3DkeIavu2Ej98wJUn54m/y802fleCsu7k9an/5n5Vie6LXjJANX7vNpHxo69S40CSGCge+A+6SUOQ7tU9FMeF9UWL8fUCCltHpTu3uTVetRKIS4XQixTgixLjMzs1r9rw67468mO6wd6buj6u0YDYkl902k3R97+e2lh+p83y2PFAJQXOjsv7PkvSc4nVk9s4W3OJnnaik/Zabt5diBrbXbiQcsBn+Xtl9fnEJqYhJlDloWR8rLy/h1TDIrv3+nXvpUFdZ40tLy0krX84b4V78EYNn39pQLstyufRNlvtfEzf5xDq9edxGZGUfZtuInX3en3ti1byfl5eW276eOH2LJ+0/WaF8xt9zG6ptG1VHPas+ya0bS+NE3mD9+xFk5XsuT3l+3GUd2sWrux/XYG4Un6lVoEkL4owlMX0gpv3donwhcBtygm9wcuQ67lgk0zZKjCa8FYA0rydDNd1YznlsHBinle1LK3lLK3pGRrpnWpZS1ShPwzj1LmTl5CZlRvUAI8rKasmToTJYOfs3rffz87+tJTUyqcR+qw7EDW1k/7zOv1rVYLKyZ+6HT+Kz64R2yT6XTaZM2K+z45TKyjh9kw4Iv3G5fFQv+9xCpiUnknHadZc6faH+Iblu7hOhXZrPs1vEUF+bXeWSUxehwO1hqJzWdHH452aPGA3Aq45Db2erJ9P012ref0dVprsVnCwDIzXFW7/807R+smDOT06dO0Hb3GQKffL1Gx6zI3KsGsvDinl6vL/XhLM3Pd2o/nXmUUxmek/mWlhRRUlwAwI+j+/LNQzfaluX+/hM5Z05wcOc6ivLswRfGYveC49kkcvo0Rm5KY+eYSzDe+gjFhdp5b1qzhIP7dnjc7n/3T6DVcfdzwuxT6baxqAlp+7fy09Sb6ywlyh+Lf8Uy+ko+u9VuzskYOpLol79h67olTusWFhXxwcvTKCsrd2qXUiKltAlenQ4XapGPm/6skz7Whnh94pa0v+4CL2Z89AX3Pv6EU5uUkt+3VS/w5NTFVxD24IuUltZ+EuIrUretIy3tgK+7UW3qM3pOAB8CqVLKVxzaRwIPA2OklAUVtjEA1wBfW9t0s1uuEKK/vs+bAOvU7Wdgov55okN7tfjlzjHs6tiJn/95JT/f494t6tdxA1jxtXtzW3mZ+4eQxeC5Ss3pzKPMnzGF0hLNXJHwyyaP69aGlV+/yqI3H3VqOzruWoLuf96r7ec+cC0hD77E2t6d2bt5GamJSYQ9+jq7hg93Wu/E0FEE/vMZlwfy9goPz5zTGRTk21/sBfnZtJz5CwAL3nyKX6fexOFd9jI3CVvsfk2ZR/cCEJKVzcKbLiFr+BivzsFb/EscXlaibuw6R/ZsIGPISFaOGgLA8UM7sFgsrFv8LZkXjmZt945utysqzCU1MYkFH7/gskwY3Ny2endlWbFTc/vZq2j6+JuU6S/tOjot4refooX+UvFEQWEBqYlJfH3VYJuDTu6KZbZ0AADHB19MxpCRHvext2sP9nXrxcLfvqPDvly6/ryeApO2rNeOXFaMG0HhFRMoKbYLYwPXpNXy7GqP0Ac6Ilu7H/KzNO2o+aa7KRx9lcftLppnv/Yr/lTHBgzj1/HDXLbJKyjkhWsvdru//NzTzH7oRkoKC9h0x020/241a5f/Wp1T8cjJL14EoH/KQZdlmff90+n7rKm3MfD9b/ls+r+d2l+ZciPfjOzN4b1bnHdw3e110seGxmUvPsNdc2Y7tf00/3daX32h7XtRaXnFzTxSXlpc9Upekl98ljW0V0/g+KhLz+4x64D61DQNRIuCG+aQRuBS4E0gBFiotznaCy4AjkopK07B7wQ+APYC+7D7Qb0AXCyE2ANcrH+vNglLtZdxwoKdJCzaRVlpCb/95x/8cv/VpCYmkZm2l7Y7TtP0SQ+O3Z7eRLKMUyfsDtClJUWkJiaxcOajLPnPnbT6cAF7u/Zg7uMT3W9fB4Q/+R6xb/7o1BZS6P2bM/oPzUoaWiApvXZylfv47aHrSZnzJkd2rwfA76Z7bctSE5NISx7KoV79+f3VBwBY+J/bbMtLzxyj7XdryR87wWmffwzpxpK3H8dk0F5ABoskfmuW1+fgDTmnM4g9Zn9YiVrY51J6d7J9zrv8BgBaZpayY8saTl9yFe/ePoY9X70LQHCRZN5lfZ22/+GmiznQQ2trOf1TXDCZATgdYm+yZkswGN0L6sLhf3ZWus10uH7+LCchtS7Zs2s7AN22n7QJAJ1S7H5IeR6cXvft2c6XMx52ajM/Pc32OchBkdTmmPbSKMpzvy+DhwlNbfjrpw84uNN1zH6erplIc89kEnXKeVnGRVeSnV25b0z6we1O391dgYm7XM9zwecvMXaz3e3z15V219HvHruVLj+vZ/Yz9xBQpE3QCk/UzexeNAn1uCz6pPOLP+z4LgACjzkLR5cu2EC3QwUUjf2/OulTZVi1WqmJSXx/qXZ/WSwWXI0d8NGHM6vcX1ZeMRZLzWchs954iuV9O1Gw6F2n9gNdOrvtkzvKy6rWqm5YvYQf3qt8krxkye8c7tbFq2M6ciKnyEXIS8vIYOZNo0jLqNo/LagEDuzbVe3j+pL6jJ5bIaUUUsqu1lQCUsrfpJTtpJQtHdomO2yzVErp4gknpVwnpewspYyXUt5jNelJKbOklMOllAn6/1MVt60JRQW5tPl2Fe3maQ+xk8Mvty1b0b8zAIuG9bDNmAeufAwsZWC70CVYyhi4ahrHj9ofUH/NnQVAi//9SEddUAOIn7PG9rky1fmvVw/i18cnMu+p2zhxdLfH9Qrys1l4cU82LbYp7Jj/6gOkJibx8z882+d/GX8Bc5+6zaktuJp+u/Fzt9D48ZnkjbmRknzPau3W7/5GamIS7X+z+/10/9X9zdM8o4To17/Dzz8QcEqn5DDmzpw5mcamzkms+ukDt8uzs9JZ9f3bAJQUF5CWPBSzw0RLAgd2pHB070aP5+COkuICGue5/w2PrtNk/aEr9tF9hV0bErfXOa9X4pqjuGPZx8+ybcVPhOdo45TT2H7uVrnd4Gdyu63UvYrMpbB95EU202HQlOdchNS6oihDu8bLhd0858gRD06vJZdfTY8Pf+bb+662tUWeqVz4KfTg59ZpW+XaMCvz3nmSOQ9ez2dP3OmyLDsrnaN7NjLv9YexWCw0efhlTl/jOmYJH2sm0s0p7vMr7VqzwPa5oqD6x5x3OTPyaqe2k2srxs24suSbmZRuWOnU1vaWm1nToyM7Ny3HnK1dS34nDzhcI7V/7G9Y+iOdfrU/w44cdL53D0cLdq6dbwsSsUYxVmcq8suF3cjKPMaeDO3+SM8uZNMh7RG/dPFPbFj9h9P602a8TGpiEp9MdK+5fPeN/7IzSdPsJu3P5ejRA+zq2IlPpt7msm7yjDcr7duuvbs40bs7bz9+J8dPZfPhd5qRY+eBg6TuP+jV+bWd9TWRORbilro+946ecD8plFJyKt8uKBV44aQeOPFuEl/R3DE+fXQS38x82mWdjIVuJmdekNW3B/+7wVnLufDxiQxbc5AF/3UdV3cc2fJH1Ss1IDzbj85jyoo8J6dseqac1MQkW/gegLkkB4MsxyKMWlZp4YdBlmMuyaG4QJsZph/cTv77b1d57Jys46QPHs7u5Fb0njqdjTOfZdRLX3F0zybabsuCbdrNtGbtZi6bu8btPv6c/RatjhTC3U/Z2vzn/A5AQor95fLzPVcQsOcoI+avoyDvDO22ZMKWTNBN7vOm30tclT32zL5efWqxtSvWEGyj48RGStbP/5zy4kL6jr2dzLS9NiHXDJgffpnFBXkMv15LcvjTPWNpv2g3Z4IFjfMkqY+9Qcm7z+JO1CgaN4kigJ2pXvdxU//ehHhY1vLFrz0s0YTlBS9NITCmlUsI6LdTb6bzd6tt7a3121YKwfd3XUGz9XuxZnWVQpCXfZJl148i6cU3bPsoc3CObpLrXgDJzzuNn9EfYTRiMgW6LM/LzuJIv0Eez6EihfmnCUUT6GpiFuz8+/aqV9IpzaxdkfO4176xff7UdB8Tp9r9EY8N1ExiccDi6DhaAAG6K0l5eRlCGDA4mEyPpx0mq50f7fc6mzuyUtfaro38sRM4segnNsx+l9bv/UZzN33qsWQ/uzb9yZEdG+gyxH0YePQTbxLtpj2kULL+lWkYrf2SFrvQZHQNJKgugZOdTf55I69gsx+2+6iwCcgJ9zG3awTXzLb7J7kTnj3RLr2EE4M1N4A5z/6HTlP/ixlYMuNxov/9jLaSw7158Zz3AUG/1e6vhSFvf+X0PX3XOoKB/t+vxPKMxek3rIpNbzxIV2DY98uYt+ViBuzNZVEwxE55xKVfp/KKuOM/z/L2U3bt6WcvPUof/TXTxM3ccsfuVFpGuUYP3/bK5/T+6y2G6N+XPHwL185a6lWfN+45QN8fUoAUuHua07KyMu8ioOf8+C0mk4kxl46lvLycYlMo0YZryc8uplGYpgFvdEJzLW6+3bsovOwT7ieJDZXzVmha/tkLNEvsQWJf16SLR1PXUN38lOGnUjGXZBNzbCW74wfhX66prkuLCmz+G2282M+Wxd8QCbRPOcyWuycRf6iQdSO+pqSslAiH9fzz3GtxLBYLraa7Onk3zXZ9USYs0mY480f1If5F+8zKYtEeIHEfL/Kix2ePkPs162tTx/tblhN033MAzNubStz7v7tsF/PUu/yyYikxY6+m/SJNQ9c4z/4WN90x1WWb6r7k50+/h67jJ1fL9OnIro6daO1hWefv3GscLEKQtKTCLFUYmX/PNXTcn0fx1ZPs67qJKFv81RvEOHw/3HuA7XPqyC6Me83Z9+KHe8bTu8I+ck4dxyItFGRnEdNWU++nJiaREyQovk/TxhiAlhmVj8sfg7rQvBrRQxVJ+Hx9jbddPuctHMNDmi5fBFO1gIlNn7zmdN+2mGYXRL9/6AaSft4AwNph7WndBJqdhsgPvsBU6nq/xb3l7EuUddFYj7+5Fct1txMLLBkyl+7VOy38y/KxmPRHvJR2ocnLBFALVqyk+R230njxUlo1rzoi2OTw88Xv1A7WeYtzrjXhpdmpIp2m/tf22SYwAVnHD7JrxxYiY1oTke35vNavWkxQhbZD05/BakgvKsglKDjM6/5EHrFrivvrmmLjU67PkfmzXqHVs+/zNDB3/wL66e19PvjRZV1HjqWu4a3D6bR+9xnanigletUKGjduyqWLXiTpgH2ggzNOcXT/NorysmnXdaCt/a2XnyJ/11YSBl1AB7R0OFueWEA3UyjmElcBqbjUuyoWnR7Rha1Lx3I6O5t9bcaSHdaOlB/2cdHNmhav8y5NuxuX7noPfDXrHRJeep345Sm2trxVS+EcSmR/3gpNkc99iuRTTv+5wGWZcfITbraonK7b37d9bpw7h/gDmjok72QawVVse6iVhdaHtVlOk6ftflOGYs02Fnr/s2Q+7+xY6e7xsH7+LNI/fI94N8tMlbyPWh3Io/Sam23f0w9s5cj46/H+EVI5u9oIOhyon4Q5qZ262j67E5istFu8CxY/W6fH/un20bRfvh/jtx/R6uPFbP39T1rW6REqRxjLqWhhP7h9FW03ujpCl5e7+j5kbl5uE5oqRi4m/e6aLqH3WtdaaAtvHkPz4/mE51iI2ZnKsoFdaIbmA3dk/m9en0t1BKZiUyjbOk6i846P3L4Aqkvk4/9z+h5/qNyriY5VYALos8RuLm9WhSmxJnRZbp+Nf/Tsv2gV14qfUs9wV2XbbHCcWNmFJioJUMnOK2DOpAsxtEyg/6+aILrqztH4v/YFEdGtSfnhfZKvrNrs4ucwBF8/ey/d1ut9KbPYJmV1wYmho2iClrvGE5vWrSDo5nvIbRTLhh730XPjq4TkH6PTYWczV2CjUEQlAqWUkqk3jiX+ykl0KTMBzqbfUy1NND/l3NbqWft7od8u76/V/q84uxX8+sQtlKSdov8B5zNte7iU3EuvAeDY0iX8tWIJnR5/Bptb+XJNW7u3zVjyQtqxt80YOu363OV4GUb31+yM8cPwGzCS++97iKwzZ2zt79yzVAuAitZM7LtWHWfXquNIUc5wt3vS6P6sFr274OYRWJ/cwnRuldA474Smom3bmfvwjTbB4vhgVx+f4xHd2dHpVjpte5+orM3VPoZVYAJo/qR7nxpPOD5sHEOPIx99w2m9lvqyJe/+h8JlKxj95R8ETXnOrcBUXTbeO4n4/LoTco43gg51treGQ/vlWrzCmWP7CAHCss9uqHub/a4vnvTHHqS1myjkY7s2EF6x0cGJNC15qMs2VsHhWJSJmAz359Zxd67T+o6mxU7r6yej+4HWo8gOi+dA61Ek7vmmyvUXzvmAM9/OQvTsyYUT7+PE0JFsuWU0F902laaNfVqu0muMDrdj8izNN64ygaki3f48yUl9FiSlhW9uupjm428m9NFnEB+/T/femtl13W8fMWBLDmyxa+66pOZz5pIrOANEAnufeKtafe82y66x7rbsOLs6avqdwzOeoFW19lQzzDdqQt72pJspNwayPekf9F/nPIE6fngfmUNHUWiCnltczfGpiUmUfPMZE9bvgfWPkt/adUrZcbOr/1xWqKBpTu2fpT3nV+0snT10GJ0qtC0d/BoWB3NsRnQyGdHJLLtnKXf8bwj3TnuagZ3jSdzp3PeCwgI++89dXLYlHbZ8DPc9xL51C2zmZU+O6hUDLz5451Vy1y7l/g+dA9u7ptqfG/6REZxLCG+99P8udA4IlN/GxVW6zpLBr4LBHyylDPvz/nrv0+FYSau02uUFOvXk7YR7iO6r7cw8rbkk9njN+7e2G/SpvuzpUzZfkkC3+VoeqKSdqaz6+UNKnn+VLj/Po7S4kGYt2lc7r5a73yEvoHJn+9PD82iyuCpdpZ0if7u/zd+Nii8AK4byUob+6V1h3nW9mtF7fcOqR1fXmjNPnAqF8BzY1C+S7qudk/webebPxcu3sGhIV2IzXC+gyiaS6Te0J/oLz4EpviBpZ6rt/lwy5E33NWmkZNiye+rt+KdPZ3E82XsfwPrgjwteQ7pJhisMkguXeD73NWO60/dnexqcpJ2prF/0NUH3aH6yS4e/haXcVXYQ5aVcqN+Lx5sImp+Wtu0Bt8/MvXeN4vJ/vuLSXh2EEOullBW9B+qFc6Ta1tlhyZA3WTJ0JhhN2k1mNLFk6EztpqtD9nW0q1gPtbTUWmACPApM4Dwzry4HW8CZiAC3y3IbxbJs0AxyG8W4XW6lJF6b/+Q77KasgV15h1o5z5CsAhPA+nmfEfbQS0SeLuf44BFkXTSWlD4V53SVI0efJjXhOrLD2rG+53hb+9E2lTvlCn/30XCeqEpgspb6KTZ5DhevLwpNcKBNzU1XyaunERqZBRarJrecqIw1JK+2O7UeHVB5tFxDEJjSL7Cnp8scG8xe3S9kb5u6zTtWEX/92vAryHdZ1uJEKb8N7+5WYALYkaSlRdne8WaXZV0m1K3Zuy5wfDn3Wfc85sIse6StlAQUnqTPuufq7fgp69f5XGACGLBqGoEFGU7nHliQwYAVj1W6nclNoWuLsJvRypstwFBW5LRfYShngMO9aBWYAD7655V8+u/r3R5Llnufl6oh0MBeXb6l4/YPtAeyY+oAAYMntLEJOnk1fPE7CkpnghvZPtdnkdilg19jydCZHIu9AISBY7EXVDtTeanJiF++/aK2XGq3a2/rOIlyYyAbu95S6T6ueexTtk25llYf2NNo+VngtIMCJW1cE9IjJQVm/fuFde8XAq7CkZW90c6Z4ksdzOzuEoE29hCB5o6lg1/jj/wvORXZDYSgKKCH7XdITLW/pDKautH6mrVrJT8A9nXT1j3RpOba4doI0LVFSDjT2XtD7d622v+DPTXTYEq/p8nJbAoG649jJCOqLyn9nqZEdzRoNqluMp5XhbfC566Brh4QBZ004Wjp4NfYmj2djOj+IAQZ0cnVvj+rQ4guT3be6j6reJs010SJ3kwkm7Y8O5UMasr6nv+mOLCpXdskBEWBEazvWffln6w0vqF+0nhUl5R+T1MYFOV07oVBUaT0c0074Ej3Jc7+i8cyswh2iLgb/tWPmKzO4/r70px/yqOmNHnBTvp6SOBsKau7BJ1nAyU0Aeu7aW/q5ic3gdRfhlICAoMBug5qi//dMzk1upTmc761bXeohfehu4ZA+0s220+TFnIDvROaaqodSF49jaiMtRjKtYvSUF7sMjOvCotR0CrNLvB1ePGo7UFa2Kg5CEGZubntQZo3wvmm2dlDEhbciGvufJJmvcfa2k+FQFCJ/byGP72Uvp9/Re6M58kalkfHJ5dX61w9kTXMOcowu3lj2+eTdyfbPmeanD1+DrarO7O1p8zwFoMfeQ6R/Sd6axq7XcPsv7MI0K6VEn8oa6xpnSLOVF8zWRcCtDdkhGvjlh5pH7+0e7WQfVMZDH54Fr+Ncp8FHWBfe7uAXuqnjVtBojZjT149DVOQxX6PIjEXnaLHhmm2QAeTv7la/bXeW4diPCWKcI9V+NwXpwmfmQ6C7Kmb7O7jre90rfXXvNswzgR7Dr+vTlh+feMykZRaDrpO2+wOzgY3ZX0aEp7u5IbmmLL36vYubUdia9fL5NXTMBedcnivWTAXnarWOwAge7Cz1mzp4NcoCozUhDH9rygwskbPE4uHUjCpOzZXWibmrUdu1aom/Pqtx3XqAyU0ASXCn3JbymQDwlJKiyNLMBgF1lyTlwwfwcCX99KyXWfbdoGFztqG8koedn4m+7oRWdpML6QQjF74n1RXfb+9s6YOM5fkYCwr1Aq8SgsWgz/GsiKv/CbO6MqwNvvLMDicpp+fEWH0dKKltH1uP6svjebwgCKW/ftfxD72g9Mae158mv3tLATcc5ntvHbHj0H4mQhu3YOhI65g0FtHiImqPMS5qIK86s5UeCDeQvJLW2n5xZPs6KptYPH352i0ZH9SGU27j7atG5DvbNZJ2FX7N9fxCO2B123zG9pEr0Ly0+6bXifI4bBjn53D7itaMepFexSgCAizbkGji7Xs6hbhvWnUilWAtpm2LK6mrarYeUMyWzq6FwCtwkehtb+T/2Fb1rSLlvzOIKFlRBgPvPqd07aO5qriDvYXR4GfNl4lRZo5KaXf05QUGEBYH1uC4oBwNvZ8mtR/T2R3ayPtel2EaZFz6Z7KsIZM54e4L59UkYrC5/EYTfjc3tOeQTrpxpdtn3v01sLAi/whYMkfrH3mWXoPvZLgL36h922xhDQ1OV0XgQUZDFjl/W+SVVchrh5ofnITtgeATXCyeAyQKXhsrNt2RyqbBJ4Mq56Q4M2EcsDqaQQWnHA1UVVTcKhrNl3fi9CP7X0I7+2q/ZW1rHuU0u9pigPC7feMMFAcEF6lpqkq6mJCbsVS5voSXLfidxh3HV9N8XxfXvijltS15QNn93dUQhMQkVXIrMsGkTaokGHL/8mFf95P+/3fc+fMC7n7bddaT1YCCy0cbG1rngnDAAAgAElEQVThYN9iDt4+gPIKo5l6oz0tfW62/ekWVmh/SbQ66vknsD6gvVXfn9KfG40z7J7FJaZQGuVrpSsa5adT4qW26mi/pgAcaSFsmbKtgoqnsFyDn5mmwWYmzpjPiLc2MfmW2+jbxVl1P2bMNRyJe5dVKaNs55UZlczMyUt4556lXvUN4HiUsNUgA7upcFtHu6kw4Zn3MAY1JrjXtXTcot2YwWmnafvNGvp8uoXAEPtY9LrJNRN0TdnXsYydF/qRMGcZAE3P7NZyRNjGTfsfnr2HLd3t0p85OJyxL8zHHNyElJuHsf7+CRgbadFdQUUw+BLNJ8DP4hwJ5A0p/Z4mI6qP3bRlsJu2KpITBBGfPUNahdrWpYFhXPjRX273v7O95q+V0fw6bfdCkPX+TLI+eJvIlq4zaEda32tPOhicZC8pUzxsFEX+EDtcK9KbvHoaAcHCRdOUvHoa4255hLHzt+Hv50d8C3fpHp2x3lvH9WvweHR/2711oKfnKMjk1dNo2T1CqwCg06J7U256bhCLb7mCPyZfT0gz5+xLkT9/RNt539Empjk3XT0OgC4d2rH2wxPkZpU4XReFQVGsTHbva3NokN2MsXO4iRI/aPWt5zpydea/JvxtE0kMgO7b8tHwHswb4DzW7cc+7GYHzuyOv1qfLLnW4Ns3yp4r7NA1VcfWWa+7nQnXeVzHXJKDFAKE5qgMUGIyVjp53JvonbCSG+K9ULMvQZI1RROMTk65nOuf+JzYZLufj7mRGwnYQe246yL7Dbnvcu+Sm9g0Tdbr1VLmomk6+eDlHrb2jOOE3FBeUq0JeUVkcSFHTxc4ReRlrNciRKN2eZcg82xyXgtNB1trD9/sZgFMn/E+F76zl0PXxLJ/hIGdoz2HImeEa8N2KsKfxq/MI3H6Gkb960PKHbTUB3oXc8Wj9gzQwmSXps13eheRV131/druWsKBWD0wZung1zgZ2Z384FgQBvKDYzkZ2d0rFWq5QbMblQTYJROrk/FNzw1wCUYRQmsHEEZ/m4bEwxlUs92VuKOSEhMupsLCRnZTYUKPIbb1c/TMduaScuKbhdIsNJBGjey/8YiR4zB/UqPShTY2JZs5PKiYni98zZVvb6WFQ0JAYRCYg/xIHhePKcCA0F/83R93X75g0iMzufGOxzAEauMYUAoBIY1t51sQHANCUBAc41WwQnXU9FtuGEtk36s4M0i7ng699BQ/XhDHyLteoFljZzOWVfjIitD8tfJDu7Fk6ExSV/Ri0OBhDBo0lKgWlQtNjj97WIzmyGQBJt39Io3/WMcFw7XZZkq/pynKky6apprMmiu7Ai/9Yi8727g386X0e5ojm0465To6uimLWVNTuOffz3PXfdPwD3BOoxjRPpmwFq4myfFT+2D0F86lgESZRwflk/20JAPbegVw5czNdNuWSqtWbT2eo1WLtq9N1dofK1YN8+GH7ELI3W8Po2Xb75A9D3DbK/0ZtlzLGTdj5pf86yO7Vu9wjImAIM+RntZrJTOqlz5Z6m0TVDcN12osDLnGXt+y7Zh/ud3P4ebC5brLiuxW6YQyOC+N1l1N9N4wgyZZy4nuFOt2PSvtp3rnG5fV3fskL5f9uJVBd75C0oaVDL7zRZflfn6uWlzHIKG4cXfbPkdcbE9cm1FJ1gxzSQ6EpoEwYCgvAWGgadY2J+EmaUTNMkuWmEKJPfYnvTa8ROyxP72ekFckZsE2Bk3/g89X2+u0+hUcr3SbHAfLQGbjSlasB867PE2gOdLmXhDOrrww4g4dJD1Sm9EY/fwY+d+qs2BnJIQRtfo0ua3DuKyT/aHlqGnyu3ACBqO9wbFeWo8LxpJO1YKLFO5/Hk/tsW1iYbkmmR+It5C8ehp748dxIqIr0mgGSonK2Ei7fT+43d6JIm22HZhnn1FvGRBGEtAozExweAC5WUUY/ASWMklweIAtjX5VlJe5f2V5anfHX5e2ptWZnQhZhhRuQmqlcxI404wnKL7vKXJGXmBrC6iQAbht/7Gk8ojXfahI0qSn6D7Y/Qtq8htDEHpCv64XRrOnSzdtm849qKxIS7E04FjQZPzjffnt7S3kZRVpkqqUBBRl0WXbux73AdrL3ilc30FNP/TP+9jXsYz4Hdp1NUl3fL/q2Z/I/1caSZGtGHmZPeJvf1sLbfcb2DwgyKO/lrTYH/b+/n5sb+dHTpdOuHMZDm7WAmvRSFOgPUhCCEGbCPv35NXT2DhqBgWnizShRYC58BQ9N8wAXDP7V4b01G+Dn+anF+g+XaKn8y2vQWHgyJYhhDYN5HR6viY4CYG/uYiQfNckogBtE5IonvMVl7Z1FkIPRgvi0u33TsXUDMej+3M8ur93qRn0n83P7Cz4Xf6o3Ydp/yXNadb/IqflSTtT3f62jnj07TP6c/1M+3PXej+EmQXuionGvfcte19x/1L1dIywtr8w8q5/8fupSC648iJadBpIqodb5uhdw2hVSSHcPV0CSdiqv7SbVP7GTps8hNh3NI0z1t8kyCVjGgDBTWPJqyT9RFBoOFaPvz7Dr+GLQR8SFmKmIDeHqBXOKSRSu/iRtFW7hiPiB8CiucQcW8nO+IGUmML45HIjN/+i7S3InYbLCxwTOnfYM7uSNd2T+84LhEx+hJ3xwTy1fxo7tzxMed9WzFl/hIBibfwrRpa/dc9YWqXuJeqUxZY0+kTE2RVjzjtNU0mLKEwfL+SS51Zwy/TvmHVZMrf+1zVDamUEdu+p/W/nPHu0OPj6mCu8kPvOsAsqIWFaMq/NnSsPJ++z7nnnQsC6E6anmajZrO0vszE0OW6wqVClQfebkH7eq1B135fiIAPmuXPYkGxm5Gv2QqSRLYPpPCSWax7pTechsUS29D6X0PipfXRNlUPBWQHjH3euVbcnzr1KbX3fMCa9PI+2T6e4Xe6OHsOvo/vWVK5+yJ6aISCsYpU3z6Q9eRubrulR6TqRMa6zzlxd4hEOGZD9KqQR2HvbEHbd1A93iLaatmyPLpt/N309eaeKqx0JVJWm6aJvdtrWNRqE3mcjwZGuJpJe//uavGdu5sInv6Lb5jcqFKvWFEGX3+dc9OPquVuZ9Lxr7b2o9ZuJam4/hjlI12S5+enNJTnEdYkEgwGEdn02zdrG7t4VC2RUjXZvlTtreSzltnsrPdp9LvA+657H32zE8dr1Nxtdrl1vKS4sIzw2mBG3dyY8phGWcu3FWuBm/tG772C6d+5OoyDn8+022zloorp63B2XtbCvYxOaXGsPWhn9+h/0ud61ZIgntvfWBQvpXhA1VPAjPxql3SvBbd3fEx3ad+Lyf3a3KxzB9mzsvsmuIdrT1i44jpyhFYUd+fhXtOik1XTbemN/tieZOKZbvc7oj7CL/zmTwgLPxcYtIfaxMUTYEzMei3Rdt1mPi1wbK7Dp/waydkxXAoNDXcyN+5LsY9aocSSHW2gXhtFo5KYPFjL21bm25Vv621VOxtb26/eKKX3osGc2IflptEibTdft7xPf2O7YbQ6uXhBEbdgfb59chOruETEn8+m7pYCevz/HrLefo+uES8itUPT4y9cf4aMX7uPCRbuJT7MQ7OAL2mmv++uqvjjvNE2hjSNITtTswY2Dg3jupY+qvY8x979J6sAFXNHXOZt4qEMW7c7DrgXgdAg0yYXoFu3I1pcZ/fwImv8blzWN5Ehvzw/bkPw0DOWlWPzsD2lDeanTTNSazDA3ECI69AQWkdYtis5/ZrhNBngs9gKON092O+PcflUiHcfdh9EUQNOMk+w/cT/Btz9G23adaPuxc7joqMn28iVDrq9evu/IliH4mQyUFttvID+TgcgWzjdv62mvwCRXU2bCHf9FCEF8i2gGrLqClf2f0d7UVkHCUq4701aufTAFeT/D6jjgck60aA/fbnSbQLLRV28SG9/ZZbsd/3qAY3/+4DILX3xhHGHdLiAJuPwB1wgrK/2GX8OEWyVP3qhVbp/wbDKzpqZQXlqmnbO0YLCUkby68tI/VWmaAvyNrB0SBpbyKjUGzeN70Dy+BwVnMjV/LQkY7FKOAFolup9NW8l67zWKCnJJaqQJkGuv6IbMzWZgYDCleH7BF+WV0nlISzoNjmH7n8fIO30lYydX3xFUu7dKsPgH6EcTGMpLbPdWWGPnScCmC5rQdt1pQvPTbOvbkS7Xrrf8Y7r95ZXQK4qFn/wXFmpa6/BfPqMwN4uN83+g0fyVJAW5N3/EREbYni1LB7+GrGZBXv9WnQGtTIt13P0DgsgME5T6UeX14IktA5rQ6uo7GDdyArs6dmLgqmn8Neh5ZLm03avCADc9N9Bpu+Sfl5N3JoOgRvbz3TNxAAmf2v3pWnVs6npAg4FSo5ZfbUNyDP/30SKWDexIlDt1FTD+8Y8BKDx9jOLsTJLiutmWte06GNdiRBoiyJ53xtg00pac1L/8c2IyT7J9bCKdftImIY0CgyjBvRBs5fppH/DOPUv58cUTEKH1wWpuNJSXEo/2rA4Nj+KSRa5h+wLrc9RiS5Y76IHXODF3tMu61ss2ton92Wc0Vy/itCac0Osy5sXFwj7Nx9bP30wpYNDVZ8IiCVir+ehFHC/AqtPJzc2jx9s/udmrbzjvhKa6IqmCwFSRJk00f5bjT79GamYaSRVqLbVu7X4mWxE/SzHBsRH0Hh3HoveW4GdxvsB33XUNffsPISy4MTEJvVjfqAlXDxjFvHHdXc1zsoTA0s30XPe90z7WjWxB/MqjDLrteZrHJQLQoQucTr6YJo2ql1zRW/wD/Ahp6k/v0XGs+/UgRfmuERQhQQG4y+DRb+DFts/mkhzMxacpDmhqMxWai0/XeWbl0PBmxLRKIG1RV9o3j2Znl66cfnA0TWdoN3mrHu4rLt084VaYcKtL+z1vz/PquEIIPn/wWtv3RmFmEpObs335Ud0B04/mx1dVeb7Jq6exrue/Nadgg5/mEFqSQ+8NM2zr3Ph2SrXCsIMaa1NrgQVTkB89R7Zmw++HKC2pOlndoAucBdqbXtC0UEcPpOIuoDQzDCKzayesu2CWhDcPpvfoONbOPUD+QXsOMj+j8/2a/O93iEvoipSSVY+srPLaXTqmO+bo1tUWOKwaSSkgKkGbUMX1HAmPVr7d5uQmdEs5TfLqaexKuJaTuq+PtjOJobyE5DVP2tbfOiCCLn9pZW5Egd20Yw3W8g9sRPvFG93WuPQWi8lM8qUTbd/NJTkYjQbKLBaEEWQ5GI0GF7N+cFhTgsOchaJWySPhU+cgBGEQmAKMTtedtf8J196MEIJOPy8nN6/yYrSBTWIIbOIchRoa2YLQnams6pVEWIVcoKG9BsEizRxlatzEph0yFV8NvAPCQOq1ySR9k0Lr7sPZ+sn/aNa8cqd2T+ZdR3NjUKgbVRYQmNQLVizAlNCZpv+ayM7fvyYpui3u0riG6UNhdJMlHGD7XaPp9Jbn4IKaciI2gGani8A/gDIDFPtDpDmAUiAiS/vR/IpLKC3W+uXot3u0T820uPWFEprqCWvuknGjqudrUZFBKVNJ+liz8q/jHbqnON8KiUmdaevwwu41VHOazTcFuJrn8Cd++BjMf33itI8Jry10e+z6EpjAdYbtFi9nzCF5RwlqByP+MYpty9PI+M59EjVPFHpxmgF6ksnYFtrDr1OqXhZgRt0/YKqiMLeE2GN/EnNsJcdiBlJsqlxjtrV3IF3W5dA0axvHYgbZhK2KDqEGQ/VfkU0W/sJ15kDCm2mOtT1HtK5ii8oJbBRKLrhEokZ8+j17dm+rsdbDHR0vOsKQcZcB2jXomEXar8Ikp0mkdn5CCK+u3Ttf/Mpte1UYdFuVpdo/hZ5gsCQHkxsB2lSa4/RbR196Lcd3zWRzUku6xHQAtFpzTax1dUvLiAiunQai2I0c0KpTOEFhZpumsCC78sSGa7qF49ejF71CI10E+jvftJWltV13y7X6sTbhMzIiksgI98KGNxyPMRG2x9m/afCNU9kzfbamyV/oD7qFriSgi5YI9EwZd78zArSKI/ToX7WJ7vJ/dmPum5udtHDIMi69uwtFVpcoN47iAJff/ypbun3D2GHXYjAYaNt1sMfjpF0xgoRvFtB5xA3kvuac+qPUCNkm710WvGVXOz8MeskVQ04+bdesAiD7hKbdDNKHN+EAgCah1mfS59qihKY6JGVka5J/P6R9cROWv+jy7jRJ7FPjB78QrleSydTIzZow7PWvmfPMQajgJL3tz3QY+joxyVtIfP7DGvak4WARmkNi/KcpmIJDGPp/iaQ+faXX21trIlWFn7/7W+Xg/14mLze7Tl/mVTFqcldSX9O0T54cMNMiBbGZ2oPKEh7O0ag0W7SLt8KWNzRv2a7W+3AktEkz1jYzcmL0SLo5tHdMTKJjNWr9Wc0BjmSEC6JOSVZd1BKZXcj/XXab0/Jj4QYO9epAEhA34FL4ep1tWUjIWSrsq9/j1X1pGDr3hxQtv1eJKRS/0pO0Tu4ICA5uPkDwSWdjkzk4jAF/7mCogNnv/hernuVMMDTOg0YhtS+zE2B2nfRUV1M48RstF09JcQH7gJ2jkiq912wZr9wEh9SEkmB/wC40OT4vPDmdQ/WTfdrMjQ7vDYPRjzZdo5k9uDVd/jzkcVuDwUD3i9yXKKnImKdetwlzs67qC1IzvzZd9BNGPxM75ns/Cdze3kyn3Z6F3m0DI+m8MhNDOfgXa35HwUfO0Ej39y3IPUNuo1g29LiPnhtfdXI7aXOg4UpNSmiqQ4bf/SIFv1/rcfm9M1xnn9vj/em0z3OGyy1dA+0PCYcbKicIQguAcvclEaJaduDmF+NYOWcve1cdRhrNGIySdr2aM+CqdjQKG0FqAxeahKHqG8calWiokAl6dZfgsyLIjLr40rNwlOoT9u4PZE66gsgzkNM0gU4vP07G58/R9fcjAJwK/JWkfz4LrpZDn+Lv78/I5dtqvZ/233zPmRHjnNoGLt3Aqdx8bg4Pd5trbPhf222f+424nqKNY1m7fjU7/ppPkvHsPMQtRZr9JKjyEnoujH/gVTZffiebX5pCn+Xvs6VnKCNvW60v7exSKDUmoavN4X/wFZPIfu0rNgxLoLSomH5/HSYirhu1RThkCt86cThle3bV+J40mYO8itArmTKZAx98yLCBbvx5aoKHnHSgJa3d0nMK0mL1cZNgKadV/6yaHcqNuRFg/Pu/V7Glezb2ikK2ifc4ZhOetac7aaanBQkI8j6oIvmlj8gZc4NT2/5oI23TtX4b2neFlYspDQik1FIMlFPQzy4oNwoNZ2unWyk3BrK1020MWPOU18cGzY83pJr3SV2ghKY6xN/svrBtZSS+swguHuLSvqZrIH23FGJwvGkdzCel+i9XgmcVeqMwM6YAI9JoQlhKsAgTpgCj16kBfI035Rk29Aqm5/o8DH52G1vWL39ySTP3Gri/O+subk15eHNu7tiBn8MEkWckEkmX3kPJzTgIv08nNxAmzV5HUVEhy5vDsYHdzqqm7GwQ0Tweq4fSjmenIi3lJJkCiGrq/T0aEBjE4EEXMnjQhVWvXEeIajpxO9KtfXu6vTePlAVfc/nAyoX5FvF2oSimeQtidIGkpLiYzJPpxMRWnViyKqTDs2v8o3Vb9NwTF18/Ba6fUmf7c/St2ZYc7XSfND2zW/9kT04q/Py4fJJ3Wp+KuDM31ob/+2Kp7fORWH9aplVdfiIsqHJfhY3DWtBjyVEORxm4pH1PNrf0p80R+35PtmlM84fvwBQQxBWDx/Jt8T+5/P7nmH+DlupF6JOPmZP1/F5BmjmwKKiZZtqUkmHL7vHq/HKDG7DQJDS7UDcgBigEtkspM+qzY+ci5kDvw+6tdG7ZzG2eHqNuDnK249vv4FMTRlM0+zeSu19AZRTmltB5SAuvfQgaEtGtk6gqH+y4j1LIyC5wErAGJURUskXVVFQZF9eNpv+sMGzaF8RGaqp+oc9+I4K0E+gweBwL275O4VWT6AsEBARywcJtmM6SFuVs4ng9XHXVjT7sSfXw13Pm5FT/UWIjeYTn7NhVYTKbiY2Nq/nBgV0JJjrsKcHgX38+kWcN3Vy6eVg0173lWp7Hk3aoodF/zkKO7a3a19Pf4PzGseCcl6i8WSwnGh/D7x4twWniq+9QfLW9CkNgkJleI+3Fiq+b9hYAfnpGcj9L3b1/DNVPjVYnVCo0CSHigYeBi4A9QCYQALQXQhQA7wKfSil91P2GhSmgFk864GgzaKH7eduEJkfnXIecMmPufQnufanKfVblQ3Ao2tBgtQymwBA29gijx8Zsj+sEmv2Ia1Z7/wtHrCVKtiX9gyvfGFmpir6hYRWYAE4OGES7Q8tpPVgzUzUNDeW63zY6rR/g37CLrdYUYwMvIusR3U/Gcg7LsYlPvETa/fcx9J+uWa/PWSp4oYf9NpucrGPc2adutUP1RWiTKEL7VB2UFNMmyRaxfDJMkta9Od2W2fUjjQOMDFllN2O37TyAtdOnEPywlh/L4iH81lSk+1fqlSLGT+3Dt8+vtTu+SwmynD7rp1fZx61XdaXLd1uoZVm+GlPVrfkM8DkQL6W8REp5o5TyaillV2AMEAZMqHQP5xHmAM8J4byhw9f2rLhNr7ydtZ0DaP3gW7a2yK3uMwXXFDH7A/rN8b64qS/o89Jcygyw7IE72dXayMru9ZeIbebkJU4lSgqDY/jysS18+aj74qQNnZunvUPj1Rvo3f/smZcUtcOWcqCe9r830UT8xvX1tHeNxN4XM/zP7TY/mb8DFX+PmLZdSPRCCDnXaJvYy/Y5Itt1slhe6ppIss/YyWxP1iIUTYHun8/+t2rlcXqM10ynkS1DHLz27aPrKRv+/jvt5mZzU82kZ7DA/rjqJ7atLVWZ516XUq5yt0BKeQK8qAVyHuHvISS0KtLDIfoUtIqJZWUIhOdCsyaNGTHHWSsQk+lhBzUksevAqlfyMQmxEbAjlS5A+vjbCKxHzcj4qX346fHf9arg2uwnJCKQUXd2qXpjH7I10UyXna5qbyEE0WG1E+QVZxfb66OelJuiHEyBZ/9Fozh32N7Zj07b3GfZ9m/kXihKuPFuSHmSjte6L3w+/LopcJ2zr1lgqAmRdoC4g/M4GDeKUn/PfqiRCV2B3wAoMWuWBWM5jPptLWVlxWA+e9d0VW/5t4CeZ6MjfwfcReR4Q/SsXzmSdpQkoFh3A7B40nOex9S3ABDZMgRjuS586LMffzeZyhsCZQbw043iba+7imVrt2AIDW+wplZfsbtN0Dk1JlZPB09FuWuLqEGNvPOZcpu59BxybKwlQR2awrYMjjWzv4Osz5sOF413u0234dfCTs+R4+74x/RBvD39F6LWbSTq5MZK1zUF211fIiLsmiaDwYDJdHYnhip6rgGQFN+WpHituFjmA0+wbc5Mbul/mY97dX5S5h9EYEEGSAvlfoKigobpp1D85jP43fU4AMaIeCa//B8f96jh4U2IekOjoFCLRKqvKVNB5LkROdtQMCWPhDVf0njgGF935axh0CeOFgOYi7VkZ/u6Cq74ekedH8vU2LtkmuYA+8Q1OEp7Jht8pFeoSmhqK4T42dNCKeX5cyWdJa4ddx2Mq3n0i6J2DEqZys6EazkWM4jwrBVc/8kNVW/kA3oMGctudKGpkuKqinMLk9X6XE+aJnkOBTU0BK6+8z+kj7qK0XEdq175b4JV2y4N0Hybltiz3eb6kVBMXqbpMQUE2VKMRreKJxcoNvkmWqIqoSkTePlsdESh8DXv3LOU8qEzbd9PRVzAzMlLMPoZmPzmUN91zA2O2eH9/KufH0zRMDHWt0zTMCPiGzTR55HABHDa1IoW7CL8lOB0iB+N88rIC6yfC9Pb4ClTYLBNaIqJ68S8K3qRdIN7/6n6pipRLVdKuczTX2UbCiFaCiH+EEKkCiG2CyGm6O0zhBA7hRBbhBA/CCEaO2zTVQiRoq+/VQgRoLf30r/vFUK8IXTnISFEuBBioRBij/7/LNU68Mzh2XMx/LGyXvadVvMSSgovmPBsMlEZa0HPKYKljPZ9o5jwbLJvO+YGg0O2dIPf+eNv8XfHYi2jUk+qJiGVr6SicgJadgcgL9BAp8+/BSDsg7fr5VjmAM8Tvi2Dm7O/XQj724ViDrKnlTEYDIx+4XPadvFNIFNVQtPBWuy7DHhASpkE9AfuFkJ0BBYCnfW0BbvR63cLIfzQ0htMllJ2AoaCreD528DtQIL+N1JvfwRYLKVMABbr333KJV3j6RAdXi/7ljUoqKrwnllTU8iI6mPLlYPBj91rMpg1NcW3HasC498hiaACgPb9RgGQOah3vey/vEnTqldSnNeMmvQI2y5MoP1Xc4hpnaj5BvZ0rVpRFwS6ieTc21p7/hojwxk9dw2j564mIKh2ORDrkkrNc1JKW/EmIcQAIM5xGynlZ5Vsmw6k659zhRCpQKyUcoHDaquAq/XPI4AtUsrN+jZZ+nGjgVApZYr+/TPgCmAeMBZNuAL4FFiKlozzb0lho0DAfa05Re2Z8GwyX075hRJTGBiMIMtp1CSQax7t4+uuVYqn6ueKc48WrRMo3LiGDub6KQNkaKT83xSV428K4Jq3Pboy1ylBAa5CU2mgrstx8L8LqEG1jfrCK08qIcQs4CVgENBH//N6KiSEiAN6AKsrLJqEJvwAtAekEGK+EGKDEOIhvT0WOOqwzVG9DSBKF86sQpp3rvjnKC0e1BRphUqxUC80CjMTkbUNhMBQXgII2nSNaPC1+gy1qFemaHgEBoY4mV/rgh0d9WtYnMOpxhV/O4IauU4O7AZku9DkZ2o4fpveTlF7Ax2lrL5BXAgRDHwH3CelzHFon4pmwvvCoS9WoawAWCyEWA/k4Eq1+iGEuB3NvEerVrUvROkrgppEIqm/HC4KKDGFEnvsT2KOrWRrn9EU5DR8Odzop6RoRRVYH90qek7RgGjUKBBvMofV9SSiNnjbk21A83pelhoAACAASURBVOruXAjhjyYwfSGl/N6hfSJwGXCDgyB2FFgmpTwppSxAS//ZU29v4bDbFoA113qGbr6zmvFOuOuHlPI9KWVvKWXvyMhz15vaYNDikZUrZ/0RPrEZOd3TyRzdkmun3+RUu6+h4qeEJkUVnIxtB4ClXcMLalCcvwQ3qqRuaAN90XmraYoAdggh1oCtnl+leZr0CLcPgVQp5SsO7SPR/I6G6MKRlfnAQ0KIIKAEGAK8KqVMF0LkCiH6o5n3bgL+p2/zMzAReEH//5OX53NO4mf00yKG1WSx3rh4zI0w5kZfd6NaKJ8mRVVMeOlLZn/zMRNvusPXXVEobAQGBbk1JQEN9j3n7dP2yRrseyBaMd+tQohNettjwBuAGVioZw5YJaWcLKU8LYR4BViLJmP+JqX8Vd/uTuATIBDNB8rqB/UCMFsIcQtwGLimBv08d6jnYp6KcxOhfJoUVRAUYObmiZN93Q2FwglzJYl5K77ncoIE6Rd09HmW/0qFJiGEkBoeczJZ16nYLqVcgXtZ8TdP+5JSfo6WdqBi+zqgs5v2LGC4p/393aiBS5nib0yxP5hLlaZJoVCcm/j7VRJkU+F1129D3ZdxqQlV+TT9IYS4Vwjh5D0thDAJIYYJIT5FM4spzgZKaFI4cLyJ5uPmZ2444bgKhULhLUaTqz+mTdPSQIMWqhKaRqIl3v9KCHFMCLFDCLEf2ANcj+Zz9Ek991FhRReaVPScAiD6na9YevdEQkMbV72yQqFQNDCMRmct+ZohcbZs+BZDw9SgV5Xcsgh4C3hLj4SLAAqllGfORucUCoVnunXsQreOXXzdDYVCoagTmsR3oCynCDhOaHS8r7vjFq+TH0gpS6WU6Upg8h3GoDBAOYIrFAqF4u/Hpf+aQYsbJwDQ6aIrfNwb9zRM/ZfCLbGt2rE4xoz/rcqNTKFQKBR/L/z8/Ok7ehKMnuTrrnhECU3nEP7+ZkYu2VT1igqFQqFQKOqcSs1zQoiWlSwbXPfdUSgUCoVCoWiYVOXTtEwI8ZAQwqaREkJECSE+B16pZDuFQqFQKBSKvxVVCU29gHhgo56XaQqwBkgB+tV35xQKhUKhUCgaClWlHDgN3KELS4vQCuX2l1IePRudUygUCoVCoWgoVOXT1FgI8S7wD7REl3OAeUKIYWejcwqFQqFQKBQNhaqi5zagJbe8W0pZBiwQQnRHS3Z5SEp5fb33UKFQKBQKhaIBUJXQdEFFU5yUchMwQAhxW/11S6FQKBQKhaJhUal5rjLfJSnl+3XfHYVCoVAoFIqGiddlVBQKhUKhUCjOZ5TQpFAoFAqFQuEFSmhSKBQKhUKh8AIlNCkUCoVCoVB4gRKaFAqFQqFQKLxACU0KhUKhUCh8yt52VWVAahgooUmhUCgUCoVPadqvua+74BVKaFIoFAqFQuFbDMLXPfAKJTQpFAqFQqHwMeeGOHJu9FKhUCgUCsXfF3FuiCPnRi8VCoVCoVD8fVHmOYVCoVAoFApvUEKTQqFQKBQKRZUYygp83QWvUEKTQqFQKBQKnyIt0tdd8Ip6E5qEEC2FEH8IIVKFENuFEFP09hlCiJ1CiC1CiB+EEI319jghRKEQYpP+947DvnoJIbYKIfYKId4QQgi9PVwIsVAIsUf/36S+zkehUCgUCkX9kJdf6usueEV9aprKgAeklElAf+BuIURHYCHQWUrZFdgNPOqwzT4pZXf9b7JD+9vA7UCC/jdSb38EWCylTAAW698VCoVCoVCcQ1jOd02TlDJdSrlB/5wLpAKxUsoFUsoyfbVVQIvK9iOEiAZCpZQpUkoJfAZcoS8eC3yqf/7UoV2hUCgUCsU5QqEpwtdd8Iqz4tMkhIgDegCrKyyaBMxz+N5GCLFRCLFMCDFYb4sFjjqsc1RvA4iSUqaDJqQBzeq46wqFQqFQKOqZU/7Rvu6CV9R7hTwhRDDwHXCflDLHoX0qmgnvC70pHWglpcwSQvQCfhRCdMJ9HGK19HhCiNvRzHu0atWq+iehUCgUCoWi3vDPV9FzCCH80QSmL6SU3zu0TwQuA27QTW5IKYullFn65/XAPqA9mmbJ0YTXAjimf87QzXdWM94Jd/2QUr4npewtpewdGRlZl6eoUCgUCoWillw45Qlfd8Er6jN6TgAfAqlSylcc2kcCDwNjpJQFDu2RQgij/rktmsP3ft3sliuE6K/v8ybgJ32zn4GJ+ueJDu0KhUKhUCjOESLCm/u6C15Rn+a5gcAEYKsQYpPe9hjwBmAGFuqZA1bpkXIXAE8LIcqAcmCylPKUvt2dwCdAIJoPlNUP6gVgthDiFuAwcE09no9CoVAoFIp6wOhn9HUXvKLehCYp5Qrc+yP95mH979BMee6WrQM6u2nPAobXopsKhUKhUCh8jNHP5OsueIXKCK5QKBQKhcKnGAznhjhybvRSoVAoFAqFwscooUmhUCgUCoXCC5TQpFAoFAqFwifsnjScI1H1njKyzjh3eqpQKBQKheJvxdiH3oSHfN0L71GaJoVCoVAoFAovUEKTQqFQKBQKhRcooUmhUCgUCoXCC4Re+u28QQiRC+zydT/+RkQAJ33dib8BahzrHjWmdYMax7pFjWfd00FKGXI2DnQ+OoLvklL29nUn/i4IIdap8aw9ahzrHjWmdYMax7pFjWfdI4RYd7aOpcxzCoVCoVAoFF6ghCaFQqFQKBQKLzgfhab3fN2BvxlqPOsGNY51jxrTukGNY92ixrPuOWtjet45gisUCoVCoVDUhPNR06RQKBQKhUJRbRq80CSEaCmE+EMIkSqE2C6EmKK3hwshFgoh9uj/m+jtiUKIFCFEsRDiwQr7ul/fxzYhxFdCiAAPx5yo73ePEGKiQ/vvQojN+j7eEUIY6/Pc64OGNJ4Oy38WQmyrj/OtLxrSOAohlgohdgkhNul/zerz3OuLBjamJiHEe0KI3UKInUKIq+rz3OuShjKOQogQh2tykxDipBDitfo+/7qmoYyn3n69EGKrEGKL0N5HEfV57vVFAxvTa/Xx3C6EeLHKzkspG/QfEA301D+HALuBjsCLwCN6+yPAdP1zM6AP8CzwoMN+YoEDQKD+fTZws5vjhQP79f9N9M9N9GWh+n8BfAdc5+vxOZfHU18+DvgS2ObrsTlXxxFYCvT29Zj8zcb0KeAZ/bMBiPD1+JyL41hhvfXABb4en3N1PNFSBJ2wXov68Z/09fic42PaFDgMROrrfQoMr6zvDV7TJKVMl1Ju0D/nAqloAzUW7QT5f/bOOz6O4u7/77073ak3W1Zzr5hmg8HGgMH0EkIgIZWSJ6Q8JCG/JE8KIYBDTAg1DybUYEpCdaEY44arcJdtGTdZliVZxeq9Xb/b+f2xezt7vlOxMS4P+rxefvm0O7s7Mzv7nc982+j/36KXaRRCbAf8UW5nA+IURbEB8UBtlDLXAauEEK1CiDZgFXC9fu9O033swGnnEHYq9aeiKInA/wB/O07NO2E4lfrx/wpOsT69G3hMf44qhDhtkhGeYv0IgKIo49Amvg1fsHknHKdQfyr6vwRFURQguYfrT3mcQn06GjgohGjSy60GetUqn/KkyQxFUUYC5wH5QKYQog60F4D2QfYIIUQN8DQaq6wDOoQQK6MUzQUOm/6u1o+F6vApGtvvAt4/xqacEjgF+vMR4B+A65gbcQrgFOhHgDd0E8hDukA9rXEy+1RRlFT970cURdmpKMpCRVEyv0BzThpOkbEJ8H1gvtCX86crTmZ/CiH8wM+BvWjE4EzgtS/QnFMCJ3mMlgJnKIoyUiddtwDDenvmaUOadK3EB8BvTBqfo7k+DY3FjgJy0Nj6HdGKRjlmfOhCiOvQVIsO4MqjrcepgpPdn4qiTAbGCiE+Otpnn0o42f2o/3+7EOIcYIb+786jrcephFOgT23AUGCTEOJ8YAuaYD6tcAr0oxnfA9472jqcSjjZ/akoSgwaaTpPv34PcP/R1uNUwsnuU13r9HNgPpoWtAII9PbM04I06YPlA+AdIcSH+uEGRVGy9fPZaNqf3nA1UC6EaNIZ+4fAxYqiTDM5Kt6MxkDNTHMoR6j7hBAeYDHayzrtcIr053RgiqIoFcBGYLyiKHnHp4UnBqdIP4ZWWyE197vA1OPTwhOPU6RPW9C0nyFCvxA4/zg074ThFOnHUF0mATYhRMFxadxJwCnSn5MBhBBlusZuAXDxcWriCccp0qcIIT4RQkwTQkxH25e2pLcHnvKkSTc1vAYUCSH+13RqMRDygP8h8HEft6oCLlIUJV6/51X6PfOFEJP1f4uBT4FrFUVJ01nstcCniqIkml6mDbgROHC82nmicKr0pxDiJSFEjhBiJHApml155vFq55eNU6UfFUWxKXoEjS6EbgJOq0jEEE6VPtUnpE+Amfr9rgL2H4cmnhCcKv1ous/3OY21TKdQf9YAZyqKkqHf7xo0X6DTDqdQn6Lo0cb68V8Ar/b6RHEKeNL39g9tQhVoqshd+r8b0bze16CxwjVAul4+C41VdgLt+u9Q1Ntf0YjOPuAtwNHDM+9Gs3WWAj/Sj2UC2/V6FALPoa2eTnofnY79ecT5kZx+0XOnRD8CCWhRSaFx+SxgPdn9czr3qX58BLBer8saYPjJ7p/TsR/1c4eAM052v/xf6E/gHjSitAeN2A862f3zf6BP30NbFO2nHxHxAxnBBzCAAQxgAAMYwAD6gVPePDeAAQxgAAMYwAAGcCpggDQNYAADGMAABjCAAfQDA6RpAAMYwAAGMIABDKAfsJ3sCpxoDB48WIwcOfJkV2MAAxjAAAYwgAEcBxQUFDQLITL6LvnF8ZUjTSNHjmTHjh0nuxoDGMAABjCAAQzgOEBRlMoT9awB89wABjCAAQxgAAMYQD8wQJoGMIDTECv21bG57LTZQ3YAJxlCCA42dJ3sagxgAKc9BkjTAAZgQt7Kj+HhFJ58+5OTXZVeMW7BFQT+fcvJrsYAThMs2fQ5Nc9/jY37yk52VQYwgNMaA6RpAF9ZCCF4ZX0Z7S6fcSx7298B+GNptD0fjz863H4+3lVz1NcV1PupLu9rW6YBDEDDkN0vcIV1N7Y9p+1uJgMYwCmBAdI0gK8sdh8o4Wdrz2femy8Zxw50+iial8MuV9wJqcNbr87hG4vOpLK+b1Obxx+ksLYDgHPW2zlvh/XLrt5xR32Hh5+/XYA3EDzZVflKwdj3QYm22fsABjCA/mKANA3gK4uYliKqAjFc2fwf41hcvhcAx+K0E1KHe5r/Rk3QRtvuJX2Wffrtj9ny4n/T1u09ATX7cvDgE0/ybOmVvLNi45f2jBX76li1v+FLu/9pCX27rBNBmdZ/+gb+gK/vggMYwGmIAdJ0klHR7GT34fYv5d6n4r6C64tq+M9np8aG8W2lm3C+n0Fxmex/5QT32SclGXQuHELHwbU9lvEFVAD+q+RnZDdtxdtSfqKqd9xxe+dcyublMLHkn1/aM2oeuZbaB676QvcIqj2Pg6Aq+M6/toSZdXtDY5fnC9XleKC2pYmieTk0tdZ9qc9ZMu9FMn79JO/c/6Njvsd76zawtaj0ONZqAAM4fhggTf3EloM13PP0G8fFrOALqKwsrAfA889pTHptRI9ll27+nJcfvIO6tu6jesY9f/4Lv3xg1heqZwivr93LrPc+A+DDndXsrGoLO9/U5eWxZUWovUw0IaS9dyM/XDcdgG3lrWwoaeqxbJfH3++J6VjQ3aT5BMVUxxjHLOrxfcanBQeZ/e9FEcdXFtbT6fFzxk7t2XU7KqJef7i5k7cf/j6LN+6k68MMRn8WR822hWFlAkH1lCTI0eCsSACgviOGPz71PL94+LEey3Z6/KzYV9/r/aKNuYt3B5hadOzf6ZpdpfzvQz/jYF30xcySDdv5n5Jv8fhLL/d5r2W7DvOfx3/Fy5/uOub6HA8EDmhkqbu4pNdy/qBKl8d/zM/p3qdpEBPLjn1hNPnnP6P7Jzcf1TW7Klt58Yfns2DT7mN+7gAG0B98JUnTxpJmPP6eherhVhdtTm2yLq7vQgiB663bebn7Nxyu/OLRJwvff5drF05gx959nGE5bByvanHReYTAyl5/H/fYPqFpb8+aiGh42T6HF+3/pM3p43d/vo+l24qOub43fvZ1ZhdrQuybi8+iYe63w84/9tgs7t92EWu27WL+Z7t5dfmWHu81mkqag5ovTvfrt5L41vU9lv3bI/fz6qO/OOr6Llq2jKq6vp2khRKZ29VynLnHdZ9cyKyKH4YdK66s4dqFE3j5Edm2hICVb//t39z157+HlW3ZvZw7bCvI3fSgrKNPai6EqmJ7JI1nHvxJ2HVLN2zjjQUfHnV91x5ooLrNFXYsqAr2VPdPG9ru8rGrF82psGgGIlVYeNL5AC/yeI9l33vtGa5/fwKH66IT64Kyep5+6L/ZUXZ8tSd1C3/FTR9spGTFM1HPu7e/QsqSFMbufq3Pe1n2vM30lRvJ2PkoQVVElTtNh7uY+5vPKCxs5KI/vYnLFzjmum8sae6B9OgDuw+fptVz7obH+pdYeevBOlbtqQo/2KaR3JTmL6Zdy205ug+x+PnbuCLfTewT3/lCzx3AAPrCV440eX0+Ln1nDB+++SxCCEPAlDZ2Udqo5TEpeOZb/Ovp+9hysJaNz/+UBZuLmMYudnQlEOio58k3P2T2q/MB2H24nboOd9gzimtaWbUrklxVt7kIqoKRpW8CcGjDAta0pLBwTxYAw5/Lxvr48LBr3E5Nw3SosSPs+FNvzOP1xat7bGehM47tnQnUHdzGP+wvk7vkBzR2urj72UX90giZkaWEa5ZusG4P+/tXdi08f6inhO+uu4yf5IcToU6PnyfeX4/HH2TLumyaFmYCENdVSndbuO+JqgpKG7U2PxEzl9/HLOQ/mys41NQ/TVtXVwe3bPs+1XO/12OZ/EMtVDQ7ERapYVpRUMzsB+4lq6Vfj+k3dnXH8UnloLBjJcV7aVUt/Ma2gPpB2iSmnH0Gb/l/zbO2p8LK7j5QSNm8HPZVNNCYrr034XUa5wtr2ljZmMpV3qVh131tzTX8aL9mIvEGgoaJry9cOW88n/7j7rBjb817i9rHJlNUdqjP6x9/9H7S517Qs+ZLkb41S+rTWFQd3jcNHW7uf/gBiqoamXD4TRbuy8TdcMA4L4TghfmfsLushtpPH+OsLRuoW/Jw1Ec9tqzomAjIoG2a+bNja/SFirVNkxOJHeEE6Cd/ns3df34k7FjHqk8Y1AUj5u3j8Ud/z79+PCPsvBCCN5/ejs8TJO/5jbyx6DEWvTfnqOsM0NjaRudTF/Lms/dFnuznJ+/duJnq+dkALN+8k50HK/B53bz3zZt4+VdraKqWuZ6q/jiTod+5Luz6OJ923nK8Vx99IDWgPdd6nDXF/9dQ11jLug0rTnY1Tmt85UiT8GsE5/z6hfzj7UUs+9ttdDg9lD93M/XPaQLgFutm/iReJ3XHs/zYtpxbVl/B2j1DSFiaQsmhMv546EfMqv4ZQggmvTaCkqevobHTw3X3v0Rjl4cJc0dxzaLzAfjwo4V8suwTiqoaYM45zJrzAmf799AuFC5qmEfOqgTO3i9fQwLhq/zKNjdF83Kw+Nto7vYaxO4Plf/N3Tu/hRCCj3ZW4fEHaez0sFp3gLV8kkbishRUdycAky2HeP2J3/J62w954p3wCbYvfFI1iA8LNaKzuj6VzzsTcHoDPPPux3R6/BxyWfg4PxuX34MKhKaSd1Zs4PPSw8x9eQ737fs68xbOJ9ekNEhdkczgVUmA9PuYt3w1Tc9dQ1FlPZ/UpvPhoQx+uHISK5+9J8w0GgiqOL1yQmzu9tLS7UX1ae/3rKCcaI/E2f8eg/vZ81AtuqZJge7F9zEr5q2j6pf+wLEkjbFbHADUdbhp7vbiDUDDgizWFmTSlayRpqDNQvn8HOoXaAT6mbc+4KO8bQQatJV86iEPQlcSqG5JoJ1uD8PWxmNfEu64XuyOZUt7IgC+R3L57K/RfXy6PH6DUAkhaA5aucOyPKxM+qJHGLEmjqqlT/fZ3tnWV0milc5uV9TzATSiKiw2xuTFMWGjI+x84bp3mVY8n7IFvyO4KcjZ+6yU799OfYeHsqZuvF4vvyy6g47/fJ+u3bsYXQvugj1Rn3X/totYuHQFgaBKdauTX/3jjV5JVFWLi0BQJaNJ6+jkrh5Mx1bte7VjYUn+Pm67/x8IIZhSMo8bdhwR0j9IeweVY+P55jvLuHZbG06Pl7/PfYcX7lnDiz9fR2zIr1+ksnbmC7RtOY/tFa08u7p3U1oIr76/mDlvvE3N3rWMWh/LmBXL+74ILRrzyAXUhCJNC6wGg3jm3kbbczNY9d5LeOK/R9AHq18rNMqec0DKrTduv5R3X3oY4u0AuFNOLHtRrdq4UgLw2EvPndBnOzu8fPSPApwdp36Axoa7byTrp7/F543+fZ5I+LxuVsyYyOr3njzZVTkqfPVIk4BSj52AgFtK/sx3bXlUFu/iGutOLrUWogZVXELBp0KSp5Zl9WkoQQ/jijVh0tneatzL49Mm8cuse1n8v/fwqeNPvPN4uDnpm7t/wte33QEtpQxVmrm7+xX+0z6cuvnZrEqdZpRTA9GFeXKx9iEqTeV8+uSdpL9wBtuLpUp86Yql3Lr4HOa/8QzlT1/O1QvG4/ZIP6AYVJbXpdESsHKjNR+A2srifvSTIBDUBN/YzQ4m7rVCwEduXjyxy1LYsuR1fnvwLra+PRuxJcj4coXqXfms2JRNwaIcAG7fehPnvX026c2aZspVGX3Pv72VDex78jqWbN7NxD2PM1oU4y9dy9j1sUzcpgnDe2yfMO8RmTvp0beX8sBfHzL+3vDEreQ98U18fh+rG1Kp9YWb3tZu28UbCzVzVdWCbNSFVqlpEjCCaj4uPj77Pbp9QbYeilRZrXvqByx4/CeIck1jM6LUilVoYyix+fOwsr8tu5tb864hNU5rh0VRJGnySNLk9kQ3g6gfp5O6IhmAbU0OHO0l+ANB3n7yXg5Xy/Hz/CO/4u8vvQpAMBCgaWEmB9/PIagKnn7pXxQUVxBfr419xd23tm/5nkzqF2SiejqYt2Efy3eGO/QqoUn6CCvRI4/8mf+8/yFNO1cx4fMY3Fv2IHRthcXv4q2/fZ+Nj16Dz+vmgwNDsDvLCalPlB6UGkurBjGyfhmv//3nZMzJ4Yai2ax8N7rJbX9FLcOfy+bpOU/RmKuNe0dKeCXnLt9G3p4yg2gowDVLL+Hnzjl8tHo9M/cKzq46ojL6+1WtUtTu37Oaq1c+2LP2R0DVY9MZ+dTXEULw3BtvMm95z+b59E9+y7Blswk4tQVSXC+WMWtFHQtfeRiXx0vT7CH8+qEHopbze5ycscXBAd+/qdg6GVdiDigKrXUuXrhnLS/cE16fiwpaOO/Z+VChpc4YU3xs6TCO1TdPVTSyNqrCwi3Pvhi1TDRyU1Gyg515C3q8b7fbw5p1q3p99pYPS6kt6WDLR707r9c2NfHPn99Ec0dnr+W+TEw8pLW9u+3k53jbvDuPEU2Q8NQbJ7sqR4WvHGkK+L34Fw2msLAbRZdasQ5ppvH5fVTOz2bN5my27KlnVF4cZQtyjPON5fv5+NBgFh3MwN3VyuZPclhUnEGc4mO3Ow6H4senQreqsHan9CNSbNpHHYufaz7VtEUX/UuSCHd3Ox+WZrCxLQkeTiEYIlGW0EypcrvlU9KVbi587xw+Lsji45IMclo1IjStazXTLJp2JdBaYdx358KnGPlZHI3vZ0LAxdLKQTi8rWErzH88+DOee/4fAGwtayKoClZ9toE1D19DbbMkid1t0ik3s24dADOrXyRo1ycReyyjDiskeUANqhS5Ymn2W3F3aZE7wh195a5ueoErrbu4aeVlHChvpfX9TJrq5P6LVd4Y3KrCD5Vl2jvo9PD7Qz9mjl0Kx1utm/iWdSPtzTXkroundVVC2DOuXHY5Pyr8kSGUjxz4h3e7GP95TNixYFDl3Qdv4dV570etN8DLD97BM4+Fm0Oef+5JLnpzNLUN4YLpSnUXgzum4m+SPj8hYhDbWR1WtmheDptWZxmh4iDnWNUlzaVl9a30hZy18WSsSmLp0o+4w/UWxf+6iyWfbeb3D/yR+2Pe4+GWP7B85af4/RrZtqnQ1FjLmQWPU//v75HbqI3Blv2aRvNIbU1RZR2vPvg9yuuaGH9Amyzbm6r53ppLuGHxlKh1Mk+NAY+Xa9cs5OzFv0FRNcJiC0C3TXuuUAU3fXKAqSvacXW2ceYuGylLExEmP52y2mYWrt4U9ozRmx2Ub9/Nz4LzWL0lm1EbY3Fums/uAweZ++ITCCF45625fLx0Mc15L1HqsfM/HX+XZM0i6HJ7qWnTzKE/zb+GmR+ej9uv4rUn05x+L0WLziBnZSL21TLoIhBU2f7I5Wz4bDXo7Qn5cgE0OOtI2hvLhTseA0WV71gIUAOMVh7izM8sjK9UaO1oZ/TGvzB02V34gyrvrN4WYWqdmG/nzL1WVF2LrvYi1c8u9nH2/86ntfxzuhcO4RcffBS1nNejaSIu3PEY1hh3WB1j3c2Mv0qOu0BA+lCNLz62KaXN6aOgshW/N7q2JhBUWbanNoJUdXsDeANB1CP8E1duDnchANixtJza0g52LJXRp+6v30ncPX/psV6r5/yIrrk/p2hXuJ/mqj2VvHTvOl64Zy3F+Zp2v3hrAy/cs5aX782Leq9l932ba9aVsfDBO2ju9rKjou9vtyf4vG4W/OhK9u9c02dZt6uTeX/8Pk6nlDuezmN/9vFCYbU2X6W6wNlaR9H7j4TJu1MVJ4U0KYpSoSjKXkVRdimKskM/9pSiKAcURdmjKMpHiqKkmsrfryhKqaIoxYqiXGc6fr1+rFRRlD/159l+r7YMO/fzANUuwaI9mbS3NvHx7kyWbco2hMXIagVrfaQKM6fhIOO32ZmwM4b5775KmhMmg8IJLAAAIABJREFUfB5D9+Eq7B+nkVGwm9Vbszi8IJsrF19EZ1ChO6hQXtdEwcfZVJh4g7nz3e31TNwRw6BPNXOV368Jj5B2IRjw0RqwUuHRyNf4EgvjC2JwCjsb8zKpFSkUux18tikT1SkTJV7kl1qliv0weouD73b8mw/fl6ao39nm86vm2ezfv5eL3hrL4ndfJGvzLK6z7qBp3zqjnKdNOtw2NjWypHYk81qewG/T6hw0qQ/cHhcsTqdwbSbjdmrkIXf7XuO8WfjFdR9izaoc6v02Jq/X3k/dgQLjvPOjDDavzaYzYGH56lUM+d9MrMJLo9/Kh/PfQAhBoTOOfc44XB0aoUg/QikSEOARmk9bCK3tknxYogTpNTfV8QPbOn5y4MfsLz/M8oeuZlthMUVVDbz/2U5A04D91qtFUXW4/ASCKn/oehwBNGx+x7iXGlTZUPhDmnwTcbVmyeOW0Hn5XKFPtOnNFtSgRlCERTG0M0GXXKl6nb1rf8z9XFlbTdG8HBra27lp3Q08HfMv49wNm7+DxyN9pSpKdjNqYyxx66VWy3ruZN7/67dZ+cjXw57RtOIJfmJbTsOaF4xjrq4W6v02WgLhGoeQpkkEJfFqbKwnud5G/LYELDoREsCohsg2uE2C3xCwioLz5av59sYb6XSHT7oZNc0s2pPJ6MNa52WUdJP95kWMLXyB5sYabi/7Pd/Yfid+VcW/aDCr8rNMPtMq+564mtxntUVT0bwc1i/PIS7GSvmIG/DZR1M+4gYAYtsNcUVnewsXBncxY9235ItV5Nfe5dHeX5KzRrJHUxuD5XJCc7ucjN4Uy6BVSaz+5D1u33gNSxa+xpadu/nHE7PCUiM0NGnffVaLplV5/4ntvP/EDk2zcsRc1O2UvklCCHYVl4b1s8fTbdRRUQJhdbQEfcRVbJX36v7ie9r9+w/Xc/je6fh70Ga+8vdfMuo7VzH/recJBFXDVP/2767g5b/+GL81Pqz8sLvvovSgJm9evjePF+5Zy771tSBg3/raCHJTXxU9UMa2bjcTdsZQsW0JG9Z+woLXtEAN933XofaYiyr6xJ+k+yImBZws/8k0Eq6/JKJMh8vfL5/THes+4pwtddT85jc9lnnjmT9RXLKfDx+8m0mLd7HoIRks4vW6o15z4PO1FJ0xkYK18yLOtbQ08caPrqCp+fjkQIu1BfDakymY/BtKXv4powufpnzv5uNy7y8TJ1PTdIUQYrIQ4gL971XA2UKIc4GDwP0AiqKcCXwPOAu4HnhRURSroihW4AXgBuBM4Pt62V7h8JtW+ZstTNhvpfrzlYwvsjLqsBJm663LTo+4fnCJvP6nzU8Yv4eWa5PL2eV+RlXJbj28MJvCJdms27CCeLdCeg+aXm9ruKZhzntL8PiDCMBrT6bp8OXsWzUO96LBYeWa8/IYVG/F/v4+1I8HMeSwlcYSGXYbNFkYLB7tD59QOH//4xxudbFqi9R2Vax9HYAbSv5Cu1sTlH7TqjbQKAlYd1EV/rpb6fKNpC3tawCoyLKubm1iGNIG9Tka0escLuvuN5GXosV7yWmBtg+GyP44IvY/pxlq3s/iho23AbB6RxYtH2TyzaLfUFG6H8snaVg/ScPnlQLc4w/yxJJdCCFYXpBF+fwcnF2SBAxGq6PAgiWKoIoPdnLQFUt3UKHxwz9xg3U7wxdcR+vcW7lt3RUIIfCp4FXB4/OT8uRg5s6ZxfoD6RyYl0Ni1QYA8mbM4aVf5tGYfRkoFjy+kayd+QJ5M+YQMDSJ8kV1dZkc73VyYTpNwCXbOGn774zfQgg27y3hwwX/No4VFkp/n4RNHwNw/iqvRkAPp7Pr/Rw+2ZZFQWdCWN8012vjMbMVqjV3NmJiY/mGspbLkRMmQKB+Dzs/zMFXJ8PqfV4XbR8MofH9TJweHwcfnUrR3h3GfOJxSYLWVSNX/ooe3aUIsIfmap8kQu4Ok9nTRJo6OptZmpdDa0V4yPnoSu0bD2FYvcLhJZlkrUmgo6mKPd1xlLodKHGpRvkQrGqAMf5Cilyxhsao8Nw5NDf/lNpc7V3W5l7G2pkvcNByr3FdR3sT2xfl8GldGkowUtPkdEsZYo0JkOCs5azC17D56rD7uxlTKcta/FIeJe57jQ3Lcpi0+wGyFlzNuPXzKS2VvnsxxXK/xO1Lymko76KhvJMdS8sjklp63bL/F736N8a/ewHr5j9rHPPpk2rejDkEfEla1J3+z5WYw55DMtijqSFcdoXw2vz3+dsTfwOgqPQQFTXhUY4dLi8frNuKEILr19YxocSCu7sj2q0YsltLeaJueZ9/PHAX//nVpQBcvrqZaxfmE7A4Iq4p2qstvO58dDrjLszEomsurTaFsRdmcOej042yrW3Rn2vTx6DVGsPgX/yRc57SFpvjyhUu2TyLuBRLmBYuztXA1O9GvZUx9gOq4IJd2pgOBuVqqbGpkQ2/voBX//hxn/5RzeWab9nQxgA1jY28NTc8gKTswE4u+tfHFP/yO1haavHak+l23ojfppns3a5wchoizO67fglA/C/+StGeTaz+QGrzlz10BxdtqWfF/d/vtW79RerBSspH3EBHyhh2Vl7IofdyqDFZGE5VRMZcnyQIIVaa/twK3Kb//gYwTwjhBcoVRSkFpurnSoUQhwAURZmnl+01QYhiWgWEAjy6G6XQXvHm44RY3IXBnUBy2PUt44aQ01ALQKPflN8nxseRHHRLaxKpQLIbAkrvjnetheuMl1HmcfCnqp+x55HHiCGgrWq9GbQMuYGMjvlh13mStDrUDnNg97hJ8oDT2UhIhFR4HeTqv13CCgjWJ8ZxPzXwz2yGAStr00iK9XMjr9PotzLY5qeh3UXRqhzqx1YyRr/eV61Ninkz5hiOlwCdqZexduZlcCDImWhOqM5OObllNbgBhRiTOsVjmvjHl0au2DK90bcxafJZ2b1xCGN0k1Fb0IINeV+fSRi889fbuc+2nP+0PMnUUu3dOE2TrtuqacgEFvwi0nF1T9EB0henszlLcNYV29nWnsiUlDayrBqpcTq7Oaybbi3f/pwJwM+7nqNol3as/UAticD0/FnU/OJlqgrqUa0OFAIMadjJ2LKPKB+mm6BMmqaO5lr5h0nTFO/Sw/U9HkAzP06ggiY0VvPJO89xc6nm51WEVofgtrmEKEO8T47B8o+yGKk/c+whCxxK4ZOsV5ipn7c3aKt0i4Ac3croLdxF9VotsirNFCTmKa4kzmenbtdeMrAb7yFWP1+9fwvFB1o433kDFqER49yOXYCmHeg4XEaScTepaaoZIshtVFBNKRa6ujqMLzLFU4/mjh1k8IokBgPlh4uQerzoiNeHWzAYJGZJGn7gQFwJ2fr5rCq9x0SQlg+0vlUf0UjE9PxZbJtxFwHfaITVAUEvmc27cVzjB10p23q4jEQPJH4Wx57L9XFlCvV3ueXYHz5pK6Oenk93LAyv3s3Iw+HjMGgyfbVWtDK+E4oOJTN0fwzjAlCWv5xR+nllZ7f8NjfIMbRvfS2kPUXeDD8zN2iaieKtSzknVIf9L1G5PJuOm+YbfeDRNZjT82ex4+p78HVlae1VfWQ27SLlOsVob0tDDSlR+jl75R8Y3BIDPEjp7Guw2AUjX5URmG/+8QauXl1H3otPG++ssyk8L9f+0nLGjhjG8DJtXMS1NXPzuij+OFHMOhZ/F/NeehCBlezk76H6VVC0T8q16AN2OOIJLdPqD+1j0YdvkzF2Kj+98y7jHiF/OUuMnCr9upbL4evE09ECpIJQAQVVseJsKASuADSNe8XkKXz+3enY9Hs5YiSJdzs7SUzWgjj2rX0Xf/2t+C2J7FhazuU/OCOiTXl33IQybgyWkbnGsc7LLucCYE2cylV3aK4Cvk5N6ziuKkh5oJPyEbcRYDgVI25gYsl8VNOitaujjeppF7Nt5nCmmrJVqN/5iTZ3fEvz043Rzb8x/i+WTmLe7TNoSXoI+CahycnNDNbOnIGySOXS63q40O8GW2zYt7Rn08c0HtrbwwVfDk4WaRLASkVRBPAvIcQrR5y/Gwixg1wIW9pWY3Q1h484Po0+IExrLi37s8LZ3q2AttK8teMdDuufcFA9cn0G3pwsQBNIFasyCMUsiSh+j6kr5VTQ4ZMq985EheTu8I98aPEr1OvP9S0ahO87tWxufJzgSLtRpjb3MmpzL2NdrZ8r0ISfRQ0JZYthyju0dyMT9Wty12sTU3ccjKnXnplbYsV/JsToHG/Y+jggjr1fU7EtTeXzbEFut/aBOPOXGc+vKS4gFU2QFo3/Jm1p5+qC1Etm0268U6TAa2+pN4hbdoOuPbBJolVZc5igPZl9Z97N2ftfx+HTtD7FuTChBnzZmZEdCuTvyTAIE0D9wiz8N1YTunNAV+93x8IPLcv5tCaNqfZ/G+W72+qNEeDeq31sCV0ixEHCUFW8g3Q07cTG9lGcu6KKZSNSmDi5mUOt8Vxo0oC4nC6K5uVQeYkHJVcwvEYhmKIJJoevE6xBVEsMCBWBFWvAg8PXyRl6ZgphGmvt9eXGh6n6NSkmrAopunLA75fk/JAzziAcN5c+xCG3naEOKRBj24oN/V+sXx63R0lTNtm53vid0qb1TVOaIKNNq9uw7VWRFwGjdmpjdHSBHKtm8trRdJhx2+10bR8MI/U2lEpS3BHsNtoQLTWCaupnv6cLrz5ubLZ3gCZUi3yu8PU/GaowrfInuaVZIESqzOaq7g5NO+TwdaIID8Ji1yZqix1rwINFSELq7WrGMBYZ36d8brdLajW8pn6yBiInfq/JZEpMDOAFVaF5EOQ2AKo0c6Z0aN9m8bjv0pxxDiCFUox3D1MLZGTflKaP8aGle4hfrlEe5aAkc+7uNmxGe92yvUoM1oAnbOZoa6qNSppGbYo1fo/dJt9RRWkbq57fw5R8rVMaP33FIE2tDdXGp7h3326qnrmFA+fchGNkgKQiGyLJDshJ2xgLwchteezuViY9+wF5M+bQaq0Lm2xrcy+jdoOfK/W/O4nj1vlrqM5aDWGkKeTfJmWXs0vKcotoJNbpwpmQjd1TS1J3E4otnkcf/jU2ofKtO34GwHnzt7D3PL1lFvn9drQ18d7Tv8HXdCeIc42Zbd/6Wvatr8Vqs3DP8zON8pk7ymBHGa4/R2ZcdzVLTZ4qtCX8kQvcutzLqMu9DOU9QdE/zsIXb2fyPQ9iAabmhX/fPZuhjt7vqL21nvKibZx3yc1MKmjGa3+InRf/AG9wvLaQVL0MadqN/UYHcHXE9Z7OZvb8ZRIJ0+7Cm3U+cffMImvjKmJ+/CdyIx/3peJkmecuEUKcj2Za+6WiKJeFTiiK8gAQAEIOIdGysYlejkdAUZSfKYqyQ1GUHapTNlnRWUatSWPkNU1eLdXhdnKA4Y0bjN9pZg1nXxG2CQeNn/6EyBmrvSk27O89nQnckXEPCd3bUIJ6BF3QS2bDNi7eKp1OB3fr97UohuZsvDs68y7J1tp24T6Fz7ZksWNPOns7ZRsbOjSaM7xOIS0kP21SOgYbtFWiw9eJwDRxKNrEIQLSrNTZIu3enVrUNapbHju88T1KR32DjpSxlI6S2X9DKztPafS9ycaURg7ZjuZawzb++S6tP1QLLN+dyfANcRRvc5vKSlPCsFTNwawzzYItCom4oU6qplN3awJpbKXA//Eghm2Io61Naq0qKrTnjtgUy/AafQz55ITnaneT4NTuYbG14bMn02EmaiY7aked1HyqAa/eHgs+fQ4M+ORk6N0qifmmpmS8Hw8OC1yoKZbjzuE3TcBRUFEh+ymm5WDE+fSunoVlqP+9dk0P5DeZuc2m2JBGYHitbK/HFMkTMPk6hcaCaiJ7Xle7odLvsupLUsWKP9Qlrt7buO88Ob37/T6j3q6GKKzZ1NzuNm2hlDdjDj71vDBzVW3uZVTsu8Yo6+7WxoUnBukIbpqwO7pke/0et34erFHGoKtDTtDB0MStgtA7x+wDlNqtfZvNg8MJE4DfcS5bps02/vYtDs+PBWD3yG89ZAbNmzEHj/uMiPaWFEh/nPamyOSih8bKxoRM9QCbdxXy6RNL8HoCFE8ITfyyozubZd9se/1eRm+KZeLLq41FqTARAKGqxljodkcGHFhjNcEzPX8Ww86KNxHMIJkN2xhaLxPGulzaeB1ar+APBFn7969RVVkmIzOVcO1QqG+CygScibmgWPDF5dKcMZk9K8fyzXkruXn+apwH5UJEMaIu5VjweVxcumAbl2x6gIS0ekPWY1FJ6tjOt/50Bk/88ExWXTIRM7zeSG1PSu5oeV/dJ3Z6/iwyG7Zj0e9r0eeQSVfVcfYBlfN3emg7GOlHdGiSVDmt+N0U/J2Nxow7aWs7hds/RVVVnN1tEddGQ/5tM4n98X2G5tTh60QJulAtMViCPoROxi2d0RPl7d22iqTlyZS8+zHWe7X5b/Xse/r17OONk0KahBC1+v+NwEfo5jZFUX4I3ATcLuQyrxoYZrp8KJqqp6fj0Z73ihDiAiHEBTEBOWCt+jfU1S5XQTvqUgxBOvRQ5Kat0bRPAKPKe+/KTK8U/AF75ORzuC5caCesSGFDpYWUDklOhL6qDWlltMbp/1kUbDpxCwQj66gI8MpmknvYQsL+WGzLpAOrt04jTbVDoC5DF8qtUmi7PJrgyJsxh7bBMyIEaUf97UbZiko58YcI2BBbu3F9+a7raci+CBSFhuzpho9PiPiNjv4qo6J6+ypDeA5v1yZtVYGxethzdpXUVDQekj4+Xr09wqIQjEJ6dzdLQhJIiXScbGioMX4n+GU/dSXojdBJU96MOTSW+Q3hqgbTac6YzM4pMomhWdPU1SSJndDHjWpV6EjW7qt65Vgzj+f2qkiTZsB03pLWe6LHwVVyjPoC2jNEP7Z43Tclyej/kGO02+Ro3HRQi/B02SFGRDIDv2nl3hjaLsj0PkKkKW/GHA6snWT4E/ls2rhptN1HjH5bT0fvUUHBRPkRVBasM+q9MfVG7foYaNCTiKrC9E70yNHp+bOIUfdELGQyh8kNl126f2LQAuimHLNPU7BJLh4CJkJpDUbKhUNV0sdDtUpSE5rMA55Is396axGoHmnzFQK7p5Xp+b1vq9R1zgjZBt28Mz1/FnZrkTHpKqrW3pyxMuWAs72ZI2HWvJfsygNg7eXP8/nLDQSsuShovlFrZ75Ac8ev5b1M76+x1ey/FrqvJqPyZszhxV/kGWPB6zvXkCEh+HW/rC3TZnO40AWhvGxYacicSk2WtDF73LIfty5+iew3D7HnwWtNpElWpU1f1EzPn4VdMfWNPhbOvEK+M4vbnB1fNz2bxoJXN9U6fJ0oil8uRIMKSd1uPl8xh5vzBUOP4BK+5XIrpTZ9UWr2j/LpZNwa6MQacBtabtWikROrVcqzruZI4tMdK+eFEUtdLPx/N4FTylHLnb9h0ay7qLrgYhqqw/OJLbl5Kp8+9wdcXR2896vrcHW3GYukzjY5VlQ1nqz6fOKddWTVb8VnTybBHv37DUX7jSkVVIzUBpd1cCTxPxE44aRJUZQERVGSQr+Ba4F9iqJcD9wH3CyEMEuCxcD3FEVxKIoyChgHbAO2A+MURRmlKIodzVl88dHUJVVflE7eKlcvw7fERkwAZnjdx5Z/xGWKIhpUE9ntwa7I+1Y4XtKFQjg5MQuG0GQb528z9k2rrotcNccEYOrB3tWqo8u0emU1gS9OK5vqkR99fKz2UYZWL8aqSBekqDIHztRDz0fcXw3qE3EP87BQpJ9Za3OkY2c05M2YQ2vjfxvCsy54DWtnvsDnJkJSdq78uByl0hN/+FZNuxdUiKpp8pRILVxchja5FZ0hJ67GOmkdji+WW5YkObUG1qRrq/Hp+bOITaww+ksIH5kN28itlHmmzFwitehd47fNqzurWxQZ1eWW4yfFpFgZXRI5huwHpAZz5Pbe+9RnSkjoMxFvtz2y7GOPPwwPp/DyvXk0Jj0e4RhdseNSo6zFpj3XImBEVeTYz9yab/weVqsJVQWTpskj/WviU6rluNP7cbAqx5qrvfeU7qHIxLwZc6jcc41R7yGeGayd+QJbL5pDIJS+y0TcXHrmeoevE0V1RSxkfAEZFtveqGleVAsourlRMbHAuFYp3oI+OXlF0zRN2CGJTsgMqfilrkKNEgU1ee9LxPp3ool3rRMHt+wLX2yZUDJaXzy4JJnzdEpzJKo+6ap+QyMgVFPARUcUbYNJ1DRXazboC3c8hsPXFJG+IC1dpj1wd8p72UzaHYM06albpufPIndibIT2yEwMg77wCOTIOpqIbKd8fy49F5+jyiHHoMm3rEVvj0Z0vNLsrhMSiyLfib9bjsfQvRQTaQoFROTNmEN367AIWX+w4EqjrNlcPPFApEY26Pfw1O++x1N/+i/8eqSeakEjI7qWO8FZh8+eTNCkvXW1RxJvERO+ADtvaxeTCsLHT1qeFkR0MG8BS/96E0se/RYAYw52MfyFJSx+8HtMXlXF4vtuM64JmPwq0zrewKL66U4ahkUNcG7hXLp84fJh6cN3sO6V+ww3BZtqem3WY5uLvyhOhk9TJvCRHiVjA94VQqzQHbwdwCr93FYhxD1CiEJFURagOXgHgF8KoU0xiqLcC3yKpot+XQhRGPm4/uNI+2/Ih8gSlA6UfU08h7MFw+oiv9I7pWsQtijaqqy6yMlkev4sSsd8k4aM87RVkhogs0lzIA7B26bV16LIzWbHHJFvCKKTgp7giQFFnzTNNR20VlvSOHza6uVI89wZ6n5Czr3eoIXQXNsRDykuGLYl3AQZDaN1t6hRu6LM1FEwPX8WBy+9iWb/BQirAyXoZUjz7rA+SvXXgV4bh7OVIx2YHEEfQ1tMIeEJuew87zec//kzhJSXPl0rZRdeQqaPQ1s+Yrx+TVx3NRzh2eHVI4Ecvk4SnWV4LCPC/EI8VlPYt4mkCJPgSHI3AQ6EBSy6tEhs6Vv7E0Jma//LjtZzLLUlQlergwwAoeCMF8Qd4Sr0e/czoMDQkYupO5CNzzIpbIxmDn3TKBvz+RLAQWwP+8AmVjoJrd/OKdMeZPepxkTpr9MnMV8n8R3FuCy5+sSr9WNQSGHurup9b0iHR7vX9PxZfD7lFlwxU7R6iwCZjdq35fDpzvmmSdXV3kgskTICNDlB7XRAS1CaelAj00luSZrMqswhHSZG0aKZoxTRwze6REbwJnWXA3ZGl1ipHaJrLXyRZpqIOipaHeuzphtyzAxVn3tSnI2geyL6TakdhIgjt3YDfrGFGGU6XnsKFrfUJIeSapqhmGScq1nTyBac/4cj6qXgiRuMp/VmQMs31FYmI3TPro0MrkEnTVumzUYt8kRoj5oGn2e0MaDnfLp46yx2XPMI3m6rRkiEIM7dyPm75MKq023az1H3OVIEJOqLEo9JI9hZU04oDlglgQRnHc6EbBxunZCYUhEEuiK1ZeY2Bds1P6Lp+bPYecMv8bZmoJr8RCsvKzEc7r1BqemxmQi9QZoCXm5aqkWP1l5wIQCbLp4Ttl2UMzEXZ2IuLWtV3VUdREsU7U4/3JYUvQ42ewyj39O/O3Ou1C59wWfqW78+Xnuaa0VJuDZ89LwCoICG2ZpvWEO6mXyeHNJ0wjVNQohDQohJ+r+zhBCP6sfHCiGG6WkIJgsh7jFd86gQYowQYoIQYrnp+DIhxHj93KNftG4hDYqxelEDEauXvhCNMIF0Lj0abJk2m4bMC6VgsNhoyJwa5pswWjdBKYoI+5COxNFsBaWA4ZczenckAcubMSeqBqzYKvP+1JQnGr+7ksMffvHWWVgCnrAVpyXgCfPV6i8cvk4CTcHeTZgmeNyR64QjTauFE/+LoDWOwonS2XLEtkiyfD0y4V1jcyQhTOjS1PR5M+bQLK4y+kpB66/mYVJoB11SAKTlyb6jUev/+EAng3T/YWfql5sATljke09wC5KjpM75tDiDonk5VJdei882JWKM7vVKrWNCXO9mQbsrUgy5ExSydXI4uF6bdPNmzKGZqyLGXYv1fuM6xdkHaVK1iWfLtNm4HNNkvZXIb0uUyXfaXaX5CU7Pn0Vq67YIGTG8XdZh2D5tEgoqYNHNc4oppUWGyWKTUqGZ8iwq2KI4gpuRsltP3RFvMs+5InMkTc+fRbw3P8KPpSc5Zg9qbHakaYw3fi79Iu3ut5hQsoA4Xy0TShZwbuFc/K3SzCLckX5kwuS3adH9uabnz0LBG/bdK0EfKV65jcZlmyqM3yMro0xPOgGYnj+LmNiAzIMlghEmSFWP8nL4Ogn4tfelqFpbVcUaJiOCXaaXoicWFkCyrhgZWviycdrXoGlt8mbMwa+OM8zu3njNp6nos3PlrUyJaEPtNmuMfLop1+HrREHTWimq31hYuSzy+lZn9OTAhtbRL1clQf2dnF8Q3adp3HkyNYetLUqerZi+CYmxz59dujGYUxkE9YWCYtII+fXAhun5s8ho2xFh5nYnhUeHG9fpGlVVQWrc+9h8+svCVy4jeG/oD0k5kZiePwu7p1UKBjVSMISQXRRJbo4GTtOcf6RWIVq9opHLyQV/McqMOmAz7ju0Pnxwb5k2G9UcOqooqLbYY+rnvBlzaBvUuwkze4/UWqmdPQuDtZc/z9qZLxhbRoR8LtZeLs0/g6vl9S6//D1yRySpcnh6Nw+Yt/8Yeih6vUIThxI4cQLCZuI4rnhh5EsyY8wubbzl1D+ojdGQLUuo2D2tYQQ4Y10UJ+s+EKvK1WmOTmqPNAuHBO1Ik5lzyubeleeKbgY3vq0j6m3+tvxD5YeQXqPlCdoybTbt6VMjZMThlL8bZQ/maPU9nC2IDfkymsw78V754sfpofRtKZDo7v0dh3wDk11Sq0xdpMO+w9dJcqs+AQuf4cfS00Ji1KHIaWBwrXTInpavsfUxVZIIqSZfx1hvJKu2N8r30K4HTGyZNhuBI+y7F1Y7XbY/RK1XCI1pFmMKZe7TAAAgAElEQVSiVPUkoQ5fJ3EpraCE8iRZIkyQ5gACAjXk1q7ngoKnSA6uI6k7PLeUMO3nGAgFMZg+UMdy6eOjNkf39woRkpHnycS8ob0/VZDaG1OwQ12LNOV1u/1k1ecT46sjvkPz8XGZ8nTVNkRfEITGQtAUZarq5jmb2acJv/RpQr6z2PZIE29/fBktujbRnNS4ulTmagv586km0hRKqunwdRLjijRzOxIH4XO7KNX94Ixb6T5nQolu5jyRGCBNOmozeve1qc+MTkpqj892ZVHh8HUyuGWfFAxKpGAIoTeic2RkUzQkHEXqjZ7I5e7zIklPtPseDRnsC/3RDprNQqMP9DypXrjjMRzulgifiwt3yAnR7EMU/2m0QGuJEbop9+Kts4hzNYTdN87VcFSatbFFUvD0FXTwRZFscnEIpRvoCTUZj+KLTcfIeK1Y8MWmf+GFRrS9y440C4cE7aiKvvfEC2FUqXbfLdNm91lvxSQQnAXat9PT2L14i1wwhEiRwwuj9eclt8uBMy4y2IzsSF/qHlE2IWj4P43d3cO2I7Zkcms3MNT7KLm1G/D18u1Hw4ja3u35qaYop/MKI32awjTuegb76fmzsImWo/7uu0eYMpqbfNI6G4b0ulhSTRGcntjVTChZQJKzhsHedzm3cG7YMyweOYYCujZkaA+Jry1tWntC6SdCEWAGIRGmDbVtmj+lapHpCzA5bIs164zf1pSlWFQ/PsdQbEHNx0fplG1o3if3p9x/plzlhqwIZj+lgN6ekE9TVn0+VpoNh+ugX46bxM5Iu3lP+zmG9YPeDLM50mPaoaAVXTtkk/IqREh7slZY6q5hxU+uxP+9n9NYJslnMJR6Q1FMuwochc/JccRXjjSpw7OjHvfZe58cJr4tN3VcdvNU43dfKvVoKPj6OOP355N6nnh7GlhmwdAf9ObYfiz4oqRHkkEFS9AHitKro2pvOJ7awYLz/4A3blDYStgTN5iC8/941Pcyw+HrRNWdWnsyD5yu6G2hcbxxvL4H6N8YHmnKO5Wpmwr7M3bH6H552Sbfs5TW3kXt0ZjPxxRbGdyu3Tsp+m4YnFs4lwklCxi3tdkwqR0NHL1bVEmpjx6MEA1Kh/TtG1JbeNTf/ehdMYzRFzvCFBRgZ1+vi6WAKbt4VkA+I5pfqs3kkB/0RjpGm+HokOdVVfP3mrLzabLqNXLqd8rnumI0nzTVglw0mTRNI6qkI7ho+p0RmNA5SAuoyGmQTkLdVTIx6Jn75Wo0pGkyO6uHCKPdr40Fi+onSKbhcO03Zf9P64ri16H24usRem6oOd3StGnONB/Qo1tcJga2b7VmfutJaxybvIC0Mu1+hw5IrVXAlJrDokeZikAPTpJfMr5ypCk+OXJrFADf5BQu3joLxexrg/S1yRoms7NaHDKyIKjP1Yd+dm3U+1aM1kwTJWPlNfYUWYfYMyKzvobQU46N/pCTykyFvBlzWDvzhYjIpqOdZA5nh2vZjgfp8dmTDWFzLCvhEPpjZukPSqYN1Xwugr4In4tj0YAdiaTuasM8kFu7PsI8cKLQH63j0eB4aNH6i+PhcxiCeQwj1KMaw8cydtOiuI2czgiRtv4gvabC+P1Fv/tJqzU13ZZps/Fxdq+LpYApqs/a0ns+oTiTk7VaVtFzQSC+U5ZNCswzNFhjSzVyGjCRiKBuVlIVqWlSAlJDEtLE90Qigl1ybPsqZSoDM0LkZdg7ecYxj1Nr75bppjkAOQdUlt0ccb0ZSZ4o6tAjYAtq8qQ8b4ghT9zNMkHmIL/2blId0kezslGL1epJa3xG80pjbIXSJgAEdQdy1ZTPbIA0nQS0/u0Xxm8Rn6rZWf3aSiakEVAcASqnayrWiQeKmHigCI8+6OsGQaxX0yCMuujqqBNSwve/DUCiyXYdnyLzP9nTInNBhRAaWEeqf3sS7EWXydyo7dMmyA9RPXrSVW4iSgn/8/+M3wemakOmJ+FXeLmsw84pkVq0fVO1jQvOLZyLd3IJSc4ahlXJlXDzUc7l/TGz9AeDbvmW5nNhtUf4XBwPn7bQyj/JWYMIfsjossiVf/mN50a5UmLnlSN6Pd8fHBxzGx0pYzk45ra+C0dBc1q4yDiRWrTj7XMYLRQboDK7d7FofpfHosU5EnsmfDF/xFMdI0wm8ePVd/3RFCa2S8fpMXuj7y0XwsUFkuicvam+l5KQ2SJJT1yDHOchx+iucpmKJHOFZmKyqGD3atfFtEZ+Gz2RiMv2yrKWwzUR14EkEWZXiJJKLQqxJzLW1xwwenv/HMHLR9yAxzHWsGK4TEQ1TU+GK0xaK8Uj9zSMpjXea5WbgyR+9pjxW+jJPIVF5jMTwQHSdMIx9Rs/M35bErQg0iRnNYmxB7ig4CkGD21nxDkj+ca/loVdN36klnE5YLHgStJU+EMnTo2a4XrEZdpg6rxX7uKYNEROfjE9aL5CMJMTW3BjxMps7zTpVGU/a4LxW7HajBwrQglPbNafCW1UnRyQcYOGGr8dTs1+bRZ+9ptVQ/iJRE2j1pAOwqoNr30Xyjrbzzvf+B0/TAvYd5m05Zds7X/WiIIbxkYVnjHe3jVN718SuUpOzx19XH2toqFST9RtS/SQGMXX67KHngOgLVGh6s93AtBlSpcy7qZj3ygzpHVsypwCikJT5pQ+tY5tj/0KgKzNa4xjrcMjibBZixbnKDK0aOUjtBdbNxiKJmhjoWS87PuCmXLsFsyQvxv0T2LBDLmVzu6rRpi0ipHvp/iXcgPZ/iBvxhyaMyYbkU/ORC3yKW/GHDpzEvu+wVGgJcpCoPQ87fuqHwRBqxTDnZGbEJwSaNJfuynfK4u+1rvs+jLRH233BNPezX0Ft8Qco3vMhBKpdbKG9pZzShNVSGuiWiCxQyMPCV2Rfmg9kYitF8nvc9K+6GZDaxRN0bBWGTkYjYx90UVN3ow5bLok0opRZsoUP7ZCj0I07Tk6uTg8qKM3K0rcSvnhCI+mqlUtitQ0+QdI0wlHTIycrW1JmtCetG8u33/ybpy/vYZv//lWbrgncvU/aqTmkzSsSeWs199h3ZXP8db9hREZrtdePocRI85l4oEibrn9YeP6tCxJmmITe3cmNpOTUdYPI1ZmaoxcpSZlyATpir79ic+RjM3XACjEuRqiqsOdfaRPSh802Pg9ojDSkTp7/HnyuXaNRAatyNFl2uwycYjURA0erGmdBnfCoHVLSFu9CItpX6ad03rP+BrT1hlVeA7ShWfx2TLi5dBdxk49Rj6cvKlS2iSnZ1J5hi3iXkld2r3qHvpx1DocGCf9XqIlgfSZuitRTyuQe8BGvV61/bdfiPrq41RfP4nEtCFMPFDExTv2c8aUUBYVSTKSs8wJ8I8OqiW6A/yRx/ecr83auy/O4OJbf8HEA0WkpcttWZShkT6B5jGaM6bSGKMdU7StnoNWxZDsvhT5TizJ2lgMKtAWp72U8lGq8X68sSbykp6Cw9dJavs+QH8/FhkYkZQjv6lFM/rWyEUT2gnufKbnz0JNiL5ZdDQsuFSOV+cVFxi/Q/uM7Z2ciBrF/uGIDW3ELLT+AXZNTye2983tDRTcJBdI+2+e1O/69oVdM+X73XWD1o9dcVBxpianWsZL1jT+Armz6p6px8fcezQ4Xib+441z9khyU6WLu7YUSNN5yojDkYu2L+KKEQ1jdGXX8fQD7E99L94cWd/Ydqkhy62X26gcjRXFZjKZhkiTEiUT/YnAV5o0ATSlWig9MxV7ohTmdkccV9xxX9gEbkZ8ujbZF1+UQ/aIM7H0kGTLGhM9QeOQEVLg2WL7L6CFI8r9THvD2YePMT9cC8dPn0zAkQ2Kgjsh21hNmxEtwq3kaumsnjpYTprVw7X6mt0Es0ZM0PbZQubkCFoUYzNhYapjWqac+HNzZT8MyR5D1lD5N0DM8D62YrRGNxUGYjThOfiOHxHKsTfjF49Q89vbaHzoR1y9S5vEpu6WwmtQ7mhufHdd2L3SWjYQtGr3ikuVBK4lWV4XSJXvPutjGSwQQnO6HEPij/8NgPeJP9CcpfVJjF9w1qXf4Jo588KuG6Rr4epNQQfZw8Ybv4/WN0kR0T17I47HaG2LIfrsHZPSszkZIHvyRbKs/k2pFlMumWRZX0tConE+06aRtZQWuZJMThlulLXFaWW9jmRS2rT3k5heZUyU6UPleFWVvk0L0YQ2qi60E6JrmnZerWlc9090UHCW9ox2U9HEr99k/Pbb9TrYbVGd4q36lvdCMfWNwx51I+VoSDCRREfO8F5K9oxDuTpZu1wSJUuibJDQN9j2OOREodrltzx62GRT2aOfSg6eF11TUJPbv5zL5xbOxTtk9XEzk34ZGK7zheRuoqbuCOFoSURfSNeD2I43GTuW+k7YGv09Hw3pPWO/NpeoMSqh/cizd/ae/f/LwleTNL3zTxr/omkOZmzZx9c/3MLYqf1X759x4bWId5/l66+vBCDYQwRdT8fTs0cav2NMTuX7LumDJNgkaarO0J3lTK9w0hS58rNYrf2ObHLqCje3HVwvPwzAtU+/i2X+iwT/8zSJKZoWrviK0cxYtI6GNIWsDSuN6xPThjAybw1JKxai6PtjqVaI9WsqVYuQuvGUIZKADZ92FY4V7zG2UO4H11N7d18YqXVKmjoN0IRnjHthhPBMGZzFyB1bsC18heTUIVz9349w+e1/ZOsVmtmnJFsh5dMPcHz0BrFxScTY7Fzwt4txZa3XtCZ18xl/ULtXetYIsjavoficNFy/vlvWoV76qqUOGU7CsvcY/Jlmzi0aYcF/+zeN8zO++SsmHihi+g13o+hZxYUjupovMXkQEw8UcfNf/20cS0iRJqyjiYh02zWHbdRAWJADaoCLt86i+FKThlI/35NmymYar6ExaEbuODmR2nRSq1rA0a0/N07anyyJGgELWiBG3y4mqCiGb0hapvweLDrxHlY1l8F1mlYrbbzUaqXljDTKBvsp1nz2ZOzsYMrOp0lp30DAqpE8S08LGX1sC5sFr75sCJoelTF5uvFb1YeuFSu2KHtBhlLMaJnetb4J9rDIigZHktRQDxp9Zr+vM0MkaLN4rClnj81EimP0sCxPrIUkVc/ubAprH5Q1ynQzrQ27LxnS6zPrhsi+sMXIpdfab8gFk+9cOR6jaW/3XKS1vS0JhDVynJYNPxkbXfSO/qR0+TI0Z8ebjB1Z3yP3jjsaHIt/2+gKGa15soIrvpKkaeKUa7j8+78HZFbR5LTM3i6JwJnnX4tV1zB954ELNd9h04SkKPCdBy8Mu6ZF12zbHXLiiDH9HnTtTRyJgOkNCauUIC1D9e1TbHJVHR+XTEc87Dg/CcVq7XdkU9xrz+CJgWGrlzNl5neZeKCI2NhEJky6grOnfQ2bLYac7eu56blFxMenMHPLfgZlDKN4qrZCTUgaRNqgHIaOPNswCyqWoKGlUZKkIE3PHhX27NEjJxNjje4Ia7HL9iqZORHnMyZIs4R3UORQttliSEhIZdw5M8KO3zFrHgVjFc5/8iVyRpzJ6IlSOzJm4kXEjtLqGLDICTw1I4e09BxuWbiZRNNYGaGrwWsHQ3xCCsNHTyYjcxQpn37AlfPXMHb6NQAcOCfcDOs4VyMXQy+6gr4wbv9exhTuxmZ3sO6y/kVE7r5ypPG7YZIXh68TixrKTh0AARY1iMPXyegfmnYL18Ohg0eQpsoRGpEIdlYYxzyJkWQgJUP6vxFa3SpBI6eLzaTFGTRc27m9cNIQFLSx5EmJJ0m3bgwbKXdtt+iEwhejEK8vXNMHjzXOJ5h9A6PsSWX7QArkjXrKj3ML55JgWUmSs4aM5vnk1Ohlegi3VkLJgiwKFxdqvweZMswnDZYam5DJzSospEeZn2z6HhSqIklTTxqysnGRyUFjk2R7M4ePjThvRvPopKjHQ/EOiX6ZyDJuiHx/8TpR8jvAm6W9C2+aNNVnmIiqEvJbMfX9/kny+y2bqYeMmz5Ti00uKmMzpbYsZOJvTu7BFylWW+X5bKDo8q9ofAytejM9F8qI5Noh8v0UX9z3Nk4hdPSRj7Uu/fjn1DjeAQYh9IeMVWcefeqcUCoD895xXwV8IdKkKMoQRVFuVRTll4qi3K0oylRFUU5LIpaYqq3i9183vo+SkcgYloTNbpFSCAWb3ULG0HBhNXbZMlj2HwCG7dhEdn6ezOwLpGRrwrwjwbShoyl/VKdPDuyURm1yG1QenoHtop1F3PnuNhSLlS3TZuOOzwyLBnPHZ0ZEG511wfWct7eIjCEje2xjSlIGNls4ublh7hIGbVgRZsa0WKTjY1y6NokkDpKEJzk9i7p0hYO3T6cnNP71p9T9+U7D8tiWBMnpUtN0YLI2YZx5gUk7qERqorLGnBP1/mlpWdyxZD/jz7086nmLnlcko03Pr0K4lsfukP1w8AytvS2XSw0LQM6IM0lNzWLsuZdh+eAVbp6/Kez89Q/9i+6XZjHlqh9ErYMZNosNu06Y73hiBmMvyOhT3Z4yRRLB0BeZ3lbEoJGdXFDwJGOnpZLeVgTAOZfeCkDROanYndrkZ7OGa1suX/QZOds+o1PIidBi0cbggTNslJ2hkUKzn2BipjaZ59TK8ZEwTBKhnOETSFixgO+8toIzfqJFaCb8WhK40cOGseucOHbddZFBZAa3CWMbksxBkrzGmcKaLVFI09iJcrxlOmV9YvSMy5YgCLu2gElMyzLO+823CpmbFYXmn34DgG/8198Qy/5Nw6sPYrfLcWHsi9VDAj6r/i1pmia9aA/bQngvPMv4HQoM+P/snXd4VFX6xz9nanoPCRB6S0IvAoIUQUFFwLrKCnZd2+7qrrur4k8sq66oq666lrWuulixYUEsSBEpwQAJAaQJoQYCJKTPzPn9ce/MvcNMCiHJTOR8noeHm3PPnHvumTv3fu/7vuc9UfHG9R7fXhvTH3oLdqUHPvzsfboGlAHEHNCza5sWdU41Wa1KIzUB5bJbueChj/jp2rO54JEPfPsjo4z7m/CurWcae3ey0cdgetBqN8UUpptEU4TWH/OZlJgvx0hdwNswrH9W4buX2uIMa1lpiqF+xK6GZfDdkS7qzT21v6t2veX3MlnD+wV36643zY70Gh3XnmpaALgeA81HVxvPpNwRgfe5n7sav7ndQcJAa9p/EVSMrZioWXLz+0X6TUZoCE2VzqY10iiBI4Q4XQgxH/gMOBtoC2QDdwPrhBD3CSHCIyqvgTgiosjaUMCFT33cqM/bI2wktYtmwnW9SWoXjT0i0EScntqFrK5ajEpMTBIJ8WkctRixI3FR2s2iMtr4kR298zrfdo3pzlMRrz2kqkb6W7O8CJs1cDZYkPWZTgSnM4o2qf5Bt1ap3wwEdJx2JR6g62Rj1pfVamPcD+uZ+n+v1NrumEv+xLjL7yLpoJEBN6ajYaGa8r9FZKxeRnSMyZUQGZiwLtFs9TgOjmzVco04XOB49mE2Tu5LVKxxLGH6HqL1GTFWa3DrBECv3qN8Vklff+1OTjn9+GfDxSVG4Yy0+1ZWr83c7og1YvTi12s39n75/+HSO89naM7XTLx6sO/mKYQga0MBF7y3jE5btGvFUegfZBkZGUt8XBvG/+lpo1C3FByNjeT0t74k/lv/387QC2+kygblT8/0PdCc0cZtITYxlY6d++JwRpI5cBxZGwoYOek6jr5wP7mnptG9zzCmvbeaaXe9SkWx9nJwMBa2XzICgI6DTyPnN91Zfl4HIhzGU9US5L3NvLinSDL6kJanTUXP2Cvo/dSLbMiKYcjVt/v2r798PKAtYu39HUmLYNSf/0FmwXoGDJtMdtdhjD3tMl+9Df2TqNQD38vcxoO6yga5faJYNb4DFm9/Jb4Mxx7T7XjHgzf6ttNP01y8u5MFVfoz2m4SLEkpbSm68xLGPzSH9nsDhZeMSwgoy8uMoo2efDPVtKhzqh4bdiAO0F1xbpvAZrXx29v/SURUNHvbu9k7TlMVyyfEsmxaf6zlmoC2mNZV8zgMK7pXU7Xba+wXTuM3m2oKWRCR2rmZz+SLicYLjkV3abtsYDvodS0Kn/i0m+4LHqdxH7adqt2rdgZxK2vnrJW3Larf6uKdGeyKMQSnu40xzqsnasc6GgFWU5iGd6ZbedssX9mutoHPisWjjXtXbJQpDtAWaJUv72gIt5LJxsvBPl1AWaMMMbfmj0YIh7XGGydkJar8+CxNx5szbVdqcKnxc9fQLIVyIjTWKnQOcJ2U8hQp5fVSyrullLdLKacA/dGW+z6zyXrZCrjqkdOYds8wegxOY9o9w7jqkdMa9Lk2HQxffkSC9mMvaZ/AwUTth9S13wjf/u0Ow4kbp0/9T2zTlrJn7+bw43/2a1dYLDirS3BWmTLw0vjM2w3F4jLM8P1OnULvDQX06DeaTVePJa+O7OfBkFHaTUhI6DZKc10WP/IHrBYrsVH+D4JBs7QFYtdPzmZ9nxPT6/E7jQDDfiPP47xH3/W3pkVq7e9PsNBeXy7CszP4YprNQUVptV9+oYrIwPNN7mBMCkgobfiNaevp2vXY/tbg64ElmyYFeBeLTj0I0dEJtGtnpJA4GCeIS0hlQF4Bw8ZPJ7JCG7/4ZMNVG9cm+GzAU8ZczLRXF/pZNt0V2nW1v0MkZ9/3MlkbCnA6Ipl+/6dc+Y+vsFlsfDdcsuUcN4PWrfd9rsu6PNqsyvVrf+KsFwlG5+6DOP/DlbRpYwj0/mdeCOhL8XjddrooC7ZgaN8165gyZxH2BD0TdIrx3exPczLt/RxmPPsV1hhNUNjcxgKuUhgPz2xTfOKwMZP4flQH4h59nCO65SQlPYOdabArRevH6CvupXOv/mztEkS8JwQG77e50fh+j5q8VjGpXdlxejnbLx4N+pRuzzFB3qeP2sfpbTSxeeW/VnD1rLepjNYe3NL0wmeepOJxBT5qLFGGizHZZEkWXpEg8E3kiDEFqFscWoc9FkGNflyPyZXuMM1IdjsNsXzOrC9YdtUE+r33BVvGVOAWkJtpWo5Et23Vln5gr8kl5/3upcnqbJ5AIHSLa7XdWJJkfTejbrLJqn84LtAX2LaDcQ1GRZg8FvsDk3T2//1zvu1qfcC2tbX4xsNlCgGJTDQs5pZq7fuVDrs22/kYSuuYo9SQnGnzTbOfD04wJrR4rYZ5o9ogG7F+XIHpXThnQNOmB2kIjRVNy6SUO4LtkFK6pJQfSSk/CLZf4U9ivPEQ6dB9EAce+QOjn3uHo/HazcBqcnccijHiCaoi9ISCsTEMGX8Zp0661q9d76Xotsb6/NnOlO0+f3by+280x+mAK/i6DlP/+hwXv/PjcTXl1m8WQmrurqwNBYyceqNfne3nDqB45tW079ybHuvXccHs97nw/eVkbShoXP8Bm7t2qxFA9+zBABy96jyKErSfUNyocY0+3vHw/C0L2Zp7wC+/0KEkY0ak94bUb9g5bJo2jKjP/sf+QENDrUya/SZFj/yeweMvqbXOhhHt2Xyl8eYfdcg/f0yvZT8ycOEyv7L9AzX3S1rPgXRb+xNJi78gLqHhCzcOv/lxcgZY6XTro7X3/bYXGH3nQoTp64uwW0mO8bdCOuwRrL9uIrvuu4GaevJKdu83kv3xsP/BG6kR3nQatX/IZrFhtViZdOtrLL+wC2ff/55vX3l7Q7yUO/UgeZcgv4PmxowcZLxnpqYa4tRmtXHDf77ilBFnM+TF/7H9j1Po1GsIn4yYwuIpM/yOX2q6X+xqY8NlAWGKQ9ofDwkLP2XMxEt9ZSUxxmMgJSWFyFtXcMltz2FL1R56NRn+ovy7CfNZf7n/5I3zn/+OnN/05byHP/KVuWNNs/IqtTvSxmzjWNboNmzqrn1ZiSaXmk1q45tyBKr0oe5gysUg7IZQsiRpAsnikT5rpnkmtH2wlg5lbR87Qgiu/ttTpKd3YmH3v/DhBeOY9pFhzfbGnpVEwvJrAycGyVuuNP7wZvU2zWi2xhjj5J1FXGMHoSdjLOpkuH0dSYZrWQaxjMbYDCEVbXopKtcn1fxnogU5pZjtoyvo2t1w31ZVar9Fmxt07zlOU1qaqDhDyPhEk93um7FqZus4IzasoKt/RH5DVmKYcIOxkLbNZKnf2kc/N4u1waJp9cAYX/qWNUONz1gzji8WuSlo7DSDu4G5TdmRk5W4+BSKgG3dY8gCRumioN+Lb/DTJ68wqfsAtsx9hSMHd9M39wdgOwBj3/qSJZ8+z4Tf3FpLy9oPNW3fywyd8yXvvb6ZG/98LQWZmlk4oXs2B4GfugqyammhMVTEdgV+ocrW8FQKteGM0X7gda3LdfZjc3zbtlpmfB0vR3qmw86drBkYE3RsYuNTtOzwwPJumRz+20MMPndGkJpNz4wHT2Xp+5vZ8uNOPFYHFnc1qQdy6b7lQwDiXn6aPZt+IstiYeqs1wDYYtdWOD+Wiv88QEKav3s1IiKG0VNvCqhr5vxXvgYg//UsLBI6vP6a3/6YqECL4tRnPmX/4V20S9aOl5bauQFna9C9Wybd386rs06n/pqQOzCqIx0/2F5n3Qv/rInMt957g3ZFtQew2G0OxizXBPjhvHXADr9g6dpIS07hyge1WZReG6TobMTtRPW/At58muL+gln/msvcnDxmnNKX71Y/TNHuSLJ0l0pRAn7XYHr7npx94yMAPPPwIwHHlR06wabNAJw6fykej5v8xUZy3vavvEbbdE2kFccKkkolxadkUX7GueB2kwWM7qU9iLLPv4sDR86l89SH/I5x+ojhHEtUdAzT7/dPuTF4ysV4Kj+gUjooSZwIK3/g6LCRsH6xdm5xsWQMb0unIbnY4pPw2tEPR0m8cuuny0Yx4tXFDP/NHyl/SbvuHAna9VWabPW5NBMO1PjuE5GmSQGDL72XT7aspsfF//Dr22N/udm3XXhGGRnRVeRsa8PgtS42ThvD9Ftn8/NLX7JmdAb9F2nJWmOSjBdci0sTC8JkTbPHGV/qj0sAACAASURBVOLUEE3CNyM1JsZk8TG7EIPYLmwDs+D1L7XPRRq/pxj9ndThiKQ6oj1nt9sCzgg2doKaNi6iZTEA5Yku4o9avAczjmuy0HtSooEjiPZpWHONyQBerKmpwAaORkJVr7aw1VjGZdmw+/GYXx5MKzGMXaw9kyJSMnyJS5ymGDx0d7Sw2vA01NIUG43DpbliJ0amAVrWdmt0y0cBhd/czJMMhz2Cipf+zvBM/xtRu47ZtLvlMQC6ZWt+6gOmizY6JpGJ0+6std3qCO0H7BY2UlI6cOOf3/I/bkQUHdespJut4dOcG0KnIaPg1e+gd+OmQZsRUdqNpSErbjclFTHtgZ0cjQucsXcsw86YATktI5gAouOdOCKsekyTxGOxU5GZjrOghDW9HFwycDxZg87w+0zJsF60nRcoOAaNatxSKl42jcggc2khGV2CB9ybsVltPsHU3Ay6ZBZ8cFVA+ZH/zGZH3ko/ETLqmU8pGzuOpdcPr/flYeSNd7No+9WM+mugWGkIqUOMeJNTJt/ES86hXDq6PxaL4KJTtDFMvvhFotd9AkLwwrkjaN9rGKNrazAInSeeC988yaaLBpOlWyhsSYbFx256A+ny4VwW//0PTHnoVSIjA2fYZffsQeV964mw15/3ysyOdEnHvYLMgePw9N+HR0oGWS3s/V0F0xMiKXhVG+nsUefTtfcUKqprSIqOYOOpVaQn19C272TgEw4kS67+6wsU31xNcowTr+04o1t/is76kI5pfdjX52L4+AE2DuzG6V/9DEBUgiFeOqQmcPOTi+rs77tx19Cj7zCm3DKIT56/g6tufAqbze57MfK+aCa170ENsCdVInRXrTBZcRzxZtGkPVpr7MZLX0ysIV6sFhvrh9dgtXsQlYGW7ZRu4wAt5CA22hBYm7Ij6LOjgm5d+hF73j9YuO8QY4HNk28iKT2D+IRUEOezO+EGMl5/H4A2XXoDWlb/CJMVLqNbTzznr6NTz4HwyToA1gyA/ro3267HRVrcvpR4Pk5dfg8/jLkPWWUFi1WLl606wimrHyV/kIv4X2ycmtYW74IyEYmG4BRe65TN1nD3nGkmtb1NV7yiyZFUd4qL5qCxoilTCBEsuY428V7KuhfRUvgx6LQLG1TP5qzHl2CiQ1vtgW+tI3lmtLPp/cGDx13Kkn+WMmnCFSfcllW3NNWWb6q5uGTm47xXPJ2pDz5Xf+UW5vlbFuJ2eUwzNaHkUEcWnvEsNz4T3EV4zsNvsGXeQP+ZYE3A2f/+iIPFu/xmzIUDnbplE2xp0+GjJjN81GS/so7pbUF/ONZHSptOXPDqN/VXPIYdbSx03O8hc4T/sa+dMCSgbr+RZ8NILffWk4+9fNzHGj75ehbKas4+25hAYjW95VudhtWiXUYmlzz/FXVxvIIJYOHIM8gQ+8hCm01r0YMF0hO0e1GVHZw1EJ3QjUinnUj9vra68yUMPW0i5w4/jVk3Xs35Z01FCBHgXo3qcw4ly15j1+A7uXjCGDYPHcMNqW3ZmK25qeJTO/DW1EEIGmZF/89Ds3zbmQ/WPkElqX0mRy4sYrtlPPHrtbXdzKIpwmQ98oomt11g09MmWBzGeZQfLsJz0wK6p8dT9LdzAo7VsX17vPEvibGaWy+3B0zs2JnoS7+nX7vBdGvXhm7tNNFw+y2/9302p8dGftchkbxXNNEUm2y4BSNNAizmjL+x4o2DjB5zLcWP/BeA5KnXQ64W8+eNDYuqBgua/66gmwXh8pD5SwlJXRwc3OjR8j9Zbb542aHdJR177sZlCmB3mu8RXkuTzd5g0WSOf3e2ywZ+AOpfUaM5aKxo2gZMrreWokkxm4Lrw6YHTlZ3Sfcr77R2FR5Zd8zOiSCEYNQ519dfsQHYggQ4twSxcUlc/Z/P668YAnzuuZ/24XFpKQe6n9qRERfWnqvHYY/gl79dQqcBo2qt0xginNG0b3v8KTqamyjdZL+jra1JXc+N5dR537Nt0wqSUupJXtsECCE4ferv/crspkSYUZEn7javjz/f+TgV1bWnNv/lrhs48v5/mdaxt1/5/bOMBVrv+2PwiQgAPTu2I/K2rxiVqJ1Ldz0J6r4LHRw+XMLkDj2445G3av18Y0lKSmbled9zXmZXcs7VBW+1keY7LjmN/O4SZ0alLzeey27Bri/UazElho3u1IcJQ7Vg7xW6IPnulFgGpuziQJmDrCijblr7nmyddIT+UfEU2tszBBe7Tdnyj2VwJ8096c1AHtumA/kDXGTm2oiIjMeb+mpQr84M+rvmUtUnARNpij2yuo0kWRFlmvuuMsLJxvMe5vOCH5kkIomxzSNWfE9F0XiqHdp1tnDEf1m1cin/Mj2vaiI0q9W6kR6E7ocVFivuBoomUW3MQo3udgrVvASA3dHyL2yNFU3VUspgL3OKZsRub7ilafAZv+XrewuZcEzgdJSjnqxtYYRXNLWwdy6s8bnnXPgy/DoirETH133zOOuqe1umg2FC9Vv/ZGCHcJBMEBeXQv8hgdaElkKYcifZI5t/ReCUmLqvxanT/gjT/njc7e5Ig456WroOSYHn0fP2ZWwvOoL1OHMOHQ8T9ZxZe3pEkLGvHEe3rsAWAOJS2nPRkD1slB3IrdDi5Nx2C+l6Tj1hSsEwYuxU33aJUxNNVTYPeW0vpXvpSr9jOlO68kvkKVQO/h2TTh/Nm58N5pLRk+rt695+1aSvdZCU2oGl42bzfffFzIxOINiKbd71Hs3LRUWa1omsdEcB1VgirNw3YyIwkYoqF4UPXsMHHe5gUO7ddPhGe7ZcftYILj9rBGbSuw0h4ZJivqy5iYklWji0sAgiZP2LLa7L8hB54b3wjRaHltK5P7v1fVZHwxOWNhWNFU1L66+iaGpkdMNXFRdCcOalf2vG3jQ/jiABxQot5UCPoQkkPPtXdrcbSXlJw9y7JxP9B9e/vExdLJmSzh5Hd5omo1loSY9ugzfM1+FsPS9Nx3LqmD2UU7u7sF1iFO0Sm14UljsJeHPr3SMFR3oOnXoMARYAEBuXzJcXbqBX2zj4qyaShdtYakfYHOxOlbQrEn7pKtxts1g+cBWe9B7MuG02VXqQ+aIza0iwu8iKjuDsu98n1mlDCMH0317ZoH4f6dWT07N/oCoukQeunML+0glERwkO4L+QOBhpFqIT2vhONf6UK6icOpvHxTWcV6a5cauTjesn0mmjx/3ruQP48JXd7Il5hoHO4JMqsjq15aXxy3hkYHs+vVqbUeqxWujagEnOX533Jk+NHMjGD97gh6/f45aoeJ9oKimvoaXnzzVKNEkpbwEQQjiBC4HO5raklPcH/6TiRIhPCJLu9VeMxRmDh5YPBA93zr6hH1WVZWydrWX4zbrhvlB36VfHuTM/J8rx65gnkxzj9IkmWy1rHbYGXom8nozyAk5s+sLx88Oj7+FySwabyrYMuIPEJfeTkTUR0NyKMQlJnNVJc28tS08E9nM0PZqi0mo67QLpdjF83F7K8XdJRWcM4krnPJ5KGkSE3eqLI/tdchFrPFo297iIhnsZvJSd/TSnfLKclXoQdafkaKSU5P/mKD2PWZB7y8QaZIGN4W2789ypbcnavY+LOyax566tvBEXwZsLL2KR9QbiLng62KFIG3MtT2+2cO45F3NZkP1CCK4brZ1Ldc84WHeIhG49cLhqnxG7MtPO2Kfn8FIHzbo3qPcQBvX2jwMsiW4b7KPNyoneFT4GjgA5UMuy6IomIyaytrXnf52I6Ibn8TnZMK9fqGh62sY3f+xPKDg2M31r4tY7Z4fkuL+f0Ceg7KIzx/LL4KF0SYn2zeqLjjZmICZf9Ahfl16J45zH8Tx+LeBBut1sv3wth0tKMN/Zrv3drbz0cU9unOrvcvvx8q3ERx6/WPJy2YjuXDbCP9ZRCIFTZvOubSjm2VpLet2PNWYl5yQmccnDH7N5vza93/s7+O2Y/nwU9z7nDQwelzeiWwpDH7jdt0h3XXSxRJJx6XqOtu9VZ701Y27h8g6966wzbsLFPJnzNczeUO9xm4oTFU0ZUsrALGCKZiEiOv6kEk2JMdEcAAQtPH2uFRAsG7VCoWgZLBZBFz07e/XUQ/xSEkGWKfB54qBepKV+Qf+MeD5eHM3qmFK69hpI726BAdxOm5VrLwycVzW8a/N4FjKue5vhx7gx773uEkoqLsBqEfRKj6VXun8KCqtFcOHguvOTBRNM67I81Fj8ZzGuH/oIh5c/wCmDL+BgxD+ICbIkYEEHG9POr92m+P5UbbH2/0uI5La7XuDR2c2UrDkIJyqafhBC9JVSrmuS3ijqpF3n3nx9Vmf6TLux/sq/AryLkv4ytifBV9g7uflpYBwyLngCToVC0TK80+kxxK4cphxTPqCDFki9a9D9dLU+RlJ2eKwsNrBj4LI6ZrdgU/J11jRcWP1cdrdNHoI89yOEEOw95pA/ZTkZWFBFTf/ODOlcewzvZbe/5Iu9ammrsJCy8QEjQoj1QHe0FARVtII8TUOGDJGrVq0KdTcUDWTvoZ0kxabhaOIknArFyYQ3QeOJLC+kCI7bI3F5PDhtwUWHxyPZUVxO55TWG4TfWI6UaysRxEcFdzN+PzSLNqalUNf0j6H/mqP8NKknv33846CfCYYQIkdKGZj4rBk4UUvTiU1RUSjqIT0x+KKuCoWi4SyeNhiLw6msks2A1SLqjBWzWMRJKZigdrHkxXqMzeZIemdYk0dVet3xTqGkUaJJCBEjpTxaV64mb51a9m0HSgE34JJSDhFCXAzci7bU0lAp5SpT/TuBa/T6f5BSztfLzwKeAqzAS1JK/wWGFAqFQsH1s94MdRcUigDKIyG51Ph7+sOvMCfjLi6/7e+h61Q9NDYL2MdCiMeFEKOFED4JLYToKoS4RggxH6gvQPx0KeUAk0ktD7gA8FsoSAiRDVwK9Nbb/LcQwiqEsALPolm7soFpel2FQqFQKBThzjHzWaKjYrn2L0+HdThGY/M0jRdCnAP8DhgphEgEXMBG4DPgCinl3uNsswCCzgqaCrwtpawCtgkhNgND9X2bpZRb9c+9rddd35hzUigUCoVC0XIUp1nosK/5lvVqDhod0ySl/Bxo7AJdEvhKCCGBF6SUL9ZRtz3wo+nvQr0M8C2i7C0f1sj+KBQKhUKhaEEWDPsr/de2rqia5lukp25GSikHobnWbhZCjK6jbrCENLKO8sAGhLheCLFKCLGqqKjo+HurUCgUCoWiSfnjJcYafKszW0cG/pCIJinlbv3//cCHGO62YBQC5ilUGcDuOsqDHe9FKeUQKeWQ1FSVZVqhUCgUilDTLyOBtZO0rOW2VrJsUaNEkxDicyFE50Z+NloIEevdBiagBYHXxifApUIIpxCiC9ADWAGsBHoIIboIIRxoweKfNKZPCoVCoVAoWh6LaF1L+zTW0vQaWkzSTCHE8S6OkwYsEUKsQRM/n0kpvxRCnC+EKAROBT7TZ+AhpcwH3kUL8P4SuFlK6ZZSuoBbgPlAAfCuXlehUCgUCoWiyWns7Ll3hRCfAfcAq4QQbwAe0/5/1vHZrUD/IOUfornqgn3mQeDBIOUnEoyuUCgUCoVC0WBOxIlYA5QBTiAWk2hSKBQKhUKhaCitZQnyxmYEPwv4J1oM0SApZXmT9kqhUCgUCsXJQ+OXwW1RGmtpmglcrGKIFAqFQqFQNJ5WopZ0GhvTNKqpO6JQKBQKhUIRzoQquaVCoVAoFApFq0KJJoVCoVAoFIoGoESTQqFQKBQKRQNQokmhUCgUCkVIaF1h4Eo0KRQKhUKhCBmtSzYp0aRQKBQKhULRAJRoUigUCoVCERpal6FJiSaFQqFQKBShQlNNrWUZFSWaFAqFQqFQhIRWZmhSokmhUCgUCoWiISjRpFAoFAqFIjQIv//CHiWaFAqFQqFQhATZyvxzSjQpFAqFQqEILbJ12JqUaFIoFAqFQhEShDcUvHVoJiWaFAqFQqFQhIZW5p1TokmhUCgUCkWIaGVBTUo0KRQKhUKhCCmtJKRJiSaFQqFQKBShQlmaFAqFQqFQKBqOsjQpFAqFQqFQ1EHrMjQp0aRQKBQKhSJUtC7VpESTQqFQKBSK0OCbPdc6/HNKNCkUCoVCoQgprcXeFDLRJITYLoRYJ4TIFUKs0suShBALhBA/6/8n6uVCCPEvIcRmIcRaIcQgUztX6PV/FkJcEarzUSgUCoVC0Uhah6Ep5Jam06WUA6SUQ/S/7wC+kVL2AL7R/wY4G+ih/7seeA40kQXMAoYBQ4FZXqGlUCgUCoUizGktJiadUIumY5kKvK5vvw6cZyr/r9T4EUgQQrQFJgILpJTFUspDwALgrJbutEKhUCgUiuOnPCYKgNJYZ4h70jBCKZok8JUQIkcIcb1elial3AOg/99GL28P7DR9tlAvq61coVAoFApFmOOacD+vTEhhy4QHQ92VBmEL4bFHSil3CyHaAAuEEBvqqBvM2ynrKPf/sCbKrgfo2LFjY/qqUCgUCoWiiXHYonkv6g6ucKSGuisNImSWJinlbv3//cCHaDFJ+3S3G/r/+/XqhUAH08czgN11lB97rBellEOklENSU1vHF6NQKBQKxa+d4d2SAZjQOz3EPWkYIRFNQohoIUSsdxuYAOQBnwDeGXBXAB/r258Al+uz6IYDR3T33XxgghAiUQ8An6CXKRQKhUKhCHMy0+PY/o9JjOyeEuquNIhQuefSgA+FEN4+/E9K+aUQYiXwrhDiGmAHcLFe/3PgHGAzUA5cBSClLBZCPACs1OvdL6UsbrnTUCgUCoVCcbIgpGxl8/1OkCFDhshVq1aFuhsKhUKhUCiaACFEjil1UbMSbikHFAqFQqFQKMKSk87SJIQoBTaGuh+/IlKAA6HuxK8ANY5NjxrTpkGNY9OixrPp6SWljG2JA4Uy5UCo2NhSZryTASHEKjWeJ44ax6ZHjWnToMaxaVHj2fR4l2JrCZR7TqFQKBQKhaIBKNGkUCgUCoVC0QBORtH0Yqg78CtDjWfToMax6VFj2jSocWxa1Hg2PS02piddILhCoVAoFApFYzgZLU0KhUKhUCgUx03YiyYhRAchxHdCiAIhRL4Q4o96eZIQYoEQ4mf9/0S9PFMIsUwIUSWEuP2Ytm7T28gTQswRQkTUcswr9HZ/FkJcYSr/UgixRm/jeSGEtTnPvTkIp/E07f9ECJHXHOfbXITTOAohFgohNgohcvV/bZrz3JuLMBtThxDiRSHEJiHEBiHEhc157k1JuIyjECLWdE3mCiEOCCGebO7zb2rCZTz18mlCiHVCiLVCex61jrVHjiHMxvQSfTzzhRCz6+28lDKs/wFtgUH6diywCcgGZgN36OV3AI/o222AU4AHgdtN7bQHtgGR+t/vAlcGOV4SsFX/P1HfTtT3xen/C+AD4NJQj09rHk99/wXA/4C8UI9Nax1HYCEwJNRj8isb0/uAv+vbFiAl1OPTGsfxmHo5wOhQj09rHU+0FEH7vdeifvx7Qz0+rXxMk9GWbEvV670OjK+r72FvaZJS7pFSrta3S4ECtIGainaC6P+fp9fZL6VcCdQEac4GRAohbEAUsDtInYnAAillsZTyELAAOEtvu8TUjgNodQFh4TSeQogY4E/A35vo9FqMcBrHXwthNqZXAw/rx/FIKVtNMsIwG0cAhBA90B58i0/w9FqcMBpPof+LFkIIIK6Wz4c9YTSmXYFNUsoivd7XQJ1W5bAXTWaEEJ2BgcByIE1KuQe0LwDtB1krUspdwGNoqnIPcERK+VWQqu2Bnaa/C/Uybx/mo6n9UuD9Rp5KWBAG4/kA8DjaIsytljAYR4BXdRfI/+k31FZNKMdUCJGg//2AEGK1EOI9IUTaCZxOyAiTaxNgGvCO1F/nWyuhHE8pZQ1wI7AOTRhkAy+fwOmEBSG+RjcDmUKIzrroOg/oUNcxW41o0q0SHwC3miw+x/P5RDQV2wVoh6bWpwerGqTM90OXUk5EMy06gXHH249wIdTjKYQYAHSXUn54vMcOJ0I9jvr/l0kp+wKj9H8zjrcf4UQYjKkNyACWSikHAcvQbsytijAYRzOXAnOOtw/hRKjHUwhhRxNNA/XPrwXuPN5+hBOhHlPd6nQj8A6aFXQ74KrrmK1CNOkXywfAW1LKuXrxPiFEW31/WzTrT12cAWyTUhbpin0uMEIIMcwUqDgFTYGalWYGx5j7pJSVwCdoX1arI0zG81RgsBBiO7AE6CmEWNg0Z9gyhMk4et+2vGbu/wFDm+YMW54wGdODaNZPr6B/DxjUBKfXYoTJOHr70h+wSSlzmuTkQkCYjOcAACnlFt1i9y4woolOscUJkzFFSvmplHKYlPJUtHVpf67rgGEvmnRXw8tAgZTyn6ZdnwDeCPgrgI/raWoHMFwIEaW3OV5vc7mUcoD+7xNgPjBBCJGoq9gJwHwhRIzpy7QB5wAbmuo8W4pwGU8p5XNSynZSys7AaWh+5bFNdZ7NTbiMoxDCJvQZNPpN6FygVc1E9BIuY6o/kD4FxurtjQfWN8EptgjhMo6mdqbRiq1MYTSeu4BsIUSq3t6ZaLFArY4wGlOEPttYL78JeKnOI8owiKSv6x/aA1WimSJz9X/noEW9f4OmCr8BkvT66WiqsgQ4rG97Z73dhyZ08oA3AGctx7wazde5GbhKL0sDVur9yAeeRnt7CvkYtcbxPGZ/Z1rf7LmwGEcgGm1Wkve6fAqwhnp8WvOY6uWdgEV6X74BOoZ6fFrjOOr7tgKZoR6XX8N4AjegCaW1aMI+OdTj8ysY0zloL0XracCMeJURXKFQKBQKhaIBhL17TqFQKBQKhSIcUKJJoVAoFAqFogEo0aRQKBQKhULRAGyh7kBLk5KSIjt37hzqbigUCoVCoWgCcnJyDkgpU+uveeKcdKKpc+fOrFq1KtTdUCgUCoWiyaipqaGwsJDKyspQd6XZiIiIICMjA7vd7lcuhPilpfpw0okmhUKhUCh+bRQWFhIbG0vnzp0RrX8lpQCklBw8eJDCwkK6dOkSsn6omCaFopVSfXgPB1e+G+puKBSKMKCyspLk5ORfpWACEEKQnJwccktas4smIYRVCPGTEGKe/vdbQoiNQog8IcQrehZjhBCZQohlQogqIcTtx7Rxlv6ZzUKIO0zlXYQQy4UQPwsh3hFCOJr7fELNuif+xMoz+oS6G4owYO8/z0E8/3sqjx4OdVcUYc6hvNXk986mbPvWUHdF0Yz8WgWTl3A4v5awNP0R/1TvbwGZQF8gErhWLy8G/sAxC2MKIazAs8DZaKs6TxNCZOu7HwGekFL2AA4B1zTTOYQNthe+IKbQjcftDnVXFCFm17cV7FuaxOH9e0PdFUWY893s32NxS+b/6w+h7opC4Ud1yT7k7lxoJYm2m1U0CSEygEmY1nKRUn4udYAVaAvnIaXcL6VcCdQc08xQYLOUcquUshp4G5iqrzMzDnhfr/c6cF5znk844aqpCnUXFCEm8rD21lVRVRrinijCHZe7GoCqanXfUIQX9tLdCHxLmoQ9zW1pehL4K+A5dofulpsBfFlPG+2Bnaa/C/WyZOCwlNJ1TPlJQVW5elCe7Dj1K/9QQW5oO6JoNYTeuaE4Wbjlllvo1KlTnXWuueYaPv9mMT/lbeCOO+9soZ6dGM0mmoQQ5wL7pZQ5tVT5N7BISrm4vqaClMk6yoP15XohxCohxKqioqJ6Dtc6qDi8P9RdUIQJRaXKPadQKMKHbdu2sXDhQqqrqyktrf0FPzc3l+wevcjs1IeHH3qoBXvYeJrT0jQSmCKE2I7mUhsnhHgTQAgxC0gF/tSAdgqBDqa/M4DdwAEgQQhhO6Y8ACnli1LKIVLKIampqZQuXdhqTIG1sWrWrz58S9FAkjv0CnUXFAqFwsesWbO4++67yc7OJj8/31e+adMmTjvtNPr27csTTzzB3r17SY9tz9V/vpPvFi4MXYePg2bL0ySlvBO4E0AIMRa4XUo5XQhxLTARGC+lDHDbBWEl0EMI0QXYBVwK/FZKKYUQ3wEXoYmyK4CP62vs6P5CCq+5kaIZYxk987nGnFrdVB6h8Ov3qamWdLng2vrr69SsW4K9z0j2LP4fB56cSdptDxGbkc2BxQvocPlfAup3Wdk491zVwb1sHXk6ZRcPZcgDrzeqDUV44VHxbQqFwsR9n+azfndJk7aZ3S6OWZN711svPz+fvLw8Xn/9dZYsWUJ+fj7Dhw/H5XIxffp0nnnmGYYOHcpNN91EZmYmAHmbNtG3b+uYFR6K5JbPA78Ay/Tpg3OllPcLIdKBVUAc4BFC3ApkSylLhBC3APMBK/CKlNIrXf8GvC2E+DvwE/ByfQevriiDqET2bPypyU8MoOCi/rA5UvvjgmtZOWkUztNPo9/tD/vqSI8HWVmJJSoKgNX/uY/Ix9/m0PTTEKu/IWF9JFvuvI+EA5ohcOfAkXToO8LvOPsSIKsR/Vv+7bukAmVfL4cHGnOGinDDVV0d6i4owhyfXb2VW9gV4c/MmTN54IEHEEKQlZVFXl4eAHPnziUrK4uhQ4cC0Lt3byIjI6muqaGsooKkxETKysq46aabcDgcjB07lssuuyyUpxKUFhFNUsqFwEJ9O+gxpZR70WfSBdn3OfB5kPKtaLPrGkXOo3/F9uZn9P1pHRaLJlA8Lhcb+/SldNoZDJ319PE36hVMOjFbDsCWj5B/epCfn3uQbtf8haV3XE3qlz/RbfVKHFEx7PnqfboCiW8uAZza54oNz2lR8V4//yTA9oH1L7NzZHM+m387DVeXdPo89SrR6e3BYgWgzSEjJOzzacOJHnIKY/7ciPNtQQ5tWIrVGUNcl/6h7kpY4a7+9S6boGhahAoFPyloiEWoOVi+fDnz588nNzeXm2++mcrKSvr16wfA2rVrGTx4sK9uTk4OY8eOpWDLFnp17YqUkrlz53LRRRcxefJkLrnkkrAUTSddRvCoUm3KUUR57d1PKAAAIABJREFUDVEvf4qjysOe1UvIGXcqOc/cw6F9O7R6b399wseSHiOX0ndP/Qn30//j69+fT9RCzcq1a7umwBO2uQI+azM5Lo98PMe3XRyn/d93eRH5vTP56fKBtR4/b8aFRJXUELdmJ9/dcj64qvwesJteepiCzCy6/HSENv858fNtbnZfcA2bp10c6m6EHa6qinrrFG9cypFtzWNdVbQCdAOTVJpJ0YzcddddzJs3j+3bt7N9+3bWrFnjszQlJyf7tnNycpgzZw4DBgxg3caN9O3VC5AUFhbSoYNmIrBaraE6jTo56USTl5555b7tkum/I2r3YaKeeY8jB/YA4NK/L08Q18eRTeup2LsHKSXrXn6cioPBZ7IdPWzM1CveqU0Lr9q73XcDqyrRfM4/90uos6/pn+dRkJnFTzeOwq33K6ocLG5BxApDBLmPHsV18KDW7/JykkzWpG55peQN6I/4wVis2P3Yf/2Os+6+c+vsB8DWee9QsmOLX9nevJUsvW060tOQELXj58cHbqVw1fdYPILIw+H5QwolDbE07bh1BjtuO78FeqMIS3S3nBAn7S1f0cwsWLCAqqoqxo8f7ytLS0ujrKyM4uJiZsyYQW5uLgMGDGD27NkkJCSQlZXFuo0b6dezJ1JCRkYGhYWFAHia6Xlyoqhf0DEcXfQNAG4rFMx5jo39+rNz+bd+dXZPuZBNZ45j04J3sT36Et/dcB5bPp9D7kD/QLYjRXt821Hl2rRwi3Bj1a+FyiOawIm0OxvUt4jvDpB6KLC8IDML6fGQc/pQfh55GgAbBw0OqGd1CdIW1J7TxzZnC2W7tWUW3GVllG9cD0DV/n1UHSxCejxU3X4v6y+aAkD5Bi3R++brriLpixy2rP42eMMngNvlIv6t+ZROv6Fh9Ssq+PG0fuS/82yT9yXccOua2F1dCR4PuI/NC2vg3ObEtiGy1v2KXzneWKYwWIZC8evkzDPPZMmSJQHlR44cISkpiZSUFFasWEFubi7vvPMOe/bswW63s2jVKk7p1w+QXHDBBXzwwQfceOONTJ48ueVPogEo0XQM9mc1V1hUFdQ89BQAK1+dycrfXUruoH6+eo4a2LNcu0DabjzEjof/jrPCcMcdjYCSIiMDQpTULFvdNlmJ0J9t1ZUVfPS3i+n3/b4T7veG7N7Elmo3RldxcaPb2TFuEtLtZtPgIfwy9UKqKo6ydfRYto4cTflBLcdofImHVa/9g1/Ou4DlL96H0Jd0OVISRNGdIK4gVhSPS3NnrrpiCgWZ/uHwaxZ9QPyBGg489UyT96WpcFVW8P3lZ1G8Zf0JtePRf73u6mqWXTuagt796v5AEFY9+X9sW/jJCfVD0YpQokkRJpSVlTFo0CDGDx9Ox3btQEJ0dDSvvvoqzz33XFjGM4ESTXVir9FvMOUuYr5fg7O8hoK/3uLbn/aWFgcUUQ3pRf6mxJhK2PfkbKPu99GB7T/yLL0+zmvyfv88YuQJfX5Db8Nitjl/qW+7aPcvvu0ti7W4/K0/folF14pCwub5H7D5q7kndHwzNZWB8ToVpUcAiF7+MwCVu/Kp2LiemuJiqqo0keU5wWfDtg8epPDRCUH3LTq3n0+sLZo0jIV/OL44q+9fvo82K35h2a3TT6iP3vgUy/alJPygWS1lTe3WpmBEP/8+lTf87YT6oWgFeA1NFiWaFOFBdHQ0q1ev5u9/0tI1yuC5qcOOUKQcaHVkrThq/PHJNwH7C9tZyNgd6H9Nz6s7a3dEcXmd+2tjTW87/fOP7+HYWGpefQOv8/Dw/kKcgMsCQvc3S2HBposmd00FNbfqqRU2XODXjqypQdjtfmWLb7gQZ/ceDL39H7Uef+eX/w0oKz9aTHWpYdXaNv4iQItDq5l1I2BYYRpL5cw3qQQITJFF6mZj7FO3lMCW2oVv3kevcnTHVob/wcjvUHL0EO0At6vxqQLWzHsNhz5/oNM8w7JYU3YUR0JivZ//ZdE8DuXn0DDHsKK1I3wPJCWaFGFKK0mHcdJZmo5mBJ+qn9+z8foxmGBqTqKk4bLakmHcBNd3DwySzh1gxLFs6nr8QdTOb4xVcJy/1x78NTaodGsJFT02QzRVH2MVktXVSCn56Y0n2NC3H2smjMJ99Cieck0spixcT+xLHyOlxKUvb1NVcojCpZoF74tX7ob7X+JYNlx/KVvOmxpQbnNDdaXWtrsBb9Qet5tVLz4cYM1a8oiRqD5naB8qTLFpfnFDDRA91jtmE//v9/0Lm+Dm4Lj9kaDllUcP1/1BKUFKyq//C86n3g5axXOkCKkWdv1VIQM2FIpwo3VcnCedaEqKTQpaLmyhnZW1LwH26pPoDsQZ5fmD4wLqVjiMMleaMfPObQ8UfubzcjsCv+69qYIt7Y/v7TOyGk7xWt/sNl+MltuUmbogM4sN/frz3Z1XsvOd1wBw7DjApiGnBASpL/q/6/l51Gh+fHImi347kdJrfk9p8R46z/4g6PFTtpUTXR5cqNZ8+SkAngZ8nSv++yjR//wvX997na+sqryU5Fe/8P0dVeJmzdQz+OWdZynIzPKLG/r4XGP7UOFmXrugD4f3bK33uB63ZiKSzfDr23XGOeT368Xau/Vldir9swJv/W4OOSPrXnZl47DRLPzNqQ07YCt5OzzZkXosk1DflyJMaS2X5kknmoTFeJpW2w2xIINYJlaPa+/b3h9/YsddMqhuS5bHAjURWh+K2jmMfjmM7bx+utXI1FfpNPZ7HNq5HYmCHe20OtIkmjz2wK/bY9HSrB/L7uDaMoDBXxuLxcY9Mydgf9uPVuCsCMxDtW/pfN/2nk2rAdi6fikpv2jLwxRt+7lhHTiGzqs1V1Wn3ZKCzCyO/PwTe76ZqwmeY4LGd67UXK2lOzci3W6qi/az4A8XBbQZX+yhfFZgYHnP7cb3sPeMyQxb72bevVeQO+dpFl56Rq19lD7R1DyuEku1Bfv7P7BidH8KBgxj4wf/9u1b+8qTRBXXryjTN9Sf+wlg+1Xt2Tqjff0VFaHFe6k1aOUqhSIUtA7VdPKJJtPskbWnGLEf0qqVb+piPFCskYZrqzhdi8eptMP6LEOo1MXOFFiru/1iEtoErVOph/l4LKbZUA6jDzLCdCxv1825VpxmgaUdy2U1goSlKUGY1WK49XKGxejHFQj9Wl3Vz2irOv74o12c+4K7hjruCrxRF19zq2+7/1rNpSZjorDr+qrqst8d9/GDsXvybzl880zf3xU7tnJ0s7YKT59v9Xwgdhvz/+8qtowaQ7clO07oeIO/P4Dzvn+Tlrur9jwjLs0057EI3nnoSgoysziqp584Fk91Ncv+fhvuquPP+h27X3MfemYamd57rap7zULzkiwb/vdsvbm3Kn6Mp2ploDW0Iax44X5WvfRw/RUVJ4zX0iQ9rePBpDj5aC1X5kknmswkZ2f6tqW+jIrV9PYvIqN8236uL6tWd2kfQ5Cs6RnEamADh1X7nLAZQdArzmjn296arR3DbTVEk8d0LBkZYeqjfuOzmr62CEPYeRzaMdwW04ulqW5llGE+slo1geSxQGyZdrmmHzbidWoijHNbOzjGt70zLfA0mwpLRCTWZv7lbJ8wiZ3nXsSymUbeJ2mzkfjlyiY/VmWZv2tMVlcjXS6knqJBCkHbj5YDsHOj//Gl242UkgUXjCThzS/57PbfUFV8gMN5a5q8n6C5U/euWkjBuy8afbj/Gb76x00BdUt2baUgM4tvbp7kv8NVzdr3/83Cu68EYNPDM9n7lX86g4Kv3+ebKyfh8XiIfWIO0Y8FBvq3JLvmzaX05w0h7UOLoN8QhLI0KcKVVuKfO6lnz9ljTD4379pzJtFkizLSBEinHahACvDoQiRB2ADtAehq3wY2+edbkkIQfVSPkjbNHLM4TVYc03G9RjCPyXpEhCHcfEsg1CLs8Ioms/fFnIreLPxM21H6JL5fOiWSsUNzb7kjHIBuAdL7WJjiFW7+F3dpBMQeYwjZmSZIPyCxu2kwA+Y2Pm/Rxm5Wem1p+MESPvjeOO6SA40+bl0cLTHa9boG92VEI4d00got4PDOPHR5WPvRKwirld6TZrCxdx8Kx/WkzKYJ2aOeEraOGAVA9NrmWQ7l0PQbA24I+/dsDqj35aN/pC/Q7hsjfmvDR68g73gUO5AG8Hdwvz6XQ6/PJX3DFOPDt/wf7YDS4j3Ux/ZV37F7yQJG3PpQI84mkIrDB8i9eihRF/+O/tO0NAslt8+kBMjSE7Uey9pXHsUWHU32JZp4XDIpE1d6MmNfXhq0fvii3TMSdjbPta5QnCyc1JYmW4ThVvBaZMxxJrZo035d6EgMV14kplQEJlfeuk7afrcAe40uMEyxRSLCsB4ZogmE/hLoMbnkLFEmUST8PwNgNQk7i0175HkECF8SH9NXbIqPEjaTNUuvGm8KcvZEmoSdPjaV0Ra/qfxVjjhyBtxKwenZvrJ8PcbYbRNYWuilttpmBFUv7Bc8TigU79cHxwdmtE0rLAM9pil7fTXxZVq59Liw3/Eotr/8g/2FmwDI+HaT73q0RMX62tiWu6iZe27CGYGrspJDWzVrTMWBfVhiAjOLyzsePa5ma3NH+tWZcROJz3+IbOQbaNUh7Rjf3v5bvr7uXFbP+y8J650UvfBaQN0D2wooyMwiZ86//Mrts19BmBbuTt4iSFva+OSxDWHx2AF8dUPTZkMW+i8gY5Na3FkRprQSS9PJLZqiTLEYujDwWI2Hrj3WmJlmFjre4Gq3KajcEmW4sPb20D5XaZEcStTrmGKpLJGmRJe6qHFbwOK9ZkzixhlhtOtrwxTTZDMdV+iuQL9ZWWZXnt0U/2QNNDLaHSarVpTpwegVdjbhE24HUz1s63Q2R+K7Ue0ZZfTB4nX7CZ+rbWNX49zXDNSOsbuNZEvHprn8pDDEbqIzNmidLZ2PP+h6fT9jPIpNX8OGbO1aOBQDG7oY51CtD6mrntPq++mmgLKKvLW+7b3bCnztWdzaw85i+u6WLwkMuG8uLJGRLDt3FHvPOZ9qVxXbTxtL7/fX1fu5o4fqzlFWfvRIvW14r5+yI/7WkR/+fS/76siNBbD2q/+x9dTTyJn7Am3n/UT7xVvwHNTETnt97kKNKWXEsve07P+Fb+kpLqSkZq+/9Sn/o9fq7XNTkLK3ig4LAy18J4IMOt1DoWg+brnlFjp16lRnnWuuuYYvFi0it6CAu++5t2U6doKc3KIp2pQEUBdAHpO4iUwwcjoJPXZICsOFVxltBHfboo2HtcOhPVTtQviynFowu/1MT2Bd1LitRkC2MIkms5DxYo5TskUbLkahu+L89LpZ2DkM65HZ0uQ7VoQh5kS00UdvMLnHIrBIWDjqSdb0fo7d7UeDsFBd1Y9vxz7LwlFP+kSVWXy6HMaxhK8tQ9xt7GWcr9ukbX7RQ7/WZzvrtBR5hBHoium8Vg4wzrfaaZQX1b0+sg/zOP882JTaQXeDSgE2/YTzsx0+0WQzdXZDRsOOFfvkW77tA89pM/UqHSDc2rfpcBkD49ljzFgsTA7e3tGI4OXB+LlT7beBQe/lkVKoWVSLd29vcJvL7zcC+b+Z2FfbMImUimPiveqistKw6B7et5PEf73DxhmX1vmZzZ9pwnLbV0baCnuRMVFh3QcvUFVuBMV3f0Vz13r0K23tXWeweayRoLW6shzLHYG5sYp3bmbDN/6pMaSUfP236WxZ9jnFe7Yz/6pzqGiGJYYayp68H0ksathsSIWiKdi2bRsLFy6kurqa0tLaJ5/k5ubSt2dPBmRl8cB9s1qwh43npBZNzkiTVcLrPhNwMKEn347+F67qtr7dItIQTV5hYJ6Z5og1BJjDqYsPkwAzz9qzm0STNLnnLPpMJYvTeOKZs2h7c6zYTTP4nXGBws8v6a+pj8JpFk1Gu5HeZ5kpoaE1xmyF08WYLuxOXX4PDvdaLHqCS4SLtH0rOHX5PT7x4jaJJrfNuMykzWvR06xrAJhE1Z4OhuKodurHtQjfhbpuaGAmdGk6X2mK1apJNs7BHakJswPxRsB9dT0v39L8naWkG+URTt9xvcKv9/pqHEGStDv0No4nZUX7XG3Nwrhy6KVnH+/1Sb5v/9BPt/u2j8YH/wnvatdwy4IrSP6uYByacF6D22z3hRFc3e4XF5WFhSwb1t9XZr/6dt92VXkpBZlZfH/BKBY+9gdfoLyx38icX1y0C4CICjeuykryPzfEpteN91P/bLLma5aa2F+M2ClrueGass18ktKSQBehtAgO7diM/cPdfuVHDu4OqAuw6bwpyJvv9isrP3SA9h/ncOR3f2bxzGvpuGwb3z55e9DPNxffP/p7CjKzOLBtPYcvuopOOwLTfigUzcWsWbO4++67yc7OJj/fuHdt2rSJ0047jb59+/LEE0+wd+9eMtLTufqOO1i0eHEIe9xwTupAcGek2eJjPGTyel8LwsKWHxLwGgqEaZaasWK48bBxxhuv/L52hcnqY34AmwWJLpqkMCxNFodxLItJ3LTZrt30e/9gBJxHxpsSKunCTxpeNL+8VFan0a5XNJmtUtZIw5pijzfEmM/tp8eAO6tLwFqDR9r1vC9WrK5KrVzogsIkmjymh7I3iB4hfQd3O42g88poo0c1kVqgvdniE2t1A1rf86YNos+c1ZoI8n4nJkuTK9o4X3ekEyjD5gaXXmVLTwdZBZpizPvNQPq86x9gbY5vc8SYxKnuqpUmC9ehRBtxh7UH08YuFnpt08RfpB7T5rbB1o4Wuu5o2ugq8zjn9o5kQL5uUbBb8U5SqA+3wwY070N12xlnUpuBb+mcJ2gLtFl/ANYvYMNLfYh971Xf/ppqw0pSXlqMFU34Lrh+Mp1XFPL9ww/jcdhI31VF1oYCIqqMa6jYLumobzsXrvA77q4pUzl2RUgpYO+EwHii9bfOIFjSkHh95qlHesj96n/Et+uMRVflFg9UVWjWrdKiwlrOHvZt2sbST4uZeG0fIqPrFrtVRftxRFmocluoLikhLqNzQJ2F91yCbf4aQJAz+xbf+StOIr64A/bW70Y/LtL7wtm1L3nlJT8/n7y8PF5//XWWLFlCfn4+w4cPx+VyMX36dJ555hmGDh3KTTfdRGamNoM9b9MmevfOrqfl8OCktjRFmIJrsdj4dswz7E15HLc9GoTAXQ3fjn2Wb8c84+cy82XVNQmhaJMrL0KPq/FYILFEG2J7lCGqIsxZya0moaM/T20ma4lZNAULlIuKTzG15f2cyfRiEk02UyyV14IlTE2OmfZHo4+JpuVmvNYuU04naYklukx7i3fEVFPtzVKuCw2PSej4pVDQz1cAFt31JE0WMFuE2/Q5wy3o+7zJauX9TqQwFnu02ExB9GaLne5SSzhqWJo0UaYfNy6IKcgURB8TZ4yHNzjfY8E31Nsyo30xODXRRh9KY7VjuK31ZwDfV4urrS78rGGnGVm8PceR4d6r/UujpM8Nmt+l5W4NNTmB6R5KL77Kt73lDS3eKPfD/7D9NS1Q22WFzis0IdKmyE36Lt3qecxvpJ0pZtte7m8KjA629KMQQQqhzTr/HGRPXT8Ul8kyu+r5e4j844NUX3wdJQc0q1SNDd9kCI/w79fSF+9n/cK57Mhfxg9/fp09Px9m1WfbqCgPdGUsfuIvFOb9yOLn/o+to8awYfAotg0dya4zzg6o66qpIe3dtSQf0c6j43eBsxSDLYKtUDQVM2fO5IEHHkAIQVZWFnl5Wvzh3LlzycrKYujQoQD07t2bAQMGUF1TQ1lFBUlJiWzdupVrrrmGiy4KTDIcLpzUlqaI2AS8nilhs0G1C4Q9sKJ0YbWbRZNebHquxCYaCYwsegI5aRFkv/4u+TdcyTl3PM2WNzX3RFScSTR5H8wC0g/osVK7dhm7TaKp0hk43T82uS1l3n6ZLEK+W7/NLJpMQeO6RUYCS09LpvP6g2SZ4qeiktqY6hoxPEJKFo56Eo/HTo3eXPVRJwdSB7Bw1JOklNyp1TUHoDvMAegW7+li9eqjKEPcHEnqAmjn77P0mMRLjS1wBqDHZNEzf0+WyMBg9gMJxth4TBYuZ4JJfHr7ahJr0UkmV60+Hh5hPBSlyY3qio0AbblfyuMjgKNIi/CLl/OyqbuNnps1K0+1I/D7rRdTkw7TOXgFp5mc0SkMXhQ45Tx+v/bwjy03uVS7t4NtmijZ0B4ydwV8LChrz+pCvy+3NayyTsdv6w56bvfBKgo+yMIJdNPLXLXcuWqOSQLa5sBx5LyABq9nO2FRKUuf+ovP+hT7lBHXVHZ4Pw5097NXxFn9v4+kf87RfkfWCmg/GoC8RbvJW7Qby6gnGbtYS/5aUXqYlBfmUfjmPPZ1j+LYq1RK6ef6r64ooz6K9/1CWqfMoPu+uOk8xJFSznorcGFyRSuiARah5mD58uXMnz+f3Nxcbr75ZiorK+nXT5uVvXbtWgYPNpbQysnJYezYsRRs2UKvrl1BQteuXXn55ZfDWjSd1JamKNPsOGmzMvLHe0DW+L+tumsY+eM9WBymyNogzzWnKZ+SRY+diKyUtM3owRnzluIwPeyjzQ9oa+DDLWm0sQSHn2iK1r6uJVM6+8rik80Pc9OTxKc3rL7UABaHcVxvQLaQcNWL3zNmsTF7CyA62YjhEXrfhcQX0+R0/ozQY5qERQbENJktTcIUgG6OObJ6zRomC5gt2bDo+ESLqS230+y6NMUW6V+KzWIKoo8InKVYGmNY9PxmKcYFrhsjTWItPsVYKkSYrYNB3IJmEehNH9FhrwxqafLYTAHzpmV9DuqGu7wewX+imzt7xbZp4oLpHHwzPE0iIOKoYcVYNtxwN9YEeU8w5xKrcBqNlOtDtq8WX5vFYoxDQebxZ5VvKO5aDGmlxXuD72gg2QVBAtNqoc3LC4KWH16iLTjtsoLQ4xSFxULu3BdY8/HLvnqnLr8HZ/Q28Hhdox7f7whg8VO38sP5wwCILTeucTM1NdV8MWM8X96iBa1X6UHz3t98lSMwW/vGea+zLjuLnasXsubajqx+d7ZvX+dvN9IpR7OUHdm5FbdauFlxHNx1113MmzeP7du3s337dtasWeOzNCUnJ/u2c3JymDNnDgMGDGDdxo307dULSvY2Or1IS3JSi6boOM0fsranAxBaTA7edNr6G6qw4KwuwWp29ehfrNk1Yp4Sbj2iPZyCLR8CEJdoCB2zaNpxihZ9MPGiPwdt10tijCF+ooLEHpljqYTVxpYuUzkS353iwq6mc9D+77jHg9VixW71f3I6TPmfvGJMuKUvpsli8yAtDpAS6RGmmCbvmnfGpWV2k3nFhQBsLt2lFmNYwOwpppTjQTKgu53GQ8A7Nh4BGXu0se76jTGd32Zyv3rb8AhT/iiTMAgmmsxJRJPadjHGQxcGWm4t/Ryk8XARnbqbmjAtiaO3t9lICI/HNE4u0/I51frXLk0Wo4pIU0C9d5xNoijaHHeln29ZpLnIcEEmZRtB2cHWwBMmcdptj3EjO6Q3cTQ2uEnGew26LEYfzAH3q7s20JRTD+aJBmb2jTunSdo/Ebp8oaUqsHnAqrugB3y2FeddT+L422O+B8OyYfdTVdYFfELTwr60oSwbdj8AKc/Np12hHh8loc+aQLdadWUZnVfuptPXBaxb8DZ7R58J4EsHsq1ToAsv9emPsHlgxbOzcCyJJvKeVynIzGLpGT18dUoO7Gb3mZP47OoJTTMozUx1ZTlfP3abn8u0SdqtKGPH5uZJJvtrY8GCBVRVVTF+/HhfWVpaGmVlZRQXFzNjxgxyc3MZMGAAs2fPJiEhgaysLNZt3Ei/nj2xHPZQVk+qknCgQaJJCGERQgwUQkwSQowTQjTjYhrNz9vTu/LGpRk4nBGUvvMvznzza98+R3U+fcZkcMndw+kzpj0pB7VgOpvDnNAv8IHlMO13jDodgOVnB1/INDY+iKVJCCa+MZ/MgvV+5narzTx7zjh+0tIvKXrpHuxB0gh4+7Vw1JMc2Hste9sOByE4vCfBlxrA4w4e+Fv+3lNsmX0dERGG4HBZ9GU/PB6EnnKgoqyXJpD0vu5uP/r/2TvvODvKsv1/n5lT92zfTTZkk2z6ZlM2Ib2RhGoSIEiTGhREjfzklReVohgRBUVQUAFRBEVUqlIUBIQYAqQnJGFTSUjvdfueNs/vj2nP7DnbQhLC67k+n3xydmbOzHPmzJnnnuu+7uv2WA6owaBmiegN4LAv4bzW5TDmTH6IBoW2iHR2a/SdoFTRZaEEBsLvMk02G1I91A1uAooPly2Il5qbUtOUwCCYk6ppUoO1wi6u34h6nhNWW4p63BL64lJ38hEKW5Xw5bFs2E2IkMIIKecpYVULxnVc6waFmasttIJE3O9YDXh05Vj2fnMV3U7wtIkOAyFRiiAsrJg5ynntUwoftg50z01DjmsZYaMmV2HZLIYroeMETVsVfZTeyd3XgU/QBLv7nhPzRPrhiKPrqweQVw/la1Mn8XiTmUIbt2g2WvIIThNdaRBoOuQwTe1BrN61Y/Dd+EPmnvYgc6Y87NiB7Cqd5NqBNMPA970TVOEOpYp1h5ky7bK65UnsvT/dy4Jnf9nusR5rJBNxlgwfxNxf384bd32F0t+/zps/v6ntN3YAf75iFPXnXcmR2v3HdL//F3H22Wfz3nvvpSyvrq6msLCQ4uJiFi9ezIoVK3j22WfZvXs3fr+feUuXMspK4e0/cIBZs2bxwQcf8JOfnJx9KVsNmoQQfYQQvwM2Aj8FrgBuAP4thFgohLhWCPGZY6t+eMer3HOnSa2PHno2hYrIN7/uj0y+opzibjlMvqKcytWPAeC32pXYKSobu39xCyu/eS5+ZQI+59JvsvXB27jip6+lPX62EpCoQnBwrQk+vGkGm+/6ikfY7EATlBSVMWniFZ7Fohlb1NK0IsFpJruutzfPMWLIOZw342aCii1Cz7MuA6DhtAlOei4rd4ebVhDsZML9AAAgAElEQVRQsncxo5bMdidzRUvlD9nNgcGvsENrKr4IQHXyPGfbnDxFS2W/UAILX5Y70/qsgFFqpqcRQMOYwc76sJJ+VdvV2EGTUBiw7EI3HekOwL20w3nuvlTndWl94ILCQc76kGqaagU1r44S1GedTXVeHw4Wfs5ZrZ6nZNBtgyMcrZS7vr7Qtb0IxsxANqfOnZTDiq7OY2pqwR/JYUOfS6jO68uR/SbTtD/fvZ6zc1wluq6kTGW2+zrhTzWBPVjqXs+23iupuUGnamkgA+41uqc0NX334ampvmTHAi+Ndce7alj7Taykxf5tPYaPifN+YdoPLBhzF4ae715nQiMWKnSYpvagqcHrdzVu0WxK9i5x7EC0ZNST8msvkjFTYiBbIQaL7vkj+T94NGW5NAzWPXg+704+1W0ftHEV9UeObeBxaP8OshsMCn77Eo1bPwKgett6Du/cxM5VqZP30WDcOvPHUX3w5GdAPmuor69n+PDhnDl2LD26mvR7YX4ujz76KJs2beL222//lEeYHm0FPD8G/gz0kVJ+Tkp5tZTyEillJTADyANmHu9Bngi0lTTwWfoYAWTXmDekYH2UM6Zfy+Vfvx9/IOg8xddXR5k69YsEg2kCHlzzSyCtpgngC7PuZfoXbsbn8zv7TWo51hhaSI343fQcwPhFs9F8NYpGSxJu2Mv4RbORlvZB96UXyoaUFjLjJl1MwdL/MPM7v0VPmjf7hppublpBwt6S0SwefRfCCtU8HlbWvgwBpbV7mTP5ITb1+Q3oAYup0p0qxVPKR7qDsNOgCoOiZStNhwMu05TQu/LOxPtIKoXhYSUIUJkmW0slEq5odsCAMaknQQk8NNUvyw5OhUC30nPZoTzeP6srK3oJ/GpVphFj7mkPEo48RF3OaSA06rInuoyfEhRJ63rRDOhsWwgpWqlokRt8llkV7GVb3Wshp1P6tC+Y7OCG90azv2QECEFDbVfmTHmYqsoHXV2WokdSDVhljvs6GXC9s2xkne8GvY5IXknPJRUfLtTfRCBVzW0oQdW68jRiq6NE7wZ3X7auLqGZPQsBPqxMbQ0D7nXcmB9g/ydgxlSUPmUaaY5bNJtA06FPxDRt++fjnr+DsRr0RCOG5kckYxhaAIykJT1oPxrqzGpBKcBIJtn+4QLATAfWHmhZNxZtrOOft38B+ehGive6ovxD513GwhmTOzQGgINb1jsPeCljtFvxSBTBvcbmaedR84WvdOg4hmGwdNhA/v2zb6Zdv3X+axza/lG79/f+n+5l1b+f6dAY/tsQiURYvnw5P775ZmdZoOmQx3T2ZERbQdMvpZTzZBp1lpRyn5TyQSnlk8dpbJ8KWmJnbO8lIUEfNhaA/NFu7jYQCDs6gqWvtl49pKmGk071XPpASA+EnP3W5E5Nu+2ab19M45MPoGveiXLBmLswErnK9oLGrBIWjLmLntOuASA6LX2Pq3DEO0N0yTaZGN0wb/a+QBSMpPUZAKoZdEG10+RNKAxK0GqMLDUwpJ+Bq38PMuEV3BsJBlU9Ro/eA9n8y1vJe/ffih+W+3mjOtQH4e3RPnRFCL6n6/Uk9TA71rl6ohzFO8vxw9KEK0DPVoIqIVjzvZns/92PnWVqsGbjQK7LNEnhtr7RAkGuf+htrvjXGo//VzLWxLhFs8k9tMRl5qRrBqoGRT6rgCCQcH+YoYNuYJcoynOOq6Ji3VoGrF1DRPm8olmbHENLDVDMffmci15T+y4qjaB9OUoPRtsGQmGa8nsoGi6/yzTZQVhCcWNX2T2bhdumsjhqqx8lqNpkmQ2t75v+cywZ2XqAJZV2DlKt5rSZ0TTMHLhMoFQqJY8VFoy5i1io8BMxTXm/eT1lWSyQS+mudyk+YEoLjuT3S9mmLTRZju0S+Od3r6Lu0utY8dYzLJ0wkh0TT/cer6mB1752Hnu2rOGNb36Bvi+v9qyvscT5XfdJVrz5V9YOqGDFsAG89j/n8afrJ2EYBof2bKWuGRO1+LUn2Df187w6+xo2LpvD67OvhUSUV748lVcvHk99jeknoUlXcI+mu2a9wEfv/5O9H3vHkw4H9m8n0iTp+oc3aaw+xEtfPoMj+1xvrU53PcHqS2e0sgcvCu/5I/4bf9ju7TOwUKMTq08fNCWijSeFULwty4FHgOEnYiAnD9IHL0GLPQjH4Jwf/Zaa79dQYVWmPPqNuSQTRkrpsO7TmPXQlLT7W3Bub0pGTUasWtriSMz9Fjr7rc+ZyJwpE2G7V4908fXmRL9z0ZuAqQWStJ6eGzP5YhqrplPhS/+EHQqEmD82l+Izz6dCWa4nzafZ3M4NHNqeh5aMYYgAgydVMPncATz/lFnqKhUtVtBySzcEEOpClwMrWCOlR2iNNCg5uBKA6Z/7kmcsqsZryLiLqbj+F4yQkref+wVzJj/kCariTSHmTHkYpOQMpYrNzkH5RAzNMCfCsGIjAHDxzO8CsCLwM6oGXocef9WzfvOPv0bvQeOpe/1Z5zw6+iiFPQxl5zrn3h9PsGDMPRhq6lT42Fsymv3Fp1Lgc1tzJNI2i1G+RYtZS6aZ34UQRMI5OB7XzXsLGgnQ09tpOFCCRJ/fTZ1pyms7kFSDjIKyfmzP78/Kym9QFDObCcf8OJGf6hmlKVop1z1eGY8a0Ch6rqTPNOBMJ1oHCGTlAaadwpZugp47vFd/QDWBVQoAEnoey4Zdg/A9B5Z5x5rhuQxcbgYNro2H61G26nNlVL6xNWUMqwcHGVQVpTGAZ+K2UZPl1ZiNWzSbJcO/QyyQZ+r2jCSBWDWjlnes+XFzHCoc5LneouFi5kx5GGHEGb3oJiLt0ErXb1hOEZBfD/kvm7/Ljxe/RYXdYFqZvP7zxI/o9c4mPqq6jM5NqVrJN+64EDtpvu65RxkKBJsEvd7cRC9g20fLaLzAfIjbMD6bc347D7/mZ9U7zzIByHl7GfEXllEGfPDyUPpFzWugvvawa05qjUco16WUksSXv8NeHUpWe/sINse2rVVEMNnHf35/JoPf381b353JIGWb4iPwxLVjue4PC9s6fRl8AiTiUeLRRhLRRqciuKm+hvj2bciC9L1FTyQ+c3qkTwuelBqQq5Tyzrx7HL2HF3mYl/6jS5h59zhawnU/f5VzL78lrVGmut/OvZJOaT9GjJK9i+lU+nLafUrr+ObTs2T8otnogToPo2On5wDCLQRMNr78x0VcMNPbIsL2VjKMMKW73mXE8vsZPKmUhhprlrDSVar9QcAyjjQ0aIhaaQKhoemCyjO6oekCRJo0ZZpz0798jLVIYCRaLw+PREwdkiFwvhspXKbJH27uB23CZvYakxPN91qYfslNDKgYjZaGfVCDgbCS2gzWJxi3aDZ64pAzBmTSTcMozEoyTTo3u8ENpDRbl9VCLjngU4oCml1PExbNNgNHJVWLkaD/+tmEbr2NJUP8jL/cbfWhavRUV3mZprF1YUlPx0X/4N4JgFX9Zx1KtZ/wNqu2gibFdkHtj6iK4G1rhpaCJluAborkU7dRU6Y22yUF1OV8zvyugy5rrAZrbqGGq/3SFHuRZacptiXWtvuKYI9F+u1WChqbmsWswVgNxQerQAi0ZAyEoPhgVYdTac3Rkq5pxFJXc7iyf+vMXI/H/pOyTFd8z9S2MDU7NwFQfDBBXhqbqMFzFGPQNExBvMlN4/WfX8eWIcP5x/+bQZZhfg8lStu+UFRhnevNps9CulWsXRa6wey+rSbD5Ld+dptWzuPw/u2pAwR2bDdZOUODpKUTG/Reahpy3IJqqvfvYO2ACl6542qMZJKty80HhaaGWnZvbr2RtI2XbjiPf00bkbI81tTQYjryswzDSJJs435tQyCI795Acq9rDtdQfRBfApI1da2888SgLaaptxDilZZWSinbz1ee5BAt0H5HIubNrry4G9XA+iEhD/MC8NT3FphMk62bMWDD4r1sWr6/RabJgRMYpK6K5AXxB3Xz6V5KEH70RBPC15S6MSBrzR97XdAgt8m0SrCFyiIZR+p+pGWhcLSwA47Bk+pZZXzEx5P7cfkV5c56kSZo0m0huIDDnfKAPWz33cRPHzZvaqd9ob8jGE0PtZrQ3W8wt4hRS3/CkhG3ePQ4GAlGLbuXSORJ6q3jGlbAEvdH0AyzdDuQ5X1qac4YNuojmTt5JJoPz3fu+DRpoFkP1qolRVZOATahIH2mniSblVSLKdb3rTmTo/Arwvc06cCaqePhcUvUah03qZn+S3qzS9annAOR9N54g7EaNA0MA0jGQfehySS+RA2nn3MNnGM+6dvThK48JGiqu7g9Ruv/OZMfgls+AL8VDMmAw/R1aZxtnzDn7WrfRUec79OwLT6EJz3nTux24KUGTcs/dwrD39jteZ/Z2oYUqN+1FgpbxpIKG+Mby5wpY9GScYpRqnZ8LtNUYAUEWUkl4FA9yKxA0jDcAGtfWYhTDjdZnzN1XHYqreuu99nVdQLRQKpwqjoL8tK5l7cAVdekJWMYmnnf8CdqHJYy3q0INpjfdlVPGLyl7f36g+531/W3bpGLjKW/H6VD/tbUfn+1h/fS/PFtwNy2DVL3v/dPCjF/D4Em83ovOez+KLZcegm5yr0jdtnXWFmoMWW+N12XTMTZs3kB5eBtydQCNq9dShAoeW0Zzx04h6Fzd/H8l8ajL1tJxYf1FK9YnvZ99XWHWfHMI0y4/nuUz9mUsn7b+iXUX3ANGy4fwwV3/rHNz29j1Zzn2b1iPj2mfbXd7zlRqD+8D+PwHmRMw5+A8ODBbb5HxBsRdTo6uOatJ0FazkZbQdN+4OcnYiCfNmQLwUv+k0/iDwbp2msAh//6GOeUn5ry3pl3j+P5nyyl/lCDGTgJyM4PcsltI1O2bY6kJQJN9/xsTuJ4mJZdpZNgW3rxdvFpn4O/LOSj8b0ZMWcLAIFQDXr+YbIKt5GTfQ41r69oc0yt4UCRpPtuQaRzT2be+deU9U7QpKSHdKXa7Ku3PsdT4iq+d9Pv2zyWSHnhxaTzruevq+bDDleXYyOnfhfhsMn4fNTPZeGE0JzALxjxlpPPvHsc77+wkY0LtyH1IBgx+o/tzviL+3q2s4MAlWnyKexDlmKLEK43mDP5NylM4q7SSezqehrF+kPKflM/6OQv3sH+x6dah3XL/RtCuWwov47Ba55Q3i5454pBdOpejrZoccq+irpBYP48YvoSjFHXI5ZvaTGHG1CZJjWt1yxoQrbsop+7w2QYCje7vUx8qlbO+ryqqae39Y0bQNl+VmrQ5M/vBNhBk+tan85ENKAcV8uKMG7RbDb0vYj9xUNBC4CMUbJvBX03vchHE91tHcZO+WqM4gKigVyqBl6HDLwBWL0gLW2S4RdoMasnncKymZ9TsqcQavIk/TcLshofo+/H9jn7G5Wrvb/t2jDs6yTI2yo5EjHTZQDvTy5kwjuHaAmxQC5d9iyiLtKVaFGd0+bI+RgKqxkd0hO2bAFg1dg8KhdWp91nr1+9lHa5b1v7K8vKdqRecOFZ32/3+1WUv2IKswNJ6PdRaj40t9b90ha99DtygZJDqSzOGz+4hMl/M/3dsqJQuGc/rSVhEvEYdqjs328GgU3bPmLkh+aXU3sk/flYfNl0umw6wgelPUhXv7n6nZfoCQTnpf52W4P/htlmf8FjHDRFG+uQhkEoksuR3VvIKuhMINSx6tbowf2Em1LPpWEkEUKQrvg+UOv+BhqO7CdS0BnnRnVsbN4+EdpKz9VKKd9p6d8JGeEJQu5QM+2TGFjuWV4xeDR9+5nl2YOGTyQrkprSieQF6TmkyLxpStMAsueQIiJ5bTsiO0FTC+m50nJ/Snquc2l68m/ClMsZsHYNd3zX1eJ06rGML/3oGr7wv3cw9sJujoXC0aLwzntYfvkQ+g4clX4Dmco0SetKNzTwBwJcd8fz5GS3oxTJcehsoVpQCK763h/Iyg1Q2DXCOV8ZRGHXCIG4SeFmZeey9XtXMfznz2MkrR+ipjni7VC219Y6khckENId006En0BIT/0e7WonNWhShNNqT8O4D0Yt/Ql+44AnNRZqPMCopfd42aU0qaeIUi2o6W5l2tYWzAtn/eAFLr7ubnzR1MB65Dk+Jv55Fuc98yxlQw9TufqxFu9BftXhXv0uFV8xgAkLZ5sxpJr2S8YpXz+brrvMk9NTaVIcykkNmpKqEaraGFsJoGQapkkNwKTS2iYd0xRS7Cf0cLbJxiQbQfis1JjPMWhVHez9u8zAJFupBDMK8pwUbpMxyVk+ZJkpYA1HlfY6vuZBk6nhilksWjJNYAiweoh7Huzeizt7ucuyilv3QKhc/RiaEacupztCM8zvWolX1O/UbkANrmZtTyHsS+P3mg4VK9MHWe8OPAlmOAu5tz3g+dtIJnntqiH8/ZYZ+N7zVsV139T6tHjgA9PXzxDu70EPuvNC7UFvWm/fDjMgizeY52n7xyvT7teIm4FfazYPNnauW87aARVEa9Of+5YgpcSQ3sCxsamOxqoq9u352FnWcGQfxqYtyM3baGqoJXiwjqatH9NYd6T5LonHmjCSCYfNVyFaeCir+3gN1dvXtzne5P599sDN/5qtr68+RO0xtrJoC20xTVtOxCBOBkz94h2sGjqRK4Z2vCzWSesok3vVvF2snb/Hk57L+tczqep/azLPrk+9uiJ5Qfxh7ySuJ5rAn0ZlasEOvpwfnkdH/Mk9cEZOvoiRky9qcb3mME2KDsbWE3VUQeecK8G+fOic+nsF4Np7Jzqv+40o8aT6plqarHctnYBUtDhZOfmeH2F7v0ep/IDtAExXggw1hZh/0EdO/U5MrtmtYtSSMXLqd4GuzEzdy4CDLJ3anZGvm9oLj7ZI96WklXaVTuLhWXNSig70ptRrxF9cTHGeKX43rHCppZua2oLGwzTZzIn1UYKxGjOGFNY/CQiNhstOY/sLr1G2S/LB6GxGLDYDWdUGwk3PKT5carCmBFD2NmrQZBcYgJLWE+k1TWGlSbZtHxLz5xKpf4+Ba99j5ZipDhujKUFEt3WmoKbMui/PPe1BjA/8YPnWxqKVzJnyMFoy7vSLC0alc12oPlwJS5eV8AnnOvS43StBk/M+6QrlW3LZX13hZ9DaOPvzodMRUq6RWHSIIwQfucQco6as15X7ghOcCqxeiZKaMOQeRY/f2LFzjDhm2Fliptrffmw2vZYlYFn7bQRslP3+XcC6nxkG0UAutdHLiQYeIRirYdXvbsPmppe/8WfC37yb5f/vfHxp9I8qEjHzJBu64P1nf8XOV5/jkj/Oc7SMKvZdPpMQsOB/ZqKGz7WH9uILhAi38FBas34NgYQkPHgw0cY6dJ+fIwd3kg/4ahqgC6aJ8Q6XLTOSSQTgjwNbdsBg8wHk0OZ1hOsTxIMSv6U1a55+a/GhrElAU9t9IZ2pznAfVBuO7Oetcz7PlFerWHjBeILtzw4fE7Q6jUkpndlRCDFeCHGlEOIa+9/xH96JReWwKWkZn7bQUhlk8+VlvYbSs/cwzzLDqpiKBVK/ike/MZctK5pwnLeFMNM6W46umWEglF74fCzh9HVT0nPJuMmUtSRgbhOaYMi/3qH4vfS9vto1rqTt+aQGTQWebdr7Pao/YKcMPY3nEIC4+UYAtEhnDxuW8FtmqYr/06Xf/xObbruCK+939SKqjYTmDzBu0WzyDi0B6YrK0xUd7ImYYqtlQwJmSxO8pptStn7DCoaVdjVqJZ7y+8h6/Vnif32Q3kOLTRf9741i8ORudB9SyIwb7icaMd/n7+2mN7PUvotaGvZIuUZVg01b6C11zfEt08PudOE0lVb298FYd+IIhJRWPdakVbHuMXKr32BDv0sJBxc7LKymjMFo9rMct2g22Z0OKP3iko59xOZTzTt8NKgEo6p5qWUMmtTdMaqfXQ2w7NdCuqJ7VaCuBk12CvBgJ58zxpCscoTgkEgRggululUNVG3mUwrhfPbqvKP74cZOsnbw0UAuW8pMH71aRWR8tCiohUFVTWwum0YiWeqwvn3fcJmmja8/DUDNe285D5R+v5e5fnNKJa/cegXRXeaYAk2Swh/8hiGLD1Jblz4F+3Fv8+TuVX5OUkp8u/bDlu0kkwnq1lSxb49XGxZIuPcyY9MWGjd+5NxL7Guj/qD33MQP7fD8Xb2+imhDHeF68zfgj6a/PuKxKMFo61qk5qxXOiSTrj2NLyHxN8Qp3aax8+MP6bpHUHTkxDKa7W2j8hRwPzARGGX9a1uw81+Ca+4ZT26nsEesltc5zDX3jG/7zdYEHAulfhUz7x5H2ZAcxd/HvEGf0ivVmyUVVk805SnF7z/+j37lH5lj1fcfcJYlouYTVEtNVgGWjwuzbGqztjOOzkyjsKAznYq7pb6xnbB9XFTvpex8b8/4luLl5sul9UM3cIOm5m7sR7Jg2bgCJlz8dSrWreX6+6dwxewx9BtRwhWzxzBxwfcAKB19tvMeXdc570uzPUxV85Y6C8bcRXXhKFdcLXQ2LN7LU99b4Dl++UWmvqHXtTex+YbpHMyBvHzX+T7HckA/XJD+mghYgu3qrGapHPscCEFZz0oqh3+OabMqPS76M24cYW1jDTHp/i6y1TFsNa+RgatclbPHHypN0CQQbLR6KR7eobSrUTRNdlGHWn3nV9oc+RQfrZrcqWaaLeH+Vn1K38UjN15pnoeHTcZywZi7qNtfrBQe6E6/uMZBJuOpWlFI5dwlLY8rX9JNuanXY9qgCTdwU/el6Uqlpc0uW9sFYzUIkXCE4KCjJ5oIxN0CEDVo0pXzIZUOBfbvNaF8/ZsVWmNDn9Ynq6DSzWBjr45PbEeO8TPe5rJpRMN9ePPqn1Dx9KJPvL/2tKxpPGIGHFEfnGKxlTLmZYG774nT7+UVaNnmtV+fq/SgbGzgP2MrWDuggn8/cKOz3GZT1Qca9eGuqaEW3YDw4XoSiRh11e79WIUvidMI2nn3YW+hUKCZbVIgDkdaqEKs37HGef3166+l/JzWexdee/El/GvePFasXcv3H3gg7Tb129cgrDnQrxTgHdmXfgzHG+19FhgJDExncpmBmUaTdlrKqlIzkrJdmiZhi4rTULBuVZ7t9G3eoMXmtmlNQ9OBBOGCzinr9hSSUgF4rLC3u4+S7Qm6TpnB8vrfkburngFlg0gAR4an9juzcdUfUitO7Ccz0pybjsINmtybd3ZeJ1vCC8DMu8fz5+8vIBFNmhORlPiCOlf/yMviRIpNy38jEKSw1uSGfVne1Oe45Wtp2XDChc+fnqpfPVhnUJX3e9b8QcYtms2ikd8h4cu1rgtJdkEopehgwrnXwbnXuQu+4a3nGDrhfF6c9RbjvnAj6RAI5ZC46wqKO/ekdqt5c0pooDeYAY4ebbt82E0RKw8TRadg375trVNA+Zgqu6Q2XMbvd9NO1uJDOyJOaqzE93fAZDN9dncfhaXzh7OwuaFAOCu1ei7uptn6ROY6y6d+6fs0XPUtsvxZrOXHLepNpIBwsRn0CxSmSXlQsd3fe+yWHOxiXdOqr5BqdeB3G1s7ajHV70rZrz0mQ7m2DS2bLjtNIXisS9xJPdqoNdzS7UA4taJRCjdYMy0hzFE0KLe0RNAPtCwVKPRlAxbLrJv7WNfPxwDrwWr+iBDjl5m/n41lgr5bvdPLnm5+8teb19nKEdkMXZZabm4IM0V+KAcK03gibuylsaPbL1JS2rtKJ3lSqkeDcYtms7HPRewvrsTQg2jJKJ0OrKTvphedbUYvMM/PyGVufjOhVBtuWuZaO9iapqL9rtdVtL6WLpYsodtv36Kq15P0PftCJ9AR6gXp5MkhGY85jEjtlo2EmgxiLWQaFBWEtcCtZm0JubXp12tHDA7F17KnPsb7C5cQi8epra8nx9IC1+z+mEC+OyetWreOO264gW5dujCsIv2s5K/T8KepWNn/y5spJX3XjeOJ9s5GVUCa5lwZ2OjUPRt/wzyC2v0MnlxKp+4tBwgqTr3G9Dvpfu03UtbNvHscWXl+198Hs83CiM+3bTNfft/DrJxUyuTL/tezfPvsa+n5xF/aNbajwagX3yP+5AOMufhrXPXEMs5/fR39ho6n7r5vcvpdr7a9AwWHrBt0NOsY/DCsEnojEiFmzT2BYIgV4zpTdZnJjETygoRzzJurMMybdTjHnxL8jrzwelZMKKHip79iz3e/SFMABhyFFg5MYXw6nPfUIrq85/XK0fwBgrEacmqqQGgWi9D+ooPmuPCmX9Kla9+068K5eQz5wmz6TrnGaRqd1KDfMlN4OujDtoUEZbf8iA1lOpO+fo+zLDddjz8FPiXtFFB1GX5fqwGL5nOZplCTeYPttcYVyarVgIFwDuMWzaZ43xKEYZ5DQdxJswUi3gKBLH/7tID+iBnNaYrlgFoQYVgp3K1dNUf073lYUplg67WQihZQ9btSmCLnQUAJmoqz33KF4D7ppB5tc83gx+5Tul+pIhWKL5Xh+Gi5x20IKoGZL5U69qTgVZG7tS8j4L6nYILrjWX3NPTsS/m8Rgvp761dzf3uPvWUtOsNTTBu0WwiNUvAMAM40YF+fMlWCLKWrB3asnTRX/mH83rfV29wXsu4ec8pVrTdsWYtRfTbfsqSKWPQmqxgVGnDFI8qwjNbdynAFzcfTprq3R2rXlCGwjQlkwnin9D6Plyf5Mff/T7f+vpXqejTh7UbNzrrtixbwxkTJjHqwgv59Z/+xN6DB+nWpQvX3XYb85Ys6dBxSqtOfMAE7WeaioE1QojF2I8O0C6fJmFSKUuBnVLK84QQf8FkruLAYuBrUsq4MPMQvwSmAw3Al6SUy619JIEPrV1us48rhOgFPAMUAsuBmVLKlh99jiOmzapk7/nZRHJuIju3oO03WCgfNgXWpXerjeQF6VXZidXv7ULXBcmkRqh3gtHnXNbmfvtVTqLf795KWX7Olbe0e2xHg0h2HpVjpqYsH3X+rA7v64wfPs4zP76am73/P40AACAASURBVG9/ou2NFSw7rz8kYh42bcY9z/KP2y7ngnufY+kbT7F72VtUAFf8wVsE2ql7DsbBRQxc+hofjDiDTt3PoznC4RyueHwuAAMGnQbX3NbBTwbr+waI5oWoSNeQGQiFI4SamW/6/GZAkfDl0nnvu5Rtf59tV33bNRY9hsiKuNewbmkwmut72sLwCRcw/I0LALD9CYOWnmhzCfSyaL66ghDZlpeRT0mjhVXNma4zfuFsFoy5GUMrdlJS4Ya9DF/xINsGmbyeFJDwm5PAlgEaBVZKJJydjz1l+LPc6jmzjYyBVKrnQtleVkbF+IWzmX/a3ciEcMagJZrosvtHBCNWG07pFgiomjVpva7N1lzfKZVpCrQQNCnnwEY6nZm9z7mnPYhR44rVozX9HCH46fNMZiU3lgWY5zysBom2AzoCyzjfU9WnMk12Km9LqaDnTnOUMR+EbBJSDQJt1sqvO3YNuX5Xr2M2dU6yvYug+55U/aFU9vXhsGyGrDBZp4SWy7Jh1+L3vY5tP9Hkd8cgNWGmK2kCYRbUSC2QEtwcyIPqAp0+W5KsLw9Svt6c5j4cV8iw+eY4Vw/LZtCKOrZ2EZRZY2yPz1Zz9NzivrYtJA7kQXDL7pRtGy/9ElozOXVxLRRbdgq6YmirHamFEjPA//kHv2BL9RbP+4xNGlrCqtbeHkY2mEFW3Af+hPlQJKoEWjJ9Qql/Vhk3d/9im59vzcaNrNm4kYfvv5uli5ezZtMmRg8dSiKR4Lrbb+cX3/0uo4YM4Zs//jHlvXoBULVhA4P7929z3ycD2nsbvBP4PHAPpm+T/a89+CagRgV/AQYAQ4AwcL21fBrQz/r3VeA3ynsapZTDrH9qoHYv8ICUsh/mffnL7RzTcUFJae8OBUztQWNtjMGTSrnktpEMnlRKceeBRyVW/yyib+/h3PHEGrIi7bAnUHD1/S9z9YP/8izLziviit/8m6zsfCZdfCOX3ZPeVX3arEq69/iYnPqdlIQXM21W5VGPvzV8/p8ruewvi/D52/+0pFsTR9mWxyjd8Tob+l1K7+HaMR1jnUX0qLoqW9NkaFBvxTS7i5q/s/3YdtN59P7Fb9g82Lz9NH71UmedyjSF1V56mJOf2yzO0i0J3ZwUdVcIbkcZyYKuzvuzFNYq26rgiwVy8cfMicofqHVSWM1NT1UEYzUEwlblocVGZnXO5byX38FnsZmaVJgmVfQbVAw402malKo9j8mn/XNX0o2e9fa+rPvCuEWzyQpvcYXgwhWC29DPmuK8tltVAK7gXnNZI5XNaFIvV5s9UipSd/V1WQq1z6A9NunzOXYNdXtdTZqt91LvbCrThBJQ2mnKzT0ER4pMTVo9bgXt+lGFyj4Ec097kLrc01IKalTtUcIHcau60dNgWg1krc8bD2vssQ5Rufoxem41f4t14TkOo1c1uGOVysXVUL4ylaHS2vAfMPbsSLs8EE8NfOyACXDkJKAU70CLAVNHcOevfsXtN30DgaC8d2/WfGRWKL781lsM6N2bUUOGAFDRpw+V5eXE4nHqGxspzMvjlbff5oY77+TSG2/krfnzP/FYjgdaZZqEEEKaeKetbVpY1w04F7gbuBlASvmasn4xYKt7LwD+ZO1roRAiXwhxipQyNfy2jgucAVxpLXoSM7j7TbrtP6tQJ8TJV5S3smUGxwqdzpoGf3qbgrNTGbNjDc0fbLFHYHMIzdW57OxmTjzbP/QxfMqxG0/wN/ezYeHr3n6DNtMkYM+EfhS/9hHceH36HbSAVWcUENp9kArgc7PM3mr5P3+RtX+7j8nX3Mr6e58CXDYNICuv2FFWFHywJaXPIFh91SY/RJnPZFU9c4wS+PkVgXkkO59/NNM0xWO5HOg0jLmnPchEf+vplZxOGsXr59J11/s0fvthGqqj+H0BuvUfTj2wu28uuSvMfajaI+yUmoCRC820i65MXoQVy8OQG4DZUJtg656gyvrQVvASjNWg+6SbNtKttJEiBO/UY4B7PpTgVNPcANmJT30uOxT1PwFYzXxtywgltqnpWgJrTXpP9buSQrg6Mku5cHhHoaMjy2vytmsyP4+yY6VfoPSnWm80Gqc6+8rXXEd3aaXnVlReREO4EqkHEckonS3t0fYuku57BEldsD+YZACQVFKInubOarWncp3ZQWAgdg5gGv7KkDm2mM9swN1e2Od58Jon2tW5YfDc1FYvQJuMUFMIQs0y7HVhyG5UtxFOqru9WLxqFW/Nn8+q9eu55Yd30xSNMsRikD7csIFTBw50tv1gzRomjRrF2k2bKO/dG4AZZ57JjDPP5HB1Nbf//OecNT61mCoW1Pg03SzaYpr+I4S4UQjRQ10ohAgIIc4QQjwJtPbtPAjcAqmdSIUQfmAmYJeClQKqHH4HDsFMSAixVAixUAjxeWtZEXBESqfjqLp9BhkcNSpHn0vXlQuZfF7HU4odhb8DTJOUSeae9iAfDnuYfV3Mip0dqw0enjWHR78x95iMp3LcuVzwv7/2LLObVQvgwp/9DeOPP+eMy7/Vof1e9sh8LnjRa2bXpaw/p9/8GJqSdgoolWtqmqy+szRNQqMHUBJWjkmo6jpvr9a0VLYMQA+GTU3T/iW4DYulo3PxBdL5NbsY9flcyj96jpz6nUy+otx5sOnRfxiBFx7nwt/NcfvUKUGg63El2NPLPK6IuzOXWjmI3Y9PpmeaNF8q04TirizJcnpDZnXakSIE15X35+S4FY1OoKnqi/0uO+QLumaq6QxHtXy3vE5XvkshpakXS65wzHqFjnPObRG86humMk1CCZrw+UydUp1ivaFYP3iaPutm26i86kbH705Nz9kdcRI+KLC1PcEW2uQ47KD5d/PquVhwglM9Z6cu1YBpU3f382zunn7q3dyCae2xRvOACSCr2TLV76yt0KkxbH6eO3/1K/720EOse+MN1r3xBoteeIHVlqapKD+f1RbrtHz1ap7/17+oLC/nw/XrGVLuJQTu/d3vuP6qy9MfTGFnN/Q78bqmtjRNU4HrgKct/dARIIRp1fcmZmosbV8OIcR5wD4p5TIhxJQ0mzwCzJNSvmu/Jc029nfVQ0q5SwjRG5gjhPgQ+3En/fbNx/JVzJQfPXr0SLdJBhl4kBfsWErwaOEPhFupP/KiuEtvxi2azdLxVxJP9sfQg+g+6DO8JLXVyzFEMGylqyT4fH4GjZ1+3I7lD0WcJyzVldzoVkzOqp2Y1VrKJG2ZhB62tTjKXUSksUoAKD6lJy+OvQupqc+rgr0lo9lffCpnBQStkQOhUMQVdjZDn8Hmk7FjeqpM4E5rIQG1JUm6bPY5Yn7wOpzrDTvsTR03e22/S7rratrPTn0pQUbP/hvp/I/nACjq+zH9nn/O0zBYFZLnFBZj16UJJ/g0o0+H0bG+ipCYxJwpZuVZQfJH5rZK0KQrvQV1RXzfa2OCYLyGor017D7FCl6SwtUW+ZXAzdmBauapVJn6/SwYc7uHabKtH/YXn0ph0G1N5GG4FOwqncSeLuPotvN/AIGhCaQvCDR5rB2EkjJVfcWENNOgS8ZcRoIKDD2I2opn3Ujz+9ldBKdY7fYac/3YkuB4wDvdpTOtPRYVfh2B1nz2tIYYDQp8cem0n7KR0E3LAhtvz59PNBbj9LFjnWUlxcU0NDZyqLqaK84/nwtvuIExl1xC/549ycvJYUDv3vz55ZcZXWk+eEgp+f4DD3DOxIkMOnUQNJiDagzrhButgynBXLpihOONtswtm6SUj0gpJwBlwJnAcCllmZTyKy0FTBYmADOEEFswxdpnCCH+DCCE+AHQCStlZ2EH0F35uxuwyxqH/f/HwFzgVOAAkC+E8DXfPs3n+J2UcqSUcmSnTml+nBlk8CnBF2h/1dugCeeS98f76DPhbCf1kkySvtXLMUTQ0gOdCCVdSGEngmG30XOgzKxwTGpZjkloXknQMQm1mRfTpwlrmTdoEn/+FeEXn8QfCPLF+6YQyQ+4TIWQBJoOtYtpCoXbrox1mSb3e3Fd8oWdSUM3XOuGiFJZGBhwurOfUZb1zeDF9c56PY2mSdU6+iKuLstvsV0hxSVCPTdZihBcKFWIEjMwCFLlsEMGMZfRsY5bvtENMf0KO6iex1DcDAx2d53kaovA0RapPlvuh1Sc4pVzLvwm06THDylMk+F8f6qWyma4SvYuSfG7G7doNoZVNGBoirWDomPyuHc73RbMoCkYqwEtrvhhKa14rLE3ZakTvNJSJ+Cd7O0xas1aZrVU4behV+tJova0YmkTzbtLNENCMWSWAs4cP563//SnlO32LFhAYV4exQUFvPv00yx64QWeuv9+Nv/nP/j9fuYtXcooK2j6zV//ypxFC3nx3//mD3951mkwjaKrU69zVW93otBuz1YpZRy7PKF9298O3A5gMU3fllJeLYS4HvgccKaUHjvQV4BvCCGeAcYA1VLK3UKIAqBBShkVQhRjBmM/k1JKIcR/gEswg7IvAunVvRlkcJLC346gac8tl1PU2xRP9ho+iXWLV5F/6H36ffwuNd+4/7hUz6kIR3KphRZbrhxLBMLZ2FaXAauf155OkNfV1Dx0qvsxl8w2Pb16DMrl42HDATcI8DBNup81U3pSsnwrAANGukaiZr/IYlbP22HpfgIUH6wiGKvB7wvRmqFCMBih6aEf0HC45Ua1TtCksAdCeaFZj/W6kcS+Ded2cs1bA3mpSvu4Dpv7BvE3Jog00wuZB1OZGXe9qhOzfY3UAgS/kqrTNFcIDpY+SksgpckOCeGW1Yf2pQaXAaXHn6YcY1cnMzBYesb1RBvKTI8xASV7FtN304usPauo2Ulyq/MAfAqDhc9HMFZDuHE1dTkTzaIAIZzvT1MYSn9jlAVjfuplmoTLSp1y+Ebn89rXjlqZqKspU0fDJZzvV2q5lO4wq+dWjDrbTYMqxRM2VFbEaGaxkGpf4GvVviCpiO9XVYaoXGVesU0hjVCTQVJ3/coasn1k1Zl/NGRpZDWY0240AMHWbh1tFBx1JDBrzAsRrvb+quobGjjrS1/izLFj6dHVLNq44aqruO66qwlFJQ1ZuttqRR2LmoY+mYOmY4hHga3AAiti/LuU8i7gNUy7gY2YlgPXWttXAL8VQhiYzNhPpZS27eitwDNCiB8DHwCPn7BPkUEGxwA+f9tB0+nX/cDz97RZleydHuCjeVmcdfWwFt517BAKZ1MLHC48/lFTJJKP3WIwO6+Aj6+fQsU5V9G7ciKv7dzIWVff6myr6sF03WUq1IDl4ke9VZQqGmtjjnXDga/+iNr95oSnVvClQygrm1PPakFvYcEeg6odcoJOIYgLaxJXTmkk4lZ96ZYZoJBwsEBSdFiwfnpfLr3P9Ph5/61UrzXVzLNm+ybs8EW1cbAPpyvpOU81rvUcK4VZej73tAcxDL8TzAjc1FbPj7+dMoaQEuypbJiQppu60eR38xsSJ3gpCPw25XyQcKmxoGoDkaYHI8q4Tgm5z879N0rKts1myfDvEAvmmUIqkgSaqhm1/D7WDMX5vDHM4+lKk0w13ehUOgrX8T03/E/KPzIb3QaDb1O5erszRueE2e9XzEuTAT+25cPOEkHpXsmB4nzHvmDNoMkpOjQVhs/dsccUFbvdiLLIE3CkRjqNIUG4FcG3wDXN9K5QmCjrdWNYI9yYxufJrsQUZiDpS4LWOZcFzz2Xsqn06xBNeA+pBEoepklvnXE7HjghQZOUci5mWg0pZdpjWlVz/y/N8vmY9gTp3vMxMPpYjTODDE401PYeHUFJjwGUXD2g7Q2PAYq6lLF4Rg96TOtYxVxHsHZKNyrm7iCiNNYFOPfbbjHs9Jt+5VmnCsg1pfccLaTnmmParEpeefVacuobGHJlBYsj77B5whmUtPGd6O1oR+T4UapCf6VnYaM/B2jwlMj4lVRQTm6xvSm1WTpFhw1yerqVR+oYhFWB16SIToJFruuybp2nuhCEYoA0g8y0ns62c74A3dLtLD/jeprquyH1IAYxTtlr6nZqslL3EFHcnpsHTeMWzWbh5B+QjAWcSTDQdIhRy+/jo8+bTKI6pw9eeNh5HVRTiJqZnvtg6EU0ZA23AiGDkr1L6bvpRXYOM41m64MQiZosTvHBKnZ1nehUE9qslKm7iuGLS/b5zPNYE3UZRL+S5lSZPCcwVxg/oerX0rUeUtvkWGJzA2jMMj2qchufoudWH1UDryM7+gyDVnsr4+rCcChf0GO39AYL/tavc6EaqCr6M+dVwA9pGny7gY5GWrmw9WWpDHSL7JO1bcyv6KB0s2tFq2NPM25PNKW1dMDjh1bDNCHE51pZd2lL6zLIIIP2QXWqPlkhNI3pP3uDwacfv5/8RY/+m4p1az3+UB1BOk2M1oJxqIoz/vwGvj8/RDgnn8lX38b0mx/2pLY+KVSmyVBYHCPLrDJr1N1JOaAEa/m5bhVa6R13sb17kEkzXZZNZY+wgqagcI81+OwvuOuTVmom7J4flWmysbl3BGm4YxSGNAMLv3QqzwRuei63LnUizSlydVkNh/d71i0YcxfJeMjDGsRChSwYc5ejpVLTWT4loIzkuX0ihU9nwZi7aIgoPRjRnB6AAcvhXL0WqvPy6LzXrCYMhdY6LI6R5QZ5TnpOc7//uFACQ81lVhzzUp/faSCNX/Hoc9LFyjlSjU4tz659ha4fltQ1p3quJuKmkm3sKfU7+jVPqi+Yep1Hg+oPQUv/2kaLaTjR7P9m8Owrddu6rNRAx3PFiLZYIuG8QQglDSda+GwnCG0d8TUhxH+EEOlK+W8/HgPKIIP/Jvj8Afb0S7Dt6kz/608EpdGss6gdQVN2XjH9Rp7pWeYLpGeS1g/veEWlprbJMZwZgNzeJmukderER2f3ZGsvH7oinC4otNqCSKg8/WLO+fcKshQTyoDCStkNitXm3KGwG4wlrfYcqm5HdZIGOOW9f3PW395BWpV6UgM9aYq362r7OuJtgWsMGbRIAtXwsqCzq8tK1LptO2ymyReIOm2hhIYj3pZOyxZ3X2tOdYOQ3CLXqFTolhA8kV4IHrJ0VVLAPougqriqiIr1pk1EQZcVjgml2mi7TJrnzK8kYMrK3UowZ4IWwjGEFP6AE+hEm9xtAzvNDovZahcUlR0MuC77UjMr/A7m3OvYFzQGxqY0/0UozZtVO4Y0rZiMkMJ6aWrAoUz5Sro4HZwAR1nfkJ9aTZjQSRtfqZYT9nKJy0y1adLskTGp6Tl1mxPPNLX1WLcK061roRDiZinl88q6Ez/aDDL4PwZN1zn9Hx992sP4zCNqle4bAkoOWLqODnhgqdBbqJ77/F8Xdnhfqggbp+5FMO3rP+O9cC7nXvVtAkFTbLx78xpsb8H8olM4CGzvHmRQmv2GgtlOes0OmtRJKBiK0BiUbK3Mo1exyf4kfT6kMCMdrVlKJ7/YDHZknZma8hkxhNQYt2g2q86/mdr9BaD5kBh0sdJgNhqCVtoPyC88xWmZI5oxCcFYDTmd6jm8I99MkwlXfG+zLZqewHS0gewzzqRhzQtkRSEUyXPF+brpAh9qWkN9ZHxKyi1mWTdIAaGkaZ2QnVPgsEN+xfHdZigFklCPvrB0OXm9B7E6Vk+gUzdOLezm2jE0Wd4BMonAsgnY7bariTVUOAabtk1AlwPOoTzCeNv/KRiHGs2yLxh9OQkxwLIviFOy7wPPeRYIN/hQmCbRhgZPaDpS6DSGikHUp9kg/VSuLrWDbU/aUWiedeBqvezjtnqoNpkmNT2nbKvsRDNa1mIdL7Q1aimlfAzTauAWIcQfhBB2OcGJH20GGWSQQRok6sxH+pjP1Uz4xNFV1uhHGWyl3ZdqQmlrmjSTFZp03WwnYAJviX4gEEI8cT8Tnn0j7X5tzZO5Y5fBsuEPhhi+ch0XPrWIQRMuYMPkXpT9+hESdg84RWStIlhk+tglgkE0Q7JgzF3UHuxkVrsBQkmDVY8x6xyj08rccStB4piLXHNYm10wEgHHdHPwpFI3TRa1LA1UUkT3U/in37Lnfy7CrwYG1sdM6jnkHTb3lVeyx9mXbRIqBfT8/R+oHtKdQRPPd3yqPEGTkqacdufj7L35Mqbd/EsueXwJM376IiXd+jjrCwwzHAw1RR3mLBzZ6tgxQMKxCdhXmHrtqe7w9uuianOcwVgNiKhrXyD0lOo5oaSr1KBJs64bdUJWjSmFrtMUzCfpC2IY3n6W5gbutk2Fadarn0GkBi9qk+ZQY1JZnRpeqH30WmSa0jQYUSsahbqPVkd7fNCuhKCUcgMwDtgLfCCEGHNcR5VBBhn812LDLRew/jvnd+g9RQVmOstQmt3riaN7rvMdQ02TPdlv66XhOKy0MFkEQt5+ZQPGn0tOYUnabfPU5U6aJf3t3O8PcsFvX6Nv5Wls6G8eo7hzd+QjP6L2rq97tj3v1t+zYVp/pjz8MrphBgb+YNxJqSHclNrQX3+Afl13Tr/zVT4abaYOVXF+6cDRbDy1mP23XOUETX3HHva4qdtpMhk1eaRGv3sOhKbRa+gkTr/hbk9waXftKj70BF32mPvq3Gersy/H411AydAxjH3+TcDtmxj0NIK2GxSDPxBiylfvRFcm6EAowpbeETZM6onYbQY6fTZqaJZPk+ZLOnovcAOd2NfM7l77lEMJNV1snacDynqpZTsBZcj3YUr1nBCu1YHaIsgXalkXWZvdnWh9Ngm/GQxJI0htTg9qs11LRDV4UdNg0hEUqYNITZMJTKYOIKraWrWlN2pPas2uQk3ToBpclvVEoq30nDM6q13JbUKI14GnMc0pM8gggwyOKS647qcdfs/Ic65iwVfnMfoLt7L/LDPg0ps60PRLgab72NIZDkwe5OnBdzTQ/WF6L5pHv2AWf/vWBYCXBVDhb2Xya46wYvZopyhkO0Sxlzw1j/2b15JT0JmBZ1ySsl7z+bjgAbNkPxEwmyQXnBJj3+Zwip9VOLeQ/reYAcmMP72f9njnP202fHj3t6ZFgs8fZPOAMP6GhOfcCito8pgVKucpoDJNSoWftJzL1TNamN+JOHC4U/rgN6w0b7YrLFvzIJv22lIAVla61apCWum5ar8nqLBtD4YVp/osexgSi7krPgwHrJk0W/s7PbfWUzXwOnJyFjDkrUXe9wt3D6rNgD/UOjvUEkSaYFtNqbnnpCV2KPW1ofuww9ajCZoai7OhsdFZb2/hYZrU9i6fQr6rrV/ZD5svsOwDRmA24c0ggwwy+NQhNI3xNz9GcTe3nYyWroy6nZg2by0zf/TCJx5XwOcnmNcJXyiCbqUL9RZKxIPBrLTL08HrrWTXv7f95B4IRSitaF/RQZ+f/ZKNZ3UnklfmMCD9Rue16h/UEmzfoHAkh+kvLefsN1d5N7DE6qprNs00Wg4U1sumIjRlsu87dBIN37+eKX99M+1Y/CEl4ExTRdgStk3o6f5hpeci+bsdF2+hGZTsXcyYRbPxWeJsVeND3A3i1ebLDqHjc3v81UdTnXSEUKrJlHEHWnOob4nNEekDIaGnuTZbEGR7kCZ6Sadp8g7BO7amIBR26ZlW+OOx+fCI2U8yTZOU8qUWlh+WUnb8cTCDDDLI4ATBaGxse6PjjIKuvZzXp33zpxyobGLct+5Lu62ebsJqBdEAbJxwiss+HOPy6z4jz+b8h95k+tcrnZTapCsHOGmwjqDuktNpDEL/YVPSrs/rbga7oTJXQ6TqZ9R2Q9Jm1oSgJts8Z4XderOzizuxjrjqW2QVuHYC4M79elBtbdP+oGnMbaZPWH3Q3JeZnjMcHZI0zF56gXgN/nSmtVHXEVt6/JJME9FD8duc6rmGhgEp1XMqG6YKsoP5ir6t2WeN1Kdp4iElWcpyVXukplfTRS8ijaapJXz7O7dTfs45zjHtPTrvEoJZs2fzr3nzWLF2LT+874G0nwHAp5rEKmvkpyCtPvEmBxlkkEEGxxHV1oN3ckBZ6xueAISzXFPGkn6nctpzm+k2ZGL6jTtYPj1s1VrOf3yOY255Ijxrgkdpxnr27Y8wfOVa/OH0qaRptz6Kcc83Of/up51lKhOhq8GN7XcFjP3Ns7w/czCnTrmUif98l1P+83qLY2i0Dp0dVtNz7Q+airv1YevAAsQPvum2UUmGHBaupDxBLJCLFNBr0DgAjox2U3rROtc007C+s029fQ5rFdDXuayVSKb0nhO4miaVaQoWeoNDFZoRT6OWluZyZ8dqcKpWe7ovfc18TGPB1q+1LTt28O577xFLJjiUpbJE7n6FEKxat44h/fszrKKCO7/zvyn7iVvtZrQWNE3INO7jxxmZoCmDDDL4TGNPF++scLCHeYPNz++SbvMTinB2TtsbfUK4vjfH73bef/ki+ix9v22dCrBrgJ+9V41tczsVQggGXTTLEyjZ/lLg9aCSts8TgtIeA7n+e6YTTig7j/xTWg6U+/zsIbbO6Eff4ZPd/XagUlLTdab+fT4jLprlnPMeQ7Y4LNygyQGHhcvrVErpvLeY/oDbJkQqEmL7M0gB2UeSZpWcdHvPSamlVM9J3Y040qXnWuJchBDofo3cohBCM0zxtFCuG7VnYRq2U9XgGbEowYoB5PYZ4HxX6VzAf/zII9zxvTsYNHgI2/cddtihjZu3cvbMaxh14YU8/Ohj7D14kG5dunDdbbfx3qIl1nhMtkvz+Yn06YfWp2fK53EHd/IJwTPIIIMMTloM+GAZA3SvdmL8r/7O2qd/xvipMz+lUbkIZ3XcELOjsCuIpCbY00eS3XIf4aOGnpVLew0cznxpVdsbtQNlA1so0k5aZp16x5i5XqPOpNcor5Fpe1zj08Fto+IyM6FQFk24Jfi5nb2e0APPvxbe+4X5h+K8Xmp7OTX56XJwEXWRrvj65xLb79WOGbpwWA61RZDfrrpUTkftI49xZN1Gc9tIFgJBHZBIxBDROLXCNZqUwQAiaur/tKwsjIYG93hJieETVCckgV49yZ99fqLsrQAAEstJREFUuxtYSZBCJ+4vRuMwWM5hazZuZPXGjTx1+eXMX7CA1atXUzmwP4n9Ncy65bv84tZbGT14CDf+4n7Ke5np66oNGxhU3t/8GFYQJzQfus/vuNf7+/cFBGL9eudznoxC8AwyyCCDkxYinOW4K9so6NaP8d95rMPprmOJ2J1fY9+Ewg63hWnMkuwd3MGDGa655ZS/L2XE3AUd3MHJhcMWORfKzU+7vnzyRQAUnHbW0R/ja2eQvO9bCCvg7uiVYm+vaq38bQj5R1zwFfcP6fYhtJEb/TOaEacupzv+sD9FO9akXEqakq70t2DGmjraFta2VBCnwK7WU3tDSiTRQB5SC2IIl1G981e/YvY3voGm61RUVFBVVUVWbiH/qFrF4MqhjBxitpKtqBhAZXk5sXic+sZGCvLzWbt2Ld/+4d1cefPNPPnc3zxj8AVC+ALBZoxqhmnKIIMMMvjMY+jlN8HlN3X4fQNefx1/pGPslCMQ1jREMBtx7GymWsSh/OP3vN3994+x7q8Pc3bFqLTrh537JY5UjGNAr/5HfYzx//swAKt/dA0AZTs7Nvna51zVAPn8qf3zAGq6JpDNljlGp0Kw6rw+HKq+EUP3gxV77N+cneIuHojkg+VPrgrBjWTCYT/MgCJJ3o03EDxoGr6GB7tRePXB3QR2m87mCd3UKhk9uqJtMy0SQoMG0bR6NQCNEZ1wfZLGvCCF3ft5xr9vWy3IArCIOiki1OZEWPbBEt6aP59V69dz889+RlNTE5WVlQCsWbeBESNGOLqmFStXMWlgJR/sOEx57z5IoKKigt8//gcMw+ArX/kK6fBpp+cyTFMGGWSQwUmCrM498UcK2t5QQbhfbwDKhow7HkNKQclrLzL8X+8ck33tGaix61Rviqz70Imcfe/TLbzDRH7v8rZ7l7UDif1pqss6AH/AZZfyis3+eEf6eYXZlc+/zdBn5wBQ8urznPKvv0PMtB8INSa55J6/EQ4+Qu+heY4QXNNlihA8p2K4w6uoTFNXK6AxfBrZ3XsTzw6Sq/QAVOELqj0L7X0p3kzWOU3qELYE5pHCVG1gUdcIQot6xeLxen5y3x387aGHWPfGG2zZsoWVK1dSVVVlvqeoiKqqKiSwfPVqXvjbi1QMGcmHGzYwcGCls59XXnmFiRMncuaZZ5IW1hi3jCwlFDs61/9PggzTlEEGGWTwGca0n75A9WX/oWLk0aerOoLC3gPa3qidOP3vq4/Zvo4G0296kD1vXkL8B+lZjZZgi59V9/hwVi7d3nyV/l28Wqaw1ZoGoLCPyfrkHjKbGRfUJNADQb700MvM/cs6Rwhu4HeE4IfyoLAaouXd4VVzP6oWq6Brb5IvPs0+GcAXCJLb02KFyrqRaKhDRVYkjyZ2AJAM+9Hr4wRCETyOZt1OIZSVbaYe84rSfv6Du+pBBj3pvLcXLiIag9PHukUAJSUl1NfXc+jQIWbOnMn06dMZf9El9Oo7kNycPHpVnMqfX36JEaeOJB7ozr5ttcyYMYMZM2Zw7rnncuWVV6YcWwhB5zdepm9Jd5Y+fi9UPZt2jMcLmaApgwwyyOAzDKHr5J+ggOn/Ggp6D6Jg3doOv88OmprriXJ69G7X+0+/+0lW3DCZfnc+5SxrrI3Rb2Qu/U7NZc2C3dRZQnC7H1/I8FG8y6R2GuuOePZXXDGM/Wu9nyOckw85Xl2YEILQwIEgBCGAZDLF0DKcnz5QUlHUNcLBnTXmibCYnykTJnHW5KFmY+iYG4ZVV1c7rxcvXkzdmio0qdNU2JVEFOYvfJevfOlraMl6Vm5ey8v3v0Q0GmX69OktH7/MTM2O+393UjPjGujRp8VtjzUyQVMGGWSQQQYZdABO0BSMkL71ceuIdO7OhBc+9iybNstNUfUaOYDdfarpNGUp/sX/Zsuv7+WMqdey/hbT7NLYt+Noh+61jehgoYIN3achtBjSUDRdiSZCRXmEcwtbeSfoBkCSxsYGps2YyuSJp9O9exkk6zjzzDM488wzOjSW3O7tC1SPFTJBUwYZZJBBBhl0ALatQCCcfVRBU3twyvTPA9B3yufpO+XznnUTv/wD6t/+erq3HRW0nt2dRsjthhRoyTiG7kf3a2jhfMK5bbcC0sq6kdyxi+zsPN556XWSmh89XkdCP/H6pKNBRgieQQYZZJBBBh2AzTTpJ3iiD/3hAfZeNJoew6fQlGtQW5ls+03tQDA7j1BOeouHdNi3rRYpg2bFH5CMG0QbE2ZVXVvHysknq2IgeZ2zQEoMPQASfIkDbb73ZECGacoggwwyyOCkR+mb/8QXan9T4+OJA6eW0WPhVopKulP/u/toOnJiJvxe46bSa9xUAAa88gq+7NS+cycCRV0jHNp1wEzPWQFkKOInkt8+vwvTskBCwHQzjweygWz2baulc4/j76L/SZAJmjLIIIMMMjjpkXsCxb5t4ezfvkzTgX2EIrn0n3TepzKGcJfyT+W4YFfPhTzVc031cZoaEu0Keoq6Rqg7HCVaHzOF5FKiGQ0U9Cg5jqM+Nsik5zLIIIMMMsigA9CCQbJKu3/aw/jUUNQ1gqZ7wwdN1yjqmr4hc3PoPs3sL217bQnT8VL3nfwhyck/wgwyyCCDDDLI4KSB7tMIhi09lxX4BMN6h4IeIynRrD6CWjKOFBkheAYZZJBBBhlk8H8QRlISzg5Q0CWLcHYAI9n+6rt922qJNiYcIbmh+5FauF1C8k8bmaApgwwyyCCDDDLoEPI6Z5FTFMIf0MkpCpnVcMCLL76IEIJ169YBMHfuXM47z6v7KuoaIZjld3vHSYmWbGh3eu/TRCZoyiCDDDLIIIP/QtRXR3nx58uor44es30+/fTTTJw4kWeeeabFbdJrmoyMpimDDDLIIIMMMjg5sfTVzezaWM3SVzcfk/3V1dXx/vvv8/jjj3uCppqaGi688EIGDhzIrFmz2LOlmrrqJv7nW19n0jljmfy5cTzyhyc/E+m5jOVABhlkkEEGGfwX4dFvzCWZMJy/q+btomreLnSfxqyHphz1fl966SWmTp1K//79KSwsZPny5YDZc27NmjWUlZUxdepU5i16g5KiUnbv2cW8NxeClNQe2ZNJz2WQQQYZZJBBBicXZt49jn6jSvD5zRDA59foP7qEmXeP+0T7ffrpp7n88ssBuPzyy3n66acBGD16NL1790bXda644grmL5hPr1692Lp9C7fP/jZz3nmbnOzIZyI9l2GaMsgggwwyyOC/CJG8IIGQTiJhoPs1EgmDQEgnktc+R+90OHjwIHPmzKGqqgohBMlkEiEE06dPRwjh2VYIQV5OPvPnLuTNN/7OH5/8Da/883n++vzTn/SjHXec/GFdBhlkkEEGGWRwTNFYG2PwpFIuuXUEgyeV0lAT+0T7e+GFF7jmmmvYunUrW7ZsYfv27fTq1Yv33nuPxYsXs3nzZgzD4Nlnn2XixInEtYb/3979B1lZ1XEcf39k0QVZhp8SsBY5WcBkEZKAFTFRouigxB/BpBKOo2J/mI016x+Fik2TU43ZTOswSmHhjj+gCRuLiGK0hkxQYhdXkdRsjQKWSmYaCYdvf5xz6brcvdxln3ufc5fva+aZvfc8z33uOR8ue88+P85h2OghLFw4nztuvpH2juczall1+ZEm55xz7jRz2U0fOv74k0v7PyVLW1sbLS0t7yhbvHgxra2tzJ49m5aWFtrb25kzZw6LFi2ivb2d5cuXc/S/b6G3j/H1r9za7zrUgswqH5BqIJgxY4Zt374972o455xzmens7GTKlCl5V6PPDh/cR8PfuzkydDAjzjt5561UOyXtMLMZ1apjMT8955xzzjlXAe80Oeeccy4Xg4cOA+CMpmE516QyVe80SRok6XlJP4/P10l6SVKHpDWSBsdySbpP0l5JuyRNL9rHMkkvx2VZUfmFktrja+5Tz0v0nXPOOZesxqFNDJ7yAZrGTMi7KhWpxZGmW4DOoufrgMnABcAQ4PpYfhlwflxuAFoBJI0CVgIzgYuAlZJGxte0xm0Lr7u0mg1xzjnnUlWv1yg3DBp8wrAEpaTQvqp2miQ1A5cDDxTKzOxJi4A/As1x1ZXAQ3HVH4ARksYD84HNZnbIzP4JbAYujeuGm9m2uK+HgKuq2R7nnHMuRY2NjXR3dyfRsagGM6O7u5vGxsZc61HtIQfuBb4KNPVcEU/LXUM4EgUwEfhr0SZdsaxceVeJcuecc+600tzcTFdXFwcOHMi7KlXT2NhIc3PzyTesoqp1miRdAew3sx2S5pbY5AfAU2b2dOElJbaxUygvVZcbCKfxAI5I6ihXd9cnY4CDeVdiAPAcs+eZZsNzzJbnmb3+DzRVoWoeafoYsFDSAqARGC7pJ2Z2taSVwFjgxqLtu4Bzi543A3+L5XN7lG+N5c0ltj+Bma0GVgNI2l6r8RxOB55nNjzH7Hmm2fAcs+V5Zk9SzQZfrNo1TWZ2u5k1m9kkYAnwm9hhup5wndJSMztW9JKNwLXxLrpZwL/NbB+wCbhE0sh4AfglwKa47rCkWfGuuWuBn1WrPc4555w7veUxjcr9wF+AbfFq+Q1mdhfwJLAA2Av8B1gOYGaHJK0Cno2vv8vMDsXHK4AfEe7C+0VcnHPOOecyV5NOk5ltJZxSw8xKvme8A+6LvaxbA6wpUb4d+GAfq7O6j9u78jzPbHiO2fNMs+E5ZsvzzF7NMj3t5p5zzjnnnDsVPo2Kc84551wFku80STpX0m8ldUraLemWWD5K0uY4tcrmwijhkiZL2ibpiKTbeuzr1riPDkltkkqOklVm2pZfSvpT3Mf9kgZVs+3VkFKeRes31tswECnlKGmrwtREO+NyTjXbXi2JZXqmpNWS9kh6UdLiarY9S6nkKKmp6DO5U9JBSfdWu/1ZSyXPWL5UYeqwXQrfR2Oq2fZqSSzTz8U8d0u656SVN7OkF2A8MD0+bgL2AFOBe4CWWN4CfCs+Pgf4KPAN4Lai/UwEXgWGxOePAl8o8X6jgFfiz5Hx8ci4bnj8KWA9sCTvfOo5z7j+s8DDQEfe2dRrjoTrBWfknckAy/RO4O74+AxgTN751GOOPbbbAczJO596zZNwDfL+wmcxvv8deedT55mOBl4Hxsbt1gLzytU9+SNNZrbPzJ6Ljw8T5rGbSJh2ZW3cbC1xChUz229mzwJHS+yuARgiqQEYSulxnUpO2xL3/WbRfs6kl8E0U5ZSnpKGAV8G7s6oeTWTUo4DRWKZXgd8M77PMTOrm8EIE8sRAEnnE774ni7x+qQllKficrYkAcN7eX3yEsr0PGCPmRWGUf81UPaocvKdpmKSJgEfAZ4BxlkYq4n4s+wpCTN7A/g2oVe5jzAO1K9KbNrbtC2FOmwi9PYPA4+fYlOSkECeq4DvEIaYqFsJ5Ajww3gK5GvxF2pdyzNTSSPi81WSnpP0mKRx/WhObhL5bAIsBR6x+Od8vcozTzM7Shhmp53QMZgKPNiP5iQh58/oXmCypEmx03UV7xxk+wR102mKRyXWA18qOuLTl9ePJPRi3wtMIPTWry61aYmy4//RzWw+4dDiWcCn+lqPVOSdp6RpwPvM7Kd9fe+U5J1j/Pl5M7sA+ERcrulrPVKSQKYNhBkGfm9m04FthF/MdSWBHIstAdr6WoeU5J2nwnytKwgdjAnALuD2vtYjJXlnGo86rQAeIRwFfQ14u9x71kWnKX5Y1gPrzGxDLP6HpPFx/XjC0Z9yPg28amYHYo99A3CxpJlFFyoupPfpXI4zs7cII5hf2d+25SGRPGcDF0p6Dfgd8H5JW7NpYW0kkmPhr63CYe6HgYuyaWHtJZJpN+HoZ6FD/xgwPYPm1UwiORbq8mGgwcx2ZNK4HCSS5zQAM/tzPGL3KHBxRk2suUQyxcyeMLOZZjYbeAl4udwbJt9piqcaHgQ6zey7Ras2AoUr4Jdx8ilUXgdmSRoa9zkv7vMZM5sWl430Mm2LpGFF/5gNhNHLX8yqnbWSSp5m1mpmEyxMs/NxwnnluVm1s9pSyVFSg+IdNPGX0BVAXd2JWJBKpvEL6Qn+P+flPOCFDJpYE6nkWLSfpdTxUaaE8nwDmCppbNzfZwjXAtWdhDJF8W7jWH4z8EDZd7QErqQvtxC+UI1wKHJnXBYQrnrfQugVbgFGxe3fRehVvgn8Kz4u3PV2J6Gj0wH8GDirl/e8jnCucy+wPJaNI0zlsgvYDXyf8NdT7hnVY5491k+i/u6eSyJH4GzCXUmFz+X3gEF551PPmcby9wBPxbpsAd6ddz71mGNc9wowOe9cBkKewE2EjtIuQsd+dN75DIBM2wh/FL1ABXfE+4jgzjnnnHMVSP70nHPOOedcCrzT5JxzzjlXAe80Oeecc85VwDtNzjnnnHMV8E6Tc84551wFvNPknHPOOVcB7zQ555xzzlXAO03OOeeccxX4HwjUcBcR6vk5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for FRN\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'FRN'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Guam (GUA) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1.016e+00 -1.991e-02 0.000e+00 0.000e+00]\n", + " [ 1.991e-02 1.016e+00 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 2.546e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.014e+00 -1.241e-02 0.000e+00 6.956e+01]\n", + " [ 1.241e-02 1.014e+00 0.000e+00 2.643e+02]\n", + " [ 0.000e+00 0.000e+00 1.002e+00 2.396e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.014e+00 -1.094e-02 6.216e-03 1.006e+01]\n", + " [ 1.323e-02 1.014e+00 -1.077e-04 2.364e+02]\n", + " [ 6.604e-03 1.718e-03 1.014e+00 -8.888e+01]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.986e-01 -1.997e-02 -7.584e-03 6.747e+02]\n", + " [ 2.301e-02 1.042e+00 8.549e-03 -1.704e+02]\n", + " [ 5.469e-03 1.060e-03 1.007e+00 1.046e+01]\n", + " [ 0.000e+00 -0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4FNXegN+zm14pofdO6L1JE0VR7Ci2+6nIVbGA2K7Xa6/YK9jFhkqxi9JD770mEEqAACGkl91k2/n+mNmd2exusgmBgM77PDxsZs7MnCnnnN/5tSOklBgYGBgYGBgYGJSPqaYrYGBgYGBgYGBwPmAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQWAITQYGBgYGBgYGQRBS0xU42yQkJMiWLVvWdDUMDAwMDAwMqoHNmzdnSSnrnY1r/eOEppYtW7Jp06aaroaBgYGBgYFBNSCEOHy2rmWY5wwMDAwMDAwMgsAQmgwMVBYs/JQ3nrsQl9NZ01UxMDAwMDgHMYQmAwOV0lff4YqZGeTlZNR0VQwMDAwMzkEMocnAQKXdceX/wztX1mxFDAwMDAzOSQyhycBAxSXUH6Z/XHyEgYGBgUEQGEKTgYFKdrzyv7W4oGYrYmBgEDRffjqJ1Wt/relqGPxDMIQmAwMVp1n532YITQYG5w0D3l5EnXFP1HQ1Ks2WTYv58etna7oaBpXEEJoMDFSiLMr/h1aeG7PWBX99RuqB7TVdDQODgHwx9SG+mPZQzVVAypq79mmSN2kinafMrvRxv3z9HOsWz6qWOnx5Rw++vL17tZzrn4IhNBlUmeL8Un55azPF+aU1XZVqIc6q/N9y88marYhK84ffZseEm2q6GgbVyKnck+xJ3Rpwv81WSnLalrNYo8qzfssaXnzsGqTLxaCp8xn0wfwaq4u1OL/Gru2pQ4mVtx7qR1Z+jt/9NruN6Xf05K/Zb3ttb6QWly5Xpa7Xccos4h94DoA5s1+m2Fpc6Tq7GbCulAHrbVU+/p+IITQZVJov3/4/dm5PYu0vBziems/aXw7UdJWqBbdPU26XxmfsGvs2ZjBtQhL7KhDMXFLpSDsdPWNV+dtRZCli39GUmq5GuSwZNwJx5S0B909/ZDiMupWjh8+t+0g7mEJyx0RmvvtfUl+5m+v/2MuqRd97lXn9tk688+Tgs1KfgwfT+GHKGk6l13x6kL/uvpDL5xWycYz/ez+UvJ6B60qIeeszcvNO8dmEARxK2+3Zn3nsUPAXc2k55L794FG6PDODLx4ZXeW6u8kvyOHT+wZy5HDyaZ/r744hNOmoquZkwcLPOZ5RiQ//PCYv9yQlyf9ixUewd53SYe1dpwgCHz+wtIZrd3rk1Vaag2zapFrPe2D/Dtas+AmARV/sBCRLpu8u95hS299De3c2mTu2L86R1+J0OGq6KgHpnqIIw1ZLod/9wxblAWDJ8a+1qCm2fvQqAN0//o3GGcrAXZJzwqvMlRsko37KPiv1Wfbk9+SkWdk8r+aFphZ7FRV1wywoLC7gyAnvscBeotj9I0vh1+dvYfCyfNY8fbtnv81ewp5d69i9c02F13KUaN9NeNJCANolZ572PcybchdDkvJY/vStp32uvztnTGgSQkQIITYIIbYLIXYLIZ5Xt38lhDgkhNim/uuhbq8thPhFCLFDPa6L7lyjhBB7hRD7hRD/1W1vJYRYL4RIFULMEkKEnU6d1/68X9Wc7A/6GJvNQvNJb7Hp9oql/eKiPOZc0okvnr2aYmsRy1fOPJ3q1gjS4SCQF4Gr1EZuzknen3I7305/hvzCbDZ3T+Szl244q3WsKlJNOSBd1ZsRPPmuG9n6XS2mTUgCzIDA5YRpE5LUbb4UF+VWax3+CXRXm232qWM1Vof5P73LigXfVlguN+t4uftLMoPvg6oDl9NJTlFRwP0h9WoDsL+FwJ2Zw1msDeBFxVU3EVWGjx9YxrQJSVjjB4AQHN/rImn4NJYNeTeo45de3JGf/z0UgMycU+WaxpwuidNVsc/UgZ4JAOzrEsMvd4xixUMLvSbebqFJAAPmpQMQl2n17HfY7Yjrx2G6YbzXeY/syebDe5M4kqIJ0NZ8TUDKjVfeSV78aQ17AITmZgEQYw38DRgonElNUykwQkrZHegBjBJCDFD3PSal7KH+26Zu+x+wTUrZDbgNeA9ACGEGpgGXAZ2Am4UQndRjXgPekVK2A3IB768uCHZsWMi0CQuZNiGJvesVk8nedSdVzcky1iz6hk3dE/lzxovM//FNtnVJpESnBTh1Qun82h2WTH1yBFNv6eT3OgCZ6XvpckTS98d9fP7gQOrf9TxrF31X2SrXKBknDzJo/TNEWjJ1TpiSSMtJBq1/hhPHUhj59Qb6vD6H9F2biCqFwTN24XI6Sd7vO5N67+ZOPDax89m9iQqo7mVU2pyATrs/RwjKOK666DzSf06o4sJzS9NQU+zfu5UZ797ts93fgOIm58TZ0fr6q0OLJz+h3oOvVHhs4akTSCmRARyZQ+LqV1s9g+HLZ8dwsk9ftm9a5He/MCuhpU4zCLXKpUWaP1Fa8sbTroPdbmNVhUEY/p+Xe8JTEQ3TBYmrTrFl9VyyBw1lxlNjApb99fJO/HZ54P7cjUt9IAJBlO0K8uPbek28S9RoXKGrur66NluJ3/PO+2QHUkoWfLLDs60oP8vz22JShm9XNYziZqdSh8q61R87nMIGVYv+T+GMCU1SwS22hqr/ynsnnYAl6rEpQEshRAOgH7BfSnlQSmkDZgJXCyEEMAL4UT3+a+CaiuqVdbSQU+naDOnokw8iAswmJJKDf31LdCnk/zaLFk99QbgDVr+jhYla07UO+qKfTnDRlsC3WJCjCFhCQosDiglh26qvKqryOUURNtb2fwFrVH0UKQBAYI1qwNr+L5BddMpT1m5TZlgloTD34i5wxXi+feVmr/NdslVy5yLv2d6apO/59L7+2O1n2UFRfXVHs/ybTk6HhlnbtNbmHiidDiJfuQeX08nvX7/oJaxZC/O8js/MyQ44wP6dsV99C70/XsmOlX96bf/jvbXKgPLxTp9jCnOr5sifnXOC5I6JLJ/5alDl/3h/fcA6VERBbgYpiZ1YMUAZlN0CWE58OwDsTm/zbJGlANsZNNnWXrcXgLSNi/3ul1I1eUpNQHHoUnNkHdlTqeuV2m24nE6KLYV89Z/LKCzMZebky6h71xMs/XWa32OcDieuctrA9s1LSO6YyA/XVjwJS/ngKQD6/Ozfd2zjml/olAaJaRWeCildLBvyLqdipnCykaIB00+8S61Kf6IXmqz1Yz2/7aUW7bfdzrQJS5g2IQlHqQQENqvLo5UuzNfMn1J9EbXzvL8LKSWucjRke3etZ/HPn3j1NzKuEQDhxaEV37COXbdfS+zdT1XqGIBfru5G0uDESh93LnBGfZqEEGYhxDYgE1gkpVyv7npZNcO9I4QIV7dtB65Tj+sHtACaAk0AvTtsurqtLpAnPa3Zs71cXC5Y8Okuz98RJTKgKOey28gyKbNIi8PF8XrKdlPjBsyd/gzfP38jpSn+G930Z67iixuVDnHzxj9J3rOGwjxdZ64++dol567vytJZLzP3qvaUlhTx44eTmPPhJPJTdwWUfCUQWarNoaxFysAvJLRT3R8aLtjO17cksmxA4AZT+74XGZJUwLJvKp6xV5XvHx7In1885r1R7ZClrFw0S7BIp0S47DQ9mgTCBcJMXDH8cFN32k35nu8eH83CWW+x5Kf3KdUNSN8+ejnZgwYz86Ye5OVlsnljzUUrBcLldDLrg0lYglDvp6Zs5s+RXcnISAtYpqyAWPTjR4DOpCmiAIGtxOlj5izOqZrQtOCRqwGo/9zXXtvXr/yZZX997vlbu15EwDpURPaRfcq1VGWNolWAHZ3vAsBZ6t0v7O/Xn1m396vkHQWPWxAKtxXzw7M38+0jl3vtd7q1IRJcJqWw06K968JjB4O+ltPh4GDX7nw7YTC/PHUD/X9P45f/XkOfJcqkMvrVj/0e9/M1XcFuD3je7IkPANAj2bv9zvv0DWbfN9LLj6xDSvn97sEPXgrqXkDpLwJruiSlFk1oOtbcrbHTDth1YLPn9x839UEEcA8wmQXFBZpWs1mWYqprVcbS++1VnZk+JrDgaL3pDpr8711KdG1Vojyz1gcr1/c1r6JLWce9dhplVVwuGDYs+6V6ThQkZ1RoklI6pZQ9UISffqqf0hNAR6AvUAd4XC3+KlBbFbImAlsBB96aTM+py9nugxDibiHEJiHEJoD8TKunk7OFCAatfwYhHF6mE5OjhAvWPkPDqPYA1HIKHOrTspcU0eb1OfT8YQe2UP8ixMDZqQzaruyL+r9H4brxHjWtSUKE+pHGW6vuOPnNf0ezbsmZM+81fHYGbfaZWfHt+3R+fxFd3l9EregGvuY5qZnnrIWaL45N9Xkw69phbtMY+m2BBnl4PW+X08nX9w1l8wpNPR+dpQm31cGa+V8yd7oyK+r5Vx6t35irbF+7AIfdgdtbo2lcRLVe103La5K5cOVDtD/4M0377WHEikkAmAuVB+QoyKbZs5/T+MmPvISmqMNKz9Ryv43N1w0n6v8eIq+K2pQzxS/vTqTbtEX88uiVActMm9yHz9+8mqKx/0frow4233mj1/4ZDw1j1W/vsuyr90lJ7MSv7z7v2XfApQ48AXssbaApzjkVqJBftq79i7TU7cRE1vO7P+6uJ2nw8FuevwPVIXDdfMnbppiqk4ZN1WkVwBUWTdLwaaybU9erfLgD+my1cfTIXrZ2TWTTmj+Cv1gQhKnfvkuE0WPWNvr86W3idJYqPjgCzRzksmoakpIsb6dwf5w6Wshnk5dzYGcqAP1W5pGdr8yHjxVr7yw2z8HSn6Yx48FLvY7vsl8yaN0z4Czxcg0wOUoYtO4ZTwg/wPEjqfw2/TkAWr49na5J6eTpfN3S2ihz9cza/usaq/M5qgiTQyKFfzO70yFxqMKJSUJunFLOVKoJfzGfa+atxN02Bq17Glx273s0w22vDMJapPULlgjlHnZ1Cmf+jNf48eouOB0O+qZKLkiW2G1Wkjsm8utF3hPUcFXNUJir+Uc5nIpWvyjGezw7enAPe3eup7LMu6Q3v73+pNe2I7t3sPqHryp9roqInfC/aj9neZyV6DkpZR6wDBglpTyhmu5KgS9RzG9IKQuklONUIes2oB5wCEWD1Ex3uqbAcSALqCWE52t1b/d3/U+llH2klH28drjsOMwQbivAbFY+GuFUPuYweyHhtgLkKcVxL7ZQYlK/J7sugsEaE7wTnk0nNEn1yReJ+KCP12MtyqfvrweJmhT8jKiqqO4MADhcduW5CKFIrurzksJEuK2AUl3eFJtFvV+d0CR0I4vTrs325n3/Conrw9j4TQg5qqpY2vL4ZFI/PrqhYr+CYKg9+XXavP4TLp3z5+IFs6g9bjKfPnCRVvA0HMGP7N9FzqljFOZlM//7KV77sk5qA1GWzomWWOUTjopt5Nlk083i7U0aAJDeNpLGx5WP8GRq+dF3ZxvbYSXtRFh2AcvW/sHrz/oGRoyYX8wFn+8jwqbcQ6RVe84ul4ve8zKp+/gnZP+uTARCFv1GYaSyP75DbwBun3KB94AiJTjtJOZpQk1xXuUmIhHjHsF65U3QrOKoyW/u6Edcg1kgvSdZ4OSKx1v7Paa4KJ8lv3mbnEJy3FpY/9+a0E0Ji/K1icjSx64nwg4nnnucvLxMtqxVBP8fH7mdLx//vco504R6Qb2pCOCvEf35eMKX2N0aZKnzoSnRfHGceZrE8uUrt5DcMRGLtZiffv6cd/59IQDzPt6BrcTJyu+VbtoF1HIoZiqT8B6sGz45ld4LjnhtO1FX6asxKW1DuJS+J9RepGzXkTTpatq/Poud6+Z5tmXs13yDOu1Wn1OAETCmOAhTuPr+zQ4nfTdNAen0EnRwOYg49TL2EkUAM7nAbFf6HpNNi/CMLdYEqN2dw5V7UftJ4XIqp3K6+P2du7Dq/Mj67VTelUlKWrz0FZ33Otm9XjOv7t2/CoAOAeIiThzS0gtIi3Ku5EbeDyT7qjG4brij4mehw1pcQMsjFtpP/5mCnCz+vKw7+TlZFI+5kTrPv1apc52LnMnouXpCiFrq70jgYiBFCNFI3SZQfJB2qX/X0kW//RtYIaUsADYC7dRIuTDgJuB3qejvlwLXq8fcDvwWXO0kZruFbtuf8airQsNyaXJ8BX22vEHiBQ2IKVK+NHOkMhVpfkJ6NCZ2nZrXps4ibDrBQo9dNxtz6NShTlXWi7AFmOpUwIndm5R6l+lzl//+MTPuH16lc/pcQwkKwSk0IcNerNxDTNExwlzr6bPlDcJdGz3Py6br4N3PxgSkN1SetGjVyrO/WBcJUpqaws7O/8ZpjmRXJ8VEIQuzGbqwkOE7g/Pl+ePN/7Hyp2/UcyvpI1bNncX0W7tSqnsPBTrBznJASTTYOvWU5nNQRaEpP/cUxVfcwMkhF/PHxFG0eOEbNiz4xrO/MEfTZRcVaAN7CMq34NJpS2x6M5fJ3YFqz8FSzdF1Cz74gGkTFvt1rA4G4VCFZ7OZBuP+w5WzDpJ+/LBnf1GBr/YntFS738IcTVdvS1C6geKECI/ueEe+4jMTHR+Op9tSB02EicIOCZ7jTTbvgd8f+3as5ZfX7vfaZreXr12QUtJ3XSG9f1iBdEs1bgHOBQvfv8/vcXMnDaTx41NZOEMzN5sbKrnABq17GnD4CIEdhu7zlM3J1LwTQmOUSVZx43g2XnshkeMeo6gwD/Z3wJIXHVTk76ZlczmwxzvBZoyq7WSNlljTUpSPNfZqnLI5RYXqfFOi3btF97wKtT5xwDfKuRffMJhO/3uLMPNTij9OtiKolBQKJeJt2FTC1R64oYjzW9cTR1KZfv8QCvKyyW2gaFZCQ/OUvnrzG4SbtxJbpExsD7fU+qm2R5TnmXNQc584vEVzct/fVvnGsuuHI6Vk9V9aOwXIaVD+ZDgjfT/JiZ1I7piIyeYgtvgYSPV7VN+lyWVn0O7jHi2dyQVmh1LHEJv27dcq0H93yvOIKNlF/ZMr6LP5NZocX0HCqR30mLmR4kxNo3ewhTLomBxav3BS914P79VWE7DZSlk2Z6rXPZxM0/mhWRQB2OyCnMx0Fnz7MqBppQAW3taGBde2K/e5ABxIWeb5vfa6obQ+ZOPQsCGebQ6HJiRmHKxaXqjczOP8ceswLIX5FERV6RRV5kxqmhoBS4UQO1AEn0VSyrnAd0KIncBOIAFwq0oSgd1CiBSUSLkHAVSfpQeABUAyMFtK6Z5mPw48LITYj+Lj9EXF1VL9VkxmzC5tdlK31lI6pM4mtvgYnS+KoNvuzwCIyVA6g6w6ggh1chJxWPtwSyzqAKybGTocmgOz5UCq57degHKpNm1ToXeobvK2ZRwvk2DMX/4oV4h/dXD9/7xH7yUnyTl52O9+PYdTtpCyeRkAh/ZspKCMycdtp9dHybjvodvuz4h2zSW2+Bixjrme5+XK0nwbHLr7LVLV0i6dc3dWulI2adhUTmSOp0R1LndENCBp+DS2F7zpKet0aJ3MolVz+WlkIj/N8g4zbvv5LyQ8qWh3Vs7ax/HUfJJnHmHgZgfzvtVMPTm6cG9TiNIRm52ao2ZVo+eWfKj5SDU6oAg96es1B2aRrk35moVq71K7rvZs7CXad+FS/TiEU+scC3IqNodUhoNbW4IUXpE6u9YsIrljIuvmzsBmK+VkhjI4fT/5Mr7/V18A1i+ZrTinelQjWh23zn7H8/voAd8s2NmttQnDiSPaYO82k0qkZ1LQlgQWjkhk+YBEErJ30uT4CvpufoOYwpUkZO/kVIkm7HX+bj3JHRP5ZmzXgPfrHHsnHb9MIidDayeukvKFreICzTk/zLSfJsdX0PrAG8qglr2TiDRNM2IpzOfIoXVIl4vE9eozma4NzE71XIqGRKdVABAmhNAG0rysdM9vd5sUwkTTE4oD8tePbfHrgByI6AmPYbvOO8FmfpxSh9LE5gAsG/IuXz66mQz1vKXOTiQNn0Z6y3cQbqGgWHteJquvhqvdfv9RYXoOo/QtcRn+NWQrJ17DwCVZJI8Y7Ln3+JBfPX11jO1XT9/jiNKEpgLVz9qSrbWTWnNXafsbKUJaaaSZ2Td0p87DU5j5lJYaxdrMv6l2wcWdSe6YSOo6TQAz25X3ZpKlRBcfp/PuLwiNsBCiOvM7VQd+E5qmKcSm1TVMJ/QIp7I9VvxIdNEcYouP0SF1tuce7evWecpa4hWnbbcgBuByaJOtkuVrPb9nPfAvUha05K/PPtTu8YQmjJutSt/T64BkyYTLaf7yDHZu9I6kbLYhjObJ/scdgJ/vvpRtXROZt/4Dz7bmGcq9hetc0bJPae1k8z2BoxfLY89VI2m7OZPl111ASPUGO1dI4CdwmkgpdwA9/WwfEaD8WsCvGCul/Av4y8/2g6jmvWCJtmRQt0k2Yls6LqHJOu7ZAEBuhja4uVyKqJ0bL4jLVz6AwlraY8vXdWhuDuiSlK1YN4e27mvoOmW3M2VRdJmDb7qXfKBxiiY4/TF1NdlHJUtnpHDF/co6QdaifEIAVwAHxJNH91OnQQv/O1UKrruVEBeQkkzJdbexqpmJyxft5uTRvTRo1gFpEoD0mNkAjhUcwW1E6r5G0XZI3UBZqus8nTpVv9scKUu055xzMo2ytx+IkmIL0fFKTzjvx6e56ygs+flTuHGyV7llQ94lSeeQa4vpTdLw3oitTjrwOwDHD+zA7THidCj1jSuSZNdWHmaxNbCzaXlE1dPMOw3VMTx6sSaE1HWGe36LfF9NkUsXHWW3aEKTXXXCNek0Tbbvv4LrH6hSPfV4nJfDlDfhjtQBaH70EdoC8Y++zIp6L9PkFERvWEvP+WkApB/aQ9z9zzK/6xRkA/WJ6urodGnT1Kyj+9F0QQqh+RZ+++BhQqNjqNeoCzHqdpP6UbukizD1FOZSO81UWbd+3meec9TN+ZE2aU42N/LN4t53R8VJLk8e2avV11Z+tObOjb9RS/0d55xFh9STnKwLDTNnE2GHLQPiAKWtrPj5XVpMmUkKStgwQILulQudwBEacoD6h4/T+Phqjje+gNKweM93CVCUnYFbvCzb3MtzQAZIT95J00T/wqPT4eCLB4Yx6K4XMLmDINQJQ3m6XZM6SIVZtecbUhL42fXdNIWNff+rVFbJuwEuJ303v0Zq+zCglI4H/QtNXfcqAkGcBSWKBxCl2rVMFk0wk1ZfHUBpkSboZjeNocFJRagwW9RzuCTddint3XREZ8ey+e8DmqeryUkztYmXW2hqdvJ52uxT7iO7SQKd5itChzNT0xq2UTVgobYAqSZUDVTXdTn4c8mud0ynlVKv6xbEAIp0wRXx2zQtm8V+Nc6wSI6ujcet63fkatrf0BLtXXbZo9z7oRO7PAOyvYLITXupjcQVijDULrwTilcNFERqy1O5OXX8AG7DTOujFVsRZr08npZ9L6L/JZqgv7atZPQm2NLMxejqnT9WyD8uI7hL2KnbZBfddn+mtGF1u7NUa3wFJ7XGUxSt2vpDNN8cp+4DKsxXtTO6d59/ShOkSvXOdnlar+n2j8JmY1X/RJI7+kaTuRO5ZR8FEBzema2FsaomJvd5stJSkFJSovbQuZmH2dzD/3ndhJRpla2Oupj33ZvkjLyGabf39NySQzeAxzu0gd/sLqDruLMLtYbo1JkxpVnNKaITTk8cUzoTxR+gjInC5aB2rLYopV57F6naQqWA3y7v4nWPLpP/eYCU2qd+SqeWdptM44rxzKBjwqrWLGw6P6UjjZWHUtCruVagSKc90mV8dgudLpv2bCzFmvnOofob6M1zuZaKTVD+cDocJHdMZGMvxU/MZPY/6prMgmiL8q5tIdBEfa0HkzWn0LwMpZNscqjEM8gIl/SYqu32Uv4YO5I/brmMwkytTeWolhghXbSfNo9Wr8+htFTTZgr1XGabw/N9ywCdttmuaj0sFWs1/HFkrqYJdFUwMBzYs1D7Qx24QxxQoEp7oYVaHTLSNvgcH2nVnrW+vlF8T4fU2UTrtApOh4OfnriVpUM6Y8nTmTbtyuDmcjo5UYdyHZBnPnkrhdeO5dcPNEfZIt36aPMXfsyQZTmYb9WE74qeAYBZ1XhGFGsdSGhJ4Ol+bLFOGJFapxFbfJxwZwC/BpU9nZVvcF/bUNqlqt+YTmgKsWjCTdtDWrutrX5ODt26bC7dcXHZ6kTE4cKqWuJCOirmtuUXJCLKidIDcG3XJkNurZHJrpsw6AQSl8P3HiNK/AsL4Vbtmfrrhermasd1SVbqGKKbGziyNGtBkwwXScOmkjR8Go7wxooWP6wRScOnkTRsKq58TaCMy1eue6yOdq7MUp3JXDc+7lw1l809EtmxWms7fz79b8/vIlWDZTfD4Y7KZGxnVy24JuOg9uwAsirIq9bt2zXETXpRqUeB0sdGhihtyWESPi4qZ5p/nNAEYFMjEKQ66QFw6QZ4a7bme2Jyd+B6842uY5E5yuCmTzB2cP4P2vF2nbNrnvaRmlQ1rLDZqas28LLZaZ0Of3MNZbt+gP79w6c4Nepa5lzV11OP4pxTRKnf+cmj+5V1oyZf5vd8+usWZSgms147SzzCkF5jdKpA6QBdAnb3VEaLWidLsKv9QlyeppWy6XINOdx+pLoUC/ZDyrn8d6oQemyb53dpqU5wK1U0TmFOE+0PlmkxrkDaBa1ckc4k41TNYA6T1GS/SqYcSBraid/G9MauM2OWRCovolho9TEVaUKRyNc5gqvP365LcmfT+TyZi7UO3k3XNMlfj19PZdm8TFkvLMaiPOfbXhmEMOM/UidOGU0Ot9Ryt+ye+S7ZtdqTNPR9MtOUdykknkFGOF2e5yhLLLTdkU7bLWmUZmuDSB31EylM0M5blKup7M1qZJEs0QYue6b/iLi6OcozMfsxDwE47CUkr1yAtdD/wq4lEdpAmpdfvgN5RorW2bv7hXCdgiWiSKtvaJ6v5iW5g3ZpjIRRAAAgAElEQVS/cTnafmlVfV50ZV2OUjr9soWGp1xk7NI01+7rmuw2bBFCmXC4vJ3ShYCxT/Wl+0+Kf1KHaVpIdkSUpts9VqgNbp53pr7HQeufAWxeExmTo4Qmh5/xaJr0ztJhJeW3GeGyekxXJtdJwuxqZK36rk8EcO20qw+l/X47R5uqPjy6d63XkGQmaPWJUZuSSxdQEVqsla17Sn2ODhdHGvUgadhULEcUAa1+NghVOM2LUbK3p6d6R/JG79f6LLemR28mk7naBLnXYt9lTuoHcEmMsugmRrG++4sifbeF6sx75Hl/5303TSHcmu31HiOsWfTd9ApCN4kLsfua0bKKtXrbSrTnmPrKSyR3nIzr3hc826xpWl997KQyGXaYwaQ+R4tu0pv9xxyvOh7cvopAWHXj3J61CzjQrx/f/3sksSgPIsSlBWidLf5xQpOQ4FCdmfWaJnQz95JcTcJ2Nx7hlH6FJnfCOf1kQp8ezF6gtY6QAu0aZof7/NpgnrJLN5MFrpzUXQmi0A1owgRXTu6BXfcR5xxVPtLYQovHXGfTZZTe8LMSudNdNasc2rjM6zr5OZqqOSZM8aqzRmqqf5fOpBZZXKrWBFAFv7o6oan+KZ3ju+6Dl6pPUrhOXW61agNhiL3I06lGWI8TZi+i0X7dMg25GSR3TGT2A5dQP0bp3OKKtE7Kvd7YBeufAVw+Wqu6sZo/iSNH6wzsqmBXGC00bWEQSyfoaZQpab/bgtPPauMFOkE5RGf2C1EFqLwYrbN16gYApy51Q0yR8uxC7NITTQaQnqep/fU4rYEdmp02byEzOj7cIyO6fWpcdicL7hlGQSPlOUu0QIeCogx2dRoPwkTKSmV/rWIQajSQyeH0tBOpm51aT/quPCx0fmpFunDwsCKlg+2eoj2vXmv8O6jHqrcanelf85a8YSHcNZmkm4b63Z+t0wjElXq/9yUfPOPJNQZg15lBTKXK/UaWKhMq8B7wTDm+QlqtbO391j+llQ0p8hX4zCe1+43I1OpgVt+fyaZEVcUWH8PkdohXv/mQMBP1mvoZcQGh6/Kz1WhOIfF8++7+LtxWgEnNTayPKA6zFXgCYurqAtaanyi/zRTEfkH/Ta/QIGsr9bNfZ/BaJRzdraUpjvM/FFlUH8jdXSM9fVuIRRuAw3Uam1JNCU6RqtiQOjN44wzt/cUVuyPfXBxrcTsA+S4tXYZ7sitckDH4Igqv9F4KKuGY1tZtqknT6dRN2CrwjwtEtK7phviZ/8X5Oa2+XLfN3nnSNvZ5gtLIuprPoRCURCawsc//EMXaxRLUzzXCDk61aJZF6yeP79MCBLIa3kJ+fFtS2mkpQ3rs0NpqswKlk4q0gUltM3pzZLcN3pGOh2Z+5HtTKsW6yc7W1cqEr+eqdNoeVs4RWQNpDv95QhOadkGvHRK62UupLlW9UBtE+8Oa0KQ3FUh1phSjsw6YOmqZDVy6lx6mCy11D5Qm3SB2NH2TV12bd9LlalE7RAE071jHS+0crs4eSyNNON25pHRanvB47Ty/PHkzJf93L4s+fdaz7ZROPeoe+E0uzQ8J3ZpUIersRAAm9dnsbxuOW8ve6KAmPbqs2kOJLlTt/mlax2XO0jq0oWue9HSqgza8wuC1T5KeqKVjyDyi2Oe7Lj7qccTrcUhriHmqc3e4rQDhkW7V2aR0Ikt0Tu4FWqN1q6j1mkRRznpUnuMcDvYu8c6Vo89b435focXaMwi3aO+6/glle60irWOJKNHMN0Knsaujyo4RJS6PkACQj68JYd6bD7GvZy/+enUiJUUF5J1UTMXS4UDa7ZzYstznmNbdE9RopNcIj91LQvZOErflg3t2KCWZdRWHfYf5LZxhMSAE0hXmUfWbVKE1xObSTGo6oakox1doCinVevuWP2gOrlEFlfcpa3PM/6C993XFNNX6gH+fm7BSTTDXay3+uKI7jafNIa3PQM+2CJ1MHKYO3GaXNtDF6sarhod9BehGWTrzja7vqZvhWzcX+gmB1t+EqBGHJrsLk2omC3FqDsh1GkcjCnJI7piI3Y/lLm2flkgxco+iVdab6U26NhtWctQTURxZspqYomOEOKiS460rT2sb0TotXJh6P20P+29zDdTX03mnlVBVwNL7UkVadZpp3QBqU2euZt1ENbbMXCJp2FRONH0fTGGKUGHSvudo1XwXr2vSZROOuqmtvnd99gizpfxIzEBE6T6FsvUNRLj/TxtQXR9czjKTSCd9N71CiNX3wHC75naRa9HGwcwD2xV/0eHTsId1ASHIrtfD77p/4XnaN+Qe5+qUcy+JGwNHAhfqom5rxWhekbVPKONM47OzPrQX/zyhSXrPxN3DlFnXgdt02iGhi6RyD1591miCUJTVt7Muykrz/NZHx0UVaecKUccFvcnlRKbmlJqXmc5vNw9AmAQh9mLaHPgFYXaAOxuvTvsTopqeTC7paeT6xTStauI5WwhErT3E5h6TyV6tRVYc3LzE89utVRJSU7z0WqU1noQt6r1JkG7Bz+70+HvpHdNNOufQtuqgFluoFWi1w3upkLIInbNUkS4KxuSn88pM17QuETGZNDm+guYH3yDKupo6OcnUTtNm7iE6M5nbzyjEqflqlDWTLnr1AZJXKvlw7FnKs5j28vW47v8P01/VrQquExJiC5RzDN+hnStS568QX6DTSqjq9cbZOnNHvlbHRurn2KiMheoKX/mHlp8r2cJbfbWYQ336c2LYSAA29utKStduyE3ajNHlcuGw27hsQjdPNNLekmmeSB2hmlJD7C6aZkL37e9jcpT6mGwSd73nEfzCSjWhSeRrgl9Cnq9fR/vdWtuI1rWjRqf8C0BVIT5Xl/TSTxSq1E0IwnV+OW33+w4o+kEswqK9ywi1LesdXhtmlC9460O5m/nJU1pQpPlF6r/XcDW3Vd0cJ81URcDgtdqEI8r8vkeLs7eTMuPf009zVLHo+rYD6hhkCdO0FSEW7dm0OPSZ57uokzOHbrs/IyFfEfQrS2Spdj8tdAJuVAUKmda6si3V3xG6/F4xekHWpvUXbm1YaHFgVUSn3Z/7ESgcdN71Ga3Sfd/flpn+l3epq3a1sbpPxlyOY3y6b8zCaeFP++QmtvgYURa3361yn1GWk4o/mcVX+tX7BxVbtP651G4L6C9adrteo+o2XfobJ7d0C6UwugmrLnjTa2kzPVadxcSly221t6OiVuyedpZtc/wDhSakNgN2mYTHTBafrX3k+jWVGqaXH1EzMMX3pRXk6ezduk5IPxONVj/0UJ3KPyNH87U5MXQk7bfm0yztIYaueZwW6Uto0WUZ905VEsVlW3QO16p2SJ95W2/Lt6kmCJMLjja9nvz4thREaqroEp0pSJZqQpPw0+83UiV7E9Buv5pcrtRJtHqbmbW0smHW8geOUw0r8IPQRbAUH9UEyhI/eXhyddqyOPPPdEidTYT1GAm5imNtaLH2HvWaDPf7iSqFJuogpHe4zjyWStOvlsBdjzFn8lD2Dx5CcsdE2i5R6pN/VJcXR9dRRvmZWUUH6Nzczp1NdbOmuNzKTedXz3yPHD8mMDex6rUdbbSIyp/GdCe1a3ccOj+zrtk6R39Vi9r6iGqGzduHcPuMuTWfLgeNslM9QlO4Tg0fnq21o+h8X+2RuWKF3mmT3VRL4rJ0RjLHU/NZOkOLKooo1OrYIa38Cl2QrN2bP0GnOik5qvUFnfbogiDUwadBlv/Bov23mlDcdq+6CKuuHZXoNNB2NfAgxAWhqk9LqE6Low/w6JCqmiOruBzkqE3+65tQ/rzJLw11QnWE7rOqo7P6uF3V2u8PHEHZMGub5r/oEZxcNMje7rd8wfrAvjcA9XQKkzBr4PZbWzdhcvso2T5/u9xz61k9wL/pVU/0PGVJ1m2tBI7QKI8mMrr4OI5QpU20LPMN/zDMWxzoptPk24sK6L79fW//OVXI7LHtPa/jGuuWR6mrfqf+fLg6TfgfuzrdiRQRXkub6bHozKsO3ZhWWb/T6uSMpRw4VxGAVDUVUmj+CE10s/g4nZNfHf8CcLnYc7TRT69K1p/LPTtoo1NLnyry7UHa7NeF8FuL2PTbp2Tu2kCULtZYlrgTk0lOxUO9fEhYq+WHcubnsWzIu7jMmreVnc4kDZ+GyWmnYenPPucyuTTNiz9sZghTn13ifq2DaKhrHAl50qucz70dKl9mD9GZSxy6hJNZDuVBHmhh8jy/gsyjnrBspxpBYpLgVB1ULbpKdNI5j/fc7WcU0Gmaju3djjvuI3qr9pG0VAWsBIeWBC8yU+u1432tMwFnhLX9zNzLriflj9KwOD4b/zmD7+xAnec+Zu30z/CXkzrjgNYhyWLtYl2Slec7d2wfOqjb+m7RpL1QXcdvNyuzUJc5lBB7MS2OLORw80twmpX7d6vhG+raUd2TpbhH3kaZ3t/SyTqKWaEqWovyaLxuJdvXzafeZCU5X0hMHMuGvKJ8+zuVWevhndkcVr/9JukPV28F/LB2fF8iN++kx7aKI/x2jutJ1y+30m+T9u1bwhWhHqBBJXKPRqg+Wm32FLL0ixfoPXo8/Fdz3u3jbAQcI8QJYarwEW2x4X5nTU4Gbv/bOwvaP/0JCXUbUjzyKgD2XTWC9r8Hv/7emSQ8WAuvMCFcdpocW8mxJkOQInA0X+OkwIkYT8VBPZ3Q1vqId6e3/Ynr6D5F6WdP3NCTtl9uY+2QSO78TBFyS0tLcWe4O9gQWvtZ023rAyOo37Ef/774dr56+hr6z9nrW0ileavOkJJMInhFFzfI8s2XtnZwCMcjTFiEt4B57Vrt/df/bj5xBarfp0AnOEFRWCp18E+tAH1e0rCpMFvgzjnjXtoM4P6PR7D84l6EWh3IJyZ70tI4dQl/3f1Ndpy3b93Z4B+naSqKaYqzRFOHhPkZM1sdrji/S3nok7q1OxD8ufJKfaULiy4xrT0/l+jH36HVt6tx6XPKqJozs+5SDXXSvrBaylWt2nVLIByyKKO1yaVpXvwRSBDS0zQ7uHKbRtVncxsBP3/Pql4mjr33HJYwSEzWBEaHbs2lzhlqdnGdUFeqLuMB0G2VIrQKqc3M43MDDwC+6MqaNOE0r6WmtdirRkL1Wa49aL2AfDY41OIybCEtWfvlakDpqJPbK+95VxdNY5Q7WufEavXtxRoc91/v+Fxle1Gkpra/cKWm+Ry65nEuXPkQAGaH7/NNyNGeXdmwYKcJYv0IlnocP3xCzLyfvbapPqbsuLodS69U7Bypk5SFdhtvXEN8rQSGjvqXp7y5uKTcb7/xieqfsa4coDz7TfePIDElmTsf+4aeT7zv2W/75l023toDZn9GYkqy979+vsvPRJ2ms2uEDRq+8QPz37qPGN3rj1BNVyapOQI3PhEw8RPrBym5IuYPNjH4rZ/p1WMIzZu1Y1kfZcgc+ezrp1fRs8D+i7yXyhmxYpJnPcgLVz7kWQ8yWJZdFknM8nkcbOT/uSU/di0Z0/7HTbe/TMfkPSSmJHPl4z8Qs+wvj8AEEB6utVfLmBGs7wALr2+GvZZ23mvHv87FFytO63e8+CuJKckcetk3C33+F6/6rcuxBr5tdMPQWtz5+U6emrrdy8e3LHEFap+Ly+MuEmIvRuAirXnwS4Gt76G2xUBRzk47W36aTv10K7Wz7Z71WgFcOqWC263lbAtM8A/UNElMlDhvAF7E7JTlOtFVlZO1BK0zKm9r7bXP95j8WIhSFVedZmlOnE5deLpQzUJNA8wMu63OJmmIA8yhvjtdDpw6gaTHdjX5WzWNJU6TxKw6Om1rJbyct9386+2lCHWpkMTvlWTvyQ8+51UmbpPms+Q2F7VO187VfvYWytJIp/Wq5z/i3Iu1F0TTd20xuCR/3TaeI2HX0vFSu0fTJOvUAdScSX60cA0q6YuzdlRDBs73nlKmv/0wTR8OrKpfd/+NWHYOBJP2Lq0h/Uga3g+T007vzUqyzy67/I+0sthXaNo/qDF9Fvqqthqq311MEA6prY9W/MFk1oL6ebDz3z3p+rnvjFfPjjsGcWNPJeLNPb8vjBT037oHa6mNxHB1NvGGspQA9/kfKMKKbXQ/8D7bu98PmBWHXylBOumxfSrRlUzvtH5wPP1XKR9TyuSruXaCct1f351Ih48XYwmHu79Swq/1GdLadxnE16Ob0vGycQzsdynd+11a9tQAtOpzBUc9iyT4Z0cb6HYA1k3ox+0Tp+OSsLlvF58kgmVpkeQdbRkfwI/EH3kxcMd0JUdX2cxv985Y7fcYaxhsvrELg7/1Nb2E/jGTLYs/o3HXEQwaeDUzXvkX9dp0o+ULSpTrkmtacNGviokyrb6i2V3SC+rlCLqlSTa2E/RNVdpbbl0ztbN9Z2fpdaHOCw/RedCtRERGI6UkfcbrsOQrAA40gTZl1mVb3D+Ei9c7WNnTRJ3+F9L54yU+5104xMwlK53sbg73vqP0O4HSTV005mHiaynOY0K3oGCzhq38HwDcMHGasmQ9sH5TD0LzlLYcGembCvjyMRNhzESklF7n98fwxbt48cUR3H3fVxQMV4Tz0Pa9PPvbBwim0OOeJAG0SPd9Nm7cbR0g+4MnsbwyhWYnXNz42UrS+g5El+3HCwEUTH0Dd5Cw3ap13CZdGgd/k7SzxT9O0wRgjW5I0vBp7Oky1SvqLRAnXp/g+S1//Y6VXWDD6JaebTPGeduYu1TROa1lph+hqa4fQQcwFWqqyrjjFUsEF6x/pkw+F8UefcH6Z6i7W3Oydmey1nfAh15/xOtcW3oG72+T/sK9nt9tnlUWVV3fXrD/uXEArLy8sUdgKo+WQQzKwWIzQ7vV3maExJRk7vxiEy6TEj2XIS/CaY4kdY1uTSxdZFFUse8zKOvvsff1h/nlsjg239Tdsy39gyfZ/cRNyB+nc+e7Szn6zuPMv7S2ZxY68vK7PGWj5/9Mm507aL51M2svUfKwX3rNLdzxxnAanNyIUJdpEM5SGpzcwMD1z3h8lwLRY5fvDC/ugP8cSGWxRAi2PXs3iSmBzRTlUfLfSSSmJDP20e+9tm/oonT2q65qRvziP9lwYydueOxTz34583MAwqYq2prI8OAXyW6dYqFu3j48wWg6f4w6+ZoJO19VIh5qUP75+j/4OlmxsOqO9h6BCeCayR+QmJJM7+3+n43JbGbcW4sYePEtfve7iYmteNZ+7a/bSUxJZtzkrzGZzYSEmCl5fnKFx8WV0ey13V+xCmvHg5eR9eFLDNi4p8KyANtGNvX87rUjmbue1HLyHKmHR6PWtl13xt47lcGDr8NkNnPb0z9w2S1PIH/6grm3deWBV+ez8Kq6zL02gctWJNN82yYe+D6ZUXNWk/ruw4z9UYs0zhoz3G9dLlqxi94X3U2EKmwIIeg0XAvckCZfIeO+6VtZdOcAbvpsFQmNfReoWDYwhAc/20X9DSu5fqH2ruuOvhyA1de39CrvFpiCYdVlDdh69xCvbRkdlXa/uXu4v0M8lCcwrRocxYnaEBIawvMvrKBJQ82I36xDD8/vYCZHZcn5n7dmdPkF4cwdbmbA8q0krFqMZfaHDB75Ly5ZupvElGQiY2uRHwVhvK4mh9ePR04GrX+GMJ32yJatmTs6r9GE/NgquM1UF0LKmpPYaoLm9TrIx8coeSGEy86FKyrubDom7+GrW7pg7n8Rt03W1OxOl8TlcrJ793LCb9Sy6qY2gnYBUrufemMy9R5TQjRPPHoljd78w39BlWMNRLm+BZVh2ZC3cZnCFOHJFILJZWP4yvJ9OhbePpAHn5gOwEdPXUPnhXu5YM0uPr2nB8NXOyj8eiqxtz/A/tcexiUs1Hr5Y44+MIbeL//Euu5mxs3a5bGpV2awLS+T+elQ/PW7xNVKoH2H3l7XcNdt2j1LvJeYdyMlI5Zr77gkTHM2LcvmjlAabWL8d7v9F6iAGaM70fWwpPsu7Xk5HU7yLYXUiVNMy79c+RzHG2sdbOPjK+mYOsvnXNXJwafHM/rWR4HA72f749fSuEki9SYpi9PmNJBcsDzFp5y/Z1+dlK3f0iHvYHbavHyx3LPmbW3h5rlaHb599Tb6fLXR6/gDT9xG9obl3D5tfrXXtaK6A2ztYqbnLkVQD/S8qqvN/Dn5AhIy8igtyuWeNwNrE/wxc8KFdF+maE/PxHvVk7R+MTic5C/6mY4zV3jtWzwkgomf+WozXS4Xezt1BuBAM0GbMst46Ou8du4X1Hr0zYD7y1JkKSImKsbzHmqtWECj+s0Dlg+G4+kpzH/8erpMfot+ff1rJytCSonL6cIcoqnD3HU89vIDXDxGWbh6+l29Gbgy8KzLGu6bF6nxqsXM/30q3V7/FYCW2zYRGRHc4ljfPLmGwiwrwuVAmkMwuXIZvuJptg1JoMdKxe1hb7cYOuxQFARb2gh6HfA/Fnbam7JZStnH785q5h9nngNASswOKwM2KqnZU7qY6LjLW5Nh+uEjtuzZTmbqFhKFYNwPvgOg2SQwm0Lo0f0iXhplIiG+FcNmHfArMLXdtYOsvFxExiGPWnLEv18nuQKhqXalfHEUtvznBqyLfuSCrd7H1slJJtyW77XGVUW4BSaAe1/61bO88r1f7NQKqQ6HAFz1IABre47k1g6DAEhYt4KIUC2NfjC03r6V1B49sYUFn8CsJBTSru9Fxx+8TXWNNq5madL3NGjUjkE6s8ihZ8dxbMsixj4927NNSAdS+Gr3hPTW0AQSmAD+9evpDRajvltOUbH3VMocYvYITB8/sAxnE+9kjcebDCWj4UCGr6x4ElAZMj94kn2/fUSHmx9j9AXXlFt21WWNuGucIiyV7hjLnOfGcM2TM8s95lg9X3PPmaA8s4JeYAJo0LIrsJGCSAj/5mN6dB2m1PH2J858RQMw7P3fKRgxmhU3tavU80rqAyM2lV/GLQjs3ruKZQs/5NEJn1e5njFDRsKyb9l634gz/l5H9L8YgIV7fJ3PB479r99jTCYT02+Ko06tpgyYo2nPUptAy7LO15XsemOilBUSij9+hvSdK7jmNAUmgMZNO3Lnd/4jy4JFCOElMIFiumyaDSOu1SwBF/1nOpaVN3mVWzy6Lhf/qdjpT9WC5mrE3brxg7h8/IvE12nMjXdOYebs38huH8/9QQpMAPWaxRCWvIDWh1ezY+iVyCKTu8KeMpZQzaM/svTcUPAEpWkSQpiA7kBjwArsllKe4aDbM0OLeu3lf677CIQNh/UR2oydBBv/os3MVK9yDdcup3bt+pU6d0bGCXKH+65HvLtjONf/qqWZX3phB9L6t2bcq/OqXaPy65UxPPHGRn587Fo6/+E7ww+WeaMiGP/SMuJjgnfyOxP89up9tP9qacD9yU0hUU0BM/22CO657lNSJtxG6ZjhdJq2DKjcjHdNn/5s7fU0iEiP/4tbwFZWpPdlRWfB0N1KOzL9OYcObboEfb2qMG1CgAilMtqwqnKibjSFo+vQfuREEvte6bdM2e+2IBL6b628JtFhgq57zrymyY07mrMkVAtXL/t95Oad4rfxQ4kYdRU33fVatdetIvR1nzM+AUd+ES+8VL4PWNnj3CSmJJfbx+x8+iLG3jq1ahUNQLHVSnSkn/U+zhDr3rya+M+9/bXCZ0+ndbeBAY5QcD+Xnb2i6fPqN1hLCujcfoBn/85Niwn510SvY8609uxskbJ3Iwf2rmX0VZrju9VSSFqvfgCE/PQlu9M2MLj31ZwaPgqAJeOGc9GXy4Dqew4rf/uOhMdfYssN7Qk9fJKuG/LZPrQ+3VeUE4Wksu/Fh2j/9DvAOaRpEkK0AR4HLgZSgVNABNBeCGEBPgG+lrIGkyZUkihLBk2Or8B54aWMeViZaext1YPt68cRNeYK9mQdxCmdPFFJgQkgIibO6+/YpX8x++P7mPjU717bL1waOFS0qmy4rj1jnpnJExFKZ2VO9hYCDz44ltbvzfZ3qA85bz3Gw6PvrPY6VgVTiH//lcMvTWDvsW3c+e/3Se+tNPRmUfVp27EvbZcpDTp5WuUF0lBnAahrcAuXAynMSGH2CEybusbRZ6cmPC0bLugx9ikWzfwKEhoz6QwLTABjn+zLT8+vwGmO0AQ7Zwm9tgaf66Us2W/9h7qPKNFP2a1DueF/Cys4QmNtn1BGvf5bla5bXDkF5GmzdHRdGu7I4bJZK9m/9Q/MIb6De+1a9bjjp5ofHI+8/RDPXH53pY8rjDITq0tcuPHeofT9aIXfsmNufM/v9tPhbApMACI6AfAWmuo0auG/sB9KYiJp3byTz/aufS7mrQmdGXXZI6x8cjxH6wlePt3KniN07NCXjh36em2LjNJ8cxs0bUu7zgOw2224PR4H9h8FqtBUXdSqo/hs4XR4lq+qSGCaflsC3VpdyP/dcDdTl32GMzIMqn9IDUhF5rmXgI+Ae2QZlZQQoj5wC/B/wNdnpnpnAGmnQ+psOv7+nGdTh04DaP/XHoQQXHEap44I9x4BmjZqxcPPzyv3mM33jqDbp0kVrtRcOuNdwv8V2PQy6qGpxERonZV96ADYr0W19Bt7L1lBCk3dho0JqtzZwBTmX2gadf2DjFJ//zDMxM3LXVxx9YteZfb8dww2a0GlzARSQIg9hQZZeT5mzLT68H9z1vPe/YO5ZEk2f10UziPTFA3iwBHlO/hWJ/WaxeIKC1XWIFabpQRii70j4EpDvDNP+yOpm8BphnsvuZX9KEJTUYOKVexH3n2UsOfe5NC4Udx5zztVuQ0A9nWPYUDFxSqNM9SM2e7bqCa/riUo7D38jjNw5dPHhRKhM/LS8VU6Pqd+LLFpWnj2bQ9+QvJH3q2g7poVhIeF+phtzkec5hifbbFBTHp/u6IRV889QdTIsQHLPDJZSRLZ+cfgHOH/LsTFKw7soaFhLLjARHTn3lzasj3FwIph0dVmeg0Nj0KirE0qgljz87f+gjf+t9Lz9wPTFN/DyW+VHzlYnVQkNL0npWuPgBgAACAASURBVFznb4eUMhN419++cxnRshlbH7qSxDLOvhWFawZDqLnywYj/enAaPAgf3NuLuGMl9POTdgCgYZP2lE2qevLliaQu+QRpLeHues289g0b9zx/bh3JQNWvqV7dhtRTVar+1PWLxzbkrqcXE2Y2YfITVVJTmMMrnrW+8Il/h+sxd5Qfuu0Pl4BahV/TIVVxpOqQqgiapl+/48LWXQF4cNoqXC5JYg0+p9CIEEIzj9EybR5pLS/DHuor6CR3jSLs1nE4P/gQ29gL6P2Gb0bj+2drg0Hhj5+w5pfXuOexOT7lynLpqPEwajwXVrH+myaNpGDlIq55OThBvrI4w0N9hKb1XcVZ8Z86XTZPuoicXatINFdNoMnt0oIWaXkU6D6Jogjv9THr16l3mrU8d7DENPYktnVjDqnYXfc/ry1i54QdXN+255mp2N+EyV9o/euaOVO5tU3fckpXjtDwCGwATqdnkWR/LL5Skt+4MQ/dO7farl1VKvqyPgR6VVDmvCIqKo5b7jozSdjMukH0i5vNvFlO2bJM/EhxXtYLNEsvjObCpcUcbACjG7XyEZp6XXILw8f4JjcDaFCvCXf+sKdcf4Z1/SMZsF6JM534QmC/oZokGKGpOpECWh7y9Tzv0NG7GdS0YHnX2yM871af5Vfvq1P3tglcctldcMUDrF78KVD+MhD9ugylX5eh5ZapLv7vvvfB/6dbLbgiQqFIkRIWXNGYjtfdxdVdLj5zF6xGbrvv9HyMmoy4HOZuJ6Wdmf7qtg6r1nCsjxKYsbF3+HkhPAbLiBsf5e0jWxhz60uUqNnJg8FkNtPdEJgqxaCuF1Xr+cLCo7GhLNnU4oD/nAfHE2DiG1X3z61uzlieJiFEhBBigxBiuxBitxDieXX7V0KIQ0KIbeq/Hur2eCHEH7ry43Tnul0Ikar+u123vbcQYqcQYr8Q4n1RHeqiauL6YU+f9jnGv7+GfW9Pout3/iPs4mJr+d0eLOGRsSwfO5SlFzStuHANERLiG8m2eMDp3Xd5SOGbzyZ1ygT/hc9Bjj+n+cBccpmW86lugzY+ZS0xf9/gWVeEZta9f8o8Rg26idpxwefMOZ8Zctn/kXR3Twa8qHlNxMVoupjLpwXvr3Y+YDKbefS/s2jVrB0bHhnFn9fUrekqGQRJaLiSIK3H4pNEW/xbWUr9pyqsMSrqNVsLIX4PtFNKWZ5YXwqMkFIWCSFCgVVCCLeDz2NSyh/LlL8f2COlvFIIUQ/YK4T4DogBngX6oLhubBZC/C6lzEXxt7obWAf8BYwCynciOku07zbstM8RHhrG1ZdrIaHbWwq6p0k29I9kzId+lrj3w/wBICPMfmeWLe94hEEDgp+Z1QTWQm0dv91tBZ33S8LkmfPDkH7E7quuffCMXa+66dX/KvL41Gd7g6adKRtRvb+5i95np1pnHb3QFBoafDLMvwNCCO5/+Huf7amNod1xqB0TaKWw85/b76q6f53B2Sc0mES15nNGFwJULDSdAt6qyolVx3F32upQ9V95nl4SiFW1RTFADuAALgUWSSlzAIQQi4BRQohlQJyUcq26/RvgGs4Roal27QpSC1eB0T+t5+tnRzP6gU+Iia54pWuASdN9HRh3toGuB6B3j5HVXcVqJyRSW+/Nfu3V2N/+lYRLR5VzxOlR3vpL5zI/Xmji+qUu6jZoyqop4zCbvAXlWrUa+AhNxUE4Xp6vuCLKz6D8d+RgQ2iaFXh/nZdeYfGaH0gMwt/H4J/JjOvCcbmcTDlL1zOHB1YjLb67BwO+2caBIS3PUm2Co6LWUyilDE6l4QchhBnYDLQFpkkp1wsh7gVeFkI8AywB/iulLAWmAr8Dx4FY4EYppUsI0QQ4qjttOtBE/ZfuZ3uN8vzNJtoXOnihipbCnVPG0/WJL/zui42O5YE3/YcOB8Lsx/em/aufsGrtLBIjzq6/UFUwmTSt0s3jp3Dg0nsY07RlzVXoHGLVQ8MZ/M4yAO59YSHZ1jzCQsO54dr/+JQVQvDpuAh6tbmUPk8p6QEi/74yE7ISS638XWjy8XSKrIGXVBo86FoGD7r2LNbI4Hzj5Ve2VVyoGgkJDSyCTHz4B7aOXsu91eh4Xh1UJDSlnc7JpZROoIcQohbwixCiC/AEkAGEAZ+i5IF6AUWjtA0YAbQBFgkhVqKs4edz6nK2+yCEuBvFjEfz5qefpbU8Zj5btaUz3Iy99lGSAwhN1UWPrkPp0fXsOPyeLk36Xwx84/m7zRkWmBK0SG1+Giow1Us4Z51m77rnI5LfUWoXGRVLh3rlzxneeVxxGJ/251xGrHVivfz0TcjnKjL0/A+lryw9OpafzNHA4FyjPKEJoGeHc++bLrfGUsrr3L+FEIOAlvpjpJTf+DnM33nyVHPaKCmlO6isVAjxJfCo+vc44FXVrLdfCHEI6IiiQRquO11TYJm6vWmZ7b5LtSvX/xRFQKNPnz7n/Pz6zz4Ce5Pqy4VxPpPYoS8L6kFa/bMfLv7Up+d+bpYdr9zBnoOLeT46ruLCKte89hdzfn+BSeOqNxP0uYTrb5B/yMDg705I6Dnm5R0EQRm3hRDfomh/tqGk1ANFqxNQaFKdue2qwBSJklX8NSFEIynlCdV36RrAvbDOEeAiYKUQogHQATgI7AdeEUK4wz8uAZ6QUuYIIQqFEAOA9cBtwAfB3vi5zANf7iTk3PJ9q1EGzFvPYPP517jOBjde9ziKsjZ4mtRvzuR/V319sfMB1z9Q02RgcL5hNptwCTCVUWWsffzSc1ZpEKxHYB+gU9ms4BXQCPha9WsyAbOllHOFEEmqQCVQhDB3PPeLwFdCiJ3qvsellFkAQogXAfey4y+4ncKBe4GvgEgUB/Bzwgn8dIkwOnwv4mOC16JUF/san52FZA3ODLZawS8camBgUDMIIXCawFQmr+Xw/mdvhYXKEqzQtAtoCJwI9sRSyh2AT+YwKaXvirbK9uMoWiR/+6YD0/1s3wSc+cW+DP5xRNgrLmNw7mJLUKJL97UyGcKvgcE5jMuEZr9SsdssNVKXYAhWaEoA9gghNqDkXwIqzNNkYHDe4jhPUw8YKDhVnybzebOUuIHBPxOXzhUlvS7YQmFw2241V6EKCFZoeu5MVsLA4FzDbqSyOa9pPOJKVi2fR+HQrjVdFQMDg3LQT1CP3zCQG+//lIgKoupqknJrJoQQUiFgriZ3meqvmoFBzdHhWE3XwOB06NV1OAkfLqRJQqOaroqBgUE5OHVC05CR95zTAhNUvPbcUiHERCGEV3IjIUSYEGKEEOJr4PYAxxoYnLccqv6E7gZnmeYNm2I2Ug8YGJzTCJ0UYjoP2mtFQtMoFBetH4QQx4UQe4QQB4FU4GbgHSnlV2e4jgYGZ519w8/dRYwNDAwM/i7ofZqE35zV5xYVJbcsAT4EPlQX3U0ArFLKvPKOMzA43xk6cmJNV8HAwMDgb49+vU9xHqyHGbTxUEpppxIpBwwMzmdCw/55a5cZGBgYnG30QpM97Nz2Z4KKzXMGBv9IQowM5AYGBgZnHLfQlBkPbdr0qNnKBIEhNBkY+OF8cEg0MDAwON9x+zQ5zxNppNxqCiGalbNvSPVXx8Dg3CAUQ9NkYGBgcKZxa5rk30FoApYLIf4jhPAYGoUQDYQQM4C3z2zVDAxqjpBa8TVdBQMDA4O/PS6TomoS537gHFCx0NQbaANsVfMyPQhsANYC/c905QwMaoqQqJiaroKBgYHB3x63psl67vuAAxWnHMgF7lGFpcXAcWCAlDL9bFTOwKCmCDEZPk0GBgYGZxrp9mn6O2iahBC1hBCfAONQEl3+CMwTQow4G5UzMKgpTKbzZNpjYGBgcB7jNs85z5N5akUjw/+z991xclXl+897Z3Zma3pPKEFCGiWUJIZuQCkKqKCAiiJFEbCCgj+VL0Q6CPl+BaQoRaSIKB2BQEgCpJBCym42ZbObsj2b7bM77d7z++OW896dO7OzdSbhPJ/PkuGWc849995znvu+z/uedTCTW14nhIgDeI+IZsFMdrlLCHHpgLdQQWEQEdcAvwFQXM90UxQUFBQOeNgC8AMieg7AqUKI+y3CBAAQQqwXQpwIYPHANk1BYfCx8TDzX92Ipz5QQUFBQaHPsFMOFKSfazujSEmaUmmXhBBP9H9zFBQyi/qLz8SCKwhDh43LdFMUFBQUDnxYpEnsJ5qmAaN2RJQLYBmAoFXPy0KI/yGipwGcBqDFOvRyIcR6Ivo1gO+ydk0HMFoI0UhEZwP4XwA+AH8VQtxt1TEZwIsARsB0JV4mhIgO1DUpHPj45WV/znQTFBQUFD43sDVNhm//YE0D6UWMAJgvhDgGwCwAZxPRF619vxZCzLL+1gOAEOI+exuA3wJYahEmH4CHAZwDYAaAS4lohlXOPQAeFEJMAdAE4MoBvB4FBQUFBQWFfoRtYTL2k0RNA0aahIl2639zrL90lzC+FMAL1u85AMqEEOWWFelFABcQEQGYDzOiDwCeAfD1fmm8goKCgoKCwoBDWJYmoSxNABH5iGg9gHoAi4QQq6xddxDRRiJ6kIiCXc7Jh5ne4N/WpokA9rBDKq1tIwE0M5G6vV1BQUFBQUFhP4BjaTpAouf6BCGEbrnbJgGYQ0RHwnS9TQMwG6YW6aYup50H4BMhRKP1/170U6TYngAi+hERrSGiNXv37u3FlSgoKCgoKCj0N3wWa5pcvn/IkQeF2wkhmgEsAXC2EKLGct1FADwF0/3GcQmkaw4wLUh84eBJMDOTNwAYxtbFs7d71f+4EOIEIcQJo0eP7vP1KCgoKCgoKPQdU7fFAADBaLrqncxiwEgTEY0momHW7zwAZwLYQkTjrW0EU4NUzM4ZCjOy7jVW1GoAU4hoMhEFYJKq14UQAsCHAC6yjvtBl/MUFBQUFBQUFPoNA5lNajyAZ6zoNw3AS0KIN4loMRGNhuleWw/gGnbONwC8J4QI2RuEEHEiuh7AuzBTDjwphCixdt8E4EUiuh3AZwD+NoDXo6CgoKCgoPA5xoCRJiHERgDHemxPum6dEOJpAE97bH8bwNse28uR6N5TUFBQUFBQ2I9QPs5Mzpjt2E/06goKCgoKCgoHKg6rzXQL0oMiTQoKCgoKCgoKaUCRJgUFBQUFBQWFNKBIk4KCgoKCgoJCGlCkSUFBQUFBQUEhDSjSpKCgoKCgoJBR1A/LdAvSgyJNCgoKCgoKChlFxeSxmW5CWlCkSUFBQUFBQSGjGF40OdNNSAuKNCkoKCgoKChkFkSZbkFaUKRJQUFBQUFBIbNQpElBQUFBQUFBoXuQpkiTgoKCgoKCgkK3ECQy3YS0oEiTgoKCgoKCQkbQUmD+2z56SGYbkiYUaVJQUFBQUFDICKrHmG65gsJAhluSHhRpUlBQUFBQUMgIfJZXzu9XmiYFBQUFBQUFhaTwGea/QlOaJgUFBQUFBQWFpHjrjBwsn04IfWFMppuSFgaMNBFRLhF9SkQbiKiEiG6ztj9NRBVEtN76m8XOOd3aVkJES9n2s4loKxGVEdHNbPtkIlpFRNuJ6J9EtH84RRUUFBQUFBQwf+4v8dK5Ppwy55JMNyUtkBADYxIjIgJQIIRoJ6IcAB8D+DmAawC8KYR4ucvxwwAsB3C2EGI3EY0RQtQTkQ/ANgBfBlAJYDWAS4UQm4noJQD/EUK8SESPAtgghPhLqnadcMIJYs2aNf19uQoKCgoKCgoZABGtFUKcMBh1DZilSZhot/43x/pLxdC+A5MA7bbOr7e2zwFQJoQoF0JEAbwI4AKLlM0HYJOvZwB8vZ8vQ0FBQUFBQUEBwABrmojIR0TrAdQDWCSEWGXtuoOINhLRg0QUtLYdAWA4ES0horVE9H1r+0QAe1ixlda2kQCahRDxLtsVFBQUFBQUFPodA0qahBC6EGIWgEkA5hDRkQB+C2AagNkARgC4yTrcD+B4AF8FcBaAPxDREQC84hBFiu0JIKIfEdEaIlqzd+/evlySgoKCgoKCwucU/sGoRAjRTERLYOqV7rc2R4joKQA3Wv9fCaBBCBECECKiZQCOsbYfxIqbBKAaQAOAYUTkt6xN9nav+h8H8DgAEFEbEW3t1wv8fGMUzHuh0Deofux/qD7tH6h+7F+o/ux/TB2sigaMNBHRaAAxizDlATgTwD1ENF4IUWNpkr4OoNg65TUADxGRH0AAwFwADwLYAmAKEU0GUAXgEgDfEUIIIvoQwEUwdU4/sMroDlsHSzD2eQARrVH92Xeofux/qD7tH6h+7F+o/ux/ENGgRXcNpKVpPIBnrOg3DcBLQog3iWixRagIwHqY0XQQQpQS0TsANgIwAPxVCFEMAER0PYB3AfgAPCmEKLHquAnAi0R0O4DPAPxtAK9HQUFBQUFB4XOMASNNQoiNAI712D4/xTn3AbjPY/vbAN722F4OM7pOQUFBQUFBQWFA8XnMCP54phtwgEH1Z/9A9WP/Q/Vp/0D1Y/9C9Wf/Y9D6dMCSWyooKCgoKCgoHEj4PFqaFBQUFBQUFBR6jKwnTUR0EBF9SESl1pp0P7e2jyCiRda6c4uIaLi1fRoRrSCiCBHd2KWsX1plFBPRC0SUm6TOH1jlbieiH7Dt77C19B61RO77FbKpP9n+14mo2OvcbEU29aOVEHYryfUc94+VL7sgy/o0QESPE9E2ItpCRBcO5LX3J7KlH4moiD2T64mogYgWDvT19zeypT+t7ZcS0SYyk0O/Q0SjBvLaBwpZ1qcXW/1ZQkT3dtt4IURW/8GMwjvO+l0Ecx26GQDuBXCztf1mAPdYv8fATJx5B4AbWTkTAVQAyLP+/yUAl3vUNwJAufXvcOv3cGvfEOtfAvBvAJdkun/25/609n8TwPMAijPdN/trPwJYAuCETPfJAdantwG43fqtARiV6f7ZH/uxy3FrAZya6f7ZX/sTZuBWvf0sWvXfmun+2c/7dCSA3QBGW8c9A+CMVG3PekuTEKJGCLHO+t0GoBRmR10A8wIBtu6cEKJeCLEaQMyjOD+APDJzQeXDOxnmWTCXfGkUQjQBWATgbKvsVlZOAKnX0stKZFN/ElEhgF8BuL2fLm/QkE39eKAgy/r0CgB3WfUYQoj9JhlhlvUjAICIpsCc+D7q4+UNOrKoP8n6KyAiAjAkyflZjyzq08MAbBNC2EuFvA8gpVU560kTBxEdCjONwSoAY4UQNYB5A2C+kEkhhKgCcD9MVlkDoEUI8Z7HocnWurPb8C5Mtt8GuVjwfoks6M8/AvgTgI5eX0QWIAv6EQCeslwgf7AG1P0amexTIhpm/f8fiWgdEf2LiMb24XIyhix5NgHgUgD/FNbn/P6KTPanECIG4CcANsEkBjNwAOQmzPAzWgZgGhEdapGur8O9AkkC9hvSZFkl/g3gF8zi05Pzh8NksZMBTIDJ1r/ndajHNudFF0KcBdO0GASQNOdUtiPT/UlEswAcLoR4pad1ZxMy3Y/Wv98VQhwF4BTr77KetiObkAV96oe5LNMnQojjAKyAOTDvV8iCfuS4BMALPW1DNiHT/UlEOTBJ07HW+RthruW63yLTfWpZnX4C4J8wraA7AcRT1blfkCbrYfk3gOeEEP+xNtcR0Xhr/3iY1p9UOBNAhRBir8XY/wPgRCKay4SK5yP5WncOhBBhAK/DvFn7HbKkP+cBOJ6IdgL4GMARZK5PuN8gS/rR/tqyzdzPYz9O+JolfboPpvXTJvT/AnBcP1zeoCFL+tFuyzEA/EKItf1ycRlAlvTnLAAQQuywLHYvATixny5x0JElfQohxBtCiLlCiHkAtgLYnqrCrCdNlqvhbwBKhRAPsF2vw1xvDkhv3bndAL5IRPlWmWdYZa4SQsyy/l6HuVzLV4houMVivwLgXSIqZDfTD+BcmOvi7VfIlv4UQvxFCDFBCHEogJNh+pVP76/rHGhkSz8SkZ+sCBprEPoa5HqO+xWypU+tCekNAKdb5Z0BYHM/XOKgIFv6kZVzKfZjK1MW9WcVgBlkLkMGAF+GqQXa75BFfQqyoo2t7dcC+GvKGkUWKOlT/cGcUAVMU+R66+9cmKr3D2Cywg8AjLCOHweTVbYCaLZ+21Fvt8EkOsUAngUQTFLnFTB9nWUAfmhtGwtgtdWOEgB/hvn1lPE+2h/7s8v+Q7H/Rc9lRT8CKIAZlWQ/l/8LwJfp/tmf+9TafgiAZVZbPgBwcKb7Z3/sR2tfOYBpme6XA6E/Ya7VWmq15Q0AIzPdPwdAn74A86NoM9KIiFcZwRUUFBQUFBQU0kDWu+cUFBQUFBQUFLIBijQpKCgoKCgoKKQBRZoUFBQUFBQUFNKAP9MNGGyMGjVKHHrooZluhoKCgoKCgkI/YO3atQ1CiNHdH9l3fO5I06GHHoo1a9ZkuhkKCgoKCgoK/QAi2jVYdSn3nIKCgoKCgoJCGlCkSaFHEEKg4dHHEKvvLlGrgoJCOhBCwIhEMt0MBQWFNKBIkwUhBBqeeAKxuuRkYMuxx6F02vRBbFX2IVxSgr0LF6LiF7/MdFMUFA4I1N1xB7YeMwtGKJTppigoKHQDRZoshLdtw94/PYCya3+c9BjR2TmILcpOrC5eCgDYU70hwy1RUDgw0PSP5wAADaUbM9wSBQWF7qBIk4V1xYsBADX1WzPckuxGfWgPAKBd0zPcEgWFAwM1w81/65srMtsQBQWFbqFIk4VItAMAYJBaViYV8ikIAMgzKMMtOfCht7VlugkKgwB7xNENNRwrDAxCLRG88qe1CLUo7Vxfod5SG4YBQA5g2QS9rQ1GR0emm2HCXqtQcaYBRdvixdg2ew461n2W6aYoDDD81isVFcp6qzAwWPNWBarLWrDmLWXN7Cs+d3maksGwSFM2koFts+fAKMzDzDXrMt0UCJG95PJAwornHsRBAFa+/AjmH/dEpptzQEBEo4CmgfzZOuwN7uBjRCKIbN2KvKOPHtR6FQYPj16/BHrccP6/eFk1ipdVw+fXcM1Dp2euYfsxlKXJgk0GspI1AdDas0OEbhjW13CXbmr74AN0rMs8qRtsCMNA7R13IrorvdxqIhpN2BYpK0OsuhoiGsWOc85F+9KlaO6sAQDUt+7sz+ZmDOGt27DrB5fDCIcHpT4jFIIQbmq/5ehjUDL/tAGrU28PoXTadHSsXduj85xXSRipDut3bL/xp9j57YsRraoa1HoHCu1Ll2LfU09nuhlZhcvumIcps8fCR+az5c/RcMScsbjsjnkZbtn+C0WaLNhkQGQnZ8oakG5Zmrr0U+V112PXd76bgRZlFnVrP0bTs89iw+Xf6vbYlnfewZajj0F46zbX9vKvnYey+WdgX/lWRCsqsPXXP5MdTAfGA7nxhh+jY9Uq7PrgzQGvK1pZha3Hn4DG555P2Oerbxyweite+ScAYMuC3/XqfOeDJAUan38eNbf8T6/K74radR8DANave6fPZQnDQGT79j6X0xfs+fE1qL/nnoy2IdtQMDSIQK4PugFAGIjHDARyfSgYGsx00/ZbKNJkQRjmV2lXt5PeHkK4tDTpeUY0iqYXXoAwBucr0ejoSKirc9Mm1N57d8KXdX+i/ZNPEN66LavdmJnA1p1m6oXWePei7RVP3QEA+OTl//PcX9VQDgAIiyicJ/EA6eeGiJn/rKR85YDXtWHpKwCATc8uHPC6ONZXmOk4dhs9tNxYt9rQuydNdQv+iOaXXupp0zyhWxVH4onWz56i9i9/Qfl556OzpKTPZSn0LzrboigImZbrEeML0NHa9/v9eYYiTTaSuJ22/OLHqPjGN5Nm7N15392ovW0B6v/98gA3EDDCYWw97nhs/vWV7jZ869toevIZxMMD58Lbc+VVqLjgAgg9DgAQKSwg+55+GpGysgFrSzbB7o+uQZctr72G6pt/69rWrpvEqqlht2dZROx1tAiwaxuAPddeh4bHn0B83z6Eli/vS9M9IWIxtH/0cf+Vp+sQQjgfI2IQ1HA1jabYtcMY3OAJTUgrbGTHDtTcdltaH1P2mySM+AC2LkX95OtzGZvefBIA8NHi5/pc1v6MtsUfIlJenulmOHj0+iUoX9+AUOFEgDQ01oRQvr4Bj16/JNNNAwBsufU3+13C6M89aYrV1yNWVQUjiZ4gttLUJ7Q0VTvbhBBofOYZxKqrsX796wCAJSufHfC27qv4FACgveX9td7Z3jzgbbAnPQFg72OPoeyss937dR31d9+D7RddmLSMzUcehT0L/+Tapjc375dfqfZEl9+Fr1bfdDNaXn21y8Hm9Djzv9vR8PorHoUxQmH/1NyvaPvixdj7wAMo+fLp2H3FlWh4/+2+ND8Bpcccgz1XX42GpYv6XFa8sRFbZh6J8uuvZcxgYEiTEAKlM49EyxtvYug2812dvGdwNULCicAlbPjBt9H8wouoWftJ2ucb+sCRJr2tLSmBI613wngRi2HXD3+IjnWfQY+ZWrV24/OdJqPy2mtRfu5XM90MB7amiXTzo9/np6zSNIkX38h0E3qMzz1pKjv1NJSdcaYc8LoYUDRrjM9hlpX2ijLU3XU3Nn7/W46AfDDyO4lI6i/neHQQvqyZ9qvhwYWI7dqFWG2tszvcss/8EXGbgDs3FaPx7yaxpHgc7Y/+1bW/5MLzsPPCiwaw4X2H0dkJvdlNTA1L49VW2L0fjR+x8pk7Ux5ITmoH73IDHeYEu/7em7utNx0YoRCEroMsN/XSRX/rc5klaz8AAISWLpEbB0js3Fa9B9B1VP/614hliHw7wSQkrVy7K9enfb6h66ZlLg03XU8Qb2vDttlzUPrb6zz3a9S7aWBvyUZ0rFiJzT/7EXy6+dzk5Bb0up0K/Q9b0yS0ACAE9LjoV03TjiuuxJ677krr2I61axFvHDhN4WDhc0+abIiYOckLAsLl5SidNh2Vv/oVcqzxSzC/f3mVqXGKtDTCMQkIAaHrKRfeDG/ditJp0xHft69XbTSMGAAgmsSaHomE0bZ4MVrf6gbOdwAAIABJREFUdlsfql95DptOnJ0QubV5+nTseOD2HrVBeAjBy07/kvO73XI9xbu0cee3voW6O++UmigLDU88gUh5BXKqGnrUjr5CxGI9PmfDuV/Cti+6v9AMw3ZXplWr82tkZQfqH3RrbmxdHQQ7tJtyJ+7u+XUktCoex9bjT8CW3/zU2dYZ6PtHQFWjqWNqHDLwKSoa2uXz0zAkMwkx5IeXvGmUxLJmjwXtK1Y4rl1Dj2PLzCOxZeaRiWXHe2+F2lFh6u6ib3/oLtP+t5ckraLaHAfbjHb44mZpgfyi3jVSYUDw6PVLUPJRtfnxZT2Xxcuq+809F12+HO3P/D2tY3d993vY+PVz+qXeTEKRJgsGm0QrLPNq29v/dbbF45IMBQK5AADNME3xAEAg7PjRj7H1mFlJ69j4q2sAAFsefQAAUPLVs7D521/HlksvxO6HH0yjjZ1WXd6IRcKovPY6VP3qBtf2qj/eDn9jOyq3y0SJhq6DBBB9PLkGoXPDBoRWrHBt41/TXmitM/UkepInK9ohFyXtbNiHvX96AKXf+XbSNqQLIQTaly6FMAwYHR0Ib9mS9NjIjh3YctTR2Pv6a577P7niTJROm47w3hrX9tyalsSDLctbsgTpkR07PLcPazGw77HHXOJfPc4JkNQ01f7vg9hz4w0YKLQ21QEAou9+iMqR5rb8cYf1udxcy+sjiGm+eihsD61ciUh58oR8sZoahEtL4WfkpKgHSY/19nbsuuFn0FtbsfnC89LWV5ROm554rH0vNUgdfxJL4dKnTEvjR4/KSDiRJHqubeVKbDnyKLSvXp1W27rC7zetCsGYuy2Ox1TrnmTqLS0JzzJvr9/idIH8Ib1qY28hhECsrm5Q6xxI6C0taacvSQe2e06z3HPJUg7EGxvRsWZNv9XbFXaQUl5964DVMVjIOtJERDuJaBMRrSeiNda2W4moytq2nojOZcf/lojKiGgrEZ3VXfnhyl2e2bVF1HyodJ9cC4qjtU2KVmwdi9sjJxD7JLV+YUuB+XIX710OIxSCtmM3aONWiM82I/Tnx7trOoyIzHHjFeIbi3oLwW3bTmuHfGDjUTmziFgMLa+/nhB9t/PiS7D7h1e4C9Nt95z3ZNDSafaNnsQa1tIiXXn1daZgMhppl23t5Rf15kdux54fX4ONC36JTy/7Kiq+/g3LEigR+vRTxOrqsPiFewEAq55KtLK9esVsjFhuRj+t/fCFpPXtfOJe7F36ttNekeRNKv/q15zfXh7cGLNM6rY1k8A0TYSmvzyO9jffHrDoyGjI7H+DAJ91W4cVjOh7wXZEKgFjG2wrjIZ4U1PaYtndl/8Q5eeem3R/2Zfmo+Ib30ScWYIPqzDvyeaDui//o9uuRcdbi/DR768GlXQfvBBa9WmCNqj1nXfQsXq143oUaTDDppCpu2qNNTnbkkXPvfu4SZgXPfUH1/bib1+AHXcv6LYuSuIStZ/HZGSNY9MF57ieZQDQDUnyx1iXkbPenU4jvHkz4k1NSIbaF59F9ZPdj33JUPXEYyg77XSEM5zuoC/QW1tRf//9ELEYSs46Ezu66ET7Ats9Z2g50PQo4nHvlAMl37wAu753WcL5ke3be2WV7wpuKTUiEdTce1f2rHLRQ2QdabLwJSHELCHECWzbg9a2WUKItwGAiGYAuATATABnA3iEugkF6Yjm44M7b0zYbj8YhkaomVKYsL+tQxKSqKXX0VxjkbsrvQaKPGE+qOQrxOZzE18MIQTaP/kk6eSos4lh81XfQ/l552PPAzIvSTzinThQmv916C0tiFVXuwjWit9fherf3IT1f7nV83x3I1IPsEbYJGbJ3FUtzXud383Wqu5FjOvpPXxBo7t3Q28PYdt7/wIA0L/eg7/MJGY1tTtdx+7+/g9Q+pX5aO80dUlRkRh6O3W5JHCdKRIxdv7pKTT8+AbHPZcWPG5rNCwtb/GYbA850XOyI/XowCSGjHSagxe/ZYbeHwOldHkX2PeYCNvnndjvYtlYLPFe5qah1VnaZAZ6bGzf1s2RQN1bb2D3D36AiofcVuGqX/wSuy77vlsXaXWmYbhveqy2FkY47GjHuBUuWfRchWGS/7potWu7b+M2RJ9OTuxtGJYFs6s1VEbtdU+agrWJ45mwnxFWbuXOVWh88QXH+lPxzQtRfF5yEtB0651oudfdn3pLiyljSEP/suENk3Ate+2xbo/NViy/4Qrs++vfsO4vdyOnWY4/enMzjFAoxZkS8b17k8o+OtuiGFe7CvmhGkz94jjPlAOBWtO9HeuU9bXuKEX5eedj7a9+2JPL8QSfbz6+/edofvLvWPq7q/tcbiaQraQpXVwA4EUhREQIUQGgDMCcVCfEfUHsajgE7atXoeLqy53tY5ZtAgBM2WlgWJPHhPGWTMpnWK46XxJNa/nTf8b2eSei8dNlru3OIAXAV5eo4fns9p9hz5VXYc2t3oJNe9IkAWjLTVdb++NPy2tr8h5k7EE5Hotg29wvomz+GYgwUXnlblM4u7V0hdfpri9rw2OgdLXxEdO/nYw0tbfIF7ui1bQ21A+V+2M9JAY7vnIWtp1wApoPMf1KOw6Vj7Q9GZR890Js+IZphMyJGGnra4w08tfYX1DpaJq8DuGkyYuokCa/AaLR7v1O2+74PTaedmLCdqMzeToKpw2sY/R+IE3c5b1jgvmv5h+YpHrCgzT5dIHWknWoft0d2SqEQMnN12Pfqo8wyTCFyyMpr9s6Pn3edKtvfTtJpKyTw4wRXebWF7qOstO/hNIz5jN3JTnPRVe9n42DDFMnNMw3kpXrTbCa163E9rv+n2ubnowUMS1Vb+BFtnI7DdTdugCrviutg8EG80Oqc/36tKyl7//UjLxddnlyC6ONGMxnrDW0t5sjsxd1Tabbc/set3ts2xfnoeS0U9IqY/spp2L7SSe7y33nTWw69ys4++qZ0IwY2osOQk6OhnOuSb5sTkeoBWV33Yqyexdg9Uozsq1pQ88y3HshFpHjT1W9+YFSv09adpM9+9mIbCRNAsB7RLSWiH7Etl9PRBuJ6Ekish1oEwHsYcdUWttSgBDBbDzztxDewaXO1uG7pV7lsO2Jk5Pvn5I06TFzf7KAuZYHHwEAfPTMfTBCIYQr96B02nRM3G0O7Ee97e0GyHvufQBA4T8/9NxvxCWhKB+buF/7+a2e5zmkKRpGJDAEa2f9Ai17ZWiw4bMegyRWpGinJFi2aPTwct0pKxKQOoYhO03iloxEdDIX4dCgeRsFsw3GY71bhTvoN3VmhSFJTmKxKD771VXQ1m5GoNQrN5LA5vv+gI1zjkX70qUJxCLWVONxjhs6CyDoFh7PS+0fpaaFu5i8QvOTuV9d7Xn238ipc1sFaj94C1uPPQ61H7zleU7Mmtj5NfRH+LtN8gUBAatwkYSMRaqqsOnC81K6cmyIWAx6mzu0Pe5FcAVQdeF30fIbd6RiONQC7dUPUPPDHyFfmMIrP8mw+2QTu88KpOgoSmLMti1NTNMUZ1GkDaWmC0nb1+TUITQuyE7W51bfMdodT0Kgq777Q8SfMdNZbFl4OzbfcbPzzna9qr7mh9KNaEK5cWu5jngX10vFv57Bzksuxeb/+2O35e4tMtvbUJiGQN2JnZDHdr1/7R9/Ar29HXp7CJW3LshatxB5DBD+PiyfVXXzb/DxxBvwyHVLUT3xVIA0FC+rxsPXLE4qBI+Ew4g980/EnnwBms98J/ojMDzGxnX5TSEL1uP7z2LV2UiaThJCHAfgHADXEdGpAP4C4AsAZgGoAWAn+fGaqhJuMRH9iIjW2BopiBjG1H2Keatu6VUD7YnSXbmsNtd6Po74oAwbT56DD56+DYAp/gVkGoNU+PiGbyDeGXKZ97l7psAiCelAkogIKg45By1Dv4DNS9nkRI4vwfP8jk5JdPjAbpdVcUhiRIQ9AYd37UI1z8m0SopZ4x4kIB6NILJjB/b9zQx5tyfRyI4d0FvNdsQbG7Hom7Px2VFSiKvlBAAArSNynFsRi3Qg9+3kOrOR+wzQ315GTmsYe358DbbMmevaH1vaffJIwyZNWnLWFK2sxLrz5mPalsSJTvvwU+c31w5IS4R8ReMe69alg/8+b+pe3n3udqy95VqsPmMOhBBY/p0vo+KNZxG3vgI5adLjcay9+Qqsvqz7r/1kkISSurVqvPfby+EvKcN7d/4saXmRHTsghMCGq7+HbbPdBuW4h6UpGfZUm1+6ApDklFmHjCRlRXPNexHL885r5Fhe2D3T4xHo7SEYkQha2XtPjlVKY+65ZANDoqs2noR82mOLEALi0edAz74GnfV5y46NWHfHtbxYJ22Gjc3TZ2D7Qu/lSFyBCx7joGblfNK7vA7FbzwDANj7SjpJgM06OuG2OrcuXYJwmVu7RAk/AEMY6CwuQXjzZrRX78Geq67Cmsu+iXXfOh9tL76AlddcnkYbEhFvakLptOnY8ewAuQL7QbPYuaMMpdOmo624GAYE5q26BROO8HcrBLfBPz40Xw6A/lmUIM7mLvsZ5e7iWBpW9GxB1i33LYSotv6tJ6JXAMwRQjh+LiJ6AoBt9qkEwOWekwC4Hf9mWY8DeBwADh49VQB+wAgjGO2dkt8hL2k848FOAx3UcxY98q0t+LDhfJz+pEwyWPf0vzAagN8AjB4k8c2PAEtOWQjj1Rxg4iQAwM6NEew8/WFoegzDo7eaByYhTRHmQoJumGVZLxQAVE88FdUTT4Wmx3D6R78wi7JeiHWXXYDh9fKFGPHsu87v2KcmYeCTdTwWxZYLv4lAOI6GzhoYDz2H3Ht+i/BN7lwgk5JdLHN37Lt7AUZ7HwIAGLPXfV+oi54qV/eICOgC2wWVytK048wvo3vnj3S5jGgFCHa5suBYD61wa66+CMPO/AqGN5tlTdrVifzlphUzEmrF8HWVCK+7E7FHbkcQ5uM83vIaG3oM+a96u2u9sO62n0LoBo5f8LC8HjZQSheUN2lqiDTicAC76nY627jFoOq9N9D6s9+AfvUjBFdutMqXA7yXBUtLYvGPhsPwwSKmHqQpHgnDF0h0I0asR97ISWKVMhKDJPRYFNtOOAGR4QUoevhRAEDMB2aVkscm1RY5dfByUz8LPKBCj8ecr+PPfngpxtYbqDjnQ897Eo9FQUIg/ujTwC9uSig3pscR9PmsOhLJpWa5kyd0kdeM3mla8sfWdu/29ZH5ARQk9z2o+vFPAADTt8hlrbib04YudOy8yMz5FvvbvcgBoFfuwRDLOBkvT74sViqsevkhjADQdu9C4LIfJ+xPpscUhgG9qQn+kSM99/cEIhpFaPVqFJ50kuf+9x74BY4A8MEDP8MkAQSjrcgJalIITgFHCK43N2PbF+dhyidyBQAjJp9Bn9+8D9QPnjOXB0G4/rH2hwEkaomzEVllaSKiAiIqsn8D+AqAYiIazw77BoBi6/frAC4hoiARTQYwBcCn6A5EqB9/Kpac0ru1qWzTOJ8nKelXIpATTGfKTMSkVdUIM3FfsFIOUoYvNf/feP/NWHX5OSh+0Ex+OG/VLRgyrhlwBkiBsZa1rajRmtySkKaaZ2UiSqHHMW/VLRhbt1qWZcSdsmyMbAX0UAhD9yYf3Cd/aLopx7EBNh6LwB82yzUeMtMhdBXeekGLJU44o0uS5H7S0nvstThh20MLzHw6e+QXLp8oudh553/+gfVfPA5GLy1CXEc03DJLHPnvYmdbzZKeZc8t+KgEsf95EME8U/geHitdWu0t9c7vvS+bVj0eAZhO7p6Xf3kaXrnW1FHkvfA+8l9aDABofOtVxOrrYcSY28/qsmCxdwoGzZr0iPkCeD9+8sZDAIANS2SKjPZWaS31sjRxt0KEpbowmM7IyaPEyEtHp+wnYRgoPftMdO6scEgR15m5rFL2+8OeLyNmPsvBphCi4dbEY0FpC7J5wGp3mrNoo3yphJCkaGy9WW/TnnI5ebF73daWWnzNLVwOSWAN05JMKVq85zOvlo6Nw4s0sYhUvtJD2QTzmPI5E1H596dReunF7qJ0HXse/BP09nZ4oS1uuvV0zbQK1z/8iMuln8zaWXLbb7H9pJMRra3Dtrv+iNKbkqQPcbnHvZ+FFTdegT1XXoVd73svfN0ZN9sejnc4xYU7DEys/gjHr7sfR5460RGCL7nRFGJ/eO0lrF55f33+vi+vY8NlwbL+5R+aPf0gzCSyijQBGAvgYyLaAJP8vCWEeAfAvVYago0AvgTglwAghCgB8BKAzQDeAXCdEKL70V7oCZN8TzBmgUkiAnFgwh6TcOSVJxcicr1ET7H+jTcd7VDcJ7VDegp3EADk/PU1DFm5E77HzFxEK+YuQGvtMMBZMoFQN3YOVsxdgMO2pyZNuc+87vz2dUaxYu4C1I2dLcvS/E5ZHNuOPyEtVySH3taa8FCO39O9OHxUsdn/M0rCyOuGs/jD6Vn+fLEY9IfM6KQ3//obZ/uWJ6RGxo5MAhFq77oDweZObFvnrUnrDiKeeiLMvfOvKfe7ymLEzu7POAss1dkkNmmxmQfJcA3a3etcZv63HtMWu00KLbV7UHfDb7Hy4q+4CKVddLzKe929POt5HlaUi03334rPfvdTdISYW9i26PnkNbS1Sx2i7tF3PLFk00ZpNYs7kbJwrDiCEZ1oeyvKH74TQtex/P7fADursPPscyVpYm3Q2UQp3XNsAmeTUDRsTmgut6AmlSxJtUU2uWHlRpNEytr4+JU/O7/bdpjuSB97F8sWvehJ1trazPuZjOIY8Rhi1dWI7trlaTUkcHcym4CZC1AI4bjaU0EAWLvgl1h5VfIlmbzc2LE4t0BKPVdsmGXBCuSh7c57gM82uspa9dgdaH/sr/jwWu/67H4K5wAr7vl/2PfnP+Oj312LukVvo/Klf1jWkkTULzLHz4+XPQv9meeB17osfeRB/GJJ7u+2nesAAO8se9hzv4tnWuUee5YfU7e/hKJQFU695AhMqHsGbWVb0eAzPzrqc+UqBzwfIfWQHkR37Uoe+e1BKPmRsdjArZva38gq95wQohzAMR7bExNIyH13ALijRxWRD3Vj52DvqGMdd1JvMbzFvPVtgeQTsd4HUe3e8mVosLRD9ePOwYi2fwLomXsOMC1Nq4/7NaKBoYDmAwwdgWgLZq+7zzkmWfZijpnvlSMS6L6s3mLHbTfCQ+PeLcbvTt/VOu31TWkdp7PJ0c/E7njgH85P2w0ypVze/85YGOkrzlh9/RCx5pTFwrXLEMTBADrZ9az914OY3OUcnvohnTB0LzQ2mt7xUTUR1HtotPxxZknSdWh2m2xLrc8H/1//CT+Ajp8wfZP1LcTJjcEicryE0dzS1MHEv0ZMCtQdCzGbsFbd9XNM+agS/60qhj/UBDtjlR1FSj45bOosRNtlabJlgozMRaIhBJy2SbImNU3JqIqXey71sxJhQSNN/3wOXR1DvCah66hf/BoKpxyFcHtr16pc0ONRlM0/w/z9czNtBLcY5LDHhk+E3NK0ZfoMAMDkD7zXNyRWef7z73g3RLbePIc9Fzp7Fvhvv0WmyC+lBQAQaongvb8Wo3DJIgwFMGKDd3JJ+/1sGa6hfcdKDAdQ3bwFY35qWo4K5s/3PG+o9YjUtO4Ad5mUTpuOyNfkOVyzFot7W16KhAZAx4TAOBT/9kb4XnnL5a50yhLsQ4VZccpXf4jAC2+j+J13QUebreG3mo9BogdLHpU+eS9w71OIHjQMxyySHyiRnTsRb26GTjzIxW4kc4n3MNWM8EjJMljINkvT4MCIIxhu7LWlyQtf2JWcKR/xZO8sD0tOWYiafZc5kQ/VE0/F4tMfNjVF3ViauiIYbcWofcXmF5kQAGkYta/YpesaWtuOisUvY+Xd3ikPelJWbzF2S/fRU4MFn8G/jr1JxMRlxQnbAjm9C6vvbcRauKEGnZXuZJE8/Hi+Fclcw4bH4nDqEO1et4VFWhrM0mQjyswdPO8YOYREErsId5N4uL6iEUlYvL5kuaapbZ+8XltQ785UzpY+2WkSv4Ne/QyVGvvit9vIFrhtb5UuYJtoCk1z5gVOmuK2pYnYhESEHLurwyw9gRDY/eyfEW1s8NROdhdlqtXK6z28PPFYTtYMI459196Mzed/FRErujVZhnuXRc/jGfExUhxnx/LtNpYvej7lNaRC63//i1h9vXMN3GXKRcU81N1vWca0Lu75Ff8pQ/X2FpSPMPNJVY7wvnhbqC8A5HWYFrmhQmYjdyUMFgKhTz+FEAL51uZPGmVgiZ2qJPjmYniR4mRWK/uZ1nw++F55y6mLtdL5xVPN2GhqNp/tYU26JO7sbH5/jSQfTst+/m18Os+dtqD+TfNjPrDHvTZn+dnnYPcll7pSZHjW20Mh+JbpMxzyPdj4HJImc5If2U+TvI2hrR4jWx+RSjvUU0vT4tMessgXOX/VE0/F4tMeco45pCKG8LV/wNCnF+Pj//110rKWnLLQs6zeasQGAl7pEHoKv0to7P3VNaIh8b7Xr3q/V/Xlrvys+4M8UHHyfOw886vdaqmGsWU0jmhK7d7xchVVvPk8Kl79Oz49/kw8+pN30VYwIeGYzjBLBeC4LlmC1Vz54MajYay+8Uo0by+RFh82+XU2S0ISDNnCeE6a5IToJYzeN1xeb2uj1HA54n24LT42Jlq6H78BjMgfJbfvtrSMzNLU3sJ0c/YzopFDFLkgO2pppUyyJpzrifnN57W66mTned2y+N8I3fEIlv6AJYbk7lNGTvWODmy87QbX2pK1UXm9jR7LwdE4GT9jP9sFnUCkUxI7L3QVmHc9NicqJ1ruYvLSNI0eme/6/81/vh0d1ZXeFTO0N+9D1S9/hdUXflmSXkYcOOHgCX9jsD5mLEvTklMW4uFrFmPrKpP4xPPmYfHpD2PPEe5xrHTadCy6/MtwMrwRUFRjXmfuLmm14uTk0z/fit3f/wGW3yfH0Ty2TMKeMvmx5bXEECdgeiiE5WfPQ+3qj+Q57D1wWSi9rDjs48TgeszEQ136tmRBG6Pf3YSiLrkMI77U85/ro8bjepNZ1jj+++3ZCUsXxVpb0l76qL/wOSRNQH6oBtE+TKaDhVTaIaOHd272mrsQ7NwnBxchkNvZgNlr7vQ8vuPf3kJDQJI5ssJYSY/0SSM2ECibfAFahh6Ossnn97qMvA7m3+9GQ8JRvbx3pGniSm+3QLp4/49XpdxfwMalqW+lXsakqxC16cN3Eb7xjwjffBeKZ1wB3fCjeMaVCed1djARtZ34k/2XE9ENr/0dhW8uR9nF35KkiRES43Lpnpu6ztIv8XB+NhB7WZoCeXIyCbEldQQTqHu55xYfLX/7CyXjGNVgWZJYEAYvd/oa8yub59vhy0eEFplaltwYHHckaRraCsz0HbHIGCd9x66d5tqJWnNIao/YJBNhYvW3f/Md5LzwNt783RVotXjIpOkyumqIR1LpUZMOcyZrLh+IdnBrmEhYQoNbj+wJlvMrO4gDcFsSfTojNdYtNKKyYWWrFoEefg4rv/9Vl3vOqYtN9q0WUc1r9tCTdWljR5X5nI9ok+TES4jcFWsvOBul06Y79U5aWcm0ZcDYerOUUXVMw8XqLd9sBnxXbpJEZ9Y+GR0WNzwCF1xJUeX+Jc/eheE7m7Hhd9fKlQKYRdbt2rLJOMn7y/a7U1UkEh2eWV9P8qFogxPofb7Ulmnu9pOWJu/rTYZDNyYK9F95988eRw4sskrTNDggdBROREfhRCw5ZSG01l/h1A3ZmY00lQ5p16E9i9AqClXBZ5EcmzhpehRFoYQMDQCAg+o9NwMw3XO+eCeEFgCEgNAC8MV7n8KhP9E1HULd+HmoGz/PlQ4hXRSF5It+5H/SD1POae7Zvekv5L+fesFNn64hucTXFLjmWpdc8KkUyS556GcY+9Ai0yrJBvbOgnFYfPrDWHzNYtjKjOaSVVID5FgiCD6LJIR1H+zBevfij3EUgIIO4ZCX4Zt5rloPaHyyiDgDmBdp4tN5pI0ttrzNjNrMi8I1ETpVsC7SAwXO761T/Ji6PQ7BJpvO9iYnUDoYkR8kTtUsuWVNIITDAKw+Pgf51vU2i5vQPCMxfQet0XEInrPSInS9GiDa0eZce0NDJQ4HsKemHGOsbTyfmt/jlvMMzHxSjVkWLIOAJddcgHFLt+OwtavksWzyM/TE5JbNQ/yOfsorIiruJ5BFoHRmldy7rxrDAIyvjGLvNPsimP6N9WM8LNvoCPk5aQpLC2Q4YD4ve4fKydpIQ6uTv9X8gImEmOzCI0K6PQ8Ybs3lLheTw3TlpoNiBwPwcIs7x3DrkCyrw3JDx2FgarmV60/jwQg8nF8+LHZpnJC4l2qyq2c5yrimqZvAFIO7/bweMn5sPIYE5wiZFtbiGVdgRkvvxsxwbPATlX4uLU3czTWUDYo23p8vZZP/PXccACDqAz46tf+tU225yaexVNqhI7b1XDQcz8lHQagaM0v+hoJQNeI5+d2f5IFsds8l+3pMK2N3P+GoXf3vqk0HI5tS1ztja+qvQU4WvrBVWtY++cyynCXNHC23H/YoE/fGpHtujBVklx+VbTxquXRR2AkWD9qeeq2tYz+SWdo5UfLKCB5l2bFibZLQj3j8Nef3IdvNQdfXJusNsldLFJtt3DlG6nK4QLaTkbFN0+wMypJWUb2cJMfnme7MKdvjGFZtTsZDtEcwfF+i1fagqaYOcnwDn39l3/E1whxXTTfRj00sDY7QdWmJYH0XsyZoQwPGLTXTbHx6lkyEyDVaXsECsTxuCUxsQ9wv7Ug6szRpzHLiiyaOiBFOhJgL0XFtsbo6W6WuJmBFLvMs7eg2yEF25D6+npvHeR0smwxP4MhdUC3WFNMxTWaX4xZI8mDF8Xhqyzb5pb0jFuYRHLJUaWmS9zfCdVeyiQ64hbm7YBBO1uLMPReqr8W2155yHeuVjFWQ9AjsWJl+4AlfaiuWhoWqv/ELKqswAAAgAElEQVT5JE3MzSU81Pfjxh7s/B4/0vwtCCgMJIoDln/zSOf382clCoAbu+FZO6fmYc8E7xm9v8nJySt+h7lr7sTYhs8wd82dOHnF73pVju2es7PMalnknjtx5S3I66hzuSHzOupw4srMty3bkSwAdG6p2ZcnrboFvliHq299sQ6MD/3J87yj3zO/1rkrOT/JGDdze8+F5/E2OTmOffL1xAOYpWLcKu+IyUJrvhlSKcnP2LCckKauMBd/PrSeiZmZxSHKlgU6aovljjSkpSlvlzTZNtdWAQCGtQpMrLFFySH49ESrLRlMG2ZVN+t9qfeJheUXtss9Zt1DryVZWoczd+Wb/3auPdYuryFurUnJ79moBhYQwcp1JlhupWP50rzEzIaPnOsxIjyi0XwwGoYCM5dVJZwXCUnXTCwsiZ1TNbOWhZh+zbb+mK5Ye6P548SVt4A0w/U8a/EwRkUecM6vr691fjtCf3a9YU4SvaJfSUbPcV1knN8fD2tnPMnaghXWXGGweSvCw/XZM+/oCBmx0Du5ZSbRNW24LIneA0JbwUQsPfk+1O2Sruk4e15WXPpl6Dfdi+YG+YFjxNzuuSWnLES7/07Ujf8iQIT6HX7X8i6LXvs1Qi2JzwEAxBjZjmYgv9PnkzTBQMCKnrNJU+m0gCMeFppcQdZengMEt2LOQlHuGOf3OC2RNOUmuad8kdoJdd4WgnSSSCbD1pmJFrT+gu2es7PMGloOWgojabnnWvOBHZMTVezr5khCyvump1gxdwE688fKe0WEzvyxCTmkDgSkEruXjeu/eiZaY2Mw2gphuwWswVVoPkxf7Z17yYbGZoNgP45xQ38rk54WtiVaJ3I6WY6knNSmxsJm5s6Kedt+J++xtjNLU4zlirLBLU2d+ZKAlQ5tSzi2Of4bNIxJ/DDatd3U4jUmSZIcC0sSYScEFSAnUstrwjNYpP300piTHqCtRRID3bJaJIuec1n0LKsTn8CJrSHmpVPRmR6Mp4yIdkiRvFMWuw1hppXTLv+lPNYhYJKgdTTKCFweweloaaxI2GC0FT7NSkNgmNeSE2uHj+Sk3FDLhOkujZ6JSB5zF4eZ8N1yQfIoZx6NxomMQ24Y+xSutdikKtBZJoe5V905nSQRso/lEXE84tQrp5I7ei7xegGYmkZfHj58gZF4NqRPrDLPa6qWrnZeLolUln+Bde//DZNuehOvXH+W5xHhCCPQ+gFiaSKiMUT0DSK6joiuIKI5xOX+GQfJEHnr5glNrqUWapvlHOmzwscF3BELNvwR+bSMyjsoYT8nTct/fLrzu3q2XFfYHrzWH+3O7pNuEsl1l5+RUG+qtdDSxZqThiXdFw0MQV5wM45fdz9G1X8E4Tcn7s9O9lq4BFg5yzKTJ2uWT/bt3rOO712DYRLNQLhRTmxCEuQDDanW/ju4m0XfOwOJ20JpZEoY0ViKidXLMHvdfZhYvQwjGrvXeo2vlRPACO9kywOCYEjWO74+tfm/eZh8MKdWyGNrrJV01k/mvi85YY15yiOPkBAYb/V/DhNGF4QTJ6mTlv/B02o7eqQZwq37mQuKIfLUs85vZyJl5MXLtSKSZJr1dcqwed0iMskCTbj4d+q/TN0bj+TV4tzSlGh50f0sh1VUWj3inYmEkmeoj3gssmuOJVaAQZN8sKJN0qXmlfaCr/GXozViYvUynLD2PgSMVShqr3SNnS37JKF0XJ7cIpQnX6RwSBJovxVFGAuwKDfdWyQviQ5L0MksKA5BIulC5/e3s62JHWv9YKTJZWkKe1mluKVJtrHrqgAPX7MYD1+zGJ0F4wAitDcapqbxtIdcpMnGsrdfYNfrtpyduPIWQDSwNggMHZOHy+44Efs+WQsAOH619zvLgyA8F+oeYPQrkSGiLxHRuwDegrng7ngAMwD8HsAmIrqNiLIgbI25uUjDklMWonbMg04+pI7WKU4+JC1okSaCpytv9GkyHw6PaLDBO/jL3/gJ2+Gzm4IO670zitzLrUgC4NjcPQnAxEO/AKCLZiHNpUJSQfiTxwkcXfIEhg9ZhaJQFQ7e/RKGtj4NwK1N4Bg553RZrtcBVl0GefdjulgxdwGiuSPkAEQaorkj8MkXF2D7wf0jbGocAmyZktP9gT1E10VOk2HJKQux+PSHPfN32UiRaxUAPLOmt6dhnDy65Aknu/DU7S/h6JInuj0nNzO6eExMEczQFV55hACg0fpu0Nnk5wvJCTzfS3oihPPeF7RLgnVIR+Jzza22EAYMLQe+eBhj3zcXmg4k6bsJlZKQDGkwCQNfJcDLPUdJvljmLZXHjn/KXBsyOWmS9Qas03R2rI9Z6XQPK4DuZzmsmPtOtyxnMW5pYufZOiYO4fwHGMpWZIiy5XUMr0WwGeEYZrzjPM958TfM55mNnR3Vctkf23Xl0gDlyS+NMEs/EbdE7vEcWRaxPFxxjxB8/lEeZ5o1mzQJdg3cksjJmkz6yNrIXLmu9SCZaNw5lpGbrmlHNL/380MijrgHIQ8zN5rBnwUhLK+EZlcEAaB23x488peTobGo5bbGXXjh1nOhR7mmTV7vgWBpOhfA1UKI2UKIHwkhfi+EuFEIcT7MTN+fAfhyP9fZYxBJN5cgk5wEI2udrz2+37E0kQwJrWcGmPEHHeb8ztvpTuzVFTkBKby25ZACQO146zZ0ITpSCE7Q9CgAwvAm00JWOkW6s3wB6UJcM8/ipP1gabKJTIgZwMpYah7yJ5orkmVodaI9mGmW+8FhrXNkEFzJA7tDV0fKvFW3QEOrHBgtojmx8n8AyzXQ1pt03QDWzTddsQLur+B0seFU2XmbrzvT+b3T0insOkgWum6G7NtNx7AIrsP9A6YpG5t62bH9Dt0E9LjgS0Iybd3P8VvlAUcu3+d5rO3SmrBTThZj98nJ5NiN3jqVaGAICkKm/qPASocyxhpKhnYAY3emFsdPsbwgk2vkF3iyxITdwb5ePcnzveeTRO1YnLk+D62QE96OB+XzWHq8OS7VT8x33n/BJvDQJnN5ED6BE9MA1VetTai3qAPwxyxLE1saSV+71PlteOSS4kJ+nQn5yUk4Ki++aKUMbIhbE7RrhAtK0tTBSFOTHVnIfIyiVrqx3XmLhPtfAFGm99JqLfZP0qposGVoomy5oWNWNlmXIK+hqbxE1svIh92/gln5eV4rbml69Y4rMG/ZzfDluDVgvlgHTlx5i8vSZL8HNUVsnUJmgbT7WUMNCqzo7RhqcFBtJb72dDs0tlbi6ovOx6wXK7DkliucbeFOeb1exHyg0d+kaYUQwlPgIISICyFeFUL8u5/r7BEIAkL4ZIg8EYLRVmgi4mh0+H6/tdq5QdJ33zRRzrpjJkx2fh9SXINUCAYTSROI5G/2oG8/3PQLRANDEMA6HL/ufhS2fYJYjjn45Jw2W5bFyIszILEXf+9wbxJi53Rpy09CsCzSVD9Scyb2zvlfdHZrOTnWtUhwC1ctI5fcemS3seSr0+QBVpoA0QNLU+VYwobj3AwoGG1FHu2URJNMV6xflxPKjnlyMYP1Hq7NpPDLNtqkdOOxktC0JglGbLG2a8xyl8MG25aDzHvKdSR5c+awes0+bbUMkcmsEz1J+dAX3VhP4OUGzBRSacAOrvW2NOX1YEkse0LLb08/enLJKQvRMHoWQoUTAdIQKpyIhtGzXFbD0am/xRxM2cUWqvWIXPM28XpDS0I4tRfeTdimB/z4YH5in05ZJxveNtR8p4UmyaxgLqhp75vMj1tAieV2Kq9ZmVC+TwCTLD7RXiRfniNKWTLHVvNLwBVpx9xz1C7HBTvtBXfPdR4iNavHvGxGUvK+oRz5TkdYzi47AtPHPJRGSYXz27W8i3WdVC2Fzzwi7vA3rCAGIqnLYoLuCAtG0ByrlaxX8NxnrN6DNzZY+5mYnVnDbOJNAOIrPsWKuQugxzSXXlTPyceKuQtcpKnDGtoufkzeM65p0gzDTA1DM53nPoAJ8rlnhHJ8tfnbv1HSis7O1GtODjT6mzT9vp/L63fkd9SiaFSVTG5pvSCGVohxtauQH6pBwYhqZ7+mSS2OIGnO3G1Jd4YMlekJ4vlyhmi3JsoI4ysBF2mywQKJGeGIfclcgu/okidQ6H8PRaEqDG/+F6ZuM90hxBZf9VtidQFpVucWn6aLTvXsi6jlYSo/9RBnG5+45dIEMpOHj72AZJEmPhi7vnCu/JbzW7PXe2LlB4KS8NiDD3fPVUxMbS3z0nqYZRQ6q3oHfRvMe8mO1Zgl67xr01+20AnzJTawsgE2HEx8nQzeTrZquM/PBERWGXyw9nEi7Ess18s60RMUpkEGmlmwaPWY5Pdi7amHYtORpm+YWw+LpwcR6SNp2nFI/w1RvUl4OiZR590tulswmmOgrIaGh57IF07f+jzSmoe7Ek2vayMBnPIT7yS5DpyEhixtAiU+HMOZF44YuWlo9o6kshEPeF/bUW9a7jVOOFiE2MwSqecie31DVlRNJDGP3eRdkjUF6qXVMcrcZKOtvg4wTdtUpikPN8p6czvM8o5azqLRwokvqICZggIAsE+6ICOhRD2Ya9FoZj0yGCEZYlWhsQxKnMy11W51KrY9MoFwY4IVf96qWxBjr6kX4ebZxXfHmlMmSCaPJVUaciVJbGuXfS56uPxKfyCLxNmDA58ew9jJ5VKLYVlkhoWehWbE0F50EHx+cvZrfKK0yhBEKLr7Fiy/4WRX2VwUWDfaLDfC5sZcRpr4yuWOVZYlLPMFpL7JthoJksszcHJiT8Dk/Aeul8YXkI3Y8OUvOL+91m3aerW0vPAEavCY+G3Li2u4YvXm5kkrDLGJ35EfcgLmz0EkMASbjvoFhGH2UzIX2KbzZ7jaDwAbT5fC+tGFix2dQmHuEhxd8oS7jawtefmyjavOShTyuxCQliZb38YtaxFGmsp+/x0AwJ57rnLaGWNZc20rnfV/VlksCondM3SxvKVjnegOXUP/mz2itOoPlqQ2Yk1KlR46/yHTp8A41AzX4y4x8pPnALr2K4ckbvRARwDQc81+Kpnp7VMttlyX7V12c1G7rQGzw5vrxs9L0IANBD67aFq3xwSjrWgeS32yGnpBdCROpAdX99xl35VoDvPwFE7dGkHgW9enLGfOh6bVaeZaOdm3FU5OOI5LAfgC4vG61P1hu+mSQdOFM/Ac+1/vaM9Zq610C4zYTbBISjJP7+QtktzkLP00oT2+Dvmi7WErkTdXbpfHegQINHQkCvJymF7siBWSdIU7Urtvc7ZLC5fwWGrpsE9lXTHmFjzsDZM0jW80x1ovuYgdUKWzcd8rrQjXws3fIFInSPZIVBsrkONlW7vUr+nt3q7ygUR/k6ZpRLTR428TEW3s/vTBAZ+soRGWnLIQdcPvc4S1rfUTpBDcOlZAZpIlIpx40qW48mq3CDYWlOU2nmSuhxO/R34x+v3e4mHn64tN5v5cZpWyJ2ZG3Dih8QcS3XMu0sQsOv7h5hdjzWg2gLJJOSeP1eslbGcWLs1LKM5IRCBHEj8vnRJfbZxyAtgx+QK0DjkcLY1Hua+l63mWVUpjg6rGyJzGCEcOLB2Cyxrmw/qzpqNupA8+dg0Fw+Q6YzaKvycj+ez0Ewa3NLE+irLw4zO+dh2mbynF2RfcIFcbZ8IZjWUtt8vi1+sL5LL9slwSwvzi82/p12Vsoh6PpmB9ahPYtpHyWSuZap5k6HHnXjYwt5/QNCdvUOnFMiJVCyYSoB3zJZnfPtkmkXAYOSeU2w5nfWe5LrtOOzrn+0meI0HAtmm9FLgxdCVsNgJWChKeNsB2XZQyEiioqE9WQy8YLd2ET3aDvhLNiB/YfnDq6aXwjU8SthUwYX1uO9PEdKPR7I40jW8ADqlO0z/JxpVZm239jTdqxsp2Hc4sSXZ7hjSzJUxYMMGUp5Y5v4d4JLWu356Y3b9lgvdzEa7bkbCNWqXJbtoGFm0WShTUD2X1x5ngPo8ZceyPn2hgiLTia+ucZ5V7KOIenXXQ3e7FmVPlICQPYnfMankNHe3SIjcxPvhxZf1NmioAnOfx9zXr36yAL4eZhYkwb9UtyI2uYxmPDWkq9EshuGNiTiJ2jjPSc9nvX8LoFYtw0pmXuuraePFMbL/hq2zBTkCzyuMWn5xcFklnTcw8ooUfy8mHTcB4JAafgOFFdFi7c/LYCM8IgX3FGrcOaXYGZH6JsqwgIy82wXINW1b5S05ZiH2N16HWGqBDbQdj8ekPY/ehD8IL9vWSkA3j61URu78+WBEvPCeJz4dL//c/OP0TmZHauqDEyhjZs8m2IDik1CWiDHLNUuJMWpAvtVQ+TqA9Ih25dbDrPQtGW6FpMc+vtJ1TzOcm1Hcu4HoupFZO7jasaBqh6+4PERuMNPmHsdxngcTcBuGJ0oQVybf0L+AWPRYWzXL9CPsZZe3aepi7LYK8NX2C/P0SMFE+TX5odLChxc76vOcI0xoWyQHqRtsE2fx3ySkLERVT+2Q19MLRH/YgdNAD/ZFZP9ANkZnUjZFg8h55/lcXp/Z5FqQ2tnQLlywhkr7LZ1iz/BDadpj5vtSMBHKsqSTOROc5Ue/+8LLMHP9q4tqQ5LGMCwCMeH9VwraZn3l3yNwPvJfNslHbIAX3FVPkcz20ybxOHj1bSO86Hpnr3pLXmSzHF0cqt3RDuCLluZ0hqZULVaa+noFAf5OmqBBiV7K/fq6r1+ATP0jDirkLEA4cxyZIzcmHZGtLBMHJjZEsQizmIjUaRg2flHDMxbe9jPOvvt/1NeOATVLBXEleqBv3nN0cHoLLLU3+ILP4cCLkuOfYZJ8vhSy8Dume4yQi8fHh5/hz5ORoRyGSq15vKwGv0n4BXz7zOFmHP9ECxtdP0hhJjOXLiDd5gPckSh7khadQ0Dhpkhudn9w9y0mPc73MJeciTY6wUm7ycethjru9S05ZiHD0KM+vtGiRWW+0l6tK1k7yflaca+bkxboPQo8716Z36RubNGn8ucpJJE0+tt/wc4GEm2QAXTRePkmwbETz3Rc/e81dgBGXyfyEAIw4Zq+500XGYkn6rDlxIQBsOkZOKLxt/PJtXZErdYd1rE385q26BUF/qTN5QESzJrt+XxCMA+Pre6A87668WOqZeFQfl73kEfPHrGhKfmAXBCJMgF5uK9xlqghufQpE0u+PsIflV4t7R0SO6kfecMqrMgKw4+ARzu8JHl1yzGLvirtLdwJ4J0i2P/xmrE89ePFowbPX9d8zli76mzQl2luzDPqhE1wiW2impUnTm6XAjYQjcNOsyWtYO2RStCSkqXG0OZDumtCTPEOsLDYBB/LYSK1Jd4WXaNyrNG7xyeGuPl/i28jJQrCAWQS0REsTF4LbLiaXINultQokHGse7+5HkSzFAPkd0iSCsixPqwbrR044yKONmgfZA5KQJr+3pcmpjRE4I59Z1rysdAHZB5qHpYl3IyecNlmzF2+dt+oWBINlnpniRTBRcJ8O7P5pOJg9d9w9R8nJS2P5WtdaWE6ZmuZMRjl50ozusvTaVRXIjwSd5bYxPAT3LkuT34vIui++KFQFzcr4bH+skBFDUajaRZo2zxkJL4St5q4/U2reYoXcfcpIE7+JVq6kBp+V7Zq10z4nGG0FaXFn8gD8KTVNW2fI+7Np7iinfS29W0bSwfpZ8nlrLjSTD2rxMLouMdKT5YjSmTz3dxR4GKUI3rnJhvTAGuaVBDYnNLjh9WNXV3Z/UB/AXX0Tqz9K2y29pHl79wcNIPqVNAkhrgcAIgoS0XeI6P8R0S32X3/W1VsUFA6XS6PAHMiC0VYE46VS4CbgCNyiLN2tEKlJkxE0j60d3T1pEh6JxXhoKCdNjqVJk7M1cZeDl0qRtTGHCdC9JnNOQvKKhssyvDRNLtLk63oJbjE7tzR56bmsY2evuQuADp4dFoaOcZV3ysmQW3zsRTjdVyH3cyuPNanyNnYlXTvn+FB96XRPDRe5rtde/JMTXebCyncnJ5U73G0B3MSBtMRr4KQJLLVDXqeBFXMXIBI53DNTvOHRz7sukp7xUpYfisNZ8Zw/H7ZbGN5aOZtUnfRxxLnXbN3OLu5mSYpcAQZ2UWy/W0tlkybWz/w+2dYu/h4xi6xzmB5BfodcrFoTEbuR8qAcb82hFBJ6RI4CTp/smkiu58xOMFnHbqVDmlyBEQVSJ0LrUk4enQeZX/8GAMOybG6ZGezWbVYzRqR0m+hWe5qLgJYiMw1LTsycufkSI8FoKzYfKceT3pC1VWeM6f6gfsS+QZa9+HUg1yMS3mtbTzC8fnDD68elmerCS8OUDnqTKBcAfv/PHiRgGwAMVPTcawAugLn8eYj9ZQVcX/nWMGdoRc7ANWZyyBm4wiz00w5J9SUZfXIs0pTb5TN/xTcmYcVx7q52RYZYM9YOXTr58wqHsGPNfw0i6X1jxeUVmAmRwvka00rJNgSYpUljuYaGW9o6TgxyC2VyJe62c1xM3GJkn+fSNDGLDyMGLouNfbw1UBeFquAL2MkvzZ2aEcWMHdXOZODjbfFLsuZ1J7h7TvNqYxfSdM7fi3HG//zHkwxrXSL8gC4+e07mCrwXCnNyp/j8Tgi3YXBLheZcj1Msm5S5Zu2gGlMIToa0jAq2lqI98fNJdOyXZM4nf66MFtx+rJy8PEkTe1YcsTp/jHMS+8Zt0eOWU5Zu3MNSmONBmgiQZIlnu3a557y0VIn38eQVv0NF/t3OYtWH7fi9dT3s2JzEsnieKRep5sdaz03ML1eWX3fOYc5aZZ6uUvasDR+5VOpE8peknDzs9yjuA9BhqqZnfRZJmn4DAOqGAXG/2wUFuF2pdp+2DOGuxipniZGgsRpF7ablQbfGua2H+9HRC+1c1C9NUCVJMuunmoirxlLaRKj8UJ/T/81De7/SQE8wqhdpKtJBb9JfDAbCAaAzd/DdZJnCQJGmSUKIi4UQ9woh/mT/DVBdPYaffyVaQr1h4X84A9fhs8POwDVhuEkiQrlAQbP5dTq+zM3/PjvvMKy/aCY0K+N3wHCPklfctQhXPF/i2sbTF8SsrLF1QprkXZomK3Orj6JS08QG8COOPQUVF5+KI/7ynOfgGeB6Eg9LBCcR+YXD2XY+yFghtK5J1cM1wrVUzE3GrXv2xWuM+QWCfhSEqjFy31Pw57TAr0dQNZZpuPyJFh8OvvikP4/pcrjVwrmuJO5Aj8mWuxXtawt2CmkV45a1wiSrq9pl+f3OenG1payfKZE0cUuTbdWw720w2oq89k2OZZRY6K9NOASkKNmXK2c2bnXsmJiY4dJFSDhpcoTgjLxwjVYgcfaculyGRecETdLUkSfJeJ2UTLhymMHD0uRaFsjvTeycc4iQ57G8yZGFh7Nj7PKZNtBDa5UX9bbIUhcXP2AFalj3KDc/CFgZlblWqqt7DgA0XhbL3xVO9GI616v7AL2Tf9AlHsvhZYmKMe2Yoy9kVrphLU87Y2IBvSPJHDvWJmJbj5TP0rbpqZlUQQFbVuCQ4ckP7IKdB5vXHgkQYtajt3Fe6vMFSSJbPVemuiiZPyXtertDsuzpNux2A8kXYM40equBBExXZF4PcoDt7xgo0rSciI4aoLL7DJ+Pi3SdqdTZ5mfunZlzz8bmKQJ7rz0Hus8kL+XHuZPVfOe+t3Dp7S/j7Jv/gt3TR+Kku/+RRivkKJdvrS10cuHRzrYgsw7BEon6EeMjuKu0c297DAfNmOWUyye3IBOC+xgJaCqyi5JlFQ6T1+ZFLjiJcPRNSd4Xny+Q8NuVmZed+L0/zsZF/3cmvvn3xzDu4Pdx8orfoSNfWtZcmig7ezjgKSL3BxIta65IuyRr6nEdmLQISQtJZ42Z38X1xccmv5whyRc4XnLKQuwu/pqT1mJvWYETwi1YSgkbnIQQE9FvtsZ9fdQkxzI6bEytYxl1ROPEonKE/LL38wSrHtY/7hozPFxQnBS7ohStd4ZP3lXHjnN+B3LzEfv7XZj05quOBYov2xLI5QJ0ljTVgzQJj8hR/hwIIm89jVdqDk6agomkaeehzBXAnxs2RvAIP8eqqPkc0mQvlOvWXcl6NdYu7iIMeyygbF9v3CdzUS05ijxfwdJZw2W9HgfEeUCF9ewbGn8WvF2izm+NhaIfPNbzWC9o7F5zt32FR4oCnhy1eaaViy0Jieeommg9F0nIqfhCYpDOlsPSnw43zJfEr3iufO+3Tk900beMl2PIbit6ssPj3gK9t4bZ1u+Nx7Ell45J3y+59ejes7meLFd0IGCgSNPJANYS0dZszNPkikxK5ExOhm0AyM0fggvf2IJzfvQAfNbK1UYS7Ure0KE465WPMfYL3Se1A9NH6TAH43yeI4mZ/4VlaerMGcryNCURM9sDHrueYBEjQh6RZ5w02a4+oItFxzGs8DxNMhO5N3lhk2pOovaER9/5A0EUjhiPQH6Bs+YR/+p11yvbFYPt52eWJj4B2wOlS2uT5LOKCYxti1BzvbROaB4TMR+yg0lIE1ni7YLhtSythZBpLWz3HGtjTiAx8hACOO/VNQg98v9w1f9d6VgBJk2vc6wAdkRbnDWsk2Uq9nkIzF3X4dILJVqaOEl0kaY8k+RxF1DTFDmRBvOKcPScr2PsxKmelkJXVgB2f70sMyKHkSa7DSmE4M7mbsolD4E6NHlNuXHZj1w3JxzLC3c9+0BxHQYkPxKAJ/l03ROLNO0bAgS9sm/bLmIN0K3Kdo0hFFlGp/qxialKzLoT39A470cWwenIAbglyhUB6HW9bD+r9/+zd91hUhTp+63uiTubA7vL7sKSWZCcoyCiYjjPrKeoZ9bzfuqpdxhO7/QwnjkrigjKiQETKKKICiI5SJKcc1g2706o3x+dvt6p2ZldZncGtt/n4dmhu7q6qrq76qsvvN/OlgI6DTLPubyEQ0ilsFjd3aU/nxWDiSaJDKRI6KU4kKemv5INTRM1eYsoQTpvqXv135lDzIL0vnaqGRVcSB6QuLAAACAASURBVOZyt8vgehNhb2ujXRs7Ri5Are+pCj3kfa5Oqjup+Joe1GTe+KZLEbv/lrYhpMc4xnEo5erEmEaqNyqwCUxFpl2+3QXRRlUTmiR3CIffhoAZ2i46ETuchklNzzYtyToRGhM40wIhhKaEBN2hjApIWh+pj5edmoUETuPUmYoJQvDpntfucEETEfyqNi1AJlrq/0SFQKdL7bvdhgBTx5w6ZJP27lcJI2sCJMElmRA1zZrJnyOUwMkkJScS0WqVHsjDnBGvQPJ7kc0mAAB258r6e0OpDlwp4ugrAIqT9lE72aYw7M/uj4OZvZAuvaQeMUC1nZLT0DQ53B70PW2sqW6bk0x+qtCUXayELbu8gMNhnKdknqCmWkMaNw7Zg01QpvB6k1BsCNAavNX79N8mnya1DTszgQI1wtmdQHzpTBou8/3p9YDYPAfGcMwDpJQr75ukC/yUz0yrl2h8nKLvmqvfJ4MjUEnKksle41kjbz+TbWi5+igkmGRxJB8LmK4BzD54mlaRS2ZyQf28+l74ZMDPghf5xGIiaZkEneC6KK+cMQ4MTIsssYkFIT05PRlb0yZPLXsgzdjwUVC/Oj/3AFDcEgySV8mYlumz1uaeEO4AJtBoT+35myhQ6hYoShNlJJWZVwFOtHBmrSPZhAsEdvodadxmVGiaX8QwZJ2qjSTvo7IBCh2CuOKstuj5jcrnJMhQwENo1HXQjYhgMx0JDqcyZBSHtg2XJMlILvWj1A3hsyrNSQS2NH0qlONBVDVNjLFEAKiLp0krE0uYIpME5iyHYBcCAFmXXowyF9D3ituOuw3+gDK5VaEaeWqyUM9ew6epRV6h0UIt2zQJ4UYYoYm+oG4XTWdSd4SYg+yaJBGLNyXNtBsmNwNE40PGOaD2ISBBz3Xk8oijaM647TFsGF6AwS/+z9A0kQWeLn6tVPOZzKh/TfDOPZTfVW0MWvgQPKWLDfoJohEa89AEbO9VgAH/+15YV1Ja6KigQQsfgs1RrfvQAdCdtwPqgkPJ62wkjY7I9EXhpEED5L3Qo3VItnLTOBJzhb7Y00nbSc1Z2oMgGhLynWw/tjSojW6PkdrG6SF+deq043MZdSUkGg5OJrJWTSNkUgUb72Xikk0AjFxpShuNPvht1DwTrGkyUWQISDcVmg+lcFlqR6MJ1AeLLpS607+MTFWJIpN3pExzmA1xX01ICDBgvyqDbz7bMNtr31xAAnzqzeiGYH9Xw2zEZcG7T+AXOLODGX2gGj2INE0wzHP0mQXsBhlvK8OtTQf1q2MkQazpHdPaHIaaI9QGiOZzNKqivmPG760FSh07iNfF5kGtgqqkVCMmcmGHwIxNQc7XyMbmUQN1pjclz1UFmV15Eg6oe4qtbYnrgUOkGaW7f6ONm/+opJ6iIiwPsRGhOCBwGVtOtH/b2weHT24sMI5t76h89/Qd3NE+eAPVUITzJ2sMRPuWnzPGnmGMDWeM6SPDGGvLGLueMTYLwFlRvme9YUqWKvJpEu44geFX/BP9VqxD2+6nHXcbmKrHdTM3jqYo967JM6fxONa6JYr/cJZOqglJ1kN8pXowGdtN0WTaI+d6mkbZTna6dAcs0ETQOUHE8m3Sljid2H772dh194XwqdT4nAF9X52K7UM647Rr7sGh9OB+yA4Hzn/zW2S17qx/bDQFjUQSBTu03WCVscOmO3eNKyqco6zWuQUDHkF5Uj8ilDI9nN+dkoKzpn6LpOxsvde09QmpgsRsKhYMeAS+GqdJU1fjSseCAY/oDtV08bObhKa6HWsdbuLQTb7og4WKEJff3kgFQ7mzKqsNIjsmEMYp+ajhQ0I0jaRdPTteYq4HQKLDeJ/dhGle9CjchB9MKNjT/5CJtmyoIsjQSDBXoES/B+V8goCjzKRpconj5/WqyX1ttD8S08vp+hqqGSUfTUCLEjUJTeT7U8efS0YEWWULslCqGxG/BPhUTRMd85q+hmDHyPcpEpx8DrJgEdoLQ5tChQyxYKBr8ch5rzM4gwFg+AmCGwK0Z/gZAIDfe6UYizjVZpp8GYPN2KF8mvRAG9nwM3OY5gVi4r/4HKUPRCUoMtVSp3L6LpgY7tX2rO4R/MwAINGRrtZlXEKTuptMquo7Uu00+lCSZcwLEpm3Rcz5EGjnzZtHGlxhlF15bhujbaJEyPT7FJzeTd5XTQgMEBP/0RyxCbkh2Fkgo9gTvlw0EW2eplEAvgdwM4A1jLFjjLHDAKYAyAFwDef842jesyGwO4I1TfTZO8IsUtEAVzUOEpP0vF+slq/UwFnfY9BTz6HapwgENTKHRhslMYbUCROQOmGCuH4GHL5oJEqyEsyRSYJUIbIgakgpShZI/QeZMGWBP0kt89xZtz+D0TeOR+/BSsJPx/nnIqtDV5z19nQwWcagbxagzXffCO9Pq6MOo7ogBKBITZhZsKmUnCeThT75GTMtC/XaM0UjJHuPmHyPnFo4fx3tA4CU1BxhEZNPkOAc1Dbaq0nKBSK4azvKUIKfO9nY+QW40u4DKcCQ6d8gb9o0ZBUaed2oc37iNkF2dBNPk2BRJZOyjXwnnhRFYKSCH4ksh4uStfJgk42HCk0SoRzQ2U3J8yOLeUqB4j9oip6T7Ppz8Zv8cozfOYeU+hK8huBocwV/9wzQXx1K7GpKN8Tq1t7aqBlElwuIxo48E+2bCzAgT00fJ+001DXatxqQAZ862HLAEEgkmYQkmtJFBTURfpMZ1DB9ac+QEspKVCtFAhd0TROpS1soa7/zup/gPkOLM+Lah5E4+Vmc//4voP5eugxP62XB9dI5avtYwkFGIvwSVatq6l4jNQnVjHm0/T3NhSnQOkrVAWMaoT6WAqHJJLyYNInBAqUp76NAIOGSYWKk2j+6Gdb1aaZo0GChid6XarVoWVH6pHW9ibsIjV4VbN591AoiIhIm7351PWSmD08VvMScC9/txkTUlVuc85mc8ys554Wc8xTOeQbnfDDnfDznfF/4Ghofpp277gNEFvsQO85oIqWjoi5NKuqu+/0wSULWpMlw3XWvqWynLopyrmjAxfoawiQgd+gQ5A4dYiqrL1oMGDr+VQz4eSlkux2lWYnYd3ofaG8YB6Dljw1IYvu+MCZHwPgdiXkuITMbRevXYdC4p03V2ZJT4MpvjVDQltdQZqUtfRRzxIFebcl5MlmEcvoWQiH1S6hYAzBJZWgGMtRw/lDXaMjKbx+ijMKw7HBXmxZ/d8V+hWFZrSJ/NzHdEUHXRnyaREhIMhZKb0CJtd+cyyC73Ujubg5ipUEQcm8jiW7t1DZKASOvGycLmn6aONy7E5JN9QAAqzFML7Q/gUBwNJknMZhUlXEgfZey4skBY2zoAl1TqXjr0QieKrsxwVNNkybIBAAkqJQElW5DOyjSMDMyJ9P70sVclFbJFLggiI40Ux2Qugj7v5b8OG3QiKD7BiSmCzpOP9MFkpLDnUi9AvMNgTA6EuQZUmZ9qnWiGyd13E0mRi1VDGNY1zNZT/6rJ0Tfm2VK/lvQbwyYJBF6CUI1Qn0sBdQcVDixFRrmYF3gYEzhtALg6zJQP30oYHzPI68ZhwOn5KPHc+8a/SKm541qbsFWB4FU1TnUu8MQwKiZmvZBr4ua0QRBEF7q9GYSmpjeB60E9Y9y0vykBo+Lccg0Z4qoOYLpRZTCwUITFX7ohkCk6fPT85rmlBajEcchkthrWN+duB6IlF6BYCLbxkYMLIKxh900mWirhXHE5Wx8oensv7+BxEn/xdl/fx1+TdvFvcgc0Bdtbr7OVHbgPf9Gq/cmoe+Nd4Z/QXjQDwBA/58XY+TLU0A7qjmV+z+YI6yK5ofUF1VyPRf5GBBEQ2OnRaN0zTMEAzpBD33wVfgcNpzxNyPBqTCvGw/dTqOoUtYvJyH98EIklO9FRkF5xPT+ch32eWdNiREwqTIsB5ispNFQc0ptbUN8y1wCmogQHUhMNsbGFzDMoCJQ4ZMRYVmUh9AUbKDveo0pw0585TTBjmqapBqf/ttEKSDIu2j3ED8Xco/DrdR7UE0TdaytEqSIByPmuWCGczBgh6oU5ETLQwk2NSiJutX+yOZFqNSThx+HPg0vsoOuo5oMWeB3Q/toeiaq1irAmJ701Z1imDn9fvXdkYFehUMxd9jzSLW9qAskxw7k6gIJFXRE70PAEbxQ0og4RoQBE88abbtW1kTnoH1HQE2yW0/OKoocNQ9KsLZEsgdr4cyXkPfRbrxj1NSnpTSxZxtpcGxkbGSnE6d+PBstuvUy7kv6XuUJVockFRvvNuVBE2maZJr7U+Bj6SPVc1HqIonpwin1j3LQABCulRW/V5oQHwghvDDTOBPaEYHQZArECARrjb0S3TAIhCbyzOhzEIFqw0Tua5KfW0JTU4Ca55ggn5wzIZj0rzFQMECxpecdVU0FVUeE5Rhj8PTvD8aYLkRwFiKqIswbxATmOXubfJT/8UyUdTA7P/rI96BNpFSL49fMLCHMc44QvmH1gaGmJ/4I2gfOgZSiTui26jcktjYmREngT2LanYYRn3L2vQ0W8KIsqQCyjaFV1ec42rOtuZA2NvX4YBNSqpGVfwhdB21BlyFZOsOypDpq1ziMZ+NwGgs4NUcK6yVO1j6V0ytUD6kzrLA+U649gdmJamQJaWpOfkeUJdvgu+FS/Vh5njiasKKm7nQQNGLqiE0VEohJzxS5FiLzu37aHjyBBxgxU1Ah0F23T1NtgtU1RdfCL7tRyc8PuoZqomyioA2qsaPCjb7IcNjUddlDAgz8XuX5BiSGMx58BUMH7ESHvll6wl8mBwwqC3XTwhngVzkd5nUhmx46DwoEIR5Cu0sXPa2sOZ+nct4vK+/QggGPYH92PxhpaAw/QQouG4KOXhXdeAlXTTJvUwdzohnVtJCeDGMcPc66N0JU6yj0mzIpdMg8J9LI0j4QjjkNVGgymcRF/F9EOHVwgW+uieE+OF+nOZsBeY7UxChM1C0OCuCCDZBXCjbVmhCBA7pxPf1+g5+DHAg91zUWoko5wBibCeA2zvm2aNYbbTjV8OeDGSbx1/h1nB799YWnUrm3I6tnmJKAR91YV/t9wvO6GjfECsuIeU4Dz89D34fHB5X1UZOIegHdGfAaxXQSILtxet9wYb31QYCYXLQJIJQQITucOnuTT93dmsxGddynNuXAga0eHCh4GLJNwmBSTtJMTLUmhbL8jKCvWBuTNv13Y8g5f1GOBQJYP14RMDTBnU5oDkJrIddiBK8Nm8uY8Hxc/F7odZHnF/CSEHo9qIvu7Ax2cb0v5LyDaJpkhwP9Fv0GAJg5ZwbarCtHdmERiofvQOpPK0xtSHQau+3CWbNQ8vt603n9+XLAoU7AMhGOqGNtWkYwSSHA9IdMhSZRWiDKLu50B2uaWACGT5MqRMw59WXgBwaoxQNogTkjXgE4R8dNtyttJIufLNW9CJnzECp/C4gjgzsl3aDu8CpqE7/MwCQJ3W64AYffX29ki4eRLV4bJw5FcwUAlXSdJcInJz5NIvMc1ZbokWmg5jkX5OcfhLfsGPDT50obJaXeQQsfwuLe96LGmap2kMNRdRT9lj0N4MygNpi1NDRIRSTEG8eo8CIyJydm5EBj2jrgPYq6OMFtVIAWaemoWdAZRtNEvxN7ME0L/e7NfFjBmiZGtFpJ3boD+EQ5rqXPCqmlE5nJaFlnUFmlXq1AMKEsAEhCoYkmahdpmshaGyo7gwqqeVOCmMyaLSkQVk8QdURb0/QugG8ZYw8wxqK3YkYZiSmZKLv7KnR9/1NDQqcvLmPYl23H7oIo8jHVAc8bL+FIhxz0veDPYcsmqG4iNTsP1F0wxItkuDwRjVC6OBWBnyxUdvVxZmUW6sfaFSr+Mjw3SxcihLnAjgOaM3HbVi3RYd7PaD/n+7oYA5S2ksnCrzrRBwS7lCAwhkELH0JiyWIwdecuyRwd+2dj7PhB5rKqQMkl80fc77t56Pf9PHH9VB1OJqxB594EAGh1xgX6MZP5IIwKm2p/fKrpr/ZE4nzmaQT+fjdsJHLUmarsvMsSmGGlFiQoDtUHp0eskR018TtU33s9+px7LQa+8QE6rzWnEJJVh2wWANytWyH7jDPMt6BpfWRVW+KnmiZj4Rgy9u6g+3MweFR50CsbGlkR7xhdIBwCoUkKGGU1J+x+Sx6H3VUDmmDaVXkILQ48ZdRvs6PixstQce1Fet5ETu9rcgQ3+hsIBAu9mZmGYBhQhSZKolhZWoOcfYo5ObOwRjcn675SzHgfKkIITUakpBEhZjIxUqGJRlBqn73Djo5nXYmuF99GzNwAg4QFAx5BjSudXMf0yFET1DZWo8qImqWmLWJC1EH9Y+zBflV0skjOMugYEvcdRV2gpmeRZppq7J1J9Dsw/JA02EwcZcF+oDRs3iQ06VYFQ2iiWlYXjdbVN60hhCYBp17oCE6BGZRqfEw8h8qN1w4jVBf0vCAogJkicOue2yDyDSQ44YUmzvk0AL0AJANYwhi7hzH2N+1fNO91vOh34wPIKOysP/TaTs8jf1yF02cva5K2tDr1dAz58ofwLxCB5AoRdhDCp0lDr95KFFti+776MXdmurCs6moDDuCUiR/Be9Ef0G6gQbeQ1ak7Ct58A0OmzDQ0AQ0kSQuFgGqySkrNhi0zE/aWLXWVcCjNC/UtapWvcNzIKelwqTkBEzwh8lVxxfeI8SpwbefuBxwuGZ4UczRN+5GXAwBGnv93VOeGphpQq1XaW0vaO3LBUDheGo+CwWeg0/Jl6Hvbv8T9CcPTROHlWhJfM9qecy66XneDaec+YKRCkimPOZ8kZKY+TVRoUs2cZMJzJYqFJmdqKnpef49angVNwq079lPOZYnNd9QUlLStDADQaWWZfoz6HomcsMEBhyp7JBwx8kRK1EQhiIJyJgSbbCSiBtCEkKW974W3ykEWZIYqdyYOtPibqWyfu/+FPuP+AztZsIxQeKJpotpbzb+tQEJJl0IAQGqOYXru3E/RzNh7Gf43Y27pDkk1J9sdks4Of6RY8XanzOImrYbIF4domujiKAsELDAGmWv1UvJLNQJQhs6G76g6QrjPDI4yCp9K5FhZYmhAKRGmkOmdaj5VvrJjCWScyfuRkGb4hmUkh+ZUAwBHQt10ggVjrtR/u5OC32OqabIToUmLnqMLfRe74cBOzbp+pkREMuaCrGn0yDNzuMj7qmmaiFO5ZDK/BtPDUO2RjQQ/mTYXuqaJCljBVDQBJzHJ0QACQjlgHCRtDOMIzklUnyww9UmBpvdpagw7lBdAOQAngCTU1qfFG3S1JkOHBb/Au2t3jBtUN3bnSsjbG4DPFkLeFZjJKDKKOsM18R24e/bE7716AwBS89oJy1JNU0rHTug+/smgMonDhwMw1PTR1jR1mfIp9n/zBVJyyG5bNU2G6iMlJ+008lwceLgCHcaciYPLF+PQnX/DyKvuEV7H1f4qjuDz0G7rPGy95A5UlATns+h2x33wXX4d7Dk5yJ7xDQIVIodkM1itNPNDHjey2Wss84lvPYvtsz8ylTtcfQAeROY+pZvnQhS22ey66TKlfRu4v50Fe14eln/5mXKZLKPT8mUAY9g+6T8AUCuNClmkEpIa9HF3GXUBDrzsQAcSFUahCb0MgEvtCDUDmBZSAPYH/4H0Hj2x/5IrlAOkrFRNHMiJI7g+PKYUQimo/RSlADFNa+auCB6EjTiY2wT8UFT4tFESUe3dlhgGfPp10HWnnH4pvD+OQOcWiqD++u1z4fcFgDzlO9y7QcJelcG+8wJFk5NVAhxWZQSq1aC8VLrGjQiU1NxlEqAFfpHVOzfSzgEAym0ciX4OZ00JMg+vxp6Ww5Rnw4wE0xTtVPqQU1dzVKpDYiLC1NpIPyP6Pro9qFG7oD8iukATITB3+FnAkx8G9UOvy0MpMpQbrhrREt3n7gEAZJw6EpXPv6Pel2hptPmXjrMpwXTw/JgoU+4l410ps49EtbMdeNXpkLgyJ9BMAXaHE1p8qm6eYyGEJpGmiaaxot+UiDuJClhUK6W5FlQYGtJOLWg0oaAuE9VBsKJgS1sJaQcDSCs1j5csqEv2A+0feRQYc0nwfRoJ0fZpOgvAswC+ANCbcx5+JYk1DDUAbGlpsKVFnnU7FkjI7grs/Q1di8QcoQG/0iGfIH2BBs8gs6kpt3Ub0/9LOxSA52bD6xc7m3eYP083T2lwqZ61jijTNSR36ITkDmYKBpdT0XDIIRSlcq1w8OwrLgMA5I4cjdyVv4W+mdrfrINvI6ftUHhW78a51/SDJzeYf4kxBnuOclxKSICUELrfWuLc1NS2IctoKBg2BgXDzFmIErOV66QINE3JB5XJa9gacWG73YlK8n9HK7PzP5NlXYATaZroDtrpSjDVVR+0OP2ckOckEi1Y3q8dsHUZtndMRPu1irapdpRb+6uuBQDobEZE2HcQn3O62+a1jgFKuqEgoYl8ApowN/jXh7Bk9KOoLpPVRZnDXXEAacUvG/ciO2gbJVjVrEZkAaCcXAE1Ok6Yw0wrn21oScaOH4T5H2/C5l93ICA7IclA1p5FaL95OsoziY+PVj8zpCITmadmRgGIkEhJcYM1SRS9L74t6HylzJDMg/0EAWBP3nDsyxmEInIsscr4rbtVualWMZi6gWoxNZ8zxmHaDIuQnJCGcuEZBS6ijd6FcvSodV+ZCHN2Ac+d6b7EUyV9oWK9yCHWwcD6DfpvyeYIGq8S9wjMGzoCkt+LfO9Mow3qffe1MlRrJod+Gv0oIrekghDpjzA3pClq1qjXWaXcOGevMZpJlUTxIDKpCrJKmO7FvCh3y0grhZlEVCBwSgEg+6yLg443JqLt0/QAgEs45+NOCIEJIFEHJ0Yg4YDX30SLf/wDhSNGCs9nZylcQXk5XcLW5brrrwCAlFYFpuP9v/wWA96cjFM6DQAAMJfZfGfLyIAty2yS6nLnvwEAo6/+ZwS9OD70Gnk+DvbujPYvvi0873R5UPjJx2g/53vh+VDQ/Ga4xNDnhZfQ5ovPhQJTQ5GZLNbohUPn9v0jLtvTqbB/h2JKtoWggRDlZzNNUnqEgSGQVHkb5xPXdtsMwNn3vop9XTIx9L9T9PNuT5JO5lh+LDhvFfV/qiFmbH0xoEND+mgXUI1QTZPGnK/QR6jmSkIfIXFCsGqnmiaiSVL/0kWIUnPQZNWRwJPihMMlK1xrPICAH7ojuONmY/et+eVQckOZ+troAglJcOugCymlqtB4tIx3IbOlsSHQXB18MiD5mU45oEX4yXYmphwQwEnMZCKnYaqxy2ujzHnekX2MtjEmTI6blFD35tidaORCPGeJUpejlPCOEaGK8tEZuT+Nm2akGeY3W3mw1rqnITNBttsNigYt7xz36+PlyDTaZXO60Gn5MoyY8av+XTr8FaQu6pAtEJqIxocGdQg1qVRoIsJYjVMpfLCLIcjTpPCMmH3JQeOnQOD0MsoPRkhiBb6dcogg8sZEtH2ahnHO14QvGT+QVTs7qyMxYjxBTk1Fxp+vFftyADjtqYlIuOEGnHr/s2HranPzbShavy5kXQMuuBwZd9+DM9//KmxdBWf8EUXr18GVnYvSArGPVLTAbDYM/2A6cvoNFJ53upPg7toV9pYthedDofcwxd8ruX8/MIcDro4dw1xRTyQ1TAuXkRLMAwQABRPeQs4jZmfa/m9MRMqFF6LziuXCa2wh2N/1xZxMpF7V6djlhTHRkYUyPSU3gtZHjswJryF7ytuGjw8H7EkpGPnpz0hra5A2lpUf08kcl8zYGlyRn5jkyOKnCYF0EaUaFLuAIqOUmtGIf0ViegB5e35CjxVPw+lco9NHGPUSs4JozMl9aaSkHmBQDz+NytIauCv2A2BISGO6I7irpWLSDgDC0HAqNHFCHKkt/HRxNNFPCFwDnB6ScFkdfyZxyKp5TvZV6hF+fh+HfEo7pDx6V9i+uRIoU7zmGU07QZ6fJwmdV/+Gwc9MJm4KDO2//Rat3psEADh6dmdU3jwGSSRBtAie1GChqvOSwzo9QDIxyVGh188SsbTnnfCzRLSY8Aa8vbuh/UAj0OHoJcEWgs1FhmAoOZwGRYOW6IrJOkUD9fdzOFyQ3G7V107nhNHPU4FEj2Ij9zXlHCVBHQGfsRaKyC1FUaYUab3/aPxHSBNB/aOM/hzN1OgYJBLdSoIRBGZuKQzlSGOgaWPr4xDJtkQAZUhJCJ2h/kSC5Haj9T3BEUUNAWMMLW68vt7X9f1qDnhVVfiCjQRRlEUkaD3obPjmD0Dn9MYR+ny+ho/JnjN7ouWZfzAdSxw6VP9d3a0rnL37gMkyWj4WTB+hwSFIDwEQ51+am67iGCmgCU3GoYSUDByOsP2RIGvoCACAbf0Pyi0FZeYOex6B7+2Aunlf/dMerP5pD2SbhFPVMpI/gNx3J2LvtX+G7aIxwIuTTXW4yWafCjcOR7BQm15KfMbJBN7tdA55yjRU24CklF/QfdZKbGxPTHJkIRWZb0xRe5QTSHOWjlBo0n2aPIoAW3GUoyKrJ+YOex5npiYpPi/M0DRRTiAbEda03H2cGf6JlCtMZJ5jAWDLqS3R9sc95kapBG/pzA3nYcWkWuNIRt6en9Fyz3xU/O0lVJZmos353SHCwQuHIWHGz0ob6AKtJvdNKQkYqadqfeu6ZkLn3wOcBQVwFija9MHPTjeVrxhTKypWhScpRTffLW8H9NoMrGkFnPrYO9j14RS4kgyhy+506WbqUvsIVHjaQeYjkDF0ODKGDkcNIbzb3TotiAq1OjcdWKeMk+xw6BQN1c5URZPGA3BUF6PfsqdxdLRhiqJ8g5pQ7LcZgrDdpKUTmedCCELe4AhO+r6aowXV82RzQbV02nEeoiyNyjxQmIi0Q0fN5lfqd2UP1pLHQtPU7IWmkU//DyvvvhGnPfJerJty0kByOgGneHGOd9gyoi88l7sBTyVgjyhrsBijXpha5/meFz90igAAIABJREFUH0WW0tEWIrWGLjTRFAgiwZeQTCampCH54Yfh6RA6fUxDoJkVRMM1aOFDOHDHO9i4aJ8uyHXsn43BF7XHju+UMswfQOrAgUhdvw4/v/4vaNOyzxvsgcVN5jnlnS1JlZFcrMzGqeWEx5REJplSCInSqFDmZtWh2lRKEmuaNLNSIELzXKgoWc6AlPSW0IhJNO0adQSni6omVDEw2NWFKIHkNKTmOS1Ci3HgnDeCTeDMpyy6AZkh4bAiemgRfQDQ/8qioGsA4GBLJ7L2VKPg/MtQ9akiNCUkJOvOznzJUgBAZjGwR/MOEDkaKx1S/tQxjkXr14U850gwhI+u29W/O4CsvoOQ1VcRtNrOnAnmsKO4bFuQH5If/fHKLXMg2yTc8MJw/XhmSrD225aVDWAHAMUxesGARxCQ7cSZXdIpGrraDVse3QCJ0iDJhDFcy6VH/SJriK3WlZiqv+e8SkA+S+p1p5I5UpTwXpAAPpSwRiklAo4wEX4C1wIpBmFmcefIwxjbxhj7jTG2gjG2RD2WzhibzRjbqP5NU48zxtiLjLFNjLFVjLHe9b2fOzMbAyd9ATkpKXxhC3GNNp9NR97zz4cv2MQoeHsCys4bhIyChvk0RRP2EJxPenAcTeirRvVUupjh2ErNPJKEvCsuR2pfg74iGgiVQBoA5g96DBsX7zcJKhsW7ce7/5hvNIvs7AMkMi1QE+xPQoUBWZJR+MnH6PP1z+Yy6l/qKyUTx1quLjc+EktIk/BqJiTZD6EjOE0xk+FRNCJuu5n+IP2VF+C6546g9o8dPxgpWW6Ichqmpiv+eNVZafppH82GQYUm3QeI6+lbElOp0ETMPpopL9QeQPMNlCW4UiIPrOk/5Su4/nI9CvufBsfdtwIA8tv30M8nEC2KQZEhFpq09B6hXA/CweUy1oNAiFXS2bYNHPn5sDtJqhiuqT78Or+bRNrQIjHY1J6QawRjcIerzuTedNMj0yS7+vMjVBY04bIqBDqIEsnpMt59N0nFhEpDaOKC97XaJZhDSJupWVcnQg3hvG+KxBM8S+pXKdQ0WUKTjpGc856cc202Hgfge855BwDfq/8HgDEAOqj/bgLwWpO31ELcwNW5M5LPOjN8wSZGdu8h6Pf0Ow2ewKMJW4gExiLz3Gljlc8s/9kXCP1X4/sQhNKGdVq5Amff1EkNWCN+Sww4706DTV8ikZ0pqQZVha86WHNWOyLH3bVrUATtEW39FERqBRhQsV3Z/Rdt8pPzZMGqUoRAJ1mwTNFzDkMYGHHtPeCShCEPvmRqQ/aoM9DmhluC2u9JcSKgCQi1chrKbhfyXngB3T76zBCayLrk9iQi4YbrkfvuRLgqiwEAOfuqjLQjqQavEROk1xHlEFRuoi66soye/1OoLNrOCO8X6WqZjzZ/vQeMMbS78f9QtH6dyQTV477/AgAqEyjLexheuHp+c/kffojUcfeZ/Nt2FijPestIsUbVKfkNPyRdaJGxYdF+TH5ggakJ3buNAgBU/8HQPrU9hfhm2p0Y/OtDqo+api7juiBsE/gpUVDXBGYzhIxAgvI7gcRNUEHYnUx8/6qIT5NWF7lXdo7hX6iXIyY3SvliorIwDuo/TelqSF4+SftWSBvtxHweEVlxIyFehabaOB/AJPX3JAB/JMff4wp+BZDKGIuud6oFC80AevQczW2Vk4Oi9evQ4rTRyN6iRIax4hLR5VGFtjDU1mRITifa9MmHXYuI0yKG3DJadSY7ZeIc2m0UcUoVxPFLNjtaTX4PLe67z3S8PEmZwI91KQTSlAWlsKAbcl58DnnvTNC1S5wBBfuCJ3C6uOV6iCZB+2Ei+FMWmZokF2xZWeiydg0SexvkleGQVZCEvD0/oe/Sp9F1WA6yi3LR8hlFwEg+8wyFooAbEW0a7IlJaH3PPUgdOBDpu5Tnm1RsjFFichqqu3YAlyQTYazukxJKflbNc7DZIKemomj9OjjbNUzLSjca2b0HIvHqK9F56qfw2pToyQAPEVwRhnIgFJJ6dEfutVebjvnUrldkiO9lT2phEHgSlnhPqgNjxw8ys7+7XChavw49n3oDOVPeRqBXR7QdYtBvSHYbnDUlOllobUHYlLJF0F+TeY4InMkCMk8qCLsSDc0mFZr0skQ4zckKTkBDyaFNARUC/1JuMs8RrTKJusvVKBlIG2mCYkri2dSIR6GJQ0nFspQxdpN6LJtzvhcA1L/aG5AHYCe5dhd0F1ELFiyEAmXaBYjQFELL40tVFoxQmqpowuYQ+ADRtngDsHnL0W7zdDgTbPDWmHX0MjWjJRuLwdChfwIA+C84X1/bSn2l8PTrh4xrzAtl+1cUOou+b3+AAVO/Qu7jj6NFp1OQdsZZSB48BH6VhDIgAbYixUfn8Jh+xn2JpqnvudcFd4IupJINRevXocdiccRjOIy5pTs6bZyGpPLdOPWKzjhv3DCknGPmwWICTRPlVAsI8ro5Pcno+ckX6LJ2DWSShBW6pilEg/yapim6ywtjDAX3P4iETh1xKEuJniwr6Y7Cb79C62/NmiwWMK45HpSP6ktMSyFoPFLyMX/QY2qqGKaXLS+uMZmNayOt72B0nfq5qY2aQJpUtgsOxyr0Xfo0PJXz9ehMuxxGaDKlUTHKZma1CrqEcpTZPcTpnwhNNTr/BClLIgdtPNjk7TARkgreAdJGyrmm+RdSUx41n9udhsmUx5AiKB6FpiGc895QTG9/YYwNr6Os6C0O+pQZYzcxxpYwxpYcPHgwWu20YOGERPsf5qDzwoXCc6GEpiP5yoTlszFkPvcs7GePEZaLBvQQ7hCL8q0vj8SpnRaj250jcMOzw3Hry2bOMskvvjC1Z3e0mjQJXR95FOkqpVKOX+zLmNq/H4rWr1MIbzMykHrBH03n83IVU40vPxOnjn8LyddfjcFPTtDP0/Boe0oKkm++Ga2mTSNpKehCGb1ds3CRgjFRUqEpN8fQzhWnKO3dVGSMh8tNo+cIyaC22IYwzx31K4O7H3Xnd6sPqgoVB+rXb5+LV26Zg+KM4QCTUF7SAe88th3vPbXTfAHXONcavsQVrV+Hvq9MNsyQoUzbsg39ljwO5qs2aZpkO8OlD/YTXhMK2vPrvuYtJHh+RlL5bqSUfKo70tvCBNhQjRBNmZRZqNCnZD/8sH6Mmqapr2ObloajvibASDRhrywj+/770Xrye0YuRZrL1JTsWJB7jj4TKqsLzI1UG2Yn72MghpqmuIue45zvUf8eYIxNB9AfwH7GWC7nfK9qftOCQnYBoMyM+QBqxb8CnPM3AbwJAH379m16YgcLFuII9tzQFmxZ4GwJGNFXjANZY8Yga0zjCU02hwt+1L2j6/yPR0Oek+tiwx+gEIWWJQBJFYBU0DDFdGKLlmj9wfvo2LETpIQE5N1rNu/ZbebFLe+uOwGQ6KUm3q6mlik3blNiA6BoB9wtjfcgUK1ozkqSXKhOC8B5tNzEoSPZI/dpSvM5AFQjL6EwKm1vN/tbyGmKgKcxoG9ctBtgNgABdOyfi8EXmf2NuEDz0lC4uRtAKZKTQ78rSeW74a46jApPriI4MSAl042s/PoFGNH8iJp/Eh1nm9ONYEIACM1zNodZ46NFC+7/t0JETIUmasXs/tgTWP/V12g74ytsuek8ANwk0DDGkH61krfSy+xQMqcRFn7q3K0LTcYNqP9TQmKm0G9KbxdNME5y7fEoazHrg7jSNDHGPIyxJO03gDMArIaSluUatdg1AD5Xf38B4Go1im4ggGOaGc+CBQv1hyitAQDITJlgJSmYYC7asNfKLVdfRBKGrKVHCTjqJuqrCwm9e0NOFLfVlNSUQI/6inJQgC+z7ii1VoeUvyN94nD//gMuBQCcevo16PrZDOS/9qrpvIkpXqrbPNe+v2IaHDjqz2HbHQkcBQX6OE9+YIEaPakt+JLucE1hMIIf/xLX6xIlc8Kpf6ibs85nT4Ds34+ua94Gw0FUVQjFGyHaz/0Bbb/6Uhd6AgyQmEZIaQy00yF+3wzKAUPwcLmDE1CbrjFFRBLNp8Oh+6HpUbV2sX6FC4w9JvOcSHtEzXM0YEJQlpq5baQ/gRgKTfGmacoGMF19gDYAH3DOv2GMLQYwjTF2PRRCCy0/wEwAZwPYBKACQHS+UgsW4gCBYX3AI0gEHA1UO5Kxust1aOMTq/9H/OEuHP7hbgw57/8avS12RwKOhxrVEQGdthaqnNYIvFwAYCfJbk3QNAIhQuUbii5fzYTvaGhz2N4WHLkHGCqH9kDajyuDzrf7693wj70ecqri9G7PNofG2wmxJwsjNPW89z+o/sNYuDp3rm83wmLs+EH46PHFKD9apQpEHJ5UJy65z2wGC6ih/zV1ZpiLDNlXXYXMs8+uk8Mt97HHMPaUrpjx8FXIPlSKnfb9GPtk5Gmc9DyWa5VrAgxIdCvPwgEHoKbZlkM6git/qECS6ElCXWEbohxzISFg46b3pSKMiU9J6AhOI0cd0LyiRESYNhIBSDVNoaMQGh9xJTRxzrcA6CE4fhjAKMFxDuAvTdA0CxaaHF3fmhK+UJSwod3FOJbSHjuWAkNGB59vMeZspHTs1OAoqPqgoZqmnS1lFOzxo7J/cEh00D1UTVNyclbdBRuIUFxThkYgulOvnJqqCzwiaBoBbgutKazremZaNOsWShljQoGp/Q9z4C8urvPacJj8wAKFAV0XDhSH68kPLMAtL48wCkZAbhkpGGNhSW9TL7xAva2aDLk+eXBq3QtQAgxGXXI3tk7+CX2vugdH/qmY1JwC1nqodwbM5rlkdxKKu3UKKV/UFpryX34J9oJaCby1v4JkuWYY6l3JZMoLFoRMjuDUHUBAhEkjAO0kes7PY5f2LK6EJgsWLDQt9DQc2Uqi3yPboDMZmxYhoEkEJgBwuhuWo8+elgbsOYQW+eFzBib26gf8vBj5bcWpPI4XobimNITlF4oyjEWrYWYN2WbXl8Ve3UehFLOQldW2zmtqw56bW6c/XWQIpWEwH/ewBADVSHVHL+F2JAgXaRcWqsARYICrY0d0WroEksejC02OEBsKkXnO43Cg60ef1XEvcxuTTj89dNkQ5rkK1RYeCOHfpmtUQziC2x3BQhOFg0TnUT6zaPiqNRRx5dNkwYKFpoXfJ3YACnW8KeB0N4ydf+irH8Nx5nD0v/mhsGW7vPQm2s6cGdIn6Xjhtot9pZjKISXLdgREzMqNBJ28tKFrOdFQ5Z12LrIf+if6vvp+FFpWPwQzoHOktHBj7PjBpnKDL1byb552yT1N2j6dQbuBJLAa+7j2V/KY30+nIKm0cmPtARPKgTCRg1Iky38YjV2Z6hy413cUrd6diNzHHzedp7njNC0cZwx+hyJMOUPkwtSvSTQIVm3E/9B9HL6IxwtL02TBQjOGJAMBgaa7iRUhJrgSFKGpql1+mJJm2LOz0e6FNyIqK7lccLZtU++2hYNryGBUzf8FzpTgpKYAkCIlAihFm4Ku6DT/YfBAEwunDVzMbTYHtOQajDGk/+lP0WtTPVCbAZ1LNgT8AXhSzItv1oUXIXXwEN1XqKmgCRcNFZo0Ms5QV9tdYi2sFpXJ6uGnxJhiMg3U4TepiUr+EC1K99oB1CBbSoNn4MCg80xzZmeAV92Ice5Dp1mzUbNzp87JBgCMB5vnzDxNCXoewnavv4mtF16Egjcj+96jCUvTZMFCM8bVjw1R/WlJWhJJOR4rMJsNrSZNQrcp02LWhoaizdtvo2j9upDRcb2feBP2dm3QafQlkDyeJst5aTCRN+x62d74UZORIqsgCWmHFQb0tNyDyCoQj2FTC0yAQlQKADbWMH0EV1WCtfPd+XMV3zspxHNo4VT62qVt5N+tJEuw5+bWbXbXWVGrhafdTGlPqKhbai7sqJEB+f2w5+bC078/ZGKeK9n5OwDAXuKlFeg/HSQfoKtLFxStX4fE4XXRODYOLE2TBQvNGJ4UJ2RZgs/vBwJeQLJDlqWgnXuTt0vlUzrZkNCrJ9rPmNnk902yZwPYjw6Fw1CGCWHL14YtRKLnWGDMLd3xw+TLkFQOtOy0DyMuvzzWTdIxcOAVKF30KoYPvNJ0XONICgc/V5nmawm3nad9gqoNSo7D7HHjULN7l+l8z+fewv4nn0T+WRegMqctKlcGR0jWhhSBk7ym9Qnls9S370Wo+O09nDr8auF5zX+JA9jWWkb7LX7TBo1qkmx25XjhAVIBUTvZbLGdkzRYQpMFC80crbqmI7ByEbIW/Q+V97yCimPiXaWFExdtL70ch55/Abnt22JjA663OeJHaAIMzZlcRzRgLJB34y0ozsxG6kUXNej6qoDi+Fw7+M6WlYXELEXblH7tNbUvg7NtW7R6QzFVeQYOgGfggLD3isSZ2q9kxwZndkh5LcG95rQpre66G8c6FiElFNmt5kTHxEl2aaRdTlkGgAq4iKLJTfLRhdKyNTUsocmChWaOMbd0B9AdwA2xbkqjIOXCC+FoFZx7qzkh8+abkX7VVZATG+ZAa5PjS2jSwGJIcigCs9uRdumlDb7eW1MGINg81xiIZOiYKjQhEECn74N5p5jDEZRiCABYYqJCU0AUVPpPLvbjS8vvAiw3p8NJzGhhMKDHLnOKCZbQZMGChZMaLR8bH+smxByMMV1gavXeJMBfP54be4j0OhaiiwJ3awBNQ90YiaYp2ZEDYA/a5NUvh16nXxWG9q1vPgCgVu65EMEPhcNPx54vZynlk5LASktR2L47NqnnXfYYRqcQxJeYbsGCBQsWGhWe/v3hGTSoXtfIYckNmxZxonSIOrwBVa/SBCtzUmL4vIudz7oQANChW5961c1sNjCbDZxqlTTyyhAiYcp55yLt6rHo8Mt8tH7pJSQMHGgiFXXZ4kNoiq8vwYIFCxYsxB3sjhD8QDFGU5OENjZa5XTCUQAJcsMIXuuDFl1HhC2TedutSB5z1nET25p8tEKY5wAg5/77AQA2gV+WXY4PUdnSNFmwYMGChTohx5nvkJaUmYahnwxo0f4UAECHfzzc6Pdy5LYMW4ZJ0nEJTMxEBa7+FUTiOQoLw9cV5STXDYWlabJgwYIFC3WCMQaWkIDM2+Mj1WeKnASgFJ3a9451U6IKyeOJmJ7geGELwxgeHRiCjlNOAHAMyW5zvscO8+dBcp04PnOW0GTBggULFsKi87KlsW6CjqKJ76P440+Q1DZ8nkELYshNYO7yaekGGEP37mehZN2HGNz7XFOZcMmQTZAkpMWYl8sSmixYsGDBwgkFZ4cOyL5vXKybcUJDbgJzlyypjOFgyP37vXDm5yF59OgG11e0dk20mtZgxJeh2oIFCxYsWLDQ6HDYGn/5H9LtbABA25a9IHk8yLzxRjD5xHbetzRNFixYsGDBQjODLGDojjaSBg1E6hWXI/Ommxr9Xk0FS2iyYMGCBQsWLEQdzG5H7sONHwnYlLCEJgsWLFiwYKGZoPCjaSj78adYNyNieAYPRsWyZbFuhg7GQ2QvPlnRt29fvmTJklg3w4IFCxYsWLAQBTDGlnLO+zbFvSxHcAsWLFiwYMGChQhgCU0WLFiwYMGCBQsRwBKaLFiwYMGCBQsWIkCz82lijJUC+D3W7TiJkAngUKwbcRLAGsfowxrT6MAax+jCGs/ooxPnvEkSETbH6Lnfm8phrDmAMbbEGs/jhzWO0Yc1ptGBNY7RhTWe0QdjrMmiuyzznAULFixYsGDBQgSwhCYLFixYsGDBgoUI0ByFpjdj3YCTDNZ4RgfWOEYf1phGB9Y4RhfWeEYfTTamzc4R3IIFCxYsWLBgoSFojpomCxYsWLBgwYKFeiPuhSbGWAFj7AfG2DrG2BrG2B3q8XTG2GzG2Eb1b5p6vDNjbAFjrJoxdk+tuu5S61jNGJvKGHOFuOc1ar0bGWPXkOPfMMZWqnW8zhiTG7PvjYF4Gk9y/gvG2OrG6G9jIZ7GkTE2lzH2O2NshfqvRWP2vbEQZ2PqYIy9yRjbwBhbzxi7qDH7Hk3EyzgyxpLIO7mCMXaIMfZ8Y/c/2oiX8VSPX8EY+40xtoop61FmY/a9sRBnY3qZOp5rGGNPhW085zyu/wHIBdBb/Z0EYAOALgCeAjBOPT4OwJPq7xYA+gEYD+AeUk8egK0A3Or/pwG4VnC/dABb1L9p6u809Vyy+pcB+ATA5bEenxN5PNXzFwL4AMDqWI/NiTqOAOYC6BvrMTnJxvTfAP6j/pYAZMZ6fE7EcaxVbimA4bEenxN1PKFQBB3Q3kX1/v+K9fic4GOaAWAHgCy13CQAo+pqe9xrmjjneznny9TfpQDWQRmo86F0EOrfP6plDnDOFwPwCqqzAXAzxmwAEgDsEZQ5E8BszvkRzvlRALMBnKXWXULqcQA44RzC4mk8GWOJAP4G4D9R6l6TIZ7G8WRBnI3pdQAeV+8T4JyfMGSEcTaOAADGWAcoC9/Px9m9JkccjSdT/3kYYwxAcojr4x5xNKZtAWzgnB9Uy30HoE6tctwLTRSMsUIAvQAsBJDNOd8LKA8AygcZEpzz3QD+C0Wq3AvgGOf8W0HRPAA7yf93qce0NsyCIu2XAvi4gV2JC8TBeD4K4BkAFQ3uRBwgDsYRACaqJpB/qhPqCY1YjiljLFX9/6OMsWWMsY8YY9nH0Z2YIU7eTQC4AsCHXN3On6iI5Xhyzr0AbgXwGxTBoAuAt4+jO3GBGL+jmwB0ZowVqkLXHwEU1HXPE0ZoUrUSnwC4k2h86nN9GhQptg2AllCk9atERQXH9A+dc34mFNWiE8Bp9W1HvCDW48kY6wmgPed8en3vHU+I9Tiqf6/knHcDMEz9N7a+7YgnxMGY2gDkA5jPOe8NYAGUifmEQhyMI8XlAKbWtw3xhFiPJ2PMDkVo6qVevwrAffVtRzwh1mOqap1uBfAhFC3oNgC+uu55QghN6svyCYD3Oeefqof3M8Zy1fO5ULQ/deF0AFs55wdVif1TAIMZYwOIo+IfoEigVNLMRy11H+e8CsAXUB7WCYc4Gc9BAPowxrYBmAegI2NsbnR62DSIk3HUdluamvsDAP2j08OmR5yM6WEo2k9NoP8IQO8odK/JECfjqLWlBwAb53xpVDoXA8TJePYEAM75ZlVjNw3A4Ch1sckRJ2MKzvmXnPMBnPNBUPLSbqzrhnEvNKmmhrcBrOOcP0tOfQFA84C/BsDnYaraAWAgYyxBrXOUWudCznlP9d8XAGYBOIMxlqZKsWcAmMUYSyQP0wbgbADro9XPpkK8jCfn/DXOeUvOeSGAoVDsyiOi1c/GRryMI2PMxtQIGnUSOhfACRWJqCFexlRdkL4EMEKtbxSAtVHoYpMgXsaR1HMFTmAtUxyN524AXRhjWWp9o6H4Ap1wiKMxBVOjjdXjtwGYUOcdeRx40tf1D8qCyqGoIleo/86G4vX+PRSp8HsA6Wr5HChSZQmAYvW3FvX2byiCzmoAkwE4Q9zzOii2zk0A/qweywawWG3HGgAvQdk9xXyMTsTxrHW+ECde9FxcjCMAD5SoJO29fAGAHOvxOZHHVD3eGsBPalu+B9Aq1uNzIo6jem4LgM6xHpeTYTwB3AJFUFoFRbDPiPX4nARjOhXKpmgtIoiItxjBLViwYMGCBQsWIkDcm+csWLBgwYIFCxbiAZbQZMGCBQsWLFiwEAEsocmCBQsWLFiwYCEC2GLdgKZGZmYmLywsjHUzLFiwYMGCBQtRwNKlSw9xzrPClzx+NDuhqbCwEEuWLIl1MyxYsGDBgoWowOv1YteuXaiqqop1UxoVLpcL+fn5sNvtpuOMse1N1YZmJzRZsGDBggULJxN27dqFpKQkFBYWgp34WZSE4Jzj8OHD2LVrF9q0aROzdlg+TRYsNFMsXfolvvziyVg3w4IFC8eJqqoqZGRknLQCEwAwxpCRkRFzbZolNFmw0ExRdtvf0f7v78a6GRZOQhRXFce6Cc0OJ7PApCEe+mgJTRYsNFO0OBbrFlg4GfHNgilYPGoQps95JdZNsWAh6rCEJgsWLFiwEDXse/8d5B8Git95J9ZNsWAh6rCEJgsWLJx0eOT+YXj0wRGxbkazhOTzAwASAtby0lxx++23o3Xr1nWWuf766zFjxgwsX74c48aNa6KWHT+st9qChRMc69bPwyO3dEWN7+QON64PLvn0EC7+eH+sm9Es0W/uAQBAxp7KGLfEQiywdetWzJ07FzU1NSgtLQ1ZbsWKFejRowd69eqFJ554oglbeHywhCYLFk5wlFxxIy6ZG8DkGwfHuikWLOgoSYy9066FpsfDDz+MBx98EF26dMGaNWv04xs2bMDQoUPRrVs3PPfcc9i3bx/y8/Nx1VVXYe7cubFrcD3R5DxNjLFOAD4kh9oCeAjADwBeB5AIYBuAKznnJYyx0QCeAOAAUAPgXs75HLWuPgDeBeAGMBPAHZxz3jQ9sWAhPpCsbujztluaJgAoKzsa6yZYAOCTLaEpFvj3l2uwdk9JVOvs0jIZD5/XNWy5NWvWYPXq1Zg0aRLmzZuHNWvWYODAgfD5fLjqqqvw8ssvo3///rjtttvQuXNnAMCqVavQvXv3qLa3MdHkQhPn/HcAPQGAMSYD2A1gOoCPAdzDOf+RMXYdgHsB/BPAIQDncc73MMZOATALQJ5a3WsAbgLwKxSh6SwAX9d1/+L9FSg/Vg1PijPqfbNgIZaQA9Z+AQD2bF4TvpCFRodPst7H5oYHHngAjz76KBhjKCoqwurVqwEAn376KYqKitC/f38AQNeuXeF2u1FTU4Py8nKkp6ejvLwct912GxwOB0aMGIErr7wyll0JiVgzgo8CsJlzvl3VQP2kHp8NRTj6J+d8OSm/BoCLMeYEkA4gmXO+AAAYY+8B+CPCCE01VX4smL4Jp18bXmqOR8yc/hh6D7gUOS3bx7opFuIEe3IktNwXQGlLd6ybEhfw+2ti3QQLAFyWzBQTRKIRagwsXLgQs2bNwoo5CtKLAAAgAElEQVQVK/CXv/wFVVVVugZp1apV6NOnj1526dKlGDFiBNauXYuioiIAimB18cUX47zzzsNll10Wt0JTrH2aLgcwVf29GsAf1N+XACgQlL8IwHLOeTUUbdMucm4XDA1Unfj91/145ZY5eP32uQ1pc8ywdd0itLlvMlZdc06sm2IhjnA4LwEAUJ2eEeOWxAeqykI7n1poOjBY5rnmhPvvvx9fffUVtm3bhm3btmHlypW6pikjI0P/vXTpUkydOhU9e/bEypUr0aNHDwBKKpiCAmXZl2U5Np2IADETmhhjDihC0kfqoesA/IUxthRAEhT/JVq+K4AnAdysHRJUK9zbMMZuYowtYYwtiaB43OLYxvUAgIKdsZZ1LcQjWAPd+Xy+k0sz468+/qitD9++Gy/8tX8UWtN84Uv1xLoJFpoIs2fPRnV1NUaNGqUfy87ORnl5OY4cOYKxY8dixYoV6NmzJ5566imkpqaiqKjIJDTl5+dj1y5FDxIIBGLSj0gQy9V3DIBlnPP9AMA5X885P4Nz3geK9mmzVpAxlg/F7+lqzrl2fBeAfFJfPoA9ohtxzt/knPflnPfVjqW0cGPseCXayOv3wh/wR69njQQ5PS3WTbAQl1D2D4Gjhxp0dU1V7ELD1635CW9e0ws7dkbRDykKCo7uT8/EGbNLsXLRl8dfWTPDtjYOAIAvwTIXNxeMHj0a8+bNCzp+7NgxpKenIzMzE4sWLcKKFSvw4YcfYu/evbDb7Zg7dy4GDBgAALjwwgvxySef4NZbb8V5553X1F2IGLEUmq6AYZoDY6yF+lcC8CCUSDowxlIBzABwH+d8vlaec74XQCljbCBTEtJcDeDzSG9+7EAlJj+wAACwqWt3vH3ZKcfdoXA4dHQPvvr2pQZfv+rrt6LYGgsnC7gqJPRaVt2g62tqois0rd38Kxat+iaiskuevx/DFlbhl1f/GbX7+0JomsqPVWP6M0tRfizycVr/4X+j1axmA+19lGt8sW2IhbhFeXk5evfujdGjR+skmB6PBxMnTsRrr70Wt/5MQIyEJsZYAoDRAD4lh69gjG0AsB6Kxmiievx2AO0B/JMxtkL910I9dyuACQA2QdFM1ekEbjSAw5PqwNjxg/RDw35reH8ixde3nI12//cqNqz9pWEVHLaShVkIRkPNchq8URaa2Dl/RtKld0VU1n2kDAAgRTHyzxeiP/M+Xoc9G49hwfRNEdeVmNj0Ubbrfp+H/Qe2Nvl9owUuKVJTt3kHY9wSC/EKj8eDZcuW4cknn4x1U+qNmETPcc4rAGTUOvYCgBcEZf8D4D8h6lkCoF4qIgYOcKBN98wmpx0o3KbscEv37Qa61P/6+pgQK0uP4vNxg1F0+aPoMezi+t/MQrOBtzp2/E6SXxWW5OhNRT6vuT+v3z4Xfp/hI/H7r/vx+6/7Idsk3PLyCFPZLce2oHVSa1Q6AHcNwB0pUWtXxDj/RixoDYz6chFkJiPBntD0bbBgwYIQzc6jOKFiH9LzjqCipOmdXzXaEiY1LDLAD2PiP3xwJ76YGtqk8d20Z9Dje2DTMw836F7NGTwQwOJp41FZWhzrpkSG41TS+KvDm6t++GkyXrqmB8oqo0ual3RI/Q5Z9CKt/DVGf44c2oPQA2Q+vmnDIlQPOAdTX7gVTD3F/Q0zeR4vOm0HdnXvj9/69wlfGMC2o1twpOJwI7cqGEtWfo0XHhxj2tDxJgiwWbPxF2zd2QTmAQsWaqHZCU2y34vcjrsx5pamZyBlqswTqdC0e/NKbPntJ/3/OzPt+u+Zd52LDv/+GCvmix1VfV5lsk8u4Zj2xv/h7QuLcOjQzga2vHlhztQnkPjQFEwff1GsmxISC36eikMHdij/OU7zXCQ+TTk3PYbTF9bgl/89d1z3qo38hvmu14mAzxB05k97PuLrFn+teAS0nvqzscHxeaPatvoiOULLaeWgc/D9hcMbtzECHL39bpzx8Tbs2rAs6Ny8Lo1HOSCddz2qRl/aaPVbsBAKzU5oAoBAjEKsJVVo4v4a+AI+eAN1T8hLbrsM+669Wf+/L00J4d3WAsjfqvSh7NBe4bU+u/JoeQDImjQbg9cCG3+ZdbxdiAg+Xw2mvn4r/P7YLjj1xbwfp2Dt6h9xbOFsAIDj9+j4ZBw4sB2fjSrCJxP/EZX6ACD1xkew/IIzcfTwXjgPH59PktcXuTbFR0x51TWVmDrhLkQlc5E3eu9KgJjnZEnG2PGDYXNIRLjksDkkPXpWQ8/X5gIAMkuga5oQ5huNJ5yyrenDtNNKlIEyRYir4+xvlquLhZMdzfK19laWY/7sdzHxvtEN3qUfqjwEzjn27t2EiS/+Ge89Ed7bX9u9+rw1mHh5d3zwR7G2iwcCKN67BR23M6SVG8cr9yiaBbvPmNQlJikzljprVR47hIDPi6NQLvRyjpwj6vUNNa1wjo/euhOVlaX47ts38eoVp6Ck7EjI4lP+eSF6Pj8Xb/37wobdL0bIuHk8yq66BUXf7gMAFOwOLVzPfOdebFj5U8jzFCu/eR+ddgNJk6ITvh7wK6aQ/MPAV+MuQMcdxoq1rnMR1nVWGHYnP3oJ/vffP4etLxLzHL33hIdvw2t//Q7v33E1ev73G0x/6Y569kAAhz18mQjh9xrPrWb7Qkx+YAF8NQFiAmTw1QT06FkR9O/rBBCaavs6zvtxsv6OaHj/ti6Ycnv0I4TtaoBcclq2fkwfuxOLBs+ChYjQPIWm6krUPPQkBk7fhbJj4uSe/3vlNnw9vAg7dwTzxyz84QMc7DUM7/6pN36+6XwMfPVX9Hs3WD1dG9okEvD5MHQVR/8NQEnJQaxcZg76++zVv2DJRcGs39d9rUyEeUcMrRVkGVOv64ppl3WGz+vFmuHDMOmOoZB3K1qSVkRZUr7PMM8d3LMVH/ypI76d+mjYdk9/9W845ZlZ+Oies+EZ9xxGLvdjwcevhiyfuF25acLG3WHrjgU459h7ZLPwXBLxIU4uYfj5jbux4OrW4LUWpjZPfQX/ZTcjEjB1sWZRWkR8fiOUO+FIJfa2FGsY+r6/Gj0m/Bq2Pq83ckfw6soSSFuGIlDD4K26AABQvml9xNcDwJsv34CnrjdvGHwV5SFK1x+caM46Td+LseMHwZPqAPRnGAiKngWAGpvxgHTzXBOlZKk+Dt+pA7s36r8/f/1eZNz8GD74tzn4o/ccjj7fhQ4kKa8uw+rtiyK6H+dc1y461Cq/mfwv/TzjyvspBYCfZr+DGdOeiKjehuKrB6/Goq8nhi9owUIU0CyFpnYvfYkcVVYqLxVrTNI+novCA8CCmROwbpciEH339evYvHkZdn/3PgCgaGMlijYbC9Y7d/TGlCcuAwB8/clTWL54pqlOzaeJ5sb68pbT4PjT31BZTrRAs+cjL7QiB8UeIEv1Ua4uOYKevwLdfpNx7MgeeKqBPnNLMPiDVQAAG1lPXcnp+u/FX7yJXstk1EycinAo36FMyp49JUitUA9WhjYJtd2gFOq3vGFmI2/AC1/AEAyqKkrxy5s3Ys2CzxpUX21MefQyFA8+Fz9//Q5Kjx3Cwb1iAQoAMp+bidRFCVg952NsWr8Ia5d/B3+N8fy++/xFLO1ehNmfhvb1YVH+zPxkbLqsqcGhHCW6al1nR4Pq89VEJhjMOfVl7Nt0KSo9OQBj8DlzMGfEKyiprp/ZcdjL83HefEWDU5ykHOs1c4uwrNdXg3ce+AMOHtwR+Q1s5qhYT4oThd0yAcYg+WsAMGH07NY2hrZLF5oCXnz63oNYuazxTNuzvnoZa3v2xLp1weSAkaCq1Nj4VSxVhOQ+0+onyE675TTIZ16Dg3vFz4Hi7Uu64Y2rzQ7qSfNW6b9tmtDEgay/Po22D02qV1vqi3YfL0bSXU/V65ovv3kJT/9tWJ1l9uzegJUrmsalwcKJg2YnNFUktEC1I1n//8HthiZpy6YlQeXzJnyDqjGK6S3vrhew5Zor4VdV38UZHAEygoNmVaLPu6vw5fPXovCBiXCNvRu/r/4Z7/59FAJ+v6FpIpqC3suU31VVxk47+YjZJPDz16+BE6eBzYQH3ZVqMDcUH94PALCH2FA6ElMx6eYumHRHH0DlxZECSiTe/564FDzgxy/fTMA3kx40Xdfnc1Wo4Bz7VbkrKa+t+CYAKhPVv27DEXTO+0/ilxkKOedHM56C3x+a+O7rUd3x/kU9jP8/MBJpz86D9Of7cGCvwl/jq66At6osZB11wbV4LQBgz+I5mHH1MOwZfW7Ya/bu24ht118D/qe/orLYkGgPzPgYCTXA0c+nhb5Y0l6S6KiaArVNylypnzWQ68gfqY9fINQzaziJ4dGUup2Fv3jhDgz6ZCNm3xm5qTexRfC7WVlag6wDP6PPsv8i0bFYGD0bkIOnQzngQ9Fjn6Dq+jsjvn99UfHWW3B5gd+mvgK/r/5jWXHMiJqzHWuYxm7gAiVf368zJ4QtO2S1H6cuNm+IdOoIQH/NpSZwsappoCaw/Z2v4tyZdUchrPrT+XBc3njP3cKJiWYnNPlkJ7a2HqP/X75hnP67+tyxqKwoxU+fvYhWe5UvP70McHmBjasVQsr8QwBqFHNGQAYcgjmu/esL9d9rxt2MAV/swfwZE+BSZSHqc6GhsrwYy2e9g8+fOB/uWgqazLtexP8eNNrMZWOhCZC6Sg/XbQ6T7Hb0/5Gj/6wKlK1V/HE4A76593z0ePc3fP32P+G+9xm0fvwTAMCS+Z9iz461+vVd1nshawIZAz598x5MnxCsZdjRW5HqduYwfPjiLQCA3EffRdrdz+KD/4zFKXdPxPRze4ZsZ4e9QP91ip8W9/vg32VIgRVHD6K64hg+urwPZp7br87+hoJNrU62O9Hjd+UZhnNmDlSWI++wsnuuOnzAOGFX+IWYL7TpQ08+GQWZacXKb7H/gFkbwNQFiwpNPsE7Fgqi91GEIQsfAnil4QfIOWRvBTK8LwvLR+Ig3maXuMx7T1yJj978GwJHFIHAVR65bxEXCORjbumObuumIal8N3JWvyuMng3YgqdDSdWaRBrF1hA4atR3x+1qUB7AiiPG4n+8RKc1m0NrXeuC5A+WkKLl01Rcsh9lFWI3ilcfF3PQvXVlN0w5ryhs3YE6hNTW+yNrn4Vg3H777TrTdyhcf/31mDFjBpYvX45x48aFLFdWchgHd22ITsBJFNDshCaAYU/ecMwZ8QrmDgsOR37/9tOQNe61oONLPzV4N9kOJcVdIILRK9qkPOidi420EtwfvMB+9u+L4brjaXR8dwPSBAqUnp8a5gmZGTf2k5Do3xZ+itrYUWCQBrr+ZfSh23fGJNT7V2VFqNizXRfswDk81z+AxTcYYfdHkoBMlZQ84Peh6NkZ6PzfL3Bw/3as61yEaeMUHxduU+7ZcWsA3V/9EWXEBNpriqLN67rVj22bl+HDv44OclrVsLBPV6zv2s3krL/o6T9hS++B6LkO6LgL+HFcSxzetx37d23Ee+NGRyQs2FThQrYb5hlvZUWo4gAAf4XBxl55yBCatEzuobhpuN+nL+K1F5Gpr9yG1/7cK2x7KZyX3YE9F19mOla4QXl+dMGsqjReIp+3Bgt/+iBknQe3LIW/uhzgHMXF+7Bgnthk66wpgT5lqJGRXJIhJYfQFoWJiAv13AGg37vLcMqzXxtaWcGiHAplZWa+osWz3zf9P7VY3F4u0DRJvPFzUrbd6ke1Ixllm4dhwbI59b6+opgI8Q3VNqpDkjfoDPMJzokvWGiYNE3qNxEtTdPe/iOweJQ50vFwakfMGf4ieoTIATF0qQ99NorPUVQfO0G42E4gbN26FXPnzkVNTQ1KS0tDlluxYgV69OiBXr164ZF/PYSqveuEFgj/nr1ILK6B1xsbzrTaaIZCEyD5q5G9fxEGLXwo6NyQX8Qmnx4fGDb7rqsVzYGzPHIekl4fGT4GNVXBL9LI+ZHPMHbJ8L1gjxu7/L4Tgs2LdpL/KVHg79t2pzHZdZhmOLP/PEChLO9IXEnSSbO91YaQMXXKvQCAbp+tx9wZr6LXF+Y0FZ8/9CdhPzbfcDW6z96F2ZMexb6D27B+00LTQqrt7p1lhiDUbYE5yqrFZyk4MOIsfH/P+ej32S588cz/s3fd8VVUafs5M3N7egUSEkiAJJTQuzQVFQui2LCt67quutZ1i+iKiou69lVYu2vXz7p2EUWs9A5J6KEFQnq5uclt5/tjyjlz78wtSQD9Pp/fjx83c6ecmTvnnPc87/O+7x/w+JyB+Pxdc/GpOsATLqFi3ZEDpvsDQJCLPPTUHDbYw/hdeP2SoUh6UBapZtUB//3X77Xvhj35DaYujz8bd3rI66P+roR7hWobWCqKt+aegaSr78XSd4x1VwMWfY11Y0fhzX9eikPjpiHlqvnYv8s4caCjrQw5Vd9h9LqHkFP1HdLqy4E9jJ3gFwSB9siDnLvVmD3gEayWl/slO2J3W/ne/0D3t/82fUGBJBP7WC3/wUOkRyd6jlKKlx+5Akdq9gIAyvtfBI+Yj8OPbI96bJ1HbxS2N3Q9qaVPWVuFRuK99PsxKB84GO7WyMaF6A93z4ndYDSp7EIP7lUJ+P3YMugqgAjYVvx7kyNjw45XzANajgbcHa2oOLQp+o7dhA6vR6eBPBa466678Pe//x0DBw7E1q1M/rJ9+3accMIJGDJkCB577DEcPnwYubm5uPTSS/Hlx+8iWB9AW2O4y1T1DPxcjKbjUkbleIKAIihYIPrblZVz/DjQkyL3EIEv2wccil98m/fAW3Efs7aQYOQuZbKnQezPJeh9gCLD3JAHAKRFEJSHwsqNlxkGj6bNBjiV9/bgV/9FD2X79OfYBJt9a3hBYmursdvQp8zyAa8PDZNk9+MzJzgwNWS/fpXRV8/DN8j7ZH64EiUNFFj/MnDebfA01cLqTISvw4MfvnwG0876k2Yo8q7Ng7vWwRXh/LSDPegjR3azGkBRKOORG9jMIQWBoqd+QN0lB/DjBdPRX9m+YkQJtl0xHr+58cWI56JR9C7WgA/qOsjfziyDkZ/IBmHt2qV47+2nQLIIzl20TXdsQjswjIsA7fCw++U1eONXM81L0Q6m41ry5n1Izy3GsNGna9u87hZISbLS+6NX78KRHxbjqmdYNN/2zd8jWoEQsTl+jY7Vq5+tU9zA0vtnoGe0Aw2YMZEGADBDfeuun1BSME5O9dEFLPtgIcY8txLvbK8Api7SttdlDsPSqYsgBHyY+n24nua/Hz2Mor++gBevHYq/3CSPIz6OLUlo6JzGR5MOhLgHx/4gLyKXvHgPZt2oN7qDnM7S2u7HqlX/xZgxs9AoCOiN7nHPfbDoFvBOtkXXKEycRe6tAYsLS6cuAihFdGdcOLwmgUBHC+9fcxpGLa9D+7pVsDsT4z6++sgerLjodCTeditOPOUq450+vw04LI/JktuNoACIjkijWwzoMQSYET0KcuvWrdiyZQtefvll/PDDD9i6dSvGjRsHv9+PSy+9FAsXLsSYMWNw3XXXobi4GACwadMmzL/pOhAK+NrDVzSUAKBAh68NLhyHskYh+H/INFFkHlkLLycGjwdBAuQeklekHnrsHl8y5ybI3+lFbxMtCAC0OthnWxcXylVZbPXt5Az9kd8fCdvXY1LKb/D3xpN9fpV8D7yge+oP8YtHjqSx36GZ61MfXtMflWMnYfuQYdgzajxybn8Jr/9hrPb9wTIWrbTt+YciXkPwMiNiydZ3tc/DlsqMDpVEPHP3afjivYdBg0F8OrUEL/95iuG5ti3/Av2r2N/JbcCYf5vnDFLR0hj+zHnk72PPYd1tl4Z93//TnRi4WUTJ1wLev/vsiOdafdc18DQ3IOj3ob7eOIEqj9x7XkX7LXcgwCe/bG3Ezn3r4PV1oP+CtzHx2yZdQMP+lV9HPW/PA+FGgD/gx3c/vWWqceDZU+08L1fq/l75ebiBOmSLgdbQw9r71XuPQzjjd3hjXtczUbdq6T+M161BwXj7gS/ld8+2grEVgRa2wvE6o1sqS569FZ9eUoiWxnCGKmCSAb1aCmfg9+5cq33Oaggi8fK52L97E6jqnuPJp2AQz181Fl++94hpu9xeN9w+vZG8a+v3ur+JWTEF2jk2JeBpw/ofv8Jr93wNd9PRZzKGrJGfeVN95L5shtX/sxADqgD3o2FlWk1xLAT5Ku644w7ce++9IISgpKQEW7ZsAQC8//77KCkpwZgxYwAAgwYNwrBhw+D1euF2u5Gamow9+/fjxlv/hvPO0+vUqDIFSbHoYY4B/t8xTRQC3K4cjFuzoFPH784X0E/JvDtw47F7fFYPM16M3Gw8GlOAhG4SrrodipkfA3aXpmDQ6vg1AgOe/jLuY3i0c3kVCjhWasCy8N/H0cqe48lcWprmdBcA84cWKD8AQB6xL1oSPrEIXh8mv7UX7g9ewEfPPI8BhwkKPjEeGNvufwSpJtfpaGuEzZmCVcvewdY3H8UlC5ehpaUWgiDhq7fuibk69ZDy8AHGzjW75K3IbqDC3T5UjpmAqjSgehQQi/IqtRVYteJDqIkttq1YjOQFz+L1aWkYp2xr97BJsXXLat3x333wBCafc6NOl1Y/tRQZH27U7ffuvb/B0LfW4cNb12PW7ztXJd1560PAjCuj7tfRwt6h2hXfIAeAY4sslgn4fHjl9qm4/L5vIFoiM87N3mYkcQu19nqZfe1R9QQO9/ojAFFOvkkpQAMYttFYXH/SV7K2bvp69p4HW5hB039n2CFhEF/5DAW1VlSsWYLRJ1+k+84skrLVF874VSz7L/qEbCv77BmUVqqRuayN1Qd2YeIPzXCvfh6YfavhNdadMApCEJi4plzbRrx6Y+g3903Ey3N/BA1Q9ryCfjlIAaea3LE57ElZ2PbwejRljcD3b2+H9f1LQCgw4OnoqVhixdat32L5vTdg1qLPtEWs1xtZQ2kGddEhBCNYQhwj5FWMFsfg7k9sGoqVK1di8eLF2LBhA/74xz+ivb0dpaVywMWmTZswciRLU7F27VpMnToVZWVlKCmROcK+vXvjiUcewNU36YOLVPcc8Ry/wuI8fh6m2zFGW0IvLJ26CEunGA9MkWDpOPalCgAg71Ds+qnc6MRAzEhqjny/LRyrReIQ63Yn8kwWbZtHOMK2+TKN6d2pX0UOPx5QFrleYEq1PKm4OoAB+yL/VmY5uJ5/7jrsHjEeLz5/AxKvmYdx3zZizRev4siEk3F43FQMXhhbBvLuQKJiP/aqB4bHYdPue5G5Z5MXPAsAGPcNu+Ef3ntC+zxyud4HnDlXDsDYt2uDtq29TNZE1KQAe/bI7kP7Flkf2Fy+AZ2FFASqD8jGT23jQVBK4TcaDfmNtTJLMLDci/LiErxz6QiM+7geH88canAgw4fP/g0HS8di+Zcv48dv30Bjw2GIkuyYtPh3gtXhptp/aU0xqJhVuGOfgGkwAMmv/RH2fdBEvN/cGt7JjIT8Hd9+pX3mGY6mOplalSIMERnNcrQyD5ukN0ZdyTbWbFWrQwRTqUWbuwmvnT0In751X9h3yyY9jh/2noia7JEAIdi1tgbl+Y+jovdDcDd1n9uufN7NmLjBh28eY8Zi2ZIIKUoiQE2yS2OYDo51tNntt9+OTz75BJWVlaisrMTGjRs1pik9PV37vHbtWrz55psYNmwYNm7ciKFDI/cfDb9Gzx1PUNg9tehRdT8a43T15nejQfJLQHYUrW4bZ5c46prMdzwOGLIunDka/nVsP2CHNQlrh92sy+kVil15bOTqandutwATH/kGAFD7HXNbNVR23jA4HijcHnkCz73vtajn6Ghl71GpIgDPbATaZ1yCL957FPk7ZQO178Z9WLXkNZQXl6C5uQaNrUfimii2zZ6Jb95/AjXjTsbbD15pOKEXbGZM09DlenfWoM1y24r2RL6O70vZ6qz8+HWk/eFeVE6aBnhlV1BAFEAQhORzw44lkHxuEOgbEvCzOpW7DaK4hbbIK3A+99O3N/TVEuPu+u5dvHH5EPg5Qylo4p7roEF8/9FT+Pzlu7VtFlv4ooRwUXS8e661Xg6eCJpM9u/NLNI+NzfV4JU5w/DfkwchsSR8Qk3vHZCDEdY+iPTa75BRJ+t3XrrpVJQXl+i0Vhu/fAsjtwXheuLVsPOYuUCDggRB6L6pUWWF+KoC1rbOuQJUfWFMRlMkNqqbsWTJEnR0dOCkk07StmVnZ8PtdqO+vh6XXXYZNmzYgGHDhuHBBx9ESkoKSkpKwo0mg+7boUgKA5bYCt0fbXTJv0QIEQAMBdALsm9jK6X0F5HdQgh4YfUf0oKeDmUQ9Kz9eViy3QW/EL6y25UvoXBv90VT8KVB+u7V9+RtozJRtKZ7it4ea+zqezaakvthV9+zMXBb+IALAIX72M33rjLcJWbUphHkVsvna+VcogWLout+fk5I9IT3oU0nZKL0h9jeg/27NwOX3mj6fdveCtjb5fcsoTkI+w2ym33Fpaeh9/Y2fHr+IIyIsa2ZTcDGt59HDwCl/4lebiYUfN+iwSDev+0s2Hrm4cxbnoKntQmiZIXV7mCpIJTM6zY/0HJYFud7BYpp398CANgwKQPDfvow7Dqf/udO9H/kv9h52/notze8HaLH2KXmV/LJvfP306FmRcv+mq0Sh74ju8EOH2CuWjOjacqXh5Dx2hPI4LY5UrPC9kurYsYGzzRVb/4afQ3PLGPgdnbc0oumYPQe+Zlt+W5t2L79x9bB+arM1PTd87YWDTl2sRzqy+uyxGbZOMk2Io6CfkA0qHkY9OsMTbdbNuJdrs6JkDNqZGNJ9LEHYisa1KlzqdGplES3moIxpIowQm1lGRCkyCiIvY3Tp0/H9OnTw7Y3NbEF0KpV4WV6li1bhptuugmCtxl1jU24858LsH79etx///2YO3eufmcDZvR4oFPmNCGkkBDyLICdAB4AMAfAdQCWEEJWEEJ+qxhUPyQ2XrAAACAASURBVDs4PLUQUAe/xamz1r0W45ewPrlzt+FRWGVDyp/DxvFpkXcA0JgY2ZjbOtK4M7fZDbaldK7UhhmyIjBR/nwWr1RRbKIS/5lh2aTHsXTqIhzuOQ4gBId7jjPN6WWGAz3jN77b7ez98/5MlYZlU3pH/L7N5CdO2RNZ9Op5mA2OradHFlmXPMuEwfYW1rl6KwzXiHfCa0VGwtAN3ZNS4L0zB2PgR7tR+MwyAEDlqHFYM0lWggntyjWUydwrAsVbZXdS6fYAthfKK+jUPcapAxJflMsH5T30juH3Fo/xPewoHY5VE4Zj2EeR2VUvpzMLeD34YXQJXrljFpa8+SBaXDn49oSHkO7uFXacUfbyNC4HVj8uM0ffp+XfzeEF2tqa8fKtZ6BVKfpdX6OPri3aw/qPsyX8Gh1ce40CXXijSWoyDy+WdVABvdtH0UfxCV9XnzQOG6aMCz9BjFD7dpBjSoJxJJ/lQTmmaXv5j/jgWfMSRrSTRoarNQhXm/kYFgwGUVdZjva2zlVkAAC3240RI0Zg+vTpyM/Ph7WDID0lBY/cfy927dqlM5jUN+qXntzyHwBeA1BIKT2VUnoppfQ8SmkpgJkAkgFc1l2N7E5Y/G1IIc/ihOV3ILE+qLGBPqvxo9g/PNtwu9vAIOHhUPpERxQbJZCSEHkHmFPa2jlsbLW0vyfnMgo5btvobMAgF01nrxsNgp0FlBdXxB6ZsnVoF8NjDbAzL/qrXptCTN1sodvNDAQAsHQYP7iNU43fJUDP2F229OexogrF7Ge+RElFuen3TpOfOO9g5BdpxJmXx92WWNyne7O6+ALHgUG72Q/42avzAQCpLQRv3H85ipX6lMN+lI0EKQjszWXv44BdMiOQbxIRq9XJDImM27Z2CQA53N8MRolyQ7HuHSam72ioQXoLMPjjbZDefAFbBl6JgOjAloG/Czuu7tXO5Tj66N7fYsynu/HhrXIy3OpaA/pMgTsjfAD1ctG20YymYKv5A7B5m5krVEnWKtAAbN5mNDUxiy+7MVxrFQ/cLiUBrihoC6J4Mvbz0DRNAsHBK69C8aMf6dyRPMy2dxXNRw7A2RqA52Cl6T6UUtNITABwuVxYt24d/vnPkECOCIbRL91o+hel9DtqcBeU0iOU0scppUe3SmMXkFYud4gejcyK9dlM/KVcyZKqbC5iJcbxmDeaDnBh4DtzlBNEeREqBkhR/dd8JmNeR6C2sbzIjpKKcsx6dRkCYnLUyQYAmp1AZe/IF97W34Da5iAaaB6iodkJ+O2Rz9sZGJXI4LFlTAqaUwVMWDkPjrYjulIhjrZqTAhJhNoewRh2msgVKBdhtasvo5P29SSwcQEG3VV+ojvx42nGLNOmiT0Mt8eLracPiGv/nYr7dGffmbrtFSNStM+97n8QlWOOXhi5mpW6Prm/bnvfBSzyavjLq0MPg0CBIWujJFgzQGqLvj8GL7kRi387FT1qu5a1fNCbrFSSbatcAmr5+IUo6/WUVpzZ4+oRFjwzMHoeTmMoKRIsrTJj1BIw18ERbuJf8fXreO+Jm+DtiKyb8/mYxivQHDkXX0pgv5asNanlezlZK4C9bz4T+R7iQEKDkj2fsLJbgZBEjd998iw+m1aC/bs3hh6ug6ZTIsyYNnsetJPuOSP4/T7U7y2Hz9vBmJ8I+zcc3AlvxTZdZYJYQCLVEvwlu+cAHNs0qt2I9hQr+PRKqkESsLJJTOce4QSBAYWlqU2OTYgHAD5u/ueFk3YiX8TMeq5Rxn4qEERNByUyg4/Pwqs2sSOTMTetttMMJ5tQHOlFovrNjTIorxnHErZJ9mipC8MREKB75pFQlUXRFqO3McgZvzsLwg8asLYRlBAsHzsfHmeWHM4MyBOGMxvLx87X7a+uHo2QaGI0CVZ23dYe8nMq6y2X40mPnhwbANDIPdJY2JZYsDsGu+fCu5khsHFmsfb5vGeXYOewcG1LrOhQ+lraGOOcVqFQ3afVivu0uud4nfu0eB1LeRHw+UA4Cq9ilnm9w0jwmLxjmwfKWak3DepaVuquIG+5LCHtrneh3yallqJJ3iOz7bFAbWOQKuORMojW+sxf/sEbmQGU/Md/YOC/v9QlbjUC71oLNkUOTunf8iGKdsg1CUetfQulW+Wi4sTbfZngcxXvtN3PxumAV280NT33MPoeApY/aZyOQQX1qwYYG39eeugKUEoRDDEqIpUpihdNVXvgaAmguWqPVuPSEWE9IrXKX3rjdOFZ3RFMsV840/SLRUpuf3iT2MNXPwU5doNnhyhnkHgVF57PEjvTxJe2ECRmjeUekF/+lGrjAcDOBcTwBtqhjPB9eSPDyhnq2nwhSnj6+mVYdM1SeC0jDSebUNCgFNVYUw2RwylAjSqr4jqzFEcWWvW+ggIAhTkzc9Pt7yHfWHuOL2ZWhjea2hM5xidX3i4GZSNz/Mp5sLXXs3DmoB+29vqwkjseZye6ToCzphSDc+B+AIRo7txoSOFelz35M9CUXKgrQN2QGn+ESSwaqsQULQc6UouGAACOpFKIooSz3vo26vEHTaR7NuUxexrCdU8rJrODKk4uAGC+WDHa3n/4FPDKynMeMM69E+3+cz/5WPf30ikLsXTqIgStLoAQBK2uTqcw6S4YvQtdwYQV8yD62sKKM09YEV56au/VsV1TbaNjn954ba7aZ3KEMapWfRDx+7IvXtA+B/dti7AnkLDBJLGVQQ00d0sj6g9Vhm1/85xSfDVRn4+8+uBOfHLiQHzzAXsn7FYmxQgG9EZZ1kG531pcmbrtHy68BW/Nv0T7WytTxI2zU97YivbqQ2jdVqY7lnaxbqKupI7CcBFKY0otoy7ezQILzBB5PP9lG00FhJCPzP51awuPAsb+67+oGeBDwof/o9ExlGMB+EGUcAaJOvH6LDGwPwp4oTRfINadIHcSj8vYFRU0YMNqE00mDc6ws3dwIb/quy2JMHvhQs+3/kSZdvA7REOmafMIToOlTPwB/llwz0tyRGaaeF1YhyLEd7azc5i51HofVjQCraJmGB4ojWx1UK5dlDNeg3b27CghsHmbkV63BSAChIAXIALS67aE5YExYtk6oky+UlqOcXuiGOB7+uoHKZVtqcqZDBBBV4D6YF7sgvutQ2Xm0x+Hzg0AvI2yeztgcr9ee/gXgon7e3ehbBgb5Qey29m7ljROYaJiFZ0BSEhOQ+grXJOs37AvN6gtgA5wjNuOQnYPWXn9dMcQk8nIbHtnsXl6pHgzGZHeha7A5m0GVdJvk6AqPhYN8yGd9qdHUZNmPqGZtbEmUa4J6PhhnemxRpj4XeTnnPEAE8z72ti+O8uW49VrpsAXg56I+MMNg1UzxqF62gz89745qK/eh8OVsitvWLkPOYqGv3qf7LNc9+TdKKyi6DGXlcjxO9hY7z5yEF9NKsHiV+RnIKqxAkTfDwYs/AJD32DPJ6CUzAlK+vdYCgKWEDvPLOVA45EDqNtTodsWCPjR3KAPfPfpDDvl91UTiqpbTdgfjVQgBO6mOjTXmQcjhJ6DUgqvUTmVXzjTVAPgkQj/ftbIzu+PyR/tRO+iUm2spZyY2sdH0gn6SRUAqCXQKZG0KLFrVPaXDQqfjYua4uYV/vVQI/ACIiAYvThcG20cZSpwTFMcjdSubzSZ88ybajgIhLkCeSNTjOKe6+DsRXUCdnihGYHR3IPJR0TuHo33UXVXlGOaKB/FInEHKrt4rUnIqfoeI9c9jGTbNsOSO+q913M2ZDTRv+55KM9pe1/B8Dm3c88mKOl/8/Er5yG7erWODVMLUPNhzdEgeZQ8Q1XxaQWirWCNhMkdduOhxnOFLAYeP/um8PZxhamtyrObsHIeBH+7jgER/O1hmjMVodL+cT+sQ9+NrLB1UGQLlOZUZnB6MvR1wQIL5yP1U7mEyYQVd8rCYa4NCPjk7Z1A+W8map8PKaniF48gsPY2SMoUAvVdIAG545MIxcgjYXt4cBzSGsqRU/UdRq19EEn13yGtwTwIoGm0MSvc6qBaGwWljWrB9InL56G8uAQDPojPaIoH2Yfka3qswOa/Xo1Ry47go4evjnrckM3hua961ModteiVDaiecioaTjtX9/23Jxah/pSz8fJtpyF1E2PP6pKVclFcsJF/8wbk1ADeN2T2Uw0MSF5hXChbha1adjfaW4wNPzU9AqB3z7nLtsCnpKCwHWmE0y33UXdLA4LBIBr37oDlYA3czSw3QytvRGndiLAUGtDXpeTBL/qF/YdgOWReVNpdp8/X0lKzD+0Hd6G9Ta/7C3U/Hi901mhqoZR+a/avW1t4tKExTcZGEy+yVie3/H3GE50Zdl00HttOLtQxTep5eet52aksuqoxhU3m7eqEL7COq7sFxcgIEr2mSWWaApKAyxZMgGQVwiebULrd4H4rBjBrgOqMDCWU1oRpsjojRwamcX0iqBghrXYgjB4wQUYTu9+WlH6G+6iMIM/s8EYkHwasXrd063OazqEgf7+mc9g4NRcAsPv6s7T28qxkRxT9umRgNNnbwSxODjoXsdL0WsUFunzsfFRnjwbU5HyChOrsMVg+dj4EX+yrsfqesnBu26jIoqYNJ+fo/k7Ol5PRUa7hW84pjHgOs0ALZ57sdsvIyQv7zk/ZxKXqAZePnY+gZNdpzoKSPUxzpiL0VbJa7LDb2ARPJbYq5t/tHmdcqDtu8Mnno0ehnLfG5m2G6vcjqgsjQlbqaOg1YrL2+VCa3Bi3g0AwWOy02YD6f96K9Sf10toi+j2gghWgFFSwdqoYefvoYtQmE5QNSZb7IFg/sHUcxKjNb2v9oJl7jeuUdzJosjBzO4nWxqBggRDwdrlguhHWnxg5HcaBXiKcSmqGgS+v7LbrNnM15LKUHFVj/rsXCXtZXrL0JmWxHWQGhrNOZlL6VQbxyZM3w9EuD2S99wuorpKzpfo5g+SH92UZsTdbXsAV7DPu563V+7m/9F4H//aduvmmub4awt6DaKisgOST32O+YK6jRh6gPe4miIqWjQT9uhV9QDHMGg5sQ8N+zhWq9rsYxOgJXr1rnjY1w+Ih8DTJhpY6D3V0QU/Xneis0VTZnY04nlB/f2JhM56foz4JCWdWgHAWpj7ZfLI68+4XMWvhJ5BsnD9KHc05CjUxjeU1ahreR/usDupBgX3ex2ubOKNJO0YUNNdVOTmCV+9YDr83GH2yUVkrAs395udcWJB43yVrF7st9ofFHj2dAmuvfLKWBDDDLgbbSWWaiM04B0RQNQI5YxAWY6MpSMJ/w4zBY7TP5y/6HMGXHsUZ1z/IXLXc48iMkhBd4oxIlZHLOxTUzezq29Cu09WpNyn/P37lPFjb69mARAOwdMi6q/ZUY3avqld4V2/PSoLnuXsx8+lPDY+pT1Tbqjd4VMaUT14oOlJghAOKRtxnM55U05PD0zBsHyBfz5nLDOH2ZtnPHaY5A4WtvR6jVuuN/0O9FA1GFNEbFaj2/vKsoy0hciLDjLrNCgvzT+RUsazUkRAgzPDlYQEbe5yKez2jkYIY1LPb39uGiWdfhYuVpKfLJj2uuL2I9q8qZ3Lc7rmAw4ZJK8sw+50VCK2LGvoEK4vl93h/D4KJKxQdjWhMs6que681CT0Or4TTfQg9Dq/sdMF0IwzYuhkX/OuTiPv03ReImvqiM1hy/cmG20UDW6HtyAHts1q/FAAKFy1GXy5VVV29zLx8dPYobZv70SdRc2gvqEFuLDP4O8IjUhorme4pUC+XjnK2cZG7rYxpEqjCNu3ZD1ubIsUIUghudt6g0g/tjT7Ym8Jd7LFkJe/w6l84q5KyRWhvhru+GjaFVHP9PErPdc5oopRqvCQhZAIh5GJCyOXqv+5r3jGAakPwRhPHNBFlsq1LgjaZV6dTZv0qhx3Oia4lEbk6SupkTriillkOFoXET1R2MEZHjeRZOpT9dERzZ7Fr+VxWbVIrtuXhsgXj4UqxAmATrdVA4ExUFyRY9FyQd8lxRhNVDCSd0aRjmiILwfdzSSBVI4QSaIak6GG+xsNp7LyHMsMnQrP0BppLVTQx/DgDqs0bPiAl9GUMiihKGDROFr1WS3JP9sWhu7Y6OZeP0h6fxH63RqfsggUAn5X7MUX1XuT/bd5mZNRtUfQFQQAE+Sf0wcHfnwCLSYivEDRIREhcGDHpPNjsxr/TkZ7KyxYSzZieIxsz9VnsnR99KUtGty+PL0ioGt7sObc42b1lpIb7hWwzz8X+m2Zi5q3/Rk0mxaGcICRFcximOQNBet0W2ENYiylLysLOawQqsOfKu20lKbKvNdH9PIp2vI2AeABFOxgLEwkiBVoT5Itt78eehyWFGZzpym0MqNa781VMe/UL7fOuQtHQ9ZXVCffc6mCl9jl0QVjdM6hbUFBFa+hOFNl4YWI0qe5R+fkQtCbmASAxPa9I2NSHoOnNh2D58i2IogTJYkUDt0ar13tXI9a86woGrgs3FI70Mh4URnwYQzVlAO0XyzmxSnay8S+vFnjjTzNAfJGZm6Q2oGmPbMA76sN1QXYuOk2Sws9ladP3dfGgPpO/q12fU669utKwHVTZiU+waWRAeVqbEGw1fl5WtwChil3f3n0BjV1Cl6LnCCGvAngYwAkARiv/RkU86GcGI6aJFyCrxktABEQlaqC9XwdbnaoDbgwuJQvPhiTIE4vAuQVtqSxCiWdGgoQJrtUXlmc4iGIE8EyT32nTWBibxQ5Xsg19hmQAINpkk2EgcCbcB20y4Z+HAdPED7I802SLUnagPcnYaCIeeSXTn0uI6U5jE7HXEW40CWb6KbU5PNPEuRIo97vbDRZxNpPzJinsQMCkB6kpI3aVsJNaeKNJea929xa0360uiZ1PLakit1cZgAC0DJHFwV5rElxuWVzpch9C0GfFGTc8gqQa45Glx+HwhibSyIa+yqyGTqIlY6bj8F1X4cTn2ATucLF7a+3DGf/KooDa2KTqdrFBMiPJwDVICE659p8ggoDRX6zGhI/XYtzZ12hfq5qzEesfQv4oJ7zWJISShKJilMbi6dX6MGdACwrLU2dCiIx+4VM03nczxq+qMN7BBOoz5aM5LZy7sDpLWaSVZOv7moLkVPa83EP661xfoEEEBQuaMklYv97WL3xi2nHtqdpn0cbeBX4c2XVBIfLufwqHenPHK0a0TroQYmR2WADnh6+ivq8l5iz77jiKBpTO/xfGDT8T/fJY3TK+Lx4YwN7HaImIuxu1PeJPtcLD4TV+aU9ZTzH0x+jliKxuEhPDI7VyC9xOGiS2VllEHoq/zL8PRaecovOkICQFwu9+9zt8/Prr2FBejjsfeyym67UcCY+0rK2qjKvNXUVXUw6MAjCRUnodpfQG5Z954aifI1S5EEeFGxlNQYEVXhRFxjRpE0oMozOvaZox/w1sPSkTp81/Q9s27fK5aEogOPTHc3TGh3qNoAg4Fapy1lbuLVeMAJ7xCbgcGtOk3punxQubuBEj1z2MpObvNIp841lccj6O+dLckbyOiTMy1HvWTarcQOp0RqbgO2xsaUhFghZXDrYXPQSvQ9YnbBvEJpMA595pSQlnRpL21hpeQ4ty5Jgmwt8PFzWZbFDzxmozHgAdRH4O/U2CQtSiqIXl3ETMsYeEj1gzikLkQDimiTpsWDbpcdRmDoM7IQcgAtwJOdi9oRZPX78MlHNH8dF8G/rK1/h2MHddLrrRKM+POrETAz/ptDm3IjWDTeDOhFTt89jbHgYAlF0yTovosQfY7+NJYO9Qgi2EEgBgkVg/cbgSYXcmaEwTILMWYxdegqLFb2D6ZUNRuvU5rClhDy/tKxbAKxi4XHn0rGTBBLwR4EqRQ7+bE/U/ysaz+mHTqARk5vTF+HP/EPHcKjadwJ6T1pe539/ucKFFWRMQblyRpMhWBFGYKK81CXZPNQACq8sHMb1P2L6iP/w5JGQxHZDDzv3u3C2fOf8TlIw6EYf6sN+XsbfsHgKCnhWryiLILxqFWS+s1QdbcAht0d6C2GnbjMxwDRz/mlI7e3Zm/epoYeC6+BOXhmL7hh+7dHxTzYHoO3UTvOVs4eDzdqB8y0b8sHI1vD4f/FXM3edurAGlFH6fFz5vB9avX4fhhQMwrKQE995yS0zXko7IiwG1yPTy957CzrNP68a7iY6uvk5bAMSVEpgQUkQI2cD9ayaE3EwIGUoIWU4I2UwI+ZgQksQdM5cQspMQso0Qciq3/TRl205CyG2duQEjpomvpqy6m4ICICoVvEWJGU1VSp4fa+lg7ZgqjjDiYbGyJU9SWhbOW/QdUtLZ45MkC8atKcOJN9ync4m0KNFT/ECbeYBrIxfxpiKYYNd+XKIYazOuKUWCfZmcyG39OyyRm5VfinGhpeoW3rXFT/acPoprjPZRNKkirrWRe85UFLBl4JWgggOt5Hz5e85QCnLJR/3pMoO1ayhXY6qIVUnnoRm3vNHEMQrEygZXPjJx66XjUPbbybBajCcufoKNFQlp2SzBH5GNBcK10S8yndCuPtwkpGmaANhthi6ZAWOycdmC8ToDltdFqW4/njnpP4tlqDfO86Nc1x89RNvB6bVyCwajpKIcs+/8j7aCTZHYROJNZKyhKIRPlD0GDI96vZ75A5CSng2bzQHpnRdw/ks/aN9l57JFAI0ijHN2sGCCNC9bxRYNn4Ky303B4Of0uZ0ueuhjXPhaeJbvSMiYfArXHuV/zuCQbA4mE1C2BQkziswgSBbNgG539gQIgbfNhraGTHxz4pO6fQNS+HMQOHYowckbRUYXE8I+88EVQY+ebSDKSSSLVbdYiITJ/zbW1hkhs69xf9egGE1e0TxLxc8ZgYuu6lLCUr+7+0T28aD5yH784/Y7Mff3f0BJYSHKdzKX5O6V6zB+zCgMGzgIj/39Thw+WIXcHj1w5W234bvVsfepjrYW7BhSim039MS+z15HckvkPt7d6Gpp0AwAZYSQVQA0Xwql1DTdNKV0GyAX3SayyvoggA8AvAvgz5TSbwkhVwL4C4A7CSEDAVwEYBCAXgC+IoSoNRcWAZgO4ACA1YSQjyilsYkZQiBw1a55bQNjcQgSlffQ02yBminAnZ0K8d4FOGvYZHyxrT/6rLWiPT0A1IUPFJI19rIiPNMUMBBcbx4iYMhmebRXk2Y6ubkt4GKGkMixaEQMb5doD+evKSgzIjg3AdFpmkJGeui1WL3yi9AMYNtYB4pWhosSVXfI0ikLQ8TQmVg6dZGiIbte3pdzYxKF/WkjiQBkdWCwRF/Kgl1EvgfCR/dwn4ly7wQACbDhdfYdL2p6DUMoE8a6/gQjdsQ2LFusDpQr5T9sHT4AmwDKnmNAIBAVpq8tOxGolFdpqpiZKkaTkUvGahfhSrYhCBGqnLwqW0TynoAc4ac00aL83+wAxg48AU9fvwwBfxDIkSO4qnImoypnMoSAD1O/vxkAkL5JX1DVCGbPyq68kxaRPSNvqgtAeNn5hgS5VpojMTXsu0joP2SC6Xcd7cYT9sEsgpwjcpsExWsgiPrfcfZfno6rHWZI78MyqBfuk38b3uBwODjGVbIA6JDz22yNPJEQyWoaxRtqqMjsud49InELxaRDLKFcqBBcOaH2sWSlHNUk8OyVVb+46HnPAu3z5fdNwGt3Loe/I6Dl+RECHRi/6h7dMelZuaiFbDBG0u9X5AIlBtsPj++NjC/k6DF1MSRQxJxTDwAqzilF8QebAAC7LhyMU25/FbuGRjfijwb4hUzxjv+J+bhH97+M7W17u7UtA5z5+FPv30Tdr3LNFmzduRPPLViAn9atQ9muXRgzdCj8fj+unDsXj95+O0YPGYKb/vEPFPWVpQZbtm/H4AGxl1EijfICLLgkBf2t5qkMjha6yjTdDWAWgPvQuTxNJwHYRSndC6AIwHfK9iUAZiufzwbwFqW0g1K6B8BOAGOUfzsppbsppV4Abyn7xgV10OEne522QTFeKIE28bQkcVlbBQEDRkwFEQRIVfIgVLBdxJF0eeeNo1lWY4tJhFf7M/ei5v4bTNuYqPxMvA4iwDMgBtoHv4MZSiLHJBGD0GDeQCPKsptaAiybOXd+kXe5cZoX1QvCu52IIKDv+jWY+aLx4K+FeJuFknLbeU2Myv7x2dYTs7jEkbxoVT1GZ/hxFIzym1AAEheuH9FgArR7T+DWHZsvHm26+7JJj+ObF0VN19HhH4ilUxfhQN6jmhs0IHCkEscyCPwMohh5vKbJ2nEIbc2yddLQm7m7Kktk4+PHgQQWZb60KoKVJMWGvWzBePQfna2LxHNl1sARYHqThpzOF1BWjSZfgLkCe5x+ruG+5B+3Yf3ETPQZOMbw+84g0GJsNNUOY64pVSQsihRlv52MiquNI6LM4H+BDXlGShIjI5BnKq12l/aiFtx8JzYXWTH5jqcg5vaNeF3BYsWEFfPgaKtmEaegSM5y4LIFekPSa1D4ll9MlYxgDKOakHfLYG6RxxlNahZ3iQucINx4tPmMARg2aZb2tyvZBoeShZ8oCROtvpYw3ZUgiqi65yqQV/UsWSiancZ9M38Gi0FStYpS0IQ541BxqfysapP188CZ97wDq82ONSf2NDs0buyeELkWYn0C8M3ko5Ow9Fjg7ieewLzrrwchBEUFBSjbsQMA8OFXX6G4oACjh8jVBEoKC1FaVASvzwe3x4O05GR89PXXuO7uu3H+DTfgq59+Mr0G/3PGWkmhO9EppokQQqiMb6PtE+VUFwFQ+e8tAGYC+BDA+QDUUS0HwArumAPKNgDYH7J9bGx3YNBenagxnJWgBOhQxgXX4PEg5Z/L2/m6b5zMqPczL2Ht/zyCi+5l2WltJhFew6ecF6llhjoIx8mnA+vek6+rsGTVaUC2soD3OLh28e43pb3LiwnGVygsDDdQnHvfR3i3/VScfu9b+OY30+WNnCZBMEibULCPMrdPyArXHqmUijKwcfaoHnzv4DQKsKq/CdvBlZAC9fEHoUsjNAAAIABJREFULIAS3IZ+O+RESIRbH/A14Hj3nFmhXSNQ9T45Q9aVlQPAxECMdC41wox7dLYaFgWnzldBASAOB5ZNehxBjhn12pmmqUf/IcAK2VWVmzEAQC3SEjJRuknOhTK8Qj+tv3rHcplp0lJNiHDXZEJ0/g0NCdcitRWQSjtXs41HW3ICADmaJyklG5sWXIzKHWt0jMH4036D8adFX83Gg5ztJkMc329VpkmgmP23+Au1Jmf3hlv57BcBawAo7y+iZId8YmdiKjbminIlAZuAkgqvzmiy211QA5lyBwzHiA/loq08K7wrH2hLteqel2CRYPM2I6hl7vaBChKCgSBcyXrmJ7m2CaHDPa/jLD0h3DkQ4Nyo/CJi08QklP7YjICFX2yxcwkGzHVm7wRI2xaj354fUdVrIjqsxkEiJ10o114LTaOZvPh9NJ0qG9tmiYUlC7c45BfByv9H0imy6uSDq4rS0WubzFJYFKYvILDFyvZejM1y9S4AcAg7CkT03x1/1vd9PQnyDsmtkMTIAu3Dva0Ys2oeKvueiyMZpaCiDaBeZB/ZgH67IpePURHKCFEgipM6OjxWAngjT+erNm3CVz/9hE3btuGWBQvQ3tGBIQqDtHn7dgwfOFBjEdeXlWHy6NEo37ULRQVyrraZJ52EmSedhIamJsx95BGcPMGcQQaAHfkC+u899gkvO8s0fUMIuYEQolPjEUKshJATCSEvA4g4+hFCrJCNJNWquBLAHwkhawEkAlBtSKPf2+w9MJ57CbmaELKGELKmpiYk+sCAaeLFwYKWT4dqg6totTJmhRvY3BfLA0+DCygYPA7ncwYTAFhMRMXRoEbP8UxT8Uimk1A7ejbn8ZC4aKagnyW4oMoj4idoyq2PLVYb5ixchuTUHrradSpEA6OJPxcEAZnfLUHC5/p7N4TC6E1YMQ+gAd1qGcEAUj3/ZPty0T0zbnsWG0a6MPbe57Vt9kQWth3k5gankl9E8jCLSOJWxYLB5BkL1EkvyE0mFpPQfUDOZO1KFXX36GirRq8DdzGmiXuO3gImjBM5psnr84RpmkQL0TRN6QNKtX3P+etT2DxnNM58/H20vXg/9mQDdSeyaCMApqUJKKWQ7vs7thZJOPnaByI8CYa9mcCG4cbPIGhlbItoteLC2Xfib7d9GNN5u4JWl8lAHx6cqE+AGgesPJOr/J9wwcXatoTkdJz51RbM+mwTixLl3juL1YbtJ8lpHPjouJFnXwUA2PW3C3Dm4nJc8NZG3XWD1bJpkdh6QMkZ9RDSetUhs3e4uD7A0S3b/nQ21swq1gn80zJyw2+MM+x4NhpUHh+LK9gyn081Ihgw6jOuKYXQdz0S3QdRtONtnPPWdWh64R40nXdS+HUNYOETA5sZTRw7y4/LqruRPyx58oncvky3qjLSFq5fq4tOEmV+3pUnoMng9bdyxsYRa2R9FxUIXO36hKVA55OB+kVAKOwT93GhIInhN+Zz6dnLu594Au8tXIiKxYtRsXgxfvrgXWxVNE1JmanYumMHAhKwbutWvPP55ygtKsLmbdswJESP+s9nn8UfLrooapuOh8EEdN5oOg2yg/xNQkgVIaSMELIbwA4AcwA8Ril9Kco5ZgBYRymtBgBKaQWl9BRK6UjI7NMuZb8DYKwTAOQCqIqwPQyU0mcppaMopaMyM/UFETX3jYnR5K1h4VGqUSJaHawDcizM9KvuxspRibA/9aDhDVujlBXRt1l+ISR/QPPJ80xTaia7dSNXUlISy37pTGO5cPwBeaDjpxIaMIk3VXbq4Mp4SNZwo6kyj482FJCRlYvefZkw3gyqsSdrdGSfAAkq9L23Ab3OZhQ/n7wyKSUTc15fg/wBI7RtDi6cnzcudxTJg22QYw91TJOuLIzxBLtiZiFWzi7WbxTDR2KrwzyZp83bDKqp0lWNkgAp0KKdgw/es2Uz1wzlohQbpY6wDMsBP9U0TY5U9n5bJCsuuOsVJCSlY+SEWTj923JYU/XvfySMOeUSnPfhZiQlG1WJDsdp35djzptrDL+jLnYOT7N5VfuuoCaVoipb/xs6PSYzrD/cQq5LNlLKRIeVezfVn5hfILkSZBc9IURL30F1BgnBRY99jKLyrboUFz1y+qOkohxn/lav/VFhyRsJAEitYxns+wxrxoxrSsP29XMs06yrH8BlD3wAGiVbsy54gjeaDGq38d8LJow63Iw9tVrsGDfxAtOktKGQJFtY7qWw9vLh7Xy/Vn4TK6cC8LSwxTNRAlYCEtXGJF4HNXTmlQCA4Kwz2Ma3ngq7vjdBQLJCOa4Yyf2OnOwmKUo0JxVItyUsBYDEksGwOxIQFCxoSciVdZCdgcEcI3J5+L7+6Sd0eL2YNm6cti0rIwNtHg/qm5ow56yzsGnbNpxw9nl47D//QXJiIooLCrB52zaUKmwUpRR/f/RRnHLCCRg+cGDn2nkM0Nnklu2U0n9TSicCyIesTRpBKc2nlP6eUrohhtPMAXPNgRCSpfwvAPg7AFWF+RGAiwghNkJIXwD9AayC7AfpTwjpq7BWFyn7xncvBkwT4ViNeg/rXGpYsGSzM6uDY2HsVieueG0VRow5y/BaFoMMv2awlskp6fvvZAMbn5E8MY1NfpQrdrp/nFyvKu/sOey6XGi5Txko+dWaYDUZuJR9WzoOa5uMjCZ+GAjNHh0JvG4ntZGtlgdPyUXuuGJMnc2yV4iOyIOrk8sJxTNN/bfJbExSJaPheE0T4SL8BJM55LcPfoIrFoRQ42oEEWc12RLMo1yWTXocbY1+NhCCoN2RiX35ek2T1q5KTnytTEhJzQRCD5mJaExi9fEGT87RNE1RRdSifvC7/L7w8jqSVcDl90WmxuOFLYslCbVHybYdDX678cBf8u5nKH3jc922HcVyp103PiSk1WDit3BtjAd8VKzaF3gD2qgSgFFAhkDiG46tir6Qd1NbE42fbdAgkjVoYDgCwI6+imaQN+wM5AubhrNxJa1wiPbZrOakkGkQaB1jFKpos6FxjBzskdlobHjwddD4haQ61gW4xR/PmKvRtH5R0Jgm/pn26T8C+ZvXYuYfGOPqcuqfc/lJCRgyjxXntacx5ntNKbuWRYi8cA6KAqstqWo6aaBT9QT5sk4eewZABHjsGQjkyRqtdpvJgsIARnvyLPtJEybg61de0X0vBYD9q5cjLTkZ6akp+P7NN7Hy3Xfx6sMPY88338BiseC7NWswulQ28p964w0sXbECHyxZgufefjv2Gz3G6HIGC0qpj1J6iFLaGOsxhBAn5Ki397nNcwgh2wFUQGaM/qOcfyuAtwGUAfgCwB8ppQFKqR9yaNViyC7wt5V9OwV+sufp5eYOVhvDo2yW7E5WtNBg8DO/RuyP2+LmjCXNPcfpICxsNRdoY5lfT3npC5RUlKNnP8b0dNSy2j4BhclRV0QAkMINeDxERTyQZWUGmi7ztsH9xBOKz+dLUutcIXgQU+YUha2WRYcTtk9fg+3T1wzPZeVcY6EVwAEg4GY3zKeX4AXiu3rIx20ZF51Zydouk5oJzUzY6eCMgZ03ya7a5ifuACCX/ygcmcHVYgoiu3oVcg7cpU2kvHsu8WQmRqZKXapED3DSlfOwbkwixtwyRGMX+OfVd1BkWd+0q+8GwIpDh4l0CeBItIZpYroKVypz/5RONF5UxIpAgjGTkZlTgMwcvXhaGiM/j7TJIeJub7jR5MzICdsWCyx8n1CZJjvbJnD9RDWyBb8blX89H2vPyO/UNQHosi2r4BlX/c7hm1JzC4z3VYNfzJgm5WTUxQyAqReyPDuSCXs0687/YG2pE9aPX9W2GUbqGcBiscG1W44I63fYeJ8AHwDi59hztX/xJY8Gs35CFIYqIAJ+qItK/RjitDh1hpg1pETUuYtWo/8wVkMQooQD2fL+riEs+s6ofAxf9BsCYbUlidJgImq1JXmUFxv3UU3zRYAje5txZG+zpoEMiha0NVjQkpiHlH6MzQnk94qcz8qAaWoLRq9rouZpC5U+uNvaMP6CC3Di+AnIKBwOSkRcd8kl+Ontt/HkvHn4/QUXANAXOW7PiEI1HiN0NeVAp0ApbQOQHrLtXwD+ZbL/AgALDLZ/BuCzLrVFZZr4qLI65j6Q+Dp0agS+xQ412tYoa28ktNmAvYWCYcgsD4ELf2e5hjgKnPfZt0ZOpubKYNEfUoN8bwP3UeyceyEsz/8PTp19Iyr+bhBerd5vWm8A8oBl4VeRSkdqFijStfROcdjhBpF8XhP2WLS7UFA4MsKp2LkCXHh1qx1IaAcOZ4jIr5G3idx1+VQT2YrZ76+OHsbaU6ljlcll7rY52eryrGv/CVwra7LKsUAuNLu2lhPKC6jOHgMEhyOrRTaseG2YlWOM+BWdze7EJa+sUs4bDmeCcQ04Fa7ENPRc9yOcXGLRzN4JSNq0GL2qfoTnz4vQ1hQ5wqczKJ1+IVZTHw5v/DHqux8NvEA5Gmb/+SnsOX8jZuTrtVyCN9wlHcm9Ggkq07Srl4CcmqCyzUzfpuRcs9ow48r5JvvEBs0dpXMRxx7pWDxsiuE7pLZRx4Zx+ddYbUhjpsJi0garZMOlb6/VbetwxDZ+SpIVh/okInuPed/sXTQS9QDWTsuExcu9wyqJamF91VpSDJWX8nvkRadICTp8siHQb29k16U9SokoiCIkNa8fx5JTZwoaExvRZgN61crf75vQF2lf7pG/V5im1SP+Aq8tRTZgaRDWjkaMXveQ7hLudAe4TD9hsHkBrx3GSl+iZ+MczmSgOBmeinK0OyS43KERzTxzJ8Jjz4BNCkAN7oiGUP27y+nE8rffRrstDT7Jhg5rMuwd4WlIYLUAym9pNrdsu246cFN8mfm7gmOcK/XnC4kbIKS+bLWaH5St+RVDqFZHqbVmH7Ia5JfIsX1HXNcp+u4HnPHGqqj7Ed5/phpNgvEgFY3dySxkrFPubtnAsgaAs35zN077vtw0vF41EkUuwqxt3262A59eQP0/DuaNr+K+SdEAHMk1ccPFwWDxGd1XFinRMn24Yrl8OD9nbFUp2SFaCqNPyruVArhtPPFmYkA3PvoX5JZ+D1eKjSs0G4StvR65+5kQnNc0BTh9VbQEjfEixZkGKxftNOOaUmTe3B+H/zTZkOXrDiQmpuHE2Tfi4vmx55sxA02Mz7jpG2IwAYBgUGfQrGRONIiShMxVy3DKl+twUGEX7AlRVsX2+BMWhiKoTCZZNZzhbnIPasJeTywKAU16wDGy/NijGiEm44YUh/FJUmR2dl9IVP+acQnYVCKiXCEoJYsVKSefAwBYOcD4utk5hei7dgUuWfQNKMckql6BIGc0ZfRiLJtwSGbi+xwIItguG01VPSKPY7Yo90hEi/acBG78JI4MjF9dhpN+YOkER/yO5WWmgoDlY+fDa0/TGD8QAV57GpaPnY+149hiKmtoKdadIJcsUtmllgyHTnqR3ishbHwnhCC9l779giBAFES4SgYhvU+RJkXhDtI+dthSEJBsCPpiX7yEoiWhN1oS8+Czyu3wWRPQkpiHloTeIXtyxpoBs7p5gIhZNz7R6XZ0Bp0ymvis3Abfnd/55hx7GDJNHHwWuVOLRNA6gSOZuavytscXgpqQnG5aIJVHQ57MGGwYkciVLTD+uVyi/PK2mJzW4WADuNcau65KUBIt8jomSzanS1A6dTIXA0yiZAHXgTcyigYBADp6GAuVk7MNontM4OOMpgGz5CDOE2cy9wFv3PCfS5TKA8neGDQ3F8vhz24uZ4woGtNk40+/Emfd8A/0GZKO0EKzYqBFK3zM0+Pp6ex+g3FqXTqDiSddipmXxKeZiAW91nyPhK/fj75jHAi4uu46FAwKnzYcrOz0+TKSsmGVbBjyzBvY9pdz0KvAOBCCvS1d/01VLQ6vXUngWGVdlJli9JRPi+4ONApyEbj2qkaI2WLLFgfbJSpuzNDItMteWo0LP9iCwS+8gZX3ngdCCGbMvhUbr5yAk58w17vYXckggqhzz6lZ9tuy2G/OJxTFAFnLtnlitrZYbcwwXrw1LrwDLU/frSuv1GBgPxFJ0p6/RNgYQwLh429SCqvVSEWC8Svnwdpez1atoFpx9ZRxk7R9RZsLs//9OVpffkAbOyRi0ViddjtBXZU7LEKWUoq6KlmuoLLb6m9JCAEhBBkFA2EdyDhhQghaEhVDxyL/vn4vMTR02lzRF84J7ipIPrdeS+lzI8Gtj+WiXCUIGET6Sp2MeO0KOnvFzwgh3xBCjEQAcw22/ezBa5qsXEkINf+ITXTiYH+5o/Tox3zU9V3TtJpi/D1PYfVgKyY//Jqhe47HsD/cDgBove33ht/buPsZ8/qn8AuA8NF/ojdCXSlxwunMPBYeSgyE4EY6JzPwTNPpNz+OvHXLMeffXxrua41S/JcHnz/mlDl/Q0lFOcZNu5C7rsXwswrnvujuOYdDZgokLiuyaoA1myzAPC1e5FR9j4zah+BK3iMXmgXTdfCappRkNpD6hPiMhMoHr8aOuy+OvuMxQHJCBnrndNUhp4eQlhZ9pygQDUTQ+SOmdPm8+YXDMOt39yE5NdvwezXlR3eQhyf+5g4cSQYSnn4MGcu/wt6nbkUqHynLCeaJskoP7Z0HH7gWe+Zdrtum6k90Wfh5C0yN/jRhvi2O2LUnqr7QLN3HgPzhuOL8e7W/L/rrC8jtE0NkLhcco5K2XoOkxQAw4+oF2HvPFTjn6S8x4bp7sKEvQeHt/zA87/iTL8WYqRfq5AD7pvbTPqu2HxGZ0cSPiUMvDk9i7EpMwcF0YN1pmYAowuZtRkbdFgAEokUACCuufvrV97N7sCXAbnVi9NizQRJc8FiBxDT23lFCkN7LBYGfNyiFIApI7yUbPvbCfhD7hwdACEQwLHFkBm9vrki3LXy8CjV3Wl294Le4GINFCPwWF1pdvfTHKZ4LSmDoDjZ7B48mOqtp2gTgDQArCCF/opTySXmO/V10AVafnPKJ+phvWOKYoFFXzcPW/b/BgGtvQ8GQyahY+RnGDpukaQH8lqNzu33yS9HnXX1eFmryEvfM7Y+eFeWmWhE7l8U7PT0H6WXGSoZQqLV7ea0NX5FdZZr4JxCPe45n92w2py50OxR8HiYee7MI8o/ou6Q/SkcSJCs6LIDkl+t3haLFEkOaWWVQ7snVCZYkK4IfvYxcu/GkMeOaUuwc34TUHlfhpzcfQb8PF2N3nqClkuDdcz37DcGam8+AIFrQse57AHXYMsQVkx5oxszYil/+UuEXu97nRF841Z/TzzggorP4aUoWpKZW3W+m5XfrhmHSZnVgykrWl0+bdpXu+4DdCotHNR6Uvhoyhpw8K7y+usrM8KlXXBtZDbFo7jmHK3ajKaNgIIIADhd0Puu8IXzM/arejyd1AFgmGwZCCE678G8AgF49+2PO5/FV4hp7HTPqtveXULzDD0GUcKSnA71qPHByLHmfgnBXsd2ZhJN/lH/H1/8gi8m91iQMnpyDQZN6Yev3Vdi1YQA2jB2JEs4A4/WlDlcy0gbIbxrveBYlATaHCE9rUDZ2CYHNIUJU2HiLWeR0KAiJmCUzOTkLnv2ym9Mo4MmTZIWzOf703YJkQbsFoClJLPiKg9k7eDTRWaOJUkqfI4R8C+B1QsjpkKPa2mAsO/vZIlPRJjWVb9CSPqVxbErhkAkofJ/plsaedoXueL9BpFZ3Q5O3iALq/no5PBvWxyWmNY2oiQI1QtdudWLtBcWgu3djrNXGKlgZ6Bz8UfKQ8OCNpmjpGMwEzicv2wSvknvqx5OyYD3cgHQAHdYkbBl4JfKaOsIiwURJQr+ffgIlQdR8/FLYOSVLdLas1/CJoHgVGwtFDN0lPxFBktCvIHL27H5DFXrdKCRaIOC7z1nXPAwAePNa+Rh+5f//Gb7BnUsNwIMvmfPjhEQ4qltRYsIOdRa/e+bb8I3qZY+BWyHgsAINshvGNnMWsOlN5J9zaZSjmFuer8GZ3MCYG+aeM74HuyN2vVbRsClY89y9mDVieszHxAJiwCSKlnAD4XCqcR27eNCX7/MqO09EnP7cYvz01csYNvIUNOLfpsfz+fvURWfp1udQ8t6fAABT5hRhypwiAHr22OKMrUZjMEAhWvywN9bAa0lAMBBfbUcgQi4/AxASvnCWA6biN5oIIUgtkpnFhsN7te1eSc67dTyYpi71XErpdgDjAVQDWE8I6XQZk+ON/FMv0D5n58fejY4W08SjWV07iCJOuHIupkfw6RtBtHRuslUHT0G04NL5H+Cy1zbCySc65Ab+VCVvnXQ49gKKvJ4oWjoGR7KxS0YSJDgt8qBz1aJvcfl7m+AXCXYphXGXfxC+shQlCxISU5GYkG7onkMMQtbioVOw4/bzMfUFltVailKVXgfFuCQUCCojrRSk+PKsVCydqDfyuoOV+L+ESZf9tcvnkLg59aoXV+GSTztV5ztuaKvlY2U0KTjzkjsR/PFdjJ88J8IRCpS0GDXNjOnW5X3VjCbjw62u+ETuoyadB1cc7vdYIHBMk0WZ712eEG3P+0+j+P24U/tFBKvBKSI5ORMzZv8ZoiV2biKetDTWGN2gyVlOpPdKgxD0wd7RgOSsTgQ8BHyy3iiU7aE0TIdkdA+8xANAzOfSvWTc/i1Og++PETrLNGktVfIl3UYI+QJyssrYUw7/DLBmegZGLalF4dBJULMZ2V2JcEc8iiFwDJimgJoXJcT1taKIoDap6yslM6gDAG/c6FZF6kqTe/ctuaHRD+YQ4hCNJySlR98JwNPXL0MgjWVk37biMLatOAxREqAqVnhhu6i4IAiAyr4B9NkjRi3wqWLm5XLIuJqgQozDaAq0yFGMffcHkXdQLo9w7k8UJRUGhSo1d0jMp/8/jajFlGOA/9jrR2UcQ6PJ52OlgwghGJQ+KKbjLO1KvrIkrug3Z2Tap0wB1n2KrKlnhB4qf+/qXOqG7gQJMPeravCJIePNwIFd17CFQzEo+bIyJkFGRhBaYp15AMks8/pRgQBCAyA0AEokqAVD1W06GPRPmysJAEvlqDuX4jYEws+l6+vcZ4+DAM30F6Vpuid0A6V0GSFkJIA/dK1JxxaXPPYNPK2NcKVkaEZTRnY+6hDbwMqHtx81kCSsHfZbUPEL3ebffth9q+O9838LIoqG+gs+Koyv28ayYnOwG7vZdheLKKiQO0R9EpDWbCzCNoPTFTn/kIpItdRUSFzkizrwCBRoHNQH2LMfgcTYIwx5SLHqAwCQDqahi1LDkwvx7ESjfoUh2npT4BBBRWngqC06jKC5to6B0VTr8CO2pYYePZS5bWYvZhTx0W0z//AwWs+/FSVpIXkCFDi6mTXqFIKsv7dbAbsP6Mg8du3SlZUxWUz5RMAS6kXsiN0NVjhsWmea1ikEggEECSAGvEDAg8S8Hmhv8cHXEJ6nSdXNqcV5ATllhMr9tbsk2N1+iAEvLEkOCNX74LUkIGCkhzVZIHmtitX2S3HPUUr/a7K9gVIaW3XPnwkESYIrRZ8BWhBFbLl6Ipof/UvU4ztb5DMe2KQL0ZTcD56O7vX78zjtgr/i1Nm36rYdGiDTv1mFbIXKCweNNA1mKQekZBYVock64igrI8aYRNSMhOC3S1x0h2RlBtQZd7yGzWek4NS7XkVnYI0hlYSGRNmFsS+HNcxnoqFXk1vSkMe9bIQVy4t/taQ6g+BIOUN4+9Dxx/bC2st/9H+31lM6d2/7lUAop5UxRvv6yC9nWaF8AwkmBhOgj9Y9XgiMlHVG+7KAFIW8Sd/4w1G/ribp5Jkmk7Hr8M1noOKMEBdbHO+FM0LZpu6GZHehIysZjvZaSJkWWKwiEtPtcLTXhu0rShbcsmABSqafwmq78nOFco+3/PU6fLdiKTZt3YQFD8yD5JelHXx5FzPdnN96/BaSxyUj+C8B5//p+Zj2O5pM09PXL0PAHwTS5YiLAIqx6JqlECUB1yycetSuq2L2k1+jYvM3GD6CVSLX6XY4S6QhEUhtMR8gBD9bqqYrxbrNVmBHGxYro7UtTvY5KTULFzyyvNPnFeLQLqjwWghqUikyG4DGe6833GfsLQ/ip9orMOrP+vXIla+uQtAg4dv/Vfw4ZyAkq71bmKHZNz6JZaPewIUTYtD4dCM0xuYYLLYuue5JVDwZf+HTpPvm4/vn/4nLzrlW2xa0WAAE4B9YZH6gAknqHFPbnbAReWxpTxDR3BJAkgdoyMtAxvqaKEd2EQZMotk4d8rvHw4/PA4jICpbGXKu5iQJgtWKzjj1XKlZEAUR7SnpSLJE1kTt278f369ZA6/Phxa3G0kul974UeaNTRUVWDB0KNIbGzGspAQeJRAmKIlAh1/ZlctanpwOWivLGlS3HD0GOexC8WtG8E7ikMJ7SxO6t7Apj4DfeEI02x6KNX89HZ+c0yv6jiZwOBMxfOxM3Tb+JVY7rS6HnonRJBokEyT+8KzMoVg/MqBl6o4Fly2YACIGdaJBySrgsgXsd7JyWoBomX3jgd0ah8BSfWhUjgQBzAW0hUVjcNm7ZSgZotdg2EQbHNKx1DUcX1x113u4Yu7r3XIuQgimTbwk7iK5XYemFD7qV1L76p7s+Jbj4044H1e/tAYOLr2IME2O4Ow1xVjHZHTd44nhc65HfQIg/e4KbRu1yf2rrJ/xMd2BoJCEtcNuRiDIxoJQLVUkdGeEbKhQITuvGJk9TOoNRoEkSiCEwBFiMAUNfup/LHgAf7v6ahQXFmLDAbmCBBEIdlRW4qTLL8fEU87Ck6+8guq6OuTm5uLK227Dd6tXA3Yr3BkuJPXm2si9S3ZurA6KKvv+y9E0/Z9EiysH64bfjIwDLcjMjRyZkKKUewu4W49ae866cSg+eXIjaFARylEKIhKceWPksHYVl135SLe3SacZUhOPcd+birs7DMJNE6IbLBe/vt1Up2QEV7INCSkOtNS1QxAJggEKR6JFl3ZA4sTsdmefnidHAAATV0lEQVQKPEYn6gQ6O1k47pyLn95+EpefeEH0nX/FLxoq0xSaL+looe7VBSjN63r+qXP/+AT8VzajJI50AscT+X2GIn+NnPtoxYIXAADEmQzbZ29gWnKPSId2CQ0p58KT0A8dNWwxE5d+LY48d2ao+89/4N1TiaBI0NrJ0kAqvF4PSCCIhBEj0eP228N3yOuFdk+rxl6V7dyJrWVleG7u7fhx/Trsq2+FWNwfwSDFlXPn4tHbb0fppLH4659vR5FSrmzL9u0YPGAAAIKMHvI2dTltNqZq+Zl+NZqOL7YMvBIB0YHFz27BpfMj6wEyP/8AH867BNfNfeGotSdvYDrHSDDDIa+46xmROws+cZ2Rv9mMiqYGrJKvKbb0BPEaI5m9E5E/OENLDBdagNbOraAdroRuM5o6BQJMPOVyTDzl8uj7/opfPDyTRwHblyNv2szoO3cDThh9bredS/qFGEyh0KKAXSkoKBgeeedOQpNSJMpFxdvduZqU4opHxsR+om5g6QIx5JmLFVZrZCbblZgGVyKbj+5+4gnMu+N2EEJQVFiAsrIyWCUb3n77bRQXFGD0kCHoEASUFBbCYbPB6/XC7fEgLTkZG3bsxMv/eAi1tbWYVFKCqy+8EMTEGabpO4+De+5XownAomuWyh9c8gqk6YhH2/bHp080PKZ3TjGuf2Gt4XfdCSIQiO2tyN/3JXb1PQXE0rlEld2JshumoUfBcODHpWHfmYXXHs4k6LULOJQG9FSKWTuSjo7xxxeclZPC6WHj3HMOk6SZRx/H34XxK449Lv7zi2i9sRUJ1uMvlv7/Bppw9KLnIkkppDiihFVsHJfSae1e4rVXwdHiQ5tLRHrfYxcbumrTJnz100/YvHsXbvH54fF5MWyYbKRu2rQJwwcq+jpBwPqyMkwePRplZWUoKpDdcUUD+uHpp59GMBjEb887DwD0haIBtGYnoq3pCGOYjoMr+FdNEwAzpvwYMegRce3CaWizLUD+ga8xdW4mrl147MJMzTD7j//GxBm/RzDokv33YiKLkjAZIMQk2TipzXOhIld+0fNGHtt7abfLr7srkWXEdR6n8OiCKWcCAJomxeZq/RX/d/CrwXRskaRQycnOrMg7dgIdyhpRMMnXJ0gkTt2cUji3C4sqVc5wrEtz3P3EE3hv4UJUVu5F5YED2LRpM7Zs2QIA/9vevQdHVeUJHP/+Op03SSQhgBIeQV7LywfIy4j4QJBVHAZdoRxeM7OuzqyMbFkl7tY4o4iOlrMuu1K4zIBOzYwRUHBwLGUZ3awgKAISCQjCEFTAciBAgCCBpM/+cU+HhnRCJ+nuezv5faq6unP69rnn/tJJ//qcc88lLy+PHXucK2uUbi9jxTvvMLhvX0pLS+k/4PwX29WrV1NUVMRNw+062RfFLj+/Ozm5l1P3pTNRlhxobaY/fT0paUkXDIGlpCUx/enrXWzVeXMWfczf7fqcAT3jfHr0JVSevo7KnF4cu+z8UEODq493dtY8PdMxixuWraH82R9zZd/r4tHMOgO3bCP/03Ukp4es0+TSGXyDrrudwrJPue9f/+DK/pVqK4J9QAOKojskmvl/f6LD+28BMH3+qHojReJzyn1NmacUZjpGUyXVOq+ttwZUDK1du5bTgRqu/fsxgDOlonPnzlRVVXH06FGmTZvGZ7t3M/zuu1mw8CVysrLo17MnpaWlDOh3PmmaOHEiGzZs4LW3366rJxxTtwyLDs+5IjMnlYB9oxE4B75kArWm3jXLlKNu/J7eIPBd1gi2DRmBr/Ycg5MOhH3NPY++zKvpP+aenywkPTWTCXc5a0J99dSPqD59PC4LDCYnJdMhvUO98s29hOoRA+K6yCFAmj/yxTCVUs1zbNFj7PjzK9x/RWFU6+3WqU/d48ycVHx+H7VnA3UnoPj8vgs+Q3Z2vfTVG+omOLegmyh4ZlltcvyGSsaOHcvYsfXXEaysrKx7vK64GIDqDtmkHnHWnSkpKWHmC88CsH7DR/xl3QKqq6sZd4NztmaD81mDxQl0GZVWp9uAXA7u34Dfv4XCAY/UmzysQjWw6rY0suRAkp9pc16pVz7u7kei2bBmmfbn+Fx3TCkVf0U3TafoptifaNG9fy4ZOalhT0Cp/M3jDOkawdcyCQ7PNT9ryu56Jce+KSf38uYtLxBrkppC1enT3DpzJuPuvJOuXa6AM4aiUSOYeM99AHxnh/UaWtzy/PCc9jS5xpk8PPiS26nGXXxhxrbgvYdGcHTHpzzudkOUctHB5x6g+vSpuPfYekVjJ6CMuCGyRVSjMDqHPymZ/II+l97QJekZOaRkZLBx+XLSBw7k2N4dDW7b0NBm3SKgmjSpRDBt/ij+8PON1JytBZz1o3y11Yzc9ATV437kdvPi7p9/+rLbTVDKdbdO/JnbTWgFnGzAF2h4AeNPegtZp03CJqe+JD/hpluFvSxXQz1NwR45TZpUIvj9v220c5rOn/YZ8KexcfiTXFOx2dW2KaVUokqrctazyzzR8Czu6W8l9nQC30WnpTvXKz134cXgI6Znz6kEMG3+SDIvSwFj/7ADtUjNUUZ+/Di97vqBu41TSqkEVdXNuT7X4V55Lrckdny2d+iMnclRdymUMMsHNDQRvN3xc/bF8V5YQZMm1QyZOan0GNQBxIev9iyIcOX1hVT+54N06NTd7eYppVRCuucXxaybOZB/+NVKt5sSU6kD+pPT21ns0nTM5WgW+LMjX2i4sNy5LFfSsaqYtK8xmjSpZvnu5Fmy8w4wZOvztKtcT6A6mRvHzHS7WUoplbBSU9K5f+4K0lNb9wKoPvHVLfrZPj2PjgV9SU+O/OLjmwc7Q3k1GfFfZ0+TJtUstz8wmI7d9pJVdZD8w8svOHNEKaWUioSIkHzRlSRM7x4EejU8apHczkmwJP6jc5o0qeYLjk3rVdSUUkqtWrUKEWHXrl2As3jlHXfc0eR6MlLbkZkWwXVWTcNnGcaKJk2q+aKweq1SSqn4q6qsZtWvt1AVxYWci4uLKSoq4rXXXqv33KnO2RzLifIq5W2hp0lE+orItpDbCRF5WESuFpGPbNlmERlmt88RkbdEpFREdojIrJC6ZojIHnubEe9jafNcWCNDKaVUy21+u5xDeyvZ/HZ5VOo7deoUH374IUuWLLkgaTpx4gSTJk3ixtHjeXL+AgKBALW1tcycOZOBAwcyaNAgXnjhhSbuTS64i6e4r9NkjNkNXA0gIknAQWAV8BvgCWPMOyIyAXgOGAP8FNhpjLlTRPKB3SLyR6Ad8AtgKE6+uUVEVhtjjsX7mNosO5HPjXFlpZRSTXf+2qGOsg8OUfbBIZL8Ph54cUyz633zzTcZP348ffr0ITc3l61btwKwadMmdu7cSffu3Rk/fjwrV66ksLCQgwcPUmYvl3L8+PEWHVM8ud1VcAvwV2PMlziJT7YtzwEO2ccGyBJnwYZ2wFGgBhgHrDXGHLWJ0lpgfDwb39bpnCallEos0+aPpPd1nfAnO/+//ck++gzrxLT5I1tUb3FxMVOmTAFgypQpFNsL9A4bNoyePXuSlJTE1KlTWb9+PT179mTfvn089NBDvPvuu2RnZzdWdRjufeq4vSL4FKDYPn4YWCMiz+Mkc6Ns+YvAapwkKgu41xgTEJEuwNchdR0AusSl1crh0zlNSimVSDJzUklJS6KmJkBSso+amgApaUlk5jRnRW5HRUUF77//PmVlZYgItbW1iAgTJkyot0CliNC+fXtKS0tZs2YNCxcuZPny5SxdujTyHdoJ4CbQ8MrpseJaT5OIpAATgRW26EFgjjGmKzAHWGLLxwHbgCtwhvVeFJFswqeaYT++ReR+O09q8+HDh6N4FG2boMNzSimVaL47eZaBo7tw96NDGDi6C6dPnG1Rfa+//jrTp0/nyy+/ZP/+/Xz99dcUFhayfv16Nm3aRHl5OYFAgGXLllFUVMSRI0cIBAJMnjyZefPm1Q3lRcp/7hQAqefiP6znZk/T7cBWY8y39ucZQPCKjyuA39rHs4BfGWMMsFdEyoF+OD1LY0LqKwBKwu3IGLMYWAwwdOhQ/YiPFh2eU0qphBO6rt6NU/u2uL7i4mLmzp17QdnkyZNZtGgRI0eOZO7cuWzfvp3Ro0czadIktm/fzqxZswjYCxM/88wzTdpfTVImUMnZjPwWt72p3EyapnJ+aA6c4bcbcRKfm4E9tvwrnLlP60SkE9AX2AfsBZ4WkfZ2u9uAx2LfbBUUvMK0uHD9H6WUUt5QUlJSr2z27NnMnj077PZXXXVVk3uXQgVHN0wD16aLJVeSJhHJAMYC/xRS/I/AAhHxA2eA+235POAVEdmO06nxqDHmiK1nHvCJ3e5JY8zReLRfOYLL4OucJqWUUvFyLisDqMRclhP3fbuSNBljTgN5F5WtB4aE2fYQTi9SuHqWAk2YPaaiqf/YyXz034v59r6b3W6KUkqpNuL6X77EUv+9PPjYi3Hft9tnz6kElp/XjdHvfkRWSgTL3SullFJRUJjfh3kLPnVl35o0qRbJSY1/96hSSqkLGWPqnd7f2hgPzJ91e3FLpZRSSrVAWloaFRUVnkgqYsUYQ0VFBWlpaa62Q3ualFJKqQRWUFDAgQMHaO3rEKalpVFQUOBqG6Q1Z6bhiMhJYLfb7WhFOgBH3G5EK6BxjD6NaXRoHKNL4xl9fY0xcZlc2xZ7mnYbY4a63YjWQkQ2azxbTuMYfRrT6NA4RpfGM/pEZHO89qVzmpRSSimlIqBJk1JKKaVUBNpi0rTY7Qa0MhrP6NA4Rp/GNDo0jtGl8Yy+uMW0zU0EV0oppZRqjrbY06SUUkop1WSeT5pEpKuI/K+IfC4iO0TkZ7Y8V0TWisgee9/elvcTkY0iUi0ij1xU1xxbR5mIFItI2FWyRGSGrXePiMwIKX9XREptHS+JSFIsjz0WvBTPkOdXi0hZLI43VrwURxEpEZHdIrLN3jrG8thjxWMxTRGRxSLyhYjsEpHJsTz2aPJKHEUkK+Q9uU1EjojIf8T6+KPNK/G05VNFZLuIfCbO51GHWB57rHgspvfaeO4Qkecu2XhjjKdvwOXAtfZxFvAF0B94Dphry+cCz9rHHYHrgPnAIyH1dAHKgXT783JgZpj95QL77H17+7i9fS7b3gvwBjDF7fgkcjzt898HXgXK3I5NosYRKAGGuh2TVhbTJ4Cn7GMf0MHt+CRiHC/abgsw2u34JGo8cZYI+lvwvWj3/0u345PgMc0DvgLy7Xa/A25prO2e72kyxnxjjNlqH58EPscJ1F04B4i9/57d5m/GmE+Ac2Gq8wPpIuIHMoBDYbYZB6w1xhw1xhwD1gLjbd0nQupJARJuQpiX4iki7YB/AZ6K0uHFjZfi2Fp4LKY/BJ6x+wkYYxJmMUKPxREAEemN88G3roWHF3ceiqfYW6aICJDdwOs9z0Mx7Ql8YYwJLqX+F6DRXmXPJ02hRKQHcA3wMdDJGPMNOL8AnD/IBhljDgLP42SV3wCVxpj/CbNpF+DrkJ8P2LJgG9bgZPsngdebeSie4IF4zgN+DZxu9kF4gAfiCPCyHQL5uf2HmtDcjKmIXGZ/niciW0VkhYh0asHhuMYj702AqcAyY7/OJyo342mMOQc8CGzHSQz6A0tacDie4PJ7dC/QT0R62KTre0DXxvaZMEmT7ZV4A3g4pMenKa9vj5PFFgJX4GTrPwi3aZiyuj90Y8w4nK7FVODmprbDK9yOp4hcDfQyxqxq6r69xO042vv7jDGDgBvsbVpT2+ElHoipHygAPjTGXAtsxPnHnFA8EMdQU4DiprbBS9yOp4gk4yRN19jXfwY81tR2eInbMbW9Tg8Cy3B6QfcDNY3tMyGSJvtmeQP4ozFmpS3+VkQut89fjtP705hbgXJjzGGbsa8ERonI8JCJihNxMtDQTLOAi7r7jDFngNU4v6yE45F4jgSGiMh+YD3QR0RKonOE8eGROAa/bQW7uV8FhkXnCOPPIzGtwOn9DCb0K4Bro3B4ceOROAbbchXgN8ZsicrBucAj8bwawBjzV9tjtxwYFaVDjDuPxBRjzFvGmOHGmJE416Xd09gOPZ802aGGJcDnxph/D3lqNRCcAT8D+NMlqvoKGCEiGbbOW2ydHxtjrra31cAa4DYRaW+z2NuANSLSLuSX6QcmALuidZzx4pV4GmMWGWOuMMb0AIpwxpXHROs4Y80rcRQRv9gzaOw/oTuAhDoTMcgrMbUfSG8BY2x9twA7o3CIceGVOIbUM5UE7mXyUDwPAv1FJN/WNxZnLlDC8VBMEXu2sS3/CfDbRvdoPDCTvrEbzgeqwemK3GZvE3Bmvb+HkxW+B+Ta7TvjZJUngOP2cfCstydwEp0y4PdAagP7/CHOWOdeYJYt6wR8YtuxA/gvnG9PrscoEeN50fM9SLyz5zwRRyAT56yk4PtyAZDkdnwSOaa2vDvwgW3Le0A3t+OTiHG0z+0D+rkdl9YQT+ABnETpM5zEPs/t+LSCmBbjfCnaSQRnxOuK4EoppZRSEfD88JxSSimllBdo0qSUUkopFQFNmpRSSimlIqBJk1JKKaVUBDRpUkoppZSKgCZNSimllFIR0KRJKaWUUioCmjQppZRSSkXg/wGtDoBdsC88WQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for GUA\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'GUA'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Honolulu (HON) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.984 -0.172 0. 0. ]\n", + " [ 0.172 0.984 0. 0. ]\n", + " [ 0. 0. 1. 126.704]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.788e-01 -1.868e-01 0.000e+00 1.451e+02]\n", + " [ 1.868e-01 9.788e-01 0.000e+00 -4.136e+02]\n", + " [ 0.000e+00 0.000e+00 9.885e-01 3.686e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.774e-01 -1.942e-01 -1.865e-02 5.747e+02]\n", + " [ 1.812e-01 9.774e-01 -1.553e-03 -2.277e+02]\n", + " [-1.599e-02 -1.161e-02 9.774e-01 1.039e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.650e-01 -1.889e-01 -3.199e-02 1.194e+03]\n", + " [ 1.759e-01 9.978e-01 -1.360e-02 1.705e+02]\n", + " [-1.586e-02 -1.173e-02 9.779e-01 1.024e+03]\n", + " [ 0.000e+00 -0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFpCAYAAABqGKfmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4FMX7wD9zd+kJBEIJvZck9C69iFhARMCKolgQK37tvfeu8MMCCChKRxEEVJDeAwHSIPQSaoAQEtLu5vfH7t3e5S7JBRKS4HyeJ0/2Zmd3353dnXnnnXfeEVJKFAqFQqFQKBSFYyptARQKhUKhUCjKC0pxUigUCoVCofASpTgpFAqFQqFQeIlSnBQKhUKhUCi8RClOCoVCoVAoFF6iFCeFQqFQKBQKL1GKk0KhUCgUCoWXKMVJoVAoFAqFwkuU4qRQKBQKhULhJUpxUigUCoVCofASS2kLcKWpUqWKrF+/fmmLoVAoFAqFohiIjo4+LaWseqWu959TnOrXr8+WLVtKWwyFQqFQKBTFgBDi4JW8nhqqUygUCoVCofASpTgpFDpZWZl8+Xx3tu9YWdqiKBQKhaKMohQnhULnn+kfMmBBCtvffay0RVEoFApFGUUpTsVIRmYG4165jmMnD5W2KIpLwDfbBkDls7ZSlkShUCgUZRWlOBUjcz9+kH5zD/PXy8NLWxTFJWDxCwBASFnKkigUCoWirKIUp+Lk1EkAAs9cLGVByh45OdmsWPJDaYtRICaTj7ah9CaFQqFQ5INSnIqRupuPAtAiPofsnFwuZGSWskRlh5kv3EL1sZ+zaPLrpS1KvgghtP9KcSqXrF8xkznfPVfaYlw28UkbsFpzS1sMhUKRD0pxKkb8srX/qYGCrx66gZ+e/IdTR9JKV6gS4Ptn+7J+1fQiHVMl7ggA2Zs3edxvzbXy6+TXsFmtly3fpSJzVGNVngl+9E2ivlhY2mJcFrPHPYUYdD+TR3cpbVEUCkU+KMWpGKmYof3f3zaMMOv92MwB/PV9bOkKVcycPXmYHguPEfrwuwCsW/AhexPXFnpcWqgWazXT3/MrN/uJm2nz8Rzm39mr+IQtIjLrAqAsTmWJjz8ewSuvau/Ezm3/8MObA7FZrXw3qi1TP7jLJa9F9+nfGJ/EK6/dzsnzGVda3Mumxbi/AOi+Jr2UJfGOld1aMv/u0vtmFYrSQClOTsye9BKLe0awYdX8Ih0npcQmtVp7ea9xnPF5i4tB4SAE505eZPwjyxn/yHIAUlKPk5lZ/ip0O6lnTrn8rvT8VLaMfYiY7Sv54c4o9u2NKfgE+SgldbcfBiByR0pxiHlJJJ3aD0D9Y6UmgtfkWG1k5pSede5KMWhyNCPmaL6D1pGvEJA4iDV/z6fnukw6Td3m8Zi4cXczYvYO1s9+90qKWqxsjCptCbyjWkouzaNPlrYYCsUVRSlOTpgXbuBg009I/mWcx/0znxlMQvMIjh3a5ZI+e1AEs4dEAiCk5+Eek0WAlJzs3IfJ93YoXsFLiOycLP76bbxLWkaaodicPn0cgFYHJPuefYTu22z8/e6DLvkXzPyc/QeTAM1/KNfm2tgfTE5i0cppHO/epATuwDukTVN6Q05dKJHzz/xkNFOe6udV3nXRy3jriY6FDll+9/w1TH2snLSuxcDJ0ydJbHoHqRUbs3tVweEiIjdow+PHlv1xJUS7ZDYsmcyGPz1PmKhgCb7C0iguldTzKYx7tBMXMwp3y0jctZ1pnz2CVDN3yzVKcXLiXPBDWM0BnGKUx/2tFu0GYPEzQx1pFy9m0HKPoFWi4FQo+c/IkpB+TuuZ9dlRPj6a2f+7jjovjuP3Tx/Gas3lwsXzZJ4/59h/ZscSx3aEZjCi1imjUUs6HE+TN35g64M3k6OPfyXkHmHeV2P59c07Adg7/GYajv6AXIsZgKN5lmmc+NIw1nSMIO3COYqTXXGr2bRmDgAbOkQxa0RXLD4lY8FpNWkVnZcmY83NJSU1mdS00/nmrXT349z29wWWTHyP9f9MZt3SiQBk5GhWytzcbDavn0W/RefpuUqUiLyFcWjPNmKKaJW9HFb0+JLZr8aSUqU1CEHWmSos7z2eFT2+9JjfPmTea2vZ9lmrOPYTKv7vc5e0bH310ABrdilIVDRK0x/RE4cPxvLd0EgW//554ZmLkeRO3em3PI3113YqNG/0K7fR8YeVJG1YSGZ6Kj++2BJrbtl+TxXu/OcUp/T0VLc0+1CafXgtlxouw2vHzxxz6SHUSjFe9KQdhn+PFNB14+uAFRz5JQi48dl67Nq9w5H3u8/vI6F5BBNeH8jufbsdVo+yROjREwBYN2xm9q0tONy2M/uTjKG4Ixt/dzvGGl6NKZ/fx9ujI0k+sB2AyMNgtmhT/ZtmBxIxYSltZmjnqaEbsKx6b82Spy7uNj+OsDTYHr3Go4wXL55n6bwPHL+97cnZhj5MyIOvkXnxAqEZ0HLLWbKtWdp91Siez2JP3CpsTs915fzxnOzcj+SOPQD48cX+TPpfT4/HVozdS+jjn1Dpqc/45eUhHGzZnjmj+zD92RsJvv+NYpHPmZycbHbuXJHv/sMHE1neLZL4bStIH3gXfg+/XKTzSylZuexnbNLGuE/G8vUHY9zy7Nu7g7NnT7il20ye1yK3mSzIKzD7bNaQSLa1jADgp8f6smDCs14d93e3CDa1iSjStU5U1pTh1CqVPe632Wz89M3jbkrLrDduYNmUF4p0raKQkX6OX29pyfJ5hrJ64dyZErvepbByymv0jJMEfHBlw57sr67997PC4aQY4lbnb+lsF6vVLev/GM/CezrR5bdc5twexZ/fv8TvXz1RLPLEblzEwokvFumY7OwcEppHMP/JYUU67lB8Cv83ZjmHEsvWu1DS/OcUJw4ecfm5fcUssOZ4zmuCqXdEcbZrX35+ZSixLfwAOFevEmt//pol7z1B7KePO7ILCX7Z5zGhKQHCmgMS/DNOkXHDTRw/bgzxdZm8EYDes/ZivXEwP70/ojjvsljIMWvDBRGxmbTepVXoNX+Y59gfcnSz2zHZIT50/n4jw1dK5AXDlys86TwApkzDSjJ72qOO7awz2rCfWW8PZrx/N2dTnJyNLni20ky6rwt1X57G/OkvsLFtBIkRkW55Nq+fi7TZSD6yi2+e6+ay78SRPcaPLE1xksXwVfw+7hlyho5m6mt3GonfTHDJ0+W3I3T98xSe8N19wLHddl4iAFErj1NxV8k4YP36zA1Yho9h84pZ/Hbv/YwfvYzd0YYSE/3cKGqkSPa+8pQjLeei9/HKFn//GtUee4/lvVrRb9JS+k9d4ZYn66bbWTW0N1mZ6Uwa2YmYrX8D0Hr712DLde2M2HJpE/MVZ06VvENaywSJf462lmGHZcdo8tUir46rnQIheSKSpKdmMf+zaNJTsxxpublWfnxmAL+PewyfXO0ehfD8Ek68vTUdxi/j5ztdh/tbzjxAzQ8XFOGuisaaOXNIrfIBWeMMpeDMycOO7WXzvimxa29duYCTRw+4pH3+1R28mGeoOu2U1imuXrzG6UJJbRym/a8guDDoTkwPPQ/A3z9P4Je3V7g8azsBGT5ExWvPuFWciQaf/0bTCf8UizwXxjxLo0/dO7UF8ccw7X1q/ldckY5b8t0OpJT89f3OIh1X3vnPKU72GVN//voxMZuWsP+7T+m28XXMORlGxSwl5pwMuq15iU4xmsWgw7wEWsTqDeuFi1R+dwL1fvqHtjuNIqyqf7Bm00lqJa+iw9ZPCD2ziuALWnyn5JR9jrx7O4UDkKsf3vFnV0fXnJwspj9zA2dOHiYzO4fkM95p9Iumf8SPD7b2Ku/kN25n3NPd890vze6vR6jTZJ+L5kAAbEBKaFOW9/yaDGsNx/70o/sd29V0Q5+Pk1k6KNYoj86bMvX9sKpzZ3J39ORgn1tIDdL2Z593vf+086ex2Wx0TNKemelMDhX0dtzZ1+DXbx4l+P5XmfPotaReewvX/nGGea/e7dh/6lCiY9umK07WYvgqak78E4AmfxtWxhonXYfWsnwrEN1mrMeKNfigZ4fbsJSSsUzW3K4pIPtiVnHU73YAlk02KtHsOlrjkBNgWDqOHtpHYcz9+GvGP7KMlL2a3LVOGsev3bjCLX/TZFg58yu6bkxjt66khZ3bbQyBS6ltS0nl1CROJMWwuU0ET71dPH6D8z8ayenjnu/rxOHdju3cnBymPH0tSfEbmfrOffx0t6aQ/99TrRg3tjX/TjGGi37vG0FC8wj+HNCKqc/8H8m7zzH7MyNswhf/606XRYdoOm65YXGVnp9zj53a99NxRyZTHuvFH/0iyM4teWv1we21sJoDOFL3AUfa+TOG0pqb5m7Jz8uKWZ8Tv+mvIl87YPQLpPS7wSXthgnbGbnMRoLTgty9/yl5JXrjvzPYl+jaYTRlaR3vC2EBjjRbdjZn5l7g7FErq2caHeaTlbQX2RJeA094M/y5cv445n/5OFu2rmTh+Gc5fjDBZb99qDon271eyY/s8Ipe5wVjlCYnSwKCrAyryyjN1c5/T3ECsrMu0uCtHxH3P01Ovdr4ZZ/HatZ8bOzKk9VkZkOn10gJbcrmts+wpe0zZPlWAKD1TvcX0urUJoaY59MsaRYh6UepfWQWreI003HswXWOPJZjmoXF4lTn2ZyUihkv30K7RQf4639D2d65Faldu3HskFFxO5OUsIXJo7pzMT2Nhu9MocuabBb/8gX/ri34Jb5m5g76LU5h2lTPZl1pLtiH5rh/MwCsZoiNegCEiQvZNzv2XzxxxO2YoBOGlSI1rKbb/orpkFxHcwJObHIHOfpjOXXOONecZwZzpFMPZg9pzdlQLc3Hx3CmTTl20LFt+3sFAC1WOFWquj8VwIldhsIqMy5tCvjv095h4sOulqwszThJpp+Rtq2Z2SVPQhPtPv/9OaHACvOQ7vd1uKakynnXfcXlZGqS2ozQ04m3gtkXhMBmNSpI/LQbEbnGO7HvwN5Cz3s8qSlIOH++NwAXfY19lUeOYfrwSGYNiuBihnFjMlvz76l40bg3gQ1LTjqN9s4HWzpC16T2r1lIcCbc+dvlT9/f+tcUmv+4ifUPXe9x/+FdWxzb/87+gs6Lj7LzhQfoNH0jHaLPkJOVRZ+lOfRbko11phHnrGmy5qe1v8GXSIvmp5V+spLDT2vgX4aJxN9etdgKf66dl52k8VFYPfW1S7thL7A//+wMPxCCbP9wR9qFs4Zyf/xAND/f3YZp97Tlx1EdiIle6Xau6q//gLj3Kbd0O7/fGMG0+7sgpWTGuP+x9Mv7yMozc3Th+yPJyrzg6HCm6m4O1tyi+1u98+gAvnjfszy5uVZ+euEWEre4WoEqjHmLYyPudUkzZ2n1tilHq8xX9PiSCU+u4XT19iAEe7eeZvwjy/n28RXYJ8nk7Qja+fun99i5bCYH4zeQm5vD9B+edqsbqr00nubfLiPorkdo9M0izg641eO5zp46WuD9u95YBe/zAoOebI3F1+RkBQaLr4lBY9sU6TzlFc/OA1cxQsLsYe1oB/hawXoxg+W9xoHIoySY/bBKSWzUQ1gtWk9if70baJ400+N5zU71nOWcYfFIblyBapu1RkGeN9KbGMYYB6cPJlGtkeYT0eGPAwBUOHHBYUk5lLCJGnWbOvLPu6kN6UE+SJnLNTszmf7RE9ib79S5k6gfZ2X1V69y0Wrm+Kz3uO6z5YSH5fG+Bo4kRRO9bhE16jSjZp3GRllZC+7JZp866qHsAlneezxISaXTn7od08RJf2nz43qXfSt6fInN7OP4nVK1NSlVx2Oy5lA9609HepTupN9qVy4H9I6bOdtQyNLOHOPfu4eTEiaoVC0H+2t+pBrUPgm2GKPHKOcaQw8ddmgVoPCi0XKm6fu/0BTNT8jHx5ecnByO17USttNMLaeROF/9vCt6fMnyR5ZDVc0yeHDnGSY8thJJDp7m3uWG2OCUiTrJ7opsUtxGmra4/GCJJhtExk0kPmoUYDKeqYAuw2uw50+tRTflGGVT46kXmNr3U279aAEhIaGO9HkP9OaY5TXtHGa7pmRxvBd9VxrD2+12auc7etKw8mSlnQXA32kksM/qpx3bNts/NNDL4uj21TTk8mJvTb+vM+02nCfro7EEAI2TzEwe9xI33fE01atUc+RL2ReL3fPIpocUCT5vfCN//fIeDe15W9Wh1n7D0lCQn1ZscwstErV3L9g+tJePQhwf6U9kfCaxHSrTYovW+Ab85Dp0uHX9Mtpd490sTjuHd0dzZsgIzD9+TItOgxzpwpSP8cuWw/61C6lk/3kmlU7RTh3KdY+Qu3MnFh/tvq05np3djx89SMKW5YTVqkPTfcC+VCY+04Puf2rOjxurjcNeY80a04uW/55ky7yOhOivZ1baWba0iyI4E1ZHmegRZ+NQNSjMs0xKybDlh4BD4MFdb8bjfemw4iTy9ycg0dWiU1mffLtt5UIiOvbGnK0pNiZdecvvWVtzbQ5XhNbzDGvuzu5VaLlGc0XIOnsey4dvkgEsqW+h3YFcvtm4irCqVWHXQUbMS/BwZs+cOXGQarUauqQtnTsBv8/mkhD5NMPe7EnV2iHajqyiLRNWNzIMk71jLTU/XrNFULe5Z988Tyyd/jGps6fQ4eNfaNi0fClc/zmLE0C7JGNbXszQ/Cc8IQRWn0CtARCC5Fo9C5zNY6fyUaP323CXYcJ+ZHHBiogt/TSp504RF73MkdbgsFGB7p4znm9fG4hNV2gi9mbRYccF/PQPVhw1hp1ax2lpKYmbSJ/wLh035LJmyuusXvoz87940uW6aRYTgaOeJbW/VmH+OfFVVv82AQrpxbVfd5HW27/GlJvlMsxpys2kTcxXtF18oMDj3e6/gMZF5Bh+aLHX1XZsB+tm6dx0I5TAkX3xhJ+DqL2SC5bGLO/5NWcqNsFq0T70KKOYaHTUvYEqSiN8McPw4zp3Wuvhzby3E1E7zW55o5JsjvvxhJCe0xvuy/8zXT/pVa9lLYgsIQk/HQN2Z3b788zNJvDRW7Flai16032u70Sn5aeI63UNANFrfycrM4OItSeIjJsI0uryXmDLJSrWs+Pu9jjDGpubqjUi1fIZ/WngpED2iNHOX+Eylodst0Hr2Jw/lexIu2bcb0x73lX5uHDYsLClrNIU+TonjJclJd5QyC0nzrpeJL86xpZLtWMe9uWZLDJt+kssWTYJq4927zZ/4/2qdNxQWOZ++gQB9z/O9HcewBsyz5/DmpPNjtfH4GuF80+4LllTs+m/gOv3DZl02/A67ebHO/J1Weo+TDZ/jBEY88wxz8Of0Q/cSPgLH+MzwnCMtitNAFXf/taxbT6jdTwrX9Am4oCmONmVzcCKmvJeN88o98RH25PQPIJTR43nt23tXI/y2GmyyTjJ4vkTWTTnW5f9R/fF4T/6Of64rxcW3dJk/99xywdAtqvrR+5FWm57z6E4OdNos+G/2eQ7QwludEB7LxoevEj7+QdpHw/b17j71x2r4rnCOn/asDj9PP5Nfhn/GnVf+Zp9jUZhM/u7Bmd2Wh7s6IE9bFs4xeM5ncnNMazAZlMuOdneDRlbc3OZe18f6r7zIy0TJXtG3Vn4QWWM/5zFKS9tVp0iy/d11nZ+G0wWTUmyv/B5rVAAUnLNxoLXW6uQajTyFc57P2V8/ez3aT77gIs2axWGNavD6nPAOWYHPIClXmvsbtAy0A/IoaJ0H0JsNsHwKWg4dQUB2SuoAhwaaAxRpZqMF37X3jgafKpVKikRTuMq+RB2bjfClqtZFvRyE7ZcKqca2qn8/n2ObfyXmpP+9niOna0r0PPDidyUHs6icdu1WtH+HKSVNtvHkVzPsJTZzIZcVfTGNTPFqOhqv2FUcqdMjwImdrZ4iEZ7ni/0fjSBvcsGcHDzCsd26ulk/hk9mPa785lsoNN6+9dsb/UYCLPbfRaVTouPwheF57PaJAIwmTy/j45XQJgQthxqHV3Nkbq9NBnB4TjviYoZcPxQIoEPvMjCNi8THgzhp2OIlzbdZGFvQGxUT9FmWiZXE1Q/JR3vduZ4494jZm4t/Ia84Hho4ZYHZyxTZrn8rptsJcepJ952gTFU3naDe8wei5NDf+QG19a728bXWdvlHbdn3m3j646lmpyptPc0qzpHUDUVGsdE0/Gd3wCIa+EPwPnM8+4HAaZlqwAwb3b1mdx97ByNq1d0ff5Ssr/TNayLEFRs1ARi0gjKEKSePcGOnX/RvvPtNPt2Dsd6dMVmQptEY7IgbAK/bM/XdyZy7RkSmkdwJAwqv/oigXp6bq6VvxbtYv/i40SltQS2F3ougMjtxrOwf6K56YYclnzWBu22XOvcnOx/Ezs6NMCn+zVU/fxXx/6Vy/+gR++BLmXj5/QJ13/pMwBsQx5ypB0/EEcg0GJHBgfqaN+IyapJFZJ+1DDT6e++BKqmGoq5M4H5fFrHGuVSY6+FxnrnOS2oFlumm+kQVJOQdONcNvc+GgCHY7dxPGkbTb75k/ZoQ/HLe/dx7LcHZ0ZKwjKNl/DA8JupnCZJ7T6QiqFVPJ8cGDOuDwnNtS9MDgvhhkeM2c1zH+iNuVZNbnn7F7fjfv/qaSI3HHf8rpN/dJYyy3/S4pQXv+zzWgUPrjPspHQzmYfVySLdt+BKIzj90sYNms8+4JaWFuiez3ZgH5HvfOf47aMvLRG1ruBFhQOcKuj0QXdxvEoblvcaR+D5+sa5bzKmozZL8C6WjM3s4+h5WHLSXRSbPY38iew5hH7Pfc2uIZ6d1jOC/Qlv0JL6LaoiTPpzcOqtVU5N4uL5VGYt0h1qPTg9Ri6Md/mtVRLjQQTplsMgdkeM14YWCyE/i9P2VdsZ//DfzPviM0dabIyhDF44nUybQpQm0J2d7Ti9X87KZlFJ3n+OH8audKyNKKVk5p2aU/KGxT+yslsks+5qAcCSyS+x6JuHXI63z0Tqu+pJ+qx+mqb75lE5+Gv6rtKsk4HJBUd0P3lYm50YGWNzDGWApoTVPrwcYcsxlDAgtbKPy/B2u335fzP7H7upsNt3sKO+YLFmACP8XME+YHv2bHEJA1IzTwXuZ4NjBxLxlra78t/nl30ek9TNDXodY5LWfBWQOsehqt4pcJ75aR8Oah3rubVtvl/7ZlvvvogtJ4dTB+L46ZnrOTPwGqZ+cL9L3uO6BaZrggR9IkhGoIlD3XpT5eH3WXtjOwAqn0mgVvIqOm79hFrJqwhL8W64yKQXfe0UCHz6Q0f67NHt2b/wEEhJXNR9Xp3LmbgoH4fFKfu8YdmzXHT/9pyfv8kmqLnpgIvSBFDt0efZ2tZ1Nu7pSrixZPxYx3aq04xCvyy7xcn5WlkEpScTFTeJoPRkLFbvHbXt5AS4vrtxEfchbT7ERbg+xxonBH99+Dh5ifz+T5p8Y7g45BecWchcKh82LPaV07TrHtu+hbXfvsWq794sVFbTDNdZfJFrT9Bslntk/4XfvUrED8Uze7A0+c9bnOxUSdmJX3YqNZPXEt3uGa3H4BeAc6BrYYKKVWrTbUsCZ44f5ERvzYk0pl0obbYWPAe2WXwcO5ZMI/F4DK0/XupITxvam5C5K/I9bl99Sbu4gq1WkUmXNqsmPmIkAPUuDAU8x0nyxIaeleiySquwkm5tQZ95T5PUyMz1/8RycNNyMu59zJF34ELDenDLBzNIvi+a8MZt2HBdVyod1RoNH5NRQQiTwGTKpX7iAg7WvQ6rroR1/C0OfnuO6Qs+oPIeL2YY2nLByV/KJd0DgTMnknG7FvVc5GlsZ45oxUW/QNJNr4ApkJM7m5CZY8Xfx8zFeGPR4qQZ39HCw7lXD6hJj6VaD/F4FTPhp60IacOcm0mzfmHsWpbiuM89barSOMZwjDr+3J10GPQAO9cvodIL7j5jAIt+/Yrji6uTHViVWe8uJaz6fCwVQ2ml11upn3xE3bOCGmdtJG5fQ72PNesFTmFjPMX+bLPQGNpoujf/d+yiL2SMfY6wPOl2pQug6b55LvtsFu/6bNm/jefG5n1JGL+IDD9ovz2B2JVzMZksRPYY7OjxAsQ38+f237WbtqdPe7o/wQ1aMvSpL0hPzeKX1+fRrGc2B1dMpcPfx3i7vy+35XPtZock6YPvymdv0al8JsFRx+xr0AMhQxz7Uh64HuvJ03R58//Y1941kOKGZ+/BPvE+IlFTDvKGOfDEnze2pdFhK/b5hl1+2khMrwX4BYUQ0bYPJ5JisXdxRKYew6yWhRbxmvJV+6j2UtgntwA0S3K1yp154wEqvzXJi7vXcPOJFL4efd8KIirOUJCsJ4yQGT6Zxre9cNrnhDduxakDW6jvxTmDsrQYWZMfHUOWvI0KtTtS66Tr7Lla3xsN/slVf2KfF1fjpFZf1Es26o2ax16n6R5NnuqnPS8NVBgBR7XmOW+ZZQTXdCkzE1BnyjJynsll1tjraZfP+bpueJ0NHV/TfHaFQEqJJfciXTa/49HqeSErlcpfztB+jH7TbX9WlvESBub4O7Z/fWsEdo+lH98eQZdfoqm3cQ2BFcNIPVBA7+IS+f2D4o9rVxiipEK/CyHqANOAcLQZ699LKb/S9z0BPA7kAouklM8LIXyB74AOev6npJQr9PztgSlAAPCnvk8KISoDM4H6wAHgNillHucCV1r4B8jZ9eu7pF349H9E9RwKUnKwszY9f92tHTBZR+Mf5EOHm+qzZdEBMtNzuP8jY/p+WkoyJpMFv6CKLJv0Bv1Hv8+OVlH4eWibI5wcDO2VeqOtm/ENDHap/L1he/cqtF6Tv30zuSrU9BweCPBQednJp/I699mzhD6jNdpnQqDb5gSmP9CViLsep12/u0i/cJagYKOL9veUd6n9oTarKCIx/97p7++Poum09Rx84kauf+wzl32blv5M5hvvOUI8FJUs3wruw6+2XH1oxL2X3zhmC8tv60Pd3WkcrQrXrjbkHj96WZHKy5mG0ZvwCwrhxKFdxC+bSZ/7XycnJ4sV37/K+YSdDB23xPH8syd+SOvurspA8qsj6TfiRY7sjSXtpuHs6FqF696ZSsxtNxGeUvRn6czujjm0fPlXDo26l+oFfjWubG/lT+sdXrTcBZDQ3JeIRPfaOqWiICzcwGGzAAAgAElEQVRVknTPNRy+eJzH3v3Tw9HO59HKKsMX2mzdidlicUm3E5GYwKRnJ5GZVp/w4xuJ3PXTZcnvTPKD/Qj5ZTkhGd7VpbFDmjP0vbmcPXaAsDzOu+Aue0kQkZjAv31aE37M9RmsjRJ0i/PuPoKmf0/d9j1IP3eKNQ8Ppe6OAiodneNV2hAfOUrrhToNWUbFTXYM414qOWbPHQBv2dYphLN+b4PJB2w59HWakABwsDbU0yf37msIDQuIxnGopqBusudyjOlbgzbLvQ+dkBZUix0tRpPlX9lRZv6ZKbSM/c5lyM4bVnT/HJvZFyGtSGHGZM2m95r/ecx76u3HqPq6tuRWRGIC2RcziF25hHbXa7P4ThzezZn+gzUZAy102rqTOW+NJOrXTR7PF5GYQFzzCI/DXAW1EwVhs9nYFRlF5K7EaCnlFVvLrCQtTrnAM1LKrUKIECBaCPE3UB0YDLSSUmYJIezTVh4CkFK21NMWCyE6SiltwATgYWADmuJ0PbAYeBFYJqX8UAjxov7bq/C5Rz4aS+0XviSmf3XuHPiQ2/573vgeXz8jLkeT9tXd8oQ4TacfMEYzRWf74KY47aprdvG1yPuS7KstaXjEe18oEVoZ8Kw4nQuCfqsTSDm2h5N9BnnMExk3Md/KyxOBIYYtocY0rcG5e5LhzOusNAH0v+9VYus1IzC0GgUx+OXJ7BmwmOvb3+C2r9OAEWT1uoV9bToWeA5P7Grqgw85rsOvJgsIE4drX2TQn1r5Syk5EreWozvW4uMfxIAFm1hwU0uCUo0HmHo+ldbbv2Zni0e0IUi9vEzWLFrt/NbT5Ym9oy0Vcs8jrZKIIM2qUL1uM6rfr/nG+fj40f+xT9yOq1q7OQDNE+L58+snqf/tP0T10iqm2o1acG7lEpqG1cRs8eF8FUF4yuV1eppu9iFryL24v9n5E5GYQOVDSZy57uZ88+T8+DE7vn2H9hu1YcN/2giujZE03LaJGd+9Qf/bn6DhdTe6HJNUX9JzxkoiQjVpvFUdjj43hItnUhj03Hf55nHMYqQBCDheowvHa3TBZM2h9+qx+R7nibibI4laoA0LH/nyRZIS1/Po2HHgFEw8JycLHx8tfMO+neuoG9GRlf3aUvOElb1N/Bj+gbZcjSel6VKJva0dLWYZ1t2kZlaa7MrH+UUntaKJ8Dztt7dKE0Dd9loE/KDQqgyYtcqRXpDiV5jvm52tDUWBw7eeKEhp+ueGGly7OH9lxa0DYna3hNVziq6SV2nKsrjW+4EFKNHDv1rC8tcfIqh+Y44tmknU7oK1vZD0o5jtQ316meWYszl+T3OYkuzR+rizhR+Nd2e5uGcAVD5rWD2Ta3Yjy9eI37S7YRBN9xkTmzLPG22MzWZjb9v2BAAbg16mc3Qiy755gbZ2GTNy2dgugqg869dnm7XZ66C9F3mVpqNVoNZpyMnKwsfPj6KSfTGj8EwlQIn5OEkpj0kpt+rbaUACUAsYA3wopebJLKW0e1FGAsuc0s4BHYQQNYAKUsr1UjOPTQNu0Y8ZDEzVt6c6pRdK/8GjiUhM4M5vVrikH35tFMc/fNpFaSoKIR5m9wxaXHBP6mRQ0R5Dq4Xu8Zy2D9DCFBwN1+QOq9HYLY+d8NMxbs6LeSuv/ff04EzHOqT0akZwJa0xy/SBhhHeKfUt+gynYdteheZr7EFpsuPnH8y24a28up4d8dNnDJwXzU0LthJWx0oFsYNW/VJo0bs21RpAn+nGjEUhBHVadKfLXYauLU0Ck4Sv74hkUe8Ikjt1MRzgIV8HeGd63P8qA95dyPUfeBdhessNdTkTDNVrNXDIddNT3xCVkEB4HaMRCq1ez7F0TbbeMHfc8oFrVG3dstZxy/teXdsbdg+ows6uFdlxs7YQc9UCGvyjr95Lq2sGceekdWx6sCMNt23miRnxRCQm4BcQwsixn1OzRgMX59vMCe9w08JYQkOLosJpXPvA+wUqTVDg8pFFZtjHcwlf8xcRiQn0v34kj451V57tShNAw5ZdsVh86LcylhPvP8qAeZ5740UhZpjmK+g734gVZQl0XRTYV4/Qb/djPBHWmsPVDMUgoXkEzRILtxoeqAbr7mzIfi1eL9tvakxEYsIlWwgAvUOTi3/2KpCG71uTnduJHdWD1TfU4O4/4ws+RxHYW9fCE18sZ8dwTwPpGpFxE8Hm/SxQOwefu4WQf2a7dZar5LGU19qgKZaxnSti8fHlug+m0m30awxbEEujbVvYeY0xjT/dg/6Q6xMIfmlc93ALKtcKxq9qfW4eO55zbz7nnhmQfr6025HAlm6u8Zlaxf3giDHYLEmLMXi0MhyrBAcGDHfJe+ysEQ/vYtoZxzqKFdIFq+f8H20XuPr/VfCgw/gWoBPuC4dTLbVvPvXM8fwzFkD6udLxLL8iPk5CiPpAW2Aj8AnQQwjxHpAJPCul3Iw2tWKwEGIGUAdor/+3Ac6RFI+gKWAA1aWUx0BT1JysV/litQhO9muVb4/2urs9v4iXQsC8KaSdO4HZXHDPz1Y7DHZd+gsQ3dzEiK9+Z3f8WoY07Vxg3tX96tNj2QGX2VNHa/VAClcZu41+i4pVtFH8k8n7SAFOeXCYLGl63fc652fnv35S0ph+NJmgKUOpgdClo2HJuOO169GMk3aaFXo9KSA8BTdrjt0Bvt6hv1x8r45HhdJn7npHL/tSGpR7vlhaeKY82P2wQtKPYg+qZziaiyKb8J2JqwvD/krAZrNhs+YS4eM6u9JkNnPgpbup/8F0l/S60euICNJeErPFwshnp3l1vbZ9irY+ljesizLTVQ/JIfMJ/+CcHt/YTOQeLX/uL19gucsYpjn59H1U+2KK43elKnUuSabet176WmQX/I0YT3e+OwPe1bYP/zmTkNDq7PnFdai73kGtM2b3Y4yLvI82Ma5DTwURtmQOhw4lckNPbUHzOTvbwvFMyGdWpjds616VtmtO0XfVk/p3MgCAeQM1Dy6Ljy/Dn/8+3+P31hIMXBbPhkU/UvGZjx3p5wM9N9qregdywwvTGNhAO//glycz59xgyLXSbP1JI2YW+VjChLslLC/trruParWbsd0Cvh5cNBptj8bXT5vhUyExwWO74xsQxG0/rmVrqwgCsjV/K4CNz/Ti2gFPkHbdMLqvf4W6W9YTFBzqMvpx3S2jmPDvLOrVDKXBj4as5rpaE3nPpI1uFsCdD/ai5UQjQOm167Q66+C0PL5qqYb16d9vnkHUMtPwoPaNVHn18pfY6TLjD5a9p4XNSD19lCo16nnMd/FcCtacLIKrugZMjl7wIyd+mUyDy5ak6JT4rDohRDAwFxgrpTyPpqxVAroAzwGzhBACmIymFG0BvgTWoQ33efpSi9RZFEI8LITYIoTYkhFWlV7jPQexLA6OO8X/qh/ZmZZd8x/SsHP7x4sd20kN3R2aT1XUGuTwNZ5nI1TsrVVATSO7OXw8AE7VCnJsZ/zwPkfefIiHx2vXcp491Wf109Q4qo1zR/eqTsXFsxxKE0C1mg3Z+2B3mn//Y6H3Utz4BXpeCiDx8RtpHL+Dm580PuAWK7x3cM8P34ueu0h9Vj9Nz3UvkO2/lp7rXnAEZOwzVwviueq66mx7sOtlX99bwgYNdmz75qS5zODxzXGfKl8UWr6vWVFMJhMWH88hKXoPe4odUa77goKKrlnHtro0y25h9P/EUOo0q1xea4LVxSoXucdK3PWNAGjR5jqSHjQ6IF3uLZ7FV4vKnrpG1Rc+ewaH3xzFqU9chxbrNGxFaOXq+IW4lr1jVql9eNnsS0x7z7NKk57s7/J7x/2dqVY/ig660gQYltZ81tBz5vz/GbHFwrdsdGzfNXGVR2vVgNmbqLpxdb7nO/v58+xsambAEm1hcB9/Y6rxpjYWOm81zndM9yo4Ewyjv42mbgNjPTv/gBBGfLOcERNW0jHGQwdHmEBYPc4CtbOvnla/poRAbKtgqtTSrLD2Fsk2zTXGn11p8oagXyaS8MQNLOxmxgbc99C31K4bxbkgSKwvCAoO9XjcmK+WcOMLM6i9aS1pP7zLqVdv55Z3Zzv2xz92HfHNNQE3dPLjtmcNK2myUzzksCqudodOc4z15xr9vMmhNF0u+9pVo+aGfwkLb4w1SGsw087k7x8X16s7h3u4B3QNfP5jGsRchRYnIYQPmtI0XUppn1ZzBJinD7ttEkLYgCpSylPA007HrgOSgLNAbafT1gbs3ekTQogaurWpBuBxgS8p5ffA9wAdOnQoGW94HXtVtzvC32s/jeCgYBpsjwYhiH3zXtgX67pf7xmFhFbF2aBp74X6hnj+oLou2UDMtn/p0Km/x/0A0c1MVBh2Bx17DGP1yyPo/+aPVK/hrsMPfPbKrjhuxz/Q81IAQx537WHnmCG4Qt55XcVL9B2RjHhTi3GV0DyCDCe9YfTXK0r02nnpc99bJHyozXDqvv4VR3p+M3hi+oTT5t/8zeHbrm9I2yWa40bF6u5L4eQlICiE2+duZ0vrCIKyYP9Tg4oUM2lXIzPN9lrJrVS0pR68JSgkFHt/OST9KCZrNjaLv5PylM3R0GQywgXt9koOPzuQYQ8afmfXP/Y1eydqypNfgNb47WpoKtI9Xi6ZIb7sqp9N/SOSiCatqdMk/zUoT53NwNkOVhQ/xpsf/Zq3EttT88hFKjWK4PYXprjlcYTo8MLi1Lnv3cyKeoeQFEFEcAUqxsfnGz8MICggiKCAILd06y/fEBRcia5N28ONxhT8anWacAGIbRPEyBlbXI453iyMGutSOFu58GreOUYeaJ3JHbe3Iuz2odQPsXDgB6052tPIRuO9msLoM7A/oUPHUL9idQKCjHd318Bq+Gw9ycDWvbAHj8gtolmiWYtuNGvRzS2ExjXR3lmxQypUplOPodBjqEv60Ce+4qd9vSDxJKK61iE+XBPqJLtOIqpW3fP6eQWR0MRMRJKrQrWrNviaTDQ45Hkm7k2/GNau6ge1MAhZW7dCr8Ee8wc5RXLYtH4piav/4NZRr3jMe6UoMcVJtyJNAhKklJ877foN6AusEEI0BXyB00KIQLRZfulCiP5ArpQyXj9XmhCiC9pQ372A3cywABgJfKj/L9qS0CWASX+HRGjRet/+es9E+LhbnJqt0awaFotrD1989S7Rkz5i2F2eZ0VYfCwFKk27GpsZ8buhpN31S3SRZL4S+Pob01yXdfSl32b3mViV/l1IYEDxNMD26OJ5SWzk61CaACr/M5sqnsIdlFFkoNEwJbTNJWKb66cfNXwMyVueo+ZpCCnEqd+Zir/PJXbXFq7tPqRI8mSFBcPeVM/25GIgKI8FxmLLwif9DPUPLCauxc0EVq7NkB+MBimvQuTrH+LyO/Pn8XRvcCXVJpD+vgyaHY2NwsONVAx19XHy1gnbzhtfe/fte2NxAhg2O8Hha12Q0lQQLdpd6zG9TtN2xE75gJta9nbbZ65aFUjBZCrYPQIgZkhj2s/T1JyUEAhLgxuf+ZaQCtq7E/9HEyCBjNq+sFcbhwtq0oYaNZu4neu2jwxl4OSEN6k25k0CFvzqls8bhKdZspdJxycms1TcxQ1PaEOhdb74jiOPjiZn7IOOd79WzdpcyP8UHskI8QNcx0mD7h9F7k+a63FCQ8Gtf8azcd0CKoxyn7dlDdbavZzd3oUpCLl/LB2BTc0bUHQ1r/goSYtTN+AeYKcQIkZPexltSG6yECIWyAZG6qEFqgFLdQvUUf1YO2MwwhEs1v9AU5hmCSEeAA4Brt5tpYD9lc+scmkNubAYjfHOh/uRkbiNiHwsSh16DaVDr6Ee9xVEpg/450C2f9kP4+U89NigU1/YvMQtT3iNRsV2PVs+Cxv3nPKHy+/qtfN3NC1tkhqaabLPyo67OpFy6iSd7n2eWyI7cHCRFh+oRoMKsM21smvcsjviiy/Z+vcvRIR4v1J6k/qRNKkfWXjGvDRvDps24tu8ZMrR19fVguFslev9rXs0YzfyNF5tO/QtFrmKghRgNpkxU7gS0PWG4Zz4cIprojBhspho0asWO/7Z53HoKeMb76LpO2Kbeak4Xaqy5C0tuuQzD8hf61xaC/ErBbjoZOW6Zn0sVmnD16njesebc/m15gsMH/Uee1pqk1QqhhXeXPfqczsk3l5ovitJ84aNaP65MWwa0bonEWtdLVk1q1XF8zLy+ZMi3WdDBVYI5XiQ9vwtemDRzl1vJjP2Oix5/A3Pnj1CbSDsX3eF3pqTQ+wvXztijV3MMFwQqrw0sYiSFi8l1nJKKdeQf39yhIf8B8jHe1dKuQXcYwtKKVPA47qopYbdpC2C3E3PXh2vW5WOhcFt/yv6Ehze0GrbTqa/OoS+Yz4qkfMXJ2azUVFXqhcFuCtOxYn0UOE3id2BxVJ+rEv2pR98A4N49BvDf27PM0M4k7CVhqTi1kusEEqrjgNo1XHAFZHx9pensLHPfIZeUzRLlbd4sjj8er0vT75dNEf8pLriig7POWNt5m7ZyI+giu5WwpqHn2bIYs2ifGLGbUTFu0evbt//frc0jxRhqK40ybUvceKFmDVqNQW2s75LMBEWdwVVCMFdoz92SQut5tmB+WqgsElMnpCV/DgfkMm5YKirD/v5+AbQ/uOfWfb5Y9z12lRHXn+Lv9vxF8KDINa1Ltq18R/iJ7yJ9PMjYqUxyeVUfIxj2x56Yu/NLWm0YCdXGrXkSjFjj8BqvsRwBibdwlIjnxUusnwrEN1mLFm+lz40ZbZYuPfDP6hd7xIsBaWIr24JySxBHSZvhXvm/94os0rT7rqe06uc1oZ2ZI7rNJ9BD73PyM+XYJNVPR12xelcQkpTfoSdrkqVCuFe578460c6TPO8vuKV4I5XvA/S6ecfzJpBDTk/2VgvzDLYmJginTogu+ppL/nW6wr3ZbOTo3expaXojesVRV+SRuZjOXZm4Ki32f3WvYz43vtJJbXqeq/Mlkf2fDqGzF+NDvv2ke095quxJYaNozrx0CcrqbVkKa1/W8bGTlochZDwetRv1JoHxq8hwL9gA0L3J7RrbeliONHvf+VJmm9IofZm15nB6SMedjs+sNOAywuNcYkoxamYsTtyW2MvUQtOzWdJeJ1djYaRWrExm/p6t/r51USHPsM59MEjhC6YVXjmSyXPEE23vneU3LUuk4wGhpUhxWl07WxF7R58QyvnPUTbX6tosbGuFrIDi2YtadeqCzXDaxWesYQwmYpWPT/0ySI6d72Fra01q3XF2kYst5oHjSEV31v6EZGYwN1fL3M7R374334LM3uYiLy1bNY7F/y1P6GvPWjz0k9o8O0v4evrfeDFkvA/KksMGvgkbdsagzjV67dxbM/vbwxQhQb7cd/zUwkKqkDt6nUJD6vJgE8XEfv+w0S07uH19WrX0Hp/FqehdXO2HmrFi9iWlWrk03ssYbwaqhOaR2BroCZwEYiTUp4o+Kj/NiG9rruk42Sa5p53upLrB/rt4yuw5tqgutYDyMlszPhHlmO2mHhkXO/LkrU8MWDIUyV6fucFfiutKni5j1LHqWF1tpSd7N+B8F8206SXZ4vOoDFvsnvcXJZ18aPzmPfJTC9YWS/vxL77GFk/jueWl74ubVG8IuHZO6hQtdYlDxHe+N0/LJr+NiMGjnKkVXZaZahOi8ID0+Zl8PC3GDzkFbB4Dk9R2lT6XZu4YRqnOyCbSnTy9H+GoMpGzKiXv9lJQvMIDlX1HNm/RrVaDL/V+1hhAP564FZp1azj1txcanucG28Q18iXqL3a0E5YeP0iXa+4KFBxEkI0QlvC5Fq00ACnAH+gqRAiA21tuan6sigKJ+q0L3rlBJAttBcoua7reLA113MR55d+NbG5lwlbaOgV8TVptsuYtRderTRCq3lP2F6j7+I89XnkS9OwvSDzddA1my1aPJ2SFrCMMHzY4zDMuwVkywK3Pnh5i5ZWCq3KiMfyD1AYcY3nad+FUkaVJoDGutvBheGjid3xPMHDvV5EwiviPxiNr4/ff+absRNS3dWi0yQujmbFaHUzWSxYBWDVg89mu/vh5aXWOWO4uFqNSwtGe7kUZnF6F22duNEyT3AJfRbcXWiz36Z6OPY/ScyTN3IsbhX/a+95Km1hBHToBkv2k9PRdWz5tlc6Mv/TrWRn5jrMxT5+ZoY8l99a2FcP934XV9oilEnqHDI+ydw3X4En32Pdo32JoORnNSnKL2XVZ684aNNpIG2WDiz28w4dUrQ1Da8WqtdshPPQksVc/N49uRYg18biZ+8ky6clR3uNIyr2B0fojMTaEB3ly91LtU5tajUI1X2A/QPdHc6vBIUpTl9JKTd42qGvJ/elp33/Ze589LPCMxXAzSNeYUe3IYxo4Oq4XbVOCCDzjLFLqtZ2jTejKB6OVfJ+odmyQP/rRkDiiHIls0KhKJtsfPZazsZu4NESDioMWvDiVFsmbRfGsLzHSDBpSwRV11dnGPJPAkOAhPh1HHviftpNmE1K7+JXjotCYYrT/wFXv0mjjNGqgefZbj7+FkLCfOhwU322LDpAZnqOx3yKy+dkM8+xsxSK8siiDoKbtkhSVD9L4QX3PagN9dqsxbPMSkHkmsEa8iXLezsZBcy+2pJBSEdnMCKyKxHLtECZczpbaLQvt9Q6imU/AqLCwf0fdXdsOy/0qCh+fM6mF56plDlWGWqcgSz1FSsKofqQEbDF+/AGCgVoC3qX/EUg+NwU0ive67ZEUP/RnpcZum/iRnJspWc4KKzKbSiEWJDfTill4SvYKhTliM1dQui4IQ1bQNl1hLVz7NF7yJj4E76vv17aoijKOPXCtMCNQk02UxSRNH/Y0t6nxKw7VjMEZ8SQXmGE6xJBFgtN8zEQBPp4v3hySVCY4nQKuDynHYWiHJEdUBFIw2Yt+7MV7x7xMox4ubTFKLMsvKUKUL581UqK5i368Fvke2S0b0a30hZGUa4Inj+HO6uUXDwzqxksuRKECWHLodbR1Ryp0wNk2e28FqY4pUkpVxaSR6G4akjN0hQmazlQnBQF89yHq0tbhDJDtSo1GTJ1G5UCr94ZdYqSIbJBVIme32oGs1XSd9WTjrSm++aVSkRwbylMcTpwJYRQKMoKNn0RUyHVmIbi6qJqiPcRshWKK4XNpFucnMgKKNv1b4GKk5TyVvu2EKIrUN/5GCnltBKTTKEoDUxKcVIoFIorhdUsCEp3rW/9LpbtOHTeLrnyE9AIiAHs8xMloBQnxVWFMGmfhFKcFAqFouSxmqHqudKWomh4O5G5AxCZN3q4QnG1EXpaWwy1yYHcUpZEoVAorn5sZoFmh4HjoRB+DhYPa1CmJ3V4qzjFAuHAsRKURaEodcJTtCW5AwpfMkmhUCgUl4nNKVTU+kgzYfeOYWzPMaUnkBd4qzhVAeKFEJsAR5Oi4jgprjYuVA6G46mlLYZCoVD8J9AsThqnQyQv936sFKXxDm8VpzdLUgiFoqzg270ZxB9lfx1TmTYVKxQKxdWAs+LUplrbUpTEewpUnIQQQmrkG8vJnqf4RVMorjwWX23KtoqwrFAoFCWPs+LU9+6XSlES7zEVsv9fIcQTQoi6zolCCF8hRF8hxFRgZMmJp1BcWUwmLUCgmlWnUCgUJY/NZKghfv4BpSiJ9xSmOF2PFn7gVyFEshAiXgixD0gC7gS+kFJO8XSgEKKOEOJfIUSCECJOCPGU074nhBC79PSP9TQfIcRUIcRO/ZiXnPJfr+ffI4R40Sm9gRBioxAiSQgxUwhRdmO0K8oFNboNIKE2xPZvWtqiKBQKxdWPMCxOFh//UhTEewoLgJkJ/B/wf0IIHzQn8YtSSm+iLuQCz0gptwohQoBoIcTfQHVgMNBKSpklhKim5x8O+EkpWwohAtGc0X8FDgPjgf7AEWCzEGKBlDIe+AhNeZshhPgWeACYULQiUCgM2rfui//kP7i5ZoPSFkWhUCiueqTJUJz8fK8Oi5MDKWWOlPKYl0oTet6t+nYakADUAsYAH0ops/R9J+2HAEFCCAsQAGQD54FOwB4p5T4pZTYwAxgshBBAX2COfvxU4BZv70ehyI+ouo2xWMyFZ1QoFArF5eFkcfLxu8oUp8tBCFEfaAtsBJoCPfQhtpVCiI56tjlAOlqsqEPAp1LKM2jK1mGn0x3R08KAc1LK3DzpCoVCoVAoygHSycfJYikf3jbehiO4ZIQQwcBcYKyU8rxuUaoEdAE6ArOEEA3RLEtWoKa+f7UQ4h/A06I1soB0TzI8DDwMULduXU9ZFAqFQqFQXGGch+qE6YrYci6bAqUUQtQpYF+Pwk6u+0XNBaZLKefpyUeAeXqYg02ADc136i5giT4keBJYi7bUyxHAWY7aQDJwGgjVFTHndDeklN9LKTtIKTtUrVq1MLEVCoVCoVBcCUTZXtDXE4WpdyuFEM87KScIIaoLIX4GPi/oQN0HaRKQIKV0zvsbmm8SQoimgC+aEnQI6Cs0gtAsUonAZqCJPoPOF7gDWKDHjvoXGKafdyTwuzc3rVAoFAqFovSR5cTK5ExhErcHGgHb9LhNTwGbgPVA50KO7Qbcg6YMxeh/NwKTgYZCiFg0R++RuhI0HghGWxdvM/CjlHKH7sP0OLAUzcF8lpQyTr/GC8D/hBB70HyeJhXl5hUKhUKhUJQi5VBxKiwcwVlgtK4w/YM2FNZFSnmksBNLKdfg2Q8JYISH/BfQQhJ4OtefwJ8e0veh+UYpFAqFQqEoZ1x1FichRKgQ4jvgfrRgmHOAxUKIvldCOIVCoVAoFFcxpvLn41TYrLqtaAEwH9OHzP4SQrRBC4h5UEp5Z4lLqFAoFAqF4upElD+LU2GKU8+8w3JSyhigqxDioZITS6FQKBQKxVWPufxZnApU9QryZZJS/lD84igUCoVCofivIMuhxan8SaxQKBQKheKqoLwEvXSm/EmsUCgUCoXi6kApTgqFQqFQKBReUg5n1SnFSaFQKBQKRelgNouCjx0AACAASURBVJe2BEVGKU4KhUKhUChKBeXjpFAoFAqFQuEtSnFSKBQKhUKh8BKlOCkUCoVCoVB4hzApHyeFQqFQKBQKr1A+TgqFQqFQKBTeIlQ4AoVCoVAoFAqvMCmLk0KhUCgUCoV3CGVxUigUCoVCofAS5RyuUCgUCoVC4R1CLbmiUCgUCoVC4R2mcqiGlD+JFQqFQqFQXBUo53AnhBB1hBD/CiEShBBxQoinnPY9IYTYpad/rKfdLYSIcfqzCSHa6PvaCyF2CiH2CCG+Fro3mRCishDibyFEkv6/Ukndj0KhUCgUCkVJqnq5wDNSygigC/CYECJSCNEHGAy0klJGAZ8CSCmnSynbSCnbAPcAB6SUMfq5JgAPA030v+v19BeBZVLKJsAy/bdCoVAoFIpygJpV54SU8piUcqu+nQYkALWAMcCHUsosfd9JD4ffCfwKIISoAVSQUq6XUkpgGnCLnm8wMFXfnuqUrlAoFAqFooxjEmqoziNCiPpAW2Aj0BToIYTYKIRYKYTo6OGQ29EVJzRl64jTviN6GkB1KeUx0BQ1oFrxS69QKBQKhaIkKH9qE1hK+gJCiGBgLjBWSnleCGEBKqEN33UEZgkhGurWJIQQnYEMKWWs/RQeTiuLKMPDaEN91K1b99JuRKFQKBQKRbFS/gbqSljZE0L4oClN06WU8/TkI8A8qbEJsAFVnA67A8PaZM9f2+l3bSBZ3z6hD+XZh/Q8DfshpfxeStlBStmhatWql3tbCoVCoVAoigGTrbQlKDolOatOAJOABCnl5067fgP66nmaAr7Aaf23CRgOzLBn1ofg0oQQXfRz3gv8ru9eAIzUt0c6pSsUCoVCoSjj+GccL20RikxJDtV1Q5sdt1MIYZ8d9zIwGZgshIgFsoGR9mE6oCdwREq5L8+5xgBTgABgsf4H8CHaUN8DwCE0pUuhUCgUCkU5wCcntbRFKDIlpjhJKdeQ//DliHyOWYHm+5Q3fQvQwkN6CtDv0qVUKBQKhUJRWpyoew2VWcDxUIgobWG8pDw6tCsUCoVCobgKCIxoxfrmghmDfEpbFK9RipNCoVAoFIpSoWuHYSzv3oSB104obVG8psTDESgUCoVCoVB4okKgHz8/W77mdSmLk0KhUCgUCoWXKMVJoVAoFAqFwkuU4qRQKBQKhULhJcIIofTfQAiRBuwqbTmuMqqgBzFVXBaqHIsXVZ7FgyrH4keVafHSTEoZcqUu9l90Dt8lpexQ2kJcTQghtqgyvXxUORYvqjyLB1WOxY8q0+JFCLHlSl5PDdUpFAqFQqFQeIlSnBQKhUKhUCi85L+oOH1f2gJchagyLR5UORYvqjyLB1WOxY8q0+Llipbnf845XKFQKBQKheJS+S9anBQKhUKhUCguiTKvOAkh6ggh/hVCJAgh4oQQT+nplYUQfwshkvT/lfT05kKI9UKILCHEs3nO9bR+jlghxK9CCP98rjlSP2+SEGKkU/oSIcR2/RzfCiHMJXnvJUVZKlOn/QuEELElcb8lRVkqRyHECiHELiFEjP5XrSTvvSQoY+XpK4T4XgixWwiRKIQYWpL3XpyUlXIUQoQ4vY8xQojTQogvS/r+S4KyUqZ6+p1CiJ1CiB1Ca5OqlOS9lwRlrDxv18syTgjxsVc3IKUs039ADaCdvh0C7AYigY+BF/X0F4GP9O1qQEfgPeBZp/PUAvYDAfrvWcB9Hq5XGdin/6+kb1fS91XQ/wtgLnBHaZdPeS9Tff+twC9AbGmXTXktR2AF0KG0y+QqKs+3gHf1bRNQpbTLpzyWY5580UDP0i6f8lymaCGETtrfR/36b5Z2+ZTj8gwDDgFV9XxTgX6FyV/mLU5SymNSyq36dhqQgFZYg9FuEv3/LXqek1LKzUCOh9NZgAAhhAUIBJI95BkA/C2lPCOlPAv8DVyvn/u803l8gXLpIFaWylQIEQz8D3i3mG7vilGWyvFqoIyV5yjgA/06NilluQlWWMbKEQAhRBO0xm/1Zd5eqVCGylTof0FCCAFUyOf4Mk0ZKs+GwG4p5Sk93z9AodblMq84OSOEqA+0BTYC1aWUx0B7CGgfZb5IKY8Cn6Jpl8eAVCnlXx6y1gIOO/0+oqfZZViKpvGnAXMu8VbKDGWgTN8BPgMyLvkmygBloBwBftSHRF7TK9VyS2mWpxAiVP/9jhBiqxBithCi+mXcTqlRRt5LgDuBmVLv1pdnSrNMpZQ5wBhgJ5qCEAlMuozbKXVK+R3dAzQXQtTXFa9bgDqFyVxuFCfdMjEXGOtk+SnK8ZXQtNkGQE00jX2Ep6we0hwfu5RyAJqZ0Q/oW1Q5yhKlXaZCiDZAYynl/KJeuyxR2uWo/79bStkS6KH/3VNUOcoKZaA8LUBtYK2Ush2wHq1yLleUgXJ05g7g16LKUNYo7TIVQvj8P3tfHmZFca7/Vp9tdhgY9h1F2QQXFEFR1Bu3uGTRmPUaE40mNzfGrCYa/OmNmsQsJtHk3miMV01yNUbjHlyQRWRngAGGZWAGmIXZtzNn7e76/VHdXV/PqT7nzDAwQM77PPNw6NOnu7qquuqt73u/ryCI01nW77cB+EFfy3G8YLDr07I+fRXA8xDW0BoAeqb7nhDEyeosfwfwZ875S9bhRsbYGOv7MRBWoHT4NwDVnPNmi7W/BGAhY2w+ES9eB8FEKeMcj16mP855DMCrEA12QuI4qdMFAM5hjNUA+ADAaYyx5QPzhMcGx0k92isv2+z9FwDnDcwTHlscJ/XZCmEBtQn93wCcPQCPd8xwnNSjXZa5APyc800D8nCDhOOkTs8EAM75Pst69wKAhQP0iMcUx0l9gnP+Gud8Pud8AcQ+tnszlf24J06Wy+GPACo5578kX70KwFbG3wzglQyXOgjgfMZYgXXNy6xrruOcn2n9vQpgKYDLGWOlFpu9HMBSxlgRaVA/gKsB7Bqo5zyWOF7qlHP+e875WM75ZAAXQviaFw/Ucx5tHC/1yBjzMyuyxhqMrgFwQkUoAsdPfVoT0msAFlvXuwzAzgF4xGOC46UeyXU+gxPc2nQc1WkdgJmMsRHW9T4CoQ86oXAc1SeYFYFsHf8agCczPgA/DhT26f4gJlQOYZLcYv1dDaGGfw+CHb4HYJh1/mgIdtkFoMP6bEfD3Q9BdrYDeBZAyOOeX4LwfVYBuMU6NgrABqscOwD8FmIVNeh1dKLWaa/vJ+PEi6o7LuoRQCFExJLdN38NwDfY9XOi1qd1fBKAlVZZ3gMwcbDr50SsR+u7/QCmD3a9nCx1CuAOCLK0DYLgDx/s+jnB6/OvEAujncgyUj6XOTyHHHLIIYcccsghSxz3rroccsghhxxyyCGH4wU54pRDDjnkkEMOOeSQJXLEKYcccsghhxxyyCFL+Ae7AMcaZWVlfPLkyYNdjBxyyCGHHHLIYQCwadOmFs75iMxnDgz+5YjT5MmTsXHjxsEuRg455JBDDjnkMABgjB04lvfLuepyyCGHHHLIIYccskSOOOWQQw4nFYz2NjQ/fC+4YQx2UXLIIYeTEP9yrroccsjh5MbaOz6OYVub0DiyGLO//P3BLk4OOeRwkiFnccohhxxOKjRG2gAAe+pOyB2Rcsghh+McOeKUQw45nFTgmrUbgh4f3ILkkEMOJyVyxCmHHHI4qdDiNwEAuzq3DnJJcsghh5MROeKUQw45nFQwrFEtyXPi8BxyyGHgkSNOOeSQw0kF0xrVtNz+5TnkkMNRQI445ZBDDicVbIuTyX2DW5B/UdQ/9yxq//TUYBcjhxyOGnLEKYcccjipYDLxLzMHtxz/quj88UPo/ukjg12MHDxQ9ZXb0fzyPwa7GCc0csQphxxyOCnB2WCXIIccjj8kV65Eyw9+MNjFOKGRI0455JDDCQu9vR16c7PrmM2XEjnilEMOORwF5IhTDjnkcMJi74KF2LvoIuV38eOEOKnIXQ7/Oqh/6W/YOXMmzGh0QK+76767UfGJa/v0G9PMRUwMBHLEKYcccsjhKCIducvh5EfnD5eAmRxb1r0/oNflz78C/86qPv3GyO3fOCDIEacccsghhxxyOMqIxVoGuwgwdTVxMjo6ENu95xiX5sRFjjjlkEMOJxSMzk6EV6xwHeOGgYqz5mDfE78ZkHtU/uBuHHzxbwNyreMVZjSKZEPDYBfjpEd7kfg3L69ocAsCQE8mlce3XHcVqq+/PuW4GYmA85x7rzdyxCmHY4LN11yGbfPOGuxi5HASYN2nr8ah2+9Ax4H9zrGOtgb4o0lEfvV7eeKRaJxefgU99y45ggsc/9jwyY+j6pJLB7sYJz2YzTuOAwKiJ2LK4wVNHSnHYs0t2H32Odjxk58MaBnMSAR1//MEuHni5gvJEaeTFEa4B+XXXoVwVd984EcL+VX1CIRj4IkENn/scrSsXz3YRcrhBILe1obyC89Fx7Zy8JY2AMDB2p3O94ahAzjxs4UnDhxAsr6+3783OjoQq6zM6tyS/Qf6fZ/BhBmLoeKss3HgldcGuyh9QxbEiZsmzERiQG4X2bcf9X/8k7iuroMbBpKxSNrfGLq0SG1Z8yYAoPX15wakPDY+uOt2dP3ql9j8h98itr8abW/9s8/XiB44iNih2gEtV1+QI04nKZb+8ivI21uD5Xd9bLCL4kL5m88hf9chVH7n9sEuSg79BB+ggT0bmIkEuK7jzd/eg7yWMFb98EuyHKbUayTjcevgMStaWvBEol+RdPuuuBJVl17W7/vuXHQBqj/+iX7/vr9oXb8G5VdeCjOmtmgMJHZvWAl/NIq6h3941O81ELANn6ape54T270HnHNsv/Ri7J4zd0Duu/vG69H5yM+QiPRg1+wzsOWyi6An42l/k9Tlu60bIgrQwMBahppaKgAA+6qXo/rqq9F41119vkbNFVeg+iMfGdBy9QU54nQMYcbjiO+vPib3qgiL1XiTb2A7ffvWcpRfeC70trZ+/b4l3AQAiCMX3XEk4IaBmiefBvfQLBwtdO7cgV1z5qLquT/1+xrJQweRbKjL6tzdc+Zi8xULkPCLCZkb8nmZJn1xhu49KaVD88ZNqJw+Az01B/v1ey9svOXT2LvoIphpyhWt2D7g7gp/UlyvvY/aJW4Y4IYBvTuMyukzUPnfj8OMRtH8/AtZaVx2fvdW5NU0YPNrT/en2O6ycI5oxXbP7zvD4tmSrH9tPhCoeuYZVE6fgWR7qovLC5yr23rviy+g+vrrsf0Pv4f/8MAJyLW4qJ+eHlHGvMNtMJLpFz1xQny5zw/gyDzeaXEcuC77ixxxOoZY/aVPYv/VV6P7cAPKH/oR1v3HLUftXgFmdfoB7pvL7rsFeS1hvPW77/fr97pFmI6TFDsnHDZ89Quofu1FrHrobkR//lMs/8FXj+n9333hpwCAHc//qt/XqPrIFai65N+yPr+gLgz4xFDFoO47jouBAT6P3rXhB3djw/e/5zr24S/Eave9xzJbLxKHalG58ALwLEK6CzYLd1nCwzWy5c/PoubGG/HhL36a8Vr9QTjamvW53DSxa9ZsbL78Mmxe+xYAoPHpx7DqPz6Llvvuw7Y//8F1fvnX78CeZ9x70UU1QQrauhuPsOTApl99HzU33oht//0z5fcaU7dv66YtaNmw6Yjvnw0OPSnKtu7tv2b9G27oiO3Zg9jOna7jm98X9Vu58mnnmOER/dYXcGt2j/aEnWNJPb3FSSff25n3j2QO4Zx7Lg5OXNo0iMSJMeZjjJUzxl63/s8YYw8yxvYwxioZY9+wji9mjHUyxrZYf0vINa5kjO1mjFUxxu4erGfJGlX7AAAHq7Yi75kXUfLe2qN2q4B2dIhTqyZWLE2R/g2QBheroH8l4rT5e3egbvlb/f59xe23YOu1VwAAit7fiNh3f4TaBjFBNB+uGJAy2ujYtRObvnGr52DXxcSKtPtYr/YZGaqsPs1IMr8k0Wb4PfZaKXr5FRT10sX0aD0AgFi0KWMRtt10PdDWhg2PP5jxXHu/vGikS/n9zrVPAwAa1j8votuaMt8/Gzj79OnZu1N1i9wV1DXCDImNkUd0AJ3NuwEAVXvc+Yfy3l0B4yH3XnSmRWYGYrx5u+J1AMDKjc8ov7dvwTjQtb8aG7/6VfBkEk2f+wyav/D5Iy9AFkhaRDESbQNPJLJKbmkYOqqvux7Vn/ik67jpdFdZebH4kbs87atR3ZKpp7dQ60l5X6ZZi5U0baq3tMCMe5OxXTNmYtfMWRlKeOJhMC1OdwKgKsYvApgAYDrnfAaA/yPfreKcn2n9PQAI4gXgcQBXAZgJ4DOMsZnHouCcc+x88B701PbRvG8P+APNZhQIaAEAAy+WHc7FdYsR8jwnceCAp3lfJmA7ualTrLoG0b1VAOfIf3UFuu74Vr+v5V+xFsG9B111OhCrQRUqbrsJBW+vRuV76k1A830FAIDhyWMbEWMPVPR56YRgEKKQTc/qqdgOIxqFbulOwp1qgkNRP1Tco7prb8ZzTavAkXC3LGMkgsrpM1Dx20dQZHQCAEJmBJs+fjmqLro4i1JnAat+TKL/4qaJdTdegwNvq8k71b34LfeMBsBnLXLyI7VoWrUS+598wvW7RGMjKqfPwOE3/yGnwAHoj3Yb2/dPh413fAqF7y/H+v/7Q8ZzBxRWIZkexeYrL8Lus84G5xwbPv0J1Pzj78qfmF6WStuCRuou4RH91h8YpH3pO8MNA51Ll7rGFYO4/u1ipXuf9l64COs/1l+tkbxyNu7gzd/9ISqnz0g5Ht+3r5/37z8GhTgxxsYD+CiAJ8nhrwJ4gFuOYM55piXYeQCqOOf7OecJCKKVmogiS+idndhy7lzULX8n47m73n0J7NmXsOGL1/XpHqzXv0cThf7So3JdudrjaFz/AbY94HbZ7XvrFey74kps+vn9yt87AsmTmzeh+qqrUHPttUjEwplPzhLURVRaKyb6oo6B1ThFrckq2qPWbvh0a2XNBoY4ZeP2EveTHcb+ZBiSLNGVdCYy2VZ7EAdvvBErP/8x6BBEIYYAKv/6HNbc9sWMReBZbFthE1sjIV11leXCchN+5inoLAgASPjyUVQz8IkRqbaqvmoHSir2IfINNXlPECuDZulwevJkPXOmofW22xH/+S9dv1v6xAMAgH0P3is3VO4jcap5/S3UrxIRtkZHB7hpOvcN9NIEbf/Rj3DwlVdgWpMsZ0APE/Xb0nJso4e50xdMFNQLEqzHYyjaUono3fe6zrX7o2dfV9RZIhHF+ltvRvmDD7hP5Tyjdat3VB51z9F3ZsW9d6L+zm9i6//83Dmm09/aZCZDmw6pbkayrR2V02eg7p13Pc/r+mA1jJ6e1OsDMHjmcSD/tZetn8nfVb23Avs/ek3G3w40Bsvi9CiA7wEuuf4pAG5ijG1kjL3FGJtGvlvAGNtqHbftfuMAHCLn1FrH+oVl//sQQt0JbH/42xnPbWgWDDeZSO8v9kQWneRIkecfAgAoPIIt4o2ODpi0o4PwHcbQcvNtCPzlVdf3m5Y/DQCoWau2WNirrmHtmUdYvasbq2/+BJJZWAMOvPMmKqfPQP3qlRnPPZYIdw6MCwYAksR8P2W3aJfRBwd2/yu7u3QbasInDL3yvIzXS7OSbN1TiV2zZmPdo5nzxDCFroUTsqS7XFPiXK87H6zZAgAIHTjodGgGAPc/iKGr1qXZz8uZLTOW10aCrPZ9QVF3mgEkfCIZomFZhtOBc45kY3b9yB7QTSKij+zeqT7ZgkEmS3typ+STw6f8XSsXz9ZaLE/2kB+hfVclts2ZjY6Kba7j0e98C5233YrO6j3Yc/4CrPnOF52G8/VqQd/fXkTP9+9Waoq9hNfNmzeicvoM1LzuHo86tlegadUqdWGzgEPvLC0pkNlKRKNAMyGZSKD4g/XIe9atodr6y59g91lnI1xTo/zd4XXrsHvOXOx/TbqkdSIIpxanxpoPAAA1214n35PFiO2uz+JdX/mCyJ+245HvKr9va6hH3a234sObPiat5eTC2RAnWUb5DJuXH2NLo4VjTpwYY9cAaOKc91bxhQDEOOfzADwBwFYfbgYwiXM+F8BvAdhvgKo5lSMeY+wrFiHb2OwRIhxNiMk5wTI3YNIUA0af6Y9VuoEQ/mV7L/8RNPGe8xdg66IFSHZ1o3L6DKz5wQ/l6okxxw1IO3LCHtU8Jh/bhx7KQoLxzl03Ydi6Smy8PnOSvmXPCtHvO0/dmfnCGdBRcwgrbvwU9B7vnCdmJJJVWH64PbNId9VtN2HVVz6T8bxEPJUkHQEvxrannkL1cncGbku6gfxgofI3vA+mwvo1H2DXjJk48I46T8tLf/4FAKD5zWehd3Xj4F//4n0xhUXDpd0gLoZohnc4FMoHAPhM9+DtXMuD7HFKsjJB8W7QSda5BbmY6aEr2/T4r1B18cWofn9ZNncGAOjUuhHydqsDQJJM+FxPLYOpqceQwjxB+nykurzqZtlP70AgYWDZ4+qJdfNaMdFHNm6QFkVfIZo3lePgG71cjIp64h4h8xt/JSziHffe4zrecMOn0HrbVwAAmxbOw8YHvINd1txwFTb8yCNk3uXmSj8e2LnGbKy+6QpUPPvfyugyw2NRfvgNkVNpw7tPu463r92AeEsrPvjL/wMAbH5uiTNWU2usQQh10tLBwrJ+Am63LfpA9Hqih8U1kUDnvmrs//vrru8P1pQDAPLqap1ysSz6vgpUz8hw7FKjUAyGxekCANcxxmog3GuXMsaeg7AY2c7hlwHMAQDOeRfnPGx9fhNAgDFWZp0/gVx3PABl5jjO+R845/M45/NGjBihLBQ3RMNxryUTgWYJVc1+Tlq08x4tDFSa/LxIEuvfFibSoS+/DMZTez1d0SR18b3Xqr0vvvuy8hpx38M96U8EcCgg2q+JZ2cFtNNCrPr657DlrNmibAcPInn4MD6867MYWVGBd37qHW+w++xzsObqzL79SBbWsrJV21C2ckvG85IDIBilCPzsEcTuuMN9zBq/NM2v+AVgDxnZELYPnxT1t+GZH8EIh5E44E64aFp95ZSDJpZ9+aPouf+/sPXVv2DdXZ/DhkvOdF/MFh8DDinhxB1lkBw5QzixArS1o2u72+LCLAuKIE42iNC8l0vFFspTNzXF9tmzsPEht3tGPiOdtMjEaVtI6HtkqDU9+5eJ1A8fvPBfruNbzpmDtd/4ovI3XE9g9Weuw+pbbgKGDwUAxD2MW1QQTK0iTv4hD4sTt1ZOVEdpelh+7MVmgsdQ8cRvse7aXlGVlHzZQ4wWRMvnPoueb/dyMSomdO5hX+wuFaTg8Gh1f+aco6CtB4W9LOcUQ7fXoOhvmZM06gn3wqZ3Hi9at6aRxLCtB+F/8Ncg4lf5W0NNCDTDXhG72+TwF/8d5dddBt2qPIO0A7XGUouSYV1CIxOZSS1OfUjxQS3C1R//KOL3uAlyfkhoI6mHn7aYnkG0TkE9PdwXTHPm0cMxJ06c8x9wzsdzzicD+DSAZZzzz0NYkmzTwsUA9gAAY2w0s1qFMXaeVeZWABsATGOMTWGMBa1reff+DHBe+CwmBI15TSrZwehDJ+k3FCtaAEg2NcEI9013U0z6pmNxIjl0qF+8IM+alDxWqV5WmhW3fxLLb3BbltqGZC5b06o1iB5uxFSIkyfwYRl/88Gj92H/1Vej/Jnfo+zdzQhFxYC27/IrULX4EpQdEJqTsS+n17uV1jZhzz+eR+X0Geg6qA4U6KzNLotzNkgqLE75A7zgsi1OvVeAa+79Nipf+j+ETTHJJrXML4o97BrMwLqrF2HfFVe67xUnq/VOEaVZX7kUJW9tRlFDbwJsETZQjROxOBHS0WlF/M30jUX5VZei7gZ3FJMzkXBA9cInSS6bwxXbsGvmLFQ8+7RSkG/oOny6icJn1IJgOiHYCwzx+9TJMuFBjHU7n04vt16oJ4khb69T/sbkJoaV78WwNducyTDmMcdQQbCpmrA93mU7qtEkz+BlrZNuTg7/L36Hkr2Z83gxpr4v1enIy6rvawZF3YWL1NeK9XcsVnR/aiXa/uensXfRRdj10vOyLKS/RiOd8oeKsVr3sDj5LO6lBfPkz61nH9IWB9MsdzB8Tn+lmiea78x+wzWyCjKSSWyePw+rb/+SI6vwalFXnZM+Ekrw1O/t7k4JMnneZB+S6iZduesGRyx7POVx+gmATzLGKgA8DOBW6/gNALYzxrYC+A2AT3MBHcDXASyFiM57gXO+o683TTY1QW9vl42cxlDz4b+diZWfv8R5oUO9FldrPn8W1i4+zXXMiMWw/u6vwYjF5ArOY2Xped+HvovVD/QtKst+nt6PU3XRxdi6aH6frmWa0t1krxgocaIDmX0/DYARjeLAc390vUB6Ui06HrliJ0ZtF4ntEvv3Q29pySpirPW2L6Fm8WIntwuHLnKH9FotxSx348p770LFemFB27ReuoZMQzZm0HqcYBZj6p4nHwIAvPO/9ym/r2tSE6fGDetx4LW+8fxkmrDfdGgsF0keW3ZkTl3gc4iTu/6Gvvgm8MP7ETWsRJRprlH71j8Ra2kBbD2UFkBpUyopSPrkAsSwBvwE85jdnT4k72xmCLPmnKOkM/W+tkvFKydUtEVaCpY/J6xmjX99yOWqe+PWa/D29Rd4LoJU5M41GZqp72cyqSZOLCDGmzwPAgMAbW++6urzLv1XIkMIOimXKvLLS+MEhQbGU8eTGjjmivaCYrzyMfV9zaR4TpfVs1eH3PTIw6jfsMHxCnhFF3dG1Nbs9Q98HxsWn6/+kQfo5L/l7d+K67wphdecjDHhsLRES30WTejqftcj5eXghgG/ZaX1B6T71SU6J2OtPX5Si5OLvFlLm3bIfmcYCeR39mDYijXgaTKd97oV2Y9PHksSfawd5elqB8Kc+qIXdmc/HxzidGSmkyME53w5gOXW5w6ISLve5zwG4DGP378J4M0jKYMTBnzzBc6xmpVvo+7+ezD/lfehA6cWHwAAIABJREFUd7YjXFuLsvkLUFobB2oPo+Fq2fr7//l/OPyTh3HeaysxdGMM6DXILL3n85jyxg78M/xZDFX4nLNB6TOWv3jJL9Of6IJ0BXDOwSMRaIVCt5If7VtEVOcbb2Ck9ZmKw23oyTi2PvkEKmtPhWnmO8ffue2jmLSxAZsDMRRYx3qCYsDoLIAn9l0tugEb6X1Ob9gtkuBJLLv54xi7fjdm7JKkpXrPBgBA3pv/RPHpBQCSyGNyBd/dKTOh9+VVtM3dsYTaijfMPwXA+ynH275ws/hwbfaRmSqLUzZY89Ov43QAy3/zLdzwP+mtaLbFycudXKaVAACCHtQp3NGG7rvuQvWoIPip4lz45DtB80PphAgIHY3hIrDU6uUi0U6UElk9k892++WR4S3eJdMC6EkdQes6shvLG0S75EJBs3a0j9NJnDFM/cAKEMmga6HuDj0uJxLHyEDfI+LG7q47hNrLLkfkhivSXh8ANv7+HhT++iVsvejXGG3f15QONj0ZQzqHBiUwdmZ2lzicWH5cLhVuyxuIW69Xv3HCx89PjfJNRGSbMPJBamDUxIn2TS+XccEfn0HnH58Brp2mPsFCe7dag1icxnXnKgvpo9QV62chABEwMsZQUtm5V0YBOnVNnsXQk07v3bX0NfA7v4fmc2Y4Fic/sTjpit0DaL14aZy6rJx81WjHPHItv3NueuKkk77NFHm8wh1yAWLqSWjwJrBxD4tTzeYdaPv3T2PCy7I9qNVssIKzjyeL06AippvoLhyH2gk/wY6Hf4phdWG897/3Y88Vl6P55i+5zqWD4b6fPYDSwwmseEFNarqiwgURbpdbIBjHYpsMojFa9aOvYPc581BX3r+Em826JAVKjVMigV1vdKC1wUQ4fKFzPNkiIoFqD0j9jm5NjPEAULd5DZZ/7UZPM3vDaHGPlhJ1uagFxmdNEyEWwtj1InFfgrhcfJZAVjOAoHUuTZSo+eSroGXila7yimsEwmpSo/f0zS3KDQOcc6x/ZAkqp89wT7wKi0Q0KCwrdh2aiUSKO/T0LcLKxw4dznh/e2CjBIbCZ5vve41YRnc3jM5OhK2JqLg1QRJUkpUlyaSdIBOyE95NqlaPk+dQiEdNhauOAxhriLYOcHn9fdtkBJWpSA5J3QYxQqKhiWvpzK80sxkeViL7VDr56DFBnBgA5pAO9wLExspfi2CHgheXOgJ208MEu++A2J6ko0mmNXBpWTIs1FyRVAqLk0nayaVR5G7tF+C9KJT8VJ4diaS+Gxxy8tW8LE56KrmjE5n7GdKbrTu6so96TXaHsfxT1yJcf9i5qku3RKwmdlAODT6g5L6HEHnHO9BrTLVRWS5IAz+4E8Otn/lbpMXKFTTiOE7ofWn0aTLlXB+pPbqFU6YowKTiPeIM0K3LhUndGkpdGrmWh1V05a+/jnxdx7u/ltHuhk40eVloko8GcsTJgm5ybJ/5JXCWj9rRXwYAxPUYAgrS7QrvtNot5kGGArD9vQbZ7JG8bFnkhMmEA6uXY+8bMseF+JMT3IgXRdjp5pXPe14jHZJD5ADmrAatiWz5okfxtwcPomXUOQBjSOqnY9nix1E/8qdExiE7dzQ41Pm8/z9vxahl27Fj+cvK+/YUi3M7x7sboeK5p7Dx0Z8gRrMyO/eQ9UknQNu8zwBwO3kd6f4JmkAxU5OQ9jtlrxgsZ76zX31qT/ZWos6afdg1azaW//g/4X/ubwCAhkMy2aJq13S/Abz3qeuwa4bI/bp7zlzs8tgk1MgijN7ROHkFMJhq3cOec8/DnvnnI2G5PkI6OYu4dcMxaXVJKspDh8F4XJIsexB3r6RlO9gEhf6etmOyR/YF6gaxJzb6PIlwJ/neuhe5MO3PvS1zRleX+3c04pRuv2I6L4csIyGK4Vi78jm2PPt7fPiwOwLMqQVKREkfzbSxq5FM1cAwTsgsuW4yIp/BIcYerjq3uzx1gotS4sRSP3ppSR2SzNS0iFqyPMWeFjq7ss+h9er/ux2jtlXhn3feIK9OnteVXJIsMB1dKCH/WqmMWlVGmdF+ZVk9wwWyHer2bJb3TSrGLqqXSpIgCsV77aMWRSq7IAS0fe9+bFh4PsK1Mv7K8OhX9rvS3CaDQTLlWdM9toLxc9HffLqUeBjkeTzzXxxlHBFxYoyNZIx9nDH2H4yxLzHGzmNeir7jGMsufgzhhi8gWjgaYAx6aDSWLX4chyo/pjyfk47qCPA88lDkx8UKvDApB0LTFQ1kYOU1F2LV/d/sd/kjX/4q9G+LvbZ2zZiJFZ++3OVPd8raz0i7caXC/dYwnHR6WxjqGX1FjpMuYa9uOQPKWkUZa1dI95FblEwiqeiVf/wICv/7fxHtSR+xFiOTtO0GYRyS0JFzDSLMzfQq0o1mD54iSGXjTHU9GH0gTqtXiZwt4WXvIWlx1Z4u2W90hVvIZwLjKtTJ/8xEwtXmUw5nbn8pDicToEEnQ/G5Nqh+3liUTFqKlXQ0THQPdGKVvit5rQjVSIiCMS7bh5tqjZNzKfLsXZtk9hM7dYGXxikepsJdTs7lThlsUDfJ9rvvxJ7z5qNigdQQuiZWSpzsuqFaQbrdBSFO9LlCD/4Gpf/rdiMZCq0Rtbq4JnTTdMid/F7t8pT3le9vvEfRvsSu4rJuhBXvJyljS5MiCJoBww1xP00jaRTIuKBMJEnauqOVBGrYWjKPl7o77NZc9l6cULKTNESb6Ey2o6EQ/7t+T/qzK9cUif6VqRSo9ZGG3Mt6du4blIvZBL0vT31eulBwERjrX7q3o8v9bfddBix78HYUtXVi6U//0/k+6RH5Z18uT5N6DGXWdA9y5zrFJp2u56HBAScQcWKMXcIYWwrgDYgtT8ZAbHtyL4AKxtj9jDEPB8txCM/U/uoVuqHYCNErK6xmX5v47l2DSzKJEVWtKPvr0j4VGUDKAGhj1NZawJCd3kEvc+nGh36A+s1u9120qxt73nrPdSzYJvQcjHEiAhTXOnfjw/AF4BLv+vQoRrT+3HnhXcRJseJp3iO1SEaCrtqsfz3ejURUrlh5yge3W4iuulXXcwlzM/CLJLGEdBcJrUHr6NHqk2PZpxAYUlgGQFiRbLhcLopUDl6agbbaQ9g9Zy7e/eYtzrG9k6XewuUCjMbw6tc/h2hHF3HVURchIX/W8YBHJSUJWXVW0qQTRokVUNUXqDUnTt2c5P1yiJNrAaKwkJHJtLZNJl6061SUL7Uz0KSvKoOwmzjJ9vH9420AgL9dvpd0otJtlwqXZaN3p9Yc6ETkm/Khd4Gta9HoNjLh0zK89I2bsee8+diztdw55tY4KYgTMbfFu+WzMZU4nLRTd4eUJ8gT5EeNkEZKUEKw+yndNoaSu9SoOpNcuLuN5EXO8C5HIpKgrvztL7B7zlzsXbXCOUatV5rtfqPbJnJq9aR9MLV9XVbAhMK9RtuPkgPVgEVyc2VKU0JJi65wr1ERPr0vddtFdVFPHUnpfkuSZ1BIEF35llwWNEWbJDy0gmrilN6SeSzQX+vQ1QBu45yfyzn/Cuf8Xs75dzjn1wGYC6AcQH83sDnm8Kx68gVtWLcf37K8xKh5WEIjL7xjnSIduWZr/7LXrvj597DnvPko//uflN87rg2oBydD11H4zD/Q+dlbXL9b/u9XwLjr69i3+UN50Or0nMlVvD0wF/eQsGISGRPUG6RlR6MWp6Rzjo2yw3IwTkbpy6i2ONmIRlX6Ier6kNeyozYEMbAHNbLCi8lzM70UUZVuyWPlwyNyUOusrcHKu29x7znn+izqtC/EyQtvrhb7io1fKsPV9ZC0EukJSQ7+9uNbMO3dzXjyzotkVB2ZQBOEDNkEZoRhYM+y1/Hurde6nsF21Vn7JonnIlUT6ZRiXK7Qw1BSkiAWRZWrznBNptTiZI+28mIji4rluRnEpQZpX0a2CJLkXF6XWhzai1Ov5oqqc5FzhVYwSuvZI+GNfYhaZq3PJp3QXS6khHMZrXIjAOBvL0nLgSs6MYM1J76PiJqV7lMiPm6tTb0WgUE0ik46GEIqaW4mI04tlallpPmButrIfYnVc+X938SOGW7dYJS4cLvf+x8AQPmfZQRz2OXKS20IWpZkjJKhVJ8ZbZNklC4wUk3ghp5qcaK35z4yzhECIxerpIxUC0jzdDkaJ2LJopGZRMM2rUr03TKyVs+Ue4lqeTlJbSDdieQZehEnPRa3yijnFOe6XpauY4j+Eqc1nHNl4hrOuc45/wfnXJ3Y5DjEwrVLAJjExMEB08C405c758SIidpm4hyQ/n+fjCajcFbHHoNLOKwOz/dC69bt4Jxj5JMi027V808qz2PWC83pYEq6X0+XjHhorzmA5VdegJ7mFgRbxcqiZo+ccGvHXGH9HrIHk4Hb5wcKe+oxa8cfobFW+I24sLDJ0jifVJEak+vli5/okALmTBYnnYoiFeckiGXIXlW7o4XISjqhJr4qRGMqS5d6acuIxWnNVz6GEf9YizUv/FaWkXyftPY1CxkyXwudeDNlJt6x4m3nc49foR8iSfPoSro+esgqa8IhTtzUEWvvQLj+MOJRagmRA2D4ru9i3AdVaDiwR17XmuAoyaZL9DhxPfZOGQG43RkxqoExU4kEdUcro9uoEHmkDNE0k6nuCtf7GZH9ype0Bd3S2kqtKnSFHleErrkmIpsokLqhfTBBxhim2ESZ9jCTWIlUARuuMlISHBDnFBiERNNFIQ1Bty9HrnXgHZLF2z7uYrPy3J528i6nPA2gGzQNAiGzDk+Qv4qSunG5kW2NGukfRVoZeQRJJIa+sBQaBzo7pNUkHiaBANaNi5ksV4RG3bni761DLiuSYp83qjsjdUP1marknSbVLSnIEFXE0Mzvsu6o9YpYZhVkh4rwqcWRE91g8wTxu8RQho3P/w2rfvOYq4yqFnZl9le6gOm58vu9Gyqw98wz8e7v/iTfT2qdpK7nE8lVB+GSO/FhNWYo0QWfZg3SXDRKKN4Of56BeLAEm878Jjqa5AvGLXcSbUytl1tPb2sD57L7mtCkq44MTkYyew3Mqqd+hqabbsQ/7/mycywJMijSPD+2ZYd0LPqCdLTWOJ+X3/N5jKppw9If3+poXDhhGGUrhRAxP041TnIQOO/GKOZvfAijWspRWvAMLlxzj3uQJ/4OI0M22nBdtfwPGZAP79mNt799u9u6kSE8n5rDDZp80HaT0BWPx2a83c2tWPU7QU5t4b0yjNoDLCrbpMxK6tjRIJ8xQtwzOjG5O5YfKtyNpX/e7c/IyE5WrVjt++VkGSVWJC0ozP5BXbr+uGli18ULcOjSS5QWJzBC7oir2151cwbXat9Goovoh1STJTkWp5OLKtpL97DmOD+CoxUbPlHm5DFIyL1q3DUJUUz6hYiXbjtCJ+kI0UNpKr8edZMkCHlXiMPjRBPEVFGNpKyunF4qXQun5E5ajAutw6OK5S7zLmud9V67XUyyLD1tMlhBFemoE4LT3ZbB4kSIhlMGBthTquu+YUq45fM4BIZqc4iOjhNrjm71hXCbtCIlY6Q/WmBkfI50EWKVgaAm4zQnlG3VJv2GU4sTaWuFBYaKtJlKMkKJE1l8KUkYcWMbitxMdFsu9151srwRa29FM1iIwvuWoOx3j7vkDdTAZvdDPQNxcrmpyTi37S2RfSi89DFoREdnwx0ZmMEXe5Rwwgm5BwJmNAqjuxsx0nkDWhPG1a/EsJZfoqRjFYrDtfAxH6qmXI/OIaei/J9ylWKLw6lpnA4+lSvfxPbFV+Gp2/4EHULqxZkm2TNdDZLVgmmaKH/hZc99e+q2C997T5UM7/eRLJxxOsHZBIWQOxp2Gia5apKmmOwSZtQhTjoZmEcdEGUs7VILHRPETcmIoNA51+MFWjlHlOd/rpTlao0Rgkqu0X7dxzDhjZXY+NITstzx1L3kmItYyWfQicXJnuBMkoJA7fYD1n/6cpT95heoWPlP7Jw1E7tmzEQ8lqpPAICG3Tvx7ldvdP1eI5FShdbPAuvXO8diRIdlJCTpsIkTHcgS0fRbz5ik7mJlqYmyGCFOVD/ktzJSU2ucaejOfoLUKsZIOgLbpUgte0licXIGNUI6EmQFr7kCKqxzybuRIBYnJ0oUxEpkppISF0gfZRnExS6iQIiTMqCCTijd0mLsV2jdXdnNXZFDVh+kkyUl5Aa5ryI5L520mJk6ucClUZMBGVGrKeojRCyvK6wMnLx/pL60BH3I1HedWuC6OtJnB6faKuXESuo5Rkil2+JkgdxXD5N6JDO6pTlHD8kv5CJOUjznHIoQixRXEFRK2FxaI8UY43LV0YhgVToCqo20+xA1eLmE1Yo9NYnFn7sCBVIXKz4Pq5iz1RCTfYzKLqheSqWN01UaJ0KM6UMYuoHD9S2IRuMwDdF+xR1xaWxwuR5pHxwc4tTfBJjTGWPbFMfFcMn5nCMo01HHusXnYGgnx7B3X3GOlfr+gdP3VmPbzABGNr6A/dN+hZbygJC9A6jdGUft4sehGUmMTghd0cQGjv0TRYuaRNS8Y83L8E26CjHfRLTgWkzC38WgZuuDaEIyMuC/cO/1mPtSFZ5b+yhGxIehYPosXPyfP3a+d14E+jB0UiKTP7NeEE6+7ySDBDP8aB16GrbO+TqG9PwBwHaAbNyb6EldiQFkICITEZ3g7JWyp6mY6CIC0AC5z7i4VneHk6wvkDBdzw0A1ZvfxxnW52QGCwydqOxBWuOAT0+diBLhLqi2tR1bJwalva8+jRnWIyfiYYeC0mzSHdd/EuMAbH39L84z+AhxOjiGYWIDx97RkzAeYkCmVhWbrJrEmkMJuXtFmwoqFI8pQoU1vxSHU7ITtCIj3cSJajcIkbDaVzPl/ahFyraacUbyYZEGDNd+4Hz2KXK70PsmaISebYFhkK46l46HRilJl3vAtopRPZRS40Qenoq06UJA4aaOhjthO+lVmebp85iK6CeXjpJEEfaMKgK2t7lOoe990pVSwSao8nuamJG7QsHFud1Qb7Oi2maDTqa+pCLaknI8lwxBkSOJdDJDtS8alxVNLU50ixKl9ZGQFj3cLSc2opGxJ9/uzkYU2ecmSFvb77JpAJZAPRbuhJNq0hH0q3VLBrGAa3Z/1XzSmko2UDaiqYE9dJyjekZlbiyqG43HyUSu0tnRdAQKcTjpOJSUuPYttOuREEEjkUghZz5uOGVwRXNa86Ohye5C3Y16MoH2Sxdh3WmnALPFom9so4HOMc7JsowqbdwxRn+JUzWAaweyIMcSQztF03W0koSA1gRn+kTLeulqOHOTHfut4NYgsHzRozCrA8A48XWn/1IsW3wpwJMYC5FygIZRU9NqZ7PQmpi1TZi8rQl4bxdAiJPPcPw3zjGzMA+AeAljlDhR0zUTk1xnVK6eOjpasH3WrQDT0Fl4M4DvgpGcI0lFqL/pmrRIBmhKYIzUiYYOpvmGfFnsF9YlCCauj3k7rcSN5ITirbvlfelAZVtoaHg3zfND9ifzWat55kH+VIiDCNhjMdgxLXIQIKvF5kaHOPkJcbIfY2xSTpAxYrGwdStck3MgDUumROLwUGB0L3lcEnkAxDlT3t6a8gyaP4C9G9ejq7EBBWVSkONX5MtxuRXoStqqU9pm8XjEqQ97wDepxYm4sArj8rp+VQoPk7r9aB4nheaHtq9S40Quq4osopoRunIlGicnbxVjkqBQSwixEgUVXmjX6piKZRUCaCoOL5syB8BytBdB/oa+c/FUEuYKfVfkF+IMKDF8AAzMLDoTgIiodUUnEl2LUzJyLV+CWiSkW88hB6Qdeoi1Rpm7h6Z1UUVdkeeNR7vlO0fyODmg28bQqEjbZcakCca1cNVJMIpVf1pc7T5VuURpolhq9XSsgNTiRCxZBvUOKDdOV1icPJDUEwil+d61FY91Lfo2uaLqXG5barG1LU7yXD0Zc+IfpRVQ2oRd1yLEaWSznaxWdor3//QmvgDgtD37sG2mdCOr+nYyEXMWK7033D5W6K+rLsE5P+D1N6AlHGDEtsvt7MIkwicetQZ8zTVkKGGTJNvaBMiXccG6JfCzHWC28JHHMapxPYaHHyBm5dSBCgDOXSd+M5VE01LMWloDAGhhBqpOEZ06WCbD4GNdZCbVZd4b2zLQYwmgl138GDa/NBZGoFC8rFoBli1+HC3x70j/NCESuyeJgzXjiUCW7r5NLSHUimBXT5us5zkJIdzUANj6ZZqpO9ItB9tCa2sY7pftcXDRQnlfYlWxV3g02sQVTWIN0hoAzaobt+k8vTXHF5Ti/0RUYRqnkVaNMgzbRyyR0TzxuhV0y7ql7mKbkLsmBBpVRwbbfWNSmT2bMtH5PLsi9Xl8Ph/0z9+Mgm/fjQQhuwWaeDZ6RTohuFyiJJ+S8z25lk2cqKuO0VUhmYg0KJgGJTj0voqVJXdpBVWuOllIricdvWI81WPm3nw0qiJO1EVI6oZo45TEiVpVVBYnuo8j6VdTnlwOACilOSIpcaIWNpULyZWHKzX5ICNk1pV6QrXNBg0EIaJ1Xzi1zukkHY2TUH4n75vH+6nLBZdtGaI6rzgZjygJdp6CCtx7KCmRW0/ZoDnbaL/RTUE/unqk7TlBXWokmaZzX077K3XVSTeXnUSZU9eWynpMy0gtTiQrPrmB8lwVXIJvsmiw7+ZlcaLvokyZQCxOLuIrzjWYn0SPk/taejZDA7hmvVPkgb5QTjL7U62gQmRvxEjfV0RYHgv0lzitHtBSDBIinVJwGLIGGj8HmGlF2rEkaV0OTY9h4doljluOM4A5L4UUmpcebgXXgtZvg/DpMfh4D3Ghy4Yv+vkfnc/2Tvc9ZPlgKLQbhTGA+WxLl+yc4Q6yGa9jRpedsKSu3S6AR43QZH0kw7OVABNBrlwNUsuA7VJxCVUPSpHo3LcFr86PS43Ml98hJnmFi5CTixUclvoEahr3OQseQmCSCWybPQPvXnmeU48mA7rt56fPkMHiJJJVCSRUmgIC/WCN89lPNCG2sW3CWpn4r3Mf2QTYGlyoP9+gRKK1Me19jaJ06063PoG66uwBe7guLU/UKupaSRupFqckcXeYMbkJMFNYnOiE4SfER4rDKSEn4lPHBUylKDQxZ1x+b1+CkC3TNB29YketJJj2FKiRczVKnJwJXbra6fMYGXRnrg1W7ez1nJAvSoYi6RO60nOpsNqxblB3hivyT9zXYET8T94TU5EAk9GKJm3iJ8Rp+vvivS7ukddiJJHhkBgto/2BPI4rY7nd3zjO2mqNrx46Sqrfcq5H879FqEbNIvqMOe8VFVP7o0QbFRBW2OjEcc6xpEtnl+pedemH6ELOttBw7hAnl56VvDNMYX106b/sLWbkbd3vSYbM8C7dUlISGBuudASvL5fnKlx1VDNL248rrMeuxKrkvp0l4ubcI08iHVycj+S+dE/HTNvCHC30y1XHOf86ADDGQgA+CWAyvRbn/IGBKNzRBrVuwHrhNVN00FCiCz5fHIbpBzOT4JofgWQYoUQXeMLyejNgSp1NYETnXr7oUZhkkgWA+nEXAXwBTtEtVx1ZERWFU61beWRhuuKF39gyKwenNHCErYhbg/jNYy1NjovI8bGTAbLTUq9esHYJVi/8L4D75IRg6igt+IMzuJjEilDSLD+HEqkrZaOFZAB2XlK5KosoTM3d+e58RTb0dkn+dM2ySpEqmrxNmuPo4MJ0qb2xYRpJBHRgXE039iclcRqaMCGWtmQi6smgHwpI15YeSzVZ0CGgdFmF8zmoCismYH96Vv7HtjgRqyddlZ/2WqVzL1Xiy9IiuZHqxlMZ5lW5T6Jklk4eTBeDOI0MzeSKpXlzEpTgWJOWSxxOrUVxuRF2gDybQ3zpdkSKLVdcz0PdM4SgjGq2J17x/+WLHoW5QuoVo5FpWGbpFYdFRIAwnZQ0EgnpWnUrXHWGR2SnExVJvmfW5G5qkOSLEtBo6qKhcRj5jysPG5mkFVYV1x5qxFXXYy+OPPZYc6cLsZ9X3tfWHQJA1dnDcOrmNrSX+lDYYfULMqGPXxeHXbOqvs+VGctl36dWMRpBK7eTIlele531KMT91JpD3GCfeoO+n+5/AXe+JaUQ2RU1SS2V0trq6CEpIaeTv22ZpWNXkraJTZxI+3oQNhVcLjMa2ORUjbzu+L0y4tC1WFEEILiSCqt0Z4aaODl7zHsEQbkGU4XFierSeAY35tHCkUbVvQLgegA6gB7yd0LA90dp7TET9kqLOyLP0oYqjKtfiXmbHkFx+0oUh8UKKxB1izYB2XHSOflsi1KiPX3uJj0kJ+mWjStTvh8WBibWWL5munFkbbU8yUh1qdim/lCiS5o1nAR/GmK8ASNtoxTxZ0ysswdQYGRr6mA69U/SABmO2qHeHHZtzN+TWitGkMFvpB6f8ZK0wNSPsspIZvyd55wur/HXF8W/DNAs0erQw8SkTwZmGnEYciZpYmXYkKoJoigYI1ehRoyGElsDChlUk2Rv0vyYLMPwttSBYkQDMbPHUy1OqoGBM2DBrtS6o1aGBmvCrSKse/g+uVCggQRa3CY7dOIldUfOdVJpeFmcIoo8TtT0Tixwl60nEXaKwdSMqzR7TLoNqEiUTP6jGsUJQ+rCTllUEGW0rkrInY9YSuT7weS8SS2VRHeWsJaObcXSDa03ykUFI+0rFzbqa9EyOrVHrQxU4G4dN10Z+hVWJNDnpW4hNQGVYmlqcZJtGbH2TuOatMZpRDw+rIWal6z3xJWahFrjUid/5rJqE+Kkp1qcGNWP9SjSERCorPiui1HdGb2vfZbHNiq6ItLRRbZo2gBXHq7UshqqiDTXQ9AAo9Tthgq7ZB3lv7vG+RxqEX3MNhDQ+wNwgilEeVT9hloqSbkU7lOaUsF+P02NDAce+7S6LFEKQT51Taqi+Y4F+isOtzGec37lgJRkEDCORMvO2mmF3DclMNLiNXN2yND3c7e+4HxOmEEAukstrcWk7zgig5g6AAAgAElEQVQTfK2KPZoI2kf6Mb5BXC+WwRRJO86yXS/jc9bnWdvF88zcITsZtWSVtVYglOhEfvdqRIsvQDw4BHkJ4q6KKwYX0s/Pefdw6vcAZu8WpKKoS8fQFm8ayUwgLxlHOu4+scEmJfJYgriQptQS/YllMZxcLb9vWPoWRliftQqRpNFvAuPqRSP5e+QzRpF+1ebzObE1iO+UAnWfrWUghfTaBmVEhlynrFsMajTNBd2o2Lknuf6eST6cdkDUA9V2XLtenEQ1MmN2y2vFifjfjAumlwj6AEt3RDVOXa2HMNz6PLbG3vOPiDWpWyGqWHWTCbDbLAagEHLbgyhduRKLk2YN0qdVkwGa9FHNytBO62ZijaiPhWuXYN3F90BPFDoW1vxoE07f9Sjqp6YuMHxxMiHYejiNwW9HY7ryC0nX8Z4z/JhdrqN5TADDuq2EgSSvkWb1UVMDwo4GUt6Kh1PdxW6XJ7E4kUna0fdRdwaZ8OnefHbXou1HSWcmkTYlTvbChE6sc8rVbmwnvYKpJgeIk6AC5wbk3ESqWNrUyIROCBvCqa46zpjU3ngQJ4dIkL7v2l/QibAkhdSpxYm2SWrf14hbsPSAbJ8xVdbG0FSTR/VwEbLPpv09Te5LtVPW807bK59xUrU8N++g6K+uRYPHct8eU01GcpS5okSpzo6QHVsn69r1QLZZsS7mzbmvyMS5Lrg0TvYxSqJpvsLBIU5HanH6kDF2RubTThyMbU5nMxI40xocaEfOqxOhtwvXLgHMGHFTCG3UiHbpvZy2KYMQmbyMZyyvTvneZckkHeeGVelDMwtIf5uz4wmcvvcFFPXU4fS9L2DOjicQipJVrGLTRVVkTG8UW4824ZCO4jTZAjTOwbJ0T9P7zlyfahnym0DESB2w56yVye3LC1NzyhQ2yN+EFJvxbplFRJOkng/5pNYoZhNX8rL70jeDJ05fLtyQATI5tVV5DC52ufJIVu661LgM7vGGt5K9ynpaxYTtsnQRwp7YLjOPlNhVRtqkbTfJTBKVuahUFqe4xwpRV5CDyAHZfqO3NPf+CUL75fPOe8M7JmX1goegJ4vkhMcYogWjsOWshxxL06gWor2i7wGZKJx2IRNcXkJWWr41+VMXk04TZJKJKC9pW1PluRN2KvR9pB5d4nDqArbqVCPXokJzZ8skkHfJpZciEyAJUNDtzkOeJ0j6ZlGnTRQ4JqSR3yX8asssJTCzX7T6EOmvzEUUUwXBIt+ZVTdkvDLDqdGYLs1lBtcWbXO6LUzAth5rMicfcxEnRTZ3mkuMREKO3SXLO7IttV+5NuO1RPjU6jLzxe3yXLpwyRDY1DNSLJLai4GQIytT/2bEMjFGFEVkCpchW+R75ta2klxftrWVWhStcw1NtpkXNEJcVfVIrY+mIqHnscCREqcLAWxijO1mjG1jjFV45Hc6KTHlkGzMabvEIBJKdMGni4mIWdaRQDKM/O6W1At4oKxevgh5isU5bbS8RiJwz9CHVO6dYcQ7UNomv/crLE7MtRw8MmgmMKEuffdrsM0cpNhjm9QP6fdwdduRVJN6ylK+40RUUNqSeoE8XbpMu7ZJwlZo+eJMBiQUIl/X/QPKw2kxnqS/4Q1qy54SpHlqrGDLcBFDxNKMN4+WZTxr6S7nc4mlH6GuU53ofGiE5cFxVpuRNgm3SVIzY4UgO4UxAAZHPFiCzsCXEQ+KRLD+pNrIfYr1mLxLdshZG6QrL5KX2nenVqUfgG2cu/FhMD3uWswwPY5pux9y3F+09UIxwuiJlSHf4gnBelmuws2yHplFoqjOLhCRL3DImjgNH3DO7lQNYt3o1PeBM0jiQiYc17Y/FqmfRIiXQfMT1ViTHQPy7JgRMtFFSCZ7Zr33hgaErVTb1AJDFwWnVtpEMaXYLoTzAc3RxpGTI6mLncIeMmm6LE5kICTpCOzUIhrRevqJqzUWk/oumzzFG9In5tQMtVVzzH7RN7nP5wi+mYcFxqkTSgJiGfQ4Hm490zJhx/PU469BtFXUim5jP9l/PGkRXz0AXLpN4UonGNlsu4ClBnHSQVmucLns+3ShlWc9pk4ilfWeDutZMhOnsTvIIkkVkEG3mFHtrXgMcKTE6SoA0wBcDpHX6RqcwPmdBgpF4VpHGzWuXmijTq3OvqpHtmc+x8Z0EnZOtTX9QQkZx4ZQ7Y2FUPa7w2TEmCx45BhrfsrG0lWYUA8qdiRVSfsVKd9NrpMv3fD21JtM3y3rYM67cqsJO9dUPACMsOssrmC4IKu6fqKgNX20X0k7CSVn5HOJqI/JddyxNOZ1qvtgSVw8j58IfzWS4XvWGtlYdlQVnSyTivQM8SAwfU8S1ZOugq5NRvWkqwAAIcUebBSz15NM3OTUSYezI0kqFPfUIT9mPY81EOfHWhFK1CNuWSoCCr0dAPgt3RFLmo6rNUAsUt0jReh6NAgMbbKJBlmAEPfMqZaVgbpsKTnIi6XWDYN0+8xdL4lRN9nzb/ZG0UeGdpPJhQj2Z64T7ZcXV1ucRlZKIsESktwVxcTJ/oQuUzlYBJhiemWGqC4G+BRRvlxBnOgYxjxddTZxYk6ACSVORrc8d0RC1BN1f09/We684ConFwutDn6zfE5C2OomihUIA6BZBMSk28bQpKSOJUwOAP5MxIk8r0beqaJmso2RAr5/vOF8HnUo1bU/lay9HJ2dxnDI1jFkSCLZOZQ5BJVi9FtS2zplaWXK9yAyA9PeFSEL4rR/qpRFyEWDWkuGQSJO/dI4McaKOOfhdDmb7HP6X7QTF+dsk9qo0/e+kObMgUVgAPvQZIXpfUzLwFmc+oKpO9N304NjmIzKstA7urFxzAI0jlkAzUhi8apvHlF5eEcHAIb8BDDtgLXijaTPpdJfTK9OPymVdtDBVp57qkKQr8ozBACJuKhfSpyGbVHu4Y2J1iBMyeyFH6ay4LXzHwXXZP3Xj7sI9eMuAjOTOKX6yOq/P9ADBSjsqcfkmrdQdcpV0AOC8Gh2lKji3Yn7gaBFfEKdsn3zI7Ke5m4SQ1wkDxhuycbG1RP3Xiz9Szl+nxwipx1MncCCCaCoK/UakXZFVm4Cc0/q0Kz7gNEWf6TbOlELmb1FkKEBRdZCaUhLFFVTPofOIaeiasp1mLX7OQBARyEwNI3qwP5e40CHae0VSQiOStOlkzxsfhJYQTdeLt4j8qRNqjfRbvGbqfskKRlC2mpmuZ0Vn2NIhtko0COeU2eT5HMS4fUZmwSJnrNaLiqom5Nu6G3XqUbIEounJ04zNktiHCEBKKfujjrPoMLEg/K6Cu7tgkZcmsliE2jWwBWyDArGyW4LBG3DC1BYK+qkKCK+n0r6cLBTTiLxuEzuO6Yh/TxiTBkFrBBWJ7td570rU9qwZln/J1Q6AgCvMMa2QETVbeKc9wAAY2wqgEsAfArAEwBeHJBSDiKqv/VJTPnl3wEAH5xZggu3dKF6PMeQLoZhXUBzCTAiQ/qVHI4yOOBLul/sdJFUR4qF5akXCUQHJyyW4pRyaYVIBFK3APGyfhVEhViTDnrjGzLpEGQdaIrB+oytS9A49hNoHHEWoPkBU8eo5s04dd/LGZ/jaODCNfc4n0e1CO1Gy1BgqDXgT1IsFBIBgMf9AHSXPnCo4n2PkRRaeaSeT6tJP5NlChgo6wTQmTo5tPzzbUxN87tZG1KJVYK6jQnRH9EozTEsRi1O6Rcgp+2+E0N7vF8om1QxE46ecVizvG9PR0PKb5LkcjP2kGgxIgiesp+IrLMce1k86Qoc6A2v5xRyC2+in9ctLUPz3herioRfWpzo3n6xDEJmuvCdvl2SqAOjgUmHARPF2HTmzZi98ykRGa3AhHpvIqFrwBmbRaMwDmhWceZ+kKofpOAANMVlO6aWYGQTQ8WsL+GMHall4iQnX9xK68CzSDBdFhwDQGi4VMaA2e9IF+HIusEJ4u+Xq45zfhmA9wDcDmAHY6yTMdYK4DkAowHczDk/7klTazGw9VTxpu44f5jyHF9Qjoi6T9iRW0dwDLP6yHvzTs36fh9cUJT5pAHCzqlMaoSOA2ycLcyvVVM0bD1d8PW9ZOSPps/dmBZDujnGplqojylGNgxSPhEyL8eIBiIWzN61lU1ARG9MqCPESfHz7XMeQOOocwVpAgDNj8ZR52HN/OMnxVtZh9qyaoNx4LT9YnbJIwZFFQEdl37uGXCMI6vubBEtkG02960q5zPV4c1eLQjXsC5gSCT9AmRsU3arEI0DZ+8XnWRUgyQP56yRRL/byrFL3bOUcs55LX2QhAoJ4vbTYmpXug3P58xwj1k7Uy3C8SCgG9LNaaMgvfHYBX9M3nmSrf/TrkHnkFOxb8r12V+IgFqJxzdyTD6Y3fRv+KF01WnRGKonXYWuklMcV3zNeHnN2R/KBy6OiM+lnZnHGp5BvE8xad8A6kf6gH5rnDjnb3LOP8c5n8w5H8I5H845X8g5f5Bz3gdF6+Chu4jBKBVkhvvlW7bt6lOcz74AmdEtDUlNgTw3MfYc53NbBl408YKrnM+7v3gxACAWAPZOOlKpWSoipXlZaYPSYefk9ANjxb8vACBWMusXCof5+jOkf3r/nZ90PmtjREIhTvaMCo+SZLX5u7f2u5xDBmjRsfqq0Wm/7y4chxUXPoLuwrEp3w1LTcFz1NFR5CYtDSNkPypJYwkYaPgVRpWjafE7VqBC6Pyj44ntN8alz2iihNd4kE6Ht3DtEuRHGl3C+vxIo4gezhK0j+Z7zIl2BO5YwgeT/QisoAgSa8WsXemtPVyxXyMAwOt4GiT9sk7zOuV9J6f3rrpQQvjA8kWPYtnix3F4zPkAYzg85nwsW/w4li96tE/lYjzzHGUjFhCRdwBg+jUEevWR5YseRWPhAyK5M9NQP+4iLFv8OKqn/lJ5vdO3C8tcNhZCD7nhcYWBn7GPc+g+YOc1pwGAK7sxJzvHB0qGO2JIzmVPC1q5QoYzKZAcOkJOtu/dlGp9evWCCc7nUInM7KwFxP1MDUjmZ/9yNlmXWDVTPQPtsgiML2k4QVb7ZvcvZLNzXHHa7/OGCpNWJB9OqLdBtvXw58n93fxBq341Gb3lT8g3JH/oKABAW6r2tM9YPz8fC9cugaanpoVIO+D707fD9plfguHLx/aZX+5XudZeKQlXxSdnOZ833yA2tayZKAn55rkyoq9mpPi3djiw+zTZT3sK3KbsubuPvtVr9ykaDkzInG8h3YRbOzp79mRvcrstA4k/GsgnRoq8NFV7ULFv4PGI/iykQokumPYmsFZbmszn6SpSoagPRgFKwo80sKIvOHfjwyLZKd1D0NRx7saH+nwtxoECq+9MHQATglez9bU5NYjkydnA8AGl1mKQcZ6yOF2wbglGNW6QCWJNHaMa1/eJUHth6Gubj/gaRxv/csQJTOwSD0D0PDtHio9YkbQ8Jxqraf8Yh0QVRoQ1JeiThGD0KDkZ5gdT6Xw+yS+UXyJ9Zz5rCw9DgyuMvMcy2BAJCSIkyMBesecXq0mNnc+ktCkhB0ri3N92cWpYPkXl6bIe+DBR3qqZ+cpzmUU0OIOTEZhmnw6E5O80KzkfZ8wROdYOlecGgzLEvy9QnT9kwaUIJboQSLrTQmiG2DJnwzSPm2jq12HZxY9h2eLHES0cLXIAFY7GssWPY9nFjwGQGaO9YH9ffLq0ThaOnSRP8Fn1SH5TPP0s5/Ob51oZmklOn8Zh7ro+2qg4W4ipzYCW0Wq0ZXYe1sx/ANGCUSm5k9bMfwDDFBGMXjh0tuivTgQQgKqvpboqGocC9VbX3nbD7Kyv74Xq8dnXrR4U7VMzRR3WumbxiJRj2y+VmeirJh2bdixr6ztzWr7oUcTzy0Q7Wn/x/LI+WzsGE6oxItJLGlDcUwfNTq5rZ0E3kyju6btpj3F34tkjxcJ1S5AfaUpdhKw7cpJio73X1FVILKxTq1MXSmvmHz1X/NgMkcTHA/pFnBhjbzLGJg9sUY4NOABmEycmd95h1nYFyxc9itb6m9BomUU76odg9cKH0TnkVITwEQDAuL3SNz9pvJwA84NyV20bI7ulQK7QZXESb66puTP+2i851R1EClObqVWVfRlwQksPzxghM8MSWznPU5MgG8lJxA2l2NSSQiNiSs1KBDeuUS4TA+ReXBOTCmdSlzM2X5K40nHC6nJgauok0xsVFwnr1LrTGKpOSWUtgTzRDsXhWoSwAfM2PYL86GqE4iIyY+gl/+acW/3tG5zPzCOZGvPYFNk+3juiDwD2TJZtZte+XS4AYKTuHNJOiJC/QI5kXLNJqbxY4/mnHDO3V0sxYJYKt6rp9ymTam6ZS/oCZ1iwbgmY2SHzIHEDwVgbFqxbotR61IySn7fdssD5bCf008k9Q8VDU35Pw82ZL7MFt3pU+u+7R6X3aTSTIiQt4hQvCCFmVcPO2XK1wwtku4fzxSIMATkWRKdmKEwGlJ9biJYhmc8rTONuLJ+l7kyztwnLgmZlOteMOILmNiwYoEm7w6OaOwu8f9NWnDrRp4NKP1k1M/UCfiOOwp56zNrxRxT21MNv9EGURFCUZg/wg5MkCTk0JrvpN5TochZJzE5myrQ+Wf0yof6GC/t0/oJ1SxCMtcn325Tv978C+mtxehrA24yxexhjR+iJPvbI7xETXjAJSQ4ci4jHjxiTftzpP3cOnz51svN5RGdqR44QjVSITIZaUBInCvv+BYQXdZWKk6pm6k5x20Jq4hRMdlmPoxHiJL/3B9ITJ5PmI3LCX9WVQieoKVZY9aQG+Xt/nhz9bGLKNeYQJ9Mv3VGnzzoTLX/8Kz725NK05QMAWNY6z7wm+aKe5+x4AkW+d1DcU4chXS9iTJ1IE6EF5KSWVyxnnJ5kauZmQLidfMmI3L2cczAjgoVrl2DrZ89RRut0zxqfWuwQqY+ArDum2cRJnusvkuWyI7RNRrZH8PmOOnHaePkUAFY9W9Y4068piZNZJMmBZnKEEl3IC1QDjEEzEgAYylq3I5ToQsPEvJTfr50+zfkcIAEZSStnj0GMOaF86c/d9/lFsoz2/f2Zh6SOMlH/my/x0LVpqZV7kPCbEb/5tfPZtBqoLeBz3mdzzkz5DAWy3XefKizZ3fpF8mKB/g2hiZBF2AIsY6i9Cuuun+h81stknW6bJcpTMa8EZZ1d8OlRmFoAmpGAqQXAEE+ZtCmx7U4/xLjQ9FH1xhMqN90+yzIXy5evys4JqedRNIyQG4qsnUl2AshPZVMXrrkH8zc+hFEt5Zi/8SFXJGZKWb7yEefzxnNl+7UVqTV/NpKuJJapAwcVtFdOF9fdct00FIXrMK5+JWZtF7kBi8J1OKhwHmz/jLo+t1w8UpZ9SuoLHCrqWyRRKNGFstbtYnLhHGCa8373BS9dmqoXPRHQ36i6FwCcBaAEwEbG2HcYY9+y/wa0hAOMgmkzMLRK5J0Z10xyYzCGeLAERd2HEMxLENLAnc/+gIZT5o3EzQ8vcq43ulQOOMOb5Qqlabio2nl3/Ng55suT7jU7Ws9k7kRvJYrVSrRYXCuYb8DwWdorTV6rbc4U53NcE4M003zSmkZmdk2TE3ZU8hYHwWbZ8RNWREiSiCP2XnauvBaZoIKJVLNLXj61mlj/MsBnayX87gIsuuBMFBXKUbdxfOoECwDMmmg4U1O6ACFssMrIuLQu+oPyuoGgPLdOU6vMxYrPSm5oWaU4hM7DH0qzNLbLa1+HlMtPJ3d79w3yMEFC6OyxlDOZeJL5/UedOJlDhsn7WonmTL8HYSskiwJHC1OEcfWrcM7mnyNkbETCSirYMymVrBgk55PfJ/uFbtW3rjHHZa75ieXWIu9k20iXJVSF1hLZJkHSB7csIuVSuEF1ctkC4nYPWtbWoYURZ7HiJ30/v3i4I/DtHC4s2VFjliPw1fpAnCgpqZol6rNJi6XN4VY1BtirciMWkEhiazyKhKQLmAdF3SaCJU47jqtfBZOJZ9t2rhz79n7vJufzwSmKgaX3c1iBFkmuJq4qTVn3eFFew8+dxZdx/py09+Eac0T+vqHynfJ7JKzNFiwgn3HIGec5n1XPvn2RZDhDiUB8gpXyo6FU9rXa2+XWr3Zf8uUVOVtklT72A2eLrESBnL7tfhEskP3y4NckubNXz4eHAT7LrbHhUrkSoNbwLedkDnFevuhRSxguXbj14y4SovFRaotvWDGcG8H0OtpsUDOuv/af/uNI7pgE0AMgBKC4119GMMZ8jLFyxtjr1v8ZY+xBxtgexlglY+wb5PhvGGNV1rYuZ5Nr3MwY22v93ZzNfX0+DS2XC/1I01CSAZlpqJ50FbpLJkO3toVgZENZzUhA103kF/hROCSEdbMDdhmcc4xFlzmfO4cyzNhViTmL5YvgK5BVE7Amb1OTxGnbJWqTPQ/YOhGgedRV6BxyCgohI/QwVv6uqF2MoKGEiWJrFWq2ULeQ7NQdCiH2sA6S6M96NprNd8h5l8hrWRonQwMKo6kjd7CgGJPLt2DipnK5CSRjTk4QI4NlwGvPtwCX2iq7/f68mIjSyaDGXHo267ohOTD4yMQ5utt7wBjWXgkjfz3mbfoZhrSuRFGPyJRLJ0gXFMnqqCvX5aqz99MiNDCvRE5qmj2Rkbk8G3eUCofvTy9sp1Vu5uc59w0dFvH2pc1hx3VI4S+Rviu7TUpL3sTpe19AcU8dCrW3nU2zP/LrF7Ft0QSMWPme8xtKHphPtqVuuQIMH1A9SfT95ho5OTDiArarx5ehX1GXJ4i2MTisjJwjK9t2mxskOWN+oXyX7RxFsaLRTgSZn3zvLylLG2XIAtnn4jhwiYz4Hb5fJIG67oP0wR/hkXlKIqgRsguLJDWNCch95SyrqD1pF1v7Whabz4vfkHbyBfMxftUqVF06DRO+9r205Vl91UhUzLoVhi8fzS1yPGmWfNixYFUsIOTOmvx1v4zU04LpSRrXpMg/VCqvlXfB4pRzN85LeykXfITca1YfioSAUE9qW5TMXeh8VjkKOHEJnHqelBE42cfJWDFyDLES+mWbtlrki6bPGX2a1FQy22JM5huNnOvPJ2NTBq9E+eISRxzOiAt3VON6LFi3BE3qzD7oUDADpvXP2rrhMkGCD41jjsX3WKK/GqcrAWwBUADgbM75fZzz++2/LC9zJwCap/2LACYAmM45nwHg/6zj9rYu0wB8BcDvrTIMA3AfgPkAzgNwH2OMvHre8FnaG40LS8TyRY+iMfYtJ7TSNDQx0HAgVMgRirVi4qFfYfZF4xDpEj3/c89vwfgt7m35iqmWYfpE9EZhPhGHE1edY3EqVIeUadzE8kWPoqroSbSNEGUsxiJnxcqK5QDony+sYWMWXOeE444j+ToYiRxTSUWTZNPYkXMuBwAEZkrNSelkad2y9ViGD2icJlaO9adJk3CooBj5+SEUFuY5KfM5Y5hSK+6cbDqgfF5neweuJiVGcYFTfkcDQ8gdtVgwK5qPkQemonW/Xw4eU0emrl733/txAGLyCI5YhuKeOoxqeAETDj0prkWI06GvXyPva00+lXPk93nEVev3B5znNA1JUJxzh5K+Yv1rQq5CmS+AkS19F/uOmXFB2u+f+/RpzueE3yZ0wKg6sYgoCQeUo0aoVLa7PamZfupfk22SV1CIm554G2UjpZmekgfbKmoyQZyWL3oUo9hvnfezocovrTXWpMU1SGLsV0+mO2dSkT3sk53v84cQdwVx1XUX2M9DghkKinDa9u2YtnWrs8UKzy9yrhskrlb/kLLUKEPIKEMtpC6vTWI7JxALGxljRmVInumAMSVxo+QOVINox4MHPEiJZX20dYuASNtSPKIM1/7uVRQMkQR0X69UK8sufgzx6H2IFYwEGINpDnECLey62zWrwHF35TdJCzi3Jv+kz+dYnChRoNhwjt3WRDeYJ8dXOgZUThd9IDTlTFR/XLi69lwpxzkVfIToO32QpUovALcFvPOK1MhrSoACdAFhBy6Reh4ybIz8nUUYmkqJdYq0WR6dT6x6MDU425hQy3swj4y1LD0tCJZNtfZkjYITFy7nMYQSXWAjZR9tJV1MFdXJtOwXgKsuIBn584QW1mRujfCxQn8tTvcAuJFzfjfnPI0UTg3G2HgAHwXwJDn8VQAPcMs0wTm3jZrXA3iGC6wFMJQxNgbAFQDe4Zy3cc7bAbwD4EpkAdssqZmicy5YtwQh3y6HPTMfRGjluiW49Rf/hpFztuHcp57CxZ85HVfdISbXgE9DcZ6bLQ89XZpsx5xxpvPZttgUFVAiYLkzNKEJAbxXTwwmFqxbgqLkWkekyQjDp26SS+7/DU7ZsAEX3XKXs1JuuZgQJzJRqLpbLN+Pjge/jcTvHsbVt34X+PNL+PiSx9A+TFzslLPlsqztsEhKN6IdWPjnN7Dz0vNx/nNy36SCQmmFsDcVpQN4wCPVvx3R2Dzyo8rvTTKQcMctJL+nZnTN/kxddeR7Pxl4i6fL1a+NUyfINs0LyXoOxcV9g/lyZJh68cdSykUrOUTcer5AyLGgRLrOTjm3aJi0Itp7sVNLCfP7lRm7KboVQQUFRelVxME8+f24sUKnUzfaj4p54nP91/5TOQAWjhAk6NCkoNOfaZQi85jgbNB2cKxIAAxT9P0ebADsvq/B6fv2wEstToxYnCJjiCVspghAMEl0Il1IFFDi9P/ZO/P4KIrsgX9r7skdkgCBACGc4b4vUfBAxRNRV11Fd3Xd9WDX3Z/3iYro6q7igfeJrqAgKCh4goAocl8J9xEgQLgCIXcyM/X7o3uma5KZJEDIof39fNBJdXV1dXV31av3Xr1SHkapo1ISLlc0VpsVm9NhbK/hcAW2tbEqA5EzLrHyKkOMVYZWZQBTZ8+H9OrsHWn0JaHMkNnJ1WhdRGh/QHuU0jaBZyUMwUkR6PYmGd9cYNNfReOkPj91QD4Rc7L/vSrvaCy42RVvvGzCP0AqfpJCmfisH6F9izkJQJwmyActvIkwBOEq8RQAACAASURBVAn/O3IoHhIOa4U5SyQXPTON9A2ZdLz6jkr1W5OuCEvKO+ZvO6ncQ8aVhq+RVTGDRbbrVKnc/BRjhaUq9KuTJD8up1FW8wPGZsf+u7Qobe9Sv3W/1toiiD6uFew9akQNtge5VVT90KxRWjuWOWKIzl8UMOF6bVq6K9qYEO0+Q1MgbEsVgTruUAIfn4jGqf0Ftynn+YVVge8U92g9GU7Wx+lMKWXmKVz3ReA+gi0D7YBrhBArhBBfCyH83qItgT1Kvmw9LVx6tTjcquCk+bAISxnS4gApkV6wekoCjm6X3f0UTVuEL9r3wcc4Z84iPs54YVL7Xxb43XHFalovX4HTZXzkXj06anSh4rcSZnCxSM3ZVmA4aUqLPVDHfFuwatWha6D8nYtd0UhZFMGpILGyf06508HgK/9Cz3M0ISC9bzpCCAb+tIa2q1cTqZTlzTdMme7ICK587X0iY4zjTVOU2ZV/byyL4PjzEwDof/PTRHw2m4jPZgPwxtgFvHrb/MCKxtz4ASEDvXkxhCWfrKxxsiudml9wEqqpTumIVCFq+PWVrb1RrY2vPEKfsQpJIHK8WzG/OpUOMhAfDBG4rj+u1YIzX2Td990CGpTSoi7MH/4qu1P+EzjdHa1oGUKY6mQNfJyiCytLVtGxhh59U0ft819/riGkRUbGB/xP4pv1p+SZhxj1/gJueflTcj+YwZXX3xpSYIuKa4pz8tsM/WRBYOD1KB2wxRnaX82POtj6hXspIG2/D2fZcZzeMvB/nz7j+/QLPkE+Tsrg440wyvWb8KQltJDlDNLAGHX3RwXvtE3Zh8sd7Axf8R5dTmOQdrsjjFVIgQ1VZWAVklXRfnjtxovcTA8GaY2Ioum8udgmTwoMoj4BB7tqAkbCbf8iFOuG6u+QsBBqllQeqfQ3FkMb539+FkUL6G1haJECO9IrQqdNmfQ5lcHdP/hv/bNmruq/4hktUfUh1eMlhRIUYpMNIUpaDC2SX6upapycbQdWvh9lhItONbSpfsFH1VpbkhIC59odld9X1QHeqghsaliWgCZMeRccynvliDS+P/+KwuTrjUDBNlVw8lUW7lXXkETFD1uE0MC5VcFJMdX5t95xtTbMvg6lHxMhzLoqdr3cHplvk5T7acCE2zNDM8VbI5V+UJls+uvo7W9MvoWlen84P+pio8BiLgv4rCer/zl56vyKQohLgINSypUVDjmBEillP7R97t7znxKiGFlFeqhr/lUXyFYcOnQooCVQTXUl5T0MRzcIOLrVhK6D+pDWpSPJyow1pZ0R4NDldhEZHYkQgpx//oPiiS/i0ze7dJeoGqcw8ZL0ztYrgp00j8THsSPZQmJSaC1CwClSnWkpEv4FH83jUFMLlvf+HUhrf+2fQ5dlteDSfV4WXvMHdj10P1fc+RJldgtFzz8XlDdy1ufsv/cuI+ilcg9SWBh48WjSN22ky+AzadOtA226+WXk0KanigKCV+odtzD6X1VFblE7Nat/k09ork+wrEpv6lBW2FlCxHGKiTMGjAi31uklHTeWOEcqS+NjkowlPoEVeKqGTX++g5c+RpOWBUbwOHw0O7CM5P1GDBTVh8YilBhXfne3GnQWm7toHdj6LnYOjE4np6eTSEV9X6abPH0YzykmOikQ6HPzPEnvK8YQFZ+A1WrhjEGa1sleWvnTc0TFkjZwKBHx8SQe1mfCir9HUKcXgvTWTdl1y3XsvHF0QKsiBbTOkcwfNgmb9YxK3+f8YZOwKhon/2CqCkMlbmUAVLVTIfJa1VAd1Qwe6rsSGLRcbtyfvEX2ZWm07GQMDja7kyUDn6TM1UQxgwjKXE1YMvDJILORz155+uxwRZLQsi0dBp4b8MnyWmDYjG/olJlBn2v+FMibO+FO40R/uUq7qbRq1tm4B0VQ9LeNRfEFlG01zYEPSF+njdixB4ywLHblm3OGeNZCj3EXXbhX+aCN7z26cF/IZ9LloluNMhStiV9AUTVd/klhZCGBEB+q9sSuLLhQJ5AH22rfSbNuhk+Q+kz8FNuM+qoCiv/71N5BqR833junIpRYlbaJ031Q1ZXOdnWCEZgIhNbKbL3p7MB1A4ucFKEzIkrxXLEopjq9SZwJhnndFWm0jb/NDsUE+7f6sUVUfr7bzzEmFU4UYSjUN6daVqrROKkx8mzKM1F9G32NyFR3KpwBXCaEyELzYzpHCPE/NI3RDD3P54Df4SQbzffJTwqwr4r0Skgp35JS9pNS9ktKSsKhCxJWH8SVRWpmMOcew9HNZpgCTpR2i+bRcfUq7K7QPvJn33Y7fUZeQN8Lb6bAbSHnnjsDgpM1xMcKxkfRvPT1gJPm9vab+MuH/+TiHzPxRIU+L+CoGmXMcqTS4Tuj4zhrUSadhlxO8/lzKP/33fS87PZq7/G2J57gwhv/RHR8LD3XZ9L34kuDjrfu1JlzbrktKM0IkFlt8SHJvtGYTXqkHstEOe6xwIHH7iHn4X8Fb5Pjv19pLBN27DE2KLOFmFmqREcbwrBLF5wcHih99G9s7uGiu2Kei4qO41iclW0jOivmLBHwNfPXa8nAJ8ndG2UEj8PCgWYD2J/8WEAFq2qyrIqpLhAgQhpB/A4rrgyHFBnal6gNCA4vDH96Jmd/uibM/Wqlzh82Ce+vQ4xAn8d8vHrbfF69bX5QbpcSCTo7WVf7H8kKpB3soHXIia2NJfmq82koYmOiuPDex7jooQlBPiNbRvSh/4pncET4ghzuXcWH6bviaSzKbN+P6n/ijlO0H/q70PSIagYxema7u+aCk0pgEI+IIrXXmYx4bk6Qr4nF7lA0Tn4/DV9A42RzGwORM19ZmauPe6o52GIJDhRrsQaPbNYIY7AMvINhfJziExUtesD8bZjqgsw+fTVBUAqwl2mF2fOU0COKpsSt+sv466D2O5GCJi2jOP/Wbjhsx3D4A9X6n4ndQVGE9kffsxXztxLSxBZCs1NSqAly0SUEBEx1QuVUNCGqc/elk77h0LgxDLjoZqM5Qgh/JYqq1ab65CnPwND8GO+Sqsm0Kdq4nWdrQ1z77oaLgNqO/nHBZrNz5D/3s+OuPwTVRyr3E5g0KP5JDndlvyWfVVAeWJltdBZO1R9KfxcKYkVIs7w9hGXEY1c0Vonq4g2jPqEmNtX5OG25dpBxftBKZENDKhuLc/ipIKV8UEqZIqVMBa4F5kspbwC+AM7Rsw0D/Ls6zgZu1FfXDQLypJT7gW+B84UQ8bpT+Pl6WrX4bb/CB0M+mUfuyMG0HjAgYKrzeYJNdSeCo2kLrO6qVyUAxDSJp//qTM67ZSxt92hvVEFh6A3PWmsbRRO/2WE4TkcaKuyU7poafMuZqSHPt8cYWpNSfen03gpxJuNbpNFj1MnvF1ct/kBpJxntOn6wsdzZv0RdCsXHyQLD/3gLZ4/5KzbVwVLpSA400zql6KHnBNIcFTrIiCmT4OUHjQTlw44oNX4PvuqfjJq2OkgQsVqtDP41g0tf+TzQ4UgBh5tq70NcYkogLSRCID76gH2PPYBDMftZlNmV/1zhk4HYRvvOTjXusY1Rn0temM32HlH0e+p1pSxlAGupmZZjWunvUrgAoBV6CVexcQOt7vozWX3L6DfK2EH+ove+4fAdNzHiDiMUhyMyzOpDHe+x/UYdFY3TqOc/pOXUdwwTsP68vXHRNHnrhaC2Cfh5KIOirbnhTCv1d9AqlUHaYmXPXdewZfRArC5FqNTf052tqu8i/Rug2lXnf2VwKcVnxL2hclwrZ5iVmf5xWtUGWPQAiPYwC+msqlkn4GsWWuMUHaus4lXMwQFHY8Unz68J8Vlg0whNU3W8Z3rI+/ULjR4LWHVNs91nCIRX3JvGdY8NpEPfZqSPOBKIlxS4rs1Oz1/Xk7Yy2ChhrAxTHL6VOvoKjGBWUvGB8eNUBFB/faXQfNvOuu6h4LZRnLAzO2nXjfMqflyqYKw61gfazniX3MrzU9v0otc/JX3TRhKSDQHWrgjRVt0Twh4ZzdBL/8TFtwevu7LaKquDLKrfmbpSLiB0Qk7zq8iLbc+RPYbp0qnU0a99bLtHBu5n47XGeKOuSo7U98T0CaVtClS/tMoLMlRTOtbK97C1l41jetVVIUsVVgMaJ4toVM7hp4N/A1cKIdYDzwD+UXwusAPYhmbCuwNASpkLjAeW6/+e1NOqJRCzwiKJiHSzpXAUG37af9KmulpjwwZWj9J8ag4kKB+8PsOLPS4CDsWuYkPN3rJjNzos+YVL3/gqZLG2KE1w2tIzEptNe+T5MXX86P2r6qp4ycdMGILNEVwv//5yUTHGh+1VBCf/xxjkfxD0gWkHhIS+0+dx7MH7aNfXWB6sCigAbfqcS/r5N6IUEPiZ2H0gNcV/lk9Av68XEzF1BrGJfmk1dBtYbXa69B/IuX+8KWgAtOil+SpoDvz3HuFS13EbnZYjKpZLpi0npXvwSjrbk3fR7MtPuOzpGZQ9ej0X3a+t0Thj6WNYHYr9E3C4rNz0TPD5LiUCdedR9zPy4+2GEz5gc7s48x8PBPlKOCMqR/tWESXGbN6iDAhWm5UvX87iaE5R0PdZXupk/vtHDY1T4D/BwoOrhWI+LTPidBkrluycf/vjXP70B9jUd0Hp8P3bH+0YY7w3Kv7I8Q7FJK6aarKLtQG9zBFDXK5mao9N2heIa6UKXIVKgMSA4KRojAXau11awTXkyJOPsv2mq4PunYB5PLTGyR0RQjMkFE2HYroUijB7+UszODT2ZkY990nguEP55qLjktjWPYK8B24MqMak23j+aiBgn1XxbfMPrHYHNocdZ2QFrY/+TEqUuHR2RbPjK9FUoZndIyi06H2E0i+4o2LYelYbsq7ojzXM9kp+4hKbs/Xqszk+4f/I0f0CbaXGqi51wmTT28bqM4RV1XrgUkxmFj093LoOr/IdFfTVtg7qNOTSkHkDflpqn6D0V6rjPBYLC858kd1tXiG/SV8QgsIjCQEfUoeyWlMNj+AXnCJTjcji6rtdrpsvvcrG55Fe1W9CmdiEMD2qKwZBW1GdE30X5fYY/XTVX1V1wfD3iZCUfQKbIdYS9So4SSkXSCkv0X8fk1JeLKXsLqUcLKVcq6dLKeWdUsp2+rEVyvnvSSnb6//er+l107oMZE+vprj/8ywAYyYMpkP/ZoD2sdnsFpodWEaLgjdq8W6rx+H1cfHYCWzs4mXvSGM115ar+gYC6Pkdip2Fqbx623zeGLtAq3N8fCW1vR9rRBM6r17BZR//ilUXXOpcRlcCjYYjMtaJO1r7UCz6El17uba/XKziS+SR/iCUyseomFyCtEj6hymkJLppIoNvCvbhUjuMkCj17djnbHYOb4f9nYlVn6PUS6I5zrfprZmtOq9fx43/HorFJoMEFJvDwpgJYQZmFLV0IFUqPgNKR+Sqfnlvhz/cRpMOPbHYbPS8/pHAPS4Z+CTeMhl0z2UlXj56eEnQ+Tavf5ZZ87dIjdAeitj2xt58fo2R/17936d/RanNbqHjgGaMmTA4ELpAFcjVDtYWa7w3sUczAr/t/m10lPOCnFoVDYx/nI5pG3oPPL/g5FKCYtqsRh3Oa6cJ3O12vE3yPs3Untw+OxDXyq2YSY5de7VxH/roGqXE9LLGxQTqpTL0D3/kkgefxKL4jEifj1JHDPnOW/FaK4c6UcN2+MtTHZxtrigOXzKAA71TAgsqfELTWp419t6A0ArB5huL1cql01cy9MYHQ4YNcCluDEPOMzTJFkVwCon+wtuVYUsVUPqMuheA1D/cQy6akFyujHCuqBgue+sbRj7zYSAwblUrUy8b/xoDr7yVJkc1wbf3ZsU0qdyPQ5+1RRQrbacIF+pWW/5l/+EG3gjFefzK/3xKxw0bSE3vHZRHTH4H8cHbWJVFFAGXSuWbDBJKLBZ8YcxiPostyLdKhBAq1cmoqvmx3nQrXgsMvGmccY9NjaCmQjUBB/or5fwKY9b2tpdTbmnL3hRtP0o1vps9KGSJoUFrepQ6pyFpnOoMi9XK+Z8spMsI7eFExjpxuKwgbFjtFjweH0lXj+LyqZ/Xab18cdHEpvRi9MwtdOpvBNO8bPxHXHFHqibcBSJX+wKDR3V4XHEId2TQ6ow6J2Cqq/qVS2oVTbdhLbn6gX50G9aS6AJtf7koZeD16DNpgeLHpcxiXKozvH+Pp9B+5zjCRP5O37SR9E1amDHx4pMkzJ6OEIKL3viK9kOrj3phL9HUMs6y4Ggdwm4nqkkEDrdeLz3IqjvaTmRsmFWVGLOrQDk+5Z6UmaWvsza4b2l/4mt0By99jMg4R+AdEwKi4p2V3rEj+hLxrRf3qVRGONTYPqFo3dW4RiAauH4L/u/TZ3UihMTj8eFwWbX28imaqoB/rGJGiY5h1+ju5D00hoIEbcHG1jRF4PYYWiiHYiYxBCfV1BNayLbpr3ZMnOFs61ZW86W2as2OiwYTOekNwxylChKKmaTNMGNXgoLLz8UnIC3diNbvN12E2wzbEqRxkuxsMxKvaENBxIhKee1qEFX/Ci6Mwd/hjuLM/05m+NTvA6apcGZmdZGFSmEXzTzdtuewQJq6As+mrzQujrAqGqfQ34HPowkuxxSznzpJ6nTWcNI3baTf1dfRM1/fkL3MeD+ilclXxQG7KgqitbIy0xRhSblfm65JzotSVjIrx91K2Aebq+qJmtofCSECE12VzgPPoPOgoUHPOpBLKPelTmwsFm1Fo68kaEWj1VNM/xVPBwlDod4ta4hwEyV2GP6ne+i2YSOtOxqTCmey6jtX2VSnfp/+FdB+xUCOf0V14iDmD3+VvZuNkDShYnZJIcgae26l9NNNPY6kDYvi/DK6ndWSrme2IPOnfRTlndwGjyfD9jQ77XaUQ7zRgTpcwR/QF+/ux+vxBXxuBBa2LDvA9lWHuG3S8JDl7hrZjTZfZ9C+j9Fplvu3zggjSJwuvF5NneoVVberP04WwLDrOrHxCc05VHXstAnD/BYIOKio/CMiY/B7p7VOHw7MQ7RQgocAlvc/xFteikuPSXK48oQ8QOcLrw5/MAylZbovSl7oho5rasO6aR4t9v1M8T2vVvm++QUntT+TGP4HQt2yQzHPnAiF4+/l8C/zSO2eSOaibC2onc1BaveESgKdtVwrOyKp5puSRSY0JcQuGhRffyXuj2eQ1Co1kGYLIRwU55fRbVjl79OjGz0sEmMVktIe3sgYLnx6GgAzbtHMDR12gH/OKI4dCeS1u6MJWCH9s26lDs6I0C9JXmIE0buLaNHaWEnrdgcL5Be/oC0S9i9LsCkz/MjoOPy7JDZtmRZY4TLisUlQYX2Kf6Vb2H0adS3SgjNfxGe1BwK0FEUMZf7woVi85Qz/SfNHswWZSYzwGf7VuHY15EIIs5CKPcyK4FEvf43n2GEcCc2Coh2r+CcoK3tpPlPWCgsYoj75BJvDgXhFi62UUmQHfZNzhzv0xEfofmNCEaxjlT0ObTYjCHK1WLWJxLFYG6C9d44I413xL+W3SGUls/J87S43ewekkXj51TQJt9PASSB0T/TY43CwlRMOl5LYvE2YvEJf0Si1d1r/v0Rb0WgLio2nlbuhdxRdVmvaNlXj5F9xGE54j0hug99b1x99I0hwUgSg7npw17CPQTlgtTsCJk7p9bt+wMixk+Dvr4Yr4bTwu9Q4hWLkbT0Ydl0nElOigwJd1gmd2wKQ3KFnIMleYWYyZsJgXRtgrMqJjHNUqXG6cOJ00jdtJCrRsD87dQtFXas3O4/RNkZuf+OzJ3W+OtD06aep91t0HBTo+FQfC7fSdr0uuoqYV99k5BufBZXXaXB/upw1FJvTRc4//k7q5NrVLl428Rt2t4qg+8QpIY8P+UNCYIVkde+bCJgbwa7b/iNjlA4ySHPgF5xOrL79rr6ZCyd+THF+WSDkhRopX8W/L5Yzvuazdnd0aB+nPo8+RfqmjUEmBqksufcT7vssQ/seIkqVAKc2412J7WRsHtzzL5oUsuuiHpS4tBcnTzGpOZW4N169x1cHBzXWjcoZn/yA49U3SUo2/KnCxcIxZt3GdSOUxRsRSckVTwnC71gb7vn6zfWDlz6Gw7vW6C+kt9JKYVuokBYCLHrhLrfi1FzNdR3hYtBZrTgSNCf0gmrk7MA+fxXKatWrJ8ld0rEXaEJL8n7DM97himJd9xgy+wfveVfeSt+5QTHFOZU+pPugiyiIseO6vXKgy4q4jmnCQ8JBQzvpjIoLaKXtusbQ6g2tVRFWK+d9OIdeV/4Jm7OKGdoJ4i3StyOywVkffEPB3TfSdWhofyh/H2KRpThK99E1811c0V5suvnbqqxMC+xLqZjsVI2UUzc3htrsGyC+nRG/zy+ESRRTrCIYW07ACqJqKv3v9YlOEGsLU+PUALj4PzPZd+F00s+/NpDmdEei6iAiY53B2gCrnbY9EsOad8Ix4p//YfuUgbR89oVaqn3N6HvWmbAp3JyzelS7+KCrb+ZIr7Pp3D6VuWdrvkMOJRaKo4Kqv+W5Z1EVZ99Rfed5okQlJHDB9xVDlRnYwszQQ6GaG8967XOWPv045932IMvfn6oXpvq16APlSa40GXlbDza+qAmmA66rHOUYDOE7KrFzyOOhiIgytIDV4dP9j2zeajICLVI1E4EtxgVFmg4gKBij4ojcfvD5eFesoHNkBPPP7kqLHEm0siu8O8oQYJqu0/Q+HXcYlXC4Igm1NWxEk3jaVfOO+QklOLkVwclezYrc6kxmVpsNL5q/mk+NMi6sHGg2gEOJvRWNk1KIMrP33XwL26Z9zEXnjFbK1cryhhksndWE9QDo9NU8Cg7khD0eEJzCmP28+mi1pW8Tev6sbdTudEdzzfSllfKmdR0CfIc3tTns0Z6lUARqe4Sb/svWVTovFGlHHUAZnfcaaaqQ7YqKpwRNMDAimoeOTxTfvA2rWkdiu+pa0pX0nCQHpRGOoLTqGPHXx/hq516G3fsMUYmJ9L/1wfCZdSEoOWccnZ54k+Vv5nPzcyPYlK71nxZ14uLf5UHdi1B5JlaHEy+VNU7Wdx7n+N5NRMYb35TXHyxV0Tip/lQWS3WTL+Midocr8P2pGqf6wBScGgDCaqWlIjSBpnGqaLzxawNa7PuZ5cNGUXS8QkyBGuCIiQmoxhsTFWfwCR00LZ3/Y3QqgpNFWNh91VmknH0JDRV7NZG0Vdy2ROAAFimJbtGM8ya9HnRcWK2UOmLI6HIzAy/ogGf6naRcPjp0YbWA0eY17z4io+LI7tOBmPOq9w8Tdk19L2qwhKHLOaPY/HIThg4fzNIhmhZK9ZEJigYOWKM0bWSLG/8Gz73B8DH3B46pmzCnHKp8LZs7OqTgFI51Z/YktkOHoMEwVJBHe2TVKw5V/AJXeMHJjpfwpg81PfibMo6cd/PdcPPdQef5pAcLofdiA3CGiUGnEtOyBTEtW4Q9HhhYwwiPQg+l4nMq/ozu0FrAHiOuIfd/zejU8ww2d9e1uSepnTjjpzWsufZyur3zMdv6a4t21Mj+Nt3/UkgoaJMMuftJ6dCfg/o32TqvNDDBtVitjPhuRaVrnP3T2sDvkqfHkdSpa6U8FbFYLFz27NvV5vNYCDI9p/cdQvpbXwblUYVoEWLLJLuiQYuMiOY4cKBF8MvQceg1QX/vbxeH12towA1TndL36dryIUsfY8mAcfisTu05SYnFW0ra0C2wIMR53pNzSagtTMGpgeJ0R1NQIU3VBjSPXMrI28bWfcXqGHHX3yleH35mGOhsK8xSL3jqzdNZrSCK3BbKbSf2AVcMg1AVY+58m7VzhtL8b48GpUfoThalHtjSTovNsn1jEhfWkWBc7Kra4VvF4Y5ixJTZNco7+Lwr+XLkXM68+6nqMwOdzte0PS5dqlHfBZcjdDun33wX3HxXUJrVZmVNn860vPwqbM8/RXwFFZk9MvQgHY5r3v6kcmJgTFIce8PsURmKwObgYV43m9VxQsJdZUIXXF5SjK2K6zodVUeGr9GVA6a6MAF9PX4HIkNL4YoK/0ya9Bt+ynUCTcDs/Wnwu+tSfC6bJXekADgyuD8jX3qb3KxsmrZvx1I9dMyKOTsZ9seaa2d7j762+kw1JO+BP5OU3hfxteZjF06gDhKi/X5hQtU4ae9ogRvSO/ThwENXMGzEn8JeN33TRtKB9+//YyAtsJBH3V5JF86cZcdxlOdTYnWirW634ijPx6nstxlkSfA7T9WP3GQKTg0VVzWdtDvxxLVNjZHO1fgg+E0HLuuJmSxrkz4raqbyV/FvGHwksfpPMDohnqFLK28NafPpTsAZdtBjGW5feYhXV87HarOEXTRwqvj7Kl+4UTQUJ7ALusVi4fKJNY4uEsCtSww2mwO/ga26fbcqct0Uzddtf88uHBv1x6BjTnc0melpWMvLT8ikouLfXywiUtn7LUQdDyT7Ql7DP+iE0zj5V84OWfoYPw96HIQjaAY/eNkToU8MOIeHJiYmmXKgPCL0d3aiQmUojMjhYbSx+oCuRnuPiKg6zMXpQg0k64hw02nVSjq7XAiLhZmT9uD17IKWmkCfsWgfGYv2ndZvMhyD/nQfAKt1wam6ryE/QgQc6qVN3cTZRavPnseiR6bvc+PTNbq+319R+Iwo5GrQUnXf0KiCvSTkbqCs/V7Iaom0xGJVJj52Ja/HX1gNzPmnA9M5vIHiCrNlS9m/NBPMmZf+OeTx3xt+wSmCetgiW0dYrYG9sWqKxWrF9eY79Jr54yldO1xsFq/HFzK9NnCPvY/8GCe9z7ys+sx+6lClLsWpvwvJnXtjv/pcmk8xYrm5I6O46vM5XPHVdyddrm3i05TERtC5/5lB6fuvvRzvi9oCis5LFzBsbmVzDijbyVRhqgNtBm+RfmdmbT2jozwfZ9lxEt57kRazK2jDQuwfp9K+zxCO3HwLPT4MNvFkddOcsE9UQA1FwH8qjAYusEJOjdlWzVY+AEWP38Oxu2tnC9kPIgAAIABJREFUV4QSV+gh0xIREdCeBOIC6v6GwkKNQ8ecLvw7LFRl2rK98yHtZ88PmMHUOFB2h5OobhcRkXZi9+AX5K0eI+6cw60GVjWu0SPzbTptnYbDeYzUrGn0yHw7yN/NqWucSu2Ks3tdLw/XMTVODRR7mGW2Pf82Af42oY5r03AJCE71NPM4FdoOO6PK47l/GI21ClMEoMVcslZ2RK0mXNYp0e+GP8MNDVdwj4lvwrFaKKf9+EkA+N2ZXSE2Nz1ROoy8AkZeUSn9nMeNjbaFuhVKBfzOtmFNdcp2FjbfPpJy1lPQaitRezpQ6tC0M02HXFDpPKvwR2APPxANve+eSmkXfjoXWXZqxkE/HhuajBcmAKZD2weeSJcSSb2aCOAAfa+9pVbqB9D12/l49u+vMs9HDy/RQ8foUbN9VBs6pjaxvvUG5cXB0bQDQmcV8m2HoVq8MEuZvlpPjZQeTgtYDX2GXgjTfkW2a4fYsxUAuyMiEJok1F51Qf5/yvYubncMO67pQOdzx9Bq91b4IhN7WstK59cFpuDUQPHP4A4nmkrBqjgaEwcco0OH0MtwGzNnPFm9gHzG0sf4ecgE3ftSX31nodI2KfVFTkoszbPzqs9YCxREWIgq8uFy196Sb5VwkfnrEp9H3+A6rMbJqGNs4WQ6bS1ibds2dNqqxbLa21SGNAG67CnAZqT1xIRDYbUiarA3Z00oibIRVewhMTq0G8JZL37Ginv/ysiHXmfbjL61cs0TxdGsGY5m4QVbMLQ7NU2vbTqeNaxSmqzCFOupMMQ4yjUhy63Mvk52P7ie519D8dw+dG7bnvXdtBV8zqiYgOAU6psSNltAwAuKIi8EFz+h+Zq1Aw60bsUlQ2rPH+xEMEflBkzSe5PoP/OH+q5Gg6KgQvy4G/83H8t/X6b/+Q13Bd3pxFl23NjYXt8A1mq1nHCYitPF8K9/otOq8GEZapNm70xl/1XXEt+8dmeheX+/jQMDe1ef8QQ5+pcb2T+oZ/UZFRITU7UfYTTSVmkMRMm9NR+bzkMvN86//86g/EdaRZNzZjqXP/BftvfuynlvzDqh+tQm3T+cRdHN19K2a7+Qx+NapnDelLnYK+5h18C48ekhxCS5g7ZUim3q5sanQ2+pVCcE6hIsALVd8CMdFy0OSit1annKol0cS9Tep6ZJKSd9aXdaB4QwfJxcysIY1V8tkGazGRrVEMf9NDtrTNC+d3WJqXFqwCQOqftQ8g2ZdrOnY01oGpRmj3DT6ZLK20n8nkhqWY5tya/EFS1H/GVinUa9rw5htwdHNj+NtO7Tg9Z9aj9w7aA774I7q893ogy5p4q4O2Fo1/8sNv79LvqNujzkcZuy2mvofS/gueEe7C1bsvGxlwGI7Bi8UfXQ75cFfl8yNThIbF0T1zaNvveNqz4jUBRhI6LIU33GeiAy1on06RG68QEWfF5Zv5OZwF6hwcmu5s0rZXXaXEARke5YBi38Cl9BAdbYU3fC96+qi1C3oAnhZqAKSxarFfuLj+AtLaqcrx4xBSeTRoOjY+hNVn/v9Dm7mNa33YXF7cZSS2YTk4ZL+p23hT2mboQqhMDeMlj75oiovS0/6pOu3y2g5NCR6jPWE0mtomjTLaFetvAKiax61aTKhS/M5NcHb+GCx99HWK21IjQB5EVD/PHg2FuWENHrhc3G4c5uYlcWk5KcSuKg6mNa1TWm4GRi0sixO6OwNWlSfcYasnnYECwO10kvuW8QPPUghVs313ct6pyK25VUxL+XXWPHlZiAKzGh+oz1RMU9N+sbv49TTRY/uhObcfbbX9V6Hdq+/Ta7583Eqqya9O7JrpzRamfkW/Mo3voLUW0antAEpuBkYtLoaZ5aux3zqDffrdXy6oP0q26s7yrUC6pzuIpmMAKbMLv83yU1CEdwuknuOZTkntpG25H/HoezZQqdevRj8xMvB+UTVhvWyHiiel1cH9WsEeZXZGLSyLHbG4YjuEn9Ey6ektcKFmUTWpPfGdLY+qQh0HpU+NVw4fb5a0iYq+pMTBophd31ZfeRv48o8iY1J+vCPkF/H+iqxeGJj6r5vngmvyF8oVfVNUQag+BkapxMTBopfT9dAl4vVLvDuMnvCf8+YSrnTV6Ib+9mrKbg9PukBgEwGwrWKkIQNBRMjZOJSSNFWCx1ttTfpHEj3DFY2/ev72qY1BOGwqnhSU57mwfbj0UjkO5MwcnExMTExOQ3jFX3caqNPQVrm+LmwfG43Ef31lNNao4pOJmYmJiYmPyGGfG3p5DAgNtrFmC0Lqkoy3mbVL2lTUOg4RsTTUxMTExMTE6auE69idu0sb6rEZKS5Oaw2ghmaourHM28oWFqnExMTExMTEzqhRbn9uX5KyzsuKAMgP5DG278Jj+mxsnExMTExMSkXhjS4wZ6rJhM1B3fw8Q+jWKVsCk4mZiYmJiYmNQPrfoTNe5YfdfihDBNdSYmJiYmJiYmNcQUnExMTExMTExMaogpOJmYmJiYmJiY1BAh5e9r10chRD6wub7r8RsjEThc35X4DWC2Y+1itmftYLZj7WO2ae3SSUoZXVcX+z06h2+WUvar70r8lhBCrDDb9NQx27F2MduzdjDbsfYx27R2EUKsqMvrmaY6ExMTExMTE5MaYgpOJiYmJiYmJiY15PcoOL1V3xX4DWK2ae1gtmPtYrZn7WC2Y+1jtmntUqft+btzDjcxMTExMTExOVl+jxonExMTExMTE5OTosELTkKIVkKIH4UQG4UQmUKIu/T0JkKI74UQW/X/x+vpnYUQS4QQpUKIeyqU9S+9jAwhxFQhhCvMNW/Sy90qhLhJSf9GCLFWL+MNIUTD31QnBA2pTZXjs4UQGafjfk8XDakdhRALhBCbhRBr9H9NT+e9nw4aWHs6hBBvCSG2CCE2CSGuPJ33Xps0lHYUQkQr7+MaIcRhIcSLp/v+TwcNpU319OuEEOuFEOuENiYlns57Px00sPa8Rm/LTCHEczW6ASllg/4HJAN99N/RwBagC/Ac8ICe/gDwrP67KdAfmADco5TTEtgJuPW/pwF/CnG9JsAO/f/x+u94/ViM/n8BzACure/2aextqh8fDUwBMuq7bRprOwILgH713Sa/ofZ8AnhK/20BEuu7fRpjO1bItxI4q77bpzG3KVoIoYP+91G//uP13T6NuD0TgN1Akp5vMnBudfVv8BonKeV+KeUq/Xc+sBGtsS5Hu0n0/4/S8xyUUi4HykMUZwPcQggbEAHsC5HnAuB7KWWulPIo8D1woV72caUcB9AoHcQaUpsKIaKA/wOeqqXbqzMaUjv+Fmhg7Xkz8Ix+HZ+UstEEK2xg7QiAEKID2uD30yneXr3QgNpU6P8ihRACiAlzfoOmAbVnGrBFSnlIz/cDUK12ucELTipCiFSgN7AUaCal3A/aQ0D7KMMipdwL/BdNutwP5EkpvwuRtSWwR/k7W0/z1+FbNIk/H/jsJG+lwdAA2nQ88DxQdNI30QBoAO0I8L5uEnlU71QbLfXZnkKIOP3v8UKIVUKI6UKIZqdwO/VGA3kvAa4DPpX6tL4xU59tKqUsB24H1qMJCF2Ad0/hduqden5HtwGdhRCpuuA1CmhVXZ0bjeCkayZmAP9UND8ncn48mjTbFmiBJrHfECpriLTAxy6lvABNzegEzjnRejQk6rtNhRC9gPZSys9P9NoNifpuR/3/10spuwNn6v/GnGg9GgoNoD1tQArws5SyD7AErXNuVDSAdlS5Fph6onVoaNR3mwoh7GiCU2/9/HXAgydaj4ZCfbenrn26HfgUTRuaBXiqu26jEJz0l2UG8LGUcqaefEAIkawfT0bTAlXFecBOKeUhXWqfCQwRQgxUnBcvQ5NEVYkzhQqqPyllCTAb7YE1ShpImw4G+gohsoDFQEchxILaucO6oYG0o3/m5Vd7TwEG1M4d1i0NpD2PoGlA/QL9dKBPLdxendFA2tFfl56ATUq5slZurp5oIG3aC0BKuV3X3k0DhtTSLdYpDaQ9kVJ+KaUcKKUcjLaP7dbq6t7gBSfd5PAusFFK+YJyaDbg94y/CZhVTVG7gUFCiAi9zHP1MpdKKXvp/2YD3wLnCyHidWn2fOBbIUSU8kBtwEXAptq6z7qkobSplPJ1KWULKWUqMBTN1jy8tu7zdNNQ2lEIYRP6yhq9M7oEaFQrFKHhtKc+IH0JDNfLOxfYUAu3WCc0lHZUyrmORq5takBtuhfoIoRI0ssbgeYf1KhoQO2J0Fcg6+l3AO9UewOyAXjYV/UPbUCVaCrJNfq/i9C84eehSYfzgCZ6/uZo0uVx4Jj+278a7gk0YScD+AhwhrnmzWi2z23An/W0ZsByvR6ZwCtos6h6b6PG2qYVjqfS+FbVNYh2BCLRViz5382XAGt9t09jbU89vQ2wSK/LPKB1fbdPY2xH/dgOoHN9t8tvpU2B29CEpXVoAn5CfbdPI2/PqWgTow3UcKW8GTncxMTExMTExKSGNHhTnYmJiYmJiYlJQ8EUnExMTExMTExMaogpOJmYmJiYmJiY1BBbfVegrklMTJSpqan1XQ0TExMTExOTWmDlypWHpZRJ1eesHX53glNqaiorVqyo72qYmJiYmJjUGuXl5WRnZ1NSUlLfVTltuFwuUlJSsNvtQelCiF11WY/fneBkYmJiYmLyWyM7O5vo6GhSU1MRjXvHpZBIKTly5AjZ2dm0bdu2Xuti+jiZmJiYmJg0ckpKSkhISGiUQlNB7gHKSqverlQIQUJCQoPQqJmCk4mJiYmJyW+Axig0AVj3HaJsx85q8zWU+zMFJxMTExMTE5N6xeptPMG4TcHJxMTExMTEpF5ojLuXmIKTiYmJiYmJSa0yduxY2rRpU2WeW265hTlz5rBm40YenTixjmp26pir6kxMTExMTExqjZ07d7JgwQLKysrIz88nOjo6ZL41a9Ywbtw4ko4fp1d6eh3X8uQxNU4mJiYmJiYmtca4ceN45JFH6NKlC5mZmYH0LVu2MHToULp3787EiRPJyckhJaUlNz/wAIuWL6/HGp8YpsbJxMTExMTkN8QTX2ayYd/xWi2zS4sYxl3atdp8mZmZZGRkMHnyZBYvXkxmZiaDBg3C4/Fwww03MGnSJAYMGMAdd9xB586dQULGli107dixVut7OjEFJxMTExMTE5Na4eGHH2b8+PEIIUhPTycjIwOAmTNnkp6ezoABAwDo2rUrbreb0rJSCouLaRIbS2FhIXfccQcOh4Phw4dz/fXX1+ethMUUnExMTExMTH5D1EQzdDpYunQp3377LWvWrOHOO++kpKSEHj16ALBu3Tr69u0byLty5UqGDx9OZmYmndLSQGjC1VVXXcWll17KNddc02AFJ9PHycTExMTExOSUeeihh/jqq6/IysoiKyuLtWvXBjROCQkJgd8rV65k6tSp9OrVi3Vr19G9UydA2zamVatWAFit1vq5iRpgCk4mJiYmJiYmp8T3339PaWkp5557biCtWbNmFBYWkpuby5gxY1izZg29evXiueeeIy4ujvT0dNatX0cP3b8pJSWF7OxsAHw+X73cR00wTXUmJiYmJiYmp8SIESMYMWJEpfS8vLzA72XLllU6vnDhIm5/9lkkMHr0aMaOHcucOXO49NJLT2d1TwlTcDIxMTExMTGpUwoLCznzzDM599xzaN2iBUhwR0by/vvv13fVquW0meqEEK2EED8KITYKITKFEHfp6Vfrf/uEEP2U/COEECuFEOv1/5+jHOurp28TQrws9J3+hBBNhBDfCyG26v+PP133Y2JiYmJiYlI7REZGsmrVKp6e8FR9V+WEOZ0+Th7gbillOjAIuFMI0QXIAEYDiyrkPwxcKqXsDtwEfKQcex34K9BB/3ehnv4AME9K2QGYp/9tYmJiYmJi0ggw96pTkFLul1Ku0n/nAxuBllLKjVLKzSHyr5ZS7tP/zARcQginECIZiJFSLpFaC38IjNLzXQ5M1n9PVtJNTExMTExMGjqm4BQaIUQq0BtYWsNTrgRWSylLgZZAtnIsW08DaCal3A+aoAY0rY36mpiEY09uEYfyS+u7GiYmJia/EUzBqRJCiChgBvBPKWW1MeCFEF2BZ4G/+ZNCZDuhlhZC/FUIsUIIseLQoUMncqqJSRAr7u3H1/edWd/VMDExMflN0AgVTqdXcBJC2NGEpo+llDNrkD8F+By4UUq5XU/OBlKUbCmA36R3QDflof//YKhypZRvSSn7SSn7JSUlndzNmJgAnX+W9P8xv76rYWJyyvh8Eo+34cbKMfm9YEhO3gYcu0nldK6qE8C7wEYp5Qs1yB8HzAEelFL+7E/XTXD5QohBepk3ArP0w7PRHMnR/z8LE5NTJCevxBxQTH7zvPHiOD589Or6robJ7xzVOfzYzk31WJOaczo1TmcAY4BzhBBr9H8XCSGuEEJkA4OBOUKIb/X8Y4H2wKNKfr/P0u3AO8A2YDvwtZ7+b2CEEGIrMEL/28TkpMnasYmjA3vz0V2X1XdVTExOmC+++YaJE+6uUd72c6YxeOaG01wjE5NqUASniGJfo1hld9oCYEopFxPaPwk0c1zF/E8BIQM6SClXAN1CpB8Bzq18honJybF/w8/EAWmrtnG8qISYCNdpv+aazTsQAnp2TDvpMj685zr6f7WG1JXLcUdG1eic115+hlYde3HphSNP+roNkWUZm1j7yRNccd87JMZEBtK37T+Kw2aldVJMPdbu9NLu2z/jOuwGnq82b6u94bpnE5O6Q0oZEBSksHI46zBNWiVgtTXcHeEabs1+4yxcvJjFvy6p72qYVMA/22maK5g9/po6uabrrcG43xp8SmX0/2oNAHMm/6fG56R/OhnbR2NP6br1zabd+9mafSAordf0Idxqm8vaWS8HpYuJnTny3z51Wb06x/Z1HG2WO0/6/KLSct79771sztpTi7Uy+T0yduxY2rRpU2WeW265hW+++ZY1Gzfy6MSJlDpikRYnRXlVr1yeNuVNZn02uco8pxNTcKpDjhaWsXjrYQDiZ15N/LQr6rlGJpVQ1MR9P9/CL4u+Of2XnNME71dNTvr83PziwG/H158y87OpQcc9Xh+7jhRWOq/5EUHqSsdJX7ch0OzNrsS83j0obdWRCDZ+0gK5d2VQetnsJrhm2QH48pu5HDx2nAVLlrH9sc7kFZbVWZ3rAnmSTrbrFkwn7Ysv2fzmjbVcI5PGSGFp+UmZznbu3MmCBQsoKysjPz/8Ypo1a9bQrVsX2vU/n/sem0i5Q9OWFxeUc3DXcQ7uNs49uGcbB3dpPlDdn3yRjo/8G69P8uW8hSdcv1PFFJzqkJhnk+j9YQekz4d9bhyWueYOMXVJTl4JXl/VnYCsYF3e92Jof5EpbzzN+k3158gopWR9trZ55vePBnYnosNWQcILTwTlnfnGo+x9tDOHDx9m3YYN/PTrL43Cj6Am5MxoRu6MhKC02B+iASjfGjr0yJ7dWSQ9fDcLnr4c/ncNZdMEG+a9i8fro7DUA0CZx4evmnelIeP1ennj/lG880LNNlNYkbGJPTmHObBxKc0PCywrQy5QrhFTPnqLjz54tUZ5337lKaZOafh7k1XkSF4+i5atrD5jI6ag4DiefRs5fvTEQ/iMGzeORx55hC5dupCZmRlI37JlC0OHDqV79+5MnDiRnJwckqIj+cfYG/h18fdBZQhRSkILw9QenVdCdL4nKM+X7z1J3EN/o64xN/mtQ77JaEraBhupD5WcclnlXh9Hi8poGh3aB2ffocMs+vhZLv7reKJPwE/ncH4xKzbv4sJ+navN+83Xsyg+foQrrrm5xuWfLhYtWULB3McYcPcMEuMq+7AcPnyYo890Y0nXu7ni5nvDFyS9QX9GVfhQ/fR+8SM2LfuIqCe+Z+nstxj913E47NZK+UrKPHzxxiMMGv13UlNahiipeo4VlWG1CKJddjKycmjTLJ55n79Hk0XPMP/qt+jxzbGg/E1zg4U/91czid8ZRfaVP3LgmUdonmOhfNXaoDwHjpfQLKZm78nhglISo07eHHQybNyyFc//rsJ3zcc0bdqc7TuzGDqgX5XnWAu8IdP3ZiwkthA6z8lhb3M3IMndm8XUSQ/Tct83nPPsatY+OZDtTS/g2rGNbx8tgLLyMobN2kyRczP8n7FmZtb095A/PM9Zz/4SlL940gi2RsZgaa3tbn8q3k9nZDyMlAK4s9q8adP/R0mCF/7450BaxpatrPr8Ja7+54u4nVUPUcWlHrbtP0z31Obsy83HJyUpCdX7sO3LzUcCLZtEV5s3FD/8dzRF+7Polb6CmOjYkyojFJu37yBn326GnTn81Ar6+gHIWX9KRThKi7B6JF4r4IqE5t1hZPXrrzIzM8nIyGDy5MksXryYzMxMBg0ahMfj4YYbbuCll16mS9cuPPjAA3Tu3Blht7Nu+06e6NY3qBwpnRzZW0DTNuGfZ/Ev35KYV/e+eqbGqRbZtGMXW3eF9w1I26B1AgXHD4fN418GX1DqIftoEQDv/fvvTHnj6UCe7fsO8tHDV5D9SBrbs3NClpP54d3ErZzB2m/ePaF7WH9fJ46Ou4JjR49Q6vFWOet2f/F3IueOP6HyTwQpJUs37qyRdiR3yljaTs9m88KpIY/vWvsjzIlHfPVeleXs27Am6O/8BDefffRyyLwpq2HtS9fS5v3prP1pFstW/Mr7T92Kx+Nl9n//wucv/YsNP39FwqpP2TH55GdFWRN6s3z8cDzl5XR8txOLX/4zzjn/JWlBJJ4Z1fsoOXVtd9a+zbTOtuDwwPFjxju4etVS1t6VzvxvZ3DoaB6/rl4bpiRY8vOPNPlPU1atWhaUvuvAEfbn5oU9b8GC75n2vhaVZNv+IwHz4sH8EqSUlJZ7WLdjX9jz98+bxN5fSzj47fMce2ko7T+/IOh4YXEpUx8ZxfyfjC0wcx2hhV6f1L6xozHgs2idrq+8nBYzPid5ljapyV+QT/yKj8PW53B+MfuPaebPlRu2UVBcfTT5snIvU1+6j41bt1WbFyDrcCFen8Trk+QVldfoHD/ecu0+IipUS7z/Xzot9JH5Y/B3krggiuQ5PnK3Zmj5qvjkSsq9lTS3q9et5ZM3JyClpGhWIsWzE8KcHUyLg4K0jcHC0d73byJp4fdsXfFtUPqSlavIOXyYQ0ePM+WJP7J5xy6+eflvHP9Pf3KPHObYs13Jf65Lja6b92w3jj/btUZ5Q9H8u2wGLbZxbP/Oky4jFCVvDsc9/YZaLfNkkScZ0fvhhx9m/PjxCCFIT08nI0N7p2bOnEl6ejrpqU0RuVl06NCeXr164ZGS4sLjxMc2IWv3Tv55353ccvsYAGKbRlR5LUH9hI0xNU4hWLE+g/WfPskfx03Baa95E6W930P7MT78AAJQXlQQ+C2l5L2JD9Hz3D8iS/M49NqfSL7rY3ZMvYfmBVmkvLaHwR/8oGW+7SEAys4ZhuZKHMvmlAdpd29lVffR5evpvsbJ+lYLYHT1Mz8/zX+MpDmQszuTiKmj+cUykGufnhM4vmXrFtYvmM4VtzxE04WRlc6XUrIvr4SWce6g9Mkv3IfFZueGvz/FL2syGNSzG1ZL1TOFRV9PJ+67u/jp/Bc566JrmPrvf9Drg+9J37SxUl77Zm2gOLxzA9OmvEPh9iX8+VFDaCwpPEYEEHsAduzOZtHkxxl99yS+fPNRKDrC9Q+/x/vjb2HQx8Ez8W5rSmHN62zsOZD0HgODjgkfOFfnElcAOzcvp2T+LAatl2RftRbrzwuxuXxkSx8dfnWxa/dOeNg492BeIV6fj+T46me8zhk+ol25fMXFdJrRAk/35UTt13x1fIVewF7pnNJyD589P5bul44NdH8tnjcEgaMHjV2MNk99ip5LXKyV/2HV4ldIOr4FX489WKyGBq3c68MqBPvmPs/mGS3Y436VPn0GBI7veaIXpTY3yS9vCaQVlZTyy68/c+6wsyl9/69E5zjgz/9H2htpLBE9Sb7xPVLe78sP/SZRkrWM1KzPOHD/Spo1bxEow+vTjKcH1q6j124L61ZvwHNQwq6mJD5p+CXlbF9Dwt61NPn69kCatNso9Xgp9fiIcSltpPv/SGEICMJiocVB431MPijgYHgN3Kan+pPoO4LzwQyKXj6bea3P4PKHPgmbH2B7xhJiFnxO9oFFpD/9a5V5s/fsJu+Fgazr8Q8KiovovPldOj69lahI7ZuTUvLB+FtoOegqzj//okrnfzHhTvz6uNzjhdifb8eSYR/RYYd2w96y4krnAAz4Ya9WPvDtd19zdNEbjB43A4fSD+55oiNrk//AqL89xY8/LeLcYcOxfHwFzY568ZTfU+V9heNQ7lH2vngux855Fn49Rup+C7s3LmND5jrkkR1c9+DbFL42mjVNErF0HknvqavJLL4F98q9NNkTxd4bVmCbpfdHz9bggrO0Abn0qXJ2jO/N+q7384drxoTM+vPSpXRo34GmCYYfol8gLS+v3jdu3fo17Nmyhouv/FO1eR2zIzkVr8OCgnw4moXtnCdwOQ2tsMfrQwhRbZ+rcmjPBhLyfBS4IKl9pUXtQZR7POQd2MWmrBy+/fZb1qxZw5133klRUSFdu2jC7Lp16+jbty8UFGEvtbBqxTJGXHARmZkb6Ny2LeAjtXVbXnzuVU1wkj5sTgtFJWVEuMK0ii+0Vvl087vXOOUVlVPm0WJHLNuwFSkl9ndH0PbHdaz4PrT2YmVGJjwey+dfTA9K3zyjBetntQhKk1KyZtvuoDRPmfGx5R45wJC3vmDNG1ew9c27afurnY1v3k+X2YdpMr/6ZeXH9+zj47ee4cOXHglKL/JqM9QjZUeZ8b/X+OKh8wD47IMXWThvLgDff/slB3OPhCzXW1pK4RdJNF+4PSj96Pt/IHn1GxzYlxXyvEXffQ7PtGLtqqUcOZbHijWa9iJ1yyekbfqQxfNmE/fRCL5xXw/sAAAgAElEQVT49w38uHAe/3v8j5R7Qr/8+797Dcc3ceyb9V88Hi+9PtBs4K/fMYIPntfMbQt/WsCx4/lIvT/wlJUS+elzlQQgIbRXXUjIen00LX9czK9TxhP/4ywSF2jxVjvPCj5HJevXLymvEBTTZyFwXZ/PS4vt2qBUlJ9L2kYbbVc7KDuiaXba7NPOXfzzQtY91os9E3qRO74D0+8dFvaaKlElkDJH02amZtpofli7cJuloQf3zKVf0+eDheyYcF3A7hKtWIiPHdhl3EeeJshbSr24fsjBs7gL79z9E3uz8jheor1Hax/swLSX78G1XDuvfHWwf1fC/ChafKcJWvMX/khRSSnfv3IHpa//lXXLF9F6qYvUXdoz2PxpC/KWHWD7oilsn96CvG9fwTP/B2xfx3Fo52qmf/QaH064FYCsx9P55Pl/IPwdvk8GyvF6jffmwM4MWi1xceBX5RnZbMwcN4oV/9cpqK4+n6qJ8ktOoQeUopJSvnh3AvmFRcH3O8uL/DKOgzvXkbggCtcPa8k9lscXr9zL8Qp5582ZxqJ5X5GzeZmmXVmcR2FxCT8t+ZmKTH7mNr75ZjabFk7B8XUc8vMPSZ4yHfe3sWz4ZXYgX3lZGYOmLKHsnbtC1rvfbENruPR/48j+NB7rlFsDaWXK5C0kAsr+9w96fraFI/t2kLV3P1uytGfv+cyB+9sZLPj0RWJn3sDPc6dQON9J80URlBRVXoQAUFJWzpIVq8JebusvM3BOK+b4rIeMQNJWK9Fz3qfJvEVIKWn5s5s2XxaSt0PfI37TQWL0OaoqCHo8Xqa9ch8bQ0ywKrIzYwlM8xI5/cmQxz3lHo69cD07JmhmpHKPlwWrjNhX3tLQAqhK5EfnE/P9o5XSS8o1jf6qVcvZ9Fg3duwKHifmfv4xGRvCm9umvHg//3shWFAtO7IXa56gOHcfuQd2czxbawNfznoKc7aGLau4pEQTuoDjebkUFRXiq0rtqFNQUEBZWTn5B3cRebSYh+6/hykfvsv6n74kKyuLZdOms2mDVoeEhAQyMjIQPliVmclnM2fRq1cvMtevp3unToBASB/OkmP6OyA4tnsrYtsWSoqLQl4/xhN6/Drd/O41ToceT2F9/HnEpZ+P47tHWDjyObyrYmlxRLBzdwazP32XwpytXHeXYdvN++wONn7SgqaH/g9GGZF3bT6wVZiA/DDtNWJ+eoZVf5yMXwdTVmq8BLt2rcMNnPGjne2djgJWoncHL69WKSoLNj844pNIf+FD7Y+7DH8Mj977HJfFtJ72ImlbrBQ8Wkr0x69T3LycD2akEb/Lx2etrIx+8AwOUUL3Ns0C55cVFeICmh0JHlDylpbQam8Uh67fEELPAQe+foWm3ySxPfoVdpUdISYnk5KXN9N0gTYb3BD9Golz43H1XErh5uX0XWpltucypDseixCMfuijQFkuvR16Lixg8v0XMURPHz4/G+Zns+eqv5H/0q3MT2+PQ+gDZvEx0jYbmpJff1lAcWkZdp9h6ihaW0S7fYK1KxbQc4uW1+PxEFfFWJK3/Et+yZxKU2U+6LMoGgthwapXobysJJArIqUNsIoCXb4peOKvJOy2YMcGxNNN2SWo1ONl2fJfGdx/EDableJSDweOGatKInXBx1YD7fT+hd+RBnRa5WF3iF2Gou58LPC79yLd3Cug6VHBLwP+Qnmxl7n/nktP+720fuhXImc7aOeaS5Rehxbb8/nl5wXkbFrK6FvuD5S1KWMFRa/eysIfWsOqg6Rtt7P5p2kEiy7QdoeFzN1bSQHsu4pJ1F/59bvXEPPl+yTvssHDsOcXH2ltZpHl6lDpHkqKjLbxerQPz6Gaphx2es3YBgT7Y/l0AVgCFv35Waz2SscBvnn1Ljq8u5Afju0i7fyxrPvqNW544PXAcanPeGOOw4JJt5H+vzUs8JXQ6cI72LtzI+dcOJoW8/9BlN3Dtt6aylFI+PHVO3FkzGdT9Aw6dzNCJCQum0eTfV+x70BrADpu0R8McGDdEhhxHQClJdrL2m6djQ07dpE8eQjH/hpaMDm+bjUALRYbWmCb0x0yr0ryOm14KC44RuG7wyn3Qvl/sgBI22Jl7eIvaPljDFnRn9FV/3ZKSoI/oo3bd9GiaRI/vvUvHCt+YOODn5Deo3+la+1b/wvxgHNdPq5S7X6lxxv4lsuVySY2rV7Cp/0DwGIMZZ+/dj/dX5tD5oqviXrme5Z9+CBn3/4ypaUlHDp8mB5d0gN5tyz9ng5AWoaNxT/NY8+0B7ngqR9Y8OXHFB/dyxU330faWjustbP5zm3s/sslpOw3+kRPWbAtdPGSxXTp0oMmsYZfTtnsBBLR4xXpAnp5eTlyfDJftfknZP1Mh+letia/QmulrLYPPsWObh66fWYIPHM//4iI5a8waNxiElZP02du/2V1xgYcQoLH33YebEWF2MuBFPAetYKtDJksObp/J674ZCLcxjsgDm1CSAFRPbHs3UeZQ4Kzer2KyN1OmcWG9FiZ98svlJWUcV63HtjygFbQLDGRouJicnNzGTNmDBdddBFDR11FpzapxMbEkJ6ezhuTXmJIx3SiCww3F5u3GIdnDxZ9uCsvKQgIK2rcp8DMtY6pkeAktOl6T6AFUAxkSinDj+6NiPLZTejMKjLOyKTbz1FklT2KQ28WR2QcEfOfwFlsQw1Kvv5IOcnApn3R9C0tY836tQzqZ3QG08bfxuX3PI/THUnZ3InELI1mve1x/Ium/Z08QKG3ICBQxe+zAZL2O4z6vf3PkQzVf2/MWMOBly+jGYaJzNk8BTBWd3zy0Eii+lxDvM8GeGljTSRtSy4AGxZNo/UeC+xx0oa9/DJgHFI6+fyZrxm+4Ak2TTfiYpQcPoBfl+H1Sd4c9yeuvfdVknRzRlFhAaFcIuUhreMs259D4qq9JB2NJPeAMZOSOzQNTNpaY6Dq8tkO9iZLPHYJD2nXswhwxJfjN0MNmRM8GwPYk/ET7TJsHNybRV68FfAiHMGmr9ibbycWWH1dPxLQvjOrV7uHngtyjfstrHr/uZ4/lUEFJboUhhOtxWYNCE5lxQVGTt2fJjde1xDtDt8ZrbyvI8W5PuZt+QsFZT6ar36LwiIbrTjxIJxpH/0Q+N26hotiDkX/m/nDjY6ojGYsL/+Q5U9s5hwICE0AxW4LJa/cQse1DlAEp93L59JunZ2dR/djser3qiyNV7VEJXnau+CzCZro4617xw7S1mnPXPp8NMu2QnYk+BcOKv1kabGi3Qg1OXaEVu97lImL/zzVn6Ok1Cg3/W1tqXPphg3kbb2EfgsiOXCD8YEKiwWJNoCXb9LSizZnUrTzXDx5DrhwNMyJpwDwdddGAWmBqJm/0CzXxeZv3wsITlJKTSO1MRrRpbJ0XLZtG5MfuQpsdkbeOsG4n0lDyJkbw9Gi4YRapxuZlVsp7ciGdST/P3vfHWdFdb7/nJm5fe/2whaWhYWFpfeygoAoqCjGGhV7i1FjiUnsxK5JNFZMLDFqNEZs39grAgqidFh26Z2lw/bd2+b8/phy3rl3blmK6C++nw9wmTkzc2bmzDnPed73fY7t07E8FgBAhEegfJQBBcDWG7eb26UGrUGojQIsBch3pEZU7P7zGKzL7wV54XZ03ejEhq9noD3M0dK4F6PHCRcjO7BZfzYc+Qe0l9w2a5Y4b5u4hgE+JJWbwBck1qXvM1poQf7qMOY+fB4GfLYTXzv+AL5xLpx7WtH/DRFjFtklYpR2PXkjBq4IY9HQJ5H3t1eRW88QOPcac//Kv16Eyh3WgToSDuKN+84HwDHxmqfQ9LeL8G1pGSbfPzP6kWLf7h3ILdA8Ek31e7BrRh4w+GW49mpuw9Zly2OO6VZtHaLD/74fBSsk7LtqA0p1tjkSiWDPXycj58oXAbeY/DqiwuIcYaC1uQFKsBmOfasR7tQXLY0HkJ6VC96gmO4nWQXkdgbuEq2gubkJbQ17kFfcDXu2rgW4irzSnpAaZUQkDniBCVVVqDphDJQWqwdh57ffwpmRiQM71mHW7NkIbVkPZwgIFuYiHA5h3jff4oazNM28ffX1uPvJJ7GsthaPPfMCbr7yCu0kcRjho2UJgRNjrBzALQCOB7AWwB4AbgAVjLFWAM8CeJlz/pNZ2Ku1tQWfXdYVxXfMQo/ifHN7fo02cyj7xoGduVqDcfuzkEPieKqnDUBN6fmIOPWZmBOY8+yN6L71LWzM+Mos1++12fj68yE4fs4q8Cbthcvkww8H281G2hoWo9HOYobsVdYRYPQnm8zfi1+5C4PnWOOKIiEx4wkGAhjwzibgnT9hZR9tls3ISLNr1SL4Acwc+7SlIarIx8xx04HpTeb4FNwqXDkzH5iM8W9uxP72bgg5cuAOAXLEmhn4wYsPoLifcDsxAG69yO4tq8ic3x44FO9gMEbFtmnZ2IMcOHgYdvE7hu3cshZZAPIPAO5ARFxYtzWE+h70+kIAgKcNaMyKdQ0G25K4LmxMZSCeHsE4RQLi2XDdDckZ0NLahl3ZHAX77TuBrI+cyAKwnL+HrG0NyN6ehlTVnQLOdFT3vgx9a16EK9jY4XvpqAU8Mrot1YAJ1Qxi+szfEWSIeIxt4p0Hg+LZDPlwEwAgb3cQxovzqQLstFGAoz9oKSS2NRP6XuWx75TH6WzDRh1IjJMaFkxue7PN83M6kfeV9u1tX7sIRsiqGgmDQWeudHcij6hwf5KBzlGnUCNhs14taQzYr4KROLIgaTcIxga2s+ZWDP9KG+gDU0V73brGh24Ast63vV2Ub4rN4u371gL7wubFYLbtUFuL+Vk1n3Jy7BfJBHPX1iae3c7tG5A/2wfFvxUNGVob4KqK7Q9OhfOADBDgJIe0++Gke5AChCVuPiB2cIMxZOb7CwcDiM7z5AwY8JnGpjo+mYeuW7WJWAt5v5m9BgNYhAgDfPu0NhRqbUZJvXbHgXYBohWb7zYSDqD/axqjt3tKLcq+d2Hv6h048LsGzPvvs5g4VciZhILiXK07NQDaY7GC6v4ysAUIeO2H4/ZAEDPffhYTzr4aPVZoDyjYIu6htbkBnee5EZiafBgOtzfD2Syh1SGB794EtLSh1eG07ZXp3arbNyMtBITyg0jTxSmNpB1ZpWXtv7mW+l3w1QfRFtwAo8U31e/HKePGY8LIUSgt0gBlTmYmnpqmseEcgPlVkwQhrqqHlPV5OCwZ43Q/gL8B+BWPSm3S15E7H9p6dEdPwrODJm3YhM5qGTD5RMyf0Io8vQvMJ9+lpLc/2SE+RTWiQp4RhLviH1C6ay9ZZUDzvNkILM3B/mPnWQa54t0MtatrAZ3dUB1eAFoHFgqIj3zvhhUmPdt7VeKGP/i92GwcOki3NouZZa9arXEz0vnIX34EIDZl3jTyhv0vvwPjIwjPXQ9AQuj9HIT9RlHRdNvb2+F68VXs6fk8OAy/EDNZ1LbGA+b9Fm+0j4EwLBQKYutbnQAAeUp80AQAlU+IlXvSjTGU3MPOcyciL+oTy2gFMtbF0hPtbYnrZWfZTUBLmu4S/fQDdDFoZRL3oJLgxZmPXYzucUCTxcK8w8thrCk/Cw0Z3bGm/Ez0qz04XZxhCx/CgiF/AJisAWvOAR5B5YS9wCxr2aDXAUBjTgMBAd7DOpDnoIHXBBzYANScA+JemzeImI6WFpFkwfUsrr7LxPNcf/epKNFbFjeYLMZhtNtBH4r4vNpewj3jnf6q+dsM4wiL74S6AM3rE4ATjpqsGG2bS7EMGzVjkkNj4xgkhCMqVA60E9BRsS62Pcot4ltfNOv/TPcn96mI912nAqiTiWUG21vNe3RQfGoOCeL9RUiwdN2GFfAByGgGGjK0sk3fzcLA6thhJ6etDkCaBTjJ7eJcQfJ9qkZwvyT6ajqBtLOAT4HRXlubRD/ZsktLkpA5aa+yqB8FTj2WxDJ3FLAFg21QAOQ2AF8+OhU9316PN+e9g0H6/kgggK07dsPndWPX7m0m+GZ626bXbWkUA9JHT1yLyhe/wSd716FC39awd7t53Xb9m0olYDmix75yAGhuhyvIEGhtiAGdFmOCvaITcdUuMJt0W7RdGRMTKSz63jSfD9++bo0Tjj6VEok9F+VpjpYcXbJn/QTnfE40aAIAzvluzvnjnPOfDGiKtrwv7VMdHSHt7dNO4L+PaoGVPdbIcOhft8qAzG3aS7QbEDbcNsX0wXOXYIrUiDivN3JoYWaOBcIls3e3SOfeWqx1pP0+FW6Frno8z7CFDwFqWLQ6zgE1jGELheSBp118AWWbRDPJ0seUcETMiOv2bEDJXqDzXE0TBwCUAzvMTi0cEh2+K5i4pe/dKbK9XPbZ5AlNUsQAkncgdfCxaObbHb8YgM47tH/7VYt73DxHxGnRL1v5KkVdFTn1es8a8zhmjpuOPQVDAMawp2AoZo6bjlljHk/5HIb5W7bD7PnIoLh9bqykRdgjmKGvPxXZZKFWbXDmNP6LgI42OzaHWK+5Itizrak+QUmgZKHo7o2B0wiaT2Q5ehUklTBOpD23tsTWkUky2nUcL9GBtYXU0QBDcYCIaoBKBjBuDJYyPr5nMhbe1huBOIHVhjlaRb/R81EtcUVlxl/2tr7raWjI6I71XU+LWyYUspE6IG7oYCDJpIIwe0vff878vX+T1t4jsmCkBi60D/LNnaUlwlDg5GwT76SN9q9G22TMPG/deiGyaBYjjyVE9O5oG4zoYLfJQ4G+ODBgA6Kp0TGivU0r2+IGHEs2QFGBQbMF+A8EWtH8SH+sfrAKLNgkrqu3F/qd7NosAtCDK7V0/tZqIZXCGWFxberobLIHkhEd7KQQ921rIcICW4FT7AlVTplokZwjNib+VmlRxw4hn6LS7+tHCpye+UFq8SMzAxywz0Swda8XRcaVon+RqgTIetuxC7bsVqOYnRrzioigCAkobExLwAClYOXLRSe+/vrzzd8ldfFRhzZA6kYGdn9LfB2daGsjbpKv/vuS+bvPEq2T7b04YsbE0M7FkyR7d8+WQ1PjjtaX2Zk7EDPHPo1dOQMSHtf9L68m3E9tfxJ9vSGfiNliU70AAq4UdU+5lMrcUTNVsgfe8bYnM2eoCb6WOvRZ+Q/4WurgDDVh6Gc27YJ0mrl3/dn8HdaztTgTgbt0Jr3kV6ekXJfWJvEcWZKpZSTYcVHZ/ANAepN2XpppFzrz4piyRfM3w63jC0tW7HYRuDvgW62+rt324NBghxlTzQGEg6P7jE3Iep8h2J4YoLhstJziYSYDUO8sHAkwhp2FI+MC6oDNpI8+7XCcjCYzPowMgAP+LQLUmzdoWl9hiQRxE7MFbMRcBDi1UxCtD8jd1wbh1l9F9+n/jTm+gBBEapronwMEGFc8/aF+D2JQjxD2saUxMXinTFdAnzQEHYDd0BoOtQEfZiHzvxGEdIY0IgnGCYRh37OVeBcMQG5xV5GYPBu2XI5HIurfrTNsD54oKMnTMZ9EyoXJs+EkXtEOwFiYTDuQlAQ4xdsbIkCRJ5g0HEn7n5cjSGTx5ADc9dpAojJA1htwW9R6PAFnOhYNvBHFWzMBAJE6oW+zeYYQGmle8tZhq2/pVvE6lUjiBuUMNUcNkB2L8fE9JJZUqHpaBFfYZXw1fJO666hhR/yU2VSs+7/mWP5fU6kNgit7X3JQ51t3baxGzo4yBxoT67KZNuh1LZZE4hyF8XVPrRZOPKBQG7bwIUjhdgt7KIfbLOxhR2z0t3dgxMIHUbB3CUYsfBCjv73Dtlz+ZjH4uEl1O//nGwCAq52jYI9Bt4r9ZRtT73ICzcRVl2Rq2ZqEyYpnhotXXvVVwnJ55PQqYVDDOuigg1CvteKBREjslAGcumxj6LrVRE6mJQNO7rbYj0tRgVAwNgg+3tOy2/7RFeNtyzr12wjZpNyrsGdKqFXO0Fyl3iCg2LBwdmxO8WbRPvxE+b29RYBoY0BWVDGoJ8s0ZWnig21ridXZ8wQIcCIg3H3lHxKel04KV3/wklY/CZAisU861C6eozH4q7K9q65xxya7uzB/hUlsrLXdxF7X4jCyY0MJgNm/PTYcRCH4SCGCy2oSF2+80GfjaozZ9wXhJHM+yryWL0scznGkLNm0tBtj7L14OznnUw5zfX4SNlTXrlMlIEeXe+98v1WRep1Oka/rOgV9Vr+KAXPFy+4zT3Smx711cAJeAeXgXFmG0QGxYO+SDh+fETUJTRRLUfFp6mxA07p5yO1wbYQZYtHRAfCQnVoAPOc4bnZytW3DFIcYlHbmAJ32ASzMTKYxVTNceqlY9vbU460WDf49VJJKD8YQUTxYNPgPGPf1jR2oYaxVn9kffd+OzfQBgLw4E3GDZexEZvsHVh/cml7tLQ1mdmIy10L6jA9wKAuFuDekfmx7u2AZQkkAW5i6cppjB2w1IkCWHfNDzdtuPxD1Wn1ouTn9q2OBOmfMBCNhG7FMVQLSGloASBjw0YaY/dFWtCv2+VoCvnWjfRplp/3XiyzCeDFk0bayrxt9dBe65BWhEis+fgmDo8qqDCjerTWy/Jc/RaqmkklO1ReatIgqAd03xtYxFGg3I9GMmK3sRiC7UbtpmkTRtisx+x8KkPiv9paEopkW4GQD6Gg/SUFJMlPVsPnFeYxMOnIuHm/VCTt2CuLrjaQ5odQnr8fuLGts8g9pyaZ/ewA8muDPT972HsIyQ6d+H9sCDIp8l06R7yocddAxJ4bVxwp0o/aEbubvFYOTC2Uatj0vtgPblWPfwDeWpM4OrNaDk1eXn5nyMXZW8Lr9QG25Vq/YUMaGqGfUe+ULGi0dFcfVp/r5DtVHcorYiE661613TdBCX5v1unh07MaDsI6ArFHfTQPUoOm+AFchRYLa9iirObEc88+pjNm+qch+/lT0WfJ3kYoN/bwDN0Rs52tisBwwJ/Gis4V7Do2y77wj9eOL/ih0nAL7tXpJZJzcUijOFSLsxYAZsROU1hXfmr/37kl8j+7UichDtpBbsEj7NsW6zxUVphBpMtvayf7Z7ti+2XZ7MuPbtyUvBEAielyMuMEGv1UdU9ahA7YmXzGWDvoLmnxFMWXsLGyjHB5w2t9viDCVrfWxGiGMgI7wHrF/wHx9lkIYHNquQhbGKfbaDWRZGEbAjBnTRY5x2rQxNY7aeGRr4vdgYZx47HUpoAtR5OdITX7lYOO0Docla/lNnPPZ8f78IDU8grYjl6E5LXGHabjcAs7kC0cC8fW4OAM2Fx5cPJPbBnzLpKFxOXWA0+KPrUNrhmiBFEjyFE5rAMW9enDy3kMITgZi19YybPtJojLc5kPe2t0KHjvtXUrAhPGlqijYF38dNjuTnQKkGW1hTfd8c6Bc0108T3euUMbZXPTD+N5dwUa4wlpciaQnHXTaOT+G9atcVYszH/8AbqY1nLoCEiPhF42pur+IBdmfe3Q9+RXzD41JibaOfssAsLZbYlJ+4Huaa9lLvtHSHeLZfv6vB6IPsR4/T7BMuTcdvnUfq76bFuPClcLtqLIB1HbmbhHUT9rCOQlKJrfOO+1HOOdFqS8FZdjuLGDAwtQYWUbYlVBT4mWwjJa+os8ViMgerOhzZcLyhu2YPSNmW/Eu+/vdsWqh+bth2cKY/dTtV/lxrOo5J+Bv9+ciCJ+6AO3oHPcBsd/bLvY7UvRYuAP296MkYd2bdxL9PgKixHHkvKS7ZCnGeP6YgdOmgz0xY6wzY+wrxlgtY2wlY+wGffvZ+v9VxthQUj5HL9/MGHuabPczxpaSP3sZY4/r+y5hjO0h+67oSB1b/CwumjbMYFJW9DoDm4uTD4ZV86fBEdht6bA8rbtQNX8aDvRLJDkHzBgtXseCCULI0W6mKVFxP72hrRicQuCNFDsYcUKfNA0pINuTn+5wByfHs5b0ruI/NkGF3G5NQSaBqSGUbJ0J8LCWZg+glRBWC0YLycBdmdbDt13SFwqZ/Rgp/3vyzxC6NZ2FLLfLL07Qmp7Y915LWLNl47RnvmKw/YAeSoK3HZ16oLjuawxZ/Ahc6gIEEwCDY6b+Hut6ROC9UQxaIQ+R3XCKercUps5kris7ciArchhOXZfPsWjg2R1mRdszOi4+Sq3X0x8d0vEdtdUV2nfgCjbCGdLiaJjuDnSGmiyAelVf+wfb6gS6bRH9RNeaH88CEx1xzfRaIzrOge+tSVBSc+3PHDcd7d58gDG0ezVtu5ljn0543JC5yZdcMcwIRAeAwfNiGad+byae1ElpglbvN1OAx53rxHGetsRowhZsHM6cfsLyeYkQpmt3Q+z1yXWpMhNjcaQ1vNZ65ibGwkfUEnZJnPMzjN+MsSrG2PmMsYuMP0nOHQZwM+e8EsBIANcyxnoDqAZwBoDoaUw7gLsAWBbf4Zw3cc4HGn8AbAbwDinyBtn/QpI6AQBW9dFAia+Rm+CghQymW4t4DJPSmD0M63s8nZRJmTvqQYRc+WJwZwxt3gLMHfUgmCcxsFlPcJWaJgb03brq9KpKMZAdc7nI+IMenEnBw/oy+85OYTbxDKRon4tSm5EaNmzhQ5DDbeQjEMHJK8cmXtahpjLxoLRslHgGso+oZNmAXe6Mvd9Bi6/H+K9vQsWGd1C67RYcN+d6AMD2C48zyzCv9k525TI0+cV5V0zughNufRMOjzcm5T/g7Ievx+ismkvcgyWzMgnGDmZqnaAGOLRnZ8ektbqAtRUJVVZQOTaAnmtnwN+yHT7+AfqvtLojl50gGlZpxRCc+v4ajDr9N6LePtEh0+c44Eptfa3NVyV3QZZtScwOGe6anTnA5s6xZT85Q4jRLhuTb9mXDDgms1ljHseq3s+g3Ts4hhVdcUq5bV236PWl39TicckXZP6hbNlIO41wINRPuGLTmrejuG4Ohi7+C4rr5iCtebulbKCwOOb4tUNVRA7xeSez5VU5R/YC0MSJj6Stvf5UAECdzWsIHkacSZlrHidppNffPunwecPkHYdTWG8vVfO0xtFmVRoAACAASURBVNJQ9FoUOKlx1kuMxzipyqFNYg6npTSXY4z9C8AjAEYDGKb/GZroGM75Ds75Yv13E4BaAMWc81rO+Wqb8i2c829gqETa16MHgHwAX6dSbzuLyECvldpMrHAfh6o/gU093GjyFWP26L+gObtTQiZl2QjBLCwqFw17U3lE00jiQQuQkCIBDFv4oCVAsbYi9svO8Apw4CgQqxa16O5EPkysUJ1fUmH+Nq9Es1sINbqol9je7rABb7Jozdm9+pu/7eJ4qIUlTdrALKbfM4cmbcCdiYFTMFcAQQMcUuMOwX4ofsHsGABjFXmGtKy5jZySasIoacQfqbs5wwqzpPvmDjpWK+v0JGwLkpuu/yWebTzVarNsWJ/5M0Bprzd/G7a6h1Pcg95Glw23Z5JorIARJ7FikKjL2Y8lDnbNlcR74GRF9cpRp6ByVS1O/G3yuLBkWU1tPq0NqhLQZWtst9OzYqyoQ1THeaixPYnen5JTELOdEyVsCpxYgYgrXHXmENtzth+BJJ81PWyQTDz3PHl2/Vc+bwLqnmtnoP/K562g1aaNtnfum0gWqsO2tZPNRlfHB8ADfmBjSeoVS+ZGora5ODVtuw+HiutL+np5RTYMmDPKBbZ8QmJPQ6qWvXzTQR0Xsmn+IUXci7fBPj4icIg45aYHHkDPiROtWXnkt6dFxdXTpuHjOXOwvKYWdz32mLaDZNsFPPbuvKNtqZLgQwEcwzm/hnP+G/3P9alehDFWBmAQgO86XkWLnQeNYaJD+pmMseWMsbcYY9GrHBjXv4oxtpAxthAAVpOOSNXFBlWngurelyEie7A740o9zbsNQqyEg0U0JoUOLq5MMeg05vjhb9kOie83jwEAd9s++FvqoKSRhR9ztIFtK1mA1amIQdhwxdGZk0SAiExSV4UOiLiv8s2ig3T6xXXt4qFaMgSQ8KYRf5V+2iXHx85MAaBmqD7dYgG42zRpA0WuhxLRhf7csVHtywnopGuJ7eiVGVOW7vdkk85H/7CCOWm2ZfcZt0s+NA9J5XaR92CoWlPdIQDoN15bO8nh9oqUf+KTN1P+CTpzWRjFxKgz7BLPPGy41shA1p6jPTuVERBGGKkVJ4pBPLtI/DZBNAlql5MosAedIraCuROzW9UD7VmXjZ21ui0bL0bKMGlqEUVon9lZcQ+x1iNL4j5fdqzdaBzfGLcP5mA8DMUt3tmqCn2NPAYxgJJ2JZEBf8RVsavdA4cO8uyYEvWYY2I3xpmVJ4sPyexHKkjKmt+MLJssfNAGr1X382CvPdll2rJjxHcZdti8S7d4jnbXsDPO4jOy0bbqolGmwvnKfuJa80m7WTpeA8xNHkBlLFbbTr8U1barJ/GwspI6reQs7Z5y2WjrUif6kfy9GR2O0QPsY5mkeBlvxNQ4cgGp2KZt2/D1woUIhkJoaokfk7Z81Sr0q6hA/96VuO+mmwBYv3+VrN5B+8c1PY5u/GWqV68G0LHeSjfGWBqAtwHcyDk/1EW0zgXwOvn/+wDKOOf9AXyBOEu/cM6f45wP5ZwPlSNAe6EYtLjEMHPs09iT/ie0+Tpp6dyOQiwYdjtU2W2cQPsH2ofkbRIUYyNhTbhT74RVt6mRlJYjI6yzPA4vATB6hxz0iVfg1o8PygDT0+AZF9dXyGBomS3qQmRcsu+FWAEFHbGdT/ZY0yNr7RCMrAsy8C6bLFwbqlvbnttwP6q+17R/8tRHTakDySPut7ZSXxqDdNZ0ILIbCBgJzPblEPBmiFuTYxgZ4OomDjCrf0B/PfVZ4r48fuL2kwlw0u935S96I69Yu0+n26t3qjRhVnsl/pY6uIsEVnfojJNqXDyRkXszAyepEq/+HpxhELevuN+SCeKdeXyiPZuZORxwv/syQs/G13Na310H9sdPNrdJNmCXWiRHvNNNXQTSLP/L31B363k4+6nPzW3bSLaeqiQeITMyCPND7rPJa/Mg0xLXkdryKd1RNX+aLZtQNX8aFK/4fgMlmhAGbQuMTJIUMnHxZ5IZTxLbFktqxbXdudr7M9aaBABPTn5MOcoub7v1fKw4qTuWjys24/i2FnLU6edaPlZMSpoHk6Bn/ftRIfC/pDhMxmlrZ/EejPg/rkgJ23azG8iFiN8xYkj3kbGeEZbWqTd5KipbfUZPRBsnddxPsPvmc6piK+F0m9ejMXu+LPEcDIC5qdJvhn06Q83ILvJh4pV9IbF9Mdp21OUkKbGIrba/lc03khG41DGgE89SUYFP1VypAPw485c2r9gRL/7w/meewS1XXYXK8nLUrhPaUGs3bcKEiy7CsNNPx1OvvIJd+/ahpFMn/Op3t2DOAk3zzqLvZBkX9MkXA4Keo+u2SxU25wKoYYx9D8Dk9ZLpODHGHNBA02uc83cSlU1mjLEBABTOuSkKwznfR4o8D+BPMQdGWahTFlw9+gBzNG8flxgYD4Mz+1m54myEf8d2HMiuBNNxppfw8YX+LgC0dGtHu8bbVn17h9kh9L2uK/aM/zUAQCYxMMZAT4PTvU4fWp68Hb6MfNQv05RwadtlDieafMVYPOhG5G4T4nHMCMgjnenqcQ70nKV9HY6CAgA1elmt19vaScbEWVpa7vZX7AdX49p0iQnJQ+7BaNQEjLk3Ce5aIQAl4tTLUrBDZp5G3Td0ltBtq3Y/EtmveGIHS1Uh5yIgTNY7Zs6AraM7IeuTneDHDQf+MRcA4M0QSlEG46RKgKTPzCQyy3G6fYgAUCIBpJXmYujkMiz8cBOaN2ruNXeGiNdwuH1mB2+ndF19cg/0/Wit9TlwQNaVmWVJxBqwkFYZV8jKOAUVDUw5CFPiScuA0RpMAoxzdK0cDsSqD5hWftfjWPWfe3DK5Mux7rantHtIt2H+qBEQnV7eCmzWgIc/Mx8TLrHGx7kuvwS4Rws75Pq74gxYNrEYAz7bjm2dOEp2ahX25+TDvHvSRnYXcvjXW3twRtyyKwanod/iZtRWOlFZG5t+6inqBldwHcAjAJPB1DA4kyGpEbiCjXAQ4MT035wxM5OIk8wshQz4Xl/sYLju6hPR/e+x8SZhjwpjjrovswLL+l+HgcueQnaD1hZqKp3oXRu0ABjKLvpyRWp8dT8P+q5oszBLituHcx7TRGjfvk8TfFWZZGoG+fodA8zWApM96UQlTRLvhC6Pk603prQGce/1hW4U1LdbQFNdLlAUJeqqRIBQkGTAGmAnV0ZOo94pRlrN55Cz72kMWLkGqiQmJmldegGwRnNwJs61tU8GsudrkcGyM3YAlRUn6rMk5DSqUF2irch+MmEmSwrJ+jvOa7kDv/ijls225K3/oN9X1sw2GmvH7BinqInrxi4noSGjHJEDTgAfxpZP0WaNedyi1bazcCR2Fo6EFAnF1Wr769aXsab14OQeDFNlZhHyrPB2wW87X6zfZ/yUvJp167By3To8/8ADmLd4MWrWr8fwAQMQDodx2W234a+3345h/frhhvvvR8+uWtLPytVr0LdCCz+JC5zopJ8uUn8UXHipMk53A/gFgAeRoo4T06a+/wBQyzn/6yHU0bDzYGWbwBijzuMp0OKoEpo/twgjztYowXVVKhjn2oyUk9RdcMihVjAeRjiYgQM5vQHGwGUXZo6bjjUF95jnUwrEdDLk0TjsVUNEp0rjXhTqMtHBCKWfyxbvwNCJF6JyxCRs5tqsjXHApXfiDMx0J376nNAiMYGTomCXjlXSxkwVl3LG8v/7+wsGZ8AJ59k+K0lnQNzNQgdEou4oo+Ol4C9bPA9XRmxcEmUTJDL4cxv1YYkAzR79j43ZT92OFJTKirjfXz7+FaTXn8Fpvxd5A74sMYM3gRNx1ck29PDQhXfgvGkj0GNIAc6bNsJk1TwUOOmdeDxJiuzBxOWi3y/jQNlFN2NPFkePqwSAZSHBPjEzeFwyA08pcHJagtKZft7kVHzliBNx+mPfwkHYL1dWYiaFso8yCYKzY2A86QI4q/pAwxmAoAYUva0EHJDnaICGDaUSGmwWrzWYyL0ZAFcM4GvflUk6c+ttrUVR3RwMXfRnFNfNQfYBrauQyGBnTGa4JNazy6gVg49Mnrmdq2bAyfb5Mo152nNY252hus8VAJOwdNDV5v5QJvkO9HtXSdtOzxesptEW6CSJuhujB28AFkVqpw4OVSYGKFUSkyT6fgsOiPcb8JN1AfV/Fw8X73fFUO23OwSULSBsqn4/PTaI9uzILjGfw74cjQGLkD5E8dozNEpIq8+A+SKdSrFJuGnfVyfc7oQxdNI2qoqEDEPMNlje29xNn5lhE2sFw0r7GNMlrYd9GMkkdcXHAkxC8/4uhyTR0hEV+JTOlyrQIBegxxgTuYDL/kR3P/kkpl13HRhjKO9Zjpq12gThv198gV7dumFYv34AgMrycvTv2RPBUAitrW3IzsjAe19+iWuvvwFn/+Y3+GLePEuGHdW5MuqzoUfkqACnhIwTY4xxzeJqNhllbHYdA+BCACsYY8bqhLcDcAF4CkAegA8ZY0s555P0c20CkA7AyRj7BYCJnHNjtcNzAESvf3E9Y2wKNPi7H8Alie7HsKKyShStqkUlgHen9MO3I+4FLIwTQ8ThBdQQ0rJ3oXVPJlTZBaYGkL9nGSJDhd+bMg4wVKYJSncS0EI7JSMeiYKO8mIRmH1M9lAA1WAcKNqjK2EvY4BOvDTsbtOUsMFRsO/32vllGWO+qcbG5XNx/MBjUXvfSwCA/IpBAPQAYcO37RAN0hXlnmm45zpkd6sEu/UaAEAmGmFc2OGzujkBIH0XycrIzASwS382ZHZrNBEyICgeMtu3A05EtZvO8A1QIAUE4SgTNsBgJIyPq+eg8ZbzpmcXwBS2NgZ0sigtdSH6/LloBLBrsH0AZV5pL7N/8WXkIAh9ULL5JHwEVNKBb/jEC4CJFwAAaqEt8aCSRXTNC8iS2Uk4CQPn1AfOjV1VEwgebIqxpNgE2VCjwJcAJ+ouNIwye8ag4msF9sseAAewt4uK7BXa+Zy0DZLBP78+9j4kk60l7lryHVVP6Y2+7+ndht4ICna9gK7btHP1XCu0dzzpxA1mxLtBE53NbAHaJowEXtZEKp0u+6zYugKOol0MeYVlMKI5thXIKNmlu9Cdzlgle7hNJftsrk/EGJk9EyDoS8+G6Vkx24J4Rg6ygDijwMkgKgkIcHn84jSGq46J81LAIHgyQPW6Aegsj1622JEB6F+SZ8QIYOHHiDZnuzVKe+bYp4FNDDC6QuY1n0OBrujvsHEX5zYAbfonvqqnjF6rtfNaQKNha9eb7jdGGHJ3thZtEmGAHDQWJBXrjdLkHdh8B8VE71EmfVPQASgBAShGfTcNC0ZfiHCoO1TZCcYiyN+5CN3Xv4smD+CPSmJb/6tJKH/WmsDR5NFik9whTZNr8cCb0ObJ09oQ5/C07cbgpfGB2G87X4ygI1bQss3DbCUL2rwSPK3WDI+wwqCEtbLtWR5TD4pEA5hr4kUk7ff3y5fji3nzsHz1atz0wANoDwbQr4fGJK1YswaDegtwuqSmBscOG4ba9etRUa7FaU6ZMAGnXXk59i9ZhtsefRRjfnGSqJAN48QVfljkSjpqyS75FWPsN4yxUrqRMeZkjB3HGHsZwMV2B3LOv+GcM855fyIX8BHn/F3OeQnn3MU5LzBAk35MGec8m3OeppepIfu6cc5XRV3jNs55H875AM75+Oj9qRjjWkNnaCQxJiqc7fvRu3oamBSGKjkgRYLgzAE53A63S3QG3mwyi9GDotN3NmPLNaci8uKfLZ0W/dgMqt0ITgeAIMQ6JvtD+836aQXjBLhKzARDTJYhSzK6D7SyM+m5gl0yV2UnkdBuj1WvZ+Qvr0XFsOPMzlRlpOMlMgkG08VJjikjrh7aAZpFyIDgoO4OYyBgIjYAEg3iJvS//m/IJa5FZ57G4B9vZpWeJQCMAdhUApwo/V/crRJ49WmMfnox7CyTsAEe/X725IhKru7uiClb08cvgGJcfBObpsYkGel6p9seCWLziACaPYDT6caGywaj5K7HxAnVDqQVEZOSBJLTWR9lnBTiPjPiVSgL5d2jDVQ5DUB6Hy0QPNBTLHwhUReufo1uW1SUUGe8UVa/lirBBEx0AqJkijbKuQ5e4mQ5ZhWWkRMbDCpM0OHNKzF3Oxz2gfOl0/+JddefCo9fXLcxl7iQXA4gToA6eBggcThGPS0sLmHuRF0FQKIg2i44nG7z+DL164jt9Duh77/6zD7iHCYryc3B0pElCH93uv1CSTHiiXH6Mfp8XF4RxFTbS/SZxiAe7t/P3Ob0xmqN8RzR7iTybPx6PxiRAX9ICynwhPebIIsyipJNlu4Lk8ikgQCraPkBV7ARULRxA5yDcwlyuB2uYKMJmjaUinNllojgcWOJUc6AgFOcz2gXhiYXZ1KMyC1g7U7CPrs4IPvvwE4Hz3jegPXZ2J3D6ArufvJJvPH3p7Hq00+x6tNPMfuDd7BSj3HKyczESp19WrxyJd78+GP079kTK1avRt9KEdcmSRL+9Nxz+NW551omAswCnIyKxU84OZKW7JInQmNmX2eM1THGahhjGwCsheY6e4xz/tIRruMRNq6JxTk2AYzp6ssMWQfWYFO3yxBqd5rigsV1XyPoTEdavWAf/ASUZK7Vevmy7RyTrv8z+ladCjf5cCW6phiPpeRlwkisb9BdCXqDPOa7aQALgH4aTreMix86BlLYUMi2/yi69B6ONiewYkoXKEFtIGEtYjExxSZOQH80AIAIkSl3Z4hOnIe156DmidgSJVMwcJZBmLAmhjlIB2kyPxBBkI37B9rXyzyGyBUQ8CfZuCapuWhci5lVx8wONHrGWzl0AtL89rE/mbliYM3ILkD1+UNQ+NenTRAW6C0y3nyZOcj98n1MeX2O6aqNyzJbuHGDCpOx7ropaHEDA4ediJxz70bowgFgkoTJf3gN/atORlq7xoZ6Q4lXdY+2mkursHxcGmSbAcNaL/FTYRxLR/ux9Fgr25Q1/SmsuuI4OEjbj5D3Pvmah9H+9wdx1r2v2V9Dfyd0cLHuJsCYGWCHfEc08N5YwZ08TqqOn06+OUki7kRjGwFLjqilIDI++z+ULpiHHn1H4dRr/gxA06kCgGA+uYhDwTHzpwE8ZAkHQCSEY+ZPMwPQOSBEZwlw8hOXt3E8ZWhdlLm1A06krFsH95rMhWCcTKKLfFOZ5YIBV1kaFg28ESrzmwyN7BPfrzdTAKf1XUjWsj7Y1fTXth3z3TQAUUshRUIoXyvi4xzkfiJOcS4T4BBmyOGJBU7enj3NCaLiE/vT9VixiAQ0RbTtrd4cAQTJd28HnPrUMdT09WP9NadAIW0sqBc1li6ZNeZxBIP9NVaEMQAMdcXHYtaYx7FUlyagbYw+O4PN47DG7hiaXD3WCE2uVT1j33Wks8jhYnaTBbLJwtQQJtkAIjSGVKKSHnYCxAC+nDcPgWAQx1aNNLfn5+Wita0N+xsacN6pp2L56tUYcdZZeOyf/0SG349e3bphxerV6NNLA06cc9x+5zRMHD0ag3r3thAPtI7c+C3zH5+rjnPeDuAZAM/ogd65ANo45x3rlX/MZjbUNBTXfY2iurmoHnsG6rN6IODKhk/ehp5rZ2BDqYy0+hnouQeoGX0sjHDNzLxi0+3jbbW7gDDqF4e+ajplnLyFXczfbofWwUkcWDo2HwNn74YkOaFGGJisxbqqEQ5fhgvtRYXA6s1I6xG9dKV+Xl86es5fhIEuN1b012aRSr0ILpckCUuOK0LBMSdZYomNmoVlFwANHFGQxXQmqsmZA0Cb/TiJLg5l2MTFREfYsnOTOJfiiAmCbGnsjJnjpkOKhFAJoOH4JgTS8mz17GWa/aQPdvEYJ8puyEzEOBkg1WEzi41nLrd1MD172qsAgHXGAEcGIrcvC3n6O07KOOl1XzHAIwI0JRmnXvcn4DotB2LYSRcBJ1njaprdnQDsQauS+j0AwJm3/AMA8NUbScIRw4IZYAw474XvY4r0HnY8eg87Hru2imwaLltfxqBxp8cct3xsZ2SNGg/UaKolIRJDsX9EBbK/09Sf1ZAG2Av3Art76QVoPCllhlSDcQLW94ygfLWMHcOykfuF9tX60rNhzNuZDu4kmtxIBkgpqj0XlcZmf5W+8C8s/eAfUOr3AdBd+pLBDhgjUhiQFEBnDSRXsVlHY5bf/3vBJniJ7pj5RIgr1nC/AVGuOnMjSd5IS0czDFedyCiF2cTEkOAmyR2B/YPRmtEdntYTIKlaG3eSevmyxYDdVFkKbN6I5UPc6LRBk+VjA4cDy7/Vn4NeHzUEMO05yKroj6jbN20fkcow6khADWWnDMvuNhBNXMvuVMh+j8eLdmjuq0hGDoCdULpWQFqqtWEHAYJqe2xnXt3bhyfu1trmd1++YW7f0t2L/IWt5m2N+m4aFh9/NdqaS/RnzFGwawG6r38Xa04uBrDD8tl7bGK6OAGztRePRv+XNS21uhtPRc/HNVfz0mPzgdXW9Q2dHp/gqg32kmnr57kDHJwgp2C6G576dktZI3NQAhDwO+E5oL8/GkphZvla6zuhqgoTqqqMocIojJ3fivUYv379dbSmO+BtFD7EOQsX4orLLwQA/O3f/8bMmTNRv2UL1m/distvvkFcQ5c10PIIdAZO5imtcHG4LeVLcs5Duqjl/z+gCeLdZ2bPRM+1M7Bo8O/R1toLAXcOwBhaGrTBe3P3J1CsZ9lukcRHlU7cEQF34rgSOhNmpoQAkSMgsgEnDb3E/H3mU59DeutVlPXLQ9+xxTjntmHoO7YYpX20ju3c6R9BmfEPTP7V3XGv7fN6IcmSme0nN1nFKc9/5ktMmPo760EG46QQCpvOAAgTYlhaVzGYyBaGTQcSpKy3ULAxTFGSBkGW3T4PQ+6cTcX5zV90aRQpCXCiJkMEyBozaYdNZxzPbGd1dD95Xj6S1WNk5cRnnLR/1DTynmziwKKtbMpV2NAvhNxTzk5a1s4kOUmME9F/aWeJBU6dJO4skKk900SLav/y2c8w8ZLbBItEM2dIUwo2isxNI0GADghUwV1VDXcy0NpJG6BcXYWQLHVTh/dpH3j5FlUACZJ2LieL/wJQXjkUZ/7+bxawYrT53L0r4HQuQ/GOh1E+NA25+1Zo19AnI4oKOILE7f2fF7Dm2pMhKwqCLz2OzM/fR9k6DTTmzV8r7iGNtFejvZFkB/pODZ229UOYCBewBIeLsr7sfDPQudU3CmAMbb5R+H6kFujsIi7EdD3hYm1XGWf/5f+w5urJOOuVhSZLpBBQ4vJsQ3HdHBTsehSuyHfI3bfC4m5xE+DUnEtiF804LAqcBOhYfrwmITLyxAuFJ4e0wZxOZQCAFSMycfJDb6J66nCcftuLQo6AnCscjM3QTPcKNl0hrDbXU+M9Ldox3464F22tXUi/yLCrYLgWSyvHsppeEqO2bKjOCEqCYXOROFoP0eSz63usjKPu1SDFAmRWYHGD2fVE5PySBZB3gOLRi1IJA6NPbGltxahzzsGEkSPRuVijIq6ZOhULFyzAU9Om4cpzzokK0aDR6nqc64+RcfqfMKODNDKi4hSjKZI9lwidEifpEA6M6oeSd6uxpdA+C9wiRGjDOOV3FTEFhZ0qsB/APj9Q6XSiZ98h6Cn6e4w9z+oT7tHfRs/ExjZ2VtB1axg4PjZLLdqMb4zJXgAaXrawSAZwYgxrK9LQY00zigePgiElZzA7B/zkUyODfx6ZsbMEg5Lhf+9UVBq3DGUGlCSuOmqS3oMpCEJWtbq5/PZZPR0ym2Bbi0vFaAvxgrgNbScmmSezZROibOSJF6C2uBK9+gzqcJUBa6wStQYfkNECZA0eAXy2HgAQkBMvIUSDqQf/9mEs/+8rmHJL4rW/AHt3k5yZB0BjnIy2tKabw0Lfm2XpMjh6cHDQJ2PMtLex8B/X4/ir/4otz2sLHygWt572Te5LFwrHDsJk2jKo8Yy4Jo3z9l/5PCrfrgXwW9Tv24Edj2gsAnOJ8xrLnWwp5pg08Bj0GqhlYg4YqYWCGlECLpKr4PMT97gRtwRtZQQAiARaEDypHtt3elHpz8SBR27FqEHjMPcfd2plCeNE79GXkQPO7GOSOLPGXjncPtQ//wiOqRgIxeHEaTc+Yn0cRAMrO3c2en48HzW9nUjjH6L/yv2Wsm5vhklahDM8AKx6SnQCSn//8ukPzN9mTCWJz0zPykVw3jc4Oz0DiqLg7LteBiCCtd2EQSscfCzw9grLdacMu8z8rRBWs7xGA/JlNdqEetR30zB/7B8RCSgaswgOV/sBDF38F6w7XY9nIoO9M7/QjG71DBoKLJwJzoB0faNEMjjdNN5Nd+eu7iGjU10EXljHKbs5nQRKL9JUf/GP2SNZEkFkwmTFnpcCwaBPhQoJnk7dgJ2b9WOEhIHRj/m8Xnw7Q2PPaLw8/f4t4E5RYOR0ygHtXHyvw3S1/pB2dOU3fwRm0r/6gF713TQ4vUHLgJaR78FFDwpg0nqsGJQk0rG6szS6Op4mFA06Dukr2TfKETjefBXrLhiPnM5l5v68vBLsHteC/eeMjD7NIdmQVz7E8vOHYvJ1jyQtm6mz5zLsU/0F4wSc+OZsZH36tjnzBAQ5EZFIWTKgeAgDYxdTYO6LHhyFBItplGUwOuloxmnxCV2xqrs1wJfrrpyIJJsfoNMmQ6zDZsaikOQAqoelmIERtlZx2W1o9AKVl99hGx+WyCr7DUl5hfFosxP2A4BmfcYYDooVkYJJ3IEO0t596Tk4a9rzcLqs56+7/zdYf/M5lm2MJAoYFu7VVfxHf7ZhN6FKqK4RGaR7jTsPu8e2IGPiJBQWd8Gp0/4Ln8+HVb0ZIiyKQdUb7PYe4r7oAEllG5KZZQBrjFVOdhBQKesB041ewLih+kH2atPbC7Q6bpkkJlkZ2bHyGgCwVl9isKjvGOwf8QdU6Mv4VJ1yMQqLuwg5gjjBobaJPwAAIABJREFU4dQFaGe+NAKcnG4MHjMZOQX2qwxQiY/jrn0US0b40POuv9lOHFze2AzLDZ1lkbxBzpVJgvepiW/fmiSRm50DJY7qt5skvjgIU7X51qlonP4gho0/y9xG20V9pna++jztoq5gI9LzWgAm6TGzQM6+arBIoyUu0zAnDX8wGCmynwaiWzToyHqorXfdjKDXEdVXCledeS0CJC16SXbsFWWcLJ6GmKII+sh9+TKR1bUv3CRhRwlQpsumb7IkzFGmi5S1SERolVDTVPjiLtJ25Cxh78oYm5Rg38H5An5sZrIm2qNwBRvhdKcBjEEylonQY4lmX6AFS46d8mvzcPqSJ9/8GNb8sgojZ9gvushIRomsL6yYwYHu/Ybg1DufsZSVZAmjnt6EU25+8RBv0GoFhaX45bR/xe08qHnbtXvz9h2P0oXfoXTBfMg0QJaIyDldXnTq0ttyfPd+GtjcM4Gs60Wel0fveGt7OCEpTlR9Nw2IWL8CxSlZQCsASKrWGTGSOUYHSzmOq27qUx/h9A+WWrapYe1cEUnMXFw24obRtuqGX2DpFPtOGxDxUvEW5kwEFAFg8JhTMWJxLQaMOtHU7jlYMNQRi8eqhJw6cCKxH2Fn4oGVsjmeOO7PCWddg1OuvMe6kcRmLB+kvYu0HgIomBo8jInlhsi7phpX3fsMQeHNn2H8FVZt3PEvzkX6p59YOmYDRNM2Ss+lxMmqszUCYBz1sfEyTtJe8/fO0+8HYDrTmN4Ys5ynVkZv1PmVw7B0oB8BRUz6AOtAM+7x77H1gd+h/8iJGH/uTeh+b5TMnRHjRPEnGaTdaRmomj/NutwQ55DC7aiaPw0eAjScSdafo8xQZmY2zn95IfoOqoJ3V2xmmNcfm0XY3EmAWdpG06gcDLGGUu16nuzUF7ygrmWZrOl54iV3YsQEa0yeQu434NH60o3DBbjn3GMmFRVWhBF0pmvuN5vvniZkSDauPApmfQQ4cSKfcdwvroAvWkuNuotjb9fWVcdB2ToKnGz0wQiAcpKMUtkVKycRoTGOBLC1polxKOiKRWS0jpJlzNK+E09mrEv1h7Bko+dHjLE5AC7gnG+P2ncbgDePTLV+ODN9+ySLJa9zOsr6udBnTBFWfl2HVn0RxKvvfAPQ2G1QwdxVl5+AogFVkGUFp93zj5hrLDtrCBzpmSgmUWzuwt4Avoe3zH6xUABwKkeXENyTCeTVA2klpfDp67sptq46+3pm5hUhc1Uteqoq3j1bY+noLMeXkY0yXU/rnYeuhCvYCFltRkR2Q1IY1DCHx++EL8M6YPlCLQAccLQJl6klrkUPHk4lximiAydIzARO7jgZdNRO//VDCfd336idLOurZbb7jTiNlMXogLjP+XBavKy6hsJ0YHs93DkCLKrOxMwcHcTdKYBRw0iUD6a88CUWzHwbx479BWpxm35hI3gH5nI1NB5KicqKrKjohWjLzMxCZqZ10TVGXM+G0YmCnUp1PDNAblgCHO2x7i4HXQNPH4FodluQ2QNYo40qLi/O+09sYL5wswDpaX5MPPPy+HUkyw2Z56fshi9DU1cPNSMgu8B4CJwpcISa4Qo2wufPNBXrlThsXK6uVdm8wR4IulpjZTPcBMAY71pb4cG4FlFwtwFZAFB13ztY9J97cPLp12LdXX+3LWNY9Xgv+n7ViiKSXJOMXXQ43XQJDe1fAg76TgCcr2tuqMoxMvDc82hzCmDEAPRYuRIRzhFqEYKeBuMkR7SlZbKbooAVeT9GWQpg6ESekQkICBhSJQdavAVw0Shu2ww86vYjfY/+TlxEaoJe16LJZjglSGwkBWGmxycCpPvC4DpeZRlhBEIyfLJicoYUQDK9DkchvAlAcuC0HMC/AcxnjP2Wc06B0tGq8+E1s0GJl3nyr0UaLo0limen//7JhPvPvV/LQlm/ZrHZVH/x0MvYMXUhpvQd2qHq/pBmBksTytXhdItHZqrvJj6PJEmWD9cwf7qYLUbatDgGb8tWdDltQAxopVa8SvuAOm2UYVDxNJ4m0Kx1RKEUQlK4HmvGmYS92RI671SR3oFZajzbUMrQbQtH82njgec/j9kvXHgpfEZ0NDzCpjjswcGpz36KL//9JKZMvRm19+kq7J7kANOwaJHVREbFQz2+NBx7qiYVF3Cmo7r3ZciqaAQ+XAf07Ae2a5N+EOm4bdSkUzLT9czMZ+4gzILD6YE9f2hjAc09p6ixIpDRtsdVigzsBpeMIHeOYCf7GLUdQ3ug8JO16DpgvP3JDKCRQhWpar6RBk/dYB495sffvA1pzSvRbdNc1BUdgybdle3ziaV+HElApbekK4BYoOey0ZWlA2vGqEnAnH/BV3UCUKsNP5KTvhP7j7yktCtK/vBSwjoZdub0hWhqDyPDS/S0eOLAGcXpMoGToWhOgYbLmyY87E4PItAADP9GYxe7b1ShyBIUAJxMRtt3ayqbWc1AXR6AJqsUQHGf0WYWqLmoO6dTDdpH2Ad8t7lzACYh2O6Ck2wHtNg+Q6bAAsIsbLd2PYvAJrl3O9AZccqAvowUDV9Q9FglV5CjvaQCofYWpANoV/zIlBuhEsaJTlyYGQMae4s/hCWbwnLO+fMAJgD4A2Psn4wxo1dK5dv80ZuZqZFkRfbDYd6otNPCIwya5k4dgu+ujNPBpmDN+gLEvmyxVpaduyI6I6Mp3YkDeVEZVzazeSrcJ63eCAAYtvQFjD2vJ3JL/Bh7Xk+cdHV/RNu6YzTWY3+V2Ke4PdiXDqwulzHwpEuxoTKMwJmxKe/RljfyRK1aI0aj90tvY9MtFyMrp2PAadH5w7D+DuvM3mhXDm+cQdxYODqlZme46o58G43nqvP50jHlyjst25Q0e9FD2/N2YDV5rsaySIDQ93K5JiPy3IM4496XBPsUp111yMzFvAnjJInB1JHEHUVNXiK0eF3tiQfhjJHnA4iONbJ/XlMffw+Vq2pR2qOv7f627VowrqGSnsgkIkdgXNpBAtUN91v/lc+jaPsM+Fu2o+faGSg6LwvfTyhEZk4hKZsYrPY+zj6yo2C/7Wbwt16FOuMVnHzp7cj8dgFO/dW9pI4dcJmmYJLELKAJAFQ9oH9PnLmBZZmj4jIAQG6PEeYmdxrJftP/jUhA9q5Y1xLtU0MtTTH7bdkgILkWnGUHR5O/FGG1wJR84SpDk78UTf5S+ww9C+PEwDLCQCY360PXWbUTsLVc3VJWtG3a/3m8PqTr8XqZheVA0SDLeZ1uL4IeDtXDISUBtkfaUurNOOdrGGOjANwPYAljzH5Rpp+imeN5x9wgNd2dqNjQMf9qVkYBfkgthyvuevWQju/53GtY9N+XcGYvMft1uFyxyz9EfSfDv7d3T2ll7T82R3vqOPzEZz/B+y8+gNMuvxNr3tRiX1wuLwZ9vQKyxOB2yJj41mooCYDGghE5QJduuOjMX2P/pEtRmaYNEiWX3ppyPQy7YNorMdvMJR8UB5ZM6Abfhu3WTEvO0eQrxpYuN2LPtibklcSPFzJF3lPIqjtUUxzulGdEjjhq0dQMlqi0IRDjco1v1hr8/bpZiIRVoFBLlFg9fydWz8/ANzPmINMGkDs8aTa668lNLqsA5uwGysrBVmhriVNVfKfHhyRSbbbmTgKc3G5jcWEykUsmRBrH2Fp7l5it2bjqaHKAMQDuyeLYl6sgrz6CzcXAiaddCpx2qfVUSYBxZk5hVG6cZpuLObpsZ9jQjaPbBlGR3n1FCENhlh7fZLKAVpD2/dgsyGV9E61n3WFLLyhDBEBdN3vJDQoUT5n+DmqWL8DEgSNQ+4iuceVNNzPFDH2w+gwgdNFU5P/5NezI42Z9Zeq6slPujwIJm59+HHkFhcDr9+n7xT4raIkKDufcHoRxbpYNy/YxTgDA8ishSxKUhj1QGwOAz4VwGGjz5MMT5nHABI85lUykZ1QFSJXGlRUH4M+C1KKKuE8G1IxzRK8JfcQtGVowb5dzHuac3wrgV9AW2+1xJCv2Q5l08VVY3wUYfNZN5lIfLTbuoWg74/2l6LuyJmk5am6/H7u75aNh2k0HW90f1MoqBuLM31vXQ7Jz5aTkFjDHN3swM+FVbZ2rrE/eSXouhyLjjKumQSZZZk5vGnwuBW59DT6HLCXUWLro5W9w0b0a4MlOS51JSNVMDR3FgfOnf4jTPrYGpfNwCMv7XAHOPPjk78vN7fvSbWZ+xpI6HWBtDtY6kjnm9ucnLWOsEL/ww40pnzc6SNt+Kcyo7eRdRzO7qdqZtzyLDffehLOnvYJ9edq5LYsp262LFseCA8hkI8nqNxE98ypeQHBHLJyC1pd5DbpWnW7Rqwhsve8meB55CiH9G6nv3RkdsVUT3NhazOH2+rHy2inY8fDvLfuHvTkXCyflYvSMxdgwIIS6gvi9iRnjFAWcLn52Hi647bkO1SuZVfQbiW2PTMMJ02Pd7ADgT7NKQPQdOMKy35cmqKqyXsMx/4RCOG65FydceBu+PakU3gdFeIfFDaaDpNXdJTFhAkPzC3/Fmt9pIpEnHj8JQ/r1R8NeTQahYn1qyyultdQhprfmqrY9CeMEAC6XCw6HA2nZnRDOz4Q/vwxtnlyAAW1NcfpaI6eAzK7pChpSmh9hGVATeP2VzDB4JgdjDBn5JXA4nCbjxMBx2vSl8Q8+QpasJ74negPnfBZjbAg0APWTt5On3gBM1dRJv9NdAd++ux7HX9I74XHJhA/j2diPZh/UcT8Ws872Ou6t5Yxh+33XY/fKBZYZos+fjcpVtXGPS2Yum6UXjqYZjJNlmR3dpl89E8BZgP4oG/cG9G3Atd/HgnEjsPJgB9OOWEe0itJyC+PuM1miYk0vrHpOHarn1EFWJFz99LjEJ47DZNqXjWWc3L4MW3Yjnu147F7k5JdAkiVMPucqAEDo3EtQv/TvGNRtAAzI53SmDpxGXfI7NL/9SwDA2iE5GDBvH6oH+W1ZEVXPvAw5IIJpbdpNKnbs4++j9pcTsG/yqKQMjCn7IAnGITrIe+LZ2vPY+JQemN/Bfu+Yuz/D2tXVcDgcOOs3f4rZn5Odgwuf+BoAMPKFarRHkvcpHcpuPAQ74ZTz4u6LF1tlGAVOiiLj0qdmmv+/7LFP7Q4BAAy8+G6sXXIeMq+5C5GHtOHX4UnDsNEnAaNPspQdMyc6XyvKzMQJ7b+ME4Blsk8MjEdSENMUJkkSAq3pCLS2itgmDjT5NZ09O46Onl1WRMC3N6cYbeH1YFkJAHmnvnBGs18w3OqAkqJMy+G0ZEuu/F+c7QcAPHxEanQUzN4VsDO1Tv5/zBzUtx+H0rUzyjgdf/avgbN/nfiADprrYONajpAZYEdx21P9HTFG3H5H2hxOF9qSFwMAZObHFyS98IFRmPvWOqz9fofZuVYML0DVmfb6RBbT45YcNhlXMUYDunWjQoap2HEnxcbfnHbpreD8FsuA4tYlFTYXSklBSVG3vvjnCZ3R7ZSr4Vw9H5j3PjBkhG3Z3mPOwZxBjyJy/EXwv6Kt33ewILmwsBitM+bimJzkz4DpsSa5+xladaIp3kLGxsceb7HkeJafl4f8vNTiLHP8iZlfQ+JD7gCrdiRt4+gw2lxptm0hFbkXO+tZOQA9P9UmT+/u2oKGL/6J8WPOsi27poKhYk18oGnECkqqWH+OsSCUQBDOUDNCucVQG5uNHTHHJyIHMvK9aNzTZmV9OYeD7wKgMb7XXXcd/vvuO1jz6WcW5ESZrKt/9SucccYZKCpqxRtvvIGHH46FFQ67Z6lfNnyUNLz/5wUwgRRdAT8bAMBFgEDW6VpAdPHp16R8fEdjyVI1l412yNE0IyPRbaNfdM4dw2KUBZgEnHPnMNtz5e9KjYo/HBa9kG0iy8qzFzsEgJdumYu1C3ZZsm3WfL8LL90yN/mJQ5rrytOidfwXPVgFxSkU1AGi72UTZO/qgEstkRkDR7sDCDg0lmHLAzej37/eT3qsLEu44qnPcNykM3D6b/6EA6+9jrNuts++zcrKxGmvr8YZROz0UNyy5Z1y4LJZ7T7ajKw6RSVp4XGYFHPic9C1OnTbo+dsuHypZ3MCwPZxQayadOgTmGirenIlJv11wWE/r2GnX/oHnPFaLbKy7O+35I7pCY83BU5JX6MoTXAHDkBSQ/BmyPC079XL2jFO8QGqy6PENgaJwVtUBgDYuHEjZs2ahVAohKaWFtDC9FpLly7FgAEDMGjQIFvQFPfeDOAUR2z6SNvPwOln65AZacc1PbyYeMaVqFxVi2MnnZPkKNi6VA6nHewM70jZ1hOrsDcDKB96Usy+vM72geDxAsT35mr35sg6dJmEZCZ3AHR4vfHBqiEem+p2izVosRshtwacfBkuePxOAEKU1tD3YjZaYrJ8eNsCe/U14FWNCZp05hUoLumW5Iio4xlD1ZCBKbn3jRKW1eiPkIWJfpBhcrIEhCP0/aZi/t8/gbmn9USXSvsJRjwb/Ggtjv/Td4e9PpleJ9Jc1ve0Jb73+rBbv0GjUTNKwrIbfmm7Py2vBM1+BUpRF7KVAhiqHB4LBaQkbYFzDjCASS1mxq9Lz8r84x//iDvvvBMV3ctRu05b7DssA2s3bcKYMWMw7PTT8dQrr2Dnzp0oKSnBBRdcgFmzZqVw15p56rX6tgWPTr//4xptjpJd9GAVXr3rW4SDIntBcUq44L5RR7FWP05zOF3wv/caJpd0MDegA269g7EfQlW7I3bBXS+g/VYVHqd95+PxO+H2OTB0chkWfrgJ7S3xU0uGvPQxPn3yD7jgsmlHqrqmxXfVxFrC4PsHqvDaH+cj1BY237nTLeP8e5IvIdTt6r9g/YHLkX7jE+a2vM5p6NI3J1bfy4YU7oj0QSo2cMDg5IUOk3XaY8SzHfmuua1uAwBgUxcVYQeDfx2Dy5uOhb+7DE27N0W5oI4++z5u3ESMGzexw8dl+zqwxuAhWvkL72Pb1vXms2s5guFYTqcDZ/5zZcz2sBfY/9xLwPbdAIBWAOG2FjAVUB0ypJDGYEteL9RWLU+Uu5xggaCQpuAA87jB27SVHGSfD67KXuh0++3mdfJLjSQMazLGypUrUV1djZdffhlffPgeatavR79jhyPs5bj8zlsx/bkX0c/rxQ33349evTRx2uXLl6N//1jpmXgWcmlxeZL3h3u31I7Y18kY6wzgFQCdoOmjP8c5f0JfquVuaOvgDuecL9TL5wB4C8AwAC9xzq8j55oFoBBiLcCJnPPdjDGXfo0hAPYB+CXnfFNH62rMaJv2tSdUrP7ZNCup6PhAIvSyDi/AqXv2b9i0etlhTUU+HMYYiwuaAODSP402f/cYUpDwXIWFJbjkoX8ftrolMsdhiqPyZbigGtmAahhcUhBReUrf1LARY8DfXW0BZlTPyyJKa6wJKDF8X5WLPouopv9PzwwhSkNH6Eha+tCTgA//hr2DeyFv3BWY/cVzuLxLb5x7Rb/4Bx1FxumnYN3Lu6N7uRbH9/VFE+AvqsAPLXHsLeuDFn82Atid8jFRkk92W1O2O+64A/fddx8YY+hZ3g01a9cCjOHjedWo6DsQw4cPR1t1NSrLy+EvLkYwGERLSwuys7NRW1uLJ554Anv37sWECRPw61/bx8KWbtPGkWDL0WmPR3JaEwZwM+d8MWPMD2ARY+xzANUAzgDwbFT5dgB3Aeir/4m2qQbIInY5gAOc8+6MsXMB/AmAPW+ZxOLOaH+2w2yHt6FPGDsOGDvusJ7zf9nkFBinr88aDGXfhqRgtUvvbAQ+fBtFdXPR9rvpHfqmUs5aJUzm+c/PRmtQxINtK1V+dIA6VZMiR17g78Rzf4MvSofj3JHD4ZAlYNKp8QsfYcb4/0e76vanj8p1ZYmh0x23W7bVr6mGKwgEcv0IMwk8EkZ2QWcEazWh1nBJAZRtuxCWgaDPCU9jEK7KXuZ+T197wdVo++677/Dpp59i6dKluPbaa9HW0ox+PSoAADUrV2LE8OFm2SU1NTj+9NNRU1ODykrtS62srMTf//53qKqKK6+8Mu51IifVQ/44E2l9UqvX4bYjBpw45zsA7NB/NzHGagEUc84/B2I7Rs55C4BvGGMppN2Ydho09grQ2KqnGWOMH0RUd9wZ7c92WIyZedY/d7w/ZnM6ndjYI4LGzulxQcdV97+W0rlOuro/ah/X5jHDj9Q3ZTQnxQGHLCHDo81Ei5YsR/cEjN+P1TYXMXSp40AHZCEO1hhjOOGY5K7Tn+3/J2PILdBS/1WVgHOSZJFZ0h2BUOSgYgVvv/12fPDBB5gwYQIAYM23szH2tLMBDuTk5KC6uhoA8P2GlXjz44/xu3vuwZIlSzBgwADzHO+99x4efvhhXHfddbbXAIDtJ72ISRnnQj79jx2u4+GwHyQwhDFWBmAQgEOJ0PsnY2wpY+wuJlBXMYCtgCbQCaABgP1y2T/bUTUzpf4HUL/+2Q7N8v78MY57YGbygj8Cy7/8XtT0Z+h91V8s2zM8GpD6qZmQnviRhZ/GEbCdfXo/zB9zcIKjh2LLJ3iwZtxP7/0edbPIAtgsjcIAWZLgdXXcZf/5558jEAiYoAkAcruUoLWtDY3BMC688EIsXboUAwcOxBMvvYGMrCxUVlZi2bJlFuA0ZcoUzJs3D6+9Fn+CNmniSWi9fR8qyss7XM/DYUf862SMpQF4G8CNnPPGZOXj2FTO+Xbd5fc2gAuhxTbZ0RcxbBNj7CoAVwFAaWl87Zmf7chZu9sFoBVKbseUh3+2H96GVR6+zuiLc48Fc3qPmMts/PgTERk7CfJPkMmcfe5oODPyLc9mx6jBKH13EcpGTj5q9eqIXfXAG0clbHzSX+YjrB79gPXDZZ9feTYKSsp/ANeyvSyAJz0H9Qf2Qs60rgYQzJAgp7iA0QknnIATTjjBsi09vwwbNq5DVnY+JInh++9jF3qeNWsWbrjhBvP3O++8g0AggJNPPjnh9bzOoze5OKJXZow5oAGd1zjn/6+9e4+tsr7jOP7+cg6lWKkWUaYtQpuJBGF4QVwVWDOHMkKmDBNLNgT8C5fBLpqsW2aCQ8dmpm5hDsOGy2JGBREcxgSGssaVGBEJ2AqojItczIRuCOK8tP3tj+dXPNLbaXvOeZ7n8HklJ+f0OU9/5/f7nNP2299z6/5aGp1wzh3x96fMbCUwgaBwOgwMAw6bWRK4AGh32Ujn3HJgOcD48ePz56ctRm5aupZNS+9n9t0/735lyRsLFp29K2PmxbFoApi/6I/tls355VOcXtTS7jD3sFkn5VG/kLK/MKSjqbJl4b2/yGr73b1LyUSCIRXtr5ZRdNmoPhXGyWSCi4Z0fPDL6dOnmTRpElOmTGH48OCUCVVVVVRVVfXhFXMjm0fVGbAC2O2ce7QP7SSBC51zx30hNh140T+9HpgDvALcAWzuzf5Nkn2lpcOZ+6v2F8MVkc+ZWeSKplQ9PXO4RIN1MWnU3MXeE9m8nElRURHbt2/PWvvZlM2f0JsINqk1mFnbVfh+BgwAlgIXAy+Y2Q7n3K0AZnaA4KQQBWZ2O3ALcBDY6IumBEHR1Pav2grgKTPbSzDTVJ3F8YiInJvOnDlchVMc9W87u8VZ8wqfFcMnBcV0fOpd6Uw2j6qrp/MZwnWdfM+ITta/rpP1PwbaX2hKREQyR6cjiLXmBCRbaPf+nVc6mvNjuqk7TDosQUREupHdSyZJdrV0sjkumehHP72nPabCSURERCRNKpxERKRLbXMSaZ/RXSSPqXASEZGu+S11TnVTLFknJzCV3lHhJCIiadIf3jhKDmzBAYlk9q/csG7dOsyMPXuC69zV1dUxffr0rL9uLqlwEhGR9GjGIpZODyrHSoyC4i+eGfz0B5+w7pHXOZ3Bi9rX1tYyceJEnn766Yy1GTUqnEREpGv+/D8qm+LpkpJiBpZeRcFZM07bXtjP0b0fsO2F/Rl5nQ8//JAtW7awYsWKLxROJ0+eZMaMGYwePZr58+fT2tpKS0sLc+fOZcyYMYwdO5bHHnssI33IheieolZERCLhTMGkGae88MT362hp/vx04o0vH6Xx5aMkkv2Y//uqXrf73HPPMXXqVEaOHMngwYPPnBl869at7Nq1i+HDhzN16lTWrl1LeXk5R44cobGxEYATJ070aUy5pBknERHp2pkTTqtwygezH6rkiuuHkuwflADJ/v0YOWEosx+q7FO7tbW1VFcHF/Corq6mtrYWgAkTJlBRUUEikWDWrFnU19dTUVHBvn37WLBgARs2bKC4uLhvg8ohzTiJiEh6NOOUF4ouGEBBYYLm5lYS/fvR3NxKQWGCogsG9LrNpqYmNm/eTGNjI2ZGS0sLZsa0adPaHc1nZpSUlLBz5042btzI448/zurVq3nyySf7OrSc0IyTiIh0rW0fJxVOeeN/pz5lzORS7vjJdYyZXMpHJz/tU3tr1qzhrrvu4uDBgxw4cIBDhw5RXl5OfX09W7duZf/+/bS2trJq1SomTpzI8ePHaW1tZebMmSxevDhWF/zVjJOIiKTFqXDKG9+c/5Uzj78268o+t1dbW0tNTc0Xls2cOZNly5ZRWVlJTU0NDQ0NTJ48mRkzZtDQ0MC8efNobQ32tVqyZEmf+5ArKpxERKRLKpekO3V1de2WLVy4kIULF3a4/rhx42I1y5RKm+pERKRLLSOCHXeLh1WE3BOR8KlwEhGRLiXv/AOvzriKy6fdG3ZXREKnTXUiItKl2yrHcmLcSkqKCsLuikjoNOMkIiJdMjMVTTHgnOt+pRiLyvhUOImIiMRcYWEhTU1NkSkuMs05R1NTE4WFhWF3RZvqRERE4q6srIzDhw9z7NixsLuSNYWFhZSVlYXdDSxfq9POmNkp4K2w+5FnhgDHw+5EHlCOmaU8M0M5Zp4yzawrnXODcvVi5+KM01vOufFhdyKfmNk2Zdp3yjGzlGdmKMfMU6aZZWbbcvl62sdJREREJE0qnERERETSdC4WTsvD7kDfX/jRAAAFV0lEQVQeUqaZoRwzS3lmhnLMPGWaWTnN85zbOVxERESkt87FGScRERGRXol84WRmw8zsH2a228zeNLMf+OWDzWyTmb3j70v88lFm9oqZfWJm953V1o98G41mVmtmHZ5Jy8zm+HbfMbM5Kcs3mNlO38YTZpbI5tizJUqZpjy/3swaszHebIlSjmZWZ2ZvmdkOf7skm2PPhojlWWBmy83sbTPbY2Yzszn2TIpKjmY2KOXzuMPMjpvZb7M9/myISqZ++SwzazCzNyz4mzQkm2PPhojleafP8k0zezitATjnIn0DLgWu9Y8HAW8Do4GHgRq/vAb4tX98CXA98BBwX0o7pcB+YKD/ejUwt4PXGwzs8/cl/nGJf67Y3xvwLFAddj5xz9Q//21gJdAYdjZxzRGoA8aHnUke5fkA8KB/3A8YEnY+cczxrPVeByaHnU+cMyU4hdD7bZ9H//qLws4nxnleBLwLXOzX+wtwc3f9j/yMk3PuPefcdv/4FLCbIKzbCAaJv7/dr/O+c+414LMOmksCA80sCZwHHO1gnVuBTc65/zjn/gtsAqb6tk+mtFMAxHIHsShlambnAz8GHszQ8HImSjnmg4jleTewxL9Oq3MuNicrjFiOAJjZFQR//P7Zx+GFIkKZmr8VmZkBxZ18f6RFKM8K4G3nXNvp1l8Eup1djnzhlMrMRgDXAK8CQ51z70HwJhD8UHbKOXcE+A1Bdfke8IFz7u8drFoKHEr5+rBf1taHjQQV/ylgTS+HEhkRyHQx8AjwUa8HEQERyBHgz36TyP3+l2pshZmnmV3ov15sZtvN7BkzG9qH4YQmIp9LgFnAKuf/rY+zMDN1zn0G3AM0EBQIo4EVfRhO6EL+jO4FRpnZCF943Q4M667PsSmc/MzEs8APU2Z+evL9JQTVbDlwGUHF/t2OVu1g2ZkfdufcrQTTjAOAr/e0H1ESdqZmdjXwZefcup6+dpSEnaO//45zbiwwyd9m97QfURGBPJNAGbDFOXct8ArBL+dYiUCOqaqB2p72IWrCztTM+hMUTtf4738D+GlP+xEVYefpZ5/uAVYRzIYeAJq7e91YFE7+w/Is8Ffn3Fq/+N9mdql//lKCWaCufAPY75w75qv2tcCNZnZDys6L3yKoRFMrzjLOmvpzzn0MrCd4w2IpIplWAteZ2QGgHhhpZnWZGWFuRCTHtv+82qa9VwITMjPC3IpInk0EM6BtBf0zwLUZGF7ORCTHtr6MA5LOudczMriQRCTTqwGcc//ys3ergRszNMScikieOOeed87d4JyrJLiO7Tvd9T3yhZPf5LAC2O2cezTlqfVA257xc4C/ddPUu8BXzew83+bNvs1XnXNX+9t6YCNwi5mV+Gr2FmCjmZ2f8oYmgWnAnkyNM5eikqlzbplz7jLn3AhgIsG25qpMjTPbopKjmSXNH1njfxlNB2J1hCJEJ0//B+l5oMq3dzOwKwNDzImo5JjSzixiPtsUoUyPAKPN7GLf3hSC/YNiJUJ5Yv4IZL/8e8Cfuh2Ai8Ae9l3dCP6gOoIpyR3+No1gb/iXCKrDl4DBfv0vEVSXJ4ET/nHb0XAPEBQ7jcBTwIBOXvNugm2fe4F5ftlQ4DXfjzeBpQT/RYWeUVwzPev5EcTvqLpI5AgUERyx1PbZ/B2QCDufuObplw8HXvZ9eQm4POx84pijf24fMCrsXPIlU2A+QbH0BkGBf1HY+cQ8z1qCf4x2keaR8jpzuIiIiEiaIr+pTkRERCQqVDiJiIiIpEmFk4iIiEiaVDiJiIiIpEmFk4iIiEiaVDiJiIiIpEmFk4iIiEiaVDiJiIiIpOn/P7LPZYkDj5kAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for HON\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'HON'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Newport (NEW) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 9.721e-01 -2.663e-01 0.000e+00 0.000e+00]\n", + " [ 2.663e-01 9.721e-01 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 7.207e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.700e-01 -2.408e-01 0.000e+00 3.933e+01]\n", + " [ 2.408e-01 9.700e-01 0.000e+00 4.574e+02]\n", + " [ 0.000e+00 0.000e+00 1.123e+00 -5.502e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.014e+00 -2.590e-01 -3.328e-02 9.257e+02]\n", + " [ 2.330e-01 1.014e+00 8.769e-02 -3.834e+03]\n", + " [-2.713e-02 -2.756e-02 1.014e+00 4.784e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.718e-01 -2.582e-01 -4.197e-02 2.130e+03]\n", + " [ 2.345e-01 9.673e-01 8.515e-02 -3.738e+03]\n", + " [-5.235e-04 -2.378e-02 1.121e+00 -5.417e+03]\n", + " [ 0.000e+00 -0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFpCAYAAABqGKfmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FMUbwPHvm05vCaETpYYaOogUQREUASugAnZRsPefvYsVFAQLCAJSVAREmhJ6lRIgkNBCr6FDIPXm98dukgtpF0hyCb6f58mTu9nd2dm5vd13Z2b3xBiDUkoppZTKnoe7C6CUUkopVVho4KSUUkop5SINnJRSSimlXKSBk1JKKaWUizRwUkoppZRykQZOSimllFIu0sBJKaWUUspFGjgppZRSSrlIAyellFJKKRdp4KSUUkop5SIvdxcgv/n7+5ugoCB3F0MppZRSuWDdunXHjTEB+bW+/1zgFBQUxNq1a91dDKWUUkrlAhHZm5/r0646pZRSSikXaeCklFJKKbcI37qBSWNfxxjj7qK4TAMnpdRVJyEpgSRHkruLkWMO42DEvM+5kHDB3UVRKl9M/ONeNqydzvmY0+4uiss0cFLKybn4c+4ugsu+++UDPvr6IXcXo0D6oU9jXnquEWfjzrq7KDny+4T36fTMaEb/r6e7i6JUvug/Hh78x8GZczHuLorLNHBSyjZl+lDWdGjJz3OHurso2Yo6E0X79yZy+7cr3V2UAumGzYZH5zmY+HQXdxclZ3ZuB+DGPw+w8/DWHC9ujOGzIX1Yt2VZmvQzsec5dv5UrhRR5Q5jDPvO7nN3MQqMpLjC08qaZ4GTiIwRkWMiEu6UNkVEwuy/PSISZqcHichFp2mjnJZpJiKbRWSniHwtImKnlxWRv0Vkh/2/TF5ti6ti42P5Zd6oQtVXW1AdP3uc5dsW5+s6za8TqXQKWjz7Xb6uN6dC540lrtWtadKWrv2Tjx9rzOkLZzJcZvrcUfwxZ2S69J/HPs2UyW/kSTkzY4zJt66oOlsyro+CKmFHZMrrdZ89l+PlN29YSPefNhL10uNp0qf0a82Grtddcfn+a/Ye38mJc8fyJO+xwwcT0/JmFi6YCFjfi0RHokvLJjoSOR2bu11bsYmxOT53HTi2h2EvdyU2ITZdXjntKpck17a9IMjLFqexQFfnBGNMb2NMiDEmBPgdmOY0eVfyNGPMQKf0kcBjQC37LznPV4EFxphawAL7vVuNfb0HTZ4ZxvTx77u7KAXKr+Pf5vsh/XO0zPTHO1G250ASEuJJcCSkm56UlMihs/tzq4hWnl6pX4f5f/+Yq3lnZMov7zLt189yvJyZNDVd2rF3/kevJfEsHfNemvSYhBguJFygzrPDqPvc1/y+6AccxkFCklWnLT75m0bv/J5mmWmzf+TMhay7uH6dPYyPR+bsM002etiT7G3YjI3hy9hxJIo/1k53ablPRjzES5/eytHTh9gSHMzy5sFppr/96o2M6VUPEuNS0oxkn++8uaMZPXxwmrSvh/Qjom4wEds3sGnHGqYv/NmlMp6JOc3Mf0anSTt97iQ/fPOMSyelJutTA8qkmOg000a+ezfjRj6b4XLDf3uDT55sgfe9gwAIPOEArJPx6JHP0G5zEtWOw8XEiy5th6sOnTrEvuNWq0nknk18+EkPVjYLZufhCJeWN8Yw458xxCfGAzB3ySSm/vE5iUmJxCXF5fhEfjL2JNEXojOdnuBIYO+RHSxaPSNl/RmtIz4xngnd63Hh+ts41qIDZ+Nzp8v33IWzjHq3L3HxsZQKtVoFoxf8AcCkx7uwo17DbPP49e/vmNirEYdD2hAblzvdW9EnDhEZ0oSfbq/P92/c5fJyC5+7my4z9/LHl0+lSQ9r2YRRL3TNZCnLZ6925qMH66UmFKLASfKydUREgoBZxpgGl6QLsA/oZIzZkcV8FYGFxpi69vu+QEdjzOMiss1+fdieb5Expk52ZWrevLm59DlOe/ZHMmfiO9S57h58fH25/pKreVd927sXptQgKPYrRQ6u4Lifg5d/dq25/WLsRTbuXEPrBh0yned8XAwXE2MJKFbO5TJFbv+XPVEb6Nr1sXTTjp86yrJV0+nVzbo6PR17juLeRfDyzPrxXhPGf0CDJjdQoXIN9na6gbm3VOSJFyexcPYoet/3drr5I+paJ7iNDX3pPXUDdqMhAA6Hg5/+dyclGoRwz/2py4YHB+NpYHELXwIPxdFt3gb8vPxSpn/3dnfaT9mFmTqSeo06ZljOLQe2Ud2/KsX9ima5PcmG9b8ZX5+naLrhK06WOkK1kWM4d/YErVrc4tLyyRIdiawKW8Dc75/n5S9WcLBZawACVi7Cv0wgAPEJcexqGALAuo8GcP8dVtx/5PgBJv/0CklR2yhaMxhv36Lccf+HfP7xrTz32kxizp0mutedFI9JvZpL+msCnrfeD8DuQV05WqYElYMa0KhOG06160JUIFx71Jr3ZHFY2bk8rUOP0WDhCg43t1ohgiMjiDqwlW2RKwga/EVKWkbeeasbvafuAaDO1i14eKS9/opNjGf+xn/o0ewW6yraJLJn3zYSu96daZ3V3LqJX34dwoEtS3jtnbl888eHtGnYiT+/Gsi9CzM/oK587z52rJhG53vfpnJ/qw7jfEoSXu8hGmwdg2/8WVbWFXa2rkK7Jr0JeuZz/ry3Ni+/NSMlj+T989du/lxTrx09+r7EIbteFjTzovM6a/0Hfh1KlbutwGXP0FeIWvQrFW/owfmE8zRt3o0GFeoxvXMwdQ7CuTGfMv2X17nglcTjc60gZk4bXwKPxtM0yvB9Vw+K+BSjWtR5APZXKcb9c8+n274SqxdRxMeLckXKpZSz6Mp/KONXkpJFSjD3r1Ec2B9O26EL0i27f9iLxB07Ss0Px6dJP/nd+5xPuki1oEZwSx9m9Q3h+TcnsDN6L3UCr820rp3FJcax8voQArNp9Ng5+DYORu+k3SNvsXFwf2q+9gktW9/CgqVTCQyoRkTo7zT4ehYAv7UV7lqe9ny0tSrU2w+/dvSl39u/8tPbvShVtjJt7niGiH9n8/CgEXz+eT/8SvpTWnxp9oX1uV667+47uhsfHx8Ot78RvwQ44h/C1vqPUD/8B06UiuTO2WFp5g8LW4hvnyfTpJ0Z9zmtMzg3JCQmsLNBI+beW5/n3vqN07GnKe1XOmV6THwM+xo1Z167EpRK8KT1qtMcKgOVMuk5nTvoOirVDuGOGweydudSIjYs5N7bX8PDy4sjp/YTc333lHnjPWHDW324/rp7iNqziS7temOM4dflP1K7cgNOHz3I2lHv4VWxIs98NJfvRg5C/Px4/KEv06xzXehUij6ZevwNjowgOuYYf3z5Akbg8TfGY4zht5vrc6KsNwMnbwRg4XXBVDgJS7pU5PGvQwGIitpE3C29Adj99Ytc8/TnXPztW5o2uIET544SHRNNzfJ10wWJxf6aSrUaqWln4s5QzLsYXh7ZP25SRNYZY5pnO2MucVfg1B74MnlD7fm2ANuBs8AbxpilItIc+MQYc6M9XzvgFWNMdxE5bYwp7ZTnKWNMtt11GQVOk7vXo/HO1HqoG7GVJav+YMV3b0BRT+ISHPRe6iDWG7ZVFhr9NIMZP7/M+T3b8S1WhBsXxnDRF7bX/RSHd1GQi3Ra9BIA+95/iBY3PwieHpQuWpqnX25I0x2GdsOmkXjz7cR7wsbXbyd27nzarYkhcdJwGjbpDMCefRHMef9+LlaqQs0l27ngJzTebYjxhbWdqzHwy3mZbuemyGUse/sxbthobdfBH98n6su38O//CLfe8iTjB91Anc2n8T8Nez56hIOHomg7PJTV9Tx4YNoWwApqQud/h//LY/k35CHKHBlD/X1ZX3nFe8GsXjXwObCHmnc/Qe0Xhqdp1rz0pLakrQftl1snlqwOJgB/dw/kpllHWXJrdaqu38s1h2HlHXXw2rydY5WKUPumvkTuWklRfDjvW4Seo1ayvEURenz7D0tmfcuNPZ7ik5evo02EA/+zUPa8dbC+842JSLd7WdHybWKLBOB3MZrK+9+j+mGr7jILIHYd3EZk1HpObYvE99dfudD9BkpcU5/gF7/Jso7y0srmRWiz1mpViPUGv/SNdSkSPcDLqnqOlYLyl/RqVVyzjFl923HBFx6cuon33+hI3+knUqYnn3yosprTeyZyx3IH4zp7MGCBlenChkL9fSZdvnltS51+HK3QisAjq6i/bUKG85RdtQCPhCS+f60bdyzL/7vvnE/cgSc2XlYezgHx5YjxhWJ249ycln50WxPL8oae9Ju0jn86h3DtUUj6fQyed+bsBoRzxSqzvsmzNN3wFSViDmU5b0b73eXm5Wzeo825+QfrOP9310rcNDftsqHtvgIPb3Ak0Gmp612ii5sXp/KB8+x9sBudP56T6XzHhv2PXWsX0mZ8wRyDuL6GkOAFrbZlfP6f3yWQLvNTd64NNYRrDhtK2w2idSO2MvauEFpviU+ZZ+WjHWnzw6JM1/ntHX48OS020+nFZ/9G1WvrA5CUmMj2Bg1Z0b4sD3+/PMP5j504xLLQX+hxx7N4e3n/JwKnkcBOY8wX9ntfoLgx5oSINAOmA/WBOsDHlwROLxtjbstJ4CQij2F191GjhF+zaWsWMeOzB6l4EioOeoNrB19Z11poh+EgGfQJGEPTfwen7GyuSPCEPeWh1uHs511dRzje5FoaduzL2bgkIv4dR9Goo9y64spOBH/2KMNtM1MjmLD6j3HSvxFlj28kZMsPV5T31jr9OFKhFWKSaL5uSI4Ohnklq8+v0+LBLG8ktN1kOFIaKthX2P/cU5Mbp+7MNM/cODEWdJd78skri9oNxeHpnS7dIymBjksz7uJyl/you0svUvJreecLkOvWvJvj9eZVXpD9d91VV1q3mbnS40ZuHndOlK7NxkaDCdn4DWXP7LiivFx16us3adjwen774klaz9oFWBeuMTFniU+Mw8+7KOEbQ6lcvR5nOqW2vNXbFnl1B04i4gUcBJoZYw5kstwi4EV7vlztqmvgV8SMCumSqzvEwvbDMBk0J4ojkRuWPONyPnn1ZbxcuXkiyuuT2pXUXW4dTNPkmYsnxoIWhOVFfTm73FaGhe2HYjzS72PiSOCGJZe3j+X2ySOv687Z5uCHiC7flIBj62gY8VOOl8/pBVNublte1dMR/xC21nsIxMPK3xgwSdTfMiZH363cvJh0dqXHjdw87iy6zupB8Ui4QMcVL19RXpf7nQaIqOFD8K74LOfJ78DJHY8juBGIdA6aRCRARDzt19diDQKPMsYcBs6JSGt7XFR/IHlwwkxggP16gFN6tsLrPwLiweYGj1751gDXrXoTkhKsLyFY/5MSrPQciKjVhzOlahJRq/cVl+lcscosvv4zzhWrdNl5ODLpW84sHWBfYPqD3ZwHmpNZeO7w9LYOkrZzfpnMmI3I2lbdRdbqk+NlW6z9GEhM+/k5Emmx9qMc5xXaYTihHUeAp491YPb0IbTjiLTbODzjYHpDz7rp0vY9cANbg63dfEu9B3JcntwW5w31tvwIjqR09VU//AdC2/kAsLNmxq2em7rWzjL/TXW82Vz/EZI8i7Cm+aB00/d28k19M2FEysvYy9xvshNe72HrWFH/kZS0i3WrpLw+d3PNdMtcuyF1KMDhd1Pvc4lq4J2+7kitu92v3+lyuXYOvDnTaYvaDSW04wiiA5uBCNGBzQntOIJF7Vx7zEby8icDGoMIJwNCUpY/WcYz3fz+f/yeQS7ZWzzo9pTXUUEebK/t4OhL91xWXtnZWRHOPnsPFY6HAXb/dMr+63A5aMqqbrIT/Vq/TKe5ctxY2jp1/m2NUj+Hbdf5ZLn86fLpLyac/Xl/2n04OS+HTzEQweFTLF1ZcmpL8AMkeRbh3+avpZyTQq/zcWnZ7IImd8jLxxFMAlYCdUTkgIg8bE/qA0y6ZPb2wCYR2Qj8Bgw0xpy0pz0B/AjsBHYByR3LnwA3icgO4Cb7fbbOlqhGkre1QyR5Z71DlPlrSsrr3Y0DM83TN/6sdQUDSPItmOKRpuUj5tPnU15veSbtQe9KvozO1ja0T1oVSDn5bK5/ecHhxoc70Xjj1+BIH1CEhA2j3IxxKfMefqxbyutqR9OHSLfdPojrVr+F74UTTicMKz/fiycJCJhBwuev4Tn8PU6/ah1c1tfI/naoP3tVSKm7E/5W3Z0IaJxSd9vuaZEy79Lm1pl1w7Wp+QbZJ7gSMQexGkJxKp9cVjdivS0/gpCuzgKu2ZQyT4vOqbeKnx2SeiV375A/CI6MIDgygsPlrAPYzj13ZXkwzU2JTkeD2uGbU16HNSuW8nrP492zPPkklrEG4u8r7cnxOmUBOPR06sMce3z4C5tbpr25YX896zMJ7TCc4xWHElu0PIggUjple7dfVwOAlm/NTlkuKDj1842654bL3GrLsYDUk8u2F+5IOXkk+RS3jhU+xVPK4tfrNmL8YHuQNy2GzuR0XSg6dSw1wjZQcelSfIuk1ledFp1SXpc5lmDVnXE47SMCOCh1diPNOg8gPotxsL5zZrDnWl823d2QJt2tw2lYq2JUDJ3NSf/U71VOL3j8F6aOldxRXbJcvspo69b5XU3LcOat+4hs7kVAsHVnVIu1H1uHwSwuQLZ+8mDK64FPfUTAgnkER0Zw69wt9Jy5jY4Pv5uSF6QPMBuHfUiFxfM4VtmXiovmcP7nr1hfQ9gVlP5UdrScYV+Avd67m9Nq4LvWeEVPq0Wmyv5QxJEA1jU7W2+3OizOfvQw4bfVZl8G15xZ1c2xWqmBwJH3niCqkge1NqUGZO0H/I8yoQu4dmMYO2pY69xW08ov3XHDKaBe08Cap6x/rZS8Qt4ek/K6SId7sgzIy42anGGZkzWt2CzNezEZX/Rklp6V5O/RheKVrGOYePBvi9cJ7TCcfl+mv6GhsMizwMkY09cYU9EY422MqWKMGW2nP2CMGXXJvL8bY+obYxobY5oaY/50mrbWGNPAGFPDGDPY2H2LxpgTxpjOxpha9v+TXC5JIvy+6wHY98oANle3DuQVajRid+1iRN5aj1umLCLms5eovGIhCT9ZMdqJl+4gODICj4kjKV7uDJUPLaH5uiFUPrQE/xObOT3kVcJ6NGBhqyI075EawDTqkjaYuZyWnYz43dSV0A7D2Vd3RMrJJ7ZoeZdPtnHeEFWzOBs6VaFu65spd3q7XT92k7YIeHhwqKNQvk5LwkKKEvlYRzo9/yXb721P+dC/iC5lLXLgmdRgqmbtVvjGnyXO1w5ajEn5gnsmxXLPB1/TqHt/at94N136/I9r16+lz4xNZOfeQSOzrLte7/3M7g41iRv+HqdLWOuLrOnFrqd6srF7HYo4neCKlPShbOXi1N8ymmIxh/BJuOQJ4uOtz/xQzRJ4TxzBpar+u4LgyAhuWDYJDw/SdjMYB8VKHk4JipLvKoz3glY9H+RodQ/23Fg5TX5VfphIlWYnrWycg01HIhWrb8i2bjJzxD+E0A7DOVqucUrajspC1ZXLKTFtAocGtOdgj6Z4enlRZc1KgtatgSrVADhaBnoN/ozgreHWycfDUMJ/Gx5eHuDlQ92IrTz6znz+6OTNHZ/Nod2M5QRHRtD5yU/w++0nfH4dR5Fixbjn57QPZ6w4OJvnSInQc8wsgiMjKFsh9WxWpFgJdtYPYNcDt3Hn/76lw1PX4uXjkebE7ZEYy3Wr3sq2XhJKpNbx9T0G0njj10ia2+GtvELChlGxay+ah0XQc+4mRIQ20yOo3qgVPn5+lA7wB2BjQ2vfqli9HhsH38nFccPZ39Z+fIKnJx6eHjTqXBUPTysgbrI5gsBKtai7Me3dXftf6UnpWZM5P/hWrr2mNt1mh9H7/alUqdmQ4MgI+o5bS+lK15D0nFP3VWbPAnJKj3NqoQuoaH2+hyt44R3vYV0wmSQg7X4XEjaM6vUaExwZQfdfVtD63je4fYIVYHv9Po5SYz9IXcQ+XoinFy3XLWBvgLXPN29ya8r3AMC/crV0xawdvgmP924DD8/UvBDw8uL61aGUCaxGhwVhlK4QRIuWXbnvr610n7uFDXem3pEVfkttOi6PpPRbb/FnG0+eeyD1lDNoZCcG/dCV2h/fQnEZQvnr5lMzbB13fjyd4MgIWt3xInd/NoMb529mT+XUU+TOilh1gyPddzIkbBjX/7GW2S08OTHqfW6452luDd2Cl48PxeZMp9hf1iMHKlSqhK+vL9KjBwCJN7Sn0vIFlHz3pkuOGwLGwdkHqlN3l/W5xV84T/jTN7OqtQ9B9VtyqBxE1ICgJh2ocDwM4+FIuzzWxUztevU4WdxK3V85tdzJQXqN63uwLSSAcyU8Cbutmss9KEc/yvqivM6WcM7wGWTU3yDC+FezP8ZnZFhv1+6Szkt5OsapIKpevo55+Y5vsXYs67vZ/6O2FCvlm2Y+Y0ya2+ZdcThqC6dvsZ6BUTt8E55eaZtI33u4Hh4G3hizlVF9m+LbqROtv/jLHkcxyLrycep3D9k4PM24iou+QpG4tJ/XX52KE9TkZkr6V6Jx25v57c09mY4N6PV6IOuHvE7NBdvZVd2HGnutJtCF99THbI9k0OTwtHkP7sVex9P4+HnRtGt11s/dS0J8Ek8Mz/zq/tihKNb/M4Wu/V/jz+//x4Vd6+k9ZC4Ac0ZtYu+WkzgST1KhVlWi95xDPB089tWNGeY1dmB7Wi1K/0wWj19/ILBSLUqXC2RKz9s5HviEfZC1t9uRSMjG4bRdPTNlmVMnjjD2tS48PCSUkmX8U9KTb/FOPpAnv7/UpXfWRR/eTvGS5fErakWKzvvKiCdC8fAQGnSozKbQPeAQOj9VjLoNUx9AeOLEEXy8fShRsmyG60s2clAojqTUVjAPT3hiRKdMy7nmznrc//5U1jZvQMlLbkpY3SmQmIRX042BKP33H1Ssmr6b0NnM0e9xS/9X8fJ2rXk9O6v/+ZX96xdz18tWQP/5R10pHpaEw/81jCO5JcZqyL37fy0IqFIiZdnExAQM4O2Vvgvi59eXc+54LGISMeKFb+wJ2q5+G6b+CPc8QmQVOH5XJ64fGsr2Tx8neuYk2i47S/zYzyhWqjy+RYpRNci6s+eH5xYTfzH1KtvLF/zrLuTOJ7K/mcQYg3Ek4uE0ri8xIZGZY9+j54Nv4emVccBvjCHSbsHJ7G7OzIRO+5YTh7dz7sARYs88hkkyqccCRyJtV72Z0gqe9MI9hC37C0eJEvQfvjAlj1OnjzPn4a6cDvwU40jNWzzgyW87kZ2fXlmGHNxN0J45HO7yDLExCTw45Hri4mI5F3Ma/7IVXN6en15Zhl8xb5rfGsTav/ak5JWVyd+8TOMRf1I6dB4VK6UPynLqj48fpe44K9CvFraeOfNHc2xuvTR1gwf0+6wZJYuVylHeO/Zuo1b11GG5zseN8MUHcTgMg0Z2YubY96n1yS/4zprEtTVDMszr4oUYxrywOsPlAQ7uCWfp759y19Nj+P759tz55q9snvs9p/74nbv/SD3u792yjAt3Pkpo+6/tXhSHtYHGQaclT7M8WGj9zudUqRZC6TKV+OWzASREH6HCyn1Ui4Z9gXC8vIOyRz3otsTaf3/+3wrOnYxNvfgGSpTzo9sTDTl+Y0uX6ko+eRbzqtUDE/pGVzp9YJ1TNjT0psnmhKtrcHhBZAVOI622NjtAf3Jk9gcEV116Is7OxF4NaRqZSGj7YSlNxgCYJDoteYbw2t7Uikrg71sCabj6ONWPWgfyrQO7cGTPJgYNXZgmv8N7T/HHkA3ZnnwANjQMZm9Fodf8nP+0Q35Z8NvXVHoj7ROvnet2y/p/WPSdA8TpRCQOGrffxPV9nyc7f43/gBL+lWjfzbrl+tKA5HRRKH0h5yex3JLZwTSjwGnX//rQvb/1LJZxr/Wi5R/bADj62fNs+atGpusYNCr39v8r9e2ToZd1wk42Z9QmjkVH4LvqB/w82hLnU4rev1v7wc7d4ZQqVZaAsq6N+xs5eCHePp4uXzTklpweQzLy3VOLSExwIJ5W45F4OLgh1OkhhaOHENy2R6bLX8m250b5C4rpnw6kzpjFRFWEWxda2+Ou/SI/GGMIbVuP4xUf5XydMvgenUXxYw2I8ylF1T0/EP3qffS8O30L8fRRL1Fn6CzWNvWl3y9pW01/emUZsecTnC4AoWzFovR9uzVbgoPxyCQE2Vrbm70lEum2zlB780a2N7RayUsumc3Z9taz9YLC1rEsdAJdbn1cA6e8VKt6ffPjJ9Oo364SW5Ye4sKZOLoNbJRr+ef0oHH+/GmWhU4kam5dfPy88dv/GzElbiTRpwiVQv6mTc/HqVDROumtbhlMSXvYVJHZkwm6tnGGeY54MjRlCAoAHjAog5NPTEIMnuKZ5sGSBc3hg1Gc7nwra+9pRscHXiIxPpZr6rZKM09uHsguDUhKLJxJXFwMNYIyvtJzF+dybqrhTd0Pv6FxSNqHpzq3mm7/9wj/jNlqBdR2mgjc+Eh9ajfLfPxefrucVobM/PjR/ZStWpc7+uXvT8pcqW07VhEQEETZ0q63zlxqzqhNFC3lm+Y416R1DAcGPESxOPCYMoo6jTN/2O6VGHd7fc4GluCpUavyJP/8tCtqE5EP9ib20fu58/7X3V2cfDf+vf40/+VfwHp2U2a9MElJCfzwQU96PDaUShXT3wCS2fc6yZHE7w92oOHqE+mWiQz2pd34UPZH76LJNS3SnFuTHEl4iEdKea6qB2AWRBk9ADM3GWMwGDzk8oaPTXz/YZpOXEHCxBE0apY22Fnbsi7Fzlo7SlaBWW6efAqCBEcCXuKV467Ty3Fp4FRQr5qdy7nzkY7c9mL636G7lNXtl/o+udtP/Xd8/1AL2q04T8DiefgHXnlXlrq6GWP4enBHuj0/jNo18ubicXK/NjT+N/UR9Mvb+NF2ZSyRdX25fXpq61VE3WAcAvUj0h+T8ztwytnoY5UtEUG4/BN839d/IHrwQQLLVE03LapWCRquS/+zDJdyDpJqFaDWhMvlncGzefLDtsqQ8Ugi99tVVaix37rocbh48eNwgIdn2m4/9d9y37eLiDqxU4Mm5RIR4Zm39jfDAAAgAElEQVQReftj6x6X3K1XonINYEvaAfjAgVH/o2iRknlaFldp4FTAeHh4ZBg0ARTtcy+s+545rb0L7An9atJy8l/uLkKm9tcpS439VvO2h59rg1IHOY3la3dP1s9TUlenYn7FaFg54y5+pdzBOPUk7KwmiH03pVwSON3UMfPnYOU3dzwAU12m7rc9h//6JTw/9vJu41TZ2596wx2VAlz7wVN36Pf5HP54rD6HykLzu9P/gLNSShUKTh00HpIaOGX61OQCQAOnQiagaIC7i3BVW27fJ7Cmdt6Pp7oSxf1K8L/nf6PziggqVsj8jjmllCrQnFqc9g+4mcCbe3KiBBzs2sSNhcqadtUp5eRwraIQeoEFzSTl93yUUkrlDecxwY/3/QIRYePsugws1yCLpdxLAyelnHz5yHx6l7yBkTeNd3dRlFLqqmecGveT75xuHFCwx+Fp4KSUk+IlyvHXwzqGTCml8kPBHhSRMR3jpJRSSim3MPnwfL7cpoGTUkoppdxEAyellFJKKdcUvrhJAyellFJKuYl21SmllFJKucZ/T4y7i5BjeRY4icgYETkmIuFOaVNEJMz+2yMiYXb6TSKyTkQ22/87OS2zSES2OS1X3k73tfPbKSKrRSQor7ZFKaWUUrmv0sFYdxchx/KyxWks0NU5wRjT2xgTYowJAX4HptmTjgO3GWMaAgOASx+ic1/ycsaYY3baw8ApY0xN4CtgSB5th1JKKaXywF8tPd1dhBxzKXASEQ8RaSIit4pIJxEJzG4ZY8wS4GQm+QlwDzDJnneDMeaQPXkL4Ccivtmsoicwzn79G9BZpBB2liqllFL/UVWLlHN3EXIsywdgikgN4BXgRmAHEA34AbVF5ALwHTDOGOPI4XrbAUeNMTsymHYnsMEYE+eU9pOIJGG1Un1gjDFAZWA/gDEmUUTOAOWwWq+UUkopVcAVjY12dxFyLLsnh38AjAQet4OVFPZYo3uBfqS2/LiqL3Zr0yV51sfqcuvilHyfMeagiJTACpz6AT+T8U2MGf6esog8BjwGUK1atRwWVSmllFJ5wYc4wMfdxciR7LrqhhljllwaNAEYY44ZY4YaY3IUNImIF3AHMOWS9CrAH0B/Y8wup/UctP+fA34BWtqTDgBVnfIsRSZdg8aY740xzY0xzQMCAnJSXKWUUkrlEQ9y2mHlftkFTt/mwTpvBCKNMQeSE0SkNPAX8JoxZrlTupeI+NuvvYHuQPJdejMh5Qfs7wJCMwrwlFJKKVUwFcaByXn5OIJJwEqgjogcEJGH7Ul9SN9NNxioCbx5yWMHfIF5IrIJCAMOAj/Yy4wGyonITuB54NW82hallFJK5YFCGDllN8bpWhGZmdlEY0yPLKb1zST9gQzSPsAaT5WRZpnkEwvcndn6lVJKKVWwFcK4KdvAKRr4Ij8KopRSSilV0GUXOJ0zxizOl5IopZRS6j/lBKWoRFz2MxYg2Y1x2pMfhVBKKaXUf89BCt+d7lm2OBlj7kh+LSLXAUHOyxhjfs6zkimllFLqqlahlJ+7i5Bj2XXVASAi44EaWHe2JdnJButBlEoppZRSOebtXfh+q86lwAloDtTT5yQppZRSKrcUxrvqXH2OUzhQIS8LopRSSqn/msIXOrna4uQPbBWRNZA6/D2r5zgppZRSSmWl8IVNrgdO7+RlIZRSSin1H1QII6csAycREWPJ9FlOyfPkftGUUkoppQqW7MY4LRSRp0SkmnOiiPiISCcRGUfqD+0qpZRSSrmuEDa7ZNdV1xV4CJgkItcApwE/wBOYD3xljAnL2yIqpZRS6mokhbCvLrsHYMYC3wLfiog31iDxi8aY0/lROKWUUkqpgsTVweEYYxKAw3lYFqWUUkqpAs3V5zgppZRSSuUq33OF6wd+QQMnpZRSSrmJz8UEdxchx7IMnESkahbT2mWXuYiMEZFjIhLulDZFRMLsvz0iEuY07TUR2Ski20TkZqf0rnbaThF51Sn9GhFZLSI77Hx9siuTUkoppQqGQnhTXbYtTotF5GURSRkLJSKBIjIB+NKF/Mdi3ZmXwhjT2xgTYowJAX4Hptn51gP6APXtZb4VEU8R8QRGAN2AekBfe16AIVh39tUCTgEPu1AmpZRSShUAF+OT3F2EHMsucGoG1AA22M9tegZYA6wEWmWXuTFmCXAyo2kiIsA9wCQ7qScw2RgTZ4zZDewEWtp/O40xUcaYeGAy0NNevhPwm738OKBXdmVSSimlVMFQGB+fnd3jCE4Bj9sB0z/AIaC1MeZALqy7HXDUGLPDfl8ZWOU0/YCdBrD/kvRWQDngtDEmMYP5lVJKKVXAWW0ghUt2Y5xKi8h3wINY3We/AXNEpFMurLsvqa1NkPEv1pjLSE9HRB4TkbUisjY6OjrHBVVKKaVU7vPyvMoCJ2A9sANoboyZb4x5FugHfCAik7JeNHP2mKk7gClOyQcA58HoVbBauDJLPw6Udhp/lZyejjHme2NMc2NM84CAgMsttlJKKaVyUUJAcXcXIceyC5zaG2M+d+oOwxgTZoy5Dgi9gvXeCERe0uU3E+gjIr72z7vUwhpP9S9Qy76DzgdrAPlM+4eFFwJ32csPAGZcQZmUUkoppbKUZeCU1VgmY8wP2WVut0qtBOqIyAERSb7rrQ9pu+kwxmwBpgJbgbnAIGNMkh20DQbmARHAVHtegFeA50VkJ9aYp9HZlUkppZRSBUN8CT93FyHHXP7JlcthjOmbSfoDmaR/CHyYQfpsYHYG6VFYd90ppZRSqpAxnlb7zZ5qDoLdXBZX6ZPDlVJKKaVcpIGTUkoppdyj8N1Up4GTUkoppdwjOQgpTM/B1MBJKaWUUm5VmBqeNHBSSimllFsUppamZBo4KaWUUkq5SAMnpZRSSrmFl2fhC0MKX4mVUkopdVXwKOYPgDGFJxwpPCVVSiml1NXFHhVupPCEI4WnpEoppZS6qhSmu+mSaeCklFJKKfeQ5CYn9xYjJzRwUkoppZRykQZOSimllHIL7apTSimllHKRkcIXOmngpJRSSim3KkzhkwZOSimllFIuyrPASUTGiMgxEQm/JP0pEdkmIltE5FM77T4RCXP6c4hIiD1tkT1/8rTydrqviEwRkZ0islpEgvJqW5RSSimV+6RQtTVZvPIw77HAcODn5AQRuQHoCTQyxsQlB0HGmInARHuehsAMY0yYU173GWPWXpL/w8ApY0xNEekDDAF659XGKKWUUiqX6eMIUhljlgAnL0l+AvjEGBNnz3Msg0X7ApNcWEVPYJz9+jegs0ghHGWmlFJK/VcVwrN2fo9xqg20s7vWFotIiwzm6U36wOknu5vuTafgqDKwH8AYkwicAcrlVcGVUkoplbsKYdyU74GTF1AGaA28BEx1biUSkVbABWOM87io+4wxDYF29l+/5NkzyD/Dxj4ReUxE1orI2ujo6FzYDKWUUkpdsUIYOeV34HQAmGYsawAH4O80vQ+XtDYZYw7a/88BvwAtnfKqCiAiXkAp0ncNJufxvTGmuTGmeUBAQC5ujlJKKaUuV0KZ4gBEVS88N/nnd0mnA50ARKQ24AMct997AHcDk5NnFhEvEfG3X3sD3YHk1qiZwAD79V1AqDGmEA0vU0oppf7bHBXK8PhgT5a19HR3UVyWZ3fVicgkoCPgLyIHgLeBMcAY+xEF8cAAp2CnPXDAGBPllI0vMM8OmjyBf4Af7GmjgfEishOrpalPXm2LUkoppXJfldrNOLVfuKZMXXcXxWV5FjgZY/pmMun+TOZfhDX2yTktBmiWyfyxWC1USimllCqExNMbAE/fom4uiesKT6eiUkoppa4qdcrWAeChBg+5uSSuy8sHYCqllFJKZaqUbyk2D9js7mLkiLY4KaWUUkq5SAMnpZRSSikXaeCklFJKKeUi+a89+khEzgHb3F2Oq4w/9vO41GXTOsx9Wqe5Q+sx92md5q46xpgS+bWy/+Lg8G3GmObuLsTVRETWap1eGa3D3Kd1mju0HnOf1mnuEpG1+bk+7apTSimllHKRBk5KKaWUUi76LwZO37u7AFchrdMrp3WY+7ROc4fWY+7TOs1d+Vqf/7nB4UoppZRSl+u/2OKklFJKKXVZCnzgJCJVRWShiESIyBYRecZOLysif4vIDvt/GTu9roisFJE4EXnxkryes/MIF5FJIuKXyToH2PnuEJEBTulzRWSjnccoEfHMy23PKwWpTp2mzxSR8LzY3rxQkOpQRBaJyDYRCbP/yufltueVAlanPiLyvYhsF5FIEbkzL7c9NxWUehSREk77ZJiIHBeRoXm9/XmhoNSpnd5XRDaLyCaxzkn+ebnteaGA1Wdvuy63iMinLm2AMaZA/wEVgab26xLAdqAe8Cnwqp3+KjDEfl0eaAF8CLzolE9lYDdQxH4/FXggg/WVBaLs/2Xs12XsaSXt/wL8DvRxd/0U9jq1p98B/AKEu7tuCmMdAouA5u6uk6usTt8FPrBfewD+7q6fwliPl8y3Dmjv7vopzHWK9QihY8n7o73+d9xdP4W4PssB+4AAe75xQOfsyl/gW5yMMYeNMevt1+eACKzK6om1kdj/e9nzHDPG/AskZJCdF1BERLyAosChDOa5GfjbGHPSGHMK+Bvoaud91ikfH6BQDhArSHUqIsWB54EPcmnz8kVBqsOrRQGr04eAj+31OIwxheZhhQWsHgEQkVpYJ7+lV7h5blGA6lTsv2IiIkDJTJYv0ApQfV4LbDfGRNvz/QNk27pc4AMnZyISBDQBVgOBxpjDYH0IWF/KTBljDgKfY0WXh4Ezxpj5GcxaGdjv9P6AnZZchnlYEf854LfL3JQCowDU6fvAF8CFy94INysAdQjwk90d8qZ9QC3U3FmnIlLafv++iKwXkV9FJPAKNsdtCsi+CdAXmGLsy/rCzJ11aoxJAJ4ANmMFCPWA0VewOW7n5n10J1BXRILswKsXUDW7MheawMlumfgdeNap5Scny5fBimavASphRez3ZzRrBmkpX3ZjzM1YzYy+QKeclqMgcXedikgIUNMY80dO111QuLsO7f/3GWMaAu3sv345LUdBUgDq1AuoAiw3xjQFVmIdnAuVAlCPzvoAk3JahoLG3XUqIt5YgVMTe/lNwGs5LUdB4e76tFufngCmYLWG7gESs1tvoQic7J3ld2CiMWaanXxURCra0ytitQJl5UZgtzEm2o7apwHXiUgrp8GLPbAiUeeIswqXNP0ZY2KBmVgfWKFUQOq0DdBMRPYAy4DaIrIod7Yw7xWQOky+6kpu8v4FaJk7W5j/CkidnsBqAU0O6H8FmubC5uWbAlKPyWVpDHgZY9blysa5SQGp0xAAY8wuu/VuKnBdLm1iviog9Ykx5k9jTCtjTBus37HdkV3ZC3zgZHc7jAYijDFfOk2aCSSPjB8AzMgmq31AaxEpaufZ2c5ztTEmxP6bCcwDuohIGTua7QLME5HiTh+oF3ALEJlb25mfCkqdGmNGGmMqGWOCgOux+po75tZ25qWCUoci4iX2XTX2gag7UGjuTnRWUOrUPiH9CXS08+sMbM2FTcwXBaUenfLpSyFvbSpAdXoQqCciAXZ+N2GNDypUClB9IvZdyHb6k8CP2W6AKQAj7LP6wzqhGqwmyTD77xas0fALsKLDBUBZe/4KWNHlWeC0/Tr5brh3sYKdcGA84JvJOh/C6vvcCTxopwUC/9rl2AJ8g3UV5fY6Kqx1esn0IArXXXUFog6BYlh3KyXvl8MAT3fXT2GuUzu9OrDELssCoJq766cw1qM9LQqo6+56uVrqFBiIFSxtwgrwy7m7fgp5fU7CujDaiot3yuuTw5VSSimlXFTgu+qUUkoppQoKDZyUUkoppVykgZNSSimllIu83F2A/Obv72+CgoLcXQyllFJK5YJ169YdN8YEZD9n7vjPBU5BQUGsXbvW3cVQSimlVC4Qkb35uT7tqlNKKaWUcpEGTkopdZVzGAcjw0ZyJu6Mu4uiVKGngZNSSl3llm2dS5OHvub7KS+7uyhKFXoaOCml1FXu7KJllLoANadtcHdRlCr0NHBSSqmrXNzJgwBI4kU3l0Spwk8DJ6WUusql/LSWuLccSl0NNHBSSqmrnHE4rP9uLodSVwMNnJRS6mpnrMBJRJuclLpSGjgp5eTInggWDKnMgR1h7i5Kvnjps268M+p+dxdD5TWjLU5K5Ra3BU4i4ikiG0Rklv1+qYiE2X+HRGS6nd5RRM44TXvLKY+uIrJNRHaKyKvu2hZ19Zg28x28fy/JtBlvurso+eKh0XvoPXSdu4uh8phx/DfGOK3YuoB3hvdNHdOlctWh84dw2EF4bnEYB0c+rcmpOR/kar55yZ0tTs8AEclvjDHtjDEhxpgQYCUwzWnepcnTjDHvgRV4ASOAbkA9oK+I1Mu/4qurUZnwwwSchfLhJ9xdlGwdPnuQzyY8QXxSvLuLUuCcjDnFGwPr89eKKe4uSgGR3OJ0dUdO+194it7Dwzh4YIe7i3LVCYtYxr89OvPFsNxtoR7998dM3uDDjC2jcjXfvOSWwElEqgC3Aj9mMK0E0AmYnk02LYGdxpgoY0w8MBnomdtlVe43ZGgfpi34Nk1aoiOR/ef25/q6xL4yN1Lwr1jnv/c43T9YxKoFE9xdlAJn+YQvuW+Rg7gP3mfLnn+ZtWycu4vksqgzUUSdicrVPP8rd9XVOGRtZ9KFc24uydXn4OLZ1D4EDf7M3WEMQZ/+xs0bDDWnlMjVfPOSu1qchgIvk3wZlNbtwAJjzFmntDYislFE5ohIfTutMuB85jxgpxVqZ+POMmXxcG1qthlj6DFqI8GDvkmTPvLd3pxv0YXIHetze4UANFh9OnfzzQOltx8C4Py2rW4uScFjEi4AUPJMEkf79qfGI5+4uUSu23fzrey9+dbczTSlq+4qj5zszXMkJbm3HFeRf7bP5mLCRTw8rMrN7WtKj/g4AMoVolg33wMnEekOHDPGZDawoi8wyen9eqC6MaYx8A2pLVEZHQEy/EhF5DERWSsia6Ojoy+z5Plj2tv9afT4CNYsn5rh9FPnjzN/zaQMp2Vk95nd6fqkf5vyLmHhC66onPnl3xUZNzwGL7SChQNr/snV9QVusbrovHK3Gz/XjfvxFcodth5meOH0cU6eO0bo6sluLlXBEHMmjiM7mhPnU5LKJ6DiKXeXKGcCT0OF3I7bc3lcSl46HxdLTNzldT8nnwBMIdregmzl0qlU7vECP791F+LhmSfrKIyNBO5ocWoL9BCRPVjda51EZAKAiJTD6oL7K3lmY8xZY8x5+/VswFtE/LFamKo65VsFOJTRCo0x3xtjmhtjmgcEBOTBJuWesht3AnBk5aIMp//53J1U7f8ee3dvyjavjRtDiW11CxO+GJgmvf7bk4nrN/iKy5ofDqxblfL678U/89WzHTDGYJKvnB1XdoA0xqT54ub6CSsbsYmxTP19SI4PHi0/n5lyheYwMOfR26g44F2OHN7FrJlfM+zVLpkuu+/QDuYv/OVKil2gLZ2ynYS48myvcae7i1JgOGLPA+DluMj+Y7sYdVc9QpdlfQEWcyaOP75YR8yZuBytK3r/OX54djHRBy6vCWFq76aMvz8k58vN+ZHisdbrM2cPXta6r1YxcYkuzbdv7y7mTh1qLXMmjvDfsS5A1u8BDytcuLTFadX6mZw8e/TyC1cIhkVcKt8DJ2PMa8aYKsaYIKAPEGqMSR5tdjcwyxgTmzy/iFQQ++EjItLSLvMJ4F+glohcIyI+dl4z83FTsvXT7Q34rn/znC1k70TG4SA+KZ6F839Mc1KttuUYAEcj1mab1a55VqtVmX9WpJtW0v7lhQsJF0hwJGSZz4GoaL57ZuFlHwidRW5bzZQfXwOscUrZDWw+fiH1C1/l8Y/pOvcYK+b9nHplaQdOl3Owjou/SGRwPb55oFnONiIHzsWcYvHqXzOdPv2eNjR8fSzfvd8703mSt23fjsMMGd4/XZDlwNA0zOrZjl69jBovj6TLdKsXO+rkznTzR97Tg6pPvM+UMa9d7mZlKasgcM/uLUTUDWbcz68x4ccX+Oefn3NtvaMGL2LEwFB2rY8GhOjA5oR2HMGidtaJYMrUD7lw8XyurGtat7qMeqNHmrTlm+Yx6e/hAMQlxZHkSGL7rnVMvKUeb3zRi/MxZ/jHDlhPnj/D0XNnANh97ADnL1pdi59Ofiolv+F/fk5sQjyxia61vmzfuYFJ3eox4ed30k3zTrDW5YFhzbBn6BBuiP0k/XzOlk7exqEdZ1g6ZZtL6wfrs5/6zl/ExSYyd+Rml5ebNv4jJn1n7Y9tIg0dNufsZLp23lQaPvdFyvutX7yDI5uLqu071jHqyRacOXcyw+nxCXH8OO4V5rQPJvrk4TTTpvz4NSOf+idHx5sjR3Yz++Y6LP/xSeIT4glz4RielfhEh0sXXKOHDWRf44aM+uQexk94k+G963Ho6L4M513wUQ+qv/Udq1fNZOGECOJjyxFZqw819jpSWpyc45yLF85T6t5X+Pv+my5rG756tSOVj6V2Hh0/dTiLuQsOL3cX4BJ9gEsHI9wFPCEiicBFoI+x9pZEERkMzAM8gTHGmC2Xu+LR/VpiPD14ZOwq9u+3uoGqVAlmzEu30fahN6h6TT1+//YF7n12JB4eHhhj+LtDA47d1Iz+b6UdnLv7QDihC8ZwXUQSEJNuXYlJicwY9ya33f82Hw1qRu+lDsL6NMUrsBbnyj5NtQNjMElJ7KrfmApAJF+wqW9zGvceiJ8dUp6I3supmBOUKVYuXf5Hju1m4dcfkrirBXE+G6i55ywzxr1LuarXUu7Jj9LMu7dhM3ZWhNsWRqTLJ9mMDxaAdwBzR27G+8gbeBoP7hr9N5O/fJLO/V4jcssSAp74kDNj3mfLyM+47t+zBEdGcCHhAl54Er51OUV6D2L/Z09S/vUJxNV/lKnHVnNh/fO0Cj9JcGQEP3/xGA3b305A5RpE3Xk7FX/+md8/foCeK9JfKUUtn0Wg/V1LbpKfM2oz8bFJzBm5mf4fXpfptjg7FBUJwE2rM/79rkm31iemjB+PTMj57frR+88x/Yv1NF76HuVjDrFlij/1G9+QMn3elG8I6dCDxlutD7ThivUMe6ELXf7aT9C61RQpVjJl3slfhuIRW4JZHy+kx4p/mZr0BI2c1tX4lzUpr49vXE0F+/V3/ZvRfs0FIoGdFeC2RdZnXPW4Nb3a8PTdoBF1g4n3gsbhEezeF0FAQCWKFynFqdhTlPErk+12z+3fjuprjlNm0Wzi4i4SF3eR2rVTA9Mzt92FD9Dyo+R1z4bI/mnyiDkTx/wfwwlscYxzrz9PjbGTWbL4Nw7v38brb09lctd6HA8qzQOfz2ZF1+so/fEHtGx3B0mJGZ8oHR7WYa7RWxP4feoU7hy/kmOnjhBUqQYOY518kpIcrGrbiO2NfQm88R5qvj2egyNep3bFbsz6ZiPdnwmhWt2yAOxZOI/g3ULw7h184duHWyZu5MjXr1Ph6Q8pC5iIQSy/PoTttaBMo240jTIUSdzGV1vbcNdyw+aJ5dn8ziecCXyWO95sS+zNN7HL2zCtqz99/ky9m7PzS6PZ/dJoACKrC91mrmd34yYs71ufR97+LWW+0eNeI3rHWqoUDaDZbgMfTYH+76RMHzHqSUrutU7wNbZ5wrZdVr3ECyfOHKVcqcCUece81JW408/h8PROSdu1/jgjBobi6eXBwOEdiU2Mxc/Lj29f6Uyj0EPU/HM2v77TD+FdBAHv8ghw9kQsIwaGAlD/rqN4exelbYeeJCY58PJMe80e/OF4AMxjqcenScOe4eSFIngf6UqjnsKpdwZy8cmHuKPPSynzzJw1Ah+/4iSuX0wNp/yahicy/snrGTAq9aIx+tRJivj6UrxoMQCSbrufDsC+Vm2p8e9axgx9jeKl/XlgkPXEm19e6E7b+QcA2HdDJ36rL3Rcb6i1eTMxi/1xFBXmfx9OYKtwmrbtwapvX+aan9dw6Ms3Ob0glKRdO7hn+mK+ef0mipSqQKk4ocFeD/h8Ib/82ZhW2+DPdx/hmuCmeCRBcEhHFrW7l60NHuGmRxtQu1kgl0pyGMQYzp07zqHWHZjfRKjd40VKDv2Klss24O2dekr/rH89fCr602WGNTylw9jN7Ky8meYHYcNfP1HpobdT5n3xnRu59po23LDYwaJ2Q3GM9QZOAsKJgMaEdhyBrHZQjV/SBE5xdktm8K6sL76Tj4e9XmzKwSOriYk5Tcs2Peg6PW1L1T8DbqTHlOUULVKaRQumUL9xewL8K2aa77YtK9iwOP+HKEhh7F+8Eg0bBJvRvpVZ2/x5Oj8exNphj9J92HQOtW4PwN6Xe1P9U+sW5gMfP0eV175Ks/yaPo2pPncjgZd06WzsVJ3GoXsJq+1FyPa0J/ttQx6iV8+XiKgbzNrutbmwfzftNyawoYbQZFdq/W+p04+jFVoReGQV9be5dqfUzme6U3PYLFbeWIGAtl2p+e5YADYFP8Tx8k3xP7aORhE/Zbjsmh51aDnTupo87wcR3RsSsDScJpP/pGy5Svzw9AoyHEpmDI06RuD/7ghOl4DS9kXXgQCoYg8hq7R2GUtua8f5Et5UOBaf0gWWvI0IVDq4lLo7plAydBZnO3UH4FxpT0qcTuJcKaHEmez3zdCOwzMt4wNfNGfz2vm07ng3B/ZuZe2sH+k16Es21Q/GOwn2lheqHzOcKQYybAglH3klw3Uc+mQwe5fN4daXh1OuXBU8k6+8RIioGwxAcGRq4PnL8Fe4uKYJsUUD8LsQzXVr3iVqyOMc/3cVXhcT6DjoLc7e0ifNOuKKO/A9b51Mzn/+HMVf/IrQDsMzHsxrDJ0W57yrdc1N1Wi8+DTh9R6iwdYx+MafzXTeGpvWs6tRUwBW9KzJdTN2sv2hThSdEUqVE1BtzXKKlbQCiZ1b15BwxwC2D8fBh3YAACAASURBVOxK7VFzATj9bBtKD12ZUjeRy+YTUKshxzp0Sr+yKd9B78dZ27o0Hd78gZUvzkmz7+6qUZwau6wDdLWN69jX2ArElrauTrtVewFYX0M4U/krjId3uuzFkcANS55Nl77l2e7UHzoLgFUPdqb1T+nH/YW2/xSkKL7FvGg72+ryPnpLGwJnr8y07hxjh+LxgLW+tf1a0nz8GrYHCUH7DT5JcPj9geydUY4LxSpSrJzQatogqx4rCzUPunY83vXGAGp8MA75Yxzm9gHppsdNGsO6KZ9w16ujOdS6XZZ5retZj2YzUm8wyHS/w1A07nVarzzDuse70Oy7+QCc+eIlSr3wWRbLQadF1jb6zBhPfM9+RNRLotSgDzn81dtUeu4NKg56H4Cdbz9CzXdTb7Ze0fJtYosE4HsxmrZr3gUg3hN8kqB2+Ga2N2gIwISuwv1z09fd8dKC/2lDcGQEoW2CiawiPDIxjF8HNKTphtTgbd19zWg20bpAqrFpE1P7NqFWVFJKy3y2dWMMIZsGUfaUENauEiFLrVEjwZERKceIpf0a0G58OBd9oYjd+znhNh/u/9NqUSwxZRwzhp8ED28gkXInn+POXzaxsl1DAk6nzWtTzyo0mnEgTREW9ayCd5E2xB3twM0D65DQO30r0P4KUPUI7H6+N9d8aZ3nKv+7ioMtWru0jZ0WD+ZAINy0aCuvfdyN/j/vTZkc/tK93P2w9fy7SUOfxnvB37QZNZfKlasz4vHJQADF/X2pHvoogafA88e3SXrk3fTrAUr8n737jo+i6B84/pm79AqEECCU0NOA0EMvgmABFAuiWEBQFBTx8Scoj72joiIogor1sYMNkSK9BEgoIYUSegidkEBIvZvfH7u5u5BL5cIlMu/XK6/sbZmdndvb/e7s7Oyy37hw/XB2hRu58Yv1+PjV4u8bu2AcMpD6/Qez+flHiZ7+PmcmTSboPITv2R0npazg7Z3Ku+YCp0gPT/nkHZ+R7RWE56WTdN/6Crku4F6+W8CVlj3vTTwfst9H5+re7xe5witkMOXTb13xA35pHJVWXKiRjKAPKnTiju9Ui3ZxWoR0tK61ZqO0fAFgzmeAnRNbeZQnuNjVN5i2a7Q2D0HrlnGyd9H2P2f9wLUA/C6VvT6TAKP+k2m6dROHu3QHIOGuaCK/jyn1pDNgtZaf+P5NaLeqaFX5uQYm6hzXArJDwUZCjplY1ed9u4GAmXwGrq5cee2IeIhzddtR58xOohLnlzzfhIFEzS254b385GV2fj2XER/+QXJ0R9xztW3O9Jb4ZQn2tjXTepd2Yjry8uM0eX5WmXkraR+xDXxi/9OXzu+uAWBPIwNtUq21TLlufmzo8SpIg/YdSAnSRM+Y50oNEu0pbb+q7f0hHf7aw1k/CNCT3XV9U9ou004iCS0EkfoFUZ6rxC1fsC9E0OqQdHgwXJpcNz9iO4yl8/bSg+TLlbTf2X4PiSGCiEPaNqZMGUHL9xZywTuYrZ2eBmEsUv616/1Gh5+1mqfdHVwI3a4dbPe3NNMipWjN06nwhtRLSitXObn/9gO5w0u+xW3ryH9G0eRdrU3XgcYSr+wOJEWMIyJhPkFnd7JtYDAdV2jHiAufz8J37OMVLhuvk1PotkeScFcXIr/fCsDJOU8QNFG7Vbx1cFO6LD1cZLnfBpoZvsJQvv3izx/h5jtL3c7VPWZgdvXC4Ab9lhffn877SmpdKLqezFnP4ve4tabvbK3W7Gw3sdj3GLVzNnUytP6xjgVAsJ2u7nI+fYuD37xC2GrtQqe07QpJfZTm++23FlrTx5O+a61Ra6OYDaRG9wTg7+6uDNmUz8ruHgzYpNXYX+3A6Zp75UqmbxOyveuDEGR712dlvzls6DnbIWlf8A5mTa+3ueDdsNi0koImAFnCE8IljS9N4W2J8o4vSafdJrrEvgHmAssj+kgJ5gK6xL5ud5nCoAmKBk1QyrZIMz1jni9hYtnKk8fCoAkgtV/xRtMBmVrQdLZWa1b2mcU5/1Ylrs9oc52REt3dMhz5fYyduW3YLHd50ARYgiaAkGOlP0ptrER7+NW932dlvzmcC2wPQnAuMKpI+5/L2QuaDtWzDouHnydqfRoHOnTiQD3rYcQvS/uiC4MmoFxBE5S8j0phHV8YNAFFgiYA97xMDAXaSVmYtf8Gs6nCQRNA+52zMBTkFtmvDAU5RO34gA5/abW0BpvvtDBoAixBE4BbvlYejfX+hbrEvoF79tki6XpknynxN3Ul9rS4nVyPluypYCP5HjHPgyz+m+ph8zttcs76g85a+gcAvlk2DbJt22WuWGkZLgyagGJBE0C9JLvP99hV3qAJQC6y3pZuflSQFKbV0iWGPwBgCZqAEoOmsnTbo22zOGOtCdr5k7X/Oa8MrTp+f3Pr/jx8hVYG4YmfgtlUrMyDjlovblL3ldxkYGXf2azsNwezmzcIgTlfsLLfHC1wKcxLG/diQRPAyd1F0w04v9f6weZ7LAyawH7QBOAxbqolaAIQ0n6NhJAFJQZNQJGgCbAETQBt92i3BT3cvEpcvqpdc4GTPSV9uRW1K2IcJqMnuyLGOyS9yihtR62okg6EvlnlP7gV0g7Gdmo3hYFN3V6ucHrWvFQsj66lxCS7wseBMBBfzu/PXloVDTZL0yPmeTsHU1ORE1h5OSKgDjllf3zYUcfUWjti362Tnkxw2lo6x80gOG0tddJLbrtXmoDzey3BV2H5C3NBkZNH7Qo8K+Ght+/e2vkZcj0DrFfhQpDjWZetnZ+tVD7tKQySzwR1AiE4c1kj+bK452Vi0PtBKikA9c20Bq3tk6ztW9zyL+KdlUZE4md4Z6Xhln+RgEo8qerI3xFA0wPaibgwwMDopn0HRrdiAUZpyvObjFhhbeB8/Wprw/6IGK1Ku8WB4vtz/TM7rF1GWNI2E3Fgp2WeRlPeKjFfQto/sNmOb7/H/tORrT5aamc5My75WbTYvwiX/CxEJbt3KOm4Lw2u5d4fLxest+X3u1Cxpz0dqbo1Dnea/KHpuP5RcuPX1HqSRnrr/5QO+bTcbq2uvbw6MsernvbjtKlmXRMp6Jug7UCHeuYQssGjKjaDHjHPsyH6lWLVrJU52YJ2IHTNzyLk0BIOhdxAnqt3uZfNcQUP/ZjqnpeJW8458jy0djGFeXPPTafztrcrlbeS8phfgTxC8e/P7OZd7PsrL0cGm+55mbjnppPrEYAw5yOFC+656ZWuQSmp+r2yct38ytVeqrwcse+2s7n92Gaf/b7QystsdMUlP4umR5ZxuMn1mIxuV5QeaAHB1k5TQdjeTjTTJc5xHXQ6Ikiuk56Me14GDdM2kNawJ7lu/uVartem6ZbhoDPby72+yznyd2QrPPFTksLHXlb+JiISPy/X8o78TRYjDAhzPsHH1nEsuDdSlL/fpB4xz7Gh28tgcLFul7mAHpsrd9zvv26KZbhpauX7/HPPy0SY8pCFvx09b0GnttJy/6JKpwsQua34g1dXy7VX4ySw+SFarxbO3/aLZZbUGdrJ8sLMp9kywJM8I1y3KoG4R7qxa+qteDxQ/oNc6ssPkDw4m86PWxvBmW74j2V4fzMzPWKex1CQU+y2QEWDne29m2lXi+bSrxbLY/2NnoB2IBz50Y0EndlOt9jXyXXTgpwtrQVH9C6xvu9j3Y1+H2XtWmt/u6IHW7+LRxGu6YB2sEJAwNkE3PMy2XWzHlD9XP73FR3WHzrptWk63WJft+Sx2YHiV++JIdbhz4cVPSCV52qtJJtCrQHX9tbasO1VtyFfu+oG2HVfFwAuucOR5lra+5taTwoN1ltvjy3tpKXlezFVr0F5Gy/zFnwvFm0QWl7lqX6/3MKBWnC/YoT1guJMa+v2pjQbToZ/S1KaWR/L3/PYzZbhXSPbW4aP61/vn10EGXoN+85+9S3TM/yNxfZdKaz7bszoMMu8m8N9iuV1/8OVexza1ona2rb90VX733/dFPpsnErT1H/os3FqkZNJoW2drHlJftvaSHtL91oA7Ao1kNLU9sR/DK9LJ4schwo4iW9WGmllP7RoEdPf2h/dgdu6FpnmiJq7donzcb3wI75Zx2iz70fShdZge2MHd8s8pz+xvgh7Sxe/YmlUxCk7cZm92qvLJd3WrviCNmxvL6fVKblmJ+jszuILl8D2NxmctrbSv8nLDVj7OP3XTaH1gYX0XzeFAWvLf8vQPS9TCwYBof+GEAbLcT/XiVUkAenJeGWlYTnuA8aCHMcEm05yzQVORqPebbw5HxAYPHI49dLd9O5qba8yaNhEwnYn0/XGMdz/0TbaJyZjMLowevIX3DnmdTp27cuGcFh/XzsabV2PV/RmbZ+9rFo53+UNBt05lREfHKJznzs4Uleb3O+Ge/n5vlZ8MMzAye4dcc/LxFU/KAi9TyXX/IsV3rFu/UB7L3Kd9GQ83GMrdLti5QiIn9oPw6+fEbY7mfEzt+Gz4lfqrF6Cp18ARwb7cOqZ4dw0dTbxIYJmT/2X7MevZ/5gA8+8t56Wu7ZTa9VPhHccaknT/aLWcC++r3ZyaZc4n/otgwlOW0eX2LeI6BPMqbq+7H/lfu58ZwNhu5MJi+xrWT5hkrVbgb+7Fb83v7e3/W4Hgk9q8571hW2TurI2Em5cGMNfE5rzx5hgnn1ulZZ+dF02dPWmR8xzaBd3Nt+fKZ8eMc9xRn990o6R/ohFc4ltKSiYZ71dkFbHut7r5i8hNDmJ8QtG4NbpD1a038GIF7tYrsJ7PPAiAIu6GxAR2gEkv73g5Fevk/Lh49SqG0z8xF5sntyXSQu0A/lBn09ps087gdVpl2apUVk7vORHdEtSUvV75rtPW+Y50MRaztNnb6fJjk089vpGzujnRXH/A5ZbQScbRIMQnGzQ3XIrqM0A69OCrQaNsgyfbKgF4nUzwV9vhO9rU4GT0jsEKHqrLb/eAcu+G9bJGpB1SSp+Aq0faX0qKL1pCQ8h2PHTfU0tw3s7aXlolmGtDV4/tK5l+IA1zuOvPi5c8AD/2+4mR1/dLTdaH5M31NKiep9sgaFAK9PEG7UH5gtcvXD3zrEEBK5GrXDPhtjP99/XFQ9K/E3WWtXOj/63yDTtdlLpbZRKkvraw5bhMwO0t1ulNIA6edrFRmCWCxvaSw7Uh959rN+vh7n0M3NMROnfScAnxdvB2V4QNTI+b/kd7X7aGqh75RWvud92nfXNW/7TrU/Kdl22UQsg9JqdRkdXasfby2p2zvjB3uLNVC3aJc7H3DwG36xjZIifCDyp/Sa3N7f+djb1L97R8hGbUSl3W5903P3YDcXm3f/wEMtw9nvW9rGrbmhabN5lHbT11j27S//tvEVw2lrqntX60Zp7g8Huw08xXa371Z5Iz+IzOEi7xPkU1DNbjvvBaWvJc/PjYPHeFspl1lBr2BIf6ZxXCF1zgZOLm5Esn61czHuH8F71CQlvyvW3TkYYDHw3ojbLnuxZZhoBtQMZtzCZ8c/+gK9vAGPGPKudcm1rswyCJ+YUbWDbd8U2/Fb9jY+3P889+ztzZyRy99NaPy2+F1PBLwGZ+Q45hnWWq5iVg1z5obeBn3ra30G2Dw9m4W2t+DPaHU8vD077wTm/Bfg02Wu5Wrxk0n7Y++2ca1cN8yZgw3Imvp7MyDEf0ybUGow0btSGoPohAAz+YCt973+T5s07MfLvJPr0uZtb7viAmR8k4uFdG1dXDxo0iCRSD3yOBUCLN+eyqJeBwe8sZvZ9gSyPEox4ojtHbt7D+Xdvo9/doTy84D/cfEfRhvOrpw3gfyPr0CbCerKcMHcrCTYn9d8G12PC89aGl4dmPsKyDoLlI601XnkTxnLPpC95+OdkvLz8+c8Ti3l66gpq+wYStjuZO75Yx7ivYomK36xfhIpiV2ses2cS26+A4c+uJDSsL/f+mUTbPrfyTxcDS4fX5/apnwAQ+/wwgoKaovfVyt1TfuTVOUkENQkl74+5NN6+mUYNm3Ppr3lM/2ALg2aksOG1fgx/K5F+XW9l6KBHABj52HweeGQuLm6utEyMZ9qXSdSP28DiSREMmzSLA3P/jyVTetEg0X6DoxXdSz6Q9F83Ba++a/F8uT9hj5ktNSjuDUJYMLY+K54ZgP9jTwGQGKkdGrw9tJqTTmu3cmnp50ReN6bkhv5uroSFdWJZf2/iWgpattNODqmNzZxq3xqAM/W9uKCf6zpOn0/TXXG0TIxn9Dt/sviTuxnxwyR6fvsIse8PZsrL47nlx4n4bFmGr7+1SuJUkBZxHY+sS7qv9ntr1dVa4+TmVvyW2u+Drcsv62NtVBokrCePu2f8j5g2gtDXre9FbNpxCGsiBZ8+2JBG07SazNU3N+Q/83bRZnMMN4+Ywv6PJrN25l0YjEY2v34bF76fQW4z7cx7qE09mut3nXKys3h1nB9JPb5i0PhASw3p3W92Y00fFyKfsd/mY8qczRx+cxLGf35h1bBwAOqPvIedd/Rgf4g3QcGtWBshWH5vBD/3FMVrnYUoVuv8d8eiX2JhjU/fYY9YxjUZNppzPpB0axTdPlvIrqaCqAU/MfrbHfRdttWyrwP0/0jr5PXYHGvwGN9JkP/nAvZ9+DjRr38MwIbXR1imH2tm/U4i2g+0DC/tZ33Za4F+hvIe/5plXNSAeyzDHZ98EYDlNzUipo2Wn3wP6/JdBtzN0mh3jsx+Cl+f2kQlJNPwwON0ii1as5PpCflLtG5b1t0WSp8/N/Bjr6Knx9+G1LLm67wW/ftkS9z0ZkzeNwy2TK83YAiX87fpkHNvfWsk42rnFnCLvtZjX7OO1i487n9DK+dl49taxg167hPWRArqnJhPh49H4Zt1jEO+P1kusrykNajdM8H6cMyd87Tz0+EPp+B/ongnq1sGWI+l60a0Ljbd1tnaxUOJz663jus/IdxyAdjs4I+0S5xPnm/5b0VuiLR5QCTUWs4th46yN3uVu+a6I+jcubOMjb2yHlvtWTB1PR7erlw0LIV9zTDVDmLC+yW/9sJWcmgYx+rAwI3JpJ85iZevHwdO7Gb5V48zYepy3Nw8LPMVin95JA2Do+nds+gP9GDafurVqseab2bSbKbWMVjQ5vV8+v5AHpqykrmz+jP8G61RXWKEO7f/4tg3XQOs276Ydm164u9Vq+yZS5F59hTHemqBWGE/ScmhYWS5Q+ed2ucVq77G1ehO3z7Wx3S//PQJUmNXMX1u+avfl8yNx8vfHc93JlradLRLnF+kf6bqZPGQcJofKv7b3TEmmlFTF/DDz6/gVicIL2EkccNv3PDNPj67SfDOu9b+euLaheGVR7FtPJFxhACf+nYP6ABzJvyD/VdFwsS5Rftp2rL9L1q17Ewtn0C+S/iGUZGjOZ19mpT0ffQILvsipZBZmpnyZFuG3T6VLh2GsvCtcdz53685deowsduXc/vNj1t+Hxcj/fFJ0HrKPuUPx58cyV0jX2Te2M703phFvY0rWXfvzeS6wi0/bmTB3R0Ife5t+rW3vli3MK3m8XG42zy9czTzKA18GuBSRnshKSXfxn/JyLb38PXtHeieZOLcj2/Ss91wy/Rfn7mdtuOm0rKl9Vbb/z3TjbGLtABnW4/a3DF/NW6XfQ9SyiJBi621cQsJvGc6fwyZSOcuA2jRI4B9605y9rcVtEucz899jXQc+yI3dbudjEvpfPGfG5gwew0GDOSacvFx82H+368RHtKVnqGDyMzLxM+t5NtwSz+ahke9+vS93do9RmHZmb54m8jom4stk5S0nqOPTKDnkg2kHoznTMoueg1/lK1RYeyJqsPoLzbw0YxRRPYcTpduw8nIzaC+d302dgqjdha0TIzn++HtOda8FtNmWTu4XDIggpA0M2uHh9PrtyQMFN+3QXtbgpSSIxmHOBj7D/WD29CxnXYyNkszBlE0CCjcntDkJJLCwtnaWtDtg6/ghnvZ/OGDdHtMu/g9+uJYgl79nExP6Lg6hiOdolkRJRi4Q/udZvlI/tfTyPilZuptX8+KZXM5lbqXwTdMwnSjtRPYla8MZeIdM3jvqUEYMzJ5bF4Mvw4MZ113P2a+utkyX74pn/TcdOp51ePY+SPkmfNpVqcFBzIO0NS3Ke++fgtDv0kh5avpuP3nNZqchn1T7qDVe1rwZVs2vwxpR/ihop1YXvzkNXwe1mr5NozoQs+FWy3TArev4/fPp5Oek07YoDtoamiA4XbrQzU/DqvDs2+sJiGqHR750CY5kT1hEaQ0FHDnMFq+/xvJYT6EJZevJ//6W9by24Ln6DhvDZEJiXxyd1sCz0pu/CWGw126qX6cqlpVBU62Mi9dxM+reDuMkqSdO46fpx8+nqU3al63agF1H5kB2D8g2Nq3ZysFw+9jzYAgJny0usi0H+b9H+1m/snaYU15eMbf5c7n1WY2mdgTEQlYt/eDd0bRtvvNDOh5T2mLVtq80R3pHas9gbO7Kdy6tHoGTi+Oj2DkOu0KNu2rl8l97iWaHTaxc0x37ppavoauyYe3k12QQ8cW3cue2cbpoxf46fWtSLPUG9VrJ/I7pnchsJFvmctXlUMZh/Bw8WDv4/cRuEF75Yzt7yQr9yIH0vfTtn77kpKwsNexaWWZzCbOZJ8hyLt89ya+e24kUT/Fs+O2SEa9VvLrekpyKf8SXq7WYE9Kye4wraaqTWICBmPVvKy10Be3htEtGUK2x+JZxjHNlslswiAMJQaFE+cOJeP4Ab55yf4LIr6YNJBuK45x6P1J3DBkYqXybo/tvpCVn4W70b1I4Pzm5G4MX5pJwKYVZJGLh9GdBn7BbExaRqtG7YgZfwctd55hY8/aPPhZ8ddfgbbvZne7wbIeR5BScjbnLHU967J49XckLHiNCXPX88ftPdjdWPDqXGs5Jh2N49N37mPsMjNGqfXD13nxWuY8NQCPkObcdOcLHBh/Dy1OUGIeL+VfIiM7nXPZZ4kI0tqeffDDE6Sl7OSt6as4dekUfm5+SCn5Z/RgOsycR+Z1t5a5Ha4Lv6BleLci4y7mXcQkTfi7+zNnzZtM6veMCpyq0tUInKpSRQ7ox84fp75fPUtP14XM0swXf77JqCFT8HStunvbjuDIE1h5/PD0LbTTe1NPfHcqt9/0wFVZb0XNvb8LfTfrrzvYncxfgyNpdtjErge6c+e08gVOV2Le5NXk55qQUutB3dXdwEMf9Kvy9ZZH6rlDnOx3A2fff4rrBzxYqTRWxPxAfkEeN/S618G5K9vxzGN8MmMUD/3f/2jo38ghaV7N39GBk3tJPBDH0O5X9zZKTkEOq/f9zeDQ4SUGX5WxuF8YzU+UXHa5plwyczMJ9LL/AvnzOef58tPHGTt+Dr7uJV9YzJw3lrSkrbzzfvnf8edo8amxmKWZNg3a4ulS9NyQU5DDrpM72Ze+j7sjR5eQQsWs7B5Gg3T7047XhgbpUHfdMgIDG9ufSSeEuKqBk+qOoAZKbgRhZc9GcC37DYgNwsDYoY7rN6aqxbQp3/Y6UmKEe7UNmgCCH36K/YdfZMuIUF4GzIXdAl2l9bt6uOAb4Ennm0KIXXyInKzS31V1NTWqE0Kj+CsLEAZGl79zRUdr4BfMi6+udWianz3fCfPFTGY6NFX7mge1pnlQ6W1iqoKHiwdDwm5xeLq9lsaQWcqDOu5G9xKDJoBaHrWYPKnsl1k/+VDVX/CUpV2jkmMPDxcPugR3o0twtxLnqaj05n40iLOWbcJ90UR+FcPJWhC6ZBkxSUsZUUbQ5AwqcKphVo/yxj2oj7OzcdXs+nQ6HRqGX70VWmpgnfO0RnkN7TGSjKVDuNlda2Bb2GBbVKa7+UoY81Yvy3ArOy8jVaqXd+4u37svleL83f3xdy9fP1ZKxZxrWAdsAiejfvw6H+BCw1qNGdFjnLOyVioVONUwj7xQc28zVsadvRxTJVxh1TtuAihyMM/wdwcu4VInwHkZUhRFqYBbXvyKM39YKwJE4ZOH1fz4e811R6AopXGrrbUpkR416woz+KXXmDXUQLd7infSqCiKUh0FegeSbNOMz6219jDQ2eDqfQF4RTVOQoh6QE+gIZANJACxUlbyxTaK4mTe9bQfrDHwyrpSuNr6txlC/7eL9x2jKIpSnYkgT0jVnmTudct4nj64iMcfKN+LwZ2lUoGTEKI/MA2oA2wHTgEewC1ACyHEz8C7Usqa26e6ck1qddsDzIn/hTue+E/ZMyuKoihXxuapb393fz6ZtsGJmSmfytY43QiMl1IeuXyCEMIFuBkYBPxy+XRFqc6a1W7OO7Ps9xOjKIqiOFa+mx9Qvo4wq4vKBk6b7AVNAFLKAuDXymdJURRFUZRrgRQ1r6l1ZXP837JnKZ0QwiiE2C6E+FP//IUQ4qAQYof+F6WPF0KIWUKIFCFEvBCio00a9wsh9ul/95e0LkVRFEVRqqEaGDg5szuCyUAyYPsipP+TUv582Xw3AK30v27Ax0A3IUQd4AWgM9pr7eOEEL9LKUvoh1RRFEVRlGrFgb28Xy2VDZxChRDxdsYLQEop25W2sBCiEXAT8BrwZBnrGg58JbV3w8QIIWoJIRoA/YDlUspzeprLgSHAdxXaEkVRFEVRnMKRr8e5WiobOB0Ehl7Bet8HngYuf3HPa0KI54F/gGlSylwgGDhqM0+qPq6k8YqiKIqi1AQ1MHCq7M3FPCnl4ZL+SltQCHEzcEpKGXfZpGeAUKALWjcHUwsXsZOMLGW8vXU+JISIFULEnj59urTsKYqiKIpylchrKHC6ko4WegLDhBCHgO+BAUKIb6SUx6UmF1gAdNXnTwVs3/LXCEgrZXwxUsp5UsrOUsrOgYElv4xRURRFUZSrqAYGTpW6VSelnAQghHAHbgNCbNOSUr5cyrLPoNUuIYToBzwlpRwthGggpTwutBuet6D1Qg7wOzBJCPE9WuPwDH2+pcDrQoja+nzXF6arKIqiKEr1dy21cSr0G5ABxAG5V5jWf0S8GAAAIABJREFUt0KIQLRbcDuACfr4v9A63EwBLgFjAKSU54QQrwBb9fleLmworiiKoihKDXANBk6NpJSVfkGWlHI1sFofHlDCPBKYWMK0z4HPK7t+RVEURVGcqAYGTlfa89RGIURbh+REURRFUZRryrV4q64X8IAQ4iDarbpy9eOkKIqiKIpi/wH56u1KA6cbHJILRVEURVGuPdfKK1eEED5Syoul9dlUOE/ls6YoiqIoyr9azatwqnQbp9+EEO8KIfoIIbwLRwohmgshHtS7Cqh0o3FFURRFUa4BhpoXOVW2H6frhBA3Ag8DPfW+lAqAPcBi4H4p5QnHZVNRFEVRlH+fayRwApBS/oXWx5KiKIqiKEqF1cSn6mpeqyxFURRFUf4lVOCkKIqiKIpSPtdKjZMQ4i8hRIhjs6IoiqIoyrWkBvZGUOkapy+AZUKI6UIIVwfmR1EURVGUa0bNq3Gq7FN1PwohFgPPA7FCiK8Bs830mQ7Kn6IoiqIo/1rXSOCkyweyAHfAF5vASVEURVEUpUw1sI1TZXsOHwLMBH4HOkopLzk0V4qiKIqiKNVQZWucpgN3SCkTHZkZRVEURVGuHeJauVUnpezt6IwoiqIoinJtUR1gKoqiKIqilFOBu5uzs1BhKnBSFEVRFMUpcv29nJ2FCnNa4CSEMAohtgsh/tQ/fyuE2COESBBCfF7YP5QQop8QIkMIsUP/e94mjSH6MilCiGnO2hZFURRFUSquJrZxcmaN02Qg2ebzt0Ao0BbwBMbZTFsnpYzS/14GLfAC5gA3AOHAKCFE+FXJuaIoiqIoV6zmhU1OCpyEEI2Am4BPC8dJKf+SOmAL0KiMZLoCKVLKA1LKPOB7YHhV5VlRFEVRFMcShpoXOjmrxul94GnsdJqp36K7F/jbZnR3IcROIcQSIUSEPi4YOGozT6o+TlEURVGUGkEFTmUSQtwMnJJSxpUwy0fAWinlOv3zNqCplLI98CHwa2FSdpaVJazzISFErBAi9vTp01eQe0VRFEVRHEcFTuXRExgmhDiEdnttgBDiGwAhxAtAIPBk4cxSykwp5UV9+C/AVQhRF62GqbFNuo2ANHsrlFLOk1J2llJ2DgwMrIJNUhRFURSlompe2OSEwElK+YyUspGUMgS4C1gppRwthBgHDAZGSSktt/CEEPWF3kOWEKKrnuezwFaglRCimRDCTU/r96u8OYqiKIqiVFrNC52u5CW/jjYXOAxs0uOkhfoTdLcDjwghCoBs4C69AXmBEGISsBQwAp+rV8AoiqIoSg1SA3sOd2rgJKVcDazWh+3mRUo5G5hdwrS/gL+qKHuKoiiKolQhYw0MnFTP4YqiKIqiOIVBdUegKIqiKIpSXjUvDKl5OVYURVEU5V9BqFt1iqIoiqIo5VXzwpCal2NFURRFUf4dVI2ToiiKoihK+QhR88KQmpdjRVEURVH+FaSqcVIURVEURSkfVeOkKIqiKIryL6YCJ0VRFEVRnELVOCmKoiiKopSTMFSnV+aWjwqcFEVRFEVxDqECJ0VRFEVRlHKp5e3q7CxUmAqcFEVRFEVxCqO7m7OzUGEqcFIURVEUxSlMIQ0ByPR0ckYqoObdXFQURVEU5V9B1q3NF9cZ2NJGsMrZmSknFTgpiqIoiuIULWq14K+uNevml9NyK4QwCiG2CyH+1D83E0JsFkLsE0L8IIRw08e7659T9OkhNmk8o4/fI4QY7JwtURRFURSlMup61gXgyU5POjkn5efMMG8ykGzz+S3gPSllKyAdeFAf/yCQLqVsCbynz4cQIhy4C4gAhgAfCSGMVynviqIoiqJcIU8XT3bdv4sxkWOcnZVyc0rgJIRoBNwEfKp/FsAA4Gd9li+BW/Th4fpn9OnX6fMPB76XUuZKKQ8CKUDXq7MFiqIoiqJci5xV4/Q+8DRg1j8HAOellAX651QgWB8OBo4C6NMz9Pkt4+0soyiKoiiK4nBXPXASQtwMnJJSxtmOtjOrLGNaactcvs6HhBCxQojY06dPVyi/iqIoiqIohZzxVF1PYJgQ4kbAA/BDq4GqJYRw0WuVGgFp+vypQGMgVQjhAvgD52zGF7Jdpggp5TxgHoAQ4oIQYo/Dt+raVhc44+xM1HCqDB1PlaljqHJ0PFWmjtXmaq5MSGm3kubqrFyIfsBTUsqbhRA/Ab9IKb8XQswF4qWUHwkhJgJtpZQThBB3ASOklHcKISKA/6G1a2oI/AO0klKaylhnrJSyc5Vu2DVGlemVU2XoeKpMHUOVo+OpMnWsq12e1akfp6nA90KIV4HtwGf6+M+Ar4UQKWg1TXcBSCkThRA/AklAATCxrKBJURRFURTlSjg1cJJSrgZW68MHsPNUnJQyB7ijhOVfA16ruhwqiqIoiqJY1azuOh1jnrMz8C+kyvTKqTJ0PFWmjqHK0fFUmTrWVS1Pp7ZxUhRFURRFqUmuxRonRVEURVGUSqn2gZMQorEQYpUQIlkIkSiEmKyPryOEWK6/2265EKK2Pj5UCLFJCJErhHjqsrSm6GkkCCG+E0J4lLDO+/V09wkh7rcZ/7cQYqeextya+oqX6lSmNtN/F0IkVMX2VoXqVIZCiNX6+xp36H/1qnLbq0o1K1M3IcQ8IcReIcRuIcRtVbntjlRdylEI4WuzT+4QQpwRQrxf1dtfFapLmerjRwkhdgkh4oV2TqpbldteFapZeY7UyzJRCDGjXBsgpazWf0ADoKM+7AvsBcKBGcA0ffw04C19uB7QBa3R+FM26QQDBwFP/fOPwAN21lcHOKD/r60P19an+en/BfALcJezy6eml6k+fQRa1xIJzi6bmliGaA9YdHZ2mfzLyvQl4FV92ADUdXb51MRyvGy+OKCPs8unJpcp2gNdpwr3R339Lzq7fGpweQYAR4BAfb4vgevKyn+1r3GSUh6XUm7Thy+gvRg4mKLvsLO8205KeUpKuRXIt5OcC+AptI40vbDfYeZgYLmU8pyUMh1YjvYSYaSUmTbpuFFCT+XVXXUqUyGED/Ak8KqDNu+qqE5l+G9Rzcp0LPCGvh6zlLLGdFZYzcoRACFEK7ST37or3DynqEZlKvQ/byGEQOtA2m7Hz9VZNSrP5sBeKWXhK0VWAGXWLlf7wMmWECIE6ABsBoKklMdB+xLQfpQlklIeA95Biy6PAxlSymV2Zi31HXhCiKVoEf8FrC8lrrGqQZm+ArwLXKr0RjhZNShDgAX67ZDn9ANqjebMMhVC1NI/vyKE2CaE+EkIEXQFm+M01WTfBBgF/CD1y/qazJllKqXMBx4BdqEFCOFY+zyskZy8j6YAoUKIED3wuoWibySxq8YETnrNxC/AEzY1PxVZvjZaNNsMradxbyHEaHuz2hln+bFLKQejVTO6AwMqmo/qxNllKoSIAlpKKRdVdN3VhbPLUP9/j5SyLdBb/7u3ovmoTqpBmbqgvcJpg5SyI7AJ7eBco1SDcrR1F/BdRfNQ3Ti7TIUQrmiBUwd9+XjgmYrmo7pwdnnqtU+PAD+g1YYeQutQu1Q1InDSd5ZfgG+llAv10SeFEA306Q3QaoFKMxA4KKU8rUftC4EeQohuNo0Xh1GOd+BJrVPO39G+sBqpmpRpd6CTEOIQsB5oLYRY7ZgtrHrVpAwLr7oKq7wLX0NUI1WTMj2LVgNaGND/BHR0wOZdNdWkHAvz0h5wkUVf7F7jVJMyjQKQUu7Xa+9+BHo4aBOvqmpSnkgp/5BSdpNSdgf2APvKynu1D5z02w6fAclSypk2k34HClvG3w/8VkZSR4BoIYSXnuZ1epqbpZRR+t/vwFLgeiFEbT2avR5YKoTwsflCXYAbgd2O2s6rqbqUqZTyYyllQyllCNAL7V5zP0dtZ1WqLmUohHAR+lM1+oHoZqDGPJ1oq7qUqX5C+gPop6d3HdqrnWqE6lKONumMoobXNlWjMj0GhAshAvX0BqG1D6pRqlF5IvSnkPXxjwKflrkBshq0sC/tD+2EKtGqJHfofzeitYb/By06/Aeoo89fHy26zATO68OFT8O9hBbsJABfA+4lrHMs2r3PFGCMPi4I2KrnIxH4EO0qyullVFPL9LLpIdSsp+qqRRkC3mhPKxXulx8ARmeXT00uU318U2Ctnpd/gCbOLp+aWI76tANAqLPL5d9SpsAEtGApHi3AD3B2+dTw8vwO7cIoiXI+Ka96DlcURVEURSmnan+rTlEURVEUpbpQgZOiKIqiKEo5qcBJURRFURSlnFycnYGrrW7dujIkJMTZ2VAURVEUxQHi4uLOSCkDy57TMa65wCkkJITY2FhnZ0NRFEVRHCY/P5/U1FRycnKcnZUq4+HhQaNGjXB1dS0yXghx+Grm45oLnBRFURTl3yY1NRVfX19CQkIQNf+tS8VIKTl79iypqak0a9bMqXlRbZwURVEUpYbLyckhICCgxgVN5ksXMZ07WeZ8QggCAgKqRY2aqnFSFEVRlH+BmhY0AeQeOASAZ52y36NdXbZP1TgpiqIoiqKUkwqcFEVRFEVxrhr0FhMVOCmKoiiK4lCTJk2iadOmpc7z4IMPsmTtWnYkJzNt2tSrlLMrpwInRVEURVEc5uDBg6xevZq8vDwuXLhQ4nw7duygbevWRIWF8eYbb1zFHF4ZFTgpiqIoiuIwL7zwAv/9738JDw8nMTHRMn7v3r306tWLtm3b8t5773HixAka1a/P2GnT+GfVKifmuGLUU3WKoiiK8i/y0h+JJKVlOjTN8IZ+vDA0osz5EhMTSUhI4Msvv2T9+vUkJiYSHR1NQUEBo0ePZvbs2XTt2pVHH32U0NBQABL27qVt27LTri5U4KQoiqIoikNMnz6dV155BSEEYWFhJCQkALBw4ULCwsLo2rUrABEREXh6epKXn09Wdja1a9cmKyuLRx99FDc3N/r168c999zjzE0pkQqcFEVRFOVfpDw1Q1Vh8+bNLF26lB07djBx4kRycnJo164dAPHx8XTq1Mkyb1xcHP369SN5/37aNG+OlJKFCxdy++23M3ToUEaOHFltA6cqbeMkhDgkhNglhNghhIjVx90hhEgUQpiFEJ1t5g0RQmTr8+4QQsy1mdZJTydFCDFL6L1gCSHqCCGWCyH26f9rV+X2KIqiKIpi37PPPsuff/7JoUOHOHToEDt37rTUOAUEBFiG4+Li+O6774iKimLXnj20bdMGKc2kpqbSuHFjAIxGo9O2oyxXo3F4fylllJSyMEhKAEYAa+3Mu1+fN0pKOcFm/MfAQ0Ar/W+IPn4a8I+UshXwj/5ZURRFUZSraPny5eTm5nLddddZxgUFBZGVlcW5c+e499572bFjB1FRUcyYMYNatWoRFhbGrj17aNe6NVKaadSoEampqQCYzWZnbUqZrvqtOillMpS/63QhRAPAT0q5Sf/8FXALsAQYDvTTZ/0SWA3UnM4gFEVRFOVfYNCgQQwaNKjY+IyMDMvwli1bik1fGxvLxNGjMZvMjBgxgkmTJrF48WKGDh1apfm9ElUdOElgmRBCAp9IKeeVMX8zIcR2IBP4r5RyHRAMpNrMk6qPAwiSUh4HkFIeF0LUs5eoEOIhtBormjRpUumNURRFURTlymVlZdG7d2+ui46mScOGmJF4e3uzYMECZ2etTFUdOPWUUqbpAc1yIcRuKaW9W3QAx4EmUsqzQohOwK9CiAjAXtVUhfpm1wO2eQCdO3euOf26K0opzOfPYD53HJfmbZ2dFUVRlArx9vZm27ZtZOvtnqR65YpGSpmm/z8FLAK6ljJvrpTyrD4cB+wHWqPVMDWymbURkKYPn9Rv5RXe0jvl6G1QlOrq8LB+7LvxTmdnQ6khzHvXg9nk7Gwoil2yYvUhTlVlgZMQwlsI4Vs4DFyP1jC8pPkDhRBGfbg5WiPwA/qtuAtCiGj9abr7gN/0xX4H7teH77cZryj/ejmntJOgNBU4OSdKdZez8jv2DBtPxvuPOzsrimKXlNW3MfjlqrLGKQhYL4TYCWwBFksp/xZC3CqESAW6A4uFEEv1+fsA8fr8PwMTpJTn9GmPAJ8CKWg1UUv08W8Cg4QQ+4BB+mdFuaZkLfrE2VlQqrnDm9YAsD9mu5Nzoij2iew8Z2eh3KqsjZOU8gDQ3s74RWi37S4f/wvwSwlpxQKRdsafBa4rvoSiXDtiDiUx0NmZUKq1hLOphAN7RQ4dnZ0ZRbFD1TgpVSY5NIwDt0Q7OxtKNXLpkmPfSaX8+7hnpANQ79wlJ+dEUUpQg9rfqcCpBsrdnVH2TMo143RwC2dnQanm/FO0wKnB0fL1n6coV5u0+wB99aQCJwfL276GvJ3rnZ2Nf6WCg7vI3xvr7GxUOx1Sdjs7C0o1ZyqoOU8sKdeqmrOPqsDJwfaPmsD+keMrtEzBsf1kfPQiAHkp20mJboW8mF7qMubMs5XNYo2174Y7SRl2r7OzUe3IuD0gJZjynZ0VpZryzHF2DhSlDKofJ6UiYseOIG3WD+z6YyXzZ5zhpAxj14BokkPDSA4Ns8yXl2c9MR7cUXatluncCXLjVgGQfzAZWaA9tn701kjOvv2wg7ei6mQv+ZyClG3Ozka1ZbyYR2KfcJIj2mHOsn8bd9//jWLvQzcXG3/63Uc599lzVZ1FpQJ2dg8nefpoh6bpph86lnSrvi9OVf5dJk2aRNOmTUud58EHH2TJ2rXsSE7mhddqzkPx11zglJOYQMzYycyZ8A9b7xtHxryXyfzsFXI3/w2APHuYgn1xmE4cRFbwJYN7YlJZ2Xc2JwPaFzmByYvpyNySL/mysrTHMNcvygJhID5iPMYL1q/GlH6a5NAwTn7ztmVc6ruvs/e2aBI7tUGazUgpkVJiOnsCgNNHLzD/6Vh2PvQqGZsWk3LDCHZHtuXi7u1cTDZx6rO15O7cSHJ0KKbjKcTf2YPk0DDMF84Xy9/erSeYM2Ele+NOVqg8HEHm5XBoytvsHXq3dZzNlUlu0laSQ8M49s1cFr0bR1ZG7hWtrzBYzUqI4djc568oravF9YIJw2lt+PiJI0Wm5az+CWk2U/DHDkxr9yNzs4tMPzN/FSff/rnC68xevwwpJfkH95KbEFfpvFcV08mjZK//q9j43C3LMaeXr59c04ULjs5W2essyMctXcIvlS/T7X0jSHrpwSLjCgOnvrtUn19K1Tt48CCrV68mLy+PC6X8jnbs2EHb1q2JCgvjxWeevoo5vDKiJnVz7giRHp7ykXsXgcEVzPkMWDfFYWmv7P1eudLNCPXHf3cGl3wknp4erAp/F+y99FhKBqyZVKm8bOz6AjmegXhkn6bHlpfKvVx6VC1q79CCJ/cuTcjLz2dl7WeR0gAyn5Et/8CzXR8yFn7ChbP7CJo4C8/ARrg1bUbugYO4twklP3ENB799l4Y3PIR7RFfcGjYHIP/wPtJlIItmbkcIwa1PRhHYxN+y7eZLlzB4eSFNJnIP7iE3aQtpT79VLI8NF31P1tyH8e97B4fe/RjDWVd2RDzEucB21HZL5a4XBrFr6kO47j9E2IqdJN3Tm1pto2j4zGxMh5MwNg1HGAxaACYl8lIWwtuHfbEnWf5pIhEJ8wk6uxMA1xcmYFq2nOw9qbRfuYG43h1xaVubgKF3sfOPH7jxo5Ucefspsr9dSeMfP8XVtx7m3AscvdCQ5Z8lMWh8BK07BSHz8xGurpX6LvduPVEkrUK2tZGFsieNwHP2QgrqGHEZezu88wMXBrTGd+VeAA6Pn8L+vS0Iu/Qb7ScM5tSDTwEQtju53PlZPqobjbZncjoqiMAdJyu8fFmyMnJZ9mkC14+LxNvfvVJpFJZNWHISu4Z1xHAgG/9XpnDh2ffJ85C031F6u7Djm5ZwfsyTpPWMZo/bvdw8OYomoXUqlZeKOJ22jzMDhml5r0SZyuyL7O7QpdjyPw2NJHKfqdLpKtVfcnIyYWHFjwmVIaXeVNveeemy+bIO78G1Vl3ca9W1jL/vvvu48cYbmT9/Pq+99hrR0dqT4Hv37mXs2LFkZGQwduxY3nnnHVKWLmXstGncc98obr7znjLzZm87hRBxUsrOFd7QSrrmAqcmgW3k1Ns+LjryCgIUgJV9Z19R4LOqzwdIQ/EutYS5gP5rJ1/VvFRVWoViOk/nkncDALyyjhMd+1ql0im0uvf7mI3FAxKDKZ9+656oUFrlDXyrMi3/N5/h/LNvkNEnBHefuojtyWxs/qqWlsynz95JuJxwxdzQDUNa+TqMu+gl8Lmk/c5X9nkPRMXylRVooqBdK9zzcwho0YpdK1bT/LKnszLv7InYsBEvFx+MA/qQ8/1iXCOCMNavT7aPD5H3TmH/rg2wI5a6g0ZyfMJE8muZqffoRC6+NJdmyxax78nHcElIJWXitxxJTCegbhZ3vTrMbp4Kg17yLnFyyypqtW6PMS8H1yattUBTD4ADpvTE5b8fAbCrRwBtN2ptA8+NG0ydT5dS98sPSZ77MoGbThOalMi2j5/Ht3kbkjb9TZsft7Gmx1uY3Lwx5mVx063pHNsXT965U/R59WuOfv0mgd2H4tKgCRuevouuz3+CR50gLsVvwrtTnyL5Pbfxb9zq1McnNArQaoR/fXcbtzzVkcBGvpb5EmOWYHjgSQB8XnuKi9PfITQxAWG03mI7u24JtaJ6YPT1t4w7sXAO6c/OxuPpkeTM+AHQAqTspK14hHbi12HtCU3RapsafzuHo5+/TuiHyzj8z4/4NmpJQFhnDiyaT9PBd2H08i01j2WRJhPrHhhI2BPPEdhpQLmXs6eki4arSRYUsDuyLZdG9qLTS/OdkofyKBJQLJkGJ3ZVKh2JxJx1CWkEo7sn5pxL4OqGsVEnuKHo7bSCvFzy9+5DCvCK0LpaTExM5N577yUuLo7HHnuMDh068OCDD1JQUECPHj2YPXs2Xbt25dFHH2X37j0snvUBXUeM4Pefv6NZu04V206dCpyqWNN6beTTIz7C+u5gScQdDVmz+CHu/OsMq64Loun4WWyMW09EWEOaPv4MXrnw/bhu3LZgMz/188XcqhN9flnNiqEd8MkxEbLDSH7tsQgptEBDSpAmyPoKs+dBgp+YgbvRl79+mkJB1gkCs1yomyk5GejFfYszyHXzY0O3l8HgYl3eXEDPzc/jnqf10ZPW1ETDw8XbJ+Qv/ZU/X7qNgHotuPv5H/hqyoYrDnZiwgUbWvsxOL4ZpxqNBWEosl0RiZ9bamTKq8QgrIJ5K3e6l6WZ6wLuJdylqK7BZnVNq9CJulEkRYwrUkN3JRwVBNsGrY2PP0WrlIr3D1NWeZ2pL6h7onzHTuMHb2KaPA2AjNs7wz9b2NH+TUzSD7fcU7TouIespYuofd7EhZZ1Cdlc9JZ4ahDk+rjQYn8B2Z7gqd9tzWidj88+F9I6h9B46+Fi67X9flzzdlLnsjsmZwKh7uni+U28tyc+idvZ7zsNRB2MuWe4fpwvga3aciZuLfvmzSL8+Xdp0K47RpuAbs2ErhjT08mInsSh5HCidn5Ip6VfcDC6J5cm3kaOhxupSTHcOXMx3z49FGOeiVEfLGHLm1OoHRVNy8F3UpCZgat/Lc4e2kPa7m2s/S0QzALM+TwydyC/PXIdnR55lYCQUFLW/Un7YWPITj/N+bSjNIjoyPKXR+P+z1YCJj1E+O1PIoTAlJ/Pwe0badm1b5HtPBK/ibTEGKJHTcGcm4vB3R1Tbi552Vl41qrDxqdH4/9HLOmThxHw/h+Atbbu8oBOFhRglhKjqytpe3fSsHV7Lp4/Q2r8RkL72A/+7bmSQNFRgZPJVAA5uUhhwGx0xWDKB2FGNO6IHPwGLm7WWuDc7CzM+w8C4BmpBU633HIL48eP56abbmLOnDmkpKTw3nvv8eOPP7J48WK+/PJLAObMmcPePXt4ecwYOgwbxrYNqzh86jQzZ31EZkYGX773Gj5NwzEYi573VODkBFrgZK1xMhjhkTkDMJnM/LRoDrfd+iiuNl9U7K5NFOTnEd2xL0fPn6WBby1cjEZy8gvwcLXWEn08cSVmU2FZCku65fHHmpUc+c4MUiCMAmmSIM34Zb3Cvd+uZe2OnUQ2b8ma0dGE7i1g54zHadWmB/UCm9C4Tu0iaZ0+eoGf3tiKtRNWLdi57dlu1G/qz/akbXiMsFaHJj0/ntPrFvHAB8tZunYh25Z+wktva69nKDCZmf/46sv6JTNhOj+Zez5ew1efPMo5b+jQdxwFP8yiYachnD1/itYzfmbv5Btx/2UpTVNNrOldi47bvNkR+Qh5nrUQNkGrS+55/G82cGTjNxhcjNw08RW4/pYyy2zn5CGc3rKGHPdWeDEOrbmenq65gKidszk9cwxtHnyWbHdJg6XLWPX4UAJHPUTOZ5/QMiWfzeP70G3+Wu0E03Y8mKXdAPHvG+szZeYqPpjck0u56Vx392v4PvQs2/vWI69FI8K/j+PA7W3Jik/GtaAtFwKtaUkkwqylleYfT4cDkkXXudPgeB7RSZIFAw2MWWG/Ld2JulEkhTsmcC1PWkfqQpMz2vx7G0Pro9rwz7c14fZfiradOhwI+0Pfs9SEDVh75be8rzS4c2RweLZWa3ZFTsBsdLOUl8GUS7tdc6mTsa9CaVVVHstcVyVrPa80j6t7zMDs6oUh/xL9Nlau3UpVlVO+EVxNcOblT4n/J4eIhPlcGl6fZp9rb/465wN1LsLBBtDsePHldzUz0Pag2Vq2Nvt+vhGS2nvRfpvWyahZgEFCcrgvhos5uOeauPT4k9T+dDbZo+/n9PHD+KxfQ6ePFlLbqxYXLpzn99dTLIGir887BPYZzcCh93L+3Ck2LpyDf9NwgkLCcPOuS4smjVn2/Sxad+jLvoN7qO0TSFi7aLLS8xEumQQ0DObC+XSEwYCffy3OnDqGf+16GIxGcrKz8PLyoaCgAJOpADd3D/Ly8nBzdSXzdCrupzO54NPYsu/7XjxqKQPRohly/0HyvF0xuXngmX7Bsr2xO+MZ8uCDBAUX9yLHAAAflklEQVTVw2yW5OXlEdqqJYuXLOO/z7xA3YBAnn72P7i4Ghg7dizRXTvRPrA+L334IQvnzLGs4+4nn+R/M2eS622kwGDEmJNHboAfXqcz2Z1+ml9WPEdrj9bcNXku+47sp0PrcBU4VaUm9drIZ+6YS2TfYBLWHMNslkz8+MqqkwHmPLISg0FUOt0lc+Px8ncnondD1j/yDrlu/oz85cnK5eXRlWB7LjbAxI+seVkxIJzgNMmefvW5Ze6q0tOqxHZlZmbi5+dHYswyjidvZeCY6SSEh7Gl83SyvRqi9dehHRTrNPBi1AtFe0JPPX2MWj61yD1/ivVP3UbrOO0Se290XVrHaGd223YaHz26kqK99ZsIcnub22ctY8Mvc2gYGU2zNtYq4EN7trFtyReMeGKWZZwW+GJ9JNacT9fYKfhk228TsitmKaGdBuBqp93S5UE0pjx6jswkauCdxeY15eezs1M71nRyY8qCnXz19QsE1AumrtkHvymvsLLfLJD6gwJCgMyjac/NtHj9++IFDxwIcSH8jY85MHk8DW3aQOe5w/qu72u1moXM+TQ6/X/0WvAPyUs/oettU/lrTG/axGZSf91ylo+7nsapku5xyfwy6XrcG7fAJ7gpieu6lFB7KHnog56sv64DZzs0odltDyEe/y9HrgtBpJ6m9a4sdnT0Impb0d6r0197nLTfvqT+3iB2Rj0GhTW3SDCbiNo5m513B9D/4xi2tRZ03KuVbeJdnYj4XmtEfXjaKNw/Ta5woHlw8lCaffAHJ2c8QdDT7wOwaUBduq88w5oeMzC5eWvpCDDmZdF341S2t3OhQ7xWfRnzxECi31/BeW/Y3dqN6O157A0xkIOk3aGix9bjtSG5nWMCgrQ60PCc/WkVDToSmkGkVmnAWT/Bzg4fViqPjgx2HHnRYDevNkFl161T8Clndw1VFdA5It38ObOp36Kz3WCnIi74Nilxmu+FIyVOA7hx3Dj+b9w4+uttmk6eOUP3O+9kV0wyHy2Yx779e3jv1XdJ3L6CIffcz5pvv2Xn7t3sO3yYlx63voC6MHCyZ9/Jk7hOLFom4Xt2q8CpKnXu3FnGxlbvThQPxPyFKS+XVn1urdTyC6aux8Pblc43hRC7+BA5WfmMeauXZfrFMydI+N+bRD/2XpmN/xxGShZM20D2hTy8/NxAQFZGHl6+bkXyZndRkwkJGIxGa6Nfm2Dm40mrcHUz0nFIU7b9fZj8PBOPzO5foewVBogND67gWHBvpDAy5q325Gadp3aj1pVKq9zBZuFv0M53UVJaJ3dvZ/f4+6l3Wntc6liPOgRvPEfe64/RfsSjluVXDI0keJ+JNokJfPzISoQ04eOZxMXscKQwMv7dLrj51rLMX5B9iQvHD1C7eSQXz57AVJCDf1BIkTz98/G37IlvgCysodOzPnCcfntBWsdnnzqKR0ADCnJz2PL92/Qc+xI/v3kf9Vx9ybqQQcjAOwjrNRxzQT4HNvzBsh9qaelqqYK5gAFrJ2vfd342uHry94vjafr9euot+5Xjf31N1t7tdHrjF/a178DK3sWDwwHrppDjAR45kNbCSP9FW9mz4hfaXH8XBhfrvLt+/IicWR/Tac129kS0ZVXv93Dz9SqyX0V33USH+57l5MF43FzcqN04lN8nXU+jgbeSGrOCVr8msbtrLYz5BbTafpEjD/ShyRdrAUh98lb8P9nC1k5Pa1XdWIPDLnFvcWBsPxov+B91Llqzf+T6xjRZVvQEuL9/A4bMXsa+iLYAmD58HvMTL+Fq0sq8WNABYC6gecpnhKTFc8kNOsTtZOWDfQnecp7WCfFkHkpEmPM5ffY06ZNmankUxiJBS5e4t8id2BOv93/igp/gVJ9Q2i7Ufoen6wkSQv+/vTsPj6pKEz/+fSuVjRAJAQTZAqhkYTEDGEGDBmkQGUfBpRtmoF3QbhQau3u0RWQGe8B2+bXigi3aOg4900ZtBcWlBRTTEmkJiwESApEmURCQsIUYslXq/P64NzGBJFUhlVrg/TxPPancunXqPW9Vkjfnnnvu083O1bxk+73EH4N/JEVy4U7rzNde61bz7ejxp+1fZ+2VT4Oc/l7W+a47lCZ3Y2BWE8cbbUcmXkSXD3dT0jucbvtqvCpQivsI/fY2/XexvQq6tra79qolXDo9nn59Tr+KgKdi51Q1zg5URnWl0ULexhBdeRinq6LZ532yfj2/W7qUT/70p/ptZbF9uWhIHzau24rbbfjX22+mprqGCwdcxBc56/lq1V+Zv3gxaUOHctOECfXPOysKJxFxYF2wtydQAeQbY/x/broPhELhpJq3afRA3GmJpD35Xru03/BMtVA4+6jok9cp+fwjRjz4ImVfrqZT2r803qHWBa4KiIyltqKcE7lZxKVNYMPNI+j5ywX0vcrzYdGm1I/Q2VpzaLrFdpsogmc+exXi8LxySt5vRvG3EwsRh4NexZ/UF8BXfzaH5J0F1vIixjSaaN2cmj15hHXuhqOz9/NMqo4d4rP7buaKR/+P2pPfs/Xxe7n8qRWsX3ArEeXf02fWQo7feCtrr3qmcUEAXBj1NNf8/m3EGU7mnemkZh9h26jO/OTV9fX7nCzOwxkRQ0TP/gBUF+dDZAwRF/TDuKrJvuISupbCoT4O8vo/ZReQ1l8/Rxgk1C6if9YBiiZezMSnVmJqa8FVjURGN4qlfOMq/ufVcOtwc93gsKnl6r/dS1J+HiU5HxHVI4HYhBRKViwh7upbcEZ25PuDx/i/J3djXD8UzhgXY8d+Q98x1/D5z64jae5j9E7NgMoypNP5ZD88jcpduVzx3CpyfjOVhBunc+CR3xN3zMHajCU4whwMHt2DvHUHcNe6+ckvY+iaOJK97y6l5/h/IyyqI+7D3/DZf91O2PGTdLr8asqPlDBy7hJEBJyR1B74B2EXXMjeD/+HzS+s4tsLmi5QLn/7UbY9ey+X/PtLFKZn4DA/VA57BrkYcPNd8NtXrYLOEU5dckTcXFb8C4a9t42c8UNwXdydtEWvkfv/fsXwh19m7fyp9PpwD+HPzqdmziLr/Xj0TtwPvgzAjgkJpHz0deOiXwTc1Qyt+C86XnIZUS9/RFFSOP13Wv8oFY/pRb9PvwWg88wxFLx1jJjH7qdfn4t+eCPtYicsPgo5ZC2oXNMpgvDSxieVuCLBecoqLvWH6Rq0deoIVm20EFZh1Q/m/DjkUOOlbCqihcgqJyejz8c4Gv/MibuWDhWHcLhrGPXjH/PG00/Tt2dPjhw/zsPPPsvav/+d2266ifvvvBOAqOQkKnbuRAzsrCyn39FdxFycysHcrZQ/+LvgKpxE5ELgAeBHwFdACRAFDAROAi8Cy0wIXdZYCyfVkrrC6WA3B2PW5Qc4muDV1kPT/lD3XtbcNY6h//6sh7394+jbz/PuF0OIio1sdkT4LzNGM/jzw+Rf3pWb/3ud121/npZM/Amo+uNjfP5a7Gnvz88fH8qWh6Yx4rE3cMR0arGt00atyyqZfk8XnP0Ht/i85+9eaxWnDrEOnwtB97l4fuZqwB7xMwbcNYwf8lcunvNM/T6HPv0LlUV5nD9qAmEd4gjvkwgOB+7v9vDCw8Wt+uybiu+pyV1LxKjrqd6xCdeB3XQYO4WabVk4B6VTe/wQOT+/ji/jH0dMLQMTyvjqQFer3T+MwdRUs+3eG+j/83nU7tvD/vmPkrj6Y3JvvoYOJW5SCnay66eTKP3ZfzYunID486pwdu5G2e58HC430RcmUrWrEHeUgw79E6n67hsiu/fFuKpwHzlEzVFruLPucF10bAQVZVahdX7CeVTk5QEg58cR2a0XJ4t2Eh7fhfBO3XCV7MfR8TzcNZU4IztAZDTUujh6sJLaU87PcNTWEBkHV40Zw5jhI1j069OnpUjnDphjJ3F0jSWyRwJlX+XjrDLsdlUzJHXYD/mtrcXhdAZV4ZQJvACsM6fsKCLnA/8KHDPGLGvXKH1ICyfVkro/ttsGRfCTt9s+l0IFTt172SPrr3Tu0S+wwbTC4fdfpuS+J+n25H10/ecZnp9g++KKFDodMXR+8yV6DB3djhE2r+Fczfx1+zlZWsW1M4cGJJbmBGvRX1OcT3X+emL+2btLdrnLjkLVSRxdewOQk/0l/fpceFqxAzSaDuAuP4FEdUDCTj+sWlcYRVw0gLCoDs0+XncGnTcO7yvDXWtwhNnr9dn3u9pLXJQV5OFs4sTX6MGDwbit0UHA1FTjLj1CYcnxgJ9Vd3rmGnvGGPNFUw8YYw4BT/s+JKUCr7JGr/t2toiJifO8UxDpet2ddP3RLRDV8qjQqVL/+Colrz0fsKIJaFQkXTU1MWBxtKRhkTT6x62bv9iewvsNIrzfIK/3d8TGQ+wPi7LGdomqL5Ri46Ma79zgsJsj5jzPbYef2cKzTenqYQ0wU3ciSANhsXUnxPxwiF7CIwjregGUnH51C3/zVDj9ARjmYR+lzjpphefWSRNns/DojoEOofVaWTQBRKVcRp9Fl7VDMOpc09w8wMiEnkhEdJOPnakGU8lwxEUT0a0H+Pg1fM1T4aSUUiEprH8UtUWViFN/zSnljaikRHA3fz1DR2z7XnbI2aMv4jyzS1P5k6ffKANEZGVzDxpjvF8SVakQUBIfRrejrV9pWgWfi974mNp9Z75YpVLnGqto8W/h4pQwwCrWRDyfPRsMPBVOJcCT/ghEqWAQLk5AC6ezgeO8LjhSugQ6DKVUC9xY130AvFp2JBh4KpzKjDF/80skSgUBExYaP7hKKXU2CHP98I+q+GtB5jby9Fei2B9BKBUs9iVa1/4rHHz6qbhKKaV8LDRqpUZaHHEyxtxYd19ELgf6NXyOMeZPTTxNqZDldlr/S1R0CMGfZqWUCjG14Q6cp66QGeS8Oi4hIv8L/B5IBy61b35bbEopf6kvl4wWTkopdaZmz55NQkJCi/vMmDGDj7L+Rm5BAf+xeLGfIms7b8/THQGknLp6uFJnnbp6ST/pSil1RoqKisjKyqK6upqysjJiY5teBDM3N5f7b59GQlw3Uk9ZDTyYeTsTNg/o0Z6BKBUMTP3FSbVyUkqpM7FgwQLmz59PSkoK+fk/XPOzsLCQ9PR0hgwZwuLFizl48CC9LujBHXPn8tnGjQGMuHW8HXHqCuwQkRyg/jrKuo6TOtvUndWhB+qUUqHq8ZzH2Xl0p0/bTIpP4oG0Bzzul5+fT15eHsuWLSM7O5v8/HxGjhyJy+Vi2rRpLFmyhLS0NO655x6SkpJAhLzCQgYPDJ7L33jibeH0cHsGoVSwSIztAnzDAGdMoENRSqmQ89BDD7Fw4UJEhOTkZPLsCwMvX76c5ORk0tLSABg0aBDR0dG4XNWUV1QQ36kT77zzDh988AGHDh1i1qxZjB8/PpBdaVaLhZOIiLE0u5ZT3T6+D00p/+vb4Ty+A/qE63IESqnQ5M3IUHvYsGEDq1atIjc3l1mzZlFZWcnQodaFn7dt28bw4cPr9928eTMZGRns3F1E4oABAEyaNIlJkyZx7Ngx7rvvvqAtnDzNcfpURH4hIn0bbhSRCBG5WkSWAbe2X3hK+VfMtTcD0OnGKQGORCmlQsu8efN4//33KS4upri4mK1bt9aPOHXp0qX+/ubNm8nMzCQ1NZVtu3YzJDGxUTuLFi1i1qxZfo/fW54O1U0A7gAyRaQ/cByIAsKA1cBiY0xu+4aolP9EjvgRyTsLAh2GUkqFlDVr1lBVVcXYsWPrt3Xv3p3y8nKOHj3K9OnTmThxIqmpqSQmJhIXF0dycjIvPfcsIxOTADDGMHfuXK699lqGDRsWqK545GkBzErgD8AfRCQca5J4hTHmuD+CU0oppVTwGzduHOPGjTtte2lpaf39nJyc0x7P/uILfnHLjwF47rnn+PjjjyktLWX37t3MnDmz/QJuA28nh2OMqQEOtKZxESkGyrCumuoyxowQkVuwJpsnA2nGmE0N9n8QmGHvP8cYs8rePgF4Bmuk62VjzGP29v7A60A8sAWYboypbk2MSimllPKv8vJyRo8eTcaYDPr27AnAnDlzmDNnToAj88zrwqkNxhhjDjf4Pg+4EXix4U4ikgJMAQYBPYGPRaTu/MTngXHAPmCjiKw0xuwAHsc6XPi6iCzFKrpeaNfeKKWUUqpNYmJi2LJlCyeOfgf7S3CFBToi7/n9UvDGmAJjzK4mHroBeN0YU2WMKQJ2A2n2bbcxZo89mvQ6cINYC+5cDbxlP38ZMKn9e6CUUkopnwjBRfNaLJxE5JoWHrvFi/YNsFpENovIzzzs2wvY2+D7ffa25rZ3AY4bY1ynbFdKKaWUaheeRpw+FJFPRaSpguRBL9q/whgzDLgWmCUiV7awb1N1pzmD7ac3LPIzEdkkIptKSko8xayUUkop1SRPhdM24DXgiyZGmDwOsBlj9ttfDwErsA67NWcf0KfB972B/S1sPwzEiYjzlO1NxfGSMWaEMWZEt27dPIWtlFJKKdUkT4WTMcb8ERgL/EZEXhWRuiWVW1wtXERiRCS27j4wHmtieHNWAlNEJNI+W+5iIAfYCFwsIv1FJAJrAvlKe7XyT4Gb7effCrzroT9KKaWUChqhN8nJq8nhxphCYBTwHfCliFzmxdO6A9kishWrAPrAGPORiEwWkX12ex+IyCr7NfKBN4EdwEfALGNMrT2HaTawCigA3rT3BXgA+LWI7Maa8/SKV71WSimllDoDnpYjqC8F7QJmroh8BGQCLR7zMsbsAS5pYvsKrMN2TT3nEeCRJrZ/CHzYzGu0dPhPKaWUUkGqptZNeKCDaCVPhdNvT91gjMkSkeHAz9snJKWUUkqdC0yLk36CU4uH6owx7zSz/Vjd6t1KKaWUUg3Nnj2bhISEFveZMWMGq9d8TG5BAQueWuynyNrOHyuHK6WUUuocUVRURFZWFtXV1ZSVlREbG9vkfrm5ufxyziwuCotg8OBkP0d55vy+crhSSimlzl4LFixg/vz5pKSkkJ+fX7+9sLCQ9PR0hgwZwuLFizl48CB9enThjrlzWZezMYARt46OOCmllFJnkYO/+x1VBTt92mZkchI95s3zuF9+fj55eXksW7aM7Oxs8vPzGTlyJC6Xi2nTprFkyRLS0tK45557SEpKAiCvsJBBAwd6aDl4aOGklFJKKZ946KGHWLhwISJCcnIyeXnW8o3Lly8nOTmZtDTrRPhBgwYRHR2Nu9ZFeUUF8XGdKCgo4JlnnuHw4cOMHTuWu+++O5BdaZYWTkoppdRZxJuRofawYcMGVq1aRW5uLrNmzaKyspKhQ4cCsG3bNoYPH16/7+bNm8nIyGBX4VckDhgAQHJyMkuXLsXtdnPXXXcFpA/e0DlOSimllGqzefPm8f7771NcXExxcTFbt26tH3Hq0qVL/f3NmzeTmZlJamoq2/N3MCQxsb6NlStXkp6eztixYwPSB29o4aSUUkqpNlmzZg1VVVWNCp7u3btTXl7O0aNHmT59Orm5uaSmpvLEE08QFxdHcnIy2/MKGNpgftP111/P+vXr+fOf/xyIbnhFD9UppZRSqk3GjRvHuHHjTtteWlpafz8nJ+e0x9et/4LZk28BICsri+XLl1NVVcXEiRPbL9g20sJJKaWUUn5VXl7O6NGjGTNmDH179sQFZGRkkJGREejQPNLCSSmllFJ+FRMTw5YtWygvPQJ7DwQ6nFbROU5KKaWUCgwJdACtp4WTUkoppZSXtHBSSimllPKSFk5KKaWUCpDQO1anhZNSSimllJe0cFJKKaWU8pIWTkoppZTyiRUrViAi7Ny5E7AWtbzuuuua3T/0DtRp4aSUUkqdk8pLq1jx5GbKS6t81mZmZibp6em8/vrr3j1BQq900sJJKaWUOgdt+qCI/btL2fRBkU/a+/777/n888955ZVXGhVOJ06cYPLkyaSkpDBz5kzcbje1tbXcdtttXHrZ5Vw6eTLPL/uTT2LwB105XCmllDqHLJ2dRa3LXf993mf7yftsP2FOBzOXZJxxu++88w4TJkxg4MCBxMfHs2XLFsC6Rt2OHTtISEhgwoQJLF++nP79+/Ptt9/yZU4OtcVfc/z7E23tlt/oiJNSSil1Dpn+yCguvrQ7znCrBHCGOxiY1p3pj4xqU7uZmZlMmTIFgClTppCZmQlAWloaAwYMICwsjKlTp5Kdnc2AAQPYs2cPv77/flZnZ9OpY8e2dcqPdMRJKaWUOofEdIokIioMl8tNWLgDl8tNRFQYMZ0iz7jNI0eOsHbtWvLy8hARamtrEREmTpyInDKPSUTo3LkzW7du5a/vvcuLL/6R5atXsWz5irZ2zS90xEkppZQ6x1SUVTP4yl7c/MBwBl/Zi5MnqtvU3ltvvcVPf/pTvv76a4qLi9m7dy/9+/cnOzubnJwcioqKcLvdvPHGG6Snp3P48GHcbjc3TbqB/5w9m9wdBT7qWfvTESellFLqHHPtzKH196+amtjm9jIzM5k7d26jbTfddBMvvPACo0aNYu7cuWzfvp0rr7ySyZMns337dm6//XbcLhfu6moW/ureNsfgL2KMCXQMfjVixAizadOmQIehlFJK+UxBQQHJycmBDqPV3BXlVP2jCHFAVMpgj/s31U8R2WyMGdFeMZ5KD9UppZRSKiAkzCpDwiICHEgr6KE6pZRSSgWEOMOJjKtBYrsFOhSvaeGklFJKqcBwOHH0HAISFuhIvKaH6pRSSqmzQMjOWXY4vbr0SrD0TwsnpZRSKsRFRUVx5MiRoCkufM0Yw5EjR4iKigp0KHqoTimllAp1vXv3Zt++fZSUlAQ6lHYTFRVF7969Ax3GubccgYiUAbsCHcdZpitwONBBhDjNoe9pTn1D8+h7mlPfSjTGxPrrxc7FEadd/lzv4VwgIps0p22jOfQ9zalvaB59T3PqWyLi18UZdY6TUkoppZSXtHBSSimllPLSuVg4vRToAM5CmtO20xz6nubUNzSPvqc59S2/5vOcmxyulFJKKXWmzsURJ6WUUkqpMxL0hZOI9BGRT0WkQETyReRee3u8iKwRka/sr53t7Uki8ncRqRKR+05p61d2G3kikikiTa6kJSK32u1+JSK3Ntj+kYhstdtYKhJCa8Q3EEw5bfD4ShHJa4/+todgyqGIZInILhHJtW/nt2ff20uQ5TRCRF4SkUIR2SkiN7Vn330pWPIoIrENPpO5InJYRJ5u7/63h2DJqb19qohsF5FtYv1N6tqefW8PQZbPn9i5zBeRJ7zqgDEmqG/ABcAw+34sUAikAE8Ac+3tc4HH7fvnA5cCjwD3NWinF1AERNvfvwnc1sTrxQN77K+d7fud7cfOs78K8DYwJdD5CfWc2o/fCLwG5AU6N6GYQyALGBHonJxlOf0tsMi+7wC6Bjo/oZjHU/bbDFwZ6PyEck6xlhA6VPd5tF//4UDnJ4Tz2QX4Buhm77cMGOsp/qAfcTLGHDDGbLHvlwEFWMm6AauT2F8n2fscMsZsBGqaaM4JRIuIE+gA7G9in2uANcaYo8aYY8AaYILd9okG7UQAITlBLJhyKiIdgV8Di3zUPb8IphyeLYIsp3cAj9qv4zbGhMxihUGWRwBE5GKsP37r2ti9gAiinIp9ixERAc5r5vlBLYjyOQAoNMbULbf+MeBxdDnoC6eGRKQf8E/ABqC7MeYAWG8C1g9ls4wx3wK/x6ouDwClxpjVTezaC9jb4Pt99ra6GFZhVfxlwFtn2JWgEQQ5XQg8CZw8404EWBDkEOBV+3DIf9i/UENaIHMqInH29wtFZIuI/EVEurehOwETJJ9NgKnAG8b+tz6UBTKnxpga4G5gO1aBkAK80obuBFyAP6O7gSQR6WcXXpOAPp5iDpnCyR6ZeBv4ZYORn9Y8vzNWNdsf6IlVsU9ratcmttX/sBtjrsEaZowErm5tHMEk0DkVkVTgImPMita+drAIdA7tr/9mjBkCjLZv01sbRzAJgpw6gd7A58aYYcDfsX45h5QgyGNDU4DM1sYQbAKdUxEJxyqc/sl+/jbgwdbGESwCnU979Olu4A2s0dBiwOXpdUOicLI/LG8DfzbGLLc3fyciF9iPX4A1CtSSHwFFxpgSu2pfDlwuIpc1mLx4PVYl2rDi7M0pQ3/GmEpgJdYbFpKCJKejgOEiUgxkAwNFJMs3PWx/QZLDuv+66oa8XwPSfNND/wuSnB7BGgGtK+j/AgzzQff8JkjyWBfLJYDTGLPZJ50LkCDJaSqAMeYf9ujdm8DlPuqiXwVJPjHGvGeMucwYMwrrOrZfeYo96Asn+7DDK0CBMeapBg+tBOpmxt8KvOuhqW+AkSLSwW5zrN3mBmNMqn1bCawCxotIZ7uaHQ+sEpGODd5QJzAR2OmrfvpTsOTUGPOCMaanMaYfkI51rDnDV/1sT8GSQxFxin1Wjf2L6DogZM5ObChYcmr/QXoPyLDbGwvs8EEX/SJY8tignamE+GhTEOX0WyBFRLrZ7Y3Dmh8UUoIon4h9FrK9/R7gZY8dMEEww76lG9YfVIM1JJlr3yZizYb/BKs6/ASIt/fvgVVdngCO2/frzob7LVaxkwf8LxDZzGvegXXsczdwu72tO7DRjiMfeA7rv6iA5yhUc3rK4/0IrbPqgiKHQAzW2Up1n8tngLBA5yeUc2pvTwA+s2P5BOgb6PyEYh7tx/YASYHOy9mSU2AmVrG0DavA7xLo/IR4PjOx/jHagZdnyuvK4UoppZRSXgr6Q3VKKaWUUsFCCyellFJKKS9p4aSUUkop5SUtnJRSSimlvKSFk1JKKaWUl7RwUkoppZTykhZOSimllFJe0sJJKaWUUspL/x8VnVfm6Q8IEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for NEW\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'NEW'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [San Juan (SJG) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 9.793e-01 2.221e-01 0.000e+00 0.000e+00]\n", + " [-2.221e-01 9.793e-01 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 2.738e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.546e-01 -1.800e-01 0.000e+00 6.194e+02]\n", + " [ 1.800e-01 9.546e-01 0.000e+00 -1.083e+04]\n", + " [ 0.000e+00 0.000e+00 1.085e+00 -1.845e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.069e+00 2.643e-01 -1.131e-01 3.983e+02]\n", + " [-3.623e-01 1.069e+00 -7.689e-01 2.285e+04]\n", + " [ 1.750e-02 1.077e-01 1.069e+00 -1.892e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.394e-01 2.398e-01 -1.682e-01 5.247e+03]\n", + " [-3.408e-01 1.275e+00 -7.971e-01 2.300e+04]\n", + " [ 2.411e-02 1.038e-01 1.077e+00 -2.282e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAFpCAYAAACF2szYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FMUbwPHvm0YJEHoHI53QIShSpKoIKjYEVMQCSLGAFVF+gg0boHRBQbBQBAQVpEjoIC10Qu8QIBBqenLz+2M3jRRykHLI+3mee3KZbbNze7vvzczOijEGpZRSSimVMW45nQGllFJKqVuJBk9KKaWUUk7Q4EkppZRSygkaPCmllFJKOUGDJ6WUUkopJ2jwpJRSSinlBA2elFJKKaWcoMGTUkoppZQTNHhSSimllHKCBk9KKaWUUk7wyOkM5JSiRYsaX1/fnM6GUkoppTLB5s2bzxljimXHtm7b4MnX15dNmzbldDaUUkoplQlE5Gh2bUub7ZRSSimlnKDBk1JKKeWCTl49yZB1Q4h1xOZ0VtQ1NHhSSimlXND7q99n1r5ZbDm7Jaezoq6hwZNSSinlgowxAAiSwzlR19LgSSmllHJFxpAnyuR0LlQqNHhSSimlXJD/yjNMGR6HnDmX01lR19DgSSmllHJBVbdfAEBOa/DkajR4UkoppZRyQpYHTyJSTkSWiUiQiOwSkdeTTHtVRPba6V/aaZ4iMkVEdtjLvJdk/rb2/AdEZECS9DtFZL2I7BeRGSLildX7pZRSSqnbU3bUPMUCbxpjqgONgL4i4iciLYEOQG1jTA3ga3v+jkAuY0wtoAHwsoj4iog7MAZ4EPADuoiIn73MF8AIY0xl4ALwUjbsl1JKKaVuQ1kePBljgo0xgfb7K0AQUAboDXxujImyp52NXwTwFhEPIA8QDVwG7gIOGGMOGWOigelABxERoBUwy15+CvBoVu+XUkoplR2sy5xyJdna50lEfIF6wHqgCtDMbm5bISIN7dlmAWFAMHAM+NoYE4oVcB1PsroTdloR4KIxJvaadKWUUkqpTJdtDwYWkXzAbKCfMeayXbNUCKspryEwU0QqYNUwxQGl7emrROQfSHWUMJNOemp56An0BChfvvzN7ZBSSimVlYyO8eSqsqXmSUQ8sQKnX4wxc+zkE8AcY9kAOICiwNPAQmNMjN2Utwbwt+cvl2S1ZYFTwDmgoB2MJU1PwRgzwRjjb4zxL1asWObupFJKKZUFdIRx15Mdd9sJ8AMQZIwZnmTSXKy+SohIFcALKxA6BrQSizdWzdQeYCNQ2b6zzgvoDPxhrPHrlwFP2uvtBszL6v1SSimlspLWO7mu7Kh5agJ0xQqIttqvdsAkoIKI7MTq/N3NDoTGAPmAnVgB02RjzHa7T9MrwCKsTuczjTG77G28C7whIgew+kD9kA37pZRSSmWZqJg4AE5ejMjhnKhrZXmfJ2PMalLvlwTwbCrzX8UariC1dS0AFqSSfgirr5RSSin1nxDf5Sk6zpGzGVEp6AjjSimllEvTPk+uRoMnpZRSSiknaPCklFJKuSDRLuMuS4MnpZRSypXpCOMuR4MnpZRSSiknaPCklFJKuSBPEw2AV8SZHM6JupYGT0oppZQLiu/z5BYXlcM5UdfS4EkppZRSygkaPCmllFKuSG+2c1kaPCmllFIuSFK8Ua5CgyellFJKKSdo8KSUUkop5QQNnpRSSimlnKDBk1JKKaWUEzR4UkoppVyYaI9xl+PhzMwi4gbUAUoDEcAuY4wOfaqUUkplNh2qwGVlKHgSkYrAu0AbYD8QAuQGqohIOPAdMMUY48iqjCqllFK3FR2rwGVltNnuE+BnoKIx5gFjzLPGmCeNMbWBRwAfoGtqC4pIORFZJiJBIrJLRF5PMu1VEdlrp3+ZJL22iKyz03eISG47vYH9/wERGSliPWpaRAqLyBIR2W//LXRjxaGUUkq5BtGaJ5eV0Wa7b40x/6Y2wRhzFvgmnWVjgTeNMYEikh/YLCJLgBJAB6C2MSZKRIoDiIgHVqDW1RizTUSKADH2usYBPYF/gQVAW+BvYACw1BjzuYgMsP9/N4P7ppRSSimVYRmteRp7oxswxgQbYwLt91eAIKAM0Bv43BgTZU87ay9yP7DdGLPNTj9vjIkTkVJAAWPMOmOMAaYCj9rLdACm2O+nJElXSimllMpU2Xq3nYj4AvWA9UAVoJmIrBeRFSLS0J6tCmBEZJGIBIrIO3Z6GeBEktWdsNMAShhjgsEK1oDiWbsnSimllLpdZbTZroKI/JHWRGPMI9dbgYjkA2YD/Ywxl+3muUJAI6AhMFNEKth5amqnhQNLRWQzcDm1TWcw//F56InV7Ef58uWdWVQppZTKEdpd3PVkNHgKAYbd6EZExBMrcPrFGDPHTj4BzLGb4DaIiAMoaqevMMacs5ddANTH6gdVNslqywKn7PdnRKSUMSbYbt47SyqMMROACQD+/v7aFU8ppZRSTstos90VY8yKtF7pLWjfEfcDEGSMGZ5k0lyglT1PFcALOAcsAmqLSF67dqo5sNtujrsiIo3sdT4HzLPX9QfQzX7fLUm6UkopdWsTrXtyNRmteTpyE9togjWMwQ4R2WqnDQQmAZNEZCcQDXSza6EuiMhwYCNWs9wCY8x8e7newI9AHqy77P620z/HavZ7CTgGdLyJ/CqllFJKpSlDwZMx5vH49yLSGPBNuqwxZmo6y64m7SbbZ9NY5mesZrpr0zcBNVNJPw+0TisPSimllFKZxdnHs/wEVAS2AnF2cvywAUoppZRS/3lOBU+AP+BnN68ppZRSKovoCOOuy9lxnnYCJbMiI0oppZRKlBA7aYdxl+NszVNRYLeIbACi4hMzMs6TUkoppTJOQybX5WzwNDgrMqGUUkqp1Im237mcDAVPIiLGkuaYTvHzZF7WlFJKqdtXbE5nQKUpo32elonIqyKS7JkmIuIlIq1EZAqJg1QqpZRS6iYVvqz1Ea4qo812bYEXgWkicidwEcgNuAOLgRHGmK3pLK+UUkopJxSIsP4a7f3kcjI6SGYkMBYYaz+nrigQYYy5mJWZU0oppZRyNc52GMcYEwMEZ0FelFJKKaVcnrPjPCmllFIqG12J1K7jrkaDJ6WUUsqFRcdqx3FXk6HgSUTKpTOtWeZlRymllFLJ6AjjLiejNU8rROQdEUnoIyUiJUTkZ2B41mRNKaWUUnqznevJaPDUAKgIbLHHdXod2ACsA+7OqswppZRStzuNnVxPRocquAC8bAdN/wCngEbGmBNZmbn/vEsnIfwclKqT0zlRSimlVAZltM9TQRH5DngBa8DMWcDfItIqKzP3nzfCD767N6dzoZRSSiknZLTZLhDYD/gbYxYbY/oBXYFPRGRaeguKSDkRWSYiQSKyy669ip/2qojstdO/vGa58iJyVUTeSpLW1p7/gIgMSJJ+p4isF5H9IjJDRLwyuF85akiRQrQsVyans6GUUsqFiTbcuZyMBk/3GmO+NsYkDDZhjNlqjGkMBFxn2VjgTWNMdaAR0FdE/ESkJdABqG2MqQF8fc1yI4C/4/8REXdgDPAg4Ad0ERE/e/IXWI+IqQxcAF7K4H7lqHJL8zL2K70FVSmlVNocotcJV5Oh4Cm9vk3GmInXWTbYGBNov78CBAFlgN7A58aYKHva2fhlRORR4BCwK8mq7gIOGGMOGWOigelABxERoBVWUyLAFODRjOxXTrtnj34hlMoqx68c59/gf3M6G0rdNBMVkea0Y7vPM7Z3AMf2hGZjjlS2DpIpIr5APWA9UAVoZje3rRCRhvY83sC7wJBrFi8DHE/y/wk7rQhwMUmtWHy6Uuo21mPCg0wYdUtUQqtU/Bv8L8cuH8vpbLiGuNRHGDfGMGfseoyBxRN23NQmjDH0m/sCf+6fe1PrcVZIeAhfze5PVFxUtm73ZmVb8CQi+YDZQD9jzGWsO/0KYTXlvQ3MtGuRhmA1wV29dhWprNakk55aHnqKyCYR2RQSEnKDe6KySpwjjs/XjudqVFhOZ8WlGYeDkyfX53Q2XN6IiXG8PceR09lQNyjisReY2bdtTmcDgI/XfET9H2pm+no3Hl/Hgt1zrjufIy4uRdqYXgGM7b0Mz9jcAESFxzGmVwBjel2vJ03qLl4+w8sD/uXw/wbe0PI36ucPO/HQ+wsZ9u3T2brdm5UtwZOIeGIFTr8YY+KPlBPAHGPZADiAoljjRn0pIkeAfsBAEXnFnj/pSOdlsYZMOAcUTDKAZ3x6CsaYCcYYf2OMf7FixTJ1H28Hd02oyV0TMucE8vHqUby8IPmX9PsNf3J16ij6//6/TNmGq4tzxPHJhHpc3DOfE5dO8ee2mRlabvIfr/P+uBfZv3Munad24PNlX2RxTrOAMSzdMBKTykXhlrJsKISdv/58Dgd8VhZ2Ze6veodxcCbsTKauM6cYYxjdyY+XBtbgQsQFSl6E9hszp2tD4JlANgRvuOHln3xpGr98FcfVsItpz3R8A8Sk3rwW44hhzFN+LF/9C2fCzvBXi+ps27uSfPe9yJ2Pv59s3jhHHFeiryRLk7iYZP9P2TCOGl1yI7FRYBLLyMPLjYf71U34/0LEBZ76uCYHLhzAYRxEx0Wnmf0TQZsAuG9L9nYnaftnMACPTdidrdu9WVkePNm1ST8AQcaYpKORz8Xqq4SIVAG8gHPGmGbGGF9jjC/wDfCZMWY0sBGobN9Z5wV0Bv4wxhhgGfCkvd5uwLys3q/b0ZThcUwZnvbFLsYRw7mIcxlal/e4cTzyxe/J0tyXLuaZ5Q4a/7ma77f8Rq0ptYiMjSQkPITTV8+msaa0hf/YDnNyS8Zm3joNribWRhrj3AnE4TDExiWv5YiLjWbU5MaYqyE8O+9lev/9VrLpM5Z/j++8KAb/3o9PPr2Pss9+SMimqcnX4bDKe8P+dTz7aXU2rJtI9K9LeXeWgx3//MmHn+2j/qAfncqrK/jh97cp/vw4hv301HXnXbr0K/q8XYMrkZcztO44R1yyz88R41xzQMw1F6prOYwDYwyOC0eYuGksJ0dUTTsvW6dh9i0h5spJRh715t9ZLxMZG8ne0L0J67oZY2YOZOZLLbl4NQMBXDbaF7yTpdus38kfjO1In/frXXeZC1fO0Xqb4a05DpbPTf49uNlyWtH/Wbb3eT5Z2r8bfieoWnUOnNjO+OlvsWrn/Ouu59Ce1M8nwad38OG4Z4me3T3V6ZtHDqHVdkOJ7p+w4vshVDwNId17AXC+YBXG9g5g6sxJbNgbwNwHanKi9l2sDkyskXIziQ0s5y8Fc9dzIynx8ku4OezmPGMAgyPiCuWrFSbsUhS/D9vMjAkfM+SXOKZ98iRjhzxKYMM6GGNYPX8M8wc9kSyPJ3ZtvO7+Z6ZYO+9rat4SN8enkB01T02whjVoJSJb7Vc7YBJQQUR2YnX+7mbSuWLZfZpeARZhdTqfaYyJ71D+LvCGiBzA6gP1Q2buQFh0JF1nfcq5sOS/BoIvXeTAOStq3nH6OJEx1sHwv7Fd+W7OGKe28cL4R3j5565pTj92MYSPls5Kc3paRq5ZzPyg7U4vl1FLDq2h+aia7A89xEtf1Obbfs2JPrqO9377lElrZgMQcvwKE/utIOREYvk9uNlQ4QyEHlrHqPXTWXtsB57nTwKQNzKcwF8HM3NoLJ/9/j1fv92CgUNbOpWv07vmM2D7UX6Z8nCa8zQaX5P6P9Tk7Nn9vDHjI1Z+W5NPZwxixNN+dPiiFvtCgjO8vcYTavHQN7WTpX0x4hHafHGBn7/0p/fHK3n4c+vk/NnMF5k95xUO/TmdBgcNLda58/ofDnLHwIZdu7kafZXzEec5eeks779am0+ndmHrxMG8/xOs//ErqpywvibBu/YAUC5j8WqqDoQeYfWxTSknhIdClNVy7mwgCRAZHc6uo8sB+GTul3y7aHKy6T5Tl+HhgHKLDlsJsdYv4hMhuwi9dDzZvIfHTuLVPx38POktZv4xguFfPoMxhoYTajLk14eJjo3ioylNiQ49zMQvurLPryYBGxNreKKdCCxCLp5m5PO1+eXbdpyLOMfELeNTzPP9kzX5/KWaBC6fRdMf8rFxXTHmBwXQe6Z1MfxhxGP8Ob4TAP2nfkLfif2YPvkT7lvhhs+0wnzXowmOxo9yMeIyXz1fk/cG9GRMrwC+er4zs359jd/e70JQtep8MKZzQvCclmoj59Fmq2Hb+mWcCT3O8gVrGdMrgD0bTmZ4n2/EhvmTWHCfdSHedWo9Zv0EouOief/jlhw/vY/INh0p3el9wkKP8czInbw6O5Lw6OTN8eEx4QBsXTWNn7rUZm/g0oRphw4lBilL7vdnb/UahMeEM3lQRyZ+1hGAoF0r2bjWOscQsg8OrwSsDtSje/3DkNetwDw84jJtAw1Nggyb185iY93qnL0cjM9zVs334U6daD54PkWffIs4Rxwz3nqMLWvncvb8Meb+M5r58wIIaD6aM0XqcHlTwg3gAIzvczdLJr/JzBGv03mOO4tWbGb7yulsaOBHXOQVjMMK+g6cvpSwzJUjVj+uMiHW92qn30sYhyF8YVHyd+iLn334F3k6sUbKs3BR9u1dR9DOFfy5/GcAljf7hjgvb+u5dyKA4HD3ZkyvAMa/+z2n9l/CfdsdANTdFkXr6fvxCYczG/+hyJujqfDbbqIvJH7Xzu9NvD8r+GrGz32TX7yHoGrViT68muWzv2bzil+TTd8etIyvetYlIjyxDM4e3s1+v1oEVatOk53Wd/9gxVuriV1u5MT4X+Dv7282bUp50bh7xAP45KnB4l6JlWSDpnzA00NnM/XZIszNVxGDsKffjzz9YX28o6IY+PZyFvdszt6Gjenf6wuuNmrKstpCn5npV0MGVasOwMnJQyjzwocAVN8TlOq8Pd5tw/1bT5F78GgevifjY5OO7uTHySLCoG+28Oj3bfnfg2MokDs3b/7Rnb9eWkQujwwNMk9UTByHallNdlW2B+I+syv7Tpdn8YH21NwxkQn37WDQdOvgPz2wDiU/28bpgtDy3yC+6TcPz8j8eBWAiGOv0PX7lZz2t54nveLle2n+3UqW1hHy5S/K3atDWFPbncpH4yh+CeY9XpkOc/anWzZJbf6tL7EHf8MUfRKfr5exu4Lh8bmB/Da9Mx0fm8De88Hs2beK9q17c6CGFewc+PA5Kg2ZSmBtBxUPuBGRty67a3TndNHFfPxpxprE4j/L6nuCeGXSZzzT5Cmk6yP4XE7+/aq65i9WtXuIg6WEO897UTIkioOVoaK1i8xqWxHizlHg3GUqdnyTigOtETy2NS9DnRUnWVRP8DsFBa+WZlP9/vgHDid/2Kk0y+ZK1BWi4qIpmrdIqtNHd/KjwX7DPYHJl+/frwbn80OXB4bg230QKztV4eUhiRW6nw55BN8NB8jz5QS2BO/l4zbJO2YPe/0u2i26gs/8H7nU/nlC80GTTUG8NeZxHm/zKsdf70vxq3XYVaM7NQoPY1GhvXzebwcjnvcnuLDw5ehdPDX8Lh7x60iDfpMAOFHUjbLnrGNs64jXqNt/ZLJtvv2iO19NsoKNpS2K03q5VVs5tIsX77zwMzXL17Jm3LsQ7rgHcvskLPvrwh8wxnDq5HYe+noJ+8pDFbuv8sXBrShT+yP+GrWNdr39iHjKCuR3dq5DzenbOO8Dh4sJ/gcMXmvnE924PQChf02g8EM9k+XxdBEoacdy699qz91fzyeg2Qhw94S4GFqt6p9s/mPfvMEDbXuk+tkBbKtZHa9Y2N3zfvwmLE62rocGleOO8jUS5v36xXp4N25N7+7Xjgpji4uF5UOhUR/C4uDM3m2Uq9uEeX0fpvg9z7BzQzna9LiTKrVLE1TTahr69/GaNJqzM9lq/q0qNNprHfchhaDYBSv9wtBeNKpyB7Gnd7A2phwF3xnHjvbv4nloJHW2nSE8F+RNp5Lw2AfdKP/JFADKTn6DEy9Y5+jqe4JY+XpZIk/nouWve5jQ52/AG/eYMHpNeoRNqxfi3b1/musNqgjVD1rvc8+fTmT7zpwr4MaeKt403XTFKlM3T3DEUPf0UIq82IE8wevJ//Q3nGlknYt3NPCh1uZLXMoLPlZMyPn+rSkywgoIN3Vqiv+M1YQWMOwo70bznYaA5qNTf+CvMbRa8Uryj0bA3T6V/PviAzSatCjt5VPhFhdDi1X9UqR7T/6Ico2eRESY3rUpdTYm/tDY9nA1On/1O4u++oATR2vQ+dPH8fbJRUxUGPPfaE/VpWcou3Y5Jxq3SLHepOejyR38qHymMtvqvkrZugcolPcCly9fpeLo5H29jpZz0HbJ3gztz7W21qlBxB3Fafzn8s3GGP8bWomTMnblvE1sPxnCj98dA44R+8InfLhkJS2rVCB6o9W89NzP53ki13m8oyCyTwyDZljt23NrTqbtLkO1E2sYGj6QV4GW2w2PffU8Phc3M+Z/W/h9xnuUCV2H34vzmd63BabF0zxgb/fsL98m3B547uplfuzViLxPvkWfR18kOtaBl4cbz644SfGLsG37AqIvLMFrw1gYfOnaXQDgy3EDkLXzeW7MKlpvs6pzpy+Zyrcjg5m+owtXvGIYucjBpAJDGXHAg3ol72RGj84Jy+88FULfn7oy5rkp1CxWCIL+4KB37YSe+SdP7SLsk10E3NsdEdjl9zzlQt5MWP78WaEksLvOaHb3CsCT/ABEXwb3gqP59c1txId/MaePANB6m2FpHasKxScSitu7FuOWRudxY+DP16Dd14yc+Qb/HlvOD69t4MqwAEpcLMLZTlatTMEr8OnYzjSZvp+xoc8TsSOYZoHRrBtenPheb5cPWkFukVA38kbB5gbdACh5Nv3arpFfd8fs3cRz36xNSNu6ewN9v/yJaS1/5iH7ZHe0Wix37LG+atPmTaL+JSh+ybDFPy8lQ6ISAieAghEXaLPC2vm1dTZQMX53I6xyKBMK7rGwo0Z3jFtudtToQeMN196YmujH55tS9mw0jy1NPbiyjg9wRIcTd34/7kfW4nZPb3outIKUTacm4Qs0nbmPuA/jiIu8ildeHx6fZmf6iR5UB9jzEnPWLqJCz36c/ro/7RZZtYzb//mJO4DCV+HwkV28NCqIoN/7UPsEBDTrhgC7z71Gt9/7M774Z7QNtI7XIwe3MGTCFawKakt84ASkCJwAWm1LnB4fOF3xLkPj4/3Y2bsfS7s8yMGdv9J7bgRzH47jvb6T4J/B8OIi6vWzAopTDa2jPCpJnfzMoH+o/m9HjIG/J+ykhZ1+cZf1S/1KbvA/YJXj9O/68rg9/drACcA9SYtg2MYHCWjRLslELwJajEl28Sz67nBmjhnBU/N2sm3FZDwljjVH9tD087+R6cPxslttTu99hNMtOiRb11+fnQHOcNfG16g0/2/ar42EtfMZcWk3vXrPJE/efAAc+Pwhyj76Cl6OWBZ9+xONTh3g30mB+AbHsn3SCGqsPM6K2EIYT0PA6B0cdWtPWXsz1wZOQELgBImBE8C5owfY9r/x5I6ByGKwp0pPLof6UCS2AzAh3cAJSAicgITACSAuMoJii/IT0Hw0+/uuArH2K84rn9V52niS3s/N+MAJYMb00XQAcsU4iPYeSkCLJMGJuxdby3wICw2tVkzkhPdkCtuTam22vrPxgRPAiU3bif/JUu+3NQAUviw032mVT51tI9lRsxcOdy8rCDIGt7goau9IWdvpnuQ3WKNJiwBouGkogfX6E+ee+7pBlMMt9Ut92Av/Yw9WH9NrHxJW5889mC8NF9f6EFm8OKtm7KVqhcNsWz6ZqkutfnYLxg6kNikd376WYsV8OdyyNY2AFU26A0LwxjJUWfMtqfU4do+9gYFA9y4kuvRd5IpykGvfaeeXvwm3dc3TmpVL8cqdjwlL/6LKoAHMaeJGn/nWCXhmx7I89McJAqvVI7rgS9TYOZES57clLD/qMeHV362y+/5+N7ovtpYLzWddKABi3cDDAfOaQYdVVtovLarxzPI9yfLyd0MPHtxonQX3fPEB1d79hHAv2PDVMELnDaDjBws5+URrSl6A5c9U58yZIKodEDr9tZV5O0J4sFZJjoVe5MPf5/Bzj+4sa+JH6QuwcfCrNBw8CoDN3ZrTYMoKjpYzRDiEaichsGtt6v9kNelV3bWLD/rXx1GiBhX37KXpxjCWNy1IbFEh976LUC4PTRdZZ4alLUanPuKtfdJfWduDe7fHOvXLKi2L67tzf2CcncedLBh8B1ekJHUbdWD80lVUDe+H/4Zh5A87xeWJH1OgxyAAjjePpdwKD06UMFwo4UOt7ZfZ3NqHBkutk9y6Fndwz/KjABwo70GlY+nkF+g7PuXpN6HmcOQAyrz2OQA7X6hFzcnWLcNRHpArFoKLGUqFCKeLWjVa1x5LSS1q6M4DG9Nuqkk3j2OagZsH2w7t59jfQ2jz3GiO3NUYgOor52DEHfHIxfZLbsz4/mW69/uJyKZNASj0yQOc+mgRG/3A/YVxNHm9NwBrm5WgwfoINvj3Ita9OP6Bw1nUNpYnZyfvg1ZuayBH6tVPdpIHWFEz8WIxp2ExHt8YkinHRUataziIiLwlyBV5hibrP042rfQTpwm67M1dAxewt2WnZNMOlzbceUqyNK+ni9Zlt9+LIG4JF09MHDV2TUpxfGy9U6h7OO1zdVrrKn72Z2ru2cg2/9LU2ZT8PpqzTWsTUsKDGrMD01xvVuz/8mbf4HD3TJGeVu1IRp0vWCXNYKTwpf3XX8E1nPl8btSKxl8S55k34X/3mDBq7ngXMYnXkfQsb/o1DvfcyRPj85pQBpE02GLVUGfE3ioOqu5zy5TPKaPHz/ESBg+H0GrV9VsXuBoC7h5Eb11J5MSeHAsqhfsFK/L227sn22qesnWcJ1cSHhnFhLf9+fmr52DCEEpeJCFwAnjqtxPkjYLoAs8BVu1KUvGBE5AQOEHyA97DTo4PnIAUgROQEDgBbF9stRefKywUGvUmjwfEEPhZKxzu1gF49dhxOv0DdY4Yhs1bQNUubXj+jRf4o387Bo0YzpRhPSht/9oLXTQjYb3Vp68AwOFuqGZ3hwgKTTwBLJgxnK6Lo+j2UyCNN1k7ceflczRcfIGmu022DVurAAAgAElEQVRC4ARQY+f34IhLvMvDGHDEUmOnNV7qvdut/Wm4aSg4YlPM13DTZynKIC3xgRPA9x9UpuJv+ak7M4xFi/+gdsiLGEcudtSwmjXOByb2Rzgbah3a0SKUOGp1NDahiXfCxAdOAJWOWfn125XKfhHLfT0Smz7OXY1i2d6zxCXpHH48ILEvmseuxL4aueyPtVSI9dntrm7VaF17LCWVXuB0PZM61yZoYAl2v/EolUYHMrVHk4RpMwY+xJ5mHZjTsS2ebe/n2VmHCW3dNGH6/osx5ImGe7eSEDgBNF51hsN3PEiMZ3mMW252VX8hReAEML7fM+wvm7LjZ3zgBPD4RqtDfqrlnOT4SU2eexPvcrrkYy2Xq3oY3pXD8KqRsnYyoPloAlqMIcK7JIgQlackAS3GWCdzYGd1ODW7JD5L8rOyY8pbpO88ZZ/wHamPr5NmuhOKXdiCm5v9eSeUhYNIn0AutE9eU5Be4ARQ8txWiO9UnWRdNfdYnYCvDZwAiq/enm7gBFbtiFvSO7qMwS02krpbv2VjZeGsD1R66hSVO5+ieudTHCxrzXe4Ztqd7tOqBXG4ebCjauL3qmRHq3bjZL2MdfgvcnEfkqwDNYgjNkXg5HgklAvesK9dOOvuS/vus7TKNK3A6dJjFzmWwZu4z3e6wOU84PDyxE3CqFDgZ7zkCo5ceaj5ZjNqd0u+osOtw6nWOfEzrN75FPn7lsG4R+JGMFX3/AAm5pq8GmsgHy9Ppj9+jCqd0g+eZjURqnU+RYsvJwDpf04ZZtL4nphYFj4ck7DdKwW98EjvK3X+IKyxapvNl5VwfOrLwRcGcHJt4YTAKbvdtjVPJUrlMct9fNOcnp2/jpNa5Sc02204UNFBpYNWALC/vDuVj6W8qP7TpCBt1lgXldOFhZKhhs13u9Ngfdbf/h3Q7BtI+iVypOyvARBw77cg7okJJo5WK19PMZ9T287Czya1/arUvRzjp8xk9Ef9uNzUqsn5s4kvD685AkC0BwnNJ5md38jchtyR1rIXG4TjvqcyGxu8Y5Vpkl/DlYKGUT7kxgcUPFEEyl7TrzqtX54ZzXtaHPXDWJ5vgtWPJP70k8rxc7X1Zfy8IsntHYd7oxehThf4oQ08NgHCz8GqYfDOIRjsw6StZbhnj6HyU6dw98zFuODppHqDVlwMrZyo3The8h72V33G+ie+vB2x4DmQqtvCKfVkRQ5FF6RWKQcRn1mBc8knz5Cr2xzcp3YglzuYp38jYlZfzlbvRMR7s9nTMJqmnZ6hUJOefPfeHtzc3ajZrBQ7VgbjcDh4ZUwLlvz4EWW/+i1DeSz943tcDbvA3N/8kLg4ypxcxckyzTDiTquVr2V4X9OyvMUXxBnvhEPY3UvoVfgxAGIGXcDz7E4oXAFy5WPa0oVsClzO128NZU91v4R1jOogvDrPcKgEBPtVIMq8DsY+hjFAHDVK/0TjN0cx7ctO3H1XG6qdX83eOzpyh//DfDv3Nx75eBgzmrlxuVguSrlf4vkSpfhqzwXcMLQqFUqeaNh2+kdEoiHfMjxCWxLn7kXLVf0psvQvipaqAIBbbDiEhUAhXwBMdBjbh96J1zSrkS0sF3hHwbJ2MZir4xATRzQr8eLeFGVavnMwc88Xpk2Ri5So25nL5VoSueBlBMPrniW545gbzwU42FJByOseR9X9bizsWoF+/aay44I7tcsWTLPcP3vBj8fWWV+QPc835LEmdaHGo1ZZx9csYd3QER0bx6/vBEDMGaLiCuDAm0gxlCiRn+jwWF74wvqhFN9H7tyjlyg614ctFYSn7zpJgFcLmr37O57u1jXn9+4VKLOlQvJmQWNwj4ukfiq1WPvLGyofS3mOi/IqwJp7PgLxwIrkrO/Pvvwf8tHHK+n3xbv8r9f7bHz1PsoeiaTxplRqnuJiiXqrBKF7vfF6bCBnh32bZpllZ83TbRs81cydx/zm65vm9BRVthhwWFW2zWYPZd+DDxDV/UlyjfqdUP+yNP7hL/bUsTpRbr+3DLVXpn23y4XCDgqFulHlsWAOHsyPe/nHOXrob/IdLU9gvX7U3zIiw1WsGXHFu0ymrNfUL4UEWndhBDQfiTisE/WpO1vjiImj5cpXKTbxPc71+JwTzSIouyoPq+/5FM+YMJr0v59Nc4O4eiKUpuveZ/eT5YkJOkOdXVGEPtscz4WB+C9fi7i5ERa0nXw16vJ3y+r4pnLTR2YFT6HPViNi8zHKBIVzoBRUCoaAFqMQNzfKHFma4gJ0vKyDciecq6wtOHMce/p8x+5aPexfhNaxJCK0aRdF5XKXcBSsgrtvfUxUFCYqAseJlfz4w/c0e3kwVavUt1YUf/u8uydjewckDu1iB083G5CmJsqrAEFVnyG0sJ/1PbC3J3EX6Pjh/Zy77+40l/V4uxqVOo5F8peEs0FQrCocWg77l8D9nzDmlZW4uQk1/XOxc/0lHA4PWq18jbyPhXBgTVFqdypDsYjj8Na+5Cu+dBIKlE7x+cdFXcURHoJn8A4oWoWwXHcyddAaHFGJzRfusRE02vgxuaJTH/IgsIo7rUb9yhlHLLMm9uaJ6g1Yu/IRK8gDkDj7gu+g78jG4OWdbPljIQcoWbg8Xm6eiYHW5ZPgUzb5hqLDwDNvuv1Ulk/7mhJDkt80XKG3F3tafkSd6g8wdenvnLgUxsBOyW+NH93JL6Ef27UCGjtotTbl8bunLFQ7AQv8hSgvKH0O6tY6Ty2f/Li9vpXx/f/FM7cn9dv6ErjwKDHRcfQeff27X+Obtce1c2Pk8F0QHQ6eeUCEsX0C7ODWyqubG/Qe2zrd9R05tpf83oUoUqR48gkxkbDpB2jUh9gZ3ZBiVXFvOYAxH1fk4tG8HPbvyPd90u4XCNZQI2+P9MeRrxZfdvmG/n8GMqpTS94Z9RIeZw4wpOv7HHzUDrqfDmHltuIcrOLDl2/+ZH2OhSskfuZDCkLLD+Cu7mxcMpZBm7YwoOsw9p4+wfSAccx5+3sK5c2dbn4Ajm5ZyoF+fSl9Rjj2QTceeHbAdZe5nvjPJG7cO0w9vot2dTrSImwD1HwSCpRKmO/fkd3xGbsmRbOgW1wkLVZbQ66sfzgXd/8Zxc+PFaFyyHnuXp24nWh3mNs9kvk0pNte6y5UcQPjMBgMBZ+vxLONfBPmn9bFn8pBYfhvTRI8nT9I7PzP2P9ZYp/StIx8OZa4M15M/GK3Bk9Z7drgqcBPX3G569sU/m0ioR2tZqCEWgj7JCdi6D2mJeKW+gXUGOuiOP3Ju6iz0+owe/CZu6j4ywYuNbyTRj8tSDM/C796hpM7HiYyTzFyR4Sk2wnYGTvvu5PLl55zer2X80KBcDhaytB6zDA8/donToyJgCNrWLl8HrEhh2k18K8Uy0dHhHGwnnUMV929Cze7zC5ePUfMucMU822YoXyE7FvDmt++p+pPic8ou+JdJtXal4abv0gWHO73i6PybneOloB7xw1jaZ83KdI8F417/ABlG6S73fiTTEatfDA/9/5tfeZHKsQR07wlVTp0o1o1q6ZqXN8Akt517uYOvcdk/K7JpCa/u5rc3p74t/dl6fjFuMd603Td+9dfMIMuesPP9wsfPTGQVQFunDxUgoRfjQiFS+Wly4eN+PrdVrSfF8zp4oaSZ63vSIXFk8lVvpFzGzy1FUrUhIhQmPIw9F5nXU1v0nevLic2Os6qKXLzwM0RTYtVb6Q6b/Vh7aF94l1o6Y3SXKF2IR7sc/1xi27Gmj++o/A733C+AOyu4kHFQRNpXfX65RobG83wyU9Tbv0Z6q62bsA43eUim8IKck/HbynSNXmQHVBbeKnGKRY+NZsO4ScIDb9IXL1uFD+3E0rVhVz5bngf4r9D1YJ2I9cEiuNeWYanlzv1297hVEDmlK2/grsX1Hry+vNmQMIdtZNfZblPI2reUZWi3t7XWermvDuwBk8ucBAy4m3atXzxptf3Z8vqVAoGnzUBlC5SKs35dp88jbRumfDj99/yi6hz+gEEb5qvfZ8zFWK5a+5uJq1bSp9mD/DXdx3541gQjiKFabX8PAEPd2DSy0MB+Hv8dvL65KJGs9LsWnGc8MuxPNg7eTfzX7veTc3Ay9TeuRtEcJw/xd4m6QfTn3Ryo2P+C7wZ+Sb7Br7BwZCrVC1ZQIOnrFa7RnXzxUP18J23hSsj3+Su+xN/wZ09uYeNXZ/kSNWR1q/j5mXYueIkDoeh77jrX/AWTxlMuaFWf6Ow8e/h3+K5dOdP80SdRk3Kxrp5aLg15Ui25/JD0Stw/H+dyVe+Glt+TqMBPgM1NBW3BeKVK0+682SXxdNHUW7w2GRpAfd+e03zWmxC7cvCLx7hhdbvsHX1dKI+HY33+K9oWuMhp7aZkeBp/iv1aD/aaqqpGrSLRc1r4HsW4iYMpea9yZ9NPaZ3wA0dS9fzT/sqlDnonub0pDcwHCnphu/p5G1Zq/tUpunYxD4h1TcEwOkd8GtH6LeDv6df5NjuUPIW8KJAsTycOXQJz9weCc0AGMOOGn54OOBUYWi9NgMdPrPJ3+O3k7uAJweCelBsa2uivHxo9dxhpk1byn1bDfmePkO5hj3hwc9TLLtv42n+mbQb4zBJfjxBm+41qNKgRJbnfc2CqRR+YyjnC0DT9bszfEt6vIWta3PHSau2svrW9ZC7AEdOHyWiRfLHnZzPD003Zs1n1uetGuSNhq9H7rr+zLeApMORZJdHJ9TiYC74qup7tG10848veW5iT66GrGXWgO0JP2hTY4xJaHYd/LQbUwduJ/joHj6ZNZBus/exuO/TfNxtULJlLkXE4DAxvLngR0Y/0oO8Xmk0+adiSdsGlD0STpU1q4jev4sjz/dKMc9HXdx4bqkD37PQrb87y5/fTN5cuZLNIyI6VEFW88rjzYNf/Er0Z9F4uSfv6Fq8TDXaByS/BbfZU1UyvO4ipe5IeO93z+PpzOmcXMtmMXf1d5TeEgJbtyabFjysP63a9+Ry9GWqexUAYMvPqQdlSQarZVvbMtRZaDUxlt22ga2H1+BfqTleHq4ROAHkKZpYTX+sGJQPAa+Yq+S7swz+7X3ZNP8IZ4ODifSEte+0on8Ha2ymFm37Yh7ok+JXb0ZczgMFUnnSwvlRH7LqynbCTQQfPzGClVOrc7S4UF3cuHP2bD758w1+viZwApIFSs4cS9eTVuA0Y/iDXFy8iHcHL+Lv5+/n/BNtuHrkGL6/7GVCWzdeG/IXo7eMZliLYQSNtS4KvzxbnE8KlLKq7+1hMB7sVT79DIhwvJgbd55xkH/8uEzbr8zwYC/r122jJa2ZVGQyT9R4jmL3jeKZ+89zMeoi5QpWTHPZKg1LsvTH3RiTWOMmbmRL4ATgXboIW+8UNjZyo+kNHL/r21XijolB/HWXUD23dT4oVbQkh+zpwx5zo99cB3MHP0TTtFdzU15+ax5XosKvP+Mt4qMuVrAxLRu3+UqoMNcnnDtyl73+zBkw+cXxRMbGphs4AYgI73Vzp1KwYdgL08jl4Y5vxRp0fnwofQp8xB8P9U2xjE8eT8CTSU/2cTpfuS5aJ9t9TZqlOr3TAHc2FH+E0+7f8XC50iyo1D9F4JTdbtvgKd61gVNmKF+3CfGDPufNQLX3U+835LehGzFxib9ycYO4Rw+AdZMcl/JCo1I1eKPjSKbvSay+nfRKZeotOECbplbNSgE7cIpf78yhG8Fer8EgjjjKdb4Ky615Knboyb6nr1DLtzH5c+WnWTXXeBBnUnl9rI6cl/OCz8SR8OhrREZ8QI//WeMzVbYvaHtCq9G7UPLA5EYCJ4BN9fPRak3Ke4XvqHcPTYsmjolVZvFf+OWyBlusVsyPn19ceEPbywxj2rvRa4GD/z3rzpx2w8EeQqj11L8pna80YdFhTGg7gSF1elHAqwDDWgxLWC40P/w08MYeKLr77SdYGDCbz6vflVm7kqnylPWn75pvoIrV9FwkTxGK5El90NCkHA5wcxdqNi+bUFuYXerUvI+1HUvwVrMPbmj5Z54ZzHsRT9PunsTailweiRebl+7py5neVfm6fPpNIzejTslKWbbunDD4les/viWzVYp1Y/SZEA6ldeOGk9zd3fDO4DXv1U6TWX5sLWXLJTaxtansx47K0zMlL0kVvpT+d2v7M5vAMze++YuyY+kQeObZTM+Ds27bZru0RhjPLM5W8Y7pE2AFOWAFUG7Qd2wrdgZv4dU/ezDz2b8pltdqhpv59WvU+n4JAJV2b+d02GnK5S+X6nrH9glIOOkLAmLVgjz7vxo8vcJBy6WB5HGhWqbU7N27A0eHpwgpINy7YTevB7zOe3e/R0nvklm2zcBTm9jw2nMJt9r/+/3LrF4wkfEfb8Uzk05kmWFTnep423fqOmaMJvcdvlRMp0YlNdFx0biLO+5uaTf/pSfOEcfVmKv45PK5/sw5JewceBfN6Vxkq/CYcPJ45En2AyL+vHTo4/6075hyEE/lWmLGNMYzZBfm5ZVIqWuHsfzv6DGgBm/MTd6lYF9pqHIKprR24/MxGWv6zc5mu9t2nKesNrq/Lwu/yng/m7z5vbiQO5iY5gcpXNqbvPmtXwc1S9VjWc9NCYETgFu+xNosTzfPNAMngDz5vShYMjf3vVTdWm8Ba73fDdpAnfn/uHzgBFC8fFlmNxZm9bLGW/q21bdZGjgB1C/tT4kKpQEILWR4oWk/fvhsl0sFTgBzBiV2si1avJzTgRNYta83GjgBuLu5u3bgBLdd4ASQ1zNvmjWv1dpkXY2TyjyedvNaqoMS/4f4VrsvRdquStZ31qfK/dmdnQy57ZvtssqYl/++/kxJWB1wM9b7wDN3xu/wSOjYC1RtWDrhvbenN96eWXunSGYplKcQ9wweRf3i9bN1uxJsBZqFL7juiWvQo8M48oFVLvkKZW1AqW59r/RyJ38EzC3kfJCtVFZpXbUNsChZ2oYWfmwvu5r6DbKlIslpGjzdgnJ75b3+TP8xrbOwb0ZaLhYqDhzmfH7XDZ7yeORhUFd36h9wMOAmbitXt4cRz/xKSHhITmdDOe2/3b2mQPGUHeK/bPsu/Zae5+WGzt0pnV00eLoF5Sno4k0k/xExdr/KLX4+WXZHUmZ4ocsXLDm6BDfRVniVvtrFUnuMq3JZrvu7LVP5FC7NtUPXVilcgQUdZ6U6vyvQs+0tqGRDa+DF0Q/px5eVcj/VlLXVhbAurt0/pH2F9nzT8puczoZSSt2QIvmTP6ZmRU3Xjxr16nsLKluwPE+950GxxzvmdFb+0+pXvIdvHnXn3lrtcjorSin1n5XbI3H4hKCyMObhG7+BJbtos90tKK9nXnZ025HT2fjPq1GkBlu6bsHDmaeIK6VUZqnfDRa8BT5p31H9X/NvNTc+avxRTmfjurK85klEyonIMhEJEpFdIvJ6kmmvisheO/1LO+0+EdksIjvsv62SzN/ATj8gIiPFvg9XRAqLyBIR2W//LZTV+6VuDxo4KaVyzF09rNH+8xbO6Zxkm/2t6/JY5cdyOhvXlR1XhljgTWNMoIjkBzaLyBKgBNABqG2MiRKR+GdwnAMeNsacEpGaWPcvlrGnjQN6Av8CC4C2wN/AAGCpMeZzERlg//9uNuybUkoppW7Sh8+4U+yS4alqrnl33bWyvObJGBNsjAm0318BgrCCod7A58aYKHvaWfvvFmPMKXvxXUBuEcklIqWAAsaYdcYaFn0qEP8QsQ7AFPv9lCTpSimllHJxQeWFlbXc6FK9S05nJUOytcO4iPgC9YD1QBWgmYisF5EVItIwlUWeALbYAVYZ4ESSaSdIrJEqYYwJBitYA4qjlFJKqVtCj1o9sn0g5JuRbR06RCQfMBvoZ4y5LCIeQCGgEdAQmCkiFexaJUSkBvAFED82e2r3Ljo1cpiI9MRq9qN8+es8LV4ppZRS2eK1+q/ldBacki01TyLiiRU4/WKMmWMnnwDmGMsGwAEUtecvC/wOPGeMOZhk/qTDkJYF4pv3ztjNeth/z6aWD2PMBGOMvzHGv1ixYqnNopRSSimVruy4206AH4AgY8zwJJPmAq3seaoAXsA5ESkIzAfeM8asiZ/Zbo67IiKN7HU+B8yzJ/8BdLPfd0uSrpRSSimVqbKj5qkJ0BVoJSJb7Vc7YBJQQUR2AtOBbnaT3StAJWBQkvnj+zD1Br4HDgAHse60A/gcuE9E9gP32f8rpZRSSmU6sbsY3XZE5AqwN6fz8R9SFGuYCXVztBwzn5Zp5tByzFxanpmvqjEmf3Zs6HYeAXCvMcY/pzPxXyEim7Q8b56WY+bTMs0cWo6ZS8sz84nIpuzalj7bTimllFLKCRo8KaWUUko54XYOnibkdAb+Y7Q8M4eWY+bTMs0cWo6ZS8sz82Vbmd62HcaVUkoppW7E7VzzpJRSSinltFsmeBKRciKyTESCRGSXiLxupxcWkSUist/+W8hOryYi60QkSkTeumZd/e117BSRaSKSO41tdrPXu19EuiVJXygi2+x1jBcR96zc96zgSuWZZPof9rhftwxXKkcRWS4ie1MZH+2W4mJl6iUiE0Rkn4jsEZEnsnLfM5OrlKOI5E9yTG4VkXMi8k1W739mc5XytNO7iMgOEdku1vWoaFbue1ZxsTLtZJfnLhH58rqZN8bcEi+gFFDffp8f2Af4AV8CA+z0AcAX9vviWM/M+xR4K8l6ygCHgTz2/zOB51PZXmHgkP23kP2+kD2tQPwj+LAeO9M5p8vnVi5Pe/rjwK/Azpwum1u1HIHlgH9Ol8l/rEyHAJ/Y792AojldPrdiOV4z32bg3pwun1u1PLGGGDobfyza2x+c0+Vzi5dpEeAYUMyebwrQOr283zI1T8aYYGNMoP3+ChCEVWAdsHYU+++j9jxnjTEbgZhUVucB5BHr4cR5SXxGXlIPAEuMMaHGmAvAEqCtve7LSdbjhZMPKHYFrlSeYj00+g3gk0zavWzjSuX4X+FiZfoiMNTejsMYc8sMauhi5QiAiFTGugCuusndy3YuVJ5iv7xFRIACaSzv8lyoTCsA+4wxIfZ8/wDp1jLfMsFTUiLiC9QD1gMljPXcO+y/6TZVGGNOAl9jRZnBwCVjzOJUZi0DHE/y/wk7LT4Pi7Ci/yvArBvcFZfgAuX5MTAMCL/hnXABLlCOAJPtppFB9on1lpaTZSrWczYBPhaRQBH5TURK3MTu5BgXOTYBugAzjP3z/laVk+VpjInBelTZDqwAwQ/r+bG3tBw+Rg8A1UTE1w6+HgXKpbfNWy54smspZgP9ktQAObN8Iayo9k6gNFb0/mxqs6aSlvCFN8Y8gFXlmAv7Ace3opwuTxGpC1Qyxvzu7LZdSU6Xo/33GWNMLaCZ/erqbD5ciQuUqQdQFlhjjKkPrMM6Qd9SXKAck+oMTHM2D64kp8tTRDyxgqd69vLbgfeczYcryekytWuhegMzsGpFjwCx6W3zlgqe7INmNvCLMWaOnXxGRErZ00th1Qalpw1w2BgTYkfwc4DGInJ3kg6Nj2BFpEkjz7JcUw1ojIkE/sD60G45LlKe9wANROQIsBqoIiLLM2cPs4eLlGP8r6/46u9fgbsyZw+zn4uU6Xms2tD4wP43oH4m7F62cZFyjM9LHcDDGLM5U3YuB7hIedYFMMYctGvwZgKNM2kXs52LlCnGmD+NMXcbY+7Beu7t/vQ2eMsET3YTxA9AkDFmeJJJfwDxPea7AfOus6pjQCMRyWuvs7W9zvXGmLr26w9gEXC/iBSyo9r7gUUiki/Jh+oBtAP2ZNZ+ZhdXKU9jzDhjTGljjC/QFKvduUVm7WdWc5VyFBEPse+4sU9GDwG31J2L8VylTO0L059AC3t9rYHdmbCL2cJVyjHJerpwC9c6uVB5ngT8RKSYvb77sPoK3XJcqEwR++5kO70P8H26WzQu0OM+Iy+sC6vBqqLcar/aYfWSX4oVJS4FCtvzl8SKMi8DF+338XfJDcEKeHYCPwG50tjmi1htoQeAF+y0EsBGOx+7gFFYv6ZyvIxuxfK8Zrovt97ddi5RjoA31l1M8cflt4B7TpfPrVymdvodwEo7L0uB8jldPrdiOdrTDgHVcrpc/gvlCfTCCpi2YwX4RXK6fP4DZToN68fRbjJwB72OMK6UUkop5YRbptlOKaWUUsoVaPCklFJKKeUEDZ6UUkoppZzgkdMZyClFixY1vr6+OZ0NpZRSSmWCzZs3nzPGFLv+nDfvtg2efH192bRpU05nQymllFKZQESOZte2tNlOKaWUUsoJGjwppZRSLijmzFnOTZiIDinkejR4UkoppVzQyf79CRk+nKj96T4pROUADZ6UUkopF+QIC7PfOHI2IyoFDZ6UUkoppZygwZNSSimllBM0eFJKKaWUcoIGT0oppZRSTtDgSSmllFLKCRo8KaWUUko5QYMnpZRSygXFmbiczoJKgwZPSimllAsKvhoMwIkrJ3I4J+paGjwppZRSLijWxFp/HbE5nBN1LQ2elFJKKaWcoMGTUkoppZQTNHhSSimllHKCBk9KKaWUUk7Q4EkppZRSygkaPCmllFKuzJiczoG6hgZPSimllFJO0OBJKaWUUsoJGjwppZRSSjkhR4InERksIidFZKv9amen+4pIRJL08UmWaSAiO0TkgIiMFBGx0wuLyBIR2W//LZQT+6SUUkqp20NO1jyNMMbUtV8LkqQfTJLeK0n6OKAnUNl+tbXTBwBLjTGVgaX2/0oppZRSWeKWaLYTkVJAAWPMOmOMAaYCj9qTOwBT7PdTkqQrpZRSSmW6nAyeXhGR7SIy6ZqmtjtFZIuIrBCRZnZaGSDpY6VP2GkAJYwxwQD23+JZnnOllFIqm+hABa4ny4InEflHRHam8uqA1QRXEagLBAPD7MWCgfLGmHrAG8CvIlIAkFQ24fTxJCI9RWSTiGwKCQm5of1SSimlskdqlz7lCjyyasXGmDYZmU9EJgJ/2ctEAVH2+80icsYghEkAACAASURBVBCoglXTVDbJYmWBU/b7MyJSyhgTbDfvnU0nTxOACfyfvfMOr6Jo+/A9Jw2SECABAiFA6Cl0AgjSqyhIUWniiwoqIHY/O/aCKAoKihW7iKJ0lRKqoZeQXkgjpPee0+b7Yw85CYQSDCTI3Nd1rmxmd2eeeXZ297fPzOwC/v7+SswrFAqFQqGoNrU1265FhX8nASGW9KZCCBvLcju0geGxlu64AiHETZZZdv8D1lv23wDMsizPqpCuUCgUCoVCUeNctcjTJVgshOiB1vUWDzxkSR8MvC6EMAImYK6UMtuybh7wDVAf+NPyA1gErBFCzAYSgbuuRQUUCoVCoVDcmNSKeJJS3nOB9LXA2gusOwJ0qSI9CxhRowYqFAqFQqFQXIDr4lUFCoVCoVDcaMiz86LUh4HrHJcVeRJCNANuBjyAErQxSkeklOaraJtCoVAoFDcsJpMJgNScPHxq2RZFZS4qnoQQw9De2O0KHEebyVYP7UWU7YUQvwFLpJT5V9tQhUKhUChuJGykEQBReMFJ5Ipa4lKRp1uBB6SUieeuEELYAuOAUVxgnJJCoVAoFArFf41Liaf9VQknACmlEVhX8yYpFAqFQqFQ1F0uNWD8pWtihUKhUCgUikqoYeJ1FzXbTqFQKBQKhaIaXKrbzlsIcbKKdAFIKWW3q2CTQqFQKBQKRZ3lUuIpDhh/LQxRKBQKhUKhuB64lHjSSykTroklCoVCoVAoFNcBlxrz9M81sUKhUCgUCoXiOuGikScp5QIAIYQDcAfgVXEfKeXrV9M4hUKhUCgUirrG5X4YeD2QBxwFyq6eOQqFQqFQKCqhvoRW57hc8eQppbzlqlqiUCgUCoVCcR1wue95ChRCdL2qligUCoVCoVBcB1xu5GkgcK8QIg6t206950mhUCgUCsUNyeWKp7FX1QqFQqFQKBSK64SLiichhLOUsvBi73o6u03Nm6ZQKBQKhUJR97jUmKf1QoglQojBQgins4lCiHZCiNlCiL8BNZBcoVAoFIoapmVGbVuguBCXes/TCCHErcBDwM1CiMaAEYgENgOzpJSpV99MhUKhUCgUirrBJcc8SSm3AFuugS0KhUKhUCgUdZ7LfVWBQqFQKBSK2kDWtgGKc1HiSaFQKBSKOo1ST3WNi4onIcQWIYTXtTFFoVAoFArFuSjpVPe4VOTpG2CrEOJFIYTdNbBHoVAoFApFBaRST3WOS822WyOE2Ay8DBwRQnwPmCus/+Aq26dQKBQKhUJRp7icN4wbgCLAAWhABfGkUCgUCoVCcaNxqTeM3wJ8AGwAekkpi6+JVQqFQqFQKBR1lEtFnl4E7pJShl4LYxQKhUKhUCjqOpca8zToWhmiUCgUCoVCcT1Qa+95EkI8IoSIFEKECiEWV0h/XggRY1k3pkL6LZa0GCHEcxXS2wohDgohooUQvwgh7K91XRQKhUKhUNw41Ip4EkIMAyYA3aSUfsD7lnRfYBrgh/bB4U+EEDZCCBtgBTAW8AWmW7YFeBf4UErZEcgBZl/TyigUCoVCobihqK3I0zxgkZSyDEBKmW5JnwCsllKWSSnjgBigr+UXI6WMlVLqgdXABCGEAIYDv1n2/xaYeA3roVAoFArFVUa96KmuUVviqRMwyNLdtlsI0ceS3hI4XWG7JEvahdLdgFwppfGcdIVCoSjHXFT0r/YvyivjjyVHKcorqyGLFDcS0mAg+4cfMZddWfsRZvWGoLrGVRNPQojtQoiQKn4T0AaqNwZuAv4PWGOJIokqspJXkH4hmx4UQhwRQhzJyMiodp0UCsX1R84fvxPZ25+y6OgrzmPn9+EkR+ex84fwGrSs9vi3YvJSFAUGkvHx8svaVlZ4fXZpZCTGnJwLbmvMzsaUl/ev7buaJNw/m5xftc4QU0EBUkoyN6wj7c03SVv11RXlaZb/XjylL1lCwv9mAZD2ziIK//nnX+dZXfK3bj3vPDSkp5Pzy5rzti0JCjrvWMctX0K4tw/yHDFpzMhAGgw1b/BFuGriSUo5UkrZpYrferQI0e9S4xDaizebWNJbVcjGE0i+SHom0EgIYXtO+oVs+lxK6S+l9G/atGlNVVWh+E8hpaQkOOSalGUqLCJ65EiKjh2r+bzz8wFIff5FAML2rK+0Pmf1L+iTki6ax8oFu1gxN4CEkGwAEoKzWTE3gJULdlXLFmNODoa0NAAMycnlF3ppNF5sNwr3/YMxO7taZVWkNDKK0qioSmkFgYFE9vanIDCwUnrCu2+R8O5bldKk2UzKwpcpi4ujLDaOjOUrysXO2b+pb7+NMScHKSWGNG0ERuL9s8lcsQKzXk/u2t/Rx8df0MYIH1/thmgyETdhItH9ByCNRvL/+vu8baMH3ExUv5uq7YeqkFIi9frz0kpOnrzgPubSUg7cPZ6ck0cvmGdxYCCpCxdSGhtLVJ++pK35mX0HfwXgxOmDGLOz0SedASBnzRrKoqPRJ50hfODNlMXGVZ2vyUTWV19jKixCmkzkrluHNBjI376d5FdfRUpJQcBOSoKCkFKS9dVX5cfiLFlffEnxoUOYy8rI/vZbTs+egykvj3BvH7L37Ky87brfOb3wJQCix95C7p5dmEtKSFv07kU8WmH/PTsJ8/XFmJlZyTdnHn2M2PG3YyosIureeyg5FUPM4CGkvvIKJZGRFKQkUlaQi1mvJ37qNKL63YSUkqKDh5AmE6XLvwQgPeIEaZvXkfH3Zsx6PdGDBhNx1+TLsq2mqK1uu3VoY5UQQnQC7NGE0AZgmhDCQQjRFugIHAIOAx0tM+vs0QaVb5Da2bsTuNOS7yyg8hVSUTuU5IDx/AvTuRerukxReibG4pLaNuPiZETBRUL6BQcPYcjORhoMJD/3PNJkuuC2xcePI81m4h97hPi77iJ3ZwAZmzaT/NkXF9zHkJxM+N3TLxotqLKsI0co2r+fMwd3Ykw6Q/Cbz1NwYD/h3j4YkpPRx8dTEqK9Xi537VpKw8ORZjPZ336LubhYa0sWAZL6+UpSPtWiHBkfL6dw7z4K9+whqm8/kl9ZWF5mUPopwr19CO/ZE2NBAamvvsqpkaMq2WXMzqb42HEAwv39MRmq9pfJWLXP9UlJhPXsSUlkJHm7dmqiQK8nauwYYoYMRer1xAwfwaknH6UkJpqILl1J/uxTgPKn6cwfvidr7W+UJsRzes4cogfcXKmMzB9/IGbChEpp0mgk8raxFB4+TFlcHNGDBiP1euImTCDu9srbJt2vzamJeP15DGlpFFlEVPGqHyhe9YNWdx9fznz1GWkbfyf311+JHXsrYU/MJXP5cvKTEzgxqB8RPr4UJMSS8933hM25h4RPlxIzZAjZAdustp44RMqLL3LqlrGafy3tJH7Ze+wcOJ0VcwNIc+sOQEGqdWRGRJeunHn8cc68+opWvyrabfZ332EuKSF1+xat3WRnYy4royRUazfh3j4cH+CPlJLwOf8jdct6DKmppCx+F6nXc/j1J4jo1r1S3mf+WE38lKnEvPMq+sRECvf9U55XuLcPATu/oeHRGPY+NpOYLz4i3NsHU2Eh4d+t4OAbT2AsLCzPK/TQFu3v2i8x5WkC2KTTE3HLaE6NHImxqJDUl18hfMpkgr5bBpnZnPhmCUnLPiDc2wdzhWuliI4l/b33iPL3J/jz90l57nmiPv+QmBeeJm/1L+gLckmaP5/4qdNICjnA6WWf89OLfxL/2SqtDVaIyuTFWyM/UQc1gRr/wjPkbt9G7PRpAKQ/9yKFv67lxNz/YYxLIOXBeUT07Uf2N98Q8/BcwiaP1/KVksQta0nc8AvFYaGEe/sQO30aKXPnI8yStRsXE/9/TxHRrx+5Gdbje/L3LzAdOELAyw+Wp720YjJJw8YQ26c/QQc3Wv3492oSZ81i/8rXyXPSOpuSoo+T/dTzZD72NLmRlge9iJjz2sjVpLbE09dAOyFECNrg71mWKFQosAYIA/4CHpZSmixjmhYAfwPhwJoKL+58FnhSCBGDNgaq2nHRwjIjmYWWvui0MCgruPDGFW9UhhLti40mI3nb3wNDKaUlRWSH7LisckOn9iF8fFcATm5eSW50ICWF+ex5927OJCVedN+/Q1PJKapaiJTp9ZhMmp0xu3/CWFS9G1t1iDi8neitn1dKy8tKI3qUP6cf9K6Ufuyph7SLldEIkX9C4kGLwQXnCwApz0s7nZ7HJ8t/w2y+8ODJk0m5mMyS3Nwidu/U8jebZfk+h7fsISu5cpdt+KlE9h0OAuDo4ocI/3gBAImDB7Hh1mGU6E2sOXyauoLBYMBsMlNyZBPhgyaQMqsbJqOJ0mztOJvNEikl+qJikmbNImbAzRyeOZO8desIHjasUl5bXnyJoA0bCdnyFwnTZ7D/xRcJDj0EwNawf8h8+mnyPtQ+YRn85Y/ErN2o3Yy8fUj85kvWPjYNjp5g+5dLOPbsswQN0W70J778iqhNmyqVlREcwp5xAylLSydh5j0k3nc/obEnAEgvTOHQx28DELj2C07dMpb4O7VnopQXXyJu0mSif/uetHcWEdmrN+FvPk9E126YS0vJ+WAZuctWAJC5YgWnH3iAoMNrAcj75bfy8p0SLDeNklJSkqxP+GUpyUTdNRlpMhE94GYSZszAXFwMhUV0D/oIMFu/zColmI30uQXKoiMpCtwFQOoXS8nZuo4jPy5DlJRy4KOXSZ47H4DkY4GIXO2akpeSoB3DbbvY95d23uzZtI8Vc3ewffQsTAUFZLz5NukvLiT61lutNiYlEe7tgzEzk4w33sIQGYUhJ5u8fXspS00hYctvmE/Fc/iJD/hyUSxnzB5EdOtevr80mwn39iFhyaLytOziLE5MvIXE+2dXEhBF2RkgJfnvLSUyKxKAsPa+BLo/TXbDjkSHB+KQoUX14iI04VWQFEf4Xu259eihdeV5pX1jFd4xSxcR3X8A0YtfJ3vVN4T5aF1Iob73aj6MOsS5JB7YzokF9xHh16WSjen7d5P29jtE9uxF2AotGhK8ey2R3XtwdPYLfDIvgOyGHamXXURe6EnYd5jU518g7MFZ5H79DXGbf6XBz5pwyI7Rbvph/v4ci9SOZ0T0fqLHjCFm/pP89GogAYM/IrthRwoO7gdASMj4SouCJMUGwdvLcfnxLwpyUsttLM7VrjNlZj3mDO3cLEhNwiZf6zJNDdbqW+jQjkMJo8hu2JEccw4Fn2o+ywg6bD1WRdZr1p+HNYF7PHYv9fO1+9aZo3u1suxd2PZTBuEdp1Fo48nBv7T98hJPle8fd3KfdTkpWKtDY0nKgkcpOx5EcVZa+XqHXYcpcGrJ7oHvUWiv9dYkFZ1BhGlCJe/0KYqefImiZ14lYbJ2vpYdDyLPUdt/X/wuSjZuIcWuHT+9HF0ulLPjtXaV4WQ9pnO2Wq/3yQeskbCE9au1csMPY7DR0krSrR1M8bHaw47xGquZy/m2XY1jmTE38wLr3gLeqiJ9C7ClivRYtNl41SI1r5S9UWkUlplJW/0InWUScWMW0mfnDADSn0xl249LcPe4lcg/cxjV8F0Oj32fu3dp7w3NeCyRpstak+fkxcnGoxmU9DnBiYm0TliLqyhiyc93MtV2Fzi70+CBjTRc2o5DnZ5ij/CHkN95/LXP0AVpTynpGRnYPbWMtCZGfuk1nLu2HuOf0Pt4xWM+HiKLBOFJQ3Mu83rY49DGn10bvyO61IUcW3eCHeeyzPNDhGMjOp/5g54PfUbCwnHYp+TC81/g8sJCtvT+kwT9LCY0fpnAga9xNHArHRzy+KB4LLfqDjJ2+sN8tjeRju4NWHRHN15ee4zuzrncMWY4q9Zux8PViTFD+lIU+jdOXcbyx+ZN2PyznNGvbabhx/dQmFwPc99b2f/xvTQbeC8l+WCXaU9hJqSknCFz/Ut0mPoOjlu0Ezwt+ghNf5iOTieJu/8Ezd7pR3z/2fh2aoFu20KYFwifDgDg1P1htP/al7xe88h4fQPDCiU/2hST3aEfLRo7MrlnSx547E2adRvAvoR0Pt/7Mp/fOosem/+gWUYJmTu2su6ZB2lKLjd/9CfOTz5EaDMnWn6ykvof3YHu0e8wPHE/bqftkWGhOH69B4Bv631JX8AnNY/dQwfSNTuXNx58FdGmPf/sOsDv7z/EnzNG4DR6Ar6T5xD16d34P/EzwTFniAsL5p677yJpiifmMkGTnyMQz7TB2H88ecMXYfxkIG73fs+vH69iRO5W2qyKJWNGSxycjTitTGXj/P8x8pUlGCgiLfAHvCe/yJFdf0NhBr1um0lM125IIflrcBvGArmHTeR26QJA4ttLaP3CUyS5OdH4rTdwsrT3M9kn8Qbs0jM41KsrDYqNOG7eRtu1a2HtWg7c3o2bAMPezXTM1J5SzQVWwWgoLMD2/TcxADF58QAULVqCsYP2JJgdF0ibgBQASgvycXj/fUxAXP16lD78COaZIwg7HkiXmBJ2vjOLNpZ8zVnaQ4JLkZE0pyQ8gPSUMJpZ1hdkWrseVod8w12W5aI/1uMMxO77o3x9aU5W+XJKViquQE4DaGx5FqqXbb0pRIYHlc8sCb5tDE7FRiL8upSvP33yAABuuVFoowpsKn3aPidmHbHPaREW7/AwcpZ8BkDcyDY0BjIzY6jvBA2LICL0Hzws+yUcCODsi+jyYsLwBLJa3AMSotrejcee38ufaG1N1vJiLRGy6IHW9xbvOrgGz8eXAZA6rifNoZIgcd/7RPm2qUd2A1D8xbflac2zTdgbtZtX6vH95emnju3BzrKcdPwgzYBUj1kgdAT7zaF12F7aWtafCdyBF9qYHK/jmn9z46PwPFuHAKsgMqzUyt566ma4aWB5Ojb2BAxdAaul1h1RAaNbMg7btahN4h8/l6eHfvY+zS3LLcK1NpK39g/qAyG+s5FmSbDfHIYEPkvE6k9pCBiEGecorb2lv7eYhpb90ydMBUAUFtHxW+38t0nPRichrs1YclJKyus+ZPWzADjqoVGudp4UT5lTblfa6NvLl5ss1cbxtA2xtkvn0/nly5HrvsXDYi9Y8v/t2fL12fdY862foJ1beltwt2TRKFoTEFmNOhG02pEeDTtyosejkKOjpKkmUjLd/Qlw90e3KIGhZ/NauKw837aLtYeLjtHWMXDBUyfigpUQ3/sx2dQnxHc2/Q+/gfsBa4QnZfR4qsLVEoCb/4t28oX5zAJpbZceP+0CoN+e9Cr3b/eVNQDRbqfW7dx1u/WBx23JT1bfPPs+ALbXeEy9qDhY70bC38NGHnnQGYATx11xiKyH99RkzhxviGOTMlxblwLwaepqzNijw8C85tpJJiUIAVmx9XF0NaAvsiF5rxseIzPJzHNAf7hBpbK8pyYTvKcpLbvnYiMh5VgjfEZkEL5au6S2vyOFU2tbkNqkB2F+c/AL+QJpCsK5nhH/IekIASWFNphNAqeGRvIMOpLXNifWz4jnGYFj90J0BoE+0IWOd6YQ/VsLAFxGZZO/zZXdNy/GZOuIrSziIY97yMmyx8HORJlJR0qSE03aFdHAwUg9naREOFBfliEl6Gwot9FnmlXpH93XFMckO/Qj2rHP+CR+IV/Q/6atRB91pVmXfEw6yN3qBoDXxFRCDjWhc69szmzSbol247MwbNTWN7k1k8wtTSjqVEbvHlkgNN+eLddzZAZJ25tibmZAl65d0guGFVDvhCPmosbEDrmbdrt/xEGfT0EzEw3SbSizlzjotZu6y4QM8tdrT0yut2eQvUFbFv6FyCPOiB5FyBOaxGh0RzG5ax0rHQf3rKDyeqe7SZplafn+Nqg7d+4NwqSTpPvZ0yLYQP0x2WSENsA5yY7OdyUT+atWB/dx6aRtakZidz9iGs3DL+QLmjofQpfgoLWPKclErNG2FQPzkfu0S5dD33zKDrmgu8OO/L/0OBcJ2kxOIeF3ra2EdplDl+DKNlbkeM8G9DxecJ7tZzEj0Z0z5yK0nS1+sdo4nC0Dm3LrvgwKnFpyuM8zOOefoXvISqRjKfVyK0c99/VoxMATuQBsutWTcVsuPJYotYOR5jG25/k5wctMm3gdRwY0wj9Qy0tvA/aWh9MiR4lTcWV79TcVYn9AO49NvYuwOaody2JnM46FOu3G0m0BPYI+xjXP2l0R30yHV/qFr7ZR3ZvQKSiz3EadqYy28VtIaD0ak409wyoIk5xmgsbpF76O6m3BvoqhTQFDlmuN/VykZPjuBRfMrypqMq+rnW9qkx6E+d4PQqflLSVIE36hX1+wLV9rW3cNWorZxq7qlf/Sp2epKXsDBrwHdvWrzusK86wp+65Wu7wQvpERR6WU/jWecRXcsOKpm6u9/LlTG7z6Z5P4p3ZTt+1TgNEifC510F165ZN/zOX89VVQ0FZPg7jKLz53GJRL2d5G2vLgXMr2NCJg0IegswOzgeEVLs7VodDFjHO+7rLqUBU5PmU0Dtdu6gXdSmhwsj4AhiZG7DIrByov194yexdCfO+nS9jXOOjzL7hddQnq8iBZbt1wyzxJ99DPL73DZVITx+Fq53u1bKyKA/4vUuykCXKP5L14R/9SI/leizrsHvAuJjsnbAxFDAl89tI7nMPVtLEmRcTVEiRZjToR3GUuZhv78nx1pjK6Ba+sJEarS8CgpaCrcD2pAf9erq2ldlDvEhOzyuxdCPWeRW7jztZrqJToTHq6BX960bof9ZP0Dr2IkKlgb1D3hwCHK/LtBa/vFZESG1MpvY5/QIMi6wNwniUqWhGDDdhVGFoWMGgpVCUgTQaG7338kvbBhdtl58ivaJmmDcwPG1+M70bHy8qvIlnNzLila/e64oZmHPN011Q81drnWWobc7ENulzbcuEElAsnAN/QL8FsOm+sg1+I1h99ucIJOE84AeXCCeBP8YMWtj570lvC2AFDLm+qb0XOCicAzBeYyXOhdCgXTkC5cAIqCaeAIcurZW94x2nkNexAeMepl1mLi7Nr0FIChq4gq0l3EIKspt0JGLqCXYOW/qt8q1uv2sj3atl4sbKKnT20soQgueVgrbzBV+Zrve2/q8PeHpd3kT1bhsneGYTAZO9cLT9djo3Jrtbtj/R1L18uqeIDUfv6WW9CIXf2B6B55gm0LkGQZ9+wIs0cGuZ8WTYCxLaFrcMFwd7HkDpLJE1a83LPCqLASRLdseooW3E968NzZHvrcuvbtC64Bo2CEeXXC229MBvJHKtdD1Jamwi39NEd9RakNbZsepv1IanppHQO+UHDiRXGGtroEGYDnqcDQBhA2JDnIontoN29UwYXW/efaO3aMYyzjB1ylOT30iZz5N2sqQC33CiErbGSD4TZSKOCKE511PLNHFTMD1PuwX1yGp2nJNPhrmQYmE+LCVp9292pdY856PNp7JJkeRmOLK+7ja0e+zJN2OQNsQ4ON95mnVI/ql0mWa5m3Cek4dBH80OHiakU+Gm9Ge3vSsZgA449j2IUwlqGAFtbPZ1GVz3zNHas5tx2k1PQD77IuNyz9ZdanhJoUJRM5ynJnHGF8N4GClpbJlsMKKG4seabTpM1cZXWCFzGZ3LzwZexMRSX1x0kdhRyU8nTABS20eM9JZnYAdq4q7CuJmyH5VLoV4rPtGRkCz2eboEInclqkwAwM3jAVjrfmUL7Sanc4ZR70aqkuFmXPW63toUG3SxRdVdJ235XPiP1SrlhxdOlaJ55AmTVF6Oa5lJC7Uq5+eDLYDJUztdk0NKvor2ZFg16VuRkN9VETnbTHlWKnMJ62t+9ftanqGjPCzdNs67qoXoV0yM8relJT88oX06cMUJbP6ojWc00cXj2Zucb+qU2EvQyj0PM5PMfcDI7W2+ip+4eZs23Cn81bn2ifNsDozoAcKapjrgPHgUgeWDH8vV7b3Kx5sXlt5WMKjR+ttvlff6xz5F3qO9EpbE+SIlrZjD3vjeUox0EZx6dVL6qfeBWSu3gzNSBxA/SxlwktXejzE47rq6b19A9JJxRc/yoahC2i7N1llbbIwc4PaA9BR8+x+E7hgBgXPstD64+SuewMDqHWl+lYFr7fflyp7AwjtzWjx7jnNAZyyqVoTOV0WuSVfFkWzTKwZduo+SR/wHQYrM22Fnzs6xcd7ORwTNbEzTnTk4+OJW0+feXr2p16/Ty5XxHre3a//RleVrzyU+VL09+/Ss2PvwIbvv2g84OsxB0H94KpBFsbBkw0ToDqf6K52g1JIsWG76keNVXpC96GZ+IcOJmDaFk4Uxu+zOcca8d4pEvIhDCDmEr6DbMHZ0NYGOD7f9Nxu2F6QxYtJKCNx6xHsaxOfhMS6b3yseI+OBD7H75nKIenQEodJSULYylZIoj4q3vMdnZYSOL6DehPTqKMNvZM+L5Nfx49xSaf7KVHO9OADg9uJTgW0ZSf6IRrzetkRO7l5IIHf0W9V46Q25/I3nt9Mx4fzD+Jx/HTf87vR5uT/voZ0n4v3fI8ewJgH7kO+X727yQxO6RfYgZ05GcW78BoKypHdnjnsWmVyH1Zn5EakdBkRNIW2dsDUW0P/UHOgeBtLdH98xoYpv3BqB40HMsWfgCzq9nIl7LZeukIJb0/gr719PY8fSTiOes42r0ftp4Hls7SWNPZ6SQmHTOFHtp54/JewqHuzfkeHc7cga/Wb7fsRmHyR3hxYnbNxHaewI+05JJvetnkn298ZmWzKnZYdw+/n3mNHwPe9t6YG9Dx9GtwN4Gg64hLq8ksKeXJ18OHUaUl9aWDoxwxXnKB2y6azDpT55mWesXSG5gGVAureJGW9ZESj2RS0N3R2xNmrjRv5RFu5FmerXXUdJFO6dse02n/YAC2o5JJ3VeFBPHv879QxaRP2U17r5JYKeVL7C8WgNbendIpOPEVPr0zyTIbQy6QU8CoPNoS0f3Yvp0zaZs+lp8h2TSsWcuEnt0Qk8953DACDobjreZygvNP2K1zQiynkrDtlMxsoE17OXeyypG/TzzaTkiExsXIy71w9ySaAAAIABJREFUjTi1KaGxXwGNm3gB0LRRGaZmbpWGllwLbthuu969e8tPdXpKO7Zk8E9/ceinZbToNYDSkkKM0+djErB7yAoEZroMa0XI9jikzpZ5y4fwzx0jaTF/AW1HTiQu8G86DB5HQU4aeWmnce/UnRjfbgA0WfsTmXfMIOPeW2j6zV8AtD60jz/fXYBti+Z0Xq6lZQ/pSpDNXKSp4oXawLwVw4la/z1eA8ZwbMNXNF62ulIdMlvY4zhmLKawSPp8+zsRPr7oHWxotvIjcu97GNPtI9idO8ESMjWD1IE0M/fjwUR17wFAnL8HNlIw5sfthHv7ANA5JJjgXz/HqbknBYVZ1Pu/xSS2caR1gvY0aBren92GqVrY3aJ3dDYClxY/0uuHQI53bYi7e2siDA9dsNtwyKEnsSnR4/LRYvIffQYA13U/kRIbjItnO1p16k1Mj140WP0lia8upHFECkm3dMHesSFlRc2ILhsO0jJACglmE2Mf9qVsqjawtvjTV3Cc95p2HP5cS+bYOzjdpzVDP1tL0oEA2g4bT27GabJTE2javB1nBo8EYNeIFZiNlY9Dxe6EzieDEOlhSGFHmW1j4oeMoP6bL1Ly0lvlx/fw4udx9PfHvZ0fxVPmkNWsHkGdF53XTTFmXn0MM+YCcOqRSbT/+A/OuDswcrdVVKUc2k1BbDROjo3If0abdh8wdBlIG833UsvrroFHyHrnRwBsPl2Ead5zlA3qxSmbHHx3xXHo9g70jZIQcQqfiHDMyWHg0JBDa1bRcNmPGGwkZXY6nEslrHgb+c9BzNv2cHLEB+SkWqMAIGnvZ88tj1gHLufu+IOS8MO0WPB2eZqhIJ/QO2+n8w+ridq9gZxNGxmyagPC0h4+mR+gtfcKdRg9rYSy/FzyTx5jwCsfn99uzuFse/WJCOf0bz/idvMQHFtYVfPK+zdisnMsb4MOjjbM+WAIe197mva3TiZ2/W+4/fYnXvv3U7+xNRIceTyC5l4e/PTSEWtbEAKdDcxbYR3SnBAeSvGkOzHYCLoGnSSiS1dcXn2RWOfG5Kz9hvFfr+HX6XdgbNaCHvPmIiZNKbf3YuiNJn66czJtpt/DsKl3QlkhOFx+NOpCSJOR1P+1xm3KXOzHvwj5ydDI+vq8Q4eOYPv2TFJmvcdtk6wDgY/GpZOdX8So7m05GJ2Mva0NPdtaHxKCTucy5bP9hL9+Czqd9XyPe6YT8XbuDHtrb3layJk8ErKKua1bC/bHZOLmZEfH5i4cisvG38uV7MJS1qzfz0MzhrI94AjJweHc/+Qs8ooN1Le3ocxo4uP5D9NvznwG9+3KoePHGODvz4u/HKSgoJiPHxjOrqH+NEsrwjc8nPxSAy717NgfkcqSj9ay6oMHaVDvAmOZLPz+7gu4hexm8Hf7yttrRf768FH6Hf2V9Gc3kmzXGr3JTBtjMnLq3YA2geBoQg692zQmK6+AnLAddOw/ka93hRIWn8L7942i1GCinp3NBW3YEpxCu6ZORM7qT6cEM5GzhzLh6U8oM5qpZ2dDal4pJilZ99x+kFrcUgiBRDLk4a4kHs0gL7uUGU/25ufp48gWDXj4p585nphD+2bObDkSQ+yWpQyb9TKZYbvJigvi3iffZfFfEfRt60rvZpIGyzqxrvAtGvcehd8gD0L3JpOfWcDIXkeo3/9B0GnCKrOwjPtWHWb5jJ641LMjOa8EP4+G5Pzxf+jaDcGl2228tTaQWcN6EHNoM832v0mTh7fi2qQZRpOkvr0NMS/74KVP5dSmZrQemkX9JgbMRkFGSAMyJ02h2Zm/aKpPwvB/8di95wVA2OifaPX1/aR4eOB0+5u03DQD8Vq+GvN0tfH395eHDx4Ene68EyTi649oe8c9ODRsXJ5WEH+Kem7NsGvQ4NyszmPjU3fhPnQMfcdbZ0vEBO0mettaxj79UXna2Yu/d0gwnzyyB50OugxuSciuJMxS8vDKkeXbSqORY3dPov3CN0m5U3sXh+2X79BxoPVTfpk7t+HcoTMOnq3IXb2ahpMn8+uMFTjo82g1sgWJUYKyXAPTflzAqfvvxa6lJ63fsD4xmXJz0SedoX4Xv/K07LATpE2eTuldo6n361YAGq/4gLW/2CKkiS4j2xK6JxmzWTJkdAI2zy8m0ceVUT/vIHp3GDvW51pukpqPhYBx8/1o2akRhSFBNOzdl4KTQZx5/HE67wio8mJlzM0l/uUXaP/hxwgb7YLzyfwAKr50V6eDeZ8MpyAmkvRvv8br1beI8tNeA+ETEU7qhrU0GTYa2yqOnzSbifDV6hwwbAU6ncAjbjtnWg5CChvu6/cXpl7Tyd23l1aPVD0u40zQfpL376DP3JfK08xGI4GPzqTtnAWs+7wUYTLie1NTQg9ngxnmfNCPWP9+2rF7/3GaPL2UxKYwZu/5N1dpMhHh14ViL3cOeL2MMOnxHexB2N4UJDrmLb0JnaO1buaiInROTuSdiuTU3Afw/fZn6nmc/+Wi1P07yblvPiYbAXNmYPPZj3Q8chhbZ+1mverZfRjKTLi3dSE/s4SiPD1tfF0ZO7dblX64XFbMC9Da+xBPQnYnYTZJ5n86vMrjf6V8umAntraC3re25dhfCRj0JuYtt76qQUoJJhPCtupI5op5AeiQ+PR1JfxILmaz5OFPK88HC371ZTwmT8KtW8+L2iJNJvaNG0GTB+fiM2nav6/cVUBKSfCZPLq2bFijx+FaU1BqoERvoplLvSva32yWGM0Se9uqo9+5hSUEHgxk7HBre83OLyGtby+CPFsxbfvWK7b9XDaM8aNjgpmoOSOY8PT5Xc6fLtgJNoI2Nzcn+UD6eW0cIDQ5D4HA18MahjabJSHJeXTzbHRullZSQ8C1HdhXfzzShZBSojeZcbCtLByTc0vwWNq8yn3yRi+lfvv+lMYewKX/vZx+72bymvSi/dRFhCydSL2Rz9O1r3ZeCiGUeLra+Pv7yyNHjtSqDRWfnK9kP8/N62nQvtNFt9UnJZH08kLafvX1FV8Qi48do363bhizssle8wvujzxCzv59FMbF0GrGveXbGQsKODl9Eu3fWkzD7r2AsyLnbBsTCB3M/+TcCcnV59MFO7Gzt6HXLW2qvDEC7P7fbdh4tmTg25ceTJ65YR2OPr44dtT8eeaHVRjSU/DyzoHhL0G9hpfIofpIKYnw8aW0oyc+361m/6QRtH5+Ie3H3HHZeZgyUyk7HojjqCt7u640mYgaMQLPxe/h2McfWVqKrn79S++oUCjKkVLy1MqdjB/szTA/j0vvcJlsGuNH+wQz0Q+O4vYnP7r0Dtczv90PIdr72RA66DQWIjfDjDXQacxlZaHE0zWgLoin++5+jY65SbywuXpjm0rCw8n4/HNaLVmC0NXtYWuXI3JuZMpiY7Ft5o6Ns9OlN1YoFDcUm0b70T7RTPRDo7n9iWWX3uF6xlgGf78APe6Glr20caKndkKHEZeeVWhBiadrQF0QT6HJeZzOLuGWLlWHKxUKhUJx47J5tB/tEs3EzBvL+Mc+qG1z6jzXUjzVyhvGFRp+Hg3x86j57iCFQqFQXP+I8vkKdbuH4UZEHRGFQqFQKOoiZ3uGbC48M09ROyjxpFAoFApFXcSinXQq8lTnUEdEoVAoFIo6yNlh0kKnIk91DSWeFAqFQqGog7iYNPnU0O7yPwemuDYo8aRQKBQKRR3E2ax9a9S5vvsltlRca5R4UigUCoWiDpKu015jo3dpU8uWKM5FiSeFQqFQKOogf4y4l4PuPpg7ete2KYpzUOJJoVAoFIo6SFoTT17tPxudg31tm6I4ByWeFAqFQqGog5gt73m6jr/T/J9FiSeFQqFQKOog0/u0BqCNm/r2ZV1DfZ5FoVAoFIo6yJQ+rZjSp1Vtm6GoAhV5UigUCoVCoagGSjwpFAqFQqFQVAMlnhQKhUKhUCiqgZBnv9p8gyGEKAAia9uO/xBNgMzaNuI/gPJjzaN8WjMoP9Ysyp81T2cpZYNrUdCNPGA8UkrpX9tG/FcQQhxR/vz3KD/WPMqnNYPyY82i/FnzCCGOXKuyVLedQqFQKBQKRTVQ4kmhUCgUCoWiGtzI4unz2jbgP4byZ82g/FjzKJ/WDMqPNYvyZ81zzXx6ww4YVygUCoVCobgSbuTIk0KhUCgUCkW1uW7EkxCilRBipxAiXAgRKoR4zJLuKoTYJoSItvxtbEn3FkLsF0KUCSGePievJyx5hAghfhZC1LtAmbMs+UYLIWZVSP9LCBFkyWOlEMLmatb9alCX/Flh/QYhRMjVqO/Voi75UQixSwgRKYQ4Yfk1u5p1v1rUMZ/aCyE+F0JECSEihBB3XM261yR1xY9CiAYV2uQJIUSmEGLp1a5/TVNX/GlJny6ECBZCnBTa/ajJ1az71aKO+XSqxZ+hQojFlzReSnld/IAWQC/LcgMgCvAFFgPPWdKfA961LDcD+gBvAU9XyKclEAfUt/y/Bri3ivJcgVjL38aW5caWdS6WvwJYC0yrbf9cz/60rJ8M/ASE1LZvrlc/ArsA/9r2yX/Mp68Bb1qWdUCT2vbP9ejHc7Y7Cgyubf9cr/5Ee8VQ+tm2aCn/1dr2z3XuUzcgEWhq2e5bYMTFbL9uIk9SyhQp5THLcgEQjuawCWgVxfJ3omWbdCnlYcBQRXa2QH0hhC3gCCRXsc0YYJuUMltKmQNsA26x5J1fIR974LobOFaX/CmEcAaeBN6soepdM+qSH/8r1DGf3g+8YynHLKW8bl5qWMf8CIAQoiPaDXDvv6zeNacO+VNYfk5CCAG4XGD/Ok8d8mk7IEpKmWHZbjtw0SjzdSOeKiKE8AJ6AgcBdyllCmgHAu3EvCBSyjPA+2gqMwXIk1JurWLTlsDpCv8nWdLO2vA3mvovAH67wqrUCeqAP98AlgDFV1yJOkAd8CPAKkvXyELLhfW6pjZ9KoRoZPn/DSHEMSHEr0II939RnVqjjrRNgOnAL9LyeH+9Upv+lFIagHlAMJpA8AW++hfVqRPUchuNAbyFEF4W8TURaHWxMq878WSJUqwFHq8QAarO/o3RVG1bwANNvc+satMq0spPeCnlGLSQowMwvLp21BVq259CiB5ABynlH9Utuy5R2360/L1bStkVGGT53VNdO+oSdcCntoAn8I+UshewH+0CfV1RB/xYkWnAz9W1oS5R2/4UQtihiaeelv1PAs9X1466RG371BKFmgf8ghYVjQeMFyvzuhJPlkazFvhRSvm7JTlNCNHCsr4FWjToYowE4qSUGRYF/zswQAjRr8KAxtvRFGlF5enJOWFAKWUpsAHtoF131BF/9gd6CyHigX1AJyHErpqp4bWhjvjx7NPX2fD3T0DfmqnhtaeO+DQLLRp6Vtj/CvSqgepdM+qIH8/a0h2wlVIerZHK1QJ1xJ89AKSUpywRvDXAgBqq4jWnjvgUKeVGKWU/KWV/tO/eRl+swOtGPFm6IL4CwqWUH1RYtQE4O2J+FrD+ElklAjcJIRwteY6w5HlQStnD8tsA/A2MFkI0tqja0cDfQgjnCgfVFrgViKipel4r6oo/pZSfSik9pJRewEC0fuehNVXPq01d8aMQwlZYZtxYLkbjgOtq5uJZ6opPLTemjcBQS34jgLAaqOI1oa74sUI+07mOo051yJ9nAF8hRFNLfqPQxgpdd9QhnyIss5Mt6fOBLy9aoqwDI+4v54d2Y5VoIcoTlt+taKPkd6CpxB2Aq2X75mgqMx/ItSyfnSX3GprgCQG+BxwuUOb9aH2hMcB9ljR34LDFjlDgY7SnqVr30fXoz3PWe3H9zbarE34EnNBmMZ1tl8sAm9r2z/XsU0t6G2CPxZYdQOva9s/16EfLuljAu7b98l/wJzAXTTCdRBP4brXtn/+AT39GezgK4zJm0Ks3jCsUCoVCoVBUg+um206hUCgUCoWiLqDEk0KhUCgUCkU1UOJJoVAoFAqFohrY1rYBtUWTJk2kl5dXbZuhUCgUCoWiBjh69GimlLLppbf899yw4snLy4sjR47UthkKhUKhUNQYBoOBpKQkSktLa9uUq0a9evXw9PTEzs6uUroQIuFa2XDDiieFQqFQKP5rJCUl0aBBA7y8vBDX/xeazkNKSVZWFklJSbRt27bW7FBjni5B1OFUVswNIOpoWm2bUomkEzs49PVLtW2GQqFQKOoQpaWluLm5/SeFE4AQAjc3t1qPrN2w4qk0JJSTr8wn5q9P2DauJyd/+5j0fX8T7u2DlBJjWSmn9mxg+yrthcI7vg6tVv7BGxfz/dQu1drnXKFWlJeFvrSIlMjjmIsrf+6nYNoCGixei0l/6QZ0IQFoLPvvhnUVCoXiRuW/KpzOUhfqd8O+JLNLvfry14sMGA8YshyqOkBSMnz3gvJ/M7u40yREEyUZLtD0nE8aRk3rSqfVwQDkzhyG3LYX412j6XfvQo4sfob+C1eQHnGM4y8+QqzHmyBtwGyg19EnaFRcOa/T/+tHq+8OcqKHHT1OGM4zLemFCXi+vR79a3PoetcThG1bhe/Ie/l03nYQtggbwaAxYdi5uNK4WWuy73gAgLKljxP3yTI6zV5A675jOP7F2/g/ugjHRk0xGfQIG613V6errLWjDqey7aswRj3gR6fe1/5j87VdvkKhUNQ1wsPD8fHxqW0zrjpV1VMIcVRK6X8tylfi6QKkNulBmO/9IHSaiJISpAm/0K9xzwqqUVsuV6jVhXzT35lBs+d/Yl9/gdFxOWajBIwM3/04AB2DjlOYlULgizPxf/VLEjd9R6dJD+LiYe2bLs7LwsHJBRvbyoP9YkP3cvDNp7jru33Y2tkDkBEXQkbUUVzdPciZ9igJ3va0idADsGv4CsxmQJh4+JOR7Hr5drCxZ+irawEI/+NdUvZvYfji3dWqY+ThFLZ/FU5v/9N492hAWVIw7hNfueg+gX19aZwvaXtwNwnrV2HfqAltb59daZuM0wWsW3KMiU/3oqlng2rZdFGkxFyUhc65Sc3lqVAorkuUeFLi6arSqnVTudVRu9kEDmzIgH15hHZ2wC+yrHybgEFLQVdhTL3ZwPC9T5yX15lmkpbpVx5GvFKhdsTHFf/w7BrP91L8G1EW38YOr4Tzo2ZpjcE9p3JasT046qtfflIzHZ7p5kqrIjvb0TnSQLEDFDw2HvnD3+S0d6NxdikyO5/Wb7xGws8f0nTIDPYGdCiPAFZ1vL2OH2LH9IF4xOnpeTyUb98bT79VsVXWN/mJW2jm5onXwKmsW55IfmYpLk3qcc+b1fsIutlk4ptnRtGka29uv/e9SlG3sLX30/n3WPjkeQxFRZS8uYJ+B4LZ/eFcmnTugd9t87RvMQlBWUEuRTnJNG7lUx76ltvfICo+Hpf+/6OF35Cz33kqX1+UV8am5SfISy9l0v/VsPBTKBQ1Sl0TTwsWLGDjxo0kJFx4Itzs2bOZPHkyHh4e/PLLLyxatOiS+SrxVEt079FDri7VhNKJCW3osT6B44Pd6blH64ILHe9KWt6rCGmifqt8Sk67IIUNw/c8CsDJQTrcoky0TBPEvPwQHV7/TNvvqTvxW/IbAClNoEUm7Owh6BMhKXGA9LvH4/fJxkq2hHWyJdX9/fOEmnODVfTdclL7V0h0UrB3YHMG7UsFwPnPtRSOvQOA45N86flHGKfdBWY7SZskONi3EUUOr4LOFilASEu+pufpG6iNd/pgyjTu+Xs124cPYfofWoQm4maB9z+S5MbgcY6ggeqLstQmPQjzm4NfyBc1ErWri6KwJvPNrw9eH7xJ2iMvETqwOa5GE+4HMnAwausTW9hyymcZ0iw1gbfnfIF3pZQ9PgKHpTsA6BwWyroHhlHgOoPCgo6AxKWJHfe8ORizyYTOxoaAxY9jOhaMqX46onUXGnbuxU0z/q9SngXp8QR9+w4Dn15ZyQ/Xots1MSyLTR8HMe6xHrT2dq32/v+1rmEpJclH/6al/y21bYriKlGXxFNcXBzjx48nKyuLqKgoGjSo+sGrd+/erF+/Hk9Pz8vOu7bF0w07YNzO1pb9t/kRvXAuQ57+gZ1jWtFv4bcktdfEZNNxL9El6FG6nniCYTN7MGzvE9wc+Chlqz6hyEkw7N29lM59hAN9XBg16SFSvvuelC8+Y+TUZ9k3sil5P3yNwU7Ly2vyI7huO0znbccZOPVJACJvti+3xWRvC0KHMBtwdAhBmA0gbBjz7BIAotrZEzRAu3C79hpEXAvBSW8HWrX15VBnByJb2tBm4BQAMts3RWe5ydp28C7P13eQe3m+9k6Nysv+4vVXGHwwnNffWcm6US3ZObAZt38RyoZx3Sl86S1KLGZG3TesfJ/EEQKkJbJzVnwLSYNCTbgEDrPeZE6/dh9hPrMACPW797zjUGJ1A4GjGl7WsTvtk1Refrn4l2a2dTWft22atapEel08Ougb+iWYTdY6SQlmI34hX1yWXWeJbg9Gm2rtUgmXEsie9xJ2RuixK5XW+6zCKWDIcmI6L7NUX4DOnoChKzSBVgOcFU4Anz20jRS7VyzCSSsvP9PIirkBfDp/F+HePrT4+m88TyTTZr+R1r+coOHrXxPu7UO4tw+bHxxFqI83SYPH4vbVHkJ9fdl+52C+/2w+4d4+bFsVClKybeVxckO2l+8X7u3D6oeGEe7tQ7CvDwErniMlLoS4kEDCvX0oKc7HUFpCekIE+756nrzMZEqK8gAw6suQUmI2m8lOS+DvL4KRZsmWFcfYMsqHTTMGUVyYi9mgZ9/qDzAYyqrwgpUd32gTRrZ9EcqKh7YTvOtE+Tp9STHJp07+a59fyxm9m16dQf7MJ9j55cKrXpZC8corr/DSSy/h6+tLaKh10lVUVBQDBw6ka9eufPjhh6SmpuLp6cnMmTPZtWtX7RlcDW7YyJO/v7+s6iWZJWUGTpxKoL9vB8Jj47C30dG+TRt2HPiHnr49cHVxuuwyNv66kvw1K5n281FsbK1309xiPc4OtkT7+QEQ9+J9tH1rFQDG7z/H9p4HAfCJCGfrhu/p1ncYTZu1ZM1fm5g2dhyFZUbsbHTUs6t8h9799x/0H3YbWyb1ovMpE/HPzsS5XQ/yslMZN2k24d4+ZDSEDuu2ETt5FI1Wfk+X7hcX6fv6+OBWALmLniL9o6V0Sjah/24J+760Q0gTTX0hPRzQ2VFS+Ai3HZHsu6sLTQ+EcKbdpSMugUO9GLArHoA2x46RmFuCWwMnNgTsoMPbTyGX/4BuwUya5kHR5++Tu/pROj23lY3vJICAbkM9ObkjFrDl4c9Gsm6ED53PQMYHL9D0ybc5frs3+ozT9NtfRO6nb9JonvZ6h7RFT9L0uQ/QAUef+B+9P/wOgIDBS0FUjgBO+D933l//G0O7tydnz1Zu+q1ydOvE1EHIJm6MuPtZGru4UFhmxNXJnnBv7ano2P13kxvTF4RNpUhZfd0y+u+q3N13uIsjfULOmSlQgRCf7qQ3nX3RqFvYQB2++84XktWlzN6F8M53k+3qq5UHICUOpTl0C/mUBkXJV5Tv1YrwnSXotk5kFT56WWWkNQL33OrZ6OT8IbPe30iIny+2Zmh9aA+JfQcDkPL4ZEoCDzFs+Rrid28iszSb8E3f0n3CbNw79aCNb3++WHIPk2e/S1NX7Sn704cDMJsAzDy8cmR5Ub/eOxB7r7ZMePX7y677pSJlv0/2wUfTg3QOCz1vEoji+qdiROa1jaGEJedfYo/q4evhwivj/S65XWhoKPfccw9Hjx7lkUceoWfPnsyePRuj0ciAAQNYvnw5ffv2Zf78+URGRrJjxw66devGrl27cHW9dJS4tiNPSjzVImdvrj4R4ewf7EOjdOgUEkxUl67l6VeU7/E9HP/keSZ/vIN69eqVp4cFH8LVrTnNPVpfdl5r3p2L4/Y9DF0biLOLFsbR68s41a0HKW6C4f+EYTZLdDqB0WTkh5XPMOOhdzidmk1yWBHBfyRq3UsVbvROJT/Q9b5JJL3/AuM2hhDl1+Wi9Y0OPcTR31Yy7ZWvL8vms+N7sov0uDrZYzCZKSjVBM2qe/rSLagAn/2HcHTSQshms5mT3fxIGupDgnE+wmTEwSmSUn0XMMtKN7Tdaz6g2ctaJKp01VJCNn/NzDdWVzl1dtVTt9D6UDwDth3n68f3gdRVuCGbeejjoax8ZDBd7phHz5unYKcDY2E2ZwYO1+rduzkdj2pdtPV2BJCRmUnf7l1ZMfdvkJUFnnfjX9EfPEBWzw7MXLq+fNXZNiZXvoWY+6KW76whdPxW66Ld3QuGHIP2x49xqmcvAI5O60nv1ccBONx7OgXON1eql0NJCjcfegvQIof1LePS3PbuYs+Dgylq1ZoeAUnYW6Jl8c3gzIjueO06QcsUcU0mY2Q16kRwl7mYbezLy9CZyugWvBLXvOhL7n+ejedSA0LvYgLNe0wYHi98UinZLEBnuVxnz59I4uE9NI/NY9g/IfzxzSKcGrsS83cHpEnrzm2Z9Sidw2xIW/wk9Ro0ouG8l6u04/Bz49HHxNNAD53HTcf3prGsf+MBbnl6KQ0aumE0GkiOyv9X3Z9VcbW6RP9tV+31Tl0RTxMnTuSBBx7gtttuY8WKFcTExPDhhx+yZs0aNm/ezLfffgvAihUriI2N5e2336Zz587EnDpFWWkp8+fPx97enqFDh3L33XdftJ5nUeLpGlDXxJOUEilBpxP8/sXzuHl5M2TUrFq172LsXv857brdTKu2Fz+JrE/VABJMBpo5f8xdH24u38YszUgpsdH9i76uGqKkpJgtnzzN7Y8uO+/V/wBnoo+TP34GUD1xu+rZfdRzssP/Ni+ObI6ntMjAfe8OrHLbs+2iU2jVwnLFvACE8f/bu/P4qorz8eOfJzcJWSGEJQhhRyRhSVgMi6BRDKJfFxTbSgtutBYFsa1+K4L92hatS1W0arVWbGl/ilqkCmoFrETEBTAhgQQQEMIi+xaSQNb7/P6tjfV4AAAgAElEQVQ4JzGQBBLIci8+79frvjiZO2fOzCTkPpkzM6eYdr3K2LPBg4qHiU8nERJR9bbnaxOHcX76YZJWr2fzhtW079gdKfWSM3goB3q2ZvDbqRwtyKd1VIuK6x5/5B5CZzwLwMqhEzkW2JuA0lwi8/eT26IbBJSQvOwBAILmvUp4SCTNwiOIPq9LxXUXXhVHjy3w9U9TGHPfnwBYs/h1gqbOBODj5GeqBIDDxu4l5BePsXZgM8JL8+mWGcTxF39P/v3/V2ULkE09vQREB3KkbTwDF2RV24+fDHuCsqCwiq89JQVc8vn91eYtl9OnhC5Zzve9YsFIdQGOt4TLlv3ilGWdTn0FkfkhsHJw/Y/mHYmAqHzn+ONLHgfC8ZQW0Cl3JuzPZ/e4y9i87mt67y3g+tkf8uarD9EupCUxF46i+Ke3k9OrDf3S9xOg0O7zpaTeNJK8ft0Z/8S7vPrkPRRtvQ5UgDIunRRC6aFcyn51P1tuv5o+l/+Arj16Exwcyo5tGwmPjCQsojXvPTeNQdfeTKfufZl3300k3DKVLnEDKczPpUV0OwBe+dUnFB0ro1mYh58+fQkHC44RHRZa8QdOWVkZHk/tf9c09Ly3+g72fGHO04oVK0hOTiYmxumvwsJC+vXrx+LFi3nwwQdp27YtU6c684dvv/12kpOT6dq+JX+Y+SRvv/Yn3l66hqioKK655hp+9KMf8eabb1a5hgVPTcTXgqdz1Qt3fkxAgNDnkg5kfbITb5mXSc9djCco+PQn+yCv18vX8b3Z3D2Ea95f3eDX+/DpW2ke24thP5xW7fv/vSyB9ruK6+VnKPWvv+P4nu1c8cBLrLyoL4V3XMewcdPJ/NvdXDj5H3y9ahE5035J9yf/TOZfX6Llhmwu+3httWVt25jOV/OeZez0ORVpx44eYuG4iygZ1JXcffcREAB9LollzX+3gniY/NLlHN23k8jW5yEBHvB6ISCA/1wcR5d9sOGOS+n18lIAQt6ZS9deiQBs+moJ+ydNJWLWI2x69DfEb/Hy1cBw8sIexlNWTIfS9/g28GrKPMFM+ssovo7vzYZr+tBroRN07bl9AJf++jVQZc/mDA67wfHHF/8JtAw8QaC4wYlCWSkXrfg/jtw9ihh3cUjchvVkLX+XqDbtybvuZgA2XN2GXu/tB+BwC6VlbtXgprYrek+nLoHY5qHt6PHFnlqV2xC3WBuiTC+w9JLnq988UZXIo/fjjQhh8KcHK5I/jRd+8s90llw/hAu2F/HZr37G+bP/yvFmQVzxSSZ/e/L/CCrO5+i2K0CCKr43n1zYmlteWUyAJxiPCEuXf8qwQQMICg4mOKgZBw/sJCr6PDwBHvbt20bbtp1PWfeTg73qrFq8gOYdOnJB7/68v+wLRg1LIijQw/Gi45Qeg49eXcdlt8UT6Alg/fr1xPfrRVhYSJVyVJXjxaWEBgfWaqPJvPw8BIiIOHGi9/GSMkICA75bsavKof27aBEdQ2BgICNHjmT69OmMHDkSgL1799K/f3927drFrFmzWL9+PS+//DJpaWkMHz6cFStW8PkHC9myZRu/mzqV3899gxvH3sDAAQP48Y9/zOuvv16lbhY8NRELnsyZOpZ7kKCQMIKahTZ1VSg6ns+xo4doGVP7W7FNqigfgsKgDnNt/v7Hn9D/7+nELHiDr2b+lFZb8hm6rPr/M/+8Op5Bm5XsH/Sl97+cwK7Tsg/ZfvFo9pzfkksXfl6Rd+GlcfTYDV3SVxAa1rwi/YPH7qDDoEs4vGUF+Vs+Z1vuE+4iAi/gAbz89MkBBIZEsrFPPyLmPE/Hwc6HhHrL2BDvjBa2+eQ/7L/kSlb0FBJu/hEhD75BzuB29P3ldNL/+TBXP/wuL96zCtEyYvsJO9YqBAQycOXdtDhp2tuu6wbQ/t10ANamxNB3SdXJ5dUFYp233Uv37V42dw8iODofb76H0fPWs6G3MzXg62HKBZ87H4AbuwXQc8uJc+Wy+vbiQIs7zvj2Z3Ua6rbt2d6qPdnZBHmZ5zcjYZOzGGHhxZFcsyzvhPdX/2I8hzKGIFQtX1FKhu5i/xfzuODgDnZElTL20xK3jUKrIyd+Zq+Nu539bQfQZl8aHm8pHf/3Ss5v146AskMElzh5j4YG0vx4KWUB4HG/xQVRITTLK8QrcCyqBSVFx4lq2Ya9BXsJ0ghahgYT/O0+AHIjgmiR79ShIFQIP64cjY5CC/OBUoIjWhK6z1mavWB9Fk89/kf+89+lRISFk7t7B6HN29Kh03l8uWI1rVtFcPXVV1NcXMwFF1zAsmXL2L59O/dOnEhSv36MHT2a1xcuJKp5c4b/z6VMufNeXnjhjxwMbkdz71HCwiLILfNweM8u+if0paTMS5DH+X1iwVMjsODJGD9UvhrSU/0zzeeN60/v1YV8e+8YBo+ZxKGdG+jc/4qzuuR/XlpDWItm9B7RnuxPd3Est4grJ/WrMf+X78yiuCSfi3/wGzK+WkBsp360btul2rzZcXEE6Im/A94a25e+2aVsnJJCz+eXANAhdRGekFAKjuxje/oSwqf/hb1TRpN815Msv7w3LSbdzLKPLkS0jFYtN3Hw8PknbK1yNAwGp393jaXTfkDg5+sY/kkWq565nX63PsryG5LpsFvYFgshWkbMtx5233k5GzNHObc/3YE3T0kBHfZOo8c3SlZyB/qkfgvA5jsuocfLNW9ImzM2kS5vO6sVP05+1tlLrdxJI24HLy2g1VJncc6R5krU0ZpHSXa1g/buQFptbtWWBClBJacfdWnouXlnG+yljngGr6fq1IILx7ekS8fuzheqRObvOKt6lnpCOB7alrDje/GUnXp1ak3yIjpWtNGru2lR4EyIPNCyJa0PO0HX0B/+kDefeYZO7dtTcOwYv/zDHwhp1oxh/ftz09VXVylz0969rP3TfQz42tl2Z/Ocf3HtkL6NFjxV/xvIGGN80WnmxaU89SZfvjyNlNtmEhAYSGSbU98yqY3KgdIl4y44bf4hY74LAhIHXXvKvF0Xv0lAs4gT0sbMXszBrz/jusE3UjJ+F4VH9hLZzhlZDI9qQ9suvSlJvpE4d7Xe8I83ABA/ZBVlRQUEn3836xY+R+ekK1n7l4to8fpn6E+vOeEalz72r4rjpF86K33zI4KAUgp7dydx0nTSn/tfRk36IxumpBLgPcb5/fL5ZnU4pUHB5HVpA9/so9v/jIVUZ07bsB/+kqXLPuVoaAAtuncnft7XALRf+P/Y+POfMeqhv7PxbedWKxKIlBUT2WobeQc7o+Ih4pHp5M/4g9OmF7ezftFLlHma0bvXYL69fCz74kIoyj1Ox11C8bPTCb7HyRt971T4X6cOGhpO4PF8Om9fzNYuo/B6gun4xSfsGOrcDqscpP7jh/24cE0J+1sqw/8yk4/+9CDNh11Fiyc+BOCi1+9l3cyDTvBUPsgQINUGTvtbQptq9sQrV3lhRblWRzYi3lLwBFeUL97S0wZOO4aW0PGLILwBtfj4rodnwB0PbQ0Cx0LbEJm/s07n5kWeNCIuQoC0Jy8SIvO20/rwYQqOHePyW29l5JAhdGrfHoDwsDBefvjh05ZfHjgB9LjlB3Wq29mykacmZCNPxhhfUVJcSNqCV0i64a6atzAoPgbBYZQVH2f3l/OIvXgCezelsWvdKvpfN+m7bPmH+WaQs4t+5d9vX86eQUBgEEm3/LYibeWzd1D06ZeMmLeGHUteoLS0lK5X3lPt5bcsm8vG+X/hiqf+y6q3HmPfZ0u58un32NivP1vPD+OqhWl8MXsGPS//Ca06x1ect+P9PxLZOZGoPikVaW+MTSQhu+jEOnq9LL6+DyEJvbn49//ihUkfAV76jWhD1ueH8ZbBZamTAdh/x1DC/vk5rZ/8Das+fJ0+C7ew+gIP/TaW4VHYNrg1nVccACBnQhJd/rnSOb5jIF1eTgNg6YhZeMqKadd9N3u+OY8yTzDDkv5DwDOLCapYaANbp99Guyf/RmgxxHy6mL0jRtV4W/GEkadKQoq2E3RSAFcWFoznmJNYFtMCz15nv7SCUPAG1jwVoFnxdoKLnKmApSFKUKFQHOYh+JhT6ZIwD0HHyigJDKMw9KTHRqkSWniAwNLjNZZfeWVpUctQmh128hZGBBKS74xabTiwl5BJJ94+jf96w7lz205EOgL/ANrhTBp4WVWfFZHfAj8D9rtZp6vqB+45DwATgTJgqqouctNHA8/iTDx4RVUfc9O7Am8A0UA6MEFVq3mwx3cseDLGmIbz+Z/vJ7JTD/pe/bMGv1ZZYSESHFynfaveuW0wF3xxlB29wxj1dlqtz1t8TQIdNxXTIzO9Yt7jqnlPEfHgK+z40QCGTfw1Xz51Pxc/Oo9vBlwIQPuP5rPr8hsAd3+t0kIIDmPZzcNos/IwF6zNJKCsEJpFnhAQlX9GbJp8Bb3i+7P9k/e5/Pdv8eytfWm/vzv7Ot793WIG97P8wgnRJwVPSkjIcTxSRMC+PEpbhhN4uAAAT9dOlG3dDkBQzx7kb/8GPAFExnbj2OYdHA9rA5XnZakSdnwfgbGt8ZYWExTW/IS5n7lfZxFcAiG94zm+YT2eNq3ILQjjBKp4SnYQ5t4BLG4Gwe5xYWQQIXklHA/3EFrgBGJl7Vrh2eNM9C9qFUGzg84S0E179xI0eQqbe4XSY4MTXJ1rwdN5wHmqmi4ikUAaMAb4IZCvqk+elD8emAskAe2Bj4Ce7tsbgRRgJ7AKGKeq60TkLWC+qr4hIi8Bmar64qnq5QvB0+q+cYSUWPBkjDGNLX97Jl/9+ZeMeOgdPKHNT3+Cy+v1oqUleIKbnZC+4YsP6Dl49AkBXG7mh4TEdKNZu57V/7HsLYOSY07QVI3yc9aO7cMPH/lXlfdfmPRxpa8qBU+x3wVPEiC06RjpBFdlxRDYjJKiYxQdOUhETEdKiwspOV5AaItWVcrfvyPP2aevUlmRLUoJad6yht6pat82Z5+R0Mhgjh8tAoTgoP1ExXQETyDHD+6EPUcpDgKJjCDoUD7FzUMIPurckgvpHc/RnVsQj4egiEjY7kxw21RSRNC48cgrj6M/dea1NWbw1OBznlR1N7DbPc4TkfVAh1Occh3whqoWAVtFZDNOIAWwWVW3AIjIG8B1bnmXAT9288wBfgucMnjyBTEfzCd3/7dNXQ1jjPneieiUQPJjH58+40kCAgLgpMAJoNfQq6qktUj47hmCXVZ9gUdOGhkL8NQYOFUmNYyoBQQKQcEeBozuTPqH2ygpLnPzC2HNgzl2tPi7R1iJQKBT76BmYQTFOCNCgcEhBAZX3dYA3A2HTyqrLoETQNvO3wWmgbs2A9AsrlfFoo/QVh3J824jslUH1KsUFOYQfl5HSlsUoKWliATQomMPALxlpRSxB28ABIWEVQSii0f/lfaLN9epXmerUSeMi0gXoD+wArgImCIiNwNfAfeq6mGcwOrLSqft5Ltga8dJ6YOBVsARVS2tJr9Pa98xjvYdfeMBjsYYYxpOaGTU6TPVQGpYKHHn8989c3TAKGdxxPr1652RJiC8RdUgry7advou8DnbsgDK2jSn7NgxQiuvlhUhsnw1qgead3NuNAVWc70ATyDe9m0JDouArdsq0kc9s7CirMbSaA82EpEI4G3gF6p6FGdkqDuQiDMy9VR51mpO1zNIr64Od4jIVyLy1f79+6vLYowxxviUmoInfxMR04kWXXudVRnh0W0JCgk7fcYG1ijBk4gE4QROr6nqfABV3auqZarqBf7Kd7fmdgIdK50eC+w6RfoBIEqk4mmu5elVqOrLqjpIVQe1adOmfhpnjDHGNCCpw+NkTONo8OBJnP3bZwPrVfXpSunnVcp2PVD+gKoFwE0i0sxdRXc+sBJngvj5ItJVRIKBm4AF6tzQXQrc6J5/C/AuxhhjzDkgMKT6OUmm6TTGnKeLgAnAWhHJcNOmA+NEJBHnFlsO8HMAVc12V8+tA0qByapaBiAiU4BFOFsVvKqq2W559wNviMjDwGqcYM0YY4zxe+rxz2eBnssaY7Xdcqqfl/TBKc55BHikmvQPqjvPXYGXdHK6McYY4/e8/ruZ9ZQpU1i4cCHbtm2rMc/EiRO54YYbaN++PW+++SaPPfZYI9bwzDTahHFjjDHGnIHGW0RWr7Zu3UpqairFxcXk5eXVmC8jI4OEhAT69+/vF4ETWPBkjDHG+LRGXIFfrx566CEefPBB4uPjyc7OrkjfuHEjw4cPp2/fvsyaNYs9e/YQGxvL+PHjSU1NbboK14E9GNgYY4zxaWcYPf1nGuxZW79VadcXrjz96FB2djZZWVnMmTOH5cuXk52dzZAhQygtLWX8+PE8//zzJCUlcdddd9Grl7N9wZo1a+jXr99pSvYNNvJkjDHGmHo1Y8YMZs6ciYgQFxdHVpazoH7+/PnExcWRlORMU+7duzeJiYkUFxdTUFBAdHQ0W7ZsYeLEidx4442nukSTspEnY4wx5lxUixGihrBixQoWLVpERkYGkydPprCwsGJEac2aNQwcOLAib1paGsnJyaxbt464OOeJG926dWP27Nk+HTzZyJMxxhjjw/xtrd306dN57733yMnJIScnh8zMzIqRp1atWlUcp6WlMXfuXBITE8nMzCQhIaEpq10nFjwZY4wxvsyPZowvWbKEoqIiRo4cWZEWExNDQUEBhw4dYsKECWRkZJCYmMgTTzxBVFQUcXFxfhc81em2nYgEAAlAe+A4kK2qexuiYsYYY4wBUf8Ze0pJSSElJaVKem5ubsXxypUrq7yfmprKPffcA8DBgweZMWMGq1ev5tFHH+WBBx5ouAqfoVoFTyLSHWcX78uBTcB+IAToKSLHgL8Ac9zn1BljjDHGnFZBQQEjRowgJSWFzp07A86tvZdeeqmJa3ZqtR15ehh4Efi5+yy5CiLSFvgxziNY5tRv9Ywxxpjvp90xXs7be27PrgkPDyc9Pb2pq1FntQ2enlXVL6t7Q1X3Ac/UX5WMMcYYU9zMPfCjOU/fF7UNaf/coLUwxhhjjPET5/Z4oDHGGOOnytybQ2IjTz6ntrftuonIgpreVNVr66k+xhhjjDE+rbbB037gqYasiDHGGGOq8vrPTgXfG7UNnvJU9ZMGrYkxxhhjqhC/22P83FfbOU85DVkJY4wxxlTP5jz5nlqNPKnqDeXHIjIM6FL5XFX9R73XzBhjjDHGB9VptZ2I/BN4EhgOXOi+BjVAvYwxxhjj56ZMmVKxc3hNJk6cyPvvv8/q1auZNm1aI9Xs7NR1q4JBwEWqepeq3u2+pp7qBBHpKCJLRWS9iGSLyD0nvX+fiKiItHa/biEiC0Uk081/W6W8t4jIJvd1S6X0gSKyVkQ2i8ifxMY4jTHGnDP88yNt69atpKamUlxcTF5eXo35MjIySEhIoH///jz22GONWMMzV9fgKQtoV8dzSoF7VTUOGAJMFpF4cAIrIAXYXin/ZGCdqiYAycBTIhIsItHAQ8BgIAl4SERauue8CNwBnO++RtexjsYYY4xv8s/YiYceeogHH3yQ+Ph4srOzK9I3btzI8OHD6du3L7NmzWLPnj3ExsYyfvx4UlNTm67CdVDb1XblWgPrRGQlUFSeeKp9nlR1N7DbPc4TkfVAB2AdMAv4NfBu5VOASHf0KAI4hBOAXQEsUdVDACKyBBgtIqlAc1X9wk3/BzAG+E8d22aMMcacMx5f+TgbDm2o1zJ7Rffi/qT7T5svOzubrKws5syZw/Lly8nOzmbIkCGUlpYyfvx4nn/+eZKSkrjrrrvo1asXAGvWrKFfv371Wt+GUtfg6bdnczER6QL0B1aIyLXAt6qaedJdtueBBcAuIBL4kap6RaQDsKNSvp04QVgH9/jkdGOMMcb/+eFOBTNmzGDmzJmICHFxcWRlZQEwf/584uLiSEpKAqB3796EhoZSXFxMQUEB0dHRvPPOO7z//vvs27ePyZMnM2rUqKZsSrVqFTyJiKijxr2eyvOc4v0I4G3gFzgjSTOA6nrkCiADuAzoDiwRkU+pfuBST5FeXR3uwLm9R6dOnWqqqjHGGOP3ajNC1BBWrFjBokWLyMjIYPLkyRQWFlaMKK1Zs4aBAwdW5E1LSyM5OZl169YRFxcHwJgxYxgzZgyHDx/mvvvu88ngqbZznpaKyN0ickLE4c5FukxE5gC31HAuIhKEEzi9pqrzcYKirkCmiOQAsUC6iLQDbgPmu8HaZmAr0AtnRKljpWJjcUandrrHJ6dXoaovq+ogVR3Upk2bWjbdGGOMaUJ+tgZq+vTpvPfee+Tk5JCTk0NmZmbFyFOrVq0qjtPS0pg7dy6JiYlkZmaSkJBwQjkPP/wwkydPbvT610Ztg6fRQBkwV0R2icg6EdkCbALGAbNU9e/VnejOXZoNrFfVpwFUda2qtlXVLqraBScAGqCqe3Amj490z40BLgC2AIuAUSLS0p0oPgpY5M6pyhORIe61bubEOVTGGGOMaQRLliyhqKiIkSNHVqTFxMRQUFDAoUOHmDBhAhkZGSQmJvLEE08QFRVFXFzcCcGTqnL//fdz5ZVXMmDAgKZqyinVdpPMQuDPwJ/dUaTWwHFVPVKL0y8CJgBrRSTDTZuuqh/UkH8m8HcRWYtzS+5+VT0AICIzgVVuvt+XTx4H7gT+DoTiTBS3yeLGGGNMI0tJSSElJaVKem5ubsXxypUrq7yfmprKPfc4Oxk999xzfPTRR+Tm5rJ582YmTZrUcBU+Q3WdMI6qluCunqtl/uWcZqGlO/pUfryL6udCoaqvAq9Wk/4V0Ke2dTLGGGN8njt791zeurCgoIARI0aQkpJSsZnm1KlTmTr1lFtINrk6B0/GGGOMaTw1L8Xyf+Hh4aSnpzd1NeqsrptkGmOMMaYxnbsDT36rVsGTiFxxivd+UH/VMcYYY0xlFjv5ntqOPH3gPp+uus0nH6jPChljjDHG+LLaBk9rgNeBL6sZabKg2BhjjDHfG7UNnlRV/4qz/9KvReRvIhJW/l7DVM0YY4wxxvfUacK4qm4EhgJ7gdUiMrhBamWMMcZ8z9ltHd9V260KKr6HqloKTBORD4G5gD3nxBhjjGkoFkX5nNoGT787OUFVU0VkIPDz+q2SMcYYY4zvqtVtO1V9p4b0w6r6WP1WyRhjjDEV1H+HnqZMmVKxc3hNJk6cyPvvv8/q1auZNm1aI9Xs7NgmmcYYY4ypd1u3biU1NZXi4mLy8vJqzJeRkUFCQgL9+/fnscf8YzzGgidjjDHGl/npwNNDDz3Egw8+SHx8PNnZ2RXpGzduZPjw4fTt25dZs2axZ88eYmNjGT9+PKmpqU1X4TqwZ9sZY4wx56A9f/gDRes31GuZzeJ60W769NPmy87OJisrizlz5rB8+XKys7MZMmQIpaWljB8/nueff56kpCTuuusuevXqBcCaNWvo169fvda3oVjwZIwxxph6NWPGDGbOnImIEBcXR1ZWFgDz588nLi6OpKQkAHr37k1oaCjFxcUUFBQQHR3N+vXrefbZZzlw4AAjR47kzjvvbMqmVMuCJ2OMMcYXVWxBfWb37WozQtQQVqxYwaJFi8jIyGDy5MkUFhZWjCitWbOGgQMHVuRNS0sjOTmZdevWERcXB0BcXBwvvfQSXq+Xn/3sZ03ShtOxOU/GGGOML/OzOU/Tp0/nvffeIycnh5ycHDIzMytGnlq1alVxnJaWxty5c0lMTCQzM5OEhISKMhYsWMDw4cMZOXJkk7ThdCx4MsYYY0y9WLJkCUVFRScEPTExMRQUFHDo0CEmTJhARkYGiYmJPPHEE0RFRREXF1cleLr22mv5/PPPee2115qiGadlt+2MMcYYUy9SUlJISUmpkp6bm1txvHLlyirvp6amcs8991Qcz58/n6KiIq666qqGq+xZaPDgSUQ6Av8A2gFe4GVVfbbS+/cBfwTaqOoBNy0ZeAYIAg6o6iVu+mjgWcADvFK+QaeIdAXeAKKBdGCCqhY3dNuMMcYYc+YKCgoYMWIEKSkpFZtpJicnk5yc3LQVO43GGHkqBe5V1XQRiQTSRGSJqq5zA6sUYHt5ZhGJAv4MjFbV7SLS1k33AC+4+XcCq0RkgaquAx4HZqnqGyLyEjAReLER2maMMcaYMxQeHk56enpTV6POGnzOk6ruVtV09zgPWA90cN+eBfyaSmsKgB8D81V1u3vOPjc9CdisqlvcUaU3gOtERIDLgHluvjnAmAZskjHGGNNoxN9mjH8PNOqEcRHpAvQHVojItcC3qpp5UraeQEsRSRWRNBG52U3vAOyolG+nm9YKOKKqpSelG2OMMX5MT5/FNIlGmzAuIhHA28AvcG7lzQBG1VCngcBIIBT4QkS+pPrFmnqK9OrqcAdwB0CnTp3q2AJjjDGmCYiNPPmaRhl5EpEgnMDpNVWdD3QHugKZIpIDxALpItIOZ+ToQ1UtcCeQLwMS3PSOlYqNBXYBB4AoEQk8Kb0KVX1ZVQep6qA2bdrUdzONMcYY8z3Q4MGTOydpNrBeVZ8GUNW1qtpWVbuoahecwGiAqu4B3gVGiEigiIQBg3HmSa0CzheRriISDNwELFBVBZYCN7qXvMUtwxhjjDkH2O07X9MYI08XAROAy0Qkw33VuHGDqq4HPgTWACtxtiTIcuc0TQEW4QRTb6lq+WOa7wd+JSKbceZAzW645hhjjDGNyW7b+ZrGWG23XFVFVfupaqL7+uCkPF3K93hyv/6jqsarah9VfaZS+geq2lNVu6vqI5XSt6hqkqr2UNUfqGpRQ7fLGGOMMdX797//jYiwYcMGwNn48uqrr27iWtUfezyLMcYY48MaetypILeIfz+VRkFu/Y07zJ07l+HDh/PGG2/UW5m+xIInY4wx5nvsq/e3smtzLl+9v7VeysvPz+ezzz5j9uzZJwRPR48e5frrryc+Pp5Jkybh9XopKyvj1ltvpU+fPvTt25dZs2bVS+/XOT4AAAh2SURBVB0amj3bzhhjjPFBUjFPvGHGnl6akkpZqbfi66xlu8hatgtPYACTnk8+43LfeecdRo8eTc+ePYmOjq7YQXzlypWsW7eOzp07M3r0aObPn0/Xrl359ttvycrKAuDIkSNn1abGYiNPxhhjjA8KcPd3ahkR3CDlT3hkKOdfGENgkBMKBAYF0DMphgmPDD2rcufOnctNN90EwE033cTcuXMBSEpKolu3bng8HsaNG8fy5cvp1q0bW7Zs4e677+bDDz+kefPmZ9eoRmIjT8YYY4wvcgecgj0NM84R3qIZwSEeSku9eIICKC31EhziIbxFszMu8+DBg3z88cdkZWUhIpSVlSEiXHXVVchJm32KCC1btiQzM5NFixbxwgsv8NZbb/Hqq6+ebdManI08GWOMMT4oJMQDQFRow43GHM8rps/FHbjx/oH0ubgDx44Wn1V58+bN4+abb2bbtm3k5OSwY8cOunbtyvLly1m5ciVbt27F6/Xy5ptvMnz4cA4cOIDX62Xs2LHMnDnTbx4SbCNPxhhjjA8aemU7trdYR7f+FzbYNa6c1K/i+JJxF5x1eXPnzmXatGknpI0dO5YXX3yRoUOHMm3aNNauXcvFF1/M9ddfz9q1a7ntttvwep25V48++uhZ16ExWPBkjDHG+KDg0EB69Mjzq2fbpaamVkmbOnUqU6dOrTZ/QkKC34w2VWa37Ywxxhhj6sCCJ2OMMcYX9Rzt/NuiY9PWw1Rht+2MMcYYXzTsbug/HsKim7om5iQ28mSMMcb4IpEzCpxU9fSZ/JgvtM+CJ2OMMeYcERISwsGDB30iwGgIqsrBgwcJCQlp0nrYbTtjjDHmHBEbG8vOnTvZv39/U1elwYSEhBAbG9ukdZBzNTo9HRHJA75u6nqcQ1oDB5q6EucA68f6Z31aP6wf65f1Z/27QFUjG+NC3+eRp69VdVBTV+JcISJfWX+ePevH+md9Wj+sH+uX9Wf9E5GvGutaNufJGGOMMaYOLHgyxhhjjKmD73Pw9HJTV+AcY/1ZP6wf65/1af2wfqxf1p/1r9H69Hs7YdwYY4wx5kx8n0eejDHGGGPqzG+CJxHpKCJLRWS9iGSLyD1uerSILBGRTe6/Ld30XiLyhYgUich9J5X1S7eMLBGZKyLV7rYlIre45W4SkVsqpX8oIpluGS+JiKch294QfKk/K72/QESyGqK9DcWX+lFEUkXkaxHJcF9tG7LtDcXH+jRYRF4WkY0iskFExjZk2+uTr/SjiERW+pnMEJEDIvJMQ7e/vvlKf7rp40RkrYisEefzqHVDtr2h+Fif/sjtz2wReeK0lVdVv3gB5wED3ONIYCMQDzwBTHPTpwGPu8dtgQuBR4D7KpXTAdgKhLpfvwXcWs31ooEt7r8t3eOW7nvN3X8FeBu4qan7x5/7033/BuB1IKup+8Zf+xFIBQY1dZ+cY336O+Bh9zgAaN3U/eOP/XhSvjTg4qbuH3/tT5wthvaV/yy61/9tU/ePn/dpK2A70MbNNwcYeaq6+83Ik6ruVtV09zgPWI/TYdfhNBT33zFunn2qugooqaa4QCBURAKBMGBXNXmuAJao6iFVPQwsAUa7ZR+tVE4w4HcTx3ypP0UkAvgV8HA9Na/R+FI/nit8rE9vBx51r+NVVb/Z1NDH+hEAETkf5wPw07NsXqPzof4U9xUuIgI0r+F8n+dDfdoN2Kiq5duyfwSccpTZb4KnykSkC9AfWAHEqOpucL4ROP8xa6Sq3wJP4kSZu4FcVV1cTdYOwI5KX+9008rrsAgn+s8D5p1hU3yCD/TnTOAp4NgZN8IH+EA/AvzNvTXyG/cXq19ryj4VkSj365kiki4i/xKRmLNoTpPxkZ9NgHHAm+r+ee+vmrI/VbUEuBNYixMgxAOzz6I5PqGJf0Y3A71EpIsbfI0BOp7qmn4XPLmjFG8Dv6g0AlSX81viRLVdgfY40fv46rJWk1bxH15Vr8AZcmwGXFbXeviKpu5PEUkEeqjqv+t6bV/S1P3o/vsTVe0LjHBfE+paD1/iA30aCMQCn6nqAOALnF/QfsUH+rGym4C5da2DL2nq/hSRIJzgqb97/hrggbrWw5c0dZ+6o1B3Am/ijIrmAKWnuqZfBU/uD83bwGuqOt9N3isi57nvn4czGnQqlwNbVXW/G8HPB4aJyOBKExqvxYlIK0eesZw0DKiqhcACnG+a3/GR/hwKDBSRHGA50FNEUuunhY3DR/qx/K+v8uHv14Gk+mlh4/ORPj2IMxpaHtj/CxhQD81rND7Sj+V1SQACVTWtXhrXBHykPxMBVPUbdwTvLWBYPTWx0flIn6KqC1V1sKoOxXnu7aZTXdBvgif3FsRsYL2qPl3prQVA+Yz5W4B3T1PUdmCIiIS5ZY50y1yhqonuawGwCBglIi3dqHYUsEhEIip9UwOBq4AN9dXOxuIr/amqL6pqe1XtAgzHue+cXF/tbGi+0o8iEijuihv3l9HVgF+tXCznK33qfjAtBJLd8kYC6+qhiY3CV/qxUjnj8ONRJx/qz2+BeBFp45aXgjNXyO/4UJ8i7upkN/0u4JVTXlF9YMZ9bV44H6yKM0SZ4b6uwpkl/1+cKPG/QLSbvx1OlHkUOOIel6+S+x1OwJMF/BNoVsM1b8e5F7oZuM1NiwFWufXIBp7D+WuqyfvIH/vzpPe74H+r7XyiH4FwnFVM5T+XzwKepu4ff+5TN70zsMyty3+BTk3dP/7Yj+57W4BeTd0v50J/ApNwAqY1OAF+q6bun3OgT+fi/HG0jlqsoLcdxo0xxhhj6sBvbtsZY4wxxvgCC56MMcYYY+rAgidjjDHGmDqw4MkYY4wxpg4seDLGGGOMqQMLnowxxhhj6sCCJ2OMMcaYOrDgyRhjjDGmDv4/tteRfNSn0SoAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for SJG\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'SJG'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Shumagin (SHU) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 9.720e-01 -1.919e-01 0.000e+00 0.000e+00]\n", + " [ 1.919e-01 9.720e-01 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 -3.212e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.018e+00 -1.868e-01 0.000e+00 -9.111e+02]\n", + " [ 1.868e-01 1.018e+00 0.000e+00 1.102e+02]\n", + " [ 0.000e+00 0.000e+00 1.127e+00 -6.488e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.015e+00 -1.951e-01 1.547e-02 -1.617e+03]\n", + " [ 1.461e-01 1.015e+00 9.451e-02 -3.671e+03]\n", + " [ 3.074e-02 3.505e-02 1.015e+00 -1.674e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.025e+00 -1.969e-01 1.167e-02 -1.624e+03]\n", + " [ 1.552e-01 9.891e-01 1.208e-01 -5.137e+03]\n", + " [ 1.607e-02 1.415e-02 1.099e+00 -5.467e+03]\n", + " [ 0.000e+00 -0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFpCAYAAAC4SK2+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcXFWZ//HPU9XZyZ4QIU0ISyALhJDEEBBGBBMWFxhHRhjACFFkyYzL+JLgLIjCqPxGUQZBGUGB0QACSpyoIQJBHSWks5B9aQOEJokEEkLSSXqpen5/3FPdlU51d7qquqq68n2/Xt1Vde655z731K1bT52695a5OyIiIiKSnVixAxARERHpypRMiYiIiORAyZSIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiIiOSgotgBlIohQ4b4yJEjix2GiIiI5MGSJUvecvehhViWkqlg5MiRVFVVFTsMERERyQMze61QyyrK13xm9gUzW21mq8xsjpn1NLPjzGyRmW00s8fMrHuo2yM8rg7TR6a1c0soX29mF6SVXxjKqs1sduHXUERERA4XBU+mzGw48E/AZHc/BYgDlwPfAu5y91HATmBmmGUmsNPdTwTuCvUws7FhvnHAhcC9ZhY3szjwfeAiYCxwRagrIiIiReANDbx6y5ep37Kl2KF0imIdgF4B9DKzCqA3sBU4D3giTH8IuDTcvyQ8Jkw/38wslD/q7nXu/gpQDUwJf9Xuvsnd64FHQ10REREpgk3zf86+X/yKpV+4ptihdIqCJ1Pu/gbwn8BmoiRqF7AEeMfdG0O1GmB4uD8ceD3M2xjqD04vbzFPa+UiIiJSBNu3RMck79ytkam8MLOBRCNFxwFHA32IvpJryVOztDKto+WZYrnOzKrMrGr79u3thS4iIiJZCW/NnvHtuMsrxtd8HwRecfft7t4APAWcBQwIX/sBVAKp9LUGOAYgTO8P7EgvbzFPa+UHcff73X2yu08eOrQgZ0+KiIgcfmJRMpVptKMcFCOZ2gxMNbPe4din84E1wPPAx0OdGcDT4f7c8Jgw/Tl391B+eTjb7zhgFPASsBgYFc4O7E50kPrcAqyXiIiIZLBjbwMAiWR5jkwV/DpT7r7IzJ4AlgKNwDLgfmAe8KiZ3R7KHgizPAA8YmbVRCNSl4d2VpvZ40SJWCNwk7snAMxsFjCf6EzBB919daHWT0RERA7UkIiSqPJMpYp00U53vxW4tUXxJqIz8VrW3Q9c1ko7dwB3ZCj/NfDr3CMVERGRnFn4mq9Msyn9Np+IiIh0MiVTIiIiIlmzujoAjns9WeRIOoeSKREREelUybo9xQ6hUymZEhERkc5VES92BJ1KyZSIiIh0KqvoVuwQOpWSKREREelUCTQyJSIiIpK1ZKwoV2IqGCVTIiIi0qlicSVTIiIiIlmLdete7BA6lZIpERER6VQamRIRERHJQSzWfAD63nmP0Lh5YxGjyb/yThVFRESk6I75wc9J/aTMa//8HwCMWbe2iBHll0amREREpFN132fFDqFTKZkSERGRgtg8FOrjsOR9fYsdSl4pmRIREZGC6BZ+57gf5XVF9KIkU2Y2wMyeMLN1ZrbWzM40s0FmtsDMNobbgaGumdndZlZtZivMbGJaOzNC/Y1mNiOtfJKZrQzz3G1m5T2+KCIi0oW8taeu2CHkVbFGpr4H/NbdRwOnAWuB2cCz7j4KeDY8BrgIGBX+rgPuAzCzQcCtwBnAFODWVAIW6lyXNt+FBVgnERERaU8ZDm8UPJkys37A3wAPALh7vbu/A1wCPBSqPQRcGu5fAjzskReBAWZ2FHABsMDdd7j7TmABcGGY1s/d/+zuDjyc1paIiIgUSSqP6tOjvC4mUIyRqeOB7cCPzWyZmf3IzPoAw9x9K0C4PTLUHw68njZ/TShrq7wmQ7mIiIhI3hUjmaoAJgL3ufvpQC3NX+llkmlA0LMoP7hhs+vMrMrMqrZv39521CIiIpKb1LuxZ3xb7rKKkUzVADXuvig8foIoufpr+IqOcPtmWv1j0uavBLa0U16Zofwg7n6/u09298lDhw7NaaVERESkfeWVRkUKnky5+zbgdTM7ORSdD6wB5gKpM/JmAE+H+3OBT4az+qYCu8LXgPOB6WY2MBx4Ph2YH6btNrOp4Sy+T6a1JSIiIkVShseeA8X7OZl/BH5qZt2BTcA1RInd42Y2E9gMXBbq/hq4GKgG9oa6uPsOM/s6sDjU+5q77wj3bwB+AvQCfhP+RERERPIup2TKzGJElzY4GtgHrHb3v7Y3n7svByZnmHR+hroO3NRKOw8CD2YorwJOaS8OERERKYIy+64vq2TKzE4AbgY+CGwkOjuvJ3CSme0Ffgg85O7JfAUqIiIiZaAMv+vLdmTqdqILY342jBw1MbMjgX8Arqb5ulEiIiJymLMyG5FKyTaZ+l64gOZB3P1N4LvZhyQiIiLSdWR7Nt+9eY1CREREpIsq1m/ziYiIyGGoHL/py/ZrvuPNbG5rE939o1m2KyIiImVKx0wdaDvw7XwGIiIiIoeL8sqqsk2mdrv7C3mNRERERKQLyvaYqVfzGYSIiIgcRsprYCq7kSl3/1jqvpmdBYxMb8vdH845MhERESkr5uC6aOeBzOwR4ARgOZAIxQ4omRIREZHDQq4/dDwZGNvyKugiIiIih4tcrzO1CnhPPgIRERGR8tZ8aYTyGoPJdWRqCLDGzF4C6lKFus6UiIiIHC5yTaa+mo8gRERERLqqrJIpMzOPtHqtqVSd7EMTERERKX3ZHjP1vJn9o5mNSC80s+5mdp6ZPQTMaKsBM4ub2TIz+9/w+DgzW2RmG83sMTPrHsp7hMfVYfrItDZuCeXrzeyCtPILQ1m1mc3Och1FREQkj6zFbbnINpm6kOhSCHPMbIuZrTGzTcBG4ArgLnf/STttfA5Ym/b4W2G+UcBOYGYonwnsdPcTgbtCPcxsLHA5MC7Ec29I0OLA94GLgLHAFaGuiIiIFJOX26HnkaySKXff7+73uvv7gGOB84GJ7n6su3/G3Ze3Nb+ZVQIfAn4UHhtwHvBEqPIQcGm4f0l4TJh+fqh/CfCou9e5+ytANTAl/FW7+yZ3rwceDXVFRESkiMptRCol10sj4O4N7r7V3d/pwGzfBb4MJMPjwcA77t4YHtcAw8P94cDrYVmNwK5Qv6m8xTytlYuIiEgRWTkOS5GHZKqjzOzDwJvuviS9OENVb2daR8szxXKdmVWZWdX27dvbiFpERERy5i1uy0TBkyngfcBHzexVoq/gziMaqRpgZqmzCyuBLeF+DXAMQJjeH9iRXt5intbKD+Lu97v7ZHefPHTo0NzXTERERA5y1wejQ5cf/MCksvyuL6tkysyOaWPaOW3N6+63uHulu48kOoD8OXe/Enge+HioNgN4OtyfS/OZgR8P9T2UXx7O9jsOGAW8BCwGRoWzA7uHZczNYjVFREQkD/ZO+DIX/e03SJzyT8UOpVNkOzL1gpl9OW0kCTMbZmb/A3wnyzZvBr5oZtVEx0Q9EMofAAaH8i8CswHcfTXwOLAG+C1wk7snwnFVs4D5RGcLPh7qioiISBF8/8qJfP78sdx75aRih9IpLJvraprZQOCbwFlElzg4lSjRuRO4z92TbcxekiZPnuxVVVXFDkNERKSsLTltDH8Z14e//1nnvuea2RJ3n9ypCwmyugK6u+8EPmtmnwN+R3RM0lR3r8lncCIiIlJeyuzYcyD7Y6YGmNkPgWuILpj5BPAbMzsvn8GJiIhIGSqzjCrbHzpeCtxLdJxSI/CMmU0gugr5a+5+Rd4iFBERESlh2SZTf9PyK71w1fOzzOwzuYclIiIi0jVk+3MyrR4b5e7/nX04IiIiUs5c15kSERERyV4Z5lJKpkRERERyoWRKREREJAdKpkRERKSwyuzSCEqmREREpGDKLI8ClEyJiIiI5ETJlIiIiEgOlEyJiIhIgZXXl31KpkRERKRgdNFOERERETlAwZMpMzvGzJ43s7VmttrMPhfKB5nZAjPbGG4HhnIzs7vNrNrMVpjZxLS2ZoT6G81sRlr5JDNbGea528zKMA8WERGRUlCMkalG4J/dfQwwFbjJzMYCs4Fn3X0U8Gx4DHARMCr8XQfcB1HyBdwKnAFMAW5NJWChznVp812Yj8A3LN7G969/jg1L/ppzW5vXvM29NzzH5nU78hCZFFM+t4t8tlW7q45ffHsJtbvqSiquUm1r85q3+f71zzHn64s61Gf5jCFbHYkh13g7c99VqvvYUt5mS/F9pL24ansN561+X2Pl718vyfizUfBkyt23uvvScH83sBYYDlwCPBSqPQRcGu5fAjzskReBAWZ2FHABsMDdd7j7TmABcGGY1s/d/+zuDjyc1lZOnv3Jmuj2wdU5t/XMj1bhDs/cvzLntvK9M8+1vQ0vPcO8T0+nfv++vMRT6vK5XeSzrT88toEtG3fxh8c25NxWqa5jvl+TADveqKVq3itFiSFbHYkh13jzue9qqVT3saW8zZbi+0h7cW068VO49eT3P9vYbvylmjC2ZFG+UaSFm40Efg+cAmx29wFp03a6+0Az+1/gm+7+x1D+LHAzcC7Q091vD+X/BuwDFob6Hwzl5wA3u/uH24pl1Ihh/u0vXYl5MhUBSXdiBpvXfoTMP83oHD12LoZhgONE3yjagecpmGEWB5LUrLy41baOGTMXYjEccHNiFieWBBJJkt0riO3Zi/XoiXeLY4kEAMmKOJtfnkaUFyc4dvRv8IoYJBNNJ0u4O24GFsNwjFgUrUfxJj0qMwxizubVFwBxIMHxpzyDebRGMYzoC1Mj5kSxxWNYLHqcWvNB/zUXgNXvP5oBZ55HzCBWYQz7+iM0xGHpFSfSs6IfPbr1B4tBMhniMjwEbfEYNCaiaC1GEgczMMM9SUVFDxKNjVBRQR31VPxlE/HKkcR7dMeTydCPMUg0wgHbeNp9b3k/LMMBi+HxCkg0Yp7EE43s3foKRxw7HuIGyQSvr299uxhx8q8g9e2yJzGP5iEW+rAxSSwsCoNXNv5tq22NPPHppu0oqm6YJ7CYkYzFsEQymtdixGJQvf5i8PhBLZklGDl2flM7nkxCRQWQDIFEn63cHE86yWSSmjWtb6+VJ/8yLDdqyyzcj4XPaImoP90MSzpvrP9oq20NP+kXWDLZ9BzHLR6158loGwHcYpgnSCaSbN54aattHX38z4mlYiB6HSWTCdyTJDEaGvZyRK+BUbvuvLqhtecx6rMRJ84FM5KexA3ibiQMaja0HsPIk34Z7llTf8c8CfiBmyAOsVi0vaU1ZSTS2o5eWb3e2MH+owbgZqGPjdfWfLjVGI4b/TQes6Zt+tU1rW+vw0+eizVtkE48dsBkAF5b2/rzVznql7hBzAx3JxkLr+skeCw8d6lQLOwf3YmF1+Ab6y5pte33jJ6LxwyzaE+bdG9+aRFttdF+LCrbtvpDrbZ11CnzWqxYc73U7sBxYmYYMbasuqjVto4+aS4ea27Gw7Yej8WgobHpKOtYLGrh9XWt93/lSf8L7jR6Egd272+gf+/u0faTmiu1zmZsW9f68z5s1C+j/X1qX2rR3jXarTXvQ5IG8ZjhFXESiSRvrWze7x895je4R30SM0h4kp4Ww4BEohGLxWmwBN08TjK8Tg14vY3XeOXop6lp9Xlurjdi+KPQUA/v7OLEZ9bz3Ae+Dd4DrI7jTv8/SDj739pKQ10tfY46FhKJ8L4QXinuJB2sWwUfmfX/lrj75DYWmDcVhVhIJmZ2BPAk8Hl3f7eNw5oyPzMdL88Uw3VEXwcyrkdPRt37m4wBHDHkr6wZe2208zWLtjBPMG71gwxb+HJrcWc0eEA1K0+5nmS8e1NbsUQd41f+gEELN3aorefef0/zGzYAFby27iPgznkvzOpQW621t2nVxVm3N+6FLfDC/xxQ1i0BZ/xPdYfbOjSvdlK76d5outc3j9tFryFv562t6vd/OOOrwJMxjvv+vIMntKHfkC15i6v/kDfz1tYRQ97KX1wDXmHFKdfjqdckgDsDdq5j3LqH6fH8uxnn65fHGLLVZ8i2Q46hd47b64ABr+Zt39VS/yHb89aXwwb8JW9xDhjyRt7iyuf+YtiATZ36PrJlbXbvI4Pa2Ubix6zh7ffexp639zf3QSvxP/f+e9h8birBB7wnryw9v0Vc+R8dzVZRkikz60aUSP3U3Z8KxX81s6PcfWv4qu7NUF4DHJM2eyWwJZSf26J8YSivzFD/IO5+P3A/wEnHHu2vffGyaIQpHgNPhJGSMJKwuGmukP4a9Z86mdcZHZV5lMclccybPgeQ2hKSyQYaPEn3eA/8ZYNkc1veI8ae6yayJ3l6NFrk0eeRRGMjHjeIVxCrrycWi9PYWI/HYng8zqCdK9jx2qmkPrlGy3KOPHYlr33x4xBLxW/Ekklwxw2Sngif6OK4O7FYNCI09O0VbH/14PYGjVzB+ol/m/rQSpIkybCNezIZRr6iVXKH+p1b6bVlK72PH03SPVrVhNP/+RfYPegI/KzT6dGtHz26D4hGHmLRJ20Py4w5JBPJaNTLIJlMRqNm4dOPGyTq9kPMiLvTkEySfPstug07OkyPRX2YTOAVFZjFotGR1DNo0PTogJ1I+JhphicasEQjsYpuJGMxave/S/2S/2PICaeR6N+XZLwbRjLjdrF/5sm8xsnR6KEZHgufxGMxPBk2lYo4hE9Q8VQMLx7cVu1nx/CKj2kaMUh9ok+GWK0xiXWLkXQHT5JMOr02Pcm+HR8FujU9j2YJhp30EpsmXoq7gxsWN6hvjPrGovYt6RCLRrXiccPdYPnBcdVdczKbY2OJPgI6FotHo1PRRkHMibbdtBE/txi8dHBbDdeOocZOaXrdJd1JJqORGbfokybu0UiaxYjH49FgVYb+Snz2dN5gPAmSuBsxMxKJBBY3KqwbyWSS+v3baazoQQVxkgbdYhWwOAYJml6vGDSO7s/Wiz8UFpEgZnEaE1F/dSNOgycyPv+1nx7HJsY1tWXJaETKLR693sNoXrRNezQ9CeFf2EbTRxajfUL3bTuoO2pQc5upvl2WIYZrRrOJ0aF9xxJJKna8G+0dW9Tdc8lwGgadTDKMQrgZDYnUqEaI04BE8uB9V/cYtTMnsLfbZJxoRNNiMWKJZDS6bEYyGbbWZDJaRti/eSwayUlixI2M20Zy5hi2+mgszJsaKUnnNL8nN01afmCcdI+x/9oJbGHCgf2a1kZq9MfdSYQRxASJDNs/1F45gi3xUXg8ltprRH3tTqIxSaxHBckwwd3xZPR6yrSO9deeyOuxEzHCiCywryFBj4pY8ztI2nCAJR2Syczr+NkJbLOJJBLQLR7DSYbXaJgvbGWejPalyaRz1PaX2frGeFru9486YTVbzrgMTzq7E/sxYnSLdSMe70bSG0kkE1RYBRUkaSROLBZtz7407bUUtpE9n5nAbk6nb9+BvLs2bNupoaSm98E4O/9pEnu6/w3WrQf9X1vC7pWnNidmOFgjRx5bxcqjJ+K7dtH3xHFhdL35GXWDeAx8fyPMWkehFDyZCmfWPQCsdffvpE2aC8wAvhlun04rn2VmjxIdbL4rJFzzgf9IO+h8OnCLu+8ws91mNhVYBHwS+K/24uo39GguvO5rrU6vrnqOWMw45f3DWfXCGySTxvTP3NaRVW9y36zn6d4zzsQLj2Xpb1+joT7GBTO/ml1bNz1HMpF6ZMTixmVf+UJWbbXW3hW3fDHr9g5wc36aKZrPHFyUabu48NrstovvLzq4rQ998tas2rr/cy/QUJd6Io2K7j34uy/+a3Zx3XBwXBd8Ort13Lj44LamzcxuHasz9Nf5n8xuI7uv6nksBkOP7cuOrbU01CU48ujxXPSpq9qc7/sZnv8PXfNvWcWQrUzPz4c+/dWMdTdkqPvhL3/7kJeVad81vY39Zkesz7BtnHdtdtvG+lnP06NFnOd/Nrs4M/bvjXdmF1eGdZw+8/bs2sq0jtdmt46Z9vsf+/Lnsmtr2fN0793i/e3TzXH9+OY/0qd2C3t7DcPjFVT0iBGPx2ioj/HhKw98vv/7Cy9Qv695P9ajV08uu+VfDj2YWd/Kah2yUfBjpszsbOAPRONzqY9iXyFKfB4HRgCbgctCYmTAPURn5O0FrnH3qtDWtWFegDvc/cehfDLwE6AX8BvgH72dFZ08ebJXVVXlazUL5uAXunPTfeeVTHtSHD+++Y/07NONyR8aSdW8V9lf28A13zq72GGJSAkq9H5/7egxAIxZt7bNevfNep5u3dMTswQ33POBQ16OmRXsmKmiHoBeSrpqMiUiItKVHGoylatCJlO6ArqIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiIiORAyZSIiIhIDpRMiYiISMHsHBJn27kjih1GXhXth45FRETk8HPWH1cVO4S808iUiIiISA6UTImIiIjkQMmUiIiISA70Q8eBme0G1hc7jjIyBHir2EGUAfVj/qlP80P9mF/qz/w72d37FmJBOgC92fpC/br04cDMqtSfuVM/5p/6ND/Uj/ml/sw/M6sq1LL0NZ+IiIhIDpRMiYiIiORAyVSz+4sdQJlRf+aH+jH/1Kf5oX7ML/Vn/hWsT3UAuoiIiEgONDIlIiIikoMum0yZ2TFm9ryZrTWz1Wb2uVA+yMwWmNnGcDswlI82sz+bWZ2ZfalFW18Ibawyszlm1rOVZc4I7W40sxlp5b81s5dDGz8ws3hnrntnKKX+TJs+18y61O8OlFI/mtlCM1tvZsvD35Gdue6dpcT6tLuZ3W9mG8xsnZn9XWeuez6VSj+aWd+0bXK5mb1lZt/t7PXPt1Lpz1B+hZmtNLMVFr0fDenMde8sJdannwj9udrM7mw3eHfvkn/AUcDEcL8vsAEYC9wJzA7ls4FvhftHAu8F7gC+lNbOcOAVoFd4/DjwqQzLGwRsCrcDw/2BYVq/cGvAk8Dlxe6frtyfYfrHgJ8Bq4rdN121H4GFwORi90mZ9eltwO3hfgwYUuz+6Yr92KLeEuBvit0/XbU/iS5x9GZqWwzL/2qx+6eL9+lgYDMwNNR7CDi/rdi77MiUu29196Xh/m5gLVEHXkK04oTbS0OdN919MdCQobkKoJeZVQC9gS0Z6lwALHD3He6+E1gAXBjafjetne5AlzsQrZT608yOAL4I3J6n1SuYUurHclFifXot8I2wnKS7d5mLLJZYPwJgZqOI3hD/kOPqFVwJ9aeFvz5mZkC/VuYveSXUp8cDG9x9e6j3O6DNUegum0ylM7ORwOnAImCYu2+F6IkheqG2yt3fAP6TKAvdCuxy92cyVB0OvJ72uCaUpWKYT/TpYDfwRJarUhJKoD+/Dnwb2Jv1SpSAEuhHgB+Hr1L+Lexou7Ri9qmZDQiPv25mS83s52Y2LIfVKZoS2TYBrgAe8/Dxv6sqZn+6ewNwA7CSKGEYCzyQw+qUhCJvo9XAaDMbGZKxS4Fj2lpml0+mwijGk8Dn00aIOjL/QKKs9zjgaKLs/qpMVTOUNe0A3P0CoiHKHsB5HY2jVBS7P81sAnCiu/+io8suJcXux3B7pbufCpwT/q7uaBylpAT6tAKoBP7P3ScCfybaYXcpJdCP6S4H5nQ0hlJS7P40s25EydTpYf4VwC0djaOUFLtPwyjVDcBjRKOmrwKNbS2zSydTYSN6Evipuz8Viv9qZkeF6UcRjRa15YPAK+6+PWT4TwFnmdkZaQdIfpQoY03PTCtpMWzo7vuBuURPYpdTIv15JjDJzF4F/gicZGYL87OGhVEi/Zj6dJYaLv8ZMCU/a1h4JdKnbxONlqYS/Z8DE/OwegVTIv2YiuU0oMLdl+Rl5YqgRPpzAoC7/yWM8D0OnJWnVSy4EulT3P1X7n6Gu59J9Lu9G9taYJdNpsJXFg8Aa939O2mT5gKpI/JnAE+309RmYKqZ9Q5tnh/aXOTuE8LfXGA+MN3MBoasdzow38yOSHuSK4CLgXX5Ws9CKZX+dPf73P1odx8JnE30vfW5+VrPzlYq/WhmFRbO6Ak7pw8DXerMyJRS6dPwRvUr4NzQ3vnAmjysYkGUSj+mtXMFXXhUqoT68w1grJkNDe1NIzrWqMspoT7FwtnPofxG4EdtLtFL4Aj+bP6I3midaEhzefi7mOgo/GeJsshngUGh/nuIstB3gXfC/dRZeLcRJUCrgEeAHq0s81qi71KrgWtC2TBgcYhjNfBfRJ+2it5HXbE/W0wfSdc7m68k+hHoQ3SWVGq7/B4QL3b/dOU+DeXHAr8PsTwLjCh2/3TFfgzTNgGji90v5dCfwPVECdQKooR/cLH7pwz6dA7Rh6U1HMIZ+roCuoiIiEgOuuzXfCIiIiKloNOSKTN70MzetLQrWFvrVzE1M7vbzKotuuLoxLR5Wrs66SSLrvhaHea1tpYhIiIi0hk6c2TqJxx88cDZwLPuPoroe8/ZofwiYFT4uw64D6LECLgVOIPoTKRb05Kj+0Ld1HwXtrMMERERkbzr1GOmLLro1v+6+ynh8XrgXHffGs6AW+juJ5vZD8P9Oen1Un/u/tlQ/kOin8hYCDzv7qND+RWpeq0to71YhwwZ4iNHjszXqouIiEgRLVmy5C13H9p+zdxVFGIhaQ64iqk1//Bqa1chbau8JkN5W8to08iRI6mqqurg6oiIiEgpMrPXCrWsUjkAvbUr5Xa0vGMLNbvOzKrMrGr79u3tzyAiIiLSQqFHpv5qZkelfQWXuoppa1chraH5Anmp8oWhvDJD/baWcRB3vx+4H2Dy5Mm6RoSIiEgnuGjOOdTUv9P0+MsnX83VU79cxIjyq9DJVOoqpt/kwKuYzgVmmdmjRAeb7wrJ0HzgP9IOOp8O3OLuO8xst5lNJfoRxE8SXSyzrWWIiIhIEXzntrcOeLzxmB/DAiVT7TKzOUSjSkPMrIborLxvAo+b2Uyiy71fFqr/mugqp9VEv311DUBImr5OdIVxgK+5+45w/waiMwZ7Ab8Jf7SxDBERESkBg+I9ix1CXnVaMuXuV7Qy6fwMdR24qZV2HgQezFBeBZxmgEH5AAAgAElEQVSSofztTMsQERGR4quPw47K3sUOI69K5QB0EREROUzsrK0vdgh5pWRKRERECqpbvLzSj/JaGxERESl58VimKxx1XUqmRERERHKgZEpEREQKp7wGpQAlUyIiIiI5UTIlIiIiBVZePzqiZEpEREQkB0qmRERERHKgZEpEREQkB0qmREREpLDK65ApJVMiIiJSOGWWRwFKpkRERERyomRKREREJAdKpkRERERyoGRKREREJAdKpkRERKSwyuwodCVTIiIiUjj6oWMRERERSadkSkRERCQHSqZEREREcqBkSkRERCQHSqZEREREcqBkSkRERAqmzK6KACiZEhERkYIrr5RKyZSIiIhIDpRMiYiIiOSg4lAqmdmRwPuAo4F9wCqgyt2TnRibiIiISMlrM5kysw8As4FBwDLgTaAncClwgpk9AXzb3d/t7EBFRESkTJTXIVPtjkxdDHzG3Te3nGBmFcCHgWnAk50Qm4iIiJQZL8Pf5msvmfpzpkQKwN0bgV/mPyQRERGRrqO9A9D/tSBRiIiIiHRROptPREREJAftfc032sxWZCg3wN19fCfEJCIiItJltJdMvQJ8pBCBiIiIyOGivE7nay+Zqnf31woSiYiIiJSlrScM4ai/vFXsMDpNe8dM/V9nLNTMXjWzlWa23MyqQtkgM1tgZhvD7cBQbmZ2t5lVm9kKM5uY1s6MUH+jmc1IK58U2q8O85bhiZgiIiJdw1vvPabYIXSqNkem3H0WgJn1AP4OGJk+j7t/LYdlf8Dd09PU2cCz7v5NM5sdHt8MXASMCn9nAPcBZ5jZIOBWYDLReOESM5vr7jtDneuAF4FfAxcCv8khVhEREclSrE8/ADaNcI7aVn7jG4d6Nt/TwCVAI1Cb9pdPlwAPhfsPEV1lPVX+sEdeBAaY2VHABcACd98REqgFwIVhWj93/7O7O/BwWlsiIiJSaLHuALiX50UEDum3+YBKd78wj8t14Bkzc+CH7n4/MMzdtwK4+9bwe4AAw4HX0+atCWVtlddkKBcREZEi6FERJVHRUTfldfA5HHoy9SczO9XdV+Zpue9z9y0hYVpgZuvaqJtpPNCzKD+4YbPriL4OZMSIEW1HLCIiInlRbl/0Hep429lExyStDweBr2zl+lOHxN23hNs3gV8AU4C/hq/oCLdvhuo1QPqRa5XAlnbKKzOUZ4rjfnef7O6Thw4dmu3qiIiISBuio27C/SLG0VkONZlKHQQ+nei6Ux8my+tPmVkfM+ubuh/aXAXMBVJn5M0gOk6LUP7JcFbfVGBX+DpwPjDdzAaGM/+mA/PDtN1mNjWcxffJtLZERESkSMoxkYJ2vuYzsyPcfU9b15pK1enAMocBvwhXK6gAfubuvzWzxcDjZjYT2AxcFur/GrgYqAb2AtcAuPsOM/s6sDjU+5q77wj3bwB+AvQiOotPZ/KJiIhIp2jvmKmnzWw50cjOEnevBTCz44EPAH8P/DfwxKEu0N03AadlKH8bOD9DuQM3tdLWg8CDGcqrgFMONSYRERGRbLV3nanzzexi4LPA+8LXaY3AemAeMMPdt3V+mCIiIiKlqd2z+dz910RftYmIiIh0nB94tFS5HTtVnlfPEhERkdITrolgZZZNKZkSERGRwim3i0zRTjJlZr82s5GFCUVERESk62lvZOonRD/78i9m1q0A8YiIiIh0Ke2dzfe4mc0D/h2oMrNHgGTa9O90cnwiIiIiJe1QfpuvAagFegB9SUumRERERNrjXmZHnLfQ3hXQLwS+Q/STLhPdfW9BohIREZHycVAuVV7JVXsjU/8CXObuqwsRjIiIiJQ3b/pXPto7ZuqcQgUiIiIi0hXpOlMiIiIiOVAyJSIiIp2szL7Xa0HJlIiIiHQyT/tffpRMiYiISGGU4U/JgJIpERERKaQyTKiUTImIiIjkQMmUiIiISA6UTImIiEjnKtcjzwMlUyIiItKpvMyzKSVTIiIiUlhlllspmRIREZGCKbM8ClAyJSIiIpITJVMiIiLSqcrw0lIHUDIlIiIinco9WewQOpWSKRERESkMK88xKiVTIiIiUmDldRi6kikREREpGC/DwSklUyIiIiI5UDIlIiIinapn34EAeKyiyJF0DiVTIiIi0qlOufx6fjfBiP/rF4odSqcozxRRRERESkblgGO5ac4qYhbjJb5Z7HDyTiNTIiIi0uli1pxyWHmdzKdkSkRERCQXSqZEREREcqBkqgM2LN7G969/jg1L/ppzW5vXvM29NzzH5nU7Siquzmiv3OWzvw6Hbazc2iqF10tHYsg13nxuVy1p+++YUl3H9uKq7TWc7f2/xsrfv95u/J25veWTkqkOePYna6LbB1fn3NYzP1qFOzxz/8qc28pnXJ3RXrnYv682Y3k+++tw2MbKra1Cvl7cMx9o0pEYco03n9tVS9r+O6ZU17G9uF49/lO49eT3P9vYZr3nfnYn8/+787a3fLLWXpxdnZldCHwPiAM/cvc2Tx8Y07uXP3zSyOiXrVt0yaKp92T+PSF3znhxFgYkM022g+9Xvbf1tiYsmZVxPoemn9z2tOmrT2u9rZNXRm1hzauTKR4L/5LAX8a03t5x62dljivDMkZuhe4J+MsIo75XvGmeMesbD2h2T0+IedR3ybS0PnVgYsuyWNNCIJ5sXoeGiuayZKz1q+tm3NLt4PJ4Mlpe0qJPG7Ek9NkfTUsY7OkVxbJ4Suv9NalqFuY0/TXGo3nMoxhjyeb1MmDRGa23NWXRrOaH1txWPBHuJ6M2Uv32UhttnfnnWU31GtLO5W3ZZ6nteenk1tuavHgWsdDnqddNIu05a9nmskltxwVQ1y1qK56k6YlJzZF+wOqLbb0m0/orpaEi6qeKBPSug/oKaIhDIt7Oa3LpLDwthvR1e/n01uc7bdmBMaS3keqXjO2m1jVtenpZ94bocSIe9dGSNp6fqS8eGENbfdaybiZtzT+pKtoWGioy7wvbs6KNvhy/rP3YDrWtls9L06Rway0et9eWEV5/fuDrKSW1zXo7bU1ePKt5+Wn7i/SNJBGLymLJtrfZM16cRTLW/Dwk4s0xpvYTnrbPXdrG63LC0llNMcWTUN8t2u/Ew/4r9T6QWtbyNtqavHhW63Gn1Ru3InqvWXNq622d90LUX+/0CWXW/N7oFr3OAc5cum6Ju09ufYH5U5bJlJnFgQ3ANKAGWAxc4e5rWpvnhEF9/BvTRwPgZmEn5hjGvopT2dP7H4BY9OS6A0n67n2Eno1Rk00vGktttGkF0R1woy5+Au/0/RRY9+a2vJ5Bux6kZ2LTQclc1G5UkP6GCbCn23h2DLzyoLgG73iYvnWroxjS35Ba3E/agdN39RjP20OvPqi9I998mH77Vhz85tYyVgB3hr/eAERvVu/0bZ4+9J3odv3YXvTY7+zuF8Mt6ulY0w+KR3sPx7G0d2M3xy3Vq04iBn3fTVDXI4bHocEhFrPoWh8O1vJtqo3tPP2NC7emhMzcSVrYHvbWMn6DsX5cL5JxI2mwt9t4dvc5eLvo/+7D9EysDnFHS4glHY9F9y3c9xCjG+yrGM+eDG31rX2EXo3NnxTNIZZI7QyNeNJJxiysRNRH++LHsbvPtU3bmLtjXk+ffQ/SI7Epah6oaHSSWNPwtDuYRf0e8yRJjH0V43m338HbWL89D9OrcTUJi9YttTONJaME1In6z8JziRl7W2mr976H6dm4Gge613vTjv6AZCzsVFPP4v6K8eztfXBbffY+TI+GVeFDgoU+c+KNjsdiJOKwf38dvbp1p1ujk4wb+7qfxrtHHNxW/3cePqDv07cXiJ7/Xf0zz9e7cVW03oRtMWxgB76eralO+vObVr1Z2Kc0xBJ4vDvxRPS8t/b89Nr7MD0aV6U1YtRVnMq+XlcdVLfnvkfo3bi66XUQI7UtNX+oMIcGO4F3j2jerlL7roHvPEB334QbxBPN+xRarkPTM2gHxOVt9uUj9GlcdWAymuGlnL6c/RUnsmPANRnj7JH4S4Z5U9ltau8SbbcG1HY/lV39D94n9tv1ML0bVkX1Dcws2sZa7nbSgqvtNp53+x/c//3eeZgeyVXNSbZBvBEs7CMcJ+bRfiMRXheNdgLvDJh50Dr23fMA3ROvYDgWPmTFkt60v2iKN+mkdv/7KsazJ0Nc/d95mF4NK8P7YZKkxYg1Oh43PE7TfjYGvEU9/ZNxGipOYlf/g7eRfnseoEdiE/UDRpEY/E/seXt/8/T098GdD9CrfiPmRmL/sfx1xPUk4we21X/XAxy5bQ39dzubT+gZ1sOjD6uh0xvjUf1PPPmykqlcmNmZwFfd/YLw+BYAd/9Ga/NMnjzZq6qqWm3zvpueI5lofhyLww3fPy+r+P77Cy9Qv6+5sR6943z6O+/Pqq18xpWv9na9vY03qpcy9oyLs46jq8hn/x8O21i5tZXv1182OhJDrvHmc7vKd2zpDoftv1TXsb24fvbVF9m5tZamr0VaqXcobbXHzAqWTJXrMVPDgdfTHteEsqwlkxCLG+PPqyQWN5LJ9udpTWNDkh69KzjzYyfQo3cFDfXZN5bPuPLVXv/B7zksEinIb/8fDttYubWV79dfNjoSQ67x5nO7yndsnRVnKWxnmZTqOrYXV92+RgYNPwKLRelHRY9Yq/F35vaWb+U6MnUZcIG7fzo8vhqY4u7/2KLedcB1ACNGjJj02muvFTxWERERyT+NTOWuBjgm7XElsKVlJXe/390nu/vkoUOHFiw4ERERKR/lmkwtBkaZ2XFm1h24HJhb5JhERESkDJXl13wAZnYx8F2iSyM86O53tFN/N7C+ELEdJoYAbxU7iDKgfsw/9Wl+qB/zS/2Zfye7e9/2q+WubJOpjjKzqkJ9t3o4UH/mh/ox/9Sn+aF+zC/1Z/4Vsk/L9Ws+ERERkYJQMiUiIiKSAyVTze4vdgBlRv2ZH+rH/FOf5of6Mb/Un/lXsD7VMVMiIiIiOdDIlIiIiEgOumwyZWbHmNnzZrbWzFab2edC+SAzW2BmG8PtwFA+2sz+bGZ1ZvalFm19IbSxyszmmFnPVpY5I7S70cxmpJX/1sxeDm38IPzQcpdSSv2ZNn2uma3qjPXtLKXUj2a20MzWm9ny8HdkZ657ZymxPu1uZveb2QYzW2dmf9eZ655PpdKPZtY3bZtcbmZvmdl3O3v9861U+jOUX2FmK81shUXvR0M6c907S4n16SdCf642szvbDd7du+QfcBQwMdzvC2wAxgJ3ArND+WzgW+H+kcB7gTuAL6W1Mxx4BegVHj8OfCrD8gYBm8LtwHB/YJjWL9wa8CRwebH7pyv3Z5j+MeBnwKpi901X7UdgITC52H1SZn16G3B7uB8DhhS7f7piP7aotwT4m2L3T1ftT6ACeDO1LYblf7XY/dPF+3QwsBkYGuo9BJzfVuxddmTK3be6+9JwfzewlqgDLyFaccLtpaHOm+6+GGjI0FwF0MvMKoDeZPjpGeACYIG773D3ncAC4MLQ9rtp7XQHutyBaKXUn2Z2BPBF4PY8rV7BlFI/losS69NrgW+E5STdvctcZLHE+hEAMxtF9Ib4hxxXr+BKqD8t/PUxMwP6tTJ/ySuhPj0e2ODu20O93wFtjkJ32WQqnZmNBE4HFgHD3H0rRE8M0Qu1Ve7+BvCfRFnoVmCXuz+Toepw4PW0xzWhLBXDfKJPB7uBJ7JclZJQAv35deDbwN6sV6IElEA/Avw4fJXyb2FH26UVs0/NbEB4/HUzW2pmPzezYTmsTtGUyLYJcAXwmIeP/11VMfvT3RuAG4CVRAnDWOCBHFanJBR5G60GRpvZyJCMXcqBv/d7kC6fTIVRjCeBz6eNEHVk/oFEWe9xwNFE2f1VmapmKGvaAbj7BURDlD2A8zoaR6kodn+a2QTgRHf/RUeXXUqK3Y/h9kp3PxU4J/xd3dE4SkkJ9GkF0Y+m/5+7TwT+TLTD7lJKoB/TXQ7M6WgMpaTY/Wlm3YiSqdPD/CuAWzoaRykpdp+GUaobgMeIRk1fBRrbWmaXTqbCRvQk8FN3fyoU/9XMjgrTjyIaLWrLB4FX3H17yPCfAs4yszPSDpD8KFHGmp6ZVtJi2NDd9xP9oPIlua5bMZRIf54JTDKzV4E/AieZ2cL8rGFhlEg/pj6dpYbLfwZMyc8aFl6J9OnbRKOlqUT/58DEPKxewZRIP6ZiOQ2ocPcleVm5IiiR/pwA4O5/CSN8jwNn5WkVC65E+hR3/5W7n+HuZxL9bu/GthbYZZOp8JXFA8Bad/9O2qS5QOqI/BnA0+00tRmYama9Q5vnhzYXufuE8DcXmA9MN7OBIeudDsw3syPSnuQK4GJgXb7Ws1BKpT/d/T53P9rdRwJnE31vfW6+1rOzlUo/mlmFhTN6ws7pw0CXOjMypVT6NLxR/Qo4N7R3PrAmD6tYEKXSj2ntXEEXHpUqof58AxhrZkNDe9OIjjXqckqoT7Fw9nMovxH4UZtL9BI4gj+bP6I3Wica0lwe/i4mOgr/WaIs8llgUKj/HqIs9F3gnXA/dRbebUQJ0CrgEaBHK8u8lui71GrgmlA2DFgc4lgN/BfRp62i91FX7M8W00fS9c7mK4l+BPoQnSWV2i6/B8SL3T9duU9D+bHA70MszwIjit0/XbEfw7RNwOhi90s59CdwPVECtYIo4R9c7P4pgz6dQ/RhaQ2HcIa+roAuIiIikoMu+zWfiIiISClQMiUiIiKSAyVTIiIiIjmoKHYApWLIkCE+cuTIYochIiIiebBkyZK33H1o+zVzp2QqGDlyJFVVVcUOQ0REJG8aGhqoqalh//79xQ6l0/Ts2ZPKykq6det2QLmZvVaoGJRMiYiIlKmamhr69u3LyJEjsa7/i1IHcXfefvttampqOO6444oWh5IpERGRMrV///6SSKT2bNpIfG8dyXiMWCIJR7+HXoOG5NyumTF48GC2b9/efuVOpAPQRUREylixEymA+N46gCiRAhLbtuWt7VJYPyVTIiIiUlANfXsVO4S8UjIlIiIiBWWJumKHkFdKpkRERKQgPv8fd3Dy9Olt1pk5cybz5s1j2bJlzJ49u0CR5UYHoIuIiEine7Wmhj8srqK+oYHdtfsY0Eq95cuXc9ttt1FZWcnpp59e0BizpZEpERER6XS333svX77uOsaccALrNmxsKt+wYQNnn302p556KnfddRfbtm2jsrKSq666ioULFxYv4A7QyJSIiMhh4LZfrWbNlnfz2ubYo/tx60fGtVtvTXU1q6ur+eF/3MGLS5eybmM104DGxkauuuoq7rnnHqZMmcKNN97I6NGjAVixYgXjx4/Pa7ydpSgjU2b2BTNbbWarzGyOmfU0s+PMbJGZbTSzx8yse6jbIzyuDtNHprVzSyhfb2YXpJVfGMqqzaxrfOEqIiJSpr569938+6xZmBknH388a9dHI1NPPfUUY8aMYcqUKQCMGzeOCRMmUF9fT21tLYMGDaK2tpYZM2bwmc98hp/+9KfFXI1WFXxkysyGA/8EjHX3fWb2OHA5cDFwl7s/amY/AGYC94Xbne5+opldDnwL+ISZjQ3zjQOOBn5nZieFxXwfmAbUAIvNbK67ryngaoqIiJSUQxlB6gyLFi3id3/6EyvWr4c77mB/XR3jxp4MRKNPkyZNaqq7ZMkSzj33XNasWcOYMWOAKOH6+Mc/zkc+8hE+8YlPcOWVVxZlPdpSrGOmKoBeZlYB9Aa2AucBT4TpDwGXhvuXhMeE6edbdIWuS4BH3b3O3V8BqoEp4a/a3Te5ez3waKgrIiIiBfaVr3yFJ++5h3Xz57Pmmfm8+MQTTSNTgwcPZtWqVUCUSM2ZM4cJEybw8ssvc9pppwHRT+Icc8wxAMTj8eKsRDsKnky5+xvAfwKbiZKoXcAS4B13bwzVaoDh4f5w4PUwb2OoPzi9vMU8rZWLiIhIAS1YsIC6ujo+MHVqU9mwIUOo3buPHTt2cPXVV7N8+XImTJjAnXfeyYABAxgzZswByVRlZSU1NTUAJJPJoqxHe4rxNd9AopGi44B3gJ8DF2Wo6qlZWpnWWnmmBNEzlGFm1wHXAYwYMaLNuEVERKRjpk2bxrRp09gXRp9SNr38EoMGDQLgpZdeOmi+hQsX8rnPfQ6Aj33sY8yaNYt58+bxkY98pPODzkIxzub7IPCKu28HMLOngLOAAWZWEUafKoEtoX4NcAxQE74W7A/sSCtPSZ+ntfIDuPv9wP0AkydPzphwiYiISH7FWvk5vdraWs455xymTZvGscceC0CfPn348Y9/XMDoOq4YydRmYKqZ9Qb2AecDVcDzwMeJjnGaATwd6s8Nj/8cpj/n7m5mc4Gfmdl3iA5AHwW8RDRiNcrMjgPeIDpI/R8KtG4iIiKSpT59+rB06dJih9FhBU+m3H2RmT0BLAUagWVEo0PzgEfN7PZQ9kCY5QHgETOrJhqRujy0szqcCbgmtHOTuycAzGwWMB+IAw+6++pCrZ+IiIgcXopy0U53vxW4tUXxJqIz8VrW3Q9c1ko7dwB3ZCj/NfDr3CMVERERaZt+TkZEREQkB0qmRERERHKgZEpEREQKo5Wz+Lo6JVMiIiIiOVAyJSIiIpIDJVMiIiIiOVAyJSIiIgXxxdvvYPT06W3WmTlzJvPmzWPZsmXMnj27QJHlpijXmRIREZHDy6s1NfxhcRX1DQ3s3lPLoFbqLV++nNtuu43KykpOP/30gsaYLY1MiYiISKe7/d57+fJnr2P0CSewbmN1U/mGDRs4++yzOfXUU7nrrrvYtm0blZWVXHXVVSxcuLB4AXeARqZEREQOB7+ZDdtW5rfN95wKF32z3WprqqtZXV3ND79xBy8uWcr6DdVcADQ2NnLVVVdxzz33MGXKFG688UZGjx4NwIoVKxg/fnx+4+0kGpkSERGRTvXVu+/m32fNAjNOPv541m7YCMBTTz3FmDFjmDIl+jW5cePGMWHCBOrr66mtrWXQoEFs2rSJmTNn8vGPf7yYq9AmjUyJiIgcDg5hBKkzLFq0iN/96U+sWL8e7riD/XV1jB1zMhCNPk2aNKmp7pIlSzj33HNZs2YNY8aMAeD444/ngQceUDIlIiIih6evfOUrPHnPPXxg6lSSMXjzzbc48xN/D8DgwYNZtWoVECVSc+bM4fOf/zzLli3jtNNOK2bYHaKv+URERKRTLFiwgLq6Oj4wdWpT2bChQ9i7dx87duzg6quvZvny5UyYMIE777yTAQMGMGbMGF5++eXDJ5kys5iZnW5mHzKz88xsWL4CExERka5t2rRp/PGPf2x67OH21RUvMWjQIIYMGcJLL73E8uXLeeyxx9i6dSvdunVj4cKFnHHGGQC8/fbbXH/99SxbtoxvfOMbRViL9mX1NZ+ZnQDcDHwQ2AhsB3oCJ5nZXuCHwEPunsxXoCIiIlLeamtrOeecc5g2bRrHHnssEH0V+IMf/KDIkbUt22OmbgfuAz7r7p4+wcyOBP4BuBp4KLfwRERE5HDRp08fli5dWuwwOizbZOp77v5ipgnu/ibw3exDEhEREek6sj1m6t68RiEiIiKHD2+/Sleis/lEREREcpDt13zHm9nc1ia6+0ezbFdERESkS8k2mdoOfDufgYiIiIh0RdkmU7vd/YW8RiIiIiLSBWV7zNSr+QxCREREpKvKamTK3T+Wum9mZwEj09ty94dzjkxERESkC8j152QeAf4TOBt4b/ibnIe4REREpMz88+13MHra9DbrzJw5k3nz5rFs2TJmz55doMhyk+0xUymTgbEtr4IuIiIiku7Vmhr+sLiK+oYGdu+pZVAr9ZYvX85tt91GZWUlp59+ekFjzFau15laBbwnH4GIiIhI+br93nv58mevY/QJJ7BuY3VT+YYNGzj77LM59dRTueuuu9i2bRuVlZVcddVVLFy4sHgBd0CuI1NDgDVm9hJQlyrUdaZERERKy7de+hbrdqzLa5ujB43m5ik3t1tvTXU1q6ur+cE37uDFpUtZv7GaC4DGxkauuuoq7rnnHqZMmcKNN97I6NGjAVixYgXjx4/Pa7ydJddk6qv5CEJERETK11fvvpt/nzULM+Pk449n7YaNADz11FOMGTOGKVOmADBu3Dh69epFfX09tbW1DBo0iF/+8pfMmzePN998k5tuuonp09s+5qoYskqmzMw80uq1plJ1sg9NRERE8uVQRpA6w6JFi/jdn/7EivXr4Y472F9Xx9gxJwPR6NOkSZOa6i5ZsoRzzz2XNWvWMGbMGAAuvfRSLr30Unbu3MmXvvSlkkymsj1m6nkz+0czG5FeaGbdzew8M3sImJF7eCIiItKVfeUrX+HJe+5h3fz5rF4wnxeffKJpZGrw4MGsWrUKiBKpOXPmMGHCBF5++WVOO+20A9q5/fbbuemmmwoe/6HINpm6EEgAc8xsi5mtMbNNwEbgCuAud/9JazOb2QAze8LM1pnZWjM708wGmdkCM9sYbgeGumZmd5tZtZmtMLOJae3MCPU3mtmMtPJJZrYyzHO3mVmW6ykiIiJZWrBgAXV1dXxg6tSmsmFDhrB37z527NjB1VdfzfLly5kwYQJ33nknAwYMYMyYMQckU+7OzTffzEUXXcTEiRNbW1RRZXvRzv3AvcC9ZtaN6ED0fe7+ziE28b3/3969R0dZnwkc/z4zuRJACCCCUS4iJF64qEVpgbJlo9Sz9drdguvdU0ULUrvdLfWc3dZFautut2vxii1gu5qCiIrViiimalGuQggJlyD3+50QcpvMs3+87ySTZCYhM5PMJDyfc3Jm5r383uf3zG/e+c3vvQR4X1W/KyIpQCfgceAjVf2liEwHpgM/Ab4NXOr+XQu8AFwrIpnAz3Buz6DAGhFZrKrH3WUeBL4A3sPp/P0lkroaY4wxJjK5ubnk5uZS7o4+BexYv5LMTOfmCCtXrmy0Xn5+PtOmTQNg1qxZfPjhh5w8eZKSkhImTx/gY+MAABW6SURBVJ7c+oG3ULQnoKOq1cD+s11eRLoCY4F73fWrgCoRuRkY5y72CpCP05m6GfiDe/7VF+6oVh932aWqeswtdykwQUTyga6q+rk7/Q/ALVhnyhhjjEloZWVljBkzhtzcXPr16wfAo48+yqOPPhrnyJoWdWcqAgOBw8BcERkGrAGmAb1VdT+Aqu4XkfPd5S8Edgetv8ed1tT0PSGmG2OMMSaBZWRksHbt2niH0WLR3rQzEknAVcALqjoCKMM5pBdOqPOdNILpjQsWeVBEVovI6sOHDzcdtTHGGGOi1hEv84+oMyUiNzQx7x+bWX0PsEdVV7ivF+J0rg66h+9wHw8FLX9R0PpZwL5mpmeFmN6Iqs5W1WtU9ZpevXo1E7YxxhhjTGORjky9JyIfi0iow2c/bWpFVT0A7BaRIe6k8UARsJi62yncA7ztPl8M3O1e1XcdcNI9HLgEuF5EurtX/l0PLHHnlYrIde5VfHcHlWWMMcYYE1ORnjNVALyGc0L4j1T19aB5Z3MbgqnAq+6VfF8B9+F07BaIyAPALiAwwvUecCNQApxxl0VVj4nIDGCVu9x/Bk5GBx4G5gHpOCee28nnxhhjjGkVkXamVFVfFpG/4nSKbgR+oKpnOIvDoaq6DueWBg2ND7UhIORdulR1DjAnxPTVwBXNxWGMMcYYE62oTkBX1S3AKOAg8KWIXBuTqIwxxhhj2olIR6ZqD+Wpqg+YLiLvA3mAncltjDHGmHNGpJ2pJxpOUNV8EbkaeCi6kIwxxhjTsXWsGyREdJhPVd8KM/24qv4yupCMMcYY0xH9y5Mzycm9vsllHnjgAd59912+/PJLpk9v6jaUiSMed0A3xhhjzDlmx549fLpqNVXV1ZSeLiMzzHLr1q3jiSeeICsrixEjRrRpjJGKxx3QjTHGGHOOefL55/m3hx4k+5JL2LS1pHb6li1bGD16NFdeeSW/+c1vOHDgAFlZWdx5553k5+fHL+AWsJEpY4wx5hxw4Be/oLJ4U0zLTM3J5oLHH292uaKSEjaWlPDiUzP5fO1aNm8t4QbA5/Nx55138uyzzzJy5EgeeeQRsrOzASgoKGDo0KExjbe1WGfKGGOMMa3q57/9Lf8xZQoiwpCBAyneshWARYsWkZOTw8iRIwG4/PLLSU9Pp6qqirKyMjIzMykuLuaZZ57hyJEjjB8/nocffjieVQnJOlPGGGPMOeBsRpBaw4oVK/hw+XIKNm+GmTOpqKzkshznP8oVFBRw9dVX1y67Zs0axo0bR1FRETk5OQDk5OTw4osv4vf7+f73vx+XOjTHzpkyxhhjTKt5/PHHeePZZ9m0ZAkbly7h8zcW1o5M9ejRg8LCQsDpSOXl5TF8+HDWr1/PsGHDastYvHgxo0ePZvz4Rv8oJSFYZ8oYY4wxrWLp0qVUVlbyd9ddVzutd8+enDlTzrFjx7jrrrtYt24dw4cP5+mnn6Zbt27k5OQ06kzddNNNLF++nFdffTUe1WiWHeYzxhhjTKvIzc0lNzeXcnf0KWDH+hVkZjo3R1i5cmWj9fLz85k2bVrt80WLFlFZWcmNN97Y+kFHwDpTxhhjjEkIZWVljBkzhtzcXPr16wfAuHHjGDduXHwDa4Z1powxxhiTEDIyMli7dm28w2gxO2fKGGOMMSYK1pkyxhhjTJvwxjuAVmKdqRbYsuoAz01expY1B6Mua1fRUZ5/eBm7Nh1LqLhao7yOLpb5OhfaWKKWtavoKM9NXkbejBWUnayMSwyRakkM0cYby3bVkLX/lollHSvKqjm08xQVZdVRl1VZ7uPQzlNUlvsaz1Twe5LxefpyprQq/HJnU1YCsc5UC3w0r8h5nLMx6rI++F0hqvDB7A1RlxXLuCItr7z0BB/N+nFMtp+IVBWtrAg5L5b5PxfaWKKW9cHvnKuNju0tY/W72+MSQ6RaEkO08cayXTVk7b9lYlnHU0fK6z22ZlkVqT1BPJw+VhF2udNH9nKmsDCmcbUmUdV4x5AQhnRO15eG9gdApf68oiueBZHGK6lyWeGUxpOl7lEBgh63ZIcva8DWKc46gdkiKAoCAvgEPAgK+AX29ZsVtqycjVNo+M5KiLqBE5sAmy4LH9uQ4im1y4aq60VBP7KOdIWep8Az/yWGDBsLQI3Px/KvX0mNF3ofd+I/0NPNkbtNFfD4FdHG5Qc/9/ideFOqoCoZarxCkk/xh/hpoEKj8rw1blnu+1L7frnLeBT8HsHnUTx+Z8bFh5x5B7qDep34NzeRr5yN4dtFQI0H902BrU20iyHFU+py5E4Wrauvx+/kQHHqum1I+HZx+YYp+ILH2WvbptS9DsrLtkvDl5W1Y2pQG5d663n8itfv5FLUiXH7oPBlXbZxCqi4bVTr2pk0bHNOwppqq4M3OXEJIH7FlySIgtfvxJZaoZSlQZI67Sbs5xsQfzWXb/hhva0HbBgaPoahBVMafVgCSza3x5VQH1x3Pa8fSjtJbV62DQ6f0+yiKYg6+fJ7hc3Z4ZcdvGkqNV7nPRMVPH4nCKfdOc835TTRRjdNDVsff13TQgD3I1Vvf1TSRD0Gbq0rO5Ca2n1BbUl185pqZ/23TaW2Rg0+9/UWdeftGhC+rIt2TK1dP+x7G9R+9zaxv+67e2rtgqH20bVlu/MOZIUvq/feR+tF0v9fZzGwb+/QhQK+lIvDzkuq2hWohrMvxGmfDfergbgr08KX1aV0F6Vdws8PSK1wttlcWQDVQZfQbdt/kKM/q7/fzf100xpVvabZjcaAdaZcg7ql63+NGQTUNZaA8pShHO95L+BxGrAq4Kf70Xl0qiioXS74Q+X2gUAVjwbmCeUpgzjc+0GQlLqytJLe+2eTUVHi7HDUWc9ZP7CjUDwqKH487pfOyc7D2d/3XpDQcQV/1AJftI3ipPb7nLK0YRzveU+DetaQeXgeGRUFjXfyQZKr/PTbq5QM8DBou792+vHOkFrt/Hn99dfZMtBbV6Y6nSj1COoJ7IHq5yDwvgTem6oUIb28BgBfsiDul2WgPvXidSeKQo038N44rwPPA4v5xekEeGsAjyAe8JT5uPgg7MwSKtO8SI1Slj6MY73ubZSv+u3C2XCj3Gv9fJR2ClPW4Xl0Li9wu9D1SnRiV/B7nFgFRUWpTB7Mvr4PNWpjPQ/NJqVmG0k1QZ0VVQS30651OQvk5XT6cI5c0CAuraHPvrl0Pb2+Lo8N8qkCNR7BL6AeJ6enMkKURQ3dj8wjvaIARPHjfJlLUF2DiToZLEsbxvEQ+co8NJfObltVdbbt9QU6eOCtUapTIKlK8aV48CULlUmXcuT8oM+km5fkys10O/F/eP2nQn7hlqcO41Rm4xi6HJtHWlVBo+VrO8LOGo2+NLXBY/D7HdgvePyQWlVXUmn6MI72DpHTw/PoVFlAoMV5/EpZ2nCOnR8i3uOvkHlyndOWRPB7FL9H3LZQ2+2hPGUwx85vvO/qcfAl0qtKGlck6P2ToMm1n7mgeaXpw0PWo8eBuXQtL6j3+QzwoPiDPhmBHJWlDeZA38Zx9tn7EukVJY3KCcTUMGaAkxnDOdTn3vr7WK3hgn1z6FoW/B436vUHleN8/k90GcGBhvtrraHPnrmcd7rAXafxT4egYmqVdhrMnosfQj11dRR/JRftfJGuZ0rqLX7ejFkM6hOmM6Xg83aiOqVn/Y2pklJ1BG9N3WiQ30Ptj1CnWdTtpwOx+iWN6uRe9Tt6qiRXH8ajFfi9ydQk9cIf6kYCqiRVH8KjziF2b00a5emNy0qqPkxaZQUCVKbUtaxt+w+y51fTnNfuPuTm9ze2WWfKbo3g6jbocm59Z3XY+S/8YBn+GveFCB6vlzsWRnYn1pcf+ytVbicAEVIzMvjuO29FVFYs4wpdXhKTFr121uvnAJ99ZxQ9tp7A54WD/VOpTgZfkjBilTOkm71hPYiQk5QccZzxktPgdah83bHw7PPVbFktyH2wUG3se7Nj1MaSkrjtz3mxKcubxB1vxC5fk96MLK56+XLLG3L9t/jmHY+0OIa7X4+sPpFqSbsJGe+Cs99fhGpXE2e/HXnwzcQ28e0YvJ9unLe9G1mcodr/7X/+U8zKuu292NQxpUsG3/lgcaPliouL6ZLdcM9V36Gdp+pPEKHb4Esiiuvw7lLUH/Tjz+uhe/9B/OmVl5h072SWL/uCSwbm8LfPP+X5l2fx6pwFtctl9r+0dj1/jY/y3acJ7uU5ywyqfZ0etN1ONV5ufq/+jUHDjTi3Bjtn6iz5/eDxCkO/lYXHK/j9za8Tjq/aT2qnJEbddgmpnZKoroq8sFjGFavyvvHWZ1zy3utcubGYWxeu45/y1nHHH79kyJovyF67EklOQdphRyqUWOb/XGhjiVqWr9qPxyP0HtCV5DRn6PLMqao2jSFSLYkh2nhj2a5iHVtrxZnIbTbW70V6lxQAyk9X8eav17ToQowAVUU8Qka3VMQjBI5+LXr3I0Z/4+u8+c5beGqqqR3REqm3XIDHmwQeT8iyEpEd5nNdc801unp1+JEpY4wxpr0pLi4mJ6fpkamG/vraJgo/3ccVY/ryzTuyo47h9OnTDBkyhI8//pibbrqJLxcu5JNVq5g5dy49evRg8+bNjB07lueffx5V5YEHHmD16tWICPfffz+PPfZYs9sIVU8RscN8xhhjjGk7L07Jp8ZXN8JV+Mk+Cj/ZhzfJw+Rnx0Vc7ltvvcWECRMYPHgwmZmZfFnkXNG4cuVKioqK6NevHxMmTGDRokUMGDCAvXv3Uuj+L78TJ05EVae2Yof5jDHGGMNdM0dx6dd6k5TsdA2Skj0MHtmbu2aOiqrcvLw8Jk6cCMDEiRN5/S9/AWDkyJEMHDgQr9fLpEmT+Oyzzxg4cCBfffUVU6dO5f3336dr167RVaqN2MiUMcYYY8g4L5WUNC8+nx9vsgefz09KmpeM81IjLvPo0aMsW7aMwsJCRISamhrw+bhhzBikwQniIkL37t1Zv349S5Ys4bnnnmPBggXMmTMn2qq1OhuZMsYYYwwA5aVVXDH2Qr77k6u5YuyFZ3UhRlMWLlzI3Xffzc6dO9mxYwe7d++m/4UXsnztWlauXMn27dvx+/3Mnz+f0aNHc+TIEfx+P7fffjszZsxoN//02EamjDHGGAPAtycPrX3+zUlDoi4vLy+P6dOn15t2S24uL8+fz6hRo5g+fTobNmxg7Nix3HrrrWzYsIH77rsPv3up41NPPRV1DG3BruZz2dV8xhhjOppIruZrbeXuyeXpV1wRszLtaj5jjDHGnDM8XsWbEoebsrUi60wZY4wxps2knueDlM7xDiOmrDNljDHGmLZzwdA2/VcvbcGu5jPGGGM6sIQ7N9rjdf7hc4wkQv2sM2WMMcZ0UGlpaRw9ejQhOhytQVU5evQoaWlpcY3DDvMZY4wxHVRWVhZ79uzh8OHD8Q6l1aSlpZGVlRXXGOzWCC4RKQU2xzuODqQncCTeQXQAlsfYs5zGhuUxtiyfsTdEVbu0xYZsZKrO5ra6H8W5QERWWz6jZ3mMPctpbFgeY8vyGXsi0mY3j7RzpowxxhhjomCdKWOMMcaYKFhnqs7seAfQwVg+Y8PyGHuW09iwPMaW5TP22iyndgK6McYYY0wUbGTKGGOMMSYK7bYzJSIXicjHIlIsIhtFZJo7PVNElorIVvexuzs9W0Q+F5FKEflxg7Iec8soFJE8EQl59y8Rucctd6uI3BM0/X0RWe+W8aKIeFuz7q0hkfIZNH+xiBS2Rn1bSyLlUUTyRWSziKxz/85vzbq3lgTLaYqIzBaRLSKySURub826x1Ki5FFEugS1yXUickRE/re16x9riZJPd/okEdkgIgXifB/1bM26t5YEy+n33HxuFJGnmw1eVdvlH9AHuMp93gXYAlwGPA1Md6dPB37lPj8f+BowE/hxUDkXAtuBdPf1AuDeENvLBL5yH7u7z7u787q6jwK8AUyMd37acz7d+bcBrwGF8c5Ne80jkA9cE++cdLCcPgE86T73AD3jnZ/2mMcGy60BxsY7P+01nzi3ODoUaIvu9n8e7/y085z2AHYBvdzlXgHGNxV7ux2ZUtX9qrrWfV4KFOMk8GaciuM+3uIuc0hVVwHVIYpLAtJFJAnoBOwLscwNwFJVPaaqx4GlwAS37FNB5aQA7e5EtETKp4h0Bn4EPBmj6rWZRMpjR5FgOb0feMrdjl9V281NFhMsjwCIyKU4X4ifRlm9NpdA+RT3L0NEBOgaZv2El0A5HQhsUdXAbeM/BJochW63nalgItIfGAGsAHqr6n5w3hicD2pYqroX+G+cXuh+4KSqfhBi0QuB3UGv97jTAjEswfl1UAosjLAqCSEB8jkD+DVwJuJKJIAEyCPAXPdQyr+7O9p2LZ45FZFu7usZIrJWRF4Xkd5RVCduEqRtAkwC5qv787+9imc+VbUaeBjYgNNhuAz4fRTVSQhxbqMlQLaI9Hc7Y7cAFzW1zXbfmXJHMd4Afhg0QtSS9bvj9HoHAH1xevd3hlo0xLTaHYCq3oAzRJkKfKulcSSKeOdTRIYDg1T1zZZuO5HEO4/u4z+r6pXAGPfvrpbGkUgSIKdJQBbwN1W9CvgcZ4fdriRAHoNNBPJaGkMiiXc+RSQZpzM1wl2/APhpS+NIJPHOqTtK9TAwH2fUdAfga2qb7boz5TaiN4BXVXWRO/mgiPRx5/fBGS1qyt8D21X1sNvDXwR8XUSuDTpB8iacHmtwzzSLBsOGqloBLMZ5E9udBMnnKOBqEdkBfAYMFpH82NSwbSRIHgO/zgLD5a8BI2NTw7aXIDk9ijNaGujovw5cFYPqtZkEyWMglmFAkqquiUnl4iBB8jkcQFW3uSN8C4Cvx6iKbS5BcoqqvqOq16rqKJz/27u1qQ22286Ue8ji90Cxqv5P0KzFQOCM/HuAt5spahdwnYh0cssc75a5QlWHu3+LgSXA9SLS3e31Xg8sEZHOQW9yEnAjsClW9WwriZJPVX1BVfuqan9gNM5x63GxqmdrS5Q8ikiSuFf0uDunfwDa1ZWRAYmSU/eL6h1gnFveeKAoBlVsE4mSx6ByJtGOR6USKJ97gctEpJdbXi7OuUbtTgLlFHGvfnanPwL8rsktagKcwR/JH84XreIMaa5z/27EOQv/I5xe5EdAprv8BTi90FPACfd54Cq8J3A6QIXAH4HUMNu8H+dYaglwnzutN7DKjWMjMAvn11bcc9Qe89lgfn/a39V8CZFHIAPnKqlAu3wG8MY7P+05p+70fsAnbiwfARfHOz/tMY/uvK+A7HjnpSPkE5iM04EqwOnw94h3fjpATvNwfiwVcRZX6Nsd0I0xxhhjotBuD/MZY4wxxiQC60wZY4wxxkTBOlPGGGOMMVGwzpQxxhhjTBSsM2WMMcYYEwXrTBljjDHGRME6U8YYY4wxUbDOlDHGGGNMFP4fAhsahap5FhgAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for SHU\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'SHU'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Sitka (SIT) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetometer altered, discarding measurements prior to 2018-07-11 20:40:00\n", + "[[ 0.95 -0.325 0. 0. ]\n", + " [ 0.325 0.95 0. 0. ]\n", + " [ 0. 0. 1. 72.418]\n", + " [ 0. 0. 0. 1. ]]\n", + "[[ 9.387e-01 -3.454e-01 0.000e+00 1.788e+02]\n", + " [ 3.454e-01 9.387e-01 0.000e+00 -3.249e+02]\n", + " [ 0.000e+00 0.000e+00 9.845e-01 8.970e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.480e-01 -3.502e-01 -1.832e-02 1.005e+03]\n", + " [ 3.401e-01 9.480e-01 2.784e-02 -1.718e+03]\n", + " [ 2.619e-02 -1.562e-02 9.480e-01 2.418e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.351e-01 -3.416e-01 -5.063e-03 5.054e+02]\n", + " [ 3.414e-01 9.468e-01 2.617e-02 -1.649e+03]\n", + " [ 1.103e-02 -2.313e-03 9.783e-01 1.048e+03]\n", + " [-0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8FEUbwPHf3F16D0noGDqhi/QuFhAsqNjF3gF99cXeeBULKqIIimJvKBYUCyCKNOm9JXQIkIT03q7M+8deGqQckOQSfL6fz32ymd2beXauPTc7u6e01gghhBBCiMqZ3B2AEEIIIUR9IEmTEEIIIYQLJGkSQgghhHCBJE1CCCGEEC6QpEkIIYQQwgWSNAkhhBBCuECSJiGEEEIIF0jSJIQQQgjhAkmahBBCCCFcIEmTEEIIIYQLLO4OoLaFhYXpyMhId4chhBBCiGqwcePGZK11eG209a9LmiIjI9mwYYO7wxBCCCFENVBKHa6ttuTwnBBCCCGECyRpEkIIIYRbzF/3Ay9+9Yi7w3CZJE1CCCGEcAuPic8w5sUF7g7DZZI0CSGEEMItIhPdHcGpkaRJCCGEEMIFkjQJIYQQQrhAkiYhhBBCCBdI0iSEEEII4QJJmoQQQgjhVlprd4fgEkmahBBCCOFWNofN3SG4RJImIYQQQriVrTDf3SG4RJImIYQQQrhVcvZxd4fgEkmahCjlr/1/sWDvQneHIYQQ/yq5MXvcHYJLJGkSohTv68bT6KqH3R2GS/ak7WFb0jZ3hyHqAa01hzIOuTsMISpU6Gl2dwgukaRJiFJCs8Hb6u4oXLP5htEkXXGdu8MQ9cBXv7/OpqsvYcWWX9wdihDl0na7u0NwiSRNQtRTXQ9pmqS6OwpRH3h9OoeooxD3xQfuDkWIcjkcDneH4BJJmoQQ4iynlfHXhHJvIEJUwOGQkSYhhBB1QNFlA02SM4k6SiNJkxBCiFNgd9hZeWxl9V8d2VmdUpI1ibpJ2+XwnBDVYn3CerILs90dRp2Vlp6A1vq0rqi7aNcv7DkeXQNR1R2HMg4Rmxnr7jBc8sW3TxEw/G4WrJh9SvfLKMhg1tIpFT4HMjDObsim4IxjFKImaDk8J2qC1prv9nxHjjWnWupLyElgX9q+aqmrJiSlHMF/6C3Meuxi0vPTybe5ftXY5LzkU/rGbrXX7mlzv2z9hh3xm0/5fla7lWt/ubb4/32xW5n6zYM8N65bhfvw7qo3eePP504qb3HVY2y87epTjsHdkvOSOZJ1pNx1NoeNC6d1ZvibnXFoB/suuYQ9I4ZzNOsotz3TiS3HNpTZPqMgg4yCjDJlMSkxdPukM1a7FYd2VNjWiWISd/LNupMTnumbpnM853hx7AC51lxS8lIAcGgHBfYCAj/7BU8bqGemkWvNdalNgKnPDmfIfZ/y27cvMeajYcQc3wGU/J7XoO3GB1KnPw67XOep2p60nQMZB3Boxym97vJsefXmJzREDbLXj+eAqi8/klddevbsqTdsMN40E3ISaOTXqHjd+oT17E/fz/UdrierMAtvszcWk4WkvCTisuNoHdwaX4svZpNxPYlCeyE2h40CewF5tjzmr5hN0vffsqep4tpbXmHe7h/5eNSn2B12lFLYHDYsJgv5tnx8PXwpsBfgZfYiszCTWVtnMarVKI5kHuH9be8z99K5bE3aSrOAZvh6+DJl3RReGvgSTz7QiVuWOPj28mAmvba63H3UWpOSn8KWxC0EegbSq1EvHNrB00uf4L99H+P2GecTnKN5eOy77PrP/XgXQtsvvuLB78by0mUzGNhiCLtSdtEprBP5tnyGzh3KR8M/IiUvhRmbZzD+3PHEZ8fjafYkITeBb2O+5ck+T7I7dTcZOak80f9pUGBRFlbHr+bVz++hwBPiGhiHBuaMmoOHyYO5u+dyQ4cbmDhrNKkB8M51XzF+7k08PeI1nv/zMYJyoOdezdi/jWHb2DAIy4KdU+9AN47A6rByWavL+Pyf6Xg5TAzreR170vbQxL8J5kI76x69G//bbmbq8a+ZNPAFRkSOYOA3AxnVahTbD64hLiee3m2Gcn7z85m0ehIdjmhe+NL4cPl+0hCGD7mD7hHd8TR7kp6fToBnAAX2AjxMHniYPcguzCbbmo3VbiW1IJVGvo3w9/RnxAd9cPh6M67vI8zePhtrchJTZ9tZOH0M7cI7svjwYrIKs3jh0R1ke8Nrz7RDZWbRp8tI+jfqx6O/3EuGnyI835NCewF3Dv4vb26YCkrxUI+HiH/rTcb8U/K63XxLG8793Eh8836cxeIp97O6TxCv3/A518y7krcvmknERfcB4LduEZ8seZ21+/7m2dHTCb50HABRMdHFH+aLd8zDbLJw1blj+SbmG85teC6dGnQC4O/Yv3nl+wl0OaSJbqFo3rwTrfxb8Pio10nKTSLEO4RCeyFzYuYwpt0YCuwFRKdE0yq4FQfSDzB+yXhe7P8Cy2Y+w8GGimuueIJX173KR8M/5uPvnyI1PYHZj/3D0C8HYLMobmh/A97vfMn3A01c23Usn0d/gdVDMfcV4w12/ue38WX0l9zb9V5y87NoOvkLlnZRPPKT8ZyZdYmJ+xYYy++NNHH/7w7m9VP0/d8MXv3+QeJD4Y4/HIzYpHn6FjPJgWA3wYfTS771Thlj4vHvHbxzmYnjXZviv/sYhxsqLtzsYHlnEy2SNP+d5+DaJ8x8Ms2OXwFc+4SZnns1YZkQmKuLH683rjIx8UcHb4420TgVblju4InbzDz8k52G6VBoAU/nZ8f+RtAoDe78jxmLHe78w8FXQ00E5UBCCFzb6Ub2zf+KtR1Mxf1RWtyiGTQZPp5/ohQDokueL2P/ayYsE74et5zJayZzVdur8LX4sum+m8m+aTgTrnqD7/d8T8uglrQIbMHsbbO5vsP1XPfjldjM8Mc1fzL6pyvIseVicmhuWOpgfl8TM9+1U+ABeZ4QlgnP3Wymd7+rOLjwBwaMfZQODaK464+7eKDbA2yeM4PMpkG8ftu37B5xMWs7KOb1M/HFVDurohRRMz+kf5P+5b+Ji7NKdIcoADKnPU6fS247rTqUUhu11j2rMayK2/q3JU2dvX30mLGtuG6F8UaaGAQRGVXcqQas6KQYtPPM+v6X3orL1mkW9lCM2KTLlFWH5AAjSREn+2qoiZuW1o9j8K5Y31bRa2/Fz5tNrRQ9DlS8vqr7C3GqomLO7sPGwlCUNGW8MZG+l955WnXUZtJUY4fnlFIfK6USlVI7SpVNUkodU0ptcd5Gllr3pFJqn1Jqt1JqeKnyEc6yfUqpJ0qVt1RKrVVK7VVKfauU8nQ1tqKECdyTMAFnnDABxclRUcJUuqw6SMJUsbMpYQKqTHgqS5hcub8QQlRGa5nT9CkwopzyaVrr7s7b7wBKqY7A9UAn533eVUqZlVJmYCZwCdARuMG5LcAUZ11tgTTg9FJUFwW1dH1+QXks3erph6xJs3Vw60o38Wtc/jyjvOaFABx86pFK718QacESYBxeSLz5gtMIsnyeDQqLl4/2DzHK2uai2uUBUNi/JM/O/HputbW7bUBJf9lCjP0KjMzFq6ExCffbS0r28cCNFxcvHxt9nrFg0hBgvIH4LlpcvD7l8rbGQuOS/apvlH/l8xZ8I0omKltblZzpldnIuF9O25L1a4ZfWLJtyJnNh9jbPbB4ee2Vw4qXtcVIBm3nlsSy639TipfDVywD4NhjDxB75RAjljlzSAo3Xu9/T3iseNvcQS0AyB/aAhXqPOR8d8l8suYbN5LT25fANuXPV8zp51v8OrF++UVxeebDt7q8n6fDs2FJn++947Li5bj/3AXArn4disu+u2SQy/X+OHJI8XJAM+M1afNV6NZ2wpcvPd1wxRlKOpLF7P8sI+lo7X5rVmmHarW901Wjh+eUUpHAr1rrzs7/JwHZWus3TtjuSQCt9SvO/xcBk5yrJ2mth5feDngVSAIaaa1tSql+pberTM+ePfVb097CPziY7l06s371Srr06IVJKf769D26XHETYcEBeHt5AZCRmYXV4SAsOKhMPVn5VgoLCwnx96Wg0IodxbEtq1n550LOX/MV/p9uZv8vXxPSoTsd+g0EYM1vv5OTksIFt4wlPi2X0AAvUo8nkH3lEPZfPZZWy7/Cvr/s7+9kT32FoMkT2XrRKDrP/aNkhZcDCkw0Wr+RhAvO5XiLEAbPXc3qT2fQ7drb2XlzPwJjbGizJrVzEA0OptLwz60cvncg3pvziqtxBNqxeNvZ0WsQzYZcBknH6HPngwAU2Ox4WcrGY7U7sNod+Hpayu3f7Nx83nvmZf7z+iSOxcVz7OB+BgweTHa+FR9PCxnH49k29SkGvPoRHpbKf2to5cOjaLDgwEnlxyLAKyKAsB1ZpP+4gACTjTBHKvk/TCby2fkcO3oYn4BQQoMCSMnKJ8jXE4vZRE6+FT9vjzJ1xadm4GUxExroD5QMFZ+o5bbtmEwmPMwKu83G3i5dybpmMKZLbiNz+mMM/Xo5plIXwYnZsIZGrdtj0TaSo9cQOeCyMvVprYtP/07KyCXEzwtLBf2xav53hLTsQFSXLmTnFeDv41VhnAAegVasmR4Vri8tuFM2np/s5tNXn+GRl6ay49J2WPZb6BC9C5vdgclkQjsc/P3iBAY9NQ1rfg5H33iA0AnvkDp4MADtdu7kn/+Mxt6wBUOffodd61fSsddA7HYHe1+8koYPzCJ+9T/kZWbQ85a7WDv3c3KsOTR+cTq5XnDe1mi279rLvt9/4MqJTzD/rTcIbNiIIdffxOLJE+l53+N4BQSxZ/xgOsxYzrqN29m2eRsTxt/BTy8/gXfzNgy5+gYO9ehJXidvfHaenMRnd/MjMCaTvEhPWn26nJ1PXsd57yxkx9T/4PPpn7TatAEvXz8ArFYb+7p0IbOlid6/7yAhNY3GDUI5dCiWfxb+xU333V5lv+7evJbDK+Zz8YMvsXjRUpo2bUjHzlEc2LebVm3au/TYHDxyhEbhEfh4e5W7PrvAhq+Hufh5V/ScSJzyAoE+3tjfeRvLJaPIyE4i4uN5Ze7bbudODl7WHusBC622b2fDhFF4XHQzbQZcyPGhw0h//RUatO/M8ref584ZX5KWnU+ezUHTED/2xyXTqnGDci9fkJubx+EePQDj8NrPE8fS5e7HsW5ZiWnKVAJ+XsKWNatIWvcnY18vO2E+O9+Kv/P1mZNRwB8f7iC0qR87lsbRY2QL+l3e5qT2Ynel8Os7W7n0oe606BDqUr+eiT3rE1j80S4uursT7c5rWOF2rsS1ddleVs6J5aK7O1daV3XG5so2XzyziszkfALDvBk7ueJ5ZUlHsvjhtbVEbn+Fbp/NoPE55b8nVdYXWmtiooxxkPg7RhNz8KLTeizPmjlNFSRNtwGZwAbgv1rrNKXUDGCN1vpL53YfAQuc1YzQWt/lLB8L9MFIqNZords4y5sDC4raqUzpieB1VdGb37EJt3DhuCdPKt923SiufnYKOQV2gvzKPyqptSYpK4+IQN+T1i0d2YWGB2wcuH4gFz4z66TEqC7Zvu8whfePwPcIZLawExhrJqEB9PtrI5lpKUQ0bl6t7ZVORvLPUcRfcjPn3/8oPl6uJSG1pSjOAy1MtIp1sOP8ZnS5/zU6dD3XWL/mH479s5AL//sisfEJBASEcPj+ngQcyGXPuEn4b11Kz+ffwcf35OdHbcjNSOdwn34kn9eAQV+trNa613w+Hcvc6fjtMx6zA208GPXrqf2wcfzx44QEBxd/eaoPVrzxOJYty+n3ZdkTRBx2B6s+fBPfrgPwuf0ODl7QkZEzf6ixOP6+/UJ8hl1J37HjTruODx78DmtBKKUvYP7Ae8PYvXUlHboPIjc3i8K8LL5/aS8FuTYU+dw3cwS7O3UmOQgGra14PtS8dx6hIOU43b7ZxMYBIVzx5s/4+ARi8fQqk1TYbxoKwJ4HLqbxJ3/Qbuk/zHlqCw47mMxw/8ySEcnoDlHsuaEvlz37EceP7eW3aQkU5Nrx9DFz97QhzLukA/kdG3PD1L+JXr8EO7BsdiEoDzBpWkd+R+jc5cR0CSIhLICu59/EiFG3YS3Mx8PTu0xcqROGEpQK6X7gOXUSXftfiYenJ++NW4LDDsoEHYfHMPSKB9i55lfSkuPw8vbCKyCcFR+bQVlQJsUD7w4jM+UYWpkJDGnIu/ctgfKu46U1496/gPT0JL5/5lpMHhbumLaY9//zO7Y8L7zzkuiz/n+037KZ1Qs+wmz25PgHb2Md2IcrHpzO50+uw5qv8fI10+uqNHa98z9Gf7SUJZf3o1VcSf6xbMBr2D38QOdx3QtdKCwooEmLtsXrK0v4zuakqSGQjHGptReBxlrrO5RSM4HVJyRNv2McPhx+QtLUG3jBuX3ppOl3rXWXCuK4B7gHoEWLFucdPlxzp91WB7tDY1InX4hu68h2+BbYaL14f5lRjVO1eskSePsRms1cQPNmjc803BqXkZXFxlcm0urGceSNuY6EXg05/4ulNdJW6aSp3c6dmM1186ocu6KiUBr2tjbTdr+dXTf14upnP3d3WKdk/8H9NGnUFB8f72qvOy3hGAlDjcN3R0d25KI3ay5JENVn1vil2G2VTGXQmmHLxrNkyIwKP+CHLRt/2u0vGTQNTB7gsDJsxcMl5S6258p2pxN7RXFVZ5vVuY/Vud32SyLpsuAQSwZPM5JMh5VGGU/RcVvJEZOOu2Pq/0Tw8mitj2ut7VprBzAbIwECOAqUHjJoBsRVUp4MBCulLCeUV9TuB1rrnlrrnuHh4dWzMzXIbFLlDn13+30Pbf86cEYJE0C/YcPo9/OWepEwAQQFBDDs5feJ7NyVjE8/psd7v9ZKu3U1YQJotmEj/LYQuzNGh61+XOOktNYtW9dIwgQQ0qhp8XKXh6fVSBui+lWaMJXSbet0TLYCKPrSrzUmWz7dt7x9Wu0uGTKDJUNngtnT+AA3e7Jk6EzjAx3ouPNDcNjLtIfDRqcdZQ8xuhKXq3W5Eper9bmyTa8Nr4DDdtI2vTa8fMr96WpfGOUVvHc5y5NyJxp9YCrpg4TQN8r0QW2q1U8FpVTpT+krgaIz6+YD1yulvJRSLYG2wDpgPdDWeaacJ8Zk8fnaGB77GxjjvP+twM+1sQ/Cvfr27UeQv7+7w3C7QD9folqfg7cyDq362OtugudujZq3cHcIwkXnjmhufMiW/uAu+qs1vTa8zOauXjRI34MquiCmcxvlsBGasbfcehODIGPyvRW2W1VS0Sh5C2jHCTE5yAkvOQzoUFQaV/6U8SV1FX0hK1VXw5StxXVt7+VfaVxND5ckO2kDs0+OzWwqru94cMXxN0zZSsaDw1jdRRGQc4zi46HFR6AUATllxyNcTa6qeowS+7cDYMCa58BuLVuf3WqUV9IH5SWZtaEmLzkwB1gNtFdKHVVK3Qm8ppTarpTaBpwPPAygtd4JzAV2AQuBcc4RKRswHlgERANzndsCPA48opTaBzQAPqqpfRGirgoa+wi2JoV0uHaiu0MR4oz1H93WGE0oGkwvGnFXCpSiyz+/cOPcLUTFRKN9/fHy86DP6EiUuRCHly9xL9zO+kEhNFmzgsarl9Fy0zqOPX0zQ9ZG03fMf4iKiSYqJpr2O3fQbsd2Gi9fRP7sV+i/5DNMHuYy7Zk8LDjGdS8JzuwBZug4OAKTRYHFk1E/beWfy1uwo08o7bcb8+Zsnp54+XkQ3vwQnn4WtG8Azdeu4twrxhW3DwqTRdHp/CbFdfnO+wrHJ2/RauNqrv1iPRErFjPo70+dcZXqD7OJ0Qu/YceAcHae35SrXv0FLB6YLIquFzTHZDEBJjZfZkycH7ommuMhGJOdTJpmR5aAsoHFk+QnrqTvAzMZ8/EKLL99jac1C7+cOLpcHoh3oBVPfzObe/jy5+Ulc4gCco6BxeLsK13cZwE5cexvYcL6/mQO3D+cVls3on398fQ10+/qNkAuDm9/LN9/yOo+Pgya/SMAXoWZRmwADucvGiiTUY6R8Jk8nPNutbM9pcm7vwemb2ad8XPuVP3rLm5ZHyaCC/cpvjptgKbP+hg3R+Oa8s5yFCWPpVwksX6Zed8SAEwmhcNhfD6FNvEjP8fK7VMG1ly79y/BZFJ0HtKUHcuO4XBoxr03jLz8HLy9fN32Y8cVxXUqjN+m1HhUMeWg6DXTevtWPD3KnmSUn5fN5oG9sD7zEPvXdMbbz4OeoyLZ8NshMlMyGbzoQfhmFlHdh5RXdbn271xDzJQbyc4Zj1dhBk3i/iGuyQAKPIOwN1qAJSWVEbP+5IsnN1faB3VuIrhSygR0A5oAecBOrfXxGo6tRkjSJCpT9KaxYWhjxs5a4uZoxJmQpEmIU+OO18zvd7el5YqTL2Gz89YBjHnyQ5fqqM2kqfyL7ZQE0hrjMNiFwF6MayN5A+2UUrnA+8BnzondQpw1KrpmkhBCiOoTH9CZlhij+rFNFC2clyG4fOJ77gyrQpUmTcBk4D3gXn3CkJRSKgK4ERgLfFYz4QnhHsoh3wPqO4dJY3K455CKEMI1Ab4lZ9CmNQ8irUE+gWkFRHnUrWvjFakqaXpba72mvBVa60TgreoPSQj305I01XspU6eSGX+Uiq+dLoSoS5TVytXfbKQuz7SuKml6F+hRG4EIUafIEed6b/Alo9wdghD1yoFxI7EX5tfqF43SE+wdIUFY6vD18aDqpEmIfyWToy5/1xFCiOo3asLUWm9Tl/qtHFUP3nerSppaKaXmV7RSa315NccjhFvlemt88xWmiPpxtXQhhKjPVOkfGKwH0yKqSpqSgNpPPYVwk6NNLbTbb8fkph+yFUKIfxNH6etf1YPrRlaVNGVprZfVSiRC1AXFvx5Qt4+rCyHE2cCcV/LDu/VhpKmqT4ZDtRGEEHVFya8VyKnqQghR08wZWSX/1PeRJq31VUXLSqn+QGTp+2itP6+xyIQQQghxVlOm0nOa6nnSVEQp9QXQGtgC2J3FGpCkSZxVio/OyeE5IYSocaZSSVNBUN2fS+rqJQd6Ah1PvCq4EGcbJc9wIYSoPaXSiqte+tGNgbjG1a/TO4BGNRmIEHWKzGkSQogap0u91Qb4BbgvEBe5OtIUBuxSSq0DCooK5TpN4mwjE8GFEKL2qDr9oyknczVpmlSTQQhRV+i27eBgNA07XujuUIQQ4qyn69n300qTJqWU0oYKr9VUtE31hyZE7ev41Me82/Z3Jl882t2hCCHEWa++JQ9VzWn6Wyk1QSnVonShUspTKTVMKfUZcGvNhSdE7WrTKJg3J9yIr6f8LKMQQtS0fKzuDuGUVPXJMAK4A5ijlGoJpAPegBn4A5imtd5SsyEKIYQQ4mx03JHj7hBOSVUXt8wH3gXeVUp5YEwIz9Nap9dGcEIIIYQ4e9ntdf+nU0pz+RiE1toKxNdgLEIIIYT4F1HUr6RJLnsshBBCCLcw1bOZ4JI0CSGEEMIt6tkVBypPmpRSzStZN6j6wxFCCCHEv8XZNtK0TCn1mFKqeO6TUqqhUupL4M2aDU0IIYQQZ7OzaqQJOA9oDWx2XpfpIWAdsBroU9PBCSGEEOLsperZtbGruuRAGnCvM1n6E4gD+mqtj9ZGcEIIIYQ4e/k76tfU6qrmNAUrpd4Hbse40OX3wAKl1LDaCE4IIYQQZ6/69tsLVaV4m4C9QE+t9R9a6/8AY4HJSqk5VVWulPpYKZWolNpRzrqJSimtlApz/q+UUtOVUvuUUtuUUj1KbXurUmqv83ZrqfLzlFLbnfeZruSn6YUQQoh6Q9ezX+ytKmkarLV+Q2ttKyrQWm/RWvcHlrhQ/6cYI1RlOM/KuwiILVV8CdDWebsHeM+5bSjwPMYcqt7A80qpEOd93nNuW3S/k9oSQgghRN1UaPFzdwinpNKkqbK5S1rr2VVVrrVeDqSWs2oa8Bhlf+D4CuBzbVgDBCulGgPDgcVa61TnHKvFwAjnukCt9WqttQY+B+Sn6YUQQoh6wst8do00VTul1OXAMa311hNWNQWOlPr/qLOssvKj5ZQLIYQQoj6oXyfP1e4cLKWUL/A0cHF5q8sp06dRXl6792AcxqNFixYuxSqEEEIIUVptjzS1BloCW5VSh4BmwCalVCOMkaLSVyBvhnGJg8rKm5VTfhKt9Qda655a657h4eHVtCtCCCGE+Dep1aRJa71dax2htY7UWkdiJD49tNYJwHzgFudZdH2BDK11PLAIuFgpFeKcAH4xsMi5Lksp1dd51twtwM+1uT9CCCGEOH31a0ZTDSdNzssSrAbaK6WOKqXurGTz34EDwD5gNvAAgNY6FXgRWO+8veAsA7gf+NB5n/3AgprYDyGEEELUgLPpiuBnSmt9QxXrI0sta2BcBdt9DHxcTvkGoPOZRSmEEEIIUbX6df1yIYQQQpx1lnatHwfqJGkSQgghhJsYh+dCfAPdHIdrJGkSQgghhFuooilN9eRX0CRpEkIIIYRwgSRNQgghhHCr+nIOnSRNQgghhBAukKRJCCGEEMIFkjQJIYQQwi1UPbu4pSRNQgghhHCv+nHynCRNQgghhHC3+pE1SdIkhBBCCDdxHp6rHzmTJE1CCCGEcI+SGU31I2uSpEkIIYQQ7lG/5oFL0iSEEEIId6lfWZMkTUIIIYRwMzk8J4QQQghRtfqRM0nSJIQQQgg3kYtbCiGEEEKcivox1CRJkxBCCCHcwuHMQnQ9yUYs7g5ACCGEEP9OB8+/lPiCL7AOvdzdobhEkiYhhBBCuMW1F43nol1t+PPCS9wdikskaRJCCCGEW7RtGMChl69xdxguqydHEYUQQggh3EuSJiGEEEIIF0jSJIQQQgjhAqXr2YWlzpRSKgvY7e44ziJhQLK7gzgLSD9WP+nT6iH9WL2kP6tfe611QG009G+cCL5ba93T3UGcLZRSG6Q/z5z0Y/WTPq0e0o/VS/qz+imlNtRWW3J4TgghhBDCBZI0CSGEEEK44N+YNH3g7gDOMtKf1UP6sfpJn1YP6cfqJf1Z/WqtT/91E8GFEEIIIU7Hv3GkSQghhBDilNX5pEkp1Vwp9bdSKloptVMp9ZCzPFQptVgptdf5N8RZ3kEptVopVaCUmnhCXQ8769ihlJpIxwSYAAAgAElEQVSjlPKuoM1bnfXuVUrdWqp8oVJqq7OOWUopc03ue02oS/1Zav18pdSOmtjfmlKX+lEptVQptVsptcV5i6jJfa8pdaxPPZVSHyil9iilYpRSV9fkvlenutKPSqmAUs/JLUqpZKXUWzW9/9WtrvSns/wGpdR2pdQ2ZXwehdXkvteUOtan1zn7c6dS6rUqg9da1+kb0Bjo4VwOAPYAHYHXgCec5U8AU5zLEUAv4CVgYql6mgIHAR/n/3OB28ppLxQ44Pwb4lwOca4LdP5VwA/A9e7un/rcn871VwFfAzvc3Tf1tR+BpUBPd/fJWdan/wMmO5dNQJi7+6c+9uMJ220EBru7f+prf2JcIiix6LnobH+Su/unnvdpAyAWCHdu9xlwQWWx1/mRJq11vNZ6k3M5C4jG6KgrMHYQ59/Rzm0StdbrAWs51VkAH6WUBfAF4srZZjiwWGudqrVOAxYDI5x1Z5aqxxOodxPC6lJ/KqX8gUeAydW0e7WmLvXj2aKO9ekdwCvOdhxa63pzMcI61o8AKKXaYnzwrTjD3at1dag/lfPmp5RSQGAF96/z6lCftgL2aK2TnNv9CVQ6qlznk6bSlFKRwLnAWqCh1joejAcA4wVZIa31MeANjKwyHsjQWv9RzqZNgSOl/j/qLCuKYRFGtp8FfH+au1In1IH+fBGYCuSe9k7UAXWgHwE+cR4Cedb5hlqvubNPlVLBzv9fVEptUkp9p5RqeAa74zZ15LkJcAPwrXZ+na+v3NmfWmsrcD+wHSMx6Ah8dAa7Uye4+Tm6D+iglIp0Jl2jgeaVtVlvkibnqMQPwH9Kjficyv1DMLLYlkATjGz95vI2Laes+IWutR6OMbToBQw71TjqCnf3p1KqO9BGaz3vVNuuS9zdj86/N2mtuwCDnLexpxpHXVIH+tQCNAP+0Vr3AFZjvDHXK3WgH0u7HphzqjHUJe7uT6WUB0bSdK7z/tuAJ081jrrE3X3qHHW6H/gWYxT0EGCrrM16kTQ5nyw/AF9prX90Fh9XSjV2rm+MMfpTmQuBg1rrJGfG/iPQXynVp9RExcsxMtDSmWYzThju01rnA/MxHqx6p470Zz/gPKXUIWAl0E4ptbR69rB21JF+LPq2VTTM/TXQu3r2sPbVkT5NwRj9LErovwN6VMPu1Zo60o9FsXQDLFrrjdWyc25QR/qzO4DWer9zxG4u0L+adrHW1ZE+RWv9i9a6j9a6H8bv0u6trME6nzQ5DzV8BERrrd8stWo+UDQD/lbg5yqqigX6KqV8nXVe4Kxzrda6u/M2H1gEXKyUCnFmsRcDi5RS/qUeTAswEoiprv2sLXWlP7XW72mtm2itI4GBGMeVh1bXfta0utKPSimLcp5B43wTuhSoV2ciFqkrfer8QPoFGOqs7wJgVzXsYq2oK/1Yqp4bqMejTHWoP48BHZVS4c76LsKYC1Tv1KE+RTnPNnaWPwB8WGmLug7MpK/shvGBqjGGIrc4byMxZr3/hZEV/gWEOrdvhJFVZgLpzuWis97+h5Ho7AC+ALwqaPMOjGOd+4DbnWUNgfXOOHYC72B8e3J7H9XH/jxhfST17+y5OtGPgB/GWUlFz8u3AbO7+6c+96mz/BxguTOWv4AW7u6f+tiPznUHgA7u7pezoT+B+zASpW0YiX0Dd/fPWdCnczC+FO3ChTPi5YrgQgghhBAuqPOH54QQQggh6gJJmoQQQgghXCBJkxBCCCGECyzuDqC2hYWF6cjISHeHIYQQQohqsHHjxmStdXjVW565f13SFBkZyYYNG9wdhhBCCCGqgVLqcG21JYfnhBBCCCFcIEmTEEIIIdzi8OKv2DT5DneH4bJ/3eE5IYQQQtQNuRMm4wPwjLsjcY2MNAkhhBBCuECSJiGEEEIIF0jSJIQQQgjhAkmahBBCCCFcIEmTEEIIIYQLJGkSQgghhHCBJE1CCCGEEC6QpEkIIYQQbqW1dncILpGkSQghxFnh63suYN25Ue4O46x1JHZPjdX9+def1Fjd1UmSJiGEEGeFc5fHEZDn+vbxh3ZzIGZjtceRk1HAvKkbyckoqPa6z0TsrhTevX8JsTGpp3zfH6fcR/bFV/D77EnVHxjQ+8XXy/z/59dTyc3OqJG2zoQkTUKUcmD2zfz6wmisdoe7QxHiX6+qD/mi9Ye2H+eTsYNPqe5lP75H+ojRFIy+ucptv580lo1L5rpc94pv9xC3N4MVc2tuZGbTiu+x22yndJ9FH+xAa1g0a3u569fMfY0/J19R7jrHhrUAtJz6LQB71icw874l7Nl4/JRiANCO8t9ff//gWZb2j2LJnKk0feFD5o8bccp11zRVX44jVpeePXvqDRs2uDsMUUdFd4giy1+T8+Yszh881N3huEzbCnBkJ2MObnpK9zvwyd1YWg2mxZCxNRSZe2i7jd0LZtJu+P2YPDzdHY44BUcO7iLh4GGObo4gKTYLa4EDHLkMW/4o+27qTWj7LhxauYibpi9m1h3zsXv4AXkMW/ZomXo8fvySyHbdUQrMZjMHdqzBNzCU9fddRZsD9jLbxj9/F+37jqAgL5tWHfswZ/z5NB56FYk/fIrZaqfjDmPEaM85zUmMeppQy3c0uWQg/S64nl8+nUKvi69l808fcGjzUBxmj5N3SlvpO/oovg+/wfZeAfj0HECb9xbSdvt2oneuwGGz0a3nRWRnpuPl44+HR8nPwq74ZhqJ21Zz9ctzSTp+hMLcTGL3biT4wVcAiFi6gIWvPo4jYByZyTZGPtCJll0aMveZ62l30Y3sff8ZEgOmgVLl9ve4WcNYdNv5BI+5lcCJUwDYPKQxEbsSSA/3xiPfhrVfD7xXrqf1YSPZiYqJ5r1xS3DYNSaz4v6Zw8rUuXPtYg5tXsqo+14idlcKv76zlUsf6k6LDqH8ekU7TIWKkQt28+Otw4laG3tSTFvP86fbxmwAkqb8l8FX3FVu7Ot/nsHR1X9y1ZSfN2qte5a7UTWTpEmIUqI7GPMh4h67hgvueMHN0bhu/ZRL8Ty6ic7TDmO2lPOmXYHoDlEcaWXn4t9r7huxO6z95lUyvvwI30tHMvC+t90dzimJ+ek12m18CduTR/H0DXB3OLVuRZ8+bOv+cvkf8lozbNl4lgyZUel6AKsZPJy5Ufyku2g86cMK29zZyZtOO/NJCOvOrk530WnHbBqmbD1pu1W9nyffJxzvvCT6r/sfO+4cTuePFhWvryyublvG06DU0aaq2gKIvvY8ouZuNLbtfDedtn9Q7rYxba8jrskgAMzWHHqNTsH3sddK4hr0FpSXzNmtRDb7nFZzNhUXFXgGsqPjHXTe9TFehZkn3aWyfQzPepwum3LKFC+9YBoOmwdmaw5Blql0X54IwIbBYfRcnlzufp8oMUQRkaZZM+Y8grtfQPPJr+H92SeYr7sdgI67Y2otaZLDc0KUI2VftLtDOCXZv+7Dc3EQ1oLcU75v8wPmGojIvY7+/QvN91nIWPK7u0M5Zfvnfszu75pwZH/5h1BOi9YQt7n66qshs8YvZdu5r1Q4KqK0kQV12zodk63A2C8ArTHZ8um+pSRB9ig1mFRZwgTQaWc+ALuibgVgZ8fbyqxfMmQGS4bOJN83ApQi3zeCJUNnkrjvsjLb9drwCiZbfpm4zLY8em14uUzCVFlbpUXN3ViyrdYnbbt00FssGTqTuKaDjT5TCrunP2t+P8dIbpwGrH0O7NYycWG3MmDtc2USJoCYdteTEdSGmLbXlxtTx50fgsNeti6HjU47ZpdJmIr6zGH3LI4r1fR8cVwnJkwJYd1ZMmQGxxt0O6nNiDRNQlh3cpNuJ2TaIvzyKU6Yapvbkial1CGl1Hal1Bal1AZnWahSarFSaq/zb4izXCmlpiul9imltimlepSq51bn9nuVUre6a39EzbDbrBybGM6Wjx6q1XZ9UutX0hSRbHzImExVv6QTdv4Dk4LITj5S02G5jSXJ+Ibcapulii3rnuB9xmOZmZZYbXXG/Pw6ix8ew6GV31ZbndVt1vil2G2VzyXUykjwG6TvQTmc83mcH97KYSM0Y+9ptV30AY/Z+IDH7MmSoTPLJB6uCMg5VjaZcP4JyIk7rbaq2rbf2ucITo0padPZoMlWUCaB9CrMBOV8b7Bbjb/KVGYkqSgBSwnrBkqREt6NJUNnsnTQW2ViapS8BbSjzD6iHSeNgLmS2JZWVRLpSpJZG9w90nS+1rp7qWG1J4C/tNZtgb+c/wNcArR13u4B3gMjyQKeB/oAvYHnixKt+iw3NY6C7FS03UZh8qEy6xzWAnbNuoXMxJOPA5cnOymWzOMHayDK2pGblU7mr2EkfLeQ3V8/juPZINCa/Su+4cC04TXWbouVdtJid5Jx7PTehGtaYswqkveuL/7fVPyeWf43dIDYVd+Rn5lC3Mxrif6mCWt/fr9mg3Qjc06pD9+CbMhLd18wp6rosdTaiNua79LdjkWvIXrh7HLXbf/uO5pt9eTgh4+Tn3XqZ07VhrEv9SO0iS8lHUDZBERr2sV8yYH7jde9w+yBxVvRev88LNYcHGZj7tretiWvgdDF841tgaarl1XY9kmjJ5SMnoAxgoTDdtL6bltePqkui6MAv5w4Ou38CL+cOFBlz6CrbKSm3LjQZZOiUtt6FWbim5dYpo8AlMNKqv8+ABKDjNVhKdtpGrecXptep2nccrxtJV8Mk8IUDlP5XzDKLVcmlMNKsyNLUA4rqJNHq11NbKtKDCtbv6lnYLkx1yR3J00nugL4zLn8GTC6VPnn2rAGCFZKNQaGA4u11qla6zRgMeDW6fYJ2/7i4LtXl32SnyL7G53IfKUzGz6cwN7/9Sct4ZCxwuFgwy8fkDdrHeumuTZxN3lKTxJf61vh+ryEPTgKctG2QnbNuoX0OpIkxEy7jLyngrHbjG9FTWNNHP34J3Z/14TY7as4/P6TFLwfa5yFYbeWfHuqJp42SHrzAlLeHFit9VaXpLfGkPzmFRQ+FczhVT+UWWfNTiE/xUiqMw5uIj/9OCnH9nHwg0fZMu1qfJYYbzSph/fVety1YdsH92Cm5Kyi+OciOfxsWzdGdHocqYc5/nwbdr/cz6XtCz68nMx5L5Cffpzcw5vKvgdZjf5otMaHgztreE5nxrHTuptfkBeNWwdTJvEvOkynFChI6p3IqIfeos22Ldzz7oXc+/YwIqdezzm9/uH8FQ8DkH31/aQ8dQ0Hrm5Gw+ZtiYqJplNMNIEhEUTFRBMVE02T1ctYPbgZRyMUO28ZQPd5UzF5mEsdFlSgHKRcZHxEBuQcA1NRYqCN9WYL/Vb9gdfcD9lzVUu2XtIKmwmCcidx2xc3Y7Nswq/594x5oTsA3t98SMTSBaSH73G25axLKUweluKRmrbbtxMVE027HdvpvXg2JrMq0yUmDwtD//mGwN+/Z0c3XzxHXokyKTy8LUS0CgTsOLz96fbBXNb09qfv8i0AdN05G1/Lr2wf1YCQx7px58cPkjHjCSI3rqHVZ3PptnX6CYkh4LDRfcvbbO5Rdm7d4Lvs3Pf+xYSn/cz5Kx5m2PIHyfKBfeNGEfvEWNrv2klUTDQOb19QBfS7ug2Yrdi9fNgyKIJ9kWZsH74KVJ1E+qofnA9L6c9UB8E+v3LTl2s5HurqM6x6uHPsWgN/KKU08L7W+gOgodY6HkBrHa+UinBu2xQofSzhqLOsovJTEv3lY7SK/gDLxO2YQ5qXXZkeC4HNIC8VvIPKn0zntH/ZVxz98Gki1vuQcuE6GrTrU3XjWp90/P7oj43I9tHEN19G2z1BHBi5lPMuuQ09KQRbUiAB+f4c2VbFt0VbIamHt5H3awOjmVfzKUzax7Ed/9BsxWPY7QrHo7s5+NJQmgXkcfj8meR9tA5rzIUEv3W4bIj5mSi7FfwaVNoelvLPUrJlJKCzE/Fo2hV7Xga27FS8wluSl3IEbbfjGxF50n0SftiLTm6MZ7MHAbA4oMlR4w1s9+r5NNvgbdRts5L0Yns87QWEvRxftt3jMVgi2lc4PwIwRiE8/crdxr4wBDvA1BNWaA25KeDbAJ2Xht1mY893zxE+bBzhLbtQkJtB2t/v0mjUk+Qd20HetvmEXvLUye16+HD8y7uI2P8jyaM+Qimwrv2IxuMXlLSjFKQehOBzSN86n+Cfb0U/eQzT0iA0sJ8gEg4+SiO8AMiI20Pqe5dTWOgg9OZ3if9gAk1C8zly7kNErPEh/kACQc53YBNlD4UcXvU95/xxJ5mWUAKfOQipByCkpRFDXjr4BGPLiEcVZGGOaFdud2pbIQX7l+Hd/qKTVzocpP4+idANb5M67DXs2kx+RiLNLz+hb2wFYPEy9j8/HXzKDh6nb/0Fnyad8QpviT35AKaQ5mQlx3Hoh2foeMcscmcvJzKr5Ptg+s/hRvN+QSRe8TWNzh2JNfkAHuGty7abnQS+DUg/spPgTwZy5PJvad6j/O9g2T9MwPfiZzEFREBBFngFkHA4hn1bljPwinugMBdMFjBZyJp1Eb63fMvhtT/RasV/sT12GJV5DLuy4NmwPXmxG/EMaYHZrwGZ711U/AFZsOBNUpeHk+WbR+Kwj/FY+QbWwU8S0e9G4wM84ygENMEavx1TTiIFvzUgEMh8pSOJOV6Yhj9Fx8uMSdHKXvKBk/7P+8Ss/4AWY2fiG9zwhAdQo3OSUf7hxmOtFObARmVf34W54OnLwV/foMmmqXg9F0/a4e14+wdzZPUPBC6dTHL3O+h882u4qiBuB9Yd88nNHEXJh+OJr0nFja//BoCHp1dxaYduA+nQbSC5Y59i49/zuPGy26psLygkgjs+WFymzOGIwWRWdB7SlB3LjuFweHL1pK+Zt7krHgUOfIO88PbzoOeoSDb8doj8HCtms5lWXQfQqmvJ3Lkuzr8XLo0pLguPKRnVuXLeRmbevwST2VSqLU3sEzdizckiynnmnNliwc/ij8PBSdsCNG3ViWu+rfwaU7d/boxGWy3gYYO2T73Kxb1KXpt9LzQOeTVrHUSzNT+z7YElaIemJDE0027eW/QJb8q852+m8487SAmEgb2N10W3P1fz1y3D6DR5Fr2jzjup/QfevaB4ucfF5ziXStqP5gkaJW9hl3YYhw/LOdwX0dmX2GjQ9pLng8ls4qa3pgEwdFV05e/x1cxtZ88ppZporeOcidFiYAIwX2sdXGqbNK11iFLqN+AVrfVKZ/lfwGPAMMBLaz3ZWf4skKu1nnpCW/dgHNajcxOf87bf7UF257EUHt9NaNI6Fm6O4JzdFgoGZNOtSSYoSAjrTePUdWyL96dDRDZJOV408Ckk68pPCP/1NgAKTd54OkqGzpceDKHhWh8A8gdlcW7TLAAS2lxHw2umol5pxpGuDxK0diYBXnY0kJHlgb+3DYun8Tgcansr+ZONF3N8uKZxkoJRaUQF5BH9TZPitg6d4+DCXscpvHEufnOvIXbMQgoS99F2+Xhi2txJ052fEp3gT8BqPwDOGZPAvjQfkuN9abzLSPwirkwkcZ6Rl6aOKCB0ofFG1G7LesxZcWQtehHLyNfIfqULhSjCHl2FZXovTCZNXPMRND22kMShUwj/+3FS8yxYh/yXRuunoDXsaXIFGXYPrK0upO2SCSRmeUHPywk68B2HC7zo+vga0qb0wK5NeEWcQ+Ps3SSGdsO/6+X4r3ixzL6eKGVINg2W+QPQ5to49s01to26Pg6eS4MXQjh4zjXkbvqd9iE55N+7mqxtv6L3L8Vj+CSCP78IM3Cs8914b/yUtKH/w+wbSMSyJzg65+Th3tC7gwnN2osHVva0u5fWMe+TkONJmI+VIxneYNbEbwgmpHsWOYMfodWWl/nzYBgdr7oNz5XvEHvEj44XdKR50jK0howut5GzYg4NAgr5Z3M4TfZbSB2Ygz3XTPgmb9pfE4et0ITJ08Hmrs+SvXQ6/UIyWHUshMarfQi/KoWkH8tPYNXF6eg/jJdQ2oAcQv4xHv+0gTmErPQrs21y7zzC1vkU993K2GAarPIFwP+uBmTuO0hURDZKwaFEH7J7Xknwzh9Iz/Kg7RubyZsxEO9x/1CYHkfQp4PZN/wLwuffxq6jAbR54lPUj/egbHkEProNy+stsWtYuaohDY+aOd7GhklrbFoxaNq7WL4eAxoSbvwDv08uYUvUOHodnEVKhkJf+RrNlhhz2pSCVbtCiWicR+GQh/BePJ1mDfI4lBGEfbEvCa88RKMnKz5bLmtgNuc1yeRgig9twvOK36PtmDmU7klkQD4JmV5k/RFKRq98mo99mOD1b+H35F54wfhKqzWsWh1B1x4p+HvZSc7wJPWyN8j45hnyYvzoPX8pBS91QnmY0D7BHPnRhG24maQj+TTf5EXujGfw/H0iJjRNJyxk33NXEBaWT3P/fL450JAeG08+1JHSyE6DBDOJ3Qvo3zaFHJ8mZB5No2FIPkfyvUhweNBgQdnRgIT+efScspyAmV34dXNDWu826s310TgURAxKo1lAAbtGfUuXRdeSP2Eb6u2uJOR50mjiP+S81Y9CBzR4fDO5L59LgK+N2FbXwMZf8bx1Nruf/i+NDptpvWEVW8d1Iyy0gNjjvkRs8iY+0s6wvsb1e2wTD2B5o5XRd08fR73UkOTLPqdBp6GoV1tgf/Qgh5+OIjbBj1ZdAsn5ooAsX03vTTGI6rFhyXfs/fEDbpixuNLt3hv/Nx6eZnqMOIdNCw9jLbRz/4zzATi6bxtZl17HznMDGTNnbbXENW9UZzrst7Nk8HSUttP02AqONR2EVmYifN9CJaVx1RcreW/cUkwmVSZxHPdeyWUOlFL/rksOKKUmAdnA3cBQ5yhTY2Cp1rq9Uup95/Ic5/a7gaFFN631vc7yMtuVp7O3j/4uMrLKmPY1gTZxJ5dnd87Hf4f3qeweAMGjkkn/LazK7QotGk+b61lzZtc8Arf5kN8hn0yTiYhdZ35NmqZXJbB3bxC+230IuTyJtPnGN/Xcnrn4bvAts21K13wabDP6IyXCQYNE4xt+npfGYYKc7vlErDY+mAs8NV6Fxr4FX5ZM+i8n90dmoCYw8/S/NbS8Op6DPzQmPtJO40PGh4T5gnQy1gfin2mi8OIMPP8wDvLHtrTT4qCZuD75WOI8iDhS9VlkSQ0dhB+v+Kh2fHsrjXcbSWnKoBwarPCrcFtX5Pho/PJq71tUkdRgTWi6IjFMF08yP9LSTvODRh+FXZFI8s8RRFyZSEK2F6bFQWQMzCHImZgl9c0jfI3xuLe8Mp5NfzcCqyIkp5y2zs0jdLOxrf3CDMx/BnG0cyHNdhjP5awh2QQ4k+Rcb41vvhFPXEs7TQ6WfcxsXg4sBdU36+B4GysN93nQ+to49s+tOJFPG5xDyHJj30OvTiT1B+PLSL6Xxrug7OP3xdV2xv5gxK1GpKEX1tw0zMDLk8mcX/n7TuFFGXguDsLjgjSsfxmxBF2VRMaPzhG6q1Mw/WAk6WnBmpB0RfKgXMJWGO8FYaMTSf4povzKgYZXHOf4z8aIVsur4jn4Y2OSuxbQ7pxMUn8JJ2J4EomLjLaSQzVhqUZ/RcXUr5Mx/g0Ox6yncctOeHr5Vr2xCxJid5N28ehy153K43/WJ01KKT/ApLXOci4vBl4ALgBStNavKqWeAEK11o8ppUYB44GRGJO+p2utezsngm8Eis6m2wScp7Wu8NiVq0mTEEII97CZoMsuSZr+DYqujQewtVcA3dYbR2jqatLkrjlNDYF5yjgOaQG+1lovVEqtB+Yqpe4EYoFrnNv/jpEw7QNygdsBtNapSqkXgaLTiF6oLGESQghR98U/PKZ4bpD49/Bs0x7WbyC2iYW6+rPLbjl7Tmt9QGvdzXnrpLV+yVmeorW+QGvd1vk31VmutdbjtNattdZdtNYbStX1sda6jfNW5c8ke3RsX7wcc31vEt6ZyJG3JtAheldxedDC7wBosWkN4av+5NCEy4iKiaZwzls45s8m5K+fATg4bhTtd+1kzePDCV654KS2drf1ocmapeR7gPf8z0l9/xkSg6B99E6S3nyY7TeeeWKcFlIyMT18WUkM2/qGn1G9GTOfJmX2c2wf2Z7o/k2YP7Y1fz4ysLifVl/eikPPGb/Z5PHbF6Q7j0KlvPtkcR0tNq0hduI15H3ySnGZz6w3ipf9lv4EwPp+Ddg1wTiNOPHdx88oboC4cs6m+LurIst5VDX1+XtOWu/x08ccCa/ksNuMicTcbvy2lfXDktOMzd9/ULwcuXkdALuu78mxGf8tUwZwzqY1ZHvD0SduYO8NxhlRsc+NJfG9J1k5qgVRMdHEznyEwrnTabzWOD16d6nTGg4/WP4wdk3ZPsQ4KWL9Dd2K+873t/KPfCc4ZyJmzny6uKzws5KJwD5fzwIgpnPxlEU2DG5Usu1XbxYvp75hnAV19LEbi8scv35UvJx268ji5d96GYdydr1Qsu3p2t3P6OwdF5R/pt3WXifPI9vdwb94WX/1TvFyYYBxuDHTv/znVOCSn4uXYztUcoLFCRJCjf2N7lgyf2nb82Ncvr8r8p1vKetLnbqf5nx9b2lZUmabN+uM21rWufxDzxff/eIZ1y3qn9HPfkbBe/9j+JJqvLBrNasTc5pqU8+ePfW69esosObj41k9x2WLOBwOdnfsBEDOuy/Sc1jVb2bb1y3AcssjAOwfP5JCbSNq5h/F69OnP0G7vsM5GLsNvzElF3hsvXMr69f/zIC+15BXkING4+vlT6G9EE+zJ8u/f4fwZ94FwP75m5hveYSWW9ZzsHuv4jq2dfaj4d33MvCi27GYLCz6/AXSN67jurd/rZb+qIzWGlXBGQ8bln9H8qFomrTqjsdd5SdR4euWEhbYkLk3D8QjJZMrF2zjy7fuYeiYh2nWLAq7w47ZeYqw1W7Fo5KzHkvHUnqoGCDtjYfpf+nJSdZ3bz2AR3Aoo2+bTHp2CoG+IRVeWDInLxMF+Pqc3l5t2cMAACAASURBVDVFEmN3s+G5Bxn56SKWLfuSY7E7OPeln8vdNjYcWiQZy3siPWl3qLB43a42XvhmWwl67GH6j7yLvwZ0JD3Cjyb3j6fXBTexbN7b/2fvvsOjKroHjn/PpieE3mvoBAhEQEAFRBFEEMUuig0sIOirvhaKHX0VGyqgPwsqVkQBlSYdAZVOgITQCRA6BNLb7s7vj70JCSQkhCS7gfN5Hp7szp2de+7skj2ZO3cux+bMpO0/R4h64EpuHzmJxLQEgv1zx31mH+0acSd9H3iVlIxkgvzKkZiWgHE6KB9Yib3b1lKzQSh+/kGcOB5LpSq1SU9LZvP6P+l41R252jl0bA/VKtfD28ubY0lHqFauBmlpSRw4vofGdfMed8j6/SUizJk7ngoVahBk88fvwdyfmw23tMSnUmVaf7UCx2+fUb5STQIDKlC1fA1mdg8l87rO3DzqS2Z88Dg3PP4O+9q5lukInPk9B1MOkXnqJJdffjN/DrmZJkP/S8ybr9JkZzJpn7+Fl48Xu+f9ys2vfMN7Hw+gWsU63Np/JFG39qXJD1M4tmYF8tz/qLl8Adv3rCX55FGu6fUI87q3hvtupdPtwzlwZXcarlzB2n9nUP0/p69jOfjx0/To9Shzp79Hx+4DOBwTxbbXR3H99ws4tiuK479Pp8PLH5CYnsjqaZ9Q+/VvANjUtQ4BjZtw3X8/4PDuzaTf/GCu/tj9+gMEV67Onhk/0ve1r1nw2hDCF+ym2l9z2Xd0O4KNy8Ku49+hd1Pr7vtp0O0Gpiwcx4Cez7Br11p2bFhC79ufY+pdnXGG1OHusdPYd2Q75XyDOXKFa4LuodcGYw/w4dih3dzz6If8+NzNXPn4qyQePYjPg89Ra9VSAoMqsXbLAq5s05ddu9eSkZ5GaKhnLvOhSkbO3ydFncd20c9pcqeSvvfcjLGPUWXaMjotX4dfISfLHTy0g8DAClSs4JpMub5NKDs61OCGcb9SvsLpSZzn8+EyxrB8wdd07jEQX6/Tk8OPHNxJ3LWupf8j72jLHWOmFPrYSlvMjghS+w3Ifr7uxia0n+VaW6ikJolm9fHaK6pw04czqFDhwkbsSsrK9i2pkHz2/13z/USc9lS8HnyWo2MepVK9JqTEn6Dz9Q+eXTdHwlEUK2Z/waHJk7jlx+V4n8f97krDlg0LkQFPAGD/4UPC2p//Qqg5E+8zHdwfzZpv3qXf6C8LtQr7+Th4eCfL3niCvm99T3Bw4UehADaum0vy8cNceX3uW0xMH/soaWLnsq/+Zeut7bjlfz/k2m532ElMPEGlM5cgKIJ537/J4aXzeODLZRfclrr4adLk4cryDXuXzJxIzecmsPe9ofS+8ckit5P1Id18Zzh3vp7vhYZul56azO7LOrDluibcNmEmG5ZMxX/oK0DJJU2zrm9N470Otg7qyi3Pf17wC9zE7rCz+MtXaHLlDTQK68Kc69vRcG8qVRb9QfU6TUlIT6C8X+mvlutJsj7nehXWaYmp8QT6lcs3GVSqtJW1pKns3ZjpEnZNv2HQb1jxTZATT1sQPje/gCCq/bOQm8q7RnvCut3KHzf9QtuHninxfRvnue+B5W7eXt70euzN7Oftv57KpoVTCK3jmo9zqSdMKm/BARXcHYJSZZomTZegHZdVp+mGo1St17zgym5WtfLpmdDeXt7c+s4vJbo/k32mqmyNwNao3YSe97/o7jCUUuqi5tlDDapEtHx1LJvDgml3xxB3h+JxTNb8HodnjzSpgjm+/SD7SjyllCoOFzTSZN0C5SqgNpAKRAJrjTH6jePBmjTvTJNfVhdc8VJk5Uz6ES77Wne8wd0hKKUuMkVKmkTkGmAEUBnYABwF/IH+QGMR+RV43xiTUFyBKlWqLrELJJRSShWsqCNNfYBHjDH7ztwgIt7AjbhuZTztAmJTqtR52V3Jko40KaWUOlNRk6Z/80qYAIwxduC3ooeklPs02ucAwOyOdXMkSimlPE1RJ4LrZTrqoiZp6e4OQSmllIfRq+eUyoPonCallFJnKOrpuRYisimPcsF1f902FxCTUu6nSZNSSqkzFDVp2gP0K85AlPIETgGbgYyquqK2Ukqp3IqaNGUYY/YWayRKeYCtLf1oGZWOLTjI3aEopZTyMEWd0/R3sUahlIcwp1e3dG8gSimlPE6RRpqMMcMBRMQPuA0IydmWMeb14ghOqVKXlTM5NWlSSimV24XesPd3IB5YB+g12qrss+49J2Xshr1KKaVK3oUmTXWNMb2LJRKlPICxRppw6orgSimlcrvQdZr+EZGwYolEKU9gjTQZndOklFIlLiHA3RGcnwsdaeoCPCgie3CdntN1mlSZZsT1d0T2hHCllFIlxngZKEO/by80abqhWKJQykP4V6wBJFGpdmN3h6KUUhe9CkllJ2GCIiZNIlLOGJN0rrWasuoUPTSlSt9lL77DisSH6fXwCHeHopRSysMUdU7T7yLyvoh0E5HsVQBFpJGIDBaReYBOEFdlTr26LRnwwz9UqVTb3aEopZTyMEVdp6mHiPQBHgOuEpFKgB3YBswGHjDGHC6+MJVSSiml3KvIc5qMMXOAOcUYi1JKKaWUx7rQJQeUUkoppS4JmjQppZRSyi2ctrK1Jl6RkiYRmSMiIcUbilJKKaUuKWVrxYEijzR9A8wXkdEi4lOM8SillFLqEnGgSQUADtXzc3MkhVPUq+emishs4GVgrYh8BzhzbP+gmOJTSiml1EXqeO1A6m1L4FjNizhpsmQCyYAfEEyOpEkppZRSqmBl6/xcUVcE7w18APwBtDPGpBRrVEoppZS66AllayJ4UUeaRgN3GGOiijMYpZRSSilPVdQ5TV2LOxCllFJKXZrKykk6t63TJCJeIrJBRGZZzxuKyCoR2SEiP4uIr1XuZz3faW0PydHGSKt8m4hc754jUUoppVRRmDN+ejp3Lm75HyA6x/OxwDhjTFPgJDDYKh8MnDTGNAHGWfUQkZbA3UArXDcH/kREvEopdqWUUkpdICkzY0wubkmaRKQu0Bf40nouwLXAr1aVyUB/6/HN1nOs7T2s+jcDU4wx6caYPcBOoGPpHIFSSimlLjXuGmn6EHie08sUVAFOGWPs1vNYoI71uA6wH8DaHm/Vzy7P4zVKKaWU8nBl5bRcllJPmkTkRuCoMWZdzuI8qpoCtp3rNWfu81ERWSsia48dO3Ze8SqllFKqpJSttMkdI01XATeJSAwwBddpuQ+BiiKSdTVfXeCg9TgWqAdgba8AxOUsz+M1uRhjPjfGdDDGdKhWrVrxHo1SSimliqRszWhyQ9JkjBlpjKlrjAnBNZF7sTHmXmAJcLtV7QHgd+vxH9ZzrO2LjTHGKr/burquIdAUWF1Kh6GUUkqpS8yF3EaluL0ATBGRN4ANwCSrfBLwnYjsxDXCdDeAMSZKRKYCWwA7MMwY4yj9sJVSSil1KXBr0mSMWQostR7vJo+r34wxacAd+bz+TeDNkotQKaWUUsrFnes0KaWUUkqVGZo0KaWUUkoVgiZNSimllHKTsnX9nCZNSimllHITXadJKaWUUqpgZStn0qRJKaWUUqowNGlSSimllHuUrSlNmjQppZRSShWGJk1KKaWUUoWgSZNSSimlVCFo0qSUUkopVQiaNCmllFLKPXTJAaWUUkqp81BGrqLTpEkppZRSqhA0aVJKKaWUKgRNmpRSSimlCkGTJqWUUkqpQtCkSSmllFJu4eftSkN8vMpGOlI2olRKKaXURSewfBUA/IIqujmSwtGkSSmllFJuUa/f/QDUvuV+N0dSON7uDkAppZRSl6ZWV9wIW290dxiFpiNNSimllFKFoEmTUkoppVQhaNKklFJKKVUIYkwZu1veBRKRRGCbu+O4iFQFjrs7iIuA9mPx0z4tHtqPxUv7s/g1N8YEl8aOLsWJ4NuMMR3cHcTFQkTWan9eOO3H4qd9Wjy0H4uX9mfxE5G1pbUvPT2nlFJKKVUImjQppZRSShXCpZg0fe7uAC4y2p/FQ/ux+GmfFg/tx+Kl/Vn8Sq1PL7mJ4EoppZRSRXEpjjQppZRSSp03j0+aRKSeiCwRkWgRiRKR/1jllUVkgYjssH5WsspbiMi/IpIuIs+e0dbTVhuRIvKTiPjns88HrHZ3iMgDOcr/FJGNVhv/JyJeJXnsJcGT+jPH9j9EJLIkjrekeFI/ishSEdkmIhHWv+oleewlxcP61FdEPheR7SKyVURuK8ljL06e0o8iEpzjMxkhIsdF5MOSPv7i5in9aZUPEJHNIrJJXN9HVUvy2EuKh/XpXVZ/RonIOwUGb4zx6H9ALaCd9TgY2A60BN4BRljlI4Cx1uPqwOXAm8CzOdqpA+wBAqznU4EH89hfZWC39bOS9biSta289VOAacDd7u6fstyf1vZbgR+BSHf3TVntR2Ap0MHdfXKR9elrwBvWYxtQ1d39Uxb78Yx664Bu7u6fstqfuJYIOpr1WbT2/6q7+6eM92kVYB9Qzao3Gehxrtg9fqTJGHPIGLPeepwIROPqqJtxHSDWz/5WnaPGmDVAZh7NeQMBIuINBAIH86hzPbDAGBNnjDkJLAB6W20n5GjHFyhzE8I8qT9FpBzwDPBGMR1eqfGkfrxYeFifDgLesvbjNMaUmcUIPawfARCRpri++JZf4OGVOg/qT7H+BYmIAOXzeb3H86A+bQRsN8Ycs+otBM45quzxSVNOIhICXAasAmoYYw6B6w3A9R8yX8aYA8B7uLLKQ0C8MWZ+HlXrAPtzPI+1yrJimIcr208Efi3ioXgED+jPMcD7QEqRD8IDeEA/AnxtnQJ5yfqFWqa5s09FpKL1fIyIrBeRX0SkxgUcjtt4yGcTYADws7H+nC+r3NmfxphMYCiwGVdi0BKYdAGH4xHc/BndCbQQkRAr6eoP1DvXPstM0mSNSkwDnsox4nM+r6+EK4ttCNTGla0PzKtqHmXZ/9GNMdfjGlr0A6493zg8hbv7U0TCgSbGmBnnu29P4u5+tH7ea4wJA7pa/+473zg8iQf0qTdQF/jbGNMO+BfXL+YyxQP6Mae7gZ/ONwZP4u7+FBEfXEnTZdbrNwEjzzcOT+LuPrVGnYYCP+MaBY0B7OfaZ5lImqwPyzTgB2PMdKv4iIjUsrbXwjX6cy7XAXuMMcesjH06cKWIdMoxUfEmXBlozkyzLmcM9xlj0oA/cL1ZZY6H9OcVQHsRiQFWAM1EZGnxHGHp8JB+zPprK2uY+0egY/EcYenzkD49gWv0Myuh/wVoVwyHV2o8pB+zYmkLeBtj1hXLwbmBh/RnOIAxZpc1YjcVuLKYDrHUeUifYoyZaYzpZIy5Atd9aXeca4cenzRZpxomAdHGmA9ybPoDyJoB/wDwewFN7QM6i0ig1WYPq81Vxphw698fwDygl4hUsrLYXsA8ESmX4830BvoAW4vrOEuLp/SnMeZTY0xtY0wI0AXXeeXuxXWcJc1T+lFEvMW6gsb6JXQjUKauRMziKX1qfSHNBLpb7fUAthTDIZYKT+nHHO0MoAyPMnlQfx4AWopINau9nrjmApU5HtSniHW1sVX+OPDlOfdoPGAm/bn+4fpCNbiGIiOsf31wzXpfhCsrXARUturXxJVVJgCnrMdZV729hivRiQS+A/zy2ecgXOc6dwIPWWU1gDVWHFHAeFx/Pbm9j8pif56xPYSyd/WcR/QjEITrqqSsz+VHgJe7+6cs96lV3gBYZsWyCKjv7v4pi/1obdsNtHB3v1wM/QkMwZUobcKV2Fdxd/9cBH36E64/irZQiCvidUVwpZRSSqlC8PjTc0oppZRSnkCTJqWUUkqpQtCkSSmllFKqELzdHUBpq1q1qgkJCXF3GEoppZQqBuvWrTtujKlWcM0Ld8klTSEhIaxdu9bdYSillFLFJjMzk9jYWNLS0twdSonx9/enbt26+Pj45CoXkb2lFcMllzQppZRSF5vY2FiCg4MJCQlByv6dlM5ijOHEiRPExsbSsGFDt8Whc5qUUkqpMi4tLY0qVaqUuYTJGENcUjrOApY/EhGqVKni9pE0TZqUUkqpi0BZS5gAEhMTqHRqCwknTxRY1xOOT5MmpZRSSrmFV3I8aad88Ek65e5QCqVEkyYRiRGRzdZN89ZaZWNEZJNVNl9Ealvl3UUkPsdN9l7O0U5vEdkmIjtFZESO8oYiskpEdojIzyLiW5LHo5RSSqniI5l266fDzZEUTmmMNF1jXDfN62A9f9cY08YYEw7MAl7OUXe5OX2TvdcBRMQLmAjcALQEBohIS6v+WGCcMaYpcBIYXArHo5RSSqlzGD58OA0aNDhnncGDBzNr0UIioqMZ/c57pRTZhSn103PGmIQcT4Nw3bTvXDoCO40xu40xGcAU4GbrjsbXAr9a9SYD/Ys7XqWUUkoV3p49e1i6dCkZGRkkJibmWy8iIoLQli0IDw3lpReeLsUIi66kkyYDzBeRdSLyaFahiLwpIvuBe8k90nSFiGwUkbki0soqqwPsz1En1iqrApwyxtjPKFdKKaWUm7zyyiu8+OKLtGzZkqioqOzy7du306VLF8LCwhg3bhyHDx+mTq2aDBoxghUrV7sx4sIr6XWarjLGHBSR6sACEdlqjFlmjBkNjBaRkcBw4BVgPdDAGJMkIn2A34CmQF7T5c05ys9iJWyPAtSvX/+CD0oppZTyVK/NjGLLwYSCK56HlrXL80q/VgXWi4qKIjIyksmTJ7NixQqioqLo3LkzdrudgQMHMmHCBDp27Mjjjz9OixYtAIjcvp1WzZsVa7wlpURHmowxB62fR4EZuE615fQjcJtVJ8EYk2Q9ngP4iEhVXCNI9XK8pi5wEDgOVBQR7zPK84rjc2NMB2NMh2rVSmWldaWUUuqSM3r0aMaMGYOIEBoaSmRkJADTp08nNDSUjh1daUCrVq0IDw8nIyOD5NRUKlWsSHJyMg888ACPPPIIP/zwgzsPI18lNtIkIkGAzRiTaD3uBbwuIk2NMTusajcBW636NYEjxhgjIh1xJXQngFNAUxFpCBwA7gbuseotAW7HNc/pAeD3kjoepZRSqiwozIhQSVi1ahXz5s0jIiKCYcOGkZaWRps2bQDYtGkT7du3z667bt06unfvzrYdu2jeqBHgSqxuv/12+vXrx1133cW9997rluM4l5IcaaoBrBCRjcBqYLYx5k/gbRGJFJFNuBKp/1j1bwcirfofA3cbFzuuU3jzgGhgqjEm6yTpC8AzIrIT1xynSSV4PEoppZTKx6hRo5g1axYxMTHExMSwcePG7JGmKlWqZD9et24dP/30E+Hh4URGbyWseXPAEBsbS716rhNLXl5e7jqMcyqxkSZjzG6gbR7lt+VTfwIwIZ9tc4A5+ezjzFN+SimllCpFCxYsID09nR49emSX1ahRg+TkZOLi4rjvvvvo06cP4eHhNG/enIoVKxIaGspn497nilZhBKQa6tatS2xsLOHh4TidTjceTf70hr1KKaWUuiA9e/akZ8+eZ5XHx8dnP169+uwr5P5etYYnB7hOw916660MHz6c2bNn069fv5IL9gJo0qSUUkqpUpWcnEzXrl3p0bkz9WvXBiAoKIivv/7azZGdmyZNSimllCpVQUFBrF+/nlRrnlNZoTfsVUoppZQqBE2alFJKKaUKQZMmpZRSSqlC0KRJKaWUUqoQNGlSSimlVJ5Sk5IwJs/bul6SNGlSSil1UXA4DWmZDneHcdGIPxILMTEkHN7v7lA8hiZNSimlLgoL7ricPWGti6Wtxd9+wMxb25GZmVks7ZVF9rRkABypyXluT09NJjUykvgiJlXGQ1f9Phddp0kppdRFoUFU3l/uRRE87gtqpULM1tUEelekct16BASXL7b2PVVKYjpJcenYvJMRzn1aLjUhDj/AJMRDzXrnvS/jKHsJqY40KaWUKtP+mfYFiadOZD8/sKvgBRPTkpNIOHki3+1i5Qunjh4i4ZbbibymI9vXHGbikMVsX3fkgmP2VElx6QA4MwMBASAgJe9TniKu7XlNeRo+fDgNGjQ4574GP/wIc5ctIyI6mpfGjSM9JYmkk8eKHnwp0KRJKaWUR4lYvJeJjy3i65GzmDhkEVPGzMiz3r4tJ5g4ZCHmnZnMfPDq7PKExOMF7mN7x8s5cEWX3GU5kqKgNFfZwQ9fAqBckrDomy0ALPoqKtfrUpKTSU1OyhXXJ0MXs29rXP77P48ELDk+nRnvryM5Pj3fOpnpDo7uTSAtOf/Rm7TkzHzrHN2bwNG9CacLRHBQi8Tg+lYMJ0iOiiQ9JSm7rfTU8ti9A/A64yzbnj17WLp0KRkZGRw/epKjexNIT7Wftc+IjRsJa9aM8NBQXn5uNPHHnJgjCaQknuLk/h15xp6Z4d45a5o0KaWU8ih//+z6wkyJCwADJ2LL88dH/yG6RSjTb27Jz2PuIbpFKDM//heMsLnVw1y29fSX6c7505h3bStitq3nk2fC+OSOlqSnpfDT49354eGriNkZgY9VffYHzxDdIpR5V7dkwaRNYEyupKjZDlh89QQWd5+I03qN0wEThyxm4pBF2O2Z7G3fgZj2l7Pw63eIbhHKnPf+xjgNc95bAUB0i1AW9wknIyWZ6Bah7F+3lAVfRWbvKynuMLsi/86uO/2GUOyZdjbOnwrAku+3cnBHPEu+38rMT0cyZUhvAE6eOozDbicjPY20pAwAEo6nkp6WAkDc3u0kR0WSknSKEzsiSTieml3nTAHBcvaQkTEEpLpGfmz7D2Ez4NwdQ2pkJAnHXPtI9a+KtwNSIyOzb4ky4r9P8fwDD9CyZUtW/7Mue59bt26lS5cuhIWFMW7cOA4fOULdmjUZNGIEiyK2ZLcne2Pxj08nbmcUKVGudrNiTkvMIOKXSfxzbUcAZkx7qzAfqWIjl9qlhB06dDBr1651dxhKKaXOMHHI4nNXMIZr/xrO4qsngHVqKK/t56ug9g5XDWdLy0EgNlc9Y8A4aBX1FTVObCx0O4Wtk2Vp1w9xevmcVdXmyKT78qdytXf5wEqE1GsMQLlVr+IdF4WX3TUy5fD2y/fYs+oAOLz8ss7IWTGBl8O13VRsQmb4U9kjT3kJTtzHlp07GTxqFPPm/MuoV56jdas23HvX/djtdvre1pO3XnuPqxtX4z9vvMGOmBh+/nk+3XtfyYwps6hUsfJZ7Z25v5j9u1jz/clc/dVy29Z1xpgO+QZWjHSkSSmllGczBoyhZuxSANpu/BibPf30yIgx2OxphEd8VKTmW0Z96Ro+ytEeTjutIr8AoObxCDDO09sAjDNXwlTYuAraV05OW97XauUsz24vJ2Ow5ZhkbXNkctacbkOuOrnKnY6z61v8U4/n0dbpEalXP/6Yl4cPJzD1GE0bN2PrtmgAZv/5B80aN6NLs7oAhDZuTJvmzbHFHyQlJZlKFSsTs28PTz0/jMFD7stuL8/95dNfpUGvnlNKKeUR+j3ZlpkfR7i+JEXI/ra0Hrd4pRuxI6ZT9+B2jDe4hkVcdcRpp1zyDkK3RrNv62aq129I/KnD7L2xH2HLVrNk9D147dhD/d2uBGN9t+q0W3YUgB09kyHWCTbXOIIRkDOTIrGBM5P6bf3YF+UAvAjdGs2Sq1qRVMmHJjvTqXJqO07vHMmQCOK0Uzl+B7X/XsLBq66h5vEIor29MA5j1SFXApbuY4gI86fT+nRqNt/E4W2tAK/T/eF0EL5xQnZYNY9HsMXknlSU1Pk1ghP35SpLLFcv9wiXMQQn7cdesyocO453jrwrqYIfAdb8qazizFpV8Tl0HB97CmmuNyhX+972VFZv2sTCf/5h07ZtmP+9SVq6nZahrQDYsjWKNq3Ds0eu1m6P5prLOrBzeyRNmzQHIKR+Qz58ZyKDh9yHt911Oi7TO/XMXSHe3nT56zt2tG5DadOkSSmllEeo37IKIDm+JHN+WwqtOvak1WLXfKOlw5fg6+tFu94NWDNlIw4vX9pGukY16rcIA8A/sAk11rvK+nw0k8S4o8Re6ZowHnLjQFj2AQCPvvIHE4cuxmYTWl9dh8i/DuDEN3vPoVujCc0n5mv+dsUz/cV7CA5pgS0iAB8rrvV/7iXTO5jGmzbi6+tLha2uWBYPXYzN23Z6X3J6X+GbtxKetV/gk8cXczonEmze3iQ3PETlCNjdrRJ17xkBU3xAwNvPiT3dlfgFtHatV3Xs0D6CTiRkn1b0zUwiwzcYRPBt0ZwAbx+oWhMge06St38QWEmTfytX0iOpSRisCfZWAucX6EV6ijP7fXr144+ZNmECfR5+GIDIdTu5rk9Xgir6UblyZbbuiAb6sj4qiumz5jL8iWFsXr6SVi1an47Np1yu/rUZk524BQT7gnV21Nvbh1CrP/M83VlCSjRpEpEYIBFXsmo3xnQQkTHAzYATOAo8aIw5KK5rFz8C+gApVvl6q50HgBetZt8wxky2ytsD3wABwBzgP+ZSm6SllFIXEZu35E46MhwMnXDNWfVylgU82ZvDlQF6n7PtoApVsh8HVqmRa9uwT6/Nftz1zmbYMzLYcR4DGbe+8SMAPXOUteuV9yX3Z+4LILpF3u2KTfD1z90fvaasYePSWfTtfiMAbbtDdHQ0lWtWPOv11WrVh1oQCJzcvxOv4GCqVzn3elP+wRVxHIkjLcibgDwSkuoNcr8+LSWJBRHbSMvMoEvXztnlrds3ITUthXRHMkOfeIQ+ffpw+V130qxpUypWrEiHK7rx05eT6dimDcFJrgUy/dJP4u04PVHdPx0qNT29v+DK/rn6r7QVKmkSERvQFqgNpAJRxpjCLlRxjTEm5/Wf7xpjXrLafRJ4GRgC3AA0tf51Aj4FOolIZeAVoAOucdh1IvKHMeakVedRYCWupKk3MLeQcSmllPIwOZOh/JKOM3n/+DXtQhoXWM/m5QXAniY+hNdsQvy52vR1jf7srW/Ld5SpNOTXH22thOl8VKrXpFD16BeAHQAAIABJREFUxOZFQOvWBBSyXf/AcvTrfxv9+t921rb4+NO9vHr16rO2L1u7lmEDBwJw4tQpXv34YzZGR/Pul1/y3MMPk+lNoeMoDedMmkSkMfACcB2wAzgG+APNRCQF+AyYbIwp9FroxpgcC0EQxOkpXjcD31ojRStFpKKI1AK6AwuMMXFWTAuA3iKyFChvjPnXKv8W6I8mTUopdUlp2q5zwZUs5efMpHu1GgQGB7N92H00veHsL/ostq8/o1PDZsURYpkitrNHl4r7JE5ycjJdu3alR+fO1K9dG4AqFSsy/uWXAXDaACfYy/kX634vVEEjTW/gGs157MzTXiJSHbgHuA+YnM/rDTBfRAzwmTHmc+u1bwL3A/FAVhpdB8h5A5tYq+xc5bF5lCullFJ5qtPo9GhL9ydGnbNu8yu6lXQ4HsnLdvYyB8bpPHM+9gUJCgpi/fr12fOozuTTqDEpB2OoUDOkGPd64QpKmj4yxqzMa4Mx5ijwYQGvv8qar1QdWCAiW40xy4wxo4HRIjISGI7r9Fte78fZU/QLLj+LiDyK6zQe9evnv8aEUkop5Q77h91O+vHDbj0VmCWvkSZvHz9Kcy1uX/8AfBt5Qm/kVtA6TZ9cSOPGmIPWz6PADKDjGVV+BLLGRmOBnHf8qwscLKC8bh7lecXxuTGmgzGmQ7Vq1Yp2MEoppVQJ6fXEGPq95p61hwrD1z8AadQYv5Yt3R2KW5XY4pYiEiQiwVmPgV5ApIg0zVHtJmCr9fgP4H5x6QzEG2MOAfOAXiJSSUQqWe3Ms7Ylikhn68q7+4HfS+p4lFJKqUuZf2AANtulvSZ2QafnGonIH/ltNMbcdI7X1gBmWHdB9gZ+NMb8KSLTRKQ5riUH9uK6cg5cV7/1AXbiWnLgIWsfcdYyBWuseq9nTQoHhnJ6yYG56CRwpZRSqkzL8Ld51BVzORWUNB0D3i9Kw8aY3biWKTizPM9LFayJ5sPy2fYV8FUe5WuB1kWJTymllFKeI91PsBnwqx3i7lDyVVDSlGiM+atUIlFKKaXUJcurWi2Cz7hpr6cp6ORkTGkEoZRSSqlLm6cnTFDASJMx5tasxyJyJRCS8zXGmG9LLDKllFJKKQ9SqGnwIvId8B7QBbjc+tehBONSSimlVBk1fPhwGjQ4921wBg8ezNxly4iIjualceNKKbILU9gb9nYAWurNcJVSSqmLk2kQUiy3S9mzZw9Lly4lIyODxMREgoOD86wXERHBiAEDqFuzJuGhnreQZV4Ku+BCJFCzJANRSimllPsEBpcjqHzeCc75eOWVV3jxxRdp2bIlUVFR2eXbt2+nS5cuhIWFMW7cOA4fPkzdmjUZNGIEy9asOUeLnqOwI01VgS0ishpIzyosYJ0mpZRSSpWysavHsjVua8EVz0OLyi14oeMLBdaLiooiMjKSyZMns2LFCqKioujcuTN2u52BAwcyYcIEOnbsyOOPP06LFi0AiNy+ndbNysaNkQubNL1akkEopZRSquwbPXo0Y8aMQUQIDQ0l0roh7/Tp0wkNDaVjR9fd1Fq1akVAQAAZmZkkp6ZSuUIFfvvtN2bPns3Ro0cZNmwYvXr1cueh5OmcSZOIiHHJd62mrDrFH5pS6lzSHek4jZMAb09dO1cp5Q6FGREqCatWrWLevHlEREQwbNgw0tLSaNOmDQCbNm2iffv22XXXrVtH9+7did61i+aNGgHQv39/+vfvz8mTJ3n22Wc9MmkqaE7TEhF5QkTq5ywUEV8RuVZEJgMPlFx4Sqn89Pn1Bjp+f7m7w1BKKQBGjRrFrFmziImJISYmho0bN2aPNFWpUiX78bp16/jpp58IDw9n87ZthDVvnqudN954g2HD8rxBiNsVlDT1BhzATyJyUES2iMhuYAcwABhnjPmmhGNUSuXh2YmH+P5dh7vDUGXA3wf+JmxyWLHPc1Eqy4IFC0hPT6dHjx7ZZTVq1CA5OZm4uDjuu+8+IiIiCA8P55133qFixYqEhoayeds22ljzmYwxvPDCC9xwww20a9fOXYdyTgUtbpkGfAJ8IiI+uCaEpxpjTpVGcEqp/IUcdXcEqqzYOP97po61s6XWn7To1cLd4aiLUM+ePenZs+dZ5fHx8dmPV69efdb2ZWvXMmzgQADGjx/PwoULiY+PZ+fOnQwZMqTkAi6iwk4ExxiTCRwqwViUUkqVgBoL1roeLFgEvZ5ybzBKAcnJyXTt2pUenTtTv3ZtAJ588kmefPJJN0d2boVOmpRSniklM4VAn0B3h6E8mNPhOo2bYdfTucozBAUFsX79elKteU5lRWEXt1TKLRIyEgibHMby2OWlsr/Vh1azL2FfqeyruCTFH+OPXX/wxKIn3B2K8nCCuDsEpcq0cyZNInL9ObbdUfzhlH1bTmzhQNKBEmv/04hPiT4RXWLte5qpG79j6lt23v1haKns7+UfB3H3D31KZV/FZdXuv5jx1UiafLnovF87P2Y+O07uKIGo3C8+Pb7gSpca0aRJeaaysm5RQSNNc0RkiYjUyWPbyJIIqKwb/v2d3PFdvrlmgeLT4/MdVXEaJ7smTeCZb+8qcvtlTdUfZgEw9uvSOa0w7gsHH31Wtk5heIsvz09z0mvD+f/a+fyHZ3jk+1tKICr3WnVoFVf/cFWpjVAWp/j0+GK5/1dO4nS157Rp0qTUhSgoadoE/AiszGNkqcD/fSISIyKbRSRCRNZaZe+KyFYR2SQiM0SkolUeIiKpVt0IEfm/HO20t9rZKSIfi7j+XBKRyiKyQER2WD8rnc/Bl4SJnzqY9FHRv3R7fHsV734/lDm755y1LTMjhcELnLzxTeaFhFimJCcmZD8OmxxG72m9S3yf5dJg96ndJb6f4lJ1655cz1MyUwo9yjLmOwfjPy1bSWJh7F70Kz+94yBm/s/uDuW8xKfH02VKF176+6XibdhKmoxNZ2QoD1VG8vmC/gcZY8wXQA/geRH5WkSyZpwW9k+ha4wx4caYDtbzBUBrY0wbYDu5R6x2WXXDjTE5rzX8FHgUaGr9y/rmHAEsMsY0BRZZzz2C0zgLXXfChgm0mexaNfWtbxyM/cbBpKkj2XB0A5nO0wlSapLrizAwPc9mCm36julsObHlwhopJZWcftmPn57hoPsfpTPfKG7LqlLZT3HYvS/32js3/XYTXaZ0KfTrvQv/US0zvJe7Lm32X7GB46nHOZx82M0RFU7iySNMfctO4rQZxdrucckAYJWj7PwxoJQnKtSfHcaY7cAVwBFgg4h0KuoOjTHzjTF26+lKoO656otILaC8MeZf63Yt3wL9rc03A5Otx5NzlLtFpuN0gmO3ZxT6datmfMojc+04jZO6J1xlr32bwdDp99Hu28uy66UlJ55u32k/s5l8GWP4a/9fOJwO0h3pfDz3ZR6cdmehX+9OqZXLZz++Yqvh5lVn5+olcRefjesXseHohmJvtyRUMP7ZjzMcGQz+6iDfvpf78zFwzkAGzRsEQGxiLKOWjyLNnlbkfR5JPlLk15aGTKcrE3QauHZKd3pNvQ5jjMfPczoV7VoaYMjc88tk0x3p/LL9F5zGycSIiexN2Jtr+9WRrv8jXTcX/veGUqXpYpnTlD1gZoyxG2NGAI8BP+Ea8SmIAeaLyDoReTSP7YOAuTmeNxSRDSLyl4h0tcrqALE56sRaZQA1jDGHrPgOAdULCijqRBRfbv6S8RvG03d6X+LT4/kz5k9S7alkOjOJTYwl05lJXFocGY5zJz4rD60kPj2elMwUFu1dxK5Tu7K3OewZHEg6UKhf0qOmOrkuwjBi2en7Be1o7M3XHzoYNstJTHwMYZPDmBT1Tfb2Z5Y8zf1z7ydschjW8Z/VbtjkMMImh/Hrjl8ZMWsY4d+Fs/PENj79xMHkDxxcO/VawiaHEX0imtv/uJ2wyWEFHnNhGGNyJZAXwlnL9VZvCjk9dutwnj6d9G3Ut7T5tg2jlo/K9brDyYfPO4ac7c47uZIH5tzH+iPrmbtnLrN3zwZg/Ibx7E/cn+t1J9NOMnPXzPPaF7hOo+UcSSyqL/k7+/GpxKOE7zH4Z0LE0QjCJoex69Quyi/egH3FKhxOB7f81JtTv//Oz9tyn7o6mnKUU2kFr1vb9tu2XPfrdfy550/WHl5bpFHLE6knOJh08LxfV1jbiQPAhvD+lw6+e9/B6BWj6TKlCyOWFzwg7XA6+CbyG46nHi+xGPMSn1m0pKbXLz35vzmv8fH6j1n2xyc8O+fxPOu1KlsXhirlcQpap+m1MwuMMUtFpD2u5KkgVxljDopIdWCBiGw1xiwDEJHRgB34wap7CKhvjDlhtf+biLQi7zOd55WUWgnbowDNgvyZ+8eH7KoFQWmc12mMMwWmGVL9wFhXpPhlGL6ztl3545XYvQt3knaq9bP85NnZZUf8HLTA9Rdivxk38vH/OXj9nlncam23zVyMbwDccdQQRlie7V6/zsng+U7evPNVvprqZPqVwrCEe/jU2t503REm/u7kgfQ7eGyukzHRhvam3VlX2LSq0oqoE1GFOpacmlRsQlJmEoeTD/NZz894bMFjNK/UnFGdRvHAn65bFt7c+GZ+3/U7X/b6kofnPwzAfS3v47strp5sm+CkNVAu7fRbHv5dePbjZrGGqd85eHbwH4TtdiUudze/mynbpgDwdPunGbduHAAvdX6JMSvH8FCrh/g66msAagfV5uE2D1PZvzLNgxtnt/vaD64E6k7uz+6PEctHIE7D5xs/O6uPfDMNo1acTtyCfIJIzkw+q08alG9w1ihAgHcAqfbUXDEG+wRzVZ2rWLhvYa5Rxay+6duob/ZNH29adXpUou/U3nxrPR7+y0CmjncwIP1mJs9y1VkyeDGPzXVyVbRhdOV36WjV/b+N/8fEiIkAzLplFj42H6oGVKX99+2Z1GsSHWt1xBiDiNDwgIO3JjtYU2UVzx/7BYBND0USlxZHJT/XtMJMZya+Xr4YYzAYbGLDaZxkOjPxsflwzc9XY4CFdyxiYsREXrvyNQ4mHyQlM4WmlZricDrwsnkBcCDpAHXK5XUtikvOdap2x++mUYVGNDjq+rykiyN79DZ6+R9M/dbBywNnMbP2VYxaMYrV964mNjGWQ8mH6Fa3GydST+AlXlw/7XqqHkxmZuPfGHP1/7hr1l180uMT/L39CfIJomWVlrliyOqbg0kHeXv123x87ce5tneb0o2h4UMZ0GJArnKncWITG/sT91Petzy7T2ynsrUt6kQUD/35EH8P+Btv8caaypm9r5yuWXSCu5Y7GXv8C1791cm6xnvgbtiXsI/65XPdOpTDyYd55Z9XeLvr25T3LY+IYBMbS/cv5fKalxPkE5RvX59L1rEATI6aTPsa7WldtTV74vcQUj7krJizrDuyjppBNc/5HivlKaQkTm3kuSORV4EkY8x7IvIAMAToYYxJyaf+UuBZ4ACwxBjTwiofAHQ3xjwmItusx4es03hLjTHN82ovS2v/APNLSEhxHVa+JvWyMXh+wUPs319jY+CS4p9Usqit0GPj+b+3M64Q6h+D5rGGyAZC6H7D6wO8qJRkePFnJ+NvtNFnrZPGh2HYUC/uXO5kc4iwobHw/hcOXhjkRd81Tm5aZXhsuOtLL80H0vxg/KcO3rrTiwNVBb8MQ7oPlE+ByokQU1PwzTQYAYcNvhrn4OduNh5aeHbffN7bxqN/uspTfCHQGhxL9oPfrrAxs5MwZawr6bnvv158976D2Crw30e86LjNsK+a0C3SyW3/GCb2tbGmmZDi74rpu/fznxQd0VAI35O7TyPrC633mezj9LcGjh55wotBC5zE1BCcAvcudTL0cS+qx0PVeMP6JsL/JjuY387GyubCsFlOJl9nY2916LjdsKO2kBTg+uvA4QWVEuFkOTACV0QbVoYKP799/hO4HxvuxWcTzn7dXS948fNYBzHV4fnBp/+WCko1JAfk/rIb/ZODtjGGr687/f7cOfL81smd+pY9+3XlUgxJgQJZv4uK4bL4rPZ/6G7j3qVnf4YGPO9F3eOwt0be+7phjZOHFjqZ2VH4pYuNsV87GPGQF6l+rvqdanZi1WHXvLfqAdU5mpr/PW261e3Glqi/SPGDFH/X6yv4VSAhPQGDoV31dqw/uh6Avsfq8MCXrqT6zpHeVEgyxJfLO8YnLnuC8RvG07FmR579zz8AHKgMdeIgrhwMeeL0ezL2GzsNrfs53PucF/ctcn3eHF6utm9rehvTdkzL9xjevfpdVsSuIC4tjtua3cbaw2tpWqkpvUN6M2L5CHqF9GLkctf01Cl9p/DfyXcRHwjdW/dj1u5ZeIkXb3R5g5HLRzLh2gkMXzwcgPUD19Pue9c9xq6pdw1L9i8BYPMDm/ONReUtOjqa0NBQd4eRbfjw4cycOZO9e/fmW2fw4MH0bd+eWtWq8eu8P3n/y0kFtpvXcYrIuhzzpktUiSVNIhIE2IwxidbjBcDr1uYPgKuNMcdy1K8GxBljHCLSCFgOhBlj4kRkDfAEsAqYA4w3xswRkXeBE8aYt0VkBFDZGPP8ueIqraRJqYvJ5gZC2N7C/a6w2/KeXL67JjQ6DIcrQs1znAXc0Ei4bLdrX791FvqvNCxvKUQ1EIbMdTK5h43msYbO2wyv3OuVPSq4IFzoGWFY1UzotP38f6/9dLWNAX/l/wdMXDmonOR6/OgTXnw+3sGnfWw4BYbNdvLdtTZ6RDipHQfjb7TRf6WTTG8Yfb8XP73jivHdW208N93JQ095MWSuk07bDHeO8GLq2w4S/WFpG6Hf6tyxL2kjXLPJVfafR7346HMHKX7wxBAvJn3kYMgwL17/3kH1eNhXDepbv1W/6mlj0AIny1oJ9Y8ZQo6CU8BmNb+2idBhp+vJsKFeTPzUgUNgRSvh6kjD3S948fQMJ632GQY97U2tE4bjFSDTW7h8m5N1TSXXEgYPzXdwtKKwuK0w+QMHSf7wyr1evD/JwbfX2vi7pdDkkGFtU+H25U6cNmH6VaeT/4HPejFkjpPoekK1ewYyspOuanM+PClp2rNnD/369ePEiRNs376d4ODgPOu1b9+eKWPHUrdmTZw2CGrZusC2L+akqRGQdQmIN/CjMeZNEdkJ+AHWoDkrjTFDROQ2XEmVHXAArxhjZlptdQC+AQJwzYF6whhjRKQKrrNb9YF9wB3GmLhzxdWgehWzqF5l/up2GX/5t2X8wfHMrXo5bWfvBKBio2QS9gdg83Fi8zJkJPrgE2gnM8U7e7sxQvyeQKq2SuR4VN4fhpyC66XiXzGTY5vL4+XnwJHuVbhOzNlG20QSN569L/EyGIdg83ZSsWsKcUvKnXfbqmC+5TPJSPBxdxhKXRL+86gX858pW7fXcDdPSpruv/9++vTpwxdffMGbb75J586dAdi+fTuDBg0iPj6eQYMG8d5777Fz3jwGjRjB/bffxg0PPlRg2+5Omkrs3nPGmN1A2zzKm+RTfxqQ5/iwMWYtcFYKaow5gWs5hEKrXDeEtZ/O4O62tRns583Ww09wS9Ug+tf/h+hDCcx4/Er2xaWQmGbnSNwpfli2hZG3d2HH1Df5x9aKT54bTHxqJv0mrGDjK7148YtlpB3aSixVCTTpfL1oDCbRm4xO3txf60Wua1Wbh65tQ4UAH254ZwlDrm7MZ3/twNfbm1F9QrlyWC/sqXknUUlBhnLJrr/k/u70GG02/phr+439xzK0agzVdi5lffeXeO765mx+/U5m+l7BFmnIS97f0vxX19DooP4j+eq3t/Ltl9nXX0nfea4h/t/6dmVLy8E0rBpE3L+zGfbbN6zo3oY3K95HiDnE844pjPe+lW6OTayQ1kyKfgfTROjv8yaz94xgeuNu/I+BlCOFrmzkyd9cb2tS3yBWe4fSf8MyHmv3HE/5/EoP2wZeTnqA/+ybxp7GtRjGU/y06DUCqmQQH5P//dQe6fs8X8x+B5uPk0XXduCOjL8YEfwIS2ztWLrySZKP+LnOZQHf3HgDp3yDuc6s40UzmG/S3qZN+m4Ora9IZrzrv0CtXqfIiPXixJa8k+BXHv2BdTtjqVejKgO3fsrlf23kk579aep3kPbx2xjf4QNW7onj6euaU+73UXS1R3Jbhdd55+T/EfLXQQ51qcbDVZ+jqcSyzdTHn3Rayl4iTBN+kDd50TzELupyj20hbU7tok/6KmZX6sxI70fZKQP5m9Y873yEGRtfYn6rjnSaXbxfKPW7H2ff0qrZz2t3OsnBVZWoefkpvP2cxK5wzbTxDnDk+3mtc2UcB/6pfFZ5hYYpxO/J/730DbaTkeh6H4r6R4W6uHz0uQOecXcUZdfh//2P9OitBVc8D36hLag5alSB9aKiooiMjGTy5MmsWLGCqKgoOnfujN1uZ+DAgUyYMIGOHTvy+OOP06JFCwAit2+nVbNmxRpvSSm1OU2eokOHDmbt2rUl1v7Ke7tSYd1xEv9vIh27X1tg/V9X72Hm9B8Y8ZtrPnyNK09x5J+KAByp5eTjyx/Dt2I13rnrKpL79gVg+dVtSfby5+lPviE53c7xpHQaVHFN3kzNcODnbcNmDZvH9GqM46SNxmt2MHHoQJJsAdy0aEX2/rNGUGpv2MSJa0JJP+UDs+cS2jgEgJPJGYz87GeevfdmmtQ4ffk/gNNpMMDPa/ZzeUglGlcrx+8bD9CvTW28vU5fmBndwvVXQcPNri/6JVuPckNYreztGXYniWmZVAr0xWYTPvtrFy1qlKN6/+4ApDdOx2/X6fWastq6++UJhHe4kieub0Oa3UmdigEARB6IZ19cCqN++IuOtq2Mf/0l/LxPfxE7nAYvm/DuG29x67avuK/2aP587V6S0+2c6tTurPfoYLdq9Ph8WfbzPceTuea9pUS/3hs/bxvHktKpUf70Zf8nkzNISrdTr3IgJ5MzuHbMND5/rBeXN6xy9gcgDzHHkzmVmklYnQp42QSn0yACIsKamDjC6lRgT1j+w9ip/hBQyNUE/r2mNcsa3MDz993Knrdup9HCA7zR935GPj2EsRM+ZejgR/Dz9WbYpzNJ8KrEyze3ZeT0jYxOmshVC10JuX+DDNL2+jJ17FTqVA5i0uwVDLu5K58ujOJAsvBa7xA++nMTnTKjGBXxPeVqpxN33I+MPQEkBsLhrxfx5E+u5R3+d0sYE6cvwl8y2O9dnxec37DAtGfcpgnYK3sxoOZLdPPazLP7p3BF3YmsjB3GkmrhrG/7JPeOfSbPBO1QJah10vV4X4fK1F/rGoy+o//rPO78jY4nt3LEvxKNFsbiXymTbzrdwN1zF1GuTiofPfYb9nVTeOrvqaQe96N255Mc2xxMUM10vGs56Vz1E5amP8Ugv+e4LGUXQ1b/xtSr72Cn05/+CSt4svJTLP13OIHVMhjX9E6e2PwrH7W8ndsSlhG0JIXnbxrKzT5/M0jmcWXmR3z9+9t5vk+H+lal1mzXlXw/9+zBvMDLmbD+Q2Y3uQJHeS/unTsfR8bZF0Mv69qWbss3nlXuHWjHnuJN6jUBBJ9Ixr7JRr1uJ3ir4gD+s30ab4Xcy4Pb5+K7O5OBN77IpPlv45dh5+n+T/DjvjFMq9WNLrM3AQUnutXD4zkaUeGs8im3Xsfd0xcQXDeNlGO+BFbPYE5wIF23GKKaGm6fWbxf+he7nCMw7kya+vfvzyOPPELfvn2ZOHEiO3fuZNy4cUydOpXZs2czebJrlaCJEyeye/duXh44kMtuuolN8+ayX7z46KOPOH78OD169GDo0LNvn+XukSZNmorZjJVbmf7bdCa88hwVAgp/OicrsUiYs4LyfVxX9O1tIPSe57qcOzkpkX0dXNc6ef+1Gh8vGyFVC77K5ZM5a9hz6BjvDu7DzqNJ+HrZSL6qvWtf1eD3W54laf8OPh73Nn2en0h7xzZeffcjvIrxdgvjHn8QAZ765Jvzet3BG+qzoU4zjjdsSsfvlpIYaAhOEdJ9IHzzhd9/72RyBhv2n+TaFjWyy7LeBwAvXweODC+ci1fSqvbZv/TdKWecAPbKdrzjXKM19rr+eMfmzpreGPA0L/7kuorQq0UKjq2BSIAD77lraFLTdWwHT6Xy7C8b+erBy/H3Ofdozz/P3EulOa7Jywve+pzVGzfx/avDzvmapHQ7Y+dE0adNXaJWzuWqMW8SHwSd1537vTTGMG39ARpWDSS8XiVsAtuOJNKiZnn+2XWcNnUrEuTrRevRvzPunk7M/Ho8/939HanRrlPV6d7gZ12AmPjkfQR/7LoyM3RrNBl2J0cT0xARPv9rF02ql+PqZtW5+91f6Na+LW/f4bpS8+P33uaeNePZ8t9Z/Lp2L6GN6nJ1m2a0rF2elAw7/t5eHE1M5+2fF/Lf26+lVgV/ktMdVAj04afV+6hdMYCrm1Xjn53H6dSoCntPJPPBgu2MH3AZIpK9ZEjDkXOYsOY5Gh9wPV97XSi9D6/C99sY9g1pzz/lWnHXe5OpGOjLhwu30z+8DvUqB3LzxBW8O9G1qsvR5oFU35ZCYPV0fGdG5fmHwL+jX6fuzAnU/+BXog8mMGdTLM/1a0ejqkE8OWUDb/QP499dJ/j0r53MHN6FA6dS2XE0iWuaV+f3iAP0bFmDez6cyduJo3mv0Vds3LqLxuYA/435mXKbUhAvJ737fUBIlUCe7RHCvJ+/YETED0y5/r8ssIWz9XAiMW/3pfu7S7inU332HU+gSnAQlb++g47rM9jcpRp3frnsrLhV/jzh9NyqVavo3r07NWq4fqempaXRpk0b5s+fz4svvkj16tV58sknARg0aBDdu3enWWAgr40fzy+fTqScNafJ6XTyyCOPMGnS2RPDNWkqZSWdNBXVn49cQ/jhXdScuS/7C/Fg83L0+H0NAA6Hk+2tWgGuX/YXIqv9v+8K4/6XppDhcFLOzxuH0+A0Bh+v4r3Vws6jrtmzTaqf33yrD+ZGcXVojf9v786jo6ryBI5/f6n1ER9OAAASKElEQVTKHiALIQJhCUuAqCwqCIgBmwYhIntrECLijB5UZNSjLdguo4i4Ic5oD8qI3YxLwAUURg6ISxpxYR2EENYGbCCILLIFOpDkzh/vBQvInlpehd/nnDqpvHrvvnt/qSS/uu/ed8n/dBptZi7mYCwkHoUTUYZu63zzKdQzGfmvsQ9y4nQhf33mfp+cqzZunvwaoRQxdcEsAD4d1pUrCvbTZes21nS7mdQPvyS68T8p2G/1gKXm5bEtzZomv7V3Ku3+to1fusbR+53vanT+H15+jAZvLSC2VQGNF1f/5j+b1+bA6HuqlDRV15miEr744jNSHrh4TsjZz79h/Yt3827irXz+VNXXcDx1poj56/Yx+trm5U6d95aP+6eRZs/IDPtmNSu2H2Jsz5Ys3fQzrRpG0zap7EvIpe/dQ0O787+FccR27svksTexvUsqRaddlPDbjflabshl24ETdGoW65U6l/4f+WD5BtzvTebr6/7E62OvO/f62eISXv1iG+N7t6ZeRPkfJrd3b0PR0VBc7VykfqpjmqrDCUlT3759eeyxx+jb1xo1c+DAAbp06UJ+fj4zZsxg8+bNzJo1i7Vr19KrVy9WrlzJykWL2P7TTzz5wERi0q5g4cKFPP/880yYMIHbbrvtonMEOmny2ZgmVT2xkz4ke8cBHvTYFh/9W++Gy4uJzMkYQ8xJIcrtJswdQpjbKtsVIrh8sABQdZOlUg8NtJJEd8RlACScLQZcnPXTu/Y/J91VumSX4yyaZiVym+2kqUODcLpOXsTrX+3gtm7N+OvpMFxdbyVr/jjqHTl1Xs9h/JgnyI6eQ9fRNR80EjriIRbv+RnT734ersHxYWHhnAHEB/ENc4dwZXITTpbxWsfmDYl75l2y4iKrVWZUmJsx3Vt4p4KVCDdC6a3oWifG0DrR+v258fLLqnR8cdYUHm+dRKTdW/jakHuIPLqX9PWLafUz/NKjhA5hLq8lTMC5RPKW9I5sbP0+I5LPLzvUFcIjN7avtJwtaW1p891uvrs+i+AY4aJKLVu2jMLCwnMJE0BSUhIFBQUcOXKErKwsMjIy6Ny5M+3atSM2NpYOHTrw1ssv061jx3PHDB48mMGDB3PTTTeVmTQFmiZNDtG9dUO6t2543rbcwffSpZz9a2N/o1DanixCgmTNMdPcmjtwtrmb8M0Gfy3ULiK4gmQRyeITv5JUP4IpQ63u7aenvUREqIt3my5g855DTAXi253kyNYYOrZvztXTZhAdXvNf/6tTGtL82Zkk1guvfOcyuF1unyVNAJGRMeeSpvyGsLJLOnvcjZgJNIsvf1C6I9jvuWMdanZ38D6Xn78y1XOT7+f0mWI2DPoMEDa2H0TvWlaxPCJCx+SaJ2OuiW8wPekvPDFughdrpfyhX79+9OvX76Ltx479tirGqlWrLnp9+Zo13DdmDAA5OTnMnz+fwsJCMjIyfFfZWtCkyaHckcWMHD7EJ2XXJxQoIpHguD1BUs8BPDn4R25onUyXzdOJrf49Heu8BPf5g8xLxySN6dUOsO73OrrD4wzq8D33xCWcNzC+pmqaMAFEhsZwCoj0UVdeWJOUc88bH4JRT71CdHhwzMprfMYFlLC66UC6e6G8mHA3MeFuwgkBDF2bOPfO2xmdWzCw01M+vwSqAq+goIDrr7+evt2707xJE4qBPn360KdPn0BXrUKaNDnQi4NuoygqgXfCfPNHPkFCgdMkhARH0tS4QSQzpz3Jvl07OTVjOns6peCMu5EE3pG0+sTnHad+zMVT/S+0bNrdnCn+V68kTLUVGmldHotq4JsMuH5kGPvs5wfaNuCGKkyacIrTDaOI+vkYiS2beLXceBMCFBMnzu5p04Tp0hAdHc26des4nWuNXXPoSIiLeHfEr/KKV5+ZxJuPX7y+8bv9+/PKwKoPXi3PDwOziGtTwMHef6h1Wf7idoWQ1CKFe295guKJswJdHcfIu/vP5PZszenBlQ9WFxFHJEwAYQ2bsqpPGv89pPIpzLV1uKWzZj5WZumw51nevwvt/nBXtY4LCa34evvffj+YuLYFnOrsq4tzStVcsKTK2tPkQA2iyp5dcteTzxHphd6n4XfcxavJfXiiZ1rlOztIRKiLr5/xz8DANV3rBUVv1p39r2Z16hy6t6raPaCcIjoilPZ/nMXQxvUr37mWWlJ5L5yTPJWZTm56ZzpXc6D26/1uoWfBhnLftxn3/YmXvryVFzpUuDynUgFxNqrml/v9SZOmIFKV+zJVRUJM+LkBw6pspmnzyndyAFeIBF3CVOpaP9X7ZOqVfjmPt7hdIdVOmAD++Phk/n6wrDmDlhYJ0Uy/5aJFGpRyBKnFxBR/Co5aKuVnYe5g6SxWlYkbem+gq+AXzeKjnD8zUKlyBMtfXB3TpFRZgmVUoqqUN+9HpJTyDQmStEmTJqXKIJo1KaWU34Ro0qRUENOcKehFxJ8JdBWUuuQsWLAAEWHLFmupq5ycHAYNGlT5gf66a3EtadKklIcjDa1p29rTFPweHTGDcUMmBboaSjlWwbFCFkxfS8GxQq+VmZ2dTa9evZg7d26V9jdu629tSGj1ljYKFE2alPKQn2BNe73E1rGuk7IfvJkVz2UFuhpKOdaaz3aRv+MYaz7b5ZXyTp48ybfffsvs2bPPS5qOHz/OsGHDSEtLY/z48ZSUlFBcXMwdd9xB15uH03XYMF6f+aZX6uBrOntOKQ8hXlwYWQWWtUhxcHT5K+VPb0zIobjot5uh5i7PJ3d5Pi53CONf71Pjcj/55BMGDBhAamoq8fHxrFu3DrDWnMvLy6NFixYMGDCA+fPnk5KSwr59+/j2qyVEnDjFr7HBcesUn/6HEJHdIrJRRNaLyBp720siskVENojIAhGJ9dh/sojsEJGtInKjx/YB9rYdIjLJY3uKiKwUke0iMk9EwnzZHnXp0MtzSqm6KmtqD9p2TcIdaqUA7tAQUrslkTW1R63Kzc7OJjMzE4DMzEyys7MB6NatG61atcLlcjFq1ChWrFhBq1at2LlzJ49MfZn/WZtHfGKj2jXKT/zR03SDMeaQx/fLgMnGmCIReQGYDDwqImlAJnA50AT4QkRS7WP+DPQD9gKrRWShMSYPeAGYYYyZKyJvAP8CzPRDm1RdpzmTUqqOim4QTliEi6KiElyhIRQVlRAW4SK6Qc3vyn348GG++uorcnNzERGKi4sRETIyMi5aT1BEiIuL48cff2TJkiXMmTOHH75eyttvv13bpvmc369FGGM+N8YU2d/+ACTbz4cAc40xhcaYXcAOoJv92GGM2WmMOQPMBYaI9VP4HfCRffwcYKi/2qHqJmP/bmvOpJSqy06fOMMV6U0Z+ejVXJHelFPHazfb9KOPPuL222/np59+Yvfu3ezZs4eUlBRWrFjBqlWr2LVrFyUlJcybN49evXpx6NAhSkpKGDlyJFOmTDl3Kc/pfN3TZIDPRcQAbxpjLlxp9U5gnv28KVYSVWqvvQ1gzwXbrwUSgKMeCZjn/krVSISxPkdEU/b6f0opVRcMHN/x3PPeo2q/HmF2djaTJp0/W3XEiBHMnDmTHj16MGnSJDZu3Eh6ejrDhg1j48aNjBs3jpISa2zVtGnTal0Hf/B10nSdMSZfRBoBy0RkizFmOYCI/AkoAt6z9y1rxKah7N4wU8H+FxGRu4G7AZo3D441xVRgJBdHAKdpKnGBropSSgWNnJyci7ZNnDiRiRMnlrl/p06dgqZ3yZNPL88ZY/Ltr78AC7AutSEiY4FBwGhjzk3u3gs08zg8GcivYPshIFZE3BdsL6ses4wx1xhjrklMTPRG01QdtbdjVwCOXtEtwDVRSinlND5LmkQkWkTqlT4H+gO5IjIAeBQYbIw55XHIQiBTRMJFJAVoC6wCVgNt7ZlyYViDxRfaydbXwEj7+LHAp75qj7o0FA9/hDuHTiY+fXigq6KUUsphfHl5LglYYI+adwPvG2OWiMgOIBzrch3AD8aY8caYTSLyAZCHddnuPmNMMYCITACWAi7gbWPMJvscjwJzReRZ4P+A2T5sj7oEDOmSTHpqJnHRevcKpZRS5/NZ0mSM2Ql0KmN7mwqOmQpMLWP7YmBxOefQ6yjKqzRhUkoFI2PMRdP76xLjgKUa9PbHSimlVJCLiIjg8OHDjkgsfMEYw+HDh4mIiAhoPXQZFaWUUirIJScns3fvXg4ePBjoqvhMREQEycnJle/oQ1JXs9LyiMgJYGug61GHNMSayahqR+PofRpT79A4epfG0/vaGWPq+eNEl2JP01ZjzDWBrkRdISJrNJ61p3H0Po2pd2gcvUvj6X2la9v6g45pUkoppZSqAk2alFJKKaWq4FJMmi5c/07VjsbTOzSO3qcx9Q6No3dpPL3PbzG95AaCK6WUUkrVxKXY06SUUkopVW2OT5pEpJmIfC0im0Vkk4j8m709XkSWich2+2ucvb29iHwvIoUi8vAFZT1ol5ErItkiUuZdskRkrF3udntx4dLtS0TkR7uMN0TE5cu2+4KT4unx+kIRyfVFe33FSXEUkRwR2Soi6+1HI1+23VccFtMwEZklIttEZIuIjPBl273JKXEUkXoe78n1InJIRF71dfu9zSnxtLePEpGNIrJBrP9HDX3Zdl9xWExvteO5SURerLTyxhhHP4DGwFX283rANiANeBGYZG+fBLxgP28EdMVajuVhj3KaAruASPv7D4A7yjhfPLDT/hpnP4+zX6tvfxXgYyAz0PEJ5njarw8H3gdyAx2bYI0jkANcE+iY1LGYPg08az8PARoGOj7BGMcL9lsLpAc6PsEaT6xbBP1S+l60z//vgY5PkMc0AfgHkGjvNwfoW1HdHd/TZIzZb4xZZz8/AWzGCtQQrAZifx1q7/OLMWY1cLaM4txApIi4gSggv4x9bgSWGWOOGGN+BZYBA+yyj3uUEwYE3YAwJ8VTRGKAh4BnvdQ8v3FSHOsKh8X0TmCafZ4SY0zQ3IzQYXEEQETaYv3j+6aWzfM7B8VT7Ee0iAhQv5zjHc9BMW0FbDPGlN5G/Qugwl5lxydNnkSkJdAFWAkkGWP2g/UDwPqFLJcxZh/wMlZWuR84Zoz5vIxdmwJ7PL7fa28rrcNSrGz/BPBRDZviCA6I5xRgOnCqxo1wAAfEEeAv9iWQJ+w/qEEtkDEVkVj7+ykisk5EPhSRpFo0J2Ac8t4EGAXMM/bH+WAVyHgaY84C9wAbsRKDNGB2LZrjCAF+j+4A2otISzvpGgo0q+icQZM02b0SHwMPePT4VOf4OKwsNgVogpWtjylr1zK2nftFN8bciNW1GA78rrr1cIpAx1NEOgNtjDELqntuJwl0HO2vo40xVwLX24+s6tbDSRwQUzeQDHxrjLkK+B7rD3NQcUAcPWUC2dWtg5MEOp4iEoqVNHWxj98ATK5uPZwk0DG1e53uAeZh9YLuBooqOmdQJE32m+Vj4D1jzHx78wERaWy/3hir96civwd2GWMO2hn7fKCniFzrMVBxMFYG6plpJnNBd58x5p/AQqwfVtBxSDx7AFeLyG5gBZAqIjneaaF/OCSOpZ+2Sru53we6eaeF/ueQmB7G6v0sTeg/BK7yQvP8xiFxLK1LJ8BtjFnrlcYFgEPi2RnAGPN3u8fuA6Cnl5rodw6JKcaYRcaYa40xPbDWpd1e0QkdnzTZlxpmA5uNMa94vLQQKB0BPxb4tJKi/gF0F5Eou8y+dpkrjTGd7cdCYCnQX0Ti7Cy2P7BURGI8fphuIAPY4q12+otT4mmMmWmMaWKMaQn0wrqu3Mdb7fQ1p8RRRNxiz6Cx/wgNAoJqJmIpp8TU/oe0COhjl9cXyPNCE/3CKXH0KGcUQdzL5KB47gPSRCTRLq8f1ligoOOgmCL2bGN7+73AWxWe0ThgJH1FD6x/qAarK3K9/cjAGvX+JVZW+CUQb+9/GVZWeRw4aj8vnfX2NFaikwu8A4SXc847sa517gDG2duSgNV2PTYBr2F9egp4jIIxnhe83pLgmz3niDgC0Vizkkrfl/8BuAIdn2COqb29BbDcrsuXQPNAxycY42i/thNoH+i41IV4AuOxEqUNWIl9QqDjUwdimo31oSiPKsyI1zuCK6WUUkpVgeMvzymllFJKOYEmTUoppZRSVaBJk1JKKaVUFWjSpJRSSilVBZo0KaWUUkpVgSZNSimllFJVoEmTUkoppVQVaNKklFJKKVUF/w+WYAcAhtm5aQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for SIT\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'SIT'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Tucson (TUC) Observatory](#Adjusted-Data-Algorithm---Contents:)" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 9.770e-01 -1.619e-01 0.000e+00 0.000e+00]\n", + " [ 1.619e-01 9.770e-01 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 1.000e+00 3.476e+02]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 1.006e+00 -1.654e-01 0.000e+00 -7.028e+02]\n", + " [ 1.654e-01 1.006e+00 0.000e+00 -8.159e+01]\n", + " [ 0.000e+00 0.000e+00 9.449e-01 2.559e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.646e-01 -2.046e-01 1.408e-01 -5.351e+03]\n", + " [ 1.704e-01 9.646e-01 1.626e-01 -6.730e+03]\n", + " [ 2.146e-02 -2.987e-03 9.646e-01 1.240e+03]\n", + " [ 0.000e+00 0.000e+00 0.000e+00 1.000e+00]]\n", + "[[ 9.841e-01 -2.074e-01 1.418e-01 -5.866e+03]\n", + " [ 1.705e-01 9.642e-01 1.629e-01 -6.746e+03]\n", + " [ 2.056e-02 5.086e-03 9.400e-01 2.250e+03]\n", + " [-0.000e+00 0.000e+00 -0.000e+00 1.000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFpCAYAAACBLxzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4E0fegN+R3LuNuw2YjjG9dwglJJBeSeWSS7v0finfQXpyl+RSgfSeS71LIyGBQBI6hGKKMb0aF9x7kaX5/lhZxZIsuSED8z4PD+vR7OxotTvzm18bIaVEoVAoFAqFQtE0Om93QKFQKBQKheJkQAlNCoVCoVAoFB6ghCaFQqFQKBQKD1BCk0KhUCgUCoUHKKFJoVAoFAqFwgOU0KRQKBQKhULhAUpoUigUCoVCofAAJTQpFAqFQqFQeIASmhQKhUKhUCg8QAlNCoVCoVAoFB7g4+0OnGiio6NlSkqKt7uhUCgUCoWiDdi0aVOBlDLmRFzrtBOaUlJS2Lhxo7e7oVAoFAqFog0QQhw+UddS5jmFQqFQKBQKD1BCk0Jh5vja38h46u/e7oZCoVAoOihKaFIozBRedyu6T773djcUCoVC0UFRQlMbUnFwH7lLf/J2NxStRErp7S40SX1ZGaWrVnq7Gx2XqiKoOO7tXigUilMQJTS1IUfPPpfiO+7zdjcUrWRXaj+MNTXe7oZL1syZSfYNN1GWtd/bXemY/Ksb8vle1O7c4u2eNJst43qz9b5zvN0NhULhAiU0tRHVVWWWYyklW6+6iJI9GV7skaI15B5K93YXXBKTWQjA9nf/6eWedBzqy8vZcNEkyg/uoaZcz9ZNnThw0ZUcWfqJt7vWLAIK9fj92AJhuK6q7TujUCgcUEKTmdK9mewY0J/S/btbdP6evSssx/vW/YLfpkxyzrukrbqnOAGYbI6LS0q81g9P8ftulbe70GH47bV7Cd15nDX3XMHBH+Pw3+cPwMb1v3q5Z57TUrNw0brPOX5NLzZN7cXGyf3auFenLzlLPmL/Ow+3aZvlL42jbNm/27RNxYlFCU1mVi94FL3ByNr3n2rR+RXlBsvxjpw/26pbpwTGikpkXZ23u+EWo956rPfp+CnMQqo6tu+VLXv+zGX+LcvZsymvXdqv3psJQJdd9hoXr92h2nIoOdKsUwxG6zuybXB/j887cutTFG4NI+iYD8G5J88z0dEpufNZ6l74tk3bzHqziGO3vd2mbSpOLEpoMlNZqOXGKivKadH54f5BluP9+S1r41Rlz/DhrL1wmre74RajzdugEx1faDqZWPreDkCy7L32MVnXVRS2S7st5djfe7DtrnHNOufo9l8sx741Ro/Pq/ZtH0Gp8uAW8n5oG62IqbqUirWfua4gJXXbvwWjAbI2gaHj+hS2NRVHt1P6zyHsf/cBDn7xrMfnFf62gNrjyq/xRKOEJjNBBs0c41vZMoGnrqrCclxae/q88NLo2eAeuT+/We0W78mgaPcOl5/v/flLNr/h+QDjCbZCE3rRpm2frsy/ZTnzb1kOUgcITEabsjbEtZDrHc1L2c+d8F0fgjRZjb7lv88n6y+J1Oc4f67zV222+9vk4buVH9M+Av7m2y6j6IG3XZoNS7b8QPmd0dTmZLpta/mtZ3L0uic4uuV3p5/v+fE99l/6MFufuoD616dx+IO/tqbrHRJXv+ehx88m+/0a6p5fRM28jzxqq+rQn3T642EMb0xqyy5C3k6o7FgLkI6GEpqA9Defo/sWPwB0lc7rFKSvx1Rb67KNuhqrWSB0p/tBpDE1+XmUHzm5Vg2bJoxgV1p/Kgo9M7nkpa/zuO3c8y4h7/xLAShK34ipkXmv/u55BL7s2QDjKSZbTZO+dRPR0VVLKD3acX5Pk8HA6odupDznaKvakVJSumMrFYcPUFtU4Lb+9L/2QwjAMvFKMNXTO/R/Hl1vzTWTyfzgabuyjC9eYPXM/hSkr4DSLKgsoLJ7b1cd9ug6bUH+0XLevvsP8rPKLWV1ZdZ3Y+99r1G+Lpy9Z1zq9HwZFmr3t7He4LReY2zNym1J9AHtHaircO7ft/Phe8haEsPmpy+3lOUtfovyvZsc6vrt0gJlDh5wLjBu/mMRADlr97H323iyl69pVd+dUZt/kKINXwCQv+B8ijb/qH1grG/yPKNNkE9rMNbam47rirKo2rcK/apQF2e45vCz5/Pnsjhqy9p2gb7h0gtYf+vYNm3TFZX3RnHk03tPyLXaEiU0Af4vfWg57r3DujIs2bGVH2ffyfxblrPjtpfYPWgw62bPsjtXGo1sevVx6susA8u0Ne6diA+tW8Yf911L4Y7NGCor2DdpMllnnphQ47LswxTv91ywqy8qsvvbWKFp1YLytf/3/mG1+xsrK6nNtWrrSo8esBwf/NtNTtvfPm0ymX1TnX52bPs68mZfw+8PXAtASeb2dsujFFptPdbpWjcTVdxwF4fPOofK7P1kvPAQtWXFDnWa+h6Vx7NI/9R5dFxutGff32Q0smHqGDK/fo/N375N1LerWHPfX+zqbFz4NIUHd1n+3vXJk+z6zzMu21z10r1kXzKbozNmcWDsBLd96D0iHtEwyjR8X2ki+YdlLs/Z9N5jrPn3nSAlkX/mwXOfULp/CzvuOQOkRDfvXaIOGMmffTMbp05j9XljCPAPAKAiwL6tE5ly64eX11BXU8/PC7dbynY9MIKN13UB4FB008Ntrcl+UVZvcL1Ia4rK/R4KHDWlUONeIMjPy3JaHnnIF4BjBdYFTdE9L3H4gqsc6saYH3/hwlcwKn8rAKZq7R5VHfN326/msvWcs8i79jHyD26n4NU95F15P1kf3gBPdqLkoH16irUfPW85/vX6yW1y/Zpq64rcVFtJ+l8mcvicGx3q7Xj3IfeN/RFOSL6eo0ui26RvDYQe1xO2/sSIBUd+iuPge4tOyLXaEiU0OWHl7Blk9k0l55LZHAqdCVKS0e8vAISna0JAxstPsee919iV1p+gBZ/j+8wCy/n+Lnyey3OOkvGP+ziavpqSG+8g9sc/OX7JVay45RL0JufntJaq4znUFNurW49NOYvcWRd5dP4PV53B3rHjSP/vW5QfP8bKS6ezZ/gItnz6qqVOwCMvW473DBvOgclTLH+v+uc91usmOrafu38HPlnaanzL/Tex7uLpbBuQZvl81323A1C/bTvbvv+AnAsvY8P7//Ko761Bp2u9ycPXCHvOOgfdO9+x8vJp5O3cwNILh1BTUkBddSW7Uvux8pG/OghPB1Yt5sjE6fg/+QEZG392aLfeSdfWPfcAq8+bbFdWXphD6LESqp94nuw9WnBCdUU+u5d+ze4lX1FRlEfwK5+w+8rLLOfIp/6DfOJjl98pO31tM+6AhskEwmQg+ehyhNEAommBNOhfXxD51lIqSq0m3exZV6JfnMvSp2+gMKI3yye+SlF4L4IrBFHHfMCslQlxWHi3QGqSkspVb3oscTWYG6srfQFBWWENyyfPZ/mk1/FbGUrw2mAA6rpENtlOXU253d+2QpOUkqW3ziQr3X1S0x23Xms5Lti7leX3XuJUQM97tAd5/9fTbXuVZc41ivu6aYNWcJi92UlvFC7vnd7HXhg6/P0L5C15jc7rtPJuZsVc4nGhPThtSGipNt0d3rHBUpazaBmZnyeS/vPndnUjnnnPctwlvZrGZLz7KJl9U6ktzqXi2G5KD2jatQM/vkhZlvMFaXW19ffd+85fCd3jXDDUP/+dfYGULpO1+te5dyOoydtHxTM9yPnTtVN7/o7fyLsz1m1bnnBk9RccXnhxk3UaTJWxx9pJTdqOnPZCU8Yixzwu0elHWD7pdZZPng96PxAC9H6WgXDrsw+je+NTjP+yCkphNu/VvuHO1epZZ5yJ7qufqJh9A/4G66Div8ezDZqPrP0VKSVlh/d7rG05PHEKe8ePR5pMyLo6Ox8LT+i5KVfr46MvkTVxGtHbtVVnwJML7epl9k210xYV7N/BgXU7OFpzI+XBmrTkXy3Y9eqz1JQWUVdZTunhfRTPspoqAhatJDwjC1+DtY+JR7TVmTBJDm/UtBM5az0LI8/fv1MTfjMcoxn3rfqJNa/+n+Xvnf95w+5zfSvMcwdXLrYcB5gF6KSDVWyYO4fkzBp+efRiVj9wPQDR/1vDxrFD7c6vvcGqsj701uvU5h2k9rj1GakO1+5PXoT1nPAPFhG1x95MWmXjZ1dXrT2gQeVGTHf8A9Odcykt1SbDgErPzEAAkVkV7is14raFUzhj5T30PvA/zlh5D1NW3OnReflZBxzKkj9Zw460G0Do2N7fukqXrkxZzVA1fTt7CCvGpLJnwWUceeVp9r843eNzPaKJV2/vZy/Q+RX7Sa3e5jttWfIJycsPsu+OmwGQxnp2LbiK3Mw1yEaCYdhhX8vx5r9dRcJPGWz6/m0KD+5i29dvWT4r+jGGokWd3Ha7ptJeG3V8y2LqKorpeVCbPnyFo3lr+5fOtZWykSms6sF3KbpzgdO6mf3S7P6WBgOm+nqQksLlXzvU3zCqD5l9UznwzXOuvwxQ+6xVixSyXVNNlv30i6vqTtE9r5mXf553BZnnn0/2zKuprami9r532HXf2Vqlgn0gJTs+/j82PXcRxXlW0/ixXza6vUbOhsUU7fqTvT8vRP6zF3l7NpCxZDFv3vKDZUz1hGPPjOfoR37se/Eel3VWvfwwRUvcPwuNKT+wEVlvrxGt/PxuDi3bgqHatRbTUO3CD+Yk4LQWmkwmE7r7n3b6Wb+Md8BktDEpaL4YaTvexu/DpsNQ14XZryAK92eStexHl/U7ldr/veKF+zl+cCe/P36rRRDZ/O07VF53B8vmzOTYjHNY977rgcFkMLD65UcsflY+Rlh24/nsGjiIXTYD0cpn7e3JRRnpGOtsVrcGzyfTxuTPupTf52/DqA9kRz/NqbPHgTrkgo84OGoc+4eNJHvGuR63pzNJKos0oaCu3NHU1RiTycSOGzQzweb7b7aUVxQd548H52C44T4iF/wXgJ3LvkI88Yrd+UKnZ8VFU1i/4EmP+whQfGgPNTc6t9PXog3QvZcdJ/7XbZbykGJNPXJg3lDy77NXtydl5HNg0kwOTDyLDa8/Rt7uregDtNm3oJcPUkqXAvSRTb8DEFgHMlszmXbOsc7cwmyCFG7kiuriHFZf3J3DK76ic7bnUV0lx/az6NqxVOYfc/p5g6D96+wznH6+/zP79B8NCxmjbzAIgdE32LKQkfXO/VJ6fu3oX+OMjeOH0ie9hphiKFi6BbYHU/W+tkAwlBRjMr8LVSUFZPZNZemjcyznXvboCM0E2chva8RGe8FBGKx9XDEt1TzBv051QRb1j7/r0Kcjy79h/ahUfpt7NcWVmolc1GvXOLB9DfLVzRRf+FdSdzu+p7/cdSGm+nqEeQFSUlrI/osvwvf/XvLofthSU2kdoMqP7WbHo3ey5W+DLWW6/X6UZe+zO+fg8Xyqs7Y7CK2G6uYJ3WsWPkj6V5pWe9eAgezuP4Bl867n+K3/4Pe/X4nJYCB38++AVZNU+/CHrpoDIKrIUTsjaZnGIzB1KCEVWntlxdr4FLo1kC2fPMWWqeew8bGJ6J/+L0EfZGoCn5mEPb5O27Ol5Np7OXLpNexe9Cm7vkpkx4ofWPl1KfUyiO1pjmY9Z+x59ULqftE0nOHbAyh7JJHqByM5+PundvUCjrkfUxuTvXM96ddfxfaHB9t/sDSC2B3+LPvpOy3par2j6aX2JBaaTsu46oIje9j99fv0vewGl3XiC9LZKU0gdHa+GHGFW92272szftfVVHHcbArLjR7MzrQbSNvxtl07hxMkXXO0Fy/n4A5i3vmRwnd+JM6mzeytq+kBJG04BED+xjVwveO162tr2DtoCFHAHzlZJJvLk1bvc6gb/eFiVocGM+72J9m9+kdMf72fPCB1l6Ze3jVgoNvv6ozlk17XtHNmqoPjNa2dlEz54/YWtZmYD4m/ais10YT2oODwHvbOuYqI3ArizWXFQZI9f+ay9N2dpG1/y+7er779SqJ+ddxuQ6fXE7MzB3b+B279h8f9zD3rfJefpe1w7bTZIBzXEmNX7l9oXa2Fvv4FRa9/gV+8HyAJMlWxbtwQ9PUmbF1JpZRkbV7J0Q1LsIjIVY6DVIM2reGX2jooDT8nfVv89M2kZvhTddNcl/13xtJnbqL/hmIWP3IVaU3US0rPpbIoj+CoOPvy/zZypJf1IJxMNrIefanzydjflQLKYED4WtsKLrCqiguqfYgEKv0F9XW17ButOcbW+At4aR4BQPAvG1hedD6mumK6d69FSnMkp82zGVqZbTle9eUr+FZbB4YYs5tQ7cPzOcR8p330mzcfPyDsy03s79IZgNhiWP3BE8jAQJrSC3T5ZRc/B56Lr1kLVZufQ6gneb2kpL40B58IqyajtsL6DOZsXkTCAR84YJ06ErJ0HJtyLjuuTaXBACn3bePQtMs4OiWMMxest9Str7F3hnY1JjYQ+coPAGx8ZgHB5ie1dM06EgHjyi2snTGKqOxq8l561Omza8FNxnSdTY4sV4sQaazn4Oqv6D5hNuWBmg+koca6yCwryLUcr1/xA5NqBWt3FDDGXLZ/0Vv0aLIXVspztPHa3yDosaxIG1M3CouaoyYo1jKmBv1zErVhnen9t08avgBlD3VChkRg/NS6gJcCjv0vHAhn/5Gn0QUEkfDddfg8cZyUg83Xn+xfeD3RuTr4AXje8fPjm75l9U+PYgiNYPLL2iJRGus5uv5bfOOtSViPHc0kqbNzn9aOyGmpaco/83yi3vqWbdc6j2KxIHRWXwyTe1+MBvzqrS/dr3dbI0t2pmqr0wb/qAaMcdbBdMe7Lzq0t/SR66goyLYrqylxHrH22xO3Wo6Tv3OfZDPq9a9ZOWU4Ob9ZTUq1VRXsXvWD23NdYnIRjSKbZxosD07ij/HPO6iie+60HwB/P3MkS2/TbOj5M84nItd+Ao3LN7D0na12vmkNOBOYwPPoOZPRiKm2lj9efYRlM4Z7dE5rSTYnMCz1iSaiqJbQMnvJYPU7T1Jx1c0EbD9oKdMZHDVE+1Z9D2iCxR+Th+BXa//7NCSkrPQf6nCuK0z19Xz29wspyT9KfZ32HKStdB9deWTsZDKXfcnyh+a4rDNu3Vwtj4+t9tdoYNy6uaStynV5XgN71/xIwaFMdu9cwa4BA3nj/jO1a6+zd0o3dgoEoDJY8ssDV1rKA2olxbs1n66wSkj4bQ9Jq/Op/bgMfX0xwZXZpGW8S3BlNn4G+2ew09w3SN3e8q1OetgkWYx67jMi17vPn9Tt20Mkm29913eWenSd5U9fyt7RU9n4mTWdR51N9JjvCtdb90R+ZPXl6f2LWbO5vIz9TwyzlBtqqsh5aRJ7P74LWVPmckxsTHC1dRGWahY4E4sgKlsTdn/e4toPb9kzc8gcOMzl5wA9D9RT90gE+QfSqTZUUesXxqbBd1PrF6ZVqC5h5Zv3UXvTE6z77DkKorSps77WKmznHbQGANSatPdtTIYmGC6f9DpVmZ6nMdl2ySz3lcxUvX8c4yub2P5QKhsfm8jv/7qaY9/Fkf2pvcXDVhQMO2xi76v3sf+bBHau9CyStSTnANnzUsndo6XGiF7a9HjePW8jUauDifvZOj7teXocB/7xCBlzrUFPZdnOAw06KqKj7+je1vQPCJRfpaS06zV+HCGY9af1vjbWvFgwa172DzTQY5t7da0tBdE+TFi13a7s91cfJm5B6zPYHpzUk25/OGqmPOW3CS8j9a6/j85oYPLKuy1//zpYMC3d8TlcM3IeNYExBFTnM3bD407byprUh+Q/tK1vjp49iM6L7Ver7u69K6J+/YGiaZr5sEHz1ph1n7xI+FPvuGyjvdk6JpJBa+3V6t02ruPg8NEOdTP7+pG6y15NvuemafR+y7l/WO6Ns9h1YCYmowRpZMofdzmtVzLvRmr270caDPS//l4KZ1zYwm/jGcsnvmrW/taD8AFpcusjVfDQNQRGxRL84ItU+sPO1CBGpGsCTJf16Xxz8wf03/ke/nVtE1re0Wl4nhu0m7bPt7Mo1qxECOpchSnHj+gjrTNO7Lt+HCHbl7Ez6J0WvZeekrork3X/m0/N3hXEvb/Nbf1jsZB0HHKH1tD1pZ/YeMsi8mOHEnN8EwMy36cqQBJUY+1vYbikU6kge2gtiZs14SRrYB3J2zR914HugXQ/oAlUyye8BDpfMBmYstK1X1FTlAcn8eewB7WFuzA72ksjIzb9006jCVAeBKFu5PPjkdp4G1ssyP7bGBIX2gd4NDwT2xa9QbfxlxAaEc26uRMI/7KA7AQTU3/bzbfT+9PnqCYcHjo/nrP/+RtgfYYyu+tIPWCya8/Z86X7dAF9hjk30XuKEGKTlPKErFpPS01TcygIs/97V2/32hJbgQma9o8CEFXN/xmiC7RV/PK//4VfrzmLkoKsNhGYgFYJTABj18+1/76NkI3GyvpGX7/Bd6UmKBaEsKiil0963aGtBoEJcBCYwP29d0VZgXM/HFu8KTABTu/v7xfOdqqdC6h01DRJFxrB5ZNeZ+femWiLZQHCx+X9r5n/HvGfLCfhi5XtLjABRBduJyl7BSM2PU9S9gqiC7e7P+e5jwl+UNPgBtdiEZgAlry7kdLwnuzu0XS0jzdwpWltLZt//phtac7NITsHOI5FydkQtT6I6CM+re5Tz/dWE/9nQIvfy6ZorB0Kf+R1jwQm0AQmgF3Bb7B4Xg75ccNACPLjhrN88nw2jLD3eexUqg1iDQITYBGYAMIqTE0GEzWX0Eqb8ciFCdhS5oFCUwqBwSeMtcMeZlfGFRSF97L7fF/6H3x3RT9873+FJfefBUDw11rgSGKO9owcGGD97infaZre7x+1JtusC/BMs9bS1BreQglNTXB8aiUTZmaTOjsb/XlFHJtUxYVDrWaAHA+DDeIL0q2mKRv/qOqQLZQFQfd9LXNC3DIglYTv1pP052FyxrdxpE8r8K8rI6C2yH1FM4e6tp+209W9d+eblvHey3Z/F+YeInPdT/x8wVgW3ePGrOuGnCjrse0kZDrH0RlzT2qAQ1kDg9Y55gPLjr/Gzvm+gW5HHYUmQ7rzRIPNmdDiCzx3DG8LTL2W02fvl4RWHqPP3i8ZmNGySfb3CS+zfPJ8svfUghAUmCfH3ye87P7kE8T2tBsw6gM9dvr1lMMLnsfX5mfL7JvKV9dPBiCwvOlEjzv6Xe/0+WouLX0vmyKz12xKw3uyq9flLoVCd5hcpBpxVe6KIIOuzQVDP0NFkybg5hBXBOURM6kOSdIiUdPs/Xt3zL2d3lu0foft0fwhfWz0BZ8/M4eE/fZ+kuVFVZTtv9IitPomWfu36bvXObRzA86oqzu5hKbT0hG8MXVnl+C3OMKhfFJMKcf/lsnBHevoN2IK/vk5mLr1hc81J7aaaCMUeijw6DT/qMDKVVSFjAehp074EFbV8lwkAS0PbvOYKj8IamKv3QND6+i+2dEFM6TiGP7VRZRG9raq4aVEZ6xlzIbHORov6Zyrlfc8buLgWCMhO32IKRGM2PisS1V0izD7piUdW8mxpAlID3zTDHlWf6D1i94l7P4XAOgKsKuYxcl3k9Ky3lDftxrWaH4z6TYT4yWPTmfP9CX4vfEwfpna5wG1nq3WWuJ833+j8/w7rQmCaIrcTpL4wtZtTxPaORVoOtP6zjkT6ffhiibrtNXk2BLSp3dl8FIthUTGub1J+2GP3eeNf0tbp9+2MF0J6Sjo9l+TR2bfVLq5WEc39XwNuyCL8HuaDvN33pHmv5fO+H3Cy5hs3AEKYwazMma+gxuAR5jqwZlrgSs/TRcEFVcTRNu+R+PXPmo5jitw7ovpCY3vF4DRL8TuGeuzx/p9dU7Cawd9tAFrCImm5fvkoV8whfdkf7fz6bf7Y/otDbR8HvT3+eREvEaEk+fLWOeYB6sjo4QmQKdz/CGjLzyOnFtMrE5HbJwW/RYaZi9YieAEwHnSscbEFT9I2rYadvX2Iazme/rtbD+JJz9SElPs+eTUVASLOLMKFgW5OBPKgmIBR43HwIy3NVt+QzsYkPjga6jAv66Mygg95GoC4+B9enp88C15uzewffk3hG3J1HSgEreqaE+w9XkZPvBNyr7VItSyY6WWRA/YlSLpe8h6z5L3WVc/DQKTLSlvu8/rUq+zrs6yzg8n+TstdFunk04nxk8e3grEcds3h9jw2uN0P/8Kjs+5zKHd/VN09FhuL2wLWY90ElkmZPMGe+uJzie0/EhrdmdPyeskiSsU5HcOpCw5mN5bXe9tdagzpDTa6WX3NcPp87GW10bv23Sm6Kz7L2TE+IupdCM0tfn9smHnuSn0++EQRWFQEqmj+2Hrb5W6K5OetTXsGzREK2jldj2eUusXxo5+19N/53t0OdwC360mhInw6JaZ6mzfy94HPHNGdkZbCsDj1s9l9egnHRZs49Y3L3LUQjMEw2OxepKOt7/mdsz6uWT0nUNJZJ9GC9o6Bm5f6FA/MU+wN9O1oNdYCMtNGE1uwmgHoTWixLlAXl/Xsq1gKqtrKTieTdeu3Vp0fktR5jmgeNwjZHWzf1gDH9qLcCJMAeweqQ3c1X2tg0VWmqMQdLSPdQCW8VbnqIBy7VrHHZVbbUJ5SvMEsqYiWIwzrFE0Byc63o+QrGoOddcmhaKJlfidW+RoywckviBArzsCQPSssyxtyKnjSeyWypCz5nDZv77lrKW78QsQbaaKtqX+L9YM20XD4y3HfvX2QmZEG6QRKbwqxXI8/Z/rODBnJLvP7Yxs7NTlhJF3zCO6S2/8qx0n8XMWZLS+c26YsuJOh4SU1dPLmLjWs+13dlxpDSnOGdbFfKTn7I+W0GnZ9y7PK+vsmJV44Lm3WI71fk0LTdNveAbhgSAydt1cTRBoZDoZu8795HhglPX4yI0zqPGFI4Ot6tiQflqQuTCB9LWaV3PjtPfE17zli0mAyfx+ZPb1ofSJWzEJGLHxWad9a5z3CWBvaojb/gLs63Y+peE92dftPAKb0By7wtUTKwD/wObvndaWDNr6qtP7NTjd3g8pY7aWTygnxrU7gH9dGboGTZxRG0d10tjiIAG0DL7yAAAgAElEQVRn75Erisb1bdE1mot/XRlB1ebFvpSW+yZMBqJK9zo9p/7C2U7LnWmtGvDU6aLeiXnut+/eIqNvKr9959qUeWTIYKpmzGTJl85TdrQXSmgC4lP6M32UNSy6YFwVIeFRLut3v/h6Es7PI7q35qx/LNHE9AH5dnXWjK9ncJrVr0eGWyfo7ke1wTPW/RZ1LnEIibWhRh/o5AxHPHFUDAmzJlsc/MB/SLwwj/KJFRjNo2ht50AmfbGO+uduZNC/NtHj+TxHWz5a89Nv7M91799PyFdvMv6v1q1Qgmde4NC3G1+ezqiNzxBXsIVRG5+xU003h+SLc4m7wKoNDI6wTsr6OOsmr7GFbe9X1W/OaxRGWifwWQ9/yAXPL0FK5xOj0MFl/zfCrg3/GquWYl+q42/dgCYENPafMHokBDQmP0qim+74cA5+xfPNfsdf+Zjl2JpEU+LnH0Rskr3T6c5p4da6BkchMSA4nIogHTlJAeh8rAN06dybKA8S5Nw6xa6+0Ls38/jXlaEzh4ULs+lFZ/JscpzxdjoARgEz7nuZIdszmfG51WQYEKythnQS/MdrOZ4K517LGTZBCyVzbyL0vx/QfdxMrT+DRzD6sjvIHl3TLKff875pOq1Ig+9WXsJoEIK8hDHN8t0qC4Je27fSK+I7TUKyDT4wGRm7fi5+wZrgZhKQN69l/lf7RrV8C49OJXusM7Tl+cdBABA+mhtBRaieo0mu3/eookwt2GCzFmwQVeR6obB9tOdZtHPvn03wl2+Tk2gV/ON+te695mpfvpZgcPMK1PmFgTShr68muGw/SCMmfZOZrpwyZv1covNt/NMApCSgKl8LCPKA2hpH81zeN++iA/K+cR9s03lu8x3rW8NpLTQdGVqHmFFCt37DkI9qk2vpoBqCx7pOUAgw8Pw7iXgmjyEzrqZwbBUhF0+g5h77iLPzu0r2j7QJkzfvWioQ1DQvu4BTdve4xCHqJ/gczUclqrdn6kpPHBWDI2PIM6/MEnsNIvzZIoJHn4f+wTOonVLGtCc/Iyg0kgEX3EtIhGb2Sh23FKEz2i1PhQ56D9OSF3YeMNEykQJ0SxngtH9FEa0TZA73rcf3of0EPGCNoImKTWbfoAhKH/8ben+rcKk3ts7XxhaDHoI/eZ3Y5J6MX7vdMWWBFNrEKLCbiCQQk2y/avcxb7djEjDrq9X02Zru9Jr+dWX412p2M2HSVsj+tcUtWiGXhejp81qOQ7kzM7YrYjtbBaMGja0wOf89w/pZw411dY7micCQcEZszmDKsi2WPasARl95DyM372TKnfM5cPN57BzX1dxPz3xjooq1yXH4pn+RkPcHUcWeadF8/Pw5esko/N+zz6mme/cFon7+L4GhmtAkJEx98BWif/mW8Vc+bFd3zJX30KXfKIafcz3BX7zD2XPtJwdbp9+oxGB8ZDnFlyc4bEjsDldKTQ+UnQDojeDj68f05xcQGqVdXJg1MAG1RZrWIkgTeut1EJfSfG3JgTnjOffDP+i1aR29/1xr2W1m+yWDHOqW3HeF0zYEJnwMlfTY/w0+hkpEoz1r4n9bTFCQtugwhgSS9PA8l/0ZmPE2xtiVHgUb1Ac1rfk8NEgbEw/Fwhk3zKPLwPFMWW59h6OSrekujUWOdu8jPawLpdBvrbmoTK8+1uR19106ssnPB2a8zZQVdzJp9QNEj9rJlBV3cUYL0iH415XhV1cGCDutFQKPxx7fP99wLDSbMYWLd9l2HDjRnHY+TQFRdZSkGIg45EvY6Cno+o3BN0BbKZUmj2d0wO9UXejBLtN6X0Ij4xi/MAP8gh1yjoQ/uI1OGetp+GltB6mCOBPJWToKh1XTaZNnWqEGGqtDC+KGszxuODqjgctvT0DE3syovy7k8H8co+mKx1cSuSrY8rcnDr8RMYn0WvgOxzZa8/mkXW9Wh17nfM+o+qv/h5xvQKfX0X9SEjv+OIbJyYR5uE8AXXfXEB6R4LSd3KmDiPqv85Dh8AvyKf02xulnDUSPSyMgVNMY+p9dhAlt4j/3Cy0nyY9vWCey8E/f5NfvX2Xix56Zvpz5gRXeM4tOL/1I8dWDGDh8qstzy8y+NMJUQWTnJCL9/yAnvz/oHTVJ+3r70Tezjl0zepHm4wNNrEZDK7KILsogMXs12YnjqPULd1m3KXTm3+pIdyNdDujJvXEm9b+vojnxSHqzCaoiEBIGjIKfDhDQq5fTuokDxgJaugw/J9tZBIdZtb6V+c792mbdYw0S8FS4s50MU3K+JNAcRr69q2DA4aYF9jOf+sChrM84LSFhfs4hAPQmrS8xXfs02VaXQeMsxw1XtdWsTp7XkHfrYjK/cPwVQj97m/Ir2jbCruLp2wl59HU7s1xM5xB0WSvoveNXqu+fz6Fle8g5byRdg7TxszLUh7jEFGyn/uoQXwIrrO4C+wYE0v/WJ+h2xjlkLvkC7nyMKbdpv51PsPa8pqxZgclQx5YXb7LrU++Nf6IPCSHzxc8A6Lszw7ItlO2E3zVLS1ZaHGUiskh7FiITUphx50v8nH0Z0x9+nZBOiax78jjVR48Q/9ZPdtcJ+Ph1DP+dDzguHByoadptIPDSi2Drm+gaxfsU3nulxdRcdO8VxA4chf6H94AjdvU63Xcf3KoJeMl9h7N8UBJBZ5/J6DMvJ5PHAKgIcNyoOqxHGqBFqx2ZNZguPzpfbAHo/ZsW/NxR5xdGQE0BoWWHEUBpWAohFe5TtjQQJUsdCxvcOhr5gL355LUYy4+jr8tlorlsx5B62M0J47QTmozChzGj82E07O4/gd5TrDuCd7td213atduzE/yd+xT4+gcRm9zH8trZJhHtNqCEw6Gh9L13IWVXOd+nrDE1IysJ2BDcpNNjVMpAoh50vQt9VJTR0c7sxFGxXg8+U0vIzQmib3g0YZFxJPUf71E/AZIHTOQ2m8XDhMt6O6034+t1yPIidC4EAVMTVnHf29bAt1aN4PGUemIP+ZA/toqYNUEc7G5iys3W/by6v5TnkNfI9q8eAyYS0Lk7ZR97lrrB1g8szjxgj/nL4+zRlzLqsmebOpWwIefCmp9ITvmB8x59Hxjlsq5F2A51L1zbCgF99n7ptr4tRf1qidqpDZ4+Zkk/7emFFG/4jjNufhHua/r8ihBJyN+vhn9Y97QquucikodPo+uwM8gfNJG+Q6w5XLLH6Uhcrc0kSX0GWd4T/06xgGbWLg7TEVlmwi/QKuj7+nhiQmj+sGbw0xFofiLO+2o1B0eOdVqvyoP5JSisE7VoPk0t5WBXSbfDjuqgkmFVRGwKIrt7AMFF2g+VPGQ8rnRkY9fNZe3IeZj0/hbH5oYI1sYcHlFL1z+1L9hl2BSKeJ1aP2sfzr5lIPLGNJD3I3x8mHRFH0DzNyu641J6nHkxAcH2gvrQjdswmUzsNgs353yyGmHW8KaeeTnsupzGBEdpiyGfIvuEQ/oQ+7FW6HSEfP42R7asJOqfHzm0U3f1DEr9EojsrV1b5+PDzBesDuejL9UStmaahabquBAC8yroNmIqG75ybfI5fstMYt/Qzgk1lgA6cuNMxOdpAlre6G7ErdOib7v0H0Mtb1IYZv9bjr/JujXTOPP2ROmL33e4VqCPvWpxyhc2yWhf/D9KXp6PobyYkBrYfMMszph2EXr/QPauX2KpNvWZ99n74xD7hl/4P7hf29tR54E5uylamvZj29gYBq7J58jWcPo3/tBiZbUfsyd+6miO7r/lxIoxp53QpE8YQN29iylY9Dh9bASm9iC8U6x1rWK2+Qog9sE1iPTFJA07mzLcC02ps7XVdeaGYEZsfJbNQ+7BqA+wDIJ6Yw1Dt/wbsGo3CmNMdMq3X3HnjbyX2O/tzQANjokmIS0RLLvHBTHwrFsYuekFl+rRtkD4+iOinGuZAISzjMFA38uzEcm9sA2Yr542ntSK/7Hb70Ji1qzHIHwJCGvkb9CoPUNlud3f8SHxuFIoH04zUC8Ehzu9Yd+O2Q8MKUn1Dyb1BvcDyJl3vEjBhAtJHexeEI0/6xLY+R+GnXeT27ot5VBnE2d/tpXMQZpKP/52TWuRPGQqyUMcNWadzi6gpk5H5TKrBmjExl0AlI66hIocLZx+3M3WzbBjhk62a2PquxmW7MBhnZLIAbKTA5j+6lf8OXkk/b7+ngSTgcL9O+3Oi07STM/70oJdar6i4xJp7vaj+UN7EPbLPvaMjSM1LNJpneLbL6LPzKvcthUdl8wxoDiuBSt48xxRHyHBidA0+oNdlKV/R+oI5465jfGvK8PXUEGt3h9hMiCFNYK1gcPdjXQ9oKem3trf2K59ybh4JL0usc/H5MpfbNxtTwBQU2V9p2qStffPVvMn/D3XrBvM8nF2imDiV6st5SWJodQmRJEKdB48ns6Dx/NnbRm9Jl9BzgVWISwstitDL3Ej7QPx33+CNBmJ6ms1aTWerG1Ju/hm8s1CU6U+Eiglr0c88Xma72T3h5+iLjeb4Jh4EvoOZ/O82zh3uvvkqXVOzHMxKX1wFWuaOusqmHUVGwZrb0Kf1H4kDtaE/fhD1qSvPv6ONt3Uc64i0yw0dUpIAaAiSBDiyf6EraA2Igj/Ek0YDgnQfJm6HXMyzldrqrPBqwvJKSzgvQcnURQZi+vdYk8cp53QBOAXFkPile3vPGYbxWP7EoYl9CAsoRn5VuYWaZEcnw9h09AH7KMVhMDoE8imEQ9ga8UOGFIBS+zNPcZ650JI13PyCAwyYjAJ/twfSZ+zrqb7zLtgpvOtM7yNmFfsIABV1vvCY6XI5zwXLvqPmEr928s4dsFgUgF9E6Yvfc/OGMoM9Nv+Djv7Xa+ZNG1CkgfrXsVWaHVHtAcCE8DYm/6B8cp7HFbZbUnKUR34h1IzsRyfYH8GXty0b0PscwfBZGD9fQMIW27vgxXepS/hXTzza+mbsUNzgNfrCf1oIaN7pKLz8WHUqs2WOhGJ9v55oy65gw1ZR5j+l7+7bNfHw4nZZ2wZ9Wu0d2TGs5/zh+lKznr6QwDyE4zE5FgFhD6/fYUuwWE97JSw6CTyXnmSMcMnuq/sEklFmInaaHvfDeEbSLiHAlMDzsy2B5Ml3bIEm0aGEJajmZjK63Rg9gUSQjDFfC+ag5+/VU9vCncduOAJDek6iuIj8A21CrJjljsmSRxxi6bdtTWopYzxLEN9ZG9n+9K5Fh5COyXSEPYTGNQJKCU0IZmG9DOBIWF0mWTdr3HoFZ6N9b5ONp0OCotyKTRZ+mM2zVVXWIM3ouKS8SSGOj85hOSEXtQCZSnRlJSUkpzdgvBKDzHERlqEpvCt9tc5XlZDTKg/QgiCS6wRdYseOJuL1pgA9/tLngjazRFcCNFZCPGbECJTCJEhhLjLXP6kEGKbECJdCLFECJFoLo8UQnxj/myDEKK/TVtnCSF2CyH2CSEesinvJoRYL4TYK4T4QgjRfPf/dsYwtpzQswptHORa4HCs04M5dHnM+rkIY51dtIKeWs6cbK+23BbuuJdPDSYSzrXPK2XQS3gondJrl1A0cz49b3mE1Isfdji3Q+HEZyXE3zx5N2MvxV4TL6TL4kVMffY/buumXnof3YemMnS42cldu5j5PxNJM0a4PLe1tKfAZMuQFzcx4FkPkub5h0BgJDUhya26ntDrLRFDySMnE9wpzv05QjDqnhcIiGzan80Tury2k4o7Z2F6+hZ8g4KZ9tp3+JtzsVUH2z9HngpMDfSacQnBnZofEdZwVYGk82tP0/d5z0wfhS6CfSOmFzIw422HLOp+QzQ/q5SBI+hlDoocntEKe6IZW1NP7SDnZnlPGXShtgDqd1HL/LWikrq3+NohAc4F75hvPsM/yPo+jrn9KWpC/Bh3k9XcGRTcslwyEZ17AnB0QCw8/wjF/ZIIaqwtd0LC0kVkntGNcRfdYSnrPnAiuVMHEv61veAbv+QHIr78AIDExd8x6n9L6D78DIy3X8ukTxZzvJ/n6SO2XeN8kdj7T+eZvwGI0sy3hRdNoD7FamXI3J/Jf/82hGf+dTWvXpFm584yfk3bpJtpK9ozeq4euE9KmQqMBm4TQvQDnpdSDpRSDgYWAQ1xiY8A6VLKgcC1wCsAQgg9MB84G+gHXGFuB+CfwEtSyl5AMdC63P7tQP/nlpP8zC5CA7WVki6imeEvjfCvKyMhd53WlrEOBKRO7EaP2f+wr+jj+NL7mOoJCtDCq0sitAHyeDQEhMcT0XMU8WOvIm7SjU6Fko5I1XCrz0N0Z/MEbknW5lkbwd16uDQD2pI8/BxSr36Ryql3I4UfOh/BwMnxgAH0elIudB2Nc9IQGgcBnmsHogdOgrFl9LzYA4fZDoBxkr3x1T8ojBG3vkDaxY4a1cQEL2UptgYfET/qEqLTPNvItMfr88keG8OhQVb9QuquTBJec558d9rz39Htp0WMv38BNWarXNaUnq3puQN1Ywa36vy+M66gz6aNpJ13XbPPdbXJtqfMfOgN8idE2vmwHewB0an23ym27xCGbNxKRFfrvfMPbpmGbcxtT1LZKZjhzy4g9dxrGPu/Xz0Kaojo3IOLFv6EztdqgdD5+HDG/C9I7G8fRRfZpScJAzUfyvBuvfE3m6L73/4wPkHBBB7xPEHd2Xc+5rRcHxpK2ezJlr8Pn2fVuhlnTCR1Vybjn3mL7ndZtcV7F7/D5E1w0fubmb7FRJfs1gvw7UW7zY5Syhwp5WbzcTmQCSRJKW1HrmCs01s/YJm5/i4gRQgRB4wE9kkpD0gp64DPgfOFNtNNAb42n/8h4Jjw5wRiPNsxt40utjcERTHkrAsInlRM2oVNpzNo4HBn7aEpHuf4ENf5hZGUvZJhm1+g/8Qkqsoc1al9+zuGnOqMYLh3Nz3PyyVyjBaxIEwCnW+HU9AB7sOiO99pDfkeeo4mL1tX6m2PLjCMxHP/j9sWTuFv86cwYXYaN/8jnr897xga3ZEoTrLPfXSkn4GoaYUUdG1d9ut+Fz9EapcK6uZ816p22oOKRu9N9MWQcv+X9DzXmo+tKa1v17vfp/eF3hQGm+dbkjB0ClPfWwEB2rhxcIBVeKq45Vyn5wR018Ldu3//LSWT+zDttW8pGdSVqk7NCoVxoNSsiNHbvIVVUUGUjGi+UKYLDnZfyYbiWUMwtoEbpi4ogolvryHIJu+i1FmFkuKLJ2N66n6n5/q0cDwNTezC8NUbieqZ1qLz2wKR4Jl29NCEaMJCox3Kc+ddD8Coxxayv4smXhiSrFrhoGirNrnLSOuCoLjA3vTmLs+UN/FIaBJC6IQQQ4QQs4QQU8zCjMcIIVKAIcB6899PCyGOAldh1TRtBS4yfz4SbZuvZCAJsM2ql2Uu6wSUSGnZ96Ch3GsUdpvl8rOkYbPo8sg3dD/PdTqD+DNtXJvN440u2FHiHpjxNr0j3kMfdIRJV/Th7FsGOtRJ7pJA8szjdLWZJIROR3B4DCLEl+JuWpRY41DYjoRwI/rEjrzEWtesIekUoamzfSNbF0brKT7Jg9GFtjwxX1vT+6Icel1gPwB1Pq8PdYGSQnNG6qogf+Ke3kKnftrEXJDWsg0zRWAkPFZKcO9J7iufYMom2CudY57OJKTXOHyf92wj6bC06eifLaFyVE8qJ524SUy2ch1b7qtNUJWB1gltxN3/squTvMBeKx3etQ9j3vgWodcz5oufGbZ6U6v60JDyTC+t32XYmk2M+fiHVrXrCWNf/A/9M1qnZXLFyHnWtBZjn15IWiMneZ8X5lIyuWMvoNxRF9r0uHlgkib46mOdC8A+tk7/5tQlPjYm21B/51o432z7xLm1Ab1ZPvFVisKdpynxJk2+oUKIHkKIt4B9wHPAFcCtwFIhxDohxHVCCHdthAD/Be5u0DJJKR+VUnYGPgUavOSeAyKFEOnAHcAWNBOfs5lTNlHurA83CSE2CiE25ufnO6vSJsg4N4Nr1zFNmr4i77Ou2OvND9qxeOch8An9Ixg2Nc/pZwBdhp1NaFg9PhEhlCdqcmWnqGTQ6fGZe5zwYeYkcSfGXaZl6Kw/cU43z5KZTfzLQ/jNCmbS0+4zyXpCZa9aaid5L5Fac9Hd+yf6O5dTE6C9Ct1n5hF64XMMOj+HxLHaCnj83/4F4UlEzVlI9ORCuk5unr/OyYDUWwf/2svthbq+GTvos2Vz41OcMvzDHxj+5tfuK7YR0qz9aqmm1GSO7TG52EqmoquB0ClXtrB1z6iL0Ma4hMiOs5hoLccmdCFm+NlN1ul1zhWMeePzNr925cDuVPXt3ObtOqNx1KCp0YPY59pbKe2TwLg7nnR6fnyyNQgk0TzVRkdZfR+j+g9pfIpGo+vsSLsBhI7t/ds2/1hb4C567ilgIXCzlPYetkKIWOBK4Bo005gDQghfNIHpUymlsx0Z/wP8CMwzC1TXmc8TwEHzvyDA9olJBrKBAiBCCOFj1jY1lDsgpXwLeAtg+PDh7RZTqfdpvnbDdKYO3RKzuqerNTeMNnhKTDrnbUbeuQLKm4gm0OnhHwX4CR0jaqOoK/chO6mL5ePw+M74TSoiKNp5eHXHwEa9H27CMKSWuLiqJuqDCAinx4sb26wHw9/+HkJdp0XoaIhobWU26PdVYKxFFxyCf0A4decupFvqWYhnrR7D8YOmUfvX54keeJG3uttuNPipZcUJpj9un3FY6PWIwOYllT1RyDYyLLsa5BImty6izRNGv/Nfcr5ZSLcRM9r9Wu1NQxh+/Ow5XuvD8C9/PGHX8vexaoX2968nINuHJBvlbEB8IqO/W+7y/J6jrL95/LtvcuzRRxl6wc3seeItAEIinAvSfddqElbjjcyNvsGWlC5T/mhGxHk74k4X/IqUckVjgQlASnlcSvmylNKVwCSAd4FMKeW/bcpt9W3nAbvM5RE20W83ACvMgtSfQC9zpJwfMBv43tyn34AGG80cwKvOFXq/5tuy0/7tfMUbZ06f36W7C2fKwEiIdZOjWe8LOj0V5yzAP7yeFBtbeWJiMjEJNYSNc593xlv42wRDhhglA/uU4DvKfoL3m1BK3aCmBamWUhYsIb4/BHu+v1RHQRcRja5TEgRo0Sp+w65EBDUKsRIC/xFzEP7e3XC1PbA49zcjmrIj0HqhqenzTRe3LBFhcwjs2pfud7/ivuJJgGmWtq9hYs/hXu7JiSEy0Zq93lhqLzAB+DRKLtt77Qp8p9psmWSTtiVh+ASG/7ICfVAQ+THaeXoXef8sm0hLF36WouNo+91pmhYAQ93UccU4NC3UdrPJDbQIub8KIfqgJQQ5TENKWUgFPhJCGIGdmCPhpJT1QojbgV8APfCelLJhr4u/A58LIZ5CM+dZU0B7AR9fTStU2hzfRRfaqdje0aR02snhRNcbB3tK6MirYORVdsOpCIyER3OJ9GldNF97kjBgOLW/rAE/E70GRsLDmUQ1yogefe1jRGW1zgfDFdXxHedFVTSPocMmk8P7hKR19XZXmoVsSUoS5y25KO/AHrYdkJGPvYLh5hz8kluXXsPbBL74GBV73ft6jb7sLg4u+B6ACKOJxnqVxkK9PjKGnvO/tySqdcW4RSuoP+48ktOu3rq5rB71BOh8rHnwTPV06vSJ23NPFO2W3FJKuQrny56fnJQhpVwLOPX6klL+5Ow8KeUBwDFMzEvozVK4aObitj7GgCjXBrPEmfmUFvuRfO2blC1+jK6j2zEg0Ldjmiga6NG7F5EzNL8tw7WfgZMtNMIntF+m7IouJ8aZvLX4jS6jbl0YsrkP3ilMRN+RBP/8LT6tyNXjDRompZaKTrGRMUAh0ZHOtaOepNdQWBF6/UkvMAGkzHLcrsYZAfGJluPKuHrIth9zg/1aNibqw8PRh7vfC9O/rsyyuT0mAwgfEDp8/DQN1NF4Qedc6ziX8stiTFWV0O/E+WW6E5q6CyG+d/WhlPK8Nu7PSU1D6H5zh6UBU63O6X6dQugSVgzhiYTNfqsNe3fyEdn/TNB9AH1m4tsCf7HWYgo5OXyZ4mffRHDKv91XPM3wTWl6o9yOSK1vKFCBQdeyBc2ke5+ipnwyve7/wnmFpuN2FAoLQge5I+OI35BH0Rk9SOjeh7CEbk7r9knf0mb5/aILt+NfV2qXwV4kN6R7kMR//jG5s68h+fv/Edg1pU2u2RzcCU35wItu6ijMVIs6AoDQZrrYVE19GllZQDAQeOc6KDni9pzTAiEgzbOtENqDWt+O6yR/YEpvui/fA0DwWfNA1EH/U8+h+3TDoA8EKqjVtSysVZ+QRvAbriOElZ5J4Sk1PkFMf+Ub9sy9mTH//BBdE8ETuoCWuXkY9RK90f6pdLbx+K5h47TrIIkcPJzIViYvbQ3uhKZyKeUfJ6QnpwCxgXEYAINP88wkQRNsogJC47V/Cq+jD+i45rnaTo2ct2c87byi4qSiraLnXKLMcwo3HOztR7c9dRgCI/GJiKTfq1+227X2zx5L70/Xuq3XkO3c1K6bmHiGux4cOhGdOFUwhUbSeWIh/c9vn40FG/ItHenagTNSnkJIF5EeHYHgYPf+AYqTD6vPUfv4p0mTGjsUTaOP0iK3o0LaX9Mu/Hyb/Dz08YdJ+OITdOYgq47gtdmkpklKadH3CyHGAim250gpP2q3np2E9IqPRCS2LLuyJ9T2rSE0O4Q6n447mZ9SyI47wegTEt1XUpx8iIZ3u32mB5MSmhRumPSPt9lzw9VMum9h+1+siYWpYWocyZdfq1Vb5cJHzwt4FD0nhPgY6AGkA7ZbvCuhyQYR0QVuWQ3Rrdvd2xV5iVOJZj0moYSmE0FSeMd1BA/wa93+YIqOSe+kbkA2XePaJ5t2rcFLGxErThoCevRl4G9tlyC4KXQuMtcD1F1wi+VY72PWSHUA67KnKQeGA/2cJblUNCK+HUMfzatEdxvZKlpP0rgi+l52tbe74ZLEbmm0n05T4S2G3fR3qnPH4H9v++SlCXOx95dC4Q10etcKALuNj80aqY4ggLWfMhMAACAASURBVHgqNO0A4gFvbvt92iOV0HTCCHtlO4R03L2zuvXupaXSV5xaRPci8NUC9/WaiYysxze0nvikjqs9VZx+ONM0FYdAZAXofR3z8nWEqc9ToSka2CmE2ADWBa7K03SCafCxUREw7U8HFpgARJTzfCkKhTNS/z4NguOg8VY6CoUXqU0/7FDWkKNX52N1Ejd1IIWBp0LTY+3ZCYVnKOto+2PykejqO8CbqVC0IeKCE+DUq1A0k7gCR6HJgo1ywFdnnvs6wNDcpNAkhBBSw2WupoY6bd81RWM6wPNyytPrphhE6TFvd0OhUChOfWYMhV2/O//MZsKLjNDSHwjfplMUnAjc5Wn6TQhxhxCii22hEMJPCDFFCPEhMKf9uqewQ4mm7Y7fnSvx/ccBb3dDoVAoTnkMyYNdf2hji0sdfC4APSZ5b4eIBtyZ584Crgc+E0J0A0qAALStspcAL0kp09u3iwoLStWkUCgUilMEZ87ezgju1Ydu332Lf8+e7dwj97hLblkDLAAWCCF80RzCq6WUJSeic4pGmG28SuGkAAjqW0l1Tsfd6kWhUCiaQu/jWmjSNfL6CejTMTbg9tQRHCmlAZVywKuIRv8rTm+6Di6FJrTbCoVC0ZHxcSI0BfjpoNJEl04dM4LZ+7vfKTwmwT8GgBjhmUpTcYqTdiH4Bnu7FwqFQtEi9H72mvKcq8eR9uF/iL1yGsE9O+aK0GNNk8L7BAzoR3T/r6ka0sPbXVF0BC79wNs9UCgUihbj6xtg97dfUgJ+vQfRae5rXuqRe5rUNAkhOjfx2YS2746iKXonRBDTv4IeyWqHe4VCoVCc3Oj97FMIdI1P9VJPPMedee4PIcSDQgiLRkoIESeE+AT4d/t2TdGY0L5ngNARMeUub3dFoVAoFIpW4etjb55LOuMiL/XEc9wJTcOAHsAWc16mu4ANwFpgVHt3TtGIkFiYVwydR3q7JwqFQqFQtAofP6t5zgToAgJcV+4guEs5UAzcbBaWfgWygdFSyqwT0TmFQqFQKBSnJn5+AVSZj00nSViaO5+mCCHEm8B1aIkuvwYWCyGmnIjOKRQKhUKhODXxsYmeM54kQpO76LnNaMktb5NS1gNLhBCD0ZJdHpZSXtHuPVQoFAqFQnHK4ecfaDk+VYSmiY1NceZtU8YKIW5sv24pFAqFQqE4lbFLOaA7Ofa6aFK2a8p3SUr5dtt3R6FQKBQKxemAr59V06Q7Sba6OEkUYgqFQqFQKE4l9L5Wnybfk2RXVSU0KRQKhUKhOOHodFYRJGjiAC/2xHPaTWgSQnQWQvwmhMgUQmSY0xYghHhSCLFNCJEuhFgihEg0l4cLIX4QQmw117/Opq05Qoi95n9zbMqHCSG2CyH2CSFeFUKcJAo+hUKhUCgUDRgHT/V2FzyiPTVN9cB9UspUYDRwmxCiH/C8lHKglHIwsAiYa65/G7BTSjkImAy8KITwE0JEAfPQkmmOBOYJISLN5ywEbgJ6mf+d1Y7fR6FQKBQKRTtQZ/R2Dzyj3YQmKWWOlHKz+bgcyASSpJRlNtWCwWLIlECoWVsUAhShCV4zgKVSyiJzss2lwFlCiAQgTEq5VkopgY+AC9rr+ygUCoVCoWgfjCeJT5O7lANtghAiBRgCrDf//TRwLVAKnGGu9jrwPVrW8VDgcimlSQiRBBy1aS4LSDL/y3JSrlAoFAqF4iTCT9Z4uwse0e6O4EKIEOC/wN0NWiYp5aNSys7Ap8Dt5qozgHQgERgMvC6ECAOc+SnJJsqd9eEmIcRGIcTG/Pz8Vn0fhUKhUCgUbYvex8/bXfCIdhWahBC+aALTp1LK/zmp8h/gYvPxdcD/pMY+4CDQF02D1NnmnGQ0bVSW+bhxuQNSyreklMOllMNjYmJa85UUCoVCoVC0MTp/f/eVOgDtGT0ngHeBTCnlv23Ke9lUOw/YZT4+Akw114kD+gAHgF+AM4UQkWYH8DOBX6SUOUC5EGK0+VrXAt+11/dRKBQKhULRPuhOEk1Te/o0jQOuAbYLIdLNZY8AfxVC9AFMwGHgFvNnTwIfCCG2o5ne/i6lLAAtTQHwp7neE1LKIvPx34APgEBgsfmfQqFQKBSKkwidj6+3u+AR7SY0SSlX4dzv6CcX9bPRtEjOPnsPeM9J+Uagfyu6qVAoFAqFwsuIk0RoUhnBFQqFQqFQeBefExLM32qU0KRQKBQKhcKrGE8SceTk6KVCoVAoFIpTloKqem93wSOU0KRQKBQKhcKrBBgrvN0Fj1BCk0KhUCgUCq8S4a80TQqFQqFQKBRuie2R4u0ueIQSmhQKhUKhUHgV/55Dvd0Fj1BCk0KhUCgUCu/iH+7tHniEEpoUCoVCoVB4F93JIY6cHL1UKBQKhUKh8DJKaFIoFAqFQqHwACU0KRQKhUKhUHiAEpoUCoVCoVAoPEAJTQqFQqFQKBQecHJsK6xQKBQKheKUI2VaPvW1J4/+RglNCoVCoVAovELgjKshf7e3u+ExSmhSKBQKhULhHc592ds9aBYnj05MoVAoFAqFwosooUmhUCgUCoXCA5TQpFAoFAqFQuEBQkrp7T6cUIQQ5cDJ43XW8YkGCrzdiVMAdR/bHnVP2wZ1H9sWdT/bnj5SytATcaHT0RF8t5RyuLc7caoghNio7mfrUfex7VH3tG1Q97FtUfez7RFCbDxR11LmOYVCoVAoFAoPUEKTQqFQKBQKhQecjkLTW97uwCmGup9tg7qPbY+6p22Duo9ti7qfbc8Ju6ennSO4QqFQKBQKRUs4HTVNCoVCoVAoFM2mwwtNQojOQojfhBCZQogMIcRd5vIoIcRSIcRe8/+R5vK+Qoi1QohaIcT9jdq6x9zGDiHEZ0KIABfXnGNud68QYo5N+c9CiK3mNt4QQujb87u3Bx3pftp8/r0QYkd7fN/2oiPdRyHE70KI3UKIdPO/2Pb87u1FB7unfkKIt4QQe4QQu4QQF7fnd29LOsp9FEKE2jyT6UKIAiHEybVnBh3nfprLrxBCbBdCbBPafBTdnt+9vehg9/Ry8/3MEOL/2bvu8CiOu/3OXpNOXaggiSKQEL2YYgwEg3HFdtx74jhxbCexndhx7MSx/eEW9xIXsOO4xd1xB0yzQab3DkKAEAih3nXS6frO98fM7szp9iSBAYn43ufRw7I3OzszO+WdXxvybKeFp5T26D8AGQDG8us4APsBDAPwLID7+f37ATzDr9MATADwBIB7pXyyABwCEM3//xmAXxu8LxnAQf5vEr9O4r/F838JgC8BXNfd7XMqtyf//QoAHwPY3d1tc6q2I4DlAMZ3d5v8j7XpowD+wa8VACnd3T6nYju2S7cFwJnd3T6nanuChQiq0foif/8j3d0+p3ib9gJQCiCVp3sPwNkdlb3HS5oopZWU0q38ugVAIVhDXQpWQfB/L+NpaiilmwD4DLIzA4gmhJgB2AFUGKQ5H8D3lNIGSmkjgO8BXMDzdkj5WAGccgZhPak9CSGxAO4B8I/jVL2Thp7Ujv8r6GFtejOAp/h7VErpKROMsIe1IwCAEDIIbOFb9SOrd9LRg9qT8L8YQggBEB/m+R6PHtSmAwHsp5TW8nRLAXQoVe7xpEkGISQbwGkANgBIp5RWAuwDgA3IsKCUlgN4HoxVVgJoppR+Z5A0C8AR6f9l/J5WhiVgbL8FwBfHWJUegR7Qno8DeAFA2zFXogegB7QjALzLVSD/xyfUUxrd2aaEkET+/8cJIVsJIZ8TQtJ/RHW6DT2kbwLA9QD+S/l2/lRFd7YnpdQH4A8AdoERg2EA3v4R1ekR6OY+egDAEEJINiddlwHo29E7TxnSxKUSXwK4W5L4HM3zSWAsdgCATDC2/kujpAb39IFOKT0fTLRoAzDjaMvRU9Dd7UkIGQMgl1L69dG+uyehu9uR//sLSulIAFP5341HW46ehB7QpmYAfQCsoZSOBbAObGI+pdAD2lHGdQA+Odoy9CR0d3sSQixgpOk0/vxOAH8/2nL0JHR3m3Kp0x8A/BdMCloCwN/RO08J0sQ7y5cAPqKUfsVvVxNCMvjvGWDSn45wDoBDlNJazti/AjCZEDJRMlS8BIyBykyzD9qJ+yilbgDzwD7WKYce0p6TAIwjhJQAWA0gjxCy/PjU8OSgh7SjttvSxNwfAzj9+NTw5KOHtGk9mPRTI/SfAxh7HKp30tBD2lEry2gAZkrpluNSuW5AD2nPMQBAKS3mErvPAEw+TlU86eghbQpK6XxK6URK6SSwc2mLOnphjydNXNXwNoBCSumL0k/zAGgW8DcBmNtJVqUAziCE2HmeZ/M8N1BKx/C/eQCWADiPEJLEWex5AJYQQmKlj2kGcCGAvcernicLPaU9KaWvU0ozKaXZAH4GpleefrzqeaLRU9qREGIm3IOGT0IXAzilPBE19JQ25QvSfADTeX5nA9hzHKp4UtBT2lHK53qcwlKmHtSe5QCGEUJSeX7ngtkCnXLoQW0Kwr2N+f3bAbzV4RtpD7Ck7+gPbEGlYKLI7fzvQjCr92VgrHAZgGSevjcYq3QAaOLXmtfbo2BEZzeADwDYwrzzZjBd5wEAv+H30gFs4uUoAPAq2O6p29voVGzPdr9n49TznusR7QggBswrSeuXLwMwdXf7nMptyu/3B7CSl2UZgH7d3T6nYjvy3w4CGNLd7fK/0J4Afg9GlHaCEfte3d0+/wNt+gnYpmgPuuARH4kIHkEEEUQQQQQRRNAF9Hj1XAQRRBBBBBFEEEFPQIQ0RRBBBBFEEEEEEXQBEdIUQQQRRBBBBBFE0AWYu7sAJxspKSk0Ozu7u4sRQQQRRBBBBBEcB2zZsqWOUpraecofj58cacrOzsbmzZu7uxgRRBBBBBFEEMFxACHk8Ml6V0Q9F0EEEUQQQQQRRNAFREhTBBGcimgsATwt3V2KCE4RVBzchUWP3wJVVbu7KBFEcEojQpoiiOAUxII/no2NT5zd3cWI4BRBwa03IPujNSjZsqTzxBFEEEFYREhTBBFICAT8mH/9ZGxf9E53FyUsVFXFwM1WxH0WkTRF0DVY29gZpM2NnR3lFUEEEXSEk06aCCFRhJCNhJAdhJACQsij/P4MQshWQshuQsh7/Hw3EIZXCCEHCCE7CSFjpbxuIoQU8b+bwr0zggi6iobDu5G7rRHeB57r7qKEhc/T1t1FiOAUhTvQ3SWIIIJTG90hafIAmEEpHQ12avMFhJDJAN4DO/dlBIDDEIf2zQQwiP/dBuB1ACCEJAN4GMBEsFPdH+YH7kUQwTGjydEMAKCkmwvSAfw+T3cXIYJTFOxM0wgiiOBYcdJJE2Vo5f+18L8AAA+ldD+//z2AK/n1pQDe58+tB5BICMkAcD6A7ymlDZTSRv7MBSetIhH8T0IjJOpJWlu+e/hyLLxg+FE9E/D7TlBpIjjuUFWgraG7S6HDpPzkosxEEMFxRbfYNBFCTISQ7QBqwMjORgAWQsh4nuQqAH35dRaAI9LjZfxeuPsRRNBluF3BdkFetwsAQE/SyOj7370YUHJ0Hk0+r/sElSaC4w3H4kex/+GhQGttt5aDaOeyR0hTBBH8KHQLaaKUBiilYwD0AVOtDQdwHYB/EkI2AmgB4OfJjfb8tIP7ISCE3EYI2UwI2Vxb272T1/8idq34CoufuqO7i3HUWPWfx3HotNOxf5PwKApwSdOJVM811h7Bt3+6DF7Xsdkm+f3e41yik4cdb9+BpX/iZomOih4lhTkRWPbuFwjMT8bOTcu6uygAAHIquP74vQA1nMrDg1LA5zox5YkgAgndOoQopU0AlgO4gFK6jlI6lVJ6OoCVAIp4sjIIqRPAiFZFB/eN3vNvSul4Sun41NSTEmm9Q1Qe2o0tiz8AAKx49wlsnP8WAGDNJy+iqa68O4t2TDD/7kH0fy+/u4uho6q0sEvpGhZ8DQAoXvQf/d7hRZ8AAJIdx6cs8393Phbce2XQvdV//SVyvtuHVa/95ZjyDPhOXdJkfS4fWd+xxW3J5TMw/9cTu7lEJxaJFUyK2FTXvV5rmqRJUUzHL1OvEwj4O093NFADoP9IhXPuvUf1WM2SZ/DDHwcDjsrjWpzWNW+i5p1rj2ueEXBQChR9f/QEuZvRHd5zqYSQRH4dDeAcAHsJIWn8ng3A3wD8iz8yD8CvuBfdGQCaKaWVAJYAOI8QksQNwM/j93o8mmZeDfvdTwIA0p75EHH3vYCyom1IfvRNrL3t6m4uXSj2blyC+spDx/y8s9mDr1/YAmezBxWHdqGx9kjnDx0j8l9/EI3nXYHvX+580vWpbLA6Wpz6vSHz9x7X8uSuKMXAb/cEv5cbmzfUVnX6fMDnRcVOLqXwOoGWKvi6YAheXbr3qL9ZIODHt787CyXbvjuq544V/coJcneGVxfNv24klk8ecvQZ1xcDrsZjL5jPfdwlYD0lpCTpTNRUux9o7trG7Yc/DcPOFy8KvtlaA9/ntwDeY5OiOhprsPfTTOS/vuConlv72gfovTwGqxZ9dEzvDYc1s15A/bM7j2uexwXeNqDuwNE/53P1mKC4zs0fAR9dBee6t+FZ+wb8z+R0d5G6hO6QNGUA+IEQshPAJjBj7m8B3EcIKQSwE8B8SqkmulgI4CCAAwDeBHA7AFBKGwA8zvPYBOAxfu+UgRyd11HGpCMph37EZC/l++1frsHu1XPh93mx7LUHfpQdDP3V3ag568IupZ1/52W6FE3D3JeWoGJ/E1b9dx+aZ16D4nPPAwAUDhmKpeecdszlMoL1P98AACyfL+o0bXw9k9hQ33HeLXcCbWOlSjssNWDsC77w6rFovuZOHFj4Tyy6exIWXTkNqi/YEHz36rkhkZ4bzru8y99MQ+GiOchZUYXiu/50VM8dCzytnffz3O1+pDeE15P6PW1oKtkWcn/nmRdjwd3TjrpMNfvXAQDm3XQ6tp4xBQDgbW2Ar605NPHRSjTaea2tu2cwGpa/Gpwm4Ac8rTiR6Iw0Lbrh5/j2luldyqv3cjssb5cG3dv30T3IX7QMh1d8EOapjrFiCZO65x4+Ov14dAsbS75jVHmHQ7/y46inb6kGtr7Prg+uAI5sPOasqt+5FkXPTAECPqBiG1D4bdi0rtWvwfUWJ7dP9Aae6hOcwO8Blj/NNgsnETt27UB+ZSL2/vARVr33JBZuPhV0x93jPbeTUnoapXQUpXQEpfQxfv8+SulQSulgSulLUnpKKb2DUppDKR1JKd0s/fYOpTSX/717suvSFdRXlcDv86Kxtgz5Z42BV4qx4/cKHfyehXMBAHHt1PI1ZftRuKFzAiDD73EjZ8EumG65H8tfexCZr3yN/BfuOfZKSGioKe3w99yl+3Qp2r/uXI45v89HY2UsQAiKt9Yhf/ocbJrwEvxcxZRVFn6gNtdX6u3V3FjVpSMgDg+yAQBq+3c+2fktLA0xH7vKYtvST9BQdXRnRWqqEkoIPNZ4bBlzNxx1xvrArIOMTJXu34PsfB+ySxX4Je+5Re8/DNMt92PZy0f3fQvWzMP6r14LuldSzHeu7ZvO7wXcBsTBAFWlhTiyf0un6aqPHMMuGYCruQbzbhiP2gOb8ezvx6PyghvQWLFP/72ttRGWADBwRTCxXHjXFCyYOThsvkufvgn1l9yMbZ8/iUFbfYjmGtCiCVOw5pwz0Oaox4pJw7Dhw8dR/8392PXIWPiPGNdTDQSw7B83oK1ZUslJBLm1qQ6JCxWsfYS3fyPrP0XPTsGWv+WhfMdSuByhtpeqy4HGla+HrQOtO4DqB3vBuy/Ufkqo5zqe8rOPKMjZdezG4kVLNqDf2ihsWvH9MT1vM0cf24t5/UzmE7ekeTe/D98eLgEL+Nk3VQNdNvLf/uqVmP/043DVFGPLK9dj1z8vPeaybPmqCP75yXA5m7Hj+Qux4tXbgxNQChTOB/xerHr3WSz/jI23w24ritqigpKWL34JO+a9jLKFzwbd9218F/59J055U7ptKzJW2GH/oApZK+wY9CP63cnEqUHtTjGs+uh5bF30PlxtDtRMn4nFd12FqqnnIqPSg+9/I3b/7jYhJvU21+vX3/7xMv36yEWXAjeJBXFH/mdY98XsDt/vcYvdatTHbJCry9dgR/5nWHD/L465XntWzUX1mefjh/88gcbaMiz4v18H/e7zBBOggN+Y5KiKGY56sVNvqCzB4n/8LoQUVUyZgaXXn4PyAztQMeksLH32zrBlKxwyFN/+8izEU9amdnRuFOqK44PUZMLSGaNROGRoSJpVHz6LttYmw+cDAT+i7nwM2244uslP92QiBAcGXIrmhFysn1timFZbvJsDVv2ebAhet3UV+33LGsPnfT4PllwwFhu+CpZqKL/9GxIeCL7n9zOJW6DdrDD3xgkoOO2Mjqqko/G8K9B6yS8BAIsfuAIFXHLQHsQa06X82mPJC3/EoK1OrLj/FkwtYA25r0ioTxoriw2fG7CkAQMPKWirO4z17z2ETR89BgAo3rUKXlcbzPM2AQAOfv1F0HMKBdIbgD0rv0BaI4Xp+Y/xwwcLYF6YiEXzPmaqjoaDAAD/to+hlm7CyjfuQeaH2/D9nWKsBySVqsfJ+lNOFbB/0SsonHQBCr5+Gk3/dcC+OAGOa/+IZTecxSQTEubfNxNVt72CwmXG+8PFHzyDhi/TMP9fjwbdX/3aXejFOTk5TjZNqhz2IuAHXfIQ4HUiZw8bU4GacqDpCNDKiWMX7Z+UpEQAQEtUJwnDwNFQx957AlDwm6ew/A9/AW2tBR7vBeeq11H+xmVYds94qLVFQOUO4MBSAMCq2/ti//vBRMb2fj1yd5pxsOQg7IsTYF6YGPS7v2Qdah9IBm3oXK0+oJTtbKjfA+vCRKTlB4+n5t2L4f3kl6j59jH0XRON7FI2qNu+SYF/XnJQ2lU//ADrwkSsXrMuuL6fPIiSt2/sQsscG+LqSk5Y3icSP0nSZGQTUnloN5wtwdo9R0MVlr/zDwDA0pfvw7d/DrU3qji0K+ReyuNvI/rPT8HdwlQQmauL9N+sVeIdLmkxVqxiJ5rzvdg526Wi1pQXwXr7w0h8aI5+LxDww9EYPLm6nEIqUNuHTWLOVDOstz+Mgd9sPSqvLa+k1itf8Bkr6+sfomrquRj4+Qas/1QXCqLVUR/07MTLBrALaZdt8rswYfOTaKwq0e+tvfNq9P9wJbZ9MxtbFr2HpbP/rv82YE8jStYz0XMgfyUaa0qxZdF7AICVHzyD/Ddm6WQrZ3MVTIRJZtoLSxwNVWhproWrzYHCIUOx5r3HoKhcJUYIsipCjau3LXoHKf94F/n3BBuCzr91JhZceybaWtj3y6zoWrDJ5oZK+H1eKCrF8qkvob7xTlRnnMGlcI2Y8/t8/OvOHwAAB3etgd/vw+EMPjlGxev5qA1iURi/mJFPj89YvXdw83foV+JC/AOvGf4OMMK54OrJoNzGq324hbxtXij8Ex4p2tplZ4X+XxVCuesFw98aG4LtuQ5uWgA1EICqqmiqN/TnAAD4/Pz7BkSfcquCINdVdVy2jYs+QsJTXyL28U9QX14E79W3YdHtFyK9geU3bKsx2a4+yNTnMW5geAFb/F0lh3Dw6YnY+OhUAMDS+x7D949cg4ZKXoZmkZdMmpxOMe63f8BscHbNnYdYac+RcyCAb687M6gM5n3suZLC3UH3V86ajn3fPIVe768GAETtCR6HvV4RNmqGkiY1EGKD5G1twtzrT0P5tsXBSUs3wb/ra7hbxRyz46snsOn+L7Hh6fPFexwqFl17Dub/mqk5D/3fAJS9dU3ou9shhloAAC4bv2Fkf+N2hPWUs85djPm3zOj0PceCKB/Qp5pg79K3UfhpJjZ+/DS2zStC5ko71uTPw/cPX4J5D/wBoBQp+bFoeeGHoOfbeJ3CxVlb+sJtqPsqHcvemdXlMqlhPGnXrl6K4s8ysWLFyk7zUKpZv6ItLsDVBFRsBwDYFiXAN69Xl8vSEXyLHoBv3p+D7vXbYQ1JF85MoSfhJ0eaHFWlODByTIhKpWnm1SidMAXN9ZVYfcYI7Fr+JVbeexPSn/0IhesWIOv1b5GziE1WW5d8iIrindi04B00z7wGqz96HjVl+7H87ceC8mxtqgMAmKR+oEj2KNqiCwCWlM6DmdeffYl+/d3541F9uBCLbr0I5ZOmo77yEA4XbkRZ0TZ4XMKw2cPJmM8kFpldP3yGxtoyuNo6dxGraRSi56jCEgBAmqypWb1Bv2ypE4t5q6MeG77eL9Jx4kQpEOesgLNOqPlMLUwyVnn4AOx/fhpZs78Jkjr5X2MebXZHAAWXXAj7n5+GqqpIfeI/yPjn5/B7QidQP4J31OWTz0LZxDOx/j/sGyU/9QksKg8voBoP1MoCZnNAy4MX4txVJRi4oxYuR53hc0ZQVRUVk2dg4V0zQWj4kAaq14uDO5bDc/UtWPzADYh2s3aLjrLpacpLQ1VbVRZjNef+Z4KlDmguM0w3cFcj/Ny2qyM7jtaf/wIFF54b9ncNnQXgLKkWnWjTFy/Ac+O9mP+rn2HhA5ejcsrZOCIZo8sTKeV9RQlQXWLndLdi/iXDsWHsUETFxOlpPdWFWHBjLpZNE8FDfZJKvL64AACQty5406G/S7LxsKb0BwA0xgKHs9i0aU1Lh+cTirgljND2LyPotzZKJ5+qRFBUnxdl/5yO8udOh7tF1F21sU0NNVAR5xTz590OPn5YvgqhQelSP6uGev/7umrf6qbw+30hmxjAWNL07e0TsOGMcUH3lr/7CPK2ubH1wXuZ3cx+pqZZ8cRVWPz0vXA1ib6/Z+M2xLmAI9sFwQmkxiP7sILc3WaAUrjn9kLpW+G9Wjc8dR5Kl/0LAS8jASYKNG/6BAtuHoPGTZ8Gpd3416EoeiAbjWWFKBwyFCtevV3vC/3KCXJ3m7Hs72e2f0XH8Dox/8pB2PXmzZ0mPVTA1LKBQjuiWtk38vm86LPSjkE7zfC4WB+1FMClCwAAIABJREFUt9tLaWM+HNFJX8HGX9PuDiRlmlpQy9PrNEzWcphJP5US0dcCDcZmBHFVLA9LdQvwTH/g39OYnZOGms69kX0rXoT/4Kqwv29d9D62Lv2c/cfdDAT8MBsoIlS1A2lkFx0UTjR+cqSJNLMOXXtkH1RVRaCdyLjwh6/QqymAspdfQFQJ28X72i2O0Xc9geaLrkX1MiYB8b75AXbcfD3Sn/sENWWCKDi5savcOYh03SJJiHxxwXE5W5pqcGCn2CXQdm6ZfQ870XD+FchZy8hH0ZoFaLv8JrT8/AZ4pICNAZUtthaJ6NjveQZVU8/F6stnoLm+Eosun4yK4p3YvvQTFA4ZiqrDe9BYU4rKQ7tRJUkELPWhA5RIa2MLlxDkT5uN9/66AyAWnohwQ1gKMycqniaRr6qJNswWUW5pZ57WwBbNtCagVxO7ptLE0ypLCPnM1J40aXB4xPf2gukAFKuxHYXbzSoX7TBWMzq5StXPi69J/L696WzsGB6s6vNy6cKg/AoQtWMX25JNzB7EvLUAadxeWqGiDNRg0r1wM8W6L2ZjwYO/CrpPqCDGi//vUhROPBc7P3u0/eMAAFtiCgDAYwZ2Lf8cP5w5MqiPakh2BJd/yaPXonDIUNSVbNfvuZ3GKk0NbW2iLx1azmxw8rY0wbqBSVkLVs7Vf/f5PPhuxjDMvWMGSAuTiJh8gjS53S3I3a8ivg3wShuG+c/eg4GbLMisFm0XMNv163ojA28JNZLK3DmXEfekVkDlLzZZbYbPqbwPqpLRdcDrRcsb1XC83QIXl9KoBGIBDHO8SdnWRSgcMxFrZv8WGdUsbZXDg0DFDmZfY+CurSrAgl9PxZHTfxayczeSNOUsdyG+jRE7DV7NBspHUfXuDdg05zeo3/Q5eq+wI2eLFe4m8X1NNiYxMEnSP7lcPm4ukKRNS40lAIDmPT+gYuFTAID4946g5MGX4Nck2wRY//dHMXCLFSteehwF817AgjsmAJQi7rt4+OcnY9MyFjLE90VouJPMr9vZGflcKH/1fHgrC4Lv1+4Havdh64J/IbfADPML61C9czHmX5cHT62k6pXqo6TkAmDfl5LQ9m+TnByooxJ4JAHeknW63VUgjFPOlhzWB/anBI9v9/Yv4C3dpKsFPc+LTUDZhm8M86L8u1Ppe+/ZHWyD5/rsVniKVyO7jG+WDrVhcUkydn6eGeR5W/nSVHiObAvta9423ct08auvY+3zwaYfas1+BN48BwAQ/10c4r9jGxr/U/3Q8PFvDcsd8BtvYJ3bvoT3hWFo27sUcNZ3icidKPzkSJP24T3NVVh60UTsHj1SN0oGgObDTN1GPfUgXCpUU1Gi/y5LQJw+Ngs0JJvQp5RN5o5qwebLd6zl7xSvVyQRg1M6cTzOGrzIl50xDb5rfife20koi6YjgqzJC8fYHexajQ0VhfY57MTaObOQXdiIkutvgO1OJoXZ/NAdKDr/AjTNvBpqi2BFdofBDskqiE4bl0oNK3gLQEAMMkoB1Y+8Sa342boHAQh3e5UACk+nmEQbeF0du8VumCdsZVqaQiU+fqJgy+IP8N0LwSJhk11IIrQvQcIYxw79kH2/rFqKrUs+xNJzxwVJ8Vx8cgwowLLZf0f5pOnYt+k75GyogLXd2G9qEORDocDk9bMABAfxU/xuTF4/C26ualMJ4OBrvCqRe68S+i0BIPGhORj45SbD3wCg/+esj1T+67/6PZmMmzhpre9FUf/gw+hd48fGT4V6LZzo3LJ0BwCgYJMg+S1NoVIOGW27hbGyOTNDv9bUgC6v6HdupwN9KyjyllXCFM++lTfOpKd1eoUNn6dNXJsbQz3cfFVCSud2sAnfH2YWDDglSWybkFBpkmPZrqe5UdRX9XDCT4T9mhoQab28jBQA0ciwYkya1n36bwBA8px10Ox3rRYz9s+4DgeuuBd+Z2jf71dJkbeZEbP2hzu3cqP5hsIfMP+KQajfI76Du1XUQWsSAmDPe7sQuyQBKz8XNnBuhyBNmkde0BQl9avqUjE37Xj9V1h37kwcWPom1v3p92i+533d1im1iQRtlvqVsTYx1REof30LA5e1wukQG6QGD3fkCBDDSMcyVn/+IhxzSrH4yeBz3RtfnojGl89AYysb161RwOrH/47c7SZ8+4owE/B5RbkoXwMogSC7Un1dLYI0bX7vLyj8NBOlbwjVpF9WLVKKlg9vhOfwJt2WsJ60wVu+A67tXwIAfvjnfdj87BXYu3UZCj/NxHdrxVywtCiY+Nd98Wc0b/6CHd8DgEr96sge4a2n+jyo2vINAu9drN9ri1bQf30ULAGgrrJEv9/0VSp2v3gRWv95GiNJXOpY/NQEFu0eQO5uM1Lb2VVVvjgZS9cfgLt4tXiHx4ei/2Zi7bfGNpjhJNTr3v4bij/LxKpPnkXFC5NR+uJUw3QnAz890sTRUF+HvodaYfUDu5d/qd9vdbGPFlAAhc9nAWlIuqQdtLmUDeCcIjEIdn30b/0681m2O5UbWZGEFrKIWxNLh4PH27HdTFuTmODdBobLapTxQpv9MevQSQ6xILrhRJyLTQJ1DaKMFr799AiepE8gAODiE1rvuu3Qp1CdOKmISxETXoyXTdBst60VUuRlRIRkJEl2Xa3NIl/tdQGYYL/7SfR9c3EQ0VVkVRwNuQiCV+Kx0Xc9gawjbdi/XsSPcXH1qqoAmbPZjq/40Qf03+UwDyU71+rXRAXWTXwMgDVIwqCao7Bu4mP6YqwqgJsLM+RFN9oWaiVbmSHquG6C2Inm7GOV8EqOKVaPqK/XLUhg4ltfAQAyqwnS61kad42IW+UP0we1Pm2VVEwuSfV8YP18rB83FOV7haHppM/Wi+ctrEOVZKu6JNYUkyDykhwm/Aqre0AxCUmTR9TBJ9Vn8NrQ8u6tFKRKU1W1GQuM4GkS/aolj0mCG+JEfWXJTGmhWJBMFazvKgGJNPkl0svV4pRA7IbCEHf7TrHjb45jfcUspW2pMjZ81+vgCg5h4HzqVVQVb0PBr29H7h4zVvyfCLBaWyVUt4oWWYoCsa2cvHi8urdnS03oHBNEXCQSUV60Vb8+snQdEluBXZ+9iv5lrB511UJVH+B9TB6RLemx+rWjQRDhVrdXvDhMgERPwbfw1exHLXcWMB8I3oxVfdEbVV/0Bo1mtjsBE0B8rO6y1EO27QTlUhx57Erjs03qr8pbLCSG7+tYvX1kAtZUU4ayf2zGysevRmKA9ceB5nQ0zZmBwx8xQ/LsDVFIWhoL52G2OcktFOMspelgUH2KXl6AgtfuAXRJkygjlcpYX1sG99wUHP5MbFhc0aJftXeosC9KwPJNLTj06BDg42vQULgS3k9UBOYHG5UD0O3jHN+kot+aaOwrFja9DXVss9x/lwW7xoQ6g6jtTSVKVgNeJ7KW8kVnzWEULSJwfsOCVNcufhZNW78KLcMJxE+WNMkLgMUmCAWBZgxL9MmRShOeo1ZMLMP2sc4RJZHjIQuDjTSB4MNfZfsml2QvNOjNjo9ZyL95Zoe/o0UMVHmno0Fxd/2QV1+iWJRrNy4NfVWCVCFJIuBskFU5CqD6QNRmQPUBxASPtHNXnWJB0hYWWWy99c/G4lsjuIPUc7wOREwsbdLuVA2Ihc7s01Y/Y/Vbe2kRAByYK4LneTQ1izSKLK2iX7mc4pv4WoLdzydtmAVCWpgRLgAQCqu7AZM2zILK24EqREg1JFs4b2uoWqk+Qaz8iS2h9alKF4tKb0kItFmS2CVLashyLX2MiKDf2mLsWp1ez/qD1yTUnM4W8ZLtrzyGBCewrp1XlwZdlSBJZqw2oUZrlFQFmr0QCNHTenxCmtJestIeJFksEn5NahhGTFFWIyb7uN7MqaHNTqBoNkuSVKS8TEiYfenMPtEvLUKyStUtSSuhV8d4KqYQc48uGZVUtW3VRegIDSXBgRnTGoHGi25ACu9CiTVizDXWCJsRnbgDaEpihYyJItiXcxWaE3Kxd6u0czJSLUocpq54V8j9OFXMBQd3rNCvA1I/L8li+VpzRaiINmdryLUq9ZugIgT8OHjlfVhy50UIaP1RAXz1JWjd+nlQWn8ZIyRU3sRJ3ySoX8mSJu15iUC7W0TdDoxPAwDsHB+r5+v3iH5z5CBrmz6roxHFzRSSzfGo/yoNtB0hUXyh5hFWqxgnqt+HxFoTktbGSGWUSJPU0WsOhwbx9UaLnZWzOVRSnLPNCvfcXij8NBO7V34e8jsAtJZswaq7B6N2wyf6PdlTtrmMqUfNKmBC6JoUCIi2aasrxYHXrsCBt4QHn9llQlqjqEfhvFdR+uHJPcLrJ0eaTJr0SHKP3/uxkA4N/C/bDQeIWd/1uusFGWiUbJa6Cnk8W/ySGLe845hHMnK2dhI9ulkM1LbG0MUttjp80LyWmCys+NlzaInJBACYkjL138yVoSqO1lip23jEZOHcJwZisvk5ZFatB1XikVm1HjNW/gmB2W+LtFWMRJhVYQvhl0jTgMKObWJkVMz5p36dVsgIsB9iAvBJAQN9kvomt4Qv1kfhsUFbhVTR0cxWHtlF3+IT37dRIti1B8SOkKiAzeuAxXIIIARKwAtQIKV+N2xeBwJ8UVUV6K7iVFLPuQ2kcEZGlV1B8sNvhNwrHC6poCxil99c3bEhppmKvuBqlsrI1Y3+MNIUjXz4iEVIYiWS0VQmTfAawSVCleeWFjTtwOVwCEiExecyNqLVQByC9FJNbUCpkDRJm6naSsnIVltATYqknhN9TLPxYQt06OImg0qxxHXSJBF/d02oe3q9cLTE3j07DPPV4LeKaOWtTWLe8Evzo2pi3p57m59AXfo4gBDUNyQhf/ocLJ/6kvgm0kRn8Yrx6ywvCXnvQbW3ft0s/R6QNrM+K+svRFLby6ott1NrR2P1XCOXwuXsNEPhXniUUCz76wwU3DILnhrJoaLXAP47+6/HGo8mxyXwWFlj+iRnE01iQwng5p1wc6Mgpx7JVk6T9FCzovdXWUJZf0jY5ui2jmEIdKtJSF89fHqzpaXp91ySZFR3bpEkTa5KsYZ4DZxnfHYxZ3Zmd1lXLdZEr9RX5r/zHFLyY/HdnBfRwC0hVIldOhpEH0s5HCoJViXp3oH9O+Cb1wuFS4UgIrO+nRNEfiws7UI3nGj85EiTNuG1VQkPhfj9ojPZ+Nw44GAAqbzv+yUVVf2B0AjEnUHekcjBK1NWH78jOxSHIAMJr34a8vuAI+G9EnYPuxkBUzR2D+PSHcnDxh8VunNvixIVIm1iwJAEtsAun/oSGvx/Q0XWmQBRUJF1JvKnz8G+wc+JTLhKRSVAHz7+fLVd90aTkVsgJGtRfD6KjhFSjyP7hYGytzlUChfOe84IZodojwBfrGXSFNsq8qorF0TJvlJ4GVq9rBOqajSyKlZh3NbnEZtWBS+foLWFXRaty/YzakEocR+yv2NJ4tHENQ5Y7DD5uTGztPM/IB06W1G8E4VDhmLv+oVo4U3tkwhLY5mou8IlesQiSSfk9zl5XzAL6a5fkuK0lErH0GhemETRXfS9kpebvxNbOOoSmwvN6zKcJ6NLssvS2oFAzCFULqN0tly0iy8MipCGUYkM+KWQH6QTQ3Cbm4akJVJf8DaEelo5EkSHTOrV8VmbrYlWfRGQo7QH+LckAIhKoCrGgQdVxRyk9tEQUyy+Ca0PlVp4iJDuyzaYlBMKCuYhCQRvGFwOUUZNtUzDSJpapE2L1c/nRwL0X2NDfBvw/W1SxPx2fWFfzlXw+TOxL4edGynbysmHemvvrXGLucsteyXrakOikya/1F8dR4QaTK+DNO690mkFfisjB02xgCuqXfYAKisk4q5vLkRe8QMHSeVi//gkE4RAtBifLhiPVf33RlGHVlkq5WLtaG31ibEsE2EphqAsMdKLLX3r5hrmWJRYrqCBq6YP5Ip5Xd60nEycGiE4TwCGfCjsK/oYxOixSfPA8Hli0k559uj1p+GkAOn1xy8mxeBdYmcX19aJ1ThH/rTZQYPKFdMb+dPnAFUUALNDOH3RwZDnzG5RofjdJfq1v5UtWJM2zMKBnCtQnXoaoJgB1Y/02q3ILf5aT5vN3WsVqagjF4j4VAHC3I6PBm6LpCo1iUm5+NO3oZ1gFmg2CLPQiT1ZSbaK7BLuZt4ixd7hUZtl9VyMtHmq2LYKufw6qUF0KM2bK8b2DQYXlQAA4pI2YWgBM7CkfOJRFaApBkh0BkvDAr2TABzdiUHWozkhgQKpvDvJKqjGrWuhHcDQfBGLXXXw4b8jhd/zSAuaI1/E9zH5OhaDqXyBVk1E12XLhER1SGpfg8XA4xffxNfaMWmKlbxBNdIbrpu5JbssWb1GdNIkJm2PJKVx0RgAXqhE0RcOU4OQPvjc/L0EIAFOKMMsAHZ5z6KpsaWyuOqPoL3vZ2uyDTjC2qRq1wbEIzzcvXsBBaxN3JVC1aeRPEoISAAg1A9KQhdSQv2gOrEWLelItQPcld3cJEiRl1oAULRBmADIbRcICDulnFK+uZBIoqu5Fpoi2u8SRMeINDXWlOtpo9Q2AFFBMchy9grGEOAEbMeYl0AVUc+69PHITx8P5aU6TOf3VLlt9HKL7+eTbJpk70gjWzhvpYhJpkl3ZCqhHa8FAD5unybb26qSdL60tASa8pnw8qgm2cFINJLH5UQUgtuNSnavvsoSdIToRKE6dEoOFwofl4QIkugL2lyUIRXMLtZmsM/zS+PAGs3UepQA1VkWJO/1wjU6FzjAVJqeTlTxJwo/OUlTBAKEGk/UpKNYGQDySowXwVFLmLpx3cTHUJ0+gREmAFDMqE4/nRs/dw0t9s7TtIcsMYgqFwtegArCYa4LVfuZj3R8DIJGmAAgqUYs0N46jTQZL7tqs5hM4vn4rk4WaZO3i53w0DfEcQUjFrLdJ1UIEvl6I6stqPvoz4jS7I66Alk0L0/wJDo0jENACejSU5dESPyJ7Nt7zYI0DVoURrWtLX5mAiufSGXbFtUhpDhJexiBokG7cdEe3ibJdswAmZWSOzgnL6YwnM4XRJo09ZyUXloobZK9nh6LjapI5uunrUq8V+WTvUoAhasuicvYyL6XxPG1GlPpm/gM6qtmpOvXee+uCPldhmIS++aBbwkvJ400qXyBZt6eUowg7hE7ef0s3eZTXoDjGgVRipI8cAMqe5+FiDHpbxbtrHKP4lRpmMo2pW5JqkH8oRIfGS2SmYKi2fiEJgMgpKSUhJGoSVOiIE0iw4AkbfO0GmzMCNE3z/KYshwS0iGtDkTaINUfEJt7LydjqonqnUGO+VQlaU8oL7Acl0ueQ/weA9W0SYwpS2LHcQPj+ufq1/Xf/FW8VyeJkq2qVMZ6JyuXP0xgelUV7Sg2ikSXsioQbdPS0PFYP1GIkKafMCavnwWTry1oIjT52vgEeewIp+4Id98IiR2bmxgiWhIYDdkrMhieL+w+Rm4PJU3Ddnf9kNR4p5h2h89ju0A1zATgLg8d1BZJuDigvGNyGuSdc0SyJ2o7etJ0NIhqFg2pFom2i9nOJmXZRT/3kORh1ChUFKPzhTt/ah1LEx1GoGdtEc8lcHIZkLy+/A3im/XVYi5JpOmm/wjyOeBroYo1wtAjYlJ2bGThGdqf96hB3SskLwMXMAPWrFroREhezNObhCQptYQlkMlnygEp5lMhU/GrCmBxs7YxOzuPKt9P4+CS5MVv4PQxenFJp3npCGdLxYkfVQjMfmaDR/iCpW2qFDXA7nPyKTOSbCmGaqzkmGDic00qFeW2lAoV1cAvgw3XgXb2fJIThE1lHcrmoUg3ELw6ZRstLsEMEJNhiAlNYhN2Iynd1yVfRBBZ2WbNK8coM/Dqk43GTdKY0FW5AckjebMwqNakYaoimjog5RUXkBxteJuZwpAmTSUqk82kthL9OrpoYUi5ZchqNNu7kt2rpkKGsP1ztErq6GY+h5iA4iGhbe33+7HqT9nY+s4fEeCbIUrEWPK7xPevkdX2JxE/OdLkjTXeVhYPPnnh26t7HaXe6QRh3cTHELDYxcRJCAIW+1FJhCIIL8UZtTrUeD+5uevMcfgesTiOXC0mptHrOo6B9GORUyrGwohN4l0DjrAJWt4l1ko2mJa9oRGH7V4hZQuHoVv55CkNTX+xIGuD1oaOWSXMsTHhiJkRTt/f8TgcvkWsxO2jOwMAJAPYYXvEdUYd+8Yjt4iKy7ZuE7aw7+q1AIP4gczWLpAmDdYC0TathcahRLqMME4Q7jZNRUxg8bH6xNJdyKpYifFbnkVWxUokN7JNw6jl2ubAuD2TJWfPWC51qldFvLQhO0UZbAacZfRcYfvZINlHWbmkKSPMcPBIsaRogJMmk9lw86ZJj4YUzAKosURNpGWdTJUJp+TR6HMa2DTJGyBJpeYczhTehzOJTgxMbYLsVR0RGwq/W6jtNbYmSx1NzZJ9G1cdW72icQKS8bfmBCG3Rb/1QmWasbDjDZ0a5hxBrbo21amr56xSnJ2MZmbU7TfBkH2oAR9SvotG9LNLg4zvtQqbYsSxLg1lHXuOnij85EhTtLTVLx7GPnyzHQA/bsQjSWfbzm9GfWIe8s98BdXJzIiurDdF8VD2XLnkxl2a1fEEXJItOo4j/tiavbN3lGWw36uTKUr6d+5ONWnDLFjdDcLtXQ3obu/tD23V0NzJOauHBqiYvH4WFL87aOLRAjeW9BPlKs5j761M7RkkMoKuQQ6xIatRhuz9cTYGwwvEAjBqY8fek6mHuy4dPFEYveLHqQcSpSrIErvOMHi/WEz6lf24KdxUZ2wbl1zGF24C2PhnSXX9C4OLPkOcsxyDiz7DqII3g55RwlRBtunsW8kXvzBhPjqD1SlIgM3XMUP2tcqSF24rR0xB0l79d56XOeCAFoepvURNA5UkTZqXqRx/z8+Nxn0mwKQZPktTnEcKRBzND+f12EXcsRGLBWmKhrCPItyJQZY0ydLOiiPC9s/qYvezt0lem5ITTNou4TF+LFANjP8BEbLHa4oyjmfmYc5CARNFYlmoKrRCinCuGZATKiRNsm2ns874SKgTjZ8caWqyCldXzehUVaBbJJcNE50h3hrArmG3AETB7pG3AQD8NqFP9vaT7D36G+8UtQCJLTGCbXj79tGv9+aFiaxnAF9ixxOrtzcPzNlF836b14GU+t3C7Z0Q3e29LYq1h7Nd8bSBfWCsaKfiEZLoWuHu9D42WRCuo7b4WmHzOhA1gBuoplC4olibtPU+Nilf8ejQgasR4VMRB3OPMW7ATxAZdRGifTyQUGWs6h3A7fiGHPAhhifJ3igmg0bu/S57Xw06CuJ3zoZj85Qd8bWQOkV1Qpr8kmOC2sCMu0mYIJgjv9zNfwfszkJDiZoOLsWhhOiqXVnFq/IjgvwmYMQ2vi5IHrqjvhPG34PW8uj/JiCtOrT9PIVC+pNUy45BoVIoEoskXRpUIhxprC42l8ix5mi9kHxHLWYf8FhDlSglaw3vm5yM8FmoR7f9k8NXmJxscUpoIUH2ehoSnxDxnwLSIdIKD9Ujezp7m0LD4ZwM/ORIU0K8FOvCzkY8VQDCSZObu8LmT5uN71o+gWqNYYH0iB350+fgYPZr8BC22JcT4c4bUI3VLnVcFUfjhGWzKUPEQfImdEyaapPEIHeahR+MFplXiyMCAJZoMQCNDCMPjg2dZLzWeGRyt/f45lW623vbSKFPlqHtHlpihF4mu5/kjktZfeJay/jE8xwS1HzEtbJdQU3aZJbOBFBuhOqRCOXhzFADoaoU44muNSH0BO7WWGNRWPFINtGFk9a1nNex15WM0j6q4XWnz/F3Hz7NeLJvSQqNN3JwjEROczp/V/uYW8cDpWeISa8iPUJW/pfQt5Pwb+GQxFVuRlKbk4XJO4KljSHx5ioFMRvIDz+2uDreVKU0A2dsebNDidrI75l9IVWgh724+XsxNvuvLAEQrMZWOjnRIa3GZ6ha1iRzAJCxkq0h8pxsl+LZpRUJrz+/N/TDjPzB+GDqY0H2XGPSO2I56xguU6xOyOjeRfrvFh5A00gN2x7aKRmUSOcaSqSJtkQMwU8KzBZhA2BLZQs8BUC4f7tqYosuoeFmgwAULiLsZ5P0xXbjQ1+J5kIdJ4IExmULzwMa5swpDY4MUQ4ipT0w4FI0J+Ri9+BLRdoYJsEKZ3AdFRPaU+Pcb2AInyByer2jTxA1yXnsndIaWTYwIDyHeonIyvVTH9GvrR6WYFSBmHisydv1fM027RgMBYqfpVXs4ps4BghJ4P68GGwZczcc/Y3bFnGhMWj8duH10XqeMKZwxPTBljF3oy1KEJOyKWJ72DD6tpC8ioeIti/Jk8TcyQF9gnbbuk5OKP8wTVK56xLliIBslpXVvi1S2pacgfr1kTDkLyTmVhiEI6IaDk3w6Krpuqyr9fuOhFAxpqYWBoBt04Wtyt6hrL67xxuLPg9KkkKvgTH9nmni5v7c0N+PJwoGijoUjei6tFK2T9wxsq++aGvH1hyeYLxYFgxmCQ7mdSPr+B/DruG3IGCKxq7htwIARmwPVeEOOnj8pLnxzV5D0qipXQMKUM0986OaOyZNyQYxi8KmlWwo+5WHPlcbD+R0jxBGh10Vm9CBC6Wjmhyhdo/h4NorvDk10kQkomQujKjnTgoUOXBj9hR2QQC1jd0fuZX1+Mnr/48FZtWC6YECAR9y9z8EE9d12xSxNfAnZenXbRewxfrAUL9OOkyShCtr1GS5QB2Wtz5FUicSguVTX0L+9DmozjgDIATNvc7QI/Oq8YzIBMJElG0aeG6H7yq1D9Ovo/oOC/m9mph0SZM5TpCPlBSxsNs8oYtxVIogFgo/GV5VAOph7Vht6oW2C5pReWYbcn9xq562Mf5iNCfkoDb6ahjBxQMkladTHBrIY7pEC0mTI0kcv9ASdQ2aE3JR3+s6/V5D+nj92p4QeoaSWzpe52ejpDg8sfE6OalKuzXkucOSkApOAAAgAElEQVQT2faz/fTcn0vlzX1EkLnqkZLxZSFTJ2RVExQN5FLQOCFNs6aI6L+tccFEJH/abORPnwNXTG+AED3mVv602SHlAwA6quNJvCFvGnYPZ6rppoYZ+v2ANZQA1Q8QUtT44Wfq194YtlGQiWzF2VLMFjuL8LR/iIoWvqc4NE6MKaXfOP3aw12gd481JtA7L2MHh9Yl0i47dbgtwN4hrJ2tJiHxJTZjQllrEHi4clx//bq+120ImKKxffitwnModahhXtpZkI4U8X23n51lmNYIW6aL/nqoCxLIrqJgpFiES/m+SFbRHxgg5patFw7Qr5s6sXU8kdD6vtueBhACtz2tw75/vJBZ0zHRUSiQ3sAkYOUZzx436W9MJz4DqQ7A2s1WCjm7jDdKA7Z03XFh2GImzSKgsPAN9sgfxEY45UgYt+UTjJ8caZJh5+dQUVBYm8QHoBc1om5iFeNLBAD87B+iwB/TDBKyHAKZQ0/Xr/smRWHodRX4+egacZZWsiAW/QePBQBmrC15VdRzqUO5pA5x9xHkhRLSoTs/4afUUwW6paCs3jFbxQJdaSBpsMQKgiYTHf33ANElTbZkEQsmZ8QZep5R7tB8Y3pn69cmMxs0qgJYvGxkO3wU8b/5AonXPINevQfoxNAZyyKKe8yCGMqw8pPJVZOQrqnSmWWDfvESfjiT5eXHYIAQeOyj9LyikiRCYo9Fe1ApAJ96LztyIX/abNRYn9fJid8WSk48E65i/4aZHxQpurKaLoidfC5htJNL4axixbIlpejXVAmeMLriKi2jqZ8g0LWJwd8sf9psNJffiICFqaZBrXodqSlUGqb0FhIweyIro18BiPZRzKK+DSN+KerApb4+S4xed7NVjC1bvKgv4ZOmahH1Xj9WfGuF9/2WOKXLUVEJAMo3LXK+zcnZIWmLBwf0sbzrclFfc2KyvmgDyQAh8NnTsPJM1l6mGNGv9gwX/UnR20aoVBR714OTRfUbol+rRxsFFsD28/rp16vPEBs6fy8xrhUuJS+aIL6DJ1Yqb5QgsD6DANKdeQnv/PngDn/vDFXJQGnG0cS6P7nQvEZ3Db8FqiQBi+DokNpIkFEb+p0Tuie25Y8jTYSQNELI5YSQOwghNxNCTifhTp7sgbDZmf2OQkmQ98OwOBfOyWrCgFEp6Gdfg9H9P0dGnop+UZswc1yVONRXar7k7NH6da8HmOFg6ZXf6vnae0mExB6PoddVIG9SMBu3elnHcKtitU1OErt0s7vj7YNiYfnJ5lXR8RJpipViAw/jqilpXkvIEGWMTmSTp6yes/iprqeOTesr6pOUiaHXVaDl7FxEG0ia4lLkHTRXVyoE9v6sDLF9czFo9GSMPec6pPUfgkkbZiG9epPkxqsivXojJm0Ijh8Va2NbLr+J6NI1VTqoNyalL2gHxz/Yk4XkZsxZ16DgzGApxogdQqwcH5+EpGvdICTMcSVSsL5YTm580qsPDqCoSGNtE50une1nF+qs6iy28pRM8MA18zQAQP/pl+i/m2xi0Q13VllXoUhHmlRPYeXRVWThgpuqfp1keOLEgDHHiz5qjWELsCfMKQwJGUI6oRMGRXhoBaRdgU3Kd8R2tsO0NgpJFM0SKmJi6tj7oWKqmGEP/Yx9Q5cNoDygn0yaiCRFrdWKYKW6C7W9z3BRRqkPGcESIwiJapMIh2bvYZFJUyhxb4iD3m9k2GJEvyHcM2z7NEFuXJ1s6OXvT3qLb0Ks4kHdjiRajItAtPR7FCN5LfZgwq+X0SMdrDqYvW+HJE0zJ4jvu+Ms9i33DDXjYDb7lsUDO5ag1WdFQ1GBCZufglHgzQmbn8T6kUIEVt7xpzru6C4J2E8NvpMscDomgkMIOYsQsgTAAgAzAWQAGAbgIQC7CCGPEkI6it7fM8AXgGg3kC6JWl1/OYy6W7bgwj+Mws9fnIWf/f1NXHHPuTjthsHw/12KekwsqJzWhkPjvEjIELtPk8UGPNKMfiOn6i7Z2g6cvVZB272H0ef+jSDSAb5xfF7P2Sg+Sy9JJZNU1bFclmgqBunMq9o4oR7wSOcJtZrFZK7ZX8RlCsORqHguhZHW5uxGqk/Gaf3bqR0eacalj34b5I6uIT5ZkLEAdzUO2AMY+de5SLzWjd/e94L+e3RMPNZMepJFFNf5t4Lq9NOxZtKTAAD/hU1ou+9cEG5XNeAIYOKB92RX2OSkJFzwuzwuzAueUMdsfxnxKWLRjYq246p/bw0tPAdRFPR+9JBoYwMUD/ejeIIP1mi2+MnHq/hSzJi8cAPK/zwT598s4mBZ4sQwmfLyF9h95XBc8N4BXHjP27B9+i8Mm/Rz/Xd3tfC6aX+Y3OT1s5iRZNDCEQiOLyOlN0kSjuSx5wEADnHhxZQNs9qlZqrpKRtmiQNIY6SDZKV9UmJGf714slRUswGzWQTZBl+4KUR8JY8iiKHZHjqFxDX5dScIe7+RogxmkZfRrDbqd+JQZ2fO2QCYM4LKSRO1CNJlzRAqtxZ+5hUxq0JqLJGbhMwBbNFW/WjfxyZsfhJWifhRq0RUtMCX0nstsWJMavBZmP1feygWruYmwtXfFCve5bKKxt95bn+0R1Sm+A6pqULVpz21c7QdZs6dlWiJrEu2m2beDgFFkKaCG4TEXf7+2jlyRJJORSen6f3CrzDiTk2K/pwjTXz/nZcJifv2aWw+UU0KTH6KOGe5KDkV3s1xzgp4eL/Yl6sgq4t2w0YOMzL2DbLohyJvnC7m550TRfvvGd51r+jOsHOKWDvKe4cS6IN9O94w7L71rJB71clAUQ7rVzund10t3BNhRNhPJI5VKnQhgFsppRMopbdRSh+ilN5LKb0EwGgA2wB0bEDTA5DSbzATIc9oDnK9jI5LREqfUMvTPmdcCWtUNGBnic1RVszIaMKFg+oQl5oNACjODf6CldMYE+o7fBKqUsYgf9ps7N9SDXtsImxRMSC+0F29vEu38t2cw850uyExkAA9BpJmKB40WUWLiaffSMneJGMMuxDHfSE1WyxC8VxMX5WlovXucwAAidekouSiKMyfCvTuF2rzJMMt1SEplU2ILisw8swLcWicFxPGeJGRMxIZjx6CzRo8wSjEWNKhED+GXlcB94jrMe63r8BRL4wNXYTlEQiIdiGEIOe0vtL5E+K35OYiJKULFYURDp7mRekkd5CNzK+enAwglJyk9ZmPaW+uxIw5GxHLSaKiAm33nYPikX7k/fpviI5NwDm/exGKdB6ULU5MtL375eHqJ74AURSYrVEYOGYaYqSF1GLjkkRWOQDCWN3mdcDmYTZRWpgHm6cxKL5M/QwhOVMkh4gpl9+BoddVYCgnr+wZ3mgK2DVRYPM6QE3ayfOiLZOyhaooPZtJYSrz/Bi1mb07oahGN9I9sEJMOYSr7VSLovd5U7Kor9nGFth6iTvFtaooHHQdmhNy4WmYItWHkyYiwjQfGi82GbFZI/RrK5fSqAQIaGNGIjTxqYLkt/ZmxEAxU10aZpGkg/1GTOKLNofUx+KcFYhKFCpgm1cas5ozkFm0h0ywAOYhezDnblASx+sjFnNN1a4S6GfhmSRy0xIju26Z9LR62STpUkKfPFF87h6u2iyw+LV8BUkkdiG5scbwA6YV4boelSTMEJpSxaSqaOeqRQsVZFx6X9020BFgElWqKHrbyFI4Wy9JTKR9M7Oil1FR3IhxVmB4wdtQlAZYfVqsJF73TsKwlPQhKBjBxoRi7litqCriXDVN2gYANIq1v8POCN2EzU8ZBsqcsPnJoPzcBlLZzVeJTalG6AsHWwxjYbWNFmtV8UBWhx0S0YqSvIy3n5fN8iSA2UtRn5iHOtyPhgTpMF+O3afFhdw73jgeUqKTrdo61veto5SWGv1AKfVTSr+hlH75I8p1UpAzdDymn1uJqDP/iJxrKtAUA/S+qnMf3LPzalF5ZhtG5qTBf18J3HfuhC0mAUOvq8DF44PdOrN//TIybnChb84I7Bl6EwBg2TsF+u+KgWto7QQ3SiZ6UHlmG8x8Z+Y3A73raYcxkDTvLFURtk/yyfLpiWLCi1u+AwAwoFhBYEYzDg5U0WfQGMRcVgv7pXXo3Scb3gubkH1GPMbf+k9EPzwTA+7Nx7n3LcSVNz+FZMn2wQitdjFDxyelwn5pPfpfXI3c0y/EmHteQcZDYc4hA3DZPQNgsRFpAaKwRplwzf152DnsPoz5xT8AADP+9CQOjfeg71VVyDvIZk97eXlIfoxMepBT/DUAFwhX+6X1ywtJW5opJkxPSir6/eJR9LtSSHtiEmxQtIBzlLV/lKcBxNuAuOQM2OOTYbawybMhVcW4376KC97dgGFn32hYVxtX3zSFamYAACaJYJ33x5ewZ1wCYr/5j1Q5aZGWwjwk1a/Swzxox0YMl6IpthWJmC5R9jjgkWYMPkOc+p420IQR07Jw7QMTMGJaFmKdO1F4UR+YeH+lHjF1mKzRyL2mAnnXViAlvQ+8v0zCoDsewa5JccifNhuHcl4RKgoHdBXFuX95BYVjzZjywGxdqkHiRb/SjojQFqjlU1/C5tPnoCF1NEAIWivtun0aMfF+Lp0HJhsK2FKy9WtLtHDdpjQWW8bcrZ8gDwBmSUUFzcPTRPWo4MmSjV7mQLbRsPpakdg7Gokt7yMmkeqLdnSiIBEJ1ZIRhuZgInnE2hPEQgcA+3Kugsuei+q0K9nzCVL0Z04oVUWQJnOU2HzUTxujX2vkVD4iUZckA4hNFXHjiJtX0mrVd/CyNFThhDFAABsn9KoCPZaTXZIqtyUJCZYmadKkU/nTZmPn98N020CKFORPn4OapOf1+shzV7RExvQz/0wmnTRlDVyEiZufRHrdNqT1X4afrXsQAODj/cKqGEuPCkew3wMmAjPfwJrCkKYd3PCdmhSdvJilcCmyFI0qpEMyXZEqOqfTwJQtSppfCd+oUIXAxOu7e6JoWxN3kmiMBUxaf00U/TlW8nRWuHmBqgBQ47Bj1B0ACHYNvyWkDIGkMJOSAYoGhrLSfcNFv1nATQDK0ohOlKrPVxAmUk9oXkNEO++YKgh0Z1LBE4EuhkEMwUMAvjqeBTmZGHodV3PEJgGPNGMYgN1eNyYpL6HeFOrGHoI7t2LGa2Oh3jofSlQszDF8h3hvEWALVikMnHQZ5rwXD9y+AjBxI+gAMOf3+QCAbHcrNO7a/+pKFDrsyOozAsOcGwAA6/g5RD6LbpWOuNYypDQUILNiDRx/egFlq7fAfUGzmExkSZPZirIpLnhqrDirTx60ZbOldyxQzqIBR038NS5KmoOAyQTfpW8BqoqEpFTEXPI8MkafC2IyI/v6F9m7kzMQN+myTpvIZTehcXwTGmqiMDQuGbjqP1B7MTFw5riLOnw2Iy8PKmXfiKh+UGJCQKXolT0AvbIf0tNl5o1F5ptbgKhEOL4fhl7NQFJqKAn9w+yz4PO6sXDWf3DT38/A6iunAFAQnzYQq6abYR8yAdq+7vwzK7FgczoGHjAhkJiNoef8KiQ/E61ERsUOtPbajtj6MfBYE+CWog/njpqM/TObMCCZ1dccG+qZpyHAw1cYTZwyCiekYGh0DK78aD0AoG0XW6XiqwSpGlXwJmrOckLtr6JXQSX6VarwmYCWGCDZAZiu+xgHd9yFlJw2KGUdbw7OvrE/krn90bTrB2Pa9YMB/AWFQ1hL5RSIqWP46WfDcrnwahn9EAt8N3jaDZjzh/yw7+iVORBXfMxOLG/ha0pU1nAAjNANHDkJLZiNiinZOOJohdqBfRoxUGERiVDKkjWT5BDhiLoKfmsuLJgJoIinlQy2+QLuNdmw9/pxiP1hK86Zegn24gEAgC3KjrLrszFuTBnGXnoFAOYZq7VTtESE6vrEIb3cg6LTeoG0MQIlk6ZYri5ePvUlqCZBGFqSxiN/+niQgBfpU5+F4vchSSNNRIQ1sUmn1Cfy4LQ1SQAM7L1MEiFJTu8LTSZna2T9yqxS4fQhSUPN/DqgABYr67SyGjohXVK/pmcAYPYJOYdZZp427cwzPygxMnwLCPtS6ZvJ5g3Ez4m7RJpskverLVEsqpr9aavJDoAtsLGfzUHrNXcAAPx5g4HduxEwEwzex/I1SQauh/9yFfq/8AX7j0R0NUGrVbJZUziBogS66QdRnbC7WpFdsggHs2cy5woALUk2oNbF2yK0FYLsQE1aPEEFZm6/ZurfF9jA5m9zHCuD3wwofL1QYoWUKEayuyMWRoT2Dpsd5IQUsMYyZwZKMWPFnbxC7L1FAy1Iq/YhoYPzQL1xFgDBGgLlZ5OAAnYQucrz8pvFgdcmewxUpWvx8bx9UwB+niiRHCZMlpMfEPhYSdMpjZbfbwWlFDK9GXHdo2jcMRHJw8/p9PnotBzgkeZQMV2ssaXhub8dhqXv7AFVqd5RCQHOuWU4Su8RubTduATjPj4P9Vc+A29aNjwtNehVVQUfASxjnMAy1uFHFbyJAyP8iHOaMe6GoThQfAOqUi8G5RMeVYSKglisOLdvI9AX8Mui5Ny+wJYGFA/z4+IbngTwJEwAciRClDv9Fx22g3OkC4npxhGFWzLjMO7O16Bu+DdgtqH/hAsN04VD/2HJqF75FYbtW42dw6ch67RLjRNGs0ncfraC4t0+DL74N/B//2pIMos1Cpc+/RkAYORzr6Jl/wooZjN+/q9dwXX6w1b4brkUQCDoUFgZCb5PMLioHtvTkjG4iOVZeonwCouOS8Kox3eCRIc/Kbz63kvh2LcJSh0jh4kG0XE1DN1bCGPHdeZZIiP9or/AFJ2A1uHbgJe/w+Frh2KIexvKGwLIzZ2EixYwQpKyaRG8N96DhMtrg54/mKNiYLGCBAPvSYCpWKO9wOGL49D/WzbhJWeGqrIBAITgmgdPx+dPbZKP5gJRgKvvH2/4yKhzb0T9c2w/1idvLMDr7nLUY/7Df0Gd+1dB4wiqH2N2zEb9kGyWNxX+A+Fs5WsdLhxsR0x8GIz86XOgBHwYaZUJJVvR2hJzcO3DHwIPh+Z37sOLQm9yJCZnQFtrLn59AZY9dycu/PubWHT1GVpr6GkTUvrAD4QlhxQWXPkmI6Fr574BINimySYZmo+++j5sr3sUQ355B2q+eCMkL5s0FySn94EW1qf3TbcAD87B2Lv+gZZf/h4AYE+UCQmTUKkKkNqbSahaEs1IbfRDoUBqv0F6fe39sgEER9M21bE3TV4/CxumPwW/h39LSmHyuxAfeEWP2k0ktb3FJqQ4hG80qEWQJnuSmHuVeLHxtarawcOiDOl5E/XNo0ZuVLOCQwN8GHBIgUlSPUcniLy0I0uoWUiaNBUlAJi4ow0lwiuzV9tTGLWFjRO/aReyqlke3ijJW9ugn8bESlJHrYwKgUrisWXMzbBad4s68m8ZMAmpo2wfFxsvbdpa25gXstHgoBRjtr8s/s/Jmt+qGJZxf54defvb9GfbI1ry9tVsDlVCoGjf1xYDlXSNNBGJQCuy5LMb3M6O9ZVDCCE7Df52EUJCj6nuYYjrnYP4jNCJPmn0hSDmH3kApgHyJvQWqgKtwyhA3rh0ZEnavJS8icAjzeg18DRYY5MQlzEYg0ZNQfQdgzH4ri+C8hw7IQlDr6uAyWLF4McKMO2P/4aJi4dpvGSkq5iAh5uAWQ0wW8QklHvGeSif2oYpw0NPSe8qch59B1mz1hj+RpKi0GvoVKT++oNjynvm70cho/pTxDnLkbfvE8z8/agO0w+6ewEGXTodued07tabddp5GHLtE4a/xaT/P3vnHR5Ftf7xz9mS7KZXauhSQu+ggnBpAoL+7OXqtaBeRewFVBSxYm9gRwULKoKKoHJRiDQF6RJ6ldAhkJCe3T2/P2Z2ZzbZTUJISALn8zz7ZHLmzJkzZ8t85z3v+55mGF+LwHdd4X2iCrXDsHT29c5h0L8f8q8TkRjwCd9L31sncPHLv9FtqGbJOnxNt1L7HYy0XtoTa73LD9Bq2L00738T/7rlecRD5zPwvg9o+uTfdHlsDvYw44e0WbchNPj6RWqN9V/0ssNzb+N68lItmCEA3uUzYvqNNApLiORLbBDYLyKxob/Tc/KmjSRv2kgtUyi9GWdUPFe9/qn2lpgd+9H80/KztM9xXLqHhN3auDu2BL6GkMi44FYrq40QU9qKlrc/zM5GgvNv81dL+xPL9tMZY3Iqd4RFcdG4qdhCQnHpDuhW04r2kXHeiNUg6SMwrKheC4e0GNYwu8k/Kq5OA4a9NpNzOveHHOPB5pB+/+zY53JfWZgpu3+Py0eRvGkjzTr08bUbaUovEqpPz3kskNz7MvbeNZzeU39hW3NtrOs2MnwdG/U03Fp339YHgAvHTwG0xcJdBRifHX2x8GOhD+LM1q7fY1LaZuug19IkrDZfckmzZSbCtG3XxzJLGJ+FEIcx1eNd8NZjtWDP0cbvqL0hx/SZKafZz0wXTR6r1WctMfu3hehRl1owQvEAg5wY4xpiDmuy7UACAaeoQk355rzuBNJqYW8DzZ/v2H4jWts7VSst0uc7Zp5SjTVFbtsbNuTcZU8SmfGXv9CREqsrh7gM4/dAeC1cIrA1LLetEfwUaK1mZ6zJhUMXrxZh8nNzRvlZKUvC2cg4l930nohAHatkyiuadgLDA7yG6X8VRfB4wCIKaB82C4tV4F2v0l3KnK6w2mg66ntNUJmo/+BiGO2fXbVFp3NJH5BF8y4tjM+wENrLYvX9QB1IkCT3GMSA+scpvGxqua8ptnU/zepmYvlA7Uk0tst5gQ45Kfa11L7shxJLN4hG1mpMyxEf+HxbSgu5LhGvsA0iBjoNG8L2joV0GnYZte/8iSb/dy/CVr5omdpN25G8aSNDxpT/fWiV3Ijka/aRWb+Pr8waGk6rWz/CEZWA1RFBpCnSzEtEh4uNqWWdpI6DaHfd88Xqegm5OJmdXQpo1bkvB/pms70MPgXOyBDi6oUz6LY2xNULxxlZ/jdHWAShYXbOvewcQpxW3w3F+9uZ68A3jWArDPz+tWzWhA5r3/J30kUiLDD8vk7YTakd2ve7hqFzN5DUqrtfG+fO/YMGyxYF7afXRy0iqvhSPwDuWproiTBNO0Xp2+f9+aT2VS3iQBzexHgAceo3aI8wRFNobcOZN8wUSefYaVjOzl2wkgbLFvsJXbsjcMJQr09TTK0kDo25ge09G/jSXrgtWhTwgLtfIiahPgO/TCFy1hd+Yxdl8kMa/OB7JG/aSHTtxpyzbjXXvXA+ziibaVkMbbHwpFozSTiu9c25Yzd77xnMpuFNsZusTt6cXdKU/yvGFNTRqKEhVFsN1izUbS83ktoCiM/ewDHjY99istIqKRzSG4Aud7zAeSs0ER9h9qXyWprshmgyW5q8AQZSmDSEaRq0MN6o6x6oBTFkNk4IaMUJMVkC3blZpPR+gyMxL3E0QfPnc7mbMr/vJBb0m0h8nQb6eS2+qExhijwNN+U7s4Y6CC3IxOLO1T8D3oiEQjwWOzsaG99Ntx6JHOoJnBBJHjdWxPBaB9cMNT6DkSax1iRUm6YVpqlPW1h02UWTSbg7TFZFGeTBtjIp7/RcgZSy7PnQTQghHMBCIFQ//7dSynFCiP7Ay2hCLgu4SUq5TQgRCkwFugBHgaullLv0th4FRgBu4B4p5dxyXk+lc9e73qzKQ+htKk+/Io7E6emk9z/JVdttIdrLRPK/rmPXkb9JGv44O3/pTfGc1NDkqn00A0LikuCpDCo6dcmFD3/CroRb6X3Vg6fclpbv6CAW68l9MY5fDAW1O5ZesTSCiKbml42jee9rIVFzJI9r1iVgvdNF0t0/k5u2jgZNe5Ze+RTpdd+XyCNbsdRpTMueAwg7sKzUY25+sZdvu3mXkgMISuPOiUb4dOdBjfjhqnNJH3czddx5wApc7V3s/9tK3cMC27mZJN35OQUZ+/za6NDrEjY+tBYx34Z0S78w9Yat4shaXXqSSWeAdAhmGk77kr2py7AEmT8Y/tr3LHjjboaP/oTNn2mRfQ7dehRakInFbsFd4NEesFwSi8dNr4GGf11UdDxZaDforB5tqf1TKk16Xsxh9NXrzZ/dvueSv/NP1rW5hYZ5ViKKrNkY7OHA2/PEhq1p0qEf3PQYi75/FyhuHQmLiCGsRWe/stqNWhPoV80e4iA6ARq1jWXTkoNY3AV4bCGE2HfT76FnSZuuRfl6wiQDRmqpIv5eMsvol8MJ5BDVoDH/1Euj4T4Pteo3w3tDqtuwJdvRotguuP4x3NeNxmqx8mvaP+StTyUZaNXtQgCW5emCwCoZOuYDGOPf16j42t6wD2xCu11aQ0INoWrKl2V3mnya3F4veuMWK2olANpnMfmSEeROXULtS68h97VJgCS1Yzht1mQXa9eRn4nHEWTK1iOofU4HMoG8Hu2JWKgF+NSqZ4hIp9nvKkQTyG5bFG371KdN73qkLtrHgW/n0D71Qxr+tZR/umkPvEnLtECSZputZATI+B67RcvY7RYQ4skFLH7W9fC42ngTwDib/wv+N4v4Q8b3wRYRizuIS9KBhI5saHMrbdZ/SO2ja3EmGMEKDpOlyRMgmrCyKa+lKfCcTNnIB/pJKTsAHYHBQoiewLvAv6WUHYEv0ZzNQRNFx6SU5wCvAy8CCCFaA9cAbYDBwDtCiAoIYDy9tL/lbZKv2UejKwI4SxRhWyftExIo2R2AsIXQ5NpXsUfEYdOnkKTLP3GSwwJ5zopbzLUodRo2p+e434tZMMqDNzT/ZC2w5760kT4PTjvl85c07eQVTNUBERKG8zQIJgBhd2Cpq1mt6t30MTFjUks5onK55Js/OP/aR+h19cMkX7OPXmO+8TmJFFzwCJHJ/yK+ZxHfPCFIvmIcwiKwOwSRrrmEOG2+lB12x6mvCVK/eSe6/98dQfeHhkUz+LGpWKxWdt/al83twv1SUTRqHUfbPvW58tGutOyViKNBPs06G9NdtZu04WCiHdfDt5jD1ogAACAASURBVHLhhM+JnTuThHrN2JdY/DObk5/DlmZXcCLqHBZ9bUStHo8s+WEk87nb2dQjnohYw2LgjQyVZbhzhDjC2HPbYKyfF/cxBMjPltTXFwtve0F9anUZSGR0IvbPXmZPApw3drJx3hBDyP7fR/M5NGogFz38Pt2/+JGcF0YSZvLbCXFGkLxpIz1Waf5UVt0JecD9bzBs8jy/PkjdauUODfyex5hu1nXO18a/waDLfDdOpykRqvlzE56hyUWzo39oHWPasHGbc0netJGel9/ls7bEDbuUEw5Y2dyCw5QqJqQgIYBlFN0y2pH653QkdPqHDHnxS0600H7bk1oallG7aardricqTdrzIX2ubUlCUiR9rm3pWxs0zGQ5y44zRQMWGZcdQ9vg6a65TBwc9X+4pS6WrFZy9NM5TdbOtgMuAyDXabJwRiYQYSz/6Yc30jy19U3aeJ1jpAwJNfVRHqh4d5rSKJelSUo5CkC3Al0ONDa3JaV8OvCRIKWU4HsAsesvqb+8oxGNV5LDJcBT+va3wEShPRpdAnwlpcwHdgohtgHdgT/Kc01VRUyTzjB6F0klOA17yQ6LBTLJqx8kK7UJt7ARyNLE2MNE1ZSk7RavaDq989Y+kVZTxukMY3vfJsSe37v0imbsTngqgzCMaSVPkUSke+pJ3Dbpc6o3rFb9/Oo5nBEBLSSVxeCH3vVtb2vnwhZr9/PhG3BDe8Dfpy8kNIy+iwz30Tp6stn+v/+N2ev+vVEpuF3Xgm7g277qMJPumI/VZuG6ufPJyzEiEE4UmaXrcfn9cPn9fmW+pJpl/GoMevD1oPuG3tmejW9eDUD3a40lVc7pNoxzFg/zqxvicOKdCLbaQ+gz6i0AYus2pculd5etMwEIC4sCDvmnNDDvN02v9r7xMXb3GEByq+5sHPsOYFgHAayhRiqLeH1GVBQY/mmxDfxdGbz4xtIt6b5mI109Hvbv3oTXE63Pe9+y8LbLEFabFgQhNed5gWYZBWjaTrPmDp0yj/0711O7QUvSA5zLFhp4KtaLsFhJ3qSJTbFkFnLEaPbWtRF2QruOQ0//lz5X3acFZ+Rksij2CfrdPp6Z8xexrPMIso/XpeGc80lMiuRY+hG8n64GLbvxy1U9afF/N1B4nRa5aI9MLCbG5vfxj+rDqi3hxKvHuHr+bNL37cRx4rhvd919p/83+lTP+AOaeHEB2aZXiQghrEKINcAhYJ6UchlwK/CTECINuAGYoFevD+wBLQcUkAHEm8t10vSymkcZBBOA0J9kpKv0ty27rvZE6Igr4lNhCynRQbk6kdhSs2iI1sFD9iuTQGHs1Y3S1veqiQx77yfOv+HRch9/vK52Y2jcxN8a2OfTL+j38TelHu8ILXt+mrKQVs/GpvPKNi05fPpWhnywofwns1jBFBXodgWe/3C7PETF1aGWntjS9cpdNP5qcsC6/ui54E6zK4k9tPQp0/KQNEhbJ7LhRdcG3F90erVREd+2cFNKCe80pxTwTzv9N91jjH+dFoGDWfL1fEi1GzT3nTPSZMGKiE5g6DcLDX++y88hNMwWMLrXYrFQv5l2ni0DWrC9q5bGIvu10bjef/6krKitzr+YPbcNpv3Ub31+VxaTS4gzLIpBD7+JzR5CrqM/2ZENATu/Ttasz5GmReotFgtDn/6EczobDyihMabF6HVap37kv7IBmoYaeFsbEuo1o0XXAYSZUmA0X7qEf5pVfhJOM6d690ySUg4+2YOklG6goxAiBvhOCNEWuB8YKqVcJoR4GHgNTUgF+nrKEsqLIYS4HbgdoGHDkrNAV2dkRCSwn+zQ4sstFKX9uW0IqfUL7TueukN2VdHx3MFEXTOB6PNHll65AvGFPNcA0ZQTdeaJplOl/+S57Fw6g0Yd/S1IoQ3L5nvmCLAG3KkwcP7fpVeqJK56vBszXvoLd4GRpsEeauXSh/39j9oNG1Wm9nzT/qdZNIWEOkp/Gi8HXYbeSN6/LsPhDH7j3XVVTyKbB076ERmb4OtXTHQ0EnDbLNj0B1O7KdN8o+SeBErpe97701nx2esM6Hulr8ypTzfuuKhdAMuo5s9XGpdM/MG33XXoTQAs+b54+omS8FoKt3jf7yIuC5ol0wORRhBK+v4cXx5C/2+ghltoa2qHRNelaMKaOkfWsEF6dCu/dpv3Rpp7iYiK9VmwwiPjuHDO8pJdKSqYUxVNS4UQ7aSU5fpVkFIeF0KkoK1f10G3OAF8Dfyib6cBDYA0IYQNbeou3VTuJQljSq/oeT4AzUOya9euNfYu07hTT3YfWEfd9p1Krdvqhrc4sWwqUV2HlVq3uhLVuBM8sIl6kcWfSCoVX0bp6iuadvRw03SZNeCyCmc7EbGJtLsouD9RaTj1MPIyGHSrPYkNIvFbRki/uSQmle/pPLFBC7KBnLhT9/sCOPrECBJM/irBCC2DhSTq23fJzy5b3h8zJQkmgCFPfxJ0X3ikYWmKb9SGI0Bun65ccOuD/PnQLfQfNxn3mGy2LPzOb71HM3G1GzHooTf8yuwhDpqtW0XLckblBsObXbyon2jWqw+TtW9P0Hxw3ki7xET/rPU3PHcuv03ZyJ7UI37uDOExoVw0qj1/xXWift8hfsd41yqMiKtD0fR0mWGAsCA8hYRHbiUnvy0ej39nRZBxPF2cqmjqBdwkhNiJ5uCtBcpKGTSpjhAiESjUBZMTGIDm3B0thGghpdyCtm6dNyvaLOBGNF+lK4D5UkophJgFfCmEeA2oBzQHlp/i9VRrGjVtSc8m6exu2rLUusIZQ1Tfe05DryqZqLql16lgXFE2wE100anNakStqx+BZa9S0KpirSIKsNlD2TqwDo0HX1XVXakQ7CEWHOl7aLzrZ/YPupe87NJ9IoPRMLkH8++/km4X31whfetVJL9ZMMwh+MGo37bvKfbm5LGZ+pVY/xwKf/6GQUktsdlDuHjGCt++c6/X1mTMefleYoMlgy1CSEjJ/kflwakvEVRUNHW76JYSj4t4diy733qdft38V3MIjw4lKt7hS1DqFeWhTiuJSZEMff7LYm15XnyA7V9NpWVCg2L79jey0W+hdt/Kf+txOg76V7E6iUnNycB/jdbTyamKpiGlVylGXWCKHulmAb6RUs4WQtwGzBBCeIBjgPddnAx8pjt6p6NFzCGlTBVCfANsQPOpukuf9jtjqdvtUohy0Kj5oKruyhnNoDdnsPSd+xg0InACzOpA176XIa55kIaXV0CUoKIYF7+9oKq7UGFc+lATDva9kwIb9H2yR+kHlEK//waN8wHg4CP/9q2ZWVHYK0FAnAqHH/0PmfN/I7mINbpek+L50Mx0GV5+C2hFEF2vKflAVvOTi6DuOPA6GHhdwH25JwqwhVgJiwohKtHJwR0Z5OUETtAK0GnYbXQaFjgJcb+JX/PnB6OxxLWi34DA57OHOIj5ebpfbq7TiZDliEwSQkRIKUsMMClLnaqga9eucsWKFaVXVCgUijOAwtwTbOvUnS3nxXDJxzUquNiHx+Nhc2vNWuON7qoueNcZrG79CoTH4+G3iWNod8nNvojLqsQ7dl7KO4ZCiJVSysBrM1Uw5bU0/aBHv/0ArJRSZgMIIZoC/wKuAj5ESxGgUCgUiirC7oykxdoVtLRWrH/M6cRisbC9k4vYrlWbSDYYe+MI7g9UjbBYLAy856Wq7kaNprx5mvoLIYYC/wXOF0LEok2RbQbmADdKKUteRl2hUCgUpwVrkOSNNYlh07aWXqkKaLr6L5pV46ARRcVSbp8mKeVPwE8V2BeFQqFQKGoUoU4VjFERbOwTUzOsdVXdAYVCoVAoFGc3rriakZtaiSaFQqFQKBRVTM1IoVgu0SSE+EkI0bhiu6JQKBQKhUJRfSmvpelT4H9CiMeFEFWbnlOhUCgUCkWNY/+9lxv/nMalUE6FcokmKeU3QCcgClghhHhICPGA91WhPVQoFAqFQnHG0e/OZ9nYSstSXjMm504tI3ghkA2EApFA4OW0FQqFQqFQKEpAUDMsTeUSTUKIwcBraOvCdZZS5lRorxQKhUKhUCiqGeW1ND0OXCmlTK3IzigUCoVCoVBUV8qbEbx3RXdEoVAoFArFWUrNmJ1TeZoUCoVCoVBUMTXEE1yJJoVCoVAoFFWLsjQpFAqFQqFQnDko0aRQKBQKhaJqqCHTcl6UaFIoFAqFQqEoA0o0KRQKhUKhqBpqiC+TFyWaFAqFQqFQKMqAEk0KhUKhUCgUZUCJJoVCoVAoFIoyoESTQqFQKBSKKqZmhNEp0aRQKBQKhUJRBpRoUigUCoVCUbVIZWlSKBQKhUKhKBWpRJNCoVAoFApFCag8TQqFQqFQKBRlR9QMQ9PpF01CCIcQYrkQYq0QIlUIMV4vXySEWKO/9gkhvtfLhRDiLSHENiHEOiFEZ1NbNwohtuqvG0/3tSgUCoVCoSg/Ujc1yRoSPWergnPmA/2klFlCCDuwWAjxs5Syt7eCEGIG8IP+7xCguf7qAbwL9BBCxAHjgK5osYorhRCzpJTHTuO1KBQKhUKhKC/e6bmaoZlOv6VJamTp/9r1l2+4hBCRQD/ge73oEmCqftyfQIwQoi5wITBPSpmuC6V5wODTdR0KhUKhUChOEeXTVDpCCKsQYg1wCE34LDPtvhT4TUqZqf9fH9hj2p+mlwUrVygUCoVCUaOoGaamKhFNUkq3lLIjkAR0F0K0Ne2+Fphm+j+QDpUllBdDCHG7EGKFEGLF4cOHy9tthUKhUCgUlYFKOVA6UsrjQAr6tJoQIh7oDswxVUsDGpj+TwL2lVAe6DwfSCm7Sim7JiYmVlj/FQqFQqFQlB9Zw+bnqiJ6LlEIEaNvO4EBwCZ995XAbCllnumQWcB/9Ci6nkCGlHI/MBcYJISIFULEAoP0MoVCoVAoFDWJmmFoqpLoubrAFCGEFU20fSOlnK3vuwaYUKT+T8BQYBuQA9wMIKVMF0I8A/yl13taSple2Z1XKBQKhUJRQeiGphqimU6/aJJSrgM6BdnXN0CZBO4KUv9j4OOK7J9CoVAoFIrTTc2QTSojuEKhUCgUiipFZQRXKBQKhUKhKAnf9FzNUE1KNCkUCoVCoagShNBUk62GBNEp0aRQKBQKhaJKaNOvBcfD4fx+51d1V8pEVUTPKRQKhUKhUNBq4O1w4FLocklVd6VMKNGkUCgUCoWiamjWD57KqOpelBk1PadQKBQKhUJRBpRoUigUCoVCoSgDSjQpFAqFQqFQlAEha8jKwhWFEOIEsLmq+3EGkQAcqepOnAGocax41JhWDGocKxY1nhVPSyll5Ok40dnoCL5ZStm1qjtxpiCEWKHG89RR41jxqDGtGNQ4VixqPCseIcSK03UuNT2nUCgUCoVCUQaUaFIoFAqFQqEoA2ejaPqgqjtwhqHGs2JQ41jxqDGtGNQ4VixqPCue0zamZ50juEKhUCgUCkV5OBstTQqFQqFQKBQnTbUXTUKIBkKIBUKIjUKIVCHEvXp5nBBinhBiq/43Vi9vJYT4QwiRL4R4qEhb9+ttrBdCTBNCOIKc80a93a1CiBtN5b8IIdbqbbwnhLBW5rVXBtVpPE37Zwkh1lfG9VYW1WkchRApQojNQog1+qtWZV57ZVHNxjRECPGBEGKLEGKTEOLyyrz2iqS6jKMQItL0mVwjhDgihHijsq+/oqku46mXXyuE+FsIsU5o96OEyrz2yqKajenV+nimCiFeKrXzUspq/QLqAp317UhgC9AaeAkYo5ePAV7Ut2sB3YDngIdM7dQHdgJO/f9vgJsCnC8O2KH/jdW3Y/V9UfpfAcwArqnq8anJ46nvvwz4Elhf1WNTU8cRSAG6VvWYnGFjOh54Vt+2AAlVPT41cRyL1FsJXFDV41NTxxMtRdAh72dRP/9TVT0+NXxM44F/gES93hSgf0l9r/aWJinlfinlKn37BLARbaAuQbtA9L//p9c5JKX8CygM0JwNcAohbEAYsC9AnQuBeVLKdCnlMWAeMFhvO9PUTghQ4xzCqtN4CiEigAeAZyvo8k4b1WkczxSq2ZjeArygn8cjpawxyQir2TgCIIRojnbjW3SKl3faqUbjKfRXuBBCAFFBjq/2VKMxbQpskVIe1uv9CpRoVa72osmMEKIx0AlYBtSWUu4H7Q1A+0IGRUq5F3gFTVXuBzKklP8LULU+sMf0f5pe5u3DXDS1fwL4tpyXUi2oBuP5DPAqkFPui6gGVINxBPhEnwJ5Qv9BrdFU5ZgKIWL0/58RQqwSQkwXQtQ+hcupMqrJZxPgWuBrqT/O11SqcjyllIXAncDfaMKgNTD5FC6nWlDFn9FtQCshRGNddP0f0KCkc9YY0aRbJWYA95ksPidzfCyaim0C1ENT69cHqhqgzPdFl1JeiGZaDAX6nWw/qgtVPZ5CiI7AOVLK70723NWJqh5H/e+/pZTtgN7664aT7Ud1ohqMqQ1IApZIKTsDf6D9MNcoqsE4mrkGmHayfahOVPV4CiHsaKKpk378OuDRk+1HdaKqx1S3Ot0JfI1mBd0FuEo6Z40QTfqHZQbwhZRypl58UAhRV99fF836UxIDgJ1SysO6Yp8JnCeE6GFyVLwYTYGalWYSRcx9Uso8YBbam1XjqCbjeS7QRQixC1gMtBBCpFTMFZ4eqsk4ep+2vGbuL4HuFXOFp59qMqZH0ayfXkE/HehcAZd32qgm4+jtSwfAJqVcWSEXVwVUk/HsCCCl3K5b7L4BzqugSzztVJMxRUr5o5Syh5TyXLR1abeWdMJqL5r0qYbJwEYp5WumXbMArwf8jcAPpTT1D9BTCBGmt9lfb3OZlLKj/poFzAUGCSFidRU7CJgrhIgwvZk2YCiwqaKu83RRXcZTSvmulLKelLIx0AttXrlvRV1nZVNdxlEIYRN6BI3+IzQMqFGRiF6qy5jqN6Qfgb56e/2BDRVwiaeF6jKOpnaupQZbmarReO4FWgshEvX2BqL5AtU4qtGYIvRoY718JPBRiWeU1cCTvqQX2g1Vopki1+ivoWhe77+hqcLfgDi9fh00VZkJHNe3vVFv49GEznrgMyA0yDlvQZvr3AbcrJfVBv7S+5EKvI329FTlY1QTx7PI/sbUvOi5ajGOQDhaVJL3c/kmYK3q8anJY6qXNwIW6n35DWhY1eNTE8dR37cDaFXV43ImjCdwB5pQWocm7OOrenzOgDGdhvZQtIEyRMSrjOAKhUKhUCgUZaDSp+eEEFYhxGohxGz9/yZCiGVCSzD1tRAiRC+/SQhx2DQPeaupjWBJqboILdHXNiHEW7p5TqFQKBQKhaLCOR0+TffiP+/6IvC6lLI5cAwYYdr3tTTmIT8CLUMoMA7ogebgOk6fewR4F7gdaK6/zqi8NQqFQqFQKKoPlSqahBBJwEXojlW6JagfRn4jX/KqEgiYlEp3yo6SUv4htTnGqWVoS6FQKBQKhaJc2Cq5/TeAR9DSpIPm5HVcSunNg1A0CdrlQogL0FKq3y+l3EPwpFT19e2i5SWSkJAgGzdufPJXolAoFAqFotqxcuXKI1LKxNJrnjqVJpqEEMOAQ1LKlUKIvt7iAFW9nug/AtOklPlCiDvQrFD9SjimLAnVvH25HW0aj4YNG7JixYoyX4dCoVAoFNWZwsJC0tLSyMvLq+quVCoOh4OkpCTsdrtfuRBi9+nqQ2Vams4HLhZCDAUcaOvkvAHECCFsurXJnGDqqOnYD9F8n0CzIPU17UtCW6A0Td82lwdch0dK+QHwAUDXrl1VuKBCoVAozhjS0tKIjIykcePGnKnxUFJKjh49SlpaGk2aNKmyflSaT5OU8lEpZZLUkhdeA8yXUv4bWABcoVfzJa/yJo7UuRjDeTxYArr9wAkhRE/dV+o/lJ4Iq8azcX8my3YcLb2iQqFQKM4K8vLyiI+PP2MFE4AQgvj4+Cq3plW2T1MgRgNfCSGeBVZjLDh4j57u3AWkAzcBSCnThRDPoCWWBHhaSpmub98JfAo4gZ/11xnNkDe1RcJ3TbioinuiUCgUiurCmSyYvFSHazwtoklKmYI2pYaUcgcB1saSUj5KkMUHpZQfAx8HKF8BtK3ArlZ7HOHrsdqPowUlKhQKhUKhOF1U+7XnKoO9x3Mrtf2cAheFbk+ltP3AmilM+v77SmlboVAoFApFcM460bT3WC7nT5hPToGr9MrlYPvhLFo/OZf/TF4etM6e9Bz+TssoV/u9UyW1j8OuI9nl7aJCoVAoFJXGqFGjaNSoUYl1RowYwZw5c1i9ejVjxow5TT07dc460XQ8LxtH4hyy8lykbD7E3NQDfvvzXW4mLdhGvstdrvb7v/o7zsQfWHFoPgAHM/Mour5f75cWMHzi4oDH3zNtNY3HzOHWKX8xfcUe5m86GLDeloMnytU/hUKhUCgqi507d5KSkkJBQQEnTgS/T61Zs4YOHTrQqVMnJkyYcBp7eGqcdaIppvAg3324gKkpy7lpagp3fPk7AKn7MsjIKWTyop28+vs8pi7dVa72Y6MWM/PDRTyx7HP+OZpDj+d/493ft/vVaRn+Pl3Cxvn+/2X9ARqPmcPtU1cwa+1eHPW+4tfNe3j423Xc8mngnFJ/bv+mXP1TnDlk5bsqzWKqUCgU5WHcuHGMHTuW1q1bk5qa6ivfsmULvXr1ol27drz++uscOHCApKQkrr/+elJSUqquwydJVUTPVSkxWUAczF6yhJ7hn2NzQ+MxTrAU0LZuIpHOJYzc/jnb2tmBZifd/tP/0/yNum2V/HMsk9pxU5m78Rq6NY7j4elrmXNPb974YqtW+Untz51fzSe09u/MT2tAYtOvmPqamxevWMXuOgIp4P3fW/HfPs3YfdSYksv95Wu+rX8Zw9rXJbfATWx4SMD+eDyS47mFxOn7s/JdPPnDesZe1NpXpqiZtB03F6fdysZn1JKLCoVCY/yPqWzYl1mhbbauF8W44W1KrZeamsr69euZMmUKixcvJjU1lZ49e+Jyubj++uuZOHEi3bt3Z+TIkbRq1QqAdevW0b59+wrtb2Vy1okmq+6f3dr9OXd/qf1z292PMWCNZImzJYP+2MHAVZLZ9ik8Krozbfkev/B+KSVv/raVyzsnkRTrZMP+TNrUi+bWKX/x68ZD/Gya7duzbiaffryOmf13MN4Txl7PIjYd6EBYkT4NkG/xwPsZZIdCeL5WNvpbw5H8omvmcX3PRvR5OcWXU6HJwWM8/N1CHpoeDWgpCCYt2Eaj+DCGta8HwKETeUyav40pf+xm+eP9cditvP3bVmbv/pyZz/Rhxp29yMwr5F8ta1XY+CpOH1FkIQvPOmOxQqGopjz++OM888wzCCFITk5m/fr1AMycOZPk5GS6d9cC59u0aYPT6aSgoIDs7Gzi4uLIzs5m5MiRhISE0LdvX/79739X5aUE5awTTV7unm2Ikg/f1vyXhjg3EqUH1tU5dJSvN75D25g/ySsczO6jOUQ5beTku3hn9fv8sqk3h445Oe7azZTrL2X9vrdoHrvD7xz5mzXTZKct2RxzPMfLcw6zsE1HLjDV+V/qAR6YoTmFewVTUR7Y+BZtxtWnWcIbvrLeqZKlyc+xsX4s8SeswEW8tngW0hXBsPa3A3DeC/MJcyymp/MH7p72Dst2nKBu9Fc8l7KKicN+4crJD4KlkNWP3Ex6TgHRTruyPtUgpkaPwuqxAFdWdVcUCkU1oSwWocpg2bJlzJ07lzVr1nDXXXeRl5fnsyCtW7eOLl26+OquXLmSvn37smHDBpKTkwFNWF1xxRUMHz6cq6++WommmkCUKRNB122Sz7Zp/k6jG6/g5z3fUpjZjgubOvlh8k9MHvwni+PaMmb9IrYdTeadaStwFuCzFh2Jhb2HDwEg7RYGrTgCwNJF03yiSUrJ3T++SmkJBPqvlfyv06O8+JG/c7pmjdKygzfOnMOrKz9ke13BurSraJIQTnyDCdz82xH6rJfcf/2LtI88zFWLs2m7W/LeJDfvD3mFqGzo8HRdvEv57XzhIoQQrN+bgZTQLinad758l5vP/tjNjec1xm5VFo6q5rfURAqt0K6qO6JQKM56HnvsMWbPnk3//v0BOHjwIJ06dQIgPj7eZ3VauXIl06ZN47777mP16tV06NAB0JaCaddO+zWzWq1VcAVlQ4kmExlhEJ1TvHzRnkn8MPkv9sXN5itrZwCGrUhnxJGFACz87jOcBVpdr7XoQJQgP2cnAJYQG/bj2o6LV23wtZuencf3n84uU99e/LTkaD5H/U9p/T203iMZ+v6PyMJofv7+sG//k9/tJLZIloL//qxZ23ZcPYbj4YLMMGjyqGDbc0MY/u4cAHY+e52v/geLUnl75YdYxL3c0uscX7nbo0UHWi1Vn631bGLoCm3cpZTVIlOuQqE4O5k3bx75+fk+wQRQu3ZtsrOzSU9P54YbbmDo0KF07NiRli1bEhMTQ3JyMp9++ik9e/YEICkpibS0NDp27IjHUzl5DiuCs1o0ZTsg3LSMTSDBBPDFZG0Fl3rpMGzRagCyQqG2vv8P60a/KTeAtrslbXdrKuWYxUandE00td5j1On/6otMO9WL0Plu0nrf9lXpE4jJ9k9zUFQwmXn8a+MDeuuoxxg2MZKLs5/T/b+uY9mOo7SqE8W+xS/wwxdrmBlVC3o94TtmyJsLSTuWy4anB1Pg8mC3ikq5ib8ydzM9msbRu3lihbddk8l3eXDYS34yO5CRR0yYvdR6CoVCcbIMHDiQgQMHFivPyDDyES5fXjx3YUpKCvfeey8Al112GaNGjWLOnDkMHz688jp7ipx1osljuuLscEM05TggrAzrALbYq4mRZnuNstEzj5R4zHFrYDU2bdrXgfsowCID7gJgS7twWvwdXAXd9Fv5VfpHEwv498MjeV23QuUVurn+y/doHd+B6zZsA6D5ut8BQzQ12DeW5u5sCt2DaPHk91zavjGvX9O53H0oyto9x7lk0hKste+LLgAAIABJREFUIfuZ+Hs0u55XPjxmTuTm4bCHB90vpaTnC7/Rv1UtJt/U7TT2TKFQKIqTnZ1N7969GThwoC8JZnh4OJ988kkV96x0zjrHlIJo4+aSG2E8dWcVDWkDNg9rWq5zuIqM6r/+LkEBBWBfbaP+lsbF3yK3I9S3valD8JtlefniZWMqsM24b5j1+ef0WP6I1+2JopLsoR+PMOqnXP5Jz2TUP2P5Z81zuEzLyMzbcJBxP6ynvHzx13J6hj7N7G9e5c6940qsK6Vk++Gscp+rJnLk2OES97s8ku7ho9m5783T1COFQqEITnh4OKtWreLFF1+s6q6cNGedaMI8beSwA7C9kQVXgFkLtzPKt50XUnbhcyyi3L0DIDvM6IwrVNvOjJCccGplsccMUeN2atFu+TbY1qRsUy97awuOl1FrdQ57DoCL/5QclbopTlg4kpXP0m3+Fra/d2zgohWSp2Zt4KJJ//OVvzv1cSJ+WUp2Rj7zNhwk7ViQedAApB3Lwfm/sYz7Wss7cvEy431we6TPn8rLl8v/of+rv7Nyd3qZzxGMnUeyGfLmIo5lF3Air5Bth7Tsti/8tJGJ87VcWxv2ZVbaOoNl5eCRQyXuz8svYPwXbkb/tPI09UhR3fB4JBm5hVXdDYWixnP2iSYTWXU0USQBj+7EvLWDoXgsIXbf9sF6hiDJ1aPyg4kUd4jWVlaMMby7mxrzglnxJTt1u23GcR7dB8VtNYRdTq1Io7LDof0V4LEW9yPabjrvgdoWvX0o1C9td6OSZ2if/lzra6EN/rVayz59KDOPnq98yK3fj/FbzmXH7o0A2DwQf/hJth3SLD7XbWxKmKcZL0z4g3c+u41r3n6VvEI3o75cVWpG61/X/ck1Kf6p+D9erDnYd3/uV3o8/yuNx8yh8Zg5TF+xh+WrpjFm28Os2Vq6QMgpcLFsx9Gg+9/+bSXRh1/gx793859PFjJo4nSklHy0PIXXUhaSdiyHiyb9zI2fLCv1XGZ+/ns/jcfM4Vh2wUkdF4yU9RvZfOAE69KOB9yfm60JzoYlzyIrzmBe/3UzHZ/9jvQK+swpFGcrZ51o8nNQtmvKQZiMFa5wh2/bYje2c52auNjezBBSBQ5DNB2vbzSSF67V3dkxwVdWGGqIk7SWdQBIj4B9epU1bY22PPbi226TPitIMNIACKfWR49JNG1oZ/T7SIRhBSm0a/s9VuETTa4Q4yOwubVx3P46/gLMYXpIzZNH+PGrScz4aAn//uFcX/m8dcaSL09MP8GccUuZdMd8DtbtCUJQ95iHAcfu47q07jzzUwr5626gy/Nf8eaClfR5ezJF2XboBGumv1usfPrPz3IgI49eGa/S5cSbJDYdzR0HHua1796n569f0me9JCHlY79jZqxMY+l2f9XwwNe/MfqjJ9h3vLjla8HmQyT+Oppx3+4kb+EEGmx9lGdWvkJeoZvH17zNIxteZc/hnTy6cTxi18lNe0376QNG7nuYv/emndRxwfh972wufON3Lp64JOD+ghPlWxxaceaQ/e3D/DRjHDt2bqnqrigUNZqzzhHcPD0nQgzR5HW8lg4juaM11BARHt3647ZbkHoTbpO4OdoyiZi9eznhgAK9CY/TdHyIMdRuu74tQOqaxeYx+uWxG0LGa3VyWwVW9NB+h9PoY5gxzyb13EnSlEMpwhYBaJYGTSC5afyPh131il+DxyTssiOtcCCwFWj4ckMgTn3NsJpdnvq7Xz27W/quryhRPz/C9Skezm/xPEe3hPDeqny4ewTP/7ISjwcaxIXx4u/vMuPX4r5Qr81YyrCIO/hs9m6/8kuYwdJkbRwP4r+MwHszXiGLBP54fqyvrOPsx7h3bQ47Ll5KvZ4DfOX7M3K55ZNlvLRHayNn8y7uXKJZuzo9MZ3vNmnX//6nU/jvBkmzw2v5Y/tR3p6/lam3dMdmGv/th7OIcdqJjzD80K6e9w1N0yS7//gaWjwaeIBOgnemruezfqM5GAMdnrax9skL/fbnZRcXTaO+XIXNInjjmk6nfH5F9aeXHsTh2rYU2rat4t4oFDWXs1o0YdduZEIa1ibpNASJzSSapJ5syyxopElwWCKjAS2kzispLCGhprrGUEtdQHkEPgFW94BhEZI2U12vELIIX7tWh+G1bo0w/K68wk6aEoOZz5tnSvadESIAidsklDwmwegOsQEutjeyEp3hJiHwzI8f528su99XvkvLJBqeDz22aOkYsrOzcXx2AxYPrKojmPFzcF+hz6YEnhJz6LMPm04U0OSJqVzZoQOr/jnO2zPnkuUAnh9LXqEbh91K8m7NwhSSvs93/LZDJxjwWgoXhI6h7S7t/Bl2w0LVNekpvAZaa/4CQHsPx0x+lc45c9mXuYCGscZ78ujzt5Mb2Ywfn37GV2Zza+Nk91TcVMkN87W+/tT1ASDVb9+mg2t9qyi6PZJ1acex/3EvUggm1f6Y4e3r0TA+QCREGTh8Ip+48BCVo6ua4/vtsNpLrKdQKErmrBNN5uk5S6gmEoSUWLz35xBDOORIk3jRBYnHZvUJHbMgsYVrU2YCfL9QFrtJNIUa7XpFkRQghSZetrawE/+nnhnTZJXC4vVDMlnIQo12QyNijXa9YslmEk0mvyxbiAMoZMc5IbhlYbF++fyjAJcupjw2gbuck7hdV77MX11Gg7BoYlVKLO58OqwZT2yWNkgHY6CtbjDK3LeHISu9P+8nF3EIsLqVFWeWZvlqcnAvP819ga8PWGiju6lF5MEtU/7kr92z+eiGe33vuUt6fM7cI18Zx8+zfvZr96oUQ9w8PskYjFvnaD5b+QLem/kdAEevW87qkKbkFLq4tlsLxv+8GlgNJtEk9PNaTZ+PimLoCg+Nx8zhnn7ncFnnJBrFh7F1V7pPNL2zYCuvLVjJT/M0ITjRdhWf/zqU6Q89RlLsyQmnI1n5dHvuV245vwlPDm9dwVeiqAwslrPuJ1+hqFDOwm+QcdOzhBhWJSG1m7QwWZcsecd82x6bIUh8t3W7yb9JaMeFuMB7ww8mmtDFjRT4wvilxaRMTMLNZ2kyiT2r3djviI7De0aPtbilCbvZeqT1Nz/Uyjm7dSFg6pclzLhp+ixrVovuKyXZ2jqU5huKL5C3ua2Dluu1yDpvjqmNLWx4RD9NMAHCU4gUNuyFWcRmGVNn/dca4uixqe/zSLHWy4bLAp02GVOFA9Zo7V69yN9adeG0W3h4l2RGaCaX691wFeRx4St3Iz2FTPxx0Umfu+lBY/vTX1eTvOoeQgvBNTNwmgWLN+LPdmrr/OWEQliA9Qr7WR/hjz9t/LLiGh66+AaOLZvp27dyyTge2bzW9/+on3KBGdzurMNPY0f5tVNapvFHv13MAPEI21d0hOFfnNK1KCoX77dMCJXcVFG9kN57bw1Z1eCsE03mN8YaqokmsyO4ME2p9etxITumrGJ961sQtu+A41qUnd6ECDVEU6JLu3uFuIz2hNUYXrMY81qCzKIJk2gy90F4y01TeVabcd6QKJOlySvATJYmEWoWTXq5RRCmr7MnTX5XZv8ob388VsPSlBvpALTr3NjWQbIulPLDQoA8ssLAkQcLe72Bp8g0gBR28LiJzAru/PzI9F+C7iuNvBDNklQa7Xdpb070esNpOu3IcSZ9Mr/c5zZzxXcfk6AH+x0v4oC9Jz2H+jFO3+fDQ+AficMn8rnp89l8dN1Q6kYbwr6oiPEE+Y15eIYHKOB42FS+3LuGkYuMudXL56/hnAPFjxn52ztgEk0TflnH+4tT2fHMNUF/zKK3PsqI7zxsqbcqcEcU1Q5ZjZenUJyd7DySTVa+i/ZJMVXdlTJx1kXPmX2avD5LZtFkNQmWyPMuZnOzK8iIPocs6xBfua+6qa61jbGytNAtCWbRZDH5SlmsxvSctzFhEk0Ws8DyWqVMPiNmC5Yj0hBNhtXK7OxefMoNi2CrnorALOZskSb/KL0/0mbxOXObLWsuk2D0WsMicrSxlEFu5gIPcUc+1I63yqA3/aLsahF42iitvjFmgfJslcSAv4yIudyfpp7cwSWQYMqOMPQFo903ft3A+Bf+xf3TftWXp4HJq1YwfNICrnh/gV8bH8/4kFfeHMvkD5/m4te/o+fo5wEYMmYCV49/HYCsgixjSjkIMTkw8rd1fmWBBBNAo4OSv9MyaDxmDit3H0N+cxvTf3yavMLA6TGO5xRw0XztYlvsC1ilRrBwy+Gg1wjwz9GcEvfXFLyfuUKhRJOi8hk1apQv03cwRowYwZw5c9i1aj5TX3jwNPXs1Dm7LU3h2tQW0uQoqYuIlN5vMH9kCtTuAoCLdszvOwlkIY3EfQBYTFFsobF1jXPov0sWk0XI6jTyPwmL2dKkKSfz9JzXAqY1YjHqeotM7YaGa0InmP6wmP2UfHmchCEeTdN3IZEmpW/xpiew+No2+0dJRyigKwT9enIcEBpgusiMlg9LktoujOT1ufp0ZpC6aKo+O94JaCJnS9sIWqzXfIkyYuwk7dVOGMjvaltdOGe/tr0rSdA4LbCf1HlBHNjXNRY+y9SGC+rReqGmDja3sNNySyGZEeDMBXuQe+qUH97zbTd/5nIuPAh7l9yDTU/fMHbWKmCk9s9/N/rqNluqia22K+fQ+sgskvd4kBMe5fUftPJfL+qE5747aVCBKXdsHrh/Wl8+TcnjeWtnnl2qzV0eP3IAZ70kv7rfrNxM2muX0s8kEDNyClm+Kx27VZAYGUqbetFUd3YezuKLSXfzY9dbeOn6gXhk8UWnb33+DeIatuGrey+pol5WDFb9M+qSJedFUyhOlZ07d5KSkkJBQQEnTpwgMjIyYL01a9Ywfvx4kiyH6dduVMA61ZGz2tJkCTWi57zYQpwUtrLjsQbTkzafwLKZotjCo42cTBa9RlyEIZSs4SbRZDcsTT4ZYxJNeabklsJnaTLqmn2anCZHcMPUZJRYTALM471Qi8VU1RgPR3S86UCtXFotxnRjiNlp3OTErPfxUKIlqHjz9UG3wnmsFmylPMDn6HrP7A+W2cB0M9b7eLCuPaD42l3LNJVVjuiuXNPlFsYbVji3HkGZGS44Xsbs716/p/rpEH8icJ2sfBduj8SZrzlph8ockvdoCjw317CMLZryMA30gL4Mo1tsbG+yUJaD1yfnUfs4PDvDmG7LPOpvmho9YyGZz17KkJWSUNOYD3zhOb6dchkLXxrKe89fg9sjeeL7v9mhL2nz68Y9dH/2Vh56/0Pe/vpLAP7ccbTCEnyWhx1LP+e+uWvp+P0jTF28iQsfGcuhTGOOV0rJm3M+Y8yHY6qsjxWFz9LkLuWpRqE4RcaNG8fYsWNp3bo1qalGJO+WLVvo1asX7dq14/XXX+fAgQMkJSVx/ajHWbBkRQktVi/OQkuTaRpMjyQRJpVhDXXQ/vt1LBm1AI8rkAXCuNNbnYZoioirhffn6PybL2XLB19z3vAb2fzmbABCTKkBhEWz2PhNY5ly+8RJ83yh7pAtRMCovJjYOHT3JJ+zuN/1OE1+Sl5/Bovw1ZXSuB6nSTT59lssxnSjSTQJk2D09t1jFVgknPfnkyw5bzxIu8+SZnHlc+7y8YQWeNsPvChxTgiEFcD+RIjRXYJksSlEPbWDLoTSa4dQe3/xJSLq5VsBl+98RfmnoYWG/wSfruiw0+igzeKfBuJEeH22triPJtteJzFjH3vqChrsL35BBxMltQ/7+yEFuu5Bjz3Hq99/zvQRl9LOo73nhSEOvJ+3rAxjqZR+y4219Q7VshGdqV2jJ0TzLcsIg+wwqFfGDODZDmPh6qKkHz1ChzET6Z9ch1f/czk3Pf7fgPWmTDcvPp3N2q2bGfzsVXzQtwcTXvmUn94bzJS5HkDzJXNdfjU7RvXmo6Zt+GjidN+Rv6zbxjdL/mDyHddXuGPosewC3knZRnLdKJolRsDB7QDUOlLArg9u5u2/MljZN5khw64HICdf+7CGurTlfG5++U6eHjGBc5vVDXqO6orX0rT7sEp0esbz8xg48HfFtlmnHQyZUGq11NRU1q9fz5QpU1i8eDGpqan07NkTl8vF9ddfz8SJE+nevTsjR46kVatWAKxZv40W9WpO9O1ZZ2kyW3S8VidzniZrqCYG/vPceQjz6EgJHhexeS/5bsA205RbVFwd33bM1c/Q/fuFWJKMJHIhEcbUl8WXcsDke2QxnHISuxr+U1iKO+tY7HZOhNfn914vU5ifCEDEFYOMaTSz5czk3C30sHqP1bA0edxu8kOiWNnxPqw2k2jyNuJnaTLEmjnSDt0q58zVKoYWZIJVuwsLjyZm7IVZWrm3L0FsUi59BrDQLnziIscU8WOPiTMq6+PnsQV2aHKbc2PpAuuwyTCXHWWIwC1Nij8/mLOgm/3TEIL1rW9BWpzsaTQCgAKHyb9K3yy0QWa4KXkogQUTwJszP8fmgWs//I62f2nn2mW6rse/MiLg8k0+9uYld7w+dtE54Crj49CGrtGcKGEdwo/+9yBffT+J2154gqycMnja60x/+X7isuDG2cvIyndx21x/cZqZcZROOyQP6slL96RrlrR/xl/Kw28+T15ePit3p7Noa8mLEQdj++EsDmb693fYhJfYvfBKjk64mC+fvwlLjta2BQ9Je7XPpti32Vf/mMnKNueL8bw1czkrXruxXP2pary/Wf+kfle1HVGc0Tz++OM888wzCCFITk5m/Xrt+z1z5kySk5Pp3r07AG3atKFjx44UFBSQk5tLXHQ0O3bsYMSIEVxxxRVVeQmlclZbmkJDjJuS197iFQbh0aFYbBbcBR4sVoHHJbF43AiR5bPjeP2JAEKjtJt5XrhHu5lH+T+NhpmsOL4bsFk3mMRRWHQ4tR6+CWfn81n1lbYKtMd0b7TaQ/i7za24rU5+nryJGzZuAGDVTecB/hmO7GEmC5cumqTVgkUXj0K62NbkEjKiz2HX39DKW1m3SkmLIZrMU31mC5Z3CrHuQePGaHOcoPaW1dTbt4RDNz9B/oYcEseM5PCEdyjaybwwgSNH6ufTylx2gV239B3LNSLuwuJq+ba9U24yiGgKt9sB7cbpvWkU2gzve0+osV9bEsd/jm97t1o0+0u38OjjNb/PRL8p3kJHHd3XTdJspzYvn+OEqGw4Emlcz+46UO8wWEqZkjwWI4k9rrU/cKkxdXX+EmNZmAYmC5LHLJpM+bvcVlOUgc6W1mG02OC/ZIzHbvVboqcoD8003tObx9/KM8Gr+vGfxbt827c8cTu3xUOSaZm/IW++yqf69leLVrD7o/vpOfozzt+gvQeHD/3DppHXEp1TAAuMp+ZDmXlc9tTbfP/0PXzy1XSOpczi+c+/YdmOo9isFro00lTx86/cRbqozXcTXuKFn1Pp2SSBp+Z/ofchl15s5mA9zVFVFAiwa2Nl06M+07MLeHvWUm7Szxv+j+Zzlrj3IJsOZNKqjmletBqSmVfI4RP5mkUNiMnWyq/8ORNer8KOKSqfMliEKoNly5Yxd+5c1qxZw1133UVeXh7t27cHYN26dXTp0sVXd+XKlfTt25cNGzbQsmlTAJo2bcrkyZOrvWg6qy1NXTr1A6BBpxbU1VMyhbqNG02j1nG07VOfKx/tSqhcQdyxjVr0iX7PdJisR8Jmp14/F62fuS3gecNi430WHYn2Q+YXPWfKrVSvQTLxI0YT1qmXIQz0c87vM5G/5jQhL6wWCMGJo3m8c+cC3rlzgXEvN5mabGGGE57Fpd2xpdVKo6QkUnq/weGMe31rw+3bJpjfdxIpvd8wpvKsFl+Ultnx3ZyVXOoicFNLwwSS0HQDCYfX8FeX0TRqH8vl79xEwk13m0bE6GNuuCFC9jfQbvzZIYZVZvDvhsUgspYhRn0tBBFN/R55yqirD47LlCRUhgRIx2AiL97kh+Z9fzzBHGmN8kJ9wea6xwxhJ6wiYIRfgd1f2HgFU1F6rA88jShNoslimi72BDhXTqyzWJm0Wn19/LtzCSYn4JlZgVMLrO9asoAYP+sPP8EE8Ok3s3zblrfv4uJlRzjwzj2+9/zJD66g8/Ycmu3XxvWZt15mwarVTHttFB/+9DEzXhvNsFee44YVf+PxeDhwWx+2/7ePr82HfljO89//yO4j2fzf/VeQOapfsT6ITM3RrO4xaKxrY5s9hD3pOdw9YTTtfzRJxEKtHx02FfDp61eWeL1SSn5Zv9+XMPVkOZSZR77r1CL2Hn/lNT4dp00zjp7sn6y13yspfLuyYtY9VCi8PPbYY8yePZtdu3axa9cu1q5d67M0xcfH+7ZXrlzJtGnT6NixI2vXrqVdy5ZV2e2T5qwTTRaTaApt2o7m//ueFq/OoLC59lTfc8Dlvv1D7mhPn2tbkpAUSaRnNu1TP8Risfhu1iHh/hFC0e9sJXToQwHPGxFXh+26RefYkXZAUUdw4y4X3aT4/K4UwSa0zPgLLAC7Sej4LE02C51fnB5UbEgBwvujbbX6RJPZuhRicmz3ePtu8styhkWyvs2tICz8MSM9SE81CkJNU1hhWn/zzSFpF3T1bcbXaWy0offLvJyN22q07Og4FMuN/Yh6/h7fCd1205lDzc7sAb4KpuVsvKKpLF42uWFaW9vqGhZClymzer7JvruzyakluPTLyaW/P3sSDJH4WwdzJnntXDmhsLa79tn1WI21FM2JTtd39f9sl5Qewjz+wfA+MOSHFBdYFn05GavFEJ6jZxhzozk5uVzxzsfkPnA97P5Lq7tnubE/N5cWe92026UdY04R8PKEWwBokVZcwIicY8XKXFYLi27pydjpv9B5h3klb6M/gxfvLnacmbkLlxL3n/58+OEHJdYLhMcjmX7bACa8WFabXmBu/uZTrpu/mex8Fze9/IDfvlen3Mnujy4PcqRCcfLMmzeP/Px8+vfv7yurXbs22dnZpKenc8MNN7BmzRo6duzISy+9RExMDMnJyaxdu5b2LVpUYc9PnjKJJiGERQjRSQhxkRCinxCidmV3rLIQwv+SbQ1bImw22n21nJY/vIclLingcYOu+DdSSC664kbfndOu36TSYwMe4iOl9xvMeiOLA7pFJzujAfP7TmJ789dNliYbDX6ZTb0fvvU71ps92nvz7bbiBf9wP7Sk21eN7Ua07jAdZ/Jjspki7SJ1y0p0ZCTC4cATZDVdKWxIXWC5LYZospvaDXFqFiyXBdy69cWbr2l+n4nsXNYTtz0chKAw38OkO+Yz6Q4jgaTXuRzA3csQiV4REGY3rCYNJrzs267XyPATE1LrmDCJm6wY/6SaLR+dRP3L7vT5NPktR2OOALQEGAuT87fQt89b9iRIt2HNkxI8bmKcH/rqZtTS3oeceKtPvOTZhW8aLN90WrM/Vk6AVVU2typ5Bt1j8tuyOsI4EV6fbckvk2fTfOzMGdfRPx9aP3xmSd97kW9KZSFNgnJXfRHUFwuMZYG2NrGwpWngz9QWPd/Zlmb+N+vNLWwU5muCxOIMHP13+MAuAJoc8JCrL/9zAsOh+ZOU1b7t1M1b2NnO+IzcNds/T5WZTTnFBavH7aLTpuJBBftOGP5NjjzBnIVL/PZLKXnj82/Ye+Q4x756lsgcSf3Z77J7x2aWzPs+aB+OZWUzZ/FS3/9HM47Qb+1Rrvrs66DHlAWnPrP7xNgRxfY5CmHogkzDbzEIR7JUpJ2ibAwcOJDFixcXK8/IyCAuLo6EhASWL1/OmjVr+Prrr9m/fz92u52UlBS66VN4R48e5Y477mD16tW88MILp/sSykyJokkI0UwI8QGwDZgAXIuWWGaeEOJPIcTNoqgKqeZYAjhWA4jweCwt+wTcBxA7+A5aL5xF7JA7jZxOIaHEvnQ3nadND3ocBF9FTWJEugmbnYjGzYhu2aZIJX9fn8jsvcUblJCYFMkFj7xLYYSdC+6f6NtlsRs3osFPvUtWNxg05m0Arnq8mx7cZmrQ4+Kcva9Qa6/mBBG396gvXNlumuqzOjRLk9sC0qX/QnuFR5BcMOZPijnHnqt+M5J/+Yjkvxb4pptcppxQDpNfVkRMA3IiBFmXdkDoBgXzGoDZw3oHPLfXmmJ2nDZPN0rdQpUVYYyFsBe3NIUWZGKR3rA+7ebqyE/HkWM4GnkiNXFpl94laCDD5jGJJlM0nZ6+wCOMBZXNaQxc9pJFk3lxZ2uok7/b3Iq0ODmWUHya2Jtg1WU1SyZooKdDsB8wOV2bpi69040ABfo1ZEaYTE/e90r6p3bIcur5zvpO4nDtLiAEh2t3NaaAgZZbXHTcqr2R9mVGriozx3TRBDD8T+39iTI55g940LjWaW+U3R+i9x/FfwsWL/sxYN3hfxqf6ehsaHr7rf7HLfyFC58dxy/3DSciR8spYbFK9l55KXF3P1qsvT3pOUgp+fbOYTS9dQSbNmt+ibt2G0vvpB3xt9DOW7qc8c+NRUrJA089zrPvannA0rMLcOvCNzvfxQ2vGQ9et/24nGB8fWUX9hzNDrhv9eZd/HrtuXwzu/xZ+iub49kFvHz9hUyf87+q7oriJMnOzqZz584MHDiQhvXqAdoU3nvvvcf27dt59NHi35nqQmmC51ngc6CZlP/P3nnHWVGdb/x7Zua2vduXXZaFpdeliXSkgw0UJXZjb7GgRpPYEo1GYzdGY4stxvwUu7FGE0XECkGRjqD03rfv3nZ+f0w7d++9W5BmvM/ns3qZOXPmTD3PvOV55ZFSyjOklCdKKfsBU4Ac4Mx9Pci9CZHMotBcFFpmRGdeEBRPuZRAxz6ptgBApiqSKYw4S1PSJrYLSgk+9gYgvyTIERf2Jr8kSMDKAsvo0oN+cxeQ0aGL09ajkCajXR8G/2MpWoEZAFtYmoXhtYmOFQjrM5j4wstOTIzRucSxNHmzXJdNVdScRHwRKFlhujl6zTdfwId9eZMlDe4SEE2Hs+84jMWHtwVAna4MXwZ0PAyyinFCygzddenUudfM0A0Gzl3C4DsvylYzAAAgAElEQVRecOoFohtE7Tiznr2SnkfpZNopIqIZCjux7osNbRNrBIJraQLQ5SbabpxFfuhx2m6cRWbVBg47x33IpSXmJgVIazIbvkw6WXVxpMmyNIUMHFKlkhTpTbwvVpWq/leTsMwY8xCrV051Yt3CgSJmjH3YDFy3j0G1NDlduNcoV3WdKVY4Nd5rt8Wbd7VSxmWNQZOugOqCjuYxxVLc+8mWp1Irr9jqxt/YVy/Tm1w88+cfJVqJWoLTPtzddCMFtaEoj778PHP+/nsA2q/bQa1FIndm+8mrds/vG/9+n2UrV/HlF7OoGjGQJ86fSvfvzIMuX78MgAXfulanL08fy5aKOv7wxjdIKZHXncPJ/3iVurpaLnzhNU544AF27C7nsymDeOzem3npqUeYN7I/Vz1zY7PG3n9RLYufuI6nnnuOK2+6kUsfu4O1O2qoDUVZ/ux19F9Ri/HUwTt5zXn7KY6Zu5bg/Vc33TiNgwrBYJCvv/6au+66y1nWlOXzYEFT2XMPSCm/TLZCSrkV+PPeH9K+hW1pqvc00bARhLI0qIhRlNuq6caYLrW5Q24wJ1BLt4hYjDYb7nK1l1KSJss9p8Q/jT8LugwYCkC3gY17Sg1/Ep+PAo/fIDPXy6AjS/nqg43UVYfRMzOp85jjrCvtTF5sJRCfLVjWth12eHbbVfFfq75QhRvlHguD5kHGzIzE3ocdCf95mk4DhsD8meYYfEoAskXG0HVWdTiC8pwuzH13NUUkwi18a6BbP3OL2yc/UGu2jSmxS4ZyPI4ellcHzIlXdftpyu/M8P/RY0UFi4pb02nNS3hDECz7GCdCxrmWgn6Kq8cmReV+sJ3AtjsykkCa7Aw/l8TtyBMU7JJxmXGyCUuUCmG535KppwPkT5kMi03hSbW8TsQ6JzFhEz5JZUEArBgiO+NUSIhZul8LO2r0XhMzA+f1JA9bLEJEM5XIm0LhdX9KWLZ7Z02SlnsX23KgOluj47rkg3z16zUUXjyZsRVuDFXIJ6DedGsN+a+rYnrKn+/h5seeZm2hxubjhjAYGP7lt+zMMe3N1O1mac9ejFD67702zNPXDuKkj6I8tvZsxm41r/ltd13NGVablfNm0HVDmLxXXiJsCAoqWzbxRAwYcettzn6r//wsbwwtoFVrqxD4XvAjxGKSxx68h6mnX0CbovymN0iCmrowoVCE3GzXOly1yHQHBWsjPPHAnUQ+e59LXvooVRfNxtyFi/nk0Vu46P7nqKmtpz4UpV3Rwa9wn8b+QVOPxCP7ZRT7E0JQd/pgSp68d4+7GP7Ma/guO4bi3sOb1T6rekOCRUeLhvBGN7n1eo3kLM6O20G42kbB3OKkbZPB8ATYPL4dtVcem3T9uXeN5PRbRtB9RCmn3TSUc+8aaY7Hzpjz+h1hPF92vqOS3WnUSdT0zyL3jiuInmPqSnmuOdfpt7irj7YbZzH4q3voM6YtnfqbBLPXqb+h08v/4NBr3VvLUAU4o1Fmjvoz241b2Nh2NAiNRbM2xrl03HNjkybXEpJX3CnpcTpinQppUi1n0ilQrOFMkdY1WV/icUjVhtYCLWIF1HsMen84i85vvxXnQnT6bBA2HrBZpmK5iXly+eqQX1Ljy3bi1sJed4yqGvrOfHM7VSJgjjCtMIPn3gE0jLWK0P/7B5y2rj4YJFOPH/xz16qg1kqMWeOt8SmTqKGR8/tLaP3EXWRUm+fDEwLDMvkd4i1Cl3DY7JtM4tRgXD2X3cSOJPU5dyWvuJCA0XOTu5VSYcXIts7vhb0Tn7WtBQmLiOmNK8mXnX4UhRXxWW51Xo3sVYkB5jc/ZkpGlG6L4bX81EvaCyc8ccXq1Un3cfxHZv87lroutzNe+Nj5XV9luorDBmRXtfxLfe3STxKWTZy9AxkyCbFMliDRQvzn1ScY99jf+OjKyQCEIjHufeEZquoatwp+9+1SXrhuGlJK/jV1KJuGHArAt5srqQlF8FpW47AXRj76d8Yu2Ew4FKYuHP1B9QLX/fbnHDVjIZ+/+DArxw+hcvSwPe4rjRbgR2Jp+lHFI+0tDLjpWYqGTt7j7f2lPeh8+T1NNwRqx/clnKHj8RtkBeoYMymTjKwQRqweo0d719JkJM+iko5ekiDjXPP7sqB1x2aP1fD4GffIfzj0krubvQ2Af7gZWzVw7DFstSa3wqISev3zRUqefQCEYOCLc2gz9RL6XPcnei2YS9fzrnG2H39OV3qseIms6g2MOa0HR1/cz+2776A4tWevIhKqRWIMn30TXrEYYuaLT2jQesschs++KW6MMevcVFNH2CISea1Lkx5PMtLky8pX1rsFip2x6B56LlrIxP/MQ9ddK42dWSgMMAoL8XXtikcpjIxtAVPm29CvTnC0cnSl8HGVcQTlOV1ZXzrFmaAjvuTaS/UBq6SOkiFoH/eqoQJsEVDl5ePPcC0yQikUrcY0rS7Lso5HDSp3iaxNKOt8bkKC1HVKTruC/FFTqLekGcIe0C3/qh40SbIpaGpNYFEr4FtGQVY4cWblipe0zu8e29f9f1hmoQqhJDHY13hR/wxWtjNFYjcluW9imhLrlt08dfKy7yJ0aEKPs2qnKaTZb7Wk0JKYGPiXxuMiT5iRnCTW7jJ1FIp3mkr6jWFHEmPJuM9SBHuHzc5SaaC1BLXrzTit3O3mcb/wyLVMvvkunvvjzxvdbvWFJ9H/nx+yYPYMylaZdQ/ePaI/sbFDePHCCYSsj5fyLPc+qSrfzvSfj2f6meNbPE47LsxfZR57pG4H2TXus/TJB5+zZvWPuDr1QY7d5RVNNzoI0JRtv7MQ4s1UK6WUU/byeP7ncOgjLwHQT1nW5zjYMPt92gx+h4/HmPFQqUhTthVw7QsE6XfZDXDZDS3av8e3Z/XIxt/8Avy2HuELIP/6BHPfepRj25lSCYHO/RI38MZr/GRn5xH84B1kVYpCawp8Qde8ICJRvhh6GzHpcSi9jMGW1kPY1moAhyjb1VraSBvrNzD8jl+x+dWX6JWRwozuTPYuIfFkK5Ymm5wahskopBkI7hAJpXByRdg0Gek1q5LuStquNSAqQJfQasKpVNz3qtPHzFF/Jma7rQTsLhjO7oLhfNc9TJudNwDmi1t1k9k5F6qsQlSDwq8/Yaovm+dumINHhBg8uTNf/PUTwp4gMi+H8nGZeLJz0fTE8j0COPq1xGBhQ4330u39grAER+OkDiz3nBRuuQ6hBNkHapeSv7ucko2fsXDQ4WTu9Jh9WW1z3Kowqm5o3LXalgOF5bCyzEPnJYkWijXtNTo0UhJHU0iTHdcmDZ317UyR2J155wG3ALBoQJA+86qJaa5WWGbF3vsKPuzVRU03aiZCu5tZKwcaFTFtiLpak6TEvAbPXnMOrebOY9KM+bz8zBPk5Bcw8Zjjee/wodQfezxHXnAFX3/0NiOPPY1Ni79mzexPGHbelbx7+FBqevdEFJvvtqghmPHkPQx+xCwtlb/8e+rqQwhdx5eEnAVrzBvkvff/D3ui6bTWfC4GfLWVFW1MYq5+RNRU7mbYArfk0DeLV9K9c1syAo2HKfzr+Yfp+IeHWPb7S8mwQyW98bpmraadz7LWgg4fL2ny/P3z8acoGz6U7n0bj3dNw0Vw9xrIS2J+PsjQFGnaBty3PwbyU0PboUeaPxxLU3L33BG/+xuf7zyZI+58do/241MED1sCoWlgKYC3KRvJsWUjW7S97vWit+vcrLZ+Re8qUBNFpnhuGk5bWWENiNG/aBQ9p1xAzykXJNvM3DaJpUlXguS1iBVLZRjORKnGmcUsK4kU0Ge1VZA5Iwl5BESeSThq84Po0vySz84uQP2OSlYLz14eU4K/1Qw/u0CxGpfVebOkVYY5ediuVYDYhabLtProwxh2/5MAbPiLGjBrWYRS1HdT49dsS1NUhw5Wpl2krtZZ71qwBLpFqoTi3ivY/jTdV5kTYJb2b/ou3siaNsIJ/FxbCu3XmW1352sUb43G7XdTIfit3VUV5ANbEsZbkxuAtdUsLfPQKwmpkhnueHw7ahOU3aWnyFF2b1VtfpiopGlNrwAdlpqDWDogg17z4mOqNhdA0Y79b7rv/EhqOYOGUGPZ/jFe48wZqUnm8M9NF2O/L3cBswEzULfPnWZ82a5hQ+m0oYro4//Hm1/+i/7f7GBeXg7+C35FDsB5V9JpXQWsm8PCU023WlQXtLnXVbbvM7+GVf37E9FgzYAOaJ06Mem2R531dkHvKdMTw2qFhGi9+fFi1LquuLpK1zW6avE8fCecztuDCjn8Ty/w0UO3cfzv/4KmJxK0yv9MB2DbjH/QwbovY9I9P//+VT9KgfZb4t9Cb/7xGrLe/w/jZs1j5vNPITSN0jHj6PGne9mUA91TZISmkYhodWpWH4lGqaosJyenCX2f/YCmnvFKKeXHqf72ywj/52FNXp7kliZPVjZjnngPf0GyUOim4fUkqkAfbFCV1Wuzmz/teOvNc+fNaTq41CEpygtTPefCIk0yTmbAJbIxy1UohSD42yuo9wlG/PGZpPs66Td/Y8tZQzjzgQ+os7oIqkkDIpWquLUvZQyegJrhZx2EMtkf898mLCC9XbVdze5XQJ+TzcK7A069PNlWeLPynOzFmG6SWpXo+WpcYuK4+jQceQrNn8H8wwoStrOD5GOaVYQa2FnkWoGi6seDRZpCPoHP2p0MJr+ftQqTnLZanyJOxu8S5F6rkzexYVsuYhoOU9/ayU24kH53jKvbWvpfHhFX6igZNjYvbwSApR3Mfqv3zFCcFDHFIhNKMT9VNvKN9dILbibm5pWmtSVkQMEm00W4Q5FL+HKgq73W9wVTST5maKwuSezXiEGXr9bQ6ZWZrFu7iv/eeS2bt2zAaOwxERCtN0lsj9Uuadp26TTn97pZppOk79xtfHDFCfR66SPee/K2pN1plmu728JKWlm8q8NdzznrS99x76uKnTt54/xjqKmsots/3qJ4ax3hUJjWf7iXopvvZvm3ZjB6Ubo2cpNobsZc9aaVeDZtpK6mqunG+xhNzVCr98cgfsqwA0ENT+Pm4z2Fx79nlqY9RcUVh7N1csu+BjIyXavG6N8/Shv9NgxPvAVEi9SZwpIKfCcfS50Hhh17Lk3BDhpXy9Wo1j2nxIwSb6TG+Miobf2Afj+7hEPmL4kLJAf4blJntv/6BDSvj7E3/B3NHyDn8bvYeeoANMPjBJj7+yW3UNkwa+KZ0BVLoS3QKRXZjDVdGi99Euzf3+1LsayVTT6HXsuW0m1ccl2jzPzWjoJ9jX64uV/VMqNeHisWRAo3o9EIZLjkTrVmGS5pcqAEu6OSVssd2WG9xGfH6yhK9Mt7uJ20s8qtFKYIixANPkoGz70jaYD64Lm3uxY9TbiJG0qxaqG4eiLWfRo2XNK0scS1UCzvrKjVK8Kqu5M8luuU/I4Kaxcruyd/fndnNd9duKy7eexxpXUUK+qCYebzGtZhW37q2K1+t7jJGzs2rDC3MdykkTVfuOVacqoTxxcztNSidRaqjphE5jNvsmvMxLiC2Q3hjcChMzYlLM/Z4VpAy6UbB1a8ypSSCFVs5su3nuW9h28G4L27f8PyuR87LvXi3ZDRhKbnzCun0v2z73nzFldtp7batXBlyr0Xi/e/juaSJlFdjxaFcE3T4R77Go2SJinlz+zfQogRQojThRBn2X/N2YEQQhdCzBNCvG39u5MQYrYQYoUQ4kUhhLdB+xOFEFIIMcj6d0chRK0Q4hvr7zGl7UAhxEIhxHdCiAeFSOFr+BFAFaHcm/D69q+laeilDzLmvs+bbghsKDIvV06eO1u07jmMqY99QiDbnDU0a6LxhiutoGIX4y++iwELl5KtlFYB2NFRY9vPBsTvzJ4bjVSWJpMUaUpAd32d+1XjWppSH8+xf3qHURfEf8l2Hj6Fw2420/h7L11Cmzcep82onzHiy5vQInXKwCRE6xjx5U2uWCTx+l22a1F1MZZcdV3qAQFtirs6v41mxrfNHPVnvny5laNgH+IQZox9mBU93EqvMWX2syccKdxsMCPVfadk8NlB45m1KqlStbHM46z34EhK6NmuVbKui+v+bSpeR1fOY0i3RGKdA3CPJat6o+vKVSxNunLu1MLVdi3DjutjTqmZVa3c66PqgtmZh8t66A7BWqtYXsLKh0KuRe6jiqt2aZlL1ja2S/zIKlf484q+Ktk2/6/Gwmmasr11TaJa8yUGNr7zGmAKpZZYge8jPkghtGWh96I6OibynH2Grg+6QqWtLKuPHsgg5zd30OEvL/LSpUfS4em32X3hxcRohvaFhfYLzAPOXuO6iWuVyby+cs9MTMvff4MvRvajbnfLtMIOBkTCYScxpyWQMnGbqt3bqK7cTV2t4gK3H9FGsln3F5pbRuUfwL3ASGCw9Teo0Y1cXAmojt27gPullN2AXYCj8y+EyAKuwHaiu/heSnmI9XexsvxR4CKgm/V3VDPHdNDAmWS8+4g0tUDHZ3+j3/OvU3n3FRjexAmgsDTTLJZ83SD6jGlLZtWGJD0kx8j3FjP69ufjlkUo5uOR9xARbsFfjxJ8X2sJSsZNyhu+d35Lp4DqD3hohSC3xyh0w8AXqsATNkmZiJmf1L5QFb5QBbGw65dQXYROMLry4shKETc2zyq/kt3aLQukJ9NLSoLGFOxtFMQVlFVU1K3/G17FQqIqwVuWvJgGXst6VB9yP+1VhXObNH3e12VEhqYQSiVYPVkxZBVqosXSKabrSJNVeEIb6b34KTSxFa91PVwLmXtoaoFqI+j+VoU/bdIU9iklgjwKgbJL+ega+daudpW61sqwRcAimmtNlIrVMaL8Vq2N26xbtk55jApXmxNOjde1EKruOcNQ3jcelzTZY9ysxBWubyDHUO2D/p+bz2P+gf/wbxGiSg3BvjPWApBVC/0+35FqkwT4rLCAjGpFn0txG0UqTNITaTC7zn36Xj6+IXlBd4D1d/6O3O1h/v38H5s9FoAvLjqF+l3NH//ehpSS8LffUr/EDZCfNm0aHTp0aHS7888/n3fefodvli7lxvvND7Lwum/Q129BW7Oe2NYV1KxeQG2VS0IPhgIkzR3BIOAwKeWlUsrLrb8rmtpICNEOmAw8af1bAOMBW3Tk78Dxyia3AncDdTQBIUQbIFtK+YU0bXzPNujrx4VmTmgtxcFsfCtq14MhUy5Juk4tljzmtB50PS8f+fSea2vtyj6HqB6gInKcs0xTXKKDrrmPj0dlcfiVrpBitTLhRa1A8MheuEy6Ye43q2o9Pt9iBn11D8HqT8mqMjWXguvcnHU1aNWxMCmlgFK5X495dgYZ7z6PppRDcYpC/4BEsG/Hm4E5A//yhrMsplhqnI8A3T23KsmzBTalJhyrnezqpvur7lH7OItxjzFY7LbVrYy4mKDJeCLVvaZZ+yjeejPt199J6+3zyDaeYuQXv7UaKG5F69jUTCqv4k62g/LVWKCuO91sULW2oD3GmHJfSeX62MWko5orgaGKm8b87m/7nNZ6FVFUxf230hK9Lc9yj0clTQHFsm27LmOa20atg9iwJmKwmSXpdmY23WZ/I7xg/l7rq6rIvc71da4rsP1t/wBMa2rVzi18/n/meyt491MUvWYKcspIxMnYtdHGcjHHQi2r+Zc7awFabb21bSih3z1F7eLF1G7egJSSmi0biEVCce60SE01kZpqYpF4P+qqVauYOXMmoVCIykqTVUeqq5zAfRvffPMNffv24ZBevbj1qqvMduXKR1OljqjSqNu60S23KgTRSJi1S/67V45xT9Bc0rQIaL6ioos/A9eAY/ssAHZL6RQnWw+0BRBCDABKpZRvJ+mnk+Xi+1gIYRcXa2ttb8Pp60cFJ3vu4LUIHQwYOPkcyka0XFvLLhQsjUIQAkm+U17EY5GmmIDe/cdx8RNzyM5xo3VzdfetP/KCW5h1qE7+b37/g49Ft651v8VPkJX9OVnVG8gtf4V+i82iv6q4paaQaYf0KETYF0ge05SdXUiHzvEuyoZim3uC4x/5hF7LlpKnWLg6TjwJgLqjxjsvN83QHcKhkibNnqCFKqCqECzFMuoISyrb+wOuZUa3totqELL4xNLJyQtuq7FsWFaWSIbPdbcqlhvXPee6GzWFvPgV0mRfi5WHtnKC1Q3FxyU9CmmyOauhs9a+zRQdLpsURzXQrGsVU7aXGYp1KBlpUvim18p+lEKxNCnHWCAUU5JF3ExLk7lIrZhQo5T9WVvc/HsoZFncNqbIYdml3LrrkxQ2mK8YUWeNNY9nTRt3/8t6uufuqyOSv/ptMd5NheZY+ny+NWm7PYFnvdtXuCYxmM4ThVfOGUfebU+xYu4HznIpJcv69GXm8SOQsRhL772R8C63zmDmpvi+Pp12Iktf/GvcsmhVNXVL4zPzopEw9cuXU7l6RZNjl9EoVd8upm53cguVlFYZrO27qFi/ErFtF/XLllOxaaV7zCtXEV65iurVy90xhOq54apfcv0119Cjezdmf/i+2XbVahb/5wNGjhxJ3759uf/++9m8eTNtS0o477rrmPXf1CQoLu5JSqLbt1JxshlPVrVkLtHq/avv1NyZuhWwRAgxB3BocGM6TUKIY4CtUsqvhBBj7cVJmkqr6O/9wDlJ1m8C2kspdwghBgL/FEL0TtVXirFchOnGo337FGU2DhCcd3aSNNg09i10hTQlg/C5X5LFrdryi+f3jr6OMDzujRqNT68HCAeUUi6q7IHVRB1uSwL9PRYhDDYhpj1i9k18OeYOoiHpWFu0aD3D59wCHJnQfuCwyUSXHEUvTWfmdLP2n6YbZA87Aj6bjuzXB5Z+bQ3ePIhyQ2LHS2sKcVBjeOwvLfXcePyZ1HuzWVR2HkFhuk9jAjZ391GyrZ7iI8+Fd26NG9/2HEE05ro8j/n1w7y16XjG3/Q35pxjevTjLLKKC8BOINCVpIG82u8T1kuPW8pna1lrildWOMttOGTMMJxrqEoz2BaojBC0WR9ic6tDqKy/gC0FT9B6x/x4gc4kgqOmpclKeLCkKmJqnJJiaSpo1xtYaLa1yacObTaa92Mv5XO0VrE0RawSP5V+qMiEto3IREWtQ48Jd1wq1vTLJ++LnVQFoDbTgC3x6XJaXjZYQh0ZviygAqlB2CPxhEWc61Mo2ZHf9PNyyALT9+uxutxZ5KfNttQWnEUdBL3WSucaNgft1UzNs69KWL+6nWDocrPDdeuXYgcG2HIdxcvLmfn8QxQ/+QrvffJv7OjDWF420aoqhKahZWRQ8MFi+GAxnPILp+/lg8zomO7zv3GWhUOmJefB5U/y3bKtxOrr0P0B0/IUizmucYBoOIQIhZGLzTgvGYvFfVhEa6uduqcxXdDT156rS8/Gu7OW6sgygu17Om09ymmd/fEHLF2+gkcOG8Qn7/2LFQuWMHL0ZiKRCOddfz0PPf5X+uTn8Ku776Nnz57EImEWLV9On+7dGz3X9seLlBIRE+gRQTRUz7qfncnmbvs38L65lqabMV1ft2PqNtl/jeEwYIoQYjXwAqZb7s9ArhDCfpO0AzYCWUAfYKbVfhjwphBikJSyXkq5A0BK+RXwPdAd07KkflbafSVASvm4lHKQlHJQYWFhMw95/yDLmsDslNc09i5O/u1gcw5MkiVlK3OnCu5u3bHxB3lPocbwxCzl5ZihUWW999tNu9NZr2b4CStw2l/rmt9TWZqS4bAjf86MAQb+fzzWaDtfqAJf0LofLbdkskB8FbplBVtVao7XW9SWoy+4Ed55l77HuDkjtXVmvEdUUyxNiixGhs+17olozO7cWeYNBFnW/VTKc7qyc5MpdRrTYPhvX2bRZRMZMv4Up21961xmHd2B4KMPIqPuhJyREeSUR/9DYZt2DqGII02aa2lyLMGa4horc128TsFtw3AkGqTXlcCw5SOiSvcxw3DdmArpjSpWpS2lAZb0OhuAxWXnmKchI1F+ImzgsOiI4p6zLVhS4JJA5Rgzc91AJeFxLXbBJIERqnuu3pvDV4f8kjpftmM5W6tYieYc6Vp8bNKkBpdvy1Msb363ZqGthzVnlJJ5q1j3dKvAc0wIvu3mt/pVLJiKgr0tL7FwYKZT2zCSkTixxoBd1ikNGda5BOaOzmdHbndmjH6Q/w4wKyNUZMDmgpZZajuudxlYm+vczMNPz3NLWm19y3Rz56vWpYwAywcNZt7IQYRr3C+c1R+9SN2yZXGWl4py19plB1VLTA0rEZNEwvXIujpkyHrPhEPIaNRJ3gCIhuqQdXXErGckFos6hAlw6p/a0CoixKLJy9Tcds/93DRtGjFN0KNTZ5asWIHcuJ03PviAnp0706d7F/SwpHtJG/p060L9iu+prq0lPyeHNz/8kEtvvpmTLr+cDz6PTybSnfG4Y9m93YyrK17RhBT+XkajliYhhJAmUmoy2W0aLpdSXg9cb7UZC/xaSvlzIcTLwImYROps4A0pZTmmNcvuc6bVfq4QohDYKaWMCiE6YwZ8r5RS7hRCVAohhmEGjp8F/KUlB38wwG9db9HM1Ms0WobC0izzORO4xEnAF8N3c6o3+RdKzit/57vrfsXQKRftkzH1GTieb63fMmKVq9A16h7/G7PnvsO0kUe6mRMKYdDC5pujNsslUt4UoqjJoAmNy6YvbLTN+8PAyIaO7XNYs/UNRI8o3lVBMquat5/D7n2Zd997nF8OM8U1e3XpxMqqtXYhFSdjLlvqaJaXXlesBJoSOySUEkJgqai/7IFW5sRaV1XMjLEPI2JhLu3cjc6XN3j8s7L4xf3vAfDunA8BU1epl9LEDZVQo9Ut0iQEO4syKd1cSU77MsBUdPfnlzrH4zy3Hi/Lu5xIeU5XfLUe7FwW4XXjhdqtN7cqXbTT0UkyFFefHQTfUHgT3WsKb26RwDTrnJjjjXjM9HuAiKFhl6zRKszg2ZwK2F2S6ObMzHL3qytWqZBhupVU1PZN5sUAACAASURBVCqPyY78kwkFurK6wym03vokIOMKTKtirFHdfPBUqYMNx/Sn8B+W1dG67loMl3yqMW2KBdLWV+u8PkadZdroM9/NrjJUPTOPnaGpXNOMDCA+aj3kcV2bIQNH4kD6fSwsuwCERmXWOcBvLGueOci5A/wMmtd42G2M1BaJ4nnut32/+ebvfIUzlT5i6ktl1Eh2bV/nLK+95GZWAeHzJmGfpdpq95hkNIoArmp/NmGvwF8nqc0LENhlWrYCffpQu8i0lte2ziGwpZyQxzwqXxjqi3LILSpl56qFBKobJ4ix3esTls1ZsICPZn3K4sVLkbf/kfq6evpaFqSFy5czoKwMadmP5y9awujBg1n6/ff06Gz6YadMmMCUCRPYVV7O9ffdx8QRZhlpT1hhcFHXule+3UzFbBhwv6/RlHvuIyHEq5jEZq290JIJGIlJej4CnmnBPq8FXhBC3AbMA55qov1o4A9CiAjmG+FiKaXtAL7E2ncA+Jf196PCtjwo3KXEq6Sx1xHI9lK3ex29Fr/F0l7H4M0r5ZRbZ1O9Yw2QaGkq6TOEkrcTC5nuLWiaRsXz/6Cyqhxeut0cg6ExasgwRg1xi4NuzYHy7VudQD3dyqoL+5UacXv5vhl97dsU5GbToU0hWEVrnr90HP0Wb2ZVW+IIRzJ0L+1B9wvjjdAer9/x6dt6V4ZuICyXmWoliCsb48REWUHRWvLXlRQplme6Vpxwtmn92VIYT5Qda4XqkrPrEGqCIx9/jxmvPc0JR53OUky3X2ZxO+x8HiMsTTJX4wHL4lJf25EZYx9Gi4bJ9ZoFk2MCAtYHUqAOpMUHtCwltsgiDGWLn2RJ2XnmmOxgdBmloKNLeJ34J12ApcIeVuQNdu420+Gza1FiANz1QUX/y9bvimkmkWgY6F3rbVD2B6jMP4TK/IdY2S1M8carcUmTcs6t8ajuOZ8qROtzLU3OEFXtNFW2wrrPqzIgM16MHQCPUorJEbBVSGJlwH1OlnXx0PP7sBn4bp2SkHULzRjzEIQE2LeJyHCU4ssWmYRV93lIlqu0pLtG2XJzgq/3utc7Fb5vC12aSAretS3RebJ0wSynLFd9vWuJisWiJL4NkpOfcCxMACu2UMa3bYowAYQ3JaZN3vzgg7z414c4fOAwarM8VKzaxPCTTwagIDeXxStWYGzawdeLF/Pyv/7FtDPOYP6yZfTt4QrwRnS46/HH+cWppzrLVJFTz1aXXW7/6x1kgWNN3F9oiqMdhUlUpgshNgohlgghVgIrgNMwpQOeaWonUsqZUspjrN8rpZRDpJRdpZQnSSkTHM1SyrFSyrnW71ellL2llP2llIdKKd9S2s2VUvaRUnaRUk5LZvE62LGqs/nVnNcxXaNoX+Hcu0bS8+w2bMmeT6fTczn/7lFk+gwC2aZx87NhSaJQ9zGGHjqIiaMnOPpQskFM28e/v4htt91KnZXevjkXR0RyXxLsQ3t1sQiTC9uVVNkmO8kWTUPVbIpZLqRav+a8rD0KaVJT+x33nDX59Z//YLzFENPV2n3ZA8l3HHT7nXTK1bxy5iEMvTu+MK4852o2tNJoe9T57jJFlDMvN58Tzvt13DaZBa64Uo/loZRkLqYZCEtKRAootw7tm3FtHRFOf53yyrIsTfWZ89E8ejyZlzFatVNmD9vSpLsuxIhyD3WaZLr2dmRD1Dp/cUWyFYuQpgiOVllj/GKKq+it+byNHmNEiS3SlX7Dhl1g2m3vyXTdb3YWoyZxrqkqsaESMPue31iUfMryBl3yaR+lGgtXlOW6DatLcqyxK6TJLgMpk7udhIzGuWJtzBvmPhOq/MT6ZgTMN0WYACpXJQZ11ysfTWElCFpaWnJ6zL2v1Gte9a0rCRC1jlOdMAUQ2b2TPcGHn39OfSjE4QOtjz4haN2qFTW1tewsL+e0Y49lwbffMvTEE7n/b38jJyuLnp07s/Dbb+lnWaOklNx4358YP3YkA8rK2N1E5EHWh9833mAfoVFLk5SyDngEeEQI4cF0odVKKX986lsHKab+9d98Nu8Lju4zdK/2++rRufjrKpq0DPxUMG7EWCJvLcRQ3F3ZmTns/PIDzg8ewDg3y10Va1Cw9OLTzMDS2tBxXLPtOy458252Xm0qaux3rRKZ+AJuCbw+9+2XMWwqH6++G+/wsWjfvAvEl4pRJ107lsKe/Ap2LzcNL/aYLAKVWZU8W0hkuvv16Do3/nZ6QpvjTjoXTjqXNd8txDFgOCQj+SdsMKNBccRYJLlkSCziuKtimjuZt+kzAt4zyVvxgOGAmTBsB/2HvB5iMdB1jT5j2rLwPyuRQsew3FkfD/aTa1vfdAhaA/dVu6aNDItwSOEmOgQVq4ShSg5YZCumC4eYt+veDzAnWZ/HR/+vH2R+v8tA6HHWr0PmP8TaDgppUguP66a7MKbcNwGlZJIthyEk7uytuOe0DJc0acrzsfH/nqfkjNN55+ShTH7JdIP6s1wy5pBtNcs027VwSUU8tthKHrMtTSO+vJHPRtxqMj3bQhaN0HOJW41AqtYwpS+TNJnuIzOoPzkBA9hSAK2bIa0U/N2fE5YN/tSdfms2rMZ2YhobE6Py/Tvda64rbi5biFIKL/XeIozoFvSd5YQjbt9hPdFVmwoTRoxgguVOA/DUmffi5i++cJZ9Mj3x+Zs1dy6XnXEGAI8+/zwzv/iSiqoq1qxaxwnnn+y0CxmuG7ohFvTy4MQ77Ac0++0rpQxLKTelCdPeRXZmJkePOnyv93vRHz7iZ39oqBH604ZKmGx0zG2LL0Xdv/2BjJ//msXtwX/mNUnXB7we/nLtc5SVtHVUi7X9XBbWDmKO+PbMwqUWjZ48+WxipzzKSeff4VqaFNIklMB2J15IU11nAiNcTZfvX0fTowhkSo0mLSsr+Yok8KjistZuK7zJs610ZQKvN+Cw2TchiSZYwA6bfRO6TyFNTviTn8+vv4LPR2bTdvAEpWPXLXjZo+O55OFxjDq5O+M+uYrxs67A48tg7evvMfmBWY4LSgo34Hp7K9fqodnB7AI89VHqvdlsClxJvdds41EtTRa5iOiuq9qjkKpOrbpQsNtKK4+z9EF++Yq4jMc40pREVNOvWIQ0n4/KYFs+H34PIY+ZW6YppCk+8N2tmzhh0ABq3v+MaTe6kR0ZSm1HO/bPCLvj9CVxg2a6FVcc0mQmO1ik2bLcIDSMaIUrP6HGXSkESi20bd+T61PILezObfxZCjfzUfNds2fadQU7w0ihE/W0BqFR62/lFNsGi2i34Bup4XiNJlyT1TU1DD/5ZCYMG0b7EtNye+nPf87Hr73E/bfcxIUnnxyX1RxLYd4pzwDffnYwHXh5zTT2CYqy/HQuPAjV5dKIw3Fjj2Xy24s4fvxxTTe2IPaC3lJL4DvhWmYOFYgTr9+j7T2KpclraFx6/FiyAl4ne86nBEOrqeNuILj7Rj7rzsGI8utY1PljyiasYNwnV6XMftSymn//q+WGhCUU2H510zPXK8cGWZdf4UqGWIGqmoziC1XgFXapGJc06V4/5599Cec/OZuAWtrGOs5YCouex5/Bkb06UJqfpZAmV0sqpEzg0bBl8dDM82gHqS/vcgIQX1LHFlNUyY1apzCr1AzUFTIG1JqENVpt/Rv8CreMC+RWYsNsBBTFfV03WNj7AqJ6gC1FpntUKKTLCKokMP5aDOyQj1/JNgwo+mp62HJTKTeGV7FwqXX33B0I/nnuEQBktIXMHjqh/hvxafNotWOheY/Z7jk1gUTJ8LOFWde2EY6RK+xJfi2bEmNd1DPRcvnfbnvvua/Mak9VZluF2HqozGpPZZYpyaM+U7W+ZD1AbYZ5/tUMzuYimJHBFy+9xG1XXx23XFOMu3FjSEGa6vzQY1njBdD3NtKKimmkcYAR8Dbvs9JOiY759416fCqcOOEoZrUfxOhurZpunASpSgTZ84Y/QyFNSuyMXfxXjfcy/AGKb3qfQXkZ1M5/HUits6Xn5CZfkQRen6J3ZX25bu/cdAzXxDNf5OniVzjF24rwu69SsvEztlx0GzX/NpWnayvcmBNNIU3OfpXjdWoLpphQvaoml+ZamuzJPKy4CGMWeVvS589IpfTMttaDmNF6ENoDuxlrLYta+j5RQ+C3rC9exTqYW2jqGo/75CoWji2hw/qNZFd8SJ51aJnbXJONrhYed0Q13QuUkWm6yWaMeQhWCGyx96i3KCFD0KOS6SbKQQUysh1nWGWWH6hgV6sswIzRCdS6YxSKpfCrroKB30mEx8O11/yZ78+t4lxF6fuFqybRb/EqtuS7pFeoxZtVAmWTMSHoudwcTW65awWZdXgJo/+zMeGc2PhyYJBhX1nuNK8H29W3qkTQaaPEm+EHahO2UxHRwYiagei+FNaeyszS5CvAuff1mELsUuhs2UTJE3HfTXUeEgotRzUzmSCzyTof1tg1kELHE2uFFNsRMooudGx3Z8ir4QHWtNXw1u/nKHCasDQJIRKV7Nx1J+394aSRRhqpsOOEa3l9pE7gZ7/dr/sVQjCme+EexzTpTbg/fVluvImu1p5LQpq8hsaU/qUc2r7AybRKRTL0nJzkK5LAdldFNMCyoIQz4ifqpe0SS4OMLevCs1dey+RL+uGpeIms6g2MPbOfo+6OIqrpuOcUK4+hHJtQCh8ng1d1XdrbqW0V61DrIcfz4UAtdQC3EqviWJo0gW4tNxQLSqYSvN3ua3PSz1NS5NXSQpp6rZOUb/EHmp9M4M907wvRRJmpQIZLdNpc9mdeHhmg6yVugem6zoe4jZV7LGjN/MWeAoQQdC1q4NK1XMOtd7rXTy3qrarZ2yV1VKtLnluSjpwCxVeX5Br7lGxPtSi3PUtHfe64NyphmJXWcFRFdxWquntEh8zqjRjhJCmIMkZmdRKpw2Y8905JJOVaR5Wx6C2Mw6zz56Pjo85n3gMeXXX7mv+LpTjefY2mdvmuEOIjIUQyjfo9s9WnkUYae4RLjzuJEb+ZwdShezdp4EAjQwniVcsJ7c4xf9cVuORHJW625SaVe86Tm5d8RRL4vD7+PkHjoTOHJ0gd2Nhy49/45NaHAbjnlEk8/ouz4tbfethV3H36GDIVle+dg4YD8OoI141mKFpUKoQtx5DC2+BVBRxtq5RwJ3MUF2O3kmJ6/W4Gx/z6UIjWxYm76pFaJl3RzWkbsaQsYrrOp4PN2CJv50Od9X4ltiicZMaIKqKaWpylyfyfalXxW9IAg+feAUQSRGdbdfjQbasEb2spZCVsBII5bG51CDPGPETHSAk3Pfk1o3u6aTD9DhvjDsuyCC3vZjgijplGCmV91S1oWwqV86yrEhn2NVE2Dymbq4rbSaNwlL6kJdewsJvuqmEr7khVyLQ8x4pJMxTyojwncURGNzMBbddqPETK7EEbNZnKdUhyEOp+4yzA1u+qgLuwIphoYa/MLCXkb0/EsD5iPAEqs9oTiSazcrvP1P5EU+65BcDzwJdCiKullGq+7v4NrEgjjZ84dE0wtof5tbrgoctZ+e2c/4nsyGBOAbbhQq21t2nyH3iy4BaGH3EjPDs1YTtbGDSVe85oAWnSNI0Lfj+bklw/b144yl4Y1+aSMa6G1tO3JBZE+OTWC9hdE44jdsdOvJyfLRTcevKZaKeMA8CTQsXdt9lUf+q+LLkLxhtwrSBOeR2FNGm++H4n9GptNbH1n83/hgwo6piPLbwXHX8yVW99zaLDD+f0E3/L38Yt4I/d+zgJSRkeDdvTM2NUMae+tTlO3ydqaNhFb3S1jqCjrK4oultjzKregPPN7gTyCnxZboBUUAnu1puomBDIzncU1D98ejHdB8bLiATVmDU70FuJB8NI3r9QLD72VfUofWl+l1BKxT1no94LXutyCq0Jt7pfleYwrGFpaNJKL1Q+KPJ3u2zBtvTZGr4Q/yEh49xr5u+oriFiEfRoiIgOAi96NIU/L67EUOLDVuMXGFFXONg5BiuBUI+5ZErX3KxCQ/ndWP8JHStNU31g7Es0RZqklPIJIcTHwHNCiEnAZVLKGlKQ5TTSSGPf45SJl8LESw/0MFqET/vEi2OuLoKOWyGouFY0JUj3huOOZHa/QYzo0or40qQmImEzSCKVe86Xm598RQp0LbImQEcfqmW2f4+uUZgVHzXbNjfA7Ft+A8AC29LkS25pClmGhrkDfEnJsE8RcHRiv4SbFmCkIGNC1pNRvRNv5zXsCo3AGw7iV1xMp4w7jjeeL+HGHgPRdY07jhsNuCnnAY+BnTJ96IAT4K2HCRs4BYrXl7Wi14rNQHwAua3IHVOIh0+xlvmzfOibVtNx9b9Y3u1oBMG46x/Mb42dMJ/Ku3PXeWcyaOVQxNWzwXLhxKJmoW4wa3eZp0llEbYkgeoCTjEVKrOcYylU4t+MQBJRTWVXIQ9OGJKq72R3+8GQbCbOMT8ZdCWOzCZxAoFm3Y87NFdSQM38s3Wy4qyOKlGKIz3WUKM78Neb6ytbZZO53ey7OiAI1lpCpfbmcWJOceJh5v88BiJi3QyKVTHiEfjCDWhCXLmixIsaqNlKbaAwvp2UGP5aV9BdWedpED+1P9CsQHAp5XIhxHDgNmCeEOKsprZJI4000rDx258fifCXcaGy7LnxgygU8/iTWipGmbx0TTCii2lteGyqj+DuMLcr23t6jWNZ20f4fFhvlMR9B76c5luaVLhSB3vXmG5PPipxiFtvfTXLzORZf35lgrbtIurcmO9N7lppv/ZGOq+NsXzwkZx+5fikbY4rG5yw7I/HTqKV3Mz9SrBzYY45tqiA7VnQqhICE++FN0ytHTUrz56g4y1N7vrz7xnF0p5mqaKQ5xtKN0lWDD/eWZ+dV0g1sKINKd0wz1xzA8v/u5kPnl5CTErFigQTL+hNdGbiNo4GsmJpShVoHlPqrhVYk3Yg5J5nrxqsbt276lDr1RCvONJktirKy8cuSqyrpNdqq1RvIeJzCxiHdLAvd8RWghfCKVOkqfXiVFddkl9eJeNRJLH+RL061NryC2ZfYQOFkyn9K78F7s1pP1OC5ONyDjuaPFrcSJGFaDRTR2pvoinS5IxUShkBrhNCvAdMBw6uyrdppJHGQYu7f3EbhZnxVphrL3iIN+dvQAjBR30F+ZXQKcUXf6cJzzNzxaa4ZYf2KOOJs/7GLyf2TLqNL/uHkqZ9E2XqSRXTZO3XSBE471cscjG7BI10ldXD2R2SbqfZE6kneRZjKtz+q1vYWR3C20bRTrLGJjV4YVIpsnoDfxrTj4tP0JBaDhdkuBO/TZbUoGaPkfzYHPKixC4FMrK59mf96FE2mdGbUmvOdR9czIfPLEEoVZGFBt0Htk5qoVQL2zpkLMV9Jyzphl1ByLPMXlHFDerLVJINlOD8mX09jF0YZl07LyXbTbeXliSYPe4jQckiteULkDjB+W387diRG2F+v2n0WPoX2m4zRV2jXtfSZLurfPUqOUlyXKrBR61fmcxlRuPWobj+VdKkDMETMs+5p7ZxllOV7YGYKW+h+6NE63QkwiJzifvQ9n/yXJOk6ZaGC6SUM4UQA4Ff7JshpZFGGv9rcFxfCvq2y6FvO3PSWX/GYyysraerUZXQDuCXE8v45cSyuGUeXePJs4clbQ/gCaQI7m0K9lf6D1Ben3GcD0+oMs7NZk8iAX/yDDKZzJ2iwKtYfLLWm/FPfRfVM68nDFgGZd2TkyYRM7/4dV8TdSkaoEthJl0afBobVsxSTEBGn3t4+av1POwxmHjsO7TJCaCXu+TGPn2xBuKkyWDHpakuRq/H4I0/vgDA2/fOaXSssRhouqDPmLYs+nhDnIWoIYQSQ+W4oFIUvm79zfeAIK/azKw0YqCVuldVVSJ3Yo4EdPr9O9z13C8p7Xs+hyy5hUVl5xGIrXGa2iNQiVScyKtdYiYm3TF6fCzqfQ4IjRU9LqTtNlMQN+ppnmSJPTaAqGIFihMkTUKKRBMxTXanUujEZAFSbDODza1rUOc1730DqPFqZNXG4rYD043pDZt6XJ6adaaMQXYhAasobzSvOOnh6AcbaZJS/jPF8l3AnftkRGmkkcZPDrdbcTRff/LmXutTT6IA3xw4mUU/wNL0aedH+WLVDi5Sls3pIRi+TBLISx5rtaGDj75fVbKjXXIlc3Xyqrd8M2u6abw+6BIW9HqbM9odknS7t8ccyonvzcU36KiEdV/2EC1KJtAsJhQ24J6T+nPPSf0BOGNYRwDmzncnfs3OQkwRZG3jv2UaXw4aTOelcxg+8Fjg70BzJmsXlz3quh1Hndy98YNQsi4dC5eRfCqsUiZ2uzBsYbFbe9CTp8gIGK577ug+pbT6xRN0Lwrw3suLKc/pSmhLJvB6XP+quniw62DgZWs8rqVJi1m6VtsEWItjRtApJJxbZ0mQKL7aqoBGZhJyYkNoCmnyeF2nmXLPO/ITEUU2Qy1sbV9fy81Z78sFvNT7crn+xqt5+5NZrHjvfSqyssiuqgIkhj8AtabJ7sprbuBnI8fQprCQl/7zHrdfcVX8GOOuefJ74aAjTWmkkUYa+xNaii/+/QrHDLDnpOn5ixItYP8+dAzzhn3JPUm0iioCUD/weh5sdQOD+iUvqaOi3pot1hZncecvzuGf8w6nKDeDZOXMbrjqUf4x8muu6TcobvnkUy+nb+uOnNu8QwIgVmNauMIpLpOmKLrbljOhpyZNJ534K7q1bsflhw/gyunzuKRzD/52iMaEb+JnQ6evvZx+ZEsOpCJNr19wCwPevpnHup/PKy89CUAwv9iRmCwp6cou63dmhWkVyawxScbcexcwOxKD1gMBqC1vw4yxD6NFw+RtNYtAq1ae4kKXjBlWtmBmVcR0QTVS3xBvosuzLjOLzFrzWsVl0jX4P4Che7DjqZMVAw8JgbOHJOQ1Gi2kNsNd/t3mbcz8ej7hUJTlWT56F7WjqmqZtbnbbtHipfz+vAtpV1xMWb9eELbjoExCJxWNsWQWSikODGlKl1FJI400DhoYnhQ1G/YjhGzcTdasPoRIeNFPOfJ6Pgvfjc+If+3+4dT+/OHYIzhx1Gg+rbiLowYNiFu/oGPiONZMPJsN+bB61Hl0KczkV0f0wPAkZzIlOZlcO3F0wngW3/ALXr0o0frUGHxlY5jVW/DqxCFJ10fUIseWe6ZhCRQVH117Js//4nDG92zNwluOIugzmHv0g0w+9Zdx7WradgFgWWnLXIx3nqjxxJHx53tHwDShbM5RXF8pYq2e+vlJhM97nbm/c8cTLHDlDLKD7ngqd5iR4oXbzH9HI8ln9JhmOAHRhkIMgkE31i242IxXKt5sjvGw2TdBw/qG0TCHzb4JAzcQfIdlpCxQ4/mSWOzCCvvU49yniZRAC2SxKU9nV6bSVyOPxj3338FV035N9249qN20A0PXqTd0VqxezVFTT2bw1Kn85dln2bptG+2Kiznvuuv4ZM5/nX6jlq6UoRJZNVbK+i1xM/z2J9KWpjTSSOOggd6EK2d/YH2pl94L66gobn7B3+bg9KHtOX1o+4TlRx95J6V5GXQtymThzYlFGO477AoYthY1qufosSczeUEb/nX4aGeZrjeuvN4QzS3fo6JD63Yc0+0e7j62X9L1XiXIXdikIYUVB0iQaAB46szxRGPj4pb1HXsOl214icP7tjAqpNsDfLxpW9wi/4jTuLfuNrI6TaDLqveABkrmCoQQXH1Ej7hl2ZnZ2Mn/ui/AfUf0ZaunLWVBncFfvMPGQlNaQ2iuukEcYhHHQiJ87vF7fQFHYmG7X8eWHxWx+ELCRMNm4LrQ8IUq0GOWdU9AXaAdKx+/h4w1a5A1pj0sZmiUW9cipgu0qCSmC2qsBAE9GCRabe5Zeg1EKF78SPo8BPv0o9X111KxbYO7HLski0toli1fyrJvl/CX+x5jwdKvWLx4McOGDUMraMOZvzuZhx95jIHZ2Vx5221072Ye4aLlyynrYZ7jmObD2zafbTs20DYQdPTBUrrqDgDSpCmNNNI4aCB0Lwfg4zEO64Zcw9UdbuPEAb/aL/s7a3jHRte/feU5bK2sj1vWuySH1XceE7dMT2Fp2hu4+2dZhCjgOb+H1XdOTtmuKK8H9x6psbbAw2kLLWbgMajxQoY1Az4wRSNsBHkqRR+6JtAbyD30bpPHk2f/h44FLbM0/f3sic7vO0/PJ0w+1/ecxO0fZHN7v74ILNLUArewV7EUejx+zr78YQqzfGye9Qy85LY7+47D+Pv1nyGj0rGUxIjwbrsPuHyVHe/lTsEeRf9p2cn34Ku8nEcOncyf3nkbgEDuDvIXL6Fk42csn3IBngVmyRMRsTPSBF2LctkcDFKnJPfHdA0tErO4RhNPVyy5UjgCDE2P2746OxdP1Ua0QAmEzOO7455bufZXv0OTUcp6l7Fo0SIAPnrvfQ7pP4CRI0ZQu2gRvbp0wdcqn1A4THVtLYHS1iz772IevP81KsurmDBhApdc0kcZQqLW1IFCmjSlkUYaBw10w8MBEPmNw1mHTeC4h/0ceVZZ0433A4qy/RRlNy0XYOzDeLD+4/+P1s0YQ0lOJox4juuGtmfTFaa1SNM9/O7EIQS11bwC/Df7frq3Tq5F1Rg6F7Z8GxXf+26lZ3E2fdvl8MX14ynO9jPDcnc1hzRdf0YunbZXcL+a8q55GNXNTDHcUtwRgKVd/UwAgjk+dF0jHIsSI4KOQQSdY0b/gk7TTSIUjoS46MxRgMG7iujpjZNG03fOPbx98Uhq3zLbtum9mo7/NFlZSa+ttJlu1Te0yu/YsUvFN9xANBohtNSMIwp17s766u/wyEJaVWwlUCepzfIQqDQjmQJ9+lBrkZvK/CBZO217l9V9aRsycwrMfdhB9AiyMgtZGwpSangIhyJ89fVcZs76kMVLFnA9klAkTL9+pkVywYIFDBw40Olz3pIljDzqcJZ+/z09OnemoFU79IlZPH3ssUgpufBCU9FtY755agTj8QAAElBJREFUXUqSuA0P1MdVmjSlkUYaBw0Mw/uDSdOyttBzQ9PtUqF/aW6j1pSDFZ4mitr+EPxyYhMZaQr+dIqZxbd0uWlayl+9ianT7uXLlTsB+Op3R+z9ATYDn17rZti1yTEJih3ao6eIaVJx8pFP886SFfELlXig4u7juOLUiWTkH8E0a1n73vm89912Soe0YXDUS015PUeP68rfe2kMWRojkunnhrHXo2kCj6LSnqVY9L6yhbcVCY04q2IsXnjS/OmOKzvgoY3sSm6Gh90VWxPa2qj1gh7Mhp3VjrwCEK+R5KipS3IzvGT5PVRtr8UIV3LXXb/lub8/z9iBwwnUbaeisJABA8z4vIKCAsfq9PXixbz8r39x6TW/YuGMj+nboweGblDkKeLNN9/kzjvvZNo08wx2KTHddnU1VQkkSQrJ704PULqzHqfmz35AmjSlkUYaBw30FLElLcET444k4N3Mq3thPD8maHsosbCvsKqdoNN6yZbBh3DR6C5cNLrLgR5SIppQBFdx+uBenD44tUBD99aZTBx+GacOduPWjr64H0cnafvluGNZWvIWw4adxtF9zSLJsZjk+2J479AMHlLa2gKOhqIkr5arsQs9CxKDpe3f+cEGz5UQhA3z8APAyvxcJAbdgtlsz9pEtSdA6U4zJiouo85y37m15AQ5RRm89cb/EQrVM+Hw4Xg3mhFfrVu3prq6mp07d3LmmWcyadIkDjnkENq1LyYrJ4uePXvw/KOPM6RfP4fkTZkyhSlTpjB58mROP/105SSoopnmRfNHItx0wXt8t2MzDzyQPDFhXyBNmtJII42DBkYLg5mTIafoVL5YmSz5/n8bqYQjDxTszCZD30OR0f0IrRFZhOZCCMFvjkyuTt8Q3Xqdx4MbR3FGiesC1jTBlRMu4KhuA+Pa2kHjPkVtXfcpz4ldKzFJhllD2OVV9GiUdblmokMO0D6/NR5dw6tr1ATaUZyVATuXm30ppClqeIFa6r3x1GH8iBFMHD6CcINMyfLycuf3nDlmKsOCDTvx6hpej2DW3LlcdsYZCCGYOXMmr732GvX19UyaNCmuHyE0Vy7B8kO2W6/Rq6SU/iWlSY91XyFNmtJII42DBlozvvibwvSLhrn1xdI44Aj6fjgR3lewqYUQ+zdr88oJ3TiirDV92ubELZ9/zZUEGih82y5EbyDLqfcXb2lKJE2pYBe4NeqjtC1q4xx/lt9193UrygWcOsNoqiRBMI8NsQo8/oKk/YtmaJv1KcmjprqaESMPY8KwYbQvMfWpxo4dy9ixY5P3q1jRpOWmvOuMUp5pcm97H2nSlEYaaRw0sIOZoz/QaHKwWV32J2b0a5nK977C5lY6HTZEiObkNN34AMEpqLKP6gymgq6JBMIEkOlLnJJt95w/I4sLjjmBDG0LDypSBTty/HQBYs2Iy4oYZrmS8owAJRnNI7OqpalVMIhGF/KC8VIRIknbVNCEIDMzky8+/wxWrm7mGNznOegL8Pqjt3H34MObte3eRpo0pZFGGgcNDEvn58tegj5NtE0jEWdM60hd+WAuO9ADAV4dezTv9nmXswZMOdBDSQmnjMpBrPNsj8wXzOGmKRfz3dYqDI+b6fDvMcfRIwOKM3MTtq3xmTFLDeFpRDsrYf8KERJCUJCZJIuygYp+WE++XxVCiGZnwDUU3bxh3AnN3HLvI02a0kgjjYMGXn+Qi6Z5qak8ggsO9GB+hIjsuIrLxx4cAdfju57PA+uGcm9xpwM9lKbxIzBMBoI5TO3aDoCvvvreKW3yy9EXULN1DXmBeEmGlUVeZDSDZI40j9E0SazxQUZ9vHsuFUIe8IUB3WBVKx9Seund1EZa80/6wWQ5TpOmNNJI46CBzzBYt/52Lh5zcEz8PzbM//2BSedPhismdOekQaW0y/sRBILvZ/fcnsCvWJLyc7tRZ/0e0aWIpaEdeBpkTxYG2pPhTTXFN01CNmbloOVV0hy1sk3ZGfhjNbT3+GkVLMXXDGV/Nbi76bZp0pRGGmmkkQBdE3x/+6SWfISmcZBC18SPgjDBwe2ee2uI4Ng5kky/a0ny5belDtiQT8r4taKs1GKkohmkqWt+CbXhaLMIS15GG7ZW1qMJ0eh+48bQAiIkhMaaIkHQVwAbdzW9wT7EwXunpJFGGj9J6Fpisds00tgXeHe46eSKtG13gEeSGs/0OJ3TL+8SV74lK+Dl1+fr3D21Za5Pp05vMx6vgFdP1HdKgeKcAP3a5baQCLWsbY/CMkpzipu9zb5C2tKURhpppJHGTxIL2v2GCy5+gyfajzrQQ0mJw7tM5o1vBsSRjCy/h8U7bwO5h1IJB8FHSUs/jA6WD6m0pSmNNNJII42fJAZ26M+GzeeQn9E8l5KN2v0oPXXfSf1ZcHNirNpNk/vz1rTRLeprW45BlR+k/4fV8UuF119/HSEEy5aZde9mzpzJMccck7Rtw4y4Hwt+nKNOI4000kgjjR+Im4/tzfu/HE1xTstI0zlnHcqpFw7YR6OKh6FrZPsT6wqeN7ITfdu1TAMrqhexJSsTrxGgurye1+/7iury+r01VKZPn87IkSN54YUX9lqfBxvSpCmNNNJII42fJLyGRo/irBZvN6TwKnpnX7EPRrRvUZKdhSHz8Xt05r6zio3flTP3nVV7pe+qqio+++wznnrqqTjSVFFRwdSpUykrK+Piiy8mFosRjUY577zzGDR1KoOnTuX+++/fK2PYH0jHNKWRRhpppJFGC/Dk2YMO9BD2CJl+DzNv+4wPIzFn2aJZG1k0ayO6oXHxQ2P3uO9//vOfHHXUUXTv3p38/Hy+/vprwKw5t2TJEjp06MBRRx3Fa6+9RqdOndiwYQNzX38dgPp2B28gfkOkLU1ppJFGGmmk8RPBmX8cTrfBrTE85vRveDS6D2nNmX8c/oP6nT59OqeeeioAp556KtOnTwdgyJAhdO7cGV3XOe200/j000/p3Lkzq1au4urbb+ffn35Kdnb2Dzuo/Yi0pSmNNNJII400fiII5vjw+nUikRi6RyMSieH16wRzfE1vnAI7duxgxowZLFq0CCEE0aip7zRp0qSErDchBHl5eXzzzTe8/eST/PWFF3hjzhyefvrpH3po+wVpS1MaaaSRRhpp/IRQWxmiz+i2nHjtQPqMbktNRegH9ffKK69w1llnsWbNGlavXs26devo1KkTn376KXPmzGHVqlXEYjFefPFFRo4cyfbt25FScvzhh3PTtGmOK+/HgLSlKY000kgjjTR+Qjj64n7O7zGn9fjB/U2fPp3rrrsubtkJJ5zAo48+yvDhw7nuuutYuHAho0ePZurUqSxcuJBzzz2XSE0NAHf9iALBhZTNrf7yv4FBgwbJuXPnHuhhpJFGGmmkkcZewdKlS+nVK1VBlYMXtYsWUeuF/O59mr1NsmMVQnwlpdwv0flpS1MaaaSRRhpppLHfsbJYIKMB8g/0QFqAfR7TJITQhRDzhBBvW//uJISYLYRYIYR4UQjhbdD+RCGEFEIMUpZdL4T4TgjxrRDiSGX5Uday74QQ8bbBNNJII4000kjjoEW0ri1+UXSgh9Ei7I9A8CuBpcq/7wLul1J2A3YB59srhBBZwBXAbGVZGXAq0Bs4CnjEImI68DBwNFAGnGa1TSONNNJII400DnL0Lsmhc2HwQA+jRdinpEkI0Q6YDDxp/VsA44FXrCZ/B45XNrkVuBuoU5YdB7wgpayXUq4CvgOGWH/fSSlXSilDwAtW2zTSSCONNNL4SeHHGJ/8/+3dbYxcVR3H8e+vXWGhlLBtsZRuazVimqqxrRoEH9JYhaRpiNEXUh9S5AURNfEhjeILEwklRuMDxkRJIxpitNCmEBdDrLVx40MIgWJdujwULARbG1tWkSZGA/r3xTmDwzo7u9ve2Xvu7u+TTHbmzp0z9/52duc/Z+49Z/48MW8aE/GWsI+97mm6Bfg80Bp+dDHwXES8mG8fBZYDSFoHrIiIn41rYznwp7bbrcdMtNzMzGzO6O/vZ2xsrIiiolcigrGxMfr7pzdPYNV6diC4pM3AiYg4IGlDa3GHVUNpuuNvAdd0aqrTY+hc8HV8xUi6DrgOYOXKld033MzMrEEGBwc5evQoJ0+erHtTeqq/v5/Bmqdc6eXZc28HrpK0CegHzif1PF0gqS/3Ng0CfwYWAm8AhvPooRcBQ5KuIvUgrWhrt/UYuix/mYjYAewAkHRK0uOV7KEBLAGerXsjZgHnWD1nWg3nWC3nWb0zH2xqimZknKbc07QtIjZL2g3siYg7JN0KjETEd8etP5zXf1DS64GfkI5huhjYD1xC6oE6DGwEjgEPAB+KiNFJtuXBmRrPYS5wntVwjtVzptVwjtVyntWbyUzrGKfpC8AdkrYDvwdu67ZyRIxK2gU8ArwIfDIi/g0g6VPAXmA+8IPJCiYzMzOz0zUjRVNEDAPD+foRUq9Rt/U3jLt9M3Bzh/XuBe6taDPNzMzMJjQXJ+zdUfcGzDLOsxrOsXrOtBrOsVrOs3ozlumcm3vOzMzM7HTMxZ4mMzMzs2krvmiStELSryQ9KmlU0qfz8kWS9uU57PZJGsjLV0u6T9K/JG0b19ZncxuHJO2U1HGULElbc7tPSNratvznkv6Q27g1T+XSKCXl2Xb/kKRDvdjfXikpR0nDeQ7Gg/nSrMmcssIyPUvSDkmHJT0m6QO93PcqlZKjpIVtr8mDkp6VdEuv979qpeSZl2+R9LCkEaX3oyW93PdeKSzTD+Y8RyV9bdKNj4iiL8AyYH2+vpA0zMAa0nQrN+TlNwBfzddfCbyVdOD4trZ2lgNPAefk27uAazo83yLgSP45kK8P5PvOzz8F7AGurjufJueZ738/aUiJQ3Vn09QcSSdZvKXuTGZZpjcC2/P1ecCSuvNpYo7j1jsAvKvufJqaJ+nErROt12J+/i/XnU/DM10MPANcmNe7HdjYbduL72mKiOMR8VC+foo0+e9y0jxzt+fVXprDLiJORMQDwAsdmusDzpHUB5xL58EwrwT2RcRfI+JvwD7SRMFExPNt7ZzFBCOQl6ykPCWdB3wO2F7R7s2YknKcLQrL9FrgK/l5/hMRjRmMsLAcAZB0CemN7zdnuHszrqA8lS8LJIk0YHTHAZ1LV1CmrwEOR0RrKPVfAl17lYsvmtpJWgWsA+4HlkbEcUi/ANIf5IQi4hjwdVJVeRz4e0T8osOqXee0k7SXVO2f4n8TDzdSAXneBHwD+Mdp70QBCsgR4If5K5Av5X+ojVZnppIuyLdvkvSQpN2Slp7B7tSmkNcmwBbgzsgf55uqzjwj4gXgeuBhUmGwhknGOWyCml+jTwKrJa3KRdf7ePlMI/+nMUVT7pXYA3ymrcdnOo8fIFWxryaNLL5A0kc6rdph2Ut/6BFxJalr8Wzg3dPdjlLUnaektcBrI+Lu6T53SerOMf/8cES8EXhnvnx0uttRkgIy7SNNy/S7iFgP3Ef6x9woBeTY7mpg53S3oSR15ynpFaSiaV1+/AjwxeluR0nqzjT3Ol0P3EnqBX2aNIj2hBpRNOUXyx7gxxFxV178F0nL8v3LSL0/3bwHeCoiTuaK/S7gckmXth2oONlcdwBExD+BIdIvq3EKyfMy4M2SngZ+C7xOafqcxigkx9anrVY3d2vKoUYqJNMxUu9nq6DfDayvYPdmTCE5trblTUBfRByoZOdqUEieawEi4o+5x24XcHlFuzjjCsmUiLgnIi6NiMuAx4Enuj1h8UVT/qrhNuDRiPhm211DQOsI+K3ATydp6hngbZLOzW1uzG3eHxFr82WINC3LFZIGchV7BbBX0nltv8w+YBPwWFX7OVNKyTMivhcRF0fEKuAdpO+VN1S1n71WSo6S+pTPoMn/hDYDjToTsaWUTPMb0j3AhtzeRtI0To1QSo5t7Wyhwb1MBeV5DFgj6cLc3ntJxwI1TkGZony2cV7+CeD7XZ8xCjiSvtuF9IYapK7Ig/myiXTU+35SVbgfWJTXv4hUVT4PPJevt856u5FU6BwCfgScPcFzXkv6rvNJ4GN52VLSpMAjwCjwHdKnp9ozamKe4+5fRfPOnisiR2AB6ayk1uvy28D8uvNpcqZ5+auAX+dt2Q+srDufJuaY7zsCrK47l9mQJ/BxUqE0QirsF9edzyzIdCfpQ9EjTOGMeI8IbmZmZjYFxX89Z2ZmZlYCF01mZmZmU+CiyczMzGwKXDSZmZmZTYGLJjMzM7MpcNFkZmZmNgUumszMzMymwEWTmZmZ2RT8F7qN4fbmJIRnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 648x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#\n", + "# configuration parameters for TUC\n", + "#\n", + "start_date = '2018-03-01T00:00:00Z'\n", + "end_date = '2018-09-01T00:00:00Z'\n", + "obs_code = 'TUC'\n", + "validate = False # validate against QD data\n", + "\n", + "#\n", + "# Run do_it_all()\n", + "#\n", + "M0, M1, M2, M3, pc = do_it_all(obs_code, start_date, end_date, validate=validate)\n", + "\n", + "#\n", + "# save type 0 matrix to state file\n", + "#\n", + "import geomagio\n", + "from geomagio.algorithm import AdjustedAlgorithm\n", + "adjAlg = AdjustedAlgorithm(\n", + " matrix = M0,\n", + " pier_correction = pc.mean(),\n", + " statefile = 'adj' + obs_code + '_state_' + '.json'\n", + ")\n", + "adjAlg.save_state()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}